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Résumé 

Les objectifs de la thèse sont multiples et s'inscrivent dans le cadre de la mise en place d'une 

nouvelle plateforme technologique HT-SMART-FORMU dédiée à la formulation. L'accent est 

mis sur le développement de méthodes expérimentales fiables et d'outils théoriques et 

prédictifs, afin d'établir des relations entre la composition chimique, les propriétés 

physicochimiques et les propriétés applicatives.  

Les dispersions de particules sont le premier type de systèmes étudiés. Leur est traditionnellement 

rationnalisée à l’aide de la théorie DLVO, mais des études récentes proposent l'utilisation des 

Paramètres de Solubilité de Hansen pour décrire leur stabilité en milieu non aqueux. Dans le 

premier chapitre, une méthode analytique systématique basée sur la mesure du potentiel zêta 

et le suivi de la stabilité par diffusion de la lumière permet de déduire une complémentarité des 

deux théories pour décrire la stabilité des dispersions de TiO2 en solvants non aqueux. 

La problématique de la prédiction de l'hydrophobie des huiles par la modélisation d’EACN, qui 

est un paramètre clé pour concevoir des systèmes dispersés tensioactif/huile/eau (SOW), est 

abordée dans le deuxième chapitre. Deux modèles mathématiques, conçus à l'aide de 

méthodes de machine-learning, sont proposés pour la prédiction rapide de l'EACN des huiles, 

à savoir les réseaux de neurones (NN) et les machines graphiques (GM). Alors que le modèle 

GM est implémenté à partir des codes SMILES, le modèle NN est alimenté par des 

descripteurs σ-moments calculés avec le logiciel COSMOtherm. La fiabilité des prédictions 

des deux modèles est discutée sur la base d’un ensemble de test de 10 molécules complexes. 

Dans les chapitres 3 et 4, l'étendue des propriétés applicatives d'un tensioactif non ionique à 

base de glycérol (C12Gly2) est étudiée. Le chapitre 3 se porte sur son agrégation en solution 

aqueuse et la formation de cristaux liquides (CL) à faible concentration, en comparaison avec 

les alcools gras polyéthoxylés et les alkyl polyglucosides. L'influence de ses propriétés 

physico-chimiques, en particulier la viscoélasticité de dilatation de l'interface air/eau, est mise 

en relation avec la faible moussabilité et la stabilité de mousse durable observées.  

Enfin, les propriétés du C12Gly2 en systèmes SOW sont étudiées dans le chapitre 4. La déviation 

hydrophile-lipophile normalisé (HLDN), un outil théorique puissant, est considéré comme un 

moyen de rationaliser les caractéristiques des émulsions et des microémulsions. Ainsi, une 

quantification approfondie de l'amphiphilie des tensioactifs, de leur sensibilité à la température 

et de leur tolérance au sel est présentée. L'utilisation du C12Gly2 comme émulsifiant H/E et E/H 

est ensuite étudiée : la granulométrie et la stabilité des émulsions obtenues en faisant varier 

l'huile concordent avec les valeurs du HLDN. Un minimum est observé à HLDN = 0, puis la 

granulométrie et la stabilité augmentent pour des valeurs de HLDN négatives et positives. 

 

Mots-clés : Particules ; Huiles ; Tensioactifs ; Méthodes Prédictives ; Mousse ; HLD 
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Abstract 

The multiple aims of this thesis fall within the implementation of a new HT-SMART-FORMU 

technological platform dedicated to formulation science. The focus is set on the development 

of reliable experimental methods, theoretical and predictive tools, so as to establish relations 

between chemical composition, physicochemical properties and applicative properties.  

The first type of systems investigated in this work consists of solid dispersions. Their stability 

has long been approached by the DLVO theory, but more recent studies suggest the use of 

Hansen Solubility Parameters to describe their stability in non-aqueous media. In the first 

chapter, a systematic analytical method based on zeta potential measurement and light 

scattering stability monitoring allows deducing a complementarity of both theories to describe 

the stability of TiO2 dispersions in non-aqueous solvents. 

The problematic of oil hydrophobicity prediction through EACN values modelling, which is a 

key parameter to design surfactant/oil/water (SOW) dispersed systems, is addressed in the 

second chapter. Two mathematical models, designed using machine-learning methods, are 

proposed for the rapid prediction of the EACN of oils, namely Neural Networks (NN) and Graph 

Machines (GM). While the GM model is implemented from the SMILES codes, the NN model 

is fed with σ-moments descriptors computed with the COSMOtherm software. The prediction 

reliability of both models is discussed based on a complex 10-molecule test set. 

In chapters 3 and 4, the scope of applicative properties of a nonionic glycerol-based surfactant 

are investigated. Firstly, chapter 3 focuses on its aggregation behaviour in aqueous solutions 

and the formation of liquid crystals (LC) at low concentration, in comparison with the 

benchmark polyethoxylated fatty alcohols and alkyl polyglucosides. The influence of its 

physicochemical properties, in particular the air / water interface dilational viscoelasticity, is put 

in relation with the observed poor foamability and long-lasting foam stability.  

Finally, C12Gly2 properties in SOW systems are investigated in chapter 4. The Normalized 

Hydrophilic-Lipophilic Deviation (HLDN), a powerful theoretical tool, is regarded as a way to 

rationalize the characteristics of both emulsions and microemulsions. In this way, a thorough 

quantification of surfactants amphiphilicity, temperature sensitivity and salt-tolerance are 

presented. The potential use of C12Gly2 as O/W and W/O emulsifier is then investigated: the 

granulometry and stability of emulsions obtained by varying the oil concurs with HLDN values. 

A minimum is observed at HLDN = 0 and increases for negative and positive HLDN values. 

 

Keywords: Particles; Oils; Surfactants; Predictive methods; Foam; HLD 
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General Introduction 

From our morning routine with the cosmetics we use and the clothe we wear, to the processed 

food we eat at lunch, or even the components of the car we drive to go to work, formulated 

products fulfil practical functions in our daily lives. Other common examples include medicines, 

perfumes, home care products, detergents, paints and coatings, inks, glues and construction 

materials. Components of such products are carefully chosen to confer precise applicative 

properties to the final composition, within a strict regulatory framework and in a costly manner. 

However, most of the time, the formulated product consists of a fine dispersion of non-miscible 

phases: macroscopically homogeneous, but microscopically heterogeneous, and 

thermodynamically unstable. This is the case for paintings where pigments tend to sediment, 

cosmetic creams or even mayonnaise where oil tends to separate from water over time. Solid 

particles, non-miscible liquids or gas dispersed in a continuous liquid phase result in the 

formation of solid dispersions, emulsions, and foams respectively. This multiphasic nature and 

the formation of an interface between both phases is thermodynamically unfavoured, implying 

preparation and stability problematics for designing effective products.  

Nowadays, the fast evolution of legislations and market demands induces the replacement of 

some petroleum-based ingredients with new performant, bio-based or harmless ones. One 

typical illustration is the “made without” trend in cosmetics, causing the replacement of a 

number of conservatives, e.g. parabens, and active materials like sulphate surfactants in 

shampoos or alumina salts in deodorants. In order to accompany and ease this transition, 

formulators should rely on optimized systematic physicochemical approaches. Understanding 

the intermolecular interactions and how this relates to the material properties is the key to 

unlocking future innovations and designing functional products. The works presented in this 

thesis fall within the implementation of the new HT-SMART-FORMU technological platform, 

dedicated to bringing innovative solutions for formulation science. The focus is set on the 

development of reliable experimental methods, theoretical and predictive tools, so as to establish 

relations between chemical composition, physicochemical properties and applicative properties.  
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The first type of systems investigated in this work consists of solid dispersions. Their stability 

has long been approached by the DLVO theory, according to which particles interact with one 

another through the solvent, acting as a continuous dielectric media. In this framework, the 

influence of ionic species, electrolytes, acids and bases has been widely studied. However, 

more recently, a rationalization of particle dispersions stability was proposed based on the 

Hansen Solubility Parameters approach, considering molecular interactions between solvent 

molecules and particle surface. Both theories are based on very different hypothesis and one 

target of this work is thus to determine what theory applies when, and how to discriminate their 

scope of application. Indeed, those are practical tools that would allow predicting the stability 

of solid dispersions in various solvent types. In the first chapter, this study is applied to TiO2 

nanoparticles, widely used in the construction sector, cosmetics but also catalytic 

applications.   

 

When the dispersed phase is a liquid, the system tends to destabilize due to poor affinity 

between both the dispersed and the continuous phase. To tackle this, the interface is usually 

stabilized by means of surface-active agents, also known as surfactants. The non-miscibility 

of a liquid with water can be interpreted in terms of hydrophobicity, literally “lack of affinity for 

water”, that needs to be reliably quantified. Indeed, a variety of liquid compounds can be 

regrouped under the general term “oils”. This class of components comprises vegetable oils, 

but also petro-sourced hydrocarbons, terpenes and siloxanes, to name a few. Perfume 

molecules are also included in this category as their aqueous solubility is usually very low.  

Historically, the research on enhanced crude oil recovery in the 1970s initiated investigations 

on oil hydrophobicity and resulted in the EACN classification scale. In a nutshell, it refers to 

the equivalent length of the linear alkane that would behave similarly to the oil under study in 

a Surfactant / Oil / Water (SOW) system. Such EACN value being tedious to obtain 

experimentally, methods based on mathematical data treatment can be implemented for 

predictive purposes. Based on an experimental dataset, two EACN modelling methods are 

investigated in the second chapter: neural networks which are non-linear mathematical 

models, and graph machines that estimate a property directly from topological information. In 

this way, the hydrophobicity of any molecule could be estimated in silico, using either of those 

models. EACN values of oils can help predict their behaviour in mixture with water and 

surfactant for the formation of emulsions and microemulsions.  

 

Not only oils are influent on the properties of SOW systems, but the nature of the surfactant 

and its amphiphilic properties are also tuneable for reaching desired features. As briefly evoked 

in previous paragraphs, the stabilization of interfaces is one major challenge in formulation 

science. Surfactants of many types are designed to that aim. Their ability to adsorb at 
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interfaces is due to their amphiphilic structure, consisting of both a hydrophobic chain of at 

least 8 carbon atoms, and a polar hydrophilic head. Depending on its nature, they can be 

classified in four main categories: anionic, cationic, amphoteric and nonionic. This last one 

represented a global market estimated to be over USD 38 billon in 2021 and expected to 

increase in the following years. The home care industry dominated the nonionic surfactant 

application market in 2020, accounting for over 50% of the overall product demand.1 In volume, 

the polyethoxylated fatty alcohols are the most widely used type of nonionic surfactants. 

However, the market demand for bio-sourced molecules and increased performance currently 

drives the research and innovation in the surfactant market. 

In chapters 3 and 4, the scope of applicative properties of a promising nonionic glycerol-based 

surfactant are investigated. Firstly, chapter 3 focuses on the aggregation behaviour of this 1-

O-dodecyl diglyceryl ether (C12Gly2) surfactant in aqueous solutions, in comparison with the 

benchmark polyethoxylated fatty alcohols and alkyl polyglucosides. The influence of its 

physicochemical properties, in particular the air / water interface viscoelasticity, is put in 

relation with its foaming properties. Finally, C12Gly2 properties in SOW systems are further 

investigated in chapter 4. The Normalized Hydrophilic-Lipophilic Deviation (HLDN), a powerful 

theoretical tool, is regarded as a way to rationalize the characteristics of both emulsions and 

microemulsions. In this way, a thorough quantification of surfactants amphiphilicity, 

temperature sensitivity and salt-tolerance are presented. The potential use of C12Gly2 as O/W 

and W/O emulsifier is investigated in this last chapter, by characterizing emulsions obtained 

with various types of oils.  
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1. Introduction 

Nanoscience occupies an important place in contemporary research and industry. Due to their 

size less than 100 nm,2 nanoparticles (NPs) have peculiar properties relevant for applications 

in coatings, cosmetics, pharmaceutics, energy and agriculture, to name a few.3,4 Titanium 

dioxide nanoparticles (TiO2 NPs) are among the most widely used NPs, in particular as UV 

filters in sunscreen cosmetics5 and plastics to avoid solar degradation,6 but also as 

photocatalysts in wastewater treatment,7 in self-cleaning transparent coatings,8 in solar cells 

or as silicon heat-stabilizers9 and many other applications that require their dispersion in fluid  

or solid matrixes. The efficiency of UV filters for skin protection is highly dependent on the 

distribution of this filter in the sunscreen film.10 When TiO2 NPs are used as catalysts for 

wastewater treatment, photocatalytic degradation of pollutants increases with NPs dispersion 

as it is necessary that a large fraction of the catalytic area is accessible.11 Therefore, it is of 

major importance that NPs be and remain homogeneously dispersed in the matrix to achieve 

optimal properties and stability. 

Nanoparticle dispersions can be studied by various experimental methods such as DLS 

(Dynamic Light Scattering) for size measurement12–14 as well as gravitational15–18 or 

centrifugal14,19,20 sedimentations coupled with multiple light scattering methods which can 

provide more detailed information regarding the destabilization mechanisms of dispersions. 

These techniques are based on the measurement of transmitted and backscattered light over 

time along the whole height of a cell containing the dispersion. Both methods allow to 

determine hydrodynamic radius using sedimentation rate. However, agglomeration and 

flocculation of NPs, due to interparticle attraction, are more efficiently observed by gravitational 

sedimentation. Actually, when a sample is centrifuged, sedimentation is greatly accelerated 

whereas attractive interactions remain identical to that under gravitational field and, therefore, 

do not have time to induce agglomeration of the particles. 

In this chapter, the evolution over time of aqueous and organic liquid dispersions of uncoated 

TiO2 nanoparticles was studied using an optical device. The experiments are carried out under 

gravitational field in order to observe both the agglomeration and flocculation phenomena that 

occur when formulations are stored under ordinary conditions. In aqueous media, interparticle 

interactions are well described by the DLVO theory, named after the researchers Derjaguin, 

Landau, Verwey and Overbeek. Electrostatic repulsions between charged particle surfaces 

and van der Waals attractions coming from the solid core of particles contribute to the overall 

particle interactions21 and become dominant over gravity as particles get smaller.22,23 However, 

it is recognized in the literature that organic solvents behave in a more complex manner than 

water as NP dispersing media because of their diversity in structure and polarity.  

Hansen Solubility Parameters (HSP) approach derives from the Hildebrand solubility 
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parameter which is the square root of cohesive energy density. Hansen’s assumption is that 

this cohesive energy density is due to three types of interactions between molecules: polar 

(δp), dispersive (δd) and hydrogen bonding (δh) interactions.24 Originally, Hansen's solubility 

parameters were developed to study and anticipate the solubilization of molecular and 

macromolecular compounds in organic solvents. Hansen himself proposed to apply his method 

to characterize the surface of dispersed particles by arguing that organic liquids which adsorb 

most strongly to the surfaces of particles are those in which dispersions are most stable.24,25 It 

is also argued that for small nanoparticles, energy of solvation can be negative26 and thus, 

solvation would be thermodynamically favoured, placing NPs in the frame of Hansen 

Parameters.27 However, as the physicochemical phenomena involved in the dispersion of 

particles are definitely different from those involved in the dissolution of organic compounds, 

Süß et al. proposed to use the term "Hansen's Dispersion Parameters" (HDP) instead of HSP 

when Hansen’s approach is used to study the dispersibility and stability of particles.14 HSP has 

been shown to be a versatile tool for rationalizing and predicting the stability of various types 

of NP dispersions such as carbon black,14 carbon nanofibers,28 fullerene,29 graphene30 and 

carbon nanotubes31 but also titanium carbides32 and inorganic nanoparticles of ZnO, Al2O3, 

ZrO2,33 hydroxyapatite and TiO2.19 This chapter is based on Hansen Parameters as the three 

complementary parameters allow a practical 3D representation and a clear visualization of 

effective and non-effective solvents. However, it can be expected that interparticle electrostatic 

interactions, not considered in Hansen’s approach, also play a significant role, especially in 

organic solvents with notable dielectric constant. 

Herein we discuss the respective contributions of DLVO and non-DLVO interactions in the 

stability of TiO2 P25 nanoparticle dispersions, with a special emphasis on the relevance of the 

HSP concept to rationalize non-DLVO interactions in organic solvents. Zeta potential 

measurements in organic and aqueous media are carried out to identify the solvents in which 

stability can be explained by the DLVO theory from those for which the stability results from 

more specific NP-solvent interaction. These latter solvents are used to determine the Hansen 

sphere of TiO2 P25 with a Turbiscan as a stability analyser. 
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2. Bibliographic background 

2.1. TiO2 particles generalities 

2.1.1. Global market and industrial production 

With a global production volume of almost 6 million tons,34 the size of the titanium dioxide 

market was estimated to be USD 20.9 billion in 2021.35 The driver market for this type of particle 

is the construction sector. Moreover, the nano-scaled titanium dioxide particles, that are among 

the most widely used nanoparticles, were estimated to be a USD 3.4 billion market in 2015.6 

Titania naturally occurs in ilmenite and rutile ores. Ilmenite is a mixture of iron and titanium 

oxide FeTiO3 whereas rutile is mostly TiO2 with up to 10% iron oxides in a rutile crystal 

structure. Those two types of ores undergo different processes to yield pure TiO2 particles.34 

In the first one, known as the sulphate process and first commercialized in 1931, ilmenite is 

lixiviated by H2SO4 so as to separate soluble iron and titanium complexes. Fe3+ ions are 

reacted with solid Fe to form Fe2+, forming a precipitate with sulphate ions. After filtration of 

FeSO4 crystals, TiOSO4 hydrolysis regenerates titanium hydrated oxides. Finally, particles are 

calcined so as to remove water and traces of sulfuric acid and yield TiO2 in both anatase and 

rutile crystalline phases.34,36 In the second one, known as the chloride process, developed and 

commercialized by DuPont in the 1950s, rutile ore is heated with coke while chlorine is added 

under gaseous form to yield TiCl4 and other chlorinated metals which are separated by 

distillation. Indeed, TiCl4 has a lower boiling point than other metal chlorides. Oxidation by O2 

addition then regenerates TiO2 in the rutile crystalline phase.34,36 In both cases, the resulting 

particles are generally milled to produce the desired size. A third type of crystal structure, 

brookite, can be obtained, but is of little industrial interest. Brookite turns into rutile when heated 

above 500 °C.37 The three crystalline phases are represented in Figure 1.1. 

 

Figure 1.1. Crystalline phases of titanium dioxide a. rutile, space group P42/mnm, b. anatase, space 
group I41/amd and c. brookite, space group Pbca. 

The first class of application is the construction sector with the use of TiO2 in paintings, 

coatings, plastics and glass, representing about 84% of the global TiO2 market.35 As a white 

pigment and UV-filter, TiO2 is also widely used in the cosmetics industry, in particular in 

sunscreen products. Finally, its catalytic properties make it a widely studied catalyst and 

catalyst-support material. 
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2.1.2. Applications in the construction sector 

The refractive index of TiO2 of 2.53 (anatase) to 2.75 (rutile)38 is one of the highest among 

widely used particles and makes it the most efficient white pigment used in industry. Light 

diffusion, which is responsible for the opacity of a pigment, is directly linked to the difference 

in refractive index of the matrix and the particle: the greater the difference, the greater light 

diffuses and the whiter the pigment appears.  Another major parameter is the particle size. 

TiO2 white pigments are usually 0.2 to 0.3 µm as Mie diffusion phenomenon is optimal: light is 

diffused by particles independently of the wavelength (see section 2.3.1).39 Therefore, particles 

diffuse equally every colour, making the pigment look white and bringing opacity to coatings.40 

Most commercially available TiO2 pigments surface are modified and coated with alumina 

and/or silica to control its wettability, dispersibility and performance in various matrixes. The 

coating acts as a spacer between particles, preventing their agglomeration, and can also 

provide stabilizing electrostatic repulsion.  

In specific paintings for the construction industry, TiO2 particles are also studied as 

components of intumescent paintings designed for fire-retardancy. It was shown that the 

insulation of intumescent coatings is improved in the presence of TiO2, in particular rutile 

phase, that enhances thermal stability and mechanical integrity of the char protective layer and 

prevents its oxidation.41,42 

Titanium dioxide is also known as an efficient additive to building materials such as cement 

pastes, mortars and concretes. The main interest in the construction industry is the introduction 

of self-cleaning, air-depolluting and antimicrobial properties to those materials.43–46 Indeed, 

these properties are due to the photocatalytic properties of TiO2 and in that case, non-modified 

TiO2 is used. The first patented applications of TiO2 in building materials appeared in the 1990s 

and concerned mainly the self-cleaning properties and NOx removal from air.47,48 The 

photoactivation of TiO2 creates superhydrophilicity by favouring the hydration of the surface. 

As a result, surface wettability is improved and dirt is removed more easily from outdoor TiO2-

containing materials.49,50 The photoactivation of TiO2 also contributes to discoloration of 

pigments and degradation of organic pollutants.51 This technology is not only used in cement-

based materials but also in clear glass and coatings as the use of nano-scaled TiO2 particles 

yields transparent materials.8 

2.1.3. Use in cosmetics products 

Titanium dioxide particles also find their applications in some cosmetic products, mostly as UV 

filters in sunscreens or as pigments in foundations.5 TiO2, due to its wide band gap of 3.23 eV 

for the anatase form and 3.06 eV for rutile,52 absorbs light in the UV region. This feature is 

particularly interesting for sunscreen products. TiO2 is an inorganic UV-filter approved by the 

Food and Drug Administration (FDA) in the USA and by the Scientific Committee for Consumer 
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Safety (SCCS) in Europe. In order to avoid the white film aspect of sunscreen products, nano-

scaled TiO2 is mostly used in this type of products, with a size below 100 nm,5 whereas bigger 

particle size around 200 to 300 nm is preferred for make-up foundations in order to increase 

its covering power.  

However, there exist some health hazards concerns associated to the use of TiO2 

nanoparticles. It was shown that when used in topical applications, the risk with nano-scaled 

TiO2 particles is low due to the absence of percutaneous absorption.5 In 2010, health issues 

associated to inhalation of TiO2 nanoparticles caused it to be classified possible carcinogenic 

(group 2B) when inhaled in large doses by the International Agency for Research on 

Carcinogens (IARC).53–55  

Their use in spray cosmetics is thus forbidden in Europe as it is a direct route to bloodstream 

absorption through the pulmonary barrier, and limited to a concentration of 25% in other 

formulations.56 In Europe, only TiO2 particles with the following characteristics are allowed in 

cosmetic products: purity superior to 99%, rutile phase or no more than 5% anatase, median 

size value of 30 nm at least based on number size distribution, and particles must be coated 

to avoid forming reactive radicals. It is estimated that the amount of generated radicals in 

sunscreen formulations is small enough to be contained by the skin’s antioxidant species.5 It 

was also shown that the efficiency of UV filters for skin protection is highly dependent on the 

distribution of this filter in the sunscreen film, that is why TiO2 nanoparticles should be efficiently 

dispersed.10 

2.1.4. Catalytic applications 

At both the academic and the industrial levels, TiO2 particles have been studied for their 

catalytic properties, either as main catalyst or as support material for heterogeneous catalysis 

due to strong metal support interaction, chemical stability, and acid-base property.57 The use 

of TiO2 improves the performance and catalytic activities of many reactions such as 

dehydrogenation,58,59 hydrodesulphurization,60 water-gas shift,61,62 thermal catalytic 

decomposition,63 selective reduction of NO by NH3,64 various mild oxidation reactions such as 

ethanol to acetaldehyde.65 This general tendency shows in the bibliometrics of Figure 1.2, as 

the main keywords associated to titanium dioxide in the literature are related to catalysis and 

reactivity.  

This variety in TiO2 applications can be attributed to a variety of interesting properties 

compared to other types of metal oxides. TiO2 semi-conductor behaviour addresses it for 

catalysis applications. As stated in the previous section, due to a wide band gap of 3.23 eV for 

anatase and 3.06 eV for rutile,52 it absorbs light in the UV region. The UV light absorbed by 

TiO2 only accounts for about 5% of solar energy. Modifying the band gap and shifting the 

absorption to the visible region would allow gathering about 43% of solar energy. This can be 
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achieved by either associating TiO2 with other catalytic material, i.e., as support material, or 

by doping.66,67  

 

Figure 1.2. Main keywords occurrence associated to "titanium dioxide" in the Scopus database 
(134,681 documents) regrouped in clusters indicated by colours. 

In the electrochemistry field, TiO2-based materials are of interest due to a high conductivity 

and stability in both acidic and basic media.57 That is why it can be regarded as a support for 

heterogeneous catalysts, guaranteeing stability in electrochemical environment and 

commercial availability. Pure anatase phase mesoporous TiO2 with large surface area and 

narrow pore distribution was synthesized by Nolan et al. 68 to increase the degree of distribution 

and homogeneity of immobilized catalyst. It is well known that TiO2, with small particle size 

and highly porous structure, greatly improves the photocatalytic performance of composite 

materials.69 The synthesis of various nanosized metal particles immobilized on TiO2 surface 

was reported.70–72 It is inferred that the surface of growing particles is immediately complexed 

by TiO2, therefore limiting the grain growth.71 

The improved properties of TiO2-supported catalysts are attributed to the photoinduced 

electron-hole pairs, increasing electron transfer and chemical reactivity. The TiO2 excited 

electrons from the conduction band cause the reduction of metallic ions at TiO2 surface. At the 

same time, holes, which are highly oxidizing species, contribute to oxidation reactions. The 

metal acts as an electron-trap specie, increasing the oxidizing power of TiO2 holes. Moreover, 

the oxidation of surface hydroxyl groups can form highly reactive OH radicals.73,74 

2.2. Dispersion agglomeration behaviour 

For all the above-mentioned applications of TiO2, such as catalysts synthesis and utilization, it 

is of primary importance that the particles remain well dispersed. The same way, the coverage 

of a paint or coating is enhanced with pigment dispersion. In cosmetics, it was shown that UV 
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skin protection directly depends on the homogeneous dispersion of TiO2 particles. Due to the 

diverse existing forces in particle dispersions, these systems can either stay in a well dispersed 

state or evolve and tend to form agglomerates and sediment as the particle density is often 

larger than that of the dispersing media. In this section, the main forces involved in stabilization 

and destabilization of particle dispersions in liquid media are described. 

2.2.1. Brownian motion 

Particles with a diameter smaller than 1 µm are small enough to be impacted by the thermic 

agitation of solvent molecules. As a result, particles vibrate in an irregular and random motion. 

This motion is named after the botanist R. Brown who observed it in 1827 while looking at 

pollen and described the phenomenon.75 In a heterogeneously concentrated dispersion, this 

Brownian motion contributes to the diffusion of particles from highly concentrated areas to less 

concentrated area of the bulk media. However, this random movement exists regardless of a 

concentration gradient as it is only due to thermic agitation. For particles larger than about 

1 µm, and due to their larger inertia, collisions with solvent molecules are not energetic enough 

to put a particle in motion.76 

2.2.2. Interparticle interactions in the DLVO theory 

When colliding with each other, particles can either agglomerate or rebound depending on the 

relative strength of the van der Waals attraction and the electrostatic repulsion. These 

interactions are well described in the DLVO theory, named after the researchers Derjaguin, 

Landau, Verwey and Overbeek. It quantitatively accounts for these two types of interactions 

and was initially developed to rationalize the stability of dispersions in aqueous media. 77,78 The 

DLVO theory can be extended to any dispersing media provided that its relative permittivity, 

viscosity and refractive index are accounted for. Total interaction potential between two 

spheres is the sum of attractive potential 𝑉𝐴 and the repulsive potential 𝑉𝑅, which is given by 

the following expression.79 

𝑉𝑅 = 2 𝜋 𝜀′ 𝑎 𝜁2 ln(1 + 𝑒𝑥𝑝(−𝑟𝜅)) (1) 

where 𝜀′ is the solvent permittivity, 𝑎 is the particle radius, ζ is the zeta potential, 𝑟 is the 

distance between two spheres and 𝜅−1 the Debye-Hückel distance defined by 80: 

𝜅−1 = √
𝜀′𝑘𝐵𝑇

2𝑁𝐴𝑒2𝐼
 (2) 

where 𝑘𝐵 is the Boltzmann constant, 𝑁𝐴 the Avogadro constant, 𝑒 the electron charge and 𝐼 the 

ionic strength. The attractive component 𝑉𝐴, described by Hamaker 81, is given by equation (3). 

𝑉𝐴 =
−𝐴12 𝑎

12 𝑟
 (3) 

Hamaker’s constant A12 of component 2 in medium 1 is calculated with equation (4) from each 
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component constants A1 and A2 expressed by equation (5).22 

𝐴12 = (√𝐴1 − √𝐴2)
2
 (4) 

𝐴𝑖 =
3

4
𝑘𝐵𝑇

(𝜀′𝑟,𝑖 − 1)2

(𝜀′𝑟,𝑖 + 1)2
+

3ℎ𝜈𝑒(𝑛𝑖
2 − 1)2

16√2(𝑛𝑖
2 + 1)

3
2⁄
 (5) 

𝜀′𝑟 is the relative permittivity, ℎ is Planck’s constant, 𝜈𝑒 is the main electronic absorption 

frequency for the dielectric permittivity calculated based on ionization potential IP and 𝑛 is the 

refractive index. Hamaker’s constant calculations for TiO2 and all solvents used are available 

in appendix A2. 

Figure 1.3 shows a typical example of the evolution of 𝑉𝑅 and 𝑉𝐴 over the distance 𝑟 between 

two particles. When 𝑉𝑇 = 𝑉𝑅 + 𝑉𝐴 shows a positive maximum there exists a repulsive force 

preventing particle from agglomerating. When 𝑉𝑇 < 0, no energy barrier is opposed to the 

agglomeration of particles and in the absence of other stabilizing forces the dispersion is 

usually very unstable.82 It is estimated that if 𝑉𝑇 > 25 𝑘𝐵𝑇,  the electrostatic repulsion is so 

predominant over the Van der Waals attraction that the dispersion is kinetically stable although 

the thermodynamically stable state corresponds to particles being in contact.83  

 

Figure 1.3. Typical evolution of total interaction potential 𝑉𝑇 = 𝑉𝑅 + 𝑉𝐴 over the distance 𝑟 separating two 
spherical particles. 

2.2.3. Particle and dispersing media interactions 

Some non-DLVO interactions can also contribute to stabilizing particle dispersions. They 

intervene for surfaces with adsorbed layers of water (hydration), solvent (solvation), ions, 

surfactants, polymers or nanobubbles. The thickness of the adsorbed layer depends on the 

respective properties of the particles and the medium and can create an additional distance 

between two particles, thus preventing them from getting in the high interaction potential area 

as shown in Figure 1.3.  Indeed, when the particle size is smaller than 100 nm, the thickness 

of adsorbed layer is of the same order of magnitude than the van der Waals interaction 

distance.84,85 Besides this steric stabilization of surfaces, there can also exist additional 
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attraction forces. In the case of adsorbed hydrophobic compounds or nanobubbles at the 

particle surface in a polar medium, hydrophobized surfaces attract strongly with each other 22. 

In the case of adsorbed nanobubbles, this attraction is effective at long range (a few hundreds 

of nanometres) and is attributed to surface tension of the bridging gas bubbles.86,87  

In the case of particle surface solvation, interactions between solvent molecules and particle 

surface can be described in many ways. The nature of the particle can induce surface acidity, 

e.g., for metal oxides, local polarization, or hydrophobic interactions with the solvent, e.g., for 

carbon-rich particles such as graphene. There exist many solvents scales to classify solvent-

solute interactions that can be extended to particle-solvent interactions. Mostly two solvent 

scales are exploited in the literature: the donor-acceptor numbers in relation with the Lewis 

acidity and basicity of solvents interacting with the particle, and the Hansen solubility 

parameters (HSP) associated to the Hildebrand parameter and cohesive energy density of a 

liquid.  

Donor-Acceptor Numbers 

This theory was developed by Victor Gutmann in 1976 and is based on the principle that 

interactions between a solvent and a solute or a particle are mainly Lewis acidity and basicity. 

The ability of a solvent to accept electrons, i.e., its Acceptor Number (AN) or Lewis acidity is 

measured by means of 31P NMR and using triethylphosphine oxide Et3PO as a probe solute. 

Indeed, the chemical shift of Et3PO gets higher as the solvent AN increases.88 The Donor 

number (DN) of a compound is associated to the enthalpy of reaction between the compound 

and SbCl5, a typical Lewis acid, dissolved in 1,2-dichloroethane, a non-coordinating solvent.88 

AN values are correlated to other Lewis acidity scales such as Dimroth-Reichardt ET(30) and 

Kamlet-Taft α parameter. DN values are correlated to Kamlet-Taft β parameter.89 

Hansen Solubility Parameters 

This approach derives from the Hildebrand solubility parameter δH, which is the square root of 

cohesive energy density, see equation (6). The cohesive energy corresponds to the amount 

of energy necessary to remove a volume unit of molecules from the bulk, i.e., the heat of 

vaporization divided by the molar volume. Hansen’s assumption is that this cohesive energy 

density is due to three types of interactions between molecules: polar (δp), dispersive (δd) and 

hydrogen bonding (δh) interactions as defined in equation (7).24 

𝛿𝐻 = √
∆𝐻𝑣 − 𝑅𝑇

𝑉𝑚
 (6) 

with R the molar gas constant, 𝑇 the temperature, ∆𝐻𝑣 the heat of vaporization and 𝑉𝑚 the 

molar volume of the considered compound.  
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𝛿𝐻 = √𝛿𝑝
2 + 𝛿𝑑

2 + 𝛿ℎ
2
 (7) 

Originally, Hansen's solubility parameters were developed to study and anticipate the 

solubilization of molecular and macromolecular compounds in organic solvents, on the 

hypothesis that similar solubility parameters for both the solute and the solvent lead to 

favourable solubilization. Hansen himself proposed to apply his method to characterize the 

surface of dispersed particles by arguing that organic liquids which adsorb most strongly to the 

surfaces of particles are those in which dispersions are most stable and that this adsorption 

depends on δp, δd and δh differences.24,25 It is also argued that for small nanoparticles, energy 

of solvation ∆𝐺𝑠𝑜𝑙𝑣. can be negative26 and thus, solvation would be thermodynamically 

favoured, placing NPs in the frame of Hansen Parameters.27 However, as the physicochemical 

phenomena involved in the dispersion of particles are definitely different from those involved 

in the dissolution of organic compounds, Süß et al. proposed to use the term "Hansen's 

Dispersion Parameters" instead of HSP when Hansen’s approach is used to study the 

dispersibility and stability of particles.14 HSP has been shown to be a versatile tool for 

rationalizing and predicting the stability of various types of NP dispersions such as carbon 

black,14 carbon nanofibers,28 fullerene,29 graphene30 and carbon nanotubes31 but also titanium 

carbides32 and inorganic nanoparticles of ZnO, Al2O3, ZrO2,
33 hydroxyapatite and TiO2.19 In 

practice, the particles are dispersed in a series of carefully chosen solvents according to a 

standard protocol. Each solvent is assigned a score based on the stability of the dispersion, 

then a Hansen sphere including the most effective solvents is built in the 3D Hansen space as 

described in Figure 1.4.  

 

Figure 1.4. Experimental procedure to determine the Hansen solubility sphere of a particle. The centre 
of the resulting sphere corresponds to the experimental HSP of the particle. 

The other previously described solvent scales (Donor-acceptor numbers, ET(30) and Kamlet-

Taft) could be used to quantify solvent-particle interactions, but in this work we chose to use 

the Hansen Parameters as the three complementary parameters allow a practical 3D 

representation and a clear visualization of effective and non-effective solvents. 
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2.3. Dispersion stability and detection methods 

A dispersion is considered stable when it is prone to avoiding both agglomeration and 

sedimentation phenomena. Assessing the stability of a dispersion can be achieved by many 

techniques. Monitoring the particle size and the sedimentation rate allows a global 

understanding of a dispersion evolution and stability over time. 

In liquid medium, dispersed particles occur in various states and configuration: single primary 

particles, agglomerates and aggregates as shown in Figure 1.5. Depending on the strength of 

van der Waals attraction and of the dispersion process energy, agglomerates can be broken 

down to primary particles in some cases, however aggregates cannot be broken down to 

smaller entities by physical processes as they result of strong covalent bonds.  

 

Figure 1.5. States and configurations of dispersed particles in liquid media. Redrawn from 12. 

2.3.1. Light scattering behaviour of particle dispersions 

When an electromagnetic wave meets a particle, light is scattered in the three directions of 

space. Depending on the size and shape of the particle, partial light extinction of the incident 

light is observed. Two main theories characterize this extinction behaviour and are exploited 

in particle size measurement devices and dispersion stability monitoring devices. 

 

Rayleigh light scattering theory 

This model corresponds to light scattering by small objects with a diameter range such as 

𝑑 <  𝜆/20. In that case, the scattered intensity 𝐼𝑆(𝜃) compared to the incident light intensity 𝐼0 

is given by Rayleigh’s law in equation (8) 

𝐼𝑆(𝜃)

𝐼0
=

8𝜋4𝑑6

𝑟2𝜆4 (
𝑚2 − 1

𝑚2 + 2
)

2

(1 + cos2 𝜃) (8) 

where 𝑑 is the particle diameter, 𝑟 is the distance from the observation point, 𝑚 is the ratio of 

the particle refractive index compared to that of the continuous phase and 𝜃 is the angle of 

observation.90 
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It is worth noting that 𝐼𝑆(𝜃) is proportional to 𝜆−4. This dependence results in apparent blue 

reflects as 𝜆𝑏𝑙𝑢𝑒 is the smallest wavelength of the visible light spectrum, and thus the most 

scattered one. Also, the intensity increases with the particle size, up to the point where light 

scattering changes behaviour and is defined by the intermediate Rayleigh-Gans-Debye theory. 

In this intermediary expression, equation (8) is corrected by a form factor 𝐹(𝜃), accounting for 

the asymmetric angular distribution of light scattering.91 When particles get bigger than about 

𝜆/10, the scattering behaviour changes again and is expressed by the Mie light scattering 

theory. 

Mie light scattering theory 

The Mie theory, developed by Gustav Mie in 1908, describes light scattering by spherical 

objects bigger than about 𝜆/10. In that case, light is scattered mostly in the direction of the 

incident light but also in other angles, depending on the particle size. Size measurement 

devices based on this theory are typically laser granulometers, that require working with dilute 

dispersions to avoid superposition of scattered signals.40,91 

2.3.2. Size measurements 

Dynamic Light Scattering (DLS) 

Various techniques exist to measure particle size. Depending on the sample size range, some 

techniques are more appropriate than others. One of the most famous ones is Differential Light 

Scattering (DLS), based on optical observation of the sample. Due to thermic agitation, 

particles vibrate with a size-depending amplitude. In usually used apparatus, an incident laser 

beam passes through the dispersion and meets vibrating particles that scatter light, as 

described in section 2.3.1. The scattered light intensity varies as particles vibrate and move 

inside the sample. The variation speed is measured and converted to particle size distribution. 

This technique is particularly indicated for sizes comprised between 0.3 nm and 10 µm. Over 

this limit, Brownian movement is insufficient to be detected. Moreover, quickly sedimenting 

particles can induce a measurement error as the observed particle movement is a sum of both 

Brownian motion and sedimentation. Finally, DLS is only applicable to partially clear dispersion 

as it requires measuring the transmitted light, which is inexistent for an opaque sample. A 

solution is to dilute a concentrated dispersion, but it implies changing the measurement 

conditions compared to the original state of the dispersion.92 

Static Multiple Light Scattering (SMLS) 

For concentrated dispersion, the Static Multiple Light Scattering (SMLS) method is indicated 

as it requires no dilution and is adapted to opaque samples.93 In SMLS apparatus, typically 

Turbiscan®, a monochromatic light beam propagates in a dispersion and is scattered by 

dispersed particles. Two sensors are placed so as to collect the resulting backscattered and 
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transmitted light. The transmitted TR light signal can be expressed by the lambert-Beer law, 

see equation (9), and the backscattered BS signal is approximated by equation (10):93 

𝑇𝑅 = 𝑇𝑅0 exp (
−3𝑟𝑖𝛷𝑄𝑒(𝑑)

𝑑
) (9) 

𝐵𝑆 = 𝛼√
3𝛷(1 − 𝑔(𝑑))𝑄𝑒(𝑑)

2𝑑
+ 𝛽 (10) 

with 𝑇𝑅0 the transmitted signal of the continuous phase, 𝑟𝑖 the internal radius of the 

measurement cell, 𝑑 the particle mean size, 𝛷 the volume fraction of dispersed phase, 𝑄𝑒 the 

extinction efficiency, 𝛼 and 𝛽 the gain and offset of the experimental setup and 𝑔 the 

asymmetry factor that quantifies the anisotropy of the light scattered by particles. 

