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ABSTRACT

Nowadays, it is widely known that hyperspectral imaging is a very good tool used in many
chemical-related research areas. Indeed, it can be exploited for the study of samples of different
nature, whatever the spectroscopic technique used. Despite the very interesting characteristics
related to this kind of acquired data, various limitations are potentially faced. First of all, modern
instruments can generate a huge amount of data (big datasets). Furthermore, the fusion of
different spectroscopic responses on the same sample (multimodality) can be potentially applied,
leading to even more data to be analyzed. This aspect can be a problem, considering the fact that
if the right approach is not used, it could be complicated to obtain satisfying results or even lead
to a biased vision of the analytical reality of the sample. Obviously, some spectral artifacts can
be present in a dataset, and so the correction of these imperfections has to be taken into account
to obtain better results. Another important challenge related to the use of hyperspectral image
analysis is that normally, the simultaneous observation of spectral and spatial information is
almost impossible. Clearly, this leads to an incomplete investigation of the sample of interest.
Chemometrics is a modern branch of chemistry that can perfectly match the current limitations
related to hyperspectral imaging. The purpose of this PhD work is to give to the reader a series
of different topics in which many challenges related to hyperspectral images can be overcome
using different chemometric facets. Particularly, as it will be described, problems such as the
generation of big amount of data can be faced using algorithms based on the selection of the
purest information (i.e., SIMPLISMA), or related to the creation of clusters in which similar
components will be grouped (i.e., KM clustering). The problem related to the correction of
instrumental artifacts (i.e., saturated signals) will be faced using a methodology based on the
statistical imputation, in order to recreate in a very elegant way the missing information and thus,
obtain signals that otherwise would be irremediably lost. A significant part of this thesis has been
related to the investigation of data acquired using LIBS imaging, a spectroscopic technique that
is currently obtaining an increasing interest in many research areas, but that, still, has not really
been exploited to its full potential by the use of chemometric approaches. In this manuscript, it
will be shown a general pipeline focusing on the selection of the most important information
related to this kind of data cube (due to the huge amount of spectral data that can be easily
generated) in order to overcome some limitations faced during the analysis of this instrumental
response. Furthermore, the same approach will be exploited for the data fusion analysis related

to LIBS and other spectroscopic data. Lastly, it will be shown an interesting way to use wavelet
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transform, in order to not limit the analysis only to spectral data, but also to spatial ones, to obtain

a more complete chemical investigation.
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RESUME

Nous sommes aujourd’hui tous conscients que 1’imagerie hyperspectral est un outil trés utile
dans de nombreux domaines de recherche liés a la chimie et qu’elle peut étre exploitée pour
I’étude d’échantillons de nature différente, quelle que soit la technique spectroscopique utilisée.
Malgre les caractéristiques trés intéressantes liées a ce type de données, diverses limitations sont
potentiellement rencontrées. Les instruments modernes peuvent tout d’abord générer une énorme
quantité de données (big datasets). De plus, la fusion de différentes réponses spectroscopiques
acquises sur le méme échantillon (multimodalité) peut étre potentiellement appliqué, conduisant
a encore plus de données a analyser. Cet aspect peut étre problématique, compte tenu du fait que
si la bonne approche n’est pas utilisée, il peut étre compliqué d’obtenir des résultats satisfaisants.
Bien évidemment, certains artefacts spectraux peuvent étre présents dans les jeux de données
acquis, et donc la correction de ces imperfections doit étre prise en compte pour obtenir de bons
résultats. Un autre défi important lié & I'utilisation de I'analyse d'images hyperspectrales est que
normalement, I'observation simultanée d'informations spectrales et spatiales est presque
impossible avec la plupart des méthodes actuelles. De toute evidence, cela conduit a une
exploration incompléte des données a disposition acquises sur I'échantillon d'intérét. La
chimiométrie est une branche moderne de la chimie qui peut parfaitement répondre aux
limitations actuelles liées a la structure des données en imagerie hyperspectrale. Le but de ce
travail de thése est de présenter au lecteur une série de sujets différents dans lesquels de nombreux
défis liés aux images hyperspectrales peuvent étre surmontés en utilisant différentes facettes de
la chimiométrie. En particulier, les problémes liés a la génération d'une grande quantité de
données peuvent étre surmontés a l'aide d'algorithmes basés sur la sélection de I'information la
plus pure (i.e., SIMPLISMA), ou liés a la création de clusters dans lesquels des composants
similaires seront regroupés (i.e., KM clustering). Afin de corriger les artefacts instrumentaux tels
que les signaux saturés, une méthodologie originale qui exploite lI'imputation statistique sera
utilisée, afin de recréer de maniere trés élégante les informations manquantes et ainsi obtenir des
signaux qui autrement seraient irréemédiablement perdus. Une partie importante de cette these est
liée a l'investigation des données acquises a lI'aide de I'imagerie LIBS, une technique qui suscite
actuellement un intérét croissant dans de nombreux domaines de recherche, mais qui n'a pas
encore vraiment été exploitée a son plein potentiel par [I'utilisation des approches
chimiométriques. Dans ce manuscrit, nous introduirons un pipeline géneral axé sur la sélection

des informations les plus importantes liées a ce type de structure de données cubique (en raison
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de I'énorme quantité de données spectrales qui peuvent étre facilement générées) afin de
surmonter certaines limitations rencontrées lors de I'analyse de cette réponse instrumentale. De
plus, la méme approche sera exploitée pour les problématiques de fusion de données spectrales,
liée a la LIBS et a d'autres données spectroscopiques. Enfin, nous introduiront une maniére
intéressante d'utiliser la transformée en ondelettes (wavelet transform), afin de ne pas limiter
I'analyse uniquement aux données spectrales, mais aussi spatiales, pour obtenir une exploration

chimique plus complete des échantillons complexes.









INTRODUCTION






Analytical chemistry is nowadays a very important research area exploited in many different
investigation fields, for many scientific purposes. Spectroscopic techniques represent very
powerful tools to deal with the complexity and heterogeneity shown by real samples of different
nature. Indeed, due to the instrumental developments in the last decades, the quality and quantity
of the acquired data is constantly increasing. Factors such as faster acquisitions and more
sensitive detection chains are just few examples of the reason of this phenomenon. Furthermore,
nowadays it is common to refer to multimodality, i.e., the analysis of the same sample merging
the information obtained using different spectroscopic instruments. For sure, this rapid
development in analytical chemistry is leading to a real challenge in finding an adequate way to
interpret the information of a given specimen and, thus, obtain satisfactory outcomes. Due to the
heterogeneity of the investigated sample, it is fundamental to observe it in its entirety. Nowadays,
a bulk analysis can be limitative, and at this moment it is fundamental to find a way to overcome
the constraints shown by routine analyses, answering always more questions about the observed
samples. Hyperspectral imaging is one of the possible solutions that currently can be used in any
chemical investigation area. In fact, modern instrumentations can be easily coupled with an
imaging setup, leading to new analytical exploration horizons. First, using a hyperspectral
imaging system, it is clearly possible to observe a sample from a global perspective. One of the
most important aspects of this kind of technique is that the sample is observed also from a spatial
and not only the spectral point of view. This means that more information could be carried out
by the acquisition of a sample, considering different facets. For example, the limitations of a bulk
analysis are in this way overcome, and the heterogeneity of the specimen can be finally really
studied, observing the spatial distribution of the various constituents of a complex matrix.
Nevertheless, some important obstacles have to be faced. Due to the complexity and the quantity
of acquired data (hundreds of thousands to millions of spectra obtained in very reasonable times),
it is complicated to directly analyze the raw information. Deal with aspects such as
multimodality, big data, and considering the fact that a good exploration is done when a good
preprocessing is applied, is fundamental. The correction of artifacts, the data reduction with the
purpose of using only the most relevant part of the information contained in the considered
sample, the use of not exclusively the spectral, but also the spatial information, taking into
account this particular aspect when a hyperspectral image is analyzed, are all factors that are
nowadays essential. Chemometrics can be a good solution to all these problems. This discipline,
in fact, is applied with the intent of learning the underlying relationships and structures of
complex samples in order to obtain more particular information. It is known that in the last

decades chemometrics has been vastly exploited also in the hyperspectral imaging context.
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Nevertheless, more facets regarding the link between these two domains are possible and clearly
required. Hyperspectral imaging potentialities are still not really exploited, and it is a duty of
research to broaden its horizons. Too many limitations are nowadays correlated to this important
kind of data. A hyperspectral image is a data cube made of pixels (the spectra of the given
specimen) in which not only the spectral, but also the spatial details are available, leading to the
possibility of observing the sample from a different point of view. The challenges are multiple.
For example, normally, in order to carry out a routine analysis pipeline, this three-dimensional
data cube is unfolded in its corresponding two-dimensional form, leading to the loss of all the
information related to the spatial details (all the time of the chemometric analysis), and so, to an
incomplete investigation. It is also true that, as already stated, the quantity of produced data is
normally very big. This is for sure an important aspect, due to the fact that in this way it is possible
to obtain more spectroscopic information related to the investigated sample. At the same time,
the analysis of big datasets can be very complicated for different reasons. First, it is a hard task
to deal with a huge number of spectra from a computational perspective (proper devices are
required to work with). Then, and probably more importantly, the possibility of missing some
specific and fundamental information that are related to very small areas of a given sample is a
very common scenario. If the right approach is not taken into consideration, an inaccurate
analysis would certainly lead to outcomes far from meeting the expectations.

Here finally the main purpose of this PhD project: exploiting various classical and emerging
chemometric methodologies and algorithms (e.g., SIMPLISMA, K-Means, wavelet transform),
work on big datasets acquired with different spectroscopic techniques (the most commonly used
today, and also some recent ones that are nowadays obtaining always more importance and
interest) and on the multimodality (operation that is possible coupling different device responses,
due to the modern instrumental developments) with the perspective of providing new ways to
deal with the limitations that are currently related to hyperspectral image analysis. The various
concepts will be described in the present manuscript, facing different problems and giving some
possible solutions based on already existent and new chemometric methods. In order to evaluate
the quality of the presented research line, various data matrices acquired with different
spectroscopies will be investigated and, depending on the main task taken into consideration,

particular approaches will be proposed and described in detail.



CHAPTER 1






1. HYPERSPECTRAL IMAGE ANALYSIS: AN OVERVIEW

1.1. Introduction to hyperspectral imaging

In an important context such as the data analysis, the study of samples by the use of the only
spectral information can be restrictive. In fact, despite the impressive improvement from a
technical and instrumental point of view for the different acquisition methodologies [1-4], it is
important to highlight a constraint: a bulk spectroscopic analysis can produce only a mean
spectrum-based average measurement of the observed sample. This clearly leads to a non-
representative local analysis of heterogeneous samples and objects, and so, to the complete loss
of the information related to the spatial distribution of the different constituents [5-11]. Indeed,
besides the chemical information contained in a specimen, nowadays the interest in the spatial
structure and distribution of the composition of the sample of interest has a crucial role.
Implementing the scientific investigation and acquisition of a sample by the use of not only the
bulk spectroscopic techniques, but also, and most importantly, by the use of the spatial
information coming from the specimen is currently fundamental [12-16]. Clearly, the easier way
to obtain information from the spatial point of view is the use, and so the investigation, of an
image (a picture) of the analyzed sample. By definition, an image is a two-dimensional graphical
depiction of a subject, normally a physical object. From a technical point of view, an image is
composed by pixels, where a pixel is the smallest element in a raster image. By literature, a first
attempt to exploit this kind of analysis was obtained by the use of grayscale images [17-21]. For
this specific kind of matrix, each pixel contains only one channel, based on a precise amount of
light coming from that part of the image, and so, it can carry only the intensity information related
to that pixel. Afterwards, the interest in using pictures as specimen led to the use of color-based
objects, capturing images using three filters centered on red, green and blue (RGB) spectral
domains [22-25]. Nevertheless, the use of these few channels cannot be comparable to the
vastness of information captured and described by the use of a wider interval such as the one
represented by the whole spectral domain, containing hundreds or even thousands of spectral
variables, which can range from frequencies of a few Hz up to very large values. In other words,
different spectroscopic techniques, each of them focusing on a specific spectral domain
(ultraviolet, visible, infrared, etc.), will excite the sample with a specific amount of energy, so
that different effects (from molecular, ionic, atomic, etc. point of view) will be generated and
therefore, observed [26]. In simple terms, although the possibility to observe external attributes

such as surface texture, defects, color, shape of the sample, the chemical composition cannot be
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captured with these kinds of images, due to the lack in spectral information. In the last decades,
from an engineering point of view, the interest in fusing spectral and spatial information has
enormously increased. Finally, after the first attempts, an evolution in the use of image analysis
was achieved. Nowadays in fact, it is possible to acquire images that contain not only few
channels, but instead the complete spectral domain of a selected range. Clearly, we are talking
about the well-known hyperspectral imaging technology [14,27,28]. The main difference
referring to this kind of acquisition methodology is that a hyperspectral image is a spatial picture
of a sample in which each pixel contains a spectrum of a series of contiguous wavelengths, and
not a single value. Undoubtedly, the amount and the importance of information that can be
obtained using this kind of acquisition system (from both the spectral and the spatial point of
view) is enormously larger compared with the one observable with other spectroscopic
techniques, leading to the necessity of new ways of interpret the acquisition outcomes.
Particularly, dealing with very large amount of data can be usually counterproductive, limiting
the possibility of maximize the total extractable useful and meaningful information coming from
the raw data. Nowadays, one of the main ways to face this issue is based on the use of
chemometrics, which has shown to be a very useful discipline, able to help in this complex task
[29]. In fact, using different tools related to this field it is possible, for instance, to reduce the
dimensionality of the data, to extract only the most important information, and optimize the
obtainable results. Despite this, the applications of chemometrics in the hyperspectral imaging
area are nowadays still limited. This is the reason why a rising interest in overcoming the
common restrictions related to this technique, finding new ways to couple the various
chemometric methods with this particular kind of matrix, is constantly in the spotlight of many
research lines. Here finally the main purpose of the present doctoral thesis: exploiting different
algorithms and tools of chemometrics, trying to exceed the routine applications and particularly,
improve the way to investigate the results coming from big datasets, also when various

spectroscopic techniques are used simultaneously.

1.2. Hyperspectral image characteristics

From a general point of view, an image is a two-dimensional representation of an object.
Normally, referring to a picture, the two spatial dimensions related to it, and so the number of
pixels in the two directions, are represented by the letters x and y, respectively associated to the
horizontal (the rows) and the vertical (the columns) directions of the image. The main and more

evident difference between a simple image and a hyperspectral image is the extent of the third
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dimension. In fact, while in the first case only one single value, based on an intensity, is
associated to each pixel, a hyperspectral image is a three-dimensional cube, in which this new
side of the matrix, normally characterized by the letter 4, is related to the spectral information.
More specifically, 1 will represent the spectral range (e.g., wavelengths) related to the used
spectroscopic technique in the acquisition. By way of example, a representation of a
hyperspectral image is shown in Fig. 1:
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Fig. 1 — Schematic representation of a hyperspectral image. Here, the spatial dimensions of the image are represented

by the directions labelled as x and y, while the spectral information is related to /.

In general, the hyperspectral image can be observed both as an image at each single wavelength
A or as a spectrum, at each individual pixel (x and y). It is clear how this technique can be useful
in many areas. Starting from remote sensing, which has been the first investigation field in which
hyperspectral imaging was applied [11,27,30-33], mineralogy [34-37], food [14,28,38-40],
forensic [41-44], medical [13,45-49], pharmaceutical [50-54], and biological [55-58] analyses
are some of the most important research example areas related to the use of this discipline. This
thanks to the peculiarity of the hyperspectral image analysis that leads to the simultaneous use
and investigation of both the spectral and the spatial data related to a particular sample, providing
decisive and precise information. In fact, while a simple image can provide only physical

characteristics of the represented object, a hyperspectral image provides at the same moment the
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spatial and the spectral information. When a bulk analysis is performed by spectroscopy, it is
possible to characterize homogenous materials, providing an average spectrum of the sample.
Contrariwise, if the specimen is inhomogeneous, this bulk analysis could lead to non-
representative information. In order to avoid this situation, the measurement should be repeated
many times in a systematic way, acquiring the spectra from several positions of the sample.
Clearly, this procedure is not practical in a real context. Hyperspectral imaging spectroscopy
easily overcomes these limitations, identifying and quantifying the chemicals of the sample, as

well as the precise location and spatial distribution.

1.3. Instrumental perspective

From a general point of view, three different hyperspectral image-acquisition approaches
can be used, all of them presenting pro and cons: the point scanning (or mapping), the line
scanning, and the area scanning methods, reported in the Fig. 2. The first one, also called
whiskbroom approach, measures the complete spectrum of a single position (the pixel) at the
time (Fig. 2a). Then, the sample is moved and another spectrum is collected for this new position.
This procedure is iteratively repeated until the whole surface is captured. Clearly, a grid is defined
a priori, in order to create a map based on the different acquisition points that compose the surface
of the sample. The main advantage of this technique is that all the points pass for the same path
of the optical system. In addition, this approach is very convenient for analyses in which is
necessary to find out minor compounds. The con is that this kind of acquisition turns out to be
very slow, particularly if a large area of the sample has to be explored. The second method, also
called pushbroom configuration, is an extension of the previous one. The main difference is that
in this case, not a point but a whole line of the image is acquired each time (Fig. 2b). This is
possible using a two-dimensional dispersing element and a two-dimensional detector array. This
kind of technique results to be very practical, faster than the previous one, and versatile. Usually,
it can be used for food and industry applications, in which the samples are scanned using a control
chain. At last, the third method, also called staring imaging, show an evident difference,
compared with the previous methods. In this case, the whole image is acquired, but one spectral
band per time (Fig. 2c). It means that it is not necessary to move the sample, because the whole
scene is scanned in one shot, but on the other side, this procedure is not advisable if the number

of needed wavelengths is too large.
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Fig. 2 — Schematic representation of the different hyperspectral imaging acquisition approaches. a) Point scanning

approach. b) Line scanning approach. c) Area scanning approach.

Beyond these considerations, it should be noted that these three acquisition modes are not always
feasible for each spectroscopy, mainly due to instrumental reasons. By way of example and
taking into account the previous methods of acquisition in the infrared region, it is also possible
to distinguish three different modalities, based on the disposition of the light source and the
optical unit in a given spectroscopic equipment: the reflectance, the transmittance, and the
interactance, as shown in Fig. 3. The first acquisition mode, that is without any doubt the most
used nowadays, is based on a reflectance phenomenon (Fig. 3a). The second one, in which light
source and detector are on the opposite sides of the sample, can show limited applications,
because the light needs to penetrate and go through the specimen (Fig. 3b). Finally, the third
method is a combination of the previous ones (Fig. 3c), in which both the light source and the
11



detector are on the same side of the acquisition system. Nevertheless, a light seal is needed to
avoid any interference coming from exterior light. In any case, from a general point of view is
always advisable to avoid phenomena that could invalidate the quality of the acquisition, like

refraction, specular reflectance and scattering.
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Fig. 3 — Schematic representation of the different modes to generate a hyperspectral image. a) Reflectance mode. b)

Transmittance mode. ¢) Interactance mode.

Due to the wide interest in hyperspectral imaging, a rapid evolution in the various spectroscopic
instrumentations related to this kind of technique is obvious. Nowadays, it is possible to acquire
a hyperspectral image with different spectroscopic systems. Despite this, the description of all
these techniques is not one of the main purposes of this doctoral thesis. This is the reason why
only a brief illustration of the most interesting spectroscopies used during this period is here
reported. In addition, as information, it is important to highlight the fact that the most of the
datasets used during this PhD for the various works described in this manuscript were not directly
acquired from our group. In fact, the different data were collected in the framework of
collaborations with other research groups, while for this PhD work, only the chemometric
approaches were studied and carried on. The only exception is represented by a specific dataset
discussed in Chapter 2, related to the exploration of biological samples using a synchrotron
beamline facility in Paris (France), namely the SOLEIL. Specifically, this has been a
collaboration between our group, the team of the synchrotron DISCO beamline, and the INRAE

12



group of research in Nantes (France). More details will be given in the corresponding

aforementioned section of this manuscript.

1.3.1. Infrared (IR) spectroscopy

IR spectroscopy is without any doubt one of the most common and useful instrumentations
applied to many analytical investigation areas that shows the perfect combination with the
chemometric methodologies [59-61]. This kind of technique measures the interaction of infrared
radiation with matter by different ways, i.e., absorption, scattering, or reflection for the study of
chemical substances and functional groups. The electromagnetic spectrum of the IR region is
very vast, which is why normally one can distinguish among three different spectral subregions:
the near-, mid-, and far- infrared (respectively: NIR, MIR and FIR), acquired by different
instruments. From a general point of view, the first one is related to overtones, or combinations
of molecular vibrational modes; the second spectral domain is dedicated to fundamental
vibrational modes; finally, the last region is associated to low vibrational frequencies mainly
observed in minerals and crystals. The most interesting aspect of this spectroscopy is that the
different molecules can absorb the frequencies generated in the IR region characteristics of their
structures. This phenomenon corresponds to the possibility of observing spectra that show bands
able to distinguish various structures that can be compare and recognized by the use of libraries
containing the specific fingerprints of different chemical functional groups. Here, an important
aspect has to be stressed. Compared with the other IR regions, NIR shows broadened bands, very
informative, but at the same time hardly interpretable. This is the main reason why this kind of
spectroscopy has been underestimated for years, before the introduction of chemometrics as a
routine tool to study this spectral response [62,63]. Naturally, in the last decades, abreast of the
evolution of the modern instruments, new devices able to make full use of this important
spectroscopy coupled to hyperspectral image analysis were developed and used in different areas
[51,64-66]. An important aspect to be discussed regarding IR spectroscopy, which is a dispersive
spectrometer, is that it can normally measure the intensity over a narrow range of wavelengths at
a time. This is why modern instruments are based on the use of the Fourier Transform (FT). In
fact, Fourier Transform Infrared spectroscopy (FTIR), allows the simultaneous acquisition of
high-resolution spectral data over a wide spectral range. A general scheme of the FTIR

spectrometer is reported in Fig. 4:
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Fig. 4 — Scheme of a FTIR instrument.

If normally absorption spectroscopy measures the quantity of light absorbed by a sample at each
wavelength using a monochromatic light beam, FT spectroscopy works in a less intuitive way.
Instead of using a monochromatic light, which uses a single wavelength at a time, this technique
generates a beam containing many frequencies in one shot, measuring the amount of light
absorbed by the sample. The possibility of interpreting this complex signal is given by the use of
an interferometer. This kind of instrument contains a beam splitter and two mirrors, one fixed
and the other one moving. The incoming light is at first split into two equal quantities, directed
to the different mirrors. The moving mirror, shifting, introduces an optical path difference, which
will generate coming back to the splitter, a constructive or destructive interference with the part
of the ray reflected by the fixed mirror. In this way, it is possible to obtain an interferogram that
shows the representation of the intensity in the time domain for a specific signal. Then, using the
FT, it is possible to pass from this domain to the corresponding frequency one, generating the
corresponding IR spectra that can be interpreted in the investigation analysis.

1.3.2. Raman spectroscopy

Raman phenomenon was detected the first time in 1928 by the Indian physicist C. V. Raman
and K. S. Krishnan [67,68]. Compared with other spectroscopic techniques, as infrared, it is not

based on the absorption of photons but on the light scattering effect correlated to the vibrational
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energy state of the molecules. For many decades, this kind of response could not be used due to
the weakness of the corresponding signal. In fact, when a light source is used to excite a sample,

as shown in Fig. 5, it is possible to distinguish different responses:
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Fig. 5 — Different vibrational energy responses.

Excepting the absorption phenomenon, an overwhelming majority of the scattered photons show
the Rayleigh scattering effect, in which the energy intensity of the incident light is equal to the
one of the scattered light. More precisely, only one of a thousand or ten thousand of the scattered
light (that is anyway a thousandth of the initial incident light) will correspond to the Raman effect
that in other words, represents only a millionth of the incident light. Due to this intensity
weakness, this kind of spectroscopy originally did not obtain the right interest. Only in the early
1960s, when laser was introduced as excitation source (high radiation intensity), this kind of
instrumentation was recognized as one of the most important tools for many different research
areas. This is true particularly because nowadays many libraries containing the fingerprint of
various compounds exist, as well as for other spectroscopic techniques (e.g., FTIR), driving to
an easier chemical interpretation using this kind of spectroscopy. Considering hyperspectral
image analysis, nowadays many different studies based on this technique are available [69-78].
In addition, the use of visible photons, linked to lower diffraction limits, can lead to a better
spatial resolution and so, to an increase of the exploratory potential of samples. Regarding the
technical characteristics of this spectroscopy, a scheme is represented in Fig. 6. Formerly, a

mercury vapor lamp was commonly used. The limitation of this kind of source is that it has many
15



strong bands that could lead to partial overlapped spectra, if a filter is not applied to select a

particular emission frequency.
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Fig. 6 — Scheme of a Raman instrument.

In modern Raman instruments, as already described, a laser is usually used as emission light [79].
Particularly, a crystal of Nd:YAG (neodymium-doped yttrium aluminum garnet) is the most
common solid-state laser source. Moreover, also laser diodes are gaining importance, particularly
for their emission power and the different obtainable emission wavelengths. A dichroic filter is
used in order to make selectively pass only one fraction of the light that will hit the sample,
generating the scattering response. Then, this light is collected passing through a spectrometer,
which disperses the light into a spectrum. Normally, a CCD (charge-coupled device) detector is

used to record the final spectra.

1.3.3. Energy-Dispersive X-ray (EDX) spectroscopy

This kind of spectroscopy is an analytical technique that can be used to probe the elemental
composition of solid materials [80]. Considering quantum mechanics, depending on the observed
element, an atom consists of different energy levels, each of them containing a certain number
of electrons spinning around the orbit of the core. In detail, when a surface is properly excited,
an electron from the first level (the closest to the core) can be expelled, leading to a drop of more
distant electrons to fill the resulting ‘holes’ around the center of the atom. The principle behind

this methodology relies on the transition of electrons from higher energy levels to the ones close
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to the core of the atom. Transitions between energy levels follow the law of conservation of
energy. Excitation of an electron to a higher energy state requires an input of energy from the
surroundings, and relaxation to a lower energy state releases energy to the surroundings.
Specifically, this change into the structure of the atom generates a set of X-ray emissions at
different frequencies, specific for each element, allowing the possibility of a qualitative analysis.
Generally, two different methods are the most commonly used to excite the core electrons. The
first one uses a high-energy electron beam, which is produced by an electron gun. Another
possibility is the one of using X-rays instead of electrons, to excite the core electrons to the point
of ionization. No matter the excitation source, the purpose using this energy is to excite core
electrons to high-energy states, creating a low-energy vacancy in the electronic structure of the
atom. This phenomenon leads to a cascade of electrons from higher energy levels, in order to
recreate the minimum-energy state of the atom. Due to the conservation of energy, the electrons
emit X-rays in the moment that they transit to lower energy levels. The interesting aspect of this
spectroscopy is that since each element has a different nuclear charge, the energies of the core
shells and the spacing between them vary from one element to the next. Giving sufficient
resolving power it is possible, using the EDX, to determine the composition of the sample based
on the observation of the characteristic peaks. Nevertheless, some limitations are evident. First,
not every peak in the spectrum of an element is exclusive to that element, and this is the main
reason why all the peaks need to be matched with preexistent libraries and using standards. Also
important is the fact that a combination of elements can act differently than a single element
alone, leading to the necessity of knowing the general composition of the investigated sample.
Another limitation is related to the impossibility in observing elements lighter than boron, which
represents a problem due to the natural abundance of hydrogen in materials. It is also important
to consider the fact that EDX needs to be coupled with a microscopy such as the Scanning
Electron Microscope (SEM) to provide both the spectral and spatial information of a given
sample. Secondary electrons may cause additional excitation and emission of spectral lines,
generating the possibility of overlap with the lines related to real elements. Lastly, sample needs
some preparations. EDX is a near-surface technique, so the specimen has to be exempt from any
trace of grime, to avoid false results. Furthermore, the sample must be stable under vacuum
because the instrument works in an environment preventing the presence of any atmosphere,
which could interfere with the electron beam. Nevertheless, this instrument is nowadays used for
many different purposes, as shown in literature [43,81-84]. A general representation of the EDX

instrument is here reported, in Fig. 7:
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Fig. 7 — Scheme of an EDX instrument.

1.3.4. Laser-Induced Breakdown Spectroscopy (LIBS) and Plasma Induced

Luminescence (PIL)

In the framework of the elemental analysis, it is necessary to focus especially on one
instrumentation. LIBS is a very suitable spectroscopy that shows many advantages, if compared
with other techniques such as atomic absorption, inductively coupled atomic emission, X-ray
fluorescence, etc. In fact, despite the interesting detection limits and accuracy, these methods
require a complex sample preparation and a long detection time. Furthermore, these
spectroscopic techniques are destructive compared with LIBS, in which only a small portion of
the sample is ablated. Despite the initial interest in the early 1960s, this spectroscopic technique
started to be really in the spotlight after the 1980s, due to an increasing development of the used
laser and detector technologies. Considering the main merits of LIBS, it is important to stress
some aspects. Besides the absence of a sample preparation and pretreatment, this analytical
technique is very fast, performing acquisitions within a fraction of a second and allowing a multi-
elemental analysis. It is also sensitive to light elements, which are not observable with other
techniques, and can be used for analysis for all states of matter. Last but not least, LIBS can be
coupled with other analytical techniques, e.g., Raman spectroscopy, to obtain simultaneously
multi-elemental and molecular surface analysis. Of course, some weak points are observable.
The limit of detection, which is in the range of the part per million, can be limitative compared
with other techniques that reach the part per billion. Furthermore, a self-absorption phenomenon

can occur. Specifically, emissions from hotter regions can be absorbed by the colder atoms
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surrounding the plasma, affecting the spectral intensity of the signals and so the quantitative
analysis. Another limitation is represented by the matrix effect. Depending on the nature of the
sample (from both the physical and chemical perspectives), it can affect the ablation phenomenon
and so the quality of the final spectral signals. Nowadays, LIBS is applied for the analysis of a
wide range of materials [85-89]. A scheme of this instrumentation is shown in Fig. 8. A pulsed
laser, normally generated using a crystal of Nd:YAG, is used to ablate a minute amount of
material from the sample surface. The ablated mass will produce a vaporous plume on the surface
of the sample. The interaction between the pulse laser beam and the plume will generate a plasma,
which will prevent the beam from entering into the sample in a process named ‘plasma shielding’.
In addition to stopping the ablation from the surface of the sample, this phenomenon will generate
an increase of temperature that will ionize the plasma. In this way, a luminous plasma is
generated. The phenomena of excitation, de-excitation, expansion and condensation for each
species in the plasma plume will produce electromagnetic radiations that contain information
about the different species present in the sample. Eventually, this light is collected and directed
to a spectrometer by the use of an optical fiber, in order to generate a spectrum that will facilitate
the element detection. In fact, a good aspect in LIBS spectra is that each element shows specific
emission wavelengths, leading to an easier way to recognize and so, identify a specific atom,

making this kind of spectrometry a very suitable technique in many scientific areas.
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Fig. 8 — Scheme of a LIBS instrument.
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More recently, another interesting phenomenon that can occur when LIBS is used as excitation
source has been observed. In fact, using the same instrument, the plasma generated by the LIBS
laser shot can act as an excitation source and produce the emission of a luminescence response
for specific elements present on the sample surface, with a delay of some milliseconds. This kind
of phenomenon is called Plasma Induced Luminescence (PIL) [87,90-92]. Clearly, the
possibility of obtaining distinct chemical answers using the same equipment is a very interesting
aspect, from a research point of view. Nevertheless, nowadays the ability to interpret this kind of
phenomenon is still limited, leading to the interest in deepening this chemical response.
Particularly, as it will be shown in the Chapter 4, one way to extract more information related to
PIL, taking the advantage of using the same instrument for the acquisition, is the data fusion
between this kind of response and the LIBS spectra. In fact, using this approach, it seems possible
to obtain details and correlations that otherwise would not be observable, when only PIL spectra
are investigated. Lastly, LIBS can also be used in order to acquire simultaneously different
spectral ranges. Particularly, it is possible to use the same instrumentation, without any necessity
of changing the platform, for the acquisition of, for example, also Raman spectra. Clearly, this is
another very interesting aspect because in this way it would be possible to obtain at the same
time elemental and molecular information, respectively from LIBS and Raman spectroscopies,
leading to more accurate and interesting results from the analysis. By way of example, it is
plausible that some elements or compounds can be detectable using exclusively one spectroscopy
or the other one. Therefore, using a data fusion approach, it would be possible to generate more
details that otherwise will be missed. For informational purposes, also this argument will be

discussed more in detail into the present manuscript, in the aforementioned dedicated chapter.

