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Abstract 
 
 
Inferring demographic history and detecting natural selection are major challenges in 

population genetics. Traditional methods, though effective, often rely on unrealistic 

assumptions, such as the absence of selection or of simultaneous demographic changes. 

However, in many natural populations, selection and demography affect genetic diversity at 

the same time. Their interaction is making evolutionary inferences more complex and is a 

significant obstacle. In this thesis, we explore the use of convolutional neural networks 

(CNNs), a deep learning technique, to overcome the limitations of traditional methods. This 

work focuses on two main tasks: (1) classification of genomic data based on demographic 

history, and (2) detecting and localizing targets of natural selection along genomes. The aim 

is not to develop a ready-to-use tool but to understand the necessary considerations for 

training CNNs on these tasks, highlighting the challenges and nuances of developing deep 

learning-based methods for population genetics. We compare CNN performance on 

simulated data with established population genetics methods, such as Approximate 

Bayesian Computation Random Forest (ABC-RF) for classification and SweepFinder2 for 

detecting selection. CNNs can achieve results comparable to or better than these existing 

methods, especially in localizing selection signals. Overall, our results highlight the potential 

of deep-learning approaches as powerful tools for population genetics, as long as careful 

consideration is given to input data representation. Combining CNNs with other methods 

may further improve the accuracy and reliability of demographic inferences and selection 

detection in population genetics.  
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Introduction 
 
 
Genetic diversity within living organisms has led to their classification within reproductively 

isolated groups called species. Within a species, genetic information at a given locus can 

either be fixed and shared among all individuals (monomorphic locus) or rather vary among 

individuals (polymorphic locus). Evolutionary research, and specifically population genetics, 

aims at defining a theoretical framework to explain the distribution of genetic diversity among 

loci, individuals and species, and to understand evolutionary forces shaping it. Thus, one of 

the main approaches in evolutionary research is to use molecular genetic data in order to 

make inferences about the natural and evolutionary history of populations. However, 

numerous forces shape the observed variation in genetic diversity and determining which 

are responsible for the observed patterns can be difficult when their effects are similar and 

confounding. This complexity complicates efforts to accurately reconstruct the evolutionary 

history of populations and to identify the specific genetic changes driven by adaptive forces. 

To address these challenges, various statistical and computational methods have been 

developed over the past decades and, recently, deep learning has also emerged as a 

powerful tool for population genetics, offering new possibilities and showing promise in 

improving the accuracy of evolutionary inferences. 
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Genomic variation of diversity 

 
For the past century, the study of genetic diversity has been one of the main goals of  

evolutionary biology. At its core, genetic diversity is a measure of the genetic variability 

within a population. Indeed, even within the same species, each individual will carry a 

specific DNA sequence and thus, specific and distinct genetic information.  

 

As early as 1859, in “On the Origin of Species by Means of Natural Selection”, Darwin 

proposed a first insight in genetic diversity, making the hypothesis that variation within 

species could be linked to variation between species through means of natural selection, 

isolation and thus, evolution. Together with Gregor Mendel’s foundational work on heredity in 

1865 (Mendel, 1865), these insights laid the first key concepts about genetic variation and 

heritability. A few decades later, during the mid-30s, new studies of evolutionary biology 

about genetic diversity by Ronald A. Fisher, J. B. S. Haldane and Sewall Wright (Fisher 

1930; Haldane 1932; Wright 1968) were the foundations of the theory of population genetics 

upon which the modern evolutionary synthesis was then built by integrating both Mendelian 

genetics and Darwinian principles. From there stems one of the most commonly used 

models of population genetics: the Wright-Fisher model. It describes a simplified population 

with several key assumptions: no mutation, no selection, no migration, non-overlapping 

generations and random mating. Essentially, each generation consists of a fixed number of 

individuals who randomly contribute to the next generation, without considering any other 

evolutionary forces than genetic drift. Despite its simplicity, the Wright-Fisher model serves 

as a valuable tool for understanding how genetic drift operates in finite populations. Although 

real populations rarely adhere strictly to these assumptions, the Wright-Fisher model 

provides a baseline for studying how deviations from these conditions—such as 

incorporating mutation, selection, migration, or overlapping generations—can affect 

evolutionary dynamics. Indeed, within this new theory, changes in the phenotypes displayed 

by a given population through time are explained by the variability of genes and genome 

sequences. 

 

These changes can be seen as manifestation of the balance between the apparition and the 

disapparition, within the population, of genetic variants (Ellegren & Galtier, 2016). Four main 

evolutionary forces are usually considered to explain the variability of the genetic diversity 

found within natural populations: 
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1) Mutation, which introduces new variants (alleles) within a population. It is a source of 

diversity and novelty, but its impact on the variation is limited. 

 

2) Migration, which can introduce new alleles when gene flow occurs between two 

structured demes. Its homogenisation of allelic frequencies between demes is faster 

if the migration rate is higher. 

 

3) Genetic drift, the intensity of which depends on the effective population size Ne. It will 

lead to stochastic variations in frequencies over time, ultimately resulting in the loss 

or fixation of an allele. 

 

4) Natural selection, whose impact on the allele frequencies will be different depending 

on its nature. It can either lead to the fixation of an advantageous variant in a given 

environment (directional selection) or eliminate new deleterious variants (purifying 

selection). 

 

From those four evolutionary forces, two main mechanisms affect the evolution of genetic 

diversity: natural selection in itself, and demography. Natural selection in itself acts like a 

filter on the other three forces, by influencing which genetic variants persist and spread in a 

population. Indeed, natural selection impacts allele frequencies in various ways depending 

on its form: positive directional selection will increase the frequency of the selected allele 

while also affect the neutral regions linked to it, generating a “valley of diversity” around the 

selected loci (Smith & Haigh, 1974; Barton, 2000) as observed in Plasmodium falciparum in 

response to strong selection pressure exerted by malaria treatments (Nair et al., 2003). 

Balancing selection will tend to maintain a greater variety of alleles in the population over 

long periods, resulting in increased polymorphism at linked loci (Tian et al., 2002). One such 

example is found in the genes responsible for plants' self-incompatibility, such as the S-locus 

in Arabidopsis halleri and A. lyrata (Roux et al., 2013). As for demography, it shapes the 

effects of genetic drift and migration. Demographic events, for example population size 

changes or gene flow, also leave marks on genetic diversity (Pespeni et al., 2012). 

 

4 



Introduction 
 

How to study genetic diversity? 

 
In order to study the variation of genetic diversity in genomes, one must first quantify such 

diversity. The most often used definitions rely on variation of allelic states or quantitative 

characters and range from the more simpler ones such as the allelic diversity (based on the 

number of alleles per locus), the allelic richness (the average number of alleles per locus) or 

the heterozygosity (the average proportion of loci with two different alleles within a single 

individual) all the way to more elaborate ones like the nucleotide diversity π (the average 

number of nucleotide differences per site - Nei & Li, 1979) for example (Hughes et al., 2008). 

The latter is a prime example of one of the main approaches developed to study genetic 

diversity: summary statistics. 

 

Historically, summary statistics have been proposed as an answer to the need of analytical 

tools to study genetic diversity, numerous have been developed through the years, such as 

Watterson's θ estimator (Watterson, 1975),  Tajima's π and Tajima's D (Tajima, 1989). Such 

statistics are designed to capture specific aspects of the diversity. For example, Watterson's 

θ estimator can be used to estimate the genetic diversity of a population based on its 

effective size Ne and its mutation rate per generation µ. More precisely, it measures genetic 

diversity as a function of the number of polymorphic sites in a given genomic region. This 

measure is then compared to the genetic diversity of a population evolving under Wright & 

Fisher where θ is expected to be equal to , with  the ploidy of the species, the 2𝑝𝑁𝑒µ 𝑝 𝑁𝑒
effective size of the population of interest, and  the mutation rate per base (Figure 1).  µ
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Figure 1 - Expected and Observed genetic diversity under neutrality along a genome of 
100 kbp, for a population diploid population (p = 2) of effective size Ne = 5000, with a 

mutation rate µ = 1e-06 and a recombination rate r = 1e-06. 
 

The genetic diversity θ under neutrality is expected to be equal to  (green dashed 2𝑝𝑁𝑒µ
line). However, even in absence of selection, the actual observed diversity (blue line) 
shows variability due to genetic drift. 

 

The use of these statistics has largely contributed to make possible the study and analysis of 

genetic diversity. Such statistics are commonly used to perform such neutrality tests. These 

tests rely on well-established theoretical expectations for genetic variability under standard 

neutral models, such as the Wright-Fisher model. By comparing the observed genetic 

variability to these expectations, researchers can assess the degree of departure from 

neutrality. 

 

Taking the example of Tajima’s D (Tajima, 1989), which  compares two measures of genetic 

diversity in a population:  the average number of pairwise nucleotide differences per site 𝑛
between the sampled sequences and Watterson's θ which is based on the number of 

segregating sites. Under neutrality, both measures are expected to be roughly equal, leading 

to a Tajima’s D value close to zero. Deviations from zero thus indicate that the population 
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may have experienced demographic events or selection. Thus, sudden increase of the 

effective size of a population for example would lead to more recent common ancestor of 

most lineages which will in turn lead to an excess of low-frequency variants. This excess of 

rare mutations lowers the value of  compared to Watterson’s θ causing a negative value of 𝑛
Tajima’s D. If we consider migration rather than a population’s expansion, the gene flow 

facilitates the exchange of alleles between demes thus enhancing the sharing of genetic 

diversity among the involved populations. Among the several summary statistics developed 

to measure this difference, many often focus on estimators of , with p the ploidy of θ = 2𝑝𝑁𝑒µ
the sampled individuals, Ne the effective size of the population and µ the mutation rate 

(Achaz, 2008).  

 

However, while these estimators help determine how closely the observed data aligns with 

the predictions of the standard neutral model and the genomic patterns thus revealed offer 

insights into the evolutionary history of populations, they can often be difficult to extract. 

Moreover, for a long time, the high cost associated with complete sequencing constituted a 

major limitation to large scale accumulation and exploitation of such data for non model 

organisms. Fortunately, recent breakthroughs in DNA sequencing technologies (NGS) have 

made possible the generation of large numbers of such datasets and to an explosion in the 

amount of genomic data available. In turn, numerous tools and methods for interpreting 

observed patterns and for answering relevant evolutionary questions have been developed 

and many new studies have been conducted: on one hand, analyses of patterns of genomic 

distribution of nucleotide diversity are conducted in order to unravel and understand various 

mechanisms affecting genetic diversity, such as signatures of positive selection (Tajima 

1989; Nair et al., 2003; Nielsen et al. 2005; Pavlidis et al. 2010). Other studies have been 

focusing on the impact of various aspects of the demographic history of natural populations 

ranging from population size changes (Marth et al. 2004) to patterns of gene flow and 

admixture (Martin et al. 2013; Corbett-Detig and Nielsen 2017; Schrider et al. 2018). 

 

To meet the growing demand for more powerful tools capable of processing the 

ever-growing quantity of datasets in population genomics, new methods have emerged to 

answer questions in evolutionary genomics. Summary statistics are still used, but as each 

statistic is usually catered to highlight only one specific aspect of the information found in a 

genome alignment, another approach has been proposed: using large number of such 

summary statistics at once to maximize the amount of retrieved information (Lin et al. 2011; 

Schrider and Kern 2016; Sheehan and Song 2016). The focus then shifts from trying to 

7 



Introduction 
 

interpret the individual values of each statistic to trying to make sense of the overall patterns 

observed across the set of chosen statistics. 

The interaction of demography and selection interactions 

 
Reconstruction of the evolutionary histories of natural populations has always been the goal 

of population genetics. To understand the diversification of a biological group at various 

levels (morphological, ecological, etc…) it is essential to take into account the historical 

demographic context: did the diversification take place in the presence of gene flow? In a 

large or small population? Over long periods of time or in a few generations? Another major 

question generally linked to adaptation processes is the genetic architecture associated with 

these processes: is this adaptation the result of the combined effect of many loci with small 

individual effects, or does it come from a small number of loci with large effects? All of those 

questions can be summarized in the two major goals of population genetics: to reconstruct 

the demographic history associated with a given population, and to identify the genomic 

targets of natural selection. 

 

Such reconstructions, for example, have revealed evidence of Neanderthal and denisovan 

DNA in modern human genomes, particularly in Eurasian and Melanesian populations 

(Vernot et al., 2016), and the discovery of a first-generation Neanderthal-Denisovan hybrid 

provides compelling evidence that interbreeding was not a rare event but likely occurred 

frequently when these groups coexisted (Slon et al., 2018). Moreover, these geographical 

differences in interbreeding patterns have likely contributed to the genetic variations in 

modern humans, with higher Neanderthal admixture in East Asian populations and 

Denisovan genetic legacy persisting in Southeast Asian and Oceanian populations (Ko, 

2016).These findings point to a scenario where gene flow between various hominin lineages 

was a regular aspect of human evolution. This is one of many examples of why the study of 

demographic histories plays a crucial role in understanding genetic diversity of natural 

populations. 

 

Unfortunately, from there rises the major hurdle to population genetics: while it is true that 

demographic changes impact whole genomes, things are harder to untangled at a more 

local scale, where the genetic diversity is affected by the confounding effects of both 

demography (acting at a global scale) and selection (acting on specific targets locus and 

eventually their surroundings) mechanisms (Li et al., 2012).  
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Indeed, most neutrality tests are not robust to demographic changes. For example, a sudden 

increase in the effective size of a population following a Wright-Fisher model will lead to a 

decrease of Tajima’s D values (Tajima, 1989) due to the lengthening of the branches of the 

coalescent, a pattern similar to the one observed in genomic regions affected by positive 

selection. A more detailed explanation of coalescent models is presents in the introduction of 

the Chapter 1 of this thesis, but to put things simply, coalescent models focus on ‘coalescent 

times’ i.e. the expected time for two sampled lineages to merge into one when looking at a 

population history backward in time. These coalescent times are tied to the population’s 

effective size as the probability of two lineages coalescing in a given generation is 

approximately , with Ne the effective size of the population. Thus, when the 1/(2. 𝑁𝑒)
population sizes increase, the probability of coalescent events to occur at a given generation 

decreases which results in a lengthening of the branches in the coalescent tree, as lineages 

remain separate for a longer period. Another example, selective sweeps and bottlenecks i.e. 

the sudden reduction of a population’s effective size (Simonsen et al. 1995) may share 

similarities in the way they influence patterns of genomic diversity, but the same selective 

sweeps will lead to an excess of singleton reminiscent of a population undergoing an 

expansion (Achaz, 2008). Thus, selection negatively impacts the performance of classic 

demographic inferences methods, leading to biased estimates of parameters and incorrect 

selection of demographic models (Schrider et al. 2016). As for demography, it may also 

generate diversity patterns nearly indistinguishable from those of positive selection (Pavlidis 

et al., 2008), as explained in the following example, extracted from Koropoulis et al. 

(Koropoulis et al., 2020): assuming a population undergoing a bottleneck event going 

through three phases: (1) a population of large effective size goes through (2) a sudden 

decrease of population size (the bottleneck) before a restoration of the population to a large 

size (3). During (2), numerous coalescent events occurred in a short period of time, due to 

the bottleneck. However, some lineage can still take more time and only coalesce during (3). 

The pattern in the coalescent tree thus created is highly similar to those of a selective sweep 

(Figure 2), hardly distinguishable from one another.  
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Figure 2 - Similar tree genealogies generated from demographic events and selective 
sweeps. 

 
Various bottleneck configurations can result in genealogies similar to selective sweep 
ones. Selective sweep genealogy presents very short coalescent trees within the region of 
the beneficial mutation, and trees with long internal branches as we move away from it. 
Bottleneck ones may present very long internal branches too as long as the ancestral 
population size is large. (Figure from Koropoulis et al., 2020) 
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New promising tools for population genetics 

 
As stated before, most historical approaches in  population genetics do not account for the 

confounding effects and interactions between selection and demographic events. However, 

over the years and thanks to the advances in computational power, new methods and tools 

have been used more and more in population genetics, with two of them being especially 

suited to deal with sets of summary statistics: the approximate Bayesian computation (ABC) 

framework, where the idea is to approximate Bayesian inferences in cases where a proper 

likelihood function is unknown. This approach is applied on datasets by comparing observed 

sets of summary statistics with those computed on a great number of random simulations. 

The other method is supervised machine-learning, where a neural network is trained on a 

huge dataset of labeled examples before making inferences on never seen before data.  

Approximate Bayesian Computation 

The interest and development of Approximate Bayesian Computation in its modern form was 

thanks to the works of four key papers during the early twenty-first century by Tavaré et al. 

(1997), Pritchard et al. (1999), Beaumont et al. (2002), and Marjoram et al. (2003). To 

summarize things, as stated by Beaumont (2010), Bayesian statistics are based on the 

following observations: creating theoretical frameworks to describe how certain patterns or 

data might have come about is relatively simple. Using such a model to generate artificial 

data is as simple as setting specific parameters values in the model. However, the reverse 

process is where the challenge lies: starting with actual observed data and trying to 

determine the exact parameter values (or even the model itself) that generated it. In other 

words, while creating models and generating data from them is relatively straightforward, 

inferring the original conditions that produced real life data is much more challenging. The 

Bayesian approach offers a perfect framework to tackle this kind of complex problems in 

modeling and inferences, as it offers a way to use probability to make inferences about 

unknown parameters based on observed data.  

 

Bayesian computation involves estimating the probability of parameter values given 

observed data i.e. the conditional probability density. With θ the parameter values and x the 

observed data, the goal is to compute the posterior distribution , the probability of the 𝑝(θ∣𝑥)
parameters given the observed data, expressed by the formula: 

 

 𝑝(θ∣𝑥) =  𝑝(θ∣𝑥)π(θ)𝑝(𝑥)
11 
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with  the prior distribution (initial knowledge or assumption about the possibles values π(θ)
of  prior to any observations) and  the total probability of the observed data across all θ 𝑝(𝑥)
possible parameters values, normalizing the posterior distribution so it sums up to 1. This 

probability  is expressed as:  𝑝(𝑥)
 𝑝(𝑥) = ∫ 𝑝(𝑥|θ)π(θ)𝑑θ

where the integral must sum over all possible parameter values. 

 

However, computing this probability is the challenging part in the context of population 

genetics where models display lots of hidden states. Hidden states are aspects of the model 

that are not directly observed but that can still affect the data (old selection events 

influencing the ancestry of the individuals, demographic changes in the population size, 

interactions between individuals,...) and turn out to be a problem for the computation of the 

likelihood as it involves summing the probabilities across all possible configurations of these 

unobserved variables. 

 

As an answer to this problem, population geneticists have developed a different methods 

such as composite likelihoods (Lindsay, 1988) or the so called Approximate Bayesian 

Computation (ABC), which has since been used in numerous scientific fields (Beaumont, 

2008, Chan et al., 2014). Approximate Bayesian Computation is the idea of approximating 

traditional Bayesian inference using simulations instead of directly computing the likelihood, 

which may be too complex or impossible to evaluate. In ABC, we simulate data based on 

prior knowledge of the parameter values (θ) and then compare the simulated data to the 

actual observed data (x). To determine whether a simulation is a good match, ABC uses a 

measure of distance to quantify how close simulated data is to the observed data. If the 

distance is small enough, the parameter θ used for the simulation is considered a plausible 

explanation for the observed data and is then added to the pool of accepted prior samples 

(Raynal et al. in 2018). By repeating this simulation process it is possible to produce an 

approximation of the posterior distribution (Figure 3). 
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Figure 3 - Approximation of the Posterior Distribution by ABC. 
 

This figure illustrates the approximation procedure of the posterior distribution by an ABC. Given an observed 
dataset, a model is constructed and performs n simulations, each using a value of the parameter θ drawn from a prior 
distribution. The simulation results are compared to the observed data and, if the difference is below a given 
threshold, the corresponding θ value is added to the posterior distribution. With enough simulations resulting in 
simulated data close enough to the observed data, it is possible to generate an approximation of the posterior 
distribution. 

 

ABC have been applied in various areas, with applications in ecology to study agent-based 

models (Piou et al., 2009) or to analyze species abundance data (Solow & Smith, 2009), in 

epidemiology to fit parameters of epidemiological model of tuberculosis transmission 

(Tanaka et al., 2006) or to study the evolution of HIV (Shriner et al., 2006) and of course, in 

population genetics with a myriad of studies making use of ABC to study alleles or 

haplotypes frequencies, with studies focusing on undercovering the demographic history  

associated with colonization events of various species, such as Drosophila subobscura 

(Pascual et al., 2007) or Drosophila sechellia (Legrand et al., 2009). ABC has also been 

applied to the study of selection, with the work of Przeworski (2003) on a method to infer 
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selective sweeps parameters, with works on models with recombination (Wilson et al., 2009) 

or to study the selection on lactase persistence (Gerbault et al., 2009; Itan et al., 2009).  

 

Recently, more and more performant and flexible tools are being developed to make use of 

such methods easier for non-experts (Cornuet et al., 2014), such as DILS, an ABC 

framework allowing for application of ABC models with great flexibility in terms of 

evolutionary scenarios and type of data inputs  (Fraïsse et al., 2020). This tool is in line with 

the recent surge of new and promising applications of machine learning (for a brief review of 

the history of machine learning, see Box 1). 

 

Box 1 - A quick history of Machine Learning 
The development of machine learning (ML) and deep learning (DL) find its roots back to the 

1940s and 1950s. In 1943, Warren McCulloch and Walter Pitts published “A logical calculus 

of the ideas immanent to nervous activity” where they laid the foundations and earliest 

theoretical concepts of neural networks. In 1950, Alan Turing in “Computing Machinery and 

Intelligence” introduced the concept of “learning machines” and proposed to consider the 

question ‘Can machines think?’ through the lens of the “Imitation Game”, now famously 

known as the “Turing Test”. This paper foreshadowed the possibility of building machines 

that could acquire intelligence through experience. From the 1959 paper of Arthur Samuel, 

machine learning could then be seen as the “field of study that gives computers the ability 

to learn without being explicitly programmed”. In this paper, Samuel developed an 

algorithm to play checkers that improved itself by learning from its games, one of the 

earliest machine learning programs. A year before, in 1958, Frank Rosenblatt introduced 

the first practical implementation of an artificial neural network, “The perceptron, a 

perceiving and recognizing automaton”, but due to its limitations and drawbacks at that 

time, highlighted by Minsky and Papert in “Perceptrons” (1969) the field of research about 

neural network declined in the following years. Accompanying this decline was a shift 

toward statistical methods in machine learning, driven by advances in probability theory 

and statistics with linear and logistic regressions and decision trees becoming more and 

more popular. In 1986, thanks to David Rumelhart, Geoffrey Hinton and Ronald Williams, 

the backpropagation algorithm for training multi-layer perceptrons was rediscovered and 

popularized. This marks a breakthrough that in turn allowed for effective training of deep 

neural networks which reignited the interest for neural networks. Unfortunately, neural 

networks were still limited by computational constraint and the lack of datasets large 

enough to make use of them. In parallel, support vector machines (SVM), based on 

statistical learning theory, developed by Vapnik and Chervonenkis, quickly became one of 
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the most popular algorithms for classification tasks thanks to their ability to handle 

high-dimensional data and to utilize kernel functions. Finally, the beginning of a new 

millenia marked a turning point for ML, as the ever increasing computational power has 

been followed by a sharp increase in availability of large datasets. Hence, neural networks 

saw an unprecedented resurgence thanks to the developments of newer and more efficient 

algorithms such as recurrent neural networks (RNN) and convolutional neural networks 

(CNN). The turning point was in 2012 when Alex Krizhevsky, Ilya Sutskever, and Geoffrey 

Hinton's deep CNN, known as AlexNet, won the ImageNet Large Scale Visual Recognition 

Challenge, outperforming traditional methods by a significant margin, demonstrating the 

power of deep neural networks in handling complex pattern recognition tasks and 

accelerated the adoption of deep learning techniques across various fields. In the following 

years, innovations such as generative adversarial networks (GANs), introduced by Ian 

Goodfellow et al.  in 2014, and deep reinforcement learning, popularized by the success of 

DeepMind's AlphaGo in 2016, pushed the boundaries of what deep learning could achieve. 

The introduction of transformer architectures, starting with the paper "Attention is All You 

Need" in 2017, revolutionized natural language processing, leading to the development of 

highly effective language models like BERT and GPT.  

Machine Learning, Supervised Learning, Convolutional Neural 
Networks 

Machine learning (ML), as a subset of artificial intelligence, focuses on developing 

algorithms capable of learning from data to perform tasks without relying on traditional, 

explicitly defined mathematical models. Instead, ML algorithms discover patterns within the 

data and use these insights to make predictions or to identify structures. The power of such 

methods lies in their ability to improve performance as more data becomes available, making 

it highly effective for tasks where large datasets are available, such as the modern area of 

population genetics where genomic data is more available than ever thanks to NGS. 

 

ML methods are generally classified into two main categories: unsupervised (Ghahramani et 

al., 2004) and supervised learning (Kotsiantis et al., 2007), which differ primarily in the 

nature of the data provided to the model and the specific objectives of the learning process. 

Unsupervised learning focuses on identifying inherent patterns or structure within unlabeled 

data i.e. without any explicit target values provided. The objective is often to discover the 

underlying data distribution, group similar instances, or reduce the data dimensionality. Since 

there is no "correct" answer to learn from, the model optimizes based on the internal 
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properties of the data. A simple and commonly used example of such machine learning is 

principal component analysis, taking a highly dimensional matrix as input and allowing 

analysis of the clustering of data. On the other hand, supervised learning consists in 

algorithms training on huge labeled datasets, where the relationship between input features 

and output labels is known. The goal is to learn a mapping from inputs to outputs allowing 

the model to predict the expected target value of an unseen data, allowing for classification 

and regression inferences. Here, the learning process minimizes the discrepancy between 

the predicted and actual output values through iterative adjustments of the model 

parameters. Figure 4 provides a very simple example of how a supervised ML approach 

works, while Box 2 proposes a more detailed and formally accurate breakdown (both Figure 
4 and Box 2 are adapted from Schrider & Kern, 2018).   
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Box 2 - Supervised Machine Learning 
(adapted from “Supervised Machine Learning for Population Genetics: A New Paradigm”, 
Schrider & Kern, 2018) 
 
In supervised machine learning, the goal is to learn a mapping from a given input feature 

vector , consisting of M input variable, to a target output , with  the input space 𝑥 ∈ 𝑋 𝑦 ∈ 𝑌 𝑋
and  the output space such that the relationship between the two can be defined as a 𝑌
function . The learned function  is an approximation of the true underlying function 𝑓: 𝑋 → 𝑌 𝑓
, which represent the actual relationship between the input and output. The nature of this 𝑓

output determines the type of supervised machine learning problem being addressed: if this 

output  is categorical, the task is a classification task whereas if  is continuous, the task 𝑦 𝑦
is a regression problem. 

From there, the objective of supervised ML is then to optimize .  In other words, the 𝑓: 𝑥 → 𝑦
goal is to find the parameters  that minimize the discrepancy between the predicted output θ

 and the actual output . To do so, the model is trained using a training dataset which 𝑦 𝑦
consist in a set of labeled data i.e. data where the responses values  of each  value is 𝑦 𝑥
known. Formally, such a dataset consist of  labeled examples  , where 𝑁 {(𝑥1, 𝑦1),  ..., (𝑥𝑛, 𝑦𝑛) 
pair  represents an observation of the input values and the corresponding output (𝑥𝑖, 𝑦𝑖)
label. 

The training process uses this set to adjust the parameters θ such that the learned function 

can predict the outputs accurately for new, unseen data points. To do so, a loss function  𝐿
is implemented to quantify how good or how bad a given prediction is. For classification, a 

commonly used a easy to understand loss function is the indicator function defined as 

 while regression tasks can use the mean squared error (MSE) 𝐿((𝑓(𝑥), 𝑦) = 1(𝑓(𝑥) ≠ 𝑦)
. From the loss function, the risk function is defined as the 𝐿((𝑓(𝑥), 𝑦) = (𝑓(𝑥) − 𝑦)2

average value of  across the entire training dataset. Thus, the goal of the training is to find 𝐿
the parameters θ such that the risk function is minimized. 

After the training, the model is evaluated on a separate set of data, the test dataset, which 

was not used during training. This evaluation assesses the model’s generalization ability 

i.e. how well it performs on new, unseen data. What is important after the training  is for the 

 function to have correctly learnt the overall characteristics of the problem and not the 𝑓
specific characteristics of the training dataset specifically, which is known as overfitting. In 

order to evaluate the models performances, precision and recall, commonly used metrics 

based on the rate of positive and negative predictions, as well as confusion matrices, 
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which are contingency tables of true vs. predicted class labels, are helpful tools in the case 

of classification. As for regressions, usual tools used to test for model fit such as R2, or the 

examination of various loss functions are good approaches. 
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Figure 4 - Simple example of how supervised machine learning works for a classification 
task. 

 
By using the blue and purple points as training data, with x1 and x2 the two input variables 
of the feature vector, supervised ML can learn a function (the dashed line) that differentiate 
data between the two classes and be used to classify new, never seen before data points 
(in white). (Figure adapted from “Supervised Machine Learning for Population Genetics: A 
New Paradigm”, Schrider & Kern, 2018) 

 

As stated before, machine learning, and more specifically supervised-machine learning 

works by learning to match a given input with a specific desired output using huge datasets 

of labeled training data. Theoretically, as long as a model is possible to simulate, a machine 

learning model could be trained to fit it, giving to such methods an incredible power to tackle 

a variety of complex scenarios and evolutionary questions. In the past years, theses 

methods have received more and more attention (Schrider & Kern, 2018) and they have 

been used by numerous population genomics studies (Flagel et al. 2019; Kern & Schrider, 

2018; Lin et al. 2011; Mughal & DeGiorgio, 2019; Pavlidis et al. 2010; Ronen et al. 2013; 
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Torada et al. 2019; Xue et al. 2021; Caldas et al. 2022) and in new tools developed to detect 

signatures of selection from genetic data. To name a few, Schrider and Kern (Schrider & 

Kern, 2016) developed a software called S/HIC” and its newer version “diploS/HIC” (Kern & 

Schrider, 2018) using a randomized trees classifier to differentiate various selective sweeps, 

linked and neutral regions. Hamid et al. (Hamid et al., 2023) propose a deep learning 

method using local ancestry-painted genomes to localize post-admixture adaptive variants, 

while Caldas et al. (Caldas et al., 2022) use supervised learning to estimate different 

parameters of a given selective sweep. 

Many studies also succeeded to use machine learning to make inferences about and 

estimate parameters of the demographic histories : time to most recent common ancestor, 

estimates of dispersal distance from genotype data, recombination rates or even local 

ancestry ( Schrider et al., 2018 - Flagel et al, 2018 - Saada et al., 2023 - Smith et al., 2023). 

For a more detailed review of the uses of deep learning in population genetics, see Sheehan 

& Song “Deep Learning for Population Genetic Inference” (2016), Korfmann et al., “Deep 

Learning in Population Genetics” (2023) or the very readable and beginner-friendly 

“Supervised Machine Learning for Population Genetics: A New Paradigm” by Schrider & 

Kern (2018). 

 

Among them, Convolutional Neural Networks (also known as ‘CNNs’ - LeCun et al., 1998)  

are models constructed on the basis of Artificial Neural Networks (ANNs). The structures of 

ANNs are inspired by biological nervous systems: a large number of ‘nodes’, also called 

neurons (in fact polynomial functions) are linked together and take a value (input) as input 

and return a value (output) as output (Mitchel, 1997). The classic architecture of an artificial 

neural network, (often interchangeably called dense feed-forward neural network), can be 

represented as in Figure 5.  
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Figure 5 - Simplified representation of a classic Artificial Neural Network architecture. 
 

Blue circles represent either input, output or hidden neurons. Orange circles represent the 
bias terms. In terms of internal mechanisms, each internal neuron of the hidden layers 
consists of the results of a linear combination of the output of all neurons of the previous 
layers plus a bias term going through an activation function.  

 

These networks can be used, for example, for image recognition: in this case, the input is an 

image (a matrix of pixels) and the output can be a prediction of the main color of the image 

or its content. The neurons making up the network are organized into successive layers: the 

input layer receives the data to be analyzed before passing it on to one or more hidden 

layers which will analyze the data. The multiplication of successive hidden layers provides 

access to information that is ‘deeper’ in the data: this is known as deep-learning (O'Shea, 

2015). Finally, the output layer will return the ‘expected’ value after analysis by the network.  

 

Formally, a neural network consists of the following components:  

- Input layers: the input data is fed into the network, with each node representing a 

feature of the input. 
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- Hidden layers: one or more layers of neurons that perform computations on the data 

to generate the desired output. 

- Output layer: produces the network’s prediction, with each node being one of the 

output dimensions. 

 

For the network to produce the output for a given input, the network goes through forward 

propagation. Let’s consider an input vector , with  features. For each of layer  we have :  𝑥 𝑛 𝑙
- : the linear combination of inputs of layer  𝑧(𝑙) 𝑙
- : the activation output of layer  𝑎(𝑙) 𝑙

Each neuron of  computes a weighted sum of the outputs of all neurons of the previous 𝑙
layers such as: 

, 𝑧(𝑙) = 𝑊(𝑙)𝑎(𝑙−1) + 𝑏(𝑙)
with  the weight matrix for layer , whose dimensions depends on the number of neurons 𝑊(𝑙) 𝑙
of the previous and the current layers, the activation output from the previous layers 𝑎(𝑙−1)
and  the bias vector of layer . The results of this sum (also known as linear 𝑏(𝑙) 𝑙
transformation) is then passed to an activation function to compute the activation output of 

the neurons of the current layer: 

, 𝑎(𝑙) = σ(𝑧(𝑙))
with  the activation function. A very commonly used one is the ReLU function (Rectified σ()
Linear Unit), . Once at the output layer, a last linear transformation is done, σ(𝑧) = 𝑚𝑎𝑥(0, 𝑧)
followed by an activation function appropriate for the task at hand, either a sigmoid activation 

for a binary classification or a softmax for a multi-class classification for example. 

 

The particularity of CNNs (Figure 6) compared to neural networks conventionally used in 

machine learning is the use of a convolutional layer in order to identify key characteristics of 

the input used to carry out their inferences (LeCun et al., 1998). To build their own feature 

vector, additional layers, called convolutional layers, are added before the classic 

architecture of a standard artificial neural network. This stage is generally followed by a 

pooling layer, which “compresses” the information, reducing the matrix size while retaining 

as much of the information extracted by the convolutional layers as possible. This step (a 

convolutional layer followed by a pooling layer) is repeated a n times to only retain the 

important, filtered and compressed information. This information is then flattened in the form 

of a one-dimensional vector (LeCun et al., 2015) and passed to a classic dense neural 

network. To breakdown things more formally: 
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Considering an input image of dimensions , with  the height,  the width and  𝐻 × 𝑊 × 𝐶 𝐻 𝑊 𝐶
the number of color channels (1 for gray-scaled pictures, 3 for RGB). This input is passed to 

convolutional layers which perform the convolution operation i.e. the extraction of the 

features from the input. To do so, convolutional kernels, sets of learnable filters, are used to 

scan the input and to generate a new representation, a feature map. These newly generated 

feature maps then go through pooling layers which down-sample i.e. reduces the 

dimensions of the feature maps, notably to control for overfitting. This pair of steps are 

repeated n times before the output is flatten to then be fed through a classic, fully connected 

dense neural network which is used to make the final prediction based on the features 

extracted by the convolutional phase. 

