
UNIVERSITÉ DES SCIENCES ET TECHONOLOGIES DE LILLE
LABORATOIRE D’INFORMATIQUE FONDAMENTALE DE

LILLE

THÈSE
présentée en première version en vue d’obtenir le grade de Docteur,

spécialité Informatique

par

Emmanuel Filiot

LOGIQUES POUR REQUÊTES n-AIRES
DANS LES ARBRES

(LOGICS FOR n-ARY QUERIES IN TREES)

Thèse soutenue le 13 Octobre 2008 devant le jury composé de :

Mr GIORGIO GHELLI Università di Pisa Rapporteur
Mr CHRISTOF LÖDING RWTH Aachen Rapporteur
Mr LUC SEGOUFIN INRIA, ENS Cachan Rapporteur
Mr JEAN-FRANÇOIS RASKIN Université Libre de Bruxelles Examinateur
Mme SOPHIE TISON Université de Lille 1 Directrice
Mr JEAN-MARC TALBOT Université de Provence Co-Directeur
Mme LAURENCE DUCHIEN Université de Lille 1 Présidente

REMERCIEMENTS

L’accomplissement d’une thèse ne se fait pas seul et j’aimerais remercier ici toutes
les personnes qui ont rendu possible cette entreprise.
Mes remerciements vont d’abord à ma directrice de thèse Sophie Tison. Il
m’apparaît difficile de lui témoigner toute ma gratitude tant les raisons en sont
nombreuses. Je me contenterais donc simplement de la remercier pour m’avoir
donné le goût de la recherche, pour sa disponibilité et son humanité. Pour tout cela
et tout ce que je ne dis pas, merci Sophie !
J’aimerais remercier mon co-directeur Jean-Marc Talbot, pour m’avoir guidé et
précieusement conseillé, pour sa pédagogie et, pour m’avoir permis occasionnelle-
ment de goûter aux douceurs du soleil marseillais.
Durant ma thèse, j’ai travaillé avec Joachim Niehren. Je le remercie chaleureuse-
ment pour ses nombreux conseils, très précieux, lorsque l’on découvre le monde
de la recherche. J’ai aussi fait la rencontre d’Arnaud Durand, à qui je voudrais
témoigner mon amitié et ma joie de collaborer avec lui.
Je remercie Giorgio Ghelli, Christof Löding, et Luc Ségoufin, pour m’avoir fait
l’honneur d’être rapporteurs de ma thèse. Je vous suis très reconnaissant d’avoir
ajouté cette lourde tâche à vos emplois du temps déjà chargés. Je remercie aussi
Jean-François Raskin pour avoir accepté le rôle d’examinateur, et pour m’avoir
offert la possibilité de poursuivre ma vocation dans la recherche au sein de son
équipe.
Je tiens profondément à remercier tous les membres de l’équipe Mostrare qui
ont rendu mon quotidien si agréable pendant ma thèse. J’ai une pensée partic-
ulière pour Yves Roos, dont j’ai partagé le bureau avec joie, ainsi que pour Rémi
Gilleron, qui m’a accepté dans son équipe et m’a soutenu depuis le début. Enfin,
j’aimerais remercier l’ensemble des doctorants et post-doctorants qui ont fait de
cette thèse une belle expérience humaine et en particulier, mes collègues et amis
Olivier Gauwin et Sławek Staworko.
Je remercie tous mes amis, ma famille, et ma belle-famille pour m’avoir soutenu
durant la thèse. J’ai une pensée pour Marion, Gauthier et leur nouvelle venue Célia.
Enfin, je témoigne toute mon amitié à Julien Tierny, une des plus belles rencontres
que m’ait offert cette thèse.
Je remercie aussi tous mes amis MIM, avec qui a germé l’idée d’accomplir une
thèse, avec une pensée particulière pour Christoph et mon partenaire au club zik-
saucisson-vodka Samuel.
J’aimerais remercier et témoigner toute mon affection à mes parents. Merci in-
finiment de votre écoute, de vos conseils et de votre inconditionnel soutien. Je
remercie également mes frères, Alexandre, Pierre-Louis et David, pour toutes ces
heures joyeuses passées avec vous.
Enfin mes plus profonds remerciements vont à Camille, qui m’accompagne depuis
toutes ces années. Cette thèse c’était aussi la tienne, tu l’as acceptée dans ton
quotidien tout en me supportant, avec ta gentillesse et ta générosité. C’est un
immense bonheur de t’avoir rencontrée.

iii

Résumé en Français Beaucoup de données informatiques sont structurées de
manière arborescente. Dans le contexte du Web, c’est le cas en particulier des
données au format XML. De par sa généricité, ce format est rapidement devenu un
standard pour l’échange et la sauvegarde d’informations.
A l’instar des langages de requêtes pour les bases de données relationnelles, le
besoin d’avoir des langages de requêtes pour les documents XML est devenu cru-
cial. On distingue les requêtes unaires (sélection d’un ensemble de sous-parties
d’un document) des requêtes n-aires (sélection d’un ensemble de n-uplets de sous-
parties d’un document). Beaucoup de formalismes logiques pour les requêtes un-
aires ont été étudiés, en revanche, peu d’approches logiques existent pour les re-
quêtes n-aires.
Cette thèse étudie de manière fondamentale les requêtes n-aires, en proposant et
en étudiant principalement deux formalismes logiques pour requêtes n-aires: une
extension du paradigme navigationnel du standard W3C XPath au cas n-aire, ap-
pelée langage de composition, et une adaptation de la logique spatiale d’arbres
TQL, introduite par Cardelli et Ghelli.
Les questions de pouvoir d’expressivité, de complexité d’évaluation des requêtes
ainsi que leur satisfiabilité sont abordées. L’étude du problème de satisfiabilité
pour la logique TQL a nécessité l’introduction de nouveaux automates d’arbres
avec tests globaux, dont l’étude est réalisée de manière indépendante.

Titre en Anglais Logics for n-Ary Queries in Trees.

Résumé en Anglais In computer science many data are shaped as trees. In the
context of the Web, it is the case for XML formatted data in particular. XML is a
markup language that has rapidly become a standard for information storage and
data exchange.
As query languages for relational databases are not well-suited to XML data, the
need to have query languages specific to XML documents has increased. We dis-
tinguish unary queries which select a set of subparts of a document from n-ary
queries which select a set of n-tuples of subparts of a document. Many logical
formalisms for unary queries have been proposed, but less work has been done on
logical formalisms for n-ary queries.
This thesis is a fundamental study of n-ary queries that proposes two logical for-
malisms for n-ary queries: an extension of the navigational paradigm of the W3C
standard XPath to n-ary queries, called the composition language, and an adapa-
tion of the spatial logic TQL introduced by Cardelli and Ghelli.
The question of expressive power, the complexity of the query evaluation problem
as well as the satisfiability problem are considered. In particular, the satisfiability
problem for a TQL fragment is proved to be decidable by reduction to the empti-
ness test of a new class of tree automata with global constraints that is studied
independently.

Mots clés en Français XML, requêtes n-aires, logique, arbres, TQL, XPath.

Mots clés en Anglais XML, n-ary queries, logic, trees, TQL, XPath.

Laboratoire de préparation de la thèse LIFL - UMR USTL/CNRS 8022
Bâtiment M3
59655 Villeneuve d’Ascq Cédex - FRANCE

iv

CONTENTS

ACKNOWLEDGEMENTS iii

CONTENTS v

FOREWORD ix

AUTHOR’S PUBLICATIONS . ix

1 INTRODUCTION 1

1.1 MOTIVATIONS AND OBJECTIVES 1
1.2 OVERVIEW OF THE DISSERTATION 5

1.2.1 Composition Language . 5
1.2.2 Tree Query Logic . 7
1.2.3 Organization of the Dissertation 8

2 TREES AND QUERIES 9

2.1 TREE MODELS . 11
2.1.1 Alphabets . 11
2.1.2 Logical Structures . 11
2.1.3 Unranked Trees . 11
2.1.4 Hedges and Tree Operations 13
2.1.5 Ranked Trees and Binary Encoding 14
2.1.6 Contexts . 15
2.1.7 Trees over an Infinite Alphabet 15

2.2 QUERIES . 16
2.2.1 Definition . 16
2.2.2 Query Languages . 17
2.2.3 Query Evaluation and Decision Problems 17

2.3 FINITE TREE AUTOMATA . 18
2.3.1 Tree Automata for Ranked Trees 19
2.3.2 Tree Automata for Unranked Trees 22

2.4 FIRST ORDER LOGIC (FO) . 23
2.4.1 Syntax, Semantics, and Examples 23
2.4.2 FO: State of the Art . 25

2.5 MONADIC SECOND ORDER LOGIC (MSO) 27
2.5.1 Syntax and Semantics . 27
2.5.2 Correspondence between MSO and recognizable languages . . 27
2.5.3 MSO: State of the Art . 28

2.6 TREE AUTOMATA AS A QUERY LANGUAGE 30
2.7 SCHEMA LANGUAGES . 32

2.7.1 Document Type Definition 33
2.7.2 Extended DTD . 34

v

2.7.3 Other schema languages 34
2.8 XPATH 1.0 AND 2.0 . 34

2.8.1 Syntax and Semantics . 35
2.8.2 Expressiveness and Complexity of CoreXPath1.0 37
2.8.3 Expressiveness and Complexity of CoreXPath2.0 38
2.8.4 XPath-like languages . 39
2.8.5 Caterpillars . 39

2.9 TEMPORAL LOGICS . 40
2.10 MONADIC DATALOG AND CONJUNCTIVE QUERIES 41
2.11 UNORDERED TREES . 43
2.12 n-ARY QUERY LANGUAGES . 43

I From Binary to Arbitrary Arity Queries 45

3 COMPOSING BINARY QUERIES 47

3.1 INTRODUCTION . 49
3.2 COMPOSITION LANGUAGE . 51

3.2.1 Syntax and Semantics . 51
3.2.2 The non-variable sharing fragment Cnvs(L) 52
3.2.3 Examples . 52

3.3 RELATION TO FO AND CONJUNCTIVE QUERIES 54
3.3.1 Relation to FO . 54
3.3.2 Relation to Conjunctive Queries 56

3.4 QUERY NON-EMPTINESS AND QUERY EVALUATION 58
3.4.1 Query Non-Emptiness and Model-Checking 59
3.4.2 Query Evaluation . 61

3.5 EXPRESSIVENESS OF THE COMPOSITION LANGUAGE 63
3.5.1 Brief reminder on fundamental properties of finite model theory 63
3.5.2 FO and MSO completeness 65
3.5.3 Composition of monadic queries over hedges 69

3.6 CONCLUSION . 70

4 APPLICATION TO XPATH FRAGMENTS WITH VARIABLES 73

4.1 CONDITIONAL XPATH WITH VARIABLES 75
4.2 A POLYNOMIAL-TIME FRAGMENT OF CoreXPath2.0 76

4.2.1 XPath 2.0 and FO . 76
4.2.2 Towards a polynomial-time fragment of CoreXPath2.0 77
4.2.3 The variable-free fragment 80
4.2.4 Relation to the composition language 81

II A Spatial Logic for Trees 85

5 TREE AUTOMATA WITH GLOBAL CONSTRAINTS 87

5.1 INTRODUCTION . 89
5.2 DEFINITION AND EXAMPLES 90
5.3 CLOSURE PROPERTIES OF TAGEDS AND DECISION PROBLEMS 92

5.3.1 Closure Properties of TAGED-definable languages 92
5.3.2 Universality is undecidable 95
5.3.3 On restricting the equality relation 97

vi

5.3.4 A Normal Form for the Runs when =A⊆ idQ 100
5.4 POSITIVE AND NEGATIVE TAGEDS 102

5.4.1 Emptiness of Positive TAGEDs 102
5.4.2 Pumping Lemma for Positive TAGEDs 103
5.4.3 Emptiness of Negative TAGEDs 105

5.5 VERTICALLY BOUNDED TAGEDS 106
5.5.1 A Characterization of the Non-Emptiness Problem 107
5.5.2 Proof of the Forth Direction of Theorem 5.5.4 110
5.5.3 Proof of the Back Direction of Theorem 5.5.4 115

5.6 MSO WITH TREE EQUALITY TESTS 120
5.7 TAGEDS FOR UNRANKED TREES OVER AN INFINITE ALPHABET 123

5.7.1 Extension to an Infinite Alphabet 124
5.7.2 Binary Encoding . 125

5.8 CONCLUSION . 126

6 TREE QUERY LOGIC 129

6.1 INTRODUCTION . 131
6.2 SYNTAX AND SEMANTICS . 132

6.2.1 Syntax . 132
6.2.2 Semantics . 134

6.3 EXAMPLES . 135
6.4 MODEL-CHECKING ALGORITHM 138
6.5 TQL FRAGMENTS AND SATISFIABILITY 140

6.5.1 Undecidable Fragments . 141
6.5.2 The Bounded Fragment . 141
6.5.3 Discussion on Expressiveness 143

6.6 BOUNDED TQL FORMULAS TO VBTAGEDS 144
6.6.1 Elimination of Negation 145
6.6.2 Horizontal Languages . 145
6.6.3 Construction of the vbTAGED 147
6.6.4 Examples . 148
6.6.5 Proof of Correctness . 149

6.7 CONCLUSION . 152

7 CONCLUSION 153

7.1 MAIN RESULTS . 153
7.2 PERSPECTIVES . 154

8 RÉSUMÉ 157

8.1 MOTIVATIONS ET OBJECTIFS 157
8.2 DESCRIPTION DE LA THÈSE . 162

8.2.1 Langage de Composition 162
8.2.2 La Logique TQL . 164

INDEX 167

BIBLIOGRAPHY 171

NOTATIONS 187

LIST OF FIGURES 190

vii

FOREWORD

This dissertation presents my research work done during the last 3 years for the
obtention of a Ph.D. in Computer Science, under the supervision of Pr. Jean-
Marc Talbot and Pr. Sophie Tison. This research has been partially funded by
Conseil Régional du Nord-Pas de Calais and by Institut National de Recherche
en Informatique et en Automatique (INRIA). This work was done in the INRIA
Lille-Nord Europe Institute and in the Laboratoire d’Informatique Fondamentale
de Lille (LIFL), within the INRIA project-team Mostrare. It was also supported by
the national ANR project XML Transformation Languages: logic and applications
(TraLaLA) and the national ANR project Algorithms and complexity for answer
enumeration (ENUM).
The main results of this thesis concern logical formalisms to define n-ary queries.
Two query languages are presented in particular: a query composition language
and its relationship to XPath 2.0, and the TQL spatial logic and its correspon-
dence with a novel class of tree automata with global constraints, called TAGED.
The work on the composition language and XPath was achieved with the precious
collaboration of Joachim Niehren (INRIA, project-team Mostrare). It has been
presented in (1, 2). The work on TQL and TAGED has been presented in (3).
TAGED are also more specifically studied in (4) where an application to unifica-
tion problems with membership constraints is proposed, but not presented in this
dissertation.
I started several other works during the thesis period that are not presented in this
manuscript. In (5), we study the variable independence problem (previously intro-
duced for databases) for n-ary queries defined in monadic second-order logic in
trees. I also collaborated with Slawomir Staworko (INRIA project-team Mostrare,
University at Buffalo) and Jan Chomicki (University at Buffalo) on the consistent
query answering problem for n-ary queries in trees (6). Finally, I started a col-
laboration with Olivier Gauwin (INRIA project-team Mostrare) and Pr. Arnaud
Durand (Paris 7 University) on efficient enumeration algorithms for conjunctive
queries over trees.

AUTHOR’S PUBLICATIONS

[1] EMMANUEL FILIOT, JOACHIM NIEHREN, JEAN-MARC TALBOT AND SO-
PHIE TISON: Composing monadic queries in trees. In PLAN-X International
Workshop. 2006. BRICS, pp. 61–70. (Cited page ix.)

[2] EMMANUEL FILIOT, JOACHIM NIEHREN, JEAN-MARC TALBOT AND SO-
PHIE TISON. Polynomial time fragments of XPath with variables. In Pro-
ceedings of the ACM SIGMOD-SIGACT-SIGART Symposium on Principles

ix

of Database Systems (PODS). 2007. ACM press, pp. 205–214. Available at
http://hal.inria.fr/inria-00135678/en. (Cited page ix.)

[3] EMMANUEL FILIOT, JEAN-MARC TALBOT AND SOPHIE TISON: Satisfiabil-
ity of a spatial logic with tree variables. In Proceedings of the EACSL Annual
Conference on Computer Science Logic (CSL). 2007. LNCS, Springer Ver-
lag, pp. 130–145. Available at hal.inria.fr/inria-00148462/en.
(Cited page ix.)

[4] EMMANUEL FILIOT, JEAN-MARC TALBOT AND SOPHIE TISON: Tree
automata with global constraints. In International Conference on Develop-
ments in Language Theory (DLT). 2008, LNCS, Springer Verlag. To appear.
Available at http://hal.inria.fr/inria-00292027/en. (Cited
page ix.)

[5] EMMANUEL FILIOT AND SOPHIE TISON: Regular n-ary queries in trees
and variable independence. In IFIP International Conference on Theoretical
Computer Science (IFIP TCS). 2008. To appear. Available at http://hal.
inria.fr/inria-00274648/en. (Cited page ix.)

[6] SLAWOMIR STAWORKO, EMMANUEL FILIOT AND JAN CHOMICKI: Query-
ing Regular Sets of XML Documents. In International Workshop on
Logic in Databases (LiD). 2008. Available at http://hal.inria.fr/
inria-00275491/en/. (Cited page ix.)

x

1INTRODUCTION

1.1 MOTIVATIONS AND OBJECTIVES

Query languages for relational databases have extensively been studied by the
database community. In the context of the Web however, data tend to be shaped
as trees, as proved by the growing popularity of markup languages such as HTML
and XML (BPSM∗06). Relational database systems are not well-suited to han-
dle tree-structured data. Therefore, with the development of web applications, the
need to have database tools specific to tree-structured data has increased. In partic-
ular, the ability to query XML data has become crucial because XML has emerged
as a standard for data exchange and information storage. This has strengthened
the necessity to have query languages designed specifically for XML data. Formal
approaches to XML query languages aim at better understanding their practical
issues. XML documents are naturally modeled as trees. Although trees have been
widely studied in computer science research, XML applications have provided new
issues that require to go back and forth between theory and practice.
XML documents are semi-structured: the structure and the data are not separated.
This makes XML a very flexible format that allows to easily exchange data coming
from different applications or database systems. Fig. 8.1 gives two examples of
XML documents. The first document represents a purchase order with the ship-
ment and billing addresses, as well as the purchased items. The second document
represents a shipment order related to the purchase order. XML documents are
structured by opening and closing tags which have to be well-matched, such as
<city> and </city>. A pair of respective opening and closing tags may con-
tain well-matched sequences of tags or unstructered data by means of raw text.
Opening tags may also contain attributes, that is pairs of name and values. The
nested structure of XML documents naturally yields a tree representation of them.
The respective tree representations of the seller and shipper orders are depicted in
Fig. 8.2. Each node is labeled by some symbol and can have an arbitrary number of
children. The children are naturally ordered by the sequential order of the respec-
tive XML documents. Attributes are represented by additional branches whose
node labels are preceded by @. The underlying tree model of XML documents
is best known as node labeled unranked trees, in contrast to node labeled ranked
trees, for which the number of children of any node is fixed.

1

2 Chapter 1. Introduction

<purchaseOrder orderDate="2008-06-30">

<ShipTo country="FR">

<name>Pierre Jouet</name>

<street>132, rue Lecomte</street>

<city>Lille</city>

<zip>59000</zip>

</ShipTo>

<ItemList>

<Item ref="1548732">

<ProductName>OCaml reference manual</ProductName>

<Quantity>1</Quantity>

<Price>31.50</Price>

</Item>

<Item ref="3213575">

<ProductName>MSO for all</ProductName>

<Quantity>1</Quantity>

<Price>23.5</Price>

</Item>

</ItemList>

<BillTo country="BE">

<name>Guy Hecke</name>

<street>10, rue Haute</street>

<city>Brussels</city>

<zip>1000</zip>

</BillTo>

</purchaseOrder>

<shipItem>

<address>

<name>Pierre Jouet</name>

<street>132, rue Lecomte</street>

<city>Lille</city>

<zip>59000</zip>

<country>FR</country>

</address>

<productRefs>

<ref>1548732</ref>

<ref>3213575</ref>

</productRefs>

</shipItem>

Figure 1.1: Seller and shipper XML orders.

1.1. Motivations and Objectives 3

purchaseOrder

ShipTo BillTo

name

Pierre Jouet

street

132, rue Lecomte

city

Lille

@country

FR

name

Guy Hecke

street

10, rue Haute

city

Brussels

zip

1000

@country

BE

ItemList

Item Item

ProductName Quantity Price @ref ProductName Quantity Price @ref

OCaml reference manual 1 31.50 1548732 MSO for all 1 23.5 3213575

zip

59000

Pierre Jouet 132, rue Lecomte Lille 59000 FR 1548732 3213575

productRefsname street city zip country

address

shipItem

Figure 1.2: Tree representations of seller and shipper XML orders.

4 Chapter 1. Introduction

The structure and the syntax of a collection of XML documents can be constrained
by schema languages, a well-known instance of them being Document Type Def-
inition (DTD). For example, a DTD may constrain an XML shipment order to be
enclosed by shipItem tags, in which the address always occurs before the prod-
uct references, such as in Fig. 8.1. Now, suppose that the seller has to order the
shipment of the products listed in the purchase order of Fig. 8.1. Since the shipper
application only reads XML shipment order of a specific format, the seller appli-
cation has to transform the purchase order into a compatible shipment order. This
can be done for instance thanks to XML document transformations based on XML
queries.
Querying a tree consists in selecting relevant parts of it. The parts of the tree that
are selected are usually subtrees of it, often represented by their root nodes. Those
queries are consequently called node-selecting queries. They are the core of many
XML applications, such as document transformation (MBPS05), web informa-
tion extraction (GK04), XML programming (HP03b, BCF03a), and data exchange
(AL08). Unary queries select sets of nodes in a tree, while n-ary queries select sets
of n-tuples of nodes. Consider again the purchase and shipment orders of Fig. 8.2.
As a first step of the transformation of the purchase order into a shipment order,
one needs to select the address as well as the product references. Accessing the
address can be done thanks to the 5-ary query which select the name, the street,
the city, the zip code and the country. Selecting the product references is done via
a unary query. Those results can be recombined to construct an XML shipment
order that conforms to the shipper schema.
The study of tree formalisms benefits from a long history of research by the for-
mal languages and finite model theory communities. Most of them were designed
for ranked trees. However since the growing popularity of XML, several tree
formalisms have been revisited and proposed under the perspective of query lan-
guages for unranked trees. Those formalisms can be divided into declarative for-
malisms (mainly tree logics) and procedural formalisms (mainly tree automata).
Those two categories have many connections, and procedural formalisms are of-
ten used as a computational model for declarative formalisms. One of the best
known connection is the correspondence between the monadic second-order logic
and finite tree automata (TW68).
Most of the query formalisms which have been proposed are for unary or binary
queries (Lib06). Except procedural n-ary query formalisms (NV02, NPTT05),
logical n-ary query formalisms have received less attention, although they consti-
tute an important issue of XML research, as mentioned in (GKS04, Lib06, ABL07,
Sch07). The main objective of this dissertation is to propose and study logical for-
malisms for n-ary queries. Two languages are proposed in this dissertation. The
first language is a query composition language that allows one to turn any unary
or binary query language into a full n-ary query language. One sub-objective was
to obtain a composition language with a reasonable expressive power, that admits
a polynomial-time algorithm to answer queries. The second language proposition
is an adaptation of the Tree Query Logic (TQL) to ordered unranked trees as TQL
was defined for unordered unranked trees (CG04). The main sub-objective was
to define a decidable fragment of TQL as full TQL is undecidable (with respect
to the satisfiability problem). Both languages have variables by which to select
components of the answer tuples.

1.2. Overview of the Dissertation 5

1.2 OVERVIEW OF THE DISSERTATION

As two n-ary query languages are proposed, the dissertation is divided into two
independent parts.

1.2.1 Composition Language

The W3C standard XPath (BBC∗07) is an XML navigational language by which
to select sets of nodes by navigating in the document with path expressions. For
instance, the path expression

/child :: BillTo/child :: name/child :: ∗

selects in the first tree of Fig. 8.2 the name of the person the bill has to be sent
to. The ’/’ is a composition operator. The query is interpreted as follows: starting
from the root, go down to a child labeled BillTo, then go down to a child labeled
name, and finally access the child labeled by the name of the person (the star
means that any label can be matched). XPath is the node selecting core of many
other XML languages, such as for instance the query language XQuery (BCF∗07),
the transformation language XSLT (Cla99), the schema language XML Schema
(FW04), or the addressing language XPointer (DMJ01). The essential navigational
core of XPath (without syntactic sugar) is formally defined in Chapter 2. Path
expressions are usually viewed as unary queries, as they are evaluated relatively
to the root, but can also be viewed as binary queries, as they can be evaluated
relatively to any node of the tree. They relate starting nodes to ending nodes of the
navigation. In particular, a pair of nodes (u, v) is selected by a path expression p if
v can be reached starting from u and following the path p.
The composition language extends the XPath navigational paradigm to full n-ary
queries. In general, binary queries q can also be used to navigate in trees t: starting
from a node u, one can go to a node v with q if (u, v) is a solution of q in t.
The idea of the composition language is to use binary queries to navigate in the
document, and to capture the components of the output tuples with node variables.
The language is then closed by intersection and disjunction to add more expressive
power. The main operator of the composition language is the composition operator
◦. For instance, selecting a triple (ProductName, Price, Reference) in the first tree
of Fig. 8.2 can be done as follows: go from the root to a product name, capture it
by some variable x, then go from the product name to the price, capture it by some
variable y, and finally go from the price to the reference, and capture it by some
variable z. The navigational parts of this query can be expressed in any binary
query formalism, XPath for instance. Formally, this composition query is written
as follows:

pprod ◦ x ◦ pprice ◦ y ◦ pref ◦ z

where pprod, pprice and pref are binary queries defined for instance by the follow-
ing XPath path expressions1:

pprod = /child :: ItemList/child :: Item/child :: ProductName/child :: ∗
pprice = /parent :: ∗/next-sibling :: Quantity/next-sibling :: Price/child :: ∗
pref = /parent :: ∗/next-sibling :: @ref/child :: ∗

1parent (resp. next-sibling) relate a node to its parent (resp. right nearest sibling)

6 Chapter 1. Introduction

Of course there are many ways to define this query, and in general, the definition of
a query strongly depends on what it is known a priori about the form of the docu-
ments on which it is applied. Composition queries over a binary query language L
are denoted by C(L). We now review the main results obtained for C(L), in terms
of expressiveness and complexity of query evaluation. These results are proved in
Chapter 3.
Query evaluation takes a query and a tree as input, and outputs the query answers.
Its associated decision problem is called the model-checking problem. It takes a
tree, a node tuple and a query as input, and consists in checking whether the tuple
is an answer to the query in the given tree. Any model-checking algorithm can
be transformed into a query evaluation algorithm as follows: generate all node
tuples and filter them by the model-checking algorithm. Although this approach
is still reasonable for small trees and queries of small arities, it quickly becomes
intractable in other cases. Indeed, trees can be very large and arities quite high.
For instance, the XML purchase order of Fig. 8.1 may be part of a long sequence
of purchase orders, and may contain other informations that we want to query
altogether in a tuple, such as some comments of the buyer, the required shipment
mode, the buyer identifier, etc. In this thesis, we define a simple and expressive
fragment of C(L), denoted Cnvs(L). The idea is simply to disallow the possibility
to use the same variable in both parts of a composition, which would create cycles.
This notion is related to the well-known notion of acyclicity of conjunctive queries
over binary predicates. However, it is much simplier to decide and composition
queries are closed by disjunction, which is not the case for conjunctive queries.
The fragment Cnvs(L) admits a query evaluation algorithm which is polynomial in
the size of the query, in the size of the tree, and also in the size of the output, as
long as the query evaluation for L is polynomial.
First-order logic (FO) and monadic-second order logic (MSO) are two logics that
are widely accepted as standard logics to which the other query formalisms are
often compared (Lib06). They can express n-ary queries, thanks to their variables,
but their evaluation is intractable, when considering both the query and the tree as
input (combined complexity). However, when the query is not part of the input,
the evaluation becomes tractable, and even linear in the size of input plus the size
of the output (Bag06, Cou07), but involves large constants that we want to avoid.
We prove that Cnvs(L) matches the expressiveness of FO and MSO with respect to
n-ary queries, provided L is also as expressive as FO and MSO respectively, with
respect to binary queries. The proof uses folklore results based on the Shelah’s
composition method (She, Tho84, Sch00, Mar05a). Based on this proof, we pro-
pose a way to compose unary queries from a language L, which still matches the
expressiveness of FO and MSO, provided L does. It relies on a domain restriction
called subhedge restriction.
In contrast to the first version of XPath, XPath 1.0 (CD99), its second version
XPath 2.0 (BBC∗07) has node variables. While XPath 2.0 is still considered as
a unary query language, we show that it can also be used as an n-ary query lan-
guage. In Chapter 4, we present two n-ary query languages based on the com-
position language and XPath. The first language extends with variables the FO-
expressive Marx’s extension of XPath called Conditional XPath (Mar05a). The
second language is an FO-expressive fragment of XPath 2.0. Both languages ad-
mit polynomial-time query evaluation.

1.2. Overview of the Dissertation 7

1.2.2 Tree Query Logic

The Tree Query Logic (TQL) is a spatial logic introduced in (CG04) to query XML
documents represented as unordered trees. It can express n-ary queries thanks to
variables. The query evaluation problem of TQL queries has already been investi-
gated in (CFG02). Satisfiability and expressiveness of variable-free fragments of
TQL have been studied in (BTT05, Bon06). However, nothing is known about
the satisfiability of TQL fragments which can define n-ary queries, ie fragments
with variables. In Chapter 6, we study the satisfiability problem of TQL fragment
with variables, on ordered trees. The study of TQL in the context of unranked
ordered trees was mentioned as an open issue in (CG04, Gen06, Bon06). TQL
is a query language in the spirit of the pattern-matching languages of XDuce and
CDuce (HP03b, BCF03a). The TQL formula

purchaseOrder[ShipTo[⊤] ∧X | ⊤]

matches the first tree of Fig. 8.2, but not the second one. The result of this match-
ing is the binding which associates with X the subtree whose root is labeled by
“ShipTo”. Every node label is viewed as tree constructor. The symbol | is also
a constructor which takes two sequences of trees and concatenate them. The for-
mula ⊤ is matched by any sequence of trees. As shown by the previous example,
variables denote trees, in contrast to the variables of the composition language. By
repeating the same variable, equality tests can be performed. The formula

purchaseOrder[⊤ | ItemList[⊤|X|⊤|X|⊤] | ⊤]

is successfully matched against a tree representing a purchase order if the item list
contains two identical items. By using negation, disequality tests can also be done:

purchaseOrder[⊤ | ItemList[⊤|X|⊤|¬X|⊤] | ⊤]

is successfully matched if the item list contains at least two different items. TQL
formulas may also contain fixpoint operators to allow recursion. For instance, the
formula

purchaseOrder[⊤ | ItemList[µξ.(X|ξ ∨ X)] | ⊤]

is successfully matched if the item list contains only identical items.
The main difficulty to decide the satisfiability of TQL formulas comes from their
ability to test equalities or inequalities of whole subtrees. We define the bounded
fragment, where disequality tests can be done only a bounded number of times
along any root-to-leaf path.
The satisfiability problem for the bounded fragment is solved by reduction to the
emptiness test of a new class of tree automata with global equality and disequal-
ity constraints (TAGEDs). Tree equality and disequality tests can be done be-
tween subtrees which are arbitrarily faraway, in contrast to usual automata with
constraints, where tests are done only between children and cousins (CDG∗07).
TAGEDs are studied in Chapter 5, which can be read independently of the other
chapters. It is proved that TAGED definable languages are effectively closed by
intersection and union. However, they are not closed by complement. Moreover,
TAGEDs are not determinizable and universality is undecidable. The emptiness
problem is proved to be decidable for several subclasses: positive TAGEDs, which
performs only equality tests, and negative TAGEDs, which performs only dise-
quality tests. We also prove decidability of the emptiness problem for a subclass ,

8 Chapter 1. Introduction

called vertically bounded TAGEDs, that allows both kind of tests, but in a bounded
manner. In particular, only a bounded number of disequality tests can be performed
along any root-to-leaf path, similarly to the bounded TQL fragment. A natural cor-
respondence between vertically bounded TAGEDs and an extension of MSO with
tree equality tests is given. The satisfiability of this MSO extension is therefore
decidable.
In Chapter 6, we formally define our adaptation of TQL on unranked ordered trees,
illustrated by many query examples. We prove that the model-checking problem is
polynomial, and finally we give a reduction of TQL formulas into TAGEDs. This
reduction introduces a novel type of construction that deals with the variables of
the logic.

1.2.3 Organization of the Dissertation

Chapter 2 introduces the notions of trees, queries, the classical logics FO andMSO,
and tree automata. It also gives an overview of the main existing query languages
and logics for trees.
Chapter 3 introduces the composition language, gives a query evaluation algorithm
and proves the FO and MSO expressiveness results. A complete comparison with
conjunctive queries is also given.
Chapter 4 presents two applications of the composition language by means of two
FO-expressive n-ary query languages: Conditional XPath with variables and a
fragment of XPath 2.0.
Chapter 5 introduces TAGEDs and their properties. The emptiness problem for
several subclasses is also investigated, and the extension of MSO with tree equality
tests is introduced.
Chapter 6 defines the TQL logic, illustrated by several examples, gives a model-
checking algorithm, and finally proves a correspondence between TQL and
TAGEDs.

2TREES AND QUERIES

CONTENTS
2.1 TREE MODELS . 11

2.1.1 Alphabets . 11

2.1.2 Logical Structures . 11

2.1.3 Unranked Trees . 11

2.1.4 Hedges and Tree Operations 13

2.1.5 Ranked Trees and Binary Encoding 14

2.1.6 Contexts . 15

2.1.7 Trees over an Infinite Alphabet 15

2.2 QUERIES . 16

2.2.1 Definition . 16

2.2.2 Query Languages . 17

2.2.3 Query Evaluation and Decision Problems 17

2.3 FINITE TREE AUTOMATA . 18

2.3.1 Tree Automata for Ranked Trees 19

2.3.2 Tree Automata for Unranked Trees 22

2.4 FIRST ORDER LOGIC (FO) . 23

2.4.1 Syntax, Semantics, and Examples 23

2.4.2 FO: State of the Art . 25

2.5 MONADIC SECOND ORDER LOGIC (MSO) 27

2.5.1 Syntax and Semantics . 27

2.5.2 Correspondence between MSO and recognizable languages . . . 27

2.5.3 MSO: State of the Art . 28

2.6 TREE AUTOMATA AS A QUERY LANGUAGE 30

2.7 SCHEMA LANGUAGES . 32

2.7.1 Document Type Definition . 33

2.7.2 Extended DTD . 34

2.7.3 Other schema languages . 34

2.8 XPATH 1.0 AND 2.0 . 34

2.8.1 Syntax and Semantics . 35

2.8.2 Expressiveness and Complexity of CoreXPath1.0 37

2.8.3 Expressiveness and Complexity of CoreXPath2.0 38

9

10 Chapter 2. Trees and Queries

2.8.4 XPath-like languages . 39

2.8.5 Caterpillars . 39

2.9 TEMPORAL LOGICS . 40

2.10 MONADIC DATALOG AND CONJUNCTIVE QUERIES 41

2.11 UNORDERED TREES . 43

2.12 n-ARY QUERY LANGUAGES . 43

THIS chapter introduces important preliminary notions used in the next chapters,
such as tree models, n-ary queries, and several related decision problems. Ex-

isting query languages are then presented, for Boolean, unary, and n-ary queries.
In particular, they are surveyed through the questions of expressiveness and com-
plexity of query evaluation, model-checking, inclusion, satisfiability.

2.1. Tree Models 11

2.1 TREE MODELS

We consider finite unranked ordered trees whose nodes are labeled over a finite
or infinite alphabet. In particular, a node can have a finite but unbounded num-
ber of ordered children. Those trees are commonly admitted as a model of XML
documents (Nev02). In the rest of this thesis, they are just called unranked trees.
Hedges are another model which underlies unranked trees: a hedge is a finite se-
quence of unranked trees while an unranked tree is a hedge rooted by a single
node.
We also define ranked trees as some results of this thesis are proved for ranked
trees and then lifted to unranked trees via binary encodings.

2.1.1 Alphabets

An (unranked) alphabet Σ is a finite set of symbols often denoted by f, g, a.
A ranked alphabet is a pair (Σr, ar) where Σr is a finite set of symbols, and ar :
Σr → N is total arity function. A symbol f ∈ Σr is said to be ar(f)-ary. The 0-ary
symbols are called constants. The function ar is often omitted and considered as
implicit. For all k ∈ N, Σr is called k-ary if every symbol f ∈ Σr has arity 0 or k.
A weakly ranked alphabet is a pair (Σr, ar(Σr))where ar(Σr) ∈ N. Symbols from
Σr may have multiple arities, but these arities are bounded by ar(Σr).

2.1.2 Logical Structures

A signature (or vocabulary) σ is a finite set of relational symbols1 R1, R2, . . . , Rn.
Each relational symbol R is associated with a natural number ar(R) called its ar-
ity. A finite σ-structureM is a tupleM = (Dom(M), RM1 , R

M
2 , . . . , R

M
n) where

Dom(M) is a finite set called the domain, and for all relational symbols, RMi is an
ar(Ri)-ary relation on Dom(M). We always assume that a signature contains an
equality predicate = interpreted onM by the identity on Dom(M).
Finally, we will sometimes consider constant symbols c in the signature, which are
nothing else than unary relation symbols interpreted by singleton sets.

2.1.3 Unranked Trees

Let Σ be an unranked alphabet. We let σunr(Σ) = {≺ns,≺fc, (laba)a∈Σ} be the

signature2 of unranked trees over Σ, where the predicates ≺ns and ≺fc are binary,
and the predicates laba are unary. A labeled ordered unranked tree t over Σ is a
finite σunr(Σ)-structure t = (Dom(t),≺tns,≺

t
fc, (labta)a∈Σ) such that:

• elements of Dom(t) are called nodes;

• ≺tfc relates a node to its first-child. Hence it must satisfy: for all u ∈ Dom(t)

there exists at most one node v ∈ Dom(t) such that u ≺tfc v;

• ≺tns relates a node to its next-sibling. Hence it must satisfy: for all u ∈
Dom(t) there is at most one node v ∈ Dom(t) such that u ≺tns v;

• for all a ∈ Σ, labta is a set of nodes labeled a, and for all nodes u ∈ Dom(t)
there is a unique a ∈ Σ such that u ∈ labta (also denoted labta(u));

1In general, a signature also contains function symbols but they are not needed in this thesis
2When it is clear from the context, we write σunr instead of σunr(Σ)

12 Chapter 2. Trees and Queries

• (Dom(t),≺tfc ∪ ≺
t
ns) is an acyclic directed and connected graph, and every

node has a unique incoming edge, except for exactly one node that we call
the root of the tree;

• the root has no next-sibling;

The set of unranked trees over Σ is denoted by Tunr(Σ). Nodes are often denoted
by the letters u, v, w, and tuples of nodes by u. The size of a tree ‖t‖ is the number
of its nodes, ie ‖t‖ = |Dom(t)|.
The following predicates (directly given with their interpretation) are often used:

• ≺tns∗ : the transitive and reflexive closure of ≺
t
ns;

• ≺tch : the child relation, defined by the composition ≺
t
fc ◦ ≺

t
ns∗ ;

• ≺tchk , k ∈ N: the k-th child successor relation, which relates a node to its

k-th child. Formally, ≺tchk=≺
t
fc ◦(≺

t
ns)

k−1;

• ≺tch∗ : the descendant relation, ie the transitive and reflexive closure of ≺
t
ch ;

• ≺tch+ : the transitive closure of ≺tch ;

• roott: the root node of t (root is a constant symbol).

For all nodes u ∈ Dom(t), the children of u are given by the least set containing
the first-child of u (if it exists) and closed by ≺tns). Note that the children of u are
totally ordered by the transitive closure of ≺tns, that is why unranked trees are said
to be ordered. For all k ∈ N, the k-th child of u (if it exists) is denoted by u.k ∈
Dom(t). More generally, if k = k1k2 . . . kn is a word overN−0, we denote by u.k
the node (. . . ((u.k1).k2). . . .).kn (if it exists). The node that can be reached from
roott by following the path k is denoted nodet(k), ie nodet(k) = roott.k. A node
without children is called a leaf. All other nodes are called inner-nodes. Finally,
for all nodes u ∈ Dom(t), labt(u) denotes the label of u in t, ie if a = labt(u),
then labta(u) holds. Fig. 2.1 partially represents the main relations of an unranked
tree structure.

Let u ∈ Dom(t). The subtree of t at node u, denoted t|u, is the unranked tree

t|u = (Dom(t|u),≺
t|u
fc ,≺

t|u
ns , (lab

t|u
a)a∈Σ) where:

• Dom(t|u) = {v | u ≺tch∗ v} • ≺
t|u
fc=≺

t|u
fc ∩ (Dom(t|u)× Dom(t|u))

• ≺
t|u
ns=≺

t|u
ns ∩ (Dom(t|u)× Dom(t|u)) • ∀a ∈ Σ, lab

t|u
a = labta ∩ Dom(t|u)

Two trees t, t′ ∈ Tunr(Σ) are equal (or isomorphic), if they are structurally equal.
More formally, t = t′ if their is a one-to-one mappingΨ fromDom(t) into Dom(t′)
such that for all nodes u, u′ ∈ Dom(t) and all a ∈ Σ:

u ≺tfc u
′ iff Ψ(u) ≺t

′

fc Ψ(u′)

u ≺tns u
′ iff Ψ(u) ≺t

′

ns Ψ(u′)

labta(u) iff labt
′

a (Ψ(u))

Ψ is called an isomorphism. We say that t and t′ are edge-isomorphic (or have the
same shape) if Ψ respects the edge relations ≺fc and ≺ns but not necessarily the
label relation. If t = t′ or if t and t′ have the same shape, we identify their sets of
nodes and assume thatΨ(u) = u, for all u ∈ Dom(t) (hence Dom(t) = Dom(t′)).

2.1. Tree Models 13

≺tfc ≺tch ≺tch ≺tch

≺tns ≺tns ≺tns

≺tns∗
≺tns∗

≺tns∗ ≺tns∗

roott

Tree t

Tree t

≺tch

≺tch

≺tch

≺tch

≺tch∗

≺tch∗

≺tch∗

≺tch∗

≺tch∗

Figure 2.1: Main relations of an unranked tree structure t

2.1.4 Hedges and Tree Operations

A hedge h is an ordered finite sequence of unranked trees t1, . . . , tn over Σ.
The empty hedge is denoted by 0. Hedges can naturally be viewed as σunr(Σ)-
structures, and the set of hedges over Σ is denoted by H(Σ). A hedge have sev-
eral roots linked by the next-sibling relation, which are the roots of the trees it is
composed of. However we distinguish one element rooth which is the root of the
left-most tree of h, ie the root of t1.
Let σ be the signature {0, |} ∪ {a | a ∈ Σ}, where 0 is a constant, | a binary
symbol and as are viewed as unary symbols. The free σ-algebra is the set of terms
h generated by the following grammar:

h ::= 0 | h|h | a(h)

We call hedge term an element of the σ-algebra Hedge obtained by quotienting
the free σ-algebra by the following three axioms:

0|h = h h|0 = h (h1|h2)|h3 = h1|(h2|h3)

14 Chapter 2. Trees and Queries

Every hedge term h represents a hedge hI ∈ H(Σ) via the interpretation .I defined
as follows: 0I is the σunr(Σ)-structure with empty domain, |I takes two hedge
structures and concatenate them, and aI take a hedge structure and enroots it by a
node labeled a. This interpretation is extended to terms as follows:

(h1|h2)
I = hI1 |

I hI2 (a(h))I = aI(hI)

To ease the notation, we often identify the set of hedge term and the set of hedge
structures. In particular, we omit the interpretation .I in the notations and freely
write, for instance, a(b(0)|c(0)) to denote the hedge structure with three nodes
labeled a, b, c respectively. Other examples of the correspondence between hedge
term and hedge structures are:

b(b(0)) | a(a(0)) → b

b

a

a

a(b(0)|c(0)|d(0)) → a

b c d

Finally sometimes we may omit | and write a(h), b(h′), c(h′′) or just
a(h)b(h′)c(h′′) instead of a(h)|b(h′)|c(h′′). Similarly, we sometimes omit 0

and write a(b) and a instead of a(b(0)) and a(0) respectively.

2.1.5 Ranked Trees and Binary Encoding

Ranked trees are trees over a ranked alphabet. In particular, the number of children
of a node is determined by the arity of its label.
Let Σr be a ranked alphabet. The set of ranked trees over Σr, denoted Tran(Σr), is
the set of trees t ∈ Tunr(Σr) such that for all nodes u ∈ Dom(t), and all f ∈ Σr,
if u is labeled f , then u has exactly ar(f) children.
If Σr is k-ary, the set of ranked trees over Σr is also called k-ary and the set of
k-ary trees over Σr is sometimes denoted Tk(Σr), to emphasize that Σr is k-ary.
A well-known encoding of unranked trees (or hedges) into binary trees is the first-
child next-sibling encoding. Many results of the literature are proved for binary
trees, and then lifted to unranked trees (or hedges) via this encoding. In particular,
every hedge h over an unranked alphabet Σ can be viewed as a binary tree over
Σr = Σ ∪ {⊥} for a fresh symbol ⊥6∈ Σ, where ar(f) = 2 for all f ∈ Σ, and
ar(⊥) = 0. This is done via the binary encoding encbin defined as follows over
hedges:

encbin(0) =⊥ encbin(a(h)|h′) = a(encbin(h), encbin(h′))

Conversely, any binary tree over Σr represents a hedge over Σ via the following
decoding decbin:

decbin(⊥) = 0 decbin(f(t1, t2)) = f(decbin(t1))|decbin(t2)

This encoding is illustrated in Fig. 2.2.

2.1. Tree Models 15

i. a

b

c d

e f

g

ii. a

b

c

d

⊥ ⊥

⊥

e

⊥ f

g

⊥ ⊥

⊥

⊥

Figure 2.2: An unranked tree (i) and its first-child next-sibling encoding (ii).

Weakly Ranked Trees Let Σr be a weakly ranked alphabet. A weakly ranked
tree t over Σr is a tree such that every node has less than ar(Σr) children. The set
of weakly ranked trees over Σ is denoted by Twran(Σr).

2.1.6 Contexts

Let n ∈ N, and Σ be an (unranked) alphabet. An n-ary context C over Σ is a
tree over Σ ∪ {◦1, . . . , ◦n}, where ◦1, . . . , ◦n are linearly ordered constant sym-
bols not in Σ and occurring uniquely at the leaves of C. These symbols are often
called holes. The substitution of the holes ◦1, . . . , ◦n by trees t1, . . . , tn is denoted
C[t1, . . . , tn]. Note that C[t1, . . . , tn] is a tree over Σ. Figure 2.3 illustrates the
substitution of a context by trees.

f

f

a ◦1

◦2 g

a a

h

c

f

f

a g

a a

h

c

Figure 2.3: Substitution of a binary context by two trees

2.1.7 Trees over an Infinite Alphabet

In the second part of this thesis, we will consider an infinite countable alphabet,
which in contrast to finite alphabets will be denoted Λ. All the notions defined
before carry over to an infinite alphabet. In particular, in the signature of unranked
trees, we assume an infinite set of relational symbols laba, a ∈ Λ. Only finitely
many of them have a non-empty interpretation in a tree.

16 Chapter 2. Trees and Queries

A set of labels L ⊆ Λ is cofinite if it is finite or its complement in Λ is finite. The
set of cofinite subsets of Λ is denoted Pcf (Λ). For instance, ∅ and Λ are cofinite.
Cofinite sets of labels are often denoted α, and their complement α. Note that
Pcf (Λ) is stable by complement, intersection, and union. Cofinite sets, although
potentially infinite, admit a simple finite representation.
We extend the relational symbols laba to cofinite sets α with the following inter-
pretation:

labtα = {u ∈ Dom(t) | ∃a ∈ α, u ∈ labta}

2.2 QUERIES

In this section, we define the notion of n-ary queries and the problems considered
in this thesis.

2.2.1 Definition

Let n ∈ N. An n-ary query q is a mapping from unranked trees over Σ into tuples
of nodes of length n:

∀t ∈ Tunr(Σ), q(t) ⊆ (Dom(t))n

The arity of q, denoted ar(q) is n. When n = 0 (resp. n = 1, n = 2), q is said
to be Boolean (resp. unary or monadic, and binary). Boolean queries are like tree
acceptors: q(t) is either empty or equal to {()}, where () is the empty tuple. If
some tuple of nodes u is in q(t), we often say that q select u on t. Note that if two
trees t and t′ are isomorphic, since we assume that they have the same domain, we
also have q(t) = q(t′).
Given two queries q, q′ of the same arity, we define q ∩ q′ and q ∪ q′ by, for all
t ∈ Tunr(Σ):

q ∩ q′(t) = q(t) ∩ q′(t)
q ∪ q′(t) = q(t) ∪ q′(t)

Given an n-ary query q and am-ary query q′, we let q× q′ be the n+m-ary query
defined by, for all t ∈ Tunr(Σ):

(q × q′)(t) = q(t)× q′(t)

Let u = (u1, . . . , un) be an n-ary tuple and I ⊆ {1, . . . , n}. We denote by πI(u)
the tuple (ui)i∈I . For all i ∈ {1, . . . , n}, πi stands for π{i}. Note that π∅(u) = ().
Let q be an n-ary query, we denote by πIq the |I|-ary query defined by, for all trees
t ∈ Tunr(Σ):

πIq(t) = {πI(u) | u ∈ q(t)}

Two queries q and q′ are equal, denoted q = q′, if for all trees t ∈ Tunr(Σ),
q(t) = q′(t).
The definition of n-ary queries q naturally extends to arbitrary σ-structures, for
some signature σ:

for all σ-structuresM, q(M) ⊆ (Dom(M))n

2.2. Queries 17

2.2.2 Query Languages

A query language L is a tuple (QL, arL(.), ‖.‖L,QL(.)) where:

• QL is a set of objects, called query expressions, ranged over by , ′;

• arL(.) : QL → N is a total function mapping query expressions to their
arity;

• ‖.‖L : QL → N is a total function mapping query expressions to their size;

• QL(.) is a total function mapping query expressions to the query they
represent, such that QL() is an ar()-ary query.

Intuitively, query expressions may represent logical formulas or query automata, as
we will further see, and QL(.) are their interpretation as queries in unranked trees
over Σ. This definition implicitly considers that queries are defined in unranked
trees over Σ. However, we will sometimes consider other classes of structures
such as binary trees over some alphabet Σ. In this case, to avoid any ambiguity,
we mention explicitly that L is a query language in binary trees over Σ′. We say
that L is Boolean (resp. unary, binary) if for all ∈ QL, QL() is Boolean (resp.
unary, binary). More generally, we say that L is n-ary if L can express queries of
arbitrary arities, not necessarily fixed (for all n ∈ N, there exists ∈ QL such that
ar() = n). When it is clear from the context, we omit the subscript L.
L is closed by projection if for all ∈ QL, if QL(Q) is n-ary, then for all
I ⊆ {1, . . . , n}, there exists a query expression denoted πI ∈ QL such that
πIQL() = QL(πI).
We consider two important notions to compare two query languages L =
(QL, ‖.‖L,QL(.)) and L′ = (QL′ , ‖.‖L′ ,QL′(.)).

EXPRESSIVENESS:

L captures L′ (or L is L′-complete) if for all ′ ∈ QL′ , there is
 ∈ QL such that QL′(′) = QL(). L and L′ are equally expressive,
denoted L = L′ if L captures L′ and L′ captures L.

2.2.3 Query Evaluation and Decision Problems

We define the main evaluation and decision problems we consider in this thesis.
Let L = (QL, ‖.‖L,QL(.)) be a query language.