1.3.5. Synchrotron beamlines and associated spectroscopies

Synchrotron radiation is the term used to describe an electromagnetic radiation emitted by a
charged particle beam in a circular accelerator. It represents nowadays a very interesting
excitation source for chemical and biological investigation purposes, and recently it has been also
applied to hyperspectral image analysis [93-96]. The principle of this phenomenon can be
explained by the equation of Maxwell, based on the notion that changing the charge density, it is
possible to radiate electromagnetic waves. Throughout the decades, more and more facilities in
which this kind of technology is used have been built all around the world. A synchrotron, whose
scheme is reported in Fig. 9, is an accelerator of electrons where they are trapped and forced to

travel at the light speed along a circular path with a constant radius in a bending magnet. The
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acceleration of the electrons gives rise to the emission of radiations, emitted in discrete quanta or
photons, each of them with an energy depending on the frequency of the radiation itself. Despite
the interest in using this beamline, many cons can be highlighted. First, building a synchrotron
facility is related to very high-cost machines. Also, the storage ring in which the particle beam is
kept circulating in to create the photons must show some characteristics, in order to generate a
relevant electron flow. In fact, a loss of energy due to the emission of synchrotron radiation is
normal, and the radiofrequency must provide a sufficient power to accelerate the electrons.
Another important factor to be highlighted is the possible collisions with the walls of the ring, if
the radiofrequency is too intense. This is a very limiting factor in the construction of a circular
electron accelerator. An option would be to reduce the bending magnet field strength, but this

means to build larger instruments, and so an increase in the costs.
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Fig. 9 — Scheme of a synchrotron beamline facility.

Another essential aspect to be considered is the vacuum system, used to obtain an optimal beam
lifetime. The power of the synchrotron radiation can be very high, and so water-cooled absorbers
must be provided. The back bombardment of ions generated from residual gases (created by the
photons hitting the vacuum chamber) can desorb gas molecules from the surface, and so decrease
the lifetime of the beam. Related to the energy of the photons is also the possibility of generating
high-energy particles that can escape from the circular trajectory and thus, damage the ring
components. For this reason, some precautions have to be taken into account, i.e., the use of
special alloys covering the internal walls of the ring, or the use of extra magnets to shield.
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Nevertheless, the synchrotron beamline is nowadays a very suitable technique for the acquisition
of hyperspectral images with high resolution for the investigation of the whole range of basic and
applied sciences, for samples of different nature [97—99]. Some of the properties making the
synchrotron radiation so attractive are the high intensity or photon flux, and the fact that a
continuous spectrum covering a broad range from the far infrared to hard X-rays is obtainable.
Normally, this is possible because many different beamlines are built around the ring, each of
them used for the acquisition of a specific spectral response (e.g., diffraction, X-ray absorption,
crystallography, autofluorescence etc.). Regarding this kind of radiation source, it is important
to highlight the fact that during this PhD thesis it has been possible to collaborate with the
national synchrotron facility in Paris, namely the SOLEIL, using the DISCO beamline acquiring
biological samples to observe the phenomenon of autofluorescence coming from excitation using
UV and visible spectral ranges. More details will be given in the Chapter 2 of the present

manuscript.

1.4. Methodological perspective

So far, in this manuscript, hyperspectral image analysis has been described from a general
point of view, especially highlighting its main strong features compared with the use of the
classical bulk spectroscopic acquisition methods. To give some examples, one can refer to the
possibility of acquiring a quantity of spectra that will result greater than the one obtainable with
a bulk analysis (in some cases up to millions of spectra) [100,101]. Furthermore, a hyperspectral
image has the great advantage of showing not only the spectral information, but also, and
particularly, the spatial distribution of the components in the acquired sample [15,102-104]. This
IS a very interesting aspect, considering the fact that if the specimen is heterogeneous, a routine
analysis could lead to non-representative results, and so, to wrong analysis conclusions.
Nevertheless, hyperspectral imaging is still a very recent methodology and, despite its very
promising and rising characteristics, some limitations and constraints are clearly unavoidable. In
fact, dealing with a too massive amount of information can be challenging, if not impossible. In
addition, despite the introduction of the spatial information, currently the use of this kind of
details is still very limited, when compared with the spectral domain. Without any doubt,
chemometrics is nowadays one of the most interesting approaches that perfectly matches and
overcomes the limitations concerning the hyperspectral image analysis [29,100,105-108]. This
discipline can in fact extract the most meaningful information from the massive quantity of data

by the use of mathematical and statistical methods. In this way, it becomes possible, decomposing
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multivariate complex data, to obtain more interpretable information and so, leading to the
interpretation of the chemical, physical and biological aspects of the sample. Nevertheless, it is
also important to highlight the fact that normally the analysis of the raw spectral data is not
recommended and counterproductive. Data need to be pretreated in order to extract the most
important information in the right way, giving the possibility to all the details to be observed and
correctly used. This is the reason why before any analysis, usually the matrix is treated with some
pretreatments with the aim of leading to more interpretable results [109], as it will also be briefly
discussed in this manuscript. Multivariate data analysis, that is the core of the chemometric
approach, is able to show the hidden chemical information of the investigated specimen, showing
important details that otherwise would be missed using more simple and traditional approaches
[110-112]. Nowadays, a vast quantity of methods can be used to dig into complex matrices and
obtain interesting results. From a general point of view, one can discern between two big different
kinds of analyses. On one side, chemometrics and so multivariate data analysis can be used for
the qualitative analysis. From the other side, this discipline is also used for the quantitative
analysis. A general scheme representing the main chemometric methods that are currently

applied is shown in Fig. 10:

Multivariate data
analysis

Quantitative Qualitative
analysis analysis
Regression Unsupervised Supervised
Linear Non-linear Curve reso!utwon Clustering Exploratory data Cla55|f|ca.t|on
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| MLR, PLSR, ... |

| ANN, SVM, . ‘

| MCR-ALS, ... ‘

KM, ...

PCA, ..

LDA, PLS-DA, SIMCA, ...

Fig. 10 — General scheme of multivariate data analysis methods. MLR: Multiple Linear Regression, PLSR: Partial
Least Squares Regression, ANN: Artificial Neural Network, SVM: Support Vector Machine, MCR-ALS:
Multivariate Curve Resolution-Alternating Least Squares, KM: K-Means clustering, PCA: Principal Component
Analysis, LDA: Linear Discriminant Analysis, PLS-DA: Partial Least Squares-Discriminant Analysis, SIMCA: Soft
Independent Modelling of Class Analogies.
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Hereafter, a brief description of the scheme and so, of the main chemometric approaches is
reported. Nevertheless, only the most important algorithm methods used during this work will be
described in detail in the present manuscript.

Regarding the quantitative analysis, regression methods are the most commonly used [113].
The main purpose of this methodology is to find a relationship between a desired information
(chemical, biological or physical) and the spectrum responses, in order to predict the numeric
values coming from new data related to the ones used to build the model [114-117]. Two
different kind of regression analyses can be used. The most common one is the linear method. In
this approach, several explanatory variables are used to predict the outcome of a response
variable using the linear relations between the spectra data and the target attributes. Different
algorithms are nowadays available to face this particular task, each of them showing some
differences. Multiple Linear Regression (MLR) is the simplest method in which it is normally
observed the correlation between the measured variables and the response of interest. Anyway,
this kind of analysis shows a limitation with regard to the robustness of the model. In fact, spectra
show often a high co-linearity, leading to overfitting problems. Partial Least Squares Regression
(PLSR) is a more recent linear method, which shows a better robustness compared with the
previous one. Being a bilinear modelling method, PLSR creates models using a large number of
independent variables (mainly predictors or wavelengths), in order to predict a set of dependent
variables (concentrations or chemical information). The reliability of predictions is normally
achieved by the extraction and the observation of a certain amount of Latent Variables (LVs),
orthogonal factors related to the information contained in the variables used to create the model
[118]. From the other side, when spectral data and target attributes are not linearly related, non-
linear approaches can be applied [119]. Interesting methods related to this discipline are Artificial
Neural Network (ANN) and Support Vector Machine (SVM). These methods are very suitable
to deal with complex and nonlinear correlations, hard to be interpreted differently, using
networks that can extract hidden information.

Referring to qualitative analysis, they are generally used with the main purpose of classify
and distinguish between different categories of elements present in the same matrix. Normally,
it is possible to discern among a massive number of different methods. A first differentiation can
be made between two main groups: supervised and unsupervised methods. In the first case, the
main purpose of the analysis is to create classification models able to make it possible to classify
new unknown samples based on the previous classified and known measurements. This kind of
methodology is also known with the name of classification analysis [120]. Linear Discriminant

Analysis (LDA) is the first supervised technique used in data analysis [121,122]. Nowadays, it
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is still used due to its robustness, simplicity, and reliability. The concept behind this classification
method is based on the assumption that the conditional probabilities for each class are normally
distributed and that the variance/covariance matrices for all the classes are identical. In other
words, a partition of the space among the different classes is applied by maximizing the ratio of
between-class variance and minimizing the ratio of within-class variance. Nevertheless, this
method is a very simple one and so, it is affected by some classification problems, particularly
when collinearity between data is present, such as in complex chemical matrices. This is the
reason why another method is normally applied, to overcome the limitation of LDA. Partial Least
Squares-Discriminant Analysis (PLS-DA) is a chemometric approach based on the use of partial
least squares regression method [123]. Traditional regression methods can be used for
classification analysis, in which case the relationship between a multivariate independent vector
and a qualitative vector of responses is searched. From a general point of view, the solution given
by this technique is statistically equivalent to the one obtainable using LDA, being the resulting
model a linear one. The difference is given by the fact that this method is related to the use of the
LVs, and not the original spectra, taming the constraints described above. In fact, once the model
based on the data obtained by the known samples is created, a new unknown sample can be
analyzed, computing a predicted vector of responses. Then, it will be compared with the different
classes present in the model and assigned to the category that show the highest similarity with
the investigated sample. The previous described methods are known as discriminant techniques
[124]. Another type of supervised method is represented by the modelling approaches, in which
the main task is to capture the similarities among samples belonging to the same category [125].
One of the most famous and used methods in this group of chemometric approaches is for sure
the Soft Independent Modelling of Class Analogy (SIMCA) [126]. Differently from discriminant
methods, when using this algorithm, each class is separately considered and so, an individual
model is constructed for every one of the categories present in the dataset.

As previously introduced, the other group of qualitative analysis is represented by the
unsupervised methods. In this case, a previous knowledge about the different kind of samples is
not necessary, and they will be classified only according to their natural groups and the
similarities among the samples of the different classes. Various methods can be applied,
depending on the main investigation purpose. Some of the most important ones are here reported.
Exploratory data analysis is for sure one of the cornerstones of chemometrics, vastly used in
many research areas. Principal Component Analysis (PCA) [127], the most representative
exploratory data technique, is a method in which the spectral data are decomposed into several

orthogonal factors, the principal components, which are a linear combination of the original
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variables of the analyzed matrix. Generally, the use of principal components will create a new
set of uncorrelated data, ordered in terms of decreasing variance (the scores) that can also be used
as input for other techniques, with the purpose of maximize the usable information. Based on the
scaling coefficient given by the scores, each of them is related to a particular set of loadings,
which contains the maximum variations common to all the spectra in the dataset. PCA can be
used to extract the most important part of the details contained into the array, filtering the
redundant data, and so reducing the total amount of used information. Another technique used
for data exploration is the one represented by the clustering analysis. K-Means (KM) clustering
iIs for sure the most representative method in which the clustering approach is applied [128]. The
main point behind this technique is, after selecting the right K number of classes in a matrix, to
classify each element into one of the different clusters. This procedure is applied by trying to
minimize the sum of squares of distance between each spectrum and the corresponding cluster
centroid. Despite its simplicity and efficiency, this method has the con of being influenced by
the operator choice, because if the selected number of clusters is not right, the results will be
biased. In addition, the presence of unbalanced classes and/or sub-populations can lead to not
very precise results. Finally, qualitative investigation can be conducted by the use of the curve
resolution analysis, also known as signal unmixing. Multivariate Curve Resolution-Alternating
Least Squares (MCR-ALS) is for sure the most important algorithms used in chemometrics [129].
The main purpose of this kind of analysis is to resolve the mixture analysis problem by expressing
the original data using a bilinear model of pure component meaningful contributions. In other
words, during normal experiment conditions the spectroscopic data can be approximated using a
bilinear model whose elements are directly interpretable in chemical terms. It is possible, using
MCR-ALS, to perform a data unmixing of the studied matrix, and so, estimate the number of
constituents in the mixture, obtaining their pure concentration profiles and pure spectral ones
from the information encoded in the recorded data. Furthermore, being a self-modeling method,
in principle it does not require any specific preliminary information about the data. The only
limitation using this technique is given by the fact that the investigated sample must satisfy the
bilinearity and that some generic characteristics of the pure concentration or spectral profiles are
known.

An important aspect that has to be taken into consideration is that these methods generally
cannot be applied directly on the hyperspectral image. In fact a data cube, which is represented
by three dimensions (namely, x and y regarding the spatial direction, and A for the spectral
information), needs at first to be unfolded into its corresponding two-dimensional matrix. This

represents an important limitation that to date afflicts the use of the full potential of a
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hyperspectral image. Unfolding an image, the spatial information is naturally lost, leading to the
fact that these chemometric strategies will take into consideration only the spectral part of the
data. Nevertheless, as it will be described into the present manuscript (more precisely, Chapter
5), some interesting methods that overcome this challenge have been recently investigated and
applied to hyperspectral image analysis. Particularly, wavelet transform [130] represents a new
approach, in which some particular filters are used with the aim of decompose the original signal
of the image into the contribution of particular coefficients that will save the most important
information related to the spatial features of the data cube.

So far, the main point of the present paragraph of this manuscript has been the one of giving
a general idea of the different chemometric pretreatments, methods and algorithms that are
nowadays commonly used in the investigation of the complex nature of real samples. Hereafter,
a more detailed description regarding the most relevant approaches used during this PhD work

will be reported.

1.4.1. Data preprocessing in chemometrics

As already described, it is of fundamental importance to use the correct pretreatment before
any further analysis, in order to extract the most important information from the data, avoiding
to obtain unclear results [109,131]. Here following is reported a brief description of only some
of the most used and common preprocessing approaches in spectroscopy, to give a general idea

of their necessity and applications.

1.4.1.1. Mean Centering (MC) and autoscaling

Despite its simplicity, MC [132] is for sure one of the most important preprocessing steps
that has to be applied to a data matrix when needed, particularly in hyperspectral imaging, and
more specifically in analyses such as PCA. It is an additive transformation of a continuous
variable m. The mean of the resulting variable is zero. In other words, mathematically, MC
calculates the mean of each column of the matrix and subtracts this from the column. Using this
technique, the distribution of the variables will be shifted and centered to the zero, changing the
scaling of a variable, but not its units. In this way, the standard deviation of an observed
information will not be affected, and so, to each variable will be given the same distribution, but
the relative importance will be conserved. It is also important to remember that this kind of
approach is applied normally as last method, in a series of preprocessing steps. Another method

related to MC is the autoscaling. In this case, the matrix is at first mean centered and then, each
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column is divided by the standard deviation of that column. In this way, each column of the
corresponding matrix will have a mean of zero and a standard deviation of one. This method is
very useful when it is necessary to correct different variable scaling and units if the main reason
of the variance of the variables is related to signal rather than noise. At the end, each variable
will be scaled such that its meaningful signal has an equal footing with the signal of other
variables. Also in this case, it is important to consider that autoscaling preprocessing has to be
used for the right type of data (e.g., wavelet transform), in order to avoid the generation of wrong

magnitudes and information.

1.4.1.2. Standard Normal Variate (SNV)

SNV [133] is particularly useful to correct imprecision carried out by IR instruments, due to
the scattering light phenomenon. Due to the interaction between the light and sample particles, a
baseline shift can be generated, resulting in a more complicated spectral interpretation. Normally,
this scattering can produce a background signal that varies with the wavelength, leading to a
baseline shift and curvature, which can vary among samples. Using this algorithm, it is possible
to reduce multiplicative effects of scattering and particle size, also reducing the differences in the
global intensity of the signals. From a mathematical point of view, each spectrum is centered and
then scaled dividing it by its standard deviation.

1.4.1.3. Savitzky-Golay (SG) derivative

SG derivative [134] is commonly used as a signal pretreatment for spectral data. Despite the
fact that it is possible to use higher-order derivatives, first and second ones are the most
frequently used in the analysis, because they result to be generally adequate to obtain optimal
results. Normally, this kind of preprocessing is used to resolve peak overlaps, enhance the
resolution and eliminate constant and linear baseline drift among the samples. Nevertheless, it is
important to remember that, using a derivative approach as pretreatment, noise level of the
spectra can be increased, as well as the fact that spectral interpretation becomes more
complicated. From a mathematical point of view, derivatives are defined as the slope of the line
(the acquired spectrum) at any given point. SG first derivative method fits a curve through a
small section of the spectrum, and then finds the slope of the tangent to this curve at the central
point. Second derivative can be computed directly from the first one. It corresponds to the slope
of the first derivative, generating new peaks in correspondence of the less interpretable zones of
the first derivative results, leading to the possible observation of signals hided during the first

part of the calculation. Also important is that if the spectra are preprocessed in a too extreme
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way, artifacts could be generated, leading to a general misinterpretation of the spectral

information.

1.4.1.4. Baseline correction using Asymmetric Least Squares (AsLS)

Lastly, another important kind of preprocessing method that can be applied to many different
spectroscopic data is the correction of the baseline, due to a possible offset that can be generated
during the acquisition linked to instrumental problems or specific photon-matter interactions.
Despite the existence of various methods (that show different pros and cons), here is reported
only one approach, which provides an automatic baseline correction that overcomes many of the
limitations related to other procedures. This method is based on the Asymmetric Least Squares
(AsLS) algorithm [135], using the well-known Whittaker smoother, in which the baseline offset
is automatically removed by the use of a piecewise method, to get a slowly varying estimate of
the baseline. This method results to be very interesting due to many reasons. Particularly,
compared with other approaches, it is relatively fast, and only two parameters are required to
obtain a suitable baseline, with completely reproducible computations: one is needed to tune the
flexibility of the baseline, and the other to adjust its position. Using this approach, once given a
signal, it will be combined with a series that has to follow two properties: be smooth and be
faithful to the used given signal. These two goals can be combined by minimizing a penalized
least squares function in which the fit to the data and a penalty on non-smooth behavior of the
series are measured. From a general point of view, while a light smoothing will remove noise, a
strong one gives the slowly varying trend of a signal. Nevertheless, when using this smoother, it
is also important to use a parameter to compute the obtained weights to the residuals (based on
the principle of asymmetric least squares) that otherwise will be both positives and negatives.
The resulting equation is complex, based on the mutual interaction of weights and smooth curve.
Despite this, it can be transformed into iterative application of two easy computations until the
moment a convergence is obtained. The two used parameters are respectively p for asymmetry,

and A for smoothness, chosen by the operator.

1.4.2. Principal Component Analysis (PCA)

Without any doubt, PCA [127,136] is one of the most commonly used approaches applied
in every research area, when chemometrics is needed. As already described, it can be used as an
exploratory analysis to obtain a general idea of the information contained in the investigated

specimen. In addition, this kind of method allows the compression of the original matrix, making
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possible the description and interpretation of large sets of multidimensional data. From a general
point of view, it is possible to describe a matrix D as sized n x m, where n denotes the different
objects in the matrix and m the number of variables (normally the wavelengths, in spectroscopy)
registered during the analysis. As already introduced above, modern instruments can acquire
huge amount of data, using very large spectral intervals, and it is particularly true when
hyperspectral imaging is the used technique, where thousands, hundreds of thousands, or even
millions of spectra can be obtained. Very easily, the meaningful information in D can be related
to correlations among different variables over the whole set. PCA can be a very useful solution
in this kind of situation. In fact, it is possible, using this approach, to reduce the original m-
dimensional space of the variables into a new subspace with a lower dimension of size a (based
on the correlation of the initial acquired information) in which all the n samples can be projected
and represented as new points. From a mathematic point of view, PCA can be described as a

bilinear model, as shown in the Equation (1):
D=TPT+ E (1)

where T (n x a) represents the scores of the PCA, i.e., the projection coordinates of the original
n rows of D in the new low-dimensional space created using P (m x a) that is the array of the
loadings, which determines the basis vectors, namely the factors of the PCA subspace expressing
the highest variance of the data. Lastly, E (n x m) is the matrix of the residuals, the not modelled
information that is not explained, at a chosen rank, from the model. If PCA is correctly conduced,
the obtained E matrix should contain the information related not to the real details of the studied
sample, but only a variation linked to factors such as the instrumental noise of the acquisition.
An important aspect in PCA is that each Principal Component (PC) is orthogonal to the others,
so the related information will be completely uncorrelated to the previous ones. A general
representation of PCA in the framework of hyperspectral imaging is reported in Fig. 11. It is
important to highlight again (as shown in the figure below) that the most of the multivariate
analyses, and so PCA, cannot be applied directly on a hyperspectral image. This means that the
data cube must be unfolded first in the corresponding two-dimensional data matrix and then, after
the computational calculations, be again refolded, in order to obtain as many score images as the

number of the selected PCs.

30



Data cube Data matrix

(3D) (2D) Scores Loadings
X
A
Unfolding = PCA
—_— X% —_—
x x
>
—_ =
x I
Refolding . PC2

PC2 —

w i

_____ i, -—

. "ﬂ. . i _
Scores images Loadings profiles

Fig. 11 — General scheme of PCA on a hyperspectral image. The data cube is first unfolded in the corresponding
two-dimensional dataset and after the PCA, refolded to obtain the score images and loading profiles related to the
contribution of the different selected PCs.

A relevant aspect to be stressed is related to the use of this technique and the information
contained in the E matrix. If the quantity of selected PCs is not correct, this could lead to not
precise results. In other words, if a number of PCs lower than the optimal value is selected, some
information would be missing, being still contained in the E matrix. On the contrary, a too big
number of selected PCs would lead to the use of residuals not related to the chemical information,
but factors like the instrumental noise. This is the reason why it is mandatory to choose the
appropriate number of PCs. Nowadays, various approaches to drive the operator in this choice
are available, and they can be classified in three different categories [137]. The first and the most
common method is based on the observation of the scree plot of the eigenvalues, firstly
introduced by Cattell [138]. The general criterion is the examination of the eigenvalues, normally
using the logarithmic unit, to find a threshold able to describe and distinguish the useful

information contained in the matrix from the residuals. The second selection method uses
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statistical tests [139], based on the rate of decrease of the remaining residual sum of squares.
Lastly, the third method is based on computational criteria and permutation testing, like Cross-
Validation (CV) [140], and bootstrapping [141]. In the first case, part of the data is kept out of
the model development, in order to predict then their values based on the use of the generated
model to observe its robustness. In the second one, the residuals are used to simulate a large
number of data similar to the original ones to observe the distribution of the model parameters

over these data.

1.4.3. K-Means (KM) clustering

This kind of clustering methodology is designed with the purpose of partitioning a data
matrix D, represented by n objects and m variables into K classes (Ci, Co, ... Ck), where Cx is
the set of n objects in the cluster k, for a given total number of K. From a general point of view,
once chosen a precise K number of classes, K centroids will be randomly generated. Each
centroid is a point in the m-dimensional space found by averaging the values on each variable
over the objects within the cluster. From a mathematical point of view, the centroid of the jth
variable in cluster Ck is, as reported in the Equation (2):

- 1
d* == d; 2)
and the complete centroid vector for cluster Ck is given by the Equation (3)

a® = (@®,a®, ..., d%, (3)

The partition into the different clusters is based on the concept that the distance between the row

vector for a particular object i belonging to n and the centroid of its corresponding cluster is at

least as small as the distance to the centroids of the other clusters. Nevertheless, the task of

optimizing KM outcomes can be very challenging for different reasons. From a general point of

view, this algorithm operates following an iterative procedure, here explained:

1) K initial points are defined by m-dimensional vectors (s1%, ..., sm®). For each object i
belonging to n, the distance 12 (i, k) between it and the kth seed vector is calculated as

following, assigning each object to the cluster where the value of 12is minimum:

2@,k = ) (d;; — s")? (4)
2

J

32



2) After this first step, new centroids based on the Equation (3) are calculated. Each object is
then newly examined, and reallocated to the cluster for which the distance with the new
centroid is lower.

3) Again, new centroids are calculated with the updated version of the cluster membership.

4) Steps 2 and 3 are repeated in an iterative way, until the moment in which no objects can be
moved between the clusters.

Another important factor that is taken into consideration while trying to partition the objects of a

matrix into the different clusters, is to minimize a particular loss criterion, the Sum of Squared

Errors (SSE) [142], as reported in the Equation (5):

SSE = ii Z (dij — A2 (5)

j=1k=1ieCk
Using also this value, it is possible to obtain a better optimization of the clustering results, moving
the objects from one cluster to another, trying to minimize the final value of the SSE.
Nevertheless, despite the robustness shown by the use of KM clustering, it remains a method
influenced by some limitations. Particularly, one can refer to two main challenges. The first one
is related to the obtained final global optimum. In fact, depending on the starting values used as
centroids, the algorithm will provide results that can show some local optima, but hardly a
verifiably global one. Clearly, some solutions have been proposed [143-145], in order to
overcome this problem. For example, one method is to perform the KM clustering several times,
with different starting values, choosing at the end the best SSE solution. Another way is
represented by the choice of K data point as the initial cluster seeds, or subdivide randomly the
data units into K mutually exclusive partitions and calculate the mean for each of them, in order
to use these values as centroids. Nevertheless, these methods might suffer of the influence of the
initial selected data. By way of example, a further proposed approach is based on a deterministic
method. Once defined a distance I, it is computed the number of data points within I1, defined
to as the density. The group represented by the highest density is chosen as the first cluster. The
remaining clusters are selected by decreasing density, as long as they are at another defined
distance I2 from the already defined seed. The second problem, when using KM clustering, is
given by the estimation of the right number of clusters K [146]. From a general point of view, it
is possible to distinguish between three different kinds of methods. The first one is the
algorithmic method. Normally, it is the operator that decides the number of clusters to be used.
Nevertheless, the algorithm has the opportunity to modify the user-provided value, if some

clusters result to be closer than a certain calculated value, optimizing the partition into K-new
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clusters. The second approach is the graphical interpretation, and probably it is the most used,
despite the weakness of being a highly subjective method. Various K values are attempted, and
the resulting curve is observed. Normally, a ‘flattening’ of the curve indicates the right number
of clusters to be selected. Lastly, one can refers to formulaic methods, in which an equation is
computed across a range of K and the results are investigated with the aim of minimizing or

maximizing the selected criterion, in order to select the right quantity of clusters.

1.4.4. Partial Least Squares Regression (PLSR) and Partial Least Squares-
Discriminant Analysis (PLS-DA)

In spectroscopy it is common the use of the acquired data with the purpose of obtaining
quantitative information. Nevertheless, in order to accomplish this task, it is necessary to have a
potential relation between the measured signal and the response to be estimated and, particularly
from a chemometric point of view, the postulation of a mathematical formulation that can
express, or at least approximate, this relation. In other words, it is mandatory to find a functional
relation f, which can allow quantifying the value of a property y, based on the experimental

measurements of a spectroscopic signal d, as shown in the Equation (6):
y=f(d) (6)

The limitation is that, from an experimental point of view, this function is unknown and so, it has
to be found in an empirical way, by the use of the so-called calibration [147]. In this way, it
becomes possible by the use of an approximation to calculate the experimental value y, based on
the function presented in the Equation (6). Nevertheless, this step can be challenging. In fact, in
order to obtain good approximations, a sufficient number of samples (namely the training set)
showing the properties of interest must be used to train the model and obtain a good robustness.
It is also important to highlight the fact that the function f(d) does not depend only on d, but also,
and more importantly, on the values of some parameters, the coefficients, that are the principal
key related to the quality of the calibration. So, assuming that the function f(d) is linear, as
generally it is in spectroscopy, for an acquisition of m spectral variables, Equation (6) can be

rewritten as:
y=5/\+e=b1d1+b2d2++bmdm+e (7)

where ¥ is the approximation of y related to the linear function defined by the coefficients b,

b2,..., bm and e, the residuals, which explain the difference betweeny and y. The coefficients are
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then calculated by the use of the regression analysis in calibration, using the available pairs of
(d, y) constituting the training set of the data. In order to obtain the best prediction of y through
the measured signal d, normally the most common criterion is based on the use of the
minimization of the residuals, using the least squares [148]. From a general point of view, in a
dataset D containing n samples, for which both d and y are known, the coefficients b, bz, ..., bm
are identical for all the elements, due to the fact that the same functional relation is valid for all
the samples. Therefore, it is possible to express the general formula of y as reported below, in
the Equation (8):

y=V +e=Db+e (8)

where ¥ = Db represents the approximation of the response of y, the column vector b contains
the regression coefficients of b, b2,..., bm and e constitutes the residuals. Lastly, assuming that
there is not difference from a mathematical point of view between building a model for each of
all the single properties of interest and constructing a single one calibration set for the whole

system, Equation (8) can be summarized as:
Y=Y+E=DB+E 9)

As previously described in the manuscript, nowadays different regression approaches can be
used, such as MLR [149]. Nevertheless, without any doubt PLS is the most promising method,
overcoming the limitations of the other methods [116,150]. In fact, MLR faces difficulties in the
situation in which the number of training samples is lower than the number of recorded variables
(an easy scenario, due to the modern instrumentations), and/or when the variables are highly
correlated. Contrarily, PLS uses the information in Y coming from the already compressed data,
so that the scores extracted from D are relevant for describing simultaneously both the variance
in the descriptors and in the properties of interest. In other words, PLS is based on the extraction
of LVs from the Y-block. This is particularly interesting because it means that if multiple
responses are observed at the same time, individual models can lead to different responses
compared with the outcomes obtainable with a single global model, contrarily to MLR approach.
The calculation of a single model for calibrating all the responses at the same time means that it
can contain a part of the information that is related to the systematic variability, i.e., a certain
degree of intercorrelation between the variables. Extracting two sets of scores, one from the
independent and one from the dependent data block, which have maximum covariance, using the
selected components, it is possible at the end to summarize the relevant information in D and Y
as following shown:
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T = DR (10)

U=YQ (11)
Y =UQ" (12)
U=TC (13)

where the columns of T and U, R and Q are the scores and the coefficient matrices of,
respectively, the X-weights and Y-loadings associated with the individual retrieved components
of the original data matrix D. Lastly, C is a diagonal array in which the non-zero elements
represent the inner regression coefficients. Finally, the regression model can be rewritten as in
the Equation (14):

Y = UQ" = TCQT = DRCQ" = DB (14)

where B is the matrix of PLS coefficients. Due to the linearity of the projection, it is possible to
express the regression model that is calculated at the level of the scores, also in terms of the
original variables. In addition, due to the fact that only a part of the information of the original

matrix is used for the regression, the PLS coefficients can be rewritten as:
B = RCQ” (15)

Despite the robustness of PLS, it is important to stress the fact that it is necessary to select the
right number of components to create a model and so, to avoid biased results. Normally, this
procedure is based on the selection of the values leading to the minimum prediction error that is
found using the CV approach [151]. A very interesting aspect of PLS is that a regression problem
can be considered as a classification method in which the class belonging of a sample (the
dependent variable) is to be estimated from the set of variables (such as the spectra) obtained
using a particular instrument. This kind of approach is known with the name of PLS-DA
[123,152,153]. Discriminant analysis is a particular kind of classification approach in which the
main task is to highlight the differences between samples of distinct classes. The multivariate
space is divided into a number Z of subregions equal to the number of the selected categories.
Then, each object is assigned to a particular class, i.e., the one for which the point corresponding
to its measurement vector falls into the region of a particular category. In order to work,
discriminant analysis requires some characteristics. First of all, a training set composed by
samples belonging to all the classes is used, in order to calibrate a balanced model. Furthermore,

it is important that each single sample be assigned to one and only one of the different categories.
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Lastly, it is fundamental to consider that if a sample is not coming from any of the classes (a new
kind of specimen not considered in the initial study), it will be anyway always assigned to one
of the categories, despite the fact that it is misclassified. The principle of this technique is that,
given a data matrix D, it is regressed on a dummy binary-coded response array (namely Y), made
of a set of Z-dimensional row vectors. Taken an object, if it is a member of the zth class, the
corresponding vector will correspond to a 1-value in the zth entry, and 0-value in the other ones.
By way of example, considering a simple case in which only two classes are available, samples
belonging to the first one will be described by a vector [1 0]. In the same way, samples from the
second class will be represented by a vector [0 1]. Once the model is built, new objects will be
assigned to a particular class according with their similarities with the samples already available.

1.4.5. Soft Independent Modelling of Class Analogies (SIMCA)

As previously described, SIMCA [126,154] is a modelling approach, meaning that instead
of highlighting differences between samples belonging to different classes, as in discriminant
analysis, the main task is to capture the similarities among the samples of the same category.
This is the main reason why each class is modeled individually, handling the samples coming
from each category separately and independently from the ones belonging to the other classes.
From a general point of view, a multivariate boundary will be defined for each class, which
delimits a specific region, which will describe a particular category. This means that, if the
projection of a particular sample falls into this region, it will be assigned to that particular class,
otherwise it will be considered as an outlier, and so rejected [155]. In addition, one of the most
interesting aspects compared with the discriminant analysis is that in modelling techniques it is
not mandatory to divide the total original space into the considered classes, because only a
multivariate boundary space for each category is defined. It means that the various class spaces
do not necessarily have to cover completely the totality of the original variable space. In other
words, if using approaches such as PLS-DA one sample will be always assigned to a specific
class, no matter if it is really part of that category or is a completely new element, using
algorithms such as SIMCA, the same specimen can be assigned to one, none or multiple classes.
Also important is that, due to its characteristics, modelling analysis can be used in studies in
which a unique class of interest has to be identified. The concept behind SIMCA is very simple.
Each class is separately defined on the basis of a principal component model of opportune
dimensions. Considering Equation (1) previously introduced to explain PCA, it is possible to

obtain for a specific class ¢, described by a principal component model:
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D.=TPT + E (16)

where D¢ is the sub-matrix of the original data obtained by the use of only the samples being part
of the class ¢, T and P are respectively the matrices of the selected scores and loadings, and E
the residuals not used to create the model. At this point, it is possible to create a multivariate
boundary delimiting the specific class ¢ and, using a distance-to-the-model criterion that is based
on Multivariate Statistical Process Control (MSPC) [156], it is possible to detect if a new
observed sample is part of the considered class or not, depending if it falls within or not the limits
of this space. More specifically, these borders in SIMCA are calculated using two values,
computed observing the score matrix T and the residual matrix E. They are the probability
distributions for the distances within the model spaces (T? statistics) and the orthogonal distance
to the model space (Q statistics). A threshold value corresponding to a precise confidence level
(that statistically is normally equal to 95%) is chosen, and the class space will be calculated by
the Equation (17):

[
0.95 0.9

where T and Q are the statistic values found for a particular sample, while TZ4s and Qg5 are
their corresponding 95% confidence level threshold values. In other words, the Equation (17) is
used to generate the boundaries that will be used to determine if a specific sample is part or not
of the considered class c, if its projection falls within or outside the limits of the statistic results.