 

Figure 6 - Simplified representation of a Convolutional Neural Network architecture. 
 

For a CNN, the input is a matrix (here, a picture of a genomic alignment as the ones we use in this study) of known 
dimensions  goes through a series of convolutional layers where a set of filters (kernels) scan the image 𝐻 × 𝑊 × 𝐶
to extract specific aspects and generate new representations of the input: feature maps. A pooling layer then 
performs a down-sampling to reduce the dimensions of the feature maps. These two steps, usually pooled together 
as the convolutional phase is repeated n times, before their output is flattened (step not represented here) and 
passed to a classic fully connected dense neural network for it to perform the analysis, classifications or inferences 
and generated the desired output. 
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Objectives of the thesis 

 

As seen in this introduction, numerous methods have been developed through the history of 

population genetics to answer the ever growing need for theoretical and computational tools 

to unravel the evolutionary history of natural species. However, while such methods have 

been successful, one major assumption remains present in all of those methods aiming at 

reconstructing demographic scenarios : the genomic data must have evolved under selective 

neutrality (Schrider et al. 2016). This represents a major issue, as a large part of natural 

populations are evolving under selection (Hahn, 2008) and such selection could lead to 

variations of the genetic diversity that could in turn be mistakenly attributed to some 

demographic event, while the latter are known to cause many test for selection to generate 

false positives (Simonsen et al. 1995; Jensen et al. 2005; Nielsen et al. 2005). This circular 

thinking between demography and selection has been one of the major obstacles to 

evolutionary inferences in population genetics. In this thesis, we propose to tackle this 

question and to explore possible ways of circumventing this issue through the prism of 

convolutional neural networks. The idea is to use CNNs for two main tasks. First, using 

pseudo-genomic alignments sampled from a population as input data, can the CNNs 

correctly identify the demographic scenario under which the aforementioned population has 

evolved. The second task is the neverending goal of accurately detecting selection. Here, we 

focus not only on detecting genomic targets of natural selection, but more so on accurately 

localizing the targets along the genomes. For each task, the goal is not so much to develop 

a ready-to-use tool, but to get a better understanding of the many choices done at each step 

of the development of such deep-learning methods and to try and propose an enlightened 

view of some of the issues that may arise while doing so. As both tasks require the same 

main steps, our approach can be summarized as follow (Figure 7): 

 

1. Pseudo-genomic data is generated using the msms coalescent simulator (Ewing and 

Hermisson, 2010), with populations simulated under various demographic scenarios, 

either under selective neutrality (with only neutral mutations) or in presence of 

selection. In the case of the latter, the simulated population history involves a 

selective sweep rising from a beneficial mutation. The output data from the 

simulations are formatted as ms files, which contain the SNPs positions and their 

state, coded as either 0 (ancestral state) or 1 (derived state). 

 

2. The simulation outputs are processed and the data is formatted to produce datasets 

for the training and testing of the networks. This involves converting the ms files into 
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two types of matrices: (a) matrices representing raw genetic alignments as 

black-and-white pixel images, or (b) matrices of summary statistics computed within 

sliding windows across the genome, formatted as grayscale images. Labels 

indicating the demographic scenario as well as the position of the simulated selective 

sweeps are also generated for use in supervised training. Data is then split into three 

datasets : train, validation and test. The training and validation sets are used during 

the CNN training process, where the validation set helps in monitoring the model's 

performance to avoid overfitting. The test set remains separate until the final 

evaluation, allowing an unbiased assessment of the trained model's generalization 

ability. 

 

3. The CNNs are trained using the train and validation datasets. This training phase 

involves the choice of numerous parameters and hyper-parameters i.e. parameters 

specific to the training phase of the network. Throughout this phase, the network 

training is monitored thanks to the validation dataset in order to get a better grasp of 

the impact of each chosen parameter. 

 

4. After this initial training, the performance of the CNNs is assessed using a set of 

unseen data, the test dataset. Various metrics (accuracy, precision, recall, and AP 

scores) are computed to evaluate the network performances. Depending on the 

results, the data formatting, training parameters, or network architecture may be 

adjusted to improve performance, followed by further rounds of training and 

evaluation. 

 

5. Once the CNNs are correctly trained, their final performance is tested against 

established methods in population genetics. For classification of demographic 

scenario, the CNN results are compared with those of ABC-RF (Approximate 

Bayesian Computation Random Forest - Pudlo et al. 2015), while for detecting 

selective sweeps, the performance is evaluated against SweepFinder2 (DeGiorgio et 

al., 2016). This step helps to validate the CNN's accuracy and robustness and 

provides insight into its potential advantages or limitations in comparison to existing 

approaches. 
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Figure 7 - General organization of the main steps of both approaches. 
 
Summarized organization of the main steps used for the development of both methods presented in this 
thesis. 1) Simulation of pseudo-genomic data using the msms simulator. For the simulations with 
selection, the frequency path of the selected allele is first generated. Then, the population’s histories are 
simulated through coalescent simulations (conditional to the frequency path in case of selection), 
following one of three possible demographic scenarios of constant size (CST), bottleneck (BTL) or 
expansion (EXP). The outputs are ms formatted files. 2)  Data processing of the simulation output. Each 
ms file is converted either directly into matrices of black and white pixels (raw genetic alignments) or 
summary statistics are computed on sliding windows along the genomes and then converted into 
gray-scaled matrices. 3) The generated matrices are splits into 3 distincts datasets : train, validation and 
test datasets. The train and validation datasets are used for the training of an untrained CNN. The CNN 
performances are evaluated on the test dataset.  4) Depending on the CNN’s performances, updates and 
tweaks are made on the data formatting and the training parameters. 5) Once the CNN is correctly 
trained, the inferences results are compared to ABC-RF and SweepFind2, two other commonly used 
tools for classification and selective sweep detection. 
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The first chapter of this thesis focuses on a breakdown of the simulation protocol, 

followed by the development and test of a simple homemade CNN architecture used 

to classify genetic alignments between various demographic scenarios. Parallel to 

this homemade architecture, two pre-trained architectures are also fine-tuned and all 

the CNNs are compared. The best ones are tested against ABC-RF. The analysis 

addresses aspects such as the choice of data format (raw alignments vs. summary 

statistics), the influence of selection, the robustness to model misspecification, and 

the impact of unexpected gene flow. By examining these factors, this study aims to 

provide insights into the strengths and limitations of CNN approaches in demographic 

inference, for more informed methodological choices in future research. 
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Chapter I 
Classification of genomic data according 
to plausible demographic scenarios using 

Convolutional Neural Networks 

Introduction 
 
Knowledge about the demographic history of a population leads to a better understanding of 

its evolutionary history. As the effects of selection and demographic changes are often hard 

to distangled due to very similar patterns of diversity left on the genomes by those two 

mechanisms, on the most common approach is to assume that demography have 

genome-wide effects, while selection works at a local scale and only targets specifics loci (Li 

et al., 2011). This simple assumption has been largely used as a way to check for false 

positives in demographic inferences (Nielsen et al., 2005 ; Li & Stephan, 2006 ; Pavlidi et al., 

2013). However, as soon as 1968, random drift was experimentally proven to affect selection 

dynamics in small populations (Frankham et al., 1968) and recent studies of sequence 

polymorphism indicates that things might be more complex, and that selection might shape 

diversity in more intricate ways (Sella et al., 2009 ; Siol et al., 2010). Thus, the development 

of methods able to realize correct inferences of the demographic history of natural 

populations from genetic data are one of the main goals of population genetics. From 

likelihood methods (Kuhner et al., 2000 ; Beerli & Felsenstein, 2001 ; Hey & Nielsen, 2007; 

Hey, 2010) to summary statistics centered ones (Becquet & Przeworski, 2007 ; 

Naduvilezhath et al., 2011) all the way to ABC focused ones and the myriad of other using 

site-frequency spectrum (SFS – Nielsen, 2000 ; Adams & Hudson, 2004 ; Marth et al. 2004 ; 

Gutenkunst et al., 2009 ; Naduvilezhath et al., 2011 ; Lukic & Hey, 2012), incredible 

advances has been made, leading to the development of powerful tools the likes of δaδi 

(Gutenkunst et al., 2009) or fastsimcoal2 (Excoffier et al., 2021). These methods have led to 

great improvements in identifying historical demographic events such as population size 

changes (Marth et al. 2004; Tennessen et al. 2012; Gazave et al. 2014) and genetic 

exchange between populations and species (Martin et al. 2013; Hellenthal et al. 2014; 

Sankararaman et al. 2014; Corbett-Detig and Nielsen 2017; Schrider et al. 2018; Hamid et 

al., 2021). 
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All of those methods find their roots back from one of the very first evolutionary models 

proposed by Hardy and Weinberg in 1908. This model shows the evolution of a biallelic 

locus in a panmictic population of infinite size and introduces the so-called Hardy-Weinberg 

equilibrium: under those conditions, and in absence of mutation or selection, the two alleles 

will reach an equilibrium. A decade later, a turning point occurred with the introduction of the 

Wright-Fisher model (Wright, 1931 ; Fisher, 1922). In this new model, evolutionary forces 

and demographic parameters are introduced in the form of mutations occuring into a 

population of finite size. In 1958, Moran (Moran, 1958) proposed a model with a new twist : 

overlapping generations and asexual reproduction and a few years later, Kimura’s work 

(Kimura, 1968) marked another milestone with the neutral theory of molecular evolution. 

Parallel to these advances in the development of these theoretical frameworks, methods for 

sampling and sequencing individuals are also seeing significant progress. Hence, more and 

more genetic data became available to study present day populations. However, the 

theoretical models have all been focused on a ‘forward in time’ approach thus far: theoretical 

populations are sets considering a set of given parameters, and the models attempt to move 

them ‘forward in time’ from that state. Thus, a brand new evolutionary model was needed to 

understand the evolutionary evolution of populations ‘backward in time’ – working from the 

present-day observed variation and tracing the story back in time. It is Kingman, in 1982 

(Kingman, 1982) that provides an answer to this need : the coalescent model (Figure 8). 
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Figure 8 - Coalescent Model 

 

Individuals (circles) are linked together through generations by their ancestry (line). A) 
Basic representation of the genealogy of a population. B) Genealogy of a sample of 
individuals/genes of the population. By sampling 3 individuals from this population at 
present time, we can retrace their genealogy backward in time (blue circles). Doing so 
allows to ignore all other individuals that are not part of this genealogy (white circles). C) 
Simplified genealogy of the lineage of the three sampled individuals. T3 and T2 are the 
times between each coalescent event, occurring when two or more lineages merge. The 
last coalescence event led to the most recent common ancestor (MRCA). Figure adapted 
from De Smet., 2014 

 

The coalescent process models the genealogy of a sample of alleles from a population by 

tracing their ancestry backward in time, all the way until all lineages coalesce to a single, 

most recent common ancestor (MRCA). This model is based on the same assumptions of a 

neutral Wright-Fisher idealized population: a panmictic population of constant size , with 𝑁
discrete generations, without selection, mutation or migration. The most important aspect of 

this coalescent model is the time of coalescence. For any two lineage of the population, the 

time to coalescence is an exponentially distributed random variable with mean of 2𝑁𝑒
generations. The expected time for two lineages to coalesce is  with  the 𝑇𝑘 = 2𝑁𝑒𝑘(𝑘−1) 𝑘
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number of lineages remaining at this step of the process and  the expected time between 𝑇𝑘
coalescence with  lineage remaining. Initially, the probability of any two lineages coalescing 𝑘
is higher due to the higher number of lineages. As the process continues, the number of 

lineages decreases leading to longer times for the remaining lineages to coalesce. The 

expected time for the all sampled lineages to coalesce is the sum of the expected times, 

which approximates to  generations for a sample of size . 4𝑁𝑒(1 − 1/𝑛) 𝑛
This model has since then been expanded upon, with the incorporation of mutation, 

recombination and selection processes that will alter the shape of genealogies, but also 

variable population sizes, or even gene flow. 

 

However, while such methods have been successful, one major assumption remains present 

in all of those methods aiming at reconstructing demographic scenarios : the genomic data 

must have evolved under selective neutrality (Schrider et al. 2016). This represents a major 

issue, as a large part of natural populations are evolving under selection (Hahn, 2008) and 

such selection could lead to variations of the genetic diversity that could in turn be 

mistakenly attributed to some demographic event, while the latter are known to cause many 

test for selection to generate false positives (Simonsen et al. 1995; Jensen et al. 2005; 

Nielsen et al. 2005).  

 

As stated in the introduction of this thesis, the one major issue of such methods, despite 

having already shown great success, is that the studied genomic data used to reconstruct 

the demographic scenarios must have evolved under selective neutrality (Schrider et al., 

2016). Indeed, for years, the paradigm in population genetics research has been to follow 

what Breiman defines as the “data modeling culture”: a statistical model is devised with the 

aim of replicating the effect of a natural phenomenon well enough for it to be considered a 

correct approximation of it. Then, independent variables (genetic or demographic 

parameters for example), are fed through the model to generate, hopefully, a response close 

enough to the one of the natural phenomenon. The model is then validated using 

goodness-of fit tests and residual estimations. However, the other mode of analysis, the 

“algorithmic modeling culture”, works quite differently. In this approach, the effects of nature 

are considered unknown and too complex to come up with a practically usable model. Thus, 

the approach is to find a function, i.e. an algorithm that will simply take as input any given 

parameter and will try to replicate as closely as possible the observed data (Figure 9 - 

Brieman, 2001). 
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Figure 9 - Schematisation of the data modeling and algorithmic modeling culture. 

 

Any observed data y produced by a natural phenomenon working, akin to a black-box, on 
a vector of independent input variables x. To analyze such data, i.e to either make a 
prediction about the possibles responses or to extract information of how nature works, 
two different approaches exists: the data modeling culture assumes a given statistical 
model to be a close enough representation of nature’s blackbox, and feed input variables 
into this model used to make predictions or to gather informations. The algorithmic 
modeling culture considers the inside of the box complex and unknown and focuses on 
finding a function i.e. an algorithm capable of taking x to generate the exact same y 
responses. Figure adapted from Brieman, 2001 

 

This ‘algorithmic modeling culture’ is what is known as machine learning (ML). Over the past 

two decades, machine learning has made significant advancements across a variety of 

domains, demonstrating exceptional performance in numerous tasks: in natural language 

processing (machine translation, sentiment analysis or with transformer-based models like 

GPT) and both text (Sebastiani, 2002) and speech recognition (Hinton et al., 2012) with the 

development of virtual assistants, but also in the fields of computer vision and image 

classification (Krizhevsky et al., 2012) as well as in bioinformatics (Byvatov & Schneider, 

2003; Angermueller et al., 2016; Libbrecht & Noble, 2015). Studies more specifically catered 

to the use of ML methods in population genetics have seen an incredible rise during the last 

few years (Caldas et al., 2022; Flagel et al., 2019; Fraïsse et al., 2020; Gower et al., 2021; 

Hamid et al., 2023; Kern & Schrider, 2018; Kittlein et al., 2022; Lopez et al., 2018; Nait 

Saada et al., 2023; Sanchez, 2022; Schrider & Kern, 2016; Smith et al., 2023; Yelmen et al., 
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2021) and seem to bear great promises for the application of such tools in the future (see 

“The Unreasonable Effectiveness of Convolutional Neural Networks in Population Genetic 

Inferences” by Flagel et al., 2019 and “Deep Learning in Population Genetics” by Korfmann 

et al., 2023 for good and very readable reviews of the subject). 

 

In this first part, we focus on the development of one specific type of deep-learning method 

as a way to answer the previously highlighted issue of performing accurate predictions of 

demographic history from genetic data influenced by selection mechanisms. This question is 

studied through the lens of Convolutional Neural Networks (CNNs), used to classify genomic 

data according to demographic scenarios. The main goal is to highlight the important steps 

of such a demarche and try to help make the decisions when training a CNN to tackle such a 

task. To do so, we train our CNN for a common task in population genomics: determining the 

demographic history associated with a given genomic alignment. In our case, it boils down to 

a classification task between possible demographic scenarios. We propose a detailed 

comparison, at different levels of the development of the method, between 3 different 

architectures of CNN as well as a comparison to Approximate Bayesian Computation using 

Random Forest (ABC-RF - Pudlo et al. 2016), an already widely used tool in population 

genomics (Fraïsse et al, 2021; Pavinato et al. 2022). This comparison consist of four main 

points : 1) the choice of the type of data to use for the training and to run the inferences for 

the CNNs, i.e. the alternative choice between using a set of summary statistics or running 

inferences using raw genomic alignments, 2) the impact of selection on both methods 

performances, 3) the impact of model misspecification on the classifiers robustness and 4) 

the effect of unanticipated gene flow in the history of the sampled populations. 

 

We found that pre-trained CNN architectures performed better compared to more 

homemade approaches in most, if not all cases. Moreover, pre-trained CNNs fine-tuned on 

raw alignments often outperformed architectures trained on summary statistics. Moreso, 

CNNs trained on pseudo-genomic data from populations simulated with a selective sweep 

equals or outperforms the others, without any drawbacks regarding the training. Finally, even 

though CNN based approaches outperformed the ABC-RF in terms of accuracy, an 

argument could be made in favor of the ABC-RF for their already more widespread usage 

making it a more straightforward and easier method to use for simple questions and for their 

good accuracy. 
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Materials and Methods 

Pipeline overview 

Our method requires the five main steps illustrated in Figure 7. First, pseudo-genomic data 

is simulated using the msms coalescent simulator (Ewing and Hermisson, 2010). 

Populations are simulated under different demographic scenarios, detailed below, in 

presence and absence of selection - in our case a selective sweep arising from a single new 

beneficial mutation increasing in frequency in the population. Second, the output of the 

simulations are processed by bash and python scripts to generate the datasets used to train 

and test the classifiers, either by providing matrices of raw genomic alignments of genomes 

sampled from the simulated populations, or by computing matrices of summary statistics 

based on such alignments.  Third, the generated matrices are split into train, validation and 

test datasets and the classifiers are trained using the train and validation datasets. Both 

methods require different training processes, detailed in their respective sub-sections. 

Fourth, potential updates are done to the data formatting or the training steps. Finally, the 

trained classifiers (i.e. the various CNNs of each of the three tested architecture types), as 

well as the ABC-RF, are tested on a test dataset to evaluate their performances on new, 

never seen before data. 

Simulations  

We simulate pseudo-genomic data for training and testing of our CNNs using the msms 

coalescent simulator under tree possible basic demographic scenarios : a population of 

constant effective size (labeled as ‘CST scenario’ - constant size), a population where the 

effective size suddenly decreases (labeled as ‘BTL scenario’ - bottleneck) and a population 

which effective size suddenly increases (labeled as ‘EXP scenario’ - expansion). Each 

demographic scenario is simulated in presence or absence of unidirectional migration 

coming from a non-sampled, “CST” sister population (sometimes referred to as the “ghost 

sister population”). On top of these demographic scenarios, each simulation is run twice: 

once under selective neutrality, with all the mutations occurring being neutral, and a second 

time in presence of a selective sweep arising from a single beneficial mutation occuring at a 

random generation and at a random position on the genome. 
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Simulated models - Demography:  

The simulations follow a Wright-Fisher model. As shown in Figure 10, we start from an 

ancestral population of size Neanc which splits into two sister populations A and B of equal 

initial size  NeA = NeB = Neanc. After some time, a demographic change happens in 

population A : (1) CST : the population size remain constant, (2) BTL : the population goes 

through a sudden bottleneck which reduces the value of NeA down to NeA’ < NeA  or (3) EXP 

: the population goes through a sudden expansion which increases the value of NeA  up to 

NeA’ > NeA. As stated before, each of these scenarios is also simulated in presence and 

absence of gene flow from population B. When present, migration is set so, on average, one 

migrant from population B arrives in population A every 20 generations (4.NA.m = 0.2). The 

counterparts of the CST, BTL and EXP scenarios with migration are labeled as MIG 

(migration), MGB (migration-bottleneck) and MGX (migration-expansion). 

 

 

 

Figure 10 - Simulated demographic scenarios 

 
All scenarios start the same, with an ancestral population of size Nanc that splits into two sister 
populations of respective sizes NA and NB. The CST scenario is the baseline. It works as the most basic 
case, with the focus on a single population of constant size (population A). In the BTL scenario, the 
population of interest goes through a sudden and permanent bottleneck, drastically reducing the effective 
size of the population from NA to NA’. The EXP scenario is the opposite, with a sudden and strong 
expansion permanently increasing the population size from NA to NA’. Each of the three scenarios is 
simulated in presence or absence of unidirectional migration (orange arrows) from population B to 
population A, for a total of 6 possible demographic histories. 

Simulated models - Genetic model: 

The simulated populations consist of diploid individuals represented by their genome. In fact, 

the individuals can be seen as chromosomes of size L = 100 00 bp, with a fixed 

recombination rate r of 1e-6 crossing over per generation per base pair. These 

chromosomes are either simulated under selective neutrality or in presence of a directional 
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positive selection. For the former, only neutral mutations are allowed to occur. Such 

simulations void of selection events are used for the neutral datasets. To test for the 

robustness of our method when faced with selection also impacting the shape of genetic 

diversity signals, the populations are also simulated in presence of a selective sweep, a 

process where a beneficial mutation is driven to fixation by the effect of selection. Assuming 

selection at a single locus, and a biallelic A/a state for the allele, fitness values for each 

genotype are 1 + saa, 1 + saA and 1 + sAA. The resulting signature is what is called a ‘selective 

sweep’ i.e. the creation of a valley of diversity around a selected locus (Haigh, 1974) due to 

the rapid increase in frequency around it (Figure 11). These simulations are used for the 

sweep datasets. 

 

 

Figure 11 - Effect of a selective sweep on genetic diversity along a genome. 
 
Comparison of the average expected diversity θ measured along a genome evolving 
under neutrality (green line) vs. the observed genetic diversity (blue line) along a genome 
with a selective sweep arising from a single beneficial mutation occurring at a selected 
locus (red line). The x-axis represents the genomic positions. The y-axis is the measure of 
the genetic diversity θ computed in overlapping windows of 1kb with a step of 500 bp. 
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Simulated models - Coalescent simulations: 

Simulations are run using the msms simulator. Below is a quick overview of the simulation 

process, also illustrated in Figure 12:  

1) In case of simulations involving selection, time-forward simulations generate the 

frequency path (i.e. the trajectories) of the selected allele. 

2) Coalescent simulations are then run based on the provided demographic scenario to 

construct the genealogy of neutral loci, conditional to the possible frequency path 

previously simulated. 

3) Neutral mutations are added to the genealogy branches, following a Poisson 

process, where the probability of a neutral mutation occurring on a specific branch 

depends on its length. 

 

 

Figure 12 - Overview of the msms simulation process 
 

Considering a simulation with selection, the frequency trajectory of the selected allele is 
generated first. Neutral loci’s genealogies are constructed using a coalescent procedure, 
conditional on the frequency path. Neutral mutations are added on the genealogy based 
on the branch's length.  

 

To summarize the key parameters of the simulations, as they are important to better grasp 

the simulated data : 

 

The effective size NeA and NeB, of population A and B respectively, depend on the 

demographic scenario simulated. For CST/MIG simulations, the effective sizes of population 

A and B are both equal to the effective size Neanc of the ancestral population, drawn in a 

uniform distribution between 1 000 and 10 000 individuals. The population sizes remain 

constant through time. For BTL/MGB and EXP/MGX scenarios, a parameter (scalar_N) is 

drawn in a uniform distribution . It defines the strength of the demographic 𝑈(0. 02,  0. 2)
event to happen, in other words the factor by which the effective size of population A will 
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vary following the bottleneck or the expansion. For BTL/MGB scenarios, the population’s 

initial sizes of the ancestral population, and of population A and B are set between 1 000 and 

10 000 individuals, and the size of population A following the bottleneck, 

, so NeA’ is between 20 and 2 000 individuals. For the scenarios 𝑁𝑒𝐴' = 𝑁𝑒𝐴 × 𝑠𝑐𝑎𝑙𝑎𝑟_𝑁
EXP/MGX, the opposite is done. The initial sizes of the populations are set between 20 and 

2 000, and the size of population A following the expansion is , for 𝑁𝑒𝐴' = 𝑁𝑒𝐴 / 𝑠𝑐𝑎𝑙𝑎𝑟_𝑁
an actual number of individuals between 1 000 and 10 000. For the timing of these 
demographic events, as well as the timing of the split of the ancestral population into 

population A and B, to make sense, they are randomly determined based on the effective 
size of population A. The split happened between 1 and 8 x NeA generations ago and 

the demographic event happened within a time frame of 0.05 to 0.5 x tsplit generations 
ago, with tsplit the timing of the split. 

 

As stated before, individuals are simulated as genomes of length L = 100 000 bp with an 

homogeneous recombination rate r ranging from 1e-6 recombination per generation per 

bp. A set number of 2 000 neutral SNPs are simulated in each population, and, for the 

simulations with selection, the position of the beneficial mutation from which the selective 

sweep originated is randomly drawn from all possible positions on the genome. The 

selective coefficient s is set such that the product NeA.s is between 10 and 100. The 

timing of the apparition of this mutation also depends on tsplit, and the mutation occurs 
between 0.05 to 0.5 x tsplit generations ago. Hence, the demographic event and the rise 
of the beneficial mutation can happen in any order during the simulations. Finally, for 

the migration, migration rate m is set so  for the simulations with gene flow, 4. 𝑁𝑒𝐴. 𝑚 = 0. 2
and equals to zero otherwise. Figure 13 below shows the example of an EXP scenario. A 

detailed breakdown of the parameters used for the simulations can be found in 

Supplementary Table 1. 
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Figure 13 - Example of an EXP scenario. 
 

Nanc is the ancestral population’s size. NA, NA’ and NB are effective population sizes of 
population A before the demographic change, after the demographic change, and of 
population B respectively. The orange arrows indicate migration from population B to 
population A, with a migration rate set such as  (scenarios with migration) or 4. 𝑁. 𝑚 =  0. 2

 (scenarios without migration). Tsplit is the generation at which the ancestral 4. 𝑁. 𝑚 =  0
population splits into population A and population B. Tselection is the generation at which the 
selection dynamic starts i.e the generation at which the mutation starts to be beneficial in 
population A. Finally, Tdem is the generation at which the demographic event (in this 
example the expansion) occurs. 

 

A total of 10 000 simulations of each of the three basic demographic scenarios, with or 

without migration and in presence and absence of a selective sweep are generated, for a 

total of 60 000 simulations with selection (the sweep dataset) and 60 000 simulations without 

selection (the neutral dataset). To construct the datasets, those simulations are split into 3 

sub-types of datasets : 70% are used for the train dataset, 20% for the validation dataset 

and the remaining 10% are used for the test dataset. Each dataset contains an equal 

amount of simulation of each demographic and genetic scenario. Train and valid datasets 

are used during the training phase of the neural networks, while test datasets remain 

untouched until the end of the training phase and are used to have a first look at the 

performances on never seen before data. 
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Data processing 

At the end of each simulation 40 genomes are sampled from population A and a .ms 

formatted file is created. Such files contain the position and state (encoded as 0 or 1) of the 

2 000 SNPs in the genomes of the sampled individuals (Figure 14). Bash and python scripts 

are used to process those files and generate two types of data used for the training of the 

CNN architectures : ‘rawData’ and ‘sumStats’. 

 

 

Figure 14 - Representation of an .ms file content. 
 
Example extract of the data contained inside a .ms formatted file. Here are 10 SNPs 
positions associated with the corresponding allele state (encoded as 0 or 1) of each 
individual of a sample of 10. 

 

rawData data is in essence just the content of the .ms formatted files. Each element of such 

a dataset is a matrix where each line corresponds to one genome (i.e. one individual) and 

each column corresponds to a SNP. In other words, it is a representation of the states of the 

SNPs of the sampled individuals. Because all mutations are simulated as biallelic, the 

matrices can be converted into black and white pictures, with a 0 represented by a white 

pixel, and a 1 represented by a black pixel (Figure 15 - A). This way of representing input 

data, as well as the extra-step of sorting the chromosomes by genetic similarity, have been 

shown to improve the CNNs results (Flagel et al., 2019). Thus, a non-randomly ordered 

version of each matrix, referred to as “sorted-rawData” files, is also created : bins of 

simili-haplotypes of 20 consecutive SNPs are sorted by decreasing frequency along the 

genomes (Figure 15 - B). 
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Figure 15 - Representation of the rawData data inputs. 
 

A) The matrices in .ms format are converted into black and white pictures. Each line corresponds to one 
individual, each column to one SNP position. Each pixel is thus the state of the allele at this position for 
the corresponding individual (0 = white, 1 = black). Represented here is a basic example matrix. B) Two 
types of ‘rawData’ matrices are created. The ‘unsorted’ ones are representations of the genomes in the 
random order they’ve been sampled. The ‘sorted-rawData’ ones are matrices where the genomes have 
been splitted into bins of 20 consecutive SNPs and the resulting pseudo-haplotypes have been sorted 
by decreasing frequency. In that case, one line no longer corresponds to one individual. 

 

The sumStats data inputs are matrices of summary statistics: we compute summary 

statistics in overlapping windows of 1 000 bp sliding along the genomes, by steps of 500 bp. 

A total of 14 summary statistics (detailed in Supplementary Table 2) are computed to 

capture various aspects of the genetic diversity. Half of them focus on nucleotide diversity: 

the average and standard deviation of the nucleotide diversity π (Nei & Li, 1979) computed 

inside each window, Watterson’s estimator θ (Watterson, 1975), Tajima’s D (Tajima, 1989), 

Achaz’s Y (Achaz, 2008) and the Pearson r and p-value for π. The other half are more 

focused on haplotype diversity : the number of haplotypes, four different measures of 

haplotype’s homozygosity H1, H2, H12 and H2/H1 (Garud et al., 2015 ; Harris et al., 2018) 

and two different measures of linkage disequilibrium, either measured by D (Lewontin, 1963) 

or by r2 (Hill & Robertson, 1968). The values of all these summary statistics are then 

normalized across the entire dataset, in order to highlight the variations inter-genomes, and 

converted into a matrix with each line corresponding to a specific statistics, and each column 

to one window (Figure 16). Doing so, we can work using normalized pictures while 

preserving the demographic and selection patterns in the genomes.  
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Figure 16 - Representation of the sumStats data inputs. 
  

Matrices of summary statistics computed inside 1 000 bp overlapping windows sliding along the chromosome in 
steps of 500 bp. From top to bottom :  π (average), π (standard deviation), Watterson’s θ, Tajima’s D, Achaz’s Y, 
Pearson’s r for π, Pearson’s p-value for π, number of haplotypes, haplotype’s homozygosity H1, haplotype’s 
homozygosity without the most common haplotype (H2), haplotype’s homozygosity considering the two most 
common haplotype as the same (H12), ratio of H2 over H1, linkage disequilibrium measured by D and linkage 
disequilibrium measured by r2. Values are normalized between 0 and 1, based on the minimum and maximum 
values of the whole dataset, and each pixel gray-scaled accordingly.  

Convolutional Neural Networks architectures 

Three different types of CNN architecture are tested for this classification task. The first type 

is a simple custom CNN architecture (referred to as ‘simple’ CNN) consisting of a succession 

of n convolutional layers, i.e. a convolution followed by a ReLU activation, some dropout to 

avoid overfitting, a 2D batch normalization and a 2D Max Pooling, used to extract the 

features of the input data. The output of this convolution phase is flattened and passed to a 

classic dense fully connected output layer to perform the classification task (Figure 17 - A). 

The second type of architecture, referred to as ‘mix’ CNNs, is, in short, just a small addition 

to simple CNNs. A basic sequential network is built to handle a newly added information: a 

list of the genomic positions of the SNPs. The outputs of both the convolution phase and this 

new small network are concatenated together and used for classification (Figure 17 - B). 

The third type of architectures are what we call ‘pre-trained’ CNNs: architectures available 

online that have already been trained on other datasets. We focus our attention on two of 

them: resNet (Residual Network, He et al., 2015) and efficientNet (Le & Tan, 2020). resNet 

was created to address challenges of training deep neural networks, particularly the issues 

of vanishing gradients and accuracy degradation in very deep models. For each layer, 

instead of learning the target mapping i.e. the correct function that would, for any given input, 
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generate the desired output : 
 

 𝐻(𝑥) =  𝑦
 

with x the input of the layer, and y the output, resNet introduces residual connections 

(shortcut connections) that allow the network to learn a residual function : 
 

 𝐹(𝑥) =  𝐻(𝑥) −  𝑥
 

thus reformulating the mapping as : 
 

 𝐻(𝑋) =  𝐹(𝑥) +  𝑥
 

These shortcut connections help stabilize gradient propagation, allowing for much deeper 

networks while improving accuracy (He et al., 2015). 

 

As for efficientNet, it is a family of CNNs designed to optimize model scaling by balancing 

depth, width, and resolution through a compound scaling method. Tan and Le (2020) 

introduced EfficientNet-B0 as a baseline model, constructed using Mobile Inverted 

Bottleneck (MBConv) layers (Sandler et al., 2018). This approach has demonstrated 

state-of-the-art performance on ImageNet, a large-scale dataset containing over 14 million 

images across 1 000 object categories, widely used for benchmarking image classification 

models, and has shown strong generalization capabilities for transfer learning tasks on both 

CIFAR-10 and CIFAR-100, which consist of 60 000 images of 32×32 pixels across 10 and 

100 classes, respectively. Notably, efficientNet-B0 achieves comparable accuracy while 

being 2 to 5 times smaller than ResNet-50 in parameter count (Le & Tan, 2020). 

 

Indeed, the number of parameters varies across different model architectures and depends 

on the type of input data used. Our simple architectures using sumStats data have the 

smallest parameter count, approximately 76 000. In contrast, simple CNNs using rawData 

and sorted-rawData reach up to 2,8 and 1,8 millions parameters, respectively, at most. mix 

architectures exhibit a comparable range, with parameter counts between 1,3 and 2,9 

millions. Finally, among the evaluated models, our implementation of resNet is the most 

complex, with up to 11,2 millions parameters, while our implementation of efficientNet 

contains slightly more than 4 millions parameters. Further details regarding the exact 

number of parameters for each architecture are provided in Supplementary Table 3. 

 

As for the input data, rawData, sorted-rawData and sumStats training datasets are used for 

the simple and pre-trained CNNs. Mix CNNs only use rawData and sorted-rawData with the 
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added information of the position of each SNPs along the genomes. Early attempts to use 

mix CNNs architecture with sumStats have yielded poor results, never surpassing random 

guess, and have thus been discarded. Finally, among each architecture type, different sizes 

for the convolution kernels have been tested, referenced as “kn” (with n the horizontal 

dimension of the kernel, the vertical dimension being equals to the input matrix height) for 

the rest of this thesis. 

 

 

Figure 17 - Architectures of the two homemade CNNs used for the classification task. 
 