This size measurement method is indicated for particle sizes ranging from 10 nm to 1 mm and 

can also be applied to droplets in an emulsion for instance. This technique allows working with 

opaque samples, but only yields an average size and no size distribution, which remains less 

accurate than DLS size measurements. 

2.3.3. Sedimentation rate 

The kinetics of destabilization can be relevant for a number of applications, e.g., for the stability 

evaluation of consumer products. To that end, some commercially available devices allow 

monitoring the sedimentation rate of particle dispersions, under gravitational field or 

accelerated one. This latter type of device is generally preferred for accelerated stability 

assessment. The LUMiSizer® products from LUM GmbH are based on this technology: 

samples are placed in tubes held around a rotative axis. Several light sources are placed 

perpendicularly to the tubes over the sample height, and detectors are placed both next to the 

emitting source and in front of it, gathering the transmitted and backscattered light while the 

sample is being centrifuged at a force between 6×g and 2300×g. The evolution of these 

signals over time and sample height give information regarding the size of dispersed objects, 

directly related to their sedimentation rate.94 

The second type of device, typically the Turbiscan® products from Formulaction, are based on 

gravitational sedimentation monitoring. Samples are monitored without centrifugation. A 

mobile light beam is placed perpendicularly to the sample. Detectors are placed next to the 

emitting source and facing it so as to measure transmitted and backscattered light.93 The 

evolution of samples is, thus, much slower but allows detecting the agglomeration phenomena, 

which cannot be accelerated by centrifugation as they result from interparticle interactions and 

are not impacted by gravitational forces. It is the instrument used in this work so as to analyze 

samples in real-life conditions and detect every type of destabilization.   
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3. Experimental section 

3.1. Chemicals 

The nanoparticles AEROXIDE ® TiO2 P25 (titanium dioxide, purity ≥ 99.5 %) were obtained 

from Acros Organics (Thermo Fisher Scientific Inc., Geel, Belgium). These uncoated TiO2 NPs 

had a specific surface area of 35 – 65 m²/g 9 and an average primary particle diameter of 

21 nm.95 Crystal structure was mainly anatase (85 %) and rutile (15 %).96 

Organic solvents used as dispersion media were supplied by the companies Sigma-Aldrich 

Chemie GmbH (St. Louis, USA), VWR International GmbH (Radnor, Pennsylvania), Acros 

Organics (Thermo Fisher Scientific Inc., Geel, Belgium), Alfa Aesar (Thermo Fisher Scientific 

Inc., Heysham, UK), Honeywell (Honeywell International Inc., Morristown, USA), Verbièse 

(Laboratoire Verbièse, Merville, France) and TCI (Tokyo Chemical Industry Co. Ltd., Tokyo, 

Japan).They were all of the highest purity available and used as such. Trifluoroacetic acid 

(99 %) was supplied by Alfa Aesar and tetrabutylammonium hydroxide (1 M in methanol) was 

supplied by Sigma-Aldrich. Ultrapure water was obtained using a Thermo Scientific Barnstead 

MicroPure Ultrapure water system with a resistivity of 18.2 MΩ.cm. 

3.2. Protocol for dispersing TiO2 P25 nanoparticles 

Aqueous dispersions 

pH-controlled solutions were prepared by mixing NaCl 10-3 M and either NaOH or HCl 10-3 M 

solutions in order to maintain ionic strength at a constant value of 10-3 M. 20 mg of TiO2 was 

placed in a borosilicated glass cell (from Formulaction Company, 27.5 mm diameter), then 

20 mL NaCl 10-3 M and HCl or NaOH 10-3 M were added. The cell was placed in a 23.0 °C 

thermoregulated bath and sonicated for 12 min using an ultrasonic probe Sonotrode S26d2 

(2 mm diameter) immersed by 5 mm in the liquid and operated by the ultrasonic processor 

UP200St (both from Hielscher). The sonotrode pulse was fixed at 50 % and the amplitude at 

20 %. Thermoregulation was carried out by means of a Huber Ministat 125 circulating water 

bath. pH was measured by immersing the electrode directly in the cell and a sample was taken 

to measure particle size and zeta-potential ζ using a Zetasizer Nano ZS from Malvern 

Panalytical. The cell was wiped to remove water drops from the outside wall and was scanned 

by a thermoregulated Turbiscan LAB from Formulaction.  

Dispersions in organic solvents 

In organic solvents, 20 mL of solvent (“pure” in the first series of experiments and containing 

10-3 M trifluoroacetic acid or tetrabutylammonium hydroxide afterwards) were sampled with a 

graduated pipette and added to a borosilicated glass cell containing 20 mg of TiO2. The 

particles were then dispersed and analysed according to the protocol described above. Particle 

size was measured according to the DLS method using a Zetasizer Nano ZS from Malvern 
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Panalytical. Mean size is given as Z-average size, defined as the harmonic intensity average 

particle diameter. 

3.3. Turbiscan measurement 

Dispersions were scanned every 30 seconds for 2 to 72 hours at 25.0 °C. Measured signals 

are transmitted light (TR) and backscattered light (BS) represented as a function of the sample 

height. Variations in TR and BS can be seen by deducting the first scan to all the following 

scans yielding ΔTR and ΔBS. Typical resulting spectra are shown in Figure 1.6. 

  

Figure 1.6. Change of transmitted light (ΔTR) and backscattered light (ΔBS) from Turbiscan data for a partially 
sedimented dispersion. TR increases at the top and BS increases at the bottom as particles sediment over 
time. 

Experimental data were processed using the TurbiSoft Lab software (2.3.1.125 FAnalyser) and 

TSI (Turbiscan Stability Index) was computed according to the following equation.97 

𝑇𝑆𝐼(𝑡) =
1

𝑁ℎ
∑ ∑ |𝐵𝑆, 𝑇𝑅(𝑡𝑖 , 𝑧𝑖) − 𝐵𝑆, 𝑇𝑅(𝑡𝑖−1, 𝑧𝑖)|

𝑧𝑚𝑎𝑥

𝑧𝑖=𝑧𝑚𝑖𝑛

𝑡𝑚𝑎𝑥

𝑡𝑖=1

 (11) 

with 𝑡𝑚𝑎𝑥 the measurement time at which the TSI is calculated, 𝑧𝑚𝑖𝑛 and 𝑧𝑚𝑎𝑥 the lower and 

upper selected height limits respectively, 𝑁ℎ = (𝑧𝑚𝑎𝑥 − 𝑧𝑚𝑖𝑛)/∆ℎ the number of height 

positions in the selected zone of the scan and BS,TR the considered signal (backscattering BS 

if TR < 0.2% or transmission TR otherwise). Consequently, TSI = 0 for t = 0 and increases as 

the sample gets destabilized. High TSI values are characteristic of unstable dispersions. In 

organic media, a Relative Turbiscan Stability Index (RTSI) was defined according to 

equation (12) to compare solvents with each other, so as to consider their viscosity 𝜂 [cP] and 
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their density 𝜌𝑖 [g.cm-3] which modify the sedimentation rate according to Stokes' law. 

𝑅𝑇𝑆𝐼 = 𝑇𝑆𝐼 ×
𝜂

(𝜌𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒 − 𝜌𝑠𝑜𝑙𝑣𝑒𝑛𝑡)
 

(12) 

Moreover, the variations of TR (or BS when the sample is opaque) allow the calculation of 

mean particle size via Stokes sedimentation. Using the width evolution at a threshold of the 

ΔTR clarification peak at the top of the cell (see Figure 1.7), the migration rate of particles 

corrected by the viscosity and density of the solvent is linked to particle size by equation (13).98 

A threshold of ΔTR = ΔTRmax/10 was chosen to measure dStokes in all samples. When variation 

of the peak width was not linear, due to sedimentation of different size populations in the 

sample, the initial slope was used. 

𝑣 =
𝑑2  ×  𝑔 ×  (𝜌𝑝 − 𝜌𝑓)

18 𝜂
×

1 − 𝛷

1 +
4.6 𝛷

(1 − 𝛷)3

 
(13) 

with v the sedimentation rate, 𝛷 the solid volume fraction, d the diameter, g the gravitational 

constant, ρp and ρf the density of particles and fluid respectively and η the viscosity.  

 

Figure 1.7. ΔTR clarification peak and threshold at ΔTR = ΔTRmax/10 (left). Peak width evolution at the 
1/10 threshold (right) : the slope corresponds to the sedimentation rate v. 

3.4. Zeta potential measurement 

Immediately after dispersing the NPs, 1 mL of dispersion was introduced in a folded capillary 

zeta cell (aqueous dispersions) or a dip cell (dispersions in organic solvents) and the zeta 

potential of TiO2 suspensions was measured using a Zetasizer Nano ZS from Malvern 

Panalytical. In organic solvents, measuring 𝜁 is more challenging than in water. Indeed, the 

usual folded capillary cell made out of polycarbonate (see Figure 1.8a) cannot be used for two 

reasons. Firstly, this polymer can be dissolved by some organic solvents. Being made of 

polyether-ether-ketone (PEEK) polymer and a glass cuvette with excellent chemical 

compatibility, the dip cell (Figure 1.8b) is more addressed for this type of measurements. 

Secondly, low conductivity media require a higher applied field to observe electrophoretic 
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mobility. The dip cell electrodes are positioned closely together on the PEEK probe, producing 

greater electric fields with lower voltage and thus avoiding local heating and electrolysis 

effects.99,100 

 

Figure 1.8. Zeta potential (a) capillary polycarbonate cell and (b) dip cell made of PEEK probe and glass 
cell and particles moving under electrophoretic motion between the electrodes. 

Zeta potential is the potential at the surface between a rigidly adsorbed layer and the freely 

flowing solvent molecules.101 The functional groups at the particle surface interact with the 

dispersing medium. Dipole-dipole interactions induce the creation of electric charges that affect 

the electrostatic forces of particles with one-another. The measurement is based on laser 

Doppler electrophoresis. The zetasizer measures the frequency difference between the 

incident and the backscattered beams on the chamber detectors. This Doppler effect is 

induced by the particle movement under the difference of electric potential. Zeta potential ζ is 

then calculated using Hückel’s equation:102 

 𝑢𝐻ü𝑐𝑘𝑒𝑙 =
2 𝜀′0 𝜀′𝑟 𝜁 

3 𝜂
 (14) 

with 𝑢 the particle mobility, ε’r the relative permittivity of the solvent, ε’0 the electrical permittivity of 

vacuum and  the viscosity. 

Three concordant zeta measurements were achieved for each sample, and values reported in this 

work are the average zeta values. Uncertainty of measurement is estimated to be the standard 

deviation. In organic solvents, zeta deviation is generally larger than in aqueous media. A few 

examples are shown in Figure 1.9. Zeta potentials measured in solvents without the addition of 

electrolytes should be considered specific to this study as it may differ according to experimental 

conditions, namely the solvent purity, supplier or batch. Zeta potential of TiO2 in non-aqueous 

solvents is very sensitive to the presence and nature of impurities.103,104 
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Figure 1.9. Zeta potential raw measurements of 1 g/L TiO2 P25 dispersions in isopropanol (pink), 
toluene (blue), dimethylformamide (yellow) and aqueous solution with pH = 4.7 (black). Measurements 
are achieved with a dip cell in organic solvents and a capillary cell in aqueous media. 

3.5. Hansen sphere calculation 

Two HSP spheres of TiO2 P25 were determined based on either one of two distinct stability 

criteria, namely dStokes and RTSI. Solvents were rated according to one of these parameters: 

score 1 for “good” dispersing media (stable dispersion) and score 2 for “bad” dispersing media 

(unstable dispersion). A threshold was defined for dStokes and RTSI as follows. 

Score 1: dStokes < 0.31 µm or 𝑅𝑇𝑆𝐼2ℎ
𝑡𝑜𝑝

 < 1.0 

Score 2: dStokes > 0.31 µm or 𝑅𝑇𝑆𝐼2ℎ
𝑡𝑜𝑝

 > 1.0 

Using HSPiP software and the scores attributed to each solvent, the spheres are computed so 

as to include scores 1 and exclude scores 2. The fit indictor reflects the quality of the sphere 

computation: it decreases if scores 1 are excluded and scores 2 are included in the sphere. 

The center of the sphere, represented by the three coordinates δd, δp and δh, corresponds to 

the Hansen Solubility Parameters of TiO2. 
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4. TiO2 dispersions stability in aqueous media 

Zeta potential ζ is the key parameter to rationalize the stability of aqueous TiO2 

dispersions.12,105–107 Figure 1.10 shows the evolution of ζ as a function of pH in aqueous 

solution at constant ionic strength. When dispersed in solution, NPs collide with each other 

due to the Brownian movement. They can either agglomerate or rebound depending on the 

relative strength of the van der Waals attraction and the electrostatic repulsion. The DLVO 

theory which quantitatively accounts for these two types of interactions, was initially developed 

to rationalize the stability of dispersions in aqueous media.77,78 Surface charge effects of TiO2 

dispersions in water have been extensively studied.12,105–109 The pH of the aqueous solution 

plays an important role as it influences ion exchanges between NPs and water, modifying the 

surface charge and accordingly, the zeta potential. Indeed, the presence of acidic TiIV sites on 

the surface causes water dissociation by adsorption, creating -OH functional groups.108 NP 

surface is then modified via reaction with H+ or HO- ions according to equilibria depicted in 

Figure 1.11.108,110 

 

Figure 1.10. Evolution of 1 g/L TiO2 P25 nanoparticle zeta potential with pH in water at 25.0 °C. pH is 
adjusted with HCl and NaOH. Ionic strength is kept constant at 10-3 M with NaCl. Instability area is 
marked in grey, corresponding to pH = 4.6 to 7.2. Pictures of dispersions are taken after 24 hours. 

 
Figure 1.11. Simplified illustration of electric charges formation on TiO2 surface by acido-basic reactions 
in water. 

Bidentate bridge OH between two Ti atoms (Ti-OH+-Ti) and monodentate terminal H2O 

adsorbed on 5-fold Ti sites have pKa values of 2.9 and 12.7 respectively.111 The reported values 

for the isoelectric point of TiO2 P25 are comprised between 5.8 and 6.6.108,111–113 As shown in 

Figure 1.10, an isoelectric point of 5.9 was found in accordance with the literature. Electrolyte 

concentration is also known to strongly impact the zeta potential as more counter-ions can 
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screen surface charges when its concentration increases. Those differences between 

measured zeta potential and surface potential are minimized at low electrolyte concentration 

and with monovalent ions.77,78,114 In this work, pH was adjusted by NaOH or HCl addition and 

the ionic strength was then adjusted to a constant value of 10-3 M by NaCl addition. pH ranging 

from 4.6 to 7.2 causes ζ to be comprised within the -30 mV to 30 mV interval, leading to quickly 

destabilized dispersions. Such destabilizations can be finely analysed using a Turbiscan® LAB 

through the detection of the transmission TR and backscattered BS light signals. Turbiscan 

profiles at various pH values are presented in Appendix A3. The differences in stability 

depending on the pH can be seen in Figure 1.12, showing the evolution of the transmitted TR 

and backscattered BS lights of two aqueous TiO2 nanoparticle dispersions at pH = 6.7 and 

pH = 7.8.  

 
Figure 1.12. Variations over 2 hours of transmitted TR and backscattered BS light of aqueous TiO2 P25 
1 g/L dispersions (T = 25.0 °C) at pH = 6.7 and ζ = - 12 mV (a) and at pH = 7.8 and ζ = - 35 mV (b). 

When DLVO repulsion is strong enough to avoid particle agglomeration, the typical profile is 

the one in Figure 1.12b. TR signal shows no variation except at the top, where slow 

sedimentation occurs. With time, the sedimentation front (also visible in BS light) would 

eventually reach the bottom of the cell. BS light increases as particles accumulate at the 

bottom. Those samples are easily re-dispersed with a simple re-agitation. On the contrary, 

when DLVO repulsion is weak (i.e., zeta potential is less than 30 mV), as in Figure 1.12a, 

destabilization is fast. BS decreases and TR increases at the top and in the middle of the cell 

due to particle agglomeration. Indeed, the particle concentration decreases as they 

agglomerate. TR even turns into an irregular signal when agglomerates tend to be individually 

distinguishable. Sedimented particles accumulate faster if DLVO repulsion is low: the 
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increasing size of agglomerates, in turn, accelerates their sedimentation rate.  

All those variations over time can be accounted for by the TSI value. Indeed, using TR and BS 

signals, the average TSI value (see equation (11)) can be calculated on any portion of the cell 

and at any time of the analysis. It is worth noting that phenomena differ depending on the 

height: at the top, TR increases faster than below as clarification occurs. Figure 1.13 shows 

the evolution of TSI on three portions of the cell in the case of the TiO2 dispersions at pH = 3.1. 

Destabilisation can be detected faster when looking at the top of the cell, with a faster increase 

in TSI value than in the middle or the bottom of it. 

 

Figure 1.13. Turbiscan Stability Index (TSI) evolution in a 1 g/L TiO2 P25 aqueous dispersion (pH = 3.1, 
ionic strength = 10-3 M) at 25.0 °C over two days.  

TSI represented in Figure 1.14a has been calculated at the top of the cell in order to detect the 

very early changes even for the most stable samples. After 2 hours, 𝑇𝑆𝐼2ℎ
𝑡𝑜𝑝

 values match the 

expected dispersions behaviour in accordance with the DLVO theory. When |ζ| < 30 𝑚𝑉, 

𝑇𝑆𝐼2ℎ
𝑡𝑜𝑝

 is significantly higher than outside these boundaries. Destabilization is faster within this 

interval whereas solutions with high |ζ| remain stable. In Figure 1.14b, the Stokes diameters, 

calculated based on the sedimentation rates of particles (see experimental section 3.3), have 

Figure 1.14. Evolution at 25.0 °C of (a) TSI at the top of the cell after 2 hours and (b) Stokes diameters 
determined using the Turbiscan with zeta potential ζ of 1 g/L TiO2 P25 aqueous dispersions. Ionic 
strength is kept constant at 10-3 M by NaCl addition, pH is adjusted using NaOH and HCl solutions. 
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been reported as a function of ζ. They reach a maximum around the isoelectric point and are 

noticeably smaller as |𝜁| increases. All these findings clearly show that Turbiscan 𝑇𝑆𝐼2ℎ
𝑡𝑜𝑝

and 

Stokes diameters appear as reliable values to quantify dispersion stability. In particular, the 

maximum dStokes being attained for zeta potentials close to 0 mV is in accordance with the 

increase of coagulation rate when electrostatic repulsion is low. In that case, there exists little 

or no energetic barrier to prevent particles from colliding and coagulation occurs rapidly.82 

 

5. TiO2 dispersions in non-aqueous solvents 

5.1. DLVO interactions in methanol, a non-aqueous solvent 

DLVO theory quantitatively accounts for interactions between particles and can be applied to 

organic dispersing media.16,115,116 The main differences between aqueous and organic 

dispersing media concern dielectric constants and electrolyte concentrations. Both those 

factors impact the electrostatic repulsion potential. The stability of TiO2 dispersion was 

investigated in a common polar and protic solvent, namely methanol. Figure 1.15 shows the 

variation of the zeta potential at different pH values measured using a glass electrode 

standardized in aqueous buffer. The pH range accessible, based on the water scale, is -1.8 to 

17.2 and depends on the dissociation constants of methanol.117 The lower limit is given by the 

transfer activity coefficient of H+ ions in methanol 𝑝𝛾𝐻2𝑂→𝑀𝑒𝑂𝐻
𝑡 (𝐻+) = −1.8 and the upper limit 

is given by the autoprotolysis constant of methanol 𝑝𝐾𝑀𝑒𝑂𝐻 = 17.2.117–119 

 
Figure 1.15. Evolution of 1 g/L TiO2 P25 nanoparticle zeta potential with pH in methanol referred to the 
aqueous pH scale at 25.0 °C. pH is adjusted with HCl and NaOH. Ionic strength is kept constant at  
10-3 M with NaCl. Instability area is marked in grey. 

First of all, in contrast to aqueous media, it appears that whatever the pH value, ζ remains 

positive. A quite similar observation was made by Kosmulski et al. for TiO2 in water/methanol 

mixtures: zeta potential became closer to 0 mV with increasing amounts of methanol.120 On 

the other hand, it slightly increases with the addition of HCl, whereas NaOH addition brings ζ 

closer to 0 mV but not in the negative values. Dissociative adsorption of methanol on a 
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hydrated TiO2 surface is described by the following equations.121 

MeOH → MeOadsorbed
− + H+  (15) 

H+ + Osurface
2− → OHadsorbed

−   (16) 

MeOH + Osurface
2− → MeOadsorbed

− + OHadsorbed
−   (17) 

As a result, surface hydroxyl groups are partially replaced by methoxyl groups, as shown in 

Figure 1.16, which are not able to donate protons. The creation of negative surface charges in 

the presence of NaOH is thus reduced.  

 

Figure 1.16. Simplified illustration of electric charges formation on TiO2 surface by acido-basic reactions 
in the presence of methanol. 

Moreover, in the presence of electrolytes, there exists a charge screening from Na+ and Cl- 

ions. It is assumed that Cl- ions interact with the surface through TiOH2
+Cl- interactions, 

whereas Na+ ions interact in a non-specific way with negatively charged groups on TiO2 

surface.121 When NaOH is added to methanol dispersions, TiOH2
+ disappears from the surface 

and Cl- ion adsorption decreases while Na+ ion adsorption ability remains identical. This may 

explain why the zeta potential remains positive whereas surface potential may be negative. 

Figure 1.17 displays the evolution of 𝑇𝑆𝐼2ℎ
𝑡𝑜𝑝

and Stokes diameters determined with the 

Turbiscan as a function of the zeta potential ζ in methanol. 

 

Figure 1.17. Evolution of (a) TSI at the top of the cell after 2 hours and (b) Stokes diameters dStokes as a 
function of the zeta potential of 1 g/L TiO2 P25 particles in methanol. Ionic strength is kept constant at 
10-3 M with NaCl and pH is adjusted with NaOH or HCl. 

As in water, 𝑇𝑆𝐼2ℎ
𝑡𝑜𝑝

and particle diameters vary depending on the zeta potential suggesting 

heavily that the stability of TiO2 dispersions in methanol is mainly influenced by electrostatic 

repulsions. Actually, it is well established that DLVO theory is also applicable in polar organic 
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solvents and may explain the stability of dispersions provided that the dielectric constant is 

high enough. However, for solvents of lower permittivity ε’, electrostatic repulsions significantly 

decrease even when zeta potential is relatively high.  

It can be assumed that these types of interactions occur in others non-aqueous solvents, and 

directly impact the stability of particle dispersions. In the following section, both the DLVO and 

the HSP contributions to stabilization are considered to rationalize the behaviour of TiO2 

dispersions in non-aqueous solvents. 

5.2. Complementarity of HSP and DLVO approaches to rationalize stability 

5.2.1. DLVO observations in non-aqueous solvents 

The same way that in water and methanol, zeta potential 𝜁 was measured in samples 

containing 1 g/L TiO2 P25 nanoparticles dispersed in a series of 17 “pure” solvents, i.e., of the 

highest purity commercially available and free of any additional compound. The analysis of the 

transmitted and backscattered signals recorded by the Turbiscan for two hours provides the 

average diameter of the aggregates (dStokes) as well as the so-called Relative Turbiscan 

Stability Index (𝑅𝑇𝑆𝐼2ℎ
𝑡𝑜𝑝

), which is calculated from the TSI by considering the viscosity and 

density of the solvents, see equation (12). Turbiscan profiles are available in Appendix A4. 

Solvents are listed in Table 1.1 according to the increasing size of the agglomerates.  

For comparison purposes, size measurements obtained by DLS (dDLS) and obtained by 

sedimentation rate (dStokes) were compared. Results are presented in Figure 1.18. It appears 

that dDLS is globally larger than dStokes for most of our samples. Indeed, DLS measurements are 

based on the variations of light scattering by the sample, which changes as particles are 

subject to Brownian motion. However, sedimentation also occurs in the meantime and 

increases the variation rate of light scattering signal modification, making the particles look 

Figure 1.18. Comparison of DLS and Stokes diameters for TiO2 P25 dispersions in nonaqueous solvents 
used as received. 
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larger than they are. Also, DLS measurements are based on the hypothesis that light scattering 

objects are spherical, but in our case, particles are mostly agglomerates and most probably 

not spherical. For the following results, only dStokes was considered as it reflects the 

destabilization of samples, which is a key information in this study.  

Table 1.1. Stability results and physicochemical characteristics of TiO2 dispersions (1 g/L) in various 
“pure” solvents at 25 °C: viscosity (), density (), dielectric constant (ε’r), zeta potential (ζ), Relative 
Turbiscan Stability Index (RTSI), Stokes diameters (dStokes) and total interaction energy (VR+VA)max 
calculated according to equations (1)-(5). Calculation details are given in appendix A2. 

Solvent Structure 
η 

(cP) 

ρ 

(g/cm3) 
ε'r 

ζ 

(mV) 
RTSI2h

top
 

dStokes 

(µm) 

(𝑉𝑅 + 𝑉𝐴)𝑚𝑎𝑥

𝑘𝐵𝑇
 

Nitromethane 
 

0.67 1.13 39.0 -31±9 0.3 

 

2.1 

Ethanol  1.22 0.82 24.5 31±1 0.4 1.1 

Pyridine 
 

0.88 0.98 12.4 44±10 0.2 0.9 

Isopropanol 
 

2.1 0.79 17.9 -70±9 0.8 5.8 

Acetonitrile  0.37 0.79 37.5 -34±10 0.9 2.5 

DMF  0.92 0.94 36.7 43±14 0.8 4.6 

NMP 
 

1.67 1.03 33.0 -7±5 0.3 

 

< 0 

THF 
 

0.95 0.98 7.6 19±2 1.4 < 0 

Acetone 
 

0.32 0.79 20.7 -26±2 7.2 0.2 

γ-Butyrolactone 
 

1.75 1.13 41.0 -4±2 13.1 

 

< 0 

Water  0.89 1.00 80.1 -5±4 14.5 < 0 

Ethyl Acetate 
 

0.46 0.9 6.0 44±12 2.2 < 0 

Propylene 
Carbonate  

2.8 1.2 64.9 -46±6 28.4 11.0 

Methanol  0.54 0.79 32.7 11±13 10.8 < 0 

Heptane  0.42 0.68 1.9 -10±3 5.6 < 0 

Toluene 
 

0.55 0.89 2.4 -30±8 9.7 < 0 

Triethylamine 
 

0.36 0.73 2.4 6±6 4.8 < 0 

 

Most of the observed stabilities can be rationalized by the DLVO theory. It thus appears that 

the six solvents leading to the finest particles (dStokes < 0.3 µm in Table 1.1), namely 

nitromethane, ethanol, pyridine, isopropanol, acetonitrile and dimethylformamide, correspond 

to particles with a high zeta potential (I𝜁I > 30 mV) dispersed in quite polar solvents (ε’r > 10). 
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On the contrary, the seven solvents in which the aggregates are the largest (0.9 < dStokes < 10 

µm) have either a very low dielectric constant (ε’r < 10), namely ethyl acetate, heptane, toluene 

and triethylamine, or a low zeta potential (I𝜁I < 6 mV) insufficient for the electrostatic repulsion 

to dominate the Van der Waals attraction, namely, γ-butyrolactone, water and methanol. Three 

solvents (N-methyl pyrrolidone, tetrahydrofuran and acetone) have an intermediate behaviour 

because either their dielectric constant or the zeta potential of the particles is slightly lower 

than the threshold values defined above. 

Likewise, the evolution 𝑅𝑇𝑆𝐼2ℎ
𝑡𝑜𝑝

 (Table 1.1) follows the same trend as the best solvents exhibit 

low values (𝑅𝑇𝑆𝐼2ℎ
𝑡𝑜𝑝

 < 1) whereas the less efficient solvents have very high values 

(𝑅𝑇𝑆𝐼2ℎ
𝑡𝑜𝑝

 > 10). However, two solvents fail to fall into this general framework of explanation: N-

methyl pyrrolidone (NMP) in which the dispersion is stable although the electrostatic repulsion 

is negligible (IζI = 7 mV), and propylene carbonate which meets both stability criteria (ε’r = 64.9 

and IζI = 46 mV) but in which the dispersion is extremely unstable. The presence of these 

outliers indicates that other phenomena not considered in the DLVO theory are involved in the 

stability of TiO2 dispersions. To analyse the influence of non-DLVO forces, the alternative 

approach of Hansen's solubility parameters (HSP) was next investigated. 

5.2.2. Limiting DLVO forces to measure HSP 

The HSP method is a pragmatic and versatile tool originally developed to facilitate the finding 

of solvents able to dissolve paint resins. The principle of the method is based on the idea that 

"like dissolves like", which means that a solvent should effectively dissolve a solute provided it 

resembles it. This concept was quickly extended to solid/liquid dispersions to help formulators 

in designing the most suitable media for dispersing pigments. This variant is based on the "like 

disperses like" principle assuming that particles disperse better in solvents having high affinity 

for the surface. 

In the HSP approach, only three types of interaction between the particle and the surrounding 

medium are considered, namely hydrogen bonding, dipolar interactions and dispersive 

interactions due to London forces. The attractive interactions of Van der Waals are considered 

in both theories HSP and DLVO. On the other hand, electrostatic repulsions are only 

considered in DLVO theory while hydrogen and dipole bonds are only considered in Hansen’s 

approach. The decisive impact of electrostatic stabilization is clearly established in the case of 

charged TiO2 particles dispersed in polar solvents, but it is unable to explain the stability 

observed for some TiO2 dispersions when IζI is low.  

Estimating the respective contributions of these complementary interactions would provide 

valuable information to rationalize the experimental results usually interpreted on the basis of 

only one of these theories. The difficulty to quantify the stability of a dispersion has been 
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brought up in the literature and Süß et al.14 proposed to use analytical centrifugation and 

quantify the sedimentation rate. This technique allows analysing a large number of samples in 

a timely manner compared to gravitational sedimentation, but interparticle attraction and 

agglomeration cannot be detected by this technique. In this work, a Turbiscan device based 

on gravitational sedimentation is used, so as to detect the two phenomena involved in the 

destabilization of dispersions under ordinary storage conditions. Namely, on the one hand, the 

agglomeration of particles resulting from Brownian motion and Van der Waals attraction and, 

on the other hand, the sedimentation of particles and aggregates under the effect of gravity. 

To focus on the influence of non-DLVO forces, the contribution of electrostatic repulsion to 

stabilization was minimized by decreasing the zeta potential of particles and removing the 

energy barrier. Thus, whenever (𝑉𝑅 + 𝑉𝐴)𝑚𝑎𝑥/𝑘𝐵𝑇 in “pure” solvents was positive (Table 1.1), 

10-3 M acid or base was added and the zeta potential was measured again to verify that it is 

weak enough. Trifluoroacetic acid (TFA) and tetrabutylammonium hydroxide (TBAH) were 

chosen to allow counter-ion solubility in organic solvents and avoid ionic adsorption at the 

particle surface. TFA was expected to increase ζ whereas TBAH was expected to decrease ζ. 

Of course, when solvents included in Table 1.1 already have a negative (𝑉𝑅 + 𝑉𝐴)𝑚𝑎𝑥/𝑘𝐵𝑇, the 

stability of dispersions was interpreted according to HSP without adding TFA or TBAH. 

Turbiscan profiles of corresponding samples are presented in Appendix A5. Table 1.2 

summarizes the experimental stabilities of the non-electrostatically stabilized dispersions 

which are interpreted on the basis of HSP. The solvents are listed in Table 1.2 according to 

the increasing size of the aggregates. Each solvent is then assigned a score of 1 (stable) or 2 

(unstable) based on the RTSI and the diameter of the aggregates: 

 

Score 1: dStokes < 0.31 µm or 𝑅𝑇𝑆𝐼2ℎ
𝑡𝑜𝑝

 < 1.0 

Score 2: dStokes > 0.31 µm or 𝑅𝑇𝑆𝐼2ℎ
𝑡𝑜𝑝

 > 1.0 

 

Two HSP spheres were determined using HSPiP software considering each of the stability 

criteria, i.e., dStokes or 𝑅𝑇𝑆𝐼2ℎ
𝑡𝑜𝑝

 calculated based on different methods described hereafter. The 

first one based on the size of the agglomerates, dStokes, is shown in Figure 1.19. The “fit” 

indicator, which can vary between 0 and 1, expresses the effectiveness of the sphere for 

modelling experimental results. The more misplaced solvents, the more the fit decreases. Here 

the fit is very good (0.90), since only one effective solvent (isopropanol) is excluded from the 

sphere and one poor solvent (acetone) is included. 
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Table 1.2. TiO2 dispersions (1 g/L) in various solvents at 25 °C for which zeta potential (ζ) and total 
interaction energy (VR - VA)max are minimized by addition, when necessary, of 10-3 M TFA (a) or TBAH 
(b): Relative Turbiscan Stability Index (𝑅𝑇𝑆𝐼2ℎ

𝑡𝑜𝑝), Stokes diameters (dStokes), zeta potential (ζ), Hansen 
solvent parameters and Relative Energy Difference (RED) for the Hansen’s sphere based on dStokes. 

Solvent Structure RTSI2h
top

 
dStokes 

(µm) 

(𝑉𝑅 − 𝑉𝐴)𝑚𝑎𝑥

𝑘𝐵𝑇
 

ζ 
(mV) 

δd δp δh RED 

Nitromethane a 
 

0.30 

 

< 0 -19±6 15.8 18.8 6.1 0.99 

Acetonitrile a  0.20 < 0 -11±7 15.3 18 6.1 0.95 

Isopropanol a 
 

0.50 < 0 15±6 15.8 6.1 16.4 1.11 

DMF a  0.90 < 0 12±1 17.4 13.7 11.3 0.64 

Ethanol b  1.00 < 0 -14±11 15.8 8.8 19.4 0.99 

NMP 
 

0.30 

 

< 0 -7±5 18.0 12.3 7.2 1.00 

THF 
 

1.40 < 0 19±2 16.8 5.7 8.0 1.36 

Acetone a 
 

8.10 < 0 -7±4 15.5 10.4 7.0 0.99 

γ-Butyrolactone 
 

13.10 < 0 -4±2 18.0 16.6 7.4 1.01 

Propylene Carbonate a 

 
4.50 < 0 -18±2 20.0 18 4.1 1.61 

Water  14.50 < 0 -5±4 15.5 16 42.3 3.21 

Ethyl Acetate 
 

2.20 < 0 44±12 15.8 5.3 7.2 1.41 

Methanol  10.80 < 0 11±13 14.7 12.3 22.3 1.01 

Pyridine b 
 

14.60 < 0 -24±11 19.0 8.8 5.9 1.49 

Heptane  5.60 < 0 -10±3 15.3 0.0 0.0 2.38 

Toluene 
 

9.70 < 0 -30±8 18.0 1.4 2.0 2.21 

Triethylamine 
 

4.80 < 0 6±6 15.5 0.4 1.0 2.27 

a the solvent contains 10-3 M trifluoroacetic acid  

b the solvent contains 10-3 M tetrabutylammonium hydroxide 

It is worth noting that with the first sphere (Figure 1.19), the two misplaced solvents are both 

located near the boundary separating effective and poor solvents. Thus, the poor solvent 

acetone is erroneously slightly inside the sphere with a RED of 0.99 while isopropanol 

(effective solvent) is slightly outside with a RED of 1.11. RED is the “Relative Energy 

Difference” defined by the relationship RED = Ra / R where Ra is the distance between the 

solvent and the sphere centre and R is the sphere radius. So, when RED < 1, the solvent is 

inside the sphere and when RED > 1, the solvent is outside the sphere.  
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Figure 1.19. Solubility sphere and 2D projections of TiO2 P25 1 g/L in 17 organic solvents based on 
Stokes diameters dStokes at 25 °C. 

 

 

  

Figure 1.20. Solubility sphere and 2D projections of TiO2 P25 1 g/L in 17 organic solvents based on 
𝑅𝑇𝑆𝐼2ℎ

𝑡𝑜𝑝
 at 25 °C. 
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The second sphere presented in Figure 1.20 and calculated from 𝑅𝑇𝑆𝐼2ℎ
𝑡𝑜𝑝

 values is somewhat 

less satisfactory (fit = 0.88) since two effective solvents are outside the sphere and two poor 

solvents are inside. In both cases the radius of the sphere is 8.8 but the first sphere including 

all dispersions with dStokes < 0.31 µm appears to be the most reliable. In a study on the influence 

of different dispersion conditions on the size of aggregates, Jiang et al. showed that the 

ultrasonic probe Sonotrode provided aggregates of 155 nm but was unable to further break 

the TiO2 P25 aggregates down to the elementary particle (25 nm).12 In this work, we consider 

that particles size up to twice this minimal size provide the most stable dispersions. Beyond 

this size, a competition takes place between NP-solvent and NP-NP interactions that prevent 

the formation of smaller particles. 

Other authors have characterized TiO2 particles24 and nanoparticles19 using HSP. However, 

none of them considered electrostatic repulsion as a possible stabilization phenomenon. 

Comparative results are displayed in Table 1.3. Characteristic parameters of the sphere 

calculated by Hansen regarding TiO2 pigments are very different from those determined in this 

study. However, Hansen investigated the paint pigment TiO2 Kronos RN 57 at a concentration 

20 times greater than that of the present work and no information is available regarding coating 

and particle diameter.24 Actually, it is likely that this white pigment has a diameter close to 

0.3 µm to maximize its opacifying power and that it is covered with a mixture of oxides to avoid 

the photocatalytic degradation of the organic paint film. Hence, the spheres are hardly 

comparable.  

 

Table 1.3. Experimentally determined Hansen parameters (δd, δp, δh), of the center and the radius (R) 
of the solubility sphere and calculated Hildebrand parameter (δH) compared to literature values. 

Differences with Wieneke’s results could come from the nature of the solvents used in both 

cases. Moreover, Wieneke et al.19 studied smaller TiO2 NPs with an average particle size of 

5.3 nm composed at 95 % of anatase and 5 % of rutile with a specific surface area of 265 m²/g 

which is much greater than that of TiO2 P25. However, the sphere obtained by Wieneke et al. 

is mostly included inside the one calculated in this work and the sphere radius is more than 

twice smaller. Also, as TiO2 NPs get smaller, interparticle forces get stronger, making 

dispersion harder to achieve at the expense of solvent-particle interactions.23 Another 

impacting factor is the sample concentration which was of 0.015% for Wieneke’s study as the 

Method δd [MPa1/2] δp [MPa1/2] δh [MPa1/2] δH [MPa1/2] R [MPa1/2] 

dStokes 15.1 ± 0.5 15.5 ± 0.8 14.1 ± 0.5 25.8 ± 0.9 8.8 

𝑹𝑻𝑺𝑰𝟐𝒉
𝒕𝒐𝒑

 15.3 ± 0.5 14.4 ± 0.6 13.8 ± 0.5 25.1 ± 0.8 8.8 

Hansen 24 24.1 14.9 19.4 34.3 17.2 

Wieneke 19 17.5 12.7 8.9 23.4 4.1 
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visual changes in stability are easier to detect with the naked eye in dilute samples. In their 

case, coagulation was evaluated through the colour change from bluish to white, 

corresponding to a change in light scattering behaviour from Rayleigh to Mie scattering.19 

Using the Turbiscan, quantitative descriptors allow detecting destabilization before the naked 

eye could detect anything. 

