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Prediction is very difficult,
especially if it’s about the future.

Niels Bohr

Life is divided into three terms -
that which was, which is, and
which will be. Let us learn from
the past to profit by the present,
and from the present, to live better
in the future.

William Wordsworth
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Machine Learning-Assisted Spatiotemporal Chaos Forecasting

Abstract

From towering rogue waves to powerful winds, extreme events can disrupt natural systems
and human activity without warning. Though seemingly unpredictable, these events often
arise from the complex dynamics of chaotic systems, particularly spatiotemporal chaos, where
patterns unfold across both time and space. In this thesis, we study extreme events in optical
systems, focusing on an optical fiber ring resonator modeled by the Lugiato-Lefever equation.
This setup provides a controlled environment to analyze the chaotic behaviors that lead to such
phenomena. Recent advancements in machine learning, especially neural networks, offer new
tools for predicting chaotic dynamics. However, long-term forecasting remains challenging
due to chaos’s inherent unpredictability. We propose extending the prediction horizon using
information theory methods, like transfer entropy, to identify local regions contributing to
extreme events and improve forecast accuracy. Additionally, we examine the turbulent dynamics
generated by solitons in these systems, providing explanations for their onset and evolution. Our
analysis offers new insights into chaotic behavior. Finally, we propose applying these methods to
real-world wind dynamics to enhance forecasting and deepen understanding of chaotic natural
systems.

Keywords: complex systems, spatiotemporal chaos, turbulence, machine learning, arti-
ficial neural networks, information theory

Optimisation de l’Horizon de prédictibilité des Evènements Extrêmes par «Deep
Learning»

Résumé

Des vagues scélérates aux vents violents, les événements extrêmes peuvent perturber les sys-
tèmes naturels et les activités humaines sans avertissement. Bien que ces événements semblent
imprévisibles, ils émergent souvent des dynamiques complexes des systèmes chaotiques, en
particulier du chaos spatiotemporel, où des motifs se déploient dans le temps et l’espace. Dans
cette thèse, nous étudions les événements extrêmes dans des systèmes optiques, en nous concen-
trant sur un résonateur à fibre optique modélisé par l’équation de Lugiato-Lefever. Ce système
offre un environnement contrôlé pour analyser les comportements chaotiques à l’origine de ces
phénomènes. Les récents progrès en apprentissage automatique, notamment avec les réseaux de
neurones, offrent de nouveaux outils pour prédire les dynamiques chaotiques. Cependant, la
prévision à long terme reste difficile en raison de l’imprévisibilité inhérente au chaos. Nous pro-
posons d’étendre l’horizon de prédiction en utilisant des méthodes de théorie de l’information,
telles que l’entropie de transfert, pour identifier les régions locales contribuant aux événements
extrêmes et améliorer la précision des prévisions. En outre, nous examinons les dynamiques
turbulentes générées par les solitons dans ces systèmes, en proposant des explications sur leur
apparition et leur évolution. Notre analyse offre de nouvelles perspectives sur le comportement
chaotique. Enfin, nous proposons d’appliquer ces méthodes aux dynamiques du vent en situation
réelle pour améliorer les prévisions et approfondir la compréhension des systèmes chaotiques
naturels.

Mots clés : systèmes complex, chaos spatiotemporel, turbulence, apprentissage auto-
matique, réseaux de neurones artificiels, théorie de l’information

Laboratoire de Physique des Lasers, Atomes et Molécules (PhLAM)
CNRS UMR 8523 – Université de Lille – Bâtiment P5 campus Cité Scientifique
– 2 Avenue Jean Perrin – 59655 Villeneuve d’Ascq Cedex – France
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Introduction

The unpredictability of nature has long captured human curiosity, driving the

development of models to forecast the unexpected. From powerful hurricanes to

unexpected financial collapses, extreme events often appear without warning,

causing widespread damage to communities and the environment. But what if

we could anticipate such events with more precision? What if we could peer into

the chaotic underpinnings of these phenomena and find a way to predict them

before they strike?

Extreme events are not just the products of random chance; they are deeply

rooted in the laws of chaotic dynamics, where the delicate balance of complex

systems can be disrupted by even the smallest of disturbances. These systems

are governed by what is often referred to as the "butterfly effect"—small changes

in initial conditions can lead to dramatically different outcomes [1]. This sensi-

tivity to initial conditions makes forecasting these systems challenging, as small

uncertainties in measurement can quickly escalate into wildly different predic-

tions. Despite their apparent randomness, chaotic systems follow deterministic

rules, creating complex patterns that give rise to the extreme events we experi-

ence in the real world. Consider the real-world impact of these extreme events:

hurricanes that flatten entire cities, wildfires that decimate forests, financial

markets that crash without warning, and rogue waves that unexpectedly arise

in the ocean, threatening ships and offshore structures. Their ability to disrupt

economies and upend lives has made them a central focus of research across

many disciplines. In fields ranging from meteorology to finance, scientists strive

to understand how these events emerge, with the ultimate goal of improving

early warning systems that could save both lives and resources.

Yet, despite the advancement of sophisticated models, accurately predict-

3
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ing these occurrences is not currently within reach. Amid this complexity,

the field of optics offers unique advantages for studying extreme events [2–4].

Optical systems allow researchers to recreate chaotic environments in highly

controlled settings. With precise detection techniques and the ability to collect

large amounts of data in short time periods, optical systems provide an ideal

platform for investigating the underlying mechanisms of extreme events, and to

understand how they form and evolve.

In this thesis, we focus on one such optical system: the optical fiber ring

resonator. This system has become a widely used tool in nonlinear optics for

exploring complex behaviors. In this setup, a continuous wave of light is injected

into a passive resonator, creating a feedback loop that produces a variety of

nonlinear phenomena. One of the most intriguing phenomena that arises in this

setup is spatiotemporal chaos—chaotic behavior that unfolds not just over time

but also across space. The complex interplay between these two dimensions

results in a system that is highly sensitive to initial conditions and prone to

generating extreme events. The dynamics produced by the optical fiber ring

resonator are particularly challenging to predict due to their extensive chaotic

nature. As the spatial and temporal scales of the chaotic dynamics increase, the

complexity of the system’s behavior grows exponentially. This extensive nature

presents a significant challenge for long-term forecasting, as traditional models

struggle to account for the vast amount of information and interactions that take

place across both time and space. The chaotic signals generated by this system

exhibit a mix of short- and long-range correlations, making it an ideal testbed

for studying extreme events and advancing forecasting techniques.

Recent advancements in Machine Learning have opened new possibilities for

forecasting in such complex systems [5–8]. Machine Learning algorithms excel

in identifying patterns in large datasets offering a powerful tool for forecasting

previously unpredictable occurrences. In chaotic systems like the optical fiber

ring resonator, Machine Learning can find hidden correlations that are exploited

to perform model-free forecasting of spatiotemporal chaos. These dynamics are

common in many real-world systems, from weather patterns to fluid turbulence

and optical systems. However, while promising, many Machine Learning strate-

gies are designed to model full dynamical systems, which can be impractical



Introduction 5

for large, partially observed systems. The extensive nature of these systems

means that attempting to forecast their full behavior is both computationally

expensive and difficult to achieve with accuracy. Additionally, any chaotic sys-

tem has a natural prediction horizon—a limit beyond which predictions become

unreliable [9–11]. As the dynamics of the system evolve, forecasting beyond this

horizon becomes exponentially more challenging, requiring novel approaches to

extend predictive capabilities. To overcome these challenges, this work combines

Machine Learning techniques with methods from information theory, particu-

larly transfer entropy, to improve the accuracy and scope of forecasts. Transfer

entropy is used to measure the directional flow of information between different

parts of the system, helping to identify key precursors to extreme events. By

applying transfer entropy alongside Machine Learning, we can focus on local

regions of the system, isolating the critical interactions that lead to extreme

events. This hybrid approach enables us to perform more targeted and reliable

forecasts, even in the face of the system’s complexity and chaotic nature.

A concrete real-world example of this approach can be seen in our study of

wind dynamics. Using data from meteorological stations, we applied transfer

entropy to analyze the flow of information between wind speed and direction

across different locations. This allowed us to identify how changes in wind

patterns at one station influenced conditions at another, providing insight into

the propagation of extreme weather events. The application of transfer entropy

to wind dynamics demonstrates the power of information theory in enhancing

our understanding of chaotic, real-world systems, and highlights the broader

applicability of this technique beyond optical systems.

The objective of this thesis is to explore and improve the forecasting of ex-

treme events in chaotic systems, with a particular focus on optical systems.

Through the combination of machine learning techniques and information-

theoretic methods such as transfer entropy, the thesis aims to extend the pre-

diction horizon of chaotic systems. This work contributes to both fundamental

research in the field of nonlinear optics and practical applications, such as

predicting real-world phenomena like wind dynamics and extreme weather

events.

This thesis is structured as follows:
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— In the first chapter, we begin by providing a comprehensive exploration

of key concepts in dynamical systems and chaos theory. The chapter also

introduces spatiotemporal chaos, which is central to the rest of this thesis.

Additionally, the chapter discusses key concepts from machine learning, such

as neural networks (Long Short-Term Memory networks (LSTM) and Gated

Recurrent Units (GRU)), which are employed later in forecasting chaotic

dynamics. Finally, the chapter introduces information theory, particularly

transfer entropy, as a powerful tool for studying directional information

flow in chaotic systems, laying the groundwork for the hybrid techniques

developed in this work.

— In the second chapter, the focus is on forecasting the complex spatiotemporal

chaos generated in an optical fiber ring resonator. The objective of the chapter

is to develop machine learning models capable of predicting the full chaotic

dynamics of the system. While the initial approach aims to forecast the

complete system behavior, it becomes evident that the extensive nature and

high dimensionality of the system pose significant challenges for long-term

predictions. To address this, we introduce the use of information theory,

specifically transfer entropy, to identify early-stage precursors of extreme

events. This enables a shift toward local forecasting, where key regions of

the system are analyzed more effectively, improving prediction accuracy and

allowing for a more focused approach to managing the chaotic dynamics.

— The third chapter aims to explore the transition from soliton-based spa-

tiotemporal chaos to turbulence in nonlinear optical systems operating in the

bistable regime. Beginning with a soliton as the initial condition, the system

evolves through increasingly complex dynamics as the pump parameter is

raised. The primary focus is to understand how these chaotic behaviors

emerge and evolve, particularly by characterizing the turbulence observed in

both the phase and amplitude components of the system. Various analytical

tools, including correlation functions, structure functions, and dispersion

relations, are employed to study these dynamics in detail. The ultimate

objective is to provide a comprehensive framework for understanding the

mechanisms driving the chaotic and turbulent behaviors in this optical sys-
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tem, laying the groundwork for deeper insights into extreme events and their

formation.

— The fourth chapter applies the tools developed in earlier chapters to a real-

world system—wind dynamics. Using transfer entropy, the chapter inves-

tigates how information flows between different meteorological stations to

forecast wind speed and direction. This analysis showcases the broader

applicability of the techniques initially developed for optical systems and

highlights the ability of transfer entropy to enhance forecasting in real-world

chaotic systems like atmospheric dynamics.

— In the fifth chapter, we address one of the central challenges of forecasting

chaotic systems—the predictability horizon. This chapter investigates how

far into the future we can predict the behavior of chaotic systems before the

forecasts become unreliable. Using the Nonlinear Local Lyapunov Exponent

(NLLE) method, we estimate the maximum predictability time for chaotic

systems such as the Lorenz63 model. The results contribute to a better

understanding of the limitations of forecasting chaotic systems and provide

insights into extending the prediction horizon in practical applications.
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In this chapter, we embark on a comprehensive exploration of several fun-

damental and interrelated fields that form the cornerstone of our research. We

start by exploring the fields of dynamical systems and chaos theory, uncovering

the complex behaviors and patterns that are associated. Through historical

context and detailed examples, we illustrate the profound impact of chaotic

dynamics on various scientific disciplines. We then introduce the concept of

spatiotemporal chaos and its significance in understanding complex phenom-

ena. We then transition to the fascinating world of Optical Frequency Combs

and the Lugiato-Lefever model, highlighting their roles in nonlinear optics and

the emergence of extreme events. Finally, we integrate modern approaches by

introducing Machine Learning techniques and Information Theory, showcasing

their potential to improve our comprehension and forecasting of chaotic systems.

This chapter sets the stage for a detailed exploration of these interconnected

fields, laying the groundwork for the novel contributions and insights presented

in the subsequent chapters.

1.1 Dynamical Systems and Chaos theory

1.1.1 Dynamical Systems

A Dynamical System (DS) is defined by a set of states, along with rules that

describe how these states evolve over time. This temporal evolution can be

represented by differential equations, which model changes occurring smoothly

over time, in the case of continuous-time systems. On the other hand, discrete-

time DS use difference equations to model processes that change in separate
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steps, which can represent either natural phenomena that inherently occur at

specific intervals or a methodological choice for analyzing a continuous system

at distinct time points. For example, a DS can describe the population growth of

a species, the oscillation of a pendulum, or the spread of a disease. The evolution

of a DS is governed by a fixed rule that defines what future states follow from

the current state, which can be deterministic or stochastic. In a deterministic

system, a specific future state can be precisely predicted given the current state

within a particular time frame. Stochastic systems, conversely, have a level of

randomness where future states can only be predicted probabilistically. Some

nonlinear DS exhibit chaotic behavior, which refers to deterministic yet irregular

and unpredictable dynamics.

These systems can be classified as linear or nonlinear:

• Linear Systems: For instance, the damped harmonic oscillator, a paradigm of

linear systems, can be described by the equation:

ẍ+γẋ+ω2
0x = 0, (1.1)

where γ is the damping coefficient, and ω0 is the natural frequency of the

oscillator [12]. Fig. 1.1a illustrates the decay of amplitude over time in such a

system.

• Nonlinear Systems: A famous example of a nonlinear system is the logistic

map, a discrete-time population model given by:

xn+1 = rxn(1− xn), (1.2)

which for certain values of r exhibits chaotic behavior [13]. Fig. 1.1b shows

the bifurcation diagram of the logistic map, illustrating how changes in the

parameter r can lead to chaotic behavior.

Nonlinear Dynamical System are particularly interesting as they can exhibit

complex behaviors such as chaos, even when the underlying rules are simple and

deterministic. The historical roots of DS can be traced back to the 17th century

with the seminal work of Sir Isaac Newton. Newton formulated the laws of



12 CHAPTER 1. Introduction to Dynamical Systems and Chaos Theory

0 10 20 30 40 50
Time (s)

-1

-0.5

0

0.5

1
D

is
p

la
ce

m
en

t 
(m

)
Damped Harmonic Oscillator

(a) (b)

Figure 1.1: Figures demonstrating classical examples of DS. (a) The damped
harmonic oscillator is a linear system where energy dissipates over time. (b)
Bifurcation diagram of the logistic map, a nonlinear system, demonstrating the
transition from stability to chaos as the parameter r increases, showing complex
dynamical behavior including periodic doubling leading to chaos.

motion and universal gravitation, which could be used to predict the behavior of

celestial bodies with remarkable precision. His differential equations describing

the two-body problem such as the Earth orbiting the Sun laid the groundwork

for classical mechanics [14]. However, the more complex three-body problem,

involving the gravitational interaction between three celestial bodies, remained

unsolved and would puzzle mathematicians for centuries [15].

In the late 19th century, Henri Poincaré developed qualitative methods to

study the behavior of DS, particularly in the context of the three-body problem.

Poincaré’s innovative approaches laid the groundwork for the modern theory of

DS, including the fields of topology and bifurcation theory. He was the first to

recognize that deterministic systems could exhibit aperiodic behavior, a notion

that would later evolve into the concept of chaos [16]. In the 20th century, the

development of technologies such as radio and radar illustrated the practical

applications of nonlinear oscillators, a key concept within DS. These applications

underscored the importance of understanding the behavior of systems described

by nonlinear differential equations [17]. The advent of computers in the second

half of the 20th century marked a turning point in the study of DS. The ability
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to perform numerical simulations allowed scientists to visualize and explore

the complex behaviors that Poincaré had only imagined. Edward Lorenz’s 1963

discovery of the chaotic behavior of a simplified model of atmospheric convection

demonstrated the profound implications of sensitivity to initial conditions and

brought the study of chaos to the forefront of scientific inquiry [1].

Today, the field of DS encompasses a vast array of phenomena across various

disciplines, from the predictability of planetary motion to the complexities of

weather forecasting and the rhythms of biological systems. The theory con-

tinues to provide a fundamental framework for understanding both the deter-

ministic nature and inherent unpredictability of many natural and engineered

systems [18].

1.1.2 Chaos in Dynamical Systems

Chaos theory explores the behavior of Dynamical System that are highly

sensitive to initial conditions—a phenomenon popularly known as the butterfly

effect. This sensitivity means that small differences in the initial setup of a

system can lead to vastly divergent outcomes, making long-term prediction

difficult or impossible, even in systems that are deterministic in nature. Chaos is

defined as the apparent randomness that emerges from simple, deterministic

systems due to their sensitivity to initial conditions. Unlike truly random behav-

ior, which is inherently unpredictable and not governed by deterministic laws,

chaotic behavior arises from well-defined mathematical models and rules. The

unpredictability in chaotic systems stems from our inability to measure initial

conditions with infinite precision. The primary characteristic of chaotic systems

is their unpredictability over long periods due to the exponential growth of

errors in initial condition measurements. Despite this unpredictability, chaotic

systems are not without order; they often display self-similar patterns across

different scales of observation. Chaos theory has profound implications across

various scientific disciplines, including meteorology, engineering, economics,

biology, and more. Its discovery has led to a better understanding of the limits of

prediction and control in complex systems, reshaping our approach to modeling

and analysis in science and engineering.
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1.1.3 Brief History of Chaos

Chaos theory, as we understand it today, has evolved through a history of

remarkable discoveries that have reshaped our understanding of DS. As we

mentioned in Section 1.1.1, Henri Poincaré laid the groundwork in the late 19th

century when he explored solutions to the three-body problem and recognized

the potential for irregular and aperiodic orbits [19]. These insights hinted at

the complex behavior inherent in DS, which could not be explained by tradi-

tional Newtonian mechanics. This notion of irregular, complex behavior in

systems governed by deterministic laws was later addressed in the seminal work

of Edward Lorenz in 1963 [1], who, through his reduced models of weather

patterns, laid the foundation for what we understand as chaos today. It was

not until Steve Smale, in 1967, that the geometrical underpinnings of chaos

started to be unveiled, showing how these systems could behave in a complex

yet deterministic fashion [20]. This was further confirmed by Ruelle and Takens’

challenge to Landau’s theory on turbulence, suggesting that even simple systems

of coupled oscillators could exhibit chaotic behavior [21]. The 1970s and 1980s

saw a flourish of experimental observations confirming chaotic behavior in vari-

ous systems. Notably, Golub and Swinney observed chaos in a fluid dynamics

experiment [22], and Li and Yorke’s mathematical findings suggested that even

periodic systems could have chaotic underpinnings, famously captured in the

phrase "period three implies chaos" [23]. By the 1980s, the field had expanded

dramatically, with chaos being observed in systems as diverse as electronics,

chemistry, and optics. Entering the late 20th century, the focus shifted to the con-

trol and synchronization of chaos, with notable contributions from Ott, Grebogi,

and Yorke in 1990, opening doors to new methods of managing systems that

were once thought uncontrollable [24]. Chaos theory continues to be a vibrant

field of study, with applications ranging from forecasting weather to modeling

economic systems. The discovery that even simple, deterministic systems can

behave unpredictably has profound implications for how we understand and

interact with the world around us.
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1.1.4 Lorenz and Rössler Systems: A Paradigm of Chaos

Lorenz system

The Lorenz system, uncovered by Edward Lorenz in 1963 during his explo-

ration of atmospheric convection, stands as a seminal example within chaos

theory. This model, through its set of three simple differential equations, reveals

the profound complexity underlying chaotic systems. The equations govern the

movement of fluid within a layer that is heated from below and cooled from

above, manifesting the unpredictability inherent in such systems [1]. The essence

of the Lorenz system lies in its demonstration of sensitive dependence on initial

conditions, popularly known as the butterfly effect. This principle proves that

even minuscule numerical differences in the starting conditions of a system can

lead to vastly divergent outcomes, rendering long-term prediction a formidable

challenge. The Lorenz attractor, a complex, butterfly-shaped structure emerging

from the system’s equations, visually encapsulates this concept, symbolizing the

intricate dynamics at play within chaotic phenomena [25, 26]. The attractor’s

fractal nature and its representation of the system’s phase space dynamics are

symbolic of chaos, underscoring the unpredictable behavior that can arise from

deterministic rules. The governing equations of the Lorenz system are short yet

profound: 
ẋ = σ (y − x),

ẏ = x(ρ − z)− y,

ż = xy − βz,

(1.3)

where σ , ρ, and β represent the system’s parameters, linked to the Prandtl

number [27], Rayleigh number [28], and specific physical dimensions of the

convection box, respectively. ẋ denotes the time derivative of x. Fig. 1.2a is an

illustrative example of the Lorenz attractor, showcasing the complex, butterfly-

shaped structure that symbolizes the essence of chaos theory. Fig. 1.2b compares

the time evolution of the x variable under two different initial conditions, sep-

arated by a small error of ϵ = 10−9. This comparison vividly highlights how

slight variations in starting conditions can dramatically influence the system’s

trajectory over time, providing a powerful visual representation of chaos the-



16 CHAPTER 1. Introduction to Dynamical Systems and Chaos Theory

ory in action. Because of its simplicity, the Lorenz system has become one of

the most extensively studied examples of nonlinear dynamics. Its ability to

generate chaotic attractors from a straightforward set of equations continues to

intrigue and challenge scientists, offering deep insights into the unpredictable

yet structured world of chaotic systems.
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Figure 1.2: (a)Visualization of the Lorenz attractor, demonstrating the complex
dynamics of the system. This figure highlights the butterfly-shaped trajectory
that is characteristic of chaotic behavior, emphasizing the sensitive dependence
on initial conditions and the unpredictability of the system’s long-term behavior.
(b) Time evolution of the x variable in the Lorenz system under two different
initial conditions, separated by a very small value of 10−9. This comparison
illustrates how minor discrepancies in starting conditions can lead to significant
divergences in the system’s trajectory over time.

Rössler system

In 1976, Otto Rössler presented a system related to the Lorenz63 system [29],

explicitly designed to produce continuous temporal chaos [30]. While Rössler

wrote down several systems that would be able to create continuous chaos, the

most commonly used is the system given by [31]:
ẋ = −y − z,

ẏ = x+ ay,

ż = b+ z(x − c),

(1.4)
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where the parameters a, b, c determine whether the system evolves periodically,

chaotically, or converges to a static solution. For a = 0.5, b = 2.0, and c = 4.0, the

system evolves chaotically [31]. The attractor for this parameter choice is shown

in Fig. 1.3, along with the individual x, y, and z components plotted against time.
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Figure 1.3: (a) Visualization of the Rössler attractor in three-dimensional phase
space, illustrating the chaotic trajectory that emerges under specific system
parameters a = 0.5, b = 2.0, and c = 4.0. The complex, swirling dynamics
highlight the system’s sensitive dependence on initial conditions. (b) Time
evolution of the Rössler system’s variables: x (top), y (middle), and z (bottom).
These plots demonstrate the non-periodic behavior characteristic of chaos, with
each variable exhibiting erratic and unpredictable fluctuations over time.

1.1.5 Lyapunov Exponents

The concept of Lyapunov Exponent (LE) is central to the study of chaotic

systems, offering a quantitative measure of the sensitive dependence on initial

conditions. LE quantify the average exponential rate at which trajectories in a

Dynamical System diverge from one another. Positive LE are indicative of chaos,

suggesting that even slight differences in the system’s initial state can result in
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exponential separation of trajectories over time [32], as demonstrated in Fig. 1.4.

In contrast, negative exponents signify convergence towards stable states such

as fixed points or periodic orbits, while a zero value indicates neutral stability

often observed in limit cycles [33].

𝑑(0)

𝑑(𝑘) ≈ 𝑑(0) 𝑒!.#

𝑥(𝑘)

𝑥(𝑘) + 𝑑(𝑘)

Figure 1.4: Illustration of two trajectories in phase space that initially start close
together and exponentially diverge, exemplifying the concept of LE in chaotic
systems. This figure emphasizes the exponential growth of small perturbations,
highlighting the unpredictable and sensitive nature of chaotic systems.

The largest Lyapunov Exponent, denoted by λmax, is computed by recon-

structing the state space through techniques like Takens’ embedding theorem

and then assessing the rate of trajectory divergence. This calculation is essential

for understanding the dynamics of chaotic systems and is visualized through

the exponential divergence of two closely started trajectories in phase space [34].

The formula for λmax is given by:

λmax =
1

k∆n(S − 1)

S−k∑
n=1

log
d(k)
d(0)

(1.5)

where d(0) is the initial separation between trajectories, d(k) is the separation af-

ter k discrete time steps, and S is the total number of data points [35]. Table 1.1

encapsulates the relationship between λmax and the nature of a system’s dy-

namics, distinguishing between fixed points, limit cycles, chaotic behavior, and

noise-like states. In summary, LE serves as a fundamental tool for identifying

and characterizing chaos within complex systems.
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Dynamics Largest LE

Fixed Point λmax < 0
Limit Cycle λmax = 0
Chaos 0 < λmax <∞
Noise λmax→∞

Table 1.1: Largest LE for different dynamical behaviors.

1.1.6 Spatiotemporal Chaos

In the previous sections, we explored the complexities of temporal chaos,

which is characterized by its sensitivity to initial conditions over time within a

system’s trajectory. This type of chaos, exemplified by the Lorenz system and

described through LE, highlights the unpredictable yet deterministic nature of

dynamic systems observed at a specific point in space. We will now extend this

conversation to Spatiotemporal Chaos, which incorporates the spatial dimension

into chaotic analysis. This broader type of chaos is not limited to just temporal

evolution but is present across large spatial areas, characterized by a continuous

spectrum of positive LE (which we will detail later in Section 1.3.6), as opposed

to the discrete values found in purely temporal chaos.

Spatiotemporal Chaos provides a crucial framework for understanding com-

plex phenomena where the interaction between spatial and temporal elements

is intricate, resulting in patterns that emerge from the collective dynamics of

spatially extended systems. Such systems are pivotal in a variety of contexts,

from predicting weather patterns to understanding the spread of diseases and

managing traffic flows. The foundation of STC was significantly advanced by

M.C. Cross and P.C. Hohenberg in the late 20th century through their seminal

work on pattern formation in systems far from equilibrium, highlighting the

complex behaviors arising from spatial interactions and disturbances [36]. Addi-

tional developments by researchers like Y. Kuramoto and G. Nicolis have further

explored how coupled oscillatory fields and reaction-diffusion systems under

non-equilibrium conditions can exhibit chaotic behavior, profoundly affecting

the formation and evolution of patterns across large spatial scales [37, 38].

These studies have opened new avenues in physics and applied mathematics,
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significantly impacting diverse fields such as meteorology, ecology, and social

sciences by enhancing our understanding of the spatial distribution and tem-

poral dynamics of complex systems. Through the collective efforts of these

researchers, STC has become an indispensable concept in the study of complex

systems, aiding in the prediction and management of phenomena that exhibit

unpredictable behavior across both space and time.