MODEL-CHECKING: MC(, t, u)

Input: ∈ QL, t ∈ Tunr(Σ), u ∈
⋃
n∈N

(Dom(t))n

Output: Yes iff u ∈ QL()(t)

NON-EMPTINESS: NE(, t)

Input: ∈ QL, t ∈ Tunr(Σ)
Output: Yes iff QL()(t) 6= ∅

QUERY EVALUATION:

Input: ∈ QL, t ∈ Tunr(Σ)
Output: QL()(t)

18 Chapter 2. Trees and Queries

Note that the model-checking problem is the decision problem associated with the
query evaluation problem. If the language is closed by projection, then the non-
emptiness problem reduces to the model-checking problem, since NE(, t) holds
iffMC(π∅ , t, ()) holds. Since all the query languages in the literature are closed
by projection, the non-emptiness problem is in general omitted in favor of model-
checking.
The model-checking is often used in the literature to measure the complexity of
query evaluation. The complexity of model-checking can provide an argument
supporting the non-existence of an efficient query evaluation algorithm. However,
the query evaluation algorithm based on enumerating all the tuples and checking
their membership to the answer set is not efficient in general. Indeed, as said in
Chapter 1, arities of queries can be large, making the set of tuples large as well.
Hence the time complexity of model-checking is in general not precise enough
to describe the time complexity of query evaluation. One needs a new notion of
complexity:

Definition 2.2.1 (Complexity Measure for Query Evaluation) Let L = (QL, arL(.), ‖.‖L,QL(.)) be
a query language. We say that the query evaluation problem is in polynomial-

time for L if there is a polynomial p, and an algorithm A such that for all inputs
 ∈ Q and t ∈ Tunr(Σ), it outputs QL()(t) in time complexity lesser than
p(‖ ‖L, ‖t‖, |QL()(t)|).

We will also consider the satisfiability problem, as it is of particular importance for
static analysis of queries (Gen06).

SATISFIABILITY: SAT (, n)

Input: ∈ QL, n ∈ N

Output: Yes iff there is t ∈ Tunr(Σ) and u ∈ (Dom(t))n such that
u ∈ QL()(t)

If for all ∈ QL and all n ∈ N, we can decide whether SAT (, n) holds, we
often say that L is decidable. If L is closed by projection, satisfiability reduces to
satisfiability of 0-ary queries. Indeed, SAT (, n) holds iff SAT (π∅ , 0) holds.
We will also consider the following problems in the next sections:

• inclusion ⊆

′: on input , ′ ∈ Q, output yes iff for all trees t,
Q()(t) ⊆ Q(′)(t);

• equivalence =

′: on input , ′ ∈ Q, output yes iff ⊆

′ and ′ ⊆ .

2.3 FINITE TREE AUTOMATA

This section introduces finite tree automata. Tree automata are a tree acceptor
model which defines the robust class of regular tree languages. It is a procedu-
ral formalism (while logics are more declarative) which has found many applica-
tions in program analysis, verification, logic programming, linguistic and databases
(CDG∗07). It has also many connections with logic. Logical formulas can define
tree languages (see Sections 2.4 and 2.5) and there is often a correspondence be-
tween logical formulas and automata (TW68, Don70, Tho97). In particular, it is
good practice to find, for any logical formalism over trees, its corresponding class
of tree automata. The models of a formula define a tree languages which should be

2.3. Finite Tree Automata 19

definable by a (computable) automaton, and conversely. Decidability of the logic
then reduces to emptiness of automata, making automata a very useful tool. More-
over, as a computational formalism, tree automata benefit from good complexity
properties, and are often used as a tool for evaluating declarative queries written in
a logical formalism (Lib06).
With the development of XML, several automata models for unranked trees have
risen. In this context, unranked tree automata models turn out to be useful to com-
pare expressiveness of logics for trees, to evaluate queries, for static analysis of
transformation languages, to describe schema languages with a clear semantics
(Nev02, Sch04, Sch07). The widely accepted automaton model for unranked trees
is hedge automata introduced in (BKWM01) based on early works (PQ68, Tak75).
They extend ranked tree automata with regular word languages of states in transi-
tions.
Finite (ranked) tree automata are defined in Subsection 2.3.1 and hedge automata
are defined in Subsection 2.3.2, based on (CDG∗07). Other models of unranked
tree automata are also briefly overviewed. Only constructions needed for the rest
of this thesis are presented but a full description of (ranked and unranked) tree
automata can be found in (CDG∗07).

2.3.1 Tree Automata for Ranked Trees

A (bottom-up and finite) tree automaton (FTA) A over Σ is a 4-tuple A =
(Σ, Q, F,∆) where:

• Σ is a ranked alphabet;

• Q is a finite set of states;

• F ⊆ Q is a set of final (or accepting) states;

• ∆ ⊆ Σ × (
⋃
n∈N

Qn) × Q is a finite set of rules such that if
(f, (q1, . . . , qk), q) ∈ ∆, then k = ar(f).

Rules δ = (f, (q1, . . . , qk), q) ∈ ∆ are denoted f(q1, . . . , qk) → q, and if k = 0,
δ is called initial. f(q1, . . . , qk) is the left-hand side (lhs) of δ, denoted lhs(δ),
while q is its right-hand side (rhs), denoted rhs(δ). The automaton A is called
deterministic if for all different rules δ, δ′ ∈ ∆, lhs(δ) 6= lhs(δ′).
FTA run on ranked trees in a bottom-up way, starting from the leaves and go-
ing up to the root. A tree f(t1, . . . , tk), where k ∈ N, evaluates to some state
q ∈ Q, if there is a rule f(q1, . . . , qk) → q in ∆ such that ti evaluates to qi, for
all i ∈ {1, . . . , k}. A tree is accepted by A if it evaluates to a final state. This
leads to the notion of run. Formally, we let t ∈ Tran(Σ) and view Q as a weakly
ranked alphabet such that ar(Q) = maxf∈Σ ar(f). A run of A on t is a tree
r ∈ Tran(Q) such that r is edge-isomorphic to t and r satisfies, for all k ∈ N and
all u, u1, . . . , uk ∈ Dom(t) such that u1, . . . , uk are the children of u (given in
order):

labt(u)(labr(u1), . . . , labr(uk))→ labr(u) ∈ ∆

A run r is successful (or accepting) if the root of r is labeled by a final state, ie
labr(rootr) ∈ F . For all states q, the set of trees which evaluate to q is defined by:

20 Chapter 2. Trees and Queries

∨

¬ ∧

∨

0 1

1 ¬

0q0 q1

q1

q0

q0

q1 q1

q1

q1

Figure 2.4: A tree over Σb and a successful run of Ab on it.

Lq(A) = {t ∈ Tran(Σ) | there is a run r of A on t such that labr(rootr) = q}

The language L(A) accepted (or recognized,defined) by A is the set L(A) =⋃
q∈F Lq(A). A tree t ∈ L(A) is said to be accepted. Consequently, there ex-

ists (at least) a successful run of A on each accepted tree. Finally, a language
L ⊆ Tran(Σ) is recognizable if L = L(A) for some FTA A.

Example 2.3.1 Let Σb be the ranked alphabet consisting of the binary symbols ∧,∨, the unary
symbol ¬, and the constants 0, 1. Trees of Tran(Σb) represent Boolean formulas.
We define an automaton Ab on Σb which accepts only Boolean formulas logically
equivalent to 1. We let its set of states (resp. final states) being equal to Qb =
{q0, q1} (resp. Fb = {q1}), and its set of rules ∆b is defined by, ∀b, b1, b2 ∈ {0, 1},
∀⊕ ∈ {∧,∨}:

b → qb ¬(qb) → q¬b
⊕(qb1 , qb2) → qb1⊕b2

Figure 2.4 shows an accepted tree over Σb together with a successful run of Ab on
it.

It is known (CDG∗07) that FTA are determinizable, ie for each FTA A, there is a
deterministic FTAA′ such that L(A) = L(A′) (the number of states ofA′ however
may be exponential in the number of states of A). Moreover (CDG∗07):

Proposition 2.3.2 The class of recognizable ranked tree languages is closed by union, intersection,
complement, inverse homomorphisms and linear homomorphisms.

The closure by intersection is proved by constructing the product automaton. This
construction is needed in the next chapters, so we define it formally (for binary
trees).

product automaton Let A1 = (Σ, Q1, F1,∆1) and A2 = (Σ, Q2, F2,∆2) be
two FTA. The product automatonA1×A2 is defined by: (Σ, Q1×Q2, F1×F2,∆),
where:

• a→ (p, q) ∈ ∆ iff a→ p ∈ ∆1 and a→ q ∈ ∆2;

2.3. Finite Tree Automata 21

• f((p1, q1), (p2, q2))→ (p, q) ∈ ∆ iff

{
f(p1, p2) → p ∈ ∆1

f(q1, q2) → q ∈ ∆2

decision problems and complexity We briefly define common decision prob-
lems for FTA. In order to define their complexities, the size of an FTA has to be
defined. Let A be an FTA, and δ = f(q1, . . . , qn) → q one of its rules. Every state
is of size 1, so that the size of δ, denoted ‖δ‖, is n + 2. The size of A, denoted
‖A‖, is |Q| +

∑
δ∈∆ ‖δ‖. Let A,B be two FTA, and t ∈ Tran(Σ). The maximal

arity of a symbol of Σ is denoted by ar(Σ). The following decision problems are
standard:

Problem Input Output Complexity
membership t t ∈ L(A)? O(‖t‖)

uniform mem-
bership

t,A t ∈ L(A)?
-O(‖t‖+‖A‖) if A is determin-
istic
- O(‖t‖ × ‖A‖) otherwise

emptiness A L(A) = ∅? O(‖A‖)

inclusion A,B L(A) ⊆ L(B)?

- O(‖A‖.‖B‖) if B is determin-
istic (CGLN08)
- EXPTIME-complete otherwise

universality A Tran(Σ) = L(A)?

- O((ar(Σ)+1).|Σ|.‖A‖) if A is
deterministic
- EXPTIME-complete otherwise

finiteness A Is L(A) finite ? O(|Q| × ‖A‖)

equivalence A,B L(A) = L(B)?

- PTIME if A,B are determinis-
tic and Σ is fixed
- EXPTIME-complete otherwise

More precisely, it is known that the membership problem is ALOGTIME-complete
3, and the uniform membership problem is LOGCFL-complete4 (Loh01).

Other automaton models for ranked trees

Many other automata models exist for ranked trees. For instance, top-down tree
automata (CDG∗07) starts from the root and go down the leaves. Rules have the
form (f, q) → (q1, . . . , qk). If the current node has k children, is labeled f , and
has been evaluated to some state q, the rule can be applied and its children evaluate
to q1, . . . , qk respectively. A top-down tree automaton is deterministic if every pair
of rules with different lhs have necessarily different rhs. Top-down tree automata
are equally expressive as bottom-up tree automata, but deterministic top-down tree
automata are strictly weaker than bottom-up FTA. Tree-walking automata (TWA)

3ALOGTIME is the class of languages decidable in logarithmic time by an alternating Turing
machine (Pap94)

4LOGCFL is the class of languages logspace reducible to a context-free language. In particular,
ALOGTIME⊆ LOGCFL and this inclusion is conjectured to be strict.

22 Chapter 2. Trees and Queries

are automata which run in the tree in a sequential way. In particular, they have
only one single head which move along the edges of the tree. They are introduced
in (AU69), and have known a growing interest with XML issues. TWA are strictly
weaker than FTA, as they cannot define all regular languages (BC05) and can-
not be determinized (BC06). Extensions of TWA with pebbles are considered in
(EH99, EHB99, BSSS06a). Different pebble policies lead to classes of TWA of
different expressiveness. Classes of TWA with pebbles are strongly connected to
fragments of first-order logic extended with transitive closure (EH07). They have
been used for instance to separate positive FO+TC1 and MSO (BSSS06a), and
recently FO+TC1 and MSO (tCS08).
We refer the reader to (CDG∗07) and to (Sch07) for a full overview of tree automata
for ranked and unranked trees.

2.3.2 Tree Automata for Unranked Trees

Hedge automata are the model used in this thesis. For a complete survey of au-
tomata for unranked trees see the last chapter of (CDG∗07) or (Sch07).
Hedge automata have been introduced in (BKWM01) based on early works (PQ68,
Tak75).
A finite hedge automaton (FHA) A over Σ is a 4-tuple (Σ, Q, F,∆) where:

• Σ is an unranked alphabet;

• Q is a finite set of states;

• F ⊆ Q is a set of final states;

• ∆ ⊆ Σ×2Q
∗

×Q is a set of rules of the form (a, L, q) – denoted a(L) → q–
, where a ∈ Σ, q ∈ Q, and L is a regular word language over Q.

A runs on unranked trees in a bottom-up way, starting from the leaves and moving
up to the root. In particular, a run of A on a hedge h ∈ H(Σ) is a hedge r ∈ H(Q)
over Q which has the same shape has r, and satisfies: for all nodes u ∈ Dom(t),
there is a rule a(L) → q ∈ ∆ such that:

• a = labt(u);

• q = labr(u);

• if u is an inner-node and u1, . . . , un are its children (given in order), then
labr(u1) . . . labr(un) ∈ L;

• if u is a leaf, then ǫ ∈ L (where ǫ is the empty word)

The run r is successful if labr(rootr) ∈ F . A tree is accepted byA if there is a suc-
cessful run of A on it. The language L(A) recognized by A is the set of unranked
trees accepted by A. An unranked tree language L ⊆ Tunr(Σ) is recognizable if
there is an FHA A such that L = L(A). The languages for transitions are called
horizontal languages. Any formalism defining regular word languages can be used
to specify the horizontal languages, such as regular expressions or finite automata.
Of course the size of a hedge automaton depends on the sizes of the representations
of the horizontal languages. In particular, if n is the size of the representation of
the horizontal language of some transition f(L) → q, then n+ 2 is the size of this
transition.

2.4. First Order Logic (FO) 23

A FHA A is deterministic if for all rules a(L) → q ∈ ∆ and a(L′) → q′ ∈ ∆,
either L ∩ L′ = ∅ or q = q′. An extension of the determinization procedure of
FTA allows one to construct from any FHA a deterministic FHA which recognizes
the same language (its number of states however can be exponential in the initial
number of states).
The class of languages recognized by FHA also enjoys good closure properties:

Proposition 2.3.3 ((CDG∗07)) The class of unranked tree languages recognized by FHA is closed by
union, intersection, and complement.

Other automaton models for unranked trees

In (CNT04), unranked trees over an alphabet Σ are viewed as their curryfied rep-
resentation, ie as binary trees over the ranked alphabet Σ@ = Σ ∪ {@}, where
symbols from Σ are constant symbols and @ is a binary function symbol. For
instance the curryfied representation of a(b(c, c), d) is @(@(a,@(@(b, c), c)), d).
Stepwise automata are a direct formulation on unranked trees of classical ranked
tree automata on the curryfied version of unranked trees (CNT04). Hence stepwise
automata can define all recognizable unranked tree languages.
Automata for streams are automata that process trees represented as sequences of
opening and closing tags. In the context of XML for instance, they just read XML
trees linearly in the same order as their textual representations (this is often called
the document order). This is relevant when web applications exchange large XML
documents for instance. More generally such streams are modeled by a 3-partite
alphabet with opening, stay, and closing symbols. Such streams are processed by
visibly pushdown automata (AM04). VPA are pushdown automata for which the
stack operation is determined by the symbol type (in particular, it pushes one sym-
bol onto the stack when reading an opening symbol, pops the stack when reading a
closing symbol, and let the stack unchanged for stay symbols). VPA can define ex-
actly all stream representations of recognizable unranked tree languages and thus
enjoy good closure properties.

2.4 FIRST ORDER LOGIC (FO)

We start by defining formally the first-order logic (FO) and several notions needed
for the rest of this thesis. In a second part, we survey the main works on FO,
especially in the context of trees.

2.4.1 Syntax, Semantics, and Examples

Let σ be a signature consisting of relational symbols. We letX be a set of variables
ranged over by x, y. FO-formulas φ over σ are inductively defined by the following
grammar:

φ ::= Ri(x1, . . . , xn) | φ ∨ φ | ¬φ | ∃xφ

where Ri is an n-ary relation symbol of σ and x1, . . . , xn ∈ X . As usual, we
define conjunction φ1 ∧ φ2 by ¬(¬φ1 ∨¬φ2), and universal quantification ∀xφ by
¬∃x¬φ. The set of FO-formulas over σ is denoted FO[σ].
The set of free variables FVar(φ) of an FO[σ] formula φ is inductively defined by:

24 Chapter 2. Trees and Queries

FVar(R(x1, . . . , xn)) = {x1, . . . , xn}
FVar(φ1 ∨ φ2) = FVar(φ1) ∪ FVar(φ2)
FVar(¬φ) = FVar(φ)
FVar(∃xφ) = FVar(φ)− x

A linear order on X is often assumed and we shall write φ(x1, . . . , xn) to mean
that FVar(φ) ⊆ {x1, . . . , xn}. A sentence or closed formula φ is a formula such
that FVar(φ) = ∅.
Similarly, the set of variables Var(φ) of φ is inductively defined by:

Var(R(x1, . . . , xn)) = {x1, . . . , xn}
Var(φ1 ∨ φ2) = Var(φ1) ∪ Var(φ2)
Var(¬φ) = Var(φ)
Var(∃xφ) = Var(φ) ∪ {x}

Finally the quantifier depth of φ, denoted qd(φ), is the maximal number of quanti-
fiers on a path from the root to a leaf in the term representation of φ.
FO[σ] formulas φ are interpreted over σ-structures M under a (total) assignment
(also called valuation) ρ from a superset of FVar(φ) into Dom(M). The satis-
fiability relation M,ρ |= φ (say φ holds under M and ρ) is inductively defined
by:

M,ρ |= R(x1, . . . , xn) if (ρ(x1), . . . , ρ(xn)) ∈ R
M

M,ρ |= φ1 ∨ φ2 if M,ρ |= φ1 orM,ρ |= φ2

M,ρ |= ¬φ if M,ρ 6|= φ
M, ρ |= ∃xφ if there is u ∈ Dom(M) such thatM,ρ[x 7→ u] |= φ

where ρ[x 7→ u] denotes the valuation ρ extended with the mapping x 7→ u.
Given a formula φ(x1, . . . , xn) and an n-tuple u ∈ (Dom(M))n, we often write
M |= φ(u) to mean that φ holds underM and the valuation which maps xi to the
i-th component of u, for all i ∈ {1, . . . , n}.
Let n ∈ N, let A a set of pairs (M,u) such that M is a σ-structure and let u ∈
(Dom(M))n.

Definition 2.4.1 The set A is FO[σ]-definable if there is an FO[σ]-formula φ(x1, . . . , xn) such that
for all σ-structuresM and for all u:

(M,u) ∈ A iffM |= φ(u)

A can also be viewed as the interpretation of an n-ary predicate symbol R. In this
case we also say that R is FO[σ]-definable (its interpretation A is let implicit).
If n = 0 and A is definable by φ, then φ is a sentence, and in this case we say
that the set {M | (M, ()) ∈ A} is definable by φ. Star-free word languages are
a famous example of logically definable sets. In particular, a word language over
a finite alphabet Σ is star-free if and only if it is definable by an FO[σw]-formula,
where σw contains the label predicates laba, a ∈ Σ, and a binary predicate <
interpreted as a linear order on letter positions (MP71).

2.4. First Order Logic (FO) 25

Signatures and Examples

Let Σ be a finite alphabet. When speaking about trees (binary or unranked), we
often omit the alphabet in the signature. For instance we write FO[≺ns∗ ,≺ch∗] to
denote FO formulas over the signature {≺ns∗ ,≺ch∗ , (laba)a∈Σ}.
For unranked trees, we consider FO[≺ns∗ ,≺ch∗] formulas, as other predicates are
FO[≺ns∗ ,≺ch∗]-definable. For instance:

x = y = x ≺ch∗ y ∧ y ≺ch∗ x
x ≺ch y = x ≺ch∗ y ∧ x 6= y ∧ ¬∃z z 6= x ∧ z 6= y ∧ x ≺ch∗ z ∧ z ≺ch∗ y
x ≺ns y = x ≺ns∗ y ∧ x 6= y ∧ ¬∃z z 6= x ∧ z 6= y ∧ x ≺ns∗ z ∧ z ≺ns∗ y
x ≺fc y = x ≺ch y ∧ ¬∃z z ≺ns y

x ≺chk y = ∃z1 . . .∃zk x ≺fc z1 ∧ zk = y ∧
∧k−1
i=1 zi ≺ns zi+1

rootx = ¬∃y y ≺ch x

On the other hand, the transitive closure of a definable binary relation is not de-
finable in first-order logic in general (EF05). In particular, ≺ch∗ and ≺ns∗ are not
FO[≺ch ,≺fc]-definable.
For binary trees, we consider FO[≺ch1

,≺ch2
,≺ch∗] formulas.

FO as a query language

As already seen, formulas can define relations on domains of σ-structures. Con-
sequently first-order logic can also be seen as a query language. On unranked
trees for instance, (FO[≺ch∗ ,≺ns∗], ar(.), ‖.‖,Q(.)) is the query language where
query expressions are FO[≺ch∗ ,≺ns∗]-formulas, ‖φ‖ is the number of symbols
of φ, and if FVar(φ) = {x1, . . . , xn}, then ar(φ) is defined by ar(φ) = n and
Q(φ(x1, . . . , xn)) is defined by:

Q(φ(x1, . . . , xn))(t)
=

{(u1, . . . , un) | t, [x1 7→ u1] . . . [xn 7→ un] |= φ(x1, . . . , xn)}

for all trees t ∈ Tunr(Σ).
For instance the following formula defines a query which selects all pairs of
sibling-nodes labeled a and b respectively:

φ(x, y) = x ≺ns y ∧ laba(x) ∧ labb(y)

Depending on the context, we often denote FO[≺ch∗ ,≺ns∗] the query language
(FO[≺ch∗ ,≺ns∗], ar(.), ‖.‖,Q(.)). Finally, we say that a query is FO-definable if
it is equal to Q(φ) for some FO-formula φ.

2.4.2 FO: State of the Art

The study of FO benefits from a long history of research and we cannot survey all
the results related to it. We refer the reader to (EF05, Lib04a) for more details.

Model-checking The model-checking of FO is PSPACE-complete on finite
structures (even on trees) (Sto74, Var82), while it is in PTIME for the k-variable
fragment FOk (the k-variable fragment consists of all formulas φ which uses at
most k bound variables) (Sto74). Recent work on the k-variable fragment can be
found in (Var95).

26 Chapter 2. Trees and Queries

Satisfiability The satisfiability problem of FO was considered as the main prob-
lem in mathematical logic by many mathematicians (Hilbert, Ackermann, Her-
brand, von Neumann). Since 1936, satisfiability of FO is known to be undecidable
(Chu36, Tur37), even on finite structures (Tra75). Since 1915, many fragments
of FO have been proved to be decidable. More recently, the two-variable frag-
ment FO2 has been proved to be decidable in 2NEXPTIME (Mor75). A NEXP-
TIME lower-bound has been established later (Lew80). Recently, a NEXPTIME
upper-bound has been proved (GKV97), making satisfiability of FO2 formulas
NEXPTIME-complete over arbitrary structures. However, FOk is undecidable for
k ≥ 3.
Over unranked trees, FO is also decidable (TW68, Don70) by reduction to empti-
ness of tree automata. Actually those papers prove the stronger result thatMonadic
Second Order Logic is decidable over unranked trees, as described in the next sec-
tion. Although the relationship between regular tree languages (defined by au-
tomata) and logically defined tree languages is well-known for MSO over trees, it
is not so clear for FO-definable tree languages.

FO-definability of recognizable tree languages It is well-known that over
strings (which can be viewed as structures over the signature {(laba)a∈Σ,≺ns
}), FO[≺ns∗]-definable languages are exactly the class of star-free languages
(MP71, Sch65).
Over trees, several papers attempt to give algebraic characterizations of FO-
definable regular languages (or subclasses of). This has been considered for in-
stance in the thesis (Boj04), and the most recent paper (BS05b) gives an algebraic
characterization of FO[≺ns,≺ch]-definable ranked tree languages. This character-
ization yields a decision procedure to test whether a regular ranked tree language
is definable in FO[≺ns,≺ch]. This also holds for unordered unranked trees, but it
is still open for ordered unranked trees or even ranked trees with the descendant
relation.

Data values Recently, satisfiability of FO has been considered in (unranked)
trees with data coming from an infinite alphabet (BDM∗06). In particular, the
author consider a new predicate ∼ which holds between a node u and a node v
if u and v carry the same data-values. This is particularly relevant when consid-
ering XML documents without ignoring data-values. The authors prove that the
two-variable fragment FO2[∼,≺ch ,≺ns] is decidable in 3NEXPTIME, and gives
a NEXPTIME lower bound. Allowing more than three variables leads to undecid-
ability. It is still open whether FO2[∼,≺ch∗ ,≺ch ,≺ns] is decidable, but it is al-
ready known that FO2[∼,≺ch∗ ,≺ch] is decidable on strings (viewed here as unary
trees) (BMS∗06).

k-variable fragments On (possibly infinite) unordered trees of rank at most
d, it is known that FO[≺ch∗] is equivalent, with respect to closed formulas, to
FOmax (d,4)[≺ch∗] if d > 1, and to FO3[≺ch∗] if d = 1 (IK89). Over the first-order
vocabulary of unranked trees {≺ch∗ ,≺ns∗}, every FO[≺ch∗ ,≺ns∗] formula with
two free variables is equivalent to an FO[≺ch∗ ,≺ns∗] formula which uses at most
three free and bound variables, i.e. such that |var(φ)| ≤ 3 (Mar05b).

2.5. Monadic Second Order Logic (MSO) 27

2.5 MONADIC SECOND ORDER LOGIC (MSO)

Monadic Second-Order Logic (MSO) extends FO with set quantification. MSO
has established as a benchmark logic in the context of XML (NS02a, Nev02, NS00,
Lib06). Over trees, it is an expressive logic which is captured by the robust class
of regular tree languages (Tho97, TW68, Don70), node-selecting tree automata
(NS02a, NPTT05), attributed grammars (NV02), XML Schemas (MNSB06).

2.5.1 Syntax and Semantics

Let σ be a signature and X a set of first-order variables x, y and second-order vari-
ables X,Y . MSO[σ] formulas are inductively defined by the following grammar:

φ ::= R(x1, . . . , xn) | x ∈ X | ∃xφ | ∃Xφ | ¬φ | φ ∨ φ

As usual, ∀Xφ stands for¬∃X¬φ. The set of free-variables FVar(φ) is defined like
for FO[σ]-formulas, but second-order order variables are also taken into account.
LetM be a σ-structure. A valuation ρ maps first-order variables into elements of
Dom(M), and second-order variables into subsets of Dom(M). The satisfiabil-
ity relation M,ρ |= φ defined for FO[σ]-formulas naturally extends to MSO[σ]-
formulas, whereM,ρ |= x ∈ X if ρ(x) ∈ ρ(X), andM,ρ |= ∃Xφ if there exists
a set U ⊆ Dom(M) such thatM,ρ[X 7→ U] |= φ.
When speaking about unranked trees, we consider MSO formulas over the sig-
nature σunr(Σ) = {≺fc,≺ns, (laba)a∈Σ), as other predicates are all definable in
MSO as for instance:

x ≺ns∗ y = ∀X (x ∈ X∧(∀z, z′ z ∈ X∧z ≺ns z
′ =⇒ z′ ∈ X)) =⇒ y ∈ X

In other words, it means that all subsets X closed by the next-sibling relation and
containing x also contains y. x ≺ch∗ y is defined similarly.
As for FO, MSO can be viewed as a query language, where queries are defined by
formulas whose free-variables are first-order. Those queries are often referred as
MSO-queries or regular queries.
Free second-order variables can also be used to define n-ary queries, by taking the
cartesian products of the selected sets. For instance, the binary query defined by
φ(X,Y) is equivalently definable by φ′(x, y) = ∃X∃Y, x ∈ X∧y ∈ Y ∧φ(X,Y).
However in this thesis queries are always assumed to be defined by using first-order
variables.

2.5.2 Correspondence between MSO and recognizable languages

The first correspondence between MSO and recognizable languages was first es-
tablished by Büchi on strings (Büc60). It states that the class of MSO-definable
string languages is exactly the class of string languages recognizable by a finite
automaton. This result was extended to binary trees by Thatcher, Wright (TW68),
and Doner (Don70). In those paper, MSO is called WS2S, for weak second order
logic with two successors. Weak means that set quantification is over finite sets,
and the two successors are the first-child and second-child relations. The corre-
spondence also holds for unranked trees via a binary encoding (see, for example,
(CDG∗07)).

28 Chapter 2. Trees and Queries

Theorem 2.5.1 The class of MSO[σunr(Σ)]-definable unranked tree languages is effectively equal
to the class of recognizable unranked tree languages.

In other words, MSO[σunr(Σ)] and hedge automata are equally expressive, and
the back and forth translations are effectively computable. In particular, for all
MSO[≺ch ,≺ns] sentence φ, there exists an FHA Aφ such that:

{t ∈ Tunr(Σ) | t |= φ} = L(Aφ)

Conversely, for all FHA A, there exists an MSO[≺ch ,≺ns] sentence φA such that:

L(A) = {t ∈ Tunr(Σ) | t |= φA}

The size of Aφ however might be non-elementary5 in the size of φ, and this com-
plexity is sometimes unavoidable (SM73a). Since emptiness of hedge automata is
in PTIME, decidability of MSO[≺ch ,≺ns] is obtained as a corollary of Theorem
2.5.1. It is also known that this problem requires non-elementary time as worst
case, and this is a lower bound (Mey73, Sto74).
Actually, the theorem is also proved for formulas with free variables. The usual
way to represent instances of free node variables in a tree is to extend the alphabet
with Boolean tuples. Let t ∈ Tunr(Σ), and U ⊆ Dom(t). We let χt,U the tree over
{0, 1} which has the same shape as t and such that all nodes of Dom(χt,U) − U
are labeled 0, and all other nodes are labeled 1. We denote by t×χt,U the tree over
Σ × {0, 1} whose labels are obtained by concatenation of the respective labels of
t and χt,U . This operation is obviously associative, and χt,U1,U2,...,Un stands for
χt,U1

× χt,U2
× · · · × χt,Un . This is again obtained from (TW68, Don70) and

extended to unranked trees via a binary encoding:

Theorem 2.5.2 For all MSO[σunr(Σ)] formula φ(x1, . . . , xn, Xn+1, . . . , Xm) with m free first-
order and second-order variables, there is a (computable) FHA Aφ over Σ ×
{0, 1}m such that:

L(Aφ) = {t× χt,{u1},...,{un},Un+1,...,Um | t |= φ(u1, . . . , un, U1, . . . , Um)}

Conversely, for all FHA A over Σ × {0, 1}m, there is a (computable)
MSO[σunr(Σ)]-formula φA(X1, . . . , Xm) with m free second-order variables
such that:

L(A) = {t | t |= φ(π1t, . . . , πmt)}

where for all i ∈ {1, . . . ,m}, πit = {u ∈ Dom(t) | πi+1(labt(u)) = 1}.

2.5.3 MSO: State of the Art

Satisfiability of MSO over finite trees have been presented in the previous section.
Relationship between MSO and automata on other structures (finite and infinite
word and trees) is surveyed by Thomas (Tho97).

5A function f : N → N is elementary if it can be formed by several elementary operations in a
bounded manner. The operations are not detailed here but elementary functions were introduced in
(Grz53). You can also see (FG02) for a more recent definition. What is important however is that a
function is elementary iff it is bounded by a tower of exponentials of fixed height.

2.5. Monadic Second Order Logic (MSO) 29

Beyond trees A natural question is whether satisfiability of MSO is still decid-
able on finite graph structures. This question has been investigated in several pa-
pers by Courcelle and Engelfriet (Cou94, CE95, Cou97, EvO97). In particular,
they consider graph decompositions that yield classes of graphs that are repre-
sentable by terms over particular graph operations (in particular, graphs of bounded
tree-width and bounded clique-width). Courcelle introduces transductions defined
by MSO formulas (called MSO-transductions) (Cou94, Cou97). In essence, to de-
fine a transduction from a σ-structure to a σ′-structure, one creates k copies of the
input domain (for a fixed k) filtered by kMSO[σ]-formulas ψ1(x), . . . , ψk(x) with
one free variable. This defines the domain of the output structure. Relations R′ of
the output σ′-structure are also defined by MSO[σ]-formulas φR′,i with ar(R′) free

first-order variables, where i ∈ {1, . . . , k}ar(R′) is a tuple that specifies the corre-
spondence between copies of the input domain and free variables of φR′,i. This is
a rough description of MSO-transductions, as in particular parameters (by means
of additional free variables to formulas) can be used to make the transduction non-
functional. MSO-transductions are closed by composition, and the image of any
class of structures on which MSO is decidable by an MSO-transduction forms a
class of structures on which MSO is also decidable (Cou94, Cou97). The class
of graphs of bounded clique-width is the image of a regular set of (binary) trees
by an MSO-transduction (CE95, EvO97). This also holds for trees of bounded
tree-width. Hence MSO (over the vocabulary of graphs, ie with a binary edge rela-
tion E) is decidable on the classes of graphs of bounded tree-width and graphs of
bounded clique-width respectively. The converse has been conjectured by Seese:
any set of graphs with decidable MSO theory has a bounded clique-width (See91).
Recently, Courcelle and Oum have proved this conjecture for the extension ofMSO
with a counting modulo 2 predicate Even(X) which holds if X has an even car-
dinality (CO07). This results weakens the Seese’s conjecture as the extension of
MSO with counting modulo 2 is strictly more expressive than MSO.

Model-checking The model-checking of MSO is known to be PSPACE-
complete, even on trees (Sto74, Var82).
However, it is linear on trees if the formula is fixed (with a non-elementary con-
stant factor). It suffices to construct from a formula φ an FHA Aφ equivalent to
φ: model-checking of φ on a tree t reduces to membership of t to L(Aφ). Model-
checking of MSO can be viewed as a parameterized problem, where ‖φ‖ is the pa-
rameter. Parameterized problems are usually problems with two inputs p, i, the size
of p (‖p‖, called the parameter) being very small comparing to the size of i (‖i‖), so
that even an exponential in ‖p‖would still be tractable (See96). This is particularly
relevant when for instance φ is a small query and t is a very large XML document.
A problem is fixed-parameter tractable if it can be solved in time f(‖p‖)poly(‖i‖),
for some computable function f and some polynomial poly. Model-checking of
MSO on trees is fixed-parameter tractable (where ‖φ‖ is the parameter), but in this
case f is non-elementary. Frick and Grohe prove in (FG02) that it is unavoidable,
even on strings. In particular, unless P = NP , there is no model-checking algo-
rithm for MSO on strings (with a linear order predicate) whose time complexity
is bounded by f(‖φ‖)poly(‖t‖), for an elementary function f and a polynomial
poly. Courcelle proves that it is still fixed-parameter tractable (and even linear in
the size of the structure) on the class of graphs of bounded tree-width (Cou90a).
A logic closed to MSO, called ETL (Efficient Tree Logic) is introduced in (NS00).
The main ingredients of ETL are guarded quantification and new constructors

30 Chapter 2. Trees and Queries

(MSO-definable) that allow vertical and horizontal navigation by means of regular
expressions of ETL formulas. ETL has the same expressive power as MSO (w.r.t.
unary queries) over unranked trees, while its model-checking problem is linear in
‖t‖ and doubly exponential in ‖φ‖. This can be reduced to a single exponential
when considering an equally expressive fragment of ETL.

FO with transitive closure FO + TC is the extension of FO with a transitive
closure operator. In particular, for all FO + TC-formulas φ(x, y, z) where x, y
are tuples of variables of the same length n, for all tuples of variables α, β of
length n, TCx,y[φ(x, y, z)](α, β) is interpreted as follows: once the interpretation
of z is fixed by some tuple of elements w, the formula φ(x, y, w) defines a binary
relation between tuples of elements of size n, and the TC operator allows one to
take its transitive closure, starting from a tuple denoted by α and going to a tuple
denoted by β. Formally, on a structure M modulo an assignment ρ, if we denote
by R∗φ(x,y,ρ(z)) the transitive closure of the binary relation defined by φ(x, y, ρ(z))

on Dom(M)n, we have:

M,ρ |= TCx,y[φ(x, y, z)](α, β) iff (ρ(α), ρ(β)) ∈ R∗φ(x,y,ρ(z))

DTC is the deterministic transitive closure, meaning that the transitive closure can
be defined on functional binary relations only. TCi is the transitive closure of
FO+TCi-definable binary relations on tuples of size i. posTC is the positive tran-
sitive closure, meaning that the TC operator cannot occur below an odd number of
negations. FO+posTC can express all properties expressible by a nondeterministic
Turing machine running in logarithmic space (Imm87). Therefore, posTC is more
expressive than MSO on unranked trees and is even undecidable. FO + posTC1

is strictly less expressive than MSO over ranked trees (BSSS06b). It has been re-
cently proved that it also holds for FO + TC1 over unranked trees, ie FO + TC1 is
strictly less expressive than MSO over unranked trees (tCS08). However it is still
unknown whether the inclusion of FO + posTC1 into FO + TC1 is strict (tCS08).

Answer Enumeration for MSO-queries As the number of answers to an n-
ary query defined by an MSO-formula might be very large, instead of outputting
all the answer tuples of the query, it might be convenient to output all answer
tuples one by one, with a reasonable delay between two consecutive answers. A
preprocessing phase is often needed to precompute a data-structure from which
enumeration can be done efficiently. Of course, this preprocessing phase has to
be done more efficiently than computing directly all the answers. Enumeration
for MSO queries in trees has been investigated in two papers (Bag06, Cou07). In
(Bag06), it is proved that the answer tuples to a query defined by a fixed formula
φ(x1, . . . , xn) on a ranked tree t can be enumerated with preprocessing phase in
time O(‖t‖) and a delay O(n) between two consecutive answers. If the query is
given by a FTA Aφ on Σ × {0, 1}n (see Section 2.6 for the relationship between
n-ary queries and tree automata), the preprocessing phase is in O(‖Aφ‖

3‖t‖) and
the delay is inO(n). This result still holds for graphs of bounded tree-width (hence
for unranked trees).

2.6 TREE AUTOMATA AS A QUERY LANGUAGE

By Theorem 2.5.2, all MSO[σunr(Σ)]-formula φ(x1, . . . , xn) defines a recogniz-
able unranked tree languages over Σ × {0, 1}n. Conversely, an unranked tree

2.6. Tree Automata as a Query Language 31

language L over Σ × {0, 1}n represents an n-ary query Q(L) which associates
with every tree t ∈ Tunr(Σ), the set Q(L)(t) defined by:

Q(L)(t) =
⋃

U1,...,Un⊆Dom(t), t×χU1,...,Un
∈L

U1 × · · · × Un

Theorem 2.5.2 implies that L is recognizable iff Q(L) is definable by an MSO-
formula φ(X1, . . . , Xn) with n free second-order variables. This is again
equivalent to say that Q(L) is definable by an MSO-formula φ′(x1, . . . , xn)
with n free first-order variables. It suffices to take φ′(x1, . . . , xn) =
∃X1 . . .∃Xn, φ(X1, . . . , Xn) ∧

∧n
i=1 xi ∈ Xi. It means in particular that the

representation of a query by a language over Σ×{0, 1} is not unique: there might
be two different languages L,L′ ⊆ Tunr(Σ × {0, 1}) such that Q(L) = Q(L′).
Let L be the language over Σ × {0, 1}n associated with φ′(x1, . . . , xn), as in
Theorem 2.5.2. For all t ∈ L, and all i ∈ {1, . . . , n}, there exists a unique node
u ∈ Dom(t) such that πi+1labt(u) = 1. We say that L is canonical.
FHA over Σ × {0, 1}n have the same expressive power as MSO-queries. This
leads to another formalization of query by tree automata, by putting the Boolean
values into the states. Some states are then used to select components of the output
tuples. These states are called selecting states. More formally, given an FHA
A = (Σ, Q, F,∆), A is extended with a set of selection states S ⊆ Qn. (A,S)
defines the n-ary query Q(A,S) by:

Q(A,S)(t) = {(u1, . . . , un) | there exists a successful run r on t
such that (labr(u1), . . . , labr(un)) ∈ S}

The tuple (u1, . . . , un) is said to be selected by r. Those queries are called exis-
tential run-based queries in (NPTT05). Another notion of queries exist, where it
is required that the tuple is selected by all successful runs (called universal run-
based queries). This distinction is also made in (NS02a), for attributed grammars
(described further). However, existential and universal run-based queries have the
same expressive power. The restriction whereA is deterministic, although it enjoys
good complexity properties, is strictly less expressive than MSO for n-ary queries.
The idea to add selecting states to tree automata to turn them into query languages
appears in several papers. In (FGK03), FTA are extended with selecting states
to get the so called (monadic) selecting tree automata and they are extended to
selecting hedge automata. Selecting tree automata need to be non-deterministic to
get the power of monadic MSO-queries. The (monadic) query evaluation problem
for a selecting tree automata A on a tree t is in time O(|Q|3‖t‖), where Q is the
set of states of A. Actually this framework is used to query compressed trees, ie
DAG representations of trees with maximal sharing of common subtrees, and it is
proved that the (monadic) query evaluation problem is in time 2O(|Q|)‖t∗‖, where
t∗ is a compressed tree.
Selecting tree automata (STA) are extended to n-ary queries (and proved to cap-
ture n-ary MSO-queries) in (NPTT05), and the authors propose unambiguous STA
which allow one to evaluate the query in polynomial-time, both in the size of
the input and the output. An STA is unambiguous if there is at most one suc-
cessful run per tree. Unambiguous STA have the same expressive power as STA
with respect to unary queries, but form a strict subclass of STA with respect to
more general n-ary queries. The complexity of query evaluation for STA queries
is improved in (Bag06). In particular, it is proved that the answers to an n-ary

32 Chapter 2. Trees and Queries

query defined by an STA A on a tree t can be enumerated with a delay O(n)

and preprocessing O(‖A‖
3

‖t‖). This gives a query evaluation algorithm in time
O(‖A‖3‖t‖+ n|Q(A)(t)|), where Q(A)(t) is the answer set.
To express unary queries on unranked trees, a deterministic tree automata model
is proposed in (NS02a), called query automata, and are equally expressive as
(monadic) selecting tree automata. They consist in two-way automata (Mor94)
with selecting states which can move up and down in the tree along cuts of the
tree. Two-way deterministic string automata are used for horizontal traversing of
the children of a node u, in order to assign a new state to u. These kind of transi-
tions cannot be used more than once per sequences of children. The authors prove
EXPTIME upper and lower bounds for the satisfiability, the containment, and the
equivalence problems for unary queries defines by query automata.

Other n-ary query formalisms inspired by language theory Attribute Gram-
mars were proposed in (NV02) as an n-ary query language. Attribute values are
used to select the nodes. Boolean Attribute Grammars (BAG) are proposed for
unary queries, and are equally expressive as unary MSO-queries. Relation At-
tribute Grammars extends BAG with the ability to query n-tuples of nodes. They
are strictly more expressive than n-ary MSO-queries. Attribute grammars are ex-
tended to unranked trees in (Nev00) by allowing regular expressions in right-hand
sides of production rules. There are studied in their unary setting only. The empti-
ness and equivalence problems are proved to be EXPTIME-complete.
Streaming tree automata (STA) are proposed in (GCNT08) as a querying formal-
ism for XML streams. These are visibly pushdown automata, already described in
Section 2.3.2, which run on stream representations of unranked trees. An extended
alphabet Σ×{0, 1}n is considered to add a querying power to VPA. Motivated by
XML streaming applications, the authors give a query evaluation algorithm which
output the query results as soon as possible (optimality is proved) when reading
the stream linearly. STA over Σ× {0, 1}n captures n-ary MSO-queries. This idea
of earliest query answering has also been investigated in (Ber06) and in (BJ07) in
the context of XPath queries.
Forest grammars are proposed in (BS04a) as a formalism for n-ary queries in un-
ranked trees. Rules have the form X →< a > r < /a >, where r is a regular
expression of non-terminal symbols. Such a grammar generates well-balanced se-
quences of opening and closing tags, or equivalently, linear representations of un-
ranked trees. Special non-terminal symbols are used to select nodes. An evaluation
algorithm for binary queries is presented which runs in worst-case time complexity
O(‖F‖(|A|+ s.‖t‖) for a binary query defined by a forest grammar F on a tree t,
where A is the set of answers, and s is the number of first and second components
of solution tuples, ie s = |π1(A)|+ |π2(A)|.

2.7 SCHEMA LANGUAGES

This section describes the main schema languages. The following overview is
not exhaustive since this thesis is mainly concerned with n-ary query languages
for unfixed n. We only formally define what is needed in the rest of this thesis.
However a complete overview can be found in the last chapter of (CDG∗07), or in
(Sch07).

2.7. Schema languages 33

2.7.1 Document Type Definition

Schema languages express constraints on the structure of XML documents. There
are many schema languages. One of the most widely used is the W3C standard
Document Type Definition (DTD) (BPSM∗06). Basically DTDs are context-free
grammars whose right-hand sides are regular expressions over terminal and non-
terminal symbols. The set of derivation trees define the set of XML documents
satisfying the DTD. For instance, the following DTD d constraints the XML doc-
uments to describe a (simplified) DVD store (store is the start symbol):

store → used new
used → dvd∗

new → dvd∗

dvd → title price year?
title → PCDATA
price → PCDATA
year → PCDATA

The terminal PCDATA means that under the tag Title for instance, any chain of
characters is allowed. Trees that satisfies d have the following form:

store

used

dvd

title

Pirates

price

20

year

1986

new

dvd

title

Juno

price

25

year

2008

dvd

title

Redacted

price

25

DTDs cannot express all recognizable unranked tree languages. This is because the
type of the children of a node is determined by the label of the parent, regardless
its context. In particular, DTDs have the exchange property: if a tree t satisfies a
DTD, and two of its subtrees have the same root label, one of the subtree can be
substituted by the other while remaining satisfied by the DTD. Languages having
this property are called local languages (MLM01).
A lot of works have been done on DTDs, for instance to lower the complexity of
validating a document (BKW98) with respect to a DTD. In (MNS04), a complete
picture of the complexities of inclusion, equivalence, and intersection problems for
different fragments of DTDs is given. In particular, inclusion of DTDs is PSPACE-
complete but in PTIME if the regular expressions of the production rules are one-
unambiguous.
As it is needed in this thesis, we formalize DTDs. A DTD d over a finite alphabet
Σ is a pair (s, δ) where s ∈ Σ is the start symbol and δ maps any symbol a ∈ Σ
to a regular expression ea over Σ. Regular expressions over Σ are generated by

34 Chapter 2. Trees and Queries

the grammar e ::= a ∈ Σ | e + e | e.e | e∗ | ǫ. The set of (unranked) trees L(d)
accepted by d is L(s), where L is defined by:

L(ǫ) = 0

L(a) = {a(h) | h ∈ L(δ(a))}
L(e1 + e2) = L(e1) ∪ L(e2)
L(e1.e2) = L(e1) | L(e2)
L(e∗) = 0 ∪

⋃
i>0 L(e)| . . . |L(e)︸ ︷︷ ︸

i times

2.7.2 Extended DTD

In the DTD representing a dvd store given previously, one may want to constraint
the used dvds to have a field year, which is useless for new dvds. This is not
expressible with DTDs. In (PV00), DTDs are extended to overcome this lack of
expressiveness to the so called extended DTDs. The idea is to add an (optional)
type to the non-terminals in order to take the context into account (of course types
do not appear in the derivation trees). The previous requirement is now expressible:

store → used new
used → (dvd,UsedDvdType)∗

new → (dvd,NewDvdType)∗

(dvd,UsedDvdType) → title price year
(dvd,NewDvdType) → title price
title → PCDATA
price → PCDATA
year → PCDATA

Formally, an extended DTD d′ over Σ is a pair (d, T) where T is a finite set (of
types) and d is a DTD over Σ × T . The language accepted by d′, denoted L(d′),
is:

L(d′) = {π1t ∈ Tunr(Σ) | t ∈ L(d′)}

where π1t is the first projection of t, obtained by projecting away each second
component of its labels. Note that an extended DTD where T is a singleton is a
DTD. From (PV00) we know that:

Theorem 2.7.1 Extended DTDs and hedge automata can define exactly the same unranked tree
languages.

2.7.3 Other schema languages

Several schema languages extend the expressive power of DTDs with types, like
for extended DTDs, to name just a few: XML Schemas (FW04), Relax NG
(CM01). They are studied in particular in (MNSB06, MLM01).

2.8 XPATH 1.0 AND 2.0

The W3C standard XPath (BBC∗07) is a language for the description of paths in
XML documents. It is used in the node selecting core of several other W3C stan-
dards: for instance in the query language XQuery (BCF∗07), in the transformation
language XSLT (Cla99), in the schema language XML Schema (FW04), or in the

2.8. XPath 1.0 and 2.0 35

addressing language XPointer (DMJ01). Some of these standards are based on the
first version of XPath, XPath 1.0 (CD99). The second version of XPath, XPath
2.0 (BBC∗07) extend XPath 1.0 with richer data-types, variables, quantifiers, and
Boolean operators on path expressions. One of the motivation of the W3C was
to turn XPath into a query language, and to make its navigational core expressive
power closer to first-order logic (Kay08). Consider now an example. The follow-
ing path expressions,

//dvd[/year]/title

produces the titles of DVDs for which the year is specified. ’//’ denotes descendant,
’/’ denotes child, and ’[]’ denotes a test expression. When a path expression is
applied from the root, it produces a set of nodes, so that XPath is viewed as a
unary query language. However, path expressions can be applied from any starting
node, making XPath a navigational language to navigate in the tree from starting
nodes to ending nodes. Therefore XPath can be viewed more generally as a binary
query language. XPath has a lot of features that renders it undecidable, such as
manipulation of arithmetical data-values. Moreover its description proposed by
the W3C is very large. Hence clean fragments of XPath, which in essence consists
of its navigational core, have been extracted.
Gottlob, Koch, and Pichler (GKP05) define CoreXPath or synonymously CoreX-
Path1.0, the navigational core of XPath 1.0.
Ten Cate and Marx (tCM07) distinguish the counterpart CoreXPath2.0. Since vari-
ables are allowed in CoreXPath2.0, it can be viewed as an n-ary query language.
Moreover, quantifiers are provided as primitives, so that CoreXPath2.0 is equally
expressive as n-ary FO queries modulo linear time transformations (see Section
4.2 for the translation). This implies PSPACE completeness of model checking
for CoreXPath2.0, so that one cannot hope for polynomial time query answering
except if P=PSPACE.
In this thesis, we distinguish a polynomial time fragment of CoreXPath2.0 which
still captures the class of all n-ary FO queries, while allowing for polynomial time
query evaluation in the size of the answer set, the query, the tree t, and tuple width
n.

