
University of Lille
Doctoral School ED SMRE

Department of Physics

PhLAM: Laboratory of Physics of Lasers, Atoms, and Molecules
Building P5 – 2 Avenue Jean Perrin – 59655 Villeneuve d’Ascq – Cedex – France.

Cerla: Center for Laser Studies and Research Applications
Cité scientifique – 59655 Villeneuve d’ascq – Cedex – France.

Thesis defended by Rabih EL SOKHEN

Defended on 20 December 2024

To become a Doctor from the University of Lille

Academic Field Physics

Specialty Diluted Media And Fundamental Optics

Two-dimensional topological properties of photonic
mesh lattices subject to discrete step walks

Thesis supervised by: DR Alberto Amo Garcia Director

PR Stéphane Randoux Co-Director

President of the jury PR Gaëtan Lévêque University of Lille

Jury composition

Referees DR Vincent Couderc XLIM Research Institute

PR Tomoki Ozawa University of Tohoku

Examiner PR Gaëtan Lévêque University of Lille

Director DR Alberto Amo Garcia University of Lille

Two-dimensional topological properties of photonic mesh lattices subject to discrete step
walks, © 20 December 2024

https://univ-lille.fr/en/
https://phlam.univ-lille.fr/
https://cerla.univ-lille.fr/
https://www.cnrs.fr/fr
https://erc.europa.eu/homepage
https://www.hautsdefrance.fr/
https://european-union.europa.eu/
www.univ-lille.fr
https://edsmre.univ-lille.fr/
https://phlam.univ-lille.fr/
https://cerla.univ-lille.fr




Université de Lille
École doctorale ED SMRE

Département de physique

PhLAM: Laboratoire de Physique des Lasers, Atomes et Molécules
Building P5 – 2 Avenue Jean Perrin – 59655 Villeneuve d’Ascq – Cedex – France.

Cerla: Centre d’Études et de Recherches Lasers et Applications
Cité scientifique – 59655 Villeneuve d’ascq – Cedex – France.

Thèse présentée par Rabih EL SOKHEN

Soutenue le 20 décembre 2024

En vue de l’obtention du grade de docteur de l’Université de Lille

Discipline Physique

Spécialité Milieux dilués et optique fondamentale

Propriétés topologiques bidimensionnelles des réseaux
photoniques soumis à des marches discrètes

Thèse dirigée par: DR Alberto Amo Garcia Directeur

PR Stéphane Randoux Co-Directeur

Président du jury PR Gaëtan Lévêque Université de Lille

Composition du jury

Rapporteurs DR Vincent Couderc Institut de Recherche XLIM

PR Tomoki Ozawa Université de Tohoku

Examinateur PR Gaëtan Lévêque Université de Lille

Directeur DR Alberto Amo Garcia Université de Lille

Propriétés topologiques bidimensionnelles des réseaux photoniques soumis à des marches
discrètes, © 20 décembre 2024

https://univ-lille.fr/en/
https://phlam.univ-lille.fr/
https://cerla.univ-lille.fr/
https://www.cnrs.fr/fr
https://erc.europa.eu/homepage
https://www.hautsdefrance.fr/
https://european-union.europa.eu/
www.univ-lille.fr
https://edsmre.univ-lille.fr/
https://phlam.univ-lille.fr/
https://cerla.univ-lille.fr




TA B L E O F C O N T E N T

Table of Content . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi

Declaration of Authorship . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiii

Publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xv

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1 double ring photonic lattice . . . . . . . . . . . . . . . . . . . . . . 5
1.1 Photonic lattices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.1.1 Light diffraction in 1D photonic lattice . . . . . . . . . . . . . 5
1.1.2 Floquet-Bloch theorem . . . . . . . . . . . . . . . . . . . . . . . 8
1.1.3 Topological system . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.2 Introduction to the double ring photonic lattice . . . . . . . . . . . 15
1.2.1 Discrete-step walk platforms overview . . . . . . . . . . . . . 15
1.2.2 Conceptual model of the double ring . . . . . . . . . . . . . . 16
1.2.3 Evolution equation and band structure . . . . . . . . . . . . . 21

1.3 Two-dimensional synthetic photonic lattice . . . . . . . . . . . . . . 28
1.3.1 Two-step model . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
1.3.2 Four-step model . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

1.4 Review: Double rings & topological properties . . . . . . . . . . . 40
1.4.1 Berry curvature via anomalous transport . . . . . . . . . . . . 40
1.4.2 Stability of edge states in nonlinear regime . . . . . . . . . . . 42
1.4.3 Observation of the non-Hermitian skin effect . . . . . . . . . . 43

1.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

2 experimental setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
2.1 Overview of the optical setup . . . . . . . . . . . . . . . . . . . . . . 47

2.1.1 Double ring configuration . . . . . . . . . . . . . . . . . . . . . 47
2.1.2 Local oscillator . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

2.2 Electronic: Automation and control . . . . . . . . . . . . . . . . . . . 55
2.2.1 Optical fiber ring stabilization . . . . . . . . . . . . . . . . . . . 55
2.2.2 Arduino: central controller and ring stabilization . . . . . . . 57
2.2.3 Sequence generation . . . . . . . . . . . . . . . . . . . . . . . . 59

2.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

v



3 eigenstate and eigenvalue analysis . . . . . . . . . . . . . . . . . 65
3.1 Measurement of eigenvalues . . . . . . . . . . . . . . . . . . . . . . . 65

3.1.1 Impulse response . . . . . . . . . . . . . . . . . . . . . . . . . . 65
3.1.2 Spatiotemporal diagrams . . . . . . . . . . . . . . . . . . . . . 67
3.1.3 Measuring the band structure . . . . . . . . . . . . . . . . . . . 68

3.2 Measurement of eigenstates . . . . . . . . . . . . . . . . . . . . . . . 71
3.2.1 Numerical eigenstate analysis . . . . . . . . . . . . . . . . . . . 71
3.2.2 Experimental eigenstate analysis . . . . . . . . . . . . . . . . . 74

3.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

4 bulk topological properties of the two-step model . . . . . . 79
4.1 Computing the Berry curvature . . . . . . . . . . . . . . . . . . . . . 79
4.2 Two-step model bulk topological invariants . . . . . . . . . . . . . . 80
4.3 Topological charge associated with the phase transition . . . . . . . 84

4.3.1 Phase transition . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
4.3.2 Topological charge . . . . . . . . . . . . . . . . . . . . . . . . . 87

4.4 Interface State . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
4.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

5 edge dependent topology of the two-step model . . . . . . . . 95
5.1 Edge dependent topological invariant . . . . . . . . . . . . . . . . . 95

5.1.1 Bulk topology . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
5.1.2 Reference frames and open boundary conditions . . . . . . . 98

5.2 Extrinsic topology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
5.2.1 Edge unitary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
5.2.2 Edge state engineering . . . . . . . . . . . . . . . . . . . . . . . 107

5.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

6 topological properties of the four-step model . . . . . . . . . 117
6.1 Four steps model bulk topology . . . . . . . . . . . . . . . . . . . . . 117
6.2 Bulk-edge correspondence . . . . . . . . . . . . . . . . . . . . . . . . 124
6.3 Extrinsic topology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
6.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

7 conclusion & perspective . . . . . . . . . . . . . . . . . . . . . . . . . 129
7.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
7.2 Perspective . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

a two-step model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
a.1 Eigenvector computation . . . . . . . . . . . . . . . . . . . . . . . . . 133
a.2 Eigenvalue computation . . . . . . . . . . . . . . . . . . . . . . . . . 137

b four-step model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
b.1 Eigenvector computation . . . . . . . . . . . . . . . . . . . . . . . . . 141
b.2 Eigenvalue computation . . . . . . . . . . . . . . . . . . . . . . . . . 145



c component position . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
c.1 Phase modulator placement relative to beamsplitter . . . . . . . . . 151

c.1.1 Phase modulator before the beamsplitter . . . . . . . . . . . . 151
c.1.2 Phase modulator after the beamsplitter . . . . . . . . . . . . . 152

d data smoothing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

e quasi periodic modulation . . . . . . . . . . . . . . . . . . . . . . . . 163
e.1 Quasi periodic modulation in space . . . . . . . . . . . . . . . . . . . 163
e.2 Quasi periodic modulation in time . . . . . . . . . . . . . . . . . . . 167

f quadra-ring system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171
f.1 Quadra-ring temporal response . . . . . . . . . . . . . . . . . . . . . 171
f.2 Quadra-ring dispersion relation . . . . . . . . . . . . . . . . . . . . . 174

f.2.1 Numerical characterization of the band structure . . . . . . . 174
f.2.2 Analytical characterization of the band structure . . . . . . . . 178

bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183





Abstract

Two-dimensional topological properties of photonic mesh lattices subject to
discrete step walks.

This thesis presents experimental and numerical investigations into bulk and
edge invariants within a 2D synthetic photonic lattice subjected to discrete step
walks. The lattice is engineered by time-multiplexing light pulses in two unequal-
length optical fiber rings coupled with a variable beam splitter (VBS). In this config-
uration, one dimension exhibits real-space dynamics, while the other is governed
by an external phase modulator (PM). Employing heterodyne detection, we access
spectral information and measure eigenvalues and eigenvectors, enabling the ex-
traction of bulk invariants, such as the Chern number, from the Berry curvature
associated with the photonic bands. Furthermore, we derive an expression for the
winding number and demonstrate that the emergence of edge states is tied to spe-
cific geometric boundaries. Finally, we highlight the impact of edge topology on
the overall system topology, which can either suppress or induce the presence of
edge states.

Keywords: Photonic lattices, coupled fiber rings, Discrete step walk, Eigenvalue, Eigen-
states, Topological invariants.

Résumé

Propriétés topologiques bidimensionnelles des réseaux photoniques soumis à
des marches discrètes.

Cette thèse explore expérimentalement et numériquement les invariants de
volume et de bord dans un réseau photonique synthétique 2D soumis à des
marches discrètes. Le réseau est réalisé par multiplexage temporal d’impulsions
lumineuses dans deux anneaux de fibres optiques de longueurs inégales, couplés
à un coupleur variable (VBS). Dans cette configuration, une dimension présente
une dynamique dans l’espace réel, tandis que l’autre est gouvernée par un mod-
ulateur de phase externe (PM). En utilisant la détection hétérodyne, nous accé-
dons aux informations spectrales et mesurons les valeurs propres et les vecteurs
propres, ce qui permet d’extraire les invariants de volume tel que le nombre de
Chern à partir de la courbure de Berry associée aux bandes photoniques. De plus,
nous dérivons une expression pour le nombre d’enroulement et démontrons que
l’émergence des états de bord est liée à des frontières géométriques spécifiques.
Enfin, nous soulignons l’impact de la topologie des bords sur la topologie globale
du système, qui peut soit supprimer soit induire la présence d’états de bord.

Mots-clés : Réseaux photoniques, Anneaux de fibres couplés, Marche discrète, Valeur
propre, États propres, Invariants topologiques.
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I N T R O D U C T I O N

Topology is a branch of mathematics that focuses on properties preserved under
continuous deformations. For instance, a donut and a teacup are topologically
equivalent, as they can be continuously deformed into each other without cutting
or gluing while preserving the number of holes [2].

In the realm of photonics, topological photonics leverages geometrical and to-
pological concepts to enable unique, robust unidirectional propagation of light.
This field draws inspiration from exciting developments in solid-state materials,
including new phases of matter known as topological insulators [3–5]. Even in the
presence of substantial impurities, the latter exhibit insulating behavior in their
bulk and conduct electricity on their surfaces without backscattering or dissipa-
tion. A prime example of this is the quantum Hall effect [6], discovered in 1980
in condensed matter, which demonstrates quantized Hall conductance in two-
dimensional electron systems at low temperatures and under strong magnetic
fields [6]. In this phenomenon, electrons are confined to move along the edges
of the material, creating exceptionally robust edge states. This quantization of the
Hall conductance is linked to topological invariants called Chern numbers, which
ensure stability against impurities and disorder.

Recent studies revealed that systems with parameters varied periodically over
time (periodically driven systems or Floquet systems), can exhibit unusual proper-
ties, known as anomalous topological phases [7–9]. These systems are specifically
referred to as Floquet anomalous topological phases. Furthermore, quantum walks
systems, which involve discrete-step time evolution, yield richer topological phases
due to their discrete time evolution, and highlight that both the bulk topology (the
overall properties of the internal structure of the system) and the edge topology
(properties of a system that arise at boundaries or the edge of a material) are essen-
tial for the formation of chiral edge states [10], a unidirectional, robust, localized
quantum states located at the boundary or the edge of a material. Experimentally,
Floquet anomalous topological phases, have been realized in one-dimensional dis-
crete step walks [11–14] and in two-dimensional photonic lattices with continuous
time evolution [15, 16]. However, no previous work has studied the anomalous
topological phases in a two-dimensional discrete step walk.

In this dissertation, we investigate the bulk and edge properties of anomalous
and trivial topological phases in a two-dimensional synthetic discrete step-walk
photonic lattice. The lattice is implemented using time multiplexing of light pulses
in two coupled fiber rings. In this system, one of the dimensions displays real space
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dynamics and the other one is defined by an external phase applied to the rings.
Through a two-dimensional Fourier transform of the stroboscopic spatiotemporal
diagram of the system’s impulse response, we examine both eigenvectors and ei-
genvalues from spectral information [17]. We focus on the relation between the
bulk invariants and the presence of topological edge states and demonstrate im-
portant differences with anomalous topological phases in Floquet systems with a
Hamiltonian description (i.e. under continuous time evolution). In particular, we
show that the specific choice of boundaries affects the existence of edge states. Our
results are well described by suitably defined winding numbers which we directly
measure in the experiment, and open the door to the engineering of extrinsic to-
pological phases [10]. In these phases, the number of topological edge modes can
be varied through the appropriate design of unitary operators at the edges of the
lattice. The implementation of such a configuration could be useful to switch on
and off edge transport via local modifications.

Chapter. 1: Starting with photonic lattices and the concept of topological
systems, we introduce the photonic lattice model utilized in this study, achieved
through the temporal multiplexing of two coupled fiber loops of different lengths.
Light pulse evolution in this model is governed by two mathematical equations.
Applying a Fourier transform to the stroboscopic spatiotemporal diagram of the
system’s impulse response, we can access spectral information and extract the
eigenstate and eigenvalue. Following that, we present the two-step and four-step
models, which exhibit distinct topological properties and form the basis for
investigating anomalous phases in our two-dimensional synthetic photonic lattice
subject to Floquet-driven discrete step walk. Finally, we review the relevant
literature and outline the key problems addressed by the thesis.

Chapter. 2: The experimental setup is presented in this chapter along with
the role, precise lengths, and timings of the components. The setup consists of
two primary parts: First, the electronic section, managed by an Arduino, and
a fast arbitrary waveform generator (AWG7000B), which stabilizes the optical
fiber lengths and generates precise waveform sequences to control the setup.
Secondly, the optical section incorporates two coupled fiber rings along with a
local oscillator, enabling access to spectral information via the heterodyne method.

Chapter. 3: Presents a comprehensive characterization of the double-ring system
eigenvalues and eigenvectors (from both power and phase spectral distributions)
within a single measurement. This is achieved by leveraging a heterodyne method
and analyzing the spectral information of the system’s impulse response through
a 2D Fourier transform of the stroboscopic spatiotemporal diagram.

Chapter. 4: The bulk properties are analyzed by calculating the Berry curvature
and identifying a trivial Chern number for the two-step model. We also explored
the topological phase transition and extracted the topological charge Q from the
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difference in the Berry flux before and after the gap-closing point. The non-trivial
topological charge directly results in an interface state between two distinct
topological regions.

Chapter. 5: Anomalous topological phases in a two-dimensional discrete step
walk were examined through two distinct approaches. The first approach high-
lighted the significance of lattice geometry in establishing the presence of edge
states. The second approach concentrated on extrinsic topology, demonstrating
how the topological characteristics of the boundaries can impact the system’s
global topology, ultimately resulting in the suppression or emergence of gapless
boundary states.

Chapter. 6: Examines the four-step model bulk and edge topology. We present
various methods for calculating the Chern number and uncover a richer phase
diagram characterized by both trivial and non-trivial Chern numbers. Finally, we
explore the impact of the influence of the extrinsic topology on the overall topolo-
gical system in both trivial and non-trivial Chern bands scenarios, and reveal the
potential to close and open specific gaps.
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1
D O U B L E R I N G P H O T O N I C L AT T I C E

1.1 Photonic lattices

1.1.1 Light diffraction in 1D photonic lattice

Over the past two decades, photonic lattices [18, 19] or waveguide arrays focus
on examining the behavior of light when it encounters a pattern of periodically ar-
ranged waveguides. Despite the challenges, limitations, and fabrication constraints
[20, 21], a diverse range of waveguides, such as fiber optics [22], planar waveguides
[23], photonic crystals [18], micro-cavities [24], coupled micro-resonators [25], and
micro-pillars [26, 27], have facilitated the emergence of innovative photonic lattice
platforms. These platforms have found extensive applications in various physics
fields, including cold atoms [28], topology [29], and mechanics [30, 31].

Photonic lattices unveil a mix of allowed and forbidden photonic energy bands,
similar to electronic band structures in semiconductors [32]. Additionally, they
have proven invaluable in the study of complex light phenomena, including light
diffraction [33], Bloch oscillations [34, 35], Rabi oscillations [36], Anderson local-
ization [37], and discrete solitons [38, 39], among others. This progress has been
facilitated by the control of various factors such as site coupling, phase modulation,
gain, loss, and non-linearities [40–42].

Periodic structures are commonly found in nature. In optics, periodicity is asso-
ciated with materials that exhibit a refractive index modulation, allowing for the
control of light flow in a manner very similar to electrons in electronic devices
[33]. Generally, a light beam propagates continuously and undergoes diffraction
throughout a homogeneous medium that has a uniform refractive index, meaning
that the cross-sectional area of the beam spreads, as represented in Fig. 1.1.a. This
behavior can be controlled by modulating the refractive index of the optical mater-
ial. Recently, researchers have followed this approach and realized that light can
propagate discretely in photonic lattices.

Imagine light being channeled into photonic lattices. These lattices consist of
coupled one-dimensional or two-dimensional optical waveguides. For example, op-

5



6 double ring photonic lattice

Δnx Δnx Δnx, Δny  

x

x

z

x x, y
x

y

(a) (b) (c)

x x

z z
x

y

z

z

x

z

Figure 1.1: Diffraction of light. (a) Diffraction of light in a homogenous medium with a
continuous index profile. (b) One-dimensional discrete diffraction is achieved
when light is introduced into a waveguide network of planar structures, juxta-
posed next to each other to achieve an overlap between the modes propagating
in the guides. Light becomes localized to specific points and interacts with
neighboring guides during its transition between channels, facilitated by evan-
escent optical coupling while propagating along the z-axis direction. (c) Two-
dimensional discrete diffraction of light in a heterogeneous medium with index
profile nx and ny along the x and the y direction respectively, while the propaga-
tion is along the z-axis. [48, 49]

tical fibers or three-layer planar structures juxtaposed next to each other, as presen-
ted in Fig. 1.1.c and Fig. 1.1.b, respectively. In an isolated waveguide, light be-
comes confined, following a specific path within the central layer. This is achieved
through continuous total reflections on the two edges of a waveguide [43], as illus-
trated in Fig. 1.1.b.

In photonic lattices, the modes confined in adjacent waveguides overlap [44]
and couple with neighboring guides as they propagate along the z-axis through
evanescent optical coupling [45, 46], as depicted in Fig. 1.1.b and Fig. 1.1.c. This
results in widening the spatial distribution of the light beam [39] and profoundly
altering the diffraction characteristics. The light beam becomes localized to specific
points of high energy far from the center with several secondary peaks between
them, see Fig. 1.1.b and Fig. 1.2.b. This so-called discrete diffraction opens up
new possibilities for controlling the flow of light that would have otherwise been
impossible in other systems [41]. Two complementary approaches can be imple-
mented to study these photonic lattices, the first deals with coupled individual
waveguides, and the second is the Floquet-Bloch analysis that treats the photonic
arrays as a periodic structure [47].
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Figure 1.2: (a) 1D Photonic lattice composed of coupled waveguides. (b) Discrete diffrac-
tion is achieved when a narrow pulse is injected into the lattice. (c)-(d) Dis-
crete diffraction is depicted when a broad pulse with an inclination angle of
0° and 1.1° is respectively introduced. (e) The output intensity profiles of this
one-dimensional lattice are determined by the inclination angle of the injected
beam. The blue (green) dashed line corresponds to the input beam tilt of 0°
(1.1°) and mirrors the scenarios presented in images (c) and (d) respectively. (f)
The dispersion relation of the photonic lattice. Those figures are extracted from
[20]

The genesis of experiments on photonic lattices can be traced back to the early
1970s. This was the era when S. Somekh and his team pioneered the design of
planar waveguides [50]. Their groundbreaking research demonstrated light coup-
ling across Gallium Arsenide guides, marking the first observation of a discrete
diffraction type. The subject of waveguide arrays was revived in the 1980s by Haus
and his team, who demonstrated their unique discrete imaging properties of the
photonic network [51]. This concept has been further validated with optical fibers
[52] and has been broadly adopted in many studies [48, 53, 54].

For instance, F. Lederer’s team [20] embarked on an intriguing exploration into
the behavior of light pulses within a one-dimensional photonic network made of 75
discrete coupled waveguides, as illustrated in Fig. 1.2.a. They observed how a nar-
row pulse, equivalent in size to a basic waveguide, navigates through the network,
transitioning from one guide to another, a process during which interference may
occur, as depicted in Fig. 1.2.b. In contrast, they found that injecting a wide pulse
covering several guides disperses in a unique pattern across the photonic lattice,
as showcased in Figs. 1.2.c-d. This pattern is influenced by the specific excitation
conditions and dispersion properties of the photonic lattice. Various wave packets
with different widths and inclination angles within a one-dimensional photonic
lattice were examined. This provides insights into the dispersion relationship and
distinctly illustrates the spatial progression of light pulses within the photonic lat-
tice. The lower panels of Figs. 1.2.c-d showcase the injection of a broad pulse into
the arrays at angles of 0° and 1.1° respectively, It’s noticeable that a minor tilt of
1.1° allows the light to maintain its form while propagating through the lattice, giv-
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ing the appearance of a solitonic 1 structure. This conservation of shape, however,
was not observed when the angle was set to 0°. The upper panels of Figs. 1.2.c-d
displays the output intensity after it has moved through the entire lattice.

Figure. 1.2.e depicts the pulse’s dispersion as a function of its incidence angle
in the waveguide array. The pulse’s final central position can shift based on the
entry angle, as represented by the blue dashed line (0°) and the green dashed line
(1.1°), mirroring the scenarios in Fig. 1.2.c and Fig. 1.2.d, respectively. The study
explores how the pulse’s width can either expand or contract depending on the
angle of injection. The photonic band in Fig. 1.2.f reveals a dispersion relationship
that governs the path and spread of a light pulse within a photonic lattice. This
relationship not only dictates how light will propagate through the lattice but also
unveils topological properties characterized by topological invariants [55].

1.1.2 Floquet-Bloch theorem

A convenient way to understand the eigenmodes of a spatially periodic lattice
is to examine the periodicity of the lattice itself. This line of reasoning can be
extended to lattices that experience periodic time modulations. In this context,
we will delve into the details of such eigenmodes. The motivation is that they
will be useful to describe the photonic lattices at the core of this work. We start
our discussion with the Floquet and Bloch theorems, we will shed light on the
behavior of states in periodic systems across both time and space. Subsequently, we
investigate in the next section periodic driving for Floquet systems and quantum
walks, emphasizing unique characteristics such as anomalous topological phases.

1.1.2.1 Bloch Theorem

In 1928, Lyapunov [56] and F. Bloch [57] came up with the "Bloch theorem" for
systems with spatial periodicity, it describes the behavior of electrons in a crystal
lattice with periodic potential energy by decomposing the wave function ψ(⃗k, r⃗)
of electrons into a plane wave term ei⃗k⃗r and a spatial periodic function ϕ(⃗k, r⃗) as
represented by equation. 1.1, such that ϕ(⃗k, r⃗+ a⃗) = ϕ(⃗k, r⃗), with a⃗ being the spatial
period of the crystal lattice, k⃗ is the quasimomentum, which is defined in terms of
modulo 2π and r⃗ is the position vector

ψ(⃗k, r⃗) = ei⃗k⃗rϕ(⃗k, r⃗) (1.1)

Using the Bloch theorem to solve the Schrödinger equation in a periodic lattice
reveals the allowed energy levels and corresponding electronic states.

1 Soliton: a localized wave that travels without changing shape and speed while traveling through a
medium due to a balance between nonlinearity and dispersion in the medium.
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1.1.2.2 Floquet theorem

In 1883, G. Floquet discovered the "Floquet theorem" [58], which was further
shaped by G. Hill [59]. Floquet theory deals with differential equations whose
coefficients are periodic functions of time. For instance, let’s consider a physical
system described by a time-periodic Hamiltonian H(t) with a period T, such that
H(t + T) = H(t). As time progresses from t0 → t, the system evolves, as described
by the evolution operator U(t0 → t) from an initial state, denoted as |ψ(t0)⟩, into a
new state given by |ψ(t)⟩, such that |ψ(t)⟩ = U(t0 → t)|ψ(t0)⟩, which satisfies the
Schrödinger equation. 1.2.

i
∂

∂t
|ψ(t)⟩ = H(t)|ψ(t)⟩ (1.2)

The solutions to such periodic differential equations can be decomposed into a
phase factor eiEt (with E being the quasienergy, which is defined in terms of mod-
ulo 2π) and a periodic function |ϕ(t)⟩ with a period T such that: |ϕ(t + T)⟩ =

|ϕ(t)⟩, as represented by equation. 1.3:

|ψ(t)⟩ = eiEt |ϕ(t)⟩ (1.3)

One can view the Floquet theorem as the temporal counterpart of the Bloch the-
orem. Substituting this solution back into the Schrödinger equation, we find the
time-dependent eigenvalue equation.

− (H(t)− i
∂

∂t
)|ϕ(t)⟩ = E|ϕ(t)⟩ (1.4)

1.1.2.3 Floquet-Bloch Theorem

Blending the two previous theorems together, the Floquet-Bloch theorem was
born [60], it describes systems that exhibit a double periodicity, in space (period of
a⃗) and in time (period of T). Thus, the Floquet-Bloch theorem deals with Hamilto-
nians periodic in both space and time and satisfies the following:{

H(⃗r + a⃗, t) = H(⃗r, t)

H(⃗r, t + T) = H(⃗r, t)
(1.5)

The Schrödinger equation in its time-dependent form for a wavefunction |ψ(⃗r, t)⟩
is given by:

i
∂

∂t
|ψ(⃗r, t)⟩ = H(⃗r, t)|ψ(⃗r, t)⟩ (1.6)

The solutions to the Schrödinger equation for such systems can be written as:

ψ(⃗k, r⃗, t) = ei⃗k⃗reiEtϕ(⃗k, r⃗, t) (1.7)
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Where k⃗ & E being the quasimomentum and the quasienergy respectively, both
of which are defined in terms of modulo 2π and ϕ(⃗k, r⃗, t) being periodic both in
space and time. As we will see later, the Floquet-Bloch theorem, which is perfectly
suited for our time and space periodic system, identifies the system’s eigenstates.

1.1.3 Topological system

Quantum Hall Effect

Current (I)

Voltmeter

- - - - - -

+ + + + + +

Magnetic field (B)

(a) (c)

éééééé

1 Hole0 Hole

Phase I Phase II

(b) Interface State

Phase Transition (Gap closing)

Phase IIPhase I

C =0

C =0

C =+1

C = -1

+ +

--

E

Figure 1.3: (a) Mathematical examples showcasing that various objects are considered to
be in the same topological phase if they share the same topological invariant
(in this example, the number of holes). (b) Topological phase transition gives
rise to an interface state between two distinct topological phases (phase I and
phase II). The transition occurs by continuously deforming the band structure,
which causes energy gaps to close and reopen into a new topological region
distinguished by unique bulk topological invariants (the Chern number C). (c)
Quantum Hall effect, showcases the localization of electrons at the boundary
of the material when a strong magnetic field is applied, thus forming unique
electronic edge states. [61–63]

Topology is a mathematical discipline that emphasizes a space’s connectivity
rather than its geometric form. It is characterized by topological invariants, which
are properties that persist even under continuous deformations [2]. Different ob-
jects are considered to be in the same topological phase and thus topologically
identical if they share the same topological invariant. For example, a yellow sphere
and the surface of a white spoon do not have any holes, they are topologically equi-
valent. Similarly, despite their distinct shapes, the surface of a donut and a teacup
are topologically equivalent, they can be reshaped into each other through continu-
ous deformation without altering their fundamental property, which in this case, is
the number of holes, as illustrated in Fig. 1.3.a. We can apply a similar description
to the structure of eigenmodes forming an electronic band in a solid. This structure
can be described by a topological invariant, which we will introduce later. When
the solid is continuously deformed, the eigenmodes change but the topological
invariant is preserved as long as the gap between the considered band and the
nearest one remains open.

Figure. 1.3.b illustrates a topological phase transitions between two distinct to-
pological phases (trivial and non-trivial) give rise to interface states. To accomplish
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this transition, the band structure is continually deformed, which causes energy
gaps to close and reopen into a new topological region marked by different bulk
topological invariants (Chern number C).

In the field of physics, topological photonics enables a robust unidirectional
propagation of light. This feature draws inspiration from condensed matter, ma-
terials science, and topological insulators [3–5, 64]. Systems with topological prop-
erties provide a framework for understanding new phases of matter that exhibit
unique properties with a large number of practical applications [65–69]. A prime
example of this is the quantum Hall effect [6] in condensed matter, observed in
two-dimensional electron systems subjected to strong magnetic fields, where elec-
trons become confined and travel robustly along the material’s edges rather than
the bulk, forming unique electronic edge states, as shown in Fig. 1.3.c.

One characteristic of edge states is their ability to persist without back scattering
or dissipation, even in the presence of disorder and significant impurities. This is
ensured by the two-dimensional bulk topological invariant (the Chern number
Cn) that offers insights into the overall topological properties of a specific band
structure n.

Cn =
1

2π

∫
BZ

∇k⃗ × A(⃗k)n d⃗kx d⃗ky. (1.8)

The Chern number Cn is obtained by executing an integration of the Berry
curvature denoted as ∇k⃗ × A(⃗k)n, with ∇k⃗ being the gradient operator in k-space

and
∣∣∣ψn (⃗k, t)

〉
the Bloch eigenmodes, over the complete Brillouin zone (BZ). The

Berry curvature [70] is a geometrical property of the band structure, it is ob-
tained by taking the curl of the Berry connection and provides insights into the
topological properties of the system. The Berry connection is given by A(⃗k)n =

⟨ψn (⃗k, t)|i∇k⃗|ψn (⃗k, t)⟩, it’s a vector field that describes how the quantum state’s
phase evolves with respect to parameter variations. The Brillouin zone is a fun-
damental concept in solid-state physics, particularly for analyzing the electronic
properties of periodic materials like crystals [71, 72]. It is defined as a uniquely
primitive cell in the reciprocal space, containing all the possible wavevectors k⃗ that
describe the allowed electronic states in a periodic structure. In static lattices, the
Chern number of a band dictates the number of edge states traversing the gap
when an interface is considered.

1.1.3.1 Periodically Driven System

In addition, the extension to the realm of non-equilibrium or dissipative sys-
tems has increased the variety of topological phases and their possible uses [73].
A fascinating and fruitful example of this are Floquet topological phases [74–76].
They appear in systems with enriched topology due to the coupling to an external
driving field that is periodic in time. In contrast to static systems (Hamiltonian
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Figure 1.4: External frequency driving. (a) Adiabatic regime occurs when the external
driving energy h̄Ω is significantly lower than the coupling energy between
the waveguides J, such that (h̄Ω ≪ J), where h̄ is the Planck constant and
Ω is the driving frequency. Changes within the system occurs gradually, allow-
ing it to adjust internally while maintaining its equilibrium state. (b) The fre-
quency of the external driving approaches proximity to the coupling frequency
(h̄Ω ≈ J), and there is a small energy gap between the periodic quasienergies.
Consequently, these bands interact with each other. (c) High-frequency regime
when external driving dominates the system energy (h̄Ω ≫ J), a notable energy
gap between the periodic quasienergies. This gap is substantial enough that the
repeated bands remain separated by an energy equivalent to the driving field
(h̄Ω), consequently, these bands do not interact or exert influence on each other.

is independent of time) where the zero bulk topological invariant links to the
trivial phase with no edge state. Periodically driven lattices exhibit a spectrum of
modes that are both periodic in space and quasienergy, with a period of 2π/T. This
phenomenon introduces intriguing characteristics, like the presence of anomalous
topological phases. This feature opens the possibility of having bands with topolo-
gical Chiral (unidirectional) edge states traversing a specific energy gap (µ) even
while exhibiting trivial Chern indices (C = 0) [77]. Since their discovery, Floquet
anomalous topological phases have been realized in one-dimensional discrete step
walks [11–14] and in two-dimensional photonic lattices with continuous time evol-
ution [15, 16]. However, the absence of spectral information in these systems has
prevented both the identification of the gap in which the anomalous edge modes
are present and access to the bulk topological invariants.

1.1.3.2 Externally Driven Static System

Let us first consider static systems, for our purposes a static system can be
driven by external energy in time with an energy of the external drive h̄Ω sig-
nificantly lower than the coupling energy between the waveguides J of the sys-
tem (h̄Ω ≪ J), where h̄ is the Planck constant and Ω is the driving frequency.
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In this case, changes within the system occur gradually, allowing it to adjust in-
ternally while maintaining its equilibrium state. This condition is often referred to
as the adiabatic case [78]. In this context, the dispersion bands within the system
demonstrate a unique pattern, lacking any repetitive periodicity (see Fig. 1.4.a).
An example of this is the Thouless charge pump [79, 80], which describes a pro-
cess where an integer amount of charge is transported across a system during one
period of an adiabatic (slowly changing) cycle.

Recently, both Floquet systems and quantum walks have attracted increasing
interest due to the topological phenomena. Floquet systems are characterized by
periodic time-dependent Hamiltonians H(⃗k, t + T) = H(⃗k, t), where T denotes the
period of one cycle, undergoes continuous time evolution, The corresponding one-
cycle time-evolution operator known as the Floquet operator associated with a

time-dependent Hamiltonian is given by: UF (⃗k, t0 → T) = τe−i/h̄
∫ T

t0
dt H(⃗k,t), where

τ denotes time ordering. In contrast, split-step walk systems, commonly referred to
as quantum walks, are characterized by the discrete-time evolution of unitary oper-
ators Uj (⃗k) that describe their dynamics rather than a time-dependent Hamiltonian.
In this context, the one-cycle time evolution operator UQW is delineated by the se-
quential multiplication of unitary operators Uj (⃗k) such that UQW (⃗k) = ∏j Uj (⃗k).
Furthermore, any Floquet operator UF can be interpreted as a quantum walk op-
erator UQW [10].

1.1.3.3 Floquet-driven systems

Two distinct cases for Floquet-driven systems (where the Hamiltonian is time-
dependent) arise regarding the dynamics of external driving. First of all, in the
high-frequency regime where the driving is smooth and continuous, the coup-
ling energy between the waveguides J is lower than the energy of the external
driving h̄Ω such as (h̄Ω ≫ J). An example of such a scenario is demonstrated
in the work of M. Rechtsman et al. on a two-dimensional array of waveguides
forming a honeycomb lattice [81]. In the high-frequency regime, a notable energy
gap exists between the periodic quasienergies. This gap is substantial enough that
the repeated bands remain separated by an energy equivalent to the driving field
(h̄Ω). Consequently, these bands do not interact or exert influence on each other
(see Fig. 1.4.c). A stroboscopic effective Hamiltonian can describe the system. Ad-
ditionally, the primary effect of the drive is that it enables the effective Hamilto-
nian to incorporate magnetic and electric fields that were absent in the original
Hamiltonian. This allows photons to be engineered within the effective Hamilto-
nian framework, mimicking the behavior of charged particles under the influence
of electric and magnetic forces. For every band, the topological description of its
two-dimensional band structure is determined by the Chern number.

Secondly, when the frequency of the external driving approaches proximity to
the coupling frequency (h̄Ω ≈ J), the periodic quasienergies are separated by a
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small gap g0 and gπ at energy level 0 and 2π respectively, leading to an interac-
tion between these bands (see Fig. 1.4.b). The system can no longer be accurately
described by an effective Hamiltonian and stroboscopic dynamics alone prove in-
adequate, necessitating explicit consideration of the evolution dynamics within a
single driving period, referred to as micromotion. In this regime, the topology of
Floquet systems becomes fundamentally different from that of static ones, and one
can find anomalous topological phases with chiral edge states in systems with
topologically trivial bands [11, 82–92]. Micromotion plays a significant role in the
system’s dynamics [42, 93]. These lattices can exist in one dimension [42, 94, 95], or
in two dimensions [15, 16], as exemplified by the research of Rudner et al. [96]. The
latter shows that it is possible to generate anomalous Floquet topological phases
[11, 82–93]. Interestingly, in these cases, the Chern number no longer describes the
topological system. Instead, it is defined by another topological invariant known as
the winding number (W) [4] that determines the number of Floquet edge modes.

W[U] =
1

8π2

∫ T

0

∫
BZ

dtd⃗kxd⃗ky × Tr(U−1∂tU[U−1∂⃗kx
U, U−1∂⃗ky

U]) (1.9)

The winding number denoted as W[U] it is fundamentally different from the
Chern number. It is dependent on the complete time evolution throughout the
driving cycle, as dictated by the unitary evolution operator U(t).

1.1.3.4 Floquet discrete-step systems

Anomalous phases have also been found in systems with a discrete-step time
evolution, known as quantum walks [11–16, 97]. One of their particular features is
the absence of an intrinsic time coordinate due to their discrete time evolution. This
implies that the topological characterization of Floquet phases with a Hamiltonian
description, which requires an explicit time-coordinate [83, 85], is not suitable for
quantum walks. Recent theory works have shown [98–100] that quantum walks
result in a richer topological phase diagram due to their discrete time evolution,
and that in two-dimensional lattices subjected to discrete splitting events, the num-
ber of edge states cannot be solely explained by the bulk invariants of the lattice
(i.e., the Chern number and the Floquet winding number), as would be the case
in static lattices or lattices subject to smooth modulations. Instead, the number of
edge states is also influenced by a topological invariant associated with the wind-
ing of the discrete-step unitary operators acting at the lattice edges, a phenomenon
referred to as "Extrinsic topology" [10]. The total number of edge states within a
given gap is given by: N = C + νEdge, where C represents the Chern number of
the band below the gap, and νedge defined in equation. 1.10 denotes the winding
of the edge unitary operator Uedge.

νedge =
1

2π

∫ 2π

0
dφ Tr[Uedge(φ)−1i∂φUedge(φ)]. (1.10)
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Experimentally, Floquet topological phases in discrete step walks have been
realized in photonic lattices [11–16, 88, 101, 102]. However, the characterization
of anomalous phases in these experimental systems has been constrained either to
chiral symmetric lattices in one-dimension [11–14] or to two-dimensional lattices in
the limit of a continuous time evolution [15, 16] employing the invariants discussed
by Rudner and co-workers [83, 85], which do not take into account the crucial
discrete-step aspect of the time evolution.

Our objective is to uncover the bulk and edge properties to topologically charac-
terize the anomalous phases in a two-dimensional synthetic discrete-step photonic
lattice. In the following sections, we introduce the conceptual model of our double-
ring system.

1.2 Introduction to the double ring photonic lattice

As we proceed, our discussion will follow the evolution of random walk from
the Galton board to the double-ring synthetic photonic lattice. We will explore
how temporal multiplexing and coupled rings form a photonic lattice, allowing
light to evolve discretely in both time and space. Employing numerical simulations
and mathematical models, our exploration will focus on studying the dynamics of
light in the double-ring configuration. Our first objective will be to obtain the
eigenvalues and eigenvectors through the analysis of impulse responses.

1.2.1 Discrete-step walk platforms overview

Back in 1894, Francis Galton proposed the "Bean Machine" to demonstrate the
principles of probability and the normal distribution [103, 104]. This machine con-
sists of a vertical board with a series of regularly spaced obstacles. At the top of
the board, particles are released one by one. As they descend through each level
of the board, they are randomly deflected left or right by the obstacles until they
eventually settle into one of several slots at the bottom of the board, following
a binomial distribution, refer to Fig. 1.5.a. The unpredictable stochastic bouncing
motion, either left or right, encountered at each obstacle demonstrates the Galton
board as a prime model of a random walk [104, 105]

In 1999, a novel optical implementation of the Galton board, known as the
‘Pyramid of Beam Splitters’, was proposed by Bouwmeester and co-workers [106].
The innovative setup substitutes the solid obstacles of the Galton board with 50/50
optical beam splitters and the walker with a laser beam (refer to Fig. 1.5.b). At each
beam splitter, the optical beam splits into two counterparts of equal amplitude: the
transmitted and reflected parts, where the phase of the reflected field is shifted
by π

2 , and the output amplitudes of the electrical field of a single 50/50 beam
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(a) (b) (c)

Figure 1.5: (a) The Galton Board [103] demonstrates the normal distribution as particles
deflect left or right while descending past obstacles into slots. (b) Bouwmeester
et al. [106] suggest an optical Galton board, substituting the particles with a
laser beam and the obstacles with 50/50 beam splitter cubes. (c) The output
amplitudes of the electrical field A′ and B′ of a single 50/50 beam splitter
resulting from the combination of the two input amplitudes field A and B.[107]

splitter A′ and B′ are given by two coupled linear equations. 1.11 resulting from
the combination of the two input amplitude fields A and B (see Fig. 1.5.c) [107].(

A′

B′

)
=

1√
2

(
1 i

i 1

)(
A

B

)
(1.11)

As a result, the accumulated phase shifts at each reflection, along with the res-
ultant interference pattern, play a crucial role in describing the evolution of the
optical field and shaping its propagation. This phenomenon is commonly referred
to as a ‘Light Walk’ distribution [104, 107, 108]. The numerous components needed
for a spaced-apart pyramid of beam splitters make it difficult to maintain a stable
path length between couplers, crucial for preserving coherence and visibility of
interference patterns [109]. This requires active interferometric stabilization, signi-
ficantly raising experimental complexity [110]. Andreas Schreiber and Christine
Silberhorn’s team proposed that employing a time multiplexing method is crucial
for overcoming the requirement for numerous components, but it also ensures con-
stant system stability against external noise [111, 112]. Their experimental quantum
optical version serves as a reliable platform for both one dimensions [112, 113] and
even two spatial dimensions [114].