Examples of Spatiotemporal Chaos

As we continue our exploration of STC, it is crucial to investigate specific

systems where this complex phenomenon is prominently displayed. STC, often

emerging in systems governed by partial differential equations, presents unique

challenges compared to temporal chaos, which can be modeled more straightfor-

wardly with Ordinary Differential Equations (ODE). Among the notable systems

that exhibit STC, the Complex Ginzburg-Landau Equation (CGLE) and the

Kuramoto-Sivashinsky Equation (KSE) are particularly significant. Each of these

equations encapsulates distinct mechanisms and effects of STC, providing deep

insights across a wide range of applications. These models serve as fundamental

tools for understanding the intricate dynamics that characterize STC in various

scientific fields.

The CGLE is crucial in the study of nonlinear waves and pattern formation

in nonequilibrium systems. It describes a wide range of phenomena, including

superconductivity, superfluidity, Bose-Einstein condensates, and nonlinear wave

dynamics in fluids [39]. The CGLE is given by:

∂A
∂t

= A+ (1 + iα)∇2A− (1 + iβ)|A|2A, (1.6)

where A represents the complex amplitude of the wave, and α and β are real

parameters that modulate the nonlinear interaction and dispersion, respectively.

This equation illustrates how complex interactions and turbulence within wave

patterns can evolve, demonstrating STC in a mathematically elegant form.

The KSE on the other hand, captures dynamics in systems experiencing

instabilities leading to turbulence. Originally derived to study the instability in

laminar flames, the KSE is applicable to various hydrodynamic systems, chemical
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reactions, and heat transfer phenomena [40]. The KSE is formulated as:

∂u
∂t

= −u∂u
∂x
− ∂

2u

∂x2 −
∂4u

∂x4 , (1.7)

where u represents the state variable, such as temperature in a thermal convec-

tion layer or concentration in a chemical reaction. This equation is renowned for

its chaotic solutions, providing a window into the behavior of systems far from

equilibrium.

Both the CGLE and KSE exemplify the critical nature of STC in understand-

ing the dynamics of various scientific and engineering systems. These models

demonstrate the intricate patterns that emerge from the nonlinear dynamics and

are instrumental in developing theoretical and computational tools to analyze

chaos over extensive spatial and temporal scales [36]. By studying these equa-

tions and their implications, researchers continue to unravel the complexities of

STC, enhancing our understanding of chaotic behavior in natural and engineered

systems. Insights from such studies are invaluable, broadening our capabilities

in fields ranging from meteorology and environmental science to physics and

beyond.

1.2 Optical Frequency Combs

Expanding upon the basic knowledge of chaotic and Dynamical System

discussed in previous parts, we now turn our attention to an especially intriguing

use in the field of spectroscopy and precise measurement: Optical Frequency

Combs (OFC). Over the past few decades, these combs, composed of a series

of phase-locked, equally spaced laser frequency lines, have received significant

interest due to their precision and the broad spectrum of their applications.

These combs serve as highly accurate rulers, finding diverse applications ranging

from metrology [41, 42] with Lidars [43] to astrophysical spectrometers for

detecting Earth-like exoplanets [44, 45], as well as in ultra-precise spectroscopy

and molecular fingerprinting [46–48]. The 2005 Nobel Prize in Physics awarded

to John L. Hall and Theodor W. Hänsch highlighted the global significance of

frequency combs, particularly for their use in precision hydrogen spectroscopy,
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influencing fundamental research and real-world metrology applications.

The development of OFC is closely associated to advancements in laser

technology, particularly through mode-locked lasers that emit a rapid succession

of ultra-short light pulses. Each pulse carries a series of phase-coherent optical

frequency lines that come together to form the comb’s structure. As depicted in

Fig. 1.5, the time domain representation of mode-locked frequency combs shows

a periodic train of pulses with a repetition rate frep which corresponds to an

equidistant spectrum in the frequency domain. This visual representation helps

illustrate how the spacing of the lines, given by frep, and the carrier-envelope

phase shift ∆φ0 influence the structure and stability of the frequency comb.

The figure effectively demonstrates the interplay between time and frequency

domains that is central to the functionality of OFC.

Figure 1.5: Time and frequency domain picture of mode-locked frequency combs.
A periodic train of pulses with a repetition rate frep (a) corresponds to an optical
frequency comb spectrum of equidistant lines in the frequency domain (b). The
line spacing is given by frep. The offset f0 of the frequency comb spectrum
relates to the carrier-envelope phase shift ∆φ0 between two consecutive pulses
via f0 = frep ·∆φ0/2π. Figure taken from [49].

Beyond traditional mode-locking techniques [50], other methods have also

been developed to generate these OFC, including parametric four-wave mixing in

highly nonlinear fibers [51], spontaneous four-wave mixing in quantum cascade

lasers [52], and difference frequency generation [53].

Additionally, the generation of Kerr combs in microresonators has emerged

as a compact and efficient alternative [54], exploiting the nonlinear optical

properties of these systems to generate broad and stable combs across a wide

spectral range.
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Microresonators, especially those with high-quality factors, have proven to be

optimal for generating OFC due to their ability to efficiently confine light [55–57]

and their low energy requirements. The use of Continuous-Wave lasers to pump

these microresonators facilitates the generation of Kerr combs through enhanced

four-wave mixing, driven by the intrinsic nonlinearity of the medium, marking a

significant advancement in the field. Fig. 1.6 illustrates a typical microresonator

setup used in the creation of OFC.

Figure 1.6: Schematic diagram of a microresonator used in generating OFC.

In our work, we consider a passive Kerr resonator made of an optical fiber

ring, which we will talk about more in Chapter 2.

1.3 Lugiato-Lefever Model

The Lugiato-Lefever Equation (LLE) was first introduced by Luigi Lugiato

and René Lefever in 1987 to describe spatial dissipative structures in nonlinear

optical systems, specifically within passive optical resonators. This model has

since been pivotal in understanding various phenomena in nonlinear optics,

such as Kerr Frequency Comb (KFC), optical solitons, and Modulation Instability

(MI) [58–60].

By coupling the ends of an optical fiber, the propagation of light in the result-

ing passive resonator can be modeled by the Nonlinear Schrödinger Equation
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(NLSE), augmented with boundary conditions or Ikeda map, as follows [61–63]:

∂A(j)(z,T )
∂z

= −
αf
2
A(j)(z,T )− i

β2

2
∂2A(j)(z,T )

∂T 2 + iγ |A(j)(z,T )|2A(j)(z,T ), (1.8a)

A(j+1)(0,T ) =
√
θEi(T ) +

√
ρA(j)(L,T )e−iΦ0 , (1.8b)

where A(j)(z,T ) is the envelope of the electric field that circulates within the

cavity at the jth round trip, αf the absorption of the fiber, L the cavity length, γ

the nonlinear Kerr coefficient of the fiber, β2 the group-velocity dispersion, Φ0

is the linear phase shift, θ and ρ are the transmission and reflection coefficient

respectively. The independent variable z refers to the longitudinal coordinate,

while T is the time in a reference frame moving with the group velocity of the

light. From the analytical point of view, except for the Linear Stability Analysis

(LSA), it is a hard task to study the nonlinear evolution of such a system directly

via Eqs. 1.8. For large enough cavity finesse, the mean-field approximation is

often used to describe the full map equations. Consequently, after one roundtrip,

the solution of Eq. 1.8a can be written in the form:

A(j)(L,T ) ≈ A(j)(0,T ) +L
∂A(j)(0,T )

∂Z

∣∣∣∣∣∣
Z=0

≈
[
1−

αf L

2
− i
β2L

2
∂2

∂T 2 + iγL
∣∣∣A(j)(0,T )

∣∣∣2]A(j)(0,T ).

(1.9)

For resonant pumping, the acquired phase after a roundtrip is 2kπ where the

integer k labels the cavity resonances. The distance to the closest cavity resonance

is measured by introducing δ = 2kπ − Φ0. Assuming δ ∼ θ ≪ 1, the term
√
ρexp(−iΦ0) in Eq. 1.8b can be written in the form:

√
ρexp(−iΦ0) =

√
1−θ exp(−iΦ0) ≈ (1− θ

2
)(1− iδ) ≈ 1− θ

2
− iδ. (1.10)

Using this approximation after inserting Eq. 1.9 in Eq. 1.8b leads to:

A(j+1)(0,T ) ≈
√
δEi(T ) +

[
1− θ

2
− αL

2
− iδ − i

β2L

2
∂2

∂T 2 + iγL|A(j)(0,T )|2
]
A(j)(0,T ).
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From this equation, one can easily identify the quantity that measures the

change in the temporal profile from one roundtrip to another at the coupler as

A(j+1)(0,T )−A(j)(0,T ) ≈ tR∂′tA(t′,T ) with t′ = jtR. Finally setting:

S = Ei
√
γθL/α3 (1.11a)

ψ = A
√
γL/α, (1.11b)

t =
αt′

tR
, (1.11c)

τ = T

√
2α
β2L

, (1.11d)

α =
θ +αf L

2
, (1.11e)

η = sign(β2) = ±1, (1.11f)

∆ =
δ
α

=
2kπ −Φ0

α
, (1.11g)

the mean-field evolution is given by the LLE [58, 62]:

∂ψ(t,τ)
∂t

= S − (1 + i∆)ψ − iη
∂2ψ

∂τ2 + i | ψ |2 ψ (1.12)

Here ψ(t,τ) represents the normalized slowly varying envelope of the elec-

tric field circulating within the cavity, S denotes the pump strength, ∆ is the

frequency detuning, t corresponds to the slow evolution of ψ over successive

round-trips, τ accounts for the fast dynamics that describe how the electric

field envelope changes along the fiber1. For the normal dispersion regime, the

group-velocity dispersion β2 > 0 and η = 1, and for the anomalous dispersion

regime β2 < 0 and η = −1. The LLE is foundational in the study of nonlinear

dynamics within optical systems. This equation was originally developed to

describe spatial dissipative structures in passive optical systems, where the

interplay between diffraction, nonlinearity, and cavity detuning results in com-

plex behaviors such as solitons, periodic patterns, and chaos [58, 59, 62]. Note

1The LLE (Eq.1.12) is equivalent to a 1D system. In the following, when we refer to a
spatiotemporal system, "time" will denote the round-trip time t, while "space" will correspond to
the fast time τ .
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that, before laser systems, Eq. 1.12 has been derived in early reports to describe

the plasma driven by radio frequency field [64, 65] and the condensate in the

presence of an applied AC field [66].

1.3.1 Steady states

In the homogeneous (∂
2ψS
∂τ2 = 0) and steady-state (∂ψS∂t = 0) case, the LLE

simplifies to:

0 = −(1 + i∆)ψ + i|ψ|2ψ + S (1.13)

Rewriting this equation in terms of real and imaginary parts, let ψ = ψr + iψi
and assuming S is real (Si = 0), we get two equations: S = ψr −∆ψi + |ψ|2ψi

0 = ψi +∆ψr − |ψ|2ψr

By solving these equations for the steady-state values, we find:

ψi = ψr(Is −∆) (1.14)

where Is = |ψs|2 is the intracavity field intensity. Rewriting the steady-state field

ψs in terms of amplitude
√
Is and phase φs:

ψs =
√
Ise

iφs (1.15)

Thus, the real and imaginary parts are: ψr =
√
Is cos(φs) and ψi =

√
Is sin(φs).

Using Eq. 1.14, we can calculate the steady state phase:

φs = tan−1(Is −∆) (1.16)

The homogeneous and steady state solutions of Eq. 1.12 obey the cubic equation:

|S |2 = Is[1 + (Is −∆)2] (1.17)
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It is well known that this equation has one, two, or three real-valued solutions

depending on the parameters ∆ and S. Multiple solutions may arise in a polyno-

mial equation when it has local extrema; in our case, this condition requires the

existence of critical values of Is such that the partial derivative is null:

∂|S |2

∂Is
= 3I2

S − 4∆Is +∆2 + 1 = 0 (1.18)

This condition yields a quadratic equation with a discriminant equal to 4(∆2−3);

therefore, if ∆ <
√

3, there are no such critical values for Is whereas, for ∆ ≥
√

3,

these critical values are:

IS,SN1,2
=

2∆
3
± 1

3

√
∆2 − 3. (1.19)

and the corresponding pumping terms are:

S2
±(∆) =

2∆∓
√
∆2 − 3

3

1 +

√∆2 − 3±∆
3

2 (1.20)

The critical detuning is obtained by imposing IS,SN1
= IS,SN2

which gives ∆c =
√

3.

• For small detunings ∆ <
√

3, the HSS Eq. 1.17 has only one solution such that

there is a single steady state IS for a given pump S2, the system is monostable
(single-valued transmission curve).

• For detuning ∆ >
√

3, the HSS Eq. 1.17 has three solutions for IS for a given

value of the pump S2 with two turning points SN1,2. Two solutions are sta-

ble to homogeneous perturbations while the other is unstable, and thus the

homogeneous solution is bistable (presence of a Hysteresis).

In Fig. 1.7, we can observe the monostable regime for ∆ = 1.1 (Fig. 1.7a) and

bistable regime for ∆ = 6.25 (Fig. 1.7b).

1.3.2 Linear Stability Analysis

The stability analysis of the LLE reveals critical insights into the conditions

under which complex behaviors such as Modulation Instability (MI) and soliton
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Figure 1.7: In figure (a) we show the HSS in the monostable regime for ∆ = 1.1
and in figure (b) an example of the HSS solution in the bistable regime, here
∆ = 6.25.

formations occur. Solitons form when there is a balance between nonlinearity

and dispersion, leading to stable, localized wave packets. MI arises when per-

turbations on a continuous wave background grow exponentially, driven by the

interplay between nonlinearity and dispersion.

To analyze the stability of the homogeneous steady-state solution of the LLE,

we consider perturbations of the form ψ = ψs + δψ, where ψs is the steady-state

solution and δψ is a small perturbation. The perturbation is assumed to have

the form δψ ∝ eλt+iωτ . Substituting this into the LLE and linearizing around ψs
gives the dispersion relation:

(λ+ 1)2 + (∆− 2Is +ω2)2 − I2
s = 0 (1.21)

Solving for the eigenvalues λ:

λ± = −1±
√
I2
s − (∆− 2Is +ω2)2 (1.22)

The eigenvalues λ− always being negative, whatever ω ∈R, only λ+ is of interest

for stability analysis. The system becomes unstable if λ+ has a positive real part.
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The boundary between stable and unstable regimes is given by λ+ = 0:

−1 +
√
I2
s − (ω2 +∆− 2Is)2 = 0 (1.23)

The specific conditions for MI differ between the monostable and bistable

regimes, with different thresholds for detuning and pump power. In the follow-

ing sections, we will detail these phenomena, providing a thorough explanation

of the conditions for soliton formation and MI. For more detailed calculations

and a deeper mathematical treatment, please refer to Appendix A.

1.3.3 Modulation Instability

Modulation Instability, also known as Turing instability [36, 67–69], is a

critical phenomenon in nonlinear optical systems. It occurs when a Continuous-

Wave (CW) solution becomes unstable due to perturbations, resulting in the

formation of a periodic pattern in the temporal domain and symmetrical side-

bands on both sides of the pump frequency in the spectral domain. This effect

was first observed in nonlinear fiber optics in 1986 by K. Tai et al. [70] in the

anomalous dispersion region. MI has also been investigated in cavities, where

it was first observed in 1988 by M. Nakazawa et al. [71]. In 1997, Coen et

al. [61] highlighted that MI could be extended to normal dispersion region. MI

in passive cavities has also been widely studied in anomalous dispersion since

it operates at the early stage of higher nonlinear structures such as temporal

Cavity Solitons (CS) [60], whose spectral counterpart corresponds to frequency

combs [72]. The conditions for MI are influenced by the interplay between Kerr

nonlinearity and the system’s dispersion, and they differ significantly between

the monostable and bistable regimes.

MI in Monostable Regime (∆ <
√

3)

In the monostable regime, the system is characterized by a single stable steady-

state solution. MI can still occur under specific conditions:

• Instability Condition: The perturbation growth rate λ+ must be positive.
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According to the dispersion relation (Eq. 1.22), the condition for MI to occur

is: I2
s − (∆− 2Is +ω2)2 > 1.

• Critical Points: The HSS loses stability at Is = 1 with ωc =
√

2−∆.

• Patterned Solutions: MI leads to a periodic solution in τ , which considering τ

as a spatial coordinate, can be viewed as a pattern solution. This patterned

solution can arise either supercritically when ∆ < 41/30 or subcritically when

∆ > 41/30.

MI in Bistable Regime (∆ >
√

3)

In the bistable regime, the system has two stable steady-state solutions separated

by an unstable one as we showed in Section 1.3.1. This regime supports more

complex dynamics, and MI can occur under different conditions:

• For
√

3 < ∆ < 2, MI occurs at Is = 1. The critical values for MI are the two

values derived from the saddle-node bifurcation analysis (Eqs. 1.19 derived in

the previous section).

• For ∆ > 2, the system transitions directly to optical turbulence above the upper

saddle-node bifurcation point SN2, while stable periodic patterns persist

below the threshold. This coexistence can lead to localized structures such as

CS.

For MI to occur, the real part of the eigenvalue Re(λ) must be positive. A

necessary condition in all cases is that the CW intracavity power Is ≥ 1, which

implies that the minimum driving power required for intracavity MI is S ≥ 1.

In the anomalous dispersion regime, MI requires Is > ∆/2 for ∆ > 2, making the

entire upper branch of the homogeneous response unstable while the lower one

remains stable [73]. Conversely, in the normal dispersion regime, MI occurs

only at the end of the CW lower branch when Is < ∆/2 [74]. The MI pattern

solution emerges supercritically from the homogeneous state when ∆ < 41/30

and subcritically when ∆ > 41/30 [58, 73]. In the latter case, a periodic pattern

can coexist with a stable CW solution (the lower branch when the bistability

of the homogeneous state is present) over a certain range of parameters. This
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coexistence underpins the existence of CS [75, 76], which are localized structures

formed by the periodic MI pattern connected by fronts with the CW solution [77].

1.3.4 Cavity solitons

Solitons in the LLE arise when dispersion and nonlinearity balance each other,

resulting in a stable, localized wave packet that maintains its shape over time.

Additionally, a balance between gain and dissipation defines the soliton’s ampli-

tude. Cavity Solitons (CS) are solitons that exist in passive nonlinear resonators,

where the loss compensation is achieved through coherent external forcing [78].

CS emerges from the homogeneous CW response at the CW up-switching point.

Initially, they are unstable, very broad, and have a low peak power above the CW

background, appearing infinitely wide as they approach the CW up-switching

point. As the system parameters change, the CS branch eventually folds and

becomes stable. At higher detuning values, a Hopf bifurcation occurs, causing a

soliton to destabilize and evolve into a breather, that is, a soliton whose ampli-

tude varies periodically in time [79, 80]. For even larger parameter values, the

dynamics become more complex and can lead to chaotic behavior [79, 81].

1.3.5 Spatiotemporal Chaos and its two routes

It is well known that chaos can potentially arise in any nonlinear system

with at least three degrees of freedom. A third condition, which is rather em-

pirical but intuitively evident, is the requirement of strong excitation. The LLE

satisfies these conditions due to its high nonlinearity and its infinite number of

dimensions and therefore predicts the occurrence of STC. Practically, almost all

high-dimensional and nonlinear systems exhibit chaotic behavior when strongly

excited. The first unambiguous evidence of chaos in Kerr combs was provided

in Ref. [82] using the computation of LE, which were found to be positive in the

case of strong pumping. Other studies have also shed more light on the chaotic

dynamics of Kerr combs [83]. From a more general perspective, two main routes

to chaos can be identified [84].

• Route via Unstable Turing Patterns: If ∆ <
√

3, chaos originates from the
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destabilization of Turing patterns. Starting from a low-amplitude noise initial

condition, as the pump S2 is increased, a sequence of bifurcations occurs.

These bifurcations lead to the Turing patterns becoming unstable and oscillat-

ing in time. Further increases in pump power drive the system into a chaotic

state, characterized by rapidly fluctuating peaks of diverse amplitudes.

• Route via CS: When ∆ >
√

3, the system’s stable structures are CS. As the

pump power increases, the solitons become unstable and evolve into a breather,

whose amplitude varies periodically over time. With further increases in pump

power, the system transitions into chaotic behavior, the unstable solitons are in

a “turbulent” regime which is characterized by the pseudorandom emergence

of very sharp and powerful peaks.

A statistical analysis shows that these peaks which are of rare occurrence and

very high intensity [85] qualify as rogue waves or Extreme Events (EE) [86, 87].

1.3.6 Characterization of spatiotemporal chaos

LE measure the sensitivity of the system to initial conditions, and as we

discussed earlier in Section 1.1.5, a positive LE is evidence of chaos, but to

distinguish between various complex behaviors such as STC, low-dimensional

chaos, and turbulence, tools such as power spectrum [82], filtering spatiotem-

poral diagrams [88], embedding dimension, and time series analysis [89, 90]

are inadequate. A classification of these phenomena has been reported in the

literature [91–97].

Lyapunov spectrum

The only reliable tool for the characterization of STC is the LS which is

composed of a set of LE. In the case of STC, the LS has a continuous set of

positive values. This matches the definition that has been proposed in [91, 93].

In the case of low dimensional chaos, the LS possesses a discrete set of positive

values. However, the turbulence or weak turbulence is characterized by a power

law cascade of a scalar quantity [98].
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The computation of the LS itself is very well documented [99] and is not the

purpose here. Let us just recall the main steps. From the state of the system at a

given time, the linear evolution of any small perturbation δX can be described by

∂tδX = JδX, where J is the respective Jacobian. In the present case, we introduce

ψ = ψr + iψi , with ψr and ψi being the real and imaginary part of ψ respectively.

At a time t = t0, introducing ψ = ψ0 + δψ, with δψ≪ ψ(t = t0) = ψ0, the matrix J

reads:

J =

 −(1 + 2ψ0rψ0i) ∆−ψ2
0r − 3ψ2

0i −∂
2
τ

−∆+ (ψ2
0i + 3ψ2

0r) +∂2
τ −(1− 2ψ0rψ0i)

 , (1.24)

and δX = (δψr ,δψi)t. Suppose that we want to compute the nth first domi-

nant exponents of the spectrum, we introduce the matrix L, which contains

n orthonormal vectors vi which to be used as initial conditions when solving

∂tδX = JδX:

L(t = t0) ≡ [v1 v2 . . . vn] =


x11 x12 x13 · · · x1n

x21 x22 x23 · · · x2n
...

...
...

. . .
...

xd1 xd2 xd3 · · · xdn


, (1.25)

where d is the dimension of the system. After a time increment dt, the matrix L

evolves to L(t0 +dt) = ÛL(t0) where Û = eJ ·dt. Using the modified Gram-Schmidt

QR decomposition on L(t0 + dt), the diagonal elements of R account for the LE

λ̃i(i = 1, . . . ,n) at time t0 + dt, that is:

λ̃i(t0 + dt) =
1
dt

ln(Rii(t0 + dt)). (1.26)

After repeating this procedure several times, after a large number of iterations

N , the LE can be approximated by:

λi ≡ ⟨λ̃i⟩ =
1
Ndt

N∑
k=1

ln(Rii(t0 + kdt)). (1.27)
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Kaplan-Yorke dimension

The Kaplan-Yorke Dimension (DKY ) is a crucial tool for characterizing the

complexity of chaotic attractors in spatiotemporal systems [100]. It serves as an

order parameter to establish the bifurcation diagram of STC. The DKY is defined

from the spectrum of LE {λi} as:

DKY = p+

∑p
i=1λi
|λp+1|

(1.28)

where p is the largest integer that satisfies
∑p
i=1λi > 0 [32]. The DKY grows

linearly with the volume of a high-dimensional chaotic system [36, 92], meaning

that for a one-dimensional system of size L, STC implies that DKY increases

linearly with L. In the context of the Lugiato-Lefever Equation (LLE), we consider

a temporal window, ∆T , and for a 1D system:

DKY = ξ−1
δ ∆T (1.29)

where ∆T represents the temporal extension of the system and ξδ represents

the Lyapunov dimension density of the system for a fixed value of the control

parameter. This intensive quantity provides an estimation of the extension of

dynamically independent subsystems generated by the chaotic dynamics. For

a fixed set of parameters, it is useful to provide an intensive characterization

of the chaoticity level by computing the slope of the DKY curve with respect to

the volume [101, 102]. The inverse of this slope, also known as the Lyapunov

dimension density (ξδ), estimates the size of the independent sub-domains

produced by the presence of the attractor. Studies have shown that the range

of independent sub-domains decreases with the pumping level [103]. This also

demonstrates the evolution of the DKY as a function of the temporal window for

several pump powers and showed that the curves’ slopes increase with the pump

power, confirming the spatiotemporal chaotic nature of the process. In Ref. [101],

they also showed the dependence of this DKY on the control parameter, which

confirms the increasing of the complexity with the pump power. Besides this

growth of the DKY with the pump power, we must also consider the conjecture
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that the dimension increases with the size of the system–extensive nature of the

STC [32, 91, 92, 95, 104].

1.4 Extreme Events

Our research centers on a synchronously pumped fiber ring cavity, a type

of dissipative system known for exhibiting Extreme Events (EE) induced by

Spatiotemporal Chaos [101]. Notably, this study [101] marks the first documen-

tation of EE arising within the monostable regime of a passive Kerr-type cavity.

EE are very rare and large amplitude fluctuations that arise not just by chance

but through the complex interplay of forces within systems far from equilibrium.

In the field of optics, these events manifest as rare and intense optical pulses and

have analogies in hydrodynamics, notably with oceanic rogue waves, which are

both described by the Nonlinear Schrödinger Equation (NLSE) [105], illustrating

a common theoretical foundation. Most optical studies have occurred in fibers

where the interplay of nonlinearity, dispersion, and noise can generate EE [2–4,

106].

From a statistical perspective, EE lie in the tails of probability distributions,

which describe the likelihood of occurrences of varying magnitude. These tails

can be ’heavy’ or ’sub-exponential’, which means that the probability of EE does

not decrease as rapidly as in a standard Gaussian distribution. This statistical

perspective allows scientists to estimate the probability of such events or the

probability of an event exceeding a specific threshold.

Dynamically, EE are not simply the result of chance but result from the

complex interplay of forces within complex systems far from equilibrium. This

complexity is evident in various environments, from weather systems modeled

on fundamental physical principles to the chaotic dynamics observed in financial

markets and traffic systems.

In recent years, EE generated by complex systems have been a topic of great

interest in various fields due to their significant impact on society [107], on

scientific research, and on our daily lives. The presence of EE extends beyond

optics and oceanography [108] and can also be observed in other disciplines,

such as astrophysics [109], the atmosphere [110], and geology [111].
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Although significant progress has been made, predicting these events remains

challenging due to their complex dynamics and the high dimensionality of the

systems involved [107]. Regardless of their different physical origins, these EE

can be viewed as emergent phenomena, where information coming from one

physical system can benefit others. Optics, in particular, offers many advantages

in this respect, allowing well-controlled laboratory conditions, good detection

techniques, and fast timescales for large data collection samples in a limited

time, facilitating the study of nonlinear dynamics and the development of

predictive models. The ability to predict such events holds great practical

importance, enhancing the performance and reliability of systems in weather

forecasting, traffic management, power grids, and financial markets. A variety

of methods have been employed to predict EE in the time series of chaotic DS.

Some of the approaches that have proven effective include nonlinear dynamics

estimation based on the Koopman operator theory [112] and Takens embedding

theorem [113], to Machine Learning (ML) approaches such as support vector

machines [114], singular spectrum analysis, the maximum entropy method [115],

and the advanced deep learning techniques, including auto-encoders [116], Long

Short-Term Memory (LSTM) networks [11], and reservoir computing [117] all

contributing significantly to developing models capable of predicting chaotic

systems with high-dimensional attractors. In the following sections, we will

introduce model-free tools like Machine Learning (ML) and Information Theory

tools to help predict these extreme events.

