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Abstract

Living cells such as mammalian cells in particular, are continuously exposed to multiple and varied

types of stress. These stresses can perturb the cellular homeostasis and induce damages on the cellular

components which could induce several types of diseases. It is particularly the case for a change of cel-

lular redox state called oxidative stress induced by an excessive production or insufficient consumption

of reactive oxygen species such as hydrogen peroxide (H2O2).

Cells have developed efficient defence mechanisms against oxidative stress that involve anti-oxidant

systems such as glutathiones which reduce the oxidizing molecules, but also metabolic pathways such as

Pentose Phosphate Pathway (PPP) and glycolysis. These metabolic pathways are known to reroute the

carbon flux resources from the glycolysis toward the PPP which induces high NADPH recycling that

is required for efficient detoxification rate of the anti-oxidant systems. It remains however unclear how

regulatory mechanisms (i) contribute to such reallocation of metabolic flux resources during oxidative

stress and (ii) give rise to observed adaptation profiles of intracellular H2O2 concentrations.

In the thesis, the role of regulations in the metabolic response to oxidative stress is addressed using

a comprehensive kinetic modeling framework. First, a model is built from a set of metabolomics and
13C labeling data, using conventional parameter estimation methods but also a novel metabolic flux

analysis techniques based on a stochastic simulation algorithm. Systematic analysis of the model reveals

that many metabolic inhibitions, especially on G6PD, PGI and GAPD, can favour flux rerouting for

NADPH production. In particular, we show that all these regulations work in a dose-dependent

and complementary manner, which explains some paradoxes and controversies, and is consistent with

observed adaptation phenotypes. A more phenomenological model has also been developed to show

how such adaptation phenotype could contribute to cell-fate heterogeneity, such as fractional killing,

as a long-term outcome of oxidative stress.

Keywords : Cell, oxidative stress, mathematical modeling, metabolic regulations, adaptation.





Résumé

Les cellules vivantes, telles que les cellules de mammifères en particulier, sont continuellement exposées

à des types de stress multiples et variés. Ces stress peuvent perturber l’homéostasie cellulaire et induire

des dégâts sur les composants cellulaires qui pourraient induire plusieurs types de maladies. C’est

notamment le cas d’un changement d’état redox cellulaire appelé stress oxydatif induit par production

excessive ou une consommation insuffisante d’espèces réactives de l’oxygène. L’une des espèces réactives

de l’oxygène les plus importantes est le peroxyde d’hydrogène (H2O2).

Les cellules ont développé des mécanismes de défense efficaces contre le stress oxydatif qui im-

pliquent des systèmes anti-oxydants tels que les glutathions qui réduisent les molécules oxydantes,

mais aussi des voies métaboliques telles que la voie des Pentoses Phosphates (PPP) et la glycolyse.

Ces voies métaboliques sont connues pour rediriger les ressources de flux de carbone de la glycolyse vers

le PPP, ce qui induit un recyclage élevé du NADPH nécessaire à un taux de détoxification efficace

des systèmes anti-oxydants. Il n’est cependant pas clair comment les mécanismes de régulation (i)

contribuent à une telle réallocation des ressources de flux métaboliques pendant le stress oxydatif et

(ii) donnent lieu aux profils d’adaptation observés des concentrations intracellulaires de H2O2.

Dans la thèse, le rôle des régulations dans la réponse métabolique au stress oxydatif est abordé à

l’aide d’un cadre de modélisation cinétique. Tout d’abord, un modèle est construit à partir d’un ensem-

ble de données métabolomiques et de marquage 13C, en utilisant des méthodes classiques d’estimation

de paramètre mais aussi une nouvelle technique d’analyse des flux métaboliques basée sur un algorithme

de simulation stochastique. L’analyse systématique du modèle révèle que de nombreuses inhibitions

métaboliques, notamment sur G6PD, PGI et GAPD, peuvent favoriser la redirection des flux pour

la production de NADPH. En particulier, nous montrons que toutes ces régulations fonctionnent de

manière dose-dépendante et complémentaire, ce qui explique certains paradoxes et controverses, et est

cohérent avec les phénotypes d’adaptation observés. Un modèle plus phénoménologique a également été

développé pour montrer comment un tel phénotype d’adaptation pourrait contribuer à l’hétérogénéité

du destin cellulaire, comme la mort fractionnée, en tant que résultat à long terme du stress oxydatif.

Mots clés : Cellule, stress oxydatif, modélisation mathématique, regulations métabolique, adap-

tation.
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General introduction

Living cells are often exposed to different types of perturbations which come
from diverse sources such as heat, pressure or chemical compounds etc...
Oxidative stress is a perturbation of the redox state induced by excessive
production on consumption of reactive oxygen species (ROS). Superoxide
radicals (O•−2 ), hydrogen peroxide (H2O2) and hydroxyl radicals (•OH) are
well known ROS that induce oxidative stress. The ROS sources are varied
and can be endogenous, i.e. coming from inside cells due to a disruption of
their cellular mechanisms or exogenous, i.e. coming from external pertur-
bations such as alcohols, smokes, pollutants. They transfer their oxidation
to cellular molecules such as proteins, lipids inducing change of activity or
loss of function. It has for consequences to induce damages on cellular com-
ponents such as membrane or DNA. It can induce different cell fates such
as programmed or, in extreme cases, non-programmed cell death or diseases
such as cancer, Alzheimer’s disease, Parkinson’s disease etc... To avoid such
fates, it exists diverse anti-oxidant molecules that capture and remove the
oxidation of cells. The most famous anti-oxidants are glutathiones, perox-
iredoxins/thioredoxins and catalase. It is know that these first two are the
most efficient to detoxify the cellular compounds and also to remove directly
the ROS. They are known to be recycled by NADPH metabolism in order
to highly respond to the stress.

Metabolism is all chemical reactions in cells to maintain them alive. In
non-perturbation conditions, it allows to produce cellular energy needed to
make happen most of the chemical reaction in cells or biomass needed to
reproduce and divide. However, another function of the metabolism is the
defence against perturbation such as the oxidative stress response. When cells
are perturbed, metabolism is highly regulated to reallocate the resources in
order to respond to the stress. Regulations can act in long time scale, for
instance on the transcriptional regulation, or in short term by inducing direct
change in enzyme activity. The Pentose Phosphate Pathway (PPP) combined
to glycolysis are known to be highly regulated in order to reroute the input
carbon flux to highly produce NADPH molecules during oxidative stress

v
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response.
Despite evidences of numerous metabolic regulations, their role and co-

operation during stress are still not clear. Indeed, an important issue is to
understand how regulations are involved individually but also together in
the flux rerouting, how does it induce adaptation to stress and how does
it depend of the perturbation level. The aim of this thesis is to study the
resources allocation orchestrated by metabolic regulations of the PPP and
glycolysis during fast oxidative stress response using a mathematical model
approach.

In chapter 1, the biological context of the oxidative stress is introduced.
The source of oxidative stress and their consequences will be detailed. The
mechanisms of anti-oxidant molecules are explained in order to understand
the main use of glutathiones in the mathematical model. Then, all the
metabolic pathways linked to the consumption or production of NADPH
is introduced. These metabolic pathways are using glucose molecules as
source, react and spread the carbons atoms in the network. Efficiency of the
PPP directly linked to glycolysis to reroute carbon flux will be highlighted.
Finally, regulations of the metabolism allowing high oxidative stress response
are shown.

In chapter 2 is introduced the methods used in this thesis. It comprises
the procedure to express mathematically the ordinary differential equations
representing the metabolite concentration changes during oxidative stress.
Then, theoretical analysis methods used in complement of the model such as
flux balance analysis or metabolic control analysis are presented. Moreover,
methods of data-driven estimation of model parameters comprising optimi-
sation algorithms such as Monte Carlo Markov chain and genetic algorithm
are used in this work to build the mathematical model in order to reproduce
experimental behaviours and are also presented here. Finally, metabolic flux
analysis will be used to convert labeling data into flux state data. Its frame-
work will also be introduced here.

In chapter 3, a first analysis of the oxidative stress response is made
by using a coarse-grained mathematical model of the PPP and glycolysis.
It displays adaptation phenotype which would reveal a well established re-
sources reallocation with a compromise between fast regulation with high
metabolic cost and slow response regulation which would induce potential
cellular damages before the adaptation.

In chapter 4, the metabolic flux management is analysed by first using
flux balance analysis showing elementary modes. Their dedicated utilities
correspond to the main objective of cellular metabolism and a highly efficient
mode of carbons cycling allowing high NADPH production. Analysis of ex-
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perimental carbons labeling data by a new 13C-based Metabolic Flux Analysis
(13C-MFA) algorithm based on Stochastic Simulation Algorithm (SSA) [1] al-
lows to estimate fluxes during non-perturbed and perturbed states showing a
carbon flux rerouting during oxidative stress response. This new algorithm is
simple to implement and is also highly efficient to proceed to complex MFA
such as non-stationary MFA or dynamic MFA.

In chapter 5, the reactions rates of the mathematical model are expressed
as a function of the metabolite concentrations and parameters. Monte Carlo
Markov chain and genetic algorithm are used to data-driven estimate distri-
bution of model parameters. It creates an ensemble of models that repro-
duces experimental data of concentration fold change between non-stressed
and stressed states, and fluxes previously estimated in chapter 4. Then,
the temporal dynamics display biphasic time-course confirming a metabolic
reaction. Dose response analyses show detoxification saturation but also
input flux rerouting during oxidative stress allowing to increase NADPH
production. In complement, both temporal dynamics and dose responses are
compared to experimental data in order to validate the model construction.

In chapter 6, regulations of the metabolic pathways are studied using
numerical simulation of the model ensemble. Regulation parameters and
enzyme activity parameters are used to analyse the effect of regulation on
the carbon resource affectation during the oxidative stress response. Mod-
ifying experimentally a regulation efficiency on an enzyme without chang-
ing the enzyme activity would need extremely advanced techniques. How-
ever, modifying theoretically regulation parameters allows to investigate their
efficiency showing a dose-dependent and synergistic work during oxidative
stress response. Moreover, similarly to most of biological experimental work
on this topic, enzyme activity can be modified. By changing the corre-
sponding parameters of the key PPP enzymes, a non-linear response of 6-
phosphogluconate dehydrogenase (6PGD) can be found confirming the reg-
ulation importance in oxidative stress response. A complementary theoreti-
cal study of the regulations is performed with the metabolic control analysis
showing flux sensitivities to regulations during oxidative stress detoxification.

Previous works study response of the metabolism during oxidative stress
and show the need of regulations to efficiently detoxify ROS. The impact of
stress adaptation on cellular fate has also been investigated in Hurbain et
al. 2020 [2]. In chapter 7 will be an introduction of this theoretical study
which shows that the presence of adaptation phenotype can affect the cell-
fate heterogeneity, such as fractional killing, via the used of a mathematical
model combining an adaptation module and an apoptosis initiation model.

Most of the results presented from chapter 4 to chapter 6 have been
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published in Hurbain et al. 2022 [3]. In this thesis, all used algorithms
have been written by myself and are publicly available [3]. All simulations
have been made using Matlab2018a/b. The stochastic simulation algorithm
used in this paper is presented in Thommen et al. [1]. All published paper
are given in Chapter Publication. A bit less of two years of my thesis
has been spent in these theoretical studies. The last 6 months of my thesis
have been used in experiments trying to reproduce theoretical prediction of
oxidative stress detoxification during 6PGD enzyme activity modification.
They consists in capturing the fluorescence of a reduction-oxidation sensi-
tive green fluorescent protein 2 (roGFP2) tagged to an anti-oxidant enzyme
(i.e. GRx) during oxidative stress and during a decrease of 6PGD enzyme
activity by the specific inhibitor physcion. This work is still in progress and
is not presented here. Finally, the abbreviations and mathematical symbols
of the entire thesis are provided at the end of the document in Chapter
Abbreviations and in Chapter Mathematical symbols.



Chapter 1

Biological context

Living cells are often exposed to perturbation of their environment inducing
signaling and regulatory mechanisms. Reactive oxygen species are a group of
unstable molecules that contains oxygen and tends to react easily. A higher
or lower concentration of these molecules can induce oxidative stress. This
perturbation has high impact for instance on cellular proteins or lipids. It
is source of many phenotypes such as cell aging, or diseases such as cancer,
Alzheimer’s or Parkinson’s diseases. To avoid such fates, cells have metabolic
pathways that are regulated in order to adapt to oxidative stress. In this
chapter will be presented the biological mechanisms of how reactive oxy-
gen species can induce cellular oxidative stress and the metabolic pathways
resources present in cells that can be used to adapt to perturbations.

1.1 Free radicals and reactive oxygen species

A free radical is an entity that has an unpaired electron which makes it
very unstable and reactive [4]. It can be molecules or atoms which tend to
accept or give an electron. Thus, they are often parts of redox reactions as
oxidants or reductants. In cell, free radicals are produced by a lot of different
biological processes such as enzymatic and non-enzymatic reactions. Reactive
oxygen species (ROS) are a subgroup of the free radicals comprising oxygen.
The most common ROS are superoxide radicals (O•−2 ), hydrogen peroxide
(H2O2), hydroxyl radicals (•OH), and singlet oxygen (1O

2) [5, 6]. These
molecules are maintained at low levels for chemical processes such as protein
phosphorylation, activation of several transcriptional factors. A change of
ROS production or consumption can lead to other biological processes such
as apoptosis. It has been shown that enzymatic reactions that produce ROS
are involved for instance in respiratory chain or phagocytosis [7, 6]. On the

1
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Figure 1.1: Causes and consequences of reactive oxygen species.
Different sources produce reactive oxygen species symbolized by the red
circle inside the cell which can induce oxidative stress. This perturbation
can induce cellular damages which can themselves induce diseases in an
organism. In order to avoid the damages or diseases, cells can uses defence
mechanisms where ones of the first are the anti-oxidant systems.

other side, non-enzymatic reactions produce free radicals in mitochondrial
respiration [6].

Free radicals or more precisely ROS are produced by endogenous and
exogenous sources [7, 8, 6] (Figure 1.1) :

Endogenous : Processes inside cells are responsible of ROS produc-
tion such as mitochondrial respiration, immune cell activation, inflam-
mation, ischemia, infection, cancer, excessive exercise and aging. It has
been shown that NADPH oxidase is an important source of superox-
ide radicals (O•−2 ) and hydrogen peroxide (H2O2) [9]. Moreover, one
the most present ROS is hydrogen peroxide.;

Exogenous : External components can penetrate inside cells and can
be degraded which induce ROS production. It can come from environ-
mental pollutants, heavy metals, certain drugs, cooking (smoked meat
or fat), cigarette smoke, alcohol, and radiations.

ROS are maintained at low concentrations. In this condition, they can
be beneficial for the cells. Indeed, they can be used as a defence system
against several pathogens. Phagocytes can store free radicals and release
them to destroy pathogenic microbes [10]. Free radicals are also used in
several signaling pathways [10]. Indeed, they can play important role of in
signaling cascades in fibroblast, endothelial cells, cardiac myocytes or thyroid
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tissue [10]. In conclusion, when ROS are maintained at low levels, they
can play important role in maintaining the cellular homeostasis which is the
internal conditions (i.e. physical and chemical conditions) at steady state to
keep themself alive.

1.2 Oxidative stress

Free radicals are present in cells and are maintained at low concentrations to
be used in several cellular processes. However, an excess of free radicals or
ROS due to production or consumption disorder can induce a perturbation of
cellular redox state which is called oxidative stress (Figure 1.1). This pertur-
bation is known to have negative impact on a lot of cellular structures such as
membranes, lipids, proteins, lipoproteins, and deoxyribonucleic acid (DNA)
[7, 8, 10]. Indeed, excess of ROS can lead for instance to lipid perforation
which induces cell membrane damages ; DNA lesions, base and sugar lesions,
DNA-protein cross-links, strand breaks, and base-free sites which could in-
duces mutation, loss of epigenetic information [8]. When these modifications
on cellular components are not repaired, it could induce several diseases or
cell death in extreme cases, i.e. when damages are to important. It has been
shown that oxidative stress is involved, for instance, in the onset of cancer
with tobacco smoking or environmental pollutants as sources [7] ; cardiovas-
cular diseases due to hypercholesterolaemia, hypertension, smoking habit,
diabetes, unbalanced diet, and sedentary life [8]. It can also cause neurolog-
ical diseases such as Alzheimer’s disease, Parkinson’s disease or others such
as vitiligo, rheumatoid arthritis [6, 8, 10] etc...

Oxidative stress can induce a lot of different diseases or cell deaths. Before
arriving to extreme fates, cells use mechanisms such as metabolic pathways
made of particular molecules which are known to their specific utilities against
ROS. For instance, a transcription factor called nuclear factor erythroid-
derived 2-related factor 2 (Nrf2) induces regulation of anti-oxidative stress
genes or the transcription factor p53 which is link to apoptosis cell death, cell
cycle [7]. Moreover, anti-oxidant molecules are major actors in the oxidative
stress defence.

1.3 Anti-oxidants

Anti-oxidants are molecules that tend to minimise oxidation induced by ROS
(Figure 1.1). Thus, anti-oxidant molecules allow cells to defend against oxida-
tive stress by reducing it. These molecules are of major importance in keeping
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Figure 1.2: H2O2 detoxification pathways. Hydrogen peroxide H2O2 is
produced inside cells or can come from outside. The systems of H2O2 remov-
ing are made by glutathiones GSH and GSSG, peroxiredoxins/thioredoxins
(PRX/TRX) and catalase (Cat). Enzymes are displayed with black
rectangles.

ROS at a low concentration. One the most present ROS is hydrogen perox-
ide (H2O2). It has been shown that glutathiones (GSH in reduced state and
glutathione disulfide GSSG in oxidized state), peroxiredoxins/thioredoxins
(PRX/TRX) or catalase (Cat) are major anti-oxidant used by cells to re-
move ROS such as hydrogen peroxide (Figure 1.2) [6, 10, 11]. Even if oxida-
tive stress is known as negative effect, regulating the anti-oxidants could to
act against several diseases as therapy [8].

• Glutathiones are anti-oxidant molecules that can be found in many
cellular types. It plays a major role in the oxidative stress response by
reducing free radicals that are oxidized during a perturbation [10, 6].
Indeed, GSH can capture the oxidation of a molecule by the following
reaction :

2GSH + 2R→ GSSG+ 2R−H (1.1)

where R is a free radical. It is important to note that glutathione
disulfide GSSG is composed from 2 GSH molecules linked by an in-
ternal disulfide bridge on a cysteine site [10]. Moreover, glutathiones
are known to be efficient in the detoxification of H2O2 stress. Indeed,
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catalysed by the enzyme glutathione peroxidase (GPx), 2 molecules
of GSH can reduce hydrogen peroxide H2O2 into water H2O by the
following reaction :

2 GSH +H2O2
GPx−−→ GSSG+ 2 H2O (1.2)

Once free radicals and reactive oxygen species are reduced, 2 molecules
of GSH are oxidised into GSSG which can be reduced itself. Indeed,
oxidation can be removed by recycling glutathiones using coenzyme
nicotinamide adenine dinucleotide phosphate NADP with NADPH
in reduced state and NADP+ in oxidized state [12]. This reaction is
catalysed by the glutathione reductase (GR) enzyme :

NADPH +GSSG
GR−−→ NADP+ + 2 GSH (1.3)

• Peroxiredoxins (PRX) are anti-oxidant enzymes that reduce peroxides
such as hydrogen peroxide [10]. They are very widely present inside cells
and are combined to thioredoxins (TRX) which are key molecules to
maintain the cellular redox state as well as GSH/GSSG. In hydrogen
peroxide stresses, PRX can capture oxidation. Then, TRX enzyme
reduces the oxidized PRX and in turn become oxidized itself and form
an internal disulfide bridge. As well as glutathiones, TRX enzyme
reacts with the coenzyme NADPH to transmit the oxidation thanks
to thioredoxin reductases (TR) enzyme. All these steps are detailed by
the following reactions :

PRXred+H2O2 −→ PRXox+ 2 H2O (1.4)
PRXox+ TRXred −→ TRXox+ PRXred (1.5)

TRXox+NADPH
TR−−→ NADP+ + TRXred (1.6)

• Catalase (Cat) [10, 6] are enzymes mostly stored in peroxisomes that
catalyse direct reduction of hydrogen peroxide following the reactions :

2 H2O2
Cat−−→ O2 + 2 H2O (1.7)

All these reactions are important in oxidative stress detoxification al-
lowing to remove H2O2 and ROS inside cells by transferring the oxidation
mediated by few reactions. These 3 anti-oxidant processes have different be-
haviours and efficiencies. Catalase is one of the first enzyme that reduces
hydrogen peroxide into water. Its activity is very high which makes this
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enzyme efficient to remove hydrogen peroxide. However, they are mainly
located in the peroxisomes which limits the area of effect [11]. This anti-
oxidant process is made by one reaction. In the other hand, glutathiones and
thioredoxins are anti-oxidant molecules that reduce hydrogen peroxide via
several enzymatic reactions. They are both very abundant in cytosol, nuclei
and mitochondria. They are considered to be the most useful anti-oxidant
molecules due to their omnipresence in cells, specifically for glutathiones that
are in much higher concentration making it the most abundant small thiol
molecules : ≈ 1 − 5mM [13] compared to few tens of µM for thioredoxins
and catalase. They are both known to reduce oxidative damages present in
cells with overlapping behaviours [11] but it has been shown that existing
cell compartments have their own effect such as apoptosis for thioredoxins
and deglutathionylation of actin which are important in neuronal cells ; cel-
lular aging or fibroblast post-mitotic phenotype for glutathiones [11, 13].
Finally, they both see their oxidized molecules being reduced by NADPH-
dependent enzyme such as glutathione reductase or thioredoxins reductase
by transferring the oxidation. However, this reductase enzymes need reduced
NADP , i.e. NADPH to continue their action clearly revealing a high need
of NADPH production.

1.4 Role of metabolism in oxidative stress

1.4.1 NADPH metabolism

Oxidative stress is a cellular redox state perturbation made by ROS. It can
induce damages to proteins, diseases or even cell death in extreme cases
where ROS are not enough eliminated. In order to defend against, cells use
anti-oxidant molecules that counteract oxidative stress by reacting with ROS,
where most of them are catalysed by enzymes. The most present and effi-
cient are glutathiones, thioredoxins combined to peroxiredoxins and catalase.
Glutathiones and thioredoxins are catalysed by enzymes such as glutathione
reductase and thioredoxin reductase which areNADPH-dependent enzymes.
nicotinamide adenine dinucleotide phosphate (NADP ) are either in reduced
state (NADPH) or in oxidized state (NADP+) [12]. Anti-oxidant enzymes
need to have enough reduced NADP to continue their actions and to be effi-
cient. Thus, it is important to focus on the NADPH/NADP+ metabolism
to understand what are their sources of production and consumption in order
to study oxidative stress response.

Understanding NADPH metabolism is of major importance to analyse
oxidative stress response. NADP molecules are cofactors in a lot of metabolic
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Figure 1.3: NADPH metabolism. Reduced and oxidized Nicotinamide
adenine dinucleotide phosphate (NADPH and NADP+) molecules are
shown in red using the corresponding enzymes shown in blue. The main
production and consumption pathways of NADPH are shown in the figure
(i.e., oxPPP, folate metabolism, malic enzymes, fatty acid metabolism). Re-
actions are represented by solid arrows and transports are represented by
dashed arrows. Major metabolic pathways of interest in this thesis are rep-
resented by darker grey block. Secondary metabolic pathways of interest in
this thesis are represented by lighter grey block. oxPPP and noxPPP corre-
sponds to respectively oxidative non-oxidative PPP. Acronyms are listed in
the Abbreviation section. Inspired by Ju et al. 2020 [14].
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pathways. In the cellular cytosol, the PPP contributes to NADPH produc-
tion about ≈ 30 − 50%, while the remaining part is produced, in cytosol or
mitochondria, through folate cycle, malic enzymes and IDH1 (Figure 1.3)
[14, 15, 16]. In turn, consumption of NADPH is mainly related to fatty
acid synthesis [15], besides antioxidant activities. In the context of oxida-
tive stress response, the PPP (PPP) seems to be the metabolic pathways
the most quickly and significantly upregulated upon oxidative stress. In the
oxidative part of PPP, there is indeed a very high production of NADPH
due to glucose flux rerouting [14, 15, 17, 18, 19].

1.4.2 Pentose phosphate pathway (PPP)

The PPP is a metabolic pathway which starts at the early beginning of the
glycolysis. It takes glucose molecules as input. This pathway can be splitted
in two parts : oxidative (oxPPP) and non-oxidative (noxPPP) PPP [20].

• The oxPPP is made of chain of irreversible reactions catalysed by en-
zymes. Two of them are of major interest in the context of oxidative
stress, and are the reason of the name of this first part. They correspond
to G6PD and 6PGD which catalyse the conversion of respectively G6P
and 6PG into 6PGL and ribulose-5-phosphate Ru5P where both use
NADP+ to produce NADPH. These two enzymes are highly stud-
ied due to their capacities to produce NADPH [15, 17, 18, 19, 21].
It has been shown that G6PD has an increased activity in several
types of cancers such as bladder, breast, prostate or gastric cancers.
In the other hand, 6PGD enzyme activity is also very high and im-
pact tumour growth. Changing G6PD enzyme activity by for instance
depleting it, decreases drastically NADPH concentration which mini-
mizes the oxidative stress defence [22]. However, in the case of 6PGD
enzyme regulation, the results are contradictory with decreased level of
NADPH [23] or low/no change of NADPH level [24, 25]. It is to note
that, during 6PGD enzymatic reaction, a carbon is lost to produce
a molecule of CO2 which is of importance in terms of metabolic flux
responses.

• The noxPPP is the non-oxidative part due to the non-interaction with
NADPH. However, this branch is linked to the purine metabolism
allowing to produce nucleotides, e.g. DNA replication, via PRPPs
enzyme. It is also linked to glycolysis at the level of GAP and F6P
metabolites. It is important to note that all reactions inside noxPPP
are reversible such that the direction of metabolic flux can be in the
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two directions. In some cases associated to active cell cycle, a fraction
of the metabolic flux goes from glycolysis through noxPPP toward the
purine metabolism [24, 26, 27]. In the context of oxidative stress, the
metabolic flux through noxPPP is rather expected to be recycled from
oxPPP toward glycolysis to eventually return back to oxPPP [28].

1.4.3 Glycolysis

The glycolysis is a major metabolic pathway that is coupled to the PPP and
that consumes glucose molecule to produce pyruvate metabolites through a
linear chain of metabolic reactions. This metabolic pathway is commonly
splitted into two parts [20] :

• The upper part of the glycolysis is made of enzymatic reactions from
phosphoglucose isomerase (PGI) to glyceraldehyde 3-phosphate dehy-
drogenase (GAPD) where molecules that come out are mainly com-
posed of 3 carbons. Because it is half the carbons quantity that enter
into the glycolysis, the flux is also doubled. The enzymes are mainly
reversible expect for phosphofructokinase-1 (PFK) which catalyses the
reaction of fructose-6-phosphate (F6P ) into Fructose 1,6-bisphosphate
(FBP ). However, it has the homologous enzyme which catalyses the
reverse reaction called Fructose 1,6-bisphosphatase (FBPase). This
part of the glycolysis is very interesting in the context of oxidative
stress, because it is directly linked to both the oxPPP and noxPPP
which allows to reuse glucose molecules that were reacting in the PPP
[17, 18]. Indeed, glucose flux can be rerouted from the glycolysis to
the oxPPP which then can be directed to the noxPPP and finally come
back to the oxPPP by using the reverse glycolysis called gluconeogen-
esis. The more molecules that are reused, the more cyclical the flux,
the greater the production of NADPH, the higher the oxidative stress
defence.

• The lower part of the glycolysis corresponds to the pyruvate metabolism.
It starts from GAPD enzymatic reaction and allows to produce adeno-
sine triphosphate (ATP ) specifically during reactions catalysed by en-
zymes phosphoglycerate kinase (PGK) and pyruvate kinase (PK) which
are the first and last enzyme of the lower glycolysis. ATP can be seen as
cellular energy [29, 30]. Moreover, the pyruvate molecules can be used
in different pathway : aerobic such as citric acid cycle and for electron
transport and anaerobic in alcoholic fermentation to produce alcohol
in yeast and several bacteria or homolactic fermentation to produce
lactate in for instance several bacteria, muscle or red blood cells.
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A lot of modeling studies of carbohydrate metabolism considers the entire
glycolysis [31, 32]. However, in the context of oxidative stress response,
it is reasonable to focus on the upper part of glycolysis that is the only
part coupled to the PPP via G6P , F6P and GAP metabolites. The lower
glycolysis will be taken as an output flux which corresponds toward pyruvate
production and eventually mitochondrial respiration. It is known that this
pathway consumes around 90% of glucose without stress [17, 18, 33, 34], but
it is significantly decreased during oxidative stress due to several regulations
[18, 35, 36]. It is to note however that the link between lower part of glycolysis
and oxidative stress has also been postulated through the oxidative regulation
of pyruvate kinase [37, 19] and whether the fate outcome of pyruvate is to
be consumed through mitochondrial respiration which generates ROS, or to
wastefully produce excreted metabolites such as lactate, ethanol, acetate,
even in presence of oxygen. This important issue relates to what is called the
overflow metabolism, also known as Crabtree’s effect or Warburg effect [38,
39]. It has been hypothesized that overflow metabolism could be somehow
connected to oxidative stress and interpreted as an attempt to reduce the
generation of reactive oxygen species [40], among many other hypothesis
[41].

1.4.4 Purine metabolism

The purine metabolism is a pathway in continuity of the oxidative PPP.
Even if it has not direct link in the NADPH production or consumption,
it consumes R5P which comes from glucose molecules and are favoured to
repair DNA damages induced by oxidative stress. This pathway is made of
chain reactions in order to produce purine molecules :

R5P
PRPPs−−−−→ PRPP −→−→−→ IMP −→ GMP orAMP −→ Guanine orAdenine

(1.8)
Guanine and adenine are purines used as nucleic base to produce nucleotide
for DNA and are produced from Inosine Monophosphate (IMP ). This path-
way is then seen as a biomass production pathway. It has been shown that
purine metabolism is essential during oxidative stress, in addition to serv-
ing as building blocks for DNA [42, 43]. Indeed, it allows to favour cell prolif-
eration and survivability during oxidative stress [42]. Moreover, uric acid are
produced at the end of purine metabolism and would serve as anti-oxidant.
Thus, more glucose molecules are rerouted toward the purine metabolism dur-
ing oxidative stress. In the context of the thesis, this pathway will be used as
output flux via phosphoribosylpyrophosphate (PRPP ) synthase (PRPPs).
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1.5 Regulation of the metabolic response to ox-
idative stress

Metabolic pathways are regulated in order to satisfy different cellular needs
such as proliferation, repair and energy or redox homeostasis, as function of
the context, especially the presence of nutrients, stress or cell-to-cell com-
munication (Figure 1.4). Indeed, enzyme activities can be regulated through
a variety of mechanisms inducing either rapid changes of their activity or
slow change of their expression. The expression of most enzymes of the
glycolysis and the PPP are indeed known to be highly regulated through
transcriptional, post-translational and allosteric mechanisms. Because this
thesis study focuses on the adaptation dynamics occurring at early time
from seconds to tenth minutes, we will restricted our focus to a specific set
of regulatory mechanisms where metabolites directly interact to enzymes to
modify their activities at such timescale. In the context of oxidative stress,
it has been shown that NADPH inhibition on G6PD and 6PGD decrease
during oxidation [44, 45, 34]. Hydrogen peroxide is one of major reactive
oxygen species and inhibits several nodes of the glycolysis such as on GAPD
[36, 35, 46] or PK [37, 19] which directly links them to oxidative stress. How-
ever, other inhibitions or activations of the metabolic pathways are present
such as on PGI [17, 47, 48], PFK and FBPase [49, 50, 51], TPI [52, 53].

These regulations can be implemented by different types of mechanisms
: Competitive, allosteric and oxidative inhibitions (Figure 1.5).

• Competitive inhibition is a regulation where an inhibitor binds to an
enzyme at the active site of a substrate. Thus, the reactant cannot
bind to the enzyme preventing the reaction to happen. NADPH is
known to competitively inhibiting G6PD and 6PGD [44, 45, 34].

• Allosteric inhibition is a regulation where an inhibitor binds to an en-
zyme, modifying the active site, avoiding substrate to bind. This is the
case for example when 6PG and G6P is inhibiting respectively PGI
[17, 48] and HK [54].

• Oxidative inhibition is a regulation where reactive oxygen species ox-
idise a sulfur linked to a cysteine of an enzyme. Oxidations of these
atoms will induce creation of a disulfide bond making the enzyme in-
active [55]. Once the enzyme is inactivated, the active site is then
modified which prevents the reaction to happen. This is the case for
example when H2O2 inhibits GAPD [36, 35, 46].
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At longer timescale, stress-sensitive transcription factors such as Nrf2
and p53 are known to significantly contribute to the regulation of metabolic
response to oxidative stress. Nuclear factor erythroid-derived 2-related factor
2 (Nrf2) is a transcription factor that highly transcriptionally regulates anti-
oxidants genes such as glutathiones and thioredoxins anti-oxidants systems
[56]. It also controls the expression of most enzymes in the PPP [57]. Another
example is the tumour protein p53 that regulates directly or indirectly the
transcription of several enzymes including G6PD and PFK [58, 59, 60].

1.6 Adaptation dynamic during oxidative stress

Homeostasis is all chemical reactions in cells used to maintain themselves
alive. However, during a perturbation, the cellular state is rapidly changed
and can induce damages or diseases. Metabolic pathways are regulated in
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Figure 1.6: Temporal adaptation during stress perturbation. (A)
Top : The stress (Red) is applied at t0 = 0 (arbitrary unit). Bottom :
A metabolite concentration (blue) displays an adaptation characterised by
the ratio between maximum and steady state values called adaptation ratio.
(B) Example of experimental result extracted from Goulev et al. 2017 [61].
Top : Temporal dynamics of oxidative stress profiles. Different levels of
external hydrogen peroxide H2O2 concentrations are applied to yeast cells.
Bottom : Temporal dynamics of mean nuclear transcription factor Yap1-GFP
displaying adaptation as a function of the H2O2 level.
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order to react and counteract the changes. When regulations are sufficiently
efficient, cells can come back close to their initial state. This phenotype
is called adaptation (Figure 1.6-A). Thus, it is a phenotype of a rapid and
significant change due to the perturbation and then a relaxation due to the
effects of regulations. When the final steady state is similar or close to
the initial state, then the adaptation is respectively perfect or near-perfect
[62, 63, 64]. It is often observed when metabolic pathways are composed of
a negative feedback loop [64].

A strong adaptation means that the metabolism is sufficiently regulated
to react and counteract the changes. However, the absence of an adapta-
tion phenotype does not means an absence of regulation because a very fast
regulation would induce instantaneous changes. Thus, the response to a per-
turbation is a compromise between rapid regulation allowing to minimize
changes but with high metabolic cost and slow regulation which could imply
high changes and potential damages in short term. This compromise can
be captured by the presence of the adaptation phenotype. In the case of
oxidative stress, adaptation has been observed in yeast by Goulev et al. 2017
[61] (Figure 1.6-B) or also in mammalian cell by Simiuc et al. 2020 [65].
Indeed, under hydrogen peroxide perturbation, the transcription factor Yap1
is relocated into the nucleus in yeast cells. However, the PPP and glycoly-
sis are known to be highly regulated in order to highly produce NADPH
inducing decreasing nucleus Yap1 localisation. It then means that the rapid
regulations of this specific carbons metabolism have important impacts in
the oxidative stress detoxification.
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Chapter 2

Methods

Oxidative stress is a perturbation of cellular redox state inducing potential
damages, cell death or diseases. Regulation of the metabolism allows to
drastically increase the NADPH production in order to favour the stress
response. A theoretical analysis of the oxidative stress response will be made
in this thesis via a mathematical model. It will represent the temporal varia-
tion of metabolite of the PPP and glycolysis in response to a hydrogen perox-
ide perturbation. In this chapter, we introduce the modeling framework and
tools that are used to construct a kinetic model of metabolic pathways, rang-
ing from biochemical kinetics, data analysis, optimization procedure such as
Monte Carlo Markov chain (MCMC) or genetic algorithm (GA). In addition,
conventional methods to analyse the behaviour of metabolic network such as
flux balance analysis (FBA) and metabolic control analysis (MCA) will be
also introduced. All these methods are standard in the context of models of
metabolism [66, 67].

2.1 Metabolic network modeling

A mathematical model made of ordinary differential equations (ODE) links
metabolite concentration variations to reaction rates. In this section will be
recall the procedure to generate ODEs corresponding to a metabolic network
and to express their reaction rates as function of metabolite concentrations
and parameters by using chemical laws (Figure 2.1).

2.1.1 Kinetic modeling of metabolism

Theoretical analysis is often useful to obtain complementary informations
to experimental measurements or to make new predictions which could be

17
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Figure 2.1: Mathematical modeling scheme of a metabolic net-
work. A metabolic network of interest is modeled by using ordinary
differential equations and link variations of metabolite concentrations ~x to
reaction rates ~φ with the stoichiometric matrix N. Expression of reaction
rates can be made by chemical laws.

verified experimentally. In this thesis will be addressed a theoretical analysis
of the network made of PPP, glycolysis and anti-oxidant pathways using a
mathematical model. A kinetic model of metabolic pathways can typically
be formulated as a set of ordinary differential equations (ODE) describing
temporal evolution of variables as a function of time [68] :

d~x

dt
= N~φ(~x, ~p) (2.1)

where N is the stoichiometric matrix. Each element is a stoichiometric co-
efficient of the corresponding reaction. ~x is the metabolic concentrations
vector and the variation of metabolite concentrations is represented by d~x

dt
.

Thus, ~φ(~x, ~p) is the reaction rates vector which will depend as a function of
the metabolite concentrations and the chemical parameters. They can be ki-
netic, regulation (i.e. inhibition or activation) or saturation parameters. At
steady state (i.e. d ~X

dt
= 0), the vector of metabolite concentrations and flux

rates are written with capitalized ~X and ~Φ. It exists a lot of mathematical
formalisms to express the reaction rates [69]. In the context of this thesis, the
following chemical laws will be used : Mass action laws and Michaelis-Menten
equations.
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2.1.2 Reaction kinetics

A metabolic network is made of chemical reactions such as the general re-
versible reaction : ∑

j

ajSj
k+−⇀↽−
k−

∑

j

bjPj (2.2)

where S and P are respectively the reactants and products. a and b are the
stoichiometric coefficients. Parameters k+ and k− are the kinetic constants
respectively for the forward and backward reactions corresponding to their
reaction rates φ+ and φ−. For irreversible reactions, k− is equal to 0. In most
chemical reactions, one or two molecules are consumed for a reaction. Such
reactions can then be expressed using chemical laws.

Mass action law

Mass action law is a chemical law which allows to mathematically express
chemical reactions ~φ(~x, ~p) as a function of the metabolite concentrations ~x
and kinetic parameters ~p [68]. It assumes that rates of reactions are pro-
portional, at a certain order, to reactant concentrations which are molecules
reacting and consumed to generate products. It means that the higher re-
actant concentration, the higher the rate. When reactant concentrations are
infinite, then the reaction rate will also increase to infinite. To a better un-
derstanding of the implication of this law, mass action law is implemented
for the general reversible reaction (eq 2.2). The total rate φ can then be
written which will be the difference between reaction rates of each direction
(forward/positive φ+ and backward/negative φ−) :

φ = φ+ − φ− = k+

∏

j

[Sj]
aj − k−

∏

j

[Pj]
bj (2.3)

where S and P are respectively the reactant and product. a and b are called
orders of the mass action law. In the further studies, only the linear cases
(i.e. first order) will be used due to stoichiometric coefficients (i.e. order
parameter a and b) equal to 1.

Biochemical reactions are governed by thermodynamic principles. Reac-
tions consist of transferring energy from a molecule to another. The relevant
measure of this quantity at constant pressure and temperature is the Gibbs
free energy G. Thus, during a reaction, the variation of energy will be quanti-
fied by ∆G =

∑
j GPj −

∑
j GSj where GS and GP are the Gibbs free energy

of respectively the reactants and products. If ∆G < 0, then the reaction
will occurs spontaneously forward. If ∆G > 0, then the reaction will not
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occur spontaneously. Equilibrium means ∆G = 0 and allows to express the
standard Gibbs free energy ∆G◦ which is ∆G at standard condition :

∆G◦ = −RT ln(Keq) (2.4)

where R is the universal gas constant and T the temperature. Keq is the equi-
librium constant which is the ratio of reactants and products concentrations
at equilibrium. During the model construction, experimental measurement
of the Gibbs free energy [32, 70] are used to determine equilibrium constant
of the model and are made at T = 310.15K.

Concerning the mass action law, because the positive and negative re-
action rates are equal at equilibrium, the equilibrium constant Keq will be
expressed as :

Φ = 0 ⇐⇒ Keq =
k+

k−
=

∏
j[Pj]

∗
∏

j[Sj]
∗ (2.5)

where [x]∗ is the concentration of the molecule x at equilibrium. The total
reaction rate can then be written as function of the equilibrium constant :

φ = k+(
∏

j

[Sj]−
k−
k+

∏

j

[Pj]) = k+(
∏

j

[Sj]−
∏

j[Pj]

Keq
) (2.6)

With this expression, the reaction rate will be positive meaning forward re-
action when

∏
j[Sj] >

∏
j [Pj ]

Keq
. Thus, the higher the equilibrium constant, the

more difficult it is to reverse the direction of reaction called backward reac-
tions by modifying the concentration of the reactants and products. When
the equilibrium constant is infinite, the reaction is irreversible.

Michaelis-Menten kinetics

In glycolysis and PPP, reactions are catalysed by enzymes. When an enzyme
is involved in a chemical reaction, the corresponding rate can be expressed
using Michaelis-Menten formalism [68] instead of mass action law. To derive
the Michaelis-Menten kinetic law, an enzymatic reaction has to take into
consideration intermediate reactions described in Figure 1.5 of Section 1.5
which can be written as :

E + S
k1−−⇀↽−−
k−1

ES
k2−→ E + P (2.7)

where S is a substrate, i.e. the reactant, E is the enzyme that catalyses the
reaction, and P is the product. During chemical interactions, enzyme binds
to the substrate and forms a complex ES before changing its conformation
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to release the product. Each reaction has their corresponding reaction rate
constants k1, k−1 and k2. By applying the mass action law, each reaction
rate can be mathematically expressed. Then, the Michaelis-Menten reaction
rate can be written as :

φ =
Vmax,i[S]

[S] +Kmi

=
ki[S]

1 + [S]
Kmi

(2.8)

where Vmax,i is the maximum reaction speed and Kmi is the Michaelis-
Menten constant for an enzyme E = i. In this thesis will be used the second
expression of the reaction rate using ki = Vmax,i/Kmi to easily relate with
mass action kinetic for Km → ∞. With this final expression, the reaction
rate does not increase linearly but behaves as the hyperbolic curve (Figure
2.2). Then, maximum reaction speed Vmax is the maximum value that can
reach the reaction only if substrate concentration tends to infinity. Michaelis-
Menten constant Km is a concentration value that substrate S can reach to
have a reaction rate equal to half the maximum rate. It is important to note
that maximum reaction rate Vmax is proportional to enzyme concentration
in this formalism. If it changes as a function of time or changes from a cell
to another, Vmax will also vary. As oxidative stress will be studied during
short time scale response, enzyme concentration and thus Vmax also can be
considered as constant.

A generalization of the uni-uni Michaelis-Menten equation can also be
used for irreversible and reversible uni/bi-substrate reaction kinetics [71] :

φ([S], [P ], ki, Keqi, Kmi) =
ki

∏
j [Sj ]∏

j(1+[Sj ]/KmSj,i)
(2.9)

φ([S], [P ], ki, Keqi, Kmi) =
ki(

∏
j [Sj ]−(Keqi)

−1
∏
j [Pj ])∏

j(1+[Sj ]/KmSj,i+[Pj ]/KmPj,i)
(2.10)

where j = 1 for unisubstrate reactions and j = 1; 2 for bisubstrate reactions,
and where the denominator contains numerous terms for each substrates and
products. The assumption that [Si] or [Pi] � Kmi can be made so as to
reducing to a mass action dynamic allowing to reduce the number of terms
and parameter in denominator.

Metabolic regulation of enzyme activity

Examples of metabolic regulations involved during oxidative stress have been
presented in Section 1.5. To implement mathematically this type of metabolite-
enzyme interaction, a similar formalism as Michaelis-Menten dynamic can be
used but instead of saturating as a function of the substrate, reaction rate
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Φ
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[S]

Vmax 
2

Km

Figure 2.2: Michaelis-Menten reaction rate φ curve as function
of substrate concentration [S]. Km represents the Michaelis-Menten
constant which is the value that [S] can take to reach half the maximum
rate Vmax.

will decrease as a function of inhibitor concentration (Figure 2.3) depending
on an inhibition constant Kii.

Thus, in the case of negligible Michaelian saturation, a general reversible
reaction i that consumes the reactant S to produce P and inhibited by the
inhibitor I can have a rate expressed mathematically by a generalized mass
action law as :

φ([S], [P ], [I], ki, Keqi, Kii) = ki

( ∏

j=1,m

[Sj]− (Keqi)
−1
∏

j=1,n

[Pj]

)
(1 + [I]/Kii)

−1

(2.11)
where m and n are the number of substrates and products. φ is a reaction
rate, and ki, Kii, Keqi are respectively maximum speed, inhibition and equi-
librium constant. Note that the same maximum speed constant as generalised
Michaelis-Menten dynamic is used in this case to keep the same formalism.
When two behaviours, i.e. saturation and inhibition, are non negligible for
the same reaction, both terms in the denominator are kept inducing two pos-
sible ways to decrease the maximum speed : as function of the substrate or
inhibitor concentrations. Thus, the reaction rate expression will depend as
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Φ
Vmax

[I]

Vmax 
2

Ki

Figure 2.3: Reaction rate φ curve as function of inhibitor concen-
tration I. Ki represents the inhibition constant which is the value that [I]
can take to reach half the maximum rate Vmax.

a function of the regulation type [72]. For instance, a rate with competitive
CI and non-competitive nCI inhibition and taking into account saturation
can be expressed as :

φCI([S], [P ], [I], ki,Keqi,Kmi,Kii) =
ki

(∏
j [Sj ]− (Keqi)

−1
∏
j [Pj ]

)

∏
j (1 + [Sj ]/KmSj,i + [Pj ]/KmPj,i + [I]/Kii)

(2.12)

φnCI([S], [P ], [I], ki,Keqi,Kmi,Kii) =
ki

(∏
j [Sj ]− (Keqi)

−1
∏
j [Pj ]

)

∏
j (1 + [Sj ]/KmSj,i + [Pj ]/KmPj,i) (1 + [I]/Kii)

(2.13)
In the context of this thesis, only the formalism using competitive inhibition
will be used to model PPP and glycolysis inhibition during oxidative stress
response.