1.2.2 Conceptual model of the double ring

In line with the concept of time multiplexing [113], Ulf Peschel’s team originally
developed the double-ring synthetic configuration in 2011, which serves as a sim-
plified version of the pyramid beam model and forms the basis of our study [115].
This configuration primarily consists of three main components: a long-ring optical
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Figure 1.6: (a) A simplified pyramid beam model consists mainly of a 50/50 coupled
fiber and two rings: ring α (in blue), which is longer than ring β (in pink) by
a length difference of ∆L. (a) to (e) Illustrate the evolution of light dynamics
in the double-ring setup. (a) The injected light in the long loop splits into two
smaller pulses with equal amplitude within each ring once it reaches the 50/50
fiber coupler. (b) These pulses traverse their respective loops until they reach
the beam splitter again at different moments due to the length differential ∆L,
(c) where they split once more into two smaller pulses with equal amplitude
within each ring. This cyclical process continues, generating multiple pulses
with consistent time intervals during each round trip. Occasionally, pulses ar-
riving simultaneously from the different loops at the beam splitter, as shown
with a dashed line in (d) will undergo constructive interference in one ring
while being destructive interference in the second one and vice versa (e).

fiber called α with a length Lα, a short-ring optical fiber called β with a length Lβ,
and a 50/50 beam splitter. The beam splitter connects the short loop (β) to the long
one (α) as indicated by different colors in Fig. 1.6.a, thus significantly reducing the
required components. The term "synthetic" implies two key concepts. The first one
is the use of multiple fictitious beam splitters, while in reality, only one single fiber
coupler is employed to reconstruct the entire pyramid of beam splitters. The op-
erational principle involves using pulsed signals instead of continuous waves and
employing a single fiber coupler for the entire pyramid of beam splitters. This is
achieved by connecting the input fibers of a two-by-two 50/50 fiber coupler to the
output fiber ports through two optical fibers of different lengths. The second no-
tion, rearranging the pulse time from a time dimension to a spatial one, the setup
maintains a small length difference ∆L between the loops, such that ∆L = Lα − Lβ,
which provided the foundation for time multiplexing [115, 116] and caused pulses
to shift spatially, corresponding to left or right movements with temporal delays
[107], representing optical round trips in shorter or longer loops, as we will see
now.

Let’s begin by examining the overall pulse dynamics within the double-ring con-
figuration. Initially, a pulse injected into the α ring divides into two smaller pulses
with equal amplitude within each ring once it reaches the 50/50 fiber coupler,
as depicted in Fig. 1.6.a. These pulses journey through their respective loops until
they reunite at the beam splitter at different moments due to the length differential
∆L between the two rings. The pulse in the shorter loop reaches the beam splitter
first. Meanwhile, the pulse in the longer loop is relatively delayed by a distance of
∆L with respect to the pulse in the shorter loop, as illustrated in Fig. 1.6.b. Once
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Figure 1.7: (a) Numerical simulation illustrating the temporal evolution of intensity as a
function of time in the long (short) ring, represented in blue (pink). (b) Zoom
on the first 4 turns of the signal.

again, each of the pulses within each ring split into two smaller pulses, illustrated
in Fig. 1.6.c. Consequently, this continuous cyclic process generates multiple pulses
with consistent time intervals during each round trip (red double arrows). Eventu-
ally, when pulses from different loops arrive simultaneously at the beam splitter,
as indicated by a dashed line in Fig. 1.6.d, they undergo constructive interference
in one ring while experiencing destructive interference in the other, as denoted by
Fig. 1.6.e.

In the double-ring setup, the dynamics of light progress discretely, as splitting
occurs only at specific time intervals when pulses reach the fiber coupler. This
characteristic makes our system periodic in time. Furthermore, due to the length
difference in the loops, the adjacent pulses within the same round trip in each
ring are consistently temporally separated, leading to their detection at specific
physical times [117]. We assign an integer number to each pulse to represent a
particular time coordinate, which can be equated to a position in space. This ap-
proach makes our system spatially periodic. For a better understanding of this
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concept, we present in Fig. 1.7.a a numerical simulation of the temporal response
of the double ring system for the case of a 50/50 beam splitter, illustrating the dis-
tribution of signal intensity as a function of time at the output of the long (short)
ring, represented in blue (pink).

Figure. 1.7.b provides a closer look at the initial four round trips within each of
the rings from Fig. 1.7.a that allows us to notice several aspects. Initially, a narrow
pulse with a temporal width of τ is introduced in the α ring at round trip m = 0
and position site n = 0. Upon reaching the 50/50 coupler, this pulse splits into
two diminished pulses, each with half the intensity of the original. One of these
pulses is found in the short ring β at round trip time m = 1 and position n = −1,
indicating that it is detected one site earlier than the original pulse. Conversely,
the other pulse travels in the longer ring α at round trip time m = 1 and position
n = +1, signifying a one-site delay compared to the original pulse. The length
difference ∆L between the two rings causes pulses in the long ring to be detected
later than the short one. As a direct consequence, the spatial expansion on the
horizontal axis (n) is increased by a positive step of (+1) to the right for the long
ring α and a negative step of (-1) to the left for the reduced ring β. As a result, the
length difference between the two loops ∆L causes a spatial separation of two site
positions n, every round trip m. Alongside this, interference can take place when
pulses from both rings reunite the fiber coupler at the same time. For instance, in
Fig. 1.7.b at the third round trip m = 3, constructive interference occurs at site
n = 1 in the long ring α. Conversely, destructive interference happens in the short
ring β at site n = −1.

The average time of one period is T = L/v, with L representing the average
length of the rings, L = (Lα + Lβ)/2 and v is the speed of light in the optical fiber.
In addition, for a specific round trip (m), the adjacent pulses in the same sequence
are separated by a time interval ∆T = ∆L/v which corresponds to the duration
associated with the difference in length between the two optical fiber loops. Also,
if the number of pulses per round trip exceeds the maximum number of pulses
nmax, such that nmax = T/(∆T/2) with ∆T/2 the duration of a single site position,
each of the two loops are fully filled with pulses, a situation that we aim to avoid in
practice. To observe sequences of separated pulses clearly and avoid any overlap,
the duration width of each pulse must be smaller than one single site position
(τ < ∆T

2 ).

By cutting the signal of Fig. 1.7.a into equal durations of T and superimposing
these signal samples on top of each other, we obtain the spatiotemporal diagram
represented in Fig. 1.8.a that describes the progression of light from one turn to
another as a function of position n (a numerical simulation will be presented in the
next section for better clarification). In the spatiotemporal diagram, the light’s be-
havior from turn to turn is impacted by the length differences of the rings, leading
to an interference pattern that shapes the propagation of the field into an inver-
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Figure 1.8: (a) A spatiotemporal diagram of synthetic photonic lattices illustrates the pro-
gression of light from one turn to another. This progression is impacted by dif-
ferences in length ∆L, leading to an interference pattern that shapes the light’s
propagation into an inverted pyramid pattern. Blue (pink) arrows represent the
rings α (β), respectively, while rectangle nodes depict the fiber couplers. (b)
Synthetic split step lattice.

ted pyramid pattern, whereas the blue (pink) arrows represent the long (short)
ring while the connection nodes are symbolized by white rectangles representing
the fiber coupler that connects the two rings. Moreover, the inverted pyramid in
Fig. 1.8.a exhibits a slight tilt. This is because the right (left) edge of the pyramid, in
line with the blue (pink) arrows, represents the light propagation exclusively in the
long (short) ring. Thus, the light propagating along the left border of the pyramid
does not travel the same distance compared to that on the right, and eliminates the
possibility of interference patterns at the couplers situated on the pyramid’s edge.

Figure. 1.8.b represents the corresponding synthetic photonic lattices of the sys-
tem which is spanned by the discrete time m and position n. To simplify and
more effectively illustrate the mesh lattice, all of its paths are shown with the same
length. The splitting process occurs discretely at the beam splitter during each
round trip, emphasizing the periodic nature in time. However, one Floquet period
TF corresponds to the complete light propagation in both the long and short rings,
effectively comprising two round trips, one in α and one in β.

As illustrated in Fig. 1.8.b, the two sublattices sites, depicted in blue (pink)
corresponding to the complex amplitudes αm

n (βm
n ) for a specific round trip m and

position n, return to the same site position after two-time steps. Similarly, the
spatial periodicity is highlighted by the time-multiplexing of pulses, which are
consistently temporally separated due to the length difference between the rings.
At a specific round trip, the two sublattices manifest by a spatial periodicity every
two site positions. Thus, our system exhibits dual periodicity in both time and
space, with a period corresponding to two round trips in time m → m + 2 and two
site positions in space n → n + 2. This defines the unit cell, which is delineated by
a dashed red line.
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1.2.3 Evolution equation and band structure

1.2.3.1 Evolution equation

The amplitude and phase dynamics of light pulses in the rings can be represen-
ted as a coherent step evolution in the one-dimensional synthetic lattice depicted
in Fig. 1.8.b. The evolution of the field is governed by two coupled linear equa-
tions. 1.12 discretized in position (n) and time (m) [115]. Here, (n) denotes the
position along the horizontal axis, representing a specific physical time, while (m)

indicates the vertical time axis, signifying the number of round trips in the loops.
αm+1

n =
1√
2

(
αm

n−1 + iβm
n−1
)

βm+1
n =

1√
2

(
iαm

n+1 + βm
n+1
) (1.12)

Equations. 1.12 show that the output complex amplitudes of the wavefield αm+1
n

and βm+1
n in the left and right rings, respectively, at time step (m + 1) at lattice

site (n) result from a linear combination of the transmitted and reflected input
amplitude fields at round trip (m). The imaginary factor (i) denotes the phase
shift of the reflected field at the fiber coupler by π

2 , and the term 1√
2

describes the
amplitude splitting angle of the transmitted and reflected fields of the 50/50 fiber
coupler.

1.2.3.2 Spatiotemporal diagram

Throughout our research, our primary focus will be on analyzing the impulse
response of the photonic lattice by injecting a short pulse smaller than the size of
a single site (τ < ∆T

2 ). However, it’s important to acknowledge that previous stud-
ies have investigated various phenomena, such as injecting a broad pulse [118–121].
While this aspect is undoubtedly interesting, it is not within the scope of our work.
Exploring the impulse response of our system is straightforward; we conduct nu-
merical simulations by employing equations. 1.12 and injecting a narrow pulse into
the long ring α, ensuring it satisfies the conditions specified in the equation. 1.13.{

αm=0
n=0 = 1

βm=0
n = 0 ∀n

(1.13)

In Figs. 1.9.a-b, a pyramid-like shape emerges from the dispersion of the field
evolution intensity during its propagation from one turn to another as a function
of position n, as evidenced in the spatiotemporal diagram for each ring. A gray-
scale color scheme represents the optical power of the pulses, where black signifies
maximum power and white represents zero power. In the case of the short ring β,
the intensity distribution is uniform and symmetrical with regard to a vertical axis.
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Figure 1.9: (a)-(b) Numerical simulation illustrating the photonic network’s impulse re-
sponse through the spatiotemporal intensity evolution within the short and
long loops when a short pulse is introduced to the long loop. (c)-(d) Numer-
ical simulation of the stroboscopic spatiotemporal dynamics of each ring by
selecting only even round trips with even site positions.

On the other hand, we introduced the initial condition into the α ring where
the pulses mostly follow one direction, resulting in an asymmetrical intensity dis-
tribution of pulses. As was indicated in the preceding section, the absence of inter-
ference at the pyramid’s edges explains why the light intensity distribution in the
spatiotemporal diagram is primarily localized in two main lobes along the edge of
each diagram, with several secondary maxima in between.
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The eigenmodes of our Floquet-Bloch lattice have a periodicity of two-time steps
and two sites. To study these modes, it is more convenient to consider the strobo-
scopic dynamics, rather than the amplitude of pulses at every Floquet and Bloch
period only. These are the amplitudes that will be later correctly described by the
Floquet-Bloch formalism.

Figures. 1.9.c-d presents a numerical simulation of the stroboscopic spati-
otemporal dynamics of each ring. This is achieved by keeping even time steps
(m = 0, 2, 4, · · · ) with even site positions (n = · · · , −4, −2, 0, 2, 4, 6, · · · ), while
disregarding the micromotion in between. This approach is due to the double peri-
odicity of our system, characterized by two-site spatial periodicity and two-time
step temporal periodicity. However, it is possible to select odd Floquet periods
(m = 1, 3, 5, · · · ) with odd site position (n = · · · , −3, −1, 1, 3, · · · ). The choice
of unit cell outlined with a dashed red line in Fig. 1.8.b to start with an even or
odd round trip does not affect the main properties of the system.

1.2.3.3 Eigenvector and eigenvalue

Analyzing the eigenmodes of the system described by the coupled equa-
tions. 1.12 and examining the dispersion relation are essential for interpreting the
observed behaviors. Due to the system’s double periodicity, equations. 1.12 can be
solved using the Floquet-Bloch ansatz equation. 1.14.(

αn
m

βn
m

)
=

(
α̃(k)

β̃(k)

)
ei Em

2 ei kn
2 (1.14)

The Bloch momentum k and the quasienergies E are the conjugate variables cor-
responding to spatial (n) and temporal (m) parameters, respectively. Equation. 1.14
emphasizes: first, the system’s double periodicity in both directions, with a period
of two discrete steps. This is reflected in the exponents term of the ansatz equation
by a factor of 1/2 along both E and k. Secondly, Due to the system’s periodicity,
the temporal evolution of the sublattices complex amplitudes (αn

m & βn
m) at any

stroboscopic time in real space can be expressed as a superposition of all the ei-
genmodes in reciprocal space, with α̃(k) and β̃(k) is the complex amplitude of the
eigenmodes at the sites corresponding to the α and β rings respectively.

Incorporating this formulation into equations. 1.12 allows us to derive the ana-
lytical dispersion relation characterizing light propagation within the photonic lat-
tice, as described by equation. 1.15. The system’s dispersion relation consists of
two photonic bands characterized by the eigenvalues E(k)+ and E(k)−, represent-
ing the upper and lower bands, respectively. Additionally, the normalized eigen-
vectors |ψ(k)+⟩ and |ψ(k)−⟩, corresponding to each of the eigenvalues E(k)+ and
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E(k)−, are represented by the complex amplitudes α̃ and β̃ of the two sublattices
are given by equation. 1.16 and 1.17:

E(k)± = ± cos−1[
1
2
(cos(k)− 1)] (1.15)

|ψ(k)⟩± =

(
α̃(k)

β̃(k)

)±

=
1√

1 + |R(k)±|2

(
1

|R±|eiΦ±
αβ

)
(1.16)

R(k)± = |R±|eiΦ±
αβ =

eiE(k)± + 1
2(1 − e−ik)

1
2 i[1 + e−ik]

(1.17)

Equations. 1.15, 1.16, and 1.17 are all derived from the two-step model equations
described in the Appendix. A, and correspond to the case of a photonic lattice
made with a 50/50 fiber coupler. Using equation. 1.18, the numerical dispersion
relation |β̃(k, E)|2 and |α̃(k, E)|2 presented in Fig. 1.10 for each of the loops can be
extracted by performing a two-dimensional Fourier transform analysis on both α

and β spatiotemporal diagram shown in Fig. 1.9 [17, 118].



FFT 2 [β(n, m)] = β̃(k, E) =
1

NM

N
2

∑
n=− N

2

M

∑
m=1

β(n, m)e−i2π( Kn
N + Em

M )

FFT 2 [α(n, m)] = α̃(k, E) =
1

NM

N
2

∑
n=− N

2

M

∑
m=1

α(n, m)e−i2π( Kn
N + Em

M )

(1.18)

The quantities N and M represent the number of points used in the numerical
simulation of the equation. 1.12 on the n and m axes, respectively. The resolution
of the numerical dispersion relation depends on both the number of round trips
(m) and the size of the lattice (n). Thus, the more turns the light circulates, the
smaller the linewidth of the band structure becomes in Fig. 1.10.

Figures. 1.10.a-b show dispersion relations for long and short rings, derived
from spatiotemporal diagrams of Figs. 1.9.a-b. Figures. 1.10.c-d present the corres-
ponding dispersion relations for the stroboscopic case of Figs. 1.9.c-d obtained via
a two-dimensional Fourier transform.

Analyzing Figs. 1.10.a-b, the lattice periodicity in both time (m) and space
(n) ensures that the band structure displays a double periodicity in the range
of [−π; π] along their respective conjugate variables (k) and (E). This defines our
Brillouin zone in the same range of [−π; π] in both the quasimomentum k and
quasienergy E directions, as depicted by the white dashed square.
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Figure 1.10: (a)-(b) and (c-d) Numerical dispersion relations for the long and short rings,
extracted via two-dimensional Fourier transform of their corresponding spa-
tiotemporal diagram presented in Figs. 1.9.a-b and Figs. 1.9.c-d, respectively.
The results show excellent agreement between the numerically obtained dis-
persion relations and the analytical upper (blue) and lower bands (green) of
equation. 1.15 within the Brillouin zone (dashed white square).

The two-dimensional numerical Fourier transform equation. 1.18 has a period
of (n, m) as opposed to the (n

2 , m
2 ) period of Floquet-Bloch equation. 1.14. The factor

1/2 in the exponents of the ansatz takes into account the two sites’ spatial period-
icity and the period of two-time steps in equation. 1.12. This difference causes the
numerical dispersion relation to be distributed throughout two Brillouin zones as
opposed to just one, emphasizing the importance of considering the stroboscopic
case presented in Figs. 1.10.c-d. For this reason, we will henceforth focus exclus-
ively on the stroboscopic dynamics for the remainder of this thesis.
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Figures. 1.10.c-d, highlights several insights. Firstly, it showcases a remarkable
agreement between the analytical dispersion relation in equation. 1.15 (upper band
in blue and lower band in green) and the numerically extracted one within the Bril-
louin zone with an energy gap separating the band at the energy level E = 0. The
bands are identical in form but have different curvatures, the lower band is concave
while the upper band is convex. The second derivation of the photonic band struc-
ture ∂2E(k)/∂k2 depicts the group velocity dispersion as zero at the four corners
of the Brillouin zone. This is equivalent mathematically to an inflection point (a
shift in curvature form from concave to convex or vice versa). On the second hand,
the first derivatives of the dispersion relation describe the effective group velocity,
vg = ∂E(k)/∂k. This analysis is particularly relevant when a broad Gaussian pulse
is injected into the lattice, exciting a few modes within the spectrum. The disper-
sion relation is crucial for understanding nonlinear phenomena in the photonic
lattice [17].

Secondly, the values at (k, E) = (−π, π) on the higher band coincide with the
value at (k, E) = (π,−π) on the lower band, as well as between (k, E) = (−π,−π)

and (k, E) = (π, π), because of the energy’s degeneration. Thus, there is no energy
gap at the Brillouin zone’s corners. The two bands touch at the corners of the
Brillouin zone.

Thirdly, upon introducing a narrow pulse that meets the conditions of equa-
tion. 1.13, the long and short rings exhibit distinct patterns of eigenstate excitation
in their numerical band structures. The entire short-ring energy spectrum is fully
excited symmetrically, as displayed in Fig. 1.10.d, whereas the long-ring energy
spectrum is partially excited in an asymmetrical way, as presented in Fig. 1.10.c.
Therefore, the symmetrical (asymmetry) intensity distribution observed in the spa-
tiotemporal diagram in Fig. 1.9 is directly reflected in the spectral distribution in
the band structure Fig. 1.10, as determined by the system’s eigenstates described
in equation. 1.16. The reason for this disparity is the asymmetry in the initial con-
dition, which injects light in one of the rings only.

Numerically and experimentally, the eigenstates in equation. 1.16 are estab-
lished by analyzing the power and the phase of their spectral distributions in each
ring. This methodology is further detailed in Chapter. 3. The eigenstates of a spe-
cific band structure can be described by |R(k)±| = |β̃±(k, E(k)±)|2/|α̃±(k, E(k)±)|2,
representing the ratio of amplitudes, and Φ(k)±αβ = arg(β̃±(k, E(k)±)) −
arg(α̃±(k, E(k)±)), denoting the phase difference between the two sublattice sites
associated with the eigenvector with quasimomentum k within the first Brillouin
zone. Figures. 1.11.a-b displays, respectively, the absolute value and the phase of
the amplitude ratio described in equation. 1.17, it shows a good agreement between
the analytical and numerical eigenstates corresponding to the upper band in the
case of a 50/50 fiber coupler connecting the two fiber loops. In Fig. 1.11.a A no-
ticeable asymmetry can be observed in the analytical (numerical) amplitude ratio
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Figure 1.11: Analytical (numerical) representations of (a) the amplitude ratio of the eigen-
state corresponding to the upper band, shown in red dashed (solid) lines, and
(b) the relative phase, depicted in blue (green).

|R+(k)| depicted by a red dashed (solid) line. On the other hand, the analytical
(numerical) relative phases, represented in blue (green) in Fig. 1.11.b follow a lin-
ear distribution such that Φ+

αβ(k) = k
2 . The absolute value and the phase of the

lower band’s amplitude ratio are presented in Chapter. 3.

It is vital to acknowledge that measuring the phase of the optical field over short
time scales in optical experiments is challenging but crucial for Fourier transform-
ation to obtain the dispersion relation, unlike the simulations. Later in the thesis,
we delve into how to effectively address these complexities in Chapter. 2.
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1.3 Two-dimensional synthetic photonic lattice

Building upon our comprehension of the dynamics of the double-ring system
in the one-dimensional framework presented in the previous section, we now in-
troduce the two-step and four-step models. These models provide a foundational
basis for our investigation into topological phases within a two-dimensional syn-
thetic photonic lattice. Within this model, we will examine the bulk and edge prop-
erties in later chapters. The bulk can be studied from the direct measurement of
the eigenvectors of the Floquet operator [118] and via the measurement of anomal-
ous transport [122], which give access to the Berry curvature of the Floquet bands
over the whole first Brillouin zone. The implementation of physical edges in the
setup can be done via the onsite control of the splitting angle in the step evolution.

1.3.1 Two-step model

V
B

S
 (
θ)

ΔL

L+ΔL L

α β

(a) (b)

P
M

 (φ
)

Lattice site (n) 

T
im

e 
st

ep
(m

) 
Figure 1.12: (a) Scheme of the double ring system presenting the long (short) ring in blue

(pink) arrows, coupled via a variable beamsplitter VBS (white rectangle), the
longer loop α incorporates an external phase modulator (orange rectangle). (b)
Synthetic split step lattice that spans in discrete steps along the position site
(n) and time step (m).

Building on the two-loop system introduced in Section. 1.2, let’s delve deeper
into its dynamics when a variable beam splitter and a phase modulator are incor-
porated within the loops, as shown schematically in Fig. 1.12.a.

The dynamics of the amplitude and phase of light pulses in the rings can be
mapped into a coherent step evolution in the one-dimensional synthetic lattice
depicted in Fig. 1.12.b, governed by the following equations [14, 123]:{

αm+1
n =

(
cos θmαm

n−1 + i sin θmβm
n−1
)

eiφm
n−1

βm+1
n = i sin θmαm

n+1 + cos θmβm
n+1

(1.19)
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Figure 1.13: A synthetic split-step lattice demonstrating a two-step periodic modulation
of the beam splitter’s coupling angle, alternating between θ1 and θ2, and the
phase modulator’s applied phase φ, switching between +φ and −φ at odd
and even steps, the unit cell is presented in a dashed red square.

αm
n and βm

n being the complex amplitude of the light pulses in the left and
right rings, respectively, at lattice position (n) and round trip time step (m). The
splitting amplitude angle at the variable beamsplitter is θm ∈ [0, π/2]. When θm

equals 0, the transmission term, represented by cos θm, results in a value of 1, while
the reflectance term, denoted by sin θm, reduces to 0. In this case, we witness total
transmission, and the pulses continue to propagate within the same loops. On the
other hand, when θm equals π/2, we observe total reflectance. In this scenario,
the pulse alternates between the two rings without any splitting. Finally, when
θm equals π/4, it represents the case of a 50/50 beam splitter. To get the second
synthetic dimension, a phase modulator adds a controlled phase in the form of
periodic potentials φm to the α ring with a value that alternates between two values,
φ1 = +φ and φ2 = −φ at odd and even steps.

φm
n =

φ1 = +φ ∀n if m is odd

φ2 = −φ ∀n if m is even
(1.20)

The lattice sites (n) provide a spatial dimension along which dynamics can take
place with an associated conjugated momentum k, while the external phase φ

acts as a generalized quasimomentum resulting in a second parametric dimension
(φ ∈ (−π, π]).

Alternating the coupling angle θ between two values, θ1 and θ2, and the phase
modulator between φ1 = +φ and φ2 = −φ at odd and even steps, the system
exhibits a spatial periodicity of two sites and a time-step periodicity of two steps,
as shown by the red dashed unit cell in Fig. 1.13. The lattice system has two sublat-
tices corresponding to the α and β rings (blue and purple circles) in Fig. 1.12.b and
a Floquet period of two-time steps. Substituting the Floquet-Bloch ansatz equa-
tion. 1.14 into equation. 1.19, we obtain the general formula for the eigenvalues of
the two bands as a function of k and, φ as described in equation. 1.21. Detailed
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Figure 1.14: 3D view of the two-dimensional analytical dispersion relation of equa-
tion. 1.21 for φ ∈ [−π π], φ1 = +φ, φ2 = −φ and θ1 = θ2 = π/4.
(a) Perspective view at a 12◦, with slices highlighting specific values of
φ(−π,−π/2, 0, π/2, π) in the (k, E) plane. A projection of these slices is
shown on the left. (b)-(c) Perspective views at 7◦ and 0◦ angles, respectively.

calculations can be found in Appendix. A. I present the general dispersion relation
of the two-step model as a function of φ1 and φ2, irrespective of their opposite
signs. This is crucial for the engineering of edge states, as will be discussed in the
later chapters.

E±(k, φ1, φ2, θ1, θ2) = ± cos−1[ cos θ2 cos θ1 cos
(

φ1 + φ2

2
− k
)

− sin θ2 sin θ1 cos
(

φ1 − φ2

2

)
] +

φ1 + φ2

2
(1.21)

The evolution of the two-dimensional analytical dispersion relations of equa-
tion. 1.21 for φ ∈ [−π π], φ1 = +φ, φ2 = −φ and θ1 = θ2 = π/4 is illustrated
in Fig. 1.14.a in 3D at a viewing angle of 12◦ with a period of 2π along (E, K, φ),
one of the dimensions displays real space dynamics k, and the other one is a
parametric dimension defined by an external phase modulator φ. Specific values
φ(−π,−π/2, 0, π/2, π) are represented by slices through the (k, E) plane. A pro-
jection of these slices is shown on the left side of the figure. Figures. 1.14.b-c depict
the same dispersion relations from different viewing angles of 7◦ and 0◦, respect-
ively.

1.3.1.1 Phase modulator effect

Figure. 1.15 illustrates numerical simulation of the stroboscopic spatiotemporal
diagrams for various φ values in the context of a 50/50 beam splitter (θ1 = θ2 =

π/4), by employing equations. 1.19 and introducing a narrow pulse into the long
ring α at round trip m = 0 at site n = 0 that satisfies the conditions specified in
equation. 1.13. Figures. 1.15.a-c depict the scenarios for φ = 0, φ = π/2, and φ = π,
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(a) (b) (c)

(d) (e) (f)

Figure 1.15: (a-c) Numerical simulation depicting stroboscopic spatiotemporal diagrams
for phase values of φ(0, π/2, π) for the case of a 50/50 beam splitter. (d-f)
Alongside each diagram (a-c), the respective numerical and analytical (blue
and green) dispersion relations of equation. 1.21 are presented in the first
Floquet Brillouin zone.

respectively. Underneath each diagram, the respective numerical and analytical
dispersion relations are also presented in the first Floquet Brillouin zone.

Examining the spatiotemporal diagrams located in the left column of Fig. 1.15,
Figure. 1.15.b compares the pulse movement within the short ring when a phase
modulation of φ = π/2 is applied versus the φ = 0 case depicted in Fig. 1.15.a. A
noticeable reconfiguration of intensity distribution is seen on the spatiotemporal
diagram, as shown in the zoom of Fig. 1.15.a and Fig. 1.15.b. There is a reduction in
the spatial dispersion of pulses in the lattice when compared to the red line. The
latter signifies the maximum pulse expansion in the pyramid pattern. However,
comparing the spatial distribution of the case φ = π depicted in Fig. 1.15.c to the
φ = 0 scenario, they appear identical.

In the lower row of Fig. 1.15, we can follow the gradual deformation of
the bands as the phase modulation parameter φ varies. Notably, the analytical
photonic band structure in equation. 1.21 for the upper and lower bands presented
in blue and green, respectively, exhibits good agreement with the numerical sim-
ulations within the first Brillouin zone. Figure. 1.15.d depicts the band structure
within the first Brillouin zone for the previously discussed 50/50 case with φ = 0
in Section. 1.2.3. Notably, the two photonic bands exhibit a gap centered at energy
E = 0, signifying the forbidden energy range for light propagation. However, at
the Brillouin zone edges (k = ±π), the bands become degenerate, implying that
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the upper and lower bands coincide at the four corners of the Brillouin zone. Fig-
ure. 1.15.e highlights that by modulating φ from 0 to π/2, the two bands no longer
exhibit degeneracy at k = ±π, thus eliminating any points of contact. As a result,
a new forbidden energy band forms around E = ±π.

As the phase modulation value increases and reaches φ = π, the two bands
gradually approach each other until they intersect at the center of the Brillouin
zone (k = 0). At this point, the energy gap at E = 0 closes, while the gap at E = ±π

widens, resembling the Dirac cones commonly found in two-dimensional lattices
[124]. Despite the identical intensity distribution in the spatiotemporal diagrams
for φ = 0 and φ = π shown in Fig. 1.15.a and Fig. 1.15.c, the respective numerical
and analytical dispersion relations are different, as illustrated in Fig. 1.15.d and
Fig. 1.15.f. The disparity is caused by alternating the additional phase incorporated
within the long ring at each time step.

Periodic phase modulation introduces significant alterations to the structure of
photonic bands. This technique enables the exploration of novel photonic band con-
figurations and the generation of edge states, as we will discuss later. The phase
modulator with periodic modulation +φ and −φ can be seen as a way of modi-
fying the one-dimensional bands, as illustrated in Fig. 1.15. It can also be seen as
a parametric dimension in a two-dimensional model, with a two-dimensional Bril-
louin zone, as displayed in Fig. 1.14. We will focus our description on this second
approach, as it will allow us to explore two-dimensional topological properties.

1.3.1.2 Coupling modulation

Manipulating the coupling angle between two values, θ1 and θ2, and the phase
modulator between +φ and −φ at odd and even steps, give rise to the two-step
model topological phase diagram. This diagram features two distinct gapped topo-
logical phases with different topological invariants, presented in white and orange,
as seen in Figs. 1.16.a-e, that we will characterize later their topological properties.
These phases are separated by black lines, which indicate the simultaneous closure
of the 0- and π-gaps. This occurs when θ1 ± θ2 = nπ, with n ∈ Z.

In phase I, a red point is pinpointed within the white region for a coupling set of
(θ1, θ2) = (0.1, 0.4)π, as depicted in Fig. 1.16.a. This coupling configuration corres-
ponds to a two-dimensional analytical dispersion relation E(k, φ)± (as a function
of φ and k perpendicular to the plane (E, φ) ) that reveals two distinct energy gaps
centered around E = 0 and E = π with φ ∈ [−π π], as seen in Fig. 1.16.f. By
smoothly tuning the coupling parameters until they reach (θ1, θ2) = (0.25, 0.25)π
(see Fig. 1.16.c), the two bands start to converge until they intersect. At this point,
both the energy gap at E = 0 and E = π close simultaneously, as depicted in
Fig. 1.16.h. Subsequently, the energy gap reopens in the orange phase. As the red
dot for a specific coupling set (θ1, θ2) deviates further from the black line repres-
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Phase IIPhase II

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Phase I

Figure 1.16: (a-e) Two-step model topological phase diagram, showcasing different sets
of coupling angles (θ1, θ2). It highlights a topological phase transitions from
a gapped topological Phase I (in white) to another distinct Phase II (in or-
ange) by gradually altering the splitting angle. (f-j) The corresponding two-
dimensional analytical dispersion relations as a function of φ for each set of
the splitting angles (θ1, θ2) of panels (a-e). The transition occurs through the
closing and reopening of an energy gap.

enting the boundary between the two regions toward phase II, the band structure
progressively flattens, leading to an increase in the energy gap, as demonstrated
in Fig. 1.16.j.

Analogous to periodic phase modulation, adjusting the coupling parameter of
the variable beam splitter modifies the photonic band structure. This method al-
lows for transitions between different topological phases and the creation of edge
and interface states, as discussed in later chapters.

1.3.1.3 Eigenstate of the two-step model

Our previous work focused on determining the eigenstate of a 50/50 beam
splitter without any phase modulator (see Section. 1.2.3), within a one-dimensional
discrete step walk system. Now, we aim to expand our exploration to the realm of
a two-dimensional synthetic photonic lattice. To do this, we start by comparing the
analytic with the numerical result of Fig. 1.17 and Fig. 1.18.

The general normalized eigenvectors formula of the two-step model |ψ+(k)⟩
and |ψ−(k)⟩, corresponding to each of the eigenvalues E+(k) and E−(k) in equa-
tion. 1.21, respectively, are represented by the complex amplitudes α̃ and β̃ of the
two sublattices in equation. 1.22:
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(a) (b) (c) (d)

Figure 1.17: (a) Numerical simulation presenting a stroboscopic spatiotemporal diagram
when a narrow pulse is introduced into the long loop α for (θ1, θ2) =
(0.2, 0.3)π and φ = 0. The solid red line describes the maximum pulse disper-
sion when θ1 = θ2 = π/4 and φ = 0. (b) Fourier transformation of panel (a)
presenting the numerical and analytical (blue and green) photonic band struc-
ture. (c) Analytical and numerical representations of the amplitude ratio |R|+
of the eigenstate corresponding to the upper band in dashed and solid red
lines, respectively. (d) Numerical and analytical demonstration of the relative
phase Φ+

αβ, depicted in blue and green, respectively.

∣∣ψ±(k)
〉
=

(
α̃(k)

β̃(k)

)±

=
1√

1 + |R±|2

(
1

|R±|eiΦ±
αβ

)
(1.22)

R(k)± = |R±|eiΦ±
αβ =

[eiE(k)± − cos θ2 cos θ1e−ikei(φ1+φ2) + sin θ2 sin θ1eiφ2 ]

[i cos θ2 sin θ1e−ikei(φ1+φ2) + i sin θ2 cos θ1eiφ2 ]
(1.23)

Figure. 1.17 shows a one-dimensional cut at φ = 0 represented by the white
dashed line in panels (b) and (c) of the two-dimensional tomography of Fig. 1.18
where φ ranges across [−π, π] for a set of splitting angles (θ1, θ2) = (0.2, 0.3)π.

Beginning with the one-dimensional scenario depicted in Fig. 1.17. After intro-
ducing a narrow pulse into the system that satisfies the condition of equation. 1.13.
Figure. 1.17.a displays a numerical simulation of the stroboscopic spatiotemporal
diagram over 100 Floquet even time steps in the long ring α, showing a reduc-
tion in the spatial dispersion of pulses in the lattice compared to the red line that
describes the maximum dispersion for the case θ1 = θ2 = π/4 and φ = 0. The cor-
responding analytical photonic band structure, highlighted in green for the lower
band and blue for the upper band, shows a strong agreement with the numer-
ical results, as seen in Fig. 1.17.b. Figures. 1.17.c-d demonstrate an excellent match
between the numerical and the analytical results for the amplitude ratio |R|+ and
the relative phase Φ+

αβ of the upper band, respectively. Clearly showing an asym-
metrical intensity distribution along the k axis in panel(c) and a phase oscillation
in panel (d).
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Figure 1.18: Comparison between the numerical simulation and the analytical results of
the upper band with (θ1, θ2) = (0.2, 0.3)π and for φ ∈ [−π, π], represented
in the first and second rows, respectively. (a, d) Illustrate the two-dimensional
dispersion relation. (b, e) Depict the two-dimensional amplitude ratio. (c, f)
Show the two-dimensional relative phase.

Figure. 1.18 characterizes the two-dimensional eigenvectors through the amp-
litude ratio |R| and the phase Φαβ. Our numerical and analytical two-dimensional
eigenvector results presented in the first and second rows of Fig. 1.18, respectively,
align perfectly. The latter is obtained by computing the tomography along φ. This
means that for each value of φ in the range of [−π, π], we extract the eigenvector
along k of a specific band (as we did in Fig. 1.17) and store these values in a mat-
rix. The two-dimensional quasienergy bands present two distinct gapped bands in
Fig. 1.18.a. The second and third panels in Fig. 1.18.b and Fig. 1.18.c display the
tomography of the eigenvectors of the upper band (indicated by a red arrow in
Fig. 1.18.a,d) via the ratio of amplitudes |R|+ in log scale and the phase difference
Φ+

αβ between the two sublattices for each point in the Brillouin zone. The values
of |R|+ present a dipole shape, with a high weight in the upper-left corner of the
Brillouin zone, and a low weight in the lower-right corner.

Having explored the two-step model in this section, we will now delve into
the four-step model, which offers a new phase diagram with richer topological
properties.
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1.3.2 Four-step model
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Figure 1.19: Four-step model. (a) Synthetic photonic lattice possesses a double-periodic
structure with a spatial period of two sites and a temporal period of four steps.
(b) Phase diagram obtained by setting the value of [θ1, θ2] = [ 4π

32 , 8π
32 ] while θ3

and θ4 in the range of [0, π/2]. White and orange regions represent different
topological phases with trivial and nontrivial Chern numbers, respectively.
The energy gap closure at the energy level 0 and π is represented by the red
and blue lines, respectively.

Much like the two-step model, the system in the four-step model possesses a
double-periodic structure with a spatial period of two sites and a temporal period
of four steps, as illustrated by the red dashed unit cell in Fig. 1.19.a. The coupling
angle and phase modulator exhibit a cyclic behavior, alternating between four dis-
tinct values during one single Floquet period. Each round trip features a unique
value, as presented in equation. 1.24, where m mod 4 gives the remainder of m
divided by 4.

φm
n =



φ1 = +φ

φ2 = −φ

φ3 = +φ

φ4 = −φ

θm
n =



θ1 ∀n if m mod 4=1

θ2 ∀n if m mod 4=2

θ3 ∀n if m mod 4=3

θ4 ∀n if m mod 4=0

(1.24)

Tuning the phase modulator between two values +φ and −φ during odd and
even time steps and setting the coupling parameter [θ1, θ2] = [4π/32, 8π/32], while
[θ3, θ4] are kept within the range of [0, π/2] as presented in the synthetic photonic
lattice in Fig. 1.19.a, allows a unique phase diagram to emerge, featuring distinct
gapped topological phases, as shown in Fig. 1.19.b. These phases are shown in
white and orange regions, corresponding to trivial and non-trivial Chern numbers,
respectively (detailed discussion in Chapter. 6). The boundaries between these re-
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gions are marked by red and blue lines, which indicate the closure of the 0-gap
and π-gap, respectively. The gaps at energy 0 and π do not necessarily close sim-
ultaneously. This behavior contrasts with the two-step model, which demonstrates
higher symmetry and features a phase diagram where phases are separated by
black lines where both gaps close simultaneously, as shown in Fig. 1.16.b.