1.5 Machine Learning

Machine Learning (ML), a subset of Artificial Intelligence (AI), uses statis-

tical techniques and numerical algorithms to perform tasks without explicitly

programmed instructions. Examples of ML tasks include classification, de-

tection, pattern recognition, prediction, optimization, and modeling complex

dynamics from observed data. These capabilities make ML valuable across vari-

ous domains, including control systems, speech processing, neuroscience, and

computer vision. Recently, its application has expanded to predicting chaotic

systems and optimizing optical systems. ML algorithms are broadly categorized
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into two types: supervised and unsupervised learning.

• Supervised learning is still the most common approach in current ML [118].

It uses prior knowledge to build models that describe system responses based

on input-output relationships. In other words, it refers to an approach where

a model maps output values Y from the inputs X. The training of the model

is realized by introducing pairs of input and corresponding known output

values (Xn,Yn). The predictions of the model, denoted as Ŷ , are compared to

the ground truth Y , and the parameters of the model are modified in a way

that the prediction error is minimized based on the pairs of input and output

values.

• Unsupervised learning involves exploring data to identify inherent patterns

without predefined labels.

Both learning paradigms are instrumental in analyzing complex datasets and

extracting meaningful insights. In our work, we use only supervised learning

methods.

Recently, there has been a growing interest in applying ML techniques to

optical systems. The application of ML in optics and photonics is relatively

recent, but it has shown significant promise in various areas like laser optimiza-

tion [6, 7], ultrashort pulse measurements [8], label-free cell classification [119],

imaging [120–122] and coherent communications [123]. ML techniques have

been used to predict EE in optical systems, such as rogue solitons, by correlating

spectral measurements with temporal peak intensities. This review [5] provides

an overview of the application of ML in photonics, its different applications, and

the challenges faced in this interdisciplinary field.

1.5.1 Neural Networks

Neural Network (NN) have become the workhorse in most Artificial Intel-

ligence (AI) applications over the last decade. Early applications of Neural

Network (NN) for modeling and predicting DS date back to the work of Lapedes

and Farber [124], who demonstrated the effectiveness of feedforward Artificial

Neural Networks (ANN) in modeling deterministic chaos. Krischer et al. used
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Artificial Neural Networks (ANN) to forecast the principal components of a spa-

tiotemporal catalytic reaction [125]. As an alternative to ANN, wavelet networks

were proposed by Cao et al. for chaotic time series prediction [126]. How-

ever, these early approaches were often limited to low-dimensional systems and

typically employed in conjunction with dimensionality reduction techniques.

Recurrent Neural Networks (RNN) have the potential to overcome these

scalability issues and be applied to high-dimensional spatiotemporal dynamics.

RNN are a special type of NN, commonly employed in processing sequential

or time-dependent data, such as time series [127], speech recognition [128,

129], and language translation [130–132]. Unlike traditional feedforward NN

and classical numerical methods that aim at discretizing existing equations of

complex systems, RNN models are data-driven and have recurrent connections

that allow them to maintain a memory of previous inputs through hidden

states propagated over time. This is key for identifying patterns and learning

dynamics that evolve sequentially over time [133]. The architecture of an RNN

is illustrated in Fig. 1.8, it includes nodes with recurrent connections that store

information from previous input values. The hidden state at any given time step

is a function of the current input and the hidden state from the previous time

step.

Figure 1.8: Schematic representation of a RNN. The RNN processes sequential
data by maintaining a hidden state that captures information from previous time
steps. This hidden state ht is updated at each time step based on the current
input xt and the previous hidden state ht−1.
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The works of Takens [134] and Sauer [21] demonstrated that the dynamics

on a D-dimensional attractor of a dynamical system could be unfolded in a

time-delayed embedding of dimension greater than 2D. The identification of

a useful embedding and the construction of a forecasting model has been a

significant area of research [135]. More recently, a data-driven method using the

Koopman operator formalism [136] was proposed [137] with feed-forward ANN

to identify an embedding space with linear dynamics suitable for theoretical

analysis.

There is limited work at the interface of RNN and non-linear dynamical

systems [9–11, 138, 139]. RNN, designed to capture long-term dependencies

in sequential data [140–143], initially faced challenges such as vanishing or

exploding gradients. The development of LSTM networks, which use gates to

manage memory, significantly improved RNN performance by addressing these

issues [127] and have been one of the standard RNN approaches for the past 15

years. In recent years, RNN architectures have been benchmarked for various

applications, such as short-term load forecasting in supply networks [144] and

extreme event detection in low-dimensional time series [145]. LSTM networks

have also been used as surrogates to model kinematics in fluid flows [146] and to

capture long-term statistics in reduced-order spaces of dynamical systems [11].

Furthermore, they have been applied to model residual dynamics in Galerkin-

based reduced-order models [139] and to forecast chaotic chimera states [147].

A more recent development is the GRU model [148], introduced in 2014, which

simplifies the LSTM architecture. In the following sections, we will introduce

both models and provide a brief comparison between them.

1.5.2 Long Short-Term Memory networks

Long Short-Term Memory (LSTM) introduce memory cells and gating mecha-

nisms that regulate the flow of information, allowing the network to maintain

and update its hidden state more effectively. This architecture enables LSTM to

learn long-term dependencies and perform well in tasks requiring the retention

of information over extended periods. The operation of an LSTM cell [127] is

shown in Fig. 1.9. Panel (a) demonstrates the overall operation of the cell, where
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the output yt at a given time t of a data sequence is calculated based on the

cell input xt (at time t), the hidden state ht−1 and the cell state ct−1 from the

previous time step. The output of the cell therefore takes into account long-term

information about the previous inputs and outputs of the cell that are internally

stored in the cell state. Panel (b) shows a more detailed description of the cell

operation. The equations describing the operations of a single LSTM cell at time

t for an input xt ∈Rdi can be written as:

ft = σ (Wf [ht−1,xt] + bf ) c̃t = tanh(Wc[ht−1,xt] + bc)

it = σ (Wi[ht−1,xt] + bi) ct = ft ⊙ ct−1 + it ⊙ c̃t
ot = σ (Wo[ht−1,xt] + bo) ht = ot ⊙ tanh(ct)

(1.30)

Here, vectors ft, it, and ot ∈Rdh are the forget, input, and output gates, respec-

tively, with dh denoting the dimensionality of the hidden state, i.e., the number

of hidden units. Vector c̃t ∈ Rdh is the cell input activation, and vectors ct and

ht ∈Rdh are the updated cell and hidden states, respectively. Matrices Wf , Wi ,

Wo, and Wc ∈Rdh×(dh+di ) are the cell weights, which are the parameters that the

model learns during training. They are used to transform the input and the

previous hidden state before applying the activation functions. Biases bf , bi ,
bo, and bc ∈Rdh are essential for shifting the activation function’s output, allow-

ing the model to fit the training data more effectively. The symbol ⊙ denotes

pointwise Hadamard multiplication, and σ is the sigmoid function, which is an

activation function that squashes the input to a value between 0 and 1. This

function is crucial for the gates in an LSTM cell because it allows the network

to make decisions about which information to keep and which to discard. By

outputting a value close to 0 or 1, the sigmoid function effectively acts as a

switch, either letting information pass through or blocking it. The mathematical

expression for the sigmoid function is: σ (x) = 1
1+e−x . Notation [ht−1,xt] indicates

the concatenation of the two vectors. The weights and biases of the network are

iteratively trained via backpropagation through time [149].
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Figure 1.9: Illustration of LSTM cell operation. (a) Represents an overview of
LSTM cell operation in the context of a sequence, showing how the output yt
at time t is influenced by the input xt, hidden state ht−1, and cell state ct−1. (b)
Detailed schematic of the internal operations within an LSTM cell, highlighting
the forget gate ft, input gate it, cell input activation c̃t, cell state ct, output gate
ot, hidden state ht, and output gate yt.

1.5.3 Gated Recurrent Units

Building on the LSTM architecture, Gated Recurrent Unit (GRU) [148] com-

bine the forget gate and input gate into a single update gate (zt), and merge

the hidden state with cell state, making the architecture simpler, reduce the

computational complexity and improve the training speed. There are only two

gates in the cell architecture of GRU: the reset gate (rt), which decides how much

past information to forget, and the update gate (zt), which works in a similar way

to the forget and input gates of an LSTM. It defines how much of the previous

memory remains, which can be described by Eqs. 1.31 and 1.32, respectively:

rt = σ (Wr[ht−1,xt] + br) (1.31)

zt = σ (Wz[ht−1,xt] + bz) (1.32)

where Wr is the weight matrix of the reset gate, br is the bias matrix of the reset

gate, Wz is the weight matrix of the update gate, and bz is the bias matrix of the

update gate. Subsequently, the new memory cell state is obtained by Eq. 1.33:

h̃t = tanh(Wh[ht−1 ⊙ rt,xt] + bh) (1.33)
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where Wh is the weight matrix of the new memory cell state and bh is the bias

matrix of the new memory cell state. The gating signal (zt) ranges from 0 to 1.

The closer the gating signal is to 1, the more data will be memorized, whereas

the closer to 0, the more data will be forgotten. Therefore, one single expression

can control both forgetting and inputting, generating the output (ht):

ht = (1− zt)⊙ ht−1 + zt ⊙ h̃t (1.34)

Fig. 1.10 illustrates the GRU cell architecture, showing the reset gate (rt) and the

update gate (zt), as well as the process for generating the new memory cell state

(h̃t) and the final output (ht).

Figure 1.10: Illustration of a GRU cell. The figure shows the reset gate (rt) and
the update gate (zt), as well as the process for generating the new memory cell
state (h̃t) and the final output (ht).

1.6 Information Theory and Transfer Entropy

Information theory, established by Claude Shannon [150], provides a math-

ematical framework for quantifying information transfer, uncertainty, and de-

pendency between random variables. This field has profound implications in

various domains, including communications, cryptography, data compression,

and complex system analysis. It allows us to understand and measure how

information is transmitted and transformed within systems.
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1.6.1 Fundamental Measures of Information Theory

Key measures in information theory include Shannon entropy, joint entropy,

conditional entropy, mutual information, and Conditional Mutual Information

(CMI) [151]. These measures help quantify the uncertainty and relationships

between different variables in a system.

• Shannon Entropy measures the uncertainty or randomness of a random vari-

able X [150, 152]. It is defined as:

H(X) = −
∑
x∈X

P (x) logP (x) (1.35)

For example, consider a binary set X = {0,1,0,1,1,0,0,1} with equal probabili-

ties for 0 and 1. By calculating the probabilities: p(0) = 4
8 = 0.5, p(1) = 4

8 =

0.5.

The entropy H(X) is: H(X) = −(0.5log2 0.5 + 0.5log2 0.5) = 1 bit, would be

maximal, indicating high uncertainty.

• Joint Entropy H(X,Y ) extends the concept of entropy to two variables, mea-

suring the uncertainty in their combined states:

H(X,Y ) = −
∑
x∈X

∑
y∈Y

P (x,y) logP (x,y) (1.36)

If we have another binary set Y = {1,0,1,0,0,1,1,0}, the joint entropy H(X,Y )

captures the combined uncertainty of X and Y . The joint probabilities might

be: p(0,0) = 0.25, p(0,1) = 0.25, p(1,0) = 0.25, p(1,1) = 0.25. The joint

entropy H(X,Y ) is: H(X,Y ) = −(0.25log2 0.25 + 0.25log2 0.25 + 0.25log2 0.25 +

0.25log2 0.25) = 2 bit.

• Conditional Entropy H(X |Y ) measures the amount of uncertainty remaining

in one variable given that the value of another variable is known.

H(X |Y ) = −
∑
x∈X

∑
y∈Y

P (x,y) logP (x|y) (1.37)
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where P (x|y) is the conditional probability that X = x given Y = y. If knowing

Y reduces the uncertainty in X, the conditional entropy H(X |Y ) would be

lower. For our binary sets, the conditional entropy H(X |Y ) is: H(X |Y ) =

−(0.25log2 1 + 0.25log2 1 + 0.25log2 1 + 0.25log2 1) = 0 bit. This means that

knowing Y completely determines X, so there is no uncertainty remaining.

• Mutual Information I(X;Y ) between X and Y measures the average reduc-

tion in uncertainty about x that results from learning the value of y, or vice

versa [152, 153], as follows:

I(X;Y ) =
∑
x∈X

∑
y∈Y

P (x,y) log
P (x,y)
P (x)P (y)

(1.38)

It highlights the dependency and shared information between X and Y . It can

also be expressed in terms of entropy:

I(X;Y ) =H(X)−H(X |Y ) =H(Y )−H(Y |X) (1.39)

Given the sequences X and Y and their respective probabilities:

I(X;Y ) =H(X)−H(X |Y ) = 1− 0 = 1 bit.

This means that knowing Y reduces the uncertainty about X by 1 bit, indicat-

ing a strong dependence betweenX and Y . If I(X;Y ) = 0⇔ X is independent of Y .

• Conditional Mutual Information (CMI) I(X;Y |Z) measures the amount of

information that one random variable contains about another, given that a

third variable is known [154]. For binary variables, it is defined as:

I(X;Y |Z) =H(X |Z)−H(X |Y ,Z) (1.40)

whereH(X |Y ,Z) is the conditional entropy of X given Y and Z. In other words,

it quantifies how much knowing Y reduces the uncertainty about X, given

that Z is known.
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1.6.2 Transfer Entropy

Transfer Entropy is a non-parametric statistic introduced by Thomas Schreiber

in 2000 [155], which builds on the fundamental measures of information theory

shown in the previous section to quantify the directed transfer of information be-

tween two processes. It is particularly useful for identifying causal relationships

in complex systems, capturing both linear and non-linear dependencies.

The TE from a source process Y to a target process X is defined as:

TY→X =
∑

P (xt+1,x
(k)
t , y

(l)
t ) log

P (xt+1|x
(k)
t , y

(l)
t )

P (xt+1|x
(k)
t )

(1.41)

where t is a time index, x(k)
t and y(l)

t represent the k and l past values of x and y,

up to and including time n (with k, l = 1 being default choices). This formulation

captures how the future state of X can be predicted from the past states of Y ,

indicating the directional influence Y has on X.

To enhance the accuracy of TE, it is important to consider the possibility that

the influence of Y on X might occur with a source-target lag or delay ’τ’ time

steps [156]. The delayed TE is expressed as:

TY→X(τ) =
∑

P (xt+1,x
(k)
t , y

(l)
t−τ ) log

P (xt+1|x
(k)
t , y

(l)
t−τ )

P (xt+1|x
(k)
t )

(1.42)

where τ represents the delay between the influence of Y on X. This addition

allows for a more accurate representation of the dynamics in systems where

interactions are not instantaneous.

When the history length is set to 1 (k = 1, l = 1), TE simplifies to CMI [157].

Specifically, if X and Y are single-step time series, TE can be expressed as:

TY→X = I(Xt+1;Yt |Xt) (1.43)

Here, TE is equivalent to the CMI between the future state of X and the past

state of Y , given the past state of X. However, when the history length is greater

than 1 (k > 1 or l > 1), TE accounts for more complex, multi-step dependencies
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and thus extends beyond CMI, capturing richer dynamics in the interactions

between X and Y .

TE will be the model-free tool used in multiple chapters of this thesis. In

practice, there are many codes that allow the computation of the TE of continuous

time series. We chose the open-source Java Information Dynamics Toolkit (JIDT)

software package by Lizier [158] (https://github.com/jlizier/jidt/). The

portability of this JIDT Java-based code, with no installation requirement, has

motivated our choice, which we employed in Matlab. The TE is computed

between either two univariate or multivariate time series of observations using

Kraskov-Stögbauer-Grassberger (KSG) estimation. The calculation is performed

by examining K th nearest neighbors in the joint distribution [159, 160] rather

than two mutual information calculators as initially suggested by Kraskov [161].

The value given by the TE is in ’nats’ (with 1 nat being equal to 1/ ln(2) bits).

Before TE, Norbert Wiener proposed that a time series Y causes X if the

inclusion of past values of Y improves the prediction of X. Clive Granger

formalized this in 1969 into what is known as Granger causality, based on

the premise that if Y Granger-causes X, then past values of Y should contain

information that helps predictX beyond the information contained in past values

of X alone [162]. Unlike Granger causality, which is parametric and typically

assumes linear relationships, TE is non-parametric and model-free, capable of

capturing nonlinear interactions and providing a more flexible and accurate

representation of information dynamics in complex systems. TE provides a

robust framework for studying information dynamics and causal relationships in

both linear and nonlinear systems, offering advantages over traditional methods

like Wiener and Granger causality. Its ability to capture delayed interactions

further enhances its utility in understanding complex temporal dependencies.

In addition, TE is especially powerful in studying spatiotemporal causality,

involving the directional transfer of information across both space and time

in a system. This is crucial in many fields, such as meteorology, neuroscience,

and ecology, where the dynamics of a system at one location or time point can

significantly influence other locations or time points. For example, in meteoro-

logical studies, TE can be used to analyze how wind speed and direction at one

meteorological station can affect conditions at another station. By examining

https://github.com/jlizier/jidt/
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the TE between these stations, we can identify patterns of information flow

and causal influences across different spatial locations. This helps in under-

standing and predicting weather patterns by capturing the complex, nonlinear

interactions that occur in the atmosphere. The ability of TE to capture nonlinear

dependencies makes it particularly suited for studying these complex systems.

Traditional methods like Granger causality may fail to detect these intricate

relationships because they often assume linear interactions. In contrast, TE

does not make such assumptions, allowing it to reveal the true dynamics of

information transfer. Overall, TE provides a comprehensive tool for investigat-

ing spatiotemporal causality and the transportation of nonlinear information

between different regions, making it invaluable for studying and predicting the

behavior of complex systems.
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In this chapter, we explore the predictability of spatiotemporal chaos dynam-

ics. Our investigation centers on numerical data exhibiting spatiotemporal chaos,

analyzed through various Machine Learning (ML) techniques. The predictive

methodologies are divided into two primary approaches. Initially, we focus on

forecasting the complete spatiotemporal dynamics. This involves employing

advanced ML models such as Long Short-Term Memory (LSTM) networks and

Gated Recurrent Unit (GRU) to predict the system’s future states based on cur-

rent and historical data. However, our results indicate that long-term forecasting

in these chaotic systems is inherently difficult due to their sensitive dependence

on initial conditions. Given these challenges, we propose an alternative method

termed "local forecasting." This approach focuses on predicting specific future

events by identifying precursors. Using statistical analysis and information

theory, we detect signals or patterns that precede significant events within the

chaotic data. These precursors enhance the precision of our event-specific fore-

casts, allowing for a more targeted and potentially more reliable prediction

method. Through these approaches, we aim to advance the understanding and

forecasting capabilities of complex spatiotemporal systems.
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2.1 Introduction

Many recent advances in the understanding of complex dynamics have been

driven by experimental and theoretical studies in modern optics, in fields as

diverse as optical-fiber cavities with quadratic or cubic nonlinear materials sub-

ject to externally injected radiations [163–165]. The field of optics, therefore,

is ideally suited to the investigation of Spatiotemporal Chaos (STC) and turbu-

lence in dissipative systems far from thermodynamic equilibrium (cavity and

laser systems). Within a few decades, optical Kerr-nonlinear resonators have

emerged as the paradigmatic setup for the study of externally driven nonlinear

systems [63, 166, 167]. Kerr resonators are also known for the property to contin-

uously switch between monostable (a region where the transmission function is

single-valued for a given pump power) and bistable (S-shape transmission curve)

regimes that we talked about in Section 1.3.1. Operating out of equilibrium,

Kerr resonators can exhibit nontrivial outputs such as cavity solitons [168–170]

and Modulation Instability (MI) [68, 171] that we talked about in Sections 1.3.4

and 1.3.3 respectively.

Passive resonator

CW coupler Chaos

Figure 2.1: Schematic representation of the optical fiber ring. The Continuous-
Wave (CW) input is coupled into the passive resonator, leading to a chaotic
output.

In our study, we consider a passive resonator made of an optical fiber ring

synchronously pumped close to a cavity resonance. The ring was set to operate

in a monostable regime. By pumping the cavity well above the cavity threshold,

typically a few times, the continuous wave solution breaks into a periodic wave

train, which in turn experiences an oscillatory instability and then evolves into a
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chaotic regime [101, 172], as shown in Fig. 2.1. This current sequence is universal

and can be observed in many other fields of physics [32, 173]. The dynamic of the

light circulating in the cavity is accurately modeled by the driven and damped

Nonlinear Schrödinger Equation (NLSE) augmented with boundary conditions,

in the mean field limit, referred to as Lugiato-Lefever Equation (LLE) [58] which

we already showed in Section 1.3:

∂ψ(t,τ)
∂t

= S − (1 + i∆)ψ − iη
∂2ψ

∂τ2 + i | ψ |2 ψ (1.12)

Here ψ(t,τ) represents the normalized slowly varying envelope of the elec-

tric field circulating within the cavity, S denotes the pump strength, ∆ is the

frequency detuning, t corresponds to the slow evolution of ψ over successive

round-trips, and τ accounts for the fast dynamics that describe how the electric

field envelope changes along the fiber. The cavity is also set to operate in the

anomalous dispersion regime so η = −1. The homogeneous (∂
2ψS
∂τ2 = 0) and steady

state (∂ψS∂t = 0) solutions of Eq. 1.12 obey the cubic equation:

|S |2 = Is[1 + (Is −∆)2] (1.17)

Here Is =| ψS |2 is the intracavity field intensity.

2.2 Numerical Simulation

We perform a numerical simulation of the LLE as presented in Eq. 1.12 and

illustrated in Fig. 2.2. The simulation employs a numerical integration approach

that combines the Fourth Order Runge-Kutta (RK4) method with a three-point

Finite Difference Method (FDM). The parameters chosen for the simulation are

as follows: Detuning ∆ = 1.1, which positions the system in a monostable regime

since ∆ <
√

3, power losses α = 0.2, for a pump S = 3.3 and intensity Is = 2.8.

The initial condition is set as the steady state field, ψs =
√
Ise

iφs (Eq. 1.15), with

φs = tan−1(Is −∆) (Eq. 1.16), and is perturbed by a small fluctuation to initiate

dynamics in the system. We define the scaled time variable as t = αt′
tR

, where t′

represents the simulation time (Eq. 1.11c). The time step δt = 0.01 ensures that
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20 time steps occur per cavity round trip. The simulation covers a total duration

from t = 0 to t = 2250, corresponding to 11250 cavity round trips. While

this number of round trips is sufficient for achieving statistically meaningful

results in our study, it represents a very small duration when considered in

an experimental context. The temporal window for the simulation spans from

τr = −64 to τr = 64 with N = 1024 discrete points, resulting in a temporal

resolution of δτ = 2×τr
N = 0.125. This temporal window captures the dynamics

over each round trip within the cavity.

Numerical computation of LLE
S=3.3, =1.1 & Is=2.8
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Figure 2.2: Numerical computation of LLE showing the evolution of the field
intensity |ψ|2 along the fiber over time. Parameters: S = 3.3, ∆ = 1.1, Is = 2.8.

To better visualize the evolution of the field intensity over time, Fig. 2.3

provides a zoomed-in view of the same data presented in Fig. 2.2. This zoomed-

in view allows for a clearer observation of the spatiotemporal structures and

dynamics. An almost periodic pulse train can be observed. Pulse positions

and shapes modifications in this two-dimensional map are characteristic of a

STC [101].
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Numerical computation of LLE
S=3.3, =1.1 & Is=2.8
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Figure 2.3: Zoomed-in view of figure 2.2.

2.3 Identification and Characterization of Spatiotem-

poral Chaos

In this section, we revisit the work done by Coulibaly et al. [103] on the

identification and characterization of the STC observed in this system, using

several key metrics such as the Lyapunov Spectrum (LS) and the Kaplan-Yorke

Dimension (DKY ). We already discussed in detail these two metrics in the

previous chapter (Section 1.3.6), and in this study [103] they showed that this

dynamic has a LS with a positive continuous part which is indicative of STC. For

this high-dimensional chaotic system, the DKY grows linearly with the system’s

volume, confirming the extensive nature of the chaos.

We refer to Figure 3 from Coulibaly et al.’s work [103] (Fig. 2.4 here), which

provides a comprehensive characterization of the STC in Kerr resonators. The

figure shows experimentally and numerically the STC observed in the Kerr

resonator, highlighting the irregular patterns in the output field. The LS demon-

strates a positive continuous part, a plot showing the DKY as a function of the
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Figure 2.4: Characterization of STC: (a) Experimental results showing STC, (b)
Numerical simulations, (c) LS, (d) DKY , and (e) Probability density functions of
the peaks. Fig. taken from [103].

temporal window, illustrating the linear growth with the system’s volume.
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2.4 Analogy with Hydrodynamics

As we said earlier in Section 1.4, the description of the STC can be achieved

by analogy with hydrodynamics [101]. The dynamic shown in Fig. 2.3 is an

irregular succession of laminar and turbulent flows. A detailed statistical study

of the laminar or turbulent domains was performed in [101] and it was done

following the process described in [174]. The probability distribution of the

laminar/turbulent domains has the following mixture function: P (x) = (Ax−µ +

B)e−mx. All the constants depend only on the parameters except m which also

changes with the value of the power set to separate the laminar and turbulent

domains. The bursts detected during the evolution can be labeled according

to their location in a laminar or turbulent flow, respectively. Distributions of

all the bursts, those located in laminar and turbulent domains are shown in

Fig. 2.4(e) for a threshold set at the mean value of the intracavity power. An

important observation here is that the highest bursts are mainly located in the

laminar flows. In Fig. 2.5, we show a turbulent and a laminar region from our

map and we can see that the highest bursts are located in the laminar region.

In the turbulent region (Fig. 2.5a), we can see an irregular and uneven pattern

with low power pulses, while in the laminar region (Fig. 2.5b) it consists of a

well-defined spatiotemporal pattern consisting of a train of pulses with high

power that are identified as EE.

2.5 Forecasting The Full Dynamic

The forecasting of high-dimensional chaotic systems has taken a big step

forward after the improvements in supervised ML algorithms. These studies

have been done mainly using Deep Learning (DL) and RNN. The ability of these

NN to find hidden correlations in the data has allowed us to make predictions

about complex spatiotemporal dynamics. By providing model-free processes, it

is possible that the tools of chaos theory are no longer needed to deal with time

series in general. In this study, our objective is to forecast the full spatiotempo-

ral chaotic dynamic of a high-dimensional non-linear system generated by the

passive resonator using two types of RNN: the LSTM and the GRU discussed
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Figure 2.5: Visualization of turbulent and laminar regions. (a) Turbulent region
showing an irregular and uneven pattern with low power pulses. (b) Laminar
region displaying a well-defined spatiotemporal pattern with a train of high
power pulses.

in Sections 1.5.2 and 1.5.3, respectively, which were found to be well-suited for

sequence-to-sequence predictions due to their ability to maintain state infor-

mation over extended sequences, which is crucial for capturing the underlying

dynamics of chaotic systems.

Considering the increase in complexity with system size in high-dimensional

chaotic systems, which makes the dynamic difficult to predict, we begin our

analysis with a scaled-down model. Specifically, we reduce the system size

from N = 1024 to N = 128 and adjust τr to 8 to maintain equivalent temporal

resolution. Instead of simulating the system over a total duration from t = 0 to

t = 2250, corresponding to 11250 cavity round trips, we limit our simulation to

t = 225, which corresponds to 1125 round trips. This modified system setup is

illustrated in Fig. 2.6, providing a simpler yet sufficiently complex framework to

test our forecasting methodologies effectively.