2.2 Steady state analysis
A mathematical model made of ordinary differential equations allows to ob-
tain temporal dynamics of metabolites in the context of a metabolic network.
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A lot of studies are based on steady state solution, i.e. d ~X/dt = 0 which
allows to obtain a lot of informations, before entering in complex analysis
such as numerical simulations providing temporal dynamics. Specific meth-
ods have been developed to analyse metabolic pathways at steady state (i) to
study metabolic flux state via flux balance analysis or (ii) to study metabolic
sensitivity to a small perturbation via metabolic control analysis.

2.2.1 Flux balance analysis

Flux Balance Analysis (FBA) is a mathematical method used to represent the
steady state solution space of stoichiometric models supplemented with a set
of constraints [73, 74, 68, 72, 75, 76]. FBA is particularly useful to identify
the main cellular objectives and constraints that determine the metabolic
flux state in various environmental conditions [77]. FBA framework can also
be used, just to determine the allowable flux solution space and to represent
the flux state in such space as a combination of elementary modes.

Explained in section 2.1, a metabolic network can be modeled by ordinary
differential equations of metabolite concentrations ~x variations as a function
of time which is equal to the corresponding reaction rates ~φ. At steady state,
the metabolite concentration variation is equal to zero, thus equation (2.1)
becomes the balance equation :

0 = N~Φ( ~X, ~p) (2.14)

where capitalized ~X and ~Φ represent steady-state concentration and flux
vectors. N is the stoichiometric matrix m × n which has m rows equal to
the number of variables, and n columns equal to the number of reaction
rates. Then, the rank of the stoichiometric matrix can be defined with the
rank–nullity theorem :

Rank(N) + Nullity(N) = n (2.15)

where Nullity(N) equal to the Kernel dimension (dim(Ker(N))). When the
mathematical model takes into account only independent variables, the di-
mension of the rank is equal to the number of metabolite concentrations m,
inducing [78] :

dim(Ker(N)) = n− Rank(N) = n−m (2.16)

The kernel dimension of the matrix N is equal to the number of modes
that can be found by solving the matrix equation 2.14. The corresponding
result is a basis of vectors that will reflect the pathways which can be found
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in the network. It does not exist unique solution, however, in this thesis,
vectors with the maximum numbers of zeros and integer values will be kept
to capture the essence of a minimal pathway that can take a network [79].
Then, more realistic modes can be found by combining these vectors in order
to create a new basis. Finally a biological flux state ~Φ will be a combination
of elementary modes ~Vi :

~Φ =
∑

i

λi~Vi (2.17)

where λi is the component of the elementary mode ~Vi. To find these modes,
it is enough to know the structure of the network. Indeed, this method does
not need to express reaction rates using chemical laws such as mass action
law or Michaelis-Menten formalism.

2.2.2 Metabolic control analysis

Metabolic Control Analysis (MCA) is a mathematical framework used to
analyse metabolic pathways by describing the sensitivity at equilibrium of
metabolites concentrations or fluxes to a variation of enzyme activity, i.e.
flux rate [80, 68, 81, 72, 82] (Figure 2.4). It can be extended to sensitivity
to variation of other chemical parameters such as saturation or regulation
parameters. After building an oxidative stress response model, sensitivity of
the variables and reaction rates can be analysed via a change of parameters
which are directly proportional to enzyme activity or regulation parameters.
MCA allows to study these sensitivities thanks to properties called control
coefficients, response coefficients and elasticities.

MCA is applied at equilibrium, thus changing a rate parameter will mod-
ify the steady state concentrations or fluxes curve. In Figure 2.4, the system
is at equilibrium when rates are equal : Φ1 = Φ2, meaning steady state rates
take their values when curves are crossing each others. Changing one of
these enzyme activities (i.e. rate parameters) will change the corresponding
reaction rates which will induce modification of the crossing point. It has
for consequence to change other reaction rates but also metabolite concen-
trations.

~X denotes the metabolite concentrations and ~Φ (written ~J in this study)
denotes the fluxes rates, both at equilibrium. Concentration and flux control
coefficients CXj

Φi
and CJj

Φi
can be defined as relative steady state variation of

respectively a metabolite concentration or flux as function of a small variation
of a flux rate induced by modifying the corresponding parameter. It can be
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Figure 2.4: Principle of metabolic control analysis. X is metabolite
concentration, Φ the reaction rate. Φ1 = Φ2 corresponds to steady state.
∆X is the variation of a quantity X to a variation of a flux rate ∆Φ.

written mathematically by the following respective derivative :

C
Xj
Φi

=
dXj

dΦi

.
Φi

Xj

=
d ln(Xj)

d ln(Φi)
(2.18)

C
Jj
Φi

=
dJj
dΦi

.
Φi

Jj
=
d ln(Jj)

d ln(Φi)
(2.19)

These coefficients are positive when the concentrations/fluxes increase when
the enzyme activity increases and reversibly. It has no effect when coefficient
is equal to zero. Thus, it will be an important tool to estimate whether an
enzyme has a positive or negative effect on the oxidative stress detoxification
meaning hydrogen peroxide concentration removing. Reversely, It allows to
estimate whether a change of oxidative stress parameters implies a positive
or negative effect on metabolite concentrations or fluxes. The metabolite
concentration control coefficients can be linked to fluxes control coefficients
with the elasticities matrix εJX by :

~C
~J
Φi

= ~ΠΦi + ε
~J
~X
~C
~X

Φi
(2.20)

where ~C are control coefficient vectors to the corresponding ~J and ~X which
are fluxes and metabolite concentrations vectors of the entire system at
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steady state for a specific enzyme perturbation i. ~Π is a unitary vector
in the direction of Φi. ε

~J
~X
is the matrix of elasticities εJjXi =

∂ ln(Jj)

∂ ln(Xi)
which

represents the variations of fluxes with respect to variation of concentration
at steady state.

It exists similar coefficients called response coefficients for modification of
different parameters of enzyme activity :

RXj
pi

=
∂ lnXj

∂ ln pi
(2.21)

RJj
pi

=
∂ ln Jj
∂ ln pi

(2.22)

They are often used to estimate the importance of metabolic interactions
such as allosteric regulations. A variation of the response coefficients after a
modification of a regulation parameter would reveal the importance of this
regulation on a specific metabolic concentration or flux. Thus, a measure on
the response coefficient of hydrogen peroxide production would show whether
the regulation favours oxidative stress detoxification.

2.3 Stochastic modeling of metabolism
The metabolism is all chemical reactions in cells that maintain them alive by
achieving specific functions such as production of energy, biomass or the stress
defence. A reaction involves molecules which are discrete entities. When they
are present in large quantities such as in the metabolism, discrete production
or consumption of molecules do not have high impact on the properties of
the system. Indeed, in general, the typical concentration of a metabolite is
between the micromolar and millimolar which is equivalent to ≈ [105 − 108]
molecules depending of the cellular volume which is typically ≈ 2000µm3.
However, when this number is smaller, the stochasticity becomes much more
important, impacting the properties of the system which is typically the case
for instance with DNA molecules. Moreover, each cellular components can
interact between each others which can add noise. Fluctuations in single
component are also present impacting the performance of the network. The
stochasticity is then an important feature that can be modeled. In this section
will be presented the three main types of stochastic modeling of biochemical
pathways.

2.3.1 Chemical master equation

The Chemical Master Equation (CME) describes the temporal dynamic of
the probability to be in a certain state for each variable of the system. To
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mathematically follow the probabilities to be in each possible state, the equa-
tions do not describe the global concentration of the chemical compounds de-
scribed in the deterministic ODE but follow the number of molecules. Thus,
a possible state of the stochastic system is written as ~ω. The probability to
be in the state ~ω at time t can be written as P (~ω, t). This probability is
changing as a function of time due to the chemical reactions which allow to
swap from state to another. The transitions are captured by the chemical
master equation [83, 84] :

dP (~ω, t)

dt
=
∑

j

[
ηj(~ω − ~Nj)P (~ω − ~Nj, t)− ηj(~ω)P (~ω, t)

]
(2.23)

where η(~ω) are the reaction propensities which are the probability of a re-
action to reach a state ~ω. ~Nj is the stoichiometric coefficient vector of the
corresponding reactions. Thus, the sum over j is the sum of all reactions
that consume and produce a molecule which can occur in the network. The
two terms of the equation are therefore the reactions rates which increase or
decrease respectively the probability to be in the state ~ω.

2.3.2 Stochastic simulation algorithm

The stochastic simulation algorithm (SSA) is an algorithm that can reproduce
the randomness and discrete behaviour of a system dynamic [85, 86]. When
the stochasticity cannot be neglected, the use of stochastic algorithm is well
justified to compute biological phenomena [87, 88]. It has been shown that
stochastic simulation algorithms can be splitted in different smaller groups
such as direct method, the first reaction method, the next reaction method
and the rejection-based SSA in the exact stochastic simulation group, whereas
the τ -leaping method [89, 90] and the chemical Langevin method are part of
the approximate stochastic simulations which follow the Gillespie algorithm
[91]. In this thesis will be presented a new 13C-MFA algorithm based on SSA
and also a stochastic study of cellular decision making using a model made
by Langevin equations [2].

Two famous stochastic simulation algorithm are Gillespie algorithm intro-
duced in 1976 and the next reaction method [92] which simulate a stochastic
system of equation using chemical master equation [93]. This algorithm
makes iterations to discretely reproduce the reactions that can occur in cells.
In this thesis will be used a modified next reaction method which follows the
general steps [92, 94] :

(i) generate the time necessary to make happen the reaction, and the
corresponding propensities ;
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(ii) determine which reaction that will occurs, and execute the reaction
by changing the molecules numbers and by increasing the time value ;

(iii) recompute the new time value and propensities.

These steps allow to make happen chemical reactions. This algorithm is
efficient because it uses small computational resources for instance by using
only one random number per simulation loop, and with a calculation time
proportional to logarithm of the reactions number.

2.3.3 Langevin equation

The chemical master equation can be approximated to the Langevin equation
which is a stochastic differential equation representing a system undergoing
fluctuations. It can be applied to a biochemical reaction network :

dXi

dt
=
∑

j

Nijηj(t) +
∑

j

Nij

√
ηj(t)ζj(t) (2.24)

< ζj(t)ζj′(t
′) > =

1

Ω
δj,j′δ(t− t′) (2.25)

where δ(t) is the Dirac delta function. ~X represents the system variables
which are subjected to uncorrelated, statistically independent gaussian white
noises ζ(t) inversely proportional to the system size Ω. The variation of
these variables are given as a function of the reactions j associated to the
propensities ηj(t) and the stoichiometric values Nij. The propensities can
depend as a function of a perturbation such as during oxidative stress.

2.4 Data-driven model construction
A mathematical model of a metabolic network consists of describing the vari-
ation of the metabolite concentrations as a function of time. They depend
directly to the model parameters which are constant quantities that influ-
ence directly the output, the prediction of the model. The entire parameter
space, which can be seen as a genotype, encodes all the possible results of
the model, corresponding to the phenotype. In the context of metabolic
pathways, model depends of the reactions which can be mathematically ex-
pressed by chemical laws linking variables to parameters. It exists different
classes of parameters such as kinetic, saturation or regulation (i.e. inhibi-
tion or activation) parameters (Section 2.1), which all can be determined by
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Parameter Data

Figure 2.5: Forward and data-driven problem scheme. Left and
right ellipses represent respectively the parameter and data space.

the experimental measurement. However, due to technical limitations, di-
rect in-vivo measurement of those parameters during experiments is often a
challenge. Thus, a specific procedure is necessary to assess parameter values
that are consistent to a given dataset.

A score function represents the gap between experimental data Xexp and
simulation results Xsim such as Root Mean Square Error (RMSE) :

RMSE(~pj) =

√
1

Nd
∑

i=1,Nd

(Xi,exp −Xi,sim(~pj))2 (2.26)

where Nd is the number of fitted data and ~pj a parameter vector j which
can be the model parameters. A low RMSE value induces small gap be-
tween experimental data Xexp and simulation results Xsim obtained with the
set of parameters ~pj. A threshold value needs to be fixed to be able to say
if the parameters allow to well reproduce the experimental data which is
often arbitrary and corresponds to the Cauchy’s criterion for convergence.
The RMSE can be normalised by the experimental error where, in this case,
the threshold value will be 1 meaning that nRMSE < 1, the gap between
experimental and estimated values will be lower than experimental uncer-
tainties. Contrary to the forward problem where the parameters are used
to directly produce data via numerical simulation, the parameters can be
estimated by minimizing a score function such as RMSE, corresponding to
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the inverse problem (Figure 2.5). The method allows to fit the experimental
data in order to build a realistic mathematical model and is made by the use
of dedicated algorithms. It exists different types of measurements that can
be used to estimate parameters such as metabolomic, fluxomic data which
will be used in the thesis or such as high throughput genomic data which are
not used in this work.

To minimise the gap between experimental data and simulated results,
it is necessary to travel through the parameter space in order to find the
best set of parameters which can be done by dedicated algorithms such as
Monte Carlo Markov chain (MCMC) [95, 96, 97] and genetic algorithms (GA)
[98, 99, 100]. Finding the best set of parameters reproducing experimental
data is finding the minimum of this score function called the global minimum.
However, the parameter space dimension grows as a function of the estimated
parameters number which tends to make complex space. Therefore, it will
exist a huge number of hills and valleys creating a lot of local minimums
in the score function. These are regions in the space that are locally the
minimum but not the general minimum of the space. MCMC and GA are
both stochastic algorithms that minimize a score function by travelling into
score function space via stochastic moves into the parameter space without
being stuck in a local minimum. Because it is long to find the global min-
imum, the algorithms try to find the best local minimum as a function of
the computation time. An infinite computation time with an infinite number
of iteration would guaranty the convergence to the global minimum. It ex-
ists many stochastic algorithm for mathematical optimisation but only these
two have been used in this thesis. It also exists optimisation algorithm such
as, for instance, gradient descent algorithm or conjugate gradient method
[101, 102] that use a gradient method which consists in going down in the
space following the corresponding gradient. These methods are robust to find
a near local minimum but are often stuck into it and do not widely travel
into the space avoiding to find a potential better solution. For this reason,
they have often lower computational cost and time.

2.4.1 Genetic algorithm

Genetic algorithm (GA) is a class of algorithm to find a solution of an optimi-
sation. It is inspired by natural selection by mimicking biological mechanisms
such as mutation, crossover or selection [98, 100]. In our interesting case, it
will be used to optimize a set of elements which will be set of parameters
corresponding to kinetic, saturation and regulation parameters of the oxida-
tive stress response model. GA are used due to its efficiency which is often
higher than classic algorithms [103, 104].
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GA is used to optimise a score function by minimizing it with processes
close to biological natural selection. To decrease a score function ξ that rep-
resents the gap between simulated and experimental data, the algorithm will
implement several parameter sets called a family where each set is an individ-
ual and will travel into the parameter space by applying modifications called
mutations on copy of randomly chosen individuals (Figure 2.6). Original in-
dividuals are the parents and mutated individuals are the offspring. Finally,
the algorithm applies selection by keeping the best individual between all
parents and offspring :

Initialization : Start from an arbitrary parent to which corresponds
a score value xi. Create the first family of Nf individuals by applying
Nf different mutations of the original individual which will be the Nf

first parents linked to their score.

Step 1 : Apply mutations by modifying a small number of parame-
ters on a copy of randomly chosen group of Nf parents to create the
offspring. Each offspring has his corresponding score. A new family of
2Nf individuals is now made of the parents and offspring.

Step 2 : Select the Nf best individuals by keeping the Nf best scores
to come back to a family of Nf individuals.

and iterate to Step 1.

By generating a family twice its size, the algorithm can quickly travel in
the parameter space. It keeps the best individuals corresponding to the best
scores which allows to stay with a family of the same size. Because it always
keeps the same number of individuals, bad score individual can be also kept
with a certain probability. Thus, the algorithm avoids to be stuck in local
minimum of score function space.

2.4.2 Monte Carlo Markov chain - Metropolis Hastings

Monte Carlo Markov chain (MCMC) method is a class of algorithm that
computes a sample from a desired distribution. One of the existing algo-
rithm is Metropolis Hastings algorithm which can also be used to minimize
a function. In this thesis, such algorithm has been used to estimate a distri-
bution of parameters by minimizing a function representing the gap between
simulated and experimental values [95, 96, 97].

Basically, MCMC or more specifically Metropolis Hastings algorithm [105]
consists in randomly and iteratively travel via small steps through the sample
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Figure 2.6: Genetic algorithm scheme. Starting from a family of Nf

individuals, genetic algorithm applies mutations to each. By sorting them
as a function of their score, the Nf best individuals are selected to generate
a family of Nf individuals. Repeating these steps allows to minimize a score
function and to find an optimal set of parameters.

space to find an acceptable region in this space (Figure 2.7-A). A move will be
kept with a certain probability of acceptance α otherwise the algorithm stays
in the same region. Let call a set of parameters ~p which is the element that
needs to be optimized. This set of parameters is linked to a score function ξ
which says if the set of parameters is far from the solution or not. The smaller
the value of the function, the closer the parameters are to the solution. Thus,
the algorithm can be defined as the several steps :
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Figure 2.7: Monte Carlo Markov chain algorithm scheme. (A) Al-
gorithm steps that show how to move in parameters space by accepting or
rejecting moves depending on a probability of acceptance. (B) Algorithm
steps that show how it can be used to minimize a score function by exploring
the parameters space.
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Initialization : Starts from an arbitrary point ~p′ to which corresponds
a score value ξ′;

Step 1 : Creates a new point ~p by applying a random in the sample
space to which corresponds a new score value ξ; V

Step 2 : Calculates the probability of acceptance α = e(− ξ
2−ξ′2

2V2 ) with
V = ξtop

|Nfit−Np| where ξtop is the minimum possible score value, Nfit are
the number of fitted points and Np is the size of a point in the sample
space.

Step 3 : Chooses randomly a r value between 0 and 1. If r ≤ α then
accept the move, ~p′ = ~p and ξ′ = ξ otherwise keep the same point ~p′ to
which corresponds to ξ′.

and iterate to Step 1.

These repeated three steps allow to decrease a score function previously
defined (Figure 2.7-B). It keeps the score lower than the previous one. How-
ever, when a score ξ is higher than the reference score ξ′ reflecting a bad
move, the probability of acceptance is not 0 meaning that few bad scores can
be kept. It is important to have this criteria of acceptance to avoid being
stuck in a local minimum, which might make think the algorithm has found
the global solution. It is important to note that when the number of param-
eter is high, the space to scan is so large that MCMC algorithm won’t be
able to converge to a solution. Moreover, the MCMC algorithm is presented
here in an optimisation algorithm but can also be used to find probabilities
likelihood distributions. To conclude, MCMC is an algorithm that aims to
create samples of a parameter space. It can be used to minimize a score
function by exploring step-by-step this space [106].

2.5 13C-Metabolic flux analysis
Metabolic flux state is an important information to understand the biologi-
cal function of metabolic networks. While experimental measurements often
concern metabolite concentrations due to facilities in the experimental pro-
cedure [17, 61, 16], the reaction rates cannot be measured directly. Methods
have been developed to proceed to metabolic flux analysis (MFA) [107] using
stable isotopes [108] such as 13C labeling experiments [109, 110]. Then, a
specific procedure is now becoming a certain routine in order to estimate
fluxes in a metabolic pathway [111].
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Labeling experiments in MFA consist in modifying atoms of molecules to
produce isotope isomers (isotopomers). Multiple atoms and different types
of atoms can be labeled at the same time. This is typically the case for 13C-
based metabolic flux analysis (13C-MFA) where 12 carbons are replaced by
13 carbons called labeled carbons. Because they differ by a single neutron,
by measuring the mass of new molecules, a shift of neutron elementary mass
will be detected into metabolic pathway as a function of the fluxes. Thus,
a molecule of mass m with n labeled carbon by a 13C induces a shift of n
elementary mass. A workflow of 13C labeling is described in Figure 2.8.

First, a labeling experiment consists in modifying 12C into 13C on molecules
making this new molecule an isotopomer. Different information will be de-
duced as a function of positions of the labeled carbons. It is often beneficial
to multiply the labeling positions to have full information of the metabolic
flux state. Different molecules can be labeled but glucose (Glc) molecules can
be useful to label in the context of oxidative stress response because it is the
entering molecules of the glycolysis and the PPP. Labeled glucose molecules
are converted to other metabolites through metabolic reactions which spread
the labeled carbons [17] due to the chemical reaction rearrangement. The
labeling of atoms implies a shift in the mass of molecules which can be mea-
sured at different nodes of the metabolic pathways using gas chromatography
and mass spectroscopy or other methods [112, 113, 114]. The proportion of
each labeling condition can be represented by the mass isotopomer distri-
bution (MID) m + n which can be computed as a function of the number
of labeled carbon n per molecules. Obviously, the isotopomer distribution
without labeling experiment is 100% at m+ 0.

Once the isotopomer distribution are calculated after mass measurement,
the fluxes can be estimated using dedicated algorithms combined to imple-
mentation of the metabolic pathways. Algorithms allow to estimate MID
from a flux state corresponding to the forward problem. MFA consists in
the flux state estimation from measured isotopomer distribution correspond-
ing to the inverse problem, i.e. data-driven estimation with a score function
minimisation, which is made by an algorithm that iteratively solve the for-
ward problem with an updated flux state. Algorithms or software, such as
Metran [115], COBRA [116, 117] or INCA [118] are based on decomposition
methods such as cumulative isotopomers (cumomers) [119] or Elementary
Metabolic Units (EMU) [120]. The current standard method is the EMUs
decomposition which identifies the minimal number of system variables nec-
essary to deterministically solve the balanced equation system of the isotopic
labeling within a reaction network. In other words, it decomposes the system
in smaller units forming a new basis to generate a new system of equations
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Figure 2.8: 13C-MFA method. Workflow of a typical 13C labeling exper-
iment in order to estimate fluxes of a metabolic network. Labeled carbons
are represented by black circles and non-labeled to empty circles. Labeling
experiments consist of changing 12C by 13C. gas chromatography and mass
spectroscopy are methods to measure the mass isotopomer distribution cor-
responding to the shift of mass m+ i. Flux estimation of a specific metabolic
network is made by using software or algorithm. Statistical analysis allows
to compare simulated results to experimental data in the inverse problem
allowing to find the final results.
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linking isotopomers to fluxes. An EMU is a subset of all isotopomers of a
molecule going to a maximum of 2N − 1 EMUs for a N -atoms molecules.
However, in general, a small fraction of this number is necessary to solve the
balanced equation system of the isotope labeling. The EMU decomposition
is a very efficient method inducing from 10 to 100 times less variables than
the total number of isotopomer. However, this number can still become high
in large network and labeling conditions. Information needed for the decom-
position are the reaction network stoichiometry, the atoms transitions for all
reactions and the list of metabolite.

Most of the classical 13C-MFA algorithms are restricted to the require-
ment of steady state conditions. However, advanced algorithms have been
developed counteracting this problem with non-stationary MFA (13C-NMFA
or 13C-instMFA) [121] or dynamic MFA (DMFA) [122] and 13C dynamic
MFA methods (13C-DMFA) [109]. The classical MFA need metabolic iso-
topic steady state and stationary flux state. However, non-stationary MFA
(instMFA or DMFA) can be used when the isotopic labeling is not constant
in time and instMFA is implemented for instance in INCA software with an
EMU decomposition while dynamic MFA allows to estimate non-stationary
metabolic fluxes. No highly efficient software implements DMFA favouring
the use of instMFA algorithm when the change of flux state can be neglected
compared to isotopic labeling change as first approximation [123].



Chapter 3

Adaptation dynamics in response
to oxidative stress

A stress induces drastic perturbations in cellular component which can in-
duce damages or cell death. Adaptation dynamic corresponds to the cellular
modifications made in order to avoid such fate. This cellular response is often
accompanied by an overshoot [63]. In response to a step exposure of H2O2,
such overshoot has been observed in yeast [61] or cancer cells [65]. In this
chapter, a basic scheme of metabolic regulation of glycolysis and PPP fluxes
will be studied to investigate how it could induce an overshoot adaptation
response. A reduced model of H2O2 detoxification through flux rerouting
into PPP will be used to identify the requirements to obtain an adaptation
time course, more or less close to perfect adaptation. It will be concluded
that effective delays into the PPP induces a significant adaptation response.
This coarse-grained model provides preliminary insights for more advanced
analyses of detailed stoichiometric and kinetic models.

3.1 Coarse-grained model

Oxidative stress response is induced by a sharp increase of external hydrogen
peroxide H, detoxified by the glycolysis and PPP. These metabolic pathways
are an ensemble of biochemical reactions catalysed by enzymes. Variation
of molecules concentration as a function of time will be characterized by a
system of ordinary differential equations (Section 2.1). To avoid complexity
of the entire system, these metabolic pathways can be modeled with the
principal nodes, namely G6P , R5P and GAP (Figure 3.1). In addition to
these metabolites, NADPH will be used to recycle anti-oxidant molecules
glutathiones GSH which remove internal H2O2. Moreover, glycolysis and
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Figure 3.1: Coarse-grained model. Metabolites are represented by
ellipses. Yellow, green and blue ellipses are metabolites of respectively
glycolysis, PPP and detoxification pathways (i.e. glutathiones). Fluxes are
represented by arrows. Black squares represent the names of fluxes in this
reduced model. Red arrows correspond to inhibitions.

PPP are fuelled by incoming glucose molecules used as input flux. Reactions
that consume and produce the system variable are first modeled with linear
mass action law. Non-linearity made by regulations are then added in order to
potentially obtain an adaptation phenotype during oxidative stress response.
Concerning the anti-oxidant pathway, it can be modeled following expression
of Benfeitas et al. 2014 [124]. Thus, the system can be modeled by the
following equations as a function of the reaction rates :

d[H2O2]

dt
= φH2O2 − φCAT − φGPx (3.1)

d[GSH]

dt
= 2φGR − 2φGPx (3.2)

d[NADPH]

dt
= φoxPPP − φGR (3.3)
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d[G6P ]

dt
= φHK − (φgly + φoxPPP ) (3.4)

d[R5P ]

dt
= φoxPPP − 6/5φnoxPPP − φPRPPs (3.5)

d[GAP ]

dt
= φgly + φnoxPPP − φGAPD (3.6)

d[Glc]

dt
= φGLU − φHK (3.7)

where the reaction rates are :

φH2O2 = kH2O2 + kdiff (H − [H2O2]) (3.8)
φCAT = kCAT [H2O2] (3.9)

φGPx =
kGPx[H2O2][GSH]

[H2O2]
KmHGPx

+ [GSH]
KmGGPx

(3.10)

φGR =
kGR[NADPH][GSSG]

1 + [NADPH]
KmNGR

+ [GSSG]
KmGGR

(3.11)

φoxPPP =
koxPPP [G6P ]

1 + [NADPH]
KioxPPP

(3.12)

φnoxPPP = knoxPPP (5/6[R5P ]− [GAP ]/KeqnoxPPP ) (3.13)
φPRPPs = kPRPPs[R5P ] (3.14)

φGAPD =
kGAPD[GAPD]

1 + [H2O2]
KiGAPD

(3.15)

φgly = kgly([G6P ]− [GAP ]/Keqgly) (3.16)
φHK = kHK [Glc] (3.17)

Regulations of the PPP and glycolysis during oxidative stress have been
studied in the past years [17, 34, 36, 52, 125]. However, to meet the criteria of
a minimal set of mechanistic features, only regulations on G6PD and GAPD
are kept due to their potential high effect on flux rerouting which could
induce adaptation to oxidative stress [18, 17, 36, 34]. Reactions of the PPP
are modeled as one irreversible reaction. Similar approximation is made for
the glycolysis and noxPPP but with a reversible reaction. However, because
the noxPPP changes the conformation of the molecules due to the loss a
carbon by consuming molecules with 5 carbons to produce with 6, it exists
a stoichiometry of 5/6 from R5P to GAP and vice-versa. DHAP which is
normally present inside the glycolysis is combined in the concentration of
GAP . Because these molecules are made of 3 carbons, the total number of
carbon is conserved.
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To be able to simulate the coarse-grained model, it is necessary to set val-
ues to model parameter. A first set of value can be determined by solving the
ordinary differential equations at steady state, i.e. d ~X/dt = 0, in basal condi-
tion without external perturbation. Because there are 7 equations, it will fix
7 parameter values. It is important to note that parameter expressions found
after this problem solving are dependent on the variable concentrations in
basal condition. These concentrations are taken from experimental measure-
ments or previous mathematical models [124, 126, 127, 32]. More parameters
could be fixed by solving the system of equations at steady state in stress
condition. However, in order to correspond to experimental phenotypes, the
remaining parameters are fixed by direct experimental measurements, for
instance regulation parameters can be directly extracted in Kuehne et al.
2015 [17], Peralta et al. 2015 [36]. Moreover, it is known that the incoming
glucose flux is mainly glycolytic at around 90% in basal condition inducing
Φgly = 0.90ΦGLU and therefore ΦoxPPP = 0.10ΦGLU . All the model parame-
ters are listed in the table 3.1 :

Parameter Expression Value References

ΦGLU 40µM/s

kH2O2 1.001ΦoxPPP

kdiff 1s−1 [124]

kCAT (kH2O2 − ΦoxPPP )/H2O2 [70]

kGPx 1s−1 [124]

KmHGPx 0.04µM [124]

KmGGPx 9.72µM [124]

kGR 49s−1 [124]

KmNGR 8.5µM [124]

KmGGR 65µM [124]

koxPPP
ΦoxPPP (1+[NADPH]/KioxPPP )

[GAP ][NADP+]

KioxPPP 10µM [45, 17]

knoxPPP
ΦnoxPPP

(5/6[R5P ]−[GAP ]/KeqnoxPPP )

KeqnoxPPP 15µM [70]
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kPRPPs (ΦoxPPP − 6/5ΦnoxPPP )/[R5P ]

kGAPD (Φgly + ΦoxPPP ) (1+[H2O2]/KiGAPD)
[GAP ]

KiGAPD 1µM [36, 35]

kgly Φgly/([G6P ]− [GAP ]/Keqgly)

Keqgly 1.2µM [70]

kHK ΦGLU/[Glc]

Table 3.1: Parameter expressions and values. Parameter expressions
correspond to solution of the system equations at steady state.

It is important to note that, because this model is a first investigation
of oxidative stress response, a single value is given for the fixed parameters.
However, to be more realistic, it would be necessary to consider a range
of flexibility du to experimental uncertainties. A statistical analysis of the
parameter range would be preferable instead of choosing one set of parameter.

3.2 Adaptation via flux reprogramming

Oxidative stress response is simulated through numerical integration of the
mathematical model to compute the temporal dynamics of metabolite con-
centrations (Figure 3.2-A) under a concentration step of external hydrogen
peroxide from 0µM to 100µM . Some metabolite concentration show a re-
sponse in two steps in second time scale. Indeed, G6P and GAP is fastly
decreasing which corresponds to the time scale of the NADPH decrease to 0.
This is followed by a slow increase phase. These two steps can correspond to
first a consumption of the molecules reservoir shown by the drop of NADPH
concentration and then a slower reaction of the metabolic pathway inducing
slow relaxation to the steady state. It is specifically visible for the variations
of H2O2 and G6P concentration as a function of time (Figure 3.2-B&C).
Indeed, H2O2 shows a maximum value several seconds after the start of the
oxidative stress which is followed by a slow relaxation to lower steady state
which is called adaptation. This is probably du to the reaction of the net-
work inducing increase of G6P concentration. It then increases the oxPPP
flux inducing higher NADPH recycling in order to increase oxidative stress
detoxification. The fast increase of PPP flux is probably to the decrease of
NADPH concentration inducing a decrease of PPP inhibition.
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Figure 3.2: Transient dynamics of stress-induced metabolic re-
sponses in the reduced model. Temporal dynamic in the reduced
model under oxidative stress made by a step of 100µM of H2O2. (A) Each
metabolite concentration has its temporal dynamic represented in the re-
duced metabolic scheme at their corresponding place. (B-C) Temporal dy-
namics of H2O2 (B) and G6P (C).
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Simulating the metabolic response as function of different external hydro-
gen peroxide H level allows to identify the range of detoxification efficiency
and the limits of this detoxification (Figure 3.3). It appears that the ratio
between steady state concentration of internal and external hydrogen per-
oxide is very small for stresses lower than ≈ 100µM (Figure 3.3-A). After
that level of stress, the ratio is highly increasing to finally saturate close to
1 showing that the metabolic pathway does not succeed to detoxify higher
stresses. It is supplemented by the fact that NADPH is falling to very small
concentration which induces saturation of the oxidative stress detoxification

A B

C

Figure 3.3: Dose-dependent profile of stress-induced metabolic re-
sponse in the reduced model. Response to varying level of external
hydrogen peroxide H at 5min. (A) Ratio of internal and external H2O2 and
(B) NADPH metabolite concentration as a function of H. (C) flux rates of
the glycolysis Φgly, oxPPP and noxPPP respectively ΦoxPPP and ΦnoxPPP ,
output flux GAPD as a function of H.
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(Figure 3.3-B). Finally, all these phenotypes can be understood by the flux
state of the network as a function of H (Figure 3.3-C). Indeed, for small level
of stress, the incoming glucose flux is mainly directed toward the glycolysis
inducing high output flux through GAPD toward ATP production. When
the stress level is increasing, the incoming glucose flux is rerouted toward
first the oxidative and then the non-oxidative PPP. Moreover, the PPP flux
is sufficiently increasing to be higher than the incoming glucose flux set at
40µM/s meaning that there is cycling flux. Indeed, the reverse glycolysis
allows carbons flux coming from the noxPPP to come back to oxPPP which
highly increases the NADPH recycling and therefore the stress detoxifica-
tion. In cycling condition, the flux is going through the reverse glycolysis
instead of going out through the output flux GAPD as it is during small
level of stress. It is probably because the lower glycolytic flux is inhibited by
H2O2 which increases during oxidative stress.

To summarise, the coarse-grained model with a specific parameter set
(without adjustment to experimental data) shows that the combination of
an oxidative stress that shifts the redox state NADP/NADPH and the
regulation of lower glycolysis is qualitatively sufficient (i) to reroute the flux
toward PPP and (ii) to generate an adaptation response.

3.3 Role of delay in adaptation
Adaptation profile has been observed experimentally for the H2O2 temporal
dynamic in different cell types [61, 65] and also in the coarse-grained model
previously presented in response to oxidative stress. It is characterized by an
overshoot of the concentration during the metabolic response. In the case of
oxidative stress, the final steady state is still not close enough to the initial
state to call it perfect or near-perfect adaptation [64]. However, the presence
of an adaptative phenotype describes a compromise between fast response in-
ducing high metabolic cost and low response inducing damages. Regulations
are important mechanisms in the metabolic response and would take part of
the presence of the adaptative phenotype. A rapid effect of the regulatory
mechanisms would lead to high metabolic response and would not allow con-
centration to sufficiently change to observe an adaptative phenotype. Thus,
a response delay would be necessary to make appear such phenotype. Using
the coarse-grained model of the PPP and glycolysis, artificial delay will be
added in order to study the impact of the presence of adaptation phenotype.

An adaptation ratio (AR) can be defined as :

AR =
[H2O2]max

[H2O2]∗
(3.18)
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Figure 3.4: Adaptation ratio during oxidative stress. Simulations are
made using mathematical model. (A) Internal H2O2 as a function of external
hydrogen peroxide H. The maximum of H2O2 curve (H2O

max
2 ) in temporal

dynamic is shown in light blue curve. Steady steady H2O2 ([H2O2]∗) is dark
blue curve. (B) Adaptation ratio is AR = [H2O2]max

[H2O2]∗
using [H2O2]max and

[H2O2]∗ from (A) and shown as a function of external hydrogen peroxide H.
(A)-(B) The black dashed line corresponds to the dose to delimit the area of
presence of an adaptation phenotype.



48 CHAPTER 3. Adaptation dynamics in response to oxidative stress

where [H2O2]max and [H2O2]∗ are respectively the maximum value and the
steady state of the temporal dynamic of H2O2 concentration under oxidative
stress. High AR would lead to a maximum value much higher than the
steady state which could lead to extreme transient concentration and then to
cell death. An AR equal to 1 induces maximum and steady state value equal
meaning that either the metabolic response is too fast to see an adaptation or
there is totally no response. This ratio will characterize how the adaptation
phenotype is strong during the oxidative stress response.

In the previous section, the temporal dynamic has been studied to in-
vestigate a first oxidative stress response 3.2. It shows clearly a non-perfect
adaptation profile with a maximum at a minute time scale and then a slow
relaxation to lower steady state. This oxidative stress has been made with a
step from 0µM to 100µM of H2O2 and leads to an AR = 2.48. Thus, AR is
calculated for different level of stress (Figure 3.4-A&B). It shows that there
is an adaptation for dose between 70µM and 300µM which is the range that
the system is acting by changing its flux state (Figure 3.3). Before this range,
the system is able to remove the stress efficiently and after, the network is
not able to detoxify the stress anymore.

To confirm that the phenotype of adaptation is due to the activation time
of the metabolic response, the same simulations are made with a modified
mathematical model. Indeed, to increase the response time, several variables
are added in chain in the model following the equations :

dxi
dt

= ki−1(xi−1 − xi/Keqi−1)− ki(xi − xi+1/Keqi) (3.19)

where xi is the i-th metabolite, ki and Keqi are respectively the reaction rate
constant and equilibrium constant of the i-th reaction which are all taken
the same as the noxPPP parameters. These intermediate metabolites are
added in the noxPPP. Adding several steps inside the PPP will bring closer
to the completely detailed metabolic pathway and will favour the delay of
response. It is important to note that inducing artificially delay does not
modify the steady state concentration but only the adaptation ratio. Eight
intermediate variables are added to compensate the number of metabolite
in the detailed metabolic pathways. The dose-response of this new model
displays higher adaptation ratio compared to the normal model (Figure 3.5).
This AR increase is visible from 50µM to 200µM . Thus, adding a delay in
the metabolic response increases the adaptation ratio but also increases the
region of doses where the adaptation can be observed. Indeed, it appears
for lower doses where adaptation was not present yet. For even lower doses,
the ratio is not modified probably because the network is still able to highly
detoxify this level of stress. For higher dose than 200µM , adding delay does
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Figure 3.5: Adaptation ratio variation using delayed model during
oxidative stress. Adaptation ratio AR is AR = [H2O2]max

[H2O2]∗
. Delayed model

ARd normalised by control model AR0 is shown as a function of the external
hydrogen peroxide H.

not modify the AR because the detoxification is already saturated. Thus,
adding a delay impacts the transient metabolic response.

In conclusion, the system can display temporal adaptation dynamic, which
is (ii) caused here by the inhibition of GAPD, (ii) enhanced by the presence
of delays through intermediate reactions in non-oxidative pathways of PPP
and (iii) the most significant for intermediate doses of stress. In the next
studies, the link between regulation, flux rerouting and adaptation will be
investigated via a model of the detailed metabolic pathways considering ex-
perimental data.
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Chapter 4

Stoichiometric model of PPP

The metabolic fluxes are an important source of information allowing to
understand the physiological state of a cell. Understanding the change in
fluxes during a response to genetic or environmental perturbation can help
to clarify metabolic pathway functions, such as the metabolic regulations in
the context of this thesis [128, 129, 130]. In this chapter will be studied
the metabolic fluxes of the PPP and glycolysis. Flux balance analysis is a
theoretical method that will first be applied. Then, a new 13C-MFA algorithm
will be presented in order to employ it to data-driven estimate fluxes using
experimental mass isotopomer measurements. It quantifies the rerouting flux
pattern from a glycolytic mode to a oxPPP mode during oxidative stress.

4.1 Description and assumptions of the metabolic
model

Metabolic concentration variations can be described by ordinary differential
equations d~x

dt
= N~φ (eq 2.1). Structure of the equations are constrained by

the structure of the metabolic pathways. Thus, a network comprising PPP,
glycolysis and detoxification pathways shown in Figure 4.1 can be expressed
by the following equations :
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d[H2O2]/dt = φOX − φCAT − φGPx (4.1)
d[GSH]/dt = 2φGR − 2φGPx (4.2)

d[NADPH]/dt = φG6PD + φ6PGD + φNHN − φNNH − φGR (4.3)
d[G6P ]/dt = φHK − φG6PD − φPGI (4.4)

d[6PGL]/dt = φG6PD − φ6PGL (4.5)
d[6PG]/dt = φ6PGL − φ6PGD (4.6)
d[Ru5P ]/dt = φ6PGD − φRPI − φRPE (4.7)
d[X5P ]/dt = φRPE − φTKT1 − φTKT2 (4.8)
d[R5P ]/dt = φRPI − φTKT1 − φPRPP (4.9)
d[S7P ]/dt = φTKT1 − φTLD (4.10)
d[E4P ]/dt = φTLD − φTKT2 (4.11)
d[Glc]/dt = φGLU − φHK (4.12)
d[F6P ]/dt = φPGI − φPFK + φTAL + φTKT2 (4.13)
d[FBP ]/dt = φPFK − φALD (4.14)

d[DHAP ]/dt = φALD − φTPI (4.15)
d[GAP ]/dt = φALD + φTKT1 − φTAL + φTKT2 + φTPI − φGAPD (4.16)

where φENZ represents an enzymatic flux rate (i.e. reaction rate). The
model will be built in order to reproduce fast oxidative stress response which
is incompatible with long time scale modifications such as gene regulations
or dilution induced by cell volume change. Despite this, other elements are
not taken into account in the model :

• Lower glycolysis, tricarboxylic acid cycle, purine synthesis and other
metabolic pathways are not of major interest in this work due to lack
of available data during oxidative stress response.

• Most of the organic or inorganic cofactors are not taken into account in
the model because their variations are assumed to be negligible com-
pared to the rest of the metabolites. Indeed, it is the case of ATP ,
Mg2+ and NAD+ species which have been sometimes included in
other mathematical models [31].

• Fructose 2,6-bisphosphate (F26BP ) is a molecule in parallel of the
glycolysis often integrated in mathematical models [31]. It is produced
from fructose-6-Phosphate (F6P ) by phosphofructokinase-2 (PFK2)
enzyme. The reverse reaction is catalysed by the enzyme fructose
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Figure 4.1: Metabolic pathways used in the stoichiometric model.
From Hurbain et al. 2022 [3]. Schematic representation of the network
comprising the metabolites shown by coloured ellipses, chemical reactions
shown by black arrows with their corresponding enzymes in black squares.
OxPPP is in green, non-oxidative in pink, glycolysis in yellow, anti-oxidant
system in blue and oxidant molecules in red. Input and output fluxes are
represented by big arrows.

bisphosphatase-2 (FBPase2). F26BP is an activator of PFK enzyme
which converts F6P into FBP and also an inhibitor of FBPase which
produces the reverse reaction. During oxidative stress response, this
activation and inhibition would reverse glycolysis allowing to favour
glucose flux cycling to increase the detoxification. It is not included in
the stoichiometric model because of the lack of metabolomics data for
such metabolite.

• Direct hydrogen peroxide detoxification is made by glutathiones which
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consume NADPH which is itself recycled via PPP reactions. It exists
other reactions that consume and produce NADPH (e.g., malic en-
zyme, IDH, fatty acid synthase, folate cycle) [15, 16] but are condensed
in two effective reactions called NNH and NHN respectively.

• It exists different anti-oxidant molecules (catalase, glutathione and
thioredoxins (TRX)/Peroxiredoxins (PRX)) involved during oxidative
stress response to degrade H2O2. Each of them display a specific role,
but most of them need NADPH as electron donor. For simplicity, only
catalase and glutathiones are included in the model.

The system is acting in cytoplasm thus the model takes into account only
one compartment. Except H2O2 which diffuses from outside to inside the
cell, metabolites of the system do not diffuse.

4.2 Elementary modes in the PPP

Flux balance analysis (FBA) is a mathematical method that analyses the al-
lowable flux states for a given stoichiometric matrix. In this thesis, metabolic
response to oxidative stress can be first investigated in term of change of flux
pattern associated to a stress perturbation. It is known that the metabolic
pathway displays a flux rerouting under oxidative stress in order to increase
production of NADPH and detoxification of H2O2 [18, 17]. FBA allows to
identify the elementary flux modes and to represent functional flux states in
term of combination of the elementary modes.

For FBA, the steady state equation 2.1 can be rewritten as d~x
dt

= N~φ = 0
N is the stoichiometric matrix and its dimension is n × m where n is the
number of concentration variable which is here equal to 16 andm the number
of flux equal to 21. The metabolite vector can be defined as ~x following the
order of the equations 4.1-4.16 and the fluxes vector is ~φ shown in equation
4.17. In this theoretical study, absence of passive production and degradation
induces conservation of the total number of glutathiones andNADP allowing
to remove equations of GSSG and NADP+. Moreover, it also allows to
express fluxes of the flux state vector ~φ directly as a function of the only
input flux, i.e. incoming glucose flux ΦGLU .

There are 16 equations that can be solved at steady state as a function of
21 fluxes. Then, the flux vector can be expressed as a function of 5 of them.
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By injecting these relations, the fluxes vector ~Φ can be decomposed as :

~Φ =



ΦOX
ΦCAT
ΦGPx
ΦGR

ΦNNH/NHN
ΦG6PD

Φ6PGL

Φ6PGD

ΦRPI
ΦRPE

ΦPRPPs
ΦTKT1

ΦTLD
ΦTKT2

ΦGLU
ΦHK
ΦPGI
ΦPFK
ΦALD
ΦTPI

ΦGAPD



ΦOX



1
0
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0



+ ΦCAT



0
1
−1
−1
−1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0



+ ΦGAPD



0
0
0
0
0
0
0
0
0
0
0
0
0
0

3/6
3/6
3/6
3/6
3/6
3/6
1



+ ΦPRPPs



0
0
0
0
0
0
0
0

2/3
−2/3

1
−1/3
−1/3
−1/3
5/6
5/6
5/6
1/6
1/6
1/6
0



+ ΦG6PD



0
0
0
0
−2
1
1
1

1/3
2/3
0

1/3
1/3
1/3
1/6
1/6
−5/6
−1/6
−1/6
−1/6

0



(4.17)

To finally obtain elementary modes, these vectors are combined in order to
create a new basis composed of biological vectors with integer values and the
maximum number of zeros. For an irreversible flux, the corresponding value
in these vectors has to be positive. Thus, we obtain 5 elementary modes
~Vi with i = {1, ..., 5} corresponding to specific pathways of the metabolic
network (Figure 4.2) :

• First, ~V1 is a mode which displays a H2O2 detoxification by using glu-
tathiones and NADPH. Recycling of the cofactor would be made
here by all the reactions that consume and produce NADPH which is
known to be negligible during oxidative stress [15].