2.8.1 Syntax and Semantics

CoreXPath1.0 is first defined and then extended to CoreXPath2.0. In CoreX-
Path1.0, ’/’ is interpreted as the composition of path expression. Basic paths ex-
pressions relate nodes to their parent, child, descendant, ancestor, etc... These
expressions are called axis. All XPath axis and their interpretation are depicted
in Fig. 2.5. We denote by Axis the set of XPath axis. Every axis a ∈ Axis
is interpreted in an unranked tree t over an alphabet Σ as a binary relation
JaKtaxis ⊆ Dom(t) × Dom(t) of nodes. It relates a starting node from which an
ending node can be reached by following a. For instance in an unranked tree t:

JselfKtaxis = {(u, u) | u ∈ Dom(t)}
JchildKtaxis = {(u, v) | u, v ∈ Dom(t) ∧ u ≺tch v}
JdescendantKtaxis = {(u, v) | u, v ∈ Dom(t) ∧ u ≺tch+ v}

CoreXPath1.0 expressions consist of path expressions P to navigate in the tree and
test expressions T to test properties of nodes. Similarly to axis, path expressions P

36 Chapter 2. Trees and Queries

Figure 2.5: XPath axes starting from the bold node (picture taken from (Shi08))

are interpreted as binary relations JP Ktpath ⊆ Dom(t)×Dom(t) while test expres-
sions T are interpreted as unary relations JT Kttest ⊆ Dom(t). The syntax of CoreX-
Path1.0 is given in Fig. 2.6 and its semantics in Fig. 2.7. XPath path expressions P
can be viewed as binary queries with the interpretationQpath,2(P) = t 7→ JP Ktpath,
but they are generally considered as unary queries Qpath,1(P), by taking the root
as starting node: Qpath,1(P)(t) = {u | (roott, u) ∈ JP Ktpath}. Each time the inter-
pretation of XPath expressions is ambiguous we specify whether we take the unary
or binary query point of view.
The following unary CoreXPath1.0 query

descendant :: dvd[?child :: year]/child :: title

selects all nodes labeled by titles of DVDs for which the year is provided.
The following binary query allows one to reach any node wherever it starts:

nodes = ancestor_or_self :: ∗/descendant_or_self :: ∗

CoreXPath2.0 extends CoreXPath1.0 with node variables $x (from a countable set
of variables X), quantified path expression for $x in P1 return P2, relative com-
plements P1 except P2 and intersections P1 intersect P2. The syntax of CoreX-
Path2.0 expressions is given in Fig. 2.8. A variable path expression $x requires
to move from the current node to the node pointed by $x. This value can be con-
strained further by node equality constraints in test expressions [$x is .] to test

2.8. XPath 1.0 and 2.0 37

Axis := s e l f | c h i l d | parent | descendant | descendant_or_sel f

| ancestor | ances to r_o r_se l f | f o l l o w i n g _ s i b l i n g

| f o l l o w i n g | p reced ing_s ib l i ng | preceding

NameTest := a | ∗ where a ∈ Σ
Step := Axis : : NameTest

PathExpr := Step | PathExpr / PathExpr | PathExpr union PathExpr

| PathExpr [TestExpr]

TestExpr := ?PathExpr | not TestExpr | TestExpr and TestExpr

Figure 2.6: Syntax of Core XPath 1.0

Jax::aKtaxis = {(v1, v2) ∈ JaxKtaxis | labt(v2) = a}
Jax::∗Ktaxis = JaxKtaxis
JP1/P2K

t
path = JP1K

t
path ◦ JP2K

t
path

JP1 union P2K
t
path = JP1K

t
path ∪ JP2K

t
path

JP [T]Ktpath = {(v1, v2) ∈ JP Ktpath | v2 ∈ JT Kttest}

J?P Kttest = {v | ∃v′ ∈ Dom(t), (v, v′) ∈ JP Ktpath}

Jnot T Kttest = Dom(t)− JT Kttest
JT1 and T2K

t
test = JT1K

t
test ∩ JT2K

t
test

Figure 2.7: Semantics of Core XPath 1.0

whether the node bound to $x is equal to the current node, or [$x is $y], to test
node equalities. The size of path and test expressions ‖P‖ and ‖T‖ is the number
of symbols in these expressions. We write Var(P) and Var(T) for the set of free
variables in the respective expressions (defined similarly as for FO, where for$x is
viewed as a binder).
Since free variables may occur in expressions, we need to adapt the interpretation:
CoreXPath2.0 expressions P and T are interpreted on a tree t modulo some as-
signment of the tree variables of P and T respectively into the nodes of t. The
interpretations of P and T are respectively denoted JP Kt,αpath and JT Kt,αtest. Hence

JP Kt,αpath is a subset of node pairs of t while JT Kt,αtest is a subset of nodes of t. The
interpretation of CoreXPath1.0 expressions is naturally extended to interpretation
modulo an assignment. Hence we only give the semantics of the new expressions
of CoreXPath2.0, in Fig. 2.9. CoreXPath2.0 can be viewed as a navigational lan-
guage which selects nodes with variables along the navigation.
CoreXPath2.0 path expressions P with n free variables x1, . . . , xn can define n-ary
queries Q(P) by, for all t ∈ Tunr(Σ):

Q(P)(t) = {(u1, . . . , un) | JP K
t,[x1 7→u1]...[xn 7→un]
path 6= ∅}

2.8.2 Expressiveness and Complexity of CoreXPath1.0

A lot of works have been done on CoreXPath1.0. See (BK07) for an overview or
the survey (GKP03b).
Gottlob, Koch, and Pichler (GKP03a, GKP05) present an efficient algorithm for
answering monadic queries by path expressions P on trees t in time O(‖P‖.‖t‖).
This gives a quadratic binary query answering algorithm for CoreXPath1.0, in time
O(‖P‖.‖t‖2). The main evaluation trick of CoreXPath1.0 lies in that the set of

38 Chapter 2. Trees and Queries

NameTest := a | ∗ where a ∈ Σ
Step := Axis : : NameTest

NodeRef := . | $x where x ∈ X
PathExpr :=

Step | PathExpr / PathExpr | PathExpr union PathExpr

| PathExpr [TestExpr]

| NodeRef

| PathExpr i n t e r s e c t PathExpr

| PathExpr except PathExpr

| for $x in PathExpr return PathExpr

TestExpr := ?PathExpr | not TestExpr | TestExpr and TestExpr | CompTest

CompTest := NodeRef i s NodeRef

Figure 2.8: Syntax of CoreXPath2.0

J.Kt,ρpath = {(v, v) | v ∈ Dom(t)}

J$xKt,ρpath = {(v, ρ(x)) | v ∈ Dom(t)}

JP1 intersect P2K
t,ρ
path = JP1K

t,ρ
path ∩ JP2K

t,ρ
path

JP1 except P2K
t,ρ
path = JP1K

t,ρ
path − JP2K

t,ρ
path

Jfor $x in P1 return P2K
t,ρ
path = {(v1, v3) | ∃v2 ∈ Dom(t).

(v1, v2) ∈ JP1K
t,ρ
path and (v1, v3) ∈ JP2K

t,ρ[x 7→v2]
path }

J. is $xKt,ρtest = {ρ(x)}

J. is . Kt,ρtest = Dom(t)

J$x is $yKt,ρtest = {ρ(x) | ρ(x) = ρ(y)}

Figure 2.9: Semantics of the new expressions of CoreXPath2.0

successors Sa(N) = {u′ | ∃u ∈ N, a(u, u′)} of a set of nodes N by a standard
axis a, in a tree t, is computable in linear time O(‖t‖). This can be extended to
full CoreXPath1.0 expressions, so that computing SP (N), for some CoreXPath1.0
expression P , is in linear time O(‖P‖.‖t‖). The query evaluation complexity of
CoreXPath1.0 and several fragments of it are precisely characterized in (GKPS05),
where it is proved in particular that CoreXPath1.0 is PTIME-hard.
CoreXPath1.0, with respect to binary queries, has the same expressiveness as the
two-variable fragment of FO over unranked trees (MdR05). It is also shown in
(Mar05b, Mar05a) that closure of CoreXPath under path complementation can ex-
press all binary FO queries (on unranked trees).
Static analysis problems for CoreXPath1.0 (such as inclusion, satisfiability) are
considered in (Gen06, GL06, MS04, Woo03, NS02b). In particular, inclusion is
EXPTIME-complete.

2.8.3 Expressiveness and Complexity of CoreXPath2.0

CoreXPath2.0 is introduced in (tCM07), where query equivalence is shown to be
decidable via a complete axiomatization. Complexities of query inclusion for sev-
eral expressive fragments are given in (tCL07). Query evaluation complexity of an
FO-expressive CoreXPath2.0 fragment is studied in (FNTT07), and fully described
in Chapter 4. As we will see in Section 4.2, there is a linear embedding of FO in
unranked trees into CoreXPath2.0, and conversely.

2.8. XPath 1.0 and 2.0 39

Before the introduction ofCoreXPath2.0, the satisfiability problem for several frag-
ments of the full language XPath 2.0 have been considered in (Hid03), where a
tractability frontier is established.

2.8.4 XPath-like languages

In (Mar05a), Marx proves that a slight extension of CoreXPath1.0, called Condi-
tional XPath, that allows transitive closure (axis :: a[test])+ leads to FO expres-
siveness, with respect to binary queries. This is a kind of ’until’ operator to express
things like “do an axis step until test is false”. Like CoreXPath1.0 unary queries,
Conditional XPath unary queries P can be evaluated in time O(‖P‖.‖t‖) on trees
t (Mar04).
Regular XPath, the extension of CoreXPath1.0 with path equalities6 and transi-
tive closure of arbitrary path expressions is introduced in (tC06). It is shown that
over unranked trees, Regular XPath has the same expressive power with respect
to binary queries as FO∗, the extension of FO with transitive closure of formulas
with exactly two free variables (it is a fragment of FO+TC1 as exactly two free
variables are allowed). As a fragment of FO+TC1, which is strictly less expres-
sive than MSO, FO∗ is a strictly less expressive than MSO (tCS08). Another open
problem is to know whether the path equality is necessary (it is conjectured that it
is).
Fragments of CoreXPath1.0 that allow comparison of data-values are considered
in (BDM∗06), where it is shown that satisfiability and containment are decidable.

2.8.5 Caterpillars

XPath is basically a language to specify sequences of basic axis steps (given by
the axis), with the possibility to perform tests. This makes XPath a two-sorted
language, with path and test expressions. Another paradigm is to take regular ex-
pressions of basic axis steps. Hence there is only one sort of expressions. This is
the foundation of regular path queries, defined on edge labeled graphs in (ABS00),
which on trees are exactly the same as caterpillar expressions (BKW00). Caterpil-
lar expressions C are generated by the grammar:

axis := self | child | parent | left | right
test := a ∈ Σ | root | leaf | first | last
C := 0 | 1 | axis | test | C ∪ C | C ◦ C | C∗

Caterpillar expressions C are interpreted as binary relations JCK(t) on a tree t (or
equivalently as binary queries JCK), as follows:

6The path equality p ≈ p′ of two path expressions p, p′ is a test expression that holds at some
node u if there exists a node that can be reached from u both by p and p′

40 Chapter 2. Trees and Queries

JselfK(t) = {(u, u) | u ∈ Dom(t) JchildK(t) = {(u, v) | u ≺tch v}
JparentK(t) = {(u, v) | v ≺tch u} JrightK(t) = {(u, v) | u ≺tns v}
JleftK(t) = {(u, v) | v ≺tns u} JaK(t) = {(u, u) | labt(u) = a}
JrootK(t) = {(roott, roott)} JleafK(t) = {(u, u) | u is a leaf}
JfirstK(t) = {(u, u) | ¬∃v, v ≺tns u} JlastK(t) = {(u, u) | ¬∃v, u ≺tns v}
J0K(t) = ∅ J1K(t) = Dom(t)× Dom(t)
JC1 ∪ C2K(t) = JC1K(t) ∪ JC2K(t)
JC1 ◦ C2K(t) = JC1K(t) ◦ JC2K(t)
JC∗K(t) = (JCK(t))∗

where (JCK(t))∗ is the reflexive and transitive closure of JCK(t). Note that the
caterpillar expression 1 is useless since it is expressible by parent∗◦child∗. Cater-
pillar expressions are closely related to tree-walking automata (BKW00). As tree-
walking automata, caterpillar expressions are strictly less expressive than MSO
over unranked trees, with respect to binary queries. Moreover, their expressive-
ness is incomparable to FO, as caterpillar expressions somehow loose their way:
for instance, the query which selects all node pairs (u, u) such that the parent of
u is labeled a is not expressible. Goris and Marx add a loop operator loop(C)
that allow one to come back to the starting node (GM05). In particular, loop(C)
is interpreted by Jloop(C)K(t) = JCK(t) ∩ JselfK(t). This results in an extension
called looping caterpillars. Looping caterpillars captures FO on unranked trees,
with respect to binary queries. Their query evaluation problem is still polynomial
both in the size of the tree and in the size of the caterpillar. The authors also pro-
pose an MSO-complete extension with Monadic Datalog tests which still have a
tractable query evaluation problem. Finally, they characterize looping caterpillars
by tree walking automata with pebbles, with a restricted pebbling policy.
The idea to combine binary relations by the use of union, composition, and (pos-
sibly) transitive closure, but without variables, is not new. It is known in its most
recent version as the Tarski’s relation algebra (Tar41, NT77, Ng84, Mar05c). Be-
fore, several calculus of (binary) relations and their implications in mathematics
have been introduced by De Morgan, Peirce, and Schröder during the 19th Cen-
tury. The first paper on the topic has been written by De Morgan (dM60). See also
(Giv06) for the relationship to mathematics and (Pra92) for an historical overview.

2.9 TEMPORAL LOGICS

Temporal logics are used to describe properties of systems and their evolution in
time. Systems are usually modeled by possibly infinite labeled transition graphs.
Temporal logics are widely used in formal verification to check properties of soft-
ware and hardware systems for instance. Temporal logics include temporal opera-
tors to express things like “there is a node reachable from the current node which
satisfies some property” (eventuality), or “all nodes reachable from the current
node satisfies some property” (globality), or “there is path from the current node to
a node v such that some property P holds for all the inner-nodes of the path, and
v is the first node such that some other property P ′ holds” . On labeled transition
systems, the nodes are actually states, and edges represent state evolution in time.
Hence, the three last time operators can be described as follows: eventuality is the
fact that some property holds in a future state, globality is the fact that some prop-
erty holds in all future states, and the last operator is an until operator, meaning

2.10. Monadic Datalog and Conjunctive Queries 41

that the property P holds until P ′ holds. The existing temporal logics differ on
how they can describe the future.
Linear Temporal Logic (LTL) is a temporal logic where the future is viewed as
sequence of nodes, ie paths. Over strings, LTL is known to have the same ex-
pressive power as FO[≺ns∗] (Kamp’s Theorem). An analogous temporal logic for
trees is Computation Tree Logic (CTL) (and its extension CTL∗) (CE82). CTL∗

include a next operator, an until operator and an operator for eventuality, but, con-
trarily to LTL, more complex paths can be defined, in particular by exploiting
the branching structure of the tree. Let us denote by CTL∗[σ] the CTL∗ for-
mulas where the relations E belongs to σ. On finite binary trees, it is known
that CTL∗[≺ch1

,≺ch2
] = FO[≺ch∗ ,≺ch1

,≺ch2
] (HT87), with respect to Boolean

queries. Over unranked trees, past operators by which to follow inverses of the
binary relations of the signature are needed to get FO-completeness. This is called
CTL∗past in (BL05), where it is proved that over unranked trees, and with respect
to both Boolean and unary queries7, FO[≺ch∗ ,≺ns∗] and CTL∗past[≺ch ,≺ns] are
equally expressive. Satisfiability of CTL∗past[≺ch ,≺ns] is in EXPTIME.
The modal µ-calculus Lµ is a modal logic with (greatest and least) fixed points.
Although it has been introduced to describe properties of labeled transition graphs
(Koz83), we shall consider it in the context of trees. Over infinite binary trees,
it has been shown to capture MSO (Niw88, EJ91) (with respect to Boolean
queries). Over unranked trees, the µ-calculus has been studied in (BL05). See
also (Lib06) for a recent survey. With respect to Boolean queries, MSO[≺ch ,≺ns]
= Lµ[≺fc,≺ns]. If instead of the first-child relation the signature contains the child
relation, one has to add backward modalities (analogous to the past for CTL) to get
MSO-completeness. This expressiveness result also holds for unary queries. The
model-checking problem of formulas φ of the µ-calculus on acyclic labeled tran-
sition systems S is in time O(‖φ‖2‖S‖) (Mat02). Hence it also applies for tree
structures over {≺ns,≺fc}. This complexity can be reduced to O(‖φ‖‖S‖) when
considering the alternation-free µ-calculus, which is equally expressive as the µ-
calculus on acyclic structures (Mat02). The satisfiability problem is in EXPTIME,
even with backward modalities (Var98). In particular, the best known upper-bound
is in 2O(‖φ‖4log ‖φ‖), over arbitrary transition systems (GTW02). A logic based on
the µ-calculus, but designed for trees, is proposed in (Gen06, GLS07). It matches
the expressiveness of MSO over unranked trees, while allowing satisfiability test-
ing in 2O(‖φ‖).
The Propositional Dynamic Logic (PDL) is considered in (ABD∗05) in the context
of unranked trees. Its satisfiability is in EXPTIME but a characterization of its
expressiveness is still unknown.

2.10 MONADIC DATALOG AND CONJUNCTIVE QUERIES

Monadic Datalog has been proposed as a query language for unranked trees
(GK04). This is the restriction of Datalog (EF05) where lhs of rules are monadic.
By distinguishing a particular lhs, call the goal, monadic datalog programs can
defined unary queries. For instance, the following datalog program, whose goal is
Q, selects all nodes which are at an even distance from the root of the tree:

7Temporal logics describe properties of nodes in a labeled transition graphs. When restricted to
tree structures, formulas can be viewed as unary queries, and as Boolean queries if one considers the
root only (in particular, a tree is in the language defined by some formula φ iff its root satisfies the
property defined by φ) (BL05).

42 Chapter 2. Trees and Queries

Q(x) : − root(x)
Q(x) : − z ≺ch y, y ≺ch x, Q(z)

It is proved in (GK04) that Monadic Datalog over the predicates ≺fc,≺ns
, leaf, root, last-child8, and laba, a ∈ Σ has the same expressiveness as MSO[≺ch
,≺ns], w.r.t. unary queries. Indeed, they can simulate tree automata, thanks to
the fixpoint interpretation of the rules. Moreover, query evaluation of a monadic
datalog program p on an unranked tree t is in time O(‖p‖.‖t‖). Monadic datalog
is used as the core language of Elog, a language for visual data extraction on the
web (GKB∗04).

Conjunctive queries (CQ) over a signature σ are FO[σ] formulas of the form:

∃x φ(x, y)

where φ is a conjunction of atoms over σ. The set of conjunctive queries over
σ is denoted CQ[σ]. Thanks to free variables, conjunctive queries can – in-
deed – define queries. Complexity of conjunctive queries over arbitrary struc-
tures have been extensively studied, as they are very closed to SQL queries
(AHV95). Model-checking for CQ is NP-hard, but several tractable subclasses
has been introduced, for instance, acyclic conjunctive queries (ACQ) (Yan81),
which are defined through a notion of acyclicity of their query hypergraphs.
The main result for acyclic conjunctive queries φ is that they can be evaluated
in time O(‖D‖.‖φ‖.‖Q(φ)(D)‖), on a database D (Yan81). In (DG06), an
extension of ACQ with disequalities is introduced. The model-checking prob-
lem becomes NP-complete in combined complexity, but can be evaluated in
time O(f(‖φ‖).‖D‖.‖Q(φ)(D)‖.log2‖D‖), for some exponential f . See also
(BDG07) for recent result on answer enumeration for ACQs.

Tree-pattern queries are tree-shaped queries that intuitively correspond to
acyclic conjunctive queries over descendant and child axis, and label tests. They
are strictly less expressive than first-order logic and therefore less expressive than
the query languages proposed in this thesis. Many algorithms exist to eval-
uate tree-pattern queries but none of them is linear in the size of the output
(BKS02, JWLY03, Che06, ZXM07). However, evaluation of tree-pattern queries
is still an active research topic as in many practical cases they are sufficiently ex-
pressive.
In the binary setting, the acyclicity of a conjunctive query φ corresponds to the
acyclicity of its query graph9. CQ in trees over XPath axis are considered in
(GKS04), where a frontier of tractability is established.
Concerning expressiveness, union of ACQ whose atomic predicates are
FO[σunr(Σ)] with two free variables captures FO[σunr(Σ)], with respect to
n-ary queries (Mar05a). Actually, we state and prove a similar result in this thesis,
but with different techniques, and the proof also holds for MSO.

8Leaf is a unary predicate which holds for all leaves, and last-child is a binary predicate relating
a node to its last-child

9The query graph of φ is the graph where vertices are variables of φ and there is an undirected
edge between two vertices x and y if some atom P (x, y) or P (y, x) occurs in φ

2.11. Unordered Trees 43

2.11 UNORDERED TREES

XML documents are naturally ordered by the (total) order induced by their lin-
ear serialization (often called document order). This order is used to order the
sequences of children of the nodes. Although XML documents are usually mod-
eled by unranked ordered trees, this order might be sometimes irrelevant, for in-
stance when the tree represents records. Less work have been done on unordered
unranked trees. One way to measure the impact of ordering is by considering
order-invariance. An order-invariant query is a query which exploits an arbi-
trary order, but the choice of the order does not matter (in particular, the result
remains the same when choosing another order). Order-invariance is studied in
(BL05, Cou91, GS00, Lib04b, BS05a) (non-exhaustive).
While logics for ordered trees can use the order to define some counting proper-
ties of the nodes (for instance, counting the number of nodes labeled a modulo
in MSO), this cannot be done in unordered trees, so that usually counting con-
structions are natively added to logics. For instance, Counting MSO extends MSO
with counting modulo quantifiers to count cardinalities of definable sets modulo
(Cou90b). Other extensions or restriction of CMSO exist and their correspondence
with tree automata model for unordered trees are considered in (BT05). See also
(Lib06) for a survey.
Spatial logics have been used to express properties of structures such as unordered
trees (CG04), but also graphs (CGG02, DGG04) and heaps (Rey02). The main
ingredient of spatial logics are spatial connectives: basically, these connectives are
derived from operators that can be used to generate the domain of interpretation. In
the context of unordered trees, the Tree Query Logic (TQL) have been introduced
in (CG04) as a query language for semi-structured data. Its expressiveness and
satisfiability with respect to Boolean queries are studied in (BTT05, Bon06). The
variant of TQL on ordered trees – which is defined and studied in the second part
of this thesis – is mentioned as an interesting issue in (CG04, BTT05, Gen06).

2.12 n-ARY QUERY LANGUAGES

We can conclude from the previous sections that the literature is dominated by
query languages for Boolean or unary queries. Some of the formalisms previ-
ously introduced however allows one to define n-ary queries, such as attributed
grammars (NV02), tree automata (NPTT05), CoreXPath2.0, conjunctive queries
(GKS04). In this section, we survey other formalisms for n-ary queries.
XQuery is a W3C standard to – indeed – query XML documents (BCF∗07), by
which to select tuples of nodes and rearrange them into output trees. Its underlying
selection formalism is XPath. XPath (2.0) is now a subset of XQuery whose core
has been cleanly formalized, so that this thesis mainly concentrates on XPath 2.0
instead of XQuery. From a practical point of view, a lot of work attempt to optimize
XQuery queries, but its logical core has been formalized only recently (Koc05).
Several paper attempt to combine Boolean or unary queries to define n-ary queries.
In (Sch00), it is shown how to define n-ary queries by combining unary queries.
This is done by using regular path expressions over an alphabet of unary formulas
from some logic L. If L is unary FO (resp. unary MSO), then the full combination
language is FO (resp. MSO) expressive, wrt to n-ary queries. This idea is similar
to the logic ETL (NS00).
(ABL07) proposes a composition language to combine Boolean and unary queries.

44 Chapter 2. Trees and Queries

Sufficient expressiveness conditions on the basic Boolean and unary query lan-
guages are given to get an FO (resp. MSO)-complete query language. Model-
checking complexity of the combined language is then related to the model-
checking complexities of the basic query languages. In this thesis, we propose a
simpler, minimal and expressive composition language and mainly focus on query
evaluation for n-ary queries, which was left open by (ABL07), and was not con-
sidered in (Sch00).
XDuce (HP03a) and CDuce (BCF03b) are ML-like programming languages for
XML applications, and both include a type-checking system. CDuce extends
XDuce in that it is a real functional programming language including a richer
pattern-matching language, a richer type-system (with type functions), and para-
metric polymorphism. Regular expression patterns are the basis of their pattern-
matching languages. A regular expression pattern is built over tree variables, con-
structors of a hedge algebra and regular expressions. A linearity condition on
variables occurring in a pattern imposes that subtree equality tests cannot be per-
formed. In the second part of this thesis, we study the spatial logic TQL for ordered
trees which can also be viewed as an extension of the (recursive) pattern-language
of XDuce. The main difference here is that we allow Boolean operators and drop
the linearity condition for variables.

Part I

From Binary to Arbitrary Arity

Queries

45

3COMPOSING BINARY QUERIES

CONTENTS
3.1 INTRODUCTION . 49

3.2 COMPOSITION LANGUAGE . 51

3.2.1 Syntax and Semantics . 51

3.2.2 The non-variable sharing fragment Cnvs(L) 52

3.2.3 Examples . 52

3.3 RELATION TO FO AND CONJUNCTIVE QUERIES 54

3.3.1 Relation to FO . 54

3.3.2 Relation to Conjunctive Queries 56

3.4 QUERY NON-EMPTINESS AND QUERY EVALUATION 58

3.4.1 Query Non-Emptiness and Model-Checking 59

3.4.2 Query Evaluation . 61

3.5 EXPRESSIVENESS OF THE COMPOSITION LANGUAGE 63

3.5.1 Brief reminder on fundamental properties of finite model theory 63

3.5.2 FO and MSO completeness . 65

3.5.3 Composition of monadic queries over hedges 69

3.6 CONCLUSION . 70

THIS chapter introduces a composition language that combines binary queries
taken from some binary query language in order to define n-ary queries. Bi-

nary queries are used to navigate from a starting node to an ending node, while
first-order variables are used to define output tuples. The language is then closed
by disjunction and a form of conjunction. Expressiveness on unranked trees and
complexity of query evaluation are investigated. In particular, the composition lan-
guage is proved to be FO-complete (resp. MSO-complete) with respect to n-ary
queries as soon as the underlying binary query language is FO-complete (resp.
MSO-complete) with respect to binary queries.

47

3.1. Introduction 49

3.1 INTRODUCTION

Boolean and monadic queries have been intensively studied from theoretical and
practical point of views over last years. Several other formalisms, such as XPath,
can also be used to define binary queries. Less work has been done however on
n-ary queries (see Section 2.12 for an overview of the existing query languages).
Binary queries can be viewed as a way to relate a starting node to an ending node,
making possible some kind of navigation. This is particularly true for XPath path
expressions for instance, by which a sequence of basic navigation steps combined
with monadic tests allow one to define more complex binary relations. By adding
variables, a binary query language can naturally be extended into an full n-ary
query language: the idea is to use binary queries to navigate in the tree, and to
select output tuple components along the navigation thanks to variables.
In this chapter, we formalize this way of defining n-ary queries. In particular,
we propose a simple and foundational composition language C(L) that allows one
to combine binary queries – from an arbitrary query language L – to define n-
ary queries. The choice of the underlying binary query language L is parametric,
making the composition language generic.
Basically, this language turns any binary query language into a full n-ary query lan-
guage, by the use of composition, variables, disjunction and conjunction. Variables
are only used to select components of the output tuple, and there is no quantifier.
The semantics is given by binary relations of nodes, modulo some assignment of
the variables. Hence composition is naturally interpreted as composition of rela-
tions, and other Boolean connectives by the usual set operations on binary rela-
tions. The conjunction however is defined by means of filters, as in XPath. A filter
in the navigation is like a branching which splits the navigation. We introduce a
syntactic restriction, called the non-variable sharing, which forbids to repeat the
same variable on both sides of a composition. This restriction is crucial to get a
polynomial-time query evaluation algorithm (as soon as there is a polynomial-time
query evaluation algorithm for the underlying binary query language).
Concerning expressiveness, with respect to n-ary queries, we prove that the com-
position language is equally expressive as FO (resp. MSO) on unranked trees,
even with the non-variable sharing restriction, as soon as the binary query lan-
guage is equally expressive as FO (resp. MSO) with respect to binary queries. The
proof is standard and uses folklore results in the spirit of (Mar05a, Sch00, ABL07,
Tho84, MR03). It is based on Shelah’s composition method (She). The non-
variable sharing fragment without disjunction is closely related to acyclic conjunc-
tive queries. Adding disjunction to conjunctive queries is usually done by taking
union of disjunction-free conjunctive queries. Our composition language allows
one to use disjunction at arbitrary positions in the formula, while keeping the same
complexity bound for query evaluation as acyclic conjunctive queries over graphs.
Unary queries can also be used to navigate in the tree thanks to a domain restric-
tion called subhedge restriction. The nodes selected by a unary query are either
outputted as components of the answer or used to define a subdomain in which
other queries can be done. All the expressiveness and complexity results obtained
for binary query composition also apply to unary query composition.
Finally, in Chapter 4, we apply the composition language to study XPath fragments
that allow one to define n-ary queries.

50 Chapter 3. Composing Binary Queries

RelatedWork The idea of combining Boolean, unary, or binary queries to define
n-ary queries is not new.
Schwentick (Sch00) shows how to define n-ary queries by combining unary
queries by means of regular path expressions of unary formulas of several frag-
ments of FO. He states a decomposition lemma similar to Lemma 3.5.4, from
which he proves that combination of unary FO-queries is complete for n-ary FO
(Proposition 4.2 of (Sch00)). Our language however is simpler and has led to ex-
tensions of XPath with variables (as shown in the next Chapter). Moreover, we
were interested in query evaluation which was not considered in (Sch00).
Arenas, Barcelo and Libkin also present a composition language in (ABL07).
While we combine binary queries, they provide a mechanism to combine Boolean
and unary queries. Basically it consists of taking a Boolean query language L1 to
define words over an alphabet of sets of formulas taken from a unary query lan-
guage L2. Consider the shortest path from some node u to some node v. Every
node of this path satisfies in the tree a set of L2 unary formulas. Hence this path
can be mapped to a word w of sets of L2-formulas. The pair (u, v) is said to sat-
isfy χ(x, y) if w satisfies χ, where χ ∈ L1. This mechanism allows one to define
binary queries. On the other hand, terms t with variables are used to point nodes
of the tree. They are built over the signature containing a function symbol to take
the least common ancestor, and a root constant to point the root of the tree. Finally,
n-ary queries are defined by taking Boolean combinations of atoms χ(t, t′), where
t, t′ are terms and χ ∈ L1, as well as atoms of the form t ≺ch∗ t

′ and t ≺ns∗ t
′. The

authors give sufficient expressiveness conditions on the basic Boolean and unary
query languages to get an FO (resp. MSO)-complete query language (Theorem 2,
(ABL07)). In Theorem 3 of (ABL07), they relate the model-checking complexity
of the combined language to the model-checking complexities of the basic query
languages.
In the present chapter, we focus on query evaluation for n-ary queries, which was
left open by (ABL07), and our composition language is simpler. They investigate
model-checking only, where non-variable sharing does not matter. It is not clear
whether some fragment of the combination language of (ABL07) does correspond
to our fragment without variable sharing. It may be definable by introducing a
notion of acyclicity as in conjunctive queries, but it not as simple as our syntactic
restriction.
Proving FO and MSO-completeness for fragments of our composition language is
done via the Shelah’s decomposition method (She). The main part of the proof is a
folkore results about the decomposition of FO or MSO formulas into existentially
quantified Boolean combinations of binary FO or MSO formulas in the spirit of
(Mar05a, Sch00, ABL07, Tho84, MR03).

Organization of the chapter The composition language is introduced in Section
3.2. It is then related to FO over binary query atoms and conjunctive queries in
Section 3.3. Query evaluation of composition queries is investigated in Section
3.4. FO and MSO completeness are proved in Section 3.5 where a composition
language for unary queries is proposed.

3.2. Composition Language 51

3.2 COMPOSITION LANGUAGE

In this section, we first define the composition language and its non-variable shar-
ing fragment, and then give examples.

3.2.1 Syntax and Semantics

We start from a query language L = (QL, ar, ‖.‖,QL(.)) for binary queries – also
called basic queries – and a countable set X of variables. Remind that QL is a
set of query expressions interpreted by QL(.) as queries whose arity is given by
ar. The size of the query expressions is given by ‖.‖. The language L is extended
into a full n-ary query language by using a composition operator denoted by ◦,
disjunction, a form of conjunction, and free variables from X . Conjunctions are
simulated by test expressions like in XPath. Binary queries are used to navigate
in the tree, and free variables are used to select components of output tuples along
the navigation.
Formally, compositions are modeled by composition formulas. The set of compo-
sition formulas over binary queries from L is denoted by C(L), and composition
formulas φ are defined by the following abstract syntax:

φ ::= composition formula
 ∈ QL, binary query

| x x ∈ X , variable
| φ◦φ composition
| [φ] test
| φ ∨ φ disjunction

FVar(φ) denotes the set of free variables of φ (there are no bound variables), and
we write φ(x) to mean that the free variables of φ are exactly those forming the
tuple x. The set of subformulas of φ is denoted by Sub(φ).
Composition formulas are interpreted on unranked trees modulo some valuation
of their variables. In particular, as a navigation language, and similarly to CoreX-
Path2.0, a composition formula φ denotes a binary relation of the nodes of the tree
on which it is interpreted.
Let φ ∈ C(L), t ∈ Tunr(Σ) and ρ : FVar(φ) → Dom(t) be a valuation of the
variables of φ. The formula φ denotes on t a binary relation JφKt,ρ inductively
defined by:

JxKt,ρ = {(ρ(x), ρ(x)}
J Kt,ρ = QL()(t)
Jφ1◦φ2K

t,ρ = Jφ1K
t,ρ◦Jφ2K

t,ρ

J[φ]Kt,ρ = {(u, u) | ∃v, (u, v) ∈ JφKt,ρ}
Jφ1 ∨ φ2K

t,ρ = Jφ1K
t,ρ ∪ Jφ2K

t,ρ

Note that ◦ is associative, since the composition of binary relations is associative.
Hence we write φ1◦φ2◦φ3 instead of (φ1◦φ2)◦φ3 or φ1◦(φ2◦φ3).
Composition formulas φ with n-free variables1 x1, . . . , xn (given in order), when
starting the navigation from the root node, define n-ary queries as follows:

QC(L)(φ)(t) = {(u1, . . . , un) | ∃u ∈ Dom(t), (roott, u) ∈ JφKt,[x1 7→u1,...,xn 7→un]}

1As usual, we assume a linear order on the variables

52 Chapter 3. Composing Binary Queries

t = dvdstore 1

dvd 2

title 3 price 4 release 5

dvd 6

title 7 price 8 release 9

Figure 3.1: The tree t and their node identifiers

The size of a composition formula is the number of nodes of the term by which it
is represented, where basic query expressions are considered to be of constant size.
More formally, it is inductively defined by:

‖ ‖ = ‖x‖ = 1
‖φ1◦φ2‖ = ‖φ1‖+ ‖φ2‖+ 1
‖φ1 ∨ φ2‖ = ‖φ1‖+ ‖φ2‖+ 1
‖[φ]‖ = ‖φ‖+ 1

The arity ar(φ) of a composition formula φ is the number of free variables of φ.
Hence, C(L) can be viewed as the query language (C(L), ar(.), ‖.‖,QC(L)(.)).

3.2.2 The non-variable sharing fragment Cnvs(L)

As it will be shown in Section 3.5, the use of variables in composition formulas
can be restricted in such a way that variables are not shared by members of compo-
sitions. This can be done while keeping FO or MSO-completeness. This fragment
is called the non-variable sharing fragment, denoted Cnvs(L), for any binary query
language L. As shown in Section 3.4, this restriction is crucial for the complexity
of query evaluation.
Formulas of Cnvs(L) must satisfy the following property:

∀φ ∈ Cnvs(L), if φ1◦φ2 ∈ Sub(φ), then FVar(φ1) ∩ FVar(φ2) = ∅

The non-variable sharing restriction is also informally denoted by NVS(◦). For
instance x◦ ◦y◦ ′◦z and (x◦ ◦y) ∨ (x◦ ′◦[′′◦z]) satisfies NVS(◦) while
x◦ ◦y◦ ′◦x and x◦[◦y◦ ′◦x] do not.

3.2.3 Examples

Consider the tree t of Fig. 3.1 representing the XML document of a DVD
store (data values are omitted for the sake of clarity). The nodes of the
tree are represented by natural numbers, ie Dom(t) = {1, . . . , 9}. Let
γdvd(x, y), γtitle(x, y), γprice(x, y), γrelease(x, y) be four FO[σunr]-formulas defined
by:

γdvd(x, y) = x ≺ch y ∧ labdvd(y) γtitle(x, y) = x ≺ch y ∧ labtitle(y)

γprice(x, y) = x ≺ch y ∧ labprice(y) γrelease(x, y) = x ≺ch y ∧ labrelease(y)

The formulas γdvd, γtitle, γprice, γrelease define the binary queries Q(γdvd), Q(γtitle),
Q(γprice), Q(γrelease) respectively. Consider the composition formula

3.2. Composition Language 53

φ(x, y, z) = γdvd◦[γtitle◦x]◦[γprice◦y]◦[γrelease◦z]

Evaluation of φ is as follows. It starts from the root, and then goes down to
nodes labeled dvd. Then three filters are composed, each one selects nodes
labeled title, price and release respectively. Hence φ defines a ternary query
which outputs every triple of respective title, price and release date. In particu-
lar, Q(φ)(t) = {(3, 4, 5), (7, 8, 9)}. Formally, if we let ρ1, ρ2 be the valuations
defined respectively by:

ρ1(x) = 3 ρ1(y) = 4 ρ1(z) = 5
ρ2(x) = 7 ρ2(y) = 8 ρ2(z) = 9

we have:

JφKt,ρ1 = {(1, 2)}, hence (ρ1(x), ρ1(y), ρ1(z)) ∈ Q(φ(x, y, z))(t)
JφKt,ρ2 = {(1, 6)}, hence (ρ2(x), ρ2(y), ρ2(z)) ∈ Q(φ(x, y, z))(t)

The query defined by φ could equivalently be defined without tests. The idea is to
start from the root, and then go down to some node labeled title, select it with the
variable x, go to the right of its next-sibling (which is labeled price), select it with
the variable y, and so on. More formally, φ(x, y, z) is equivalent to

φ′(x, y, z) = γ∗title◦x◦γ≺ns◦y◦γ≺ns◦z
where γ≺ns(x, y) = x ≺ns y
and γ∗title(x, y) = x ≺ych∗ ∧ labtitle(y)

The following table details the interpretation of φ′:

Jφ′(x, y, z)Kt,ρ1 = {(1, 5)}

Jγ∗titleK
t,ρ1 = {(1, 3), (1, 7)}

JxKt,ρ1 = {(3, 3)}
Jγ≺nsK

t,ρ1 = {(3, 4), (4, 5), (7, 8), (8, 9), (2, 6)}
JyKt,ρ1 = {(4, 4)}
Jγ≺nsK

t,ρ1 = {(3, 4), (4, 5), (7, 8), (8, 9), (2, 6)}
JzKt,ρ1 = {(5, 5)}

Observe that the composition of the relations on the right is equal to {1, 5}. Equiv-
alently, φ′ can be expressed as a composition of CoreXPath1.0 path expressions
with variables, as follows:

(descendant :: title)◦x◦(nextsibling :: ∗)◦y◦(nextsibling :: ∗)◦z

This is again equivalent to the CoreXPath2.0 expression:

descendant :: title[. is $x]/nextsibling :: ∗[. is $y]/nextsibling :: ∗[. is $z]

We will see in Section 4.2 that CoreXPath2.0 and composition of CoreXPath1.0
expressions are closely related.

54 Chapter 3. Composing Binary Queries

3.3 RELATION TO FO AND CONJUNCTIVE QUERIES

In this section, we first relate C(L) and FO over binary atoms from L, and prove
that only two bound variables are needed to translate C(L) into FO. The given
translation can also be viewed as a reformulation of the semantics of composition
formulas by means of FO logic. Then we relate Cnvs(L) with and without dis-
junction to acyclic conjunctive queries (ACQs) or union of ACQs. Consequently
we can use known results about evaluation of ACQ to evaluate disjunction-free
Cnvs(L) formulas.

3.3.1 Relation to FO

Let L = (Q, ar, ‖.‖,Q(.)) be a binary query language. We denote by FO[L] the
first-order logic over atoms of the form (x, y), where ∈ Q. The size of an
FO[L] formula φ is the size of φ where query expressions are assumed to be of
size 1. For all i ∈ N, FOi[L] denotes its fragment which uses at most i bound
but possibly reused variables (a free variable which is bound elsewhere is therefore
also considered as a bound variable).
Remind that root is a constant symbol interpreted in a tree structure by the root of
the tree. It is needed in the translation from C(L) to FO[L] since C(L) formulas
express navigations starting from the root.

Proposition 3.3.1 1. FO[L ∪ root] captures C(L), wrt n-ary queries, modulo a linear time trans-
formation which produces a formula of linear size.

2. FO2[L ∪ root] captures C(L), wrt n-ary queries, modulo an exptime trans-
formation which produces a formula of exponential size.

Proof. 1. Let γ(x) be a C(L)-formula. It allows one to navigate from the root to
a node while selecting nodes by using variables from x. If one wants to define an
FO[L ∪ root] which defines the same query as Q(γ(x)), one needs to start from a
node and test that there is a node that can be reached from this node. Let x, y be
two variables which do not occur in x. We define the translation Lγ(x)Mx,y which
outputs an FO[L] formula with free variables x, y, x, and such that, for all trees
t ∈ Tunr(Σ), all node tuples u and nodes u, v:

t, [x 7→ u, y 7→ v, x 7→ u] |= Lγ(x)Mx,y iff (u, v) ∈ Jγ(x)Kt,u

The translation is inductively defined by:

LzMx,y = x = z = y
L Mx,y = (x, y)
L[γ]Mx,y = x = y ∧ ∃z LγMx,z z fresh
Lγ1 ∨ γ2Mx,y = Lγ1Mx,y ∨ Lγ2Mx,y
Lγ1◦γ2Mx,y = ∃z Lγ1Mx,z ∧ Lγ1Mz,y z fresh

Fresh means that the introduced variable is new and does not occur elsewhere.
Finally, we let φ(x) = ∃y Lγ(x)Mroot,y, and we get Q(φ(x)) = Q(γ(x)).

2. In the latter translation we had to introduce a variable denoting the starting node
and another variable for the ending node, and we had to memorize those variables
along the translation. This is needed to translate compositions γ1◦γ2, as γ1 might
be complex. This results in the introduction of a lot of bound variables. However,
we can assume a normal form which allows one to use only two bound variables in

3.3. Relation to FO and Conjunctive Queries 55

the translation. In particular, we say that γ ∈ C(L) is in normal form if for every
subformula γ1◦γ2 ∈ Sub(γ), γ1 is either a query expression of Q, a variable, or
a test. The normal formal can be obtained by applying exhaustively the following
rewriting rules (which preserve the semantics):

(γ1 ∨ γ2)◦γ3 → (γ1◦γ3) ∨ (γ2◦γ3)
(γ1◦γ2)◦γ3 → γ1◦(γ2◦γ3)

The size of the normal form however might be exponential in the size of the origi-
nal formula.
Assuming a formula γ(x) in normal form, we now give a new translation of it into
an FO2[L∪ root] formula defining the same query. Let x, y be two variables which
do not occur in x. For all α ∈ {x, y}, we denote by α̂ the variable y if α = x and
the variable x if α = y. Obviously, ̂̂α = α. We translate γ(x) into LγMα, where α
intuitively denotes the starting node of the navigation. It is defined inductively as
follows:

LzMα = z = α
L Mα = ∃α̂ (α, α̂)
Lγ1 ∨ γ2Mα = Lγ1Mα ∨ Lγ2Mα
L[γ]Mα = LγMα
Lz◦γMα = z = α ∧ LγMα
L ◦γMα = ∃α̂ (α, α̂) ∧ LγMbα

L[γ1]◦γ2Mα = Lγ1Mα ∧ Lγ2Mα

Note that this translation only introduces at most two bound variables. We now
have the following: for all α ∈ {x, y}, all trees t ∈ Tunr(Σ), all tuples u, and all
nodes u,

t, α 7→ u, x 7→ u |= Lγ(x)Mα iff ∃v (u, v) ∈ JγxKt,u

The proof goes by induction on formulas, but we only prove two cases, as the
others are either easy or similar:

• t, α 7→ u, x 7→ u |= L ◦γMα

iff t, α 7→ u, x 7→ u |= ∃α̂ (α, α̂) ∧ LγMbα (by definition)

iff there is v ∈ Dom(t) such that (u, v) ∈ Q()(t) and t, α̂ 7→ v, x 7→ u |=
LγMbα (since α is not free in LγMbα)

iff there is v ∈ Dom(t) such that (u, v) ∈ Q()(t) and there is w ∈ Dom(t)
such that (v, w) ∈ JγKt,u (by induction hypothesis)

iff there is w ∈ Dom(t) such that (u,w) ∈ J ◦γKt,u (by definition of the
semantics of composition formulas)

• t, α 7→ u, x 7→ u |= L[γ1]◦γ2Mα

iff t, α 7→ u, x 7→ u |= Lγ1Mα and t, α 7→ u, x 7→ u |= ∧Lγ2Mα (by defini-
tion)

iff there are v1, v2 ∈ Dom(t) such that (u, v1) ∈ Jγ1K
t,u and (u, v2) ∈

Jγ2K
t,u (by induction hypothesis)

iff there are v2 ∈ Dom(t) such that (u, u) ∈ J[γ1]K
t,u and (u, v2) ∈ Jγ2K

t,u

(by induction hypothesis)

iff there are v2 ∈ Dom(t) such that (u, v2) ∈ J[γ1]◦γ2K
t,u

56 Chapter 3. Composing Binary Queries

3.3.2 Relation to Conjunctive Queries

We study Cnvs(L) the fragment of C(L) where variable sharing is forbidden. In
particular, we show that union-free expressions of this language can be identified
with acyclic conjunctive queries (ACQs) over signature L. Adding union to CQs is
usually done by taking unions of CQs, but it is not clear how to add union to CQ at
arbitrary positions in the query. In particular, what would be the notion of acyclic-
ity of conjunctive queries with union? However, the composition language allows
one to manage unions without any restriction on the position where they occur,
while providing a rather simple notion of acyclicity (non-variable sharing between
the members of composition). In this section, we make this notions clearer.
As already said in section 2.10, since we consider binary atoms for conjunctive
queries, the notion of acyclicity of a CQ corresponds to the usual notion of acyclic-
ity of their (undirected) query graph.
Let ACQ[L] be the language of ACQs over L (defined similarly as FO[L]). We also
denote by ACQ∨[L] the set of disjunctions of ACQ[L] formulas. As for FO[L] and
C(L), we assume that the size of the query expressions does not amount in the size
of the formulas.

Proposition 3.3.2 Let L be a binary query language.

1. Every disjunction-free Cnvs(L) formula γ is equivalent to some ACQ[L ∪
root] formula ψ, modulo a linear-time transformation. Moreover, the trans-
formation preserves the query expressions, ie { | ∈ Sub(γ)} = { | ∈
Sub(ψ)};

2. Every Cnvs(L) formula γ is equivalent to some ACQ∨[L ∪ root] formula ψ,
modulo an exptime transformation which produces a formula of (at most)
exponential size. Moreover, the transformation preserves the query expres-
sions, ie { | ∈ Sub(γ)} = { | ∈ Sub(ψ)}.

Proof. For the first item, note that the translation of a composition formula γ in
the proof of item (1) of Proposition 3.3.1 produces a conjunctive query when γ
is disjunction-free, and this translation needs the root predicate. The produced
conjunctive query is acyclic when γ is acyclic. The proof is technical but easy.
For the second item, it suffices to distribute disjunctions upward by applying the
following rules exhaustively: (γ1 ∨ γ2)◦γ → (γ1◦γ) ∨ (γ2◦γ) and [γ1 ∨ γ2] →
[γ1] ∨ [γ2]. Note that the resulting formula might be of exponential size.

Disjunction-free formulas of Cnvs(L) can be identified with ACQs over L, provid-
ing L is closed by intersection and inverse2 (which is the case for instance for FO
binary queries):

Proposition 3.3.3 Let L be a binary query language closed by inverse and intersection.
Cnvs(L∪ ≺ch∗) captures ACQ∨[L].

Proof. Since Cnvs(L∪ ≺ch∗) is closed by disjunction, one only needs to prove the
result for ACQ[L] formulas.

2The inverse of a binary query q is the binary query q−1 : t 7→ {(v, u) | (u, v) ∈ q(t)}

3.3. Relation to FO and Conjunctive Queries 57

Informally acyclic conjunctive queries are viewed as trees whose vertices are vari-
ables and edges are labeled by relations. Those trees are naturally translated as
follows: a branching node corresponds to a conjunction, and hence to the compo-
sition of two filter expressions, while the succession of two edges correspond to
a composition. Only free variables are kept in the composition formula. Actually
existential quantifications are just replaced by compositions. An example of the
full transformation is given in Fig. 3.2.
Formally, one needs a notion of extended query graph G(φ) of a query φ ∈
ACQ[L], that includes the atomic predicates as label of edges. Vertices of this
graph are variables, and there is a directed edge from x to y labeled by some query
expression if (x, y) occurs in φ. See Fig. 3.2 for an example. The translation is
intuitively as follows: branching in the query graph is translated into compositions
of filter expressions and the sucession of two edges is translated into a composition.
Only free variables are kept in the translation. For instance, the succession of two
edges (x, y) and (y, z) labeled respectively by and ′ corresponds to the compo-
sition ◦ ′ (if x, y, z are existentially quantified in φ). However, their might be
several edges between two vertices, for instance inG(1(x, y)∧ 2(x, y)). Hence,
we first use the closure under intersection of L to replace multiple edges between
two vertices x, y labeled 1, . . . , n by a single edge labeled ∩i i, where ∩i i is
a query expression such that QL(∩i i) = ∩iQL(i). The graph, at this point, is a
tree (since φ is acyclic), if we do not consider the orientation of edges. In order to
be able to translate φ into a composition formula, the last step is to choose a root of
the tree and an orientation, so that it becomes a tree when considering the chosen
orientation. This can be done by using closure by inverse of L, which allows one
to reverse the orientation of an edge (x, y) labeled to an edge (y, x) labeled −1,
where −1 is a query expression such thatQL(−1) = QL()−1. In the translated
composition formula, one uses ≺ch∗ to reach the root of this tree.

The complexity of the translation of Proposition 3.3.3 is in linear-time if for all
query expressions ∈ Q, there exists a query expression −1 ∈ Q computable in
linear-time such that Q(−1) is the inverse of Q() and for all query expressions
 , ′ ∈ Q, there exists a query expression ′′ computable in linear time such that
Q(′′) = Q() ∩Q(′).
We now suppose that there is a fixed algorithm to evaluate the binary queries of L,
which runs in time p(‖ ‖, ‖t‖), for query expressions on trees t ∈ Tunr(Σ).
By Proposition 3.3.2, the query evaluation of a disjunction-free Cnvs(L) formula
γ(x), over a tree t, can be reduced to the query evaluation of an ACQ formula
over a particular database db. The relational database db consists of the set of
binary relations db = {Q()(t) | ∈ Sub(φ)}. The size of this database is
O(‖φ‖.‖t‖2), since the queries occuring in φ are binary; it can be computed by
evaluating the binary queries Q()(t), for all ∈ Sub(φ). It can be done in time∑

 ∈Sub(φ) p(‖ ‖, ‖t‖)).
From Yannakakis’s algorithm (Yan81) that solves ACQs for relational databasesD
in time O(‖D‖.‖φ‖.‖Q(φ)(D)‖) where φ is an ACQ on a relational database D,
we get:

Proposition 3.3.4 Query evaluation of n-ary queries defined by disjunction-free C(L) formulas γ can

58 Chapter 3. Composing Binary Queries

∃x1∃x2∃x3 1(x2, x1) ∧ 2(x2, x)
∧ 3(x2, x) ∧ 4(x2, y)
∧ 5(y, z) ∧ 6(x3, y)

x2

x

y

z x3

x1

 1

 2

 3

 4

 5 6

x2

x

y

z x3

x1

−1
1

 4

 5

−1
6

 2 ∩ 3

≺ch∗ ◦
−1
1 ◦

[2 ∩ 3 ◦ x]◦
[4 ◦ y◦[5 ◦ z] ◦ [−1

6]]

chosen root

extended query graph

acyclic conjunctive query composition formula

Figure 3.2: From ACQs to Composition Formulas

be done it time complexity

O(‖t‖2.‖γ‖.‖Q(φ)(t)‖ +
∑

 ∈Sub(φ)

p(‖ ‖, ‖t‖))

where p(‖ ‖, ‖t‖) is the time complexity to evaluate binary queries from L on t.

The next section extends this result to composition formulas with disjunctions.