2.5.1 Data preparation for Full Dynamic Forecasting

To forecast the full spatiotemporal chaotic dynamic, it is essential to properly

prepare the data for training, testing, and forecasting using the LSTM and

GRU networks. This involves selecting appropriate segments of the data and
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Numerical computation of LLE
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Figure 2.6: Numerical computation of LLE showing the evolution of the field
intensity |ψ|2 along the fiber over time for smaller system size (size N = 128).
Parameters: S = 3.3, ∆ = 1.1, Is = 2.8.

structuring them in a format suitable for these networks. The data is extracted

from numerical simulations of the LLE, as illustrated in Fig. 2.7, where the

training, testing, and forecasting datasets are highlighted by red, yellow, and

green squares, respectively. The datasets are referred to as x_train, x_test, and

x_forecast. Below are the detailed steps involved in preparing these datasets:

1. Exclude the Transitory Region: The initial transitory phase (indicated below

the red square in the figure) is removed to ensure that the networks train on

stable, representative data.

2. Select x_train: Start x_train immediately after the transitory region and

include data up to 70% of the remaining dynamic length excluding the length

equivalent to a lag, a ’lag’ refers to a round-trip delay. x_train is reshaped to

(x_train.shape[0], 1, x_train.shape[1]) to match the network input

format, and the rest of the datasets are reshaped in a similar way. This ensures

that each sequence fed into the network represents the spatial evolution of
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the field over one time step.

3. Select y_train: y_train is identical to x_train but shifted upward by the

lag duration. This means y_train will start after the beginning of x_train

by some time steps equal to the lag and end at the same number of time steps

after x_train ends.

4. Select x_test: x_test starts immediately after the end of x_train and spans

the next 10% of the dynamic length.

5. Select y_test: y_test is similar to x_test but with respect to y_train.

6. Select x_forecast: x_forecast starts right after the end of x_test and

includes the final 20% of the dynamic length, adjusted for the lag.

7. Select y_forecast: y_forecast starts right after the end of y_test and

corresponds to x_forecast shifted by the lag.

This structured approach ensures that each sequence fed into the network repre-

sents the spatial evolution of the field over one time step. Our goal is to train

the neural network using x_train and y_train, test its performance on x_test

and y_test, and use it to forecast future states from x_forecast, and compare

the predicted outcomes with y_forecast.

2.5.2 Models Architecture for Full Dynamic Forecasting

The codes were written in Python using Keras library [175] with TensorFlow

backend [176], representing the state of the art for deep neural network training

and prediction. Fig. 2.8 shows the architecture of the LSTM and GRU models

used for forecasting the full spatiotemporal chaotic dynamics of the system. Both

the LSTM and GRU models share several common architectural components

designed for effective sequence-to-sequence prediction. Each model consists of

the following elements:

1. Model Initialization: Both models are initialized as sequential models, al-

lowing layers to be added one after another in a linear stack.
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Figure 2.7: Illustration of data selection for training, testing, and forecasting
sets. The left panel shows the input data: the training set in red (x_train), the
testing set in yellow (x_test), and the forecasting set in green (x_forecast). The
right panel shows the corresponding output data shifted by a lag of many time
steps: y_train, y_test, and y_forecast, respectively. This lag is illustrated by
the blue dashed arrows. The difference between the input and output panels
indicates the forecasted time steps.

2. Recurrent Layers: Each model uses recurrent layers (either LSTM or GRU)

with hidden units and the Rectified Linear Unit (ReLU) activation function.

Hidden units in these layers play a crucial role in capturing the temporal

dependencies and dynamics of the input sequences. The number of hidden

units, nhidden, determines the capacity of the model to learn from the data.

More hidden units can capture more complex patterns, but they also increase

the computational cost and the risk of overfitting. The first recurrent layer

in each model is configured to return sequences, ensuring that the output

includes all hidden states for each time step.

3. Repeat Vector Layer: This layer repeats the input from the previous layer

times to match the desired output sequence length, which is necessary for the

decoder part of the sequence-to-sequence model.

4. Dropout Layers: Dropout layers are included after the recurrent layers to

prevent overfitting by randomly setting a fraction of input units to 0 during

training. This regularization technique helps improve the generalization

capability of the model by preventing it from becoming too specialized for
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Figure 2.8: Architecture of the LSTM and GRU models used for forecasting
the full spatiotemporal chaotic dynamics of the system. The LSTM model
(left) consists of three LSTM layers, followed by a dropout layer, and a final
TimeDistributed layer. The GRU model (right) consists of two GRU layers, each
followed by a dropout layer, and a final TimeDistributed layer. Both models
include a RepeatVector layer to handle sequence-to-sequence prediction.

the training data.

5. Time Distributed Dense Layer: This layer applies a fully connected Dense

layer to each time step individually, ensuring that each time step of the output

sequence is processed independently. The number of features in the output

converts the output of the recurrent layers into the final desired output format,

which can be compared to the true values during training.

The primary differences between the models are the type and number of recur-

rent layers.

2.5.3 Training and Evaluation of the Networks for Full Dy-

namic Forecasting

After defining the architecture of the LSTM and GRU models, the next step

is to compile and fit the models to the training data.
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For the compilation step, we used the Huber loss, which is less sensitive to

outliers in data than the mean squared error (MSE) loss, combining the best

properties of mean absolute error (MAE) and MSE. This makes it well-suited for

our data, which includes a small fraction of very high values. As an optimizer, we

chose the Adam optimizer for its efficiency and adaptability [177]. We evaluated

model performance using the RMSE during training. The RMSE measures the

square root of the average squared differences between predicted and actual

values, providing a robust indication of prediction accuracy.

For fitting the model, the training was performed using x_train as input

sequences and y_train as target sequences. The model was trained for 100

epochs, with an epoch representing one complete pass through the entire training

dataset. A batch size was used to determine the number of samples propagated

through the network at each step, balancing computational efficiency and model

performance. Callback functions were employed during training to adjust

the learning rate and implement early stopping. Specifically, a learning rate

scheduler was included to dynamically adjust the learning rate, decreasing it by

25% every 10 epochs. This reduction helps the model to fine-tune its parameters

more delicately as training progresses. Early in training, a higher learning rate

allows the model to make significant updates to the weights, which speeds up

convergence. As training continues, a lower learning rate helps to stabilize

the learning process, ensuring that the model does not overshoot the optimal

parameter values and can settle into a more precise minimum of the loss function.

Early Stopping was employed to prevent overfitting, which stops training if the

validation loss does not improve for several consecutive epochs. The training

data was shuffled before each epoch to enhance the model’s robustness and

prevent it from learning the order of the training data. Validation data (x_test

and y_test) was used to evaluate the model’s performance after each epoch,

helping to monitor the model’s generalization ability and detect overfitting. The

training and validation loss curves are plotted to visualize the model’s learning

progress. These plots, which will be shown in Section 2.5.5, provide insights

into how well the model fits the training data and its generalization to unseen

data.
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2.5.4 Forecasting the Full Dynamic Using the LSTM and GRU

Models

Once the LSTM and GRU models have been trained and validated, the next

step is to employ these models to forecast the spatiotemporal chaotic dynamics

of the system. The prediction step involves using the trained models to forecast

future values from the input data x_forecast. The resulting forecasts by the

LSTM and GRU models, y_forecast_lstm and y_forecast_gru, respectively,

allow us to evaluate the accuracy of the models by comparing them with the

actual future values (y_forecast). This comparison helps in understanding how

well the models perform in forecasting the complex dynamics of the system.

To demonstrate the effectiveness of these models across different conditions,

we analyze their performance for various system sizes (N = 64,128,256) and

temporal lags. In the following, we focus on demonstrating the impact of round-

trip delays on forecasting accuracy by comparing the outcomes at two specific

lags: 20, corresponding to a single round-trip delay, and 200, equivalent to 10

round-trip delays, for a system size of 128.

Fig. 2.9 illustrates the actual dynamic alongside the forecasted dynamics by the

LSTM and GRU models for a system size of 128 and for both lag periods. From

the analysis of the figure, the models generally predict the dynamics accurately

for a lag of 20. However, for a lag of 200, while the overall patterns and trends of

the chaotic system are captured, there are noticeable discrepancies, particularly

in predicting higher values. These discrepancies indicate a potential reduction

in prediction accuracy with an increase in round-trip delay, suggesting that the

model’s ability to handle long-term dependencies may be limited.

In the upcoming section, we will evaluate the performance of the LSTM and

GRU models in more detail, focusing on differences in accuracy between the

LSTM and GRU models across various metrics and conditions. This will provide

a more comprehensive understanding of each model’s strengths and weaknesses

in forecasting spatiotemporal chaotic dynamics.
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Forecasted dynamic by GRU
size=128 & lag=200
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Figure 2.9: (a) Actual dynamics, forecasted dynamics by (b) LSTM and (c) GRU

for a lag of 20 (one round-trip delay), by (d) LSTM and (e) GRU for a lag of 200
(10 round-trips delay) for the high-dimensional chaotic system with Is = 2.8.
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2.5.5 Evaluating Model Accuracy for Full Dynamic Forecasting

To evaluate the accuracy of our LSTM and GRU models, we used several

metrics, including Root mean squared error (RMSE) loss over epochs and Pearson

correlation (PC). These metrics provide a comprehensive understanding of how

well our models predict the spatiotemporal chaotic dynamics.

Root mean squared error Loss Over Epochs

The Root mean squared error (RMSE) is a crucial metric for evaluating the

accuracy of our LSTM and GRU models in predicting the spatiotemporal chaotic

dynamics. It measures the differences between the predicted and actual values

during training and validation, providing a robust indication of prediction

accuracy. Lower RMSE values indicate better model performance. To assess

the model performance, we plotted in Fig. 2.10 the RMSE loss for both training

and validation sets over epochs for different lags (20 and 200). These plots help

us understand how well the models are learning the underlying patterns and

generalizing to unseen data. For lag 20, both LSTM and GRU models show a

rapid decrease in RMSE for the training set, indicating that the models quickly

learn the underlying patterns. The validation RMSE also decreases significantly

and stabilizes, showing that the models generalize well to unseen data. This

indicates good model performance with the ability to accurately predict future

values based on the input data. However, for lag 200, the scenario changes.

While the training RMSE continues to decrease, indicating that the models are

fitting the training data well, the validation RMSE remains higher and exhibits

more fluctuation. This suggests that the models may be overfitting the training

data and are unable to generalize effectively to new data. The higher RMSE and

instability in the validation loss over epochs reflect reduced model performance

for longer forecasting horizons.

Pearson correlation

The Pearson correlation (PC) metric provides insights into how well our

models predict the spatiotemporal chaotic dynamics. It measures the linear
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Figure 2.10: RMSE Loss Over Epochs for LSTM and GRU for system size 128
and Is = 2.8. (a) and (b) Lag 20: Lower RMSE indicates good model performance,
with convergence observed early in training. (c) and (d) Lag 200: Higher RMSE

indicates reduced model performance, with less stability in the validation loss
over epochs.

relationship between the predicted and actual values, providing insights into

how well the models capture the trends and patterns in the data. A PC coefficient

close to 1 indicates a strong positive linear relationship, while a coefficient

close to 0 indicates no linear relationship. In our analysis, we evaluated the

performance of both models using the Maximum (MAX) and Standard deviation

(STD) of the predicted and actual values. By computing the PC coefficient for

both the MAX and STD, we can determine how well the forecasted values align

with the actual measurements.
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• For lag 20, both LSTM and GRU models exhibit high PC coefficients (Figs. 2.11a

and 2.11b respectively), indicating a strong linear relationship between fore-

casted and actual values. This high correlation suggests that the models

effectively capture the underlying dynamics and can predict future values

with high accuracy. Specifically, the LSTM model shows a PC of 0.93 for the

STD and 0.92 for the MAX, while the GRU model shows a PC of 0.86 for both

the STD and MAX.

• However, for lag 200, the PC coefficients are significantly lower, indicating

a weaker linear relationship and reduced predictive accuracy. This decrease

in PC reflects the challenges associated with long-term forecasting in chaotic

systems, where the models struggle to maintain accuracy over extended pre-

diction horizons. The LSTM model exhibits a PC of 0.41 for the STD and 0.45

for the MAX, while the GRU model shows a PC of 0.45 for both the STD and

MAX (Figs. 2.11c and 2.11d respectively).

In Fig. 2.11, we can visualize the plot of the forecasted values against the

actual values for both models and for different lags. The plots include a black line

representing perfect predictions (y = x), which helps in assessing how closely the

forecasted values match the actual values. By using these evaluation metrics, we

can comprehensively evaluate the performance of our LSTM and GRU models,

ensuring they accurately capture the dynamics of the high-dimensional chaotic

system. This detailed analysis of the Pearson correlation helps us understand

the strengths and limitations of our models, guiding further improvements and

optimizations for better forecasting performance.

2.5.6 Changes in Pearson Correlation for Different System Sizes

and round-trip delays

As shown earlier, PC is a crucial metric for assessing the accuracy of our

LSTM and GRU models in forecasting spatiotemporal chaotic dynamics. To

comprehensively evaluate the performance of the LSTM and GRU models, we

analyzed PC across different system sizes, round-trip delays, and system com-

plexities. Specifically, we considered complexities Is = 2.2, representing a less
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(a) (b)

(c) (d)

Figure 2.11: PC for LSTM and GRU for system size 128 and Is = 2.8. (a) and (b)
Lag 20: High PC indicates strong correlation. (c) and (d) Lag 200: Lower PC

indicates weaker correlation. The scatter plots show the relationship between
the forecasted and measured values, with the black line representing a perfect
prediction (y = x). The blue dots represent the peaks, and the orange dots
represent the standard deviations.

complex system, and Is = 2.8, indicative of a more complex system. Fig. 2.12

shows the PC for the LSTM and GRU models as a function of lag for system sizes

64, 128, and 256.

• For a less complex system (Is = 2.2), as illustrated in Fig. 2.12a, the PC remains

consistently high across all round-trip delays, indicating that both LSTM

and GRU models maintain strong linear relationships between forecasted

and actual values. This suggests that the models can effectively capture the

dynamics of less complex systems, even as round-trip delays increase.
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Figure 2.12: PC for LSTM and GRU models across different system sizes and
complexities. (b) Size 64 and Is = 2.8: PC remains high across all lags, indicating
robust prediction accuracy due to the smaller system size. (a) Size 128 and
Is = 2.2: PC remains high across all lags for a less complex system. (c) Size 128
and Is = 2.8: PC decreases as the lag increases, indicating reduced accuracy for
more complex systems. (d) Size 256 and Is = 2.8: PC decreases more significantly
with increasing lag, reflecting the challenge of modeling larger and more complex
systems.

• The high accuracy observed for system size 64 (Is = 2.8), as shown in Fig. 2.12b,

suggests that smaller systems are inherently easier for the models to forecast

accurately across all lags.

• However, as we increase the system size to 128, we notice a marked decrease

in PC with increasing lag values, as depicted in Fig. 2.12c. An important
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observation is that beyond a round-trip delay of 9, the PC falls below 50% for

the two models. This significant drop suggests that the accuracy of forecasting

future dynamics deteriorates sharply, marking a critical limit beyond which

the current models struggle to provide reliable predictions.

• For the largest system size of 256 (Is = 2.8), detailed in Fig. 2.12d, the PC

decreases even more significantly as the lag increases, reflecting the substantial

challenges involved in accurately modeling larger and more complex systems.

These observations underscore the importance of considering system size,

lag, and complexity when evaluating the performance of LSTM and GRU models.

By understanding how these factors impact PC, we can better assess the models’

ability to generalize and accurately forecast the spatiotemporal chaotic dynamics

in various scenarios. The marked decline in forecasting accuracy for long-

term predictions of the full spatiotemporal chaos dynamic in larger and more

complex systems, such as those developed by the fiber ring cavity, underscores

the challenge posed by high dimensionality and highlights the need for further

model improvements or alternative forecasting approaches.

2.6 Local Forecasting of Extreme Events in Spatiotem-

poral Chaos

An alternative method to forecasting the full spatiotemporal chaos dynamic

is "local forecasting". This method addresses the crucial questions of when and

where extreme events will emerge within chaotic regimes, as well as answering

the question of what is coming by forecasting the profile and location of the

upcoming event based on previously identified precursors. In the context of

spatiotemporal chaos, a precursor is defined as a detectable signal or pattern that

occurs prior to an extreme event, providing an early indication of its imminent

occurrence. These precursors are identified by analyzing specific patterns in

the spatiotemporal data that precede significant events. They are captured

at defined time lags across multiple cavity round trips. Recent research has

extensively explored the use of precursors for predicting extreme events in
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chaotic systems. For instance, Coulibaly et al. demonstrated the effectiveness

of using machine learning to predict chaotic extreme pulses in Kerr resonators

by identifying precursors from spatiotemporal data [103]. Similarly, Pammi et

al. highlighted the predictive capabilities of nonlocal partial information in a

spatiotemporally chaotic microcavity laser, showing that precursors were crucial

for accurate forecasting of extreme events [117]. These studies underscore the

significance of precursors in forecasting extreme events and provide a foundation

for the methods employed in this work. Additionally, the use of precursors has

been supported by other researchers across different chaotic systems, further

validating its utility [178, 179]. We chose this approach because extreme pulses

are observed in the laminar region, where we have an almost periodic pulse train,

which facilitates the identification of the precursors (as shown in Fig. 2.5b).

The method combines model-based tools such as the two-point correlation

function with model-free tools from information theory and Deep Neural Net-

work (DNN). This combination simplifies the overall forecasting task and en-

hances the accuracy of the predictions.

The initial step in this process is the identification of precursor-pulse pairs

using the spatial and temporal two-point correlation function [36, 180, 181].

To optimize the determination of the size of subdomains necessary for this

identification and to justify the choice of precursors over bursts, we compute

the information flow using the 2D map of the TE (which we introduced in

Section 1.6.2). We begin by characterizing the spatiotemporal dynamics through

these two-point correlation functions and verifying the information flow with

the TE. Next, we detect all precursors within the dynamic and associate each

precursor with its corresponding pulse to create a set of precursor-pulse pairs.

This dataset is then split into training, test, and validation sets. The training

set is used to train sequence-to-sequence forecasting RNN models, which are

designed to use the sequential data of identified precursor-pulse pairs to predict

future pulses.
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2.6.1 Slow and Fast Time Periodicity

In dynamic systems exhibiting complex evolutions, understanding the coher-

ence between different spatial and temporal locations is crucial. This coherence

is quantitatively assessed through the equal-time two-point correlation function,

both spatially and temporally. These functions, defined as follows, measure the

probability that two points separated by δτ (space) and δt (time) will behave

coherently:

C(δτ) =
〈
(ψ(δτ + τ ′, t)−

〈
ψ
〉
) (ψ(τ ′, t)−

〈
ψ
〉
)
〉
. (2.1)

C(δt) =
〈
(ψ(τ,δt + t′)−

〈
ψ
〉
) (ψ(τ, t′)−

〈
ψ
〉
)
〉
. (2.2)

The brackets ⟨·⟩ stand for the average process. However, the direct determination

of C(δτ) and C(δt) is computationally intensive. To address this, we apply the

Wiener-Khinchin theorem [182, 183], which simplifies the process by computing

the time-average of the Fourier spectra, followed by an inverse Fourier transform

of its magnitude squared. The two functions are plotted in Figs. 2.13 and 2.14.
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Figure 2.13: Spatial correlation function illustrating the central peak and adja-
cent peaks. The adjacent peaks indicate a repeating pattern in space.
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In Fig. 2.13, the spatial correlation function reveals a central peak at zero

separation, signifying maximum correlation. The adjacent peaks indicate a

repeating pattern in space, confirmed by observations in laminar regions (see

Fig. 2.5b). The separation to the first significant secondary peak measures the

Fast time periodicity (FTP), equivalent to 6.7 (arb unit) or 52 discrete points.
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Figure 2.14: Zoomed-in view of the inset figure, representing the temporal
correlation function showing central and secondary peaks, indicative of periodic
bursts.

Similarly, Fig. 2.14 displays the temporal correlation function, where the

periodicity between significant events is captured. The distance between the

central peak and the nearest secondary peaks defines the Slow time periodicity

(STP) equivalent to 1.37 simulation time units or 6.8 cavity round trips.

2.6.2 Transfer Entropy 2D Map

To optimize the determination of the size of subdomains necessary for the

identification of the precursors, the information flow by the 2D map of the TE is

computed.
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We compute TEY→X(δt,δτ) with X ≡ |ψ(t,τ)|2 and Y ≡ |ψ(t − δt,τ + δτ)|2, ψ

being the considered field, as sketched in Fig. 2.15. With the TE given by:

TEY→X =
∑
x,y

p(xn+1,x
h
n, y

h
n) log

[
p(xn+1|xhn, yhn)

p(xn+1|xhn)

]
(2.3)

with n the current iteration and h the history length.
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Figure 2.15: Illustration of how the signals are selected to compute the transfer
entropy map

The transfer entropy 2D map is presented in Fig. 2.16. At finite roundtrips,

it exhibits either a central peak (Pu_i) or double peak (Pr_i) structures. These

peaks mean that, on average, any peaks in the evolution carry information from

its own past. This information vanishes roundtrip to roundtrip. The dual-peak

structure of the Pr_i has the advantage of being easily differentiated compared

to the single peak of the Pu_i making precursors the better choice than bursts.

Furthermore, the space and round-trip time delays between the peaks of the Pr_i

are of the same order as the Fast time periodicity (FTP) and STP, respectively.

This approves the choice of the order of magnitude of our subdomains. Each
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measurement is locally centered at the location of the intensity burst.
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Figure 2.16: The left panel shows the 2D map of the transfer entropy, high-
lighting the fast-time delays as a function of round-trip delays and highlighting
regions with significant information flow, indicated by the Pr_i and Pu_i peaks.
The right panel shows the evolution of the transfer entropy at the fast-time delay
corresponding to the Pr_1 maximum with respect to the roundtrip delays. The
blue solid line represents the variation of the transfer entropy across roundtrips,
with symbols (*) marking the peaks at each Pr_i.

2.6.3 Identification of precursor-pulse pairs

These precise measurements from the correlation functions and the TE guide

our selection of the subsets in our dataset |ψ|2, where potential precursors are

expected to occur. Through a 2D convolution operation of this subset with

two Gaussian-like functions, we enhance the visibility of potential precursors

by emphasizing local maxima in the convolution output, both spatially and

temporally. The convolution operation acts as a filter that emphasizes areas

where the characteristics of the precursors are most pronounced, primarily

by boosting the signal around local maxima. Local maxima that align with

the spatial or temporal boundaries are excluded to ensure the uniqueness and
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relevance of the detected precursor. From the spatial and temporal coordinates

of the identified maxima, we identify a region around these maxima as the

precursor by taking a region larger than half the STP in time and also larger than

half the FTP in both directions in space. Then precursors are associated with

previous pulses occurring at intervals defined by half the STP, effectively pairing

each precursor with its corresponding pulse. The subset is then shifted by half

the STP, and the procedure is repeated until the end of the dynamic length is

reached. In Fig. 2.17, we show an example of this convolution operation done on

a subset of |ψ|2.

Figure 2.17: Example of the convolution operation and the subsequent identifi-
cation of maxima in a subset of |ψ|2.

Fig. 2.18 shows a precursor-pulse pair in the spatiotemporal dynamic and

the first, second, and third target pulses that we are trying to forecast coming

after the precursor by one, three, and five intervals of this measured half-STP

corresponding to approximately 3.4, 10, and 17 round-trips, respectively. The

FTP and STP are also shown on the map for more clarity. Note that this is
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a different precursor than the ones shown in Fig. 2.17. In Fig. 2.19, we first

show the images corresponding to the seventh maxima shown in Fig. 2.17, we

first show the associated pulse of the precursor identified at the location of the

maxima, then the precursor itself, then the first, second, and third target pulses.

The middle panel represents the zoomed view, and the last panel corresponds to

the dataset input and outputs to the RNN.

1 round-trip

5 round-trips

Fast Time 
Periodicity

Slow Time Periodicity = 6.8 RT

Precursor

Target  Pulse 1

Target pulse 2

Half STP = 3.4 RT

Associated Pulse

Target pulse 3

Figure 2.18: Illustration of a precursor-pulse pair in the spatiotemporal dynamic.
The first, second, and third target pulses, which are the focus of our prediction,
occur after the precursor by one, three, and five intervals of the measured half-
STP, corresponding to approximately 3.4, 10, and 17 round-trips, respectively.

2.6.4 Data preparation for Local Forecasting

In total, around 74500 precursors were identified in the spatiotemporal

dynamics shown in Fig. 2.2. The dataset comprises images of precursor-pulse
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Figure 2.19: Images corresponding to the seventh maxima shown in Fig. 2.17.
The associated pulse of the precursor is identified at the location of the maxima,
followed by the precursor itself, and the first, second, and third target pulses.
The middle panel represents the zoomed view, and the last panel corresponds to
the dataset input and outputs to the RNN.

pairs and the corresponding target pulses; an example of the datasets is already

shown in the right panel of Fig. 2.19. Precursor images are used as inputs, and
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target pulse images serve as outputs for training our models. Before splitting

the data into training, testing, and validation sets, the dataset is randomly

shuffled. This shuffling process is crucial as it ensures that the data is well-

mixed, preventing any order-based biases from influencing the training process.

Without shuffling, the data might contain unintended patterns or sequences that

could lead the model to learn spurious correlations. By ensuring a randomized

and well-distributed dataset, we enhance the robustness of our model, leading

to more reliable and accurate predictions. The images in the dataset are in

grayscale. After shuffling, the data is normalized by scaling the pixel values of

the images to a range of [0, 1]. This normalization process ensures that all input

data falls within the same range, which helps accelerate the training process

and improves the model’s convergence. Normalizing the data also prevents any

feature from dominating due to its scale, ensuring a balanced and fair learning

process. By implementing both shuffling and normalization, we ensure that

our models are trained on a robust and well-prepared dataset, leading to more

reliable and accurate forecasting of extreme events within the chaotic system.

The datasets are then divided into 70% for training, 15% for testing, and 15%

for validation. The training set is used to train sequence-to-sequence forecasting

RNN models, which are designed to utilize the sequential data of identified

precursor-pulse pairs to predict future pulses. The validation set is employed

to evaluate the model during the training phase, helping to tune the model’s

hyperparameters and avoid overfitting. The testing set is used for the final

assessment of the model’s predictive accuracy, providing an unbiased evaluation

of its performance on unseen data.

2.6.5 Models Architecture for Local Forecasting

The models used for local forecasting are adapted versions of those employed

for full dynamic forecasting discussed in Section 2.5.2. The LSTM model for

local forecasting is expanded to include an additional LSTM layer and an extra

dropout layer compared to the full dynamic forecasting model. This modification

allows it to capture more detailed temporal dependencies within the data and

enhance the model’s capacity to learn from complex patterns.
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The GRU model for local forecasting retains a similar architecture to the one

used for full dynamic forecasting, with two GRU layers.

Both models are compiled and fitted using the same methods as those for full

dynamic forecasting, including the use of the Huber loss function and the Adam

optimizer. We evaluated model performance using the RMSE during training

to ensure accurate and reliable predictions. The training process incorporates a

learning rate scheduler and early stopping to optimize performance and prevent

overfitting.

2.6.6 Hyperparameters tuning

Since there are no predefined hyperparameters for the models we are using,

we conducted multiple tests to determine the optimal batch size and number of

hidden units. The batch size refers to the number of training examples used in

one iteration before updating the model parameters. A smaller batch size allows

the model to update more frequently, potentially leading to faster convergence

but can also introduce more noise in the updates. Conversely, a larger batch size

provides smoother updates, improving the stability of the training process but

requires more memory and computational resources.