The Turbiscan-based method developed in this work is more reliable than those reported in 

the literature to determine HSP of TiO2 nanoparticles. Indeed, the phenomena occurring during 

the destabilization, namely the coagulation of particles and the sedimentation of aggregates, 

can be observed separately. Moreover, this work clearly shows that, when particles are 

charged and dispersed in polar solvents, the electrostatic repulsion must absolutely be 

considered to rationalize the observed stabilities using DLVO theory. As electrostatic 

repulsions are not considered in Hansen's theory, only dispersions of weakly charged particles 

in media of low polarity can correctly be interpreted on the basis of HSP. Therefore, it makes 

no sense to interpret the stability of DLVO stabilized samples using HSP theory. On the other 

hand, the analysis of the stability of the dispersions jointly by Hansen's and DLVO theories 

provides complementary information allowing a more accurate interpretation of the results and 

highlights the solvents exhibiting a significant affinity for the particles’ surface. 

 

6. Conclusions 

Hansen Parameters  have been used for rationalizing and predicting the stability of titanium 

dioxide particles dispersions.14,19,24 However, interparticle electrostatic interactions, not 

considered in Hansen’s approach but considered in the DLVO theory, play a significant role in 

organic solvents having a notable dielectric constant.16,115,116 HSP interpretation for NPs 

dispersions can be achieved provided that electrostatic repulsion is negligible, in particular 

regarding inorganic NPs that can easily acquire surface charges. 

In water, it was shown that the Turbiscan detected high TSI (Turbiscan Stability Index) and 

Stokes diameters when zeta potential was elevated, in accordance with the DLVO theory. In 

organic solvents, it was intended to interpret the stability using HSP. This model was shown 

insufficient to describe with fidelity the dispersions stability since no sphere could fit the 

experimental observations. The relevance of DLVO interpretation came in to play as total 

repulsive energy (VR + VA)max was non-negligible in numerous solvents. When the zeta 

potential of NPs and the dielectric constant of the solvent are both high, the dispersion benefits 

from additional stabilization while when the electrostatic repulsion is negligible, only the 

solvents within a Hansen dispersion sphere give stable dispersions. The two interpretations 

are therefore complementary to describe the behaviour of TiO2 dispersions in organic solvents. 
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Using a zeta dip cell, with higher chemical compatibility than the regular folded capillary cells, 

it was possible to measure zeta potential in organic solvents and assess the strength of the 

electrostatic contribution to stabilization. Solvents were scored according to Turbiscan 

indicators, namely 𝑅𝑇𝑆𝐼2ℎ
𝑡𝑜𝑝

 (Relative Turbiscan Stability Index after 2 hours at the top of the 

cell) and dStokes calculated from the sedimentation rate to yield the TiO2 P25 Hansen Solubility 

Sphere. A comparison with DLS size measurements showed notable differences as particle 

sedimentation disturbs DLS measurements. In the case of stability study, sedimentation-based 

size measurements are more indicated. The spheres obtained based on dStokes scoring 

(R = 8.8, δd = 15.1, δp = 15.5, δh = 14.1 MPa1/2) and 𝑅𝑇𝑆𝐼2ℎ
𝑡𝑜𝑝

 scoring were compared to that of 

Hansen24 and that of Wieneke et al.19 for TiO2, both determined based on visual scoring. In 

this study, both zeta measurement and Turbiscan monitoring of stability were complementary. 

𝑅𝑇𝑆𝐼2ℎ
𝑡𝑜𝑝

 and Stokes diameters are quantitative descriptors avoiding an empirical visual rating 

of dispersions stability. This standardized HSP determination method could be extended to 

other types of NPs such as metal oxides, but carbon-based NPs dispersions, such as graphene 

for instance, are expected to behave differently as surface charging mechanisms are different. 
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1. Introduction 

A large diversity of natural and synthetic liquid compounds are grouped under the generic term 

“oils” due to their non-miscibility with water. They are key components of Surfactant/Oil/Water 

(SOW) systems such as swollen micelles, microemulsions or emulsions which are found in 

numerous industries and various end-use products. For instance, the physico-chemical 

characteristics of oils are essential in the petroleum industry dealing with crude oil extraction 

and refined oil properties. Enhanced oil recovery (EOR) has been driving the research on oil 

solubility in SOW systems since the 1970’s. As about 70% of crude oil remains trapped in the 

reservoir rocks after regular oil extraction, solubilizing the remaining crude oil to extract it 

represents a tremendous financial interest. Another area with great interest in the study of oil 

behaviour is the cosmetics industry. Indeed, cosmetic products contain various types of oils 

acting as emollients or moisturizing agents that can be formulated in emulsions, gels, balms 

and other forms. Also, in the perfumery industry, most perfume molecules are non-miscible to 

water. For all these applications, the quantitative evaluation of the hydrophobicity of the oil is 

extremely important because it allows choosing the most effective SOW system composition 

and, in fine, optimizing its performances in applications. Due to health and safety concerns, a 

major tendency in end-use products is to substitute ingredients based on their innocuousness 

and low environmental impact. To that end, replacing an oil by another one having the same 

characteristics avoids changing others components to yield the same applicative properties in 

the final product. 

Several concepts have thus been developed to characterize the hydrophobicity/polarity of oils 

in SOW systems. The best known are log P, i.e. the logarithm of the n-octanol-water partition 

coefficient122 and the “required HLB” (Hydrophilic-Lipophilic-Balance) of Griffin.123,124 A more 

relevant concept to quantify the hydrophobicity of an oil in SOW systems was introduced in 

1977 by Wade et al. as a dimensionless number: the so-called EACN (Equivalent Alkane 

Carbon Number).125,126 It corresponds to the number of carbon atoms of the n-alkane which 

exhibits a phase behaviour similar to that of the oil under consideration.127 In practice, 

measuring accurately the EACN value of an oil is tedious. The standard method is based on 

the elaboration of the so-called “Fish diagrams” which represent the phase behaviour of 

equilibrated SOW systems where the surfactant is a well-defined polyethyleneglycol monoalkyl 

ether and the water-to-oil ratio (WOR) is equal to 1.128 

While reliable and accurate, the experimental determination of EACNs from fish tail diagrams 

is, however, a lengthy process (from one to several weeks) which is limited by experimentally 

accessible conditions in terms of temperature (T ≈ 5 to 80 °C). Thus, in-silico estimation of the 

EACN values of oils without any experiments would be considerably time saving. 
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To date, a few predictive models of EACN values have been reported. EACN value of complex 

oil mixtures, i.e. crude oil, was predicted by Creton et al. using an evolutionary algorithm 

coupled to data mining.129 Bouton et al. built a QSPR model by applying genetic algorithms to 

structural molecular descriptors of polar hydrocarbon oils.130 A multilinear regression based on 

the σ-moments calculated by the COSMO-RS approach131,132 was applied to polar 

hydrocarbons133 and aprotic polar oils134 by Lukowicz et al. These works showed that 

depending on the chemical functions of molecules, the relevant descriptors differ and EACN 

estimations were less satisfactory in the case of polar oils. 

On the other hand, a variety of chemical and physicochemical properties such as surface 

tension135, viscosity136, flash point, cetane number of fuels,137 bioactivity of drugs138,139 and 

other thermodynamic properties140–142 can be predicted accurately with graph machines 

(GM)143 and neural networks (NN)144. Both these theoretical tools are non-linear models that 

learn a pathway from input values to a resulting output. For neural networks, that are basically 

standard multi-layer perceptrons (MLPs), the inputs are either measured or computed from 

molecular simulations, while for graph machines the inputs are the 2D molecular structures 

entered as their SMILES (Simplified Molecular Input Line Entry Specification) codes.  

In this chapter, two approaches for predicting the EACN of functionalized oils are reported 

using NN and GM. To that goal, a set of 111 molecules with a reliable experimental EACN was 

gathered either from literature or from our laboratory database.127,128,130,133,134,145–147 A GM 

regression based solely on the readily accessible molecular SMILES codes and a NN 

regression using as inputs COSMO-RS computed σ-moments are designed for the 111 

molecules. After a selection step of the optimal model in each case, predictions are performed 

on a test set of ten cosmetic or perfumery molecules for which experimental EACN have been 

determined. The respective reliability of the two models is finally evaluated by predicting the 

EACN of compounds belonging to nine homologous series. 

 

2. Bibliographic background 

2.1. Characterizing oil hydrophobicity 

Hydrophobicity is a way to express the non-miscibility of two liquids such as oil and vinegar. 

Thermodynamically, the miscibility of two liquids is rationalized by the free Gibbs energy of 

mixture, ∆𝐺𝑚𝑖𝑥. A closed system at constant temperature and pressure tends to evolve towards 

the lowest energy state, i.e. the minimization of ∆𝐺𝑚𝑖𝑥. When mixed, two liquids are miscible 

when ∆𝐺𝑚𝑖𝑥 = ∆𝐻𝑚𝑖𝑥 − 𝑇∆𝑆𝑚𝑖𝑥 < 0. The enthalpic term of mixing ∆𝐻𝑚𝑖𝑥 can be either positive 

or negative for linear alkanes.148 However, when introducing a non-polar molecule such as an 

alkane into bulk water, a cavity is formed, causing water molecules to reorganize to a higher 

organization state around the alkane molecule. This is accompanied by a decrease in entropy 
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and ∆𝑆𝑚𝑖𝑥 < 0, which is unfavored. The importance of the entropic term makes the miscibility 

unfavored, such as ∆𝐺𝑚𝑖𝑥 > 0. This is known as the hydrophobic effect.148,149 In his model, 

Winsor separated the affinity between oil and water as the hydrogen bonds contribution (H, 

hydrophilic) and the low energy Van der Waals contribution (L, lipophilic) according to the 

following equation.150 

𝐴𝑂𝑊 = 𝐴𝐻,𝑂𝑊 + 𝐴𝐿,𝑂𝑊 

However, quantifying hydrophobicity by thermodynamic values would require measuring 

hardly accessible values. Instead, several ways to approach hydrophobicity quantification were 

developed. The most widely known and used are the partition coefficient log P and the required 

HLB of an oil, which are further explained hereafter.  

2.1.1. Partition coefficient Log P 

The determination of the partition coefficient Log P of a solute is a popular method to assess 

the hydrophobicity of a chemical compound. More exactly, it assesses the preferential 

solubilization of the compound either in water or in 1-octanol. Log P is widely used in 

environmental and medical sciences since it expresses the ability of a non-ionizable substance 

to partition between aqueous and lipophilic compartments of organisms. However, this value 

gives no indication regarding the behaviour of an oil at the O/W interfaces in SOW systems 

since no surfactant is considered in this approach.122 

2.1.2. Required HLB of Griffin 

The required HLB values of an oil, introduced by Griffin,123,124 correspond to the HLB values of 

the mixture of surfactants providing the most stable emulsions with the oil under study.123,151 

For one oil, there exist two required HLB values corresponding to O/W (oil in water) or W/O 

(water in oil) emulsions.152 In practice, one should prepare emulsions containing the oil under 

study and a mixture of two surfactants with a span of HLB values. The most stable emulsions 

are formed with the surfactant mixture of the oil required HLB. This method is sometimes used 

to classify complex liquids such as essential, vegetable, or animal oils.153–157 However, the 

required HLBs thus obtained are imprecise and poorly reproducible because they depend on 

the mixture of surfactants used in the study and on the emulsification process. Furthermore, 

the required HLB concept is based on the HLB of surfactants which is itself an approximate 

empirical parameter only reliable for polyethoxylated nonionic surfactants. 

2.1.3. The Equivalent Alkane Carbon Number (EACN) concept 

In the 1970’s, the research about enhanced oil recovery triggered many key findings. In order 

to harvest the most quantity of crude oil from reservoir rocks, the mechanisms of surface 

tension and oil solubilization involved in SOW systems were investigated. Depending on the 

affinity of the surfactant for either the aqueous or the oil phase, microemulsions are formed 
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and can be water-rich (Winsor I phase), oil-rich (Winsor II) or equilibrated in oil and water 

(Winsor III). At high amounts of surfactant, a total Winsor IV microemulsion solubilizing all of 

the oil and water is formed.  

Interfacial tensions in SOW systems with various n-alkanes were measured by Cash et al. and 

Wade et al., giving birth to the EACN concept. Actually, an oil or oil mixture’s EACN value is 

the length of the linear alkane for which the system reaches the lowest surface tension in the 

same conditions of temperature, salinity and using the same surfactant.125,126 These works 

were based on the EACN additivity principle, meaning that the EACN of a two-oil stoichiometric 

mixture is supposed to be the average value of each oil’s EACN.126 Salager et al. showed in 

1979 that the minimal interfacial tension phenomenon, which is the optimal condition for 

enhanced oil recovery, coincides with the Winsor III microemulsion system and was referred 

to as the “optimal formulation” in the oil industry.158 The EACN value of an oil expresses its 

ability to penetrate the interfacial film of SOW systems and to modify its spontaneous 

curvature.159–161 In the case where the surfactant is a polyethoxylated fatty alcohol CiEj, some 

molecules of oil penetrate the interfacial film according to their affinity for CiEj molecules. In 

particular, when the oil has a polar function, its affinity for the film is stronger than apolar oils 

and its EACN is much lower than NC, its number of carbon atoms. Indeed, Figure 2.1 illustrates 

the identical Winsor phase behaviour of octyl octanoate (NC = 16) and n-octane (NC = 8), which 

is the linear alkane having an ACN equal to the EACN of the ester.  

 
Figure 2.1. Effect of oil penetration on the spontaneous curvature of the interfacial film (top) and 
C10E4/Oil/Water (water-to-oil ratio = 1 (v/v)) microemulsion systems equilibrated at 25.0 °C yielding 
Winsor II, Winsor III and Winsor I microemulsions respectively (bottom). Systems with n-alkanes contain 
3% C10E4 and the one with octyl octanoate contains 7% C10E4. 
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In the initial work of Cash et al., the EACN of alkylcyclohexanes and alkylbenzenes were 

characterized.126 Over time, several categories of molecules were studied to determine their 

EACN such as esters and triglycerides,147 aliphatic, aromatic and chlorinated hydrocarbons127 

and terpenes.146 This concept also has been used to describe the partition of polar oils162 and 

perfume molecules160 in mixtures with less polar oils, that do not behave as ideal mixtures. 

2.1.4. EACN experimental determination 

In practice, measuring accurately the EACN value of an oil requires the standard method based 

on the elaboration of the so-called “Fish diagrams”. It represents the phase behaviour of 

equilibrated SOW systems where S is a well-defined polyethyleneglycol monoalkyl ethers 

(CiEj) and the water-to-oil ratio (WOR) is equal to 1.128 A typical fish diagram of a system 

C10E4/Oil/Water is given in Figure 2.2a as an example.  

 

Figure 2.2. Determination of the EACN of an oil from the fish plot of the C10E4/Oil/Water-T system (a). 
The temperature of the fish-tail point indicated in red is reported to the calibration straight line obtained 
with a series of C10E4/n-Alkanes/Water-T systems (b).127  

When varying the temperature and the surfactant concentration, the CiEj/oil/water-T systems 

provide different types of microemulsion behaviours (Winsor I, II, III and IV) depending on the 

affinity of the surfactant for water and oil. When it is balanced, a Winsor III microemulsion is 

formed giving a diagram shaped like a fish. The characteristic temperature T* at the 

intersection of the Winsor III and Winsor IV (i.e. one single phase microemulsion) regions, is 

then compared to the T* values of a series of n-alkanes (Figure 2.2b) to determine the EACN 

of the oil which expresses its hydrophobicity.127,163 

The EACN concept is of interest only if the values assigned to oils do not depend on the nature 

of the CiEj surfactant used for its measurement. This key issue has been checked by Bouton 

et al. who showed that the EACN values of 26 terpenes and non-linear (branched, unsaturated, 

cyclic) hydrocarbons were identical within 0.3 unit regardless of the surfactant used namely 
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C6E4, C8E4 or C10E4.130 However, for very polar oils, two major problems decrease the accuracy 

of EACN measurements. The first one comes from the fact that for oils having an EACN lower 

than 6, the calibration curve established with n-alkanes must be extrapolated to the dotted 

parts of the regression straight line (see Figure 2.2b). Accordingly, the lower the EACN, the 

greater the uncertainty over its estimated value. The second problem arises from the 

monomeric solubility of CiEj surfactants in the oil phase which increases the apparent polarity 

of the oil. As a result, the EACNs measured with short CiEj such as C6E4 tend to be lower than 

the EACNs measured with a long CiEj whose monomeric concentration in the oil phase is 

significantly lower. This difficulty was encountered while seeking to model the EACN of 

diisopropyl ether for which we had previously assigned an EACN equal to 2.2128 on the basis 

of the fish diagram determined by Wormuth et al. with the C12E6/Diisopropyl ether/Water 

system.164 According to our very first models (GM and NN) the EACN of this oil appeared as 

an outlier. The EACN of this ether was thus measured again using the same amphiphile (C6E4) 

that was used to measure the EACNs of most other highly polar oils.133 The new value of EACN 

thus determined (0.6, see Appendix A6) is, as expected, significantly lower than the previous 

value and perfectly consistent with the EACNs of other very polar oils as they were determined 

with the same surfactant (C6E4). This revised EACN value has therefore been used to fit our 

GM and NN models. 

2.2. Modelling and predicting physicochemical properties  

Quantitative Structure Property/Activity Relationship (QSPR / QSAR) models have been used 

for over a century to quantitatively correlate molecular properties, represented by descriptors, 

to macroscopic values. In 1868, Brown and Fraser165 were the first ones to conceptualize the 

existence of a quantitative relation between chemical structure and biological activity. Their 

model attempted to define a mathematical function linking the constitution of poisonous 

chemicals to their physiological action.165 The respective contributions of Hansch166 and Free 

and Wilson167 helped developing the currently used QSPR methods. Hansch166 proposed a 

model linking biological activity to hydrophobic, electronic and steric properties. Free and 

Wilson167 implemented group contribution models for biological activity: each structural group 

corresponds to an empirical tabulated value. The end value is then the sum of all group 

contributions. 

More recently, the European legislation REACH, aiming at improving the safety in relation with 

chemicals use, encourages the use of QSAR models as a non-testing approach to avoid 

handling hazardous chemicals.168 Nowadays, thanks to much greater calculation capacities, 

QSPR models also apply to a broad spectrum of physicochemical properties. Molecular 

descriptors are numerous: the most simple ones are constitutional, 2D ones are topological, 
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and the most sophisticated are geometric or even quantic but require longer calculation 

time.169,170
 

Building a QSPR model relies on finding the best relation between a group of descriptors and 

a target property. Those models require the construction of a reliable database, consisting of 

entry/output pairs where entries are molecular descriptors and outputs are the target 

properties.170 A model is then developed from this database, validated and tested to assess its 

predictive capacity.169 Databases are generally divided into the learning base used to build the 

model on one hand, and the test base to validate its predictive capacity on the other hand. 

QSPR models can be linear or non-linear models. The most trivial one is the Multiple Linear 

Regression (MLR) method. However, some properties require a more complex modelling and 

multiple non-linear regressions with Neural Networks (NN) can be adapted. In this section, we 

first describe how the COSMO-RS method can be used to obtain molecular descriptors from 

quantic/thermodynamics calculation. The linear and non-linear modelling methods are then 

developed. Finally, the principle of Graph Machines (GM) based on topological information is 

presented.  

2.2.1. COSMO-RS 

COSMO-RS (COnductor like Screening MOdel for Real Solvents) is a first principle theoretical 

model based on a combination of quantum chemistry and statistical thermodynamics that 

serves to estimate, without any prior experience (ab initio), a large number of chemical 

properties, e.g. flash point, solubility or pKA based on thermodynamics laws.132,171,172  

Due to the presence of polar covalent bonds, molecules carry a surface charge density σ on 

its so-called “σ-surface”, which corresponds to the slightly inflated van der Waals surface. The 

“σ-profile” pX(σ) of a molecule X is the curve obtained by smoothing the histogram of surface 

portions grouped by charge density in the interval [σ − dσ/2, σ + dσ/2].131 Examples in the case 

of β-ionone and isopropyl myristate are represented in Figure 2.3. Using the COSMOconf 

software (version 4.3), the lower energy conformations of a molecule in the bulk liquid state 

are calculated. These conformations are then used as inputs in the COSMOtherm software 

(version 19.0.4) allowing the calculation of the σ-surface, σ-potential and σ-moments. Klamt132 

has shown that any partition coefficient K can be very well expressed as a Taylor-like 

development of σ-moments as defined by equation (18). It is estimated that a development up 

to m equal to six σ-moments is sufficient to satisfactorily express the partition coefficient K 

according to equation (18). 

𝑅𝑇 ln 𝐾 = 𝑐𝑎𝑐𝑐𝑀𝑎𝑐𝑐
𝑋 + 𝑐𝑑𝑜𝑛𝑀𝑑𝑜𝑛

𝑋 + ∑ 𝑐𝑖𝑀𝑖
𝑋

𝑚

𝑖=0

 (18) 
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The σ-moments 𝑀𝑖
𝑋 are calculated from the σ-profile pX(σ) of the studied compound X 

according to equations (19)-(21). 

 𝑀𝑎𝑐𝑐
𝑋 = ∫ 𝑝𝑋(𝜎)(𝜎 − 𝜎𝐻𝐵)𝑑𝜎

+∞

+𝜎𝐻𝐵
  (19) 

 𝑀𝑑𝑜𝑛
𝑋 = ∫ 𝑝𝑋(𝜎)(−𝜎 − 𝜎𝐻𝐵)𝑑𝜎

−𝜎𝐻𝐵

−∞
  (20) 

 𝑀𝑖
𝑋 = ∫ 𝑝𝑋(𝜎)𝜎𝑖𝑑𝜎

+∞

−∞
  (21) 

The first σ-moments have a simple physical meaning: the zero-order σ-moment 𝑀0
𝑋 is the 

surface area of the molecule, expressed in Å2. The first-order one 𝑀1
𝑋 is the total polarization 

charge of this surface, expressed in e (electric charge of the electron). For uncharged 

molecules, this moment is equal to zero. The second-order σ-moment 𝑀2
𝑋, expressed in e2·Å−2, 

is the polarity of the molecule.173 The third-order 𝑀3
𝑋 represents the asymmetry of the σ-profile 

pX(σ). The other σ-moments up to 𝑀6
𝑋 have no particular physical meanings. Finally, 𝑀𝑎𝑐𝑐

𝑋  and 

𝑀𝑑𝑜𝑛
𝑋  , expressed in e, are the “hydrogen-bonding” σ-moments representing the ability of the 

molecule to interact with hydrogen-bond acceptors and donors, respectively. Their value is 

non-zero when the σ-profile outranges the [−σHB, +σHB] interval, where σHB, the hydrogen-bond 

threshold, is equal to 0.01 e·Å−2 as shown in Figure 2.3. 

 

Figure 2.3. σ-profiles and σ-surfaces of β-ionone (in blue) and isopropyl myristate (in purple). The color 
gradient corresponds to the surface charge density σ. 

Neither β-ionone nor isopropyl myristate exhibit Lewis acidity corresponding to the hydrogen 

bond donor region. However, both of them have a Lewis basicity with non-zero-value σ-profile 

in the hydrogen bond acceptor region. This is due to the presence of the ester and carbonyl 

functions inducing locally electron-rich surface areas (in red in both molecules according the 

colour scale in Figure 2.3). Finally, the central part of the σ-profile shows higher hydrophobicity 

in the case of isopropyl myristate than for β-ionone, which is in accordance with its longer alkyl 

moiety.  
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The computed σ-moments can be used as molecular descriptors and inputted in models such 

as multilinear regressions or neural networks applied to the prediction of properties such as 

EACN,133,134 surface tension,135 and viscosity.136  

2.2.2. Multiple Linear Regression 

Multiple linear regression (MLR) is the simplest modelling approach as it consists in finding the 

linear equation from the vector of entry values 𝑥 = {𝑥𝑘 , 𝑘 = 1 … 𝑞}, balanced by a set of 

parameters 𝐴 = {𝑎𝑘 , 𝑘 = 1 … 𝑞}, to an output quantity 𝑦. The parameters 𝑎𝑘 are called partial 

regression coefficients: each of them measures the effect of the corresponding variable 𝑥𝑘 on 

the quantity to model, all other variables being kept constant.170 The general expression for a 

multiple linear regression is given by equation (22). 

𝑔(𝑥, 𝐴) = ∑ 𝑎𝑘𝑥𝑘

𝑞

𝑘=1

= 𝑋𝐴 (22) 

where 𝑋 is the observation matrix of size (𝑁, 𝑞), defined as the matrix which elements in column 

𝑘 correspond to the 𝑁 measured values of the variable 𝑘 (𝑥1𝑘, … . 𝑥𝑁𝑘). For each element  

𝑖 (𝑖 = 1 … 𝑁) of the training set, the residual 𝑅𝑖 is defined as the difference between the value 

of the quantity to model 𝑦𝑖 and the value estimated by the model 𝑔(𝑥𝑖, 𝐴). 

𝑅𝑖 = 𝑦𝑖 − 𝑔(𝑥𝑖, 𝐴) (23) 

The learning step is achieved by minimizing the least squares function 𝐽(𝐴), expressed by 

equation (24), assessing the adjustment of the model 𝑔 to the learning dataset. 

𝐽(𝐴) = ∑(𝑅𝑖)2

𝑁

𝑖=1

 (24) 

A multiple linear regression based on the σ-moments calculated by the COSMO-RS 

approach131,132 was applied to polar hydrocarbons and aprotic polar oils by Lukowicz et al.133,134 

Their first model was based on a 56-molecule training set containing unsaturated, cyclic, 

branched and halogenated alkanes and yielded an estimation error of 0.8 EACN units on a 6-

molecule test set.133 The same methodology was then applied to a more diverse 61-molecule 

training set containing esters, ketones, nitriles and ethers. This second model yielded an 

estimation error of 1.1 EACN units on a 9-molecule test set.134 The diversification in the 

chemicals structures under study made it harder to account for the EACN value using a 

multilinear regression. In the present work, two points of improvements are proposed. Firstly, 

the dataset is enriched with new experimental EACN values. Secondly, other types of models, 

namely neural networks and graph machines, are used.  
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2.2.3. Neural Networks and Graph Machines 

As early as 1943, neural networks were initially developed in an attempt to model the 

functioning of a nervous system.174 A formal neuron is a parameterized non-linear function with 

bounded values, that applies an activation function 𝑓 to a linear combination of entry values. 𝑓 

is generally a non-linear function: the most commonly used activation functions are the 

hyperbolic tangent function, the sigmoid function and the identity function.175,176 The value 𝑦 

computed by the activation function is the neuron’s output. The general expression for a formal 

neuron can be expressed by equation (25), where {𝑥𝑘}𝑘=1…𝑞 are the entry values and {𝑎𝑘}𝑘=0…𝑞 

are the parameters, also called synapses. The 𝑎0 parameter associated to the bias has a value 

equal to 1.170 

𝑦 = 𝑓 (𝑎0 + ∑ 𝑎𝑘𝑥𝑘

𝑞

𝑘=1

) (25) 

The combination of formal neurons into neural networks allows building more complex models 

that can be applied to the estimation of many properties of interest. There are various ways of 

combining neurons. A neural network built by the association of neurons in layers is called a 

multilayer perceptron (MLP). A schematic MLP representation is shown in Figure 2.4. A 

parameter is associated to each connection and the total number of parameters depends on 

the network complexity, i.e. the number of neurons in each layer and the number of layers.  

 

Figure 2.4. Schematic representation of a multilayer perceptron with N layers of hidden neurons. 

The most interesting property of NNs is their accuracy in modelling a given property with 

parsimony compared to linear models in terms of parameters. Indeed, the number of 

parameters required to reach a given precision increases linearly with the number of variables 

for NNs, whereas it increases exponentially in the case of linear models. As a result, NNs 

require less examples in the training dataset.170 

NN models have been developed and applied to the prediction (estimation) of a variety of 

chemical properties such as log P,143 surface tension,135 or viscosity.136 However, a drawback 

associated with the use of NN models is the prior obtention of appropriate molecular 

descriptors that can, sometimes, result from complex calculations and require specific software 
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or important computational resources. Some other types of models such as graph machines 

have the advantage of being more accessible. 

Graph machines (GM) on the other hand, are models that estimate a property directly from the 

topological information provided by the SMILES codes of molecules. In these models, 

molecules are described as directed acyclic graphs derived from their 2D structures and the 

parameterized functions that compute the estimate of the property of interest reflect the 

molecular structures of the compounds.138,177 As usual in regression or classification models, 

GM parameters are computed by learning from examples present in an experimental value 

database.138  

Graphs are representations of structured data. Instead of translating a structure into 

descriptors, the structure itself is used as input. To build a graph from a chemical structure, 

each atom is represented by a node and each bond by an edge. For a structure with 𝑛 non-

hydrogen atoms, the connections between the 𝑛 nodes of the graph can be described by its 

adjacency matrix 𝑀 of size 𝑛 × 𝑛. A six-node graph example and its adjacency matrix of size 

6 × 6 are shown in Figure 2.5. In the matrix, each node connection is represented by a 

coefficient 1. For instance, node 1 is connected to nodes 2, 3 and 4 so coefficients 𝑚1,2, 𝑚1,3 

and 𝑚1,4 are equal to 1. In an oriented graph, the root node is defined as a node from which 

the arborescence starts. In the example of Figure 2.5, the root node is the number 1 node. In 

the case of molecular structures, labels can then be attributed to each node to account for the 

atom nature. Examples of graph machine images are available in the Appendix A8. The 

structured graph data is then translated into vectoral information, that can be processed by a 

NN model as described above.170 

 

Figure 2.5. Schematic representation of a six-node graph (left) and its adjacency matrix 𝑀 (right). 

Both NN and GM models are built in an iterative way, meaning that a large number of 

parameters are tested and only the relevant ones are kept. The same way, the number of 

parameters is incremented until the most satisfying one is obtained. The number of hidden 

neurons, or layers in the multilayer perceptron, is incremented and the Leave One Out score 

(LOO score) as well as the learning Root Mean Square Error (RMSE) are calculated at each 

step. More details on model selection are available in the experimental section 3.4.  
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3. Experimental section 

3.1. Chemicals 

Isoamyl laurate (JOLEE 7750, Oleon, 100%), hemisqualane (NeossanceTM Hemisqualane, 

Amyris, > 95%), isohexadecane (2,2,4,4,6,8,8-Heptamethylnonane, Sigma-Aldrich, 98%), 

pristane (2,6,10,14-tetramethylpentadecane, TCI, > 95%) and isododecane (2,2,4,6,6-

pentamethylheptane, TCI, > 98.0%) were analyzed by GC-MS and used as such. 2-

methylpentane (Sigma-Aldrich, > 99%), 3-methylpentane (Sigma-Aldrich, > 99%), 2,3-

dimethylbutane (Sigma-Aldrich, 98%), isooctane (2,2,4-trimethylpentane, Sigma-Aldrich, 

> 99%), dipropyl ether (Sigma-Aldrich, > 99%) and diiso-propyl ether (Sigma-Aldrich, > 98.5%) 

were used as such. Pure tetraethyleneglycol monodecyl ether (C10E4) was synthesized 

according to a method described elsewhere.178,179 Its purity was assessed by GC-MS analysis 

(> 99%) and by comparing its cloud point temperature at 2.6 wt% (20.4 °C vs 20.6 °C) with the 

reference value.180 Tetraethyleneglycol monohexyl ether (C6E4) was synthetized using an 

analogous method to C10E4 and its cloud point temperature (66.2 °C at 16.4 wt%) was 

compared to the reference value (66.1 °C at 16.4 wt%).181 

3.2. Fish diagrams for EACN determination 

In order to enrich the EACN values database, 11 new experimental fish diagrams were built, 

in particular in the case of branched alkanes that were under-represented in the available 

literature data. The experimental EACN value was determined by establishing the phase 

behaviour of 50 ± 0.2 wt% water/oil mixtures at different C10E4 or C6E4 concentrations as a 

function of temperature. The Winsor types were determined by visual observation.182 The most 

volatile oil samples (2-methylpentane, 3-methylpentane and 2,3-dimethylbutane) were 

weighed in glass tubes, placed in liquid nitrogen then sealed with a flame. Other samples were 

prepared in glass tubes closed by screw caps. Samples were first shaken gently several times 

and left in a thermoregulated bath at T ± 0.1 °C until equilibration. The point (C*; T*) 

corresponding to the intersection of the Winsor III and the Winsor IV phases was used to 

determine the oil’s EACN: its T* value was reported on the T* vs. ACN (Alkane Carbon 

Number) reference straight line for linear alkanes using either C10E4 (see Figure 2.2b) or C6E4 

as the surfactant.127 The fish diagram of hemisqualane is given as an example in Figure 2.6a. 

The fish diagram lower concentration limit was determined by extrapolation of Winsor III phase 

relative volume as described by Burauer et al.183 Other experimentally determined (C*; T*) 

points using C10E4 are represented in Figure 2.6b. The experimentally determined partial Fish 

diagrams for dipropylether and diisopropylether using C6E4 are available in Appendix A6 as 

well as the reference straight line for n-alkanes using C6E4. 
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Figure 2.6. (a) Experimental fish plot of C10E4/Hemisqualane/Water-T system at Water/Oil ratio equal to 
1 (w/w) and (b) partial fish plot and fish tail points (C*; T*) determined with C10E4 for pristane (2,6,10,14-
tetramethylpentadecane), isohexadecane (2,2,4,4,6,6,8-heptamethylnonane), isododecane (2,2,4,6,6-
pentamethylheptane), isooctane (2,2,4-trimethylpentane) and isoamyl laurate (3-methylbutyl 
dodecanoate). Fish tail points (C*;T*) for 2-methylpentane, 3-methylpentane and 2,3-dimethylbutane 
are represented by cross-marks for clarity. 

 

3.3. EACN database construction 

A set of 121 compounds with reliable EACN values was assembled. They were either extracted 

from literature or determined experimentally. These averaged EACN values are reported in 

Table 2.1. For training and testing purposes, this set was divided into a training set of 111 

compounds and a test set of 10 compounds. The whole set includes n-alkanes, esters, ethers, 

ketones, alkenes, alkynes, cyclic hydrocarbons, aromatics, branched hydrocarbons, nitriles 

and chloroalkanes, and consequently compounds containing carbon, hydrogen, oxygen, 

nitrogen and chloride atoms. The perfumery and cosmetic oils from the test set were chosen: 

(i) for their complex structure, e.g. caryophyllene, a molecule with unsaturations, cycles and 

branching, and (ii) with EACN experimentally determined in our group to have trusty values. 

The distribution of the structural features among both data sets are displayed in Figure 2.7. 

Table 2.1. Names, SMILES notations, three first σ-moments (different from zero) calculated with 
COSMO-RS, number of carbon atoms and experimental EACN and average EACN values determined 
from the Fish-tail-temperature T* reported in the literature for ternary systems CiEj/Oil/Water for the 111 
molecules of the training set and the 10 molecules of the test set. 

Entry Compound SMILES code 𝑀0
𝑋 [a] 𝑀2

𝑋 [b] 𝑀3
𝑋 [c] NC EACNexp Ref. 