• Second, ~V2 is a mode using only catalase to detoxify oxidative stress.
This enzyme that removes H2O2 is known not to be the main pathway
for extreme oxidative stress [11].

• Third, ~V3 is a mode that shows an incoming glucose flux ΦGLU going
through the glycolysis with a flux rate equal to 2ΦGLU toward the lower
glycolysis. This is the mode that sends the most carbon atoms coming
from the incoming glucose molecules through the lower glycolysis. This
mode is the one that will produce the most ATP and cellular energy.
It is known that without perturbation such as oxidative stress, the flux
state is mainly using this mode allowing to have 90% of ΦGLU through
the glycolysis [18, 17].
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Figure 4.2: Flux balance analysis of PPP. Flux balance analysis iden-
tifies 5 elementary modes ~Vi. Theses modes are represented using metabolic
network scheme. Blue arrows represent used fluxes. Values near to arrows
correspond to flux rates normalised by incoming glucose flux used by the
corresponding elementary modes. Black circles denote metabolites.
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• Fourth, ~V4 is a mode that directs the incoming glucose flux through the
glycolysis and then the reverse noxPPP inducing flux toward the purine
metabolism via PRPPs output flux in order to produce nucleotides.
This is the mode of production of cellular biomass.

• Finally, ~V5 has the most impact on the oxidative stress response. In-
deed, the incoming glucose flux is going through the oxidative and then
non-oxidative pentose phosphate pathway. Instead of going out of the
metabolism network through GAPD, the carbons take the reverse gly-
colysis allowing to come back to the oxPPP. Therefore, the carbons can
cycle in the network allowing to increase the flux inside the PPP to 6
times ΦGLU . Because NADPH is reduced by the first and third oxPPP
enzyme, i.e. G6PD and 6PGD, the NADPH recycling increases to
12 times ΦGLU which makes this mode highly powerful in terms of ox-
idative stress detoxification. It has been shown that the network is
rerouting the incoming glucose flux from glycolytic modes toward the
PPP [18, 17]. For extreme stress, the network continues to shift to
this cycling mode. However, this mode could allow an NADPH recy-
cling 12 times ΦGLU but rarely exceed 1.5 or 2 ΦGLU experimentally
depending of the cell type [17, 18, 131, 132].

Flux balance analysis allows to extract a new basis composed of 5 elemen-
tary flux modes in the metabolic network composed of PPP, glycolysis and
anti-oxidant pathways. The actual of flux state associated to a particular
cellular and environmental context will be a combination of these modes. 2
of them correspond to direct hydrogen peroxide degradation while the 3 other
modes correspond to the use of glucose resources, either to produce energy
(i.e. ~V3), biomass (i.e. ~V4) or NADPH (i.e. ~V5). It is therefore convenient to
represent the flux state of PPP and glycolysis as a combination of ~V3, ~V4 and
~V5 with coefficients associated to 3 specific flux rates (i.e. ΦGAPD, ΦPRPPs

and ΦG6PD) :

~Φ = ΦGAPD

~V3

2
+ ΦPRPPs

~V4

6
+ ΦG6PD

~V5

6
(4.18)

which becomes with the normalized elementary modes ~V n
i :

~Φ = ΦGAPD
~V n

3 + ΦPRPPs
~V n

4 + ΦG6PD
~V n

5 (4.19)

Because there is no passive degradation in the system, fluxes are directly
proportional to the incoming glucose flux ΦGLU . Thus, a flux state normalized
by ΦGLU can be expressed as :

~Φ

ΦGLU

= λ3
~V n

3 + λ3
~V n

4 + λ3
~V n

5 (4.20)



58 CHAPTER 4. Stoichiometric model of PPP

where
λ3 =

ΦGAPD

ΦGLU

; λ4 =
ΦPRPPs

ΦGLU

; λ5 =
ΦG6PD

ΦGLU

(4.21)

Moreover, no passive degradation also induces the conservation relation :

λ3

2
+

5λ4

6
+
λ5

6
= 1 (4.22)

In these conditions, the parameters are constrained as 0 < λ3 < 2; 0 <
λ4 < 6; 0 < λ5 < 6. For instance, a full glycolytic mode is characterized by
ΦGAPD
ΦGLU

= λ3 = 2 or a full cycling mode by ΦG6PD

ΦGLU
= λ5 = 6. Moreover, using

this conservation relation, a flux state can be now expressed with only two
modes. It has been shown that there is a drastic change of modes during
oxidative stress from glycolytic to cycling mode for extreme perturbation
allowing high NADPH recycling and then high H2O2 detoxification [18, 17,
131, 132].

4.3 13C-MFA of flux rerouting in the PPP
Knowing a flux state of a metabolic network is an important feature allowing
to characterise functional state of a cellular metabolism. 13C-MFA is now
a standard method to investigate a flux state of a metabolic network. In
the context of oxidative stress response, glycolysis and PPP are studied by
labeling glucose molecules. Used as input flux, labeled carbons are spread in
the network allowing to estimate flux. In this section will be presented a class
of method that allows to proceed to 13C-MFA based on Stochastic Simulation
Algorithm (SSA) used here in the context of oxidative stress response. This
method is simple to implement and efficient even in complex MFA.

4.3.1 Labeling patterns of elementary modes

The flux state of a metabolic network is a combination of elementary modes
identified with FBA. Efficiency of 13C-MFA techniques to accurately estimate
flux state depends on the efficiency is related to the efficiency of 13C-MFA
techniques to discriminate between different elementary flux modes. To il-
lustrate this point, let consider the glycolytic mode and the PPP mode in
different labeling conditions : 100% of [1 −13 C] Glc, [2 −13 C] Glc and
[1, 2 −13 C] Glc (Figure 4.3). The glycolytic mode is V3 while a PPP mode
is where the carbon flux is only using the oxidative, noxPPP and GAPD as
output flux which corresponds to 5V3 + V5. These two modes are both going
out of the network only through GAPD toward the lower glycolysis making
them easy to compare by looking after this node.
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Figure 4.3: 13C labeling experiments for two elementary modes.
13C labeling patterns for the two elementary modes V3 (A-C-E) and 5V3 +V5

(B-D-F) (Figure 4.3) identified by black arrows. Non-labeled and labeled
carbons are represented by empty and black circles. The labeling experi-
ments are 100% [1−13 C] Glucose (A-B), 100% [2−13 C] Glucose (C-D) and
100% [1, 2−13 C] Glucose (E-F).

The first labeling experiments that can be made is by labeling the first
carbon of glucose molecules giving 100% of m+1 at the beginning of the
metabolic pathways. By only considering the glycolytic mode (Figure 4.3-
A), all the incoming glucose flux is going through the glycolysis inducing
a cut of FBP in two separated molecules, i.e. DHAP and GAP . Thus,
one of these two molecules is receiving the labeled carbons. All DHAP
molecules can be converted in GAP inducing half of labeled molecules, i.e.
50% of m+0 and the other half not labeled, i.e. 50% of m+1. However, by
considering a PPP mode (Figure 4.3-B), the entire flux is going through the
oxPPP where the first carbon is lost by using 6PGD enzyme and then going
through the non-oxidative where the carbons are mixed. Because there is a
loss of the first carbon, the labeling disappears at the same time inducing
100% of m+0 after 6PGD reaction. The efficiency of carbon labeling in
order to estimate the flux state appears. Indeed, the flux going through
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the PPP can be known by measuring after the output flux at the end of
the glycolysis and by comparing the ratio between m+0 and m+1 in this
specific labeling condition. However, it is important to say that this analysis
is valid only because we assume only 2 existing modes. As there are complex
carbon rearrangement during the metabolic reactions happening mainly in
the noxPPP, it induces more complex mass isotopomer distribution.

Experiments with [2 −13 C] Glc labeling, i.e. the second carbon of a
glucose molecule is a 13C, induces the same distributions in glycolytic mode
as [1 −13 C] Glc labeling (Figure 4.3-C). However, it induces 100% m+1
instead of 0% in [2−13 C] Glc labeling due to loss of the first carbon, in the
PPP mode (Figure 4.3-D). The same remark can be made for the [1, 2 −13

C] Glc labeling experiment where the two first carbons are labeled, inducing
100% m+1 (Figure 4.3-F). Concerning the glycolytic mode, labeling the two
first carbon of glucose molecules induces 50% m+0 and 50% m+2 due to
the split of FBP in DHAP and GAP (Figure 4.3-E). Thus, measuring the
MID after the output flux GAPD makes possible the differentiation of the
2 modes. As mention previously, there are a lot of recombinations that
are not taken into account with the elementary modes which makes appear
more complex distributions. It is then necessary to combine measurements
in different labeling conditions at different nodes of the metabolic pathways.
For instance, measuring the MIDs for 6PG will directly reflect the cycling
flux. Indeed, when the first carbon of a molecule is labeled and going through
the oxPPP, it induces loss of labeling. When this molecule is coming back to
the PPP after going through the reverse glycolysis corresponding to cycling
molecule, the m+1/m+0 labeling ratio for 6PG is reduced.

4.3.2 13C-MFA based on stochastic simulation algorithm

Stochastic simulation algorithms (SSA) are classes of method to investigate
numerically the biochemical reactions [89] which have been here adapted to
13C-MFA [123]. A new algorithm based on SSA has first been developed
and will be explained here [1] in order to proceed to 13C-MFA of the PPP
and glycolysis during oxidative stress response. It is a method simple to
implement and also efficient to proceed to complex MFA.

Isotopomer index and addressing operators
13C-labeling consists in replacing a 12 carbon (12C) by its isotope 13C called
labeled carbon inducing two different states for each carbon of a molecule.
Thus, a labeling state Lji can be defined for each state of a labeled carbon
j corresponding to Lj0 = 0 for a non-labeled meaning a 12C and Lj1 = 1 for
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Figure 4.4: Carbons rearrangement during TKT1/2 and TLD reac-
tions. The carbons rearrangement of the noxPPP reactions are represented
here : (A) transketolase 1 (TKT1), (B) transaldolase (TLD) and (C)
transketolase 2 (TKT2). The carbons of the reactants schematically shown
by coloured circles are reorganized by the corresponding enzymes to form the
products. Carbons of a molecule are also associated to letter sequences as it
is conventionally written for a chemical reaction. Each arrow in a reaction
points the place where enzyme cuts the reactant. All these enzymatic
reactions are reversible allowing the reverse carbons rearrangement.

a labeled carbon. The maximum number of labeling state q becomes equal
here to 2. A molecule m comprising n carbons with a specific labeling state
is called an isotopomer and can be defined by the sequence of the carbons cj
by Im = (c1,L1 , c2,L2 , ..., cn,Ln) called isotopomer index. In the context of the
PPP and glycolysis, labeling experiments are often using glucose molecules
composed of 6 carbons and often label for instance the first carbon where
the sequence of this glucose isotopomer becomes (1, 0, 0, 0, 0, 0). In the PPP
and glycolysis, most of the molecules are composed of 6 carbons inducing 26

possible isotopomers. In general, the total number of isotopomer is equal to
qn = 2n per molecules inside a network in 13C-labeling experiment. Different



62 CHAPTER 4. Stoichiometric model of PPP

labeling atoms can be used in complement to extract more flux information
but drastically increase the value of q and then the number of isotopomer.

A metabolic network is made of chemical reactions that proceed the trans-
formation of chemical components. Each reaction follows a specific permu-
tation rule that can be defined by addressing operators. They compute the
isotopomer index of the products of a reaction from the isotopomer index of
the reactants and reversely for the reversible reaction. PPP and glycolysis
are well suited metabolic pathways to respond to oxidative stress and are
composed of enzymatic reactions where most of the carbon rearrangements
are made in the noxPPP, i.e. transketolase 1/2 (TKT1/2) and transaldolase
(TLD) shown in Figure 4.4 :

X5P (abcde) +R5P (ABCDE)
TKT1−−−→ S7P (abABCDE) +GAP (cde)

(4.23)

S7P (abcdefg) +GAP (ABC)
TLD−−→ F6P (abcABC) + E4P (defg) (4.24)

X5P (abcde) + E4P (ABCD)
TKT2−−−→ F6P (abABCD) +GAP (cde) (4.25)

where the lowercase and uppercase script letters correspond to a more con-
densed and traditional convention to represent here the carbons c. All these
reactions can be related to their corresponding addressing operators σ :

σTKT1
S7P (cX5P , cR5P ) = (cX5P

1 , cX5P
2 , cR5P

1 , cR5P
2 , cR5P

3 , cR5P
4 , cR5P

5 ) (4.26)

σTKT1
GAP (cX5P , cR5P ) = (cX5P

3 , cX5P
4 , cX5P

5 ) (4.27)

σTLDF6P (cS7P , cGAP ) = (cS7P
1 , cS7P

2 , cS7P
3 , cGAP1 , cGAP2 , cGAP3 ) (4.28)

σTLDE4P (cS7P , cGAP ) = (cS7P
4 , cS7P

5 , cS7P
6 , cS7P

7 ) (4.29)

σTKT2
F6P (cX5P , cE4P ) = (cX5P

1 , cX5P
2 , cE4P

1 , cE4P
2 , cE4P

3 , cE4P
4 ) (4.30)

σTKT2
GAP (cX5P , cE4P ) = (cX5P

3 , cX5P
4 , cX5P

5 ) (4.31)

allowing to compute the product index from the reactant index Ij = (
∑nj

i cji )
where jTKT1 = {X5P,R5P}, jTLD = {S7P,GAP}, jTKT2 = {X5P,E4P}
and njTKT1

= {5, 5}, njTLD = {7, 3}, njTKT2
= {5, 4}. For the reverse re-

actions, the addressing operators could also be defined computing the re-
actant indexes from the product indexes. As an example, TKT1 reaction
with X5P (1, 0, 0, 0, 0) and R5P (1, 0, 0, 0, 0) as reactants produces S7P
(1, 0, 1, 0, 0, 0, 0) and GAP (0, 0, 0).

Description via chemical master equation

A biochemical network composed of reactions is well described by chemical
master equation (CME) [91]. In the context of stochastic dynamics, this for-
malism can also be used to describe labeling dynamics of chemical species.
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Figure 4.5: Mathematical formalism for the 13C-MFA algorithm
based on SSA. For a metabolic network composed of M species, each
entities made of n carbons c of a species is characterized by a matrix
composed of its isotopomer index. An example is given with a possible
labeling state of a population of X5P molecules made of 5 carbons. All
these matrices are merged in a single matrix representing the number of
entities in a specific labeling state ω for each species.

It has been presented previously the isotopomer index and addressing oper-
ator allowing to describe how a reaction induces carbon rearrangements of
a specific set of isotopomer whether it is for reactants or products. These
notations can be applied in the CME framework to compute the probabilis-
tic dynamics in isotope labeling network. For a given species i composed
of n atoms that can be labeled, more specifically carbons in the context of



64 CHAPTER 4. Stoichiometric model of PPP

13C-labeling, the number of all the possible isotopomers is given by Ni = 2ni .
A species i composed of mtot entities can be directly related to its concen-
tration xi by defining a volume Ω inducing mtot

i = Ωxi. Then, Ω serves as a
scaling factor between all the different species in the network. For instance,
Ω = 1000copies/µM indicates that there are 1000 copies of a chemical species
in a concentration of 1µM . A set of mtot entities of a species is characterized
by a mtot

i × ni matrix where each element is an integer representing the la-
beling condition of the corresponding carbon of a molecule. Thus, the m-th
row of a matrix is the isotopomer index of the m-th molecule of the corre-
sponding species. Then, it exists the same matrix for each species present in
the network allowing to have all the labeling states, i.e. isotopomer index of
all the entities in the system.

In a metabolic network composed of M species (M =
∑

im
tot
i ), the ma-

trices representing the isotopomer index of all the entities can be combined
in one single mathematical element defined by a M × Nmax matrix where
the chosen Nmax will be here the maximum value among all the numbers of
isotopomers Ni values of all the species in the system. This general matrix
is composed of integer ωi representing the number of entities of a species i
being in a specific labeling state corresponding to an isotopomer index I. In
this thesis, the anti-oxidant is not taken into account during the flux estima-
tion due to lake of data. Then, the metabolic pathways take into account 12
metabolites (M = 12) and the highest number of isotopomer Nmax is given
by S7P with 7 carbons that can be labeled (Nmax = 27 = 128). A species
i is then characterized by its corresponding row where all entities mtot are
distributed in all the possible labeling conditions. Finally, the probability
that a labeling condition of a species corresponds to a specific isotopomer is
then ρi = ωi/Ωxi. The CME can be applied to such formalism allowing to
describe the temporal evolution of the probability of the system to be in the
state ω [1].

Method of the stochastic simulation algorithm

The idea of the algorithm is to mimic the chemical reactions by a discrete and
stochastic process in order to propagate the labeled atoms. Populations of
the chemical compounds are represented by samples with a finite size directly
proportional to Ω. The labeling conditions of the atoms that can be labeled
for all the entities of a species are sampled by a matrix at a certain time.
The reactants of a reaction are randomly taken inside their corresponding
matrix by selecting a row representing an isotopomer index. To make occur
a reaction, the addressing operator following the permutation rules of the
reaction is applied to the reactant indexes in order to compute the product
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indexes which will be added to the matrices of their corresponding species.
The new produced entities will be part of the system and could be used for
a future reaction.

Because the reactions are applied step by step, each iteration can be
seen as a time unit. When the sample size is large, labeled atoms will need
more iteration to propagate along the metabolic pathway meaning that the
algorithm will need more iterations to reach an equilibrium. The step-by-
step reactions are determined by an adapted method of the standard next
reaction method, thus the SSA can be summarized by :

Initiation : Define a flux vector Φk and compute the corresponding
reaction time :

τk =
1

ΩΦk

(4.32)

Step 1 : Select the minimum time τk′ = min(τk) and apply the corre-
sponding reaction k′ by randomly picking the substrates in their sample
matrices and by applying on them the addressing operator which fol-
lows the permutation rules. The new synthesized molecules are added
to the product sample matrix.

Step 2 : Increment the iteration time t by τk′ and compute next time
reaction k′.

Step 3 : Modify the reaction vector τk to take into account the varia-
tion of the sample size due to the reaction k′.

Iterate to Step 1

Following these steps, the mass isotopomer distributions can be computed
as a function of a flux state and followed at any time of the labeled atom
propagation. Different flux rates would induce different carbon propagation
and then different MIDs. A simulation example is given in Figure 4.6. It
shows the propagation of G6P and 6PG metabolite MIDs mi,j for a labeling
condition i of a metabolite j as a function of the iteration time which can also
be written as mi,j = m + i. Without labeling, the MIDs for both molecules
are initially at 100% m+0. At time equal to 0, 50% of the entering glucose
molecules are labeled by their first carbon in this simulation (i.e. [1−13C] Glc
labeling condition). Fluxes taken as input for the algorithm are chosen in
order to have the incoming glucose flux ΦGLU going through the glycolysis
with a small leak through the PPP which would correspond to a flux state
of a non-perturbed cell [18, 17]. This chosen flux state has no cycling flux
ensuring to have MIDs at 50% m+0 and 50% m+1 for both molecules as
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Figure 4.6: Example of the mass isotopomer distribution repar-
tition during SSA. Mass isotopomer distribution mi,j of (A) j = G6P
or (B) j = 6PG as a function of the iteration time made by stochastic
simulation algorithm in 50% [1 −13 C]-glucose labeling. Input fluxes are set
in order to have the incoming glucose flux ΦGLU going through the glycolysis
with a small leak through the PPP. Mass isotopomer distribution mi,j can
be 3 different states i : m+0 (Blue), m+1 (Red) and m+2 (Yellow).

final steady state. Indeed, in Figure 4.6, the labeled carbons propagate into
the network inducing around 50% m+0 and 50% m+1 at steady state. The
difference of time to reach the steady state from G6P to 6PG is coming from
the difference of flux rate from glycolysis to PPP. As the PPP flux is lower,
the carbons propagate slower which is clearly visible in this example.

In the example of Figure 4.6, the fluxes are given as input for the algo-
rithm allowing to simulate the propagation of the labeled carbons and then
to compute the MIDs as a function of time which corresponds to the forward
problem. Another input flux state would have induced another MIDs dynam-
ics. However, the algorithm can be used in order to infer a set of fluxes from a
giving set of MIDs as input which corresponds to the inverse problem. Then,
a first set of fluxes is given as initial condition. The corresponding MIDs are
simulated and can be compared to a set of experimental data. In our in-
teresting case, only experimental measured distributions at steady state will
be used for the inverse problem which allows to take the mean of the steady
state of the MIDs temporal dynamic. A Root Mean Square Error (RMSE)
will be used to compare simulation to experimental data and to represent
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the gap between them :

RMSE(~Φ) =

√
1

Nm
∑

i,j,k

(
mk
i,j,sim(~Φ, t)−mk

i,j,exp(t)
)2

(4.33)

wheremk
i,j,sim/exp are the MIDs j of a species i for a labeling condition k of the

incoming glucose in the simulation (sim) and experimental data (exp). The
total number of the used mk

i,j is Nm. The aim will be to reduce the gap be-
tween simulation results and experimental data by reducing this quantity by
step-by-step modifying the set of fluxes inducing change of simulated MIDs.
This can be made by the use of optimisation algorithm such as MCMC.
Finally, the best score following the Cauchy’s criterion for convergence will
corresponds to the minimum of the RMSE and will lead to the resulting sets
of fluxes.

4.3.3 Flux estimation

In this section will be presented the analysis of the 13C labeling data in order
to convert them into flux data. The method used is presented in the previous
sections and comes from Thommen et al. 2022 [1]. It uses a stochastic sim-
ulation algorithm which computes the time evolution of the isotopomers by
mimicking the reactions that can happen in a metabolic pathway inducing
the conformation changes with sample size Ω = 200. The experimental data
are coming from Kuehne et al. 2015 [17] and are regrouped in 4 different
13C-labeling conditions of the incoming glucose molecules, i.e. in first carbon
position ([1−13C] Glc) at 50%, in second position ([2−13C] Glc) at 50% and
the first two positions ([1, 2−13 C] Glc) at both 50% and 100%. The experi-
ments are produced without and with stress conditions induced by a 500µM
of external H2O2, on neonatal human skin fibroblasts. In these experiments,
the mass isotopomer distributions of the metabolite G6P , FBP , GAP , F6P ,
S7P , R5P and 6PG are measured. Only the steady state data from m+0 to
m+2 (i.e. from no labeled carbon to 2 in the metabolites) at 5 min are used
which induces 3 values per metabolite per experiment, thus 84 experimental
values of MIDs. Each individual experimental value will be compared by
the simulation result by computing the RMSE. Minimisation of the RMSE is
made by MCMC more specifically Metropolis Hastings algorithm. Two sep-
arated simulations are made to distinguish the basal condition (i.e. without
stress) from the stress condition.

By finding the minimum area of the RMSE function, the resulting flux
distributions can be obtained and represented by a violin plot (Figure 4.7-A).
A flux rate ΦENZ for a corresponding enzyme is defined positive when the
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Figure 4.7: Estimated fluxes during 13C-based metabolic flux
analysis. From Hurbain et al. 2022 [3]. Representation of the fluxes
obtained using stochastic simulation algorithm blue (B) and red (S)
represent basal (H = 0µM) and stress (H = 500µM) conditions at steady
state. (A) Violin plot of the estimated flux distributions. Φj

i are flux
rate of an enzyme i for a specific direction j (± correspond to directional
flux, t to net flux). Fluxes are normalised by incoming glucose flux
ΦGLU . Triangles represent confidence interval widths below 0.4 (Figure
4.9) meaning well estimated fluxes. (B-C) Schematic representations of the
net flux rates in the metabolic pathway in (B) basal and (C) stress conditions.

enzymatic reaction is irreversible. For the reversible ones, they can be de-
fined using directional flux rates (i.e. positive Φ+

ENZ and negative Φ−ENZ) as
ΦENZ = Φ+

ENZ−Φ−ENZ . Maximum boundaries for the flux rate values are set
as twice the incoming glucose flux ΦGLU in order to avoid extreme and non-
realistic fluxes. A flux state of the PPP and glycolysis can be decomposed
in 3 net fluxes (see Section 4.2). However, due to degenerations coming from
directional fluxes, the number of flux rates needed to fully characterize the
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Figure 4.8: Flux state in the space of elementary modes. Fluxes
shown in Figure 4.7 are expressed as function of the 3 last elementary modes
(Figure 4.3). This decomposition is represented in the mode space shown by
a triangle due to the conservation relation λ3

2
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the space corresponds to components of elementary mode ~V n
3 and ~V n

5 . Each
flux state is a combination of the 2 elementary modes. In {λ3, λ5} = {0, 0},
the flux state is fully in ~V n

4 . Representation of the estimated fluxes in
basal condition (H = 0µM) in blue. Representation of the estimated fluxes
in stress condition (H = 500µM) in red. ΦPGI = 0 and ΦTKT = 0 are
represented by white and black dashed lines.

flux state is increasing to 12 flux rates which are all estimated here during
minimisation of the RMSE function. The found flux distributions whether
it is for the basal or stress conditions, are differently spread with very large
distributions representing non-constrained fluxes while others are confined in
a small flux area and are notified by a small ∆. To better understand the
results, schematic representations of the flux states of the metabolic path-
ways in basal and stress conditions are given in Figure 4.7-B&C. Without
stress, the fluxes are directed mainly through the glycolysis with a small pro-
portion going through the PPP and going out respectively via GAPD and
PRPPs. However, the flux state is completely redefined during oxidative
stress by having a flux rerouting toward the PPP inducing an increase of
H2O2 detoxification.
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The flux state can be decomposed into the normalised elementary modes
~V n
i presented in Section 4.2. Because the estimated fluxes here are only in

the PPP and glycolysis, the decomposition will be made as a function of the
3 last modes, i.e. ~V n

3 , ~V n
4 and ~V n

5 . Due to the lack of experimental data of
MIDs in the anti-oxidant pathways, the first two modes cannot be used to
extract information in the anti-oxidant pathways. Thus, a flux state ~Φ can
be expressed as a function of these modes. Using the normalized elementary
modes ~V n

i allows to decompose the flux states as a function of the λi (eq
4.20) which are directly proportional to the flux rates ΦGAPD, ΦPRPPs and
ΦG6PD (eq 4.19), and which can be represented in a 2D graph (Figure 4.8)
using the conservation relation (eq 4.22) :

• Computing the elementary mode decomposition in basal condition in-
duces λ3 = 1.64, λ4 = 0.17 and λ5 = 0.22. The glycolytic mode prevails
compared to the others at around 92.5%. λ2 and λ3 are closed to each
other inducing a very small flux through the noxPPP.

• During oxidative stress induced by a 500µM of external H2O2, there is
a flux rerouting from glycolytic to mainly a PPP flux. A decomposition
of this new flux state into normalised elementary modes reveals λ3 =
0.60, λ4 = 0.66 and λ5 = 0.95 showing a high flux rerouting toward
the PPP and to the cycling flux mode with a fold change of λ4 and
λ5 at ≈ 4 (Figure 4.8). It is important to note that, in mean, λ3

and λ4 are not sufficiently low, or λ5 sufficiently high to have a real
cycling flux which would correspond to ΦoxPPP = λ5 > 1 or equivalent
ΦGLY = (1

2
λ3 + 5

6
λ4 − 5

6
λ5) < 0. A potential higher stress level would

reveal higher cycling mode inducing fully cycling flux.

The flux estimation is made by minimising a RMSE function allowing
to extract sets of fluxes which reveal low score function. The distribution of
these estimated fluxes could then be extracted revealing that a non-negligible
proportion of them have large distribution meaning that they are not well
estimated or that their values do not impact enough the MIDs to be con-
strained in a specific flux space. Other fluxes have their distributions very
narrow indicating that they impact significantly the MIDs in order to re-
produce the experimental data. To distinguish the large to narrow fluxes
distributions, a confidence interval (CI) is computed and separated in two
groups (Figure 4.9). For each estimated flux in basal and stress conditions,
a smaller CI width than 0.4 is targeted by a small ∆ meaning that the dis-
tribution is narrow (Figure 4.7). By taking 3 well determined net fluxes
such as G6PD, GAPD and PRPPs, it is possible to fully characterise the
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Figure 4.9: Confidence interval of the estimated flux distributions.
From Hurbain et al. 2022 [3]. 50% Confidence intervals (CI) of flux
distributions in Figure 4.7. The grey area correspond to CI below 0.4 which
are indicated by a small ∆, meaning that flux estimation is accurate enough
to be used in future model construction (Chapter 5).

flux state of the PPP and glycolysis in term of net fluxes. Then, directional
fluxes of the noxPPP are well estimated which allows to remove a part of
the degeneration. All these fluxes display a small CI width in both basal
and stress conditions. Finally, only Φ−PGI have a narrow distribution in stress
condition. It can be understood due to the inhibition on PGI by 6PG which
would be activated by the flux rerouting during oxidative stress constraining
the reverse PGI flux rate. Once the mathematical model described in this
chapter will be expressed mathematically as a function of kinetic parame-
ters and metabolite concentrations using reaction laws, the estimated fluxes
that have a small CI width will fuel a data-driven parameter estimation in
order to reproduce experimental behaviours. Then, the metabolic regulation
mechanisms such as PGI inhibition activation, can be investigated during
oxidative stress.

4.3.4 Stochastic algorithm for non-stationary 13C-MFA

The new 13C-MFA algorithm is a different class of method that simulates
isotope propagation based on SSA. As made in this thesis, most of the well
known 13C-MFA are limited to stable analyses with both metabolic and iso-
topic steady state. However, more complex 13C-MFA can be computed with-
out steady state condition as it has been made for transient isotopic labeling
corresponding to non-stationary MFA (13C-NMFA or 13C-instMFA) [121] or
for non-stationary metabolic fluxes corresponding to dynamic MFA (13C-
DMFA) [109]. When metabolic or isotopic labeling is not constant in time,
the use of non-stationary MFA is well suited. While 13C-instMFA can be
implemented for instance in INCA software with an EMU decomposition, it
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Metabolic network size Method used Computational time

12 metabolites / 21 reactions
SSA ≈ 0.03s

EMU (by INCA) ≈ 0.6s

Table 4.1: Comparison of algorithm efficiencies in non-stationary
labeling. For a metabolic network presented in this thesis comprising PPP
and glycolysis, the computational time for the forward simulation of iso-
topomer distributions in non-stationary labeling condition are compared be-
tween the EMU method implemented by INCA and the new 13C-MFA al-
gorithm based on SSA presented in this thesis with Ω = 100. Simulation
are made using an Intel(R) Core(TM) i7-10610U CPU at 1.80GHz without
parallelisation.

does not exist highly efficient software that implements 13C-DMFA.
The new proposed method is able to compute both 13C-instMFA and 13C-

DMFA with a high computational efficiency. During the fluxes estimation,
the reaction inducing the labeled carbon propagation are chosen stochasti-
cally as a function of a given set of fluxes. Thus, the algorithm can easily
take into account the time-varying fluxes during the iterations allowing to
proceed to 13C-DMFA and similarly for transient isotopic labeling in 13C-
instMFA. Moreover, during an inverse problem, a simulation for estimating
the MIDs according to a flux state is calculated a very large number of
times, making the calculation time a very important information. Then, the
computational time of the SSA and the EMU decomposition computed by
INCA software is compared for the metabolic network presented in this the-
sis in the table 4.1. It appears that the new proposed 13C-MFA algorithm is
around 20 times faster than the EMU decomposition via INCA software for
a metabolic network composed of the PPP and glycolysis. This metabolic
network is particularly interesting despite its size due to its capacity to mix
the carbons in metabolites via the noxPPP reactions making the new 13C-
MFA algorithm already efficient. Indeed, while EMU decomposition size can
drastically increase as a function of the number of isotopomer impacting
the computational time, one of the main advantage of the SSA is that this
new method has a very weak dependence of the computational time on the
number of isotopomer. Another important advantage is that SSA’s compu-
tational time is not impacted by the number of labeled atoms making the
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method well suited to study parallel labeling, for instance with hydrogen or
oxygen labeling [1].

The use of non-stationary MFA methods often depend of their implemen-
tations in a software. While 13C-MFA can be computed by many software
such as COBRA [116] and 13C-instMFA by other software such as INCA [118]
using EMU decomposition as the core algorithm, most of the DMFA are not
implemented in highly efficient software. However, the proposed method
does not require implementation in any particular software and can be eas-
ily achieved in any programming language as it would be made for chemical
kinetics modeling.
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Chapter 5

Kinetic model of PPP

Mathematical models are often used to simulate and investigate metabolic
pathways behaviour which is also used in the context of oxidative stress
[34, 124, 133, 126, 134]. Moreover, data-driven estimation in mathemati-
cal model is a common procedure to reproduce experimental measurements
[135]. A metabolic network of the PPP (PPP) and glycolysis will be mod-
eled in this thesis to investigate the enzyme regulatory mechanisms allowing
resources reallocation during fast oxidative stress response. Using model
optimisation algorithms such as Monte Carlo Markov chain and genetic al-
gorithm, parameter distributions will be estimated allowing to build a model
ensemble reproducing experimental measurements. A biphasic response and
an adaptation phenotype will be observed during temporal dynamics and flux
rerouting via dose response analysis which confirms the network regulation
work during oxidative stress to reorganise the incoming glucose flux resource.
All these data are published in Hurbain et al. 2022 [3].

5.1 Model construction : complexity vs effi-
ciency

Glycolysis and pentose phosphate pathway combined to a detoxification path-
way made of glutathione and cofactor NADPH is modeled mathematically
using ordinary differential equation as a function of fluxes (Section 4.1). It
allowed to analyse the flux state of the model during rapid oxidative stress re-
sponse. A next step can be made by expressing mathematically the flux rates
as a function of kinetic parameters and metabolite concentrations. This step
is necessary to implement interactions between metabolites and enzymes.
Indeed, allosteric regulation or competitive inhibition are not taken into ac-
count with the ordinary differential equation expressed as a function of fluxes

75
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Figure 5.1: Metabolic pathways with their regulations used in
the mathematical modeling. From Hurbain et al. 2022 [3]. Schematic
representation of the network comprising the metabolites shown by coloured
ellipses, chemical reactions shown by black arrows with their corresponding
enzymes in black squares. OxPPP is in green, non-oxidative in pink,
glycolysis in yellow, anti-oxidant system in blue and oxidant molecules in
red. Input and output fluxes are represented by big arrows. Metabolic
regulations are shown by red arrows and notified by an ∗.

and can have an important impact on the oxidative stress response. More-
over, these expressions are made to characterize rapid dynamics and do not
take into account longer responses.

The metabolic network described here has 21 reversible or irreversible
fluxes which can be described by using different kinetic laws as mass action
law, Michaelis-Menten dynamics. As they are mainly enzymatic reactions,
they could be design with Michaelis-Menten law. It would induce at least
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2 parameters per irreversible reactions, i.e. maximum speed and saturation
parameter. When the reaction is reversible, it adds potentially 2 other param-
eters, i.e. equilibrium constant and another saturation parameter. Therefore,
by adding regulation inside the model, the total number of parameters for
the entire system of equations would be more than 90. Most of these param-
eters are difficult to determine precisely experimentally in-vivo but can be
data-driven estimated. The higher the number of parameter, the longer and
more difficult the estimation. It clearly shows the necessity to decrease the
number of parameter. Therefore, the reaction rates will be first described
with linear expression by using mass action law. Then, non-linearities that
are non-negligible, such as saturation, or regulation are added afterwards to
the network following the generalized expressions given in Section 2.1. In-
deed, we consider saturation terms only in the reactions for which substrates
significantly increase during oxidative stress (i.e. 6PG, R5P , X5P etc...).
The flux rates expression are listed in table 5.1.

Reaction Law Equation

OX kOX + kdiff ([H2O2]ext − [H2O2])

CAT Eq 2.6 kCAT [H2O2]

GPx Eq 2.9 kGPx[H2O2][GSH]/( [GSH]
KmGGPx

+ [H2O2]
KmHGPx

)

GR Eq 2.9 kGR[NADPH][GSSG]/(1 + [GSSG]
KmGGR

+ [NADPH]
KmNGR

)

NHN Eq 2.6 kNADP [NADP+]

NNH Eq 2.11 kNADPH [NADPH]/(1 + [H2O2]
KiNNH

)

G6PD Eq 2.11 kG6PD[G6P ][NADP+]/(1 + [NADPH]
KiG6PD

)

6PGL Eq 2.6 kGLase[6PGL]

6PGD Eq 2.12 k6PGD[6PG][NADP+]/(1 + [NADPH]
Ki6PGD

+ [6PG]
Km6PGD

)

RPI Eq 2.6 kRPE([Ru5P ]− [X5P ]
KeqRPE

)

RPE Eq 2.6 kRPI([Ru5P ]− [R5P ]
KeqRPI

)
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PRPPs Eq 2.9 kPRPPs[R5P ]/(1 + [R5P ]
KmPRPPs

)

TKT1 Eq 2.10 kTKT1([R5P ][X5P ]− [GAP ][S7P ]
KeqTKT1

)/(1 + ([R5P ][X5P ]
KmTKT1

+ [GAP ][S7P ])
KmTKT1

)

TLD Eq 2.10 kTLD([GAP ][S7P ]− [F6P ][E4P ]
KeqTLD

)/(1 + ([GAP ][S7P ]
KmTLD

+ [F6P ][E4P ])
KmTLD

)

TKT2 Eq 2.10 kTKT2([E4P ][X5P ]− [F6P ][GAP ]
KeqTKT2

)/(1 + ([E4P ][X5P ]
KmTKT2

+ [F6P ][GAP ]
KmTKT2

)

HK Eq 2.11 kHK [Glc]/(1 + [G6P ]
KiHK

)

PGI Eq 2.11 kPGI([G6P ]− [F6P ]
KeqPGI

)/(1 + [6PG]
KiPGI

)

PFK Eq 2.6 kPFK [F6P ]− kFBPase[FBP ]

ALD Eq 2.6 kALD([FBP ]− [DHAP ][GAP ]
KeqALD

)

TPI Eq 2.6 kTPI([DHAP ]− [GAP ]
KeqTPI

)

GAPD Eq 2.11 kGAPD[GAP ]/(1 + [H2O2]
([GSH]/[GSH]tot])KiGAPD

)

Table 5.1: Mathematical model reactions rates expressions. Gener-
alized expression are introduced in Section 2.1 Mathematical expression of
GPx and GR are taken from Benfeitas et al. 2014 [124]. GAPD flux rate
is a simplified version of the complex oxidative inhibition from H2O2 and
reduction from GSH.

In these conditions, all reactions of the metabolic pathways are expressed
in order to keep the important metabolic mechanisms without having very
high number of parameters. For the entire model, the fluxes can be expressed
mathematically via their reaction rates as a function of 48 parameters. Math-
ematical terms and saturations for φGPx and φGR follow expression based on
an existing model [124]. Finally, saturation in the noxPPP reactions are
considered equal in both direction which assumes to take the same satu-
ration constant for substrates and products. A specific treatment is made
for GAPD. Because its regulation is made by an oxidation from H2O2 and
reduced by GSH [35], two type of molecules are considered : non-oxidized
and oxidized GAPD. The transition between these two states depend of the
concentration of H2O2 and GSH. The change of state is very fast, thus quasi
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steady state concentration can be considered inducing the expression shown
in the 5.1.

This model is built in order to study the respective roles of a group of
metabolic regulations that is known to impact the fast oxidative stress re-
sponse : G6PD is inhibited by NADPH, PGI by 6PG, GAPD by H2O2,
HK by G6P [17, 18, 34, 36]. All reactions that consume NADPH into
NADP+ are characterized by a rapid decrease of biosynthetic pathways dur-
ing oxidative stress [15, 16] which is symbolized by an inhibition of the ef-
fective reaction NNH by H2O2. However, other regulations listed in Figure
1.4 have not been taken into account such as the inhibitions of PK, TPI, or
PFK enzymes [19, 37, 52, 53].

5.2 Estimation of model parameters
Mathematical model used to describe variations of metabolite concentrations
as a function of time is dependent of parameters. This system of equations is
made of 48 parameters. Because of the difficulty to measure them precisely
experimentally, a specific parameter estimation method based on experimen-
tal data is used. The aim of this method is not to estimate one specific set of
parameter but a distribution of sets of parameters that create an ensemble
of plausible models able to reproduce experimental data.

5.2.1 Reduction of the parameter space

Before applying a specific procedure to estimate model parameters and even
if the flux rates are expressed in order to minimise the number of parameter,
dimensionality of the parameter space is still very high as the model comprises
48 parameters. Thus, this space still needs to be reduced by fixing parameters
at a certain value or by confining other between boundaries. The boundaries
are generally one decade below and above from an unique data. These values
or boundaries are defined from experimental measurement or existing models.
All of them are given in the following table :

Parameter Value Range References
kGPx 1s−1 [10−1; 101] [124]

KmHGPx 0.04µM [10−1; 101] [124]
KmGGPx 9.72µM [10−1; 101] [124]
kGR 49s−1 [10−1; 101] [124]

KmNGR 8.5µM [10−1; 101] [124]
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KmGGR 65µM [10−1; 101] [124]
KiG6PD 10µM [10−1; 101] [17, 45]
Ki6PGD 10µM [10−1; 101] [45, 136]
KiPGI 100µM [10−2; 101] [17]
KiGAPD 100µM [10−2; 101] [36]
KiNNH 100µM [10−1; 101]

KmG6PD 50µM [25, 137]
KmPRPP 65µM [138]
KeqRPE 1.68 [70]
KeqRPI 1.23 [70]
KeqTKT1 1.62 [70]
KeqTLD 0.36 [70]
KeqTKT2 30 [70]
KeqPGI 0.34 [70]
KeqALD 66µM [70]
KeqTPI 19.2 [70]
kdiff 1s−1 [10−1; 101] [124]
ΦGLU 40µM.s−1

[NADP (H)]tot 30µM [124]
[GSH]tot 3mM [124, 139]

ki 1s−1 [10−4; 101]

Table 5.2: Parameter space and values. Range defines the range of
variation around the indicated value. Blank range indicates fixed value.

5.2.2 Parameter estimation procedure

After reducing the parameter space, it still remains 36 to estimate, i.e. 36
non-fixed parameters. A specific procedure is made to deduce a distribu-
tion of these parameters in order to be able to reproduce experimental data
by numerical simulation. This experimental data are taken from Kuehne et
al. paper [17] which shows rapid changes in metabolite concentrations and
metabolomic distribution as a function of time and different external H2O2

concentrations during oxidative stress response in fibroblast cell line. Data
consist in fast oxidative stress response with a steady state at 5 min and
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do not take into account longer dynamic using transcription response. Mass
isotopomer distributions data are not usable directly for the mathematical
model but can be translated into flux values in basal and stress state (chapter
4). Thus, a function representing the gap between experimental and theo-
retical (i.e. from numerical simulation) data can be defined by taking only
steady state values i.e. at 5min after a step from [H2O2]ext = H = 0µM
to 500µM stress. The remaining experimental data, i.e. the temporal dy-
namic and the steady state concentration for different dose of stress, will be
used as confirmation of the model ensemble after the parameter distribution
estimation. The function representing the gap between experimental and
theoretical results is defined as the following normalized Root Mean Square
Error (nRMSE) function :

nRMSE(~p ∈ P) =

√√√√ 1

NR +NΦ

( ∑

i=1,NR

(
Ri,sim(~p)−Ri,exp

∆Ri,exp

)2

+
∑

i=1,NΦ

(
Φi,sim(~p)− Φi,exp

∆Φi,exp

)2
)

(5.1)
where Ri = log2(Xi(H=500)

Xi(H=0)
) are concentration ratio in log scale and Φi are

the estimated fluxes of reaction i in basal and stress conditions at steady
state. Xi,sim/exp corresponds to a quantity coming from a simulation result
of a model with a set of parameter ~p taken from the parameter space P , or
from experimental data. Once the nRMSE becomes optimal, the parameter
sets have been estimated creating a statistical ensemble of kinetic models P∗.
The experimental data consist in NR = 12 values of metabolite concentration
ratios Ri and NΦ = 13 values of estimated fluxes Φi (Section 4.3). ∆Ri = 1
corresponds to experimental errors of the concentration ratios and ∆Φi are
standard deviations estimated from fluxes estimation which are also related
to experimental errors. Therefore, this nRMSE represents the gap between
experimental and simulated values, and as it is normalized by experimental
errors, a value lower than 1 for the nRMSE induces a difference lower than
experimental error and validates the Cauchy’s criterion.