The number of hidden units, on the other hand, determines the capacity

of the model to learn from the data. Hidden units are the neurons in each

layer of the model that process the input data and capture patterns within it. A

low number of hidden units might lead to underfitting, where the model fails

to capture the underlying patterns of the data, resulting in poor performance.

Conversely, a high number of hidden units can lead to overfitting, where the

model learns the noise in the training data, leading to poor generalization to

new, unseen data. Therefore, finding a balance between too few and too many

hidden units is crucial for achieving optimal model performance. The best

combination of batch size and hidden units was identified, ensuring that the

model can effectively learn from the data while maintaining good generalization

capabilities.

Through extensive experimentation, we found that a configuration of 256

hidden units and a batch size of 128 consistently provided the best performance
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across different system complexities and prediction horizons. This configuration

balanced model complexity and computational efficiency, yielding reliable and

accurate predictions. Some configurations with higher hidden units and batch

sizes showed marginally better performance, but the increased computational

cost made them less practical.

2.6.7 Evaluating Model Accuracy for Local Forecasting

The results of our experiments, which involved varying system complexities,

round-trip delays, hidden units, and batch sizes, provide significant insights

into the optimal configurations of the LSTM and GRU networks.

Pearson correlation

For the system with Is = 2.2:

• Target Pulse 1: The PC for LSTM was 87% for maximum and 86% for standard

deviation, while for GRU it was 80% for maximum and 78% for standard

deviation (Fig. 2.20a).

• Target Pulse 2: The PC for LSTM was 81% for maximum and 78% for standard

deviation, while for GRU it was 74% for maximum and 68% for standard

deviation (Fig. 2.20a).

• Target Pulse 3: The PC for LSTM was 71% for maximum and 70% for standard

deviation, while for GRU it was 59% for maximum and 58% for standard

deviation (Fig. 2.20a).

For the system with Is = 2.8:

• Target Pulse 1: Despite the increased complexity of the system compared to

Is = 2.2, the setup with 256 hidden units and a batch size of 128 provided the

best predictive performance for both LSTM and GRU models. However, it was

observed that the accuracy decreased when working with the system of Is = 2.8,

suggesting that the increased complexity of the system negatively affects the

performance of the networks. The PC for LSTM was 67% for maximum and
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71% for standard deviation, while for GRU it was 65% for maximum and 69%

for standard deviation (Fig. 2.20b).

• Target Pulse 2: The PC for LSTM was 49% for maximum and 53% for standard

deviation, while for GRU it was 49% for maximum and 51% for standard

deviation. While configurations with 512 hidden units and a batch size of

256, as well as 1024 hidden units and a batch size of 128, showed slightly

better performance, the improvement was minimal compared to the significant

increase in computational cost (Fig. 2.20b).

• Target Pulse 3: The PC for LSTM was 40% for maximum and 43% for standard

deviation, while for GRU it was 41% for maximum and 42% for standard

deviation (Fig. 2.20b).
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Figure 2.20: Comparison of PC values across different target pulses for LSTM
and GRU models with optimal configurations for systems with (a) Is = 2.2 and
(b) Is = 2.8.

The findings from our experiments highlight several key insights into the

performance and configuration of the LSTM and GRU networks across different

system complexities and round-trip delays. For simpler systems with Is = 2.2,

the configuration of 256 hidden units and a batch size of 128 generally provided

the best performance across all target pulses. For more complex systems with

Is = 2.8, the same configuration of 256 hidden units and a batch size of 128

remained optimal, although the performance decreased compared to the simpler
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system. As the round-trip delays increased, the performance of the models

generally decreased, reflecting the increased difficulty in predicting further

into the future. Despite this, the chosen configurations managed to maintain

relatively high performance, especially for the simpler system. In comparison,

the LSTM models consistently performed well with the optimal configuration

across different system complexities and round-trip delays. The GRU models,

while showing some improvement with higher configurations, did not justify

the additional computational cost. These findings underscore the importance

of carefully tuning hyperparameters to balance model complexity and compu-

tational efficiency, particularly as system complexity and prediction horizon

increase. The identified optimal configurations provide a robust foundation for

effectively predicting extreme events in spatiotemporal chaos.

Other than the PC, we used the Symmetric Mean Absolute Percentage Error

(sMAPE) and the Median Symmetric Accuracy (ζ) metrics to evaluate the model

performance.

Symmetric Mean Absolute Percentage Error and Median Symmetric Accuracy
Histograms

The Symmetric Mean Absolute Percentage Error (sMAPE) and Median Sym-

metric Accuracy (ζ) are robust metrics for evaluating the performance of our

LSTM and GRU models. sMAPE measures the accuracy based on percentage

errors, making it scale-independent and useful for comparing forecast perfor-

mances across datasets [184, 185]. sMAPE is given by the following formula:

sMAPE =
100%
n

n∑
i=1

|Fi −Ai |
(|Ai |+ |Fi |)/2

(2.4)

where Fi and Ai are the forecasted and actual values, respectively.

ζ measures the median relative accuracy and is particularly resilient to skewed

distributions [185, 186], calculated as:

ζ = 100×
(
exp

(
median

(∣∣∣∣∣∣ln
(
Fi
Ai

)∣∣∣∣∣∣
))
− 1

)
(2.5)
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(a) (b)

(c) (d)

Figure 2.21: sMAPE histograms for the prediction of the first target pulse
using (a-b) LSTM and (c-d) GRU models for systems with Is = 2.2 and Is = 2.8,
respectively.

The histograms of sMAPE and ζ for the prediction of the first target pulse

using the LSTM and GRU models for systems with Is = 2.2 and Is = 2.8 are

shown in Figs. 2.21 and 2.22. The histograms demonstrate clear distinctions in

model performance. The LSTM model consistently shows lower sMAPE values

compared to the GRU model, indicating higher accuracy in predicting the target

pulses. Similarly, the ζ histograms reveal that the LSTM model has a tighter

distribution of errors, suggesting more reliable predictions. This observation is

consistent with the PC values discussed earlier, where the LSTM model exhibited

superior performance.

The comparison between LSTM and GRU models across different system
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(a) (b)

(c) (d)

Figure 2.22: ζ histograms for the prediction of the first target pulse using (a-b)
LSTM and (c-d) GRU models for systems with Is = 2.2 and Is = 2.8, respectively.

complexities (Is = 2.2 and Is = 2.8) reveals that the LSTM model generally

outperforms the GRU model. This performance gap is more pronounced in more

complex systems (Is = 2.8), where the LSTM model maintains higher accuracy

and stability.

In conclusion, the LSTM model is superior in both accuracy and reliability

for local forecasting in systems with varying complexities. The histograms of

sMAPE and ζ metrics corroborate these findings, further establishing the LSTM

model as the preferred choice for predicting extreme events in spatiotemporal

chaos.
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2.6.8 Predicted Pulses

A visual comparison of the predicted pulses using the LSTM and GRU models

for systems with Is = 2.2 and Is = 2.8 is shown in Fig. 2.23. From this figure, it is

evident that the pulses predicted by the LSTM model appear more accurate and

well-defined compared to those predicted by the GRU model. This observation

is consistent with the PC performance of both models, further highlighting the

superior performance of the LSTM model in predicting the pulse shape.

Is = 2.8Is = 2.2

Target Pulse 1

Predicted by LSTM

Predicted by GRU

Target Pulse 1

Predicted by LSTM

Predicted by GRU

Figure 2.23: Comparison of the first target pulse and the predicted pulses using
the LSTM and GRU models for systems with Is = 2.2 and Is = 2.8.

To conclude this section, our local forecasting method, which uses precursor

identification through statistical analysis and information theory, has proven

effective in predicting the specific future events within spatiotemporal chaos.

This method successfully identifies critical precursors that precede significant

events, allowing for accurate forecasting of upcoming pulses. Specifically, we

have demonstrated that local forecasting can predict these pulses up to 17 cavity

round trips. This approach not only enhances the reliability of predictions in

chaotic systems but also contributes to a deeper understanding of the underlying
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dynamics of spatiotemporal chaos.

2.7 Conclusion

In this chapter, we examined the predictability of spatiotemporal chaos dy-

namics within optical fiber ring resonators through the application of advanced

machine learning techniques. Our primary focus was on the implementation

and evaluation of two forecasting methodologies: full dynamic forecasting and

local forecasting based on precursor identification.

Initially, we employed Recurrent Neural Networks (RNN), specifically Long

Short-Term Memory (LSTM) and Gated Recurrent Unit (GRU) models, to fore-

cast the complete spatiotemporal dynamics of the system. This approach yielded

several significant insights. The models demonstrated robust predictive ca-

pabilities for less complex systems characterized by smaller sizes and lower

pumping values. However, as the system complexity increased, the prediction

accuracy notably declined, particularly for long-term forecasts. The Pearson cor-

relation (PC) metric dropped below 50% beyond a critical threshold, indicating

a substantial limitation in the models’ ability to reliably predict future states in

high-dimensional chaotic systems.

Recognizing the limitations of the full dynamic forecasting approach, we

introduced an alternative method termed local forecasting. This method focused

on predicting the occurrence of extreme events based on identified precursors,

providing a more targeted and precise forecasting approach. Through statisti-

cal analysis and information theory, we successfully identified precursors that

enabled the prediction of future extreme events. The local forecasting method

proved effective in predicting upcoming pulses up to 17 cavity round trips in

advance, highlighting its potential in managing and mitigating the impacts of

extreme events in chaotic systems. Throughout our study, we also conducted

a comparative analysis of the LSTM and GRU models. Both models exhibited

similar trends in predictive accuracy, with LSTM marginally outperforming

GRU in capturing long-term dependencies due to its more complex memory

management mechanisms. However, the differences between the two models

were minimal, and both faced challenges in maintaining accuracy for highly
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complex systems over extended periods.

In summary, our work underscores the potential and limitations of using ma-

chine learning techniques for predicting spatiotemporal chaos dynamics. While

full dynamic forecasting provides a comprehensive overview, local forecasting

offers a more precise and actionable approach, particularly in predicting extreme

events. Future research should aim to enhance model robustness and explore hy-

brid approaches to improve long-term forecasting accuracy in high-dimensional

chaotic systems.
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This chapter marks a transition from the monostable regime within an optical

fiber ring resonator explored in Chapter 2, to an investigation of the dynamics

within the bistable regime, where we aim to delve deeper into the complex

dynamics that emerge under these conditions. Our primary objective in this

chapter is to comprehensively understand these dynamics and to demonstrate

the turbulent-like behavior that arises in this system.

3.1 Introduction

Starting with a soliton as the initial condition at the onset of the bistable

regime and progressively increasing the pump power, we can trace the evolution

of the system’s dynamics. This process, well-documented in the literature,

shows the soliton undergoing a Hopf bifurcation, followed by period doubling,

ultimately giving rise to spatiotemporal chaotic dynamic, eventually leading

to fully developed turbulence. Turbulence, a fundamental concept in fluid

dynamics, is known for its complex spatiotemporal behavior, and its application

has extended to other systems out of equilibrium, including nonlinear optics,

chemical reactions, active matter, and even economics.

Our main goal in this chapter is to characterize this chaotic dynamic. We be-

gin by identifying key characteristic lengths of the system, including two-point

correlation lengths in time and space, the Lyapunov dimension length [102], and

the inter-pulse distance. We will examine the power spectra of the phase and

amplitude in both space and time. This analysis will provide a statistical founda-

tion for identifying and characterizing the turbulent-like behavior. Specifically,

we aim to show that phase turbulence within the bistable regime is distinguished

by power spectra with an exponent of −2, indicating a self-similar structure

across different scales. However, the power-law spectra and these characteristic

lengths do not fully capture the system’s intricate behavior [98].
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To better understand the fluctuations and determine whether they exhibit

characteristic scales, we then analyze higher-order correlations, also known as

structure functions [98]. Through this approach, we reveal that the system

exhibits intermittent behavior. Similar behavior has been observed in other

systems, such as the work on bi-turbulence in fingerprint pattern formations,

where the transition from self-similarity to intermittency was similarly noted

[187].

Unlike in systems governed by modulation instability, where extreme events

are strongly nonlinear and dominated by turbulence, the extreme events ob-

served in this system are governed by phase dynamics. These dynamics follow

linear wave behavior and are further influenced by the appearance of defects.

This distinction emphasizes that while turbulence typically drives nonlinear ex-

treme events, here, the extreme events emerge from a combination of linear wave

propagation and the formation of phase defects, marking a different mechanism

of instability and event formation.

Following this, we examine the dispersion relation to investigate how linear

waves influence the system’s dynamics, even within this predominantly turbulent

regime. The dispersion relation provides further insight into the interaction

between linear wave instabilities and the nonlinear chaotic behavior observed in

the system.

3.2 Numerical Simulation Setup

Unlike the previous chapter, where the Lugiato-Lefever Equation (LLE) was

normalized by the cavity loss parameter α, in this chapter, we retain α in its

original form. The LLE in this form is given by:

∂ψ(t,τ)
∂t

= S − (α + iδ)ψ + i
∂2ψ

∂τ2 + i | ψ |2 ψ (3.1)

By setting the parameters as δ = 1, α = 0.16, we find that the normalized

detuning parameter ∆ = δ
α = 6.25, placing the system in the bistable regime, as
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∆ >
√

3. The steady-state phase φs is given by:

φs = tan−1
(
Is −∆
α

)
(3.2)

The homogeneous and steady-state solutions of Eq. 3.1 follow the cubic equation:

|S |2 = Is[α
2 + (Is −∆)2] (3.3)

These formulations establish the groundwork for our detailed investigation

into the bistable regime, enabling us to understand and characterize the complex

behaviors and dynamics that emerge under these conditions. We numerically

solved the LLE for the parameters mentioned above, with a pump strength

S = 0.4, using a spatial grid with Np = 4096. The simulation spans a total

duration from t = 0 to t = 550, corresponding to 3437 cavity round trips. Initially,

the system starts with a coherent soliton as the initial condition. This soliton

undergoes dynamic evolution, transitioning from a stable state to a self-pulsating

state due to the interplay between nonlinearity and cavity parameters. As the

system evolves further, these pulsations become increasingly irregular and

complex, ultimately leading to a state of spatiotemporal chaos characterized by

unpredictable and irregular oscillations in both space and time. The space-time

map (Fig 3.1a) illustrates this transition from a stable soliton to spatiotemporal

chaos. To focus solely on the chaotic dynamics, the transient phase was removed,

as shown in Fig. 3.1b, with a zoomed-in view provided in Fig. 3.1c.

3.2.1 Phase Dynamics: Wrapping and Unwrapping

Previously, we focused on analyzing the intensity dynamics within the

bistable regime. Building upon this foundation, we investigated the phase

behavior of the system. However, a common challenge in phase analysis is the

phenomenon of phase wrapping. Phase wrapping occurs when phase measure-

ments are constrained to a specific range, typically between −π and π (or 0 to

2π). In many measurement systems, the phase is measured modulo 2π, meaning

that once the phase exceeds these bounds, it wraps back around. This is similar
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Figure 3.1: Space-time map starting from a soliton into spatiotemporal chaos (a)
with, (b) without the transitory phase, and (c) a zoomed map for clarity.

to how a clock wraps back around every 12 hours. As a result, the true phase

might be indistinguishable from its wrapped version, leading to ambiguity. To

overcome this challenge, we employ phase unwrapping, a process that resolves

this 2π ambiguity and reconstructs the actual phase values from the wrapped

phase. The goal of phase unwrapping is to determine the number of 2π jumps

needed to restore the actual, continuous phase values. For this purpose, we

used a method based on the reference [188], which performs deterministic phase

unwrapping. Deterministic methods for phase unwrapping typically follow

the phase gradients and make decisions on adding or subtracting 2π based on

predefined rules, aiming to maintain phase continuity. These methods can vary
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in complexity and robustness, especially in the presence of noise, which can

complicate phase unwrapping.

In Fig. 3.2, we present the space-time maps of the wrapped and unwrapped

phase of the field in the cavity for S = 0.4, which reveal different patterns of

phase variability over time and space. Figs. 3.2a and 3.2b show the wrapped

phase and a zoomed-in view, where the phase values are constrained within a

specific range, typically between −π and π. This results in a periodic-like pattern

where the phase abruptly jumps from one end of the range to the other, giving a

striped appearance. In contrast, Figs. 3.2c and 3.2d represent the unwrapped

phase and a zoomed-in view, where the phase values are allowed to exceed the

typical −π to π range and can increase or decrease without bound. This results

in a smoother transition between phase values without the abrupt jumps, giving

a more gradient-like pattern.

The key difference between the two representations is that the wrapped phase

presents discontinuities due to the wrapping effect, while the unwrapped phase

shows the continuous evolution of the phase over time and space. This unwrap-

ping is useful as it removes the artificial periodicity imposed by wrapping.

3.2.2 Fourier Analysis of Spatial and Temporal Spectra

To gain deeper insights into the dynamics of our system in the bistable regime,

it is essential to analyze not only the intensity and phase behavior but also the

spatial and temporal spectra of the phase and amplitude. By performing Fourier

analysis on both the phase (wrapped and unwrapped) and amplitude, we can

better understand how the spectra is distributed across different frequencies,

which is crucial for identifying scaling laws and the turbulent-like behavior in

the system.

Fig. 3.3a (Left panel) shows the temporal spectra for both the wrapped

and unwrapped phases. In both cases, the spectra exhibit a power-law decay

with an exponent close to −2, indicating scale-invariance over a broad range of

temporal scales. This behavior suggests self-similarity in the phase dynamics

and supports the hypothesis that the phase turbulence in the system follows a

classical turbulent cascade [37].
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Figure 3.2: Space-time maps of (a) the wrapped phase and (b) a zoomed-in view,
and (c) the unwrapped phase and (d) a zoomed-in view.

On the Right panel of Fig. 3.3a, the temporal spectrum of the amplitude is

presented. Unlike the phase, the amplitude does not follow a simple power-

law decay. Instead, the spectrum decays more steeply, with an exponent of

approximately −5.8, indicating a much more rapid loss of power at higher

frequencies. This deviation from the power-law behavior seen in the phase

spectra suggests that the amplitude is governed by different dynamics, likely

influenced by nonlinear interactions and complex structures such as solitons

within the turbulent regime.

The spatial spectra are analyzed in Fig. 3.3b. The Left panel displays the

spatial spectra for the wrapped and unwrapped phases, both of which exhibit
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a power-law decay with an exponent close to −2. This again suggests scale

invariance in the phase dynamics across spatial scales, reflecting the presence

of spatial turbulence. The self-similarity observed here is consistent with the

findings in the temporal spectra.

The Right panel of Fig. 3.3b presents the spatial spectrum of the amplitude,

which does not follow a clear power-law. Instead, it shows a steep and complex

decay. This steep decay may indicate the influence of solitonic structures that

are present but highly disturbed by the turbulent dynamics.

Fig. 3.4 provides the semi-logarithmic representation of the spatial spectrum

of the amplitude. The quasi-triangular shape observed in this plot is a signature

of soliton-like structures within the system. This behavior is expected in the

regime of frequency combs, where discrete spectral lines, or "teeth," are normally

visible. However, due to the high level of turbulence in the system, these

comb lines have merged into a continuous spectrum. This indicates that while

the system retains some solitonic features, the chaotic nature of the dynamics

obscures the regular structure of the frequency comb.

In the upcoming sections, we will further investigate the dynamics of the

system using multiple analytical and numerical methods. This will allow us to

better understand the complex behaviors observed in the phase and amplitude

spectra.

3.3 Two-Points Correlation Functions for Spatial and

Temporal Dynamics

In our investigation of the system’s complex evolution, we examine the prob-

ability that two locations separated by δτ (spatial separation) and δt (temporal

separation) respectively behave coherently. This coherence is quantified using

the two-points correlation functions C(δτ) (Eq. 3.4) and C(δt) (Eq. 3.5):

C(δτ) =
〈
(ψ(δτ + τ ′, t)−

〈
ψ
〉
) (ψ(τ ′, t)−

〈
ψ
〉
)
〉
. (3.4)

C(δt) =
〈
(ψ(τ,δt + t′)−

〈
ψ
〉
) (ψ(τ, t′)−

〈
ψ
〉
)
〉
. (3.5)
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Figure 3.3: Temporal spectra for (a) (Left panel) the wrapped and unwrapped
phase and (Right panel) the amplitude, Spatial spectra for (b) (Left panel) the
wrapped and unwrapped phase and (Right panel) the amplitude, all are in a log
scale.

Here, the brackets ⟨·⟩ stand for the average process. C(δτ) andC(δt) are the equal-

time two-points correlation functions spatially and temporally, respectively.

Directly determining C(δτ) and C(∆t) can be computationally intensive.

However, by employing the Wiener-Khinchin theorem [182, 183], we can com-

pute these functions more efficiently. This involves time-averaging the Fourier

spectra and then taking the inverse Fourier transform of their squared magni-

tudes.
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Figure 3.4: Spatial spectra for the amplitude in the semi-log scale

In the context of spatiotemporal chaos, another important quantity is the

Kaplan-Yorke dimension DKY , which estimates the fractal dimension of the

attractor in phase space. It is given by:

DKY = p+

∑p
i=1λi∣∣∣λp+1

∣∣∣ , (3.6)

where p is the largest integer that satisfies
∑p
i=1λi > 0. Here λi are the Lyapunov

exponents, which measure the rates of separation of infinitesimally close trajec-

tories in phase space. DKY may change linearly with the volume of the system.

That is, for a 1D system, DKY = ξ−1
δ ∆T where ∆T is the temporal extension of

the system and ξδ represents the Lyapunov dimension density of the system

for a fixed value of the control parameter. This quantity gives an estimation

of the extension of the dynamically independent subsystems. Fig. 3.5 taken

from article [102] shows that ξδ = 1/1.73 = 0.57, note that all quantities in this

formulation are expressed in normalized units.

The plot of the spatial two-points correlation function in (Fig. 3.6(a)) shows

a very rapid decrease, with the correlation plot having the same shape as a

pulse profile. This indicates that outside the pulse, the probability of coherent

evolution is nearly zero. This is expected in a turbulent system where coherence
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Figure 3.5: Spatiotemporal chaos. (a) τ − t map shows a complex spatiotemporal
behavior obtained by numerical simulation of Eq. (1) with α = 0.16, δ = 1, and
S2 = 0.16 with 512 grid points. (b) Corresponding Lyapunov spectrum, and
(c) York-Kaplan dimension as a function of the system size L is indicated by
the diamond red points. L = 512∆τ with ∆τ as the step-size integration. The
linear growth of DKY dimension is fitted by a slope of 1.73, as shown by the gray
dashed line. Figure taken from [102].

is typically confined to small regions. Fig. 3.6(b) provides a zoomed-in view of

the central part of Fig. 3.6(a), emphasizing the rapid decay to zero at shorter fast

time delays. The best way to define the correlation length spatially is to consider

the first zero crossing, which in this case ξ2 = 3.1. Additionally, Fig. 3.6(c)

presents the two-points correlation function with the fast time delay divided

by the Lyapunov dimension density, highlighting the correlation behavior in

normalized units. The correlation length in this normalized form is ξ2 = 5.28ξδ.

To better understand the behavior of the correlation function beyond the
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Figure 3.6: Two-points correlation function in space: (a) Overall view showing
the rapid decrease. (b) Zoomed-in view of the central part of (a), highlighting
the rapid decay to zero. (c) Two-points correlation function with the fast time
delay divided by the Lyapunov dimension density.

central peak (highlighted in red in Fig. 3.6(a)), we analyze the fluctuations in

this region. These fluctuations provide valuable insights into the coherence

properties and the turbulent dynamics of the system. We isolate the right side

of the central peak of the correlation function and apply an absolute squared

Fourier transform. This process involves calculating the Fourier transform of the

selected segment and then shifting the spectrum to center the zero frequency.

This approach helps us focus on the specific frequency components that charac-

terize the fluctuations. The resulting frequency-domain representation, shown in

Fig. 3.7, provides the power spectrum of the selected segment. The log scale plot

of this frequency spectrum reveals a power-law decay with an exponent of -1.82

which is close to the universal exponent -2, a hallmark of phase turbulence. This

analysis shows that the phase dynamic is different than the intensity dynamic

and that the energy cascade of the intensity comes from the fluctuations around

the soliton.
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Figure 3.7: Log scale plot of the frequency spectrum of the fluctuations around
the central peak of the two-points correlation function.

For the temporal correlation function, the semi-log plots in Figs. 3.8(a) and (b)

provide further insights. The temporal correlation function C(δt) is computed

similarly to C(δτ).

The semi-log plot in Fig. 3.8(a) shows the two-points correlation function in

time, highlighting an exponential decay. This decay characterizes how quickly

the correlation between two points in time diminishes. The correlation length in

time is taken as the inverse of the exponential decay rate, which in this case is

3.78. Fig. 3.8(b) presents a zoomed-in view, showing the detailed structure of

this decay.

These analyses illustrate that phase turbulence does not originate directly

from the solitons; it results from the energy emitted by these solitons during

their breathing. The synchronization and large number of solitons contribute to

the overall phase turbulence in the system.
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Figure 3.8: (a) Semi-log plot of the two-points correlation function in time,
illustrating the exponential decay. (b) Zoomed-in view of (a), showing the
detailed structure of the decay. The correlation length in time is the inverse of
the exponential decay rate, which is 3.78.

3.4 Detection of Spatiotemporal Peaks

In the study of spatiotemporal dynamics, identifying significant peaks within

the intensity field is crucial for understanding the underlying behavior and

dynamics of the system. These peaks represent regions where the amplitude

is notably higher compared to surrounding areas, indicating points of intense

activity. Our approach to peak detection combines the identification of regional

maxima with additional processing steps to ensure the retention of only the

most significant peaks, while minimizing noise interference, providing a clear

and detailed map of the system’s dynamic behavior.

3.4.1 Enhanced Spatiotemporal Peak Detection via Prominence

Analysis

To detect significant peaks in the spatiotemporal dynamic, we employed a

method that combines local maxima detection with non-maximum suppression

to enhance the prominence of identified peaks. The steps are as follows:

• Local Maxima Detection: We start by analyzing the intensity matrix along both
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the spatial and temporal dimensions to identify potential peak locations. This

step highlights points where the intensity is significantly higher compared to

surrounding areas, marking them as local maxima.

• Prominence Calculation: For each detected local maximum, we compute the

geometric mean of their prominence values. This ensures that only points

significant in both spatial and temporal dimensions are considered, effectively

enhancing the prominence of the detected peaks. Prominence is a measure of

a peak’s relative importance compared to nearby peaks, emphasizing the most

significant peaks while filtering out noise and less significant fluctuations.

• Non-Maximum Suppression: To further refine the peak detection, non-maximum

suppression is applied. This process compares each peak to its neighbors

within a specified neighborhood and retains only those peaks that are greater

than their immediate neighbors, thereby suppressing less significant peaks

and reducing noise.

• Threshold Application: A threshold is then employed to filter out peaks with

low prominence, ensuring that only the most substantial peaks are retained

for further analysis. This step is crucial for isolating the most active regions in

the spatiotemporal field.

This method effectively identifies the most prominent features within the

spatiotemporal field, providing a clear and detailed map of significant peaks.

Fig. 3.9 demonstrates the detected peaks (marked in red) within the spatiotempo-

ral map, highlighting regions of significant amplitude variations. By employing

this enhanced peak detection method, we achieve a robust identification of

significant peaks within the spatiotemporal dataset.

