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ABSTRACT 
 

Nowadays, it is widely known that hyperspectral imaging is a very good tool used in many 

chemical-related research areas. Indeed, it can be exploited for the study of samples of different 

nature, whatever the spectroscopic technique used. Despite the very interesting characteristics 

related to this kind of acquired data, various limitations are potentially faced. First of all, modern 

instruments can generate a huge amount of data (big datasets). Furthermore, the fusion of 

different spectroscopic responses on the same sample (multimodality) can be potentially applied, 

leading to even more data to be analyzed. This aspect can be a problem, considering the fact that 

if the right approach is not used, it could be complicated to obtain satisfying results or even lead 

to a biased vision of the analytical reality of the sample. Obviously, some spectral artifacts can 

be present in a dataset, and so the correction of these imperfections has to be taken into account 

to obtain better results. Another important challenge related to the use of hyperspectral image 

analysis is that normally, the simultaneous observation of spectral and spatial information is 

almost impossible. Clearly, this leads to an incomplete investigation of the sample of interest. 

Chemometrics is a modern branch of chemistry that can perfectly match the current limitations 

related to hyperspectral imaging. The purpose of this PhD work is to give to the reader a series 

of different topics in which many challenges related to hyperspectral images can be overcome 

using different chemometric facets. Particularly, as it will be described, problems such as the 

generation of big amount of data can be faced using algorithms based on the selection of the 

purest information (i.e., SIMPLISMA), or related to the creation of clusters in which similar 

components will be grouped (i.e., KM clustering). The problem related to the correction of 

instrumental artifacts (i.e., saturated signals) will be faced using a methodology based on the 

statistical imputation, in order to recreate in a very elegant way the missing information and thus, 

obtain signals that otherwise would be irremediably lost. A significant part of this thesis has been 

related to the investigation of data acquired using LIBS imaging, a spectroscopic technique that 

is currently obtaining an increasing interest in many research areas, but that, still, has not really 

been exploited to its full potential by the use of chemometric approaches. In this manuscript, it 

will be shown a general pipeline focusing on the selection of the most important information 

related to this kind of data cube (due to the huge amount of spectral data that can be easily 

generated) in order to overcome some limitations faced during the analysis of this instrumental 

response. Furthermore, the same approach will be exploited for the data fusion analysis related 

to LIBS and other spectroscopic data. Lastly, it will be shown an interesting way to use wavelet 
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transform, in order to not limit the analysis only to spectral data, but also to spatial ones, to obtain 

a more complete chemical investigation.  
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RÉSUMÉ 
 

Nous sommes aujourd’hui tous conscients que l’imagerie hyperspectral est un outil très utile 

dans de nombreux domaines de recherche liés à la chimie et qu’elle peut être exploitée pour 

l’étude d’échantillons de nature différente, quelle que soit la technique spectroscopique utilisée. 

Malgré les caractéristiques très intéressantes liées à ce type de données, diverses limitations sont 

potentiellement rencontrées. Les instruments modernes peuvent tout d’abord générer une énorme 

quantité de données (big datasets). De plus, la fusion de différentes réponses spectroscopiques 

acquises sur le même échantillon (multimodalité) peut être potentiellement appliqué, conduisant 

à encore plus de données à analyser. Cet aspect peut être problématique, compte tenu du fait que 

si la bonne approche n’est pas utilisée, il peut être compliqué d’obtenir des résultats satisfaisants. 

Bien évidemment, certains artefacts spectraux peuvent être présents dans les jeux de données 

acquis, et donc la correction de ces imperfections doit être prise en compte pour obtenir de bons 

résultats. Un autre défi important lié à l'utilisation de l'analyse d'images hyperspectrales est que 

normalement, l'observation simultanée d'informations spectrales et spatiales est presque 

impossible avec la plupart des méthodes actuelles. De toute évidence, cela conduit à une 

exploration incomplète des données à disposition acquises sur l'échantillon d'intérêt. La 

chimiométrie est une branche moderne de la chimie qui peut parfaitement répondre aux 

limitations actuelles liées à la structure des données en imagerie hyperspectrale. Le but de ce 

travail de thèse est de présenter au lecteur une série de sujets différents dans lesquels de nombreux 

défis liés aux images hyperspectrales peuvent être surmontés en utilisant différentes facettes de 

la chimiométrie. En particulier, les problèmes liés à la génération d'une grande quantité de 

données peuvent être surmontés à l'aide d'algorithmes basés sur la sélection de l'information la 

plus pure (i.e., SIMPLISMA), ou liés à la création de clusters dans lesquels des composants 

similaires seront regroupés (i.e., KM clustering). Afin de corriger les artefacts instrumentaux tels 

que les signaux saturés, une méthodologie originale qui exploite l'imputation statistique sera 

utilisée, afin de recréer de manière très élégante les informations manquantes et ainsi obtenir des 

signaux qui autrement seraient irrémédiablement perdus. Une partie importante de cette thèse est 

liée à l'investigation des données acquises à l'aide de l'imagerie LIBS, une technique qui suscite 

actuellement un intérêt croissant dans de nombreux domaines de recherche, mais qui n'a pas 

encore vraiment été exploitée à son plein potentiel par l'utilisation des approches 

chimiométriques. Dans ce manuscrit, nous introduirons un pipeline général axé sur la sélection 

des informations les plus importantes liées à ce type de structure de données cubique (en raison 
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de l'énorme quantité de données spectrales qui peuvent être facilement générées) afin de 

surmonter certaines limitations rencontrées lors de l'analyse de cette réponse instrumentale. De 

plus, la même approche sera exploitée pour les problématiques de fusion de données spectrales, 

liée à la LIBS et à d'autres données spectroscopiques. Enfin, nous introduiront une manière 

intéressante d'utiliser la transformée en ondelettes (wavelet transform), afin de ne pas limiter 

l'analyse uniquement aux données spectrales, mais aussi spatiales, pour obtenir une exploration 

chimique plus complète des échantillons complexes. 
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Analytical chemistry is nowadays a very important research area exploited in many different 

investigation fields, for many scientific purposes. Spectroscopic techniques represent very 

powerful tools to deal with the complexity and heterogeneity shown by real samples of different 

nature. Indeed, due to the instrumental developments in the last decades, the quality and quantity 

of the acquired data is constantly increasing. Factors such as faster acquisitions and more 

sensitive detection chains are just few examples of the reason of this phenomenon. Furthermore, 

nowadays it is common to refer to multimodality, i.e., the analysis of the same sample merging 

the information obtained using different spectroscopic instruments. For sure, this rapid 

development in analytical chemistry is leading to a real challenge in finding an adequate way to 

interpret the information of a given specimen and, thus, obtain satisfactory outcomes. Due to the 

heterogeneity of the investigated sample, it is fundamental to observe it in its entirety. Nowadays, 

a bulk analysis can be limitative, and at this moment it is fundamental to find a way to overcome 

the constraints shown by routine analyses, answering always more questions about the observed 

samples. Hyperspectral imaging is one of the possible solutions that currently can be used in any 

chemical investigation area. In fact, modern instrumentations can be easily coupled with an 

imaging setup, leading to new analytical exploration horizons. First, using a hyperspectral 

imaging system, it is clearly possible to observe a sample from a global perspective. One of the 

most important aspects of this kind of technique is that the sample is observed also from a spatial 

and not only the spectral point of view. This means that more information could be carried out 

by the acquisition of a sample, considering different facets. For example, the limitations of a bulk 

analysis are in this way overcome, and the heterogeneity of the specimen can be finally really 

studied, observing the spatial distribution of the various constituents of a complex matrix. 

Nevertheless, some important obstacles have to be faced. Due to the complexity and the quantity 

of acquired data (hundreds of thousands to millions of spectra obtained in very reasonable times), 

it is complicated to directly analyze the raw information. Deal with aspects such as 

multimodality, big data, and considering the fact that a good exploration is done when a good 

preprocessing is applied, is fundamental. The correction of artifacts, the data reduction with the 

purpose of using only the most relevant part of the information contained in the considered 

sample, the use of not exclusively the spectral, but also the spatial information, taking into 

account this particular aspect when a hyperspectral image is analyzed, are all factors that are 

nowadays essential. Chemometrics can be a good solution to all these problems. This discipline, 

in fact, is applied with the intent of learning the underlying relationships and structures of 

complex samples in order to obtain more particular information. It is known that in the last 

decades chemometrics has been vastly exploited also in the hyperspectral imaging context. 
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Nevertheless, more facets regarding the link between these two domains are possible and clearly 

required. Hyperspectral imaging potentialities are still not really exploited, and it is a duty of 

research to broaden its horizons. Too many limitations are nowadays correlated to this important 

kind of data. A hyperspectral image is a data cube made of pixels (the spectra of the given 

specimen) in which not only the spectral, but also the spatial details are available, leading to the 

possibility of observing the sample from a different point of view. The challenges are multiple. 

For example, normally, in order to carry out a routine analysis pipeline, this three-dimensional 

data cube is unfolded in its corresponding two-dimensional form, leading to the loss of all the 

information related to the spatial details (all the time of the chemometric analysis), and so, to an 

incomplete investigation. It is also true that, as already stated, the quantity of produced data is 

normally very big. This is for sure an important aspect, due to the fact that in this way it is possible 

to obtain more spectroscopic information related to the investigated sample. At the same time, 

the analysis of big datasets can be very complicated for different reasons. First, it is a hard task 

to deal with a huge number of spectra from a computational perspective (proper devices are 

required to work with). Then, and probably more importantly, the possibility of missing some 

specific and fundamental information that are related to very small areas of a given sample is a 

very common scenario. If the right approach is not taken into consideration, an inaccurate 

analysis would certainly lead to outcomes far from meeting the expectations.  

       Here finally the main purpose of this PhD project: exploiting various classical and emerging 

chemometric methodologies and algorithms (e.g., SIMPLISMA, K-Means, wavelet transform), 

work on big datasets acquired with different spectroscopic techniques (the most commonly used 

today, and also some recent ones that are nowadays obtaining always more importance and 

interest) and on the multimodality (operation that is possible coupling different device responses, 

due to the modern instrumental developments) with the perspective of providing new ways to 

deal with the limitations that are currently related to hyperspectral image analysis. The various 

concepts will be described in the present manuscript, facing different problems and giving some 

possible solutions based on already existent and new chemometric methods. In order to evaluate 

the quality of the presented research line, various data matrices acquired with different 

spectroscopies will be investigated and, depending on the main task taken into consideration, 

particular approaches will be proposed and described in detail.
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1. HYPERSPECTRAL IMAGE ANALYSIS: AN OVERVIEW 

1.1. Introduction to hyperspectral imaging  

 

In an important context such as the data analysis, the study of samples by the use of the only 

spectral information can be restrictive. In fact, despite the impressive improvement from a 

technical and instrumental point of view for the different acquisition methodologies [1–4], it is 

important to highlight a constraint: a bulk spectroscopic analysis can produce only a mean 

spectrum-based average measurement of the observed sample. This clearly leads to a non-

representative local analysis of heterogeneous samples and objects, and so, to the complete loss 

of the information related to the spatial distribution of the different constituents [5–11]. Indeed, 

besides the chemical information contained in a specimen, nowadays the interest in the spatial 

structure and distribution of the composition of the sample of interest has a crucial role. 

Implementing the scientific investigation and acquisition of a sample by the use of not only the 

bulk spectroscopic techniques, but also, and most importantly, by the use of the spatial 

information coming from the specimen is currently fundamental [12–16]. Clearly, the easier way 

to obtain information from the spatial point of view is the use, and so the investigation, of an 

image (a picture) of the analyzed sample. By definition, an image is a two-dimensional graphical 

depiction of a subject, normally a physical object. From a technical point of view, an image is 

composed by pixels, where a pixel is the smallest element in a raster image. By literature, a first 

attempt to exploit this kind of analysis was obtained by the use of grayscale images [17–21]. For 

this specific kind of matrix, each pixel contains only one channel, based on a precise amount of 

light coming from that part of the image, and so, it can carry only the intensity information related 

to that pixel. Afterwards, the interest in using pictures as specimen led to the use of color-based 

objects, capturing images using three filters centered on red, green and blue (RGB) spectral 

domains [22–25]. Nevertheless, the use of these few channels cannot be comparable to the 

vastness of information captured and described by the use of a wider interval such as the one 

represented by the whole spectral domain, containing hundreds or even thousands of spectral 

variables, which can range from frequencies of a few Hz up to very large values. In other words, 

different spectroscopic techniques, each of them focusing on a specific spectral domain 

(ultraviolet, visible, infrared, etc.), will excite the sample with a specific amount of energy, so 

that different effects (from molecular, ionic, atomic, etc. point of view) will be generated and 

therefore, observed [26]. In simple terms, although the possibility to observe external attributes 

such as surface texture, defects, color, shape of the sample, the chemical composition cannot be 
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captured with these kinds of images, due to the lack in spectral information. In the last decades, 

from an engineering point of view, the interest in fusing spectral and spatial information has 

enormously increased. Finally, after the first attempts, an evolution in the use of image analysis 

was achieved. Nowadays in fact, it is possible to acquire images that contain not only few 

channels, but instead the complete spectral domain of a selected range. Clearly, we are talking 

about the well-known hyperspectral imaging technology [14,27,28]. The main difference 

referring to this kind of acquisition methodology is that a hyperspectral image is a spatial picture 

of a sample in which each pixel contains a spectrum of a series of contiguous wavelengths, and 

not a single value. Undoubtedly, the amount and the importance of information that can be 

obtained using this kind of acquisition system (from both the spectral and the spatial point of 

view) is enormously larger compared with the one observable with other spectroscopic 

techniques, leading to the necessity of new ways of interpret the acquisition outcomes. 

Particularly, dealing with very large amount of data can be usually counterproductive, limiting 

the possibility of maximize the total extractable useful and meaningful information coming from 

the raw data. Nowadays, one of the main ways to face this issue is based on the use of 

chemometrics, which has shown to be a very useful discipline, able to help in this complex task 

[29]. In fact, using different tools related to this field it is possible, for instance, to reduce the 

dimensionality of the data, to extract only the most important information, and optimize the 

obtainable results. Despite this, the applications of chemometrics in the hyperspectral imaging 

area are nowadays still limited. This is the reason why a rising interest in overcoming the 

common restrictions related to this technique, finding new ways to couple the various 

chemometric methods with this particular kind of matrix, is constantly in the spotlight of many 

research lines. Here finally the main purpose of the present doctoral thesis: exploiting different 

algorithms and tools of chemometrics, trying to exceed the routine applications and particularly, 

improve the way to investigate the results coming from big datasets, also when various 

spectroscopic techniques are used simultaneously. 

1.2. Hyperspectral image characteristics 
 

From a general point of view, an image is a two-dimensional representation of an object. 

Normally, referring to a picture, the two spatial dimensions related to it, and so the number of 

pixels in the two directions, are represented by the letters x and y, respectively associated to the 

horizontal (the rows) and the vertical (the columns) directions of the image. The main and more 

evident difference between a simple image and a hyperspectral image is the extent of the third 
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dimension. In fact, while in the first case only one single value, based on an intensity, is 

associated to each pixel, a hyperspectral image is a three-dimensional cube, in which this new 

side of the matrix, normally characterized by the letter λ, is related to the spectral information. 

More specifically, λ will represent the spectral range (e.g., wavelengths) related to the used 

spectroscopic technique in the acquisition. By way of example, a representation of a 

hyperspectral image is shown in Fig. 1:  

 

Fig. 1 – Schematic representation of a hyperspectral image. Here, the spatial dimensions of the image are represented 

by the directions labelled as x and y, while the spectral information is related to λ. 

 

In general, the hyperspectral image can be observed both as an image at each single wavelength 

λ or as a spectrum, at each individual pixel (x and y). It is clear how this technique can be useful 

in many areas. Starting from remote sensing, which has been the first investigation field in which 

hyperspectral imaging was applied [11,27,30–33], mineralogy [34–37], food [14,28,38–40], 

forensic [41–44], medical [13,45–49], pharmaceutical [50–54], and biological [55–58] analyses 

are some of the most important research example areas related to the use of this discipline. This 

thanks to the peculiarity of the hyperspectral image analysis that leads to the simultaneous use 

and investigation of both the spectral and the spatial data related to a particular sample, providing 

decisive and precise information. In fact, while a simple image can provide only physical 

characteristics of the represented object, a hyperspectral image provides at the same moment the 
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spatial and the spectral information. When a bulk analysis is performed by spectroscopy, it is 

possible to characterize homogenous materials, providing an average spectrum of the sample. 

Contrariwise, if the specimen is inhomogeneous, this bulk analysis could lead to non-

representative information. In order to avoid this situation, the measurement should be repeated 

many times in a systematic way, acquiring the spectra from several positions of the sample. 

Clearly, this procedure is not practical in a real context. Hyperspectral imaging spectroscopy 

easily overcomes these limitations, identifying and quantifying the chemicals of the sample, as 

well as the precise location and spatial distribution.   

1.3. Instrumental perspective 
 

From a general point of view, three different hyperspectral image-acquisition approaches 

can be used, all of them presenting pro and cons: the point scanning (or mapping), the line 

scanning, and the area scanning methods, reported in the Fig. 2. The first one, also called 

whiskbroom approach, measures the complete spectrum of a single position (the pixel) at the 

time (Fig. 2a). Then, the sample is moved and another spectrum is collected for this new position. 

This procedure is iteratively repeated until the whole surface is captured. Clearly, a grid is defined 

a priori, in order to create a map based on the different acquisition points that compose the surface 

of the sample. The main advantage of this technique is that all the points pass for the same path 

of the optical system. In addition, this approach is very convenient for analyses in which is 

necessary to find out minor compounds. The con is that this kind of acquisition turns out to be 

very slow, particularly if a large area of the sample has to be explored. The second method, also 

called pushbroom configuration, is an extension of the previous one. The main difference is that 

in this case, not a point but a whole line of the image is acquired each time (Fig. 2b). This is 

possible using a two-dimensional dispersing element and a two-dimensional detector array. This 

kind of technique results to be very practical, faster than the previous one, and versatile. Usually, 

it can be used for food and industry applications, in which the samples are scanned using a control 

chain. At last, the third method, also called staring imaging, show an evident difference, 

compared with the previous methods. In this case, the whole image is acquired, but one spectral 

band per time (Fig. 2c). It means that it is not necessary to move the sample, because the whole 

scene is scanned in one shot, but on the other side, this procedure is not advisable if the number 

of needed wavelengths is too large. 
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Fig. 2 – Schematic representation of the different hyperspectral imaging acquisition approaches. a) Point scanning 

approach. b) Line scanning approach. c) Area scanning approach. 

  

Beyond these considerations, it should be noted that these three acquisition modes are not always 

feasible for each spectroscopy, mainly due to instrumental reasons. By way of example and 

taking into account the previous methods of acquisition in the infrared region, it is also possible 

to distinguish three different modalities, based on the disposition of the light source and the 

optical unit in a given spectroscopic equipment: the reflectance, the transmittance, and the 

interactance, as shown in Fig. 3. The first acquisition mode, that is without any doubt the most 

used nowadays, is based on a reflectance phenomenon (Fig. 3a). The second one, in which light 

source and detector are on the opposite sides of the sample, can show limited applications, 

because the light needs to penetrate and go through the specimen (Fig. 3b). Finally, the third 

method is a combination of the previous ones (Fig. 3c), in which both the light source and the 
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detector are on the same side of the acquisition system. Nevertheless, a light seal is needed to 

avoid any interference coming from exterior light. In any case, from a general point of view is 

always advisable to avoid phenomena that could invalidate the quality of the acquisition, like 

refraction, specular reflectance and scattering. 

 

Fig. 3 – Schematic representation of the different modes to generate a hyperspectral image. a) Reflectance mode. b) 

Transmittance mode. c) Interactance mode. 

 

Due to the wide interest in hyperspectral imaging, a rapid evolution in the various spectroscopic 

instrumentations related to this kind of technique is obvious. Nowadays, it is possible to acquire 

a hyperspectral image with different spectroscopic systems. Despite this, the description of all 

these techniques is not one of the main purposes of this doctoral thesis. This is the reason why 

only a brief illustration of the most interesting spectroscopies used during this period is here 

reported. In addition, as information, it is important to highlight the fact that the most of the 

datasets used during this PhD for the various works described in this manuscript were not directly 

acquired from our group. In fact, the different data were collected in the framework of 

collaborations with other research groups, while for this PhD work, only the chemometric 

approaches were studied and carried on. The only exception is represented by a specific dataset 

discussed in Chapter 2, related to the exploration of biological samples using a synchrotron 

beamline facility in Paris (France), namely the SOLEIL. Specifically, this has been a 

collaboration between our group, the team of the synchrotron DISCO beamline, and the INRAE 
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group of research in Nantes (France). More details will be given in the corresponding 

aforementioned section of this manuscript. 

1.3.1. Infrared (IR) spectroscopy 
 

IR spectroscopy is without any doubt one of the most common and useful instrumentations 

applied to many analytical investigation areas that shows the perfect combination with the 

chemometric methodologies [59–61]. This kind of technique measures the interaction of infrared 

radiation with matter by different ways, i.e., absorption, scattering, or reflection for the study of 

chemical substances and functional groups. The electromagnetic spectrum of the IR region is 

very vast, which is why normally one can distinguish among three different spectral subregions: 

the near-, mid-, and far- infrared (respectively: NIR, MIR and FIR), acquired by different 

instruments. From a general point of view, the first one is related to overtones, or combinations 

of molecular vibrational modes; the second spectral domain is dedicated to fundamental 

vibrational modes; finally, the last region is associated to low vibrational frequencies mainly 

observed in minerals and crystals. The most interesting aspect of this spectroscopy is that the 

different molecules can absorb the frequencies generated in the IR region characteristics of their 

structures. This phenomenon corresponds to the possibility of observing spectra that show bands 

able to distinguish various structures that can be compare and recognized by the use of libraries 

containing the specific fingerprints of different chemical functional groups. Here, an important 

aspect has to be stressed. Compared with the other IR regions, NIR shows broadened bands, very 

informative, but at the same time hardly interpretable. This is the main reason why this kind of 

spectroscopy has been underestimated for years, before the introduction of chemometrics as a 

routine tool to study this spectral response [62,63]. Naturally, in the last decades, abreast of the 

evolution of the modern instruments, new devices able to make full use of this important 

spectroscopy coupled to hyperspectral image analysis were developed and used in different areas 

[51,64–66]. An important aspect to be discussed regarding IR spectroscopy, which is a dispersive 

spectrometer, is that it can normally measure the intensity over a narrow range of wavelengths at 

a time. This is why modern instruments are based on the use of the Fourier Transform (FT). In 

fact, Fourier Transform Infrared spectroscopy (FTIR), allows the simultaneous acquisition of 

high-resolution spectral data over a wide spectral range. A general scheme of the FTIR 

spectrometer is reported in Fig. 4: 
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Fig. 4 – Scheme of a FTIR instrument. 

 

If normally absorption spectroscopy measures the quantity of light absorbed by a sample at each 

wavelength using a monochromatic light beam, FT spectroscopy works in a less intuitive way. 

