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5 1. General introduction  

1. General introduction 
 

1.1 Importance of vegetation for coastal protection 

The consequences of climate change and global warming are ubiquitous and affect 
people all around the world. Regardless of the climate change scenario, more than 
half a billion people worldwide are expected to be affected by increased coastal risk 
due to rising sea level and increased frequency of extreme storm events by 2050 
(Chaplin-Kramer et al. 2019). Building hard defence structures such as sea walls, dikes 
and groins is historically used to mitigate coastal flood risk. However, these have as 
drawbacks that they are costly to maintain and need be restored after sustaining 
damage. Costs will further increase in the future because hard infrastructures need to 
be heightened in order to keep up with the rising sea level, especially under a business 
as usual scenario (Sutherland and Gouldby 2003, Temmerman et al. 2013). A final 
drawback of using hard defence structures is the possibility for multiple adverse 
effects such as accelerated erosion or alteration of natural sediment transport 
(Gittman et al. 2015, Gracia et al. 2018). This could potentially exacerbate the erosion 
of sandy coastlines due to the rising sea level, consequently enhancing, rather than 
mitigating, flood risk (Hanley et al. 2014, Vousdoukas et al. 2018, 2020). Costly beach 
nourishments are frequently used as a countermeasure for coastal erosion. These 
have to be maintained as well every few years, depending on the local conditions and 
the amount of sand used during the nourishments (Hanley et al. 2014, Devriese et al. 
2018, Singhvi et al. 2022). 

Another way of protecting coastal regions from the sea, is by making use of the natural 
protection provided by the fauna and flora already present in coastal areas, such as 
wetlands or biogenic reefs (Barbier et al. 2011, Duarte et al. 2013, Gracia et al. 2018). 
For example, organic structures formed by coral reefs and mussel beds reduce wave 
energy and dampen the impact of the waves before they hit the shore. Coastal 
vegetation growing in mangroves, salt marshes or foredunes captures sediment 
transported by waves or wind, gradually building up the land at the sea-land interface 
to naturally protect the lower laying hinterland (Barbier et al. 2008, Borsje et al. 2011, 
Duarte et al. 2013, Gracia et al. 2018, Bonte et al. 2021). The potential integration of 
natural ecosystems into coastal protection for their protective capabilities can be 
considered a “Nature-based solution” (Borsje et al. 2011, European Commission 2015, 
Singhvi et al. 2022). Nature-based solutions are defined by the European Commission 
as “the use of features and complex system processes of nature, such as its ability to 
store carbon and regulate water flow, in order to achieve desired outcomes, such as 
reduced disaster risk, improved human well-being and socially inclusive green growth” 
(European Commission 2015). In general, nature-based solutions have received 
considerably increased attention from both researchers and policy makers during the 
last decade (Singhvi et al. 2022) because they offer many additional benefits and are 
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multifunctional. For instance, additional to increasing flood protection, coastal dunes 
increase biodiversity, are beneficial for tourism, help with water regulation, are more 
resilient to erosion (compared to hard infrastructure) and consequently less costly in 
maintenance (Heslenfeld et al. 2004, European Commission 2015, Van der Biest et al. 
2017, Gracia et al. 2018).  

Coastal sand dunes, more specifically foredunes, represent the most important 
natural flood barriers along coastlines worldwide (Martínez and Psuty 2004, Bonte et 
al. 2021). These foredunes are only one habitat type within the collective term of 
“coastal dunes”, which includes multiple habitat types that gradually succeed each 
other, driving the process of dune formation (Provoost and Bonte 2004, Maun 2009). 
On the Belgian coast, these transitional habitat types between land and sea follow 
each other in a succession away from the coastline, forming the coastal vegetation 
zonation (Fig. 1.1). From coast to inland, these vegetation types are shadow and 
embryonic dunes, blond dunes, grey dunes, dune grasslands and dune slacks, dune 
shrubs and dune forests. This elegant succession of vegetation types is mainly driven 
by salt stress, decalcification and the interplay between aeolian sand dynamics and 
the current vegetation (Kulmatiski et al. 2008, Brown et al. 2018). Shadow dunes are 
the first dunes formed on the bare beach, mainly consisting out of organic material, 
such as driftwood or ephemeral plants, which captures little sand (Maun 2009). These 
dunes do not survive long because they cease to exist when the organic material is 
broken down or completely covered by sand. Nevertheless, they facilitate the 
establishment of the next successional stage: embryo dunes. Embryo dunes form 
around perennial plant species such as sand couch grass (Elytrigia juncea subsp. 
boreoatlantica) that root within shadow dunes and make use of the locally elevated 
nutrients to grow (Provoost and Bonte 2004). Embryo dunes capture more sand as 
they grow until eventually salt stress is lowered by the formation of a fresh water lens. 
It is at this point that European marram grass (hereafter marram grass; Calamagrostis 
arenaria (L.) Roth, formerly known as Ammophila arenaria (L.) Link) is able to colonize 
the dune and from then onwards, dune growth is drastically increased (Huiskes 1979, 
Provoost and Bonte 2004). It is here, in these marram dunes, also known as blond 
dunes or foredunes, that my thesis work is situated.  



 

 
 

7 1. General introduction  

 
Figure 1.1 A schematic representation of the coastal vegetation succession. The illustrated 
species are chosen because they are characteristic for the vegetation type. From the coast to 
the land we see: Shadow dunes, represented by prickly saltwort (Salsola kali) and Sea Rocket 
(Cakile maritima). Embryo dunes represented by sand couch grass (Elytrigia juncea subsp. 
Boreoatlantica). Marram dunes represented by marram grass (Calamagrostis arenaria). Narrow-
leaved ragwort (Senecio inaequidens) is found in both marram dunes and grey dunes, while the 
latter is represented by dune pansy (Viola tricolor subsp. Curtisii). 

My research focussed specifically on marram grass because it is considered an 
ecosystem engineer due to its capacity to stabilize sand. Marram grass owes this 
capacity to its capability to withstand burial rates of up to one meter per year (Huiskes 
1979, Bonte et al. 2021), enabling dunes to grow like no other vegetation does. As a 
result of this high capacity for sand stabilization, marram grass was and still is 
frequently used for artificial dune building purposes (van der Putten and Kloosterman 
1991, Weeda et al. 1991, HHNK 2020), although knowledge on several aspects of dune 
ecology and functioning is still missing. For instance, marram grass is still mainly 
planted in a regular, grid-like pattern, yet, little is known about dunes with regular 
spatial configurations, since marram grass mainly grows clustered under natural 
conditions (Bonte et al. 2021, Reijers et al. 2021). Furthermore, marram grass was 
shown to adapt its growth pattern to local sand conditions (Reijers et al. 2021) and 
sand-trapping efficiency seemed higher for patchy plant configurations (Reijers et al. 
2019a). Due to these new insights and the increasing interest in nature-based 
solutions, pilot studies are recently being implemented to better understand the 
relationship between dune growth and the spatial configuration of vegetation (e.g. 
Derijckere et al. 2022). However, the effect of plant spatial configuration on dune 
biodiversity still remains understudied. 
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1.2 The Ammophila problem 

The succession in foredune vegetation is associated with the gradient in sand 
dynamics from the sea to the hinterland, with, in general, less dynamic conditions 
found in more developed dune habitats, as explained in the previous section. Marram 
grass grows optimally under relatively high sand dynamics and is replaced by other 
plant species when sand dynamics decrease (van der Putten et al. 1993, Nolet et al. 
2018). The decline in marram grass performance resulting from the cessation of sand 
dynamics is referred to as the ‘Ammophila problem’ (Marshall 1965). Added nutrients 
or the creation of an enemy-free space were the main two hypotheses for the 
observed phenomenon, with the latter receiving much more scientific attention than 
the former (Vandegehuchte 2010). So did the first growth experiments prove the soil 
community to negatively influence marram grass performance. This was done by 
contrasting the performance of marram grass grown on unsterilized sand originating 
from its rhizosphere with marram grass grown on sterilized rhizosphere sand or sand 
from the sea floor (van der Putten et al. 1988, van der Putten and Troelstra 1990). 
Enhanced plant growth after the use of selective nematicides pointed towards 
nematodes as the main cause of this detrimental effect (Van der Stoel et al. 2002), 
with species identity of the root-feeding nematodes and competition among them 
altering the decline in marram grass performance (Brinkman et al. 2005a). The need 
for exceptionally high nematode numbers under laboratory conditions (De Rooij‐Van 
Der Goes 1995) and experiments in a more natural setting (Brinkman et al. 2005b) 
implied other soil biota, such as fungi, to be more involved in the whole process than 
previously thought. Interactions between root-feeding nematodes and other soil biota 
made everything even more complex. So were arbuscular mycorrhizal fungi shown to 
protect marram grass roots against nematodes (De La Peña et al. 2006) while bacteria 
and fungi attacked root-feeding nematodes and even deterred them from colonizing 
marram grass roots in the first place (Piśkiewicz et al. 2009a, 2009b). 

Although already much is known about nematodes in the rhizosphere of marram 
grass, until now, research was done either via growth experiments with a limited 
amount of interacting soil species or by using point measurements from field surveys. 
These methods did not allow investigation of spatial effects, even though van der 
Putten et al. (1993) already mentioned that the spatial development of the soil-borne 
net negative effect needed further investigation. Understanding these spatial effects 
will be especially important in the nature-based solutions framework because it could 
enable the construction of foredunes that experience minimal negative effects of soil 
biota. The spatial structuring of nematode communities can further be of interest for 
pest control, to better predict population dynamics, or to other scientific areas such 
as invasion biology in order to understand the resulting influence on plant-plant 
interactions. 
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1.3 Invasive coastal vegetation 

How and when species can be defined as “invasive” is a temporary debate that is still 
ongoing  (e.g., Ricciardi and Cohen 2007, Cassini 2020, Mattingly et al. 2020). In this 
thesis, I follow the definitions sensu Richardson (2000), meaning that non-native 
species are labelled “invasive” when they are able to spread to other sites distant from 
the initial introduction after achieving viable population sizes (i.e., “naturalization”; 
Richardson et al. 2000). This definition decouples the invasiveness (i.e., establishment 
success) of non-native species and their impact on local biodiversity. This approach 
allows a more clear estimation of invasiveness, since the impact on local biodiversity 
can be estimated in a lot of different ways (Bartz and Kowarik 2019) and, additionally, 
because there is no clear link between them (Ricciardi and Cohen 2007). Nevertheless, 
invasive species can threaten biodiversity during their invasion process by affecting 
establishment or growth of native plant species or by changing local faunal 
communities (Vilà et al. 2011, Pyšek et al. 2012, Ricciardi et al. 2013, Litt et al. 2014). 
For instance, Carpobrotus sp., a well-documented invasive species in Mediterranean 
dunes, is known to influence soil parameters, consequently hindering local plant 
growth (de la Peña et al. 2010). It is additionally shown to alter invertebrate herbivore 
species composition (Rodríguez et al. 2021). Extensive changes in biodiversity induced 
by invasive species can resonate through ecosystems, drastically changing their 
provided services (e.g. Walsh et al. 2016). Therefore, it is important to try to predict 
where invasive species can establish and what the possible consequences can be, 
especially for ecosystems that provide critical services to society such as the coastal 
protection provided by dune areas (Duarte et al. 2013, Temmerman et al. 2013, Van 
der Biest et al. 2017). 

As established previously, coastal dunes are characterized by water scarcity, salinity 
and sand burial. These harsh environmental conditions make dunes no benign 
environment for the establishment and growth of non-native plant species. 
Nonetheless, coastal dune habitats in general accommodate considerable amounts of 
invasive species and they are considered to be among the most invaded European 
terrestrial habitats (Chytrý et al. 2008, Giulio et al. 2020). In Western Europe, the high 
pressure of non-native species in coastal dunes is twofold: non-native species either 
escaped from ornamental gardens or were intentionally planted to lower aeolian sand 
dynamics for dune stabilization purposes (Weeda 2010, Campoy et al. 2018, Adriaens 
et al. 2019). Invasive species in coastal dunes are mainly generalist species occurring 
in a wide variety of habitats in their native range (Giulio et al. 2020). They rely on their 
good colonizing capacity to rapidly grow in suitable areas rather than developing 
mechanisms that enable them to cope with chronic environmental stress or biotic 
competition. Suitable areas can be open patches created by human-made or natural 
disturbances, or patches with locally lowered environmental stress. Again using 
Carpobrotus sp. as an example, it is shown to occur more frequently at intermediate 
distances from the shoreline where conditions are milder (Bazzichetto et al. 2018).  
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Another plant species recently invading coastal dune areas is narrow-leaved ragwort 
(Senecio inaequidens D.C., Asteraceae, also known as South African ragwort). It arrived 
in Europe from South Africa via wool transport and was first recorded in Hannover 
and Bremen (Germany) in 1889 and 1896 respectively, while it first occurred in 
Belgium in 1922 (Ernst 1998, Lachmuth et al. 2010). After naturalizing at multiple 
introduction sites, its expansion started from 1950 onwards and was facilitated in 
urban areas throughout Europe by man-made landscape elements, like harbours or 
railway lines  (Ernst 1998, López-García and Maillet 2005, Lachmuth et al. 2010). In a 
more natural setting, S. inaequidens is able to migrate along river banks (e.g., its 
migration into the Netherlands along the Meuse; Ernst 1998). It was first found in 
dune areas in 1935 (López-García and Maillet, 2005), where its spread could 
potentially be facilitated by wind (Ernst 1998). 

S. inaequidens occurs in its native range as both polyploid and diploid, while only the 
polyploid cytotype is found in Europe (Lafuma et al. 2003). The invasive polyploid was 
shown to produce more flower heads than its native diploid (Thébault et al. 2011), 
consequently increasing propagule pressure in the case of a single colonisation. A 
large plant was estimated to be able to produce up to 29 000 seeds when pollinated. 
Self-fertility was initially thought to further enhance propagule pressure (Ernst 1998), 
but the effect was only minimal since the species seemed to be geitonogamous rather 
than autogamous (i.e., pollen from the same plant from another flower, but not from 
the same flower, is able to fertilize the stamen; López-García and Maillet 2005). 
Propagule pressure is further exacerbated by the establishment of a new generation 
in the same year due to low dormancy of early summer achenes, while late summer 
achenes have higher dormancy to enhance winter survival (Ernst 1998). Nevertheless, 
herbivory by snails was found to decrease propagule production (Scherber et al. 
2003).  

Apart from snails, only a handful of other small invertebrates such as aphids or beetles 
are known to feed on S. inaequidens (Witte et al. 1990, Scherber et al. 2003). For 
livestock it is mainly unpalatable or even toxic (Dimande et al. 2007, Gottschalk et al. 
2015). If it is eaten by larger animals (rabbits), then only young shoots get eaten and 
regrowth is left untouched, probably due to changes in plant chemistry (Scherber et 
al. 2003). More specifically, the low palatability of this and closely related species is 
mainly attributed to pyrrolizidine alkaloids (PAs; Caño et al., 2009; Macel et al., 2014; 
Scherber et al., 2003), chemical compounds characteristic for Senecio species (Witte 
et al. 1990, Joshi and Vrieling 2005). They are used as a defence mechanism against 
both above- and belowground herbivory (Joshi and Vrieling 2005; Caño et al. 2009; 
Thoden et al. 2009; Joosten and Van Veen 2011). 

Out of Europe, marram grass itself is, ironically enough, considered an invasive species 
on a lot of sandy coasts in, among others, North America, South-Africa and New 
Zealand (Wiedemann and Pickart 1996, Beckstead and Parker 2003, Knevel et al. 2004, 
Hilton et al. 2005). It was initially planted in the introduced areas in the 19th and 20th 
century for sand stabilization purposes, but quickly spread along the coast, 
outcompeting and displacing native plant species (Hilton et al. 2005), although its 



 

 
 

11 1. General introduction  

invasiveness seemed to depend on the local species composition (Knevel et al. 2004). 
This provides the unique opportunity to study marram grass growth and performance 
outside its native range and try to pinpoint drivers of its enhanced competitive ability. 
Marram grass forms such a dominant threat to native species in its introduced range, 
that eradication programs have been installed (e.g., Wiedemann and Pickart 1996, 
Konlechner et al. 2014). The invasive success of this species is mainly driven by  its 
capacity to withstand high sand burial compared to other species (Wiedemann and 
Pickart 1996, Hilton et al. 2005) in combination with a high dispersal capacity, 
facilitated through transportation of the rhizomes via sea water and consecutive 
sprouting of said rhizomes (Baye 1990, De la Peña et al. 2011, Hilton and Konlechner 
2011). Additionally, it is thought to benefit from a reduction in (specialised) herbivores 
in its introduced compared to its native range (van der Putten et al. 2005), a 
phenomenon known in ecology as the Enemy Release Hypothesis (ERH; Keane and 
Crawley 2002). Indeed, Beckstead and Parker (2003) did not find pathogenic 
nematodes in sand gathered in California. Nevertheless, reduction in marram grass 
performance by the soil community as a whole remained almost identical, thus only 
partly confirming the ERH. Release of aboveground herbivore species was additionally 
proposed as a viable explanation (Vandegehuchte et al. 2012). 

If marram grass is such a highly invasive species outside its native range, should we 
even be worried about other plants invading its native range? Assuming there is 
enough aeolian sand transport in order to enable marram grass to evade its 
pathogenic soil community while burying competitors, it should probably be able to 
outcompete most species. Nevertheless, some invasive plant species are known to 
decrease marram grass performance (de la Peña et al. 2010). Coastal sandy areas are 
being squeezed by the continuing need of urbanization of coastlines, especially in 
Europe (Bonte et al. 2021, IPCC 2022). Due to these shrinking sandy areas and 
increasing sand stabilization, sand supply could drop drastically, consequently 
facilitating invasive species establishment. Marram grass itself could possibly also 
facilitate invasion by locally lowering sand dynamics, as is shown for other ecosystem 
engineering species (Uyà et al. 2020). Where invasive species will establish in coastal 
dunes is a relevant question because is somewhat paradoxically. On the one hand, 
dynamic dunes with more open sand patches form an ideal situation with less 
competition from other plant species. On the other hand, environmental stress in the 
form of sand dynamics is higher in those dunes, while it is lowered in more stabilized 
dunes with more vegetation cover. Establishment of invasive plant species in 
foredunes will thus depend on their ability to either withstand high environmental 
stress or to outcompete native species. 
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1.4 Coastal dune ecosystems in Europe 

Next to sea level rise, climate change has many other negative consequences. In 
combination with human-induced changes such as land-use change and facilitation of 
invasive species spread, it is thought to cause species extinction on a scale only 
observed a few times in history, prompting scientists to describe it as “the sixth mass 
extinction in the era of the Anthropocene” (e.g., Bellard et al. 2012, Ceballos et al. 
2015, Wagner et al. 2021). Less notable species, such as nematodes or insects, seem 
to be going extinct faster than they can be described by science. Keeping in mind that 
a lot of those species are crucial for important ecosystem functions such as pollination, 
biological control and nutrient cycling (Wagner et al. 2021, Potapov et al. 2022), 
conservation of biodiversity should be at the top of our priority list. Since beneficial 
conservation measures for one species could be harmful for others, understanding the 
ecological mechanisms and complex process shaping biodiversity in a natural 
environment is crucial in order to conserve biodiversity in the most optimal way. 

Even though the required climate conditions are buffered by the sea (see further), 
coastal habitats are still limited in their range relative to other terrestrial habitats 
because they can, by definition, only occur in close proximity to the sea. This inherent 
spatial limitation in combination with the substantial urbanization of coastal areas in 
Europe over the past 150 years (Provoost and Van Landuyt 2001, Heslenfeld et al. 
2004) caused coastal habitats to be relatively rare in overall land cover. Specialist 
species relying solely upon these areas for their survival are, by extension, also quite 
rare (Provoost and Bonte 2004). Additional to specialist species, many generalist 
species can also be found in dune areas, making them biodiversity hot spots 
(Heslenfeld et al. 2004, Provoost et al. 2020). Because of this high ecological value, 
coastal dune nature reserves in Belgium and Europe are thoroughly monitored, 
managed and protected (e.g., Martínez and Psuty 2004, Provoost and Bonte 2004, 
Provoost et al. 2020).  

Within Europe, coastal habitats are mainly protected via the Convention on the 
Conservation of European Wildlife and Natural Habitats, or the Bern convention, and 
the Habitat directive. In 1979, the Council of Europe adopted the Bern convention to 
protect the European biodiversity and to promote co-operation between countries. It 
is currently signed by more than 50 countries both inside and outside the EU (Council 
of Europe 2023). The EU implementation of the ‘Bird Directive’ (1979) and the ‘Habitat 
Directive’ (1992) resulted from this convention (and earlier ones such as the Bonn- 
and Ramsar convention). This way, several types of sand dunes are protected by EU 
policy under either the ‘Habitat Directive’ as natural habitat (e.g., Shifting dunes with 
Ammophila arenaria) or because of the presence of a priority species. If the priority 
species concerns an endangered European bird, the dune area is protected under the 
‘Bird Directive’ (Heslenfeld et al. 2004, Decleer 2007). Both directives allow for the 
implementation of sanctions and are thus more enforceable than earlier signed 
conventions (Decleer 2007). The ecological Natura 2000 network originated from 
these two directives and protects special areas of conservation. It is the largest 
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coordinated network of protected areas worldwide and spans several dune areas 
(Heslenfeld et al. 2004, Decleer 2007). Marram dunes are classified within the Natura 
2000 framework as habitat 2120. Another frequently used classification of habitat 
types is CORINE (“Coordination of information on the environment”), where marram 
dunes are classified as biotope 16.21 (Decleer 2007). Additionally, national policies 
can further bolster the protection of coastal areas. For instance, In Belgium in 1993 
“the Dune decree” (NL.: het Duinendecreet) was approved in an effort to stop and 
reverse the urbanization of the already fragmented coastal dunes ecosystems 
(Defoort 1995). 

The different dune vegetation types introduced in section 1.1 harbour different 
species compositions (Provoost and Bonte 2004). Most studies linking coastal 
vegetation with faunal species richness investigated the effects of the vegetation 
zonation perpendicular to the shore on species richness (McLachlan 1991). The 
species community found within marram dunes specifically is relatively small because 
of the earlier highlighted environmental stress due to salt spray, temperature 
variability and wind and sand dynamics (McLachlan 1991, Kulmatiski et al. 2008, 
Brown et al. 2018). Consequently, most larger terrestrial vertebrate species are mainly 
observed passing through, breeding or foraging (McLachlan 1991, Provoost and Bonte 
2004); with natterjack toads (Epidalea calamita) and European rabbits (Oryctolagus 
cuniculus) as two mentionable exceptions. Other residential species found in the 
foredunes are rather small and inconspicuous, and occur associated with marram 
grass because it mediates the physical stress and provides a sheltered habitat 
(McLachlan 1991, Bonte and Maelfait 2001, Maes et al. 2006). Common invertebrate 
species found in marram grass tussocks belong mainly to the phyla Arthropoda 
(mainly insects and spiders) and Mollusca (snails). Nonetheless, some dune specialist 
insect species are known to use open sand e.g. for hunting or egg-laying, leading to 
some species preferring habitat patches with more bare sand (Provoost and Bonte 
2004, Maes et al. 2006). These examples stress the need for a heterogenous mix 
between open sand and vegetation in order to achieve a diverse arthropod 
community in coastal dunes. 

Less notable species, such as nematodes or insects, seem to be going extinct faster 
than they can be described by science. Keeping in mind that many of those species are 
crucial for important ecosystem functions such as pollination, biological control and 
nutrient cycling (Wagner et al. 2021, Potapov et al. 2022), conservation of biodiversity 
should be at the top of our priority list. Since beneficial conservation measures for one 
species could be harmful for others, understanding the ecological mechanisms and 
complex process shaping biodiversity in a natural environment is crucial in order to 
conserve biodiversity in the most optimal way. In the light of the recent increasing 
interest in marram grass for sand stabilization projects, I wanted to investigate 
whether and how marram grass cover and spatial configuration affect the 
invertebrate dune biodiversity associated with it. I did this with the hope that dune-
specific biodiversity could benefit from a potential increase in area covered by coastal 
dunes instead of, once again, becoming collateral damage. 
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1.5 Biodiversity theory in a coastal setting 

In ecology, the complex processes shaping biodiversity have been studied extensively, 
leading to many different theories and approaches to analyse and understand 
community data. On the one hand, local community composition was believed to be 
stochastic (e.g., Gleason 1926), while on the other hand it was thought to be 
deterministic (e.g., Phillips 1931). One frequently used framework trying to integrate 
different approaches is the Community Assembly Rules framework. This framework 
comprises hierarchical rules shaping local species composition and restricting them to 
the prevailing conditions (Keddy 1992, Zobel 1997, Götzenberger et al. 2012). These 
rules are defined as “restrictions on the observed biodiversity patterns” (Wilson 1999) 
and are driven by different, not mutually exclusive, processes acting on different 
spatial scales. Large-scale restrictions in species composition because of historical 
patterns of speciation, extinction and migration are referred to as phylogeographic 
assembly rules. For instance, two species might co-occur infrequently because the 
physical barrier driving allopatric speciation also prevents the species to occupy the 
same habitat (Gotelli and McCabe 2002). These form the conceptual filter between 
the global and the regional species pool (Fig. 1.2). At smaller spatial scales, from the 
regional to the local species pool, filtering happens through ecological assembly 
processes, which can be further distinguished in dispersal, abiotic and biotic assembly 
rules (Götzenberger et al. 2012, Ovaskainen and Abrego 2020). 

Large-scale differences between coastal dunes in Europe driving (phylo)geographic 
assembly rules are mainly related to geology, historical land use, human influence and 
management, sand accretion-erosion dynamics, ... The coastal dunes where the work 
for my thesis is situated (see section 1.7), can all be considered to be part of the North 
Sea region (Martínez and Psuty 2004). Nevertheless, differences in soil characteristics 
(see Bonte et al. 2003 and references therein), and to a lesser degree in their historical 
use and current management, are still present. The coastal dune areas situated in 
France and Belgium are characterized by lime-rich soil due to the proximity of lime 
formations situated around Calais (Ampe 1999, Bonte et al. 2003). More northwards, 
lime concentrations gradually decrease, probably due to river activity (e.g., the Scheldt 
and the Rhine), sea water currents and rain water (Eisma 1968, Ampe 1999, Bonte et 
al. 2003) washing away the soluble calcium. In the North of the Netherlands, the sand 
has lower nutrient concentrations, is completely decalcified and has a higher acidity 
due to the lack of the buffering capacity of the limestone (Eisma 1968, Ampe 1999, 
Bonte et al. 2003).  

Climate conditions governing species assembly are an example of a driver of abiotic 
assembly rules. Plant species are heavily dependent on climate conditions in most 
regions. This dependency on the local climate is lowered for dune species compared 
to other plant species owing to the ameliorating effect of the sea (Wiedemann and 
Pickart 2004), resulting in broad distributions for a lot of embryo- and foredune plant 
species (Del Vecchio et al. 2018).  
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Figure 1.2 Schematical representation of the Community Assembly Rules framework. 
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1.6 Biotic interactions shape biodiversity 

The variables affecting biodiversity discussed in previous paragraphs were all 
important on large to medium spatial scales. On the smallest spatial scale, species 
richness and community composition can be potentially driven by species-species 
interactions. Species interactions can be subdivided into facilitating (e.g., facultative 
mutualism and commensalism) and antagonistic (e.g., competition, predation and 
parasitism) species-species interactions. Interspecific competition is a clear example 
of a driver of biotic assembly rules. The scale on which this process has to be observed, 
depends on the studied species (e.g., metres when trees are considered vs. 
centimetres when nematodes are studied), but is small relative to the processes 
discussed before. Another subdivision that can be made between different kinds of 
interactions, is the distinction between direct (e.g., herbivory or predation) and 
indirect (e.g., apparent competition or plant-mediated) interactions. 

Plant-associated species (e.g., invertebrate herbivores, fungi, bacteria, …) can 
influence each other’s fitness without interacting directly. The general mechanism for 
such interactions is an induction of chemical changes in the host plant (e.g., defensive 
secondary metabolites or nutritional condition) which spread from its leaves to its 
roots, consequently affecting all species associated with it (van Dam et al. 2003, Leimu 
and Koricheva 2006). This can cause a shift in the associated (herbivore) species 
composition if some species are better adapted to cope with or benefit from these 
changes in plant physiology. In fact, some specialist herbivore species are even able 
to sequester chemical compounds used by the plant for its own defence (Opitz and 
Müller 2009, Kos et al. 2015). Species can be separated on a host-plant either in space 
(i.e. below- vs. aboveground) or time (i.e. priority effects). Both cases will be discussed 
further in this section.  

Plant-mediated interactions between the associated above- and belowground 
communities are very diverse. Leaf herbivory is shown to cause an increased transport 
of nutrients to the root system, which subsequently positively affects the 
belowground community (Johnson et al. 2009, Kaplan et al. 2009). On the other hand, 
aboveground herbivory is also shown to decrease plant productivity and consequently 
belowground herbivore abundances (Masters et al. 1993, Moran and Whitham 1993). 
Similarly, root-herbivory is known to both benefit (Johnson et al. 2009) and hinder 
(Wurst and van der Putten 2007) aboveground herbivores. Although the plant-
mediated interactions are mainly important for the associated herbivory community, 
associated arbuscular mycorrhizal fungi might also affect plant growth, benefiting 
aboveground herbivores (Wardle et al. 2004). Since the soil community of marram 
grass was relatively well studied because of the research done on the Ammophila 
problem, it was regularly used as a study system for the interactions between the 
above- and belowground herbivore communities (e.g., Vandegehuchte 2010). 

Communities inhabiting the same plant in the same environment, but separated in 
time, can look distinctly different. This biotic assembly rule can be driven by the 
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assembly history of the local community, a phenomenon known as ‘historical 
contingency’ caused by priority effects (Chase 2003, Fukami 2015). Early arriving 
species can alter the species composition either via niche pre-emption or niche 
modification, but only if local dynamics are fast enough (Fukami 2015). It is not only 
observed in plant-associated communities, but also in other systems, for instance in 
freshwater pond communities (Chase 2003), plant communities (Gleason 1926) and 
microbial communities (Peay et al. 2012). 