3.4.2 Inter-pulse Distance Analysis

After detecting the most significant pulses, we analyze their distribution

based on their intensity. We first sort these pulses and then divide them into

10 percentile groups, from the 0th to the 100th percentile, creating a set of

ranges that categorize the pulses into bins based on their intensity. For each
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Figure 3.9: Detected significant peaks (red triangles) in the spatiotemporal map
where the amplitude exhibits notable variations.

percentile group, the pulses are shifted so that their peak maximum aligns at the

center, and normalized to the range [0,1], this allows for comparison between

pulses of different absolute magnitudes. For each percentile group, a plot is

created that shows the mean of the normalized and shifted pulses (Fig. 3.10).

This represents in orange the average shape of the pulses in each percentile

group. The normalized spatial two-point correlation function C(δτ) is also

plotted in blue for comparison. By comparing the mean shapes of the pulses

with the correlation function, we can assess how the detected pulses relate to

the overall spatial coherence and distribution of the field. This comparison

helps to identify whether the peaks are randomly distributed or if they exhibit

a more structured and coherent pattern, which is crucial for understanding

the dynamics and interactions within the spatiotemporal system. For each

significant peak detected, we find the positions of the nearest significant peaks

on either side, constrained by a predefined threshold, which is set to be 1.25

times the ratio of the mean intensity to the maximum intensity. The distances to

these significant peaks from the center are then calculated. Subsequently, we

compute the average distance to the left and to the right for the significant peaks
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within each percentile group. The results show that the average distances to

the nearest significant peak to the right of a central reference peak start around

6.51 and increase to about 8.97 times the Lyapunov dimension length. For

the left side, the distances start around 5.51 and increase to about 8.43 times

the Lyapunov dimension length. This suggests a general trend where, as the

magnitudes of the peaks increase, the average distance to the next significant

peak on both sides of a central peak increases. These findings highlight the

spatial distribution and coherence of significant peaks, providing insights into

the structural organization of the spatiotemporal field.
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Figure 3.10: Mean of the normalized and shifted pulses for each percentile group
(in orange) compared to the normalized spatial two-point correlation function
(in blue).
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To illustrate this, Fig. 3.11 shows an example of a central peak (marked in

green) and its nearest significant peaks to the left (marked in red) and right

(marked in blue). The black dashed line represents the threshold used for peak

detection. This example highlights how the significant peaks are identified and

their relative positions within the spatiotemporal field.
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Figure 3.11: Example of a central peak and its nearest significant peaks to the
left and right. The central peak is marked in green, the closest left peak in red,
and the closest right peak in blue. The black dashed line represents the threshold
used for peak detection.

As we will see in the next section, these significant peaks are not the only

defining feature of the spatiotemporal dynamics. In addition to these high-

amplitude peaks, the system also exhibits topological defects—regions where

the amplitude of the field approaches zero, leading to phase singularities. The

study of these defects is crucial for understanding the full extent of the turbulent

behavior observed in our system.
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3.5 Topological Defects and Their Role in Turbu-

lence

In the study of spatiotemporal dynamics, defects play a critical role in un-

derstanding the underlying turbulence phenomena. Defects are points in the

system where the amplitude of the field nearly vanishes, leading to simultaneous

crossings of zero by both the real and imaginary parts of the field. This results

in a phase singularity at these points. To identify these defects, we search for

local minima in the amplitude of the spatiotemporal field, which indicates re-

gions where the phase is not well-defined due to the vanishing amplitude. Once

potential defects are identified, it is crucial to verify their nature as true spa-

tiotemporal defects. This is done by examining the contour around the identified

defect. Specifically, we calculate the contour integral of the phase around the

defect. If this integral equals 2π or a multiple thereof, it confirms the presence

of a phase singularity, thereby validating the defect as a true topological defect.

Fig. 3.13 presents a zoomed-in view of one such defect, focusing on the phase

dynamics around the defect. Specifically, we calculate the contour integral of

the phase around this defect. If this integral equals 2π or a multiple thereof, it

confirms the presence of a phase singularity, thereby validating the defect as a

true topological defect.

The presence of defects in a turbulent system indicates regions of phase tur-

bulence. Phase turbulence is characterized by continuous changes in the phase of

the field, leading to complex spatiotemporal patterns. The alternation between

phase turbulence and defect-mediated turbulence suggests a rich, multi-faceted

dynamical behavior. This alternation can lead to the emergence of extreme

events, which are rare, high-amplitude excursions in the system’s dynamics.

Understanding these defects and their role in the dynamics provides valuable

insights into the mechanisms driving spatiotemporal chaos and turbulence in

such systems.

In our study, we started with a soliton and gradually increased the pump

parameter S until S = 0.4. This transition led to the onset of spatiotemporal

chaos, marked by the emergence of numerous defects. When S was subsequently
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decreased, the spatiotemporal chaos persisted even at lower values of S where

initially there was no chaos, demonstrating a hysteresis effect. This indicates

that the system maintains its chaotic state despite the reduction in S to levels

that originally supported solitons. Such behavior has been observed in similar

systems, where a bifurcation diagram reveals the coexistence of spatiotemporal

chaos, pulsating localized structures, and homogeneous steady states [102].

Fig. 3.12(a) shows a spatiotemporal map of the system, with defects high-

lighted as red squares. This visualization helps to identify the locations of phase

singularities within the dynamic field, illustrating the distribution and density

of defects over time. The defects’ presence and distribution are indicative of the

underlying turbulent nature of the system, providing a clear visual represen-

tation of how turbulence manifests through phase singularities and amplitude

variations. Fig. 3.12(b) depicts the number of defects as a function of the pump

parameter S, showing a hysteresis loop. The circles represent the incremented S

values, and the triangles represent the decremented S values, highlighting the

difference in defect numbers during the increasing and decreasing phases of S.

(a) (b)

Figure 3.12: (a) Spatiotemporal map of the system showing defects (red squares)
where the amplitude of the field nearly vanishes. (b) Number of defects per
fast and slow time units as a function of the pump parameter S, illustrating the
hysteresis loop with circles for incremented S and triangles for decremented S.
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Figure 3.13: Zoomed-in view of a defect showing the phase dynamics around
it. The contour integral of the phase calculated around the defect confirms the
presence of a phase singularity, with the integral equaling 2π, validating the
defect as a true topological defect.

3.6 Structure Functions and Multiscale Dynamics

The study of the higher-order correlations, commonly referred to as struc-

ture functions is essential for unraveling the complex, multi-scale nature of

turbulence. Structure functions provide a detailed statistical characterization of

the turbulent field, revealing information about higher-order correlations and

the presence of characteristic scales. By analyzing the scaling behavior of these

functions, we can gain insights into self-similarity and intermittency, which are

key features of turbulent systems [98].

To this end, we examined the structure functions, which are mathematically

defined for order p as follows:

S
(d)
p (τ) = ⟨||δ(d)

τ I(t)||p⟩l , (3.7)

δ
(l)
τ I(t) = I(t + τ)− I(t), (3.8)

S
(d)
p (τ) ∼ τζp . (3.9)

In these equations, S(d)
p (τ) represents the structure function of order p, a statis-

tical measure quantifying the differences in the intensity field I(t) over a time
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lag τ . The angle brackets ⟨·⟩l denote an average over the spatial domain. The

incremental difference in intensity over a time lag τ is given by δ(l)
τ I(t). The

power-law scaling relationship characterized by the exponent ζp is indicative

of the underlying self-similarity or intermittency within the turbulent field.

According to the Kolmogorov theory of turbulence, for fully developed turbu-

lence, the pth order structure function scales with the separation distance r in

the inertial subrange as r
p
3 . This theoretical framework provides a foundational

understanding of turbulence; however, empirical observations frequently exhibit

deviations from this simple scaling law, particularly for higher-order structure

functions. Such deviations are typically attributed to the phenomenon of inter-

mittency, characterized by irregular, sporadic occurrences of intense small-scale

fluctuations within the flow [98].

10
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p

Figure 3.14: Spatial structure functions Sp(τ) calculated for various orders p.

In this work, we calculate the structure functions and scaling exponents of

the field intensity. We observe that both spatially and temporally a close to 0.8

law is well followed until order p = 4.5, from this critical value the curve bends

away. Therefore, the dynamic exhibits intermittent behavior, demonstrating



112CHAPTER 3. Characterization of STC & turbulence induced by solitons in optical systems

deviations from the expected scaling law at higher orders, reflecting the complex

nature of turbulent systems. Fig. 3.14 shows the spatial structure functions,

while Figs. 3.15a and 3.15b depict the spatial and temporal scaling exponents,

respectively, showing the intermittent behavior.
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Figure 3.15: Scaling exponents (a) ζτp and (b) ζtp of the spatial and temporal
structure functions, respectively, demonstrating intermittent behavior.



3.7. Link to Dispersion Relation 113

To better illustrate this dynamical behavior, we also present profiles of the

moments mp for different exponents p, as seen in the insets of Fig. 3.15a. The

moments are calculated as: mp ≡ ⟨(I(τ)−⟨I⟩)p⟩/σp,where I(τ) is the total intensity

at position τ , ⟨I⟩ is the average intensity, and σ is the standard deviation. The

insets clearly show the loss of self-similarity at p = 4.5, followed by intermittent

behavior. A similar analysis was conducted for temporal fluctuations, as shown

in the insets of Fig. 3.15b, where the moments m
′
p were calculated for different

exponents p, where m
′
p ≡ ⟨(I(t)− ⟨I⟩)p⟩/σp, with I(t) is the total intensity at time

t and ⟨I⟩ is the average intensity.

The analysis of structure functions provides deep insights into the multi-scale

nature of turbulence and helps clarify the transition between self-similar and

intermittent dynamics. This understanding is vital for advancing our knowledge

of turbulent systems.

3.7 Link to Dispersion Relation

We now revisit the dispersion relation of the LLE, which characterizes the

perturbation of the Homogeneous Steady State (HSS) solution, given by the

following form:

λ± = −α ±
√
I2
s − (∆− 2Is +ω2)2 (3.10)

In this expression, λ± are the eigenvalues derived from the linear stability analy-

sis, α represents the cavity loss parameter, Is is the intracavity field intensity, ∆

denotes the detuning, as discussed in Section 1.3.2. Figs. 3.16(a)-(c) illustrate the

logarithmic power spectrum of the Fourier transform applied in both the slow

and fast time directions for various values of the pump parameter S (0.25, 0.3,

and 0.4, respectively). The overlaid red and white curves represent the imaginary

components of the eigenvalues from the dispersion relation. The white curves

correspond to the imaginary parts of λ± for the value of Is that lies on the upper

branch of the bistability hysteresis curve, while the red curves correspond to the

lower branch. The horizontal axis represents the frequency shift ω, while the

vertical axis corresponds to the angular frequency ν (imaginary part of λ).

From Figs. 3.16, it is evident that the soliton spectrum dominates in intensity,
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Figure 3.16: Dispersion relation of the Lugiato-Lefever Equation (LLE) for dif-
ferent pump parameters S. The logarithmic power spectrum of the Fourier
transform in both slow and fast time directions is shown for (a) S = 0.25, (b)
S = 0.3, and (c) S = 0.4. The overlaid curves represent the imaginary parts of the
eigenvalues from the dispersion relation.

with the trace of the dispersion relation clearly visible, which is linked to the

presence of stable linear waves propagating along the HSS solution. Each time

a soliton dissipates its energy, the emitted waves must follow the dispersion

relation corresponding to the perturbation of the HSS; any other wave that does

not satisfy the dispersion relation cannot propagate. This explains why the

spectra in these figures remain well-defined, rather than appearing noisy.

However, in Fig. 3.16(c), corresponding to S = 0.4, the spectrum broadens,

reflecting the emission of a high number of solitons. These solitons are not
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necessarily synchronized in time, and even when they coexist, they do not share

the same phase, leading to a lack of synchronized behavior. Despite this, far

from the soliton region, the waves propagate on the HSS solution.

The solitons themselves are unstable. When they appear, they undergo a

Hopf instability, leading to oscillations that eventually destroy the solitons,

resulting in the emission of waves. Since the solitons appear and disappear,

the formation of one is sufficiently distant from the previous one such that,

when it dissipates, its energy propagates. This behavior was observed when we

computed the inter-pulse distance in Section 3.4.2.

3.7.1 Detailed Analysis of Dispersion Relations and Spectral

Behavior

The dynamics in this system represent a mixture of breathing cavity solitons

and linear waves propagating along the HSS solution. However, to understand

which domain contributes to the energy cascade of the phase, we highlight in

Fig. 3.16c the corresponding frequency shift values at specific angular frequen-

cies where the power spectrum intensity is maximized, as shown by the black

circles in Fig. 3.17a. The gradient arrow on the left indicates increasing angular

frequencies (ν), helping to visualize where these frequencies contribute to the

energy cascade, as seen in Fig. 3.17c. It becomes evident that these linear waves

are responsible for initiating the energy cascade.

Figure 3.17b corresponds to the same spectrum as in Fig. 3.7 from Section 3.3,

which illustrates the fluctuations in intensity. The spectrum, obtained from the

Fourier transform of these fluctuations, again reveals a power-law decay with an

exponent close to -1.82, suggesting self-similar dynamics or phase turbulence

within the system. Once we move beyond the correlation domain of the localized

structures, we recover the energy cascade from the fluctuations. The solitons,

however, prevent these slow fluctuations from contributing to an energy cascade.

The region of frequency shifts displaying power-law decay is clearly identi-

fied and can be located within the spatial spectrum of the phase in Fig. 3.17c,

alongside the region corresponding to linear waves. (note that this region can

extend more if we take into account also the high-frequency shifts).
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Figure 3.17: (a) Dispersion relation of the LLE for S = 0.4. Black circles highlight
the corresponding frequency shift values for specific angular frequencies. (b)
Power spectrum in logarithmic scale as a function of the frequency shift of the
intensity fluctuations showing a universal exponent close to -2. (c) The spatial
spectrum of the phase, showing the frequency shifts corresponding to both the
linear waves from (a) and those corresponding to the intensity fluctuations from
(b).

3.8 Conclusion

In this chapter, we delved into the complex dynamics of a system operat-

ing in the bistable regime, concentrating on the transition from soliton-based

structures to spatiotemporal chaos and fully developed turbulence. As we in-
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creased the pump parameter, the system evolved from a soliton-based regime to

a spatiotemporal chaotic one characterized by phase turbulence. Through the

analysis of phase and amplitude power spectra, we identified distinct scaling

laws. The phase dynamics, in particular, exhibited a power-law behavior indica-

tive of phase turbulence, while the amplitude decayed more steeply, suggesting

differing underlying mechanisms in the turbulent regime.

To understand the difference between the phase and amplitude dynamics,

we conducted a detailed examination of the dispersion relation of the Lugiato-

Lefever Equation (LLE), we identified the critical role that stable linear waves,

propagating along the Homogeneous Steady State (HSS) solution, play in initiat-

ing the energy cascade of the phase spectrum. Further analysis using two-point

correlation functions showed that, outside the correlation domain of localized

structures, the fluctuations spectrum follows a power-law decay.

Furthermore, the analysis using structure functions allowed us to explore

higher-order correlations, revealing that the system follows a scaling law up to a

critical power. Beyond this point, the system diverges from the observed scaling,

indicating that it becomes intermittent. This transition signifies that at larger

scales, the dynamics become irregular, marking the onset of intermittency. An-

other key finding of this chapter is the emergence of topological defects—phase

singularities, serve as markers of turbulence and contribute to the formation of

extreme events.

Overall, this chapter has provided a comprehensive analysis of the transition

from soliton dynamics to fully developed turbulence, offering new insights into

the mechanisms governing spatiotemporal chaos in optical systems.
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In this chapter, we delve into the advanced analysis of wind dynamics using

the concept of Transfer Entropy (TE) to uncover the directional flow of infor-

mation between different meteorological stations. The chapter begins with an

introduction to the importance of understanding wind behavior for applications

such as weather forecasting and renewable energy optimization. We then de-

scribe the data collection and preprocessing steps, including handling missing

data and time gaps. The main focus is on analyzing wind speed and direction

using both univariate and multivariate TE methods. Univariate TE examines the

information transfer for wind speed and direction separately, while multivariate

TE considers the combined influence of wind speed and direction components.

Through detailed examples and comparisons, we illustrate how TE can reveal

complex interdependencies and directional influences among stations. The chap-

ter concludes by highlighting the significant findings and the robustness of TE

as a tool for enhancing our understanding of wind dynamics and improving

predictive models.

4.1 Introduction

Wind dynamics play a crucial role in various aspects of atmospheric sciences,

impacting weather patterns, climate models, and environmental monitoring.

Accurate understanding and prediction of wind behavior are essential for ap-

plications ranging from weather forecasting to renewable energy optimization.

In this chapter, we focus on analyzing wind data from multiple meteorological

stations in Sydney, Australia, using advanced information theory methods to

understand the directional flow of information. Wind data analysis is a fun-

damental aspect of atmospheric sciences, as wind patterns influence countless

environmental and climatic processes. The study of wind dynamics involves

understanding the movement of air masses across various spatial and temporal

scales, which can significantly impact weather prediction, climate modeling,

and renewable energy resource management. Wind data is typically collected

from meteorological stations that measure wind speed and direction. These

measurements are crucial for developing accurate weather models. Additionally,

understanding wind behavior is essential for designing and optimizing wind
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farms, which are a key component of renewable energy strategies.

Wind data analysis faces several challenges, such as dealing with missing

or incomplete data [189], accounting for complex terrain effects [190], and

capturing the inherently chaotic nature of atmospheric processes. As a result,

researchers have developed various statistical and computational methods to

enhance the analysis and interpretation of wind data. One of the primary tools in

wind data analysis is time series analysis, involving the examination of historical

wind data to detect periodicities and trends. Techniques such as autoregressive

integrated moving average (ARIMA) models have been widely used to forecast

wind speed and direction based on past observations [191]. While these methods

provide valuable insights, they often assume linear relationships and may not

adequately capture the complex, nonlinear interactions present in atmospheric

systems. Numerous studies have explored wind speed and direction analysis,

employing various methodologies to understand wind dynamics and improve

forecasting models. Early research primarily focused on statistical techniques

such as correlation analysis and regression models to identify patterns and

trends in wind data [192, 193].

Bilgili et al. (2007) [194] used correlation analysis based on the evolution

of the sample cross-correlation function (SCCF) from [195] to select reference

and target stations for wind speed prediction using Artificial Neural Networks

(ANN). While this method provides valuable insights, it assumes linear relation-

ships and does not account for the directional flow of information. Consequently,

some stations that may appear uncorrelated could still exchange significant infor-

mation. To address the limitations of traditional statistical methods, we propose

using Transfer Entropy (TE) to analyze wind data. TE, introduced by Schreiber

in 2000 [155], is a non-parametric measure that quantifies the directed transfer

of information between two time series. Unlike traditional methods, TE can

detect nonlinear dependencies and delayed interactions, making it particularly

suited for analyzing the intricate dynamics of wind patterns.

Several studies have successfully applied TE to wind data analysis. For exam-

ple, Ragwitz and Kantz (2002) demonstrated the utility of TE in detecting causal

relationships in chaotic systems, including atmospheric dynamics [196]. More

recently, other studies have used TE to study the directional information flow
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in wind speed data across multiple meteorological stations, highlighting the

method’s ability to uncover complex interdependencies. The integration of infor-

mation theory-based methods with traditional statistical techniques represents a

promising direction for wind data analysis. By leveraging the strengths of both

approaches, researchers can develop more accurate and robust models for pre-

dicting wind behavior, ultimately contributing to improved weather forecasting

and renewable energy management.

Our primary objective in this chapter is to explore the directional information

flow within wind data, which encompasses both wind speed and direction. By

applying TE [155], we aim to uncover how information propagates between

different meteorological stations. This analysis is pivotal for enhancing our

understanding of wind dynamics and improving forecasting models. Transfer

Entropy, discussed in Section 1.6.2, is a non-parametric, model-free measure

that captures the directed transfer of information between two systems. Unlike

traditional methods such as Granger causality [162], which often assume linear

relationships, TE is capable of detecting nonlinear interactions, making it par-

ticularly suited for complex systems like atmospheric dynamics. By examining

both univariate TE (focusing on wind speed and direction separately) and multi-

variate TE (considering the combined effect of wind speed and direction), we

can obtain a comprehensive view of information flow.

Overall, the integration of information theory-based methods with traditional

statistical techniques represents a promising direction for wind data analysis. By

leveraging the strengths of both approaches, researchers can develop more accu-

rate and robust models for predicting wind behavior, ultimately contributing to

improved weather forecasting and renewable energy management.

4.2 Data Collection and Preprocessing

4.2.1 Meteorological Stations and Data Description

The data for this study was collected from a network of 57 meteorological

stations distributed across Sydney, Australia, as shown on the map in Fig. 4.1.

These stations are equipped with instruments that measure various atmospheric
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parameters, including wind speed and direction. Wind speed is the average

wind speed in meters per second (m/s), and wind direction is the average wind

direction over the measurement minute in degrees azimuth. The data was

recorded at one-minute intervals throughout the year 2021, providing a high-

resolution dataset suitable for detailed analysis. The geographic distribution

of these stations allows for a comprehensive analysis of wind patterns across

different areas, capturing local variations influenced by geographic features such

as coastlines, urban areas, and topographical elevations.

Figure 4.1: Map showing the distribution of the 57 meteorological stations across
Sydney, Australia. The inset provides a zoomed-in view of the area with a higher
density of stations, for better clarity.

4.2.2 Handling Missing Data and Time Gaps

To ensure the consistency and reliability of the dataset, we performed an

initial cleaning process. The first step involved removing the data for January

2021 because this month had missing entries for some stations. This decision

was made to maintain uniformity in the number of stations across the entire

dataset.
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Despite the comprehensive coverage, the dataset exhibited some irregular-

ities, including time gaps and NaN (Not a Number) values. These gaps and

NaNs indicate periods when the recording instruments were not operational

or data was not recorded accurately. Although there are methods to handle

these NaN values, they are not efficient for large gaps. For our analysis, it is

crucial to work with continuous time series data, as TE calculations require

uninterrupted sequences to provide meaningful results. Simply replacing NaN

values with zeros was not an option because a zero value in wind speed data

would inaccurately indicate no wind, which could be a valid observation rather

than a data gap. Instead, we adopted a more sophisticated approach to handle

these issues. We identified all time gaps and instances of NaN values within the

dataset by checking for missing timestamps and scanning for NaNs in the wind

speed and direction measurements. All identified time gaps were filled with

NaN values to explicitly mark periods with missing data, ensuring that any gaps

would not be overlooked during the analysis.

Next, we searched for the longest sequences of continuous data, where no

NaN values were present. These sequences were extracted for subsequent analy-

sis to ensure that TE calculations would be based on reliable and uninterrupted

data. This involved segmenting the longest continuous data segments for each

station and storing them separately.

This preprocessing step is critical as it directly impacts the accuracy and

reliability of the TE analysis. By focusing on the longest continuous sequences,

we aimed to maximize the integrity and utility of the dataset for studying the

directional information flow in wind data. This preprocessing ensures that

the subsequent TE calculations are performed on uninterrupted data segments,

thereby enhancing the robustness of our analysis and findings.

4.3 Transfer Entropy Analysis

4.3.1 Univariate TE for Wind Speed and Direction

Transfer Entropy is a powerful tool for analyzing the directional transfer of

information between two time series. In the context of wind data, univariate
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TE can be applied separately to wind speed and wind direction to uncover

how information flows between different meteorological stations. Univariate

TE measures the amount of information transferred from one time series to

another, considering each variable independently. For wind speed, we compute

the TE from the wind speed at one station to the wind speed at another station.

Likewise, for wind direction, we compute the TE from the wind direction at one

station to the wind direction at another station. This helps identify directional

dependencies and potential causal relationships between stations.

Univariate TE has been widely used in various fields to study directional

dependencies and causality. In atmospheric sciences, it helps in understanding

how wind patterns propagate between different locations, which is crucial for

weather forecasting and climate modeling.

The analysis involves computing TE for various time lags to identify the

optimal lag at which the information transfer is most significant. This is done by

systematically shifting the time series of one station and calculating the TE with

the time series of another station at each shift. The time lag with the highest TE

value indicates the delay at which the information transfer is maximized. For

two time series X and Y , the computation of TE in this context from X to Y at a

lag τ can be mathematically represented as follows:

T EX→Y (τ) =
∑

p(yt+τ , yt,xt) log
p(yt+τ |yt,xt)
p(yt+τ |yt)

(4.1)

where yt+τ is the future value of Y , yt is the current value of Y , and xt is the

current value of X. This measure captures the reduction in uncertainty of the

future state of Y given the past state of X and Y , compared to the uncertainty of

Y given only its past state. A higher TE value indicates a stronger influence of

X on Y . The computation of TE involves estimating the joint and conditional

probability distributions of the time series data. By applying univariate TE, we

aim to uncover the complex interactions and directional dependencies in wind

data, providing valuable insights for improving wind forecasting models and

understanding atmospheric dynamics.
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4.3.2 Multivariate TE for Wind Direction Components

To capture the combined influence of wind speed and direction, we transform

the wind data into its x and y components. This transformation allows for a

more detailed analysis of the directional information flow between stations by

considering the vector components of wind. The Wind Speed (WS) in meters

per second (m/s) and Wind Direction (WD) in degrees azimuth1 are used to

compute the x and y components of the wind vector: x = WS× cos(θ)

y = WS× sin(θ)
(4.2)

where θ is the Wind Direction (WD) in radians.

By analyzing these components, multivariate TE provides a comprehensive

view of how wind information flows between stations. In the multivariate TE

analysis, X and Y are now two-dimensional vectors instead of one-dimensional.

This means that instead of considering only the wind speed or direction at a

station, we now consider both the x and y components of the wind vector at

each station. Multivariate TE extends the univariate approach by considering

multiple variables simultaneously. This approach captures more complex in-

teractions and offers a richer analysis of information flow by considering the

combined influence of wind speed and direction. In multivariate TE analysis,

the joint influence of multiple time series is examined to understand how they

collectively affect another time series. This is particularly useful in wind data

analysis, where both wind speed and direction play a crucial role in determining

wind patterns. By incorporating the x and y components of the wind vector,

multivariate TE can capture the combined influence of these variables on the

information transfer between stations. Multivariate TE is particularly powerful

for analyzing complex systems with multiple interacting variables. The method-

ology employed here for calculating Multivariate TE was rigorously tested and

validated in Appendix B using coupled Rössler systems, ensuring its robustness

and reliability for complex systems like wind dynamics. In the context of wind

1In degrees azimuth, 0° corresponds to North, 90° to East, 180° to South, 270° to West, and
the degrees increase clockwise.
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data, it allows us to understand how the combined effects of wind speed and

direction at different locations influence wind patterns across the network of

meteorological stations.

Overall, both univariate and multivariate TE analyses provide valuable in-

sights into the directional information flow in wind data, helping to improve our

understanding of wind dynamics and enhancing the accuracy of wind forecast-

ing models. The integration of these methods offers a comprehensive approach

to studying wind patterns and their interactions across different spatial and

temporal scales.

4.4 Wind Speed

4.4.1 Filter and smooth the Data

To filter the wind speed data, we used a combination of the Savitzky-Golay

Smoothing Filter [197] and a moving mean filter with a window size of 5 min.

The Savitzky-Golay Smoothing Filter applies a polynomial regression to a mov-

ing window of data points, effectively smoothing the data while preserving

important features such as peaks and troughs. This method is particularly use-

ful for maintaining the integrity of the wind speed’s inherent variability while

reducing the noise. Additionally, the moving mean filter further reduces noise

by averaging the wind speed measurements over the specified window. This step

is crucial for mitigating short-term fluctuations and providing a clearer repre-

sentation of the underlying wind speed trends. By combining these two filtering

techniques, we achieve a balance between noise reduction and the preservation

of significant wind speed features, ensuring more accurate and reliable analysis.