Simulations of the model ensemble P∗ that reproduce experimental data
are characterized by a nRMSE function value lower than 1 and a specific
distribution of parameter sets. Looking at this function for random parame-
ters clearly shows that the correct parameter distributions cannot be found
because it only gives very high nRMSE values (Figure 5.2). Indeed, the
randomly sampled sets of one million of parameters sets lies with a 50% con-
fidence interval between 55.4 and 2.6. Thus, a genetic algorithm, described
in Section 2.4, is used to travel into the parameter space by changing a small
percentage of the total number of parameters step by step and to keep the
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Figure 5.2: Minimisation procedure of the nRMSE function. From
Hurbain et al. 2022 [3]. Whisker plots associated to 106 random parameter
sets, 104 optimized parameter sets using evolutionary genetic algorithm and
106 parameter sets sampled using Monte Carlo Markov chain algorithm.
Normalised Root Mean Square Error (nRMSE) function below 1 describes
fitted value below experimental errors. Distribution of the parameter sets
sampled using MCMC algorithm with a nRMSE < 1 will represent the
model ensemble P∗ for future analysis.

best parameter set which corresponds to the lower nRMSE. This algorithm
decreases drastically the value of the nRMSE which induces 50% confidence
interval nRMSE values lying between 3 and 0.8. The lower boundary re-
veals that a part of the parameter sets already has nRMSE value lower than
the experimental error. Thus, as a final step, MCMC is used to scan the
parameter space locally from the previous lower nRMSE sets of parameters
as initial condition. Indeed, this algorithm allows to obtain a large enough
sample (106 accepted points) of the parameter space with a nRMSE lower
than 1, so a sufficiently large parameter sets that can be used to reproduce
experimental data via numerical simulation creating the model ensemble P∗.
This distribution has a 50% confidence interval nRMSE values between 0.63
and 0.86. A low total nRMSE means that the errors between experimen-
tal and simulation data are in mean under experimental errors. However,
it doesn’t mean that each sub-element which corresponds to the fit of each
concentration ratio or flux, has a good fit. Looking at the distribution of
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B

A

0 μM H2O2 500 μM H2O2

Figure 5.3: Agreement between model and experimental data.
From Hurbain et al. 2022 [3]. Experimental (black) and simulated (blue
and red) sub-elements of the normalised Root Mean Square Error (nRMSE)
function after the minimisation process shown in Figure 5.2. (A-B) Ex-
perimental sub-elements in black are represented by the means (circle) and
standard deviations (error bars). (A) Whisker plot of the metabolite fold
changes Xi(H = 500)/Xi(H = 0) between stress H = 500µM and basal
H = 0µM conditions for the model ensemble P∗ (red). (B) Whisker plots
of the normalised fluxes rate Φi/ΦGLU for the model ensemble P∗ in basal
condition H = 0µM (blue) and stress condition H = 500µM (red).
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each sub-element compared to the corresponding experimental interval (Fig-
ure 5.3) clearly shows that they all fall within the range of experimental
uncertainties.The determination coefficients R2 for the concentration ratios
and fluxes for each parameter set are respectively R2

Ri
= 0.86 ± 0.03 and

R2
Φi

= 0.96± 0.02 which shows the goodness of the fit.
Once the nRMSE clearly shows a good agreement between experimen-

tal and simulated data, the parameter distribution values can be evaluated
(Figure 5.4). It shows that a part of the parameters has a wide distribution
corresponding to a 50% confidence interval spanning several orders of magni-
tude of parameter variations. It means that whatever the value taken in this
interval, the models are able to reproduce the experimental data. Because
these data show rapid oxidative stress response, these parameters would not
have high impact on the oxidative stress response. Other parameters have
narrow distributions corresponding to a 50% confidence interval spanning
on a few percent of the parameter variation. It means that the value taken
in order to defend against oxidative stress are very constrained. It is par-
ticularly the case for some specific parameter such as inhibition parameter
KiG6PD, Ki6PGD, KiGPI or KiGAPD. These phenotypes clearly show that
adding regulations are necessary to account for the fast metabolic response
to oxidative stress.

To conclude, a mathematical model has been constructed in order to
reproduce rapid oxidative stress response. The parameters of this model are
estimated by a specific procedure comprising genetic and MCMC algorithm,
in order to fit experimental data. It generates a distribution of parameter
sets which corresponds to sets of plausible kinetic model. It shows that some

Figure 5.4: Parameter Distributions of the model ensemble. From
Hurbain et al. 2022 [3]. Violin plots of parameters pi for the model ensemble
P∗ where the explored parameter space is represented in white area (non-
grey).
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parameter has no important effect on the data adjustment but others which
have a narrow distribution, are important in order to be able to reproduce
experimental data. It is particularly the case for most of the regulation
parameters confirming the need of these regulation mechanisms inside the
mathematical model.

5.2.3 Correlation analysis of the model parameters

A mathematical model ensemble has been created via an estimation of distri-
butions of parameters sets in order to reproduce oxidative stress experimental
data taken from the Kuehne et al. 2015 [17]. These parameters distributions
reveal that some of them are highly constrained while others do not show
specific value and can vary more or less freely to keep a small nRMSE value.
To be able to estimate the model parameters, most of them have been con-
strained by applying boundaries for some and by fixing others. However, the
question of dependency between each parameters is not known and can be in-
vestigated by looking at the correlation coefficients. Indeed, two parameters
could be linked which would induce related distributions allowing a possible
parameter space reduction.

The correlation matrix shows the correlation coefficients between two
parameters (Figure 5.5-A). The color code explains how these parameters
are correlated. High correlation between two parameters means that when
one is changing, the other will change in the same manner while high anti-
correlation between two parameters means will be in the reserve direction.
Correlation or anti-correlation blocks appear which mainly correspond to
parameters within the same flux rates or at least to neighbouring reactions.
Indeed, it exists high correlation/anti-correlation between parameters inside
the oxPPP, the noxPPP or glycolysis. However, no huge correlation or anti-
correlation block appears meaning that the model cannot be drastically re-
duced and there are not high number of parameter that has been over-fitted.
Moreover, a spectral analysis of the correlation matrix allows to compute the
eigenvalues (Figure 5.5-B) showing that it exists few parameters that are not
precisely estimated.

5.3 Analysis of temporal dynamics

To analyse how the metabolic pathways are regulated during oxidative stress,
the statistical ensemble of the mathematical model P∗ is used to reproduce
experimental measurement from Kuehne et al. 2015 [17] which has been
calibrated via a specific methodology allowing to estimate distributions of
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Figure 5.5: Parameters correlations. From Hurbain et al. 2022 [3].
(A) Correlation matrix heatmap with the accompanying dendrogram for
the estimated kinetic parameters pi of the model ensemble P∗. Parameters
are reordered by bundles of their corresponding flux rates. 1 (Red) and −1
(blue) mean respectively correlation and anti-correlation while 0 (white)
means no correlation. (B) Ordered eigenvalues of the correlation matrix.
50% of the variance can be captured by the 5 highest eigenvalues, i.e. by
four linear combinations of parameters.

parameter sets. Data used during this parameter estimation is fold change
concentration between basal (i.e. without stress) and stress conditions, and
13C labeling distributions converted into fluxes in basal and stress conditions
(Section 4.3) for a step of hydrogen peroxide [H2O2]ext = 500µM and at
steady state at 5 min after application of this stress. Then, the temporal
dynamic of the entire model ensemble P∗ can provide more information. The
experimental data of temporal dynamic are not taken into account for the
parameter estimation but they can be compared with the simulated results.

Simulated temporal dynamics can provide preliminary information about
how the metabolic pathways are regulated under oxidative stress before reach-
ing steady state. Indeed, experimental data are measured with a resolution
in minute time scale but more precise dynamics can be identified with a sec-
ond time scale [34] which can be done by numerical simulations. It appears
different steps of the metabolites concentration variations during the tran-



5.3. Analysis of temporal dynamics 87

∅

GSSG

NADP+
NADPH
 

NADP+

GAP

F6P

G6PD GLase

 

6PGD

TKT1

PGI

ALD

TPI

 

PFK FBPase

 

PRPPs

GAPDH

ATP
production

HK

RPE RPI

TKT2

TLD

H2O2 

A

B C

0 100 200 300
Time (s)

-1

0

1

lo
g

1
0
(H

2
O

2
)

0 100 200 300
Time (s)

3.3

3.4

lo
g

1
0
(G

S
H

)

0 100 200 300
Time (s)

0

0.5

1

lo
g

1
0
(N

A
D

P
H

)

0 100 200 300
Time (s)

0.6
0.8

1
1.2
1.4

lo
g

1
0
(G

6
P
)

0 100 200 300
Time (s)

-0.5
0

0.5
1

lo
g

1
0
(6

P
G

L)
0 100 200 300

Time (s)

1

1.5

2

lo
g

1
0
(6

P
G

)

0 100 200 300
Time (s)

1

1.5

2

lo
g

1
0
(R

u
5

P
)

0 100 200 300
Time (s)

0

1

2

lo
g

1
0
(X

5
P
)

0 100 200 300
Time (s)

1

1.5

2

lo
g

1
0
(R

5
P
)

0 100 200 300
Time (s)

-0.5
0

0.5
1

lo
g

1
0
(S

7
P
)

0 100 200 300
Time (s)

-0.5

0

0.5

lo
g

1
0
(E

4
P
)

0 100 200 300
Time (s)

0

1

lo
g

1
0
(G

lc
)

0 100 200 300
Time (s)

0

0.5

1

lo
g

1
0
(F

6
P
)

0 100 200 300
Time (s)

1

1.5

2

lo
g

1
0
(F

B
P
)

0 100 200 300
Time (s)

0.5

1

lo
g

1
0
(D

H
A

P
)

0 100 200 300
Time (s)

1.5

2

2.5

lo
g

1
0
(G

A
P
)

Time (s)

lo
g

1
0
(H

2
O

2
)

0 50 100

0

1

2

Time (s)
0 50 100

0.5

1

1.5

lo
g

1
0
(G

6
P
)

Figure 5.6: Metabolite temporal dynamic during oxidative stress
response. From Hurbain et al. 2022 [3]. Temporal dynamics of metabolite
concentration during oxidative stress response made by H = 500µM step
started at t = 0s. At t < 0s, the system is at steady state in basal condition
made by a simulation with H = 0µM . Simulations are made with the pa-
rameters sets from the model ensemble P∗. Results are shown by the mean
in blue line and the standard deviation shown by the grey shadow. Exam-
ples of few parameter sets are shown by grey lines. (A) Temporal dynamic
of metabolite concentrations in their corresponding metabolic pathway posi-
tion. Simulations are shown until 5min. (B)-(C) Zoomed temporal dynamic
of metabolite concentration until 100s.
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sient response of oxidative stress (Figure 5.6-A). The stress is induced by a
step from 0µM to 500µM for the external H2O2 concentration which induces
a sharp increase of the internal H2O2 and then a slow relaxation to a steady
state known as non-perfect adaptation phenotype. This has for consequence
to highly consume GSH and NADPH shown by a sharp decrease of their
respective concentration and then to a slow increase to a steady state. The
PPP metabolites see their concentration increasing in two step with a rapid
and then a slow rise. Finally, metabolites in the glycolysis show also a two
steps concentration variation. They first decrease rapidly within a second
time scale and then increase slowly to relax to a steady state. All these
concentration variations display a biphasic change during oxidative stress.

This biphasic variation can be seen in Figure 5.6-B&C where the internal
H2O2 and G6P concentrations are displayed during the 100 first seconds
of the oxidative stress response. First, H2O2 concentration shows a sharp
increase within the second time scale of several order of magnitude which is
related to the time scale of basal degradation kGR ×KmGGPx ∼ 10s. Then,
it displays a slow relaxation to a steady state concentration much lower than
the external one. Indeed, the ratio between internal and external H2O2

concentration at steady state is about 1 order of magnitude. The biphasic
transient dynamics concerning detoxification molecules GSH and NADPH
are symmetric to that of internalH2O2 which corresponds to the upregulation
of glycolytic concentrations as G6P . Indeed, G6P shows a rapid decrease
until ∼ 10s and then an increase to a steady state. The first decrease step
can be explained by the consumption of NADPH which increases NADP+

concentration decreasing the inhibition on G6PD and 6PGD which induces
an increase of G6P consumption. Because the PPP fluxes increase, it higher
consumes G6P but it also increases PPP metabolite concentrations which is
probably due to the saturation of 6PGD. Time scale of 6PG global increase
corresponds to G6P increases which is due to lower PGI flux rate, probably
linked to an inhibition increase of PGI and GAPD enzymes.

One of the major phenotype during the early oxidative stress response is
the fast flux rerouting from the glycolysis to the PPP. Only regulations that
could act in early response are implemented in our model and some of them
can be used to increase the flux in the PPP. For instance, a decrease of the
inhibition of G6PD or 6PGD could release the PPP or an increase of the
inhibition on PGI and GAPD could avoid the materials to go through the
glycolysis in favour of the PPP. These metabolic responses via the regulations
can be responsible of the presence of the biphasic dynamic and therefore of
the adaptation phenotype. Looking at the temporal dynamic of for instance
H2O2 with or without inhibitions allows to investigate their impact on the ox-
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Figure 5.7: Impact of the regulation on the temporal dynamic.
Temporal dynamics during oxidative stress response made by H = 500µM
step started at t = 0s. At t < 0s, the system is at steady state in
basal condition made by a simulation with H = 0µM . Simulations are
made with the parameters sets from the model ensemble P∗. Results
are shown by the mean in blue line and the standard deviation shown
by the grey shadow. Temporal dynamic of H2O2 concentration with
(A) or without (B) regulations on G6PD, PGI and GAPD. Regula-
tions are deleted by increasing their corresponding parameters to infinity
(i.e. Kii →∞). (A) From Hurbain et al. 2022 [3] and shown in Figure 5.6-B.

idative stress temporal response (Figure 5.7). Indeed, the temporal dynamic
with regulations shows an adaptation ratio (eq. 3.18) higher than 1 charac-
terizing the presence of the adaptation phenotype (Figure 5.7-A). However,
removing the main inhibitions of our model make the adaptation phenotype
disappear confirming that this typical dynamic is here due to the effect of
the regulations (Figure 5.7-B). It is important to note that in addition of
the disappearance of the adaptation phenotype, the overall detoxification is
also highly reduced without regulation resulting in a 7.73-fold increase in
steady-state concentration.

The transient biphasic response of the metabolite concentration during
oxidative stress are produced by numerical resolution of the model ensemble
P∗ built by fitting experimental data at steady state. However, the experi-
mental data of temporal dynamic are not taken into account for the param-
eter estimation but can be compared with the simulated results. Looking
at the Figure 5.8, metabolite concentration variations as a function of time
roughly well follow the experimental measurements with a determination co-
efficient R2 = 0.82±0.05. It exists differences, specifically for F6P concentra-
tion which is increasing in simulations while it is decreasing in experimental
measurements in order to reach a steady state. It could be explained by



90 CHAPTER 5. Kinetic model of PPP

Figure 5.8: Comparison of temporal dynamic prediction to exper-
imental data. From Hurbain et al. 2022 [3]. Each plot corresponds to
temporal dynamics of each metabolite concentration. Predicted results of
the model ensemble P∗ (from figure 5.6) are shown by the mean in black
solid line, and standard deviation with grey shadow. Experimental data
are represented by the 3 replicates measures and their means in dashed
line (Kuehne et al. 2015 [17]). Goodness-of-fit is evaluated by computing
the R-squared distribution of the model ensemble P∗ giving R2 = 0.82±0.05.

the fact that the models do not take into account fructose-2,6-bisphosphate
F26BP which could be used as regulator of PFK and FBPase, and there-
fore modify the F6P transient dynamic.

In summary, the model ensemble P∗ built to reproduce oxidative stress
response to a step of 500µM of external H2O2 concentration, shows a bipha-
sic response during transient dynamic. It is related to first the detoxifica-
tion response during a second time scale thanks to the reserve of GSH and
NADPH molecules. Then, fluxes inside glycolysis are rerouted toward the
PPP in tenth of seconds thanks to a change of the metabolic concentration
configuration increasing NADPH recycling. This is a common procedure
to highly respond to an oxidative stress [18, 17]. The decrease of NADPH
concentration would release the inhibition on PPP enzyme and would be re-
sponsible of this rerouting flux. Moreover, it would also involve inhibition
of glycolysis in order to restore G6P concentration. Finally, these tempo-
ral dynamic behaviour are not visible in experimental data but the model
ensemble predictions are in well accordance to these data.

5.4 Analysis of dose responses
A model ensemble P∗ has been created to reproduce experimental data of
oxidative stress response. The used data are fold change concentrations and
metabolomic distributions converted into flux data in basal and stress con-
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Figure 5.9: Dose-dependent profiles of the oxidative stress re-
sponses. From Hurbain et al. 2022 [3]. Steady state dynamics of sev-
eral metabolites and fluxes as a function of the external hydrogen peroxide
H level. Simulations are made with the parameter sets of the model en-
semble P∗. Means of the steady states measured at 5min are represented
with solid lines and at 30min in dashed lines. Standard deviations of the
steady states correspond to coloured shadows. Smaller metabolic pathway
schemes show the position of the corresponding plotted variables. (A) Dose
response in glutathione pathway : H2O2/H, GPx and glutathiones ratio
GSH/GSSG. (B) Dose response of 6PG metabolite. Other metabolite dose
responses are shown in Hurbain et al. 2022 [3]. (C) Dose response of the main
fluxes normalized by the incoming glucose flux ΦGLU through enzymatic re-
action G6PD representing the oxPPP fluxes ΦoxPPP , TKT representing the
noxPPP fluxes ΦnoxPPP , and the output fluxes GAPD and PRPPs.
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ditions at steady state for an external perturbation of H2O2. This stress
is made by a step of concentration from 0µM to 500µM . However, in the
Kuehne et al. 2015 [17], there is also metabolite concentration at steady state
as a function of different external perturbations made of different concentra-
tions of external H2O2 written as H. The parameter distribution estimation
is made to reproduce a specific type of oxidative stress. Thus, the model
ensemble P∗ can be simulated for different type of stress profile, or differ-
ent concentration of external H2O2. Before comparing simulation results to
experimental data, dose-response of metabolite concentrations or fluxes can
provide information of the oxidative stress response of the model ensemble
and could potentially provide information on the regulatory mechanisms of
this response (Figure 5.9).

It has been shown previously that the system is able to detoxifyH2O2 dur-
ing 500µM oxidative stress from the temporal dynamic (Figure 5.6). How-
ever, it is interesting to know the detoxification capacity and its limit (Figure
5.9-A). The metabolic responses at 5min as a function of the external H2O2

(H) display a ratio between internal and external H2O2 very low level for
smaller stress doses than 500µM , a transition around 500µM and then a ra-
tio close to 1. It means that the mechanism is well detoxifying stress for small
doses, then starts to work but arrives at a certain maximum capacity which
induces approximately the same H2O2 concentration inside than outside the
cell. It coincides with the dose-response of flux rateGPx which displays an
increasing phase meaning that the system adapts to the stress and then to a
plateau around 500µM dose. This saturation clearly means that the system
is not able to remove more stress after a certain quantity. Indeed, the GPx
flux rate (eq 5.1) which is the first link in the internal H2O2 detoxification,
becomes independent of the H2O2 concentration which means that whatever
the dose, past this threshold, the system will not change conformation and
will no longer detoxify. The GSH/GSSG ratio confirms this result by show-
ing a plateau at the same threshold. After this dose, the metabolic network
is saturated but the catalase Cat is still able to eliminate H2O2 molecules
which confirms that both glutathiones and catalase are both actively involved
the oxidative stress detoxification in a dose-dependent manner [140, 141].

The concentration of 6PG displays an increasing curve (Figure 5.9-B).
It could induce an increase of PGI inhibition which would prevent the flux
to go through the glycolysis favouring the flux rerouting. However, for ex-
treme doses, 6PG metabolite concentration displays a slower relaxation than
the other metabolites where the observed saturation is before the 5min of
stress. Indeed, 6PG takes much longer to reach its steady state and has its
concentration still increasing between 5 and 30 min after the start of the ox-
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Figure 5.10: Dose-dependent flux response in the solution sub-
space. Fluxes shown in Figure 5.9-C are expressed as function of only the
3 last elementary modes (Figure 4.3). This decomposition is represented
in the mode space shown by a triangle due to the conservation relation
λ3

2
+ 5λ4

6
+ λ5

6
= 1. Each axe of the space corresponds to components of

elementary mode V n
3 and V n

5 . Each flux state is a combination of the 2
elementary modes. In {λ3, λ5} = {0, 0}, the flux state is fully in V n

4 . Rep-
resentation of the estimated fluxes in basal condition (H = 0µM) in blue.
Representation of the estimated fluxes in stress condition (H = 500µM) in
red. ΦPGI = 0 and ΦTKT = 0 are represented by white and black dashed
lines.

idative stress. This behaviour is linked to the saturation of 6PGD reaction
rate. During high perturbation, 6PG steady state concentration is highly in-
creasing and becomes higher than the saturation parameter Km6PGD which
induces saturation of the corresponding flux rate. Therefore, the ODE de-
scribing the variation of 6PG becomes independent of its concentration and
because all other metabolites have already reached their steady state, the
6PG variation equation becomes constant. It induces a very slow temporal
dynamic and then a very high time to reach the steady state.

It has been shown previously that the system is able to reroute its flux
capacity from the glycolysis toward the PPP during fast oxidative stress
response. Indeed, these metabolic pathways are built to highly reroute its
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flux capacity from a sequential mode useful to produce energy, i.e. through
the glycolysis, to the cycling mode passing through PPP and the reverse
glycolysis. The flux rerouting during 500µM H2O2 step allows to reach a
PPP flux from ≈ 0.1 to a maximum of 0.95 time the incoming glucose flux
ΦGLU inducing increasing oxidative stress detoxification even if it is far from
the maximum value of 6ΦGLU given by the cycling flux. Therefore, it is easy
to assume that when the system is able to reroute the flux capacity in order
to highly detoxify the stress, the total capacity could be used for extreme
doses. Looking at the flux rates normalized by the incoming glucose flux (i.e.
Φi/ΦGLU) as a function of H doses (Figure 5.9-C), the flux capacity shows a
rerouting in favour of the cycling mode but does not reach its maximum value.
Indeed, for low doses, ΦGAPD is much higher than ΦPPP showing a glycolytic
mode. When the external stress is increasing, ΦGAPD is decreasing potentially
due to its inhibition by H2O2 and the flux inside the PPP is increasing which
clearly shows a rerouting to reach the value of 1.3 the incoming glucose flux.
The fluxes is represented in 2D graph in the basis of elementary modes as
it has been made in Figure 4.8 for the data-driven estimated fluxes which
confirms the flux capacity rerouting as a function of the oxidative stress doses.
The maximum value of the PPP flux is higher than 1 meaning that the system
is cycling but is much smaller than 6 which is the maximum capacity. This
difference can be explained by the 6PGD saturation. Because oxPPP is
an irreversible chain of reactions, 6PGD saturation restricts maximum flux
inside the PPP and therefore limits the cycling mode. This limit of the
cycling flux can be calculated by neglecting smaller terms of Φ6PGD :

Φmax
6PGD = k6PGDKm6PGD[NADP+] (5.2)

The important information of this expression is that the limitation of the cy-
cling mode is linearly dependent of the activity of 6PGD enzyme. Therefore,
a change of this enzyme activity would change the cell capacity of oxidative
stress detoxification. Increasing the cycling flux capacity could be a good
solution to highly remove hydrogen peroxide but this limitation can be use-
ful to keep production of energy and DNA repair, necessary for cells to live,
by keeping non zero reaction rate of GAPD and PRPPs. Indeed, even if
GAPD flux rate is decreasing, these output fluxes are higher than zero show-
ing a need a energy and biomass production. The increasing PRPPs flux
rate could be related to repair of the damages caused by the oxidative stress.

Finally, the dose response results can be compared to the experimental
data that have not been used during the parameter distribution estimation.
Simulations of the dose-responses correspond roughly well to the data with
a determination coefficient R2 = 0.48± 0.04. This value is smaller than the
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Figure 5.11: Comparison of the dose response prediction to
experimental data. From Hurbain et al. 2022 [3]. Each plot corresponds
to dose responses of each metabolites concentration. Predicted results of
the model ensemble P∗ (from figure 5.9) are shown by the mean in black
solid line, and standard deviation with grey shadow. Experimental data
are represented by the 3 replicates measures and their means in dashed
line (Kuehne et al. 2015 [17]). Goodness-of-fit is evaluated by computing
the R-squared distribution of the model ensemble P∗ giving R2 = 0.48±0.04.

one for the temporal dynamic which is probably due to the dose-response
of 6PG. Indeed, the experimental data shows higher increase of its concen-
tration compared to simulation results. Because the saturation of 6PGD
reaction rate is already present at the observed concentrations during the
simulation, higher value of 6PG concentration won’t change the phenotype
inducing the same oxidative stress response. Moreover, this difference can be
corrected by adding a term inside the nRMSE function specifically focused
on this change of concentration.

In conclusion, dose-response analysis displays detoxification limitation
given by the GPx saturation. The corresponding flux rate becomes indepen-
dent of internal H2O2 which removes link to the network. The detoxification
capacity is also limited by the maximum cycling flux given by the saturation
of 6PGD reaction rate. This limitation is linearly dependent of the 6PGD
enzyme activity allowing the possibility to lift this barrier. All these results
are overall consistent with the experimental data. Finally, there is a high flux
rerouting capacity which can be induced by a decrease of NADPH concen-
tration releasing the inhibition of PPP, by the increasing 6PG concentration
preventing the flux to go through the glycolysis. Then, the high PPP flux
showing cycling flux could be induced by the decrease of GAPD potentially
induced by its inhibition by H2O2. A crucial question is now to understand
how the different regulations contribute to such flux rerouting.
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Chapter 6

Analysis of the regulatory scheme

Metabolic regulation is an important feature in cells used to reorganised the
network resources in order to respond to a change or a perturbation. In the
context of oxidative stress, rapid regulations have been observed in the PPP
and glycolysis [17, 34, 36, 35]. A mathematical model has been constructed
in previous chapters in order to reproduce experimental data which allows
to investigate the regulations in this metabolite network. In this chapter,
specific parameters of the model ensemble will be modified and a sensitivity
quantity will allow to clarify the impact of regulation on the rapid oxidative
stress response. It appears that regulations on G6PD, GPI and GAPD have
important effect on allocation of the metabolic resources. They act in a dose-
dependent manner and in synergistic cooperation to favour the detoxification
of stress.

6.1 Sensitivity measures

To analyse the regulation effect during oxidative stress response induced by
a step of external hydrogen peroxide H, parameters of the model ensemble
P∗ will be modified in order to change the regulation or enzyme activity.
It will induce change in metabolic concentration or flux rate. Sensitivity
quantity ∆Y

pi
will estimate the change of a quantity Y which can be variable

concentration or flux rate, after a modification of a parameter pi during
oxidative stress response. Indeed, the model ensemble P∗ is the group of all
the set of model corresponding to the parameters sets ~pj=1,nM where nM is
the number of model. For a kinetic model corresponding to a parameter set
~pj, a parameter pji will under a modification of the multiplication factor ∆pi.

97
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Then, the sensitivity quantity ∆Y
pi

can be defined as :

∆Y
pi

(H,∆pi) =
Y (H, ~qj)

Y (H, ~pj)
, (6.1)

where qji = ∆pip
j
i .

To analyse the regulation effect during oxidative stress, the inhibition
parameter Ki will be modified : ∆Ki = ∞. The strength of inhibition
is given by the ratio [I]

Ki
where I is the inhibitor. If [I] = Ki, then the

reaction rate is divided by 2 (Section 2.1). So, increasing the parameter Ki
to infinity induces infinitely small inhibition. To analyse enzyme activities,
the corresponding parameter kENZ will be modified : ∆kENZ = ±1. As this
parameter is linked to enzyme activity, inducing this type of modification is
similar to change the enzyme activity by an order of magnitude below and
above the value determined during the data-driven parameter estimation
which allows to mimic overexpression or knockdown experiments of enzyme
activity. When ∆Y

pi
is smaller or higher to 1, it indicates that removing the

regulation respectively decrease or increase the Y steady-state level.
Instead of removing inhibition by increasing the inhibition parameter or

inducing overexpression or knockdown of enzyme activity, steady state sensi-
tivity of the models can be analysed as a function of the regulation by using
the response coefficient RY

pi
and as a function of enzyme activity with control

coefficient CX
ei

(Section 2.1). This two coefficients differ from the previous
one by the type of modification leading to different type of effect. The sensi-
tivity quantity ∆Y

pi
analyses the steady state under high modifications, i.e. by

complete removing inhibition or enzyme activity overexpression/knockdown,
while the response and control coefficients analyse the sensitivity to a small
change of inhibition or enzyme activity. However, they can be linked by :

RY
pi

(H) = lim
∆pi→1

[(∆Y
pi

(H,∆pi)− 1)/(∆pi − 1)] (6.2)

where

lim
∆pi→1

∆Y
pi

(H,∆pi) =
Y (H) + ∂Y (H)

Y (H)
(6.3)

lim
∆pi→1

∆pi =
pi + ∂pi

pi
(6.4)

6.2 Gain-Loss of function analysis
Regulation of the metabolic pathways are important to reallocate the re-
sources in order to highly respond to oxidative stress. The investigation of
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their effects will be made in this section by the use of gain-of-function or loss-
of-function associated to modification of regulatory mechanisms or enzyme
activity. These analyses will applied on the model ensemble P∗ using the pa-
rameters distributions estimated to reproduce experimental data. They will
be characterized using sensitivity coefficients showing the relative change of
the simulation results during fast oxidative stress response induced by a step
of external hydrogen peroxide H.

6.2.1 Effect of perturbing regulation pattern

The model is constructed with the main regulatory mechanisms in order to
reproduce experimental data during oxidative stress which shows fast flux
rerouting. However, the link between this change of flux mode and the reg-
ulation is not clearly established. As explained in Section 1.5, there are
regulations that inhibit the glycolysis using the parameters KiGAPD, KiPGI
andKiHK acting on respectively GAPD, PGI andHK while others regulate
the NADPH production using the parameters KiG6PD, Ki6PGD and KiNNH
acting on respectively G6PD, 6PGD and NNH. Using the estimated value
for each of these parameter, it is possible to modify them and compute the
sensitivity quantity of the model to regulations.

Inhibition strength

Firstly, the strength of each regulation has to be known before starting to
modify their activity in order to better understand their effects without and
with stress of 500µM of external hydrogen peroxide H (Figure 6.1). The
inhibition level calculated by the ratio Xi

pi
where Xi is the concentration of

inhibitor Ii at steady state and pi is the corresponding inhibition parameter.
When the ratio is equal to 1, the reaction rate si divided by 2. Regula-
tion on hexokinase HK displays a range of inhibition strength spanned on
6 orders of magnitude both in basal and stress conditions revealing that the
fact that this regulation has not impact on the metabolic pathways during
fast oxidative stress which is confirmed by the distribution of the inhibition
parameter KiHK (Figure 5.4). Inhibition on reactions consuming NADPH
(.i.e NNH) is increasing during oxidative stress showing the need of pro-
ducing more NADPH. Regulations on G6PD and 6PGD are high in basal
and decrease during oxidative stress which induces high pentose phosphate
pathway flux which also favours the production of NADPH. Inhibition on
6PGD is lower than the one on G6PD probably because it is the first flux
of the PPP. Because the oxPPP is a metabolic pathway made of reactions in
chain, increasing the first flux will induce increase of the entire oxPPP. Thus,
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Figure 6.1: Inhibition strength in basal or stress conditions From
Hurbain et al. 2022 [3]. Inhibitory strength Xi/pi linked to an inhibition j
associated to the corresponding metabolite Xi and parameter pi equal to an
inhibition parameter Kii. Each distribution corresponds to values of all the
parameter sets of the model ensemble P∗. Blue distribution corresponds to
basal condition, i.e. H = 0µM and red to stress condition, i.e. H = 500µM .
Xj/pj = 1 indicates that inhibition reduces enzymatic activity by two-fold.

higher control on G6PD induces better control of the resources allocation.
Concerning the glycolysis, inhibition on PGI and GAPD are already high
in basal condition but increase during oxidative stress. This implies that
the first flux of the glycolysis PGI is much smaller allowing higher rerouting
from glycolytic flux toward the PPP. It is similar with the output flux of the
glycolysis GAPD allowing to keep molecules inside the network, probably
to shift to a cycling mode to favour the hydrogen peroxide removal (Section
4.2).

To sum up, regulations linked to the PPP allow to increase the NADPH
production by either decreasing its consumption or by increasing the flux
inside the PPP which consumes more G6P . Regulations of the glycolysis
allow to increase flux inside the PPP and to keep flux in the system in order
to compensate the higher G6P consumption. Without regulation, carbon
flux resource would be much less rerouted and the flux won’t be able to cycle
inside these metabolic pathways. Indeed, the ratio of flux going through the
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Figure 6.2: Regulation deletion sensitivity. From Hurbain et al. 2022
[3]. Sensitivity factor ∆Y

pi
under regulation deletion (∆Kii = ∞) (eq 6.1).

Y corresponds to the metabolite response H2O2, NADPH and G6P under
oxidative stress (H = 500µM) relative to basal condition (H = 0µM).
Simulations are made using the model ensemble P∗. Bars correspond to
mean values and error bars to standard deviations at steady state of the
model ensemble simulations.

PPP compared to the glycolysis would be the ratio of the kinetic parameter
of the corresponding enzymes without possibility to modify this ratio, the
NADPH recycling and then the detoxification capacity.

Effect of deleting regulations

The regulation strength allows to understand what are the state of each reg-
ulation in basal and stress conditions. To understand the impact of these
regulations on the variables of the system, variations inside the metabolic
pathways are analysed during regulation removal (Figure 6.2). Each regula-
tion is analysed here with a change of their corresponding inhibition parame-
ter to infinity (∆Kii =∞) inducing a complete loss of the inhibition without
modifying any other characteristic of the model ensemble. Thus, the variation
of the ratio between basal (H = 0µM) and stress (H = 500µM) steady state
of a variable concentration Y (H) induced by a regulation suppression, i.e.
inhibition parameter modification ∆Kii =∞ is measured by the sensitivity
coefficient ∆

Y (500)/Y (0)
pi . This gain-of-function or loss-of-function analysis is
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made for each parameter set of the model P∗. Because there are regulations
that are active in basal condition, removing their inhibition can already have
an impact on the basal steady state. Thus, a particular protocol is applied for
G6PD because its basal steady state is completely divergent without G6PD
inhibition making impossible the analysis. Thus, to compensate the inhibi-
tion suppression in basal condition, the corresponding steady state will be
maintained without the regulation by modifying the G6PD reaction param-
eter as : k′G6PD = kG6PD

1+
[NADPH]
KiG6PD

and Φ′G6PD = k′G6PD[G6P ]. In this condition,

the basal steady state won’t be divergent anymore without regulation sup-
pression but also keep the effect of regulation suppression during oxidative
stress.

Removing regulations on G6PD or GAPD drastically increase H2O2 and
decrease G6P concentrations but have a reverse effect on NADPH. It can
be justified by the fact that removing regulation dynamic on G6PD keeps
low the flux inside PPP which does not increase the G6P consumption, the
NADPH production and therefore do not favour the H2O2 detoxification.
Removing GAPD inhibition induces a loss of molecule inside the metabolic
pathway which does not allow the GAPD inhibition to favour cycling flux
inducing a decrease of the G6P and NADPH concentrations and thus the
H2O2 detoxification too.

Removing regulations on the reactions consuming NADPH do not al-
ter H2O2, NADPH or G6P ratio. This surprising result could means that,
even if its strength is not negligible, this regulation does not have impact
on the detoxification due to the small values of the reaction rate. While the
one on G6PD allows to increase the entering PPP flux, the 6PGD regula-
tion does not seem to change significantly the variables. Indeed, removing the
6PGD inhibition could has no effect in basal condition due to the high G6PD
regulation and in stress condition because the 6PGD inhibition strength is
already low which does not induce change in the network during the regula-
tion suppression. Non significant effect of the PGI regulation deletion can
be understood by the fact that, during oxidative stress, PGI flux is reversed
where Φ+

PGI ∼ Φ−PGI for this level of stress (Figure 4.7) which does not favour
production or consumption of G6P . Deeper investigations of the effect of reg-
ulation deletions have to be made for different dose of stress in order to have
a clear idea of the scope of the regulation works on the resources allocation
during fast oxidative stress.
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A

B

Figure 6.3: Regulation analysis during oxidative stress dose re-
sponses. From Hurbain et al. 2022 [3]. (A) Sensitivity factor ∆H2O2

pi
which

reflects the variation of internal H2O2 under regulation deletion pi = Kii
(∆Kii =∞) of a specific regulated enzyme i (eq 6.1) as a function of the exter-
nal hydrogen peroxideH dose. The studied regulation are made by modifying
the corresponding parameters, i.e. KiG6PD, KiPGI and KiGAPD. The corre-
sponding dose-specific areas of each regulation effect (∆H2O2/∆max > 0.5)
is shown upper to the panel. (B) Response coefficient RH2O2

pi
and RΦoxPPP

pi

respectively for the H2O2 concentration and ΦoxPPP rate (eqs 2.22) for each
regulation deletion pi = Kii (∆Kii =∞) of a specific regulated enzyme i as
a function of the external hydrogen peroxide H dose. The studied regula-
tion are made by modifying the corresponding parameters, i.e. KiG6PD and
KiPGI .
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Dose-dependent effect

Model parameter distributions have been estimated at a specific stress level
induced by a step of external hydrogen peroxide H from 0µM to 500µM .
Deletion of regulation at this specific type of stress shows that regulations
on NNH or 6PGD do not have impact on variables of the system while
removing the one on G6PD and GAPD, drastically deteriorate the capacity
to detoxify the stress. A surprising result was found for deletion of the reg-
ulation on PGI where no significant change appears even if the inhibition
is non negligible. Inhibition of G6PD allows to direct the flux through the
glycolysis without stress by closing the possibility to go through the PPP.
Thus, decrease of the regulation helps to increase the flux inside the PPP
in order to improve the H2O2 removing via NADPH recycling. Inhibition
on GAPD allows to avoid loss of materials inside the metabolic pathways,
potentially to favour the shift of the flux state to the flux cycling mode. Inhi-
bition on PGI tends to close the glycolysis in both direction (i.e. glycolysis
or reversely), allowing to favour flux rerouting toward the PPP.

The loss-of-function induced by regulation deletion can be analysed in
dose response to clarify the role of the three last regulations, .i.e. on G6PD,
PGI and GAPD, as function of H (Figure 6.3). Thus, the induced modifica-
tion of the oxidative stress detoxification can be characterized by the sensitiv-
ity coefficient ∆H2O2

Kii
(H) of the internal H2O2 concentration as a function of

the stress dose (Figure 6.3-A). When ∆H2O2
Kii

(H) is higher than 1 during reg-
ulation deletion, H2O2 concentration increase, so the detoxification is worse
meaning that the regulation favour detoxification in its presence. The figure
makes appear that removing the regulations does not affect the oxidative
stress detoxification for the same level of stress :

• First, G6PD regulation has the highest impact for smaller doses than
500µM . This regulation is high in basal condition and decrease during
oxidative stress inducing the possibility for the PPP flux to increase.
Removing the G6PD regulation dynamic induces a still low G6PD flux
rate. Thus, this enzyme regulation can be the first step to favour the
flux rerouting by freeing the PPP.

• Second, when the G6PD regulation impact starts to decline, PGI reg-
ulation takes over for doses still smaller than 500µM confirming that
this regulation has no drastic effect at H = 500µM . Because the inhi-
bition is induced by 6PG, its concentration needs to increase to have an
impact which happens for sufficiently high stress (Figure 5.9-B). The
higher 6PG production occurs when the PPP flux is also increasing.
Moreover, the PGI regulation also needs not-too-high stresses because
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inhibiting PGI flux in the condition of higher downstream than up-
stream PGI flux corresponding to a PPP flux lower than 1 (Figure
5.9-C), decreases the G6P consumption and then favours flux toward
the PPP.

• Finally, GAPD regulation acts for higher level of stress. During high
stress perturbations, the PPP flux is high compared to the basal condi-
tion (Figure 5.9-C). Then, a part of this flux goes through the noxPPP.
In this condition, the inhibition of GAPD closes the way to the lower
glycolysis avoiding loss of metabolic contents. These resources can
therefore restore G6P level by using the reverse glycolysis favouring
high flux cycling mode, i.e. ΦG6PD/ΦGLU > 1.

These analyses of steady state sensitivities during regulation deletions reveal
that regulations on G6PD, PGI and GAPD have a dose-dependant effect
on the fast oxidative stress response.

The steady state sensitivity can also be analysed by a small perturbation
of the regulation strength via the response coefficient. The mathematical
terms are similar to the control coefficient but instead of changing a kinetic
parameter of an enzyme. Contrary to the previous study induced by regula-
tion deletion with ∆Kii = ∞, the analysis of the steady state sensitivity of
a variable Y using the response coefficient RY

pi
is induced by an infinitesimal

modification of a inhibition parameter pi = Ki. This infinitesimal modifica-
tion of the regulation strength could reveal how a steady state is sensitive to
a very small perturbation of the regulatory mechanisms and then how the
regulation are important to maintain this steady state. G6PD regulation
won’t be analysed here due to the particular treatment that has been made
in the previous study. The response coefficient of H2O2 and ΦoxPPP as a
function of H shows that the GAPD and PGI regulations do not act for
the same region of stress level (Figure 6.3-B). Moreover, a tiny modification
of these regulations change the PPP flux confirming that they are already
active for low level of stress even if they only impact H2O2 for high stress
level.

• Inhibition of GAPD promotes the increase of oxPPP flux by increasing
of the upstream glycolytic flux. However, this effect needs a sufficiently
high noxPPP flux which is not the case for small stress, justifying the
low impact on ΦoxPPP in low stress level.

• Inhibition of PGI is effective when 6PG drastically increases which is
also not the case for small stress. However, an infinitesimal increase of
the PGI inhibition parameter induces a small decrease of the glycolytic
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inhibition favouring a lower PPP flux. This ΦoxPPP decrease in low
level of stress has no impact on H2O2 because the NADPH recycling
is probably already sufficient to detoxify this incoming H2O2 at these
doses.

To summarise, the dose responses of the regulation deletions show that
they are dose-dependent and have different amplitudes of effects on the in-
ternal H2O2 concentration. Each regulation is effective at different stress
level probably due to their respective work which would have different im-
pact depending of the stress. G6PD inhibition appears to be a first step
to favour the resource allocation by rerouting the flux and by releasing the
oxPPP. Then, PGI inhibition act to compensate the G6P consumption in
order to increase more the flux through the PPP when the system needs more
NADPH recycling. For extreme doses, GAPD inhibition closes the output
flux allowing to reduce the loss of content and then, to increase even more
the oxPPP. Reusing resources coming from the PPP favours the cycling flux
mode inducing extreme oxidative stress response. Finally, these regulations
act on complementary regions of stress level.

Regulatory synergy

Regulations of the metabolic pathways are directly or indirectly acting to
favour the NADPH recycling by reallocating the resources. Regulations on
G6PD, PGI and GAPD have dose-dependant effect on the H2O2 detox-
ification. Moreover, when one regulation effect is becoming low, another
takes other. As a next step, dual regulation deletions will be investigated
in order to clarify the cooperative works of these regulations. The regula-
tion cooperativity will be characterized by the sensitivity quantity ∆H2O2

pi,j
(H)

representing the modifications of internal H2O2 during dual deletion of reg-
ulation i and j induced by the modification ∆pi,j =∞ of the corresponding
inhibition parameters pi,j = Kii,j. All the analyses of dual regulation dele-
tions will be combined into Synergy Factor SFi,j which can compare their
coupled efficiency by :

SFi,j = ∆H2O2
pi,j

− (∆H2O2
pi

+ ∆H2O2
pj

) (6.5)

where SFi,j > 0 means that the dual regulation deletion is more impacting
the oxidative stress detoxification than addition of the two regulation dele-
tions separately and vice-versa, inducing a synergistic work of the regulations
on i and j. When SFi,j = 0, the dual regulation deletion does not show more
impact leading to no synergy.
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A

B

Figure 6.4: Combined deletion of regulations. From Hurbain et al.
2022 [3]. (A) Second-order sensitivity factor ∆H2O2

pi
(eq 6.1) with respect to

the combined deletion of two regulations in comparison to the single dele-
tions as a function of the external hydrogen peroxide H. The parameters
deletion is made by following ∆Kii =∞ of a specific regulated enzyme i. (B)
Synergy Factor SFi,j corresponding difference between the 2 single regulation
deletions i and j to the combined deletion {i, j} (eq 6.5) as a function of the
external hydrogen peroxide H.
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The effect of the dual inhibition deletion on internal H2O2 concentration
as a function of the stress level H shows that G6PD, PGI and GAPD
regulations work in synergy (Figure 6.4-A), which is specifically visible with
non-negative synergy factor (Figure 6.4-B).

• First, dual deletion of PGI and GAPD regulations is higher than the
separated regulation deletion meaning that this inhibition have higher
impact together on the oxidative stress detoxification. The synergy
factor is positive for the same range of stress level than the effect of the
dual regulation deletion confirming the synergistic work of these two
regulations. This can be understood by the fact that at medium and
large range of stress level, PGI inhibition allows to reroute incoming
glucose flux toward the oxidative and then to the noxPPP which can
be sent back through the reverse glycolysis favouring the cycling mode.

• Second, the same analysis can be made with the regulation on GAPD
and G6PD which also displays higher effect together than alone. Sur-
prisingly, deleting regulations on GAPD and G6PD together drasti-
cally shows high impact on the oxidative stress detoxification even in
dose regions where one regulation has no impact. This is particularly
the case in low level of stress where GAPD regulation seems to have no
impact but with G6PD inhibition in complement, the effect on H2O2

concentration is highly increased. This non-linear phenotype could be
understood by the fact that GAPD inhibition favours decrease of con-
tent loss to compensate the G6P consumption in order to further shift
of the flux state toward the cycling flux mode but needs the release of
the PPP induced by the G6PD inhibition decrease.

• Third, removing both regulation dynamics of G6PD and PGI displays
the same impact on the H2O2 concentration than the G6PD regulation
deletion alone which induces a negative synergy. Indeed, the regulation
on G6PD releases the PPP allowing a flux rerouting which increases
the concentration of 6PG and then the PGI inhibition. Removing the
regulation on PGI has no impact without 6PG concentration increase
which does not happen without the G6PD regulation decrease. This
phenotype displays a specific type of synergistic work of the regulation
on G6PD and PGI.

To summarize, the comparison of effect of the dual regulation deletions
with the addition of impact of their separated regulation deletion shows that
GAPD regulation works in synergy with G6PD and PGI by non-linearly
increasing the flux cycling in order to highly respond during oxidative stress.
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However, this study shows that PGI inhibition has no effect without the
decrease of the G6PD regulation that happen during oxidative stress.

Conclusion

Analysis of our metabolic pathway regulations allows to better understand
how they work during oxidative stress response. First, it exists some regula-
tions that have no major impact in our model ensemble tending to reproduce
fast experimental oxidative stress detoxification in fibroblast cells. Indeed,
inhibition of HK, NNH and 6PGD do not significantly favour the oxida-
tive stress detoxification (Figure 6.2) even if some of their inhibition level are
important (Figure 6.1). However, regulation on G6PD, PGI and GAPD
favour H2O2 detoxification for different ranges of stress level. G6PD inhi-
bition has the highest impact of these three regulation and acts for small
stress favouring flux rerouting from glycolytic to PPP by decreasing its in-
hibition level. If its strength fall to 0, the flux distribution will be given
be the reaction speed constant between G6PD and PGI. When oxidative
stress increases, higher flux rerouting is needed. Because PPP flux rate is
increasing, 6PG concentration is also increasing leading to high PGI inhibi-
tion. This regulation allows to close the glycolytic pathway favouring higher
flux rerouting. In this condition, the maximum speed inside the oxPPP is
approximately equal to the incoming glucose flux. when oxidative stress level
is still higher, this flux could be insufficient. However, inhibition of GAPD
shows its effect for stress level because it allows to keep materials inside the
metabolic pathways inducing the reverse glycolysis in order to shift toward
a cycling mode. This increases even more the flux inside oxPPP allowing to
highly improve stress response.