Instead of using a monochromatic light, which uses a single wavelength at a time, this technique 

generates a beam containing many frequencies in one shot, measuring the amount of light 

absorbed by the sample. The possibility of interpreting this complex signal is given by the use of 

an interferometer. This kind of instrument contains a beam splitter and two mirrors, one fixed 

and the other one moving. The incoming light is at first split into two equal quantities, directed 

to the different mirrors. The moving mirror, shifting, introduces an optical path difference, which 

will generate coming back to the splitter, a constructive or destructive interference with the part 

of the ray reflected by the fixed mirror. In this way, it is possible to obtain an interferogram that 

shows the representation of the intensity in the time domain for a specific signal. Then, using the 

FT, it is possible to pass from this domain to the corresponding frequency one, generating the 

corresponding IR spectra that can be interpreted in the investigation analysis.  

1.3.2. Raman spectroscopy 
 

Raman phenomenon was detected the first time in 1928 by the Indian physicist C. V. Raman 

and K. S. Krishnan [67,68]. Compared with other spectroscopic techniques, as infrared, it is not 

based on the absorption of photons but on the light scattering effect correlated to the vibrational 
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energy state of the molecules. For many decades, this kind of response could not be used due to 

the weakness of the corresponding signal. In fact, when a light source is used to excite a sample, 

as shown in Fig. 5, it is possible to distinguish different responses: 

 

Fig. 5 – Different vibrational energy responses. 

 

Excepting the absorption phenomenon, an overwhelming majority of the scattered photons show 

the Rayleigh scattering effect, in which the energy intensity of the incident light is equal to the 

one of the scattered light. More precisely, only one of a thousand or ten thousand of the scattered 

light (that is anyway a thousandth of the initial incident light) will correspond to the Raman effect 

that in other words, represents only a millionth of the incident light. Due to this intensity 

weakness, this kind of spectroscopy originally did not obtain the right interest. Only in the early 

1960s, when laser was introduced as excitation source (high radiation intensity), this kind of 

instrumentation was recognized as one of the most important tools for many different research 

areas. This is true particularly because nowadays many libraries containing the fingerprint of 

various compounds exist, as well as for other spectroscopic techniques (e.g., FTIR), driving to 

an easier chemical interpretation using this kind of spectroscopy. Considering hyperspectral 

image analysis, nowadays many different studies based on this technique are available [69–78]. 

In addition, the use of visible photons, linked to lower diffraction limits, can lead to a better 

spatial resolution and so, to an increase of the exploratory potential of samples. Regarding the 

technical characteristics of this spectroscopy, a scheme is represented in Fig. 6. Formerly, a 

mercury vapor lamp was commonly used. The limitation of this kind of source is that it has many 
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strong bands that could lead to partial overlapped spectra, if a filter is not applied to select a 

particular emission frequency. 

 

Fig. 6 – Scheme of a Raman instrument. 

 

In modern Raman instruments, as already described, a laser is usually used as emission light [79]. 

Particularly, a crystal of Nd:YAG (neodymium-doped yttrium aluminum garnet) is the most 

common solid-state laser source. Moreover, also laser diodes are gaining importance, particularly 

for their emission power and the different obtainable emission wavelengths. A dichroic filter is 

used in order to make selectively pass only one fraction of the light that will hit the sample, 

generating the scattering response. Then, this light is collected passing through a spectrometer, 

which disperses the light into a spectrum. Normally, a CCD (charge-coupled device) detector is 

used to record the final spectra.  

1.3.3. Energy-Dispersive X-ray (EDX) spectroscopy 
 

This kind of spectroscopy is an analytical technique that can be used to probe the elemental 

composition of solid materials [80]. Considering quantum mechanics, depending on the observed 

element, an atom consists of different energy levels, each of them containing a certain number 

of electrons spinning around the orbit of the core. In detail, when a surface is properly excited, 

an electron from the first level (the closest to the core) can be expelled, leading to a drop of more 

distant electrons to fill the resulting ‘holes’ around the center of the atom. The principle behind 

this methodology relies on the transition of electrons from higher energy levels to the ones close 
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to the core of the atom. Transitions between energy levels follow the law of conservation of 

energy. Excitation of an electron to a higher energy state requires an input of energy from the 

surroundings, and relaxation to a lower energy state releases energy to the surroundings. 

Specifically, this change into the structure of the atom generates a set of X-ray emissions at 

different frequencies, specific for each element, allowing the possibility of a qualitative analysis. 

Generally, two different methods are the most commonly used to excite the core electrons. The 

first one uses a high-energy electron beam, which is produced by an electron gun. Another 

possibility is the one of using X-rays instead of electrons, to excite the core electrons to the point 

of ionization. No matter the excitation source, the purpose using this energy is to excite core 

electrons to high-energy states, creating a low-energy vacancy in the electronic structure of the 

atom. This phenomenon leads to a cascade of electrons from higher energy levels, in order to 

recreate the minimum-energy state of the atom. Due to the conservation of energy, the electrons 

emit X-rays in the moment that they transit to lower energy levels. The interesting aspect of this 

spectroscopy is that since each element has a different nuclear charge, the energies of the core 

shells and the spacing between them vary from one element to the next. Giving sufficient 

resolving power it is possible, using the EDX, to determine the composition of the sample based 

on the observation of the characteristic peaks. Nevertheless, some limitations are evident. First, 

not every peak in the spectrum of an element is exclusive to that element, and this is the main 

reason why all the peaks need to be matched with preexistent libraries and using standards. Also 

important is the fact that a combination of elements can act differently than a single element 

alone, leading to the necessity of knowing the general composition of the investigated sample. 

Another limitation is related to the impossibility in observing elements lighter than boron, which 

represents a problem due to the natural abundance of hydrogen in materials. It is also important 

to consider the fact that EDX needs to be coupled with a microscopy such as the Scanning 

Electron Microscope (SEM) to provide both the spectral and spatial information of a given 

sample. Secondary electrons may cause additional excitation and emission of spectral lines, 

generating the possibility of overlap with the lines related to real elements. Lastly, sample needs 

some preparations. EDX is a near-surface technique, so the specimen has to be exempt from any 

trace of grime, to avoid false results. Furthermore, the sample must be stable under vacuum 

because the instrument works in an environment preventing the presence of any atmosphere, 

which could interfere with the electron beam. Nevertheless, this instrument is nowadays used for 

many different purposes, as shown in literature [43,81–84]. A general representation of the EDX 

instrument is here reported, in Fig. 7: 
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Fig. 7 – Scheme of an EDX instrument. 

 

1.3.4. Laser-Induced Breakdown Spectroscopy (LIBS) and Plasma Induced 

Luminescence (PIL) 
 

In the framework of the elemental analysis, it is necessary to focus especially on one 

instrumentation. LIBS is a very suitable spectroscopy that shows many advantages, if compared 

with other techniques such as atomic absorption, inductively coupled atomic emission, X-ray 

fluorescence, etc. In fact, despite the interesting detection limits and accuracy, these methods 

require a complex sample preparation and a long detection time. Furthermore, these 

spectroscopic techniques are destructive compared with LIBS, in which only a small portion of 

the sample is ablated. Despite the initial interest in the early 1960s, this spectroscopic technique 

started to be really in the spotlight after the 1980s, due to an increasing development of the used 

laser and detector technologies. Considering the main merits of LIBS, it is important to stress 

some aspects. Besides the absence of a sample preparation and pretreatment, this analytical 

technique is very fast, performing acquisitions within a fraction of a second and allowing a multi-

elemental analysis. It is also sensitive to light elements, which are not observable with other 

techniques, and can be used for analysis for all states of matter. Last but not least, LIBS can be 

coupled with other analytical techniques, e.g., Raman spectroscopy, to obtain simultaneously 

multi-elemental and molecular surface analysis. Of course, some weak points are observable. 

The limit of detection, which is in the range of the part per million, can be limitative compared 

with other techniques that reach the part per billion. Furthermore, a self-absorption phenomenon 

can occur. Specifically, emissions from hotter regions can be absorbed by the colder atoms 
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surrounding the plasma, affecting the spectral intensity of the signals and so the quantitative 

analysis. Another limitation is represented by the matrix effect. Depending on the nature of the 

sample (from both the physical and chemical perspectives), it can affect the ablation phenomenon 

and so the quality of the final spectral signals. Nowadays, LIBS is applied for the analysis of a 

wide range of materials [85–89]. A scheme of this instrumentation is shown in Fig. 8. A pulsed 

laser, normally generated using a crystal of Nd:YAG, is used to ablate a minute amount of 

material from the sample surface. The ablated mass will produce a vaporous plume on the surface 

of the sample. The interaction between the pulse laser beam and the plume will generate a plasma, 

which will prevent the beam from entering into the sample in a process named ‘plasma shielding’. 

In addition to stopping the ablation from the surface of the sample, this phenomenon will generate 

an increase of temperature that will ionize the plasma. In this way, a luminous plasma is 

generated. The phenomena of excitation, de-excitation, expansion and condensation for each 

species in the plasma plume will produce electromagnetic radiations that contain information 

about the different species present in the sample. Eventually, this light is collected and directed 

to a spectrometer by the use of an optical fiber, in order to generate a spectrum that will facilitate 

the element detection. In fact, a good aspect in LIBS spectra is that each element shows specific 

emission wavelengths, leading to an easier way to recognize and so, identify a specific atom, 

making this kind of spectrometry a very suitable technique in many scientific areas.  

 

Fig. 8 – Scheme of a LIBS instrument. 
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More recently, another interesting phenomenon that can occur when LIBS is used as excitation 

source has been observed. In fact, using the same instrument, the plasma generated by the LIBS 

laser shot can act as an excitation source and produce the emission of a luminescence response 

for specific elements present on the sample surface, with a delay of some milliseconds. This kind 

of phenomenon is called Plasma Induced Luminescence (PIL) [87,90–92]. Clearly, the 

possibility of obtaining distinct chemical answers using the same equipment is a very interesting 

aspect, from a research point of view. Nevertheless, nowadays the ability to interpret this kind of 

phenomenon is still limited, leading to the interest in deepening this chemical response. 

Particularly, as it will be shown in the Chapter 4, one way to extract more information related to 

PIL, taking the advantage of using the same instrument for the acquisition, is the data fusion 

between this kind of response and the LIBS spectra. In fact, using this approach, it seems possible 

to obtain details and correlations that otherwise would not be observable, when only PIL spectra 

are investigated. Lastly, LIBS can also be used in order to acquire simultaneously different 

spectral ranges. Particularly, it is possible to use the same instrumentation, without any necessity 

of changing the platform, for the acquisition of, for example, also Raman spectra. Clearly, this is 

another very interesting aspect because in this way it would be possible to obtain at the same 

time elemental and molecular information, respectively from LIBS and Raman spectroscopies, 

leading to more accurate and interesting results from the analysis. By way of example, it is 

plausible that some elements or compounds can be detectable using exclusively one spectroscopy 

or the other one. Therefore, using a data fusion approach, it would be possible to generate more 

details that otherwise will be missed. For informational purposes, also this argument will be 

discussed more in detail into the present manuscript, in the aforementioned dedicated chapter. 

1.3.5. Synchrotron beamlines and associated spectroscopies 
 

Synchrotron radiation is the term used to describe an electromagnetic radiation emitted by a 

charged particle beam in a circular accelerator. It represents nowadays a very interesting 

excitation source for chemical and biological investigation purposes, and recently it has been also 

applied to hyperspectral image analysis [93–96]. The principle of this phenomenon can be 

explained by the equation of Maxwell, based on the notion that changing the charge density, it is 

possible to radiate electromagnetic waves. Throughout the decades, more and more facilities in 

which this kind of technology is used have been built all around the world. A synchrotron, whose 

scheme is reported in Fig. 9, is an accelerator of electrons where they are trapped and forced to 

travel at the light speed along a circular path with a constant radius in a bending magnet. The 
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acceleration of the electrons gives rise to the emission of radiations, emitted in discrete quanta or 

photons, each of them with an energy depending on the frequency of the radiation itself. Despite 

the interest in using this beamline, many cons can be highlighted. First, building a synchrotron 

facility is related to very high-cost machines. Also, the storage ring in which the particle beam is 

kept circulating in to create the photons must show some characteristics, in order to generate a 

relevant electron flow. In fact, a loss of energy due to the emission of synchrotron radiation is 

normal, and the radiofrequency must provide a sufficient power to accelerate the electrons. 

Another important factor to be highlighted is the possible collisions with the walls of the ring, if 

the radiofrequency is too intense. This is a very limiting factor in the construction of a circular 

electron accelerator. An option would be to reduce the bending magnet field strength, but this 

means to build larger instruments, and so an increase in the costs. 

 

Fig. 9 – Scheme of a synchrotron beamline facility. 

 

Another essential aspect to be considered is the vacuum system, used to obtain an optimal beam 

lifetime. The power of the synchrotron radiation can be very high, and so water-cooled absorbers 

must be provided. The back bombardment of ions generated from residual gases (created by the 

photons hitting the vacuum chamber) can desorb gas molecules from the surface, and so decrease 

the lifetime of the beam. Related to the energy of the photons is also the possibility of generating 

high-energy particles that can escape from the circular trajectory and thus, damage the ring 

components. For this reason, some precautions have to be taken into account, i.e., the use of 

special alloys covering the internal walls of the ring, or the use of extra magnets to shield. 
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Nevertheless, the synchrotron beamline is nowadays a very suitable technique for the acquisition 

of hyperspectral images with high resolution for the investigation of the whole range of basic and 

applied sciences, for samples of different nature [97–99]. Some of the properties making the 

synchrotron radiation so attractive are the high intensity or photon flux, and the fact that a 

continuous spectrum covering a broad range from the far infrared to hard X-rays is obtainable. 

Normally, this is possible because many different beamlines are built around the ring, each of 

them used for the acquisition of a specific spectral response (e.g., diffraction, X-ray absorption, 

crystallography, autofluorescence etc.). Regarding this kind of radiation source, it is important 

to highlight the fact that during this PhD thesis it has been possible to collaborate with the 

national synchrotron facility in Paris, namely the SOLEIL, using the DISCO beamline acquiring 

biological samples to observe the phenomenon of autofluorescence coming from excitation using 

UV and visible spectral ranges. More details will be given in the Chapter 2 of the present 

manuscript.  

1.4. Methodological perspective 
 

So far, in this manuscript, hyperspectral image analysis has been described from a general 

point of view, especially highlighting its main strong features compared with the use of the 

classical bulk spectroscopic acquisition methods. To give some examples, one can refer to the 

possibility of acquiring a quantity of spectra that will result greater than the one obtainable with 

a bulk analysis (in some cases up to millions of spectra) [100,101]. Furthermore, a hyperspectral 

image has the great advantage of showing not only the spectral information, but also, and 

particularly, the spatial distribution of the components in the acquired sample [15,102–104]. This 

is a very interesting aspect, considering the fact that if the specimen is heterogeneous, a routine 

analysis could lead to non-representative results, and so, to wrong analysis conclusions. 

Nevertheless, hyperspectral imaging is still a very recent methodology and, despite its very 

promising and rising characteristics, some limitations and constraints are clearly unavoidable. In 

fact, dealing with a too massive amount of information can be challenging, if not impossible. In 

addition, despite the introduction of the spatial information, currently the use of this kind of 

details is still very limited, when compared with the spectral domain. Without any doubt, 

chemometrics is nowadays one of the most interesting approaches that perfectly matches and 

overcomes the limitations concerning the hyperspectral image analysis [29,100,105–108]. This 

discipline can in fact extract the most meaningful information from the massive quantity of data 

by the use of mathematical and statistical methods. In this way, it becomes possible, decomposing 
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multivariate complex data, to obtain more interpretable information and so, leading to the 

interpretation of the chemical, physical and biological aspects of the sample. Nevertheless, it is 

also important to highlight the fact that normally the analysis of the raw spectral data is not 

recommended and counterproductive. Data need to be pretreated in order to extract the most 

important information in the right way, giving the possibility to all the details to be observed and 

correctly used. This is the reason why before any analysis, usually the matrix is treated with some 

pretreatments with the aim of leading to more interpretable results [109], as it will also be briefly 

discussed in this manuscript. Multivariate data analysis, that is the core of the chemometric 

approach, is able to show the hidden chemical information of the investigated specimen, showing 

important details that otherwise would be missed using more simple and traditional approaches 

[110–112]. Nowadays, a vast quantity of methods can be used to dig into complex matrices and 

obtain interesting results. From a general point of view, one can discern between two big different 

kinds of analyses. On one side, chemometrics and so multivariate data analysis can be used for 

the qualitative analysis. From the other side, this discipline is also used for the quantitative 

analysis. A general scheme representing the main chemometric methods that are currently 

applied is shown in Fig. 10: 

 

Fig. 10 – General scheme of multivariate data analysis methods. MLR: Multiple Linear Regression, PLSR: Partial 

Least Squares Regression, ANN: Artificial Neural Network, SVM: Support Vector Machine, MCR-ALS: 

Multivariate Curve Resolution-Alternating Least Squares, KM: K-Means clustering, PCA: Principal Component 

Analysis, LDA: Linear Discriminant Analysis, PLS-DA: Partial Least Squares-Discriminant Analysis, SIMCA: Soft 

Independent Modelling of Class Analogies. 
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Hereafter, a brief description of the scheme and so, of the main chemometric approaches is 

reported. Nevertheless, only the most important algorithm methods used during this work will be 

described in detail in the present manuscript.  

       Regarding the quantitative analysis, regression methods are the most commonly used [113]. 

The main purpose of this methodology is to find a relationship between a desired information 

(chemical, biological or physical) and the spectrum responses, in order to predict the numeric 

values coming from new data related to the ones used to build the model [114–117]. Two 

different kind of regression analyses can be used. The most common one is the linear method. In 

this approach, several explanatory variables are used to predict the outcome of a response 

variable using the linear relations between the spectra data and the target attributes. Different 

algorithms are nowadays available to face this particular task, each of them showing some 

differences. Multiple Linear Regression (MLR) is the simplest method in which it is normally 

observed the correlation between the measured variables and the response of interest. Anyway, 

this kind of analysis shows a limitation with regard to the robustness of the model. In fact, spectra 

show often a high co-linearity, leading to overfitting problems. Partial Least Squares Regression 

(PLSR) is a more recent linear method, which shows a better robustness compared with the 

previous one. Being a bilinear modelling method, PLSR creates models using a large number of 

independent variables (mainly predictors or wavelengths), in order to predict a set of dependent 

variables (concentrations or chemical information). The reliability of predictions is normally 

achieved by the extraction and the observation of a certain amount of Latent Variables (LVs), 

orthogonal factors related to the information contained in the variables used to create the model 

[118]. From the other side, when spectral data and target attributes are not linearly related, non-

linear approaches can be applied [119]. Interesting methods related to this discipline are Artificial 

Neural Network (ANN) and Support Vector Machine (SVM). These methods are very suitable 

to deal with complex and nonlinear correlations, hard to be interpreted differently, using 

networks that can extract hidden information.  

       Referring to qualitative analysis, they are generally used with the main purpose of classify 

and distinguish between different categories of elements present in the same matrix. Normally, 

it is possible to discern among a massive number of different methods. A first differentiation can 

be made between two main groups: supervised and unsupervised methods. In the first case, the 

main purpose of the analysis is to create classification models able to make it possible to classify 

new unknown samples based on the previous classified and known measurements. This kind of 

methodology is also known with the name of classification analysis [120]. Linear Discriminant 

Analysis (LDA) is the first supervised technique used in data analysis [121,122]. Nowadays, it 
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is still used due to its robustness, simplicity, and reliability. The concept behind this classification 

method is based on the assumption that the conditional probabilities for each class are normally 

distributed and that the variance/covariance matrices for all the classes are identical. In other 

words, a partition of the space among the different classes is applied by maximizing the ratio of 

between-class variance and minimizing the ratio of within-class variance. Nevertheless, this 

method is a very simple one and so, it is affected by some classification problems, particularly 

when collinearity between data is present, such as in complex chemical matrices. This is the 

reason why another method is normally applied, to overcome the limitation of LDA. Partial Least 

Squares-Discriminant Analysis (PLS-DA) is a chemometric approach based on the use of partial 

least squares regression method [123]. Traditional regression methods can be used for 

classification analysis, in which case the relationship between a multivariate independent vector 

and a qualitative vector of responses is searched. From a general point of view, the solution given 

by this technique is statistically equivalent to the one obtainable using LDA, being the resulting 

model a linear one. The difference is given by the fact that this method is related to the use of the 

LVs, and not the original spectra, taming the constraints described above. In fact, once the model 

based on the data obtained by the known samples is created, a new unknown sample can be 

analyzed, computing a predicted vector of responses. Then, it will be compared with the different 

classes present in the model and assigned to the category that show the highest similarity with 

the investigated sample. The previous described methods are known as discriminant techniques 

[124]. Another type of supervised method is represented by the modelling approaches, in which 

the main task is to capture the similarities among samples belonging to the same category [125]. 

One of the most famous and used methods in this group of chemometric approaches is for sure 

the Soft Independent Modelling of Class Analogy (SIMCA) [126]. Differently from discriminant 

methods, when using this algorithm, each class is separately considered and so, an individual 

model is constructed for every one of the categories present in the dataset.   

       As previously introduced, the other group of qualitative analysis is represented by the 

unsupervised methods. In this case, a previous knowledge about the different kind of samples is 

not necessary, and they will be classified only according to their natural groups and the 

similarities among the samples of the different classes. Various methods can be applied, 

depending on the main investigation purpose. Some of the most important ones are here reported. 

Exploratory data analysis is for sure one of the cornerstones of chemometrics, vastly used in 

many research areas. Principal Component Analysis (PCA) [127], the most representative 

exploratory data technique, is a method in which the spectral data are decomposed into several 

orthogonal factors, the principal components, which are a linear combination of the original 
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variables of the analyzed matrix. Generally, the use of principal components will create a new 

set of uncorrelated data, ordered in terms of decreasing variance (the scores) that can also be used 

as input for other techniques, with the purpose of maximize the usable information. Based on the 

scaling coefficient given by the scores, each of them is related to a particular set of loadings, 

which contains the maximum variations common to all the spectra in the dataset. PCA can be 

used to extract the most important part of the details contained into the array, filtering the 

redundant data, and so reducing the total amount of used information. Another technique used 

for data exploration is the one represented by the clustering analysis. K-Means (KM) clustering 

is for sure the most representative method in which the clustering approach is applied [128]. The 

main point behind this technique is, after selecting the right K number of classes in a matrix, to 

classify each element into one of the different clusters. This procedure is applied by trying to 

minimize the sum of squares of distance between each spectrum and the corresponding cluster 

centroid. Despite its simplicity and efficiency, this method has the con of being influenced by 

the operator choice, because if the selected number of clusters is not right, the results will be 

biased. In addition, the presence of unbalanced classes and/or sub-populations can lead to not 

very precise results. Finally, qualitative investigation can be conducted by the use of the curve 

resolution analysis, also known as signal unmixing. Multivariate Curve Resolution-Alternating 

Least Squares (MCR-ALS) is for sure the most important algorithms used in chemometrics [129]. 

The main purpose of this kind of analysis is to resolve the mixture analysis problem by expressing 

the original data using a bilinear model of pure component meaningful contributions. In other 

words, during normal experiment conditions the spectroscopic data can be approximated using a 

bilinear model whose elements are directly interpretable in chemical terms. It is possible, using 

MCR-ALS, to perform a data unmixing of the studied matrix, and so, estimate the number of 

constituents in the mixture, obtaining their pure concentration profiles and pure spectral ones 

from the information encoded in the recorded data. Furthermore, being a self-modeling method, 

in principle it does not require any specific preliminary information about the data. The only 

limitation using this technique is given by the fact that the investigated sample must satisfy the 

bilinearity and that some generic characteristics of the pure concentration or spectral profiles are 

known.  