Let’s take an example of two stations as shown in Fig. 4.2. Station 24 is on

the coastline, and Station 34 is further inland. Fig. 4.3 illustrates the wind speed

data before and after applying the filtering techniques. Fig. (4.3a) shows the

raw wind speed data recorded between Stations 34 and 24 for a specific period.

Fig. (4.3b) presents the filtered wind speed data, demonstrating the effectiveness

of the Savitzky-Golay and moving mean filters in smoothing the data. Overall,

we can see that the wind speed at Station 24 is consistently higher than at Station
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34. This difference is primarily due to the locations of the two stations. Station

24, being on the coastline, is subject to stronger and more consistent winds due to

the influence of the sea breeze and reduced surface friction. In contrast, Station

34, located further inland, experiences more variable and generally weaker wind

speeds due to increased surface friction and complex topographical features.

Figure 4.2: Map showing the locations of Stations 34 and 24. Station 24 is on the
coastline at an elevation of 22 meters, while Station 34 is further inland at an
elevation of 81.2 meters. The distance between the two stations is approximately
49.1 kilometers.

4.4.2 Transfer Entropy of wind speed

By computing the Transfer Entropy of the wind speed between the two sta-

tions 34 and 24, shown in Fig. 4.4, we can compare the TE of the raw data

and the filtered data of the wind speed for different lags. Overall, we observe

that the filtering did not significantly affect the overall shape of the TE values,

though it did affect the values themselves. This is because the primary purpose

of the filtering process is to reduce noise while preserving the fundamental

relationships and information flow between the stations. The TE values reflect

these relationships, and the shape of the TE curve indicates how information

transfer varies with lag. The TE plots illustrate that the wind speed at Station



4.4. Wind Speed 129

11-Mar-2021 15:26:00 16-Mar-2021 11:47:00
Time (in min)

0

2

4

6

8

10

12

14

16
W

in
d

 S
p

ee
d

 (
in

 m
/s

)

Station 34
Station 24

(a)

11-Mar-2021 15:26:00 16-Mar-2021 11:47:00
Time (in min)

0

2

4

6

8

10

12

14

W
in

d
 S

p
ee

d
 F

ilt
er

ed
 (

in
 m

/s
)

Station 34
Station 24

(b)

Figure 4.3: Wind speed data comparison: (a) Raw wind speed data, and (b)
Filtered wind speed data using the Savitzky-Golay Smoothing Filter and moving
mean filter recorded between stations 34 and 24 for a specific period.

24 (coastal) exerts a stronger influence on the wind speed at Station 34 (inland),

as indicated by higher TE values from Station 24 to Station 34. This is consis-

tent with our understanding of wind dynamics, where coastal stations typically
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Figure 4.4: TE comparison: (a) Raw wind speed data, and (b) Filtered wind
speed data using the Savitzky-Golay Smoothing Filter and moving mean filter
recorded between stations 34 and 24 for a specific period.

experience more consistent and stronger winds, which can influence the wind

patterns further inland. In contrast, the influence from Station 34 to Station 24 is

weaker, reflected in lower TE values. This is due to the more variable and often
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weaker wind conditions inland. The consistent behavior observed in both raw

and filtered TE plots suggests that the filtering process preserves the essential

information flow characteristics between the stations, confirming the robustness

of the filtering techniques used. This analysis highlights the importance of con-

sidering both the geographical context and appropriate data filtering techniques

to accurately understand and model wind dynamics across different locations.

The difference in wind speed and the resulting TE behavior between the two

stations can be attributed to their geographical locations, demonstrating the

significance of coastal and inland dynamics in wind patterns.

4.4.3 Another Example of Transfer Entropy of wind speed

In another example, we compare Stations 50 and 24, as shown in Fig. 4.5.

Station 24 is on the coastline at an elevation of 22 meters, while Station 50 is

further inland at an elevation of 813.6 meters. The distance between the two

stations is approximately 98.5 kilometers.

Figure 4.5: Map showing the locations of Stations 50 and 24. Station 24 is on the
coastline at an elevation of 22 meters, while Station 50 is further inland at an el-
evation of 813.6 meters. The distance between the two stations is approximately
98.5 kilometers.

The wind speed data for both stations and the corresponding TE plots are
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shown in Fig. 4.6. Fig. (4.6a) displays the raw wind speed data for Stations 50

and 24, we observe that the wind speed at Station 50 is higher than at Station

24 during the specific period analyzed. This results in higher TE values from

Station 50 to Station 24, as shown in Fig. (4.6b), indicating a stronger influence

of the inland station on the coastal station during this period.

The results highlight an interesting phenomenon: despite Station 24’s coastal

location, Station 50 exhibits higher wind speeds and a stronger influence on Sta-

tion 24. This can be attributed to the significant elevation difference between the

two stations. Station 50, at 813.6 meters, likely experiences different atmospheric

conditions that contribute to stronger winds compared to the lower elevation and

coastal influence of Station 24. The higher TE values from Station 50 to Station

24 suggest that during this period, the inland station’s wind patterns are exert-

ing a more substantial influence on the coastal station’s wind conditions. These

observations underscore the complexity of wind dynamics and the importance

of considering various factors such as elevation, geographic location, and local

atmospheric conditions in wind speed analysis. The contrasting TE behaviors in

the two examples demonstrate how different environmental and geographical

contexts can influence the direction and strength of wind information transfer

between meteorological stations.

4.5 Wind Direction

In this section, instead of analyzing wind speed, we examine the wind direc-

tion over the same period between Stations 34 and 24, and compute the Transfer

Entropy. Fig. 4.7 presents the wind direction data and the corresponding TE be-

tween Stations 34 and 24. The first subplot (Fig. 4.7a) shows the wind direction

data, indicating higher variability at Station 34 (inland) compared to Station

24 (coastal). This variability can be attributed to the more complex topograph-

ical features and increased surface friction inland. Station 34, located further

inland at an elevation of 81.2 meters, experiences wind patterns influenced

by surrounding terrain and other geographical factors. In contrast, Station 24,

located on the coastline at an elevation of 22 meters, benefits from more stable

and consistent wind directions due to the relatively smooth surface of the ocean
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Figure 4.6: (a) Wind speed data for a specific period, showing higher wind speeds
at Station 50 (inland) compared to Station 24 (coastal); (b) Transfer Entropy of
wind speed for different lags, indicating a stronger influence of Station 50 on
Station 24.

and reduced friction. The second subplot (Fig. 4.7b) shows the TE analysis,

indicating a stronger influence of Station 34 on Station 24. This suggests that
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the variable wind directions at the inland station significantly impact the wind

patterns at the coastal station. The inland winds, affected by the complex inland

geography, seem to carry information that dictates changes in the wind direction

at the coastal station. This is particularly noticeable during periods when inland

wind variability is high, affecting the coastal wind patterns more substantially.

Another example is shown for Stations 50 and 24 in Fig. 4.8. The first subplot

(Fig. 4.8a) depicts the wind direction data, demonstrating higher variability at

Station 50 (inland) compared to Station 24 (coastal). Station 50, situated at a

higher elevation of 813.6 meters and further inland, shows more significant

fluctuations in wind direction due to its elevation and surrounding topography.

This higher variability in wind direction can cause changes in wind patterns that

propagate towards the coastal Station 24. The second subplot (Fig. 4.8b) shows

the TE analysis, indicating a stronger influence of Station 50 on Station 24. This

is consistent with the previous example, suggesting that inland stations with

higher wind direction variability can significantly impact coastal wind patterns.

The higher TE values from Station 50 to Station 24 imply that the inland wind

dynamics at higher altitudes have a considerable influence on the coastal wind

directions.

By comparing the TE of wind speed and wind direction between different

pairs of stations, we observe that the influence of one station on another varies

depending on the parameter considered. While wind speed TE highlights the

stronger influence of coastal stations on inland stations, wind direction TE sug-

gests a significant impact of inland stations on coastal wind patterns. These

findings highlight the complexity of wind dynamics and the need for a compre-

hensive approach to understanding the interactions between different stations.

Further analysis is required to determine which station provides more reliable

information about the other. Another approach to consider is analyzing the

components of the wind vector and computing the multivariate TE to gain a

more detailed understanding of the information transfer between stations.
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Figure 4.7: (a) Wind direction data for a specific period, showing higher wind
speeds at Station 34 (inland) compared to Station 24 (coastal); (b) Transfer
Entropy of wind direction for different lags, indicating a stronger influence of
Station 34 on Station 24.
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Figure 4.8: (a) Wind direction data for a specific period, showing higher wind
speeds at Station 50 (inland) compared to Station 24 (coastal); (b) Transfer
Entropy of wind direction for different lags, indicating a stronger influence of
Station 50 on Station 24.

4.5.1 Wind Rose Analysis

Before delving into multivariate TE, it is essential to analyze the wind roses

for the sequences from Stations 34-24 and 50-24. The wind rose is a vital tool
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in meteorology that shows the distribution of wind speed and direction over a

specific period. It provides a comprehensive visualization of how frequently the

wind blows from particular directions and at what speeds, which is crucial for

understanding wind patterns and their potential influence on different locations.

Fig. 4.9 presents the wind roses for Stations 34 and 24. The first subplot

(Fig. 4.9a) depicts the wind rose at Station 34, while the second subplot (Fig. 4.9b)

shows the wind rose at Station 24. In these wind roses, Station 34 is positioned

in the center as the reference station, while Station 24 is positioned approxi-

mately at 101° clockwise from true north with respect to Station 34. The wind

roses illustrate the predominant wind directions and their frequencies, offering

insights into the wind dynamics between the two stations. Station 34’s wind rose

shows more variability in wind direction due to its inland location and complex

topographical features, whereas Station 24’s wind rose reflects more stable and

consistent wind patterns typical of coastal regions.
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Figure 4.9: Wind roses for Stations 34 and 24 during a specific period: (a) Wind
rose at Station 34 (inland); (b) Wind rose at Station 24 (coastal).

Similarly, Fig. 4.10 shows the wind roses for Stations 50 and 24. The first

subplot (Fig. 4.10a) illustrates the wind rose at Station 50, and the second subplot

(Fig. 4.10b) displays the wind rose at Station 24. Here, Station 50 serves as the

reference station in the center, with Station 24 is positioned approximately at
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Figure 4.10: Wind roses for Stations 50 and 24 during a specific period: (a) Wind
rose at Station 50 (inland); (b) Wind rose at Station 24 (coastal).

67° clockwise from true north with respect to Station 50. These visualizations

help in understanding the wind direction distribution and its variability, which

is essential for analyzing the TE and wind dynamics between these stations. The

wind rose at Station 50 shows significant directional variability due to its higher

elevation and inland location, while Station 24’s wind rose remains consistent

with its coastal characteristics.

The wind roses provide valuable context for understanding the interactions

between stations. They help visualize the directional characteristics of wind

patterns, showing how often winds blow from specific directions and at what

speeds. This information is critical for analyzing the TE between stations, as it

highlights the dominant wind directions and their potential influence on nearby

stations.

4.6 Multivariate Transfer Entropy Analysis

To gain a deeper understanding of wind dynamics and the information flow

between stations, we now consider the multivariate Transfer Entropy using the

x and y components of the wind vector (Eq. 4.2), as described in Section 4.3.2.
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This approach captures the combined influence of wind speed and direction,

providing a more detailed analysis of directional information flow between

stations.

Fig. 4.11 illustrates a part of the sequence for the x and y wind components at

Station 34. This figure demonstrates the variability in wind speed and direction,

highlighting the complexity of wind patterns. By analyzing these components,

we gain insights into the bidirectional influence between stations that are not

captured when considering wind speed or direction alone. In this figure, the

Figure 4.11: Wind components at Station 34 for a specific period, showing the
variability in wind speed and direction.

x and y components represent the horizontal and vertical components of the

wind vector, respectively. A positive x component indicates wind blowing from

the west, while a negative x component indicates wind blowing from the east.
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Similarly, a positive y component indicates wind blowing from the south, and a

negative y component indicates wind blowing from the north. The arrows in the

figure indicate both the direction and magnitude of the wind vector at different

times, emphasizing the dynamic nature of wind flow at the station.

Previous analyses of TE for wind speed and wind direction alone have pro-

vided valuable insights but are insufficient to capture the full complexity of

wind dynamics. These univariate analyses do not fully encompass the intri-

cate interactions between wind speed and direction components. To address

this limitation, we now conduct a multivariate TE analysis using the x and y

components of the wind vector. This multivariate approach considers the joint

influence of both components, providing a more comprehensive understanding

of the information transfer between stations. By analyzing the multivariate TE,

we can identify how the combined effects of wind speed and direction contribute

to the overall wind dynamics, offering a richer and more detailed perspective on

the interactions between stations.

Figs. 4.12 and 4.13 present the multivariate TE results for Stations 34-24

and 50-24, respectively. In Fig. 4.12, the TE from Station 34 to Station 24

is higher than the TE from Station 24 to Station 34, indicating a dominant

influence of the inland station over the coastal station. The TE from Station

34 to Station 24 shows a maximum value at a lag of 438 minutes. This peak

indicates that the information transfer from Station 34 to Station 24 is most

significant at this lag. By lagging Station 34’s wind data by 438 minutes, we

observe that the most substantial amount of information is transferred to Station

24, highlighting the influence of the inland station on the coastal station’s wind

dynamics. Additionally, searching for lags that show a peak value in the TE

can help identify the points where information transfer is maximized between

the two stations, suggesting that significant events or changes in wind patterns

might have occurred at these specific lags. The results for Station 50 to Station

24 in Fig. 4.13 also highlight important information transfer patterns, further

emphasizing the role of inland stations in influencing coastal wind dynamics.

The multivariate TE analysis provides a comprehensive understanding of

wind dynamics by considering the joint effects of wind speed and direction. This

approach uncovers intricate patterns of information transfer between stations
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Figure 4.12: Multivariate TE between Stations 34 and 24 for a specific period,
highlighting a maximum TE at a lag of 438 minutes.
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Figure 4.13: Multivariate TE between Stations 50 and 24 for a specific period.

that are not evident from univariate analyses alone, thus offering a more nu-

anced perspective on the interactions between different wind components across

various locations.
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4.7 Conclusion

In this chapter, we applied and validated the Multivariate Transfer Entropy

methodology to analyze wind speed and direction data from multiple meteoro-

logical stations in Sydney, Australia. Our primary objective was to uncover the

directional flow of information within the wind data, enhancing our understand-

ing of wind dynamics and improving predictive models for weather forecasting

and renewable energy management. By transforming the wind data into x and

y components, we enabled a detailed multivariate analysis that captured the

complex interactions between wind speed and direction. The use of both uni-

variate and multivariate TE provided a comprehensive view of how information

propagates between different meteorological stations.

Our analysis revealed several key insights, including the observation that

coastal stations exert a stronger influence on inland stations, likely due to the

consistent and robust sea breeze effects that dominate coastal wind patterns.

Additionally, the multivariate TE approach uncovered intricate patterns of infor-

mation transfer that were not apparent in the univariate analysis, demonstrating

the value of considering wind speed and direction jointly. The methodology

for calculating Multivariate TE, rigorously tested in Appendix B using coupled

Rössler systems, proved to be robust and reliable for analyzing the complex

dynamics of wind data. This validation underscores the effectiveness of our

approach in capturing the directional dependencies and nonlinear interactions

inherent in atmospheric processes.

In summary, the integration of univariate and multivariate TE analyses has

provided a deeper understanding of wind dynamics, highlighting the intricate

information flow between meteorological stations. This chapter has demon-

strated the applicability and strength of our TE methodology in a real-world

context, setting the stage for using TE to forecast wind, which is part of our

future perspectives.
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In this chapter, we discuss the Nonlinear Local Lyapunov Exponent (NLLE)

method, which is used to estimate the predictability time of chaotic systems. We

focus on the application of this method to the Lorenz63 system, a well-known

chaotic system. This chapter introduces an alternative approach to the Nonlinear

Local Lyapunov Exponent (NLLE) algorithm, enhancing its applicability for

studying the predictability of complex spatiotemporal systems. Future work will

143
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expand on this method to address the predictability in more complex systems.

5.1 Introduction

The predictability time of a chaotic system is a crucial measure that indicates

how long into the future we can accurately predict the state of the system. This

is especially important in fields such as meteorology, finance, and any other

domain where chaotic dynamics play a significant role. The maximum pre-

dictability time, also known as the predictability horizon, represents the upper

limit beyond which the system’s future state becomes effectively unpredictable

due to the exponential growth of small perturbations. Chaotic systems, by their

nature, exhibit sensitive dependence on initial conditions, meaning that tiny

differences in starting states can lead to vastly different outcomes. This inherent

unpredictability is quantified by the Lyapunov exponent, which measures the

rate at which nearby trajectories diverge. The theoretical Lyapunov time, which

is inversely proportional to the largest Lyapunov exponent, provides an estimate

of the timescale over which the system’s predictability degrades.

The calculation of Lyapunov exponents from a time series has been a funda-

mental tool in the study of chaotic systems. Wolf et al. (1985) [35] introduced a

method that involves reconstructing phase space using time delay embedding,

which is crucial for analyzing chaotic time series data. However, this method is

sensitive to the selection of embedding parameters and requires a large amount

of data for accurate computation, especially for high-dimensional systems like

the atmosphere. Chen et al. (2006) described a preliminary algorithm to estimate

the NLLE and applied it to study the predictability of the 500-hPa geopotential

height field [198]. Their work provided a foundation for subsequent methods

that aimed to improve the accuracy and applicability of NLLE calculations in

various chaotic systems. Building on these foundational works, Li and Ding

(2011) developed an advanced algorithm to quantify the predictability limits of

chaotic systems more accurately [199]. Their method focuses on local dynamics,

providing a more nuanced and precise picture of predictability. Unlike tradi-

tional methods that might rely on global averages or linear approximations, the

NLLE method by Li and Ding offers better insights into the local stability of
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trajectories in chaotic systems. The key idea behind their method is to measure

how small differences in initial conditions evolve over time, thereby estimating

the rate at which errors grow. This rate is quantified by the Lyapunov exponents,

with the NLLE specifically focusing on local and nonlinear aspects of this growth.

This method not only provides a quantitative estimate of the predictability limit

but also offers insights into the local dynamics that drive error growth.

5.2 The NLLE Method

The NLLE method provides a nonlinear approach to quantifying the pre-

dictability limit of chaotic systems by focusing on the local error growth rate

without linearizing the governing equations. Traditional methods, such as those

based on the global Lyapunov exponent, often fall short in accurately capturing

the complex, local dynamics of chaotic systems. The NLLE measures the average

growth rate of initial errors in nonlinear dynamical models. It has been effec-

tively applied to a wide range of chaotic systems, from simple models like the

Lorenz63 to more complex, high-dimensional systems such as the atmosphere.

By identifying local dynamical analogs from historical data, the NLLE method al-

lows for a detailed analysis of error growth and predictability in specific regions

and under specific conditions. This method not only provides a quantitative

estimate of the predictability limit but also offers insights into the local dynamics

that drive error growth, making it a valuable tool for both theoretical studies

and practical applications in chaotic systems.

5.3 Estimating the Maximum Predictability Time of

the Lorenz63 System

In this section, we aim to estimate the maximum predictability time of a

chaotic system, specifically the Lorenz63 system, using the NLLE algorithm. The

Lorenz63 system, uncovered by Edward Lorenz in 1963 during his exploration

of atmospheric convection, stands as a seminal example within chaos theory [1].
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The governing equations of the Lorenz63 system are:
ẋ = σ (y − x),

ẏ = x(ρ − z)− y,

ż = xy − βz,

(1.3)

where σ = 10, ρ = 28, and β = 8/3 represent the system’s parameters, linked to

the Prandtl number, Rayleigh number, and specific physical dimensions of the

convection box, respectively. We have discussed the Lorenz system in detail in

Chapter 1 (Section 1.1.4).

The theoretical Lyapunov time, which is inversely proportional to the largest

Lyapunov exponent, provides an estimate of the timescale over which the sys-

tem’s predictability degrades. In the context of the Lorenz system, the maximum

Lyapunov exponent λmax is approximately 0.91, leading to a theoretical Lya-

punov time τp = λ−1
max = 1.1.

5.3.1 Steps in Estimating the Maximum Predictability Time

using NLLE

The objective of this analysis is to estimate the maximum predictability time

of the Lorenz63 system using the NLLE algorithm. The procedure involves the

following steps:

Step 1: Seeking Local Dynamical Analogs

To begin, select a reference point x(t0). For each reference point, consider all

potential analogous points x(tj) within a short time interval. According to

Li and Ding (2011) [199], this short time interval is the time taken for the

autocorrelations of the variable to drop to 0.9, ensuring that a good analog pair

is not merely due to persistence. For our analysis, we use a similar criterion. In

our method, we identify the analogous points using the ‘findsignal‘ function

in MATLAB, which is designed to find segments within the data that match a

given reference signal. This approach allows for a more automated and accurate

identification of local dynamical analogs. First, calculate the initial distance
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between the two points: di = |x(t0) − x(tj)|. Next, evaluate the evolutionary

distance between their trajectories over a short initial period to account for their

dynamic similarity:

de =

√√√
1

K + 1

K∑
i=0

[x(ti)− x(tj+i)]2

The total distance is then given by: dt = di + de. If dt is sufficiently small, the two

points are considered locally dynamically analogous, indicating that they will

exhibit similar behavior over the short term. In our method, the difference lies

in how we identify these analogous points by adjusting the length of the signal

we used in the ’findsignal’ function to better capture the local dynamics.

Step 2: Trajectory Analysis

For each pair of analogous points identified in Step 1, analyze their trajectories.

According to Li and Ding (2011) [199], this comparison is made over a time

period defined by a certain number of steps K such that K∆t represents a short

initial period. At time ti = t0 + i∆, compare the positions along the reference

trajectory x(ti) and the analogous trajectory x(tk+i). Calculate the initial distance

between the two points at the start of the analysis: L(t0) = |x(t0)− x(tk)|. Then,

determine the distance between the trajectories at time ti : L(ti) = |x(ti)− x(tk+i)|.
The growth rate of the initial error during the time interval (ti − t0) is calculated

as:

ξ1(ti) =
1

ti − t0
ln
L(ti)
L(t0)

(5.1)

This quantifies how quickly small differences in initial conditions grow over

time, reflecting the system’s sensitivity to initial perturbations.

Example of Analog Trajectory Identification: To illustrate the process of iden-

tifying analogous trajectories, consider Fig. 5.1, which presents the Lorenz X

variable along with the reference and analog trajectories. The top part of the

figure displays the overall behavior of the Lorenz X variable, the reference trajec-

tory, and the analog trajectory over time, providing a comprehensive overview.

The bottom part zooms in on the reference and analog trajectories for a clearer
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comparison, demonstrating how dynamically similar points are identified. This

example showcases the method’s effectiveness in finding and comparing trajec-

tories within the Lorenz system.
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Figure 5.1: Identification of analogous trajectories in the Lorenz X variable. The
top plot shows the Lorenz X variable (blue), the reference trajectory (red), and
the analog trajectory (green). The bottom plot provides a zoomed-in view of the
reference and analog trajectories for better comparison.
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Step 3: Choosing Another Reference State

Select another reference state x(t1) and repeat steps 1 and 2. This process

should be repeated for a sufficiently large number of reference points to ensure

a comprehensive analysis of the system’s behavior across different regions of the

phase space.

Step 4: Averaging Error Growth Rates

Repeat the analysis for all selected reference points N . The mean NLLE is

obtained by averaging the error growth rates calculated for each reference point:

ξ̄(ti) =
1
N

N∑
k=1

ξk(ti) (5.2)

This provides a robust measure of the average local Lyapunov exponent, reflect-

ing the typical rate of error growth in the system.

Step 5: Estimating the Relative Growth of Initial Errors

From Eqs. 5.1 and 5.2, we obtain the approximation of the Relative Growth of

the Initial Error (RGIE):

Φ̄(ti) = exp[ξ̄(ti)(ti − t0)] (5.3)

This function describes how the initial error evolves over time, providing insight

into the system’s predictability.

5.3.2 Impact of Parameter Variations on Predictability Time

Estimation

Through our analysis, we observed that varying the parameter representing

the correlation length did not significantly change the estimation of the maxi-

mum predictability time. This indicates that the selection of local dynamical

analogs is relatively robust to the exact choice of correlation length. However,

changing the parameter representing the initial length of the trajectory segment
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had a substantial impact on the estimation. Increasing the initial segment length

resulted in a higher predictability horizon and lower RGIE. This suggests that

using a longer initial segment allows for more accurate identification of dynami-

cally similar points, thereby reducing the initial error growth rate and increasing

the estimated predictability time.

For instance, as shown in Fig. 5.2, when using a smaller initial segment

length, the saturation point is clearer, making it easier to identify the prediction

horizon.
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Figure 5.2: Initial Error Growth Rate with a smaller initial segment length. The
figure shows the evolution of the RGIE with a clear saturation point but higher
initial error growth.

However, this comes with a higher initial error growth rate, which might

reduce the accuracy of the analog selection over time. In contrast, as shown

in Fig. 5.3, a larger initial segment length results in lower initial error growth,

indicating more accurate analog identification, although the saturation point

becomes less distinct.
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Given these observations, using a longer initial segment length is preferable

for a more accurate estimation of the maximum predictability time, as it provides

a more precise selection of dynamically similar points, despite the less distinct

saturation point.
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Figure 5.3: Initial Error Growth Rate with a larger initial segment length. The
figure shows the evolution of the RGIE with a less distinct saturation point but
lower initial error growth.

These results highlight the importance of choosing an appropriate initial

segment length for accurate predictability analysis using the NLLE method. The

prediction horizon time τp can be defined as the time at which the evolution of

Φ̄(ti) with increasing ti reaches 90% of its saturation value. For the variable X,

the nonlinear prediction horizon τpnonlinear
varies between 11 and 13 for different

initial segment lengths. Additionally, this method demonstrates that the pre-

diction horizon is larger than that indicated by the theoretical Lyapunov time

τp = 1.1.
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5.4 Conclusion

In this chapter, we presented a modified NLLE method to estimate the maxi-

mum predictability time of chaotic systems, specifically the Lorenz63 system.

We introduced an alternative approach to the NLLE algorithm that involves us-

ing the findsignal function in MATLAB for identifying local dynamical analogs.

Our analysis showed that varying the initial length of the trajectory segment

significantly impacts the estimation of the predictability horizon. We found

that a longer initial segment length results in a higher predictability horizon

and lower initial error growth, despite a less distinct saturation point. This

method provides a more accurate estimation of the maximum predictability

time, demonstrating a predictability horizon larger than that indicated by the

theoretical Lyapunov time. Future work will extend this method to study the

predictability of complex spatiotemporal systems.
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The primary objective of this thesis was to improve the prediction of extreme

events in chaotic systems, with a particular focus on optical systems modeled

by the Lugiato-Lefever equation. We aimed to extend the predictability hori-

zon of these systems using a combination of machine learning techniques and

information theory methods, particularly transfer entropy. The methodologies

developed were also tested on real-world wind dynamics, showcasing their

broader applicability beyond controlled optical systems.

At the outset, we explored the foundations of chaotic systems, especially

spatiotemporal chaos, where complex patterns unfold over both time and space.