6.2.2 Effect of perturbing enzyme activities

To study metabolic pathways, modification of enzyme activity is often used
during experimental measurement. Concerning glycolysis and pentose phos-
phate pathway, the three enzymes G6PD, 6PGD and TKT are used to be
targeted during oxidative stress response [142, 17, 143, 144, 145, 146, 48].
Using the mathematical model ensemble, enzyme activity perturbation can
be investigated by modifying their corresponding parameter pi and can be
characterized by sensitivity quantity ∆Y

pi
of a variable Y . Experimental en-

zyme knockdown or overexpression will be reproduced by a modification of
the parameter respectively from 10-fold reduction to 10-fold increase (−1 <
∆pi < 1). This gain/loss-of-function study could provide deeper information
on the regulatory mechanisms present in the fast oxidative stress response
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B FD

A C E

Figure 6.5: Gain/loss-of-function associated with modulated
activity of PPP enzymes. From Hurbain et al. 2022 [3]. Sensitivity ∆Y

X

of output Y with respect to modulation of X (eq 6.1) as a function of H and
the extent of parameter modulation. The output variable Y is either H2O2

(A,C,E) or NADPH-producing fluxes (B,D,F). The modulated parameter
is either kG6PD (A,B), k6PGD (C,D) and kTKT (E,F) corresponding to the
enzyme activities of respectively G6PD, 6PGD and TKT .

which have been focused previously.
The mean of sensitivity quantity of H2O2 and the NADPH-producing

oxPPP flux are displayed with a color-code as a function of the external
hydrogen peroxide H and as a function of the parameter modification of the
corresponding enzyme activity (Figure 6.5).

• First, the perturbation of the G6PD enzyme activity shows expected
behaviour concerning the change of internal H2O2 and NADPH pro-
duction (Figure 6.5-A,B). Indeed, during gradual overexpression (∆pi >
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0), the system sees its PPP flux increased allowing a higher NADPH
production inducing higherH2O2 detoxification corresponding to a blue
color. During gradual enzyme knockdown (∆pi < 0), the system dis-
plays the reverse phenotype, i.e. a reduced H2O2 detoxification corre-
sponding to a yellow color, due to lower NADPH production and PPP
flux.

• Second, modulation of the 6PGD enzyme activity shows a non-linear
metabolic response (Figure 6.5-C,D). Indeed, contrary toG6PD, 6PGD
activity modulation increases H2O2 concentration during enzyme over-
expression and has an ambivalent response during enzyme activity re-
duction. This ambivalent phenotype could be induced to the presence
of the 6PGD saturation as a function of its substrate 6PG and the
presence of the regulation on PGI by 6PG.

• Third, modulation of TKT enzyme activity shows moderate modifica-
tion of the oxidative stress detoxification and on the flux rerouting via
NADPH production (Figure 6.5-E,F) which does not allow to extract
any specific mechanism. This result is consistent with the increase of
the noxPPP flux during the dose response analysis (Figure 5.9).

Results of the modulation of G6PD and TKT enzyme activities are consis-
tent qualitatively with the experimental measurement in Kuehne et al. 2015.
[17].

The ambivalent result of the 6PGD enzyme activity modulation needs
to be clarified to better understand the role of the regulations (Figure 6.6).
Without modification, 6PGD enzyme is working when the incoming glucose
flux has been rerouted toward the PPP which increases 6PG concentration
and activates the inhibition one PGI by 6PG. This regulation favours flux
rerouting by closing the glycolytic pathway which has for consequence to
increase the oxidative stress detoxification. However, during 6PGD enzyme
activity modulation, this behaviour is perturbed and can be separated in
three regions :

• First, during high reduction of enzymatic activity, 6PGD does not
consume enough 6PG which induces very high inhibition on PGI and
then very high flux rerouting even for small stress level. Thus, PPP flux
is higher but is blocked at 6PGD which limits the total PPP flux and
the NADPH production. This limit is also consistent with the dose
response study which already shows this limit where 6PGD is saturated
by the high 6PG concentration inducing a limit of the detoxification
(Section 5.4).
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Figure 6.6: Gain/loss of function associated with modulated activ-
ity of the 6PGD enzyme. Metabolic pathway scheme in different region of
the 6PGD enzyme activity analysis made in Figure 6.5-C representing inter-
nal H2O2 modification during dose responses of oxidative stress and during
enzyme activity modification. The metabolic scheme circles and ellipse rep-
resent metabolites and arrows to fluxes. Size of arrows and ellipses reflect
the corresponding flux rates and metabolite concentrations. The bigger the
arrow, the higher the rate. The result is splitted in 3 separated areas which
corresponds to higher or lower H2O2 detoxification respectively shown in
yellow and blue.
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• Second, trying to lift the barrier of 6PGD flux by overexpressing its
activity shows that 6PGD consumes more 6PG which removes the
PGI inhibition, decreases the PPP flux and then reduces the oxidative
stress detoxification.

• Finally, it exists a region between these two extreme modifications
where a small decrease of the enzymatic activity provides a compro-
mises. Indeed, this small reduction of 6PGD enzyme activity induces
smaller 6PG concentration, higher PGI inhibition and higher flux
rerouting which corresponds so far to high enzymatic activity decrease.
However, in this third region, because the 6PGD enzyme activity re-
duction is low, it allows to keep the 6PGD flux sufficiently high to have
a higher total PPP flux inducing higher oxidative stress detoxification.
So, decreasing a little the 6PGD enzyme activity allows to preset the
network to favour PPP flux by increasing the PGI inhibition a little.
This reconfiguration of the resource allocation promotes the oxidative
stress detoxification with a maximum decrease in H2O2 concentration
by a factor of ≈ 1/4. This small change of activity has only effect on
a certain region of stress level because for small doses, the system suc-
ceeds to detoxify and for high doses, this amplitude of change is still
not enough to favour the detoxification.

In summary, the modulation of enzyme activities allows to show triv-
ial phenotype for G6PD and no effect for TKT . However, to increase the
detoxification by modifying 6PGD enzyme activity, it is not necessary to
increase this enzyme activity as the relation of the maximum flux rate would
suggest but the right method is to reduce the 6PGD enzyme activity a little
in order to slowly increase the inhibition on PGI inducing better resource
allocations. This resource reallocation can drastically favour the oxidative
stress response.

6.3 Metabolic control coefficients in the PPP

The regulatory pattern of the PPP and glycolysis has been investigated dur-
ing oxidative stress response which reveals a complementary ranges of effi-
ciency and a synergistic cooperative effects. To complement this study done
with simulations of a model ensemble, a theoretical approach using Metabolic
Control Analysis (MCA) framework will compute the control coefficient as-
sociated to the PPP, glycolysis and detoxification pathway as a function of
the regulation and steady state variable.
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The control coefficients are quantities that reflect the sensitivity of a vari-
able, i.e. a metabolite concentration or a flux at steady state, to a small
variation of a parameter. The parameter could reflect an enzyme concen-
tration, enzyme activity or a reaction rate constant in general. To link the
metabolite control coefficients to fluxes control coefficients, the equation 2.20
can be applied to the mathematical model :
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(6.6)

where CJj
Φl

and CXi
Φl

are control coefficients of respectively the metabolite
concentration Xi and fluxes Jj at steady state associated to the perturbation
of the reaction rate Φl. ~Π is a unitary vector as a function of the perturbation
l. ε ~J~X is the matrix of elasticities εJjXi . Each element of the elasticities matrix
can be computed in the metabolic pathways and are given in equation 6.20
where J̃+/−

j = J
+/−
j /Jj. The elasticities εk are the elasticities associated to

the regulation or saturation k and are given by :

εG6PD
NADPH(KiG6PD) = − [NADPH](1 + 1/KiG6PD)

(1− [NADPH])(1 + [NADPH]
KiG6PD

)
≡ ε1 (6.7)

ε6PGDNADPH(Ki6PGD) = − [NADPH](1 + 1/Ki6PGD)

(1− [NADPH])(1 + [NADPH]
Ki6PGD

)
≡ ε2 (6.8)

εHKG6P (KiHK) = − [G6P ]/KiHK
1 + [G6P ]/KiHK

≡ ε3 (6.9)

εPGI6PG(KiPGI) = − [6PG]/KiPGI
1 + [6PG]/KiPGI

≡ ε4 (6.10)
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εGAPDH2O2
(KiGAPD) = − 1

1 + [GSH]KiGAPD
[H2O2][GSH]tot

≡ ε5 (6.11)

ε6PGD6PG (Km6PGD) =
1

1 + [6PG]/Km6PGD

≡ ε6 (6.12)

The mathematical model is designed to reproduce experimental data dur-
ing oxidative stress which can be mimicked by computing the control coef-
ficients during a perturbation of the H2O2 production flux, i.e. Φl = ΦOX

made by a perturbation of the endogenous production of H2O2, inducing
~ΠΦOX = [1, 0, ..., 0]T . The system is considered at steady state which induces
JoxPPP = JG6PD = J6PGD = JGR/2 = JGLU − JPGI . During oxidative stress,
the main anti-oxidant system is made by glutathiones allowing to neglect the
catalase and the fluxNNH/NHN inducing JoxPPP = kOX and CJ,oxPPP

ΦOX
= 1.

Then, a relation between the corresponding control coefficients can be found
as :

CJ,oxPPP
ΦOX

= CJ,G6PD
ΦOX

= CJ,6PGD
ΦOX

= CJ,GR
ΦOX

= − JPGI
JoxPPP

CJ,PGI
ΦOX

= 1 (6.13)

Then, a relevant set of relations from the equation 6.6 becomes :

CJ,oxPPP
ΦOX

= 1 (6.14)

CJ,oxPPP
ΦOX

= ε1C
X,NADPH
ΦOX

+ CX,G6P
ΦOX

(6.15)

CJ,oxPPP
ΦOX

= ε2C
X,NADPH
ΦOX

+ ε6C
X,6PG
ΦOX

(6.16)

CJ,oxPPP
ΦOX

= (−J+
PGIC

X,G6P
ΦOX

+ J−PGIC
X,F6P
ΦOX

− ε4CX,6PG
ΦOX

JPGI)/JoxPPP (6.17)

By combining these equations, the following equation can be found :

CX,NADPH
ΦOX

=
−1− ε3J̄PGI + (CX,F6P

ΦOX
)J̄−PGI

ε2ε3J̄PGI − ε1J̄+
PGI

(6.18)

where J̄j = Jj/JGLU . This equation defines a regulatory manifold
F(CX,NADPH

ΦOX
, CX,F6P

ΦOX
, J̄PGI , J̄

+
PGI). In order to study specific regulatory mech-

anism, this control manifold can be reduced for instance without regulation
on PGI, i.e. r3 = 0 :

CX,NADPH
ΦOX

(r3 = 0) =
(CX,F6P

ΦOX
− 1)J̄−PGI − 1

−ε1J̄+
PGI

(6.19)
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This relation indicates that the efficiency of the feedback inhibition for
NADPH homeostasis decreases as a function of the increase of JPGI because
it induces CX,F6P

ΦOX
< 0 and then a more negative term (CX,F6P

ΦOX
− 1)J̄−PGI − 1.

The elasticity characterized by the regulation on G6PD by NADPH, is
negative (ε1 < 0) which means that the NADPH homeostasis is promoted by
high and positive CX,F6P

ΦOX
and J̄−PGI . However, a limit case can be calculated in

the condition of high directional fluxes (J+/−
PGI ) and low net PGI flux inducing

almost instantaneous exchange between G6P and F6P which can be called
high futile cycling flux in the PGI reactions :

lim
J

+/−
PGI→∞

CX,NADPH
ΦOX

(r3 = 0) ≈ CX,F6P
ΦOX

− 1

−ε1
(6.21)

This relation defines an upper boundary which grows like (CX,F6P
ΦOX

− 1)(1−
(1 − [NADPH])/KiG6PD), limits the regulation efficiency to maintain the
NADPH homeostasis and therefore the H2O2 detoxification. This limit
is found without regulation on PGI. While G6PD inhibition reroutes the
flux toward the PPP, the PGI regulation would serve to reduce the G6P
consumption which favours the flux rerouting, revealing a cooperative work
of the regulation on G6PD and PGI. Moreover, the limit is directly pro-
portional to the control coefficient of F6P which would reveal that control
the F6P concentration would allow to reverse PGI. Adding inhibition on
PFK would induce change in F6P concentration variation contributing to
the NADPH homeostasis.

The previous relations do not link directly the regulation on GAPD by
H2O2. The only equation that takes into account the elasticity ε5 is :

CJ,GAPD
ΦOX

= ε5(CX,H2O2

ΦOX
− CX,GSH

ΦOX
) + CX,GAP

ΦOX
(6.22)

However, no simple relation can be found due to non-evident direct relations
with the oxPPP flux as it has been made previously with PGI. Assuming
that the output flux PRPPs is negligible would simplify the flux relations
but it is not the case for most of the flux states during oxidative stress (Figure
5.9-C).

In conclusion, MCA framework is used to investigate the regulatory mech-
anisms of the PPP and glycolysis in a context of oxidative stress. A limit
of the regulation efficiency is found in the case of extremely high forward
and backward fluxes PGI and without regulation on PGI. This boundary
which depends directly on the G6PD regulation, reveals that regulations on
G6PD and PGI work cooperatively to maintain the NADPH homeostasis.
Indeed, inhibition on PGI favours to reduce net flux in order to operate near
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equilibrium. Computing the control coefficients via numerical simulation of
the model ensemble would allow to confirm these results.



Chapter 7

Adaptation dynamics contributes
to fate-response heterogeneity

Living cells are often exposed to various types of perturbations such as ox-
idative stress. When perturbations occur in cells, the metabolism is used in
order to defend to it. During the defence, different cellular fates can happen
depending of the quantity of the produced damage such as stop of cellular
growth or cell death. It has been shown that the presence of adaptation
phenotype could impact the cellular fate during external perturbation such
as during oxidative stress [61]. The main objective of this thesis was to study
the effect of fast regulations on the resources reallocation in order to defend
to a hydrogen peroxide burst. This theoretical study revealed the presence
of adaptation phenotype in temporal dynamic of most of the metabolites
during fast oxidative stress response. This project does not aim to link this
observed phenotypes to the possible cellular fates. This chapter will intro-
duce a parallel theoretical study published in Hurbain et al. 2020 [2]. In this
study, we investigate the impact of the presence of adaptation phenotype on
the cellular fates during a general source of perturbation which shows that
the adaptation dynamics improves the cell-fate heterogeneity.

7.1 Cell fate responses during oxidative stress

7.1.1 From cell survivability to death

Oxidative stress is a perturbation of the redox state of a cell. It is induced
by molecules called reactive oxygen species which transfer their oxidation
and oxidise molecules inside cell creating damages. The cells reorganise the
allocation of the resources available in order to defend against such oxidant

119
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Figure 7.1: Different cell fates following oxidative stress.

molecules. Regulations are major mechanisms to modify a flux state in order
to shift its function from energy or biomass production to defence mecha-
nisms and reversely. In the context of oxidative stress, this thesis shows that
regulations of G6PD, PGI and GAPD are important source of resource real-
location via flux rerouting toward the PPP allowing high NADPH recycling
and then to high H2O2 detoxification, but at the cost of depletion of ATP
production. Moreover, they act in dose-dependant manner with important
synergistic cooperation so that cells can defend against large range of oxida-
tive stress dose. Finally, this study also shows that regulatory mechanisms
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could induce adaptation phenotype in temporal dynamics. The difference of
cellular growth induced by the presence of adaptation during oxidative stress
has been investigated for instance in yeast in Goulev et al. 2017 [61]. How-
ever, the question of the impact of the adaptation induced by the regulatory
mechanisms, on the cellular fate remains unclear.

The damages induced by oxidative stress can lead to different cell fate
going from the survivability to the death (Figure 7.1). When the damages
are low or the capacity to repair, the cells can adapt to the perturbation and
survive. When the quantity of damages increases, the cells can reallocate
their resources toward stress management generally associated to cell-cycle
and growth arrest. Then, when the damages are to high to be repaired
even during a short time scale, mechanisms of cell death will be initiated.
These mechanisms can be programmed by the cell, i.e. the apoptosis, or not
programmed corresponding for instance to necrosis (Figure 7.2).

Necrosis is a cell death mechanisms due to extreme damages [147] which is
not programmed by cells which induces lost of bio-components by release all
components in extra-cellular space which are not usable by other cells, con-
trary to apoptosis. It can be considered as the harmful cell death pathway.
Necrosis can be induced by cellular stresses as apoptosis but, in general, for
more extreme regimes. Apoptosis is the programmed cell death mechanism
allowing no harmful death by releasing reusable component. This pathway
has been investigated via a mathematical model showing cell-fate heterogene-
ity [148] and will be focused in this chapter.

7.1.2 Cell death mechanisms : apoptosis

Apoptosis is a cellular mechanism that triggers cell death in response to a
signal. This mechanism is a programmed cell death inducing morphologic
change in order to split cell components in small compartments called apop-
totic bodies [149]. They are engulf via phagocytosis mechanisms by phago-
cyte cells which are cells that can swallow foreign bodies and dying or dead
cells. These processes are highly regulated because a high frequency of apop-
tosis in a population would induce entire cell population degeneration and a
very low frequency would induce extreme growth and then diseases such as
cancer [150]. Thus, apoptosis can be started from two different pathways :
intrinsic and extrinsic pathway.

• Intrinsic apoptosis pathway leads to self-induced cell death due to
cellular stress. This pathway aims to trigger apoptosis by releasing
molecules in cell cytosol from mitochondria. We will focus on the
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Normal cell
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fonctional bodies
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non fonctional bodies

Figure 7.2: Cell death mechanisms : Apoptosis and Necrosis. A
normal cell can undergo two possible death mechanisms. Apoptosis releases
apoptotic bodies that are usable by other cells. Necrosis release the cellular
content without envelope inducing loss of the materials.

model from Ballweg et al. 2017 [148] representing intrinsic apopto-
sis network (Figure 7.3). It is initiated by several modules linked to
transcription factor p53 and caspase8 which are molecules allowing to
control cell life or death and inducing the production of Bh3 proteins in
order to mediates apoptosis. Bh3 induces the transport from cytosol
to mitochondria of the Bcl-2–associated X (BAX) proteins produc-
ing activated BAX molecules written BAXm. While the family of
anti-apoptotic Bcl proteins can form a complex with Bh3, Bcl can
also be captured by BAXm releasing the complexed-Bh3. The activa-
tion of the apoptosis program needs a sufficiently high production of
Bh3 to transfer into mitochondria a sufficiently high quantity of BAX
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Figure 7.3: Intrinsic apoptosis model. Adapted from Ballweg et al.
2017 [148]. Production of Bh3 made by caspase 8 (C8) induces mitochon-
drial transport of the BAX producing BAXm. The cytoplasmic BAX is
inactive and the mitochondrial BAXm is active. Both Bh3 and BAXm
can form a complex with Bcl inducing inactivation of the corresponding
molecules.

to capture the Bcl and to release the complexed-mBh3. These steps
avoid activation of apoptosis with a small signal induced for instance
by a noisy perturbation. BAXm can be seen as an inducer of apopto-
sis by activating pro-apoptosis molecules and inhibiting anti-apoptosis
molecules. Finally, this small network aims to increase the concentra-
tion of BAX inside mitochondria to activate further pathway and to
induce apoptosis.
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• Extrinsic apoptosis pathway leads to self-induced cell death due to
other signals [151] which is transmitted by death receptor such as Fas
receptors, tumor necrosis factor (TNF ) receptors and TNF-related
apoptosis-inducing ligand (TRAIL) receptors. They will sense and
capture the corresponding molecules, for instance TNF -receptor will
sense TNF in order to induce recruitment of adaptor protein, then
to downstream factors as caspase 8 and activate cell apoptosis. These
death receptors can be present during oxidative stress because TNF
can induce production of ROS [4].

7.2 Model of cell fate decision

In the context of cell death decisions, cell-fate heterogeneity is known as
fractional killing [152, 153]. The fate choice between life and death induced
by an oxidative stress perturbation is likely to depend on the presence and
characteristics of the adaptation phenotype as shown for the cellular growth
phenotypes in yeast [61]. This section will introduced a study of the impact
of adaptation to a general perturbation on the cellular decision. A stochas-
tic mathematical model will be built by combining a coarse-grained model
displaying an adaptation phenotype with the published model of the mito-
chondrial apoptosis initiation from Ballweg et al. 2017 [148]. This study
shows that the presence of adaptation favours the fractional killing. These
results are published in Hurbain et al. 2020 [2].

7.2.1 Modeling of the probabilistic fate decision

In this study is built a mathematical model comprising the published model
of mitochondrial apoptosis initiation [148] with a coarse-grained model show-
ing an adaptation profile (Figure 7.4). The structure of this coarse-grained
model is a negative feedback loop between x1 and x2. Indeed, the stress S
produces damages x1 which induces the activation of the repair system x2

which decreases the damage quantity. This feedback loop is characterized
by the parameter β which also represents the strength of the adaptation
phenotype. Thus, x1 is a variable that can display an adaptative curve. In
another side, the damages x1 upregulates the synthesis of the pro-apoptotic
Bh3-only proteins. The mitochondrial apoptosis can then be initiated as a
function of the damages. As explained in the previous section, the cursor
of the apoptosis initiation can be the quantity of mitochondrial BAX, i.e.
BAXm, which frees the complexed Bh3.

The positive feedback loop made by the formation and dissociation of the
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Figure 7.4: Schematic representation of the apoptosis model. From
Hurbain et al. 2020 [2]. Ellipses are variables of the network and the arrows
represent the chemical reactions. The stress S from a general source induces
the damages x1 which activates the repair system x2. x1 is linked to the
published model of mitochondrial apoptosis initiation of Ballweg et al. 2017
[148].

complexed-Bh3 produces a bistable switch from low to high quantity of free
mitochondrial BAX [148] which could induce the execution of apoptosis.
This study links this bistable switch with the adaptation behaviour to a
general stress. This bistable switch corresponds to surviving or dying cells.
At the scale of a population, a fraction of cells will converge toward one or
another state defining the fractional killing characterized by a probability
of death. This probabilistic decision has been investigated via theoretical
framework of Langevin differential equation description (from eq 2.24) which
computes the stochastic dynamics of the biochemical reactions of the network
presented here.
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B

A

Figure 7.5: Adaptation impact on temporal trajectories. From
Hurbain et al. 2020 [2]. Temporal trajectories of x1 and BAXm in the
presence or the absence of adaptation (A: β = 1 ; B: β = 0). Adapta-
tion timescale is set to τ = 1.25hr to match with the timescale of the
apoptotic switch (time unit is hour). Right panels show a 2D state-space
projection of the high-dimensional dynamics with respect to the stable
and saddle fixed points (brown and white circles) of the deterministic system.

7.2.2 Adaptation and cell-fate heterogeneity

The apoptosis model is simulated at the scale of a population of cells which
undergoes a stress quantity S(t) built by a heaviside function of amplitude
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Figure 7.6: Adaptation impact on cell death probability. From
Hurbain et al. 2020 [2]. The probability of death PDeath is computed with
the apoptotic model with (β = 1) or without (β = 0) adaptation as a
function of the stress heaviside amplitude s. s50 corresponds to the stress
amplitude at Pdeath = 50%. Time unit is hour.

s. For a given stress level, the stochastic trajectory of several cells are com-
puted with two different adaptation amplitudes, i.e. β = 1 for high amplitude
or β = 0 for low amplitude (Figure 7.5). When x1 displays an adaptation
profile, the system has a proportion of cell that converges to a stable point
corresponding to the survival state with low BAXm concentration while an-
other proportion converges to a death state with high BAXm concentration
(Figure 7.5-A). The groups of survival and death cells have the same tem-
poral dynamic within the first minute but diverge after a bifurcation point :
the group of cells that survive have globally all the same temporal dynamic
with an overshot of BAXm while those who die have an increasing and then
saturation curve. However, when the system has not adaptation profile, the
entire population of cell converge to the same state with high BAXm con-
centration, i.e. the death state (Figure 7.5-B). The temporal dynamic reveals
that all cells do not bifurcate and converge at a certain time to the death
state due to the stochasticity of the system.

The adaptative response to a stress appears to impact the fate of a group
of cells. To clarify this result, the death probability is computed as a function
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of the stress doses (Figure 7.6). The doses are normalized by the stress s50

corresponding to the stress at 50% of death probability. The adaptation phe-
notype, i.e. β = 1, modifies the profile of the death probability by smoothing
the curve compared to the curve without adaptation, i.e. β = 0. Instead of
having a sharp curve inducing a total survivability or a total death of the
population of cell, the adaptation induces a fractional killing of the popula-
tion which higher depends of the dose. This fractional killing can improve
the global survivability of the cell population. Indeed, during a perturbation,
when the entire population dies, there is no possibility to recover, while if
there are few cells that survive, they can potentially recreate the population
afterwards.

Even if the oxidative stress model does not aim to link the response to the
cellular fate, this study reveals that the presence adaptation favours fractional
killing, and thus the survivability of the population to high stress. Given that
the kinetic model of PPP response to oxidative stress shows an adaptative
phenotype due to the resource reallocation made by the regulations, it is
tempting to conjecture that such phenotype could impact the heterogeneity
of cell fate response. It is however not clear what is the long term phenotypes
of cells for the oxidative stress experiments used to develop our kinetic model.



Chapter 8

Discussion & perspective

The objective of this thesis was to study the resource allocation during
early oxidative stress response of the PPP and glycolysis : how are the
metabolic pathways regulated to reorganise the carbon flux in order to in-
crease NADPH production to recycle the anti-oxidant system ? A mathe-
matical model ensemble of these metabolic pathways has been built in order
to reproduce experimental data coming from Kuehne et al. 2015 [17] via a
data-driven estimation of parameter distribution. These data comprise fold
change concentration data and 13C labeling data which has been converted
into flux states data via a novel metabolic flux analysis algorithm based on
a stochastic simulation algorithm. Data-driven kinetic modeling is a method
often used to investigate interactions of metabolites on enzymes in order to
control the metabolic phenotypes [34, 133, 154, 155, 156]. Our study reveals
efficient oxidative stress response via metabolic regulation of the PPP and
glycolysis enzymes to highly produce NADPH molecules in order to support
the anti-oxidant system (Figure 8.1).

8.1 Regulation scheme during oxidative stress

The main objective of this thesis was to study the regulation effects on the
carbon resource allocations in early oxidative stress response. The use of
data-driven kinetic models is common to investigate the role of allosteric
regulation [34, 133, 154, 155, 156, 157]. The regulations on G6PD, PGI and
GAPD appear to have important impacts in several cell types in many stud-
ies [17, 35, 36]. The decrease in NADPH-dependant inhibition on G6PD is
made by the oxidation of NADPH into NADP+ allowing to release PPP
flux. Consumption of G6P is then increased and can be compensated by
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Figure 8.1: Graphical abstract of the procedure for the study of
the regulation scheme. From Hurbain et al. 2022 [3]. The metabolic
network composed of the PPP, glycolysis and the detoxification system is
combined to experimental data of fast oxidative stress response which allows
to estimate a distribution of the parameter set. The model ensemble can
then be analysed to investigate the role of the regulations during the fast
oxidative stress response. R1, R2 and R3 correspond respectively to the
regulations on G6PD, PGI and GAPD.

either the inhibition on PGI or by increasing the G6P production. As the
incoming glucose flux is kept constant, increase the G6P production is in-
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duced by the increase of the upward glycolytic flux which can be produced
via the regulation on GAPD in our model. Interestingly, these regulations
appear to be dose dependent. When regulation on G6PD is needed as a
first step in low doses to release the PPP and regulation on PGI as a second
step in medium doses to compensate the first flux rerouting, regulation of
GAPD is efficient later in higher doses when the carbons are coming from
the noxPPP favouring the possible cycling flux. Moreover, these three regu-
lations appear to work in synergistic cooperation meaning that their effects
are coupled allowing to contribute efficiently to diverse oxidative stress in
large range of doses. These results provide a new understanding of the reg-
ulatory mechanism in large scope of oxidative stress contributing altogether
to a flexible adaptation of the metabolic response. However, to fully under-
stand the effect of regulations on the flux rerouting to favour the NADPH
production, systematic studies have to be made [154, 156].

The effect of metabolic regulation of the PPP and glycolysis during ox-
idative stress has also been investigated via the computation of the control
coefficient during H2O2 production perturbation with MCA which is a com-
mon method to investigate metabolic pathways sensitivities [82]. A limit of
the NADPH control coefficient has been revealed preventing the high effi-
ciency to maintain the NADPH homeostasis and then to highly detoxify the
stress. This limit depends on the G6PD regulation and occurs for a specific
set of net and directional PGI fluxes and without the regulation on PGI,
which reveals a cooperation between the regulations on G6PD and PGI.
However, the interaction with GAPD inhibition needs deeper investigations.
Moreover, these theoretical results clearly need a validation with numerical
simulation with the model ensemble. More control coefficients can also be
computed during other flux rate perturbation to complete the analysis of how
regulations operate and cooperate.

8.2 Flux rerouting during oxidative stress

The flux balance analysis allows to compute elementary modes of the PPP
combined to the glycolysis and to identify three elementary modes. Two of
them represent respectively production of cellular energy and biomass. The
third corresponds to a carbon cycling allowing a very important NADPH
production going to 12 NADPH molecules for 1 of glucose by reusing sev-
eral times the same molecule [18]. The two other modes corresponding to the
detoxification system of the catalase and the glutathiones are not considered
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Figure 8.2: Flux rerouting during oxidative stress. Schematic
representation of the flux state before stress (left side) and after stress (right
side). Arrows represent the fluxes in blue color scale.

due to the lack of MID data in the detoxification system. A flux state is a
combination of these modes. Even if the cycling mode is made for high ox-
idative stress detoxification, the estimated fluxes show a rerouting flux from
a glycolytic mode for high energy production in basal state (i.e. without
stress) to a PPP mode favouring high NADPH production but still with
a consequent production of cellular energy and biomass (Figure 8.2). This
specific carbon resource reallocation can be understood by the need of energy
to make happen the chemical reactions even during oxidative stress, and by
the need to repair potential damages. This flux rerouting phenotype has also
been observed in the dose response analysis where the flux state is rerouted
from a glycolytic mode to a PPP mode with still a production of cellular
energy and damage repairs. The maximum PPP flux observed is 1.5 times
the incoming glucose flux corresponding to the production of 3 NADPH per
incoming glucose molecule which is far from the possible 12 with an 100%
cycling mode. The maximum value of PPP flux during oxidative stress can
vary but have never been observed approaching the maximum capacity of the
metabolic network. An important amount of studies display a low increase
of the oxPPP flux during oxidative stress with less than 1 times the entering
flux such as in Christodoulou et al. 2018 [34] or Nikel et al. 2021 [158] which
does not characterize a cycling flux. This low cycling flux phenotype could
be understood because the output fluxes GAPD and PRPPs are not com-
pletely inhibited. However, a cycling flux mode can be observed more rarely
such as in neonatal human skin fibroblasts with Kuehne et al. 2015 [17] or
in neutrophils with Britt et al. 2022 [131] where the oxPPP flux reaches 2
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times the entering glucose flux which is one of the highest value that has
been observed.

One key characteristic of the coupling between PPP and glycolysis is the
capability to make cycle the carbon resources inducing high NADPH recy-
cling. The regulations are necessary to reroute the flux in order to shift to
the cycling mode. However, in most of the experimental data, the measure of
the PPP flux rarely exceeds 2 times the incoming flux which is far from the
possible 6 [17, 61, 131]. In the model ensemble built in this thesis, the PPP
flux limit has been expressed mathematically showing a linear dependence of
the 6PGD enzyme activity. Contrary to the modulation of the G6PD en-
zyme activity, an ambivalent response of the 6PGD during enzyme activity
modulation complements the problem of PPP flux saturation shown in dose
responses curves. Increasing the 6PGD enzyme activity does not contribute
to raise the barrier of the maximum value of 1.3 the incoming glucose flux.
Moreover, strong down-regulation of 6PGD can also penalize this limit. It
is only for a smaller level of 6PGD down-regulation that it contributes to
raise the barrier of the maximum PPP flux allowing to increase the oxidative
stress detoxification. 6PGD saturation combined to inhibition on PGI are
responsible of these phenotypes. The effect of the 6PGD activity on the
oxidative stress detoxification is highly experimentally studied in the recent
past years due to contradicting results. Indeed, genetic or pharmacologic in-
hibition of 6PGD show either a reduced or an increased level of ROS during
oxidative stress response in mammalian cells [25, 48, 145]. These contrasting
phenotypes are agreement with the ambivalent effect of the results presented
here. Even if the modification of the G6PD enzyme activity has been ma-
jor of interest [159, 160] showing more linear behaviours, these ambivalent
results could favour the use of the 6PGD enzyme modulation in the defence
against oxidative stress.

8.3 Adaptation dynamic during stress response

A coarse-grained model has been built as an preliminary study of the rapid
oxidative stress response. Even if this model construction is not as rigorous
as the detailed model, it already shows that the metabolic pathways com-
posed of PPP and glycolysis are able to detoxify the stress by rerouting the
flux made by the metabolic regulations. A phenotype of adaptation has been
observed and corresponds to a transient overshoot of a variable followed by
a relaxation to a steady state (Figure 8.3). Moreover, delaying the response



134 CHAPTER 8. Discussion & perspective

O
x
id

a
ti

v
e
 s

tr
e
ss

R
O

S

Regulation
mechanisms

Adaptation

[H
2
O

2
] in

t

Fractionnal
Killing

G2 M

G1

S

Cell growth
arrest

Cell death
Apoptosis
Necrosis

G2 M

G1

S

Living cell

D
a
m

a
g
e
-R

e
p
a
ir

 r
a
ti

oPs

Pd

Pa

?

Figure 8.3: Oxidative stress could induce fractional killing. Ox-
idative stress response is made by the regulation of the metabolism. This
regulatory mechanism displays adaptation in temporal dynamic of several
molecules of the network (e.g. of intracellular H2O2). Adaptation phenotype
impacts the probability to survive (Ps), to arrest the cellular growth (Pa) or
to die (Pd) improving the fractional killing and the global survivability.

by increasing artificially the number of metabolites in the noxPPP increases
the adaptation for a specific region of stress level. It confirms the well estab-
lished compromise between fast reactions inducing excessive metabolic cost
and slow reactions inducing potential damages. An adaptation phenotype
as also been observed in the detailed model during the temporal dynamic
response. Even if the adaptation ratio is not high, it already shows that the
regulations play a role in the fast oxidative stress response. The adaptation
phenotype has already been observed experimentally in the minute time scale
in yeast cell during oxidative stress for instance in the study of Goulev et
al. 2017 [61]. They performed different profiles of stress which impact the
adaptation phenotype and therefore the cellular growth, or in general the
cellular fate. They also build a highly reduced model representing an oxida-
tive stress detoxification which also displays an adaptation phenotype with
a ratio depending of the external dose. In our lab, Simiuc et al. 2020 [65]
investigates the adaptative response of mammalian cell to a step of oxidative
stress showing an adaptation ratio depending of dose but for longer response
within a hour time scale. These experimental results confirm the presence of
an adaptation profile and thus the role of the regulations during the oxidative
stress response.
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Figure 8.4: Impact of stress profile on adaptation phenotype.
Several stress profile (e.g. external H2O2) could induce different adaptation
phenotype (e.g. in intracellular H2O2) : an infinite step, a ramp and a
preconditioning of an oxidative stress. Adaptation phenotype impacts the
probability to survive (Ps), to arrest the cellular growth (Pa) or to die (Pd)
improving the fractional killing and the global survivability.

The mathematical models presented here represent the early oxidative
stress response in order to understand the effect of the regulations. A com-
plementary study has been made to investigate the impact of an adaptative
response to the cellular fate during a general perturbation. In this study,
adaptation contributes to the fractional killing by flattening the death prob-
ability curve. Having a smoother curve of the death probability drastically
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reduces the probability for a population to have all their cells dead allowing
the possibility of the population to recover. The adaptation profile inducing a
fractional killing is produced during a general perturbation. The adaptation
profile is also present during oxidative stress which allow to assume that the
fractional killing could also be present. The cellular fate, more specifically
the cellular growth during oxidative stress has been investigated in yeast with
the study of Goulev et al. 2017 [61]. Even if the different dose or profile of
oxidative stress modify the fractional killing and the adaptation profile, the
link is not clearly established (Figure 8.4). However, there is no reason that
the PPP and glycolysis do not display a fractional killing in order to favour
the survivability during oxidative stress in mammalian cell. A combination of
the model reproducing the fast oxidative stress response to a model of apop-
tosis initiation could be a solution to verify this statement. The different
stress profiles, including a pre-treatment of the cells have been investigated
in Goulev et al. [61] showing an impact on the adaptation profile and cellular
growth, and could also be simulated with the detailed model allowing to in-
vestigate the direct impact on the adaptation and thus the fractional killing.
Other metabolic stress in complement also seem to modify the adaptation
profile such as, for instance during a perturbation of glucose income with an
oxidative in Simiuc et al. 2020 [65] which can be simply simulated in the
presented detailed model by modifying ΦGLU . Deeper investigation need to
be done to fully establish the effect of the dual perturbation and therefore
the importance of the glucose import in the defence against oxidative stress
and then in the fractional killing.

8.4 Data-driven modeling and 13C-MFA

The construction of the mathematical model follows a specific procedure in
order to reproduce experimental data (Figure 8.1). First, decisions have
been made in term of model structures to favour identifiability of the pa-
rameters creating possible biases when leaving aside large-scale metabolic
pathway of for instance ATP , NAD, NADP or glutathiones. Because PPP
and glycolysis are the metabolic pathways which seem to be highly regulated
in order to favour the most the oxidative stress response, only these path-
ways have been used. However, other linked metabolic pathways seem to
also contribute to the oxidative stress response such as with PK and TPI
enzymes regulations [37, 53]. Glutathiones have been taken as anti-oxidant
network because experimental data was available but others such as Perox-
iredoxins/Thioredoxins also contribute [61, 161, 162]. Moreover, the chosen
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regulations appear to be the most contributors [17, 18, 34, 36]. However,
it exists regulations that can also participate to flux rerouting such as the
inhibition of TPI [52] or PFK [125]. Moreover, AMPK is a regulator of
many metabolic processes and would also be regulated by PPP metabolites
[163]. The balance between realism and complexity of a model is often a dif-
ficult problem. Although many studies favour a highly realistic and complex
models [126, 164], others favour less complex models in order to focus on the
analysis of the network regulations [34]. More mechanisms could be imple-
mented in the model step-by-step but it would need much more iterations
during the optimisation or more efficient techniques.

Before going through the parameter estimation, experimental data of
MIDs have been converted into flux data in order to have usable targets.
A different class of method that simulates isotope propagation in metabolic
systems by a Stochastic Simulation Algorithm (SSA) has been presented [1]
in order to convert 13C labeling data into flux data without any assumptions
about restrictions. Current methods such as EMU decompositions, allow to
proceed to complex metabolic flux analysis (MFA) such as non-stationary
MFA but it does not exist highly efficient software to proceed to dynamic
MFA [123]. However, the new proposed method allows to compute complex
metabolic flux analysis (MFA) such as non-stationary MFA or dynamic MFA.
It is simple to implement and has low computational cost compared to classic
methods. In the context of this thesis, this new method has been used in
13C-MFA to estimate fluxes from labeling data in steady state conditions.
Then, it has the advantage to have a small computational time which poorly
depends on the length of the marking procedure and thus of the number of
isotopomers contrary to cumomers or EMU decompositions [115]. Moreover,
it is also efficient even when parallel labeling are used such as hydrogen or
oxygen labeling in complement of carbon labeling. Finally, contrary to most
of the used methods, this one has no tinkering or approximations necessary
to be implemented. The only point that can be tricky would be the choice of
the sample size Ω which would increase the computational cost which scales
directly with Ω. A large value reduces the noise fluctuations but increases
the simulation time and reversely. Our chosen sample size is typically around
100-1000 which allows to have a good compromise between uncertainties and
computational efficiency. In these conditions, error scores have narrow dis-
tributions with induced residual fluctuations of isotopomers which allows the
use of Monte Carlo Markov chain [96, 165, 166, 167]. However, the esti-
mated fluxes display rather diverse widths of distributions where 11 fluxes
have large confidence interval preventing their further use in the parameter
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estimation. Next, data correspond to 3 mass isotopomer distribution (MID)
per metabolite per experiment with 7 metabolites and 4 total different exper-
iments which makes 84 individual MIDs in both basal and stress states which
is a relatively high number of data in different conditions [17]. However, each
experiment has been made in triplicate and displays large experimental errors
which prevents the possibility to have accurate flux estimation. More MIDs
in more accurate measurements would refine the flux estimation. Taking
more data from diverse cell types or with different protocols could generalize
the results but could also drastically increase the simulation time and diffi-
culty of the estimation.

The parameter set of the detailed model has been estimated in order to
reproduce experimental data of fast oxidative stress response coming from
neonatal human skin fibroblasts [17]. The data-driven estimation is pro-
ceeded by optimisation algorithm such as MCMC or genetic algorithm. As
the model is complex comprising a large number of parameters, the parame-
ter space is large which drastically complicates the model optimisation [96].
Thus, instead of keeping one parameter set, a distribution of parameter sets
is estimated in a restricted area of the parameter space which is often as-
sumed in other studies [34] and which takes into account the experimental
errors. Although many studies with a large amount of data do not have
sub-minute resolution [17, 34], more experimental data or more precise mea-
surement would refine the distributions and the model ensemble phenotypes.
Further comparisons of temporal dynamics or dose responses reveal that the
model ensemble well reproduce the experimental dynamics. However, these
data could also be used in the model optimisation to take into account the
dynamics directly in the parameter distribution but it would remove possi-
ble confirmations. Finally, experimental data coming from various type of
cells or with different stress profile and source would again generalise the
model, for instance, by integrating the data in keratinocyte from Kuehne et
al. 2015 [17], or in bacteria from Christodoulou et al. 2018 [34] or others
from Christodoulou et al. 2019 [168].

8.5 Experimental validation

The last six months of my thesis were devoted to the development of an ex-
perimental device aiming to check the surprising theoretical prediction about
the ambivalent response during perturbation of 6PGD enzyme activity (Fig-
ure 8.5). A specific protocol has been built to allow the detection of the
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Figure 8.5: Experimental procedure for testing model predictions.
Cultured cells can be put under microscope. The internal level of the redox
state could be captured by using fluorescence. Oxidative stress can be
applied by adding H2O2. Down-regulation of the 6PGD enzyme activity
can be done by the specific inhibitor physcion.

redox state in mammalian cell via fluorescence-microscopy imagery [65]. In
this study, MCF7 cancer cell line has been used but other similar cell lines
could also work. They are cultured via a classic protocol, i.e. in supple-
mented DMEM medium at 37◦C in a humidified atmosphere with 5% CO2

without extreme confluence to avoid possible additional stress. In these cul-
ture conditions, cells are in good environment to actively grow. Then, to be
able to localize the cells under fluorescence imagery and to avoid possible
mycoplasma contamination, they are marked by nuclear dye Hoechst which
ensure to not collect data from other sources. Green fluorescence protein
sensitive to redox state (roGFP2) can be linked to anti-oxidant enzyme al-
lowing to measure the redox state under microscope [169]. This fluorescent
protein is often linked to glutaredoxin (GRx) enzyme due to its ability to
sense the redox state [170]. It has been shown that GRx − roGFP2 fusion
protein is a good probe to capture the dynamic of the glutathione redox po-
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tential in cells with high sensitivity [171]. As roGFP2 can be excited with
two different wavelengths characterizing either the reduced or the oxidized
state of the molecule, the redox state will be the ratio of the two channels
[169].

The aim will be to capture the fluorescence in cells under different oxida-
tive stress levels and 6PGD enzyme activities. To apply an oxidative stress,
H2O2 is directly added to the medium at different concentrations. The mod-
ification of the 6PGD enzyme activity can be made by the specific inhibitor
physcion [163, 172, 173]. In these conditions, the space of stress level and
enzyme activity which has been investigated in numerical simulation, could
be scan and reproduced. The internal redox state can then be measured af-
ter 5 min of the perturbation application in order to be consistent with the
result of the simulations. Moreover, the simulations are made with a large
number of parameter sets which could mimic the cell-to-cell variability. As
the results of the model ensemble are averaged, the single-cell measurement
of the redox state is not necessary but can refine the measures and decrease
the experimental uncertainties. In the same idea, the more cells there are,
the more precise the information will be, provided that they grow in good
conditions, i.e. without extreme confluence. This work is still in progress and
would reveal a possibility to favour or penalise the oxidative stress response
by modulating 6PGD enzyme activity. In the proposed protocol, hydro-
gen peroxide and physcion are added directly in the medium which could
influence local concentration. As the diffusion is not instantaneous, the lo-
cal concentration could be different and increase the response noise along
the plate during measurements. In addition of this protocol, a microfluidic
device could be used which would serve to control the environment in a spe-
cific condition by continuously sending fresh medium in the entire cell plate
[61, 174, 175].
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1-9
6PG : 6-phosphogluconate
6PGD : 6-phosphogluconate dehydrogenase
6PGL : 6-phosphoglucono-δ-lactone
13C-DMFA : Dynamic 13C-MFA
13C-inst/NMFA : Non-stationary 13C-MFA
13C-MFA : 13C-based MFA

A
ALD : Fructose-bisphosphate aldolase
AMPK : 5’ AMP-activated protein kinase
AR : Adaptation ratio
ATP : Adenosine triphosphate

B
BAX : Bcl-2–associated X
BAXm : mitochondrial BAX
Bcl-2 : B-cell lymphoma 2
BH3 : Bcl-2 homology (BH) 3

C
Cat : Catalase
CI : Confidence interval
CME : Chemical master equation

D
DHAP : Dihydroxyacetone phosphate
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E
E4P : Erythrose 4-phosphate
EMU : Elementary Metabolic Units

F
F26BP : Fructose 2,6-bisphosphate
F6P : Fructose 6-phosphate
FBA : Flux balance analysis
FBP : Fructose 1,6-bisphosphate
FBPase : Fructose 1,6-bisphosphatase
FBPase2 : Fructose bisphosphatase-2
FOA : Fatty Acid Oxidation

G
G6P : Glucose 6-phosphate
G6PD : Glucose 6-phosphate dehydrogenase
GA : Genetic algorithm
GAP : Glyceraldehyde 3-phosphate
GAPD : Glyceraldehyde-3-phosphate dehydrogenase
GLase : 6-phosphogluconolactonase
Glc : Glucose
GPx : Glutathion peroxydase
GR : Glutaredoxins
GSH/GSSG : Reduced/Oxidized glutathiones

H
H2O2 : Hydrogen peroxide
HK : Hexokinase

I
Isotopomers : Isotope isomers

M
MCA : Metabolic control analysis
MCMC : Monte Carlo Markov Chain
MID : Mass isotopomer distribution
MFA : Metabolic flux analysis
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N
NADP(+/H) : Reduced/Oxidized nicotinamide adenine dinucleotide

phosphate
NNH/NHN : effective NADPH consumption/production
Nrf2 : Nuclear factor erythroid-derived 2-related factor 2
nRMSE : normalized RMSE

O
ODE : Ordinary differential equations
ox/noxPPP : Oxidative/non-oxidative PPP

P
PFK : Phosphofructokinase-1
PFK2 : Phosphofructokinase-2
PGI : Glucose-6-phosphate isomerase
PGK : phosphoglycerate kinase
PK : pyruvate kinase
PPP : Pentoses Phosphates Pathway
PRPP : Phosphoribosylpyrophosphate
PRPPs : Phosphoribosyl Pyrophosphate synthetase
PRX : Thioredoxins

R
R5P : Ribose 5-phosphate
RMSE : Root mean square error
roGFP2 : Green fluorescence protein sensitive to redox state
ROS : Reactive oxygen species
RPE : Ribulose 5-Phosphate 3-Epimerase
RPI : Ribose-5-phosphate isomerase
Ru5P : Ribulose 5-phosphate

S
S7P : Sedoheptulose 7-phosphate
SSA : Stochastic stimulation algorithm
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T
TKT1/2 : Transketolase 1/2
TLD : Transaldolase
TNF : Tumor Necrosis Factor
TPI : Triosephosphate isomerase
TRX : Peroxiredoxins

X
X5P : Xylulose 5-phosphate



Mathematical symbols

All mathematical elements used in the thesis are grouped in these tables with
their corresponding first definition in an equation or a chapter.