A) A simple architecture using only matrices (either rawData or sumStats) as input data. 
B) A slightly more complex architecture using both matrices and SNPs positions 
information as input data. Two separate networks process the two different types of input 
data. The outputs of each are then concatenated together before being passed to a fully 
connected network to perform the classification. 

Convolutional Neural Networks - Training phase 

The goal of this training phase is to tune the CNN weights and biases. By going through 

each example of the train dataset multiple times during the training phase; a few examples 

are fed to the network which tries to produce an output. The error gradient associated with 

those predictions is computed and is propagated in reverse through the network using the 
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backpropagation algorithm (Rumelhart et al., 1986), in order to update the weights and 

biases thanks to stochastic gradient descent (Kingma & Ba, 2014). Once all the examples of 

the train dataset have been used one time, one epoch has passed. The network 

performance is evaluated using the validation dataset, to monitor the evolution of the 

accuracy and loss (a measure of the error of a network) at each step of the training. The 

training is complete once the network has been through a set number of epochs, or when 

certain criterions have been reached.  

 

In our study, we train a total of 7 different architectures : 3 simple ones (CNN simple k7, CNN 

simple k9 and CNN simple stats, using respectively a kernel with a width of 7 or 9 on 

rawData for the two first, and working on sumStats for the latter) ; 2 mix ones (CNN mix k7 

and CNN mix k9, once again working with kernels of width 7 or 9) and 2 pre-trained CNNs 

(resNet and efficientNet). Each of those 7 architectures are trained on the different possible 

combinations of input data and of genetic and demographic scenarios: simple and 

pre-trained CNNs are trained on rawData, sorted-rawData and sumStats, while mix CNNs 

are only trained on the first two input data types. While this phase constitutes the first time 

the simple CNNs are trained, the pre-trained  architectures have already been previously 

trained. Indeed, the goal of using such architectures is to build on an already existing base 

knowledge by slightly tuning the last layers of already trained neural networks through a new 

training phase in order for them to learn to perform a new task. Both pre-trained 

architectures have been trained on the ImageNet dataset (IMAGENET1K_V1 from the 

PyTorch library). 

 

Each CNN is trained using the train and validation datasets, containing respectively 7 000 

and 2 000 examples of each of the three basic demographic scenarios (CST, BTL and EXP) 

formatted in the three types of input data (rawData, sorted-rawData and sumStats) for both 

sweep and neutral variants. All the training are done with and without data augmentation, a 

way to artificially increase the training example variability by slightly altering ‘on the fly’ the 

input data during the training phase. The networks are trained for 100 epochs, using batches 

of size 32, without any specific criteria to stop the training earlier. A complete list of all the 

parameters used for the training of each CNN, as well as accuracy and loss scores is 

available in Supplementary Table 4 & 5. 
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ABC - Random Forest (ABC-RF) 

As presented in the Introduction of this thesis, ABC are computational methods based on 

approximation of the posterior distribution of a model parameters, allowing for inferences 

when models are too complex for a likelihood to be computed, but when it is still possible to 

run simulations from this model. Two major issues arise with this method. First, a huge 

number of simulations are needed, thus making it computationally heavy ; which is even 

more of an issue with genomic data with tens of thousands of possible data points). 

Secondly, they require a calibration phase, often a critical phase of using such a method, 

where choices must be made to decide which threshold to use, or with which statistics to 

work. However, a new method has arisen during the last decade : a combination of ABC and 

a tool inspired from deep-learning, the random forests (Breiman, 2001; Pudlo et al., 2015 - 

“Reliable ABC model choice via random forests”) 

 

ABC require four steps : the simulation of datasets from parameters randomly drawn from 

the posterior distributions, the computation of summary statistics from both the observed and 

the simulated datasets, the evaluation of the distance between both sets of summary 

statistics computed and finally, the comparison of those distances with a threshold value to 

accept or reject the approximation. Random Forests are methods used for classification and 

regression. They are based on the construction of a huge number of decision trees which 

will then collectively make a prediction : all individual predictions are gathered and the 

prediction of the forest is the one predicted by the highest number of trees.  

 

The same sumStats datasets used to train the CNNs architectures are used with ABC-RF, 

as training it using the rawData datasets would be too computationally heavy and not make 

much sense. However, we also tried a small optimization for the ABC-RF methods : instead 

of only using sumStats datasets as is, we tried ABC-RF on extremely summarized sumStats 

datasets where only the average value of each summary statistics is used. 
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Results 
 
We propose a comparison between multiple possibilities for the set up of a supervised 

deep-learning approach for the classification of genomic alignments between plausible 

demographic scenarios. Below, we compare the results of simple, mix, and pre-trained 

CNNs architectures. We evaluate the performance of each architecture when using 

summary statistics or raw genomic data as input, the robustness of the CNNs in case of 

model misspecification or unexpected gene flow and compare the results against another 

classification method, the ABC-RF. 

Metrics and evaluation of model performance 

A quick explanation of some technical aspects of the comparison of CNN approaches is 

important to understand how we decide which CNN has performed the best. Two main 

metrics are used to evaluate a model performance : the accuracy and the loss. 

 

Accuracy depicts the fraction of prediction that the model got right out of all the predictions it 

does, thus ranging between 0 and 1. Formally, accuracy can be defined as : 

 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  𝐶𝑃𝐶𝑃 + 𝑊𝑃
with CP the number of correct predictions and WP the number of wrong predictions.  

 

The loss is a method of evaluating if the model’s predictions are far from the truth. Its values 

depend on the selected “loss function”. While the Mean Square Error (MSE) loss function is 

one of the most common ones for regression problems, here we use a Cross-Entropy loss 

function, better suited to classification problems. The value of cross-entropy loss decreases 

as the predicted probability of the correct label rises. Formally, the cross-entropy loss  is 𝐿
defined as :  

 𝐿 =  − 1𝑚 𝑖=1
𝑚∑ 𝑦𝑖. 𝑙𝑜𝑔(𝑦𝑖)
 

with  the number of samples in the dataset,  the i-th element of the dataset,  the 𝑚 𝑖 𝑦𝑖
expected value for the i-th element and  the predicted value for the i-th element. 𝑦𝑖
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Another commonly used method of evaluating a model performance are Receiver 
Operating Characteristic (ROC) curves. ROC Curves show the trade-off for different 

thresholds, by comparing True Positive Rate (TPR) on the y-axis and False Positive Rate 

(FPR) on the x-axis. While typically used for binary classification, it is still possible to use 

ROC curves for a multi-class classifier as in our case by binarizing the output for each class, 

in a One-vs-Rest method i.e. by comparing each class (TP) against all the others (FP). The 

Area Under the Curve (AUC) helps to summarize the overall performance of the model : a 

higher AUC value (closer to 1) indicates better model performance in distinguishing between 

classes. 

 

Finally, while accuracy and loss are good metrics to evaluate a model performance, another 

useful tool is a confusion matrix. For each test example, the predicted scenario is compared 

to the expected (true) scenario which it belongs to. It allows for an easier visualization of the 

proportion of correct and incorrect predictions for each class. 

 

The choice for the best CNN for each comparison is done by comparing the accuracy and 

loss scores obtained on both neutral and sweep test datasets. Unless otherwise stated, a 

CNN architecture is considered better if its loss is closer to 0 and its accuracy closer to 1. 

48 



Chapter I 
 

 

 

Figure 18 - Evaluation of classification performances of the CNN tested on neutral datasets. 
 

CNN trained on neutral datasets are displayed in green, CNN trained on sweep datasets are in blue. Data 
augmentation is implemented during training as a random chance for any input data to be slightly altered (horizontally 
or vertically flipped) thus increasing the diversity of training examples. Data type corresponds to the type of input data 
used by the network (either rawData, sorted-rawData or sumStats). The tested CNNs architecture names indicate the 
type, between simple, mix or pre-trained architectures. A) shows accuracy values and B) loss values. 
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Figure 19 - Evaluation of classification performances of the CNN tested on sweep datasets. 
 

CNN trained on neutral datasets are displayed in green, CNN trained on sweep datasets are in blue. Data 
augmentation is implemented during training as a random chance for any input data to be slightly altered (horizontally 
or vertically flipped) thus increasing the diversity of training examples. Data type corresponds to the type of input data 
used by the network (either rawData, sorted-rawData or sumStats). The tested CNNs architecture names indicate the 
type, between simple, mix or pre-trained architectures. A) shows accuracy values and B) loss values. 
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Comparison of the overall performances of different CNNs 
architectures 

The performance of the three different CNN architectures on test datasets (containing 1 000 

simulations of each scenario) is compared in order to determine a baseline ranking between 

them. As stated in the Material & Method part, two sets of training are conducted, one on the 

neutral datasets, and one on the sweep datasets, each containing balanced numbers of 

simulations of the three different basic demographic scenarios, BTL, CST and EXP.  All three 

types of input data (rawData, sorted-rawData and sumStats) are tested as well. Figure 18 

shows the accuracy (18 - A) and loss (18 - B) obtained on neutral test dataset for all the 

combinations of input data, selection and data augmentation used for the training of each of 

the 3 types of CNN architectures and Figure 19 shows the same for tests on sweep dataset. 

CNNs tested on neutral data 

The highest accuracy and lowest loss, for the test on neutral data, are obtained by the same 

pre-trained CNN architecture, an efficientNet CNN train on neutral sorted-rawData, using 

data augmentation during the training. It achieves an accuracy of 0.9893 (tied with the 

efficientNet trained on neutral rawData) and a loss of 0.0299 (0.0358 for the one train on 

rawData). The lowest accuracy of 0.4677 and the highest loss of 1.4135 are also obtained 

by the same CNN, a mix k9 architecture trained on neutral rawData using data 

augmentation. Overall, the pre-trained architectures performed better (with the highest 

average accuracy of 0.962 ± 0.0205 and the lowest average loss of 0.129 ± 0.0685) followed 

by the simple CNNs (with an average accuracy of 0.875 ± 0.0805 and an average loss of 

0.341 ± 179) and the mix architectures slightly behind both in terms of accuracies (0.871 ± 

0.15) and losses (0.388 ± 0.371). See Table 1 and Supplementary Table 4 for a more 

detailed breakdown of all CNN accuracy and loss values. 

 

Table 1 - Performance comparison of simple, mix and pre-trained CNNs architecture 
tested on neutral datasets. In bold, the highest accuracy and lowest loss.  

CNN accuracy 
(average) accuracy (range) loss (average) loss (range) 

simple 0.875  
(± 0.0805) [0.734, 0.978] 0.341 

(± 0.179) [0.0735, 0.7379] 

mix 0.871 
(± 0.15) [0.468, 0.975] 0.388 

(± 0.371) [0.1063, 1.4135] 

pre-trained 0.962 
(± 0.0205) [0.9247, 0.9893] 0.129 

(± 0.0685) [0.0299, 0.2552] 
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CNNs tested on sweep data 

Two pre-trained CNNs are nearly tied for the rank of best CNN on sweep test data. Both are 

efficientNet trained on sweep, sorted-rawData with the only difference being the use or not of 

data augmentation. The CNN trained with data augmentation achieves an accuracy of 

0.9760 and a loss of 0.0618 while the CNN trained without data augmentation scores a 

slightly better accuracy of 0.9770 but a worse loss of 0.0747. Simply going with the lowest 

difference in accuracy or loss as the deciding factor, we consider the CNN trained with data 

augmentation as being the best of the two. While the worst loss of 3.4280 is once again 

obtained by a mix CNN (mix k7, trained on neutral rawData without data augmentation), a 

simple architecture achieves the worst accuracy of 0.333. Such an accuracy is, in fact, not 

different from the expected results of a random guessing, so we chose to discard entirely 

this specific CNN (simple k7, trained on sweep rawData without data augmentation). From 

there, the worst accuracy then became 0.5143 and is the accuracy of the same mix CNN 

achieving the highest loss of 3.4280. The ranking on sweep data remain the same than the 

one obtained on neutral data: the pre-trained architectures are the best ones, with the 

highest average accuracy (0.921 ± 0.0402) and the lowest loss (0.308 ± 0.18), followed by 

the simple CNNs (accuracy = 0.801 ± 0.109, loss = 0.998 ± 0.707) and mix architecture 

(accuracy = 0.787 ± 0.123, loss = 0.937 ± 0.804) having very similar average results. See 

Table 2 and Supplementary Table 5 for a more detailed breakdown of all CNN accuracy 

and loss values. 

 

Table 2 - Performance comparison of simple, mix and pre-trained CNNs architecture 
tested on sweep datasets. In bold, the highest accuracy and lowest loss.  

CNN accuracy 
(average) accuracy (range) loss (average) loss (range) 

simple 0.801  
(± 0.109) [0.6193, 0.9427] 0.998 

(± 0.707) [0.1537, 2.2981] 

mix 0.787 
(± 0.123) [0.5143, 0.914] 0.937 

(± 0.804) [0.2415, 3.428] 

pre-trained 0.921 
(± 0.0402) [0.8367, 0.977] 0.308 

(± 0.18) [0.0618, 0.5678] 

 

Overall best architecture on neutral or sweep datasets 

To conclude this first look at the various CNN architecture’s performances, we take a look at 

the best CNN of each type, on either neutral or sweep datasets (Table 3 and 

Supplementary Table 4 & 5). The ROC curves obtained on neutral datasets and on sweep 

datasets are presented in Supplementary Figure 1 and 2. 
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On sweep test data, the best simple CNN is the simple k9, using sweep sorted-rawData 

without data augmentation, the best mix CNN is the mix k9, using sweep rawData without 

data augmentation, and the best pre-trained CNN, which is also the overall best CNN on 

sweep test data, is the efficientNet using sweep sorted-rawData, trained with data 

augmentation. On neutral test data, while the best CNN remains the efficientNet using 

neutral sorted-rawData and trained with data augmentation (also being the overall best CNN 

on neutral test data), something interesting is to be noted for both the best simple and the 

best mix architectures. The best simple is the simple k7, using sweep sorted-rawData 

without data augmentation, and the best mix is the mix k7, using sweep sorted-rawData 

without data augmentation. For comparison, the best pre-trained CNN trained on sweep data 

and tested on neutral data is the efficientNet using sorted-rawData without data 

augmentation, which scores an accuracy of 0.957 and a loss of 0.115, which are results not 

too far from the simple and mix CNNs. 

 

Table 3 - Comparison of the overall performance of simple, mix and pre-trained CNNs architecture on neutral 
and sweep test datasets. In bold, the highest accuracy and lowest loss for each category (neutral / sweep) of test 
data.  

Test 
Data 

CNN type Model Input Data Train Data 
Data 

Augmentation 
Accuracy Loss 

neutral 

simple k7 sorted-rawData sweep No 0.977 0.0735 

mix k7 sorted-rawData sweep Yes 0.975 0.1063 

pre-trained efficientNet sorted-rawData neutral Yes 0.989 0.0299 

sweep 

simple k9 sorted-rawData sweep No 0.943 0.154 

mix k9 rawData sweep No 0.914 0.242 

pre-trained efficientNet sorted-rawData sweep Yes 0.976 0.0618 
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CNN architecture comparison 

After the first overall comparison of performances, we now compare the CNN architectures 

in a more detailed manner, one element at a time. To do so, we begin by focusing on the 

impact of the architecture use and only focus on the CNNs trained and tested on neutral 

datasets. The best simple CNN is the simple k3 using sumStats without data augmentation 

(accuracy = 0.9657, loss = 0.1422), the best mix CNN is the mix k9 using sorted-rawData 

with data augmentation (accuracy = 0.9540, loss = 0.1507) and the best pre-trained CNN is 

the efficientNet using sorted-rawData with data augmentation (accuracy = 0.9893, loss = 

0.0299). 
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Figure 20 - Confusion matrices of the best CNN of each type of architecture, trained and tested 
on neutral datasets. 

 
The x-axis is the correct (true) scenario and the y-axis the predicted scenario. Predictions on the 
diagonal are correct predictions. The test datasets used contain 1 000 simulations of each of the 
three classes BTL, CST and EXP. A) Results for the best simple CNN architecture, B) results for 
the best mix CNN architecture and C) results for the best pre-trained CNN architecture. 

 

Confusion matrices are shown in Figure 20 for the best performing CNN for the simple (20 - 
A), mix (20 - B) and pre-trained (20 - C) CNN. Out of the three, the mix CNN displays the 

lowest accuracy and the worst results on the classification of CST and EXP simulations, with 

respectively “only” 93.5% and 92.9% of them correctly classified. The simple CNN is the 

worst at classifying BTL simulations, with “only” 98.4% of them correctly classified. The 

pre-trained CNN shows more than 98% of correct classifications regardless of the scenario. 

BTL or EXP scenarios are nearly never mistaken for one another, with one single BTL 

simulation wrongly classified as an EXP. BTL simulations are also rarely mistaken for CST 

simulations, with the simple CNN making this mistake the most in 1.5% of the cases. About 

1.5 to 2% of the CST simulations are wrongly classified as either BTL or EXP by the simple 

CNN, and 0.6 to 1.2% by the pre-trained one. The mix CNN seems to never classify CST 

simulations as EXP, but up to 6.5% of them are mistaken for BTL simulations. As for the 

EXP simulations, no CNN classifies them as BTL, but the simple CNN is wrong and 

classifies 5.3% of them as CST and the mix CNN is wrong for 7.1% of them. 

 

The same approach is applied on CNN trained and tested on sweep datasets. In that case, 

the three best CNNs are the same ones as in Table 3: the simple k9 using sorted-rawData 

without data augmentation (accuracy = 0.943, loss = 0.154), the mix k9 using rawData 

without data augmentation (accuracy = 0.914, loss = 0.242) and the efficientNet using 

sorted-rawData with data augmentation (accuracy = 0.976, loss = 0.0618). The 

corresponding confusion matrices are displayed in Figure 21. Once again, the mix CNN is 

the worst, with the lowest accuracy and the highest loss of the three. The pre-trained one is 

also once again the best, with the most error it does being 2.2% of the EXP simulations 

predicted as CST and 1.2% predicted as BTL. 1.7% of the CST simulations are predicted as 

EXP and the same amount of BTL are predicted as EXP too. As for the simple and mix CNN 

mistakes, both wrongly classify more than 10% of the BTL simulations as EXP. The simple 

CNN miss-classifies 4.1% of the CST simulations as EXP, and the mix classifies 9.7% of the 

EXP simulations as CST. 
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Figure 21 - Confusion matrices of the best CNN of each type of architecture, trained and tested 
on sweep datasets. 

 
The x-axis is the correct (true) scenario and the y-axis the predicted scenario. Predictions on the 
diagonal are correct predictions. The test datasets used contain 1 000 simulations of each of the 
three classes BTL, CST and EXP. A) Results for the best simple CNN architecture, B) results for 
the best mix CNN architecture and C) results for the best pre-trained CNN architecture. 
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Input data type comparison 

The comparison between the two types of input data, rawData (rawData + sorted-rawData) 

and sumStats is done by comparing the results between simple and pre-trained architecture 

only, as the idea of using mix architecture used with sumStats has been discarded early due 

to the very poor results of this approach. As before, the CNNs are first trained and tested on 

the neutral dataset and the results of the best of each architecture compared, before going 

on to do the same on the sweep dataset.  

 

 

On neutral datasets, the best simple CNN on rawData scores an accuracy of 0.899 and a 

loss of 0.2387 vs. 0.9657 and 0.1422 for the best simple CNN using sumStats. However, 

outside of this occurrence, using sorted-rawData as data input provide better results (higher 

accuracy and lower loss) for all other CNN architectures, i.e. pre-trained CNN on neutral 

datasets, as well as both simple and pre-trained CNNs on sweep datasets (Table 4). 

 

The difference is quite visible when looking at the confusion matrices: focusing on the CNNs 

trained and tested on neutral datasets, while the simple CNN using sumStats display great 

classification performance overall, except for about 5% of the EXP simulations classified as 

CST (Figure 22 - A), the best simple CNN working using rawData mistakenly classifies up to 

23% of the CST simulations as BTL (Figure 22 - B).  

 

57 

Table 4 - Comparison of the effect of input data in simple and pre-trained CNNs architecture. In 
bold, the highest accuracy and lowest loss for each category. 

Test & 
Train Data 

CNN type Model Input Data 
Data 

Augmentation 
Accuracy Loss 

neutral 

simple 
k7 rawData Yes 0.899 0.2387 

k3 sumStats No 0.9657 0.1422 

pre-trained 
efficientNet sorted-rawData Yes 0.989 0.0299 

efficientNet sumStats Yes 0.9780 0.0836 

sweep 

simple 
k9 sorted-rawData No 0.943 0.154 

k3 sumStats Yes 0.886 0.3392 

pre-trained 
efficientNet sorted-rawData Yes 0.976 0.0618 

efficientNet sumStats Yes 0.935 0.1862 
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Figure 22 - Confusion matrices of the best simple and pre-trained CNN regarding inferences on neutral datasets - 
comparisons of rawData vs sumStats input data. 

 
A) best simple CNN architecture working on sumStats data, B) best simple CNN architecture working on rawData 
data, C) best pre-trained CNN architecture working on sumStats data and D) best pre-trained CNN architecture 
working on rawData data. 
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On the other hand, the results between sumStats and rawData for the pre-trained CNNs are 

very similar, despite a very slight advantage for the (sorted-)rawData one on the 

classification of all three scenarios (Figure 22 - C & D).  

 

As for the CNNs trained and tested on sweep datasets, the same observations remain: the 

simple CNNs struggle with the classification of BTL simulations, wrongly classified as EXP in 

more than 10% of the cases for the rawData one, and up to 12% for the one using the 

sumStats. That same sumStats simple CNN also mistakenly classifies nearly 15% of the 

EXP simulations as CST, and up to 4.5% of the BTL as CST (Figure 23 - A & B). 

Meanwhile, the best pre-trained ones achieve more than 90% of correct classifications 

regardless of the type of input data or demographic scenario, with a slight advantage for the 

CNN trained on sorted-rawData (Figure 23 - C & D). 

 

 

59 



Chapter I 
 

 

Figure 23 - Confusion matrices of the best simple and pre-trained CNN regarding inferences on sweep datasets - 
comparisons of rawData vs sumStats input data. 

 
A) best simple CNN architecture working on sumStats data, B) best simple CNN architecture working on rawData 
data, C) best pre-trained CNN architecture working on sumStats data and D) best pre-trained CNN architecture 
working on rawData data. 
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Impact of selection and of model misspecification  

We test how our 3 CNNs architecture handle miss-specification of the selection scenario. To 

do so, CNNs trained on neutral datasets are used to perform inferences on sweep datasets, 

and vice-versa. In this section, we try to give a more detailed breakdown, not only of the best 

scoring CNN of each category but also of the architectures in general. 

 

Figure 24 - A presents the confusion matrices of the best scoring CNNs of each category, 

trained on neutral data and tested on sweep datasets, while Figure 24 - B shows the results 

of the opposite i.e. CNNs trained on sweep datasets and tested on neutral datasets. Table 5 

below compares the accuracy and loss of the best CNN of each type when making 

inferences on the correct and the misspecified dataset. We compute Δ accuracy and Δ loss 

values to indicate the difference in accuracy and loss when the model is used to make 

inferences on a dataset with misspecified selection compared to its training dataset. 

Supplementary Table 6 shows the same comparison as Table 5, but for the worst CNNs, in 

order to get a better understanding of what works and what does not. 

 

Table 5 - Comparison of the accuracy of the best CNNs architecture in case of model misspecification. Δ accuracy 
and Δ loss are computed as the difference in accuracy or loss when the model is used to make inferences on a 
dataset with misspecified selection compared to its training dataset. In bold, cases when model misspecification 
increases the accuracy and/or reduces the loss. 

Train on Predict on CNN Input Data Model accuracy loss Δ accuracy Δ loss 

neutral 

neutral 

simple sumStats k3 0.966 0.142 - - 

mix sorted-rawData k9 0.954 0.151 - - 

pre-trained sorted-rawData efficientNet 0.989 0.0299 - - 

sweep 

simple rawData k7 0.848 0.788 - 0.118 + 0.646 

mix rawData k9 0.873 0.764 - 0.081 + 0.613 

pre-trained sorted-rawData efficientNet 0.927 0.380 - 0.062 + 0.350 

sweep 

neutral 

simple sorted-rawData k7 0.978 0.0735 + 0.035 - 0.081 

mix sorted-rawData k7 0.975 0.106 + 0.061 - 0.136 

pre-trained sorted-rawData efficientNet 0.957 0.115 - 0.019 + 0.53 

sweep 

simple sorted-rawData k9 0.943 0.154 - - 

mix rawData k9 0.914 0.242 - - 

pre-trained sorted-rawData efficientNet 0.976 0.0618 - - 
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Train on neutral and test on sweep 

While the highest accuracy of the simple CNNs trained on neutral datasets but tested on 

sweep test datasets is at 0.8517 it also shows a loss way higher than the second most 

accurate simple CNN, which happens to have the lowest loss of all of them (accuracy : 0.852 

vs. 0.848, loss : 1.59 vs. 0.788). Thus, the latter is considered, in this case, as the best 

simple CNN. The overall mean accuracy of the 8 simple CNNs put together is 0,764 ± 0,092 

and the overall loss is 1,507 ± 0,543. 

 

Two CNNs also compete for the place of best mix CNNs : two variations of the same mix 

CNN, trained on rawData, with or without data augmentation. The latter has a slightly higher 

accuracy (0,887 vs. 0,873) but also a higher loss (0,798 vs. 0,764). Considering the wider 

gap between the two losses the CNN trained with data augmentation is chosen as the best 

mix CNN. The overall mean accuracy of the 8 mix CNNs is 0,741 ± 0,117, and the overall 

loss is 1,439 ± 0,858. 

 

Finally, the best pre-trained CNN architecture is an efficientNet architecture, trained on 

sorted-rawData without data augmentation, with an accuracy of 0,927 and a loss of 0,380. 

Overall, the 12 pre-trained architectures have an average accuracy of 0,893 ± 0,029, and an 

average loss of 0,467 ± 0,080. 

 

 

All three architectures seem to struggle with the classification of BTL scenarios, wrongly 

classified as EXP in 11.3%, 12.8% and 16.7% of the cases by the pre-trained, mix and 

simple CNN respectively. The simple CNN also struggles to classify CST simulations, with 

7.2% mistaken for BTL and nearly 13% classified as EXP, while the mix CNN also wrongly 

classifies about 9% of CST simulations as BTL, and more than 9% of the EXP simulation as 
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Table 6 - Comparison of the accuracy and the loss of the best and the average CNNs of each 
architecture when trained on neutral and tested on sweep datasets. Δ accuracy and Δ loss are the 
difference in accuracy and loss between the best CNN and the average of each category. Both 
values quantify the advantage of the best and the average CNN of a given architecture type. 

CNN accuracy 
(average) 

loss 
(average) 

accuracy 
(best) loss (best) Δ accuracy Δ loss 

simple 0,764 
 (± 0,092) 

1,507  
(± 0,543) 0,848 0,788 -0,024 0,719 

mix 0,741  
(± 0,117) 

1,439 
(± 0,858) 0,873 0,764 -0,023 0,675 

pre-trained 0,893  
(± 0,029) 

0,467 
(± 0,080) 0,927 0,380 -0,034 0,087 
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CST. As for the pre-trained CNN, it classifies about 6% of the EXP simulations as CST 

(Figure 24 - A, B & C). 

 

Overall, the pre-trained CNNs seem to be more robust to model misspecification when 

trained on neutral and tested on sweep data and achieve the highest accuracy and lowest 

loss overall, as well as the single highest accuracy and lowest loss (Table 6). 

 

Figure 24 - Confusion matrices comparing the 3 CNN architectures regarding inferences on a test dataset using 
the other selection model. 

 
A), B) and C) are respectively the simple, mix and pre-trained CNN trained on neutral data and tested on sweep 
test datasets. D), E) and F) are the simple, mix and pre-trained CNN trained on sweep data and tested on neutral 
test datasets. 
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Train on sweep and test on neutral 

In the case of a model misspecification where the CNNs are trained on sweep datasets but 

tested on neutral datasets, the single best performing CNN both in regards to the accuracy 

or the loss is a simple k7 CNN using sorted-rawData and trained without data augmentation, 

scoring an accuracy of 0.9777 and a loss of 0.0735. The 8 simple CNNs achieve an average 

accuracy of 0.915 ± 0.0672 and an average loss of 0.2768 ± 0.1612. 

 

The best performing mix CNN is a mix CNN trained on sorted-rawData using data 

augmentation, with an accuracy of 0.975 and a loss of 0.106. However, the second best one 

is the same CNN but trained without data augmentation and it achieves an accuracy of 

0.974 and a loss of 0.108. The differences being small enough for them to be due to the 

random sampling of the test dataset, it seemed worthy to mention that data augmentation 

doesn’t seem to have a noticeable impact in this case. Together, the mix CNNs have an 

average accuracy of 0.9548 ± 0.0208 and an average loss of 0.2072 ± 0.1016. 

 

Regarding the pre-trained CNNs, we have once again two CNNs performance that are quite 

similar, with the only difference being the use or not of data augmentation during the training 

phase. The efficientNet architecture trained on sorted-rawData has the higher accuracy of 

0.957, and data augmentation only impacts the loss values : 0.115 without it, 0.147 with, 

thus making the former the best pre-trained CNN architecture. The average accuracy of all 

pre-trained CNNs is 0.945 ± 0.0109 and the average loss 0.185 ± 0.0424. 

 

Few mistakes are done on neutral data by the CNN trained on sweep datasets. The simple 

CNN classifies about 4% of EXP simulations as CST, the mix CNN classifies between 3.5 to 

4% of BTL and EXP simulations as CST and the pre-trained CNN classifies about 5% of BTL 

simulations as CST and 3.6% of EXP simulations as BTL (Figure 24 - D, E & F).  

 

Unexpectedly, the best CNN in this case of misspecification is a simple CNN. However, 

looking at the average performances, both mix and pre-trained architectures are overall 

better, with a slight advantage in terms of accuracy for the mix ones, and in terms of loss for 

the pre-trained (Table 7).  
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Comparison of the CNNs vs. ABC-RF approaches 

As presented in the Introduction, ABC-RFs have historically been a more commonly used 

method of deep learning compared to CNNs. While running enough simulations for ABC to 

be accurate used to be an issue, using Random Forest in conjunction with them has allowed 

to drastically reduce this number to a point where it has become a realistically usable tool to 

perform accurate inferences in populations genomics (Pudlo et al., 2016 - Raynal et al., 

2019). Even so, this method remains computationally heavy and in a lot of regards, quite 

similar to CNNs. A comparison between the two methods seems natural, and we chose to 

compare the best of our trained CNN against the ABC-RF. Tests have been run using the 

sumStats data of both neutral and sweep datasets. As explained in the Material & Methods 

section, as a way of reducing as much as possible the computation time needed to run 

ABC-RF, we tried to use extremely summarized summary statistics, labeled average 

(average-sumStats), where each of the 14 summary statistics is summarized even further 

into a single average value. 

 

The ABC-RF models trained directly on the sumStats datasets, referred to as ‘all bins’ 

display good results on neutral data, with 97% of the BTL and 100% of the CST simulations 

correctly classified, as well as up to 88.3% of the EXP simulations correctly classified. 

However, 11.7% of those EXP simulations are incorrectly classified as CST (Figure 25 - A). 
Using sweep datasets for the training and tests, CST and EXP classifications display similar 

results but up to 17.7% of BTL simulations are incorrectly classified as EXP, which reduces 

the overall accuracy to 0.879 (Figure 25 - B). The best pre-trained CNNs trained and tested 

on the same sumStats datasets have similar accuracy on neutral for the BTL and CST 
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Table 7 - Comparison of the accuracy and the loss of the best and the average CNNs of each 
architecture when trained on sweep and tested on neutral datasets. Δ accuracy and Δ loss are the 
difference in accuracy and loss between the best CNN and the average of each category. Both 
values quantify the advantage of the best and the average CNN of a given architecture type. 

CNN accuracy 
(average) 

loss 
(average) 

accuracy 
(best) loss (best) Δ accuracy Δ loss 

simple 0,915 
 (± 0,0672) 

0.2768  
(± 0,1612) 0,9777 0,0735 -0,0627 0,2033 

mix 0,955 
(± 0,0208) 

0.2072 
(± 0,1016) 0,975 0,106 -0,0202 0,1012 

pre-trained 0,945 
(± 0,0109) 

0,185 
(± 0,0424) 0,957 0,115 -0,012 0,07 
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simulations (98.1 vs. 97.0 on BTL, 95.5 vs. 100 on CST) and a higher accuracy (97.5 vs. 

88.3%) for the EXP classification compared to ABC-RF (Figure 25 - A & C). On sweep 

datasets, contrary to the ABC-RF, only a small fraction of BTL simulations (4.8%) are 

incorrectly classified as EXP and the mistakes on EXP simulations are split between 

incorrect classifications as CST (5%) and BTL (4.1%) rather than all of them being EXP 

classified as CST (Figure 25 - D). In terms of overall accuracy, the pre-trained CNNs 

outperformed the ABC-RF in both cases, with an accuracy of 0.970 vs. 0.950 on neutral and 

0.935 vs. 0.888 on sweep datasets. 

 

Using average-sumStats input data, the ABC-RF displays remarkably good results : on 

neutral data, 97% of the EXP simulations and more than 99% of both BTL and CST are 

correctly classified, for an overall accuracy of 0.985 (Figure 25 - E). While a slight decrease 

is observed for all classes when using sweep data (BTL 91.6%, CST 96.4%, EXP 94.3%), 

the overall accuracy remains quite high with a value of 0.944 (Figure 25 - F), outperforming 

the pre-trained CNNs on all but two classifications : the EXP simulations of the neutral 

dataset and  the BTL simulations of the sweep dataset. 
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Figure 25 - Confusion matrices comparing the ABC-RF and the best CNN architecture 
results. 

 
A) and B) are the results of ABC-RF run on the sumStats datasets, respectively on neutral 
and sweep. C) and D) are the results of the pre-trained CNNs run on the same sumStats, 
neutral and sweep dataset respectively. E) and F) are the results of ABC-RF run on 
average-sumStats, neutral and sweep datasets i.e. on datasets where each summary 
statistics computed along the genomes have been summarized to a single average value.  

Robustness to model misspecification 

We test the robustness of ABC-RF to model misspecification the same way we did for the 

CNNs architectures, by training models on neutral and performing classification on sweep 

datasets and reversely. We then compare the results of ABC-RF with the best scoring 

pre-trained CNNs using sumStats. 

 

The ABC-RF trained on neutral and tested on sweep datasets correctly classifies 77.5%, 

92.5% and 74.5% of the BTL, CST and EXP simulations respectively. 20.5% of the BTL 

simulations are mistakenly classified as EXP, and 24.9% of the EXP simulations are 

mistaken for CST. 5.7% of the CST are classified as BTL (Figure 26 - A). In comparison, the 

efficientNet CNN scores 81.3%, 82.0% and 91.9% of correct predictions on BTL, CST and 

EXP respectively. 16.6% of the BTL are wrongly classified as EXP but only 6.9% of EXP are 

classified as CST. While the same proportion of CST (5.8%) are classified as BTL, up to 

12.2% of them are also mistakenly classified as EXP by the CNN (Figure 26 - C). 