Trophic interactions, such as the interactions between predator and prey, are 
probably the best known and studied example of direct interactions. Predators usually 
feed on prey that are smaller than themselves, leading to the use of body size as a 
general proxy to identify potential trophic interactions (Gravel et al. 2013). This 
relationship seems less pronounced in terrestrial ecosystems (Potapov et al. 2019), 
however, data is still relatively scarce for some terrestrial faunal groups, for instance 
invertebrates (Traugott et al. 2013, Gongalsky 2021). This relationship between body 
size differences and likelihood of predator-prey interactions could be partly obscured 
by species identity. Both the predator and prey species could influence the outcome 
of predator-prey interactions either via the predator hunting strategy (Miller et al. 
2014, Brose et al. 2019, Potapov et al. 2022) or via the prey defence strategy (Peschel 
et al. 2006, Jeschke et al. 2008). The invertebrate community inhabiting marram grass 
is perfectly fitted to help fill this research gap because arthropod species of all trophic 
levels, employing different strategies, are found in one single tussock. There are 
detritivores (e.g., isopods, millipedes and beetle species) feeding on the dead organic 
matter at the base of the tussock, while herbivores (e.g., aphids and true bugs) are 
feeding on the phloem of fresh marram grass leaves. In the meantime, most of the 
aforementioned species can be predated by spiders or predatory beetle species 
(Weeda et al. 1991). Trying to understand whether species interact in a predictable 
manner is important because species loss is thought to be decoupled from the loss of 
interactions, with the latter going more rapidly (Valiente‐Banuet et al. 2015). This 
could mean that species loss might be even more damaging for ecosystem functions 
and services than initially thought (Griffiths et al. 2016, Keyes et al. 2021). 
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1.7 The ENDURE project 

My PhD project was integrated for the first half within the Interreg 2-seas project 
ENDURE, which was short for “ENsuring DUne REsilience against climate change”. For 
this project, a field campaign sampling biodiversity in coastal foredunes in the 2-seas-
area was carried out with help of the whole consortium (Fig. 1.3). This area 
determined my study area, which spans Belgium (sampled in 2017), France (2018), NL 
(2018-2019) and the United-Kingdom (2019). The areas to survey were determined 
based on aerial photographs and local information provided by the partners within 
the project. Within each area, a transect of about 1 km parallel to the sea was 
indicated and marram grass tussocks along these transects were sampled for 
biodiversity while also taking measures of the tussock itself. The sampled marram 
grass tussocks were located in the first 100 m from the seaward side of the foredune. 
We aimed at sampling marram grass tussock without much other surrounding 
vegetation (e.g., shrubs or other herbaceous species) in order to limit spill-over 
effects. We tried to sample tussocks at least 50 m apart, however, due to practical 
limitations (e.g., too much other vegetation along the transect or shorter transects) 
sampled marram grass tussocks were finally separated by at least 20 m. 

 

Figure 1.3 The geographical scope of the ENDURE-project. Transects are indicated by dots and 
coloured per biogeographical district. The left inset shows an example of the sampling unit 
locations (yellow dots) within the indicated transect (Holme, UK) (satellite image: © 2022 
Google). Figure made with QGIS v3.2.3- Bonn (QGIS Development Team, 2018). 
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Different data were gathered from one marram grass tussock and combined to 
multiple data sets, which were subsequently analysed separately and used as the base 
of the chapters. In the field, first a photograph was taken from the tussock, which was 
the basis for the deduction of a vitality measure. Then, aboveground biodiversity was 
sampled by respectively sweep-netting for 15 seconds and manually searching the 
base of the marram grass tussock for 5 minutes. A root- and soil sample were taken 
next by searching (i.e., digging) for vital marram grass roots and harvesting them 
together with 500 mL surrounding rhizosphere sand. Finally, the occurrence of an 
invasive plant species (Senecio inaequidens) was registered in a 5 m circle. For 
chapters 2 and 5, additional lab experiments were conducted which will be described 
in the individual chapters.  

Vegetation maps from the specific dune areas were also available via the ENDURE 
project. These vegetation maps were based on aerial photographs and LIDAR data as 
input and constructed via machine learning. For a detailed explanation of the 
construction of these vegetation maps, I refer to the Supplementary material S2 in 
Bonte et al. (2021). From these vegetation maps, measures for the spatial 
configuration of marram grass were calculated on different scales. This was done 
because of the large difference in dispersal capacity between above- and 
belowground fauna. Consequently, the 10 m scale was used in the analysis of the 
belowground biodiversity data, while the 50m scale was used in the analysis of the 
aboveground biodiversity data. Because we had no clear expectation for the relevant 
spatial scale for the invasive plant occurrence, model selection was used between 
models fit on different spatial scales. 

A total of 638 samples were taken across three years, four countries and 46 transects. 
Due to different reasons, the number of included samples was different for the 
separate analyses. So were samples only included in the analysis of the occurrence of 
S. inaequidens if there was at least one Senecio plant found along the whole transect. 
This was done to exclude false zeros (i.e., samples along dune sites where S. 
inaequidens is not yet established). Due to time related issues, not all belowground 
samples could be counted, limiting the number of samples for this analysis. The 
aboveground biodiversity data set was limited because we had to make a subset due 
to convergence issues with the statistical model used.  

Spatially explicit vegetation cover can be measured in a lot of different ways, e.g. as 
patch size, total patch area, area-perimeter ratio, connectivity, all stressing one part 
of the spatial complexity while neglecting another (Crotty et al. 2018). For this thesis, 
vegetation configuration was measured as the combination of two parameters 
calculated within circles around each sampled marram grass tussock, with the radius 
of the circles depending on the studied species (see above). The first parameter was 
the proportional cover of marram grass within this area. This parameter gives an idea 
about how much vegetation there is present within the surrounding area, without 
indicating how it is spatially structured. The second parameter was a measure for the 
spatial autocorrelation of the vegetation, independent from the covered area. The 
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normalised join count statistics (JC; Cliff and Ord 1981) was used as the measure for 
spatial autocorrelation in the second chapter. This measure is positive when the 
vegetation is clustered together, close to zero when the vegetation is randomly 
distributed and negative when the vegetation is homogeneously distributed 
throughout the landscape. Theoretically, this measure is scale-independent (Cliff and 
Ord 1981), however, the actual calculated JC values increased with increasing spatial 
scale. Due to this apparent scale dependency, I switched from JC (in chapter 2) to 
Moran’s I (chapters 3 & 4) as the measure for spatial clustering. This scale dependence 
was probably caused by a wrong implementation of the JC measure in the spded 
package in R. I personally think the results in chapter 2 to be robust, since the actual 
JC values increased with increasing spatial scale, whereas the values of the variable 
did change to negative when I tested the package with a fictive, homogeneous 
marram grass configuration. Additionally, marram grass occurs highly clustered under 
natural conditions, causing this parameter to vary from positive values to larger 
positive values. The decision to switch was mainly made because this would allow me 
to compare the results between chapters (3 and 4) without having to worry about 
potential scale dependencies. 

As already mention before in section 1.5, all coastal dune areas visited for the 
fieldwork be considered to be part of the biogeographical North Sea region (Martínez 
and Psuty 2004). Nevertheless, because of differences related to  soil characteristics, 
historical use and current management, I further subdivided them into five 
subregions. During the rest of my thesis, I will refer to these subregions as 
“biogeographical districts”. Since different countries were sampled during different 
years, and because the countries overlap for a large degree with these 
biogeographical districts, we cannot completely rule out that the effects we find are 
correlate with the weather conditions varying between years. I discuss this in more 
details were necessary in the discussion of the specific chapters (3 and 4). 
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1.8 Objectives and outline of the thesis 

The aim of this thesis was to gain a better understanding of the processes shaping 
invertebrate biodiversity in marram dunes, with a specific focus on the effect of 
marram grass spatial configuration. A vast amount of data gathered during three 
consecutive field years was used for this purpose. Where necessary, field data was 
supplemented with lab experiments. A schematic overview of the data types gathered 
and how they were used for the different chapters can be found in Fig. 1.4. 

 
Figure 1.4 Schematic overview of the different data types gathered from one marram grass 
tussock and how they are used in the different chapters. Chapter 2 uses occurrence data of 
Senecio inaequidens in the immediate proximity to the marram grass tussock. Chapter 3 
analyses nematode community data extracted from the roots of the plant. In chapter 4, I study 
the invertebrate community found in the marram grass leaves and in chapter 5 I try to 
estimate trophic relationships between them. Chapter 1 and 6 are the general introduction 
and general discussion respectively. 

In chapter 2, I used occurrence data of an invasive plant species (Senecio inaequidens) 
to study its potential to establish in European coastal dunes where it was hitherto not 
found. This potential spread was correlated to marram grass configuration, which can 
be used as a reliable proxy for sediment supply. I hypothesised the highest probability 
of S. inaequidens establishment to be at intermediate marram grass cover because 
too low cover would increase sand burial, whereas too high cover would increase 
competition. Since marram grass plays a crucial role in natural dune formation, I 
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further evaluated the possible effects S. inaequidens establishment could have on this 
process. To this end, a growth experiment was conducted to study whether S. 
inaequidens was able to alter marram grass performance. I expected a negative 
impact of Senecio-altered soils on marram grass growth mediated by an increase in 
soil biota. 

For chapter 3, I analysed the nematode functional abundance data extracted from 
root and soil samples to study their spatial structure and its possible arise from 
marram grass’ spatial configuration. The relative importance of factors structuring 
nematode abundances was further analysed using joint species distribution modelling 
(JSDM). I hypothesised that nematode abundance would by higher in lime-rich coastal 
dune regions because of the higher soil pH. At smaller spatial scales, nematodes found 
in the roots would positively correlate with marram grass cover and all nematode 
abundances would increase with clustering of the host plant as a consequence of the 
less efficient sand-capture of these configurations. Furthermore marram grass vitality 
would affect functional groups differently, while all  nematode abundances would 
decline when S. inaequidens is present. 

The aboveground invertebrate data were analysed in chapter 4. Here, I studied the 
effect of the cover and vitality of marram grass on the invertebrate community in 
different biogeographical regions. Using JSDMs, I could additionally take into account 
species traits and phylogenetic relationships. From these models, residual species-
associations could be extracted to gain further insights into the community assembly 
rules structuring dune biodiversity. I hypothesised species richness to be mainly 
affected by local marram grass parameters, while species composition would be 
mainly influenced by the biogeographic districts. 

Chapter 5 was a joint effort between me and a colleague, where we wanted to validate 
the predicted trophic interactions based on body size ratios between predator and 
prey. This is particularly interesting because we would be able to test a well-
established rule within ecology. Additionally, this chapter enabled me to gain some 
more experience in the setup of experimental work. Furthermore, we also tested 
whether predator hunting strategy and general taxonomy (as a proxy for prey 
defensive properties) could explain possible deviations from this size-based rule. We 
expected the general rule to hold up, but expected predator hunting strategy and prey 
taxonomy to explain additional variation. 

In chapter 6, the results presented in the previous chapters are discussed in a broader 
context. The implications of the results for conservation of biodiversity are explored, 
while the possible impact of invasive species for coastal protection are discussed as 
well as the potential increase in coastal habitat for invertebrates due to coastal 
protection. The chapter ends with a few concrete suggestions for future 
experimentation. 
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Chapter 2 
 

The distribution and impact of an invasive 
plant species (Senecio inaequidens) on a 

dune building engineer (Calamagrostis 
arenaria) 

 

Ruben Van De Walle, François Massol, Martijn L. Vandegehuchte &  
Dries Bonte 

 

 
Senecio inaequidens growing in between Calamagrostis arenaria. 

 

Adapted from: Van De Walle R, Massol F, Vandegehuchte ML, Bonte D (2022) The distribution 
and impact of an invasive plant species (Senecio inaequidens) on a dune building engineer 

(Calamagrostis arenaria). NeoBiota 72: 1–23.   
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2.1 Abstract 

Disturbance is thought to enhance the probability of invasive species establishment, 
a prerequisite for naturalisation. Coastal dunes are characterised by disturbance in 
the form of sand dynamics. We studied the effect of this disturbance on the 
establishment and spread of an invasive plant species (Senecio inaequidens) in 
European coastal dunes. Local sand dynamics dictate the spatial configuration of 
marram grass (Calamagrostis arenaria). Therefore, marram grass configuration was 
used as a reliable proxy for disturbance. Since marram grass plays a crucial role in 
natural dune formation, we evaluated the possible effects S. inaequidens could have 
on this process, when it is able to colonize European coastal dunes. 

 We expected the highest probability of S. inaequidens establishment at intermediate 
marram grass cover because too low cover would increase sand burial, whereas high 
cover would increase competition. However, results from our field survey indicated 
that S. inaequidens is quite capable of handling higher levels of sand burial. Thus, the 
probability of S. inaequidens establishment was high under low marram cover but 
slightly lowered when marram cover was high, hinting at the importance of 
competition. 

We expected a negative impact of Senecio-altered soils on marram grass growth 
mediated by soil biota. However, marram grass grew better in sand gathered 
underneath Senecio plants due to abiotic soil modifications. This enhanced growth 
may be caused by Senecio leaf litter elevating nutrient concentrations in an otherwise 
nutrient-poor substrate. If such increased plant growth is a general phenomenon, 
further expansion of S. inaequidens could accelerate natural succession in European 
coastal dunes.  
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2.2 Introduction 

Due to human activity the number of invasive species worldwide is ever-increasing. In 
Europe alone, the number was estimated to be well over 12 000 in 2019 (Roy et al. 
2019). The causes of introduction of non-native species range from intentional 
introduction, e.g., for pest control, horticulture, coastal defence and restoration 
purposes (Cox 1992, Beckstead and Parker 2003, Richardson and Rejmánek 2011, 
Camacho-Cervantes et al. 2017, Buerdsell et al. 2021) to unintentional introduction 
such as escape from planting sites and introduction via tourism (Davenport and 
Davenport 2006). 

After reaching a new habitat, the non-native species needs to establish and naturalize 
in order to become invasive (Richardson et al. 2000). It is generally thought that 
disturbance benefits establishment of non-native species and that it could even 
facilitate the spread of invasive species. Several mechanisms, such as reduced 
competition, increased resource input and increased habitat availability, are proposed 
to be behind this phenomenon (Mack et al. 2000, Pyšek and Richardson 2006, Jauni 
et al. 2015, Lear et al. 2020). 

Several hypotheses have been proposed to explain the long-term success of invasive 
species (Mack et al. 2000, Chabrerie et al. 2019). Among these, the enemy release 
hypothesis (ERH) and the Evolution of Increased Competitive Ability hypothesis (EICA) 
are particularly important in the context of harsh, temporally variable environments 
in which biotic interactions can be hampered. The ERH states that the success of 
invasive species can be attributed to the release from natural enemies such as 
(specialized) herbivores or pathogens (Keane and Crawley 2002). The EICA adds to this 
that, due to the release from natural enemies, invasive plant species can reallocate 
resources otherwise used for protection towards growth and other performance traits 
(Blossey and Notzold 1995). 

Invasion can also be promoted via both intra- and interspecific facilitation (Jordan et 
al. 2008, Proença et al. 2019, Uyà et al. 2020), especially in harsh environments, or by 
decreasing fitness of native species (Jordan et al. 2008, Vilà et al. 2011). One 
underlying mechanism in plant communities is modification of the soil (Aldorfová et 
al. 2020). The effect of such modifications can be very useful because invasive species 
can provoke generic effects against the whole native community, which enables them 
to invade if they suffer less from their created disaster. Contrastingly, it is hard for the 
native community to specifically target a newly arrived, invasive species (David et al. 
2017). The term ‘plant-soil feedback’ (PSF) refers to the process of plants altering the 
soil with effects on the performance of other plants subsequently growing in this soil 
(Bever et al. 1997, van de Voorde et al. 2011, Buerdsell et al. 2021). The soil 
characteristics altered can be biological, chemical or structural (Ehrenfeld et al. 2005, 
Kulmatiski et al. 2008). Biological modification of the soil occurs via changes in the soil 
community, including soil microbes and soil fauna. Depending on the affected species, 
these effects can be negative, e.g., when root-feeding nematodes or pathogens 
accumulate (Van der Stoel et al. 2002, Bever et al. 2015) or mutualistic interactions 
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are disrupted by the non-native plant (Callaway et al. 2008, Brouwer et al. 2015), or 
positive, e.g., by accumulation of mycorrhizal fungi or nitrogen-fixing bacteria in low-
nutrient soils (Rodríguez-Echeverría et al. 2009, in ’t Zandt et al. 2019). Root exudates, 
litter decomposition and root-supported microbial activity can alter different 
components of the soil chemistry such as soil acidity and nutrient availability (e.g., 
Lazzaro et al. 2014). Structural modification occurs via changes in soil temperature, 
water content or the overall soil structure and soil aggregates (Ehrenfeld et al. 2005). 
Again, these effects can be either negative or positive, depending on the species 
(Bezemer et al. 2006).  

Plant-soil interactions can affect the process of species invasion at different scales. 
Plant-soil interactions are local and thus mainly affect the plant itself or other plants 
in the near vicinity, both conspecifics and heterospecifics. Invasive tree species can, 
however, have more wide-ranging effects using their fallen leaves as agents of soil 
change (e.g. Gómez-Aparicio & Canham 2008). At larger spatial scales, different local 
plant-soil interactions give rise to a heterogeneous, spatially structured landscape 
(Bever et al. 1997, Mack and Bever 2014) which influences biodiversity, population 
dynamics and ecosystem functioning (Levine et al. 2003, Vilà et al. 2011, Mack and 
Bever 2014). This heterogeneity can, in turn, influence the processes facilitating 
species invasions, such as enemy release or fitness decrease in native competitors. 

European marram grass (Calamagrostis arenaria (L.) Roth, formerly Ammophila 
arenaria) is one of the most extensively studied systems regarding PSF, with studies 
investigating abiotic and biotic PSFs going back to the 60s (Marshall 1965) and 80s 
(van der Putten et al. 1988) respectively. This study focuses on marram dunes (Natura 
2000 habitat 2120, CORINE biotope 16.21), a coastal habitat type dominated by 
marram grass, which occurs relatively early in the dune succession, characterised by 
high levels of stress (Kulmatiski et al. 2008) due to e.g. sea spray and aeolian sand 
burial (Brown et al. 2018). Marram grass is perfectly adapted to grow in these 
conditions. Several studies have shown that marram grass even needs sand burial to 
grow optimally (i.e. Ievinsh & Andersone-Ozola 2021, Nolet et al. 2018) because the 
biological soil community accumulating around the roots of marram grass has a 
negative impact on its performance and growth (van der Putten et al. 1988, Van der 
Stoel et al. 2002). Deposits of sand blown in from the beach are relatively free of root 
pathogens and parasites and thus enable marram grass to develop new roots in this 
temporarily enemy-free soil. Additionally, marram grass also interacts with the 
aeolian sand dynamics by locally lowering the wind speed and thus promoting sand 
capture (Zarnetske et al. 2012, Reijers et al. 2021), resulting in a positive feedback 
between marram growth and sand capture. This interplay between marram grass and 
sand dynamics leads to a range of possible spatial configurations of marram grass, 
which depend on the local sand dynamics. Reijers et al. (2021) found that marram 
grass grows highly clustered together under sediment-poor conditions. When there is 
enough sediment supply, it grows more randomly, albeit still clustered (Reijers et al. 
2021). This allows marram grass cover to be used as a proxy for the intensity of sand 
dynamics. Marram grass can reach a high density when enough fresh sand is provided 
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by strong sand dynamics. Under moderate sand dynamics, an optimal spatial 
configuration is expected to occur with a heterogeneous mosaic of bare sand and 
marram grass. Since this species grows via lateral vegetative growth, natural 
configurations show variable degrees of clustering, but rarely occur in truly random, 
let alone regular configurations. 

The bare sand patches between marram grass tussocks may provide an opportunity 
for invasive species to establish. On the other hand, too dynamic conditions will 
probably hinder settlement due to too high levels of sand burial (Maun 1998, Kent et 
al. 2005). These conflicting pressures could determine where invasive species are able 
to establish in marram-dominated dunes. If these sand patches become overgrown, 
sand dynamics can further decrease (Gao et al. 2020) and in turn this can negatively 
affect the vitality of marram grass. This could lead to the invasive species becoming 
competitively stronger and outcompeting marram grass (i.e., a form of positive 
density dependence). Such changes in competition could have extensive 
consequences for coastal dunes and their ecosystem services (Klironomos 2002), 
especially coastal defence, as they could trigger feedbacks that change system 
dynamics (Bonte et al. 2021). 

One species invading coastal dunes around the North Sea is narrow-leaved ragwort 
(Senecio inaequidens D.C., Asteraceae, also known as South African ragwort). It is 
originally a South African species, but with a long history of invasion in Europe (Ernst 
1998), where it arrived via wool transport (Lachmuth et al. 2010). Although much is 
known about the invasion of S. inaequidens in other habitats in Europe (Ernst 1998), 
far less is known about its colonisation of sandy dune areas. It was first found in dune 
areas in 1935, more specifically in the dunes of Calais, France (López-García and 
Maillet 2005). 

Senecio species contain pyrrolizidine alkaloids (PA) as a defence mechanism against 
both above- and belowground herbivory (Joshi and Vrieling 2005, Caño et al. 2009, 
Thoden et al. 2009, Joosten and Van Veen 2011). Several studies have shown these 
allelopathic defences can influence entire soil communities (Kowalchuk et al. 2006, 
Thébault et al. 2010, Harkes et al. 2017) and therefore Senecio species are able to 
affect their own spread (Engelkes et al. 2008). However, the exact mechanisms are, to 
our knowledge, still unknown. Passive release from roots (and leaf litter) is the most 
probable pathway, although it is speculated that direct secretion from the roots is 
possible as well (Kowalchuk et al. 2006, Joosten and van Veen 2012, Selmar et al. 
2019). Not many studies have tried to investigate the direct effect of PAs on plant 
growth (but see Ahmed & Wardle 1994). Recently, even uptake of PAs by other plant 
species was demonstrated (Nowak et al. 2016, Selmar et al. 2019), although the 
general consequences of this horizontal transfer for the receiving plants are unknown 
at the moment.  

We suspect that PAs in sandy soil will have little effect on marram grass growth 
directly. The sign of the total effect of S. inaequidens will depend on the response of 
the soil community. It will be negative if marram pathogens can accumulate or if PAs 



 
28 

prevent symbionts from associating with marram roots. However, it can be positive if 
PAs prevent accumulation of marram pathogens and thus create an enemy-free space 
for marram roots, as aeolian sand does. 

Here, we investigate the relation between marram grass spatial configuration and the 
probability of establishment of Senecio inaequidens in marram dunes, together with 
the potential effects of this invasion on marram dunes. We hypothesize that (1) due 
to the potentially positive effect of disturbance on invasive species (Scherber et al. 
2003, Jauni et al. 2015), S. inaequidens will likely get established in more disturbed 
areas, i.e. areas with stronger sand dynamics. However, since too high sand burial is 
probably detrimental for the growth of S. inaequidens, we expect to find an optimum 
at intermediate sand burial which is also associated with intermediate vegetation 
cover. We further postulate that (2) the biotic compartments of Senecio-altered soils 
will negatively affect marram grass growth, except if PAs prevent marram pathogens 
from accumulating. 

 

2.3 Material & Methods 

Study Area 

This study was carried out in coastal dune areas along the Channel and the North Sea, 
covering the North of France, Belgium, the United Kingdom and the Netherlands (Fig. 
2.1). Within this area, we focussed on sandy coasts with marram-dominated, yellow 
dunes. This area included the location of S. inaequidens settlement and the 
northernmost location within its distribution in coastal dunes, thus enabling us to 
study the front of the ongoing invasion. 

For a recent biodiversity study, 46 dune transects spread along the study area were 
selected. The transects had a mean length of 1212 m (shortest: 230 m, longest: 
3348 m) and were located within the first 100 m from the front of the foredunes. 
Within each transect a number of sampling locations was chosen based on the length 
of the dune transect with an average of 14 samples (min 5; max 37). Each sampling 
location was characterized by a central marram grass tussock. Individual sampling 
locations were separated by at least 20 m and chosen with the aim to maximise the 
variety of surrounding marram grass configurations. For the total number of samples 
and transects per country, see table 2.1. 

Table 2.1 The number of samples taken in each country within the study region. 

Country Samples Transects Mean length of transects 

BE  206 18 822 

FR  184 9  2232 

NL  188  13  800 

UK 60 6 720 
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Figure 2.1 The samples included in the analysis. Colours indicate the different countries. 
Senecio inaequidens was not found in the UK. Map made with QGIS v3.6 (QGIS Development 
Team 2021).  

 

Data collection 

The occurrence of narrow-leaved ragwort (Senecio inaequidens) was mapped at each 
sampling location. The number of S. inaequidens plants was counted within a radius 
of 5 m around the central marram grass tussock for those sampled in France, the UK 
and the Netherlands. Due to a change in the protocol of the biodiversity study, in 
Belgium the occurrence was scored into four categories: “not present”, “sparse”, 
“moderate” and “abundant”. Data on the occurrence of S. inaequidens were collected 
during three consecutive summers: in July 2017 data were collected along the Belgian 
coast; in July, August and September 2018 along the French coast; in August and 
September 2018 and June 2019 along the Dutch coast; and in July and August 2019 
along the coast of the UK (Norfolk and Devon). 

From available vegetation maps of the foredunes (Bonte et al. 2021), the proportional 
cover by marram grass in the vicinity of the central marram grass tussock (P), together 
with a measure of spatial autocorrelation of marram grass occurrence (normalised 
join count statistics, JC; Cliff & Ord 1981), were calculated. These two parameters were 
used to express the spatial configuration of the surrounding marram grass. The 
proportion of marram grass cover is straightforward and ranges from 0 (no marram 
grass present) to 1 (the whole area is covered with marram). The measure of spatial 
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autocorrelation is negative when the marram grass is regularly distributed in the 
landscape. If the marram grass is randomly distributed, the parameter is close to 0 
and it is positive when the marram grass occurs clustered together. As pointed out by 
Bonte et al. (2021), marram grass distribution is almost always clustered (i.e., high JC 
values) and rarely random. These two parameters (P and JC) were calculated within 
four circles with different radii (5 m, 10 m, 20 m, 50 m) around the central marram 
grass tussock to represent different spatial scales. See supplementary material of 
Bonte et al. (2021) for a more in-depth explanation of construction of the vegetation 
maps and calculations of the spatial parameters. 

 

Lab experiment 

To study the effect of S. inaequidens on marram grass growth, we performed a growth 
experiment with a split-plot design: sand affected by S. inaequidens was gathered at 
the Belgian coast together with bare sand for the control group. Half of the volume of 
sand gathered was sterilised (by autoclaving at 121°C/1 bar for 30 minutes) in both 
groups to determine whether any observed effect could be biotic or abiotic.  

Sand was gathered from three different sites situated on the western, central and 
eastern Belgian coast: in the foredunes in Oostduinkerke (Ter Yde) for the west coast, 
for the mid coast in Oostende (Fort Napoleon) and for the east coast between 
Wenduine and Zeebrugge (two locations were used due to low occurrence of S. 
inaequidens). Ten plots were sampled at each site (for a total of 30 plots). Each plot 
yielded two samples: 2L rhizospheric sand from underneath S. inaequidens plants and 
2L of bare sand taken 5-10m away. This way, changes in soil between two paired 
samples, other than due to the influence of S. inaequidens, were minimised. The sand 
was stored in the fridge (max 3 days) to assure the survival of the soil biota until the 
sand was used. The 2L samples were divided into two 1L sub-samples from which one 
was sterilised and the other was not. Thus, we had four treatments: Senecio-
influenced vs. bare sand at the plot level combined with sterile vs. non-sterile soil at 
the subplot level (Fig. 2.2). In other words, influence of Senecio was the whole-plot 
factor and soil sterilisation the subplot factor, with whole plots organized in pairs, 
which act as statistical blocks. 

Marram grass seedlings were used for the experiment because seedlings are more 
susceptible to environmental influences than fully grown plants (Huiskes 1979). The 
seedlings were grown from seeds gathered at the Belgian coast (Oostduinkerke, ter 
Yde) from the same population in order to minimize genetic effects. The seeds were 
collected during the summer of 2019 and stored at room temperature in the lab. All 
seeds were surface-sterilised as in de la Peña et al. (2010) before they were left to 
germinate under standardized conditions (on commercially available sand saturated 
with demineralized water; photoperiod: 16/8 h light/dark; temperature: 22 ± 1°C) for 
2 weeks prior to dune sand collection. As a baseline, the whole seedlings were 
weighed and the length of roots and leaves was measured before planting. 
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Figure 2.2 Split-plot design of the marram grass growth experiment for the site at Oostduinkerke 
(Western Belgian coast). 2L samples of sand, (1) sand from unvegetated locations or (2) sand 
from underneath Senecio, were split into two 1L subsamples, one of which was sterilized. This 
enabled us to investigate whether the effect of Senecio on marram grass growth was achieved 
via the biotic or abiotic portion of the soil. Map made with QGIS v3.6 (QGIS Development Team 
2021). Aerial photograph (summer 2018) source: Agency for Information Flanders (geopunt.be). 

All 120 pots (3 sites x 4 treatment combinations x 10 plots) were filled with 1L of sand 
in which three seedlings were planted. The pots were placed in a growing chamber 
under the same conditions as mentioned before for the germination of the seeds. All 
pots were watered twice a week, on the same day, with demineralised water until 
near-saturation. Each pot was labelled with a unique ID in order to prevent observer 
bias. 

After 2 weeks of growing, the largest seedling was selected to grow for another 10 
weeks. The other two seedlings were removed. This was done to ensure that all 
remaining seedlings had rooted properly in order to minimise die-off and resulted in 
only three plants dying during the whole experiment (one from each treatment, 
except for the sterilized bare sand treatment). At the end of the growing period the 
whole plants were collected, all leaves were counted and the length of the longest leaf 
and root was measured. Further, all leaves and roots were weighed separately, both 
before and after drying in an oven at 70°C for 48h. 
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Statistical analyses 

Occurrence of Senecio 

Due to two different methods of assessment of the occurrence of Senecio inaequidens 
(i.e. ordinal categories for the Belgian samples and count data for all other samples), 
all S. inaequidens data were converted to presence/absence. To exclude false zeros 
(i.e., samples along dune sites where S. inaequidens is not yet established) from the 
analysis, only dune transects where S. inaequidens occurred in at least one sample 
were included. This resulted in a final dataset comprising 26 out of the 46 original 
sites, which included 408 of the original 638 samples. The sites were located in three 
countries since S. inaequidens was not observed in the United Kingdom. 