1.4.6. Multivariate Curve Resolution (MCR) or signal unmixing

The purpose of MCR methods [157] is to extract the relevant information in a mixture system
to obtain the pure components through a bilinear model decomposition. It means that the
experimental data matrix D of dimensions n x m is decomposed into the product of the
concentration profiles matrix C (n x k) containing the concentration of the pure components
present in the system and their corresponding pure spectral profiles matrix ST (k x m). In this
notation, n represents the mixture spectra in rows measured at m wavelengths that follow the
bilinear model, while k is the number of pure components supposed to underlie D. The algorithm
can be resumed as an extension of the Lambert-Beer’s law, which can be described by the use of
a vector notation as in the Equation (18):

d=cST (18)
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in which d represents the measurement vector (1 x m), ¢ (1 x k) is the vector of the concentrations
and S (k x m) is the matrix of the absorption for each species at each wavelength. An important
aspect in order to use a MCR algorithm is that the system has to describe at least a second-order
data, so a set of n > 2 spectral mixtures at m wavelengths. The MCR model, used when spectral
or calibration information are not available in order to obtain the contribution from the different
pure components [158], will be then described as reported in the Equation (19):
D= ) ST +E=CST+E (19)
k
in which E (n x m) is the residual matrix, containing the variability of D, which is not explained

by the model and should be close to the experimental error. Normally, MCR is also described

graphically as shown below, in Fig. 12:
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Fig. 12 — Graphical representation of a MCR model for a data matrix D containing n mixture spectra at m

wavelengths for k pure components.

There are different approaches that can be used in order to decompose correctly the data matrix
D, mainly grouped into non-iterative and iterative approaches. The first ones are based on
combining information of small sections of the data obtained from global and local rank
information that can contain particular properties, as the presence and/or absence of a particular
component. Just to mention a few, some of the most used methods are Window Factor Analysis
(WFA) [159], Subwindow Factor Analysis (SFA) [160] and Heuristic Evolving Latent
Projections (HELP) [161]. On the other hand, iterative methods start from initial estimates of C
or ST that will evolve to yield profiles with chemically meaningful shapes. Examples are MCR-
ALS [6,162,163] and Iterative Target Transformation Factor Analysis (ITTFA) [164,165].
Iterative methods are probably the most popular and used in chemometrics because they allow

the introduction of external information with the purpose of calculating better results. In fact,
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non-unique solutions are ordinarily obtained through the presence of ambiguities [166], due to
the fact that for a given rank, sets of paired C and ST matrices can bring to the same quality of fit
during the MCR decomposition. By way of example, two of these ambiguities are the intensity
ambiguity, related to the fact that different profiles with the same shape but different relative
scales will fit the results equally well, for which a normalization can be applied to avoid this
behavior, and the permutation ambiguity. However, the most critical kind of ambiguity is
represented by the so-called rotational ambiguity. The basic equation associated with D can be

rewritten as:

D = C(TT 1)sT (20)
D = (CT)(T-1sT) (21)
D= C'ST (22)

where C' = CT, S'T=T-1S'T and in which T represents a rotation matrix. Mathematically C’ and
S'T lead to solutions that will fit the experimental data D equally correctly as the true C and ST
matrices, though C’ and S'T are not the sought solutions from a physical point of view.

For this reason, constraints are applied during the ALS process in order to refine initial
estimates, but also and more importantly, to reduce the possible ambiguities [167]. Constraints
are chemical or physical properties implemented as mathematical conditions with the aim of
driving the MCR optimization to the final solutions, taking care of not introducing wrong
information that could lead to artifacts. They can be grouped into hard and soft constraints,
depending on the strictness to force the optimization process to obtain the MCR decomposition
[168], though nowadays the implementation of physicochemical models make possible to take
together the advantages of both the methods [169,170]. Some of the most interesting and used
constraints are: non-negativity, maybe the most common and used constraint, applied for many
datasets to correct the fact that many signals are naturally positive or zero [164,166,171];
unimodality, in the cases in which only one maximum per profile can exist, as in chromatography
elution time peaks; closure constraints, applied on the rows of the matrix C and normally used in
the reaction systems in order to equal all the elements of each row of the matrix C to a known
constant, summing them [172,173]; selectivity constraints, associated with the concept of local
rank (how the number and the distribution of the components vary locally along a particular
dataset, referring to the fact that in a particular spectral range it can be assumed that a specific
species can exist while others are known to be absent) and related to mathematical features, they

can be applied to all datasets, regardless of their chemical nature [166,174]; equality, using
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chemical information associated with the knowledge of pure spectra or concentration profiles,

when some elements are known, in order to set them to be invariant along the iterative process

[175,176]. Once a constraint has been used and implemented, it will act as the driving force of

the iterative process for the optimization. However, care must be taken using constraints because

also a potentially applicable one could play a negative role if some factors such as experimental
noise or instrumental problems distort the related profile. In order to obtain acceptable results,
the MCR-ALS algorithm is based on the following steps:

1) Determine the rank of the dataset, by the use of PCA [177,178] and the corresponding
calculated eigenvalues [138], as better discussed in the following paragraph. Despite this, one
of the works of the present thesis focused on the description of a different method that is able
to perform this task in a different way based on a well-known algorithm, SIMPLe-to-use
Interactive Self-modelling Mixture Analysis (SIMPLSIMA) [179], named Randomised
SIMPLISMA [180], and better described in the Chapter 2 of this manuscript.

2) Generation of initial estimates (C or ST matrix).

3) Calculate respectively ST or C depending on the previous step using the iterative method
(MCR-ALS) under the right constraints, to avoid any artifact.

4) Starting from the previous results, calculate the other matrix using least squares under
constraints.

5) Using the product of the obtained results, reproduce the dataset D and evaluate its
reproduction.

6) Repeat the procedure from step (3) until convergence.

Normally, convergence is achieved when in two consecutive iterative cycles, relative differences

in standard deviations of the residuals between experimental and ALS calculated data values are

less than a selected value, usually 0.1%. The final quality of the model depends on two important
figures of merit: Lack of Fit (LOF), representing the difference among the input data D and the
data reproduced from the CST product obtained by MCR-ALS, and the percentage of variance

explained (r?), shown respectively in Equation (23) and Equation (24):

i e
LOF (%) = 100x |=—Y (23)
Xijdf
-2 — Yijdiy — Lijel (24)
Xijd

where dij is the spectral value of the mixture i at the wavelength j and ejj is the associated error.
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MCR-ALS has been largely applied to solve many complex matrices in different fields [181—
184] as well as for the resolution of spectroscopic image analysis [185-189]. Again, it is worth
stopping on the same important aspect highlighted in the previous paragraphs, regarding the
investigation of a hyperspectral image. In this case, the three-dimensional data cube of
dimensions x X y x 4 where x and y represent the number of pixels in the two spatial directions
and / the direction of the spectral variables, will have to be unfolded in the corresponding two-
dimensional dataset prior the MCR calculations in order to allow the decomposition of D into
the contribution of the C and ST matrices. In the last step, the C matrix will be refolded in order
to retrieve concentration maps of each pure compound extracted by MCR-ALS, as showed in
Fig. 13:
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Fig. 13 — Graphical representation of an MCR-ALS procedure when applied to hyperspectral images. The cube
needs as a prerequisite step to be unfolded into the product of x and y towards 1 and after the optimization process,

to be folded again into the contribution of the found pure components.

1.4.6.1. Rank evaluation using PCA

The most used method in order to evaluate the rank of a data matrix prior MCR-ALS

analysis, as introduced in the previous paragraph, is based on the observation of the scree plot of
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the eigenvalues associated with principal components obtained by PCA. This method was
introduced the first time by Cattell [138] and it is based on the principle of the meaningful
information expressed by a particular factor (or component). It is displayed as a downward curve
in which eigenvalues are compared on the Y-axis, the most important first, while on the X-axis
are reported the various components. Because the useful information decreases gradually taking
into account the subsequent eigenvalues (as also the distance in the graphic between them), the
strategy is to consider only a limited number of components. Using a scree plot, the choice of
this value is carried out by the interpretation of the curve, in which the right value should
correspond to the ‘elbow’ in the graph, where the eigenvalues level off. In this way, it will be
considered a threshold above which the eigenvalues carry a meaningful chemical information,
leaving out the ones that contain noise and redundant information. Despite the method can seem
easy and immediate, a subjective and arbitrative interpretation is often observed, especially when
noise is significant. Moreover, it also remains very challenging using this method to detect minor
compounds, which result to be very close to the noise level, as in the analysis of complex data

matrices, due to the small value of explained variance related to their information.

1.4.6.2. SIMPLe-to-use Interactive Self-modelling Mixture Analysis (SIMPLISMA)

SIMPLISMA [179] is a pure variable method and particularly, it has been one of the very
first multivariate curve resolution approaches used in spectroscopy [190-192]. Normally, a
mixture consists of hundreds of variables, each of them represented by the contribution of one or
more components. A pure variable is a variable that depends on the contribution of only one
component. The central task of this approach is the selection of the so-called pure variables from
the data matrix D. It is important to stress the fact that using this approach, the presence of pure
components in the matrix is not required as long as pure variables are present. By the use of a
spatial representation, the variables can be presented as vectors, which positions give a direct
measure of the contributions of the components. This means that the purer a variable is, the more
it will coincide with a particular component axis. Furthermore, because the purity of a component
is related to the length on the variable vectors, a variable with a high intensity will be relatively
pure. In this way, the first pure variable will be found by determining the vector with the largest
length in the plot. For a data matrix D with dimensions n x m, the length li of a variable i is, as
shown in the Equation (25):
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2y=1(diy)? (25)

li: m

li is strongly related to the mean of variable i, pi (26), and the standard deviation of variable i, oi
(27), as shown in the Equation (28):

m
=14,
n; = % (26)
m 2
_ Zv:l(di,v - Ui) (27)
Oo; = m
12 = u? + o7 (28)

The first purity value related to a variable i, based on these two statistical tools, is then estimated

with the index p.(l)'

i .

p® = i fori=1,...,n (29)
' Ui +a

The user-defined parameter « avoids giving a high purity value to a variable with a low mean.
This factor will be negligible if the noise is low (high values of wi) and vice versa, in which

situation a will correct the noise influence. Once the first purest variable, the one showing the

highest pi(l)value, is calculated, the second one will be the most independent from the previous

one. It is necessary, in order to calculate it, to subtract the contribution of the first pure variable
(2

from the matrix D before continuing the calculation. A weighting parameter w; )is thus
considered in order to reduce the influence of other variables that would be correlated to the first

pure variable. More details about this parameter are given in other works [193]. The second purity
value pl.(z) related to a variable i is then defined by:

p® = @ 9i fori=1,....,n (30)
Ui +a

i i
Again, the next purest variable has the highest pi(z) value. The following purest variables are of
course obtained by iterating this calculation until the number of variables corresponding to a
given rank is obtained. It is often forgotten that this extraction of pure variables can be done in
both the dimensions of the matrix D. In this way, the selection of variables along the columns of
D allows to obtain the estimations related to the concentration profiles, while using the rows are
obtained the estimations of the purest spectra.
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1.4.7. Multivariate Image Analysis (MIA)

The main limitation using chemometric approaches is that a given data cube has to be
unfolded in the corresponding two-dimensional dataset before any analysis, as previously stated.
In this way, the problem is that the spatial information is completely lost, leading to an incomplete
exploitation of the real potentials of this kind of matrix. In chemometrics, the analysis and
interpretation of a chemical image has always mainly been based on the spectroscopic part of the
data, and not the spatial information related to the image. Each pixel is considered as an
independent sample, and the whole image is represented as a set of vectors of intensity values.
Multivariate Image Analysis (MIA) is a particular kind of field of chemometrics in which the
main task is to represent the results in a graphical way, trying to give a new interpretation to the
original data cube [194-196]. Nevertheless, also this kind of technique focuses only on the
spectral information. In fact, the first applied operation using MIA is the unfolding step of the
three-dimensional matrix. Then, different chemometric approaches can be applied (e.g., PCA,
MCR-ALS, etc.), considering each pixel as a single and independent sample in the dataset.
Finally, each pixel model component obtained from the multivariate analysis can be refolded to
the original spatial structure and represented as a false-color image with the same dimensions as
the original image. This means that this kind of procedure does not find a solution in using the
spatial information obtainable from the image, in which normally one could assume that neighbor
pixels can easily show correlations and anti-correlations from the chemical and physical point of
view. Nevertheless, using MIA is possible to observe the results coming from different
chemometric approaches, such as PCA, on the folded image, in order to lead to a more practical

interpretation of the distribution of the various components present in the sample of interest.

1.4.8. Wavelet transform

Despite the variety and vastness of chemometric techniques nowadays used in hyperspectral
image analysis, it seems that it is impossible to use equally both the spectral and spatial
information of an investigated sample. As explained, the main constraint when observing this
kind of matrix within the use of chemometrics is the mandatory unfolding procedure of the data
cube into its corresponding two-dimensional dataset. Despite this, by the use of this procedure
the totality of the spatial information is lost, leading to a limited use of the information related to
the image. Nevertheless, the interest in this problem has been recently in the spotlight of many
research studies. Different ways to deal with this limitation have been investigated, but one of

the most interesting ones is for sure related to the use of the wavelet transform algorithm.
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Generally, wavelet transform [197,198] shows many similarities with Fourier Transform (FT)
[199]. Both of them can be used with the goal of obtaining a signal or image clearance and
simplification. Fourier analysis has been first used in the framework of the signal analysis varying
with time and it results to be useful because the content of the frequency of the signal is of great
importance. Despite this, the drawback of the FT technique is that transforming a signal in the
corresponding frequency domain, time information is lost and so, it is impossible to tell when a
particular event took place. Differently, wavelet analysis overcomes this aspect by the use of a
windowing technique with variable-sized regions [200]. Particularly in spectroscopy, this
peculiarity confers a great importance to the wavelet transform, which is related not to the time
domain, but to the wavelengths one. One major advantage of the wavelets is the ability to perform
local analysis, namely to analyze a localized area of a larger signal. Mathematically, the FT
equation F(w), where o is the frequency, is the sum over all time of the signal f(t) multiplied by
a complex exponential, as shown in Equation (31). Contrarily, the first kind of studied wavelet,
called Continuous Wavelet Transform (CWT), is defined as the sum over all time of the signal
multiplied by scaled, shifted versions of the wavelet function y, as shown in Equation (32):

F(w) = f f(t)e Jotdt (31)

C(scale,position) = Jf(t)lp(scale,position, t)dt (32)

The CWT can operate at every scale, but the con is that in this way an awful amount of data will
be generated. For this reason, the Discrete Wavelet Transform (DWT) was introduced, in order
to save the low-frequency contents, which contain the signal identity, removing the rest of the
unnecessary information [201], using low- (g) and high-pass (h) filters, as reported in Equation
(33):

oo

yinl = e x gl = ) xlklgln— K (39

k=—c0
where x is a particular signal and g is the impulse response of the applied low-pass filter. This
procedure is performed by the decomposition of the signal into a mutually orthogonal set of
wavelets, leading to the elimination of the redundancy in coefficients, though subsampling is
operated by this step, leading to the removal of half the frequencies of the signal, and so half the
samples, according to Nyquist’s rule. Finally, Stationary Wavelet Transform (SWT) was
designed to overcome the lack of translation-invariance of DWT, removing its downsampling,

and upsampling the filter coefficients by a factor of 20V in the jth level of the algorithm [202].
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By the use of this algorithm, the output of each level of SWT contains the same number of points
as the input, contrarily to DWT. The comparison of the two mechanisms is shown in Fig. 14:

a) Discrete wavelet transform (DWT)
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Fig. 14 — General schemes for a) Discrete Wavelet Transform (DWT) and b) Stationary Wavelet Transform (SWT).
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Moreover, an improvement of DWT (and so SWT) compared with CWT is that various wavelet
families presenting different wavelet functions y have been introduced, with the aim to better fit
the kind of signal to be interpreted [203,204]. One example is the first and simplest one, the Haar
wavelet, which is represented by a discontinuous and step-size function. Despite this, the
Daubechies family remains the most used nowadays, which is a set of compactly supported
orthonormal wavelets. Another interesting family is represented by the biorthogonal function,
which exhibits the property of linear phase. Particularly, this kind of approach uses two wavelets
(one for the decomposition and another one for the reconstruction), which results to be useful in
the context of the signal and image reconstruction, showing interesting properties. Finally, during
this PhD has been explored a way to use wavelet transform in the framework of hyperspectral
image analysis. In fact, in the Chapter 5 of the present manuscript, it will be discussed the
exploitation of this same principle applied to images extracted from hyperspectral data cubes for
a better consideration of the spatial dimension of the cube merged together with the

corresponding spectral part of the data.
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CHAPTER 2






2.0N THE SELECTION OF THE MOST IMPORTANT
INFORMATION IN HYPERSPECTRAL IMAGE ANALYSIS

2.1. General overview of the challenge in selecting the most

Important variables/spectra in hyperspectral imaging framework

As discussed in Chapter 1, hyperspectral image analysis has surely broadened the horizons
of the investigation in many different research areas [38,56,73,76,78,205]. Nevertheless, the use
of this technique leads also to the possibility of generating a huge amount of data, which need to
be filtered and observed with the right techniques, in order to keep all the important information,
preventing the loss of very specific details [29,106,206]. Over the years, chemometrics has been
used for this challenge, trying to maximize the quality of the obtainable results in this context,
using various algorithms and strategies. One part of this PhD has been focusing in this aspect,
trying to understand how to help in this delicate and fundamental task. From a general point of
view, by way of example, PCA is nowadays vastly used in many exploration analyses, with the
aim of obtaining a main idea about the chemical structure of complex matrices [6,137,207]. In
addition, this chemometric tool can be used to reduce the dimensionality of the dataset, selecting
only the most important and meaningful variables, as well as find and remove outliers present in
the matrix. Nevertheless, PCA is based on the interpretation of the operator, reason why it can
lead to inaccurate results. In addition, the division of the information into the different PCs is
based on the total explained variance. This means that if very specific, but few spectra are
showing some information that is pure and different from the rest of the data, they might be lost,
due to the fact that the total variance that they express very low compared with the rest of the
data in the matrix. This is a very common scenario in hyperspectral imaging, where hundreds to
thousands of spectra can be easily acquired. Another method that is vastly used for the distinction
of the various chemical groups into a matrix is KM clustering [143,208]. As previously described,
this approach separates the classes of components using as criterion the distance of each
spectrum, considered as a point in the multidimensional space, from the different centroids, that
are in a first step randomly selected. Then, in an iterative way, the centroids are recalculated
using the identified clusters obtained in the first step, and so each point is assigned again to the
new, closer class. This procedure is repeated until the moment that any spectrum cannot be
anymore moved from one cluster to another. Naturally, some issues can be faced. First of all, the

operator needs to select the right number of classes to be considered, and so the number of initial
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centroids to be used. It means that, if the starting selected value is not right, the clustering will
lead to a certain degree of inaccuracy, and samples of different nature will be considered to
contain the same information, or vice versa, samples of the same class will be split into different
groups. In addition, also the starting selected clusters could lead to wrong results, due to some
computational mistakes given by the initial used values. Nevertheless, as already discussed,
nowadays some methods to help the operator in these tasks are available. Anyway, it is important
to stress the fact that is fundamental to carefully use this method, because a lack of attention
could lead to unsuitable outcomes, as for PCA. Lastly, KM clustering can be affected by some
ulterior problems. Considering hyperspectral image analysis, as already explained, it is possible
to obtain an enormous quantity of produced data. In this kind of situation, it is an obvious
statement that some classes can be represented by a small number of spectra or that pixels being
part of two or more different families can show very similar spectral information and so be

erroneously grouped together, as described in Fig. 15:
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Fig. 15 — Graphical representation of two common problems when KM clustering is used as classification method.

In this scenario, the possibility of missing particular clusters is very common, and it can result
very challenging to find the right experimental values. Lastly, MCR-ALS is for sure one of the
most interesting approaches currently used in hyperspectral imaging [33,209]. In fact, one of the
main requested tasks in many research areas is the spectral unmixing of the matrix of interest
into its corresponding pure components. Finding a way to separate and observe the signal
contributions of the different elements composing a matrix is a very important mission nowadays,
but it can be more challenging than expected. As introduced, MCR-ALS is a procedure that in

an iterative way refines the obtained results to eventually yield profiles with chemically
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meaningful shapes. In order to do this, the algorithm is based on some important steps. First of
all, similarly to the previous explained PCA and KM clustering, it is fundamental to determine
the right rank of the dataset, i.e., the right number of pure components present in the sample. This
procedure is normally conducted by the use of PCA and the observation of the corresponding
eigenvalues of the extracted PCs. Again, this procedure is made by the operator and so, it can be
affected by an experimental error. In fact, due to different reasons (e.g., the noise level of the
acquired data, the presence of minor compounds, which explain a low quantity of information,
etc.) it is not always easy to determine the right number of components, leading to inexact
outcomes. Also important is that MCR-ALS is based on the use of initial estimates in order to
drive the computation of the results, and so calculate the pure matrix concentration profiles C
and their corresponding spectral profiles ST, respectively. Normally, initial estimates can be
calculated by the use of some algorithms. Currently, one of the most used approaches in the
routine analyses is SIMPLISMA [192], as previously described. Nevertheless, if some inputs are
incorrect, as the rank of the matrix, the initial estimates could not perfectly fit the resolution of
the unmixing procedure, leading to problems in the decomposition of the signal into the pure
contributions of the original data.

As introduced, the purpose of this chapter is the description of the work that has been
conducted during this PhD to face this kind of problem, i.e., the selection of the most important
information in a complex matrix. In brief, two different lines will be investigated. First, this
manuscript will focus on the use of SIMPLISMA in a new and more intuitive way, in order to
facilitate the task of the optimal rank selection and extract the purest contributions to be used as
initial estimates for the MCR-ALS calculation. This will be the opportunity to introduce the first
publication resulting from this thesis work. Then, a second part of the chapter will be dedicated
to LIBS imaging. This kind of instrumentation is related to very interesting characteristics that
make it very suitable for different chemical areas. For example, LIBS shows a high acquisition
rate (up to 1000 spectra/s), and a high sensitivity (major elements to traces can observed).
Nevertheless, these aspects can result to be a problem. First of all, it is not easy to deal with a
huge amount of data as in LIBS imaging, where millions of spectra can be acquired in a short
time (this aspect will also be better described in the Chapter 4 of the present manuscript). In
addition, despite the fact that minor compounds can be observed, this task can be very
complicated because these pure spectra are represented by a very small quantity of pixels
compared with their totality. For this reason, KM clustering was applied in a specific way, trying
to overcome the problems faced by a typical investigation and extract more details, i.e., classify

major, minor compounds and even trace elements.
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2.2. Randomised SIMPLISMA: Using a dictionary of initial
estimates for spectral unmixing in the framework of chemical

imaging
2.2.1. Introduction

SIMPLISMA is a very suitable algorithm in MCR-ALS framework used with the aim of
obtaining the initial estimates for the signal unmixing procedure. Nevertheless, it is mandatory
to give as an input an optimal rank in order to extract the purest variables and use them in an
iterative approach to refine the final results. Normally, the rank estimation is carried out by the
investigation of the eigenvalues obtained by a first exploratory analysis using PCA. The
limitation shown by this procedure is that if some components are present as few pixels, or with
a signal close to the signal-to-noise ratio, it can lead to results that are underestimating the
complexity of the original observed matrix. In the same way, considering a rank higher than the
real one, this could lead to the extraction of wrong profiles. The first work here discussed, and
published in Talanta, Volume 217 (2020) [180], shows an alternative way to use SIMPLISMA.
The main purpose using this approach is the one of selecting first the right rank using a graphical
interpretation in the PCA space, and then extract the information obtained from the different
groups, in order to use the pure spectral signals as initial estimates to obtain at the end the signal
unmixing using MCR-ALS. Randomised SIMPLISMA (this is the given name to the presented
approach) has shown interesting results, a good rapidity of calculation, and particularly, it can be
used in cases in which SIMPLISMA can experience difficulties, such as the investigation of big
datasets. Nevertheless, it is important to understand that also randomised SIMPLISMA is
influenced by the operator decisions, so it is not an error-free method. On the other hand, offering
a graphical interpretation based on the distribution of the purest pixels into the PCA space (as
explained in the corresponding paper), this method can clearly be considered a good alternative
to deal with, in particular, complicated situations. By way of example, randomised SIMPLISMA
can be used when a complex matrix is investigated, in which doubts regarding the real rank of
the dataset may arise (e.g., if some minor components related to a small number of pixels are
present). Another situation in which this approach has been applied is given by the case in which
the dataset is made by thousands (or millions) of spectra. In this case, SIMPLISMA, as other

algorithms, can face some issues due to calculation problems.
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Keywords: Hyperspectral imaging opens the opportunity in analytical chemistry to investigate always more complex
MCR-ALS samples by the use of Multivariate Curve Resolution — Alternating Least Squares (MCR-ALS) and other signal
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unmixing techniques, but not without difficulties. Nowadays, one of the principal challenges regarding this kind
of analysis is the awkward estimation of the correct chemical rank of the dataset, which represents the total
number of pure compounds present in the chemical system. Despite the existence of various algorithms able to
focus on this rank evaluation, the method very often used for this task is finally quite simple since it is based on
the observation of the eigenvalues generated by the Principal Component Analysis (PCA). Although this method
has shown some potential for rank evaluation, it is still difficult to use it on complex and big datasets or when the
signal to noise ratio is relatively weak. In this paper, we introduce a new method, based on the SIMPLE-to-use
Self-modeling Mixture Analysis (SIMPLISMA) algorithm that we call Randomised SIMPLISMA. The main idea is
thus to use random selections of spectra from the initial dataset and to apply the SIMPLISMA approach to each of
them. At the end of this step, all selected spectra are observed using PCA where observed clusters can potentially
be highlighted and exploited for the tasks we are interested in. With the present paper, we want to highlight in
particular the possibility of an easier rank estimation and initial estimates generation when this approach is
considered. Datasets of different complexity acquired with various spectroscopic techniques will be explored in

Rank estimation
Initial estimates
Hyperspectral imaging
Big dataset

order to evaluate the potential of this approach.

1. Introduction

Nowadays, hyperspectral imaging is a useful technique employed in
analytical chemistry with the aim to deeply investigate complex ma-
trices of various types [1-6]. In this perspective, one of the most im-
portant tasks is to decompose the spectra of mixtures into purest con-
tributions of the components present in the matrix [7-11]. Among all
the available techniques used with the purpose of spectral unmixing
(also called source separation method in the signal processing com-
munity), Multivariate Curve Resolution — Alternating Least Squares
(MCR-ALS) [12-15] is probably the most suitable method applied in the
chemometrics community, as shown in many works, to datasets ac-
quired with various techniques, for instance, separation methods
[16-18], and different spectroscopies such as Raman [19,20], UV-Vis
[21,22], Mid-Infrared (MIR), Near Infrared (NIR) [23-26], fluorescence
[27] and even on very specific techniques such as ion mobility spec-
trometry (IMS) [28]. In a natural way, MCR-ALS is also widely applied
to the resolution of hyperspectral images [29-32]. The basic assump-
tion of MCR-ALS is that the considered data matrix or the

* Corresponding author.
E-mail address: ludovic.duponchel@univ-lille.fr (L. Duponchel).

https://doi.org/10.1016/].talanta.2020.121024

multicomponent system has to follow a bilinear model in order to
propose its decomposition into the pure individual contributions of
concentration profiles and corresponding pure spectra. Despite this
great potential, it is well-known that non-unique solutions can be po-
tentially extracted through the presence of rotational ambiguities. This
lack of trueness is due to the fact that different sets of pure individual
contributions can reproduce the original dataset with the same fit
quality. To avoid as much as possible this uncertainty, different con-
straints can be applied to MCR-ALS in order to force the concentration
and spectral profiles to obey certain conditions, as described in many
works [33-38]. For instance, non-negativity is the most natural and
classical constraint applied in the field of signal unmixing. Another
important aspect regarding the use of the MCR-ALS method, but also all
source separation methods, is the evaluation of the rank of the data
matrix, i.e. finding the appropriate number of pure components present
in the system. This task is particularly crucial with MCR-ALS, because it
is not nested, contrarily to Principal Component Analysis (PCA) [39]. It
means that if the selected rank is incorrect, the algorithm could lead to
the extraction of wrong profiles even in the case of a rank
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overestimation. The commeon method used to achieve this task is the
observation of the eigenvalues generated by PCA [40]. In a second step,
we must also generate initial estimates of pure spectral profiles or
concentration profiles which will be refined afterword by the MCR-ALS
algorithm. It is generally managed by the use of the simple-to-use in-
teractive self-modeling mixture analysis (SIMPLISMA) [41], a tech-
nique based on the concept of variable purity. In general, this tool can
lead to good initial estimates though there is not any guarantee about
the positivity of the solution. Nevertheless, these guesses can be used as
a starting point and refined during the MCR-ALS process. Despite the
effectiveness of SIMPLISMA, it can nevertheless show weaknesses, for
instance with complex chemical systems, but also when the signal to
noise ratio is limited. Moreover, SIMPLISMA cannot sometimes be
simply applied when the number of spectra is too large.

The aim of this work is to present an alternative approach based on
the SIMPLISMA algorithm, called randomised SIMPLISMA leading to an
easier estimation of the rank by the simultaneous use of a pixel-pulling
technique and the SIMPLISMA algorithm. Then a graphical exploration
of the selected pixels in the PCA-space will allow us to estimate the rank
but also observe groups of pixels from which initial estimates will be
generated. In order to show the potential of this approach, three dif-
ferent datasets obtained from different instruments (Raman, Auto-
fluorescence and EDX) were selected and processed by the use of ran-
domised SIMPLISMA with the aim of investigating the number of pure
components in the data matrix and the generation of initial estimates
necessary for MCR-ALS calculations. The last step will be the extraction
of all pure contributions on the basis of the information extracted by
our method.

2. Material and methods
2.1. Multivariare curve resolution — Alternating Least Squares (MCR-ALS)

The purpose of Multvariate Curve Resolution methods [42] is to
extract the relevant information in a mixture system to obtain the pure
components through a bilinear model decomposition of the experi-
mental data matrix D of dimensions n » m into the product of the
concentration profiles matrix € (n * k) containing the concentration of
the components present in the system and the corresponding spectral
profiles matrix 8T (k = m). In this notation, n represents the mixture
spectra in rows measured at m wavelength that follows the bilinear
model, while k is the number of pure components supposed to underlie
D. The algorithm can be resumed in equation (1), that represents the
multiwavelength extension of Lambert-Beer's law in a matrix form:

D=CST+E ey

with E the residual matrix, containing the variability of D which is not
explained by the model and should be close to the experimental error.

As discussed in the Introduction, in order to obtain acceptable re-
sults, the MCR-ALS algorithm needs first the rank evaluation and
second the generation of initial guesses of the pure components without
requiring prior information about the composition of the sample. These
tasks will be discussed in the next sections. Furthermore, constraints are
applied during the ALS process in order to refine initial estimates, but
also and more importantly, to reduce rotational ambiguity due to the
non-uniqueness of the pure component MCR decomposition. The final
quality of the model depends on two important figures of merit: Lack of
Fit (LOF), representing the difference ameng the input data D and the
data reproduced from the CST product obtained by MCR-ALS and the
percentage of variance explained (%), shown respectively in equations
(2) and (3):

)
y €

LOF (%) = 100 o
2, dj (2)
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where dy is the spectral value of the mixture i at the wavelengthj and ey
is the associated error. It is worth stopping on another important aspect
regarding the investigation of a hyperspectral image in the MCR-ALS
framework. In this case, the three-dimensional cube of dimensions
X X ¥ X A where x and y represent the number of pixels in the two
spatial directions and A the direction of the spectral variable will have
to be unfolded prior MCR calculations in order to allow the decom-
position of D into the contribution of C and 8T matrices. In the last step,
the ¢ matrix will be refolded in order to retrieve concentration maps of
each pure compound extracted by MCR-ALS.