1 Hexane CCCCCC 159.25 8.17 –0.08 6 6[d] - 

2 Heptane CCCCCCC 179.32 9.14 –0.03 7 7[d] - 

3 Octane CCCCCCCC 198.88 10.04 0,00 8 8[d] - 

4 Nonane CCCCCCCCC 218.16 10.71 0,00 9 9[d] - 

5 Decane CCCCCCCCCC 238.31 11.78 0.06 10 10[d] - 

6 Undecane CCCCCCCCCCC 258.33 12.51 0.1 11 11[d] - 

7 Dodecane CCCCCCCCCCCC 278.75 13.46 0.12 12 12[d] - 
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8 Tridecane CCCCCCCCCCCCC 298.9 14.31 0.22 13 13[d] - 

9 Tetradecane CCCCCCCCCCCCCC 319.04 15.18 0.26 14 14[d] - 

10 Pentadecane CCCCCCCCCCCCCCC 339.46 16.11 0.28 15 15[d] - 

11 Hexadecane CCCCCCCCCCCCCCCC 359.04 17.29 0.38 16 16[d] - 

12 Heptadecane CCCCCCCCCCCCCCCCC 379.07 18.2 0.43 17 17[d] - 

13 Octadecane CCCCCCCCCCCCCCCCCC 399.34 18.9 0.42 18 18[d] - 

14 Nonadecane CCCCCCCCCCCCCCCCCCC 419.21 20.01 0.52 19 19[d] - 

15 Eicosane CCCCCCCCCCCCCCCCCCCC 440.35 20.71 0.52 20 20[d] - 

16 Cyclohexane C1CCCCC1 135.77 5.86 –0.12 6 2.1 
130,159,1

84,185 

17 Methylcyclohexane CC1CCCCC1 153.55 7.16 –0.04 7 3.2 130 

18 Ethylcyclohexane CCC1CCCCC1 171.52 7.89 –0.13 8 4.2 127,130 

19 Propylcyclohexane CCCC1CCCCC1 191.55 8.77 –0.09 9 5.9 127,130 

20 Butylcyclohexane CCCCC1CCCCC1 210.84 9.62 –0.05 10 7.3 127,130 

21 Decylcyclohexane CCCCCCCCCCC1CCCCC1 332.16 14.95 0.24 16 14.4 127 

22 Dodecylcyclohexane CCCCCCCCCCCCC1CCCCC1 371.81 16.81 0.29 18 17.5 127 

23 1-Octene CCCCCCC=C 192.38 18.77 3.59 8 3.9 133 

24 1-Decene CCCCCCCCC=C 234.26 20.46 3.17 10 5.5 133 

25 1-Dodecene CCCCCCCCCCC=C 274.46 22.29 3.31 12 8.1 133 

26 1-Octadecene CCCCCCCCCCCCCCCCC=C 394.66 27.89 3.6 18 14.2 133 

27 Dipropylether CCCOCCC 171.36 26.39 20.59 6 0.4 [e] 

28 Dibutylether CCCCOCCCC 211.38 28.47 21.23 8 3.0 
127,134,1

64 

29 Dipentylether CCCCCOCCCCC 251.19 29.57 20.44 10 4.2 134 

30 Dihexylether CCCCCCOCCCCCC 291.31 31.96 21.34 12 6.2 134 

31 Diheptylether CCCCCCCOCCCCCCC 331.49 32.86 20.36 14 8 134 

32-Test Dioctylether CCCCCCCCOCCCCCCCC 371.28 35.31 21.42 16 10.3 134 

33 1-Chlorodecane CCCCCCCCCCCl 257.74 29.94 3.76 10 3.5 133,186 

34 1-Chlorododecane CCCCCCCCCCCCCl 297.96 31.52 3.82 12 5.6 133,186 

35 1-Chlorotetradecane CCCCCCCCCCCCCCCl 338.17 33.58 3.92 14 8 133,186 

36 1-Chlorohexadecane CCCCCCCCCCCCCCCCCl 378.22 35.15 3.98 16 9.8 133,186 

37 Butylbenzene CCCCc1ccccc1 197.06 25.15 0.54 10 0.4 133,185 

38 Octylbenzene CCCCCCCCc1ccccc1 280.39 29.6 0.94 14 4 127,130 

39 Decylbenzene CCCCCCCCCCc1ccccc1 320.42 31.55 1.1 16 6 127,130 

40 Dodecylbenzene CCCCCCCCCCCCc1ccccc1 359.87 33.08 1.12 18 7.8 
127,159,1

85 

41 1-Octyne CCCCCCC#C 188.77 33.22 1.53 8 –1.8 133 

42 1-Decyne CCCCCCCCC#C 230.44 35.32 1.68 10 0.1 133 

43 1-Dodecyne CCCCCCCCCCC#C 265.87 36.64 1.52 12 2 133 

44 1-Tetradecyne CCCCCCCCCCCCC#C 310.75 38.72 1.96 14 3.9 133 

45 Ethyl decanoate CCCCCCCCCC(=O)OCC 294.96 53.81 33.56 12 2.1 145,147 

46 Ethyl dodecanoate CCCCCCCCCCCC(=O)OCC 333.62 54.56 32.64 14 3.8 147 

47 Ethyl myristate CCCCCCCCCCCCCC(=O)OCC 375.02 56.48 32.88 16 5.2 147 

48 Ethyl palmitate CCCCCCCCCCCCCCCC(=O)OCC 415.24 59.07 33.25 18 6.8 147 

49 Octanenitrile CCCCCCCC#N 204.22 49.16 22.76 8 –1.7 134 

50 Decanenitrile CCCCCCCCCC#N 243.52 50.82 22.88 10 –0.5 134 

51 Dodecanenitrile CCCCCCCCCCCC#N 283.99 52.55 23.07 12 0.4 134 

52 2-Octanone CCCCCCC(C)=O 201.89 48.96 35.68 8 –3.4 134 

53 2-Decanone CCCCCCCCC(C)=O 242.35 50.66 35.46 10 –2.1 134 

54 2-Undecanone CCCCCCCCCC(C)=O 261.87 51.41 35.83 11 –1.3 134 

55 2-Dodecanone CCCCCCCCCCC(C)=O 282.29 52.17 35.35 12 –0.6 134 

56 2-methylpentane CCCC(C)C 154.78 8.47 –0.17 6 6.4 [e] 
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57 2,2,4-trimethylpentane CC(C)CC(C)(C)C 181.75 10.89 –0.13 8 8.3 [e] 

58 2,3-dimethylbutane CC(C)C(C)C 149.31 8.56 –0.25 6 4.8 [e] 

59 3-methylpentane CCC(C)CC 152.61 8.3 –0.28 6 5.2 [e] 

60-Test Isododecane CC(C)(C)CC(C)CC(C)(C)C 244.43 14.90 –0.11 12 11.7 [e] 

61-Test Hemisqualane CCC(C)CCCC(C)CCCC(C)C 320.82 16.86 –0.11 15 14.8 [e] 

62 Isohexadecane CC(CC(C)(C)C)CC(C)(C)CC(C)(C)C 303.13 18.48 –0.11 16 13.9 [e] 

63 Pristane CC(C)CCCC(C)CCCC(C)CCCC(C)C 396.57 20.64 0.06 19 17.6 [e] 

64 1,2-Dimethylcyclohexane CC1CCCCC1C 168.83 8.2 –0.05 8 3.3 130 

65 1,4-Dimethylcyclohexane CC1CCC(C)CC1 171.39 8.45 0.03 8 4.6 130 

66 Isopropylcyclohexane CC(C)C1CCCCC1 185.48 9.03 –0.13 9 5.3 130 

67 Cyclooctane C1CCCCCCC1 163.91 7.28 –0.04 8 4.1 133 

68 Cyclodecane C1CCCCCCCCC1 192.46 9.22 –0.38 10 5.6 133 

69 cis-Decalin C1CC[C@@H]2CCCC[C@@H]2C1 188.05 7.8 0.05 10 5.3 133 

70 Pinane CC1CCC2CC1C2(C)C 186.28 10.46 –0.38 10 4.1 146 

71 p-Menthane CC1CCC(CC1)C(C)C 200.29 10.29 –0.15 10 5.8 146 

72 Cyclohexene C1CCC=CC1 132.04 14.28 3.82 6 –1.2 130 

73 1-Methyl-1-cyclohexene CC1=CCCCC1 150.83 14.02 3.11 7 0 187 

74 4-Methyl-1-cyclohexene CC1CCC=CC1 149.89 15.41 3.72 7 0.1 187 

75 3-Methyl-1-cyclohexene CC1CCCC=C1 150.06 15.25 3.73 7 –0.5 187 

76 cis-Cyclooctene C1CCC\C=C/CC1 160.62 14.36 3.25 8 1.5 133 

77 1,3-Cyclohexadiene C1CC=CC=C1 127.77 20.68 3.54 6 –3.1 187 

78 1,4-Cyclohexadiene C1C=CCC=C1 128.11 21.47 4.65 6 –4 187 

79 2,5-Norbornadiene C1C2C=CC1C=C2 133.62 22.95 3.78 7 –3.2 187 

80 
2,6,10-trimethylundeca-
2,6-diene 

CC(C)CCC=C(C)CCC=C(C)C 291.67 28.17 4.2 14 10.3 146 

81 p-Xylene Cc1ccc(C)cc1 161.17 23.96 1.22 8 –2.4 133 

82 Phenyl-1-butyne CCC#Cc1ccccc1 195.47 35.72 –0.41 10 –3.3 133 

83 p-Cymene CC(C)c1ccc(C)cc1 195.88 25.88 1.52 10 –0.8 146 

84 α-Pinene CC1=CCC2CC1C2(C)C 186.35 14.89 1.06 10 3.5 146 

85 p-Menth-2-ene CC(C)C1CCC(C)C=C1 197.75 17,00 3.01 10 3.4 146 

86 Δ-3-Carene CC1=CCC2C(C1)C2(C)C 194.74 20.82 3.22 10 2.5 146 

87 β-Pinene CC1(C)C2CCC(=C)C1C2 184.7 18.79 3.18 10 2.2 146 

88-Test Limonene CC(=C)C1CCC(=CC1)C 197.8 24.85 5.78 10 1.8 146 

89 γ-Terpinene CC(C)C1=CCC(=CC1)C 199.76 22.82 4.25 10 1.7 146 

90 α-Terpinene CC(C)C1=CC=C(C)CC1 199.72 23.33 4.58 10 1.2 146 

91 Terpinolene CC(C)=C1CCC(=CC1)C 198.78 22.97 3.89 10 0.7 146 

92 Longifolene CC1(C)CCCC2(C)C3CCC(C13)C2=C 237.83 19.09 2.2 15 7.0 146 

93-Test Caryophyllene C\C1=C/CCC(=C)C2CC(C)(C)C2CC1 254.08 25.94 5.64 10 6.0 146 

94 Diisopropylether CC(C)OC(C)C 165.76 31.98 26.8 6 0.6 [e] 

95 1,4-dipropoxybutane CCCOCCCCOCCC 263.26 46.21 37.9 10 1.9 164 

96 1,2-dipropoxyethane CCCOCCOCCC 216.46 43.75 38.01 8 0.4 164 

97 1,2-dibutoxyethane CCCCOCCOCCCC 264.4 50.76 43.18 10 1.7 164 

98 Decyl butyrate CCCCCCCCCCOC(=O)CCC 334.4 53.88 32.77 14 5 147 

99 Hexyl octanoate CCC[C:1]CCCC(=O)OCCCCCC 333.77 53.52 32.68 14 6.2 147 

100 Butyl dodecanoate CCCCCCCCCCCC(=O)OCCCC 374.28 55.45 33.31 16 7.2 147 

101 Myristyl propionate CCCCCCCCCCCCCCOC(=O)CC 394.93 57.2 33.01 17 6.8 147 

102-Test Octyloctanoate CCCCCCCCOC(=O)CCC[C:1]CCC 371.81 53.73 31.52 16 8.1 147 

103-Test Isopropyl myristate CCCCCCCCCCCCCC(=O)OC(C)C 392.03 55.25 31.87 17 7.3 
127,147,1

85 

104 Isoamyl laurate CCCCCCCCCCCC(=O)OCCC(C)C 387.57 55.79 32.49 17 8.8 [e] 

105 Hexyl dodecanoate CCCCCCCCCCCC(=O)OCCCCCC 413.93 57.13 33.18 18 9.3 147 
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106 Ethyl oleate CCCCCCCC\C=C/CCCCCCCC(=O)OCC 448.42 66.44 35.58 20 7.2 147 

107 Menthone CC(C)C1CCC(C)CC1=O 204.53 47.96 39.96 10 –1.5 145 

108 Eucalyptol CC12CCC(CC1)C(C)(C)O2 193.69 33.68 30.12 10 –1.6 145 

109-Test Rose oxide CC1CCOC(C1)C=C(C)C 214.57 42.15 32.13 10 –1.7 145 

110 D-Carvone CC(=C)[C@H]1CC=C(C)C(=O)C1 201.11 60.13 41.08 10 –3.1 145 

111 Hexyl methacrylate CCCCCCOC(=O)C(C)=C 246.73 48.51 27.65 10 0.1 188 

112 Menthyl acetate CC(C)C1CCC(C)CC1OC(C)=O 251.45 47.83 31.61 12 –0.1 134 

113 Citronellyl acetate CC(CCOC(C)=O)CCC=C(C)C 277.2 60.77 33.79 12 –0.2 134 

114 Geranyl acetate CC(=O)OC\C=C(/C)CCC=C(C)C 274.66 65.71 33.06 12 –0.6 134 

115 α-Damascone C/C=C/C(=O)C1C(=CCCC1(C)C)C 244.47 55.35 36.19 13 –1.3 145 

116-Test Linalyl acetate CC(C)=CCCC(C)(OC(C)=O)C=C 263.17 58.29 27.24 13 –0.9 134 

117-Test β-Ionone CC(=O)/C=C/C1=C(C)CCCC1(C)C 247.59 61.65 48.43 13 –1.9 145,159 

118 Methyl dihydrojasmonate CCCCCC1C(CCC1=O)CC(=O)OC 289.12 88.67 56.94 13 –1.7 145 

119 Ethylene brassylate O=C1CCCCCCCCCCCC(=O)OCCO1 311.19 84.83 49.39 15 –1.1 145 

120 Methyl cedrylether 
CO[C@]1(C)CCC23C[C@@H]1C(C)(C
)[C@@H]2CC[C@H]3C 

263.38 31.76 20.52 16 3.5 145 

121 Ambrettolid O=C1CCCCC\C=C/CCCCCCCCO1 309.44 58.6 35.9 16 1 145 

[a] 𝑀0
𝑋, expressed in Å2, is equal to the whole surface area of molecule X; [b] 𝑀2

𝑋, expressed in e2.Å–2, 
reflects the polarity of molecule X; [c] 𝑀3

𝑋, expressed in e3.Å–4, reflects the electrostatic asymmetry of 
molecule X; [d]EACN value equal to number of carbon atoms by definition; [e]This work. 

 
Figure 2.7. Distribution of structural features (in percent) of molecules in the training and test sets of the 
EACN database. 

3.4. Graph Machine (GM) and Neural Network (NN) Models Selection 

Basically, NN models are multiple non-linear regressions that estimate an output value of a 

property of interest from some input descriptors values, hereafter three σ-moments selected 

from a pull of eight σ-moments, all computed with COSMO-RS according to a procedure 

described in section 2.2.1. A selection of the σ-moments was performed with Metagen, a 

software package written in Python (Laboratoire de Chimie Organique, CNRS, ESPCI Paris, 

PSL Research University). Feature selection by the random probe method showed that for our 

data, 𝑀0
𝑋, 𝑀2

𝑋 and 𝑀3
𝑋 are the most relevant for EACN estimation.  
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Both NN and GM models are built from Multi Layer Perceptrons (MLPs) that contain a single 

hidden layer of neurons. The complexity of the models is consequently dependent on the 

number of neurons of that layer, and along with this, on the number of parameters of the 

models. Since, for a given number of neurons in the MLPs, NN and GM models have a different 

number of parameters, this later variable will be preferred as a complexity equivalent in the 

model complexity selection section (4.1). 

The selection of a model is a key step in machine learning model design: it consists in finding 

the model complexity, given the available data for designing it, that will result in the best 

generalization. To that end, with the 111-molecule set available, trainings are carried out with 

an increasing number of MLP hidden neurons. The ability of both models to account for the 

training data is monitored with the root mean square training error (RMSTE) that is computed 

as follows: 

𝑅𝑀𝑆𝑇𝐸 =  √
1

111
∑(𝐸𝐴𝐶𝑁𝑒𝑥𝑝.

𝑖 − 𝐸𝐴𝐶𝑁𝑒𝑠𝑡.
𝑖 )

2
111

𝑖=1

 (26) 

where 𝐸𝐴𝐶𝑁𝑒𝑥𝑝.
𝑖  is the EACN value determined experimentally for molecule i, and 𝐸𝐴𝐶𝑁𝑒𝑠𝑡.

𝑖  is 

the EACN value estimated by the model for molecule i at the end of the training.  

The estimation of the generalization error for model selection is usually performed by two 

methods: the computation of the Leave-One-Out score (LOOs) and the computation of the 

Virtual Leave-One-Out score (VLOOs). The computation of the LOO score was chosen for the 

determination of the optimal complexity, since the VLOO score, that is a first order 

approximation of the LOO score, is less accurate for small size datasets.136,189 At the end of 

the LOO process, the leave-one-out score (LOO score) is computed as: 

𝐿𝑂𝑂 𝑠𝑐𝑜𝑟𝑒 =  √
1

111
∑(𝐸𝐴𝐶𝑁𝑒𝑥𝑝.

𝑖 − 𝐸𝐴𝐶𝑁𝑝𝑟𝑒𝑑.
𝑖 )

2
111

𝑖=1

 (27) 

where 𝐸𝐴𝐶𝑁𝑒𝑥𝑝.
𝑖  is the EACN value determined experimentally for molecule i, and 𝐸𝐴𝐶𝑁𝑝𝑟𝑒𝑑.

𝑖  is 

the average EACN prediction value computed for the left-out molecule i with 50 models having 

different initialization parameters. The above equation is the same as eq. (26) defining the 

RMSTE, except that now a true prediction is performed for every molecule, since the molecule 

i does not belong to the training set. Schematic representations of the computations leading to 

RMSTE and LOO score are shown in Figure 2.8. The LOO computation is repeated five times 

for each complexity of the NN and GM based models, so that the average results are 

presented. 
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Figure 2.8. Schematic representation of (a) root mean square training error (RMSTE) calculation and 
(b) leave one out (LOO) score calculation. At each iteration, the model is trained using the molecules 
represented by black circles and the EACN value is predicted for the left-out molecule, represented by 
the red circles.  

A few difficulties have been met with the first modeling experiments that have been addressed 

as follows. With the σ-moment-based NN models, a large EACN deviation was observed 

specifically for the 15 molecules of the n-alkane family, regardless of the complexity of the 

MLPs used. It was found that adding the number of carbon atoms (NC) for every molecule as 

a fourth descriptor corrected this problem. Similarly, an important deviation from the 

experimental value was exclusively observed for the hexyl octanoate EACN estimation with 

the graph machine-based models. A thorough analysis of the graph machine construction for 

this molecule indicated that it was not consistent with the construction of the other linear ester 

graph machines (e.g. the ethyl esters). The input code for ethyl hexanoate was particularized 

so that the constructions were uniform for all esters. This modification is explained in Figure 2.9 

where the directed graphs for hexyl octanoate and ethyl dodecanoate are shown (a). These 

graphs, that are encoded from their SMILES codes (b) are isomorph to the 2D formula also 

represented (c). Without modification of the hexyl octanoate SMILES code, the central node 

of the resulting graph, also called root node, would have been located on the green node. 

Thanks to the special bracketed tag in the hexyl octanoate SMILES code, the graph red root 

nodes have now a consistent position in both graphs: the root nodes are equally connected to 

nodes with a carbon type label and are at the same distance of the functional node, i.e. the 

one connected to the nodes with an oxygen type label. The position of the root node is 

important since it corresponds to the graph machine (not represented) output neuron that 

computes the estimated EACN value. As a result, the estimation of EACN was much efficient 

for the hexyl octanoate compound. 
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Figure 2.9. Encoding hexyl octanoate and ethyl dodecanoate into directed graphs: (a) directed graphs 
with root nodes in red; the root node position computed automatically for hexyl octanoate is colored in 
green and the path between the functional atom node and the root node in pink, (b) SMILES codes with 
the expected position of the root nodes indicated in red and (c) 2D formulas with expected positions for 
the root nodes (red arrows). The atom types C and O added on the directed graphs correspond to node 
labels that are inputs of the parameterized function implemented at each node of the graph to build the 
graph machine. 

No such particular cases were encountered with the published models designed for surface 

tension and viscosity estimations.135,136 This is probably due to the use of a larger training set 

counting many esters of various sizes and positions for the functional group. In this work, only 

a dataset of moderate size was built and among the dozen of linear esters that have an alkyl 

chain of ten carbon atoms or more, hexyl octanoate is the unique compound of similar size in 

the training set to have a functional group in the middle of its carbon skeleton. To illustrate this 

exception, a representation of the graph machine can be computed with the demo software as 

detailed in the Appendix A8. 

 

4. EACN estimation using artificial intelligence methods 

4.1. Graph Machine and Neural Network complexity selection 

The Figure 2.10 that displays the LOO scores and RMSTE versus the number of parameters 

of the MLPs, i.e. the complexity, for the GM and NN models indicates that in both cases: (i) the 

data are correctly learned since the RMSTE are decreasing monotonously as the complexity 

increases and (ii) the LOO scores decrease, go through a minimum and start increasing.  

The NN LOO score is clearly minimum (0.8 EACN unit) for a number of parameters equal to 

37, i.e. six hidden neurons. On the contrary, very close GM LOO score values equal to 0.8 and 

0.9 EACN unit are computed for 45 (5N) and 58 (6N) parameters respectively. In such a 

situation, the usual practice is to select the model with the lower complexity.141 Therefore, 

graph machines with five hidden neurons (45 parameters) and neural networks with six hidden 

neurons (37 parameters) were kept for later testing. 
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Figure 2.10. RMSTE value of the model (out of 1000) having the smallest RMSTE for the GM-based-
model (pink diamonds) and NN-based-model (blue circles) for the 111 molecules of the training set, and 
means of the leave-one-out score values (GM orange diamonds, NN blue filled circles) computed for 
five different parameter initializations for the 111 molecules of the training set vs number of parameters. 
The error bars for the LOO scores are the standard deviations computed over the five LOO score values. 

For comparison purposes, the results of the EACN leave-one-out estimations, corresponding 

to the LOO computation (out of five) that gives the best LOO score (0.8 EACN unit for GM and 

NN) for the molecule training set versus experimental EACN, are displayed in Figure 2.11 for 

the two preferred models.  

 
Figure 2.11. Scatter plots of LOO EACN estimations computed by graph machine from SMILES with 
five hidden neurons (a) and by neural networks with six hidden neurons using 𝑀0

𝑋, 𝑀2
𝑋, 𝑀3

𝑋 and NC as 
descriptors (b) for the 111 compounds of the training set vs experimental values of the EACN. The 
bisector and the regression lines are represented in red and black respectively. 

Both models give similar results at a first glance (R2 very close), in particular for the 

homologous series belonging to the chemical families indicated in the legends of Figure 2.11a 

and b, though slightly better estimations could be credited to the graph machine-based model 
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for these ten series.  On the contrary the other compounds, most of them possessing several 

structural features, have dots that lay closer to the bisector line for the neural network-based 

model, indicating better results for the NN estimator with these compounds.  

It is worth noting that with the NN-6N model, the EACN value of 2,6,10-trimethylundeca-2,6-

diene is significantly under-estimated by the LOO calculations (Figure 2.11b). A possible 

explanation for this discrepancy could result from the fact that the two double bonds of 2,6,10-

trimethylundeca-2,6-diene are in position 2,6 and not at the end of the chain. Indeed, the neural 

network "learns" the effect of double bonds on the basis of fairly rigid terpenes and a series of 

1-alkenes whose double bonds are at the end of the chain. On average, each double bond in 

1-alkenes decreases EACN by 4.1 units compared to the number of carbon atoms (NC) of the 

molecule (entries 23 to 26 in Table 2.1). In terpenes, the effect of the unsaturation is associated 

to cyclization and branching that also contribute to reducing the EACN values. On average, 

each branching in branched alkanes decreases the EACN value by 0.3 units (entries 56 to 59, 

62 and 63 in Table 2.1) compared to NC. A rough estimation of the EACN value for 2,6,10-

trimethylundeca-2,6-diene, a molecule with 14 carbons, 2 double bonds and 3 branches (see 

Figure 2.11) would be of about 4.9 units (𝐸𝐴𝐶𝑁 = 14 − 2 × 4.1 − 3 × 0.3). However, the 

2 double bonds of 2,6,10-trimethylundeca-2,6-diene are less accessible than those of 1-

alkenes which tend to be located close to the polar zone of the interfacial film made up of 

C10E4. As a result, instead of decreasing the EACN by about 9 units as expected, the 

experimentally observed decrease with respect to the corresponding n-alkane (tetradecane) is 

only 3.7 units.  

According to the same reasoning, we can anticipate that double bonds in the terminal or 

exocyclic position have a stronger effect than endocyclic bonds. Indeed, a comparison of the 

experimental EACNs of citronellyl acetate (–0.2) and geranyl acetate (–0.6), two molecules 

that differ only in a central double bond, indicates a decrease of only 0.4 EACN units for the 

central bond of linalyl acetate instead of the expected 2.5 units (or more). Thus, the additivity 

method used to evaluate the decreasing effects of several chemical features in a molecule 

relative to the EACN of the alkane with the same number of carbon atoms is probably 

inoperative, in particular for 2,6,10-trimethylundeca-2,6-diene.  

As regards to the GM-5N model in Figure 2.11a, no dot seems to be excessively far from the 

bisector, meaning that every EACN value of the training set is correctly estimated. In 

comparison with the NN model, the GM estimated EACN value of 2,6,10-trimethylundeca-2,6-

diene is satisfying, which tends to confirm that the COSMO-RS descriptors used for the NN 

estimation correctly describe the oil in a bulk phase but is less suitable to describe this 

compound’s behaviour in SOW systems. 
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4.2. Estimations with two models for a 10-molecule test set 

To assess the estimation accuracies of the NN-based and the GM-based models of previously 

selected complexities, computation of the EACN for the ten molecules of the test set are made 

using the VLOO methodology previously described.136 Briefly, for the GM and NN models 

selected in section 4.1, ten runs of 250 trainings each were performed with different parameter 

initializations. The VLOO score of each model (out of 250) was computed, and the mean of 

the 25 smallest VLOO scores of each run was computed. The run (out of ten) with the smallest 

mean VLOO score was selected. The 25 models of that sequence having the smallest VLOO 

scores estimated the EACN of the ten test molecules, and the mean of those 25 estimations 

was computed. These final estimations for both models are plotted vs the experimental values 

in Figure 2.12. The proximity of the dots with the bisector line shows that these estimations are 

close to the experimental values. Only the isododecane (2,2,4,6,6-pentamethylheptane) blue 

data point is somewhat further from the bisector line. These good results are confirmed by the 

displayed determination coefficients that are equal to 0.992 and 0.986 for the GM-5N-based 

and NN-6N-based models respectively. 

 

Figure 2.12. Scatter plots of EACN estimations computed by the graph-machine-based model with five 
hidden neurons (GM-5N, pink diamonds) and the neural-network-based model with six hidden neurons 
(NN-6N, blue diamonds) vs. experimental EACN values for the 10 molecules of the test set. The bisector 
line is represented in black, the error bars are the confidence intervals computed over the 25 selected 
models for the ten molecules of the test set. 

The estimations errors listed in Table 2.2 for the ten molecules are indeed smaller or equal to 

0.8 EACN unit but for the isododecane that exhibits a fairly large error (1.9 EACN unit) with the 

NN model. The computed test root mean square error values (test RMSE, bottom row) with an 

equation (26)-like formula, are equal to 0.5 and 0.7 EACN unit, confirming the efficiency of 

both models. Moreover, the estimations of the two predictors are in a good agreement since 

the maximum of the error deviation between the two computations is equal to 0.8 EACN unit 
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for eight molecules out of ten. Even for six of them, the estimation error difference is less or 

equal to 0.3 EACN unit. Those results were not given for granted, especially for complex 

molecules that have multiple features (e.g. limonene or rose oxide). Finally, it should be noted 

that to get such convincing results with the GM-based model, the SMILES code used to 

generate the octyl octanoate graph machine was also modified as explained for hexyl 

octanoate in section 3.4. Without taking this precaution, the prediction for octyl octanoate was 

clearly out of range with the GM-based model. The estimation values for the 10-molecule test 

set are also reported in Appendix A8. 

 

Table 2.2. Difference between Experimental and Estimated EACN for the Test Set of Ten Molecules. 

Molecule Chemical Structure EACNexp. 
Estimation error 

NN-6Na GM-5Nb 

Hemisqualane 
 

14.8 +0.2 –0.1 

Isododecane 
 

11.7 +1.9 +0.2 

Dioctylether 
 

10.3 +0.2 +0.5 

Octyloctanoate 

 

8.1 +0.7 +0.6 

Isopropyl myristate 

 

7.3 –0.8 +0.3 

Caryophyllene 

 

6.0 –0.2 +0.6 

Limonene 
 

1.8 +0.7 +0.7 

Linalyl acetate 

 

-0.9 +0.1 +0.2 

Rose oxide 

 

-1.7 –0.1 –0.8 

β-Ionone 

 

-1.9 –0.4 –0.6 

  test RMSEc 0.7 0.5 

Differences between experimental and estimated EACN using aneural-network-based and bgraph-
machine-based models. cRoot-mean-square test error (in EACN unit) for the ten molecules of the test. 

Compared to the works of Lukowicz et al.,133,134 the models precision are improved with a test 

RMSE of 0.7 and 0.5 units respectively whereas the MLP models described in the literature 

gave a test RMSE of 0.8 and 1.1 EACN units respectively.  
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4.3. Prediction of EACN for unknown compounds 

One of the potential applications of the previously developed models is to predict the EACN of 

compounds for which there is no known experimental EACN value. Ethyl hexanoate is used 

here as an example. Data used as entries for computation and computation results are 

gathered in Table 2.3. Prediction of the EACN of any liquid of molecule containing carbon, 

hydrogen, oxygen, nitrogen and chloride atoms can be computed starting either from its 

SMILES code or its COSMO-RS σ-moments. A demonstration is available in Appendix A8. 

Estimations can also be calculated in homologous series of oils with alkyl chains of increasing 

size to evaluate and compare the effect of a given function on the EACN of oils. Lukowicz et 

al. observed that the EACN of several series of homologous oil increases approximately 

linearly with the number of carbons.134 In comparison, the ability of the GM and NN models 

was tested to predict the evolution of EACNs of homologous oils. Furthermore, for practical 

applications, C8 to C15 phenols,190 terpenes130,191 and terpenoids134 are particularly frequent 

in perfumery while C12 to C18 alkanes, esters and ethers are widely used as emollients to 

prepare cosmetic emulsions.192 It is therefore crucial to reliably predict the EACN of oils with a 

relatively small number of carbons (≤ 20). 

Table 2.3. SMILES code, σ-moments and number of carbon atoms necessary to compute EACN values 
for ethyl hexanoate. 

Compound SMILES code 𝑀0
𝑋 𝑀2

𝑋 𝑀3
𝑋 NC EACNNN-6N EACNGM-5N 

Ethyl hexanoate CCCC[C:1]C(OCC)=O 213.46 49.02 31.67 8 - 3.0 - 0.8 

 

The predicted EACN values are -3.0 and -0.8 units for ethyl hexanoate with the NN-6N and 

the GM-5N models respectively. The same way, predictions computed for homologous series 

including the ethyl alkanoates are presented in Figure 2.13b. The homologous set designed to 

explore the effectiveness of the two models is constructed as follows. The picked homologous 

series are the nine chemical families already mentioned in the Figure 2.11 scatter plot legends, 

from cyclohexanes to alkan-2-ones. Indeed, all the molecules belonging to those families have 

a n-alkyl chain backbone of increasing size that contain either: (i) one terminal functional group 

(esters, ketones and nitriles), (ii) one central carbon substituted with an oxygen atom (ethers), 

(iii) one terminal unsaturation (alkenes and alkynes), (iv) a cycle in terminal position 

(cyclohexanes and benzenes), or (v) one terminal chain substitution with a chloride atom (1-

chloroalkanes). For all the series the number of carbon atoms per molecule NC is varied from 

six to eighteen, so that all the series contains 13 compounds each, and the whole set 117 

compounds. Since 46 out of these belong de facto to the 111-molecule training set, they cannot 

be kept for prediction testing. Instead, they will be used as benchmarks to assess the accuracy 

of the model predictions for each series. The σ-moments for the supplementary compounds of 
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these series are calculated as described in section 2.2.1. The data for the 117 compounds of 

the homologous series is available in Appendix A7 (Table A2). 

The scatter plots of the EACN predictions for the two retained models and the experimental 

EACN versus NC are shown in Figure 2.13 for eight series. The alkylbenzene series plot could 

not be represented due to an overlap with datapoints from the alk-1-yne series or the ethyl 

alkanoate series. This plot is available in Figure A.36 of Appendix A7. 

 

Figure 2.13. Evolution of experimental and estimated EACN with increasing number of carbon atoms 
(NC) for homologous series of molecules with various chemical functions: (a) alk-1-enes, 1-
chloroalkanes, alk-1-ynes and n-alkan-2-ones, (b) n-alkylcyclohexanes, central ethers, ethyl alkanoates 
and n-alkane nitriles. For clarity, half of the predicted values are displayed. The dotted and dashed lines 
indicate the experimental and neural network fits. Triangles (), diamonds () and circles () are 
respectively markers for experimental, neural network predicted and graph machine predicted values. 

As expected, the experimental linear fits (represented as dotted lines) are good for all series. 

The goodness of fit is further confirmed by the values of the experimental determination 

coefficients reported in the third column of Table 2.4, all superior to 0.99. The computed linear 

equations and determination coefficients for the predicted fits are also given for the nine series. 

With this data, the accuracy of the predictions can be analysed by comparing for all the series 

the proximity of the predicted points to the dotted lines (Figure 2.13), and the slopes of the GM 

and NN fits with the slope of the experimental fits (Table 2.4, columns 2, 4 and 6). 

For the graph machine model, it can be seen in Figure 2.13 that the predictions match the 

experimental results quite well for seven of the nine series since most of the circles are located 

on or near the experimental dotted lines. Furthermore, with the exception of n-alkylbenzenes 

and nitriles, the slopes of the fits reported in columns 2 and 4 of Table 2.4 are very close. 

Regarding the 1-nitrile series, it turns out that the GM and NN models converge toward the 

same predictions, with almost identical slopes for their fitting equations (penultimate line of 

Table 2.4). Hence, we can postulate that the two model deviations from the experimental trend 

could be due to some experimental error. Since the experimental fit is computed with only three 
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Table 2.4. Linear fits for experimental and predicted EACN vs Number of Carbon Atoms NC for 
homologous series. All regressions yielded R² ≥ 0.98 

Family Exp. fit[a] GM fit[b] NN fit[c] 𝑁𝐶 − 𝐸𝐴𝐶𝑁𝑒𝑥𝑝
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅[d] 

n-alkylcyclohexanes 1.28 NC–5.7 (7) 1.25 NC –5.6 (6) 1.19 NC –4.5 2.3 

alk-1-enes 1.05 NC –4.6 (4) 1.06 NC –4.7 (9) 1.16 NC –5.6 4.0 

central ethers 0.92 NC –4.9 (5) 0.89 NC –4.5 (8) 0.98 NC –5.5 5.9 

1-chloroalkanes 1.07 NC –7.1 (4) 1.03 NC –6.6 (9) 0.84 NC –4.2 6.3 

ethyl n-alkanoates 0.78 NC –7.2 (4) 0.77 NC –7.2 (9) 1.13 NC –11.8 9.8 

alk-1-ynes 0.95 NC –9.4 (4) 0.93 NC –9.1 (9) 0.70 NC –6.6 10.0 

n-alkylbenzenes 0.93 NC –8.9 (4) 1.05 NC –10.6 (9) 0.98 NC –9.7 9.7 

nitriles 0.53 NC –5.9 (3) 0.62 NC –6.9 (10) 0.64 NC –6.9 11.5 

n-alkan-2-ones 0.70 NC –9.1 (4) 0.66 NC –8.5 (9) 1.11 NC –11.8 12.7 

[a]In brackets, number of points used for the experimental fits. [b]In brackets, number of points used for 
the graph machine fits. [c]Number of points used is the same as for the graph machine fits. [d]Average 
value corresponds to the difference between NC value and experimental EACN value obtained from the 
fit equation (NC ranging from 6 to 18). 

successive values of NC, a small error in a fish temperature determination could induce, as 

already mentioned, a deviation of up to 0.3 EACN unit. Thus, such an increase in the EACN 

for the dodecanenitrile value (0.3) would be sufficient to make the three linear fits match. 

Indeed, this modification would give a modified equation equal to 0.64NC–6.9 for the dotted 

experimental line, almost identical to the two model equations. This increased experimental 

value for dodecanenitrile (0.7 instead of 0.4) would also be consistent with a proportional 

spacing for successive EACN values for nitriles. Finally, the slightly larger slope of the 

alkylbenzene GM fit compared to the experimental fit is mainly due to an underestimation of 

the EACN by the GM model for compounds with NC lower than 11 (see Figure A.36). This 

behaviour can be explained by the graph machine constructions which are different in the 

benzenic series depending on the length of the alkyl chain. For NC less than or equal to 12, 

the root node of the graph machines is located on the benzene ring while for larger NC it is 

positioned on the alkyl chain. This can be shown by fitting with different lines the GM predicted 

points for NC less than or equal to 12 and NC greater than 13, as this leads to a much better fit 

for the two resulting lines (R2 equal to 1). We need also to point out that, as for the nitrile series, 

a small correction in the experimental EACN (0.3) for butylbenzene would result for the 

experimental fit in a slope correction large enough to equal the GM slope fit. This last remark 

indicates that for the nitrile and alkylbenzene series the predictions computed with the graph 

machine model are within the experimental margin of error.  
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For the neural network predictive model, the results are more mixed. With four of the nine 

series, namely n-alkylcyclohexanes, ethers, nitriles and n-alkylbenzenes, and admitting a small 

measurement error for the nitrile series, the predictions are satisfactory. On the contrary for 1-

alk-1-enes, 1-chloroalkanes, alk-1-ynes and ethyl n-alkylalkanoates a significant deviation 

from the dotted trend lines, up to 2 EACN unit, is observed for the predicted points located in 

the extrapolated regions. A larger difference in slope between the experimental and NN fits is 

indeed reported in Table 2.4 (columns 2 and 6), so that dashed lines for those series have 

been added in Figure 2.13 to materialize this divergence between the two fits. Finally, the 

largest deviation is computed for compounds of the alkan-2-one series for which NC is greater 

than 12; the prediction becoming erroneous beyond tridecan-2-one. No explanation has yet 

been found for this discrepancy. 

Overall, the predictions obtained with the two models are rather concordant for all homologous 

series, the particular case of ketones being put aside. As a result, both models can be used to 

predict the EACN value for a new molecule belonging to one of these series. While the graph 

machine model allows to obtain a result more quickly, since it is enough to use a SMILES 

code, the fact of computing a prediction with both models allows to anticipate an incorrect 

graph machine construction if the predicted results are very different.  

As stated elsewhere,128 the oils that produce a higher difference in EACN with respect to the 

linear alkanes are those that have a higher affinity with the interfacial film, and from the last 

column of Table 2.4 this decreasing order is: n-alkan-2-ones > 1-nitriles > alk-1-ynes > ethyl 

n-alkanoates ≈ alkylbenzenes > 1-chloroalkanes > central ethers > alk-1-enes > n-

alkylcyclohexanes. Finally, we need to point out that specific SMILES codes for some 

molecules, e.g. hex-1-yne or hexan-2-one, have been used, as explained for hexyl octanoate 

ester, to get a consistency among the graph machine constructions in the corresponding 

series. With these adjustments the graph machine predictions for most of the molecules in the 

series are rather efficient. The construction adjustment of the hexan-2-one graph machine is 

explained in Appendix A8. 

 

5. Conclusions 

The experimental determination of an EACN value by the traditional fish-tail method is a 

tedious, costly and time-consuming task.127 In this work, two machine-learning models were 

built to estimate the EACN value of oils from their molecular structure. On the basis of 111 

experimental values of EACN, estimations were performed either by nonlinear regression 

(neural network) from COSMO-RS σ-moments, or by regression on graphs (graph machine) 

derived from the SMILES codes of the molecules. In each case, the selection of the appropriate 

model was assessed by LOO score computation. The effectiveness of the chosen NN-6N and 
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GM-5N models were tested on a set of ten cosmetic and perfumery molecules. It was found 

that both models yielded predictions with similar and satisfactory accuracies (root-mean-

square estimation errors equal to 0.7 and 0.5 respectively). Molecular structures in the test set 

were chosen on purpose as polyfunctional molecules for which the influence of each structural 

feature could not be considered independently. Multilinear regressions were shown to be 

efficient to predict the EACN value for monofunctional molecules134,145, but this work is the first 

one regarding EACN prediction of complex polyfunctional ones. It was pointed out that for 

homologous molecule series, the linear evolution of EACN with the increase of chain length is 

an appropriate model and is well tackled by the graph machine predictor. However, the neural 

network model based on COSMO-RS σ-moments as descriptors, met some difficulties in 

estimating the evolution of EACN values for the alkan-2-one series.  

Overall, the graph machine model is the most convenient model since it only needs SMILES 

codes as input values, whereas the neural network model requires using COSMO-RS previous 

to EACN estimations. A demonstration of the graph machine and neural network computations, 

based on the Docker free software technology (available on most operating systems) is 

available for download (see Appendix A8). It is for example very easy and very fast (< 0.5 s) 

to predict the EACN value of any liquid of moderate molecular size (M < 350 Da) that contains 

C, H, O, N or Cl atoms using its SMILES code only. One should keep in mind, however, that 

automated learning methods described in this work are appropriate for chemical structures 

close to those represented in the learning dataset. That is why the diversity and reliability of 

the dataset should be carefully accounted for. Otherwise, the prediction accuracy could be 

importantly decreased.  



 

Chapter 3 

❖  

Aggregation behaviour and dilational 

viscoelasticity in relation with foaming properties 

of 1-O-dodecyl diglyceryl ether 
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1. Introduction 

Foams, consisting of gas bubbles dispersed and stabilized in a liquid or solid matrix, are found 

in a variety of end-use products, among which are construction materials, personal care 

products but also food and beverages. In an aqueous matrix, foam generation requires 

stabilizing the gas/water interface, usually by means of surface-active molecules, so as to 

achieve good foamability and foam stability.  

It was shown that foamability of a surfactant solution is greatly influenced by the nature and 

surface properties of the surfactant. Indeed, correlation between dynamic surface tension and 

foamability was reported,193–195 and the faster the surfactant adsorbs at the interface, the higher 

the foamability is. Also, it directly depends on the critical micelle concentration (CMC) as lower 

CMC corresponds to higher foamability.196  

On the other hand, foam stability is a measure of a foam’s lifetime. Three main phenomena 

contribute to destabilize foams, namely liquid drainage, Ostwald ripening, and bubble 

coalescence.193,197,198 Slowing down or limiting those processes allows improving foam 

stability. First of all, it was shown that drainage (Figure 3.1a) can be limited by increasing the 

solution viscosity or the surface elasticity and viscosity.193 Ostwald ripening (Figure 3.1b) is 

favored by large bubble size dispersity and solubility of the gas in the solution, and is thus 

reduced in monodisperse foams and by reducing the gas permeability through the surface 

surfactant layer. This is thought to be linked with surface viscoelastic properties.199 Finally, 

coalescence (Figure 3.1c) can be stemmed by increasing the film resistance to rupture, which 

is believed to depend on the surface viscoelasticity.194,200,201 In other words, surface 

viscoelastic properties intervene in all three foam destabilization phenomena, and are thus of 

first importance in foam studies.  

 

Figure 3.1. Main foam destabilization phenomena: (a) liquid drainage, (b) Ostwald ripening and (c) 
coalescence. 
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Dispersed liquid crystal (LC) phases have been shown to be efficient in stabilizing both 

aqueous and non-aqueous foams.202–206 The presence of dispersed Lα lamellar liquid 

crystals could, indeed, stabilize foams by increasing the film viscosity and thus decreasing 

liquid drainage. Moreover, their contribution to foam stabilization could be attributed to the 

covering of bubbles by the particles, reducing gas diffusion. Finally, the presence of 

dispersed LC could prevent bubble coalescence by avoiding bubble collision.205  

In this work, we report the foaming properties of the 1-O-dodecyl diglyceryl ether (C12Gly2) 

surfactant. Sagitani et al. reported the ability to form LC phase in equilibrium with aqueous 

solution in C12Gly2/water binary systems.207 Similar structures are able to form this type of LC 

at low concentration, namely diglycerol fatty acid esters,208 and were reported by Shrestha et 

al. as good foam stabilizers.205 Among other nonionic surfactants, namely polyethoxylated fatty 

alcohols (CiEj) and alkylpolyglucosides (CnGlum), the strength of H-bonds was found to be of 

importance regarding foaming properties,209 attributed to the influence on surface 

viscoelasticity. Indeed, Stubenrauch et al.210 showed the importance of intermolecular H-bonds 

in foam stabilization for a various C12-chain surfactants bearing different types of polar heads. 