3.4 QUERY NON-EMPTINESS AND QUERY EVALUATION

In this section, we give an algorithm to answer queries by composition formulas of
Cnvs(L). The algorithm is generic since the choice of the underlying binary query
language L is parametric. We will see that the non-variable sharing restriction is
crucial to get polynomial-time query evaluation complexity. In particular, we first
give complexity results for the query non-emptiness problem, which we prove to
be NP-hard for C(L), but polynomial for Cnvs(L) (Section 3.4.1). As a conse-
quence, we cannot hope to have a polynomial-time query evaluation algorithm for
C(L) (even if the query evaluation for L is polynomial). We give a query evalua-
tion algorithm for Cnvs(L) in Section 3.4.2, and prove that it is polynomial. This
algorithm is similar to the Yannakakis’s algorithm (Yan81) for acyclic conjunc-
tive queries, but our relations are binary (since they are given by binary queries),
and composition formulas allow disjunction. A detailed comparison to acyclic
conjunctive queries is given in Section 3.3. In particular, the main difficulty is to
manage disjunctions on the left of compositions (φ1 ∨ φ2) ◦ φ3. We cannot dis-
tribute them as it would result in an exponential blow-up. Instead we introduce
parameters in formulas which intuitively can be viewed as pointers to formulas.

3.4. Query Non-Emptiness and Query Evaluation 59

3.4.1 Query Non-Emptiness and Model-Checking

We prove several results on query non-emptiness and model-checking for com-
position formulas. In particular, we give a polynomial-time query non-emptiness
algorithm for Cnvs(L) formulas, that can also be used for model-checking.

Proposition 3.4.1 Let Σ = {0, 1,#} be an alphabet, and L = (Q, ‖.‖, ar.,Q(.)) a binary query
language such that there are 0, 1 in Q and for all b ∈ {0, 1}, and all trees t in
Tunr(Σ), Q(b)(t) = {(roott, u) | labt(u) = b}.
The query non-emptiness problem is NP-Hard for C(L) on unranked trees, even if
the tree is fixed.

Proof. Let t = #

0 1

.

We give a polynomial reduction of CNF satisfiability into our problem. The idea
is to associate with a given CNF formula Ψ =

∧
1≤i≤pCi a composition formula

φ = [φ1]◦ . . . ◦[φp] over L, such that Ψ is satisfiable iff Q(φ)(t) 6= ∅.
Each φi is a composition formula associated to the i-th clause Ci. It is de-
fined by associating to each literal xj the composition formula 1◦xj and to
¬xj the formula 0◦xj , and to a disjunction of literals a disjunction of those
formulas. For example, if we consider Ψ = (x1 ∨ ¬x2) ∧ (x2 ∨ ¬x3), then
φ = [1◦x1 ∨ 0◦x2]◦[1◦x2 ∨ 0◦x3]. Note that ‖φ‖ = O(‖Ψ‖) since basic
queries are considered of constant size in ‖φ‖.

However, it becomes polynomial for Cnvs(L), providing a polynomial query eval-
uation algorithm for L exists, as we next show.
We first have to simplify expressions of Cnvs(L) so that no disjunctions appear
on the left of compositions. The naive idea would be to replace (φ1 ∨ φ2)◦φ by
φ1◦φ ∨ φ2◦φ. Unfortunately, rewriting the formula with this rule may lead to an
exponential explosion, since the subformula φ is copied. We solve this problem by
introducing sharing formulas.
Let p ∈ Par be a parameter in a finite set, which refers to expressions. A sharing
formula ξ is similar to an expression of Cnvs(L) except that it may contain param-
eters p ∈ Par, while excluding disjunctions as well as parameters on the left of
compositions. We also use a special formula !" interpreted as the identity relation
on nodes. This will simplify the query evaluation algorithm.

η ::= x | [ξ] |

ξ ::= p | ξ ∨ ξ′ | η◦ξ | !"

We denote by Par(ξ) the set of parameters occurring in ξ. An equation system
∆ = [p1 7→ ξ1, . . . , pn 7→ ξn] is a finite acyclic mapping from parameters to
sharing formulas. This means that all pi are pairwise distinct and that Par(ξi) ⊆
{pi+1, . . . , pn} for all 1 ≤ i ≤ n. Pairs (ξ,∆) satisfying Par(ξ) ⊆ Par(∆) define
composition formulas ξ∆ inductively as follows:

!"∆ = !" p∆ = ∆(p)∆ x∆ = x
 ∆ = [ξ]∆ = [ξ∆]
(η◦ξ)∆ = η∆◦ξ∆ (ξ ∪ ξ′)∆ = ξ∆ ∪ ξ

′
∆

The size of a sharing formula is the number of its nodes (viewed as a term). The
size of an equation system is the sum of the sizes of its formulas. Queries by shar-

60 Chapter 3. Composing Binary Queries

ing formulas are defined as before: Q(ξ,∆) = Q(ξ∆). For instance, a composition
formula of the form (φ1∨φ2)◦(φ3∨φ4)◦(φ5∨φ6) if equivalent to the sharing for-
mula φ1◦p ∨ φ2◦p together with the mapping [p 7→ φ3◦p

′ ∨ φ4◦p
′ ; p′ 7→ φ5∨φ6].

More formally:

Lemma 3.4.2 Every composition formula φ can be transformed in linear time into a pair (ξ,∆)
so that φ = ξ∆. Moreover, ‖ξ‖+ ‖∆‖ = O(‖φ‖).

Proof. This can be done by applying the following rewrite rule exhaustively, al-
ways with fresh parameters p:

(φ1 ∨ φ2)◦φ → φ1◦p ∨ φ2◦p where ∆(p) = φ

Once this is done, we will have to replace formulas η on the right of equations by
η◦ !. The introduction of ! is not essential but will reduce the number of cases
in our algorithm.

We present an algorithm deciding query non-emptiness on a tree t for a sharing
formula ξ and a mapping ∆ such that ξ∆ does not share variables in compositions.
It computes all truth values NE(ξ, u) for all u ∈ Dom(t) and an input formula ξ:

NE(ξ, u) = 1 iff ∃ρ,∃u′ ∈ Dom(t).(u, u′) ∈ Jξ∆Kt,ρ

By using dynamic programming, we will compute the values NE(ξ, u) at most
once for all subformulas of ξ and ∆. There is only a linear number of them by
Lemma 3.4.2.

NE(!, u) = 1
NE("◦ξ, u) =

∨
(u,u′)∈Q()(t) NE(ξ, u′)

NE(p, u) = NE(∆(p), u)
NE([ξ]◦ξ′, u) = NE(ξ, u) ∧ NE(ξ′, u)
NE(x◦ξ, u) = NE(ξ, u)
NE(ξ ∨ ξ′, u) = NE(ξ, u) ∨ NE(ξ′, u)

The rule for NE(x◦ξ, u) is correct since x /∈ Var(ξ∆) by the non-variable sharing
assumption, so that NE(ξ, u) can be satisfied independently of the value of x. An
analogous argument applies to NE([ξ]◦ξ′, u).

Proposition 3.4.3 Let ξ be a sharing formula, ∆ be an equation system, and t be a tree. Computing
the table NE on inputs ξ, ∆ and t is in time

O(
∑

 ∈Sub(ξ∆)

p(‖"‖, ‖t‖) + ‖t‖2(‖ξ‖+ ‖∆‖))

if query evaluation for L is in time p(‖"‖, ‖t‖) for some function p.

Proof. For u ∈ Dom(t), and " ∈ Q, let Su, = {u′ | (u, u′) ∈ Q(")(t)}. As a
first step, all binary queries occurring in ξ∆ are precompiled in a data structure that
returns in time |Su, | the set Su, , for any u ∈ Dom(t) and " ∈ Q. This can be
done in time O(

∑
 ∈Sub(ξ∆) p(‖b‖, ‖t‖)). Computing NE with memoization can

be done in time O(‖t‖2.‖ξ∆‖), i.e. O(‖t‖2.(‖ξ‖+ ‖∆‖)).

Combining Lemma 3.4.2 and Proposition 3.4.3 gives:

3.4. Query Non-Emptiness and Query Evaluation 61

Corollary 3.4.4 Query non-emptiness on inputs φ, t, where φ ∈ Cnvs(L) and t ∈ Tunr(Σ), can be
tested in time

O(
∑

 ∈Sub(φ)

p(‖ ‖, ‖t‖) + ‖t‖2.‖φ‖)

if query evaluation for L is in time p(‖ ‖, ‖t‖) for some function p.

From a composition formula φ ∈ Cnvs(L) with free variables x = x1, . . . , xn, a
tree t, and a tuple of nodes u = u1, . . . , un ∈ Dom(t), one can construct a formula
φt,u such that φt,u is non-empty on t iff u ∈ Q(φ)(t). It suffices to replace each
occurrence of a variable xi by a special query expression ui , interpreted on t by:
Q(ui)(t) = {(ui, ui)}, and by ∅ on other trees. Note that on t those new queries
are evaluable in constant time. By using Corollary 3.4.4, it gives a model-checking
algorithm. However, by definition of the model-checking problem, the input tuple
u may have a length |u| different from |x|, hence we first have to check it, and if
the lengths are equal, then transform φ into φt,u. Since the size of φt,u is linear in
the size of φ, we finally get:

Proposition 3.4.5 Model-checking on inputs φ, t, u, where φ ∈ Cnvs(L), t ∈ Tunr(Σ), and u is a tuple
of nodes of t, can be done in time:

O(
∑

 ∈Sub(φ)

p(‖ ‖, ‖t‖) + |u| + ‖t‖2.‖φ‖)

if query evaluation for L is in time p(‖ ‖, ‖t‖) for some function p.

3.4.2 Query Evaluation

In this section, we give a polynomial-time query evaluation algorithm for Cnvs(L)-
definable n-ary queries. It is similar to the Yannakakis’s algorithm (Yan81), but
works on databases which contain only binary relations. The query however may
have disjunction, occurring anywhere in the formula: in this setting it is an exten-
sion of Yannakakis’s algorithm. As for query non-emptiness, we work with sharing
formulas ξ together with mappings ∆.
The query evaluation algorithm in Figure 3.3 processes the input formula ξ re-
cursively, while filtering unsatisfiable cases (in constant time by using the ta-
ble NE, see Proposition 3.4.3), eliminating duplicates, and memoizing auxil-
iary results by dynamic programming so that they are never recomputed. The
non-variable sharing restriction allows, in a composition, to evaluate each mem-
ber independently and combine the results with a simple cartesian product (and
not a complex join). We also assume that all binary queries occurring in ξ
have been precomputed in a data-structure which returns in time |St,u, | the set
St,u, = {v | (u, v) ∈ Q()(t)}, on inputs u and .
A partial valuation is a function of type V → Dom(t) for some subset V ⊆ Var(ξ).
Let ǫ be the partial valuation with empty domain, and ν[x 7→ u] the extension of ν
mapping x to u. If ν and ν ′ are valuations with different domains, then we write
ν ·ν ′ for disjoint union of both functions. In a disjunction ξ∨ξ′, variables of ξ may
not occur in ξ′. When computing the union, those variables have to be bound to
arbitrary nodes. Function extendt,X takes care of this. It extends a partial valuation
in all possible ways, so that it becomes total on a finite set of variables X .
The algorithm stores sets of partial valuations vals(ξ0, u) as auxiliary results (the
node u denotes the starting node of the valuation). All these partial valuations can

62 Chapter 3. Composing Binary Queries

1 q (ξ,∆, t) =

2 l e t va ls (ξ0, u) =

3 i f NE(ξ0, u)
4 then case ξ0
5
6 of ! :

7 return {ǫ}
8
9 of p :

10 return va ls (∆(p), u)

11
12 of "◦ξ′ :

13 return
⋃

(u,u′)∈Q()(t){ν | ν ∈ va ls (ξ′, u′)}

14
15 of x◦ξ′ :

16 return {ν[x 7→ u] | ν ∈va ls (ξ′, u)}
17
18 of [ξ′]◦ξ′′ :

19 return {ν′ · ν′′ | ν′ ∈va ls (ξ′, u) ,ν′′ ∈va ls (ξ′′, u)}
20
21 of ξ′ ∨ ξ′′ :

22 return extendt,Var((ξ′∨ξ′′)∆) (va ls (ξ′, u))

23 ∪ extendt,Var((ξ′∨ξ′′)∆) (va ls (ξ′′, u))

24 else return {}
25 in

26 return {(ν(x1), . . . , ν(xn)) | ν ∈va ls (ξ, roott)
27 and Var(ξ) = {x1, . . . , xn}}

Figure 3.3: Computing of the answer set Q(ξ∆)(t) with implicit memoization.

be extended to some complete solution, since unsatisfiable cases are filtered by
using NE table.

Proposition 3.4.6 Given a sharing formula ξ and a mapping ∆, the algorithm in Figure 3.3 com-
putes the answer set A = Q(ξ∆)(t) of the n-ary query ξ∆ in time O((‖ξ‖ +
‖∆‖).‖t‖2.n.|A|), if ξ∆ belongs to Cnvs(L).

Proof. Since every recursive call to vals filters all unsatisfiable cases, every inter-
mediate result can be extended to a whole solution. Duplicates generated by union
are eliminated, so that every recursive call returns at most |A| tuples. The worst
case time complexity occurs for the ◦ξ′ case, and is in O(‖t‖ + n ‖t‖ |A|). In-
deed, there are at most ‖t‖ successors u by , hence they are returned in ‖t‖ steps
at most (since every binary query has been first precomputed in a data structure
which returns all the successors of a node, by a particular binary query, in linear
time). Hence, the algorithm performs at most ‖t‖ unions of sets of size at most
n|A|, which can be done in time O(‖t‖.n.|A|).
Finally, since we use memoization, intermediate results are never recomputed,
so that there are at most O(‖t‖.(‖ξ‖ + ‖∆‖)) recursive calls to vals which
costs at most O(‖t‖.n.|A|) steps. Hence, line 15 requires at most O((‖ξ‖ +
‖∆‖).n.‖t‖2.|A|+ ‖t‖|A|) = O((‖ξ‖+ ‖∆‖).n.‖t‖2.|A|) steps.

If we also take into account the complexities of the precomputation and the trans-

3.5. Expressiveness of the Composition Language 63

formation of the composition formula into a sharing composition formula, as a
corollary of Lemma 3.4.2, Propositions 3.4.3 and 3.4.6, we get:

Theorem 3.4.7 Query Evaluation Answer sets of n-ary queries A = Q(φ)(t) defined in Cnvs(L)
can be computed in time

O(
∑

 ∈Sub(φ)

p(‖ ‖, ‖t‖) + n.‖φ‖.‖t‖2.|A|)

if query evaluation for L is in time p(‖ ‖, ‖t‖) for some function p.

3.5 EXPRESSIVENESS OF THE COMPOSITION LANGUAGE

In this section, we prove the following theorem:

Theorem 3.5.1 Expressiveness

Let L be a query language. Over unranked trees,

if L is equally expressive as FObin[≺ns∗ ,≺ch∗] (resp. MSObin[≺ns∗ ,≺ch∗]),
then Cnvs(L) is equally expressive as FO[≺ns∗ ,≺ch∗] (resp MSO[≺ns∗ ,≺ch∗]).

FO[≺ns∗ ,≺ch∗] = Cnvs(FObin[≺ns∗ ,≺ch∗])
MSO[≺ns∗ ,≺ch∗] = Cnvs(MSObin[≺ns∗ ,≺ch∗])

In order to prove Theorem 3.5.1, we use a standard technique of Finite Model
Theory called the composition method (She) used in several papers such as
(Tho84, Sch00, MR03, Mar05a). Basically, a decomposition theorem relates the
theory (for some logic) of a compound structure to the theories of its compo-
nents. In particular, the set of formulas of fixed quantifier depth n satisfied in
the compound structure can be computed from the sets of formulas of quantifier
depth n satisfied by the respective components of the structure. On trees for in-
stance it gives an alternative proof of the correspondence between MSO and FTA
(Zei94). In the first section, we briefly introduce the classical notions of Finite
Model Theory used to prove composition results: logical types and Ehrenfeucht-
Fraïssé games (see (EF05) or (Lib04b) for more details). Then we state a well-
known composition lemma for unranked trees with distinguished nodes and its
corollary on the decomposition of FO and MSO formulas with n free variables.
This corollary is then used to prove Theorem 3.5.1.

3.5.1 Brief reminder on fundamental properties of finite model theory

Let σ be a signature. Let k ∈ N be a natural number, M a σ-structure, and
v1, . . . , vk ∈ Dom(M). We denote by (M,v1, . . . , vk) the extension of the
structure M by k distinguished nodes v1, . . . , vk: it is a structure on the signature
σ ∪ {c1, . . . , ck}, where c1, . . . , ck are new constant symbols interpreted respec-
tively by v1, . . . , vk in M . Similarly, it is also possible to extend structures with
sets of nodes.
Let L denote either MSO[σ] or FO[σ]. Let n ∈ N. The term typeLn(M,v1, . . . , vk)
stands for the set of L-formulas φ(x1, . . . , xk) of quantifier depth at most n that
are satisfied when mapping xi to vi for all 1 ≤ i ≤ n. In other words,

typeLn(M,v1, . . . , vk) = {φ(x1, . . . , xk) |M |= φ(v1, . . . , vk) and qd(φ) ≤ n}

64 Chapter 3. Composing Binary Queries

A well-known result of finite model theory states that for any n ∈ N, the set
{typeLn(M,v1, . . . , vk) | (M,v1, . . . , vk) is an extended structure} is finite3. This
is because there are finitely many L formulas of quantifier depth at most n, modulo
logical equivalence. Since the number of extended structures is infinite, there are
necessarily structures which satisfies exactly the same L-formulas. This is formal-
ized next.
Given two extended structures (M,v) and (M ′, v′), we write (M, v) ≡Ln (M ′, v′)
if typeLn(M,v) = typeLn(M ′, v′). Intuitively, it means thatL-formulas of quantifier
depth at most n are not expressive enough to distinguish (M,v) from (M ′, v′), ie
there is no L-formula φ(x) such that qd(φ) ≤ n, M |= φ(v) and M ′ |= ¬φ(v′).
The sets typeLn(M,v1, . . . , vk) can be characterized by n-Hintikka formulas. These
are L-formulas τL,nM,v1,...,vk

(x1, . . . , xk) with k free variables and quantifier depth
at most n that satisfy, for all extended structures (M ′, v′1, . . . , v

′
k):

M ′ |= τL,nM,v1,...,vk
(v′1, . . . , v

′
k) iff (M,v1, . . . , vk) ≡

L
n (M ′, v′1, . . . , v

′
k)

Finally, every L formula of quantifier depth at most n is equivalent to a (com-
putable) finite disjunction of n-Hintikka formulas.
The equivalence relation ≡Ln can also be characterized by Ehrenfeucht-Fraïssé
games (EF-games) . In the following we explain EF-games on arbitrary extended
σ-structures for MSO[σ]. Let (M,u) and (N, v) be two extended σ-structures
such that length(u) = length(v). Let n ∈ N. The n-round MSO game on (M,u)
and (N, v) is played by two players, called the Spoiler and the Duplicator. At
each round Spoiler chooses an element or a set of elements of one of the struc-
tures, and Duplicator chooses an element or a set in the opposite structure. Spoiler
begins and at each round he has the choice of the structure. After n rounds, there
are a elements o1, . . . , oa ∈ Dom(M) and a elements p1, . . . , pa ∈ Dom(N) , b
sets O1, . . . , Ob ⊆ Dom(M) and b sets P1, . . . , Pb ⊆ Dom(N) chosen by the two
players. Duplicator wins the game if the mapping which maps oi to pi, i = 1, . . . , a
is a partial isomorphism from (M,u,O1, . . . , Ob) to (N, v, P1, . . . , Pb), ie (i)
the substructures M ′ and N ′ obtained respectively by restricting their domain to
u, o1, . . . , oa and v, p1, . . . , pa satisfy the same atomic formulas, and, (ii) for all
i, j, oi ∈ Oj iff pi ∈ Pj . The duplicator has a winning strategy if he can win
independently of the choices made by Spoiler.
The main result concerning EF-games is the following:

Proposition 3.5.2 Duplicator has a winning strategy for the n-round MSO game on (M,u) and
(N, v) iff (M,u) ≡MSO

n (N, v).

FO games are defined similarly, but only elements (and not sets) can be chosen, so
that condition (ii) of the definition of partial isomorphisms is removed.
We first give a brief and informal example of a composition lemma on strings.

Example 3.5.3 (Composition Method on Finite Strings) We consider σstr = {<, (laba)a∈Σ} the sig-
nature of strings (< being interpreted as a linear order on the string positions).
A string over the alphabet Σ is naturally viewed as a σstr-structure. The set of
strings over Σ is denoted Σ∗.
Let w1, w2 ∈ Σ∗, and α ∈ Σ. Let n ∈ N.

if w1 ≡
MSO
n w2, then w1α ≡

MSO
n w2α

3Its size however is a tower of exponentials of height n

3.5. Expressiveness of the Composition Language 65

In order to prove it, it suffices to show, by Proposition 3.5.2, that Duplicator has
a winning strategy for the n-round MSO game on w1α and w2α. His strategy,
called S′, is as follows. Let uα (resp. vα) be the last node of w1α (resp. w2α), and
assume that Dom(w1α) = Dom(w1)∪{uα} and Dom(w2α) = Dom(w2)∪{vα}.
By hypothesis, Duplicator has a winning strategy S for the MSO game on w1

and w2. It can be extended to a winning strategy for the MSO game on w1α
and w2α: if Spoiler chooses v ∈ Dom(w1), then Duplicator answers according
to S, and if Spoiler chooses uα, then Duplicator chooses vα. If Spoiler chooses
V ⊆ Dom(w1α), then let U1 ⊆ Dom(w1) and U2 ⊆ {uα} such that U = U1∪U2.
Duplicator’s answer is then V1 ∪ V2, where V1 is the answer to U1 according to S
and V2 = {vα} if U2 = {uα}, and ∅ otherwise. The strategy is defined similarly
when spoiler chooses elements or sets in w2α.
To conclude, it remains to prove that S′ is a winning strategy, by showing that the
elements or sets chosen during the n-round MSO game on w1α and w2α induce
a partial isomorphism with respect to <, laba, and the chosen sets. Informally, if
some chosen element u ∈ Dom(w1α) belongs to some chosen setU ⊆ Dom(w1α),
then its corresponding element v in Dom(w2α) is also in the set V ⊆ Dom(w2α)
corresponding to U : indeed, if u is in U1, then v is in V1, since S is a winning
strategy, hence v ∈ V . If u is in U2, then u = ua and v = va, so that v ∈ V2, and
v ∈ V . This is proved similarly for atomic formulas, by using the fact that S is a
winning strategy.
Let φ an MSO[<]-sentence of quantifier depth n. There is a (computable) finite set
of stringsW such that φ is equivalent to a finite disjunction of n-Hintikka formulas∨
w∈W τ

MSO[<],n
w . It is possible to associate with φ a finite (string) automaton4

Aφ = (Σ, Q, F, q0,∆) which defines the same string language as φ:

• Q = {typeMSO[<]
n (w) | w ∈ Σ∗} (it is finite upon logical equivalence);

• F = {typeMSO[<]
n (w) | w ∈W};

• q0 = typeMSO[<]
n (ǫ);

• ∆ = {typeMSO[<]
n (w)

α
−→ typeMSO[<]

n (wα) | w ∈ Σ∗ and α ∈ Σ}

Note that by the composition result proved before,Aφ is deterministic. Indeed, sup-

pose that typeMSO[<]
n (w)

α
−→ typeMSO[<]

n (wα) ∈ ∆ and typeMSO[<]
n (w)

α
−→ q ∈ ∆,

for some q ∈ Q. By definition of ∆, q is necessarily of the form typeMSO[<]
n (w′α),

for some w′ ∈ Σ∗, and typeMSO[<]
n (w′) = typeMSO[<]

n (w). By the composition

result we get q = typeMSO[<]
n (wα).

Then it follows that for any string w, the computation of Aφ on w leads to the state

typeMSO[<]
n (w). This proves in particular that deterministic finite (string) automata

capture MSO[<] over strings.
Another version of this example can also be found in (NS02a).

3.5.2 FO and MSO completeness

Since the proof of expressiveness relies on decomposition technique which deals
with hedges, we state all the results for hedges.

4We use the standard notion of string automata where Σ is an alphabet, Q a finite set of states, F

a set of final states, q0 an initial state, and ∆ a set of rules of the form q
a
−→ q′

66 Chapter 3. Composing Binary Queries

u1 u1

⊕((h1, u1), (h2, u2), (h3, u3))

(h1, u1)

(h2, u2)

(h3, u3)

(h1, u1)

(h3, u3)

(h2, u2)

Figure 3.4: Operation on extended hedges

We first define an operation on hedges extended with distinguished nodes, which
combines independent extended hedges to form a single extended hedge.
Let h1, h2, h3 ∈ H(Σ). Let u1 a node of Dom(h1), u2 a tuple of nodes of
Dom(h2), and u3 a tuple of nodes of Dom(h3) such that u1 is a leaf of h1 with-
out right siblings5. We let ⊕((h1, u1), (h2, u2), (h3, u3))) be the hedge defined by
adding (h2, u2) as the child of u, and (h3, u3) as next-siblings of u. In particular,
the domain of this hedge is the union of the domains of h1, h2 and h3 and this
hedge is extended by the nodes u1, u2, u3. Fig. 3.4 illustrates this operation. In
particular, u1 is used to connect the roots of h2 and h3, but the nodes of u2 and u3

do not play any role in this connection process.
The next composition lemma intuitively states that the logical type of
⊕((h1, u1), (h2, u2), (h3, u3))) only depends on the logical types of (h1, u1),
(h2, u2) and (h3, u3).

Lemma 3.5.4 (Folklore Composition Lemma) Let L denote either MSO[≺ns∗ ,≺ch∗] or FO[≺ns∗
,≺ch∗]. Let n ∈ N. Let (h1, u1), (h

′
1, u

′
1), (h2, u2), (h

′
2, u

′
2), and (h3, u3), (h

′
3, u

′
3)

be extended hedges, such that u1 and u′1 are leaves without next-siblings.

If (h1, u1) ≡
L
n (h′1, u

′
1)

(h2, u2) ≡
L
n (h′2, u

′
2)

(h3, u3) ≡
L
n (h′3, u

′
3)

then
⊕((h1, u1), (h2, u2), (h3, u3)) ≡

L
n ⊕((h′1, u1), (h′2, u

′
2), (h′3, u

′
3))

Proof. As for the case of strings in Example 3.5.3, we combine the strategies
of Duplicator on the substructures to define the strategy of Duplicator on the
whole structure. We prove the lemma for MSO[≺ns∗ ,≺ch∗] only but the proof

5I.e. there is no w ∈ Dom(h1) such that u1 ≺
h1

ns+
w

3.5. Expressiveness of the Composition Language 67

for FO[≺ns∗ ,≺ch∗] is simply obtained by omitting the part of the proof which con-
cerns set choices and membership to sets. In the rest of the proof, MSO stands for
MSO[≺ns∗ ,≺ch∗].
Let us call S1, S2, S3 the strategies of Duplicator on the MSO games on (h1, u1)
and (h′1, u

′
1), (h2, u2) and (h′2, u

′
2), (h3, u3) and (h′3, u

′
3) respectively. Note that

the notion of strategies has been formalized by Fraïssé by sequences of sets of par-
tial isomorphisms (EF05), but we prefer to keep it informal to avoid unnecessary
heavy notations. We also assume that Spoiler chooses an element or a set in the
first structure, as the proof is similar when she makes its choices in the second
structure.
Let (h, u1, u2, u3) = ⊕((h1, u1), (h2, u2), (h3, u3)) and (h′, u′1, u

′
2, u

′
3) =

⊕((h′1, u
′
1), (h′2, u

′
2), (h′3, u

′
3)). We now describe the strategy of Duplicator,

called S, for the MSO game on (h, u1, u2, u3) and (h′, u′1, u
′
2, u

′
3). Let i ∈

{1, 2, 3}. If Spoiler chooses an element in Dom(hi), then Duplicator answers by
choosing an element in Dom(h′i) according to Si. If Spoiler chooses u1, then Du-
plicator answers by choosing u′1, and if spoiler chooses a node of u2 or u3, then
Duplicator answers by the element at the same rank in u′2 or u′3 respectively.
If Spoiler chooses a set of elements P , then we let P1, P2, P3 such that: Pi ⊆
Dom(hi), i = 1, 2, 3, and P1 ∪ P2 ∪ P3 = P . For all i ∈ {1, 2, 3}, we let Qi be

the answer of Duplicator to Pi according to Si. Finally, Duplicator answers to P
by choosing Q1 ∪Q2 ∪Q3.
It remains to prove that S is a winning strategy. It can be done by showing that
the respective elements selected by the players together with the distinguished so-
lutions form a partial isomorphism from (h, u1, u2, u3) to (h′, u′1, u

′
2, u

′
3).

It is clear when the selected elements come from the same substructure, because
S1, S2 and S3 are winning strategies. If they come from different substructures,
we have to check that the selected elements define a partial isomorphism wrt ≺ns∗
and ≺ch∗ . Suppose for instance that v1, v2 ∈ Dom(h) and v′1, v

′
2 ∈ Dom(h′) their

corresponding nodes have been chosen. If v1 ∈ Dom(h1) and v2 ∈ Dom(h2), then
by definition of S we have v′1 ∈ Dom(h′1) and v′2 ∈ Dom(h′2). It cannot be the case
that v1 ≺ns∗ v2. Suppose that v1 ≺ch∗ v2, then necessarily v1 ≺ch∗ u1 ≺ch∗ v2.
Since S1 is a winning strategy, we also have v′1 ≺ch∗ u

′
1, and since u′1 ≺ch∗ v

′
2, we

get v′1 ≺ch∗ v
′
2. The converse is similar, so that finally v1 ≺ch∗ v2 iff v′1 ≺ch∗ v2.

The other cases are proved similarly.
Now suppose that some chosen node u belongs to some choosen set P , and let u′

and Q their corresponding element and set in the other structure. We can divide
P into three parts P1, P2, P3 accordingly to the substructures h1, h2, h3 so that
P = P1 ∪ P2 ∪ P3. By definition of the strategy, Q = Q1 ∪ Q2 ∪ Q3 where Pi
is mapped to Qi, according to Si, for all i ∈ {1, 2, 3}. Now, let i ∈ {1, 2, 3} such
that u ∈ Pi. Since Si is a winning strategy, we get u ∈ Qi, and u ∈ Q.
The converse is similar, so that finally u ∈ P iff u′ ∈ Q.

We now state a standard consequence of the composition lemma on the existence
of a normal form for FO and MSO formulas.
Remind that the extended query graph of a conjunctive query φ over a set of pred-
icates L (defined in the proof of Prop. 3.3.3) is the directed graph whose vertices
are variables of φ and such that there is a directed edge between x and y labeled by
some predicate R ∈ L if R(x, y) is an atom of φ. We say that φ is a directed tree
query if its extended query graph is a (directed) tree. In particular, every vertex has
exactly one incoming edge except exactly one node (the root).

68 Chapter 3. Composing Binary Queries

u

h

h|shu

Figure 3.5: A hedge h and its subhedge h|shu at node u

Given a hedge h, and a node u ∈ Dom(h), the subhedge of h at node u, denoted
h|shu , is obtained by restricting the domain of h to the set of nodes v such that
u ≺hns∗ ◦ ≺

h
ch∗ v. Informally, it is the hedge induced by u, its descendants, and the

descendants of its next-siblings, as illustrated by Fig. 3.5.
Let L denote either MSO[≺ns∗ ,≺ch∗] or FO[≺ns∗ ,≺ch∗], and Lbin be their re-
spective fragments with exactly two free variables. An Lbin formula φ(x, y) is
subhedge-restricted to x if for all hedges h and nodes u, v ∈ Dom(h),

h |= φ(u, v) iff h|shu |= φ(u, v)

A standard consequence of the composition lemma is given by the following corol-
lary.

Corollary 3.5.5 (folklore) Over hedges, every L formula is equivalent to a disjunction of directed
tree queries over Lbin formulas subhedge-restricted to their first component.

Proof. (Sketch) As already mentioned, the decomposition of an L formula φ
thanks a composition lemma is standard. Therefore we only sketch the proof.
First, it suffices to guess how the nodes selected by φ in a hedge h relate to each
other and their least left common ancestor6. This is expressed by a directed tree
query (called a configuration) over the predicates≺fc,≺ns, and following(x, y) =
∃z x ≺ns+ z ∧ z ≺ch∗ y, whose free variables are exactly the free variables of φ.
A configuration basically partitions the tree into subparts which are either subhedge
contexts (subhedges with one hole) or subhedges. A straightforward consequence
of the composition lemma is that if two extended hedges satisfies the same con-
figuration, and if each of their respective subparts satisfies the same L formulas of
quantifier rank lesser than some m ∈ N, then the whole extended hedges satisfy
also the same L formulas of quantifier rank lesser than m.

6A node ua is a left common ancestor of some nodes v1, . . . , vn of a hedge h if for all i ∈
{1, . . . , m}, ua ≺

h
ns∗ ◦ ≺

h
ch∗ vi. It is the least left common ancestor, denoted llca(v1, . . . , vm), if

there is no left common ancestor v such that ua ≺
h
ns∗ ◦ ≺

h
ch∗ v and ua 6= v. Actually, the least leaft

common ancestor corresponds to the least common ancestor in the first-child next-sibling encoding

3.5. Expressiveness of the Composition Language 69

Suppose that the quantifier rank of φ is equal to m. The final step is to extend the
configuration with formulas with two free variables, so that two extended hedges
satisfy the resulting directed tree query iff they respect the same configuration and
their respective subparts satisfy the same L formulas of quantifier rank lesser than
m. This is done as follows (we only describe the case of subhedge context as
it is similar to the other case): every edge of the configuration corresponding to
a subhedge context is extended by taking the conjunction of its label with a for-
mula ψτ (x, y) intended to describe the subhedge context rooted at x and with hole
y. This formula is derived from an arbitrary m-Hintikka formula τ(y) with one
free variable (denoting the hole), related to the domain of nodes which are in the
subhedge rooted at node x but are not descendant of y. In particular, ψ(x, y) is
subhedge restricted wrt to x.
For every configuration, we consider the extensions of its edges by formulas of the
form ψτ (x, y), for allm-Hintikka formulas τ . This gives a finite set of tree queries
which have the same shape as the configuration. But for the construction to be
correct, we only keep the tree queries which are satisfied by some extended hedge
which also satisfies φ.
Finally, the resulting tree query is a (finite) disjunction over all configurations and
all m-Hintikka formulas used to describe the subparts of the extended hedges.

The proof of Theorem 3.5.1 is a straigthforward consequence of Corollary 3.5.5
and the construction of Proposition 3.3.3 which associates with any disjunction
of acyclic conjunctive queries an equivalent composition formula satisfying the
non-variable sharing property. Moreover, note that given a directed tree query,
the construction of Proposition 3.3.3 does not need to inverse the binary queries
(that was only needed to orient the graph). Therefore, every binary query occuring
in the resulting composition formula is still subhedge-restricted wrt to their first
component. This founds the unary query language proposed in the nextion section.

3.5.3 Composition of monadic queries over hedges

.
Based on the proof of Theorem 3.5.1 (and especially on Corollary 3.5.5), we pro-
pose a language to compose monadic queries only, while capturing FO or MSO
wrt n-ary queries. This done via the subhedge-restriction defined in the previous
section.
To define the composition language with subhedge restriction, we start from a
unary query language L over hedges. The new composition language, denoted
Csh(L), has the same syntax has C(L), and the same semantics, except that unary
query expressions are interpreted with respect to subhedges:

for all hedges h, J Kh = {(u, v) | v ∈ Q()(h|shu }

We denote Cnvs
sh (L) the non-variable sharing fragment of Csh(L). The proof of The-

orem 3.5.1 associates with any FO or MSO formula an equivalent composition
formula over binary FO or MSO formulas subtree-restricted wrt to their first com-
ponent. In Csh(L), we enforce this restriction in the semantics, so that the expres-
siveness results of Theorem 3.5.1 naturally extends to composition with subhedge
restriction. Moreover, subhedge restriction is expressible in FO, hence:

70 Chapter 3. Composing Binary Queries

Theorem 3.5.6 Let FO1[≺ns∗ ,≺ch∗] be the set of first-order formulas with exactly one free vari-
able. Over hedges,

Cnvssh (FO1[≺ns∗ ,≺ch∗]) = FO[≺ns∗ ,≺ch∗]

3.6 CONCLUSION

We have presented a simple and foundational composition language C(L) and its
syntactically restricted fragment Cnvs(L) that allows one to combine binary queries
to define queries of arbitrary arity, by the use of variables, composition, union, and
some kind of conjunction (tests). The syntactic restriction is quite simple as it con-
sists only in disallowing variable sharing between the members of compositions.
Cnvs(L) is equally expressive as FO (or MSO) over unranked trees, wrt to n-ary
queries, as soon as L is equally expressive as FO (or MSO), wrt to binary queries.
In contrast to FO or MSO, in the composition language, the variables are only
used to select components of the tuple, but quantification is not explicitly needed
to get full FO (or MSO) expressiveness. This is because existential quantifications
are hidden in compositions (x◦ ◦ ′◦y corresponds for instance to the FO-formula
∃z (x, z) ∧ (z, y)).
On the other hand, we have proved that if L admits a polynomial-time query eval-
uation algorithm, then Cnvs(L) also admits a polynomial-time query evaluation
algorithm. The complexity however is quadratic in the size of the tree, which may
be intractable for large trees (and indeed, there are XML documents whose size is
several gigabytes (Wik)). Consequently it would interesting to know whether there
are still reasonably efficient fragments of the composition language (even with a
sub-FO expressiveness) which admits a very efficient query evaluation algorithm
(both linear in the size of the tree, the query and the output). The model-checking
problem of several fragments of conjunctive queries over XPath axis is studied in
(GKS04), where a dichotomy result between linear and NP-Hard fragments is es-
tablished. Similarly, one could study the query evaluation problem for composition
formulas over XPath axis.
In the proof of expressiveness, the basic binary queries were subhedge restricted,
meaning that they relate a node u to another node which is either descendant or de-
scendant of one of the next-sibling of u. From an XML point of view, it means that
binary queries can be constrained to relate a node to another that can be reached
by following the document order (or equivalently the order given by the serializa-
tion of the XML tree). This asks the question whether there is a generic algorithm
which evaluates composition of (document order restricted) binary queries in a
streaming fashion. More generally, is it possible to extend any streaming eval-
uation algorithm for binary queries to a streaming evaluation algorithm for their
composition.
On a logical perspective, it could be interesting to do a deep investigation of the
composition method on finite structures to understand why a composition lemma
exists. In particular, if some operation on the structures is known, is it possible to
give sufficient conditions on this operation for a composition lemma to hold. This
asks the question whether the composition language can be generalized to other
class of structures, such as graphs, while keeping good expressiveness properties.
Finally, hybrid logics extend modal and temporal logics with nominals, which
are propositional predicates interpreted by singletons (while general propositional
predicates may hold in more than one state of a labeled transition system). It

3.6. Conclusion 71

would be interesting to see how hybrid logics can be used to define n-ary queries
(for example by considering nominals as variables). Then, what would be their
expressiveness and how they would relate to the composition language? For in-
stance, the Hybrid µ-Calculus (SV01) could be first investigated, as it is known the
µ-calculus with past has the same expressiveness as MSO on unranked trees, wrt
monadic queries (BL05).

4APPLICATION TO XPATH

FRAGMENTS WITH VARIABLES

CONTENTS
4.1 CONDITIONAL XPATH WITH VARIABLES 75

4.2 A POLYNOMIAL-TIME FRAGMENT OF CoreXPath2.0 76

4.2.1 XPath 2.0 and FO . 76

4.2.2 Towards a polynomial-time fragment of CoreXPath2.0 77

4.2.3 The variable-free fragment . 80

4.2.4 Relation to the composition language 81

THIS chapter gives two applications of the composition language to define
XPath-based n-ary query languages that match the expressiveness of first-

order logic but admit polynomial-time query evaluation algorithms.
The first language is an extension of the Conditional XPath language of Marx
(Mar05a) with variables, while the second language is a fragment of CoreXPath2.0.

73

4.1. Conditional XPath with Variables 75

Axis := s e l f | c h i l d | parent | descendant | descendant_or_sel f

| ancestor | ances to r_o r_se l f | f o l l o w i n g _ s i b l i n g

| f o l l o w i n g | p reced ing_s ib l i ng | preceding

NameTest := a | ∗ where a ∈ Σ
Step := Axis : : NameTest | (Axis : : NameTest [TestExpr]) +

PathExpr := Step | PathExpr / PathExpr | PathExpr union PathExpr

| PathExpr [TestExpr] | x where x ∈ X
TestExpr := ?PathExpr | not TestExpr | TestExpr and TestExpr

Figure 4.1: Syntax of CXPathnary

4.1 CONDITIONAL XPATH WITH VARIABLES

Conditional XPath (CXPath) is the extension of CoreXPath1.0 with path expres-
sions of the form (axis :: a[test])+. It captures FO[≺ns∗ ,≺ch∗] on unranked trees
with respect to binary queries. Based on the composition language, we propose
an extension CXPathnary of CXPath with variables from a set X that captures
FO[≺ns∗ ,≺ch∗] with respect to n-ary queries. Its syntax is given in Figure 4.1.
The set of variables occurring in a CXPathnary (test or path) expression φ is de-
noted FVar(φ). Path expressions P are interpreted by binary relations JP Kt,ρ over
a tree t and modulo an assignment ρ of the variables of P . We do not define the se-
mantics formally as it very similar to the semantics of CoreXPath2.0. Conditional
steps (ax :: α[T])+ are interpreted as the transitive closure of Jax :: α[T]Kt,ρ,
where α ∈ Σ ∪ {∗}.
CXPath is the restriction of CXPathnary without variables. As next shown, in order
to ensure the existence of a polynomial-time query evaluation algorithm, we also
require that CXPathnary path expressions satisfies the following conditions:

1. if P/P ′ is a CXPathnary path expression, then FVar(P) ∩ FVar(P ′) = ∅;

2. if P [T] is a CXPathnary path expression, then FVar(P) ∩ FVar(T) = ∅;

3. if (ax :: α[T])+ is a CXPathnary path expression, then FVar(T) = ∅;

4. if (not T) is a CXPathnary test expression, then FVar(T) = ∅;

5. if (T and T ′) is a CXPathnary test expression, then FVar(T)∩FVar(T ′) = ∅.

It is known that CXPath captures FO:

Proposition 4.1.1 ((Mar05a)) Every binary query defined by an FO[≺ns∗ ,≺ch∗]-formula φ(x, y) is
definable by a CXPath path expression P : for all unranked trees t and all nodes
u, v ∈ Dom(t)

t |= φ(u, v) iff (u, v) ∈ JP Kt

Let CXPathpath denote the set of CXPath path expressions. As CoreXPath1.0 path
expressions, CXPathpath can also be viewed as a binary query language. CXPathnary

path expressions can easily be embedded into Cnvs(CXPathpath), via the following
translation L.M:

LstepM = step LP/P ′M = LP M◦LP ′M
LP union P ′M = LP M ∨ LP ′M LP [T]M = LP M◦[LT M]
LxM = x L?P M = [LP M]
Lnot T M = (self :: ∗[not T]) LT and T ′M = [LT M]◦[LT ′M]

76 Chapter 4. Application to XPath Fragments with Variables

In this translation, only step and not T becomes basic binary queries in the result-
ing composition formula. It is possible since step and T do not contain variables.
Thanks to conditions 1 to 5, the non-variable sharing condition is satisfied by LP M,
for all CXPathnary path expressions P .
The back translation LM−1 from Cnvs(CXPathpath) to CXPathnary path expres-
sions is defined by:

LxM = x LP M = P
Lφ1◦φ2M = Lφ1M/Lφ2M Lφ1 ∨ φ2M = Lφ1M union Lφ2M

L[φ]M = self::*[LφM]

where P is a CXPathpath expression.
Note that back and forth translations are in linear time. From the back translation,
Proposition 4.1.1 that states FO-completeness of CXPathpath wrt binary queries,
and the expressiveness result Theorem 3.5.1 of the composition language, one gets:

Proposition 4.1.2 CXPathnary path expressions captures FO[≺ns∗ ,≺ch∗]-definable n-ary queries on
unranked trees.

From the forth translation, the complexity result Theorem 3.4.7 of query evaluation
of the composition language, and the fact that binary queries defined by CXPathpath

expressions P can evaluated in time O(‖P‖‖t‖2) ((Mar05a)), we have:

Proposition 4.1.3 n-ary queries defined by CXPathnary path expressions P can be evaluated on trees
t in polynomial time:

O(‖P‖.‖t‖2(1 + n.|Q(P)(t)|))

4.2 A POLYNOMIAL-TIME FRAGMENT OF CoreXPath2.0

In this section, we study CoreXPath2.0 and proposes a fragment of it which cap-
tures FO on unranked trees, while admitting a polynomial-time query evaluation
algorithm. The fragment is obtained by disallowing the use of variables in partic-
ular subexpressions, and variable sharing between members of subexpressions (as
for instance composition). Whithout those restrictions, the query non-emptiness
problem is hard. The proofs of the expressiveness and query evaluation results are
done by back and forth translations to Cnvs(CoreXPath1.0 ∪ except), where except

is the complement operator on path expressions defined in CoreXPath2.0.
The syntax and semantics of CoreXPath2.0 have been defined in Section 2.8.1.

4.2.1 XPath 2.0 and FO

XPath 2.0 has been designed to feature the expressiveness of FO. To see this, we
start with an auxiliary path expression by which to reach all nodes in a tree:

nodes =

(ancestor : : ∗ union .) / (descendant : : ∗ union .)

Now we translate FO[≺ns∗ ,≺ch∗] formulas as follows into CoreXPath2.0 path ex-
pressions whose semantics on a tree t modulo some valuation is the set of all node
pairs or the empty set. The translation does not care much about the current posi-
tion during navigation. At each time, it simply jumps to the node denoted by some

4.2. A Polynomial-Time Fragment of CoreXPath2.0 77

variable and tests some literal there.

L∃x.φM = for $x in nodes return LφM
L¬φM = nodes except LφM
Lφ ∧ φ′M = nodes/self::*[?LφM and ?Lφ′M]
Lx ≺ns∗ yM = nodes/$x/(following_sibling :: ∗ union .)/[. is $y]/nodes

Lx ≺ch∗ yM = nodes/$x/(descendant :: ∗ union .)/[. is $y]/nodes

The encoding is correct in the following sense.

Lemma 4.2.1 For all FO[≺ns∗ ,≺ch∗]-formulas φ, all trees t and assignments ρ from FVar(φ)
into Dom(t):

t, ρ |= φ iff JLφMKt,ρ 6= ∅

Proof. First remark that JLφMKt,ρ is either empty or equal to Dom(t)2. The proof
goes then by induction on the structure of FO-formulas. We only elaborate the
most interesting cases, which are that of quantification and negation. The fol-
lowing statements are equivalent: t, ρ |= ∃x.φ iff there exists v ∈ Dom(t) st
t, ρ[x 7→ v] |= φ iff ∪v∈Dom(t)JLφMKt,ρ[x 7→v] 6= ∅ (by induction hypothesis) iff
Jfor $x in nodes return LφMKt,ρ 6= ∅ iff JL∃xφMKt,ρ 6= ∅.
For negations, we have t, ρ |= ¬φ iff t, ρ 6|= φ iff (by induction hypothesis)
JLφMKt,ρ = ∅ iff JL¬φMKt,ρ = Dom(t)2.

This translation maps conjunction to path compositions. Alternatively, one could
use the intersect operator, or conjunctions in tests. Thus, there is some redundancy
in the language. In particular, we can remove the intersect operator by using the
following equivalence:

P1 i n t e r s e c t P2 = P1 except (nodes except P2)

Observe that existential quantifiers of FO are mapped to for-loops, as for-loops are
a kind of existential quantification in CoreXPath2.0.

Proposition 4.2.2 CoreXPath2.0 and FO[≺ns∗ ,≺ch∗] define the same n-ary queries modulo linear
time transformations, on unranked trees.

CoreXPath2.0 = FO[≺ns∗ ,≺ch∗]

Proof. The latter transformation of FO to CoreXPath2.0 is in linear time and pre-
serves queries by Lemma 4.2.1. Conversely, it is quite obvious that all n-ary
queries expressible in CoreXPath2.0 are FO definable. It is sufficient to introduce
existentially quantified variables systematically for all positions in path expres-
sions. Note that existential quantifiers cannot be dropped when below negation.
Note also that all axis of CoreXPath2.0 are definable in FO, so that the back trans-
formation is in linear time too.

Model checking for FO is PSPACE complete (Sto74). By Proposition 4.2.2, this
result carries over to CoreXPath2.0.

Corollary 4.2.3 Model checking for CoreXPath2.0 is PSPACE-complete.

4.2.2 Towards a polynomial-time fragment of CoreXPath2.0

We present restrictions on CoreXPath2.0 in order to define a polynomial-time frag-
ment (wrt query evaluation) which still captures FO on unranked trees, wrt n-ary
queries.

78 Chapter 4. Application to XPath Fragments with Variables

First of all, we disallow for-loops in order to avoid quantifier alternation, which
raises PSPACE-hardness of model checking. This can be done without loss of
expressiveness:

Proposition 4.2.4 (Quantifier elimination)
CoreXPath2.0 without for loops, CoreXPath2.0, and FO [≺ns∗ ,≺ch∗] have the
same expressiveness wrt n-ary queries, over unranked trees.

Proof. From Proposition 4.2.2, we already know that CoreXPath2.0 and FO have
the same expressive power. It can be proved that CoreXPath2.0 without for-loops
still matches the expressiveness of FO. Indeed, Marx has shown that every exten-
sion of CoreXPath1.0 that is closed under complementation (of binary relations)
is complete with respect to binary FO-queries (Theorem 2 of (Mar05b)). This is
the case for instance for CoreXPath1.0 extended with the except operator, which
we denote by CoreXPath1.0 ∪ except. Now, the result follows from Theorem
3.5.1, since C(CoreXPath1.0 ∪ except) can easily be expressed in CoreXPath2.0,
as shown by Proposition 4.2.8 (which can be read independently). Note that the
transformation of Theorem 3.5.1 creates a formula of non-elementary size.

While quantifiers (for-loops) can be removed from CoreXPath2.0 without loss
of expressiveness (wrt n-ary queries), it cannot be done in FO, even if existen-
tial quantifiers which occurs under an even number of negations are still allowed
(called the existential fragment):

Lemma 4.2.5 The existential fragment of FO [≺ns∗ ,≺ch∗] is strictly less expressive than FO
[≺ns∗ ,≺ch∗].

Proof. The inclusion is given by Lemma 4.2.4. To prove that it is strict, we con-
sider the following negative formula expressing that if x is an ancestor of y, no
single ns step occurs on the firstchild/nextsibling path from x to y:

¬(∃z.∃z′.(x ≺ch∗ z ∧ z ≺ns∗ z
′ ∧ z′ ≺ch∗ y))

It can be expressed in CoreXPath2.0 without for-loops:

.[not ($x/descendant::∗/nextsibling::∗/descendant::∗[. is $y])]

The translation L . M of this path expression to an FO formula creates existentially
quantified variables below negation. This quantifier cannot be dropped or elimi-
nated, even if we add firstchild to the signature.
To see this, let φ0(x, y) be the counter example above and suppose that it can be
expressed by some existential formula of the form ∃x1. . . .∃xn.ψ where ψ is a
quantifier free FO formula with free variables x1, . . ., xn, x, y.
Let t be a tree with nodes u, v satisfying (u, v) ∈ firstchild(t)n+2. This means that
one can descend from u to v over a path of n+2 subsequent firstchild steps. Since
t, u, v |= φ0(x, y) there exists a variable assignment ρ with ρ(x) = u, ρ(y) = v
such that t, ρ |= ψ. Since the number of intermediate nodes on the path from u
to v is n + 1, there exists at least one node w on this path that does not belong to
ρ({x1, . . . , xn, x, y}). Let us transform the tree t into a tree t′ by adding a new
node on the left of the previous first child of w. One can prove that t′, ρ |= ψ, since
on the nodes of t we only changed the relation firstchild for w. This contradicts
t′, u, v 6|= φ0 since the path from u to v contains a nextsibling step now.