The marram grass spatial data were used as independent variables. As explained 
above, the spatial data consisted of two continuous variables: the proportion of 
marram grass (P) and its normalized join count statistic (JC) for each spatial scale (5m, 
10m, 20m and 50m) per sample. The JC values were rescaled to the maximum value 
to alleviate convergence issues of linear models. This resulted in both parameters 
ranging between 0 and 1. Generalised linear mixed models were used with a logit link 
function and binomial distribution to analyse the occurrence data. A combination of 
first and second order terms of P and JC, together with interactions between them, 
were fitted to allow the relationship between the occurrence of S. inaequidens and 
the spatial parameters to be unimodal. The maximal (full) generalised linear mixed 
models were of the form:  

occurrence ~ P + JC + (P x JC) + JC² + P² + (P² x JC) + (JC² x P) 

To determine which combination of P and JC best explained the occurrence data, 
different combinations of the spatial predictors were fitted (including interactions 
terms, see table S.1 in Supplementary material for all models) at all four scales (i.e. 
using P and JC computed at 5m or 10m or 20m, etc.), after which model selection 
based on the corrected Akaike Information criterion (AICc) was used to select the 
model and scale that optimised goodness-of-fit. Dependency is present within the 
data for samples along the same transect. Therefore, ‘transect’ nested within 
‘country’ was included in the models as a random variable. ‘Country’ itself was 
excluded because it contained almost no variation (Chen and Dunson 2003). This way 
we also accounted for differences in weather, dune management and time (different 
countries were sampled in different years).  

 

Growth experiment 

We analysed the effect of the provenance of the sand (from beneath S. inaequidens 
vs. bare sand), of its sterilisation and of their interaction using linear mixed models. F-
tests with Satterthwaite’s approximation of denominator degrees of freedom were 
used to determine the significance level of the fixed effects. All measured traits 
(number of leaves, length of longest leaf and root, weight of fresh and dry roots and 
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leaves) where highly correlated (see supplementary material, S.2), so we used the first 
principal component (PC1) from a principal component analysis run on the trait data 
as response variable for the analysis. Sample site and plot were integrated in the 
mixed model as random effects to account for data dependency within block and 
whole-plots. Sample was initially also included to correct for dependency of the 
subsamples within each sample, but this random effect was removed because of a 
negligible variance component. 

 

All data analyses were performed using R Statistical Software (R Core Team 2021). The 
calculation and normalisation of JC values was done with the ‘spdep’ package (Bivand 
and Wong 2018). The packages ‘lme4’ (Bates et al. 2015) and ‘lmerTest’ (Kuznetsova 
et al. 2017) were used for the Generalized linear mixed models. Package ‘MuMIn’ 
(Barton 2020) was used for automated model construction and comparison.  
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2.4 Results 

Occurrence 

Senecio inaequidens was observed at 176 of the 408 sites included in the analysis. The 
most northern and southern transect where S. inaequidens was observed are 
respectively at Wassenaar (52.1565°N; 4.3404°E; the Netherlands) and Wimereux 
(50.7931°N; 1.6074°E; France). S. inaequidens was most frequently present in Belgian 
samples, followed by France and the Netherlands (Fig. 2.3). In the United Kingdom, no 
S. inaequidens was observed. 

 
Figure 2.3 The average occurrence of S. inaequidens, calculated as the proportion of samples 
within each transect where S. inaequidens was found. BE = Belgium; FR = France, NL = the 
Netherlands. 

The four models selected were all at the 5m scale (using an AICc delta value of 2; see 
table 2.2 for the selected models; see Supp. Mat. S2.1 for all models), implying that S. 
inaequidens reacts to marram grass spatial configuration at small distances. The 
predicted occurrence is depicted in Fig. 2.4a. When the vegetation is highly clustered 
together (high JC values), the occurrence of S. inaequidens is negatively correlated 
with marram grass cover. Further, we see a clear minimum probability of occurrence 
of S. inaequidens at more random distributions of marram grass (low JC values) with 
intermediate vegetation cover. Since no random configurations were found at 
intermediate P, the minimum is probably due to a small number of samples with a low 
JC (see Fig. 2.4b), thus caution is advised when interpreting this result. Although we 
actively tried to sample in a wide range of different spatial configurations of marram 
grass, there is still a low number of data points with low marram grass cover and less 
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clustered configurations due to the nature of the system. To ascertain that the 
outcome of the analysis was not greatly influenced by those few samples, the analysis 
was redone after excluding those samples. The results did not differ greatly (see Supp. 
Mat. S2.3). 

 

Table 2.2 The coefficients, number of model parameters (df), AICc values, relative AICc (ΔAICc; 
i.e., difference between each model’s AICc and the minimum AICc) and Akaike weights for all 
selected models. 

Spat. 
scale 

Intrcpt JC JC² P P² JC*P JC*P² df logLik AICc Δ AICc weight 

5 -1.4 6.13  -8.84 15.75  -13.71 6 -182.35 376.96 0 0.13 

5 -2.53 15.39 -11.49 -24.36 28.00 23.84 -32.06 8 -180.9 378.24 1.285 0.068 

5 -3.14 12.46 -5.35 -8.92 14.82  -12.19 7 -181.99 378.32 1.367 0.065 

5 -0.12 3.94  -16 22.28 11.32 -23.80 7 -182 378.34 1.379 0.065 

Avg. -1.73 8.88 -3.45 -13.50 19.40 7.20 -19.21      

  

 

 

Figure 2.4 (a) The overall relation between the probability of occurrence of S. inaequidens and 
the spatial configuration of marram grass. The colours indicate the probability of occurrence 
as %. (b) Density distribution plots of the observed cover (P) and spatial autocorrelation (JC) of 
marram grass within a 5m radius of the central marram grass tussock. This plot only contains 
the data of the transects where S. inaequidens was found. Colours indicate whether S. 
inaequidens was present (yellow) or absent (purple). 
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Growth experiment 

The first PC of the PCA of all measured plant traits explained 73.9% of the variation, 
while the second PC explained 14.7%. Scores along PC1 were significantly correlated 
with all plant traits (see Supp. Mat. S2.2), therefore, we used PC1 as a reliable indicator 
of overall plant growth. Marram grass growth was affected by both the abiotic and 
biotic components of the soil (Fig. 2.5). However, no significant interaction was found 
(F1,82.7 = 1.10, p = 0.298). Soil sterilisation had a positive effect on marram growth 
(F1,83.4 = 106, p < 0.001), which means that the soil biota had a negative effect on 
marram biomass. The plants grown on sand from underneath S. inaequidens grew 
better than plants grown on bare sand (F1,82.7 = 59.2, p < 0.001). 

 

Figure 2.5 Box- and violin plots represent distribution of PC1 values for marram grass growth. 
Horizontal lines above the boxplots indicate comparisons between treatments, *** indicate 
significant difference of p < 0.001. Colours indicate whether biota were present (yellow) or 
absent (purple). Number of samples per treatment is 29, except for sterilized sand from 
unvegetated locations, where it is 30. 
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37 Chapter 2  

2.5 Discussion 

Field data 

No evidence was found for the hypothesized optimum probability of establishment of 
S. inaequidens at intermediate marram grass densities. In fact, our results indicated 
that S. inaequidens has no problem growing in sandy conditions, as we observed a 
negative correlation between vegetation cover and probability of establishment. This 
indicates that S. inaequidens is more susceptible to competition than to sand burial. 
Indeed, some studies found that this species is a good coloniser rather than a good 
competitor (Scherber et al. 2003, Caño et al. 2007, Thébault et al. 2011). Furthermore, 
the available area to root in – in this case open sand – also decreases as vegetation 
cover increases. This is especially important since S. inaequidens is an annual plant 
which relies on high propagule pressure to spread (Thébault et al., 2011). 

Due to the nature of the system, higher proportions of marram grass occur mainly 
towards later stages of succession. In these later stages, marram starts to decay and 
the spatial configuration starts to return to a more random distribution (i.e. lower JC 
values and slightly lower P values) because marram grass is slowly being replaced by 
other plant species. This leads to a rise of the probability of Senecio establishing which 
may indicate that it is becoming a stronger competitor. 

Overall, the probability of establishment of S. inaequidens displays high values across 
the whole range of sampled natural marram grass configurations. Since we aimed to 
maximise the variety of natural marram grass configurations surrounding the sample, 
configurations that were not sampled probably do not, or not often, occur in nature. 
In fact, such configurations arise probably mainly when marram grass is planted (i.e., 
for coastal protection) and afterwards when the planted dune is ‘maturing’. This 
makes it hard to extrapolate our findings to these specific situations. 

 

Growth experiment 

We hypothesised that the effect of S. inaequidens on marram grass growth would be 
negative, mainly because of interactions with the soil community. However, we 
concluded that the overall effect is positive. This effect is purely abiotic, since there is 
no significant interaction between sand sterilisation treatment and the provenance of 
the sand (underneath/away from Senecio). Similarly, intraspecific plant-soil feedbacks 
from Senecio jacobaea are also known to be (partly) abiotic (Wang et al. 2019), 
although the effect was negative in the cited study. Dassonville et al. (2008) showed 
that invasive species (S. inaequidens being one of the species included in their review) 
can have a positive effect on nutrient concentrations in plots with initially low 
concentrations. Since sand indeed has low nutrient concentrations (Reijers et al. 
2020), this explanation is applicable here. Currently, we cannot verify this explanation 
since nutrient concentrations were not measured in the experiment.  
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Because marram grass growth was promoted in sand influenced by S. inaequidens, we 
can conclude that pyrrolizidine alkaloid concentrations had no, or a negligible, 
negative effect on marram grass. This is not surprising, since the most probable 
mechanism of PA enrichment of the soil is via passive release from roots and leaf litter 
(Joosten and van Veen 2012, Nowak et al. 2016, Selmar et al. 2019) and because some 
plants are even known to take up PAs without experiencing adverse effects (Nowak et 
al. 2016, Selmar et al. 2019). In contrast, Ahmed & Wardle (1994) found a negative 
effect of PA on plant growth. In our study, such a negative effect of PAs may have been 
counteracted by the simultaneous nutrient enrichment caused by S. inaequidens. This 
is in line with the observations by Reijers et al. (2020) that marram grass is more 
capable of coping with stressful conditions when nutrient availability is higher. 

We observed a significant negative effect of soil biota on marram growth, with 
sterilisation of the soil having a positive effect on the biomass of marram, independent 
of the sand origin. This indicates that soil biota in the Senecio rhizosphere have 
approximately the same (negative) effect as the community within unvegetated sand. 
Thoden et al. (2009) found that PAs suppress the development of juvenile 
Meloidogyne hapla nematodes. Other species from this genus also colonise marram 
grass. However, it was suggested before that nematodes from this genus do not 
develop to adults on marram grass anyway (Van der Stoel et al. 2002). On the other 
hand, Pratylenchus nematodes are able to colonise both Senecio (Zasada et al. 2017) 
and marram grass roots (Van der Stoel et al. 2002), which would enable infection of 
marram roots by Pratylenchus spp. present on Senecio roots. However, arbuscular 
mycorrhizal (AM) fungi have low levels of endemism and host specificity (Davison et 
al. 2015, Aldorfová et al. 2020) and are known to colonise roots of Senecio spp. (van 
de Voorde et al. 2010, Alguacil et al. 2012, Reidinger et al. 2012). Since both European 
and American marram grass (Calamagrostis arenaria and C. breviligulata resp.) 
benefit from AM fungi when faced with nematode infection (Little and Maun 1996, 
De La Peña et al. 2006), it is possible that the negative effect of the nematodes is 
counteracted by the AM fungi also accrued on the Senecio roots. Furthermore, some 
studies have shown that Senecio species effectively reduce density or diversity, 
depending on the study, of whole soil communities (Kowalchuk et al. 2006, Thébault 
et al. 2010, Harkes et al. 2017). However, since these studies focussed on the effect 
on whole soil communities, it is difficult to make predictions for marram grass 
specifically. We conclude that PA concentrations in the field did not reduce the overall 
negative effect of the soil community, either because the community as a whole was 
affected and thus both negative and positive elements therein were reduced or 
because PA concentrations are too low to affect the soil community in general. 

Our results indicate that the biotic soil community surrounding Senecio roots has 
approximately the same (negative) effect as the community within sand without 
plants growing in it (i.e., no significant interaction effect). Since endoparasites are 
known to be more damaging to marram grass (van der Putten and Van Der Stoel 1998), 
it could be that we excluded their effect because we did not use an inoculum from 
Senecio to infest the soil and consequently marram roots with endoparasites. On the 
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other hand, the biota accumulating on the senecio roots could not be compatible with 
marram grass roots at all. Consequently, sand from unvegetated patches, which is 
thought to function as a temporary ‘enemy-free’ space for marram grass to root in 
(Van der Stoel et al. 2002), has the same biological effect on marram growth as 
Senecio-influenced sand.  

The observed positive effect of sterilisation in the unvegetated sand is caused by soil 
biota, such as nematodes, who have survival stages that can disperse in the dunes 
(e.g., Heterodera cysts) and subsequently colonise the marram grass roots in the lab 
(e.g., De Rooij‐Van Der Goes 1995, Van der Stoel et al. 2002). Indeed, studies 
investigating marram grass PSFs frequently used sand from the beach or even the sea 
floor for their control treatment (van der Putten et al. 1988, van der Putten and 
Troelstra 1990). However, we decided to take sand from the foredunes in order to 
maximise similarity of soil characteristics between Senecio-affected and unvegetated 
paired samples. 

Since we only studied correlations, it could be that S. inaequidens established only on 
the more nutrient-rich sand in the dunes, which would in turn explain why marram 
grass grows better in this sand. However, this is very unlikely since dunes are 
extremely dynamic and hence the top layers of sand are thoroughly mixed, creating a 
homogenously resource-poor environment (Reijers et al. 2020). Furthermore, marram 
grass was growing in the dunes long before Senecio, thus, if there would be patches 
with more nutrients, those patches would likely already have been occupied by 
marram grass. When sand is fixated by plant roots, the mixing is halted and nutrient 
heterogeneity can start to occur. Since we took sand from the rhizosphere of S. 
inaequidens, higher nutrient availability caused by S. inaequidens is still a viable 
explanation for our findings. 

 

Integration of field data and experiment 

Sandy habitats, such as coastal dunes, are characterised by unstable substrate with 
many open patches of bare sand in between the vegetation. These patches are ideal 
opportunities for the establishment of new species (Axmanová et al. 2021). From our 
field survey, we can conclude that S. inaequidens is indeed capable of colonising these 
open patches. The results from our lab experiment further indicate that establishment 
of S. inaequidens can enhance marram growth in particular, but probably also plant 
growth in general, after it dies off and nutrients become homogenised. Analogous 
positive effects on growth of co-occurring plants have been found for other Senecio 
species (van de Voorde et al. 2011). This enhanced plant growth can lead to an overall 
shift towards more vegetated dunes, thus further intensifying the worldwide trend 
towards dune stabilisation (Gao et al. 2020). Dune stabilisation directly implies lower 
sediment transport to dune parts further inland, which may enable establishment of 
other species and hence accelerate natural succession. 
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For marram grass specifically, reduced sediment supply due to dune stabilisation leads 
to a shift towards a more clustered vegetation configuration (Reijers et al. 2021) which 
optimises sand capture at small spatial scales (Reijers et al. 2019a). In contrast, the 
potential for dune formation at larger spatial scales will be reduced, affecting dune 
geomorphology as a whole, ultimately resulting in lower dunes (Reijers et al. 2021). If 
lowered sediment supply indeed also accelerates dune succession, marram grass will 
be replaced more rapidly by other plant species less capable of forming dunes.  

In conclusion, invasion of dune ecosystems by S. inaequidens could lead to a shift in 
sand dynamics by colonising bare sand patches, in turn accelerating the natural 
succession of dune vegetation. This could hamper dune growth and further reduce 
dune height. A reduction in dune height could in turn compromise coastal protection, 
since higher dunes are known to better protect the hinterland (Zarnetske et al. 2012, 
Seabloom et al. 2013).  
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2.6 Supplementary material 

S2.1 Occurrence data Senecio inaequidens 
Table S.1. The spatial scale, coefficients, degrees of freedom (df), AICc values and weights for 
all models. 

Intrcpt 
Scal
e JC JC² P P² JC:P JC:P² JC²:P df logLik AICc delta 

weigh
t 

-1.4 5 6.13  -8.84 
15.7
5  

-
13.71  6 

-
182.35 

376.9
6 0 0.13 

-2.53 5 15.39 
-
11.49 

-
24.36 28 23.84 

-
32.06  8 -180.9 

378.2
4 1.285 

0.06
8 

-3.14 5 12.46 -5.35 -8.92 
14.8
2  

-
12.19  7 

-
181.99 

378.3
2 1.367 

0.06
5 

-0.12 5 3.94  -16 
22.2
8 11.32 -23.8  7 -182 
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S2.2 PCA growth experiment 

                

Figure S2.2 PCA plots for growth experiment. Groups: (left) biota-treatment: red = sterilized, 
blue = unsterilized; or (right) Senecio-treatment: red = S. inaequidens, blue = unvegetated 
sand. 

 

Table S2.2 Correlation of all measured traits with PC1 

Measured trait Correlation with PC1 

Number of leaves 0.86 

Length of leaves  0.88 

Length of roots 0.62 

Weight of leaves (fresh) 0.93 

Weight of roots (fresh) 0.91 

Weight of leaves (dry) 0.94 

Weight of roots (dry) 0.84 
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S2.3 Sensitivity analysis of results 

 
Figure S2.3 The analysis of the occurrence data, rerun without samples with very low P and JC 
values. (a) The overall relation between the probability of occurrence of S. inaequidens and the 
spatial configuration of marram grass. The colours indicate the probability of occurrence as %. 
(b) Density distribution plots of the observed cover (P) and spatial autocorrelation (JC) of 
marram grass within a 5m radius of the central marram grass tussock. This plot only contains 
the data of the transects where S. inaequidens was found. Colours indicate whether S. 
inaequidens was present (yellow) or absent (purple).  
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3.1 Abstract 

Nematodes are involved in many important ecosystem functions such as nutrient 
cycling and plant growth. Nematode communities are thought to be structured at 
regional scales mainly by abiotic soil characteristics and climatic drivers and at local 
scales by habitat heterogeneity and biotic interactions. In blond dunes, nematode 
food webs are associated with marram grass (Calamagrostis arenaria), the key dune-
forming plant species in Western Europe. 

We investigated the relative importance of regional biogeographic factors and local 
biotic drivers, such as the vegetation’s spatial structure and the occurrence of an 
invasive plant species, in determining the functional diversity of belowground 
nematode communities inhabiting the roots of marram grass and surrounding soil in 
coastal dune areas.  

We found that nematode functional group abundances mainly differed among 
biogeographic regions, but that abundances could not be linked to plant-associated 
parameters. Additionally, the abundances of different functional groups seemed to be 
positively associated within both rhizosphere and bulk soil, an effect that could be the 
result of ecological filtering or facilitative interactions. 

Nematode pressure has been assumed to be an important driver of marram grass 
degeneration under ceasing sand dynamics. We here show that variation in nematode 
functional group composition is only weakly related to these local changes in plant 
vigour, but that large-scale patterns in nematode communities may explain regional 
variation in marram dynamics in coastal dunes.  
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3.2 Introduction 

Nematodes are the most abundant animals on the planet, occurring in all ecosystems. 
They are involved in many important ecosystem functions such as nutrient cycling and 
plant growth, coupling basal resources to higher trophic consumers and even killing 
larger animals such as insect larvae (Lacey and Georgis 2012, Bardgett and van der 
Putten 2014, van den Hoogen et al. 2019, Potapov et al. 2022). The distribution of 
feeding guilds or functional roles of nematodes within a soil food web is a well-
established, useful indicator of soil food web functioning, as the different nematode 
feeding guilds represent links to the other major groups of soil organisms such as 
plants, bacteria and fungi (van den Hoogen et al. 2019, Potapov et al. 2022). 

Nematode numbers and functional group composition are affected by abiotic factors 
at different spatial scales. Global analyses indicate total nematode and functional 
group abundances of soil nematodes to be mainly affected by regional soil 
characteristics such as soil organic carbon content or soil acidity (Song et al. 2017, van 
den Hoogen et al. 2019). Climatic drivers, such as precipitation and mean annual 
temperature, also affect nematode abundances, albeit not as pronounced as soil 
characteristics (Song et al. 2017, van den Hoogen et al. 2019).  

Local processes are all the more important when trying to understand soil nematode 
community structure since nematodes are often thought to be poor dispersers. 
Complete taxonomic family lineages, for instance, have been reported to have 
restricted distributions (Nielsen et al. 2014), while nematodes in general only disperse 
up to one meter per year (Bardgett and van der Putten 2014). Nevertheless, passive 
dispersal seems to enable nematodes to disperse over longer distances (De la Peña et 
al. 2011, Fontaneto 2019). Soil disturbance and environmental heterogeneity are 
examples of small-scale phenomena commonly linked to nematode abundances 
(Gingold et al. 2010, Mateille et al. 2011, Orgiazzi et al. 2016, Song et al. 2017). 
Disturbed soils mainly host opportunistic bacterivorous nematodes, and are poor in 
predatory and omnivorous species (Bongers and Ferris 1999, Nielsen et al. 2014, 
Orgiazzi et al. 2016). An increase in potential niches due to environmental 
heterogeneity also increases nematode species diversity (Tews et al. 2004, Rahman et 
al. 2009, Gingold et al. 2010). Finally, the abundance and functional diversity of soil 
biota is not only driven by abiotic factors. Biotic interactions among nematodes and 
between nematodes and other taxa, especially host plants, can furthermore influence 
nematode abundances. The characteristics of the vegetation (plants species 
composition) will affect the nature and amount of resources available to the food web 
via root exudates, root turnover, leaf litter return, and water use (Rajaniemi and 
Allison 2009, Orgiazzi et al. 2016). Moreover, plants can defend themselves against 
herbivory either directly, e.g., via production of chemical compounds (Caño et al. 
2009), or indirectly, e.g., by attracting natural predators of their pests (Sabelis et al. 
2001, Hazir et al. 2016). Apart from host plants, invasive plant species can also 
drastically alter nematode abundances (Čerevková et al. 2020, Renčo et al. 2021), for 
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instance, via altering the native plant community (Renčo et al. 2021) or by acidification 
of the soil (Lazzaro et al. 2018).  

One host plant species from which the soil nematode community is already well 
described is marram grass (Calamagrostis arenaria (L.) Roth, formerly Ammophila 
arenaria). This plant received much attention due to its key role in the process of dune 
formation in Western Europe (Huiskes 1979), which is driven by the interaction 
between vegetation development and aeolian dynamics, the movement of sand by 
wind. Marram grass not only tolerates high levels of sand burial, it even needs sand 
burial to survive and it thrives best at intermediate burial rates of about 30 cm of sand 
per growing season (Nolet et al. 2018). If sand dynamics cease, marram grass slowly 
decays and is outcompeted by later successional plant species (van der Putten et al. 
1993). This phenomenon was already observed more than fifty years ago and coined 
‘the Ammophila problem’ (Marshall 1965). Marram grass is able to overcome this 
problem by capturing sand, which in turn positively affects its growth and sand 
accumulation capacity, causing a positive feedback loop. The reduction in marram 
grass performance is thought to be caused by the biological component of the soil, in 
particular the root-feeding nematodes (van der Putten et al. 1988, 1993, Brinkman et 
al. 2005b, Piśkiewicz et al. 2009a; see Bonte et al. (2021) for a review).  

At the regional scale, dune soil characteristics depend strongly on the biogeographic 
history of the area, which is tightly linked with large-scale differences in soil pH, 
nutrient concentrations and climate variables. At this regional spatial scale, 
differences in nematode community patterns could be explained by the sediment 
origin of the foredune when comparing Southern and Western European samples 
(Mateille et al. 2011). Variation in soil characteristics in dune areas within Western 
Europe is mainly linked with acidity and nutrient concentrations. For example, the 
Belgian coast consists of lime-rich sand (Ampe 1999), while others are completely 
decalcified and thus more acidic, such as the Northern part of the Dutch coast (Eisma 
1968). More acidic soils are known to harbour lower nematode numbers (Wu et al. 
2011). In marram dunes, the constant sand burial can be seen as a form of (natural) 
soil disturbance varying locally, which is possibly linked to nematode abundances 
based on studies of nematodes in other ecosystems (Mateille et al. 2011, Song et al. 
2017). If marram grass occurs in a patchy distribution, its sand-trapping efficiency is 
optimal (Reijers et al. 2019b, 2021, Bonte et al. 2021), and therefore the associated 
nematode abundances (especially those of predatory and omnivorous nematodes) 
are expected to be lower. 

While marram grass is the dominant plant species in many European coastal dunes, 
the invasive herb Senecio inaequidens D.C. is expanding its range into European 
coastal dunes  (Van De Walle et al. 2022a). Plants of the Senecio family are well-known 
for their production of pyrrolizidine alkaloids as defence mechanism against herbivory 
(Joshi and Vrieling 2005, Caño et al. 2009), with S. jacobaea even shown to protect 
surrounding plants via associational resistance (Liu et al. 2022). What the long-term 
effects of the colonization of coastal dunes by S. inaequidens will be is largely unknown 
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(Van De Walle et al. 2022a). However, giving its potent chemical defenses, effects of 
S. inaequidens invasion on dune soil food webs are plausible. 

As marram grass seems to mainly rely on a combination of sand overtopping and 
associations with microorganisms to escape root-feeding nematodes (De La Peña et 
al. 2006, Piśkiewicz et al. 2009a), local biotic interactions are omnipresent in marram 
dunes. Interspecific competition among nematodes has been shown to alleviate 
average declines in marram grass fitness under lab conditions (Brinkman et al. 2005a). 
However, addition of the same species did not influence plant performance in a more 
natural environment (Brinkman et al. 2005b). Facilitating interactions between 
nematodes received far less attention; nevertheless it has been established in some 
lab experiments (Brinkman et al. 2008, Nieminen 2009, Blanco-Pérez et al. 2017, 
Gansfort et al. 2018). 

We investigated the relative importance of regional biogeographic factors, associated 
with soil characteristics and climate, and two local biotic drivers: marram grass spatial 
structure and Senecio inaequidens occurrence, in determining the functional structure 
of belowground nematode communities inhabiting the roots of marram grass and the 
surrounding soil in coastal dune areas in Western Europe. We hypothesised that 1) at 
regional spatial scales, nematode functional abundance would be lower in the coastal 
dunes of the Wadden district and the UK than in the Boulonnais and Flemish dune 
regions as the former have a more acidic soil. 2) An increasing cover of marram grass 
would positively influence abundances of nematodes found in the roots, while 3) 
nematode abundances would increase with clustering of the host plant as a 
consequence of the less efficient sand-capture of these configurations. 4) The 
fungivorous and bacterivorous nematodes are expected to be more abundant in soil 
from underneath less vital marram grass tussocks due to the presence of decomposing 
organic matter and fungus growth, while root-feeding nematodes are expected to 
increase in abundance with marram grass vitality. 5) Since Senecio species are known 
to produce chemical compounds, we expect a decline in all, but especially root-
feeding, nematode functional group abundances when S. inaequidens is present in the 
vicinity.  
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3.3 Material & Methods 

Study area 

Our study was conducted in the North of France, Belgium, the Netherlands and the 
United Kingdom. Respectively, 124, 39, 19, 30 samples were taken along 19 different 
transects parallel to the coast line in these countries. The transects were located 
within the first 100 m from the seaward side of marram-dominated, yellow dunes 
(Natura 2000 habitat 2120, CORINE biotope 16.21). The number of samples per 
transect depended on the length of the dune transect, with an average of 11 samples 
per transect (min 4; max 31). Individual sampling locations were separated by at least 
20 m. 

We subdivided our study area into five distinct biogeographical districts, which differ 
all in their soil characteristics because of their geological history (Bonte et al. 2003). 
These differences in soil covary with climatic variables, but also nutrient conditions, 
aeolian dynamics and overall vegetation characteristics. Because these parameters 
vary at regional scales, rather than at local scales in the blond dunes, any detailed 
analysis of putative abiotic and biotic drivers beyond the biogeographical effects, is 
therefore impossible. The first biogeographical district situated within the study area 
is the Southern UK, which is different from all other regions because it is not situated 
on the mainland. The Boulonnais region in Northern France stretches from Camiers to 
Dunkerque. The sand in this region is lime-rich due to the proximity of rocky lime 
formations. The Flemish dune region is situated from Dunkerque to Knokke. The sand 
in this region is again rich in lime, but it is situated on marine clay. The Renodunal 
region runs from Cadzand to Bergen-aan-Zee. These dunes are more influenced by the 
Scheldt and the Rhine and are still lime-rich, albeit a little less than the two previous 
regions. They are consequently a little more acidic. Finally, the Wadden district in the 
Netherlands continues northwards from Bergen-aan-Zee to Texel and is characterized 
by completely decalcified sand with low nutrient concentrations and a higher acidity 
(Eisma 1968, Ampe 1999, Bonte et al. 2003).  

  

Data collection 

Each sampling location had a central marram grass (Calamagrostis arenaria (L.) Roth) 
tussock from which soil and root samples were taken at the minimum depth at which 
live marram grass roots were found during the summer of 2018 or 2019. Samples were 
stored in the field in a box containing cooling elements to slow down nematode 
metabolism, consequently lowering mortality. In the lab, samples were stored in the 
fridge until processing for the same reason. Nematodes were extracted from roots 
and sand separately, using 2 +/- 0.5 and 20 +/- 1 g fresh material respectively, via the 
Baermann Funnel extraction method (Hooper 1990). This method ensures that only 
the active fraction of the nematode soil community is quantified. Roots and soil were 
sieved (2.0 mm mesh) and roots were gently washed before the extractions. 15 mL 
water was collected every 24 h for three consecutive days. Finding fresh roots was 
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difficult for some sampling locations, resulting in a relatively large difference in the 
amount of roots used for the extraction. To account for this discrepancy, the number 
of nematodes per gram dry sand/roots was determined by drying separate portions 
of substrates in an oven at 70°C for 24 h to obtain relative moisture content, which 
was consecutively used to calculate dry weights of the portion of the sample used for 
the extraction. Nematodes were fixed and stored in 5% hot formalin (60-70°C). The 
vials were sealed with parafilm until they were counted. While counting, nematodes 
were classified into functional groups, using an inverse stereo microscope, based on 
characteristics of their mouth apparatus, pharynx, and cuticle. These functional 
groups differ in their feeding habits: plant feeders, bacterial feeders, fungal feeders, 
omnivores and carnivores (Potapov et al. 2022). A sixth “Unknown” class was used for 
nematodes too damaged to classify. When nematodes were very abundant, 
classification was done until 200 nematodes were counted and numbers were then 
extrapolated based on the area of the counting dish. 