?’2'

2.2, Rank evaluation using PCA

As already discussed, the most used method in order to evaluate the
rank of a data matrix prior MCR-ALS analysis is based on the ob-
servation of the scree plot of the eigenvalues associated with principal
components obtained by PCA. This method was introduced the first
time by Cattell [42] and it is based on the principle of the meaningful
information expressed by a particular factor (or component). It is dis-
played as a downward curve in which eigenvalues compare on the Y
axes, the most important first, while on the X are reported the various
components. Because the useful information decreases gradually taking
into account the subsequent eigenvalues (as also the distance in the
graphic between them), the strategy is to consider only a limited
number of components. Using a scree plot, the choice of this value is
done by the interpretation of the curve, in which the right value should
correspond to the ‘elbow’ in the graph, where the eigenvalues level off.
In this way, we try to set a threshold above which we will consider
significant eigenvalues that carry chemical information. Despite the
method can seem easy and immediate, a subjective and arbitrative in-
terpretation is often observed, especially when the noise level is sig-
nificant. Moreover, it alse remains very delicate with this method to
detect minor compounds that are then very close to the noise level.

2.3. Simple-to-use interactive self-modeling mixnme analysis (SIMPLISMA)

SIMPLISMA [41] was one of the very first multivariate curve re-
solution methods used in spectroscopy [44-46]. It is based on two basic
statistical tools which are the mean and the standard deviation. In fact,
the central task of this approach is the selection of so-called pure
variables from the data matrix D. A pure variable is a variable that
depends on the contribution of only one component. The first purity of
the variable i is then estimated with the purity index pi(l):

& Jori=1,&n

) —
p. -
it a (4)

H

with g, = % and @ = ,,M fori = 1, ..,n (5

The user-defined parameter « avoids giving a high purity value to a
variable with a low mean and therefore could only be noise. Then the
first purest variable will have the highest pflj value. In a second step, it
is necessary to subtract the contribution of this first pure variable from
matrix D before continuing the search for a second pure variable. A
weighting parameter w® is thus considered in order to reduce the in-
fluence of other variables that would be correlated to the first pure
variable. More details about this parameter are given in other works
[47]. The second purity pi(z) of a variable i is then defined by:

p? = w2

Jori=1 &, n

pta (6)
Again, the next purest variable has the highest pf.@) value. The fal-
lowing purest variables are of course obtained by iterating these cal-
culations until the number of variables corresponding to a given rank is
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Fig. 1. Principle of the randomised SIMPLISMA approach.

obtained. It is often forgotten that this extraction of pure variables can
be done in both dimensions of the matrix D. In this way, the selection of
variables along the columns of D allows us to obtain estimates of con-
centration profiles while following the rows we obtain estimates of
purest spectra. We will consider the latter case in this work because we
potentially have a higher probability to select purest pixels for the
considered spectroscopies.

2.4. Randomised SIMPLISMA

The main concept of the proposed randomised SIMPLISMA ap-
proach is very simple because it is based on random pixel selections on
which SIMPLIMA will be applied. Thus it can be resumed in four steps,
as reported in the scheme in Fig. 1:

1) The first and fundamental step is to generate z random subsets of the
whole dataset, with the idea of taking a small percentage of all
pixels in the matrix D. In this way, we give all pixels a chance to be
explored whether they belong to a major or minor class of com-
pound.

2) Then the SIMPLISMA algorithm is applied to each generated subset.
However, because we don't want to fix the rank in advance, SIMP-
LISMA is systematically applied to each subset considering a varying
number of pure contributions k from 2 to k... At this level, k pixels
are selected per subset, which represent a total number of selected
spectra at most equal to zk. However, the total number of selected
pixels is often much weaker since identical spectra can be selected
from different subsets.

3) In the next step, the new dataset of selected pixels is explored with
PCA. Natural groupings of pixels corresponding to pure compounds
are then observed in scores plots. The idea is then to count these
clusters in order to estimate the rank. Given the rank, spectra be-
longing to a specific class of compound are selected by hand in the
scores plot. In this way, we can say that we generate a dictionary of
spectra for each pure compound in the investigated chemical
system. We are fully aware that our approach based on visual in-
spection may appear subjective. So naturally we could say that an
automatic cluster analysis should be used. Nevertheless, we know
that the literature is full of so-called ultimate metrics to

automatically count the number of clusters in an optimal way. The
only problem is that there is an optimal metric for each considered
data set, which adapts to the variations in point densities in the
clusters but also to their insect structures, which are not always
Gaussian. It is for all these reasons that we have preferred a visual
approach which is finally no more debatable than an arbitrarily
chosen metric.

4) In order to exploit the results of the previous step, the mean spec-
trum of each dictionary can be used as an initial guess in MCR-ALS.

2.5. Dataset #1

The first dataset corresponds to a Raman analysis of an oil-in-water
emulsion sample. It has been acquired by Andrew et al. [48]. The data
cube consists of 60 pixels by 60 pixels corresponding to a 1 pm?* area
each on the sample surface. The spectral range is between 950 cm ™!
and 1800 ! corresponding to 253 wavenumbers. Further details about
the instrumental and acquisition setup may be obtained through the
original work [48].

2.6. Dataset #2

The second dataset has been acquired using an auto-fluorescence
imaging microscope. It is focused on the growing process of wheat
plants, a precise stage of the wheat grain development being in-
vestigated. The freshly harvested grain samples were frozen and cut in
the equatorial region using a cryotome (HM 500 OM, Microm) into
20 pum cross-sections. The sample was analyzed using a confocal laser-
scanning system (Al, Nikon) equipped with an x40 objective for
confocal imaging in order to obtain an auto-fluorescence response.
Three excitation wavelengths have been considered: 375 nm (UV),
488 nm (blue) and 561 nm (green). As a consequence, three hyper-
spectral images have been acquired by collecting emitted light from 404
to 714 nm for the UV excitation, 504-744 nm for the blue excitation
and 574-744 nm for the green one with a 10 nm step between spectral
variables. The size of the image is 512 pixels by 512 pixels (0.62 pm per
pixel) corresponding to a total of 262,144 emission spectra for 75
variables, obtained by a data augmentation strategy apply on the wa-
velength dimension from each excitation wavelength range. Further
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details of this specific dataset are described in the work of Ghaffari et al.
[49].

2.7. Dataset #3

The last dataset is a hyperspectral image of two cancer cells treated
with a bromine-containing prodrug. More specifically, P31 cells were
grown a gold-coated silicon wafer. Spectra have been acquired with a
Fei Quanta 200 electron microscope with an EDX detector. Scanning
electron microscope images were obtained in secondary and back-
scattered electron mode using an acceleration voltage of 5 kV. The size
of the image is 101 pixels by 176 pixels, with a size of 0.4 pm per pixel,
for a total of 17,776 emission spectra for 13 spectral variables, corre-
sponding to 13 different elements (Au, Br, C, Ca, Cl, K, Mg, N, Na, O, P,
Pd, S). Further details about the dataset are described in the work of
Ofner et al. [50].

3. Results and discussion
3.1. Dataset #1

Before entering into a real chemometric exploration of a hyper-
spectral dataset, it is always interesting to generate a global integration
image. This procedure is very simple since it consists of the summation
of all intensities for each pixel over the whole spectral domain. Of
course, we lose the chemical information but it is nevertheless possible
to observe structures within the explored sample. The global integra-
tion image of the oil-in-water emulsion is presented in Fig. 2. In-
tuitively, it is possible to recognize at least three structures: a big drop
(upper left area with highest intensity values) in contrast with a sur-
rounding area (lowest values of intensity) and a less well-defined area
in the lower right part of the image. Logically and without taking too
much risk, we can imagine having drops of oil and the aqueous phase.
Furthermore, the border of the drop shows different levels of intensity
compared with its internal part, which could suggest the potential
presence of a more complex chemical structure. To get a better idea of
the complexity of the dataset, an investigation by using PCA is per-
formed (Fig. 3). More specifically, Fig. 3a presents the first 8 score maps
in decreasing order of explained variance. The first 7 components seem
to have structures even if the last ones are rather noisy. Beside PC1 and
PC2 that mainly describe the big drop, some specific aspects are high-
lighted: as an example, PC3 focuses on two small drops while PC5 and
PC6 seem to describe the oil-water interface. The remaining PCs contain
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Fig. 2. Global integration image of Oil-in-water emulsion dataset.
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supplementary information, but the amount of noise hinders a mean-
ingful interpretation at this level. Of course, another aspect of PCA is
the observation of eigenvalues in order to potentially estimate the rank
of the considered data cube. However, we quickly observe in Fig. 3b
that the rank evaluation is difficult due to a smooth decrease of the
eigenvalues in the scree plot. Indeed, it is quite impossible to select a
threshold above which we could consider significant variances from
chemical compounds alone. It is also interesting to represent all spectra
in a three-dimensional representation of scores along PC1, PC2, and
PC3, which we often do in chemometrics but finally not very much in
the specific framework of imaging. From Fig. 3¢, we quickly understand
that it is indeed very difficult to extract information despite a dataset
with not so many spectra. Thus, even if PCA usually allows us to esti-
mate the rank, it remains difficult here to propose unambiguously a
number of pure compounds present in this chemical system from all
previous representations. However, it is interesting to know that despite
these conflicting elements, a rank of 4 is often used for this particular
dataset.

After this first conventional chemometric investigation, we now
want to show what our strategy can bring to the exploration of this
same dataset. In a first pixel resampling step, 1000 datasets have been
generated by randomly selecting 10% of pixels from the whole dataset
(i.e. 360 pixels on a total of 3600 in this case).

We can then ask ourselves the question of this specific choice for
these two parameters, which will be approximately the same for the
other two data sets. First of all, we observed that at least 500 subsets
were needed to observe reproducible results if the whole procedure was
replicated several times. Second, regarding the percentage of selected
pixels, a value below 10% did not allow the observation of minor
compounds, while a higher value densified the clusters in such a way
that they tended to overlap or even merge into a single one. As a
conguence, more than 500 subsets and 10% of selected pixels was a
good compromise for all the explored data sets in this work.

The second step of our strategy was to apply randomised SIMPLI-
SMA to each of the 1000-pixel subsets for different values of k, i.e. the
number of purest pixels extracted with SIMPLISMA. The idea is not, of
course, to set the value of k in advance, since one of the objectives of
this method is specifically to determine its optimal value. We will,
therefore, observe the evolution of pixel selection as the value of k in-
creases. Fig. 4a shows a PCA of all the purest pixels selected from the
1000 subsets for k = 3. Only 150 spectra are finally present in the score
plot because many of them have been selected several times in different
subsets. On theory, we could effectively extract 3 x 1000 spectra from
the initial dataset. Then, we notice that pixels are organized in 4 clus-
ters in this PCA space. It is precisely the principle of this approach to
consider each cluster as a representation of a pure compound allowing
some variations around a mean point. In this way, we have a kind of
spectral dictionary for each of them. It is also interesting to see in
Fig. 4a more differences between eigenvalues in the corresponding
scree plot compared with Fig. 3b. Thus at this stage, we detect at least 4
chemical species. The idea is now to look at the evolution of the pixel
selection when the k value increases. Thus for two successive values of
k, any appearance of a new cluster would correspond to the detection of
the new family of a compound and therefore mechanically to an in-
crease of the rank. Fig. 4b shows PCA results when considering si-
multaneously purest pixels for k = 3 (in blue) and k = 4 (inred). By the
way, 220 over 3600 spectra are now selected when k = 4. It should be
noted that most of the red dots (k = 4) are projected into clusters al-
ready described by blue dots (k = 3). Nevertheless, a number of spectra
(in red) are located in a new area represented by a solid line ellipse.
Thus a new compound is detected. In Fig. 4c, the comparison of the
pixel selections between for k = 4 (in blue) and k = 5 (in red) high-
lights the presence of a new cluster (also represented by a solid line
ellipse). If we continue this process, pixel selections between fork = 5
(in blue) and k = 6 (in red) are compared in Fig. 4d. Again, a number of
red dots are located in a new area of the PCA space highlighting a new
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Fig. 3. Principal Component Analysis of the Oil-in-water emulsion dataset. a) The first eight score maps. b) The scree plot of eigenvalues. c) A three-dimensional

representation of scores along PC1, PC2, and PC3.

class of compounds. At this step, a rank of 7 is considered. At the same
time, we see that the corresponding scree plot shows clearer differences
between the eigenvalues on which we could begin to consider a
threshold. From these first results, we could easily believe that simply
increasing the value of k is enough to increase the number of clusters
and thus the chemical rank. This is not the case as we can see in Fig. 4e
where pixel selections between k = 6 (in blue) and k = 7 (in red) are
compared. Indeed, all red dots are projected in all areas already defined
by the previous calculations. In this way, we observe a certain stabili-
zation of the cluster structure. Thus, we can say that the pixel selection
obtained for k = 6 with its 7 clusters is a good representation of the
complexity of the dataset. We now propose to look in detail at each of
these 7 clusters. Fig. 5 shows the spectra contained in each cluster in
overlay mode and their localization (yellow pixels) on the sample sur-
face. Thus for each of the clusters, we first notice a good consistency
between the spectra. With regard to spatial distributions, it is already
observed that some classes are located on specific parts of the emulsion.
For example, class 1 is specifically located on two small drops, class 3
seems to describe the inside of the largest drop, and classes 2 and 7 are
located on the edge of the large drop. It is more difficult to define a

location for the other three classes, but we can still say that the aqueous
phase must be part of it. We must not lose sight of the fact that our
approach aims to select the purest pixels. In other words, the spectra
shown in Fig. 5 can be weakly mixed, which makes the task of spectral
interpretation all the more difficult. It is in this sense that the MCR-ALS
method is then used to refine these solutions.

As part of the MCR-ALS method, we now need initial guesses of
spectra for each of the 7 classes. For simplicity, we use here the average
spectrum of each class. It is interesting to compare these 7 spectra with
the 7 estimates that could be obtained directly with SIMPLISMA on the
whole dataset of 3600 spectra (figure S1 in supplementary material). It
is then not difficult to see that a better signal-to-noise ratio is obtained
on the generated spectra with randomised SIMPLISMA.

Finally, Fig. 6 shows the MCR-ALS results considering different
configurations. In the top and the middle panel, a rank of 4 and 7 have
been respectively considered with an estimation of initial guesses ob-
tained from the standard SIMPLISMA algorithm on the whole dataset.
The bottom panel shows the MCR-ALS decomposition when initial es-
timates are generated from randomised SIMPLISMA. If we look at the
rank of 4, we see that the first pure chemical map describes the small
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drops, the second and third ones the big drop and its edge, and the last
one the aqueous phase. A lack of fit and R? values of 7.76% and 99.29%
are respectively obtained in this econdition which is not so bad for the
considered signal-to-noise ratio. If we now look at the results obtained
for a rank of 7 for the two strategies (i.e. the classical and randomised
SIMPLISMA), almost the same figures of merit are observed (LOF =
3.23%, R% & 99.65%). Contributions 1 and 3 are very similar to those
previously obtained with a rank of 4. The greatest change is observed
for the description of the border of the drops since three distinct con-
tributions are now extracted {contributions 2, 4 and 7) against only one
in the previous resolution. As for contribution 6, it seems a priori
questionable because it is not particularly structured but the cotre-
sponding pure spectra (bold curves, figure 52 in supplementary mate-
rial) mainly explain a variance related to a baseline deformation badly
corrected by the spectral-preprocessing. This contribution is, therefore,
an important patt of this resolution. The greatest difference is observed
for the contribution 5 corresponding to the aqueous phase. A more
contrasted and less ambiguous image is extracted with randomised
SIMPLISMA. Indeed, we observe a significant contribution inside the
drop when the classical SIMPLISMA method is used which is rather
incoherent compared to the knowledge about the behaviour of the
molecules considered in this chemical system. From a general point of
view, some people might say that for a rank of 7 the extraction results
are not so different between the classical method and our strategy but
we must not forget that we would never have used such a rank with the
classical approach.

3.2, Daraser #2

The second data set is particularly interesting because of its size and
the type of spectroscopy envisaged. Indeed, we have a much larger
number of spectra, namely 262,144 in the data cube. We also selected
very otiginal spectroscopy, namely the autofluorescence one with only
75 emission wavelengths, which is much lower than in the previous
case. Beyond this small number of spectral variables, we can expect a
significant spectral overlap between chemical species related to an in-
trinsically large bandwidth in this spectroscopy.

As in the previous case, it is natural to make first a PCA of the
complete dataset. Thus, from the score images (Figure 53), we observe
that the two first principal compenents explain 93.81% of the total
variance. At this stage, even if it seems possible to observe some details
on the score maps from the third principal component, it remains dif-
ficult to certify at this level of the investigation that they correspond to
relevant chemical information. It is now interesting to look at the
evolution of the eigenvalues in the scree plot given in Fig. 7a. As we can
see, a sharp decrease in values is observed after the second principal
component, which would potentially indicate a rank of two with the
traditional threshold-based method. It is also interesting to look at the
three-dimensional representation of scores along PC1, PC2, and PC3 in
this same figure. With these 262,144 spectra, the point density is so
high that it is impossible to see details on the intrinsic structure of the
dataset except for a global V-shape.

Then randomised SIMPLISMA has been applied considering the
generation of 500 subsets with 10% of pixels randomly selected from
the whole dataset. Fig. 7b shows a PCA of the 131 pixels selected from
these 500 subsets for k = 3. Then it is very easy to detect the presence
of 3 clusters. Moreover, the third eigenvalue of the corresponding scree
plot is now detached from the noise level. As with the previous dataset,
we will now analyze the evolution of pixel selection as the k value in-
creases. PCA results considering simultaneously purest pixels fork = 3
(inblue)and k = 4 (inred) are given in Fig. 7c. By the way, 227 spectra
are now selected when k = 4. It is then obvious that a new cluster is
detected indicating a rank of 4. By continuing this exploration for the
values of k equals 4 and 5, new clusters are not highlighted. As a
conclusion, pixels selected with k = 4 represent the intrinsic structure
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of this dataset, which finally has a rank of 4. Spectra contained in each
cluster are represented in figure 54 in the supplementary material.
Again a good consistency between the spectra of a cluster is observed.
With regard to pixel location (vellow pixels in figure 54), it is parti-
cularly difficult here to link this information to the biological structure
because of the very small number of spectra selected compared to the
262,144 pixels of the sample surface. Finally, Figure S5 proposes the 4
pure concentration maps and corresponding pure spectra extracted by
MCR-ALS using the mean spectrum of each cluster as an initial estimate.
It can, therefore, be concluded that without this approach, we would
certainly not have extracted contributions 3 and 4. These two con-
tributions have very small variations in concentration at a very local
level but specific spectral contributions. We must alse insist on the fact
that it is not possible to apply the classical SIMPLISMA approach to the
262,144 spectra of the dataset for RAM problems, even on very large
computers.

3.3. Dataser #3

The originality of this last dataset does not lie in its size but in the
chemical information it contains. Thus, the variables describing each
pixel in this data cube are elemental concentrations obtained from
Energy Dispersive X-Ray Analysis (EDX). Two tumor cells treated with a
bromine-containing prodrug are explored in this case. As usual, we will
start with a PCA of the complete dataset. Score images are given in
figure S6. It is then possible to observe 4 or even 5 chemical con-
tributions defining both the cells and the support. In parallel with that,
the scree plot in Fig. 8a seems to indicate a rank of 3. This observation is
very interesting because it is quite symptomatic of the use of PCA in
imaging when the number of spectra is very large. Indeed, we can see
for example that there is a potential contribution expressed on the
fourth score maps but the number of pixels it concerns is so small
compared to the total number of pixels, that they only induce a very
small variance of 0.67% almost undetectable in the scree plot. On the
basis of this information, many of us would certainly have selected a
chemical rank of 3. Fig. 8a also proposes the three-dimensional re-
presentation of scores along PC1, PC2, and PC3 for the 17,776 pseudo-
spectra. Once again, the density of points is so high that it is impossible
to see a particular data structure.

Randomised SIMPLISMA has been applied to this dataset con-
sidering the generation of 500 subsets with 10% of pixels randomly
selected from the whole dataset. Fig. 8b shows a PCA of the 89 pixels
selected when k = 2. Thus 2 clusters are detected at this step. Then
purest pixels obtained from k = 2 (in blue) and k = 3 {in red) have
been explored with PCA (Fig &c). We, therefore, abserve in this re-
presentation two new clusters. Spectra of these two clusters are also
shown in Fig. 8c in order to highlight the chemical differences. The
chemical rank is now 4. For the next PCA on the purest pixels fork = 3
{in blue) and k = 4 (in red), the last cluster is detected (Fig. 8d). No
additional clusters are observed in Fig. 8¢ which makes it possible to set
a rank of 5. Figure §7 in the supplementary material shows spectra
selected in each of the 5 clusters. We observe a good consistency be-
tween the spectra of a cluster. Except for class 3 located mainly on a
cell, it is rather delicate to strictly associate the others to a sample
structure. Finally, Figure S8 (in the supplementary material) shows the
MCR-ALS extractions obtained from cluster averages. Thus we quickly
notice that each pure contribution is mainly influenced by one parti-
cular element. The first contribution contains bromine so we can lo-
calize the prodrug in the cell volume. Palladium particles are also de-
tected inside the cells from contribution 2. Obviously, contribution 4
corresponds to the gold on the surface of the wafer. Contribution 5
reports on the presence of other elements such as phosphorus also
present on the surface mainly related to cell preparation. Finally, con-
tribution 3 is very interesting since it expresses the presence of the
minor compound present only on a few isolated pixels.
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4, Conclusion

Numerous publications demonstrate on a daily basis the strong
potential of the MCR-ALS method for a priori-free extraction of the
contributions of all pure compounds present in complex chemical sys-
tems. This approach is particularly useful in the spectroscopic imaging
framework, for which unsupervised exploration is often the only al-
ternative in view of the complexity of the samples and the absence of
reference methods. Nevertheless, the main constraint of a signal un-
mixing approach such as MCR-ALS remains the chemical rank evalua-
tion which thus conditions all the relevance of the extractions. Of
course, principal component analysis can help us in this task, but this
study has shown on different datasets that it is not always suitable for
the simultaneous detection of major and minor compounds. It is also
very sensitive to the signal-to-noise ratio and not well-suited to big
datasets. The aim of this work was then to present a new concept called
randomised SIMPLISMA based on pixel resampling and the original
SIMPLISMA algorithm. Through the different datasets, we were able to
show that our appreach not only facilitates the estimation of rank but
also provides initial estimates of pure compounds. Moreover, it has
been possible to manage datasets containing several hundred thousand
spectra where SIMPLISMA simply cannot be directly applied. Another
peculiarity of our approach also lies in the generation of a real die-
tionary of spectra for each pure compound. This makes it possible to
better locate a given contribution even before curve reselution.

The perspectives of this work are twofold. First, randomised SIM-
PLISMA will be evaluated on even bigger datasets containing several
million spectra. Second, as can be seen, the variability present in a
dictionary of a given contribution is rather little exploited since finally,
we use its mean as an initial estimate prior MCR-ALS. Thus, as can be
done today in the remote sensing community, we could, for example,
consider that the spectra of a dictionary would be different pure re-
presentations of a given compound. We would then consider a non-
linear model, which may make sense in some cases of matter-radiation
interaction.
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2.2.2. Additional work and use of randomised SIMPLISMA

Another important aspect to be deepened here is the use of this kind of approach on even
bigger datasets, containing several millions of spectra. Concerning this topic, some ideas were
proposed during this PhD. In detail, a big dataset (a section of a wheat grain) has been acquired
in the French national synchrotron facility, namely the SOLEIL, thanks to a collaboration with
Dr. Frédéric Jamme, beamline scientist in SOLEIL, and working also with the INRAE group of
research in Nantes (France) headed by Dr. Marie-Frangoise Devaux. Regarding the acquisition
information, a microscope (zoom 40x) has been used to generate the image of the dataset in
which the phenomenon of autofluorescence coming from the excitation using UV and visible
spectral ranges (excitation wavelength of 275 nm) has been observed. The size of this data cube,
whose global integration image and corresponding spectral profiles are reported in Fig. 16, is
1024 pixels by 1024 pixels, with a resolution of 0.3 um per pixel, for a total of 1048575 emission
spectra for 9 spectral variables. More precisely, these spectral variables correspond to different
filters, each of them corresponding to a specific domain of wavelengths, in order to distinguish
the emission coming from different biological molecules of the sample.
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Fig. 16 — Global integration image and spectra of the wheat dataset.

In detail, here are reported the emission wavelength ranges for the different variables, and a brief
description of which kind of molecules they correspond to. The first filter covers the range
between 327 and 353 nm, while the second one the interval between 370 and 410 nm. They are

potentially used to probe proteins and small molecules. The third, fourth and fifth filters are
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respectively related to the following spectral ranges: 412-438 nm, 420-480 nm, and 435-455 nm.
This interval leads to the observation of small molecules and particularly to hydroxycinnamic
acids (e.g., ferulic acid, para-coumaric acid, etc.) that are a class of aromatic acids (or
phenylpropanoids) with a C6-C3 skeleton, derivatives of cinnamic acid. Finally, the last four
filters cover respectively the intervals between 484 and 504 nm, 499 and 529 nm, 530 and 570
nm, 535 and 607 nm. This range is particularly important to observe lignin compounds, a class
of complex organic polymers that form key structural materials in the support tissues of vascular
plants. Evidently, the size of this image is enormous, reason why it can be very complicated to
find the right rank, considering for example the fact that some information can be extremely pure,
but represented in very specific and small areas of the data cube. In fact, observing Fig. 17, it is

obvious that it is impossible to obtain any clear information from PCA, considering all the pixels:
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Scoreson PC 3 (0.94%)

Fig. 17 — PCA on the totality of the pixels of the wheat dataset.

Evidently, randomised SIMPLISMA can be a good alternative, in order to avoid the loss of
details and so, obtain better outcomes. Nevertheless, due to the fact that the matrix is represented

by more of one million of spectra, it can be challenging to select the right inputs to use (e.g., the
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percentage of random pixels per subset). In fact, imprecise values would lead to difficulties in
visualizing the separated clusters, i.e., situations such as the overlapping of different classes or
the possibility of losing some very small details. For this reason, as a first step, the whole data
cube has been divided into four sections, each of them now equal to a sub-image of 512 pixels
by 512 pixels, corresponding to 262144 spectra. Then, randomised SIMPLISMA has been
separately applied on each of the new reduced images, and the right rank (that can obviously vary
through the different sub-images, depending on the information carried by each of them) selected.
Finally, the chosen clusters from the single sub-images have been merged together in the same
dataset. Then, randomised SIMPLISMA has been used a second time, in order to reduce again
the total amount of spectra. At the end, the selected purest spectra have been observed to select
the global rank of the initial data matrix. A graphical representation of the final clustering, in
which were used only the selected spectra from each of the sub-images, is shown below in Fig.
18:

§ 1000\ .
3 Class #1
h -
S 500 (36 pixels) Clas's #5
2 (17 pixels)
F | 2 Class #3

; -

(=] -500 (37 plxels)

o \

; R

: o

© -1000

2 \
m —

6000
9‘ 4000
t&O 2000
>
<
- | — - — _7_7_K7_
6 - . ‘1_5 2 2.5
><‘I[‘)4

\o[ogq

Fig. 18 — PCA exploration of pixels selected by the ‘double’ randomised SIMPLISMA approach as a function of k.

As observable, due to this ‘double’ randomised SIMPLISMA approach, it is possible to select
the purest spectra from the whole dataset, and particularly, to use only a very small quantity of
the initial pixels for the investigation in the PCA space. In fact, in this way it is easier to observe

very clear clusters, each of them related to particular spectral information. As a final step, using
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the same approach previously explained, the mean spectrum from each cluster has been used to
generate the initial estimates for the MCR-ALS calculation, whose first outcomes (both pure

concentration and corresponding spectral profile matrices) are here reported in Fig. 19:
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Fig. 19 — Final results using the ‘double’ randomised SIMPLISMA approach. Here are reported the seven extracted

concentration maps corresponding to the MCR-ALS calculation and their corresponding spectral profiles.

Naturally, further investigations are required in order to confirm these results, understanding their

biological nature, and clearly, refine the use of this new approach based on randomised
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SIMPLISMA. Nevertheless, first outcomes seem to be very promising, enough to lay claim new
possibilities in order to obtain always better results in the hyperspectral image analysis and

particularly, the spectral unmixing framework.

2.2.3. Conclusions and future perspectives

Modern instruments show the possibility of acquiring a big quantity of data, normally related
to very high resolution. MCR-ALS is a chemometric tool that has the potential of being used in
many different areas, leading to the decomposition of complex matrices into the contribution of
the pure components, in order to dig the chemical composition of samples of various natures.
Nevertheless, some limitations are still faced. In an interesting domain such as the hyperspectral
image analysis, choosing the right rank can be challenging, selecting all the information
contained in a data cube, particularly when contributions related to a small quantity of pixels is
available. Finding a way that can automatize the selection of the real number of components is a
very important task. Randomised SIMPLISMA is an algorithm based on SIMPLISMA (a useful
tool used in the MCR-ALS framework) that has shown the capability to help the operator in this
important purpose. Anyway, some limitations using this approach are still present. For example,
it is necessary to highlight the fact that randomised SIMPLISMA requires some inputs to work
correctly. First of all, the percentage of data to select for each subset. Then, the number of subsets
to be generated. If the wrong number is chosen, it could lead to incorrect results. In fact, too
many selected points could create an issue in the possibility of observing the right number of
groups in the PCA space, due to an overlap of the classes. Contrariwise, too few spectra could
lead to the loss of some specific pixels, very pure, but present as a small quantity compared with
the rest of the information. This is the reason why, during the experimental part of this work,
many attempts were carried out in order to find the right values to be applied in order to obtain
reliable results. In addition, as previously shown, an interesting alternative would be the one of
at first divide the whole image into a certain quantity of sub-images (the number of them
depending on the original size and complexity of the data cube), in order to use randomised
SIMPLISMA in a first step separately on each of them. In this way, the possibility of observing
more interesting details would be easier. Clearly, more studies to optimize this procedure are
required. Another important aspect of randomised SIMPLISMA is that the observation of the
different clusters is carried out by the use of the PCA space, and so, it is related to a subjective
interpretation. The main problem here is that, despite the existence of various methods that can

automatically count the number of clusters, they depend on the nature of the investigated sample.
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This means that based on the data matrix, different information has to be given, to avoid
clustering errors. Therefore, it would be interesting in future to find a way to make this selection
automatic, for example by the use of KM clustering, or other clustering approaches. In addition,
as previously described, at first the spectra of the different clusters are collected, and then the
mean spectrum for each class is calculated, in order to use them as initial estimates. However, it
is important to consider that the variability presents in a dictionary of a given contribution is
rather little exploited for this reason. An important improvement would be to have the capability
of considering the spectra of a dictionary as different pure representations of a given compound,

such as it can be done nowadays in the remote sensing community.

2.3. Detection of minor compounds in complex mineral samples
from millions of spectra: A new data analysis strategy in LIBS

imaging
2.3.1. Introduction

Among the different spectroscopies that are currently used in different research domains,
one in particular is obtaining a constant arising interest in many communities, i.e., LIBS imaging.
The development of this spectroscopic technique has led to the necessity of finding new ways to
extract the information, and chemometrics is for sure a very interesting area that can be involved
in this task, due to its characteristics and strong points. One of the reasons why LIBS is nowadays
a very promising technique for the analytical investigation of complex matrices is that thousands
to millions of spectra can be obtained in very short times, thanks to the high acquisition rate (up
to 1000 spectra/s) of this instrumentation. This means that it is easily possible to acquire images
made of millions of pixels, also helped by the use of powerful microscopes. Naturally, this
characteristic involves the fact that the generated hyperspectral images show a high spatial
resolution that, linked to the multi-elemental capabilities of LIBS, arises the interest in using this
instrument in different research areas [85,210,211]. Nevertheless, one of the most important
challenges currently faced in handling this kind of data cubes is that still, it is not easy to find a
strategy able to deal with this huge quantity of data in a suitable way. In fact, many issues can be
experienced. First of all, the amount of data is big, reason why it can result complicated, if not
even impossible, to work with the whole dataset. Therefore, a strategy able to collect the most
important information and reduce the quantity of spectra to be observed is a fundamental task. In
addition, it is reasonable to think that, no matter the quality of this spectroscopy, the acquired

72



data can be affected by some problems. For example, it is a common scenario the possibility of
generating some saturated signals that naturally can lead to a poor interpretation of the spectra.
Lastly, as already explained in many parts of this manuscript, it is reasonable to think that while
some elements are present as main components in a sample, others (probably the majority) are
available as minor compounds or even traces. Therefore, if the right approach is not selected,
there is a real risk of losing the information related to these details, leading to only partial and
insufficient outcomes. Chemometrics can be a good alternative to the routine analyses, capable
of overcoming these problems, and showing new interesting approaches for LIBS image analysis.
Many of these aspects have been faced during this PhD, and so discussed in the manuscript. In
detail, while the other aspects will be shown in Chapter 3 and Chapter 4 of the present work, in
this section it will be described a method used to investigate in an easy way a big dataset made
of more than two million spectra, finding interesting results coming from not only the main
components, but also the minor ones and the traces of the sample of interest. Specifically, the
investigated sample is a complex mineral containing various elements, such as W, Au, Pb, Zn,
Ag, and others. This work, published in Analytica Chimica Acta, Volume 1114 (2020) [212],
shows the use of KM clustering [146,208] in a particular way, the Embedded K-Means (EKM),
hereafter explained. KM clustering is a well-known unsupervised classification method vastly
used in the chemometric society for the investigation of many different types of samples and
spectroscopies. The limitation of this algorithm, such as for many other chemometric tools, is
that its outcomes can be influenced by the total explained variance of the spectra in the matrix.
This means that in a very big dataset where some small components are easily available, this kind
of approach would be biased, leading to the clustering of only the major compounds, while the
minor elements and traces would be easily missed. EKM is an interesting alternative that
overcomes these limitations, allowing the classification of also minor compounds and traces, as

it is following described.
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Today, Laser-Induced Breakdown Spectroscopy (LIBS) imaging is in full change. Indeed, always more
stable instrumentations are developed, which significantly increases the signal quality and naturally the
analytical potential of the technique for the characterization of complex and heterogeneous samples at
the micro-scale level. Obviously, other intrinsic features such as a limit of detection in the order of ppm, a
high field of view and high acquisition rate make it one of the most complete chemical imaging tech-
niques to date, It is thus possible in these conditions to acquire several million spectra from one single
sample in just hours. Managing big data in LIBS imaging is the challenge ahead. In this paper, we put

ng?i:gjﬁced breakdown spectroscopy forward a new spectral analysis strategy, called embedded k-means clustering, for simultaneous
(LIBS) detection of major and minor compounds and the generation of associated localization maps. A complex
Big data rock section with different phases and traces will be explored to demonstrate the value of this approach.
Hyperspectral imaging © 2020 Elsevier B.V. All rights reserved.
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1. Introduction

Laser-induced breakdown spectroscopy (LIBS) imaging is actu-
ally becoming an essential tool to characterize complex samples in
many scientific domains [1-5]. In this spectroscopic technique, a
pulse laser beam focused on the sample surface generates a plasma
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relaxation of excited atoms and ions, an emission spectrum char-
acteristic of the elemental composition of the sample can be ac-
quired using an optical spectrometer. In LIBS imaging experiments,
the sample surface is explored in a raster scanning mode {ie.
acquisition of one spectrum for each spatial position of a predefined
grid} covering the region of interest. An elemental image can then
be generated from the acquired data set using a simple signal
integration of a given emission line. The richness of this imaging
approach lies in its many advantages that cannot be chserved
simultaneously in any other spectroscopic technique. Indeed, LIBS
imaging has multi-elemental capabilities, a high acquisition rate
{>100 spectra/s), full compatibility with optical microscopy and
ease of use on samples without almost any size restriction {up to
several tens of cm?), all under atmospheric conditions. On top of
that, this technique has a high field of view and a spatial resolution
around 10 pm coupled with a limit of detection in the order of
weight ppm. It is thus very convenient to explore a sample at the
micrenic scale by acquiring several million spectra in just hours.