       An important aspect that has to be taken into consideration is that these methods generally 

cannot be applied directly on the hyperspectral image. In fact a data cube, which is represented 

by three dimensions (namely, x and y regarding the spatial direction, and λ for the spectral 

information), needs at first to be unfolded into its corresponding two-dimensional matrix. This 

represents an important limitation that to date afflicts the use of the full potential of a 
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hyperspectral image. Unfolding an image, the spatial information is naturally lost, leading to the 

fact that these chemometric strategies will take into consideration only the spectral part of the 

data. Nevertheless, as it will be described into the present manuscript (more precisely, Chapter 

5), some interesting methods that overcome this challenge have been recently investigated and 

applied to hyperspectral image analysis. Particularly, wavelet transform [130] represents a new 

approach, in which some particular filters are used with the aim of decompose the original signal 

of the image into the contribution of particular coefficients that will save the most important 

information related to the spatial features of the data cube.  

       So far, the main point of the present paragraph of this manuscript has been the one of giving 

a general idea of the different chemometric pretreatments, methods and algorithms that are 

nowadays commonly used in the investigation of the complex nature of real samples. Hereafter, 

a more detailed description regarding the most relevant approaches used during this PhD work 

will be reported. 

1.4.1. Data preprocessing in chemometrics 
 

As already described, it is of fundamental importance to use the correct pretreatment before 

any further analysis, in order to extract the most important information from the data, avoiding 

to obtain unclear results [109,131]. Here following is reported a brief description of only some 

of the most used and common preprocessing approaches in spectroscopy, to give a general idea 

of their necessity and applications. 

1.4.1.1. Mean Centering (MC) and autoscaling 
 

Despite its simplicity, MC [132] is for sure one of the most important preprocessing steps 

that has to be applied to a data matrix when needed, particularly in hyperspectral imaging, and 

more specifically in analyses such as PCA. It is an additive transformation of a continuous 

variable m. The mean of the resulting variable is zero. In other words, mathematically, MC 

calculates the mean of each column of the matrix and subtracts this from the column. Using this 

technique, the distribution of the variables will be shifted and centered to the zero, changing the 

scaling of a variable, but not its units. In this way, the standard deviation of an observed 

information will not be affected, and so, to each variable will be given the same distribution, but 

the relative importance will be conserved. It is also important to remember that this kind of 

approach is applied normally as last method, in a series of preprocessing steps. Another method 

related to MC is the autoscaling. In this case, the matrix is at first mean centered and then, each 
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column is divided by the standard deviation of that column. In this way, each column of the 

corresponding matrix will have a mean of zero and a standard deviation of one. This method is 

very useful when it is necessary to correct different variable scaling and units if the main reason 

of the variance of the variables is related to signal rather than noise. At the end, each variable 

will be scaled such that its meaningful signal has an equal footing with the signal of other 

variables. Also in this case, it is important to consider that autoscaling preprocessing has to be 

used for the right type of data (e.g., wavelet transform), in order to avoid the generation of wrong 

magnitudes and information. 

1.4.1.2. Standard Normal Variate (SNV) 
 

SNV [133] is particularly useful to correct imprecision carried out by IR instruments, due to 

the scattering light phenomenon. Due to the interaction between the light and sample particles, a 

baseline shift can be generated, resulting in a more complicated spectral interpretation. Normally, 

this scattering can produce a background signal that varies with the wavelength, leading to a 

baseline shift and curvature, which can vary among samples. Using this algorithm, it is possible 

to reduce multiplicative effects of scattering and particle size, also reducing the differences in the 

global intensity of the signals. From a mathematical point of view, each spectrum is centered and 

then scaled dividing it by its standard deviation. 

1.4.1.3. Savitzky-Golay (SG) derivative 
 

SG derivative [134] is commonly used as a signal pretreatment for spectral data. Despite the 

fact that it is possible to use higher-order derivatives, first and second ones are the most 

frequently used in the analysis, because they result to be generally adequate to obtain optimal 

results. Normally, this kind of preprocessing is used to resolve peak overlaps, enhance the 

resolution and eliminate constant and linear baseline drift among the samples. Nevertheless, it is 

important to remember that, using a derivative approach as pretreatment, noise level of the 

spectra can be increased, as well as the fact that spectral interpretation becomes more 

complicated. From a mathematical point of view, derivatives are defined as the slope of the line 

(the acquired spectrum) at any given point. SG first derivative method fits a curve through a 

small section of the spectrum, and then finds the slope of the tangent to this curve at the central 

point. Second derivative can be computed directly from the first one. It corresponds to the slope 

of the first derivative, generating new peaks in correspondence of the less interpretable zones of 

the first derivative results, leading to the possible observation of signals hided during the first 

part of the calculation. Also important is that if the spectra are preprocessed in a too extreme 



 

29 

 

way, artifacts could be generated, leading to a general misinterpretation of the spectral 

information. 

1.4.1.4. Baseline correction using Asymmetric Least Squares (AsLS) 
 

Lastly, another important kind of preprocessing method that can be applied to many different 

spectroscopic data is the correction of the baseline, due to a possible offset that can be generated 

during the acquisition linked to instrumental problems or specific photon-matter interactions. 

Despite the existence of various methods (that show different pros and cons), here is reported 

only one approach, which provides an automatic baseline correction that overcomes many of the 

limitations related to other procedures. This method is based on the Asymmetric Least Squares 

(AsLS) algorithm [135], using the well-known Whittaker smoother, in which the baseline offset 

is automatically removed by the use of a piecewise method, to get a slowly varying estimate of 

the baseline. This method results to be very interesting due to many reasons. Particularly, 

compared with other approaches, it is relatively fast, and only two parameters are required to 

obtain a suitable baseline, with completely reproducible computations: one is needed to tune the 

flexibility of the baseline, and the other to adjust its position. Using this approach, once given a 

signal, it will be combined with a series that has to follow two properties: be smooth and be 

faithful to the used given signal. These two goals can be combined by minimizing a penalized 

least squares function in which the fit to the data and a penalty on non-smooth behavior of the 

series are measured. From a general point of view, while a light smoothing will remove noise, a 

strong one gives the slowly varying trend of a signal. Nevertheless, when using this smoother, it 

is also important to use a parameter to compute the obtained weights to the residuals (based on 

the principle of asymmetric least squares) that otherwise will be both positives and negatives. 

The resulting equation is complex, based on the mutual interaction of weights and smooth curve. 

Despite this, it can be transformed into iterative application of two easy computations until the 

moment a convergence is obtained. The two used parameters are respectively p for asymmetry, 

and λ for smoothness, chosen by the operator.  

1.4.2. Principal Component Analysis (PCA) 
 

Without any doubt, PCA [127,136] is one of the most commonly used approaches applied 

in every research area, when chemometrics is needed. As already described, it can be used as an 

exploratory analysis to obtain a general idea of the information contained in the investigated 

specimen. In addition, this kind of method allows the compression of the original matrix, making 
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possible the description and interpretation of large sets of multidimensional data. From a general 

point of view, it is possible to describe a matrix D as sized n x m, where n denotes the different 

objects in the matrix and m the number of variables (normally the wavelengths, in spectroscopy) 

registered during the analysis. As already introduced above, modern instruments can acquire 

huge amount of data, using very large spectral intervals, and it is particularly true when 

hyperspectral imaging is the used technique, where thousands, hundreds of thousands, or even 

millions of spectra can be obtained. Very easily, the meaningful information in D can be related 

to correlations among different variables over the whole set. PCA can be a very useful solution 

in this kind of situation. In fact, it is possible, using this approach, to reduce the original m-

dimensional space of the variables into a new subspace with a lower dimension of size a (based 

on the correlation of the initial acquired information) in which all the n samples can be projected 

and represented as new points. From a mathematic point of view, PCA can be described as a 

bilinear model, as shown in the Equation (1): 

𝐃 = 𝐓𝐏𝐓 +  𝐄 (1) 

where T (n x a) represents the scores of the PCA, i.e., the projection coordinates of the original 

n rows of D in the new low-dimensional space created using P (m x a) that is the array of the 

loadings, which determines the basis vectors, namely the factors of the PCA subspace expressing 

the highest variance of the data. Lastly, E (n x m) is the matrix of the residuals, the not modelled 

information that is not explained, at a chosen rank, from the model. If PCA is correctly conduced, 

the obtained E matrix should contain the information related not to the real details of the studied 

sample, but only a variation linked to factors such as the instrumental noise of the acquisition. 

An important aspect in PCA is that each Principal Component (PC) is orthogonal to the others, 

so the related information will be completely uncorrelated to the previous ones. A general 

representation of PCA in the framework of hyperspectral imaging is reported in Fig. 11. It is 

important to highlight again (as shown in the figure below) that the most of the multivariate 

analyses, and so PCA, cannot be applied directly on a hyperspectral image. This means that the 

data cube must be unfolded first in the corresponding two-dimensional data matrix and then, after 

the computational calculations, be again refolded, in order to obtain as many score images as the 

number of the selected PCs. 



 

31 

 

 

Fig. 11 – General scheme of PCA on a hyperspectral image. The data cube is first unfolded in the corresponding 

two-dimensional dataset and after the PCA, refolded to obtain the score images and loading profiles related to the 

contribution of the different selected PCs. 

 

A relevant aspect to be stressed is related to the use of this technique and the information 

contained in the E matrix. If the quantity of selected PCs is not correct, this could lead to not 

precise results. In other words, if a number of PCs lower than the optimal value is selected, some 

information would be missing, being still contained in the E matrix. On the contrary, a too big 

number of selected PCs would lead to the use of residuals not related to the chemical information, 

but factors like the instrumental noise. This is the reason why it is mandatory to choose the 

appropriate number of PCs. Nowadays, various approaches to drive the operator in this choice 

are available, and they can be classified in three different categories [137]. The first and the most 

common method is based on the observation of the scree plot of the eigenvalues, firstly 

introduced by Cattell [138]. The general criterion is the examination of the eigenvalues, normally 

using the logarithmic unit, to find a threshold able to describe and distinguish the useful 

information contained in the matrix from the residuals. The second selection method uses 
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statistical tests [139], based on the rate of decrease of the remaining residual sum of squares. 

Lastly, the third method is based on computational criteria and permutation testing, like Cross-

Validation (CV) [140], and bootstrapping [141]. In the first case, part of the data is kept out of 

the model development, in order to predict then their values based on the use of the generated 

model to observe its robustness. In the second one, the residuals are used to simulate a large 

number of data similar to the original ones to observe the distribution of the model parameters 

over these data. 

1.4.3. K-Means (KM) clustering 
 

This kind of clustering methodology is designed with the purpose of partitioning a data 

matrix D, represented by n objects and m variables into K classes (C1, C2, … CK), where CK is 

the set of n objects in the cluster k, for a given total number of K. From a general point of view, 

once chosen a precise K number of classes, K centroids will be randomly generated. Each 

centroid is a point in the m-dimensional space found by averaging the values on each variable 

over the objects within the cluster. From a mathematical point of view, the centroid of the jth 

variable in cluster CK is, as reported in the Equation (2): 
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and the complete centroid vector for cluster CK is given by the Equation (3) 
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The partition into the different clusters is based on the concept that the distance between the row 

vector for a particular object i belonging to n and the centroid of its corresponding cluster is at 

least as small as the distance to the centroids of the other clusters. Nevertheless, the task of 

optimizing KM outcomes can be very challenging for different reasons. From a general point of 

view, this algorithm operates following an iterative procedure, here explained: 

1) K initial points are defined by m-dimensional vectors (s1
(k), …, sm

(k)). For each object i 

belonging to n, the distance l2 (i, k) between it and the kth seed vector is calculated as 

following, assigning each object to the cluster where the value of l2 is minimum: 
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2) After this first step, new centroids based on the Equation (3) are calculated. Each object is 

then newly examined, and reallocated to the cluster for which the distance with the new 

centroid is lower. 

3) Again, new centroids are calculated with the updated version of the cluster membership. 

4) Steps 2 and 3 are repeated in an iterative way, until the moment in which no objects can be 

moved between the clusters. 

Another important factor that is taken into consideration while trying to partition the objects of a 

matrix into the different clusters, is to minimize a particular loss criterion, the Sum of Squared 

Errors (SSE) [142], as reported in the Equation (5): 
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Using also this value, it is possible to obtain a better optimization of the clustering results, moving 

the objects from one cluster to another, trying to minimize the final value of the SSE. 

Nevertheless, despite the robustness shown by the use of KM clustering, it remains a method 

influenced by some limitations. Particularly, one can refer to two main challenges. The first one 

is related to the obtained final global optimum. In fact, depending on the starting values used as 

centroids, the algorithm will provide results that can show some local optima, but hardly a 

verifiably global one. Clearly, some solutions have been proposed [143–145], in order to 

overcome this problem.  For example, one method is to perform the KM clustering several times, 

with different starting values, choosing at the end the best SSE solution. Another way is 

represented by the choice of K data point as the initial cluster seeds, or subdivide randomly the 

data units into K mutually exclusive partitions and calculate the mean for each of them, in order 

to use these values as centroids. Nevertheless, these methods might suffer of the influence of the 

initial selected data. By way of example, a further proposed approach is based on a deterministic 

method. Once defined a distance l1, it is computed the number of data points within l1, defined 

to as the density. The group represented by the highest density is chosen as the first cluster. The 

remaining clusters are selected by decreasing density, as long as they are at another defined 

distance l2 from the already defined seed. The second problem, when using KM clustering, is 

given by the estimation of the right number of clusters K [146]. From a general point of view, it 

is possible to distinguish between three different kinds of methods. The first one is the 

algorithmic method. Normally, it is the operator that decides the number of clusters to be used. 

Nevertheless, the algorithm has the opportunity to modify the user-provided value, if some 

clusters result to be closer than a certain calculated value, optimizing the partition into K-new 
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clusters. The second approach is the graphical interpretation, and probably it is the most used, 

despite the weakness of being a highly subjective method. Various K values are attempted, and 

the resulting curve is observed. Normally, a ‘flattening’ of the curve indicates the right number 

of clusters to be selected. Lastly, one can refers to formulaic methods, in which an equation is 

computed across a range of K and the results are investigated with the aim of minimizing or 

maximizing the selected criterion, in order to select the right quantity of clusters. 

1.4.4. Partial Least Squares Regression (PLSR) and Partial Least Squares-

Discriminant Analysis (PLS-DA) 
 

In spectroscopy it is common the use of the acquired data with the purpose of obtaining 

quantitative information. Nevertheless, in order to accomplish this task, it is necessary to have a 

potential relation between the measured signal and the response to be estimated and, particularly 

from a chemometric point of view, the postulation of a mathematical formulation that can 

express, or at least approximate, this relation. In other words, it is mandatory to find a functional 

relation f, which can allow quantifying the value of a property y, based on the experimental 

measurements of a spectroscopic signal d, as shown in the Equation (6): 

𝑦 = 𝑓(𝐝) (6) 

The limitation is that, from an experimental point of view, this function is unknown and so, it has 

to be found in an empirical way, by the use of the so-called calibration [147]. In this way, it 

becomes possible by the use of an approximation to calculate the experimental value y, based on 

the function presented in the Equation (6). Nevertheless, this step can be challenging. In fact, in 

order to obtain good approximations, a sufficient number of samples (namely the training set) 

showing the properties of interest must be used to train the model and obtain a good robustness. 

It is also important to highlight the fact that the function f(d) does not depend only on d, but also, 

and more importantly, on the values of some parameters, the coefficients, that are the principal 

key related to the quality of the calibration. So, assuming that the function f(d) is linear, as 

generally it is in spectroscopy, for an acquisition of m spectral variables, Equation (6) can be 

rewritten as: 

𝑦 = 𝑦 ̂ + 𝑒 = 𝑏1𝑑1 + 𝑏2𝑑2 + ⋯ + 𝑏𝑚𝑑𝑚 + 𝑒 (7) 

where 𝑦 ̂ is the approximation of y related to the linear function defined by the coefficients b1, 

b2,…, bm and e, the residuals, which explain the difference between y and 𝑦 ̂. The coefficients are 
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then calculated by the use of the regression analysis in calibration, using the available pairs of 

(d, y) constituting the training set of the data. In order to obtain the best prediction of y through 

the measured signal d, normally the most common criterion is based on the use of the 

minimization of the residuals, using the least squares [148]. From a general point of view, in a 

dataset D containing n samples, for which both d and y are known, the coefficients b1, b2,…, bm 

are identical for all the elements, due to the fact that the same functional relation is valid for all 

the samples. Therefore, it is possible to express the general formula of y as reported below, in 

the Equation (8): 

𝐲 = 𝐲 ̂ + 𝐞 = 𝐃𝐛 + 𝐞 (8) 

where 𝐲 ̂ = 𝐃𝐛 represents the approximation of the response of y, the column vector b contains 

the regression coefficients of b1, b2,…, bm and e constitutes the residuals. Lastly, assuming that 

there is not difference from a mathematical point of view between building a model for each of 

all the single properties of interest and constructing a single one calibration set for the whole 

system, Equation (8) can be summarized as: 

𝐘 = �̂� + 𝐄 = 𝐃𝐁 + 𝐄 (9) 

As previously described in the manuscript, nowadays different regression approaches can be 

used, such as MLR [149]. Nevertheless, without any doubt PLS is the most promising method, 

overcoming the limitations of the other methods [116,150]. In fact, MLR faces difficulties in the 

situation in which the number of training samples is lower than the number of recorded variables 

(an easy scenario, due to the modern instrumentations), and/or when the variables are highly 

correlated. Contrarily, PLS uses the information in Y coming from the already compressed data, 

so that the scores extracted from D are relevant for describing simultaneously both the variance 

in the descriptors and in the properties of interest. In other words, PLS is based on the extraction 

of LVs from the Y-block. This is particularly interesting because it means that if multiple 

responses are observed at the same time, individual models can lead to different responses 

compared with the outcomes obtainable with a single global model, contrarily to MLR approach. 

The calculation of a single model for calibrating all the responses at the same time means that it 

can contain a part of the information that is related to the systematic variability, i.e., a certain 

degree of intercorrelation between the variables. Extracting two sets of scores, one from the 

independent and one from the dependent data block, which have maximum covariance, using the 

selected components, it is possible at the end to summarize the relevant information in D and Y 

as following shown: 
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𝐓 = 𝐃𝐑 (10) 

𝐔 = 𝐘𝐐 (11) 

�̂� = 𝐔𝐐𝐓 (12) 

�̂� = 𝐓𝐂 (13) 

where the columns of T and U, R and Q are the scores and the coefficient matrices of, 

respectively, the X-weights and Y-loadings associated with the individual retrieved components 

of the original data matrix D. Lastly, C is a diagonal array in which the non-zero elements 

represent the inner regression coefficients. Finally, the regression model can be rewritten as in 

the Equation (14): 

𝐘 ̂ = 𝐔𝐐𝐓 = 𝐓𝐂𝐐𝐓 = 𝐃𝐑𝐂𝐐𝐓 = 𝐃𝐁 (14) 

where B is the matrix of PLS coefficients. Due to the linearity of the projection, it is possible to 

express the regression model that is calculated at the level of the scores, also in terms of the 

original variables. In addition, due to the fact that only a part of the information of the original 

matrix is used for the regression, the PLS coefficients can be rewritten as: 

𝐁 = 𝐑𝐂𝐐𝐓 (15) 

Despite the robustness of PLS, it is important to stress the fact that it is necessary to select the 

right number of components to create a model and so, to avoid biased results. Normally, this 

procedure is based on the selection of the values leading to the minimum prediction error that is 

found using the CV approach [151]. A very interesting aspect of PLS is that a regression problem 

can be considered as a classification method in which the class belonging of a sample (the 

dependent variable) is to be estimated from the set of variables (such as the spectra) obtained 

using a particular instrument. This kind of approach is known with the name of PLS-DA 

[123,152,153]. Discriminant analysis is a particular kind of classification approach in which the 

main task is to highlight the differences between samples of distinct classes. The multivariate 

space is divided into a number Z of subregions equal to the number of the selected categories. 

Then, each object is assigned to a particular class, i.e., the one for which the point corresponding 

to its measurement vector falls into the region of a particular category. In order to work, 

discriminant analysis requires some characteristics. First of all, a training set composed by 

samples belonging to all the classes is used, in order to calibrate a balanced model. Furthermore, 

it is important that each single sample be assigned to one and only one of the different categories. 
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Lastly, it is fundamental to consider that if a sample is not coming from any of the classes (a new 

kind of specimen not considered in the initial study), it will be anyway always assigned to one 

of the categories, despite the fact that it is misclassified. The principle of this technique is that, 

given a data matrix D, it is regressed on a dummy binary-coded response array (namely Y), made 

of a set of Z-dimensional row vectors. Taken an object, if it is a member of the zth class, the 

corresponding vector will correspond to a 1-value in the zth entry, and 0-value in the other ones. 

By way of example, considering a simple case in which only two classes are available, samples 

belonging to the first one will be described by a vector [1 0]. In the same way, samples from the 

second class will be represented by a vector [0 1]. Once the model is built, new objects will be 

assigned to a particular class according with their similarities with the samples already available. 

1.4.5. Soft Independent Modelling of Class Analogies (SIMCA) 
 

As previously described, SIMCA [126,154] is a modelling approach, meaning that instead 

of highlighting differences between samples belonging to different classes, as in discriminant 

analysis, the main task is to capture the similarities among the samples of the same category. 

This is the main reason why each class is modeled individually, handling the samples coming 

from each category separately and independently from the ones belonging to the other classes. 

From a general point of view, a multivariate boundary will be defined for each class, which 

delimits a specific region, which will describe a particular category. This means that, if the 

projection of a particular sample falls into this region, it will be assigned to that particular class, 

otherwise it will be considered as an outlier, and so rejected [155]. In addition, one of the most 

interesting aspects compared with the discriminant analysis is that in modelling techniques it is 

not mandatory to divide the total original space into the considered classes, because only a 

multivariate boundary space for each category is defined. It means that the various class spaces 

do not necessarily have to cover completely the totality of the original variable space. In other 

words, if using approaches such as PLS-DA one sample will be always assigned to a specific 

class, no matter if it is really part of that category or is a completely new element, using 

algorithms such as SIMCA, the same specimen can be assigned to one, none or multiple classes. 

Also important is that, due to its characteristics, modelling analysis can be used in studies in 

which a unique class of interest has to be identified. The concept behind SIMCA is very simple. 