The following variables were used as explanatory variables in the analysis: The 
proportion of marram grass and its spatial configuration, the vitality of the tussock, 
the biogeographical district (as described above), and the presence-absence of 
Senecio inaequidens. 

Within a 10 m radius around each central marram grass tussock, marram grass cover 
(P, expressed as proportion) and spatial auto-correlation (Moran’s I; Moran 1950, 
Bivand and Wong 2018) were calculated from vegetation maps of the coastal dune 
areas (Bonte et al. 2021). Moran’s I is negative when the marram grass is regularly 
distributed in the landscape. If marram grass is randomly distributed, the parameter 
is close to 0, and it is positive when the marram grass occurs in clusters. As pointed 
out by Bonte et al. (2021), marram grass distribution is almost always clustered and 
rarely random. The sample locations were chosen so that they maximised the variety 
of surrounding marram grass configurations within one dune transect. 

Furthermore, local environmental heterogeneity is mainly linked with marram grass 
vitality in our study: vital tussocks provide mainly fresh plant material while less vital 
tussocks provide a mixture of both alive and dead plant material. To include this 
parameter in our analysis, each marram grass tussock was given a vitality score 
(integer value ranging from 0 to 4) based on the estimated % of green leaves visible in 
the tussock on a photograph. Finally, occurrence (presence/absence) of Senecio 
inaequidens was mapped within a 5 m radius around the central marram grass 
tussock. 

 

Statistics 

The nematode data were simultaneously analysed using Joint Species Distribution 
Modelling (JSDM). More specifically, we used the Hierarchical Modelling of Species 
Communities (HMSC) framework according to the methods described by Ovaskainen 
& Abrego (2020). For this multivariate analysis, the functional group data (abundance 
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per g of dry root or soil) for both the soil and root sample for each marram grass 
tussock were (log + 1)-transformed. The proportion of marram grass and its spatial 
configuration, the vitality of the tussock, the biogeographical district and the 
presence-absence of S. inaequidens were used as explanatory variables. To test for a 
quadratic effect of the proportion of marram grass (P) and the vitality (V) of tussocks, 
four JSDMs were fitted with either P and/or V as a quadratic term or not. Among 
those, the ‘best’ model was selected using the Widely-Applicable Information 
Criterion (WAIC; Watanabe 2010, Ovaskainen and Abrego 2020). The random effect 
structure was implemented to account for the spatial context of our study. A large-
scale random effect was modelled on the transect level to correct for possible 
dependency of data within transects. A local random effect was modelled on the 
marram grass tussock level. This enables us to infer residual associations between 
feeding guilds after accounting for the effects of the explanatory variables 
(Ovaskainen and Abrego 2020). Partitioning of the explained variance between all 
fixed and random effects was used to discern the importance of the different 
parameters for functional group abundances. The F-statistic of the fixed effects was 
manually calculated in order to account for the varying degrees of freedom when 
comparing relative importance of the effects. 

For all models described above, the posterior distribution was sampled with three 
Markov chain Monte Carlo (MCMC) chains. HMSC specifically uses blocked Gibbs 
sampling (Tikhonov et al. 2020a). Each chain ran 150 000 iterations, with a burn-in 
period of 50 000 samples and thinning factor of 100. Each chain ran for 1000 posterior 
samples per chain for a total of 3000 posterior samples. 

R Statistical Software version 4.0.4 (R Core Team 2021) was used for all data analyses. 
Moran’s I of marram grass surrounding the central tussock was calculated using the 
“moran.test” function from the “spdep” package (Bivand and Wong 2018). The HMSC 
was performed using the R package “Hmsc” (Tikhonov et al. 2021). Trace plots, 
autocorrelation plots and posterior densities were made and calculated using the 
‘mcmcplots’ package (Curtis 2018).  
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3.4 Results 

Total nematode counts varied from 29 to 6800 individuals per gram of dry roots or 0.1 
to 92 per gram of dry bulk soil, with means (median) of 1236 (890) and 6 (4.4) 
respectively. Root-feeding nematodes were most abundant in root samples, while 
bacterivores were most abundant in soil samples (see Fig. 3.1a and 3.1b). Total 
nematode abundances were lowest in the Renodunal district, followed by the UK, for 
both the root and soil portions of the samples (see Fig. 3.1c and 3.1d). 

 
Figure 3.1 The number of nematodes found per functional group in (a) the roots and (b) the soil. 
Bact: bacterivore nematodes, Fung: fungivore nematodes, Omn: omnivore nematodes, Plant: 
root-feeding nematodes, Pred: predatory nematodes, Unk: Unknown class., the last letter of the 
code indicates the substrate used for the extraction (R = roots, S = soil). The total number of 
nematodes found in (c) the roots and (d) the soil per biogeographical district. For c & d, boxplots 
are based on 74 samples for the Boulonnais, 89 samples for the Flemish dunes, 10 for the 
Renodunal district, 30 for the UK and 9 for the Wadden district. 

 

MCMC convergence and model selection 

The potential scale reduction factors were all below the 1.1 threshold for all models 
and the trace plots of the iterations showed an irregular pattern with similar running 
means for all chains. Thus, convergence of the HMSC models was good for all four 
models. Based on WAIC, no clear best model could be discriminated, thus the least 
complex model was chosen for further analysis (also lowest WAIC, see table 3.1). 
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Table 3.1 Summary measures of model fit and model selection. For R2 and RMSE the mean is 
given over all species with the interquartile range between parenthesis. CV stands for cross-
validation. 

Model Str. R R (CV) RMSE RMSE (CV) WAIC 
1 P + Vit 0.545 (0.244) 0.109 (0.131) 0.494 (0.307) 0.711 (0.590) 25.87953 
2 P² + Vit 0.548 (0.251) 0.090 (0.164) 0.492 (0.610) 0.769 (0.788) 25.99523 
3 P + Vit² 0.550 (0.249) 0.081 (0.139) 0.490 (0.611) 0.771 (0.745) 25.96141 
4 P² + Vit² 0.528 (0.343) 0.075 (0.091) 0.465 (0.544) 0.777 (0.717) 27.21449 

 

Responses to environmental variables 

When describing the relationship between the environmental variables and the 
different functional groups, we focussed only on effects with at least 95% posterior 
probability (Fig. 3.2). The proportion of marram grass in the near vicinity was only 
positively correlated with the abundance of root-feeding nematodes found in the 
roots, while it was negatively correlated with the abundance of omnivores found in 
the bulk soil. The spatial configuration of marram grass only affected the abundance 
of fungivorous nematodes found in the rhizosphere. Fewer predatory and fungivorous 
nematodes were found in the bulk soil of more vital marram grass tussocks. The 
biogeographical regions clearly affected the root and soil nematode functional 
abundances, with generally more nematodes found in the Boulonnais and the 
Wadden district, and fewer nematodes in the Renodunal district and in the UK. Finally, 
the presence of Senecio positively influenced all nematode abundances found in the 
bulk soil, except fungivore nematode abundance. 
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Figure 3.2 The responses (β’s) of the species to the environmental variables. Responses that are 
positive with at least 95% posterior probability are shown in purple and responses that are 
negative with at least 95% posterior probability are shown in yellow. Functional groups are 
indicated on the y-axis, codes as in Fig. 3.1. 

 
Figure 3.3 Variance partitioning of the explained variation among the random and fixed 
effects in the HMSC model. The two random effects are based on the residual variation. 
Functional groups are indicated on the x-axis, codes as in Fig. 3.1. 
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Variance partitioning (Fig. 3.3) showed that the regional variability explained by the 
biogeographic district accounted for (median) 18.9% (F4,192 = 13.8) of the total 
variation. The local environmental variables explained 15.6% (F4,192 = 11.4) together. 
Among the local environmental variables, the explained variation was distributed as 
follows: the presence of S. inaequidens explained 4.3 % (F1,192 = 12.5), the proportional 
cover of marram grass 2.3 % (F1,192 = 6.73), marram grass spatial configuration 1.6 % 
(F1,192 = 4.68) and marram grass vitality 1.1 % (F1,192 = 3.22). Finally, the residual 
variance on sample level scale captured 59.1%, while the random effect on transect 
unit scale covered 7.1%.  Most variation is thus associated with single samples, 
demonstrating that either other unmeasured effects or stochasticity are driving most 
of the variation in the local nematode functional group composition. From the residual 
association matrix (Fig. 3.4), it is very clear that different nematode functional groups 
extracted from the roots are highly positively associated with each other, and that the 
same holds true for nematodes extracted from soil. Several weaker positive 
associations were found among nematode functional groups from bulk and 
rhizosphere soil. 

 

 
Figure 3.4 Residual species association matrix that shows species pairs with a positive (purple) 
or negative (yellow) association. Associations are only shown if they had at least 95 % 
probability. Functional groups codes as in Fig. 3.1.  
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3.5 Discussion 

Compared to other terrestrial biomes, coastal dune areas are characterised by  
intermediate nematode abundances in the bulk soil with an average total of 6 
nematodes per gram of soil, as expected (Costa et al. 2012, van den Hoogen et al. 
2019). With an average of 1200 nematodes per gram of roots, nematode abundances 
found in marram grass roots and rhizosphere were on the higher end, but still within 
expectations (Van der Stoel et al. 2006, Vandegehuchte et al. 2010b). 

The biogeographical districts differed significantly in terms of nematode abundances, 
with the lowest abundances in general found in the Renodunal district, while the UK 
had low nematode counts in bulk soil samples only. The differences between the 
districts could be related to complex changes in climate and soil characteristics 
(Mateille et al. 2011, van den Hoogen et al. 2019) or to unmeasured marram grass 
properties (defensive mechanisms or nutrient composition) possibly covarying with 
climate or soil characteristics. However, the ameliorating effect of the sea dampens 
climatic variability (Wiedemann and Pickart 2004) while dune ecosystems are 
homogenously resource-poor (Reijers et al. 2020). Thus, neither climate nor soil 
nutrients are likely to explain these results. We consequently expect these differences 
in nematode numbers to be mainly explained by a difference in soil acidity (Wu et al. 
2011). However, since none of these parameters were measured, elaborating on the 
actual cause should be done cautiously. The variance partitioning clearly indicated 
that this regional factor greatly influenced nematode functional group abundances. 
Such a relationship was already known for other groups, i.e., plants and spiders 
(Lambinon et al. 1998, Bonte et al. 2003), and is here confirmed for soil nematodes. 
Overall, biogeographical districts unequally influenced the abundance of different 
nematode functional groups, consequently changing nematode functional diversity. 

As expected, more root-feeding nematodes were found in marram grass roots when 
more marram grass was present in the near vicinity because of the higher resource 
concentrations in the form of marram grass roots. Additionally, this may partly be 
explained by the low plant diversity in marram grass-dominated dunes, where marram 
grass forms large quasi-monocultures, while diverse plant communities have been 
shown to decrease belowground herbivore loads (Cortois et al. 2017). Other 
functional groups were not correlated with the proportion of marram grass, except 
for the number of omnivores found in the bulk soil, which declined when there was 
more marram grass present. Assuming omnivorous nematodes are mainly affected by 
resource availability (Li et al. 2022), our results seemed to indicate that these 
nematodes are able to find more food in bare sand. Omnivorous nematode species 
are indeed able to live in bare sand, albeit together with an abundance of 
bacterivorous and fungivorous nematodes potentially serving as food source 
(McSorley 2011). Next to other nematodes, omnivorous nematodes are known to feed 
on numerous soil microbes ranging from algal filaments to protists, supplemented 
with fungal hyphae and bacteria when their primary food sources are unavailable 
(Orgiazzi et al. 2016). Increased competition for nutrients of these soil microbes with 
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marram grass roots could decrease their numbers, consequently explaining the 
decrease in omnivorous nematode abundance when marram grass cover is higher. 

 We hypothesised nematode abundances to increase with an increasing clustering of 
marram grass because of the lower sand-capture efficiency (Reijers et al. 2019a, 2021, 
Bonte et al. 2021) and because the captured sand is thought to be largely free of 
nematodes. This was only true for fungivorous nematodes residing in the rhizosphere, 
while no correlations were found for other nematode functional groups. These results 
confirm that fungivorous nematodes are sensitive to disturbances of different origins, 
but thrive under more stable conditions (Orgiazzi et al. 2016). The mechanism behind 
this process is most likely linked to the development of fungi. Fresh wind-blown sand 
from the beach only contains low amounts of fungi (Mudryk et al. 2013). When sand 
accretion slows down, development of fungi around marram grass roots can be 
assumed to increase, while fungal development is minimal in bulk soil because it is 
probably not suitable for most hyphae formation (Rajaniemi and Allison 2009). Hence, 
fungivore nematode abundance only increased in the rhizosphere. The lack of 
correlations between other nematode groups and the spatial clustering of marram 
grass could point towards a relatively quick colonization of marram grass roots by soil 
nematodes after initial formation, confirming observations of other field studies (Van 
der Stoel et al. 2006).  

Less vital marram grass tussocks are characterized by increasingly more dead stems 
and leaf litter deposition. This organic material, together with the high microbial 
biomass they support, provides additional habitat and feeding opportunities for many 
soil nematode groups (Rahman et al. 2009, van den Hoogen et al. 2019). Because of 
this increased resource availability, we expected a decrease in nematode abundances 
for all nematode functional groups with increasing vitality, except for root-feeding 
nematodes. Predatory and fungivorous nematodes were found in larger quantities in 
respectively the rhizosphere and bulk soil from less vital marram grass tussocks, 
hinting at the indirect importance of dead organic material for these nematode 
functional groups (Orgiazzi et al. 2016). Fungivorous nematodes benefit from an 
increase in fungi due to the availability of decaying organic material while predators 
might profit from increased prey abundances. On the other hand, predators could 
benefit from increased water retention underneath tussocks with more leaf litter 
(Preisser et al. 2006). Our results demonstrate that bacterivorous and omnivorous 
nematodes were able to find enough food, even when less dead plant material was 
available. Note that marram grass vitality is based on the aboveground part of the 
marram grass tussock. Including root vitality, which is shown to correlate with 
endoparasitic root-feeding nematode numbers (Vandegehuchte et al. 2010b), could 
furthermore help clarify drivers of specific nematode functional groups. 

Contrary to our hypothesis, the presence of Senecio inaequidens had a positive rather 
than a negative effect on the abundance of nematodes in bulk soil, except for 
fungivores nematodes. The most likely explanation for these results is an increase in 
nutrient concentrations due to the presence of S. inaequidens in soils with initially low 
concentrations (Dassonville et al. 2008), especially since nematodes are known to 
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positively react to increasing nutrient concentrations (McSorley 2011). Furthermore, 
results of research done on the relation between marram grass growth and the 
presence of S. inaequidens could also be largely explained by a probable increase in 
nutrients (Van De Walle et al. 2022b). This result indicates that chemical compounds, 
like pyrrolizidine alkaloids, are not able to accumulate and negatively affect soil 
nematode abundances in sandy environments. Alternatively, Senecio could negatively 
affect other organisms in the soil, among which the natural enemies of nematodes. If 
nematodes facilitate decomposition of organic matter of Senecio, this explanation is 
still in line with previous results (Van De Walle et al., 2022).  

The analysis of the residual covariance among nematode functional groups shows that 
abundances of different functional groups tend to be positively associated within a 
given compartment (rhizosphere or bulk soil), once the effects of local biotic and 
abiotic factors have been taken into account (Fig. 4). This effect is quite likely the result 
of ecological filtering by compartments: some roots will harbour generally more 
nematodes of all functional groups while others will be symmetrically impoverished 
of all functional groups because local conditions affect all groups in the same way. The 
absence of negative covariances (Fig. 4) also suggests that the extent of locally good 
or bad conditions “seeps” to nearby compartments: if a root sample harbours a high 
abundance of nematodes, it is very likely that the nearby bulk soil sample will also do 
so. This hints at the fact that locally good/bad conditions occur at a scale larger than 
a single root or soil sample. It has been shown that root-feeding nematode activity 
can increase nutrient leakage from roots, which consequently increases microbial 
populations, in turn providing food for bacterivore and fungivore nematodes and even 
potentially their predators (Gebremikael et al. 2016). Marram grass-associated 
nematode functional abundances are thus positively covarying in natural foredunes. 
These results are in line with a global study done on the spatial structure of soil 
nematode functional groups (van den Hoogen et al. 2019). We cannot claim that all 
variables related to bottom-up structuring of nematode communities were included 
in the model, yet we used variables that can be thought to substantially capture the 
most important drivers. Variables such as root mass and leaf litter can be argued to 
correlate with marram grass vitality, while nutrient concentrations are thought to be 
quite similar among coastal dunes (Reijers et al. 2021). Assuming that the most 
important factors structuring nematode abundances were, at least indirectly, included 
in the model, these results hint at the importance of studying the interactions 
between functional nematode groups if we want to further develop our 
understanding of soil communities. 

To conclude, our results indicate that local nematode functional group abundances 
are variable among biogeographic regions, something which was already known for 
other species groups and is here confirmed for soil nematodes. Within regions there 
is still much unexplained variation, analysis of which indicated spatial clustering of 
nematode abundances. Hence, if nematode pressure truly affects the local 
performance of marram grass in coastal dunes, this impact will be highly variable 
across space, which would clarify why the Ammophila problem observed under 
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constant conditions in the lab is still not completely resolved in the field. Unravelling 
which factors and species interactions structure the clustering at very small spatial 
scales could help shed light on this matter. In light of the recent climate change, dunes 
are becoming more and more fixated by marram grass (Jackson et al. 2019), which 
would lead to an increase in root-feeding nematodes according to our research. Since 
these abundances are heterogeneous and highly spatially clustered, so would be their 
role and impact in dune development and succession. 
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4.1 Abstract 

Habitat heterogeneity is an important factor driving species richness and community 
composition at both small and large spatial scales. More heterogeneous habitats are 
generally linked with higher species richness, but at smaller spatial scales species 
interactions also become important determinants of local species richness. A key 
aspect of habitat heterogeneity is the structure of the vegetation, which can influence 
entire animal communities. This is especially the case for plant species with 
disproportionate community effects, i.e. keystone species. The European marram 
grass Calamagrostis arenaria is such a keystone species in coastal dunes. 

In many stabilized dune ecosystems, sand dynamics have recently been restored 
because open dunes are expected to support more biodiversity. However, the link 
between dune vegetation cover and biodiversity is not well studied. Here, we studied 
how invertebrate communities associated with marram grass in coastal dunes in 
different regions are structured by the cover and vitality of marram grass, as well as 
by invertebrate species traits and phylogeny.  

Invertebrate species richness mainly differed among large-scale biogeographic 
districts. At smaller scales, invertebrate species richness in marram-grass-dominated 
foredunes did not increase if vegetation cover was reduced from high to intermediate 
densities. Species’ responses were not influenced by the included traits, however, 
they seemed to be phylogenetic structured by some unmeasured trait(s). Residual 
species associations pointed towards the existence of two distinct invertebrate 
communities. 

Our results indicate that, despite the regional difference in species richness, managing 
of local marram grass properties could influence dune biodiversity, with a 
heterogenous mix of vital and less vital marram grass plants benefiting species 
richness. Open sand patches seemed less necessary for marram grass-associated 
invertebrates, however, they can still be important in other dune habitats (e.g., grey 
dunes or dune grasslands) or for conservation of specific species.  
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4.2 Introduction 

Different processes can influence species richness and community composition at 
different spatial scales (Shmida and Wilson 1985, Heino et al. 2015). Speciation, 
extinction and migration events affect regional shifts in species composition (Qian and 
Kissling 2010, Götzenberger et al. 2012, Ovaskainen and Abrego 2020), whereas 
species interactions are supposedly more important at local scales (McGill 2010, 
Patrick and Swan 2011), although the relevant scale might depend on the type of 
interaction (Araújo and Rozenfeld 2014). For many invertebrate species in general, it 
is well established that vegetation is an important habitat feature influencing species 
richness and composition (Samways et al. 1996, Jonsson et al. 2009, Litt et al. 2014, 
Ebeling et al. 2018). However, plant species differ in their capacity to influence 
invertebrate communities. Species playing an important role in structuring 
communities, can be considered keystone species (Jones et al. 1994, Menge et al. 
1994, Munzbergova and Ward 2002, Narango et al. 2020).  

From the viewpoint of invertebrate communities, environmental heterogeneity 
encompasses both vegetation heterogeneity and other general variables such as land 
cover, soil characteristics, climate and topography (Stein et al. 2014). In general, more 
heterogeneous habitats support more species because of an increase in available 
niches (Stein et al. 2014), as long as increasing heterogeneity does not come at the 
cost of a diminished area per habitat type (i.e. the area-heterogeneity trade-off, 
Allouche et al. 2012). At the smallest spatial scale, species interactions are important 
in determining local species richness and composition (Choler et al. 2001, Munday et 
al. 2001, Anderson et al. 2002, Kurle et al. 2008), and they can either be facilitating 
(e.g., facultative mutualism or commensalism) or antagonistic (e.g., competition or 
predation). Nevertheless, the success of Hubbell’s neutral model (Rosindell et al. 
2011) proves species composition to be independent from species interactions in 
some cases. Closely related species, which possibly harbour similar interaction traits 
(Witz 1990), might actively avoid each other at local spatial scales in order to lower 
competition for resources (Ronchetti et al. 1986), while still being linked to the same 
overall habitat characteristics, and thus positively associated at regional spatial scales 
(Mayfield and Levine 2010, Gerhold et al. 2015). Competition within plant-associated 
invertebrate communities can be mediated by the defence mechanism of the host 
plant itself. When the host plant alters its defence mechanisms qualitatively or 
quantitatively as a reaction to herbivory, this affects the whole community (van Dam 
et al. 2003, Leimu and Koricheva 2006). Plant-mediated competition among 
herbivores occurs when distinct herbivore species are differently affected by these 
changes (Masters et al. 1993).  

Dynamic coastal dunes are an ideal system to study how vegetation heterogeneity 
structures invertebrate communities. These dunes are dominated by a few highly 
adapted plant species and a tractable number of invertebrate species (McLachlan 
1991, Provoost and Bonte 2004), which are expected to depend to a large extent on 
the traits of the plants. Dune vegetation is increasing globally, with an observed 
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stabilization of open sand dunes over the past decades (Provoost et al. 2011, Jackson 
et al. 2019, Gao et al. 2020). The European marram grass (Calamagrostis arenaria) is 
the principal ecosystem engineering species that stabilizes wind-blown sand in 
Western Palearctic dunes by forming large quasi-monocultures on sandy coasts 
(Huiskes 1979, Bonte et al. 2021). Because of this sand-capturing capability, marram 
grass has frequently been used in sand-stabilizing projects (van der Putten and 
Kloosterman 1991). More recently, stabilized dunes have been artificially re-mobilised 
because open dunes are expected to support more biodiversity (Darke et al. 2013, 
Konlechner et al. 2014). While the role of the abiotic environment and of belowground 
organisms in the ecology of marram grass have been studied quite well, how the 
vegetation structure influences the composition of aboveground invertebrate 
communities of marram grass-covered dunes is less known (but see Vandegehuchte 
et al. 2011, 2012).  

Most studies linking coastal vegetation with animal richness investigated the effects 
of the vegetation zonation perpendicular to the shore (McLachlan 1991), i.e. the effect 
of the vegetation gradient between drift line and stable dune ecosystems. The pool of 
invertebrate species found within marram dunes specifically, is relatively small 
because of the high environmental stress due to salt spray, temperature variability 
and wind and sand dynamics (McLachlan 1991). Consequently, most species associate 
with marram grass because it ameliorates the physical stress and provides a sheltered 
habitat (McLachlan 1991, Bonte and Maelfait 2001, Maes et al. 2006). Depending on 
the local state of the dune, marram grass is vital when sand dynamics are strong, but 
the species loses vigour when sand burying ceases (Huiskes 1979, van der Putten and 
Troelstra 1990). Vital tussocks provide mainly fresh plant material while less vital 
tussocks provide a mixture of both live and dead plant material. Herbivore species 
richness and abundance are therefore expected to increase on vital plants, while 
detritus-feeding species should become more dominant when sand dynamics cease 
and plants start to decay. Consequently, invertebrate species richness is expected to 
peak in marram grass with intermediate vitality. These changes in vigour and sand 
dynamics are additionally related to changes in grass cover and spatial configuration. 
Increasing marram grass cover, either by planting or natural marram expansion (Webb 
et al. 2000), is expected to increase invertebrate species richness (Triantis et al. 2012). 
However, some dune-specialist invertebrates are known to use open sand, for 
instance for hunting or egg-laying, leading to some species preferring habitat patches 
with more bare sand (Provoost and Bonte 2004, Maes et al. 2006). Following the area-
heterogeneity trade off (Kadmon and Allouche 2007, Allouche et al. 2012), a mix of 
open sand and vegetation is therefore likely to lead to more diversified arthropod 
communities in coastal dunes. 

From an ecosystem functioning perspective, focusing on species traits rather than on 
individual species identity allows for more robust assessment of community structure 
and functioning (Cadotte et al. 2011, Gagic et al. 2015, Funk and Wolf 2016, Brose et 
al. 2019). This trait-based research focuses on identifying traits that enable species to 
respond to their environment in order to gain a more mechanistic understanding of 
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the processes shaping species communities (McGill et al. 2006, Wong et al. 2019). A 
trait commonly associated with the environmental filtering of arthropods is body size 
(Wong et al. 2019), because it is linked with important features such as dispersal, 
predation and thermoregulation (Gravel et al. 2013, Hillaert et al. 2018, Pincebourde 
et al. 2021). Species can also be classified according to their assumed biotic 
interactions in so-called functional groups, which can be used to study interactions 
between functional groups rather than between actual species (Wong et al. 2019). All 
of these traits are ultimately shaped by evolution, hence, incorporating phylogenetic 
relationships to account for similarity in unmeasured traits (Futuyma and Kirkpatrick 
2018) can further elevate our understanding of the processes shaping community 
assembly. 

All of the above-mentioned processes affect species richness together and their 
influences can interact while doing so. The environment can, for example, influence 
species’ dispersal (e.g., Clobert et al. 2009) or biotic interactions (e.g., Choler et al. 
2001, Pellissier et al. 2018). Furthermore, phylogenetically related species likely have 
converging traits and occurrence patterns (Futuyma and Kirkpatrick 2018). We here 
aim to gain insights into the structure of invertebrate communities associated with 
marram grass in coastal dunes. In this context, we considered the local cover and 
vitality of marram grass as environmental predictors of species distributions while 
taking into account species co-occurrences and regional biogeographic variation. We 
asked the following research questions: I.) How much variation in species occurrence 
is due to environmental variables vs. random processes? How do these impacts 
change with scale? II.) How do species traits and phylogenetic relationships affect 
species responses to environmental variables? III.) How are species co-occurrence 
networks structured?  
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4.3 Material & Methods 

Study area & design 

Coastal dune areas along the Channel and the North Sea, encompassing the North of 
France, Belgium, the Netherlands and the United Kingdom, were studied. Sandy coasts 
with marram-dominated, yellow dunes (Natura 2000 habitat 2120, CORINE biotope 
16.21) were selected and transects parallel to the coastline were marked. The mean 
transect length was 1212 +/- 786m. Along each transect, a number of samples were 
taken within the first 100 m from the seaward side of the foredunes. The number of 
samples along each transect depended on the length of the transect because 
individual samples were separated by at least 20 m. Each sample is centred on a 
marram grass (Calamagrostis arenaria (L.) Roth) tussock surrounded by more or less 
pure marram grass vegetation and bare sand (e.g., no shrubs, trees, or large quantities 
of other herbaceous species). Sampling units were picked to maximize the variation in 
(1) hight and vitality of the central marram grass tussock and (2) the spatial 
configuration of the surrounding marram grass cover. 

Our study area comprised six distinct biogeographical districts, which differ in their 
soil characteristics because of their geological history (Bonte et al. 2003). These six 
districts are: Southern UK (UK-S), Northern UK (UK-N), the Boulonnais region in France 
from Camiers until Dunkerque, the Flemish dune region from Dunkerque until Knokke, 
the Renodunaal region from Cadzand until Bergen aan Zee, and the Wadden district 
in the Netherlands from Bergen aan Zee to Texel (Fig. 4.1). 

 

Data collection 

At each sampled marram grass tussock, aboveground invertebrates were sampled by 
sweep netting in and above the tussock for 15 seconds. Afterwards, ground dwelling 
invertebrates were collected manually at the base of the tussock for 5 minutes. 
Sampling was only performed on relatively sunny days so flying insects would be 
active. All specimens were stored in 70 % ethanol. Finally, the species were identified 
using a stereomicroscope and the number of individuals per taxon per sample were 
recorded. Altogether, 15 726 individuals from 632 taxonomic units were identified, 
among which 434 to species level, 96 to genus level and 102 to family level or higher. 

Initial exploration revealed a large number of zeroes in the species abundances, even 
after combining the abundances of both catching methods into one single count per 
species per sample. Therefore, abundances were converted to occurrences (absence 
= 0, presence = 1). After excluding samples with missing environmental variables (see 
further) and taxa not identified up to species level, the 50 most common species that 
occurred in at least 20 samples were selected (Supp. Mat. 4.1). From the initial 638 
marram grass tussocks sampled during the summers of 2017-2019, 588 samples 
nested within 44 transects (Fig. 4.1) were analysed using Joint species distribution 
modelling (JSDM). 
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Figure 4.1 Geographical scope of the study. Transects are indicated by dots and coloured per 
biogeographical district. The left inset shows an example of the sampling unit locations (yellow 
dots) within the indicated transect (Holme, UK) (satellite image: © 2022 Google). Figure made 
with QGIS v3.2.3- Bonn (QGIS Development Team 2018). 