 

Both methods are then tested for the reverse situation : trained on sweep datasets, and 

tested on neutral datasets. The ABC-RF scores a perfect 100% of CST simulations 

classified as such, and BTL (10.8%) and EXP (12.6%) simulations are only incorrectly 

classified as CST but never as one another (Figure 26 - B). The CNN once again shows 

accuracies of 95.8%, 97.8% and 92.5% on BTL, CST and EXP scenarios. The CNN’s 

mistakes are mostly BTL and EXP scenarios classified as CST (4.1% for BTL, and 5.3% for 

EXP), and very few mistakes otherwise, with only 2.2% of the EXP scenarios classified as 

BTL (Figure 26 - D). 

 

In both cases, the efficientNet CNN slightly outperforms the ABC-RF in terms of overall 

accuracy (0.8506 vs. 0.8196 on neutral, 0.9537 vs. 0.9232 on sweep) . Finally, while the 

ABC-RF achieves near perfect classification of CST simulations, the CNN scores higher in 

all other classes with less mistakes overall. 
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Figure 26 - Confusion matrices comparing best CNNs vs. ABC-RF in case of model 
misspecification.  

 
A) results of ABC-RF trained on neutral and tested on sweep datasets. B) results of 
ABC-RF trained on sweep and tested on neutral datasets. C) results of pre-trained CNN 
trained on neutral and tested on sweep datasets. D) results of pre-trained CNN trained on 
sweep and tested on neutral datasets. 
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Effect of gene flow on CNN and ABC-RF predictions 

As a last stop in our study, we wanted to test the methods robustness to migration,  No 

migration was present in any of the datasets used until this point in our study. To do so, we 

use a separate set of migration-test datasets, composed of simulated genotypes sampled 

from populations following the 3 demographic scenarios and the two modes of selection, but 

with gene flow from population B to population A, at a rate of 1 migrant every 20 generations 

(4.Ne.m = 0.2, with m the migration rate). The classifiers are trained on non-migration 

datasets, and their performances are then evaluated on the migration-test datasets, in order 

to highlight the effect of the presence of an unexpected gene flow. 

 

First, we compare the influence of gene flow on the accuracy of the CNN architectures. To 

quantify the loss in accuracy caused by un-specified gene flow, we compared the accuracy 

of the best scoring CNNs on the migration datasets with their accuracy when tested on 

datasets without gene flow (Table 8). To do so, we compute Δ accuracy as the difference in 

accuracy between CNNs trained and tested on datasets without migration vs. the accuracy 

of the same CNNs tested on migration-test datasets. A negative value of Δ accuracy 

indicates a decrease in accuracy caused by the migration. 

 

The best CNN of each architecture is chosen based on the highest accuracy and lowest loss 

obtained on the migration-test dataset. On neutral data, the best architecture is once again a 

pre-trained one, an efficientNet working here on sumStats and trained using data 

augmentation, achieving an accuracy of 0.887 and a loss of 0.3537 on the neutral 

migration-test dataset ; a decrease in accuracy of about 0.1 and an increase of 0.27 points in 

loss compared to its results on non-migration test data, but the simple CNN using sumStats 

data and trained without data augmentation shows very similar results with an accuracy of 

0.8857 and a loss of 0.3168. Both the simple and mix architectures see a decrease in 

accuracy of the same order (between 0.08 and 0.1) but a relatively smaller increase in loss 

(between 0.16 and 0.175) compared to the pre-trained one. 

 

On sweep migration-test datasets, the best architecture is the mix k9 using rawData and 

trained without using data augmentation, with an accuracy of 0.914 but a loss of 0.5879. Due 

to this high loss value, an argument could be made to consider the pre-trained resNet 

architecture, using rawData and trained without using data augmentation as the actual best 

CNN here, with very similar accuracy of 0.9063 but a considerably lower loss of 0.2749. The 

simple CNN display a lower accuracy of 0.8857 and an intermediate loss of 0.371. This time, 

when compared to their results on non-migration datasets, both the simple and pre-trained 
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CNN display a decrease in accuracy quite similar at around 0.05~0.06, with an increase in 

loss of only 0.13 for the pre-trained vs. 0.22 for the simple CNN. The mix architecture shows 

the higher increase in loss at + 0.346, but no variation at all in its accuracy. 

 

Table 8 - Comparison of the influence of gene flow on the accuracy of CNNs architectures. Δ accuracy is computed 
as the difference in the accuracy between each type of CNNs tested on datasets without and with migration. A 
negative value of Δ accuracy indicates a decrease in accuracy. A positive value of  Δ loss indicates an increase in 
the loss value. In bold are indicated the best scoring CNN on each dataset. 
Selection 

Model Migration CNN Input Data Model Data 
augmentation accuracy loss Δ 

accuracy Δ loss 

neutral 

No 
simple sumStats k3 No 0.9657 0.1422 - - 

mix sorted-rawData k7 Yes 0.909 0.2464 - - 
pre-trained sumStats efficientNet Yes 0.978 0.0836 - - 

Yes 
simple sumStats k3 No 0.8857 0.3168 - 0.08 + 0.1746 

mix sorted-rawData k7 Yes 0.8117 0.4057 - 0.0973 + 0.1593 
pre-trained sumStats efficientNet Yes 0.887 0.3537 - 0.091 + 0.2701 

sweep 

No 
simple sorted-rawData k9 No 0.9427 0.1537 - - 

mix rawData k9 No 0.914 0.2415 - - 
pre-trained rawData resNet No 0.952 0.1413 - - 

Yes 
simple sorted-rawData k9 No 0.8857 0.371 - 0.057 + 0.2173 

mix rawData k9 No 0.914 0.5879 0 + 0.3464 
pre-trained rawData resNet No 0.9063 0.2749 - 0.0457 + 0.1336 

 

Overall, gene flow seems to have minimal impact on the overall performance of the CNNs in 

terms of accuracy, despite increasing the associated loss values. Getting into the details of 

each scenario classification thanks to the confusion matrices (Figure 27 & Figure 28), two 

main effects can be observed. First, as before, classifications on the sweep dataset tend to 

generate mistakes where BTL simulations are classified as EXP, especially for the simple 

and mix architectures. Second, it appears that gene flow impacts the CNN classifications by 

making it so EXP simulations are mistakenly classified as CST. Indeed, across both datasets 

(neutral and sweep) and for all architectures, at least 10% of the EXP simulations are 

classified as CST; between 11 and 12.5% for simple CNN, between 13 and 16% for 

pre-trained CNN and up to 22 to 30% for the mix CNN. 
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Figure 27- Confusion matrices comparing the results of the 3 CNNs architectures for inferences on neutral datasets 
with and without migration. 

 
A), B) and C) are the results of simple, mix and pre-trained CNN on datasets without migration. D), E) and F) are the 
results of the same simple, mix and pre-trained CNN but tested on datasets with migration. 
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Figure 28 - Confusion matrices comparing the results of the 3 CNNs architectures for inferences on sweep datasets 
with and without migration. 

 
A), B) and C) are the results of simple, mix and pre-trained CNN on datasets without migration. D), E) and F) are the 
results of the same simple, mix and pre-trained CNN but tested on datasets with migration. 

 

We follow the same method to compare the influence of gene flow on the ABC-RF results. 

Models are trained on datasets without migration and tested on migration-test datasets. The 

impact on the accuracy is twice as important in the case of the ABC-RF trained on the 

neutral datasets, with a diminution of about 0.1 in accuracy due to the presence of gene flow, 

for a reduction of only 0.056 for the sweep ones (Table 9). These values are remarkably 

close to the ones impacting the CNN in the same circumstances, with a reduction of around 

0.08 to 0.1 for the neutral trained ones, and of 0.05~0.06 for the sweep. 
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Table 9 - Comparison of the influence of gene flow on the accuracy of ABC-RFs. Δ 
accuracy is computed as the difference in the accuracy between ABC-RF tested on 
datasets with and without migration. A negative value of Δ accuracy indicates a decrease 
in accuracy. 

Selection Model Migration accuracy Δ accuracy 

neutral No 0.9503 - 
Yes 0.8434 - 0.1069 

sweep No 0.8885 - 
Yes 0.8319 - 0.0566 

 

The same pattern is also found in the effect of migration on the classification of each 

scenario, with effects similar to those observed with the CNNs. Apart from the BTL scenarios 

classified as EXP for the sweep datasets, the noteworthy effect of gene flow on the 

classifications of ABC-RF is a consequent increase in the number of EXP simulations 

wrongly classified as CST, going from 13.8% to 30.8% on sweep and from 11.7% to 37.4% 

on neutral datasets (Figure 29).  
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Figure 29 - Confusion matrices comparing the ABC-RF results for inferences on migration 
data while being trained on simulations without it. 

 
A) results of ABC-RF trained and tested on neutral non-migration datasets. B) results of 
ABC-RF trained on neutral non-migration but tested on migration datasets. C) results of 
ABC-RF trained and tested on sweep non-migration datasets. D) results of ABC-RF 
trained on sweep non-migration but tested on migration datasets. 
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Discussion 
 

The goal of this study is to propose an insight into different issues that may arise when 

developing a classification method of demographic history for genomic data, powered by 

deep-learning and specifically convolutional neural networks. One main objective was to try 

out a panel of different approaches, focusing on some key aspects all revolving around the 

same idea : the choice of the best CNN architecture for the task at hand. To do so, we tested 

three different network architectures, two “homemade” ones (simple and mix) and what we 

called “pre-trained” (efficientNet and resNet) architectures. One of the major aspects of our 

comparisons are the issues arising regarding model misspecification, both in terms of 

demography and selection. In this section, we will go back into each step of our 

comparisons, provide potential explanations of the differences observed and propose what 

we consider to be good practices for the implementation of such tools. 

 

But before we dive into the discussion of our results, we want to take a few moments to 

discuss the type and origin of the possible mistakes of our classifiers. They can be explained 

in two ways: either (1) the mistakes are due to the demographic histories of the populations, 

meaning that the classifiers are not capable to differentiate the classes well enough, or (2) 

the mistakes are due to the effects of forces outside of the demographic events, in our case 

either selection or gene flow.  

 

 

Figure 30 - Representation of hypothetical populations. 
 
A) Population experiencing an expansion following a bottleneck. Our three demographic 
scenarios can each be seen as one part of the demographic history of such a population. 
B) Population experiencing an expansion. If the demographic event is old enough, the 
population might be considered as a population of constant size. C) Same as B), but this 
time the demographic change is an old bottleneck rather than an expansion.  
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For the first type of mistakes, we must consider how the parameters used for our simulations 

affect things, specifically the effective sizes of the populations of interest. To put things 

simply, our three scenarios can be seen as part of the demographic history of a hypothetical 

population (Figure 30  - A). From there, it is easy to understand that the impact of old and/or 

weak demographic changes might be hard to detect, leading to the incorrect classification of 

BTL or EXP simulations as CST (Figure 30 - B & C).  

 

The two major types of mistakes done by the all classifiers are BTL simulations incorrectly 

classified as EXP in presence of a selective sweep, and EXP simulations classified as CST 

in presence of gene flow. They are both mistakes due to either selection or migration, and it 

seems more coherent to cover them as we continue and they naturally arise into our 

discussion. 

All three types of CNNs correctly classify genomic data 

For classifications in the most optimal and easiest case i.e. CNN trained and tested on 

neutral datasets, all three architectures can score accuracies above 0.95 (Supplementary 
Table 4), with the pre-trained CNNs being the best ones. Indeed, 9 out of the 10 best 

architectures on neutral data are pre-trained CNNs. Together, they achieve an average 

accuracy of 0.980 and an average loss of 0.0719, followed by the simple CNNs (average 

accuracy = 0.835, average loss = 0.404) and the mix CNNs ranking last (average accuracy = 

0.787, average loss = 0.568). That means that pre-trained CNNs are between 15 to 20% 

more accurate and have a loss 5 to 8 times lower than the simple and mix CNNs. A similar 

pattern is observed for CNNs trained and tested on sweep datasets. This time, 8 out of the 

10 best architectures are pre-trained CNNs, with an average accuracy of 0.949 and an 

average loss of 0.150, where mix CNNs have an average accuracy of 0.832 and an average 

loss of 0.435 and simple CNNs of 0.780 and 0.576. The gap between pre-trained CNNs 

performance remains about the same in terms of accuracy, with an advantage of about 15 to 

20%, and a loss 2.5 to 3.5 times lower. While the best pre-trained CNNs display a slightly 

lower amount of mistakes than the other architectures on the sweep datasets, the only case 

where they seem to have a clear advantage is on the classification of BTL scenarios which 

are often wrongly classified as EXP by the simple and mix CNNs. This can be easily 

explained by the confounding effect of selective sweeps and the demographic histories of 

our EXP simulations. As already explained before, selective sweeps and expansions 

following a bottleneck (which is what our EXP scenarios can be seen as - Figure 30 - A) can 

leave very similar effects on the genomes (Pavlidis et al., 2008). Thus, as the simple and mix 
architectures are quite simple, it might be possible that the models are not complex enough 
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to learn, from the type of data provided, the necessary patterns to always differentiate the 

effects of a selective sweep from those of an expansion. Despite their relatively worse 

results, both simple and mix architectures still display good accuracies, well above the 

expected 0,333… of a random guess, and could be used as substitutes to the pre-trained 

architectures if needed, for example in a study focusing on neural network interpretability 

where simpler networks might easier to work with (see Räz, 2024 for an interesting 

introduction to interpretability in ML). 

CNNs performed best when trained using (sorted) raw 
genetic alignments  

As explained in the Introduction, in population genomics it is common practice to use 

summary statistics to highlight a specific aspect of a genomic sequence. However, these 

statistics have certain disadvantages. They can be influenced by the confounding effects of 

other processes than the one they have been developed for. To recall the same example, a 

summary statistic such as Tajima’s D which has been developed to detect departure from 

neutrality (Tajima, 1989) will be impacted by both selection mechanisms and demographic 

events. The statistic will be positive in presence of an excess of high-frequency mutations 

which could be either the sign of a population contraction or of a process of balancing 

selection. Moreover, since they summarize information, these summary statistics may miss 

some of the information present in genomes. Thus, two methods are commonly used to 

circumvent these issues. The first one is to use a large number of summary statistics at the 

same time, each of which focusing on a specific aspect of the information contained in the 

alignments. Another possibility is to use the alignments directly, without calculating summary 

statistics. In both cases, it was possible here to represent the data directly in the form of 

matrices, used as input data for the CNNs. 

 

The choice of the representation of the input data is one of the most important aspects of 

any machine learning approach (Mughal & DeGiorgio, 2019). Thus, each architecture was 

trained then tested on different types of input data : matrices of raw (rawData) or sorted 

(sorted-rawData) genotype alignments, or matrices of a combination of summary statistics 

(sumStats). These choices are based of previous studies where such sets of summary 

statistics have been used as inputs with similar CNN approaches (Schrider & Kern, 2016; 

Caldas, Clark & Messer, 2022), while others have tried to directly use raw alignments with 

SNP encoded as black and white pixels (Flagel et al., 2019; Hamid et al., 2023). However, to 
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our knowledge, this study is the first one to directly compare these different methods of 

representation of input data against each other on a given task. 

 

One could expect the summary statistics to highlight information within the alignments and 

thus, to reduce noise in the data, making it that much easier for the neural networks to 

extract the most important features. However, rawData and more specifically sorted-rawData 

appears to be the input data type achieving the best results in most cases, with only the 

simple CNN working on neutral data achieving better performance using sumStats than its 

rawData counterpart. As for the pre-trained CNNs, while already obtaining higher accuracies 

and lower losses scores than the two other architectures, even on sumStats data, they 

performed even better on rawData. One explanation could be that, due to their more intricate 

architecture, such CNNs are able to better leverage all the information contained in the raw 

alignments. This is, in itself, another notable difference in regards to the cases of use of 

each of those architectures. If for whatever reason, summary statistics can’t be computed 

and raw alignments must be used as is, pre-trained CNN architectures could be a better tool 

to use. Moreso, if possible, the small step of sorting the genomic alignments appears to be 

beneficial and should, in most cases, be easy enough to implement into an analysis pipeline. 

CNNs trained on genomic data containing patterns of 
selection display advantages over CNNs trained on neutral 
data 

Overall, all of the three tested CNNs architectures showed great robustness to model 

misspecification, with the biggest decrease in accuracy being of only - 0.114 . Few mistakes 

are done here and are the expected ones: CNNs trained on neutral data mistakenly sweep 

simulations as EXP. Indeed, models trained on neutral data are slightly less accurate on 

sweep data, which is to be expected, as sweep data contains patterns of selection that could 

resemble that of demography. As those models never learn to recognize such patterns, a 

decrease in accuracy is to be expected. As for models trained on sweep data and tested on 

neutral data, one could also expect a decrease in accuracy. Few errors are made, with the 

most common ones being confusions between CST and any of the other two scenario, which 

are to be expected as the CST scenario is a ‘middleground’ scenario and cases are bound to 

happen when demographic and/or selection events are old enough or were so soft that most 

if not all of their signals are gone by the time the population is sampled. However, it appears 

that simple and mix CNN trained on sweep data but used to make inferences on neutral 

datasets outperformed their “correctly specified” counterparts. An explanation could be that, 
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due to the important range for the parameters used for the simulations of the sweep 

datasets, some sweep simulations are bound to display old and degraded signals of 

selection. In such cases, one could argue that those sweep simulations are virtually 

indiscernible from an equivalent neutral simulation. Thus, it is possible that sweep trained 

CNNs managed to learn not only to differentiate demographic scenarios in presence of 

selective sweeps, but also in absence of it. As sweep datasets are more difficult to classify, 

due to the confounding effects of selection and demography, it appears coherent that CNNs 

trained only on the more “easy” neutral dataset struggle when working on sweep data, while 

CNNs trained on the more “difficult” sweep dataset manage to be more generalists, as they 

could have also learn to classify genomic alignments with no “visible” signal of natural 

selection. 

 

Unexpectedly, the overall best CNN architecture in this case of model misspecification is the 

simple k7 CNN architecture, trained on sorted-rawData, followed by the mix CNN and finally 

the pre-trained CNN. Even though we do not currently have any proper explanation as to 

how and why such a simple architecture managed to outperformed the more intricate 

pre-trained CNNs (it might just be due to the random nature of neural network training, but 

this explanation does not sit right in our minds), another interesting result should be noted: 

the worst performing CNN in case of selection model misspecification is the simple k7 CNN 

train on rawData. This shows the utmost importance of the choice of representation of the 

input data. 

CNNs slightly outperform ABC-RF when using matrices of 
summary statistics as input data 

ABC-RF trained on sumStats datasets showed overall results slightly inferior to those of the 

pre-trained CNN. Noticeably, on both neutral and sweep datasets, they generate 2 to 3 times 

more incorrect classifications than the CNN, with up to 13,8 % of EXP scenarios mistaken 

for CST. They also seem to have more issues with dealing with the effect of selective 

sweeps, with up to 17,7 % of the BTL simulations classified as EXP, 3 to 4 times more than 

the 4,8 % of the CNN. Both of these errors are the same as the ones observed before with 

the simple and mix CNN architectures and thus, it appears that the ABC-RF approach 

remains closer to those more simple architectures rather than to the pre-trained CNNs. 

 

Regarding model misspecification, the results indicate that both ABC-RF and the efficientNet 

CNN are robust to model misspecification, though the CNN demonstrated a slight edge in 
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overall accuracy and consistency. The same behavior as with the CNNs in case of 

misspecification is observed with ABC-RFs: models trained on neutral data struggle on 

sweep data and lose some accuracy, while models trained on sweep datasets tends to be 

highly robust to model misspecification and even display a slight increase in accuracy in 

some cases (BTL classification going from 0.955 to 0.96, CST classification going from 

0.953 to 0.975) when used on neutral datasets. The same explanation should hold here too: 

sweep datasets most likely contain enough neutral-like simulations for the models to learn to 

classify the input data in presence and absence of actual selection signal. 

 

Finally, as a simple test to reduce the computational cost of the ABC-RF, we tried to run 

ABC-RF on average-sumStats: “extremely summarized summary statistics”. ABC-RF trained 

using this approach outperformed pre-trained CNN working on sumStats, by 0.006 points of 

accuracy on neutral data, and 0.006 points on sweep data. Such a small difference does not 

seem like much, but the ABC-RF managed to reach this accuracy while working on only 14 

variables against the thousands of parameters used by the CNNs. 

 

The strong performance of this strategy may be attributed to its inherent simplicity: 

demographic events tend to exert effects at a genome-wide scale. By averaging the 

summary statistics across the genome, the noise and local effects of processes like 

selection are effectively smoothed out, leaving the more global demographic signals intact. 

As a result, classifying the samples based on their demographic history may be more 

straightforward using this type of input. While not being a proper comparison to the CNN, 

this is once more an indication of the huge effect that a change of the representation of data 

used as input can have on machine-learning approaches. 

The homogenizing effects of Gene Flow lead to more 
common misclassification of simulations as CST  

Gene flow significantly impacts species evolutionary trajectories and thus demographic 

inferences. It can lead to overestimates of population sizes, as it works as a force that 

counteracts the differentiation caused by genetic drift, mutation, and local adaptation. 

CNN architectures, particularly pre-trained models, maintained a high level of overall 

accuracy with only a slight drop in performance. For instance, when tested on neutral 

datasets with migration, the pre-trained efficientNet achieved an accuracy of 0.887 and a 

loss of 0.3537, showing only a 0.1 decrease in accuracy and a 0.27-point increase in loss 

compared to the results on non-migration datasets, and similar results are observed on 
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sweep datasets. Thus, gene flow seems to have minimal impact on the overall performance 

of the CNNs in terms of accuracy, despite increasing the associated loss values. However, 

the confusion matrices revealed specific biases in the classification outcomes. Gene flow 

consistently led to higher misclassification rates where EXP simulations are categorized as 

CST across both neutral and sweep datasets. This trend was observed in all CNN 

architectures, but the mix architecture was particularly impacted, with up to 22-30% of this 

type of mistake.  

The analysis of gene flow's impact on ABC-RF results reveals a consistent pattern with the 

effects observed in CNNs, with, however, a more notable decline in accuracy when models 

trained on non-migration datasets are tested on migration datasets. For the ABC-RF trained 

on neutral datasets, gene flow causes a substantial reduction in accuracy by approximately 

0.107, while for sweep-trained models, the decrease is smaller at around 0.057. These 

results are comparable to those seen in CNNs, where the accuracy drop ranges from 0.08 to 

0.1 for neutral-trained models and from 0.05 to 0.06 for sweep-trained ones. In more details, 

gene flow leads to an increase in the misclassification of EXP simulations as CST across 

both datasets. The proportion of EXP scenarios misclassified as CST nearly doubled, from 

13.8% to 30.8% in sweep datasets and from 11.7% to 37.4% in neutral datasets. This 

suggests once again that the homogenizing effect of gene flow disrupts the signals left by 

demographic events, making it difficult also for ABC-RF to differentiate between EXP 

populations and those with a constant size. 

Indeed, gene flow can result in the appearance of larger effective population sizes due to the 

influx of "CST-like" migrants from the ghost-sister population, which blurred the distinction 

between the CST and the other scenarios. This homogenizing effect appears to make it 

difficult for the models to detect the distinct patterns typically associated with EXP 

population, leading to this bias in classification. 

Conclusion 

In this study, we explored the effectiveness of convolutional neural networks (CNNs) and 

Approximate Bayesian Computation Random Forest (ABC-RF) in classifying demographic 

histories from genomic data. Our comparative approach, evaluating different CNN 

architectures and input data representations, provided insights into the strengths and 

limitations of such models in population genomics. By testing a range of CNN architecture 

types (simple, mix, and pre-trained CNNs), we highlighted the importance of architecture 

choice, data representation, and model training for achieving good results at this 

classification task. Additionally, we assessed the impact of factors like model 
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misspecification and gene flow on classification accuracy, further elucidating how different 

evolutionary processes can influence the performance of machine learning models. Our 

results indicate that pre-trained CNNs consistently outperform simpler architectures. Their 

superior accuracy across different scenarios suggests that these more sophisticated models 

can better capture complex patterns in the data. However, the simple and mix CNNs still 

achieve satisfactory performance, especially when trained on sweep data. This implies that 

even simpler models can be effective and provide a valuable trade-off between model 

performance and complexity and interpretability. The choice of data representation plays a 

crucial role, as seen with the numerous instances where a simple change in type of data 

input heavily impacts the models accuracy. Specifically, it appears that using sorted raw 

alignments over summary statistics improved the accuracy of the CNN models. Model 

misspecification analyses revealed that CNNs trained on sweep datasets exhibited better 

generalization capabilities compared to those trained on neutral data. This likely reflects the 

ability of sweep-trained models to learn a broader range of signals, encompassing both 

selection and neutral demographic patterns. The robustness observed in both CNNs and 

ABC-RF in the face of model misspecification further highlights the potential of these 

approaches for demographic inference, despite the increased misclassification rates, 

especially when distinguishing between expansion and constant-size populations observed 

in presence of gene flow. 

 

Overall, fine-tuned pre-trained CNNs, particularly efficientNet architectures, prove to be the 

most efficient approaches for this classification task. They consistently outperformed the 

other architectures in most comparisons and worked well whether used on raw alignments or 

summary statistics matrices. Moreover, they are robust to model misspecification and 

maintain high performance even in cases where gene flow was not explicitly accounted for in 

the training data. They also outperformed the widely used ABC-RF method in all but the 

most straightforward and ideal cases. Their performances, availability as well as ease of use 

increasing gradually with the passing years might make their use slowly outshines the 

currently more popular methods or more homemade CNN architectures.  

 

To conclude this first part, we want to propose a short summary of the key elements 

highlighted by this work: 

 

1) Even very simple CNNs architectures, the likes of the simple and mix CNNs 

presented in this study, show very good results in the classification of genomic data 

according to demographic scenarios. The best ones are the pre-trained architectures. 
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They are easily available online, but are more complex architectures and often less 

interpretable compared to more homemade ones. 

 

2) Between the three tested types of representation for our input data, the 

sorted-rawData outperformed the simple ‘non-sorted-rawData’ as well as the 

sumStats. Given how small of a step this sorting the alignments is, and that it seems 

to really enhance the models performances, we are convinced that it really is a 

worthy extra step to incorporate into any pre-processing of genomic alignments with 

similar goals as this study. 

 

3) Classifiers trained only on neutral data are bound to display a decrease in accuracy 

when used on data impacted by selection. However, if CNNs trained on sweep 

datasets show remarkable resistance to model misspecification and sometimes even 

perform better on data not impacted by selection. In other words, making sure that 

the training datasets contain as much variability as possible plays a major role in the 

generalization capabilities of the networks.  

 

4) CNNs results are on par or better than those of ABC-RF when using the same type 

of data input, and both methods react the same to model-misspecification. The same 

can be said about the effect of gene flow: both methods display a decrease in 

accuracy for the specific classification of EXP scenarios, but are otherwise quite 

robust to the presence of migration. 

 

These four aspects are at the core of this study, but one stands out above the rest: the 

significance of choosing the right data representation. In case of selection model 

misspecification, the best CNN is not a pre-trained but a simple one, using sorted-rawData 

while the worst CNN is actually the exact same architecture with the only difference between 

them being the use of rawData instead. A similar pattern occurs with the ABC-RF method, 

where employing the average-sumStats representation allows it to surpass the pre-trained 

CNNs. In both instances, altering the way the data is represented significantly affects the 

classifiers' performance. This observation is, in our view, the most critical takeaway - while 

the other points discussed are important, one of the most important decisions when 

developing this kind of deep-learning approach for population genomics lies in the choice of 

a specific way to represent the data and understanding the far-reaching consequences of 

that choice. 
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We like to think that this kind of result could help push forward the use of deep learning in 

population genetics. Efforts have been made during the last years to make deep-learning 

approaches as user-friendly as possible for researchers with various backgrounds in 

population genetics. Specifically, some work has been done to propose clear and well 

documented workflows (Whitehouse & Schrider, 2022) and pre-trained architecture 

specifically catered to population genetics have started to emerge (Hamid et al., 2023). 

However, one of the remaining issues that clouds the use of deep-learning is the 

interpretability of such tools. For the time being, most of them are akin to a black-box and we 

lack a clear understanding of the inner workings of their decision process, an understanding 

that could lead population geneticists to better grasps or even uncover new and complex 

evolutionary mechanisms or processes (Korfmann et al., 2023). That is why, we hope that 

the results presented in the first chapter of the thesis could help to highlight two main points 

– first, more and more efforts are made to make them as accessible as established tools for 

demographic inference, and pre-trained architectures are both easy to implement and boast 

great results. Second, while we believe that pre-trained architectures are likely to become 

the standard in the coming years, the most critical factor may not be the aspects often 

highlighted in some AI discussions – such as the ever growing number of parameters or the 

increasing complexity of networks – but rather the thoughtful choices and decisions made 

regarding the specific datasets and types of data employed. 

85 



 

Chapter II 
Detection and localization of selective 

sweeps using Convolutional Neural 
Networks 

Introduction 
 
In the previous chapter, we focused on the training of various CNNs for the classification of 

genomic alignments according to demographic scenarios. Doing so, we had to generate 

pseudo-genomic data in order to train and test the networks, and we have highlighted the 

importance of model architecture and data representation. In this next section, our focus will 

shift to the detection of selective sweeps. Given the promising results of CNNs in 

demographic classification, we wanted to explore their capabilities in recognizing the specific 

patterns associated with selective sweeps. By developing methodologies aimed specifically 

at the identification and localization of selective sweeps associated with populations of 

various demographic histories, we aim to further illustrate the applicability of deep learning in 

uncovering complex evolutionary signals within genomic data. 

 

As stated in the Introduction of this thesis, a central goal of evolutionary research is to 

leverage genetic data to unravel the forces shaping genetic diversity and trace the natural 

history of populations. Both natural selection and demographic events leave distinctive 

patterns on genetic variation which can be used to make these inferences. Selection can 

influence allele frequencies in various ways: positive directional selection will increase the 

frequency of the selected allele, but also affect the neutral regions linked to it, and generate 

the “valley of diversity” around the selected loci (Smith & Haigh, 1974) characteristics of a 

selective sweep, whereas balancing selection will tend to increase polymorphism at linked 

loci (Smith & Haigh, 1974). Similarly, demographic events like population size changes or 

gene flow can significantly shape patterns of genetic diversity, leaving distinctive signatures 

in the genome (Pespeni et al., 2011). Deciphering these patterns provides valuable insights 

into a population's evolutionary history and the recent advances in DNA sequencing 

technologies have led to the rapid growth of available genomic data, leading to a drastic 

increase in its availability. 
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As a result, more powerful methods and tools have been developed to investigate the 

signatures of evolutionary processes. One such example is the detection and identification of 

recent positive selection, with more and more studies proposing ways to detect the 

molecular target of such positive selection i.e. to search for patterns associated with 

selective sweeps (Tajima 1989; Nielsen et al. 2005; Boitard et al., 2009 & 2012; Pavlidis et 

al. 2010; Chen et al., 2010 - Wollstein & Stephan, 2015 for a recent review). Such methods 

search for the genetic signature of selective sweep already discussed multiple times in this 

thesis: following the rapid fixation of a beneficial allele, a “valley of diversity” is created at, 

and around the selected loci (Smith and Haigh, 1974). Such mechanism also tends to 

produce an excess of low and high frequency derived alleles and, while linkage 

disequilibrium is not affected across the flanks of the valley, it is increased on either side of 

the selective sweep (Kim & Nielsen, 2004). However, by moving away from the target of 

selection, polymorphism is recovered by the effect of recombination that breaks apart neutral 

variants linked together by the sweep (Smith & Haigh, 1974). 

 

From there, four main methods have been developed for the detection of selective sweeps 

(Koropoulis et al., 2020) : (1) detection based on the reduction in genetic diversity, largely 

used in the study of the model species D. melanogaster, D.simulans and D. ananassae 

(Aguade & Langley, 1989 & 1994; Begun & Aquadro, 1991, Miyashita, 1990) for example, 

(2) detection of selective sweeps based on the SFS signature i.e. the shift of the SFS toward 

high and low frequency derived variants (Fay & Wu, 2000; Kim & Stephan, 2002), (3) 

detection of selective sweeps based on the signature of linkage-disequilibrium (Kim & 

Nielsen, 2004) i.e. the increase levels of LD on each side of the selected loci  and (4) 

detection of selective sweeps using machine learning methods. Regardless of the method, 

tools used to detect signatures of selection on the genomes usually work through two 

possible approaches : using summary statistics, or detecting sweeps from whole genome 

data.  

 

Historically, the use of summary statistics is the first approach proposed to fill the need of 

analytical tools to study genetic diversity, with various statistics developed through the years 

(Watterson's θ estimator, Watterson, 1975; Tajima's pi or Tajima’s D, Tajima, 1989; etc.). 

Such statistics are used to perform neutrality tests by comparing their values to expected 

values under neutrality. However, as each statistic is usually catered to highlight only one 

specific aspect of the information found in a genome alignment, another approach has been 

proposed : using large number of such summary statistics at once to maximize the amount 

of retrieved information (Lin et al. 2011; Schrider and Kern 2016; Sheehan and Song 2016). 
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Thus, the focus shifts from trying to interpret the individual values of each statistic to trying to 

make sense of the overall patterns observed across the set of chosen statistics. On the other 

hand, detection of selective sweeps using whole genomes has been made possible thanks 

to the advent of next generation sequencing (NGS). Some of those methods, such as 

SweepFinder (Nielsen et al., 2005), SweepFinder2 (DeGiorgio et al., 2016) as well as 

SweeD (Pavlidis et al., 2013) works using CLR (Composite Likelihood Ratio) tests while 

other, such as OmegaPlus (Alachiotis et al., 2012), are built using the ω-statistic (Kim & 

Nielsen, 2004) and search specific patterns of LD. 

 

However, demographic history complicates the interpretation of these tests, as population 

events like bottlenecks can mimic the genetic signatures of selective sweeps (Koropoulis et 

al., 2020). For instance, a bottleneck reduces effective population size, causing a rapid 

coalescence of lineages and producing genealogies that resemble those shaped by positive 

selection (Figure 31).  

 

 

Figure 31 - Various bottleneck configurations can result in genealogies similar to selective 
sweep ones.  

 
Selective sweep genealogy presents very short coalescent trees within the region of the 
beneficial mutation, and trees with long internal branches as we move away from it. 
Bottleneck ones may present very long internal branches too as long as the ancestral 
population size is large. (Figure from Koropoulis et al., 2020) 
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Most current approaches do not account for such confounding effects and often struggle to 

disentangle the overlapping signals of demography and selection (Pavlidis et al., 2008). That 

is why some precautions should be taken regarding the assumptions about the demographic 

history of the data use. However, a new method for the detection of selective sweeps has 

started to grab some more attention : machine learning methods. 

 

In recent years, machine learning has emerged as a promising approach to overcoming 

these challenges in population genetics, thanks to its capacity to learn complex patterns 

from large datasets. First applied by Pavlidis et al. (2010), machine learning methods, 

particularly supervised approaches, have gained traction for detecting selective sweeps. 

Notable tools, like S/HIC (Schrider & Kern, 2016) and diploS/HIC (Kern & Schrider, 2018) 

use machine learning to distinguish between different types of sweeps and neutral regions, 

while other recent approaches employ deep learning to detect post-admixture adaptation 

(Hamid et al., 2023) or infer selective sweep parameters (Caldas et al., 2022).  