4.2. A Polynomial-Time Fragment of CoreXPath2.0 79

Removing for-loops, and even variables below negations, from CoreXPath2.0,
however, does not suffice to reduce the complexity of query non-emptiness.

Proposition 4.2.6 Query non-emptiness for CoreXPath2.0 without for-loops is NP-complete.

Proof. upper-bound Let t be an unranked tree and P a path expression of Cor-
eXPath2.0 without for-loops, and let x the variables (necessarily free) contained
in P . We want to decide whether Q(P)(t) 6= ∅. This can be done as follows.
First guess a variable assignment α : {x} → Dom(t). Secondly, we translate P
into a formula of Propositional Dynamic Logic (PDL), over the CoreXPath2.0 axis
(i.e. CoreXPath2.0 axis viewed as basic programs). Variables $x are translated
into propositional symbols px which are true at position α(x), i.e. t, u |= px iff
u = α(x), for u ∈ Dom(t). Finally, it is known that PDL has linear time combined
complexity for model-checking (ADdR03), which concludes the proof.
lower-bound This is proved by reducing SAT. The proof is the same as the proof
of Proposition 3.4.1. Disjunctions are expressed by using union and conjunction
by using composition of filters.

In the proof of Proposition 4.2.6, the encoding of Sat relies on using variable shar-
ing between different branches of compositions. Similar effects can arise with
filters and conjunctions in tests, so we have to forbid variable sharing in all these
cases.
The next restriction that we want to impose on test expressions is that they do
not contain variables below negation. Otherwise, we would have to treat variable
sharing in conjunction and disjunction symmetrically.
Variables on the right of exceptions are also forbidden, since this is a form of
negation. Variables are also forbidden on the left of exceptions as well as in inter-
sections as it is needed in to relate CoreXPath to our composition language, but we
still do not know if this is necessary.
Variables sharing in filters would amount to variable sharing in composition.
There are no restrictions on the union and or operators, so variables can be shared
there. It is crucial to forbid variables below all kinds of negation in except and
not . Otherwise, one could encode intersect and and expressions with variable
sharing.
We finally come to the polynomial-time fragment of CoreXPath2.0:

Definition 1. The n-ary query language CoreXPath2.0nvs is the restriction of Cor-
eXPath2.0 whose expressions satisfy the following conditions:

N(for) no for loops and thus no explicit quantifiers.

NV(intersect) no variables in intersections: all subexpressions P1 intersect P2

satisfy FVar(P1) = FVar(P2) = ∅.

NV(except) no variables in exceptions: all subexpressions
P1 except P2 satisfy FVar(P1) = FVar(P2) = ∅.

NV(not) no variables below negation, i.e., subexpressions not(T) satisfy
FVar(T) = ∅

NVS(/) no variable sharing in composition: all subexpressions P1/P2 satisfy
FVar(P2) = ∅

80 Chapter 4. Application to XPath Fragments with Variables

NVS([]) no variable sharing in filters: all subexpressions P [T] satisfy FVar(P)∩
FVar(T) = ∅

NVS(and) no variable sharing in conjunctions: all tests in subexpressions
T1 and T2 satisfy FVar(T1) ∩ FVar(T2) = ∅

Theorem 4.2.7

Expressiveness. CoreXPath2.0nvs can express all n-ary first-order queries.

Complexity. Answers sets of n-ary queries Q(P) by path expressions P can be
answered in polynomial time O(‖P‖.‖t‖3 +n.‖P‖.‖t‖2.|A|) where |A| is
the cardinality of the answer set.

The next two sections are devoted to the proof of this Theorem, by relation to
composition language. In particular, it is proved that CoreXPath2.0nvs and com-
position of variable-free CoreXPath2.0 expressions Cnvs(CoreXPath2.0varfree) are
equally expressive, modulo linear-time back and forth translations.

4.2.3 The variable-free fragment

We denote by CoreXPath2.0varfree the variable-free fragment of CoreXPath2.0. As
we next show, this language can be identified with the extension of CoreXPath1.0
by the except operator.
In CoreXPath2.0 variables are used to define n-ary queries but are not
present in CoreXPath2.0varfree. Instead we naturally use path expressions
P ∈ CoreXPath2.0varfree to define binary queries, which relate starting nodes
of navigation to ending nodes, as for CoreXPath1.0.

Proposition 4.2.8 The following languages define the same binary queries modulo linear time trans-
lations:

CoreXPath1.0 ∪ except = CoreXPath2.0varfree

Proof. The inclusion from the left to the right is obvious by syntactic identity. For
the converse, we encode CoreXPath2.0varfree into CoreXPath1.0∪except by a linear
time translation L.M. We only define it for the additional features of CoreXPath2.0,
compared to CoreXPath1.0:

L.M = self

LP intersect P ′M = nodes except ((nodes except LP M) union

(nodes exceptLP ′M))
LP except P ′M = LP M except LP ′M
L. is .M =?self

Theorem 4.2.9 CoreXPath2.0varfree satisfies the following two properties:

Expressiveness. All binary FO-queries can be expressed in CoreXPath2.0varfree.

Complexity Query evaluation of binary queries expressed by CoreXPath2.0varfree

path expressions P on trees t is in time O(‖P‖.‖t‖3).

The completeness result is due to Proposition 4.2.8 and Theorem 2 of Marx
(Mar05b), which says that every extension of CoreXPath1.0 that is closed under
complementation is equally expressive as FO on unranked trees wrt binary queries.

4.2. A Polynomial-Time Fragment of CoreXPath2.0 81

For the algorithmic part, we reason with CoreXPath1.0 ∪ except expressions,
thanks to Proposition 4.2.8. However, we view the except operator as a unary
operator, meaning that except P = nodes except P . This can be assumed wlog
since P except P ′ = except ((except P) union P ′).
It is well known that unary queries in CoreXPath1.0 can be evaluated in linear time
(GKP05). This gives a quadratic binary query evaluation algorithm for CoreX-
Path1.0, in the size of the input tree. The main evaluation trick of CoreXPath1.0
lies in that the set of successors Sa(N) = {u′ | ∃u ∈ N, a(u, u′)} of a set of
nodes N by a standard axis a, in a tree t, is computable in linear time O(|t|).
This can be extended to full CoreXPath1.0 expressions, so that computing SP (N),
for some CoreXPath1.0 expression P , is in linear time O(|P ||t|). However, it is
not clear whether this trick can be used for evaluating CoreXPath2.0varfree, since
except operator can occur at any position in the input expression, and in general
Sexcept P (N) 6= SP (N).
We now give an algorithm to answer binary queries by CoreXPath2.0varfree ex-
pressions. Given a CoreXPath2.0varfree expression P , and a tree t, we repre-
sent Q(P)(t) as a |t| × |t| Boolean matrix M t

P . Naturally, M t
P is defined by

∀u, u′ ∈ Dom(t), M t
P [u, u′] = 1 iff (u, u′) ∈ Q(P)(t). We consider the follow-

ing operations on matrix: the sum + and the product . over the Boolean algebra
({0, 1},∨,∧). We also defined ¬M as the matrix M where 0’s (resp. 1’s) have
been replaced by 1’s (resp. 0’s), and [M] by ∀u, u′ ∈ Dom(t) [M][u, u′] = 1 iff
u = u′ and ∃u′′ ∈ Dom(t) s.t. M [u, u′′] = 1. Similarly, we can easily define
operations on matrix which correspond to operators in test expressions. We get the
following, for all CoreXPath2.0varfree expressions P1, P2, P and all trees t:

M t
P1/P2

= M t
P1
.M t

P2
M t

except P = ¬M t
P

M t
P1unionP2

= M t
P1

+M t
P2

M t
P [T] = M t

P .[M
t
T]

A naive implementation of these operations leads to a O(|P ||t|3) time complexity
to evaluate a CoreXPath2.0varfree expression P on a tree t. However, from a theo-
retical point of view, this can be improved to O(|P ||t|2.376) since the best known
algorithm for n-square Boolean matrix multiplication is in time O(n2.376), due to
Coppersmith and Winograd (CW87).

4.2.4 Relation to the composition language

We have the following relationship between CoreXPath2.0nvs and the composition
language:

Proposition 4.2.10 The following two languages define the same n-ary queries modulo linear time
translations:

Cnvs2 (CoreXPath2.0varfree) = CoreXPath2.0nvs

Proof. The inclusion from the left to the right follows from the following transla-
tion:

LP M = P where P in CoreXPath2.0varfree

Lφ◦φ′M = LφM/Lφ′M
LxM = .[. is $x]
L[φ]M = .[LφM]
Lφ ∨ φ′M = LφM union Lφ′M

It remains to verify that the result of the translation belongs to CoreXPath2.0nvs.
This holds since CoreXPath2.0varfree ⊆ CoreXPath2.0nvs and since we assume the

82 Chapter 4. Application to XPath Fragments with Variables

non-variable sharing. The inverse inclusion follows by the inverse translation in
Figure 4.2.
It can be seen by induction on the size of path expressions that the back translation
always maps to Cnvs(CoreXPath2.0varfree).

In order to evaluate CoreXPath2.0nvs expressions, it suffices to translate them into
Cnvs

2 (CoreXPath2.0varfree) expressions in linear time (Proposition 4.2.10) and to
evaluate the resulting expressions thanks to Theorem 3.4.7 and Theorem 4.2.9.
This gives the proof of the complexity part of Theorem 4.2.7.
On the other hand, from Proposition 4.2.10, Theorem 3.5.1 and Theorem 4.2.9, we
get the expressiveness result of Theorem 4.2.7.

4.2. A Polynomial-Time Fragment of CoreXPath2.0 83

LA :: LM−1 = A :: L

(in CoreXPath2.0varfree)

L.M−1 = self

(in CoreXPath2.0varfree)

L$xM−1 = nodes◦x

LP1/P2M
−1 = LP1M

−1◦LP2M
−1

(NVS(/) impliesNVS(◦))

LP1 union P2M
−1 = LP1M

−1 ∪ LP2M
−1

LP1 intersect P2M
−1 = P1 intersect P2

(in CoreXPath2.0varfree modulo linear time
by NV(intersect) and Proposition 4.2.8)

LP1 except P2M
−1 = P1 except P2

(in CoreXPath2.0varfree modulo linear time
by NV(except) and Proposition 4.2.8)

LP1[P2]M
−1 = LP1M

−1◦[LP2M
−1]

(NVS([]) ensures NVS(◦))

LP [not T]M−1 = LP M−1 ◦ .[not T]

(.[not T] is in CoreXPath2.0varfree by NV(not)
and Proposition 4.2.8 so the result satisfies NVS(◦))

LP [T1 and T2]M
−1 = LP M−1◦[LT1M

−1]◦[LT2M
−1]

(NVS(and) guarantees NVS(◦))

LP [T1 or T2]M
−1 = LP M−1 ◦ ([LT1M

−1] ∨ [LT2M
−1])

(NVS([]) maps to NVS(◦))

Figure 4.2: From CoreXPath2.0nvs to Cnvs
2 (CoreXPath2.0varfree)

Part II

A Spatial Logic for Trees

85

5TREE AUTOMATA WITH GLOBAL

CONSTRAINTS

CONTENTS
5.1 INTRODUCTION . 89

5.2 DEFINITION AND EXAMPLES . 90

5.3 CLOSURE PROPERTIES OF TAGEDS AND DECISION PROBLEMS 92

5.3.1 Closure Properties of TAGED-definable languages 92

5.3.2 Universality is undecidable . 95

5.3.3 On restricting the equality relation 97

5.3.4 A Normal Form for the Runs when =A⊆ idQ 100

5.4 POSITIVE AND NEGATIVE TAGEDS 102

5.4.1 Emptiness of Positive TAGEDs 102

5.4.2 Pumping Lemma for Positive TAGEDs 103

5.4.3 Emptiness of Negative TAGEDs 105

5.5 VERTICALLY BOUNDED TAGEDS 106

5.5.1 A Characterization of the Non-Emptiness Problem 107

5.5.2 Proof of the Forth Direction of Theorem 5.5.4 110

5.5.3 Proof of the Back Direction of Theorem 5.5.4 115

5.6 MSO WITH TREE EQUALITY TESTS 120

5.7 TAGEDS FOR UNRANKED TREES OVER AN INFINITE ALPHABET 123

5.7.1 Extension to an Infinite Alphabet 124

5.7.2 Binary Encoding . 125

5.8 CONCLUSION . 126

THIS chapter introduces a novel class of tree automata with constraints, called
tree automata with global equality and disequality constraints (TAGEDs for

short), for which a large subclass is proved to be decidable, with respect to to
the emptiness problem. They have been introduced to decide a fragment of TQL
(Theorem 6.5.5), but might be of independent interest. A natural correspondence
with MSO is investigated. In particular, a decidable extension of MSO with tree
equality tests is considered. TAGEDs are studied over binary trees, but lifted to
unranked trees in the last section.

87

5.1. Introduction 89

5.1 INTRODUCTION

The emergence of XML has strengthened the interest in tree automata, as it is a
clean and powerful model for XML tree acceptors (NS02b, Sch07). In this con-
text, tree automata have been used, for example, to define schemas, and queries,
but also to decide tree logics, to type XML transformations, and even to learn
queries. However, it is known that sometimes, expressiveness of tree automata is
not sufficient. This is the case for instance in the context of non-linear rewriting
systems, for which more powerful tree acceptors are needed to decide interesting
properties of those rewrite systems. For example, the set of ground instances of
f(x, x) is not regular.
Tree automata with constraints have been introduced to overcome this lack of ex-
pressiveness (BT92, DCC95, JRV06, KL06). In particular, the transitions of these
tree automata are fired as soon as the subtrees of the current tree satisfy some struc-
tural (dis)equality. But typically, these constraints are kept local to preserve decid-
ability of emptiness and good closure properties – in particular, tests are performed
between siblings or cousins –. In the context of XML, and especially to define tree
patterns, one needs global constraints. For instance, it might be useful to represent
the set of ground instances of the pattern X(author(x),author(x)), where X
is a binary context variable, and x is an author which occur at least twice (we as-
sume this pattern to be matched against XML trees representing a bibliography). In
this example, the two subtrees corresponding to the author might be arbitrarily far-
away, making the tree equality tests more global. Patterns might be more complex,
by the use of negation (which allow to test tree disequalities), Boolean operations,
and regular constraints on variables. The TQL logic, in particular, allows to define
such patterns. In this chapter, we introduce Tree Automata with Global Equali-
ties and Disequalities (TAGEDs for short), which capture the expressiveness of
the guarded TQL fragment with tree variables (assumed to be existentially quan-
tified). These are tree automata A equipped with an equality relation =A and a
disequality relation 6=A on (a subset of) states. A tree t is accepted by A if there
is a computation of A on t which leads to an accepting state, and such that, when-
ever two subtrees of t evaluate to two states q1, q2 (not necessarily equal) such that
q1 =A q2 (resp. q1 6=A q2), then these two subtrees must be structurally equal
(resp. structurally different). TAGEDs may be interesting on their own, since they
are somehow orthogonal to usual automata with constraints (BT92). Indeed, if we
view equality tests during computations as an equivalence relation on a subset of
nodes (two nodes being equivalent if their rooted subtrees have been successfully
tested to be equal by A), in the former, there are a bounded number of equivalence
classes of unbounded cardinality, while in the latter, there might be an unbounded
number of equivalence classes of bounded cardinality.
We prove several properties of TAGED-definable languages: closure by union and
intersection, non-closure by complement. We prove other results such as non-
determinization and undecidability of universality. We also prove a useful result
which states that we can assume that =A⊆ idQ without loss of generality (where
idQ is the identity relation on the set of states). The main results are decidability
of emptiness for several classes of TAGEDs: TAGEDs with equality tests or dise-
quality tests only, and TAGEDs which performs a bounded number of disequality
tests along any root-to-leaf path (and arbitrarily many equality tests). This is done
by introducing a pumping technique for TAGEDs.

90 Chapter 5. Tree Automata with Global Constraints

Related Work Extensions of tree automata which allow for syntactic equality
and disequality tests between subterms have already been defined by adding con-
straints to the rules of automata. E.g., adding the constraint 1.2 = 2 to a rule
means that one can apply the rule at position π only if the subterm at position π.1.2
is equal to the subterm at position π.2. Testing emptiness of the recognized lan-
guage is undecidable in general (Mon81) but two classes with a decidable empti-
ness problem have been emphasized. In the first class, automata are deterministic
and the number of equality tests along a path is bounded (DCC95) whereas the sec-
ond restricts tests to sibling subterms (BT92). This latter class has recently been
extended to unranked trees (KL06), the former one has been extended to equal-
ity modulo equational theories (JRV06). But, contrarily to TAGEDs, in all these
classes, tests are performed locally, typically between sibling or cousin subterms.
Automata with local and global equality tests, using one memory, have been con-
sidered in (CC05). These are tree automata with a memory which can store a single
tree. They run in a bottom-up fashion, and the two trees contained in the respective
memories coming from two computations on the two subtrees of the current node
can be combined thanks to tree operations and compared with tree equality tests.
The emptiness problem is decidable for tree automata with memory, and they can
simulate positive TAGEDs (TAGEDs performing only equality tests) which use at
most one state per runs to test equalities. However, their ability to perform local
tests make them incomparable to TAGEDs. Finally, automata for DAGs are stud-
ied in (ANR05, Cha99), they cannot be compared to positive TAGEDs, as they run
on DAG representations of trees (with maximal sharing), and in TAGEDs, we can-
not impose that every equal subtrees evaluate to the same state in a successful run,
as shown by Example 5.2.2 where it is needed to evaluate the leaves to possibly
different states.

Organization of the Chapter TAGEDs are defined in Section 5.2. Some closure
properties of TAGED-definable languages as well as decision problems are inves-
tigated in Section 5.3. Decidability of emptiness is proved in Section 5.4 for two
subclasses which can test only equalities or inequalities respectively. An expres-
sive subclass which mixes equality and disequality tests is introduced in Section
5.5, where emptiness is proved. A natural correspondence between TAGEDs and
an extension of MSO with tree equality tests is investigated in Section 5.6. Finally,
TAGEDs that work on unranked trees over an infinite alphabet are considered in
Section 5.7.

5.2 DEFINITION AND EXAMPLES

For the sake of clarity, we consider binary trees, with constant and binary function
symbols from a ranked alphabet Σ, but all the definitions can naturally be extended
to ranked trees of arbitrary arity. In the last section of this chapter, we show that
all the results can be lift to unranked trees, via a particular binary encoding which
preserves the subtrees (a subtree in the encoding corresponds to a subtree in the
unranked tree).

Definition 5.2.1 (TAGED) A TAGED is a 6-tuple A = (Σ, Q, F,∆,=A, 6=A) such that:
• (Σ, Q, F,∆) is a tree automaton;
• =A is a reflexive and symmetric binary relation on a subset of Q;
• 6=A is an irreflexive and symmetric binary relation on Q.

5.2. Definition and Examples 91

A TAGED A is said to be positive (resp. negative) if 6=A (resp. =A) is empty.

The notion of successful run differs from tree automata as we add equality and
disequality constraints. A run r of the tree automaton (Σ, Q, F,∆) on a tree t
satisfies the equality constraints if whenever two nodes u, v of r are labeled by
states labr(u) and labr(v) respectively such that labr(u) =A labr(v), the two
subtrees t|u and t|v are equal:

for all u, v ∈ Dom(r), if labr(u) =A labr(v) then t|u = t|v.

Similarly, it satisfies the disequality constraints if:

for all u, v ∈ Dom(r), if labr(u) 6=A labr(v) then t|u 6= t|v.

A run is successful (or accepting) if it is successful for the tree automaton
(Σ, Q, F,∆) and if it satisfies all the constraints. The language accepted (or rec-
ognized) by A, denoted L(A), is the set of trees t having a successful run for A.
We denote by dom(=A) the domain of =A, i.e. {q | ∃q′ ∈ Q, q =A q′}. The
set dom(6=A) is defined similarly. Two TAGEDs are equivalent if they accept the
same language. Finally, the size of A, denoted ‖A‖, is the size of (Σ, Q, F,∆)
plus 2|dom(=A) ∪ dom(6=A)|.
TAGEDs are strictly more expressive than tree automata, as illustrated by the next
example.

Example 5.2.1 Let Q = {q, q=, qf}, F = {qf}, and let ∆ be defined as the set of following rules,
for all a, f ∈ Σ:

a→ q a→ q= f(q, q) → q f(q, q) → q= f(q=, q=) → qf .

The language accepted by the positive TAGED A1 = (Σ, Q, F,∆, {q= =A1
q=})

is the set {f(t, t) | f ∈ Σ, t ∈ Tran(Σ)}, which is known to be non regular
(CDG∗07). A tree and a successful of A1 on it are depicted below:

f

f

a a

f

a a

qf

q=

q q

q=

q q

Example 5.2.2 Let X be a finite set of variables. We now define a TAGED Asat =
(Σsat, Qsat, Fsat,∆sat) which accepts tree representations of satisfiable Boolean
formulas with free variables X . The alphabet Σsat consists of the binary symbols
∧,∨ and x, for all x ∈ X , the unary symbol ¬, and the two constant symbols 0, 1.
Every Boolean formula is naturally viewed as a tree, except for variables x ∈ X
which are encoded as trees x(0, 1) over ΣX . For instance, the formula (x∧y)∨¬x
is encoded as the tree: ∨

∧

x

0 1

y

0 1

¬

x

0 1

92 Chapter 5. Tree Automata with Global Constraints

Let Q = {qx | x ∈ X} ∪ {q0, q1, p0, p1}, and F = q1. The idea is to choose
non-deterministically to evaluate the leaf 0 or 1 below x to qx, but not both, for
all x ∈ X . This means that we affect 0 or 1 to a particular occurrence of x.
Then, by imposing that every leaf evaluated to qx are equal, for all x ∈ X , we can
ensure that we have chosen to same Boolean value for all occurrences of x, for all
x ∈ X . This can be done with the following set of rules, for all b, b1, b2 ∈ {0, 1},
all ⊕ ∈ {∧,∨}, and all x ∈ X :

b → pb b → qx
x(p0, qx) → q1 x(qx, p1) → q0
¬(qb) → q¬b ⊕(qb1 , qb2) → qb1⊕b2

Finally, for all x ∈ X , we let qx =Asat qx.

The uniform membership problem is: given a TAGED A, given a tree t, does t
belong to L(A)?

Proposition 5.2.3 Uniform membership is NP-complete for TAGEDs.

Proof. Example 5.2.2 gives a polynomial reduction of SAT to the membership of
TAGEDs. To show it is in NP, it suffices to guess a labeling of the nodes of the
tree by states, and then to verify that it is a run, and that equality and disequality
constraints are satisfied. This can be done in linear time both in the size of the
automaton and of the tree. Indeed, we can compute in timeO(‖t‖) a data structure
which allows to test in constant time whether two subtrees (identified by their node
roots) are equal or not.

Note that Proposition 5.2.3 remains true even for positive TAGEDs.

5.3 CLOSURE PROPERTIES OF TAGEDS AND DECISION PROB-
LEMS

5.3.1 Closure Properties of TAGED-definable languages

Proposition 5.3.1 (Closure by union and intersection) TAGED-definable languages are closed by union
and intersection.

Proof. Let A = (Λ, Q, F,∆,=A, 6=A) and A′ = (Λ, Q′, F ′,∆′,=A′ , 6=A′) be two
TAGEDs. Wlog, we suppose thatQ∩Q′ = ∅. The TAGED acceptingL(A)∪L(A′)
is defined by A ∪A′ = (Λ, Q ∪Q′, F ∪ F ′,∆ ∪∆′,=A ∪ =A′ , 6=A ∪ 6=A′).
For the closure by intersection, we extend the product automaton A× A′ with the
following relations:

• =A×A′= {((q, q′), (p, p′) | q =A p or q′ =A′ p
′}

• 6=A×A′= {((q, q′), (p, p′) | q 6=A p or q′ 6=A′ p
′}

The set of final states is F × F ′.
We let ta(A) and ta(A′) be the “tree automaton” parts of A and A′ respectively.
Now we prove that L(A×A′) = L(A) ∩ L(A′).
Let t ∈ L(A×A′), then there exists a successful run r′′ ofA×A′ on t. By construc-
tion, this run can be decomposed into a successful run r of ta(A) on t and a success-
ful run r′ of ta(A′) on t. It remains to show that r and r′ satisfies the constraints

5.3. Closure Properties of TAGEDs and Decision Problems 93

of A and A′ respectively. Let u, v ∈ Dom(t) such that labr(u) =A labr(v). It
means that there exist four states q, p ∈ Q, q′, p′ ∈ Q′ such that labr

′′

(u) = (q, q′),
labr

′′

(v) = (p, p′) and q =A p. Hence (q, q′) =A×A′ (p, p′) and we get t|u = t|v.
This is similar for r′ and when considering inequalities.
Conversely, suppose that t ∈ L(A) ∩ L(A′). Hence there exist two successful
runs r and r′ of A and A′ on t respectively. By construction of A× A′, these two
runs can be combined into a run r′′ of A × A′ on t. It remains to show that r′′

satisfies the constraints of A × A′. Let u, v ∈ Dom(t) such that labr
′′

(u) =A×A′

labr
′′

(v). It means that there exists four states q, p ∈ Q and q′, p′ ∈ Q′ such that
labr

′′

(u) = (q, q′), labr
′′

(v) = (p, p′), and either q =A p or q′ =A′ p
′. If q =A p,

we get t|u = t|v since r respects the constraints of A, and if q′ =A′ p
′, we also

get t|u = t|v since r′ respects the constraints of A. The proof goes similarly when
dealing with inequalities.

These closure properties hold also for the class of languages defined by positive or
negative TAGEDs. One can see a TAGED as a computational machine which runs
on trees in a bottom-up fashion. A TAGED is therefore said to be deterministic if
there is at most one possible computation per trees. This notion can be defined as
usual with a simple syntactic restriction:

Definition 5.3.1 A TAGED A = (Σ, Q, F,∆,=A, 6=A) is deterministic if all rules have different
left-hand sides.

Note that for all deterministic TAGED A, it is possible to compute a non-
deterministic TAGED accepting the complement of L(A): we have to check if the
tree evaluates in a non-accepting state or in an accepting state but in this case we
non-deterministically guess a position where a constraint is not satisfied. However:

Proposition 5.3.2 TAGEDs are not determinizable.

Proof. Let Σ = {f, a} be an alphabet where f is binary and a constant. Consider
the language L0 = {f(t, t) | t ∈ Tran(Σ)}. It is obvious that L0 is definable
by a non-deterministic TAGED. Suppose that there is a deterministic TAGED A =
(Σ, Q, F,∆,=A, 6=A) such that L(A) = L0. Let t be a tree whose height is strictly
greater than |Q|. Since f(t, t) ∈ L0, there are a successful run qf (r, r) of A on
f(t, t) for some final state qf , two nodes u, v and a state q ∈ Q such that t|v is a
strict subtree of t|u, and labr(u) = labr(v) = q. Since f(t|u, t|u) ∈ L0, and A is
deterministic, there is a final state q′f ∈ F and a rule f(q, q) → q′f ∈ ∆. Hence
q′f (r|u, r|v) is a run ofA on f(t|u, t|v). Since qf (r, r) satisfies the constraints, they
are also satisfied between r|u and r|v, so that q′f (r|u, r|v) satisfies the constraints
as well. Hence f(t|u, t|v) ∈ L(A), which contradicts t|u 6= t|v.

Deterministic TAGEDs are still strictly more expressive than tree automata, since
{f(g(t), g(t)) | t ∈ Tran({f, a})} is definable by a deterministic positive TAGED
but not by a tree automaton. It suffices to evaluate every tree of Tran({f, a}) in a
state q, and to add the rules g(q) → q= and f(q=, q=) → qf , for some state q and
final state qf , where q= =A q=. Proposition 5.3.2 is not surprising, since:

Proposition 5.3.3 The class of TAGED-definable languages is not closed by complement.

Proof. We exhibit a tree language whose complement is easily definable by a
TAGED, but which is not TAGED-definable. The idea is to take a language where
at each level, the two subtrees are equal. To check membership to its complement,

94 Chapter 5. Tree Automata with Global Constraints

f

f

g

g

f

αn αn

αn−1 αn−1

α1 α1

g
a

2i0

2j0

u

u′

N

substitution

Figure 5.1: Tree tn

it suffices to guess a position where the two subtrees are different, which can be
done by a TAGED.
Let Σ = {f, g, a} where f, g are binary and a is a constant, and h 6∈ Σ be a binary
symbol. Let T0 = {a}, and for n > 0, Tn = {f(g(t, t), t′) | t ∈ Tran({h, a}), t

′ ∈
Tn−1}. Let L =

⋃
n∈N

Tn. The complement of L is easily definable by a TAGED.
Suppose that L is definable by a TAGED A = (Σ ∪ {h}, Q, F,∆,=A, 6=A). Let
n ≥ |Q|+ 1, and let α1, . . . , αn ∈ T{h,a} such that ∀i < j, ‖αi‖ < ‖αj‖. Now, let
t0 = a, and for i > 0, ti = f(g(αi, αi), ti−1) (see Fig 5.1). It is clear that tn ∈ Tn.
Hence there is a successful run r of A on tn.
In the rest of the proof, we identify the nodes of tn and the paths from the root to
them.
Since n ≥ |Q| + 1, there are b, b′ ∈ {1, 2}, i0, j0 ∈ {0, . . . , n − 1}, i0 < j0,
two nodes u, u′ ∈ Dom(tn), and a state q ∈ Q such that: (i) u = 2i01b and
u′ = 2j01b′, (ii) labr(u) = labr(u′) = q. Let t′n = tn[tn|u]u′ , i.e. the tree tn
where the subtree at node u′ has been substituted by the subtree at node u. We do
the same corresponding substitution in r, which results into a run denoted r′ (see
Fig 5.1). Note that t′n 6∈ L since ‖αi‖ 6= ‖αj‖ by definition of tn, for all i 6= j.
We now prove that r′ satisfies the constraints, which will contradict tn|u 6= tn|u′ .
Let N = {2k | k = 0, . . . , j0} ∪ {2

j01} (see Fig 5.1). Intuitively, if a constraint
is disturbed by the substitution, ie if a constraint is unsatisfied in t′n, it involves
necessarily at least one node of N . Let v, w ∈ Dom(t′n), v 6= w. We consider
three cases (the others are symmetric):

• if v, w 6∈ N , then necessarily any constraint between v andw is still satisfied,
because the subtrees rooted at v and w have not changed;

• suppose that v ∈ N and v = 2k, for some k ≤ j0. We prove that necessarily,
t′n|v 6= t′n|w. Indeed, the root of t′n|v is necessarily labeled f . If the root of

5.3. Closure Properties of TAGEDs and Decision Problems 95

t′n|w is labeled f , then either t′n|v is a strict subtree of t′n|w or t′n|w is a strict
subtree of t′n|v. Otherwise the root of t′n|w is labeled by g, h or a, so we
obviously have t′n|v 6= t′n|w.

Hence, if labr
′

(v) 6=A labr
′

(w), the constraints is satisfied. We can easily
prove that labr

′

(v) =A labr
′

(w) is impossible.

• suppose that v ∈ N and v = 2j01. The root of t′n|v is necessarily labeled g.
There are two cases:

– if labr
′

(v) =A labr
′

(w), we can prove a contradiction. Indeed:

If w = 2j01b′w′, for some w′ ∈ Dom(αj0), we have labr(v) =A

labr(2i01b′w′), and tn|2i01b′w′ = tn|v, which is impossible since the
root of tn|2i01bw′ is labeled h or a, and the root of tn|v is labeled g.

If w = 2k, for some k ∈ {0, . . . , n}, then we have tn|w = tn|v, which
is also impossible for similar reasons.

If w = 2k1, for some k ∈ {0, . . . , n− 1}, then k 6= j0, and necessarily
we have tn|w = tn|v. It is impossible since it implies that tn|w =
g(αk, αk) and tn|v = g(αj0 , αj0), which contradicts |αk| 6= |αj0 |.

Suppose that w = 2j1cw′, for some j 6= j0, c ∈ {1, 2}, and w′ ∈
Dom(αj). Hence we have labr(v) =A labr(w), and tn|v = tn|w,

which contradicts that their respective roots are labeled by different
labels.

– if labr(v) 6=A labr(w), then the constraint is satisfied, i.e. t′n|v 6= t′n|w.
Indeed, suppose that t′n|v = t′n|w. Since the root of t′n|v is labeled g, w
is necessarily equal to 2k1, for some k 6= j0. Hence tn|w is of the form
g(αi0 , αj0) = t′n|v, which contradicts tn ∈ L, since |αi0 | 6= |αj0 |.

Hence r′ is a successful run of A on t′n, which contradicts t′n 6∈ L.

The complement of the tree language L used as a counter-example in the proof of
Proposition 5.3.3 is definable by a negative TAGED. This means in particular that
the class of languages definable by negative TAGEDs is not closed by complement.
One could also use a symmetric counter-example language L′ to prove that the
class of languages definable by positive TAGEDs is not closed by complement.
Instead of requiring an equality between the children of nodes labeled g, it would
suffice to require a disequality.

5.3.2 Universality is undecidable

The universality problem is as follows: given a TAGED A over a ranked alphabet
Σ, does A accept all trees over Σ?

Proposition 5.3.4 Testing universality of TAGEDs is undecidable (even over a fixed alphabet).

Proof. We adapt the proof of (Mon81) of emptiness undecidability for classical
tree automata with equality constraints. We start from an instance of the Post Cor-
respondence Problem (PCP). We encode the set of solutions of PCP as a tree lan-
guage whose complement is easily definable by a TAGED. Hence, the complement
is universal iff PCP has no solution.
The Post Correspondence Problem (PCP) is defined as follows: an instance of
PCP is given by a finite alphabet Σ and 2m words u1, . . . , um, v1, . . . , vm over

96 Chapter 5. Tree Automata with Global Constraints

Figure 5.2: representation of a solution of PCP

Σ. A solution to this problem is a finite sequence of indices i1, . . . , in such that
ui1 . . . uin = vi1 . . . vin .
Let Σ be an alphabet, and I = {u1, . . . , um, v1, . . . , vm} be an instance of PCP.
We denote by Σ ∪ {f1, . . . , fm, c} the ranked alphabet obtained by extending Σ
with fresh ternary function symbols fi and a constant 0. Symbols from Σ are
viewed as unary function symbols.
Let i1, . . . , in be a solution of I. This solution can be represented as a tree over
Σ ∪ {f, c}, as in Figure 5.2. For all 1 ≤ j ≤ m, the notation uj(◦) stands for the
context uj,1(uj,2(. . . uj,k(◦)) . . .), where uj,1, . . . , uj,k are symbols from Σ and
uj = uj,1 . . . uj,k.
We let S be set of encodings of candidate solutions of I, i.e. S is the set of trees
defined by the following grammar:

t ::= fi(tu, t, tv) | c tu ::= ui[tu] | c tv ::= vj [tv] | c i, j = 1, . . . ,m

The set S can easily be defined by a tree automaton. We can define a TAGED A
which checks whether an encoding of a candidate solution is non-valid (i.e. is not
a solution of I). In other words, L(A) ∩ S is the set of encodings of non-valid
solutions. The TAGED A needs to check if one of the following patterns matches
some subtree of the input tree (where X is intended to match a whole subtree, _
matches everything, and ¬X matches any subtree different from the subtree that
matches X):

fi(X, _,¬X) ∀i ∈ {1, . . . ,m}(to be matched at the root only)
fi(uj(X), fk(X, _, _), _) ∀i, j, k ∈ {1, . . . ,m}, i 6= j
fi(_, fk(_, _, X), vj(X)) ∀i, j, k ∈ {1, . . . ,m}, i 6= j
fi(ui(X), fj(¬X, _, _), _) ∀i, j ∈ {1, . . . ,m}
fi(_, fj(_, _,¬X), vi(X)) ∀i, j ∈ {1, . . . ,m}

Note that one could not replace fi(uj(X), fk(X, _, _), _) (for i 6= j) by
fi(uj(X), _, _) since it could match valid solutions (if ui is a prefix of uj for

5.3. Closure Properties of TAGEDs and Decision Problems 97

example). Hence, we have L(A) ∩ S 6= ∅ iff I has a (valid) solution, iff
Tran(Σ) 6⊆ L(A) ∪ S. Hence, PCP reduces to (non) universality of TAGEDs,
since L(A) ∪ S can be defined by a TAGED. Indeed since S is regular, also is S,
and S is therefore TAGED-definable. The proof follows from the closure under
union of TAGED-definable languages (Proposition 5.3.1).
It is known that the variant of PCP where m is fixed and m ≥ 7 remains undecid-
able. The alphabet Σ can also be fixed to {a, b}. Consequently, testing universality
of a TAGED over a fixed alphabet is also undecidable.

5.3.3 On restricting the equality relation

Even if TAGEDs are not determinizable, we can suppose that testing an equality
between subtrees can be done using the same state, as stated by the following
lemma:

Lemma 5.3.5 Every TAGED A is equivalent to a TAGED A′ (whose size might be exponential in
the size of A) such that =A′⊆ idQA′ , where idQA′ is the identity relation on QA′ .
Moreover, A′ can be built in exponential time.

In order to prove Lemma 5.3.5, we first introduce useful notions.

Path Isomorphism

Let t ∈ Tran(Σ), and u, v ∈ Dom(t) such that u ≺tch∗ v. We denote by patht(u, v)
the finite sequence of nodes u1, . . . , un such that u1 = u, un = v, and for all
i ∈ {1, . . . , n− 1}, ui+1 is a child of ui. In particular, patht(u, u) = u. Given two
other nodes u′, v′ such that u′ ≺tch∗ v

′, we say that patht(u, v) is edge-isomorphic
to patht(u

′, v′), if v and v′ are reachable from u and v respectively by the same
sequence of first-child or second-child edges. More formally, if patht(u, v) =
u1 . . . un and patht(u

′, v′) = u′1 . . . u
′
n for some u1, . . . , un,u′1, . . . , u

′
n, then they

are edge-isomorphic if for all i ∈ {1, . . . , n− 1}, for all α ∈ {1, 2}, ui ≺tchα ui+1

iff u′i ≺
t
chα

u′i+1.

Node Equivalence

Given a tree t ∈ L(A) and a run r ofA on twhich satisfies the equality constraints,
we define an equivalence relation ∼t,r on Dom(t) as follows1. The relation ∼t,r is
the transitive and reflexive closure of the relation ↔t,r defined as follows: for all
u, v ∈ Dom(t), u↔t,rv if there exist two nodes u′, v′ above u, v resp. such that
the downward path from u′ to u is edge-isomorphic to the downward path from v′

to v and labr(u′) =A labr(v′).
For instance, Fig 5.3 shows a tree where the two subtrees have been evaluated
to some state q such that q =A q, and the corresponding equivalence relation
(reflexivity is not depicted in the figure but all nodes are equivalent to themselves).
The following propositions are widely used in the rest of this chapter:

Proposition 5.3.6 For all u, v ∈ Dom(t), if u ∼t,r v, then t|u = t|v.

Proof. If u↔t,rv, there are u′, v′ such that u′ ≺tch∗ v
′ and patht(u

′, v′) is edge-
isomorphic to patht(u, v), and labr(u′) =A labr(v′). Hence t|u′ = t|v′ and there-
fore t|u = t|v. By transitivity, we also get t|u = t|v whenever u ∼t,r v.

1when it is clear from the context, we omit the subscript t, r and write ∼

98 Chapter 5. Tree Automata with Global Constraints

f

f q f q

a a a a

∼

∼ ∼

Figure 5.3: Equivalence relation where q =A q

Proposition 5.3.7 For all u, v, u′, v′ ∈ Dom(t) such that u ≺tch∗ u
′ and v ≺tch∗ v

′, if u ∼t,r v and
patht(u, u

′) is edge-isomorphic to patht(v, v
′), then u′ ∼t,r v′.

Proof. Suppose that u↔t,rv. By definition, there are u′′, v′′ ∈ Dom(t) such that
u′′ ≺tch∗ u and v′′ ≺tch∗ v, patht(u

′′, u) is edge-isomorphic to patht(v
′′, v), and

labr(u′′) =A labr(v′′). Since patht(u, u
′) is edge-isomorphic to patht(v, v

′),
patht(u

′′, u′) is also edge-isomorphic to patht(v
′′, v′). By definition of ↔t,r,

u′↔t,rv
′.

Now, by transitivity, it also holds whenever u ∼t,r v.

Proof of Lemma 5.3.5

Proof. Intuitively, we can view an accepting run r of A on a tree t as a DAG struc-
ture. Let U ⊆ Dom(t) such that all subtrees t|u, u ∈ U , have been successfully
tested to be equal by A in the run r (i.e. ∀u, v ∈ U , labr(u) =A labr(v)). Let
t0 = t|u, for some u ∈ U . We replace all nodes of U by a single node u0 which
enroots t0. The parent of any node of U points to u0. We maximally iterate this
construction to get the DAG. Note that this DAG is not maximal sharing2, since
only subtrees which have been successfully tested to be equal are shared. We con-
struct A′ s.t. it simulates a run on this DAG, obtained by overlapping the runs on
every equal subtrees for which a test has been done.
Formally, we first describe the construction of the automaton A′ and then prove its
correctness.

Automaton Construction We define Q′ = 2Q × C where C is a set of choices
depending on A. Intuitively, when a choice has been made, it enforces the subtrees
successfully tested to be equal to run in the same state. This is done by grouping
the states which are used at equivalent positions in the tree.

2There might be two isomorphic subgraphs occurring at different positions.

5.3. Closure Properties of TAGEDs and Decision Problems 99

A choice is a (partial) function c : dom(=A) → 2Q such that for all q, q′ ∈ dom(c),
q =A q′ implies c(q) = c(q′). Note that dom(c) may be strictly included in
dom(=A) and that for all q ∈ dom(c), c(q) may not be included in dom(=A).
Let c ∈ C. We let Qc = {P ⊆ Q | ∀q.(q ∈ P ∩ dom(=A) =⇒ P = c(q))}
(it imposes that P must respect the choice c). We let ∆c be the set of rules defined
as follows: (i) for all states P, P ′, P ′′ ∈ Qc , f(P, P ′) → P ′′ ∈ ∆c iff for all
p′′ ∈ P ′′, there are p ∈ P and p′ ∈ P ′ such that f(p, p′) → p′′ ∈ ∆; (ii) for all
P ∈ Qc , a → P ∈ ∆c iff for all p ∈ P , we have a → p ∈ ∆. The set of final
states Fc is defined by Fc = {P ∈ Qc | P ∩ F 6= ∅}. Finally, we define =c , 6=c by:

P =c P
′ if ∃p ∈ P, ∃p′ ∈ P ′, p =A p

′ (hence P = P ′)
P 6=c P

′ if ∃p ∈ P,∃p′ ∈ P ′, p 6=A p
′

We let Ac = (Σ, Qc , Fc ,∆c ,=c , 6=c), and let A′ be the TAGED accepting⋃
c∈C L(Ac) (we can construct it thanks to Proposition 5.3.1, and its size is ex-

ponential in the size of A). We now prove that L(A′) = L(A).

Correctness Let q ∈ Q. We let L(q, A) be the set of trees t such that there exists
a q-run3 of A on t which satisfies the constraints. L(q, A′) is defined similarly.

L(A′) ⊆ L(A). Let c ∈ C, P ∈ Qc , and t ∈ Tran(Σ). such that t ∈ L(P,Ac). By
definition of ∆c , we can easily prove by induction on t that if there is a P -run rc of
Ac on t, then for all p ∈ P , there exists a p-run r ofA on t. The run r is constructed
inductively in a top-down fashion. One first chooses a final state in the root of rc .
Then one chooses two states in the respective two subtrees of the root according to
the existence of a rule of ∆, and so on until reaching the leaves of rc . Moreover, if
rc satisfies the constraints, then r satisfies the constraints too. Indeed, let u, v ∈ Nt

such that labr(u) =A labr(v). By construction of r, we have labr(u) ∈ labrc (u)
and labr(v) ∈ labrc (v). By definition of =c , labrc (u) =c labrc (v) and we get
t|u = t|v. This is done similarly for inequalities.

L(A) ⊆ L(A′). Let t ∈ L(A) and r be a successful run of A on t. We let
states(u) = {q | ∃v ∼ u, q = labr(v)}. We let c be defined as follows: for
all p ∈ dom(=A), u ∈ Dom(t), c(p) = states(u) if p ∈ states(u). Hence, for
every pair of equivalent nodes u ∼ v, if labr(u), labr(v) ∈ dom(c), then we have
c(labr(u)) = c(labr(v)).
We show that there exists a successful run rc of Ac on t. We define it by: ∀u ∈
Dom(t), labr

′

(u) = states(u). Let us now show that rc is a run of Ac , and that it
satisfies the constraints.

• for all u ∈ Dom(t), states(u) ∈ Qc .

This holds by definition of states(u) and Qc ;

• rc is a run of Ac on t.

Let u, u1, u2 ∈ Dom(t) such that u1 and u2 are the sons of u. We show
that the transition f(states(u1), states(u2)) → states(u) is in ∆c . Let p ∈
states(u). There is some node v ∈ Dom(t) such that u ∼ v and labr(v) = p.
Let v1, v2 be the two sons of v respectively (they exist since t|u = t|v).
Let p1 = labr(v1) and p2 = labr(v2). Hence there is a rule of the form
f(p1, p2) → p in ∆. By definition of ∼, we have u1 ∼ v1 and u2 ∼ v2,

3A q-run is a run whose root is labeled by q

100 Chapter 5. Tree Automata with Global Constraints

hence p1 ∈ states(u1) and p2 ∈ states(u2), which concludes the proof (this
goes similarly for leaf nodes).

• rc satisfies the equality constraints.

Let u1, u2 ∈ Dom(t) and let P1, P2 ∈ Qc such that labrc (u1) = P1 and
labrc (u2) = P2. Suppose that P1 =c P2. It means that there are two states
p1 ∈ P1 and p2 ∈ P2 such that p1 =A p2. Hence, c(p1) = c(p2) = P1 =
P2 = states(u1) = states(u2).

Hence, there are u′1, u
′
2 ∈ Dom(t) (not necessarily different from u1 and

u2) such that u′1 ∼ u1 and u′2 ∼ u2, and labr(u′1) = p1, labr(u′2) = p2.
By definition of ∼, we also get u′1 ∼ u′2, since p1 =A p2. Finally, as ∼ is
transitive, we get u1 ∼ u2, and t|u1

= t|u2
.

• rc satisfies the disequality constraints

It is similar to the previous case. Let u1, u2 ∈ Dom(t). If labrc (u1) 6=c

labrc (u2), it means that there are two nodes u′1 ∼ u1 and u′2 ∼ u2 such that
labr(u′1) 6=A labr(u′2). Since t|u1

= t|u′1 and t|u2
= t|u′2 , and t|u′1 6= t|u′2 ,

we get t|u1
6= t|u2

.

5.3.4 A Normal Form for the Runs when =A⊆ idQ

If some TAGED satisfies =A⊆ idQ, some normal form for its runs can be assumed.
The idea is to put the same subruns at nodes labeled by an equality state in a run.
This can be done if the run satisfies the equality constraints. This result is divided
into two intermediate lemmas needed independently in the rest of the chapter. The
full result is given by Lemma 5.3.10.

Lemma 5.3.8 Let A be a TAGED such that =A⊆ idQ. Let t ∈ Tran(Σ). If there is a run r of A
on t which satisfies the equality constraints, then there is a run r′ of A on t such
that:

• r′ satisfies the equality constraints;

• if r satisfies the disequality constraints, then r′ satisfies the disequality con-
straints;

• for all u, v ∈ Dom(r), if labr
′

(u) =A labr
′

(v), then r′|u = r′|v;

• labr(rootr) = labr
′

(rootr
′

).

Proof. The construction of r′ is done via the following rewriting algorithm:

q1, . . . , qn ← dom(=A) (the order is chosen arbitrarily)
r0 ← r
for i = 1 to n do

Ui ← {u ∈ Dom(ri−1) | labri−1(u) = qi}
ui ← some node of Ui
ri ← for all v ∈ Ui, replace in ri−1 the subrun at node v by ri−1|ui

end for

r′ ← rn
return r′

5.3. Closure Properties of TAGEDs and Decision Problems 101

As we next show, every run ri satisfies the equality constraints, so that the substi-
tution is well-defined, since all nodes of Ui are disjoint.
We prove the following invariant (called I):
For all i ∈ {0, . . . , n}, ri is a run of A on t which satisfies the equality constraints
and such that for all j such that 1 ≤ j ≤ i, and all u, v ∈ Dom(ri), if labri(u) =
labri(v) = qj , then ri|u = ri|v.
It is clearly true at rank 0 since r0 = r. Let i > 0 and suppose that it holds at rank
i− 1. Since ri−1 satisfies the equality constraints, for all v ∈ Ui, t|ui = t|v, hence
ri−1|ui is also a run ofA on t|v, so that ri is still a run ofA on t. Since ri−1 satisfies
the equality constraints, it basically maps every state q of dom(=A) to at most one
tree tq (which is a subtree of t). The substitution preserves this property (no new
mappings are created). Hence, since =A⊆ idQ, the equality constraints are still
satisfied in ri. Finally, let u, v ∈ Dom(ri) such that labri(u) = labri(v) = qj ,
for some j ∈ {1, . . . , i}. If i = j, then by definition of ri, we have ri|u = ri|v.
If j < i, then we consider several cases (it is not exhaustive as other cases are
symmetric):

• u is above (at least) one node of Ui. Hence v cannot be below Ui (otherwise
‖t|u‖ > ‖t|v‖, since the equality constraints are satisfied). By induction
hypothesis, ri−1|u = ri−1|v. Hence their respective positions labeled qi are
isomorphic, so that the substitution is made at isomorphic positions, and we
get ri|u = ri|v;

• u is below some w1 ∈ Ui and v is below some element w2 ∈ Ui. Since
ri|w1

= ri|w2
= ri|ui , we can define u′ the nodes below ui such that

patht(w1, u) is edge-isomorphic to patht(ui, u
′). Similarly, we can define

v′ such that patht(w2, v) is edge-isomorphic to patht(ui, v
′). This situation

is depicted below:

ui w1 w2

u′ v′ u v

= =

ri

∈ Ui

Hence ri|u′ = ri|u and ri|v′ = ri|v. Therefore u′ and v′ are labeled qj in
ri and ri−1. Hence by induction hypothesis, ri−1|u′ = ri−1|v′ , and by defi-
nition of the substitution, ri−1|u′ = ri|u′ and ri−1|v′ = ri|v′ . Consequently
ri|u′ = ri|v′ , and we get ri|u = ri|v;

• u is below somew ∈ Ui but v is incomparable to any node of Ui. In this case
the argument is similar the latter case. We can define u′ the node below ui
such that patht(ui, u

′) is edge-isomorphic to patht(w, u), and get ri|u = ri|v
since by induction hypothesis, ri−1|u′ = ri−1|v;

• v is below some w ∈ Ui but u is incomparable to any node of Ui. This case
is symmetric to the latter;

102 Chapter 5. Tree Automata with Global Constraints

• u and v are both incomparable to any node of Ui. In this case the subruns
rooted at u and v remain unchanged by the substitution, ie ri−1|u = ri|u and
ri−1|v = ri|v. Hence by induction hypothesis, we get ri|u = ri|v.

Lemma 5.3.9 Let A be a TAGED such that =A⊆ idQ. Let t ∈ Tran(Σ) and r a run of A on
t which satisfies the equality constraints and such that for all u, v ∈ Dom(r), if
labr(u) =A labr(v), then r|u = r|v. The following holds:

for all u, v ∈ Dom(r), u ∼t,r v =⇒ r|u = r|v

Proof. By definition of ↔t,r, for all nodes u, v such that u↔t,rv, there are u′

and v′ above u and v respectively such that patht(u
′, u) is edge-isomorphic to

patht(v
′, v), and labr(u′) =A labr(v′). By hypothesis, r|u′ = r|v′ , from which

we deduce r|u = r|v. Since ∼t,r is the reflexive and transitive closure of↔t,r, by
transitivity, we also get r|u = r|v for all nodes u, v such that u ∼t,r v.