 

Explanatory variables 

For the JSDM, the following groups of explanatory variables were considered: (1) local  
environmental variables (at sample level), (2) regional environmental variables 
(spanning multiple transects), (3) species trait variables and (4) phylogenetic 
relationships (both at species level). 

Local environmental variables. The proportional cover (P) of the surrounding marram 
grass and a measure for its spatial configuration (here, Moran’s I), together with the 
vitality (V) of the central marram grass tussock were assessed. The proportional cover 
and spatial configuration of marram grass surrounding the central tussock were both 
quantified from vegetation maps of the coastal dune areas (Bonte et al. 2021). 
Calculations were done within a 50-m radius circle around each central marram grass 
tussock. Moran’s I is a measure of spatial autocorrelation (Moran 1950, Bivand and 
Wong 2018), with negative values indicating an increasingly regular configuration, 
zero indicating a random configuration and positive values indicating an increasingly 
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clustered configuration. Marram grass naturally grows in clusters (Bonte et al. 2021), 
so that Moran’s I values in our data set varied from 0.7495 to 0.9801. Marram grass 
vitality was given a score (ranging from 0 to 4) based on the estimated % of green 
visible in a photograph of the central marram grass tussock.  

Regional environmental variable. The biogeographic district (as described above) was 
included as the only large-scale environmental variable.  

Species traits. The average size (in millimeters) and functional group of the adult 
individuals were included as trait variables (Supp. Mat. 4.1). Size is a continuous 
variable, while functional group is a categorical variable with four levels: (1) 
detritivore, (2) herbivore, (3) omnivore and (4) carnivore.  

Phylogenetic relationships. Taxonomical information, as a proxy for phylogeny, was 
used to account for relatedness among species and to correct for any unmeasured 
phylogenetically structured traits. The taxonomical information for each species was 
obtained via the GBIF backbone taxonomy (GBIF Secretariat 2021) and modified to a 
taxonomical tree with equal branch lengths (Supp. Mat. 4.2). 

 

Statistical modelling 

Joint species distribution modelling, such as the Hierarchical Modelling of Species 
Communities (HMSC, Ovaskainen and Abrego 2020) method, allows to species 
occurrences with environmental variables at different scales while taking into account 
species traits and phylogenetic relationships (Poggiato et al. 2021). A HMSC model 
with the probit link function, was used to analyse occurrences of marram grass-
associated invertebrates. 

First, four models considering only environmental covariates were fitted and 
compared to determine whether the effects of P and V should include only the 
variable or also a quadratic term. These four JSDMs were fitted with either P and/or V 
as a quadratic term or not, together with spatial autocorrelation and the 
biogeographical district as environmental covariates. Continuous variables were 
centred around their mean (V around the median). Note that, although vitality was 
defined as an ordinal categorical variable, it was implemented as a continuous variable 
to ease interpretation and because ordinal variables are currently not supported by 
the Hmsc package. After confirming convergence for all four models, the ‘best’ model 
was selected using WAIC and used for the further model comparison and analyses 
(further referred to as model 1). 

Model 1 estimated species niches based on environmental covariates, starting from 
the same expected value for the species niches. Model 2 extended model 1 by 
modelling the expected species niches in a species-specific way by including the 
invertebrate life-history traits described above. Closely related species might, on 
average, have more similar traits, some of which were potentially not measured. Using 
a phylogenetic tree, we can control for relatedness among species and account for 
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any unknown, phylogenetically structured traits. In model 3, we further elaborated 
model 2 and included the phylogenetic tree by converting the tree into a phylogenetic 
correlation matrix. Model selection from models 1-3 was again used to select the final 
fixed effects model. 

In the final step, model 4 was specified, which added a random effect structure to the 
final fixed effects model selected among models 1-3. This random effect structure was 
used to account for the spatial context of the study by implementing a random effect 
on the transect level, since sampling units within the same transect are expected to 
be more similar than between transects. A second random effect for the sampling unit 
was implemented in order to infer species co-occurrences (Ovaskainen and Abrego 
2020). 

For all models described above, the posterior distribution was sampled with four 
chains. HMSC specifically uses blocked Gibbs sampling (Tikhonov et al. 2020a) with 
Markov Chain Monte Carlo (MCMC) samples. For the models without random effects, 
each chain ran 300 000 iterations with a burn-in period of 100 000 samples and a 
thinning factor of 100. This resulted in 2000 posterior samples for each chain and a 
total of 8000 posterior samples per model. The models with random effects ran 1 500 
000 iterations with a burn-in period of 500 000 samples and thinning factor 1000. 
Thus, each chain ran for 1000 posterior samples for a total of 4000 posterior samples 
per model. The default priors were used for all variables in all models.  

R Statistical Software version 4.0.4 (R Core Team 2021) was used for all data analyses. 
Moran’s I of marram grass surrounding the central tussock was calculated using the 
“moran.test” function from the “spdep” package (Bivand and Wong 2018). The 
Hierarchical Modelling of Species Communities was done using the R package “Hmsc” 
(Tikhonov et al. 2020b, 2021). Traceplots, autocorrelation plots and posterior 
densities were made and calculated using the ‘mcmcplots’ package (Curtis 2018). The 
‘rgbif’ package v3.7.2 (Chamberlain et al. 2022) was used to extract taxonomical from 
the GBIF backbone taxonomy and the ‘ape’ package v5.6.2 (Paradis and Schliep 2019) 
was used for the construction of the taxonomic tree.  
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4.4 Results 

Species richness varied from one to sixteen species per sample, with the richest 
samples on average found in the Flemish dunes (median = 7) and a lot of species only 
present in a minority of the study sites (average % occupied samples was 9.5 %) (Supp. 
Mat. 4.3). The most prevalent species were Theba pisana (O. F. Müller, 1774) (present 
in 36% of the samples), Neophilaenus lineatus (Linnaeus, 1758) (26%), Demetrias 
monostigma (Samouelle, 1819) (25%), Meromyza pratorum (Meigen, 1830) (22%) and 
Tibellus maritimus (Menge, 1875) (20%). The 50 most common species selected for 
this study covered two different phyla (Arthropoda and Mollusca), five classes, ten 
different orders, 31 different families and 48 genera (Fig. 4.2). 

 
Figure 4.2 Taxonomical scope of the species considered for analysis. For phylum, class and order, 
the numbers of species per group are indicated between parentheses. 

 

MCMC convergence & Model selection 

MCMC convergence was satisfactory for all HMSC models without random effects 
(models 1-3). For these models, posterior densities for each parameter were very 
comparable between the different chains and autocorrelation between iterations was 
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absent or low. The Gelman-Rubin potential scale reduction factors for all parameters 
in the different models were close to one (Supp. Mat. 4.4). 

The environmental-variables-only model with both P and V as quadratic term had the 
lowest WAIC (12.56099) compared to the other environmental-variables-only models 
(respectively 12.57899, 12.61958 and 12.63496 for the models with only P², only V² or 
without quadratic term). Although the difference is minimal, this model formula was 
used for the rest of the analysis, since this also agrees with our knowledge of the study 
system. Adding trait variables to the model did not increase model fit (WAIC = 
13.9554). However, correcting for phylogeny slightly did (WAIC = 12.5405). Adding the 
random effect in model 4 further lowered the WAIC of the model to 12.10181. 

Based on the lowest WAIC and no large difference in explanatory or predictive power 
(Supp. Mat. 4.5), model 3 containing the environmental variables, together with 
species traits and phylogenetic data was used to add the random effect structure 
(model 4). Initially, model 4 additionally included the sample and transect random 
effects. However, the model did not converge with both included, so a final model 
with only the random effect on sample level was fitted. Diagnostic plots and potential 
scale reduction factors for this model were satisfactory for all but the estimated 
random effect. The trace plots of problematic random effect parameters showed 
outlying MCMC samples reached in turn by the different chains. Any of the outlying 
samples had a low posterior probability because outliers were infrequently sampled 
and only every 1000th MCMC sample was saved (thinning factor). Therefore, these 
outliers did not seem to have a big influence on the final posterior densities nor the 
expected values of the parameters. The potential scale reduction factor compares 
within and between chain variation, which explains the outlying values in Figure S.4D 
(Supp. Mat. 4). Some chains sample more outlying values which increases their within 
chain variance compared to the between chain variance. We conclude that, although 
convergence is not ideal, the posterior densities of all parameters in model 4 look well-
defined and their expected values can be interpreted. We compared the outcome 
with the outcome of the model without random effect (model 3) to make sure no large 
differences were induced by including the random effect. 

 

Species traits and phylogenetic signal 

We found that the inclusion of species traits alone did not substantially improve model 
fit. However, in combination with phylogenetic data, model fit slightly improved (see 
above). Model 3 showed a strong phylogenetic signal with posterior median 0.72 and 
95 % highest posterior density (HPD) interval between 0.38 and 0.98. This signal can 
be seen as inclusion of missing traits by which species react more (dis)similarly to their 
environment based on their phylogenetic affiliations. 
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Figure 4.3 The responses of the species to environmental variables. V = vitality, P = proportional 
cover of surrounding marram grass. Responses that are positive with at least 95 % posterior 
probability are shown in purple and responses that are negative with at least 95 % posterior 
probability are shown in yellow. The species are ordered in decreasing prevalence from top to 
bottom. 
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Responses to environmental variables and variance partitioning 

This and the following subsections treat the results of the final model, model 4. Only 
taking into account the responses with at least 95% posterior probability, our results 
clearly indicate strong effects of all environmental variables on species occurrences 
(Fig. 3). Model predictions of species richness over the environmental gradients were 
similar between the districts since no interactions between covariates were 
considered. Consequently, only the trends for the Flemish dunes, which had the 
clearest trends due to the high sample count and high species richness, are illustrated 
here. See Supp. Mat. 6 for the effects of the separate biogeographical regions. 

At the local scale, the proportion and configuration of marram grass within a 50m 
radius affected  species composition and occurrences (Fig. 4.3). Species richness 
increases with the proportion of marram grass up to intermediate proportion and 
then stays rather constant (Fig. 4.4A). Species richness decreased in highly clustered 
marram grass tussocks (i.e., higher Moran’s I values; Fig. 4.4B). An optimal species 
richness is reached in marram grass tussock of intermediate vitality (Fig. 4.3 and Fig. 
4.4C). 

a. 

 

b. 

 
                                                  c. 

 
Figure 4.4 Model predictions of species richness over environmental gradients in the Flemish 
dune district. The posterior median (black line) and interquartile range (blue shade) are 
illustrated. A. Gradient in the proportional cover of marram grass. B. Gradient in spatial 
configuration of marram grass. C. Marram grass vitality gradient, data are jittered 
horizontally. 
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Variance partitioning (Fig. 4.5) showed that the explained variation by the fixed effects 
can mainly be attributed to regional variability captured by the biogeographical 
district, which explained on average (median) 60.5 % (Q1-Q3: 56.9-67.7 %) of the total 
variation. The local environmental variables together explained on average 25.9 % 
(18.3-32.1 %), with proportional cover of marram grass explaining 9.5 % (6.0-15.3 %), 
vitality of the marram grass 7.1 % (4.5-13.4 %), and the spatial configuration 3.2 % 
(1.9-5.1 %). The residual variation captured in the random effect still accounted for on 
average 11.3 % (6.7-17.2 %). 

 

 
Figure 4.5 Variance partitioning among the fixed effects in model 4. The residual variation is 
captured in the random effect. The species have been ordered from left to right according to 
decreasing prevalence. 
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Species co-occurrence 

The species-to-species association network showed a clear structure which can be 
organized in three groups (Fig. 4.6). The first group of species Sapromiza 
quadripunctata – Ceutorhynchus obstrictus (except Tibellus maritimus and 
Gravesteiniella boldi) tended to occur together but not with species from the second 
group Eutropha fulvifrons – Demetrias monostigma (except Tethina illota and 
Ischnodemus sabuleti). The second group tended to occur together but not with 
species from group 1. The remaining species (group 3) occurred independently from 
the other species. 

 
Figure 4.6 Residual species association matrix that shows species pairs with a positive (yellow) 
or negative (purple) correlation. Associations are only shown if the correlation was 
positive/negative with at least 95 % probability.  
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4.5 Discussion 

The biogeographic district was the most important factor structuring marram grass-
associated invertebrate community composition, accounting for around 60 % of the 
variation. Local-scale parameters, such as marram grass configuration and vitality, still 
significantly influenced aboveground invertebrate biodiversity, accounting for 26% of 
the variation. Stochastic processes were less important, only explaining 11% of the 
explained variation in species composition. Species traits seemed to increase model 
fit only after accounting for the phylogenetic relationship between species. The 
residuals of the model seemed to indicate the existence of two distinct communities 
inhabiting marram grass, with species of one community rarely co-occurring with 
species of the other.  

The large portion of variation explained by the biogeographical district was potentially 
related to many unmeasured variables with a geographical structure such as the 
chemical composition of the sediment (lime in the soil, pH), a north-south gradient of 
climatic variables (e.g., temperature) and the management of coastal areas (Ager and 
Wallace 1966, Kooijman et al. 1998, Provoost and Bonte 2004). For example, lime 
concentrations are highest in the Flemish dunes and the Boulonnais region. Snails are 
strongly associated with lime-rich soils because they depend on it to grow their shells 
(Graveland and Van Der Wal 1996, Provoost and Bonte 2004). As expected, all five 
snail species in our study were more present in samples originating from the 
abovementioned districts. Alternatively, this observation could be explained by the 
covered north-south gradient, since these biogeographic regions are also the most 
southern. It furthermore makes a distinction between continental Europe and the UK. 
The occurrence of the generalist spider species Tenuiphantes tenuis could only be 
linked to this distinction, being found more in UK samples. Finally, since different 
countries (and thus by extension biogeographical districts) were sampled during 
different years, the district variable possibly captured variation in weather conditions 
among years. Insect populations and activity rates are known to fluctuate depending 
on weather conditions (Didham et al. 2020), which could explain the differences in 
species composition between districts. However, rerunning the final model with only 
data gathered during 2018 confirmed that the effect of the biogeographic district 
captured more than only yearly weather variation, since biogeographic district still 
explained 55% of the variation (Supp. Mat. 7). 

Species richness was maximal in marram grass tussocks of intermediate vitality. This 
trend is driven by different species using either mainly fresh or dead plant material. 
For instance, both aphids (Laingia psammae and Schizaphis rufula) and one 
leafhopper species (Psammotettix maritimus) occurred more frequently on vital 
marram grass tussocks. However, the trend was less clear for other leafhoppers. Also 
predatory dune specialists (e.g. Demetrias monostigma (Weeda et al. 1991) and 
Baryphyma maritimum) seem to prefer more vital marram grass tussocks. Other 
species like the pseudoscorpion Dactylochelifer latreilli, the isopod Porcellio scaber 
and some snail species (Cochlicella sp. and Pupilla muscorum) preferred marram grass 
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tussocks with more detritus, most likely because they use dead plant material as 
hiding place, food source or a combination of both. The hypothesized optimum in 
species richness with respect to marram grass vitality is thus confirmed to be driven 
by a mix of species using all available niches. 

Marram grass vitality and spatial configuration are inherently intertwined in a natural 
setting, where marram grass grows vigorously in open dunes with moderate sand 
dynamics (Nolet et al. 2018). Under moderate sand burial, marram grass grows in a 
patchy distribution, optimizing sand trapping capacity (Reijers et al. 2021). If these 
dynamics persist for a while, sand accretion could slowly decrease because of 
increasing marram cover, which would consequently lower marram grass vitality 
(Huiskes 1979, Bonte et al. 2021). By implementing both parameters separately in the 
JSDM, we tried to disentangle their effects. The proportional cover of marram grass in 
a radius of 50 m can thus be seen as a biological parameter related to disturbance and 
sand fluxes and an overall measure of habitat availability for most foredune species. 
Species richness increased from low to intermediate cover and remained more or less 
constant from intermediate to high cover. The initial increase in species richness can 
be explained by an increase in habitat availability and consequently an increase in 
resources and niche space for species to exploit. Increased proportional cover of 
marram grass surrounding the examined tussock also reduces disturbance due to sand 
dynamics because it stabilizes open sand, leading to more species being able to 
colonize the tussock. Around intermediate proportional cover, an increase in 
vegetation no longer raised species richness, pointing towards competition among 
species becoming more important than habitat availability. For the associated 
invertebrate communities, marram grass tussocks can be seen as islands in an 
inhospitable sea of sand, where the theory of island biogeography (TIB) states that 
larger islands have higher species richness (MacArthur and Wilson 1967, Gravel et al. 
2011). Hence, marram grass-associated invertebrate richness abides perfectly to the 
TIB. 

Species richness within the studied tussock decreased when the surrounding marram 
grass occurred more clustered together. Since our measure for clustering was 
calculated independently from the vegetation cover, this means that distances 
between patches became generally larger with a higher clustering. Thus, these results 
match again perfectly with the TIB, which states that species richness of an island, or 
marram grass tussock in our case, will decrease with increasing isolation. On the other 
hand, increased marram grass clustering could be linked to a decrease in overall sand 
dynamics (Bonte et al. 2021, Reijers et al. 2021), something which is known to 
influence dune-specific species (Maes and Bonte 2006).  However, marram grass only 
occurred clustered in our study (Bonte et al. 2021) and therefore, we can only deduce 
that species richness tends to decrease from highly clustered to maximally clustered 
marram grass configurations. Because of this low variability within marram grass 
clustering, it is not surprising that this variable explained the least amount of the 
variance in species occurrences of the small-scale environmental variables.  



 

 
 

83 Chapter 4  

According to model selection, the inclusion of traits and especially phylogenetic data 
did only slightly improve model fit. Nevertheless, the phylogenetic signal appeared to 
be quite strong, indicating that related species react more similarly to their 
environment than distantly related species. These results pointed towards 
phylogenetically structured traits important for environmental filtering that were not 
included in our analysis (Abrego et al. 2017, Ovaskainen et al. 2017, Ovaskainen and 
Abrego 2020). Both pairs of species within the genera Cochlicella and Longitarsus do 
indeed correlate in a similar way to the environmental covariates. Because of the 
broad phylogenetic range of the included species (Brusca et al. 2016) and because of 
the limited number of traits included, it was not surprising that more predictive, 
phylogenetically structured, traits could have been identified (Burner et al. 2021). 
Nevertheless, the environmental factors were most important in explaining species 
presence or absence of marram grass-associated invertebrates, since including the 
phylogeny did not significantly improve model fit. Even though the arthropod 
phylogeny based on molecular and morphological data seem congruent (Giribet et al. 
2001), we must acknowledge potential shortcomings regarding the taxonomy-based 
phylogeny used here, since it represented a simplification of species phylogenetic 
relations by using a tree with equal branch lengths. Whitfeld et al. (2012) found for 
example that the assumption of equal branch lengths hampers the ability to identify 
phylogenetic patterns in a plant community compared to estimating branch lengths 
from DNA sequences. We therefore cannot exclude that including more relevant traits 
and more accurate phylogenetic data could have revealed different conclusions. 

The residual species co-occurrences seemed to indicate the existence of two groups 
of invertebrates that are positively co-occurring within group, but negatively between 
groups. The larger group contained generalist species which are not specifically 
associated with marram grass or even with dunes or warm habitats in general, such 
as Coccinella septempunctata (a ladybird), Longitarsus jacobaeae (a leaf beetle), 
Notostira elongata (a capsid bug), Philaenus spumarius (a spittlebug) and Porcellio 
scaber (a woodlouse). The smaller group mainly consisted of dune specialists who 
strongly depend on marram grass for their survival. For instance, Laingia psammae 
and Schizaphis rufula are two aphids almost exclusively associated with marram grass 
(Weeda et al. 1991, Vandegehuchte et al. 2010a), Psammotettix maritimus (a 
leafhopper) feeds monophagously on marram grass (Weeda et al. 1991) and Eutropha 
fulvifrons (a grass fly) uses marram grass as food plant (Nartshuk and Andersson 2013). 
The remaining species occurred independently from the other groups and from each 
other. This group seemed to consist largely of predatory (spider) species such as 
Tenuiphantes tenuis, Thanatus striatus, Entelecara erythropus and Tibellus maritimus. 
This result could point towards priority effects between specialist and generalist 
species, which entail that community assembly depends on the order and timing in 
which species join communities (Chase 2003, Fukami 2015, De Meester et al. 2016). 
This process is plant-mediated, with the host-plant becoming more suitable for either 
of the two communities, depending on the first species to arrive. Marram grass might, 
for instance, allocate more resources to the roots as a response to herbivory (Kaplan 
et al. 2008). Within this explanation, it is perfectly understandable that the remaining 
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species not co-occurring with either group are mainly predators. Additionally, 
predators attracted by multiple prey species might influence species co-occurrences 
via apparent competition. Alternatively, this result could be explained by the effect of 
an environmental variable not included in the model. This result could, for instance, 
be linked with genetic differences between marram grass plants (Vandegehuchte et 
al. 2011) or with the succession in foredune vegetation (van der Putten et al. 1993), 
with the specialist group occurring in more pure marram grass patches and the 
generalist group occurring in patches with already some other plants growing in the 
vicinity. 

Coastal dunes provide a variety of ecosystem services such as coastal protection, 
tourism, drinking water supply and biodiversity (Van der Biest et al. 2017). Here, we 
assessed how regional and local factors influenced invertebrate dune biodiversity and 
found that variation in species richness is large between different coastal regions. 
Nevertheless, managing local marram grass properties can influence dune 
biodiversity, which is already threatened (Provoost and Bonte 2004). Coastal dunes 
are characterised by a mixture of vegetation patches and open sand areas. Recent 
dune re-mobilisation projects are being carried out to restore biodiversity (Darke et 
al. 2013, Konlechner et al. 2014). Our results did not support a significant raise in 
biodiversity when vegetation cover is reduced from high to intermediate densities, at 
least not for invertebrate biodiversity in marram-grass-dominated foredunes. 
Providing a mix of vital and less vital plant material did seem to raise species richness, 
which does partly advocate the need for re-mobilisation of fixated dunes because 
marram grass becomes less vital in those dune parts (van der Putten et al. 1993). 
Additionally, dune re-mobilisation, especially the resulting open sand patches, can still 
be important in other dune habitats (e.g., grey dunes or dune grasslands) or for 
conservation of specific species (Bonte et al. 2000, WallisDeVries and Raemakers 
2001, Maes and Bonte 2006, Batsleer et al. 2022). Furthermore, reinvigorating dune 
dynamics and growth can be crucial to increase coastal protection (Bonte et al. 2021, 
Reijers et al. 2021).  
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4.6 Supplementary Materials 

S4.1 Species list 

Table S4.1 The 50 most common invertebrate species found in the 2-seas-area. Sizes are based 
on literature or averaged measurements of multiple specimen of the same species (chapter 5). 
Functional group of the adult individuals are based on literature. The prevalence index ranges 
from 1 (the most prevalent species) to 50 (the least prevalent species) and is based on the 
fraction of occupied samples per species. 

Species Order Functional group Size (mm) Prevalence 

Aphthona euphorbiae Insecta Herbivore 1.8 25 

Baryphyma maritimum Arachnida Predator 2.2 22 

Ceutorhynchus obstrictus Insecta Herbivore 2.8 43 

Chorosoma schillingii Insecta Herbivore 15 24 

Clanoptilus marginellus Insecta Herbivore 5.75 16 

Coccidula rufa Insecta Predator 3.2 18 

Coccinella septempunctata Insecta Predator 6.7 26 

Cochlicella acuta Gastropoda Herbivore 15 6 

Cochlicella barbara Gastropoda Herbivore 11 13 

Conosanus obsoletus Insecta Herbivore 5 48 

Cteniopus sulphureus Insecta Herbivore 7.8 23 

Cylindroiulus latestriatus Diplopoda Detritivore 18 29 

Dactylochelifer latreillii Arachnida Predator 2.5 7 

Demetrias monostigma Insecta Predator 4.5 3 

Diplazon laetatorius Insecta Predator 5.5 33 

Doratura impudica Insecta Herbivore 4.9 46 

Entelecara erythropus Arachnida Predator 1.9 49 

Eutropha fulvifrons Insecta Herbivore 2.25 8 

Formica cunicularia Insecta Omnivore 3.9 14 

Gravesteiniella boldi Insecta Herbivore 3.1 20 

Hippodamia variegata Insecta Predator 4.4 47 

Ischnodemus sabuleti Insecta Herbivore 4.6 28 

Javesella pellucida Insecta Herbivore 4.25 42 

Laingia psammae Insecta Herbivore 2.4 10 

Longitarsus jacobaeae Insecta Herbivore 3 41 

Longitarsus luridus Insecta Herbivore 1.7 21 

Meromyza pratorum Insecta Detritivore 5.5 4 

Myrmica specioides Insecta Omnivore 4 45 

Neophilaenus lineatus Insecta Herbivore 6 2 
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Neoscona adianta Arachnida Predator 6.5 39 

Notostira elongata Insecta Herbivore 7.6 27 

Ommatoiulus sabulosus Diplopoda Detritivore 22.5 44 

Phalangium opilio Arachnida Predator 5.25 12 

Pherbellia cinerella Insecta Detritivore 4 34 

Philaenus spumarius Insecta Herbivore 6.1 9 

Porcellio scaber Malacostraca Detritivore 11.25 15 

Psammotettix maritimus Insecta Herbivore 4.7 11 

Psylliodes chrysocephalus Insecta Herbivore 3.5 35 

Pupilla muscorum Gastropoda Herbivore 2.7 31 

Sapromyza quadripunctata Insecta Detritivore 4.2 17 

Schizaphis rufula Insecta Herbivore 1.9 19 

Stenodema calcarata Insecta Herbivore 7.5 36 

Tenuiphantes tenuis Arachnida Predator 2.75 32 

Tethina illota Insecta Detritivore 2.5 30 

Tetragnatha extensa Arachnida Predator 9 10 

Thanatus striatus Arachnida Predator 4 50 

Theba pisana Gastropoda Herbivore 18.5 1 

Tibellus maritimus Arachnida Predator 8.2 5 

Torymus baudysi Insecta Predator 2.5 37 

Xeroplexa intersecta Gastropoda Herbivore 9.5 38 
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S4.2 Phylogeny of the invertebrate data 

 

Figure S4.2 The phylogenetic tree with equal branch lengths based on taxonomical 
classification used in the JSDM. 
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S4.3 Species richness 

 
Figure S4.3 Species richness in the different districts. The number below the violin plots indicates 
the number of sampling units per district. Inset shows overall distribution of species richness per 
sampling unit. 
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S4.4 The potential scale reduction factors  

a. 

 

b. 

 
c. 

 

d. 

 

Figure S4.4 Potential scale reduction factors for all parameters in the different models. A. 

Model 1 with environmental variables. B. Model 2 with environmental and trait variables. C. 

Model 3 with environmental variables, trait variables and phylogenetic data. D. Model 4 with 

environmental variables and random effects on sampling unit level. 

 

S4.5 Explanatory and predictive power 

Models 1–3 showed for most species a clear difference between the averages of fitted 
values for presences and absences (Tjur’s R²) and predicted presences and absences 
better than expected by chance (AUC). Both measures are always higher for the 
explanatory power than for the predictive power. The median Tjur’s R² is highest for 
model 2, and the median AUC is highest for model 1. The differences between the 
models are however relatively small. Indeed, when we plot the exploratory and 
predictive power for both measures between the different models, we see no clear 
higher Tjur’s R² or AUC for more complicated models. 
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a. 

 

 

 
b. 

 

 

 

c. 

 

 

 

Figure S4.5 Explanatory and predictive power based on Tjur’s R2 (left) and AUC (right). 

Predictive power is based on 2-fold cross-validation. A. Model 1 with environmental variables. 

B. Model 2 with environmental and trait variables. C. Model 3 with environmental variables, 

trait variables and phylogenetic data. 
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S4.6 Predictions for other biogeographical districts 

 
Figure S4.6 The responses of the species to all variables included in the JSDM. V = vitality, P = proportional 

cover of surrounding marram grass. Responses that are positive with at least 95 % posterior probability 

are shown in purple and responses that are negative with at least 95 % posterior probability are shown in 

yellow. The species are ordered in decreasing prevalence from top to bottom. 
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S4.7 Variance partitioning for model 4 with only 2018 biodiversity data 

Model 4 based on only the data gathered during 2018. This data set included 286 
data points spread over 4 biogeographic regions. The effects of the environmental 
variables were less pronounced because of the drastic reduction in data points. 
Nevertheless, variance partitioning again indicated biogeographic district to be the 
most important variable (56.5 %). 

 
Figure S4.7 Variance partitioning among the fixed effects in model 4. The residual variation is 
captured in the random effect. The species have been ordered from left to right according to 
decreasing prevalence. 
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Chapter 5 
 

Arthropod food webs predicted from body 
size ratios are improved by incorporating 

prey defensive properties 
 

Ruben Van De Walle*, Garben Logghe*, Nina Haas, François Massol, 
Martijn L. Vandegehuchte & Dries Bonte 

*Shared first authorship 

 

 

 
Illustration of a possible food web in marram grass. 

 

Adapted from: Van De Walle R, Logghe G, Haas N, Massol F, Vandegehuchte ML, 

Bonte D (2023) Arthropod food webs predicted from body size ratios are improved 

by incorporating prey defensive properties. Journal of Animal Ecology.   
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5.1 Abstract 

Trophic interactions are often deduced from body size differences, assuming that 
predators prefer prey smaller than themselves because larger prey are more difficult 
to subdue. This has mainly been confirmed in aquatic ecosystems, but rarely in 
terrestrial ecosystems, especially in arthropods.  

Our goal was to validate whether body size ratios can predict trophic interactions in a 
terrestrial, plant-associated arthropod community and whether predator hunting 
strategy and prey taxonomy could explain additional variation. 

We conducted feeding trials with arthropods from marram grass in coastal dunes to 
test whether two individuals, of the same or different species, would predate each 
other. From the trial results, we constructed one of the most complete, empirically 
derived food webs for terrestrial arthropods associated with a single plant species. We 
contrasted this empirical food web with a theoretical web based on body size ratios, 
activity period, microhabitat, and expert knowledge.   