Understanding these dynamics was essential for studying extreme events in

optical systems. In chaotic systems, small initial changes can rapidly lead to

significantly different outcomes, making long-term prediction a challenging en-

deavor. Nevertheless, recent advances in machine learning, particularly neural

networks, have provided new tools for identifying patterns in these complex

systems. Our investigation aimed to leverage these tools to make predictions

in such highly unpredictable environments. In the context of optical fiber ring

resonators, we applied machine learning models to forecast the full chaotic

dynamics. While these models performed well for short-term predictions, they

struggled with long-term forecasts due to the extensive chaotic nature of the

system. As the complexity of the system increased, the models’ ability to cap-

ture the dynamics declined. This led us to explore the integration of transfer

entropy—a method from information theory that measures the directional flow

of information between different parts of the system. By incorporating transfer

entropy, we shifted from attempting to predict the entire system’s behavior to

focusing on localized regions where extreme events were likely to occur. This

153
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hybrid approach allowed for better accuracy in identifying early signs of these

events, thereby improving the overall forecasting capability.

A significant discovery in this thesis was the detailed analysis of the transi-

tion from soliton-based dynamics to spatiotemporal chaos and fully developed

turbulence in a bistable optical system governed by the Lugiato-Lefever equation

(LLE). By progressively increasing the pump parameter, we observed a shift

from a regime dominated by solitons to one characterized by phase turbulence.

Our analysis demonstrated self-similar behavior in both spatial and temporal

domains, with power-law spectra indicative of turbulent-like dynamics, par-

ticularly in the phase. However, the amplitude spectra decayed more steeply,

suggesting different underlying mechanisms. This was explained by the identifi-

cation of stable linear waves propagating along the homogeneous steady-state

(HSS) solution. These waves play a crucial role in initiating the energy cascade

in the phase spectra, as confirmed through the dispersion relation analysis. Fur-

ther analysis using two-point correlation functions showed that, outside the

correlation domain of localized structures, the fluctuations spectrum follows a

power-law decay. Furthermore, the application of structure functions enabled

us to characterize higher-order correlations, revealing the onset of intermittency

and the divergence from the system’s scaling behavior at larger scales. The emer-

gence of topological defects marked another significant finding of this chapter

and serves as an indicator of turbulence. Overall, the analysis in this chapter has

enriched our comprehension of the transition to turbulence in such systems.

Extending the insights gained from optical systems, we extended our meth-

ods to the analysis of real-world wind dynamics by applying univariate and

multivariate Transfer Entropy (TE) to wind speed and direction data from mete-

orological stations. This analysis revealed the directional flow of information

between stations, uncovering critical directional dependencies and complex

interactions. By transforming wind data into x and y components, we captured

dynamics that would have been overlooked using univariate approaches alone.

Our findings highlighted the significant influence of coastal stations on inland

areas, largely due to the dominant sea breeze effects. The robustness of our TE

methodology was further validated using coupled Rössler systems.

Finally, we addressed one of the key challenges in forecasting chaotic systems:
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the predictability horizon. By employing the Nonlinear Local Lyapunov Expo-

nent (NLLE) method, we estimated how far into the future reliable predictions

could be made before the chaotic nature of the system rendered them inaccurate.

This analysis not only shed light on the fundamental limitations of predicting

chaotic systems but also pointed toward potential methods for extending the

predictability horizon.

In conclusion, while long-term prediction of chaotic systems remains inher-

ently challenging due to their unpredictable nature, this thesis demonstrates

that by integrating machine learning with information theory, it is possible to

significantly improve forecast accuracy and extend the prediction horizon. This

hybrid approach of focusing on local regions through transfer entropy offers

a practical pathway to anticipate extreme events. Our findings contribute to

both the fundamental understanding of chaotic systems and the development

of practical tools for forecasting extreme events, whether in optical systems or

natural phenomena like wind dynamics.

While this thesis has made significant progress in forecasting extreme events

in chaotic systems, there is still much room for improvement. Future work

should focus on refining machine learning models to better capture the long-

term behavior of chaotic systems. This could involve developing more advanced

architectures, optimizing data handling techniques, and improving the training

process to better capture the intricacies of chaotic behavior. Furthermore, ex-

ploring new algorithms and hybrid models that combine the strengths of various

machine learning techniques could help overcome the current limitations of

long-term predictions.

Another promising direction for future research involves the integration

Transfer Entropy with machine learning models to enhance wind dynamics

forecasting. By combining these methods, we could identify key stations that

hold the most predictive power over others, optimizing the selection of stations

for forecasting. This approach would refine predictions by focusing on the

most critical information pathways, further extending the predictability horizon.

Applying this combined methodology across diverse meteorological contexts

could significantly improve resource management, particularly in fields like

renewable energy, where accurate wind forecasts are essential.
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A.1 Introduction

Studying the stability analysis of the Homogeneous Steady State (HSS) solu-
tion of the Lugiato-Lefever Equation (LLE) can be performed by introducing the
complex conjugate of Eq. 1.12 (Here Eq. A.1). This analysis helps in understand-
ing how small perturbations around the steady state evolve over time, which is
crucial for determining the stability of the system.

∂ψ

∂t
= S − (1 + i∆)ψ + i

∂2ψ

∂τ2 + i | ψ |2 ψ (A.1)

∂ψ∗

∂t
= S − (1 + i∆)ψ∗ + i

∂2ψ∗

∂τ2 + i | ψ∗ |2 ψ∗ (A.2)

A.2 Perturbation Analysis

To analyze the stability, we introduce perturbations around the steady state
solution ψ0. Let ψ = ψ0 + δψ and ψ∗ = ψ∗0 + δψ∗. Here, (δψ,δψ∗) represent

157
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small perturbations around the stationary state (ψ0,ψ
∗
0). Substituting these into

Eqs. A.1 and A.2 yields:

∂ψ0

∂t
+
∂δψ

∂t
= S − (1 + i∆)ψ0 − (1 + i∆)δψ + i

∂2ψ0

∂τ2 + i
∂2δψ

∂τ2 + i | ψ0 |2 (ψ0 + 2δψ + δψ∗)

(A.3)

∂ψ∗0
∂t

+
∂δψ∗

∂t
= S − (1 + i∆)ψ∗0 − (1 + i∆)δψ0 − i

∂2ψ∗0
∂τ2 − i

∂2δψ∗

∂τ2 − i | ψ0 |2 (ψ0 + δψ + 2δψ∗)

(A.4)

By eliminating the homogeneous solution, we get:

∂δψ

∂t
= −(1 + i∆)δψ + i

∂2δψ

∂τ2 + 2i | ψ0 |2 δψ + i | ψ0 |2 δψ∗ (A.5)

∂δψ∗

∂t
= −(1 + i∆)δψ0 − i

∂2δψ∗

∂τ2 − 2i | ψ0 |2 δψ∗ − i | ψ0 |2 δψ∗ (A.6)

Which can be written in matrix form as:

∂
∂t

(
δψ
δψ∗

)
=

−1− i(∆− 2 | ψ0 |2 − ∂2

∂τ2 ) i | ψ0 |2

−i | ψ0 |2 −1 + i(∆− 2 | ψ0 |2 − ∂2

∂τ2 )

( δψδψ∗
)

(A.7)

We add a small perturbation of the form:(
δψ
δψ∗

)
=

(
δψ0
δψ∗0

)
eλt+iωτ (A.8)

where (δψ0,δψ
∗
0) represents the initial amplitude of the perturbation and is small

compared to the stationary state (ψ0,ψ
∗
0). The linearized problem becomes:

λ

(
δψ0
δψ∗0

)
=

(
−1− i(∆− 2 | ψ0 |2 +ω2) i | ψ0 |2

−i | ψ0 |2 −1 + i(∆− 2 | ψ0 |2 +ω2)

)(
δψ0
δψ∗0

)
(A.9)

There are solutions (δψ0,δψ
∗
0) , (0,0) if and only if:

det
(
−(1 +λ)− i(∆− 2 | ψ0 |2 +ω2) i | ψ0 |2

−i | ψ0 |2 −(1 +λ) + i(∆− 2 | ψ0 |2 +ω2)

)
= 0 (A.10)

This yields the following dispersion relation:

(λ+ 1)2 + (∆− 2Is +ω2)2 − I2
S = 0 (A.11)
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The eigenvalues are obtained by solving this relation:

λ± = −1±
√
I2
S − (∆− 2Is +ω2)2 (A.12)

A.3 Eigenvalue Analysis

The stationary solution is unstable if one of the roots has a positive real part,
which is the growth rate in amplitude of the perturbation. Hence, λ− is always
negative, and only λ+ contributes to the instability of the stationary solution.

First Derivative of λ+:

∂λ+

∂ω
=
−2ω(ω2 +∆− 2Is)√
I2
S − (ω2 +∆− 2Is)2

(A.13)

Setting ∂λ+
∂ω = 0 gives the following solutions:ω(0)

c = 0
ω2
c = 2Is −∆

Second Derivative of λ+:

∂2λ+

∂ω2 =
−2[I2

s (3ω2 +∆− 2Is)− (ω2 +∆− 2Is)3]√
I2
s − (ω2 +∆− 2Is)2

3 (A.14)

a) If ω =ω(0)
c :

∂2λ+

∂ω2 (0) =
−2(∆− 2Is)√
I2
S − (∆− 2Is)2

ω
(0)
c = 0 is a maximum if ∂

2λ+
∂ω2 (0) < 0, that is, if ∆ > 2Is and I2

S − (∆−2Is)2 > 0.
This is satisfied for ∆

3 ≤ Is ≤ ∆. Finally, ∆
3 ≤ Is ≤

∆
2 .

b) If ω =ω2
c :

∂2λ+

∂ω2 (ω2
c ) = −4Is(2Is −∆)

ω2
c = 2Is −∆ is a maximum if ∂2λ+

∂ω2 (ω2
c ) < 0, that is, if ∆ < 2Is.
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The threshold λ+(ωc) = 0:

a) Case ω(0)
c = 0:

I± =
2∆+

√
∆2 − 3

3

if ∆ ≥
√

3. This is the same expression for the two turning points of the
stationary solution curve.

b) Case ω2
c = 2Is −∆:

Im = 1

Based on the expression of λ+ (Eq. A.12), it is important to study the in-
stability of the system by distinguishing between the two characteristics of
instability: the homogeneous one corresponding to ω(0)

c , denoted ω(1)
c , and the

Turing instability at ωc =
√

2Is −∆, denoted ω(2)
c .

In the monostable case, ∆ <
√

3: Instability starts to occur at Im = 1 with a
wavenumber ω2

c = 2I −∆ = 2−∆. ω(2)
c is always different from 0, giving rise to

Turing instability.
In the bistable case, ∆ ≥

√
3: The system becomes unstable under the follow-

ing conditions:
ω

(1)
c unstable I− ≤ I ≤ I+ ∆ ≥

√
3

ω
(1)
c unstable & minimum I− ≤ I ≤ ∆

2 ∆ > 2

with I± =
2∆±

√
∆2 − 3

3

ω
(2)
c unstable & minimum

∆ < 2
I ≥ Im

or

∆ ≥ 2
I ≥ ∆

2

A.4 Conclusion

In this appendix, we conducted a detailed Linear Stability Analysis (LSA) to
examine the conditions under which the Homogeneous Steady State (HSS) of the
Lugiato-Lefever Equation (LLE) becomes unstable. The primary objective was to
investigate the onset of Modulation Instability (MI) and the formation of solitons,
phenomena that play a crucial role in nonlinear optical systems. By deriving
the dispersion relation and examining the eigenvalues, we have identified key
parameters that dictate the stability of the system.

This analysis serves as a foundational tool for understanding the rich dy-
namics that can arise in Kerr frequency combs and similar systems. It provides



A.4. Conclusion 161

a mathematical framework for predicting the conditions under which pattern
formation, such as Turing structures, and soliton dynamics occur. Furthermore,
the identification of critical thresholds for the onset of MI aids in distinguishing
between different regimes of operation—monostable and bistable—highlighting
the sensitivity of the system to changes in detuning and intracavity intensity.

These results, referenced in Chapter 1, underscore the significance of LSA
in shaping the stability and dynamics of nonlinear optical systems and will
serve as a theoretical basis for further exploration into more complex behaviors,
including chaos and turbulence.
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B.1 Introduction

In Chapter 1, we introduced the field of dynamical systems and chaos theory,
specifically discussing the Lorenz and Rössler systems as paradigms of chaotic
behavior. We explored their sensitivity to initial conditions and the phenomenon
popularly known as the "butterfly effect." Building on this foundational knowl-
edge, we now focus on the interaction between two chaotic systems, specifically
the Rössler attractor, introduced by Otto Rössler in 1976 [29].

The Rössler system, despite its relatively simple set of nonlinear differential
equations, exhibits rich and complex behavior, making it a popular model for
studying chaos. In Section 1.1.4, we provided a small introduction to the Rössler
system, describing its equations and the chaotic dynamics that arise under
specific parameter settings.

When two Rössler systems are coupled, they can influence each other’s
behavior, leading to a variety of complex phenomena such as synchronization,
where the systems’ trajectories become correlated, and phase locking, where
their oscillations lock into a consistent phase relationship.

To quantitatively analyze the interactions and information flow between
coupled chaotic systems, we use a measure called Multivariate Transfer Entropy.
TE is an information-theoretic quantity that captures the directional flow of in-
formation between time series, making it well-suited for studying the dynamics
of coupled systems. In the following sections, we describe the methodology for
calculating Multivariate TE between two coupled Rössler systems, highlighting
the insights it provides into their complex interactions.

B.2 Coupling of Two Rössler Systems

When two chaotic systems like the Rössler attractor are coupled, the resulting
dynamics can be complex and intriguing. The coupled Rössler systems are
described by the following set of differential equations:

ẋ1 = −ω1y1 − z1,

ẏ1 =ω1x1 + ay1,

ż1 = b+ z1(x1 − c),
(B.1)
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for the first system, and 
ẋ2 = −ω2y2 − z2 + ϵ(x1 − x2),
ẏ2 =ω2x2 + ay2,

ż2 = b+ z2(x2 − c),
(B.2)

for the second system, where ω1 and ω2 are the natural frequencies of the first
and second Rössler systems, respectively, and ϵ represents the coupling strength
between the two systems. The coupling term ϵ(x1 − x2) in the equation for ẋ2
introduces the interaction between the systems, with ϵ = 0 corresponding to
no coupling and larger values of ϵ corresponding to stronger coupling. In our
case, the following parameters were used: the constants a = 0.15, b = 0.2, and
c = 10 were chosen to ensure chaotic behavior within each individual Rössler
system. The coupling strength ϵ was varied within the range [0,1]. We worked
with the frequency pair ω1 = 0.5 and ω2 = 2.515. The time parameters for the
simulations were set with a time step of 0.01 and a time span from 0 to 200. The
first 1000 data points were discarded, whereas the next 19000 ones were saved.
These parameters ensure a sufficiently long period for the systems to exhibit
their chaotic and coupled behaviors while maintaining computational efficiency.

The dynamics of the coupled Rössler systems depend heavily on the coupling
strength ϵ. When ϵ is varied, the coupled Rössler systems can exhibit a range
of behaviors. For weak coupling, the systems may behave independently, main-
taining their individual chaotic trajectories. However, as the coupling strength
increases, the systems begin to influence each other more significantly. At higher
coupling strengths, the systems may synchronize, meaning their trajectories
become correlated, and they exhibit similar dynamic behavior. This transition
from independent to synchronized behavior illustrates how information and
influence propagate between interacting chaotic systems.

Understanding the nature of this interaction requires a quantitative measure
of directional influence, which is where Multivariate Transfer Entropy comes into
play. TE quantifies the amount of information transferred from one system to
another, providing insights into the directional dependencies within the coupled
systems.

B.3 Methodology for Calculating Multivariate Trans-
fer Entropy

To investigate the interactions and information flow between coupled Rössler
systems, we employ Multivariate Transfer Entropy, an information-theoretic
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measure that extends the concept of TE to multivariate time series. This measure
helps us understand how information about the state of one system can predict
the future state of another system, providing insights into the directional depen-
dencies within the coupled systems. TE from system Y to system X is defined
as:

TY→X =
∑

p(xn+1,xn, yn) log
p(xn+1|xn, yn)
p(xn+1|xn)

, (B.3)

where xn and yn represent the states of systems X and Y at time n, respec-
tively. The joint probability distribution p(xn+1,xn, yn) captures the likelihood of
transitions in X conditioned on the state of Y .

To compute this measure, we first need to reconstruct the state space of each
system using time-delay embedding, a technique that transforms the time series
data into a multidimensional phase space [134, 200]. This phase space allows us
to capture the system’s dynamics by incorporating past states, which is crucial
for understanding the interactions between coupled systems. The process of
time-delay embedding, based on Takens’ method [134], allows us to reconstruct
the state space of a system from scalar time series data, capturing the system’s
dynamics in a multidimensional space. This technique is essential for analyzing
the interactions and information flow between coupled Rössler systems.

The data for the two coupled Rössler systems, represented as multivariate
time seriesX and Y , are used for various coupling strengths ϵ. Each system’s state
is represented by three variables (x,y,z). The time-delay embedding technique
transforms these time series into higher-dimensional phase spaces, accurately
capturing their dynamics.

For each time series, we need to determine the optimal embedding dimen-
sion d and time delay τ . The embedding dimension defines the number of past
states to include in the reconstruction, while the time delay specifies the interval
between these states. These parameters are critical for accurately capturing
the system’s dynamics and interactions. To determine these optimal embed-
ding parameters, we employed the Java Information Dynamics Toolkit (JIDT).
Specifically, we used mutual information to select the optimal time delays τ
for each variable, and the False Nearest Neighbors (FNN) method to determine
the appropriate embedding dimension d. Mutual information measures the
amount of information shared between two variables, and by analyzing mutual
information over different time lags, we can identify the delay that maximizes
the information content. For the embedding dimension d, the False Nearest
Neighbors (FNN) method identifies the appropriate dimension by analyzing
how the proportion of false neighbors decreases as the dimensionality increases.
A false neighbor occurs when points close in a lower-dimensional space are
not close in a higher-dimensional space, indicating that the lower-dimensional
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representation is insufficient to capture the dynamics.
In our implementation, we used the TransferEntropyCalculatorKraskov

class from JIDT, setting it to automatically determine the optimal embedding
parameters using Ragwitz’s criterion. This method performs a search for the
best embedding dimension and delay by maximizing the predictive power of
the past states.

Once the optimal embedding parameters are determined, we reconstruct
the phase space for each variable in the time series. This involves creating
phase space vectors of the form Wk =

(
xk ,xk+τ , . . . ,xk+(d−1)τ

)
, for both X and Y ,

capturing the dynamics of each system in a higher-dimensional space. The
reconstructed phase spaces are then used to calculate the Multivariate Transfer
Entropy between the systems. The TE quantifies the directional information
flow between the systems, providing insights into their interactions. For this
calculation, we use the Kraskov-Stögbauer-Grassberger (KSG) estimator pro-
vided by the JIDT, which is a non-parametric method, well-suited for continuous
variables and is based on nearest-neighbor statistics, making it robust for high-
dimensional data.

By varying the coupling strength ϵ and calculating the TE for each value, we
analyze how information flow between the systems changes with increasing inter-
action. This method for time-delay reconstruction of phase space and calculation
of Multivariate Transfer Entropy provides a robust framework for analyzing the
directional dependencies and information flow between coupled chaotic systems.
By accurately reconstructing the phase space and using information-theoretic
measures, we gain deep insights into the complex dynamics of coupled Rössler
systems, paving the way for applying these techniques to more complex systems,
such as wind data analysis. The application of mutual information for delay
selection and the FNN method for embedding dimension determination ensures
that our phase space reconstruction is both accurate and representative of the
system’s dynamics. The use of the KSG estimator for TE calculation allows
us to capture the intricate information transfer between the coupled systems,
providing a comprehensive understanding of their interactions.

B.4 Results and Analysis

In this section, we present the findings from our study on the Multivariate
Transfer Entropy of two coupled Rössler systems. These results offer insights
into the directional dependencies and information flow between the coupled
chaotic systems.
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B.4.1 Multivariate Transfer Entropy of Coupled Rössler Sys-
tems

The Multivariate Transfer Entropy from system X to system Y and vice versa
is shown in Figure B.1. This figure illustrates the TE values in nats as a function
of the coupling strength ϵ.
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Figure B.1: Multivariate TE of two coupled Rössler systems. TE from X→ Y is
shown in red, while TE from Y → X is shown in blue.

The TE from X→ Y (red curve) is generally higher than the TE from Y → X
(blue curve) across most coupling strengths. This indicates a stronger influence
of system X on system Y compared to the reverse. As the coupling strength
increases, the TE from Y → X also increases, indicating a growing influence of Y
on X.

Interestingly, at a coupling strength of ϵ = 1, the TE values in both direc-
tions are nearly equal. This observation aligns with the suggestion made in the
literature that synchronization takes place at a coupling of about 1 [201]. In a
synchronized state, the systems influence each other equally, leading to nearly
equal TE values in both directions. This indicates that at ϵ = 1, the coupled
Rössler systems are likely synchronized, exhibiting similar dynamic behavior
and mutual influence. In another study by Krakovska et al. [202], the Con-
ditional Mutual Information (CMI) between the two coupled Rössler systems
was analyzed, showing a similar behavior to our findings. The CMI results also
suggest that synchronization occurs at a coupling strength of about 1, supporting
our observations.
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The method used by Mao and Shang in their study of multivariate transfer
entropy also focused on the time-delay reconstruction of phase space [203].
However, there are some differences between our approach and theirs. While
both methods utilize time-delay embedding to reconstruct the phase space, their
TE calculation differs in the way the embedding dimensions and time delays
are determined. Mao and Shang employed mutual information to find the time
delays for scalar time series, whereas we utilized the JIDT package to automate
the determination of optimal embedding parameters using Ragwitz’s criterion.
Additionally, Mao and Shang showed that the TE in both directions decreases as
the coupling strength increases, whereas our results indicate that the TE from
Y → X increases with coupling strength, suggesting a growing influence of Y on
X as the coupling becomes stronger. Notably, in both studies, the TE values from
X→ Y and Y → X become nearly equal when the coupling strength is close to 1,
indicating synchronization between the systems. Despite these methodological
differences, the overall trend and behavior of TE in response to varying coupling
strengths remain consistent, highlighting the robustness of the TE approach in
capturing directional dependencies in coupled chaotic systems.

B.4.2 Normalized Directionality Transfer Entropy (NDTE)

To further understand the directionality of the coupling, we computed the
Normalized Directionality Transfer Entropy (NDTE) [203] defined as:

NDTE =
TEY→X −TEX→Y
TEY→X + TEX→Y

. (B.4)

The NDTE values range from -1 to 1, where positive values indicate that X is the
driver, and negative values indicate that Y is the driver.

Figure B.2 shows the NDTE values as a function of the coupling strength ϵ.
At ϵ = 0, the NDTE is positive, indicating that system X drives system Y . As
the coupling strength increases, the NDTE decreases, reflecting a reduction in
the dominance of X over Y . At high coupling strengths (ϵ > 0.9), the NDTE

approaches zero, implying an almost symmetric bidirectional influence.

These findings indicate that at low coupling strengths, system X predomi-
nantly drives system Y . As the coupling strength increases, the influence of Y
on X becomes more significant, leading to a more balanced interaction. This
transition from unidirectional to bidirectional influence highlights the complex
dynamics and information flow between the coupled Rössler systems.
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Figure B.2: Normalized Directionality Transfer Entropy (NDTE) of two coupled
Rössler systems.

B.5 Conclusion

In this appendix, we developed a method to compute the Multivariate Trans-
fer Entropy and applied it to study the interactions and information flow be-
tween two coupled Rössler systems. Our methodology involved phase-space
reconstruction using time-delay embedding, determining optimal embedding
parameters with the Java Information Dynamics Toolkit (JIDT) package, and
employing the Kraskov-Stögbauer-Grassberger (KSG) estimator to calculate the
TE. The results demonstrated the effectiveness of our approach, revealing key
insights into the directional dependencies within the coupled chaotic systems.

Our findings are in accord with the existing literature, particularly the syn-
chronization behavior observed at a coupling strength of approximately 1. This
was evidenced by the nearly equal TE values in both directions, indicating a
balanced mutual influence between the systems. The behavior of the Conditional
Mutual Information (CMI) further supported these observations, aligning with
previous studies that analyzed similar coupled chaotic systems.

Additionally, the computed Normalized Directionality Transfer Entropy
(NDTE) offered further insights into the directionality of the coupling, revealing
a transition from unidirectional to bidirectional influence as coupling strength
increased.

This appendix validated our TE methodology for coupled Rössler systems,
paving the way for its application in more complex, real-world scenarios. The
methodology developed here will be employed in Chapter 4, where we will apply
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it to analyze wind dynamics. By doing so, we aim to uncover the directional
information flow within wind data from multiple meteorological stations, testing
the robustness of our method in a practical context and contributing to a deeper
understanding and prediction of wind behavior, which is critical for atmospheric
and environmental applications.
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Machine Learning-Assisted Spatiotemporal Chaos Forecasting

Abstract

From towering rogue waves to powerful winds, extreme events can disrupt natural systems
and human activity without warning. Though seemingly unpredictable, these events often
arise from the complex dynamics of chaotic systems, particularly spatiotemporal chaos, where
patterns unfold across both time and space. In this thesis, we study extreme events in optical
systems, focusing on an optical fiber ring resonator modeled by the Lugiato-Lefever equation.
This setup provides a controlled environment to analyze the chaotic behaviors that lead to such
phenomena. Recent advancements in machine learning, especially neural networks, offer new
tools for predicting chaotic dynamics. However, long-term forecasting remains challenging
due to chaos’s inherent unpredictability. We propose extending the prediction horizon using
information theory methods, like transfer entropy, to identify local regions contributing to
extreme events and improve forecast accuracy. Additionally, we examine the turbulent dynamics
generated by solitons in these systems, providing explanations for their onset and evolution. Our
analysis offers new insights into chaotic behavior. Finally, we propose applying these methods to
real-world wind dynamics to enhance forecasting and deepen understanding of chaotic natural
systems.

Keywords: complex systems, spatiotemporal chaos, turbulence, machine learning, arti-
ficial neural networks, information theory

Optimisation de l’Horizon de prédictibilité des Evènements Extrêmes par «Deep
Learning»

Résumé

Des vagues scélérates aux vents violents, les événements extrêmes peuvent perturber les sys-
tèmes naturels et les activités humaines sans avertissement. Bien que ces événements semblent
imprévisibles, ils émergent souvent des dynamiques complexes des systèmes chaotiques, en
particulier du chaos spatiotemporel, où des motifs se déploient dans le temps et l’espace. Dans
cette thèse, nous étudions les événements extrêmes dans des systèmes optiques, en nous concen-
trant sur un résonateur à fibre optique modélisé par l’équation de Lugiato-Lefever. Ce système
offre un environnement contrôlé pour analyser les comportements chaotiques à l’origine de ces
phénomènes. Les récents progrès en apprentissage automatique, notamment avec les réseaux de
neurones, offrent de nouveaux outils pour prédire les dynamiques chaotiques. Cependant, la
prévision à long terme reste difficile en raison de l’imprévisibilité inhérente au chaos. Nous pro-
posons d’étendre l’horizon de prédiction en utilisant des méthodes de théorie de l’information,
telles que l’entropie de transfert, pour identifier les régions locales contribuant aux événements
extrêmes et améliorer la précision des prévisions. En outre, nous examinons les dynamiques
turbulentes générées par les solitons dans ces systèmes, en proposant des explications sur leur
apparition et leur évolution. Notre analyse offre de nouvelles perspectives sur le comportement
chaotique. Enfin, nous proposons d’appliquer ces méthodes aux dynamiques du vent en situation
réelle pour améliorer les prévisions et approfondir la compréhension des systèmes chaotiques
naturels.

Mots clés : systèmes complex, chaos spatiotemporel, turbulence, apprentissage auto-
matique, réseaux de neurones artificiels, théorie de l’information
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