Surfactants bearing oligo(ethylene oxide),209,211–213 phosphine oxide,214,215 trimethyl 

ammonium,214,215 sarcosinate,216 amine oxide at pH ≠ 5,217 or carboxylic acid at pH ≠ pKa218  as 

polar head produce foams that are not very stable. On the contrary, surfactants bearing a 

sugar-type polar head are good foam stabilizers.209,211,212,217  

Those results point out the importance of intermolecular interactions in foam stabilization. 

We discuss the properties of aqueous solutions and foams stabilized by C12-chain nonionic 

surfactants, namely C12Gly2 in comparison with n-dodecyl-β-D-maltoside (C12Glu2) and 

pentaethylene glycol monododecyl ether (C12E5), differing by the nature of their polar head 

as shown in Figure 3.2, and their lyotropic behaviour. 

 

Figure 3.2. Molecular structures of n-dodecyl-β-D-maltoside (C12Glu2), 1-O-dodecyl diglyceryl ether 
(C12Gly2) and pentaethylene glycol monododecyl ether (C12E5) studied in this work. 
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C12E5 was chosen because its hydrophilicity quantified by the PIT-slope is the closest (6.8°C) 

to the C12Gly2 (4.2°C). More details about hydrophilicity quantification are  developed in 

Chapter 4. C12Glu2 was chosen because its foaming and surface rheological properties are 

well described in literature.200,201,209,211,213,219,220 Firstly, the aggregation behaviour in dilute 

solution and the behaviour of binary water/surfactant mixtures at higher concentration are 

discussed. Secondly, foamability and foam stability results are discussed in terms of static 

surface tension data as well as on dilational surface elasticities, interpreted based nature 

differences of the three types of polar heads and lyotropic behaviour of surfactants. 

 

2. Materials and methods 

2.1. Chemicals 

Pentaethylene glycol monododecyl ether (C12E5, > 98.0%) was purchased from TCI chemicals 

and n-Dodecyl β-D-maltoside (C12Glu2, > 98.0%) was purchased from Sigma Aldrich. 1-O-

dodecyl diglyceryl ether (C12Gly2) was synthesized in the lab according to the following 

procedure. 

Selective 1-O-dodecyl diglyceryl ether (C12Gly2) synthesis (Figure 3.3). ZnCl2 (8.9 g, 0.065 mol, 

0.06 eq.) is dissolved in 1-dodecanol (200.5 g, 1.078 mol, 1 eq.) and heated to 100 °C. 

Epichlorohydrin (109.2 g, 1.180 mol, 1.1 eq.) is added dropwise for 4 h. After cooling to 50 °C, 

NaOHaq 50% (86.2 g, 1.078 mol, 1 eq.) is added dropwise for 1 h. The mixture is kept under 

stirring at 50 °C for 4 h. After cooling to R.T., the mixture is washed with 3x120 mL of water to 

remove salts. The crude is dried over MgSO4, filtered and distilled under reduced pressure 

(7.10-2 mbar) between 134 and 138 °C to yield 65.2 g of a mixture of dodecyl glycidyl ether 

(82% GC-FID) and dodecylchlorhydrin ether (18% GC-FID). This mixture is added dropwise 

for 1 h to a solution of sodium solketalate prepared previously by dissolving Na(s) plates (7.4 g, 

0.322 mol, 1.2 eq.) in solketal (177.0 g,1.339 mol, 5 eq.) at R.T. for 4 h then 60 °C for 20 h 

under N2 flow. The mixture is stirred at 50 °C for 20 h, cooled to R.T., dissolved in 100 mL 

diethyl ether and washed with 3x100 mL water. The organic phase is dried over MgSO4, filtered 

and solvent are evaporated. The crude is distilled under reduced pressure (4.10-2 mbar) 

between 160 and 165 °C to yield a colourless liquid (80.2 g, 96% GC-FID, two-steps yield = 

82%). The product (35.9 g, 0.096 mol) is diluted in 120 mL methanol, trifluoroacetic acid (TFA, 

1.2 mL, 0.016 mol, 1.8 g) is added and the mixture is stirred at R.T. for 96 h. The reaction is 

monitored by 1H NMR. Once the reaction is complete, solvent and TFA are removed by rotative 

evaporation, yielding 1-O-dodecyl diglyceryl ether as a white powder (31.5 g, yield = 98%). 

1H NMR (300 MHz, DMSO-d6) δ 4.55 (s broad, 3H), 3.68 (quint a, J = 5.5 Hz, 1H), 3.56 (quint a, J = 

5.6 Hz, 1H), 3.44 – 3.22 (m, 10H), 1.46 (q, J = 6.6 Hz, 2H), 1.24 (s, 18H), 0.84 (t, J = 6.5 Hz, 3H). 

1H NMR spectra is available in Figure A.37 of the Appendix. 
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Figure 3.3. Synthetic pathway for the preparation of 1-O-dodecyl diglyceryl ether, with R = dodecyl. 

 

2.2. Surface tension measurement and CMC determination 

Critical micellar concentration (CMC) determination by surface tensions measurements was 

carried out with a Krüss K100 tensiometer (Krüss GmbH, Germany) using a Du Nouy ring. 

Surface tension before CMC was fitted by Langmuir-Szyszkowski equation of state given in 

equation (28). This model been widely applied to adsorbed surfactants, and was shown to 

describe well the dependence of the surface tension 𝛾 with the surfactant concentration for low 

molecular surfactants.200,221 This model considers no interactions between adsorbed 

molecules.  

𝛾 = 𝛾0 − 𝑅𝑇𝛤∞ ln (1 +
𝑐

𝑎
) (28) 

In this equation, 𝛾 is the measured surface tension, 𝛾0 is pure water surface tension, i.e. 

72.2 mN.m-1, R is the gas constant, 𝑇 is the temperature, i.e. 298 K, 𝛤∞ is the maximum 

surfactant surface concentration, 𝑐 is the bulk surfactant concentration and 𝑎 is the bulk 

concentration for which 𝛤 = 𝛤∞ 2⁄ . The area per molecule can then be calculated as follows. 

𝐴𝑚 =
1

𝑁𝐴 𝛤∞
 (29) 

where 𝑁𝐴 is the Avogadro number. 

2.3. Dilational interfacial rheology 

The surface dilational rheological properties of surfactant solutions were studied at 25°C using 

a TRACKER™ automatic drop tensiometer (Teclis Instruments, France). Solutions at 

concentrations from 0.1 CMC, 0.5 CMC and 1 CMC were studied for C12E5 and C12Gly2. A 
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bubble of 5 µL is formed at the tip of a needle connected to a syringe in the rising drop 

configuration and left to rest until the interface is stabilized: the surface tension stabilization 

isotherm is monitored by image analysis of the contact angle between the needle and the 

bubble. In this work, 1 hour equilibration was sufficient. At the end of this period, 10 sinusoidal 

oscillations of amplitude 0.8 µL are imposed to the bubble by oscillation of the motor-driven 

syringe plunger. The experiment is repeated within the accessible frequency range of 

oscillation (10-2 Hz to 1 Hz), causing sinusoidal changes in the surface area and the drop 

shape. The changes in drop shape are monitored by a video camera, and the corresponding 

changes in surface tension are calculated using the TRACKER™ 2020 software. Surface 

tension variation with bubble area over time is processed to calculate the surface dilational 

visco-elasticity E according to equation (30). 

𝐸 =
𝑑𝛾

𝑑 ln 𝐴
 (30) 

where 𝛾 is the bubble surface tension and 𝐴 is the bubble area. The surface dilational visco-

elasticity E is a complex function of the perturbation frequency 𝜈, whose real part εr is the 

dilational elasticity and the imaginary part εi is related to the dilational viscosity 𝜂 as given in 

equation (31). 

𝐸 = 𝜀𝑟 + 𝑖𝜀𝑖 = 𝜀𝑟 + 2𝜋𝜈𝑖𝜂 (31) 

In this expression, 2𝜋𝜈 =  𝜔 is the oscillation pulse.  

In a diffusion-controlled adsorption system, the Lucassen-Van den Tempel model222,223 gives 

the expression of the high frequency limit of dilational surface elasticity 𝜀0, see equation (32), 

and the dephasing angle 𝜑 between area deformation and surface tension variations, see 

equation (33). 

𝜀0 =
|𝐸|

√1 + 2𝜉 + 2𝜉2
 (32) 

tan 𝜑 =
𝜉

1 + 𝜉
 (33) 

with  𝜉 = √
𝜔0

4𝜋𝜈
 (34) 

where 𝜔0 is the molecular exchange parameter and 𝜈 the frequency. Using equations (32) and 

(33), one obtains the expression of 𝜀0 independent of the frequency as given in equation 

(35).224 

𝜀0 =
|𝐸|

cos 𝜑 − sin 𝜑
 (35) 



Chapter 3 – Aggregation behaviour and dilational viscoelasticity in relation with foaming properties 

 

75 

  

This 𝜀0 was calculated for C12E5 and C12Gly2 surfactants and for each solution, the evolution 

with the oscillation frequency of 𝜀𝑟 and 𝜂 was modelled with equations (36) and (37) 

respectively. 

𝜀𝑟 = 𝜀0  
1 + 𝜉

1 + 2𝜉 + 2𝜉2
 (36) 

𝜂 =
𝜀0 

2𝜋𝜈

𝜉

1 + 2𝜉 + 2𝜉2
 (37) 

2.4. Foaming capacity and stability 

Dynamic foam stability experiments are conducted using a Krüss Dynamic Foam Analyzer 

DFA 100 (Krüss GmbH, Germany). Foam is generated in a glass column of height 250 mm 

and diameter 40 mm by air sparging through a porous paper filter (pore size 12-15 µm) in 

50 mL of surfactant solution at a flow rate of 0.2 L/min until a foam height of 180 mm is reached. 

An optical camera fixed at a height of 10 cm monitors the foam evolution (number and volume 

of bubbles on a certain area) for 60 minutes. The volume of both foam and solution is 

monitored over time, and the liquid fraction in the foam part fliq is calculated as follows. 

𝑓𝑙𝑖𝑞(𝑡) =
𝑉𝑖,𝑠𝑜𝑙 − 𝑉𝑠𝑜𝑙(𝑡)

𝑉𝑓𝑜𝑎𝑚(𝑡)
 (38) 

with 𝑉𝑠𝑜𝑙(𝑡) and 𝑉𝑓𝑜𝑎𝑚(𝑡) the solution and foam volumes (mL) respectively, and 𝑉𝑖,𝑠𝑜𝑙 the initial 

solution volume before foam generation by air sparging. All experiments were done at least by 

triplicate. 
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3. Aggregation behaviour in aqueous solution and surface activity 

The binary C12Gly2/water mixtures were shown to form liquid crystals (LC) in equilibrium with 

aqueous solution up to a concentration of 55 wt.%. Beyond this concentration, lamellar Lα 

phase is formed.207 In this work, closer attention was brought to the behaviour of dilute 

solutions, in particular so as to approach the solubility limit of C12Gly2. The formation of LC 

phase was determined to occur between 1×10-4 M and 3×10-4 M by an increase in aggregate 

size measured by DLS using a Mastersizer Nano ZS (Malvern Panalytical) and shown in 

Figure 3.4a. Observations at the optical microscope under polarized light confirmed the 

presence of LC phase (Figure 3.4b and c) in equilibrium with aqueous solution and vesicle 

structures (Figure 3.4c). Those vesicles are formed from bilayers similar to the lamellar phase 

and are not thermodynamically stable, although there are exceptions, and tend evolve into a 

lamellar phase and a dilute aqueous solution. No change in phase behaviour was observed 

on a 25°C to 60°C temperature range.  

 

Figure 3.4. (a) Aggregate size distribution in C12Gly2 solutions measured by DLS at 25.0°C. Up to 1.10-4 M, 
aggregate size corresponds to micelle structures. From 3.10-4 M, bigger objects are formed and 
solutions are visibly turbid. It corresponds to the formation of LC in equilibrium with aqueous solution (b) 
and vesicle structures (c), observed at the optical microscope with polarized light for a 1.5×10-2 M 
solution. 

The formation of LC phases is common in nonionic surfactants, in particular among CiEj.225 

Below the cloud point, C12E5 in mixture with water forms an isotropic solution L1 at 25°C until 

a concentration of about 45 wt.% at which a hexagonal phase H1 is obtained. Lα phase is 

formed at higher concentrations.226 Regarding sugar-based surfactants, C12Glu2/water 

systems form isotropic solutions up to 45 wt.% and Lα phase at higher concentrations.227 In 

both cases, dilute samples are isotropic solutions at room temperature. The formation of LC 

phases is related to interactions among polar heads, water molecules and hydrophobic 

chains.228 The fact that LC form at low concentration in C12Gly2/water mixtures is indicative of 

preferential intersurfactant interactions over surfactant-water interactions, which is not the case 

for C12Glu2 and C12E5. Interestingly, a similar phase behaviour to that of C12Gly2, i.e. LC 

formation in equilibrium with aqueous solution at concentrations as low as 2 wt.%  and vesicle 

formation, was reported in the case of diglycerol monolaurate, which only structural difference 
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from C12Gly2 is an ester link instead of an ether one.208 Other oligoglycerol esters were shown 

to form Lα phase dispersions at low concentrations.208,229 

The behaviour of C12Gly2 solutions at much more dilute concentrations allowed the 

determination of a critical micelle concentration (CMC), compared to that measured by Sagitani 

et al.207 Both isotherms are compared in Figure 3.5 and were fitted with a Langmuir- 

Szyszkowski model. 

 

Figure 3.5. Surface tension isotherm of C12Gly2 at 25.0°C compared to that of Sagitani et al.207 Data 
before CMC is fitted with a Langmuir-Szyszkowski model as given in equation (28). 

Minimal surface tension 𝛾𝑚𝑖𝑛 = 26.8 mN.m-1 agrees well with the value of 27.0 mN.m-1 

determined by Sagitani et al.207 In comparison with C12E5 and C12Glu2, C12Gly2 achieves the 

most important surface tension diminution as 𝛾𝑚𝑖𝑛 = 30.5 mN.m-1 for C12E5,230 and 

𝛾𝑚𝑖𝑛 = 36.4 mN.m-1 for C12Glu2.231 The CMC  for C12Gly2 obtained here (4.7×10-5 M) and in the 

literature (3.5×10-5 M) are very close as can be seen in Figure 4 and they differ only by 25%. 

A reason for this discrepancy could be the presence of a polar impurity in the C12Gly2 used by 

Sagitani et al., responsible for faster surface tension decrease. A similar behaviour was 

reported by Schlarmann et al. for a C10E4 sample containing 1:50 molar n-decanol.180 Also, the 

synthesis of C12Gly2 carried out by Sagitani et al. is not selective towards 1-O-dodecyl 

diglyceryl ether and 2-O-dodecyl diglyceryl ether is also formed. One could suppose that the 

presence of the isomer could shift the surface properties of C12Gly2.  

Parameters of the Langmuir-Szyszkowski model and the resulting area per molecule 𝐴𝑚 are 

presented in Table 3.1. The area per C12Gly2 molecule is higher in this work, meaning that the 

interface is less densely packed compared to the work of Sagitani et al., but differences in 

fitting parameters are small and 𝑎 and 𝛤∞ values are of the same orders of magnitude. Further 

interpretations will be based on values determined in this work. 
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Table 3.1. Fitting parameter of Langmuir-Szyszkowski equation for C12Gly2 and associated area per 
molecule 𝐴𝑚 calculated from equation (29). 𝛤∞ and 𝐴 values are compared to those of C12Glu2 and C12E5 
from literature data.  

 𝒂 (M) 𝜞∞ (mol·m-2) 𝑨𝒎 (Å2) 

C12Gly2 (This work) 5.35×10-7 4.1×10-6 41 

C12Gly2 (Sagitani et al.207) 8.95×10-7 5.1×10-6 33 

C12Glu2
200 4.59×10-6 4.5×10-6 37 

C12E5
230  3.3×10-6 50 

Surprisingly, the most densely packed interface is the one covered with C12Glu2 with the 

smallest area per molecule, yet the maltoside polar head is the largest of all three surfactants 

under study. This is indicative of important intermolecular interactions. The area per C12Gly2 

molecule is close to that of C12Glu2. Finally, C12E5 forms the less densely packed surface. 

 

4. Dilational surface rheology 

The surface rheological properties of C12Gly2 and C12E5 solutions were determined by varying 

the concentration and the oscillation frequency as described in section 2.3. Data were 

extracted from literature for C12Glu2 for comparison purposes.224 Typical examples of surface 

tension response to bubble volume sinusoidal oscillations at 0.5 Hz are presented in Figure 3.6 

in the case of 0.1 CMC and 1 CMC C12Gly2 solutions. Based on those measurements, the 

dephasing angle 𝜑, surface elasticity 𝜀𝑟 and viscosity 𝜂 are calculated by Fourier 

transformation as described in section 2.3. 

 

Figure 3.6. Surface tension (black) and volume (blue) of oscillating bubbles at a frequency of 0.5 Hz for 
(a) 1 CMC and (b) 0.1 CMC solutions of C12Gly2. 

Both 𝜀𝑟 and 𝜂 data presented in Figure 3.7 were fitted with the Lucassen-Van den Tempel 

model according to equations (36) and (37), 𝜀0 and 𝜔0 being fitting parameters. Dilational 

elasticities show the same tendency in 𝜀𝑟 evolution with the increase in frequency for all 
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surfactants, until reaching a plateau. This plateau, corresponding to 𝜀0 which values are given 

in Table 3.2, increases with the concentration. As the bulk concentration increases, so does 

the bubble surface covering and thus its elasticity at high frequencies. At the frequency range 

investigated in this work, the elasticity limit cannot be reached.  

Similarly, the surface viscosity decreases for all three surfactants when the concentration 

increases. This is due to the facilitated compression of the surface at low covering, the 

available area per molecule being more important and the surface thus acting as a viscous 

surface. However, the densification of adsorbed surfactant molecules causes the need for 

molecules to desorb from the surface as the bubble area decreases. The evolution of both 𝜀𝑟 

and 𝜂 with increasing oscillation frequency translates the resistance of surfactant molecules 

towards desorption, attributed to interaction strength between molecules inside the interfacial 

film. 

 

Figure 3.7. Dilational surface elasticity and viscosity of C12Gly2 (left, CMC = 4.7×10-5M), C12E5 (center, 
CMC = 6.4×10-5 M)230 and C12Glu2 (right, CMC = 1.5×10-4 M,232 extracted and reproduced from Boos et 
al., 2013)224 as a function of the oscillation frequency 𝜈 for concentrations of 0.1 CMC (), 0.5 CMC () 
and 1 CMC (). For each concentration, data are fitted with equations (36) and (37). 

As the bulk and surface concentration increases, so does the molecular exchange parameter. 

Accurate determination of 𝜀0 would require investigating the surface viscoelasticity at high 

frequencies. The elasticity limit is reached for 𝜈 > 𝜔0 2𝜋⁄ . That is why the 𝜀0 plateau is reached 

only for the lowest concentrated solutions in Figure 3.7, as the range of frequency corresponds 

to the order of magnitude of 𝜔0. For higher concentrations than 0.5 CMC, 𝜔0 2𝜋⁄ > 𝜈 meaning 
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that the surfactant surface layer cannot be considered insoluble and purely elastic as the 

exchanges processes between the bulk and the surface are non-negligible.200,233 The reader 

should be aware that 𝜀0 and 𝜔0 values given in Table 3.2 must be considered cautiously and 

are only indicative of an order of magnitude as important differences were reported for similar 

surfactants in similar conditions.224  

Elasticity limit values at 1 CMC are such that C12Gly2 > C12Glu2 > C12E5. This trend is in 

accordance with the density of molecules adsorbed at the interface determined in section 3 of 

this chapter. However, the order of evolution is inverted for the molecular exchange parameter 

𝜔0 which is the highest for C12Glu2 and lowest for C12Gly2. High 𝜔0 indicates higher molecule 

mobility. 

Table 3.2. High frequency limit of dilational surface elasticity 𝜀0 (mN.m-1) for C12Gly2, C12E5 and C12Glu2 
(from Boos et al., 2013)224 and molecular exchange parameter 𝜔0 (rad.s-1) values for C12Gly2 and C12E5 
at 0.1 CMC, 0.5 CMC and 1 CMC. 

 0.1 CMC 0.5 CMC 1 CMC 

 𝜀0 (mN.m-1) 𝜔0 (rad.s-1) 𝜀0 (mN.m-1) 𝜔0 (rad.s-1) 𝜀0 (mN.m-1) 𝜔0 (rad.s-1) 

C12Gly2 66.4 ± 1.5 0.030 ± 0.005 96.0 ± 3.3 0.8 ± 0.1 142.5 ± 9.5 14.7 ± 2.9 

C12E5 67.2 ± 3.0 0.11 ± 0.06 75.1 ± 7.3 3.1 ± 0.8 84.6 ± 5.8 44.8 ± 10.8 

C12Glu2 
224 45.3 ± 2.7 0.24 ± 0.20a 70.3 ± 4.2 6.7 ± 5.4a 114.2 ± 6.9 149 ± 65a 

a Calculated from the experimental data reported by Boos et al., 2013. By combining equations (34), (36) 

and (37), one obtains the following expression of the molecular exchange parameter: 𝜔0 =
16𝜋3𝜈3𝜂2

(𝜀𝑟−2𝜋𝜈𝜂)2
. 

 

5. Foamability and foam stability 

The first step of forming a foam is the trapping of air bubbles into the solutions, also called 

foamability. In this work, foaming properties are studied at a concentration of 10 CMC so that 

the surface concentration is sufficient to attain fast air/water interface covering. All three 

surfactant solutions studied showed the same foamability at the air flow rate under study 

(Q = 0.2 L.min-1), i.e. the target total volume of 180 mL was attained after the same duration of 

air injection. The characteristics of the resulting foams and their stability are analysed based 

on image analysis. Some examples of foam pictures are shown in Figure 3.8 for all three 

surfactants under study. Foam characteristics evolution over time is depicted in Figure 3.9a-c. 

C12E5 forms the less stable foam with a total collapse after about 15 min (Figure 3.9a), a quick 

foam drainage in about 250 s causing bubbles to break until no more bubbles are detected 

after 15 min. Figure 3.8 also shows very large bubbles at 500 s, and the absence of remaining 

foam after 300 s. On the contrary, C12Glu2 forms the most stable and dense foam with almost 

no 𝑉𝑓𝑜𝑎𝑚 decrease, highest fraction of liquid 𝑓𝑙𝑖𝑞 and the smallest bubbles over 1 hour. The 

behaviour of C12Gly2 stabilized foam is, however, not so trivial to interpret. Indeed, 𝑉𝑓𝑜𝑎𝑚 is 
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maintained to over 70% of its initial value after 1 hour, but Figure 3.9b and c show that the 

foam is the less dense of all three with little 𝑓𝑙𝑖𝑞 and the biggest bubble size, but stable over 

time. Those results are not intuitive as one would expect a foam with big bubbles and thin film 

to break quickly. 

 

Figure 3.8. Original pictures of foam bubbles from DFA 100 data for C12Gly2 (top), C12Glu2 (middle) and 
C12E5 (bottom) solutions at 10 CMC, taken after 100 s (left), 500 s (centre) and 3000 s (right).  

The formation of bubbles by air sparging is believed to be linked with the diffusion of surfactants 

to the newly created interface.193 The bubbles created are the smallest for C12Glu2 and C12E5, 

and the largest ones are obtained with C12Gly2 solution as shown in Figure 3.9c. Foamability 

of C12Gly2 reported in this work is in contradiction with Stubenrauch’s hypothesis that “the 

higher the surface elasticity the higher the resistance against shear caused by the gas flow, 

which, in turn, increases the foamability.”209 As shown in section 4, the elasticity limit 𝜀0 is the 

highest for C12Gly2, yet the initial bubble mean area is the largest compared to C12Glu2 and 

C12E5. One relevant parameter is, however, the molecular exchange parameter 𝜔0 which is 

the lowest for C12Gly2 indicating slow exchanges between bulk and interface, then increases 

for C12E5 then again for C12Gly2, in accordance with the trend observed in bubble initial size. 

Diffusion phenomena are, however, irrelevant regarding foam stability as liquid drainage was 

shown to be faster than molecular diffusion.234  
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Figure 3.9. (a) Foam volume, (b) foam liquid fraction fliq and (c) mean bubble area evolution over time 
for C12Glu2, C12Gly2 and C12E5 10 CMC solutions at 25.0°C. Foam is generated and analyzed using a 
Dynamic Foam analyzer DFA 100 (Krüss). Procedure is descibed in section 2.4. 

Elasticity limit at high frequencies 𝜀0 is, however, relevant as regards foam stability but results 

should be interpreted cautiously. Based on the hypothesis that thermally induced thickness 

and concentration fluctuations are responsible for foam film rupture, the high oscillation 

frequency range (200-800 Hz) should be of relevance in dilational rheology experiments, which 

would require other equipments.235–237  

The comparison of 𝜀0 values suggests C12Gly2 should be a better foam stabilizing agent than 

C12Glu2 and C12E5. 𝑉𝑓𝑜𝑎𝑚 evolution (Figure 3.9a) indicates otherwise as it slightly decreases 

for C12Gly2 but remains almost constant for C12Glu2. Similarly, bubble size is bigger over the 

whole experiment duration for C12Gly2, partly due to initial bigger bubble size and poor 

foamability of C12Gly2. It results that one bubble rupture has more impact on 𝑉𝑓𝑜𝑎𝑚 than if 

bubbles were smaller. Comparatively between both surfactants, the mean bubble area 

increases by 1600% in C12Glu2 foam and by only 340% in C12Gly2 foam over 1 hour, implying 

better film stabilization against coalescence and Ostwald ripening, both phenomena 

contributing simultaneously to bubble size increase. It was shown that Ostwald ripening is 

controlled by the low frequency elasticity and coalescence by the high frequency elasticity,238 

and that for 𝜀0 > 𝛾 2⁄  Ostwald ripening is restrained.239 Consequently, only coalescence occurs 

for both C12Gly2 and C12Glu2, and coalescence rate is faster for C12Glu2 accordingly to 𝜀0 

values. Also, the quick stopping of liquid drainage is illustrated in Figure 3.9b by the slight 

increase in 𝑓𝑙𝑖𝑞 for C12Gly2, due to the diminution of 𝑉𝑓𝑜𝑎𝑚 while the liquid content of the foam 

remains constant. No discussion was based on C12E5 as mean bubble area evolution over 

1 hour could not be calculated due to quick collapse. 

Intermolecular H-bonds were shown by several studies as a crucial factor impacting foam 

stability, in relation with increased viscoelastic properties.209–212,217,240,241 H-bonds are formed 

between hydroxyl groups as they can act as both H-bond acceptors and donors, but ether 

groups also act as H-bond acceptors. In this work, the maltoside polar head bears the most 
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hydroxyl groups (7) and forms about 5 intermolecular H-bonds and 5 H-bonds with water.240 

The diglycerol polar head in C12Gly2 bears 3 hydroxyls and 2 ether groups, reducing potential 

interactions compared to a maltoside. However, the low solubility of C12Gly2 points out its poor 

affinity for water, thus promoting intersurfactant interactions. No data were reported yet as to 

the number of H-bonds formed between chains. Finally, C12E5 only bears 1 hydroxyl and 5 

ether groups, in accordance with the fact that the interface presents the largest area per 

molecule, the smallest surface elasticity limit and the poorest foam stability. Similar behaviour 

was reported for C12E6.224 

One interesting point regarding the behaviour of C12Gly2 stabilized foam is the formation of 

dispersed LC as described by Sagitani et al.207 and developed in section 3 of this chapter. At 

a concentration of 10 CMC (4.7×10-4 M), the formation of LC contributes to reducing the 

effective bulk concentration available for stabilizing the interface. On the other hand, as 

developed in the introduction, dispersed LC formed by diglycerol and oligoglycerol monoesters 

forming stable foams were shown to contribute to film stability by increasing the film visco-

elasticity and adsorbing to the interface, thus reducing its permeability to gas.202–206 The 

contribution of LC to visco-elasticity cannot be observed in dilational rheology experiments as 

described in section 4 given that LC are formed over the CMC and the diffusion-controlled 

hypothesis would not be verified. 

 

6. Conclusions 

Aggregation behaviour in water/C12Gly2 binary systems revealed the formation of vesicles, 

which are metastable structures, in dilute solutions from concentrations as low as ~10 CMC, 

and dispersed lamellar LC phase in equilibrium with aqueous solution. The spontaneous 

formation of vesicles in the dilute region indicates the applicability of C12Gly2 in fields where 

vesicles are desired. The contribution of LC to surface elasticity could not be observed due to 

necessity of measuring viscoelastic properties in diffusion-controlled conditions, i.e., at 

c ≤ CMC. However, the contribution of LC dispersion to foam stabilization was shown in 

diglycerol monoesters, which present very similar structures to the surfactant under study.205  

The CMC values and minimal surface tension attained by the C12E5, C12Glu2 and C12Gly2 

surfactants under study was not correlated to either foamability or foam stability. Dilational 

parameters at 1 CMC suggest low foamability but excellent foam stability, which was verified 

by foaming experiments by air sparging at 10 CMC. Comparison with a polyethoxylated fatty 

alcohol (C12E5) and a maltoside (C12Glu2) confirmed the trend that high 𝜔0 enhances 

foamability and high 𝜀0 enhances foam stability. The natures of polar heads support the 

hypothesis that the presence of intermolecular H-bonds strength accounts for the surface 

elastic behaviour.209–212,217,240,241 Indeed, C12Gly2 and C12Glu2 present the most densely packed 
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air/water interfaces, the highest elasticity limits and the highest number of hydroxyl groups per 

molecule. The main foam destabilization phenomenon was identified to be bubble 

coalescence, which rate was inferior in the case of C12Gly2 compared to C12Glu2 and was not 

measurable for C12E5 due to quick foam break. 

Further precision on high frequency elasticity limit 𝜀0 could be obtained using equipment able 

to reach higher oscillation frequency such as the capillary pressure tensiometer (CPT) method 

reaching frequencies up to 100 Hz.242 Using C12Gly2 as foaming agent would require 

overcoming the poor foamability of C12Gly2. This could be investigated by varying the bubble 

generation process, e.g. by reducing the air flow or nucleating gas bubbles from the solution 

by gas dissolution.193  
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1. Introduction 

The selection of a surfactant is a key factor for emulsion and microemulsion formulations. The 

1-O-dodecyl diglyceryl ether (C12Gly2) surfactant, investigated in the previous chapter as foam 

stabilizer, was previously reported as an effective solubilizing agent forming Winsor III 

microemulsions at low concentration and as a promising emulsifying agent.207 Little information 

is available regarding the use of alkyl (di)glyceryl ethers as emulsifiers, and determining the 

scope of application of a surfactant calls for quantitative and non-empirical evaluations of 

amphiphilic properties.  

Several theories and approaches to describe the behaviour of Surfactant/Oil/Water (SOW) 

systems were developed. In the past century, the works of Ostwald showed that the Water-to-

Oil Ratio (WOR) influences emulsion morphology, in particular when WOR is significantly 

different from 1, the emulsion continuous phase tends to be the phase present in larger 

amount.243 Bancroft showed that at WOR close to 1, the emulsion morphology is determined 

by the amphiphilic agent behaviour at equilibrium and its affinity for the oil or aqueous phase. 

As a result, when agitating SOW systems where the surfactant is hydrophilic (or lipophilic), the 

resulting emulsion morphology tends to be O/W (or W/O).244,245 Ever since, many theoretical 

and practical tools were developed to try and quantify this relative surfactant hydrophilicity in 

SOW systems, the most widely used still being the empirical Hydrophilic-Lipophilic Balance 

(HLB). Ontiveros et al.246 developed an alternative surfactant classification scale based on the 

so-called PIT-slope, consisting of the C10E4 / n-octane / water system phase inversion 

temperature (PIT) disturbance. Alternatively, a similar approach based on salinity-phase-

inversion (SPI) was developed by Lemahieu et al..247 In this chapter, a comparative study of 

three nonionic surfactant families, namely CiEj, CnGlum and CnGlym is presented based on 

amphiphilicity quantification by both PIT-slope and SPI-slope methods. 

In a second time, a further investigation of C12Gly2 emulsifying properties is undertaken within 

the Normalized Hydrophilic-Lipophilic-Deviation (HLDN) framework for designing emulsions 

with desired features, i.e. morphology and stability. The HLDN, which expression is given by 

equation (39) for nonionic surfactants  has been shown to be an efficient approach for emulsion 

behaviour rationalization.128,248,249  

𝐻𝐿𝐷𝑁 = 𝑃𝐴𝐶𝑁 − 𝐸𝐴𝐶𝑁 + 𝜏(𝑇 − 25) + 𝛿𝑆 (39) 

where PACN is characteristic of the surfactant and is equal to the length of the n-alkane 

forming a Winsor III microemulsion at 25 °C, EACN represents the oil hydrophobicity, T is the 

temperature (°C) and S the salinity (wt.% NaCl), 𝜏 and 𝛿 reflect the surfactant sensitivity 

towards temperature and salinity respectively. Both temperature and salinity sensitivity are 

properties of interest for the formulation of end-use products. Indeed, stability must be ensured 

over a range of temperature for storage. Moreover, the sensitivity of surfactants towards salts 

is a parameter for formulating personal care products or detergents as adjusting salinity 
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modifies the surfactant packing parameter, changing from micellar structures to vermicular 

ones in detergents, increasing viscosity to facilitate the use of the product. The HLDN equation 

considers the contribution of formulation variables to the relative affinity of surfactant for either 

the aqueous or the oil phase. When HLDN < 0, affinity is stronger towards the aqueous phase, 

when HLDN > 0, the affinity is stronger towards the oil phase and when HLDN = 0, the system 

is at the so-called “optimum formulation”.158 It concurs with a zero interfacial curvature, 

characteristic of an equal affinity of the surfactant for both the aqueous and the oil phase and 

resulting in a Winsor III microemulsion when the system equilibrates.250 Experimentally, it also 

corresponds to a minimal interfacial tension between the oil and aqueous phases251–254 and 

minimal viscosity of the system.255 When temperature is the formulation variable, HLDN = 0 is 

reached at an equilibrium temperature T*, which is very close to the phase inversion 

temperature (PIT) introduced by Shinoda et al.,256 also called the HLB temperature (THLB). In 

the same way, when salinity is the formulation variable, HDLN = 0 is reached at the salinity S*, 

close to the salinity of phase inversion (SPI) in a dynamic system. The parameters of 

temperature (τ) and salinity (δ) sensitivity are usually determined from the SOW-T and SOW-

S fish diagrams studied with a series of n-alkanes as oils, but reaching the thermodynamic 

equilibrium is a long process and such experimental determination could take months. Instead, 

the faster dynamic inversion approaches were chosen in this work to determine PACN, τ and 

δ for C12Gly2. 

 

Figure 4.1. Illustration of SOW systems behaviour with HLDN evolution when emulsified (top) and at 
equilibrium (bottom). 

According to equation (39), the nature of the oil can be adjusted to obtain either O/W 

(HLDN < 0) or W/O (HLDN > 0) emulsions for which stability evolution can be anticipated, as 

shown in Figure 4.1. Other factors such as the emulsification process, the WOR and the 

surfactant concentration, not considered in the HLDN approach, were also studied for 

comparison purposes. This way, the scope of application of the glycerol-based 1-O-dodecyl 

diglyceryl ether (C12Gly2) surfactant was investigated: the resulting emulsions were 

characterized in terms of morphology, granulometry and stability monitored using a multiple 

light scattering device (Turbiscan®) showing the phenomena involved in emulsion 

destabilization.93 
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2. Description of Surfactant / Oil / Water (SOW) systems behaviour 

2.1. Ostwald’s and Bancroft’s theories of emulsification 

In 1910, Ostwald was one of the first to study SOW emulsified systems and showed that for a 

water-to-oil-ratio (WOR) very different from unity, the system tends to form emulsions for which 

the continuous phase is the one present in the largest volume, regardless of the surfactant 

affinity for water or oil phase.243 In the 1910’s, Bancroft also contributed as a pioneer in the 

comprehension of SOW emulsified systems by observing the behaviour of such systems in 

many conditions. He stated that “A hydrophile colloid will tend to make water the dispersing 

phase while a hydrophobe colloid will tend to make water the disperse phase”244, and showed 

that for systems with a WOR close to 1, the emulsion morphology is determined by the 

amphiphilic agent behaviour at equilibrium. As a result, when agitating SOW systems where 

the surfactant is hydrophilic (or hydrophobic), the resulting emulsion morphology will be O/W 

(or W/O).244,245 More recent works showed that the surfactant affinity for each phase and their 

volume proportions are not the only factors impacting the emulsion morphology: the surfactant 

concentration and the emulsification process are also important factors to consider.257 The 

limitations of Bancroft’s theory pushed scientists to develop new tools, concepts and theories 

to understand involved phenomena and design emulsions with desired features. 

2.2. Hydrophilic-Lipophilic Balance (HLB) 

The HLB concept was first introduced in 1949 by Griffin as a practical scale to determine the 

behaviour of a surfactant based on its relative hydrophilia and lipophilia.123,124 In a first 

publication, Griffin reports some HLB values for some usual nonionic surfactants, on a scale 

ranging from 0 (most lipophilic) to 20 (most hydrophilic).123 This evaluation was achieved by 

observation of emulsion stability formed with the surfactants but the emulsification process 

was not described. In 1954, the HLB calculation for a given polyethoxylated alcohol was 

defined, according to Griffin 124, by the relation in equation (40). 

𝐻𝐿𝐵𝐺𝑟𝑖𝑓𝑓𝑖𝑛 = 20 ×  
𝑀ℎ𝑦𝑑𝑟𝑜𝑝ℎ𝑖𝑙𝑖𝑐

𝑀𝑚𝑜𝑙𝑒𝑐𝑢𝑙𝑒
 (40) 

with 𝑀ℎ𝑦𝑑𝑟𝑜𝑝ℎ𝑖𝑙𝑖𝑐 and 𝑀𝑚𝑜𝑙𝑒𝑐𝑢𝑙𝑒 the molar weight of the hydrophilic moiety and the total 

molecular weight of the molecule respectively. However, this equation does not apply to other 

types of surfactants such as ionic ones.  

In 1957, Davies proposed a competitive coalescence kinetics model to rationalize emulsion 

morphology and a group contribution HLB calculation so as to reflect the different natures of 

surfactants (nonionic, anionic and cationic).258 According to Davies, HLB can be calculated 

from equation (41). 

𝐻𝐿𝐵𝐷𝑎𝑣𝑖𝑒𝑠 = ∑ 𝐻ℎ,𝑖 − ∑ 𝐻𝑙,𝑖 + 7 (41) 
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where 𝐻ℎ,𝑖 and 𝐻𝑙,𝑖 are the respective contributions of hydrophilic and lipophilic moieties in the 

molecule. However, contribution values are not available for every type of surfactants, e.g., 

phospholipids or sucrose esters. Moreover, HLB values for polyethoxylated fatty alcohols (CiEj) 

calculated from equations (40) and (41) can differ from several units. 

The HLB value and HLB scale is still widely used in industry due to its simplicity. Indeed, there 

exist a commonly accepted HLB scale corresponding to various surfactant applications, as 

shown in Figure 4.2. For instance, a surfactant with an HLB value ranging from 13 to 15 is, 

supposedly, well addressed for detergency. 

 

Figure 4.2. HLB scale for surfactants sorted by addressed application.  

Even though the HLB value is widely used in industry, it remains an arbitrary value that hardly 

applies to innovative types of surfactants with new polar group as hydrophilic part. 