In our feeding trials, predator-prey interactions were indeed largely size-based. 
Moreover, the theoretical and empirically based food webs converged  well for both 
predator and prey species. However, predator hunting strategy, and especially prey 
taxonomy improved predictions of predation. Well-defended taxa, such as hard-
bodied beetles, were less frequently consumed than expected based on their body 
size. For instance, a beetle of average size (measuring 4 mm) is 38% less vulnerable 
than another average arthropod with the same length. 

Body size ratios predict trophic interactions among plant-associated arthropods fairly 
well. However, traits such as hunting strategy and anti-predator defences can explain 
why certain trophic interactions do not adhere to size-based rules. Feeding trials can 
generate insights into multiple traits underlying real-life trophic interactions among 
arthropods.  
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5.2 Introduction 

Biodiversity is in a worldwide crisis, with unprecedented declines in the species 
richness of many taxa (Ceballos et al. 2015). An understudied aspect of this 
biodiversity crisis is the loss of species interactions (Fortuna et al. 2013). These 
interactions even disappear at faster rates compared to species loss (Valiente‐Banuet 
et al. 2015) and therefore contribute substantially to the degradation of ecosystem 
functions and services (Griffiths et al. 2016, Keyes et al. 2021). Not only mutualistic 
interactions, such as pollination and facilitation (Montoya et al., 2012; Traveset et al., 
2018), but also trophic interactions, such as herbivory and predation, can have 
important effects on ecosystem functioning (Schmitz 2008, Lavorel et al. 2013). To 
realistically gauge the effect of disappearing trophic interactions, a precise 
quantification and understanding of food web structure is necessary (Novak et al. 
2011). This is, however, challenging for smaller and less studied organisms such as 
invertebrates, even though they often attain high numbers and diversity in natural 
systems (Traugott et al. 2013, Gongalsky 2021). 

Body size is generally used to identify potential trophic interactions, with the 
assumption that predators usually feed on prey that are (slightly) smaller than 
themselves (Gravel et al. 2013). Body size further constrains the potential diet of a 
species between a lower and upper limit (Cohen et al. 1993, Hirt et al. 2020). On the 
one hand, prey that are much larger than the predator will be very difficult to handle 
and subdue, with pack-hunting and host-parasite systems as notable exceptions 
(Kalinkat et al. 2013, Hirt et al. 2020). Very small prey items, on the other hand, would 
not yield sufficient energy to compensate for the invested effort, except if harvesting 
can be done efficiently (Naisbit et al. 2012). However, ratios between predator and 
prey body sizes can vary greatly between and within taxonomic entities (Brose et al. 
2006, Naisbit et al. 2011). 

Empirical evidence on predator-prey size ratios is growing fast. Nevertheless, data is 
still scarce for terrestrial invertebrates (Traugott et al. 2013, Gongalsky 2021) despite 
mentionable efforts (Brose et al. 2008, Eitzinger et al. 2018, Miller-ter Kuile et al. 
2022). Furthermore, a positive relationship between body size and trophic level is 
usually very clear in both marine and freshwater environments (Sholto-Douglas et al. 
1991, Boukal 2014), but less pronounced in terrestrial ecosystems (Brose et al. 2006, 
Potapov et al. 2019). The difference is due to inherent dissimilarities between aquatic 
and terrestrial ecosystems: first, the range of body sizes of the main terrestrial and 
aquatic primary producers (vascular plants vs. unicellular algae respectively) is 
different (Shurin et al. 2005, Brose et al. 2006, Perkins et al. 2019, Potapov et al. 2019); 
second, many terrestrial invertebrate predators have developed strategies to handle 
larger prey species by use of toxins or suctorial mouth parts (Brose et al. 2006). Thus, 
whereas some small terrestrial herbivores consume large plants (e.g. most aphids and 
caterpillars) and some small terrestrial predators can attack relatively large prey (e.g. 
small spiders killing large insects), most aquatic prey are fed upon by larger predators, 
in turn fed on by even larger predators and so on (Potapov et al., 2019). 
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Apart from body size differences, hunting strategy is another factor influencing the 
likelihood of predator-prey interactions (Miller et al. 2014, Brose et al. 2019, Potapov 
et al. 2022). Ambush predators use the element of surprise to hunt prey that happen 
to pass by (Nentwig and Wissel 1986, Kersch-Becker et al. 2018, Hirt et al. 2020). 
Ambush predators are incentivized to attack a larger range of prey species since their 
overall encounter rates are lower than those of active predators, as the former stay 
stationary for longer periods of time (invertebrates and ectotherm vertebrates) or 
occupy a smaller territory (endotherm vertebrates) (Strand and Obrycki 1996, Hirt et 
al. 2020). Active predators, however, confront their prey head-on, a strategy that is 
more successful with a larger body size (Nentwig and Wissel 1986, Hirt et al. 2020).  

The outcome of a predation event is not only influenced by the predator, but also by 
the prey species. Prey use different mechanisms to try to escape predation, ranging 
from evasive behaviour (e.g. leaf- and grasshoppers, gazelles) to the development of 
defensive properties such as camouflage (e.g. owls, stick insects), hard body armour 
(e.g. beetles, turtles) or chemical defences (e.g. dart frogs, shield bugs) (Peschel et al. 
2006, Jeschke et al. 2008). There is considerably more selective pressure to specialize 
towards particular prey species than there is to develop specific defensive traits 
against particular predator species, because it is more necessary to avoid overlap of 
resources than it is to avoid sharing natural enemies (Rossberg et al. 2006). As a 
consequence, defence mechanisms seem to be largely uniform across each arthropod 
taxonomic group (Witz 1990). Some studies even suggest that prey phylogeny is more 
important than body size when determining predator-prey interactions (Naisbit et al. 
2012). 

Food webs are important tools to study ecosystem functioning (Montoya et al., 2006; 
Thébault et al., 2007). Despite some notable exceptions (e.g. McLaughlin et al., 2010), 
empirical studies on terrestrial arthropod food webs are mostly restricted to one-on-
one interactions (e.g. among specific pest species and their main predators) or highly 
simplified food webs from agricultural systems or extreme environments (e.g. 
Curtsdotter et al., 2019; Digel et al., 2014; Sint et al., 2019). Size-based predictions of 
predator-prey interactions from soil food webs were shown to provide useful insights 
into the realised food web structure, but their accuracy can be optimized by including 
species traits (Potapov 2022). Furthermore, validation of the assumed interactions 
between species is still needed for such soil food webs (Potapov 2022, Potapov et al. 
2022). 

In general, food webs can be constructed by compiling fundamental trophic niches, 
which include all pairwise trophic interactions that a species can potentially establish 
with other species (Torres-Campos et al. 2020). These niches can be inferred from 
literature or ratios between putative prey and predator body sizes (e.g. Hines et al., 
2019). Not all potential interactions are, however, necessarily realized in a given food 
web (Torres-Campos et al. 2020). Predator and prey species can for instance be 
separated in space or time (e.g. through differences in seasonal activity, microhabitat 
choice or behaviour) or potential prey can have defensive properties that deter 
predators from attacking (Ruxton et al., 2004; Torres-Campos et al., 2020). 
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Additionally, smaller juveniles might eat smaller individuals and even species that are 
no prey for larger adults  (Cuff et al. 2021). Since average adult body size is often used 
for the construction of food webs, interactions by juveniles or exceptionally large or 
small individuals are usually ignored (Gongalsky 2021). Realised food webs can thus 
be more complex than those based on adult size, which begs the question to what 
extent a purely size-based approach is adequate to construct food webs in terrestrial 
ecosystems (Petchey et al. 2008). Food webs can be based on realized interactions 
through isotope studies, field observations or gut content analyses (mostly through 
DNA metabarcoding) (e.g. Jacob et al., 2011; Miller-ter Kuile et al., 2022). However, 
these methods have some shortcomings, the most important one being the inability 
to distinguish predating and scavenging when gut content is used as a proxy for 
realized interactions (Kamenova et al. 2017, Miller-ter Kuile et al. 2022). 

In order to reconstruct a natural but practically tractable food web, we focused on the 
arthropod community associated with a keystone plant species of coastal sand dunes: 
marram grass (Calamagrostis arenaria). This grass is an engineering species of coastal 
foredunes where harsh conditions, such as salt spray, strong winds and extreme 
absolute temperatures, restrict the number of species that are capable of surviving in 
this unique ecosystem (McLachlan, 1991). Nevertheless, species communities in 
marram grass dunes are much more diverse and complex than those in most 
agricultural systems, making this ecosystem appropriate for studying the reliability of 
size-based food web construction (Moore 1994).  

The aim of this study is to assess whether the arthropod food web in marram grass 
dunes can be accurately predicted through the assessment of body size ratios. This 
was done by constructing two food webs representing the trophic interactions in 
marram grass dunes. A theoretical food web was constructed based on body size 
ratios, expert knowledge and literature data on microhabitat, phenology and trophic 
interactions. The second food web was derived from experimental feeding trials with 
arthropod pairs in small vials. We hypothesise that the theoretical food web based on 
body size ratios is able to predict trophic interactions, but would be improved by 
incorporating species traits like prey defences and predator hunting strategy.  
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5.3 Material & Methods 

Construction of the theoretical food web 

To construct the arthropod food web of marram grass dunes, we used data from 
coastal dune areas along the Channel and the North Sea, covering the North of France, 
Belgium, the Netherlands and the United Kingdom (Supp. Mat. 5.1). Arthropods were 
sampled by sweep-netting and manually searching the base of 638 marram grass 
tussocks during the summers of 2017-2019. In total more than 15 000 specimens were 
caught and identified, using a stereomicroscope. The overarching food web was 
constructed by pooling the data of all sites and countries. Interactions between two 
species were based on the species’ feeding ecology, body size differences between 
predator and prey, microhabitat (i.e. whether the species reside primarily among the 
marram grass leaves or on the ground at the base of the tussock), seasonal activity 
periods (all collected from literature; see Supp. Mat. 5.2 for a full overview of the used 
literature) and expert knowledge. This method has been used before (e.g. Hines et al., 
2019). We refer to the resulting network as the theoretical food web. 

 

Construction of the empirical food web 

Collection of arthropods 

During the summer of 2019, 718 arthropod individuals belonging to 155 different 
species were collected in several marram grass dune areas along the Belgian coast: 93 
individuals were caught in De Panne (51.0949°N, 2.5635°E; 27/07), 107 in Wenduine 
(51.2972°N, 3.0717°E; 03/08), 270 in Blankenberge (51.3205°N, 3.1446°E; 06/07, 
15/07, 10/08 and 24/08) and 248 in Oostduinkerke (51.1368°N, 2.6997°E; 03/07, 
17/08 and 31/08). All arthropods were caught in marram grass tussocks 
(Calamagrostis arenaria) by hand or aspirator. After sampling, all arthropods were 
deprived of food for at least 24h to create a baseline, except for aphids 
(Sternorrhyncha), leafhoppers (Auchenorrhyncha) and true bugs (Heteroptera), which 
were provided with small pieces of marram grass to avoid mortality. Water was 
presented to all individuals in the form of a small ball of wet paper. 

Pairwise feeding trials 

Feeding trials were used to test pairwise interactions between and within species. 
These trials were conducted in 60 mL vials that were closed off with mesh to allow 
free air flow. The bottom of each arena was covered in sand originating from coastal 
dunes to simulate a slightly more natural environment. Neither marram grass, nor any 
other form of structure was added to exclude any influence these could have on the 
interaction. Water was provided on a daily basis. Each trial consisted of two randomly 
chosen individuals interacting with each other. These could also be individuals from 
the same species but with different sizes, in order to test for cannibalism. Additionally, 
the pairs of interacting individuals could be any combination of herbivores, omnivores 
and carnivores. However, two strict herbivores were never paired. Testing of two 
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predators (either omnivores or carnivores) was included to study intra-guild 
predation. At later stages of the experiment, some specific interactions were tested 
in order to maximize the number of tested potential links. 

After introducing the arthropods to the vial, it was stored in a shady area at room 
temperature and left alone. The outcome of the trials was checked and recorded daily 
with minimal interference. Trials were terminated when at least one of the two 
interacting individuals had died, i.e. there was no fixed time limit for the trials. In case 
two known carnivores (e.g. two spiders, either belonging to the same or two different 
species) did not consume each other, the same trial was counted twice: once with 
individual one as predator and individual two as prey and vice versa. The dead 
arthropod was stored in 70% ethanol for later identification, whereas the surviving 
individual, after being deprived of food for at least one day, could be re-used for 
subsequent trials. At the end of the series of experiments, all tested arthropods were 
identified with a stereomicroscope to the most detailed taxonomic resolution 
according to morphology and/or life stage. This resulted in 617 specimens identified 
to species level, 63 to genus level and 38 to family level. The food web that resulted 
from pooling the pairwise trophic interactions will be referred to as the experimental 
food web. 

Determining body size 

Since it was not possible to determine the dry weight of individuals, we used body 
length as an alternative measure for body size (Ganihar 1997, Martin et al. 2014, 
Moretti et al. 2017). Before the start of each trial, a digital photograph of every 
individual was taken with a camera mounted on a stereomicroscope and used to 
measure its body length using ImageJ version 1.52a (Schneider et al. 2012). Body 
length was measured from cephalon to abdomen, excluding appendages such as 
antennae, chelicerae, legs or wings. The body length across all tested species and 
individuals ranged from 1.6 to 12.3 mm (Supp. Mat. 5.4). 

 

Statistical analyses 

Data preparation 

Predators were categorized as active or ambush hunter. A separate third category for 
web-building spiders was included because the use of a web possibly enables spiders 
to catch larger prey (Enders 1975, Nentwig and Wissel 1986) and spiders appeared as 
outliers in size-based automated food web construction attempts (Bohan et al. 2011). 
However, since almost all web-building spiders did not construct a web during the 
feeding trials, this category served more as a correction for the absence of a web, i.e. 
we expect lower prey size for web-building spiders in the context of standardized 
experiments in which web-building was not possible. Since closely related species are 
known to have similar defence mechanisms, order-level taxonomy of the prey was 
used as a proxy for defensive traits. Because of large differences in defence 
mechanism within the order of the Hemiptera, suborders Sternorrhyncha (reproduce 
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rapidly to survive), Heteroptera (chemical defence mechanisms) and 
Auchenorrhyncha (escape predation by rapid movement) were used instead. 

42 feeding trials were omitted form the data, because predation could not be reliably 
determined, e.g. it seemed likely that the “predator” was scavenging or an individual 
escaped. After removing these data points, the data set consisted of 586 trials, of 
which 170 ended in predation and 416 did not. 

Testing pairwise interactions in the lab 

To test the link between predation success, predator/prey body size ratio, hunting 
strategy of the predator (ambush, active, web-building) and prey taxonomy, we used 
generalized linear mixed models with a logit link function and binomial distribution. 
The outcome of the feeding trial, i.e. success (1) or failure (0), was used as response 
variable, while the log-transformed length of the prey (included for the purpose of 
correction) and the log-transformed predator/prey size ratio together with categorical 
variables for hunting strategy and prey taxonomy were used as explanatory variables. 
Orders that included fewer than 15 tested individuals (Blattodea, Collembola, 
Dermaptera, Diptera, Hymenoptera, Isopoda, Myriapoda, Neuroptera, Opiliones, 
Orthoptera, Trombidiformes and Sternorrhyncha), were grouped together into a 
single category due to convergence issues. This artificial group was then used as a 
baseline for the comparison with the other included groups (Araneae, 
Auchenorrhyncha, Coleoptera, Heteroptera, Pseudoscorpionida and Psocoptera). The 
importance of hunting strategy and prey taxonomy for predator-prey interactions was 
determined by modelling them as fixed effects, with or without an interaction with 
the predator-prey body size ratio. According to model selection based on the 
corrected Akaike Information Criterion (AICc), several models could be considered to 
best describe the data (Supp. Mat. 5.3). The model with the lowest AICc was used 
because model averaging does not allow post-hoc comparison for prey taxonomy and 
hunting strategy.  

The model used to analyse the data from the feeding trials was: 

success ~ log(Length prey) + log(Length predator/Length prey) + Hunting strategy + 
Prey taxonomy + log(Length predator/Length prey)*Hunting strategy 

Post hoc tests with Tukey adjustments were used to compare different levels of the 
fixed effects. Individual ‘prey ID’ was used as a random variable to correct for re-using 
some prey individuals in different trials. ‘Predator ID’ was included as a random 
variable in the initial models but excluded from final models because it explained 
almost no variation. 

Comparing the empirical and theoretical food webs 

Some species were not represented in both food webs, since the theoretical food web 
was based on biodiversity data and the experimental food web depended on the 
sampled species. The exclusion of these species resulted in the two final food webs 
containing the same 85 species (Fig. 5.1; see Supp. Mat. 5.4 for the full species list). 
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The number of interactions in the subset theoretical food web was much higher than 
in the empirical food web (726 vs. 143 interactions) because not all possible 
interactions could be tested in the experimental trials. Therefore, only interactions 
that were tested in the feeding trials were selected and compared between both food 
webs (Fig. 5.1). The interactions were classified into four categories of agreement, 
with the first and second digit indicating whether or not the interaction was observed 
in the theoretical or the empirical food web respectively: (1-1) interactions that did or 
(0-0) did not occur in both food webs, (0-1) interactions that were only observed 
during the feeding trials or (1-0) interactions only described in the theoretical food 
web. These categories were linked to the taxonomy of the prey and predator species 
separately via the construction of mosaic plots. The mosaic plot helps visualise the 
observed and expected interactions more clearly. The relative frequency of the prey 
taxonomic groups within each category of agreement between the two food webs are 
represented by the size of the boxes. We use 0-0 and 1-1 to represent the theoretical 
and experimental food web agreeing on the absence or presence of an interaction, 
respectively. 0-1 represents a link that is not present in the theoretical food web but 
happened during the experimental trials, while 1-0 means the opposite. Over- or 
under-representation of a taxon in one of the categories is determined by the size of 
standardized residuals (Meyer et al., 2006) and is indicated by the colouring of the 
boxes: blue indicates over- while red indicates under-representation. The statistical 
significance of the residuals is eventually indicated by the shading (legend of Fig. 5.5). 

Since we were interested in the presence or absence of interactions between different 
species, the length of the arthropods was not needed in this analysis, which allowed 
us to include 12 extra lab trials (for which we could not reliably determine the size of 
one of the tested individuals due to wrong scale bars on the photographs), resulting 
in a data set with 598 tested interactions. 

R version 4.0.4 (R Core Team 2021) was used to perform all data analyses. Generalized 
linear mixed models (glmm) were fitted with ‘lme4’ (Bates et al. 2015) and ‘lmerTest’ 
(Kuznetsova et al. 2017). The ‘anova’ function was used to perform likelihood ratio 
tests between nested models. The ‘emmeans’ function, with Tukey adjustment of p-
values, from ‘emmeans’ package (Lenth 2022) was used to assess and test parameter 
differences between categories of hunting strategies and taxonomic groups. The 
‘emtrends’ function from the same package was used to test differences in the effect 
of predator-prey body size ratio between different hunting strategies. Network 
metrics were calculated using the ‘igraph’ package (Csardi and Nepusz 2006). Mosaic 
plots were made with the ‘mosaicplot’ function of the R base package ‘graphics’ (R 
Core Team 2021). Gephi software (Bastian et al. 2009) was used for network 
visualization. 
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Figure 5.1 (a) The theoretical food web and (b) the empirical food web. Node colours indicate 
the species’ taxonomic group: beetles (purple), spiders (green), true bugs (blue), leaf hoppers 
(black), flies (orange), ants (pink), cockroaches (beige), other (grey). Interaction arrows point 
from predator to prey and the colour indicates predator taxonomic group. 
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5.4 Results 

Pairwise interactions 

On average, the body size ratio between (potential) predator and prey was larger for 
successful predation events compared to trials where predation did not happen (Fig. 
5.3). The probability of successful predation depended on the ratio of predator to prey 
size (LRT, χ2

1 = 10.27, p = 0.001), but was generally lower when the prey was larger 
(LRT, χ2

1 = 9.43, p = 0.002). Overall, the results indicated that individual predators 
prefer to consume prey that are ca. 20% shorter than themselves (Fig. 5.2). 

 
Figure 5.2 Overview of (potential) predator and (potential) prey size for all tested pairwise 
interactions. Colours indicate whether or not predation occurred. 

 



 

 
 

105 Chapter 5  

 

Figure 5.3 Box- and violin plots represent predator-prey body size ratio in relation to the 
outcome of the feeding trials. Boxes represent median, 1st and 3rd quartiles. Whiskers represent 
1.5 times the interquartile range. 

The probability of predation was further influenced by predator hunting strategy (LRT, 
χ2

2 = 13.43, p < 0.001) and prey taxonomy (LRT, χ2
6 = 110.3, p < 0.001), while the 

interaction between predator hunting strategy and body size ratio did not significantly 
increase the goodness-of-fit (LRT, χ2

2 = 4.37, p = 0.113). Active (z ratio = 3.182, p = 
0.004) and ambush hunters (z ratio = 2.932, p = 0.009) engaged more into predation 
compared to web-building spiders; however, no difference was found between the 
first two hunting strategies (z ratio = 0.420, p = 0.907). Nonetheless, differences 
between active and ambush hunting strategy were found when only spider data was 
used for the analysis (Supp. Mat. 5.6). Post-hoc comparisons among taxonomic groups 
showed that barklice (Psocoptera), leafhoppers (Auchenorrhyncha) and spiders 
(Araneae) are most likely to be preyed upon when tested during the feeding trials, 
while beetles (Coleoptera) and pseudoscorpions (Pseudoscorpionida) are least likely 
to be consumed (Fig. 5.4, Supp. Mat. 5.5). 
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Figure 5.4 Effect of prey taxonomic group on the relationship between predation probability 
and predator-prey body size ratio. 

 

Food web comparison 

The theoretical (based on body size ratios and expert knowledge) and experimental 
food webs (based on the feeding trials) agreed on most interactions (436/598 or 
72.9%; 370 interactions were absent and 66 were present in both food webs), 
although there were still some discrepancies between the two (81 interactions that 
were present only in the theoretical and 81 interactions only in the empirical food 
web).  

Spiders were captured by more species during the feeding trials than was expected 
from the theoretical food web. In contrast, beetles were consumed by fewer species 
than expected (Fig. 5.5). The vulnerability of leafhoppers, aphids, springtails 
(Collembola) and barklice were well estimated (Fig. 5.5). Finally, Fig. 5.5 suggests that 
Hymenoptera and Neuroptera were, like spiders, eaten by more species than 
expected. However, these results are based on 2 and 1 observation(s) respectively, so 
they should be interpreted with caution. 

As predators (Fig. 5.6), spiders and beetles again show the most remarkable results. 
For spiders, the theoretical and experimental food webs often disagreed (Fig. 5.6). 
This means that spiders were more often able to subdue prey in the feeding trials than 
expected based on expert knowledge and body size ratios and conversely, some of the 
prey indicated for spiders in the theoretical food web were not attacked. Unlike the 
mismatch between the two food webs regarding beetles as prey, expectations for 
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beetles as predators based on the theoretical food web corresponded rather well to 
the feeding trials (Fig. 5.6). Finally, pseudoscorpions were less frequently able to kill 
their prey during the feeding trials than expected from the theoretical food web (Fig. 
5.6). 

 

 
Figure 5.5 Mosaic plot representing the relative frequency of the prey taxonomic groups within 
each category of agreement between the two food webs. 0-0 and 1-1 represent the theoretical 
and experimental food web agreeing on the absence or presence of an interaction respectively. 
0-1 represents a link that is not present in the theoretical food web but happened during the 
experimental trials, while 1-0 means the opposite. The relative frequency is indicated by the area 
of the boxes. Blue colouration indicates over- while red indicates under-representation. Example: 
a blue 0-1 box indicates that the taxon is consistently more eaten during the feeding trials 
compared to what was expected from the theoretical food web. Shading represents the 
statistical significance (light colours for α = 0.05 and dark colour for α = 0.0001). 
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Figure 5.6 Mosaic plot representing the relative frequency of the predator taxonomic groups 
within each category of agreement between the two food webs. Coding and colours are as in 
Figure 5.5. 
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5.5 Discussion 

Overall, the theoretical food web based on body size, activity period, microhabitat and 
expert knowledge converged quite well with the food web based on experimental 
feeding trials for both predator and prey species. Additionally, the pairwise feeding 
trials confirmed the general consensus that predators are typically larger than their 
prey (Cohen et al. 1993, Brose et al. 2006). Potential prey with a body length larger 
than 80% of that of the predator were in most cases not attacked. 

Despite these results, several mismatches between the two food webs for some 
taxonomic groups were highlighted by the mosaic plots. 

First, the vulnerability of certain prey taxa such as beetles (Coleoptera) and 
pseudoscorpions is consistently overestimated in the theoretical food web. This is 
likely due to their defensive traits, which deter large predators from attacking (Ruxton 
et al. 2004, Wang et al. 2018, Shinohara and Takami 2020). Our feeding trials provide 
some indirect evidence for this hypothesis by indicating prey taxonomy as an 
important predictor of their outcome. While prey taxonomy is linked with a spectrum 
of traits, we postulate that the most relevant trait for our study is defence strategy. 
For instance, hard exoskeletons like those of beetles effectively lower the predation 
probability, even when attacked by a much larger predator (Peschel et al. 2006, Wang 
et al. 2018). Taxonomic groups without any particular defensive structures, such as 
aphids and springtails, were frequently consumed, further supporting this hypothesis. 
Apart from their strong exoskeleton, Coleoptera also have low protein content 
(Reeves et al. 2021), which could further explain why they were not predated very 
often. The low predation probability of pseudoscorpion prey might illustrate that, 
sometimes, offence is the best defence. Pseudoscorpions do not have a hard 
exoskeleton, but are venomous and can rapidly paralyze or even kill a potential 
predator (von Reumont et al. 2014). Because predators without alternative prey in our 
experimental setup still refused to consume these well-defended prey, their defences 
will likely be even more effective in nature. In case of prey species relying more on 
evasive behaviour, probabilities of predation were likely inflated in our trials since 
consistent escape was futile. 

About 60% of the spider trials and 50% of the pseudoscorpion trials that were 
differently classified by the theoretical food web, had a beetle as prey species, which 
resulted in lower-than-expected predation rates (Fig. 6). Since spiders are considered 
generalist predators, predictions for interactions between spiders and beetles were 
mainly based on size differences between predator and prey, but in reality, it appears 
difficult for spiders to kill even smaller beetles. For pseudoscorpions, however, 
interactions with beetles are mentioned in some studies (Harvey 1986, Del-Claro and 
Tizo-Pedroso 2009). However, Harvey (1986) mentioned beetle larvae rather than 
adults as prey for pseudoscorpions. In nature, beetle adults are probably mainly 
predated by larger vertebrate predators (Petracci 2002, Oosten 2016, O’Connor et al. 
2019).  
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Second, spiders both ate more prey and were preyed upon more frequently –i.e. 
intraguild predation was more prevalent– during the feeding trials than expected 
based on the theoretical food web. This may be explained by the inclusion of 
microhabitat, a factor known to affect spider diet (Potapov et al. 2022), in the 
theoretical food web. For the feeding trials, arthropod species were matched 
randomly. Consequently, two (spider) species living in different microhabitats could 
be placed together, resulting in more frequent spider-on-spider predation. Given their 
high protein content and relatively soft exoskeleton (Reeves et al. 2021), spiders make 
high risk – high reward prey for other predators. Targeting smaller spider individuals 
might help mitigate this risk. Our data support this, since we noticed unpredicted links 
in the feeding trials between predators that were substantially larger than their prey, 
contributing to the overall size-conditionality of predator-prey relationships. Since it 
is known that young spiders disperse more than adults (Humphrey 1987), it can be 
expected that they encounter adult spiders inhabiting other microhabitats, i.e. that 
these interactions, though rare, do occur in nature.  

Our feeding trials limited the natural behaviour of the species and consequently their 
predation success. For instance, ambush predator species are known to have more 
successful predation events when facing larger-bodied prey than actively hunting 
species [spiders (Nentwig and Wissel 1986, Verdeny-Vilalta et al. 2015), mammals 
(Hirt et al. 2020)]. This hypothesis was supported for spiders, but not across all 
considered taxa. We speculate that this may be due to the absence of structural 
complexity within the vials resulting in decreased ambush predation success, since the 
predator could not really hide. The positive effect of structural complexity on 
predation success is known from terrestrial systems (Mullin et al. 1998, Donadio and 
Buskirk 2016), but it is especially well established in aquatic systems (Flynn and Ritz 
1999, Schultz et al. 2009), where predators are even reported to switch from ambush 
to active hunting according to the structural complexity (Říha et al. 2021). Web-
building spiders can be considered a specific type of ambush predator, using webs to 
tackle larger prey (Enders 1975, Nentwig and Wissel 1986). However, since almost all 
web-building spiders did not build a web during our experiment, a significantly lower 
chance of predating any prey species was observed for these spiders. Direct 
observations of insects caught in the web, or gut content DNA metabarcoding; 
Schrojenstein Lantman et al., 2021) offer better possibilities to study the prey species 
diversity of web-building spiders, but then have as disadvantage that sizes are difficult 
to assess after consumption. 

Trophic interactions involving prey without structural defence traits were well 
predicted because, as discussed above, these species could not evade predation. 
Consuming such prey species is easy if predators are able to find the prey in a natural 
environment. Our results therefor imply that existing information about size, feeding 
behaviour, life cycle and niche differentiation can be used to generate a coarse yet 
useful estimate of the trophic interactions among arthropods. We demonstrated this 
for terrestrial arthropods in marram grass dunes, but we support the wider 
applicability of such theory-based food web estimates in similar habitats. Size-
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structured predation remains an important factor when considering intra-guild 
predation, and can only be quantified by direct methods such as feeding trials, 
because indirect methods based on molecular markers cannot correct for intraspecific 
variation in body size. We therefore encourage the use of this under-rated method to 
study intraspecific variation within traits influencing trophic interactions; because 
“Humans are different; why do we think arthropods are the same?” (adapted from 
Gongalsky, 2021).  
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5.6 Supplementary material 

S5.1 Sampling locations for the theoretical food web 

 
Figure S5.1 Overview of all biodiversity samples taken along the Channel and the North Sea. 206 
samples were taken along the Belgian coast, 184 along the French coast, 188 along the Dutch 
coast and 60 along the coast of the United Kingdom. 
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S5.3 Model selection 

Table S5.3 The coefficients, number of model parameters (df), AICc values, relative AICc (ΔAICc; 
i.e., difference between each model’s AICc and the minimum AICc) and Akaike weights for all 
models.  
HS = predator hunting strategy, R = ration = predator/prey body size, PT = prey taxonomic group. 