 

In this study, we focus on one such method. More specifically, we propose to observe the 

possibilities of using convolutional neural networks (CNNs) to perform an object detection 

task: the detection and localisation of selective sweeps within genomes sampled from 

populations simulated under six different demographic histories. To do so, we fine tune a 

pre-trained CNN architecture – a FasterRCNN model (Ren et al., 2016) with a 

ResNet-50-FPN backbone – explore various parameters and made comparisons of the 

different possible choices during the training phase : (1) the choice of the type of data to use 

for the training and to run the inferences for the CNNs, i.e. the alternative choice between 

using a set of summary statistics or running inferences using raw genomic alignments, (2) 

the impact of the demographic scenario under which the training data has been simulated, 

(3) the impact of data augmentation during the training phase and (4) the number of 

backbone layers retrained. We then compare the results of the best version of our CNN 

against the results obtained using SweepFinder2 (SF2), focusing on 3 main points : (1) the 

number of False Positive (FP) i.e. sweeps detected where no sweep is present, (2) the 

number of True Positive (TP) i.e. sweeps present in the dataset that are actually detected 

and (3) the distance between the predicted position and the actual position of the beneficial 

mutation.  

 

The best versions of our trained CNNs end up being the ones trained using objDet summary 

statistics (more on this in Materials and Methods) as input data. Overall, models trained on 

BTL (bottleneck) simulations outperform the other, but also present the highest variation in 
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terms of performance. Compared to SF2, while generating more false positives, the CNNs 

also detect more targets and predict positions that are significantly closer to the actual 

position of the beneficial mutation. 
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Materials and Methods 
 
The same datasets generated for Chapter 1 are used here too. The only extra steps are the 

generation of labels files containing the bounding boxes coordinates of the selective sweep, 

as well as the use of an alternative way of representing the summary statistics data. Indeed, 

in an effort to provide the CNN input data in the most efficient format, we tried a slight 

variation of the basic ‘sumStats’ format. Instead of normalizing the statistics values of each 

simulation across the entire dataset, values are only normalized using the values within the 

same simulation i.e. with the min and max values of the sweep and neutral runs of this 

specific simulation. This way, the intra-genome variance is maximized which should, 

hopefully, help to highlight the sweep signature. This new representation of the summary 

statistics data is referred to as objDet. 

Detection of selective sweeps using Convolutional Neural 
Networks 

Object Detection Model and Training 

In this study, we use the PyTorch implementation of a FasterRCNN model (Ren et al., 2016) 

with a ResNet-50-FPN backbone, a resNet making use of a feature pyramid network (Lin et 

al., 2017), known to provide better results for object detection, with about 25.6 M 

parameters. The CNN is pre-trained on the COCO dataset (Lin et al., 2014), a large-scale 

dataset of over 330 000 pictures of common objects in real life environments, widely used in 

computer vision research for tasks such as object detection, segmentation, and image 

captioning. In order for it to be able to localize and detect selective sweeps in genomes, a 

new training phase on this specific task is necessary. We chose to explore multiple 

possibilities for this training and four main parameters vary between different versions of our 

trained CNNs : (1) the type of data use as input (sorted-rawData, sumStats or objDet data), 

(2) the demographic scenario of the simulations used for training (BTL, CST or EXP), (3) the 

use or not of data augmentation, i.e. slight alterations of the training data on the fly during 

the training to virtually increase the variability of training examples and (4) the number of 

backbone layers retrained (4 or 5) i.e. how deep the training should impact the already 

trained layers of the model, for a total of 32 different versions. Each model is trained for 150 

epochs - one epoch consisting of going through all the training examples one time - with 

batches of size 8. We use an initial learning rate of 1 x 10-4 and a weight decay of 1 x 10-3. A 
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detailed breakdown of all the parameters used for the training of these CNNs is available in 

Supplementary Table 7. 

Targets, bounding boxes and prediction score 

For the simulation containing selective sweeps, matching labels files are generated with the 

coordinates of the bounding boxes (bbox) of the spawn of the selective sweep. We defined 

those bbox as the range, in each direction, starting from the position of the beneficial 

mutation all the way until the observed genetic diversity gets back to an expected diversity 

equals to the average diversity observed in the corresponding “twin simulation” evolving 

under neutrality i.e. the neutral simulation launched with the same prior parameters. 

Bounding box coordinates are first expressed as [class, x_center, y_center, width, height] 

(Figure 32), with the coordinates expressed as normalized values between 0 and 1. Due to 

the varying sizes of the different types of input data, specific label files are generated for 

each type of input data. The ‘class’ value in our case is consistent with a value of 1 across all 

label files as every object to detect is a selective sweep. From there, for a given input data, 

the desired output of our CNN is a vector containing the corresponding class value (always 1 

for us), the predicted bbox coordinates together with an associated prediction score. This 

score indicates the network’s own confidence in this particular prediction, but it is in no 

means a probability of the prediction to be correct but rather a self-evaluation of the network.
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Figure 32 - Representation of the different parameters of a bounding box on an example sumStats matrix. 
 
Bounding boxes (in red) are defined based on their width, their height (both in green) and the x and y coordinates of 
their center (in blue). These four values are first expressed in pixels and then normalized by the total matrix width and 
height to be between 0 and 1. Hence, the height of all bounding boxes is equal to the number of rows of the matrix 
(14 for sumStats and objDet, 40 for rawData) and the y-center coordinate is also constant (7 for sumStats and 
objDet, 20 for rawData). 

Evaluating model performance : Correct and False Predictions, 
Bounding Boxes Position, IoU, Precision and Recall, Average 
Precision 

In order to consider a prediction as ‘correct’, different methods can be used. One way is to 

simply consider a prediction correct if the prediction is done on an input data where a 

selective sweep is present (in that case, we are more interested in detection rather than 

localization). If localization is the focus, one can check the distance between the center of 

the predicted bbox and the actual position of the beneficial mutation and consider a 

prediction correct if it is within a certain range of the actual target. Another more commonly 

used way to determine if a prediction is correct in computer vision is through the computation 

of IoU, Intersection over Union. IoU is defined as the ratio of the area of overlap (between 

the predicted and the ground-truth bbox of the target) and the area of union (area that 

encompassed both the predicted and the ground-truth bbox). 
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An IoU score above 0.5 is usually considered as a “correct” prediction, as it means that more 

than half of the predicted bbox overlaps with the ground-truth bbox, but higher scores can be 

used if an emphasis is put on an accurate localization of the target (Ren et al., 2016 used an 

IoU threshold at 0.7 with the FasterRCNN for example). From there, predictions can be 

classified as Positive (correct prediction) or Negative (false prediction) and we can compute 

two metrics to evaluate our models’ performances : Precision and Recall. Precision is 

defined as the proportion of predictions that are actually correct, while recall is the proportion 

of targets that have been found by the model. The former is more used to get a sense of 

how correct are the predictions made, when the latter focus more on the ability of the model 

to find the targets. Formally : 

 

    𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  𝑇𝑃𝑁𝑏 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠 𝑅𝑒𝑐𝑎𝑙𝑙 =  𝑇𝑃𝑁𝑏 𝑇𝑎𝑟𝑔𝑒𝑡𝑠
 

Precision and recall are then used to compute Average Precision (AP), an additional metric 

used to evaluate a model performance as it gives a measure of a model’s ability to balance 

between correctly identifying targets while minimizing false positives. To compute AP, the 

Precision-Recall (PR) curve is needed. This curve plots precision against recall for different 

thresholds and allows one to visualize how a model’s precision reacts to different values of 

recall. Formally, AP is defined as the Area Under the Precision-Recall Curve (Figure 33) : 

, 𝐴𝑃 =  0
1∫ 𝑝(𝑟)𝑑(𝑟)

with p the precision and r the recall. 
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Figure 33 - Example of a Precision-Recall curve. 
 

The blue line corresponds to the evolution of Precision-Recall values i.e. the precision of 
the model for a specific value of recall. The blue area is the AUC (Area Under the Curve), 
in other words the Average Precision.  

 

In this study, we use AP as the main method to evaluate a CNN model’s performance. We 

first compare the ‘overall AP value’ (i.e. in regards to the 3 basic demographic scenarios) 

depending on the type of input data used : sorted-rawData, sumStats or objDet. The same 

comparison is done in regards to the demographic scenario used to train the CNNs, to the 

number of backbone layers retrained and finally in regards to the use of data augmentation. 

Finally, we also compute AP values independently for test data of each of the 3 demographic 

scenarios, in order to get 4 different APs : an “overall AP”, an “AP on CST”, “AP on BTL” and 

“AP on EXP”. Doing so the different versions of the CNN can be ranked either by “overall 

AP” or by AP regarding predictions on a specific demographic scenario. 
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Comparison of CNN versions 

Using the Average Precision, it is possible to evaluate the performance of each trained CNN 

to get an idea of the impact of the various decisions made during the training phase. We 

begin by a comparison of the general AP of all CNNs either on specific demographic 

scenarios, or in the entirety of the test datasets. Then, we focus on the four aforementioned 

parameters : the demographic scenario associated with the data used for the training, the 

type of data used as input, the use of data augmentation during the training and finally, the 

number of backbone layers re-trained. 

Best AP on each scenario 

To evaluate the ability of convolutional neural networks (CNNs) to detect selective sweeps 

under different demographic conditions, we trained separate CNN models on simulated 

datasets generated under the three distinct demographic scenarios: constant population size 

(CST), population bottleneck (BTL), and population expansion (EXP). Each trained CNN was 

then tested on datasets corresponding to all three demographic scenarios (CST, BTL, EXP) 

to assess its generalization ability across different population histories. The models 

performance was quantified using Average Precision (AP) scores. 

Best Overall AP 

To assess the generalization ability of CNN models trained on genomic data from one 

demographic scenario to the other, we evaluated their performance across all demographic 

histories at once. Individual CNN models were trained on simulated data from either CST, 

BTL or EXP scenarios. These models were then tested across all three demographic 

scenarios to measure their overall ability to detect selective sweeps, regardless of the 

specific demographic history used for training. We also compare the use of the three distinct 

types of input data (sumStats, objDet and sorted-rawData) as well as the number of 

retrained backbone layers (4 or 5), and the use of data augmentation. 

 

Once again, to quantify performance across all demographic scenarios simultaneously, we 

computed the overall Average Precision (AP) for each CNN. These comparisons allowed for 

a detailed examination of the CNNs' robustness and the effect of each of those choices on a 

model’s performances. 
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Convolutional Neural Networks vs. SweepFinder2 

In order to get a better idea of the CNNs performance, we compare the results of the best 

version of our CNN, i.e. the version which scores the highest overall AP, against 

SweepFinder2 (SF2 - DeGiorgio et al., 2016), another software used to detect selective 

sweeps from genomic data. SF2 operates similarly to SweepFinder (Nielsen et al., 2005) by 

analyzing the site frequency spectrum (SFS) and computing a composite likelihood ratio to 

compare expectations under a null hypothesis (neutral drift) versus those under positive 

selection leading to a selective sweep. SweepFinder identifies deviation from neutrality by 

comparing the local SFS, computed within a sliding window along the genome, to the neutral 

SFS expected under neutrality. At each genomic position, the probability of the observed 

allele frequencies is calculated under both a neutral and a sweep model. A likelihood ratio 

test (LRT) is then performed to compare the likelihood of the observed SFS under a sweep 

model to that under a neutral model. 

False Positive Rate on neutral simulations 

To compare the two methods, we begin by testing each of them for False Positive (FP) on a 

test dataset of 6 000 simulated chromosomes, 1 000 of each of the six possible 

demographic scenarios (CST / BTL / EXP, MIG / MGB / MGX). Here, a FP is defined as a 

neutral simulation  (i.e. without selection) where a method incorrectly predicts the presence 

of a selective sweep. The results are separated in 4 classes : simulations where a sweep is 

detected by both methods, simulations where a sweep is only found by the CNN, simulations 

where a sweep is only found by SF2 and finally, simulations where no sweep is detected. 

Comparisons are done at various levels of confidence scores for the CNN prediction, from 0 

to 0.3 to 0.5, to get a better sense of the confidence of the CNN on false predictions. It 

should be noted here that we do not use the IoU score as a way to evaluate if a prediction is 

correct or not. Rather, any prediction made for a given input is considered, regardless of its 

IoU score. 

Detection of Selective Sweeps 

The methods are then tested for true positives : the same comparison is done with a dataset 

of 6 000 sweep simulations i.e. chromosomes containing selective sweeps. The number of 

sweeps found by each method is compared in the same fashion, with 4 classes : simulations 

where a sweep is found by both methods, simulations where a sweep is only found by the 

CNN, simulations where a sweep is only found by SF2 or simulations where no sweep is 

found at all. To keep things consistent, we once again do not take into account the IoU 
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scores in this comparison. Thus, a True Positive (TP) is defined here as any simulation 

where a selective sweep is detected, regardless of the IoU score of the prediction. We also 

increased the prediction score threshold of the CNN from 0 to 0.3 and to 0.5, in order to 

investigate how the CNN’s confidence affects the accuracy of sweep detection. For each 

threshold level, we compared the number of sweeps detected by both methods. Additionally, 

we examined prediction scores associated with sweeps and neutral simulations to assess 

the reliability of the CNN’s predictions between selective sweeps and neutral simulations. 

Localization of Selective Sweeps 

We have not yet considered the localization aspect of the sweep detection methods so far - 

ignoring the IoU scores in the evaluations of both False Positives and True Positives. 

However, not only do we aim for methods able to detect the presence of a selective sweep 

within genomic data, our goal is also to precisely localize the position of the beneficial 

mutation from which the sweep occurs. However, SF2 does not provide any equivalent of the 

IoU score of a CNN. Thus, to evaluate the ability of both methods to accurately localize 

selective sweeps, we compared the models based on the predicted sweep positions. For the 

CNN, the predicted location is represented by the center of the bounding box surrounding 

the sweep, whereas for SF2, it is the predicted position of the mutation responsible for 

positive selection. 

 

First, we defined a “distance to mutation” method, where a sweep as “correctly localized”, 

i.e. a True Positive, when the distance between the predicted position (from SF2 or the 

center of the CNN's bounding box) and the actual position of the beneficial mutation is less 

than 24,186 base pairs (bp), the average sweep size in our test dataset. 

 

We also tested a secondary criterion, “within true bbox”, where a prediction is considered a 

TP if the predicted position fell within the true bounding box of the sweep present within the 

simulation. This alternative approach, mimicking in essence the IoU score, allowed us to 

further compare the performance of the CNN and SF2, offering insights into how each 

method fares into different tasks: precisely localizing the exact position of the beneficial 

mutation or predicting a position at the very least impacted by a selective sweep. In both 

cases, we made the assumption that the beneficial mutation is roughly in the center of the 

bounding-box and that its effects are roughly equal in both directions. 
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Predictions Distance to the Beneficial Mutation 

As a final step in our comparisons, we ought to evaluate the localization accuracy of the 

predicted selective sweeps by both the CNN and SF2 models. We compared the predicted 

positions to the position of the actual beneficial mutation. For the CNN, we measure the 

distance in two different ways : either the distance between the center of the predicted 

bounding box and the position of the mutation, or as the distance between the centers of 

predicted and ground-truth bounding boxes. For SF2, we compare the predicted position 

directly with the true position. 

Exploration of Parameters Space 

Finally, to investigate whether certain simulation parameters influenced the ability of either 

method to detect sweeps, we conducted an exploration of the simulation’s parameter space. 

First, we evaluated key variables (population effective size, the age of demographic events, 

the timing and duration of selective sweeps, …) with a focus on detecting patterns in FP 

occurrence on the neutral dataset. We then explored how the simulation parameters 

influenced the actual detection of selective sweeps by analyzing in greater details the 

simulations parameters of the sweep dataset, for each method of determining a correct 

prediction (sweep found, distance to mutation and prediction within true bbox), especially the 

duration of selective sweeps (i.e., the number of generations between the emergence of a 

beneficial mutation and the sampling time) and the width of the ground-truth bounding box 

(i.e., the sweep size) as these parameters appeared to be the most relevant in regards to 

sweep detection success. In both cases, only the more interesting plots are present. It 

should also be noted that the duration of sweeps is expressed in this study in units of time 

scaled on the effective size of the population. 
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Results 
 

 

Figure 34 - Comparison of the Average Precision (AP) of all 32 different versions of the trained CNNs. 
 
Average Precision computed using A) only on the simulations sharing the same basic demographic scenario as the 
one used for the training phase or B) using all 6 000 test simulations.   
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Comparison of CNN versions 

Best AP on each scenario 

To assess the ability of our CNNs to detect selective sweeps across different demographic 

histories, we train individual CNNs on simulations corresponding to three distinct 

demographic scenarios: constant population size (CST), population bottleneck (BTL), and 

population expansion (EXP). We test each CNN on test data corresponding to each 

demographic scenario, calculating Average Precision (AP) scores for each case (Figure 34 - 
A, Figure 35 - see Supplementary Table 8 for detailed values of mAP and mAR (mean 

Average Recall) for each CNNs). This setup allowed us to directly compare the ability of 

CNNs to generalize across different demographic contexts. 

 

 

Figure 35 - Average Precision (AP) computed on CST, BTL or EXP test data. 
 

AP values are organized according to the demographic scenario of the simulation used to 
train the CNNs. The x-axis is the scenario of the simulations used for the training of the 
CNN. 

 

For the CST scenario, the best performance was observed for CNNs trained on CST data. 

The top-performing CNN, which achieved an AP score of 0.742, was trained on sumStats 

data, with five retrained backbone layers and no data augmentation. Other top CNNs trained 

on CST data, including those using objDet data and varying configurations of backbone 

layers, achieved comparable AP values (ranging from 0.735 to 0.738).  
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In the BTL scenario, CNNs trained on BTL data clearly outperformed those trained on CST 

or EXP data. The top four CNNs, all trained on objDet data, achieved AP scores ranging 

from 0.662 to 0.671, with minimal variance in performance across models. In contrast, CNNs 

trained on CST and EXP scenarios showed significantly lower and more variable AP scores, 

with the worst-performing CNN trained on EXP data scoring an AP of 0.562, approximately 

10% lower than the weakest BTL-trained model. 

 

In the EXP scenario, the overall performance of all CNNs was lower compared to the CST 

and BTL scenarios, with no model achieving an AP score above 0.25. The 

highest-performing model, trained on BTL data using objDet input with four retrained 

backbone layers, scored an AP of 0.232, slightly outperforming the best EXP-trained CNN, 

which achieved an AP of 0.231.  

Best overall AP 

To further evaluate the generalization ability of our CNN models, we tested whether a CNN 

trained on data from a single demographic scenario could perform well on genomic data 

originating from populations with different demographic histories. To do this, we computed 

the overall AP of each model across all scenarios simultaneously (Figure 34 - B and Figure 
36). 

Effect of Train Scenario 

When examining the effect of the training scenario on overall performance, CNNs trained on 

CST and EXP simulations achieved similar average AP values. CNNs trained on CST had 

an average overall AP of 0.420 ± 0.085, while those trained on EXP scored 0.418 ± 0.064. In 

contrast, CNNs trained on BTL data had a lower average overall AP of 0.356 ± 0.147 and 

exhibited the highest variance in performance. However, the BTL-trained models also 

produced both the worst and best overall AP scores. The highest AP of 0.533 was achieved 

by a BTL-trained CNN using objDet data with four retrained backbone layers and no data 

augmentation. The lowest AP of 0.185 came from a BTL-trained CNN using sorted data, 

also with four retrained backbone layers and no data augmentation.  
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Figure 36 - Comparison of the overall AP (computed over all 3 demographic scenarios) 
between CNNs trained on BTL, CST or EXP simulations. The x-axis is the scenario of the 

simulations used for the training of the CNN. 

 

Effect of Data Input Type 

When comparing the performance of CNNs based on the type of input data, a clear ranking 

emerged across all scenarios (Figure 37 - A). CNNs trained on objDet data outperformed 

the other data types, achieving an average overall AP of 0.500 ± 0.021. CNNs trained on 

summary statistics (sumStats) data followed with an average AP of 0.418 ± 0.063, while 

those trained on sorted-rawData performed the worst, with an AP of 0.277 ± 0.060. These 

results suggest that objDet data provides the most informative input for CNN training in this 

context. 
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Effect of Data Augmentation 

The impact of the number of retrained backbone layers on overall performance was minimal. 

CNNs with four retrained backbone layers had an average overall AP of 0.397 ± 0.109, while 

those with five retrained layers showed a similar AP of 0.385 ± 0.112 (Figure 37 - B). This 

indicates that increasing the number of retrained backbone layers from 4 to 5 did not 

significantly improve model performance. 

Effect of the Number of Retrained Backbone Layers 

Similarly, data augmentation had little effect on the overall AP values. CNNs trained with 

data augmentation scored an average overall AP of 0.401 ± 0.108, while those trained 

without augmentation achieved an AP of 0.390 ± 0.116 (Figure 37 - C). This suggests that, 

for the demographic scenarios tested, data augmentation did not substantially enhance the 

generalization ability of the CNNs. 

 

Figure 37 - Comparison of the effects of different types of data inputs, number of re-trained backbones and the use or 
not of data augmentation on the Average Precision (computed over all 3 demographic scenarios) 

 
AP are compared between CNNs A) using either sorted-rawData, sumStats or objDet as input data, B) with either 4 
or 5 re-trained backbone layers and C) using or not data augmentation. 
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Convolutional Neural Networks vs. SweepFinder2 

In our previous comparisons, the CNN model that performed best in terms of overall 

Average Precision (AP) was the one trained on BTL simulations using objDet as input data, 

with four retrained backbone layers and no data augmentation. This model achieved the 

highest AP on BTL simulations (0.662) and EXP simulations (0.232), and still performed well 

on CST simulations, with an AP of 0.687, slightly above the average of 0.673 across all 

versions. Given its strong performance across various scenarios, this CNN model was 

selected for comparison with the widely-used SweepFinder2 (SF2) software. 

False Positive Rate on neutral simulations 

To begin this comparison, we focused on the false positive (FP) rate, defined as the number 

of simulations where at least one selective sweep prediction is generated by either method 

when applied to a neutral test dataset. While accurate identification of sweeps (maximizing 

recall) is crucial, precision is also important to avoid excessive false positives, where 

predictions incorrectly label neutral regions as sweep events. 

 

When using a prediction score threshold of 0 for the CNN – meaning all predictions are 

considered regardless of confidence (Figure 38 - A) – the number of false positives 

generated exclusively by the CNN ranged from 300 to 400 on BTL, MGB, MIG, and EXP 

scenarios, similar to the number of FPs generated by both methods combined. On CST 

simulations, the CNN produced 476 false positives, nearly twice the 277 FPs found by both 

methods. For MGX simulations, the CNN produced 281 false positives compared to 610 

found by both methods. Across all scenarios, SweepFinder2 alone produced relatively few 

FPs, ranging from 145 to 50 depending on the scenario. Overall, the CNN displayed a False 

Positive Rate (FPR) of 0.783 vs. 0.476 for SF2. 

 

When we increased the CNN’s prediction score threshold to 0.3, thereby discarding less 

confident predictions, the number of false positives dropped considerably, with the CNN 

generating no more than 60 to 170 FPs at worst. Incidentally, the number of FPs generated 

by both methods together also decreased, while the number produced by SweepFinder2 

alone increased proportionally (Figure 38 - B). With this new threshold, the CNN FPR = 

0.318. 

 

At a threshold of 0.5 (Figure 38 - C), the number of FP produced by the CNN is around 80 

on bottleneck scenarios (88 on BTL and 78 on MGB), while both methods combined 

generated 170 FPs on each. Meanwhile, SweepFinder2 alone generated approximately 300 
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FPs. On CST, MIG, and EXP simulations, the CNN generated between 15 and 33 FPs, while 

SweepFinder2 alone produced significantly more (329, 426, and 428 FPs, respectively). On 

MGX simulations, the CNN generated 65 FPs, while both methods combined produced 199, 

and SweepFinder2 alone accounted for 474 FPs. Here, the CNN’s FPR drops to 0.151. 

 

Raising the threshold further, up to 0.9 or 1, would eliminate all false positives from the 

CNN’s predictions. However, setting the threshold this high would not be practical for any 

realistic use, where a balance between precision and recall must be maintained. Additional 

comparisons of FP rates at different thresholds (in 0.1 increments) can be found in 

Supplementary Figures 3 to 12. 

Detection of selective sweeps 

We next evaluated the detection of actual selective sweeps using a test dataset of 6,000 

simulations. Initially, with a prediction score threshold of 0 – considering all proposed 

predictions by the CNN (Figure 39 - A) – both the CNN and SF2 identified between 600 and 

880 sweeps in each scenario. CST simulations had the highest overlap, with 878 sweeps 

detected by both methods, while the lowest overlap was in MGX simulations with 602 

sweeps. The CNN significantly outperformed SF2 in detecting sweeps on BTL simulations 

(329 vs. 6), MGB (318 vs. 2), CST (85 vs. 29), MIG (171 vs. 16), and MGX (332 vs. 34). 

However, on EXP simulations, SF2 identified more unique sweeps than the CNN (160 vs. 

103). Overall, the CNN achieves here a True Positive Rate (TPR) of 0.947 vs. 0.765 for SF2. 

 

With a prediction score threshold of 0.3 (Figure 39 - B), both methods detected between 

600 and 700 sweeps on BTL, MGB, CST, and MIG simulations (e.g., 588 for BTL, 616 for 

MGB, 684 for CST, and 654 for MIG). However, the number of shared detections dropped to 

around 400 on EXP (397) and MGX (407) simulations. While the CNN continued to 

outperform SF2 on BTL and MGB scenarios (297 vs. 78 for BTL, 288 vs. 65 for MGB), the 

number of sweeps exclusively found by SF2 increased in other scenarios. Indeed, SF2 

found 223 sweeps not found by the CNN in CST, 168 in MIG, 483 in EXP, and 229 in MGX. 

The higher threshold also led to an increase in missed sweeps, with both methods now 

failing to detect between 30 and 70 sweeps across most scenarios, and up to 165 sweeps 

missed in MGX. Using this threshold on the predictions scores of the CNN, its TPR = 0.685, 

a bit less than the 0.765 of SF2. It should be noted that using a threshold of 0.25 instead, the 

CNN TPR = 0.770. 
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At a threshold of 0.5 (Figure 39 - C), the number of sweeps jointly identified by the two 

methods remained high (500-550 for BTL, MGB, CST, and MIG scenarios), but decreased to 

242 in EXP and 277 in MGX. Although the CNN continued to find more sweeps in BTL (273) 

and MGB (267), the gap widened in other scenarios, with SF2 identifying 379 sweeps not 

found by the CNN in CST, 307 in MIG, 359 in MGX, and up to 638 in EXP. Once again, the 

CNNs TPR drops, here to 0.580. As expected, as the threshold increases, more and more 

sweeps that were initially detected only by the CNN are now classified as missed by both 

methods and its TPR decreases. 

 

Again, increasing the prediction score threshold for the sake of it does not make much sense 

here, as a selective sweep detected with a perfect prediction score is highly unlikely and 

discarding even predictions with a medium prediction score would most likely lead to missing 

targets. However, for the sake of completion, such comparison at different thresholds (in 0.1 

increments) can still be found in Supplementary Figures 13 to 22. 
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Figure 38 - Number of False Positive (FP) generated by each method. 
 
Predictions are classified as FP found by both methods (red), only by the CNN (orange), only by SF2 (blue) or no FP 
(green). Various threshold of prediction scores for the CNN : A) prediction score > 0 (all predictions), B) prediction 
score > 0.3 and (C) prediction score > 0.5. 
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Figure 39 - Number of sweeps found by each method. 
 

Predictions are classified as sweeps found by both methods (green), only by the CNN (blue), only by SF2 (orange) or 
sweeps missed by both methods (red). Various threshold of prediction scores for the CNN : A) prediction score > 0 
(all predictions), B) prediction score > 0.3 and C) prediction score > 0.5. 
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As a wrap up to this comparison of the FP and TP, it is worth noting that the prediction 

scores associated with detected sweeps were significantly higher than those associated with 

neutral data (average sweep score = 0.629 ± 0.315 vs. neutral score = 0.325 ± 0.215, 

Wilcoxon test p-value < 2.2e-16), indicating better model confidence for true positive sweeps 

(Figure 40). 

 

              

Figure 40 - Distribution of prediction scores associated with the CNN predictions. 
 

Prediction scores are values outputted along the CNN predicted bbox coordinates 
indicating how confident the network is in a given prediction. Prediction scores are 

computed on neutral (green) or sweep (blue) test datasets. 

Localization of Selective Sweeps 

Since both the CNN and SF2 are not only capable of detecting selection, but are more 

importantly capable of predicting the position of the selective sweeps. We evaluated these 

methods based on their ability to accurately localize the sweep or the mutation responsible 

for positive selection.  
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We first defined a sweep as  “found", so a “correct prediction”, when the distance between 

the predicted position (for SF2) or the center of the CNN's predicted bounding box and the 

actual position of the beneficial mutation was less than 24 186 bp, the average sweep size in 

our test dataset (Figure 41 - A). Under this criterion, the CNN consistently outperformed 

SF2 on BTL simulations, detecting 451 sweeps not found by SF2, compared to just 71 found 

only by SF2. On MGB simulations, the CNN detected 429 sweeps not found by SF2, while 

SF2 found 81 not found by the CNN. CST and MIG results were similar, with around 600 

sweeps detected by both methods, and the CNN finding 260-330 sweeps uniquely, while 

SF2 identified fewer (34 on CST, 23 on MIG). For EXP simulations, the CNN detected 252 

“unique” sweeps compared to 115 by SF2. Finally, on MGX, the CNN found 401 sweeps 

exclusively, while SF2 detected only 77. Overall, the CNN ended up with 4335 TP for 1348 

FP and 317 sweeps not found, so more than 75% of correct predictions out of the 5683 

sweep predicted, and about 5% of the sweeps totally missed. As for SF2, he scores 2718 TP 

for 1874 FP and 1408 sweeps missed. In other words, about 23% of the sweeps are missed, 

and among the sweeps predicted, about 40% are too far from the target for the prediction to 

be considered correct. 

 

We then considered a second criterion : a sweep was considered “found” if the predicted 

position fell within the actual bounding box of the sweep (Figure 41 - B). Under this 

definition, results were similar for BTL and MGB simulations. However, on CST, MIG, EXP, 

and MGX, the number of missed sweeps by both methods increased, especially in the EXP 

and MGX scenarios, with 498 and 580 sweeps missed, respectively. Interestingly, using this 

method increased the number of sweeps found exclusively by the CNN in CST and MIG 

scenarios, showing its potential advantage in these cases. Using this method, the CNN 

achieves 3490 TP, 2193 FP (and missed the same 317 sweeps), so a bit more than 60% of 

its predictions are within the true bbox. For SF2, 1748 predictions are TP for 2844 FP (and 

missed the same 1408 sweeps), which is about 40% of correct predictions. 
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Figure 41 - Number of sweeps found by each method depending on the criterion used to define a prediction as 
correct. 

 
Predictions are classified as sweeps found by both methods (green), only by the CNN (blue), only by SF2 (orange) or 
sweeps missed by both methods (red). Sweeps are considered detected if : A) the distance between the predicted 
position and the beneficial mutation is less than the average size of a selective sweep (average computed within 
the test dataset) or B) the predicted position is within the limits of the bounding-box of the sweep.  
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Exploration of Simulation Parameter Space 

Before delving into the analysis of the parameters associated with FP and correct detection 

of selective sweeps, It is important to remember that due to the way our simulations are set 

up, the timing of the split of the ancestral population, as well as the timing of demographic 

events are expressed in regards to the current population size of the corresponding 

population. Thus, smaller values for BTL and MGB simulations compared to the other 

scenarios are to be expected. Moreso, as the next section is dedicated to the analysis of the 

parameters for the detection on sweep data, it is also important to remember that older splits 

widens the prior from which we draw the timing of onset of the selection, and therefore, 

produces on average older sweeps that are more eroded over time. 

Parameter Space of predictions on neutral data 

We first focused on the false positives (FPs) generated by the models on the neutral dataset, 

testing for significant differences in the distributions of current and ancestral population 

sizes, as well as the ages of demographic events and ancestral population splits, between 

simulations where an FP was generated versus those where no incorrect prediction occurred 

(see Supplementary Table 9 for Wilcoxon tests p-values and results). 

 

For the CNN, FPs were primarily observed in BTL, MGB, and MIG simulations with smaller 

population sizes, older demographic events, and older population splits. In the EXP 

scenario, FPs were associated with simulations featuring smaller current population sizes, 

while in MGX, FPs were linked to older population splits (Figure 42). The pattern for SF2’s 

FPs was more complex. In BTL and MGB simulations, FPs occurred in simulations with 

smaller populations and older demographic events and splits. However, in CST and MIG 

scenarios, while FPs also occurred in simulations with older demographic events and splits, 

they were associated with larger population sizes (Figure 43). Finally, we compared the FPs 

generated by both models on the same simulations. Most FPs were found in BTL, MGB, 

CST, and MIG simulations with smaller population sizes, older demographic events, and 

older splits; in EXP simulations with smaller populations and more recent demographic 

changes; and in MGX simulations with older splits (Figure 44). 
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Figure 42 - Distribution of Parameters for the False Positive generated by the CNN on neutral test dataset.  
 

Population sizes are expressed in number of individuals. Demographic Event and Split Timings are expressed in 
regards to the current population size of the corresponding simulation. 
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Figure 43 - Distribution of Parameters for the False Positive generated by SF2 on neutral test dataset. 
 

Population sizes are expressed in number of individuals. Demographic Event and Split Timings are expressed in 
regards to the current population size of the corresponding simulation. 
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Figure 44 - Distribution of Parameters for the False Positive generated by both models (CNN and SF2) on neutral 
test dataset. 

 
Population sizes are expressed in number of individuals. Demographic Event and Split Timings are expressed in 
regards to the current population size of the corresponding simulation. 
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Parameter Space of predictions on sweep data 

Now, as for the detection of selective sweeps on sweep dataset we tested for significant 

differences in the distributions of the same demographic parameters (current and ancestral 

population sizes, ages of demographic events and ancestral population splits) as well as for 

selection parameters such as the age of the onset of selection, the timing at which the 

beneficial mutation reaches a frequency of 0.99 in the population as a proxy of the timing of 

fixation of the sweep, the selective coefficient, the width of the sweep bounding box and the 

duration of the sweep (see Supplementary Table 10 for Wilcoxon tests p-values and 

results). However, it should be noted that due to the overall great performance of the CNN 

on this particular task, FPs parameters distributions had to be done using very few data 

points for BTL (11), MGB (3), CST (37), MIG (23) and MGX (66) scenarios. Thus, while such 

comparisons are still interesting to be carried, results must be observed with caution. 