Concerning data analysis in LIBS, we see today big differences
between the two framewaorks of bulk analysis and imaging. Indeed,
researchers have quickly learned that multivariate data analysis
could bring valuable tools for qualitative and quantitative explo-
rations of samples at the bulk level, for instance by developing
regression or classification models [6—10]. At the imaging level,
there is a relatively limited number of papers dealing with the use
of multivariate data analysis in the LIBS community. Indeed,
elemental images are, in general, generated from single emission
wavelengths, even though the whole spectral domain could be
used. The application of chemometric approaches to imaging data
sets is in fact more complex, both from a conceptual and practical
point of view. Although a large part of the LIBS community is
increasingly sensitive to the use of chemometric tools, under-
standing the concept of hyperspectral imaging, finding appropriate
tools for data exploration, and finally interpreting their outputs
represent a big task for non-expert researchers. In addition, it is
clear that managing millions of spectra increases the difficulty of
this task even if they know the great potential of chemometrics.
This is not just about the availability of computational resources,
but alse, the development of new data exploration tools able to
manage such big data structures.

In this paper, the idea is chviously not to systematically apply a
well-known unsupervised classification method to a LIBS imaging
data set. Indeed, it would be totally inefficient in detecting minor
compounds because most chemometric algerithms exploit
explained variances. As a consequence, we will introduce a new
data processing strategy, that we call embedded k-means clus-
tering, in order to detect and localize simultaneously major and
minor compounds in a complex mineral sample from a data set of
more than 2 million spectra.

2. Experimental section
2.1. Sample description and preparation

In order to demonstrate the potential of our strategy of spec-
troscopic exploration, we have selected a complex mineral sample
from the polymetallic W—Au—Pb—Zn—Ag (Sb—Ba) district of Tighza
{Central Morocco). More specifically, it is related to the Sidi Ahmed
hydrothermal event [11]. This district has been mined for centuries
for Pb and Ag, Pb—Zn—Ag mineralization being formed of sulfides
in gangues of carbonates. Naturally, we can expect the simulta-
neous presence of major and minor compounds but also traces in
such mineralization [3]. The size of the selected rock section is
approximately 3.2 cm x 1.6 cm and 1 cm thick. Prior to LIBS anal-
ysis, the surface of the sample has been finely polished using

polisher as it is usually done in other techniques such as Scanning
Electron Microscopy (SEM) and Energy Dispersive X-Ray Spec-
troscopy (EDS).

2.2, Experimental setup and spectral data acquisition

The LIBS instrumental setup used in this work is based on a
homemade optical microscope and a Nd:YAG laser {Centurion
GRM, Quantel by Lumibird Ywith an 8 ns pulse duration operating at
100 Hz. The laser beam is focused on the sample surface using a
15x magnification ohjective (LMM-15X—P01, Thorlabs). The rock
section is placed on a three axes XYZ motorized stage in order to
move precisely the sample during the mapping experiment. Atomic
force microscopy (AFM) has been used in order to check that the
crater size after ablation was smaller than the distance between
two consecutives acquisition positions on the sample which is
15 wm. An autofocus system is also used during the analysis in order
to keep the objective-to-sample distance from changing. Thus, we
always have the same distance between the objective and the
plasma emission regardless of the sample flatness. Every spectrain
the data set have been acquired from single laser pulses at each
spatial position of the sample. The plasma emission has been
collected by a quartz lens and focused onto the entrance of a round-
to-linear fiber bundle (19 fibers with a 200-um core diameter}
connected to a Czerny-Turner spectrometer (Shamrock 500, Andor
Technology). This spectrometer is equipped with a 600 lfmm
grating blazed at 300 nm and an intensified charge-coupled device
(ICCD} camera (iStar, Andor Technology). The camera is synchro-
nized with the Q-switch of the laser, and spectra are acquired with
a delay of 500 ns and a gate of 3000 ps, in full vertical binning
mode. Moreover, a servo control loop based on a power meter and a
computer-controlled attenuator (ATT1064, Quantum Composers) is
used to control the laser power. A homemade software, developed
under LabVIEW® environment, has allowed the automation of
scanning sequence as well as the spectral acquisition. All mea-
surements have been performed at room temperature under
ambient pressure conditions.

The hyperspectral LIBS data set has been acquired considering a
15 pm spatial reselution and a 0.15 nm spectral resolution. The
251.38—339.99 nm spectral domain {2048 spectral channels} has
been selected to cover the main emission lines of all elements of
interest. In these conditions, we have obtained a data cube of size
2100 pixels x 1090 pixels x 2048 wavelengths (i.e. 2.289.000 ac-
quired spectra for a 515 mm? field of view). The total acquisition
time was approximately 6 h, which is finally not so long regarding
the richness of the chemical information. It is then easy to under-
stand that a specific data analysis strategy must be implemented if
we really want to extract information about major and minor
compounds from such a big data set.

2.3. Multivariate data exploration

In this work, the main idea is to propose a method able to
explore megapixel LIBS data set without prior knowledge about the
sample composition and to highlight simultaneously the presence
of major, minor compounds, and even traces. In the multivariate
data analysis framework, this task corresponds to the development
of an unsupervised classification medel. In other words, such
techniques try to find natural groupings of spectra in the consid-
ered data set, which will represent different chemical compounds.
Even if the chemometric community has developed different tools
for unsupervised classification of spectra, we can say without
hesitation that the well-known k-means [12] clustering (KM} is
certainly the most popular one. Indeed, behind the apparent
simplicity of this methed, it has been proved effective for many
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different kinds of data sets and spectroscopies. To the best of our
knowledge, as this algorithm has never been used in the framework
of 1IBS imaging, a short description of the algorithm is provided
below. Like any other chemometric methed, a spectrum is consid-
ered as a point (denoted x;) in a multidimensional space. Let X = {x;,
i=1,...,n} he adataset composed of n points (i.e. spectra} with x;
R™, w being the number of spectral variables in a spectrum. For
illustrative purposes, let's consider a small LIBS imaging data set.
This data cube of size 5 pixels x 5 pixels x 2 wavelengths consists of
25 pseudo-spectra. Fig. 1a illustrates the successive steps of the l-
means algorithm applied to this toy example. In a first step, k initial
points called centroids (in this example k = 3} are randomly
generated within the data domain (shown in color in Fig. 1a}. In the
second step, one calculate distances between all points of the data
set and the generated centroids. In fact, the distance is used as a
measure of similarity between spectra. In this work, the cosine
distance has been preferred to the Euclidean one, the latter being
sensitive to global intensity changes in spectra. However if the
Euclidean distance had been selected, then it would have been
necessary to use a signal normalization commonly used in the LIBS
community. The cosine distance d;; between spectra x; and x; is
given in equation (1} considering a point as a vector in a multidi-
mensional space:

XX
dij=1-—"21— (1)
[ 1| %

As we can see, this distance corrects for global intensity varia-
tions by dividing each spectrum ¢ and j by its norm. Given all the
distances, each point (i.e. spectrum) is associated with the nearest
centroid and now belongs to one of the k classes. In a third step, the
mean spectrum of each class is calculated and will represent the k
new centroids. In the fourth step, spectra in the data set are again
unassigned. Then steps 13 are repeated in a loop in order to refine
the position of the k centroids. Calculations are stopped when
convergence is observed, i.e. when no further changes are cbserved
in the spectra class memberships. In the last step, the knowledge of
the class membership of each spectrum and its localization in the
pixel space allow us to generate a clustering map using a color-
coding. At the same time, the centroid corresponding to each
class is a spectrum used for chemical interpretation.

Behind the simplicity and ease of use of KM, there is an
important issue which we have to address, namely, how to select
the optimal number of clusters or classes. Unfortunately far too
often in the literature, authors select with a priori this value of k,
which is definitely the ultimate negative choice. Indeed, no one can
know the whole chemical complexity of the considered sample. In
general, the most reasonable way is to use a criteria called index in
order to automatically choose this value. This index is a mathe-
matical function that measures the quality of a partition. The idea is
then to perform a KM clustering for different values of k
{2 < k < kmax} and to calculate this index for each partition. The
highest index value indicates the optimal number of clusters for the
considered data set. One of the best index in the literature is PBM
{Pakhira—Bandyopadhyay—Maulik) [13]. It is defined as the square
ratio between the largest normalized inter-cluster distance ER and
the normalized sum of intra-cluster distances RA:

PEM(K; = (%)2 2)
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the ith cluster (i=1 ... k), x;;, the jth spectrum of the cluster i, n; the

, ¢; the centroid of

total number of spectra in the cluster i, and % the mean point of the
considered dataset. The PBM index will be used in this work in
order to select the optimal number of clusters.

We could obviously explore directly the proposed data set with
KM in these conditions, but we should not lose sight of our main goal,
which is the simultaneous detection of major and minor com-
pounds. Indeed, this inquiry about the intrinsic data structure is very
important because KM algorithm {(and most of the clustering
methods} can fall into a trap under two specific conditions (Fig. 1h).
The first problematic situation is ohserved when classes in the data
setare unbalanced, thatis to say when a big difference in the number
of spectra between classes is observed. This is precisely the case for
major and minor chemical compounds present in an imaging data
set. As a consequence, small populations of spectra would not be
detected and wrongly associated with the nearest big clusters. The
second problematic situation arises when subpopulations of spectra
are chserved in a given cluster. In this case, only a global cluster is
generated and small spectroscopic details are lost during this
exploration. To address these issues, we have developed a new
strategy, which we call embedded k-means clustering (FKM}. We
were inspired by the way our brain works when we are looking at a
picture. We first extract the main features of the image (i.e. the main
classes of ohjects} and, then, we extract details about sub-zones of it.
Thus, in the EKM strategy, a first k-means clustering will be applied
to the whole data set and the second round of clusterings will be
applied to each previously calculated cluster (Fig. 1c}. Obviously, the
PBM index will be used at each step of the way.

All calculations in this work have been performed under the
Matlab 2016b environment (The Mathworks, Inc., Natick, Massa-
chusetts) using homemade codes.

3. Results and discussion

To better understand the strengths of our data analysis strategy, it
is essential to open this section with the exploration of the considered
imaging data set using the state-of-the-art method to generate
chemical maps [4,14]. First, a single emission line is selected for an
element of interest. Then a baseline correction is applied on every
single spectrum of the data set in order to extract corresponding net
intensities at the given wavelength. Lastly, color-coding is used in
order to generate a colored elemental map from these extracted
values, the intensity of the chosen color being correlated with
abundance. Of course, this procedure can be successively repeated for
all elements of interest in the sample, with the possibility to observe
them simultaneously in overlay mode on the same image. Never-
theless, despite this operational simplicity, this traditional method
imposes two constraints which should be considered for the gener-
ation of unbiased chemical maps. First, each selected emission line
should be the strongest one in the spectral domain for each element.
But what is more important, a selected emission line should not
present potential interferences with other lines. Due to the natural
complexity of the samples we usually explore, we quickly see thatitis
a strong hypothesis, which, for each element of interest, could be
difficult to hold in relation to the very high number of lines in a
spectrum. Fig. 2 illustrates the use of this conventional approach to
the rock section. More specifically, Fig. 2a shows the mean spectrum
calculated from all spectra of the imaging data set. From this spec-
trum, it is always simple and fast to identify major elements by
matching the observed emission lines with an atomic spectra data-
base. Thus it is easy to see, without being exhaustive, the presence of
different elements such as Pb, Ag, Fe, Ca, Mg, Mn, Cu, and Si. Fig. 2b
presents the global intensity image of the sample generated from the
integration of the emission signal for each pixel on the whole spectral
domain. Of course, we are losing elemental information with this
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clustering.

observation but different zones of the sam

highlighted in thisimage. It is even possible to observe different levels
of homogeneity, textures, and sub-structures on the sample. By
contrast, Fig. 2c and d give elemental images generated with the
conventional approach using single integrations described above. At
first glance, we notice that many elements are localized in specific

ples can nevertheless be

areas. Although it is possible to observe the colocalization of element
pairs such as Ag/Pb, Si/Al, Si/Ti, and Zn/Cu for example, finding a
correlation between all elements in this data set is a hard task. Yet, we
have to remember that such correlations should allow a trace-back to
molecular information i.e. mineral phases in this particular case. A
further point concerns the detection of potential anti-correlation
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Fig. 2. a) The mean spectrum of the LIBS data set. b) The global intensity image. ¢) and
d) Elemental images generated with the conventional approach. A high-resolution
version of this image can be downloaded from supplementary materials.

between elements, which is especially difficult to achieve by just
comparing elemental images. It is indeed very interesting to know ifa
specific element is present in a zone when another one is systemat-
ically absent or has a low concentration, and vice versa. In conclusion
of this section, while the usual procedure allows us to generate
consistent elemental images most of the time, we can clearly see that
we are still not harnessing all the information contained in the data
set, minor compounds and minor phases not being particularly
highlighted.

In this new section, the idea is to apply the strategy of embedded
k-means clustering on the considered data set and assess its

interest for the simultaneous detection of major and minors com-
pounds. As explained previously, the initial step of this approach
consists of the application of a first k-mean clustering on the whole
data set (i.e. all spectra). Fig. 3a shows the evolution of the PBM
index according to the number of cluster k used in this first parti-
tioning of pixels. Here it can be seen clearly that an optimal number
of five clusters has to be considered. Using this consideration as a
starting point, Fig. 3b provides a classification map from which we
can observe the localization of the five compounds. The percentage
of pixels in a class for the total number of pixels in the data set is
also given. We can see, therefore, that classes 1,4 and 5 correspond
to major compounds with 37%, 27% and 23% of pixels respectively.
Nevertheless, at this point, we cannot say that classes 2 and 3
correspond to minor compounds with 3% and 10% of pixels
respectively. In fact, they are only somewhat less present. As
regards the dispersion of compounds in the sample, classes 1 et 2
are strictly observed in well-delimited and continuous areas. It is
almost the case for class 5, which is nevertheless also located
around the area of class 1. More heterogeneous distributions are
observed for classes 3 and 4. Fig. 3¢ gives the corresponding spectra
of the centroids for each class. These representative spectra are
naturally used for chemical interpretation. Despite the fact that
LIBS spectroscopy is an elemental one, the use of the whole spectral
domain and some prior knowledge about the genesis of rocks allow
us to identify potential mineral phases. Thus, class 1 is associated
with galena (PbS) with traces of copper, silver, antimony, and tin.
The mineral phase corresponding to class 2 is calcite (CaCO3) with
traces of manganese, magnesium, silicon, and aluminum. Class 3 is
linked to quartz (SiO,) with traces of magnesium, aluminum, cal-
cium, titanium and iron. The next mineral phase with class 4, is
potentially an aluminosilicate (SiO,/Al;03) or kinds of clays with
traces of magnesium, calcium, iron, manganese and titanium.
Finally, class 5 is associated with ankerite (Ca(Fe, Mg,Mn)(CO3)3)
with traces of titanium.

To go deeper into the exploration of previous mineral phases,
we shall apply the second step of the embedded k-means strategy.
Therefore, for each class, a new k-means clustering is applied only
to associated spectra. In other words, five k-means clustering are
calculated in parallel considering the five different sub-populations
of spectra contained in the five classes. Obviously, the PBM index is
used again to optimize the number of clusters of each k-means
clustering. The five graphs representing the evolution of the PBM
index according to the number of clusters k are supplied in the
supplementary material (Fig. S1). We then discover that all mineral
phases exhibit sub-populations of spectra. The galena (class 1)
contains 3 sub-classes of compounds, the calcite (class 2) has 4, the
quartz (class 3) has 5, the aluminosilicate phase (class 4) has 3 and
ankerite (class 5) has 6. Fig. 4 gives classification maps for each
phase and corresponding spectra of sub-classes. For galena, classes
1.1 and 1.3 (in blue and red respectively) are the two major com-
pounds of the galena phase with 64% and 26% of pixels respectively.
These two sub-classes exbibit different ratios of elements such as
Cu, Sb, Ag, and Sn. In this case, it is difficult to see any particular
geographic locations of the two. Class 1.2 (in yellow) constitutes the
minor compound of the phase with 10% of pixels for the total
number of pixels in class 1. It takes the form of fine veins containing
the highest concentrations of Cu, Fe and Al compared to the two
other sub-classes. For the calcite phase, classes 2.4 and 2.1
(respectively in blue and red) are the most abundant with 50% and
30% of pixels respectively. They are distributed rather homoge-
neously and are very close in terms of element concentrations
except for Y and La. They form the purest calcites, Ca and Mn being
their major elements. The situation is very different for classes 2.3
and 2.2 (respectively in yellow and green), which are concentrated
in small areas mainly at the borders of class 2. These minor
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of each class.

compounds correspond to 14% and 6% of pixels respectively. It is
also remarkable that class 2.2 has the highest concentration of Mg,
Si, Fe, and Mn. Moreover, very small contributions of Y and La are
now particularly detected in the class 2.3, while being almost
totally indectectable from the raw data set. The quartz phase is
slightly more complex with 5 sub-classes. However, a more
balanced split can be observed between the percentage of pixels of
sub-classes. Classes 3.1 and 3.4 (respectively in red and blue) are
the most abundant. They are regularly distributed over a trape-
zoidal area such as class 3.3 (in yellow). For its part, class 3.5 (in
grey) is spread all over the class 3 area mostly in the form of tiny
clusters. This quartz is really particular because it has by far the
highest concentration of Mg, Ca, Fe, Al, and Ti. Class 3.2 (in green) is
a minor compound with 9% of pixels. It is mainly observed along a
vein through the trapezoidal area. It contains less Si than the classes
3.1, 3.2, 3.3 and 3.4 but more Mg, Ca, Fe, Al, and Ti. The alumino-
silicate phase seems less complex with 3 sub-classes. However,
from a spectroscopic point of view, they are well-contrasted. Class
4.3 (in red) is the major compound with 71% of pixels, followed by
class 4.1 (in blue) with 25%. They are both spread all over the class 4
area. They show high concentrations of Si, Mg, Fe, and Al but also
different ratios between them. Class 4.2 (in yellow) is the minor
compound of this phase with only 4% of pixels. It is spread all over
the area in the form of small clusters. At the same time, it has by far
the highest Ti concentration and the lowest concentrations for all
other elements. The fifth and last phase i.e. ankerite is certainly the
most complex case with six sub-classes and the most contrasted

element concentrations. Classes 5.4 (in blue), 5.1 (in green) and 5.5
(in pink) are the most abundant with 34%, 33%, and 21% of pixels
respectively. They are distributed rather homogeneously with
rather high concentrations of Mg, Ca, and Fe. The last three sub-
classes are minor compounds. Class 5.6 (in grey) with 7% of pixels
is mainly located at the border of the rock section. It has medium
concentrations of Ca and Si, a medium one for Mg and contains
neither Fe nor Zn. Class 5.3 (in yellow) with 4% of pixels is only
located on one side of the area defined by classes 5.1, 5.4, and 5.5. It
has also concentrations of Fe, Mg, Ca and Si comparable to those
three previous classes. However, small variations of concentration
ratios are observed between them. For its part, class 5.2 (in red) is
the less abundant compound with 0.2% of pixels. It is presented in
the form of a single cluster. It is the only compound containing Zn
and a small concentration of Fe. The other elements are absent.
Readers interested in a global representation of the 21 sub-classes
in overlay mode should refer to Fig. S2 in the supplementary ma-
terial. As we have just seen, our strategy allows us to deeply explore
LIBS data sets of complex samples providing simultaneously the
localization and the identification of major and minor compounds.
Class 5.2 is certainly the perfect example of the potential of this
approach because it corresponds to the detection of only 730 spe-
cific spectra of a given compound over the 2.289.000 present in the
considered data set. In a natural way, the PBM index was also used
on each cluster of the second levels of clustering demonstrating
that there was no more possible discrimination at this level thus
ending the exploration of this megapixel LIBS imaging data set.
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Fig. 4. Classification maps obtained for each phase with corresponding spectra of sub-populations and relative concentrations of elements.

4. Conclusion

The main objective of this work was to evaluate an original
strategy called embedded k-means clustering in order to explore a
big LIBS imaging data set acquired from a complex mineral sample.
More specifically, the idea was to propose a simultaneous identi-
fication and localization of both major and minor compounds. From
the very start of this work, we have quickly observed that while the

traditional signal integration method generates unbiased elemental
images most of the time, it remains especially tricky if the objective
is to obtain information at the phase level, for the highest as well as
the lowest concentrations. Generally speaking, we have demon-
strated that multivariate data analysis is an efficient complemen-
tary tool to explore LIBS imaging data sets in this particular
framework. Indeed, the k-means algorithm has allowed us to group
similar pixels (i.e. spectra) without any prior knowledge of class
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memberships. We have also highlighted the impeortance of using an
index in order to select the right number of clusters, with no a priori
about the considered sample, which to our knowledge has never
been done in the LIBS framework. Lastly, we have shown that our
approach based on successive k-means clustering provides a
deeper exploration of the sample from major to minor compounds
with great sensitivity, without compromise on the detection of
both.
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2.3.2. Conclusions and future perspectives

KM clustering has shown to be one of the most interesting methods for classification,
particularly when it is not possible to have many information about the nature of the specimen,
due to the iterative nature that is the core of how this approach works. In fact, being an
unsupervised method, KM tries to find natural groupings of spectra in the considered dataset,
which will represent different chemical compounds. One of the main tasks of this PhD has been
the use of chemometrics focusing on LIBS imaging with the aim of finding interesting
approaches that can help the operator in solving different limitations related to this spectroscopy.
The main purpose of this chapter, and specifically this paragraph, has been to show an alternative
method to the standard approach based on the use of KM clustering, aiming to the detection,
identification and localization of not only the major, but also the minor compounds and traces
into a big dataset, leading to promising results. The limitation of the presented EKM approach is
that it can be nevertheless complex, because the clustering has to be applied several times. In
fact, in a first step it is used to identify the main different regions of the map, containing the
different elements (or compounds). Then, again, the same procedure is repeated, this time on
each single subregion, in order to find new details coming from minor compounds and traces.
Having said that, more chemometric tools may be applied to LIBS analysis, concerning various
and different tasks and approaches, with the general goal of proposing always innovative data
analyses that could replace the routine methodologies. Particularly, next chapters will focus in
LIBS image analysis, for which different aspects regarding especially, but not exclusively, this

spectroscopy will be faced and discussed more in detail.
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CHAPTER 3






3. CORRECTION OF THE SPECTROSCOPIC INFORMATION:
THE IMPORTANCE OF USING RELIABLE DATA

3.1. Why it is important to have good data before any analysis and/or

use of chemometric approaches

As briefly stated in Chapter 1, one of the most important tasks in any analytical investigation,
no matter the research field, is the use of reliable spectral information [109]. In fact, by way of
example, if the right preprocessing or analysis settings are not used, there is a real risk to extract
incorrect details that would drive the interpretation of the data in the wrong direction. Among the
possible acquisition mistakes that can be faced in this scenario, one in particular has been studied
during this PhD. During an acquisition, many spectroscopies can generate the phenomenon of a
saturated signal. This kind of response, also known as clipping, is a distortion of the signal, when
it exceeds a certain threshold. As a consequence of this, saturated bands with their characteristic
plateau present numerical values that do not correspond to the analytical reality of the analyzed
sample. Clearly, this kind of response cannot be used to generate any result, because it is far to
be reliable and accurate. Therefore, it is fundamental to find a way to deal with this particular
artifact. If saturation is observed on a spectrum acquired in a bulk analysis of a single sample,
the situation is easily solved. In fact, the specimen can be again acquired, changing the
preparation modality or the instrumental characteristics in order to avoid the presence of this
phenomenon. Very different is the scenario in which many samples are acquired. Obviously, it
IS mandatory to set unique experimental conditions to be applied to all samples. Nevertheless,
this step can be more challenging than expected, particularly when the nature of the acquired
matrix is very heterogeneous, such as normally happens when the used technique is the
hyperspectral imaging. In fact, for given acquisition conditions it is possible to acquire in the
region of interest of the sample thousands (or even more) spectra. Since each spectrum
corresponds to a specific micro-surface of the sample with potentially different molecular
distributions, it is quite likely that some of them are saturated, no matter the acquiring conditions.
In addition, some instruments are destructive, meaning that the acquisition can be carried out
only once. This is for example a LIBS-related problem. This kind of spectroscopy, as already
described in the manuscript, shows very interesting characteristics such as the fast acquisition
rate and its resolution limits. Nevertheless, using a laser as excitation source, it generates the

ablation of the surface of the sample, reason why on occasions it can be impossible to repeat the
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acquisition. A practical solution exploited over the years to overcome the instrumental limitation
represented by the saturation is here briefly explained. The cited approach is based on the
exclusion of the saturated signals instead of correcting them. In this kind of scenario, two
different strategies can be chosen. In the first case, known as row-wise deletion, the samples
corresponding to some saturated signals will be suppressed. This means that the final quantity of
investigated spectra will be lower than the initial one. Clearly, this can be a solution, but at the
same time, this kind of approach can be a problem if the total number of deleted samples is too
significant. It is also important to consider the fact that using this strategy, especially in
hyperspectral imaging, there is a real chance to lose some pure and particular information related
to the investigated sample. On the other hand, a second solution is represented by the idea of
removing only the spectral variables related to saturated signals, the column-wise deletion. In
this case, all the samples will be kept, but at the same time some variables will be deleted, the
ones that present saturation for at least one specimen. It goes without saying, part of the total
spectral information that can be related to very fundamental details of the analyzed matrix, is
completely lost in this way. In other words, both the strategies can be applied to remove saturated
signals, but neither the first nor the second method clearly correspond to a good solution when
an exhaustive chemical study is required. Also in this case, chemometrics can be used as an
interesting alternative to the routine approaches. Specifically in this kind of situation, in which
the best suggested solution is represented by the removal of the artifacts, and so the possible loss
of important details related to the studied matrix, here it is proposed another approach.
Specifically, it is based on the use of the multivariate information contained in the sample to
generate a prediction of the missing values in order to correct the saturated signals by the use of

statistical imputation, as following explained.

3.2. Saturated signals in spectroscopic imaging: why and how should

we deal with this regularly observed phenomenon?

3.2.1. Introduction

Among the different spectroscopies, LIBS is for sure one of the most interesting that in the
last years obtained an increasing importance due to its suitable characteristics. Nevertheless,
setting the experimental conditions can be sometimes a hard task, particularly due to the complex
nature of the different matrices that can be analyzed. Therefore, a real risk is the one of generating

saturated signals, which would lead to incorrect results, as previously explained. Despite the fact
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that saturation is a phenomenon that can be experienced within many spectroscopies, the present
work focuses particularly in the resolution of this artifact in LIBS imaging. This is due to various
reasons. First of all, as already stated, this kind of spectroscopy is a very interesting
instrumentation that can be used in many research areas for the elemental analysis. The con is
that, using a laser as excitation source and ablating the matter, it is a potential destructive
technique. This leads to the fact that, potentially, an analysis cannot be executed a second time
on the same surface also if required, such as in the case that some artifacts (e.g., saturated signals)
are present. Also important is that LIBS can generate from thousands to millions of spectra in a
very short time, leading to very interesting and heterogeneous acquired data cubes. Therefore,
the possibility of obtaining some clipped signals is very likely. Last but not least, LIBS is related
to very fine spectral features if compared with other spectroscopies in which broadened bands
are generated. Furthermore, each element is normally related to more bands, distributed in the
whole spectral domain. It means that if a particular signal is saturated, others (with a lower
intensity) related to the same element will be probably available. These aspects are very suitable
for the here proposed method. The general idea of this work, that has been published in Analytica
Chimica Acta, Volume 1157 (2021) [213], is to generate multivariate regressions using all the
spectral variables that are not saturated in order to predict the right values related to the clipped
signals. As a first step, the data containing saturations will be considered as missing values, to be
then replaced with new calculated ones. The used approach is the imputation, a field of statistics
in which the gaps in the data are filled with plausible values that are calculated within the data
themselves. In this way, it is possible to keep the initial dimensions of the dataset, but correcting

the artifacts coming from the acquisition.
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that limits a signal once it exceeds a threshold. As a consequence, clipped or saturated bands with their
characteristic plateau present numerical values that do not correspond to the analytical reality of the
analyzed sample. Of course, analysts know that they cannot consider these erroneous values and
therefore reconsider either sample preparation or instrument settings. Unfortunately, there are many
experiments today (and this is the case in spectroscopic imaging) for which we will not be able to fight
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Safumed signal against the saturation effect that will undeniably be observed on the acquired spectra, The aim of this
fmaging spectroscopy article is first to show why it is important to correct these saturation effects at the risk of having a biased
Statistical imputation view of the sample and more specifically in the context of multivariate data analysis. In a second step, we

will look at strategies for managing saturated bands. An original concept will then be presented by
considering saturated values as missing ones. A statistical imputation strategy will then be implemented
in order to recover the information lost during the measurement.
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1. Introduction

Saturation is a phenomenon regularly observed in spectroscopy.

- . Its presence can be linked to various factors such as sample prep-
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limitations in the detection chain. For example, too high extinction
coefficients and/or too high pathlengths in the mid-infrared spec-
tral range reduce so much the number of non-absorbed photons
arriving at the detector that the absorbance levels are infinitely
high, values that cannot of course be transcribed in a spectrum, or
by default in the form of a plateau. On the other hand, in the case of
scattering or emission measurements as in Raman, fluorescence or
LIBS (laser-induced breakdown spectroscopy), the number of
photons collected by the measurement chain can be sometimes so
important that it cannot be transcribed into the spectrum. Again in
this case, a clipping effect is observed which does not allow to
observe the real values to be measured. Generally speaking, we can
say that a saturation may occur when a signal is recorded by a
detector that has constraints on the range of data it can measure.
This can therefore be the case when a signal is digitized using an
analog-to-digital converter, or any other time an analog or digital
signal is transformed, particularly in the presence of gain.

When a saturation phencmenon is chserved on a spectrum
acquired for bulk analysis of a single sample, the analysts know that
they have has to reconsider the preparation of their samples or the
acquisition parameters depending of course on the constraints
related to the experiment under consideration. The newly acquired
spectrum then has every chance this time to present values that are
representative of the analytical reality of the sample. The situation
is quite different when we have to do bulk analyses on a set of
samples with the final objective of comparing their spectra. For this
specific purpose, we must then set unique experimental conditions
that will be applied to all samples. We could then easily observe
perfectly exploitable spectra next to others that are potentially
saturated. This is a situation that often occurs in spectroscopic
imaging when exploring a single and complex heterogeneous
sample. Indeed, for given acquisition conditions, hundreds, thou-
sands or even hundreds of thousands of spectra are acquired in a
region of interest of the sample. Since each spectrum corresponds
to a specific micro-surface of the sample with a potentially different
molecular distribution, it is quite likely that some of them are
saturated. If we are lucky we might be able to find experimental
conditions that remove these saturations. Nevertheless, we must
not lose sight of the fact that it is not always possible to reproduce
the experiment a second time, for example when the technique is
destructive as in LIBS.