1.3.2.1 Eigenstates and eigenvalues of the four-Step Model

The Floquet-Bloch ansatz for the four-step model, given by equation. 1.25, en-
codes both spatial and temporal periodicity in the exponent term. The terms 1/4
and 1/2 reflect the time periodicity of four round trips and the spatial periodicity
of two site positions, respectively.(

αn
m

βn
m

)
=

(
α̃(k)

β̃(k)

)
ei Em

4 ei kn
2 (1.25)

The lattice system has two sublattices corresponding to the α and β rings (blue
and purple circles in Fig. 1.19.a). By expressing the sublattice state in equation. 1.19
after one Floquet period at round trip (m+ 4) as a function of the sublattice state at
time step m and substituting the Floquet-Bloch ansatz presented in equation. 1.25,
we arrive at the general formula of the eigenvalues and eigenvectors describing
the four-step model, as presented in equations. 1.26, 1.27 and 1.28, respectively.
Detailed calculations are given in Appendix. B. To simplify the calculation, we
introduce a few abbreviations: Tm = cos θm

Rm = i sin θm


φij = φi + φj

φijz = φi + φj + φz

ϕ = ∑4
i=1 φi = φ1 + φ2 + φ3 + φ4

E±(k, φ1→4) =± cos−1[ T1T2T3T4 cos
(

2k − ϕ

2

)
+ R1R2R3R4 cos

(
φ13 −

ϕ

2

)
+ R1R3T2T4 cos

(
φ12 −

ϕ

2

)
+ R2R4T1T3 cos

(
φ14 −

ϕ

2

)
+ R1R2T3T4 cos

(
φ1 + k − ϕ

2

)
+ R2R3T1T4 cos

(
φ2 + k − ϕ

2

)
+ R3R4T1T2 cos

(
φ3 + k − ϕ

2

)
+ R1R4T2T3 cos

(
φ4 + k − ϕ

2

)
] +

ϕ

2
(1.26)

|ψ(k)⟩± =

(
α̃(k)

β̃(k)

)±

=
1√

1 + |R±|2

(
1

|R±|eiΦ±
αβ

)
(1.27)

R(k)± = |R±|eiΦ±
αβ =

eiE(k)± − A
B

(1.28)



38 double ring photonic lattice

(a) (b)

(c) (d)

Figure 1.20: (a-b) Numerical simulation showcasing the stroboscopic spatiotemporal dia-
grams for the rings α and β, respectively, within the 50/50 four-step model
when a narrow pulse is introduced in ring α. (c-d) Corresponding dispersion
relations of the rings α and β, respectively.

A = [T4T3T2T1ei(−2k+ϕ) + T4T3R2R1ei(−k+φ234) + T4R3T2R1eiφ34 + T4R3R2T1ei(−k+φ134)

+ R4T3T2R1ei(k+φ4) + R4T3R2T1eiφ14 + R4R3T2T1ei(−k+φ124) + R4R3R2R1eiφ24 ]

(1.29)

B = [T4T3T2R1ei(−2k+ϕ) + T4T3R2T1ei(−k+φ234) + T4R3T2T1eiφ34 + T4R3R2R1ei(−k+φ134)

+ R4T3T2T1ei(k+φ4) + R4T3R2R1eiφ14 + R4R3T2R1ei(−k+φ124) + R4R3R2T1eiφ24 ]

(1.30)

Using equation. 1.19, Figs. 1.20.a-b presents a numerical simulation of the
stroboscopic spatiotemporal dynamics within the four-step model for the rings
α and β, respectively, by introducing a narrow pulse that satisfies the condi-
tions specified in the equation. 1.13. The coupling angles are uniformly set to
θ1 = θ2 = θ3 = θ4 = π/4, while the phase modulators remain inactive
φ1 = φ2 = φ3 = φ4 = 0, a situation correspond to the 50/50 case. In this strobo-
scopic simulation, we retain only even site positions at every second site and even
round trips every four turns. Figures. 1.20.c-d showcases the gapless dispersion
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Figure 1.21: Two-dimensional analytical result for φ ∈ [−π, π] with a coupling angles
of [θ1, θ2, θ3, θ4] = [4π/32, 8π/32, 0, 8π/32]. (a) Two-dimensional Dispersion
relation. (b-c) Two-dimensional tomography of the (b) amplitude ratio and (c)
relative phase.

relation of the 50/50 case within the four-step model for each of the rings α and
β, respectively, obtained by applying a two-dimensional Fourier transform to the
stroboscopic spatiotemporal diagrams in Figs. 1.20.a-b. The upper and lower bands
coincide at (E, K) = (0,±π) & (E, K) = (±π, 0). Additionally, an excellent agree-
ment between the analytical dispersion relation of the upper and lower bands,
given by equation. 1.26 and depicted in blue and green, respectively, and their
corresponding numerical results.

This chapter primarily emphasizes the 50/50 case for θ = π/4 & φ = 0 in the
two- and four-step models, which we refer to as the ’calibration shot’. This serves
as a reference model, providing a benchmark for understanding more complex
’science shots,’ covered in later chapters.

Following the approach used for the two-step model illustrated in Fig. 1.18,
we characterize the four-step model two-dimensional eigenvectors R+(k) given
by equation. 1.28, of the analytical upper band E(k, φ)+ denoted by a red arrow
in Fig. 1.21.a, via the amplitude ratio |R| and the relative phase Φαβ. The phase
modulator value φ ∈ [−π, π] with a set of the splitting angles [θ1, θ2, θ3, θ4] =

[4π/32, 8π/32, 0, 8π/32], corresponding to a point in the orange region of the
phase diagram. The two-dimensional quasienergy bands exhibit two gaps centered
at energy 0 & π as shown in Fig. 1.21.a. The second and third panels Fig. 1.21.b and
Fig. 1.21.c illustrate the tomography of the upper band’s eigenvectors through the
amplitude ratio |R|+ (in logarithmic scale) and the relative phase Φ+

αβ. |R|+ present
two high and low weights amplitude presented in yellow and blue, respectively,
corresponding precisely to the positions of the two pairs of vortex-antivortex struc-
tures in the relative phase tomography Φ+

αβ.
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Note: One can also characterize the two-dimensional eigenvector of the lower
band in the same way, as will be discussed in subsequent chapters.

1.4 Review: Double rings & topological properties

The double ring platform stands out for its efficiency in adding physical ele-
ments and applying various modulations, such as gain, loss, and phase modu-
lation, which is challenging to achieve in other experimental platforms [17]. The
temporal multiplexing renders our platform periodic in both space and time. It
provides an elegant framework for investigating complex phenomena, including
the formation of solitons in parity-time symmetric lattices [125, 126], Bloch os-
cillations [127], anomalous transport [125], artificial gauge fields [128], the non-
hermitian skin effect [129], superfluidity [130], nonlinearity [17, 131] and Floquet
winding bands [121], and many more. Reflecting on the past, we’ve seen remark-
able work conducted using the double-ring configuration that achieved significant
results. It’s worth revisiting these accomplishments, as they underline the potential
of our setup and its potential for demonstrating certain topological properties.

1.4.1 Berry curvature via anomalous transport

M. Wimmer’s research [120] achieved the first complete characterization of
the theoretical and experimentally measured Berry curvature, as represented in
Figs. 1.22.e-f. This was accomplished by analyzing the anomalous displacement of
a coherent classical wavepacket within a two-fiber loop system subjected to a peri-
odic phase modulation φ. In this context, the phase modulator serves as a second
parametric dimension with a period of 2π in the two-dimensional dispersion re-
lation, as illustrated in Fig. 1.22.c. The field evolution in the presence of a phase
modulator is as follows:

αm+1
n =

1√
2

(
αm

n−1 + iβm
n−1
)

eiφ(m)

βm+1
n =

1√
2

(
iαm

n+1 + βm
n+1
) (1.31)

To achieve this, a designed Gaussian envelope with the correct phase inform-
ation is injected into the system to locally excite a superposition of states within
the jth band structure at specific values of k, as depicted by the orange and yellow
dots in Fig. 1.22.c. Next the magnitude of the phase modulator is slowly tunned
from 0 ⇆ 2π. First, by a gradual phase ramp increase of +φ0 = +0.01π from
0 → 2π followed by a reversal decrease of −φ0 = −0.01π from 2π → 0 over 200
round trips, as illustrated in green and red arrows in Fig. 1.22.a and Fig. 1.22.b,
respectively. Figures. 1.22.a-b describes the propagation of wavepackets, along the
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Figure 1.22: (a)-(b) Wavepacket propagation measurement in real space when exiting a su-
perposition of states in the jth band at k = −0.5π and φ0 = 0.01π with gradual
ramping of the phase modulation over 200 round trips m. (a) Gradual increase
of the phase from 0 → 2π, shown by the green arrow. (b) Gradual decrease of
the phase from 2π → 0, depicted by the red arrow. (c) In a two-dimensional
dispersion relation, one of the dimensions displays real space dynamics k, and
the other one is a parametric dimension defined by an external phase modu-
lator φ, the green (red) line traces a gradual ramp from 0 ⇆ 2π along the φ
direction, originating from a superposition of excited states at k = −π/2 and
φ0 = 0.01π, as represented by the yellow (orange) dots. (d) Discrete differenti-
ation of the lateral shift in the center-of-mass of the wave packet’s propagation
along the position n as a function of the time steps m. Comparison of the Berry
curvature of the lower band in (e) theoretical results with (f) the experimental
results. [120]

one-dimensional lattice. During this process, the sign of the phase modulation al-
ternates between +φ and −φ during odd and even time steps, such that:

φ(m) =

+φ(m) = +m 0.01π if m is odd

−φ(m) = −m 0.01π if m is even
(1.32)

The anomalous velocity depicted in Fig. 1.22.d is determined by computing a
discrete differentiation of the lateral shift in the center-of-mass of the Gaussian
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envelope in real space. This shift ∆n(m) = nφ0(m)− n−φ0(m) is calculated along
the position n as a function of the time steps m of the wavepackets propagation.

After extracting the anomalous displacement for a locally excited state along
the k-direction, this process is repeated for all relevant states to reconstruct the
Berry curvature piece-by-piece. Subsequently, the Chern number can be obtained
by integrating the Berry curvature over the entire Brillouin zone.

One of the primary objectives of this thesis is to analyze and measure topolo-
gical invariants such as the Berry curvature, Chern number, and winding number.
Experimentally, this is accomplished by measuring the eigenstate and the disper-
sion relation using a heterodyne method within a single-shot measurement. This
method, developed in my thesis and in the work of C. Lechevalier [17, 118], is com-
pletely different from that of M. Wimmer. Detailed explanations will be provided
in the Chapter. 2 and Chapter. 3.

1.4.2 Stability of edge states in nonlinear regime
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Figure 1.23: (a) Numerical simulation displays chiral edge states when a narrow pulse is
introduced at the boundary of two distinct phases. (b)-(c) Profile of the edge
mode’s amplitude in (b) linear and (c) nonlinear regime. [14]

An intriguing study was undertaken by A. Bisianov and his team [14] in
2019. They explored the persistence of topological chiral edge states within a one-
dimensional discrete quantum walk, specifically in the context of Kerr nonlinearity.
This is achieved by using loops with long lengths and injecting high powers. The
field evolution in the presence of nonlinearity is as follows:βm+1

n = (tm
n+1βm

n+1 + irm
n+1αm

n+1)e
iκ|tm

n+1βm
n+1+irm

n+1αm
n+1|

2
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n−1αm
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n−1βm
n−1)e
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Where tm
n = cos(θ) and rm

n = i sin(θ) represent the transmitted and the reflected
pulse energy, θ is the coupling angle of the variable beam splitter and κ is the
effective nonlinear coefficient of the dispersion compensating fibers.

In their study, they realized an insulator that blocks light within a certain fre-
quency by adjusting the splitting angle to full reflectance (t/r = 0/1) at a specific
site nedge. A narrow pulse injection at the interface reveals persistent edge states in
the linear regime, see Fig. 1.23.a. The power of localized edge modes in the linear
regime at a given time step (m) is predominantly concentrated in the (α or β) ring,
signifying the state’s chirality, as demonstrated in Fig. 1.23.b. However, instability
and radiation into the bulk modes occur in strongly nonlinear regimes, as depicted
in Fig. 1.23.c.

1.4.3 Observation of the non-Hermitian skin effect
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Figure 1.24: (a) Light funneling concept. (b) A linear sequence of linked states with altern-
ating isotropic coupling C1 and C2 i.e. the coupling strengths from one site to
its neighbor in a certain direction are identical to those in the reverse direction,
the variations in the coupling strength are symbolized by the dotted orange
ribbon. (c) A linear sequence of linked states that features alternating aniso-
tropic coupling i.e. unequal coupling strengths back and forth from one site
to its neighbor site, The ribbon with green stripes describes the anisotropic
modulation. (d) One mode localization at the interface when two opposing
isotropic lattices are connected, the inverted ribbon represents the reversed
coupling angle. (e) All eigenmodes are confined to the interface when attach-
ing two opposite anisotropic lattices.[129]

In the year 2020, A. Szameit et al. showcased a funnel for light [129] as illus-
trated in Fig. 1.24.a, a phenomenon called the "Non-Hermitian skin effect" where
all eigenmodes localize at an interface [132, 133]. Thus, any light field in the lattice
regardless of its form and injection position is driven towards the interface. They
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achieved this by specifically engineering an anisotropic coupling between the two
rings. The system dynamics is described by the following equations:{

βm+1
n = G[cos(θ)βm+1

n + i sin(θ)αn
m+1]e

iφ

αn
m+1 = G[i sin(θ)βn−1

m + cos(θ)αm−1
n ].

(1.34)

Where θ denotes the splitting angle of the coupler and G describes the attenuation
and amplification.

In their research, they compare two models. First, the Hermitian Su-Schrieffer-
Heeger (SSH) model [134, 135] which consists of a linear sequence of linked states
with alternating isotropic coupling i.e. the coupling strengths C1 or C2 from one
site to its adjacent one in a certain direction are identical to those in the reverse
direction, as depicted in Fig. 1.24.b. An interface is introduced by flipping the
splitting angle at a specific site, as depicted by the inverted ribbon in Fig. 1.24.d.
Consequently, only one state becomes localized at the interface.

Secondly, the skin effect model features alternating anisotropic coupling, i.e. un-
equal coupling strengths back and forth from one site to its neighbor site as repres-
ented in Fig. 1.24.c. To achieve anisotropic hopping in the system, an amplification-
attenuation modulation is implemented before and after the fiber coupler by using
an acoustic-optical modulator (AOM), the system exhibits differential loop gain,
with one loop amplifying and the other attenuating the signal. Introducing an
interface within the system is achieved by reversing the anisotropy at a specific loc-
ation and flipping the amplification and attenuation. This modification drives all
eigenmodes towards the interface, leading to their complete confinement there (see
Fig. 1.24.e). Consequently, all previously delocalized bulk modes become localized
at the interface, transforming into boundary modes.

These works show, that our double-ring platform conceals a multitude of in-
triguing topological properties and features. These can be manipulated by adjust-
ing external parameters such as gain, loss, and phase modulation. In the realm of
Floquet topological phases, experiments have been conducted in one-dimensional
chiral symmetric lattices [11–14] or two-dimensional lattices with continuous time
evolution [15, 16]. However, the exploration of anomalous topological phases in a
two-dimensional discrete step walk remains uncharted territory. This presents the
central problem that our thesis aims to address

1.5 Conclusion

In this chapter, after reviewing the related literature, we pose the following
questions that will serve as the objectives of our thesis:
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What are the topological properties of a two-dimensional discrete step walk
system?

To answer this, our methodology involves utilizing temporal multiplexing of
two coupled optical fiber loops of unequal lengths. Our platform is a synthetic
photonic lattice in two dimensions, characterized by discrete step walks. One di-
mension displays real space dynamics, while the external phase applied to the
longer ring defines the other. The evolution of light pulses within this model is
defined by two mathematical discrete coupled equations. The time multiplexing of
light gives our platform a periodic nature in both space and time. This is perfect
for studying the eigenstate and constructing the band structure, which is achieved
through a two-dimensional Fourier transform of the stroboscopic spatiotemporal
diagram of the system’s impulse response.

Finally, we have introduced the two-step and four-step models, which exhibit
distinct topological properties. These models serve as the foundation for our thesis,
for investigating of anomalous and trivial topological phase properties in our two-
dimensional synthetic photonic lattice under Floquet-driven discrete step walks.





2
E X P E R I M E N TA L S E T U P

Building upon the work of former PhD student Corentin Lechevalier [118], the
former postdoctoral researcher Albert Adiyatullin automated and upgraded the
double ring experimental setup, significantly enhancing its robustness and stability
against fluctuations [121].
Chapter. 2 details this experimental setup developed by A. Adiyatullin, depicted
in Fig. 2.1, for creating the photonic lattice. It outlines the roles of each component,
their specific lengths, and relevant timescales. The experimental setup comprises
two main sections: the optical section, illustrated in Fig. 2.1.b, and the electronic
section, shown in Fig. 2.1.a, which we will examine in detail.

2.1 Overview of the optical setup

The optical section, shown in Fig. 2.1.b, consists of two fiber rings, α and β,
outlined in a black dashed rectangle, and a local oscillator enclosed in an orange
dashed rectangle, enabling access to spectral information via a heterodyne method.

2.1.1 Double ring configuration

The experiment utilizes a continuous wave (CW) single-frequency laser source
(Koheras MIKRO, NKT Photonics) that operates at a wavelength of 1550 nm with a
maximum power of 16 dBm (40 mW). The line width of the laser is < 0.1 kHz which
estimates a coherence length ≈ 3000 kilometers (km) in the vacuum (according to
the manufacturer). Upon passing through the 50/50 beam splitter, the laser out-
put splits into two equal fields with identical amplitudes, as depicted in Fig. 2.1.b.
One continuous part is directed toward the local oscillator, while the other part is
chopped into narrow pulses of duration τ = 1.4 ns using an electro-optical mod-
ulator (EOM, iXblue MXER-LN-10), which is controlled by an arbitrary waveform
generator (AWG 7000B, Tektronix) with a bandwidth of 25 GHz. The EOM has a
bandwidth of 10 GHz and an extinction ratio of ≈ 30 dB that suppresses the light
for some duration of time ≈ 1 ms.

47
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Figure 2.1: The experimental setup includes an electronic section and an optical section.
(a) The electronic section consists primarily of a computer (PC), an Arduino,
and an arbitrary waveform generator (AWG 7000B), these components facilit-
ate the triggering and control of the elements within the setup by generating
precise waveforms. (b) The optical section consists of two primary parts, the
first part, situated on the left and colored orange, represents the local oscil-
lator. The second part is the double ring configuration α and β of unequal
length presented in blue and pink, respectively, coupled via a variable beam
splitter (VBS). Some abbreviations of the components: acoustic optics mod-
ulator (AOM), electro-optic modulator (EOM), erbium-doped fiber amplifier
(EDFA), variable optical attenuators (VOA), Fabry-Perot Interferometer (FPI),
phase modulator (PM).
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To further suppress residual transmission and eliminate low-frequency com-
ponents in the off state of the EOM, we introduced an acoustic optical modulator
(AOM, AA Opto-electronic MT110-IIR30-Fio-PM0.5) that shifts the laser frequency
by 110 MHz. This frequency shift effectively reduced the residual transmission of
the transmission gate to -70 dB, which is precisely centered in time at the shaped
by the preceding EOM.

The prepared injection signal is introduced into the long α ring via a 70/30
beamsplitter. The latter includes two input paths (1 & 4) and two output paths (2
& 3) optical fibers, as shown in Fig. 2.1.b. When the light enters via Path 1, 30% of
its optical power transmits to Path 3 and 70% to Path 2. Conversely, entering via
Path 2 reverses these percentages: 30% of the optical power from Path 4 goes to
Path 2, while 70% goes to Path 3.

The short square pulse evolves through the optical components in the rings, fol-
lowing a split step walk each time it reaches the beamsplitter. The two fiber rings
α and β are coupled via a high-bandwidth 40 GHz electronically controlled vari-
able beamsplitter (EOSpace AX-2x2-0MSS-20). On each round trip, the 90/10 beam
splitter within each ring transmits the majority of light toward the measurement.
Yet alone, this is insufficient to obtain the band structure experimentally. Access-
ing both amplitude and phase information for each of the sublattice αm

n and βm
n is

essential. This is achieved through a heterodyne measurement: a coherent beating
between the extracted shifted wavefield of the double rings, and the narrow band-
width of the local oscillator’s reference field that is shifted by 3 GHz from the laser
frequency.

The optical beating signal between the output of the coupled ring configuration
and the local oscillator is converted into electrical signals using a fast photodiode
(Thorlabs DET08CFC), which operates at 5 GHz, connected to a fast oscilloscope
(Tektronix MSO64). This oscilloscope features a 6 GHz bandwidth, a 10-bit vertical
resolution providing 210 discrete amplitude levels, a sampling rate of 25 GS/s,
which translates to a time interval of 40 ps between two points, and a memory
record length of 62.5 Mpts corresponding to 2.5 ms, enabling very detailed signal
analysis of the beating.

2.1.1.1 Component role within the double ring

The two identical 1550 nm polarization-maintaining (PM) optical fiber
monomode rings, denoted as α and β, consist of identical components organized
in the following sequence:

• Electro-optic phase modulator (PM, iXblue MPZ-LN-01) with a 3 GHz
bandwidth applies phase modulation to generate the second parametric
dimension and investigate topological properties, as elaborated further in
Chapter. 4
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• Erbium-doped fiber amplifier (EDFA, Keopsys CEFA-C-HG) provides up to
50 dB gain to amplify very weak optical signals of -50 dBm and compensate
for the extraction, and absorption losses allowing the circulation of pulses for
many round trips in the optical system.

• Tunable wavelength optical filter (EXFO XTM-50) with adjustable bandwidth
from 32 pm to 5 nm (According to the manufacturer) to efficiently eliminate
spectrum components caused by the EDFA spontaneous emission. The filter
introduces significant losses of -5 dB once the filter’s central wavelength is
set to 1550 nm.

• 90/10 beam splitter from Absys divides the light into two paths: 90% of
the light is transmitted towards the measurement, while the remaining 10%
continues within the loop. This extraction causes significant losses of -10 dB.

• Manual optical variable attenuator (VOA, Agiltron) to fine-tune the loss rate
in each ring up to -30 dB.

• Optical switch (Agiltron, Photonwares NSSW) with an extinction ratio of -20
dB is activated to effectively eliminate residual light signals within each ring
between calibrations and scientific measurements, allowing fresh starts for
each experiment (as detailed further ahead).

• Isolator from Anylink to ensure the light circulation in one direction.

• Piezoelectric device from PI France to stabilize the ring length against fluctu-
ations, ensuring consistent optical path lengths within the system.

• Polarizer from Thorlab to maintain a consistent polarization state within the
optical fiber.

Note: The order of the components is critical. For example, positioning the
phase modulator (PM) after the 90/10 beam splitter modifies the phase of the
pulses and the evolution equation. 1.19 within the lattice (see Appendix. C).

Each ring has a variety of optical elements with strong extinction powers to
either effectively eliminate undesired optical noise or measure the signal. Most of
the loss is attributed to the extraction of light through the beam splitter. However,
the signal losses that occur during each round trip can be easily compensated for
by our EDFA amplifiers, allowing the optical signal to travel over multiple cycles.

Mechanical vibrations, temperature changes, and pressure variations can affect
the length of the optical fibers in a setup [136]. To minimize these effects, many
components of the double ring are enclosed in a foamed box, placed on a hydraulic
table, and kept in an air-conditioned room. However, the key component for ensur-
ing perfect stabilization of the ring length is the piezoelectric device (as detailed in
the next section).
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Notably, for optimal performance, the ring configuration exclusively utilizes
single-mode polarization-maintaining components to guarantee that the waves
propagate through the fiber in a linearly polarized state the entire time. Further-
more, all the components are equipped with FC/APC (Fixed Connection-Angled
Physical Contact) connectors to ensure secure and stable connections while pre-
venting back reflection of light.

2.1.1.2 Time and length scale

Despite their similarities, the long ring α with a length Lα = 46.89 m exceeds
the shorter ring β with a length of Lβ = 46.18 m by a length difference of ∆L =

0.71 m. The latter allows the encoding of the lattice position information at the
time of arrival of pulses at the extraction port at each round trip, as described
in Section. 1.2.2. Additionally, the phase modulator (PM) in the shorter ring will
always remain inactive; its presence is solely to maintain an equal amount of loss
in both rings.

In the temporal domain, a short pulse takes Tβ = 223.24 ns to travel through the
shorter ring, while it takes Tα = 226.64 ns to traverse the longer ring. To accurately
study optical signal propagation through spatiotemporal representation, two main
time intervals should be taken into consideration. First, the time difference between
the two pathways, this difference is calculated as ∆T = Tα − Tβ and is equal to 3.4
ns. Secondly, the average round-trip travel time within the loops, denoted by T, is
obtained by averaging Tα and Tβ, T = (Tα + Tβ)/2 = 224.94 ns. The conversion
between the two dimensions (time and space) is l = ct/n, with c = 3 × 108 m/s
being the speed of light and n = 1.45 the index of reflection of the optical fiber at a
wavelength of 1550 nm [137]. Table 2.1 provides a comprehensive overview of the
temporal and spatial characteristics of the double-ring configuration.

Upon reaching the beamsplitter every roundtrip, the injected pulse proceeds in
a split-step walk, generating two new pulses separated in time by a distance ∆T.
From turn to turn, the cycle continues, generating more equally spaced pulses that
fill the ring. Eventually, the ring will be completely filled with these pulses after a
maximum number of round trips mmax = T/∆T = 66 which corresponds to a total
traveling duration of 14.85 µs and a distance of ≈ 3 km. The maximum number of
excited sites before the pulses start to overlap is, nmax = T/(∆T/2) = 132 with
∆T/2 = 1.7 ns being the duration of a single site.

α β Mean Difference
Time(ns) Tα = 226.64 Tβ = 223.24 T = 224.94 ∆T = 3.4

Length(m) Lα = 46.89 Lβ = 46.18 L = 46.53 ∆L = 0.71

Table 2.1: Time and length scale within the double ring configuration.
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Polarization-maintaining components ensure that the light’s polarization state
remains stable throughout the experiment. Additionally, the selected ring lengths
ensure that the temporal coherence length of the local oscillator is greater than
the distance traveled by the pulses throughout the entire experiment within the
coupled loop system. These two conditions maximize and maintain the stability of
the beating contrast over many cycles in our experiment [118], as we will see in
Section. 3.1.

2.1.2 Local oscillator

A portion of the monochromatic continuous laser source is directed to the local
oscillator after passing through a 50/50 beam splitter. The local oscillator is a con-
tinuous wave beam that will be mixed with the light coming out of the rings
to extract the relative phase between the different pulses in the spatiotemporal dy-
namics. To do so, as we will explain in detail in the next chapter, the local oscillator
needs to have a carrier frequency slightly shifted from the carrier frequency of the
pulses in the rings. In our experiments, this shift in the frequency corresponds
to 3 GHz. When the local oscillator interferes with the signal coming out of the
rings, a beating intensity can be observed in the detected signal. From the beats,
the relative phase of the light field between the pulses can be measured.

To engineer the local oscillator field, we use the following elements (see orange
dashed rectangle in Fig. 2.1.b):

• Electro-optic phase modulator (PM, iXblue MPZ-LN-10) with a 10 GHz
bandwidth, modulated with a sinusoidal electrical signal at a frequency of
Ω= 3 GHz with an amplitude of 5 dBm from an Agilent E4421B frequency
generator. This process creates sidebands in the optical spectrum shifted by
±Ω (i.e., ±3 GHz) from the laser carrier frequency W.

For example, consider a continuous laser field with an amplitude V(t) and
a frequency W, where the phase is modulated over time by the phase modu-
lator (PM) as follows: {

V(t) = V0 sin[Wt + ϕ(t)]

ϕ(t) = m sin(Ωt)
(2.1)

where ϕ(t) is the applied phase, m the phase modulation index, Ω the an-
gular frequency of the modulating signal and V0 represents the amplitude.
equation. 2.1 can be decomposed into a Bessel function [138].

V(t) = V0

+∞

∑
n=−∞

Jn(m) sin[(W + nΩ)t)] (2.2)



2.1 overview of the optical setup 53

(b)

W-W 0

W+2ΩW+ΩW-ΩW-2Ω W

Carrier
Sideband

(a)

Figure 2.2: (a) Bessel function Jn(m) for orders n ∈ [-2:2]. (b) The optical spectrum |Ṽ( f )|
of a phase-modulated signal with a modulation index m = 1 features an infin-
ite number of symmetrical spectral components (blue sidebands) at frequencies
W ± nΩ, centered around the carrier frequency W (red). The green area indic-
ates the filtered-out sideband at the frequency W + Ω.

The Bessel function Jn(m), as a function of m, and order n is represented in
Fig. 2.2.a and given by equation.2.3:

Jn(m) =
∞

∑
k=0

(−1)k

k! (n + k)!

(m
2

)2k+n

J−n = (−1)n Jn

∞

∑
n=−∞

|Jn(m)|2 = 1

(2.3)

The optical spectrum |Ṽ( f )| of a phase-modulated signal V(t) produces
two sets of lines in the frequency domain, centered at positive and negative
frequencies ±W. Each set comprises an infinite series of symmetrically dis-
tributed spectral components (sidebands) at a frequency W ± nΩ arranged
around the carrier frequency (W), these sidebands occupy a specific position
with equal weight for a given order n, as illustrated in the purple dashed
square of Fig. 2.2.b when the modulation index m = 1. We focus exclusively
on the first-order spectral components n = 1 (where Ω = 3 GHz) since our
goal is to design a local oscillator with a frequency shifted by 3 GHz from
the original laser.
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• A custom single-mode fiber-optic ring cavity interferometer, constructed with
a pair of high-reflectance 99/1 beam splitters and a piezoelectric device,
acts as a tunable spectral filter. Operating on the Fabry-Perot interferometer
(FPI) principle [139], it selectively filters a specific sideband at a specific fre-
quency W + Ω in the optical spectrum, as depicted by the green rectangle in
Fig. 2.2.b.

• Polarization Controller: enables precise adjustment and control of the polariz-
ation state of light traveling through it by manually rotating the polarization
axes of the polarization-maintaining fiber (PMF). This is necessary because
the optical elements in the local oscillator section of the setup do not main-
tain polarization, and the fiber used is a non-polarization maintaining single-
mode fiber.

• Lockbox FPI: the filtered-out light field used as a local oscillator, passes
through a 50/50 beam splitter. Half of this light is directed toward a lock-
box. This lockbox maintains the stability of the FPI ring cavity by continu-
ously monitoring the output signal. It automatically adjusts the voltage sent
to the piezoelectric device, which slightly stretches or relaxes the fiber. This
continuous feedback loop ensures optimal stability of the filtering of the first
sideband, more details in Section. 2.2.1.

• Amplifier: Erbium-doped fiber amplifier (EDFA, Keopsys CEFA-C-HG), with
a maximum output power of 15.5 dBm ( 30 mW), offers up to 50 dB of gain
to compensate the losses.

2.1.2.1 Heterodyne measurement of the amplitude and phase of the loops pulses:

The filtered and amplified light from the local oscillator serves as a reference
beam. It is split into two equal parts using a 50/50 beam splitter, with each part
directed to an 80/20 beam splitter to perform the beating with the output light
from the two coupled rings. The band structure can be reconstructed thanks to the
phase and amplitude information found in the observed beating, as discussed in
Section. 3.1 of Chapter. 3.

From a mathematical standpoint, the phase information is encoded within the
beating intensity, as described in the equation. 2.4.

I = |Aαβ eiωteiϕ + ALO ei(ω+Ω)t|2

= A2
αβ + A2

LO + 2Aαβ ALO cos(Ωt + ϕ) (2.4)

With Aαβ denote the laser amplitude within the two coupled rings, with ω and
ϕ representing the laser frequency and field phase, respectively. Additionally, ALO
and ω + Ω correspond to the amplitude and frequency of the local oscillator’s
narrow laser beam.



2.2 electronic : automation and control 55

In this section, we provided an overview of the optical part within the exper-
imental setup illustrated in Fig. 2.1.b. We detailed the function of each element,
specifying their respective lengths and the relevant timescales associated with the
double-ring system. Furthermore, we offered an in-depth explanation of the local
oscillator, emphasizing its critical role as a reference beam within the experiment.

2.2 Electronic: Automation and control

In this section, we will provide a detailed explanation of the electronic section
of the experimental setup depicted in Fig. 2.1.a. The electronic section, primar-
ily managed by a microcontroller (Arduino) and an arbitrary waveform generator
(AWG7000B), focuses on ring stabilization and control of the electronic compon-
ents.

2.2.1 Optical fiber ring stabilization

Variations in temperature and pressure can cause changes in the laser
wavelength and the fiber’s length of each ring by less than a few percent of a
wavelength on a short timescale of 10 ms. From shot to shot, variations in laser
wavelength and fiber length can be represented as an extra optical phase that the
light passing through each fiber ring acquires, which leads to a shift in the band
structure by a random amount in the energy domain (δE) and the wavevector do-
main (δk) [121].

Stabilizing a fiber ring is crucial to counteract the effects of ring elongation
over time. To ensure lasting stability, lockboxes are positioned after the extraction
signals of the α and β rings, as well as the Fabry-Perot interferometer (FPI) of the
local oscillator, as illustrated in Fig. 2.1.b. The goal of the stabilization protocol
is to adjust the length of the two rings to a fixed value that corresponds to an
integer multiple of the laser wavelength. For the Fabry-Perot interferometer of the
local oscillator, the stabilization protocol ensures filtering of the first sideband. The
lockboxes utilize a feedback loop that consists of three primary steps:
(Measurement - Decision - Action).

Measurement: a feedback loop ensures system stability by continuously adjusting
the optical fiber length according to the output signal that is monitored by a photo-
diode (PD) positioned before the lockbox, as depicted in Figs. 2.1. The photodiode
converts light into an electrical signal to send to a programmable card within the
lockboxes. A function generator (FG2, Circuitmate) delivers a continuous peak-to-
peak ramp voltage1 Vpp = 4 V at 1 kHz, as illustrated by the green triangular line
in Fig. 2.1.a and Fig. 2.3. This voltage is transferred to the cylindrical piezoelec-

1 Ramp voltage: an electrical signal where the voltage increases or decreases linearly with time.
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tric device after passing through the initially unlocked lockbox. The piezoelectric
element, wrapped with a 10-turn, 0.6-meter optical fiber ring, induces a physical
stress on the fiber by stretching or compressing it based on the applied voltage by
the lockbox, reaching a maximum radial deformation of 15.6 µm. This technique fa-
cilitates the analysis of the Fabry-Perot interferometer (FPI) transmission spectrum
from both the local oscillator and the two rings α and β, as illustrated by the black
line on the scope in Fig. 2.1.a and Fig. 2.3. Additionally, it compensates for fiber
deformations of up to 10 wavelengths, ensuring that the observed transmission
line is detected when the piezoelectric device adjusts the optical fiber length to an
integer multiple of the laser wavelength, corresponding to a ramp signal voltage
of -0.5 V, as illustrated in Fig. 2.3. The local oscillator, along with each of the rings
α and β, individually operate as Fabry-Perot interferometers (FPIs), with further
details provided in the following subsection.

Decision: By analyzing the signal’s spectrum, a desired frequency can be selected.
This selection involves locking the lockbox at a specific setpoint value from the
spectrum information (purple line in Fig. 2.3). A programmable card calculates
the error (the difference between the desired setpoint value and the measured
output). If the error signal is not zero, at its output, it applies a correction current,
which is amplified by a high voltage amplifier (HV) to a piezoelectric element.

Action: Upon securing the lockbox, the piezoelectric element experiences only
the correction voltage and no longer encounters the continuous ramp voltage from
the function generator. As a result, the piezo only reacts to the lockbox’s correc-
tion current, providing the appropriate amount of physical stress to preserve fiber
stabilization.

This iterative process continues until the error between the desired setpoint and
the measured output signal converges to zero, establishing a stable state.
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2.2.2 Arduino: central controller and ring stabilization

Figure. 2.1.a shows that the switches located in the α and β ring, along with
the Acousto-Optic Modulator (AOM) are connected to the AWG 7000B and the
Arduino via logical OR 2. This design choice reflects the central role of the Arduino.
It manages the overall electronic processes, which can be broadly categorized into
two stages: (1) ring stabilization and (2) sequence generation using the AWG 7000B,
as illustrated in Fig. 2.4.

The first stage, ring stabilization, consists of two equal 20 ms sub-stages (lock
β and lock α). Within those two sub-stages, the AOM (green) and the EOM (red)
operate at high voltage, which means that light is continually being injected into
the double-ring system.

Sub-stage 1: Focus on stabilizing the short ring β. To achieve this, the optical
switch in the long ring α (purple) is set to high voltage while in the short ring β

(blue) is set to low voltage, see Fig. 2.4. This effectively cuts off the CW laser light
within the long ring, allowing light to propagate solely in the short ring. This isol-
ation is critical for achieving a perfect stabilization of the short ring. Here is why:
within the short ring cavity, the VBS (Variable Beamsplitter) and the 90/10 beam-
splitter work together to form a Fabry-Perot interferometer. This interferometer
plays a crucial role in the stabilization process by filtering the desired frequency
that corresponds to an integer multiple of the laser wavelength, it can only function
properly when the long ring does not interfere with the short ring.

Simultaneously, a function generator (FG2, Circuitmate) generates a ramp
voltage applied to the piezo element, as indicated by the green triangular line
in Fig. 2.1.a and Fig. 2.3. The information obtained from the spectral analysis of
the output signal of the short ring is vital for setting a specific setpoint value to
lock the lockbox and stabilize the short ring, as discussed in Section. 2.2.1.

Once the lockbox β is secured and the short ring is stabilized, the Arduino
ensures this state is maintained by sending a Hold β signal, to its respective lock-
boxes. This Hold signal mimics a zero-error condition. When set to high voltage,
they effectively inform the lockboxes that everything is functioning correctly (zero
error) and instruct them to retain the previous correction current. This technique
assumes that during the time needed throughout the subsequent steps (locking
of the ring α and conducting the calibration and science experiments), the fibers
and laser will remain stable. This is indeed the case as far as we can see in our
experiments.

2 Logical OR: ensures a connected component to responds when engaged by either the Arduino or
the AWG 7000B.
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Figure 2.4: The central role of the Arduino is divided into two main stages. The first stage
is optical fiber ring stabilization, which includes two equal sub-stages of 20 ms
each (lock β and lock α). The second stage is sequence generation, which is
carried out using the AWG 7000B.

Sub-stage 2: Building upon sub-stage 1, the focus now shifts to stabilizing the
long ring. The Arduino mirrors the strategy used for the short ring by isolating
the long ring. It sets the optical switch in the short ring to high voltage and the
switches in the long ring to low voltage, effectively cutting off light in the short ring
and ensuring no interference during the stabilization of the long ring. Additionally,
the previously applied Hold β signal remains active (high voltage) to maintain the
short ring’s locked state. Upon isolating the long ring, stabilization is achieved by
securing the lockbox α at a specific setpoint value.

Once both rings are stabilized and locked, the Arduino takes a final step by
triggering the AWG7000B to initiate the sequence generation phase (gray line in
Fig. 2.4), as described in Section. 2.2.3. Simultaneously, it sets both Hold signals
(α and β) to high voltage, this ensures that the stabilized state of both rings is
preserved throughout the entire calibration and science shot.



2.2 electronic : automation and control 59

Note: The Fabry-Perot Interferometer (FPI) of the local oscillator stands apart
from the double-ring setup. Unlike the rings α and β, the lockbox FPI doesn’t
require a continuous Hold signal from the Arduino. This distinction stems from the
inherent isolation provided by the FPI’s design. It operates independently under
continuous (CW) laser light, eliminating the need to block light propagation within
its cavity to maintain back its stable state.

2.2.3 Sequence generation

Automation and waveform generation is achieved using the arbitrary wave-
form generator AWG 7000B, controlled by a custom Python script on a personal
computer. The script utilizes the Broadbean package for operation. The arbitrary
waveform generator AWG 7000B (Tektronix) with a 25 GHz bandwidth (time inter-
val of 40 ps between two points) and a 10-bit mode resolution serves as the central
control unit for all electronic components within the setup depicted in Fig. 2.1.b.
This instrument features two high-speed channels (Ch1 and Ch2) with a sampling
rate of 25 GS/s and an output voltage range of ±250 mV. Additionally, each chan-
nel is associated with two digital masters (M1 and M2) and four slow flags. The
master outputs can switch between 0 V and a user-defined high voltage between
500 mV and 1.4 V, while the flags are limited only to two values, 0 V and 3.3 V.

Figure 2.5 depicts the output sequence generated by the AWG 7000B, which
controls various elements within the setup in a specific order. The vertical axes
represent flags, masters, and channels, each associated with a specific component
depending on the required bandwidth. The horizontal axis depicts the temporal
sequence of the control signals. This sequence comprises individual waveforms for
each component within the setup. Each waveform consists of a series of elements
that trigger and dictate the on/off state of the corresponding component.

It is important to note that while Flag 5 and Channel 1 are both connected to
the phase modulator (PM), and Flag 6 and Channel 2 are connected to the variable
beam splitter (VBS), as illustrated on the vertical axis of Fig. 2.5, only one of these
outputs (flag or channel) is used at a time during the experiment. Flags (5 and
6) trigger two separate slow arbitrary waveform generators (Agilent 33250A, 80
MHz). These generators produce a high, symmetrical peak-to-peak voltage of 10 V
for a duration longer than the experiment time. Due to their slow rise time, they are
only used for experiments in which the bulk properties (like Berry curvature) of
the lattice are studied. Such experiments require the VBS and phase modulator PM
to change their value only once every round trip. The typical required bandwidth
is on the order of one-tenth of the round-trip time.