As a consequence of Lemma 5.3.8 and Lemma 5.3.9, we get the following:

Lemma 5.3.10 Let A be a TAGED such that =A⊆ idQ. Let t ∈ Tran(Σ). If there is a run r of A
on t which satisfies the equality constraints, then there is a run r′ of A on t such
that:

• r′ satisfies the equality constraints;

• if r satisfies the disequality constraints, then r′ satisfies the disequality con-
straints;

• for all u, v ∈ Dom(r), if u ∼t,r′ v, then r′|u = r′|v;

• labr(rootr) = labr
′

(rootr
′

).

5.4 POSITIVE AND NEGATIVE TAGEDS

In this section we prove decidability of emptiness of positive and negative TAGEDs
respectively. For positive TAGEDs, it uses the fact that we can assume that
=A⊆ idQ, and the classical reachability method for tree automata. For negative
TAGEDs, we reduce the problem to testing satisfiability of set constraints.

5.4.1 Emptiness of Positive TAGEDs

Theorem 5.4.1 Deciding emptiness of a positive TAGED A is EXPTIME-complete, and in linear
time if =A⊆ idQ. Moreover, if L(A) 6= ∅, then a tree t ∈ L(A) is computable in
EXPTIME, and in linear time if =A⊆ idQ.

Proof. upper bound Let A be a positive TAGED such that =A⊆ idQ (otherwise
we transform A modulo an exponential blow-up, thanks to Lemma 5.3.5). Let
A− be its associated tree automaton (i.e. A without the constraints). We have
L(A) ⊆ L(A−).
Then it suffices to apply a slightly modified version of the classical reachability
method used to test emptiness of a tree automaton (CDG∗07). In particular, we
can make this procedure associate with any state q a unique tree tq. When a new

5.4. Positive and Negative TAGEDs 103

state is reached, it can possibly activate many rules f(q1, q2) → q whose rhs are
the same state q. The algorithm has to make a choice between this rules in order
to associate with q a unique tree tq = f(tq1 , tq2). This choice can be done for
instance by giving an identifier to each rule and choosing the rule with the least
identifier.
We prove that L(A) = ∅ iff L(A−) = ∅. If L(A−) is empty, then L(A) is also
empty. If L(A−) is non-empty, then the procedure described previously outputs a
tree t and a run r which obviously satisfies the equality constraints, since any state
q is mapped to unique tree tq (if q is reachable).
lower bound We reduce the problem of testing emptiness of the intersection of
the languages defined by n tree automata A1, . . . , An, which is known to be
EXPTIME-complete (CDG∗07). We assume that their sets of states are pair-
wise disjoint (Fi ∩ Fj = ∅ whenever i 6= j), and for all i = 1, . . . , n, Ai
has exactly one final state qfi , and qfi does not occur in lhs of rules of Ai (oth-
erwise we slightly modify Ai, modulo a factor 2 in the size of Ai). We let
L = {f(t1, . . . , tn) | f ∈ Σ,∀i, ti ∈ L(Ai),∀i, j, ti = tj}. It is clear that L
is empty iff L(A1) ∩ . . .L(An) is empty. It is not difficult to construct a TAGED
A (with ‖A‖ = O(

∑
i ‖Ai‖)), such that L = L(A): it suffices to take the union

of A1, . . . , An and to add the rule f(qf1 , . . . , qfn) → qf , where qf is a fresh final
state of A. Then we add the following equality constraints: ∀i, j, qfi =A qfj .

5.4.2 Pumping Lemma for Positive TAGEDs

If =A⊆ idQ, then in a successful run, we can assume that the subruns rooted at
states q such that q =A q are the same, by Lemma 5.3.10. Hence, we can introduce
a pumping technique for positive TAGEDs satisfying this property. The idea is to
pump similarly, in parallel, below all states q such that q =A q, while keeping the
equality constraints satisfied.
Let t ∈ Tran(Σ) and r a successful run of A on t. Remind that ∼t,r is defined
in Section 5.3.3. Since =A⊆ idQ, by Lemma 5.3.10, we can assume that for all
nodes u, v ∈ Dom(t) such that u ∼t,r v, r|u = r|v. Suppose that there are two
nodes u1, v1 ∈ Dom(t) such that u1 ≺

t
ch+ v1 and there is a state q ∈ Q such that

labr(u1) = labr(v1) = q. In general, we cannot pump the loop u1, v1 because
after pumping, an equality constraint might be unsatisfied (in particular, if u is
below a state from dom(=A) which occurs twice in the run). Instead of pumping
only below u1, we pump in parallel below all nodes equivalent to u1 by ∼t,r. This
can be done since for all node u such that u1 ∼t,r u, we have r|u = r|u1

. Now,
let u2, v2 ∈ Dom(t) such that u2 ∼t,r u1 and v2 is the node below u2 such that
the downward path from u1 to v1 is edge-isomorphic to the downward path from
u2 to v2 (it exists since t|u1

= t|u2
, by Prop 5.3.6). This situation is depicted in

Fig. 5.4 where all nodes equivalent to u1 are also represented. Since r|u1
= r|u2

,
we have labr(v2) = labr(u2) = q, so that we can also pump the loop u2, v2. More
generally, we can pump in parallel below all nodes equivalent to u1 while keeping
the equality constraints satisfied, as shown in Fig. 5.4.
Formally, the pumping technique is described by the following lemma:

Lemma 5.4.2 (Pumping Lemma for Positive TAGEDs) Let t ∈ L(A), and r a successful run of
A on t such that ∀u, v ∈ Dom(t), if labr(u) =A labr(v), then r|u = r|v. Let
{u1, . . . , un} ⊆ Dom(t) be an ∼t,r-equivalence class. Suppose that there are
some state q ∈ Q and some node v1 such that u1 ≺

t
ch+ v1 and labr(u1) =

labr(v1) = q. Let v2, . . . , vn such that for all i ∈ {2, . . . , n}, patht(ui, vi) is

104 Chapter 5. Tree Automata with Global Constraints

∼ ∼ . . . ∼

v1, q v2, q vn, q

u1, q u2, q un, q ∼ ∼ . . . ∼

Figure 5.4: Parallel pumping of state q

edge-isomorphic to patht(u1, v1). Let C (resp. R) be the n-ary context over Σ
(resp. Q) such that t = C[t|u1

, . . . , t|un] (resp. r = R[r|u1
, . . . , r|un]).

Then R[r|v1 , . . . , r|vn] is a successful run of A on C[t|v1 , . . . , t|vn].

Proof. Fig. 5.4 illustrates this pumping. Let r′ = R[r|v1 , . . . , r|vn] and t′ =
C[t|v1 , . . . , t|vn]. It is clear that r′ is a run on t′ whose root is labeled by a
final state. It remains to show that it satisfies the equality constraints. Let
u, v ∈ Dom(t′) such that labr

′

(u) =A labr
′

(v). If neither v nor u is above one of
the vis, we have t|u = t′|u, t|v = t′v, and labr(u) =A labr(v). Since r satisfies the
equality constraints, we also have t′|u = t′|v.
Suppose now that u ≺tch∗ vi, for some i ∈ {1, . . . , n}. By definition of ∼t,r, we
have u ∼t,r v. We cannot have u = vi, otherwise it would mean that q is an
equality state, which is not possible since it would imply t|u1

= t|v1 , but t|v1 is a
strict subtree of t|u1

. Hence u ≺tch+ vi, and u ≺tch+ ui (since we have pumped
the loop ui, vi, and u is still present in t′). By hypothesis, we have r|u = r|v.
Let {i1, . . . , ik} ⊆ {1, . . . , n} (resp. {j1, . . . , jk′} ⊆ {1, . . . , n}) be the maximal
set of indices such that there is a k-ary context C1 and the k′-ary context C2 such
that t|u = C1[t|ui1 , . . . , t|uik] and t|v = C2[t|uj1 , . . . , t|ujk′

]. By definition of

∼t,r, since u ∼t,r v, we have k = k′, C1 = C2, and t|uil = t|ujl , for all l ∈
{1, . . . , k}. By definition of the pumping, we have t′|u = C1[t|vi1 , . . . , t|vik] and
t′|v = C2[t|vj1 , . . . , t|vjk]. Hence we get t′u = t′v, which ends up the proof.

As a consequence, we have:

Corollary 5.4.3 If L(A) 6= ∅, there is a tree t ∈ L(A) whose height is bounded by |Q|.

We can also use this technique to prove that:

Lemma 5.4.4 If there is a tree t ∈ L(A) whose height is strictly greater than |Q|, then L(A) is
infinite.

Proof. If there is a loop in a run involving a node u and a node v such that u ≺tch+

v, we can iterate this loop in parallel below all nodes equivalent to v, while keeping
the constraints satisfied.

As a consequence of this lemma, we get the following theorem:

5.4. Positive and Negative TAGEDs 105

Theorem 5.4.5 Let A be a positive TAGED. It is decidable whether L(A) is infinite or not, in
O(‖A‖.|Q|2) if =A⊆ idQ, and in EXPTIME otherwise.

Proof. If =A⊆ idQ, we only have to test if there is a tree in L(A) whose height
is strictly greater than |Q|. This can be done by adding a counter c to A, bounded
by |Q| + 1. Intuitively, if a tree t evaluates to (q, c), it means that the height of t
is equal to c. A special counter value denoted by c>|Q| is reached when the height
of the tree is strictly greater than |Q|. Let A′ be the automaton we obtain. We let
(q, c) =A′ (q, c′) iff q =A q and c = c′, so that we have =A′⊆ idQ′ . Emptiness is
tested in linear time, as in the proof of Theorem 5.4.1.
If A does not satisfies =A⊆ idQ, we first have to transform it, modulo an expo-
nential blow-up, thanks to Lemma 5.3.5.

5.4.3 Emptiness of Negative TAGEDs

We now prove decidability of emptiness of negative TAGEDs, by reduction to pos-
itive and negative set constraints (PNSC for short). Set expressions are built over
set variables, function symbols, and Boolean operations. Set constraints are ei-
ther positive, e1 ⊆ e2, or negative, e1 6⊆ e2, where e1, e2 are set expressions. Set
expressions are interpreted in the Herbrand structure (where set variables are there-
fore interpreted by sets of terms) while set constraints are interpreted by Booleans
0,1. Testing the existence of a solution of a system of set constraints has been
proved to be decidable in several papers (CP94, AKW95, Ste94, GTT94). In par-
ticular, it is known to be NEXPTIME-complete. We do not formally define set
constraints and refer the reader to (CP94, AKW95, Ste94, GTT94).
Consider for instance the constraint f(X,X) ⊆ X . It has a unique solution which
is the empty set. Consider now X ⊆ f(X,X) ∪ a, where a is a constant symbol.
Every set of terms over {f, a} closed by the subterm relation is a solution of this
equation. More generally, we can encode the emptiness problem of tree automata
as a system of set constraints. Let A = (Σ, Q, F,∆) be a tree automaton. Wlog,
we assume that every state q ∈ Q occurs in the rhs of some rule. We associate with
A the system SA defined by:

(SA)

{
Xq ⊆

⋃
f(q1,q2)→q∈∆ f(Xq1 , Xq2) ∪

⋃
a→q∈∆ a for all q ∈ Q⋃

q∈F Xq 6⊆ ∅

Proposition 5.4.6 L(A) is non-empty iff SA has a solution.

Proof. We sketch correctness of the system SA. Suppose that SA has a solution
given by a set of trees Tq, for all q ∈ Q. Let q ∈ Q such that there is t ∈ Tq,
t ∈ L(A). We construct a run on t inductively.

• if t = a ∈ Σ, then we take the successful run reduced to the leaf q;

• if t = f(t1, t2), for some f ∈ Σ, t1, t2 ∈ TΣ. By definition of SA, there is a
rule f(q1, q2) → q such that t1 ∈ Tq1 and t2 ∈ Tq2 . By induction hypothesis,
there are runs r1 and r2 on t1 and t2 respectively, such that labr1(rootr1) =
q1 and labr2(rootr2) = q2. Hence q(r1, r2) is a run of A on t.

Since there is q ∈ F such that Tq 6= ∅, for all t ∈ Tq, we can construct a successful
run r of A on t, so that t ∈ L(A).

106 Chapter 5. Tree Automata with Global Constraints

Conversely, if L(A) 6= ∅, there is a tree t ∈ L(A) and a successful run r ofA on t.
For all q ∈ Q, we let Tq = {t|u | u ∈ Dom(t), labr(u) = q}. The set {Tq | q ∈ Q}
is a solution of SA.

Let (A, 6=A) be a negative TAGED, and consider the system S′A consisting in SA
extended with the constraints Xq ∩ Xp = ∅, for all q, p ∈ Q such that q 6=A p.
It is easy to extend the proof of Proposition 5.4.6 to prove that L(A, 6=A) 6= ∅ iff
S′A has a solution. Since deciding existence of a solution of a system of PNSC is
in NEXPTIME, we get:

Theorem 5.4.7 Emptiness of negative TAGEDs is decidable in NEXPTIME.

5.5 VERTICALLY BOUNDED TAGEDS

In this section, we define a subclass of TAGEDs, called vertically bounded
TAGEDs, which mixes equality and disequality constraints. More precisely, vb-
TAGEDs allow an unbounded number of positive tests, but boundedly many nega-
tive tests along root-to-leaf paths, ie branches. While this class subsumes positive
TAGEDs, the upper-bound for testing emptiness is bigger than the bound obtained
in Section 5.4. Formally:

Definition 5.5.1 Let Σ be a ranked alphabet. A vertically bounded TAGED over Σ is a pair (A, k)
where A is a TAGED over Σ, and k ∈ N. A run r of (A, k) on a tree t ∈ Tran(Σ)
is a run of A on t. It is successful if r is successful for A and the number of states
from dom(6=A) occurring along any root-to-leaf path is bounded by k:

for all root-to-leaf path u1 ≺
t
ch . . . ≺

t
ch un, |{i | labr(ui) ∈ dom(6=A)}| ≤ k

The notion of recognized language L(A, k) is defined similarly as for TAGEDs.
Another way to define them would be to suppose the existence of a bound k, with-
out given it explicitly (“a TAGED A is bounded if there is some non-negative inte-
ger k such that ...”). This would result in a more semantical definition of bounded
TAGEDs, since we do not know how to decide if for some input TAGED, there ex-
ists an equivalent bounded TAGED. Moreover, deciding emptiness of TAGEDs is
still open, and is as much difficult as testing whether a TAGED A can be bounded
by some k ∈ N:

Proposition 5.5.1 The problem of deciding emptiness of a TAGED is polynomial-time reducible to the
following problem: given a TAGED A, and k ∈ N, does L(A) = L(A, k) hold?

Proof. Let Σ be an alphabet which contains a binary symbol f . Let A =
(Σ, Q, F,∆,=A, 6=A) be a TAGED. The language {f(t, t′) | t ∈ L(A) and t′ ∈
Tran(Σ) − t} is recognizable by the TAGED A′ = (Σ, Q′, F ′,∆′,=A, 6=A′),

where Q′ = Q∪ {q, q′, qf , q
A
f }, for some new states q, q′, qf , qAf 6∈ Q, F ′ = {qf},

6=A′=6=A ∪{(q
A
f , q

′), (q′, qAf)} and

∆′ = ∆ ∪ {g(q, q) → q | g ∈ Σ} ∪ {a→ q | a ∈ Σ}
∪ {g(q, q) → q′ | g ∈ Σ} ∪ {a→ q′ | a ∈ Σ}
∪ {g(q1, q2) → qAf | ∃p ∈ F, g(q1, q2) → p ∈ ∆}

∪ {a→ qAf | ∃p ∈ F, a→ p ∈ ∆} ∪ {f(qAf , q
′) → qf}

.

5.5. Vertically Bounded TAGEDs 107

Note that ‖A′‖ = O(‖A‖). We prove that L(A) = ∅ iff L(A′) = L(A′, 0). If
L(A) = ∅, then L(A′) = ∅ = L(A′, 0). Conversely L(A′, 0) is necessarily
equal to ∅ since A′ needs to fire the rule f(qAf , q

′) → qf in order to go in state
qf . Therefore at least one disequality test is done in every successful run. Hence
L(A′) = ∅, which implies L(A) = ∅ by definition.

We now come to the main result of this section:

Theorem 5.5.2 Let (A, k) be a vbTAGED. Testing emptiness of (A, k) can be done in 2NEXPTIME.
It is in NEXPTIME if

• =A⊆ idQ and

• k ≤ |Q| (or k is represented by a unary encoding)

The proof is based on a technical pumping method, sketched in the next paragraph.
All the following subsections are devoted to the formal proof of Theorem 5.5.2.

Sketch of Proof of Theorem 5.5.2 We first transform A so that it satisfies =A⊆
idQ, thanks to Lemma 5.3.5 (modulo an exponential blow-up). Let t ∈ Tran(Σ),
and r a run of A on it which satisfies the equality constraints (but not necessarily
the disequality constraints), and such that its root is labeled by a final state. We
introduce sufficient conditions on t and r (which can be verified in polynomial-
time, in ‖t‖, ‖r‖ and ‖A‖) to be able to repair the unsatisfied inequality constraints
in t in finitely many rewriting steps. This rewriting can be done while keeping the
equality constraints satisfied. In particular, since =A⊆ idQ, we can assume that
for all u, v ∈ Dom(t) such that u ∼t,r v, r|u = r|v (by Lemma 5.3.10). Hence, we
can use a “parallel” pumping technique in the spirit of the pumping technique for
positive TAGED. The pumping is a bit different however: indeed, if t and r satisfies
the sufficient conditions, we increase the size of some contexts of t and r, called
elementary contexts, in order to repair all the unsatisfied inequality constraints.
The repairing process is inductive. In particular, we introduce a notion of frontier
below which all inequality constraints have been repaired. The process stops when
the frontier reach the top of the tree (and in this case the repaired tree is in the
language). If a tree and a run satisfy the sufficient conditions, they are also said
to be repairable. We first prove a lemma which from a repairable tree and run,
and a frontier F , creates a new repairable tree and run, and a new frontier which is
strictly contained in F . Then we prove a lemma stating that if L(A, k) 6= ∅, there
is a repairable tree t and run r such that the height of t is smaller than 2(k+|Q|)|Q|
(and by (k+2|Q|)2|Q|+1 if =A 6⊆ idQ). Hence it suffices to guess such a repairable
tree and run to get decidability of emptiness. The characterization of the emptiness
problem by means of repairable trees and runs is formalized through a predicate
P defined in the next section, and this characterization is stated by Theorem 5.5.4.
Sections 5.5.2 and 5.5.3 are devoted to the proof of Theorem 5.5.4. �

5.5.1 A Characterization of the Non-Emptiness Problem

In this subsection, we define several notions used to prove Theorem 5.5.2. Let
(A, k) be a vbTAGED such that =A⊆ idQ.

108 Chapter 5. Tree Automata with Global Constraints

qf

q

q

4 p=

p

p q

p

q 7 s=

q q

q= 1

q

q p

q

3 p=
p

p

p q

p

q 6 s=

q

q= 2

q

q p

q

5 p=
p

p

p q

p

q 8 s=

q q

Figure 5.5: Elementary contexts of a run r over {q, p, qf , q=, p=, s=} where
q= =A q=, p= =A p= and s= =A s=. Their root nodes are identified by nat-
ural numbers. The set C(r) is equal to {1, 2, 3, 4, 5, 6, 7, 8}. The maximal frontier
is equal to {{1, 2}, {3, 4, 5}, {6, 7, 8}}.

Elementary Contexts

Given two multi-ary contexts C1, C2, we say that C1 is included in C2 if C1 occurs
in C2, i.e. if there are some unary context C ′0 and some contexts C ′1, . . . , C

′
n such

that n is the arity of C1, and C2 = C ′0[C1[C
′
1, . . . , C

′
n]]. Let t ∈ L(A) and r

a successful run of A on t. A context C of r is elementary if it is a maximal
context (w.r.t. context inclusion) included in r, such that (i) all its nodes (except
the root) are labeled in Q − (dom(=A) ∪ dom(6=A)), (ii) the root is labeled in
dom(=A) ∪ dom(6=A), (iii) there is a loop in C, i.e. two descendant nodes of
C are labeled by the same state in r. We denote by C(r) the set of nodes which
enroot an elementary context. For all nodes u ∈ C(r), we denote by cxtr(u) the
elementary context over Q rooted at u in r, and by cxtt(u) the context of t over Σ
rooted at u and edge-isomorphic to cxtr(u). Fig. 5.5 represents a run r on some
tree t, and its elementary contexts.

Partial Order on Equivalence Classes and Frontiers

Let t ∈ L(A) and r a run ofA on twhich respects the equality constraints. Remind
that∼t,r is defined in Section 5.3.3. For all nodes u ∈ Dom(t), we denote by [u]t,r
its ∼t,r-equivalence class. We define a strict partial order ≺∼t,r on equivalence
classes as follows. For all nodes u, v ∈ Dom(t),

[u]t,r ≺∼t,r [v]t,r iff ∃u′ ∈ [u]t,r, ∃v
′ ∈ [v]t,r, u

′ ≺tch+ v′

Lemma 5.5.3 ≺∼t,r is a strict partial order on ∼t,r-equivalence classes.

Proof. The proof uses Prop 5.3.6, ie for all u, v ∈ Dom(t), if u ∼t,r v, then
t|u = t|v.

• irreflexivity. Suppose that there is u ∈ Dom(t) such that [u]t,r ≺∼t,r [u]t,r.

5.5. Vertically Bounded TAGEDs 109

Thus there are v ∈ [u]t,r, and w ∈ [u]t,r such that v ≺tch+ w, which contra-
dicts t|v = t|w;

• transitivity. Let u, v, w ∈ Dom(t) such that [u]t,r ≺∼t,r [v]t,r and
[v]t,r ≺∼t,r [w]t,r. Thus there are u′ ∈ [u]t,r and v′ ∈ [v]t,r such that
u′ ≺tch+ v′, and there are v′′ ∈ [v]t,r and w′′ ∈ [w]t,r such that v′′ ≺tch+ w′′.
Let w′ ∈ Dom(t) such that v′ ≺tch+ w′ and patht(v

′, w′) is edge-isomorphic
to patht(v

′′, w′′) (it exists since t|v′ = t|v′′). Since u′ ≺tch+ w′′, we get
[u]t,r ≺∼t,r [w]t,r.

• asymmetry. It is a consequence of irreflexivity and transitivity.

We denote by �∼t,r the reflexive closure of ≺∼t,r . For instance in Fig. 5.5, we
have {1, 2} ≺∼t,r {3, 4, 5}.

Definition 5.5.2 A set F ⊆ 2Dom(t) is a frontier if there is A ⊆ C(r) such that:

1. F = {[a]t,r | a ∈ A}

2. for all a, a′ ∈ C(r), if [a]t,r ∈ F and [a′]t,r ≺t,r [a]t,r, then [a′]t,r ∈ F .

The maximal frontier Fmax(t, r) of t and r is defined by

Fmax(t, r) = {[u]t,r | u ∈ C(r)}

In Fig. 5.5, the maximal frontier is {{1, 2}, {3, 4, 5}}. If for all nodes u, v ∈
Dom(t) such that u ∼t,r v one has r|u = r|v, then all classes of F are subsets of
C(r), ie enroot elementary contexts, for all frontier F .
We now introduce a predicate which holds in a tree t, a run r and a frontier F , if r
satisfies the equality constraints, but not necessarily all the inequality constraints.
However if this predicate holds, all unsatisfied inequality constraint can be repaired
by increasing the size of the elementary contexts rooted at the nodes of some class
of the frontier, intuitively. This is done by iterating a loop contain in the elementary
contexts, and we do it in parallel below all equivalent nodes in order to preserve
the equality constraints. We will see in the next two sections that the inequality
constraints can be repaired whenever the predicate holds.

Predicate P Let t ∈ TΣ, r ∈ TQ, F ⊆ 2Dom(t). We let P(t, r, F) holds if all the
following conditions are satisfied:

1. r is a run of A on t which satisfies the equality constraints, whose root is
labeled by a final state, and such that in any ≺rch∗-ordered chain, there are at
most k nodes whose labels in r belong to dom(6=A);

2. for all u, v ∈ Dom(r), if u ∼t,r v then r|u = r|v;

3. F is a frontier;

4. for all v1, v2 ∈ Dom(t), if t|v1 = t|v2 and labr(v1) 6=A labr(v2), then there
are c ∈ F and u ∈ c such that Rep(t, r, F, v1, v2, u) holds, ie:

(i) either v1 ≺tch∗ u or v2 ≺tch∗ u;

110 Chapter 5. Tree Automata with Global Constraints

v1 v2

u ∈ F u′

elementary context

isomorphic paths

6∼t,r

Figure 5.6: A configuration where Rep(t, r, F, v1, v2, u) holds.

(ii) if v1 ≺tch∗ u, then if u′ ∈ Dom(t) is the node such that v2 ≺tch∗ u
′ and

patht(v1, u) is edge-isomorphic to patht(v2, u
′), then u 6∼t,r u′;

(iii) if v2 ≺tch∗ u, we define the condition symmetrically as (iii).

(it is illustrated in Fig. 5.6)

The characterization of the non-emptiness problem for vbTAGEDs is given by the
following theorem:

Theorem 5.5.4 Let (A, k) be a vbTAGED, and B = 2(k + |dom(=A)|)|Q| if =A⊆ idQ, and
B = (k + 2|Q|)2|Q|+1 otherwise.
L(A, k) is non-empty iff there are a tree t and a run r of A on t such that:

• the height of t is bounded by B

• P(t, r, Fmax(t, r)) holds.

The next two sections are devoted to the proof of Theorem 5.5.4.
The next paragraph shows how to prove Theorem 5.5.2 by using Theorem 5.5.4

Proof of Theorem 5.5.2 Thanks to Theorem 5.5.4, it suffices to guess a tree and
a run of heights at most B (and sizes at most 2B+1), such that P(t, r, Fmax(t

′, r′))
holds. Moreover, P(t, r, Fmax(t

′, r′)) can be verified in PTIME in ‖t‖, ‖r‖,
and ‖A‖. If B = (k + 2|Q|)2|Q|+1, this gives a non-deterministic algorithm
doubly exponential in |Q| and ‖k‖, since ‖k‖ = log2(k). However, if B =
2(k + |dom(=A)|)|Q| and the encoding of k is unary, or k is polynomial in |Q|,
the non-deterministic algorithm is simply exponential in |Q| and ‖k‖.

5.5.2 Proof of the Forth Direction of Theorem 5.5.4

From now on, we fix a vbTAGED (A, k) and suppose that =A⊆ idQ. Given an
elementary context C in r, we say that C contains a 3-loop if there are a chain of
nodes of C which contains at least 3 nodes labeled by the same state.

Lemma 5.5.5 For all t, r, if P(t, r, Fmax(t, r)) holds and there is an elementary context of r
which contains a 3-loop, then there are t′, r′ such that P(t′, r′, Fmax(t

′, r′)) and
|Dom(t′)| < |Dom(t)|.

5.5. Vertically Bounded TAGEDs 111

ui

αi

βi

γi

uj

αj

βj

γj

∼t,r

∼t,r

∼t,r

∼t,r

Figure 5.7: parallel pumping in elementary contexts

Proof. The proof is divided in several parts. We first show how to construct t′ and
r′ and then prove the correctness of the construction.

Construction of t′ and r′ We use a similar technique as the pumping technique
presented in the proof of Lemma 5.4.2 (for positive TAGEDs). But, instead of
pumping maximally, we pump in parallel in elementary contexts which contain a
3-loop. In each elementary context, we pump the two greatest nodes of the 3-loop
(for ≺tch∗). This ensures that there is still a loop in the elementary context after
pumping.
First note that by hypothesis, C(r) is non-empty, and there is u ∈ C(r) such that
cxtr(u) contains a 3-loop. By hypothesis, we have r|v = r|u, for all v ∈ [u]t,r
(condition 2 of P). Hence v ∈ C(r) for all v ∈ [u]t,r. By definition of ∼t,r, all the
nodes of [u]t,r are incomparable. Let n = |[u]t,r| and {u1, . . . , un} = [u]t,r.
Let C be the n-ary context over alphabet Q such that r = C[r|u1

, . . . , r|un].
For all i ∈ {1, . . . , n}, there are three nodes αi, βi, γi ∈ Dom(cxtr(ui)) and
a state q 6∈ dom(=A) ∪ dom(6=A) such that αi ≺tch+ βi ≺

t
ch+ γi, and

labr(αi) = labr(βi) = labr(γi) = q. Moreover, we can take αi, βi, γi such that
for all i, j ∈ {1, . . . , n}, we have patht(ui, αi) edge-isomorphic to patht(uj , αj),
patht(αi, βi) edge-isomorphic to patht(αj , βj), and patht(βi, γi) edge-isomorphic
to patht(βj , γj). We let r′ = C[r1, . . . , rn], where for all i ∈ {1, . . . , n}, ri is the
tree r|ui in which the subtree rooted at βi has been substituted by r|γi . We do the
corresponding substitution in t and obtain a tree t′. This pumping is described in
Fig. 5.7 (the subtrees t|γi are represented in dashed style). It is technical but not
difficult to prove that r′ is a run of A on t′ such that its root is labeled by a final
state and it respects the equality constraints.

Proof of Correctness We prove that conditions 1, 2, 3, and 4 of P hold for t′,r′,
and Fmax(t′, r′).

112 Chapter 5. Tree Automata with Global Constraints

• conditions 1, 2. The equality constraints are still satisfied since we pump in
parallel below equivalent nodes. The other conditions obviously hold;

• condition 3 is obvious;

• condition 4. Let v1, v2 ∈ Dom(t′) such that labr
′

(v1) 6=A labr
′

(v2) and
t′|v1 = t′|v2 . We consider two cases:

– if t|v1 6= t|v2 , it means that the pumping has “broken” this disequal-
ity. Let [u]t,r = {u1, . . . , un} be the nodes defined in the definition
of the pumping, i.e. the nodes which enroot elementary contexts in
which we have pumped. Note that we still have [u]t,r ⊆ Dom(t′) and
[u]t,r = [u]t′,r′ since we have pumped below the nodes of [u]t,r. Let
{a1, . . . , an1

} ⊆ [u]t,r (resp. {b1, . . . , bn2
⊆ [u]t,r) the nodes of [u]t,r

which are below v1 (resp. v2). For all ℓ ∈ {1, . . . , n1}, let a′ℓ of
Dom(t′) such that patht′(v2, a

′
ℓ) is edge-isomorphic to patht′(v1, αℓ)

(it exists since t′|v1 = t′|v2 . Similarly, for all ℓ ∈ {1, . . . , n2},
let b′ℓ the node below v1 such that patht′(v1, b

′
ℓ) is edge-isomorphic

to patht′(v2, bℓ). This is depicted by the following figure (where
n1 = n2 = 2):

v1 v2

a1 a2 a′1 a′2b′1 b′2 b1 b2
∼t′,r′ ∼t′,r′

We now prove that there is a node w in {a1, . . . , an1
, b1, . . . , bn2

}
such that Rep(t′, r′, Fmax(t

′, r′), v1, v2, w) holds. Suppose that for all
ℓ ∈ {1, . . . , n1}, we have aℓ ∼t′,r′ a′ℓ, and for all ℓ ∈ {1, . . . , n2},
we have bℓ ∼t′,r′ b′ℓ. By definition of the pumping, the maximal con-
text of t which have nodes of [u]t,r as holes has not changed during
pumping. Intuitively it means that we have pumped similarly at iso-
morphic positions, so that the two trees t|v1 and t|v2 were already
equal. Formally we are in the situation of Lemma 5.5.6, which is
stated and proved at the end of this subsection, and we get t|v1 = t|v2 ,
which is impossible by hypothesis. Hence there is ℓ1 ∈ {1, . . . , n1}
or ℓ2 ∈ {1, . . . , n2} such that aℓ1 6∼t′,r′ a

′
ℓ1

or bℓ2 6∼t′,r′ b
′
ℓ2

. Sup-
pose it is aℓ1 : aℓ1 ∈ [u]t,r = [u]t′,r′ , and [u]t′,r′ ∈ Fmax(t

′, r′) (since
u ∈ C(r′)), hence Rep(t′, r′, Fmax(t

′, r′), v1, v2, aℓ1) holds;

– if t|v1 = t|v2 , since condition 4 holds for t, r, Fmax(t, r), there is c ∈
Fmax(t, r) and v ∈ c such that Rep(t, r, F, v1, v2, v) holds. Suppose
that v1 ≺tch∗ v, the other case being symmetric. Let v′ be the node
below v2 such that patht(v1, v) is edge-isomorphic to patht(v2, v

′). By
definition of the predicate Rep, v 6∼t,r v′. We now consider three cases:

∗ Suppose there is a node w ∈ [u]t,r such that v1 ≺tch∗ w ≺
t
ch∗ v,

and let w′ below v2 such that patht(v1, w) is edge-isomorphic to
patht(v2, w

′). This situation is depicted in Fig. 5.8. If w ∼t,r
w′, then by Proposition 5.3.7, we also have v ∼t,r v′, which is

5.5. Vertically Bounded TAGEDs 113

w

v1

v

v2

w′

v′

r∈ [u]t,r

∈ C(r)
6∼t,r

6∼t,r

Figure 5.8:

impossible. Hence w 6∼t,r w
′, and since we pump only below

nodes of [u]t,r, w is still a node of t′. Since w ∈ C(r), and their
is in the elementary context rooted at w in r′ (by definition of
the pumping), w ∈ C(r′). By definition of Fmax(t′, r′), w ∈
Fmax(t

′, r′). Hence Rep(t′, r′, F ′, v1, v2, w) holds;

∗ Suppose there is a node w ∈ [u]t,r such that v2 ≺tch∗ w ≺tch∗
v′. With exactly the same arguments we can prove that

Rep(t′, r′, F ′, v1, v2, w) holds;

∗ Suppose that there is no nodew ∈ [u]t,r such that v1 ≺tch∗ w ≺
t
ch∗

v or v2 ≺tch∗ w ≺
t
ch∗ v

′. Since we pump inside elementary con-
texts rooted at nodes of [u]t,r, and labr(v1), labr(v2) ∈ dom(6=A),
by definition of elementary contexts, neither v1 nor v2 can be a
node of some context cxtt(v), for v ∈ [u]t,r. By definition of the
pumping, patht′(v1, v) is still edge-isomorphic to patht′(v2, v

′).
Moreover, v ∈ C(r′), so that [v]t′,r′ ∈ Fmax(t

′, r′), by definition
of Fmax(t′, r′). Finally, thanks to Fact 1 (next stated), since v 6∼t,r
v′, we also get v 6∼t′,r′ v′. Hence Rep(t′, r′, Fmax(t

′, r′), v1, v2, v)
holds.

Fact 1. Dom(t′) ⊆ Dom(t) and for all v1, v2 ∈ Dom(t′), v1 ∼t′,r′ v2 iff v1 ∼t,r
v2.

Suppose that v1 ∼t,r v2 and v1 6= v2 (the case v1 = v2 is obvious). We can
prove4 that there are w1, w2 ∈ Dom(t) such that w1 ≺

t
ch∗ v1, w2 ≺

t
ch∗ v2 and

labr(w1) =A labr(w2).
Suppose that w1 6∈ Dom(t′) or w2 6∈ Dom(t′). It means that w1, w2 have been
removed by the pumping. Since the elementary contexts in which we pump do
not contain nodes labeled by states from dom(=A) (except at their root), it means
that w1 and w2 are below elementary contexts, hence their whole subtrees have

4It can be shown by induction: it is obvious if v1 = v2 or v1↔t,rv2, by definition of ↔t,r .
Suppose that there is v3 such that v1 ∼t,r v3 and v3↔t,rv2, and there are some nodes w1, w3 above
v1, v3 such that labr(w3) =A labr(w1). By definition of ↔t,r , there are w′3 and w′2 such that
patht(w

′

3, v3) is edge-isomorphic to patht(w
′

2, v2), and labr(w′3) =A labr(w′2).
By definition of ∼t,r , we have w′3 ∼t,r w′2, and by condition 2, which holds for t, r, Fmax(t, r),

we get r|w′

3
= r|w′

2
, and, similarly, we get r|w1 = r|w3 . Suppose that w3 ≺

t
ch∗ w′3, and let w′1

above v1 such that patht(w1, w
′

1) is edge-isomorphic to patht(w3, w
′

3): it exists since r|w1 = r|w3 ,
moreover, labr(w′1) =A labr(w′3). Since labr(w′3) =A labr(w′2) and =A⊆ idQ, we also have
labr(w′1) =A labr(w′2).

The case w′3 ≺
t
ch+ w3 is proved similarly.

114 Chapter 5. Tree Automata with Global Constraints

been removed by the pumping. In particular, v1 and v2 are removed, which is
impossible. Hence w1, w2 ∈ Dom(t′).
We consider two cases:

• If there is no node u′ ∈ [u]t,r such that w1 ≺
t
ch∗ u

′ ≺tch∗ v1 or w2 ≺
t
ch∗

u′ ≺tch∗ v2, then patht′(w1, v1) is edge-isomorphic to patht′(w2, v2). Since
labr

′

(w1) = labr(w1) and labr
′

(w2) = labr(w2), we get labr
′

(w1) =A

labr
′

(w2) and therefore w1 ∼t′,r′ w2, from which we get v1 ∼t′,r′ v2.

• If there is u′ ∈ [u]t,r such that w1 ≺
t
ch∗ u

′ ≺tch∗ v1. Let u′′ ∈ Dom(t)
such that w2 ≺

t
ch∗ u′′ ≺tch∗ v2 and patht(w1, u) is edge-isomorphic to

patht(w2, u
′). Since w1 ∼t,r w2, we also have u′′ ∼t,r u′. Hence u′′ ∈

[u]t,r. Since we pump in parallel in cxtt(u′) and cxtt(u′′), patht′(w1, v1) is
still edge-isomorphic to patht′(w2, v2), so that v1 ∼t′,r′ v2.

Conversely, suppose that v1 ∼t′,r′ v2 and v1 6= v2 (the case v1 = v2 is obvious).
For the same reason as before, there are w1, w2 ∈ Dom(t′) such that w1 ≺

t′

ch∗ v1,
w2 ≺

t′

ch∗ v2 and labr
′

(w1) =A labr
′

(w2). Since Dom(t′) ⊆ Dom(t), we neces-
sarily have w1, w2, v1, v2 ∈ Dom(t). By definition of the pumping, we also have
w1 ≺

t
ch∗ v1 and w2 ≺

t
ch∗ v2. Suppose that patht(w1, v1) is not edge-isomorphic

to patht(w2, v2). We show a contradiction (hence this will prove v1 ∼t,r v2).
Since patht(w1, v1) and patht(w2, v2) are not edge-isomorphic, and after pump-
ing patht′(w1, v1) and patht′(w2, v2) are isomorphic, necessarily a pumping has
occurred in an elementary context rooted at some node u′ ∈ [u]t,r such that
w1 ≺tch∗ u′ ≺tch∗ v1 or w2 ≺tch∗ u′ ≺tch∗ v2. Suppose that w1 ≺tch∗ u′,
and let u′′ such that patht(w1, u

′) is edge-isomorphic to patht(w2, u
′′) (it exists

since w1 ∼t,r w2 and t|w1
= t|w2

). If u′′ does not belong to the path from w2

to v2, then after pumping, we would still have patht′(w1, v1) non-isomorphic to
patht′(w2, v2), since we pump below u′ and u′′. Hence u′′ belongs to patht(w2, v2).
It is not difficult to show that since we pump in parallel at equivalent positions, then
we still have patht′(w1, v1) non-isomorphic to patht′(w2, v2), which is a contradic-
tion.
End of Proof of Fact 1. �

End of Proof of Lemma 5.5.5.

We are now able to prove the forth direction of Theorem 5.5.4. We first assume
that =A⊆ idQ.
If L(A, k) 6= ∅, there is t ∈ L(A, k) and r a successful run of (A, k) on t. By
Lemma 5.3.10, we can suppose that for all nodes u, v ∈ Dom(t), if u ∼t,r v, then
r|u = r|v. In other words, condition 2 of P is satisfied for t and r.
Let C be the maximal context of r (for context inclusion) such that the root of
r is the root of C, and no nodes of C (except possibly the root) are labeled in
dom(=A) ∪ dom(6=A). We call this context the top context. If the root of C is
not labeled by a state of dom(=A) ∪ dom(6=A), we first pump in C, while there is
a loop. We do the corresponding pumping in t. Note that this pumping preserves
satisfiability of the constraints, since we pump above the nodes where a test occurs.
We obtain a successful run r′ of (A, k) on a tree t′ such that the height of the top
context of r′ is at most |Q|, if the root of C is not labeled in dom(=A)∪dom(6=A).
We call this property P1. It is not difficult to prove that P(t′, r′, Fmax(t

′, r′)) holds.
For instance, condition 4 of P obviously holds since all the constraints are satis-
fied, condition 2 has been proved before, and other conditions are straightforward
consequences of the definition of t′, r′ and Fmax(t′, r′).

5.5. Vertically Bounded TAGEDs 115

t t′

u1

u2 u3
v1

v2 v3

Figure 5.9: Example satisfying the hypothesis of Lemma 5.5.6

Now, suppose that the height of t′ is strictly greater than B. In any ≺t
′

ch+-ordered
chain, they are at most k nodes labeled by a state of dom(6=A) in r′, and |dom(=A)|
nodes labeled by a state of dom(=A) (otherwise there would be two different de-
scendant nodes enrooting equal subtrees in t′, which is impossible). The property
P1, the fact that the height of t′ is strictly greater than B = 2(k+ |dom(=A)|)|Q|,
and the fact that there are at most |dom(=A)| nodes labeled by an equality state
in r′ along a descending path imply that there is an elementary context contain-
ing a 3-loop. Hence the hypothesis of Lemma 5.5.5 are satisfied, so that there are
a tree t′′ and a run r′′ such that P(t′′, r′′, Fmax(t

′′, r′′)) holds and ‖t′′‖ < ‖t′‖.
We iterate the reasoning while there is an elementary context containing a 3-loop.
At the end, we get a tree t∗ and a run r∗ such that the height of t∗ is bounded
by B, and P(t∗, r∗, Fmax(t

∗, r∗)) holds. Hence, t∗ has at most 2B+1 nodes, and
P(t∗, r∗, Fmax(t

∗, r∗)) holds.
If the height of t is lesser than B, P(t, r, Fmax(t, r)) directly holds (the size does
not matter here).
If A does not satisfy =A⊆ idQ, we first have to transform it (modulo an exponen-
tial blow-up), thanks to Lemma 5.3.5.

Auxiliary Lemma

Lemma 5.5.6 Let t, t′ ∈ Tran(Σ), u1, . . . , un ∈ Dom(t) and v1, . . . , vn ∈ Dom(t′) such that:
ui and uj are incomparable by ≺tch∗ , for i 6= j, and patht(roott, ui) is edge-
isomorphic to patht′(roott

′

, vi) for all i ∈ {1, . . . , n} (see Fig. 5.9).
Then for all t1, . . . , tn ∈ Tran(Σ), if t = t′, then t[u1 ← t1] . . . [un ← tn] =
t′[v1 ← t1] . . . [vn ← tn], where t[u1 ← t1] . . . [un ← tn] is the tree t where the
subtree at position ui has been substituted by ti, for all i ∈ {1, . . . , n}. The tree
t′[v1 ← t1] . . . [vn ← tn] is defined similarly.

Proof. This is because if t = t′, then t|ui = t′|vi , for all i ∈ {1, . . . , n}.

5.5.3 Proof of the Back Direction of Theorem 5.5.4

The back direction is proved by induction on the frontiers, partially ordered by
their cardinalities.

Lemma 5.5.7 (Base Lemma) If P(t, r,∅) holds, then t ∈ L(A, k).

Proof. This is due to condition 4 of P. Indeed, suppose that there is an unsatisfied
disequality constraint between a node v1 and a node v2. By condition 4, there is

116 Chapter 5. Tree Automata with Global Constraints

u ∈ F such that Rep(t, r, F, v1, v2, u) holds, which is impossible since F = ∅.
Hence the disequality constraints are satisfied, and together with condition 1, we
get that r is a successful run of A on t, which concludes the proof.

Lemma 5.5.8 (Induction Lemma) Let t, r, F such that F 6= ∅ and P(t, r, F) holds, there are
t′, r′, F ′ such that P(t′, r′, F ′) holds and |F ′| < |F |.

Proof. Construction of t′, r′, F ′.
Intuition. In order to obtain t′ and r′, we choose a maximal (for ≺∼t,r) ∼t,r-
equivalence class contained in the frontier F (it exists since F 6= ∅). Let
[u1]t,r = {u1, . . . , un} be this class. By condition 2, for all u ∈ [u1]t,r, u ∈ C(r).
We let D = {v ∈ Dom(t) | ∃i, v ≺tch∗ ui}. There might be unsatisfied inequality
constraints between the nodes of t and the nodes of D. By increasing (in parallel)
the size of the elementary contexts rooted at nodes of [u1]t,r, we can repair some of
them. This can be done by pumping in parallel a loop contained in the elementary
contexts, while preserving the equality constraints, as illustrated by Fig. 5.10 (see
the next paragraph for a formal description). Of course, pumping elementary con-
texts may also create new unsatisfied constraints, but we show that there is a way
to pump which does not create new unsatisfied constraints. Some unsatisfied con-
straints cannot be repaired though, but thanks to condition 4 of P, those constraints
will be repaired later in the induction.
Parallel Growth of The Elementary Contexts. We first define formally how to in-
crease the size of the contexts, while keeping the equality constraints satisfied. By
definition of elementary contexts, there are two descendant nodes α1 ≺

t
ch+ β1

contained in cxtt(u1), and a state q ∈ Q − (dom(=A) ∪ dom(6=A)) such that
labr(α1) = labr(β1) = q. For all i ∈ {2, . . . , n}, we define αi as the node be-
low ui such that patht(ui, αi) is edge-isomorphic to patht(u1, α1) (it exists since
u1 ∼t,r ui and t|u1

= t|ui by Prop. 5.3.6). Note that by Prop. 5.3.7, α1 ∼t,r αi.
We define the nodes βi similarly, and also get β1 ∼t,r βi. By condition 2, for
all i ∈ {1, . . . , n}, labr(αi) = labr(βi) = q. Hence there is a unary con-
text C over Σ such that for all i ∈ {1, . . . , n}, t|αi = C[t|βi]. We let t1 = t,
t2 = t{αi ← C[C[t|βi]], i = 1, . . . , n} the tree t where the subtree at node αi has
been substituted by C[C[t|βi]], for all i ∈ {1, . . . , n}. Similarly, for all j ∈ N, we
define tj by iterating this substitution j times. We define rj similarly. First note
that rj is a run of A on tj . Moreover, since we make the substitution in parallel at
isomorphic positions in the elementary contexts rooted at [u1]t,r, and by definition
of ∼t,r, the equality constraints are still satisfied by rj on tj , for all j ∈ N. This
pumping is illustrated in Fig. 5.10.
Existence of a Repairing Run We let ↑([u1]t,r) the ancestors of the nodes of [u1]t,r,
ie the set {w | ∃w′ ∈ [u1]t,r, w ≺

t
ch∗ w

′}. The pumpings ri, ti, i ∈ N may create
unsatisfied disequality constraints which involve a node (or two) of ↑([u1]t,r). On
the contrary, pumpings can also repair unsatisfied disequality constraints in r and t.
We define a set of pairs of nodes (u, v) ∈ Dom(t)× Dom(t) between which there
is an unsatisfied constraint in t and r, or which may create a disequality constraint
when pumping, but for which there is some i ∈ N such that the constraint is
satisfied in ti and ri. These pairs are called candidates. We denote by Cand([u1]t,r)
this set. For all u, v ∈ Dom(t), (u, v) ∈ Cand([u1]t,r) if

(i) u ∈ ↑([u1]t,r),

(ii) labr(u) 6=A labr(v),

5.5. Vertically Bounded TAGEDs 117

αi αj

βi βj

t|βi t|βj

C C

∼t1,r1

∼t1,r1

t1

αi αj

βi βj

C C

∼t2,r2

∼t2,r2

CC
t t

t2

Figure 5.10: parallel growth in elementary contexts

(iii) if t|u = t|v, then there is ℓ ∈ {1, . . . , n} such that Rep(t, r, F, u, v, uℓ)
holds.

Note that by definition of the pumping, for all i > 0, for all nodes u ∈ Dom(t)
such that labr(u) ∈ dom(=A) ∪ dom(6=A), u is still a node of ti. For all i > 0,
and all pairs (u, v) ∈ Cand([u1]t,r), we say that i is incompatible with (u, v) if
ti|u = ti|v.
Claim 1. For all pairs (u, v) ∈ Cand([u1]t,r), there is at most one i > 0 such that
i is incompatible with (u, v)
It is proved at the end of section 5.5.3. From Claim 1, we deduce that there is
i0 ∈ N such that i0 is compatible with all pairs of Cand([u1]t,r). We let t′ = ti0

and r′ = ri0 . Note that by definition of the pumping, condition 2 of P still holds for
∼t′,r′ , since we make the elementary contexts grow in parallel below all equivalent
nodes of [u1]t,r, both in r and t. Moreover, the equality constraints are still satisfied
(thanks to parallel pumping), the root of r′ is labeled by a final state, and the

118 Chapter 5. Tree Automata with Global Constraints

pumping do not increase the number of nodes ordered by ≺ch+ which are labeled
in dom(6=A). Hence condition 1 of P holds for r′.
Remark 1 By definition of the pumping, all inequality constraints between pairs
of nodes (u, v) ∈ Cand([u1]t,r) are satisfied in r′.
Finally, we let F ′ = F − [u1]t,r (note that |F ′| < |F |).

Correctness We now prove that P(t′, r′, F ′) holds:

• Conditions 1 and 2 have already been proved;

• Condition 3. By definition of frontiers, there is a set of nodesA ⊆ C(r) such
that F = {[a]t,r | a ∈ A}. By definition of the pumping, C(r) ⊆ C(r′),
hence F ′ ⊆ C(r′) ∪ rootr

′

. Moreover since we pump only below nodes of
the frontier, for all a ∈ A, [a]t,r = [a]t′,r′ . Hence [u1]t,r is also a maximal
element of {[a]t′,r′ | a ∈ A}. Therefore F ′ is a frontier;

• Condition 4. Let v1, v2 ∈ Dom(t′) such that t′|v1 = t′|v2 and labr
′

(v1) 6=A

labr
′

(v2).

We consider several cases:

– v1 6∈ ↑([u1]t,r) and v2 6∈ ↑([u1]t,r). Since labr(v1), labr(v2) ∈
dom(6=A), neither v1 nor v2 are in the elementary contexts rooted at
the nodes of [u1]t,r. Hence the subtrees at positions v1 and v2 have
not changed during the pumping. Hence t|v1 = t|v2 . Since P(t, r, F)
holds, there is c ∈ F and u ∈ c such that Rep(t, r, F, v1, v2, u) holds.
Necessarily, c ∈ F ′, otherwise it would mean that u ∈ [u1]t,r, which
would contradict v1 6∈ ↑([u1]t,r) or would contradict v2 6∈ ↑([u1]t,r).
Hence Rep(t′, r′, F ′, v1, v2, u) holds;

– v1 ∈ ↑([u1]t,r). In this case (v1, v2) 6∈ Cand([u1]t,r), otherwise
t′|v1 6= t′|v2 . By definition of Cand([u1]t,r), t|v1 = t|v2 and for all
i ∈ {1, . . . , n}, Rep(t, r, v1, v2, ui) does not hold. By condition 4 of
P(t, r, F), there is are c ∈ F and u ∈ c such that Rep(t, r, F, v1, v2, u)
holds. Hence u 6∈ [u1]t,r, and c 6= [u1]t,r. Hence c ∈ F ′ and
Rep(t′, r′, F ′, v1, v2, u) holds.

– the last case is subsumed by the latter.

End of proof of Lemma 5.5.8

The combination of Lemma 5.5.7 and Lemma 5.5.8 proves the back direction of
Theorem 5.5.4.