Intrcpt HS log(ratio) log(prey) PT hs*log(R) pt*log(R) df logLik AICc ΔAICc weight 

1,11 + 1,35 -1,14 + +  14 -256,86 542,45 0 0,336 

1,14 + 1,06 -1,13 +   12 -259,04 542,63 0,177 0,307 

1,14 + 1,39 -1,19 + + + 20 -251,03 543,54 1,094 0,194 

1,17 + 1 -1,19 +  + 18 -253,61 544,43 1,976 0,125 

-0,5 + 1,97  + +  13 -261,57 549,78 7,329 0,009 

-0,55 + 2,23  + + + 19 -255,32 549,99 7,542 0,008 

-0,48 + 1,66  +   11 -263,81 550,09 7,639 0,007 

2,08 +  -1,77 +   11 -264,18 550,81 8,36 0,005 

-0,53 + 1,81  +  + 17 -258,04 551,16 8,713 0,004 

0,49  1,45 -0,81 +   10 -265,76 551,9 9,449 0,003 

0,49  1,51 -0,87 +  + 16 -260,42 553,79 11,338 0,001 

-0,58  1,81  +   9 -268,45 555,21 12,755 0,001 

-0,65  2,03  +  + 15 -262,86 556,57 14,115 0 

1,45   -1,57 +   9 -276,77 571,86 29,407 0 

-0,49 +   +   10 -282,82 586,02 43,574 0 

-0,71    +   8 -292,24 600,73 58,276 0 

0,78 + 0,84 -1,43    6 -314,19 640,53 98,078 0 

0,72 + 1,13 -1,43  +  8 -312,35 640,94 98,492 0 

1,55 + NA -1,88    5 -317,12 644,34 101,892 0 

0,21  1,31 -1,17    4 -320,15 648,37 105,918 0 

-1,28 + 1,95   +  7 -319,34 652,87 110,424 0 

-1,21 + 1,63     5 -321,45 653 110,547 0 

-1,29  1,81     3 -325,14 656,32 113,868 0 

1,19   -1,78    3 -328,06 662,17 119,717 0 

-0,87 +      4 -340,99 690,06 147,608 0 

-1       2 -349,67 703,36 160,909 0 
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S5.4 Species list 

Table S5.4 Overview of all species that were used to construct both the theoretical and 
experimental food web, with their respective body length ranges. Note that this table does not 
include all species that were used in the experimental trials. 

Nr. Taxonomic group Species 
Min body 
length (mm) 

Max body 
length (mm) 

1 Araneae Agroeca cuprea 3.8 3.8 

2 Araneae Arctosa perita 3.3 5.4 

3 Araneae Attulus saltator 2.4 2.4 

4 Araneae Clubiona frisia 4.3 6.1 

5 Araneae Drassodes sp. 5.1 7.5 

6 Araneae Enoplognatha ovata 3.6 4.8 

7 Araneae Entelecara erythropus 1.4 2.3 

8 Araneae Floronia bucculenta 3.5 3.5 

9 Araneae Mangora acalypha 1.2 2.8 

10 Araneae Marpissa nivoyi 4.3 5.0 

11 Araneae Metopobactrus prominulus 1.8 1.8 

12 Araneae Ozyptila sp. 2.2 3.3 

13 Araneae Philodromus sp. 2.5 3.5 

14 Araneae Psammitis sabulosus 2.0 4.7 

15 Araneae Rhysodromus fallax 3.2 5.1 

16 Araneae Stemonyphantes lineatus 3.1 4.2 

17 Araneae Synageles venator 2.3 3.5 

18 Araneae Tenuiphantes tenuis 1.6 3.1 

19 Araneae Thanatus striatus 1.6 4.4 

20 Araneae Tibellus maritimus 1.5 10.0 

21 Araneae Zelotes longipes 2.7 5.3 

22 Araneae Zygiella x-notata 6.1 6.1 

23 Auchenorrhyncha Conosanus obsoletus 5.0 5.0 

24 Auchenorrhyncha Gravesteiniella boldi 1.6 4.6 

25 Auchenorrhyncha Neophilaenus lineatus 5.2 6.8 

26 Auchenorrhyncha Philaenus spumarius 5.5 6.3 

27 Auchenorrhyncha Psammotettix maritimus 4.7 4.7 

28 Blattodea Capraiellus panzeri 3.2 7.0 

29 Blattodea Ectobius pallidus 3.6 5.1 

30 Coleoptera Aleochara bipustulata 5.4 6.2 

31 Coleoptera Amara spreta 7.5 7.5 

32 Coleoptera Anthicus antherinus 2.8 3.8 
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33 Coleoptera Anthicus bimaculatus 3.5 3.5 

34 Coleoptera Calathus mollis 6.9 7.4 

35 Coleoptera Coccidula rufa 2.9 4.5 

36 Coleoptera Coccinella septempunctata 4.8 7.1 

37 Coleoptera Coccinella undecimpunctata 4.4 4.8 

38 Coleoptera Cteniopus sulphureus 6.6 9.1 

39 Coleoptera Demetrias atricapillus 4.8 5.9 

40 Coleoptera Demetrias monostigma 4.1 5.5 

41 Coleoptera Hippodamia variegata 3.8 5.2 

42 Coleoptera Longitarsus jacobaeae 3.0 3.0 

43 Coleoptera Longitarsus luridus 1.7 1.7 

44 Coleoptera Longitarsus ochroleucus 2.3 3.2 

45 Coleoptera Notoxus monoceros 3.7 4.4 

46 Coleoptera Oedemera lurida/virescens 6.8 6.8 

47 Coleoptera Olibrus sp. 2.0 2.5 

48 Coleoptera Otiorhynchus atroapterus 8.3 10.9 

49 Coleoptera Otiorhynchus ovatus 5.0 5.0 

50 Coleoptera Oulema melanopus 5.1 5.1 

51 Coleoptera Paradromius linearis 4.2 6.8 

52 Coleoptera Phylan gibbus 6.7 7.3 

53 Coleoptera Propylea quatuordecimpunctata 4.7 4.7 

54 Coleoptera Psyllobora vigintiduopunctata 3.5 3.5 

55 Coleoptera Rhyzobius chrysomeloides 3.2 4.2 

56 Coleoptera Tachyporus hypnorum 4.0 4.6 

57 Coleoptera Tytthaspis sedecimpunctata 2.7 3.7 

58 Coleoptera Xanthomus pallidus 6.1 7.3 

59 Collembola Collembola sp. 3.0 3.0 

60 Dermaptera Forficula auricularia 9.2 10.9 

61 Diptera Acrosathe annulata 8.9 8.9 

62 Diptera Meromyza nigriventris 5.0 6.1 

63 Diptera Meromyza pratorum 4.9 6.1 

64 Diptera Sphaeroceridae indet. 2.4 2.5 

65 Heteroptera Aelia acuminata 7.4 9.0 

66 Heteroptera Himacerus major 5.5 8.4 

67 Heteroptera Himacerus mirmicoides 6.3 7.2 

68 Heteroptera Ischnodemus sabuleti 2.6 6.8 

69 Heteroptera Kleidocerys resedae 3.9 4.4 
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70 Heteroptera Nabis sp. 6.2 6.6 

71 Heteroptera Nabis ferus 6.9 6.9 

72 Heteroptera Notostira elongata 7.8 7.8 

73 Heteroptera Scolopostethus affinis 3.8 3.8 

74 Hymenoptera Lasius fuliginosus 4.4 4.6 

75 Hymenoptera Tetramorium caespitum 3.6 3.8 

76 Isopoda Armadillidium vulgare 12.2 12.2 

77 Isopoda Porcellio scaber 7.1 7.5 

78 Myriapoda Ommatoiulus sabulosus 17.1 19.3 

79 Neuroptera Chrysopidae sp. 5.1 7.1 

80 Opiliones Phalangium opilio 1.9 7.3 

81 Orthoptera Chorthippus sp. 12.3 12.3 

82 Pseudoscorpionida Dactylochelifer latreillii 1.9 3.7 

83 Psocoptera Psocoptera sp. 1.3 2.5 

84 Sternorrhyncha Schizaphis rufula 1.8 2.0 

85 Trombidiformes Acariformes sp. 1.8 2.7 

 

S5.5 Post-hoc tests 

Table S5.5.1 Post-hoc comparison of the coefficients of the different hunting strategies. P-
values are Tukey corrected. Positive values indicate that the first hunting strategy is more likely 
to eat the prey than the second hunting strategy. Significance level is indicated with ***. 

Hunting strategies estimate SE Z ratio p-value 

Active – Ambush 0.135 0.321 0.420 0.9073 

Active – Web 2.352 0.739 3.182 0.0042*** 

Ambush – Web 2.217 0.756 2.932 0.0094*** 

 

Table S5.5.2 Post-hoc comparison of the coefficients of the interaction between different 
hunting strategies and log-transformed predator-prey body size ratio. 

Hunting strategies estimate SE Z ratio p-value 

Active – Ambush 0.717 0.614 1.168 0.4724 

Active – Web 2.194 1.157 1.896 0.1397 

Ambush – Web 1.477 1.224 1.207 0.4489 
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Table S5.5.3 Post-hoc comparison of the coefficients of different prey taxa. Negative values 
indicate that the first taxon is eaten less than the second and vice versa. Significance level is 
indicated with ***. 

Prey order Estimate SE Z ratio p-value 

Other - Araneae 0.0785 0.363 0.216 1.0000 

Other - Auchenorrhyncha -0.3745 0.458 -0.817 0.9833 

Other - Coleoptera 3.5693 0.628 5.681 <.0001 *** 

Other - Heteroptera 0.6059 0.503 1.204 0.8930 

Other - Pseudoscorpionida 2.8587 0.933 3.063 0.0357 * 

Other - Psocoptera -1.0209 0.799 -1.277 0.8626 

Araneae - Auchenorrhyncha -0.4530 0.393 -1.154 0.9111 

Araneae - Coleoptera 3.4908 0.592 5.896 <.0001 *** 

Araneae - Heteroptera 0.5274 0.456 1.156 0.9103 

Araneae - Pseudoscorpionida 2.7802 0.905 3.073 0.0346* 

Araneae - Psocoptera -1.0994 0.739 -1.487 0.7526 

Auchenorrhyncha - Coleoptera 3.9438 0.660 5.975 <.0001 *** 

Auchenorrhyncha - Heteroptera 0.9804 0.508 1.931 0.4597 

Auchenorrhyncha - 
Pseudoscorpionida 

3.2332 0.962 3.361 0.0137 * 

Auchenorrhyncha - Psocoptera -0.6463 0.821 -0.787 0.9862 

Coleoptera - Heteroptera -2.9634 0.666 -4.449 0.0002 *** 

Coleoptera - Pseudoscorpionida -0.7106 0.965 -0.736 0.9904 

Coleoptera - Psocoptera -4.5902 0.925 -4.960 <.0001 *** 

Heteroptera - Pseudoscorpionida 2.2528 0.969 2.324 0.2325 

Heteroptera - Psocoptera -1.6268 0.862 -1.888 0.4882 

Pseudoscorpionida - Psocoptera -3.8796 1.142 -3.398 0.0121 * 
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S5.6 Hunting strategy with only spider data 

Data set with 437 observations: 325 active hunters, 40 ambush predators and 72 
web-building spiders. 

Model used: success ~ log(Prey) + log(Predator/Prey) + Hunting strategy 

Table S.6: Post-hoc comparison of different hunting strategies for the model where only spider 
data is used. P-values are Tukey corrected. 

Hunting strategies estimate SE Z ratio p-value 

Active – Ambush -5.53 2.30 -2.399 0.0434 

Active – Web 4.27 2.02 2.120 0.0858 

Ambush – Web 9.80 3.22 3.043 0.0066 

 

 

 

 

 

  



 

 
 

123 6. General discussion  

6. General discussion 
6.1 Overview of main conclusions 

During the four years of my PhD, I have explored different factors influencing dune 
biodiversity. More specifically, I studied the occurrence of an invasive plant species 
and the possible consequences of its spread. Furthermore, I researched the 
correlations between different regional and local variables with below- and 
aboveground invertebrate biodiversity. Furthermore, I used the arthropod 
community found in marram grass dunes to validate whether body size ratios can 
predict trophic interactions. I will start this discussion with a short overview of the 
main conclusions from the previous chapters. Next, I will discuss these results in the 
framework of plant-mediated interactions. Linking chapter 3 and 4, I try to gauche 
whether we observed trends explainable by above-belowground interactions. I 
continue with a discussion on the implications of my work for conservation, where I 
dive deeper into how marram grass could be managed to ensure the survival of the 
invertebrate biodiversity characteristic for this ecosystem. Furthermore, I try to 
estimate how beneficial marram grass dunes, planted as nature-based solutions for 
coastal protection, could be for dune biodiversity. Finally, I will end this work with 
discussing some of the future perspectives and opportunities 

Chapter 2 

By mapping the occurrence of narrow-leaved ragwort (Senecio inaequidens) in coastal 
foredunes, it became clear that Senecio is capable of establishing under relatively 
dynamic sand conditions. Competition with marram grass lowered the probability of 
occurrence only slightly. On the other hand, growing in Senecio-altered soils clearly 
increased marram grass performance, even though it could not overrule the 
omnipresent negative effect of the soil biota. We hypothesised this positive abiotic 
soil modification to be an elevation in nutrient concentrations because of Senecio leaf 
litter decomposition. 

 

Chapter 3 

Total nematode numbers in sandy soils are clearly concentrated around marram grass 
roots, where plant-feeding nematodes accounted for the largest portion of the 
nematode community. In bulk soil, bacterivorous nematodes were generally more 
abundant. Nevertheless, overall abundances of most functional groups were highly 
correlated. The biggest difference in nematode numbers among samples could be 
explained by the biogeographic region in which the sample was taken. Within the 
region, marram grass properties affected the associated nematode community only 
slightly, while nematode communities in the bulk soil correlated most with occurrence 
of the invasive plant species S. inaequidens. Overall, there still seemed to be quite 
some stochasticity structuring nematode communities in our samples. 
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Chapter 4 

Biogeographic region is most important in determining aboveground invertebrate 
species richness associated with marram grass tussocks. Local marram grass 
parameters still influenced above-ground invertebrate diversity quite substantially, 
while stochasticity seemed least important in structuring the marram-associated 
community. From the marram grass parameters, vitality of the sampled tussock and 
the proportional cover surrounding it both displayed an optimum for species richness, 
while increased clustering was correlated with a decrease in species richness. 
Furthermore, phylogenetic data rather than species body length or feeding guild 
helped to improve model fit. From the residual species-associations, it seemed that 
invertebrate communities in marram grass tussocks can be subdivided into specialist 
and generalist communities. 

 

Chapter 5 

Prey were on average 20% smaller than their predators in successful trials. Our 
pairwise feeding experiments thus indicated that inferring trophic interactions from 
body size ratios is a good practice for terrestrial arthropods. However, expectations 
were consistently off for some taxa. Notably, spiders were eaten more, while beetles 
were eaten less than expected. Including phylogenetic data, with a focus on the prey 
species, could help improve such predictions. This is especially important for species 
of whom little is known about their ecology, such as many arthropod groups. 

 

6.2 Plant-mediated interactions 

Our results do not allow to make explicit statements about plant-mediated interaction 
between species separated in space or time. Alternatively, I will try to combine the 
results from chapters 3 and 4 and discuss them within the established framework of 
aboveground-belowground interactions. The results of the chapters can be linked via 
the marram grass variables and their correlations with above- (chapter 4) or 
belowground (chapter 3) invertebrate biodiversity. In the coastal foredunes studied, 
both aboveground species richness and belowground herbivore abundance increased 
with an increasing marram grass cover. This is in line with the results from 
Vandegehuchte et al. (2010), who found that adverse interactions between root and 
foliar herbivores established in a controlled marram grass microcosm were not 
detected under natural field conditions. The influence of other, more dominant, 
factors structuring herbivore populations, such as plant vitality, was suggested as a 
viable explanation (Vandegehuchte et al. 2010b). Aboveground species richness 
displayed a shallow maximum in marram grass tussocks of intermediate vitality, but 
was otherwise fairly constant. Since functional groups did not affect this relationship, 
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we can assume that invertebrate predator species richness follows the same trend. 
Belowground, less predatory and fungivore nematodes were found in the rhizosphere 
of vital marram grass tussocks. If either the above- or belowground herbivore 
community is top-down regulated, changes in predator abundances due to marram 
grass vitality might indeed subsequently influence the induced effects of above- or 
belowground herbivores. In the introduction, it was established that above-
belowground interactions can vary greatly with regards to their direction and 
magnitude, thus mutualistic effects between both herbivore communities cannot be 
completely excluded, as these have been shown in literature too (Johnson et al. 2009, 
Kaplan et al. 2009), albeit not for marram grass specifically.  

I did not previously combine these two biodiversity indices into one analysis because 
the response variables are fundamentally different, i.e., species occurrences for the 
aboveground biodiversity vs. functional group abundances for the belowground 
biodiversity. Moreover, both response variables were discussed in previous chapters 
in different frameworks, using a more trait based approach for nematode counts, 
while a more detailed ecological approach was used for the aboveground invertebrate 
species diversity. On a technical note, it would probably not have been feasible to 
combine them in the first place, taking into consideration that the HMSC model with 
the transect as random effect (chapter 4) did not converge and that using both data 
sets for a combined analysis would drastically reduce our sample size (because no 
missing data is allowed in HMSC Ovaskainen and Abrego 2020)) and thus the chance 
of overall convergence for an even more complicated model. 

For the belowground invertebrate biodiversity studied in chapter 3, only nematodes 
were considered, although insect larvae, e.g. moth (Noctua pronuba) or beetle larvae 
(Otiorrhynchus atroapterus), are also known to feed on marram grass roots (Weeda 
et al. 1991). Including information on larval stages could have helped to deepen our 
understanding of the intricate relationship between marram grass and its associated 
invertebrates. 

Plant-mediated interactions between species separated in time are called priority 
effects. The outcome of these effects often depends on the particular order of arrival 
of the species on the plant, or in the community in general (Chase 2003). The two 
distinct invertebrate communities observed in the residual species co-occurrences in 
chapter 4 could point towards priority effects. The mechanisms driving priority effects 
are considered to be either niche preemption or niche modification (Fukami 2015). 
Niche preemption, i.e., a reduction in the amount of resources attainable for latter 
arriving species, seems unlikely to explain this observation because marram grass is 
very abundant and grows in dense quasi mono-cultures. Additionally, niche 
preemption has to be exceptionally strong to prevent colonization by late-arriving 
species and is normally linked with lowered species abundances rather than complete 
exclusion (Fukami 2015). Thus, niche conversion, via changes in the chemical profile 
of marram grass, seems a more plausible explanation. These changes are probably not 
caused by the production of secondary metabolites, but are rather the consequence 
of increased allocation of foliar resources towards the roots as a reaction to leave 
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herbivory (Kaplan et al. 2009). We have to assume that this reaction can be induced 
by either specialist or generalist, who are able to cope with it while the other group is 
not, for this explanation to work. Predator species, less affected by these processes 
because they are mediated by the host plant, seemed to be less correlated to either 
of the distinct groups. Nevertheless, a few spiders and predatory beetles seem to co-
occur together with the generalist group, hinting at the importance of tritrophic 
interactions (van der Putten et al. 2001), where sequestration of secondary 
metabolites by specialised herbivores are known to influence predatory species (Opitz 
and Müller 2009, Zhang et al. 2019). Another explanation could be that these 
predators avoid specialist species because they are occurring on young plants, which 
differ in their nutritional conditions. The predatory beetle Demetrias monostigma is 
considered a dune specialist (although it is not strictly dependent on marram grass; 
Weeda et al. 1991, Provoost and Bonte 2004) and occurs more together with other 
dune specialist. This could indicate that it is better adapted to the specific chemical 
composition (either increase chemical defences or altered nutritional values) of 
specialist dune herbivores. 

 

6.3 Implications for conservation 

Identifying the factors structuring biodiversity is important when trying to conserve 
natural habitats. The most important factor determining aboveground species 
richness in our data set was the biogeographic region in which the sample was taken 
(chapter 4). As mentioned before, this parameter correlates with a lot of variables that 
can be related to climate, soil characteristics, temporal variation in species 
populations etc. Identifying which variables drive the significance of this parameter 
would be most helpful for biodiversity. However, these regional variables are often 
harder to manage or not even manageable at all (e.g., the climate). Consequently, I 
opted to focus instead on the influence of the local conditions because these results 
are more applicable. Knowing how vegetation structures biodiversity is important, 
considering dune managers can try to steer dune vegetation growth accordingly. This 
knowledge is, furthermore, crucial if we would like to reconcile biodiversity 
conservation with coastal protection. 

Dune vegetation is increasing globally, consequently stabilizing open sand dunes 
during the past decades (Provoost et al. 2011, Jackson et al. 2019, Gao et al. 2020). 
More recently, stabilized dunes are artificially re-mobilised because open dunes are 
expected to support more biodiversity (Darke et al. 2013, Konlechner et al. 2014). This 
instigated a scientific debate with at its core the question whether the cause of this 
dune stabilisation is natural or mainly human-induced (Delgado-Fernandez et al. 2019, 
Pye and Blott 2020, Austin and Walker-Springett 2021, Cooper and Jackson 2021). 
However, in the whole discussion, the link between dune vegetation cover and 
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biodiversity is largely ignored. I will try to link the invertebrate diversity in coastal 
dunes with the local cover and vitality of marram grass based on my research. 

Knowing which dunes support the highest biodiversity might allow dune managers to 
maintain foredunes in the most suitable way for conservation purposes. On a local 
scale, marram grass parameters were correlated with biodiversity living on both the 
leaves and the roots. In chapter 4, most aboveground invertebrate species were found 
in foredunes that were covered for 50 % or more by marram grass with intermediate 
vitality. According to these results, re-mobilising vegetated dunes by removing 
vegetation seems futile, since a reduction from high to intermediate cover will not 
significantly raise species richness. Contrarily, if too much vegetation is removed, 
species richness could be reduced. On the other hand, sand dynamics are expected to 
be lower in dune areas with higher vegetation cover and, additionally, we showed that 
plant-feeding nematode abundances increased with marram grass cover. Taken 
together, lowered sand dynamics in combination with higher nematode abundances 
will consequently decrease marram grass vitality in highly vegetated dunes, something 
which is already well-established (Huiskes 1979, Van der Stoel et al. 2002). Hence, 
reducing vegetation cover in stabilized dunes with withering marram grass could allow 
sand dynamics to increase, therefore reinvigorate marram grass. This could 
consequently have a positive effect on biodiversity, since marram grass of 
intermediate vitality harboured the highest species  richness. 

We found that aboveground invertebrate species richness was higher in less clustered 
marram grass configurations (see chapter 4), thus our data suggests that regular 
growing marram grass might possibly be even better for biodiversity. This could be 
leveraged to further raise aboveground invertebrate species richness in coastal 
foredunes, assuming this trend is linear (see further).  However, to maintain less 
clustered marram grass configurations would require constant disturbance or 
management, since marram grass grows clustered under natural conditions. Before 
the eradication by Myxomatosis in the 1950s, rabbit populations reduced vegetation 
via herbivory and by uprooting  whole plants (Provoost et al. 2011). Allowing more 
people in coastal dunes, especially in countries like the Netherlands and the UK, where 
this is now largely prohibited, could also create more disturbance. Even though 
samples were taken in 44 different dune areas, all of them were covered by (highly) 
clustered marram grass configurations. Consequently, this variable had only a small 
influence on species richness and trying to estimate how species richness will change 
in regularly growing marram grass are extrapolations outside the scope of our 
sampled data. Thus, caution is warranted because the actual trend in regular 
distributed marram grass could be different from the trend within only clustered 
marram grass configurations. Nevertheless, since this is the situation we have to work 
with, we might as well try to learn as much as we can from natural marram grass 
configurations. 

Our statistical approach enabled us to disentangle species specific responses to 
marram grass variables (Poggiato et al. 2021), which allows us to study the species’ 
ecology in more detail. For instance, the beetle Cteniopus sulphureus belongs to the 
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Tenebronidae, a family which mainly includes detritivores in marram grass dunes 
(Weeda et al. 1991). The amount of detritus found in a marram grass tussock will 
increase as our measure for vitality decreases and this beetle species did indeed 
display a negative correlation with marram grass vitality. We could thus assume that 
this species from the Tenebronidae family is also a detritivore. A disadvantage of our 
study is the unintentional exclusion of larger and more mobile dune species such as 
Oedipoda caerulescens (a grasshopper) and Cicindela maritima (a carabid beetle) due 
to sampling only in and above marram grass tussocks. These species are known to 
more habitually use open sand for their daily activities (Maes et al. 2006). The optimal 
species richness along the vegetation cover gradient might thus have been more 
pronounced if we would have been able to include such species. Our results need to 
be interpreted accordingly, namely as a proof-of-principle rather than specific 
conservation guidelines. Knowledge of species’ specific ecology is still important for 
dune managers and coastal conservation.  

I want to stress the distinction between species diversity and species abundance. The 
discussion above was done based on predictions for species richness, i.e., the number 
of species occurring on marram grass, and not for species abundances, i.e., the 
number of individuals of a certain species occurring on marram grass. Initially, we did 
measure abundances for the aboveground invertebrate community. However, we did 
not use them since many species were either missing completely from numerous 
samples or were only present in very low numbers, and this zero-inflated data set 
caused problems with the statistical model (see chapter 4). Nevertheless, it can be 
expected that species richness and species abundances are highly correlated 
(McLachlan 1991) and that measures beneficial for species richness will also benefit 
species abundances. 

Another faunal group we completely ignored by focussing on invertebrate species 
richness, are the larger vertebrate taxa. Although most large vertebrates such as birds 
and mammals do not stay in marram grass permanently, they are known to 
temporarily make use of it for feeding (McLachlan 1991). We can thus expect that an 
increase in invertebrate diversity will also benefit larger animals. However, the 
perceived magnitude of the spatial scales highly depends on the taxa considered. For 
instance, invertebrates are smaller than vertebrate species and thus have, in general, 
a lower dispersal capacity (Tews et al. 2004, Soininen 2016). This makes that local scale 
for a vertebrate species could imply considerable barriers for an invertebrate species. 
Keeping in mind ‘scale’ is perceptual and thus taxon-specific is important for nature 
conservation. 

Non-native species are reported as (part of) the cause of numerous extinction in the 
past (Bellard et al. 2016) and currently still pose a huge threat to species from all 
taxonomic groups worldwide (Dueñas et al. 2021). They are proven countless times to 
not influence specific species but rather communities as a whole, with impacts ranging 
from positive to negative depending on the context (Katsanevakis et al. 2014, Guy‐
Haim et al. 2017), although the overall effect seems to be slightly negative (Guy‐Haim 
et al. 2017). Resident species are especially affected when the invasive species are 
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ecosystem engineers, restructuring physical stress (Guy‐Haim et al. 2017). We found 
a high probability of establishment of Senecio inaequidens in almost all sampled 
natural marram dunes (chapter 2), meaning that it is only a matter of time before it 
spreads to other dune areas along the European coast. I will discuss the consequences 
of Senecio (or invasive species in general) establishment on the belowground 
community in the next section, since nematode abundances are tightly linked with 
marram grass vitality, sand dynamics and consequently dune growth and coastal 
protection. The possible effect of S. inaequidens establishment on aboveground 
diversity was not tested because we thought it more important in structuring the 
belowground community (Scherber et al. 2003, Kowalchuk et al. 2006, Caño et al. 
2009). Even though we showed that Senecio plants are able to establish in marram 
dunes, no large numbers were observed during our field work. Consequently, I do not 
think Senecio establishment would drastically alter aboveground invertebrate 
richness. The nearby presence of Senecio plants could increase insect pollinator 
richness because of a spill-over effect caused by the nectar of the flowers of adult 
Senecio plants. Nevertheless, there still exists the possibility of a decrease in herbivore 
richness due to dune species not being adapted to the chemical compounds of S. 
inaequidens. However, native Senecio species (e.g., Senecio jacobaea) do also occur in 
close proximity to the foredunes, namely in grey dunes. If anything, I would suspect a 
slight increase in the occurrence of the beetle Longitarsus jacobaeae, which is 
observed to switch from its native host S. jacobaea to feed on S. inaequidens plants 
(Scherber et al. 2003) and which was already found frequently in our samples. 

 

6.4 Implications for coastal protection 

Coastal dunes protect vast amounts of the worlds sandy shoreline against floods and 
sea level rise. Marram grass is crucial for dune growth at sandy coasts south of latitude 
63 °N (Huiskes 1979). I will here discuss the consequences of potential invasive species 
establishment and nematode numbers on marram grass health and spatial 
configuration; and the consequences of those changes in the marram grass variables 
for coastal protection in both natural and human-made dunes. 

As already mentioned in section 6.3, the probability of S. inaequidens spreading to 
other natural dune areas is high. Fortunately, according to our other results, the direct 
consequences of Senecio expanding its range seem to be limited, as marram grass 
performed better in Senecio-altered sand in our growth experiment (chapter 2), while 
nematode numbers in the field survey (chapter 3) mainly increased in the bulk soil, 
and less in the rhizosphere of marram grass. Increased nematode abundances could 
potentially increase the net negative effect from the soil community experienced by 
marram grass. However, biodiversity in Senecio-altered soils did not significantly differ 
from unvegetated sand in their effect on marram grass performance during our 
growth experiment, thus an increased pressure on marram grass seems unlikely. Yet, 
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an increase in nematode abundances in the field was observed. The combination of 
these results hint at marram grass being more capable of handling more stressful 
conditions - higher nematode numbers - under increased nutrient concentrations, an 
idea that was already expressed before (Reijers et al. 2020). Our results furthermore 
indicate that soil biodiversity as a whole was not reduced, which contradicts other 
studies on both S. inaequidens and other Senecio plants reporting adverse effects 
(Kowalchuk et al. 2006, Harkes et al. 2017). This could be explained by the high 
permeability of sandy soils, which prevents the chemical defence compounds to build 
up. Consequently, these plant defence chemicals cannot reach high enough 
concentrations to significantly alter the soil community. 