In contrast to flag outputs, channel outputs (1 and 2) are utilized for the genera-
tion of lattice edges in space position (to be discussed later). These channels involve
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Figure 2.5: Output sequence generated by the arbitrary waveform generator AWG 7000B,
which controls various elements within the setup in a specific order.

rapid modulation (10 GHz bandwidth) of both the phase modulator and the vari-
able beam splitter across multiple positions within a single round trip. However,
channel outputs are limited in voltage, reaching a maximum of ±250 mV and the
π voltage Vπ of the VBS (EOSpace AX-2x2-0MSS-20) and the phase modulator (PM,
iXblue MPZ-LN-01) are 9.4 V and 3.55 V, respectively. To overcome this limitation,
a voltage amplifier (iXblue DR-DG-12-MO, 12 Gb/s) amplifies the channel signals
to a peak-to-peak voltage (Vpp) of 8 V. This amplified signal is sufficient for the
phase modulator but not for the VBS. Thus, for the VBS, we combine the ampli-
fied RF voltage from the channel with a continuous DC voltage of 2.4 V. This DC
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Figure 2.6: The positive (blue) and negative (red) output voltage (V±
out) in V of the iXblue

DR-DG-12-MO amplifier as a function of its input voltage (Vin) in mV.

voltage alone sets the angle parameter of the coupling to θ = π/4, corresponding
to the 50/50 beam splitter scenario.

Figure. 2.6 illustrates the positive (blue) and negative (red) output voltage V±
out

in V of the iXblue DR-DG-12-MO amplifier as a function of its input voltage V±
in in

mV. The iXblue amplifier exhibits symmetrical positive and negative voltage amp-
lification for an input signal in the range of 0 to 40 mV. The maximum achievable
signal is 3.58 V for the negative output and 5.67 V for the positive output for an in-
put voltage Vin of 250 mV (maximum channel output). As the maximum amplified
outputs exceed the phase modulator Vπ, this allows for scanning the PM from −π

to π without limitation. However, the variable beam splitter Vπ is 9.4 V exceeds
the combined DC voltage of 2.4 V, and the iXblue maximum amplification voltage
is 3.58 V. Consequently, the coupling ratio cos2(θ) is limited to a range of 0 to 1,
since the angle parameter of the coupling θ ∈ [−π/2, π/2]. We consider the max-
imum amplification voltage for the iXblue to be 3.58 V rather than 5.67 V. Because,
when the beam splitter coupling angle is alternated symmetrically between ±θ,
the negative voltages cannot achieve the same amplification value as the positive
ones.

The experiments are always performed in a two-pulse sequence: the "calibra-
tion" part of the experiment and the "science" part of the experiment. To do so, the
AWG7000B generates two consecutive 1.4 ns pulses separated by approximately
70 T, as depicted in Fig. 2.5 in elements 4 and 8, respectively. For the calibration
pulse, the beamsplitter is set to θ = π/4, which corresponds to a 50/50 coupling
angle, and φ = 0. The time dynamics of this model are quite trivial and well-known
[140] and serve as a reference model. The second pulse, referred to as the science
pulse, investigates the two-step and four-step models, as well as the edge state
engineering, which will be discussed in detail later in this thesis. In contrast to
the calibration pulse, the values of the splitting angle θ of the VBS and the phase
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modulator value φ within the science pulse change every single round trip accord-
ing to a predefined value that implements the lattice model we wish to study. The
reason for doing the two experiments in the same oscilloscope shot will become
clear later in Section. 3.1.3 of Chapter. 3

The control sequence of the AWG7000B shown in Fig. 2.5 will now be further
examined step by step:

• Element 1: Warmup procedure, this involves sending a series of 100 narrow
laser pulses into the ring by alternating the voltage of the Electro-Optic Mod-
ulator (EOM) through the Master 1. During these pulses, The Acousto-Optic
Modulator (AOM) and both switches in each ring are held in a high-voltage
state. The AOM permits the pulses to enter the ring, while both switches
block the light propagation once it reaches them. The warm-up phase en-
sures that all components within the optical system achieve their optimal op-
erating conditions, this process minimizes the transient effects and reduces
thermal fluctuations [141], thereby enhancing the overall reliability of the
measurements [142].

• Element 2: AOM is switched to a low-voltage state, preventing light from
reaching the ring to ensure a clean initial condition for the calibration shot.

• Element 3: AOM is switched back to high voltage for a short duration of time
( minimum element duration of the AWG 7000B is 96 ns), while the switches
are set to low voltage to allow the prepared narrow pulse in element 4 to
enter the ring and propagate. Taking into account the delay caused by the
electronic cable length, the AOM is activated just before the injection.

• Element 4: The EOM is rapidly switched from low voltage to high voltage
and back to low voltage, enabling the injection of a 1.4 ns narrow light pulse
into the double ring, which then evolves following a split-step walk for 66
round trips. Simultaneously, Flag 4 triggers the oscilloscope to start data
recording. This element corresponds to the calibration shot, where the PM
value is set to 0 and the angle of the coupling is set to θ = π/4.

• Element 5: The switches are set back to high voltage to make sure that no
residual light from the calibration experiment remains within the ring cavity
during the subsequent science experiment. The reason for recording the two
experiments in the same oscilloscope shot is given in Section. 3.1.

• Element 6: Flags (5 and 6) trigger the AWG (Agilent 33250A) using short
pulses. This triggering occurs in Element 6 due to the slower response time
of the AWG (Agilent 33250A) and the delays introduced by the electrical
cables connecting the electronics to the experiment.

• Element 7: Similar to element 3, AOM is switched back to high voltage for
a short duration of time (96 ns), while the switches are set to low voltage to
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allow the prepared narrow pulse of the science shot in element 8 to be injec-
ted into the long ring and propagate. Taking into account the delay caused
by the electronic cable length, the AOM is activated just before the injection.

• Element 8: Similar to element 4, the EOM introduces a narrow pulse of 1.4
ns into the long ring. In contrast to the calibration shot of element 4, the PM
and the VBS can be controlled either by (ch1 and ch2) or (flag 5 and flag 6),
respectively. This element corresponds to the science shot.

• Element 9: Similar to element 5, The switches are set back to high voltage for
an extended duration of 96 µs to make sure that no residual light from the
science experiment remains within the ring cavity.

• Element 10: Marks the conclusion of the experiment, all control signals are
switched to low voltage to prepare the setup for its resting state.

To achieve precise synchronization between all the components, we adjust the
offset of the pulses entering the system and add digital delays specifically for each
waveform of the VBS and PM.

Note: Reconstruction of the two-dimensional dispersion relation relies on ex-
tracting the eigenvalues for various values φ of the phase modulator, which varied
from −π to π in successive experiments, as we will see in Chapter. 4. The AWG
7000B generates a corresponding sequence with the appropriate waveforms to ma-
nipulate the system and induce the desired dynamics at that particular φ value.

2.3 Conclusion

This chapter starts with an overview of the experimental setup, outlining the
function and specifications of each component, including their lengths and rel-
evant timescales. The system is divided into electronic and optical sections. The
optical section comprises two coupled fiber rings of different lengths connected
via a variable beam splitter, and a local oscillator, which enables spectral informa-
tion acquisition through a heterodyne method. The electronic section is controlled
by an Arduino and a fast arbitrary waveform generator (AWG7000B). This section
stabilizes the optical fiber lengths through a feedback loop by continuously adjust-
ing them based on the output signal. Additionally, it generates precise waveform
sequences and manages the triggering and control of various components within
the setup.





3
E I G E N S TAT E A N D E I G E N VA L U E
A N A LY S I S

Chapter. 3 describes the procedure for extracting the eigenvalues of the double-
ring system. This process involves using a heterodyne method for precise phase
determination (see Chapter. 2) and analyzing the spectral information from the
system’s impulse response through a 2D Fourier transform of the stroboscopic
spatiotemporal diagram. Notably, it is worth mentioning that this method was
initially been proposed by A.M. Tikan et al. for measuring the dispersion relation
[143], and it has been successfully implemented for the first time by C. Lechevalier
[17, 118]. Subsequently, we discuss how to extract the eigenstates. The methods to
be discussed in this chapter will be applied only to the calibration shot within the
two-step model for illustrative purposes. However, the underlying concepts apply
to all model and shot configurations.

3.1 Measurement of eigenvalues

3.1.1 Impulse response

To determine the excited eigenvectors and eigenvalues, we need to know the
pulse phase at various spatial positions (n) and time steps (m) within the rings, as
presented by the equation. 3.1[

αm
n

βm
n

]
=

1√
1 + |R|2

[
1

|R|eΦαβ

]
eikn/2eiE(k,φ)m/2. (3.1)

Since the photodiodes only detect intensity, we extract phase information by in-
terfering the ring’s output signal with a continuous-wave reference laser at each
round trip. The laser delivering the injected pulse and used as a reference in the
local oscillator has a coherence length spanning hundreds of microseconds, signi-
ficantly exceeding the duration of each recorded time trace. This ensures stable
interference contrast over multiple cycles.

Upon introducing a narrow square pulse of 1.4 ns into the long ring α, we recor-
ded the calibration shot intensity optical beating between the outputs of both fiber

65
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Figure 3.1: (a) Measured signal intensity of the optical beating between the output of both
fiber loops (α & β) and the local oscillator’s reference field shifted by 3 GHz
away from the laser frequency. Four oscillations at the top of each pulse depict
the beating. (b) Zoom on the first four turns of the recorded intensity signal
within each ring, α in blue and β in pink.

loops (α and β) and the local oscillator as a function of time on the oscilloscope,
as shown in Fig. 3.1.a. The introduced pulse has a width of 1.4 ns, and the local
oscillator’s reference field is shifted by 3 GHz from the laser frequency. Thus, the
beating is visible at the top of the pulses, showing nearly 4 oscillations within their
1.4 ns duration, as shown in the zoomed-in view in Fig. 3.1.a.

Zooming on the first four-round trips, as presented in Fig. 3.1.b, we observe a
series of groups of pulses separated by the average round-trip time inside the loops
T= 224.94 ns. Each pulse has a temporal width of τ= 1.4 ns and it is separated from
adjacent pulses in the same group at a time interval ∆T = 3.4 ns, corresponding
to the length difference between the two fiber loops. Moreover, the width of each
pulse must be less than the time difference between the two rings(τ < ∆T

2 ) in order
to witness distinct pulse sequences without any overlap.
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The experimentally recorded intensity of Fig. 3.1 and the numerical simulation
of Fig. 1.7 in Chapter. 1 reveals a high degree of similarity, with the primary dif-
ference being the presence of oscillations on top of each pulse in the experimental
data. These oscillations are a direct consequence of the beating signal and hold
crucial phase information, which is essential for accessing the phase information
and consequently measuring the band structure along with their eigenvectors.

3.1.2 Spatiotemporal diagrams
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Figure 3.2: (a)-(b) Experimental spatiotemporal diagram of the long α and short β loops,
respectively, when a short pulse of 1.4 ns is introduced to the long loop. (c)-(d)
Corresponding stroboscopic spatiotemporal dynamics of each ring by keeping
only odd round trips with odd site positions.



68 eigenstate and eigenvalue analysis

To reconstruct the spatiotemporal diagrams of the evolution of light intensity
as a function of position and time in the α and β rings, we cut each recorded time
trace after the arrival of the injected pulse into equal time segments of duration
T, (see Fig. 3.1.b). The segments are then arranged in lines corresponding to each
round-trip time m, the spatial position n denoting the relative time of each pulse
within each segment, as depicted in Fig. 3.2.

Figures. 3.2.a-b illustrate the normalized spatiotemporal diagrams in grayscale
over 66 round trips and expand over 132 sites in the rings α and β, respectively.
Figures. 3.2.c-d display the corresponding stroboscopic spatiotemporal diagrams
of Figs. 3.2.a-b, achieved by keeping only odd time steps with odd site positions,
which align with the temporal and spatial periodicity of the lattice. Notably, the
observed oscillations on top of each pulse, appear as constructive and destructive
fringes in the zoomed-in views of each subplot in Fig. 3.2.

The experimental spatiotemporal diagram in Fig. 3.2 exhibits a significant re-
semblance to the numerical spatiotemporal diagram in Fig. 1.9. This agreement
demonstrates that the theoretical model accurately describes the light intensity
evolution within the double-ring system.

3.1.3 Measuring the band structure

Figure 3.3: The two-dimensional Fourier transform in log scale of the stroboscopic spati-
otemporal diagram shown in Fig. 3.2.d, reveals a prominent band structure at
the heterodyne beating frequency (W ± Ω)= ±3 GHz, as highlighted by the red
rectangle marking the Brillouin zone.

The band structure is obtained by applying a two-dimensional Fourier trans-
form to the measured stroboscopic spatiotemporal diagram shown in Figs. 3.2.c-d.
Figure. 3.3 displays in log scale the resulting spectrum of the short ring β, which
spans horizontally from -12.5 GHz to 12.5 GHz, corresponding to a total range of
25 GHz. The 25 GHz frequency range of the spectrum corresponds to the inverse
of the 40 ps sampling interval of the oscilloscope, which represents the minimum
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(a) (b)

Figure 3.4: (a)-(b) Measured band structures of the long α and short β rings, respectively,
within a single Brillouin zone at the heterodyne beating frequency of 3 GHz.

time resolution between data points on the horizontal axis of the stroboscopic spa-
tiotemporal diagram. Similarly, the vertical axis of the spectrum in Fig. 3.3 spans
from -1.12 MHz to 1.12 MHz, covering a total range of 2.24 MHz. This frequency
range corresponds to the inverse of the resolution along the vertical axis of the
stroboscopic spatiotemporal diagram, which, in our case, is two round trips (2 T),
with T = 224.94 ns.

The Fourier spectrum exhibits a localized feature at 0 Hz, which corresponds
to the low frequencies derived from the two-dimensional Fourier transform of
the intensity. It also features several visible Brillouin zones with band structures
ranging from -6 GHz to 6 GHz, despite the spectrum horizontal frequency ranging
from -12.5 GHz to 12.5 GHz. This limitation is due to the rapid diminishing of
higher-order sidebands as they deviate from the carrier frequency.

A prominent band structure, highlighted by the red rectangle marking the Bril-
louin zone in Fig. 3.3, is observed at the heterodyne beating frequency (W ± Ω)=
±3 GHz. Our analysis will concentrate on a single Brillouin zone at a frequency
(W + Ω)=3 GHz, as depicted in Fig. 3.4. Figures. 3.4.a-b presents the normalized
measured band structures of the long and short rings, respectively. The measured
bands are quite similar to the analytical and numerical dispersion relation shown
in Fig. 1.10 of Chapter. 1. Additionally, the horizontal and vertical frequency axes
represent the conjugate of the pulse lattice site (n), corresponding to a specific
physical time, and the time step (m), respectively. We can relate from −π → π the
horizontal and vertical frequency axes to the normalized axes of quasimomentum
k and quasienergy E, respectively, for a clearer examination of the experimental
band structure.

We notice two symmetrical spectral bands. These bands center around k = 0
(3.1 GHz) on the horizontal axis and E = 0 (0 MHz) on the vertical axis. One
might wonder why this center frequency is 3.1 GHz and not exactly 3 GHz. Be-
cause the observed bands result from a beating effect between the local oscillator
reference field at 3 GHz and the laser frequency of the output from both fiber loops.
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However, the acoustic optical modulator placed before the double ring introduces
a slight 110 MHz shift to the laser frequency, causing this deviation. Additionally,
an insignificant signature of beating is observed at k = 0 (3.1 GHz) as a bright
notch. The narrow spectral width of this signature, confined to a single pixel, does
not disrupt the measurement.

The 1.4 ns pulse injected into the double ring corresponds to a broad spectral re-
gion of 0.71 GHz in Fourier space. However, the observed window of the Brillouin
zone in Fig. 3.4 ranges from 2.93 GHz to 3.23 GHz on the horizontal axis, result-
ing in a narrower span of 0.31 GHz, which is half of the expected spectral width.
This discrepancy arises because the analyzed spectrum is the Fourier transform of
a stroboscopic spatiotemporal diagram, rather than the complete spatiotemporal
diagram. Thus, the fact that the observed window is exactly half of the expected
one confirms that the injected pulse fully excites the Brillouin zone.

From shot to shot, due to variations in laser wavelength and fiber length not
fully compensated by the piezo stabilization protocol, the band structure experi-
ences slight shifts. To address this, we employ a correlation technique to align the
measured calibration band structure with the analytical calibration dispersion re-
lation. Once the Brillouin zone window is established for the calibration shot, we
assume it remains the same for 10 ms (fluctuation timescale), providing sufficient
time to study the science shot, in which different values of the splitting angle and
phase modulators are engineered to study different topological properties of the
lattice. This approach is one of the reasons for designing the experiment with this
double injection protocol, as described in Section. 2.2.3. The correlation technique
is an essential step, as manually fine-center the Brillouin zone window for each
phase modulator value φ ∈ [−π, π] becomes impractical for constructing the two-
dimensional eigenvalue and eigenvector tomography, particularly when studying
topological properties (discussed in greater detail in Chapter. 4).

Note: This section outlines the method for extracting the band structure of the
calibration shot within the two-step model. In the four-step model, a similar ap-
proach is used. Specifically, the stroboscopic spatiotemporal diagram is obtained
by selecting either odd or even round trips every four turns and either odd or
even site positions. A 2D Fourier transform is then applied to this stroboscopic
spatiotemporal diagram to extract the band structure.

To sum up, utilizing a heterodyne method, we successfully measured the dis-
persion relation of the calibration shot in the two-step model during a single ac-
quisition. This method involved optical beating between the outputs of both fiber
loops and the local oscillator, resulting in oscillations within each pulse that encode
phase information. By rearranging the recorded time trace of the double ring’s im-
pulse response and applying a two-dimensional Fourier transform to the strobo-
scopic spatiotemporal diagram, we accessed the spectral information, revealing



3.2 measurement of eigenstates 71

the band structure that matches exactly the numerical and the analytical photonic
bands discussed in Chapter. 1. As we will demonstrate in the following section, ac-
cessing the spectral information enables not only the measurement of the photonic
band structure but also the determination of the system’s eigenstates.

3.2 Measurement of eigenstates

My PhD research builds upon the foundational work of the former PhD student
C. Lechevalier, who focused on measuring the eigenvalues and eigenvectors of a
double-ring system in his thesis [17]. His research laid the groundwork for my
doctoral study, which seeks to quantify specific topological properties. Leveraging
his methodologies, we now proceed to extract the eigenvectors from the power and
the phase of the spectral distribution. The method is first demonstrated through a
numerical simulation of the calibration shot within the two-step model, followed
by an application to experimental data.

3.2.1 Numerical eigenstate analysis

To extract the complex amplitudes of the eigenstates, we must accurately de-
termine their Floquet-Bloch eigenvalues from the quasienergy-quasimomentum
diagram derived from the measured spatiotemporal dynamics. We begin by con-
ducting a numerical simulation replicating the calibration shot within the two-step
model (θ = π/4, φ = 0), where a narrow pulse is injected into the long ring α.
For each quasimomentum k of the dispersion relation presented in α and β ring of
Figs. 3.5.a-b, respectively. We use the analytical band structure of equation. 1.21 cor-
responding to the two-step calibration shot as a reference [blue line in Figs. 3.5.a-b].
This reference allows us to locate the maximum intensity of the numerical bands
(|α̃±(k, E)|2 & |β̃±(k, E)|2) [cyan line in Figs. 3.5.a-b]. This identification is accom-
plished by scanning two pixels in quasienergy above and below the analytical
bands [yellow line, Figs. 3.5.a-b]. Other more general methods based exclusively
on the location of the maxima of intensity extracted from the experiment without
the use of the analytical expression are also successful.

Once the band’s maximum intensity is identified, we extract the eigenvectors
|ψ(k)±α ⟩ and

∣∣∣ψ(k)±β 〉 for each quasimomentum k within the upper (+) and lower
(−) bands of both rings α and β. This is achieved by taking the complex amp-
litude of the Fourier mode (α̃±(k, E(k)±) and β̃±(k, E(k)±)), where E(k)± denotes
the peak of the spectral energy density corresponding to the band’s maximum
intensity position [cyan line in Figs. 3.5.a-b].

The spectral phase distribution φ±
α (k) and φ±

β (k) in each ring α and β for the
upper and lower bands are showcased with blue and red lines, respectively, in
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Figure 3.5: Numerical simulation of the calibration shot. (a-b) Dispersion relation of the α
and β rings, respectively. For each ring, we present the following for both the
upper and lower bands: (c-d) The spectral phase distribution. (e-f) The spectral
power distribution. (g-h) The numerical (analytical) ratio of amplitude |R(k)|
in solid (dashed) red, along with the relative phase Φαβ in green (blue) line.

Figs. 3.5.c-d. The phase is determined by the argument of the Fourier mode at the
peak of each band’s spectral energy density along the k axis. This is expressed as:

φ±
α (k) = arg( α̃±(k, E±(k)) )

φ±
β (k) = arg( β̃±(k, E±(k)) )

(3.2)

The numerical spectral phase distributions within the long and short rings ex-
hibit nearly identical, yet not entirely equal behavior for the calibration shot, as
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illustrated in Figs. 3.5.c-d. However, the phase of the upper (blue) band is a mirror
image of the lower (red) band with respect to the k-axis.

Due to the finite number of points in the numerical simulation, the band in-
tensity along the quasimomentum k is not confined to a single pixel. Thus, the
measurement of the spectral power distribution (P±

α (k) & P±
β (k)) given by equa-

tion. 3.3 for each quasimomentum k involves integrating the identified maximum
intensity in quasienergy over a width of 2∆E, corresponding to two pixels below
and above the band’s peak [yellow line Figs. 3.5.a-b]. This integration also helps to
reduce noise in the measurement.

P±
α (k) =

1
2∆E

∫ E(k)±+∆E

E(k)±−∆E
|α̃±(k, E(k)±)|2dE

P±
β (k) =

1
2∆E

∫ E(k)±+∆E

E(k)±−∆E
|β̃±(k, E(k)±)|2dE

(3.3)

Figure. 3.5.a reveals asymmetric population in the upper (lower) bands of the
α ring when a single site is excited in the long ring at round trip m = 0. This
asymmetry is apparent in the normalized power distribution shown in Fig. 3.5.e,
where the blue (red) curves for the upper (lower) band are concentrated on the
negative (positive) side of the k axis. In contrast, the symmetrical population of
modes observed in the upper (lower) bands of the β ring, depicted in Fig. 3.5.b,
results in a symmetrical normalized power distribution around k = 0 in Fig. 3.5.f,
with blue (red) curves for the upper (lower) band. The normalization is performed
relative to the long loop in both Fig. 3.5.e and Fig. 3.5.f.

Once the power and the phase of spectral distribution are obtained, the nu-
merical eigenstates of a specific band structure corresponding to the analytical
normalized eigenvectors |ψ±(k)⟩formula of the two-step model in equation. 1.22
and 1.23 (see Appendix. A) are straightforward established by the ratio of amp-
litudes |R(k)±| = P±

β (k)/P±
α (k), and Φ±

αβ(k) = φ±
β (k) − φ±

α (k), denoting the rel-
ative phase between the two sublattice sites associated with the eigenvector with
quasimomentum k within the first Brillouin zone. Figures. 3.5.g and 3.5.h demon-
strate a good agreement between the numerical and analytical eigenstates |ψ(k)±⟩
for the upper and lower bands, respectively. The numerical (analytical) amplitude
ratio |R(k)±| is represented by solid (dashed) red lines, while the numerical (ana-
lytical) relative phase Φ(k)±αβ is depicted by straight, increasing lines in green (blue)
from −π/2 → π/2 across the Brillouin zone.

A minor difference between the analytical and the numerical results is observed,
attributable to the finite time step resolution of the simulation. To enhance the
agreement, increasing the number of time steps and expanding the integration
region ∆E for spectral power is necessary.
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Note: The maximum intensity of the numerical bands for the two-step model’s
calibration shot was identified by scanning in quasienergy around the analytical
bands defined in equation 1.21. This approach can also be extended to the four-
step model, where the analytical bands defined by equation 1.26, corresponding to
the nominal splitting angle and external phase modulator, serve as a reference to
locate the maxima of the numerical bands for both calibration and science shots.
Thus, for each scenario, we apply the relevant analytical band structure.

3.2.2 Experimental eigenstate analysis

In the preceding subsection, we detailed the extraction of the eigenstate from
a numerical simulation replicating the calibration process. We will now apply the
same methodology to the experimental calibration shot to extract the correspond-
ing experimental eigenstate, as illustrated in Fig. 3.6.

Figures. 3.6.a and 3.6.b illustrate the normalized dispersion relation from the
experimental two-step model calibration shot, when a narrow pulse is intro-
duced into the long ring α. The corresponding analytical dispersion relation (blue
line) shows excellent agreement with the experimental band structure. Consist-
ent with previous methodologies in Subsection. 3.2.1, the analytic bands are util-
ized as a reference to pinpoint the maximum intensity of the experimental bands
(|α̃±(k, E)|2 & |β̃±(k, E)|2) [cyan line in Fig. 3.6.a-b]. This process involves scan-
ning two pixels in quasienergy above and below the analytic bands [yellow line,
Figs. 3.6.a-b].

The spectral phase distribution φ±
α (k) and φ±

β (k) for each of the extracted eigen-

vector |ψ(k)±α ⟩ and
∣∣∣ψ(k)±β 〉 of the α and β ring, across both the upper and lower

bands, are illustrated in blue and red in Figs. 3.6.c-d, respectively. A comparison
of the numerical phase distribution shown in Figs. 3.5.c-d with the experimental
phase presented in Figs. 3.6.c-d reveals a good resemblance between the two. How-
ever, for even greater accuracy, one could utilize heterodyne measurements with
a higher frequency beating, such as 10 GHz, as demonstrated in the work of C.
Lechevalier [17], combined with a higher resolution oscilloscope with a 65 GHz
bandwidth.

Figures. 3.6.e and 3.6.f showcase the power distributions P±
α (k) and P±

β (k) for
the α and β rings, respectively, across both the upper and lower bands, repres-
ented by blue and red lines. The experimental power distribution in Figs. 3.6.e-f
deviates from the simulated one Figs. 3.5.e-f and exhibits a noisy profile due to
several factors. Firstly, this disparity arises from the imperfect replication of the
simulation’s sharply defined initial conditions in the experiment. Unlike the sim-
ulation’s precise square pulse with sharp edges, the experimentally injected pulse
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Figure 3.6: Experimental calibration shot. (a-b) Dispersion relation of the α and β rings,
respectively. For each ring, we present the following for both the upper and
lower bands: (c-d) the spectral phase distribution. (e-f) the spectral power dis-
tribution. (g-h) the experimental (analytical) ratio of amplitude |R(k)| in solid
(dashed) red, along with the relative phase Φαβ in green (blue) line.

possesses a certain width with less defined edges and an uncontrolled phase pro-
file. Secondly, the spectral power distribution across both the upper and lower
bands at k = ±π shows a sharp peak in Figs. 3.6.e-f. This is due to the band
structure intersecting the Brillouin zone boundary at points (k, E) = (±π,±π),
as depicted in Figs. 3.6.a-b. This intersection limits our ability to integrate the ex-
perimental power distribution, as two pixels in quasienergy above and below the
analytical bands 2∆E exceed the matrix size [yellow line in Figs. 3.6.a-b]. Lastly, the
narrow peak observed at k = 0π in the spectral power is attributable to the local
oscillator, which manifests as a bright spot on the experimental band structure in
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each ring, as shown in Figs. 3.6.a-b. This disturbance has a relatively minor impact
on the overall measurement data.

Regarding the discrepancies in spectral power distribution between the experi-
mental and simulated data, as well as the limited resolution of the spectral phase,
the experimental eigenstate is effectively characterized by the magnitude amp-
litude ratio |R(k)±| and the relative phase Φ±

αβ(k). Figures. 3.6.g and 3.6.h illustrate
that the experimental amplitude ratio (red solid line) and the relative phase (green
line) for the upper and lower bands, respectively, closely match the analytical amp-
litude ratio (red dashed line) and the relative phase (blue line).

Despite the active locking of the length of the rings, the phase profile of the
light field within the double-ring system exhibits variations from shot to shot due
to minor differences in the lengths of the fiber components in the experiment. One
effective method to address the issue is to precisely align the relative phase to a
reference value, as we will discuss now.

The experimental and analytical relative phase associated with the upper
band, as shown in Fig. 3.6.g, follows a well-defined linear distribution given by
Φ+

αβ(k) = k/2 across all quasimomentum values k. For each measured calibration
shot, we precisely align the upper band experimental relative phase Φ+

αβ(k = −π)

to −π/2 via a correlation comparison algorithm with the analytical relative phase.
In other words, we introduce an offset to all the measured phase difference values
to ensure that the measured phase difference aligns as closely as possible with
the analytically expected relative phase, forming a straight, increasing line from
−π/2 to π/2 across the Brillouin zone. When processing the science part of the
recorded time trace, we apply the phase rigid shift found in the calibration shot to
the science shot. This ensures an unambiguous phase reference for the measured
Φαβ(k) in the science bands. This process is essential for accurately characterizing
the two-dimensional relative phase Φαβ(k, φ) in the science shots, which requires
developing a tomography along the second parametric dimension, the phase mod-
ulator φ, by conducting separate measurements for different values of φ ∈ [−π, π].
To ensure consistency in the values of Φαβ(k, φ) across different φ, it is critical
to use the calibration shot phase as a reference. This necessity underscores the
importance of the double-injection protocol in our experimental design.

In summary, despite the slight disparity in the spectral power distribution
between the experimental and simulated data, as well as the limited resolution
of the spectral phase, we successfully extracted the experimental eigenstate and
confirmed its close agreement with theoretical predictions.
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3.3 Conclusion

Chapter. 3.1 demonstrates a novel technique for comprehensively characterizing
the eigenvalues and eigenvectors. This method was initially been proposed by
A.M. Tikan for measuring the dispersion relation [143], and it has been successfully
implemented for the first time by C. Lechevalier [17, 118].

Our heterodyne approach enables the efficient acquisition of the double-ring
system’s dispersion relation within a single measurement. By encoding phase in-
formation within each pulse through optical beating between the local oscillator
reference field and the outputs of both fiber loops. Subsequently, by rearranging
the impulse response’s recorded time trace and applying a two-dimensional Four-
ier transform to the stroboscopic spatiotemporal diagram, we obtained the band
structure that accurately matches the numerical and analytical dispersion relations
discussed in (Chapter. 1).

Furthermore, despite the spectral power distribution limitation and the spec-
tral phase resolution, we successfully extracted the experimental eigenstate and
confirmed its close agreement with theoretical results. Finally, the extracted ei-
genvector tomography enables the quantification of topological properties such
as Berry curvature and Chern number, which will be the main focus of the next
chapter.





4
B U L K T O P O L O G I C A L P R O P E RT I E S O F
T H E T W O - S T E P M O D E L

Having explored the eigenvalue and the eigenvector extraction in the preceding
chapter, we now turn our attention to quantifying the bulk topological invariants
of the two-step model, such as the Chern number from the measured eigenvector
tomography data. Furthermore, we investigate the extraction of the topological
charge at the band structure gap-closing points during a topological phase trans-
itions between distinct regions of the two-step model phase diagram.

4.1 Computing the Berry curvature

Since the discovery of topological phases of matter, the direct measurement
of topological invariants in lattice systems has been one of the most difficult ex-
perimental challenges. Synthetic systems have opened the possibility of directly
measuring the topological invariants in engineered lattices from bulk observables.
In one dimension, it has been possible to measure the Zak phase using a lattice
for cold atoms [144] and the dipolar displacements in photonic systems [145–148],
which are directly related to the bulk invariants. In two dimensions, the Berry
curvature (BC) has been determined in lattices of ultracold atoms and in time-
multiplexed photonic lattices by measuring the anomalous velocity of a wave-
packet adiabatically accelerated across the Brillouin zone [89, 149–151], as previ-
ously discussed in Section. 1.4.1, and illustrated in Fig. 1.22.

Berry curvature is related to the geometric phase acquired by a quantum state
when external parameters are varied. It is analogous to the effect of a magnetic
field on a particle moving in a closed trajectory, where the particle gains a phase
proportional to the magnetic flux [152, 153]. In Chapter. 1, Section. 1.1.3, we in-
troduced the Berry curvature as a geometric phase of the two-dimensional band
structure, defined by the curl of the Berry connection, ∇k⃗ × A(⃗k)n, where A(k) is
a function of the eigenvectors. To circumvent the challenges posed by the deriv-
atives of the eigenvector field, which can be particularly noisy in experimental
conditions, we adopt an alternative approach for calculating the Berry curvature
of a specific two-dimensional photonic band. This method leverages the natural
discretization of the Brillouin zone inherent in the experimental data to extract

79
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|Ψ>3

Dispersion relation

Figure 4.1: Discretization of the two dimensions dispersion relation over the Brillouin zone
to compute the Berry curvature.

the Berry curvature (BC). This is achieved by computing the product of the eigen-
vectors at the four corners of a square within the discretized Brillouin zone [154],
as detailed in equation. 4.1 and visualized in Fig. 4.1.

BC = −Im log [⟨ψ1|ψ2⟩⟨ψ2|ψ3⟩⟨ψ3|ψ4⟩⟨ψ4|ψ1⟩]. (4.1)

Shiing-Shen Chern introduced in mathematics in the mid-XXth century the
concept of the Chern number, a topological invariant that characterizes the topo-
logy of a vector field. These concepts were brought into solid-state physics in the
1980s by Thouless, Kohmoto, den Nijs, and Nightingale to describe the topological
invariants associated with the energy bands of a two-dimensional electron gas,
which result in a surprisingly robust quantization of transport in the quantum
Hall effect [155, 156]. Later, these ideas were extended to topological insulators
based on the quantum spin Hall effect [157, 158]. The Chern number of a band n
is computed by integrating the Berry curvature over the entire Brillouin zone.

Cn =
1

2π

∫
BZ

BC d⃗kx d⃗ky. (4.2)

4.2 Two-step model bulk topological invariants

We begin this section with a brief overview of the two-step model, previously
discussed in Section. 1.3.1 of Chapter. 1. Subsequently, we present numerical and
experimental measurements of bulk topological invariants (Berry curvature and
Chern number)
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Figure 4.2: (a) A synthetic split-step lattice demonstrating a two-step periodic modulation
of the beam splitter’s coupling angle, alternating between θ1 and θ2, and the
phase modulator’s applied phase φ, switching between +φ and −φ at odd and
even time steps, the unit cell holds two sublattices αm

n−1 and βm
n−1 is presented

in a dashed red square. (b) Two-step model phase diagram that features two
distinct gapped phases, presented in white and orange.

In the two-step model, the coupling angle θ and the phase modulator φ demon-
strate cyclic behavior, each alternating between two distinct values at subsequent
time steps within a single Floquet period. The coupling angle alternates between
two values, θ1 and θ2, and the phase modulator between φ1 = +φ and φ2 = −φ at
odd and even time steps, as illustrated in the synthetic split-step lattice in Fig. 4.2.a.
As a result, Fig. 4.2.b showcases the two-step model phase diagram that features
two distinct gapped phases presented in white and orange. These phases are sep-
arated by black lines, which indicate the simultaneous closure of the 0- and π-gaps.
This occurs when θ1 ± θ2 = nπ, with n ∈ Z.

The two-step model exhibits double periodicity: spatial (every two sites n) and
temporal (every two-time steps m), as shown by the unit cell (red dashed square)
in Fig. 4.2.a. The normalized eigenvectors |ψ±(k)⟩ and their corresponding eigen-
values E±(k) are defined by equations. 4.3, 4.4 and 4.5 (details in Appendix. A).

∣∣ψ±(k)
〉
=

(
α̃(k)

β̃(k)

)±

=
1√

1 + |R±|2

(
1

|R±|eiΦ±
αβ

)
(4.3)

R(k)± = |R±|eiΦ±
αβ =

[eiE(k)± − cos θ2 cos θ1e−ikei(φ1+φ2) + sin θ2 sin θ1eiφ2 ]

[i cos θ2 sin θ1e−ikei(φ1+φ2) + i sin θ2 cos θ1eiφ2 ]
(4.4)
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Figure 4.3: Analytical results of the two-step model for (θ1, θ2) = (0.3, 0.2)π. The first and
second rows display the upper and lower 2D eigenvalues, respectively, along
with their corresponding amplitude ratios in (b) and (f), relative phases in (c)
and (g), and Berry curvatures with trivial Chern numbers in (d) and (h).

E±(k, φ1, φ2, θ1, θ2) = ± cos−1[ cos θ2 cos θ1 cos
(

φ1 + φ2

2
− k
)

− sin θ2 sin θ1 cos
(

φ1 − φ2

2

)
] +

φ1 + φ2

2
(4.5)

Figure. 4.3 displays the analytical solutions of the two-step model, for a set of
coupling angles (θ1, θ2) = (0.3, 0.2)π and a phase modulator value φ ∈ [−π, π].
The first and second rows present the upper and lower eigenvalues, as described
by equation. 4.5, respectively. These are accompanied by their corresponding ei-
genvectors, as given by equation. 4.4, Berry curvature as defined by equation. 4.1,
and the Chern number obtained from equation. 4.2. Figures. 4.3.b-c characterize
the two-dimensional eigenvectors through the amplitude ratio |R|+ and the relat-
ive phase Φ+

αβ, respectively, of the upper band, as indicated by the red arrow in the
dispersion relation in Fig. 4.3.a. The values of |R|+ exhibit a dipole shape, with a
high weight in the upper-left corner of the Brillouin zone and a low weight in the
lower-right corner. Interestingly, the relative phase Φ+

αβ winds between 0 and 2π

along the k direction. In contrast, Figs. 4.3.f-g characterize the amplitude ratio |R|−
and the relative phase Φ−

αβ, respectively, of the lower band, as indicated by the red
arrow in the dispersion relation in Fig. 4.3.e. The values of |R|− exhibit a dipole
shape that is opposite to that of the upper band.

Upon fully characterizing the eigenvectors via the amplitude ratio |R| and the
relative phase Φαβ, we can readily discern the Berry curvature for the upper band
at each point of the Brillouin zone using the formula in equation. 4.1. This is
demonstrated in Fig. 4.3.d, where strong positive and negative Berry curvature,
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Figure 4.4: Experimental measurements replicating the numerical simulation of Fig. 4.3.

shown in red and blue, is evident around the gap-closing points at energy 0 and
π, located at (k, φ) = (0,±π) and (k, φ) = (±π, 0), respectively. For clearer visu-
alization, Fig. 4.3.a and 4.3.e overlays in colors the Berry curvature of the upper
(Fig. 4.3.d) and lower band (Fig. 4.3.h) on their corresponding band structures,
highlighting the increased concentration of positive and negative Berry curvature
as the bands approach each other. A similar analysis of the lower band reveals a
Berry curvature distribution opposite in sign to that of the upper band, as illus-
trated in Fig. 4.3.h. The Chern number is derived by simply integrating the Berry
curvature over the Brillouin zone, which equals zero.

Figure. 4.4 presents experimental measurements that closely replicate the nu-
merical simulations shown in Fig. 4.3, utilizing identical parameters. In the simu-
lations, the dipole-shaped weight values of the two-dimensional amplitude ratio
|R|± span a logarithmic scale from [-3.7, 3.7] for both the upper and lower bands,
as illustrated in Figs. 4.3.b and 4.3.f. However, the experimental amplitude ratio re-
veals a more constrained range of [-1.6, 1.6], as depicted in Figs. 4.4.b and 4.4.f. This
discrepancy arises from the smoothing method that may alter the amplitude ratio
weighting, along with the white noise of the electronic devices and light disturb-
ances. Despite this, a comparison of the analytical and experimental results across
Figs. 4.3 and 4.4 demonstrate a strong correspondence in the two-dimensional ei-
genvalues E(k, φ)±, amplitude ratio (R±), relative phase (Φ±

αβ), Berry curvature
(BC±), and Chern number (C±), indicating an excellent agreement between theory
and experiment.

To achieve a more accurate measurement of the Berry curvature with reduced
fluctuations and noise, we average the measured eigenvector data over five to ten
experimental repetitions for each value of the phase modulator φ. This averaging
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is performed within the two-dimensional amplitude ratio R(k, φ) and the relat-
ive phase Φαβ(k, φ) tomography. To further enhance data smoothness, we apply
Gaussian averaging using Matlab’s ’smoothdata’ function (refer to Appendix. D).

4.3 Topological charge associated with the phase trans-
ition

The two-step model phase diagram exhibits two distinct gapped phases. A
transition between these gapped phases requires the closing and reopening of at
least one energy gap. As we will see below, this transition is described by the topo-
logical charge Q, which is associated with the singularities in the quasi-energies at
the gap-closing points. In this section, we present both numerical and experimental
measurements of the topological charge corresponding to these singularities dur-
ing the phase transition.

4.3.1 Phase transition

Figure 4.5.f presents the phase diagram of the two-step model, highlighting five
points (a, b, c, d, and e). Points (a) and (b), located within the white region, corres-
pond to coupling angles (θ1, θ2) = (0.16, 0.34)π and (0.2, 0.3)π, respectively. Point
(c) lies at the boundary between the white and orange regions, with a splitting
angle set of (θ1, θ2) = (0.25, 0.25)π. In the orange region, points (d) and (e) are
positioned at (θ1, θ2) = (0.3, 0.2)π and (0.34, 0.16)π, respectively. The transition
under analysis involves the smooth tuning of coupling parameters from point (a)
in the white region to point (e) in the orange region.

The upper panels in Figs. 4.5.a-e show the measured two-dimensional quasien-
ergy bands that correspond to the five different points (a, b, c, d, and e) in the
phase diagram in panel (f), respectively. Figure. 4.5.a reveals two distinct energy
gaps centered around E = 0 and E = π. By smoothly tuning the coupling para-
meters until they reach (θ1, θ2) = (0.25, 0.25)π, the two bands start to converge
until they intersect. At this point, both the middle and upper gaps close simul-
taneously at the gap-closing points Mφ and Mk, located at (k, φ) = (0,±π) and
(k, φ) = (±π, 0), respectively, as depicted in Fig. 4.5.c. Subsequently, the energy
gap reopens in the orange phase. As the splitting angles set (θ1, θ2) deviates fur-
ther from the black line representing the boundary between the two regions, the
band structure progressively flattens, leading to an increase in the energy gap, as
demonstrated in Figs. 4.5.d-e.