Modeling tools

Notation Signification Equation Chapter

O
xi
da

ti
ve

St
re
ss H External hydrogen peroxide 3/5.2.2

[H2O2]max Maximal value of hydrogen
peroxide concentration

3.18

[H2O2]∗ Hydrogen peroxide concentra-
tion at steady state

3.18

AR Adaptation Ratio 3.18

R
ev
er
si
bl
e
R
ea
ct
io
n

S Substrate / Reactant 2.2

P Product 2.2

I Inhibitor 2.11

a / b Stoichiometric number, order
in mass action law

2.2

O
D
E

x Variable concentration 2.1

X Variable concentration at
steady state

2.14

R Variable concentration ratio
between basal and stress con-
dition in log scale

5.1
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Notation Signification Equation Chapter

O
D
E

∆R Experimental error of R 5.1

N Stoichiometric matrix 2.1

φENZ Flux rate of a specific enzyme 2.1

ΦENZ / J Flux rate at steady state 2.14 / 2.2.2

φ
+/−
ENZ Directional flux rate 2.3

∆Φ Experimental error of a flux
rate at steady state

5.1

Y Variable concentration or flux
rate at steady state

6.1

p Parameter of the mathemati-
cal model

2.1

P Parameter space 5.2.2

P∗ Optimal parameter sets /
Model ensemble

5.2.2

kENZ Kinetic parameter 2.2

KeqENZ Equilibrium constant 2.4/2.5

KmENZ Michaelis-Menten / Saturation
parameter

2.8

KiENZ Inhibition parameter 2.11

G
A

/
M
C
M
C

N Number of fitted data 2.26/5.1

ξ Score function value 2.4.1

Nf Family size 2.4.1

α Acceptation probability 2.4.2

V Variance of α 2.4.2

R2 Determination coefficient 5.2.2

G
ai
n/

lo
ss

fu
nc
ti
on ∆Y
pi Sensitivity coefficient 6.1
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Notation Signification Equation Chapter

SFi,j Synergy factor 6.5

Steady state analysis tools

Notation Signification Equation Chapter

F
B
A

~Vi Elementary mode vector 2.17
~V n
i Normalised elementary mode

vector
4.19

λi Decomposition parameter 2.17

M
C
A

C
X/J
Φ Control coefficient 2.18

εXJ Elasticities 2.20

RX
p Response coefficient 2.22
~ΠΦ Unitary vector in the direction

of Φ
2.20

Stochastic simulation algorithms tools

Notation Signification Equation Chapter

C
M
E

P Probability 2.23

η Propensities 2.23

ζ Gaussian white noises 2.24

δj,j′ Dirac delta function 2.24

SS
A

q Number of labeled atom 4.3.2

N Total number of isotopomer 4.3.2

M Number of species 4.3.2
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Notation Signification Equation Chapter

SS
A

mtot Number of entities for a spe-
cific species

4.3.2

ω Metabolomic state 4.3.2

Ω Volume / Scaling factor 4.3.2

ρ Probability to be in a state ω 4.3.2

I Isotopomer index 4.3.2

Lji Labeling state 4.3.2

c Carbon atom 4.3.2

σ Addressing operator 4.26-4.31

mk
i,j = m+ i Mass isotopomer distribution 2.5/4.3.2

τ Time interval 4.3.2

Fractional killing tools

Notation Signification Equation Chapter

Fr
ac
ti
on

al
K
ill
in
g S General stress profile 7.2

s Amplitude of the stress 7.2

s50 Stress value for PDeath = 50% 7.2

PDeath death probability 7.2

β Adaptation amplitude 7.2
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Theoretical study of the impact 
of adaptation on cell‑fate 
heterogeneity and fractional killing
Julien Hurbain1,2, Darka Labavić1,2, Quentin Thommen1 & Benjamin Pfeuty1*

Fractional killing illustrates the cell propensity to display a heterogeneous fate response over a 
wide range of stimuli. The interplay between the nonlinear and stochastic dynamics of biochemical 
networks plays a fundamental role in shaping this probabilistic response and in reconciling 
requirements for heterogeneity and controllability of cell-fate decisions. The stress-induced fate 
choice between life and death depends on an early adaptation response which may contribute to 
fractional killing by amplifying small differences between cells. To test this hypothesis, we consider 
a stochastic modeling framework suited for comprehensive sensitivity analysis of dose response 
curve through the computation of a fractionality index. Combining bifurcation analysis and Langevin 
simulation, we show that adaptation dynamics enhances noise-induced cell-fate heterogeneity by 
shifting from a saddle-node to a saddle-collision transition scenario. The generality of this result is 
further assessed by a computational analysis of a detailed regulatory network model of apoptosis 
initiation and by a theoretical analysis of stochastic bifurcation mechanisms. Overall, the present 
study identifies a cooperative interplay between stochastic, adaptation and decision intracellular 
processes that could promote cell-fate heterogeneity in many contexts.

In many adaptation and developmental contexts, isogenic cells make stochastic fate decisions to generate diver-
sified cell types and subpopulations1. Cell-fate heterogeneity is indeed a key feature of microbial adaptation to 
adverse environments2, of the development and homeostasis of tissues and organs3 or of tumor resistance to drug 
therapy4. The differential fate outcome of isogenic cells exposed to the same environmental stimuli involves the 
interplay of stochastic and deterministic mechanisms5–7, where regulatory mechanisms can determine both the 
statistics and dynamics of stochastic events and the effect of those stochastic events on molecular trajectories 
dictating cell fate choices. Several experimental studies have shown that cell-fate decisions are often preceded 
by a highly fluctuating intracellular dynamics. Pulsatile or oscillatory activities have been observed in signaling 
pathways operating during the stochastic choice of various differentiation or proliferation fates8–13. The profile 
characteristics of those dynamic signaling activities have been proposed to either direct decision outcomes or 
promote cell-fate heterogeneity14,15. Transient dynamics occurring at epigenetics, transcriptome-wide or multi-
cellular levels16–18 have also been proposed to regulate cell-fate heterogeneity and plasticity. All these examples 
support a key role of transient dynamics in orchestrating fate decisions from diverse signaling and stochastic cues.

An attractive case study is the stochastic fate decision between life and death, commonly termed fractional 
killing, for which the systematic measure of probabilistic dose-response curves coupled with single-cell analysis 
of stochastic and dynamical signatures are possible19. On this issue, several modelling studies have been devoted 
to identify which sources of fluctuations and which parts of the apoptotic network could contribute the most to 
the variability of decision time and outcomes20–23, while the impact of the transient dynamics has been seldomly 
addressed24. Yet, singe-cell analysis of the temporal trajectories of caspase 8 activity in response to TRAIL has 
revealed a signature of adaptation dynamics whose transient kinetics determines whether a cell survives or 
dies25. Caspase 8 is likely to be part of negative feedback regulation involving for instance the formation of 
inactive heterodimers of procaspase-826. The importance of transient dynamics of apoptotic inducers has been 
also emphasized in the case of cisplatin drug exposure24,27. The proposed mechanism involves a competition 
between positive and negative regulation of caspase 8-dependent apoptosis, thereby defining an incoherent 
feedforward loop. More generally, environmental stressors are prone to upregulate both pro-survival and pro-
death pathways28–31 through negative feedback or incoherent feedforward loop motifs which ultimately lead 
to a dynamical adaptation response32–34. These stochastic and deterministic features associated with fractional 
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killing raise the more general question of the role of adaptation dynamics in shaping the timing and probabilities 
of stochastic fate decisions.

Diverse modelling approaches have proved useful to study stochastic switching in regulatory networks, 
ranging from the discrete chemical master equations and stochastic simulation algorithms to the continuous 
Fokker-Planck and Langevin equations. Those diverse tools and their refinements have been broadly used to 
study the interplay between noise properties and network topologies in shaping the steady-state bimodal dis-
tribution and transition rates associated with two phenotypic states35–39. In the present study, we use the joint 
framework of chemical Langevin equations40 and bifurcation theory to address the interplay of stochasticity, 
transient adaptation and bistable switching. The deterministic and stochastic analysis of a simple model combin-
ing adaptation and bistability deciphers how the adaptation overshoot dynamics modulate, concomitantly, the 
nonlinear decision-making properties and the probabilistic fate-response properties. The biological relevance 
of this behavior is assessed by simulating a more detailed model of programmed death pathways. Finally, the 
generality of the proposed noise-amplification mechanism is addressed within the theoretical framework of 
stochastic nonlinear dynamics.

Results
Stochastic modeling framework for probabilistic fate decisions.  Fractional killing can be defined 
as the population-level property by which isogenic cells exposed to increasing doses of death-inducing stim-
uli will tend to display a fraction of surviving cells and dying cells, although with increasing probability of 
death. This stochastic decision process can be studied in a general theoretical framework that applies to cases 
of fate decisions other than survival and death. Probabilistic cell-fate response commonly involves the interplay 
between intracellular mechanisms of fate decision and intracellular sources of cell-to-cell variability. Without 
loss of generality, a possible framework to study such probabilistic fate response to a step stimulus consists in 
a Langevin differential equation description of the stochastic dynamics of a biochemical reaction network (see 
Table 1 for notations): 

(1a)
dxli
dt

=
∑

j

νji a
l
j(t)+

∑

j

νji

√
alj(t) ξ

l
j (t)

(1b)alj(t) = aj(�x
l , sl(t), �kl)

(1c)s(t) = s H(t)

Table 1.   List of mathematical symbols and notations.

Symbol Description Equations/Figures

xli , �xl Concentration of biochemical species i of cell l Eq. (1)

kli , �kl Biochemical network parameter i of cell l Eq. (1)

aj , νji Rate and stoichiometries of the biochemical reaction j Eq. (1)

ξ lj Langevin noise associated to reaction j in cell l Eq. (1)

σ Standard deviation of random variable Eq. (1)

sl Stimulus (e.g., stress) level of cell l Eq. (1)

ssn Stimulus level associated with saddle-node bifurcation Fig. 2

P(�x, t) Time-dependent probability distribution function in state space Eq. (2)

PD/Death Decision (e.g., death) probability Eq. (2)

s50 Stimulus level inducing 50% of fate probability Eq. (3)

t∗ Measurement time for PD Eq. (2)

η Fractionality index Eq. (3)

x1,2,3 Adaptive (e.g., damage/repair) and fate-decision (e.g., death) species Eq. (4)

β , τ Adaptation strength and timescale Eq. (4)

�xst1,2/sn/sad Stable/saddle-node/saddle fixed point associated with bistability Figs. 2, 3 and 4

W s/u(�x) Stable/unstable manifold of the fixed point �x Eqs. (2) and (9)

sc Critical stimulus level without noise sc = s50(σ = 0) Fig. 2

�xc(t, sc) Critical trajectory Fig. 2 and Eqs. (7–8)

�y(t) , yN Small deviations of �x(t) from �xc(t) Fig. 5 and Eqs. (7–9)

�(t, t′) Principal fundamental matrix Eq. (7)

U(x),�, rK Effective potential, barrier height and Kramers rate Fig. 5 and Eq. (10)
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 where H(t) and δ(t) are respectively the Heaviside and the Dirac delta functions. In this model, the cell-to-cell 
variability of stimulus-induced response trajectories �xl can originate either from noisy biochemical reactions 
involving stochastic processes ξ lj (t) or from heterogeneities in stimulus exposure/sensitivity sl or network param-
eters �kl from cell to cell. Although limited or inaccurate to describe some stochastic behaviors of biochemical 
networks41, chemical Langevin equation approach is nevertheless convenient to study asymptotic cases of small 
noise, large size or separated timescales and, thus, to relate with noise-free dynamical properties42.

For the deterministic part of the equation, the fate-decision behavior (e.g., death) can be minimally imple-
mented in the nonlinear dynamics of the biochemical network by the presence of a saddle-node bifurcation 
mechanism at a critical stimulus level ssn through which the (survival) steady state �xst1 is destabilized toward the 
other (death) steady state �xst2 , generally in an irreversible manner. Accordingly, near-identical cells exposed to 
the same stimulus may display divergent trajectories toward survival or death (Fig. 1a). The population dynamics 
of noisy or heterogeneous cells described by Eq. (1) can be statistically represented by a probability distribution 
P(�x, t) , which typically follows a Fokker-Planck equation. Stimulus-induced fate decision relates with the estab-
lishment of a bimodal distribution such that one can define the decision probability PD (Fig. 1b):

where t∗ is the typical measurement time and W s(�xst) is the fate attractor basin. It is to emphasize that we consider 
the typical case of an irreversible fate decision associated with a low or null probability to revert from the state 
�xst2 to �xst1 , which is typically the case for death, proliferation or terminal differentiation fate outcomes. From the 
dose-response curve PD(s) , one can define a fractionality index (Fig. 1c) which quantifies the derivative of this 
curve around the 50% fate probability ( PD(s50) = 0.5):

Based on this simple sensitivity measure of the stochastic fate response, systematic analysis of how η varies with 
noise strength σ and network parameters �k should provide key insights into the interplay of stochastic and non-
linear properties of networks in shaping probabilistic features of fate response.

Adaptation dynamics enforces a saddle‑collision mechanism for decision making.  To evaluate 
the impact of adaptation dynamics on the probabilistic properties of stochastic fate decisions, the biochemical 
reaction model used in Eq. (1) must implement adaptation and switching behaviors. For the ease of mathemati-
cal and graphical analysis, we consider a low-dimensional biochemical reaction network43, whose interactions 
between three coarse-grained variables implement a basic setting of a negative feedback-driven adaptation and 
a positive feedback-driven decision switch (Fig. 2a,b). Starting from a set of biochemical reactions associated 
with this architecture, a suitable factorization and normalization procedure (see "Methods" section) allows one 
to derive the following set of differential equation, 

(1d)�ξ lj (t) ξ
l′

j′ (t
′)� = σ 2 δ(t − t ′)δj,j′δl,l′ .

(2)PD =

∫

�x∈W s(�xst2)
P(�x, t∗)d�x .

(3)η =

(

d ln P

d ln s
(s50)

)−1

(4a)τ1
dx1

dt
= 1− k1 + k1 s(t)− x2 x1 ,

(4b)τ
dx2

dt
= 1− β + βx1 − x2 ,

Figure 1.   Dynamical and probabilistic schemes of cell-fate decisions. (a) State-space trajectories diverging 
toward distinct cellular phenotypic states. (b) Establishment of a bimodal probability density function. (c) Fate 
probability curves whose slope is quantified by a fractionality index ( η).
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 The reaction rates ai of the corresponding Langevin equations are detailed in "Methods" section. Most parameter 
values are fixed within a range consistent with some biological assumptions. First, self-activation parameters 
k3 = 1 and k4 = 0.2 implement a positive feedback that is strong enough to produce an irreversible transition 
to death fate. Second, the parameters k1 = 0.9 and τ1 = 0.1 < 1 < τ implement a significant and fast stimulus-
induced response of x1 , which gives rise to a marked overshoot dynamics through negative feedback with x2 . 
Third, the synthesis rate parameters 1− β , 1− k1 and k2 = 0.056 satisfy the normalization condition that saddle-
node bifurcation occurs for x1 = x2 = s = 1 whatever the values of the other model parameters ( ki , β , τ).

(4c)
dx3

dt
= k2 x1 + k3

x23
k4 + x23

− x3 .

Figure 2.   Adaptation alters the nonlinear mechanism of decision making. (a) Coarse grained model combining 
a negative feedback loop (NFL) between x1 and x2 species and self-activation positive feedback loop (PFL) of 
x3 species. (b) Typical adaptation and switching dynamics in response to a stimulus step. Color code relates 
to that of panel (a) and model parameters are β = 1 and τ = 10 . (c) Effect of adaptation parameters β and τ 
on the linear response regime (upper panel) and the overshoot profile of the adaptation response of x1(t) (left 
and right bottom panel). (d) Plot of ssn − sc as a function of β and τ where two distinct transition regimes 
( sc = ssn and sc < ssn ) are separated by the white boundary. (e) Single-cell trajectories plotted in the {x1, x3} 
space for increasing level of stimulus s (blue for s < sc and green for s > sc ): Upper panel (red square: β = 1 and 
τ = 10 ) shows a saddle collision for s = sc and bottom panel (grey circle: β = 0.3 ; τ = 3 ) shows a saddle-node 
bifurcation. Black full and gray dashed lines represent the steady state branches �xst1(s) and �xsad(s).
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In this way, the parameters β ( ∈ [0 : 1] ) and τ can be systematically varied to modulate the overshoot char-
acteristics of adaptation with limited impact on steady-state properties. Indeed, the steady state of x1 depends 
on the stimulus according to:

which satisfies x1(s = 1) = 1 for any β and k1 values. Furthermore, stability analysis of this steady state establishes 
the following criteria for the existence of an overdamped overshoot response to the step stimulus s = 1:

Accordingly, the adaptation parameters β ∈ [0 : 1] and τ > 1 control the amplitude and timescale of the over-
shoot response without changing the steady-state value for s = 1 (Fig. 2c). More details regarding the relation 
between the negative-feedback parameters and the adaptation behavior can be found in a previous modeling 
study43.

Before considering a source of variability, we first need to investigate the main effect of transient adaptation 
dynamics on the fate decision properties. In this case, probabilistic response and fractional killing do not occur, 
and the system response to a step stimulus is essentially determined by a threshold sc : a stress amplitude s greater 
(resp. lower) than sc leads to a fate decision toward death (resp., survival). For an adiabatically-slow increase of 
the stimulus, the system follows the steady-state branch �xst1(s) of low x3 values before escaping from it for s > ssn 
through a saddle-node bifurcation. This is not necessarily the case for a step increase of the stimulus, for which 
transition to death can occur for a stimulus level s < ssn so that ssn − sc > 0 . The plot of ssn − sc as function 
of adaptation parameters in Fig. 2d shows that sc = ssn for weak enough or fast enough adaptation, while sc is 
below ssn for large enough values of both β and τ . These two qualitative regimes manifest, in fact, the existence of 
distinct instability mechanisms (Fig. 2e). For low values of β or τ and thus a small or no overshoot, the threshold 
property s = sc = ssn relates with a dynamical trajectory that is destabilized in the vicinity of a saddle-node 
instability (lower panel of Fig. 2e). In this scenario, x3 species trigger the fate decision depending on the steady-
state value of the adaptive species x1 , which carries out the role of a bifurcation parameter. In sharp contrast, for 
high enough value of both β and τ and thus for a significant overshoot response of x1 , the threshold property 
s = sc < ssn relates with a dynamical trajectory that collides with a saddle instability (upper panel of Fig. 2e).

In summary, while varying β and τ leads to gradual changes of the amplitude and the timescale of the over-
shoot adaptation profile, we could identify a threshold boundary in the {β , τ } space which separates between a 
saddle-node and a saddle-collision instability scenario. In the saddle-collision scenario, the threshold value sc 
becomes very sensitive to the transient characteristics of the overshoot profile, which suggests that fate decision 
may also become more sensitive to the sources of cell-to-cell variability that impact transient dynamics.

Adaptation dynamics promotes heterogeneous cell‑fate decisions.  Based on our comprehensive 
analysis of the deterministic decision dynamics in the coarse-grained model combining adaptation and bista-
bility, we aim to investigate how adaptation influences cell-fate heterogeneity in a population of noisy cells. We 
therefore apply the general stochastic modeling framework to this biochemical network model (see "Methods" 
section) and perform a systematic analysis of the probabilistic properties in the {β , τ } parameter space and for 
several noise sources and levels (Fig. 3).

To begin with, we consider the case of cell-to-cell variability arising from molecular noise solely ( sl = s 
and �kl = �k ) and focus on the two archetypical parameter sets depicted in Fig. 2 that are associated with weak/
fast adaptation ( β = 0.3 and τ = 3 ) and strong/slow adaptation ( β = 1 and τ = 10 ), respectively. Simulation 
of Langevin equations for 2000 trials shows that, for the same level of noise, strong/slow adaptation leads to 
probabilistic response associated with a much larger stimulus range and a much smaller derivative at P = 0.5 
(Fig. 3a). These differences are quantified by the fractionality index η that is about four-fold larger for strong 
adaptation ( η ≈ 0.05 ) as compared to weak adaptation ( η ≈ 0.012 ). To illustrate how adaptation may amplify 
noise to generate more heterogeneous fate response, we plot the noisy single-cell trajectories in the two scenarios 
associated with the noise level and the same relative change of stimulus level. When adaptation is strong and 
slow enough, noisy trajectories remain within some neighborhood of the noise-free trajectory until diverging 
from it toward different fates when approaching the saddle fixed point, with a slight change of respective fate 
probability when the stimulus increases (Fig. 3b). This is in sharp contrast with the case of weak (or no) adapta-
tion for which noisy trajectories reach first the neighborhood of a stable fixed point, before eventually escaping 
over the saddle fixed point toward the other fate when the stimulus slightly increases (Fig. 3c). The qualitative 
difference between these two stochastic decision scenario is confirmed by the distinct scaling laws η ∝ σ b , where 
b = 1 for strong/slow adaptation and b ≈ 1.2 for weak/fast adaptation (Fig. 3d). This body of evidences strongly 
suggest that adaptation dynamics promotes cell-fate heterogeneity, mostly by changing the underlying nonlinear 
mechanism of decision-making. This is confirmed by the plot η = f (β , τ) (Fig. 3e), which unambiguously shows 
a qualitative increase of fractionality index η specifically in the parameter domain where the saddle-collision 
scenario occurs (above the white boundary).

Besides molecular noise, other sources of cell-to-cell variability have been tested, such as stimulus exposure 
or sensitivity sl (Fig. 3f) or initial conditions �xl(t0) (Fig. 3g). Again, a qualitative increase of η is observed in the 
parameter region associated with a saddle-collision scenario (above the white boundary), though the extent of 
such increase is much more important for the case of variable initial conditions. This is because variability of 
initial conditions impacts only transient dynamics, not steady state, while variability of sl impacts steady-state 

(5)x1(s) =
β − 1+

√

(1− β)2 + 4(1− k1 + k1s) β

2β
,

(6)τ/τ1 > (1+ 2β)+
√

4β(β + 1) .
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properties. Adaptation dynamics can promote cell-fate heterogeneity in a qualitative manner, but to varying 
extent depending on the source of variability and the time profile of the overshoot.

Adaptation dynamics contributes to fractional killing in an apoptosis model.  The nonlinear 
nature of the adaptation-related amplification of noise effect suggests that this mechanism could be effective 
regardless the complexity of the network model. In other words, we expect to observe a similar noise amplifi-
cation behavior in more detailed regulatory network model of stress-induced death fate decision as far as the 
adaptation dynamics leads to a collision to a saddle instability in the state-space of any dimensions. To check 
this conjecture, we need to replace the effective one-dimensional model of fate decision by a more realistic 
high-dimensional model of death fate decision. Fractional killing is commonly observed following many types 
of stress or death ligands, which may trigger death through different pathways44,45 depending on the involved 
multi-protein signaling complexes, transcriptional factors and other signaling and metabolic cues (left of 
Fig. 4a). Among these many possibilities, we consider the canonical case where the stress signal and damage 
species mainly impact the intrinsic mitochondrial pathway of apoptosis through the control of the Bh3 member 
of Bcl-2 family46. An alternative possibility could have been to consider the case of TRAIL-induced apoptosis 
involving caspase 8-dependent activation of both extrinsic and mitochondrial pathways20.

The choice of Bh3-dependent mitochondrial apoptosis is motivated by a previous biochemical model of 
apoptosis initiation24, which exhibited several interesting features for our study. First, the model focuses on the 

Figure 3.   The critical impact of adaptation on cell-fate heterogeneity. Fate decision probability is studied in 
presence of molecular noise level (a–e) or other sources of cell-cell variability (f–g). (a) Fate probability curves 
as function of relative stimulus for the cases of strong/slow adaptation (red squares) and weak/fast adaptation 
(gray circles). (b–c) Sample of noisy single-cell trajectories associated with a ±2% change of stimulus level 
around s = s50 (dashed line of panel a), which are plotted in the {x1, x3} state space where steady-state branches 
�x(s) are also represented. (d) Fractionality index η as function of noise with their asymptotic scaling exponents. 
(e) Fractionality index η as a function of adaptation parameters τ and β for molecular noise level σ = 0.01 . 
White line delimits the parameter domains of saddle-collision and saddle-node transition scenario (redrawn 
from Fig. 2c). Red squares ( β = 1 and τ = 10 ) and grey circles ( β = 0.3 and τ = 3 ) correspond to the two 
archetypical parameter sets associated to each scenario, which are compared in panels a–d. (f–g) Fractionality 
index η as function of β and τ for two sources of cell-cell variability: (f) a uniform distribution of stimulus 
exposure sl with �δslδsl′ � = 0.01δl,l′ ; (g) a uniform distribution of initial conditions �xst1(s = 0)+ �δx with 
�δxliδx

l′

j � = 0.1δi,jδl,l′.
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initial stage of intrinsic mitochondrial apoptosis, providing a simple picture of the decision-making process by 
leaving aside the further stages of effector caspase activation and related apoptosis events as well as the complex 
crosstalk with other programmed death pathways. Second, the topology and parameters of the model are deter-
mined in close relation with biological hypothesis and experimental data in a context of chemical stress response. 
Last, the topological and dynamical properties of the model are featured with a single positive feedback and a 
bistable behavior which are fully consistent with the minimal set of ingredients that is needed to implement our 
adaptation-dependent noise-amplification mechanism. In particular, prior knowledge about the bifurcation 
properties is very helpful to compare sc and ssn thresholds and make the connection between the low-dimensional 
and high-dimensional models.

Therefore, the structure of the detailed model merely consists on the coupling between our above adaptation 
model (Eq. 4a, b) and the published model of mitochondrial apoptosis initiation24 (right of Fig. 4a). Specifically, 
the adaptive species x1 upregulates the synthesis of a pro-apoptotic BH3-only proteins (e.g., Bad, Bim, Bid), 
keeping in mind that intracellular stress-signaling pathways impacts the mitochondrial apoptosis pathway at 
various places45,46. Regarding the published apoptosis initiation model, the postranslational interactions between 
the pro-apoptotic Bh3 and Bax proteins and the anti-apoptotic Bcl-2 proteins implement a positive feedback 
mechanism. Pro-apoptotic signals are prone to increase the level of free Bh3 proteins with respect to the level 
of Bh3 proteins bound to Bcl-2. Free Bh3 proteins directly interact with inactive cytosolic Bax proteins, thereby 
inducing conformational change that leads to their activation and mitochondrial translocation. In turn, the 
activated mitochondria-localized form of Bax can also bind to Bcl-2, resulting in the release of additional free 
Bh3 proteins from Bh3-Bcl complexes. For a critical synthesis rate of Bh3 proteins, this positive feedback loop 
produces a bistable switching behavior via a saddle-node bifurcation from low to high levels of free mitochon-
drial Bax ( Baxm)24. Then, high enough levels of Baxm would typically induce the release of cytochrome C and 
mitochondrial outer membrane permeabilization (MOMP) followed by the formation and activation of the 
apoptosome and the execution of apoptosis.

Figure 4.   Adaptation-dependent fractional killing in an apoptosis model. (a) Some mammalian cell-death 
pathways associated with fractional killing including the stress-induced mitochondrial pathway of apoptosis 
(left panel). The detailed model of this study couples the coarse-grained model of stress-induced adaptation 
module (Eqs. 4a, b) and a published model of the mitochondrial apoptosis initiation module24 (right panel). 
(b) Death probability as function of the relative stimulus level s/s50 obtained through numerical simulation of 
Eq. (1) with σ = 0.002 , where η is about four-fold higher with adaptation ( β = 1 ) compared to without ( β = 0 ). 
(c–d) Temporal trajectories of x1 and Baxm in the presence or the absence of adaptation (c: β = 1 ; d: β = 0 ). 
Adaptation timescale is set to τ = 1.25hr to match with the timescale of the apoptotic switch (time unit is hour). 
Right panels show a 2D state-space projection of the high-dimensional dynamics with respect to the stable and 
saddle fixed points (brown and white circles) of the deterministic system.
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The stochastic dynamics of this regulatory network coupling an adaptation module and an apoptosis module 
is simulated using again the Langevin formalism of Eq. (1) (see "Methods" section) with fixed σ . Death initiation 
event is assumed to occur when Baxm reaches the neighborhood of the high-level steady-state branch. For large 
number of simulation trials, death probability can be measured as a function of the stress stimulus level, s, for 
distinct adaptation profiles, here with β = 0 or 1 (Fig. 4b). Simulation results reveal that the presence of adapta-
tion leads to a probabilistic response for a broader range of stimulus, which manifests itself by a lower value of 
the derivative of Pdeath with respect to s/s50 associated to a four-fold higher value of η . Such significant difference 
in noise-sensitivity η correlates to well distinct types of dynamical trajectories associated with survival-death fate 
decisions (Fig. 4c–d). For β = 1 , the overshoot response of x1 species leads to a transient increase of Baxm during 
which trajectories finally diverge from each other toward the survival or death attractor (Fig. 4c). This decision 
is made when approaching the unstable saddle equilibria along its stable manifold (right panel of Fig. 4c). For 
β = 0 , the level of Baxm reaches and fluctuates around a steady state of low values, before an eventual noise-
induced switch toward the death state by escaping over the saddle instability along its unstable manifold (Fig. 4d).

The results obtained with a detailed model of apoptosis are thus consistent with those obtained with the model 
Eq. (4) involving a minimal decision module (Fig. 4b similar to Figs. 3a and 4c–d similar to Fig. 3b–c). To obtain 
a similar behavior, it should be noted that (i) adaptation and decision timescales had to be adjusted to each other 
in the detailed model such that the decrease of x1 during the overshoot profile occurs before Baxm reaches its 
upper-branch steady state, and that (ii) the molecular noise impacts more the death species than the adaptive 
species (compare molecular noise of Baxm and x1 in Fig. 4c, d). A further step would thus be to check whether 
these two conditions are fullfiled in the detailed modeling of both the specific signaling pathways producing 
adaptation at the level of damage-repair pathways47, stress-response patwhays24 or death-ligand pathways25,26, 
and of the specific death-regulatory pathways that are triggered by these diverse death-inducing stimuli. In these 
various cases, adaptation and fate decision processes are prone to be implemented by slightly different regulatory 
network topologies which may modulate the timescale and stochastic characteristics of the dynamical response 
and influence the extent of the adaptation-dependent fractional killing.

Theoretical description of stochastic decision properties.  We have shown that the sensitivity of 
cell-fate decision to molecular noise depends on the state-space paths taken to reach a saddle instability, along, 
either, its stable manifold or its unstable manifold (Fig. 5a). In order to get further insights into the stochastic 
nonlinear dynamics involved in this process, we develop a perturbation approach in the limit of small noise and 
small stimulus changes for which specific scaling laws η = aσ b have been obtained (Fig. 3d). Scaling analysis 
near instabilities is a common approach to characterize qualitative dynamical behaviors as function of noise, 
timescales and bifurcation parameters (see textbook42 or some case study48,49).

In the case of a saddle-collision scenario, perturbed trajectories evolve in the neighborhood of the deter-
ministic trajectory �xc(t, sc) that connects the initial condition �xc(t = 0) = �xst1(s = 0) and the saddle fixed point 
�xc(t → ∞) = �xsad(sc) (Figs. 2d and 3d) and, thus, live on the stable manifold of this saddle W s(�xsad) that 
separates the different fate attractors. Along this singular deterministic trajectory, some local Lyapunov stability 
exponents (i.e., time-dependent eigenvalues of the Jacobian matrix J(�xc(t)) ) become positive such as to amplify 
transverse perturbations due to molecular noise or heterogeneous initial conditions. Mathematically speak-
ing, linearization of Eq. (1a) about �xc(t) defines a class of Langevin equations for the perturbed trajectories 
�y(t) = �x(t, sc + δs, σ)− �xc(t) whose solution can be decomposed as �y(t) = δs �yδs(t)+ σ �yσ (t) where

�(t, t′) is the principal fundamental matrix and �bδs/σ are the normalized stimuli and noise perturbation vectors 
given by: 

(7)�yδs/σ (t) =

∫ t

0
�(t, t′) �bδs/σ (t

′)dt′ .

Figure 5.   From deterministic to stochastic properties of two distinct cell-fate decision scenarios. (a) 
Deterministic decision mechanims in the space of adaptation parameters. (b–c) Corresponding stochastic 
decision mechanisms. (d) Qualitative change of fractionality index.
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 To compute the fractionality index η , the key statement is that fate decisions (resp., probability) are determined by 
the deviation (resp., distribution) of trajectories onto the normal direction yN of the (N − 1)-dimensional stable 
manifold of the saddle. The mean and variance of the normal distribution P(yN , t) evolves in time until the deci-
sion time t∗ at which the distribution splits and many trajectories leave the neighborhood of �xc(t) (Fig. 5b). Rewrit-
ing Eq. (2) as PD =

∫

R+ P(yN , t
∗)dyN and decomposing dPDds = ( dPD

d�yN �
)(

d�yN �
ds ) = (2πσ 2�y2N ,σ �)

−1/2(�yN ,δs�) , we 
can derive the following expression for η:

This formula shows an asymptotic scaling law η ∝ σ (Figs. 3d and 5d) while the prefactor depends in a sophisti-
cated manner on the local stability properties (via � ) and sensitivity properties (via �b ) of the transient trajectory. 
A similar derivation in the 1D case has been previously performed to show that this scaling law also depends on 
the speed of the trajectory toward the saddle instability48.

The sensitivity to noise is very different in the other scenario of noise-induced escape from a stable state ( �xst1 ) 
over a saddle barrier ( �xsad ), which is a very common behavior associated with the escape from metastability49,50. 
For this decision-making regime, an effective potential U, a potential barrier �(s) = U(�xsad(s))− U(�xst1(s)) 
and a Kramers escape rate rK (s) ∝ exp (2�(s)/σ 2) can be usually defined, even for multi-dimensional systems 
and multiplicative noise51 (Fig. 5c). Given a fate-decision probability PD(t) ≈ 1− exp (−rK t) , the fractionality 
index can be derived and approximated as :

For the one-dimensional model of bistability used in Eq. (4c), the particular scaling relation s50 ∂s� ∼ σ 0.8 (as 
the threshold s50 depends on σ ) leads to the scaling law η ∝ σ 1.2 obtained in Fig. 3d.

To conclude, these very distinct formulas for η highlight that the conversion of intracellular fluctuations into 
heterogeneous cellular fate response sharply differ depending on the transition scenario. The saddle-collision 
scenario is characterized with the amplification of small perturbations due to the local instability of trajectories 
when approaching the saddle state during the overshoot of decision variables (e.g., x3 or Baxm ). In contrast, the 
more common scenario of a noise-induced escape from a metastable state does not display this amplification 
mechanism, while the transition rate rK is very sensitive to stimulus level due to the exponential-like dependency 
on the saddle barrier height.

Discussion
The present modeling study deciphers the role of adaptation dynamics in promoting cell-fate heterogeneity 
associated for instance with the fractional killing behavior. A common property of adaptation is the transient 
overshoot of some cellular variables above its steady state value, which can be implemented by diverse circuit 
topologies32 and which is subjected to tradeoffs associated with homeostatic or sensory process33,34,52,53. In addi-
tion, we propose that this transient overshoot dynamics can also significantly impact fate-switching behaviors, 
so as to extend the stimulus range of fate heterogeneity and to allow for tunable fate probability. This adaptation-
dependent fate stochasticity relies on the manner how the overshoot of some intracellular species drive cell state 
in the neighborhoohd of a saddle instability, rather than a saddle-node instability, along a path where molecular 
noise are more prone to promote divergent decisions. This noise-amplification behavior illustrates how molecu-
lar noise and instability mechanisms can cooperate to shape cellular dynamics, like genetic timers54, boundary 
formation55 or versatile sensory processing56.

The biological relevance of the proposed mechanism is most likely in a context of fractional killing for which 
the choice between life and death depends on adaptation processes. The timescales of those adaptation responses 
range from half an hour to few hours depending on stress type and regulatory mechanisms47,57,58 which is of the 
range of magnitude of the initiator caspase rise time and death onset timing. Moreover, noise-induced fate het-
erogeneity is the most effective when fluctuating variables are those involved in the positive feedback that triggers 
death initiation. This requirement is consistent with modeling evidences that variability in diverse regulatory 
molecules can contribute in very different ways to variability in cell death outcomes20 and that the main contri-
butions seem to occur in the initial decision commitement phase, whether it is at the level of the fluctuations of 
short-lived antiapoptotic proteins22 or the stochastic assembly of DISC/RIPoptosome platform23. The manner 
how cell fate is determined by the impact of these fluctuations at the level of concentration trajectories has been 
also investigated24,25,27. In relation to these studies, our study presents a broad and comprehensive view of this 
cooperative process and, thus, provides strategies, by monitoring transient characteristics, to either increase or 
reduce fractional killing.

The profile characteristics of adaptation dynamics, such as the ratio between its maximal and steady-state val-
ues, are highly sensitive to the temporal profile of the stimulus. Ramp increase of a stimulus or a preconditioning 

(8a)bδs,i(t) =
∑

j

νji
∂aj

∂s
(�xc(t))

(8b)bσ ,i(t) =
∑

j

νji

√
aj(�xc(t))ξ̃j(t) .

(9)η =

√

π

2

√

�yN ,σ (t∗)2�

s50�yN ,δs(t∗)�
σ .

(10)η =

(

s50 ln 2

rK

drK

ds

)−1

≈
σ 2

(2 ln 2) s50 ∂s�
.
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stimuli are known to reduce the transient overshoot behavior. This feature has been exploited to test the role 
of adaptation in oxidative stress response of yeast59, the osmotic stress response of yeast60 or ethanol stress in 
Bacillus61. In case of stress-induced fate response, monitoring the stress stimulus profile would therefore be 
expected to modulate not only threshold stimulus level ( s50 ), but also the degree of heterogeneity of the response 
( η ). This provides a practical mean to test the role of adaptation for cell-fate heterogeneity, and to design dose 
delivery protocols of treatment to cope with fractional killing of cancer cells or microbial organisms.

It is tempting to extrapolate the biological relevance of such adaptation-dependent mechanism beyond the 
scope of fractional killing and transient adaptation dynamics. The mechanism itself only requires a regulatory 
network featured with an upsteam overshoot response and a downstream switching response, which could be 
implemented by diverse network topologies and in diverse cell-fate contexts. For instance, overshoot dynamics 
can also occur in regulatory systems comprising incoherent feedforward loops32, but also in excitable or pulsatile 
systems combining negative and positive feedback loops. For the latter case, numerous signaling pathways, such 
as P53, Erk or NF-κ B, display a versatile pulsatile dynamics, which has been proposed to expand signal-pro-
cessing capabilities and determine cell fate accordingly14,15. In relation to our result, the transient and stochastic 
characteristics of these signaling dynamics may also suggest a role for promoting cell-fate heterogeneity. This 
is supported by some experimental evidences that have mapped the cell-cell variability of the pulsing dynam-
ics of Erk10,11, p5362,63, β-catenin13 and NF-κB12 with the heterogeneity of cell-fate outcomes. Data-driven and 
fine-grained modeling of specific dynamic signaling and fate-regulatory pathways11,20,62,64 are definitively the 
step further to evaluate on a case-by-case basis to which extent transient adaptation or pulsing dynamics may 
contribute, fortuitously or functionally, to cell-fate heterogeneity.

Methods
Coarse‑grained model.  The set of regulatory reactions depicted in Fig. 3a consists in the following basal/
regulated synthesis terms and basal/regulated degradation terms: 

 which can be translated into a system of differential equations using the law of mass action : 

 To obtain the set of Eq. (4), we perform a nondimenzionalization procedure to reduce the number of parameters 
and to define effective parameters that control separately different features of the dynamics such as response 
timescales, transient nonlinear response and steady states. Accordingly, we have introduced dimensionless time 
t̃ , concentration xi and stimulus s and defined rescaling variables ( Xi,0 , S0 ) and aggregate parameters ( τi , β and 
ki ), as the following: 

 These changes of variables and parameters simplify Eq. (12) into Eq. (4) where dimensionless time t̃ is noted t 
again for simplicity. The chemical Langevin equation associated to Eq. (4) is also characterised with a rescaled 
noise σ = (�d3X0)

−1/2 where � is the system size and Xi,0 ≡ X0 ∀i . Finally, reaction rates and stoichiometry 
matrices are given by:

where k1 = 0.9 , k2 = 0.056 , k3 = 1 , k4 = 0.2 , τ1 = 0.1 , while β and τ are varied.

Detailed model.  Equations and parameters of the biochemical reaction model of apoptosis initiation have 
been taken from24. From the original model, the equations for CIAP, p53 and Mdm2 have been removed and the 
equation for Bh3T has been changed to incorporate activation by x1 and to display a slower response:

(11a)b1
→ X1 ;

bS1S
→ X1 ;

b2
→ X2 ; X1

b12
→ X2 + X1 ; X1

b13
→ X3 + X1 ;

b33fh(X3,K3)
−−−−−−−→ X3

(11b)X1 + X2
d1
→ X2 ; X2

d2
→ ⊘ ; X3

d3
→ ⊘ ,

(12a)Ẋ1 = b1 + bS1S − d1X2X1 ,

(12b)Ẋ2 = b2 + b12X1 − d2R ,

(12c)Ẋ3 = b13X1 + b33
X2
3

K3 + X2
3

− d3X3 .

(13a)t̃ = t d3 ; xi = Xi/Xi,0 ; s = S/S0

(13b)X1,0 =
k2d3X3,0

b13
; X2,0 =

b12X1,0 + b2

d2
; X3,0 =

b33

d3
; S0 =

d1X1,0X2,0 − b1

bS1

(13c)τ =
d3

d2
; τ1 =

d3

d1X2,0
; k1 = 1−

b1

d1X1,0X2,0
; β =

b12X1,0

d2X2,0
; k3 =

K3

X2
3,0

.

(14)

�a =

[

1− k1

τ1
,
k1s

τ1
,
x1x2

τ1
,
1− β

τ
,
βx1

τ
,
x2

τ
, k2x1,

k3x
2
3

k4 + x23
, x3

]T

; ν =

[

1 1 − 1 0 0 0 0 0 0
0 0 0 1 1 − 1 0 0 0
0 0 0 0 0 0 1 1 − 1

]
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The corresponding Langevin equation (Eq. 1) considers the following state vectors, reaction rate vectors and 
stoichiometry matrix:

where ksBH3 = 0.025 , ks2 = 0.02 ks3 = kdBH3 = 0.25 , kaC8 = 0.03 , kiC8 = 0.1 , kf 1 = 1 , kf 2 = 300 , kb = 2 , 
kasXC = 9000 , kdsXC = 0.05 , kasHC = 1000 , kdsXC = 0.01 , [BaxT] = 1 and [BclT] = 0.85.

Numerical simulation and dynamical analysis.  For both models, numerical integation of Langevin 
equations are performed with 4th-order Runge-Kutta method and probability distribution PD(s) are plotted 
with a statistics of 2000 trials with a measurement time of t∗ = 500 . η is computed by interpolating PD(s) and 
approximating ∂sPD(s50) ≈ 0.4

s70−s30
 where PD(sx) = x/100 . State-space trajectories are represented in some rel-

evant subspace of the state space where the steady states �xst/sad/sn satisfying f (�x) = 0 are represented by the con-
ventional filled/empty/half-empty circles. The steady-state branches �xst/sad(s) are also represented for the sake 
of comparison for different parameter values. The set of mathematical notations used are given in the Table 1.
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SUMMARY

Living cells use signaling and regulatory mechanisms to adapt to environmental
stresses. Adaptation to oxidative stress involves the regulation of many enzymes
in both glycolysis and pentose phosphate pathways (PPP), so as to support PPP-
driven NADPH recycling for antioxidant defense. The underlying regulatory logic
is investigated by developing a kinetic modeling approach fueled with metabolo-
mics and 13C-fluxomics datasets from human fibroblast cells. Bayesian parameter
estimation and phenotypic analysis of models highlight complementary roles for
several metabolite-enzyme regulations. Specifically, carbon flux rerouting into
PPP involves a tight coordination between the upregulation of G6PD activity
concomitant to a decreased NADPH/NADP+ ratio and the differential control
of downward and upward glycolytic fluxes through the joint inhibition of PGI
and GAPD enzymes. Such functional interplay between distinct regulatory feed-
backs promotes efficient detoxification and homeostasis response over a broad
range of stress level, but can also explain paradoxical pertubation phenotypes
for instance reported for 6PGD modulation in mammalian cells.