Marram grass has a rich history of being used to stabilize sandy coasts both in (e.g., 
van der Putten and Kloosterman 1991, Weeda et al. 1991) and out of Europe (e.g., 
Wiedemann and Pickart 1996, Hilton et al. 2005). Manually planting marram grass or 
even artificially creating whole dunes might become more necessary in the future due 
to the coast line retreating more inland, where it is confronted by the  continual 
urbanization of coastlines, resulting in a dramatic restraint of coastal areas, especially 
in Europe (Keijsers et al. 2015, Bonte et al. 2021). This coastal squeeze in combination 
with the projected sea-level rise have increasingly raised the interest in dunes as 
coastal protections, especially within the ‘Nature-based solutions’ framework. 
Marram grass used to be frequently planted in a homogeneous way, minimizing 
spatial autocorrelation (van der Putten and Kloosterman 1991), even though it occurs 
clustered together in natural foredunes (Bonte et al. 2021). More recently, 
experiments are being set up to test the capacity of different marram grass spatial 
configurations for dune growth (e.g., Derijckere et al. 2022). Since most stabilization 
projects still plant marram grass in a homogeneous way, I will discuss the implications 
of my results for nature-based solutions assuming low spatial autocorrelation (i.e. 
Moran’s I close to zero) and a low to intermediate proportional cover of the 
surrounding marram grass. 

In artificially planted dunes, the establishment of invasive species in general, and for 
Senecio inaequidens in particular, will largely depend on the density of the planted 
marram grass. Probability of establishment will be high if marram grass is only sparsely 
planted and it will gradually decrease with an increasing cover. However, since we 
only sampled a few marram grass tussock in dunes with low autocorrelation and 
intermediate cover, the lower probability of establishment might be caused by the 
low sample size. Establishment probability in dunes with such specific configurations 
might thus be higher than estimated from our data. On the other hand, high tolerance 
for sand burial is a prerequisite in order to extrapolate our results to other invasive 
plant species in the first place. Focusing on S. inaequidens specifically, I do not think 
that it will cause a lot of problems when it establishes, since our field data hinted at 
marram grass being the better competitor and our growth experiment showed an 
increased performance of marram grass in Senecio-altered soils. However, should the 
increased marram grass growth in combination with an increased vegetation cover 
due to S. inaequidens drastically lower local aeolian sand transport, dunes could 
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become vegetated, and thus stabilized, more rapidly. Accordingly, dunes would be 
lower overall and marram grass would be succeeded more rapidly by other vegetation 
less capable of driving dune formation. 

Artificial dunes created for coastal defence purposes would more or less be void of 
fauna just after planting. During the colonization process, priority effects might 
influence the invertebrate species composition assembling on different tussocks, with 
specialist or generalist dune species grouping together. If no natural dunes are located 
nearby, chances of generalist species arriving first are higher, which might be 
detrimental for later arriving dune specialist if the species co-occurrence observed in 
chapter 4 is indeed caused by a mechanism initiated by generalist herbivore species 
feeding on marram grass. An alternative explanation we suggested was that the 
marram grass specialists occurred more frequently in pure marram grass patches 
(with no other plants growing nearby). If this is the case, artificial dunes could increase 
population numbers of dune specialists. The way marram grass is planted at regular 
intervals seems to be ideal for dune invertebrates because it lowers the distance 
between different marram grass plants. Invertebrate numbers will initially be low, 
partly because of the low marram grass cover. Nevertheless, their numbers might be 
assumed to steadily increase as the marram grass cover of the artificial dune increases 
over time, until a fully mature dune is established.  

Since we have no data mechanistically linking the spatial configuration of marram 
grass with dune growth, making statements about the optimal starting configurations 
for both biodiversity and coastal protection is speculative. From data published from 
a simulation model and remote sensing (Bonte et al. 2021), the optimal spatial 
configuration for dune growth seems to be an intermediate cover with low clustered 
marram grass. This configuration would be good for biodiversity as well, although a 
higher cover would be even better. However, since dune growth seems to decrease 
drastically when marram grass cover increases, optima for coastal protection and 
biodiversity seem to be only partly overlapping. Protection of the coast will evidently 
be the first priority when developing nature based solutions. Fortunately, our results 
indicate that dune biodiversity, more specifically invertebrates associated with 
marram grass, will also benefit from these artificially created ecosystems. 

 

6.5 Perspectives and opportunities 

The dune grass Calamagrostis arenaria is frequently used to stabilize aeolian sand 
dynamics while simultaneously increasing coastal protection against sea level rise and 
storm surges. During these practices, marram grass is planted with little regards for 
biodiversity. With this thesis I tried to gain better insights into the profound 
relationship between invertebrate species associated with both marram grass’ roots 
and leaves, and their host plant. 



 
132 

Both above- and belowground invertebrate communities displayed a strong 
biogeographical structuring. This signal was especially strong in aboveground 
invertebrates, while belowground nematodes seemed to be additionally structured 
by random, stochastic processes. These regional differences in biodiversity could be 
explained by a number of confounding gradients such as soil pH, climate, human use 
and management of dune areas, dune age etc. Owing to the tempering effect of the 
sea on climate extremes (Wiedemann and Pickart 2004), coastal vegetation has been 
described as “azonal” because it is largely homogenous across Europe (Del Vecchio et 
al. 2018, Torca et al. 2019, Giulio et al. 2020). Consequently, it could be postulated 
that climate only affects biodiversity to a lesser extent. Nevertheless, disentangling 
the role played by these different factors could further increase our understanding of 
invertebrate communities. 

JSDMS are more and more used to analyse large, ecological data set. We ran into a 
convergence issue when trying to model a random effect on transect level in chapter 
4. This convergence issue was mainly caused by outlying MCMC samples reached in 
turn by the different chains, resulting in a potential scale reduction factor (i.e., Gelman 
Rubin diagnostic) higher than 1.1. Although, admittedly, I do not understand all the 
details regarding the mathematics behind it, I think this upper limit could be relaxed 
slightly, especially since the posterior densities of all parameters looked well defined 
when plotted. Ecological data is furthermore known to be skewed by the observation 
of few common and many rare species (Begon et al. 2006, Levin et al. 2009, Mittelbach 
and McGill 2019), which challenges correct statistical modelling of these systems 
(Ferrier and Guisan 2006, Ovaskainen and Soininen 2011). Consequently, relaxation of 
this parameter might even facilitate the use of JSDMs in ecology. 

The already installed artificial dunes linking marram grass spatial configuration with 
dune growth will provide a very important next step in reconciling coastal protection 
and biodiversity. Such projects will enable dune managers to artificially create dunes 
that are optimal for dune growth from the start. These set ups could furthermore 
allow to test for the priority effects our results indicated by following up the 
invertebrate biodiversity in a newly created environment. Maybe such field 
experiment will show that marram grass specialists colonize young plants and are 
gradually displaced by generalist as the plant matures and becomes better at 
defending itself (e.g., due to an increase in silica in the leaves)? Dune research will 
probably be driven forward in the coming years due to the interest for dunes as coastal 
protection. Consequently, these are exciting times to be a dune ecologist! 

Something I became increasingly more aware of during my research, is how relatively 
little is known about small, inconspicuous species such as arthropods and nematodes. 
Papers about threatened species are mainly focussing on vertebrates or plants (e.g., 
Bellard et al. 2016, Dueñas et al. 2021), while info on invertebrate species is 
sometimes only included secondarily, because it is able to explain trends found in 
vertebrate species (e.g., Graveland and Van Der Wal 1996). Furthermore, ecological 
information is still limited for a lot of insect taxa (Wong et al. 2019). For instance, 
insect larvae were excluded from the aboveground analysis because ecological 
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information on the larval stage of some species was limited or non-existing. This is 
unfortunate, considering insect species are very numerous and are linked with a 
variety of ecosystem services (Wagner et al. 2021). So for my final perspective, I would 
want to stress the importance of doing ecological research on small species in order 
to compensate for the historical “vertebrate bias” (Titley et al. 2017), because 
increasing our fundamental understanding of the ecological processes shaping diverse 
biological communities is crucial for their survival and nature conservation. 

6.6 Conclusion 

The results presented in this thesis hold several implications for both nature 
conservation and coastal protection. We observed a high change of occurrence of S. 
inaequidens in coastal dunes, especially in less vegetated areas. Managers of artificial 
dunes should be made aware of the increased potential for establishment of invasive 
species in sparsely planted dunes. Our growth experiment indicated that the 
occurrence of invasive species could accelerate dune stabilization and vegetation 
succession, which would end the process of dune formation prematurely, leaving our 
coasts more vulnerable than intended. Field surveys along the coast of West Europe 
linked a heterogenous landscape, where marram grass tussocks of varying vitality are 
intertwined with bare sand patches, with the highest species richness. These bare 
sand patches are indirectly beneficial for biodiversity, via marram grass itself, because 
too densely covered marram dunes harboured significantly more root-feeding 
nematodes, which could potentially lower marram grass vitality. Some specific dune 
species can also benefit directly from bare sand patches. Large differences in marram 
grass-associated diversity between the sampled biogeographic regions nevertheless 
remain unsolved. 
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Summary 
Humans are drawn to coastal dunes since time immemorial. They used the 
vegetation growing in the dunes to feed their cattle, make utensils out of 
different parts of the plants and sometimes it was even used as a food source 
(e.g., Hippophae rhamnoides). Currently, coastal vegetation is increasingly 
used for coastal protection purposes, especially because the sea level is rising 
and extreme storm surges are predicted to increase as a consequence of the 
ongoing climate change. Vegetation in sandy coastal habitats worldwide, such 
as mangroves or salt marshes, naturally protect the lower laying hinterland. 
This is accomplished by gradually building up the land at the sea-land interface 
by locally lowering wind or water dynamics, causing the suspended sediment 
to settle, after which it is stabilized by the vegetation. 

European marram grass, Calamagrostis arenaria, is the keystone plant species 
in the process of dune formation in European dunes. It thrives vigorously in 
dynamic dunes with a lot of wind-blown sand, yet, it slowly withers away when 
locked up in a completely vegetated, stabilized dune. This constant need for 
sand burial in order to grow arises from a negative effect caused by the 
associated soil biota. Different nematode species are thought to be the 
principle cause of this effect, although other factors such as fungi and nutrient 
concentrations are also zealously studied. Nevertheless, a complete 
mechanistic understanding of the process is still lacking today. 

Today, the creation of artificial dunes is mainly done by first depositing sand 
on the beach and subsequently stabilizing it by planting marram grass. 
Marram grass is planted in a regular pattern on artificial dunes, 
notwithstanding it occurs more clustered together in nature. If more and more 
regular dunes appear along our coastline, how will this affect dune 
biodiversity? In an attempt to answer this question, I studied how the spatial 
configuration of marram grass influences the marram grass-associated 
biological communities. 

In a first study (chapter 2), we investigated the potential of an invasive plant 
species (Senecio inaequidens) to further spread throughout European coastal 
dunes. The possible effects of S. inaequidens establishment on natural dune 
formation, by altering marram grass performance, were additionally 
evaluated. Our results indicated a relatively high probability of establishment 
for S. inaequidens in natural dune configurations, hinting at a high tolerance 
for sand burial. Nevertheless, marram grass seemed to be the stronger 
competitor in natural foredunes, lowering the probability of establishment in 
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areas with high marram grass cover. Furthermore, marram grass performance 
was enhanced in Senecio-altered sand, possibly owing to higher nutrient 
concentrations. If such increased plant growth is a general phenomenon, 
further expansion of S. inaequidens could accelerate natural succession in 
European coastal dunes. 

In chapter 3, we tried to disentangle the factors structuring nematode 
functional abundances in foredunes using joint species distribution modelling 
(JSDM). Research relating nematode numbers to marram grass is relevant 
because nematodes are thought to cause a decline in vigour when marram 
grass is not constantly cover by a thin layer of sand. We found that 
stochasticity among plants was the most important factor in explaining 
nematode functional abundances, which all occurred extremely clustered 
together. Identifying which factors possibly explain this stochasticity might 
help to clarify why the decline in marram grass performance observed under 
constant conditions in the lab, is still not completely resolved in the field. 

Next, in chapter 4, we studied the aboveground invertebrate biodiversity 
associated with marram grass. More specifically, we investigated how 
invertebrate communities were influenced by regional and local variables, 
while taking into account species traits and phylogenetic relationships. We 
were especially interested in the effect of marram grass cover and vitality 
because, recently, vegetation was removed  in stabilized foredunes under the 
pretence of being beneficial for dune biodiversity. Our results did not support 
a significant raise in biodiversity if vegetation cover would be reduced from 
high to intermediate densities, at least not for biodiversity in marram grass 
dominated foredunes. Residual species-associations indicated that generalist 
species did not inhabit the same marram grass tussock as dune specialist, 
hinting at the existence of two distinct communities. Further experiments or 
field work are necessary to confirm a causal relationship. 

Species occupying the same habitat patch do not just live together, they 
interact. That is why, in the last research chapter, we focussed specifically on 
the arthropod community found in the marram grass tussocks and tested 
whether body size ratios can accurately predict trophic interactions between 
them. Assuming larger predators eat smaller prey, we additionally 
investigated whether predator hunting strategy and prey taxonomy could 
explain possible deviations from this general rule. To do this, we constructed 
an empirical food web based on pairwise feeding trials and contrasted this 
with a theoretical food web based on body size ratios, literature and expert 
knowledge. Our feeding trials confirmed that predator-prey body size ratio is 
a good predictor for trophic interactions. Nevertheless, phylogenetically 
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structured anti-predator defences could explain why certain trophic 
interactions do not adhere to size-based rules. 

The results presented in this thesis hold several implications for both nature 
conservation and coastal protection. Managers of artificial dunes need to be 
aware of the increased potential for establishment of invasive species to 
establish in sparsely planted dunes. Occurrence of invasive species could 
accelerate dune stabilization and vegetation succession, which would end the 
process of dune growth prematurely, leaving our coasts more vulnerable than 
intended. Coastal managers for the sake of biodiversity best aim for a 
heterogenous landscape, where marram grass tussocks of varying vitality are 
intertwined with bare sand patches. Large differences in marram grass-
associated diversity between the sampled biogeographic regions nevertheless 
remain unsolved. 

Coastal dunes are a marvellous ecosystem filled with underappreciated 
lifeforms, such as nematodes and arthropods. Further insights in their ecology 
are needed as the dramatic global decline in species richness and abundance 
is knocking out many species and interactions on which services such as pest 
control and nutrient cycling depend. 
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Samenvatting 
Mensen voelen zich sinds jaar en dag aangetrokken tot kustduinen. Vroeger 
werd de duinvegetatie gebruikt om het vee te voederen, werden delen van 
andere planten gebruikt om gebruiksvoorwerpen te maken en nog andere 
soorten dienden als voedselbron voor de mens (bijvoorbeeld duindoorn, 
Hippophae rhamnoides). Momenteel wordt kustvegetatie in toenemende 
mate gebruikt voor kustbescherming, en vooral vanwege de voorspelde 
gevolgen van de aanhoudende klimaatverandering, zoals de zeespiegelstijging 
en een verhoogd aantal extreme stormvloeden. Veel vegetatie in zandige 
ecosystemen wereldwijd, vb. mangroves of slikken en schorren, beschermt 
het achterliggende land op natuurlijke wijze tegen de zeespiegelstijging. Dit 
gebeurt door het land geleidelijk aan op te hogen door lokaal de wind- of 
waterdynamiek voldoende te verlagen. Daardoor kan het opgeloste sediment 
neerslaan, waarna het door de vegetatie wordt vastgehouden. 

Europees helmgras, Calamagrostis arenaria, is de belangrijkste plantensoort 
in het proces van duinvorming aan de Europese kust. Het gedijt uitstekend in 
dynamische duinen met veel opwaaiend zand, maar verdort langzaam als het 
vast zit in een volledig begroeide en  gestabiliseerde duin. Deze constante 
behoefte aan vers zand om te kunnen groeien, wordt toegeschreven aan het 
effect van bodemorganismen. Er wordt aangenomen dat nematoden 
(wortelaaltjes) de hoofdoorzaak zijn van dit effect, hoewel ook andere 
factoren zoals schimmels en nutriëntenconcentraties ijverig worden 
bestudeerd. Het mechanisme van dit proces is nog altijd niet volledig 
ontrafeld.  

Het aanleggen van kunstmatige duinen gebeurt momenteel door eerst het 
strand op te hogen met zand en dat vervolgens te stabiliseren door helmgras 
aan te planten. Hierbij wordt helmgras nog steeds in een regelmatig patroon 
aangeplant, hoewel het in de natuur meer gegroepeerd voorkomt. Hoe 
biodiveristeit gedijt in deze meer regelmatige duinen is amper onderzocht. In 
een poging deze vraag te beantwoorden, onderzoek ik in dit proefschrift hoe 
de ruimtelijke configuratie van helmgras een rol speelt bij het structureren van 
de biologische gemeenschap gevonden in helmgras. 

In een eerste studie (hoofdstuk 2) onderzochten we het potentieel van een 
invasieve plantensoort (bezemkruiskruid, Senecio inaequidens) om zich verder 
te verspreiden binnen de Europese kustduinen. De mogelijke effecten van een 
verdere verspreiding van bezemkruiskruid op de natuurlijke duinvorming, 
door de groei van helmgras te beïnvloeden, werden eveneens onderzocht. 
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Onze resultaten wezen op een relatief hoge vestigingskans van 
bezemkruiskruid in natuurlijk voorkomende helmgras configuraties, wat kan 
wijzen op een hoge tolerantie voor zandbegraving van bezemkruiskruid. 
Desalniettemin leek helmgras de sterkere concurrent te zijn in natuurlijke 
kustduinen, wat de kans op vestiging deed dalen in gebieden met een hogere 
bedekking van helmgras. Bovendien groeide helmgras beter in zand verzameld 
onder het bezemkruiskruid, wat mogelijks wijst op hogere 
nutriëntenconcentraties vrijgekomen uit het organisch materiaal. Als een 
dergelijke verhoogde plantengroei een algemeen verschijnsel is, zou verdere 
uitbreiding van bezemkruiskruid de natuurlijke successie in de Europese 
kustduinen kunnen versnellen. 

In hoofdstuk 3 hebben we geprobeerd om de effecten van verschillende 
factoren die de functionele aantallen van nematoden in kustduinen 
beïnvloeden, van elkaar te onderscheiden. Onderzoek naar nematoden in 
helmgras is relevant omdat er wordt aangenomen dat ze de groeikracht van 
helmgras verminderen als het niet constant bedekt wordt met een dun laagje 
zand. Helmgrasbedekking kon slechts een klein deel van de natuurlijke variatie 
in het aantal gevonden nematoden verklaren. Door de achterliggende 
factoren van deze variatie in nematoden aantallen te identificeren, kan 
worden onderzocht waarom de verminderde groei van helmgras, 
geobserveerd onder constante omstandigheden in het labo, nog niet volledig 
is uitgeklaard in het veld. 

Vervolgens hebben we in hoofdstuk 4 de bovengrondse biodiversiteit aan 
ongewervelden, gevonden in het helmgras, bestudeerd. Meer specifiek 
onderzochten we hoe deze werden beïnvloed door regionale en lokale 
variabelen, rekening houdend met soortspecifieke kenmerken en 
fylogenetische relaties. We waren vooral geïnteresseerd in het effect van 
helmgrasbedekking en -vitaliteit omdat onlangs vegetatie werd verwijderd in 
gestabiliseerde duinen onder het mom gunstig te zijn voor de 
duinbiodiversiteit. Volgens onze resultaten zou de biodiversiteit in 
helmduinen niet toenemen als de vegetatiebedekking zou worden 
gereduceerd van hoge naar gemiddelde dichtheden. Door associaties tussen 
soorten te bekijken, vonden we dat generalistische soorten niet dezelfde 
helmgraspol verkiezen als duinspecialisten, wat duidt op het bestaan van twee 
verschillende gemeenschappen. Verdere experimenten of veldwerk zijn nodig 
om een causaal verband te onderzoeken. 

Soorten die hetzelfde leefgebied bezetten, leven niet alleen samen, ze 
interageren ook met elkaar. Daarom hebben we in het laatste hoofdstuk 
getest of trofische interacties tussen geleedpotigen nauwkeurig kunnen 
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voorspeld worden op basis van de verhoudingen tussen de lichaamsgrootte 
van de prooi en het roofdier. Ervan uitgaand dat grotere roofdieren kleinere 
prooien eten, hebben we daarnaast onderzocht of de jachtstrategie van het 
roofdier en de taxonomie van de prooi mogelijke afwijkingen van deze 
algemene regel kunnen verklaren. Om dit te doen, hebben we een empirisch 
voedselweb geconstrueerd op basis van paarsgewijze proeven en dit 
vervolgens vergeleken met een theoretisch voedselweb op basis van 
lichaamsgroottes, literatuur en expertise. Onze proeven bevestigden dat de 
verhouding tussen de lichaamsgrootte van roofdier en prooi een goede 
indicatie is voor trofische interacties. Desalniettemin zouden fylogenetisch 
gestructureerde verdedigingsmechanismen tegen roofdieren kunnen 
verklaren waarom bepaalde trofische interacties zich niet houden aan deze 
regel. 

De resultaten gepresenteerd in dit proefschrift hebben verschillende 
implicaties voor zowel natuurbehoud als kustbescherming. Beheerders van 
kunstmatige duinen moeten zich bewust zijn van de verhoogde kans op 
vestiging van invasieve soorten in spaarzaam aangeplante duinen. De 
vestiging van invasieve soorten zou de duinstabilisatie en vegetatiesuccessie 
kunnen versnellen, waardoor het proces van duingroei voortijdig zou worden 
beëindigd, met lagere duinen als gevolg. Hierdoor zouden onze kusten 
kwetsbaarder kunnen worden. In het belang van biodiversiteit streven 
beheerders van duingebieden best naar een heterogeen landschap, waar 
helmgraspollen van verschillende vitaliteit worden afgewisseld met kale 
zandplekken. Grote verschillen in biodiversiteit gevonden in helmgraspollen 
tussen de bemonsterde biogeografische regio's blijven echter onopgelost. 

Kustduinen zijn een prachtig ecosysteem vol ondergewaardeerde soorten, 
zoals nematoden en geleedpotigen. Het verder verwerven van ecologische 
inzichten in hun biologie is noodzakelijk aangezien de soortenrijkdom 
wereldwijd drastisch achteruit gaat. Samen met deze soorten verdwijnen ook 
de ecosysteemdiensten waarvoor zij verantwoordelijk zijn, zoals 
ongediertebestrijding en het recycleren van nutriënten.  
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Résumé 
Les humains sont attirés par les dunes côtières depuis des temps 
immémoriaux. Ils utilisaient la végétation poussant dans les dunes pour 
nourrir leur bétail, fabriquer des ustensiles à partir de différentes parties des 
plantes et parfois même l’utiliser comme source de nourriture (par exemple, 
Hippophae rhamnoides). Actuellement, la végétation côtière est de plus en 
plus utilisée à des fins de protection côtière, notamment parce que le niveau 
de la mer monte et que les ondes de tempête extrêmes devraient augmenter 
en raison du changement climatique en cours. La végétation des habitats 
côtiers sablonneux du monde entier, tels que les mangroves ou les marais 
salants, protège naturellement l’arrière-pays de faible altitude. Ceci est 
accompli grâce à l’accumulation progressive de terre à l’interface mer-terre ce 
qui ralentit localement la dynamique du vent ou de l’eau, provoquant le dépôt 
des sédiments en suspension, après quoi ils sont stabilisés par la végétation. 

L’oyat ou ammophile d’Europe, Calamagrostis arenaria, est l’espèce végétale 
clé dans le processus de formation des dunes européennes. Il prospère 
vigoureusement dans les dunes dynamiques avec beaucoup de sable soufflé 
par le vent, mais il se dessèche lentement lorsqu’il est enfermé dans une dune 
complètement végétalisée et stabilisée. Ce besoin constant d’enfouissement 
dans le sable pour croître provient d’un effet négatif causé par le biote du sol 
associé. On pense que différentes espèces de nématodes sont la principale 
cause de cet effet, bien que d’autres facteurs tels que les champignons et les 
concentrations de nutriments soient aussi étudiés de manière importante. 
Néanmoins, une compréhension mécaniste complète du processus fait encore 
défaut aujourd’hui. 

Aujourd’hui, la création de dunes artificielles se fait principalement en 
déposant d’abord du sable sur la plage et en stabilisant ensuite la dune en 
plantant de l’ammophile. L’ammophile est plantée selon un schéma régulier 
sur des dunes artificielles, bien qu’elle soit plus regroupée dans la nature. Si 
de plus en plus de dunes régulières apparaissent le long de notre littoral, 
comment cela affectera-t-il la biodiversité des dunes ? Pour tenter de 
répondre à cette question, j’ai étudié comment la configuration spatiale de 
l’ammophile influence les communautés biologiques associées à l’ammophile. 

Dans une première étude (chapitre 2), nous avons étudié le potentiel d’une 
espèce végétale envahissante (Senecio inaequidens) à se propager davantage 
dans les dunes côtières européennes. Les effets possibles de l’établissement 
de S. inaequidens sur la formation naturelle des dunes, en modifiant les 
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performances de l’ammophile, ont également été évalués. Nos résultats ont 
indiqué une probabilité relativement élevée d’établissement de S. inaequidens 
dans les configurations de dunes naturelles, suggérant une tolérance élevée à 
l’enfouissement dans le sable. Néanmoins, l’ammophile semble être le 
concurrent le plus fort dans les avant-dunes naturelles, réduisant la 
probabilité d’établissement dans les zones à forte couverture d’ammophile. 
De plus, la performance de l’ammophile est améliorée dans le sable modifié 
par Senecio, peut-être en raison de concentrations plus élevées de nutriments. 
Si une telle augmentation de la croissance des plantes est un phénomène 
général, une expansion supplémentaire de S. inaequidens pourrait accélérer 
la succession naturelle dans les dunes côtières européennes. 

Dans le chapitre 3, nous avons essayé de démêler les facteurs structurant les 
abondances fonctionnelles des nématodes dans les avant-dunes à l’aide de la 
modélisation conjointe de la distribution des espèces (JSDM). Lier les 
abondances de nématodes à l’ammophile est une recherche pertinente car on 
pense que les nématodes provoquent une baisse de vigueur lorsque 
l’ammophile n’est pas constamment recouverte d’une fine couche de sable. 
Nous avons constaté que l’aléa entre les plantes était le facteur le plus 
important pour expliquer les abondances des groupes fonctionnels de 
nématodes, qui se sont toutes révélées extrêmement regroupées. 
L’identification des facteurs pouvant expliquer cet aléa pourrait aider à 
clarifier pourquoi la baisse des performances de l’ammophile observée dans 
des conditions constantes en laboratoire n’est toujours pas complètement 
résolue sur le terrain. 

Ensuite, au chapitre 4, nous avons étudié la biodiversité aérienne des 
invertébrés associée à l’ammophile. Plus précisément, nous avons étudié 
comment les communautés d’invertébrés étaient influencées par des 
variables régionales et locales, tout en tenant compte des traits des espèces 
et des relations phylogénétiques. Nous nous sommes particulièrement 
intéressés à l’effet de la couverture et de la vitalité des ammophiles car, 
récemment, la végétation a été supprimée dans les avant-dunes stabilisées 
sous prétexte d’être bénéfique pour la biodiversité des dunes. Nos résultats 
n’ont pas démontré une augmentation significative de la biodiversité lorsque 
la densité du couvert végétal était réduit d’élevée à intermédiaire, du moins 
pas pour la biodiversité dans les avant-dunes dominées par l’ammophile. Les 
associations d’espèces résiduelles ont indiqué que les espèces généralistes 
n’habitaient pas la même touffe d’ammophile que les spécialistes des dunes, 
suggérant l’existence de deux communautés distinctes. D’autres expériences 
ou travaux de terrain sont nécessaires pour confirmer toute relation causale. 
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Les espèces occupant la même parcelle d’habitat ne vivent pas seulement 
ensemble, elles interagissent. C’est pourquoi, dans le dernier chapitre de 
recherche, nous nous sommes concentrés spécifiquement sur la communauté 
d’arthropodes trouvée dans les touffes d’ammophiles et avons testé si les 
rapports de taille corporelle pouvaient prédire avec précision les interactions 
trophiques entre ces espèces. En supposant que les prédateurs mangent des 
proies plus petites, nous avons également étudié si la stratégie de chasse des 
prédateurs et la taxonomie des proies pouvaient expliquer les écarts possibles 
par rapport à cette règle générale. Pour ce faire, nous avons construit un 
réseau trophique empirique fondé sur des tests de prédation par paires 
d’espèces et l’avons comparé à un réseau trophique théorique fondé sur les 
rapports de taille corporelle, la littérature et les connaissances d’experts. Nos 
tests en laboratoire ont confirmé que le rapport taille corporelle prédateur-
proie est une bonne variable prédictive des interactions trophiques. 
Néanmoins, des défenses anti-prédateurs structurées phylogénétiquement 
pourraient expliquer pourquoi certaines interactions trophiques ne 
respectent pas les règles fondées sur la taille. 

Les résultats présentés dans cette thèse ont plusieurs implications pour la 
conservation de la nature et la protection côtière. Les gestionnaires de dunes 
artificielles doivent être conscients du potentiel accru d’établissement 
d’espèces envahissantes dans les dunes peu plantées. La présence d’espèces 
envahissantes pourrait accélérer la stabilisation des dunes et la succession 
végétale, ce qui mettrait fin prématurément au processus de croissance des 
dunes, laissant nos côtes plus vulnérables que prévu. Les gestionnaires côtiers, 
dans l’intérêt de la biodiversité, devraient viser un paysage plus hétérogène, 
où des touffes d’ammophiles de vitalité variable sont entrelacées avec des 
plaques de sable nu. De grandes différences dans la diversité associée à 
l’ammophile entre les régions biogéographiques échantillonnées restent 
néanmoins non résolues. 

Les dunes côtières sont un merveilleux écosystème rempli de formes de vie 
sous-estimées, telles que les nématodes et les arthropodes. Des 
connaissances supplémentaires sur leur écologie sont nécessaires car le déclin 
mondial spectaculaire de la richesse et de l’abondance des espèces élimine de 
nombreuses espèces et interactions dont dépendent des services tels que la 
lutte antiparasitaire et le cycle des nutriments. 
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