The second and third panels in Figs. 4.5.a-e present the measured tomography
of the eigenvectors of the upper band through the measured ratio of amplitudes |R|
and phase difference Φαβ between the two sublattices for each point in the Brillouin
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Figure 4.5: (a)-(b) Measured bands, ratio of amplitudes |R|, and phase difference Φαβ of
the sublattice components of the upper band eigenvectors in the white phase
in panel (f): (a) (θ1, θ2) = (0.16, 0.34)π; (b) (θ1, θ2) = (0.2, 0.3)π. The color
code in the uppermost panels depicts the measured value of |R| in log scale.
The lowermost panels display the measured Berry curvature of the upper
band. (c) Measured bands at the point where the E = 0 and E = π gaps
close (θ1 = θ2 = 0.25π). (d)-(e) Same as (a)-(b) for (θ1, θ2) = (0.3, 0.2)π and
(θ1, θ2) = (0.34, 0.16)π, respectively, in the orange phase. (f) Phase diagram of
the system as a function of the splitting angles θ1 and θ2. Black lines indicate
the simultaneous closure of the 0- and π-gaps, which happens for θ1 ± θ2 = nπ,
with n ∈ Z.

zone. The values of |R| exhibit a dipole shape, with eigenvectors possessing a high
weight in the β sublattice in the upper left corner of the Brillouin zone and a low
weight in the lower right corner. As the set of the coupling angle approaches the
boundary, the dipole weight value increases. Interestingly, within the white region
(panels (a)-(b)), the relative phase Φαβ winds along the φ direction, while in the
orange phase corresponding to panels (d)-(e), it winds along the k direction. The
difference in the winding of the sublattice phase between the two regions is directly
linked to the presence of edge states for specific edge realizations, as we will see
in Chapter. 5.

The lower panels of Fig. 4.5 depict the measured Berry curvature for the upper
band in panels (a)-(b) and (d)-(e). We observe that the Berry curvature around the
gap-closing points Mφ and Mk at (k, φ) = (0,±π) and (k, φ) = (±π, 0), respect-
ively, intensifies as the set of coupling angles (θ1, θ2) approaches the boundary in
the phase diagram, as indicated by the blue points in Fig.4.5.f. Additionally, upon
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Figure 4.6: Analytical eigenvalues (top row), and the relative amplitude and phase dif-
ference between the two sublattices for the eigenvectors corresponding to the
upper band under the same conditions of Fig. 4.5. The bottom row displays the
Berry curvature computed from the analytic eigenvalues.

crossing the gap-closing transition, the Berry curvature exhibits a sign change, as
depicted in panels (b) and (d). Conversely, the Berry curvature is not defined at
the gap-closing point. The measured Chern number is approximately zero in all
cases, with values of -0.01 in (a), 0.02 in (b), 0.01 in (d), and 0.00 in (e).

Figure. 4.6 presents the analytical values given by equations. 4.1, 4.4 and 4.5 that
accurately replicate the experimental measurements shown in Fig. 4.5. Addition-
ally, the analytical results reveal a Chern number of zero across all regions of the
phase diagram for coupling angles θ ∈ [−π, π]. However, our experimental invest-
igations were constrained to a narrower range of coupling angle θ ∈ [0, π/2], due
to limitations in the amplification voltage as previously explained in Chapter. 2.

Despite the zero Chern number in both phases (white and orange), the change
of sign of the Berry curvature around the gap-closing points Mφ and Mk across the
gap-closing transition in Figs. 4.5 and 4.6 is a direct manifestation of the topological
nature of this transition between two distinct regions. This feature is captured by
the topological charge, which we will explore in the next subsection.
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4.3.2 Topological charge
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Figure 4.7: (a) Topological phase diagram showing six distinct points across two regions.
(b) Cuboid in parameter space (k, φ, λ), where λ tracks the evolution of the
splitting amplitudes θ1 and θ2 during the phase transition. (c) Numerical simu-
lation of the Berry curvature at (θ1, θ2) = (0.14, 0.36). (d) Transversal Berry flux
at face 5 of the cuboid. (e) Shifted version of (d) along the φ axis. (f) Lateral
Berry flux through faces 1-4. (g-j) Corresponding tomography of panels (c-f),
illustrating the variation of parameters (θ1, θ2) across the phase transition from
the upper side (5) to the lower side (6) of the cuboid.

During a phase transition, the topological charge Qµ associated with a specific
band (upper or lower) is determined by summing the Berry flux Bλ

µ outgoing from
each face of the cuboid that surrounds the gap-closing point µ of the quasi-energies
[89, 159], as shown in Fig. 4.7.b and given by equation. 4.6. In analogy with the
Chern number, the Berry flux defined by equation. 4.7 describes the integral of
the Berry curvature over a surface in parameter space, while the Chern number
accounts for the entire Brillouin zone.

Qµ =
6

∑
i=1

BFace i
µ (4.6)

Bλ
µ =

∫
S

BC dS (4.7)
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The cuboid is centered at the band touching singularity at the phase transition,
spans a part of quasimomentum space (k, φ), and consists of two transversal faces
(5 and 6) along with four lateral faces (1-4). The third dimension, λ = (θ1, θ2),
captures the evolution of the splitting amplitude angles as the system transitions
from Phase I at layer 5 of the cuboid to Phase II at layer 6. The outgoing transversal
Berry flux through faces 5 (upper) and 6 (lower) of the cuboid in Fig. 4.7.b can be
directly extracted from the integration of the Berry curvature around the high
symmetry point Mφ or Mk, at which the band touching point takes place.

The Berry flux through the lateral faces (1-4) represents the border of the extrac-
ted transversal Berry flux and can be neglected if ∆λ is sufficiently small, that is,
if the Berry curvature in momentum space is measured at points sufficiently close
to the phase transition. In such a scenario, the topological charge at the µ gap can
be expressed as follows:

Qµ = BFace 5
µ + BFace 6

µ = BPhase I
µ − BPhase I I

µ (4.8)

The prefactor -1 before the term BPhase I I
µ in equation. 4.8 comes from the fact that

we evaluate the flux exiting the cuboid through the lower face, which is opposite
to the orientation of the λ axis. Therefore, the topological charge is determined
by evaluating the difference between the Berry flux Bλ

µ just before (Phase I) and
just after (Phase II) the phase transition, surrounding the gap-closing point µ. This
topological charge Qµ thus corresponds to a local Chern number, which is differ-
ent from the band Chern number obtained from the Berry flux through the first
Brillouin zone, which vanishes here. For the other band, the topological charge
associated with the gap-closing transition has an opposite sign.

To gain a better understanding of the transversal and lateral Berry flux, we will
now consider a simple numerical simulation. Imagine a transition from a red point
in Phase I at coordinates (θ1, θ2)= (0.14, 0.36) to another red point in Phase II at
(0.36, 0.14), as shown in Fig. 4.7.a. Along this path, we can pick six distinct points
located at [(0.14, 0.36), (0.17, 0.33), (0.2, 0.3), (0.3, 0.2), (0.33, 0.17), and (0.14, 0.36)].
The initial point (0.14, 0.36) in Phase I corresponds to the upper face (5) of the
cuboid, while the final point of the phase transition represents the lower face (6).
The Berry curvature of the initial point is presented in Fig. 4.7.c. By diving The
Berry curvature along the first Brillouin zone into four regions, as depicted by the
black lines in Fig. 4.7.c and extracting only the Berry flux surrounding one of the
gap-closing points, in this example, we select the gap-closing point Mφ, located at
(k, φ) = (±π, 0), we obtain the transversal Berry flux at layer 5 of the cuboid, as
depicted in Fig. 4.7.d. To enhance visualization, Fig. 4.7.e presents a shifted version
of Fig. 4.7.d along the φ direction from [−π, π] to [0, 2π]. The lateral Berry flux
outgoing throughout the faces (1-4) is derived from the border of the transversal
Berry flux at layer 5, as highlighted in Fig. 4.7.f.
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Figure 4.8: Measured (upper panels) and analytically (lower panels) computed Berry
curvature for the upper band at points in the phase diagram displayed in
Fig. 4.5.f. Each Berry curvature is divided into four regions, the numbers in
each quadrant show the integrated Berry curvature in the quadrant.

By applying the same procedure to each of the six points corresponding to a
specific splitting amplitude (θ1, θ2), the Berry curvature tomography is visualized
as a 3D representation in parameter space (k, φ, λ), as depicted in Fig. 4.7.g. This
is achieved by varying the parameters (θ1, θ2) across the phase transition from the
upper face (5) to the lower face (6) of the cuboid, while stacking the Berry curvature
associated with each point. Subsequently, the transversal Berry flux tomography
was constructed by extracting the Berry flux surrounding the gap-closing points
Mφ, as demonstrated in Fig. 4.7.h and the shifted version in Fig. 4.7.i. Finally,
the outgoing flux through the lateral faces (1-4) of the cuboid, as displayed in
Fig. 4.7.j, is deduced by smoothly varying the set of coupling angles (θ1, θ2) from
(0.14, 0.36)π to (0.36, 0.14)π across 100 intermediate points. The evaluated Berry
flux through each of the lateral faces is zero.

Having analyzed the phase transitions, and the outgoing flux through the
cuboid, we can now proceed to measure experimentally and analytically the to-
pological charge Qµ at the gap-closing points Mφ and Mk. Figure. 4.8 upper and
lower panels present the experimental and analytical Berry curvature across the
phase transition, corresponding to the earlier results presented in the lower panels
of Fig. 4.5 and Fig. 4.6, respectively.

To determine the topological charge at the µ = 0 gap, we divide the Brillouin
zone into four regions as indicated by the dashed lines in Fig. 4.8 and integrate the



90 bulk topological properties of the two-step model

C3= 0.24

C1= 0.23

C2= -0.25 C4= -0.22

C3= 0.16

C1= 0.13

C2= -0.14 C4= -0.15

C3= 0.2

C1= -0.2

C2= -0.2 C4= -0.2

C3= -0.18

C1= -0.15

C2= 0.16 C4= 0.17

C3= -0.2

C1= -0.2

C2= 0.2 C4= 0.2

C3= -0.15

C1= -0.12

C2= 0.13 C4= 0.14

C3= -0.16

C1= -0.16

C2= 0.16 C4= 0.16

θ =0.2π  θ =0.3π1 2 θ =0.3π  θ =0.2π1 2θ =0.16π  θ =0.34π1 2 θ =0.34π  θ =0.16π1 2

kM

φM Г

C3= 0.16

C1= 0.16

C2= -0.16 C4= -0.16

E
xp

er
im

en
ta

l
T

he
or

et
ic

al

(a) (b) (c) (d)

(e) (f) (g) (h)

Lower band Berry curvature

Figure 4.9: Measured (upper panels) and analytically (lower panels) computed Berry
curvature for the lower band at points in the phase diagram displayed in
Fig. 4.5.f. Each Berry curvature is divided into four regions, the numbers in
each quadrant show the integrated Berry curvature in the quadrant.

measured Berry curvature over regions 2 and 4, which surround the Mφ point. The
white region side (Phase I) in Fig. 4.5.f corresponds to the upper face of the cuboid.
Close to the phase transition, the outgoing Berry flux is BPhase I

µ=0 = (C2 +C4) = 0.46
as depicted in Fig. 4.8.b. At the orange side (Phase II) depicted in Fig. 4.8.c,
BPhase I I

µ=0 = −0.31. The total measured flux is BPhase I
µ=0 − BPhase I I

µ=0 = 0.77, close to
the value of 0.80 computed from the analytic eigenvectors and represented in
Figs. 4.8.f-g. The expected value of the topological charge is 1. Nevertheless, the
analytic Berry flux through the lateral faces is zero (see Fig. 4.7.j). Therefore, the
difference with the measured values stems from the spread of the Berry curvature
associated with the Mφ point at finite gap sizes. By studying the Berry flux at
points closer to the phase transition, analytic calculations show that the value of
Qµ=0 extracted from the Berry flux approaches 1. To study a situation with a smal-
ler gap, experimentally we are limited by the resolution of the quasienergy bands,
which is given by the number of accessible round trips (66 in our case).

Similar to the µ = 0 gap, we can calculate the Berry flux around the gap-closing
point for µ = π. To maintain consistent sign conventions, we must evaluate the
Berry flux on the lower band around the Mk point at (k, φ) = (±π, 0). Our experi-
mental measurements, obtained by integrating the measured Berry curvature over
regions 1 and 3, yielded BPhase I

µ=π − BPhase I I
µ=π = (0.24 + 0.23)− (−0.18 − 0.15) = 0.80

(Figs. 4.9.b-c). This value aligns perfectly with the theoretical value of 0.80 com-
puted from the analytic eigenvectors (Figs. 4.9.f-g). While the measured Berry
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fluxes may deviate slightly from the ideal value of 1 for the topological charge
at the transition, they are significantly different from zero, allowing for definitive
identification of the topological nature of the phase transition.

A similar analysis was recently done in an ultracold atoms experiment imple-
menting a two-band, two-dimensional lattice subject to periodic shaking [89]. In
that case, the studied topological phases involved phase transitions with the clos-
ure of a single gap at a time, and a change of the number of edge states in that
specific gap through the transition. To determine the topological charge related to
the gap-closing singularity, the Berry flux was computed across the whole Brillouin
zone, that is, via the change of Chern number in the bands across the transition. In
our case, both gaps close and open simultaneously, and the Chern number of the
bands is zero in all topological regions. Our study shows that a local analysis of
the Berry flux around each gap closing point allows an accurate characterization
of the local topological charge.

In this section, we investigated the topological phase transition between two
distinct gapped topological phases by smoothly adjusting the splitting angles θ1

and θ2. A topological phase transition between gapped phases requires the closing
and reopening of at least one energy gap. We characterized this transition using the
topological charge Qµ, which we determined by calculating the difference between
the outgoing Berry flux just before and after the gap-closing point.

4.4 Interface State

The non-trivial topological charge is a direct consequence of the Berry curvature
changing sign locally at the gap-closing points in quasimomentum space. This to-
pological property manifests the emergence of an interface state when lattices in
the two different topological regions are pasted together, as depicted in Fig. 4.10.b.
We implement a lattice with two different spatial regions by engineering the split-
ting angle properly on either side of the boundary [160]. Figure. 4.10.b shows
a sketch of the employed lattice: the left part belongs to the white phase with
(θ1, θ2) = (0.2, 0.3)π (red dot in Fig. 4.10.a), while the right part belongs to the
orange phase with (θ1, θ2) = (0.3, 0.2)π (Blue dot in Fig. 4.10.a). By precisely
injecting an initial pulse at the interface site of the long ring α and setting the
phase modulator to φ = π, numerical simulations reveal that a portion of the light
remains localized at the interface in both the long and short rings, as shown in
Figs. 4.10.c and 4.10.g, respectively. Figures. 4.10.d and 4.10.h present the corres-
ponding stroboscopic spatiotemporal diagrams for panels (c) and (g), respectively,
by considering only odd site positions (n) and round trips (m).

Applying a two-dimensional Fourier transform to Figs. 4.10.d and 4.10.h, the
dispersion relation is uncovered, displaying a localized state at energy 0, as de-
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Figure 4.10: Numerical simulations. (a) A two-step model phase diagram illustrating two
distinct topological regions, with a red dot in the white region at (θ1, θ2) =
(0.2, 0.3)π and a blue dot in the orange region at (θ1, θ2) = (0.3, 0.2)π. (b)
A custom-designed synthetic photonic lattice with a specific splitting angle,
created by merging two different topological regions. (c)-(g) Spatiotemporal
dynamics of the long and short rings, respectively. (d) and (h) Corresponding
stroboscopic spatiotemporal diagrams of panels (c) and (g). (e) and (i) Two-
dimensional Fourier transforms of panels (d) and (h), revealing the dispersion
relation with a localized state at energy level 0. (f) and (j) Band structure
tomography when scanning φ from −π to π.

picted in Figs. 4.10.e and 4.10.i. Due to the non-periodic modulation along the
horizontal axis, representing the lattice site (n) in Fig. 4.10.b, the unit cell presen-
ted previously by a red dashed line in Fig. 4.2 is no longer defined. The typical
quasi-momentum (k) and quasi-energy (E) axes associated with the dispersion re-
lation are replaced with frequency axes, as illustrated by the blue frequency axes in
Figs. 4.10.e and 4.10.i. To simulate the band along these frequency axes, a new nu-
merical simulation strategy was employed by modulating the absolute amplitude
of the pulse described in the equation. 1.19 with a 3 GHz reference field. This ac-
curately replicates the experimental heterodyne procedure, which consisted of two
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Figure 4.11: Experiments. (a) Measured step walk when exciting a single site at the inter-
face between a lattice in the white region (θ1, θ2) = (0.2, 0.3)π and a lattice in
the orange region (θ1, θ2) = (0.3, 0.2)π for φ = π. (b) Measured band struc-
ture as a function of φ showing an interface state traversing both gaps. (c) and
(d) Numerical simulation of equation. 1.12 in the conditions of the experiment.

sequential numerical shots: a calibration shot and a science shot. By identifying
the excited spectral regions within specific frequency windows, corresponding to
the numerically calibrated bands, we were able to effectively analyze the interface
scenario. This approach is identical to the technique used to extract the measured
eigenvalues in Chapter. 3.

The subsequent results in Figs. 4.10.e and 4.10.i correspond to a specific phase
modulator value. To provide a complete view of the edge state, we repeat the same
numerical computation for all the phase modulator values φ from −π to π while
maintaining the injection at the interface. By stacking the resulting band structures
for each value of φ, we obtain the band tomography shown in Figs. 4.10.f and 4.10.j.
Each gap is crossed by a single band of interface states, exhibiting a group velocity
with the same sign. This behavior corresponds to an anomalous topological phase.
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The numerical simulation in Fig. 4.10 is now compared with the experimental
measurement, as presented in Fig. 4.11, demonstrating the system’s behavior when
exciting a single site in the long ring α at the interface between two lattices: one
in the white region (θ1, θ2) = (0.2, 0.3)π and the other in the orange region
(θ1, θ2) = (0.3, 0.2)π. Figure. 4.11.a highlights the measured spatiotemporal dy-
namics, constrained to the range [0, 0.25], to enhance visualization within the long
ring α for φ = π, where part of the light remains localized at the interface state.
The measured band’s tomography, obtained by scanning φ values from −π to π, is
shown in Fig. 4.11.b. The upper panels of Fig. 4.11 display the experimental results
and show excellent agreement with the corresponding numerical simulations in
the lower panels.

4.5 Conclusion

Reflecting on the findings presented in this chapter, we have investigated the
bulk topological properties of the static two-step model system (without temporal
modulation). Our results indicate that all regions in the phase diagram exhibit
a zero Chern number. Nevertheless, locally, the Berry curvature changes sign at
the gap-closing points, revealing non-trivial topological properties characterized
by a topological charge associated with the phase transitions. These properties are
evidenced through the existence of interface states when two lattices belonging to
two adjacent regions of the phase diagram are pasted together.

Questions:

1- Are there any topological properties associated with time-dependent modula-
tions within the two-step model? and how do they influence the behavior of edge
states?

2- Can we distinguish between trivial and anomalous regions in the two-step
model phase diagram?

These questions are explored in further detail in the next Chapter. 5.
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E D G E D E P E N D E N T T O P O L O G Y O F T H E
T W O - S T E P M O D E L

In our previous chapter, we experimentally observed that the anomalous to-
pology of our lattice is revealed by the non-trivial topological charge at the gap-
closing singularities. However, we have not yet fully characterized the topological
phases within this system. In this chapter, we shed light on these distinct phases by
examining edge states using two distinct approaches. The first method emphasizes
the influence of lattice geometry on the presence of edge states, which is dictated
by the choice of boundary condition. This choice is not only related to the selec-
tion of the bulk unit cell, as it is in certain static Hamiltonian systems (e.g., the
SSH Hamiltonian), but also to a specific time frame in discrete step walks. To cap-
ture this interplay, we introduce a topological invariant that takes into account the
choice of unit cell/time frame associated with the specific boundary conditions de-
veloped by our collaborator, Álvaro Gómez-León [1]. Our second approach utilizes
extrinsic topology, which demonstrates that, owing to the topological properties of
the boundaries, gapless boundary states can arise even when the bulk bands are
topologically trivial. Finally, we demonstrate that our experimental platform paves
the way for advanced edge-state engineering by introducing arbitrary unitary op-
erators at the edge sites and dynamically controlling the variable beam splitter and
phase modulator. This precise manipulation allows us to suppress or induce edge
states.

5.1 Edge dependent topological invariant

Anomalous topological phases [7–9], where edge states coexist with topolo-
gically trivial Chern bands (C=0), can only appear in periodically driven lattices.
When the driving is smooth and continuous, the bulk-edge correspondence is guar-
anteed by the existence of a bulk invariant known as the winding number. Unlike
Floquet systems, whose dynamics are governed by continuous time-modulations
of a Hamiltonian [83], recent discussions have shown that quantum walk systems
offer richer topological phases due to their discrete time evolution. Notably, the
presence of edge states, particularly in anomalous topological phases, cannot be
fully explained by bulk invariants alone but also depends on the topology of the
edges (extrinsic topology) [10, 161, 162].

95
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Experimentally, Floquet anomalous topological phases, have been realized in
one-dimensional discrete step walks [11–14] and in two-dimensional photonic lat-
tices with continuous time evolution [15, 16]. However, no previous work has stud-
ied the anomalous topological phases in a two-dimensional discrete step walk. In
this section, we delve into this intriguing case, in particular, we show that the
specific choice of boundaries affects the existence of edge states and provides a
suitable expression that defines the winding numbers that we directly measure in
the experiment.

5.1.1 Bulk topology

The dynamics of the amplitude and phase of light pulses in the rings are de-
scribed by the evolution equations at each time-step (m) and lattice site (n):{

αm+1
n = [αm

n−1 cos
(
θm

n−1
)
+ iβm

n−1 sin
(
θm

n−1
)
]eiφm

n−1

βm+1
n = iαm

n+1 sin
(
θm

n+1
)
+ βm

n+1 cos
(
θm

n+1
) (5.1)

For our two-step protocol, we can write the equations of motion describing the
time evolution during each full period as:

αm+2
n = [−αm

n sin (θm
n ) + iβm

n cos (θm
n )] sin

(
θm+1

n−1

)
eiφm+1

n−1

+
[
αm

n−2 cos
(
θm

n−2
)
+ iβm

n−2 sin
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)]
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(
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)
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n−1 )

βm+2
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n cos (θm
n )− βm

n sin (θm
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n+2 sin
(
θm

n+2
)
+ βm

n+2 cos
(
θm

n+2
)]

cos
(

θm+1
n+1

)
(5.2)

In a stroboscopic framework, the evolution of the two-step model at discrete in-
tervals is characterized by the Floquet operator, which is the product of two unitary
operators and describes the evolution after each one of the two steps: UQW = U2U1.
The complete time evolution of the initial state over many periods is described by
the successive application of these operators, leading to the general form of the
evolution operator:

U = . . . U2U1U2U1U2U1 . . . (5.3)

The bulk topology under periodic boundary conditions (PBC)1 can be determ-
ined from the Floquet operator UQW(q) in reciprocal space. The latter can be writ-
ten in the form of equation. 5.4, which describes one period of the quantum walk,
and it is obtained by applying the Fourier transform to the equation. 5.2 for the
two-step protocol.

1 PBC is a type of boundary condition, where the edges or ends of a finite system are effectively
connected to each other, forming a loop.
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UQW(q) = v0(q)σ0 + iv(q) · σ (5.4)

With q = (k, φ) a two-dimensional vector, σ = (σx, σy, σz) denote the Pauli
matrices and σ0 being the identity matrix. The components of the vector v(q) can
be expressed in the following form:



v0 = J1 cos (k)− m1 cos (φ)

vx = J2 cos (k) + m2 cos (φ)

vy = J2 sin (k) + m2 sin (φ)

vz = −J1 sin (k) + m1 sin (φ)

with



J1 = cos (θ1) cos (θ2)

J2 = sin (θ1) cos (θ2)

m1 = sin (θ1) sin (θ2)

m2 = cos (θ1) sin (θ2)

(5.5)

The four parameters (J1, J2, m1, and m2) being functions of the angles θ1,2 of
the variable beamsplitter are not independent (only θ1,2 are) due to the unitarity
of the time-evolution operator that imposes the constraints J1m1 = J2m2 and J2

1 +

J2
2 + m2

1 + m2
2 = 1.

Importantly, to write this Floquet operator, we fixed the reference frame by
assuming that U1 acts before U2. This implies that during the first and second-
time steps, the beamsplitter angles are set to θ1 and θ2, respectively. Additionally,
the synthetic dimension is generated by imposing the condition φm = −φm+1 =

φ. This allows us to identify the two-step stroboscopic evolution generated by
UQW(q) with the blue time-slices in the schematic of Fig. 5.1.a. However, due
to time-periodicity, another perfectly valid choice would have been to consider a
shifted time frame in which the beamsplitter is set to θ2 and θ1 during the first and
second-time steps, respectively. We will refer to this alternative choice as ŨQW(q),
which corresponds to the red time-slices of the evolution in Fig. 5.1.a. Their matrix
representation differs, but they are connected by the swap of the angles θ1 ↔ θ2,
plus an additional sign change in the quasimomentum φ → −φ. Their equivalence
becomes more clear when one checks that their quasienergy spectrum is identical,
and therefore, ŨQW(q) and UQW(q) have identical Floquet bands.

To study the bulk topology, it’s necessary to examine the symmetry class of
UQW(q). This is done by checking for the presence of particle-hole symmetry
(PHS), which is defined as:

CUQW (q) C−1 = UQW (−q) (5.6)

with C = σzK being the anti-unitary operator associated to particle-hole symmetry,
K the conjugation operation and σz the third Pauli matrix. Also, the PHS operator
fulfills C2 = +1, placing the Floquet operator in class D in two dimensions (sys-
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Figure 5.1: (a) Schematic of the quantum walk with periodic boundary conditions (PBC)
applied along both the spatial and synthetic dimensions. (b) Schematics of the
quantum walk with open boundary conditions (OBC) with the vacuum along
the spatial coordinate at site n=0 and (PBC) along the synthetic dimension φ.

tems exhibiting particle-hole symmetry but no time-reversal or chiral symmetry) in
the Altland-Zirnbauer (AZ) classification [10, 163]. This implies that the bulk invari-
ant describing our system is the Chern number [164]. The numerical calculation of
the Berry curvature distribution perfectly aligns with the one measured in the ex-
periment, as previously shown in Chapter. 4, Fig. 4.8, and vanishes when summed
over the whole Brillouin zone, for all values of θ1 and θ2. Hence, the Chern num-
ber of the Floquet bands is zero, indicating that only trivial or anomalous phases
are possible in our system. However, we have experimentally demonstrated above
that the two phases separated by a gap closure are topologically distinct because
chiral edge states develop at their interface (see Fig. 4.11). Therefore, despite the
vanishing Chern number, the phase diagram must include at least one anomalous
Floquet phase. This phase is characterized by a different topological property, dis-
tinct from the Chern number, that arises from the time-dependent modulations,
which we will explore in more detail in the next subsection.

5.1.2 Reference frames and open boundary conditions

To identify experimentally each phase of the phase diagram independently, we
implement open boundary conditions (OBC)2 with the vacuum along the spatial
coordinate (i.e., we end the lattice at a sharp edge) and periodic boundary condi-
tions (PBC) along the synthetic one. OBC is implemented by dynamically changing
the variable beamsplitter (VBS) at the edge, and setting its value to full reflectance
as presented in the quantum walk lattice in Fig. 5.1.b.

2 OBC is a type of boundary condition where the system is not fully enclosed or periodic.
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Figure 5.2: Upper (red) and lower (blue) boxes correspond to (θ1, θ2) = (0.12, 0.38) and
(θ1, θ2) = (0.38, 0.12) respectively. Each box shows the experimental dispersion
relations without boundary conditions of each ring in the first row, and OBC in
the second and third rows at sites n=2 and 3, respectively.
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Figure 5.3: Numerical simulation replicating the experimental results of Fig. 5.2
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Figure. 5.2 depicts two vertically stacked boxes, red and blue, corresponding to
two distinct points, plotted in red and blue, located in two different regions (white
and orange) of the two-step model phase diagram for coupling angles (θ1, θ2) =

(0.2, 0.3) and (θ1, θ2) = (0.3, 0.2), respectively. Each box contains three rows: the
first row shows the experimental two-dimensional dispersion relation tomography
when injecting the initial pulse in the bulk, far from the edge, for the rings α and
β (see Figs. 5.2.a and 5.2.j). The second and third rows present results under open
boundary conditions (OBC) at site positions n = 2 and n = 3, respectively.

Comparing the second row of each box (see Figs.5.2.d-f and 5.2.m-o), when the
VBS is set to full reflectance at site n = 2 and a pulse is introduced at site n = 1,
as shown in the quantum walk lattices (see Figs.5.2.d and 5.2.m), only the orange
region exhibits partial light localization at the boundary in the spatiotemporal
diagram for φ = −0.3π (see Fig. 5.2.n) along with the emergence of robust chiral
edge states traversing both gaps (see Fig. 5.2.o). In contrast, the white region shows
neither light localization nor the presence of edge states (see Figs. 5.2.e-f). Numer-
ical simulations of the equation. 5.1 confirmed the experimental observations (see
Fig. 5.3). This behavior indicates that the white panels of the phase diagram can
be identified with the trivial phase, while the orange panels with the anomalous
phase.

Nevertheless, this appears to be in contradiction with the time translation invari-
ance between UQW(q) and ŨQW(q) previously discussed. The reason is that the
two phases considered in Figs. 5.2.e-f and 5.2.n-o are related by the swap θ1 ↔ θ2.
Hence, they are described by equivalent Floquet operators whose only difference
is a shift in the reference frame by one step of the protocol and this should not
change the bulk topology. That is, one would expect the two phases to be identical
because they are related by a symmetry of the system and hence, no edge states at
their interface. This is consistent with the fact that the Chern number remains zero
at both sides of the quasienergies gap closure. We now resolve this contradiction
by demonstrating the crucial role played by the boundaries.

To understand the role of the boundaries on the presence of edge states, no-
tice that the choice of a stroboscopic time-frame in Fig. 5.2.d can be linked to a
boundary choice when OBC is considered. For example, UQW(q) characterizes the
stroboscopic evolution at the blue time-slices. The bipartite unit cell (αn, βn), in
this case, is marked by a dashed orange rectangle in Fig. 5.2.d. There is nothing
special about this unit cell, as far as PBC is considered along the spatial dimension.
However, once the fully reflecting edge is fixed at n = 2, the evolution can be inter-
preted as the stroboscopic evolution of a chain of dimers with a β-site termination
within the blue time-slices. Instead, if one chooses the Floquet operator ŨQW (q) to
characterize the stroboscopic evolution (red time-slices in Fig. 5.2.d), for a bound-
ary at the same site, this corresponds to a dimer chain with a α-site termination.
This implies that for OBC, a change in the boundary termination is equivalent to
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a shift in the reference frame of the Floquet operator. This is shown schematically
in Fig. 5.2.d, where the shift in one time-step (change of color in the time-slice) is
equivalent to a change of boundary.

As a confirmation that our interpretation is correct regarding the importance
of boundaries and that there is nothing special about the choice of UQW(q) or
ŨQW(q) (i.e., they have identical bulk topology), we demonstrate in the third row
of each box in Figs. 5.2.g-i and 5.2.p-r that altering the boundary to a fully reflecting
edge at the site n = 3 for the same values of θj and injection position reverses the
two-step model phase diagram. In this configuration, both the light localization
at the boundary in the spatiotemporal diagram (see Fig. 5.2.h) and the emergence
of Chiral edge states across the band (see Fig. 5.2.i) are now confined to the white
region. Consequently, the white region corresponds to the anomalous phase, while
the orange region represents the trivial phase.

Chiral edge states are obtained for any value of θj, this confirms that the system
can actually be topological for all values of θj, and that the appearance of the
chiral edge states is linked to the particular boundaries fixed in the experimental
realization. Also, notice that the direction of the group velocity is associated with
the edge state in Fig. 5.2.i is reversed with respect to the case with a boundary
at site n = 2 in Fig. 5.2.o. The reason is that, as we discussed earlier, the time
translation relating the two frames is not only implemented by the swap θ1 ↔ θ2,
but it also involves the reflection of the quasimomentum φ → −φ. Therefore, as
changing the boundary site must be equivalent to a reference frame shift, the phase
diagram not only reverses the phases but also the chiral edge states change their
direction of propagation.

If we carefully account for the choice of the unit cell that defines a particular
time frame and termination, it is possible to compute a topological invariant that
describes the existence of the anomalous phases we have just shown. The compu-
tation of the topological invariant has been carried out by our collaborators Alvaro
Gomez-Leon and Pierre Delplace and can be found in the appendix of our paper
[1]. The invariant is expressed as a winding number νµ, defined as:

νµ=0 =
1
2
[1 − sgn (J2 + m2) sgn (m2 − J2)]

=
1
2
[1 − sgn [sin (θ1 + θ2)] sgn [sin (θ2 − θ1)]] (5.7)

This equation predicts the existence of edge states across an energy gap µ = 0
for a specific boundary condition. This winding number corresponds to the blue
time frame in Fig. 5.2.d that defines the evolution operator UQW(q) when OBC are
applied along the spatial coordinate at site n= 2. In this frame, the orange phases
with edge states reveal a winding number of νµ=0 = 1, and the white phase, lacking
edge states, corresponds to a winding of νµ=0 = 0.
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In this section, we experimentally demonstrated that modifying the boundary
conditions enables the emergence or disappearance of chiral edge states under
the same parameter θj. Furthermore, we presented a topological invariant that
both predicts the existence of these edge states and corroborates our experimental
findings. A second approach, which explores edge state existence through the lens
of extrinsic topology [10], will be discussed in detail in the following section.

5.2 Extrinsic topology

5.2.1 Edge unitary

A B A B A B

J J' J J' J J'J'

A B A B A B

J J' J J' J J'J'(a) (b)

Figure 5.4: (a) The Su-Schrieffer-Heeger (SSH) model consists of a 1D chain with two sub-
lattices (B and A) in each unit cell, as illustrated by the red dashed line. (b) SSH
model with a unit cell arrangement of (B-A).

The topology of our double ring system seems to share some similarities with
that of a chain of dimers (SSH model) [165, 166] in the sense that the existence
of edge states is linked to the type of considered boundary [167]. Discussing this
apparent similarity will allow us to place our results within the framework of ex-
trinsic topology and explicitly show how edge unitaries affect the global topology
of the system.

The Su-Schrieffer-Heeger (SSH) model consists of a periodic 1D chain with two
sublattices (A and B) per unit cell. The sublattices are coupled through alternating
hopping amplitudes: intra-cell hopping (J) within a unit cell and inter-cell hopping
(J′) between adjacent unit cells, as demonstrated in Fig. 5.4.a. The tight-binding
Hamiltonian within the n − th unit cell for the SSH model is written as:

H = ∑
n
[J |n, B⟩ ⟨n, A|+ J′ |n + 1, A⟩ ⟨n, B|+ h.c] (5.8)

The unit cell choice of A-B or B-A atoms in a chain of static dimers, as illustrated
in Figs. 5.4.a-b respectively, is similar to the choice of the order of time steps in our
setup. In both cases, this choice only fixes the spatial or temporal reference frame,
respectively, which is unimportant for the physics of the bulk system. When OBC
are considered, the two cases become different. In a chain of static dimers, a non-
vanishing winding number implies that an unpaired state is present at the edge
of a chain. The winding number is now unambiguously defined for the particular
choice of the unit cell corresponding to the dimer at the edge. The existence of
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the edge state is then explained by the bulk-boundary correspondence of chiral
symmetric Hermitian Hamiltonian in dimension one [165, 168], and the value of
the invariant is linked to the choice of termination (i.e., the unit cell)

However, for the case treated in this thesis, there is an important difference due
to the Floquet dynamics. The discrete nature of the time periodicity in our lattice
enriches the topology with the possibility of the winding of the quasienergy spec-
trum. Mathematically, this is related to the fact that in Floquet physics, one must
deal with a unitary operator—the time-evolution operator—and not a Hermitian
one. Recently, the group of T. Bessho et al. [169] demonstrated that in this context,
it is possible to define a winding number associated with the unitary operator act-
ing on the edge of the lattice. In this case, the topological characterization requires
not only an understanding of the bulk topologies but also the invariants associated
with the edge operator (νedge). The full topological description is thus provided by
both the bulk and the edge, a scenario referred to as extrinsic topology. In our case,
the unitaries at the edge are effectively determined by the choice of time step (even
or odd, or equivalently θ1 and θ2) at which the spatial unit cell is cut by the edge.
In Fig. 5.2.d, the edge unit cell is cut at even site (n = 2), implicitly imposing the
blue time reference frame (odd time steps m) for the determination of the edge
unitaries. The opposite reference frame is imposed in Fig. 5.2.g.

To determine the edge unitaries, we consider a finite lattice with open bound-
ary conditions (OBC) applied at sites n = 2 and n = 2N, where N ∈ N. After
one Floquet period, the evolution of the system in real space can be written as
Ψ(m + 2) = UFΨ(m), with Ψ = [αm

n=2 βm
n=2 αm

n=4 βm
n=4 . . . αm

n=2N βm
n=2N]

T. Thus, the
complex amplitude sublattices αm

n and βm
n are derived from equation. 5.2, evolve

according to the Floquet operator UF. This operator governs a two-step walk and
has a matrix form similar to that of the dimer chain.



[αm+2
n=2 βm+2

n=2 ]
T

[αm+2
n=4 βm+2

n=4 ]
T

[αm+2
n=6 βm+2

n=6 ]
T

[αm+2
n=8 βm+2

n=8 ]
T

...

[αm+2
n=2N βm+2

n=2N]
T


︸ ︷︷ ︸

Ψ(m+2)

=



UL U+ 0 0 0 0

U− U0 U+ 0 0 . . . 0

0 U− U0 U+
. . . 0 0

0 0 U−
. . . U+ 0 0

0 0 . . . U− U0 U+ 0

0 . . . 0 0 U− U0 U+

0 0 0 0 U− UR


︸ ︷︷ ︸

Floquet operator UF



[αm
n=2 βm

n=2]
T

[αm
n=4 βm

n=4]
T

[αm
n=6 βm

n=6]
T

[αm
n=8 βm

n=8]
T

...

[αm
n=2N βm

n=2N]
T


︸ ︷︷ ︸

Ψ(m)

The Floquet operator UF is a unitary matrix can be seen as a combination of the
bulk unitaries (Ubulk) and edge unitaries (Uedge), such that UF = (Uedge ⊕ Ubulk).
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Where the different blocks of the bulk unitaries are given by equation. 5.9, and the
edge unitaries by equation. 5.10:

U0 = sin (θ2)

(
−e−iφ sin (θ1) ie−iφ cos (θ1)

ieiφ cos (θ1) −eiφ sin (θ1)

)

U+ = cos (θ2)

(
0 0

i sin (θ1) cos (θ1)

)

U− = cos (θ2)

(
cos (θ1) i sin (θ1)

0 0

)
.

(5.9)


UL =

(
−e−iφ sin (θ1) ie−iφ cos (θ1)

ieiφ cos (θ1) sin (θ2) −eiφ sin (θ1) sin (θ2)

)

UR =

(
−e−iφ sin (θ1) sin (θ2) ie−iφ cos (θ1) sin (θ2)

ieiφ cos (θ1) −eiφ sin (θ1)

) (5.10)

The edge blocks UL and UR are different from the bulk blocks U−, U+, and U0

due to the condition of full reflection at the edges. In this case, the matrix UF can
be interpreted as a unitary version of a dimerized lattice, with couplings between
neighboring dimers given by U±.

The dimer chain consists of a series of bipartite unit cells (αn, βn), it is useful
to examine the different limits of dimerization by isolating the unit cell at the
edge from its neighbors along the chain. This is achieved by considering a stripe
(see Fig. 5.5.d). The simplest approach is to analyze two extreme scenarios: when
(θ1, θ2) = (0, π/2) and (θ1, θ2) = (π/2, 0). In these scenarios, the dimer chain
behaves as a collection of independent dimers, resulting in UL,R = Uedge.

In the previous Section. 5.1.2, we computed the topological invariants based on
the choice of the unit cell compatible with the edge termination. Here, we will
compute the edge topological invariant associated with the edge operator. For the
first case, when (θ1, θ2) = (0, π/2), the edge blocks simplify to equation. 5.11. To
determine the winding number of these unitaries, as defined in equation. 5.12, we
can utilize the formula provided in the work of Bessho et al. [169]. Upon calcula-
tion, we find that the winding number of the unitary edge blocks for this particular
case is zero.

UL,R =

(
0 ie−iφ

ieiφ 0

)
(5.11)

νedge[Uedge(φ)] =
∫ 2π

0

dφ

2π
tr[Uedge(φ)−1i∂φUedge(φ)] (5.12)
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In contrast, for (θ1, θ2) = (π/2, 0), the edge and bulk blocks correspond to
equations. 5.13 and 5.14, respectively, and they are not unitary. The corresponding
Floquet operator UF is given by equation. 5.15 and 5.16.