Each class is separately defined on the basis of a principal component model of opportune 

dimensions. Considering Equation (1) previously introduced to explain PCA, it is possible to 

obtain for a specific class c, described by a principal component model:  
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𝐃𝐜 = 𝐓𝐏𝐓 +  𝐄 (16) 

where Dc is the sub-matrix of the original data obtained by the use of only the samples being part 

of the class c, T and P are respectively the matrices of the selected scores and loadings, and E 

the residuals not used to create the model. At this point, it is possible to create a multivariate 

boundary delimiting the specific class c and, using a distance-to-the-model criterion that is based 

on Multivariate Statistical Process Control (MSPC) [156], it is possible to detect if a new 

observed sample is part of the considered class or not, depending if it falls within or not the limits 

of this space. More specifically, these borders in SIMCA are calculated using two values, 

computed observing the score matrix T and the residual matrix E. They are the probability 

distributions for the distances within the model spaces (T2 statistics) and the orthogonal distance 

to the model space (Q statistics). A threshold value corresponding to a precise confidence level 

(that statistically is normally equal to 95%) is chosen, and the class space will be calculated by 

the Equation (17): 

√(
T2

T0.95
2 )

2

+ (
Q

Q0.95
)

2

≤ √2 

 

(17) 

where T and Q are the statistic values found for a particular sample, while T0.95
2  and Q0.95 are 

their corresponding 95% confidence level threshold values. In other words, the Equation (17) is 

used to generate the boundaries that will be used to determine if a specific sample is part or not 

of the considered class c, if its projection falls within or outside the limits of the statistic results.  

1.4.6. Multivariate Curve Resolution (MCR) or signal unmixing 
 

The purpose of MCR methods [157] is to extract the relevant information in a mixture system 

to obtain the pure components through a bilinear model decomposition. It means that the 

experimental data matrix D of dimensions n x m is decomposed into the product of the 

concentration profiles matrix C (n x k) containing the concentration of the pure components 

present in the system and their corresponding pure spectral profiles matrix ST (k x m). In this 

notation, n represents the mixture spectra in rows measured at m wavelengths that follow the 

bilinear model, while k is the number of pure components supposed to underlie D. The algorithm 

can be resumed as an extension of the Lambert-Beer’s law, which can be described by the use of 

a vector notation as in the Equation (18): 

𝐝 = 𝐜𝐒𝐓 (18) 
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in which d represents the measurement vector (1 x m), c (1 x k) is the vector of the concentrations 

and S (k x m) is the matrix of the absorption for each species at each wavelength. An important 

aspect in order to use a MCR algorithm is that the system has to describe at least a second-order 

data, so a set of n ≥ 2 spectral mixtures at m wavelengths. The MCR model, used when spectral 

or calibration information are not available in order to obtain the contribution from the different 

pure components [158], will be then described as reported in the Equation (19): 

𝐃 =  ∑ 𝐜𝑘𝐒𝑘
𝐓 + 𝐄 = 𝐂𝐒𝐓 + 𝐄

𝑘

 
(19) 

in which E (n x m) is the residual matrix, containing the variability of D, which is not explained 

by the model and should be close to the experimental error. Normally, MCR is also described 

graphically as shown below, in Fig. 12: 

 

Fig. 12 – Graphical representation of a MCR model for a data matrix D containing n mixture spectra at m 

wavelengths for k pure components. 

 

There are different approaches that can be used in order to decompose correctly the data matrix 

D, mainly grouped into non-iterative and iterative approaches. The first ones are based on 

combining information of small sections of the data obtained from global and local rank 

information that can contain particular properties, as the presence and/or absence of a particular 

component. Just to mention a few, some of the most used methods are Window Factor Analysis 

(WFA) [159], Subwindow Factor Analysis (SFA) [160] and Heuristic Evolving Latent 

Projections (HELP) [161]. On the other hand, iterative methods start from initial estimates of C 

or ST that will evolve to yield profiles with chemically meaningful shapes. Examples are MCR-

ALS [6,162,163] and Iterative Target Transformation Factor Analysis (ITTFA) [164,165]. 

Iterative methods are probably the most popular and used in chemometrics because they allow 

the introduction of external information with the purpose of calculating better results. In fact, 
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non-unique solutions are ordinarily obtained through the presence of ambiguities [166], due to 

the fact that for a given rank, sets of paired C and ST matrices can bring to the same quality of fit 

during the MCR decomposition. By way of example, two of these ambiguities are the intensity 

ambiguity, related to the fact that different profiles with the same shape but different relative 

scales will fit the results equally well, for which a normalization can be applied to avoid this 

behavior, and the permutation ambiguity. However, the most critical kind of ambiguity is 

represented by the so-called rotational ambiguity. The basic equation associated with D can be 

rewritten as: 

𝐃 =  𝐂(𝐓𝐓−𝟏)𝐒𝐓 (20) 

𝐃 = (𝐂𝐓)(𝐓−𝟏𝐒𝐓) (21) 

𝐃 =  𝐂′𝐒′𝐓 (22) 

where C′ = CT, S′T = T-1S′T and in which T represents a rotation matrix. Mathematically C′ and 

S′T lead to solutions that will fit the experimental data D equally correctly as the true C and ST 

matrices, though C′ and S′T are not the sought solutions from a physical point of view. 

For this reason, constraints are applied during the ALS process in order to refine initial 

estimates, but also and more importantly, to reduce the possible ambiguities [167]. Constraints 

are chemical or physical properties implemented as mathematical conditions with the aim of 

driving the MCR optimization to the final solutions, taking care of not introducing wrong 

information that could lead to artifacts. They can be grouped into hard and soft constraints, 

depending on the strictness to force the optimization process to obtain the MCR decomposition 

[168], though nowadays the implementation of physicochemical models make possible to take 

together the advantages of both the methods [169,170]. Some of the most interesting and used 

constraints are: non-negativity, maybe the most common and used constraint, applied for many 

datasets to correct the fact that many signals are naturally positive or zero [164,166,171]; 

unimodality, in the cases in which only one maximum per profile can exist, as in chromatography 

elution time peaks; closure constraints, applied on the rows of the matrix C and normally used in 

the reaction systems in order to equal all the elements of each row of the matrix C to a known 

constant, summing them [172,173]; selectivity constraints, associated with the concept of local 

rank (how the number and the distribution of the components vary locally along a particular 

dataset, referring to the fact that in a particular spectral range it can be assumed that a specific 

species can exist while others are known to be absent) and related to mathematical features, they 

can be applied to all datasets, regardless of their chemical nature [166,174]; equality, using 
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chemical information associated with the knowledge of pure spectra or concentration profiles, 

when some elements are known, in order to set them to be invariant along the iterative process 

[175,176]. Once a constraint has been used and implemented, it will act as the driving force of 

the iterative process for the optimization. However, care must be taken using constraints because 

also a potentially applicable one could play a negative role if some factors such as experimental 

noise or instrumental problems distort the related profile. In order to obtain acceptable results, 

the MCR-ALS algorithm is based on the following steps: 

1)  Determine the rank of the dataset, by the use of PCA [177,178] and the corresponding 

calculated eigenvalues [138], as better discussed in the following paragraph. Despite this, one 

of the works of the present thesis focused on the description of a different method that is able 

to perform this task in a different way based on a well-known algorithm, SIMPLe-to-use 

Interactive Self-modelling Mixture Analysis (SIMPLSIMA) [179], named Randomised 

SIMPLISMA [180], and better described in the Chapter 2 of this manuscript. 

2)  Generation of initial estimates (C or ST matrix).  

3)  Calculate respectively ST or C depending on the previous step using the iterative method 

(MCR-ALS) under the right constraints, to avoid any artifact. 

4)  Starting from the previous results, calculate the other matrix using least squares under 

constraints. 

5) Using the product of the obtained results, reproduce the dataset D and evaluate its 

reproduction. 

6) Repeat the procedure from step (3) until convergence. 

Normally, convergence is achieved when in two consecutive iterative cycles, relative differences 

in standard deviations of the residuals between experimental and ALS calculated data values are 

less than a selected value, usually 0.1%. The final quality of the model depends on two important 

figures of merit: Lack of Fit (LOF), representing the difference among the input data D and the 

data reproduced from the CST product obtained by MCR-ALS, and the percentage of variance 

explained (r2), shown respectively in Equation (23) and Equation (24): 

𝐿𝑂𝐹 (%) =  100 x √
∑ 𝑒𝑖𝑗

2
𝑖𝑗

∑ 𝑑𝑖𝑗
2

𝑖𝑗

 

 

(23) 

𝑟2 =  
∑ 𝑑𝑖𝑗 

2 −  ∑ 𝑒𝑖𝑗 
2  𝑖𝑗𝑖𝑗

∑ 𝑑𝑖𝑗 
2  𝑖𝑗

 

 

(24) 

 

where dij is the spectral value of the mixture i at the wavelength j and eij is the associated error.  
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MCR-ALS has been largely applied to solve many complex matrices in different fields [181–

184] as well as for the resolution of spectroscopic image analysis [185–189]. Again, it is worth 

stopping on the same important aspect highlighted in the previous paragraphs, regarding the 

investigation of a hyperspectral image. In this case, the three-dimensional data cube of 

dimensions x x y x λ where x and y represent the number of pixels in the two spatial directions 

and λ the direction of the spectral variables, will have to be unfolded in the corresponding two-

dimensional dataset prior the MCR calculations in order to allow the decomposition of D into 

the contribution of the C and ST matrices. In the last step, the C matrix will be refolded in order 

to retrieve concentration maps of each pure compound extracted by MCR-ALS, as showed in 

Fig. 13: 

 

Fig. 13 – Graphical representation of an MCR-ALS procedure when applied to hyperspectral images. The cube 

needs as a prerequisite step to be unfolded into the product of x and y towards λ and after the optimization process, 

to be folded again into the contribution of the found pure components. 

 

1.4.6.1. Rank evaluation using PCA 
 

The most used method in order to evaluate the rank of a data matrix prior MCR-ALS 

analysis, as introduced in the previous paragraph, is based on the observation of the scree plot of 
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the eigenvalues associated with principal components obtained by PCA. This method was 

introduced the first time by Cattell [138] and it is based on the principle of the meaningful 

information expressed by a particular factor (or component). It is displayed as a downward curve 

in which eigenvalues are compared on the Y-axis, the most important first, while on the X-axis 

are reported the various components. Because the useful information decreases gradually taking 

into account the subsequent eigenvalues (as also the distance in the graphic between them), the 

strategy is to consider only a limited number of components. Using a scree plot, the choice of 

this value is carried out by the interpretation of the curve, in which the right value should 

correspond to the ‘elbow’ in the graph, where the eigenvalues level off. In this way, it will be 

considered a threshold above which the eigenvalues carry a meaningful chemical information, 

leaving out the ones that contain noise and redundant information. Despite the method can seem 

easy and immediate, a subjective and arbitrative interpretation is often observed, especially when 

noise is significant. Moreover, it also remains very challenging using this method to detect minor 

compounds, which result to be very close to the noise level, as in the analysis of complex data 

matrices, due to the small value of explained variance related to their information. 

1.4.6.2. SIMPLe-to-use Interactive Self-modelling Mixture Analysis (SIMPLISMA) 

 

SIMPLISMA [179] is a pure variable method and particularly, it has been one of the very 

first multivariate curve resolution approaches used in spectroscopy [190–192]. Normally, a 

mixture consists of hundreds of variables, each of them represented by the contribution of one or 

more components. A pure variable is a variable that depends on the contribution of only one 

component. The central task of this approach is the selection of the so-called pure variables from 

the data matrix D. It is important to stress the fact that using this approach, the presence of pure 

components in the matrix is not required as long as pure variables are present. By the use of a 

spatial representation, the variables can be presented as vectors, which positions give a direct 

measure of the contributions of the components. This means that the purer a variable is, the more 

it will coincide with a particular component axis. Furthermore, because the purity of a component 

is related to the length on the variable vectors, a variable with a high intensity will be relatively 

pure. In this way, the first pure variable will be found by determining the vector with the largest 

length in the plot. For a data matrix D with dimensions n x m, the length li of a variable i is, as 

shown in the Equation (25): 
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𝑙𝑖 =  √
∑ (𝑑𝑖,𝜈)2𝑚

𝜐=1

𝑚
 

 

(25) 

li is strongly related to the mean of variable i, µi (26), and the standard deviation of variable i, σi 

(27), as shown in the Equation (28): 

µ𝑖 =  
∑ 𝑑𝑖,𝜐

𝑚
𝜐=1

𝑚
 

 

(26) 

σ𝑖 =  √∑ (𝑑𝑖,𝑣 −  µ𝑖)
2𝑚

𝑣=1

𝑚
 

 

(27) 

l𝑖
2 =  µ𝑖

2 + σ𝑖
2 (28) 

The first purity value related to a variable i, based on these two statistical tools, is then estimated 

with the index 𝑝𝑖
(1)

: 

𝑝𝑖
(1)

=
𝜎𝑖

𝜇𝑖 + 𝛼
 for i = 1, …, n (29) 

The user-defined parameter  avoids giving a high purity value to a variable with a low mean. 

This factor will be negligible if the noise is low (high values of μi) and vice versa, in which 

situation  will correct the noise influence. Once the first purest variable, the one showing the 

highest 𝑝𝑖
(1)

value, is calculated, the second one will be the most independent from the previous 

one. It is necessary, in order to calculate it, to subtract the contribution of the first pure variable 

from the matrix D before continuing the calculation. A weighting parameter 𝑤𝑖
(2)

 is thus 

considered in order to reduce the influence of other variables that would be correlated to the first 

pure variable. More details about this parameter are given in other works [193]. The second purity 

value 𝑝𝑖
(2)

 related to a variable i is then defined by:  

𝑝𝑖
(2)

= 𝑤𝑖
(2) 𝜎𝑖

𝜇𝑖 + 𝛼
 for i = 1, …, n (30) 

 

Again, the next purest variable has the highest 𝑝𝑖
(2)

 value. The following purest variables are of 

course obtained by iterating this calculation until the number of variables corresponding to a 

given rank is obtained. It is often forgotten that this extraction of pure variables can be done in 

both the dimensions of the matrix D. In this way, the selection of variables along the columns of 

D allows to obtain the estimations related to the concentration profiles, while using the rows are 

obtained the estimations of the purest spectra. 
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1.4.7. Multivariate Image Analysis (MIA) 
 

The main limitation using chemometric approaches is that a given data cube has to be 

unfolded in the corresponding two-dimensional dataset before any analysis, as previously stated. 

In this way, the problem is that the spatial information is completely lost, leading to an incomplete 

exploitation of the real potentials of this kind of matrix. In chemometrics, the analysis and 

interpretation of a chemical image has always mainly been based on the spectroscopic part of the 

data, and not the spatial information related to the image. Each pixel is considered as an 

independent sample, and the whole image is represented as a set of vectors of intensity values. 

Multivariate Image Analysis (MIA) is a particular kind of field of chemometrics in which the 

main task is to represent the results in a graphical way, trying to give a new interpretation to the 

original data cube [194–196]. Nevertheless, also this kind of technique focuses only on the 

spectral information. In fact, the first applied operation using MIA is the unfolding step of the 

three-dimensional matrix. Then, different chemometric approaches can be applied (e.g., PCA, 

MCR-ALS, etc.), considering each pixel as a single and independent sample in the dataset. 

Finally, each pixel model component obtained from the multivariate analysis can be refolded to 

the original spatial structure and represented as a false-color image with the same dimensions as 

the original image. This means that this kind of procedure does not find a solution in using the 

spatial information obtainable from the image, in which normally one could assume that neighbor 

pixels can easily show correlations and anti-correlations from the chemical and physical point of 

view. Nevertheless, using MIA is possible to observe the results coming from different 

chemometric approaches, such as PCA, on the folded image, in order to lead to a more practical 

interpretation of the distribution of the various components present in the sample of interest. 

1.4.8. Wavelet transform 
 

Despite the variety and vastness of chemometric techniques nowadays used in hyperspectral 

image analysis, it seems that it is impossible to use equally both the spectral and spatial 

information of an investigated sample. As explained, the main constraint when observing this 

kind of matrix within the use of chemometrics is the mandatory unfolding procedure of the data 

cube into its corresponding two-dimensional dataset. Despite this, by the use of this procedure 

the totality of the spatial information is lost, leading to a limited use of the information related to 

the image. Nevertheless, the interest in this problem has been recently in the spotlight of many 

research studies. Different ways to deal with this limitation have been investigated, but one of 

the most interesting ones is for sure related to the use of the wavelet transform algorithm. 
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Generally, wavelet transform [197,198] shows many similarities with Fourier Transform (FT) 

[199]. Both of them can be used with the goal of obtaining a signal or image clearance and 

simplification. Fourier analysis has been first used in the framework of the signal analysis varying 

with time and it results to be useful because the content of the frequency of the signal is of great 

importance. Despite this, the drawback of the FT technique is that transforming a signal in the 

corresponding frequency domain, time information is lost and so, it is impossible to tell when a 

particular event took place. Differently, wavelet analysis overcomes this aspect by the use of a 

windowing technique with variable-sized regions [200]. Particularly in spectroscopy, this 

peculiarity confers a great importance to the wavelet transform, which is related not to the time 

domain, but to the wavelengths one. One major advantage of the wavelets is the ability to perform 

local analysis, namely to analyze a localized area of a larger signal. Mathematically, the FT 

equation F(ω), where ω is the frequency, is the sum over all time of the signal f(t) multiplied by 

a complex exponential, as shown in Equation (31). Contrarily, the first kind of studied wavelet, 

called Continuous Wavelet Transform (CWT), is defined as the sum over all time of the signal 

multiplied by scaled, shifted versions of the wavelet function ψ, as shown in Equation (32): 

𝐹(𝜔) =  ∫ 𝑓(𝑡)𝑒−𝑗𝜔𝑡𝑑𝑡

∞

−∞

 

 

(31) 

𝐶(𝑠𝑐𝑎𝑙𝑒, 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛) = ∫ 𝑓(𝑡)𝜓(𝑠𝑐𝑎𝑙𝑒, 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛, 𝑡)𝑑𝑡

∞

−∞

 

 

(32) 

The CWT can operate at every scale, but the con is that in this way an awful amount of data will 

be generated. For this reason, the Discrete Wavelet Transform (DWT) was introduced, in order 

to save the low-frequency contents, which contain the signal identity, removing the rest of the 

unnecessary information [201], using low- (g) and high-pass (h) filters, as reported in Equation 

(33): 

𝑦[𝑛] = (𝑥 × 𝑔)[𝑛] =  ∑ 𝑥[𝑘]𝑔[𝑛 − 𝑘]

∞

𝑘=−∞

 

 

(33) 

where x is a particular signal and g is the impulse response of the applied low-pass filter. This 

procedure is performed by the decomposition of the signal into a mutually orthogonal set of 

wavelets, leading to the elimination of the redundancy in coefficients, though subsampling is 

operated by this step, leading to the removal of half the frequencies of the signal, and so half the 

samples, according to Nyquist’s rule. Finally, Stationary Wavelet Transform (SWT) was 

designed to overcome the lack of translation-invariance of DWT, removing its downsampling, 

and upsampling the filter coefficients by a factor of 2(j-1) in the jth level of the algorithm [202]. 
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By the use of this algorithm, the output of each level of SWT contains the same number of points 

as the input, contrarily to DWT. The comparison of the two mechanisms is shown in Fig. 14: 

 

Fig. 14 – General schemes for a) Discrete Wavelet Transform (DWT) and b) Stationary Wavelet Transform (SWT). 

 

Moreover, an improvement of DWT (and so SWT) compared with CWT is that various wavelet 

families presenting different wavelet functions ψ have been introduced, with the aim to better fit 

the kind of signal to be interpreted [203,204]. One example is the first and simplest one, the Haar 

wavelet, which is represented by a discontinuous and step-size function. Despite this, the 

Daubechies family remains the most used nowadays, which is a set of compactly supported 

orthonormal wavelets. Another interesting family is represented by the biorthogonal function, 

which exhibits the property of linear phase. Particularly, this kind of approach uses two wavelets 

(one for the decomposition and another one for the reconstruction), which results to be useful in 

the context of the signal and image reconstruction, showing interesting properties. Finally, during 

this PhD has been explored a way to use wavelet transform in the framework of hyperspectral 

image analysis. In fact, in the Chapter 5 of the present manuscript, it will be discussed the 

exploitation of this same principle applied to images extracted from hyperspectral data cubes for 

a better consideration of the spatial dimension of the cube merged together with the 

corresponding spectral part of the data.
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2. ON THE SELECTION OF THE MOST IMPORTANT 

INFORMATION IN HYPERSPECTRAL IMAGE ANALYSIS 

2.1. General overview of the challenge in selecting the most 

important variables/spectra in hyperspectral imaging framework 
 

As discussed in Chapter 1, hyperspectral image analysis has surely broadened the horizons 

of the investigation in many different research areas [38,56,73,76,78,205]. Nevertheless, the use 

of this technique leads also to the possibility of generating a huge amount of data, which need to 

be filtered and observed with the right techniques, in order to keep all the important information, 

preventing the loss of very specific details [29,106,206]. Over the years, chemometrics has been 

used for this challenge, trying to maximize the quality of the obtainable results in this context, 

using various algorithms and strategies. One part of this PhD has been focusing in this aspect, 

trying to understand how to help in this delicate and fundamental task. From a general point of 

view, by way of example, PCA is nowadays vastly used in many exploration analyses, with the 

aim of obtaining a main idea about the chemical structure of complex matrices [6,137,207]. In 

addition, this chemometric tool can be used to reduce the dimensionality of the dataset, selecting 

only the most important and meaningful variables, as well as find and remove outliers present in 

the matrix. Nevertheless, PCA is based on the interpretation of the operator, reason why it can 

lead to inaccurate results. In addition, the division of the information into the different PCs is 

based on the total explained variance. This means that if very specific, but few spectra are 

showing some information that is pure and different from the rest of the data, they might be lost, 

due to the fact that the total variance that they express very low compared with the rest of the 

data in the matrix. This is a very common scenario in hyperspectral imaging, where hundreds to 

thousands of spectra can be easily acquired. Another method that is vastly used for the distinction 

of the various chemical groups into a matrix is KM clustering [143,208]. As previously described, 

this approach separates the classes of components using as criterion the distance of each 

spectrum, considered as a point in the multidimensional space, from the different centroids, that 

are in a first step randomly selected. Then, in an iterative way, the centroids are recalculated 

using the identified clusters obtained in the first step, and so each point is assigned again to the 

new, closer class. This procedure is repeated until the moment that any spectrum cannot be 

anymore moved from one cluster to another. Naturally, some issues can be faced. First of all, the 

operator needs to select the right number of classes to be considered, and so the number of initial 
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centroids to be used. It means that, if the starting selected value is not right, the clustering will 

lead to a certain degree of inaccuracy, and samples of different nature will be considered to 

contain the same information, or vice versa, samples of the same class will be split into different 

groups. In addition, also the starting selected clusters could lead to wrong results, due to some 

computational mistakes given by the initial used values. Nevertheless, as already discussed, 

nowadays some methods to help the operator in these tasks are available. Anyway, it is important 

to stress the fact that is fundamental to carefully use this method, because a lack of attention 

could lead to unsuitable outcomes, as for PCA. Lastly, KM clustering can be affected by some 

ulterior problems. Considering hyperspectral image analysis, as already explained, it is possible 

to obtain an enormous quantity of produced data. In this kind of situation, it is an obvious 

statement that some classes can be represented by a small number of spectra or that pixels being 

part of two or more different families can show very similar spectral information and so be 

erroneously grouped together, as described in Fig. 15: 

 

Fig. 15 – Graphical representation of two common problems when KM clustering is used as classification method. 