In general, we can say that we always try to aveid the saturation
phenomenen as much as possible. Unfortunately, it is observed in
many cases and it is necessary to deal with these data as they are.
The question that then arises is the following: what should we do
with saturated values that we know to be systematically erro-
neous? Fig. 1a gives a schematic representation of a dataset with six
spectra of which three contain saturations highlighted in red. We
can notice first that it is not always the same bands that are satu-
rated in this dataset used as a toy example. Second, the number of
saturations in a given spectrum is quite variable. Fig. 1b presents
the two strategies typically used to manage potential spectral
saturation in a dataset. The idea is finally very simple since knowing
that saturated values do not represent the true values, it seems
logical to remove them from the acquired dataset. We then have a
first possibility which is to remove all the spectra as soon as they
contain at least one saturated spectral variable also known as row-
wise deletion. This strategy might seem satisfactory because it is
simple to implement, but it is not flawless. Indeed, we could then
remove a spectrum made up of several hundreds of spectral vari-
ables and thus potentially a very large amount of molecular/atomic
information just because a single variable would be saturated, for
example. We would then have a significant loss of chemical infor-
mation as in the present case study where only 50% of the spectra
would be kept for multivariate analysis. In the specific case of
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spectroscopic imaging, we would then end up with areas of the
image without defined chemical information. From a more statis-
tical point of view, we would also have a biased analysis since we
would no longer have the initial population of acquired spectra.In a
second strategy known as column-wise deletion, we could sup-
press a spectral variable in the data set as soon as at least one of the
spectra of the dataset presents a saturation on this same variable.
This strategy is no more satisfactory because a significant loss of
information would still be observed. In the case of the presented
example, we notice that such a strategy would remove almost all
the spectral information from the dataset. Thus even if these two
strategies are regularly exploited in spectroscopy, we see that they
are unsatisfactory on different aspects.

Starting from the chservation that a saturated value in a spec-
trum is an erroneous one, we propose in this work to consider it as
a missing value. It is indeed more relevant to say that a value could
not be measured than to exploit a value that finally does not
represent a reality. Thus in the matrix representation of the data set
in Fig. 1b, red boxes that were initially saturated values will become
missing ones. In statistics, the art of dealing with missing values in a
matrix is called imputation [1]. It is in fact the process of replacing
missing data with substituted values. By approaching the problem
of saturation in this way, we see that we can then work on a data set
while keeping its initial dimensions, i.e. with the initial number of
spectra and spectral variables resulting from the acquisition. Thus
in this work, three different spectroscopic imaging datasets will
first be used to show the need to manage saturations present in the
spectra at the risk of seeing many artifacts during multivariate
analyses generating biased chemical images and extracted spectral
profiles. The principle of imputation will of course be explained and
the analysis of the corrected datasets will allow us to demonstrate
the benefits of this concept to find chemical images and corre-
sponding spectroscopic information representative of the analyt-
ical reality of complex samples.

2. Material and methods
2.1. Imputation

Imputation is a field of statistics. The great idea in imputation is
to fill gaps in the data with plausible values, the uncertainty of
which is coded in the data itself. There are many ways of doing data
imputation today [1]. However, we will use in this work the so-
called ‘multiple imputation’ now considered as the best general
methed to deal with incomplete data {i.e. containing missing
values) in many scientific domains [2—4]. Our goal here is of course
not to redo a whole development of the theory of imputation but to
explain some general principles in order to understand the results
presented in this work. Readers who would nevertheless like to
have all the details on this topic are invited to read other works
specifically dedicated to statistic [ 1,3]. The two main approaches for
imputing multivariate data are called joint modeling [5] (JM) and
fully conditional specification {FCS), also known as multivariate
imputation by chained equations (MICE} [6]. As the JM approach is
often more constraining from a statistical peoint of view to be
applied, the MICE method has been considered in this work. MICE
specifies the multivariate imputation model on a variable-by-
variable basis by a set of conditional densities, one for each
incomplete variable (i.e. containing missing values). In this work, a
regression model is developed using the complete variables of the
matrix as input and a given incomplete variable as output. Once this
model is established, we can then use it to predict missing values of
spectra at this specific spectral variable hased on known values in
the matrix. We will thus have as many regression models devel-
oped as spectral variables containing missing values in the
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Fig. 1. a) A schemnatic representation of a toy example with six spectra containing saturations highlighted in red. b) The two conventional strategies to manage saturated signals in a
dataset. (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.)

considered dataset. At the end of this imputation procedure, we
then find a full matrix free of missing values that we can then
explore with usual multivariate methods. In this work, all impu-
tation calculations have been done under the R environment using
MICE, an open source R package, Source code and documentation
can be found at https://github.com/amices/mice.

2.2. Multivariate data analysis

Principal component analysis (PCA) is one of the most flexible
and effective chemometric method for exploratory data analysis
applied to hyperspectral imaging [ 7]. It is indeed very sensitive and
thus allows the detection of very low variance levels. Its use will
first of all allow to see artifacts generated during a direct use of
saturated spectral datasets but also to estimate in a second time the
efficiency of the corrections brought by our imputation strategy. All
PCA calculations were performed under the Matlab 2016b
environment.

2.2.1. Dataset #1: a simulated sample

The first hyperspectral imaging dataset consists of synthetic
spectra that could have been acquired using LIBS. The advantage of
using such simulations lies in the fact that all the parameters
potentially influencing a given problem are under controlled. In this
way, we often have a less biased view of the phenomena and a real
generalization is possible. As we will see further on, it will also be a
way to vary the importance of the saturation phenomenon. On the
basis of the spectroscopic information given by the Kurucz database
[8], we first simulated the emission spectra of silver, aluminum and
arsenic by considering a typical plasma temperature and electron
density (9000 K and 51016 cm™ respectively). In order to be the
most faithful with the spectral reality, we then applied a Lorentzian
profile with a linewidth of 0.15 nm to each emission line, corre-
sponding to the resolution of classical spectrometer used in LIBS
[9]. In the considered spectral range (250—350 nm), several emis-
sion lines of Ag, Al, and As were observed with various intensity

ranges. On the basis of these three pure spectra, it was then possible
to generate by linear combination 62,880 spectra of mixtures in
percentages ranging from 100 to 0 for each of them. A white noise
of 5% has also been added to each spectrum. In this way, we ob-
tained a hyperspectral data cube defined by 131 pixels x 480 pixels
x 2018 wavelengths. Fig. 1S in supplementary material presents the
three element spectra, all the generated spectra of mixtures in
overlay mode as well as the spatial distribution of the different
elements in this synthetic sample.

2.2.2. Dataset #2: a lung biopsy

The second dataset used in this work corresponds to a LIBS
imaging experiment conducted on a lung biopsy of a patient with
severe emphysema [10]. Note that the patient signed informed
consent, and the clinical procedure was approved by the local ethics
committee, The LIBS imaging has been conducted with a protocol
dedicated to paraffin-embedded tissues, as described in a previous
work [11]. The aim of such application was to characterize the
distribution of metallic particles (from nanometric to micrometric
size) in tissue biopsies, which represent a precious help for clini-
cians to diagnose the cause of the exposition (i.e. environmental
and/or occupational). This spectroscopic experiment is a good
example of a case where saturated spectra cannot be avoided. Since
the concentration, composition, location and size of the particles
are not known prior the experiment, the measurement system
requires an extremely large dynamic in term of detection, typically
from few ppm to a few percent in mass. Despite our efforts to set up
the experimental parameters as optimized as possible, it is not
uncommon to have a significant number of spectra showing satu-
rations on a LIBS image as in this case, The size of the analyzed area
of the biopsy was 5.42 mm long by 3.18 mm wide with a spatial
resolution of 20 pm. We have thus acquired 43,089 spectra over a
spectral range from 282.01 to 310.03 nm and an approximate
spectral resolution of 0.04 nm. The hyperspectral data cube was
therefore defined by 271 pixels x 159 pixels x 644 wavelengths.
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Fig. 2. Principal component analysis on a) raw data, b) on the saturated dataset with a 30 saturation level, c) with a 20 saturation level and, d) with a 10 saturation level.
2.2.3. Dataset #3: a rock section zones each having a size of 20 mm long and 2 mm wide were
The third dataset was also acquired using a LIBS imaging in- analyzed following the protocol already used for other work [12]. A

strument on a banded iron formation rock consisting of alternating spatial resolution of 20 um and a spectral range from 245.85 to
layers of iron oxides and silicates. We selected this sample because 334.03 nm were considered for these acquisitions generating two
it somehow allowed us to find approximately the same chemical hyperspectral datasets defined each by 1000 pixels x 100 pixels x
distributions for two contiguous zones of the sample on which we 2048 wavelengths. The laser pulse energy and the detection gate
could set different acquisition parameters. This procedure of se- were adjusted for these two sub-zones in order to control the
lection of analysis area was necessary because we must not forget saturation level. Indeed, our aim was to obtain no saturated lines on
that LIBS is a destructive technique. Therefore, we could not analyze the first zone of the sample (gate: 1 ps; energy: 1.2 mJ) and satu-
the same area several times. As a consequence, two successive ration of Si emission lines on the second zone (gate: 5 ps; energy:
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Fig. 3. Principal component analysis on the imputed dataset with an initial saturation level equal to 20.

1.2 mJ). All the other acquisition parameters such as the delay and
detector gain was kept constant.

3. Results and discussion

Before tackling the problem of correcting saturation in the
spectra, it is important to understand how this is necessary to
manage it, at the risk of giving a completely biased vision of the
analyzed sample. For this purpose, we will use the first dataset of
simulated spectra. Fig. 2a thus presents the results of a first prin-
cipal component analysis applied to the raw data (i.e. without
saturated signals). Unsurprisingly, we note first of all that there are
three significant eigenvalues in the scree plot that correspond to
three spectral contributions. More specifically, the first three
principal components respectively extract the spectra of the three
pure elements Ag, Al and As. This is quite logical since there is no
correlation between these elements in the considered dataset. The
scores images then perfectly reproduce the distributions of the
three elements given in SI Figure 1S. In a natural way, the fourth
principal component extracts the noise variance. From the raw
data, we then simulate a first level of saturation by clipping all
emissions above 30, knowing that the maximum emission
observed on the initial spectra is around 43. SI Figure 2S gives the

location of the saturated signals at the spatial and spectral levels.
5047 spectra thus present saturations, i.e. 8% of all the spectra. We
notice that saturations are present in areas where silver is the most
concentrated with a percentage higher than 80%. From a spectral
point of view, it is the most intense line of silver which is naturally
saturated. Fig. 2b shows again the PCA results on these new satu-
rated data. The consequences are not long in coming since a fourth
significant component is already detected in the eigenvalues scree
plot. Of course, this is not normal because we know that only three
elements are present. Compared to the initial results (in Fig. 2a),
both the first principal component and the first scores map are no
different. Nevertheless, there is a small decrease in the expressed
variance from 21.42 to 20.44%. As far as the second and third scores
maps are concerned, they are quite comparable to those observed
from the non-saturated dataset. On the other hand, the corre-
sponding principal components show small artifacts in the spectral
region of the saturated Ag band (highlighted by red boxes in the
corresponding figure). Finally, the fourth principal component
specifically reflects the saturation phenomenon observed on silver
for an expressed variance of 0.08%. We see many structures in the
corresponding scores map but we know that they do not reflect any
analytical reality. We observe even more the typical W-shaped
artifact in this principal component. This shape can be explained
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Fig. 4. Emission of a silver line predicted by the imputation model as a function of known values at the wavelength 323.96 nm from non-saturated data.

quite well. Indeed, when saturations are potentially present at a
given wavelength, principal components have to express the vari-
ance precisely at this wavelength for the unsaturated spectra in the
dataset but other ones also have to express variances specifically
localized on the feet of this same peak. In other words, a clipped
band at a certain wavelength of a given spectrum is no longer
homothetic to an unsaturated band of another spectrum. So if we
do not have any prior information about this dataset, we see that
even a limited saturation level can induce the extraction of erro-
neous information at the spatial and spectral levels about the
sample being explored. It is then interesting to amplify the satu-
ration effect by considering this time a saturation level equal to 20,
Under these new conditions, 10,119 spectra are saturated, i.e. 16% of
all the spectra. Once again, saturations are present in areas where
Ag is the most concentrated, but this time for values higher than
50% (SI Figure 3S). We are also starting to see saturated spectra for
pure Al pixels. Fig. 2c show PCA results of this new dataset. Four
significant contributions are still observed, but with an even greater
influence of artifacts on all components. We notice thus on the first
principal component which should be specific to Ag that contri-
butions from Al and As are now easily observed. We note here that
the presence of saturations can also create spurious correlations.
The second and third components have even greater expressed
variances and ever more pronounced ‘W-shapes’. While the scores
maps are relatively little changed under these new conditions for
the first three principal components, this is not at all the case for
the fourth one. This high-contrast, low-noise scores image could
indeed lead us to believe that real chemical compounds are present,
which is of course not the case. In a final step, the saturation is
further increased by considering this time a level equal to 10. This
situation is extreme since 27,870 spectra are now saturated, i.e. 44%
of the dataset. What is more, the saturated pixel location map
shows that this percentage is even underestimated since almost all

of the areas that should contain the three elements are almost all
saturated, the unsaturated areas being mainly the background (SI
Figure 4S). At the same time, we observe that almost all emission
lines show saturation over the entire spectral range. PCA results of
this new dataset is given in Fig. 2d. Under these conditions where
saturation is omnipresent, six significant contributions are now
detected. The first principal components are more and more per-
turbed. They are now undeniably different from pure spectra
extracted on unsaturated spectra. As examples, the first principal
component contains distinct contributions from all three elements
and the following ones, which contain more and more artifacts,
have equally increasing explained variances. Two new principal
components 5 and 6 are also extracted in these conditions with
quite singular scores maps. The presence of these additional prin-
cipal components is explained by the fact that the variance of all the
saturated peaks must of course be explained, but also that they are
not necessarily saturated at the same time in all the spectra of the
dataset. Generally speaking, we can say that the more spectral
variables containing saturations, the more parasitic principal
components and biased scores maps are extracted. From this first
experiment, it is obvious that we cannot directly process saturated
spectra with multivariate tools at the risk of making very hazardous
exploration of unknown and complex samples for which we have
no a priori. Based on this observation, we know that we must now
absolutely manage these saturations. Thus, if we wanted to
implement a row- or a column-wise strategy that is simple to set up
in order to eliminate these saturations, we would quickly observe
too many deleted pixels or a particularly small explored spectral
domain. It is in this sense that the proposed imputation strategy
makes sense by first considering saturated signals as missing values
and then applying the MICE approach to make statistical estimates
of the latter, i.e. retrieve lost spectral information and consequently
a full data matrix. Imputation was therefore applied to the previous
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Fig. 5. a) Principal component analysis on raw spectral data of the lung biopsy. (b) Same analysis on spectra corrected with imputation.

datasets by considering the three levels of saturation. In order to
appreciate the quality of the data reconstruction, we simply reap-
plied PCA on these three new datasets. Fig. 3 shows the results
concerning the intermediate saturation level equal to 20. The re-
sults for the other levels are presented in the supplementary ma-
terial (SI Figure 5S). By comparing these new extractions with those
obtained on unsaturated data, we observe rather spectacular re-
sults. First of all, we recover the three significant components on
the eigenvalues scree plot, which is consistent with the initial re-
sults. Moreover, principal components and corresponding scores
maps are also very comparable to the initial ones. These good re-
sults can be explained by the fact that the multivariate regressions
used in the MICE approach predict missing values rather well. By
way of illustration, Fig. 4 shows the emission predicted by the
imputation model as a function of known values at the wavelength
323.96 nm from non-saturated data, this silver emission line being
the most often saturated for a saturation level equal to 20. Looking
specifically at the results concerning the most saturated dataset (SI
Figure S5, saturation level equal 10), some readers might say that
despite the three significant contributions detected on the scree
plot, it is possible to observe information related to a fourth
component at both spectral and spatial levels. This would be quite
commendable but we must not lose sight of the fact that these
contributions are very close to the noise level. Moreover, these
results were obtained from a dataset for which almost all the
spectra were saturated, which could not be more challenging.

In this second part, we propose to explore a lung biopsy sample.

This sample is particularly interesting because the analyzed area of
lung presents a certain diversity of materials since we have natu-
rally biological tissues but also mineral phases and metal particles
localized in specific sub-areas. In these conditions, we quickly un-
derstand that it is almost impossible to find acquisition conditions
allowing us to avoid saturation over the entire surface analyzed. In
a way, one always make a bet before such an analysis because the
considered spectroscopy is destructive and it is not possible to re-
turn to this sample area with new acquisition parameters. Location
of the spectra containing saturations on the surface of this sample is
shown in SI Figure 6S. Although only 1014 spectra out of the 43,089
in total are saturated (i.e. 2.35%), this phenomenon is finally
observable almost everywhere, mainly on two well-localized areas
(denoted A and B in this figure) but also in the form of single pixels
scattered over almost the entire surface of the sample. Additionally,
Figure 6S shows that saturations are observed for almost all
emission bands in the considered spectral range. Fig. 5a and b
shows PCA results on raw spectral data and spectra corrected with
imputation respectively. Differences are noticed very quickly if we
look at the contributions of each principal component in these two
conditions two by two. So even though the first principal compo-
nent is quite comparable in both cases with the main spectral
contributions observed for Mg and Si but also smaller ones for Al
and Fe, the associated scores maps are very different. Indeed, there
is an overestimation of this first contribution for raw data on zones
A and B of the sample but also widely around zone B. For its part,
the first scores map associated with the corrected data mainly
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Fig. 6. Three principal component analysis calculated on, a) the first sample area (i.e. with no saturation), b) the raw data of the second sample area (i.e. with saturations) and c) the

imputed data (ie. corrected ones) of the same area.

locates this contribution on the periphery of zones A and B or on
specific pixels scattered outside these zones. Another way to
observe these differences is to compare the histograms of positive
scores for this first component in the two conditions (SI Figure 7S).
The saturation effect thus limits the range of scores values that
should be observed and profoundly changes the structure of the
distribution and therefore the visual perception one might have of
it. For the second component, we are in much the same situation as
before. We therefore have very comparable second principal com-
ponents on the raw and imputed data. The Mg contribution is now
anticorrelated to the Si, Fe and Al ones. On the other hand, once
again there are differences on the scores maps for this component
in the two conditions. Negative scores (blue color scale) are thus
distributed more homogeneously in areas A and B when the
spectral data are imputed. It is from the third principal components
that we observe the largest spectral differences between the two
conditions. Thus for raw data, typical W-shaped artifacts are
observed (in red in Fig. 5) around the Mg contribution with

o]

correlations or anticorrelations with other elements. We observe
on this occasion that the third and fourth principal components are
extracted from raw data to express the saturation of pixels mainly
located in the B zone of the sample. Even more specifically, we can
see on the third principal component that the W-shaped artifact on
Mg is positively correlated with another Ca contribution around
300 nm. This component thus just testifies to the simultaneous
saturation of emission bands associated with the Mg and Ca ele-
ments on specific pixels according to the information given in SI
Figure 6S. This example shows a very good example of spurious
correlation created by the saturation phenomenon, which no
longer exists once the data are corrected by imputation. Finally, the
imputation strategy allows the appearance of dispersed particles
opposing the Si and Al elements for the third principal component
and the Ti et Al elements for the fourth one. It is obvious that such
potentially less biased observations of particles represent a
precious help for clinicians to diagnose the causes of the patient’s
exposure. From a general point of view, it is very interesting to see
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how a small percentage of saturated spectra can have an influence
on a multivariate exploration method as sensitive as principal
component analysis. This experience shows again here the neces-
sity not to neglect the saturation phenomenon by setting up an
adapted correction method such as imputation prior any chemo-
metric analysis.

This last part of this work is dedicated to the analysis of the rock
sample. As a reminder, two contiguous regions of the sample were
analyzed considering two acquisition settings. In this way, we
analyzed the sample by ensuring the absence of saturation for a
first area but also its presence in the second one. Figure 85 shows
the location of pixels containing saturations on the surface of the
second sample area. It can be said that in this case saturation is
omnipresent since it is ohserved on 32.5% of the analyzed surface.
On the other hand, the same figure shows that this time these
saturations are only found on the specific contribution of an
element, namely silicon around 288 nm. Fig. G presents the three
principal component analysis calculated on the first sample area
{i.e. with no saturation}, on the raw data of the second sample area
(i.e. with saturations) and on the imputed data (i.e. corrected ones}
of the same area. By comparing the principal components two by
two in Fig. 6a and b, we observe very quickly the impact of satu-
ration since we find the typical W-shaped artifact around 288 nm
for components 3 and 4. The situation is even more critical for the
fifth principal component with completely different profiles be-
tween Fig. 6a and b. In fact, it is above all the saturation effect thatis
expressed here for the second area of the sample. Finally, by
comparing the results on the imputed data in Fig. 6c and the un-
saturated data of the first sample area, we observe a perfect
agreement between extracted profiles demonstrating the capacity
of our approach to correct the saturated spectral data.

4. Conclusion

As we have seen in the work, it is crucial to consider the phe-
nomenon of saturation present in the spectra. Through different
datasets we have indeed shown that its presence quickly induces
artifacts on spectral profiles but also on generated images when
multivariate tools are used for their exploration. Make no mistake,
even the presence of a limited percentage of saturated spectra in a
given dataset can have an impact on the veracity of the chemo-
metric results. It is obvious that it is absolutely necessary to avoid
the presence of saturation in the acquired spectroscopic data
whenever possible by modifying, for example, the sample prepa-
ration or the acquisition parameters. Unfortunately, there are many
situations where this phenomenon is observed as in LIBS imaging
and we have to find solutions to exploit these acquired data any-
way. The usual column- or row-wise deletion is not a satisfactory
solution because it can be accompanied by a large loss of spectral
information in the dataset. As a consequence, we would have a
partial or even biased view both at the spectral and spatial level of
the sample. All the originality of our work was to consider the
saturated signals as values that had not really been measured and
by extension as missing values. The goal being to preserve all the
spectral and spatial dimensions of the dataset, statistical imputa-
tion allowed us to retrieve complete data cubes consistent with the
analytical reality of the samples considered as shown in the results.
With this new approach, we will potentially have a chance to
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explore all those datasets that we think are being lost due to
saturated signals.
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3.2.2. Methodological perspective

Imputation is, as already mentioned, a field of statistics in which the selected data are used
to generate new values that will replace the ones coming from, in this case, the saturated signals,
that will be considered in a first step as missing data. In this way, the original dimensionality of
the dataset will be maintained, meaning that no information will be missed at the end in the
analysis. Nowadays, many different data imputation approaches are available. Despite that, the
one that has been selected for this work is related to the ‘multiple imputation’, one of the best
strategies to deal with incomplete data [214]. The main approaches for imputing multivariate
data are the Joint Modeling (JM) and the Fully Conditional Specification (FCS), also known with
the name of Multivariate Imputation by Chained Equations (MICE) [215]. Due to the constraints
shown by the JM method, here MICE has been used to correct the saturation of the signals. This
approach specifies the multivariate imputation model on a variable-by-variable basis by a set of
conditional densities, one for each incomplete variable. It is also important to highlight the fact
that the imputation model should account for the process that created the missing data, and
preserve both the relations in the data and the uncertainty about these relations. The main concept
behind MICE methodology is that multiple imputation is best done as a sequence of small steps,
each of them requiring diagnostic checking. It is possible to briefly resume the main steps of

multiple imputation into three parts, as reported in Fig. 20: imputation, analysis and pooling.

Incomplete Imputed Analysis Pooled
data data results results

a
N

Fig. 20 — General scheme showing the main steps of the multiple imputation approach MICE.

As previously introduced, the data used at the starting point of MICE are the ones presenting the
missing values (the incomplete data). The main point here is that clearly, it is not possible to

estimate the missing values without making unrealistic assumptions about the unobserved data.
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In the imputed data step, multiple imputation versions of the data will be used replacing the
missing values by plausible data. Fundamental is that these values must be reasonable. This is
the reason why they are drawn from a distribution specifically modelled for each missing entry.
Naturally, due to the fact that the original value is missing, it is reasonable to consider that a
degree of uncertainty is inevitable. This component leads to the fact that multiple values to impute
will be generated. In the shown scheme for example, from one missing value, an amount of t =3
different imputed data are generated. The three imputed sets are identical for the non-missing
data entries, but differ in the imputed values. The higher the magnitude of the difference between
the calculated values and the higher the uncertainty about what value to impute. Then, in a second
step (the analysis results), each imputed dataset will be used to calculate the outcomes and
estimate their robustness. It is important to highlight again that the differences among the various
estimations found with the MICE algorithm are caused due to the uncertainty about which value
to impute. Normally, the analysis results are at the end collectively stored as a multiply imputed
repeated analysis. Finally, in the last step, the t = 3 estimates obtained with MICE are pooled
together into a single value, and its variance (within- and between-imputation variance) is
calculated. In other words, a regression model is developed, and the results of the function are
stored as a multiple imputed pooled outcomes object. Once the model is established, it can be
used to predict missing values of spectra at this specific spectral variable based on known values
in the matrix. As a consequence of this, at the end a dataset free of missing values will be

generated, which will be used for the multivariate analysis, as usual.

3.2.3. Conclusions and future perspectives

Saturation of the signals is clearly a very important spectroscopic problem that should be
faced before any data analysis. The challenge is that it is not easy to find a solution when the
value to be replaced is not available within the matrix, or at least not directly related to the given
information, such as in the case of clipped bands. Despite that, solving this problem is mandatory,
due to the fact that using a strategy such as the exclusion of these values can result the worst
approach, leading for example to the loss of important information. The presented method, based
on the use of a multivariate data imputation, more precisely the MICE algorithm, represents an
interesting approach that can be used to overcome the limitations related to the standard methods.
Nevertheless, this kind of strategy can show a certain degree of drawbacks. First of all, MICE
has been tested on LIBS spectra, which are represented by very narrow peaks and bands, each of

them potentially selective to specific elements. It means that if for example a peak is saturated,
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others will be anyway potentially correlated to the same element, leading to the chance of finding
further signals that could make it possible to build a model able to impute the missing values.
Also important is that LIBS can easily generate from thousands to millions of spectra, increasing
the possible number of values to be used to create a reasonably robust and accurate MICE
prediction model. The situation can be different when other spectroscopies are used, which are
related to other characteristics. For example, Raman spectroscopy, in which broadened bands can
be observed, can hardly collect the same amount of data of LIBS analysis. In addition, despite
the use of fingerprints to recognize different molecules, it is off the table the fact that Raman and
LIBS spectra cannot be compared, from an interpretation point of view. Therefore, it is clear that
when LIBS is used, it is easier to create a regression model that makes it possible to predict
missing values. Nevertheless, it would be interesting to implement the use of imputation in order
to generate model robust enough to be used for other spectroscopies. Lastly, it is important to
highlight another limitation related to this method. In fact, no matter the computational
calculations, if a saturated signal is related to an element (or compound) that is that pure to be
completely absent from the rest of the matrix, naturally it will be impossible to generate a model
able to impute that value, leading to the creation of artifacts that would correspond to wrong data
analysis outcomes. Nevertheless, this is a very extreme scenario. Another extension of this work
would be to use the same concept to specifically correct the self-absorption phenomena often
observed in LIBS. However, in this case a first difficult has to be faced. In fact, it would be
necessary at first to detect automatically the zones presenting this phenomenon before their
correction by an imputation stage. To conclude, it can be said that from a general point of view
using this approach, finally it is possible to use the totality of the information related to a dataset,
both the spectral and spatial components, leading to the potential possibility of exploring datasets

that otherwise would not be analyzed due to their quantity of saturated signal.
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CHAPTER 4






4. LIBS IMAGING AND CHEMOMETRICS: HOW TO EXPLOIT
MULTIVARIATE DATA ANALYSIS TO MAXIMIZE THE
OBTAINABLE RESULTS FOR THIS SPECTROSCOPY

4.1. A general overview of LIBS imaging framework and possible

chemometric approaches

At this point, it is clear that an important part of the present PhD has been dedicated to the
investigation of chemometric tools and methodologies linked in particular to LIBS analysis. This
imaging spectroscopy, rapidly developed in the last decade, is related to very interesting
characteristics. Due to this, it is nowadays considered an essential instrumentation in many
research areas. From a general point of view, it is very likely to obtain images made of millions
of pixels associated to thousands of spectral channels. Of course, this means that very interesting
images can be generated, but at the same time, despite the general development from the
spectroscopic point of view and especially, from the computational instrumentation perspective,
itis still really complicated to find a reasonable way to deal with and investigate this huge amount
of produced data. The typical routine approach used to study this kind of data cube is based on
the integration of the acquired signal at a particular wavelength (i.e., an emission line of a given
element), leading to the generation of a distribution image of the considered element present in
the sample. Naturally, this can be a limitation. In fact, first of all the operator needs to have a
general idea of the various elements present in the sample of interest in order to obtain the
corresponding images. Then it is clear that, particularly in a scenario in which a big dataset is
acquired, different elements will be present as minor compounds or even traces, maybe showing
very small intensity signals compared with the rest of the compounds in the specimen. All these
things correspond to the possibility of losing very important information related to the sample,
and so to carry out an incomplete investigation of its real heterogeneity. It is also very difficult
to really detect correlations between elements with this classical integration method. Due to all
these reasons, it is obvious that chemometrics might be used as an important alternative to the
routine approaches in order to study in deep the outcomes related to this kind of spectroscopy
and so, lead to new ways to interpret the results. In order to do this, the main chemometric tool
used to show and prove the robustness of the present work is MCR-ALS [129,183]. In fact, this

algorithm is nowadays one of the most important milestones in the spectral unmixing framework,
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a technique used with the purpose of selecting and showing the pure contribution related to the
different components of a given investigated sample. Nevertheless, it is important to highlight
the fact that also using chemometrics, and so MCR-ALS, it could be challenging to use the raw
data, due to the huge amount of information related to the acquired sample. This is true from two
different points of view. First, again, it is a very easy scenario, when the used matrix corresponds
to a big dataset, the one of losing information, particularly related to minor compounds and trace
elements. Second, despite the very interesting characteristics of MCR-ALS, some calculation
problems may arise, due to the size of the data cube. So, as a first step, it is always important to
consider the possibility of selecting only a part of the total information (the most relevant one),
and work exclusively with that. In other words, it is very plausible the idea that in millions of
spectra, only a small percentage will be related to very pure information. This means that, with
the right approach, it would be possible to enormously reduce the quantity of data to be used to
obtain final accurate outcomes. From a certain point of view, this kind of idea has been already
previously discussed in this manuscript. Clearly, we are referring to the randomised
SIMPLISMA [180] and the Embedded K-Means (EKM) [212] approaches. So, which is the
reason of developing a new strategy for this kind of spectroscopy? As previously explained,
randomised SIMPLISMA is a very useful method, and it can be applied to select the rank and
generate the initial estimates to be used in the MCR-ALS approach. Nevertheless, if the
investigated image is too big and complex, it might be a real challenge the selection of the right
randomised SIMPLISMA input values (i.e., the number of subsets to be generated and the
percentage of pixels to be selected for each subset). Another important thing is that, also if it
would be possible to obtain good results, anyway MCR-ALS could be not useable due to the
dimensions of the dataset from a computational point of view. Therefore, it is fundamental to
find an alternative way in which MCR-ALS can be applied without using the totality of the data
acquired by LIBS. Considering EKM clustering, as previously stated it is a very interesting tool
to deal with a huge amount of data, in order to find the contribution of not only the major, but
also the minor compounds, when it is impossible to have an adequate knowledge of the
investigated sample. Nevertheless, it is important to remember the fact that this kind of approach
uses the totality of the pixels of the matrix. Therefore, the presented methods have both some
very interesting aspects, but naturally also some constraints. In other words, it would be important
to find an alternative method that, in situations in which the sample is very big and heterogeneous,
could drive the operator with an automatic approach to accurate results. The core of this chapter
Is to provide a data analysis pipeline capable to drastically decrease the amount of imaging data

(both the spectral channels and the pixels) used for the investigation of a sample in order to
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perform a simpler unmixing analysis exploiting only the essential information selected from the
LIBS image. For informational purposes, it is important here to inform the reader that a first part
of this chapter, also published in Analytica Chimica Acta, Volume 1192 (2022) [216], will focus

on this aspect, and an interesting data analysis pipeline will be described to reach this goal.