2.3. Winsor’s R-ratio 

Winsor had a more thermodynamic approach of surfactant interaction with water and oil 

phases. Indeed, in 1948 he introduced the R-ratio, which he modified in 1954, that is defined 

as the ratio of surfactant interaction energy with oil, and surfactant interaction energy with water 

in a SOW system.150,182 The equation was finally modified by Bourrel et al. in 1983 to take into 

account interactions between surfactant tails and polar heads as stated in equation (42).259  

𝑅 =
𝐴𝑠𝑜 − 𝐴𝑜𝑜 − 𝐴𝑙𝑙

𝐴𝑠𝑤 − 𝐴𝑤𝑤 − 𝐴ℎℎ
=

𝐴𝐿,𝑠𝑜 + 𝐴𝐻,𝑠𝑜 − 𝐴𝑜𝑜 − 𝐴𝑙𝑙

𝐴𝐿,𝑠𝑤 + 𝐴𝐻,𝑠𝑤 − 𝐴𝑤𝑤 − 𝐴ℎℎ
 (42) 

with 𝐴𝑠𝑜 = 𝐴𝐿,𝑠𝑜 + 𝐴𝐻,𝑠𝑜 the total interaction energy between the surfactant and oil, which can 

be split into 𝐴𝐿,𝑠𝑜 and 𝐴𝐻,𝑠𝑜 that are the respective lipophilic (van der Waals interactions) and 

hydrophilic (hydrogen bonding) components. Similarly, 𝐴𝑠𝑤 is defined as the surfactant 

interaction with the water phase with 𝐴𝐿,𝑠𝑤 and 𝐴𝐻,𝑠𝑤 the lipophilic and hydrophilic components. 

The terms 𝐴𝑜𝑜 and 𝐴𝑤𝑤, added in 1954, correspond to interactions between oil molecules and 

water molecules respectively. Finally, 𝐴𝑙𝑙 and 𝐴ℎℎ correspond to the surfactant tails and polar 

heads interactions respectively. All considered interactions are summed up in Figure 4.3a.   
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Figure 4.3. (a) Surfactant-Oil-Water interactions considered in the R-ratio calculation and (b) equilibrated 
SOW systems and Winsor phases associated to R-ratio values for WOR = 1. Oil phase is represented 
in yellow, water phase is represented in blue and microemulsion phases are represented in green. 

Figure 4.3b illustrates the behaviour of SOW systems at thermodynamic equilibrium. If 

hydrophilic interactions are predominant over lipophilic ones, R < 1 and the surfactant will most 

likely be in the aqueous phase, solubilizing a part of the oil phase in it. Such microemulsion is 

called a Winsor I-type microemulsion (W I). In the same way, if lipophilic interactions are 

predominant, i.e. R > 1, the surfactant has greater affinity for the oil phase and the resulting 

microemulsion is a Winsor II (W II). When the surfactant affinity is equal for both the aqueous 

and the oil phase, R = 1 and the resulting microemulsion contains equal volumes of oil and 

water. Depending on the surfactant concentration, the microemulsion is either a Winsor III 

(W III) with excess water and oil or a Winsor IV (W IV) with total solubilization of both oil and 

water. 

The concept of R-ratio can be used to rationalize the behaviour of equilibrated SOW systems. 

However, the individual contributions to the R-ratio calculation cannot be obtained 

independently from one another and only the resulting microemulsion phases can be 

observed. 

2.4. Surfactant packing parameter 

The surfactant affinity for either the aqueous phase or the oil phase was approached from a 

geometrical point of view by Israelachvili. In 1976, he described the packing parameter p that 

describes the geometrical arrangement of surfactant molecules aggregates into micelles, 

vermicular structures or bilayers based on their structure.260 The packing parameter p is given 

by equation (43).  

𝑝 =
𝑣0

𝑎0 × 𝑙
 (43) 
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with 𝑣0 the volume of the surfactant molecule lipophilic moiety and 𝑙 its length whereas 𝑎0 is 

the surface of the polar head when equilibrated at the interface. Figure 4.4 gives the schematic 

representation of a surfactant in Israelachvili’s approach. 

 

Figure 4.4. Schematic representation of a surfactant molecule in Israelachvili's packing parameter 
approach. 

Depending on the chemical structure of the molecule and the formulation variables such as 

salinity or temperature, the packing parameter differs. For instance, 𝑎0 increases with the 

number of ethoxylates in a CiEj surfactant, but is also reduced when the temperature increases 

for such surfactants.250 As a result, self-assembly of surfactants leads to structures ranging 

from direct micelles (p < 1/3), to cylindrical micelles (1/3 < p < 1/2), vesicles (1/2 < p < 1), 

planar bilayers (p = 1) and inverted micelles (p > 1).22,260  

The parameters of equation (43) can be approximated by some expressions. The volume 𝑣0 

and length 𝑙 can be estimated from the number of carbon atoms in the hydrophobic chain as 

given in equations (44) and (45), 𝑁𝐶 being the number of atom carbons in the hydrophobic 

tail.260,261 The 𝑎0 value must, however, be experimentally determined by adsorption models for 

instance. The parameters for one surfactant can change depending on formulation variables, 

thus a precise measurement would be necessary but this would require hardly accessible 

scattering techniques.  

𝑣0 = 27.4 + 26.9(𝑁𝐶 − 2) (44) 

𝑙 = 1.5 + 1.265(𝑁𝐶 − 2) (45) 

The concept of packing parameter illustrates efficiently the behaviour of surfactant molecules 

at the interface, and was then extended to the “effective packing parameter” concept for SOW 

systems by Tchakalova et al. so as to consider the oil penetration in the interfacial film.262,263 

2.5. Phase Inversion Temperature (PIT), THLB 

In 1964, Shinoda proposed a quantitative and more accessible method to evaluate the relative 

hydrophilicity and lipophilicity of a CiEj surfactant based on its phase inversion temperature 

(PIT).256 Indeed, such surfactants interact with water molecules via hydrogen bonds, which can 

be broken by increasing the temperature. As a result, the hydrophilic character of the molecule 

decreases when temperature increases, shifting its affinity towards the oil phase. In practice, 

the PIT is measured by heating a SOW system under agitation and detecting the phase 



Chapter 4 – Amphiphilic behaviour of alkyl (di)glyceryl ethers within the HLDN framework 

 

93 

  

inversion. Many methods have been described to detect the PIT. The most widely used is 

based on conductimetry: an O/W emulsion has a significant conductivity in the presence of a 

small amount of electrolytes whereas a W/O emulsion, being much less dielectric, has a very 

weak conductivity.264,265 Therefore, the PIT is associated to a sudden drop in conductivity which 

has to be monitored throughout the heating experiment. Other methods were developed, 

based on light scattering techniques266 or viscosity monitoring.267 Indeed, the phase inversion 

is associated to a decrease in turbidity and to a minimum in viscosity due to the minimal 

interfacial tension between oil and water phases, facilitating droplet deformation. At this 

particular temperature, the surfactant has the same affinity for both oil and water. 

This method offers a quick and quantitative amphiphilicity characterization of a surfactant, and 

is well adapted to the CiEj type of surfactants that are highly sensitive to temperature variations. 

The PIT measurements are however limited to the accessible temperature range and to 

temperature-sensitive surfactants. For instance, many ionic ones or very hydrophile nonionic 

ones do not enter the scope of PIT measurements. 

2.6. PIT-slope and SPI-slope methods 

The principle of the PIT-slope method, developed by Ontiveros et al.,246 is to observe the 

modification of the PIT value, in the same way as Shinoda defined it, of a reference SOW 

system with increasing amounts of various second surfactants S2. The considered reference 

system is pure C10E4/n-octane/water, with a PIT close to room temperature.163 Successive 

dynamic inversions are carried out and monitored by continuous conductivity measurements. 

The advantage of the PIT-slope method is that it is applicable to the assessment of the 

hydrophilic lipophilic balance of all kinds of surfactant: well defined pure surfactants as well as 

commercial mixtures. It may be considered as an alternative classification scale to the 

empirical HLB one. Surfactants including CiEj, tween, span, monoglycerides, sucrose esters, 

lecithins, alkyl isosorbides, alkylglucuronamides, sugar-based and glycerol-based surfactants, 

carboxylic acids, as well as numerous anionic and cationic surfactants were characterized 

accordingly.246,268–272 

A similar method based on salinity inversions was developed by Lemahieu et al.,247 based on 

the same C10E4/n-octane/water reference system. After adding a given amount of the 

surfactant under study S2, inversions are induced by the simultaneous continuous addition of 

concentrated NaCl solution, and of n-octane and S1 (C10E4), so as to maintain the water/oil 

fraction fw = 0.5 and the S1 concentration equal to 3 wt.%. 

2.7. Hydrophilic-Lipophilic-Deviation (HLD) theory  

As briefly developed in the introduction of this chapter, the HLDN is a measure of the relative 

hydrophilicity and lipophilicity of a SOW system and reflects the difference in behaviour 
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comparatively to the optimal formulation. The first developments of the HLD concept were 

achieved in a context of enhanced oil recovery (EOR), for which attaining very low interfacial 

tension, and thus reaching the optimal formulation (HLD = 0), is crucial.248 

The concept was first approached by Salager,158 and named Surfactant Affinity Difference 

(SAD). Two expressions, corresponding respectively to nonionic polyethoxylates (equation 

(46)) or ionic (equation (47)) surfactants were developed.248 

𝐻𝐿𝐷 =
𝑆𝐴𝐷

𝑅𝑇
= 𝛼 − 𝐸𝑂𝑁 + 𝑏𝑆 − 𝑘𝐴𝐶𝑁 − 𝜑(𝐴) + 𝑐𝑇∆𝑇 

(46) 

𝐻𝐿𝐷 =
𝑆𝐴𝐷

𝑅𝑇
= 𝜎 + ln 𝑆 − 𝑘𝐴𝐶𝑁 − 𝑓(𝐴) − 𝑎𝑇∆𝑇 

(47) 

 

where S is the salinity in wt.% of NaCl, ACN or Alkane Carbon Number is characteristic of the 

oil phase, 𝑓(𝐴) and 𝜑(𝐴) are functions of the alcohol type and the concentration respectively. 

𝜎 and 𝛼 are the characteristic parameters of surfactant structure. EON is the average number 

of ethylene oxide groups per molecule of nonionic surfactant. ∆𝑇 is the temperature deviation 

measured from the reference (25°C), k, 𝑎𝑇 and 𝑐𝑇 are empirical constants that depend on the 

system.  

In 1982, Salager et al. showed that there exists a direct relation between the behaviour of SOW 

systems at equilibrium and the properties of the corresponding emulsion. By screening 

different formulation variables, namely the nature of the oil, the alcohol, the salinity and the 

proportion of two surfactants in the system, a sudden change in conductivity indicated a 

continuous phase inversion from water to oil or from oil to water. Close to this composition, the 

resulting emulsions presented a minimum in stability.273 

More recently, a new and simpler expression was proposed. In a nonionic surfactant system 

containing no alcohol, expression (46) can be divided by k to yield the HLDN expression as 

given in equation (39), where PACN corresponds to (𝛼 − 𝐸𝑂𝑁) 𝑘⁄ , 𝜏 = 𝑐𝑇 𝑘⁄  and 𝛿 = 𝑏 𝑘⁄ .128  

𝐻𝐿𝐷𝑁 = 𝑃𝐴𝐶𝑁 − 𝐸𝐴𝐶𝑁 + 𝜏(𝑇 − 25) + 𝛿𝑆 (39) 

The resulting HLDN value is thus expressed in carbon atoms units, such as the PACN and 

EACN values, and can be related to the characteristics of emulsions such as morphology, 

stability and granulometry.128,248,249 
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3. Experimental section 

3.1. Chemicals 

Pentaethylene glycol monododecyl ether (C12E5, > 98.0%) was purchased from TCI chemicals 

and n-Dodecyl β-D-maltoside (C12Glu2, > 98.0%) was purchased from Sigma Aldrich. 

Cyclohexane (> 99.5%), cyclooctane (> 99%), n-octane (98%), n-nonane (99%), and n-

hexadecane (99%) were purchased from Sigma-Aldrich. n-hexane (> 99%) was supplied by 

Acros organics, n-heptane (99%), n-decane (99%) and n-dodecane (99%) were supplied from 

Alfa Aesar, n-undecane (> 99%), n-tetradecane (> 99%) and squalane (> 98%) were obtained 

from TCI. Octyl octanoate (>98%) was purchased from SAFC®. Pure tetraethylene glycol 

monodecyl ether (C10E4) used as the reference surfactant was synthesized according to a 

method described elsewhere.178,179 Its purity was assessed by GC-MS analysis (> 99%) and 

by comparing its cloud point temperature  (20.4 °C at 2.6 wt%)  with the reference value 

(20.6 °C at 2.6 wt%).180 1-O-dodecyl diglyceryl ether (C12Gly2) was selectively synthesized in 

the lab according to the procedure described in section 2.1 of Chapter 3. 

3.2. Phase Inversion Temperature (PIT) 

S1 / Oil / Water system 

S1 (0.085 g, 1 wt.% for C12Gly2 or 0.26 g, 3 wt.% for C10E4), n-alkane (4.25 g) and NaCl 10-2 M 

(4.25 g) are introduced in a double-jacketed cylindrical tube (d = 2.5 cm, h = 20 cm). The system 

is briefly stirred and left to pre-equilibrate at room temperature. The system is cooled down to 

18 °C for 10 minutes and is kept under stirring at 500 rpm using a 2 cm-square-cross magnetic 

stirrer during the whole experiment. Two heating and cooling cycles are then applied at a rate of 

1 °C/min by circulating water in the vessel using a HUBER 125 Ministat. Conductivity is recorded 

using a CDM210 conductivity meter from MeterLab® with a coupled conductivity-temperature 

electrode CDC641T from Radiometer Analytical®. Conductivity data is processed with the 

Labview software. 

S1+S2 / Oil / Water system 

S1 (0.26 g, 3 wt.%), n-alkane (4.25 g) and NaCl 10-2 M (4.25 g) and are introduced in a double-

jacketed cylindrical tube (d = 2.5 cm, h = 20 cm). Increasing S2 fractions are added to the system 

so as x2 (molar fraction of S2 in the S1/S2 system) remains inferior to 0.5. The system is briefly 

stirred and left to pre-equilibrate at room temperature and inverted as described in the previous 

paragraph after each S2 addition. 

3.3. Salinity of Phase Inversion (SPI) 

S1 / Oil / Water system 

The general procedure and experimental vessel used for dynamic salinity phase inversion was 

described by Lemahieu et al..247,274 C12Gly2 (0.085 g), n-alkane (4.25 g) and water (4.25 g) are 
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introduced in a double-jacketed cylindrical tube (d = 2.5 cm, h = 20 cm). This C12Gly2/n-

alkane/water mixture is briefly stirred and left to pre-equilibrate 1 h at 20.0 °C. Dynamic phase 

inversions are induced by increasing or decreasing continuously the aqueous phase salinity. 

NaCl 25 wt.% solution or pure water and C12Gly2 (2%) in n-alkane are added at constant rate 

so as to maintain the WOR equal to 1 and the surfactant concentration equal to 1%. The 

mixture is stirred using a 2 cm-cross magnetic stirrer and temperature is maintained at 20.0 °C 

by circulating water controlled by a HUBER® 125 Ministat. Phase inversions are monitored by 

electrical conductivity measurement as described in the previous paragraph. 

S1+S2 / Oil / Water system 

S1 (0.26 g, 3 wt.%), n-alkane (4.25 g) and NaCl 10-2 M (4.25 g) and are introduced in a double-

jacketed cylindrical tube (d = 2.5 cm, h = 20 cm). Increasing S2 fractions are added to the system 

so as x2 (molar fraction of S2 in the S1/S2 system) remains inferior to 0.5. This S1/S2/n-

alkane/water mixture is briefly stirred and left to pre-equilibrate 1 h at 20.0 °C. Dynamic phase 

inversions are induced by increasing or decreasing continuously the aqueous phase salinity. 

NaCl 25 wt.% solution or pure water and S1 (6%) in n-alkane are added at constant rate so as 

to maintain the WOR equal to 1 and the surfactant concentration equal to 1 wt.%. The system 

is inverted as described in the previous paragraph after each S2 addition. 

3.4. Emulsions 

The surfactant is dissolved in oil and the mixture surfactant/oil is sonicated if necessary and the 

NaCl 10-2 M solution (aqueous phase) is slowly added. In the first series of experiments, the 

mixture is agitated using an Ultra-turrax® (IKA T18/S18N-10G) at 3 krpm for 5 minutes. For 

studying the influence of emulsification process, a second series of experiments was carried out 

using a phase inversion procedure. In that case, the mixture is kept under stirring at 500 rpm 

using a 2 cm-square-cross magnetic stirrer. For emulsions containing n-hexane, n-heptane or n-

octane, the temperature is set to PIT+5 °C, cooled down to PIT-5°C at a rate of 1°C/min and 

heated up to 25°C at 2°C/min. For emulsions containing n-nonane, n-decane, n-dodecane or n-

tetradecane, the temperature is set to PIT-5 °C, increased to PIT+5°C at a rate of 1°C/min and 

cooled down to 25°C at 2°C/min. In all cases, emulsion morphology is assessed by conductivity 

measurements. A 1 mL sample is taken for size measurements and the emulsion is placed in a 

Turbiscan® AGS from Formulaction (see Figure 4.5a) for 14 to 28 days.  

Droplet size distribution is measured using a Mastersizer® 3000 laser granulometer from 

Malvern Panalytical when an O/W emulsion is formed. When a W/O emulsion is obtained, the 

emulsion is observed at the optical microscope (Keyens VHX-900F). In that case, size 

distribution is calculated from at least 500 droplets per emulsion, grouped in 100 size intervals. 

D[4,3] is given as ∑ 𝑁𝑖𝐷𝑖
4 ∑ 𝑁𝑖𝐷𝑖

3⁄  where 𝑁𝑖 is the number of observations in the size interval 𝑖 of 

mean diameter 𝐷𝑖. For smaller emulsions with droplets about 1 µm, size is also measured by 
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Dynamic Light Scattering using a Zetasizer Nano® ZS from Malvern Panalytical. In that case, 

D[4,3] corresponds to the mean Dv diameter value. After stability monitoring, emulsions are 

gently re-homogenized by hand and size distributions are re-measured according to the 

procedures described above. 

3.5. Multiple light scattering  

Samples are scanned top to bottom by a laser beam (λ = 880 nm) using a Turbiscan® AGS, 

shown in Figure 4.5a. Detectors placed at angles of 180° and 45° record the transmitted (TR) 

and back-scattered (BS) light along the sample height as represented in Figure 4.5b. 

54 samples can be stored at controlled temperature and monitored at the same time. At regular 

time intervals, samples are taken by the automatic robotic arm and placed in the analysis 

chamber, and placed back in the 25.0 °C storage station until the next analysis. Stability data 

is then processed using the Turbisoft treatment software, from which many destabilization 

indicators can be computed. TR and BS light signals allow visualizing the evolution of opaque 

and clear area over time as shown in Figure 4.5c. Indeed, the intensity of TR and BS directly 

depend on the concentration and size of light scattering objects according to equations (9) and 

(10) developed in section 2.3.2 of chapter 1.93 

 

Figure 4.5. (a) Turbiscan® AGS stability analyzer, (b) transmitted (TR) and back-scattered (BS) light 
signals for an O/W emulsion and (c) example of virtual emulsion evolution over time generated using 
the Turbisoft data treatment software: blue corresponds to clear parts, i.e. transmission different from 
zero, and orange corresponds to opaque parts of the sample.  

In this work, the evolution of internal phase released over time was calculated as an indicator 

of emulsion destabilization. In practice, it is obtained by measuring the peak width of TR signal 

at a threshold of TR = TRmax/10 at the top (O/W) or at the bottom (W/O) of the sample over 

time. The relative released volume (%) is calculated as the ratio between the volume of release 

internal phase and the initial volume introduced in the emulsion. 
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4. Amphiphilicity of alkyl (di)glyceryl ethers 

4.1. Influence of nonionic polar heads (CiEj, CnGlum and CnGlym) 

Nonionic series based on sugar polar heads, namely D-glucosides CnGlu and β-D-maltosides 

CnGlu2 and (di)glyceryl ethers, namely 1-O-alkyl glyceryl ethers CnGly and 1-O-alkyl diglyceryl 

ethers CnGly2 were compared in terms of temperature and salinity sensitivities. PIT and SPI 

evolutions with the fraction of S2 surfactant is presented Figure 4.6a-f and were measured as 

described in sections 3.2 and 3.3. Values are gathered in Table 4.1. They consist of the deviation 

behaviour from that of C10E4, the reference surfactant, due to the introduction of the second 

surfactant S2. The homologous C12Ej series was represented for comparison purposes.268 

 

Figure 4.6. Left: PIT evolution with x2 in 3 wt.% C10E4/S2/n-octane/NaCl 10-2 M for (a) 1-O-alkyl glyceryl 
ethers CnGly and 1-O-alkyl diglyceryl ethers CnGly2, (b) D-glucosides CnGlu and (c) β-D-maltosides 
CnGlu2. Right: SPI evolution with x2 in 3 wt.% C10E4/S2/n-octane/water for (d) 1-O-alkyl glyceryl ethers 
CnGly and 1-O-alkyl diglyceryl ethers CnGly2, (e) D-glucosides CnGlu and (f) β-D-maltosides CnGlu2. 
C12Ej are represented as references.247,268 PIT-slope data for C12Gly, C12Gly2, CnGlu and CnGlu2 were 
extracted from literature data.268,271 
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Table 4.1. Numerical PIT-slope and SPI-slope values for glycerol and sugar-based surfactants investigated.  

Surfactant S2 𝒅𝑷𝑰𝑻 𝒅𝒙𝟐⁄  (°C) 𝒅𝑺𝑷𝑰 𝒅𝒙𝟐⁄  (NaCl wt.%) 

C12Gly -43 -35 

C10Gly -34 -26 

C12Gly2 4 -3 

C10Gly2 21 14 

C12Glu 27 7 

C10Glu 49 24 

C16Glu2 76 Not measured 

C14Glu2 81 44 

C8Glu 82 41 

C12Glu2 112 51 

C10Glu2 124 60 

A negative PIT-slope is indicative of a temperature sensitivity superior to that of C10E4, while a 

positive PIT-slope indicates inferior sensitivity to that of C10E4. The more hydrophilic the 

surfactant, the higher the PIT-slope is expected to be as reaching the phase inversion requires 

breaking more water-surfactant interactions by temperature increase.246  

The SPI evolution with S2 fraction is indicative of H-bonds interactions of water with the S2 

polar heads compared to that for C10E4. By NaCl salt addition, the activity of water is reduced: 

hydration of Na+ and Cl- ions requires several water molecules per ion, disadvantaging H-

bonds interactions of water with surfactants’ polar heads.275 Similarly to the PIT-slope, a 

negative SPI-slope is indicative of a higher salinity sensitivity to that of C10E4, whereas a 

positive SPI-slope indicates inferior sensitivity to that of C10E4 as reaching the phase inversion 

requires more NaCl addition.247,274 

An increase of both PIT-slope and SPI-slope is observed for the CnGlu2 series compared to 

the CnGlu series. The same trend in observed between the CnGly and CnGly2 series. In all four 

series, the increase in alkyl chain length decreases PIT-slope and SPI-slope values, meaning 

that hydrophilicity decreases with increasing alkyl chain length. What comes out of results 

presented in Figure 4.6 is that CnGlu and CnGlu2, regardless of the alkyl chain length, are more 

hydrophilic than CnGly and CnGly2 with higher PIT-slope and SPI-slope values. C12Gly and 

C10Gly are the most lipophilic investigated surfactants with negative PIT-slope and SPI-slope. 

C12Gly2 has a close to zero slope in both PIT-slope and SPI-slope, meaning that its behaviour 

is equivalent to that of C10E4 in a water/n-octane mixture. Whereas its behaviour is similar to 

that of C12E5 as regards temperature, this is not verified in salinity: the diglyceryl moiety 

dehydrates like EO5 with temperature increase but almost like an EO4 with NaCl concentration. 

The classification order slightly varies between the PIT-slope and SPI-slope scales. Indeed, 

C10Gly2 responds quite similarly to temperature variations as C12Glu, but is less sensitive to 
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salt addition, with an increased SPI-slope: more NaCl is required to reach the inversion. This 

type of surfactant could find its applications where salt tolerance is required.  

As discussed by Ontiveros et al.,246 the PIT-slope method is a practical tool to compare surfactants 

with one-another and it can be used as a reliable classification scale instead of the empirical HLB 

scale. However, it is not an absolute value as it indicates how the surfactant S2 disturbs the 3% 

C10E4/n-octane/water system: it either increases or decreases the hydrophobicity of the system.  

4.2. Non-linearity of PIT and SPI with the addition of S2  

The non-ideality of the PIT-slope method can be enlightened by studying surfactant binary 

mixtures. Among two CiEj surfactants, their respective preferential affinity for the interfacial film 

influences both the PIT and SPI values. The example of the binary C10E4/C12E6 mixture is given in 

Figure 4.7, the total concentration of surfactant being maintained at 3 wt.%. Both the PIT and SPI 

evolutions with the increase in C12E6 derive from the ideal behaviour as a hysteresis is observed. 

The deviation is limited in SPI experiments compared to PIT ones. Indeed, the increase in 

temperature during PIT experiments modifies the solubilities of surfactants in the aqueous and oil 

phases; C10E4 being more sensitive to temperature increase due to a smaller number of ethylene 

oxide (EO), it solubilizes more easily in the oil phase rather than in the interfacial film and the 

behaviour tends to that of C12E6. The thermal partitioning of S2 surfactants in the reference C10E4/n-

octane/water system in PIT-slope and SPI-slope experiments was discussed by Lemahieu et al..247 

 

Figure 4.7. Conductivity profiles (a) and PIT evolution (b) with the increase in C12E6 content in C10E4 / 
C12E6 3% wt. / n-octane / NaCl 10-2 M (fw = 0.5), and conductivity profiles (c) and SPI evolution at 20.0°C 
(d) with the increase in C12E6 content in C10E4 / C12E6 3% wt. / n-octane / water (fw = 0.5). Dotted black 
lines in (b) and (d) indicate an ideal mixture behaviour. 
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The deviation from ideality is here illustrated in the case of two CiEj, co-solubilizing each other, 

and changing the properties of the interfacial film. Aubry et al.128 reported that typical τ 

sensitivity values can be considered similar for CiEj with an alkyl chain comprising 8 to 

12 carbon atoms then increases with the alkyl chain length, but can differ greatly with the 

nature of the polar head. Deviations are expected to increase as the nature of the polar heads 

of S1 and S2 differ. 

The thermosensitivity and salino-resistance can be approached in a more accurate manner by 

the characteristic τ and δ parameters from equation (30). So as to measure such parameters 

for the alkyl (di)glyceryl ethers, C12Gly2 seems to be the ideal candidate. It behaves quite 

similarly to C10E4 in the n-octane/water (fw=0.5) system by reaching the optimal formulation 

close to room temperature and in an accessible range of salinity. Indeed, extrapolation of both 

PIT-slope and SPI-slope values at x2 = 1 predict PIT(C12Gly2) = 27.7°C and 

SPI(C12Gly2, 20°C) = 0.4 wt.% in the n-octane/water (fw=0.5) reference system.  

4.3. Dynamic determination of HLDN parameters for C12Gly2 

1-O-dodecyl diglyceryl ether was synthesized according to the procedure described in section 

2.1 of Chapter 3 so as to obtain the pure regioisomer. However, Shi et al.276 described a 

catalytic reductive etherification of diglycerol with linear aldehydes to produce a mixture of 1-

O-alkyl diglyceryl ethers and 2-O-alkyl diglyceryl ethers (selectivity > 9/1). The presence of 2-

O-dodecyl diglyceryl ether causes slight changes in physicochemical properties, which are 

presented in Figure A.38 and Figure A.39 of the Appendix. Chemical structures of both 

isomers are illustrated in Figure 4.8. 

 

Figure 4.8. Chemical structures of 1-O-dodecyl diglyceryl ether and 2-O-dodecyl diglyceryl ether. 

In this section, the HLDN parameters of C12Gly2 are determined by PIT and SPI in water/n-

alkane systems. Indeed, τ and δ correspond to the HLDN variation triggered by a change of 

1°C or 1 wt.% NaCl and are determined by studying the T and S conditions for which the phase 

inversion is reached (HLDN = 0).  

Dynamic PIT conductivity profiles are shown in Figure 4.9a for WOR 50-50 emulsions obtained 

with linear alkanes ranging from n-octane to n-dodecane. As expected, the PIT value increases 

with ACN, as the oil hydrophobicity increases: intermolecular interactions between alkane 

molecules are stronger and the penetration of the surfactant is decreased. Compared to PIT 

values for C10E4 surfactant, the evolution of C12Gly2 PIT values is much higher when ACN 

increases, resulting in smaller τ value (see Figure 4.9a). PIT evolution with the linear alkanes’ 
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length also leads the surfactant PACN value which is the ACN number corresponding to a PIT 

value of 25 °C. The PACN was also referred to as “Nmin” by Wade et al. to indicate that it 

corresponds to the carbon number of the n-alkane leading to a minimum interfacial tension, 

i.e. the optimum formulation.277 It should be noticed that both C10E4 and C12Gly2 have similar 

values of PACN (8.1-8.3 for C10E4
127,183,247 and 8.2 for C12Gly2) as they form spontaneously a 

Winsor III system with n-octane. However, their behaviour differs greatly when temperature 

varies. C12Gly2 being less “sensitive”, with a τ value of 0.14 °C-1 against 0.40 °C-1 for C10E4, 

inversions require more thermic energy to occur. All CiEj surfactants with an alkyl chain length 

of at least 10 carbons have τ and δ parameters of the same orders of magnitude,128,247 but 

those results show that not all nonionic polar heads have the same impact on temperature 

sensitivity. Ontiveros et al.278 reported a C12Gly2 PACN value of 8 determined by phase 

equilibrium, 7.2 by the PIT-slope method, assuming that temperature coefficient was identical 

to that of C10E4, and 7.3 by the PIT-slope method assuming temperature coefficients were 

different but the surfactant mixture followed a linear mixing rule. Those three values agree well 

with ours as the C12Gly2 concentration is low in the PIT-slope method, limiting the error to an 

acceptable margin.  

 

Figure 4.9. Conductivity monitored dynamic phase inversion triggered by (a) temperature (PIT) and (b) 
salinity (SPI) variations and their evolution depending on the n-alkane length (ACN). Emulsions are 
prepared at WOR=1 and the oil nature is varied from n-octane (ACN = 8) to n-dodecane (ACN = 12) or 
n-undecane in salinity screening due to NaCl solubility limitations. The τ coefficient obtained by PIT247 
and δ coefficient obtained by SPI247 are represented for C10E4 for comparison.  

Temperature sensitivity of nonionic surfactants is due to the formation/cleavage of hydrogen 

bonds between the polar head and water. As T increases, so does molecular agitation, 

breaking hydrogen bonds and thus reducing surfactant-water affinity and aqueous solubility of 
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the surfactant. Around the optimal formulation temperature, the system energy is such that 

water-surfactant hydrogen bonds are broken, but is insufficient for the surfactant molecules to 

penetrate the oil phase. Indeed, it requires breaking the oil-oil hydrophobic interactions, 

increasing with the n-alkane length. That is why the system needs more thermal energy to 

reach phase inversion as ACN increases. 

In CiEj surfactants, ether -O- groups are mostly responsible for hydrophilicity as H-bond 

acceptors (HBA). For instance, C10E4 contains four ether groups and one terminal hydroxyl -

OH acting as both HBA and H-bond donor (HBD). In contrast, C12Gly2 contains two ether bonds 

and three hydroxyl groups. The relative HBD/HBA strength of those molecules can be 

estimated using COSMO-RS σ-profiles shown in Figure 4.10. Details about COSMO-RS 

calculations are given in section 2.2.1 of Chapter 2. It appears that the HBD region (negative 

surface charge σ) is higher in the case of C12Gly2 than for C10E4. The σ-surfaces of molecules 

also show more blue regions, corresponding to electron-poor regions, in the case of C12Gly2. 

Indeed, C10E4 and C12Gly2 have HBD σ-moments of 0.5 e and 1.2 e respectively and HBA σ-

moments of 7.4 e and 6.0 e respectively. The presence of hydroxyl groups acting as both HBA 

and HBD increases the types of H-bonds a surfactant molecule can form with water molecules, 

increasing the required thermal energy to dehydrate the molecule.279 

 

Figure 4.10. σ-profiles and σ-surfaces of C10E4 (in pink), C12Gly2 (in yellow) and water (in blue). The 
colour gradient corresponds to the surface charge density σ on the σ-surfaces of molecules. 

The dynamic SPI evolution presented in Figure 4.9b leads to δ value. The SPI evolution with 

ACN for C12Gly2 is compared to that for C10E4, for which salinity sensitivity is significantly higher 

(δ C12Gly2 = 0.16 wt.%-1 against 0.53 wt.%-1). By NaCl salt addition, the activity of water is 

reduced: hydration of Na+ and Cl- ions requires several water molecules per ion, 

disadvantaging H-bonds interactions of water with surfactants’ polar heads.275 As more H-bond 

interactions are formed between C12Gly2 and water than between C10E4 and water, the salinity 

sensitivity is about 3 times more important for C10E4 than C12Gly2. 
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5. Emulsifying properties rationalized by the HLDN theory 

Little documentation is available regarding the use of alkyl glyceryl ethers as emulsifiers. In 

1989, Sagitani et al.207 compared the efficiency of 3 wt.% C12Gly2 and C12EO6 as emulsifiers in 

n-dodecane / H2O (2:8 wt.) systems. They showed that the droplet size was much smaller 

(0.47 µm against 1.28 µm) in the case of C12Gly2, even though the emulsification protocol is 

unclear. Further understanding of this behaviour was investigated in this work. The HLDN value 

of a SOW systems gives precious information regarding the surfactant affinity towards the 

aqueous or the oil phase, and the resulting Winsor phase behaviour at equilibrium. Salager et 

al.249 argues that the morphology and stability of emulsions, outside the equilibrium conditions, 

can be predicted by the HLDN value. 

5.1. Granulometry and stability rationalized by HLDN evolution  

The influence of the oil, characterized by the EACN value, was investigated in the framework 

of the HLDN theory. The water-to-oil ratio (WOR) was varied and emulsions were agitated using 

an Ultra-turrax® according to the procedure described in section 3.4. Stability monitoring of 

the emulsions was achieved using a Turbiscan so as to detect the different processes involved 

in emulsion destabilization. 

Droplet granulometry is an indicator of phase mixing efficiency: the lower the interfacial tension, 

the smaller the resulting droplets.280 D[4,3] measured in emulsions formed with oils of varying 

EACN from 2 to 16, are presented in Table 4.2. As expected, droplets are smaller close to 

HLDN = 0, i.e. EACN = 8, corresponding to an interfacial film with zero curvature, favouring an 

efficient deformation of phases. HLDN = 0 also corresponds to a minimum in interfacial tension 

and viscosity, improving the mixing efficiency.251–255,281  The slow evolution of C12Gly2 

emulsions after preparation allowed measuring droplet size including with n-octane although 

the destabilization is supposedly much faster when HLDN is close to 0.282  

Table 4.2. Droplet D[4,3] of emulsions containing 1 wt.% C12Gly2 and prepared by varying the nature of 
the oil and the Water-to-Oil Ratio (wt./wt.). D[4,3] are measured 5 minutes after preparation. 

Oil EACN HLDN 
D[4,3] (µm) at WOR 

20-80 30-70 50-50 70-30 80-20 

cyclohexane 2.1 6.1 48.8 55.9 34.8 15.2 7.5 

cyclooctane 4.1 4.1 36.9 31.4 21.5 11.4 5.2 

n-hexane 6 2.2 18.2 17.9 16.8 9.8 3.5 

n-octane 8 0.2 2.9 1.9 1.7 1.5 2.0 

n-decane 10 -1.8 6.5 7.6 21.4 11.8 14.2 

n-dodecane 12 -3.8 8.6 13.7 28.8 19.3 24.4 

n-tetradecane 14 -5.8 11.5 17.6 27.1 30 33.8 

n-hexadecane 16 -7.8 12.3 20.7 32.8 34.4 36.0 
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Based on D[4,3] measurements, iso-granulometry curves shown in Figure 4.11 were 

calculated and presented in a formulation / composition cartography. Interfacial tension being 

minimal for EACN = PACN, phases are efficiently mixed and small droplets are formed. This 

is confirmed as for every WOR investigated, the smallest droplets are obtained with n-octane 

(ACN=8) which is the closest n-alkane compared to C12Gly2 PACN (8.2). In the same way, 

droplet size increases as EACN differs from PACN at all WOR. Interestingly, no catastrophic 

phase inversion was observed including for high internal phase emulsions (HIPE), i.e. WOR 

20-80 and 80-20. Those HIPE present smaller droplets than emulsions using the same oil at 

others WORs.  

 

Figure 4.11. Iso-granulometry curves of emulsions containing 1 wt.% C12Gly2 and prepared by varying 
the nature of the oil (EACN) and the Water-to-Oil Ratio (wt./wt.). Droplet D[4,3] are measured 5 minutes 
after preparation. O/W and W/O emulsions are represented by blue dots and yellow dots respectively 
and symbol size is varied with D[4,3] values. 

Stability monitoring with static multiple light scattering (Turbiscan®) allows identifying the 

phenomena involved in emulsion destabilization. First of all, due to density differences, 

emulsions tend to cream (O/W) or sediment (W/O). This sedimentation or creaming front can 

be seen in BS signals evolution,283,284 leading eventually to an increase in transmitted light in 

the continuous phase region as droplets migrate, i.e. bottom for O/W and top for W/O. 

Secondly, aggregation and coalescence of droplets also contribute to emulsion destabilization. 

Droplet aggregation corresponds to droplets sticking together but no increase in diameter. On 

the other hand, coalescence corresponds to droplets merging together, forming bigger droplets 

until the internal phase is eventually released as a separate phase. Both aggregation and 

coalescence phenomena cause the apparent number of dispersed objects to decrease as a 

droplet agglomerate will scatter light the same way as one object would. Additionally, Ostwald 
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ripening, causing smaller droplets to diffuse into larger ones until total dissolution also 

contribute to decreasing the droplet number. Consequently, BS light signal, directly dependent 

on the number of dispersed objects, decreases. Examples in the case of cyclohexane W/O 

and dodecane O/W emulsions at WOR 50-50 are given in Figure 4.12. In both those 

emulsions, no internal phase release is visible. This would correspond to TR signal increasing 

at the bottom (W/O) or at the top (O/W) of the sample. 

 
Figure 4.12. TR and BS light signals over time for water / cyclohexane (left) and dodecane / water (right) 
emulsions (WOR = 50-50, 1% C12Gly2). Creaming and sedimentation fronts are represented by 
horizontal arrows on BS signals and vertical arrows on TR evolution. Coalescence and/or aggregation 
and/or Ostwald ripening are visible as BS decreases over time.  

Figure 4.13a shows the evolution of internal phase separation over 14 days. For every WOR 

investigated in this work, the most unstable emulsions are the ones formed with n-octane: fast 

increase in TR light at the top of the sample is observed in O/W emulsions for EACN = 8 (n-

octane) evolving towards a W III microemulsion system for WOR 30-70, 50-50 and 70-30. At 

low water content (WOR 20-80), excess oil is quickly released due to facilitated droplet 

coalescence. Inversely, at high water content (WOR 80-20), oil droplets cream but the oil 

content being low, phase separation is only slightly visible with non-zero TR light in the upper 

part of the sample. Also, emulsions prepared with n-hexane (HLDN = 2.2) and n-decane 

(HLDN = -1.8), i.e. with EACN close to PACN, show fast internal phase separation.  

W/O emulsions (cyclohexane and cyclooctane) showed significant internal phase release at 

low WOR (20-80) corresponding to the largest droplet sizes shown in Figure 4.11. On the 

contrary, O/W emulsions (dodecane, tetradecane and hexadecane) at high WOR (80-20) did 

not even though droplet sizes were comparable with those of W/O emulsions for EACN very 

different from PACN. O/W droplet interfaces are thus better stabilized than W/O ones, probably 

due to poor solubility of C12Gly2 in water compared to its solubility in cyclohexane and 

cyclooctane. Indeed, solubilization of the surfactant in the bulk continuous phase reduces the 

effective concentration of surfactant adsorbed at the droplets interface, destabilizing the 
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droplets. This is supported by the absence of significant internal phase release for WOR higher 

than 20-80 in W/O emulsions: when the amount of oil is decreased, the fraction of C12Gly2 

solubilized in the continuous phase is also reduced and droplet interface stability is improved. 

 

Figure 4.13. (a) Relative volume of released internal phase over time for emulsions prepared with 
1% C12Gly2 and by varying the nature of the oil and the Water-to-Oil Ratio (WOR) and (b) corresponding 
relative volume of released internal phase after 14 days. 