 

In this scenario, the possibility of missing particular clusters is very common, and it can result 

very challenging to find the right experimental values. Lastly, MCR-ALS is for sure one of the 

most interesting approaches currently used in hyperspectral imaging [33,209]. In fact, one of the 

main requested tasks in many research areas is the spectral unmixing of the matrix of interest 

into its corresponding pure components. Finding a way to separate and observe the signal 

contributions of the different elements composing a matrix is a very important mission nowadays, 

but it can be more challenging than expected. As introduced, MCR-ALS is a procedure that in 

an iterative way refines the obtained results to eventually yield profiles with chemically 
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meaningful shapes. In order to do this, the algorithm is based on some important steps. First of 

all, similarly to the previous explained PCA and KM clustering, it is fundamental to determine 

the right rank of the dataset, i.e., the right number of pure components present in the sample. This 

procedure is normally conducted by the use of PCA and the observation of the corresponding 

eigenvalues of the extracted PCs. Again, this procedure is made by the operator and so, it can be 

affected by an experimental error. In fact, due to different reasons (e.g., the noise level of the 

acquired data, the presence of minor compounds, which explain a low quantity of information, 

etc.) it is not always easy to determine the right number of components, leading to inexact 

outcomes. Also important is that MCR-ALS is based on the use of initial estimates in order to 

drive the computation of the results, and so calculate the pure matrix concentration profiles C 

and their corresponding spectral profiles ST, respectively. Normally, initial estimates can be 

calculated by the use of some algorithms. Currently, one of the most used approaches in the 

routine analyses is SIMPLISMA [192], as previously described. Nevertheless, if some inputs are 

incorrect, as the rank of the matrix, the initial estimates could not perfectly fit the resolution of 

the unmixing procedure, leading to problems in the decomposition of the signal into the pure 

contributions of the original data.  

       As introduced, the purpose of this chapter is the description of the work that has been 

conducted during this PhD to face this kind of problem, i.e., the selection of the most important 

information in a complex matrix. In brief, two different lines will be investigated. First, this 

manuscript will focus on the use of SIMPLISMA in a new and more intuitive way, in order to 

facilitate the task of the optimal rank selection and extract the purest contributions to be used as 

initial estimates for the MCR-ALS calculation. This will be the opportunity to introduce the first 

publication resulting from this thesis work. Then, a second part of the chapter will be dedicated 

to LIBS imaging. This kind of instrumentation is related to very interesting characteristics that 

make it very suitable for different chemical areas. For example, LIBS shows a high acquisition 

rate (up to 1000 spectra/s), and a high sensitivity (major elements to traces can observed). 

Nevertheless, these aspects can result to be a problem. First of all, it is not easy to deal with a 

huge amount of data as in LIBS imaging, where millions of spectra can be acquired in a short 

time (this aspect will also be better described in the Chapter 4 of the present manuscript). In 

addition, despite the fact that minor compounds can be observed, this task can be very 

complicated because these pure spectra are represented by a very small quantity of pixels 

compared with their totality. For this reason, KM clustering was applied in a specific way, trying 

to overcome the problems faced by a typical investigation and extract more details, i.e., classify 

major, minor compounds and even trace elements.  
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2.2. Randomised SIMPLISMA: Using a dictionary of initial 

estimates for spectral unmixing in the framework of chemical 

imaging 

2.2.1. Introduction 
 

SIMPLISMA is a very suitable algorithm in MCR-ALS framework used with the aim of 

obtaining the initial estimates for the signal unmixing procedure. Nevertheless, it is mandatory 

to give as an input an optimal rank in order to extract the purest variables and use them in an 

iterative approach to refine the final results. Normally, the rank estimation is carried out by the 

investigation of the eigenvalues obtained by a first exploratory analysis using PCA. The 

limitation shown by this procedure is that if some components are present as few pixels, or with 

a signal close to the signal-to-noise ratio, it can lead to results that are underestimating the 

complexity of the original observed matrix. In the same way, considering a rank higher than the 

real one, this could lead to the extraction of wrong profiles. The first work here discussed, and 

published in Talanta, Volume 217 (2020) [180], shows an alternative way to use SIMPLISMA. 

The main purpose using this approach is the one of selecting first the right rank using a graphical 

interpretation in the PCA space, and then extract the information obtained from the different 

groups, in order to use the pure spectral signals as initial estimates to obtain at the end the signal 

unmixing using MCR-ALS. Randomised SIMPLISMA (this is the given name to the presented 

approach) has shown interesting results, a good rapidity of calculation, and particularly, it can be 

used in cases in which SIMPLISMA can experience difficulties, such as the investigation of big 

datasets. Nevertheless, it is important to understand that also randomised SIMPLISMA is 

influenced by the operator decisions, so it is not an error-free method. On the other hand, offering 

a graphical interpretation based on the distribution of the purest pixels into the PCA space (as 

explained in the corresponding paper), this method can clearly be considered a good alternative 

to deal with, in particular, complicated situations. By way of example, randomised SIMPLISMA 

can be used when a complex matrix is investigated, in which doubts regarding the real rank of 

the dataset may arise (e.g., if some minor components related to a small number of pixels are 

present). Another situation in which this approach has been applied is given by the case in which 

the dataset is made by thousands (or millions) of spectra. In this case, SIMPLISMA, as other 

algorithms, can face some issues due to calculation problems. 



 

55 

 

  



 

56 

 

 

 

  



 

57 

 

  



 

58 

 

  



 

59 

 

  



 

60 

 

  



 

61 

 

  



 

62 

 

  



 

63 

 

  



 

64 

 

  



 

65 

 

  



 

66 

 

 

  



 

67 

 

2.2.2. Additional work and use of randomised SIMPLISMA 
 

Another important aspect to be deepened here is the use of this kind of approach on even 

bigger datasets, containing several millions of spectra. Concerning this topic, some ideas were 

proposed during this PhD. In detail, a big dataset (a section of a wheat grain) has been acquired 

in the French national synchrotron facility, namely the SOLEIL, thanks to a collaboration with 

Dr. Frédéric Jamme, beamline scientist in SOLEIL, and working also with the INRAE group of 

research in Nantes (France) headed by Dr. Marie-Françoise Devaux. Regarding the acquisition 

information, a microscope (zoom 40x) has been used to generate the image of the dataset in 

which the phenomenon of autofluorescence coming from the excitation using UV and visible 

spectral ranges (excitation wavelength of 275 nm) has been observed. The size of this data cube, 

whose global integration image and corresponding spectral profiles are reported in Fig. 16, is 

1024 pixels by 1024 pixels, with a resolution of 0.3 µm per pixel, for a total of 1048575 emission 

spectra for 9 spectral variables. More precisely, these spectral variables correspond to different 

filters, each of them corresponding to a specific domain of wavelengths, in order to distinguish 

the emission coming from different biological molecules of the sample. 

 

Fig. 16 – Global integration image and spectra of the wheat dataset. 

 

In detail, here are reported the emission wavelength ranges for the different variables, and a brief 

description of which kind of molecules they correspond to. The first filter covers the range 

between 327 and 353 nm, while the second one the interval between 370 and 410 nm. They are 

potentially used to probe proteins and small molecules. The third, fourth and fifth filters are 
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respectively related to the following spectral ranges: 412-438 nm, 420-480 nm, and 435-455 nm. 

This interval leads to the observation of small molecules and particularly to hydroxycinnamic 

acids (e.g., ferulic acid, para-coumaric acid, etc.) that are a class of aromatic acids (or 

phenylpropanoids) with a C6-C3 skeleton, derivatives of cinnamic acid. Finally, the last four 

filters cover respectively the intervals between 484 and 504 nm, 499 and 529 nm, 530 and 570 

nm, 535 and 607 nm. This range is particularly important to observe lignin compounds, a class 

of complex organic polymers that form key structural materials in the support tissues of vascular 

plants. Evidently, the size of this image is enormous, reason why it can be very complicated to 

find the right rank, considering for example the fact that some information can be extremely pure, 

but represented in very specific and small areas of the data cube. In fact, observing Fig. 17, it is 

obvious that it is impossible to obtain any clear information from PCA, considering all the pixels:  

  

Fig. 17 – PCA on the totality of the pixels of the wheat dataset. 

 

Evidently, randomised SIMPLISMA can be a good alternative, in order to avoid the loss of 

details and so, obtain better outcomes. Nevertheless, due to the fact that the matrix is represented 

by more of one million of spectra, it can be challenging to select the right inputs to use (e.g., the 
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percentage of random pixels per subset). In fact, imprecise values would lead to difficulties in 

visualizing the separated clusters, i.e., situations such as the overlapping of different classes or 

the possibility of losing some very small details. For this reason, as a first step, the whole data 

cube has been divided into four sections, each of them now equal to a sub-image of 512 pixels 

by 512 pixels, corresponding to 262144 spectra. Then, randomised SIMPLISMA has been 

separately applied on each of the new reduced images, and the right rank (that can obviously vary 

through the different sub-images, depending on the information carried by each of them) selected. 

Finally, the chosen clusters from the single sub-images have been merged together in the same 

dataset. Then, randomised SIMPLISMA has been used a second time, in order to reduce again 

the total amount of spectra. At the end, the selected purest spectra have been observed to select 

the global rank of the initial data matrix. A graphical representation of the final clustering, in 

which were used only the selected spectra from each of the sub-images, is shown below in Fig. 

18:  

 

Fig. 18 – PCA exploration of pixels selected by the ‘double’ randomised SIMPLISMA approach as a function of k. 

 

As observable, due to this ‘double’ randomised SIMPLISMA approach, it is possible to select 

the purest spectra from the whole dataset, and particularly, to use only a very small quantity of 

the initial pixels for the investigation in the PCA space. In fact, in this way it is easier to observe 

very clear clusters, each of them related to particular spectral information. As a final step, using 
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the same approach previously explained, the mean spectrum from each cluster has been used to 

generate the initial estimates for the MCR-ALS calculation, whose first outcomes (both pure 

concentration and corresponding spectral profile matrices) are here reported in Fig. 19: 

 

Fig. 19 – Final results using the ‘double’ randomised SIMPLISMA approach. Here are reported the seven extracted 

concentration maps corresponding to the MCR-ALS calculation and their corresponding spectral profiles. 

 

Naturally, further investigations are required in order to confirm these results, understanding their 

biological nature, and clearly, refine the use of this new approach based on randomised 
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SIMPLISMA. Nevertheless, first outcomes seem to be very promising, enough to lay claim new 

possibilities in order to obtain always better results in the hyperspectral image analysis and 

particularly, the spectral unmixing framework. 

2.2.3. Conclusions and future perspectives 
 

Modern instruments show the possibility of acquiring a big quantity of data, normally related 

to very high resolution. MCR-ALS is a chemometric tool that has the potential of being used in 

many different areas, leading to the decomposition of complex matrices into the contribution of 

the pure components, in order to dig the chemical composition of samples of various natures. 

Nevertheless, some limitations are still faced. In an interesting domain such as the hyperspectral 

image analysis, choosing the right rank can be challenging, selecting all the information 

contained in a data cube, particularly when contributions related to a small quantity of pixels is 

available. Finding a way that can automatize the selection of the real number of components is a 

very important task. Randomised SIMPLISMA is an algorithm based on SIMPLISMA (a useful 

tool used in the MCR-ALS framework) that has shown the capability to help the operator in this 

important purpose. Anyway, some limitations using this approach are still present. For example, 

it is necessary to highlight the fact that randomised SIMPLISMA requires some inputs to work 

correctly. First of all, the percentage of data to select for each subset. Then, the number of subsets 

to be generated. If the wrong number is chosen, it could lead to incorrect results. In fact, too 

many selected points could create an issue in the possibility of observing the right number of 

groups in the PCA space, due to an overlap of the classes. Contrariwise, too few spectra could 

lead to the loss of some specific pixels, very pure, but present as a small quantity compared with 

the rest of the information. This is the reason why, during the experimental part of this work, 

many attempts were carried out in order to find the right values to be applied in order to obtain 

reliable results. In addition, as previously shown, an interesting alternative would be the one of 

at first divide the whole image into a certain quantity of sub-images (the number of them 

depending on the original size and complexity of the data cube), in order to use randomised 

SIMPLISMA in a first step separately on each of them. In this way, the possibility of observing 

more interesting details would be easier. Clearly, more studies to optimize this procedure are 

required. Another important aspect of randomised SIMPLISMA is that the observation of the 

different clusters is carried out by the use of the PCA space, and so, it is related to a subjective 

interpretation. The main problem here is that, despite the existence of various methods that can 

automatically count the number of clusters, they depend on the nature of the investigated sample. 



 

72 

 

This means that based on the data matrix, different information has to be given, to avoid 

clustering errors. Therefore, it would be interesting in future to find a way to make this selection 

automatic, for example by the use of KM clustering, or other clustering approaches. In addition, 

as previously described, at first the spectra of the different clusters are collected, and then the 

mean spectrum for each class is calculated, in order to use them as initial estimates. However, it 

is important to consider that the variability presents in a dictionary of a given contribution is 

rather little exploited for this reason. An important improvement would be to have the capability 

of considering the spectra of a dictionary as different pure representations of a given compound, 

such as it can be done nowadays in the remote sensing community. 

2.3. Detection of minor compounds in complex mineral samples 

from millions of spectra: A new data analysis strategy in LIBS 

imaging 

2.3.1. Introduction 
 

Among the different spectroscopies that are currently used in different research domains, 

one in particular is obtaining a constant arising interest in many communities, i.e., LIBS imaging. 

The development of this spectroscopic technique has led to the necessity of finding new ways to 

extract the information, and chemometrics is for sure a very interesting area that can be involved 

in this task, due to its characteristics and strong points. One of the reasons why LIBS is nowadays 

a very promising technique for the analytical investigation of complex matrices is that thousands 

to millions of spectra can be obtained in very short times, thanks to the high acquisition rate (up 

to 1000 spectra/s) of this instrumentation. This means that it is easily possible to acquire images 

made of millions of pixels, also helped by the use of powerful microscopes. Naturally, this 

characteristic involves the fact that the generated hyperspectral images show a high spatial 

resolution that, linked to the multi-elemental capabilities of LIBS, arises the interest in using this 

instrument in different research areas [85,210,211]. Nevertheless, one of the most important 

challenges currently faced in handling this kind of data cubes is that still, it is not easy to find a 

strategy able to deal with this huge quantity of data in a suitable way. In fact, many issues can be 

experienced. First of all, the amount of data is big, reason why it can result complicated, if not 

even impossible, to work with the whole dataset. Therefore, a strategy able to collect the most 

important information and reduce the quantity of spectra to be observed is a fundamental task. In 

addition, it is reasonable to think that, no matter the quality of this spectroscopy, the acquired 
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data can be affected by some problems. For example, it is a common scenario the possibility of 

generating some saturated signals that naturally can lead to a poor interpretation of the spectra. 

Lastly, as already explained in many parts of this manuscript, it is reasonable to think that while 

some elements are present as main components in a sample, others (probably the majority) are 

available as minor compounds or even traces. Therefore, if the right approach is not selected, 

there is a real risk of losing the information related to these details, leading to only partial and 

insufficient outcomes. Chemometrics can be a good alternative to the routine analyses, capable 

of overcoming these problems, and showing new interesting approaches for LIBS image analysis. 

Many of these aspects have been faced during this PhD, and so discussed in the manuscript. In 

detail, while the other aspects will be shown in Chapter 3 and Chapter 4 of the present work, in 

this section it will be described a method used to investigate in an easy way a big dataset made 

of more than two million spectra, finding interesting results coming from not only the main 

components, but also the minor ones and the traces of the sample of interest. Specifically, the 

investigated sample is a complex mineral containing various elements, such as W, Au, Pb, Zn, 

Ag, and others. This work, published in Analytica Chimica Acta, Volume 1114 (2020) [212], 

shows the use of KM clustering [146,208] in a particular way, the Embedded K-Means (EKM), 

hereafter explained. KM clustering is a well-known unsupervised classification method vastly 

used in the chemometric society for the investigation of many different types of samples and 

spectroscopies. The limitation of this algorithm, such as for many other chemometric tools, is 

that its outcomes can be influenced by the total explained variance of the spectra in the matrix. 

This means that in a very big dataset where some small components are easily available, this kind 

of approach would be biased, leading to the clustering of only the major compounds, while the 

minor elements and traces would be easily missed. EKM is an interesting alternative that 

overcomes these limitations, allowing the classification of also minor compounds and traces, as 

it is following described. 
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2.3.2. Conclusions and future perspectives 
 

KM clustering has shown to be one of the most interesting methods for classification, 

particularly when it is not possible to have many information about the nature of the specimen, 

due to the iterative nature that is the core of how this approach works. In fact, being an 

unsupervised method, KM tries to find natural groupings of spectra in the considered dataset, 

which will represent different chemical compounds. One of the main tasks of this PhD has been 

the use of chemometrics focusing on LIBS imaging with the aim of finding interesting 

approaches that can help the operator in solving different limitations related to this spectroscopy. 

The main purpose of this chapter, and specifically this paragraph, has been to show an alternative 

method to the standard approach based on the use of KM clustering, aiming to the detection, 

identification and localization of not only the major, but also the minor compounds and traces 

into a big dataset, leading to promising results. The limitation of the presented EKM approach is 

that it can be nevertheless complex, because the clustering has to be applied several times. In 

fact, in a first step it is used to identify the main different regions of the map, containing the 

different elements (or compounds). Then, again, the same procedure is repeated, this time on 

each single subregion, in order to find new details coming from minor compounds and traces. 

Having said that, more chemometric tools may be applied to LIBS analysis, concerning various 

and different tasks and approaches, with the general goal of proposing always innovative data 

analyses that could replace the routine methodologies. Particularly, next chapters will focus in 

LIBS image analysis, for which different aspects regarding especially, but not exclusively, this 

spectroscopy will be faced and discussed more in detail.
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3. CORRECTION OF THE SPECTROSCOPIC INFORMATION: 

THE IMPORTANCE OF USING RELIABLE DATA 

3.1. Why it is important to have good data before any analysis and/or 

use of chemometric approaches 
 

As briefly stated in Chapter 1, one of the most important tasks in any analytical investigation, 

no matter the research field, is the use of reliable spectral information [109]. In fact, by way of 

example, if the right preprocessing or analysis settings are not used, there is a real risk to extract 

incorrect details that would drive the interpretation of the data in the wrong direction. Among the 

possible acquisition mistakes that can be faced in this scenario, one in particular has been studied 

during this PhD. During an acquisition, many spectroscopies can generate the phenomenon of a 

saturated signal. This kind of response, also known as clipping, is a distortion of the signal, when 

it exceeds a certain threshold. As a consequence of this, saturated bands with their characteristic 

plateau present numerical values that do not correspond to the analytical reality of the analyzed 

sample. Clearly, this kind of response cannot be used to generate any result, because it is far to 

be reliable and accurate. Therefore, it is fundamental to find a way to deal with this particular 

artifact. If saturation is observed on a spectrum acquired in a bulk analysis of a single sample, 

the situation is easily solved. In fact, the specimen can be again acquired, changing the 

preparation modality or the instrumental characteristics in order to avoid the presence of this 

phenomenon. Very different is the scenario in which many samples are acquired. Obviously, it 

is mandatory to set unique experimental conditions to be applied to all samples. Nevertheless, 

this step can be more challenging than expected, particularly when the nature of the acquired 

matrix is very heterogeneous, such as normally happens when the used technique is the 

hyperspectral imaging. In fact, for given acquisition conditions it is possible to acquire in the 

region of interest of the sample thousands (or even more) spectra. Since each spectrum 

corresponds to a specific micro-surface of the sample with potentially different molecular 

distributions, it is quite likely that some of them are saturated, no matter the acquiring conditions. 

In addition, some instruments are destructive, meaning that the acquisition can be carried out 

only once. This is for example a LIBS-related problem. This kind of spectroscopy, as already 

described in the manuscript, shows very interesting characteristics such as the fast acquisition 

rate and its resolution limits. Nevertheless, using a laser as excitation source, it generates the 

ablation of the surface of the sample, reason why on occasions it can be impossible to repeat the 
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acquisition. A practical solution exploited over the years to overcome the instrumental limitation 

represented by the saturation is here briefly explained. The cited approach is based on the 

exclusion of the saturated signals instead of correcting them. In this kind of scenario, two 

different strategies can be chosen. In the first case, known as row-wise deletion, the samples 

corresponding to some saturated signals will be suppressed. This means that the final quantity of 

investigated spectra will be lower than the initial one. Clearly, this can be a solution, but at the 

same time, this kind of approach can be a problem if the total number of deleted samples is too 

significant. It is also important to consider the fact that using this strategy, especially in 

hyperspectral imaging, there is a real chance to lose some pure and particular information related 

to the investigated sample. On the other hand, a second solution is represented by the idea of 

removing only the spectral variables related to saturated signals, the column-wise deletion. In 

this case, all the samples will be kept, but at the same time some variables will be deleted, the 

ones that present saturation for at least one specimen. It goes without saying, part of the total 

spectral information that can be related to very fundamental details of the analyzed matrix, is 

completely lost in this way. In other words, both the strategies can be applied to remove saturated 

signals, but neither the first nor the second method clearly correspond to a good solution when 

an exhaustive chemical study is required. Also in this case, chemometrics can be used as an 

interesting alternative to the routine approaches. Specifically in this kind of situation, in which 

the best suggested solution is represented by the removal of the artifacts, and so the possible loss 

of important details related to the studied matrix, here it is proposed another approach. 

Specifically, it is based on the use of the multivariate information contained in the sample to 

generate a prediction of the missing values in order to correct the saturated signals by the use of 

statistical imputation, as following explained. 

3.2. Saturated signals in spectroscopic imaging: why and how should 

we deal with this regularly observed phenomenon? 

3.2.1. Introduction 
 

Among the different spectroscopies, LIBS is for sure one of the most interesting that in the 

last years obtained an increasing importance due to its suitable characteristics. Nevertheless, 

setting the experimental conditions can be sometimes a hard task, particularly due to the complex 

nature of the different matrices that can be analyzed. Therefore, a real risk is the one of generating 

saturated signals, which would lead to incorrect results, as previously explained. Despite the fact 
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that saturation is a phenomenon that can be experienced within many spectroscopies, the present 

work focuses particularly in the resolution of this artifact in LIBS imaging. This is due to various 

reasons. First of all, as already stated, this kind of spectroscopy is a very interesting 

instrumentation that can be used in many research areas for the elemental analysis. The con is 

that, using a laser as excitation source and ablating the matter, it is a potential destructive 

technique. This leads to the fact that, potentially, an analysis cannot be executed a second time 

on the same surface also if required, such as in the case that some artifacts (e.g., saturated signals) 

are present. Also important is that LIBS can generate from thousands to millions of spectra in a 

very short time, leading to very interesting and heterogeneous acquired data cubes. Therefore, 

the possibility of obtaining some clipped signals is very likely. Last but not least, LIBS is related 

to very fine spectral features if compared with other spectroscopies in which broadened bands 

are generated. Furthermore, each element is normally related to more bands, distributed in the 

whole spectral domain. It means that if a particular signal is saturated, others (with a lower 

intensity) related to the same element will be probably available. These aspects are very suitable 

for the here proposed method. The general idea of this work, that has been published in Analytica 

Chimica Acta, Volume 1157 (2021) [213], is to generate multivariate regressions using all the 

spectral variables that are not saturated in order to predict the right values related to the clipped 

signals. As a first step, the data containing saturations will be considered as missing values, to be 

then replaced with new calculated ones. The used approach is the imputation, a field of statistics 

in which the gaps in the data are filled with plausible values that are calculated within the data 

themselves. In this way, it is possible to keep the initial dimensions of the dataset, but correcting 

the artifacts coming from the acquisition.
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3.2.2. Methodological perspective 
 

Imputation is, as already mentioned, a field of statistics in which the selected data are used 

to generate new values that will replace the ones coming from, in this case, the saturated signals, 

that will be considered in a first step as missing data. In this way, the original dimensionality of 

the dataset will be maintained, meaning that no information will be missed at the end in the 

analysis. Nowadays, many different data imputation approaches are available. Despite that, the 

one that has been selected for this work is related to the ‘multiple imputation’, one of the best 

strategies to deal with incomplete data [214]. The main approaches for imputing multivariate 

data are the Joint Modeling (JM) and the Fully Conditional Specification (FCS), also known with 

the name of Multivariate Imputation by Chained Equations (MICE) [215]. Due to the constraints 

shown by the JM method, here MICE has been used to correct the saturation of the signals. This 

approach specifies the multivariate imputation model on a variable-by-variable basis by a set of 

conditional densities, one for each incomplete variable. It is also important to highlight the fact 

that the imputation model should account for the process that created the missing data, and 

preserve both the relations in the data and the uncertainty about these relations. The main concept 

behind MICE methodology is that multiple imputation is best done as a sequence of small steps, 

each of them requiring diagnostic checking. It is possible to briefly resume the main steps of 

multiple imputation into three parts, as reported in Fig. 20: imputation, analysis and pooling.  