UL =

(
−e−iφ 0

0 0

)
, UR =

(
0 0

0 −eiφ

)
(5.13)

U− =

(
0 i

0 0

)
, U+ =

(
0 0

i 0

)
, U0 = 0 =

(
0 0

0 0

)
(5.14)

UF =



(
−e−iφ 0

0 0

) (
0 0

i 0

)
0 0 0 · · · 0(

0 i

0 0

) (
0 0

0 0

) (
0 0

i 0

)
0 0 · · · 0

0

(
0 i

0 0

) (
0 0

0 0

) (
0 0

i 0

)
0 · · · 0

... . . . . . . . . . . . .

(
0 0

0 0

) (
0 0

i 0

)

0 0 0 0 0

(
0 i

0 0

) (
0 0

0 −eiφ

)


(5.15)

UF =



−e−iφ 0 0 0 0 0 0

0 0 i 0 0 . . . 0

0 i 0 0 . . . 0 0

0 0 0 . . . 0 0 0

0 0 . . . 0 0 i 0

0 . . . 0 0 i 0 0

0 0 0 0 0 0 −eiφ


(5.16)

Note that the terms −e−iφ and −eiφ, which appear in the UL and UR blocks,
respectively, are fully decoupled from the bulk in equation.5.16. In this specific
case, UL = −e−iφ and UR = −eiφ, both of which are unitary and exhibit a winding
number of 1. This winding number is directly influenced by the phase modulator
φ. This exemplifies the meaning of edge unitaries in discretized time-step walks
and how their topology (extrinsic) complements the bulk topology. It is important
to stress that this result explicitly shows that the topology of the two-step walk is
richer than that of a dimers chain. In particular, the fact that we are dealing with
driven systems, characterized by unitary operators rather than Hermitian ones, is
what makes possible the existence of chiral edge states crossing both gaps.
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Extrinsic topology plays a role analogous to micromotion in continuously
driven Floquet Hamiltonian, where chiral edge states can exist even when the bulk
bands are topologically trivial. Unlike the Floquet topology in continuously driven
systems, where anomalous phases are characterized by a bulk invariant [83], the
extrinsic topology, is governed by edge unitaries. These unitaries can be manipu-
lated to control the presence of chiral edge modes without altering the position
of the edge, providing a means to suppress or induce these states as needed. This
aspect will be explored in greater detail in the next section.

5.2.2 Edge state engineering

In this section, we investigate the role of edge unitaries in shaping the overall
system topology, focusing on two distinct regions of the phase diagram: (θ1, θ2) =

(0.12, 0.38)π and (θ1, θ2) = (0.38, 0.12)π. This analysis is conducted by a carefully
designed voltage sequence applied to the phase modulator.

5.2.2.1 Extrinsic topology for (θ1, θ2) = (0.12, 0.38)π

Figure. 5.5 shows a comparison between the numerical (a-i) and experimental
(j-r) results in the upper and lower black boxes, respectively, when a narrow pulse
is introduced into the long ring α at site n = 1, with a set of coupling angles
(θ1, θ2) = (0.12, 0.38)π. Each box is composed of three rows, each containing
three subplots.

Starting with the numerical results, the first row illustrates the scenario of an
open boundary condition (OBC). In this configuration, the VBS is set to full reflect-
ance at site n = 0, while alternating between θ1 and θ2 for the remaining lattice
sites n. Simultaneously, the phase modulator alternates between +φ and −φ across
all sites at odd and even time steps, as depicted in the quantum lattice of Fig. 5.5.a.
Accompanying this, Figs. 5.5.b-c present the dispersion relation tomography of
rings α and β, respectively. The resulting band structure of the ring exhibits no
edge states, indicating a trivial topological phase.

The second row presents the scenario of a stripe configuration. This setup isol-
ates the edge unit cell from the bulk by imposing full reflectance, θ2 = π/2, at sites
n = 0 and n = 2, while maintaining the injection at site n = 1. Nevertheless, the
edge unitary remains dependent on the phase modulator parameter. To modulate
this parameter, we alternate the phase between odd and even time steps, setting
ϕ1 = +φ and ϕ2 = 0φ (see Fig. 5.5.d), ensuring a non-zero net phase winding,
ϕ1 + ϕ2 ̸= 0, within one Floquet period. Figures 5.5.e-f show the corresponding
Fourier stripe mode tomography of rings α and β, where we observe a single band
of edge states winding through the entire Brillouin zone, from (E, k) = (−π,−π)

to (π, π), with a positive group velocity throughout.
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The final row demonstrates the combined configurations of the stripe and the
bulk, as shown in Fig. 5.5.g. This is accomplished by first establishing the stripe
configuration. At site n = 0, θ2 is set to π/2, and the phase modulator alternates
between ϕ1 = +φ and ϕ2 = 0 at sites n = 0 and n = 1. For the remaining sites
n, corresponding to the bulk, the VBS alternates between θ1 and θ2, while the
phase modulator alternates between +φ and −φ at odd and even time steps. In
this scenario, the edge state associated with the stripe hybridizes with the bulk
band, as depicted in Figs. 5.5.h-i. Each gap is traversed by a single intense band of
edge states, all exhibiting a positive group velocity with the same sign. Thus, by
manipulating the phase modulator at the boundary of the lattice in the case of an
OBC, we introduced an edge state into the band.

Regarding the experimental results shown in Figs. 5.5.j-r, each row —repres-
enting the cases of the OBC, stripe, and hybridization—exhibits remarkable agree-
ment with the expected numerical results presented in Figs. 5.5.a-i. However, upon
closer inspection of the experimental data, we observe some imperfections because
the average period time T =224.94 ns is not an exact integer multiple of the 40 ps
resolution of the AWG7000B that generates the voltage signal. Consequently, after
each round trip, the voltage sequence is slightly shifted by almost 20 ps. This shift
becomes crucial after nearly 66 round trips, as it corresponds to the size of one site
(1.4 ns). Since the extrinsic topology requires the application of a specific voltage
for each lattice site, maintaining perfect synchronization proves to be challenging.

The non-zero net phase winding at the boundaries at the site (n = 0 and n = 1)
of an OBC can introduce edge states. This raises the question: how would the
system behave if the phase winding was applied at additional sites?

Building on the conditions established in Fig. 5.5, Figures. 5.6.a-c simulate the
hybridization between the bulk and a single stripe. In contrast, Figs. 5.6.d-f numer-
ically depict the hybridization involving two stripes, where a non-zero net phase
winding ϕ1 = +φ and ϕ2 = 0 is applied at sites n = 0, 1, 2, as illustrated in
Fig. 5.6.d. Furthermore, Figs. 5.6.e-f show that each gap within both the long and
short rings, respectively, is now crossed by two edge states instead of one. Thus,
hybridizing the bulk with multiple stripes introduces additional edge states pro-
portional to the number of stripes. Comparing the numerical results observed in
Figs. 5.6.a-f align closely with the experimental findings presented in Figs. 5.6.g-l.

Moreover, when a non-trivial phase winding is applied across the entire lattice
site n, our results align with Adiyatullin et al. [121], where gapless tilted band
structure tomography absent of crossings was obtained in trivial phases.
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Figure 5.5: Comparison of numerical (a-i) and experimental (j-r) results for OBC, stripe,
and their hybridization, when (θ1, θ2) = (0.12, 0.38)π and (ϕ1, ϕ2) = (1, 0)φ.
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Figure 5.6: The upper (simulation) and lower (experiment) boxes compare the hybridiza-
tion of the bulk with one and two stripes.
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5.2.2.2 Extrinsic topology for (θ1, θ2) = (0.38, 0.12)π

We now explore the behavior of extrinsic topology in another region of the
phase diagram. Our focus shifts to examining the interplay between edge states
associated with stripes and those arising from bulk topology.

Figure. 5.7 replicates Fig. 5.5 and presents a side-by-side comparison of the nu-
merical (upper panels a-i) and the experimental results (lower panels j-r) when a
narrow pulse is introduced into the α ring at site n = 1 and the coupling angles
are set to (θ1, θ2) = (0.38, 0.12)π. Figures. 5.7.a-c display the quantum walk lattice
and the dispersion relation in rings α and β, respectively, under the OBC scenario,
where each gap is traversed by an edge state with a negative group velocity, reflect-
ing the underlying topological properties of the bulk system. Figure. 5.7.d high-
lights the stripe configuration, featuring a non-zero net phase winding of ϕ1 = 0φ

and ϕ2 = +φ applied at sites 0 and 1. The Fourier stripe modes of the rings α and β

unveil edge states with a positive group velocity (see Fig. 5.7.e-f). Engineering the
quantum walk lattice to merge the stripe and bulk configurations, as illustrated in
Fig. 5.7.g, facilitates the hybridization of edge states associated with both the bulk
topology and the stripe. These states have opposing group velocities, leading to the
opening of a gap at the point in which they anticross, as demonstrated in the dis-
persion relation of the long and short ring in Figs. 5.7.h-i, respectively. The edge
states no longer traverse the gap between the bands, indicating a topologically
trivial situation. The predicted numerical results in the upper panels (Figs. 5.7.a-i)
align perfectly with the experimental results in the lower panels (Figs. 5.7.j-r).

Figure. 5.8 represent the inverted phase winding of Fig. 5.7, achieved by setting
(ϕ1, ϕ2) = (0,−1)φ. This inversion causes the edge states of the stripe in the re-
ciprocal space to have the same group velocity as those from the bulk topology,
as seen in the second rows of both the numerical and experimental panels. Con-
sequently, hybridizing the bulk and stripe cases leads to the merging of their edge
states, resulting in a constructive superposition rather than a cancellation, as de-
picted numerically and experimentally in Figs. 5.8.g-i and 5.8.p-r, respectively.

Proceeding even further, doubling the non-trivial phase winding of Fig. 5.8 by
setting (ϕ1, ϕ2) = (0,−2)φ, the edge states associated with the stripe wind twice
across the entire Brillouin zone (see Fig. 5.9.e-f and 5.9.n-o), exhibiting the same
group velocity as in Fig. 5.8.e-f. The corresponding numerical and experimental
hybridization case of the α and β ring is demonstrated in Fig. 5.9.h-i and 5.9.q-r,
respectively, and shows three edge states traversing each gap in the α ring, while
two in β ring due to the sublattice’s negligible weight.



112 edge dependent topology of the two-step model

0          1         2          3        4         5         6         7

Lattice site n

-
Lattice site n

0.3 0.5

0.5

0.50.5

+φ

-φ -φ -φ

-φ -φ -φ

+φ +φ

+φ +φ +φ

+φ+φ+φ

St
rip

e 
+ 

B
ul

k

0          1         2          3        4         5         6         7α1
1

Lattice site n

ϕ1

ϕ2
ϕ1

ϕ2

+φ+φ+φ

-φ -φ

+φ

-φ

-φ -φ -φ

0          1         2          3        4         5         6         7α1
1

Lattice site n

-φ -φ -φ

-φ -φ -φ-φ

-φ

0          1         2          3        4         5         6         7α1
1

Lattice site n

ϕ1

ϕ2
ϕ1

ϕ2

O
pe

n 
B

ou
nd

ar
y 

C
on

di
tio

n

+φ+φ

+φ

+φ+φ+φ +φ

+φ

-φ -φ -φ

-φ -φ -φ

+φ +φ

+φ +φ +φ

+φ+φ+φ

St
rip

e 
+ 

B
ul

k

0          1         2          3        4         5         6         7α1
1

Lattice site n

ϕ1

ϕ2
ϕ1

ϕ2

+φ+φ+φ

-φ -φ

+φ

-φ

-φ -φ -φ

0          1         2          3        4         5         6         7α1
1

Lattice site n

-φ -φ -φ

-φ -φ -φ-φ

-φ

0          1         2          3        4         5         6         7α1
1

Lattice site n

ϕ1

ϕ2
ϕ1

ϕ2

St
rip

e
O

pe
n 

B
ou

nd
ar

y 
C

on
di

tio
n

+φ+φ

+φ

+φ+φ+φ +φ

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

(m) (n) (o)

(p) (q) (r)

Stripe Bulk

Stripe Bulk

St
rip

e

Figure 5.7: Comparison of numerical (a-i) and experimental (j-r) results for OBC, stripe,
and their hybridization, when (θ1, θ2) = (0.38, 0.12)π and (ϕ1, ϕ2) = (0,+1)φ.
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Figure 5.8: Comparison of numerical (a-i) and experimental (j-r) results for OBC, stripe,
and their hybridization, when (θ1, θ2) = (0.38, 0.12)π and (ϕ1, ϕ2) = (0,−1)φ.
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Figure 5.9: Comparison of numerical (a-i) and experimental (j-r) results for OBC, stripe,
and their hybridization, when (θ1, θ2) = (0.38, 0.12)π and (ϕ1, ϕ2) = (0,−2)φ.



5.3 conclusion 115

5.3 Conclusion

Anomalous topological phases, where edge states coexist with topologically
trivial Chern bands (C=0) were never studied in a two-dimensional discrete step
walk. In this chapter, we delved into this intriguing case via two approaches:

The first approach underscores the pivotal role of lattice geometry in determ-
ining the existence of edge states, governed by the selected boundary conditions.
Experimentally, this is realized through time-dependent modulation, enabling us
to set the variable beam splitter at a specific site to full reflection, thereby establish-
ing a boundary. By shifting this boundary by a single site, we can precisely control
the presence of edge states within the same coupling parameter θj. Therefore, each
region within the two-step model phase diagram can be either trivial or anomal-
ous, depending on the initial conditions we implement. Additionally, we provided
a topological invariant that defines the existence of these edge states.

The second approach delves into extrinsic topology, illustrating how the topolo-
gical properties of the boundaries (edge unitaries) can impact the global topology
of the system, leading to the emergence of gapless boundary states even when the
bulk bands are topologically trivial. This phenomenon is experimentally validated
by manipulating the phase modulator at the boundary with a specifically designed
sequence, which can effectively suppress or induce these edge states.

Questions:

1- Chapter. 5 explored the influence of extrinsic topology on the system’s topology
when the Chern number vanishes. This naturally raises the question: how does
extrinsic topology influence the system when the Chern number is non-zero? The
detailed answer to this question is provided in the next Chapter. 6.

2- Having observed that time-dependent modulation can generate edge states, we
now inquire: How will the system’s dynamics evolve under quasi-periodic modula-
tion (Fibonacci sequence) across both lattice site n and time step m ? This question
is addressed in Appendix. E.





6
T O P O L O G I C A L P R O P E RT I E S O F T H E
F O U R - S T E P M O D E L

This chapter deals with the four-step model. Through theoretical and experi-
mental analysis, we examine the bulk and edge topology, revealing a richer phase
diagram featuring both trivial and non-trivial Chern numbers. Furthermore, we
present diverse methodologies for determining the Chern number. Additionally,
we explore the impact of extrinsic topology on the overall topological system in
both trivial and non-trivial Chern band scenarios.

6.1 Four steps model bulk topology

Throughout this thesis, we investigated the bulk and edge topologies in models
displaying bands with zero Chern number, we now turn our attention to exploring
non-trivial Chern bands using the four-step model. Before proceeding, let’s briefly
recap the four-step model, previously detailed in Section. 1.3.2 of Chapter. 1. In
such a scenario, the system possesses a double-periodic structure with a spatial
period of two sites and a temporal period of four steps. During one Floquet period,
the coupling angle θ alternating between four distinct values [θ1, θ2, θ3, θ4] and
the phase modulator between [φ1, φ2, φ3, φ4] = [+φ, −φ, +φ, −φ], as presented
in the red dashed unit cell in Fig. 6.1.a.

To construct the phase diagram of the four-step model, we fix the coupling
parameters at [θ1, θ2] = [4π/32, 8π/32] and vary [θ3, θ4] from 0 to π/2. Similarly
to the two-step model, the system has two bands separated by two gaps at E=0
(g0) and at E=π (gπ). We can experimentally characterize the phase diagram by
measuring the value of the two gaps as a function of the couplers at time steps θ3

and θ4. The result is shown in Figs. 6.1.b-c, respectively. The gap distances range
from 0 (white) to 1.25π (black). A value of 1.25π indicates maximum separation,
while 0 signifies complete closure. Combining the gap closures at gap 0 and π

(black dashed lines in Figs. 6.1.b-c), we arrive at the phase diagram of the four-
step model (see Fig. 6.1.c). The latter is divided into nine regions, labeled from
1 → 9, and the gaps at energy 0 and π do not necessarily close simultaneously. To
differentiate between these events, we have marked the boundaries of the regions
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Figure 6.1: Four-step model. (a) Synthetic photonic lattice. (b)-(c) Measurement of the gap
distance at energies 0 and π, respectively. (d) Phase diagram obtained by setting
[θ1, θ2] = [4π/32, 8π/32] and varing [θ3, θ4] from 0 to π/2.

where each gap closes using blue and red lines. The red lines indicate the closure
of the 0-gap, while the blue lines represent the closure of the π-gap.

The eigenvalues and eigenvectors describing the four-step model, are given by
equations. 6.1, 6.2, and 6.3, respectively (see Appendix. B).

E±(k, φ1→4) =± cos−1[ T1T2T3T4 cos
(

2k − ϕ

2

)
+ R1R2R3R4 cos

(
φ13 −

ϕ

2

)
+ R1R3T2T4 cos

(
φ12 −

ϕ

2

)
+ R2R4T1T3 cos

(
φ14 −

ϕ

2

)
+ R1R2T3T4 cos

(
φ1 + k − ϕ

2

)
+ R2R3T1T4 cos

(
φ2 + k − ϕ

2

)
+ R3R4T1T2 cos

(
φ3 + k − ϕ

2

)
+ R1R4T2T3 cos

(
φ4 + k − ϕ

2

)
] +

ϕ

2
(6.1)

|ψ(k)⟩± =

(
α̃(k)

β̃(k)

)±

=
1√

1 + |R±|2

(
1

|R±|eiΦ±
αβ

)
(6.2)
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R(k)± = |R±|eiΦ±
αβ =

eiE(k)± − A
B

(6.3)

with  Tm = cos θm

Rm = i sin θm


φij = φi + φj

φijz = φi + φj + φz

ϕ = ∑4
i=1 φi = φ1 + φ2 + φ3 + φ4

A = [T4T3T2T1ei(−2k+ϕ) + T4T3R2R1ei(−k+φ234) + T4R3T2R1eiφ34 + T4R3R2T1ei(−k+φ134)

+ R4T3T2R1ei(k+φ4) + R4T3R2T1eiφ14 + R4R3T2T1ei(−k+φ124) + R4R3R2R1eiφ24 ]

(6.4)

B = [T4T3T2R1ei(−2k+ϕ) + T4T3R2T1ei(−k+φ234) + T4R3T2T1eiφ34 + T4R3R2R1ei(−k+φ134)

+ R4T3T2T1ei(k+φ4) + R4T3R2R1eiφ14 + R4R3T2R1ei(−k+φ124) + R4R3R2T1eiφ24 ]

(6.5)

After reviewing the four-step model, we will delve into its bulk topology. Fig-
ures. 6.2 and 6.3 correspond to the upper and lower bands, respectively, and in-
clude a 9x5 configuration of subplots. Each row represents a distinct region of the
phase diagram, illustrating the 2D analytical eigenvalues, eigenvectors (|R| & Φαβ),
Berry curvature, and Chern number, derived from equations. 6.1, 6.2, 4.1, and 4.2.

These figures reveal several key observations. First, even-numbered regions (2),
(4), (6), and (8) exhibit zero Chern numbers, while odd-numbered regions (1), (3),
(5), (7), and (9) possess non-trivial Chern numbers of +2 and -2. Compared to
the two-step model, the four-step model displays greater complexity and diversity,
with trivial and non-trivial Chern numbers. Second, for the same coupling angles
[θ3, θ4] within each region, the upper and lower bands exhibit contrasting amp-
litude ratios (|R+|2 = −|R−|2), with a positive (yellow) and negative (blue) peaks
of equal magnitude, and a relative phase difference of π (Φ−

αβ − Φ+
αβ = π). Their

Berry curvatures and Chern numbers possess opposite signs (C+ = −C−). Third,
in regions with non-vanishing Chern numbers, the amplitude ratio |R|± reveals
two pairs of singularity points with high and low amplitudes outlined in yellow
and blue, respectively. These peaks coincide precisely with the positions of the two
pairs of vortex-antivortex structures observed in the relative phase Φ±

αβ.

To validate our analytical findings, the experimental results depicted in Figs. 6.4
and 6.5, corresponding to the upper and lower bands, respectively, align with the
theoretical predictions in Figs. 6.2 and 6.3, yielding Chern numbers that match ex-
actly, despite the low resolution caused by a limited number of turns, which is 66
and results in 16 stroboscopic round trips. These experimental results have been
validated through multiple independent measurements, consistently demonstrat-
ing the same outcomes.
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Figure 6.2: Numerical simulation illustrating, for each point in the four-step phase dia-
gram, the dispersion band, amplitude ratio |R|, relative phase Φαβ, and Berry
curvature (BC) along with the Chern number (C) of the upper band.
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Figure 6.3: Numerical simulation illustrating, for each point in the four-step phase dia-
gram, the dispersion band, amplitude ratio |R|, relative phase Φαβ, and Berry
curvature (BC) along with the Chern number (C) of the lower band.
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Figure 6.4: Experimental results, for each point in the four-step phase diagram, the disper-
sion band, amplitude ratio |R|, relative phase Φαβ, and Berry curvature (BC)
along with the Chern number (C) of the upper band.
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Figure 6.5: Experimental results, for each point in the four-step phase diagram, the disper-
sion band, amplitude ratio |R|, relative phase Φαβ, and Berry curvature (BC)
along with the Chern number (C) of the lower band.
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6.2 Bulk-edge correspondence

Having identified in the previous section regions with trivial and non-trivial
Chern numbers in the phase diagram, we now proceed to investigate the bulk-edge
correspondence. The latter refers to a fundamental principle in topological physics
that relates the topological invariants that characterize the bulk of a system (such
as the Chern number in 2D systems) to the existence or absence of localized edge
states at their boundaries or edges.

Figure. 6.6 displays a numerical simulation illustrating the bulk-edge corres-
pondence within the phase diagram of the four-step model. This is achieved by
introducing a narrow pulse into the long ring α at site n=1, and alternating the
coupling angle between four distinct values [θ1, θ2, θ3, θ4] during one Floquet
period, and the phase modulator between +φ and −φ at odd and even time steps.
At site n = 0, we impose an open boundary condition (OBC) by setting the variable
beam splitter to full reflectance (θm

n=0 = π/2). The phase diagram is divided into
regions represented by white and orange, corresponding to trivial and non-trivial
Chern numbers, respectively. For each region, the dispersion relation tomography
for the (OBC) case is presented for a specific set of coupling angles [θ3, θ4], marked
by green dots, after selecting only the even stroboscopic round trips m.

In the odd-numbered orange regions (1), (3), and (9), the Chern numbers for
the upper and lower bands are C+ = +2 and C− = −2, respectively. In each of
these regions, two edge states cross the energy gap µ = π, while no edge states
cross the energy gap µ = 0. The number of edge state mode traversing the band
is νµ=π = 2 and νµ=0 = 0. Conversely, regions (5) and (7) exhibit Chern numbers
C+ = −2 and C− = +2. Both feature two edge states crossing the zero energy
gap (ν0 = 2) but no edge states crossing the π gap. Notably, region (7) contains a
localized state within the π energy gap, but since it does not traverse the gap, it
does not have a topological origin and therefore cannot be considered as an edge
state.

The even-numbered white regions, (2), (4), and (8), have zero Chern numbers
(C± = 0) and no edge states crossing the gap (ν0 = νπ = 0). In contrast, region
(6) also has a zero Chern number (C± = 0), but features two edge states crossing
both gaps (ν0 = νπ = 2), representing an anomalous topological phase.

Based on our analysis of the bulk-edge correspondence, we can derive the
Chern number from the number of edge states, expressed as follows [83]:

C± = ±(νπ − ν0) (6.6)

The Chern number for a specific band is obtained by computing the difference
between the number of edge states above the band and those below it.
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Figure 6.6: Numerical simulation illustrating the bulk-edge correspondence within the
phase diagram of the four-step model. White and orange regions correspond
to trivial and non-trivial Chern numbers, respectively. For each region, the dis-
persion relation tomography is conducted when an OBC is implemented at the
site n = 0 for a specific set of coupling angles [θ3, θ4], indicated by green dots.

6.3 Extrinsic topology

Similar to the two-step model in Chapter. 5, we aim now to examine in the case
of the four-step model the influence of the extrinsic topology on the overall topolo-
gical system in both trivial and non-trivial Chern bands scenarios by engineering
properly the winding of the unitary operators acting on the edge sites.

Figure. 6.7 features upper (green) and lower (blue) boxes, each representing
distinct points within the four-step model phase diagram. The green box illustrates
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a point in the white region (4) with (θ3, θ4) = (14/32, 14/32)π, corresponding to a
trivial Chern band. Conversely, the blue box denotes a point in the orange region
(5) with (θ3, θ4) = (1/2, 1/4)π, which features non-zero Chern bands.

6.3.0.1 Trivial Chern bands

The first row of the green box (see Figs. 6.7.a-c), illustrates an OBC under the
same conditions outlined in Fig. 6.6, as depicted in the quantum walk lattice in
Fig. 6.7.a. Figures 6.7.b and 6.7.c provide a side-by-side comparison of the numer-
ical and experimental dispersion relation tomography of the α ring, demonstrating
a strong match and showcasing two distinct gapped bands with no edge states, in-
dicating a zero Chern number and the absence of anomalous topological phases.

The second row (see Figs. 6.7.d-f) presents the hybridization scenarios (stripe
+ bulk). A boundary condition is imposed at site n = 0 by setting the coupling
angles to full reflectance (θm

n=0 = π/2). Additionally, the phase modulator at sites
n = 0 and 1 alternates between four distinct values [ϕ1, ϕ2, ϕ3, ϕ4] = [1, 0, 0, 0]φ,
ensuring a non-zero net phase winding, ∑4

i=1 ϕi = 1, within one Floquet period. As
a consequence, each gap is traversed by a single band of edge states, all exhibiting
a positive group velocity, as depicted numerically and experimentally in Figs. 6.7.e
and 6.7.c, respectively. Moreover, defining ([ϕ1, ϕ2, ϕ3, ϕ4] = [1, 0, 1, 0]φ, the total
phase winding becomes ∑4

i=1 ϕi = 2, As a result, each gap is now crossed by two
bands of edge states with positive group velocity (see Figs. 6.7.h-i).

6.3.0.2 Non-trivial Chern bands

Figures. 6.7.j-l replicate Figs. 6.7.a-c and showcase an OBC for a point located
at (θ3, θ4) = (1/2, 1/4)π in region (5), characterized by C± = ∓2. The bands fea-
ture two edge states associated to the bulk topology with negative group velocity
traversing the 0-gap, while no edge states cross the π-gap (see Figs. 6.7.k-l)

Figures. 6.7.m-o facilitates the hybridization scenarios when [ϕ1, ϕ2, ϕ3, ϕ4] =

[1, 0, 1, 0]φ and (θ3, θ4) = (1/2, 1/4)π. With this arrangement, the unitary operat-
ors acting on the edge sites exhibit a winding of +2 along the quasimomentum
ϕ direction. This winding has an opposite sign to the winding of the Chern edge
states displayed in Figs. 6.7.k-l. The hybridization of the Chern edge states with the
winding of the edge operators results in the cancellation of the edge states at the 0-
gap, as evidenced by a wavy localized state in Figs. 6.7.n-o that does not traverse 0-
gap. Simultaneously, the winding of the edge operators introduces two edge states
traversing the π-gap (see Figs. 6.7.n-o). Setting [ϕ1, ϕ2, ϕ3, ϕ4] = [−1, 0,−1, 0]φ
aligns the group velocities of the edge winding and the Chern edge states. This situ-
ation leads to the appearance of four edge states traversing the 0-gap and two tra-
versing the π-gap, as demonstrated numerically and experimentally in Figs. 6.7.q-r,
respectively. The low experimental resolution results from having only 16 strobo-
scopic turns.
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Figure 6.7: Numerical and experimental comparison is presented for OBC and various hy-
bridization (stripe+bulk) cases, when (θ3, θ4) = (14/32, 14/32) and (1/2, 1/4),
corresponding to the upper (green) and lower (blue) boxes, respectively.
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6.4 Conclusion

This chapter presents a comprehensive theoretical and experimental analysis of
both bulk and edge topology within the four-step model.

Beginning with bulk topology, our experimental measurements of the Berry
curvature aligned with analytical predictions, allowing us to determine the exact
Chern number. We observed both trivial and non-trivial Chern numbers, under-
scoring the richer phase diagram of the four-step model compared to its two-step
counterpart. Additionally, we provided a second method for extracting the Chern
number of a specific band by calculating the difference between the number of
edge states above and below the band under open boundary conditions.

Finally, we examined the influence of extrinsic topology in systems with both
zero and non-zero Chern numbers. Our findings indicate the potential to close and
open specific gaps by effectively suppressing or inducing edge states, despite the
low-resolution limitations imposed by the restricted number of round trips in the
system.

Questions:

Is there a potential correlation between the Chern number and the number
of vortex-antivortex pairs present in the relative phase Φαβ? This hypothesis is
currently under investigation in collaboration with our physics and mathematics
colleagues.



7
C O N C L U S I O N & P E R S P E C T I V E

7.1 Conclusion

Periodically driven lattices, commonly referred to as Floquet systems, exhibit
a spectrum of modes that is both periodic in space and quasienergy. This phe-
nomenon allows the emergence of bands featuring topological chiral edge states
traversing the gap, even while exhibiting trivial Chern indices (C=0). Such phases
are referred to as anomalous topological phases [7–9]. In cases where the driv-
ing is smooth and continuous, the bulk-edge correspondence is guaranteed by the
existence of a bulk invariant, known as the winding number [83]. However, re-
cent theoretical works show that 2D lattices subject to periodic discrete step walks
result in a richer topological phase diagram, where the existence of chiral edge
states does not only depend on the bulk invariant but also on an invariant associ-
ated with the specific edge termination "extrinsic" topology" [10]. This manuscript
presents a comprehensive numerical and experimental analysis of both trivial and
non-trivial topological phases, through simultaneous measurements of edge and
bulk invariants in a 2D synthetic photonic lattice subjected to a discrete step-walk
[120].

The 1D+1 lattice is implemented using time multiplexing of light pulses in two
coupled fiber rings, characterized by a minor disparity in length and coupled with
a variable beamsplitter (VBS). A second parametric synthetic dimension appears in
the system when one of the rings incorporates an external phase modulator (PM),
introducing a phase φ. The time evolution of light pulses in the rings is described
by two mathematical equations. Each time step corresponds to a complete round
trip of light within the rings. The split-step walk can be engineered to exhibit a peri-
odicity of two or four round trips. In these cases, the models are referred to as the
"two-step" and "four-step" models, respectively. Numerically, applying a 2D Four-
ier transform to the stroboscopic spatiotemporal diagram of the system’s impulse
response, we can access spectral information and presents a comprehensive char-
acterization of the double-ring system eigenvalues and eigenvectors (from both
power and phase spectral distributions). Experimentally, this is achieved within a
single measurement by leveraging a heterodyne method [118]: a coherent beating
between the extracted wavefield of the double rings, and the narrow bandwidth

129



130 conclusion & perspective

of the local oscillator’s reference field that is shifted by 3 GHz from the laser fre-
quency.

In the case of the two-step model, the bulk topology is characterized by measur-
ing the system’s eigenstates, allowing for the determination of the Berry curvature
and confirming a zero Chern number for the bands across all regions of the phase
diagram. Additionally, the local Berry curvature changes sign at the gap-closing
points during a phase transition, revealing a non trivial topological charge Q that
indicates the presence of two distinct topological phases. This is evidenced through
the existence of interface states when two distinct topological regions are pasted
together. In the study of edge/extrinsic topology, an expression for the winding
number is derived, demonstrating that the emergence of edge states is tied to a
specific geometrical boundary. This relationship implies that irrespective of the
coupling angle θ of the VBS, any region within the phase diagram can exhibit to-
pological behavior. Furthermore, we elucidate how the topological properties of
the boundaries can significantly influence the global topology of the system. This
phenomenon is experimentally validated by manipulating the phase modulator at
the boundary using a carefully designed sequence, enabling precise control over
the suppression or induction of these edge states.

Building upon the two-step model, we conclude this thesis by examining the
four-step model, which presents a richer topological phase diagram with both
trivial and non-trivial Chern numbers. We explore various methods for extract-
ing the Chern number, including Berry curvature and edge state analysis. Fur-
thermore, we investigate the interplay between extrinsic topology and non-trivial
Chern bands, providing deeper insights into the system’s complex topological
properties

7.2 Perspective

Our experimental platform establishes a foundation for investigating genuine
step walk topology, including the potential observation of extrinsic topological
phases when arbitrary unitary operators are introduced at the edge site [10]. These
unitary operators can be designed to have local windings (i.e., at edge sites) by
simply applying an appropriate voltage sequence to the phase modulator already
present in one of the rings. This is not only interesting from a fundamental point of
view but also paves the way for several practical investigations, such as exploring
the robustness and lifetime of extrinsic edge states alongside those originating
from bulk topology in the presence of disorder. Furthermore, this platform allows
for the production of topological phases on demand, in situations in which the
control of the bulk topology can be challenging. It could be of potential use to
switch on and off topological channels via local actions at the edges of a two-
dimensional metamaterial.
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Figure 7.1: (a) A 2D system employing two consecutive coupled 2x2 beam splitters of
50/50 splitting ratios [170, 171]. (b) My proposed 2D system consists of four
optical fiber rings interconnected by a 4x4 beam splitter of 25/25/25/25 split-
ting ratios.

Another promising direction for future research would involve exploring the ei-
genstates, eigenvalues, and topological invariants of a 2D system where the second
dimension exists in real space rather than in a parameter space, as in our current
study. Such a system has been implemented by A. Muniz et al. [170, 171], employ-
ing two consecutive 2x2 beam splitters with 50/50 splitting ratios, as illustrated
in Fig. 7.1.a. In this configuration, the light pulse is first split along the horizontal
spatial axis by the initial beam splitter, followed by a split along the vertical spatial
axis by the second beam splitter. A novel alternative for obtaining a 2D system is
my "Quadra-Ring" configuration, consisting of four optical fiber rings labeled U,
D, L, and R (representing upward, downward, leftward, and rightward directions)
interconnected by a 4x4 beam splitter with a 25/25/25/25 splitting ratio, as shown
in Fig. 7.1.b. The numerical and analytical framework for this system is detailed in
Appendix F, while experimental validation of this proposed configuration remains
a goal for future research.

We anticipate that the results and insights presented in this manuscript, coupled
with the accompanying perspectives, will serve as a catalyst for continued explor-
ation and innovation within the field of fiber-based photonic lattices.
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A.1 Eigenvector computation
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Figure A.1: Two-step model: the coupling angle alternates between two values, θ1 and θ2,
and the phase modulator between φ1 and φ2 at odd (m) and even (m+1) steps,
the synthetic split step lattice spans in discrete steps along the position site n
and time step m. The red dashed square defines the unit cell of the system
that exhibits a double periodicity, a spatial periodicity with a period of two
sites along the horizontal axis, and a temporal periodicity, with a period of
two round trips along the vertical axis.

In the two-step model, the coupling angle θ and phase modulator demonstrate
cyclic behavior, each alternating between two distinct values within a single Flo-
quet period. The two-step model exhibits double periodicity: spatial (every two
sites n) and temporal (every two-time steps m), as shown by the unit cell (red
dashed square) in Fig. A.1. The lattice system has two sublattices αm

n (blue) and βm
n

(purple) circles corresponding to the α and β rings.
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The eigenvectors |ψ⟩± are represented as a linear combination of the two com-
plex amplitude eigenmodes α̃±(k) and β̃±(k) corresponding to the α and β rings
respectively.

|ψ(k)⟩± =

(
α̃(k)

β̃(k)

)±

=

(
|α̃|eiφα

|β̃|eiφβ

)±

(A.1)

We express the normalized eigenvector as the following expression:

|ψ(k)⟩±norm =
1√

|α̃|2 + |β̃|2

(
|α̃|eiφα

|β̃|eiφβ

)±

|ψ(k)⟩±norm =
1

|α̃|
√

1 + |β̃|2
|α̃|2

(
|α̃|eiφα

|α̃|eiφβ

)±

|ψ(k)⟩±norm =
1

�
�|α̃|
√

1 + |β̃|2
|α̃|2

�
�|α̃|

 1
|β̃|
|α̃| e

i(φβ−φα)

±

|ψ(k)⟩±norm =
1√

1 + |R±|2

(
1

|R±|eiΦ±
αβ

)
(A.2)

The magnitude |R±| and the argument Φ±
αβ of the ratio of amplitude amplitudes

R±(k) between the two sublattice sites for each quasimomentum eigenvector of
each band are given by the following equation:

R(k)± = |R±|eiΦ±
αβ =

β̃±

α̃±

|R±| = |β̃±|
|α̃±|

Φ±
αβ = φ±

β − φ±
α = arg(β̃±)− arg(α̃±)

(A.3)

The dynamics of the amplitude and phase of light pulses in the rings can be
mapped into a coherent step evolution in the one-dimensional synthetic lattice
depicted in Fig. A.1, governed by the following equations:

αm+1
n =

(
cos θm

n−1αm
n−1 + i sin θm

n−1βn−1
m

)
eiφm

n−1

βm+1
n = i sin θm

n+1αm
n+1 + cos θm

n+1βm
n+1

(A.4)
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Let’s consider that the coupling angle alternates between two values, θ1 and θ2,
and the phase modulator between φ1 and φ2 at odd (m) and even (m+1) time steps,
as presented in equation.A.5 and illustrated in Fig. A.1.

φm
n =

φ1

φ2

θm
n =

θ1 ∀n at odd time steps

θ2 ∀n at even time steps
(A.5)

αm+1
n =

(
cos θ1αm

n−1 + i sin θ1βm
n−1
)

eiφ1 (A.6)

βm+1
n = i sin θ1αm

n+1 + cos θ1βm
n+1 (A.7)

αm+2
n−1 =

(
cos θ2αm+1

n−2 + i sin θ2βm+1
n−2

)
eiφ2 (A.8)

βm+2
n−1 = i sin θ2αm+1

n + cos θ2βm+1
n (A.9)

Due to the system’s double periodicity, equations A.6 and A.7 can be solved
using the Floquet-Bloch ansatz equation.(

αm
n

βm
n

)
=

(
α̃(k)

β̃(k)

)
ei Em

2 ei kn
2 (A.10)

The temporal evolution of the sublattices complex amplitudes (αn
m & βn

m) at
any stroboscopic time in real space can be expressed as a superposition of all the
eigenmodes in reciprocal space, with α̃ and β̃ being the complex amplitude of the
eigenmodes at the sites corresponding to the α and β rings respectively.

One Floquet period is 2 round trips, we express αm+2 or βm+2 in the function of
αm and βm to find the eigenvector. We start by replacing equations. A.6 and A.7 in
equation. A.8, as we will demonstrate.

Starting with equation. A.8:

αm+2
n−1 =

(
cos θ2αm+1

n−2 + i sin θ2βm+1
n−2

)
eiφ2

αm+2
n−1 =

(
cos θ2[cos θ1αm

n−3 + i sin θ1βm
n−3]e

iφ1 + i sin θ2[i sin θ1αm
n−1 + cos θ1βm

n−1]
)

eiφ2

αm+2
n−1 = cos θ2 cos θ1αm

n−3ei(φ1+φ2) + i cos θ2 sin θ1βm
n−3ei(φ1+φ2)

− sin θ2 sin θ1αm
n−1eiφ2 + i sin θ2 cos θ1βm

n−1eiφ2 (A.11)
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Substituting equation. A.10 in equation. A.11

α̃ e
iE(m+2)

2 e
ik(n−1)

2 = cos θ2 cos θ1α̃ e
iE(m)
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e
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2 eiφ2

+ i sin θ2 cos θ1β̃e
iE(m)

2 ���
e

iE(m)
2 �

���
e

ik(n−1)
2 eiφ2

α̃ eiE = cos θ2 cos θ1α̃ e−ikei(φ1+φ2) + i cos θ2 sin θ1β̃ e−ikei(φ1+φ2)

− sin θ2 sin θ1α̃ eiφ2 + i sin θ2 cos θ1β̃ eiφ2

α̃eiE = α̃[cos θ2 cos θ1e−ikei(φ1+φ2) − sin θ2 sin θ1eiφ2 ]

+ β̃[i cos θ2 sin θ1e−ikei(φ1+φ2) + i sin θ2 cos θ1eiφ2 ] (A.12)

R(k)± = |R±|eiΦ±
α̃β̃ =

β̃±

α̃±
=

[eiE± − cos θ2 cos θ1e−ikei(φ1+φ2) + sin θ2 sin θ1eiφ2 ]

[i cos θ2 sin θ1e−ikei(φ1+φ2) + i sin θ2 cos θ1eiφ2 ]
(A.13)

Equation. A.13 shows the eigenvector derived by substituting equations. A.6 and
A.7 into equation. A.8, and then applying equation. A.10 to the result. Alternat-
ively, the same eigenvector can be obtained by substituting equations. A.6 and A.7
into equation. A.9, as we will demonstrate.