Focusing first on the CNN predictions (Figure 45) and specifically on the 

demography-related parameters, in CST, MIG, and EXP scenarios, sweeps were more likely 

to be missed in simulations with larger current or ancestral population sizes. In MIG and 

EXP, older population splits also contributed to missed sweeps, while in BTL and EXP, the 

timing of demographic events played a role, with younger events leading to missed sweeps 

in BTL and older events causing misses in EXP. Selection-related parameters also 

influenced sweep detection. On CST, MIG, EXP, and MGX scenarios, sweeps associated 

with older selection events as well as sweeps that were fixed for a longer time were missed 

more frequently. Additionally, in CST and MIG scenarios, smaller selective coefficients 

resulted in missed sweeps. Smaller true bounding box widths were particularly challenging 

for detection across all demographic scenarios. Similarly, shorter sweep durations were 

linked to missed detections in all but the CST and MIG scenarios. 

As for SF2 predictions (Figure 46), on BTL and MGB scenarios, sweeps were more 

frequently missed in simulations with smaller current and ancestral population sizes. Older 

splits and demographic changes were a challenge across BTL, MGB, CST, and MIG, where 

sweeps associated were more likely to be missed. Regarding selection parameters, missed 

sweeps were linked to older selection events and older fixation times across all scenarios. 

The effect of the selection coefficient was less clear, with missed sweeps in BTL and MGB 

potentially linked to higher values in the former, and lower values in the latter. The width of 

the true bounding box influenced results differently across scenarios: larger sweeps were 

missed in BTL and MGB, while smaller sweeps were missed in MIG, CST, and MGX. 

Additionally, longer sweep durations and higher selective coefficients led to missed 
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detections in BTL and MGB simulations. As expected, the position of the selected allele 

showed no significant impact on sweep detection accuracy. 

Finally, comparing sweeps detected by both CNN and SF2 against those missed by at least 

one model (Figure 47). Given that the CNN consistently detected significantly more sweeps 

than SF2 across all scenarios, it should be noted that most of the "missed sweeps" here 

resulted from sweeps missed by SF2. Missed sweeps occurred more frequently in smaller 

populations for BTL and MGB, whereas in EXP, sweeps were missed in larger populations. 

Similarly, smaller ancestral population sizes were associated with missed detections in BTL 

and MGB. Missed sweeps are also more common in simulations featuring older splits (BTL, 

MGB, CST, MIG, and MGX) and older demographic changes (BTL, MGB, CST, and MIG). 

Regarding selection, sweeps associated with older selection events and older fixation times 

are more likely to be missed across all scenarios. Sweeps with larger bounding boxes were 

missed in BTL and MGB, while smaller sweeps were more often missed in CST, MIG, EXP, 

and MGX. Sweep duration also affected detection: longer sweeps were missed in BTL and 

MGB, whereas shorter sweeps were more likely to be missed in EXP. Once again, missed 

sweeps in BTL and MGB are linked to higher selective coefficients. 
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Figure 45 - Distribution of Parameters for the True Positive predictions of the CNN on sweep test dataset. 
 
Population sizes are expressed in number of individuals. Demographic Event and Split Timings, as well as Time to 
Mutation Frequency 99%, Selection Timing and Split Timing are expressed in regards to the current population size of 
the corresponding simulation. True Box Width is expressed in kbp. 

 

119 



Discussion 
 

 

 

Figure 46 - Distribution of Parameters for the True Positive predictions of SF2 on sweep test dataset. 
 
Population sizes are expressed in number of individuals. Demographic Event and Split Timings, as well as Time to 
Mutation Frequency 99%, Selection Timing and Split Timing are expressed in regards to the current population size of 
the corresponding simulation. True Box Width is expressed in kbp. 
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Figure 47 - Distribution of Parameters for the True Positive predictions found by both models on sweep test dataset.  
 
Missed Sweeps are sweeps missed by at least one model Population sizes are expressed in number of individuals. 
Demographic Event and Split Timings, as well as Time to Mutation Frequency 99%, Selection Timing and Split Timing 
are expressed in regards to the current population size of the corresponding simulation. True Box Width is expressed 
in kbp. 
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Exploration of the parameters revealed interesting trends. Two main parameters emerged as 

influencing the sweep detection results: the duration of the selective sweep (i.e. the number 

of generations between the appearance of the beneficial mutation and the sampling time) 

and the width of the bounding box associated with the sweep. Sweeps that were detected by 

both CNN and SF2, as well as those detected only by the CNN, showed a wide range of 

durations. In contrast, sweeps missed by both methods or detected solely by SF2 tended to 

be shorter in duration, with the width of the ground-truth bounding box being particularly 

small (Figure 48).  
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Figure 48 - Distribution of found selective sweeps within the 2d density representation of the duration of the sweep 
compared to the size of the associated true bounding box. 

 
Duration of sweep is (y-axis is expressed regarding the current effective size N of the associated population 
compared to the size of the associated true bounding box, i.e. the spawn of the area of effect of the selective sweep 
(x-axis). Sweeps found by both CNN and SF2 are on green, only found by CNN on blue, only found by SF2 are 
orange and simulations where the selective sweep have been missed are on red. 

 

Thus, we focused on the analysis of those parameters. Figure 49 shows the distribution of 

sweep duration compared between the 3 possible outcomes for a prediction (TP / FP / Not 

Found) across all six demographic scenarios for both CNN and SF2. Overall, no specific 

pattern appears, with the exception of the sweeps not found by the CNN, for the BTL and 
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MGB scenarios, which seemed to have a slightly lower duration. No such difference is 

present for the predictions done by SF2.  

However, a clear demarcation can be seen with the distribution of the ground-truth 

bounding-box width (‘true bbox width’ – Figure 50) : the vast majority of FP or sweeps not 

found by the CNN have a true bbox width especially small ; graphically, the threshold is at 

about 25 pixels (Figure 50, dashed red line); the quantile 90 for the FP is at 28 and at 19 for 

the sweeps not found for an average of about 23.5 px i.e. about 1 175 bp. While not as good 

for SF2’s prediction, the same thresholds still works quite well here, with a majority of the FP 

and sweeps missed having a true bbox width smaller when considering a correct prediction 

as a prediction within the true bbox (which is to be expected, as a smaller bbox means that it 

is harder for the prediction to land within). The only two scenarios for which this threshold 

does not seem to hold, for both CNN and SF2 predictions, are the BTL and MGB scenarios. 
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Figure 49 - Distribution of duration of sweeps. 
 

Sweep durations (y-axis) are expressed in regards to the current population size of the corresponding 
simulation, classified (x-axis) by True Positive (TP), False Positive (FP) or if the sweep was Not Found. 
A) and C) are the results for the CNN, B) and D) are the results for SF2. BTL/MGB scenarios are in 
green, CST/MIG scenarios are in blue and EXP/MIG scenarios are in orange. Outliers with sweep 
duration above quantile 90 were removed for better visualization of the distributions.  
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Figure 50 - Distribution of true bounding-boxes widths among the demographic scenarios. 
 
The width of the true bounding-boxes (y-axis) are expressed in pixels (1 px = 500 bp) and are classified (x-axis) by 
True Positive (TP), False Positive (FP) or if the sweep was Not Found. A) and C) are the results for the CNN, B) and 
D) are the results for SF2. The red dashed line indicates a graphically chosen threshold below which most FP and 
sweep not found by the CNN seem to be. BTL/MGB scenarios are in green, CST/MIG scenarios are in blue and 
EXP/MIG scenarios are in orange. 

Figure 51 shows the distribution of the true bbox widths for each prediction class among the 

six demographic scenarios for the CNN and Figure 52 shows the same for SF2 predictions. 

In each case, the red line corresponds to the size below which there is 90 % of the FP and 

sweeps not found, without considering the BTL and MGB scenarios in the computation. 

Once again, these two scenarios are put aside as they appear to have a bimodal distribution 
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with lots of very small and very wide true bboxes. For the CNN’s predictions, most FP and 

sweeps not found have an unusually small true bbox width compared to the TP ones. This 

still partially holds true on BTL and MGB scenarios, but there is also a number of very large 

bbox associated with the FP on those scenarios. The same pattern can’t really be observed 

for SF2 predictions. Indeed, the distributions true bbox width for the TP, FP and sweeps not 

found all match quite closely on all scenarios, with again the exception of BTL and MGB 

where lots of missed sweeps here have a very large true bbox. 

Smaller sweeps are harder to detect for the CNN; they may not produce the same strong 

selective signal, making them harder to detect reliably, but sweeps spawning the whole 

length of the chromosome are also harder to detect due to the absence of certain 

characteristics expected patterns, for example if the “valley of diversity” is so wide that it 

encompasses the whole chromosome. Overall, sweeps detected by both methods covered a 

broad range of widths, while those missed or only found by SF2 tended to be smaller in 

scope. This indicates that larger, more pervasive sweeps were more consistently identified 

by both approaches, whereas smaller or more localized sweeps posed a greater detection 

challenge. 

Predictions Distance to the Beneficial Mutation 

As a final step to evaluate our models, we wanted to compare the localization accuracy of 

the predictions. To do so, we analyzed the distance between the actual position of the 

beneficial mutation and the predicted sweep positions for both methods. In general, the 

results showed that SF2 predictions were further from the true beneficial mutation compared 

to the CNN, but the gap varied depending on the demographic scenario and the method 

used for calculating the distance. Across all demographic scenarios, the average distance of 

SF2 predictions to the actual beneficial mutation was approximately 24 433 ± 22 119 bp. In 

contrast, CNN predictions, when considering the distance from the center of the predicted 

bounding box to the mutation's true position, averaged 15 820 ± 18 154 bp. This difference 

was even more pronounced when computing the distance as the difference between the 

center of the predicted and ground-truth bounding boxes, with CNN predictions averaging 11 

958 ± 18 721 bp (Table 10). These results suggest that CNN's localization performance is 

generally superior to SF2's, with a significant reduction in the average distance to the target 

mutation. 
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Figure 51 - Distribution of the widths of true bbox among the six demographic scenarios for the CNN, classified according to the CNN 
predictions.The dashed-red line corresponds to the size below which there is 90 % of the FP and sweeps not found (without considering the 
BTL and MGB scenarios in the computation). A) Predicted positions are inside the true bbox and B) within close to the mutation. 
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Figure 52 - Distribution of the widths of true bbox among the six demographic scenarios for the CNN, classified according to the CNN 
predictions. The dashed-red line corresponds to the size below which there is 90 % of the FP and sweeps not found (without considering the 
BTL and MGB scenarios in the computation). A) Predictions inside the true bbox and B) predictions close to the mutation. 
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When breaking down these results by specific demographic scenarios  (Table 10 & Figure 
53), we found the following patterns. On CST and MIG simulations, both CNN and SF2 

predictions were relatively close to the actual beneficial mutation. For the CNN, the distance 

averaged around 8 000 to 6 500 bp depending on the method of measurement, while SF2 

predictions were consistently farther, with an average distance of 17 700 bp. On BTL and 

MGB scenarios, the CNN predictions were again closer (approximately 11 000 bp up to 19 

000 bp when considering the actual position of the mutation). In contrast, SF2 predictions 

were about 30 000 bp away, regardless of the method used for distance calculation. On EXP 

and MGX simulations, the CNN’s distance averaged 20 000 bp, while SF2 predictions were 

at a distance of 24 000 bp for EXP simulations and approximately 30 000 bp for MGX 

simulations. Across all scenarios, the standard deviation of prediction distances remained 

relatively high, indicating substantial variability in prediction accuracy within each method. 

This variability was often comparable to or even exceeded the average distance, 

underscoring the inherent challenges in accurately localizing selective sweeps in complex 

demographic settings. 

 

Table 10 - Comparison of mean and standard deviation of the distance between the predicted 
position of the selective sweep and the position of the actual beneficial mutation. Distances are 
expressed in bp. 

Demographic 
Scenario 

Distance Center pred. 
bbox - mutation 

(CNN) 

Distance Center pred. 
bbox - Center true bbox 

(CNN) 

Distance Predicted 
position - mutation 

(SF2) 
mean sd mean sd mean sd 

BTL 19245 17929 11286 18792 30185 22132 
MGB 19076 18555 11325 19689 30872 23676 
CST 8600 13842 6696 14278 17880 19809 
MIG 7309 11424 5371 11691 17615 19933 
EXP 20476 20056 19024 20776 24133 20530 
MGX 20962 20289 19432 20935 30089 23111 
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Figure 53 - Distribution of the distance between the predictions and the position of the actual beneficial mutation.  
 
Distances are computed in two different ways for the CNN predictions : either by comparing the position of the center 
of the predicted bounding box to the position of the beneficial mutation, or by comparing the position of the center of 
both the predicted and the ground truth bounding box. For SF2, distances are simply computed as the distance 
between the predicted and the true position of the mutation. 
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Discussion 
 
Thanks to the recent advances of DNA sequencing technologies leading to a drastic 

increase in the amount of genetic data available, lots of new methods to study and detect 

positive selection have been developed. Lots of studies leverage the power of summary 

statistics, and some have also started to apply machine learning to this type of problem 

(Schrider et al., 2015, Schrider & Kern, 2016, Pavlidis et al., 2010, Lin et al., 2011). Our work 

here follows this same trend, and focuses on the development of a machine learning 

approach using a resNet-FasterRCNN to detect but also to localize quite precisely targets of 

natural selection from genetic data. More precisely, our CNN is able to detect and localize 

the position and the approximate range of effect of a selective sweep by predicting a 

bounding box associated with the sweep. The predictions are done after a fine-tuning, in 

other words an additional training, of a pre-trained CNN is realized for it to learn how to 

realize such a task. In this study, we chose to compare a set of 32 different trainings to test 

and find good practices when implementing such methods before testing our newly trained 

CNN against the SweepFinder2 tool. Thanks to these comparisons, we tried to gather 

information about the important parameters to consider for the training dataset used by the 

CNN. 

CNNs performed best when undergoing Scenario Specific 
Training  

CNNs trained on one particular demographic scenario performed best on test data from the 

same scenario, highlighting the importance of scenario-specific training. However, CNNs 

trained on more complex demographic histories, such as BTL and EXP, also showed a great 

ability to generalize to CST scenarios, where sweep signals are less confounded by 

demographic effects. More precisely, CNNs trained on EXP data also performed well on CST 

simulations, suggesting that they learned to recognize some general patterns of selective 

sweeps that can be transferred between scenarios. On the same simulations, CNNs trained 

on BTL data displayed the highest variance : their performance, while still good overall, was 

less consistent. On BTL simulations, the strong performance associated with a low variance 

of BTL trained CNNs data suggests that they are highly specialized in detecting selective 

sweeps in data shaped by demographic contractions, where genetic signals may be more 

distinct due to reduced diversity. Finally, all CNNs struggled with EXP data, likely due to the 

confounding signals generated by the interaction of selective sweeps with the demographic 

expansion, which can resemble the patterns seen in populations recovering from a 
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bottleneck. This poor performance on EXP simulations highlights the challenge of detecting 

sweeps in expanding populations, where coalescent signals become more diffuse. 

EXP and CST trained CNNs showed the same performance when tested on all demographic 

scenarios at once, with an average AP at around 0,420 and standard deviation of about 

0,07. BTL trained CNNs on the other hand, displayed a slightly lower overall average AP, but 

with such a variance that they also achieved both the lowest and the highest overall AP. A 

possible explanation comes from the demographic scenarios used for the training. Indeed, 

as shown before, CST trained CNNs seemed to be the ones able to generalize the best, with 

all models retaining good APs compared to the ones of the other CNNs. The information 

EXP trained CNNs have been able to learn from the EXP simulations allow them to reach 

AP equivalent to the CST trained ones on both CST and BTL simulations while 

outperforming them on EXP. This specialization comes at the cost of some stability, as they 

displayed an increased variance on both BTL and CST simulations compared to CST. BTL 

trained CNNs displayed this even more, with the highest APs and lowest variance on BTL 

simulations, but with very variable results on both CST and EXP simulations. Interestingly, 

despite this overspecialization of most BTL trained CNNs, the best CNNs when comparing 

average overall AP still happened to be a BTL trained one. Indeed, it appears that, using the 

correct training parameters, such a specialized model is able to outperform the more 

generalized CST trained CNNs. 

Using specifically formatted data inputs such as objDet 
increase the CNNs performances 

It comes with no surprise that this best BTL trained CNN was trained on objDet data as 

input. Indeed, the type of input data plays a crucial role in CNN performance. CNNs trained 

on objDet data significantly outperformed those trained on plain summary statistics 

(sumStats) or raw data (sorted-rawData), achieving an average overall AP of 0.500 

compared to 0.418 and 0.277, respectively. This shows again the importance of selecting the 

right representation of genomic data, with objDet data likely capturing more relevant 

information for sweep detection. These inputs are, at their core, matrices of numerous 

summary statistics which were already proven to be an efficient way of analyzing genetic 

data for detecting selection patterns with tools such as S/HIC (Schrider and Kern, 2016). The 

normalization of each statistics using the maximum and minimum values obtained on the 

simulation itself also allows to maximize the intra-genome variance highlighting even more 

the selective sweep signal. The comparatively lower performance of CNNs trained on 
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sorted-rawData data suggests that this input type is most likely not as effective at 

highlighting the patterns necessary for accurate sweep detection using the 

resNet-FasterRCNN architecture we’ve used in this study. 

To wrap things up regarding the training parameters, neither the number of retrained 

backbone layers nor the use of data augmentation significantly affected the overall 

performance of the CNNs. Models with four retrained backbone layers performed similarly to 

those with five, and data augmentation did not yield noticeable improvements. This is 

interesting because it suggests that we can reduce computational times without sacrificing 

accuracy. By not requiring data augmentation and using only four retrained layers, we can 

decrease the computational resources needed, leading to faster training times and lower 

energy consumption. 

CNNs detects more sweeps but also tend to generate more 
false positive 

As stated before, we choose to compare the results of the best CNN we obtained against the 

popular sweep detection tool, SweepFinder2. This comparison reveals several important 

insights regarding their relative performance across the different demographic scenarios. 

The CNN consistently outperforms SF2 when it comes to detecting selective sweeps and 

accurately localizing the beneficial mutation, while SF2 shows more conservative predictions 

with fewer false positives on a neutral dataset. Indeed, when comparing the false positive 

rate of both methods on a test datasets of 6 000 simulations of population evolving under 

selective neutrality, the CNN generates substantially more FPs than SF2, up to 3 to 5 times 

more, if no filter is applied to the CNN’s predictions. However, a threshold value even as low 

as 0,3 applied on the prediction scores  is enough to even the number of unique FPs 

generated by the two methods. Hence, even though SF2 appears more conservative at first 

glance, it is also important to remember that both methods are vastly different in their 

approach, and that it might sometimes be hard to find a comparison protocol efficient to 

evaluate one method against another. In our case, it is easy for us to set multiple different 

thresholds on the prediction scores of the CNN, but no such score exists for SF2 as setting 

thresholds on the CLR values seemed too far off from what we wanted. 

 

In detecting selective sweeps, the CNN consistently outperforms SF2 across most 

scenarios, particularly on BTL, MGB, CST and MIG simulations. The CNN identifies 

significantly more sweeps than SF2 on BTL (329 vs. 6), MGB (318 vs. 2), and MIG (171 vs. 
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16) simulations. If we use the same threshold of 0.3, the CNN maintains a clear advantage 

in BTL and MGB scenarios, detecting 297 unique sweeps on BTL and 288 on MGB, 

compared to 78 and 65 found exclusively by SF2, respectively and the results of both 

methods are comparable on MIG and MGX scenarios. However, on EXP and CST 

simulations, SF2 then finds more unique sweeps. This suggests that SF2 may be better 

suited to detecting sweeps in certain rapidly growing or expanding populations where our 

implementation of CNN struggles to maintain the same level of performance. Nonetheless, 

both methods remain good even in these scenarios, highlighting their overall versatility. 

Older and more eroded selection signals are harder to 
detect for both methods 

Out of all the parameters significantly impacting the models ability to detect a selective 

sweep, three of them are consistent across all scenarios : the age of the selection event, the 

age of the beneficial mutation fixation and the width of the bounding box i.e. the size of the 

selective sweep. Indeed, if the beneficial mutation, as well as its fixation, are older, then 

other evolutionary forces such as the recombination will have time to erode the selective 

sweep signature. Thus, with enough time, the observable effects of the selective sweep on 

the genetic diversity will decay, which will in turn reduce the observable width of the selective 

sweep. All in all, these three variables will erode the sweeps signal, making them harder to 

detect by our models. It should also be noted that, while no significant difference was found 

for the CST and MIG scenarios, the sweep duration also impacted the models 

performances, especially for the BTL and MGB scenarios, where shorter sweeps were 

harder to find for the CNN, but easier to find by SF2. As the time spent between the 

apparition of the beneficial mutation and its fixation is shorter, shorter sweeps usually display 

a low haplotype diversity surrounding the beneficial mutation. However, it’s also important to 

remember that very few sweeps were missed by the CNN so, while the differences were 

deemed statistically significant, they were computed using no more than 11 BTL and 3 MGB 

simulation parameters. 

CNNs localize the selective sweeps position more 
accurately 

The CNN's ability to localize the beneficial mutation is one of its major advantages over SF2. 

When defining a sweep as “found” if the predicted position is within a range equal to the 

average sweep size of the true mutation the CNN performs substantially better across most 
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scenarios showing that the CNN has a greater capacity for identifying sweeps with greater 

positional accuracy. A more stringent criterion, which considers a sweep “found” only if the 

predicted position falls within the actual bounding box of the sweep, further highlights the 

CNN's strengths in CST and MIG scenarios, where it identifies more unique sweeps than 

SF2. However, this method also reveals that both models struggle with certain scenarios, 

particularly EXP and MGX, where they miss a considerable number of sweeps (498 and 

580, respectively). These findings highlight the importance of scenario-specific performance 

differences and suggest that while the CNN excels at localizing mutations, neither method is 

infallible across all demographic conditions. 

Conclusion 

In this study, we showed that while CNNs demonstrate superior accuracy in most simulated 

scenarios, particularly in terms of detection and accurate localization of the sweeps, it 

struggles with high FP rates on neutral simulations if no threshold is put on the predictions. 

On the other hand, SF2, while more conservative and less prone to generating false 

positives, also misses a considerable amount of sweeps found by the CNN. Overall, the 

CNN approach demonstrated great performance in detecting sweeps across most scenarios, 

often identifying more sweeps than SF2. It also showed remarkable accuracy in localizing 

the beneficial mutations, outperforming SF2 in this regard. However, despite its overall 

strong performance, the CNN struggled in expansion (EXP) and growth (MGX) simulations, 

where SF2 showed relative strengths, detecting more unique sweeps in these scenarios. 

This suggests that, while CNN-based methods hold great potential for improving the 

identification of selective sweeps in populations with complex demographic histories,  

scenario-specific strategies may be necessary to optimize sweep detection performance, as 

neither method performs uniformly across all population histories. 

As a conclusion to this second part, we would like to also highlight the following key points: 

1) The pre-trained architecture tested in this study (FasterRCNN model using a 

ResNet-50-FPN backbone) performed best when trained on data following the same 

demographic scenario as the test data. However, models trained on more complex 

histories (BTL or EXP) show better generalizability. Hence, a more diverse training 

dataset (containing all possible expected demographic scenarios) could constitute a 

huge advantage. 
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2) Among the tested input formats, objDet data substantially improves CNN 

performance, achieving higher average AP scores than sumStats or raw data. This 

structured input highlights selective sweep signals more effectively. This highlight one 

of the major results of Chapter 1: the importance of data representation for the use of 

deep-learning tools. 

 

3) Other tested training parameters, such as the number of retrained backbone layers 

or the use of data augmentation did not seem to affect the performance of the CNNs.  

 

4) Compared to the traditional SweepFinder2 (SF2) method, CNNs demonstrate greater 

sensitivity in sweep detection but tend to produce more false positives in neutral 

datasets. Specifically, CNNs excel in accurately localizing selective sweep positions 

compared to SF2.  

 

5) Both CNNs and SF2 face difficulties in detecting older or eroded sweeps. Key factors 

impacting detection accuracy include the sweep's age, fixation time, and the size of 

the selective sweep (bounding box width), with older events being more challenging 

due to the erosion of the selective signature. 

In conclusion, while the CNN outperforms SF2 in most cases, particularly in terms of sweep 

detection and localization accuracy, SF2 remains a valuable tool in its ability to minimize 

false positives in neutral scenarios and perform well in certain demographic contexts like 

population expansion. This comparison highlights the importance of choosing the right tool 

depending on the specific demographic history being studied and suggests that hybrid 

approaches, combining the strengths of both models, could further enhance the accuracy 

and reliability of selective sweep detection in population genetics research. 

 

Furthermore, these results emphasize, as were the findings of Chapter 1, the importance of 

the choice of data representation to achieve optimal performance. A well-constructed 

dataset - representing a broad spectrum of the expected variability of real data, and 

formatted with thoughtful input structure - substantially enhances model accuracy. We also 

would like to take a moment to highlight the limited influence observed when increasing the 

number of retrained layers or using data augmentation. This suggests that CNNs may 

achieve high performance without excessive computational overhead. While thoroughly 

testing parameter combinations is essential for developing broadly applicable deep-learning 

tools, we believe a balanced approach can yield efficient, high-performing models that also 

reduce computational demand and environmental impact. This is not a critique of extensive 
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exploration, but rather a call to reconsider the “high complexity” often marketed as a selling 

point in AI tools. Quite reassuringly, recent studies has focused on developing more efficient 

deep learning methods to address the challenges of increasing parameter counts and aim to 

create more parameter-efficient models without sacrificing performance (see Menghani 

(2024) for a comprehensive survey of techniques aimed to make deep-learning models more 

efficient). 
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Our understanding of evolutionary processes and, more specifically, of genetic diversity has 

greatly evolved throughout the centuries. From the early Greek philosophers’ view of 

variation as “imperfection of an ideal form,” the study of genetic diversity evolved through 

foundational contributions, notably Darwin’s On the Origin of Species (1859), which 

introduced the concept of natural selection, and Mendel’s principles of heredity (1865). 

These pivotal works laid the groundwork for a better understanding of genetic diversity, later 

expanded by evolutionary theoriticians like Fisher, Haldane, and Wright, who further defined 

the genetic mechanisms underlying variation within and between species. Thanks to huge 

advancements in sequencing technology during the mid 1960’s and the revolution sparked 

by Motoo Kimura and its neutral theory of molecular evolution (Kimura, 1968) the field 

evolved into what is nowadays perceived as the study of genetic diversity. The study of the 

evolutionary history of species through genetic diversity has historically used neutrality tests, 

the likes of Tajima’s D (Tajima, 1989) and researchers continue to push further our 

understanding of this theoretical framework with, for example, the work of Guillaume Achaz 

in unifying all neutrality tests under a general model (Achaz, 2009). However, the 

confounding effects of demographic events and selection processes have always been an 

issue, as illustrated by numerous works throughout the recent years (Smith & Haigh, 1974 ; 

Tajima, 1989 ; Fu & Li, 1993 ; Simonsen et al., 1995 ; Fay & Wu, 2000 ; Galtier et al., 2000 ; 

Kim & Stephan, 2002 ; Jensen et al., 2005 ; Hahn, 2008). While various approaches have 

been proposed to distinguish the effects of selection from those of demography, such as the 

use of genome-wide data (Nielsen et al., 2005 ; Li & Stephan, 2006), most if not all of these 

works have been using what Brieman characterize as ‘data modeling culture’ (Brieman, 

2001). The recent years have seen the rise of methods based on the ‘algorithmic modeling 

culture’ : machine learning. Armed with this new approach, numerous studies have started to 

apply machine-learning models to population genetics (Caldas et al., 2022; Flagel et al., 

2019; Fraïsse et al., 2020; Gower et al., 2021; Hamid et al., 2023; Kern & Schrider, 2018; 

Kittlein et al., 2022; Lopez et al., 2018; Nait Saada et al., 2023; Sanchez, 2022; Schrider & 

Kern, 2016; Smith et al., 2023; Yelmen et al., 2021). However, many population geneticists 

are unfamiliar with deep-learning tools, making the deployment, use and interpretation 

sometimes challenging. Recent efforts to provide detailed workflows (Whitehouse & 

Schrider, 2022) and the multiplication of pre-trained architectures catered to tackle specific 

population genetics analyzes (Hamid et al., 2022; Sanchez et al., 2023) have largely helped 
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to ensure reproducibility and to reduce the need for retraining complex models as well as 

reducing the carbon footprint of machine learning application (Grealey et al., 2022). 

 

In this thesis, we have proposed a focus on the deployment of deep-learning methods to 

tackle two aspects of the issue of the intertwined effects of demography and selection : the 

classification of a given genomic sample according to plausible demographic scenarios in 

Chapter 1, and the detection and localization of signals of selective sweeps in Chapter 2. 

Both parts focus on each particular problem through the lens of Convolutional Neural 

Networks, a specific type of deep-learning networks that mimics the way the human brain 

processes visual information, making them particularly effective for analyzing complex 

patterns in pictures. 

 

Chapter 1 examines the performance of convolutional neural networks (CNNs) and 

Approximate Bayesian Computation Random Forest (ABC-RF) in classifying demographic 

histories from genomic data. We specifically try to propose an insight into the various 

challenges encountered in developing a deep-learning-based classification method for 

demographic history using genomic data, with a particular focus on the choices made at 

various steps. By evaluating several CNN architectures (three different network architectures 

– two custom designs (simple and mix) and two pre-trained models, efficientNet (Tan & Le, 

2020) and resNet (He et al., 2015) ) and different input data representations (matrices of raw 

genomic alignments, sorted or not, or matrices of summary statistics), we aimed to find 

optimal (or at least better) configurations and assess challenges, such as model 

misspecification and gene flow impacts, that might affect classification accuracy. A key 

finding is the importance of data representation: CNNs trained on sorted-rawData 

significantly outperformed those trained on raw or summary statistics data, indicating that a 

seemingly small change in data pre-processing can substantially improve model 

performance. Additionally, networks trained on data from sweep scenarios showed greater 

robustness than those trained on neutral data, highlighting the importance of including data 

containing enough variability in training sets to maximize the networks generalization 

abilities. Most notably, Chapter 1 of this work emphasizes this point even more as even a 

simple CNN architecture can outperform more complex classifiers when trained on the 

appropriate data and using correct data representation. A simple CNN trained on sweep 

sorted raw data performed exceptionally well, rivaling and sometimes exceeding the 

performance of even pre-trained architectures. This  suggests that success in demographic 

classification depends less on model complexity and more on careful decisions regarding 

data preparation and training dataset composition. 
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Chapter 2 proposes to compare the effectiveness of CNNs and the more traditional 

SweepFinder2 (SF2) method in detecting selective sweeps within genomic data across 

various demographic scenarios. Overall, CNNs demonstrated superior performance in 

identifying sweeps, often surpassing SF2 in terms of accuracy and localization. However, the 

CNN model exhibited higher false-positive rates in neutral simulations, whereas SF2 proved 

to be more conservative, minimizing false positives but also missing sweeps detected by the 

CNN. Notably, CNNs excelled in accurately pinpointing the location of beneficial mutations, a 

task where SF2 was less precise. While this comparison is in itself quite interesting, we 

would like to focus more on the comparison of the different possibilities explored for the CNN 

architecture. The architecture chosen for this study, a pre-trained FasterRCNN (Ren & al., 

2016) model with a ResNet-50-FPN backbone, performed best when trained on data closely 

matching the test data’s demographic context. Nevertheless, models trained on more 

complex demographic histories, such as bottleneck (BTL) or expansion (EXP), showed 

greater flexibility and generalizability, indicating that a more diverse training set 

encompassing varied scenarios might greatly enhance CNN robustness and performances. 

Interestingly, some training parameters, such as the number of retrained backbone layers 

and the use of data augmentation techniques, showed little influence on CNN performance. 

While an extensive parameter search remains crucial for the development of generalizable 

deep-learning applications, this suggests that a more modest approach can still yield 

high-performing models while also reducing computational demand and environmental 

impact. Given the recent attention on parameter efficiency in deep learning, these insights 

align with current efforts to refine models, prioritizing effectiveness over unnecessary 

complexity (Menghani, 2024). Additionally, input data formatting emerged once again as a 

critical factor, with the objDet data format (a way of representing our genomic data thought 

specifically to try and enhance the visualization of selective sweep signals) yielding 

significantly higher accuracy scores than basic summary statistics (sumStats) or raw data 

matrices. This underscores again the importance of well-chosen data representation, an 

insight similarly highlighted in Chapter 1, suggesting that input structure is vital to optimizing 

deep learning performance in population genetics. 

Take Home Message 

CNNs provide a powerful and flexible tool for population genetics, as exemplified in this 

thesis with applications in both demographic classification and selective sweep detection. 

The results underscore CNNs' adaptability, showing that they can effectively classify 

complex demographic scenarios and detect selective sweeps with high accuracy, often 

surpassing traditional methods in certain tasks like localization. However, the effectiveness 
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of CNNs does not hinge on network complexity alone; rather, performance is closely tied to 

the quality of the training data and the chosen input representation. This study highlights 

how even simpler CNN architectures, when paired with well-represented and structured 

datasets, can deliver strong results, sometimes outperforming more intricate, pre-trained 

models. This is essential for future applications, as it suggests that accessible, interpretable 

CNN models could be used widely, given the right data preparation. If we had to summarize 

this thesis into a single message, it would be the following: the success of machine learning 

in population genetics – whether for demographic inference, selective sweep localization or 

any of the other thrilling questions among the myriad of topics in population genetics – is tied 

to the careful and thoughtful representation of the input data. While model parameters and 

architectures are crucial, the representation of data used as inputs remains a primary driver 

of model success, as CNNs – but all deep-learning methods speaking more broadly – rely 

on these representations to effectively extract meaningful patterns from genomic information. 

While not a new discovery by any means, we consider it an important subject to bring to the 

forefront of this conclusion. We could not think of a better way to underscore this fact than by 

citing the insightful work of Yoshua Bengio, Aaron Courville, and Pascal Vincent, 

Representation Learning: A Review and New Perspective (2014): "The performance of 

machine learning methods is heavily dependent on the choice of data representation (or 

features) on which they are applied. For that reason, much of the actual effort in deploying 

machine learning algorithms goes into the design of preprocessing pipelines and data 

transformations that result in a representation of the data that can support effective machine 

learning." 

 

This insight captures the fundamental takeaway of our work, and we would like to conclude 

this thesis by emphasizing a topic we touched on only briefly: the incredible and, as of now, 

barely tapped potential of deep learning for population genetics. As stated by Lex Flagel, 

Yaniv Brandvain and Daniel R. Schrider in their paper ‘The Unreasonable Effectiveness of 

Convolutional Neural Networks in Population Genetic Inference’ (Flagel et al., 2018), “CNNs 

have enormous potential for population genomic inference.”. This statement has been 

proved accurate over the past years, with considerable advancements in the field attributed 

to the expanding use of deep learning. Similarly, Korfmann et al., in ‘Deep Learning in 

Population Genetics’ (Korfmann et al., 2023) emphasize the importance of making these 

methods more accessible and inclusive to population geneticists to allow a broader 

community of researchers to work with them. 

 

We wholeheartedly adhere to this point of view, and are convinced that the numerous 

successes of deep-learning applications in population genetics seen during the past few 
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years are only the beginning. As deep-learning tools become more available, understood, 

and broadly used, we believe they will not only provide solutions to existing challenges but 

will also allow us to tackle new questions and widen our way of considering problems in 

population genomics. 
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hasard d’une pause ou dans les couloirs, et pour tes tous premiers conseils qui 
remontent à l’époque où je soumettais ma demande de financement (ton document 
avec toutes tes questions à l’époque m’avait beaucoup marqué). 
 