 

Fig. 20 – General scheme showing the main steps of the multiple imputation approach MICE. 

 

As previously introduced, the data used at the starting point of MICE are the ones presenting the 

missing values (the incomplete data). The main point here is that clearly, it is not possible to 

estimate the missing values without making unrealistic assumptions about the unobserved data. 
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In the imputed data step, multiple imputation versions of the data will be used replacing the 

missing values by plausible data. Fundamental is that these values must be reasonable. This is 

the reason why they are drawn from a distribution specifically modelled for each missing entry. 

Naturally, due to the fact that the original value is missing, it is reasonable to consider that a 

degree of uncertainty is inevitable. This component leads to the fact that multiple values to impute 

will be generated. In the shown scheme for example, from one missing value, an amount of t = 3 

different imputed data are generated. The three imputed sets are identical for the non-missing 

data entries, but differ in the imputed values. The higher the magnitude of the difference between 

the calculated values and the higher the uncertainty about what value to impute. Then, in a second 

step (the analysis results), each imputed dataset will be used to calculate the outcomes and 

estimate their robustness. It is important to highlight again that the differences among the various 

estimations found with the MICE algorithm are caused due to the uncertainty about which value 

to impute. Normally, the analysis results are at the end collectively stored as a multiply imputed 

repeated analysis. Finally, in the last step, the t = 3 estimates obtained with MICE are pooled 

together into a single value, and its variance (within- and between-imputation variance) is 

calculated. In other words, a regression model is developed, and the results of the function are 

stored as a multiple imputed pooled outcomes object. Once the model is established, it can be 

used to predict missing values of spectra at this specific spectral variable based on known values 

in the matrix. As a consequence of this, at the end a dataset free of missing values will be 

generated, which will be used for the multivariate analysis, as usual. 

3.2.3. Conclusions and future perspectives 
 

Saturation of the signals is clearly a very important spectroscopic problem that should be 

faced before any data analysis. The challenge is that it is not easy to find a solution when the 

value to be replaced is not available within the matrix, or at least not directly related to the given 

information, such as in the case of clipped bands. Despite that, solving this problem is mandatory, 

due to the fact that using a strategy such as the exclusion of these values can result the worst 

approach, leading for example to the loss of important information. The presented method, based 

on the use of a multivariate data imputation, more precisely the MICE algorithm, represents an 

interesting approach that can be used to overcome the limitations related to the standard methods. 

Nevertheless, this kind of strategy can show a certain degree of drawbacks. First of all, MICE 

has been tested on LIBS spectra, which are represented by very narrow peaks and bands, each of 

them potentially selective to specific elements. It means that if for example a peak is saturated, 
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others will be anyway potentially correlated to the same element, leading to the chance of finding 

further signals that could make it possible to build a model able to impute the missing values. 

Also important is that LIBS can easily generate from thousands to millions of spectra, increasing 

the possible number of values to be used to create a reasonably robust and accurate MICE 

prediction model. The situation can be different when other spectroscopies are used, which are 

related to other characteristics. For example, Raman spectroscopy, in which broadened bands can 

be observed, can hardly collect the same amount of data of LIBS analysis. In addition, despite 

the use of fingerprints to recognize different molecules, it is off the table the fact that Raman and 

LIBS spectra cannot be compared, from an interpretation point of view. Therefore, it is clear that 

when LIBS is used, it is easier to create a regression model that makes it possible to predict 

missing values. Nevertheless, it would be interesting to implement the use of imputation in order 

to generate model robust enough to be used for other spectroscopies. Lastly, it is important to 

highlight another limitation related to this method. In fact, no matter the computational 

calculations, if a saturated signal is related to an element (or compound) that is that pure to be 

completely absent from the rest of the matrix, naturally it will be impossible to generate a model 

able to impute that value, leading to the creation of artifacts that would correspond to wrong data 

analysis outcomes. Nevertheless, this is a very extreme scenario. Another extension of this work 

would be to use the same concept to specifically correct the self-absorption phenomena often 

observed in LIBS. However, in this case a first difficult has to be faced. In fact, it would be 

necessary at first to detect automatically the zones presenting this phenomenon before their 

correction by an imputation stage. To conclude, it can be said that from a general point of view 

using this approach, finally it is possible to use the totality of the information related to a dataset, 

both the spectral and spatial components, leading to the potential possibility of exploring datasets 

that otherwise would not be analyzed due to their quantity of saturated signal.
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4. LIBS IMAGING AND CHEMOMETRICS: HOW TO EXPLOIT 

MULTIVARIATE DATA ANALYSIS TO MAXIMIZE THE 

OBTAINABLE RESULTS FOR THIS SPECTROSCOPY 

4.1. A general overview of LIBS imaging framework and possible 

chemometric approaches 
 

At this point, it is clear that an important part of the present PhD has been dedicated to the 

investigation of chemometric tools and methodologies linked in particular to LIBS analysis. This 

imaging spectroscopy, rapidly developed in the last decade, is related to very interesting 

characteristics. Due to this, it is nowadays considered an essential instrumentation in many 

research areas. From a general point of view, it is very likely to obtain images made of millions 

of pixels associated to thousands of spectral channels. Of course, this means that very interesting 

images can be generated, but at the same time, despite the general development from the 

spectroscopic point of view and especially, from the computational instrumentation perspective, 

it is still really complicated to find a reasonable way to deal with and investigate this huge amount 

of produced data. The typical routine approach used to study this kind of data cube is based on 

the integration of the acquired signal at a particular wavelength (i.e., an emission line of a given 

element), leading to the generation of a distribution image of the considered element present in 

the sample. Naturally, this can be a limitation. In fact, first of all the operator needs to have a 

general idea of the various elements present in the sample of interest in order to obtain the 

corresponding images. Then it is clear that, particularly in a scenario in which a big dataset is 

acquired, different elements will be present as minor compounds or even traces, maybe showing 

very small intensity signals compared with the rest of the compounds in the specimen. All these 

things correspond to the possibility of losing very important information related to the sample, 

and so to carry out an incomplete investigation of its real heterogeneity. It is also very difficult 

to really detect correlations between elements with this classical integration method. Due to all 

these reasons, it is obvious that chemometrics might be used as an important alternative to the 

routine approaches in order to study in deep the outcomes related to this kind of spectroscopy 

and so, lead to new ways to interpret the results. In order to do this, the main chemometric tool 

used to show and prove the robustness of the present work is MCR-ALS [129,183]. In fact, this 

algorithm is nowadays one of the most important milestones in the spectral unmixing framework, 
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a technique used with the purpose of selecting and showing the pure contribution related to the 

different components of a given investigated sample. Nevertheless, it is important to highlight 

the fact that also using chemometrics, and so MCR-ALS, it could be challenging to use the raw 

data, due to the huge amount of information related to the acquired sample. This is true from two 

different points of view. First, again, it is a very easy scenario, when the used matrix corresponds 

to a big dataset, the one of losing information, particularly related to minor compounds and trace 

elements. Second, despite the very interesting characteristics of MCR-ALS, some calculation 

problems may arise, due to the size of the data cube. So, as a first step, it is always important to 

consider the possibility of selecting only a part of the total information (the most relevant one), 

and work exclusively with that. In other words, it is very plausible the idea that in millions of 

spectra, only a small percentage will be related to very pure information. This means that, with 

the right approach, it would be possible to enormously reduce the quantity of data to be used to 

obtain final accurate outcomes. From a certain point of view, this kind of idea has been already 

previously discussed in this manuscript. Clearly, we are referring to the randomised 

SIMPLISMA [180] and the Embedded K-Means (EKM) [212] approaches. So, which is the 

reason of developing a new strategy for this kind of spectroscopy? As previously explained, 

randomised SIMPLISMA is a very useful method, and it can be applied to select the rank and 

generate the initial estimates to be used in the MCR-ALS approach. Nevertheless, if the 

investigated image is too big and complex, it might be a real challenge the selection of the right 

randomised SIMPLISMA input values (i.e., the number of subsets to be generated and the 

percentage of pixels to be selected for each subset). Another important thing is that, also if it 

would be possible to obtain good results, anyway MCR-ALS could be not useable due to the 

dimensions of the dataset from a computational point of view. Therefore, it is fundamental to 

find an alternative way in which MCR-ALS can be applied without using the totality of the data 

acquired by LIBS. Considering EKM clustering, as previously stated it is a very interesting tool 

to deal with a huge amount of data, in order to find the contribution of not only the major, but 

also the minor compounds, when it is impossible to have an adequate knowledge of the 

investigated sample. Nevertheless, it is important to remember the fact that this kind of approach 

uses the totality of the pixels of the matrix. Therefore, the presented methods have both some 

very interesting aspects, but naturally also some constraints. In other words, it would be important 

to find an alternative method that, in situations in which the sample is very big and heterogeneous, 

could drive the operator with an automatic approach to accurate results. The core of this chapter 

is to provide a data analysis pipeline capable to drastically decrease the amount of imaging data 

(both the spectral channels and the pixels) used for the investigation of a sample in order to 
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perform a simpler unmixing analysis exploiting only the essential information selected from the 

LIBS image. For informational purposes, it is important here to inform the reader that a first part 

of this chapter, also published in Analytica Chimica Acta, Volume 1192 (2022) [216], will focus 

on this aspect, and an interesting data analysis pipeline will be described to reach this goal. 

4.2. LIBS data fusion: the importance of fusing different 

spectroscopic techniques 
 

Another fundamental part of this chapter regards the use of chemometrics in the framework 

of the data fusion of different hyperspectral imaging systems, focusing particularly in the use of 

LIBS spectra and other spectroscopic responses. As previously stated, LIBS is an elemental 

spectroscopy. From an analytical point of view, it is very important to study a given sample from 

the elemental perspective, to deepen the comprehension of its chemical composition. Despite 

this, the information related to the elemental point of view can be not sufficient, and it is always 

interesting to merge together different kind of data to obtain a more complete overview of the 

characteristics of the investigated matrix. On the other hand, sometimes it can be very challenging 

to give the right interpretation to the data and understand the molecular composition of a given 

component (if for example an exhaustive library for a particular spectroscopy/technique is not 

available). In this kind of scenario, an elemental analysis such as the one obtainable with LIBS 

can be decisive. In fact, using the elemental information, it would be for example possible to 

carry out details from the elemental and also molecular points of view that are not clear when 

LIBS is not involved in the analysis. Furthermore, another important aspect is the LIBS 

resolution. Making the most of it, it may be possible to obtain better spatial details coming from 

other spectroscopies. Lastly, LIBS can be directly coupled with other spectroscopic responses. It 

means that it is possible to acquire at the same time different spectral domains, without any 

necessity of changing the used instrument and platform. In this way, it is possible to obtain more 

data cubes that are represented by the same spatial dimensions, leading to a faster and easier data 

fusion between the considered spectroscopies. In detail, during this PhD it has been possible to 

investigate two different techniques related to LIBS. The first one is PIL [91], a luminescence 

effect that can be generated in particular situations. As previously described, the general principle 

of LIBS is the use of a laser that will produce a plasma able to ablate the surface of the sample. 

Some elements can keep the excess of energy coming from the LIBS excitation source and then 

release it with a delay of some milliseconds in the form of a luminescence effect. Despite the 

relative simplicity in acquiring these additional PIL spectra, the interpretation of such signals 
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remains uncertain [90]. This is a perfect scenario in which the fusion can be used with the purpose 

of leading to an easier explanation of the data, due to the absence of a real library for PIL 

phenomena. These results have also been reported in the aforementioned paper published in 

Analytica Chimica Acta, Volume 1192 (2022) [216]. On the other hand, another interesting 

example regarding the data fusion is the combination of LIBS with Raman spectroscopy. 

Naturally, here the scenario is very different. If PIL is a technique that from a chemical point of 

view shows very limited information, Raman is related to very important aspects of the molecular 

composition of the studied sample. Nevertheless, it can be sometimes complicated to give the 

right interpretation to some Raman bands, as well as it can result challenging to recognize some 

LIBS spectra, if the composition of the sample is too heterogeneous, or if the intensity of the 

corresponding signal is too weak. In addition, it is plausible that some information may be related 

only to one or the other instrument, if not coupled. Clearly, fusing the two techniques, it would 

be possible in this way to extract more details, correlations and anticorrelations between these 

different spectroscopic responses, obtaining both an elemental and molecular investigation of a 

given sample. In conclusion, without any doubt a fusion strategy is a very interesting approach 

that can be used in order to deepen the knowledge of the chemical composition of a specimen. 

The limitation in this scenario is anew represented by the fact that an enormous quantity of data 

can be easily acquired (considering in this case the generation of millions of spectra for both 

LIBS and the supplementary coupled spectroscopy). Again, the approach proposed in this chapter 

based on the selection of only the most relevant spectral and spatial information before the data 

analysis can represent a good solution to this kind of problem. Even so, it is important to consider 

some aspects in order to avoid inaccurate outcomes. First of all, in the moment that two different 

datasets are fused together, the right normalization has to be applied, in order to obtain 

comparable spectral magnitudes. Second point, it is fundamental to apply the aforementioned 

data reduction approach at the right moment of the pipeline. This aspect is much related to the 

kind of spectroscopic response coupled with LIBS. Here is explained the reason. Due to the few 

chemical information linked to PIL, the use of the data reduction after the fusion has to be 

preferred. This is due to the fact that PIL spectra alone are not very easily interpretable, as a 

consequence of their corresponding broad signals. Instead, applying the reduction of the data 

after the fusion, the selected information will depend on both the spectroscopies, leading to the 

observation of the correlations between the various elements identified by the use of LIBS and 

their luminescence effect, linked to PIL phenomenon. Contrariwise, using Raman spectroscopy, 

it is recommended to merge the datasets after the selection of the spectra used on the separated 

matrices. The reason of using this approach is related to the very specific and different details 
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linked to LIBS and Raman spectra (respectively, elemental and molecular information of the 

acquired matrix). Therefore, in a first step it is necessary to skim the data, in order to select only 

their most relevant part. Then, it is possible to fuse the two reduced datasets and observe the 

interaction between LIBS and Raman spectral responses, in order to maximize the obtainable 

information. Due to the complexity of material explained in the present chapter, only some results 

concerning the Raman spectroscopy coupled with LIBS will be shown, while the PIL 

investigation is reported in detail into the already cited publication [216]. 

4.3. Data fusion of LIBS and PIL hyperspectral imaging: 

Understanding the luminescence phenomenon of a complex mineral 

sample 

4.3.1. General aspects related to the data reduction in LIBS analysis 
 

As described in the introduction of this chapter, one of the main points of the present work 

has been the development of a strategy able to select the most important information related to 

LIBS, and not only this spectroscopy. One of the principal limitations in LIBS is that an enormous 

amount of data can be easily generated. In fact, millions of spectra can be acquired in a reasonable 

time, due to the very interesting instrumental characteristics of this spectroscopy. Despite this, it 

is important to consider some challenges. For example, the raw data can be hardly analyzed 

obtaining good outcomes, if not correctly treated. Therefore, find an adequate pipeline able to 

reduce the amount of used data, but at the same time be sure to consider the most important 

information, no matter if related to major compounds (easily identifiable) or, and particularly, 

minor components and traces (represented by a small quantity of spectra) is a mandatory task. 

The main problem is that normally the identification of the most relevant information is related 

to factors such as the total explained variance. This means that, in the case in which a big dataset 

is analyzed, minor compounds will be usually represented by small values, and for this reason 

easily skipped. Nevertheless, other algorithms can be used in order to select the information based 

not on the total explained variance, but on the purity of the spectra. This scenario is clearly 

recommendable, in order to generate better results. One of the most common used techniques for 

this purpose is SIMPLISMA [192], as it has been vastly discussed into this manuscript. Again, 

one of the main limitations concerning this algorithm is related to the fact that, in order to be 

applied, some inputs have to be insert by the operator, with the purpose of selecting the right 

number of pure components to be used, for example in the framework of the spectral unmixing. 
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In a different way, here SIMPLISMA has been used to select the purest spectra, but with the 

intention of only skimming the total information, in order to finally work with a reduced dataset. 

In this way, as a main point, instead of working with millions of spectra, only a small percentage 

will be taken into consideration for the chemometric approach (in this case, MCR-ALS). Second, 

and more importantly, the purpose of using the presented pipeline is the selection of not only a 

small quantity of spectra, but the most interesting and purest ones, in order to be sure of obtaining 

at the end results that will be representative of the heterogeneity of the matrix and so, of the 

existence of eventual traces, no matter its complexity, that otherwise would be easily missed. In 

order to give a general idea about this procedure to the reader, it is important to stress again the 

fact that this part of the chapter focuses only on the description of the used approach for the 

selection of the most important pixels and variables, while the part related to the chemometric 

interpretation of the data and the fusion with PIL spectra is well described into the reported 

published paper [216]. Also important is to understand the use of SIMPLISMA in this kind of 

scenario. As introduced, this algorithm is normally applied in the spectral unmixing framework 

in order to select a precise number of pure contributions that are used as initial estimates in the, 

for example, MCR-ALS procedure. In the present approach, its use is slightly different. In fact, 

SIMPLISMA is firstly applied on the spectra of LIBS, in order to select only some of the 

variables, the purest in the whole spectral domain. This is possible due to the very fine spectral 

features of this spectroscopy. In addition, one should consider the fact that multiple peaks can 

refer to the same element. Using this approach, it is then possible to select only a part of them, 

the ones that are stronger related to a certain information. Contrariwise, considering PIL and 

Raman responses, another spectral reduction procedure has been applied. Regarding PIL, due to 

the fact that only two big band signals are available, the rest of the spectral range that is related 

to the baseline has been removed prior the analysis. Instead, for Raman spectra, considering the 

fact that generally the peaks are broadened, there was selected only one point each three, in order 

to reduce the total amount of spectral variables. This approach could be considered as an attempt 

that would lead to inaccurate outcomes, due to the possible lack of information. This is not true. 

In fact, MCR-ALS results are calculated using only the selected information. Then, as a last part 

of the procedure, a suitable single least-squares step is applied, in order to use the solutions 

obtained with MCR-ALS to reconstruct the full spectral signatures. Lastly, considering again the 

selection procedure, once that only a part of the spectral range has been selected, SIMPLISMA 

is newly applied, this time in order to reduce the total final number of used pixels for the spectral 

unmixing, considering the fact that only few of them will be related to a pure information coming 

from a specific element or compound. Naturally, the aforementioned least-squares procedure is 
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at the end applied also on the pixels, in order to reobtain the full distribution maps of the initial 

data cube used in the analysis. As a last, but essential point, it is also important to highlight 

another aspect. Using this SIMPLISMA-based procedure, it is not possible a priori to know the 

number of pure variables and pixels to be selected in order to reduce the total amount of data, but 

at the same time to have at the end the certainty of conserving also the minor information. This 

is the reason why normally the selected value is an overestimation of the possible real one. In 

this way on one side the idea of enormously reducing the total amount of data will be anyway 

performed, and on the other, the operator can be relieved of the fact that any information, no 

matter if coming from major or minor compounds, will not be missed. 
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4.4. LIBS and Raman spectroscopy data fusion analysis 

4.4.1. The importance of choosing the right pretreatment and analysis pipeline 

to obtain good results fusing different spectroscopic responses 
 

As previously mentioned, an interesting aspect related to LIBS is that this kind of 

instrumentation can be easily coupled with other spectroscopic techniques, without the necessity 

of changing the acquisition setup, leading to a fast acquisition of different spectral responses in 

a very reasonable time. The main limitation, as described in the previous paragraph, is that a huge 

amount of data is easily generated, leading to problems related to the analysis of the raw data. 

Nevertheless, the possibility of using an approach able to reduce the dimensionality of the data 

cube and, at the same time, to conserve only the most important information is fundamental to 

dig in any analytical domain, no matter the spectroscopy used for the acquisition. This seems to 

be particularly true when the data fusion is the main purpose of the study, due to the fact that a 

huge amount of spatial and spectral information will be generated, coming from different 

instrumental responses. If any pretreatment is not applied a priori, also if it would be possible to 

analyze the data, hardly the outcomes will represent the reality of the information contained. 

Clearly, this situation can be faced using a very interesting spectroscopy such as Raman, which 

can be linked to complex signals, considering the molecular information that can be extrapolated 

from the matrix using this instrument. In order to show the interesting aspects of a data fusion 

using these two spectroscopies, a specific data cube will be here described and investigated by 

the use of chemometric methodologies. It is important to highlight here the fact that a work 

reporting these aspects of data fusion between LIBS and Raman has been recently submitted to 

the journal Spectrochimica Acta Part B: Atomic Spectroscopy. The selected data cube is a 

subzone of the same sample used and well described into another work of this PhD, and 

previously explained [212]. The dimensions of the selected area of the matrix are 500 pixels by 

316 pixels considering 1044 variables for Raman, in the spectral domain between 118 and 2000 

cm-1, 2048 variables for LIBS, between 251 and 335 nm, and a spatial resolution of 25 µm. 

Briefly, the observed hyperspectral image is a complex mineral sample containing traces of 

various elements and different phases. Therefore, if only LIBS is used for the analysis, in this 

case there is a real chance to miss some important information coming from a molecular point of 

view. This is why it is also interesting to fuse LIBS and Raman spectra to obtain finally a more 

complete idea of the heterogeneous nature of the mineral of interest. A first idea of the complexity 



 

125 

 

of the given sample is here reported in Fig. 21, in which the main information related respectively 

to LIBS and Raman are considered: 

 

Fig. 21 – Respectively: optical image, LIBS and Raman first information of the section of the investigated mineral 

sample. 

 

The aforementioned figure shows from the left to the right the optical image of the corresponding 

mineral used for the analysis, three integration images linked to LIBS spectra, describing the 

distribution of various elements in the sample and, lastly, the main Raman bands used to obtain 

the molecular distribution of different components present in the rock. It is also important to 

consider that these first outcomes have been obtained using a conventional procedure, meaning 

that each component in the images is observed by using the integration at a specific wavenumber 

(for LIBS) or at a particular wavelength (for Raman) that has to be peculiar for a given element 

or mineral phase. Clearly, this means that a first investigation of the sample of interest, a general 

knowledge of its composition, and an observation of the most important spectral bands for both 

the spectroscopies is mandatory to obtain a first idea of the complex nature of the specimen. 