4.2. LIBS data fusion: the importance of fusing different

spectroscopic techniques

Another fundamental part of this chapter regards the use of chemometrics in the framework
of the data fusion of different hyperspectral imaging systems, focusing particularly in the use of
LIBS spectra and other spectroscopic responses. As previously stated, LIBS is an elemental
spectroscopy. From an analytical point of view, it is very important to study a given sample from
the elemental perspective, to deepen the comprehension of its chemical composition. Despite
this, the information related to the elemental point of view can be not sufficient, and it is always
interesting to merge together different kind of data to obtain a more complete overview of the
characteristics of the investigated matrix. On the other hand, sometimes it can be very challenging
to give the right interpretation to the data and understand the molecular composition of a given
component (if for example an exhaustive library for a particular spectroscopy/technique is not
available). In this kind of scenario, an elemental analysis such as the one obtainable with LIBS
can be decisive. In fact, using the elemental information, it would be for example possible to
carry out details from the elemental and also molecular points of view that are not clear when
LIBS is not involved in the analysis. Furthermore, another important aspect is the LIBS
resolution. Making the most of it, it may be possible to obtain better spatial details coming from
other spectroscopies. Lastly, LIBS can be directly coupled with other spectroscopic responses. It
means that it is possible to acquire at the same time different spectral domains, without any
necessity of changing the used instrument and platform. In this way, it is possible to obtain more
data cubes that are represented by the same spatial dimensions, leading to a faster and easier data
fusion between the considered spectroscopies. In detail, during this PhD it has been possible to
investigate two different techniques related to LIBS. The first one is PIL [91], a luminescence
effect that can be generated in particular situations. As previously described, the general principle
of LIBS is the use of a laser that will produce a plasma able to ablate the surface of the sample.
Some elements can keep the excess of energy coming from the LIBS excitation source and then
release it with a delay of some milliseconds in the form of a luminescence effect. Despite the

relative simplicity in acquiring these additional PIL spectra, the interpretation of such signals
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remains uncertain [90]. This is a perfect scenario in which the fusion can be used with the purpose
of leading to an easier explanation of the data, due to the absence of a real library for PIL
phenomena. These results have also been reported in the aforementioned paper published in
Analytica Chimica Acta, Volume 1192 (2022) [216]. On the other hand, another interesting
example regarding the data fusion is the combination of LIBS with Raman spectroscopy.
Naturally, here the scenario is very different. If PIL is a technique that from a chemical point of
view shows very limited information, Raman is related to very important aspects of the molecular
composition of the studied sample. Nevertheless, it can be sometimes complicated to give the
right interpretation to some Raman bands, as well as it can result challenging to recognize some
LIBS spectra, if the composition of the sample is too heterogeneous, or if the intensity of the
corresponding signal is too weak. In addition, it is plausible that some information may be related
only to one or the other instrument, if not coupled. Clearly, fusing the two techniques, it would
be possible in this way to extract more details, correlations and anticorrelations between these
different spectroscopic responses, obtaining both an elemental and molecular investigation of a
given sample. In conclusion, without any doubt a fusion strategy is a very interesting approach
that can be used in order to deepen the knowledge of the chemical composition of a specimen.
The limitation in this scenario is anew represented by the fact that an enormous quantity of data
can be easily acquired (considering in this case the generation of millions of spectra for both
LIBS and the supplementary coupled spectroscopy). Again, the approach proposed in this chapter
based on the selection of only the most relevant spectral and spatial information before the data
analysis can represent a good solution to this kind of problem. Even so, it is important to consider
some aspects in order to avoid inaccurate outcomes. First of all, in the moment that two different
datasets are fused together, the right normalization has to be applied, in order to obtain
comparable spectral magnitudes. Second point, it is fundamental to apply the aforementioned
data reduction approach at the right moment of the pipeline. This aspect is much related to the
kind of spectroscopic response coupled with LIBS. Here is explained the reason. Due to the few
chemical information linked to PIL, the use of the data reduction after the fusion has to be
preferred. This is due to the fact that PIL spectra alone are not very easily interpretable, as a
consequence of their corresponding broad signals. Instead, applying the reduction of the data
after the fusion, the selected information will depend on both the spectroscopies, leading to the
observation of the correlations between the various elements identified by the use of LIBS and
their luminescence effect, linked to PIL phenomenon. Contrariwise, using Raman spectroscopy,
it is recommended to merge the datasets after the selection of the spectra used on the separated

matrices. The reason of using this approach is related to the very specific and different details
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linked to LIBS and Raman spectra (respectively, elemental and molecular information of the
acquired matrix). Therefore, in a first step it is necessary to skim the data, in order to select only
their most relevant part. Then, it is possible to fuse the two reduced datasets and observe the
interaction between LIBS and Raman spectral responses, in order to maximize the obtainable
information. Due to the complexity of material explained in the present chapter, only some results
concerning the Raman spectroscopy coupled with LIBS will be shown, while the PIL

investigation is reported in detail into the already cited publication [216].

4.3. Data fusion of LIBS and PIL hyperspectral imaging:
Understanding the luminescence phenomenon of a complex mineral

sample

4.3.1. General aspects related to the data reduction in LIBS analysis

As described in the introduction of this chapter, one of the main points of the present work
has been the development of a strategy able to select the most important information related to
LIBS, and not only this spectroscopy. One of the principal limitations in LIBS is that an enormous
amount of data can be easily generated. In fact, millions of spectra can be acquired in a reasonable
time, due to the very interesting instrumental characteristics of this spectroscopy. Despite this, it
is important to consider some challenges. For example, the raw data can be hardly analyzed
obtaining good outcomes, if not correctly treated. Therefore, find an adequate pipeline able to
reduce the amount of used data, but at the same time be sure to consider the most important
information, no matter if related to major compounds (easily identifiable) or, and particularly,
minor components and traces (represented by a small quantity of spectra) is a mandatory task.
The main problem is that normally the identification of the most relevant information is related
to factors such as the total explained variance. This means that, in the case in which a big dataset
is analyzed, minor compounds will be usually represented by small values, and for this reason
easily skipped. Nevertheless, other algorithms can be used in order to select the information based
not on the total explained variance, but on the purity of the spectra. This scenario is clearly
recommendable, in order to generate better results. One of the most common used techniques for
this purpose is SIMPLISMA [192], as it has been vastly discussed into this manuscript. Again,
one of the main limitations concerning this algorithm is related to the fact that, in order to be
applied, some inputs have to be insert by the operator, with the purpose of selecting the right
number of pure components to be used, for example in the framework of the spectral unmixing.

109



In a different way, here SIMPLISMA has been used to select the purest spectra, but with the
intention of only skimming the total information, in order to finally work with a reduced dataset.
In this way, as a main point, instead of working with millions of spectra, only a small percentage
will be taken into consideration for the chemometric approach (in this case, MCR-ALS). Second,
and more importantly, the purpose of using the presented pipeline is the selection of not only a
small quantity of spectra, but the most interesting and purest ones, in order to be sure of obtaining
at the end results that will be representative of the heterogeneity of the matrix and so, of the
existence of eventual traces, no matter its complexity, that otherwise would be easily missed. In
order to give a general idea about this procedure to the reader, it is important to stress again the
fact that this part of the chapter focuses only on the description of the used approach for the
selection of the most important pixels and variables, while the part related to the chemometric
interpretation of the data and the fusion with PIL spectra is well described into the reported
published paper [216]. Also important is to understand the use of SIMPLISMA in this kind of
scenario. As introduced, this algorithm is normally applied in the spectral unmixing framework
in order to select a precise number of pure contributions that are used as initial estimates in the,
for example, MCR-ALS procedure. In the present approach, its use is slightly different. In fact,
SIMPLISMA is firstly applied on the spectra of LIBS, in order to select only some of the
variables, the purest in the whole spectral domain. This is possible due to the very fine spectral
features of this spectroscopy. In addition, one should consider the fact that multiple peaks can
refer to the same element. Using this approach, it is then possible to select only a part of them,
the ones that are stronger related to a certain information. Contrariwise, considering PIL and
Raman responses, another spectral reduction procedure has been applied. Regarding PIL, due to
the fact that only two big band signals are available, the rest of the spectral range that is related
to the baseline has been removed prior the analysis. Instead, for Raman spectra, considering the
fact that generally the peaks are broadened, there was selected only one point each three, in order
to reduce the total amount of spectral variables. This approach could be considered as an attempt
that would lead to inaccurate outcomes, due to the possible lack of information. This is not true.
In fact, MCR-ALS results are calculated using only the selected information. Then, as a last part
of the procedure, a suitable single least-squares step is applied, in order to use the solutions
obtained with MCR-ALS to reconstruct the full spectral signatures. Lastly, considering again the
selection procedure, once that only a part of the spectral range has been selected, SIMPLISMA
is newly applied, this time in order to reduce the total final number of used pixels for the spectral
unmixing, considering the fact that only few of them will be related to a pure information coming

from a specific element or compound. Naturally, the aforementioned least-squares procedure is
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at the end applied also on the pixels, in order to reobtain the full distribution maps of the initial
data cube used in the analysis. As a last, but essential point, it is also important to highlight
another aspect. Using this SIMPLISMA-based procedure, it is not possible a priori to know the
number of pure variables and pixels to be selected in order to reduce the total amount of data, but
at the same time to have at the end the certainty of conserving also the minor information. This
is the reason why normally the selected value is an overestimation of the possible real one. In
this way on one side the idea of enormously reducing the total amount of data will be anyway
performed, and on the other, the operator can be relieved of the fact that any information, no

matter if coming from major or minor compounds, will not be missed.
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spectral information, which is nowadays very complex due to the natural overlapped signals provided by

this technique.
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1. Introduction

Laser-induced breakdown spectroscopy (LIBS} imaging is
nowadays a very powerful technique for the elemental analysis of
complex samples used in many different scientific fields [ 1—7]. This
technique uses a pulse laser beam focused on the sample surface to
generate a plasma that atomizes and excites the ablated matter. As
a consequence, the excited atoms, ions and molecules release the
excess of energy with electronic relaxations, and a characteristic
emission spectrum for each element present in the matrix can be
acquired using an optical microscope coupled with a spectrometer.
In LIBS imaging, the sample surface is usually explored in a scan-
ning configuration mode, acquiring one spectrum at a time for each
spatial position of a predefined grid. Then, using a classical inte-
gration of the acquired signal at a particular wavelength {i.e. an
emission line of a given element), it is possible to generate a dis-
tribution image of the considered element present in the sample.
LIBS technique shows many advantages, such as multi-elemental
capabilities including light elements (<Mg), a high acquisition
rate (up to 1000 spectra/s), high sensitivity most of the time, high
dynamic range (major elements to traces can be chserved), and
compatibility with optical microscopy. Nevertheless, even if the
high acquisition rate of LIBS imaging allows analyzing large sample
areas of several cm? in a very reasonable time, this advantage be-
comes a major limitation because a huge amount of data is natu-
rally produced due to both the many spectral channels explored by
LIBS and the massive number of sampling points — the pixels —
scanned. In fact, it is nowadays common to get images with millions
of pixels associated with thousands of spectral channels [8,9].
Another important aspect in the LIBS exploration of a sample is the
possibility to obtain an additional plasma induced luminescence
{PIL} [10] response using the same instrument. Indeed, the plasma
generated by the LIBS laser shot acts as an excitation source and
produces the emission of a luminescence response for specific el-
ements present on the sample surface [11]. Nevertheless, despite
the relative simplicity of acquiring these additional PIL spectra, the
interpretation of such signals remains uncertain [12]. Chemo-
metrics and multivariate data analysis are very suitable approaches
for the exploration of this complex kind of imaging datasets.
However, the use of these tools for the study of LIBS and/or PIL
images is nowadays still limited. Understanding the concept of
hyperspectral imaging, finding appropriate tools for data explora-
tion to deal with millions of spectra and able to provide inter-
pretable outputs is still a very complex task, which can be of
invaluable help for the LIBS community members.

The central point of this work is to provide a data analysis
pipeline capable to drastically decrease the amount of imaging data
{both the spectral channels and the pixels) used for the investiga-
tion of a complex and heterogeneous sample in order to perform a
simpler unmixing analysis of the essential information selected for
LIBS images or for fused LIBS/PIL data configurations. To do the
unmixing task, Multivariate Curve Resolution — Alternating Least
Squares { MCR-ALS) analysis [ 13—15] will be applied on the selected
small amount of data coming from the previous compression step.
We will demonstrate that applying MCR-ALS on such compressed
dataset is sufficient to reconstruct high quality full maps and
spectral signatures of the compounds in the imaged sample

without losing the initial spectral and spatial resolution [16]. The
methodology proposed will be tested to study a heterogeneous
kyanite mineral sample containing several trace elements analyzed
by LIBS and PIL imaging. The results of the analysis of fused LIBS and
PIL datasets will provide the identification and distribution of the
different elements present in the sample but, most importantly,
will shed light for a better understanding of the luminescence
phenomenon in this kind of complex samples. To the bhest of our
knowledge, this is the first time that this data analysis pipeline
(data compression and fusion} is used on LIBS/PIL imaging
platforms.

2. Material and methods
2.1 Experimental setup and spectral data acquisition

The LIBS experimental setup has been already described else-
where [3,11,17,18]. It included a Nd:YAG laser source operating at
100 Hz and emitting at the fundamental wavelength (i.e. 1064 nm)
with an 8 ns pulse duration {Centurion, Quantel laser by Lumibird }.
The laser beam was focused onto the sample using a
15 x magnification objective as shown in Fig. 1a. All the measure-
ments were conducted in ambient atmosphere with an argon flow
of 0.8 Iymin acting on the plasma region. A laser line scanning was
performed in raster scan mode with the use of a motorized XYZ
stage. In this configuration and considering the laser frequency
rate, about 360,000 laser shots were produced in 1 h. The ablation
craters, observed afterward with optical microscopy, were less than
8 um in diameter. Two spectrometers {Shamrock 500 and Sham-
rock 303, Andor Technology) equipped with intensified charge-
coupled device {ICCD) cameras {iStar, Andor Technology) were
used to probe simultaneously two spectral ranges in different
temporal domains. The Shamrock 500 was used for LIBS experi-
ments and was equipped with a 2400 I/mm grating (Holographic,
peak at 220 nm) covering the 425—440 nm spectral range with a
resolution of ~0.04 nm. This range was selected to detect primarily
iron (Fe), chromium {Cr}, vanadium (V) and titanium (Ti}, although
calcium (Ca} and zirconium {Zr) lines could also be detected (as can
be seen on the mean LIBS spectrum in Fig. 1b). The Shamrock 303
was used for PIL experiments. It was equipped with a 1200 [fmm
grating and setup in the 680—720 nm spectral range, where intense
luminescence lines were detected. The mean PIL spectrum is pre-
sented in Fig. 1c. Both ICCD cameras were synchronized to the Q-
switch of the laser. The LIBS acquisition was performed with a delay
of 1200 ns and a gate of 4000 ns, while the PIL acquisition was
performed with a delay of 100 ps and a gate of 2.2 ms. The light
emitted by the plasma was collected by two quartz lenses and
focused onto the entrance of round-to-linear fiber bundles con-
nected to each spectrometer. Each fiber bundle was formed by 19
fibers, each with a 200 pm core diameter. Spectra were acquired in
full vertical binning mode for the two spectrometers. The laser
energy was stabilized throughout the experiment and was fixed to
1 m] per pulse. Finally, a homemade software developed under the
LabVIEW environment was used to control the entire setup,
allowing automatic sequences of any selected regions of interest
with a preset lateral resolution.
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Fig. 1. a) Experimental setup. b) Mean LIBS spectrum of the considered sample. ¢) Mean PIL spectrum of the considered sample.

2.2. Sample and dataset description

The sample selected for this study is a section of blue kyanite
cristal (also called disten or cyanite) approximately 3 by 1.5 cm in
size, which isa low temperature - high pressure metamorphic
phase mainly formed by Al,SiOs with many heterogeneities and
several trace elements (mainly iron, calcium, vanadium, titanium
and chromium), collected in Siberia. For LIBS and PIL imaging, the
characterized cross-section was embedded in epoxy resin, cut, and
finally polished with SiC paper under water to obtain a clean flat
surface ready to be scan. The LIBS and PIL images acquired from this
sample are sized each 1100 x 2000 pixels (i.e. a total of 2,200,000
spectra) x 2048 spectral channels with a spatial resolution of 20 um
per pixel. The size occupied in terms of storage by the two datasets
is equal to 8 gigabytes for the LIBS dataset and more than 6 giga-
bytes for the PIL one.

A first idea of the chemical information related to this sample
can be obtained observing the mean spectra of the two datasets
using LIBS and PIL (Fig. 1b and c respectively). Thus the observation
of the mean PIL spectrum shows a first line near 706 nm that looks
not symmetric and evidently has a shoulder at its left side. In fact,
under UV excitation, the literature indicates that two close lines
with similar intensities can be observed depending on the orien-
tation of the sample at 706.2 and 704.6 nm respectively. This
statement is quite surprising in our case because the line at
704.6 nm is supposed to have a much shorter decay than the one at
706.2 nm (75 ps and 1.2 ms, respectively) and therefore our
acquisition parameters should not allow us to see the former. On
the other hand, the line near 689 nm seems to be symmetrical and
also corresponds to UV excitation. Once again, the literature in-
dicates the presence of two lines this time even closer at 688.9 and
690.1 nm, the second being of very low intensity which finally
explains the observation of a single line at first sight. Comparing the
two mean spectra, it is clear that LIBS is represented by a larger
number of emission signals compared to PIL, which is mainly
formed by two broad spectral contributions. Fig. 2 shows distri-
bution images of elements present in the sample obtained from the
signal integration method classically used on specific wavelengths
of the LIBS spectra. Thus, even if this approach takes only into ac-
count individual wavelengths and not the full spectra, the spatial

distribution of the elements presents some interesting aspects. For
instance, while elements Cr and V seem to be strongly correlated
and distributed in a very large area, Fe, Ca and Ti are more specific
to small zones of the mineral. Note that no distribution image of Al
and Si are proposed, although kyanite is an aluminosilicate because
this element does not present LIBS emission in the considered
spectral range. The two PIL images generated from the two spectral
contributions at 689.315 (P1) and 706.865 nm (P2) also show slight
spatial locations. However, from a general point of view, it can be
seen that it is rather difficult to find spatial correlations between all
the LIBS and PIL images by simple visual inspection. The only thing
clearly seen is that the luminescence at 689 and 706 nm does not
come from the Ti element since we observe some inverse correla-
tion among LIBS and PIL images. Even if the generation of these
integration images remains an easy first step to observe the
chemical contributions of the sample, it is obvious that the char-
acterization of the correlations between images remains delicate.
Unfortunately, this is not the only constraint since the information
of elements that can coexist to form mineral phases is lost or, in the
best of the cases, incomplete using this univariate approach.
Similarly, minor compounds associated with weak signal and small
localized areas may be missed. For all these reasons, we propose in
this work a multivariate data processing pipeline combining
compression, fusion, and signal unmixing for an exhaustive and
simultaneous exploration of LIBS and PIL spectroscopies.

3. Data treatment
3.1. Data compression and signal unmixing

The massive nature of the datasets to be analyzed demands a
mandatory step of data compression to save computational re-
sources and analysis time. The whole process of compression and
multivariate resolution (signal unmixing) is described below in
several successive steps. For convenience, this section of the text
will illustrate the application of the methodology to the LIBS
dataset, due to the complexity and rich information provided by
this measurement. However, the same procedure was applied to
both LIBS and PIL datasets, except for some specificities, that will be
described, discussed and shown in Fig. 3.
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Fig. 2. Distribution images of elements generated from the classical signal integration method from LIBS and PIL spectra.

Thus the proposed data processing pipeline is divided into the
following steps:

1) Image blocking: first of all, the whole dataset was divided into 16
subimages. In this way, every single subimage had a reduced
size of 780 x 125 pixels and provides an unfolded submatrix D;
0f 97500 spectra. Blocking allows performing data analysis tasks
much faster in each D; subset of 97500 spectra than if the work
was carried out in the initial D matrix of 2 million spectra of the
full image. Each subsequent step described was applied sepa-
rately to each of the D; submatrices (Fig. 3a).

2) Spectral and spatial preprocessing: heterogeneous samples

analyzed by LIBS imaging often contain saturated spectra in the

acquired datasets. Recent works have shown the importance of
correcting these signals prior to any data processing by pro-
posing effective but relatively complex correction strategies

[19,20]. In this work, we have proposed a simple procedure for

managing the saturated spectra. First, the use of a threshold on

the spectra (set by the maximum A/D converter dynamic range)
was used to identify and locate the saturated pixels in the image

spectra. Second, each saturated spectrum was replaced by the
average of the non-saturated neighboring pixels in the image.
For the LIBS dataset, a baseline correction was afterward applied
using the asymmetric least squares (AsLS) algorithm based on
the Whittaker smoother [21], with A = 104 and an asymmetry
parameter of 0.0003. For the PIL dataset, which had a radically
lower signal-to-noise ratio, it was first necessary to apply a
Savitzky-Golay smoothing (filter width = 20; polynomial
order = 2)[22], and then, again, the AsLS algorithm (A = 107 and
asymmetry parameter of 0.0003) for baseline correction. Finally,
the use of a threshold on the global spectral intensity of the
pixels helped to generate a mask to separate the spectra from
the mineral sample, used for further analysis, from the spectra of
the epoxy resin surrounding it, discarded in all the following
data treatments steps. This image cropping step reduced the
total amount of spectra to be analyzed from more than 2 million
to around 1 million. The comparison between the starting raw
spectra, and the ones with this first spectral and spatial pre-
treatment are represented in the supplementary material

(Fig. S1).
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Fig. 3. The data fusion and signal unmixing procedure.

3) Double data compression: this is a key central step in all the

proposed chemometric strategy. In fact, despite the already
performed signal corrections and the massive reduction of
spectra, the dimensions of the datasets (both LIBS and PIL) were
still very huge. In chemometrics, and particularly in the signal
unmixing framework, it is common to use methods oriented to
the purest selection of variables (understood as pixels or spec-
tral channels) to generate initial estimates for iterative unmix-
ing methods, such as MCR-ALS. In the present work, a SIMPLe-
to-use Interactive Self-modeling Mixture Analysis (SIM-
PLISMA) [23—26] based-method was first used to select only the
purest image information and drastically compress the number
of selected pixels and spectral channels prior to the final MCR-
ALS analysis. For each D; image submatrix in Fig. 3b, taking
advantage of the fine spectral features of LIBS, the selection of
purest information was applied first on the spectral channels. In
this way, only the most important spectral variables (i.e. wave-
lengths) related to different chemical elements in the mineral
were selected, discarding the redundant information. It is also
important to underline the fact that at this stage of the pro-
cedure, as the final number of purest spectral variables needed
is unknown, it was decided to overestimate this value. Thus,
each D; image submatrix was first divided into blocks of 200
spectra from which the first 20 purest spectral variables were
selected. At the end, a small list of spectral channels considering
all the selected channels in the 16 D; submatrices was used to
generate the spectral-compressed Dj compr. image submatrices,
which had a much lower number of spectral channels than the
original D; blocks, but had all image pixels. In a next step, the
same approach based on SIMPLISMA was used in each of the

w

spectral-compressed Djcompr. image submatrices to select the
purest pixels. So, each of the Djcompra image submatrices was
divided into blocks of 500 spectra, and the first 40 purest pixels
of each block were selected, providing a spectral- and pixel-
compressed Dj compr, yyp Submatrix with a much lower number
of pixels and spectral channels than the initial D; related block.
The extracted information of all the Dj compr. 3p Submatrices was
fused together in order to create a final, compressed, Dcompr. Ap
dataset with selected information from the full initial image
(Fig. 3b). The sequential use of a purest variable selection
method on small blocks of the initial image not only helps in
speeding up the data analysis process but, most importantly,
ensures that even minor compounds present in local zones of
the raw dataset will be kept in the image compressed version, At
this point it is important to note that the selection of informa-
tion is driven by the difference in spectral and spatial features
and not by the percentage of variance expressed by the different
compounds in the considered sample, Here, a difference be-
tween LIBS and PIL spectra has to be pointed out. While the LIBS
spectra show numerous and very fine peaks, only two broad
bands are observed with PIL spectroscopy. So, in order to further
compress the PIL spectral domain, the baseline part between the
two bands was suppressed. In the rest of the dataset, the se-
lection of the purest pixels was applied as in the LIBS dataset.

4) Unmixing MCR-ALS analysis on the double compressed image data:

once the compression is accomplished, the MCR-ALS process
can be started to retrieve the spectral signatures and related
distribution maps of the compounds in the image. Using the
double-compressed dataset Deompr, 3jp. the first step was to
newly apply the SIMPLISMA-based method to extract the purest



A. Nardecchia, A de juan, V. Motto-Ros et al.

spectra to be used as initial estimates for the signal unmixing
technique, as normally done in the routine approach, and, most
importantly, to assist in the selection of the number of compo-
nents for the unmixing step. Indeed, selecting the optimal
number of components for an MCR model is always a challenge
on complex imaging samples, particularly if they contain minor
campounds [27], since the presence of these contributions may
not be detected by methods based on analyzing the variance
explained to decide the MCR model size, such as Singular Value
Decomposition (SVD) does. The innovation in this work is that
instead of using SVD to estimate the number of components, the
purity of the selected spectra, p;, as defined by SIMPLISMA, will
be the adopted criterion [28]. Hence, a graphical representation
plotting purity vs. nr. of components is used to set the threshold
for component selection. For the sake of a better interpretability,
the y-axis represents pi/p;, being p; the purity of the first
selected spectrum and p; the purity of the following i selected
spectra. In this way, the y-axis goes from 0 to 1, i.e, a value of 0.9
will mean that the purity of a certain selected spectrum,
meaning a new component in the model, is 90% the value of the
first selected spectrum. Therefore, it is possible to chserve the
difference in purity of any selected spectrum with the first one,
related to the difference in spectral shape between them and not
to explained variance. Of course, the purity value decreases from
component to component and a threshold expressed as, e.g., 1%
of purity with respect to the first spectrum selected, can be set.
In this manner, it is possible to estimate the right interval of
components to consider in the MCR-ALS analysis, avoiding to
include either too few or too many possible chemical contri-
butions. An example of this graphical representation is reported
in the supplementary material {(Fig. 52), where a number of
components around 8-10 seems a reasonable estimate.
Different MCR-ALS resolutions will then be calculated for
different values of rank within the range estimated but a single
solution will finally be adopted, hased on the quality of the
extracted pure spectra compared to LIBS database spectra
{Fig. 3c}. The MCR model obtained can be expressed as: Deompr. 3/
p = Coompr. 1jp ST|:|)mpr. ap where Ceompr. 3p and sTcDmpr. Mp are
compressed versions of the information in the distribution maps
and spectral fingerprints, respectively. In these analyses, only
the constraint of non-negativity was used in the concentration
and spectral mode, respectively.

5) Reconstruction of full distribution maps and spectral signatures: in
this last step, the full spectral signatures and complete distri-
bution maps of the initial image were recovered with two
suitable single least-squares steps. Note that the MCR model
that corresponds to the analysis of full image would be D = Gyt
§% o, meaning D the matrix containing all the spectra of the
original image, STy the pure complete spectra of the com-
pounds in the image and Gy, the matrix of related concentration
profiles that conveniently refolded provide the complete dis-
tribution maps. First, the double compressed spectral signatures
(ST.:.,mpr_ wp Where & represents the compressed spectral chan-
nels and p the compressed pixels) obtained from the previous
MCR results were combined with each of the i subimages
{Djcompr. 1) Where the spectral dimension was compressed but
the pixel dimension was as in the original image, to rebuild the
cancentration profiles (G compr. 3), a5 represented in Eq. (1):

G compr. A = Di,r:.l)mpr. s (STmmpr. l,'p}+ (1)

where (ST.;Dmpr_ Mp)+ is the pseudoinverse of matrix ST.;Dmpl-_ wp. All
the (Ci compr. 3) Matrices were appended together to reobtain the
matrix of concentration profiles corresponding to the whole initial
image, Ceor (Fig. 2d}), the profiles of which can be conveniently
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refolded to give distribution maps. Finally, by combining the ob-
tained concentration profile G matrix with the original data
matrix D {represented by the whole spectral domain), the full
spectral signatures (8%;o) were finally obtained (Fiz. Ze), as repre-
sented in Eq. {2}:

sTtnt = (Ctnt)+ D (2}

3.2. Data fusion strategy

As already described above, at first the LIBS and PIL datasets will
be separately investigated by the use of the MCR-ALS analysis, in
order to obtain a general idea about the information coming from
the different techniques. This will form the first part of the results
section. Without revealing these results, the observation of the
average spectra acquired in LIBS and PIL already allow us to think
that the exploitation of the latter will certainly be very limited due
to the low number of spectral contributions when it is used alone.
The interpretation of PIL spectral data acquired on complex natural
samples remains a real challenge today. So, the main idea of this
data fusion approach was to increase the possibility to better un-
derstand the luminescence phenomenon, investigating potential
correlation or anticorrelation between the two spectroscopic
techniques. Different fusion strategies have already been proposed
in the literature [29—31]. In this work, the low-level data fusion was
used for this study, which means concatenating the LIBS and PIL
spectrum related to each image pixel to form a multiset configu-
ration. Note that this step is easily done because the instrumental
setup of the LIBS/PIL system ensures a perfect spatial congruency
between LIBS and PIL pixel spectra. As a first step, all the LIBS and
PIL pixel spectra, already compressed in the spectral dimensiocn
were concatenated together. It is important to stress here that only
the LIBS and PIL matrices from the compression on the spectral
variables were used for the fusion, not those from the double
compression. The reason for using this strategy is that PIL spectra
alone, as already explained, have much poorer information than
LIBS. Using all the pixels initially in the fused structure ensures that
the subsequent pixel selection will be carried out in such a way that
the relevant correlation between the two techniques is appropri-
ately captured. Finally, the extraction of the initial estimates with
SIMPLISMA and the MCR-ALS analysis were carried out as previ-
ously described, but using the fused LIBS/PIL dataset. Again, the full
spectral signatures and complete distribution maps were recovered
using two single least-squares steps combining the MCR results and
the information in the extended pixel and spectral dimensions.

4. Results and discussion
4.1 LIBS dataset analysis. MCR-ALS results

Due to its complexity, the LIBS dataset was the first one to he
analyzed and investigated by the use of MCR-ALS. With the pro-
posed data analysis pipeline, only 85400 over the more than 2
million of spectra (the 4% of the whole information} and only 489
spectral channels over the initial 2048 {the 24% of the initial value}
were used. Considering the double compression, only 1% of the
initial image information was used to perform MCR-ALS analysis
and finally extract the full size maps and resolved LIBS spectra of
each pure chemical contribution. The number of components
needed to describe this compressed information, as estimated from
the purity-based graphical method then suggested to select 6 sig-
nificant chemical contributions. Fig. 4 shows that the first four
contributions from the MCR-ALS model on the compressed data are
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Fig. 4. MCR-ALS (Multivariate Curve Resolution - Alternating Least Squares) results on the LIBS dataset of the considered kyanite sample.

related to elements already observed in Fig. 2. Comparison of the
resolved LIBS features with simulated spectra confirmed the iden-
tity of these compounds. However, the results offer as additional
information the evidence that Cr and V are spatially correlated
because they are present in the same MCR pure component. It is
then interesting to see that the other 5 pure contributions corre-
spond to single elements which is quite unusual in the context of
LIBS signal unmixing. If we look at the distributions of these ele-
ments, we could first say that Ca, Fe and Ti are approximately
located in the same areas. However, a more detailed analysis shows
specific sub-zones of the sample for each of them. Additionally, it
should be noted that Ca and Fe are often present along cracks of the
mineral. The Ti contribution is also very interesting because it
highlights areas of the sample for which no PIL signal was observed
in Fig. 2. The last two components deserve a separate discussion.
The first one seems to be equally distributed in all the mineral
(signal contribution #4). The extracted spectrum is undeniably that
of argon. However, the reader should not misunderstand the
location of this element, which is not in fact part of the sample but
comes from the gas flow above it, used to stabilize the plasma. As
for the last contribution #6, its distribution image seems at first
sight to be mainly related to noise. However, the extracted pure
spectrum shows that the LIBS signature can be unambiguously
attributed to the emission spectrum of zirconium. This is a very
interesting result because this trace element could not be detected
by classical single band LIBS integration because of the low signal-
to-noise ratio of the related signal and the strong spatial and
spectral overlap with other major elements.

4.2. PIL dataset analysis. MCR-ALS results

As previously explained, the interpretation of only the PIL image
can be very challenging because of the broad spectral features
provided by this technique, and this sample is not an exception.
Although the luminescence of kyanite has been studied for more
than 80 years [12], the interpretation of the emission characteristics
is still not clear; hence the interest in proposing an original spec-
troscopic setup and an associated data processing approach. Re-
searchers agree that the emissions observed in the luminescence

spectrum are attributed to different Cr** centers in the alumino-
silicate mineral. They also often associate the differences in lumi-
nescence behavior of Cr’* with its substitution in different
positions of AI** inside the kyanite structure. Nevertheless, these
positions are so similar that it is challenging to explain significant
differences in luminescence properties. It is therefore time to see
whether the MCR-ALS approach can help us in this exploration of
the PIL dataset exploited alone. The pure spectra and the corre-
sponding distribution maps extracted from this signal unmixing
method are shown in Fig. 5. First, it is interesting to see that the
number of components estimated for the PIL dataset was two.

We were far from observing this with the classical integration
method since the two PIL images at 689 and 706 nm presented in
Fig. 2 were at first sight very similar to each other. Thus, even if the
two spatial distributions extracted with MCR-ALS are very close,
they still show areas with some variations in intensity. From a
spectral point of view, we see that the two most intense emission
bands of the dataset are now separated in these two contributions.
In the pure contribution #1, an intense luminescence signal at
706.87 nm is accompanied by a doublet of low intensity at 711.03
and 712.87 nm. In addition, a luminescence signal is observed at
688.93 nm. It is in this same spectral zone that we can find the
maximum of luminescence in the pure component #2 centered on
689.38 nm. Thus we now understand that the luminescence
initially observed around 689 nm from the raw data was in fact at
least coming from two distinct signals. Finally, a last observation of
the pure component #2 could make us think of the presence of a
doublet at 706.19 and 707.48 nm. This is not the case since it is in
fact the representation of a broadening of the emission band
observed on the component #1 at 706.87 nm. With the results
obtained from the MCR-ALS analysis of PIL data, the complexity of
the PIL spectra can be confirmed. However, the very strong overlap
between the components both in the spectral and spatial directions
limits the signal unmixing power of the method and the ambiguity
in the solutions obtained hinders the proper understanding of the
luminescence phenomenon. To improve this situation, the fusion of
the PIL and LIBS datasets will be mandatory to reliably understand
which kind of elements are located in a specific zone of the mineral
and associated with the luminescence effect.
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Fig. 5. MCR-ALS results on the PIL dataset of the considered kyanite sample.