INTRODUCTION

The oxidative pentose phosphate pathway (oxPPP) is a fundamental pathway of glucose metabolism

involved in nucleotide biosynthesis and redox homeostasis (Stincone et al., 2015). Its role is prominent

following an oxidative stress to generate NADPH required for fueling antioxidant machinery and producing

biosynthetic precursors required for repairing DNA damage. A significant increase of metabolic flux in this

pathway is commonly observed in any living cells subjected to oxidative stress (Ben-Yoseph et al., 1996;

Ralser et al., 2007; LaMonte et al., 2013; Kuehne et al., 2015; Christodoulou et al., 2018; Nikel et al.,

2021). A common rationale for such metabolic flux rerouting relies on the acknowledged roles of NADP

as a coenzyme and NADPH as a competitive inhibitor of the first oxidation reaction of the oxPPP (Warburg

and Christian, 1936; Negelein andHaas, 1935; Eggleston and Krebs, 1974). The scavenging activity of gluta-

thione antioxidant is coupled to the oxidation of NADPH into NADP+, which is therefore prone to increase

G6PD activity and NADPH production. However, oxidative stress has also been shown to induce the allo-

steric or oxidative inhibition of diverse glycolytic enzymes such as PGI (Kuehne et al., 2015; Dubreuil et al.,

2020), GAPD (Ralser et al., 2007; Peralta et al., 2015), PK (Anastasiou et al., 2011), or TPI (Grüning et al., 2011,

2014). A complex pattern of regulation at the levels of both PPP and glycolysis raises the question of their

coordination for efficient metabolic rerouting.

The metabolic network combining glycolytic and pentose phosphate pathways displays a complicate

branching structure comprising both reversible and irreversible reactions, which obstructs intuitive under-

standing of multisite metabolic regulation. To investigate complex regulatory patterns, the kinetic

modeling framework is often used to disentangle the respective and cooperative roles of multiple feed-

back regulations (Relógio et al., 2011; Pfeuty et al., 2018; Sander et al., 2019). Several kinetic models

have addressed oxPPP dynamics with respect to a specific organism and experimental dataset (Thorburn

and Kuchel, 1985; Schuster and Holzhütter, 1995; Kerkhoven et al., 2013). Nowadays, advanced metabolo-

mics and fluxomics studies such as kinetic measurements of concentrations and isotopic labeling patterns

provide a rich material to build increasingly reliable and comprehensive kinetic models (Miskovic et al.,

2015; Foster et al., 2019; Hameri et al., 2019). Regarding the regulation of the oxidative stress response,

such data are available and have already been analyzed in terms of significance and ranking of diverse
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regulatory hypothesis (Kuehne et al., 2015, 2017; Christodoulou et al., 2018). However, questions remain

about the interplay and cooperativity between those different regulatory mechanisms.

In the present study, we aim to build a class of kinetic models inferred from a comprehensive dataset asso-

ciated with the oxidative stress response of neonatal human skin fibroblasts (Kuehne et al., 2015). On the

one hand, the network structure of the model is chosen to fit with the available data and with the objective

to understand metabolic flux rerouting for H2O2 detoxification. On the other hand, flux analysis from 13C-

labeling data and parameter estimation from flux and concentration data are based on Monte Carlo sam-

pling methods (Saa and Nielsen, 2016; Valderrama-Bahamóndez and Fröhlich, 2019; Theorell and Nöh,

2020) so as generate a representative sample of kinetic models consistent with experimental measurement

values and their uncertainties. From such model ensemble, we perform a comprehensive set of analysis

regarding parameter distributions, transient dynamical responses, dose-response properties, and gain/

loss-of-function phenotypes, which portrays the manner how allosteric and redox regulations contribute

to the metabolic response upon oxidative stress. In particular, these analyses converge to the notion

that distributed allosteric regulation is required for efficient metabolic rerouting where regulatory mecha-

nisms display both complementary and cooperative roles.

RESULTS

Kinetic modeling of metabolic response to oxidative stress

Kinetic modeling of the early metabolic response to oxidative stress follows the conventional framework for

building kinetic models of metabolic pathways (Miskovic et al., 2015; Foster et al., 2019; Hameri et al., 2019).

The metabolic and regulatory network structure considered in this study is described in Figures 1A and S1

and the workflow from the integration of metabolomics and fluxomics data to model ensemble analysis is

recapitulated in Figure 1B and STAR Methods. The dynamic response of a metabolic network to an oxida-

tive stress perturbation can be described by a set of differential equations derived from the stoichiometry

and enzyme-kinetic reaction rates:

d x!
dt

= N 4!� x!;Sðt;HÞ; p!� (Equation 1)

where x! = ½xi = 1;16� represents the concentrations ofmetabolite species i,N denotes the stochiometricma-

trix, 4! = ½4j = 1;23� represents the reaction rates associated with enzymes j (see Table S1), Sðt;HÞ = HHðtÞ is

Figure 1. Modeling workflow

(A) Selected set of metabolic and regulatory pathways involved in oxidative stress response (see also Figure S1). The network comprises the glutathione,

glycolytic, and pentose phosphate pathways supplemented with a selected set of allosteric and oxidative regulations (red arrows).

(B) Modeling workflow from the integration of 13C fluxomics andmetabolomics data (Kuehne et al., 2015) to parameter estimation of kinetic model ensemble

and regulation analysis of transient response, dose response, and gain/loss-of-function phenotypes.
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theHeaviside step exposure to extracellular concentrations of H2O2, and p! = ½pk = 1;48� represents the enzy-
matic or regulatory parameters (see Table S2). The steady-state equation is given by N F

!ðX!;H; p!Þ = 0

where capitalized X
!

and F
!

denote steady-state concentration and flux vectors.

The main specificity of our class of kinetic metabolic model relates to its regulatory scheme. So far, kinetic

models of oxidative stress response investigate early intracellular responses at the levels of antioxidant

pathways (Adimora et al., 2010; Kembro et al., 2013; Benfeitas et al., 2014) or of glycolytic and pentose

phosphate pathways (Thorburn and Kuchel, 1985; Schuster and Holzhütter, 1995; Kerkhoven et al., 2013;

Christodoulou et al., 2018), leaving out the TCA cycle. The latter studies either did not include allosteric

and oxidative regulations or explored all possible metabolite-enzyme regulations. In contrast, our model

specifically addresses the respective roles of a subset of regulatory mechanisms that has been acknowl-

edged to contribute to some respect to rapid metabolic adaptation to oxidative stress, namely NADPH-

dependent inhibition of PPP enzymes (Yoshida and Lin, 1973; Holten et al., 1976; Christodoulou et al.,

2018), 6PG-dependent inhibition of PGI (Parr, 1956; Kahana et al., 1960; Gaitonde et al., 1989; Kuehne

et al., 2015; Dubreuil et al., 2020), oxidative inhibition of GAPD (Ralser et al., 2007, 2009; Peralta et al.,

2015; van der Reest et al., 2018), G6P-dependent inhibition of HK, and regulation of other NADPH-

consuming or producing reactions (Jeon et al., 2012; Lewis et al., 2014; Fan et al., 2014; Chen et al.,

2019). Notable exceptions have been to leave out the inhibitions of PK, TPI, or PFK1 enzymes (Anastasiou

et al., 2011; Grüning et al., 2011, 2014; Mullarky and Cantley, 2015) as depicted and explained in Figure S1.

Refined analysis of stress-induced flux redistribution

The stress-induced redistribution pattern of metabolic fluxes can be inferred without any knowledge about

kinetic parameters. Although an expected feature of such redistribution is the increased flux in the oxida-

tive branch of PPP, it remains unclear to which extent is such increase and whether the oxPPP flux is rather

directed toward nucleotide production or toward the nonoxidative branch of the PPP. To gain a quantita-

tive description of stress-induced redistribution of metabolic fluxes, we reanalyze 13C-labeling data

(Kuehne et al., 2015) using a stochastic simulation algorithm-based 13C metabolic flux analysis (SSA-based
13C-MFA described in STARMethods) to simulate the isotope labeling system (Thommen et al., 2022) and a

Monte Carlo sampling to determine posterior distribution of flux parameters. We obtain a distribution of all

reaction fluxes (Figures 2A and S2A) associated with an accurate fit of mass isotopomer data (see

Figures S2C and S2D). The size of confidence intervals associated with the estimated flux distribution de-

termines whether the flux can be estimated accurately enough to be used as a constraint for kinetic

modeling (Figure S2B).

The estimated flux distribution pattern in absence and presence of oxidative stress can be summarized for

the main branches of the metabolic network as depicted in Figures 2B and 2C. The metabolic state in the

unstressed condition corresponds to a glycolytic flux mode where a minor fraction (� 20%) of glucose

import flux is diverted toward oxPPP (Figure 2B). Exposure of H = 500 mM leads to a significant increase

in oxPPP flux up to � 95% which is further split between nucleotide production and nonoxidative PPP (Fig-

ure 2C). It also leads to a significant reduction of about 3-fold of metabolic flux in the lower glycolytic

branch below GAP. This value coincides with the fold-change reduction of PEP concentrations about 2.8

reported in the data (Kuehne et al., 2015). The decrease in PEP concentration, concomitant to that of

GAPD flux, justifies the model assumption of not considering oxidative inhibition of PK and allosteric

inhibition of TPI mediated by PEP (Figure S1).

In addition to the net fluxes associated with the branching architecture of the metabolic network, it is to

note that some directional fluxes could be estimated in the nonoxidative PPP reactions as well as in the

reversible PGI reaction, which are valuable information for kinetic model building.

Optimization and inference methods identify a plausible ensemble of kinetic models

Besides the redistribution of metabolic fluxes, oxidative stress response also induces rapid changes in

metabolic concentrations below the minute timescale (Kuehne et al., 2015), which together provides a valu-

able dataset to estimate the parameters of kinetic models described by Equations 1 and 3. Our parameter

estimation problem consists in estimating the values of 36 parameters (i.e., 12 parameters are fixed

including equilibrium constants to consider thermodynamic constraints (Li et al., 2011)) from a dataset

comprising 13 estimated values of fluxes and 12 measured values of concentration ratios at t = 5min.

The procedure combines two classes of global optimization methods, namely an evolutionary genetic
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algorithm and aMarkov Chain Monte Carlo (MCMC) algorithm, following a stepwise strategy recapitulated

in Figure 3A and detailed in STAR Methods. First, the nRMSE (Equation 9 in STAR Methods details) of

kinetic models whose parameters are randomly sampled (106 runs) lies with a 50% confidence interval

between 2.6 and 55.4, thus confirming the need of a parameter optimization procedure to find model pa-

rameters consistent with experimental data. Second, an evolutionary genetic algorithm is used as a prelim-

inary step to generate a sample of optimized models whose 50% confidence interval of nRMSE values lies

between 0.8 and 3. Third, a small subset of such local optimum solutions whose nRMSEðpÞ< 1 is used as

initial conditions of MCMC sampling algorithm of the parameter space. The parameter distribution ob-

tained with large enough sampling of � 106 accepted steps provides an estimation for parameter uncer-

tainty and defines a statistical ensemble of kinetic model that is called Popt and that is analyzed in details

in the following. Such statistical model ensemble is characterized with a 50% confidence interval of nRMSE

between 0.63 and 0.86 for which the estimated distributions of fluxes and concentration ratios fall within

the range of experimental uncertainties (Figures 3B and 3C) and whose R-squared values are respectively

R2 = 0:86G0:03 and R2 = 0:96G0:02. Parameter distributions shown in Figure 3D discriminate between

stiff and sloppy parameters for which 50% confidence intervals span from few percents to several order

of magnitude of parameter variations. Spectral analysis of correlation matrix confirms indeed the existence

of a few poorly estimated parameters generally associated with strong correlation between parameters of a

same reaction (see Figures S3A and S3B). Last, a dataset about dynamic and dose-dependent concentra-

tion responses has been retained to assess the predictive capability of the plausible set of model Popt (see

Figure S3C). The dynamical and dose response are overall well predicted with, respectively, R2 = 0:82G

0:05 and R2 = 0:48G0:04 due to sparse discrepancies such as a lower threshold of 6PG response.

In summary, the parameter estimation procedure generates a plausible set of kinetic models whose param-

eters show rather narrow distributions, except some parameters that have a little impact on data

Figure 2. Stress-induced flux redistribution

(A–C) Mean and SD of the distribution of normalized flux rates obtained using stochastic stimulation algorithm (SSA) for
13C-MFA (see STARMethods details). Estimation is restricted to a set of elementary flux parameters (while other fluxes can

be derived from balance equations) where the index i indicates the enzyme and the index j indicates the directionality and

where estimation is performed for basal (B, blue) or stress (S, red) conditions. Triangles indicate parameter estimation that

is statistically significant based on the relative size of confidence interval distribution (see Figure S2B). (B and C)

Representation of the net flux rates in basal (B) and stress (C) conditions.
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adjustment or that can be compensated by the change of other parameters. Importantly, most inhibitory

constant parameters (KiG6PD , KiGAPD and KiPGI) show a narrow distribution, confirming the role of these reg-

ulations in shaping the metabolic response to oxidative stress. In the following, we systematically perform

analysis on this model ensemble Popt to draw a statistical picture of the regulatory properties.

Transient metabolic responses following stress display multiphasic time courses

The characteristics of the transient dynamics after oxidative stress exposure and before reaching some

steady state give some preliminary insights about the respective contributions of passive and regulated

metabolic responses (Figures 4 and S4). The minute time resolution in the time series dataset seemed

not sufficient to identify trends arising at the second timescale (Ralser et al., 2009; Christodoulou et al.,

2018). In the simulations of the model ensemble Popt , metabolites within a same metabolic module share

a similar dynamic response profile (Figure 4). First, PPP metabolites display a rapid and significant mono-

phasic increase. Second, antioxidant NADPH and GSH metabolites display a fast and significant decrease

Figure 3. Model selection and parameter estimation

(A) Whisker plots associated with random parameter set (106), optimized parameter set using an evolutionary genetic

algorithm (104), and parameter set (Popt ) sampled with MCMC algorithm (106).

(B and C) Whisker plots of the concentration ratio XiðH = 500Þ=XiðH = 0Þ for the model ensemble Popt (red) as compared

with the mean and SD of experimental values (black). (C) Whisker plots of a subset of normalized reaction fluxes Fi= FGLU

for themodel ensemblePopt (H = 0 in blue andH = 500 mM in red) as compared with themean and SD of estimated values

(black).

(D) Violin plots of parameters for the model ensemble Popt where the explored parameter space is represented in white

(non-gray).
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followed by a slower increase. Third, glycolytic metabolites show moderate changes where a fast decrease

seems followed by a slower increase. These different temporal response patterns are typically character-

ized with a biphasic response where a fast passive response to the perturbation is quickly followed by a

slower regulated response.

Figure 4. Transient dynamics of stress-induced metabolic responses

Temporal response of model ensemble Popt to a step of 500mMH2O2 representing the mean value (blue line), a subsample of 50 trajectories (gray line) and

the SD (gray shadow).

(A) Dynamic response of all metabolite species until 5 min.

(B–D) Temporal response of H2O2, G6P, and GAPD activity until 100 s, highlighting multiphasic and rapid adaptation responses.
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The biphasic nature of the transient response is illustrated in the case of intracellular concentrations of

H2O2 and G6P (Figures 4B and 4C). H2O2 shows a sharp increase about several orders of magnitude whose

timescale within seconds relates to the basal degradation timescale kGR 3 KmGGPx � 10s. The time profile

of H2O2 later displays an overshoot in the time course where decrease of H2O2 mirrors the increase in GSH

and NADPH, which coincides with the accumulation of glycolytic metabolites including G6P. G6P shows

indeed a rapid decrease until � 10s before to increase again to eventually exceed its initial value (Fig-

ure 4C). The early decreasing phase of G6P dynamics coincides with an increased consumption through

G6PD associated with higher NADP+/NADPH levels while the late increasing phase can only be due to a

decreased glycolytic flux through PGI related to the inhibition of glycolysis at the levels of GAPD or PGI.

GAPD inactivation occurs indeed very rapidly within few seconds (Figure 4D), being a possible candidate

for the accumulation of G6P and detoxification of H2O2 occurring within 10th of seconds.

In summary, the biphasic response observed in simulations of the plausible set of models distinguishes

between a detoxification response in less than a second using the reservoir of GSH and NADPH and a

metabolic rerouting response from few to tenths of seconds involving the inhibition of glycolysis to quickly

restore high G6P levels.

Dose-response analysis identifies rate-limiting reactions

The redistribution pattern of metabolic fluxes is determined for a specific level of H2O2 for which 13C

labeling data were available. The oxPPP flux normalized to the glucose import flux, FG6PD=FGLU , is around

1 (Figure 2A) which is far below the maximal flux capacity associated with the full inhibitions of GAPD and

PRPP enzymes (i.e., FG6PD=FGLU % 6). To explore the detoxification and flux capacity at higher stress level,

we perform a dose-response analysis of the kinetic model ensemble Popt focusing respectively on the anti-

oxidant response, the concentration response, and the flux response (Figures 5 and S5). Simulation of the

metabolic response at 5 min as function of H shows a transition in the detoxification response around

500mM (Figure 5A). Below this value, the detoxification activity of GPx increases with oxidative stress level

thereby keeping low intracellular levels of H2O2 at the expense of an increased reduced state of gluta-

thione. Above this value, GPx activity saturates such that reaction flux is bounded and cannot increase

anymore to compensate for the increase in H2O2 production above some level. Beyond this threshold,

H2O2 is eliminated by catalase consistently with the idea of that the rate-limiting enzymes depend on intra-

cellular H2O2 concentrations (Makino et al., 2004; Ng et al., 2007). Another qualitative change of the meta-

bolic response is observed for large enough H2O2 (Figure 5B). 6PG does not quickly reach a steady state

and continues to slowly increase, as values differ between 5 min and 30 min. The appearance of a slower

equilibration dynamics of 6PG coincides with the saturated kinetics of 6PGD enzymatic reaction associated

with increased levels of 6PG below that value of Km6PGD . In parallel to the concentration changes of H2O2

and 6PG, the dose response of metabolic fluxes displays a gradual change from a glycolytic mode to oxPPP

Figure 5. Dose-dependent profile of stress-induced metabolic response. Response to varying level H of extracellular H2O2 measured at 5 min (full

line) and 30 min (dashed line)

(A) Dose response in the glutatione pathway of H2O2

H , GPx, and GSH/GSSG ratio.

(B) Dose response of 6PG metabolite (other metabolites are shown in Figure S5).

(C) Dose response of the fluxes through enzymatic reactions G6PD, TKT, GAPD, and PRPP (normalized to glucose import rate FGLU ).
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mode up to FG6PD=FGLU � 1:3> 1 indicating that carbon atoms can be recycled multiple times into oxPPP

(Figure 5C).

In conclusion, dose-response analysis identifies distinct classes of rate-limiting mechanisms, where satu-

rated activities of antioxidant enzymes restrain H2O2 detoxification for a given NADPH load while saturated

activities in PPP enzymes and a leak flux through PRPPs reaction restrain the maximal production rate of

NADPH.

Regulation analysis reveals complementary ranges of regulatory efficiencies

The model comprises several regulatory mechanisms likely to contribute to the metabolic flux rerouting

to oxidative stress. Some of these regulations directly act at the levels of reactions producing or

consuming NADPH notably in oxPPP (KiG6PD , Ki6PGD , KiNNH) while others operate at the level of glycolysis

(KiGAPD , KiPGI and KiHK ). The distribution of estimated Ki values provides a preliminary insight for the

need of regulation to reproduce experimental data. Computation of inhibitory strength Xj=Kij (= 1 for

enzymatic activity divided by two) over the model ensemble Popt reveals that stress condition is associ-

ated with significant inhibition of PGI and GAPD (Xj=Kij [ 1) but also significant disinhibition of G6PD

(Figure 6A). In contrast, other inhibitory strength is either low or poorly constrained such as the feedback

inhibition of HK enzyme.

A more comprehensive strategy to quantify regulatory effects consists in measuring gain of function or loss

of function associated with the deletion of a single regulatory mechanism (Kii/N), other things being

equal. For such aim, we define a sensitivity quantity D measuring the impact of modulating regulatory pa-

rameters on some functional output such as intracellular H2O2 (Equation 10 in STARMethods).DY
Ki/N larger

or lower to one indicates that deleting the regulation increases or decreases the steady-state level of Y. In

Figure 6B, removal of NADPH-dependent inhibition of G6PD and H2O2-dependent inhibition of GAPD

leads to higher H2O2 and lower NADPH, highlighting significant contributions of these regulations for

NADPH homeostasis and H2O2 detoxification. Surprisingly, deleting the inhibition of PGI has a minor

impact on metabolic outputs of interest, which can nevertheless be interpreted by a low net flux through

PGI (F+
PGI � FPGI

�) for a particular stress level (Figure 2C).

To investigate whether regulation efficiency indeed depends on oxidative stress level, we evaluate the

deleterious effect of removing a regulation (i.e., loss of function) as function of H (Figures 6C, 6D, and

S6). The dose-dependent profile of DH2O2

Kii
ðHÞ distinguishes different ranges of stress level for which each

regulation Kii is the most efficient (Figure 6C). First, the efficiency of G6PD upregulation is the highest

for low-to-moderate stress level because enzyme activity rather than G6P level is rate-limiting. Second,

the efficiency of 6PG-dependent inhibition of PGI (null for H = 500 in Figure 6B) peaks at intermediate

stress level as it requires both high enough stress for 6PG accumulation (see Figure 5B) and not-too-

high stress such that the downward flux prevails over the upward flux in PGI reaction (F+
PGI >FPGI

� or equiv-

alently FG6PD=FGLU < 1) (see Figure 5C). Third, the efficiency of GAPD inhibition culminates at

high oxidative stress consistently with its ability, in addition to restore G6P levels, to reverse glycolytic

flux coming from the nonoxidative branch of the PPP, thus making possible a flux cycling mode where

FG6PD=FGLU > 1.

To clarify how to reconcile the results that inactivation of GAPD starts at low intracellular oxidant levels

(i.e., H2O2 � KiGAPD � 2mM) and GAPD inactivation is the most effective for high oxidative stress (H>

400mM), we also compute response coefficients (Equation 11 in STAR Methods) as function of stress level

H (Figure 6D). The results show that the effect of Kigapd on 4oxPPP is already effective for low H values but

starts to increase for higher stress level. This dose-dependent effect might relate to the fact that GAPD

inhibition is more prone to promote a glycolytic flux toward G6P and oxPPP flux when the carbon flux in

the nonoxidative branch of PPP is already flowing from R5P to GAP (due to increased levels of R(u)5P

metabolites).

Besides complementary efficiency ranges, two regulations can also combine their effect in non-trivial man-

ners. For instance, G6PD upregulation leads to 6PG accumulation which potentializes the inhibition of PGI.

Alternatively, PGI inhibition reduces G6P consumption which potentializes the upregulation of G6PD.

These are second-order effects that are quantified by the computation of sensitivity factors DY
Kij ;Kik/N asso-

ciated with the combined deletion of two regulations (Figure 6E).
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Ambivalent role of 6PGD enzyme in oxidative stress response

G6PD, 6PGD, and TKT enzymes are common targets of loss-of-function experiments to investigate oxida-

tive stress response (Kuehne et al., 2015; Nóbrega-Pereira et al., 2016; Wan et al., 2017; Sun et al., 2019;

Dubreuil et al., 2020). We therefore perform simulations of our model ensemble Popt while varying the

enzymatic activity parameter from 10-fold reduction to 10-fold increase. We record both the mean of intra-

cellular H2O2, the NADPH-producing oxPPP flux, and some concentration metabolites for the model

ensemble Popt (Figure 7). Expectedly, increase (resp., decrease) of kG6PD leads to a more (resp., less) effi-

cient oxidative stress response related to subsequent change in the oxPPP flux of NADPH production

(Figures 7A and 7B). In sharp contrast, modulation of k6PGD leads to amore surprising and ambivalent meta-

bolic response (Figures 7C and 7D). Depending on the level of stress and of modulation, we observe that

both the increase and the decrease of k6PGD can hamper the oxidative stress response, while decreasing

k6PGD can both weaken and improve oxidative stress response. These ambivalent phenotypes relate to

the dual effect of modulating k6PGD on G6PD activity itself but also on the increased level of 6PG that

Figure 6. Regulation analysis based on gain/loss-of-function simulations

(A) Inhibitory strength Xi=Kij associated with the inhibition of enzyme j by metabolite i for H = 0 (blue) and H = 500mM

(red). Xi=Kij = 1 indicates that inhibition reduces enzymatic activity by 2-fold.

(B) Sensitivity factor DY
Pi
ðDKii = NÞ (Equation 10) of output Y with respect to several deletions of regulation Kii in abscisse,

where the outputs Y are the metabolic responses of H2O2, NADPH, and G6P to oxidative stress relative to basal levels.

Bars are mean values and error bars are standard deviations over the kinetic model ensemble Popt .

(C) Sensitivity factor DH202
Pi

ðH;DKii = NÞ of H2O2 with respect to deleted regulation KiGAPD , KiG6PD , KiPGI as function of H.

The dose-specific areas of regulatory effect associated with each deleted regulation (DðHÞ=Dmax > 0:5) is shown upper to

the panel.

(D) Response coefficients RH202
Pi

ðHÞ and RFoxPPP

Pi
ðHÞ (Equation 11) associated with modulated inhibition of upper and lower

glycolysis KiPGI and KiGAPD as function of H.

(E) Second-order sensitivity factor DY
Pi
with respect to the combined deletion of two regulations in comparison to the

single deletions.
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inhibits PGI activity and upregulates both G6P level and G6PD flux. Specifically, reducing k6PGD can lead to

an imbalanced state associated with increased metabolic flux through 6PGD and decreased flux through

G6PD, whose relative effect determines the occurrence of loss or gain of function. Last, the modulation

of kTKT has a moderate effect on flux reprogramming restricted to higher stress level (Figures 7E and

7F), consistently with the dose-dependent increase of flux in nonoxidative PPP (Figure 5C) and its crucial

role for enabling a cycling flux where 4G6PD=4GLU > 1. It is to note that some trends observed for the con-

centration response of glycolytic and PPP intermediates in response to modulation of kG6PD and kTKT (see

Figure S7) are qualitatively consistent with knockdown experiments (Kuehne et al., 2015).

DISCUSSION

In this work, we use a kinetic modeling approach to investigate the interplay between several metabolic

regulations in that specific functional context of oxidative stress response. Data-driven kinetic modeling

framework is commonly used to identify large-scale patterns of metabolite-enzyme interactions and to

investigate the role of allosteric regulation in controlling metabolic phenotypes (Grimbs et al., 2007;

Link et al., 2013; Machado et al., 2015; Jahan et al., 2016; Reznik et al., 2017; Millard et al., 2017;

Figure 7. Gain/loss of function associated with modulated activity of PPP enzymes

Sensitivity DY
X of output Y with respect to modulation of X (Equation 10) as a function of H and the extent of parameter modulation.

(A–F) The output variable Y is either H2O2 (A, C, and E) or NADPH-producing flux (B, D, and F) and themodulated parameter is either kG6PD (A and B), k6PGD (C

and D) or kTKT (E and F).
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Christodoulou et al., 2018; Britton et al., 2020). The present study purposely focuses on a selected set of

regulation proposed to contribute to the rapid and global changes of flux and concentration upon oxida-

tive stress, resulting in PPP upregulation and NADPH recycling to support antioxidant systems (Ralser et al.,

2007; Kuehne et al., 2015; Mullarky and Cantley, 2015; Stincone et al., 2015; Dick and Ralser, 2015; Christo-

doulou et al., 2018). By integrating metabolomics and fluxomics data, kinetic modeling reveals that the

observed concentration and flux responses require the co-operation of multiple regulatory mechanisms,

and that such co-operation follows a rationale of metabolic efficiency in terms of complementary and syn-

ergistic effects. Specifically, we highlight that the regulations of several PPP and glycolytic enzymes all fulfill

different but coordinated roles for stress-induced carbon flux rerouting.

Using NADP+ as a substrate and NADPH as a feedback inhibitor, G6PD enzyme is sensitively activated by

the decrease of NADP+/NADPH redox ratio associated with the oxidation of NADPH (Yoshida and Lin,

1973; Holten et al., 1976; Christodoulou et al., 2018). However, the efficiency of this sole regulatory mech-

anism is shown to be hampered by the concomitant decrease of G6P when oxPPP fluxes becomes of the

order of downward glycolytic flux. Mechanistically, such decrease of G6P can be compensated either by

a reduction of G6P consumption through PGI inhibition or an increase of G6P production through accumu-

lation of glycolytic intermediates itself mediated by the inhibition of glycolytic enzymes below F6P. In our

class of kinetic models built from a specific dataset, such inhibition is likely to be mediated by the oxidative

inactivation of GAPD, but the inhibition of TPI (Grüning et al., 2011) or PFK1 (Seo and Lee, 2014) could also

fulfill a similar flux rerouting role. Interestingly, inhibition of GAPD is more effective to promote oxPPP for

significant stress levels coinciding with a carbon flux in the nonoxidative branch of PPP flowing from accu-

mulated R5P to glycolytic intermediates. The inhibitory effect of a given glycolytic enzyme tightly depends

on its coupling with nonoxidative PPP reactions at the level of F6P and GAP metabolites. Each regulation

mechanism thus implements a specific flux rerouting strategy which results in complementary ranges of

efficiency but also synergistic cooperative effects, providing altogether a flexible metabolic adaptation

for diverse stress and cellular contexts. A systematic mapping between the regulation motifs and the

flux control properties (Machado et al., 2015; Britton et al., 2020) is needed to refine our understanding

of the role of regulation for maximizing NADPH yield over a broad range of perturbation and irrespective

to the metabolic state.

Besides insights into the regulatory logic, the modeling approach could also identify the main rate-limiting

processes for PPP flux increase and H2O2 detoxification. In the models, the maximal PPP flux generates up

to 3 mol of NADPH for 1 mol of glucose due to a cycling mode where each molecule of glucose can be

oxidized multiple times (Kuehne et al., 2015; Dick and Ralser, 2015; Britt et al., 2022), which is nevertheless

far from the maximal yield of 12 mol of NADPH in case of complete inhibition of PRPP and GAPD enzymes.

Besides the production of nucleotide precursors for DNA damage repair and of ATP for stress manage-

ment, we also identify several rate-limiting reactions including GPx enzyme (Ng et al., 2007), but also

6PGD enzyme. For instance, the tight regulation of 6PGD activity is critical for a functional accumulation

of G6P. Indeed, both upregulation and downregulation of 6PGD can penalize the oxidative stress response

by reducing PGI activity, either too weakly for enabling glycolysis shunt at low stress and too strongly for

enabling carbon recycling at high stress. Paradoxically also, the inhibition of 6PDG can both lower the

maximal flux capacity for NADPH production and promote the shunt of glucose into oxPPP through the

inhibition of PGI. This ambivalent effect explains the contradicting experimental observations where ge-

netic or pharmacological inhibition of 6PGD can either promote or decrease oxidative stress response

of mammalian cells depending on the context (Sun et al., 2019; Liu et al., 2019; Dubreuil et al., 2020).

Knowing that AMPK, a master regulator of many metabolic processes, is itself regulated by metabolites

in the oxPPP (Lin et al., 2015; Gao et al., 2019) and regulates glycolysis especially PFK1 (Wu and Wei,

2012), a better understanding of the regulated coordination between glycolysis and PPP is important for

a broad range of metabolic adaptations beyond oxidative stress response.

Limitations of the study

In the present study, kinetic models have been built from a specific experimental dataset associated with

neonatal human skin fibroblasts exposed to H2O2-supplemented medium, which questions whether un-

veiled regulatory patterns can be extrapolated to other types of cells and other sources of oxidative stress.

Although similar metabolic responses have been observed for different mammalian cell types and oxida-

tive stress sources (Kuehne et al., 2015; van der Reest et al., 2018; Christodoulou et al., 2019), there are also

evidences of alternative metabolic adaptation strategies which restricts the generalization of our findings.
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For instance, the feedback loop involving the regulation of PK and TPI glycolytic enzymes has also been

shown to contribute in oxidative stress response, especially in yeast (Anastasiou et al., 2011; Grüning

et al., 2011, 2014). Alternatively, oxidative stress response in some lower eukaryotic and prokaryotic organ-

isms has been shown to involve the Entner-Doudoroff pathway (Nikel et al., 2021) or the ribose salvage

pathway (Xu et al., 2013) which are both directly coupled to the PPP. Another limitation of the study inherent

to any kinetic model confronted to parameter identifiability issues relates to the possible biases related to

model abstractions and assumptions about the choice of reaction kinetics and of involved metabolic path-

ways leaving aside for instance large-scale metabolic activities and adaptations in the metabolism of ATP,

NAD(H), NADP(H), or glutathione.
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DOIs and URLs are listed in the key resources table.

d Any additional information required to reanalyze the data reported in this paper is available from the

lead contact upon request.

METHOD DETAILS

SSA-based 13C-MFA

Stochastic simulation algorithm (SSA) for 13C-basedmetabolic flux analysis (13C-MFA) is a direct method for

the forward simulation problem to compute the dynamics and steady state of (mass) isotopomer distribu-

tion in isotopic labeling networks (Thommenet al., 2022). Fromagiven flux distribution 4!and initial labeling

state, SSA computes the temporal evolution of isotopomer numbers which are pooled to obtain the mass

isotopomer distributionmi;j of species j. The sample size parameter of the algorithm is U = 200. From the

experimental valuesmk
i;j;exp measured for ni mass isotopomer, nj species j in nk labeling conditions (Kuehne

et al., 2015), SSA is performed iteratively using aMCMC samplingmethod based on a randomwalkMetrop-

olis algorithm (see section quantification and statistical analysis) for obtaining the posterior distribution of

flux parameters. In such flux estimation procedure, the root mean square error function is given by:

RMSEð4!Þ =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

Nm

X
i;j;k

�
mk

i;j;simð4!; tÞ � mk
i;j;expðtÞ

�2s
; (Equation 2)

where the measurement time is t = 10min and the number of experiments is Nm = ninjnk = 84 (ni = 3,

nj = 7, nk = 4).

REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited data

Target experimental data https://doi.org/10.1016/j.molcel.2015.06.017 Figure 2; Tables S1 and S5

Matlab code and simulation data https://doi.org/10.5281/zenodo.6656078

https://github.com/JHurb/

HurbainPaper_Algorithm/tree/v1.0.0

JHurb/HurbainPaper_Algorithm-v1.0.0.zip

SBML model http://www.ebi.ac.uk/biomodels/

MODEL2204220001

MODEL2204220001

Software and algorithms

Matlab https://www.mathworks.com/products/

matlab.html

R2018a

SSA 13CMFA arXiv:2201.00663v1
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Differential equation model

The temporal behavior of the metabolic network is described by a differential equation system:

d½H2O2�=dt = 4Ox � 4Cat � 4GPx (Equation 3a)

d½GSH�=dt = 24GR � 24GPx (Equation 3b)

d½NADPH�=dt = 4G6PD +46PGD +4NNH � 4NHN � 4GR (Equation 3c)

d½G6P�=dt = 4HK � 4G6PD � 4PGI (Equation 3d)

d½6PGL�=dt = 4G6PD � 46PGL (Equation 3e)

d½6PG�=dt = 46PGL � 46PGD (Equation 3f)

d½Ru5P�=dt = 46PGD � 4RPI � 4RPE (Equation 3g)

d½X5P�=dt = 4RPE � 4TKT1 � 4TKT2 (Equation 3h)

d½R5P�=dt = 4RPI � 4TKT1 � 4PRPP (Equation 3i)

d½S7P�=dt = 4TKT1 � 4TLD (Equation 3j)

d½E4P�=dt = 4TLD � 4TKT2 (Equation 3k)

d½GLC�=dt = 4GLU � 4HK (Equation 3l)

d½F6P�=dt = 4PGI � 4PFK +4TAL +4TKT2 (Equation 3m)

d½FBP�=dt = 4PFK � 4ALD (Equation 3n)

d½DHAP�=dt = 4ALD � 4TPI (Equation 3o)

d½GAP�=dt = 4ALD +4TKT1 � 4TAL +4TKT2 +4TPI � 4GAPD (Equation 3p)

For reversible reactions, we also introduce directional fluxes satisfying the relation 4j = 4+
j � 4�

j where, by

convention, the + direction goes from G6P to GAP in glycolysis and from R5P to GAP in nonoxidative PPP.

Note that 4PFK represents the net flux of the two reactions between F6P and FBP, where 4+
PFK corresponds

to the PFK1 reaction and 4�
PFK corresponds to the FBPase reaction.

List of abbreviations for metabolites and enzymes

Glc, intracellular glucose; G6P, glucose-6-phosphate; F6P, fructose-6-phosphate; FBP, fructose-1,6-bisphos-

phate; ALD, fructose 1,6 bisphosphate aldolase; DHAP, dihydroxyacetone phosphate; GAP, glyceraldehyde-

3-phosphate; PEP, phosphoenolpyruvate; 6PG, 6-phosphogluconate; 6PGL, 6-phosphogluconolactone; X5P,

xylulose 5-phosphate; R5P, ribose 5-phosphate; TPI, triosephosphate isomerase; Ru5P, ribulose 5-phosphate;

OX, oxidative stress E4P, erythrose-4-phosphate; S7P, sedoheptulose 7-phosphate; PEP, phosphoenolpyr-

uvate; GT, total glutathione; NT, total NADP; Cat, catalase GR, glutathione reductase; GPx, glutathione

peroxydase; Prx, peroxiredoxin; Trx, thioredoxin; HK, hexokinase; G6PD, G6P dehydrogenase; 6PGD, 6PG

dehydrogenase; GLase, 6-phosphogluconolactonase; PRPP, phosphoribosyl pyrophosphate; PGI, phospho-

glucose isomerase; PFK, phosphofructokinase (type 1); FBPase, fructose-1,6-bisphosphatase; GAPD, GAP de-

hydrogenase; PK, pyruvate kinase; TLD, transaldolase; TKT(1/2), transketolase (type 1/2); NNH, conversion from

NADP+ to NADPH; NHN, conversion from NADPH to NADP+.

Enzyme-kinetic reaction rates

Reaction rates 4ð ,Þ can be described by diverse kinetic laws (e.g., mass action, Michaelis-Menten, Hill,

Monod-Wyman-Changeux.). In the present work, we mainly use the generalized mass action kinetics,

eventually associated with inhibition:

MAðm;nÞ : 4
�
S; P; I; ki;Keqi;Kii

�
= ki

 Y
j = 1;m

Sj �
�
Keqi

�� 1
Y
j = 1;n

Pj

!
ð1+ I=KiiÞ� 1 (Equation 4)
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where m and n are the number of substrates and products.

However in the context of oxidative stress response, the significant increase of some metabolite

concentrations may require to take into account saturation constants that appear due to the formation

of intermediate complexes. A generalization of the uni-uni Michaelis–Menten equation can also be used

for irreversible and reversible uni/bi-substrate reaction kinetics (Rohwer et al., 2006):

MMðm;0Þ : 4ðS;P; ki;KmiÞ =
ki
Q

jSjQ
j

�
1+ Sj

�
Kmsj;i

� (Equation 5)

MMðm;nÞ : 4�S;P; ki;Keqi;Kmi

�
=

ki
�Q

jSj �
�
Keqi

�� 1Q
jPj

�
Q

j

�
1+ Sj

�
Kmsj;i +Pj

�
Kmpj;i

� (Equation 6)

where j = 1 for unisubstrate reactions and j = 1; 2 for bisubstrate reactions, and where the denominator

contains numerous terms for each substrates and products. In some bisubstrate reactions, the assumption

that S � Km is made so as to reducing the number of terms and parameter in denominator. Specifically,

Michaelis constants are considered only for 6PG, H2O2, GSSG and GSH and in nonoxidative PPP reactions.

For GPx and GR reactions, the saturation terms follow a common scheme based on experimental data

(Benfeitas et al., 2014). A minimal description of saturation in nonoxidative PPP reactions consists in keep-

ing only product terms (which prevails in case where Si=Kmi larger than one) and assumes a sameMichaelis

constant for substrates and products.

The oxidative stress-dependent inhibition of NADPH consumption related to putative biosynthetic shut-

down (Fan et al., 2014) is modeled as an effective rate constant kNADPH=
�
1 + ½H2O2 �

KiNNH

�
. As well, a simplified

description of the oxidative inhibition of GADP enzyme considers a two-state enzyme (non-oxidized and

oxidized) where the back-and-forth transition rates depend on the concentration of H2O2 and GSH,

respectively:

d½GAPD�=dt = f1ð½GSH�Þð½GAPDTOT � � ½GAPD�Þ � f2ð½H202�Þ½GAPD� (Equation 7)

which becomes following quasi-steady-state approximation and linear approximation of regulatory func-

tions f1 and f2:

½GAPD�
GAPDTOT

=
1

1+ f2=f1
z

�
1+

½H2O2�½GT �
½GSH�KiGAPD

	� 1

(Equation 8)

from which we derive the expression of 4GAPD given in Table S1. The reaction kinetic law associated to each

enzymatic reaction 4jð ,Þ is recapitulated in Table S1.

Parameter setting and estimation

Model includes 48 parameters including kinetic constants ki, equilibrium constants Keqi , Michaelis (satura-

tion) constants Kmi, inhibitory constants Kii, where i denotes the enzyme, but also conserved quantities ½NT �
and ½GT �. To restrict and ease the parameter estimation process, parameters are boundedwithin a restricted

range of realistic values as it is often assumed (Christodoulou et al., 2018). An exception is that 8 equilibrium

constant values Keqi have been fixed based on estimated physiological standard free energy of correspond-

ing reactions (Li et al., 2011). In addition, two saturation constants Kmi and the conserved quantities ½GT � =
2½GSSG�+ ½GSH� and ½NT � = ½NADPH�+ ½NADP + � have also been fixed based on typical values (Benfeitas

et al., 2014) and the modeling requirement to reduce parameter space and to constraint parameter estima-

tion. A specific model of index j is denoted as p!j
and a set k of model j = 1;Nk is denoted Pk .

Given a parameter space P where parameter values are restricted by upper and lower bounds (listed in

Table S2), the parameter estimation problem consists in scoring parameter set p!˛P by using a normalized

root mean square error (nRMSE) :

nRMSE
�
p! ˛ P� =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

NR +NF

 X
i = 1;NR

�
FCi;sim

�
p!� � FCi;exp

DFCi;exp

	2

+
X

i = 1;N4

�
Fi;sim

�
p!� � Fi;exp

DFi;exp

	2
!vuut ;

(Equation 9)
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where FCi = log2

�
XiðH = 500Þ
XiðH = 0Þ

�
are concentration ratios in log scale and Fi are the estimated fluxes of reaction

i in basal condition and in stress condition. Experimental data consists in NR = 12 and NF = 13 values of

concentration ratio FCi and estimated fluxes Fi with a typical standard deviation DFCi = 1 and DFi that

is estimated from 13C-MFA.

This error function is used first with a population-basedmetaheuristic algorithm called evolution strategy to

quickly explore and sample local solutions (Pfeuty and Thommen, 2016). Starting with a pool of NI = 20

parameter vectors of random values (bounded uniform distribution), the algorithm involves three steps:

(i) a reproduction step where a parent is randomly selected to be duplicated without applying any fitness

criterion at this stage, and to generate NI offspring; (ii) a mutation step where the parameters of each

offspring are modified with a probability pm through multiplication by a factor 10r , where r ˛ ½ � am; am�
is a random number of uniform distribution; (iii) a selection step where the nRMSE of the NI offspring

are evaluated, and only the NI highest-fitness individuals in the pool of 2NI parameter sets (parents and

offspring) are selected to generate the parents of the next generation. Finally, the optimization process

terminates after a maximal number of generations (NG = 104) where a local minimum of nRMSEðp!Þ is usu-
ally reached. This evolution is repeated for a broad set of random initial conditions to obtain a first set of

optimized models, some of which satisfies the plausibility criteria nRMSE < 1. The lowest-nRMSEmodel p!1

is used as an initial condition of the MCMC algorithm (see section quantification and statistical analysis)

used to sample a posterior probabilistic distribution of parameters. After a transient, a sample of 106

accepted values are recorded to converge to a representative model ensemble associated to quasi-

stationary distributions, while a random subsample of 105 models is used for the statistical analysis of

model behaviors.

Sensitivity analysis

Sensitivity quantities are defined to evaluate the effect of parameter changes on stress response behaviors.

Amodel ensemble is defined by a set of model p!j = 1;nM . For a given kinetic model of parameter values p!j
, a

parameter pj
i is multiplied by a factor Dpi. A sensitivity factor that informs about the impact of a given

parameter pi on the output state variable Y in response to a stress level H is given by:

DY
pi

�
H;Dpi

�
=

Y
�
H; q!j�

Y
�
H; p!j�; (Equation 10)

where qj
i = Dpip

j
i. The choice of parameter pi and variation Dpi are selected (i) to evaluate the impact of a

regulatory mechanism (i.e., pi are inhibitory parameters Kii andDpi = N) and (ii) to mimmic overexpression

or knockdown experiments (i.e., pi are enzymatic activity rates ki and 0:1<Dpi < 10). Another class of sensi-

tivity quantities are response coefficients:

RY
pi
ðHÞ =

vlnY ðHÞ
vlnpi

; (Equation 11)

The relation between both sensitivity quantities is given by RY
pi
ðHÞ = limDpi/1

h�
DY
pi
ðH;DpiÞ � 1

�
=ðDpi � 1Þ

i
.

Model updating procedure

From a methodological perspective, the modeling approach relies on a systematic procedure for model

inference and parameter estimation, which deliberately considers more parameters than data to provide

the possibility to update the probability distribution as additional data becomes available or as additional

mechanistic hypothesis are tested. MCMCmethod is very well adapted for suchmodel updating procedure

(Beck and Au, 2002). Specifically, MCMC sampling can be restarted from a given parameter distribution

with a modification of the score function and of the sample space. By testing the predictive capacity of

the model on dataset that are not included in the model inference procedure, we could indeed identify

sparse phenotypes poorly described by the model. An example of model improvement would be to

add the corresponding dataset into the monte-carlo sampling procedure which might slightly shift the

parameter set of solution to be consistent with these new dataset.

QUANTIFICATION AND STATISTICAL ANALYSIS

Monte Carlo Markov Chain (MCMC) method

Monte Carlo Markov Chain (MCMC) method is used for estimating the distribution of (i) metabolic flux from
13C labeling data and (ii) kinetic model parameters from concentration data and flux estimation. These two
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computational problems are both defined by a set of np parameters q
!
, a set of nd data values y! and a root

mean square error rð q!; y!Þ measuring the difference between data predicted by the parameters and the

actual data (see Equations 2 and 9). MCMC simulation methods use Monte Carlo sampling techniques

to build Markov chains that converge to the posterior distribution of parameters q associated to data Y.

For both problems, we consider a bounded uniform distribution for the prior. For sampling, a Metrop-

olis-Hasting algorithm is used to generate the random walk Markov chain based on (i) a Gaussian jumping

distribution and (ii) an acceptance rate function a that is the ratio of likelihood associated to the next

parameter state and actual parameter state. Typically, the likelihood function can be written based on

the expected or assumed distribution of observed data, as LðY ;qÞ = ð2psÞ�n=2exp
�
� n r2

2s2

�
. Specifically,

we use the acceptance rate a = min
�
1;exp

�
� r2

i + 1
� r2i

2s2

��
where the variances of jumping distribution and

likelihood function s are chosen to provide reasonable acceptance rate (> 10%) and convergence rate. a.