Remaining Proofs

Proof of Claim 1. Suppose that there are two indices i < j incompatible with
(u, v). We consider the following two cases:

• v 6∈ ↑([u1]t,r). By hypothesis, labr
i

(v) 6=A labr
i

(u), ti|v = ti|u,

labr
j

(v) 6=A labr
j

(u) and tj |v = tj |u. Since labr(v) ∈ dom(6=A), and
v 6∈ ↑([u1]t,r), v is below, or incomparable, to any node which belongs to
an elementary context rooted at a node of [u1]t,r. Hence the subtree at node
v remains unchanged during the pumping. Therefore t|v = ti|v = tj |v.

5.5. Vertically Bounded TAGEDs 119

Since by hypothesis, ti|v = ti|u and tj |v = tj |u, we also get tj |u = ti|u.
Since i < j, and u ∈ ↑([u1]t,r), by definition of the pumping, we have
‖tj |u‖ > ‖t

i|u‖, which contradicts tj |u = ti|u;

• v ∈ ↑([u1]t,r). We consider two cases:

– t|u = t|v. By definition of the set of candidates, there is ℓ ∈ {1, . . . , n}
such that Rep(t, r, F, u, v, uℓ) holds. Suppose that u ≺tch∗ uℓ and let
vℓ be the node below v such that patht(u, uℓ) is edge-isomorphic to
patht(v, vℓ) (it exists since t|u = t|v). By definition of the predi-
cate Rep, uℓ 6∼t,r vℓ. Since patht(u, uℓ) and patht(v, vℓ) are edge-
isomorphic, and t|u = t|v, we also get t|uℓ = t|vℓ . This implies that
there is no node of [u1]t,r comparable to vℓ (by ≺tch∗): suppose that
there is some m such that um (um ∼t,r u1) is comparable to vℓ and
um 6= vℓ. By Prop. 5.3.6, we have t|um = t|u1

, which contradicts
t|u1

= t|vℓ .

Therefore the subtree at position vℓ does not change during the pump-
ing. In particular, ti|vℓ = tj |vℓ . Since uℓ ∈ [u1]t,r, we pump below
uℓ. Hence we have ti|uℓ 6= tj |uℓ . Therefore, either ti|uℓ 6= ti|vℓ or
tj |uℓ 6= tj |vℓ . Since patht(u, uℓ) and patht(v, vℓ) are edge-isomorphic,
and there is no node of [u1]t,r comparable to vℓ, by definition of the
pumping, we also have that pathti(u, uℓ) and pathti(v, vℓ) are edge-
isomorphic, and pathtj (u, uℓ) and pathtj (v, vℓ) are edge-isomorphic.
Therefore, either ti|v 6= ti|u or tj |v 6= tj |u;

– t|u 6= t|v. By hypothesis, ti|u = ti|v. We first prove that there is neces-
sarily ℓ ∈ {1, . . . , n} such that Rep(ti, ri, F, u, v, uℓ) holds. Suppose
the contrary. It means for all ℓ ∈ {1, . . . , n} such that u ≺tch∗ uℓ, and
for all v′ such that pathti(u, uℓ) is edge-isomorphic to pathti(v, v

′), we
have v′ ∼t,r uℓ. And symmetrically, for all ℓ ∈ {1, . . . , n} such that
v ≺tch∗ uℓ, and for all u′ such that pathti(u, u

′) is edge-isomorphic
to pathti(v, uℓ), we have u′ ∼t,r vℓ. Since t|u 6= t|v, and thanks
to Lemma 5.5.6, this inequality is preserved during pumping. Hence
ti|u 6= ti|v, which contradicts ti|u = ti|v.

Therefore there is ℓ ∈ {1, . . . , n} such that Rep(ti, ri, F, u, v, uℓ).
Suppose that u ≺tch∗ uℓ (the case v ≺tch∗ uℓ is symmetric). Let v′ such
that v ≺tch∗ v

′ and pathti(v, v
′) is edge-isomorphic to pathti(u, uℓ). By

definition of Rep, we have uℓ 6∼ti,ri v
′. Since ti|u = ti|v, we also get

ti|uℓ = ti|v′ . For the same reasons as the previous case, there is no
node w ∈ [u1]t,r which is comparable to v′. Hence, since we pump
only in the elementary contexts rooted at nodes of [u1]t,r, the subtree
rooted at v′ does not change during pumping. Since the subtree rooted
at uℓ changes during pumping and pathti(u, uℓ) is edge-isomorphic to
pathti(v, v

′), we necessarily have tj |u 6= tj |v, which contradicts the
hypothesis.

120 Chapter 5. Tree Automata with Global Constraints

5.6 MSO WITH TREE EQUALITY TESTS

As already seen in Chapter 2, there is well-known correspondence between finite
tree automata and MSO (Section 2.5.2). It is quite natural to wonder whether such
a correspondence exists between TAGEDs and an extension of MSO. For the sake
of clarity, we investigate this question on binary trees. We define an extension of
MSO[≺ch1

,≺ch2
] with the tree equality predicate x ∼ y, which holds in a tree t,

between a node u and a node v if t|u and t|v are equal. In the rest of this section,
MSO[∼] stands for MSO[≺ch1

,≺ch2
,∼].

Proposition 5.6.1 For all TAGEDs A over a (binary) alphabet Σ, there is a computable closed
MSO[∼]-formula φA such that for all trees t ∈ Tran(Σ):

L(A) = {t | t |= φA}

Proof. Let A = (Σ, Q, F,∆) a TAGED. It is already known (see (CDG∗07) or
(Gen06)) that the tree automaton (Σ, Q, F,∆) is equivalent to an MSO-formula of
the form: φ = ∃Xq1 . . .∃Xqn φ∆(Xq1 , . . . , Xqn)
where {q1, . . . , qn} = Q. Set variables Xqis are intended to capture the set of
nodes labeled by states qi in a successful run of A (hence the set denoted by
{Xq1 , . . . , Xqn} forms a partition of the set of nodes, with possibly empty blocks).
The formula φ∆(Xq1 , . . . , Xqn) describes the behavior of the tree automaton, in
terms of runs. The constraints are naturally added by taking φ in conjunction with∧
q 6=Ap

∀x ∈ Xq∀y ∈ Xp, ¬(x ∼ y) and
∧
q=Ap

∀x ∈ Xq∀y ∈ Xp, x ∼ y.
Finally φA is defined by:

φA =





∃Xq1 . . .∃Xqn φ∆(Xq1 , . . . , Xqn) ∧∧
q 6=Ap

∀x ∈ Xq∀y ∈ Xp, ¬(x ∼ y) ∧∧
q=Ap

∀x ∈ Xq∀y ∈ Xp, x ∼ y

A TAGED A is universal iff ¬φA is unsatisfiable. Since testing universality of
TAGEDs is undecidable (Proposition 5.3.4), and φA is computable (Proposition
5.6.1):

Theorem 5.6.2 Testing satisfiability of MSO[∼]-formulas is undecidable.

We now define a fragment of MSO[∼] which corresponds to vertically bounded
TAGEDs. Then we prove this fragment to be decidable, by reduction to emptiness
of vertically bounded TAGEDs. This fragment is defined through new predicates
eq(X) and diffk(X,Y), k ∈ N. The predicate eq(X) holds in a tree t under some
assignment ρ : X 7→ U , for some U ⊆ Dom(t), if for all u, v ∈ U , t|u = t|v. For
all k ∈ N, the predicate diffk(X,Y) holds in t under some assignment ρ if (i) the
size of any subset of ρ(X) or ρ(Y) linearly ordered by ≺tch+ is bounded by k, (ii)
for all u ∈ ρ(X) and v ∈ ρ(Y), the trees t|u 6= t|v. These predicates are easily
definable in MSO[∼]:

eq(X) = ∀x∀y, x ∈ X ∧ y ∈ X → x ∼ y
diffk(X,Y) = ¬chaink+1(X) ∧ ¬chaink+1(Y)∧

∀x∀y, x ∈ X ∧ y ∈ Y → ¬(x ∼ y)

chaink+1(X) = ∃x1 . . .∃xk+1,
∧k+1
i=1 xi ∈ X ∧

∧k
i=1 xi ≺ch xi+1

5.6. MSO with Tree Equality Tests 121

We let MSO∃= the extension of MSO whose formulas are of the form
∃X1 . . .∃Xnφ, where:

• φ is a formula of MSO[eq, (diffk)k∈N]

• X1, . . . , Xn are not quantified in φ

• if eq(X) is an atom of φ, then X = Xi, for some i ∈ {1, . . . , n}

• if diffk(X,Y) is an atom of φ, then X = Xi and Y = Xj , for some i, j ∈
{1, . . . , n}

MSO∃= is a strict fragment of MSO[∼], but is strictly more expressive than MSO,
as tree isomorphism is not expressible in MSO (CDG∗07).

Proposition 5.6.3 For any closed formula φ inMSO∃=, one can compute a vbTAGED, whose size is
non-elementary in the size of φ, accepting the models of φ.

Proof. First, by moving up the predicates eq and diffk, we can prove that φ is
equivalent to a finite disjunction of formulas of the form ∃X γ(X) ∧ γtest(X)
where eq and diffk predicates do not occur in γ and γtest is a conjunction of atoms
eq(Xi) or diffk(Xi, Xj), or their negations, where Xi, Xj ∈ X . Then we remove
the negations in γtest. We let Sing(X) the MSO-formula that expresses that X is
a singleton set (it exists).
The formula ¬eq(X) is equivalent to

∃X1∃Y1, X1 ⊆ X ∧X2 ⊆ X ∧ Sing(X1) ∧ Sing(X3) ∧ diff1(X1, X2)

The formula ¬diffk(X,Y) holds in a tree t under assignment ρ if either there is a
descendant chain of length strictly greater than k in ρ(X) or ρ(Y) (this is express-
ible in MSO by some formula desc≥k(X,Y)), or there are two nodes u ∈ ρ(X)
and v ∈ ρ(Y) such that t|u = t|v. Hence ¬diffk(X,Y) is equivalent to:

¬diffk(X,Y) ↔ desc≥k(X,Y) ∧ ∃X ′∃Y ′∃Z, Z = X ′ ∪ Y ′∧
Sing(X ′) ∧ Sing(Y ′) ∧X ′ ⊆ X ∧ Y ′ ⊆ Y ∧ eq(Z)

Hence we can easily remove the negations, and every MSO∃= formula φ is equiv-
alent to a finite disjunction

∨
i Φi, where each Φi has the following form:

∃X ψ(X) ∧ ψtest(X)

where X is a tuple of set variables, the formula ψ is an MSO-formula, and ψtest is
a conjunction of atoms eq(Xi) or diffk(Xi, Xj), where Xi, Xj ∈ X . We also as-
sume that in ψtest, there is no atom of the form diffk(Xi, Xi), otherwise we replace
it by the equivalent formula Xi = ∅. The next construction builts a vbTAGED
(AΦi , ki) equivalent to Φi, for some ki ∈ N and all i. Moreover, each vbTAGED
(AΦi , ki) satisfies L(AΦi , ki) = L(AΦi), since a control is added to the states
of AΦi to check that disequality states are not used more that ki times along a
root-to-leaf path. Hence, φ is equivalent to (

⋃
iAΦi ,maxi ki) where

⋃
iAΦi is

obtained as in the proof of Proposition 5.3.1. The bound maxi ki does not really
matter here, since the control is done in the states, so that one could take all bound
greater thanmaxi ki. Note that if there is no control on the use of inequality states,

122 Chapter 5. Tree Automata with Global Constraints

the construction is not correct, since in general, L(AΦi , ki) 6= L(AΦi , p), for all
p 6= ki.
We now give the construction for a formula Φ = ∃X,ψ(X) ∧ ψtest(X). We
let X being equal to X1, . . . , Xn. We use the classical Thatcher and Wright’s
construction (TW68, CDG∗07) to transform ψ(X) into a tree automaton A =
(Σ×{0, 1}n, Q, F,∆), such that the i-th component of the tuple of any label corre-
sponds to the i-th variable inX , namelyXi. Then, projectingA on its first compo-
nent results in a tree automaton recognizing the models of ∃X, ψ(X). But, instead
of projecting the automata as usual, we project the Booleans from the labels into the
states like in (NPTT05). We denote by proj(A) = (Σ, Qproj(A), Fproj(A),∆proj(A))
the resulting automaton. It is defined by: Qproj(A) = Q × {0, 1}n, Fproj(A) =
F × {0, 1}n and ∆proj(A) is defined as the union of:

• the set of initial rules a→ (q, b); such that (a, b) → q ∈ ∆,

• the set of rules a((q1, b1), (q2, b2)) → (q, b), such that b1, b2 are Boolean
tuples, and (a, b)(q1, q2) → q ∈ ∆.

For all b ∈ {0, 1}n, we denote by b(i) its i-th projection. Intuitively, every suc-
cessful run r of proj(A) on some tree t defines a valuation ρ such that for all i,
ρ(Xi) = {u | ∃(q, b), labr(u) = (q, b) and b(i) = 1}. This valuation satisfies
t, ρ |= ψ(X). Now, suppose that Xi occurs in an atom diffk(Xi, Xj) of ψtest, for
some j. One has to add a constraint which imposes that each subtree t1 evalu-
ated to some state (q1, b1) with b1(i) = 1 and each subtree t2 evaluated to some
state (q2, b2) with b2(j) = 1 satisfy t1 6= t2. This can be done with the constraint
(q1, b1) 6=proj(A) (q2, b2). However, one must also ensure that there is not more
than k nodes in ρ(Xi) linearly ordered by ≺tch+ . More generally, if Xi occur in
several atoms diffk1(Xi, Xj1), . . . , diffkp(Xi, Xjp) of ψtest, one must ensure that
the size of every subset of ρ(Xi) linearly ordered by ≺tch+ is lesser than miniki.
This can be done by adding a counter ci to the states. More generally, we add a
counter for each variable Xi. The final vbTAGED AΦ equivalent to Φ is then de-
fined as follows. For all i ∈ {1, . . . , n}, we let Bi the minimal bound k such that
diffk(Xi, Xj) or diffk(Xj , Xi) is a atom of ψtest, for some j. The vbTAGED AΦ is
defined as follows:

• QΦ = Qproj(A) ×Qcount where Qcount = {0, . . . , B1} × · · · × {0, . . . , Bn}

• FΦ = Fproj(A) ×Qcount

• ∆φ is defined by the inference rules:

a→ (q, b) ∈ ∆proj(A)

c ∈ Qcount
∀i ∈ {1, . . . , n}, c(i) = 1 if b(i) = 1, and c(i) = 0 otherwise

a→ (q, b, c) ∈ ∆Φ

a((q1, b1), (q2, b1))→ (q, b) ∈ ∆proj(A)

c1, c2, c ∈ Qcount
for all i ∈ {1, . . . , n}, c(i) = b(i) + max (c1(i), c2(i))

for all i ∈ {1, . . . , n}, c(i) ≤ Bi
a((q1, b1, c1), (q2, b1, c2))→ (q, b, c) ∈ ∆Φ

• (q1, b1, c1) =AΦ
(q2, b2, c2) if ∃i ∈ {1, . . . , n} such that b1(i) = b2(i) = 1

and eq(Xi) is an atom of ψtest;

5.7. TAGEDs for Unranked Trees over an Infinite Alphabet 123

• (q1, b1, c1) 6=AΦ
(q2, b2, c2) if ∃i, j ∈ {1, . . . , n} such that b1(i) = 1 and

b2(j) = 1 and diffk(Xi, Xj) is an atom of ψtest, for some k;

• we let k = maxi Bi the bound of the vbTAGED AΦ. The bound does not
really matter since the control is already done by AΦ. In fact, one could take
any bound greater than k.

Note that 6=AΦ
is irreflexive since we assume that there is no atoms of the form

diffk(X,X) in ψtest. By construction, L(AΦ) accepts exactly the models of Φ.

Complexity The size of A is non-elementary in the size of φ in the worst-case, as
it is already the case without equality and disequality constraints (SM73a).

The converse of Proposition 5.6.3 also holds:

Proposition 5.6.4 For any vbTAGED (A, k), one can compute a closed MSO∃= formula φ whose
models are the trees accepted by A (modulo an exponential blow-up).

Proof. Let (A, k) be a vbTAGED. The construction is similar to the construction
of Proposition 5.6.1. The ’tree automata’ part ofA is encoded by an MSO formula:

φ = ∃Xq1 . . .∃Xqn φ∆(Xq1 , . . . , Xqn)

where {q1, . . . , qn} are the states of A. The cardinality constraint is expressed by:

φcard = ¬∃x1 . . .∃xk+1

k∧

i=1

xi ≺ch+ xi+1 ∧
k+1∧

i=1

∨

q∈dom(6=A)

xi ∈ Xq

The constraints are expressed by
∧
q 6=Ap

diffk(Xq, Xp) ∧
∧
q=Ap

eq(Xq∪Xp) (set
union is easily expressible in MSO). The bound k in diffk(Xq, Xp) does not really
matter here since the control is done by φcard. Hence, one could also take any
bound greater than k.

As a consequence of Theorem 5.5.2 and Propositions 5.6.3 and Propositions 5.6.4:

Theorem 5.6.5 MSO∃= and vbTAGEDs effectively define the same tree languages, and satisfiability
of MSO∃= formulas is decidable.

5.7 TAGEDS FOR UNRANKED TREES OVER AN INFINITE AL-
PHABET

TAGEDs are used to decide a fragment of the spatial logic TQL. However TQL is
interpreted on unranked trees over an infinite alphabet. We first lift the emptiness
result on vertically bounded TAGEDs over a finite alphabet to vertically bounded
TAGEDs over an infinite alphabet.
Then TAGEDs can naturally be lifted from ranked to unranked trees, on basis of
hedge automata, as well as their fragments, positive TAGEDs, negative TAGEDs,
and vertically bounded TAGEDs. We call this extension unranked TAGEDs.
Emptiness results in the ranked case can be lifted to the unranked setting via a
particular binary encoding which preserves the subtree equalities.

124 Chapter 5. Tree Automata with Global Constraints

5.7.1 Extension to an Infinite Alphabet

Let Λ be an infinite alphabet. In order to extend TAGEDs to carry labels from
Λ, one needs more complex transitions, with cofinite sets of labels, to keep the
Boolean closure properties. In particular, rules of TAGEDs over an infinite alpha-
bet have the form α(q1, q2) → q or α → q, where α ∈ Pcf (Λ) is a (co)finite set
of labels. The rule can be applied to a node if its label is contained in α. The size
of a rule α(q1, q2) → q is |α| + 3 if α is finite, and |β| + 4 if α is equal to the
complement of some finite set β.

Theorem 5.7.1 Emptiness of vertically bounded TAGEDs over an infinite alphabet is decidable in
2NEXPTIME.

Proof. Let (A, k) be a vbTAGED over Λ. The proof of Theorem 5.5.4 still holds
for vbTAGEDs over an infinite alphabet, since it relies on manipulating runs only.
However deciding whether there is a tree t and run r whose height is bounded by
B (B is defined in Theorem 5.5.4) and such that P(t, r, Fmax(t, r)) holds needs
another method, as there is an infinite number of trees whose height is bounded by
B. However we prove that we can still bound the exploration space.
Let Pcf (A) be the set of cofinite sets occurring in the rules of A. We first trans-
form A such that every finite set of Pcf (A) is a singleton set. This can be done by
creating as many rules as there are labels in the finite sets (and therefore in poly-
nomial time in the size of A). We also transform A such that there is no finite set
α ∈ Pcf (A) included in an infinite set α′ ∈ Pcf (A) (property *). This can be done
in polynomial-time by creating, for all singleton sets {f} ∈ Pcf (A), all infinite
sets α ∈ Pcf (A) such that f ∈ α and all rules of the form α(q1, q2) → q, the two
rules:

f(q1, q2) → q and (α′ − f)(q1, q2) → q

We let # ∈ Λ a symbol such that for all infinite sets α of Pcf (A), # ∈ α (it
necessarily exists if there is at least one infinite set, which can be assumed wlog).
We denote by active(A) the set

active(A) =
⋃
{α | α is finite and α ∈ Pcf (A)} ∪ {#}

We now prove that there exist a tree t over Λ and a run r whose height is bounded
by B such that P(t, r, Fmax(t, r)) holds iff there exist a tree t′ over active(A) and
a run r′ whose height is bounded by B such that P(t′, r′, Fmax(t

′, r′)) holds.
The back direction is obvious as t′ is also a tree over Λ. For the forth direction we
let r′ = r and t′ is obtained by changing some labels of t (in particular t and t′

are edge-isomorphic). For all nodes u ∈ Dom(t), we look at the rules which can
be applied at node u in r. Thanks to property *, either rules with an infinite set
or rules with a finite set can be applied at node u in r. If a rule with an infinite
set can be applied, we substitute labt(u) by #, otherwise we let it unchanged. By
definition of t′, if two node labels were equal in t they are still equal in t′.
The resulting tree t′ and the run r′ still satisfy the equality constraints. Suppose
the contrary, ie there are two nodes u, v ∈ Dom(t′) such that labr

′

(u) =A labr
′

and t′|u 6= t′|v. Since t and r satisfy the equality constraints, t|u = t|v. Hence
t′|u and t′|v are edge-isomorphic. Thus there are two isomorphic nodes u′ and v′

respectively (such that patht|u(u, u
′) is edge-isomorphic to patht|v(v, v

′)) such that

labt
′

(u′) 6= labt
′

(v′). This is impossible by definition of t′. Finally, since r = r′,
the conditions 2, 3, 4 of P are still satisfied.

5.7. TAGEDs for Unranked Trees over an Infinite Alphabet 125

Consequently in order to decide emptiness of (A, k), it suffices to test whether
there are a tree t over active(A) and a run r whose height is bounded by B and
such that P(t, r, Fmax(t, r)) holds, which can be done in 2NEXPTIME in ‖A‖
and k.

5.7.2 Binary Encoding

Let Λ be an infinite alphabet, cons a fresh binary symbol such that cons 6∈ λ, and
⊥ a constant symbol such that⊥6∈ Λ. Intuitively, cons appends a tree at the end of
a hedge. We view hedges over Λ as ranked trees over Λr = Λ∪ {cons,⊥}, where
every symbol of Λ is viewed as a unary function symbol. The encoding is given by
the mapping Ψ : H(Λ) → Tran(Λr), for all t ∈ Tunr(Λ), h ∈ H(Λ), a ∈ Λ:

Ψ(0) = ⊥
Ψ(h|t) = cons(Ψ(h),Ψ(t)) where h 6= 0

Ψ(a(h)) = a(Ψ(h))

The following example illustrates this encoding:

a

b c d

e f

→ a

cons

cons

b

⊥

c

⊥

d

cons

e

⊥

f

⊥

Note that every subtree whose root is labeled in Λ in the encoding corresponds to
a subtree in the original unranked tree.

Proposition 5.7.2 For all unranked TAGEDs A over Λ, there is a TAGED A′ such that L(A′) =
{Ψ(t) | t ∈ L(A)}.
Moreover, if the horizontal languages ofA are represented by finite word automata,
then A′ is computable in time O(‖A‖) and ‖A′‖ ∈ O(‖A‖).

Proof. Suppose that A = (Λ, Q, F,∆,=A, 6=A). For each rule r ∈ ∆, we
suppose the horizontal language of r is represented by a finite word automaton
Ar = (Q,Pr, Fr, p

r
i , δr), where Q is the alphabet, Pr is the finite set of states,

Fr is the set of final states, pri is the initial state, and δr ⊆ Pr × Q × Pr is the
set of transitions. We also assume that there is no ǫ-transitions and that the sets
Pr are pairwise disjoint, and disjoint from Q, for all r ∈ ∆. We now construct
A′ = (Λ, Q′, F ′,∆′,=A′ , 6=A′) as follows:

• Q′ = {q⊥} ∪ Q ∪
⋃
r∈∆ Pr for a fresh state q⊥

• F ′ = F

126 Chapter 5. Tree Automata with Global Constraints

• ∆′ is defined by the following inference rules:

1.
⊥→ q⊥ ∈ ∆′

2.
α(L) → q ∈ ∆ and ǫ ∈ L
(α− cons)(q⊥) → q ∈ ∆′

3.
(pri , q, p2) ∈ δr and (p2, q

′, p3) ∈ δr
cons(q, q′) → p3 ∈ ∆′

4.
(p1, q, p2) ∈ δr

cons(p1, q) → p2 ∈ ∆′

5.
r = α(L) → q ∈ ∆ and pf ∈ Fr

(α− cons)(pf) → q ∈ ∆′

• =A′ is equal to =A, and 6=A′ is equal to 6=A

Subtrees rooted by labels of Λ necessarily evaluate to states of Q, while subtrees
rooted by cons evaluate to state of Pr, for some r ∈ ∆. Below a node rooted by a
symbol of Λ, there is either a node ⊥ (encoding of the empty hedge), or a subtree
whose root is labeled cons (encoding a non-empty hedge). These two cases are
covered by rules 2 and 5. Horizontal transitions are simulated by rules 3 and 4. In
particular, rule 3 simulates an horizontal transition for a word of state of the form
qq′, while rule 4 simulates an horizontal transition for a word of state of the form
wq, where |w| > 1.

Theorem 5.7.3 Emptiness of vertically bounded unranked TAGEDs over an infinite alphabet is
decidable in 2NEXPTIME.

Proof. This is mainly because the encoding preserves the descendant relations.
Hence if (A, k) is a vertically bounded unranked TAGED, and A′ is its encoding
(constructed as in Proposition 5.7.2), then we also have L(A′, k) = {Ψ(t) | t ∈
L(A, k)}. The conclusion follows from Theorem 5.7.1.

5.8 CONCLUSION

In this chapter, a new class of tree automata has been introduced. An expressive
fragment has been proved to be decidable (wrt to the emptiness problem), and its
MSO counterpart has been defined.
It would be interesting to consider the application of TAGEDs to the solvability of
first-order disunification problems, with (regular) membership constraints. Deal-
ing with membership constraints has been done in several papers. In (CD94), the
authors prove solvability of first-order formulas whose atoms are either equations
between terms or membership constraints t ∈ L where L is a regular tree language
and t a term (with possibly variables). In (KM06), the authors propose an algorithm
to solve iterated matching of hedges against terms with flexible arity symbols, one-
hole context and sequence variables constrained to range over a regular language.
We could extend the logic of (CD94) with context variables (with arbitrarily many
holes, and membership constraints) to allow arbitrary depth matching. Context
unification is still an open problem, but motivated by XML tasks, we would not
need to do full context unification. Imposing a strong linearity condition on con-
text variables would be sufficient. Even with strong linearity restriction, solvability
of first-order formulas should be undecidable. Considering an existential fragment
with a natural embedding to vbTAGEDs would lead to decidability. A first attempt

5.8. Conclusion 127

has been done in (FTT08). It would be also interesting to use TAGEDs as a repre-
sentation of the set of solutions, in order to decide finiteness of the set of solutions,
or to enumerate them for instance. This can be done, for a system S with free
variables x1, . . . , xn, by definining the set of hedges σ(x1) . . . σ(xn) such that σ
is a solution of S. This raises the following questions:

• given a unary context C, and a TAGED-definable language L, is {t | C[t] ∈
L} TAGED-definable?

• given a TAGED-definable hedge language L, is the following TAGED-
definable?

{t1 . . . tn−1 | ∃tn, t1 . . . tn−1tn ∈ L}

A long-standing open problem is to decide if the image of a regular tree language
by a homomorphism is regular. This problem has been partially answered recently
in (GMT08), where two interesting classes of homomorphisms are considered.
Deciding whether the language recognized by a TAGED is regular would imply
decidability of a larger fragment of the homomorphism problem. A first step would
be to decide if the set of ground instances of a term with context variables (occuring
in a linear manner) and term variables (which may occur many times), with regular
membership constraints on context or term variables, is regular. It is non-trivial
since for instance a TAGED may do several equality tests, but when taking its
union with the tree automaton which recognizes all the trees, equality tests become
useless, but are still present in the union.
Concerning the emptiness problem, complexity lower bounds are still missing for
negative TAGEDs and vertically bounded TAGEDs. Deciding emptiness of full
TAGEDs is still open.
It could be interesting to consider more general tests =R, given by recognizable
relations R on trees (as, in particular, tree (dis)equality is a binary recognizable
relation). In particular, two subtrees t1, t2 which evaluate to states q1, q2 such that
q1 =R q2 would have to satisfy (t1, t2) ∈ R. Since it includes the emptiness
problem of full TAGEDs, which is still open, in a first step, one could consider
relations such that =R⊆ idQ.
Finally, we would like to mention the on-going work on the modeling of cryp-
tographic protocols by term rewriting systems and positive TAGEDs satisfying
=A⊆ idQ (VJK08). Sequences of messages sent on a network are modeled by
terms over symbols that represent cryptographic primitives. All the possible exe-
cutions of a cryptographic protocol are then modeled by a term language definable
by a TAGED. Testing emptiness of the closure of this language modulo some rel-
evant equational theory allows to see whether the protocol is safe or not. This
closure is not computable when the equational theory is given by an arbitrary term
rewriting systems (TRS) and defining decidable relevant subclasses is still an on-
going but promising work.

6TREE QUERY LOGIC

CONTENTS
6.1 INTRODUCTION . 131

6.2 SYNTAX AND SEMANTICS . 132

6.2.1 Syntax . 132

6.2.2 Semantics . 134

6.3 EXAMPLES . 135

6.4 MODEL-CHECKING ALGORITHM 138

6.5 TQL FRAGMENTS AND SATISFIABILITY 140

6.5.1 Undecidable Fragments . 141

6.5.2 The Bounded Fragment . 141

6.5.3 Discussion on Expressiveness 143

6.6 BOUNDED TQL FORMULAS TO VBTAGEDS 144

6.6.1 Elimination of Negation . 145

6.6.2 Horizontal Languages . 145

6.6.3 Construction of the vbTAGED 147

6.6.4 Examples . 148

6.6.5 Proof of Correctness . 149

6.7 CONCLUSION . 152

THIS chapter introduces the Tree Query Logic (TQL) adapted from (CG04) to
the context of ordered unranked trees. TQL formulas are built over variables

that can be bound by trees, recursion via a least fixpoint operator, Boolean connec-
tives, and the operations of the hedge algebra. Decidability of a powerful fragment
with variables is proved by reduction to emptiness of vbTAGEDs.

129

6.1. Introduction 131

6.1 INTRODUCTION

We consider the TQL logic defined in (CG04) and adapt it to the context of un-
ranked ordered trees. This was mentioned as an open issue in (CG04, Gen06,
Bon06).
TQL formulas are interpreted on hedges over an infinite alphabet. It allows for
instance to take data values of XML documents into account. The logic integrates
Boolean connectives, the operators of the hedge algebra (see Section 2.1.4), tree
variables that are bound by trees, and a fixpoint operator for recursion. Variables
have been introduced to define queries of arbitrary arities and allow one to test
tree equalities. For instance, the formula a[X|X] defines the set of all trees of
the form a(t, t). By the use of negation, disequality tests can also be performed.
For instance, a[X|¬X] defines the set of all trees of the form a(t, t′), where t 6= t′.
We give a polynomial-time model-checking algorithm for TQL formulas. Then we
investigate the satisfiability of TQL formulas in presence of tree variables. The full
TQL logic is undecidable, as it can define the intersection of two context-free word
grammars. A natural restriction is to guard recursion by hedge rooting, meaning
that the recursion is applied on hedges whose heights are strictly smaller. Guarded
TQL formulas without tree variables capture MSO over hedges. The presence of
tree variables, when repeated in the formula, complicates the satisfiability problem,
since one can express for instance that two non-empty paths starting from a node
of a tree lead to two isomorphic subtrees, which goes beyond MSO. We define
an expressive TQL fragments with variables, in which negations of tree variables
can occur in a bounded manner only. This fragment is proved to be decidable by
reduction to the emptiness test of vbTAGEDs. This reduction is non-standard and
new, as it deals with tree variables. In particular the vbTAGED constructed from
the TQL formula is non-deterministic. Decidability of the full guarded fragment is
still open.

Related Work In (CG04), TQL allows hedge variables (variables that can be
bound by hedges). The satisfiability problem in presence of hedge variables con-
tains the very hard problem of word equations, first solved by Makanin in 1977.
Here we prefer to focus on the ability of TQL to deal with trees, and therefore
restrict TQL to tree variables, which is still in the spirit of (CG04). In addition, the
TQL logic of (CG04) allows label variables and both kind of variables (for hedges
and labels) can be existentially and universally quantified. We do not consider this
extension here as it makes TQL undecidable.
The satisfiability problem for several fragments of TQL has already been consid-
ered in (Bon06, BTT05), but in the context of unordered trees and without vari-
ables. The techniques used in those papers are also different.
TQL for ordered trees can be seen as an extension of the (recursive) pattern-
language of XDuce (HP03b). The main difference here is that we allow Boolean
operators and drop the linear condition for variables of XDuce, meaning that the
same variable can occur many times in a formula. The pattern-matching mecha-
nism of CDuce (BCF03a) extends the one from XDuce with Boolean operations
and weaker conditions on variables. However, no equality tests between terms can
be performed making TQL more powerful.
Because we consider an infinite alphabet and we allow for equality tests between
trees, we can, as a side effect, model data values of XML documents. However the
expressive power of our TQL logic with respect to data value comparison allows

132 Chapter 6. Tree Query Logic

only to compare data values to a fixed data. For instance, we can express that for all
subtrees whose root is labeled “book”, there is one author named as “Church”, but
we cannot express that there is at least two authors with the same first name. FO
fragments over unranked trees with the ability to compare data-values have been
considered in (BDM∗06, BMS∗06). However with respect to this concern, TQL is
weaker than these formalisms.
By the presence of a fixpoint operator, TQL seems to be related to the µ-calculus
(Koz83), which is known to be decidable and as expressive as MSO over unranked
trees, when it includes past transitions (BL05). There are major differences though:
the presence, in TQL, of variables and the composition operator .|. of the hedge
algebra. The embedding of TQL formulas into TAGEDs is also different from
the standard embedding of the µ-calculus into tree automata. In particular, the
presence of variables makes the automaton non-deterministic.

Organization of the chapter Section 6.2 gives the syntax and the semantics of
TQL. Examples are presented in Section 6.3. A model-checking algorithm for
TQL is considered in Section 6.4. The decidable bounded fragment of TQL is
defined in Section 6.5, and its embedding into vbTAGEDs is presented and proved
in Section 6.6.

6.2 SYNTAX AND SEMANTICS

We define TQL formulas and their interpretation on hedges over an infinite alpha-
bet.

6.2.1 Syntax

Let Λ be a countable alphabet, Xtree be a countable set of tree variables ranged over
by X,Y and Xrec a countable set of recursion variables ranged over by ξ. Let α be
a (co)finite set of labels from Λ. Formulas φ of TQL are defined by the following
grammar:

φ ::= 0 empty hedge
⊤ truth
α[φ] extension
φ|φ composition
¬φ negation
φ ∨ φ disjunction
X tree variable, X ∈ Xtree

ξ recursion variables, ξ ∈ Xrec

µξ.φ least fixpoint
φ∗ Kleene star

The following priorities apply to the operators: ∨ < ∧ < | < ¬. For instance,
φ1 ∨φ2|φ3 = φ1 ∨ (φ2|φ3), φ1 ∧φ2|φ3 = φ1 ∧ (φ2|φ3), and ¬φ1|φ2 = (¬φ1)|φ2.
We define the following abbreviations:

φ ∧ φ′
def
= ¬(¬φ ∨ ¬φ′)

⊥
def
= ¬⊤

6.2. Syntax and Semantics 133

The symbol µ is the binder for recursion variables and the notions of bound and free
recursion variables Varrec(φ) and FVarrec(φ) respectively of a formula φ are defined
as usual (like in FO with the binder ∃). Similarly, the set of tree variables occurring
in φ is denoted by Var(φ). To ensure the existence of fixpoint, we will assume
that in formulas µξ.φ, the recursion variable ξ occurs under an even number of
negations. A formula φ is said to be recursion-closed if all the occurrences of its
recursion variables are bound, ie FVarrec(φ) = ∅. A TQL sentence is a formula that
does not contain tree variables and is recursion-closed. The set of subformulas of
a formula φ is denoted Sub(φ), and the size of φ is the number of its subformulas,
ie ‖φ‖ = |Sub(φ)|.
A TQL formula φ is guarded if for any of its subformula µξ.φ′, the variable ξ
occurs in the scope of some extension operator α[] in φ′.
We assume from now on that recursion variables are bound only once in formulas.
We may write a[φ] instead of {a}[φ].

Fisher-Ladner Closure Let φ, φ′ be TQL formulas and ξ a recursion variable.
The formula φ[ξ 7→ φ′] is defined as the formula φ in which every occurrence of ξ
has been substituted by φ′. The Fisher-Ladner closure FL(φ) of φ is the set of all
subformulas of φ where recursion variables are unfolded once. Formally, it is the
smallest set that contains φ and is closed by the following binary relation→fl:

ψ1 ∧ ψ2 →fl ψ1 ψ1 ∧ ψ2 →fl ψ2

ψ1 ∨ ψ2 →fl ψ1 ψ1 ∨ ψ2 →fl ψ2

ψ1|ψ2 →fl ψ1 ψ1|ψ2 →fl ψ2

¬ψ →fl ψ α[ψ] →fl ψ
µξ.ψ →fl ψ[ξ 7→ µξ.ψ]

Observe that FL(φ) is finite and |FL(φ)| = |Sub(φ)|−|Varrec(φ)\FVarrec(φ)|, hence
|FL(φ)| ≤ ‖φ‖. Note also that if φ is recursion-closed, then every formula of
FL(φ) is recursion-closed too. For instance, if φ = µξ.(a[ξ] ∨ 0), then FL(φ) =
{φ, a[φ]∨ 0, a[φ], 0}. Every formula of FL(φ) is called an unfolded subformula.

Partial order on hedges and formulas The recursion-depth rd(φ) of a TQL
formula ψ is the maximal number of nested fixpoint binders µξ that are not in the
scope of a tree extension α[.]. It is inductively defined by:

rd(φ1|φ2) = rd(φ1 ∧ φ2) = rd(φ1 ∨ φ2) = max(rd(φ1), rd(φ2))
rd(0) = rd(⊤) = rd(ξ) = rd(X) = 0
rd(µξ.φ) = 1 + rd(φ) rd(α[φ]) = 0

Given two hedges h, h′ ∈ H(Λ), we let h′ ≺H(Λ) h if one of the following condi-
tions holds:

• there exist h1, h2 ∈ H(Λ) such that h1 6= 0 or h2 6= 0, and h = h1|h
′|h2;

• there exist h1, h2 ∈ H(Λ), a ∈ Λ, and u ∈ Dom(h) such that h|u =
a(h1|h

′|h2).

Observe that ≺H(Λ) is a well-founded partial order on hedges. Given two hedges
h, h′ ∈ H(Λ) and two TQL formulas φ, φ′, we let (h, φ) ≺ (h′, φ′) if one of the
following conditions holds:

• h ≺H(Λ) h
′

134 Chapter 6. Tree Query Logic

• h = h′ and rd(φ) < rd(φ′)

• h = h′ and rd(φ) = rd(φ′) and φ is a strict subformula of φ′

Proposition 6.2.1 ≺ is a strict partial order onH(Λ)× TQL.

Proof. This is because it is the lexicographic composition of three partial orders.

In particular, for all guarded formulas ψ, and all hedges h, we have (h, ψ[ξ 7→
µξ.ψ]) ≺ (h, µξ.ψ), since rd(ψ[ξ 7→ µξ.ψ]) = rd(µξ.ψ) − 1 < rd(µξ.ψ), as ψ
is guarded. For instance, with φ = µξ.µξ′.(a[ξ|ξ′] ∨ 0), we have rd(φ) = 2, but
rd(µξ′.(a[φ|ξ′] ∨ 0)) = 1.

6.2.2 Semantics

TQL formulas φ are interpreted as sets of hedges JφKρ,δ ⊆ H(Λ), modulo some
assignment (also called valuation) ρ : Var(φ) → Tunr(Λ) of tree variables into
trees and some assignment δ : FVarrec(φ) → 2H(Λ) of the free recursion variables
into sets of hedges. The semantics is given in Figure 6.1. When φ is recursion-
closed, we omit the subscript δ, and when it is a sentence, we omit the subscript ρ
as well. The semantics of the fixpoint operator Jµξ.φKρ,δ is the least fixpoint of the
functional

Fφ : 2H(Λ) → 2H(Λ)

S 7→ JφKρ,δ[ξ 7→S]

Since ξ does not occur under an even number of negations, F is monotonic for
inclusion, which ensures the existence of a least fixpoint for F . See (EF05) for
more details on fixpoints.

J0Kρ,δ = {0}
J⊤Kρ,δ = H(Λ)
Jα[φ]Kρ,δ = {a(h) | h ∈ JφKρ,δ, a ∈ α}
Jφ|φ′Kρ,δ = {h|h′ | h ∈ JφKρ,δ, h′ ∈ Jφ′Kρ,δ}
J¬φKρ,δ = H(Λ)\JφKρ,δ

Jφ ∨ φ′Kρ,δ = JφKρ,δ ∪ Jφ′Kρ,δ

JXKρ,δ = {ρ(X)}
JξKρ,δ = δ(ξ)

Jµξ.φKρ,δ =
⋂
{S ⊆ H(Λ) | JφKρ,δ[ξ 7→S] ⊆ S}

Jφ∗Kρ,δ = {0} ∪
⋃
i>0 JφKρ,δ| . . . | JφKρ,δ︸ ︷︷ ︸

i times

Figure 6.1: Semantics of TQL formulas

The satisfaction relation |= is defined by h, ρ, δ |= φ if h ∈ JφKρ,δ, for all hedges
h ∈ H(Λ) and assignments ρ, δ. Another characterization of the least fixpoint is
given by the following lemma:

Lemma 6.2.2

h, ρ, δ |= µξ.φ iff h, ρ, δ |= φ[ξ 7→ µξ.φ]

6.3. Examples 135

in which φ[ξ 7→ µξ.φ] is the formula φ where each occurrence of ξ has been
replaced by µξ.φ.

Proof. We start by the following fact: if φ1, φ2 are TQL formulas, then
Jφ1K

ρ,δ[ξ 7→Jφ2Kρ,δ] = Jφ1[ξ 7→ φ2]K
ρ,δ. It follows from the semantics of TQL for-

mulas.
Now, since Jµξ.φKρ,δ is the least fixpoint of the functional Fφ, we have

Fφ(Jµξ.φKρ,δ) = Jµξ.φKρ,δ, ie JφKρ,δ[ξ 7→Jµξ.φKρ,δ] = Jµξ.φKρ,δ

By the previous fact, we get: Jµξ.φKρ,δ = Jφ[ξ 7→ µξ.φ]Kρ,δ. The conclusion
follows from the definition of the satisfaction relation.

From Lemma 6.2.2 and direct applications of the semantics of TQL formulas, sev-
eral properties of the satisfaction relation can be proved. They are summarized in
Figure 6.2.

h, ρ, δ |= 0 iff h = 0

h, ρ, δ |= α[φ] iff ∃h′ ∈ H(Λ),∃a ∈ α, h = a(h′) and h′, ρ, δ |= φ
h, ρ, δ |= φ|φ′ iff ∃h1, h2 ∈ H(Λ), h = h1|h2 and h1, ρ, δ |= φ1 and h2, ρ, δ |= φ2

h, ρ, δ |= ¬φ iff h, ρ, δ 6|= φ
h, ρ, δ |= φ ∨ φ′ iff h, ρ, δ |= φ or h, ρ, δ |= φ′

h, ρ, δ |= X iff h = ρ(X)
h, ρ, δ |= ξ iff h ∈ δ(ξ)
h, ρ, δ |= µξ.φ iff h, ρ, δ |= φ[ξ 7→ µξ.φ]

h, ρ, δ |= φ∗ iff ∃n ∈ N,∃h1, . . . , hn ∈ H(Λ),

{
h = h1| . . . |hn
∀i ∈ {1, . . . , n}, hi, ρ, δ |= φ

Figure 6.2: Properties of the Satisfaction Relation

TQL can be viewed as a query language, thanks to tree variables. However, TQL
queries output tuples of trees instead of tuple of nodes, and those trees may not
be subtrees of the input. For instance, the formula a[¬X] is satisfied by any tree
of the form a(h) under some valuation ρ such that ρ(X) 6= h. Viewed as a unary
query, the set of answers of this query on a(h) is infinite. However it can be finitely
represented as the complement of {h}. Formally, a recursion-closed TQL formula
φ(X1, . . . , Xn) with n free variables X1, . . . , Xn defines the n-ary query

Q(φ) : H(Λ) → 2Tunr(Λ)n

h 7→ {(ρ(X1), . . . , ρ(Xn)) | h, ρ |= φ}

6.3 EXAMPLES

In this section, we give a series of examples of Boolean and n-ary queries. In
particular, the last example shows how to translate an extended DTD into a TQL
formula, making TQL as expressive as MSO over hedges.

1. The formula Λ[⊤] is interpreted as the set of trees over Λ.

136 Chapter 6. Tree Query Logic

2. The following formula φ is interpreted as the set of hedges of length at least
1, such that the root of the first tree is labeled a:

φ = a[⊤]|⊤

3. The formula φs is interpreted as the set of hedges {a[h1]| . . . |a[hn] | hi ∈
H(Λ), n ≥ 0}. Note that it is equivalent to (a[⊤])∗:

φs = µξ.(a[⊤]|ξ ∨ 0)

4. The formula φdtd is interpreted as the set of hedges defining employees by
their name, the department they work in, and their manager whereas the
formula φdd expresses that an employee X occurs twice in the database:

φdtd = (employee[name[Λ[0]] | dpt[Λ[0]] |manager[Λ[0]]])∗

φdd = φdtd ∧ ⊤ | employee[X] | ⊤ |employee[X] | ⊤

5. The models of the formula φpath(a),0 are hedges with a path labeled by a’s
from one of the roots to some leaf (ie the empty hedge 0):

φpath(a),0 = µξ.(⊤|a[ξ]|⊤ ∨ 0)

6. The formula φodd is interpreted as the set of hedges having an odd number
of nodes:

φodd = µξo.(Λ[φeven(ξo)]|φeven(ξo) ∨ Λ[ξo]|ξo)
where φeven(ξo) = µξe.(0 ∨ (Λ[ξo]|ξe ∨ Λ[ξe]|ξo))

7. Let us denote φpath(L),ψ = µξ.(⊤|L[ξ]|⊤ ∨ ψ) the formula whose models
are hedges containing a path labeled by elements from L from one of the
roots to a hedge satisfying ψ. The models of the following formula are the
hedges having two paths labeled respectively by as and by bs from two of
the top-level nodes, those two paths leading to some identical subtrees:

a[φpath(a),X]|b[φpath(b),X] ∨ b[φpath(b),X]|a[φpath(a),X]

8. The formula φid_not_key is interpreted as the set of hedges for which two
nodes labeled id have identical subtrees (roughly speaking “the (data) value
of the element id cannot be used as a key in this XML document”):

φid_not_key = ⊤|Λ[φpath(Λ),id[X]]|⊤|Λ[φpath(Λ),id[X]]|⊤

9. The following formula states that two trees employee have identical subtrees
rooted by dpt but different subtrees rooted by manager:

φdtd ∧ ⊤ | employee[⊤ |dpt[X]|manager[Y]] | ⊤
| employee[⊤ |dpt[X]|manager[¬Y]] | ⊤

A hedge satisfying this formula may be considered as ill-formed assuming
the existence of some functional dependency stating that department has
only one manager.

6.3. Examples 137

T

T

T

T

T

S

Figure 6.3: A tree with T 6= S

10. Models of the formula φbranch are the trees whose shapes are described on
Figure 6.3:

φbranch = Λ[X|µξ.(Λ[X | ξ] ∨ ¬X ∧ Λ[⊤])]

φs and φodd are the only two formulas that are not guarded; however φs is equiva-
lent to a[⊤]∗, which is guarded and φodd to the following guarded formula

φodd = µξo.φeven(ξo) | Λ[φeven(ξo)] | φeven(ξo)
where φeven(ξo) = µξe.Λ[ξo]

∗ | (Λ[ξe] | Λ[ξo]
∗ | Λ[ξe] | Λ[ξo]

∗)∗

The idea is that an odd hedge can be decomposed as the sequence of an even
hedge, an odd tree, and an even hedge, while an even hedge always contains an
even number of odd trees.
However the formula µξ.(a[0]|ξ|b[0] ∨ 0) is neither guarded nor equivalent to any
guarded formula.

Extended DTD Embedding Let d′ = (d, T) be an extended DTD over a finite
alphabet Σ (where T is a finite set and d = ((s, σ), δ) is a DTD over Σ × T
with starting symbol (s, σ) ∈ Σ × T , see Section 2.7.2 for a formal definition
of extended DTDs). The extended DTD d′ defines the same tree language as
the guarded TQL formula L(s, σ)M∅ defined below, over recursion variables ξa,σ,
(a, σ) ∈ Σ× T . For any set of symbols L ⊆ Λ× T , and any regular expression e
over Σ× T , LeML is inductively defined by:

LǫML = 0

Le1 + e2ML = Le1ML ∨ Le2ML
Le1.e2ML = Le1ML|Le2ML
Le∗ML = LeM∗L

L(a, σ)ML =

{
a[ξa,σ] if (a, σ) ∈ L
a[µξa,σ.Lδ(a, σ)ML∪{(a,σ)}] if (a, σ) 6∈ L,

Informally, the recursion of the DTD is simulated by recursion variables. The
set L is intended to memorize which symbols (a, σ) have already been met. If it
is the first time, a new recursion variable ξa,σ is introduced via the binder µξa,σ,

138 Chapter 6. Tree Query Logic

otherwise we are in the scope of µξa,σ, so that the current formula can be translated
to ξa,σ.
We illustrate the construction for a simple DTD (and omit the PCDATA terminals):

books → book∗ title → ǫ
book → title.author name → ǫ
author → name.books

It is translated into the formula

books[µξbooks.(book[µξbook.(title[µξtitle.0]
| author[µξauthor.(name[µξname.0]

|books[ξbooks])]
)

]
)∗

]

which is equivalent to:

books[µξbooks.(book[title[0] | author[name[0]|books[ξbooks]]])∗]

Proposition 6.3.1 An extended DTD d′ = (d, T) over a finite alphabet Σ, with a starting symbol
(s, σ) ∈ Σ× T is equivalent to the guarded TQL formula Ls, σM∅, ie:

L(d′) = JLs, σM∅K

Since extended DTDs captures hedge automata (Theorem 2.7.1), we get the fol-
lowing corollary:

Corollary 6.3.2 Guarded TQL formulas can define unranked tree languages over a finite alphabet
definable by hedge automata. The translation is effectively computable in linear
time if the horizontal languages of the hedge automaton are defined by regular
expressions.

In fact, only guarded recursion, disjunction, composition .|., extension α[.] and
Kleene star are needed to capture the expressiveness of hedge automata.