The volume percentage of released internal phase after 14 days shown in Figure 4.13b is in 

accordance with the expected evolution in the frame of HLDN theory.249,282 The PACN of 

C12Gly2 being of 8.2, the most unstable emulsions are formed with n-octane (HLDN = 0.2). This 

is verified at WOR ranging from 20-80 to 80-20. For WOR 70-30, the volume of released 

internal phase is comparable for n-hexane, n-octane and n-decane emulsions. However, the 

kinetics of destabilization shown in Figure 4.13a confirms that the n-octane emulsion is more 

unstable than the n-hexane and n-decane ones. 

Phenomena of coalescence and/or flocculation and/or Ostwald ripening can be quantified by 

looking at the BS light variations. A decrease in BS while TR remains null indicates a decrease 

in the number of light scattering objects as expressed in equation (10), caused by combinations 

of these objects. A way to discriminate those phenomena is to re-measure droplet size after 

stability monitoring: if droplet size is unchanged, droplets flocculate without coalescing or 

dissolving into one-another. After smoothly re-agitating the emulsions to disperse the droplets 

homogeneously in the sample, size was re-measured. Results are presented in Figure 4.14. 

In most samples, droplet size did not change significantly over 14 days, meaning that droplet 

coalescence and Ostwald ripening were not preponderant destabilization phenomena. 
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Significant droplet size changes are, however, observed in n-hexane W/O emulsions (WOR 

20-80, 30-70 and 80-20), n-decane O/W emulsions (WOR 20-80 and 30-70) and n-octane O/W 

emulsions (WOR 20-80 and 30-70). Surprisingly, one would expect the size to evolve 

importantly in n-octane emulsions as the fast destabilization was previously shown, but size 

re-measured after 14 days was not significantly different at WOR 50-50 to 80-20. Due to low 

interfacial tension, the smooth re-agitation could have been sufficient to re-form very small 

droplets and restore the initial state of the emulsion. 

 

Figure 4.14. Droplet D[4,3] of emulsions containing 1 wt.% C12Gly2 and prepared by varying the nature of 
the oil (EACN) and the Water-to-Oil Ratio at initial state () and after 14 days (). Significantly different 
diameters are represented in red (). 

 

5.2. Process and surfactant concentration influence on emulsification 

Emulsions at WOR 50-50 were prepared either by mechanical agitation using an Ultra-turrax® 

or by dynamic temperature phase inversion (see procedures in section 3.4). The D[4,3] emulsion 

droplet diameters are compared in Figure 4.15a for oils of EACN ranging from 6 to 14. Indeed, 

due to low PIT value (< 0°C, see Table 4.3), emulsions with EACN under 6 could not be 

inverted for practical reasons.  

Table 4.3. PIT values for oils ranging from EACN 2.1 to 14 calculated from the PIT evolution with ACN 
presented in Figure 4.9a. Cyclohexane and cyclooctane emulsions could not be inverted as the PIT 
value cannot be attained. 

Oil EACN PIT (calculated) 

cyclohexane 2.1 -17.8°C 

cyclooctane 4.1 -3.7°C 

n-hexane 6 9.7°C 

n-heptane 7 16.8°C 

n-octane 8 23.9°C 

n-nonane 9 30.9°C 

n-decane 10 38.0°C 

n-dodecane 12 52.1°C 

n-tetradecane 14 66.2°C 
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Phase inversion induces the change of curvature from negative to positive, passing by the 0-

curvature point, i.e. the PIT. At this particular temperature, phases are sheared very efficiently 

due to minimal interfacial tension of the order of 10-2-10-5 mN.m-1,253,285 and viscosity255 and the 

resulting droplets are much smaller than for mechanically emulsified systems.286,287 In the case 

of n-octane, droplet size is comparable with both processed as the HLDN = 0 point is reached 

at room temperature when mechanically emulsifying. Droplet size of PIT emulsified systems 

tends to decrease as HLDN differs from 0. This is due to the quicker destabilization close to 

HLDN = 0 between preparation and size measurement (5 minutes). Destabilization kinetics is 

also visible in Figure 4.15b with the increase of released internal phase over time: a peak in 

instability is reached in Figure 4.15c for n-octane emulsion, which dephases more and faster 

than other emulsions for which stability is comparable with  little dephasing (< 5%) observed 

after 14 days. Indeed, the smaller size of droplets contributes to decreasing the creaming and 

sedimenting processes while Brownian motion contributes to avoiding agglomeration and thus 

coalescence.288  

On the other hand, increasing the surfactant concentration provides a better covering of 

droplets surface. Two cosmetic oils, namely octyl octanoate (EACN = 8.1)147 which is an ester 

used in skin care products as an emollient and as flavouring agent (fruity, sweet taste) in food 

products,289–291 and squalane (EACN = 24.4)127 which is a branched alkane used as an 

emollient in skin care products, were used as oil phases in this series of emulsions. The 

granulometry evolution with the oil EACN is in accordance with the previously observed 

tendency at 1% C12Gly2. By increasing C12Gly2 concentration from 1% to 3%, not only droplet 

size is decreased as shown in see Figure 4.15d, but stability is also improved. The interface 

being better stabilized, significant phase separation (> 5 vol.%) was observed after 14 days 

only in the case of n-octane and octyl octanoate (HLDN ~ 0) while other emulsions were better 

stabilized. Also, diameter evolution after 14 days shows that no significant coalescence occurs, 

except for HLDN ~ 0. As depicted in Figure 4.15f, the main stability improvement compared to 

the 1% C12Gly2 emulsion series is observed for n-hexane and n-decane emulsions.  

Octyl octanoate (HLDN = 0.1) initial droplet size concurs with that of n-octane (HLDN = 0.2) 

droplets. However, the octyl octanoate emulsion destabilizes slower: droplet size increases 

significantly but internal phase release appears only after 11 days, see Figure 4.15d and e. 

For that particular oil, the droplet size evolution after 14 days is important. This may be 

attributed to the higher solubility of octyl octanoate in water compared to alkanes, due to its 

polarity. Solubility of the dispersed phase into the continuous one favours Ostwald ripening as 

destabilization phenomenon. The HLDN value of the squalane emulsion being of -16.2, the 

formed O/W droplets are relatively big, in accordance with the general tendency observed with 
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other alkanes and cycloalkanes, and the emulsion is the most stable. No significant droplet 

size evolution or internal phase release are observed. 

 
Figure 4.15. Evolution of (a) droplets D[4,3], (b) relative volume of released internal phase over time, (c) 
corresponding relative volume of released internal phase after 14 days in emulsions with oils of various 
EACN prepared by varying the emulsification process (WOR 50-50, 1% C12Gly2), and evolution of (d) 
droplets D[4,3], (e) relative volume of released internal phase over time and (f) corresponding relative 
volume of released internal phase after 14 days in emulsions with oils of various EACN prepared by 
varying the C12Gly2 surfactant concentration (WOR 50-50, emulsified using the Ultra-turrax® procedure). 

 

6. Conclusions 

Based on the PIT-slope classification, the glyceryl alkyl ethers studied are surfactants 

equilibrated between hydrophilicity and lipophilicity. Both monoglyceryl ethers C10Gly and 

C12Gly decrease the hydrophilicity of the C10E4 / n-octane / water reference system whereas 

diglyceryl ethers C10Gly2 and C12Gly2 tend to increase it, even if the effect of C12Gly2 is only 

weakly positive because its amphiphilicity at 25°C is similar to that of C10E4. By looking at the 

SPI-slope classification, the general trend seems to concur with the PIT-slope one. However, 

and interesting outcome is that for similar temperature sensitivity of C10Gly2 and C12Glu, the 

diglyceryl ether has greater salt tolerance with a higher SPI-slope value. This indicates this 

type of surfactants for salt tolerant applications, e.g. EOR dealing with highly salted sea water. 

The reader should keep in mind that, even though those classification scales are quantitative, 

good alternative to the empirical HLB scale, and rely on experimental interfacial properties of 

SOW systems, they remain only comparative and refer to a reference system. 
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Considering the HLDN approach for designing emulsions of desired morphology, granulometry 

and stability was shown to be an efficient, quantitative methodology. The full HLDN equation 

coefficients were determined for the 1-O-dodecyl diglyceryl ether surfactant. Results outlined 

that temperature and salinity sensitivities are reduced by almost 3 times between SOW 

systems containing C12Gly2 compared to CiEj surfactants (𝜏 = 0.14°C-1 against 0.40°C-1 and 

𝛿 = 0.53 wt.% against 0.16 wt.% for C12Gly2 and C10E4 respectively). A PACN value of 8.2 for 

C12Gly2 was determined by PIT evolution with ACN, in accordance with literature values using 

the PIT-slope method.278 Differences in temperature and salinity sensitivity between C12Gly2 

and C10E4 are attributed to hydroxyl groups acting as both hydrogen-bond donors and 

acceptors, whereas ethers bonds only act as hydrogen-bond acceptors. 

A general tendency in the evolution of emulsion granulometry and stability was demonstrated 

with alkanes and cycloalkanes and verified with two more complex oils, namely octyl octanoate 

(EACN = 8.1, HLDN = 0.1) and squalane (EACN = 24.4, HLDN = -16.2). Emulsions prepared 

by varying the nature of the oil (EACN) intervening directly in the HLDN expression, showed 

significant differences in granulometry and stability. The minimum of interfacial tension 

between oil and water being attained for EACN = PACN, the formation of smaller droplets 

(about 1 µm) is favoured when using n-octane (ACN = 8) or octyl octanoate (EACN = 8.1). At 

every investigated emulsion WOR, the droplet size increases as oil EACN differs from the 

surfactant PACN. For HLDN = 0, the affinity of C12Gly2 is equivalent for both water and oil at 

25°C, and the interfacial curvature is close to 0, causing droplets to destabilize quickly. Also, 

the kinetics of internal phase release is faster with n-octane than any other investigated oil, 

regardless of the emulsion WOR. The evolution of stability with EACN is in accordance with 

HLDN as stability increases as HLDN differs from 0 and EACN differs from 8.2. 

Both the surfactant concentration and the emulsification process are factors not considered in 

the HLDN approach, although very influent on the granulometry and stability of emulsions. 

Increasing the surfactant concentration from 1% to 3% had little impact on n-octane emulsion 

granulometry but reduced by more than 10 µm the droplet size for other emulsions due to 

better droplet interface covering. Stability was also improved with less than 5 vol.% of released 

internal phase after 14 days, except for HLDN ~ 0 emulsions. In the same way, emulsions 

prepared by PIT allowed forming droplets inferior to 2 µm for HLDN ≠ 0, much more stable over 

time than emulsions prepared by Ultra-turrax® as droplet flocculation and coalescence is 

limited by Brownian motion. 
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General Conclusion 

The multiple aims of this thesis were to take up challenges in formulation science, in relation 

with the design and rationalization of stability in complex, multiphasic systems. Target 

applications comprise solid dispersions, foams, emulsions and microemulsions. To meet those 

problematics, applied to nanoparticles (NPs), oils and surfactants, conceptual and predictive 

tools were developed. This way, relations between the chemical composition, the 

physicochemical properties and the applicative properties were established: from the raw 

material to the potential application.  

In a first chapter, the complementarity of Hansen Solubility Parameters (HSP) approach and 

DLVO theory was examined in the case of TiO2 NPs in aqueous and non-aqueous dispersions. 

In a second chapter, the hydrophobicity of oils, characterized by the Equivalent Alkane Carbon 

Number (EACN) value, was modelled and predicted using machine learning techniques, 

namely neural networks and graph machines. Finally, the amphiphilic behaviour of an 

innovative surfactant, C12Gly2, was studied in Chapter 3 in aqueous solution for application as 

foam stabilizer, in relation with its surface rheology. In the last chapter, this same surfactant 

was investigated in Surfactant / Oil / Water (SOW) systems within the Normalized Hydrophilic-

Lipophilic Deviation (HLDN) framework, indicated for the rationalization and design of 

emulsions and microemulsions.  

 

The study of TiO2 nanoparticles presented in Chapter 1 led to the development of a 

standardized method for the analysis of solid dispersions, based on analytical sedimentation 

and electrostatic interactions measurements. The analytical methodology, first developed in 

aqueous media, was extended to non-aqueous solvents in the scope of HSP calculation. 

Indeed, using HSP for particles would facilitate the solvent choice for particle synthesis and 

catalysis, but also to design composite materials for instance. 

In aqueous media and in methanol, both the TSI value and Stokes diameter, obtained by 

Turbiscan monitoring of dispersions destabilization, were correlated to particles’ zeta potential 

ζ, in accordance with the strength of electrostatic interactions described by the DLVO theory. 

Extending the study to a set of 15 additional non-aqueous solvents, the stability monitored 

using that same methodology could not be rationalized by either the DLVO theory, nor the HSP 

specific solvent / surface interactions individually. Indeed, some dispersions with ζ ~ 0 mV 

remained stable over time. In this context, the complementarity of both theories was explored. 

By considering the HSP approach only when DLVO interactions were negligible, i.e. 

(VR + VA)max < 0, it was made possible to discriminate the involved stabilizing phenomena for 

each sample. Both zeta potential measurement and Turbiscan monitoring of stability were 
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complementary. The Hansen sphere of TiO2 P25 NPs was determined in the (VR + VA)max < 0 

conditions by two quantitative stability descriptors avoiding an empirical visual rating of 

dispersions stability: 𝑅𝑇𝑆𝐼2ℎ
𝑡𝑜𝑝

 and dStokes, yielding similar results shown in Figure 5.1. 

 

Figure 5.1. Solubility sphere of TiO2 P25 1 g/L in 17 solvents based on (a) Stokes diameters dStokes and 
(b) 𝑅𝑇𝑆𝐼2ℎ

𝑡𝑜𝑝
 at 25 °C. 

The standardized method developed in this first chapter could be extended to other types of 

particles and metal oxides. However, as the analytical method based on light scattering 

requires light diffusing particles, it would thus be ineffective for absorbing ones. Preliminary 

tests on graphene carried out in the lab tend to confirm this limitation. In that case, other 

detection methods should be implemented to detect destabilization kinetics. Moreover, the 

deviation from the spherical shape approximation could result in significant errors for Stokes 

diameter calculation and zeta potential measurements. This could be an additional challenge 

for sheet-like and worm-like particles. 

A guideline to use HSP for particles efficiently is to evaluate the strength of electrostatic 

interactions first. By doing so, one can use the solubility sphere as an indication of potential 

stabilizing solvents, i.e., those comprises within the sphere. Also, coordinates located inside 

the sphere can be obtained with solvent mixtures as dispersing media.  

 

The problematic of oil hydrophobicity prediction through the modelling of EACN values was 

addressed in Chapter 2. Such hydrophobicity scale refers to the equivalent length of the linear 

alkane that would behave similarly to the oil under study in a SOW system. However, the 

standard experimental determination of EACN is costly and time-consuming.127 EACN is 

relevant in applications including emulsions, microemulsions, perfume solubilization or 

enhanced oil recovery. Predictive tools, i.e. nonlinear regression (Neural Network, NN) based 

on COSMO-RS σ-moments, and regression on graphs (Graph Machine, GM) derived from the 
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SMILES codes, were applied to model EACN values from a set of experimentally studied 

compounds.  

A reliable database was constituted and enriched with experimental measurements, in 

particular regarding branched compounds that were under-represented in literature data. A 

particular attention must be brought to the database constitution as ambiguous or erroneous 

values result in lowering the models’ predictive ability. By successive iterations of increasing 

complexity, the best models were found to be NN-6N and GM-5N, with the lowest LOO scores 

of 0.8 and RMSTE of 0.4 and 0.3 respectively, preventing overfitting to experimental data and 

ensuring optimal predictive ability. Both these models were used to estimate EACN values for 

new compounds without experimentation and yielded equivalently reliable modelling and 

predictive ability. On a test set of 10 molecules, voluntarily chosen as polyfunctional and non-

trivial to estimate, the estimation error was of 0.7 and 0.5 EACN units for NN and GM 

respectively, which is improved compared to previously reported models for EACN estimation 

based on multiple linear regressions or genetic algorithms.130,133,134 

 

Figure 5.2. (a) RMSTE and LOO scores of NN (blue) and GM (pink) models of increasing complexity for 
the 111 molecules of the training set and (b) EACN estimations computed by the GM-5N (45 parameters, 
pink diamonds) and the NN-6N (37 parameters, blue diamonds) vs. experimental EACN values for the 
10 molecules of the test set. 

Evolution of EACN values in homologous series can be approached by a linear model,134 which 

is well estimated by the GM-5N model, but deviations are observed with the NN-6N one. For 

practical considerations, the GM model is more convenient as it only requires readily available 

SMILES codes as entry values, whereas the NN model requires the use of COSMO-RS for σ-

moments calculations.  

The demonstration programs, available in Appendix A8, constitute powerful tools to predict 

EACN values for any molecule containing C, H, O, N or Cl atoms. However, one should keep 
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in mind that methods described in Chapter 2 are appropriate for chemical structures close to 

those represented in the learning dataset. Otherwise, the prediction accuracy could be 

importantly decreased. Diversification of the chemical structures in the training database could 

constitute a potential improvement for the extension of these predictive models to a wider 

range of oils, such as silicones for instance.  

  

As regards to the 1-O-dodecyl diglyceryl ether (C12Gly2) surfactant, a detailed evaluation of its 

behaviour in aqueous solutions and at the air / water and oil / water interfaces was carried out. 

Chapter 3 focused on aqueous solutions and air / water interface in view of potential use as 

foam stabilizer, in comparison with two other nonionic surfactants, namely C12E5 and C12Glu2, 

differing only by the nature of the polar head. Indeed, foams intervene in a variety of end-use 

products, among which are construction materials, personal care products but also food and 

beverages. 

In contrast with polyethoxylated fatty alcohols and alkyl polyglucosides, C12Gly2 has the ability 

to form vesicles and lamellar LC in equilibrium with aqueous solutions at concentrations as low 

as 10 times the CMC. The adsorption isotherm showed an interestingly low minimal surface 

tension (𝛾𝑚𝑖𝑛 = 26.8 mN.m-1), and allowed calculating an area per molecule close to that of 

C12Glu2, and lower than that of C12E5. Then, the rheological response of those surfactants 

adsorbed layers under surface oscillations revealed a higher value of the high frequency 

elasticity limit 𝜀0 at 1 CMC in the case of C12Gly2, indicative of strong intermolecular interactions 

and attributed to the presence of H-bond-forming -OH groups. 

 

Figure 5.3. (a) Surface tension isotherm of C12Gly2 at 25.0°C and LC phase formed at 3×10-3 M 
observed at the optical microscope with polarized light, (b) dilational surface elasticity C12Gly2 at 0.1 (), 
0.5 () and 1 CMC (), and (c) foam volume evolution for the three surfactants under study. 

The high surface elasticity accounts for the good foam stability of C12Gly2 solutions as thermally 

induced surface deformations are more easily absorbed, preventing film rupture. The 

contribution of LC to surface elasticity could not be observed due to necessity of measuring 

viscoelastic properties in diffusion-controlled conditions, i.e., at c ≤ CMC. However, LC 



General Conclusion 

 

117 

  

dispersion were shown to contribute to foam stabilization in diglycerol monoesters, the 

structures of which are very similar to C12Gly2.205 On the other hand, the low foamability of 

C12Gly2 was rationalized by its low value of molecular exchange parameter 𝜔0, indicative of 

slow exchanges between bulk and surface, in particular during foam generation by air 

sparging. Concerning foam ageing, the main destabilization phenomenon was identified to be 

bubble coalescence, which rate was inferior for C12Gly2 compared to C12Glu2 and was not 

measurable for C12E5 due to quick foam break. 

Using C12Gly2 as foaming agent would require overcoming its poor foamability. This could be 

investigated by varying the bubble generation process, e.g. by reducing the air flow or 

nucleating gas bubbles from the solution by gas dissolution.193 Potential association with 

another surfactant could also be an option to improve foamability while maintaining satisfactory 

stability. 

 

In the final chapter, C12Gly2 properties are further investigated in SOW systems, in particular 

regarding the formation of emulsions and microemulsions. The relative amphiphilicity of 

CnGlum, CnGlym and CiEj in SOW systems were compared in terms of temperature and salinity 

sensitivities by the PIT-slope and SPI-slope methods. In a second time, the influence of 

formulation variables on the stabilization of the oil / water interface stabilized by C12Gly2 was 

quantified. The full HLDN equation coefficients then being known for C12Gly2, emulsion 

characteristics were put in relation with HLDN values.  

Both PIT-slope and SPI-slope classification scales agree well for the studied surfactants. 

CnGlum appear as the most hydrophilic ones, with highly positive values, due to the important 

number of -OH on the polar head. CnGlym, however, are more moderate amphiphiles. When 

comparing temperature and salinity classifications, C10Gly2 and C12Glu respond similarly to 

temperature variations, but the diglyceryl ether has greater salt tolerance with a higher SPI-

slope value, indicating this type of surfactant for salt-tolerant applications. 

By means of dynamic PIT and SPI experiments, carried out varying the n-alkane length, 

temperature and salinity sensitivities are shown to be reduced by almost 3 times between SOW 

systems containing C12Gly2 compared to CiEj surfactants. The observed differences in 

sensitivity are attributed to hydroxyl groups acting as both hydrogen-bond donors and 

acceptors, whereas ethers bonds only act as hydrogen-bond acceptors. 

The emulsions formed using C12Gly2 as surfactant for different types of oils showed a minimum 

in granulometry, corresponding to a maximum in destabilization kinetics. This corresponds to 

the oil which EACN is the closest to C12Gly2 PACN (8.2), regardless of the oil and water 

proportions. Interestingly, both W/O and O/W emulsions could be formed, and their relative 

stability and granulometry follows the same trend on both sides away from HLDN = 0. The 
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granulometry evolution tendency observed in alkanes (cyclic and linear) is also verified in two 

more complex oils, namely octyl octanoate and squalane. Minimal interfacial tension between 

oil and water being attained for EACN = PACN, the formation of smaller droplets (about 1 µm) 

by mechanical agitation is favoured when using n-octane (ACN = 8) or octyl octanoate 

(EACN = 8.1). As HLDN deviates from 0, droplet size increases but so does the stability. 

Indeed, emulsions monitored by light scattering over two weeks showed creaming and 

sedimentation phenomena, but coalescence and Ostwald ripening get close to null in both O/W 

and W/O emulsions with higher (or lower) HLDN values, indicating an efficient stabilization of 

the interface. 

 

Figure 5.4. Iso-granulometry curves of emulsions containing 1 wt.% C12Gly2 and prepared by varying 
the nature of the oil (EACN) and the Water-to-Oil Ratio (wt./wt.). O/W and W/O emulsions are 
represented by blue dots and yellow dots respectively and symbol size is varied with D[4,3] values. 

Both the surfactant concentration and the emulsification process are factors not considered in 

the HLDN approach, although very influent. Increasing the surfactant concentration from 1% to 

3% reduced by more than 10 µm the droplet size due to better droplet interface covering. 

Stability was also improved with less than 5 vol.% of released internal phase after 14 days, 

except for HLDN ~ 0 emulsions. In the same way, emulsions prepared by PIT allowed forming 

droplets inferior to 2 µm for HLDN ≠ 0, much more stable over time than emulsions prepared 

by Ultra-turrax® as droplet flocculation and coalescence is limited by Brownian motion. 

Knowing the HLDN of a SOW system facilitates the design of emulsions with predictable 

features. Regarding C12Gly2, further investigations on the potential catastrophic inversions at 

WOR > 80-20 or WOR < 20-80 could extend the types of systems that could be formed, e.g. 

multiple emulsions. A rheological study of emulsions would also increase the range of 

specifications to be put in relation with HLDN values for practical use.  
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Appendix 

A1.  Abbreviations 

 

𝑎0  Polar head surface 

𝐴  Affinity 

ACN Alkane Carbon Number 

𝐴𝑖  Hamaker’s constant 

𝐴𝑚  Area per molecule 

AN Acceptor Number 

BS Backscattered light signal 

C* Optimal concentration 

C12E5 Pentaethylene glycol monododecyl ether 

C12Glu2 n-dodecyl-β-D-maltoside 

C12Gly2 1-O-dodecyl diglyceryl ether 

𝑐  Bulk surfactant concentration 

CiEj Polyethoxylated fatty alcohol 

CMC Critical Micellar Concentration 

CnGlum Alkylpolyglucosides 

COSMO-RS COnductor like Screening MOdel for Real Solvents 

CPT Capillary Pressure Tensiometer 

D[4,3] Statistical diameter in volume 

𝑑  Diameter 

DFA  Dynamic Foam Analyzer 

DLS Dynamic Light Scattering 

DLVO Derjaguin Landau Verwey Overbeek  

DMF Dimethylformamide 

DMSO Dimethylsulfoxide 

DN Donor Number 

dStokes Stokes diameter 

𝐸  Surface dilational visco-elasticity 

𝑒  Electron charge 

EACN Equivalent Alkane Carbon Number 

EO Ethylene Oxide 

EON Ethylene Oxide Number 

EOR Enhanced Oil Recovery 

FID Flame Ionization Detector 

𝑓𝑙𝑖𝑞  Liquid fraction 

fw Water/oil fraction 

𝑔(𝑑)  Asymmetry factor 
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g Gravitational constant 

GC Gas Chromatography 

GM Graph Machine 

ℎ  Planck’s constant 

HBA Hydrogen Bond Acceptor 

HBD Hydrogen Bond Donor 

HIPE High Internal Phase Emulsion 

HLB Hydrophilic-Lipophilic-Balance 

HLDN Normalized Hydrophilic-Lipophilic-Deviation 

HSP Hansen Solubility Parameters 

𝐼0  Incident light intensity 

𝐼  Ionic strength 

𝐼𝑆(𝜃)  Scattered light intensity at the angle 𝜃 

IP Ionization Potential 

K Partition coefficient 

𝑘𝐵  Boltzmann constant 

Lα Lamellar liquid crystal phase 

𝑙  Length of the surfactant molecule lipophilic moiety 

LC Liquid Crystal 

LOOs Leave One Out score 

𝑀  Molar weight 

𝑀i
𝑋  σ-moment i 

MLP Multi-Layer Perceptron 

MLR Multiple Linear Regression 

𝑛  Refractive Index 

𝑁𝐴  Avogadro constant 

NC Number of carbon atoms 

𝑁ℎ  Number of height positions 

NMP N-methylpyrrolidone 

NMR Nuclear Magnetic Resonance 

NN Neural Network 

NP Nanoparticle 

O Oil 

O/W Oil in Water 

P n-octanol-water partition coefficient 

𝑝  Packing parameter 

PACN Preferred Alkane Carbon Number 

PEEK Polyether-ether-ketone 

PIT Phase Inversion Temperature 

pX(σ) σ-profile 

Q Flow rate 
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𝑄𝑒  Extinction efficiency 

QSPR Quantitative Structure Property Relationship 

R Molar gas constant 

𝑅  R-Ratio of Winsor 

R.T. Room Temperature 

RED Relative Energy Difference 

RMSE Root Mean Square Error 

RMSTE Root Mean Square Training Error 

RTSI Relative Turbiscan Stability Index 

S* Optimal salinity 

S Salinity 

SAD Surfactant Affinity Difference 

SMILES Simplified Molecular Input Line Entry Specification 

SMLS Static Multiple Light Scattering 

SOW Surfactant/Oil/Water 

SPI Salinity of Phase Inversion 

T* Optimal Temperature 

T Temperature 

t Time 

TBAH Tetrabutylammonium hydroxide 

TFA Trifluoroacetic acid 

THF Tetrahydrofuran 

THLB Hydrophilic Lipophilic Balance Temperature 

TR Transmitted light signal 

TSI Turbiscan Stability Index 

𝑢  Mobility 

𝑣0  Volume of the surfactant molecule lipophilic moiety 

𝑉  Volume 

v Sedimentation rate 

𝑉𝐴  Attractive potential 

VLOOs Virtual Leave-One-Out score 

𝑉𝑚  Molar volume 

𝑉𝑅  Repulsive potential 

𝑉𝑇  Total interaction potential 

W Water 

W I, W II, W III, W IV Winsor I, II, III, IV phases 

W/O Water in Oil 

WOR Water-to-Oil Ratio 

xi Molar fraction of surfactant i 

𝑧𝑚𝑖𝑛, 𝑧𝑚𝑎𝑥 Lower and upper height limits 

𝛼  Gain of the experimental setup 
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𝛽  Offset of the experimental setup 

𝛤  Surfactant surface concentration 

𝛾  Surface tension 

∆𝐺𝑚𝑖𝑥  Gibbs energy of mixture 

∆𝐺𝑠𝑜𝑙𝑣.  Energy of solvation 

∆𝐻𝑚𝑖𝑥  Enthalpy of mixture 

∆𝐻𝑣  Heat of vaporization 

∆𝑆𝑚𝑖𝑥  Entropy of mixture 

𝛿  Salinity sensitivity coefficient 

δd Dispersive interaction parameter 

δH Hildebrand solubility parameter 

δh Hydrogen bonding interaction parameter 

δp Polar interaction parameter 

𝜀′  Permittivity 

𝜀′0   Electrical permittivity of vacuum 

𝜀′𝑟  Relative permittivity 

𝜀0  High frequency limit of dilational surface elasticity 

𝜀𝑖  Imaginary part of surface dilational visco-elasticity 

𝜀𝑟  Dilational elasticity 

ζ Zeta potential 

𝜂  Viscosity 

𝜅−1  Debye-Hückel distance 

 𝜆  Wavelength 

𝜈  Frequency 

𝜈𝑒  Main electronic absorption frequency 

𝜌  Density 

𝜏  Temperature sensitivity coefficient 

𝛷  Volume fraction of dispersed phase 

𝜑  Dephasing angle 

𝜔0  Molecular exchange parameter 

𝜔  Oscillation pulse 
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A2. Hamaker’s constants calculation 

Hamaker’s constant A12 of component 1 in medium 2 is calculated with equation (4) from each 

component constants A1 and A2 expressed by equation (5). 

𝐴12 = (√𝐴1 − √𝐴2)
2
  (4) 

𝐴𝑖 =
3

4
𝑘𝐵𝑇

(𝜀′𝑟,𝑖−1)2

(𝜀′𝑟,𝑖+1)2 +
3ℎ𝜈𝑒(𝑛𝑖

2−1)2

16√2(𝑛𝑖
2+1)

3
2⁄
  (5) 

𝑎, the particle radius, is taken to be 25 nm. Ionic strength 𝐼 is taken to be 10-3 mol.m-3 in pure 

solvents and 1 mol.m-3 for samples with 10-3 M trifluoroacetic acid or tetrabutylammonium 

hydroxide. 𝜈 is the electronic absorption frequency and is calculated based on ionization 

potential IP as 𝜈 = 𝐼𝑃 ℎ⁄  where ℎ is Planck’s constant. 𝜀′𝑟,𝑖, 𝑛𝑖, IP and 𝜈 are listed in Table A1 

along with 𝐴𝑖 and 𝐴1𝑖 values.  

Table A1. Relative dielectric constant 𝜀′𝑟, refractive index 𝑛, main electronic absorption frequency 𝜈 
calculated based on ionization potential IP and Hamaker’s constants 𝐴𝑖 and 𝐴1𝑖 for TiO2 and solvents 
studied at 25.0 °C. 

Compound ε'r 𝒏 IP (eV) 𝝂 (1015 s-1) 𝑨𝒊 (10-20 J) 𝑨𝟏𝒊 (10-19 J) 

TiO2 48.0 2.550 9.5 a 2.3 30.1  

Acetone 20.7 1.359 9.69 b 2.3 3.3 1.3 

Acetonitrile 37.5 1.344 12.22 c 3.0 3.9 1.2 

γ-Butyrolactone 41.0 1.434 10.26 d 2.5 4.9 1.1 

DMF 36.7 1.430 9.12 c 2.2 4.2 1.2 

Ethanol 24.5 1.360 10.48 c 2.5 3.6 1.3 

Ethyl Acetate 6.0 1.372 10.11 c 2.4 3.5 1.3 

Heptane 1.9 1.387 10.08 c 2.4 3.6 1.3 

Isopropanol 17.9 1.377 10.15 e 2.5 3.8 1.2 

Methanol 32.7 1.315 10.85 b 2.6 3.0 1.4 

NMP 33.0 1.470 9.17 f 2.2 4.9 1.1 

Nitromethane 39.0 1.382 11.08 c 2.7 4.2 1.2 

Propylene Carbonate 64.9 1.419 10.5 g 2.5 4.6 1.1 

Pyridine 12.4 1.510 9.9 h 2.4 6.0 0.9 

THF 7.6 1.407 9.54 c 2.3 4.0 1.2 

Toluene 2.4 1.496 8.82 b 2.1 4.9 1.1 

Triethylamine 2.4 1.400 7.5 i 1.8 2.9 1.4 

Water 80.1 1.330 12.61 j 3.0 3.7 1.3 

a G. Balducci, G. Gigli, M. Guido, J. Chem. Phys. 1985, 83 (4), 1913–1916. 
b K. Watanabe, J. Chem. Phys. 1954, 22 (9), 1564–1570. 
c K. Watanabe, T. Nakayama, J. Mottl, J. Quant. Spectry. Radiative Transfer 1962, 2 (4), 369–382. 
d A. D. Bain, D. C. Frost, Can. J. Chem. 1973, 51 (8), 1245–1247. 
e K. Watanabe, J. Chem. Phys. 1957, 26 (3), 542–547. 
f L. Treschanke, P. Rademacher, J. Mol. Struct. 1985, 122 (1–2), 47–57. 
g Propylene carbonate https://ionscience.com/gases/propylene-carbonate/ (accessed Jul 15, 2021). 
h D. Stefanović, H. F. Grützmacher, Org. Mass Spectrom. 1974, 9 (10), 1052–1054. 
i K. Watanabe, J. R. Mottl, J. Chem. Phys. 1957, 26 (6), 1773–1774. 
j P. Gürtler, V. Saile, E. E. Koch, Chem. Phys. Lett. 1977, 51 (2), 386–391. 
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A3.  Turbiscan profiles of TiO2 dispersions in aqueous media 

In this section, the variations of transmitted (ΔT) and backscattered (ΔR) signals obtained using 

a Turbiscan LAB are shown for 1 g/L TiO2 P25 aqueous dispersions at various pH values. pH 

is adjusted by adding HCl or NaOH and ionic strength is kept constant at 10-3 M by NaCl 

addition. Signals were recorded from 0 (blue curve) to 24 hours (red curve). 

 

 

 

Figure A.1. Aqueous TiO2 dispersion such as pH = 3.1. 

 

 

Figure A.2. Aqueous TiO2 dispersion such as pH = 3.7. 
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Figure A.3. Aqueous TiO2 dispersion such as pH = 4.7. 

 

Figure A.4. Aqueous TiO2 dispersion such as pH = 5.5. 

 

Figure A.5. Aqueous TiO2 dispersion such as pH = 6.7. 
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Figure A.6. Aqueous TiO2 dispersion such as pH = 7.8. 

 

Figure A.7. Aqueous TiO2 dispersion such as pH = 9.5. 

 

Figure A.8. Aqueous TiO2 dispersion such as pH = 10.6. 



Appendix 

 

143 

  

A4.  Turbiscan profiles of TiO2 dispersions in “pure” non-aqueous solvents 

In this section, the variations of transmitted (ΔT) and backscattered (ΔR) signals obtained using 

a Turbiscan LAB are shown for 1 g/L TiO2 P25 non-aqueous dispersions with solvents used 

as received. Signals were recorded from 0 (blue curve) to 2 hours (red curve). Samples are 

presented in the order of increasing measured dStokes (same order as in Table 1.1). 

 

 

 

Figure A.9. Non-aqueous TiO2 dispersion in nitromethane. 

 

 

 

Figure A.10. Non-aqueous TiO2 dispersion in ethanol. 
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Figure A.11. Non-aqueous TiO2 dispersion in pyridine. 

 

Figure A.12. Non-aqueous TiO2 dispersion in isopropanol. 

 

Figure A.13. Non-aqueous TiO2 dispersion in acetonitrile. 
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Figure A.14. Non-aqueous TiO2 dispersion in dimethylformamide (DMF). 

 

Figure A.15. Non-aqueous TiO2 dispersion in N-methyl-2-pyrrolidone (NMP). 

 

Figure A.16. Non-aqueous TiO2 dispersion in tetrahydrofuran (THF). 
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Figure A.17. Non-aqueous TiO2 dispersion in acetone. 

  

Figure A.18. Non-aqueous TiO2 dispersion in γ-butyrolactone (GBL). 

 

Figure A.19. TiO2 dispersion in ultrapure water without electrolytes. 
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Figure A.20. Non-aqueous TiO2 dispersion in ethyl acetate. 

  

Figure A.21. Non-aqueous TiO2 dispersion in propylene carbonate. 

 

Figure A.22. Non-aqueous TiO2 dispersion in methanol. 
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Figure A.23. Non-aqueous TiO2 dispersion in heptane. 

 

Figure A.24. Non-aqueous TiO2 dispersion in toluene. 

 

Figure A.25. Non-aqueous TiO2 dispersion in triethylamine. 
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A5.  Turbiscan profiles of TiO2 dispersions in solvents with base or acid 

In this section, the variations of transmitted (ΔT) and backscattered (ΔR) signals obtained using 

a Turbiscan LAB are shown for 1 g/L TiO2 P25 non-aqueous dispersions with solvents to which 

tetrabutylammonium hydroxide (TBAH) or trifluoroacetic acid (TFA) were added (10-3 M). 

Signals were recorded from 0 (blue curve) to 2 hours (red curve). Samples are presented in 

the order of increasing measured dStokes (same order as in Table 1.2). 

 

 

 

Figure A.26. Non-aqueous TiO2 dispersion in nitromethane (10-3 M TFA). 

 

 

Figure A.27. Non-aqueous TiO2 dispersion in acetonitrile (10-3 M TFA). 
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Figure A.28. Non-aqueous TiO2 dispersion in isopropanol (10-3 M TFA). 

 

Figure A.29. Non-aqueous TiO2 dispersion in dimethylformamide (DMF + 10-3 M TFA). 

 

Figure A.30. Non-aqueous TiO2 dispersion in ethanol (10-3 M TBAH). 
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Figure A.31. Non-aqueous TiO2 dispersion in acetone (10-3 M TFA). 

 

Figure A.32. Non-aqueous TiO2 dispersion in propylene carbonate (10-3 M TFA). 

 

Figure A.33. Non-aqueous TiO2 dispersion in pyridine (10-3 M TBAH). 
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A6.  EACN determination with C6E4 surfactant 

 

 

Figure A.34.Partial experimental fish plot of C6E4/dipropyl ether/Water-T (left) and C6E4/diisopropyl 
ether/Water-T (right) systems at Water/Oil ratio equal to 1 (w/w) used to determine EACN values. 

The temperatures of the fish-tail points are 34.7 °C for dipropyl ether and 36.1 °C for 

diisopropyl ether. Those temperatures are reported to the calibration straight line obtained with 

C6E4/n-Alkanes/Water-T systems shown in Figure A.35. Resulting EACN values are 0.4 for 

dipropyl ether and 0.6 for diisopropyl ether. 

  

Figure A.35. Calibration straight line obtained with C6E4/n-Alkanes/Water-T systems at Water/Oil ratio 
equal to 1 (w/w) used to determine EACN values.146 
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A7.  Oil homologous series data and EACN estimations 

Table A2. Names, SMILES notations, three first σ-moments (different from zero) calculated with 
COSMO-RS, number of carbon atoms, experimental EACN and average EACN values determined from 
the Fish-tail-temperature T* reported in the literature for ternary systems CiEj/Oil/Water and estimated 
EACN values with the GM-5N and NN-6N models for the 56 molecules of the homologous series. 