Differently, what is proposed in this part of the manuscript is the use of various chemometric 

tools in order to obtain at the end a general comprehension of the given sample, also considering 
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the aspect of not having a priori knowledge of its composition. Another important point that has 

to be considered is that when different spectral responses are acquired using the same instrument, 

some issues can be faced. Particularly, it is a very easy scenario the one in which some 

instrumental problems will be generated due to, for example, different technical settings. Clearly, 

it is mandatory to correct these artifacts before any further analysis in order to generate the right 

outcomes. For informational purposes, a fast and useful procedure used to correct LIBS problems 

developed during this PhD work has been already described in the same aforementioned 

published paper [216] and so it will not be discussed again in this chapter. More interesting is the 

approach applied on Raman spectra. Due to the acquisition settings, observing the corresponding 

spectra (reported in Fig. 22a), it is clear how the raw signals are related to very extreme values, 

which seem to be impossible to be investigated without any previous pretreatment. 

Chemometrics can be also in this case a useful tool able to generate better initial data to be used 

for the final investigation. As a starting point, it is noticeable that many pixels (i.e., many spectra) 

show saturated signals and fluorescence. Therefore, the first thing to be done is to set a threshold 

on a maximum intensity to remove from the data cube these extreme spectra. Another problem 

in the dataset is that a negative peak around 1606 cm-1 is observable, probably due to instrumental 

issues. To correct this spectral imperfection, an interpolation with the neighboring points of this 

spectral zone was applied. Finally, at this stage, it was possible to apply a baseline correction, 

using the AsLS algorithm (λ = 104 and asymmetry parameter of 0.001). As final step, a 

normalization based on the ratio of each spectrum of the dataset for its own norm was used. This 

step is necessary to highlight the presence of possible spikes coming from the acquisition. In 

order to simplify the procedure for managing these spectra, these values were replaced by the 

average spectrum of the neighboring pixels of that particular pixel. As a proof of the significant 

difference between the raw and the final data, the pretreated spectra are reported in Fig. 22b. To 

remark it, it is out of the question the fact that the initial raw data cannot be used in any analysis, 

due to the saturated signals and the absence of a baseline, reasons why many aspects of this 

dataset would be missed. Contrariwise, using the proposed approach, finally it is possible to give 

an interpretation to many different spectral bands, as it will be better described in the following 

paragraphs. 
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Fig. 22 – Comparison between a) raw spectra and b) final pretreated spectra for Raman data. 
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4.4.2. First outcomes and interpretation by the use of the spectral unmixing 

approach 
 

Here are reported the first results obtained using MCR-ALS on this complex mineral sample. 

It is important to stress here the fact that in this study has been used the same procedure of the 

previous work. For this reason, it will not be described in detail in the present section. 

Nevertheless, some useful information needs to be recalled. First of all, it is important at the 

beginning to separately investigate the two different matrices. This is a very obvious step. In fact, 

as previously stated, LIBS and Raman spectroscopies are related to different responses. In this 

way, it is possible to obtain a general idea from, respectively, the elemental and the molecular 

points of view, to dig the knowledge regarding both the elements present in the mineral, and its 

different compounds. Then, it is possible to investigate the results coming from the data fusion. 

The interesting aspect is that, as it will be shown in the results, some components are related 

exclusively to only one or the other spectroscopy. Therefore, in a second step, fusing the two 

spectral ranges, it is possible to obtain some new information (from the elemental and/or the 

molecular perspective) that otherwise would be not present if the fusion strategy is not applied. 

Another important aspect to be considered is that it is mandatory to normalize the data, in order 

to give them the same weight. In fact, without the right approach, the two spectral data would be 

probably represented by different scale intensities and variances, and so, it would be impossible 

to obtain the right contribution coming from LIBS and Raman simultaneously. Finally, one of 

the most important things to recall is that in the present approach, the first step is represented by 

the reduction of the data (both regarding the variables and the pixels), in order to use only a small 

percentage (and especially the purest details) of the initial information of the datasets, to obtain 

more precise and satisfactory results. Therefore, it is important to apply the fusion in the right 

moment of the analysis pipeline. This aspect mainly depends on the type of investigated data. 

Regarding the two used spectroscopies for this study, it is more convenient to apply the reduction 

of the data before the fusion step. The reason is that both the techniques are related to very 

important details from a spectroscopic point of view. As a consequence, it is better at first to skim 

the information, in order to keep only the most interesting part of the data, and then to use the 

fusion, to see how correlations and anticorrelations between different elements and compounds 

are carried out during the analysis. For informational purposes, the illustrated sample is 

represented by only a limited number of spectra of the original image. In fact, as already 

discussed, this data cube is a subzone of a bigger hyperspectral image. Precisely, the 

corresponding dimensions are 500 pixels by 316 pixels, for a total of 158000 spectra. LIBS was 
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acquired using 2048 variables, and 1044 for Raman. So, the use of the data reduction in this case 

is not mainly related to the necessity of use a smaller quantity of spectra for a computational 

problem. Instead, it is used with the only purpose of selecting, to work properly, the most 

interesting spectra of the original dataset. Below are reported the first outcomes coming from 

separately LIBS, Raman and finally the data fusion. It is important to consider the fact that this 

is just a first interpretation of the results, which will need a deeper investigation in order to at last 

understand which are the elements and/or minerals phases related to each found pure contribution 

image. 

4.4.2.1. Spectral unmixing results for LIBS data 
 

One of the most interesting aspects regarding the interpretation of the results in LIBS 

analysis, as stated in the previous work, is that being this spectroscopy an elemental technique, 

it is possible using MCR-ALS to observe the contribution related to the different elements of the 

investigated matrix. Furthermore, due to the very selective and characteristic spectral information 

that this technique can show, it is possible to use libraries to drive the interpretation of the data 

and so, characterize the different elements and compounds contained in the analyzed mineral. 

The first results using the proposed approach are here reported, in Fig. 23. From a first 

observation, it is possible to easily recognize some specific mineral phases and compounds, very 

well distributed in the different areas of the mineral. For example, the first pure component is 

mainly related to silicon, and so recognized as quartz (SiO2). The second and the fourth 

components show bands linked mainly to lead, but also traces of copper, silver and antimony 

with different contribution intensities. Probably, the corresponding mineral is galena (PbS), 

shown as different mineral phases. The third component seems to be a compound coming from 

the aluminosilicate class, showing peaks related to the presence of silicon, iron, aluminum and 

traces of magnesium. Fifth and ninth pure contributions show very characteristics bands of 

titanium (probably the second image is related to saturation signals of this element) and silicon. 

They can correspond to anatase, a metastable mineral form of composition TiO2. Sixth, seventh 

and eighth components are related to iron, manganese, calcium, magnesium and traces of silicon. 

These elements are normally found in ankerite, a class of carbonate minerals. Lastly, the tenth 

contribution seems to be very interesting. In fact, it is related to a very specific distribution of 

traces of the corresponding mineral phase. Particularly, it is possible to observe bands related to 

sodium, copper, silver, iron and zinc. From a general point of view, it is then possible to confirm 

the fact that using the proposed approach, it has been possible to obtain a fast and global 

identification of different compounds of the heterogeneous nature of the mineral. 
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4.4.2.2. Spectral unmixing results for Raman data 
 

In the same way, it is possible to observe the results coming from the Raman dataset. It is 

important to remember the fact that the original raw spectra, as previously shown in Fig. 22, were 

completely saturated. This is due to, normally, acquisition problems (i.e., different technical 

settings needed) using the same instrument to obtain the data of the two different spectroscopies. 

Naturally, it would be challenging to use this kind of data before applying a chemometric 

approach in order to correct, as much as possible, these imperfections. At the same time, it is 

understandable that some atypical signals can be anyway observed, particularly using the spectral 

unmixing, in which the main purpose is to find the pure contributions corresponding to the 

different purest signals in the dataset. This is the reason why, regarding the first outcomes of 

Raman, reported in Fig. 24, the interpretation has been more complicated compared with the 

LIBS results shown in the previous paragraph. Immediately, it is possible to observe that while 

some pure contributions are related to very fine spectral information, others are more complicated 

to be interpreted, due to their very noisy signals. Therefore, the different images were also 

compared with the already discussed results of LIBS, in order to have a better general idea of 

which compounds can be observed using the Raman spectroscopy. The first pure contribution is 

related to very good spectral signatures, as well as it is possible to notice a certain correlation 

between this map and the first one observed for LIBS results. In fact, this mineral phase is again 

linked to quartz. Second and fourth components are represented by very noisy signals, hard to be 

interpreted. This is the reason why a direct comparison using the previous pure contributions of 

LIBS has been used, leading to the hypothesis that they are related to the presence of galena. A 

similar situation is represented by the fifth component, which shows some interesting peaks, but 

complicated to be identified. Therefore, comparing this component with again the LIBS results, 

it is conceivable that this mineral phase is related to anatase due to the similarities in the 

distribution maps of this component and the fifth one of LIBS. The sixth component is very 

interesting. In fact, it is represented by very good spectral information that corresponds to the 

presence of ankerite. In addition, comparing the distribution maps of this compound for Raman 

and LIBS results, it is possible to observe that this mineral is related to a very vast area, but that 

its concentration intensity widely changes in the different zones of the rock. This is an 

information that can be obtained mainly from Raman spectra and not from the LIBS ones. 

Finally, third, seventh, and in part eighth components are related to very specific spectral 

signatures. Another important aspect is that some of the observable areas of these maps are 

related to zones of the mineral that are not highlighted using LIBS, and so, they are specifically 
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related to Raman signals. Nevertheless, it has been impossible to give a chemical interpretation 

to these components, and therefore, to give a name to the corresponding minerals present in these 

areas. This is the perfect scenario in which a data fusion is mandatory, in order to finally obtain 

a better interpretation of the data, when separate analyses can show some limitations, as described 

in the next paragraph. 
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4.4.2.3. Spectral unmixing results for the data fusion 
 

Finally, here are reported the results fusing LIBS and Raman spectra, using the precautions 

previously explained. As stated, the importance in using a fusion strategy lies in the possibility 

of obtaining a more complete interpretation of the data. Particularly, as previously observed in 

the already shown results, it is not always possible to identify some components using only one 

or the other technique, due to for example libraries limitations. In addition, some pure 

contributions are related to only one or the other spectroscopy. This is why, fusing the data, the 

main purpose is to try to understand the existent correlations between the two spectral domains, 

and exceed the limits shown separately by LIBS and Raman. Here, are reported the first outcomes 

of the MCR-ALS approach, as shown in Fig. 25. Observing the results, it is possible to give some 

initial interpretations. Clearly, the first component is related to quartz, as shown by the spectral 

signals coming from both the techniques. It is also interesting to observe how, using the data 

fusion, a better discrimination of the pixels containing this mineral is possible, compared with 

LIBS and Raman spectra separately. In the same way, third and eighth maps are related to galena. 

Again, it is possible to observe the typical LIBS signals related to this mineral. In addition, using 

the fusion it is possible to assume that, as previously supposed, the noisy Raman signals are also 

correlated to this compound. Second pure contribution is also very interesting, comparing the 

two different spectral information. In fact, as a proof of the interpretation given in the previous 

paragraphs, it is possible to observe that both the spectral ranges are correlated to anatase. The 

sixth component too is related to the same mineral, except that some new Raman bands are here 

observable. Both the fifth, the seventh and the tenth components seem to be related to ankerite, 

also if the corresponding images show some distribution differences. Also noticeable is that while 

the map of the seventh contribution has very fine spectral signals for both the techniques, the 

ones related to the other two images show some broadened bands related to Raman spectra. In 

addition, comparing these maps with the ones of LIBS and Raman when the data fusion approach 

is not used, it is possible to notice that here a better distribution of the concentration intensity of 

this compound in the different areas of the mineral is noticeable. Lastly, fourth and ninth 

components deserve a separated and more detailed description. Referring again to Raman 

outcomes, the spectra corresponding to these two images are the ones previously observed that 

anyway could not be identified from a chemical point of view. Finally, using also the LIBS 

spectra, it is possible to give a first interpretation to these maps. The fourth contribution in fact 

seems to be related to the same typical LIBS signals of lead (for more details, refer to the second 

pure contribution of LIBS outcomes before the data fusion). Therefore, this specific image is 
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probably related to a particular mineral phase of the same compound previously identified, 

galena. Instead, ninth component shows LIBS signals that can be traced back to the 

aluminosilicate class (for more details, refer to the third pure contribution of LIBS outcomes 

before the data fusion). The most interesting aspect of these two maps is that, compared with 

LIBS and Raman spectra taken separately, here it has been finally possible to identify some pure 

components that were observed in Raman results, but that could not be recognized from a 

chemical point of view. In addition, fusing the two datasets, it has been possible to observe some 

areas that were highlighted by the use of exclusively Raman spectroscopy and that instead 

seemed to be invisible to the LIBS instrument. Therefore, in conclusion, it is undeniable that a 

data fusion is a mandatory approach to be used from a general point of view, with the purpose of 

generating better and more interesting details for investigational purposes in analytical chemistry.  
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4.5. General conclusions in the framework of the use of 

chemometrics applied to LIBS analysis and future perspectives 
 

As vastly stated, LIBS imaging is clearly a very important spectroscopy that is obtaining an 

always increasing interest in many research areas. Nevertheless, chemometrics shows still limited 

applications to this instrumental data analysis. As described, a relevant part of this PhD project 

has focused on this aspect, trying to overcome the use of the routine approaches in LIBS analysis 

and find new ways to exploit this kind of spectral information. Particularly, the main goal 

described in this chapter is related to the application of an interesting analysis pipeline able to 

exceed some of the main problems related to LIBS. Due to the fact that an enormous quantity of 

data is easily generated, it is not always possible, or neither recommendable, to work with the 

raw data. Therefore, find a way to select the most important and purest information (from the 

spectral and spatial points of view) is mandatory, in order to obtain adequate outcomes. 

SIMPLISMA has been also in this case used with the purpose of accomplishing this complicated 

task. It is important to understand the fact that this algorithm has been chosen due to its particular 

benefits. In fact, SIMPLISMA is based on the selection of the purest information and not, 

compared with other techniques, values such as the total explained variance. This is a cardinal 

point in LIBS such as in other spectroscopies. Generating millions of spectra, it is plausible the 

fact that only a small percentage will be related to pure information, while the rest of the spectra 

are a combination of different elements. Also important is that, investigating a heterogeneous 

matrix such as, for example, a mineral, some pure components will be present in small and very 

specific areas of the data cube. Therefore, the use of the total explained variance would probably 

lead to the loss of some important information. In addition, the main purpose in using this 

approach is not to select a priori the information in order to use a spectral unmixing analysis. It 

is more related to the idea of reducing the total number of spectra, but being sure at the same 

time to keep the whole heterogeneity that can be related to the original dataset, an aspect that has 

not to be underestimated, to obtain at the end reliable results. Another concept related to the use 

of this strategy is that, from a computational point of view, the calculation of the results will be 

faster, due to the reduced amount of used data. Clearly, this kind of approach might be used for 

other spectroscopies. Therefore, an important aspect that has to be considered is the idea of 

implementing the proposed data analysis pipeline in order to use it for other instrumental 

responses. Another important point of this chapter is obviously the data fusion approach. In fact, 

as described, a further good aspect of LIBS is that this device can be used to obtain 
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simultaneously different spectral ranges responses. The same strategy can be applied to the 

different datasets, in order to reduce the quantity of data and obtain a general interpretation from 

a chemometric point of view of the chemical complexity of the investigated sample. Using the 

information related to different spectral ranges is fundamental, as previously highlighted. LIBS 

can be used to drive an easier interpretation of the spectral information related to other 

spectroscopies, due to for example a limited knowledge of the corresponding spectral data (e.g., 

PIL phenomena). At the same time, it can be possible the contrary. In fact, despite the very 

interesting spectral features related to LIBS, it is not always easy to identify some specific 

mineral phases using this technique. In addition, in some cases, LIBS cannot extract the signal 

from some areas of the sample. So, fusing this spectroscopy with other responses (e.g., Raman 

spectroscopy), it can be possible to deep the total amount of information that the operator can 

obtain, compared with the use of only one or the other dataset. Here in this manuscript and during 

this PhD thesis, only two different spectral responses were fused to the ones obtained with LIBS 

instrument (i.e., PIL and Raman). Naturally, it would be interesting to use the same pipeline 

applied to new data coming from further spectroscopies and clearly, use the same data reduction 

and fusion procedures not only to LIBS, but extend this idea to other fields of analysis.
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5. SPECTRAL AND SPATIAL FUSION STRATEGIES: HOW TO 

COMBINE THESE TWO FUNDAMENTAL HYPERSPECTRAL 

IMAGING INFORMATION 

5.1. Spatial information: the importance of using it and what is the 

best strategy to apply 
 

Finally, this chapter is dedicated to another fundamental aspect that until now has not be 

really taken into consideration in the present manuscript. As discussed in the introduction, one 

of the main limitations related to the use of chemometrics in the framework of the hyperspectral 

imaging is that from a general point of view, no matter the used technique (e.g., PCA, MCR-

ALS, PLS-DA, etc.), an intermediate step in which the three-dimensional data cube is unfolded 

in its corresponding two-dimensional dataset is required. Naturally, this procedure leads to the 

complete loss of the spatial information related to the investigated sample. This represents a real 

problem related to the use of this kind of data. In fact, it is undeniable that using only the spectral 

information, but not the spatial details related to an image, is a very big limitation in any data 

analysis. Particularly, imaging spectroscopy is obtaining an increasing importance in many 

research areas. The modern instruments can acquire very interesting hyperspectral images made 

of thousands, hundreds of thousands or even millions of spectra related to not only spectral, but 

also and mainly, important spatial information. Nevertheless, if it is not possible to deal directly 

with the original data cube, these details cannot be really investigated. Different chemometric 

approaches have been exploited in the last years, but they are unfortunately almost always 

focusing only on the spectral information. Some methods in which additional steps are used 

during the analysis with the aim of using the spatial information were proposed [17,96,103,209]. 

Nevertheless, in order to integrate the spatial information, these methods involve the use of 

particular constraints and/or the observation of only one pixel and its neighborhoods per time, 

which will lead to a longer and less fluent analysis. On the other hand, one particular algorithm 

is nowadays in the spotlight regarding the concept of extracting the spatial information from the 

studied hyperspectral image, before any further analysis, and so before the unfolding step. This 

approach is based on the use of wavelet transform that from a general point of view is a digital 

signal processing [198,217]. The concept behind the idea of using this algorithm is here briefly 

described. In particular, it is important to highlight the fact that over the years, many 

improvements in the use of wavelet transform were accomplished. Despite this, in the present 
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manuscript will be taken into consideration only one particular kind of wavelet transform 

algorithm, the 2-D Stationary Wavelet Transform (SWT 2-D), which peculiarities have been 

discussed in Chapter 1. Moreover, this particular kind of wavelet shows very interesting features 

when linked to hyperspectral imaging, leading to a real extraction of spatial features, as it will be 

better described during this chapter. From a technical point of view, this algorithm uses some 

filters that extract the frequency contents of the considered signal. In this way, four distinct sets 

of wavelet coefficients can be obtained. Namely, they are the approximation (A) coefficients, 

and the horizontal (H), vertical (V), and diagonal (D) detail ones. The particularity of this 

algorithm is that it can be used directly on the image, without the necessity of unfolding it. In 

this way, the extracted details will be genuinely related to the spatial information and not to the 

spectral one. So, once that this part of the data is finally obtained, it is possible to merge it with 

the initial dataset in order to effectively observe simultaneously the information coming from 

both the spectral and the spatial details of the original matrix, which can be at this stage unfolded. 

Another important aspect regarding wavelet transform is that different families can be used, each 

of them related to particular signal decompositions [204]. By way of example, some of the most 

important families that are nowadays used are the Daubechies (the most commonly used), the 

biorthogonal and reverse biorthogonal wavelets (which are very interesting in the framework of 

image analysis), and the Gaussian wavelets. For informational purposes, in this manuscript at 

first it will be introduced a general description regarding the use of SWT 2-D. This method has 

been investigated in a first attempt using PCA, in order to show the effective necessity of using 

not only the spectral part of the data, but also the spatial one, and how wavelets can be used for 

this purpose. The corresponding outcomes have been published in Talanta, Volume 224 (2021) 

[218]. Then, some further ideas related to the use of wavelet transform will be introduced and 

discussed in the classification framework. 

5.2. Fusing spectral and spatial information with 2-D stationary 

wavelet transform (SWT 2-D) for a deeper exploration of 

spectroscopic images 

5.2.1. General aspects using the SWT 2-D for the spectral and spatial fusion 

in the framework of hyperspectral image analysis 
 

So far, the main aspect of this chapter has been the one of explaining the necessity of using 

the right approach in order to exploit simultaneously both the spectral and the spatial information 
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related to the same hyperspectral image. It has been pointed the attention on the use of a specific 

kind of approach based on the wavelet transform. By way of example, considering a complex 

sample, it is reasonable the possibility that some specific compounds can be not easily observed 

in the heterogeneity of the specimen, due to different reasons. For example, a specific component 

can be present in very small concentrations, and so hardly observable within the rest of the 

spectral information. Without any doubt, in this kind of scenario, having the possibility of using 

not only the spectral information, but also the spatial one is fundamental in order to observe also 

these additional compounds. Nevertheless, it is important to consider an aspect of the wavelet 

transform. In fact, wavelets are represented by very complex signals that are not always easy to 

be used correctly and so, interpreted. By way of example, the aforementioned extractable details 

(approximation, horizontal, vertical and diagonal coefficients) are all related to orthogonal and 

so, not correlated information. Furthermore, depending on the chosen decomposition level, it is 

possible to extract always more and more details from a spatial point of view. This means that 

clearly, it is possible to dig deep into the information related to the studied hyperspectral image, 

but at the same time, an increasing amount of data will be generated and so the interpretation will 

be progressively more complicated. It is important to consider these aspects before to use the 

wavelet transform, in order to select the right approach able to, despite the enormous amount of 

generated data, extract the useful information to finally find new interesting results. This is the 

main reason why some of the outcomes obtained during this PhD are based on the use of, as it 

will be also shown in the following published work, simulated images. This aspect is related to 

the fact that to get a better and easier interpretation of the obtained results, a general knowledge 

of the real composition of a given sample is required. In other words, using a simulated dataset 

means that the operator knows a priori all the information related to the structure of the matrix, 

and any interpretation error can be obtained. Furthermore, it is important to consider the reason 

why the first work focuses on the use of PCA. Considering again the complexity of wavelet 

results, the choice of using this exploratory analysis is evident. As stated, PCA is clearly one of 

the most exploited chemometric approaches over the others. So, use this kind of algorithm can 

lead to interesting results in order to better understand how wavelet transform can be used to 

obtain more interesting results in hyperspectral imaging. Also important is that PCA is based on 

the total explained variance of the information related to the studied sample. The fact that the 

different PCs are orthogonal among them, such as the different extractable coefficients obtained 

using the wavelets, is another interesting aspect. In this way, it is possible to skim the data, and 

so try to understand which are the most important factors related to the SWT algorithm to 

consider in the analysis. 