Starting with equation. A.9:

βm+2
n−1 = i sin θ2αm+1

n + cos θ2βm+1
n (A.14)

βm+2
n−1 = i sin θ2 cos θ1αm

n−1eiφ1 − sin θ2 sin θ1βm
n−1eiφ1

+ i cos θ2 sin θ1αm
n+1 + cos θ2 cos θ1βm

n+1 (A.15)
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Substituting equation. A.10 in equation. A.15
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iE(m)
2 ��

��
e

ik(n−1)
2 e

i2k
2 + cos θ2 cos θ1β̃���

e
iE(m)

2 ��
��

e
ik(n−1)

2 e
i2k
2

β̃eiE = i sin θ2 cos θ1α̃eiφ1 − sin θ2 sin θ1β̃eiφ1 + i cos θ2 sin θ1α̃eik + cos θ2 cos θ1β̃eik

β̃eiE = α̃ i[sin θ2 cos θ1eiφ1 + cos θ2 sin θ1eik] + β̃ [− sin θ2 sin θ1eiφ1 + cos θ2 cos θ1eik]

(A.16)

β̃[eiE + sin θ2 sin θ1eiφ1 − cos θ2 cos θ1eik] = α̃[i sin θ2 cos θ1eiφ1 + i cos θ2 sin θ1eik]

R(k)± = |R±|eiΦ±
α̃β̃ =

β̃±

α̃±
=

[i sin θ2 cos θ1eiφ1 + i cos θ2 sin θ1eik]

[eiE± + sin θ2 sin θ1eiφ1 − cos θ2 cos θ1eik]
(A.17)

A.2 Eigenvalue computation

To determine the eigenvalue, we can use one of two methods: either by solving
the equation given in A.13 set equal to the expression in A.17, or by solving the
evolution operator. In the following section, we will focus on solving the evolution
operator.

From equation. A.12 we have:

α̃eiE = α̃[cos θ2 cos θ1e−ikei(φ1+φ2) − sin θ2 sin θ1eiφ2 ]

+ β̃[i cos θ2 sin θ1e−ikei(φ1+φ2) + i sin θ2 cos θ1eiφ2 ]

α̃ = α̃ [cos θ2 cos θ1ei(−k−E+φ1+φ2) − sin θ2 sin θ1ei(φ2−E)]︸ ︷︷ ︸
A

+ β̃ [i cos θ2 sin θ1ei(−k−E+φ1+φ2) + i sin θ2 cos θ1ei(−E+φ2)]︸ ︷︷ ︸
B

(A.18)

From equation. A.16 we have:

β̃eiE = α̃ i[sin θ2 cos θ1eiφ1 + cos θ2 sin θ1eik] + β̃ [− sin θ2 sin θ1eiφ1 + cos θ2 cos θ1eik]
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β̃ = α̃ i[sin θ2 cos θ1ei(φ1−E) + cos θ2 sin θ1ei(k−E)]︸ ︷︷ ︸
C

+ β̃ [− sin θ2 sin θ1ei(φ1−E) + cos θ2 cos θ1ei(k−E)]︸ ︷︷ ︸
D

(A.19)

From equation. A.18 and A.19 we obtain:{
α̃ = α̃A + β̃B

β̃ = α̃D + β̃C(
α̃

β̃

)
=

[
A B

C D

]
︸ ︷︷ ︸

Evolution operator

(
α̃

β̃

)

(
α̃

β̃

)([
A B

C D

]
− I

)
= 0

det

∣∣∣∣∣A − I B

C D − I

∣∣∣∣∣ = 0

− cos θ2 cos θ1 sin θ2 sin θ1ei(−k−2E+2φ1+φ2) + cos2 θ2 cos2 θ1ei(−2E+φ1+φ2)

− cos θ2 cos θ1ei(−k−E+φ1+φ2) + sin2θ2 sin2 θ1ei(−2E+φ1+φ2) − sin θ2 sin θ1 cos θ2 cos θ1ei(φ2−2E+k)

+ sin θ2 sin θ1ei(φ2−E) + sin θ2 sin θ1ei(φ1−E) − cos θ2 cos θ1ei(k−E) + 1

+ sin θ2 cos θ1 cos θ2 sin θ1ei(−k−2E+2φ1+φ2) + sin2 θ2 cos2 θ1ei(−2E+φ1+φ2)

+ cos2 θ2 sin2 θ1ei(−2E+φ1+φ2) + cos θ2 sin θ1 sin θ2 cos θ1ei(φ2−2E+k) = 0

− cos θ2 cos θ1ei(−k−E+φ1+φ2) + sin θ2 sin θ1ei(φ2−E) + sin θ2 sin θ1ei(φ1−E) − cos θ2 cos θ1ei(k−E)

+ ei(−2E+φ1+φ2)[cos2 θ2 cos2 θ1 + sin2 θ2 sin2 θ1 + sin2 θ2 cos2 θ1 + cos2 θ2 sin2 θ1︸ ︷︷ ︸
1

] + 1 = 0

e−iE[− cos θ2 cos θ1ei(−k+φ1+φ2) + sin θ2 sin θ1eiφ2 + sin θ2 sin θ1eiφ1 − cos θ2 cos θ1eik]

+ ei(−2E+φ1+φ2) + 1 = 0

− e−iE[cos θ2 cos θ1(ei(−k+φ1+φ2) + eik)− sin θ2 sin θ1(eiφ2 + eiφ1)] + ei(−2E+φ1+φ2) + 1 = 0
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− e−iEei (φ1+φ2)
2 [cos θ2 cos θ1(e−ikei (φ1+φ2)

2 + eike−i (φ1+φ2)
2 )

− sin θ2 sin θ1(eiφ2e−i (φ1+φ2)
2 + eiφ1e−i (φ1+φ2)

2 )] + e−2iEei(φ1+φ2) + 1 = 0

− e−iEei (φ1+φ2)
2 [2 cos θ2 cos θ1 cos

(
φ1 + φ2

2
− k
)
− sin θ2 sin θ1(ei (φ2−φ1)

2 + ei (φ1−φ2)
2 )]

+ e−2iEei(φ1+φ2) + 1 = 0

− e−iEei (φ1+φ2)
2 [2 cos θ2 cos θ1 cos

(
φ1 + φ2

2
− k
)
− 2 sin θ2 sin θ1 cos

(
φ1 − φ2

2

)
]

+ e−2iEei(φ1+φ2) + 1 = 0

e−iEei (φ1+φ2)
2︸ ︷︷ ︸

̸=0

[−[2 cos θ2 cos θ1 cos
(

φ1 + φ2

2
− k
)
− 2 sin θ2 sin θ1 cos

(
φ1 − φ2

2

)
]

+ e−iEei (φ1+φ2)
2 + eiEe−i (φ1+φ2)

2 ] = 0

− 2 cos θ2 cos θ1 cos
(

φ1 + φ2

2
− k
)
− 2 sin θ2 sin θ1 cos

(
φ1 − φ2

2

)
+ e−iEei (φ1+φ2)

2 + eiEe−i (φ1+φ2)
2 = 0

2 cos
(

φ1 + φ2

2
− E

)
− 2 cos θ2 cos θ1 cos

(
φ1 + φ2

2
− k
)
− 2 sin θ2 sin θ1 cos

(
φ1 − φ2

2

)
= 0

φ1 + φ2

2
− E = ± cos−1[cos θ2 cos θ1 cos

(
φ1 + φ2

2
− k
)
− sin θ2 sin θ1 cos

(
φ1 − φ2

2

)
]

E±(k, θ1→2, φ1→2) = ± cos−1[ cos θ2 cos θ1 cos
(

φ1 + φ2

2
− k
)

− sin θ2 sin θ1 cos
(

φ1 − φ2

2

)
] +

φ1 + φ2

2
(A.20)
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B.1 Eigenvector computation
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Figure B.1: Four-step model: the coupling angle θ and the phase modulator φ exhibit cyclic
behavior, each alternating between four values. The coupling angle alternates
among θ1, θ2, θ3, θ4, while the phase modulator alternates among φ1, φ2, φ3, φ4
at odd (m) and even (m+1) time steps. The synthetic split step lattice spans in
discrete steps along the position site n and time step m. The red dashed square
defines the unit cell of the system that exhibits a double periodicity, a spatial
periodicity with a period of two sites along the horizontal axis, and a temporal
periodicity, with a period of four round trips along the vertical axis.

In the four-step model, the coupling angle and phase modulator demonstrate
cyclic behavior, each alternating between four distinct values within a single Flo-
quet period. The four-step model exhibits double periodicity: spatial (every two
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sites n) and temporal (every four-time steps m), as shown by the unit cell (red
dashed square) in Fig. B.1. The lattice system has two sublattices αm

n (blue) and βm
n

(purple) circles corresponding to the α and β rings.

The eigenvectors |ψ⟩± are represented as a linear combination of the two com-
plex amplitude eigenmodes α̃±(k) and β̃±(k) corresponding to the α and β rings
respectively.

|ψ(k)⟩± =

(
α̃(k)

β̃(k)

)±

=

(
|α̃|eiφα

|β̃|eiφβ

)±

(B.1)

We express the normalized eigenvector as the following expression:

|ψ(k)⟩±norm =
1√

|α̃|2 + |β̃|2

(
|α̃|eiφα

|β̃|eiφβ

)±

|ψ(k)⟩±norm =
1

|α̃|
√

1 + |β̃|2
|α̃|2

(
|α̃|eiφα

|α̃|eiφβ

)±

|ψ(k)⟩±norm =
1

�
�|α̃|
√

1 + |β̃|2
|α̃|2

�
�|α̃|

 1
|β̃|
|α̃| e

i(φβ−φα)

±

|ψ(k)⟩±norm =
1√

1 + |R±|2

(
1

|R±|eiΦ±
αβ

)
(B.2)

The magnitude |R±| and the argument Φ±
αβ of the ratio of amplitude amplitudes

R±(k) between the two sublattice sites for each quasimomentum eigenvector of
each band are given by the following equation:

R(k)± = |R±|eiΦ±
αβ =

β̃±

α̃±

|R±| = |β̃±|
|α̃±|

Φ±
αβ = φ±

β − φ±
α = arg(β̃±)− arg(α̃±)

(B.3)

The dynamics of the amplitude and phase of light pulses in the rings can be
mapped into a coherent step evolution in the one-dimensional synthetic lattice
depicted in Fig. B.1, governed by the following equations:

αn
m+1 =

(
cos θn−1

m αn−1
m + i sin θn−1

m βn−1
m

)
eiφn−1

m (B.4)

βn
m+1 = i sin θn+1

m αn+1
m + cos θn+1

m βn+1
m (B.5)
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Let’s consider that the coupling angle θ alternates between four values
[θ1, θ2, θ3, θ4], and the phase modulator φ between[φ1, φ2, φ3, φ4] as follows:

φm
n =



φ1

φ2

φ3

φ4

θm
n =



θ1 ∀n if m mod 4=1

θ2 ∀n if m mod 4=2

θ3 ∀n if m mod 4=3

θ4 ∀n if m mod 4=0

(B.6)

Within the four-step model, the system exhibits a double periodicity, a spatial
periodicity with a period of two sites, and a temporal periodicity, with a period
of four round trips. Thus, equations. B.4 and B.5 can be solved using the Floquet-
Bloch ansatz equation.

(
αn

m

βn
m

)
=

(
α̃(k)

β̃(k)

)
ei Em

4 ei kn
2 =

(
α̃(k)

β̃(k)

)
ei E′m

2 ei kn
2 where E′ =

E
2

(B.7)

The temporal evolution of the sublattices complex amplitudes (αn
m & βn

m) at
any stroboscopic time in real space can be expressed as a superposition of all the
eigenmodes in reciprocal space, with α and β being the complex amplitude of the
eigenmodes at the sites corresponding to the α and β rings respectively. We express
the Floquet-Bloch ansatz equation as a function of E′ to simplify the calculation.

Given that one Floquet period consists of four round trips, we express αm+4

from equation. B.4 as a function of αm and βm to determine the eigenvector. To
simplify the calculations, we introduce a few abbreviations:

 Tn
m = cos θn

m

Rn
m = i sin θn

m


φij = φi + φj

φijz = φi + φj + φz

ϕ = ∑4
i=1 φi = φ1 + φ2 + φ3 + φ4

From equation. B.4 we have:

αn−3
m+4 = [Tn−4

m+3αn−4
m+3 + Rn−4

m+3βn−4
m+3]e

iφn−4
m+3 = [T4αn−4

m+3 + R4βn−4
m+3]e

iφ4

αn−3
m+4 = T4[T3αn−5

m+2 + R3βn−5
m+2]e

iφ34 + R4[T3βn−3
m+2 + R3αn−3

m+2]e
iφ4

αn−3
m+4 = T4T3[T2αn−6

m+1 + R2βn−6
m+1]e

iφ234 + T4R3[T2βn−4
m+1 + R2αn−4

m+1]e
iφ34

+ R4T3[T2βn−2
m+1 + R2αn−2

m+1]e
iφ4 + R4R3[T2αn−4

m+1 + R2βn−4
m+1]e

iφ24 (B.8)
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αn−3
m+4 = T4T3T2[T1αn−7

m + R1βn−7
m ]eiϕ + T4T3R2[T1βn−5

m + R1αn−5
m ]eiφ234

+ T4R3T2[T1βn−3
m + R1αn−3

m ]eiφ34 + T4R3R2[T1αn−5
m + R1βn−5

m ]eiφ134

+ R4T3T2[T1βn−1
m + R1αn−1

m ]eiφ4 + R4T3R2[T1αn−3
m + R1βn−3

m ]eiφ14

+ R4R3T2[T1αn−5
m + R1βn−5

m ]eiφ124 + R4R3R2[T1βn−3
m + R1αn−3

m ]eiφ24 (B.9)

Substituting equation. B.7 in equation. B.9

α̃ei2E′
= [T4T3T2T1ei(−2k+ϕ) + T4T3R2R1ei(−k+φ234) + T4R3T2R1eiφ34 + T4R3R2T1ei(−k+φ134)

+R4T3T2R1ei(k+φ4) + R4T3R2T1eiφ14 + R4R3T2T1ei(−k+φ124) + R4R3R2R1eiφ24︸ ︷︷ ︸
A

]α̃

+ [T4T3T2R1ei(−2k+ϕ) + T4T3R2T1ei(−k+φ234) + T4R3T2T1eiφ34 + T4R3R2R1ei(−k+φ134)

+R4T3T2T1ei(k+φ4) + R4T3R2R1eiφ14 + R4R3T2R1ei(−k+φ124) + R4R3R2T1eiφ24︸ ︷︷ ︸
B

]β̃

(B.10)

α̃ei2E′
= α̃[...] + β̃[...] = α̃A + β̃B (B.11)

R(k)± = |R±|eiΦ±
αβ =

β̃±

α̃±
=

e2iE′ − A
B

(B.12)

Equation. B.12 shows the eigenvector derived by expressing αm+4 from equa-
tion. B.4 as a function of αm and βm. Alternatively, the same eigenvector can be
obtained by expressing βm+4 from equation. B.5 as a function of αm and βm, as we
will demonstrate now.

From equation. B.5 we have:

βn−3
m+4 = Tn−2

m+3βn−2
m+3 + Rn−2

m+3αn−2
m+3 = T4βn−2

m+3 + R4αn−2
m+3

βn−3
m+4 = T4[T3βn−1

m+2 + R3αn−1
m+2] + R4[T3αn−3

m+2 + R3βn−3
m+2]e

iφ3

βn−3
m+4 = T4T3[T2βn

m+1 + R2αn
m+1] + T4R3[T2αn−2

m+1 + R2βn−2
m+1]e

iφ2

+ R4T3[T2αn−4
m+1 + R2βn−4

m+1]e
iφ23 + R4R3[T2βn−2

m+1 + R2αn−2
m+1]e

iφ3

βn−3
m+4 = T4T3T2[T1βn+1

m + R1αn+1
m ] + T4T3R2[T1αn−1

m + R1βn−1
m ]eiφ1

+ T4R3T2[T1αn−3
m + R1βn−3

m ]eiφ12 + T4R3R2[T1βn−1
m + R1αn−1

m ]eiφ2

+ R4T3T2[T1αn−5
m + R1βn−5

m ]eiφ123 + R4T3R2[T1βn−3
m + R1αn−3

m ]eiφ23

+ R4R3T2[T1βn−1
m + R1αn−1

m ]eiφ3 + R4R3R2[T1αn−3
m + R1βn−3

m ]eiφ13 (B.13)
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Substituting equation. B.7 in equation. B.13

β̃ei2E′
= α̃[T4T3T2R1ei(2k) + T4T3R2T1ei(k+φ1) + T4R3T2T1eiφ12 + T4R3R2R1ei(k+φ2)

+R4T3T2T1ei(−k+φ123) + R4T3R2R1eiφ23 + R4R3T2R1ei(k+φ3) + R4R3R2T1eiφ13 ]︸ ︷︷ ︸
C

+ β̃[T4T3T2T1ei(2k) + T4T3R2R1ei(k+φ1) + T4R3T2R1eiφ12 + T4R3R2T1ei(k+φ2)

+R4T3T2R1ei(−k+φ123) + R4T3R2T1eiφ23 + R4R3T2T1ei(k+φ3) + R4R3R2R1eiφ13 ]︸ ︷︷ ︸
D

(B.14)

β̃ei2E′
= α̃[...] + β̃[...] = α̃C + β̃D (B.15)

R(k)± = |R±|eiΦ±
αβ =

β̃±

α̃±
=

C
e2iE′ − D

(B.16)

B.2 Eigenvalue computation

To determine the eigenvalue, we can use one of two methods: either by solving
the equation given in B.12 set equal to the expression in B.16, or by solving the
evolution operator. In the following section, we will focus on solving the evolution
operator.

From equation. B.11 and B.15{
α̃ei2E′

= α̃A + β̃B

β̃ei2E′
= α̃C + β̃Dα̃ = α̃
∗
A + β̃

∗
B

β̃ = α̃
∗
C + β̃

∗
D

∗
A = Ae−2iE′ ∗

B = Be−2iE′ ∗
C = Ce−2iE′ ∗

D = De−2iE′

(
α̃

β̃

)
=

 ∗
A

∗
B

∗
C

∗
D


︸ ︷︷ ︸

Evolution operator

(
α̃

β̃

)

(
α̃

β̃

) ∗
A

∗
B

∗
C

∗
D

− I

 = 0
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det

∣∣∣∣∣∣
∗
A − I

∗
B

∗
C

∗
D − I

∣∣∣∣∣∣ = 0

1 % Matlab code to solve the determinant

% we consider only in the matlab code that E is E’

clear all

clc

6

syms T1 T2 T3 T4 R1 R2 R3 R4 f1 f2 f3 f4 f k E

A= +T4*T3*T2*T1*exp(1i*(-2*k+f)) +T4*T3*R2*R1*exp(1i*(-k+f2+f3+f4))...

+T4*R3*T2*R1*exp(1i*(f3+f4)) +T4*R3*R2*T1*exp(1i*(-k+f1+f3+f4))...

+R4*T3*T2*R1*exp(1i*(k+f4)) +R4*T3*R2*T1*exp(1i*(f1+f4))...

11 +R4*R3*T2*T1*exp(1i*(-k+f1+f2+f4)) +R4*R3*R2*R1*exp(1i*(f2+f4));

A=A*exp(-2i*E);

B= +T4*T3*T2*R1*exp(1i*(2*-k+f)) +T4*T3*R2*T1*exp(1i*(-k+f2+f3+f4))...

+T4*R3*T2*T1*exp(1i*(f3+f4)) +T4*R3*R2*R1*exp(1i*(-k+f1+f3+f4))...

16 +R4*T3*T2*T1*exp(1i*(k+f4)) +R4*T3*R2*R1*exp(1i*(f1+f4))...

+R4*R3*T2*R1*exp(1i*(-k+f1+f2+f4)) +R4*R3*R2*T1*exp(1i*(f2+f4));

B=B*exp(-2i*E);

C= +T4*T3*T2*R1*exp(1i*(2*k)) +T4*T3*R2*T1*exp(1i*(k+f1))...

21 +T4*R3*T2*T1*exp(1i*(f1+f2)) +T4*R3*R2*R1*exp(1i*(k+f2))...

+R4*T3*T2*T1*exp(1i*(-k+f1+f2+f3)) +R4*T3*R2*R1*exp(1i*(f2+f3))...

+R4*R3*T2*R1*exp(1i*(k+f3)) +R4*R3*R2*T1*exp(1i*(f1+f3));

C=C*exp(-2i*E);

26 D= +T4*T3*T2*T1*exp(1i*(2*k)) +T4*T3*R2*R1*exp(1i*(k+f1))...

+T4*R3*T2*R1*exp(1i*(f1+f2)) +T4*R3*R2*T1*exp(1i*(k+f2))...

+R4*T3*T2*R1*exp(1i*(-k+f1+f2+f3)) +R4*T3*R2*T1*exp(1i*(f2+f3))...

+R4*R3*T2*T1*exp(1i*(k+f3)) +R4*R3*R2*R1*exp(1i*(f1+f3));

31 D=D*exp(-2i*E);

M=(A-1)*(D-1)-B*C;

result = simplify(expand(M))
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1 + T2
1 T2

2 T2
3 T2

4 ei(−4E′+ϕ) − T1T2T3T4e2i(−E′+k) − R1R2R3R4ei(−2E′+φ13)

− R1R2R3R4ei(−2E′+φ24) − R1R3T2T4ei(−2E′+φ12) − R2R4T1T3ei(−2E′+φ14)

− R2R4T1T3ei(−2E′+φ23) − R1R3T2T4ei(−2E′+φ34) − R1R2T3T4ei(−2E′+φ1+k)

− R2R3T1T4ei(−2E′+φ2+k) − R3R4T1T2ei(−2E′+φ3+k) − R1R4T2T3ei(−2E′+φ4+k)

− T1T2T3T4ei(−2E′+ϕ−2k) − R1R4T2T3ei(−2E′+φ123−k) − R3R4T1T2ei(−2E′+φ124−k)

− R2R3T1T4ei(−2E′+φ134−k) − R1R2T3T4ei(−2E′+φ234−k) + R2
1R2

2R2
3R2

4ei(−4E′+ϕ)

− R2
1R2

2R2
3T2

4 ei(−4E′+ϕ) − R2
1R2

2R2
4T2

3 ei(−4E′+ϕ) − R2
1R2

3R2
4T2

2 ei(−4E′+ϕ)

− R2
2R2

3R2
4T2

1 ei(−4E′+ϕ) + R2
1R2

2T2
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1 T2T3T2
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1 T2

2 T3T4ei(−4E′+φ124+k) −R2
1R2R3T2T3T2

4 ei(−4E′+ϕ+φ2−k)

−R2
1R3R4T2

2 T3T4ei(−4E′+ϕ+φ3−k) +R2R3T2
1 T2T3T2

4 ei(−4E′+ϕ+φ2−k)

+R3R4T2
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+R2
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2 T3T4ei(−4E′+φ124+k) +R2R3T2
1 T2T3T2
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− e−2iE′
[ T1T2T3T4[e2ik + ei(ϕ−2k)] + R1R2R3R4[eiφ13 + ei(ϕ−φ13)]

+ R1R3T2T4[eiφ12 + ei(ϕ−φ12)] + R2R4T1T3[eiφ14 + ei(ϕ−φ14)]

+ R1R2T3T4[ei(φ1+k) + ei(ϕ−φ1−k)] + R2R3T1T4[ei(φ2+k) + ei(ϕ−φ2−k)]

+ R3R4T1T2[ei(φ3+k) + ei(ϕ−φ3−k)] + R1R4T2T3[ei(φ4+k) + ei(ϕ−φ4−k)] ]

+ ei(−4E′+ϕ) + 1 = 0 (B.17)

− ei(−2E′+ ϕ
2 )[ T1T2T3T4[ei(2k− ϕ

2 ) + ei( ϕ
2 −2k)] + R1R2R3R4[ei(φ13−

ϕ
2 ) + ei( ϕ

2 −φ13)]

+ R1R3T2T4[ei(φ12−
ϕ
2 ) + ei( ϕ

2 −φ12)] + R2R4T1T3[e(iφ14−
ϕ
2 ) + ei( ϕ

2 −φ14)]

+ R1R2T3T4[ei(φ1+k− ϕ
2 ) + ei( ϕ

2 −φ1−k)] + R2R3T1T4[ei(φ2+k− ϕ
2 ) + ei( ϕ

2 −φ2−k)]

+ R3R4T1T2[ei(φ3+k− ϕ
2 ) + ei( ϕ

2 −φ3−k)] + R1R4T2T3[ei(φ4+k− ϕ
2 ) + ei( ϕ

2 −φ4−k)]]

+ ei(−4E′+ϕ) + 1 = 0 (B.18)

− 2ei(−2E′+ ϕ
2 )[ T1T2T3T4 cos

(
2k − ϕ

2

)
+ R1R2R3R4 cos

(
φ13 −

ϕ

2

)
+ R1R3T2T4 cos

(
φ12 −

ϕ

2

)
+ R2R4T1T3 cos

(
φ14 −

ϕ

2

)
+ R1R2T3T4 cos

(
φ1 + k − ϕ

2

)
+ R2R3T1T4 cos

(
φ2 + k − ϕ

2

)
+ R3R4T1T2 cos

(
φ3 + k − ϕ

2

)
+ R1R4T2T3 cos

(
φ4 + k − ϕ

2

)
]

+ ei(−4E′+ϕ) + 1 = 0 (B.19)

1 + ei(−4E′+ϕ) − 2ei(−2E′+ ϕ
2 )[...] = 0

ei(−2E′+ ϕ
2 )︸ ︷︷ ︸

̸=0

[e−i(−2E′+ ϕ
2 ) + ei(−2E′+ ϕ

2 ) − 2[ ... ] ] = 0

e−i(−2E′+ ϕ
2 ) + ei(−2E′+ ϕ

2 ) − 2[ ... ] = 0

2 cos
(
−2E′ +

ϕ

2

)
− 2[ ... ] = 0

cos
(
−2E′ +

ϕ

2

)
= [ ... ]

− 2E′ +
ϕ

2
= ± cos−1([ ... ])
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E′ = ±1
2

cos−1([ ... ]) +
ϕ

4
Nevertheless E′ =

E
2

E = ± cos−1([ ... ]) +
ϕ

2

E±(k, φ1→4) =± arccos[ T1T2T3T4 cos
(

2k − ϕ

2

)
+ R1R2R3R4 cos

(
φ13 −

ϕ

2

)
+ R1R3T2T4 cos

(
φ12 −

ϕ

2

)
+ R2R4T1T3 cos

(
φ14 −

ϕ

2

)
+ R1R2T3T4 cos

(
φ1 + k − ϕ

2

)
+ R2R3T1T4 cos

(
φ2 + k − ϕ

2

)
+ R3R4T1T2 cos

(
φ3 + k − ϕ

2

)
+ R1R4T2T3 cos

(
φ4 + k − ϕ

2

)
] +

ϕ

2
(B.20)

Finally, the dispersion relation can be expressed as a function of (k, θ1→4, φ1→4)

by substituting Tn
m and Rn

m with cos(θn
m) and i sin(θn

m), respectively.

E±(k, θ, φ) =± cos−1[

cos(θ1) cos(θ2) cos(θ3) cos(θ4) cos
(

2k − φ1 + φ2 + φ3 + φ4

2

)
+ sin(θ1) sin(θ2) sin(θ3) sin(θ4) cos

(
φ1 + φ3 −

φ1 + φ2 + φ3 + φ4

2

)
+ sin(θ1) sin(θ3) cos(θ2) cos(θ4) cos

(
φ1 + φ2 −

φ1 + φ2 + φ3 + φ4

2

)
+ sin(θ2) sin(θ4) cos(θ1) cos(θ3) cos

(
φ1 + φ4 −

φ1 + φ2 + φ3 + φ4

2

)
+ sin(θ1) sin(θ2) cos(θ3) cos(θ4) cos

(
φ1 + k − φ1 + φ2 + φ3 + φ4

2

)
+ sin(θ2) sin(θ3) cos(θ1) cos(θ4) cos

(
φ2 + k − φ1 + φ2 + φ3 + φ4

2

)
+ sin(θ3) sin(θ4) cos(θ1) cos(θ2) cos

(
φ3 + k − φ1 + φ2 + φ3 + φ4

2

)
+ sin(θ1) sin(θ4) cos(θ2) cos(θ3) cos

(
φ4 + k − φ1 + φ2 + φ3 + φ4

2

)
]

+
φ1 + φ2 + φ3 + φ4

2
(B.21)





C
C O M P O N E N T P O S I T I O N

C.1 Phase modulator placement relative to beamsplitter

As emphasized in Chapter. 2, the component ordering is crucial to our experi-
mental results. The positioning of the phase modulator (PM) relative to the 90/10
beam splitter drastically alters light behavior, necessitating a corresponding adjust-
ment to the evolution equation. This section provides a thorough examination of
these changes to enhance our understanding of the experimental process and facil-
itate accurate comparisons with experimental, numerical and analytical findings.

Oscilloscope

Laser

PM

V
B

S

PM
90/1090/10

PM before the 90/10 beamsplitter

Oscilloscope

Laser

V
B

S

PM

90/1090/10

PM after the 90/10 beamsplitter
PM

(a) (b)

Figure C.1: Experimental setup with the phase modulator positioned: (a) before the beam-
splitter, and (b) after the beamsplitter.

C.1.1 Phase modulator before the beamsplitter

When the phase modulator is placed before the 90/10 beamsplitter that directs
90% of the light towards the photodiode of the oscilloscope to do the measure-
ment, as illustrated in the experimental setup of Fig. C.1.a. The dynamics of the
amplitude and phase of light pulses in the rings can be mapped into a coherent
step evolution in the one-dimensional synthetic lattice, governed by the following
equations:
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αn
m+1 =

(
cos θn−1

m αn−1
m + i sin θn−1

m βn−1
m

)
eiφn−1

m

βn
m+1 = i sin θn+1

m αn+1
m + cos θn+1

m βn+1
m

(C.1)

In this scenario, detailed eigenvectors and eigenvalues for the two-step and
four-step models are provided in Appendices. A and B, respectively.

C.1.2 Phase modulator after the beamsplitter

In contrast to the previous case, positioning the phase modulator after the 90/10
beamsplitter, as illustrated in the experimental setup of Fig. C.1.b, results in the
following dynamics for the amplitude and phase of the light pulses:

αn
m+1 = cos θn−1

m αn−1
m eiφn−1

m+1 + i sin θn−1
m βn−1

m

βn
m+1 = i sin θn+1

m αn+1
m eiφn−1

m+1 + cos θn+1
m βn+1

m

(C.2)

c.1.2.1 Two-step model when the phase modulator is after the beam splitter

Following the detailed step-by-step calculation in Appendix. A, we derive the
general dispersion relation E±(k) in equation C.3, along with the corresponding
normalized eigenvectors formula |ψ+(k)⟩ and |ψ−(k)⟩ in equation. C.4 and C.5,
for the two-step model when the phase modulator is after the beamsplitter:

E±(k, φ1, φ2, θ1, θ2) = ± cos−1[ cos θ2 cos θ1 cos
(
−k − φ2 + φ1

2

)
− sin θ2 sin θ1 cos

(
φ2 − φ1

2

)
] +

φ1 + φ2

2
(C.3)

∣∣ψ±(k)
〉
=

(
α̃(k)

β̃(k)

)±

=
1√

1 + |R±|2

(
1

|R±|eiΦ±
αβ

)
(C.4)

R(k)± = |R±|eiΦ±
αβ =

[eiE(k)± − cos θ2 cos θ1e−ik + sin θ2 sin θ1eiφ1 ]

[i cos θ2 sin θ1ei(−k+φ2) + i sin θ2 cos θ1ei(φ2+φ1)]
(C.5)

c.1.2.2 Four-step model when the phase modulator is after the beam splitter

Similarly, by following the detailed step-by-step calculation in Appendix. B, we
derive the general dispersion relation E±(k) in equation. C.6, along with the corres-
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ponding normalized eigenvectors formula |ψ+(k)⟩ and |ψ−(k)⟩ in equations. C.7
and C.8, for the four-step model when the phase modulator is after the variable
beamsplitter (VBS):

To simplify the calculation, we introduce a few abbreviations:

 Tm = cos θm

Rm = i sin θm


φij = φi + φj

φijz = φi + φj + φz

ϕ = ∑4
i=1 φi = φ1 + φ2 + φ3 + φ4

E±(k) =± cos−1[ T1T2T3T4 cos
(
−2k − ϕ

2

)
+ R1R2R3R4 cos

(
φ24 −

ϕ

2

)
+ R1R3T2T4 cos

(
φ12 −

ϕ

2

)
+ R2R4T1T3 cos

(
φ23 −

ϕ

2

)
+ R1R2T3T4 cos

(
φ3 − k − ϕ

2

)
+ R2R3T1T4 cos

(
φ4 − k − ϕ

2

)
+ R3R4T1T2 cos

(
φ1 − k − ϕ

2

)
+ R1R4T2T3 cos

(
φ2 − k − ϕ

2

)
] +

ϕ

2
(C.6)

|ψ(k)⟩± =

(
α(k)

β(k)

)±

=
1√

1 + |R±|2

(
1

|R±|eiΦ±
αβ

)
(C.7)

R(k)± = |R±|eiΦ±
αβ =

eiE(k)± − A
B

(C.8)

A = [T4T3T2T1ei(−2k) + T4T3R2R1ei(−k+φ3) + T4R3T2R1eiφ34 + T4R3R2T1ei(−k+φ4)

+ R4T3T2R1ei(k+φ134) + R4T3R2T1eiφ14 + R4R3T2T1ei(−k+φ1) + R4R3R2R1eiφ13 ]

(C.9)

B = [T4T3T2R1ei(−2k+φ2) + T4T3R2T1ei(−k+φ23) + T4R3T2T1eiφ234 + T4R3R2R1ei(−k+φ24)

+ R4T3T2T1ei(k+ϕ) + R4T3R2R1eiφ124 + R4R3T2R1ei(−k+φ12) + R4R3R2T1eiφ123 ]

(C.10)

Figure. C.2 provides an analytical comparison of the two-dimensional eigen-
vectors, eigenvalues, and Berry curvature of the upper band when the phase mod-
ulator is placed before (first row) and after (second row) the beamsplitter. This
comparison is made for a set of coupling angles (θ1, θ2) = (0.2, 0.3)π and for
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Dispersion relation
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Figure C.2: Analytical comparison of the two-dimensional eigenvectors, eigenvalues, and
Berry curvature when the phase modulator is placed before (first row) and
after (second row) the beamsplitter. This comparison is made for a set of coup-
ling angles (θ1, θ2) = (0.2, 0.3)π and for φ ∈ [−π, π] when a narrow pulse
in introduced into the α ring. (a, e) Illustrate the two-dimensional dispersion
relation. (b, f) Depict the two-dimensional amplitude ratio. (c, g) Show the two-
dimensional relative phase. (d, h) Berry curvature with a trivial Chern number.

φ ∈ [−π, π], after the introduction of a narrow pulse into the system that satisfies
the condition in equation. 1.13. The band structures in Figs. C.2.a-e and the upper
band’s amplitude ratio |R|+ in Figs. C.2.b-f show excellent agreement regardless
of whether the phase modulator is placed before or after the beamsplitter. How-
ever, the relative phase Φαβ in Figs. C.2.c-g exhibits distinct behavior, impacting
the Berry curvature depicted in Figs. C.2.d-h. The concentrated blue and red flux
of the Berry curvature in Fig. C.2.h is tilted compared to Fig. C.2.d. Despite these
differences, integrating the Berry curvature yields a zero Chern number regardless
of the phase modulator’s position.

To validate our analytical and numerical models, Fig. C.3 provides an analytical,
numerical, and experimental comparison of the two-dimensional eigenvectors, ei-
genvalues, and Berry curvature results for the upper band across its three rows re-
spectively. A narrow pulse is injected into the long ring with a phase modulator po-
sitioned after the beam splitter. This comparison is performed for a set of coupling
angles (θ1, θ2) = (0.2, 0.3)π and φ ∈ [−π, π]. The excellent agreement between the
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analytical, numerical, and experimental dispersion relations Figs. C.3.a, e, i, amp-
litude ratios Figs. C.3.b, f, j, relative phases Figs. C.3.c, g, k, and Berry curvatures
with trivial Chern numbers Figs. C.3.d, h, l, respectively, confirms the reliability of
our model.
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Dispersion relation

Figure C.3: A comparison of analytical, numerical, and experimental results is presented
across the three rows of the figure. This comparison focuses on the upper band,
considering a narrow pulse injected into the long ring with a phase modulator
positioned after the beam splitter when the coupling angles are set to (θ1, θ2) =
(0.2, 0.3)π and φ ∈ [−π, π]. (a, e, i) Illustrate the two-dimensional dispersion
relation. (b, f, j) Depict the two-dimensional amplitude ratio. (c, g, k) Show the
two-dimensional relative phase. (d, h, l) Berry curvature with a trivial Chern
number.





D
D ATA S M O O T H I N G

Appendix. D demonstrates the smoothing techniques applied to the experi-
mental data using a four-step model analytical example. We focus on two primary
methods: the first employs the ‘smoothdata‘ function in MATLAB, while the
second involves refining the eigenvectors of the projector operator. Both ap-
proaches aim to reduce data fluctuations.

Figure. D.1 displays a 4x4 matrix of plots. The top row illustrates the two-
dimensional eigenvectors |ψ+(k, φ)⟩ of the analytical upper band for the four-step
model, derived from equations 1.27 and 1.28. This is shown when a narrow pulse,
satisfying the condition of equation. 1.13, is introduced into the long ring α. The
phase modulator value φ ranges from [−π, π], and the coupling angles are set to
[θ1, θ2, θ3, θ4] = [4π/32, 8π/32, 0, 8π/32].

The first and second panels of the top row in Figs. D.1.a-b illustrate the two-
dimensional amplitude ratio |R|+(k, φ) and the relative phase Φ+

αβ(k, φ) of the
upper band, respectively. The amplitude ratio |R|+(k, φ) displays high and low
amplitude regions, depicted in yellow and blue, which correspond precisely to the
positions of the vortex-antivortex pairs in the relative phase tomography Φ+

αβ(k, φ).
The third and fourth panels of the top row in Figs. D.1.c-d respectively depict
the trajectories of |R|+(k, φ) and Φ+

αβ(k, φ) on the Bloch sphere for φ = 0. The
slice is depicted by a white dashed line in Figs. D.1.a-b. The analytical examples
in the first row represent the ideal, fluctuation-free model. The aim is to apply
smoothing techniques to noisy data, aligning it as closely as possible with these
analytical results.

The second row presents noisy versions of the analytical results in the first row,
intentionally added to simulate the fluctuations and noise typically observed in the
experimental data. This random noise can blur the amplitude ratio and the relative
phase (see Figs. D.1.e-f), consequently distorting the eigenvector’s trajectory on the
Bloch sphere (see Figs. D.1.g-h).

The third row demonstrates the first smoothing method. Due to the system’s
double periodicity in time and space, this method involves constructing a large
matrix for both the two-dimensional amplitude ratio |R|+(k, φ) and the relative
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phase Φ+
αβ(k, φ) by replicating each matrix three times horizontally and vertically.

This replication is essential to apply MATLAB’s Gaussian smoothdata function ef-
fectively, ensuring that the entire two-dimensional ratio of amplitude |R|+(k, φ)

and relative phase Φ+
αβ(k, φ) are smoothed, including at the matrix borders, with a

Gaussian smoothing window’s size of 15 pixels that is equal to 3 times the standard
deviation in each direction. Given the nature of Gaussian functions, the tails of the
window effectively diminish to negligible values beyond the standard deviation
range of 5 pixels. Figures. D.1.i and D.1.j display the final smoothed results of the
amplitude ratio |R|+(k, φ) and the relative phase Φ+

αβ(k, φ), respectively, which are
obtained by taking out the central third of the processed matrices. Compared to
Figs. D.1.e–f, these results show a decrease in random noise fluctuations. However,
the high and low amplitude associated with the singularity point, highlighted in
yellow and blue in Fig. D.1.i, are both broader and less prominent than the ex-
pected analytical result of Fig. D.1.a. This smoothing method alters the weight
distribution specifically around singularity points, consequently influencing the
eigenvector trajectory on the Bloch sphere (see Figures. D.1.k-l).

One approach to mitigate this issue involves smoothing the noise in Cartesian
coordinates and subsequently recalculating the eigenvector via the projector op-
erator. This methodology was developed by Martin Guillot, a PhD student at the
C2N group, at Paris-Saclay University.