- Jef’ et Isabelle, merci d’avoir été là pendant mes études. Vous avez tous les deux su 
me donner l’envie de continuer dans ce cursus au moment où je me posais le plus 
de questions. Et vous avez toujours été, durant ma thèse, des soutiens discrets mais 
réconfortants. 
 

- Merci Cécile, Christelle, Laurence et Anne-Cat’ pour vos sourires dès que vous me 
croisiez - même si nous n’avons pas eu l’occasion de travailler ensemble, votre 
bonne humeur lorsque l’on se croisait était toujours un moment agréable dans ma 
journée. 
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- Merci pour tout ce que tu fais pour le laboratoire Pierre, pour ta présence et ton 
savoir sans lesquels le bâtiment tout entier se serait certainement déjà effondré ! 
 

- Enfin, merci à toutes les personnes avec qui j’ai pu travailler ou qui ont simplement 
pu me croiser au laboratoire, et je n’ai pas cité ici. Vous avez tous été les raisons qui 
ont rendu ces quelques années passées au sein du laboratoire aussi agréables pour 
moi. 

Aux non-permanents, “les jeunes” 

Vous êtes sans aucun doute ce qui m’a permis de tenir jusqu’au bout de ma thèse, et rien 
n’aurait été pareil sans vous, sans votre bonne humeur, sans votre soutien et sans ces 
pauses thé et ces soirées à discuter autour d’une petite bière et d’une énième partie de jeu 
de société. Merci à ceux qui étaient déjà là pour m’accueillir quand je suis arrivé, merci à 
celles avec qui j’ai eu la chance de démarrer ma thèse et merci à tous les “petits” nouveaux. 
Citer tout le monde et toutes les raisons dans ce manuscrit serait trop long, mais vous êtes 
tous un peu la raison pour laquelle j’ai été heureux de passer ces trois ans au labo. 
 
Agathe, chère Reine (actuelle) des doctorants, merci pour toute ton aide pour l’organisation 
et les longues discussions qu’on a eu lors de ce voyage en Écosse, ainsi que pour ton 
soutien constant depuis qu’on s’est rencontré durant mon stage de Master ! Et merci pour 
ces souvenirs géniaux de nos (tentatives) d’enseignement des ACP aux étudiants ! 
 
Arthur, je ferais bref parce que c’est toi qui dans quelques années aura à écrire tant de 
choses, mais je tenais à te remercier pour ton amitié et ta présence qui ont été un grand 
soutien dès ton arrivée et jusqu’à la fin de ma thèse. Bon courage pour ta thèse cher “petit 
stagiaire” ! T’es quelqu’un de génial, continue tu es sur la bonne voie ! 
 
Achille, merci pour ton soutien, et merci d’être une des rares personnes qui me comprend 
quand je parle de la douceur de la vie (et le piquant des plats !) sur les îles où on peut 
profiter du Soleil ! Merci pour ces petites bières où on discutait de la vie, en espérant qu’il y 
en aura encore quelques-unes à l’avenir. 
 
Flavia, merci infiniment pour tout. Merci d’avoir été ma petite lueur aussi bien dans les 
moments où tout allait bien que dans les périodes les plus difficiles. Tu es un concentré de 
bonne humeur, de joie et de folie. Merci de m’avoir aidé à persévérer, de m’avoir autant 
soutenu et d’avoir autant partagé avec moi (et de m’avoir traumatisé dès mon troisième jour 
dans le 206 !). Ma thèse n’aurait pas pu avoir la même saveur sans toi. 
 
Pour finir, j’ai une pensée toute particulière pour ce fameux bureau 206, qui a été une des 
choses les plus importantes pour moi pendant cette thèse. Moi qui suis d’un naturel timide et 
réservé, vous avez su me faire me sentir chez moi, et à ma place dans un petit noyau qu’a 
été le 206 pendant quelques années. Claire, Flavia, François, merci du fond du cœur pour 
tous ces souvenirs et ces moments partagés ensemble. 
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À mes amis 

Alex, merci d’être là pour moi depuis toutes ces années. C’est en partie “à cause” de toi que 
je suis venu m’installer à Lille à la base, et tu n’as cessé d’être une de ces rares constantes 
dans ma vie depuis qu’on se connaît. Merci pour tout, pour ces longues soirées “sirop à la 
menthe” à la maison, pour ce week-end ‘barre de cake’, pour les longs débats sur Bleach, 
les soirées JdR, bref… Merci de m’avoir soutenu au travers de toutes ces épreuves, depuis 
tout ce temps. 
 
Laurent, Justine, merci d’être mes “presque Parisiens” préférés. On n’a pas l’occasion de se 
voir aussi souvent qu’on le voudrait, mais les occasions que l’on passe ensemble sont 
toujours des moments qui me font beaucoup de bien. Merci d’avoir toujours été présent 
dans les moments difficiles au cours de ces dernières années et, je l’espère, pour les 
années à venir (et une pensée particulière pour ces… 27 ans depuis qu’on se connaît, 
Laurent ?). 
 
Louis, merci de t’être dit que c’était une bonne idée de me demander si j’avais envie de faire 
du baseball. Merci de t’être dit que c’était une bonne idée de venir me parler de Vocaloid et 
d’anime. Merci d’être qui tu es, et d’être devenu mon ami. Désolé d’autant me confier à toi 
quand j’ai des moments de mou, mais merci du fond du cœur de toujours répondre présent.  
 
Guillaume, merci d’avoir été là quand je suis venu m’installer sur Lille, pour ta présence pour 
“veiller sur mini-Larx” qui venait d’arriver, de m’avoir mis une bastos de sniper dans le plus 
grand des calmes au milieu d’une conversation, et de m’avoir aidé à y voir plus clair dans les 
moments difficiles ces dernières années (et pour les diagnostiques “Tu survivras.” !). Quand 
je passerais vous voir maintenant, on pourra se dire “Bonjour Dr ? Bonjour Dr.”. 
 
Et une petite pensée également pour vous, Anne et Pierre, qui êtes encore pour l’instant loin 
des yeux, mais qui restez toujours près de mon cœur. Merci d’avoir été là depuis toutes ces 
années, et d’avoir été présents (et si doux !) chaque fois que je rentrais à la Réunion pour 
passer du temps avec moi. 
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À ma famille 

Finalement, ma plus grande reconnaissance va à mes parents, et à mon frère. 
 
Clément, tu as été présent dans ma vie depuis toujours. C’est grâce à toi que j’ai pu venir 
m’installer en Métropole, que j’ai réussi à me ressaisir dans mes études et que je sais que 
j’aurais toujours quelqu’un qui fera de son mieux pour essayer de m’aider et me soutenir. Je 
n’ai pas la place de m’étendre ici, donc je vais faire simple, parce que j’espère que c’est 
suffisant. Merci Clem. Merci pour tout. Peut-être que me mettre à la poubelle dès la 
naissance nous aurait épargné quelques inquiétudes. Mais ça y est, Clem, je suis docteur.  

 
“Next, it’s your turn.” 

 
Maman, merci pour tout l’amour que tu me portes depuis même avant ma naissance. Tu as 
toujours été l’îlot de douceur dans ma vie et tu m’a toujours soutenu inconditionnellement, 
dans mes études mais aussi dans ma vie. Tu me manques énormément, et saches que tu 
es et sera toujours ma petite maman. Merci Maman. 
 
Papa, merci pour tout l’amour que tu m’as donné et tous les sacrifices que tu as fait pour 
moi. Merci pour tes conseils, merci de prendre soin de Ioshi, et merci d’être mon vieux sage 
dans la forêt. Je suis désolé pour toute l’inquiétude que j’ai pu te causer depuis toutes ces 
années. J’espère sincèrement que j’ai réussi à te rendre fier Papa. 
 

Je ne serais pas la personne que je suis aujourd’hui sans vous trois. 
Merci du plus profond du cœur.  
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Supplementary Table 1 - parameters used for the simulations of pseudo genomic data. General parameters are used for all scenarios, while 
the parameters under the CST, BTL or EXP sections are used for simulating the corresponding scenario.  
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Parameter Use 'Formula’ 
General Parameters 

N_sampled Used to define the population size Drawn 
samp Number of sampled haploid genomes User defined 

L Genome length (in bp) User defined 
r Recombination rate (in recombination per generation per bp) User defined 

nb_SNP Number of SNP simulated by the simulator User defined 
Ns_sampled Used to define the selection coefficient Drawn 

position Position of the beneficial mutation Drawn between [1, L] 
4.N.m Migration rate, define as 4.N.m User defined 

scalar_T_split Used to define the generation of the split Drawn 
scalar_T_event Used to define the generation of demographic/selection events Drawn 

scalar_N Used to define the population size in BTL and EXP scenarios Drawn 
CST 

Nanc Effective size of the ancestral population Nanc = N_sampled 
NA Effective size of the population A NA = N_sampled 

T_split Generation of the split scalar_T_split * NA 

T_dem Generation of the demographic change scalar_T_event * T_split 
T_selection Generation of the onset of the positive selection scalar_T_event * T_split 

s Selection coefficient of the beneficial mutation Ns_sampled / NA 

BTL 
Nanc Effective size of the ancestral population Nanc = N_sampled 
NA Effective size of the population A NA = N_sampled * scalar_N 

T_split Generation of the split scalar_T_split * NA 

T_dem Generation of the demographic change scalar_T_dem * NA 

T_selection Generation of the onset of the positive selection scalar_T_selection * NA 

s Selection coefficient of the beneficial mutation Ns_sampled / NA 
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EXP 
Nanc Effective size of the ancestral population Nanc = N_sampled * scalar_N 
NA Effective size of the population A NA = N_sampled 

T_split Generation of the split scalar_T_split * NA 

T_dem Generation of the demographic change scalar_T_dem * NA 

T_selection Generation of the onset of the positive selection scalar_T_selection * NA 

s Selection coefficient of the beneficial mutation Ns_sampled / NA 



Supplementary Tables 
 

Supplementary Table 2 - summary statistics computed along the genomes, organized in the same order as they are in the sumStats matrices. 
The first seven statistics (in gray) are mainly focused on nucleotidic diversity while the seven other statistics focus on haplotype diversity.  
 

Summary Statistic Description / Usage 

Nucleotide diversity π (average) Measure the polymorphism within the population (pairwise average number of nucleotide differences 
per site) 

Nucleotide diversity π (standard deviation) The variability in nucleotide diversity across loci; Measure the polymorphism within the population 
Watterson’s estimator θ (average) Estimates genetic diversity based on mutation rates and the number of segregating sites 

Tajima’s D 
Neutrality test comparing observed genetic variation to expected values under neutral evolution, 
identify sequences which do not fit the neutral theory model at equilibrium between mutation and 

genetic drift 
Achaz’s Y Neutrality tests similar to Tajima’s D but immune to sequencing errors (if singletons) - see Achaz, 2008 

Pearson r for π Correlation coefficient of the nucleotide diversity π 
Pearson’s p-value for π Probability to find the same result if the correlation coefficient were zero (null hypothesis) 
Number of haplotypes Total number of distinct haplotypes within the sample, reflecting genetic variation 

Haplotype’s homozygosity (H1) Probability that two random haplotypes are identical, measuring genetic uniformity 
Haplotype’s homozygosity without the most common 

haplotype (H2) Similar to H1, excluding the most common haplotype, highlighting more rare haplotype diversity 

Haplotype’s homozygosity considering the two most 
common haplotype as the same (H12) 

Probability that two random haplotypes are identical, while considering the two most common as the 
same 

H2 over H1 Ratio reflecting the relative frequency of the most common haplotype 

Linkage disequilibrium measured by D Quantifies non-random association between alleles at two loci, measured by the deviation of haplotype 
frequencies from expected values based on gene frequencies. 

Linkage disequilibrium measured by r2 Square of the correlation coefficient between “the presence or absence of a particular allele at a locus” 
and “the presence or absence of a particular allele at the second locus” 
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Supplementary Table 3 - number of parameters of each CNN architecture used for the classification of demographic scenarios. 
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CNN type model data type # of parameters 
simple k7  rawData 2 799 267 
simple k9  rawData 2 788 435 
simple k7 sorted 1 783 283 
simple k9 sorted 1 270 387 
simple k3 stats 75 859 

mix k7 rawData 2 883 803 
mix k9 rawData 2 872 611 
mix k7 sorted 1 867 459 
mix k9 sorted 1 354 563 

pretrained efficientNet rawData 4 010 815 
pretrained efficientNet sorted 4 010 815 
pretrained efficientNet stats 4 010 815 
pretrained resNet rawData 11 171 779 
pretrained resNet sorted 11 171 779 
pretrained resNet stats 11 171 779 
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Supplementary Table 4 -  detailed breakdown of the different CNNs parameters used for the classification task. Accuracy and loss values are 
obtained on neutral test datasets. 

 
CNN type is the type of architecture (simple, mix or pre-trained); model is either the width of the convolutional kernel used (simple and mix) or 
the type of pre-trained architecture used (efficientNet or resNet); data type is the type of data input used to train the CNN (rawData, sorted for 
sorted-rawData or stats for sumStats); train on indicates whether the training was on sweep (in blue) or neutral (in green) dataset; data aug 
indicates if data augmentation is used during the training; batch size is the number of input data used in each batch during the training; nb 
workers is the number of parallel processes launched; ini learning rate is the initial value of the learning rate at the beginning of the training; 
weight decay is the value Ⲗ used to prevent an overfitting by reducing some of the bigger weights; scheduler steps is the number of epochs 
before a modification of the learning rate; scheduler gamma is a value used to progressively educe the learning rate as the training progress; 
epochs is the number of epochs of the training; test acc is the accuracy obtained on the test dataset; test loss is the accuracy obtained on the 
test dataset; test mig acc is the accuracy obtained on the mig-test dataset; test mig loss is the loss obtained on the mig-test dataset. 
            

CNN type model data type train on data aug batch 
size 

nb 
workers 

init learning 
rate 

weight 
decay 

scheduler 
steps 

scheduler 
gamma epochs test acc test loss test mig 

acc 
test mig 

loss 
mix k7  rawData sweep Yes 32 10 0.00001 0.005 3 0.8 100 0.9627 0.3207 0.6747 1.1947 
mix k7  rawData sweep No 32 10 0.00001 0.005 3 0.8 100 0.9317 0.2505 0.8247 0.5215 
mix k9  rawData sweep Yes 32 10 0.00001 0.005 3 0.8 100 0.959 0.1932 0.7607 0.7918 
mix k9  rawData sweep No 32 10 0.00001 0.005 3 0.8 100 0.9183 0.3769 0.8043 0.7999 
mix k7 sorted sweep Yes 32 10 0.00001 0.005 3 0.8 100 0.975 0.1063 0.7453 1.0697 
mix k7 sorted sweep No 32 10 0.00001 0.005 3 0.8 100 0.9743 0.1078 0.7493 0.9381 
mix k9 sorted sweep Yes 32 10 0.00001 0.005 3 0.8 100 0.947 0.1834 0.823 0.6266 
mix k9 sorted sweep No 32 10 0.00001 0.005 3 0.8 100 0.9703 0.1187 0.7703 0.8872 

pretrained efficientNet  rawData sweep Yes 32 10 0.00001 0.005 5 0.1 100 0.953 0.1294 0.813 0.9552 
pretrained efficientNet  rawData sweep No 32 10 0.00001 0.005 5 0.1 100 0.9477 0.1607 0.817 0.8455 
pretrained efficientNet sorted sweep Yes 32 10 0.00001 0.005 5 0.1 100 0.9567 0.1466 0.7963 1.169 
pretrained efficientNet sorted sweep No 32 10 0.00001 0.005 5 0.1 100 0.957 0.115 0.7963 1.1429 
pretrained efficientNet stats sweep Yes 32 10 0.00001 0.005 5 0.1 100 0.9537 0.1658 0.8393 0.4614 
pretrained efficientNet stats sweep No 32 10 0.00001 0.005 5 0.1 100 0.9377 0.2167 0.841 0.4466 
pretrained resNet  rawData sweep Yes 32 10 0.00001 0.005 5 0.1 100 0.9357 0.201 0.785 0.6907 
pretrained resNet  rawData sweep No 32 10 0.00001 0.005 5 0.1 100 0.928 0.2307 0.7923 0.6379 
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pretrained resNet sorted sweep Yes 32 10 0.00001 0.005 5 0.1 100 0.9247 0.2552 0.7887 0.7012 
pretrained resNet sorted sweep No 32 10 0.00001 0.005 5 0.1 100 0.9487 0.187 0.8017 0.6307 
pretrained resNet stats sweep Yes 32 10 0.00001 0.005 5 0.1 100 0.95 0.2158 0.836 0.4559 
pretrained resNet stats sweep No 32 10 0.00001 0.005 5 0.1 100 0.942 0.1978 0.839 0.4791 

simple k7  rawData sweep Yes 32 10 0.00001 0.005 3 0.8 100 0.898 0.3549 0.7777 0.6345 
simple k7  rawData sweep No 32 10 0.00001 0.005 3 0.8 100 0.7783 0.513 0.5163 1.5994 
simple k9  rawData sweep Yes 32 10 0.00001 0.005 3 0.8 100 0.9663 0.1222 0.814 0.8381 
simple k9  rawData sweep No 32 10 0.00001 0.005 3 0.8 100 0.9057 0.3899 0.784 0.8382 
simple k7 sorted sweep No 32 10 0.00001 0.005 3 0.8 100 0.9777 0.0735 0.7363 1.2785 
simple k9 sorted sweep No 32 10 0.00001 0.005 3 0.8 100 0.9727 0.097 0.7417 1.0098 
simple k3 stats sweep Yes 32 10 0.00001 0.005 3 0.8 100 0.875 0.3745 0.8477 0.457 
simple k3 stats sweep No 32 10 0.00001 0.005 3 0.8 100 0.9477 0.2897 0.8693 0.4242 

mix k7  rawData neutral Yes 32 10 0.00001 0.005 3 0.8 100 0.649 1.0052 0.7383 0.7243 
mix k7  rawData neutral No 32 10 0.00001 0.005 3 0.8 100 0.9447 0.1548 0.6713 1.8246 
mix k9  rawData neutral Yes 32 10 0.00001 0.005 3 0.8 100 0.4677 1.4135 0.496 1.3064 
mix k9  rawData neutral No 32 10 0.00001 0.005 3 0.8 100 0.9223 0.2498 0.6523 1.327 
mix k7 sorted neutral Yes 32 10 0.00001 0.005 3 0.8 100 0.909 0.2464 0.8117 0.4057 
mix k7 sorted neutral No 32 10 0.00001 0.005 3 0.8 100 0.663 0.6811 0.4477 2.3693 
mix k9 sorted neutral Yes 32 10 0.00001 0.005 3 0.8 100 0.954 0.1507 0.7133 1.3242 
mix k9 sorted neutral No 32 10 0.00001 0.005 3 0.8 100 0.7837 0.6441 0.5213 3.3728 

pretrained efficientNet  rawData neutral Yes 32 10 0.00001 0.005 5 0.1 100 0.9893 0.0358 0.7597 1.113 
pretrained efficientNet  rawData neutral No 32 10 0.00001 0.005 5 0.1 100 0.988 0.04 0.7787 1.0353 
pretrained efficientNet sorted neutral Yes 32 10 0.00001 0.005 5 0.1 100 0.9893 0.0299 0.7797 1.1952 
pretrained efficientNet sorted neutral No 32 10 0.00001 0.005 5 0.1 100 0.9863 0.0444 0.774 1.2269 
pretrained efficientNet stats neutral No 32 10 0.00001 0.005 5 0.1 100 0.9703 0.1048 0.8823 0.3386 
pretrained efficientNet stats neutral Yes 32 10 0.00001 0.005 5 0.1 100 0.978 0.0836 0.887 0.3537 
pretrained resNet  rawData neutral Yes 32 10 0.00001 0.005 5 0.1 100 0.9753 0.082 0.8157 0.7109 
pretrained resNet  rawData neutral No 32 10 0.00001 0.005 5 0.1 100 0.9857 0.0668 0.7683 0.8682 
pretrained resNet sorted neutral Yes 32 10 0.00001 0.005 5 0.1 100 0.9823 0.0709 0.7873 0.6879 
pretrained resNet sorted neutral No 32 10 0.00001 0.005 5 0.1 100 0.983 0.061 0.785 0.8415 
pretrained resNet stats neutral Yes 32 10 0.00001 0.005 5 0.1 100 0.971 0.1191 0.8813 0.3543 
pretrained resNet stats neutral No 32 10 0.00001 0.005 5 0.1 100 0.9633 0.1248 0.835 0.4325 
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simple k7  rawData neutral Yes 32 10 0.00001 0.005 3 0.8 100 0.899 0.2387 0.6273 2.1858 
simple k7  rawData neutral No 32 10 0.00001 0.005 3 0.8 100 0.801 0.4251 0.589 1.4878 
simple k9  rawData neutral Yes 32 10 0.00001 0.005 3 0.8 100 0.7783 0.5088 0.559 2.2713 
simple k9  rawData neutral No 32 10 0.00001 0.005 3 0.8 100 0.8017 0.4045 0.578 1.9388 
simple k7 sorted neutral No 32 10 0.00001 0.005 3 0.8 100 0.8147 0.4739 0.572 2.9566 
simple k9 sorted neutral No 32 10 0.00001 0.005 3 0.8 100 0.734 0.7379 0.5107 3.7589 
simple k3 stats neutral Yes 32 10 0.00001 0.005 3 0.8 100 0.8833 0.3037 0.6637 0.8692 
simple k3 stats neutral No 32 10 0.00001 0.005 3 0.8 100 0.9657 0.1422 0.8857 0.3168 
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Supplementary Table 5 - detailed breakdown of the different CNNs parameters used for the classification task. Accuracy and loss values are 
obtained on sweep test datasets. 

 
CNN type is the type of architecture (simple, mix or pre-trained); model is either the width of the convolutional kernel used (simple and mix) or 
the type of pre-trained architecture used (efficientNet or resNet); data type is the type of data input used to train the CNN (rawData, sorted for 
sorted-rawData or stats for sumStats); train on indicates whether the training was on sweep or neutral dataset; data aug indicates if data 
augmentation is used during the training; batch size is the number of input data used in each batch during the training; nb workers is the 
number of parallel processes launched; ini learning rate is the initial value of the learning rate at the beginning of the training; weight decay is 
the value Ⲗ used to prevent an overfitting by reducing some of the bigger weights; scheduler steps is the number of epochs before a 
modification of the learning rate; scheduler gamma is a value used to progressively reduce the learning rate as the training progress; epochs 
is the number of epochs of the training; test acc is the accuracy obtained on the test dataset; test loss is the accuracy obtained on the test 
dataset; test mig acc is the accuracy obtained on the mig-test dataset; test mig loss is the loss obtained on the mig-test dataset. 
 

CNN type model data type train on data aug batch 
size 

nb 
workers 

init learning 
rate 

weight 
decay 

scheduler 
steps 

scheduler 
gamma epochs test acc test loss test mig 

acc 
test mig 

loss 
mix k7  rawData sweep Yes 32 10 0.00001 0.005 3 0.8 100 0.8343 0.4602 0.8343 0.9688 
mix k7  rawData sweep No 32 10 0.00001 0.005 3 0.8 100 0.8123 0.4544 0.8123 0.7387 
mix k9  rawData sweep Yes 32 10 0.00001 0.005 3 0.8 100 0.553 1.0758 0.5530 1.9506 
mix k9  rawData sweep No 32 10 0.00001 0.005 3 0.8 100 0.914 0.2415 0.9140 0.5879 
mix k7 sorted sweep Yes 32 10 0.00001 0.005 3 0.8 100 0.8667 0.3772 0.8666 1.3358 
mix k7 sorted sweep No 32 10 0.00001 0.005 3 0.8 100 0.8943 0.2869 0.8943 1.1805 
mix k9 sorted sweep Yes 32 10 0.00001 0.005 3 0.8 100 0.894 0.3057 0.8940 1.1528 
mix k9 sorted sweep No 32 10 0.00001 0.005 3 0.8 100 0.8907 0.2775 0.8906 1.0419 

pretrained efficientNet  rawData sweep Yes 32 10 0.00001 0.005 5 0.1 100 0.9733 0.0729 0.846 0.6407 
pretrained efficientNet  rawData sweep No 32 10 0.00001 0.005 5 0.1 100 0.9713 0.089 0.873 0.5403 
pretrained efficientNet sorted sweep Yes 32 10 0.00001 0.005 5 0.1 100 0.976 0.0618 0.8753 0.676 
pretrained efficientNet sorted sweep No 32 10 0.00001 0.005 5 0.1 100 0.977 0.0747 0.8773 0.6878 
pretrained efficientNet stats sweep Yes 32 10 0.00001 0.005 5 0.1 100 0.935 0.1862 0.8847 0.3404 
pretrained efficientNet stats sweep No 32 10 0.00001 0.005 5 0.1 100 0.9263 0.1935 0.8687 0.3841 
pretrained resNet  rawData sweep Yes 32 10 0.00001 0.005 5 0.1 100 0.9587 0.1348 0.8903 0.3412 
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pretrained resNet  rawData sweep No 32 10 0.00001 0.005 5 0.1 100 0.952 0.1413 0.9063 0.2749 
pretrained resNet sorted sweep Yes 32 10 0.00001 0.005 5 0.1 100 0.9563 0.1264 0.888 0.3476 
pretrained resNet sorted sweep No 32 10 0.00001 0.005 5 0.1 100 0.964 0.1248 0.9063 0.2804 
pretrained resNet stats sweep Yes 32 10 0.00001 0.005 5 0.1 100 0.892 0.3081 0.8477 0.4163 
pretrained resNet stats sweep No 32 10 0.00001 0.005 5 0.1 100 0.9033 0.2903 0.863 0.4187 

simple k7  rawData sweep Yes 32 10 0.00001 0.005 3 0.8 100 0.6193 0.9568 0.6447 0.8472 
simple k7  rawData sweep No 32 10 0.00001 0.005 3 0.8 100 0.3333 1.7008 0.3333 2.3553 
simple k9  rawData sweep Yes 32 10 0.00001 0.005 3 0.8 100 0.8933 0.2748 0.7727 0.6473 
simple k9  rawData sweep No 32 10 0.00001 0.005 3 0.8 100 0.749 0.6159 0.5567 1.385 
simple k7 sorted sweep No 32 10 0.00001 0.005 3 0.8 100 0.942 0.1845 0.8263 0.5235 
simple k9 sorted sweep No 32 10 0.00001 0.005 3 0.8 100 0.9427 0.1537 0.8857 0.371 
simple k3 stats sweep Yes 32 10 0.00001 0.005 3 0.8 100 0.886 0.3392 0.8407 0.4356 
simple k3 stats sweep No 32 10 0.00001 0.005 3 0.8 100 0.873 0.3799 0.8043 0.4992 

mix k7  rawData neutral Yes 32 10 0.00001 0.005 3 0.8 100 0.674 1.6838 0.7757 1.11825 
mix k7  rawData neutral No 32 10 0.00001 0.005 3 0.8 100 0.5143 3.428 0.4443 5.176 
mix k9  rawData neutral Yes 32 10 0.00001 0.005 3 0.8 100 0.873 0.7638 0.766 1.1998 
mix k9  rawData neutral No 32 10 0.00001 0.005 3 0.8 100 0.887 0.7983 0.7757 1.2016 
mix k7 sorted neutral Yes 32 10 0.00001 0.005 3 0.8 100 0.7303 1.3871 0.582 2.3825 
mix k7 sorted neutral No 32 10 0.00001 0.005 3 0.8 100 0.7337 1.2214 0.593 2.254 
mix k9 sorted neutral Yes 32 10 0.00001 0.005 3 0.8 100 0.7747 1.0467 0.6207 2.0649 
mix k9 sorted neutral No 32 10 0.00001 0.005 3 0.8 100 0.7443 1.1806 0.5913 2.346 

pretrained efficientNet  rawData neutral Yes 32 10 0.00001 0.005 5 0.1 100 0.915 0.4411 0.7997 0.998 
pretrained efficientNet  rawData neutral No 32 10 0.00001 0.005 5 0.1 100 0.911 0.5079 0.7933 1.0061 
pretrained efficientNet sorted neutral Yes 32 10 0.00001 0.005 5 0.1 100 0.9193 0.5607 0.8187 1.2256 
pretrained efficientNet sorted neutral No 32 10 0.00001 0.005 5 0.1 100 0.927 0.3801 0.82 1.1307 
pretrained efficientNet stats neutral No 32 10 0.00001 0.005 5 0.1 100 0.8737 0.5589 0.829 0.6997 
pretrained efficientNet stats neutral Yes 32 10 0.00001 0.005 5 0.1 100 0.8507 0.5678 0.8307 0.6256 
pretrained resNet  rawData neutral Yes 32 10 0.00001 0.005 5 0.1 100 0.904 0.4424 0.8547 0.585 
pretrained resNet  rawData neutral No 32 10 0.00001 0.005 5 0.1 100 0.8947 0.4038 0.8317 0.6344 
pretrained resNet sorted neutral Yes 32 10 0.00001 0.005 5 0.1 100 0.912 0.3455 0.8543 0.5216 
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pretrained resNet sorted neutral No 32 10 0.00001 0.005 5 0.1 100 0.9043 0.3747 0.8453 0.5388 
pretrained resNet stats neutral Yes 32 10 0.00001 0.005 5 0.1 100 0.8367 0.5433 0.797 0.615 
pretrained resNet stats neutral No 32 10 0.00001 0.005 5 0.1 100 0.866 0.472 0.836 0.5691 

simple k7  rawData neutral Yes 32 10 0.00001 0.005 3 0.8 100 0.807 2.2981 0.838 1.8419 
simple k7  rawData neutral No 32 10 0.00001 0.005 3 0.8 100 0.8517 1.5857 0.733 1.8493 
simple k9  rawData neutral Yes 32 10 0.00001 0.005 3 0.8 100 0.8427 0.9281 0.7073 1.5898 
simple k9  rawData neutral No 32 10 0.00001 0.005 3 0.8 100 0.6433 1.8901 0.5237 3.0616 
simple k7 sorted neutral No 32 10 0.00001 0.005 3 0.8 100 0.6547 1.9256 0.5263 2.9769 
simple k9 sorted neutral No 32 10 0.00001 0.005 3 0.8 100 0.669 1.6282 0.5377 3.1418 
simple k3 stats neutral Yes 32 10 0.00001 0.005 3 0.8 100 0.848 0.7876 0.815 0.7593 
simple k3 stats neutral No 32 10 0.00001 0.005 3 0.8 100 0.7923 1.0148 0.738 1.0848 
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Supplementary Table 6 - comparison of the accuracy of the worst CNNs architecture in case of model misspecification. 
 

Δ accuracy and Δ loss are computed as the difference in accuracy or loss when the model is used to make inferences on a dataset with 
misspecified selection compared to its training dataset. In bold, cases when model misspecification increases the accuracy and/or reduces the 
loss. 
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Train on Predict on CNN Input Data Model accuracy loss Δ accuracy Δ loss 

neutral 

neutral 

simple sorted-rawData k9 0.734 0.738 - - 

mix rawDAta k9 0.468 0.141 - - 

pre-trained sumStats resNet 0.963 0.125 - - 

sweep 

simple rawData k7 0.778 0.513 + 0.044 - 0.225 

mix rawData k9 0.918 0.377 + 0.45 - 0.236 

pre-trained sorted-rawData resNet 0.925 0.255 - 0.038 + 0.13 

sweep 

neutral 

simple rawData k9 0.643 1.89 + 0.31 + 0.19 

mix rawData k7 0.514 3.43 - 0.039 + 2.35 

pre-trained sumStats resNet 0.837 0.543 - 0.055 + 0.235 

sweep 

simple rawData k7 0.333 1.7 - - 

mix rawData k9 0.553 1.08 - - 

pre-trained sumStats resNet 0.892 0.308 - - 
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Supplementary Table 7 - detailed breakdown of the different CNNs parameters used for the object detection task. 
 
CNN Name is the name of architecture, composed of: the scenario, the type of data used, the number of retrained backbone layers and finally 
the use or not of data augmentation; scenario is the demographic scenario of the simulations used for the CNN training (CST, BTL or EXP); 
data type is the type of data input used to train the CNN (sorted for sorted-rawData, stats for sumStats or objDet for sumStats scaled on the 
variability intra-simulation); backbone layers indicates the number of backbone layers that are unfrozen and fine-tuned during the training (4 or 
5); data aug indicates if data augmentation is used during the training; batch size is the number of input data used in each batch during the 
training; nb workers is the number of parallel processes launched; ini learning rate is the initial value of the learning rate at the beginning of 
the training; weight decay is the value Ⲗ used to prevent an overfitting by reducing some of the bigger weights; scheduler steps is the number 
of epochs before a modification of the learning rate; scheduler gamma is a value used to progressively reduce the learning rate as the training 
progress; epochs is the number of epochs of the training; test acc is the accuracy obtained on the test dataset; test loss is the accuracy 
obtained on the test dataset; test mig acc is the accuracy obtained on the mig-test dataset. 
            