R-squared

Although R-squared is commonly used to assess the goodness-of-fit for a regression model, this quantity

can be applied, in addition to RMSE, to assess the fitting and prediction score for the ordinary differential

equation models without requiring knowledge about experimental uncertainties:

R2
�
p! ˛ P� = 1 �

P
i = 1;NY

�
Yi;sim

�
p!� � Yi;exp

�2
P

i = 1;NY

�
Y i;exp � Yi;exp

�2 (Equation 12)

where Yi;exp = 1
NY

P
i = 1;NY

Yi;exp and Y represents some measurement such as fold-change concentrations.
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Figure S1: Overview of metabolic pathways and metabolite-enzyme interactions involved in oxidative
stress response, related to Figure 1. Metabolic pathways are organized around (i) the antioxidant system (blue
metabolites), (ii) the oxidative and non-oxidative pentose phosphate pathway (green and violet metabolites) and
(iii) the glycolytic pathway (yellow metabolites). Arrows toward enzymes indicate the allosteric and oxidative
regulations potentially involved in rapid metabolic adaptations and flux rerouting to manage oxidative stress.
Colored areas correspond to metabolic and regulatory pathways that have not been incorporated in the model or
that have been described in a simplified manner. Red area: feedback mechanism mediated by the coordination of
oxidative inhibition of PK (Anastasiou et al., 2011) and PEP-dependent allosteric inhibition of TPI (Grüning et al.,
2011, 2014) is not considered since the considered dataset shows a 2.8-decrease of PEP (Table S5 of (Kuehne et al.,
2015)), suggesting weak or negligible inhibition of PK enzyme. Yellow area: feedback mechanisms mediated by the
regulation of oxidative phosphorylation (OXPHOS) generating ROS, ATP or NAD+ where ROS can contribute to
oxidative stress, ATP regulates PFK1 glycolytic reaction and NAD+ regulates GAPD activity. These feedback are
not considered due to (i) the lack of available experimental data about fluxes in the TCA and concentrations of
NAD(H) and (ii) the low variations of ADP/ATP and AMP/ATP ratios less than 2 fold reported in Table S5 of
(Kuehne et al., 2015). Orange area: Interconversion between F6P and F26BP is neglected due to the absence of
concentration data and 13C labeling data about F26BP. Blue area: intracellular detoxification of H2O2 is mediated
by several antioxidant reactions involving catalases and two thiol-based peroxidases (Prx and GPx). For the latter,
the model is restricted to gluthathione-dependent antioxidant system, keeping in mind that NADPH is the electron
donor in both systems suggesting strong similarities. Green area: besides gluthatione pathways and PPP, the many
other reactions involved in NADPH consumption and production (e.g., malic enzymes, IDH, fatty acid synthesis
and oxidation, folate cycle) are pooled in effective reactions called NHN and NNH respectively. Abbreviations:
TCA, tricarboxylic acid cycle; OXPHOS, oxidative phosphorylation; ROS, reactive oxygen species; FAO,FAS, fatty
acid oxidation/synthesis; For other abbreviations, see STAR Methods.
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Figure S2: Metabolic flux analysis from 13C labeling data, related to Figure 2. (A) Violin plot of the
estimated flux distribution obtained from MCMC sampling of SSA simulation of the labeled isotopic systems. Blue
and red indicate basal and stress conditions. (B) 50% confidence intervals of flux distributions where the threshold
0.4 (gray area) determines the subset of fluxes (indicated by triangles) whose estimation is accurate enough to be
used for the model fitting procedure. (C,D) Box plots of Mi,j obtained from MCMC sampling of SSA simulation
of the labeled isotopic systems in four labeling conditions as compared with experimental values (black circles) in
absence (C) and presence (D) of oxidative stress respectively. Color code represents m0 (blue), m1 (red) and m2
(blue) respectively.
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Figure S3: Parameter distribution and predictive capabilities of kinetic model ensemble, related to
Figure 3. (A) Reordered correlation matrix heatmap and accompanying dendrogram for the estimated kinetic
parameter pji of the adjusted model ensemble ~pj ∈ Popt. (B) Ranked eigenvalues of the correlation matrix. The
5 highest eigenvalues contributes to 50% of the variance (i.e., 50% of the variance can be captured by four linear
combinations of parameters). (C) Prediction of the model ensemble Popt compared to some experimental data that
were not purposedly used as target dataset in the nRMSE score function in the parameter estimation procedure.
Fold-change (FC) of metabolite concentrations after stress versus before stress exposure as function of time (up
panels) and extracellular H2O2 concentration (down panels). Model results (full line) is compared to data points
and averaged measurements (dashed mline) (Kuehne et al., 2015). Goodness-of-fit is evaluated by computing the
distribution of R-squared over the model ensemble. The predicted R-squared values associated to time series data
is R2 = 0.82± 0.05. The predicted R-squared value associated to dose-response data is R2 = 0.48± 0.04. Predicted
R-squared values are lower than adjusted R-squared values computed in Figure 3 (associated to t = 5min and
H = 500µM), but remains significantly high. The lower predicted R-squared value for dose-response data is due to
the disagreement observed for the 6PG increase at H < 250µM.
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Figure S4: Dynamic response of metabolite concentrations in glycolytic, gluthathione and pentose
phosphate pathways, related to Figure 4. The concentration axis uses a log-10 scale and units are µM. Blue
line is the mean trajectory and gray lines are trajectories associated to a random subsample of Popt.
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Figure S5: Dose-dependent response of metabolite concentrations in glycolytic, gluthathione and
pentose phosphate pathways, related to Figure 5. The concentration axis uses a log-10 scale and units are
µM. Blue line is the mean dose response curve t = 5min (full line) and t = 30min (dashed line).



Figure S6: Metabolic responses associated to deleted regulations, related to figure 6. The sensitivity
quantity is computed for deleted regulation where inhibitory constant pi →∞ and is represented with a log-10 scale.
log10 (∆) = 0 indicates an absence of effect. An opposite response of glycolytic metabolites G6P, F6P and GAP
(positive versus negative) is observed between the deletion of PPP enzyme inhibition (KiG6PD) versus deletion of
glycolytic enzyme inhibition (KiPGI , KiGAPD). This property suggests a cooperation between the upregulation of
PPP enzyme and the increase of G6P mediated by the inhibition of glycolytic enzyme inhibition for improving flux
rerouting efficiency toward oxPPP.



Figure S7: Metabolic responses depending enzymatic perturbation and oxidative stress level, related
to Figure 7. This figure focuses on the effect of modulating the activity of key enzymes (ki) on the concentration
response to oxidative stress, which relates to experiments shown in Figure 3 of (Kuehne et al., 2015) that shows
the influence of G6PD/TKT/TAL-knockdown. Comparison should however be taken carefully as transfection with
siRNA is made before treatment and such perturbation can lead to metabolic adaptations of the basal unstressed
state itself. Downregulation of kG6PD shows increased G6P and GAP and decreased 6PG (consistently with
experimental data.) Downregulation of kTKT shows decreased G6P, GAP and G6P (consistently experimental
data except for 6PG). Downregulation of k6PGD (that is not tested in experiments) shows an opposite qualitative
response to that of kG6PD, confirming the counterintuitive phenotype of perturbing 6PGD.



Reaction Law Rate equation
φOX T kOX + kdiff ([H2O2]ext − [H2O2])
φCAT MA(1,0) kCAT [H2O2]

φGPx MM(2,0) kGPx[H2O2][GSH]/( [GSH]
KmGGPx

+ [H2O2]
KmHGPx

)

φGR MM(2,0) kGR[NADPH][GSSG]/(1 + [GSSG]
KmGGR

+ [NADPH]
KmNGR

)

φNNH MA(1,0) kNAD[NADP+]

φNHN MA(1,0)+CI kNADPH [NADPH]/(1 + [H2O2]
KiNNH

)

φG6PD MA(2,0)+CI kG6PD[G6P ][NADP+]/(1 + [NADPH]
KiG6PD

)

φ6PGL MA(1,0) kGLase[6PGL]

φ6PGD MM(2,0)+CI k6PGD[6PG][NADP+]/(1 + [NADPH]
Ki6PGD

+ [6PG]
Km6PGD

)

φRPI MA(1,1) kRPE([Ru5P ]− [X5P ]
KeqRPE

)

φRPE MA(1,1) kRPI([Ru5P ]− [R5P ]
KeqRPI

)

φPRPP MM(1,0) kPRPP [R5P ]/(1 + [R5P ]
KmPRPP

)

φTKT1 MM(2,2) kTKT1([R5P ][X5P ]− [GAP ][S7P ]
KeqTKT1

)/(1 + ([R5P ][X5P ]
KmTKT1

+ [GAP ][S7P ])
KmTKT1

)

φTLD MM(2,2) kTLD([GAP ][S7P ]− [F6P ][E4P ]
KeqTLD

)/(1 + ([GAP ][S7P ]
KmTLD

+ [F6P ][E4P ])
KmTLD

)

φTKT2 MM(2,2) kTKT2([E4P ][X5P ]− [F6P ][GAP ]
KeqTKT2

)/(1 + ([E4P ][X5P ]
KmTKT2

+ [F6P ][GAP ]
KmTKT2

)

φHK MA(1,0)+CI kHK [GLC]/(1 + [G6P ]
KiHK

)

φPGI MA(1,1)+CI kPGI([G6P ]− [F6P ]
KeqPGI

)/(1 + [6PG]
KiPGI

)

φPFK MA(1,0) kPFK [F6P ]− kFBPase[FBP ]

φALD MA(1,2) kALD([FBP ]− [DHAP ][GAP ]
KeqALD

)

φTPI MA(1,1) kTPI([DHAP ]− [GAP ]
KeqTPI

)

φGAPD MA(1,0)+CI kGAPD[GAP ]/(1 + [H2O2][GT ]
KiGAPD

[GSH])

Table S1: Reaction table, related to STAR Methods. CI, MM(.,.) and MA(.,.) are the reaction kinetic
laws defined in STAR methods Eqs 4-6. T indicates diffusive transport.



Parameter Value Range References
kGPx 1s−1 [10−1; 101] (Benfeitas et al., 2014)

KmHGPx 0.04µM [10−1; 101] (Benfeitas et al., 2014)
KmGGPx 9.72µM [10−1; 101] (Benfeitas et al., 2014)
kGR 49s−1 [10−1; 101] (Benfeitas et al., 2014)

KmNGR 8.5µM [10−1; 101] (Benfeitas et al., 2014)
KmGGR 65µM [10−1; 101] (Benfeitas et al., 2014)
KiG6PD 10µM [10−1; 101] (Yoshida and Lin, 1973; Kuehne et al., 2015)
Ki6PGD 10µM [10−1; 101] (Yoshida and Lin, 1973; Holten et al., 1976)
KiPGI 100µM [10−2; 101] (Kuehne et al., 2015)
KiGAPD 100µM [10−2; 101] (Peralta et al., 2015)
KiNNH 100µM [10−1; 101]
Km6PGD 50µM (Ceyhan et al., 2005; Liu et al., 2019)
KmPRPP 65µM (Hove-Jensen et al., 2017)
KeqRPE 1.68 (Li et al., 2011)
KeqRPI 1.23 (Li et al., 2011)
KeqTKT1 1.62 (Li et al., 2011)
KeqTLD 0.36 (Li et al., 2011)
KeqTKT2 30 (Li et al., 2011)
KeqPGI 0.34 (Li et al., 2011)
KeqALD 66µM (Li et al., 2011)
KeqTPI 19.2 (Li et al., 2011)
kdiff 1s−1 [10−1; 101] (Benfeitas et al., 2014)
Φglu 40µM.s−1

[NT ] 30µM (Benfeitas et al., 2014)
[GT ] 3mM (Benfeitas et al., 2014)
ki 1s−1 [10−4; 101]

Table S2: Parameter space and values, related to STAR Methods. Range defines the range of variation
around the indicated value. Blank range indicates fixed value. Some values (e.g., Km or Ki, not Keq) are
approximated to rounded or averaged values from experimental measurements. References can be found in the
main manuscript.
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Carbon isotope labeling method is a standard metabolic engineering tool for flux quantification in living cells. To
cope with the high dimensionality of isotope labeling systems, diverse algorithms have been developed to reduce
the number of variables or operations in metabolic flux analysis (MFA), but lacks generalizability to non-stationary
metabolic conditions. In this study, we present a stochastic simulation algorithm (SSA) derived from the chemical
master equation of the isotope labeling system. This algorithm allows to compute the time evolution of isotopomer
concentrations in non-stationary conditions, with the valuable property that computational time does not scale with
the number of isotopomers. The efficiency and limitations of the algorithm is benchmarked for the forward and
inverse problems of 13C-DMFA in the pentose phosphate pathways. Overall, SSA constitute an alternative class to
deterministic approaches for metabolic flux analysis that is well adapted to comprehensive dataset including parallel
labeling experiments, and whose limitations associated to the sampling size can be overcome by using Monte Carlo
sampling approaches.

Keywords: Metabolic flux analysis, Flux balance analysis, Metabolism, Metabolic network model, Stable-isotope
tracers, Systems biology

1. INTRODUCTION

Isotope tracing experiments have been developed to quan-
tify fluxes in biochemical networks (Stephanopoulos, 1999).
A typical carbon-13 labeling experiment metabolizes a la-
beled substrate, such as [1- 13C]glucose, tracks the propa-
gation of the label on metabolites by nuclear magnetic res-
onance (NMR) or mass spectrometry (MS) methods and es-
timates metabolic fluxes by various methods including 13C-
MFA (Niedenführ, Wiechert, and Nöh, 2015; Allen and
Young, 2020; Antoniewicz, 2021). Despite its limitations,
13C-MFA remains the gold standard method in metabolic en-
gineering for accurate and precise quantification of fluxes in
living cells (Crown and Antoniewicz, 2013). Currently, the
most efficient algorithms are all based on an advanced decom-
position method using elementary metabolic units (EMUs)
developed in 2007 by Antoniewicz et al (Antoniewicz, Kelle-
her, and Stephanopoulos, 2007). Nevertheless, one of the
limitations of the classical metabolic flux analysis (MFA)
method is the requirement of a metabolic isotopic steady
state. Flux analysis methods that focus on estimating non-
stationary metabolic fluxes are referred to as dynamic MFA
(DMFA) (Leighty and Antoniewicz, 2011), or 13C dynamic
MFA methods (13C-DMFA) methods (Antoniewicz, 2015a).
Despite pioneering works (Antoniewicz et al., 2007; Wahl,
Nöh, and Wiechert, 2008) initiated more than one decade
ago, little progress has been made since (Antoniewicz, 2021).
Current computational methods use a deterministic model-
ing framework by solving EMU balance rate equations where
dynamic flux parameters are modeled with B-splines (Quek
et al., 2020; Ohno et al., 2020). Computational tractabil-

ity of such method depends on the EMU system size that can
be very large due to the interplay of elaborated labeling pro-
tocols (Lewis et al., 2014; Antoniewicz, 2015b; Jacobson
et al., 2019; Dong et al., 2019; Allen and Young, 2020) and
complex bibi reactions (Selivanov et al., 2004).

In this paper, we present a different class of method that
simulates isotope propagation in non-stationary metabolic
systems by a Stochastic Simulation Algorithm (SSA). We test
the method in the metabolic subsystem comprising glycolytic
and PPP pathways where complex carbon rearrangements oc-
cur due to bibi reactions in the nonoxidative PPP and where
13C labeling have been extensively applied to infer metabolic
flux (Kuehne et al., 2015; Bouzier-Sore and Bolaños, 2015;
Creek et al., 2015; Diaz-Moralli et al., 2016; Lee et al.,
2019). The main idea is to represent the population of iso-
topomers of a chemical species by a sample of finite size, pro-
portional to the species concentration, and to use the standard
rules of stochastic chemical kinetics to propagate the marker.
When a reaction occurs, the isotopomers associated to the re-
actants are randomly selected in the corresponding samples,
the rearrangement is performed, and the products are added to
the corresponding samples. The algorithm somehow mimics
the discrete and stochastic processes of enzymatic reactions
as it occurs in cells, but remains restricted to a small sample
of metabolite species for the sake of computational efficiency.
At each time step, the samples represent the population of the
isotopomers of each variable from which one can compute
mass isotopomer distribution for comparing with experimen-
tal data. The proposed algorithm is simple to implement, fast,
visual, and above all its computation time depends very little
on the chain length, which makes it an algorithm also adapted
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FIG. 1. Atom rearrangements in metabolic reactions. The upper
glycolytic pathway supplemented by the pentose phosphate pathway
provides an example of isotope labeling network. For each chemical
species (G6P, F6P, FBP, DHAP, GAP 6PG, Ru5P, X5P, R5P, E4P,
S7P) subsamples of the isotopomer samples are displayed as a chain
of unlabeled (open circle) and labeled carbons (close circle). The
number of displayed carbons chains is proportional to the species
concentration. Mass isopotomer histogram is also displayed (m+0
in black, m+1 in red, m+2 in green, and m+3 in blue). The Figure
illustrates the configuration 50 s after the labeling introduction that
also corresponds to the perturbation of the metabolic system. The
associated video provides a full dynamical picture.

to parallel labeling (13C, 2H, 15N, 18O, etc).

2. RESULTS

2.1. Stochastic Simulation Algorithm (SSA)

The propagation of labeled atoms through a biochemical
network is here described by a sampling approach. The rep-
resentation of the isotopomer distribution of each chemical
species in the network is computed using a finite sample size
proportional to its concentration. A user defined parameter
Ω corresponds to a reference concentration. For example,
a value of Ω = 1000 c/µM indicates that a concentration of
1 µM is represented by 1000 copies of the chemical species,
each copy corresponding to a different isotopomer.

The fluxes of chemical reactions are determined by math-
ematical functions that can be either linked to the species
concentrations in the framework of chemical kinetics, or de-

scribed by phenomenological functions depending on time,
or by constant functions in the case of stationary flux condi-
tion. The flux value determines the time interval between two
occurrences of the corresponding chemical reactions. When
one occurs, the reactants are taken randomly from the cor-
responding samples, the rearrangement of the atoms is done
according to the reaction’s rule, and the products are added to
the corresponding samples. In this way, the labeling propa-
gates through the chemical reaction network; at a given date,
the sample of each species is populated with different iso-
topomers and represents the isotopomer distribution.

Such rules are formalized within the framework of the
chemical master equation once two new tools are defined, the
isotopomer index and addressing operators (sec. 3.1). Chem-
ical master equation describes the temporal evolution of the
isotopomer fraction. From the chemical master equation, one
can derive both a deterministic simulation algorithm (DSA)
(see Sec. 3.2) and a stochastic simulation algorithm (SSA)
(see Sec. 3.3). The DSA is not an efficient algorithm since
it has as many variables as possible isotopomer, it is a "brute
force" algorithm serving here as a control for the SSA outputs.

An example of stochastic simulation is given in Figure 1
and for the upper glycolytic pathway combined with the pen-
tose phosphate pathway. To determine the fluxes, the mass
action law is here used with unitary kinetic parameters (Ta-
ble 1). At the initial time, the metabolic system is fed with
labeled glucose (50% of [1-13 C]glucose and 50% of [2-13
C]glucose in (Kuehne et al., 2015)), and at the same time, is
perturbed by a two-fold increase of the glucose intake rate. If
Ω = 100 c/µM is used for SSA, the Figure 1 (and the corre-
sponding video) only represents one element out of 20 from
each sample, for the sake of visualization.

The Figure 2 represents the evolution of the concentration
and mass isotopomer obtained with the SSA (point) and the
DSA (continuous line), thus depicting the accurate trends of
isotopomer trajectories generated with SSA. The stochastic
fluctuations of the mass isotopomers induced by the SSA are
only due to the random selection of the reagents in the sam-
ple. The variance of these fluctuations is thus equal to the Ω
profile and the mass isotopomer concentration. The determi-
nation is thus all the more precise as the mass isotopomers are
abundant. It is thus possible to reduce these fluctuations in
two different ways, either by increasing the value of Ω, or by
proceeding to a temporal smoothing of the stochastic evolu-
tion.

2.2. SSA Computational Performance

SSA computation time depends on both the number of
chemical reactions and the execution time of each reaction.
As an example, the computation cost necessary to simulate
data of the Figure 1 corresponds to 224 463 reactions carried
out in 62 ms for the SSA, and 2892 right-hand-side evalua-
tion in 2100 ms for the DSA (advanced Runge-Kutta-Fehlberg
method is used) using a Intel(R) Core(TM) i5-6300U CPU
at 2.40GHz without parallelization. In the SSA, the number
of chemical reaction occurrences can be approximated by the
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FIG. 2. Concentration and mass isotopomer dynamics in nonsta-
tionary conditions. Stochastic trajectories computed with SSA (dots)
are compared with deterministic trajectories computed with DSA for
control (solid lines), and corresponds to calculation presented in Fig-
ure 1 (same network, same condition). For each chemical species,
the upper plot displays the concentration in µM whereas the bottom
plot displays the mass isotopomers in percent (m+0 in black, m+1 in
red, m+2 in green, and m+3 in blue, m+4 violet).

product T vΩN where N is the number of chemical reactions
in the network, v the typical flux values and T the time inter-
val. The number of reactions does not depend on the number
of isotopomer per species or, equivalently, on the chain length
representing the chemical species. The time to perform a re-
action depends only slightly on the chain length l thus almost
not depend on the number of isotopomer. In our implementa-
tion, the computation time for one reaction varies as 1+ l/15;
so when l goes from 6 to 18 (e.g., C6 to C6H12), the compu-
tation time increase by less than 60% whereas the number of
isotopomer is multiplied by 212 = 4096. This is why the SSA
algorithm is well adapted to cross-labeling, e.g. hydrogen car-
bon, leading to longer chain lengths and thus to a higher com-
binatoriality.

2.3. SSA-13C DMFA

To further test the SSA, we implemented it in a 13C-DMFA
procedure. A general scheme of the procedure is shown in
Figure 3. A series of measurements concerning metabolite
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FIG. 3. 13C-DMFA generic workflow using SSA. Metabolite con-
centration as well as mass isotopomer distribution (MID) are the tar-
gets of parameter estimation procedure. Parameter sensitivity anal-
ysis provides a list of points in the parameter space that accurately
describes targets. The range of flux dynamics is then computed from
the parameter value distribution.

concentrations and mass isotopomer distributions (MID) with
known associated experimental errors is the target of an opti-
mization procedure. The aim is to fit these data with a kinetic
model based on mass action laws used for Figure 1 (Table
1). The flux dynamics therefore depend on the kinetic pa-
rameters of the reaction laws. Instead of a kinetic model, we
could also use the stochiometric model supplemented with pa-
rameterized time functions to describe the flux. The parame-
ter space of the model is then explored to identify the sets of
parameters consistent with the target experimental data, tak-
ing into account the existing uncertainties (see (Valderrama-
Bahamóndez and Fröhlich, 2019) for a review of standard
method). Once the exploration is completed, the dynamics
of metabolic fluxes are computed for each selected parameter
set, which can be represented as a confidence region for flux
trajectories.

Here, target datasets were generated for concentrations and
mass isotopomers from the DSA at 2,5,10,20,30,40s in the
same condition as in Figure 2. Then the SSA, with Ω = 200
here, is used to compute the fitness score from target dataset
and kinetic parameter set. Two classes of experimental mea-
surements are considered. In a first strategy, only the mass
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FIG. 4. Directional flux areas compatible with mass isotopomer tar-
geting. The areas are filled with a color code. Blue areas correspond
fit strategy 1; red, to fit strategy 2. Solid black lines correspond to
the exact solution.

isotopomers m+ 0 . . .m+ 3 are targeted with an error of 5%
(no data provided for the concentrations). In a second strategy,
concentration data are also included and targeted with an er-
ror of 0.25 µM. These errors mimic typical experimental and
measurement uncertainties. A parameter set is here kept and
said to be consistent with target dataset for a chi-square per
degree of freedom (i.e., fitness score) remains below unity.
Here, a parameter sensitivity analysis computes the parame-
ter ranges, one by one, to illustrate the procedure; the input
flux is assumed to be known. For each strategy, the selected
parameter sets are finally used to compute the dispersion of
the reaction fluxes. As expected, the areas of flux trajecto-
ries comprise the exact solution and are reduced when adding
concentration data (Figure 4).

3. THEORY

3.1. Chemical master equation model for isotopic labeling
networks

In a network of (bio)chemical reactions, the temporal evo-
lution of the state probabilities is described by the chemical
master equation (CME) through a general formalism (Gille-
spie, 1992). Deterministic kinetic rate equations, on the one
hand, can be derived from the first moments of the probability
distribution and allow for a thorough analysis of the network

dynamics by various analytical techniques (Thompson and
Stewart, 2002). The probabilistic features of the dynamics
such as bimodal distributions or coefficients of variation, on
the other hand, can be investigated with stochastic implemen-
tation of the CME through well-established stochastic simula-
tion algorithms (Gillespie, 1977, 2001).

3.1.1. Isotopomer index and addressing operators

A chemical reaction network such as the one depicted
in Figure 1 is defined by K reactions between M chemical
species whose concentrations are denoted by Sm with m ∈
[1,M]. The labeling states of the species Sm is an ordered se-
quence (sm,1,sm,2, . . . ,sm,lm) of length denoted lm made of ele-
ments sm,i ∈ [0,q−1]. The species Sm has therefore Lm = qlm

different labeling states or positional isotopomer indexed by
nm =∑lm

i=1 sm,i qi−1, also noted nm = (sm,1,sm,2, . . . ,sm,lm)q and
called the isotopomer index. A similar approach restricted
to q = 2 has already been introduced to describe isotopomer
distribution vectors (Schmidt et al., 1997). In the case 13C-
labeling, each carbon may be in two different states (i.e.,
q = 2) and the sequence (0,0,1,0,0,0,0) for S7P indicates
that 13C label is in third carbon position and corresponds to
the labeling state number 4, the S7P species has therefore 27

different labeling states.
If the permutation rule is known, one can define addressing

operators that compute the isotopomer index of the products
from the isotopomer index of the reactants, and vice versa for
each reaction of the network. The addressing operator forms
an alternative to atom mapping matrices defined by Zupke et
al. (Zupke and Stephanopoulos, 1994). In the case of the re-
action mediated by transaldolase (reaction number 11 in Ta-
ble 1), the addressing operators

σF6P(nS7P,nGAP) =(sa,1,sa,2,sa,3,sb,1,sb,2,sb,3)q (1)
σE4P(nS7P,nGAP) =(sa,4,sa,5,sa,6,sa,7)q, (2)

compute the product index from reactant index nS7P =
(sa,1, . . . ,sa,7)q and nGAP = (sb,1,sb,2,sb,3)q. In the same man-
ner,

σS7P(nF6P,nE4P) =(sc,1,sc,2,sc,3,sd,1,sd,2,sd,3,sd,4)q (3)
σGAP(nF6P,nE4P) =(sc,4,sc,5,sc,6)q (4)

compute the reactant index from product index nF6P =
(sc,1, . . . ,sc,6)q and nE4P = (sd,1, . . . ,sd,4)q. Therefore, in the
context of a 13C labeling (q = 2), the reaction between a dou-
bly labeled S7P (1000100) and a simply labeled GAP (001) –
i.e. nS7P = 17 and nGAP = 4 – produces an F6P (100001) and
an E4P (0100) – i.e. nF6P = 33 and nE4P = 2.

3.1.2. Chemical master equation description

The chemical master equation (CME) is a general and
accurate formalism to describe the stochastic dynamics in
(bio)chemical reaction networks (Gillespie, 2000). This for-
malism can be easily extended to also describe the stochastic
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dynamics of labeling states of chemical species. With above
notations for isotopomer index and addressing operators, the
probabilistic dynamics in isotope labeling network can nat-
urally be described in the CME framework. The chemical
species with the largest number of isotopomers determines the
size N of the state space (N = 27 in the example used in Fig-
ure 1). The state of the whole system is therefore described
by a M×N integer matrix ω: ωm,n indicating the number of
mth species in the nth labeling state. The total number of the
mth species is noted ΩSm = ∑n ωm,n where Ω is a volume
(involved as a scaling factor) and Sm is a concentration. The
probability that the internal sequence of the mth species cor-
responds to the nth isotopomer is denoted ρm,n = ωm,n /ΩSm.
The formalism of the CME describes the temporal evolution

of the probability of the system to be in the state ω , noted
Pω(t).

The chemical reactions that define the network are charac-
terized by both a concentration-dependent flux of reagents vk
with k ∈ [0,K] and a permutation rule between the position of
labeled atoms of reactants and products. Reactions are distin-
guished depending on their input, output, or internal position
in the network. For instance, the network depicted in Fig-
ure 1 has one input reaction, 3 output reactions and 11 inter-
nal reactions. As seen latter on, input reactions always require
a particular consideration since the reactant is not modified.
For keeping notations simple, we restrict to Bi Bi reactions of
the type A+B→C+D where A,B,C,D are either chemical
species or empty sets. In this case, the CME reads,

d
dt

Pω(t) =
Kn

∑
k=1

Ω vk (S) ∑
n,n′

[
E+

ak,nE
+
bk,n′

E−ck,σck (n,n
′)E
−
dk,σdk

(n,n′)−1
]

ρak,n ρbk,n′Pω(t) (5)

+
Kn+Ki

∑
k=Kn+1

Ω vk (S) ∑
n

Ick,n(t)
[
E−ck,n−1

]
Pω(t)

The integers ak,bk,ck,dk correspond to the indices of the
species A,B,C,D of the kth reaction of type A+B→C+D,

the integer being null in the case of an empty set. The writing
uses scale operators E±m,n (Van Kampen, 1992) :

E±m,n ρm1,n1 ρm2,n2 Pω(t) =
[

ρm1,n1 ±
δm,m1δn,n1

ΩSm1

][
ρm2,n2 ±

δm,m2δn,n2

ΩSm2

]
Pω±Em,n(t) (6)

where Em,n is a matrix of the canonical base (only the element
at the intersection of row m and column n is non-zero and
is unity), and δi, j the Kronecker symbol (unity if indexes are
equal, zero either). The Kn first reactions concern internal and
output reactions whereas the remaining KI concerns input re-
actions ( /0→C). In this later case, Ick,n is the fixed probability
to have an isotopomer n of the input species ck.

3.2. Derived Deterministic Simulation Algorithm (DSA)

The CME (Eq. 5) can be approximated in the large size limit
Ω→ ∞ by deterministic rate equation dynamics. The proba-
bility of each internal sequence is denoted by ρm,n such that
Sm,n = Sm ρm,n describes the concentration of nth-isotopomer
of the mth species. The time evolution of isotopomer concen-
trations is governed by the distribution rules specific to each
reaction and is formalized mathematically by a permutation of
the concatenated internal sequence between the reagents and
the products. The deterministic system evolves according to

the ordinary differential equations,

d
dt

Sm,n =
K

∑
k=1

Nm,k vk(S) Φk
m,n(ρ) , (7)

where N denotes the stoichiometry matrix, vk k ∈ [0,K] the
concentration-dependent flux of reagents, and Φk

m,n(ρ) the
flux fraction describing the permutation rules of chemical re-
action satisfying ∑n Φk

m,n(ρ) = 1. Algorithm to simulate Eq. 7
with standard Runge-Kutta-Fehlberg method of order 5 with
adaptive step is called Deterministic Simulation Algorithm
(DSA).

Let us first consider the internal reactions restricted to Bi
Bi reactions of the form A+B→C+D. The reaction is char-
acterized by the reordering of atom position defining address-
ing operations of the products according to the indices of the
reagents. The operator σA(nc,nd) gives the isotopomer index
of the A species that produce C and D of isotopomer index
nc and nd , respectively. In that case, the reaction index k is
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omitted and the flux fraction reads,

Φa,na(ρ) =ρa,na (8)
Φb,nb(ρ) =ρb,nb (9)

Φc,nc(ρ) =
Ld−1

∑
nd=0

ρa,σA(nc,nd) ρb,σB(nc,nd) (10)

Φd,nd (ρ) =
Lc−1

∑
nc=0

ρa,σA(nc,nd) ρb,σB(nc,nd) (11)

where Lc and Ld are the number of isotopomers of C and D
species. If B is an empty set then ρb,x = 1, and if D is an empty
set Eq. (11) is useless. If the reaction is an output reaction,
then C and D are empty sets, Φa,na(ρ) and Φb,nb(ρ) are com-
puted with the same rules as internal reactions. As mentioned,
the input reactions must be treated separately since the reac-
tants are not variables but parameters. We consider here input
reactions of simple form /0→C and we note In the probability
of synthesis of the species C in the state n, thus Φc,nc(ρ) = In
in this case.

Alternatively, the dynamical system (Eq. 7) can also be
written as

d
dt

Sm =
K

∑
k=1

Nm,k vk(S) m ∈ [0,M] (12)

Sm
d
dt

ρm,n =
K

∑
k=1

Nm,k vk(S)
(

Φk
m,n(ρ)−ρm,n

)
(13)

The first equation describes the time evolution of species con-
centrations while the second equation describes the time evo-
lution of the fraction of different isotopomers. This additional
equation highlights the key role of the concentrations Sm in
the timescale of changes in isotopomer distribution: higher
concentration values lead to slower evolution of isotopomer
distributions.

The permutation rules defined in Φ may be easily extended
to more complex reactions. In the framework developed here,
they only depend on the permutation relations and not on the
mathematical forms of concentration-dependent flux, because
we assume that the internal modification does not impact the
reaction rate. If the construction rules are simple to estab-
lish and to implement in a numerical code, the computation
time of the flux vector of the dynamic system (the right-hand
side term of Eq. 7) increases significantly with the length of
the sequences and the number of isotopomers, because of the
many summations of terms. Moreover, this implementation
computes the evolution of all possible isotopomers while the
experimental labeling used nowadays generates only a small
subset of the possible isotopomers (Metallo, Walther, and
Stephanopoulos, 2009). The deterministic system therefore
requires a large number of unnecessary calculations even with
an optimized implementation. It nevertheless serves as a use-
ful benchmark to check the relative accuracy and efficiency of
other methods.

3.3. Derived Stochastic Simulation Algorithm (SSA)

The CME is in fact a continuous-time approximation of dis-
crete time stochastic processes. Stochastic algorithms are of-
ten used to simulate the molecular dynamics in chemical reac-
tion networks and capture the statistical and temporal features
of fluctuations. In the case of the above CME (Eq. 5), time
evolution of isotopomer distribution can also be simulated by
a stochastic Monte-Carlo algorithm based on the next reaction
methods (Gibson and Bruck, 2000), here called Stochastic
Simulation Algorithm (SSA). Each chemical species is rep-
resented by a finite sample of isotopomers (Figure 1) where
the sampling size is proportional to the concentration of the
corresponding chemical species.

The sample size of the variable m is ΩSm where Ω is a
volume. The occurrence of a chemical reaction is determined
by the standard next reaction methods that we have adapted,
SSA is summarized as:

Init: Compute the reaction time for all reactions

τk =
1

Ω vk (S)
(14)

Step 1: Find the smallest reaction time τk′ = min(τk) and do re-
action k′ by randomly picking the reagents from their
samples and synthesizing the products following the
permutation rule of the reaction;

Step 2: Increment time t by τk′ and compute a next time for
reaction k;

Step 3: Adjust the set of reaction times to account for sample
size variation induced by reaction k′

τk←
vk,old

vk,new
(τk− t)+ t

and iterate to Step 1

In this sequential process, each stochastic occurrence of a
chemical reaction induces discrete changes in the number
of species and of isotopomers associated to each chemi-
cal species, which results in stochastic fluctuations of both
species concentrations and isotopomer distribution.

Contrary to the common use of stochastic simulation al-
gorithms for chemical reaction networks, the Ω value does
not have to represent the real number of molecules for a ref-
erence concentration because the algorithm considers mainly
the propagation of marked atoms and not the stochastic fluc-
tuations of the chemical reactions linked to the finite number
of copies. In the context of metabolic networks, fluctuation
of the reaction times τk are indeed rarely relevant. Because
of the high copy number of metabolites, numerous reactions
occur and fluctuations of the reaction times τk do not induce
much concentration fluctuations. If, however, one wished to
decline this algorithm to study the stochastic fluctuation of
the chemical reactions, it would be enough to use the relation
τk = 1

Ω vk(S)
log
(

1
Uk

)
with independent uniform random de-

viates Uk in [0,1] for the reaction time computations. In the
latter case, a realistic estimate for the Ω parameter value must
be used.
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4. METHODS

4.1. Code availability and computer simulation

Both methods, SSA and DSA, were implemented with
the same highest level of optimization, using low-level
bit-manipulation tools to implement addressing operators
in a Fortran code (compiled with gfortran and optimization
flag “-O3”). Simulations were run on a standard laptop
with an Intel(R) Core(TM) i5-6300U CPU at 2.40GHz. No
paralellization were used. The fortran code is available in
github
https://github.com/Qthommen/
Stochastic-method-for-isotope-labeling-systems.
git

4.2. Goodness of Fit

The chi-square per degree of freedom χ2
ν =

1
n−p ∑n

i=1
(yi−y∗i )

2

σ2
i

is used a goodness of fit criterion. n

is the number of targets; p, the number of parameters; yi et
y∗i the computations and tagets; σ2

i the variance. The fit is
accepted χ2

ν < 1.

4.3. Metabolic Network

Table 1 lists the chemical reactions and carbon rearrange-
ments of the upper part of the increased glycolysis of the pen-
tose phosphate pathway (Figure 1). To illustrate the dynamics
of the propagation of the labeled carbons and for the sake of
simplicity, the reaction rate used corresponds to the mass ac-
tion law with a kinetic parameter of unit value.
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5. DISCUSSION

In this study, we propose a stochastic algorithm to emulate
the propagation of labeled atoms in a nonstationary metabolic
system. This algorithm derives from the chemical master
equation which is the most comprehensive framework for de-
scribing chemical reaction network dynamics. The efficiency
of the algorithm has been applied to 13C-DMFA of the il-
lustrative case of the pentose phosphate pathways for which
13C-labeling and concentration time series data has been syn-
thesized. One of the main computational advantages of the
proposed method lies in the very weak dependence of the
computation time on the length of the marking chain and
thus the number of isotopomer. Deterministic methods ex-
hibit by construction a number of variables and a computa-
tion time that both rapidly increase with the combinatorial-
ity associated to the power-law dependence with the chain
length. SSA is therefore well adapted to the study of par-
allel labeling, combining for instance carbon and hydrogen
labeling (Lewis et al., 2014; Antoniewicz, 2015b; Jacob-
son et al., 2019; Dong et al., 2019). Moreover, a simulation
that mimics the stochastic and discrete nature of metabolic
reaction processes provides a more accurate and comprehen-
sive picture relating the propagation of labeling with the dy-
namics of isotopomer and metabolite concentrations. Finally,
this rigorous and straightforward method requires no tinkering
or approximations depending on the resolution of the experi-
mental measurements or the nature of the metabolic process,
as it calculates all isotopomers at no additional cost and na-
tively handles both stationary and non-stationary conditions.
In other words, the SSA method can be used interchangeably
or simultaneously for 13C-MFA (Hurbain et al., 2022), 13C-
NMFA or 13C-DMFA. Because problem-dependent reduction
or solving techniques are not used, the implementation does
not require any particular software and can simply be done
in any programming language, as it is the case for chemical
kinetics modeling (see Code availability).

Estimation of metabolic flux dynamics from 13C labeling
and metabolomics data can be done either by inverse kinetic
model modeling (Wahl, Nöh, and Wiechert, 2008; Baxter
et al., 2007) or by considering flux function (Antoniewicz
et al., 2007; Leighty and Antoniewicz, 2011; Schumacher
and Wahl, 2015; Quek et al., 2020). The preference of latter
methods have been motivated by the lack of information about
intracellular enzyme kinetics, but also the computational cost
of deterministic simulation of kinetic models comprising iso-
topomer variables. Thanks to the computational efficiency
of SSA for simulating isotopomer dynamics, inverse kinetic
modeling integrating 13C labeling data become an achievable
goal. However, SSA can still be used with flux function as
well, for instance with constant function in case of stationary
metabolic condition (e.g., 13C-MFA and 13C-NMFA) (Hur-
bain et al., 2022). To summarize, a SSA-based 13C-DMFA
method would require (1) defining a stoichiometry model, (2)
defining kinetic laws or flux functions, (3) using an optimiza-
tion method to estimate the parameters of reaction laws or flux
functions, (4) using a Monte-Carlo method to evaluate the dis-
tribution of such parameters, (5) adjust iteratively the model

(stoichiometry or kinetic structure) to optimize tradeoff be-
tween a good fit and a narrow parameter distributions. The
last step corresponds to the well-known problem of model se-
lection (Mangan et al., 2017). It is, however, to keep in mind
that overparametrization is not a issue as long as one focuses
on the estimation of flux trajectories. If, on the other hand,
the 13C-DMFA is used for dynamic control purposes (Hart-
line et al., 2021), the parameterization of flux functions will
be of great importance, and it will be necessary to model the
chemical kinetics as precisely as possible.

The only delicate issue associated to this method is associ-
ated to the appropriate choice of the sample size Ω. Ω must
be large enough to ensure that the level of fluctuations in iso-
topomer concentration are below the experimental uncertain-
ties. At the same time, computational time scales linearly with
Ω motivating to keep its value as low as possible. The param-
eter Ω thus needs to be adjusted to a typical value (typically
100− 1000) to optimize the tradeoff between simulation un-
certainties (below experimental uncertainties) and computa-
tional efficiency. For such system size, the residual fluctua-
tions of isotopomer concentration leads to a narrow distribu-
tion of error score for a same parameter set, which is not an
issue when using Monte Carlo sampling algorithm used for
metabolic flux analysis (Theorell et al., 2017; Valderrama-
Bahamóndez and Fröhlich, 2019; Heinonen et al., 2019; The-
orell and Nöh, 2020). For a given value Ω, a temporal averag-
ing procedure may be added to narrow the distribution of mass
isotopomer concentrations for given Ω, allowing to use lower
Ω values. Another limitation relates to the high number of
reactions which depends on the absolute value of directional
fluxes, not of net fluxes. This limitation can be largely com-
pensated by the property that the number of operations (e.g.,
computational time) does not depend on isotopomer number
per metabolites.
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Abstract

Living cells such as mammalian cells in particular, are continuously exposed to multiple and varied

types of stress. These stresses can perturb the cellular homeostasis and induce damages on the cellular

components which could induce several types of diseases. It is particularly the case for a change of cel-

lular redox state called oxidative stress induced by an excessive production or insufficient consumption

of reactive oxygen species such as hydrogen peroxide (H2O2).

Cells have developed efficient defence mechanisms against oxidative stress that involve anti-oxidant

systems such as glutathiones which reduce the oxidizing molecules, but also metabolic pathways such as

Pentose Phosphate Pathway (PPP) and glycolysis. These metabolic pathways are known to reroute the

carbon flux resources from the glycolysis toward the PPP which induces high NADPH recycling that

is required for efficient detoxification rate of the anti-oxidant systems. It remains however unclear how

regulatory mechanisms (i) contribute to such reallocation of metabolic flux resources during oxidative

stress and (ii) give rise to observed adaptation profiles of intracellular H2O2 concentrations.

In the thesis, the role of regulations in the metabolic response to oxidative stress is addressed using

a comprehensive kinetic modeling framework. First, a model is built from a set of metabolomics and
13C labeling data, using conventional parameter estimation methods but also a novel metabolic flux

analysis techniques based on a stochastic simulation algorithm. Systematic analysis of the model reveals

that many metabolic inhibitions, especially on G6PD, PGI and GAPD, can favour flux rerouting for

NADPH production. In particular, we show that all these regulations work in a dose-dependent

and complementary manner, which explains some paradoxes and controversies, and is consistent with

observed adaptation phenotypes. A more phenomenological model has also been developed to show

how such adaptation phenotype could contribute to cell-fate heterogeneity, such as fractional killing,

as a long-term outcome of oxidative stress.

Keywords : Cell, oxidative stress, mathematical modeling, metabolic regulations, adaptation.


	Title
	Abstract
	Résumé
	Contents
	General introduction
	Chapter 1 : Biological context
	Free radicals and reactive oxygen species
	Oxidative stress
	Anti-oxidants
	Role of metabolism in oxidative stress
	NADPH metabolism
	Pentose phosphate pathway (PPP)
	Glycolysis
	Purine metabolism

	Regulation of the metabolic response to oxidative stress
	Adaptation dynamic during oxidative stress

	Chapter 2 : Methods
	Metabolic network modeling
	Kinetic modeling of metabolism
	Reaction kinetics

	Steady state analysis
	Flux balance analysis
	Metabolic control analysis

	Stochastic modeling of metabolism
	Chemical master equation
	Stochastic simulation algorithm
	Langevin equation

	Data-driven model construction
	Genetic algorithm
	Monte Carlo Markov chain - Metropolis Hastings

	13C-Metabolic flux analysis

	Chapter 3 : Adaptation dynamics in response to oxidative stress
	Coarse-grained model
	Adaptation via flux reprogramming
	Role of delay in adaptation

	Chapter 4 : Stoichiometric model of PPP
	Description and assumptions of the metabolic model
	Elementary modes in the PPP
	13C-MFA of flux rerouting in the PPP
	Labeling patterns of elementary modes
	13C-MFA based on stochastic simulation algorithm
	Flux estimation
	Stochastic algorithm for non-stationary 13C-MFA


	Chapter 5 : Kinetic model of PPP
	Model construction : complexity vs efficiency
	Estimation of model parameters
	Reduction of the parameter space
	Parameter estimation procedure
	Correlation analysis of the model parameters

	Analysis of temporal dynamics
	Analysis of dose responses

	Chapter 6 : Analysis of the regulatory scheme
	Sensitivity measures
	Gain-Loss of function analysis
	Effect of perturbing regulation pattern
	Effect of perturbing enzyme activities

	Metabolic control coefficients in the PPP

	Chapter 7 : Adaptation dynamics contributes to fate-response heterogeneity
	Cell fate responses during oxidative stress
	From cell survivability to death
	Cell death mechanisms : apoptosis

	Model of cell fate decision
	Modeling of the probabilistic fate decision
	Adaptation and cell-fate heterogeneity


	Chapter 8 : Discussion & perspective
	Regulation scheme during oxidative stress
	Flux rerouting during oxidative stress
	Adaptation dynamic during stress response
	Data-driven modeling and 13C-MFA
	Experimental validation

	Abbreviations
	Mathematical symbols
	Bibliography
	Publications