 

 

 



 

147 

 

 

  



 

148 

 

  



 

149 

 

  



 

150 

 

  



 

151 

 

  



 

152 

 

  



 

153 

 

  



 

154 

 

  



 

155 

 

  



 

154 

 

5.3. The use of wavelet transform for a classification analysis (PLS-

DA) 

5.3.1. Introduction 
 

Wavelet transform can be clearly coupled not only with PCA, but also with other 

chemometric approaches. One of the most interesting ideas investigated during this PhD has been 

the one of exploiting the spatial information extracted with the SWT 2-D in order to obtain better 

results in the framework of classification analysis, using one of the most known algorithms in 

the chemometric community, i.e., PLS-DA. By way of example, considering again a complex 

sample, it is possible that different compounds are related to very similar spectral information, 

but different physical shapes or even different localizations in the sample. Naturally, using only 

the spectral domain, these different aspects of the image would be erroneously classified into a 

single family. Another example can be the one in which objects that have very thin borders are 

acquired. In this case, depending on the used spectroscopy, there is a real chance that these 

borders will show a signal very close to the noise level, or that the corresponding spectra can be 

very similar to the ones of the hyperspectral image background. Using not only the spectral 

domain, but also exploiting the spatial information of the data cube would be in these cases very 

convenient to obtain at the end better classification outcomes. Here will be reported the first 

results obtained for these two different situations. Again, it is important to highlight the fact that, 

using this kind of algorithm to extract the spatial information, it is not always easy to give the 

right interpretation to the results. This is why the first shown dataset is a simulated one. In this 

way, it has been possible to generate a complex case, which structure is known a priori in order 

to give a better evaluation of how wavelets can be used for the classification analysis. Thus, it 

has been conceivable to rapidly investigate different wavelet families, and understand which one 

can be the best to be used for this kind of analysis. Lastly, for informational purposes, the present 

work has been recently submitted to Talanta, in order to better diffuse the found outcomes 

regarding the fusion of the spectral and spatial information of a hyperspectral image in the 

framework of the classification analysis. 

5.3.2. A simulated dataset investigation 
 

The simulated dataset is here described and shown in Fig. 26. The corresponding data cube 

is represented by dimensions equal to 300 pixels by 300 pixels and 300 spectral points. It is made 
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by four distinct compounds, using two different geometric shapes. First and second components 

are represented by circles, while third and fourth are rectangles.  

 

Fig. 26 – Representation of the simulated dataset. a) The four classes. b) Spectra of the four classes. c) Global 

integration image of the final simulated dataset. 

 

As previously explained, in the case in which different classes (for example, from a physical 

point of view) are linked to similar spectral information, clearly it would be impossible using any 
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approach to correctly classify them exploiting only the spectra. This is the reason why in the 

simulated dataset it is possible to distinguish specific spectral and spatial information, as reported 

in Fig. 26a. The first class shows very specific bands that are only partially shared with the second 

component. Furthermore, both of these classes are made by circles, as previously stated. Anyway, 

the use of a robust method such as PLS-DA would not face problems to correctly classify these 

two different compounds, if no other information was present. In fact, the interesting aspect that 

is related to the necessity of using wavelets to extract and exploit the spatial information comes 

out when also the other two components are taken into consideration. The third class is a linear 

combination of the spectral information of the already two described components. This means 

that using only the spectral details, in this case the operator could experience some issues in 

obtaining good outcomes. The only difference from the first two classes is that this one is made 

by rectangles, meaning that the spatial information in this case is a fundamental aspect in order 

to discern it from the other classes. Lastly, fourth component corresponds to spectra completely 

equal to the ones of the second class, except for a slightly lower signal intensity. In this case too, 

the only way to differentiate the two classes is that this last one is made by rectangles and not 

circles such as the second one. In addition, some noise has been added to the spectra in order to 

generate a better differentiation of the pixels and obtain an image closer to the one of a real case 

(Fig. 26b). Then, in order to use PLS-DA, two subregions of the final image have been selected 

in order to create a training set and a test set, as represented in Fig. 26c. At this point, it has been 

possible to use the classification method in order to compare the outcomes related to the use of 

only the spectra, and the simultaneous use of both the spectral and the spatial information 

extracted by the use of the SWT 2-D. For informational purposes, it is important to highlight the 

fact that the same kind of pipeline to merge the two parts of the data (spectral and spatial details) 

used in the previous work has been applied also here. In brief, before the unfolding step, wavelet 

transform has been used to extract the spatial information from the image, and then, the 

corresponding coefficients used as an extension of the variables merging them with the original 

dataset, once it has been finally unfolded for the chemometric analysis. Four decomposition 

levels have been selected. Despite the use of different families, reverse biorthogonal wavelets 

have shown the best classification values. The first results are shown in Fig. 27. It corresponds 

to the prediction of the validation dataset comparing the use of only the spectral part of the data 

and also the corresponding spatial information. From the top to the bottom, the four different 

classes are reported. From the left to the right, it is possible to compare the ground truth (which 

structure is known due to the fact that the dataset is simulated) and respectively, the best 

outcomes using only the spectral information and the ones when also wavelets are used. It is 
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fundamental to highlight here an aspect. In fact, comparing the PLS-DA predictions using only 

the spectral information and the ones when also wavelets are applied to extract the spatial details, 

the number of required LVs to obtain good outcomes increases. This is due to the fact that wavelet 

coefficients are orthogonal, and so a higher number of LVs is fundamental to explain the data 

and correctly classify the different compounds of the dataset. At the same time, it can be said that 

the increase of this value is a way to prove that additional information (related to the spatial 

details) is really taken into account, using this procedure. 

 

Fig. 27 – From the left to the right, the ground truth, and the PLS-DA predictions using respectively only the spectral 

and also the spatial information of the given sample for the four different classes. 

 

As discussed at the beginning of this paragraph, using only the spectral information is expectable 

that some classes, linked to similar spectra, would lead to not precise results. In fact, except for 

the first class (the purest one), second and fourth classes, linked to the same spectral information, 

show very similar outcomes in which some pixels of the rectangles and the circles are clearly 

misclassified. Particularly interesting is the third class. Indeed, due to the fact that it is related to 
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spectra obtained as a linear combination of the other classes, it is completely impossible to carry 

out a good classification of this particular compound when only the spectral information is used. 

The general situation completely changes when also the spatial details are finally exploited. 

Despite the fact that some pixels are still misclassified, it is now possible to distinguish second 

and fourth classes. Also, regarding the third class, although some imperfections, it is clear how 

the use of the wavelets has been fundamental to, at the end, obtain better classification outcomes. 

To conclude, in the Table 1 are reported the main classification figures of merit, in order to 

evaluate the accuracy of the obtained results compared with the typical approach in which it is 

possible to notice a general improvement of the predictions when the spatial information is taken 

into account: 

Only spectral information – 3 LVs in the PLS-DA model 

Class Specificity (%) Sensitivity (%) Accuracy (%) 

1 1 1 1 

2 0.8932 0.9892 0.9400 

3 0.4508 0.6599 0.5454 

4 0.9140 0.9344 0.9241 

Spectral + spatial information (wavelets) – 13 LVs in the PLS-DA model 

Class Specificity (%) Sensitivity (%) Accuracy (%) 

1 0.9919 0.9996 0.9957 

2 0.9910 0.9989 0.9949 

3 0.9754 0.8185 0.8935 

4 0.9943 0.9863 0.9903 

 

Table 1 – PLS-DA outcomes of specificity, sensitivity and accuracy of the four classes using, respectively, only 

spectral and both spectral and spatial information. 

 

5.3.3. A real dataset investigation 
 

In a second step, the same approach has been used, this time exploring a real dataset, 

obtained in the framework of a collaboration with Prof. José M. Amigo from University of 

Basque Country, Spain. Particularly, for this study the corresponding matrix is a subregion (128 

pixels by 128 pixels) of a more complex case composed of different microplastics, acquired with 

a µ-FTIR instrumentation, investigated and discussed in another work [219]. Only a particular 
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class of plastics (i.e., polyamides) has been used for the first outcomes discussed here. As 

previously stated, a common problem is represented by the fact that real samples often have very 

detailed contours. This scenario can correspond to spectral signals close to the noise level, and 

so leading to the possibility of confusing parts related to the sample with the background. This 

may seem insignificant and trivial, but many applications require rigorous estimations of the 

particle size distribution. This misclassification of the spectra on the edges of the particles has a 

direct impact on the final estimates, especially for the smallest fragments, which are often the 

most interesting. The main idea here is that using not only the spectral, but also the spatial 

information, it would be possible to obtain better classification results, particularly related to the 

borders of the investigated objects. As in the previous example, for the analysis, a part of the 

matrix has been used as training set and the corresponding calculated model has been applied to 

another region of the image used as test set, in order to predict the outcomes to understand the 

quality of the classification analysis. The same approach described in the previous paragraph has 

been used and the best classification results have been obtained once again with reverse 

biorthogonal wavelets, this time using a decomposition level equal to three. Fig. 28 shows the 

first results, comparing the outcomes using only the spectra and then exploiting also the spatial 

information obtained with the wavelet transform: 

 

Fig. 28 – On the top, the ground truth. On the bottom, from the left to the right, the PLS-DA predictions using 

respectively only the spectral and also the spatial information of the given sample. 
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Compared to the ground truth, it is possible to notice that using the wavelets some borders of the 

considered plastic objects seem to be better defined. Also important is that using the proposed 

approach, some random pixels that have been misclassified as plastic using only the spectra are, 

taking into account also the spatial information, not observable in the results. Lastly, in order to 

obtain a better idea of the differences of the outcomes using the two approaches, here in Table 2 

are again reported the PLS-DA figures of merit when the full field of view is considered: 

Only spectral information – 6 LVs in the PLS-DA model 

Class Specificity (%) Sensitivity (%) Accuracy (%) 

1 0.9719 0.9010 0.9358 

2 0.9010 0.9719 0.9358 

Spectral + spatial information (wavelets) – 13 LVs in the PLS-DA model 

Class Specificity (%) Sensitivity (%) Accuracy (%) 

1 0.9709 0.9760 0.9735 

2 0.9760 0.9709 0.9735 

 

Table 2 – PLS-DA outcomes of specificity, sensitivity and accuracy of the two classes (the first, the plastic and the 

second, the background) using, respectively, only spectral and both spectral and spatial information. 

 

At first sight, one could say that the improvement of the classification results is not spectacular. 

This is mainly due to the fact that the number of particles observed is particularly low, but at the 

same time, they are also relatively large in size. To demonstrate the incomings using wavelets, 

these figures of merit were recalculated on a subset of small areas containing some smaller details 

of the dataset. These areas are identified in Fig. 29 and the results are given in Table 3: 



 

161 

 

 

Fig. 29 – The selected subareas used to recalculate the figures of merit of PLS-DA predictions. 

 

Only spectral information – 6 LVs in the PLS-DA model 

Selected subarea Specificity (%) Sensitivity (%) Accuracy (%) 

1 0.8947 0.5714 0.7150 

2 0.8571 1 0.9258 

3 0.8333 0.9216 0.8763 

Spectral + spatial information (wavelets) – 13 LVs in the PLS-DA model 

Selected subarea Specificity (%) Sensitivity (%) Accuracy (%) 

1 0.8333 1 0.8333 

2 0.9643 1 0.9643 

3 0.9792 1 0.9895 

 

Table 3 – PLS-DA outcomes of specificity, sensitivity and accuracy of the plastic class for the three selected 

subareas using, respectively, only spectral and both spectral and spatial information. 
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5.4. General conclusions in the framework of the use of wavelet 

transform and future perspectives 
 

Wavelet transform is a very powerful algorithm that can be used to overcome the limitations 

related to the investigation of a hyperspectral image in chemometrics, due to its particularity in 

extracting the spatial information, which otherwise would be completely lost during the analysis 

pipeline. In this way, as it has been shown in the present chapter, it would be possible to obtain 

better results in complicated situations in which clearly it is important to study not only the 

spectral, but also the spatial part of the data. Nevertheless, the use of this method is undoubtedly 

very challenging, due to the complexity shown by this approach. In fact, it is a very complicated 

task to choose for example the right wavelet family to use, in order to find good outcomes. Also 

hard is the task of selecting the right decomposition level value to work in the framework of 

wavelet transform. Lastly, a massive quantity of variables is generated, when this algorithm is 

used. This is clearly a limitation due to the fact that it is not always easy to find good outcomes 

when too much information is given. As previously stated, all the obtained coefficients using the 

wavelet transform (approximation, horizontal, vertical and diagonal details) are orthogonal, and 

so related to different aspects of the studied image. Despite this, it is assumable that not all of 

them will be related to very important and fundamental information. An interesting aspect of 

working with this approach would be to find the way of weighting the real importance of the 

different variables related to the wavelets (several approximation, horizontal, vertical and 

diagonal coefficients might be in fact related to futile information for the classification analysis) 

and thus, in a first step skim them in order to proceed with the analysis reducing the redundant 

and useless parts of the data. Another important point would be to find a method to easily select 

the right wavelet family and decomposition level to be used for a particular data cube. In fact, 

different families can give different outcomes, as well as use different decomposition levels can 

lead to better or worst results, depending on the complexity and structure of the investigated 

sample. In order to obtain at the end good PLS-DA predictions is normally necessary to compare 

the outcomes obtained using various wavelets inputs. Find a way to directly select the right 

decomposition level and wavelet family for a given matrix without being forced to this 

intermediate step would solve many problems related to time consuming in the calculations. 

Nevertheless, it is undeniable that wavelets show very promising results in order to finally deal 

with the spatial information in hyperspectral imaging, a fundamental aspect that is nowadays one 

of the main purposes of different research areas. 



 

 

 

GENERAL CONCLUSIONS 

AND PERSPECTIVES



 

 

 



 

165 

 

Analytical chemistry research area is developing very rapidly. The use of always more 

advanced instrumentations, which are linked to new investigation possibilities, is not an option, 

but the reality of the situation. Hyperspectral imaging is just one of the various ways in which 

nowadays the study of complex matrices can be faced. Nevertheless, it is mandatory to consider 

the many limitations and challenges those new techniques can experience. As vastly described 

into the present manuscript, just to mention again a few of the current problems related to this 

discipline, hyperspectral image acquisition is normally related to the generation of big datasets, 

made of hundreds of thousands to millions of spectra. The nature of the explored samples 

compared with a bulk analysis can be more complex and heterogeneous. At the same time, it is 

important to consider that many components can be present as traces and so irretrievably lost 

during the data analysis, if the right investigation approach is not used. Naturally, this is a 

scenario to avoid, because in many situations the smallest information of a given sample is also 

the most interesting. Nowadays, find a way to deal with the vastness of details carried out by the 

acquisition of a hyperspectral image is a real challenge, but mandatory. It is not conceivable the 

option of not exploiting completely the possibilities related to this technique, also considering 

the obtainable spatial information. Chemometrics has shown in many research areas to be one of 

the most interesting methodologies that can currently be used to overcome many limitations 

linked to different routine analyses. Of course, the interest in exploiting this tool in the 

hyperspectral image analysis is not an exception and recently a real progress has been shown, 

considering many aspects. Nevertheless, the possibility of always overcoming the new limits 

encountered using the new developed methodologies is what research should aim at. This is the 

main goal of the present doctorate project, as vastly described into this manuscript: the 

exploration of the already existent chemometric methodologies that are normally used for data 

analysis, particularly in the domain of the hyperspectral imaging investigation, in order to provide 

new and useful approaches for the analysis of complex matrices. The present project tried to 

follow a precise path in which different but correlated aspects and limitations concerning the use 

of hyperspectral images could be faced and new chemometric methods exploited to overcome 

the main challenges in this domain. A very important part of this thesis has focused in the 

investigation of big datasets. Find a way to manage a huge quantity of information and anyway 

keep the most important part of the data is fundamental. Over other algorithms, SIMPLISMA 

has been mainly exploited for this task. Using its peculiarity, based on the selection of the purest 

details of a dataset, it has been demonstrated that it is a useful tool with the purpose of reducing 

the total quantity of information, in order to work with smaller data matrices, made of only the 

most important part of the data. The main limitation of SIMPLISMA is that some inputs have to 
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be set in order to work properly. This algorithm is normally used for the generation of initial 

estimates for the spectral unmixing methods, such as MCR-ALS. Using SIMPLISMA, the 

operator needs to choose the right rank, in order to select the right number of initial estimates 

and obtain good outcomes in the spectral unmixing analysis. Nevertheless, this task can be 

challenging. In fact, it is not always very easy to select the right rank. Some components of the 

sample can be, for example, represented by few pixels, hard to be observed by the use of methods 

such as an exploratory analysis (e.g., PCA), due to the small explained variance related to these 

compounds, and so irretrievably lost. The used method in this work is related to the 

implementation of a more automatic way to deal with this kind of situation in order to help the 

operator using a more intuitive graphical approach. In another work of this doctorate (described 

in Chapter 4 of the present manuscript), SIMPLISMA has been also applied, this time with the 

main purpose of reducing the total quantity of spectra, with the only intention of working with 

datasets made of a very small percentage compared with the initial data dimensions. In the present 

PhD project, SIMPLISMA has been applied on data of different nature acquired using distinct 

instruments (Raman, EDX, UV, LIBS, PIL, other spectroscopic techniques from synchrotron 

beamline, etc.), showing the potentiality of being applied in various contexts obtaining good 

results. In the same way, KM clustering can be used to deal with big datasets. In this situation as 

well, the choice of the right number of clusters and some initial inputs are fundamental steps to 

obtain good results. Another important limitation using this algorithm is again related to the fact 

that big datasets can be linked to classes represented by a limited number of spectra. In this kind 

of scenario, the chance of losing some important information is very reasonable. In a very 

intuitive way, it has been shown in the present manuscript an alternative way to deal with this 

situation, leading at the end to better results, in which not only the major, but also the minor 

compounds and the traces can be observed and correctly classified. Within the many 

spectroscopic techniques that are normally used, LIBS is for sure one of the most interesting 

nowadays and many research groups use this spectroscopy for the elemental analysis, also in the 

hyperspectral imaging domain. Nevertheless, the investigation of this kind of data is still very 

limited and only routine analyses are generally used. Considering the complexity of the generated 

information and the huge quantity of spectra that can be acquired in very reasonable times, 

chemometrics is for sure an interesting methodology that can be exploited to overcome the 

general limitations related to this spectroscopy. This is the reason why a part of this PhD has 

focused particularly on the possible implementations related to this specific technique. In a first 

step, instrumental artifacts were faced. In fact, a very common problem related to LIBS spectra 

is the generation of saturated signals, which would lead to a wrong interpretation of the data. 
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Statistical imputation has been used for this purpose, in order to generate good resolved peaks 

when the device faces this kind of problem. Then, as previously explained, another important 

aspect considering the huge quantity of produced data is to find a way to go through the 

computational problems that can be experienced due to this common scenario. A general analysis 

pipeline has been developed during this work, in order to facilitate the use of the enormous 

amount of obtained data, also correcting possible artifacts generated during the acquisition. 

Finally, another important part of the same explored procedure is related to the possibility of 

fusing LIBS data with other spectroscopies, due to the capability of this instrumentation in 

obtaining the response coming from different spectral regions (in the present case, PIL and 

Raman). In fact, nowadays it is a very important aspect the one of fusing different spectral 

responses in order to obtain a better and more complete investigation of a given sample, to deep 

the knowledge related to the complexity of the investigated specimen. Using the proposed 

approach, it has been possible in a very easy way to fuse the datasets, considering only the most 

important information related to the different spectroscopies and at the end obtain very interesting 

outcomes. Lastly, as stated, the analysis of a hyperspectral image without taking into 

consideration also the spatial information corresponds to an incomplete investigation. From a 

certain point of view, it is unconceivable the concept of not exploiting also this part of the data, 

considering the fact that a hyperspectral image is first thing made of spatial details, which 

differentiate it from a classical dataset containing unordered spectra. Nevertheless, extracting and 

using in the right way this kind of information is still very challenging, also in chemometrics. 

Wavelet transform has been here used in order to deal with this kind of problem. In fact, this kind 

of algorithm can look at the spatial part of the data without unfolding a given data cube in the 

corresponding two-dimensional dataset, leading to the observation of new details. The limitation 

is represented by the fact that wavelets are complex signals, hard to be interpreted. Chemometrics 

has been used also in this scenario, to manage the extractable information and obtain the most of 

the spatial details related to hyperspectral image analysis. Particularly, exploratory analysis 

(PCA) and classification analysis (PLS-DA) were exploited to demonstrate the value of using 

wavelets in order to obtain at the end more interesting results, not based only on the spectral part 

of the data, but also the spatial one, when an image is investigated.  

       Finally, it can be concluded that this PhD project has faced various arguments related to the 

limitations and issues linked to hyperspectral imaging, particularly considering big datasets and 

multimodality, using different chemometric strategies to overcome these aspects. Nevertheless, 

it has to be considered the fact that the presented work is only a step forward this interesting 

research area and that many other things can be done in order to constantly obtain new results 
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and ideas to develop advanced methodologies. Exploiting the already considered chemometric 

tools, it would be possible to broaden the horizons to new concepts. It is a very important task, 

by way of example, to automatize the data analysis pipeline. Due to their different but correlated 

characteristics, SIMPLISMA and KM clustering could be used in the same procedure, in order 

to at first select the most important spectra of an investigated sample and then divide the obtained 

information into different clusters, based on the similarities among the various extracted spectral 

details. In the same way, SIMPLISMA (or other chemometric strategies pointed to the selection 

of the most important information in a given dataset) could be exploited in order to filter the 

redundant data extracted by the use of the wavelets, with the purpose of facilitating the use of the 

complex information obtained with this algorithm in the framework of the exploration of the 

spatial details linked to a hyperspectral image. Wavelet transform is nowadays for sure one of 

the most important algorithms that can be used for the interpretation of modern hyperspectral 

image analysis. In fact, due to the development of always more sophisticated instruments, the 

quality of the acquired images is constantly increasing and more spatial details are obtainable. 

More work has to be done on this, and new ideas in order to really exploit this powerful aspect 

have to be carried out, such as the application of wavelet transform with other chemometric tools. 

LIBS analysis, as widely described in this manuscript, is very interesting and many facets related 

to the use of the acquired datasets using this instrumentation have been faced. Nevertheless, more 

chemometric methods could be used in order to obtain more precise outcomes using this 

elemental analysis technique. In particular, the data fusion of different spectral regions has been 

here described. One example would be to merge together not only two different instrumental 

responses (LIBS and PIL or LIBS and Raman), but exploiting methods that could reduce the 

dimensionality of the data such as SIMPLISMA, observing the outcomes of these three 

spectroscopies, or even more, at the same time. In the same way, the proposed methodologies 

linked to LIBS analysis might be used for other spectroscopies, leading to better results.  

       Beyond the concepts here proposed, these such as many other ideas could be used in the 

investigation of a hyperspectral image. Nowadays there are not limitations from both the 

instrumental and the chemometric methodologies points of view. Hyperspectral imaging is a very 

interesting research area and it is out of the question that it is obtaining an always increasing 

importance in many research domains, particularly when coupled with chemometric approaches. 

The work carried out during these three years of doctorate are linked to the expectation that this 

manuscript will be useful material for who will be from now on dealing with hyperspectral 

imaging, and that these results will be the inspiration to find new possible project lines in 

chemometrics and spectroscopy.  
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