Entry Compound SMILES code 𝑀0
𝑋 [a] 𝑀2

𝑋 [b] 𝑀3
𝑋 [c] NC EACNexp Ref. EACNGM

[d] EACNNN
[e] 

1 hex-1-ene CCCCC=C 154.47 17.08 3.03 6 - - 1.7 1.0 

2 hept-1-ene CCCCCC=C 174.54 17.93 3.06 7 - - 2.8 2.6 

3 oct-1-ene CCCCCCC=C 192.38 18.77 3.59 8 3.9 133 3.6 3.7 

4 non-1-ene CCCCCCCC=C 213.71 19.66 3.2 9 - - 4.8 5.0 

5 dec-1-ene CCCCCCCCC=C 234.26 20.46 3.17 10 5.5 133 5.6 6.2 

6 undec-1-ene CCCCCCCCCC=C 253.11 21.06 2.99 11 - - 6.8 7.3 

7 dodec-1-ene CCCCCCCCCCC=C 274.46 22.29 3.31 12 8.1 133 7.9 8.3 

8 tridec-1-ene CCCCCCCCCCCC=C 293.79 23.18 3.23 13 - - 9.0 9.5 

9 tetradec-1-ene CCCCCCCCCCCCC=C 314.61 24.11 3.38 14 - - 10.1 10.8 

10 pentadec-1-ene CCCCCCCCCCCCCC=C 334.71 25.24 3.47 15 - - 11.2 12.0 

11 hexadec-1-ene CCCCCCCCCCCCCCC=C 355.28 25.93 3.5 16 - - 12.3 13.0 

12 heptadec-1-ene CCCCCCCCCCCCCCCC=C 374.83 27.05 3.56 17 - - 13.3 13.7 

13 octadec-1-ene CCCCCCCCCCCCCCCCC=C 394.66 27.89 3.6 18 14 133 14.4 14.4 

14 1-chlorohexane CC[C:1]CCCCl 178.83 26.47 4.0 6 - - –0.6 1.2 

15 1-chloroheptane CCCCCCCCl 198.14 27.2 3.78 7 - - 0.6 1.8 

16 1-chlorooctane CCCCCCCCCl 219.07 28.31 4.13 8 - - 1.8 2.4 

17 1-chlorononane CCCCCCCCCCl 238.09 29.01 3.89 9 - - 2.5 3.0 

18 1-chlorodecane CCCCCCCCCCCl 257.74 29.94 3.76 10 3.5 
133,1

86 
3.6 3.7 

19 1-chloroundecane CCCCCCCCCCCCl 278.35 30.89 3.8 11 - - 4.5 4.6 

20 1-chlorododecane CCCCCCCCCCCCCl 297.96 31.52 3.82 12 5.6 
133,1

86 
5.7 5.7 

21 1-chlorotridecane CCCCCCCCCCCCCCl 318.51 32.66 3.9 13 - - 6.7 6.8 

22 1-chlorotetradecane CCCCCCCCCCCCCCCl 338.17 33.58 3.92 14 8 
133,1

86 
7.8 7.9 

23 1-chloropentadecane CCCCCCCCCCCCCCCCl 358.14 34.49 3.93 15 - - 8.9 8.7 

24 1-chlorohexadecane CCCCCCCCCCCCCCCCCl 378.22 35.15 3.98 16 9.8 
133,1

86 
9.8 9.6 

25 1-chloroheptadecane CCCCCCCCCCCCCCCCCCl 398.86 36.28 4.05 17 - - 10.9 10.1 

26 1-chlorooctadecane CCCCCCCCCCCCCCCCCCCl 418.41 37.03 4.09 18 - - 11.7 11.1 

27 hex-1-yne C[C:1]CCC#C 150.44 31.68 1.42 6 - - –3.9 –2.3 

28 hept-1-yne CC[C:1]CCC#C 170.69 32.6 1.53 7 - - –2.5 –1.9 

29 oct-1-yne CCCCCCC#C 188.77 33.22 1.53 8 –1.8 133 –1.3 –1.8 

30 non-1-yne CCC[C:1]CCCC#C 209.6 33.93 1.37 9 - - –1.0 –1.0 

31 dec-1-yne CCCCCCCCC#C 230.44 35.32 1.68 10 0.1 133 0.2 0.1 

32 undec-1-yne CCCCCCCCCC#C 249.55 35.61 1.43 11 - - 1.5 1.4 

33 dodec-1-yne CCCCCCCCCCC#C 265.87 36.64 1.52 12 2.0 133 2.0 1.8 

34 tridec-1-yne CCCCCCCCCCCC#C 290.57 38.01 1.86 13 - - 3.2 3.2 

35 tetradec-1-yne CCCCCCCCCCCCC#C 310.75 38.72 1.96 14 3.9 133 3.8 3.8 

36 pentadec-1-yne CCCCCCCCCCCCCC#C 330.13 39.49 1.74 15 - - 4.9 4.4 

37 hexadec-1-yne CCCCCCCCCCCCCCC#C 350.9 40.53 2.02 16 - - 5.6 4.8 

38 heptadec-1-yne CCCCCCCCCCCCCCCC#C 371.5 41.48 2.09 17 - - 6.6 5.1 

39 octadec-1-yne CCCCCCCCCCCCCCCCC#C 391.04 42.25 2.09 18 - - 7.4 5.4 

40 hexan-2-one CC[C:1]CC(C)=O 162.69 47.19 35.22 6 - - –4.9 –4.5 

41 heptan-2-one CCCCCC(C)=O 182.02 47.29 34.83 7 - - –3.8 –3.7 

42 octan-2-one CCCCCCC(C)=O 201.89 48.96 35.68 8 –3.4 134 –3.4 –3.2 

43 nonan-2-one CCCCCCCC(C)=O 221.83 48.89 34.74 9 - - –2.2 –2.4 

44 decan-2-one CCCCCCCCC(C)=O 242.35 50.66 35.46 10 –2.1 134 –2.2 –1.8 

45 undecan-2-one CCCCCCCCCC(C)=O - - - 11 –1.3 134 –1.0 – 

46 dodecan-2-one CCCCCCCCCCC(C)=O 282.29 52.17 35.35 12 –0.6 134 –0.8 –0.1 
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47 tridecan-2-one CCCCCCCCCCCC(C)=O 302.53 52.44 34.62 13 - - 0.4 1.9 

48 tetradecan-2-one CCCCCCCCCCCCC(C)=O 322.06 54.01 35.42 14 - - 0.5 3.3 

49 pentadecan-2-one CCCCCCCCCCCCCC(C)=O 342.6 54.37 34.66 15 - - 1.6 5.1 

50 hexadecan-2-one CCCCCCCCCCCCCCC(C)=O 362.4 55.79 35.63 16 - - 1.9 6.3 

51 heptadecan-2-one CCCCCCCCCCCCCCCC(C)=O 383.45 57.07 35.93 17 - - 3.0 7.5 

52 octadecan-2-one CCCCCCCCCCCCCCCCC(C)=O 402.65 57.78 35.77 18 - - 3.2 8.5 

53 cyclohexane C1CCCCC1 135.76 5.88 -0.12 6 2.1 

130,1

59,18

4,185 
2.0 2.4 

54 methylcyclohexane CC1CCCCC1 - - - 7 3.2 130 2.9 – 

55 ethylcyclohexane CCC1CCCCC1 171.53 7.91 -0.12 8 4.2 
127,1

30 
4.4 4.6 

56 Propylcyclohexane CCCC1CCCCC1 - - - 9 5.9 
127,1

30 
5.7 – 

57 butylcyclohexane CCCCC1CCCCC1 210.84 9.64 -0.04 10 7.3 
127,1

30 
7.1 7.4 

58 pentylcyclohexane CCCCCC1CCCCC1 230.87 10.52 0.01 11 - - 8.2 8.7 

59 hexylcyclohexane CCCCCCC1CCCCC1 251.83 11.39 0.03 12 - - 9.3 9.9 

60 heptylcyclohexane CCCCCCCC1CCCCC1 267.31 12.16 -0.03 13 - - 10.4 10.8 

61 octylcyclohexane CCCCCCCCC1CCCCC1 291.22 13.25 0.13 14 - - 12.1 12.0 

62 nonylcyclohexane CCCCCCCCCC1CCCCC1 311.7 14.12 0.18 15 - - 13.2 13.3 

63 decylcyclohexane CCCCCCCCCCC1CCCCC1 332.16 14.95 0.24 16 14.4 127 14.5 14.6 

64 undecylcyclohexane CCCCCCCCCCCC1CCCCC1 352.12 15.76 0.3 17 - - 15.6 15.9 

65 dodecylcyclohexane CCCCCCCCCCCCC1CCCCC1 371.81 16.81 0.29 18 17.5 127 17.1 17.1 

66 1-propoxypropane CCCOCCC 171.36 26.39 20.59 6 0.4 [f] 0.7 0.7 

67 1-propoxybutane CCCOCCCC 191.74 28.16 21.83 7 - - 1.7 1.5 

68 1-butoxybutane CCCCOCCCC 211.38 28.47 21.23 8 3.0 

127,1

34,16

4 
2.6 2.7 

69 1-butoxypentane CCCCOCCCCC 231.24 29.01 20.98 9 - - 3.5 3.7 

70 1-pentoxypentane CCCCCOCCCCC 251.19 29.57 20.44 10 4.2 134 4.4 4.5 

71 1-pentoxyhexane CCCCCOCCCCCC 271.23 30.7 21.06 11 - - 5.3 5.2 

72 1-hexyloxyhexane CCCCCCOCCCCCC 291.31 31.96 21.34 12 6.2 134 6.2 6.0 

73 1-hexyloxyheptane CCCCCCOCCCCCCC 311.43 32.38 20.97 13 - - 7.1 7.0 

74 1-heptyloxyheptane CCCCCCCOCCCCCCC 331.49 32.86 20.36 14 8.0 134 8.0 8.1 

75 1-heptyloxyoctane CCCCCCCOCCCCCCCC 351.57 33.84 20.58 15 - - 8.9 9.1 

76 1-octyloxyoctane CCCCCCCCOCCCCCCCC 371.28 35.31 21.42 16 10.3 134 9.8 10.1 

77 1-octyloxynonane CCCCCCCCOCCCCCCCCC 391.55 35.95 21.17 17 - - 10.6 11.3 

78 1-nonyloxynonane CCCCCCCCCOCCCCCCCCC 411.72 36.47 20.58 18 - - 11.4 12.7 

79 ethyl butyrate CC[C:1]C(OCC)=O 173.82 47.52 31.71 6 - - –3.0 –4.7 

80 ethyl valerate CCC[C:1]C(OCC)=O 194.22 48.26 32.23 7 - - –1.9 –3.9 

81 ethyl caproate CCCC[C:1]C(OCC)=O 213.46 49.02 31.67 8 - - –0.7 –3.0 

82 ethyl oenanthate CCCCC[C:1]C(OCC)=O 234.15 50.07 32.26 9 - - 0.4 –1.9 

83 ethyl caprylate CCCCCCCC(OCC)=O 253.0 49.88 30.92 10 - - 0.5 –0.4 

84 ethyl pelargonate CCCCCCCCC(OCC)=O 274.18 51.89 32.1 11 - - 1.0 0.8 

85 ethyl caprate CCCCCCCCCC(OCC)=O 294.96 53.81 33.56 12 2.1 
145,1

47 
2.1 1.9 

86 ethyl undecylate CCCCCCCCCCC(OCC)=O 314.51 54.14 33.04 13 - - 2.5 3.3 

87 ethyl laurate CCCCCCCCCCCC(OCC)=O 333.62 54.56 32.64 14 3.8 147 3.6 4.5 

88 ethyl tridecanoate CCCCCCCCCCCCC(OCC)=O 354.72 55.83 33.02 15 - - 4.3 5.5 

89 ethyl myristate CCCCCCCCCCCCCC(OCC)=O 375.02 56.48 32.88 16 5.2 147 5.3 6.5 

90 ethyl pentadecanoate CCCCCCCCCCCCCCC(OCC)=O 395.34 57.79 33.24 17 - - 6.0 7.2 

91 ethyl palmitate CCCCCCCCCCCCCCCC(OCC)=O 415.24 59.07 33.25 18 6.8 147 6.9 7.7 

92 capronitrile CCCCCC#N 163.84 47.37 22.7 6 - - –3.1 –3.3 

93 enanthonitrile CCCC[C:1]CC#N 183.34 48.24 22.69 7 - - –1.9 –2.4 

94 caprylonitrile CCCCCCCC#N 204.22 49.16 22.76 8 –1.7 134 –1.9 –1.7 

95 pelargononitrile CCCCCCCCC#N 222.16 49.71 22.71 9 - - –1.8 –1.0 

96 caprinitrile CCCCCCCCCC#N 243.52 50.82 22.88 10 –0.5 134 –0.6 –0.4 
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97 undecanenitrile CCCCCCCCCCC#N 263.88 51.76 23.03 11 - - –0.5 0.1 

98 lauronitrile CCCCCCCCCCCC#N 283.99 52.55 23.07 12 0.4 134 0.7 0.5 

99 tridecanenitrile CCCCCCCCCCCCC#N 304.6 53.71 23.08 13 - - 0.9 1.2 

100 myristonitrile CCCCCCCCCCCCCC#N 324.22 54.56 23.13 14 - - 2.0 1.9 

101 pentadecanenitrile CCCCCCCCCCCCCCC#N 342.98 55.14 22.97 15 - - 2.3 2.7 

102 palmitonitrile CCCCCCCCCCCCCCCC#N 364.4 56.25 23.18 16 - - 3.3 3.4 

103 heptadecanenitrile CCCCCCCCCCCCCCCCC#N 384.41 57.18 23.27 17 - - 3.6 3.9 

104 stearonitrile CCCCCCCCCCCCCCCCCC#N 404.51 57.93 23.31 18 - - 4.6 4.4 

105 benzene C1=CC=CC=C1 122.42 22.98 -1.27 6 - - –4.5 –3.0 

106 toluene CC1=CC=CC=C1 141.81 23.64 0.06 7 - - –3.5 –2.7 

107 ethylbenzene CCC1=CC=CC=C1 160.64 24.31 0.44 8 - - –2.2 –1.9 

108 propylbenzene CCCC1=CC=CC=C1 180.59 25.28 0.67 9 - - –1.0 –1.3 

109 butylbenzene CCCCC1=CC=CC=C1 200.65 26.12 0.72 10 0.4 
133,1

85 
0.2 –0.3 

110 pentylbenzene CCCCCC1=CC=CC=C1 220.24 27.00 0.82 11 - - 1.4 0.7 

111 hexylbenzene CCCCCCC1=CC=CC=C1 237.83 27.56 0.78 12 - - 2.5 1.8 

112 heptylbenzene CCCCCCCC1=CC=CC=C1 258.5 28.41 0.80 13 - - 2.8 3.1 

113 octylbenzene CCCCCCCCC1=CC=CC=C1 278.92 29.37 0.88 14 4.0 
127,1

30 
3.8 4.4 

114 nonylbenzene CCCCCCCCCC1=CC=CC=C1 299.80 30.47 0.96 15 - - 5.0 5.6 

115 decylbenzene CCCCCCCCCCC1=CC=CC=C1 320.4 31.55 1.1 16 6.0 
127,1

30 
5.9 6.4 

116 undecylbenzene CCCCCCCCCCCC1=CC=CC=C1 339.84 32.10 1.04 17 - - 7.0 7.3 

117 dodecylbenzene CCCCCCCCCCCCC1=CC=CC=C1 359.87 33.08 1.12 18 7.8 

127,1

59,18

5 
8.0 7.8 

[a] 𝑀0
𝑋, expressed in Å2, is equal to the whole surface area of molecule X; [b] 𝑀2

𝑋, expressed in e2.Å–2, 
reflects the polarity of molecule X; [c] 𝑀3

𝑋, expressed in e3.Å–4, reflects the electrostatic asymmetry of 
molecule X; [d]Estimated EACN values with the GM-5N model having the best VLOO score average (out 
of ten) for the 117 molecules of the homologous series; [e]Estimated EACN values with the NN-6N model 
having the best VLOO score average (out of ten) for the 117 molecules of the homologous series; [f]This 
work. For the 117 molecules the given data can be obtained in running the Docker image 
"espcigm/eacn:demo", see section "graph machine and neural networks results with Docker". 

 

 

Figure A.36. Evolution of experimental and estimated EACN with increasing number of carbon atoms 
(NC) for the alkylbenzene homologous series of molecules. For clarity, half of the predicted values are 
displayed. The dotted and dashed lines indicate the experimental and neural network fits. Triangles (), 
diamonds () and circles () are respectively markers for experimental, neural network predicted and 
graph machine predicted values. 
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A8.  Graph Machine and Neural Network demonstrations with docker containers 

Installing Docker for Mac and downloading the demo image 

In the following example the installation of Docker is performed with an intel version of Docker 

Desktop for Mac. The same operations can be done on a Mac with a M1 ARM-based system. 

The appropriate link to download the corresponding version is given at the end of this Section. 

1) Download the Intel chip Docker application by copying and pasting the following line 

into a browser URL bar:  

https://desktop.docker.com/mac/main/amd64/Docker.dmg?utm_source=docker

&utm_medium=webreferral&utm_campaign=docs-driven-download-mac-amd64 

2) After Docker installation (with administrator privileges), launch it. You can open the 

Docker preferences to increase the Docker allocated memory (e.g. 40 Go), and select 

a number of cores for the virtual machine (more or less according to the machine 

resources). 

3) Open a terminal window, paste the following line, and hit return: 

docker pull espcigm/eacn:demo 

The image used to create containers is then downloaded.  

4) You can ensure that the image is genuine by checking the hash code generated at the 

end of the download process; it should be: 

sha256:7a64a246509086047c59c7f4767cf717b50a60d813e5f640de7152bfcbaf2283 

The same image is used to launch either graph machine or neural network computations. The 

set-up is now complete. More information on Docker client installation can be obtained from 

the link below and from the Docker website (docker.com).  

http://pubs.acs.org/doi/suppl/10.1021/acs.jcim.0c00083/suppl_file/ci0c00083_si_003.pdf  

The link to install the M1 chip version of Docker is the following:  

https://desktop.docker.com/mac/main/arm64/Docker.dmg?utm_source=docker&

utm_medium=webreferral&utm_campaign=dd-smartbutton&utm_location=module 

Installing Docker for Windows and downloading the demo image 

The steps for the installation of the Docker Windows version and the demo image are given below. 

1) Download the Windows version of Docker application by copying and pasting the 

following line into a browser URL bar: 

https://desktop.docker.com/win/main/amd64/Docker%20Desktop%20Installer.exe 

2) Install the Docker Desktop version 4.6.1 (or above) with administrator privileges 

3) In the Dashboard opened at the beginning of the Docker installation verify that: 

 

http://pubs.acs.org/doi/suppl/10.1021/acs.jcim.0c00083/suppl_file/ci0c00083_si_003.pdf
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a. the box 'Enable Hyper-V Windows feature' is checked; 

b. the box 'Add shortcut to Desktop' is checked; 

c. uncheck if necessary the box 'Install required Windows components for WSL 2'. 

4) When the installation has succeeded open Docker Desktop with the desktop shortcut. 

You have to accept the Docker service agreement by checking the box 'I accept the 

terms'. 

5) Docker Desktop is starting, you might skip the tutorial. Go to Docker Desktop settings 

and choose General, then uncheck the box 'Use the WSL 2 based engine' (very 

important). Click on 'Apply and restart'. 

6) After a while, open a Powershell window (or a command prompt window) and to verify 

that Docker is running type the following command: 

docker version 

You can confirm in the lines returned that the Docker Desktop version is 4.6.1 (or above). 

7) Open a terminal window, paste the following line, and hit return: 

docker pull espcigm/eacn:demo 

The image used to create containers is then downloaded. 

8) You can ensure that the image is genuine by checking the hash code generated at the 

end of the download process; it should be: 

sha256: 8082d2eadbf4629a1616f931ae8cf647edc5fbb357fcd566955622945ec471b9 

The same image is used to launch either graph machine or neural network computations. The 

set-up is now complete. 

Notes 

• If at step 4 Docker does not start, it is because Hyper-V is probably not active on your 

system. You need to activate Hyper-V by typing in a powershell windows the following 

command (as admin): 

Enable-WindowsOptionalFeature -Online -FeatureName Microsoft-Hyper-V -All  

then restart your machine. 

• Docker Desktop can be installed for a standard user. The user has to be a member of 

the docker-users group. This can be done with the Windows administration tools. 

Loading and launching the Docker image 

To open a container that will launch the default graph machine computations for the molecules 

of the test set, open a terminal window (or start a PowerShell session), and type the following 

line of text below (or copy and paste it), the argument demo1 being optional: 

docker run -it --rm -v ~/docker:/host espcigm/eacn:demo demo1 
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Note: with the Docker Desktop for Windows you will have to accept the filesharing message in 

the Docker popup for the docker folder located in your home folder. Simply click the 'Share it' 

button. This can also be customized in the File sharing window of the Docker Settings 

(Resources menu). The first time this command is entered, you are asked to define a path for 

the shared folder as described below: 

Please give the absolute path of the shared folder in the host 

(for labelling output files only) [<host>] 

Some suitable propositions for the absolute path that must be typed are given below for the 

Macintosh (Unix) and Windows OS, where `home` is the home folder (or user folder), and 

`docker` is the folder manually created in the home folder: 

/Users/`home`/docker 

C:\Users\`home`\docker 

If, for any reason, the folder path has been incorrectly entered, you can correct it by deleting 

the file “host.pth” located inside the docker folder, and give the proper path at the next launch. 

At the end of the computations issued by this command, the results are written in an excel file 

located in a shared folder mounted inside the container. In the later command line, docker is 

the folder used; it is automatically created in the home folder at the Docker installation step 

(~/docker = /Users/home/docker on macOS, see below). If this folder does not exist, no results 

are saved. 

The shared excel file is recorded in the result subdirectory of the docker directory on the host 

machine (~/docker/result, where ~ is a shortcut indicating the path to the connected 

user’s home directory). The output file name is automatically incremented when the same 

command is issued. 

Three other computations can be called with the same command line but with the arguments 

demo2, demo3 and demo4 instead of demo1. The explanations and the outputs of all four 

command lines are given in the Section 'Graph machine results with Docker'. 

Notes 

• The above run command is the minimal command; if for example, the “-v 

~/docker:/host” is omitted in the command syntax, no excel file is created on the 

host machine, the computed results being lost when the container is deleted. In that 

case the path to the shared folder must also be entered for each computation. 

• The computed times reported during the demo depend on the machine used. For more 

explanations on hyper-V you can use the following link: https://docs.microsoft.com/fr-

fr/virtualization/hyper-v-on-windows/quick-start/enable-hyper-v  

Predicting EACN for the test set 

https://docs.microsoft.com/fr-fr/virtualization/hyper-v-on-windows/quick-start/enable-hyper-v
https://docs.microsoft.com/fr-fr/virtualization/hyper-v-on-windows/quick-start/enable-hyper-v
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We explain hereafter the demo that describes the EACN computation for the ten test molecules 

with the selected complexity of the graph machine-based model and computation results are 

then given for both the GM and the NN models; the command line for launching the graph 

machine-based model demo is the following: 

docker run -it --rm -v ~/docker:/host espcigm/eacn:demo 

The data file is used to compute the EACN values of the molecules of the test set. It contains 

two sheets as described below: 

• The first sheet named DATA, contains the training data for the 111 molecules of the 

training set in the DATA cell range. Every line of this sheet contains a compound name, 

its SMILES code, the three computed sigma-moments, the number of carbon atoms 

and the experimental value of the property of interest (here the dimensionless EACN). 

The other data present in the file, namely the entry, the molecular formula (MF), the 

molecular weight (MW) and the chemical abstract registry number (CAS RN) are 

ignored since they don't belong to the DATA range. 

• The second sheet named TEST contains the data for the 10 molecules of the test set, 

in the TEST cell range. The same information as above is displayed in the eleven 

columns, but only the data present in the TEST range are taken into account. 

During the training step achieved in an earlier stage, a graph machine model based on the 

SMILES code derived from the molecular structure was automatically generated for every 

molecule of the DATA sheet. All 111 models were then merged into a module that was trained 

with the desired property values. The parameters at the end of the training were stored to be 

used with a new model. 

In the course of the present demo a graph machine model is generated for the 10 molecules 

(also inputed as their SMILES codes) of the TEST sheet. After the model constructions, the 

parameters saved during the training step are passed to the functions of the graph machines 

to predict the 10 EACN values of the test set molecules. At the end of the computation the file 

GM_test_5N.xlsx is written in the result folder (located also in the home folder). It can be read 

with Excel 2010-2021 (or more recent) or with LibreOffice 7.3.1 (or more recent). 

The GM_test_5N.xlsx file has one sheet. For each molecule, the following quantities are displayed: 

• the experimental value of the EACN; 

• the mean estimated value of the EACN, computed in averaging the estimations 

produced by the 25 models that have the smallest VLOO training scores; 

• the minimum estimation obtained for the 25 models having the smallest VLOO training scores; 

• the maximum estimation obtained for the 25 models having the smallest VLOO training scores. 

Results 
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For the graph machine model with five hidden neurons, the predictions for the ten molecules 

are obtained with the following command (demo1 can be omitted): 

docker run -it --rm -v ~/docker:/host espcigm/eacn:demo demo1 

The terminal output is then: 

Run demo computing | 

computing time: 0.59 s 

results: 

Table A3. EACN estimations for the test set molecules using the GM-5N model. 

 

Writing results in file "/Users/home/docker/result/GM_test_5N.xlsx". 

For the neural network model with six hidden neurons, the predictions for the ten molecules 

are obtained with the following command: 

docker run -it --rm -v ~/docker:/host espcigm/eacn:demo demo2 

The terminal output is then: 

Run demo 2 

computing time: 0.18 s 

results: 

Table A4. EACN estimations for the test set molecules using the NN-6N model. 

 

Writing results in file "/Users/home/docker/result/NN_test_6N.xlsx" 

In each case, the EACN predictions are the same than those reported as estimation errors in 

columns 4 and 5 of Table 2.2. The predictions are also stored in the GM_test_5N.xlsx and 

NN_test_6N.xlsx files as explained in the 'loading and launching the Docker image' section. 

 

Explanation of the demo command line 

The execution of the graph machine demonstration can be launched from the command line. 

The proposed default command line is (gm mode is invoked if demo1 is omitted): 

docker run -it --rm -v ~/docker:/host espcigm/eacn:demo demo1 
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It contains the following terms: 

• “docker”: calls the Docker daemon of the host machine; 

• “run”: launches a Docker container from the Docker image; 

• “-it”: opens and launches the interactive mode; 

• “--rm”: destroys the container at the end of the session; 

• “-v ~/docker:/host”: creates a volume in the container, and shares it with the ~/docker 

tree on the host machine; 

• “espcigm/eacn:demo”: name of the Docker image launched with the run command; 

• “demo1”: this argument invokes the gm mode, as does demo3; if demo2 or demo4 are 

used, the nn mode is activated. In the former case a SMILES input is expected while a 

list of four descriptors is required for the later. The demo computations are made with 

the graph machine model and the neural network model that have the numbers of 

hidden neurons chosen when looking for the appropriate complexity (i.e. five and six 

hidden neurons respectively). After completion of the demo, the container is 

automatically deleted. A new demo session can be started with the same command, 

but within a new container. 

 

Other command line options 

Two subcommands “get” or “draw” can be appended to the command line instead of using 

demo1 to demo4. 

The subcommand "get" can be passed to the demonstrator to compute the property value for 

a single compound using either a SMILES code input (with a GM argument) or some sigma-

moment inputs (with a NN argument) as follows: 

docker run -it --rm -v ~/docker:/host espcigm/eacn:demo get (GM or NN)"id;inputs" 

where "id" is the name of the compound and "inputs" corresponds either to a SMILES code or 

to a list of the four comma-separated descriptors M0, M2, M3 and NC. When a SMILES input is 

passed, the argument GM is used, while NN is used if the descriptors are the inputs. An excel 

file with the name "id".xlsx is also written in the result folder as described in the previous 

Section 'Predicting EACN for the test set'. 

The subcommand "draw" can be passed to the demonstrator to generate a representation of 

a graph machine for a given compound. This representation is written in a svg graphic file that 

can be opened in any browser (or other svg compatible software). The command line used is 

as follows: 

docker run -it --rm -v ~/docker:/host espcigm/eacn:demo draw GM "id;SMILES" 
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where "id" and "SMILES" are the name and the SMILES code of the compound for which the 

representation of the graph machine is requested. The "id_5N".svg file produced is also written 

in the result folder. The computed representation of the graph machine can be simplified by 

adding the option "-H n" at the end of the above command line, where n (<5) is the number of 

hidden neurons of the MLP. It is particularly useful to add the option -H 0 (or 1) to understand 

how a graph machine is built for a given compound. The file name produced is then "id_0N".svg 

(or "id_1N".svg). 

The computation of the representation of the neural network with six hidden neurons is invoked 

with the following command: 

docker run -it --rm -v ~/docker:/host espcigm/eacn:demo draw NN 

It does not have any option. The name of the file written is model_6N.svg. 

 

Estimations of the EACN values for the 111-molecule training set 

For the graph machine model with five hidden neurons, the estimations for the 111 molecules 

of the training set are obtained with the following command: 

docker run -it --rm -v ~/docker:/host espcigm/eacn:demo demo3 

The terminal output is then: 

Run demo 3 computing \ 

computing time: 3.25 s 

results: 
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Table A5. EACN estimated values for the 111-molecule training set using the GM-5N model. 

 
Writing results in file "/Users/home/docker/result/GM_data_5N.xlsx" 

For the neural network model with six hidden neurons, the estimations for the 111 

molecules of the training set are obtained with the following command:  

docker run -it --rm -v ~/docker:/host espcigm/eacn:demo demo4 

The terminal output is the following: 

Run demo 4 computing \  

computing time: 1.50 s 
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results: 

 

Table A6. EACN estimated values for the 111-molecule training set using the NN-6N model. 
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Writing results in file "/Users/home/docker/result/NN_data_6N.xlsx" 

 

Prediction of EACN for a single molecule of the test set 

EACN prediction of a given test molecule can be replicated for the default graph machine-

based model or for the default neural network-based models. Limonene is given as an 

example. According to Table 2.1, the following information can be extracted (entry 88) for this 

molecule: 

Compound SMILES code 𝑀0
𝑋 𝑀2

𝑋 𝑀3
𝑋 NC EACNexp 

limonene CC(=C)C1CCC(=CC1)C 197.80 24.85 5.78 10 1.8 

 

The command used to predict its EACN from SMILES is the following: 

docker run -it --rm -v ~/docker:/host espcigm/eacn:demo get GM 

"limonene;CC(=C)C1CCC(=CC1)C" 

The output produced is then: 

computing time: 0.31 s 

results: 

 

Writing results in file "/Users/home/docker/result/GM_limonene_5N.xlsx" 

The results are identical to those written for limonene in the file GM_test_5N.xlsx. 

The commands for predicting its EACN from the descriptors used as inputs is the following: 

docker run -it --rm -v ~/docker:/host espcigm/eacn:demo get NN 

"limonene;197.8,24.85,5.78,10" 

The messages returned are: 

computing time: 0.01 s 

results: 

 

Writing results in file "/Users/home/docker/result/NN_limonene_6N.xlsx" 

 

A9.  Creating a graph machine image for a compound 

This command is useful to obtain the representation of a graph machine for a new compound, 

in particular when the estimated value has a large deviation or does not seem right, e.g. the 
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hexan-2-one, a compound that belongs to the 2-ketone series. In the following example, the 

command line to generate the graph machine image for hexan-2-one is: 

docker run -it --rm -v ~/docker:/host espcigm/eacn:demo draw GM 

"hexan-2-one;CCCCC(C)=O" 

The messages returned are the following: 

Writing image in file /Users/home/docker/result/hexan-2-one_5N.svg 

 

The resulting svg file can be visualized with any browser. It has been converted in a png file 

before insertion into this document in the next page to reduce its size. The svg image is 

scalable and allows then to zoom on the labels of the connexions between the neurons easily. 

A simpler representation of the graph machine built from the same compound but with zero 

hidden neuron can be obtained with the following command: 

docker run -it --rm -v ~/docker:/host espcigm/eacn:demo draw GM 

"hexan-2-one;CCCCC(C)=O" -H 0 

The output produced is: 

Writing image in file /Users/home/docker/result/hexan-2-one_0N.svg 

The svg output for the first command inserted as a png image is: 

 

The svg output for the second command inserted as a png image is: 
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With this representation is much easier to locate the carbon root node indicated in the SMILES 

code with the bracketed atom. The directed graph for hexan-2-one can also be quickly drawn 

from this image. 

With this input SMILES, the EACN estimation value for hexan-2-one computed by the following 

command:  

docker run -it --rm -v ~/docker:/host espcigm/eacn:demo get GM "hexan-

2-one;CCCCC(C)=O" 

is equal to –3.5, a value almost equal to the estimation computed for octan-2-one (–3.4), so 

that it is probably not correct. Indeed, the data point with coordinates (NC=8; EACN=–3.5) is 

above the experimental dashed line of the ketone series in Figure 11a of the paper. Seeking 

for an explanation of this deviation, we can compare the simplified GM of octan-2-one and 

decan-2-one with the hexan-2-one GM. The representation for these two ketones are the 

following: 
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We can observe that the for these two graph machines the root node is not the node 

corresponding to the ketone carbon like in the previous hexan-2-one representation. For 

consistency it would be advisable to build a graph machine for the hexan-2-one that would be 

similar to the former above representation. 

The command to compute such a graph machine (with 0 neuron) is then: 

docker run -it --rm -v ~/docker:/host espcigm/eacn:demo draw GM 

"hexan-2-one;CC[C:1]C(C)=O" -H 0 

The representation of the new graph machine for the hexan-2-one is as follows: 

 

With this new SMILES, the EACN estimation value for hexan-2-one computed by the following 

command:  

docker run -it --rm -v ~/docker:/host espcigm/eacn:demo get GM "hexan-

2-one;CCCCC(C)=O" 

is equal to –4.9, a value that is in line with the computed values of the six other ketones in the 

series. 
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A10.  1-O-dodecyl diglyceryl ether supplementary characterization 

 

 

Figure A.37. 1H NMR (300 MHz) spectrum of 1-O-dodecyl diglyceryl ether in d6-DMSO. Peak at 2.5 ppm 
corresponds to the solvent peak. 

 

 

 

Figure A.38. Comparison of (a) PIT in C12Gly2 (1%)/n-alkane/NaCl 10-2 M (fw = 0.5) systems and (b) SPI 
in C12Gly2 (1%)/n-alkane/water (WOR = 1) systems for pure 1-O-dodecyl diglyceryl ether and a 9/1 
mixture of 1-O-dodecyl diglyceryl ether and 2-O-dodecyl diglyceryl ether. 
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Figure A.39. Conductivity monitoring of PIT in n-octane/NaCl 10-2 M (fw = 0.5) systems containing 1 wt.% 
of pure 1-O-dodecyl diglyceryl ether or a 9/1 mixture of 1-O-dodecyl diglyceryl ether and 2-O-dodecyl 
diglyceryl ether. 

 

C12Gly2 
1-O/2-O 

(9/1) 
1-O 

PIT (°C) 20.2 ± 0.2 23.8 ± 0.3 

Δ PIT 3.6 °C 
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Résumé 

Les objectifs de la thèse sont multiples et s'inscrivent dans le cadre de la mise en place d'une nouvelle plateforme 

technologique HT-SMART-FORMU dédiée à la formulation. L'accent est mis sur le développement de méthodes 

expérimentales fiables et d'outils théoriques et prédictifs, afin d'établir des relations entre la composition chimique, les 

propriétés physicochimiques et les propriétés applicatives.  

Les dispersions de particules sont le premier type de systèmes étudiés. Leur est traditionnellement rationnalisée à l’aide de la théorie 

DLVO, mais des études récentes proposent l'utilisation des Paramètres de Solubilité de Hansen pour décrire leur stabilité en 

milieu non aqueux. Dans le premier chapitre, une méthode analytique systématique basée sur la mesure du potentiel zêta et le 

suivi de la stabilité par diffusion de la lumière permet de déduire une complémentarité des deux théories pour décrire la stabilité 

des dispersions de TiO2 en solvants non aqueux. 

La problématique de la prédiction de l'hydrophobie des huiles par la modélisation d’EACN, qui est un paramètre clé pour 

concevoir des systèmes dispersés tensioactif/huile/eau (SOW), est abordée dans le deuxième chapitre. Deux modèles 

mathématiques, conçus à l'aide de méthodes de machine-learning, sont proposés pour la prédiction rapide de l'EACN des 

huiles, à savoir les réseaux de neurones (NN) et les machines graphiques (GM). Alors que le modèle GM est implémenté à 

partir des codes SMILES, le modèle NN est alimenté par des descripteurs σ-moments calculés avec le logiciel COSMOtherm. 

La fiabilité des prédictions des deux modèles est discutée sur la base d’un ensemble de test de 10 molécules complexes. 

Dans les chapitres 3 et 4, l'étendue des propriétés applicatives d'un tensioactif non ionique à base de glycérol (C12Gly2) est 

étudiée. Le chapitre 3 se porte sur son agrégation en solution aqueuse et la formation de cristaux liquides (CL) à faible 

concentration, en comparaison avec les alcools gras polyéthoxylés et les alkyl polyglucosides. L'influence de ses propriétés 

physico-chimiques, en particulier la viscoélasticité de dilatation de l'interface air/eau, est mise en relation avec la faible 

moussabilité et la stabilité de mousse durable observées.  

Enfin, les propriétés du C12Gly2 en systèmes SOW sont étudiées dans le chapitre 4. La déviation hydrophile-lipophile normalisé 

(HLDN), un outil théorique puissant, est considéré comme un moyen de rationaliser les caractéristiques des émulsions et des 

microémulsions. Ainsi, une quantification approfondie de l'amphiphilie des tensioactifs, de leur sensibilité à la température et de 

leur tolérance au sel est présentée. L'utilisation du C12Gly2 comme émulsifiant H/E et E/H est ensuite étudiée : la granulométrie 

et la stabilité des émulsions obtenues en faisant varier l'huile concordent avec les valeurs du HLDN. Un minimum est observé à 

HLDN = 0, puis la granulométrie et la stabilité augmentent pour des valeurs de HLDN négatives et positives. 
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Abstract 

The multiple aims of this thesis fall within the implementation of a new HT-SMART-FORMU technological platform dedicated 

to formulation science. The focus is set on the development of reliable experimental methods, theoretical and predictive tools, 

so as to establish relations between chemical composition, physicochemical properties and applicative properties.  

The first type of systems investigated in this work consists of solid dispersions. Their stability has long been approached by 

the DLVO theory, but more recent studies suggest the use of Hansen Solubility Parameters to describe their stability in non-

aqueous media. In the first chapter, a systematic analytical method based on zeta potential measurement and light scattering 

stability monitoring allows deducing a complementarity of both theories to describe the stability of TiO2 dispersions in non-

aqueous solvents. 

The problematic of oil hydrophobicity prediction through EACN values modelling, which is a key parameter to design 

surfactant/oil/water (SOW) dispersed systems, is addressed in the second chapter. Two mathematical models, designed 

using machine-learning methods, are proposed for the rapid prediction of the EACN of oils, namely Neural Networks (NN) 

and Graph Machines (GM). While the GM model is implemented from the SMILES codes, the NN model is fed with σ-moments 

descriptors computed with the COSMOtherm software. The prediction reliability of both models is discussed based on a 

complex 10-molecule test set. 

In chapters 3 and 4, the scope of applicative properties of a nonionic glycerol-based surfactant are investigated. Firstly, 

chapter 3 focuses on its aggregation behaviour in aqueous solutions and the formation of liquid crystals (LC) at low 

concentration, in comparison with the benchmark polyethoxylated fatty alcohols and alkyl polyglucosides. The influence of its 

physicochemical properties, in particular the air / water interface dilational viscoelasticity, is put in relation with the observed 

poor foamability and long-lasting foam stability.  

Finally, C12Gly2 properties in SOW systems are investigated in chapter 4. The Normalized Hydrophilic-Lipophilic Deviation 

(HLDN), a powerful theoretical tool, is regarded as a way to rationalize the characteristics of both emulsions and 

microemulsions. In this way, a thorough quantification of surfactants amphiphilicity, temperature sensitivity and salt-tolerance 

are presented. The potential use of C12Gly2 as O/W and W/O emulsifier is then investigated: the granulometry and stability of 

emulsions obtained by varying the oil concurs with HLDN values. A minimum is observed at HLDN = 0 and increases for 

negative and positive HLDN values. 
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