4.3. LIBS/PIL data-fusion. MCR-ALS results

After the observation of the individual MCR-ALS results for the
LIBS and the PIL images separately, the fusion of the two datasets
was carried out. The main idea of this strategy was to deepen the
chemical information from both techniques by finding correlations
among the different spectroscopic signals and components. In
particular, by combining the finer spectroscopic features of LIBS
with the broad PIL signals, it now seems possible to give a suitable
chemical interpretation to the luminescence signals. Using the
proposed compression pipeline, only 89400 pixels and 1165 spec-
tral channels were selected from the fused dataset. More precisely,
considering the initial size of the merged dataset (more than 2
million spectra and about 4000 channels for both spectroscopies),
the amount of information resulting from the double compression

and thus finally used for the signal unmixing constituted only 1% of
the original data. The MCR-ALS results on the fused dataset are
given in Fig. 6 after the estimation of the number of components
suggested seven significant chemical contributions. As a reminder,
the pure spectra extracted by MCR-ALS on the fused dataset contain
simultaneously a LIBS part and a PIL one. Thus, the extended LIBS/
PIL fingerprint of the extracted components will directly differen-
tiate the elements that present a LIBS signal associated with a PIL
luminescence phenomenon from those that only have a LIBS signal
and no luminescence induced. The observation of the first three
pure contributions in Fig. 6 clearly show that the elements Ca and
Fe present a very low luminescence phenomenon (689.5 nm),
which is completely absent for Ti. Moreover, there is no significant
luminescence for the Ar element either (pure contribution #6),
which it is not part of the sample but of the atmosphere above its
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Fig. 6. MCR-ALS results on the fused LIBS/PIL dataset of the considered kyanite sample.

surface. The strongest luminescence signals are observed for pure
contributions #5 and #7 corresponding to a mixture of Cr and V
followed by a weaker but nevertheless significant luminescence for
Zr in pure contribution #4. This last contribution is very interesting
because Zr does not form luminescence center. We can therefore
say that the luminescence observed on contribution #4 is certainly
due to an indirect correlation of another element with Zr. If we look
at these three PIL contributions at the spectral level, they are quite
singular. First, the pure contribution #7 has two peaks at 689.34
and 706.89 nm. On the other hand, the pure contribution #5 shows
only one peak at 706.89 nm. Finally, pure contribution #4 has a
peak at 689.70 nm and an unclear very low signal at 711.03 and
712.87 nm. These last results show the power of the MCR-ALS
approach associated with LIBS/PIL data fusion since the lumines-
cence is not due to two intense contributions, but potentially
several contributions slightly shifted in wavelength that can be
differentiated. In conclusion, we can state that the luminescence of
this sample comes mainly from the simultaneous presence of Cr

and V. These results are fully consistent with previous work sug-
gesting that luminescence could potentially originate from the Cr>*
and V2" centers [12].

However, even if we can state this, there is still the end of the
story to write. Indeed, even though the spatial distributions of the
pure #5 and #7 contributions are relatively close and partially
overlapped, they both potentially show singular chemical infor-
mation. The same statement can also be made at the spectral level.
Thus, the joint exploitation of new LIBS and PIL spectral domains
and even an extension of the fusion concept to other spectroscopic
imaging techniques should help further in elucidating the whole
nature of the complex luminescence phenomenon.

5. Conclusions
LIBS imaging is now clearly a tool of choice for the elemental

characterization of complex samples with applications in many
fields. Nevertheless, its high acquisition rate, which is an
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undeniable advantage, is also constrained by the millions of spectra
{each containing thousands of wavelengths} acquired from a single
sample that require the use of powerful multivariate data analysis
tools. This difficult aspect leads to the interest in proposing a data
analysis procedure capable of extracting the most distinct infor-
mation, i.e., purest variables, at the spectral and spatial level, both
for major and minor compounds, to facilitate the unmixing analysis
without losing quality in the spatial and spectral definition of the
imaged components. With this simple procedure, it was possible to
reduce the initial amount of data and keep the best and most un-
mixed 1% of the total information. The size and quality of the
selected information allowed not only speeding up the analysis, but
obtaining extremely reliable spectral fingerprints and distribution
maps for the extracted MCR-ALS components. The data analysis
pipeline has been tested on the LIBS/PIL dataset, but can be used in
any other kind of large imaging dataset coming from an individual
platform or from the fusion of several of them.

The study of the kyanite dataset showed that each resolved
component was potentially related to one or two elements present
in the mineral. Last but not least, another important aspect of this
work was fusing together LIBS and PIL datasets to provide a
chemical interpretation for the PIL bands and better understand
which elements were related to this luminescence effect. This work
represents the first published work on the fusion of LIBS and PIL
imaging data and their simultaneous exploitation in a signal
unmixing approach such as MCR-ALS. Thus even if we have
demonstrated for this particular kyanite sample that the lumines-
cence phenomenon was mainly associated with the Cr and V ele-
ments, our next work could be focused on the exploitation of new
spectral domains or the addition of another spectroscopy such as
Raman and Laser-Induced Time-Resolved Luminescence to the first
two in a fusion process.
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4.4. LIBS and Raman spectroscopy data fusion analysis

4.4.1. The importance of choosing the right pretreatment and analysis pipeline

to obtain good results fusing different spectroscopic responses

As previously mentioned, an interesting aspect related to LIBS is that this kind of
instrumentation can be easily coupled with other spectroscopic techniques, without the necessity
of changing the acquisition setup, leading to a fast acquisition of different spectral responses in
a very reasonable time. The main limitation, as described in the previous paragraph, is that a huge
amount of data is easily generated, leading to problems related to the analysis of the raw data.
Nevertheless, the possibility of using an approach able to reduce the dimensionality of the data
cube and, at the same time, to conserve only the most important information is fundamental to
dig in any analytical domain, no matter the spectroscopy used for the acquisition. This seems to
be particularly true when the data fusion is the main purpose of the study, due to the fact that a
huge amount of spatial and spectral information will be generated, coming from different
instrumental responses. If any pretreatment is not applied a priori, also if it would be possible to
analyze the data, hardly the outcomes will represent the reality of the information contained.
Clearly, this situation can be faced using a very interesting spectroscopy such as Raman, which
can be linked to complex signals, considering the molecular information that can be extrapolated
from the matrix using this instrument. In order to show the interesting aspects of a data fusion
using these two spectroscopies, a specific data cube will be here described and investigated by
the use of chemometric methodologies. It is important to highlight here the fact that a work
reporting these aspects of data fusion between LIBS and Raman has been recently submitted to
the journal Spectrochimica Acta Part B: Atomic Spectroscopy. The selected data cube is a
subzone of the same sample used and well described into another work of this PhD, and
previously explained [212]. The dimensions of the selected area of the matrix are 500 pixels by
316 pixels considering 1044 variables for Raman, in the spectral domain between 118 and 2000
cm, 2048 variables for LIBS, between 251 and 335 nm, and a spatial resolution of 25 um.
Briefly, the observed hyperspectral image is a complex mineral sample containing traces of
various elements and different phases. Therefore, if only LIBS is used for the analysis, in this
case there is a real chance to miss some important information coming from a molecular point of
view. This is why it is also interesting to fuse LIBS and Raman spectra to obtain finally a more

complete idea of the heterogeneous nature of the mineral of interest. A first idea of the complexity

124



of the given sample is here reported in Fig. 21, in which the main information related respectively

to LIBS and Raman are considered:

IOpticaI Image LBt LIBS 2 LIBS 3 Raman

500x316 25ym

Fig. 21 — Respectively: optical image, LIBS and Raman first information of the section of the investigated mineral

sample.

The aforementioned figure shows from the left to the right the optical image of the corresponding
mineral used for the analysis, three integration images linked to LIBS spectra, describing the
distribution of various elements in the sample and, lastly, the main Raman bands used to obtain
the molecular distribution of different components present in the rock. It is also important to
consider that these first outcomes have been obtained using a conventional procedure, meaning
that each component in the images is observed by using the integration at a specific wavenumber
(for LIBS) or at a particular wavelength (for Raman) that has to be peculiar for a given element
or mineral phase. Clearly, this means that a first investigation of the sample of interest, a general
knowledge of its composition, and an observation of the most important spectral bands for both
the spectroscopies is mandatory to obtain a first idea of the complex nature of the specimen.
Differently, what is proposed in this part of the manuscript is the use of various chemometric

tools in order to obtain at the end a general comprehension of the given sample, also considering
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the aspect of not having a priori knowledge of its composition. Another important point that has
to be considered is that when different spectral responses are acquired using the same instrument,
some issues can be faced. Particularly, it is a very easy scenario the one in which some
instrumental problems will be generated due to, for example, different technical settings. Clearly,
it is mandatory to correct these artifacts before any further analysis in order to generate the right
outcomes. For informational purposes, a fast and useful procedure used to correct LIBS problems
developed during this PhD work has been already described in the same aforementioned
published paper [216] and so it will not be discussed again in this chapter. More interesting is the
approach applied on Raman spectra. Due to the acquisition settings, observing the corresponding
spectra (reported in Fig. 22a), it is clear how the raw signals are related to very extreme values,
which seem to be impossible to be investigated without any previous pretreatment.
Chemometrics can be also in this case a useful tool able to generate better initial data to be used
for the final investigation. As a starting point, it is noticeable that many pixels (i.e., many spectra)
show saturated signals and fluorescence. Therefore, the first thing to be done is to set a threshold
on a maximum intensity to remove from the data cube these extreme spectra. Another problem
in the dataset is that a negative peak around 1606 cm™ is observable, probably due to instrumental
issues. To correct this spectral imperfection, an interpolation with the neighboring points of this
spectral zone was applied. Finally, at this stage, it was possible to apply a baseline correction,
using the AsLS algorithm (L = 10* and asymmetry parameter of 0.001). As final step, a
normalization based on the ratio of each spectrum of the dataset for its own norm was used. This
step is necessary to highlight the presence of possible spikes coming from the acquisition. In
order to simplify the procedure for managing these spectra, these values were replaced by the
average spectrum of the neighboring pixels of that particular pixel. As a proof of the significant
difference between the raw and the final data, the pretreated spectra are reported in Fig. 22b. To
remark it, it is out of the question the fact that the initial raw data cannot be used in any analysis,
due to the saturated signals and the absence of a baseline, reasons why many aspects of this
dataset would be missed. Contrariwise, using the proposed approach, finally it is possible to give
an interpretation to many different spectral bands, as it will be better described in the following

paragraphs.
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Fig. 22 — Comparison between a) raw spectra and b) final pretreated spectra for Raman data.
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4.4.2. First outcomes and interpretation by the use of the spectral unmixing

approach

Here are reported the first results obtained using MCR-ALS on this complex mineral sample.
It is important to stress here the fact that in this study has been used the same procedure of the
previous work. For this reason, it will not be described in detail in the present section.
Nevertheless, some useful information needs to be recalled. First of all, it is important at the
beginning to separately investigate the two different matrices. This is a very obvious step. In fact,
as previously stated, LIBS and Raman spectroscopies are related to different responses. In this
way, it is possible to obtain a general idea from, respectively, the elemental and the molecular
points of view, to dig the knowledge regarding both the elements present in the mineral, and its
different compounds. Then, it is possible to investigate the results coming from the data fusion.
The interesting aspect is that, as it will be shown in the results, some components are related
exclusively to only one or the other spectroscopy. Therefore, in a second step, fusing the two
spectral ranges, it is possible to obtain some new information (from the elemental and/or the
molecular perspective) that otherwise would be not present if the fusion strategy is not applied.
Another important aspect to be considered is that it is mandatory to normalize the data, in order
to give them the same weight. In fact, without the right approach, the two spectral data would be
probably represented by different scale intensities and variances, and so, it would be impossible
to obtain the right contribution coming from LIBS and Raman simultaneously. Finally, one of
the most important things to recall is that in the present approach, the first step is represented by
the reduction of the data (both regarding the variables and the pixels), in order to use only a small
percentage (and especially the purest details) of the initial information of the datasets, to obtain
more precise and satisfactory results. Therefore, it is important to apply the fusion in the right
moment of the analysis pipeline. This aspect mainly depends on the type of investigated data.
Regarding the two used spectroscopies for this study, it is more convenient to apply the reduction
of the data before the fusion step. The reason is that both the techniques are related to very
important details from a spectroscopic point of view. As a consequence, it is better at first to skim
the information, in order to keep only the most interesting part of the data, and then to use the
fusion, to see how correlations and anticorrelations between different elements and compounds
are carried out during the analysis. For informational purposes, the illustrated sample is
represented by only a limited number of spectra of the original image. In fact, as already
discussed, this data cube is a subzone of a bigger hyperspectral image. Precisely, the
corresponding dimensions are 500 pixels by 316 pixels, for a total of 158000 spectra. LIBS was
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acquired using 2048 variables, and 1044 for Raman. So, the use of the data reduction in this case
is not mainly related to the necessity of use a smaller quantity of spectra for a computational
problem. Instead, it is used with the only purpose of selecting, to work properly, the most
interesting spectra of the original dataset. Below are reported the first outcomes coming from
separately LIBS, Raman and finally the data fusion. It is important to consider the fact that this
Is just a first interpretation of the results, which will need a deeper investigation in order to at last
understand which are the elements and/or minerals phases related to each found pure contribution

image.
4.4.2.1. Spectral unmixing results for LIBS data

One of the most interesting aspects regarding the interpretation of the results in LIBS
analysis, as stated in the previous work, is that being this spectroscopy an elemental technique,
it is possible using MCR-ALS to observe the contribution related to the different elements of the
investigated matrix. Furthermore, due to the very selective and characteristic spectral information
that this technique can show, it is possible to use libraries to drive the interpretation of the data
and so, characterize the different elements and compounds contained in the analyzed mineral.
The first results using the proposed approach are here reported, in Fig. 23. From a first
observation, it is possible to easily recognize some specific mineral phases and compounds, very
well distributed in the different areas of the mineral. For example, the first pure component is
mainly related to silicon, and so recognized as quartz (SiO2). The second and the fourth
components show bands linked mainly to lead, but also traces of copper, silver and antimony
with different contribution intensities. Probably, the corresponding mineral is galena (PbS),
shown as different mineral phases. The third component seems to be a compound coming from
the aluminosilicate class, showing peaks related to the presence of silicon, iron, aluminum and
traces of magnesium. Fifth and ninth pure contributions show very characteristics bands of
titanium (probably the second image is related to saturation signals of this element) and silicon.
They can correspond to anatase, a metastable mineral form of composition TiO2. Sixth, seventh
and eighth components are related to iron, manganese, calcium, magnesium and traces of silicon.
These elements are normally found in ankerite, a class of carbonate minerals. Lastly, the tenth
contribution seems to be very interesting. In fact, it is related to a very specific distribution of
traces of the corresponding mineral phase. Particularly, it is possible to observe bands related to
sodium, copper, silver, iron and zinc. From a general point of view, it is then possible to confirm
the fact that using the proposed approach, it has been possible to obtain a fast and global

identification of different compounds of the heterogeneous nature of the mineral.
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4.4.2.2. Spectral unmixing results for Raman data

In the same way, it is possible to observe the results coming from the Raman dataset. It is
important to remember the fact that the original raw spectra, as previously shown in Fig. 22, were
completely saturated. This is due to, normally, acquisition problems (i.e., different technical
settings needed) using the same instrument to obtain the data of the two different spectroscopies.
Naturally, it would be challenging to use this kind of data before applying a chemometric
approach in order to correct, as much as possible, these imperfections. At the same time, it is
understandable that some atypical signals can be anyway observed, particularly using the spectral
unmixing, in which the main purpose is to find the pure contributions corresponding to the
different purest signals in the dataset. This is the reason why, regarding the first outcomes of
Raman, reported in Fig. 24, the interpretation has been more complicated compared with the
LIBS results shown in the previous paragraph. Immediately, it is possible to observe that while
some pure contributions are related to very fine spectral information, others are more complicated
to be interpreted, due to their very noisy signals. Therefore, the different images were also
compared with the already discussed results of LIBS, in order to have a better general idea of
which compounds can be observed using the Raman spectroscopy. The first pure contribution is
related to very good spectral signatures, as well as it is possible to notice a certain correlation
between this map and the first one observed for LIBS results. In fact, this mineral phase is again
linked to quartz. Second and fourth components are represented by very noisy signals, hard to be
interpreted. This is the reason why a direct comparison using the previous pure contributions of
LIBS has been used, leading to the hypothesis that they are related to the presence of galena. A
similar situation is represented by the fifth component, which shows some interesting peaks, but
complicated to be identified. Therefore, comparing this component with again the LIBS results,
it is conceivable that this mineral phase is related to anatase due to the similarities in the
distribution maps of this component and the fifth one of LIBS. The sixth component is very
interesting. In fact, it is represented by very good spectral information that corresponds to the
presence of ankerite. In addition, comparing the distribution maps of this compound for Raman
and LIBS results, it is possible to observe that this mineral is related to a very vast area, but that
its concentration intensity widely changes in the different zones of the rock. This is an
information that can be obtained mainly from Raman spectra and not from the LIBS ones.
Finally, third, seventh, and in part eighth components are related to very specific spectral
signatures. Another important aspect is that some of the observable areas of these maps are

related to zones of the mineral that are not highlighted using LIBS, and so, they are specifically
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related to Raman signals. Nevertheless, it has been impossible to give a chemical interpretation
to these components, and therefore, to give a name to the corresponding minerals present in these
areas. This is the perfect scenario in which a data fusion is mandatory, in order to finally obtain
a better interpretation of the data, when separate analyses can show some limitations, as described

in the next paragraph.
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4.4.2.3. Spectral unmixing results for the data fusion

Finally, here are reported the results fusing LIBS and Raman spectra, using the precautions
previously explained. As stated, the importance in using a fusion strategy lies in the possibility
of obtaining a more complete interpretation of the data. Particularly, as previously observed in
the already shown results, it is not always possible to identify some components using only one
or the other technique, due to for example libraries limitations. In addition, some pure
contributions are related to only one or the other spectroscopy. This is why, fusing the data, the
main purpose is to try to understand the existent correlations between the two spectral domains,
and exceed the limits shown separately by LIBS and Raman. Here, are reported the first outcomes
of the MCR-ALS approach, as shown in Fig. 25. Observing the results, it is possible to give some
initial interpretations. Clearly, the first component is related to quartz, as shown by the spectral
signals coming from both the techniques. It is also interesting to observe how, using the data
fusion, a better discrimination of the pixels containing this mineral is possible, compared with
LIBS and Raman spectra separately. In the same way, third and eighth maps are related to galena.
Again, it is possible to observe the typical LIBS signals related to this mineral. In addition, using
the fusion it is possible to assume that, as previously supposed, the noisy Raman signals are also
correlated to this compound. Second pure contribution is also very interesting, comparing the
two different spectral information. In fact, as a proof of the interpretation given in the previous
paragraphs, it is possible to observe that both the spectral ranges are correlated to anatase. The
sixth component too is related to the same mineral, except that some new Raman bands are here
observable. Both the fifth, the seventh and the tenth components seem to be related to ankerite,
also if the corresponding images show some distribution differences. Also noticeable is that while
the map of the seventh contribution has very fine spectral signals for both the techniques, the
ones related to the other two images show some broadened bands related to Raman spectra. In
addition, comparing these maps with the ones of LIBS and Raman when the data fusion approach
is not used, it is possible to notice that here a better distribution of the concentration intensity of
this compound in the different areas of the mineral is noticeable. Lastly, fourth and ninth
components deserve a separated and more detailed description. Referring again to Raman
outcomes, the spectra corresponding to these two images are the ones previously observed that
anyway could not be identified from a chemical point of view. Finally, using also the LIBS
spectra, it is possible to give a first interpretation to these maps. The fourth contribution in fact
seems to be related to the same typical LIBS signals of lead (for more details, refer to the second

pure contribution of LIBS outcomes before the data fusion). Therefore, this specific image is
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probably related to a particular mineral phase of the same compound previously identified,
galena. Instead, ninth component shows LIBS signals that can be traced back to the
aluminosilicate class (for more details, refer to the third pure contribution of LIBS outcomes
before the data fusion). The most interesting aspect of these two maps is that, compared with
LIBS and Raman spectra taken separately, here it has been finally possible to identify some pure
components that were observed in Raman results, but that could not be recognized from a
chemical point of view. In addition, fusing the two datasets, it has been possible to observe some
areas that were highlighted by the use of exclusively Raman spectroscopy and that instead
seemed to be invisible to the LIBS instrument. Therefore, in conclusion, it is undeniable that a
data fusion is a mandatory approach to be used from a general point of view, with the purpose of

generating better and more interesting details for investigational purposes in analytical chemistry.
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4.5. General conclusions Iin the framework of the use of

chemometrics applied to LIBS analysis and future perspectives

As vastly stated, LIBS imaging is clearly a very important spectroscopy that is obtaining an
always increasing interest in many research areas. Nevertheless, chemometrics shows still limited
applications to this instrumental data analysis. As described, a relevant part of this PhD project
has focused on this aspect, trying to overcome the use of the routine approaches in LIBS analysis
and find new ways to exploit this kind of spectral information. Particularly, the main goal
described in this chapter is related to the application of an interesting analysis pipeline able to
exceed some of the main problems related to LIBS. Due to the fact that an enormous quantity of
data is easily generated, it is not always possible, or neither recommendable, to work with the
raw data. Therefore, find a way to select the most important and purest information (from the
spectral and spatial points of view) is mandatory, in order to obtain adequate outcomes.
SIMPLISMA has been also in this case used with the purpose of accomplishing this complicated
task. It is important to understand the fact that this algorithm has been chosen due to its particular
benefits. In fact, SIMPLISMA is based on the selection of the purest information and not,
compared with other techniques, values such as the total explained variance. This is a cardinal
point in LIBS such as in other spectroscopies. Generating millions of spectra, it is plausible the
fact that only a small percentage will be related to pure information, while the rest of the spectra
are a combination of different elements. Also important is that, investigating a heterogeneous
matrix such as, for example, a mineral, some pure components will be present in small and very
specific areas of the data cube. Therefore, the use of the total explained variance would probably
lead to the loss of some important information. In addition, the main purpose in using this
approach is not to select a priori the information in order to use a spectral unmixing analysis. It
is more related to the idea of reducing the total number of spectra, but being sure at the same
time to keep the whole heterogeneity that can be related to the original dataset, an aspect that has
not to be underestimated, to obtain at the end reliable results. Another concept related to the use
of this strategy is that, from a computational point of view, the calculation of the results will be
faster, due to the reduced amount of used data. Clearly, this kind of approach might be used for
other spectroscopies. Therefore, an important aspect that has to be considered is the idea of
implementing the proposed data analysis pipeline in order to use it for other instrumental
responses. Another important point of this chapter is obviously the data fusion approach. In fact,

as described, a further good aspect of LIBS is that this device can be used to obtain
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simultaneously different spectral ranges responses. The same strategy can be applied to the
different datasets, in order to reduce the quantity of data and obtain a general interpretation from
a chemometric point of view of the chemical complexity of the investigated sample. Using the
information related to different spectral ranges is fundamental, as previously highlighted. LIBS
can be used to drive an easier interpretation of the spectral information related to other
spectroscopies, due to for example a limited knowledge of the corresponding spectral data (e.g.,
PIL phenomena). At the same time, it can be possible the contrary. In fact, despite the very
interesting spectral features related to LIBS, it is not always easy to identify some specific
mineral phases using this technique. In addition, in some cases, LIBS cannot extract the signal
from some areas of the sample. So, fusing this spectroscopy with other responses (e.g., Raman
spectroscopy), it can be possible to deep the total amount of information that the operator can
obtain, compared with the use of only one or the other dataset. Here in this manuscript and during
this PhD thesis, only two different spectral responses were fused to the ones obtained with LIBS
instrument (i.e., PIL and Raman). Naturally, it would be interesting to use the same pipeline
applied to new data coming from further spectroscopies and clearly, use the same data reduction

and fusion procedures not only to LIBS, but extend this idea to other fields of analysis.
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CHAPTER 5






5. SPECTRAL AND SPATIAL FUSION STRATEGIES: HOW TO
COMBINE THESE TWO FUNDAMENTAL HYPERSPECTRAL
IMAGING INFORMATION

5.1. Spatial information: the importance of using it and what is the

best strategy to apply

Finally, this chapter is dedicated to another fundamental aspect that until now has not be
really taken into consideration in the present manuscript. As discussed in the introduction, one
of the main limitations related to the use of chemometrics in the framework of the hyperspectral
imaging is that from a general point of view, no matter the used technique (e.g., PCA, MCR-
ALS, PLS-DA, etc.), an intermediate step in which the three-dimensional data cube is unfolded
in its corresponding two-dimensional dataset is required. Naturally, this procedure leads to the
complete loss of the spatial information related to the investigated sample. This represents a real
problem related to the use of this kind of data. In fact, it is undeniable that using only the spectral
information, but not the spatial details related to an image, is a very big limitation in any data
analysis. Particularly, imaging spectroscopy is obtaining an increasing importance in many
research areas. The modern instruments can acquire very interesting hyperspectral images made
of thousands, hundreds of thousands or even millions of spectra related to not only spectral, but
also and mainly, important spatial information. Nevertheless, if it is not possible to deal directly
with the original data cube, these details cannot be really investigated. Different chemometric
approaches have been exploited in the last years, but they are unfortunately almost always
focusing only on the spectral information. Some methods in which additional steps are used
during the analysis with the aim of using the spatial information were proposed [17,96,103,209].
Nevertheless, in order to integrate the spatial information, these methods involve the use of
particular constraints and/or the observation of only one pixel and its neighborhoods per time,
which will lead to a longer and less fluent analysis. On the other hand, one particular algorithm
is nowadays in the spotlight regarding the concept of extracting the spatial information from the
studied hyperspectral image, before any further analysis, and so before the unfolding step. This
approach is based on the use of wavelet transform that from a general point of view is a digital
signal processing [198,217]. The concept behind the idea of using this algorithm is here briefly
described. In particular, it is important to highlight the fact that over the years, many

improvements in the use of wavelet transform were accomplished. Despite this, in the present
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manuscript will be taken into consideration only one particular kind of wavelet transform
algorithm, the 2-D Stationary Wavelet Transform (SWT 2-D), which peculiarities have been
discussed in Chapter 1. Moreover, this particular kind of wavelet shows very interesting features
when linked to hyperspectral imaging, leading to a real extraction of spatial features, as it will be
better described during this chapter. From a technical point of view, this algorithm uses some
filters that extract the frequency contents of the considered signal. In this way, four distinct sets
of wavelet coefficients can be obtained. Namely, they are the approximation (A) coefficients,
and the horizontal (H), vertical (V), and diagonal (D) detail ones. The particularity of this
algorithm is that it can be used directly on the image, without the necessity of unfolding it. In
this way, the extracted details will be genuinely related to the spatial information and not to the
spectral one. So, once that this part of the data is finally obtained, it is possible to merge it with
the initial dataset in order to effectively observe simultaneously the information coming from
both the spectral and the spatial details of the original matrix, which can be at this stage unfolded.
Another important aspect regarding wavelet transform is that different families can be used, each
of them related to particular signal decompositions [204]. By way of example, some of the most
important families that are nowadays used are the Daubechies (the most commonly used), the
biorthogonal and reverse biorthogonal wavelets (which are very interesting in the framework of
image analysis), and the Gaussian wavelets. For informational purposes, in this manuscript at
first it will be introduced a general description regarding the use of SWT 2-D. This method has
been investigated in a first attempt using PCA, in order to show the effective necessity of using
not only the spectral part of the data, but also the spatial one, and how wavelets can be used for
this purpose. The corresponding outcomes have been published in Talanta, Volume 224 (2021)
[218]. Then, some further ideas related to the use of wavelet transform will be introduced and

discussed in the classification framework.
5.2. Fusing spectral and spatial information with 2-D stationary

wavelet transform (SWT 2-D) for a deeper exploration of

spectroscopic images

5.2.1. General aspects using the SWT 2-D for the spectral and spatial fusion

in the framework of hyperspectral image analysis

So far, the main aspect of this chapter has been the one of explaining the necessity of using

the right approach in order to exploit simultaneously both the spectral and the spatial information
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related to the same hyperspectral image. It has been pointed the attention on the use of a specific
kind of approach based on the wavelet transform. By way of example, considering a complex
sample, it is reasonable the possibility that some specific compounds can be not easily observed
in the heterogeneity of the specimen, due to different reasons. For example, a specific component
can be present in very small concentrations, and so hardly observable within the rest of the
spectral information. Without any doubt, in this kind of scenario, having the possibility of using
not only the spectral information, but also the spatial one is fundamental in order to observe also
these additional compounds. Nevertheless, it is important to consider an aspect of the wavelet
transform. In fact, wavelets are represented by very complex signals that are not always easy to
be used correctly and so, interpreted. By way of example, the aforementioned extractable details
(approximation, horizontal, vertical and diagonal coefficients) are all related to orthogonal and
so, not correlated information. Furthermore, depending on the chosen decomposition level, it is
possible to extract always more and more details from a spatial point of view. This means that
clearly, it is possible to dig deep into the information related to the studied hyperspectral image,
but at the same time, an increasing amount of data will be generated and so the interpretation will
be progressively more complicated. It is important to consider these aspects before to use the
wavelet transform, in order to select the right approach able to, despite the enormous amount of
generated data, extract the useful information to finally find new interesting results. This is the
main reason why some of the outcomes obtained during this PhD are based on the use of, as it
will be also shown in the following published work, simulated images. This aspect is related to
the fact that to get a better and easier interpretation of the obtained results, a general knowledge
of the real composition of a given sample is required. In other words, using a simulated dataset
means that the operator knows a priori all the information related to the structure of the matrix,
and any interpretation error can be obtained. Furthermore, it is important to consider the reason
why the first work focuses on the use of PCA. Considering again the complexity of wavelet
results, the choice of using this exploratory analysis is evident. As stated, PCA is clearly one of
the most exploited chemometric approaches over the others. So, use this kind of algorithm can
lead to interesting results in order to better understand how wavelet transform can be used to
obtain more interesting results in hyperspectral imaging. Also important is that PCA is based on
the total explained variance of the information related to the studied sample. The fact that the
different PCs are orthogonal among them, such as the different extractable coefficients obtained
using the wavelets, is another interesting aspect. In this way, it is possible to skim the data, and
so try to understand which are the most important factors related to the SWT algorithm to

consider in the analysis.
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Nowadays, it is clear that there is an increasing importance in spectroscopic imaging in all fields of science.
Obviously, one bulk analysis can no longer be satisfactory, as the interest focuses more on the chemical nature
and the location of the compounds present within a given complex matrix. This is, evidently, due to the fact that
for a more comprehensive exploration of complex samples, one single acquired hyperspectral data cube can

provide both spectral and spatial information simultanecusly. Although many techniques were proposed by the
chemometric community in explorations of these specific datasets, unfortunately, they are almost always
focusing on spectral information, even if chemical images were ultimately observed. In other words, spatial
information is not well exploited, and therefore lost during the actual chemometric calculation phase. The goal of
this short communication is to present a very simple and fast spectral/spatial fusion approach based on 2-D
stationary wavelet transform (SWT 2-D) which is able to improve the obtainable information, compared with
a classical data analysis, in which the spatial domain would not be considered nor used.

1. Introduction

Nowadays, hyperspectral imaging is a powerful tool. It is also out of
the question how hyperspectral image analysis is broadening the hori-
zons in different domains. The principle behind this technique is the
acquisition of the whole referring spectrum for every single pixel of the
image. This means each pixel is a column vector whose dimensions are
equal to the number of spectral bands. As a result, the final data cube
will lead to a data set of several thousands of spectra or even more,
which allows a new and much deeper investigation of the sample.
Rapidly, the interest in this discipline has been spread in many fields of
analytical chemistry. For instance, food quality and control [1-5], and
other branches have investigated the use of hyperspectral imaging for
their purposes [6-13]. Furthermore, this technique has been applied for
medical tasks too [14-16], in which hyperspectral images were used
mainly for tumour diagnosties [17-20]. Certainly, the great interest that
image analysis is obtaining is owing to the continuous overcomes of its
limitations, which in turn will constantly leading to the analysis of more
complex and meaningful matrices obtained by various kinds of experi-
ments and spectroscopic techniques. On the one hand, this development
leads to the possibility to obtain more details of the data set from the
spectral perspective views, but on the other hand, the spatial domain
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remains a non-used part of the global information that can be extracted
from a hyperspectral image. Nowadays in fact, the main studies on im-
ages are closely related to the use of multivariate statistical methods
such as Principal Component Analysis (PCA) [21-23] and Multivariate
Curve Resolution — Alternate Least Squares (MCR-ALS) approaches
[24-30]. The peculiarity of these methods is that they are based only on
the exploration of spectral contribution of the selected data set, no
matter the dimensions of the matrix. In the meantime, the widely
accepted tools by the scientific community, developed with the goal of
exploring images exclusively, as the multivariate image analysis (MIA)
[31,32] show the same issue. In fact, an