Consider a 2D noisy normalized eigenvector |ψ(k, φ)⟩ given by equation. D.1,
as a linear combination of the two complex amplitude eigenmodes α̃(k, φ) and
β̃(k, φ) corresponding to the α and β rings respectively. The corresponding bra
vector ⟨ψ(k, φ)| in equation. D.2 is the complex conjugate transpose of |ψ(k, φ)⟩.

|ψ(k, φ)⟩ =
(

α̃(k, φ)

β̃(k, φ)

)
(D.1)

⟨ψ(k, φ)| =
(

α̃∗(k, φ) β̃∗(k, φ)
)

(D.2)

The projector operator P̂ onto the state |ψ⟩ is given by P̂ = |ψ⟩ ⟨ψ|, such that:

P̂ = |ψ(k, φ)⟩ ⟨ψ(k, φ)|

=

(
α̃(k, φ)

β̃(k, φ)

)(
α̃∗(k, φ) β̃∗(k, φ)

)

=


α̃(k, φ) α̃∗(k, φ)︸ ︷︷ ︸

P̂11(k,φ)

α̃(k, φ) β̃∗(k, φ)︸ ︷︷ ︸
P̂12(k,φ)

β̃(k, φ) α̃∗(k, φ)︸ ︷︷ ︸
P̂21(k,φ)

β̃(k, φ) β̃∗(k, φ)︸ ︷︷ ︸
P̂22(k,φ)

 (D.3)
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Figure D.1: Two-dimensional eigenvectors of the analytical upper band for the four-step
model when a narrow pulse is introduced into the long ring α. The phase
modulator value φ ranges from [−π, π], and the coupling angles are set to
[θ1, θ2, θ3, θ4] = [4π/32, 8π/32, 0, 8π/32]. Row 1: Analytical results showing in
(a-b) the amplitude ratio |R|+(k, φ) and the relative phase Φ+

αβ(k, φ), respect-
ively, and their corresponding Bloch sphere representations (c-d) at a specific
value of φ = 0. Row 2: Noisy versions of row 1. Row 3: First smoothing method
of the noisy data in row 2. Row 4: Second smoothing method of the noisy data
in row 2, impressively reducing noise fluctuations and aligning closely with
the analytical results.
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In quantum mechanics, any 2 × 2 Hermitian matrix (like P̂), can be expressed
as a linear combination of the identity matrix I and the three Pauli matrices σx, σy,
and σz [172], as demonstrated by equation. D.4, where a, b, c, and d are matrices
with real coefficients..

P̂ =

[
P̂11(k, φ) P̂12(k, φ)

P̂21(k, φ) P̂22(k, φ)

]
=

[
a(k, φ) + d(k, φ) b(k, φ)− ic(k, φ)

b(k, φ) + ic(k, φ) a(k, φ)− d(k, φ)

]

= a(k, φ)I + b(k, φ)σx + c(k, φ)σy + d(k, φ)σz (D.4)

The identity matrix I and the three Pauli matrices σx, σy, and σz are the following:

I =

(
1 0

0 1

)
σx =

(
0 1

1 0

)
σy =

(
0 −i

i 0

)
σz =

(
1 0

0 −1

)
(D.5)

Under ideal conditions (without noise), the eigenvector |ψ⟩ is associated with a
unitary eigenvalue of the projector operator P̂. To demonstrate, applying P̂ to the
normalized eigenvector |ψ⟩ yields:

P̂ |ψ⟩ = (|ψ⟩ ⟨ψ|) |ψ⟩ = |ψ⟩ (⟨ψ|ψ⟩) = |ψ⟩ · 1 = |ψ⟩ (D.6)

The matrices a(k, φ), b(k, φ), c(k, φ), and d(k, φ) are derived from the elements
of the projector operator P̂ as follows:

a(k, φ) =
1
2
(

P̂11(k, φ) + P̂22(k, φ)
)

(D.7)

d(k, φ) =
1
2
(

P̂11(k, φ)− P̂22(k, φ)
)

(D.8)

b(k, φ) =
1
2
(

P̂12(k, φ) + P̂21(k, φ)
)

(D.9)

c(k, φ) = − 1
2i
(

P̂12(k, φ)− P̂21(k, φ)
)

(D.10)

To recover the smoothed eigenvector, we initially apply Gaussian smoothing to
the Cartesian components (a, b, c, d) using MATLAB’s ‘smoothdata‘ function. The
smoothed projector components (P̂s11, P̂s12, P̂s21, P̂s22) are subsequently derived
from the smoothed matrices (as, bs, cs, ds). We then compute the new eigenval-
ues and eigenvectors of the smoothed projector operator P̂s. Ideally, the equation
P̂s |ψ⟩ = λ |ψ⟩ should result in an eigenvalue of λ = 1. Therefore, we select the ei-
genvector associated with the biggest eigenvalue closest to 1, obtained by solving
the determinant equation det

(
P̂s − λI

)
= 0.
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The latest smoothing method presented in Figs. D.1.m-p, which involves de-
termining the eigenvalue and eigenvector of the projector operator, produces im-
pressive results aligning with the expected analytical values in Figs. D.1.a-d. By
accurately accounting for amplitude weights associated with singularities, high-
lighted in yellow and blue in Fig. D.1.m, the eigenvector amplitude and phase tra-
jectory on the Bloch sphere remains stable, as depicted in Figs. D.1.o-p and closely
matches the anticipated analytical behavior of Figs. D.1.c-d. Furthermore, the novel
smoothing technique (Method 2) effectively addresses both noisy amplitude ratios
and relative phases through eigenvector recalculation. In contrast, the previous
smoothing method (Method 1) applies smoothing individually to the amplitude
ratio and relative phase.

In summary, while the first smoothing method directly uses Gaussian smooth-
ing techniques to effectively mitigate noise, it can introduce distortions in the
amplitude ratio and eigenvector trajectory around singularity points. The second
smoothing approach, which involves eigenvector recalculation, addresses these
limitations, yielding more precise outcomes that closely align with theoretical pre-
dictions.





E
Q U A S I P E R I O D I C M O D U L AT I O N

A quasicrystal structure, represented by the one-dimensional Fibonacci chain
presents a fractal energy spectrum with an infinite number of gaps [173, 174]. This
appendix demonstrates that our double-ring system can also attain a fractal energy
spectrum via quasiperiodic modulation in both time (m) and space (n).

E.1 Quasi periodic modulation in space

n

θ+ξ

θ-ξ

θ(n)

Figure E.1: The coupling angle θ alternates between the two values θ + ξ and θ − ξ in
function of space (n), following a Fibonacci sequence, with ξ ∈ [0, π].

The spatial quasi-periodic modulation is implemented by alternating the coup-
ling angle of the (VBS) according to a Fibonacci sequence. This approach leverages
the characteristic function presented in equation E.1, as proposed by [175].

κ(n) = sign[cos(2πn/σ)− cos(π/σ)] (E.1)

The characteristic function κ(n) takes only two possible values, ±1, where n rep-
resents the lattice sites, and σ = (1 +

√
5)/2 is the golden ratio.

The splitting angle θ, defined by equation E.2, alternates between the two values
θ + ξ and θ − ξ in the function of lattice site (n), according to the characteristic
function following a Fibonacci sequence, with ξ ∈ [0, π] being a coefficient, as
illustrated in Fig. E.1.

θ(m, n) = θ(m, n) + ξκ(n) (E.2)
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Figure E.2: Photonic mesh lattice showcasing the spatial quasi-periodic modulation. The
coupling angle sequence, denoted as θ(m, n), is replicated every time step (m)
but varies spatially based on site position. The phase modulator φ alternates
between two values, +φ and −φ, during odd and even time steps, respectively.

To visualize the manipulation of the coupling angle, Fig. E.2 presents the
photonic mesh lattice discretized in time (vertical axis) and space (horizontal axis).
The coupling angle sequence, denoted as θ(m, n), is replicated every time step
(m) but varies spatially based on site position. The phase modulator φ alternates
between two values, +φ and −φ, during odd and even time steps, respectively.

Figure. E.3 presents a comprehensive non-stroboscopic spatiotemporal compar-
ison of the experimental and numerical results for the rings α and β under spatial
quasi-periodic modulation. The experimental results for rings α and β are depicted
in panels (a) and (b), respectively, while the corresponding numerical results are
shown in panels (c) and (d). The comparison involves introducing a narrow pulse
of 1.4 ns into the long ring α with a baseline coupling angle of θ = π/4 and a
phase modulator value φ = 0. This splitting angle is spatially modulated between
θ + ξ and θ − ξ, where ξ = π/16, by a Fibonacci sequence. The numerical and ex-
perimental results exhibit a remarkable similarity, demonstrating close agreement
between the two.

The red dashed lines in the subplots of Fig. E.3 indicate a coupling angle
θ = π/2 at site position n = ±32, leading to full reflection. This configuration
allows the light to circulate for up to 100 round trips without pulse overlap caused
by beam splitter diffraction. Moreover, Increasing the number of round trips sig-
nificantly enhances the resolution for observing the fractal energy spectrum. The
same condition was applied in both experimental and numerical simulations to
maintain consistency.
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Figure E.3: A non-stroboscopic spatiotemporal comparison of experimental results (a-b)
and numerical results (c-d) for the rings α and β, respectively, under spa-
tial quasi-periodic modulation. The modulation involves introducing a narrow
pulse of 1.4 ns into the long ring α, where the coupling angle θ is spatially
varied between π/4 + ξ and π/4 − ξ, with ξ = π/16 according to a Fibonacci
sequence, while a non-active phase modulator is set to φ = 0. The red dashed
lines indicate a coupling angle θ = π/2 at site position n = ±32, leading to
full reflection.

Figure E.4 displays 3x2 subplots. The first row shows the experimental excited
energy spectrum of each of the rings α and β in panels (a) and (b), respectively,
for the spatially non-modulated scenario. This case corresponds exactly to the cal-
ibration shot (θ = π/4, φ = 0, and ξ = 0). The energy spectrum spans from 2.74
GHz to 3.45 GHz, with a bandwidth of 0.71 GHz, which is precisely the inverse of
the 1.4 ns pulse width introduced into the long ring α. The spectrum is derived by
applying a two-dimensional Fourier transform to the non-stroboscopic spatiotem-
poral diagram.

The second row presents the measured excited energy spectra for rings α and
β in panels (c) and (d), respectively, under spatially quasi-periodic modulation
with θ = π/4 and ξ = π/16. Given the non-periodic nature of the modulation,
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Figure E.4: The excited energy spectra for rings α and β are shown in panels (a) and (b)
for the non-modulated case with θ = π/4 (calibration shot). Panels (c) and
(d) display the spectra under spatial modulation with θ = π/4, φ = 0 and
ξ = π/16. Panels (e) and (f) present the corresponding numerical simulations
for the experimental spectra shown in panels (c) and (d).

along the horizontal axis, representing the lattice site (n), the unit cell is no longer
defined. The typical quasi-momentum (k) and quasi-energy (E) axes are replaced
with frequency axes, as illustrated by the blue frequency axes in Fig. E.4. This re-
quires a non-stroboscopic spatiotemporal analysis. To identify the excited spectral
regions corresponding to the band structures for the quasi-periodic modulation,
we first use the analytical band structure from the calibration shot to pinpoint the
experimental calibration bands within specific frequency windows. The identified
spectral windows are then applied to analyze the quasi-periodic modulation scen-
ario. The numerical quasi-periodic modulation in panels Figs. E.4.e and E.4.f, was
performed by modulating the absolute amplitude of the pulse described in equa-
tion. 1.19 with a 3 GHz reference field. This replicated the experimental procedure,
which consisted of two sequential shots: a calibration and a science shot.
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The experimental fractal energy spectra in Figs. E.4.c and E.4.d exhibit excel-
lent agreement with their corresponding numerical simulations in Fig. E.4.e and
Fig. E.4.f. Notably, both experimental and numerical spectra reveal multiple gaps
within each upper and lower band, forming a fractal pattern. The green dashed
rectangle highlights the region corresponding to the previously studied Brillouin
zone in the context of the two-step model.

E.2 Quasi periodic modulation in time

m

θ+ξ

θ-ξ

θ(m)

Figure E.5: The splitting angle θ alternates between the two values θ + ξ and θ − ξ in
function of time steps (m), following a Fibonacci sequence, with ξ ∈ [0, π].
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Figure E.6: Photonic mesh lattice showcasing the temporal quasi-periodic modulation. The
coupling angle varies in time steps (m) only.

Building upon the previous analysis of spatial quasi-periodic modulation, we
now explore the effects of temporal quasi-periodic modulation.

The temporal quasi-periodic modulation is achieved by considering a nonactive
phase modulator φ = 0 and alternating the splitting angle θ between θ + ξ and
θ − ξ in the function of time steps (m), as outlined in equation. E.4 and illustrated in
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Figure E.7: The excited energy spectra for each of the rings α and β under temporal mod-
ulation with θ = π/4 and ξ = π/8 are shown in panels (a) and (b) for the
experimental results, respectively. Corresponding numerical simulations are
presented in panels (c) and (d), respectively.

Fig. E.5. This modulation follows a Fibonacci sequence defined by the characteristic
function in equation. E.3.

κ(m) = sign[cos(2πm/σ)− cos(π/σ)] (E.3)

θ(m, n) = θ(m, n) + ξκ(m) (E.4)

The coupling angle modulation θ(m, n) is displayed in Fig. E.6 that presents the
photonic mesh lattice discretized in time (vertical axis) and space (horizontal axis).
The splitting angle θ(m, n) varies exclusively with time steps m, while the phase
modulator φ alternates between two values, +φ and −φ, during odd and even
time steps, respectively.

Figures. E.7.a-b presents the experimentally obtained energy spectra for each
of the rings α and β, respectively, under temporal quasi-periodic modulation with
φ = 0, θ = π/4 and ξ = π/8 when a narrow pulse of 1.4 ns is introduced into the
long ring. These experimental fractal spectra show excellent agreement with the
corresponding numerical simulations in panels (c) and (d). Both the experimental
and numerical data reveal multiple gaps within the upper and lower band, forming
a distinct fractal pattern.

The resulting bands from both spatial and temporal quasi-periodic modula-
tion appear similar; however, the modulation parameters differ. In the spatial case,
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ξ = π/16, while in the temporal case, ξ = π/8. This indicates that the spatial
modulation is twice as sensitive to the changes in ξ.

In summary, this appendix demonstrates that our double-ring system exhibits
fractal energy spectra when subjected to temporal or spatial quasi-periodic modu-
lation of the variable beam splitter, characterized by a Fibonacci sequence.





F
Q U A D R A - R I N G S Y S T E M

Inspired by the groundbreaking work of Andre L. M. and H. Chalabi et al.
[170, 176] on a real two-dimensional system employing two coupled 2x2 beam
splitters, this appendix introduces my innovative two-dimensional system. The
system consists of four optical fiber rings interconnected by a 4x4 beam splitter.
While experimental validation of this proposed configuration remains a goal for
future research, I am excited about the potential of this novel concept.

F.1 Quadra-ring temporal response

My novel real two-dimensional configuration termed the "Quadra-Ring System"
consists of four optical fiber rings labeled U, D, L, and R, representing upward,
downward, leftward, and rightward directions, respectively, and a 25/25/25/25
beam splitter. The rings are interconnected through a 25/25/25/25 beam splitter
that divides the input wavefield into four equal amplitude components each time
a pulse encounters the splitter, as illustrated in Fig. F.1.a. The beam splitter is
symbolized by the red and green cube in the 2D synthetic photonic mesh lattice of
Fig. F.1.b. The ring lengths are arranged in ascending order: LD < LL < LR < LU.
Specifically, these lengths are defined as follows: LL = LD + ∆Ly, LR = LD + ∆Ly +

∆Lx, and LU = LD + 2∆Ly + ∆Lx, where ∆Lx and ∆Ly represent the differences
in length between the rings, with ∆Lx < ∆Ly, and LU, LD, LL, and LR denote the
lengths of the U, D, L, and R rings, respectively.

The dynamics of the complex amplitude of light pulses in the rings can be
mapped into a coherent step evolution in the 2D synthetic lattice depicted in
Fig. F.1.b, governed by the following equations:

Um+1
x,y =

1√
4
[Um

x,y−1 + (Dm
x,y−1 + Lm

x,y−1 + Rm
x,y−1)e

iπ]

Dm+1
x,y =

1√
4
[Dm

x,y+1 + (Um
x,y+1 + Lm

x,y+1 + Rm
x,y+1)e

iπ]

Lm+1
x,y =

1√
4
[Lm

x+1,y + (Dm
x+1,y + Um

x+1,y + Rm
x+1,y)e

iπ]

Rm+1
x,y =

1√
4
[Rm

x−1,y + (Dm
x−1,y + Lm

x−1,y + Um
x−1,y)e

iπ]

(F.1)
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Figure F.1: (a) The four-ring system comprises five essential components: four optical fiber
rings denoted U, D, L, and R and a 25/25/25/25 beam splitter. (b) A 2D syn-
thetic photonic mesh lattice that describes the light diffraction along the x and
y axes, with light propagation occurring along the vertical axis, representing
discrete time steps (m).



Um+1
x,y =

1
2
[+Um

x,y−1 − Dm
x,y−1 − Lm

x,y−1 − Rm
x,y−1]

Dm+1
x,y =

1
2
[−Um

x,y+1 + Dm
x,y+1 − Lm

x,y+1 − Rm
x,y+1]

Lm+1
x,y =

1
2
[−Um

x+1,y − Dm
x+1,y + Lm

x+1,y − Rm
x+1,y]

Rm+1
x,y =

1
2
[−Um

x−1,y − Dm
x−1,y − Lm

x−1,y + Rm
x−1,y]

(F.2)
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Figure F.2: Numerical simulation of the quadra-ring temporal response at the output of
each ring (L, R, U, D) is shown in panels (a), (b), (c), and (d), respectively, when
a narrow pulse is introduced into the Left ring L.

Equations. F.2 reveal that the output complex amplitudes of the wavefield for
each ring at lattice site (x, y) during time step (m + 1) result from a linear combin-
ation of the transmitted fields along the same optical fiber path and the reflected
input amplitude fields from different paths at round trip (m) with a phase shift π.

The progression of the light dynamics is visualized in Fig. F.1.b via a 2D syn-
thetic photonic mesh lattice. The x and y axes represent discrete spatial dimensions,
while the vertical axis corresponds to discrete time steps (m). The four sublattices
sites, depicted in black, blue, yellow, and green in Fig. F.1.b correspond to the com-
plex amplitudes Um

x,y, Dm
x,y, Lm

x,y and Rm
x,y respectively, for a specific round trip m

and position (x,y), return to the same site position after two-time steps. Thus one
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Floquet period TF corresponds to two round trips. Similarly, At a specific round
trip (m), the four sublattices manifest by a spatial periodicity every two site pos-
itions. Thus, our system exhibits dual periodicity in both time and space, with a
period corresponding to two round trips in time m → m + 2 and two site positions
in space x → x + 2 and y → y + 2. This defines the unit cell, represented as a cube,
as illustrated by the red dashed outline in Fig. F.1.b.

Figure. F.2 presents a numerical simulation of the quadra-ring temporal re-
sponse when a narrow pulse is introduced in the left ring L at round trip m = 1 and
position site (x, y) = (0, 0). The distribution of the signal intensity as a function
of time step (m) at the output of each ring (L, R, U, D) is represented in (yellow,
green, black, and blue), respectively. Initially, the pulse divides into four smaller
pulses with equal amplitude within each ring once it reaches the 25/25/25/25
fiber coupler, as depicted at round trip m = 2. These pulses journey through their
respective loops until they reunite at the beam splitter at different moments due to
the length difference between the rings. Once again, each of the pulses within each
ring split into four smaller pulses, as illustrated at round trip m = 3. Consequently,
this continuous cyclic process generates multiple pulses with consistent time in-
tervals during each round trip (red double arrows). Due to the length difference
in the loops, the adjacent pulses within the same round trip in each ring are tem-
porally separated, leading to their detection at specific physical times. We assign
integer numbers to each pulse to represent a particular time coordinate, which can
be equated to a position (x,y) in space, (see round trip m=4 in Fig. F.2.d).

The average time of one period T is given by T = L/v, where L denotes the aver-
age length of the rings, calculated as L = (LU + LD + LL + LR)/4, and v represents
the speed of light in the optical fiber. The temporal response of the quadra-ring
system in Fig. F.2 is segmented into equal duration of T, with each segment fur-
ther divided into smaller time intervals of ∆Ly/v. These smaller intervals within
the same round trip are superimposed and reshaped into a two-dimensional dis-
crete lattice slice, representing the corresponding x and y coordinates of the pulses
within the rings, as depicted by the 2D slice at round trip m = 4 in Fig. F.2.d.

F.2 Quadra-ring dispersion relation

F.2.1 Numerical characterization of the band structure

The spatiotemporal diagram for each ring (L, R, U, D) is constructed by layering
the 2D slices next to one another, as presented in Figs. F.3.a-d, respectively, which
illustrates the progression of light from one round trip to the next one as a func-
tion of position (x, y). Figures. F.3.e-f provides a magnified view of the first five
round trips of each of the rings depicted in Figs. F.3.a-d, respectively. Due to the
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(a) (b) (c) (d)
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Figure F.3: Spatiotemporal diagrams of the rings(L, R, U, D) are presented in panels (a-d),
respectively. (e-h) Magnified views of the first five round trips for each ring. (i-l)
Stroboscopic spatiotemporal diagrams of the magnified views by keeping even
site position (x,y) and odd time steps (m).

system’s double periodicity in space and time, it is more convenient to consider
the stroboscopic dynamics, as shown in the zoomed stroboscopic spatiotemporal
diagram of Figs. F.3.i-j, by keeping even site position (x,y) and odd time steps (m).

To better understand the evolution of light within the spatiotemporal diagrams,
we present 2D slices for each ring (L, R, U, D) in columns 1, 2, 3, and 4, respect-
ively, of Fig. F.4. These slices are shown at round trips (m = 1, 2, 3, 4, 5, and 39),
illustrating the temporal progression. Additionally, corresponding stroboscopic 2D
slices are plotted in Fig. F.5. The 2D slice at round trip (m=39) of the spatiotemporal
diagram in the right ring R (see Fig. F.4.v) shows a symmetrical light intensity pat-
tern along both the x and y axes. In contrast, the left ring L exhibits a dominant
distribution along the negative x-axis. The upper ring U has its intensity concen-
trated in the region where the x-axis is negative and the y-axis is positive. Finally,
the lower ring D displays intensity confined to the bottom left corner, where both
x and y are negative.
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Figure F.4: 2D slices of the spatiotemporal diagrams in Fig. F.4 are presented for each ring
(L, R, U, D) in columns 1, 2, 3, and 4, respectively. These slices are shown at
round trips (m = 1, 2, 3, 4, 5, and 39).
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Figure F.5: Corresponding stroboscopic 2D slices of Fig. F.4 at round trips (m = 1, 3, 5, and
39), obtained by keeping even site position (x,y) and odd time steps (m).

Figure F.6: The total power in each of the rings U, D, L, and R is represented by black,
blue, yellow, and green lines, respectively, as a function of the time step (m).
The red line illustrates that the sum of the total power across all rings remains
constant at 1.
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(a) (b) (c) (d)

Figure F.7: The dispersion relation of the rings(L, R, U, D) are presented in panels (a, b, c,
d) respectively. Each dispersion relation exhibits four bands: two flat bands at
energy levels 0 and π, and two bands forming a gapless Dirac cone within the
Brillouin zone spanning from −π to π in both quasimomenta kx and ky, and
quasienergy E.

Figure. F.6 illustrates the total power evolution within the rings U, D, L, and R,
depicted by black, blue, yellow, and green lines, respectively, as a function of time
step (m). Each data point on these lines represents the cumulative power of all
the pulses residing in the corresponding ring at a specific round trip (m) within a
corresponding slice of the spatiotemporal diagram showcased in Fig. F.4. Initially,
at round trip m=1, a single pulse with a power of 1 is injected into ring L, marked
by a yellow dot. The other rings contain no power. At round trip m=2, this pulse
divides into four equal pulses, each carrying a quarter of the initial power (0.25).
The red line illustrates the total power across all rings (Pt = PU + PD + PL + PR),
which remains constant at 1 over 40 round trips, signifying power conservation in
the absence of losses within the numerical simulation. This conservation confirms
the accuracy of the evolution equation. F.2 in describing our 4-ring system.

By performing a 3D Fourier transform on the stroboscopic spatiotemporal dia-
gram, we derive the dispersion relations of each of the rings (L, R, U, D) in
Figs. F.7.a-d, respectively. Each dispersion relation exhibits four bands within the
Brillouin zone spanning from −π to π in both quasimomenta kx and ky, and
quasienergy E. These bands consist of two flat bands at energy levels 0 and π,
and two bands forming a gapless Dirac cone, as exemplified in Fig. F.7.b. The
excitation profile of the band structure energy spectrum mirrors the light intens-
ity distribution in the stroboscopic spatiotemporal diagram. The symmetrical light
intensity pattern in the ring R of Fig. F.5.n along x and y translates to a sym-
metrically excited numerical dispersion relation in quasimomentum kx and ky. In
contrast, the asymmetrical light patterns in the other rings produce asymmetrical
band excitations.

F.2.2 Analytical characterization of the band structure

The quadra-ring system exhibits a double periodicity: spatial (every two
sites along x and y) and temporal (every two-time steps m), as shown by the
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unit cell (red dashed cube) in Fig. F.1.b. The eigenvectors
∣∣ψ(kx, ky)

〉
are rep-

resented as a linear combination of the four complex amplitude eigenmodes
Ũ(kx, ky), D̃(kx, ky), L̃(kx, ky), R̃(kx, ky) corresponding to the (U, D, L, R) rings
respectively.

∣∣ψ(kx, ky)
〉
=


Ũ(kx, ky)

D̃(kx, ky)

L̃(kx, ky)

R̃(kx, ky)

 e
i
2 (Em+kxx+kyy) (F.3)

The Bloch momentum (kx, ky) and the quasienergies E are conjugate variables
associated with the spatial (x, y) and the temporal parameter m, respectively. Equa-
tion. F.3 highlights the system’s double periodicity in both directions, with a period
of two discrete steps. This periodicity is evident in the ansatz equation, where the
exponents are scaled by a factor of 1/2 with respect to both E and (kx, ky).

To determine the eigenvalue, we substitute equation. F.3 into equation F.2, res-
ulting in the following expression:

Ũei(E/2) =
e−iky/2

2
[Ũ − D̃ − L̃ − R̃]

D̃ei(E/2) =
eiky/2

2
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L̃ei(E/2) =
eikx/2

2
[−Ũ − D̃ + L̃ − R̃]

R̃ei(E/2) =
e−ikx/2

2
[−Ũ − D̃ − L̃ + R̃]

(F.4)


Ũ
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M=Evolution operator
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 (F.5)


Ũ

D̃
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 (M − I) = 0 (F.6)

det(M − I) = 0 (F.7)
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)] with n ∈ Z (F.19)

Figure F.8: The analytical dispersion relation for the quadra-ring system features four dis-
tinct bands: two flat bands at energy levels 0 and π, and two bands forming
a gapless Dirac cone within the Brillouin zone, which spans from −π to π in
both quasimomenta kx and ky, as well as in quasienergy E

The analytical dispersion relation of the quadra-ring system is provided by
equation. F.19 and is illustrated in Fig. F.8. The band structure features four distinct
bands: two flat bands at energy levels 0 and π, and two bands forming a gapless
Dirac cone within the Brillouin zone, which spans from −π to π in both quasimo-
menta kx and ky, as well as in quasienergy E. The analytical results align perfectly
with the numerical dispersion bands presented in Fig. F.7, which validates the
reliability of the mathematical model.

In conclusion, this work introduces my novel real two-dimensional system com-
prising four optical fiber rings of distinct lengths interconnected by a 25/25/25/25
beam splitter. A detailed analysis of the system’s impulse response was conducted.
Moreover, a three-dimensional visualization of the spatiotemporal diagram was
provided, from which the numerical band structure was extracted. Finally, the de-
velopment of a mathematical framework yielded an analytical dispersion relation
that demonstrates excellent agreement with the numerical results, thereby validat-
ing my model.





B I B L I O G R A P H Y

[1] R. El Sokhen et al., ‘Edge-dependent anomalous topology in synthetic photonic lattices
subject to discrete step walks,’ Phys. Rev. Res., vol. 6, p. 023 282, 2 Jun. 2024. doi: 10.1103/
PhysRevResearch.6.023282. (cit. on pp. xi, 95, 102).

[2] L. Lu et al., ‘Topological photonics,’ Nature Photonics, vol. 8, no. 11, pp. 821–829, 2014. doi:
10.1038/nphoton.2014.248 (cit. on pp. 1, 10).

[3] T. Ozawa et al., ‘Topological photonics,’ Rev. Mod. Phys., vol. 91, p. 015 006, 1 Mar. 2019.
doi: 10.1103/RevModPhys.91.015006. (cit. on pp. 1, 11).

[4] M. Z. Hasan et al., ‘Colloquium: Topological insulators,’ Rev. Mod. Phys., vol. 82, pp. 3045–
3067, 4 Nov. 2010. doi: 10.1103/RevModPhys.82.3045. (cit. on pp. 1, 11, 14).

[5] X.-L. Qi et al., ‘Topological insulators and superconductors,’ Rev. Mod. Phys., vol. 83,
pp. 1057–1110, 4 Oct. 2011. doi: 10.1103/RevModPhys.83.1057. (cit. on pp. 1, 11).

[6] K. v. Klitzing et al., ‘New method for high-accuracy determination of the fine-structure
constant based on quantized hall resistance,’ Phys. Rev. Lett., vol. 45, pp. 494–497, 6 Aug.
1980. doi: 10.1103/PhysRevLett.45.494. (cit. on pp. 1, 11).

[7] T. Kitagawa et al., ‘Observation of topologically protected bound states in photonic
quantum walks,’ Nature Communications, vol. 3, no. 1, p. 882, 2012. doi: 10 . 1038 /

ncomms1872 (cit. on pp. 1, 95, 129).

[8] T. Kitagawa et al., ‘Exploring topological phases with quantum walks,’ Phys. Rev. A, vol. 82,
p. 033 429, 3 Sep. 2010. doi: 10.1103/PhysRevA.82.033429. (cit. on pp. 1, 95, 129).

[9] T. Kitagawa, ‘Topological phenomena in quantum walks: Elementary introduction to the
physics of topological phases,’ Quantum Information Processing, vol. 11, pp. 1107–1148,
2012. doi: 10.1007/s11128-012-0425-4 (cit. on pp. 1, 95, 129).

[10] T. Bessho et al., ‘Extrinsic topology of floquet anomalous boundary states in quantum
walks,’ Phys. Rev. B, vol. 105, p. 094 306, 9 Mar. 2022. doi: 10.1103/PhysRevB.105.094306.
(cit. on pp. 1, 2, 13, 14, 95, 98, 103, 129, 130).

[11] T. Kitagawa et al., ‘Observation of topologically protected bound states in photonic
quantum walks,’ Nat. Commun., vol. 3, p. 882, 2012. doi: 10.1038/ncomms1872. (cit. on
pp. 1, 12, 14, 15, 44, 96).

[12] S. Barkhofen et al., ‘Measuring topological invariants in disordered discrete-time quantum
walks,’ Phys. Rev. A, vol. 96, no. 3, p. 033 846, Sep. 2017, issn: 2469-9926, 2469-9934. doi:
10.1103/PhysRevA.96.033846. (visited on 02/04/2024) (cit. on pp. 1, 12, 14, 15, 44, 96).

[13] M. Bellec et al., ‘Non-diffracting states in one-dimensional Floquet photonic topological
insulators,’ EPL, vol. 119, no. 1, p. 14 003, 2017. doi: 10.1209/0295-5075/119/14003. (cit. on
pp. 1, 12, 14, 15, 44, 96).

[14] A. Bisianov et al., ‘Stability of topologically protected edge states in nonlinear fiber loops,’
Phys. Rev. A, vol. 100, no. 6, p. 063 830, Dec. 2019, issn: 2469-9926, 2469-9934. doi: 10.1103/
PhysRevA.100.063830. (visited on 10/09/2021) (cit. on pp. 1, 12, 14, 15, 28, 42, 44, 96).

[15] L. J. Maczewsky et al., ‘Observation of photonic anomalous floquet topological insulators,’
Nature communications, vol. 8, no. 1, p. 13 756, 2017. doi: 10.1038/ncomms13756 (cit. on
pp. 1, 12, 14, 15, 44, 96).

183

https://doi.org/10.1103/PhysRevResearch.6.023282
https://doi.org/10.1103/PhysRevResearch.6.023282
https://doi.org/10.1038/nphoton.2014.248
https://doi.org/10.1103/RevModPhys.91.015006
https://doi.org/10.1103/RevModPhys.82.3045
https://doi.org/10.1103/RevModPhys.83.1057
https://doi.org/10.1103/PhysRevLett.45.494
https://doi.org/10.1038/ncomms1872
https://doi.org/10.1038/ncomms1872
https://doi.org/10.1103/PhysRevA.82.033429
https://doi.org/10.1007/s11128-012-0425-4
https://doi.org/10.1103/PhysRevB.105.094306
https://doi.org/10.1038/ncomms1872
https://doi.org/10.1103/PhysRevA.96.033846
https://doi.org/10.1209/0295-5075/119/14003
https://doi.org/10.1103/PhysRevA.100.063830
https://doi.org/10.1103/PhysRevA.100.063830
https://doi.org/10.1038/ncomms13756


[16] S. Mukherjee et al., ‘Experimental observation of anomalous topological edge modes in a
slowly driven photonic lattice,’ Nat. Commun., vol. 8, p. 13 918, Jan. 2017, issn: 2041-1723.
doi: 10.1038/ncomms13918. (visited on 28/02/2017) (cit. on pp. 1, 12, 14, 15, 44, 96).

[17] C. Lechevalier, ‘Structure des bandes, états propres et dynamique non linéaire dans un
réseau photonique fibré,’ https://theses.fr/2022ULILR070, Ph.D. dissertation, Université
de Lille, 2022 (cit. on pp. 2, 24, 26, 40, 42, 65, 71, 74, 77).

[18] J. Joannopoulos et al., ‘Photonic crystals: Putting a new twist on light,’ Nature, vol. 386,
no. 6621, pp. 143–149, Mar. 1997, issn: 1476-4687. doi: 10.1038/386143a0. (cit. on p. 5).

[19] J. N. e. a. Winn, ‘Omnidirectional reflection from a one-dimensional photonic crystal,’ Opt.
Lett., OL, vol. 23, no. 20, pp. 1573–1575, Oct. 1998. doi: 10.1364/OL.23.001573. (cit. on p. 5).

[20] T. Pertsch et al., ‘Anomalous refraction and diffraction in discrete optical systems,’ Physical
Review Letters, vol. 88, no. 9, p. 093 901, 2002. doi: 10.1103/PhysRevLett.88.093901 (cit. on
pp. 5, 7).

[21] S. Mukherjee et al., ‘Experimental observation of anomalous topological edge modes in a
slowly driven photonic lattice,’ Nature communications, vol. 8, no. 1, p. 13 918, 2017. doi:
10.1038/ncomms13918 (cit. on p. 5).

[22] G. P. Agrawal, Fiber-optic communication systems. John Wiley & Sons, 2012 (cit. on p. 5).

[23] D. Marcuse, Theory of dielectric optical waveguides. Elsevier, 2013 (cit. on p. 5).

[24] M. e. a. Bellec, ‘Topological transition of dirac points in a microwave experiment,’ Phys. Rev.
Lett., vol. 110, no. 3, p. 033 902, Jan. 2013. doi: 10.1103/PhysRevLett.110.033902. (cit. on
p. 5).

[25] M. Hafezi et al., ‘Robust optical delay lines with topological protection,’ Nature Physics,
vol. 7, no. 11, pp. 907–912, 2011. doi: 10.1038/nphys2063 (cit. on p. 5).

[26] P. Senellart et al., ‘High-performance semiconductor quantum-dot single-photon sources,’
Nature Nanotechnology, vol. 12, no. 11, pp. 1026–1039, 2017. doi: 10.1038/nnano.2017.218
(cit. on p. 5).

[27] T. Jacqmin et al., ‘Direct observation of dirac cones and a flatband in a honeycomb lattice
for polaritons,’ Physical review letters, vol. 112, no. 11, p. 116 402, 2014. doi: 10.1103/
PhysRevLett.112.116402 (cit. on p. 5).

[28] N. Cooper et al., ‘Topological bands for ultracold atoms,’ Reviews of modern physics,
vol. 91, no. 1, p. 015 005, 2019. doi: 10.1103/RevModPhys.91.015005 (cit. on p. 5).

[29] T. Ozawa et al., ‘Topological photonics,’ Reviews of Modern Physics, vol. 91, no. 1, p. 015 006,
2019. doi: 10.1103/RevModPhys.91.015006 (cit. on p. 5).

[30] G. Ma et al., ‘Topological phases in acoustic and mechanical systems,’ Nature Reviews
Physics, vol. 1, no. 4, pp. 281–294, 2019. doi: 10.1038/s42254-019-0030-x (cit. on p. 5).

[31] R. Süsstrunk et al., ‘Classification of topological phonons in linear mechanical metamateri-
als,’ Proceedings of the National Academy of Sciences, vol. 113, no. 33, E4767–E4775, 2016.
doi: 10.1073/pnas.1605462113 (cit. on p. 5).

[32] S. O. Kasap, Electronic materials and Devices. McGraw-Hill New York, 2006 (cit. on p. 5).

[33] I. L. Garanovich et al., ‘Light propagation and localization in modulated photonic lattices
and waveguides,’ Physics Reports, vol. 518, no. 1, pp. 1–79, 2012, issn: 0370-1573. doi: 10.
1016/j.physrep.2012.03.005 (cit. on p. 5).

[34] R. Morandotti et al., ‘Experimental observation of linear and nonlinear optical bloch oscilla-
tions,’ Phys. Rev. Lett., vol. 83, no. 23, pp. 4756–4759, Dec. 1999. doi: 10.1103/PhysRevLett.
83.4756 (cit. on p. 5).

https://doi.org/10.1038/ncomms13918
https://theses.fr/2022ULILR070
https://doi.org/10.1038/386143a0
https://doi.org/10.1364/OL.23.001573
https://doi.org/10.1103/PhysRevLett.88.093901
https://doi.org/10.1038/ncomms13918
https://doi.org/10.1103/PhysRevLett.110.033902
https://doi.org/10.1038/nphys2063
https://doi.org/10.1038/nnano.2017.218
https://doi.org/10.1103/PhysRevLett.112.116402
https://doi.org/10.1103/PhysRevLett.112.116402
https://doi.org/10.1103/RevModPhys.91.015005
https://doi.org/10.1103/RevModPhys.91.015006
https://doi.org/10.1038/s42254-019-0030-x
https://doi.org/10.1073/pnas.1605462113
https://doi.org/10.1016/j.physrep.2012.03.005
https://doi.org/10.1016/j.physrep.2012.03.005
https://doi.org/10.1103/PhysRevLett.83.4756
https://doi.org/10.1103/PhysRevLett.83.4756


[35] T. Pertsch et al., ‘Optical bloch oscillations in temperature tuned waveguide arrays,’ Phys.
Rev. Lett., vol. 83, no. 23, pp. 4752–4755, Dec. 1999. doi: 10.1103/PhysRevLett.83.4752
(cit. on p. 5).

[36] K. Shandarova et al., ‘Experimental observation of rabi oscillations in photonic lattices,’
Physical review letters, vol. 102, no. 12, p. 123 905, 2009. doi: 10.1103/PhysRevLett.102.
123905 (cit. on p. 5).

[37] Y. Lahini et al., ‘Anderson localization and nonlinearity in one-dimensional disordered
photonic lattices,’ Physical Review Letters, vol. 100, no. 1, p. 013 906, 2008. doi: 10.1103/
PhysRevLett.100.013906 (cit. on p. 5).

[38] K. Staliunas et al., ‘Subdiffractive light in bi-periodic arrays of modulated fibers,’ Optics
Express, vol. 14, no. 22, pp. 10 669–10 677, 2006. doi: 10.1364/OE.14.010669 (cit. on p. 5).

[39] H. Eisenberg et al., ‘Discrete spatial optical solitons in waveguide arrays,’ Physical Review
Letters, vol. 81, no. 16, p. 3383, 1998. doi: 10.1103/PhysRevLett.81.3383 (cit. on pp. 5, 6).

[40] A. Dutt et al., ‘Experimental band structure spectroscopy along a synthetic dimension,’
Nature communications, vol. 10, no. 1, p. 3122, 2019. doi: 10.1038/s41467-019-11117-9
(cit. on p. 5).

[41] D. N. Christodoulides et al., ‘Discretizing light behaviour in linear and nonlinear waveguide
lattices,’ Nature, vol. 424, no. 6950, pp. 817–823, 2003. doi: 10.1038/nature01936 (cit. on
pp. 5, 6).

[42] T. Kitagawa et al., ‘Observation of topologically protected bound states in a one dimensional
photonic system,’ arXiv preprint arXiv:1105.5334, 2011. doi: 10.1038/ncomms1872 (cit. on
pp. 5, 14).

[43] A. Boudrioua, ‘Comprendre les structures guidantes,’ Photoniques, no. 98, pp. 39–43, 2019.
doi: 10.1051/photon/20199839 (cit. on p. 6).

[44] A. Yariv, ‘Coupled-mode theory for guided-wave optics,’ IEEE Journal of Quantum Elec-
tronics, vol. 9, no. 9, pp. 919–933, 1973. doi: 10.1109/JQE.1973.1077767 (cit. on p. 6).

[45] H. S. Eisenberg et al., ‘Diffraction management,’ Phys. Rev. Lett., vol. 85, pp. 1863–1866, 9
Aug. 2000. doi: 10.1103/PhysRevLett.85.1863. (cit. on p. 6).

[46] A. Szameit et al., ‘Discrete optics in femtosecond laser written waveguide arrays,’ in
Femtosecond Laser Micromachining, Springer, 2011, pp. 351–388. doi: 10.1007/978- 3-
642-23366-1_13 (cit. on p. 6).

[47] J. W. Fleischer et al., ‘Spatial photonics in nonlinear waveguide arrays,’ Optics express,
vol. 13, no. 6, pp. 1780–1796, 2005. doi: 10.1364/OPEX.13.001780 (cit. on p. 6).

[48] A. Szameit et al., ‘Discrete optics in femtosecond-laser-written photonic structures,’ Journal
of Physics B: Atomic, Molecular and Optical Physics, vol. 43, no. 16, p. 163 001, 2010. doi:
10.1088/0953-4075/43/16/163001 (cit. on pp. 6, 7).
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