CNN Name scenario data type backbone 
layers data aug batch 

size 
nb 

workers 
init learning 

rate weight decay scheduler 
steps 

scheduler 
gamma epochs 

 CST_objDet_backbone_4_aug CST objDet 4 Yes 8 2 0.0001 0.001 3 0.9 150 
 CST_objDet_backbone_4_noaug CST objDet 4 No 8 2 0.0001 0.001 3 0.9 150 
 CST_objDet_backbone_5_aug CST objDet 5 Yes 8 2 0.0001 0.001 3 0.9 150 

 CST_objDet_backbone_5_noaug CST objDet 5 No 8 2 0.0001 0.001 3 0.9 150 
 CST_sorted_backbone_4_aug CST sorted 4 Yes 8 2 0.0001 0.001 3 0.9 150 

 CST_sorted_backbone_4_noaug CST sorted 4 No 8 2 0.0001 0.001 3 0.9 150 
 CST_sorted_backbone_5_aug CST sorted 5 Yes 8 2 0.0001 0.001 3 0.9 150 

 CST_sorted_backbone_5_noaug CST sorted 5 No 8 2 0.0001 0.001 3 0.9 150 
 CST_stats_backbone_4_noaug CST stats 4 No 8 2 0.0001 0.001 3 0.9 150 
 CST_stats_backbone_5_noaug CST stats 5 No 8 2 0.0001 0.001 3 0.9 150 
 BTL_objDet_backbone_4_aug BTL objDet 4 Yes 8 2 0.0001 0.001 3 0.9 150 

 BTL_objDet_backbone_4_noaug BTL objDet 4 No 8 2 0.0001 0.001 3 0.9 150 
 BTL_objDet_backbone_5_aug BTL objDet 5 Yes 8 2 0.0001 0.001 3 0.9 150 

 BTL_objDet_backbone_5_noaug BTL objDet 5 No 8 2 0.0001 0.001 3 0.9 150 
 BTL_sorted_backbone_4_aug BTL sorted 4 Yes 8 2 0.0001 0.001 3 0.9 150 

 BTL_sorted_backbone_4_noaug BTL sorted 4 No 8 2 0.0001 0.001 3 0.9 150 
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 BTL_sorted_backbone_5_aug BTL sorted 5 Yes 8 2 0.0001 0.001 3 0.9 150 
 BTL_sorted_backbone_5_noaug BTL sorted 5 No 8 2 0.0001 0.001 3 0.9 150 

 BTL_stats_backbone_4_aug BTL stats 4 Yes 8 2 0.0001 0.001 3 0.9 150 
 BTL_stats_backbone_4_noaug BTL stats 4 No 8 2 0.0001 0.001 3 0.9 150 
 BTL_stats_backbone_5_noaug BTL stats 5 No 8 2 0.0001 0.001 3 0.9 150 
 EXP_objDet_backbone_4_aug EXP objDet 4 Yes 8 2 0.0001 0.001 3 0.9 150 

 EXP_objDet_backbone_4_noaug EXP objDet 4 No 8 2 0.0001 0.001 3 0.9 150 
 EXP_objDet_backbone_5_aug EXP objDet 5 Yes 8 2 0.0001 0.001 3 0.9 150 

 EXP_objDet_backbone_5_noaug EXP objDet 5 No 8 2 0.0001 0.001 3 0.9 150 
 EXP_sorted_backbone_4_aug EXP sorted 4 Yes 8 2 0.0001 0.001 3 0.9 150 

 EXP_sorted_backbone_4_noaug EXP sorted 4 No 8 2 0.0001 0.001 3 0.9 150 
 EXP_sorted_backbone_5_aug EXP sorted 5 Yes 8 2 0.0001 0.001 3 0.9 150 

 EXP_sorted_backbone_5_noaug EXP sorted 5 No 8 2 0.0001 0.001 3 0.9 150 
 EXP_stats_backbone_4_aug EXP stats 4 Yes 8 2 0.0001 0.001 3 0.9 150 

 EXP_stats_backbone_4_noaug EXP stats 4 No 8 2 0.0001 0.001 3 0.9 150 
 EXP_stats_backbone_5_noaug EXP stats 5 No 8 2 0.0001 0.001 3 0.9 150 
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Supplementary Table 8 - detailed breakdown of the different CNNs parameters used for the object detection task. 
 
CNN Name is the name of architecture, composed of: the scenario, the type of data used, the number of retrained backbone layers and finally 
the use or not of data augmentation; map50 is the mean average precision (mAP) when the Intersection over Union (IoU) threshold is set at 
0.5; map75 is similar to map50 but with a higher IoU threshold of 0.75; mar is the mean average recall (mAR), computing the average recall 
over multiple IoU thresholds (between 0.5 to 0.95 in increments of 0.05). 
          

CNN Name BTL CST EXP MGB MIG MGX 
map50 map75 mar map50 map75 mar map50 map75 mar map50 map75 mar map50 map75 mar map50 map75 mar 

BTL_objDet_backbone_4_aug 0,6459 0,6067 0,6189 0,6591 0,5551 0,5910 0,2084 0,1655 0,2119 0,6769 0,6361 0,6426 0,6804 0,5475 0,5933 0,2105 0,1535 0,2305 
BTL_objDet_backbone_4_noaug 0,6445 0,5963 0,6159 0,6564 0,5616 0,5921 0,2131 0,1587 0,2101 0,6733 0,6362 0,6438 0,6840 0,5665 0,6018 0,2147 0,1428 0,2232 
BTL_objDet_backbone_5_aug 0,6459 0,5939 0,6172 0,6470 0,5411 0,5811 0,2004 0,1575 0,2103 0,6862 0,6403 0,6465 0,6698 0,5579 0,5845 0,2074 0,1519 0,2163 

BTL_objDet_backbone_5_noaug 0,6470 0,6067 0,6182 0,6566 0,5598 0,5905 0,1976 0,1521 0,1969 0,6754 0,6284 0,6401 0,6843 0,5645 0,5998 0,2153 0,1647 0,2312 
BTL_sorted_backbone_4_aug 0,5739 0,4664 0,5045 0,2818 0,1139 0,2052 0,0167 0,0112 0,0323 0,5986 0,4851 0,5199 0,3499 0,1540 0,2376 0,0213 0,0094 0,0540 

BTL_sorted_backbone_4_noaug 0,5698 0,4672 0,5036 0,2679 0,1063 0,2014 0,0152 0,0113 0,0306 0,5918 0,4906 0,5207 0,3218 0,1417 0,2273 0,0240 0,0126 0,0533 
BTL_sorted_backbone_5_aug 0,5658 0,4633 0,5009 0,2724 0,1137 0,2050 0,0158 0,0115 0,0323 0,5744 0,4837 0,5082 0,3318 0,1400 0,2330 0,0246 0,0127 0,0551 

BTL_sorted_backbone_5_noaug 0,5713 0,4693 0,5113 0,2983 0,1169 0,2203 0,0170 0,0117 0,0335 0,5876 0,4941 0,5214 0,3590 0,1628 0,2457 0,0227 0,0097 0,0564 
BTL_stats_backbone_4_aug 0,6396 0,6003 0,6309 0,5588 0,3146 0,4746 0,0228 0,0098 0,0638 0,6718 0,6500 0,6629 0,6052 0,3442 0,4876 0,0363 0,0147 0,0915 

BTL_stats_backbone_4_noaug 0,6482 0,6027 0,6343 0,5589 0,3433 0,4784 0,0301 0,0146 0,0691 0,6728 0,6486 0,6589 0,6116 0,3661 0,4989 0,0481 0,0214 0,0955 
BTL_stats_backbone_5_noaug 0,6388 0,6006 0,6334 0,5398 0,3170 0,4655 0,0270 0,0161 0,0651 0,6711 0,6479 0,6645 0,6089 0,3629 0,4894 0,0403 0,0102 0,0899 
CST_objDet_backbone_4_aug 0,5163 0,3798 0,4758 0,7164 0,6456 0,6628 0,2192 0,1595 0,2210 0,5551 0,4198 0,5128 0,7438 0,6537 0,6755 0,2147 0,1473 0,2383 

CST_objDet_backbone_4_noaug 0,5071 0,3646 0,4643 0,7185 0,6516 0,6715 0,2239 0,1609 0,2228 0,5670 0,4030 0,4976 0,7441 0,6581 0,6798 0,2198 0,1541 0,2397 
CST_objDet_backbone_5_aug 0,5219 0,3921 0,4870 0,7153 0,6559 0,6683 0,2192 0,1572 0,2183 0,5790 0,4310 0,5182 0,7435 0,6656 0,6824 0,2187 0,1610 0,2352 

CST_objDet_backbone_5_noaug 0,5331 0,3924 0,4912 0,7160 0,6496 0,6681 0,2185 0,1603 0,2166 0,5664 0,4179 0,5129 0,7428 0,6529 0,6820 0,2201 0,1648 0,2392 
CST_sorted_backbone_4_aug 0,4277 0,2786 0,3567 0,6005 0,4195 0,4761 0,0720 0,0351 0,1002 0,4735 0,3227 0,3880 0,6219 0,3915 0,4826 0,0611 0,0306 0,1026 

CST_sorted_backbone_4_noaug 0,4470 0,2872 0,3567 0,5997 0,4258 0,4783 0,0867 0,0395 0,1036 0,4899 0,3242 0,3902 0,6196 0,4013 0,4781 0,0727 0,0380 0,1092 
CST_sorted_backbone_5_aug 0,3990 0,2749 0,3408 0,6106 0,4237 0,4829 0,0617 0,0298 0,0929 0,4582 0,3210 0,3780 0,6091 0,3973 0,4756 0,0604 0,0257 0,1028 

CST_sorted_backbone_5_noaug 0,3932 0,2848 0,3414 0,6071 0,4180 0,4799 0,0630 0,0317 0,0858 0,4473 0,3271 0,3778 0,6162 0,4024 0,4776 0,0572 0,0343 0,1031 
CST_stats_backbone_4_noaug 0,5386 0,4466 0,5068 0,7160 0,6727 0,6951 0,1377 0,0682 0,1511 0,5686 0,4646 0,5359 0,7407 0,6632 0,6889 0,1582 0,0893 0,1769 
CST_stats_backbone_5_noaug 0,5248 0,4227 0,5037 0,7357 0,6856 0,7042 0,1351 0,0719 0,1493 0,5749 0,4653 0,5363 0,7429 0,6656 0,6953 0,1543 0,0876 0,1790 
EXP_objDet_backbone_4_aug 0,5250 0,3567 0,4612 0,6959 0,5671 0,6255 0,2335 0,1855 0,2414 0,5533 0,3627 0,4752 0,7060 0,5376 0,6165 0,2161 0,1420 0,2191 
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EXP_objDet_backbone_4_noaug 0,5347 0,3467 0,4497 0,6915 0,5886 0,6313 0,2298 0,1829 0,2377 0,5684 0,3535 0,4626 0,7105 0,5533 0,6183 0,2199 0,1440 0,2184 
EXP_objDet_backbone_5_aug 0,5412 0,3860 0,4703 0,6996 0,5818 0,6345 0,2383 0,1937 0,2426 0,5877 0,3889 0,4938 0,6885 0,5647 0,6171 0,2160 0,1429 0,2245 

EXP_objDet_backbone_5_noaug 0,5455 0,3823 0,4636 0,6837 0,5745 0,6298 0,2349 0,1933 0,2384 0,5780 0,3801 0,4805 0,6980 0,5506 0,6210 0,2201 0,1477 0,2269 
EXP_sorted_backbone_4_aug 0,2940 0,1670 0,2525 0,5229 0,3006 0,3947 0,1724 0,1041 0,1600 0,3326 0,1868 0,2854 0,5274 0,3231 0,4028 0,1425 0,0925 0,1415 

EXP_sorted_backbone_4_noaug 0,3135 0,1727 0,2618 0,5273 0,2938 0,3908 0,1690 0,1081 0,1631 0,3507 0,1983 0,2918 0,5225 0,3079 0,4018 0,1444 0,0879 0,1423 
EXP_sorted_backbone_5_aug 0,2886 0,1602 0,2504 0,5098 0,3017 0,3923 0,1727 0,1060 0,1585 0,3238 0,1874 0,2841 0,5233 0,3136 0,4007 0,1406 0,0867 0,1432 

EXP_sorted_backbone_5_noaug 0,2799 0,1576 0,2568 0,5223 0,2963 0,3899 0,1752 0,1054 0,1582 0,3162 0,1837 0,2856 0,5173 0,3102 0,3969 0,1476 0,0942 0,1444 
EXP_stats_backbone_4_aug 0,4592 0,3597 0,4044 0,6931 0,5545 0,5823 0,2231 0,1727 0,2239 0,4802 0,3731 0,4253 0,7118 0,5722 0,5969 0,2401 0,1733 0,2313 

EXP_stats_backbone_4_noaug 0,4832 0,3795 0,4289 0,7043 0,5559 0,5885 0,2286 0,1829 0,2254 0,5222 0,4168 0,4580 0,7034 0,5460 0,5946 0,2380 0,1768 0,2273 
EXP_stats_backbone_5_noaug 0,4621 0,3677 0,4102 0,6902 0,5348 0,5810 0,2330 0,1728 0,2228 0,4744 0,3705 0,4357 0,7006 0,5278 0,5814 0,2404 0,1711 0,2306 
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Supplementary Table 9 - results of Wilcoxon test for significant difference between  neutral simulations parameters with or without FP. 
 
In bold, parameters where a significant difference is found (p-value < 0.05). In bold italic, parameters where 0.01 < p-value < 0.05. N_current 
is the population’s current effective size; N_ancestral is the ancestral population’s effective size; T_split is the age of the ancestral population’s 
split; T_demography is the age of the demographic change. 
 
A) CNN FP predictions on neutral dataset           

Scenario Variable p-value Signifiance (5%) Signifiance (1%) 

BTL 

N_current 4,77E-01 No No 
N_ancestral 8,99E-04 Yes Yes 

T_split 3,34E-14 Yes Yes 
T_demography 4,64E-26 Yes Yes 

MGB 

N_current 5,00E-02 No No 
N_ancestral 1,05E-03 Yes Yes 

T_split 2,96E-15 Yes Yes 
T_demography 8,95E-20 Yes Yes 

CST 

N_current 1,96E-25 Yes Yes 
N_ancestral 1,96E-25 Yes Yes 

T_split 5,80E-02 No No 
T_demography 2,14E-01 No No 

MIG 

N_current 1,40E-11 Yes Yes 
N_ancestral 1,40E-11 Yes Yes 

T_split 1,66E-09 Yes Yes 
T_demography 4,50E-04 Yes Yes 

EXP 

N_current 2,72E-09 Yes Yes 
N_ancestral 1,88E-01 No No 

T_split 5,15E-02 No No 
T_demography 1,03E-04 Yes Yes 

MGX 

N_current 8,09E-01 No No 
N_ancestral 7,28E-01 No No 

T_split 6,82E-08 Yes Yes 
T_demography 4,11E-01 No No 
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B) SF2 FP predictions on neutral dataset   

         

Scenario Variable p-value Signifiance (5%) Signifiance (1%) 

BTL 

N_current 5,58E-13 Yes Yes 
N_ancestral 1,94E-06 Yes Yes 

T_split 4,40E-10 Yes Yes 
T_demography 5,86E-06 Yes Yes 

MGB 

N_current 2,98E-16 Yes Yes 
N_ancestral 5,68E-07 Yes Yes 

T_split 4,15E-06 Yes Yes 
T_demography 6,96E-06 Yes Yes 

CST 

N_current 3,30E-02 Yes No 
N_ancestral 3,30E-02 Yes No 

T_split 5,90E-07 Yes Yes 
T_demography 6,70E-05 Yes Yes 

MIG 

N_current 2,84E-03 Yes Yes 
N_ancestral 2,84E-03 Yes Yes 

T_split 7,91E-26 Yes Yes 
T_demography 1,15E-16 Yes Yes 

EXP 

N_current 8,86E-01 No No 
N_ancestral 8,18E-01 No No 

T_split 4,43E-01 No No 
T_demography 2,17E-01 No No 

MGX 

N_current 2,34E-03 Yes Yes 
N_ancestral 2,26E-01 No No 

T_split 2,09E-04 Yes Yes 
T_demography 7,63E-01 No No 

 

178 



Supplementary Tables 
 

C) FP predictions made by both models on neutral dataset 

 

Scenario Variable p-value Signifiance (5%) Signifiance (1%) 

BTL 

N_current 6,32E-05 Yes Yes 
N_ancestral 1,38E-06 Yes Yes 

T_split 9,51E-18 Yes Yes 
T_demography 6,57E-18 Yes Yes 

MGB 

N_current 1,16E-08 Yes Yes 
N_ancestral 7,98E-07 Yes Yes 

T_split 4,30E-15 Yes Yes 
T_demography 8,50E-16 Yes Yes 

CST 

N_current 1,88E-09 Yes Yes 
N_ancestral 1,88E-09 Yes Yes 

T_split 1,89E-05 Yes Yes 
T_demography 1,23E-03 Yes Yes 

MIG 

N_current 3,49E-04 Yes Yes 
N_ancestral 3,49E-04 Yes Yes 

T_split 1,73E-23 Yes Yes 
T_demography 9,33E-12 Yes Yes 

EXP 

N_current 1,33E-04 Yes Yes 
N_ancestral 4,97E-01 No No 

T_split 4,03E-01 No No 
T_demography 7,32E-04 Yes Yes 

MGX 

N_current 1,46E-01 No No 
N_ancestral 5,14E-01 No No 

T_split 7,79E-06 Yes Yes 
T_demography 5,48E-01 No No 
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Supplementary Table 10 - results of Wilcoxon test for significant difference between  sweep simulations parameters where a selective sweep 

is predicted or not. 

 
In bold, parameters where a significant difference is found (p-value < 0.05). In bold italic, parameters where 0.01 < p-value < 0.05. (A) 
Predictions by the CNN, (B) prediction by SF2 and (C) predictions of a selective sweep on the same simulation by both models. N_current is 
the population’s current effective size; N_ancestral is the ancestral population’s effective size; T_split is the age of the ancestral population’s 
split; T_demography is the age of the demographic change; T_selection is the age of the onset of the selection event; T_freq99 is used as a 
proxy of the age of the fixation of the sweep; position_selected_allele is the position of the beneficial mutation on the chromosome; 
selective_coefficient_s is the selective coefficient of the beneficial mutation; tb_width is the width of the bounding box of the selective sweep; 
sweep_duration is the duration of the selective sweep. 
 

A) CNN predictions on sweep dataset     

       

Scenario Variable p-value Signifiance (5%) Signifiance (1%) 

BTL 

N_current 6,20E-01 No No 
N_ancestral 7,00E-02 No No 

T_split 7,19E-01 No No 
T_demography 2,09E-03 Yes Yes 

T_selection 3,27E-01 No No 
T_freq99 2,05E-01 No No 

position_selected_allele 5,88E-01 No No 
selective_coefficient_s 3,77E-01 No No 

tb_width 3,25E-05 Yes Yes 
sweep_duration 1,71E-03 Yes Yes 

MGB 

N_current 8,30E-02 No No 
N_ancestral 2,60E-01 No No 

T_split 2,81E-01 No No 
T_demography 8,73E-02 No No 

T_selection 2,41E-01 No No 
T_freq99 1,46E-01 No No 
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position_selected_allele 4,82E-01 No No 
selective_coefficient_s 5,41E-01 No No 

tb_width 2,98E-02 Yes No 
sweep_duration 5,82E-03 Yes Yes 

CST 

N_current 2,16E-06 Yes Yes 
N_ancestral 2,16E-06 Yes Yes 

T_split 3,10E-01 No No 
T_demography 8,48E-02 No No 

T_selection 7,64E-03 Yes Yes 
T_freq99 4,93E-03 Yes Yes 

position_selected_allele 9,92E-01 No No 
selective_coefficient_s 2,53E-04 Yes Yes 

tb_width 2,19E-11 Yes Yes 
sweep_duration 2,31E-01 No No 

MIG 

N_current 2,34E-03 Yes Yes 
N_ancestral 2,34E-03 Yes Yes 

T_split 2,21E-02 Yes No 
T_demography 1,14E-01 No No 

T_selection 1,93E-03 Yes Yes 
T_freq99 1,84E-03 Yes Yes 

position_selected_allele 6,87E-01 No No 
selective_coefficient_s 4,56E-02 Yes No 

tb_width 3,47E-08 Yes Yes 
sweep_duration 1,33E-01 No No 

EXP 

N_current 1,31E-14 Yes Yes 
N_ancestral 7,33E-03 Yes Yes 

T_split 8,45E-04 Yes Yes 
T_demography 1,13E-02 Yes No 

T_selection 2,85E-10 Yes Yes 
T_freq99 4,18E-11 Yes Yes 

position_selected_allele 2,72E-01 No No 
selective_coefficient_s 9,63E-01 No No 

tb_width 7,00E-15 Yes Yes 
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sweep_duration 1,16E-14 Yes Yes 

MGX 

N_current 2,09E-03 Yes Yes 
N_ancestral 8,18E-01 No No 

T_split 8,97E-01 No No 
T_demography 7,40E-01 No No 

T_selection 1,74E-03 Yes Yes 
T_freq99 9,89E-04 Yes Yes 

position_selected_allele 8,48E-01 No No 
selective_coefficient_s 4,71E-01 No No 

tb_width 1,71E-06 Yes Yes 
sweep_duration 3,50E-04 Yes Yes 
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B) SF2 predictions on sweep dataset     

       

Scenario Variable p-value Signifiance (5%) Signifiance (1%) 

BTL 

N_current 6,20E-01 No No 
N_ancestral 7,00E-02 No No 

T_split 7,19E-01 No No 
T_demography 2,09E-03 Yes Yes 

T_selection 3,27E-01 No No 
T_freq99 2,05E-01 No No 

position_selected_allele 5,88E-01 No No 
selective_coefficient_s 3,77E-01 No No 

tb_width 3,25E-05 Yes Yes 
sweep_duration 1,71E-03 Yes Yes 

MGB 

N_current 8,30E-02 No No 
N_ancestral 2,60E-01 No No 

T_split 2,81E-01 No No 
T_demography 8,73E-02 No No 

T_selection 2,41E-01 No No 
T_freq99 1,46E-01 No No 

position_selected_allele 4,82E-01 No No 
selective_coefficient_s 5,41E-01 No No 

tb_width 2,98E-02 Yes No 
sweep_duration 5,82E-03 Yes Yes 

CST 

N_current 2,16E-06 Yes Yes 
N_ancestral 2,16E-06 Yes Yes 

T_split 3,10E-01 No No 
T_demography 8,48E-02 No No 

T_selection 7,64E-03 Yes Yes 
T_freq99 4,93E-03 Yes Yes 

position_selected_allele 9,92E-01 No No 
selective_coefficient_s 2,53E-04 Yes Yes 

tb_width 2,19E-11 Yes Yes 
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sweep_duration 2,31E-01 No No 

MIG 

N_current 2,34E-03 Yes Yes 
N_ancestral 2,34E-03 Yes Yes 

T_split 2,21E-02 Yes No 
T_demography 1,14E-01 No No 

T_selection 1,93E-03 Yes Yes 
T_freq99 1,84E-03 Yes Yes 

position_selected_allele 6,87E-01 No No 
selective_coefficient_s 4,56E-02 Yes No 

tb_width 3,47E-08 Yes Yes 
sweep_duration 1,33E-01 No No 

EXP 

N_current 1,31E-14 Yes Yes 
N_ancestral 7,33E-03 Yes Yes 

T_split 8,45E-04 Yes Yes 
T_demography 1,13E-02 Yes No 

T_selection 2,85E-10 Yes Yes 
T_freq99 4,18E-11 Yes Yes 

position_selected_allele 2,72E-01 No No 
selective_coefficient_s 9,63E-01 No No 

tb_width 7,00E-15 Yes Yes 
sweep_duration 1,16E-14 Yes Yes 

MGX 

N_current 2,09E-03 Yes Yes 
N_ancestral 8,18E-01 No No 

T_split 8,97E-01 No No 
T_demography 7,40E-01 No No 

T_selection 1,74E-03 Yes Yes 
T_freq99 9,89E-04 Yes Yes 

position_selected_allele 8,48E-01 No No 
selective_coefficient_s 4,71E-01 No No 

tb_width 1,71E-06 Yes Yes 
sweep_duration 3,50E-04 Yes Yes 
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C) Predictions generated by both models on sweep dataset   

 

Scenario Variable p-value Signifiance (5%) Signifiance (1%) 

BTL 

N_current 3,04E-18 Yes Yes 
N_ancestral 5,36E-08 Yes Yes 

T_split 3,78E-08 Yes Yes 
T_demography 2,60E-10 Yes Yes 

T_selection 9,70E-10 Yes Yes 
T_freq99 2,18E-06 Yes Yes 

position_selected_allele 9,85E-01 No No 
selective_coefficient_s 3,01E-19 Yes Yes 

tb_width 6,99E-07 Yes Yes 
sweep_duration 4,09E-06 Yes Yes 

MGB 

N_current 5,14E-22 Yes Yes 
N_ancestral 4,30E-09 Yes Yes 

T_split 2,79E-06 Yes Yes 
T_demography 6,75E-07 Yes Yes 

T_selection 4,15E-09 Yes Yes 
T_freq99 2,39E-07 Yes Yes 

position_selected_allele 3,71E-01 No No 
selective_coefficient_s 5,59E-20 Yes Yes 

tb_width 5,24E-08 Yes Yes 
sweep_duration 1,80E-05 Yes Yes 

CST 

N_current 3,69E-01 No No 
N_ancestral 3,69E-01 No No 

T_split 2,34E-03 Yes Yes 
T_demography 1,76E-03 Yes Yes 

T_selection 9,12E-11 Yes Yes 
T_freq99 2,24E-10 Yes Yes 

position_selected_allele 5,26E-01 No No 
selective_coefficient_s 2,27E-01 No No 

tb_width 2,85E-07 Yes Yes 
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sweep_duration 9,73E-01 No No 

MIG 

N_current 5,49E-01 No No 
N_ancestral 5,49E-01 No No 

T_split 1,98E-13 Yes Yes 
T_demography 8,35E-07 Yes Yes 

T_selection 1,04E-21 Yes Yes 
T_freq99 1,66E-20 Yes Yes 

position_selected_allele 3,66E-01 No No 
selective_coefficient_s 2,54E-01 No No 

tb_width 1,26E-10 Yes Yes 
sweep_duration 7,70E-01 No No 

EXP 

N_current 7,20E-08 Yes Yes 
N_ancestral 1,88E-01 No No 

T_split 5,79E-02 No No 
T_demography 2,34E-01 No No 

T_selection 7,35E-12 Yes Yes 
T_freq99 1,59E-12 Yes Yes 

position_selected_allele 1,00E-01 No No 
selective_coefficient_s 3,77E-01 No No 

tb_width 1,36E-08 Yes Yes 
sweep_duration 3,51E-08 Yes Yes 

MGX 

N_current 9,69E-02 No No 
N_ancestral 8,54E-01 No No 

T_split 1,21E-04 Yes Yes 
T_demography 8,31E-01 No No 

T_selection 9,90E-14 Yes Yes 
T_freq99 3,93E-14 Yes Yes 

position_selected_allele 6,95E-01 No No 
selective_coefficient_s 6,15E-01 No No 

tb_width 1,39E-03 Yes Yes 
sweep_duration 2,21E-01 No No 

 

186 



Supplementary Figures 
 

 

 

Supplementary Figure 1 - ROC curves for the best CNN of each type of architecture, trained and tested on neutral datasets. 
 

The dotted line represents the expected value for a random guess. Each curve corresponds to a One-vs-All comparison between the 
corresponding scenarios and the other two. A) Results for the best simple CNN architecture, B) results for the best mix CNN architecture and 

C) results for the best pre-trained CNN architecture. 
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Supplementary Figure 2 - ROC curves for the best CNN of each type of architecture, trained and tested on sweep datasets. 
 

The dotted line represents the expected value for a random guess. Each curve corresponds to a One-vs-All comparison between the 
corresponding scenarios and the other two. A) Results for the best ‘simple’ CNN architecture, B) results for the best ‘mix’ CNN architecture 

and C) results for the best ‘pre-trained’ CNN architecture. 

 

188 



Supplementary Figures 3 to 12 - Counts of FP generated on neutral data by CNN and/or SF2 for CNN prediction score threshold between 0.0 

and 0.9, by increments of 0.1. 

 

Supplementary Figure 3 - Count of FP by CNN and/or SF2 (without CNN prediction score threshold)  
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Supplementary Figures 3 to 12 - Counts of FP generated on neutral data by CNN and/or SF2 for CNN prediction score threshold between 0.0 

and 0.9, by increments of 0.1. 

 

Supplementary Figure 4 - Count of FP by CNN and/or SF2 (CNN prediction score threshold > 0.1)  
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Supplementary Figures 3 to 12 - Counts of FP generated on neutral data by CNN and/or SF2 for CNN prediction score threshold between 0.0 

and 0.9, by increments of 0.1. 

 

Supplementary Figure 5 - Count of FP by CNN and/or SF2 (CNN prediction score threshold > 0.2)

191 



Supplementary Figures 3 to 12 - Counts of FP generated on neutral data by CNN and/or SF2 for CNN prediction score threshold between 0.0 

and 0.9, by increments of 0.1. 

 

Supplementary Figure 6 - Count of FP by CNN and/or SF2 (CNN prediction score threshold > 0.3)
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Supplementary Figures 3 to 12 - Counts of FP generated on neutral data by CNN and/or SF2 for CNN prediction score threshold between 0.0 

and 0.9, by increments of 0.1. 

 

Supplementary Figure 7 - Count of FP by CNN and/or SF2 (CNN prediction score threshold > 0.4) 
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Supplementary Figures 3 to 12 - Counts of FP generated on neutral data by CNN and/or SF2 for CNN prediction score threshold between 0.0 

and 0.9, by increments of 0.1. 

 

Supplementary Figure 8 - Count of FP by CNN and/or SF2 (CNN prediction score threshold > 0.5)
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Supplementary Figures 3 to 12 - Counts of FP generated on neutral data by CNN and/or SF2 for CNN prediction score threshold between 0.0 

and 0.9, by increments of 0.1. 

 

Supplementary Figure 9 - Count of FP by CNN and/or SF2 (CNN prediction score threshold > 0.6)
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Supplementary Figures 3 to 12 - Counts of FP generated on neutral data by CNN and/or SF2 for CNN prediction score threshold between 0.0 

and 0.9, by increments of 0.1. 

 

Supplementary Figure 10 - Count of FP by CNN and/or SF2 (CNN prediction score threshold > 0.7)
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Supplementary Figures 3 to 12 - Counts of FP generated on neutral data by CNN and/or SF2 for CNN prediction score threshold between 0.0 

and 0.9, by increments of 0.1. 

 

Supplementary Figure 11 - Count of FP by CNN and/or SF2 (CNN prediction score threshold > 0.8)
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Supplementary Figures 3 to 12 - Counts of FP generated on neutral data by CNN and/or SF2 for CNN prediction score threshold between 0.0 

and 0.9, by increments of 0.1. 

 

 

Supplementary Figure 12 - Count of FP by CNN and/or SF2 (CNN prediction score threshold > 0.9)  
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Supplementary Figures 13 to 22 - Counts of found selective sweeps by CNN and/or SF2 for CNN prediction score threshold between 0.0 and 

0.9, by increments of 0.1. 

 

Supplementary Figure 13 - Count of found selective sweeps by CNN and/or SF2 (without CNN prediction score threshold

199 



Supplementary Figures 13 to 22 - Counts of found selective sweeps by CNN and/or SF2 for CNN prediction score threshold between 0.0 and 

0.9, by increments of 0.1. 

 

Supplementary Figure 14 - Count of found selective sweeps by CNN and/or SF2 (CNN prediction score threshold > 0.1)
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Supplementary Figures 13 to 22 - Counts of found selective sweeps by CNN and/or SF2 for CNN prediction score threshold between 0.0 and 

0.9, by increments of 0.1. 

 

Supplementary Figure 15 - Count of found selective sweeps by CNN and/or SF2 (CNN prediction score threshold > 0.2)
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Supplementary Figures 13 to 22 - Counts of found selective sweeps by CNN and/or SF2 for CNN prediction score threshold between 0.0 and 

0.9, by increments of 0.1. 

 

Supplementary Figure 16 - Count of found selective sweeps by CNN and/or SF2 (CNN prediction score threshold > 0.3)
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Supplementary Figures 13 to 22 - Counts of found selective sweeps by CNN and/or SF2 for CNN prediction score threshold between 0.0 and 

0.9, by increments of 0.1. 

 

Supplementary Figure 17 - Count of found selective sweeps by CNN and/or SF2 (CNN prediction score threshold > 0.4)
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Supplementary Figures 13 to 22 - Counts of found selective sweeps by CNN and/or SF2 for CNN prediction score threshold between 0.0 and 

0.9, by increments of 0.1. 

 

Supplementary Figure 18 - Count of found selective sweeps by CNN and/or SF2 (CNN prediction score threshold > 0.5)
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Supplementary Figures 13 to 22 - Counts of found selective sweeps by CNN and/or SF2 for CNN prediction score threshold between 0.0 and 

0.9, by increments of 0.1. 

 

Supplementary Figure 19 - Count of found selective sweeps by CNN and/or SF2 (CNN prediction score threshold > 0.6)
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Supplementary Figures 13 to 22 - Counts of found selective sweeps by CNN and/or SF2 for CNN prediction score threshold between 0.0 and 

0.9, by increments of 0.1. 

 

Supplementary Figure 20 - Count of found selective sweeps by CNN and/or SF2 (CNN prediction score threshold > 0.7)
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Supplementary Figures 13 to 22 - Counts of found selective sweeps by CNN and/or SF2 for CNN prediction score threshold between 0.0 and 

0.9, by increments of 0.1. 

 

Supplementary Figure 21 - Count of found selective sweeps by CNN and/or SF2 (CNN prediction score threshold > 0.8)
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Supplementary Figures 13 to 22 - Counts of found selective sweeps by CNN and/or SF2 for CNN prediction score threshold between 0.0 and 

0.9, by increments of 0.1. 

 

Supplementary Figure 22 - Count of found selective sweeps by CNN and/or SF2 (CNN prediction score threshold > 0.9)  
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Apprentissage profond pour la génétique des populations : inférer la démographie et
les cibles de sélection naturelle à l’aide de réseaux de neurones convolutifs

Résumé :
Inférer l’histoire démographique et détecter la sélection naturelle sont des défis majeurs en
génétique des populations. Les méthodes traditionnelles, bien qu'efficaces, reposent
souvent sur des hypothèses irréalistes (absence de sélection ou de changements
démographiques). Or, dans les populations naturelles, la sélection et la démographie
influencent simultanément la diversité génétique, complexifiant les inférences évolutives.
Cette thèse explore l’utilisation des réseaux de neurones convolutionnels (CNN), une
technique de deep learning, pour surmonter les limites des méthodes traditionnelles. Nos
travaux se concentrent sur deux tâches principales : (1) la classification des données
génomiques selon l’histoire démographique et (2) la détection et localisation des cibles de
sélection naturelle le long des génomes. L’objectif n’est pas de développer un outil prêt à
l’emploi mais de comprendre les considérations nécessaires à l’entraînement des CNNs
pour ces tâches, en soulignant les défis et spécificités de l’élaboration de méthodes de deep
learning en génétique des populations. Nous comparons les performances des CNNs sur
des données simulées avec celles de méthodes établies, telles que les ABC-RF pour la
classification et SweepFinder2 pour la détection de sélection. Les CNNs montrent des
résultats comparables ou supérieurs, notamment pour localisation des signaux de sélection,
mettant en évidence le potentiel du deep learning pour la génétique des populations, sous
réserve d’une représentation des données d’entrée réfléchie et adaptée.

Mots clés: génétique des population, balayages sélectifs, inférences démographiques,
apprentissage profond, réseaux de neurones convolutifs, détection d’objets

Deep learning for population genetics: inferring demography and targets of natural
selection using convolutional neural networks

Abstract:
Inferring demographic history and detecting natural selection are major challenges in
population genetics. Traditional methods, though effective, often rely on unrealistic
assumptions (absence of selection or of demographic changes). However, in natural
populations, selection and demography affect genetic diversity at the same time. Their
interaction makes evolutionary inferences more complex and is a significant obstacle. In this
thesis, we explore the use of convolutional neural networks (CNNs), a deep learning
technique, to overcome the limitations of traditional methods. Our work focuses on two main
tasks: (1) classification of genomic data based on demographic history, and (2) detecting
and localizing targets of natural selection along genomes. The aim is not to develop a
ready-to-use tool but to understand the necessary considerations for training CNNs on these
tasks, highlighting the challenges and nuances of developing deep learning-based methods
for population genetics. We compare CNN performance on simulated data with established
population genetics methods, such as ABC-RF for classification and SweepFinder2 for
detecting selection. CNNs achieve results comparable to or better than these existing
methods, especially in localizing selection signals. This highlights the potential of
deep-learning approaches for population genetics, as long as careful consideration is given
to input data representation.

Key words: population genetics, selective sweeps, demographic inferences, deep learning,
convolutional neural networks, object detection