6.4 MODEL-CHECKING ALGORITHM

In this section, we present a model-checking algorithm for recursion-closed TQL
formulas (not necessarily guarded). The algorithm is very similar to the one of
(Bon06), adapted for the ordered case.
We suppose that no recursion variable is bound twice. The algorithm processes the
formula recursively with memoization, with cycle detection to avoid infinite loops.
The only difficulty is to deal with fixpoints. The algorithm uses the fact that h |=
µξ.φ iff h |= φ[ξ 7→ µξ.φ]. Suppose that the algorithm checks the satisfiability
of some formula µξ.φ against some hedge h, and that after several computational
steps, it has to check satisfiability of µξ.φ against h again, then it means it is in a
cycle. Hence it has to return false by definition of the least fixpoint. For instance,
the formula µξ.ξ|0 can generate a cycle, as h |= µξ.ξ|0 iff h |= (µξ.ξ|0)|0 iff
h |= µξ.ξ|0. So the algorithm has to detect cycles. It can be done by associating

6.4. Model-Checking Algorithm 139

with each recursion variable ξ the current hedge when the binder µξ was met for
the last time in the model-checking process. An association table from recursion
variables to hedges stores this information.
Let φ be a recursion-closed variable, and ∆0 an empty association table. On a
hedge h, modulo some assignement ρ, CHECK(φ, h, ρ,∆0) outputs true iff h ∈
JφKρ.
CHECK(φ, h, ρ,∆)

1 switch

2 case φ = ⊤ :
3 return true
4 case φ = 0 :
5 if h = 0

6 then return true
7 else return false
8 case φ = X :
9 if h = ρ(X)

10 then return true
11 else return false
12 case φ = α[φ′] :
13 if ∃a ∈ α, h = a(h′)
14 then return CHECK(φ′, h′,∆)
15 else return false
16 case φ = ¬φ′ :
17 return not CHECK(φ′, h,∆)
18 case φ = φ1|φ2 :
19 return

∨
h1|h2=h CHECK(φ1, h1,∆) ∧ CHECK(φ2, h2,∆)

20 case φ = (φ′)∗ :
21 if h = 0

22 then return true
23 else return

∨
h1|h2=h,h1 6=0 CHECK(φ′, h1,∆) ∧ CHECK(φ, h2,∆)

24 case φ = φ1 ∨ φ2 :
25 return CHECK(φ1, h,∆) ∨ CHECK(φ2, h,∆)
26 case φ = µξ.φ′ :
27 if ∆(ξ) is undefined
28 then CHECK(φ[ξ 7→ µξ.φ′], h,∆[ξ 7→ h])
29 else if h = ∆(ξ)
30 then return false
31 else CHECK(φ[ξ 7→ µξ.φ′], h,∆[ξ 7→ h])

Theorem 6.4.1 Model-checking of TQL formulas can be done in time O(‖φ‖2‖h‖5).

Proof. Correctness of CHECK has already been proved in (Bon06) in the con-
text of unordered trees, which is very similar to ordered trees, wrt to the model-
checking problem. For the time complexity, if one uses memoization, then
there are at most F.N.D recursive calls, where F is the number of subformulas
(F = ‖φ‖), N is the number of subhedges of h (N = O(‖h‖2)), and D is the
number of tables (D = O(F.N) = O(‖φ‖‖h‖2)). Each recursive call costs at
most O(‖h‖) instructions. The overall complexity is then O(‖φ‖2‖h‖5).

In practice, we suggest the following optimizations:

140 Chapter 6. Tree Query Logic

• modulo a linear time preprocessing, equality tests between hedges (at lines
9 and 29) can be done in a time bounded by the length of the hedge. It
suffices to associate identifiers with nodes, such that two nodes have the
same identifier if their respective subtrees are equal. This can be done by
a bottom-up pass on the hedge. For each subtree of the form f(t1, t2), if
the identifiers of the roots of t1 and t2 have been computed (we call them
n1 and n2), then we can compute the identifier of the root of f(t1, t2). We
introduce a new identifier depending on whether f(t1, t2) have already been
met somewhere else in the hedge or not. This can be verified by using a
global hash table which associates with triples (f, n1, n2) their identifier n.
Therefore, if the binding (f, n1, n2) 7→ n is already in the hash table, then
the current subtree f(t1, t2) is identified by n, otherwise we add the new
binding (f, n1, n2) 7→ n to the hashtable, for some fresh n, and identify
f(t1, t2) by n. Finally, to check equality of two hedges, it suffices to check
the equality of their respective sequences of root identifiers.

• given a formula φ|φ′ and a hedge h, instead of testing each pair (h′, h′′) such
that h′|h′′ = h, it would be interesting to lower the number of pairs (h′, h′′)
that have to be tested. This can be done for example by a preprocessing de-
tecting that φ is always satisfied by hedges of constant length. For example,
given a formula φ, it is possible to compute in linear time, for each sub-
formulas φ′, an interval inter(φ′) = [n,m], where n,m ∈ N ∪ {+∞},
meaning that models of φ′ are hedges of length at least n and at most
m. For example, if inter(φ1) = [n,m], inter(φ2) = [n′,m′], then
inter(φ1 ∨ φ2) = [min(n, n′),max(m,m′)].

Query evaluation The model-checking algorithm can be extended to a query
evaluation algorithm: it suffices to process the formula recursively, and to map any
subformula into a term of a relational algebra which will be evaluated in a second
step with particular optimizations. This idea has been developed in (CFG02), for
unordered trees and the full TQL logic including universal quantification over trees
and labels. Several optimizations for the evaluation of the algebra are proposed.
This algorithm can easily be adapted to ordered trees. The main difference is
the interpretation of |, which in unordered trees corresponds to union of sets of
children. The complexity however is not polynomial in the size of the output,
since there is no restriction on the use of variables and negations. It might possible
to restrict the use of tree variables, similarly to the composition language (see the
first part of this thesis, in particular Section 3.2.2) to get a polynomial-time query
evaluation algorithm. However, it is not our goal here and we next focus on the
satisfiability problem.

6.5 TQL FRAGMENTS AND SATISFIABILITY

The satisfiability problem for TQL formulas is: given a recursion-closed formula
φ, is there an assignment ρ of the tree variables of φ such that JφKρ 6= ∅? This
section goes towards a fragment of TQL with tree variables for which satisfiability
is decidable. In particular, a decidable expressive fragment is defined, where tree
variables which are below an odd number of negations have to occur in a bounded
manner. Decidability is proved by embedding formulas into vertically bounded

6.5. TQL Fragments and Satisfiability 141

unranked TAGEDs. In the rest of the Chapter, when we speak about TAGEDs, it is
always assumed to be in their unranked settings over the infinite alphabet Λ.

6.5.1 Undecidable Fragments

It is easy to prove that TQL sentences can describe sets of hedges that are not
MSO-definable; for instance, the TQL sentence µξ.(a[0]|ξ|b[0] ∨ 0) describes a
“flat” hedge of the form (a(0)nb(0)n) for n ∈ N. This super expressive power has
a cost:

Theorem 6.5.1 Satisfiability for TQL sentences is undecidable.

Proof. In Section 6.3, we saw how to translate an extended DTD into a TQL for-
mula. Very similarly, one can translate a context-free grammar into an equivalent
TQL formula. Using conjunction, it is therefore possible to reduce the emptiness
problem of the intersection of two context-free grammars, which is known to be
undecidable (see, for example, (SIP96)).

Adding quantification As in (CG04), one could also consider quantification
over tree variables ∃X and ∀X with the following semantics:

J∃X.φKρ,δ =
⋃

t∈Tunr(Λ)

JφKρ[X→t],δ J∀X.φKρ,δ =
⋂

t∈Tunr(Λ)

JφKρ[X→t],δ

The satisfiability problem for formulas with free variables X1, . . . , Xn is equiva-
lent to the one of closed formulas of the form ∃X1 . . .∃Xnφwhere φ is a recursion-
closed TQL formula.
For more complicated alternation of quantifiers, one can easily adapt the proof
from (CT01) about the undecidability of the fragment of TQL without Kleene star,
recursion and tree variable but with quantification over labels to prove that

Theorem 6.5.2 Satisfiability for recursion-closed TQL formulas with quantification is undecidable
(this holds even for recursion-free formulas).

6.5.2 The Bounded Fragment

We consider a strict but powerful fragment of guarded TQL formulas which allow
one to use tree variables. Informally, in bounded TQL formulas, variables can
occur in recursion only in a restricted manner: intuitively a formula is bounded if
there exists a bound on the number of disequality tests performed on a root-to-leaf
path to (non-deterministically) verify that a hedge is a model of the formula. Before
defining bounded TQL formulas formally, let us give some intuitive examples. The
formula:

φ1 = a[X] | µξ.(a[¬X ∧ ξ] ∨ 0)

is not bounded since in order to check that a hedge h belongs to Jφ1K
ρ, for some as-

signment ρ : X 7→ t, one has to check that h is of the form a(t)|a(a(a(. . . a(0)))),
and that t is different from each subtree of the right tree of h. This latter verification
requires as many disequality tests as the height of a(a(a(. . . a(0)))).
However, the following formula is bounded:

φ2 = a[X] | µξ.(a[¬X] | ξ ∨ 0)

142 Chapter 6. Tree Query Logic

since at most one disequality test per root-to-leaf path has to be done.
The notion of disequality test is related to the notion of negative occurrences of
tree variables. We say that a tree variable occurs negatively (resp. positively) in a
formula φ if it occurs under an odd number (resp. even number) of negations. Sim-
ilarly, we can define positive or negative occurrences of connectives ∧,∨, |. Let φ
be a recursion-closed TQL formula. The number of vertical variable occurrences
of ψ ∈ Sub(φ), denoted Vertφ(ψ), is intuitively the maximal number of times a
negative occurrence of variables can occur along the same root-to-leaf path, when
checking (non-deterministically) that a hedge is a model of φ. Formally, consider
the system Sφ of recursive equations over the semiring (N∪{+∞},max,+, 0, 1)
and variables Zψ, for all ψ ∈ FL(φ):

Z0 = 0 Z⊤ = 0 Zα[ψ] = Zψ Zψ∗ = Zψ Z¬ψ = Zψ
Zµξ.ψ = Zψ[ξ 7→µξ.ψ] Zψ1|ψ2

= max (Zψ1
, Zψ2

)

ZX =

{
1 if X occurs negatively in φ
0 otherwise

Zψ1∨ψ2
=

{
max (Zψ1

, Zψ2
) if ∨ occurs positively in φ

Zψ1
+ Zψ2

otherwise

Zψ1∧ψ2
=

{
max (Zψ1

, Zψ2
) if ∧ occurs negatively in φ

Zψ1
+ Zψ2

otherwise

Since FL(φ) is finite, Sφ is also finite, and there are at most ‖φ‖ equations.
The mapping Vertφ : FL(φ) → N ∪ {+∞} is defined as the least solu-
tion of Sφ. It exists since the operations are monotonic over the complete lat-
tice (N ∪ {+∞},max,+, 0, 1). We let Vert(φ) = Vertφ(φ). For instance,
Vertφ1

(φ1) = +∞, Vertφ1
(a[X]) = 0, and Vertφ2

(φ2) = 1.

Definition 2 (Bounded Formulas). Let k ∈ N. A TQL formula φ is k-bounded if
all the following conditions hold:

1. it is guarded

2. | and the Kleene star do not occur under an odd number of negations

3. Vert(φ) ≤ k.

It is bounded if it is k-bounded for some k ∈ N. The set of bounded TQL formulas
is denoted TQLb.

Proposition 6.5.3 For all TQL formulas φ, it can be decided in O(‖φ‖) if φ is bounded. Moreover, if
it is bounded, then it is 2‖φ‖+1-bounded.

Proof. The first two conditions of the definition of bounded formulas can be
checked in O(‖φ‖). For the third condition, it is known that a system S of equa-
tions on the semiring (N ∪ {+∞},max,+, 0, 1) can be solved in O(‖S‖), where
‖S‖ is the sum of the sizes of the equations (Sei96). The size of an equation is
the size of the term representing the rhs of the equation plus 1 (for the lhs). In
our case, there are |FL(φ)| equations of size 4 at most. We can conclude, since
|FL(φ)| ≤ ‖φ‖.
The upper bound is obtained by associating with the system Sφ a tree automa-
ton with costs (FTAC). Every transition of an FTAC is associated with a cost
function, which typically is a polynomial over some semiring. The variables

6.5. TQL Fragments and Satisfiability 143

of the polynomial are intended to be substituted by the costs of some compu-
tations on the respective subtrees of the current node. More precisely, if the
FTAC runs on binary trees, then each rule δ is associated with a polynomial
Pδ(x1, x2) with two variables. The cost C(q(r1, r2)) of a run q(r1, r2) such that
rootr1 is labeled q1 and rootr2 is labeled q2 for some state q1, q2 is defined by
maxf(q1,q2)∈∆Pf(q1,q2)(C(r1), C(r2)). The cost of a tree automaton is the maxi-
mal cost of a run. Seidl gives tight upper bounds for the cost of a tree automaton
(when finite) for several semiring (Sei92), like for instance the arctical semiring
(N ∪ {−∞},max,+, 0, 1). It is technical but not difficult to associate with the
system Sφ a tree automaton with |FL(φ)| states, whose cost is lesser than Vert(φ).
Finally the upper-bound given in Theorem 3 of (Sei92) applies.

Section 6.6 is devoted to the proof of the following theorem:

Theorem 6.5.4 For all bounded recursion-closed TQL formulas φ, there is a vbTAGED Aφ such

that ‖Aφ‖ = 2O(‖φ‖2) and L(Aφ,Vert(φ)) 6= ∅ iff φ is satisfiable. Moreover, Aφ
is computable in time 2O(‖φ‖2).

As a corollary of Theorem 6.5.4, Theorem 5.7.3 and Proposition 6.5.3:

Theorem 6.5.5 Satisfiability of bounded TQL formulas is decidable in 3NEXPTIME. It is in EXP-
TIME for bounded sentences.

The EXPTIME upper bound when considering bounded sentences comes from
the fact that the TAGED equivalent to the formula does not perform any test. In
particular, it is a classical tree automaton (whose size is exponential) for which
emptiness is decidable in linear time. The positive fragment of TQLb is the set of
TQLb formulas in which there are no negative occurrences of tree variables. The
bound does not really matter here as such formulas are always bounded by 0.

Theorem 6.5.6 Satisfiability of bounded positive TQL formulas is decidable in 2EXPTIME.

Proof. This is because the construction of the proof of Theorem 6.5.4 produces a
positive TAGED of exponential size, whose emptiness is known to be decidable in
EXPTIME by Theorem 5.4.1.

6.5.3 Discussion on Expressiveness

The converse of Theorem 6.5.4 is not true in general. For instance, the set of trees
of the form f(t1, t2, . . . , tn, t

′
1, . . . , t

′
m), n,m ∈ N, where for all i ∈ {1, . . . , n}

and j ∈ {1, . . . ,m}, ti 6= t′j is recognizable by a vbTAGED but not definable by
a TQL formula. This is because TQL allows to test disequalities between trees
by the use of a variable X and its negated form ¬X . Hence a TQL formula can
test disequalities only between a tree and all trees of a set of subtrees, while a
vbTAGED can test whether two sets of subtrees contain pairwise different subtrees.
We say that a vbTAGEDA is weak if for all states q, q′ ∈ Q, if q 6=A q

′, then either
q ∈ dom(=A) or q′ ∈ dom(=A). Actually, existentially quantified bounded TQL
formulas are equally expressive as weak vbTAGEDs.
We already saw (Proposition 6.3.1) that guarded TQL sentences that use only dis-
junction, composition, recursion, and Kleene star can define recognizable hedge
languages over a finite alphabet. These formulas form a strict fragment of bounded
sentences. Moreover, the construction of Section 6.6 produces a TAGED without

144 Chapter 6. Tree Query Logic

tests if the input formula is a sentence. This makes bounded sentences equally
expressive as hedge automata. Actually, we prove in (FTT07) that guarded TQL
sentences are equally expressive as hedge automata1. This means that the condi-
tion 2 of the definition of bounded formulas can be removed for sentences, without
extra expressiveness. However, there is a price to pay, as satisfiability becomes
non-elementary in time complexity. This is because the problem of testing whether
two regular expressions e and e′ built over negation, Kleene star, intersection and
the letter a and b, denote different word languages is non-elementary in time com-
plexity (SM73b). This problem can easily be encoded as the satisfiability problem
of a guarded TQL sentence, because negation, intersection, and Kleene star are
native in TQL. However, we let as a future work the problem to know whether the
second condition of the definition of bounded formulas can be removed without
extra expressive power for arbitrary guarded formulas (with variables). We con-
jecture that it is true, but for the same reasons as before, the price to pay would be
a non-elementary gap in time complexity, wrt the satisfiability problem.

6.6 BOUNDED TQL FORMULAS TO VBTAGEDS

This section shows how to construct, from a bounded formula φ, a vertically
bounded (unranked) TAGED AΦ such that L(AΦ) = ∅ iff φ is satisfiable. The
two main difficulties are to manage variables, which induce non-determinism in
the rules of the automaton, and the concatenation operator |. Usually, constructing
a tree automaton equivalent to a µ-calculus formula is done by defining an au-
tomaton whose runs mimic a recursive model-checking algorithm: states are sets
of subformulas, and any tree t evaluates to the set of subformulas satisfied by t
(BL05). The final states are naturally the states which contain the input formula.
The information carried by the states is somehow maximal: it is known which
subformulas are or not satisfied by the tree. Hence the behavior of the automaton
is deterministic, and managing negations present in the logic becomes easy: for
all states q and all subformulas ¬φ, either φ or ¬φ is in q (but not both). With
TQL formulas however, the use of variables induces non-determinism in the au-
tomaton. For instance, consider the formula µξ.(a[ξ] ∨ X). The automaton has
to guess a position where a subtree is matched by X . The information carried by
states cannot be maximal, since it depends on the choice made by the automaton.
Dealing with negations is therefore non easy, but we use the syntactic restrictions
imposed by the fragment in order to eliminate negations (by pushing them down
to the leaves). This is done thanks to a new operator X̂ , which negates tree vari-
ables in the tree domain: X̂ = ¬X ∧ Λ[⊤]. States of the TAGED are subsets of
subformulas of the form α[φ], X or X̂ . Going to a state containingX or X̂ is done
non-deterministically, and intuitively means that the current subtree is matched by
X , or has to be disequal to the subtree matched by X elsewhere in the hedge.
A subtree which evaluates to a state containing α[φ] has to satisfy α[φ], under
some valuation of its tree and recursion variables. Consider now a singleton state
{α[φ]}. This state should be reachable thanks to a transition α(Lφ) → {α[φ]},
where Lφ is an horizontal language of states, such that any hedge which evaluates
to a word of Lφ satisfies φ. Defining Lφ is done by interpreting φ on regular word
languages of states. For instance, La[0]|⊤|a[0] is denoted by the regular expression

1This result is not proved in this thesis to avoid redundancy with the construction given in Section
6.6. Moreover, this thesis is more concerned with the ability of a logic to define n-ary queries, and
therefore with fragments with variables.

6.6. Bounded TQL Formulas to vbTAGEDs 145

{a[0]}.({Λ[⊤]})∗.{a[0]}, while L(α[0]∧α′[0])∗ is denoted by the regular expression
({α[0], α′[0]})∗. The next subsections formally define all these notions and some
full examples are given. The last subsection proves correctness of the construction.

6.6.1 Elimination of Negation

In a first step, we eliminate negations from bounded formulas by pushing them
down to the leaves of the formula, and by using the new operator X̂ . It is the
negation of X among the set of trees: X̂ = Λ[⊤] ∧ ¬X . Modulo some valuation
ρ, JX̂Kρ = Tunr(Λ)−ρ(X). Note that ¬X is equivalent to X̂ ∨ Λ[⊤]|Λ[⊤]|⊤ ∨ 0,
where the second member of the disjunction defines the set of hedges of length at
least 2. We denote by T̂QL the set of TQL formulas extended with atoms X̂ .
The notion of vertical variable occurrence can be extended naturally to formulas
with atoms X̂ . Hence we can define TQL6¬b the set of negation-free bounded T̂QL-

formulas. Formally, a TQL formula φ is a TQL 6¬b formula if it is bounded and is an
element of the language generated by the following grammar:

φ ::= 0 | ⊤ | α[φ] | φ|φ | X | X̂ | ξ | µξ.φ | φ∗ | φ ∨ φ | φ ∧ φ

Proposition 6.6.1 TQLb and TQL6¬b are equally expressive, modulo linear-time translations.

Proof. The back inclusion is obvious. It suffices to replace each occurrence of X̂
by Λ[⊤] ∧ ¬X .
The forth translation is done by applying the following rewriting rules on subfor-
mulas:

¬¬φ → φ
¬(φ1 ∨ φ2) → ¬φ1 ∧ ¬φ2

¬X → X̂ ∨ Λ[⊤]|Λ[⊤]|⊤ ∨ 0

¬0 → Λ[⊤]|⊤
¬⊤ → ∅[⊤]
¬µξ.φ → µξ.¬φ[ξ 7→ ¬ξ]
¬α[φ] → Λ[⊤]|Λ[⊤]|⊤ ∨ α[⊤] ∨ α[¬φ]

The translation is correct since it preserves the semantics and composition as well
as Kleene star occurs positively. In particular, the rule ¬µξ.φ → µξ.¬φ[ξ 7→ ¬ξ]
is correct since formulas are guarded. Proving correctness of these rules is standard
and already done in (Bon06).

6.6.2 Horizontal Languages

In this section, we define the sets of hedges generated by word languages over sets
of subformulas. This will be used to define the transitions of the vbTAGED.
Let S be a set of recursion-closed TQL formulas. Any word w over 2S together
with a valuation ρ of tree variables defines a set of hedges hedges(w, ρ) ⊆ H(Λ).
It is inductively defined as follows, for all s ⊆ S:

hedges(ǫ, ρ) = {0}
hedges(s.w, ρ) = {t|h | t ∈

⋂
φ∈sJφKρ ∩ Tunr(Λ), h ∈ hedges(w, ρ)}

146 Chapter 6. Tree Query Logic

More generally, a language W of words over 2S defines the set of hedges
hedges(W,ρ) =

⋃
w∈W hedges(w, ρ).

Given two words w = s1 . . . sn and w′ = s′1 . . . s
′
n over 2S , where n ∈ N, w ⊕ w′

denotes the word (s1 ∪ s
′
1) . . . (sn ∪ s

′
n). This operation is naturally extended to

word languages over 2S (where only words of equal lengths are combined).
Let φ be a recursion-closed TQL6¬b formula. We next show that the formula φ
defines the same language as a word over 2S , for some suitable set S. Let
Subext(φ) ⊆ FL(φ) be the set of unfolded subformulas of φ of the form α[ψ],
X or X̂ . For all ψ ∈ FL(φ), the horizontal language Hψ of ψ is a word language
over 2Subext(φ)∪{Λ[⊤]} inductively defined by:

Hψ|ψ′ = {w.w′ | w ∈ Hψ, w
′ ∈ Hψ′} Hψ∨ψ′ = Hψ ∪Hψ′

Hψ∧ψ′ = Hψ ⊕Hψ′ Hα[ψ] = {{α[ψ]}}

HX = {{Λ[⊤], X}} H bX
= {{Λ[⊤], X̂}}

H0 = {ǫ} H⊤ = ({Λ[⊤]})∗

Hµξ.ψ = Hψ[ξ 7→µξ.ψ] Hψ∗ = H∗ψ

The subformula Λ[⊤] in HX and H bX
is not necessary here but it is needed in the

next subsection to guarantee the existence of a run.
Since φ is recursion-closed, every formula of Subext(φ) is also recursion-closed.
The formula φ and the language Hφ are equivalent in the following sense:

Proposition 6.6.2 For all recursion-closed TQL6¬b formulas φ, all formulas ψ ∈ FL(φ), and all valu-
ations ρ of the tree variables of φ,

JψKρ = hedges(Hψ, ρ).

Proof. The proof is done by induction on unfolded subformulas, via the order ≺.

• h ∈ Jψ1|ψ2K
ρ. Equivalently, there are h1, h2 such that h = h1|h2,

h1 ∈ Jψ1K
ρ and h2 ∈ Jψ2K

ρ. Since h1 �H(Λ) h, rd(ψ1) ≤ rd(ψ1|ψ2), and
ψ1 is a strict subformula of ψ1|ψ2, we have (h1, ψ1) ≺ (h, ψ1|ψ2). Simi-
larly, (h2, ψ2) ≺ (h, ψ1|ψ2). Consequently, by induction hypothesis, h ∈
Jψ1|ψ2K

ρ is equivalent to h1 ∈ hedges(Hψ1
, ρ) and h2 ∈ hedges(Hψ2

, ρ).
By definition of Hψ1|ψ2

, it is finally equivalent to h ∈ hedges(Hψ1|ψ2
, ρ);

• h ∈ Jα[ψ]Kρ. By definition of hedges(.), since Hα[ψ] = {α[ψ]}, we have
h ∈ hedges(Hα[ψ],ρ, ρ). The converse holds also by a direct application of
the definition of hedges() and Hα[ψ];

• h ∈ Jµξ.ψKρ iff h ∈ Jψ[ξ 7→ µξ.ψ]Kρ. Since ψ is guarded, rd(ψ[ξ 7→
µξ.ψ]) < rd(µξ.ψ), therefore (h, ψ[ξ 7→ µξ.ψ]) ≺ (h, µξ.ψ). Con-
sequently, by induction hypothesis, h ∈ Jµξ.ψKρ is equivalent to h ∈
hedges(Hψ[ξ 7→µξ.ψ], ρ). By definition of Hψ[ξ 7→µξ.ψ], this is again equiv-
alent to h ∈ hedges(Hµξ.ψ, ρ);

• h ∈ Jψ1 ∧ ψ2K
ρ iff h ∈ Jψ1K

ρ and h ∈ Jψ2K
ρ iff (by induction) h ∈

hedges(Hψ1
, ρ) and h ∈ hedges(Hψ2

, ρ) iff (by definition of hedges()
and ⊕) iff h ∈ hedges(Hψ1

⊕Hψ2
, ρ) iff h ∈ hedges(Hψ1∧ψ2

, ρ);

• disjunction is proved similarly as conjunction;

6.6. Bounded TQL Formulas to vbTAGEDs 147

• h ∈ JXKρ iff h = ρ(X) iff (by definition of hedges()) h ∈
hedges({Λ[⊤], X}, ρ), i.e. h ∈ hedges(HX , ρ);

• other cases are obvious.

Moreover, the horizontal languages are definable by finite word automata of expo-
nential sizes:

Proposition 6.6.3 For all recursion-closed TQL6¬b formulas φ, all ψ ∈ FL(φ), Hψ is recognizable by
a finite word automata A over 2Subext(φ)∪{Λ[⊤]} such that: ‖A‖ = 2O(‖ψ‖), and A
is computable in time 2O(‖ψ‖).

Proof. Word automata AHψ are computed recursively with memoization to avoid
redundant operations. For instance,AHψ1∨ψ2

= AHψ1
∪AHψ2

, whereAHψ1
∪AHψ2

is a word automaton recognizing the union of the recognized languages of AHψ1

and AHψ2
respectively. All the needed operations on word automata are standard,

except for ⊕, next described.
Let Σ be a finite alphabet. Let A1 = (2Σ, Q1, F1, qi1 , δ1) and A2 =
(2Σ, Q2, F2, qi2 , δ2) be two finite word automata over 2Σ. Remind that for all
j ∈ {1, 2}, Qj is the set of states, Fj the set of final states, qij the initial
state, and δj ⊆ Qj × 2Σ × Qj the transition function. We define an automa-
ton A1 ⊕ A2 such that L(A1 ⊕ A2) = L(A1) ⊕ L(A2). We let A1 ⊕ A2 =
(2Σ, Q1×Q2, F1×F2, (qi1 , qi2), δ), where for all σ1, σ2 ⊆ Σ, all q1, p1 ∈ Q1 and
all q2, p2 ∈ Q2:

δ = {((q1, q2), σ1 ∪ σ2, (p1, p2)) | (q1, σ1, p1) ∈ δ1 and (q2, σ2, p2) ∈ δ2}

The automaton A1 ⊕ A2 has |Q1|.|Q2| states, and for each pair of transitions of
A1 and A2 respectively, we can create a transition of A1 ⊕ A2. Consequently,
A1⊕A2 has at most |∆1|.|∆2| transitions. Finally, ‖A1⊕A2‖ = O(‖A1‖.‖A2‖).
Moreover, A1 ⊕A2 is computable in time O(‖A1‖.‖A2‖).

6.6.3 Construction of the vbTAGED

Let φ be a recursion-closed TQL6¬b -formula with tree variables X1, . . . , Xn, which
is supposed to be fixed from now on. We now give the construction of a TAGED
Aφ = (Λ, Qφ, Fφ,∆φ,=Aφ , 6=Aφ) such that L(Aφ) = J∃X1 . . .∃XnφK. Although
vbTAGEDs are tree acceptors, and φ defines hedges, we can assume that the mod-
els of φ are trees, otherwise it suffices to add a virtual root # ∈ Λ, as #[φ] is
satisfiable iff φ is. We also assume that if φ is satisfiable on a tree t modulo some
assignment ρ, then ρ(Xi) is a subtree of t, for all i ∈ {1, . . . , n}. This can be done
by replacing φ by φ′ = #[φ|X1| . . . |Xn]. Indeed, φ is satisfiable iff φ′ is satisfi-
able, but if there is t, ρ such that t ∈ Jφ′Kρ, then ρ(Xi) is necessarily a subtree of
t, for all i ∈ {1, . . . , n}.
The TAGED Aφ is defined as follows:

Qφ = 2Subext(φ)∪{Λ[⊤]}

Fφ = {w ∈ Hφ | the length of w is 1} (necessarily w ∈ Qφ)
∆φ = {∩α[ψ]∈sα (

⊕
α[ψ]∈sHψ) → s | s ∈ Qφ and ∃α∃ψ, α[ψ] ∈ s}

=Aφ = {(s1, s2) ∈ Qφ ×Qφ | ∃X, X ∈ s1 ∩ s2}

6=Aφ = symmetric closure of {(s1, s2) ∈ Qφ ×Qφ | ∃X, X ∈ s1 and X̂ ∈ s2}

148 Chapter 6. Tree Query Logic

6.6.4 Examples

• Example with a variable: φ1 = X .

Subext(φ) = {X}
Qφ1

= { {X}, {Λ[⊤], X}, {Λ[⊤]}}
Fφ1

= {{X}}
H⊤ = ({Λ[⊤]})∗

∆φ1
= {Λ(H⊤) → {Λ[⊤]},

Λ(H⊤) → {Λ[⊤], X} }
=A = (Qφ1

− {Λ[⊤]})2

This example shows that adding the formula Λ[⊤] to the set of states is
needed to guarantee the existence of at least one run per tree. Without it
the produced automaton would be empty.

• Example with recursion: φ2 = µξ.(a[ξ] ∨ 0).

Subext(φ) = {a[φ2]}
Qφ2

= { {a[φ2]}, {Λ[⊤], a[φ2]}, {Λ[⊤]} }
Fφ2

= {{a[φ2]}}

Hφ2
= {{a[φ2]}, ǫ}

H⊤ = ({Λ[⊤]})∗

H⊤ ⊕Hφ2
= {{a[φ2],Λ[⊤]}, ǫ}

∆φ2
= {a(Hφ2

) → {a[φ2]},
Λ(H⊤) → {Λ[⊤]},
a(H⊤ ⊕Hφ2

) → {Λ[⊤], a[φ2]}

It is equivalent to the tree automaton (Λ, {q}, {q}, {a(q + ǫ) → q}).

• Example with intersection: φ3 = Λ[0] ∧ φ2.

Subext(φ) = {a[φ2], Λ[0]}

Qφ3
= 2{a[φ2], Λ[0], Λ[⊤]}

HΛ[0] = {{Λ[0]}}
H0 = H0 ⊕Hφ2

= H⊤ ⊕H0 ⊕Hφ2
= H0 ⊕H⊤ = {ǫ}

Hφ3
= HΛ[0] ⊕Hφ2

= {{Λ[0], a[φ2]}}

∆φ3
= ∆φ2

∪ {
Λ(H0) → {Λ[0]}
Λ(H0 ⊕H⊤) → {Λ[0],Λ[⊤]}
a(H⊤ ⊕H0 ⊕Hφ2

) → {Λ[⊤],Λ[0], a[φ2]}
a(H0 ⊕Hφ2

) → {Λ[0], a[φ2]}
}

It is equivalent to the tree automaton (Λ, {q}, {q}, {a(ǫ) → q}).

6.6. Bounded TQL Formulas to vbTAGEDs 149

6.6.5 Proof of Correctness

In this section we prove correctness of the construction of the TAGED Aφ associ-
ated with φ.
Let ρ be a valuation of tree variables, p a word over Qφ, and h a hedge whose
length is equal to the length of p. A run r of Aφ on h is a (p, ρ)-run if the word
formed by the labels of the roots (in order) of r is p, and, for all nodes u ∈ Dom(h),
and all tree variables X , if X ∈ labr(u), then ρ(X) = h|u, and if X̂ ∈ labr(u),
then ρ(X) 6= h|u.
A run is bounded by some k ∈ N if there are no more than k nodes ordered by
≺rch+ whose labels contain a negated variable of the form X̂ .
Finally, we extend the operation ⊕ to edge-isomorphic runs. In particular, r ⊕ r′

is obtained by taking the union of the respective labels of r and r′ at isomorphic
positions, where r and r′ are edge-isomorphic runs. We first prove a result which
states that the overlapping of two runs is still a run.

Lemma 6.6.4 Let h ∈ H(Λ), p, p′ two words overQφ, and ρ a valuation. Let r be a (p, ρ)-run of
Aφ on h, and r′ a (p′, ρ)-run of Aφ on h.
Then r ⊕ r′ is a (p ⊕ p′, ρ)-run of Aφ on h. Moreover, if r and r′ are bounded by
k and k′ respectively, then r ⊕ r′ is bounded by k + k′.

Proof. Let p, q ∈ Qφ be two states. They define the transitions αp(Lp) → p ∈ ∆φ

and αq(Lq) → q ∈ ∆φ, where:

αp =
⋂
α[ψ]∈p α αq =

⋂
β[ψ]∈q β

Lp =
⊕

α[ψ]∈pHψ Lp =
⊕

β[ψ]∈qHψ

The result follows since αp ∩ αq(Lp ⊕ Lq) → p ∪ q is also a transition of ∆φ.
Indeed, p ∪ q ∈ Qφ defines the transition αp∪q(Lp∪q) → p ∪ q ∈ ∆φ where:

αp∪q =
⋂
γ[ψ]∈p∪q γ Lp∪q =

⊕
γ[ψ]∈p∪qHψ

Moreover αp∪q = αp ∩ αq, and Lp∪q = Lp ⊕ Lq.
Finally, the bound is k + k′ because every union of a state from dom(6=Aφ) with
any other state is still a state of dom(6=Aφ), by definition of 6=Aφ .

Lemma 6.6.5 Let k ∈ N, ψ ∈ FL(φ) a k-bounded formula, h ∈ H(Λ), and ρ a valuation of the
tree variables of φ.
If h ∈ JψKρ, there exists a Vertφ(ψ)-bounded (p, ρ)-run r of Aφ on h, for some
word of states p ∈ Hψ.

Proof. The proof is by induction on pairs of hedges and formulas, ordered by ≺:

• ψ = ψ1 ∧ ψ2. By induction hypothesis, there are a (p1, ρ)-run r1 on h
bounded by Vertφ(ψ1) and a (p2, ρ)-run r2 on h bounded by Vertφ(ψ2), for
some p1 ∈ Hψ1

and p2 ∈ Hψ2
. By Lemma 6.6.4, r1⊕r2 is a (p1⊕p2, ρ)-run

on h, bounded by Vertφ(ψ1) + Vertφ(ψ2), ie Vertφ(ψ);

• ψ = ψ1 ∨ ψ2. Suppose that h1 ∈ Jψ1K
ρ. By induction hypothesis, there

is a (p1, ρ)-run r1 on h bounded by Vertφ(ψ1). We can conclude since by
definition of Hψ, p1 ∈ Hψ, and Vertφ(ψ1) ≤ Vertφ(ψ);

150 Chapter 6. Tree Query Logic

• ψ = α[ψ′]. Necessarily, h = a(h′), for some a ∈ α and h′ ∈ H(Λ). By
induction hypothesis, there is a (p′, ρ)-run r′ on h′ bounded by Vertφ(ψ′),
for some p′ ∈ Hψ′ . Since α(Hψ′) → {α[ψ′]} ∈ ∆ψ′ , we can extend r′ into
a (p, ρ)-run on h, bounded by Vertφ(ψ) = Vertφ(ψ′), where p = {α[ψ′]}.
Moreover, p ∈ Hψ since Hψ = {p};

• ψ = µξ.ψ′. Hence h ∈ Jψ′[ξ 7→ ψ]Kρ. By induction hypothesis, there is a
(p, ρ)-run r on h bounded by Vertφ(ψ′[ξ 7→ ψ]), for some p ∈ Hψ′[ξ 7→ψ].
Since Hψ′[ξ 7→ψ] = Hψ and Vertφ(µξ.ψ′) = Vertφ(ψ′[ξ 7→ ψ]), r is also a
(p, ρ)-run on h bounded by Vertφ(ψ) such that p ∈ Hψ;

• ψ = X . Necessarily h is a tree and has a root rooth. Since Λ(H⊤) →
{Λ[⊤]} ∈ ∆ and Λ(H⊤) → {Λ[⊤], X} ∈ ∆, there exists a run r on h such
that its root is labeled {Λ[⊤], X}, and all other nodes are labeled {Λ[⊤]}.
Moreover, {Λ[⊤], X} = HX and r is bounded by 0 = Vertφ(X);

• ψ = X̂ . This case is similar to the previous case except that the run r is
bounded by 1, ie Vertφ(X̂);

• ψ = ψ1|ψ2. There are two hedges h1, h2 such that h = h1|h2, h1 ∈ Jψ1K
ρ,

and h2 ∈ Jψ2K
ρ. By induction hypothesis, there are a (p1, ρ)-run r1 on h1

bounded by Vertφ(ψ1) and a (p2, ρ)-run r2 on h2 bounded by Vertφ(ψ2),
for some p1 ∈ Hψ1

, and p2 ∈ Hψ2
. Therefore, r1|r2 is a (p1.p2, ρ)-run

on h, bounded by max(Vertφ(ψ1),Vertφ(ψ2)), ie Vertφ(ψ). Moreover, by
definition of Hψ, p1.p2 ∈ Hψ;

• ψ = 0. In this case h = 0 and the empty run is a 0-bounded (ǫ, ρ)-run.
Moreover, ǫ ∈ Hψ;

• ψ = ⊤. This case is obvious since there always exists a run whose nodes are
all labeled by {Λ[⊤]}.

The converse also holds, as next shown. To deal with negated variables X̂ , we
introduce a new symbol † which satisfies, for all trees t ∈ Tunr(Λ), t 6= †. A
valuation ρ is said to be extended if it goes from tree variables to Tunr(Λ) ∪ {†}.
Let r be a p-run of Aφ on some hedge h which satisfies the constraints. We can
associate with r an extended valuation ρr as follows. It maps tree variables of
{X | ∃u ∈ Dom(r), X ∈ labr(u) or X̂ ∈ labr(u)} to Tunr(Λ) ∪ {†}. For all
X ∈ Xtree, and all nodes u ∈ Dom(r), if X ∈ labr(u), we let ρr(X) = h|u. If X̂
occurs in the label of some node of Dom(r), and X does not occur in any label of
r, we let ρr(X) = †. The valuation ρr is well-defined since r satisfies the equality
constraints.

Lemma 6.6.6 Let p ∈ Q∗φ be a word of states, and h ∈ H(Λ).
If there is a p-run of Aφ on h which satisfies the constraints, then h ∈
hedges(p, ρr).

Proof. The proof goes by induction on h.

• if h = 0, then necessarily p is empty, and h ∈ hedges(ǫ, ρr);

6.6. Bounded TQL Formulas to vbTAGEDs 151

• if h = t|h′, for some tree t and non-empty hedge h′. There are q, p′ and r1, r′

such that r = r1|r
′, p = q.p′, r1 is a q-run on t, r′ is a p′-run on h′, and both

runs satisfy the constraints. By induction hypothesis, t ∈ hedges(q, ρr1)
and h′ ∈ hedges(p′, ρr′).

We also have h′ ∈ hedges(p′, ρr). This is because r satisfies the disequal-
ity constraints, and, for all X that occurs in the label of some node of r′,
ρr(X) = ρr′(X). Similarly, we can prove that t ∈ hedges(q, ρr). Hence
t|h′ ∈ hedges(q.p′, ρr), ie h ∈ hedges(p, ρr);

• if h = a(h′), p is equal to some state q ∈ Qφ. Hence r = q(r′), for
some r′. Let s be the word of states formed by the sequence of roots of r′.
By definition of ∆φ, s ∈

⊕
α[ψ]∈qHψ, and a ∈

⋂
α[ψ]∈q α. By induction

hypothesis, h′ ∈ hedges(s, ρr′). Hence h′ ∈ hedges(
⊕

α[ψ]∈qHψ, ρr′),
which is equivalent to h′ ∈

⋂
α[ψ]∈qH(Hψ, ρr′), and by Proposition 6.6.2,

this is again equivalent to h′ ∈
⋂
α[ψ]∈qJψKρr′ . As r satisfies the disequal-

ity constraints, and for all X that occurs in the label of some node of r′,
ρr(X) = ρr′(X), we have JψKρr′ = JψKρr . Therefore h′ ∈

⋂
α[ψ]∈qJψKρr .

For all X , if X ∈ p, then ρr(X) = h. If X̂ ∈ p, then ρr(X) 6= h. Indeed,
if X does not occur in any label of r, δr(X) = †, and † 6= h by definition.
If X occurs in the label of some node u of r, then ρr(X) = h|u. Since r
satisfies the disequality constraints, necessarily h|u 6= h. Consequently, we
have:

a(h′) ∈
⋂

α[ψ]∈q

Jα[ψ]Kρr ∩
⋂

X∈q

JXKρr ∩
⋂

bX∈q

JX̂Kρr

By definition of hedges(q, ρr), this is equivalent to h ∈ hedges(q, ρr).

These two lemmata allow one to conclude that the construction is correct.

Theorem 6.6.7 (Correctness) Let X1, . . . , Xn be the tree variables of φ,

J∃X1 . . .∃XnφK = L(Aφ,Vert(φ))

Proof. Let t ∈ J∃X1 . . .∃XnφK. There is a valuation ρ such that t ∈ JφKρ. By
Lemma 6.6.5, there are a state q ∈ Hφ and a Vertφ(φ)-bounded (q, ρ)-run r of
Aφ on t. Since the run r is constrained to match the valuation ρ, r satisfies the
constraints. Moreover, by definition of Fφ, q ∈ Fφ. Hence t ∈ Aφ,Vert(φ)).
Conversely, let t ∈ L(Aφ,Vert(φ)). Since L(Aφ,Vert(φ)) ⊆ L(Aφ), t ∈ L(Aφ).
Hence there exist q ∈ Fφ and a q-run of Aφ on t. By Lemma 6.6.6, t ∈
hedges(q, ρr). Since q ∈ Hφ, t ∈ hedges(Hφ, ρr), and by Proposition 6.6.2,
t ∈ JφKρr . It remains to remove † from the range of ρr. This is done by replacing
it by a tree which is not a subtree of t. We get a valuation ρ such that t ∈ JφKρ, and
the range of ρ is a subset of Tunr(Λ). Finally, we have t ∈ J∃X1 . . .∃XnφK.

Complexity The number of states of Aφ is 2|FL(φ)|+1, that is less than 2‖φ‖+1.
Thanks to Proposition 6.6.3, the ‖φ‖ horizontal languages can be computed in time
‖φ‖.2O(‖φ‖), ie 2O(‖φ‖). Consider now a transition ∩α[ψ]∈sα (

⊕
α[ψ]∈sHψ) →

152 Chapter 6. Tree Query Logic

s of ∆φ. A word automaton recognizing
⊕

α[ψ]∈sHψ can be computed in time

2O(|s|.‖φ‖), and therefore in time 2O(‖φ‖2), since |s| ≤ ‖φ‖. Moreover, its size is
also in 2O(‖φ‖2). Finally, there are |Qφ| such transitions. The size ofAφ is therefore

|Qφ| + |Qφ|(2
O(‖φ‖2) + 2), ie 2O(‖φ‖2).

6.7 CONCLUSION

In this chapter, we have adapted the TQL logic of (CG04) to the context of un-
ranked ordered trees, which was mentioned as an open issue in (CG04, Gen06,
Bon06). The main features of TQL are tree variables, operations from the hedge
algebra (composition .|. and extension α[.]), recursion, and Boolean operations.
The presence of tree variables and the composition operator .|. makes TQL very
different from the µ-calculus. And indeed, translating bounded TQL formulas to
tree automata requires a novel automata construction. In particular, the resulting
automata is non-deterministic. To the best of our knowledge, similar constructions
that deal with temporal logics with variables do not exist in the literature.
Several questions remain however. As already mentioned in Section 6.5.3, we
conjecture that positive occurrences of .|. and Kleene star in bounded formulas is
not a needed condition and can be dropped without any extra expressive power.
More generally, decidability of the full guarded TQL fragment is still unknown.
This question is related to the emptiness of TAGEDs, which is still open.
It would be interesting to consider the (non)-inclusion problem of two TQL
queries. A TQL-query φ(X1, . . . , Xn) over variables X1, . . . , Xn is not included
in a TQL-query φ′(X1, . . . , Xn) if φ(X1, . . . , Xn) ∧ ¬φ

′(X1, . . . , Xn) is unsat-
isfiable. Unfortunately the decidable TQL fragments considered in this thesis are
not closed by negation. It would interesting to relax the use of negation to get
fragments closed by negation, or at least to consider fragments where satisfiability
of formulas of the form φ ∧ ¬φ′ is decidable. This would also allow one to decide
if a query is safe, meaning that it selects only trees which are subtrees of the input
tree.
Finally, TQL formulas can also be seen as a way to define languages of tree tuples.
For instance, a formula φ with n tree variables X1, . . . , Xn defines the tree tuple
language {(ρ(X1), . . . , ρ(Xn)) | ∃h∃ρ, h ∈ JφKρ}. In this setting, it would be in-
teresting to compare TQL to first-order logic on the domain of trees, where atomic
predicates are taken from some tree algebra (BL02).

7CONCLUSION

7.1 MAIN RESULTS

In this dissertation we studied two n-ary query languages in finite ordered unranked
trees through the questions of expressiveness, query evaluation and satisfiability.
The first part of the thesis was devoted to a mechanism to combine fixed arity
queries in order to define arbitrary arity queries. Polynomial-time query evaluation
as well as a reasonable expressiveness were the two pursued objectives. In Chapter
3, we introduced a composition language C(L) that allows one to combine binary
queries of a language L into queries of arbitrary arities. In a tree, the binary queries
define binary relations of nodes, which are used to navigate in the tree, and can be
composed thanks to the usual composition operation for binary relations. Variables
are used along the navigation to select node components of the output tuples. The
composition language is also closed by disjunction and conjunction. In particular,
conjunction is used to define a kind of “branching” in the navigation, ie the nav-
igation is split into several branches by which to select independent parts of the
output tuples. The branching structure of the query often mimics the branching
structure of the document. We defined a simple syntactic fragment Cnvs(L) of the
composition language, which can be evaluated in polynomial-time, both in the size
of the tree, the query and the set of answers. This fragment yields a navigational
variant of conjunctive queries over binary predicates with disjunction and a sim-
ple acyclicity notion. We proved that Cnvs(L) is as expressive as FO (resp. MSO)
with respect to n-queries, as soon as L is as expressive as FO (resp. MSO) with
respect to binary queries. In Chapter 4 we gave two instances of L that lead to two
FO-complete n-ary query languages: Conditional XPath with variables, and a frag-
ment of CoreXPath2.0. Both languages admit a polynomial-time query evaluation
algorithm.

The second part of the thesis was concerned by the satisfiability of another n-ary
query language, the TQL logic, adapted from (CG04) to the ordered tree context
(Chapter 6). While variables of C(L) select nodes, variables of TQL are used to
select subtrees of the input tree. By repeating a variable, or by using negations
of variables, they can also be used to test subtree equalities, or disequalities. This
ability makes TQL strictly more expressive than MSO, and indeed, TQL is unde-
cidable. We defined a powerful decidable fragment of TQL, called the bounded
fragment. The restriction is that only a bounded number of tree disequalities can
be done along a root-to-leave paths. There is no restriction on tree equalities. Con-
sidering the satisfiability problem drives us to the definition of a new class of tree
automata, called TAGEDs (Chapter 5). TAGEDs allow one to test tree equalities
or disequalities between subtrees that might be arbitrarily faraway, in contrast to
the classical models of automata with constraints. Testing emptiness of a powerful

153

154 Chapter 7. Conclusion

TAGED subclass was proved to be decidable. In this class, only a bounded number
of tree disequalities along a root-to-leaves path are allowed, but there is no restric-
tion on tree equalities. We gave an exponential time reduction of the satisfiability
of the bounded TQL fragment into emptiness of bounded TAGEDs, making the
bounded TQL fragment decidable.

7.2 PERSPECTIVES

Several specific perspectives have already been given along the dissertation: in
Section 3.6 for the composition language, in Section 5.8 for TAGEDs, and in
Section 6.7 for TQL. We recall some of the main perspectives and address some
other problems.

Efficient query evaluation algorithms for fragments of the composition language
still have to be investigated. Indeed, the query evaluation of Cnvs(L) is quadratic in
the size of the input tree. On large trees it may be intractable. A linear complexity
in the size of the tree would be more reasonable. To tackle this problem, one should
consider tree patterns, or equivalently, composition formulas over descendant and
child axis, label tests, and satisfying the non-variable sharing restriction. Those
queries can be represented as trees where edges are labeled by descendant or child
axis, and node are labeled by tags and/or variables. Even though tree patterns
are not as expressive as FO, their expressiveness is sufficient in many practical
cases. There are many existing methods to answer tree patterns (BKS02, JWLY03,
Che06, ZXM07), but they are either not optimal or they assume that every node
of the tree patterns are part of the output, ie are labeled by some variable. To the
best of our knowledge, there is no existing method for tree patterns whose time
complexity is linear both in the size of the tree and the size of the output (the set
of answers), and polynomial in the size of the query. It would be interesting to
know if a query evaluation algorithm matching this complexity exists, otherwise a
negative result should be proved.
Gottlob, Koch and Schulz (GKS04) establish a tractability frontier for the model-
checking problem of conjunctive queries over XPath axis. It would be interesting
to see whether the same frontier is still valid for the query evaluation problem.
Many applications are distributed and XML data exchange is usually done via a
network. Moreover, XML documents can be very large so that only a fragment of
them should be kept in memory. This strengthens the need to have query evalua-
tion algorithms that work with XML data streams. The input XML document is
therefore given by a data stream, and the output should also be returned as a data
stream. Each answer to a query should be produced as soon as possible. Stream-
ing evaluation algorithms of XPath fragments (for unary queries) are investigated
in (BJ07, Olt07). More general n-ary queries by tree automata are considered in
(GCNT08, BS04b). However, nothing is known about the streaming evaluation
of logical formalisms for n-ary queries. Therefore, evaluation of fragments of
the composition language, such as tree patterns, should also be investigated in the
streaming perspective.
Answer enumeration algorithms for n-ary queries produce an output stream con-
taining all the answers. The whole input tree however is considered to be in
memory. Answer enumeration algorithms consists of two phases, the prepro-
cessing and the enumeration. Obviously, any query evaluation algorithm can be
transformed into an answer enumeration algorithm, it suffices to compute all the

7.2. Perspectives 155

answers and to output them one by one. Therefore, constraints are imposed on the
time complexity of the preprocessing, as well as on the delay between the enumer-
ation of two consecutive answers. Different classes of time complexity constraints
yield a wide range of enumeration algorithms. For instance, it is known that n-ary
queries by a tree automata A on a tree t can be enumerated with a preprocessing
in time O(‖A‖3‖t‖) and a delay O(n) between two consecutive answers (Bag06).
Answer enumeration algorithms for fragments of acyclic conjunctive queries are
also given in (BDG07). Fragments of the composition language should also be
investigated under the answer enumeration perspective.

Several fundamental questions arise from the composition method used in Section
3.5 to prove expressiveness results on the composition language. In particular,
given a signature σ, and an operation f on σ-structures, is it possible to give
sufficient or necessary conditions on f for a composition lemma to hold. In other
words, in which conditions (not necessarily decidable) the FO or MSO-type of
a σ-structure f(M1,M2, . . . ,Mn) is determined by the FO and MSO-types of
the σ-structures Mi? This question seems to be related to Courcelle’s MSO-
transductions (Cou94), since they are used to logically define decompositions of
graphs of bounded clique or tree-width.

Concerning TAGEDs, we already mentioned that deciding whether the language
recognized by a TAGED is regular would imply decidability of a non-trivial frag-
ment of the homomorphism problem1. More generally, which class of transducers
preserves TAGED-recognizability? Connections between TAGEDs and unification
problems should also be investigated because TAGEDs are well-suited to represent
ground instances of (non-linear) terms with regular membership constraints. A
first attempt has already been done in (FTT08), but TAGEDs are only used to
decide existence of a solution of a unification problem. They could be used to
finitely represent the set of solutions.

XML access control policies (ACPs) aim at defining rules to assign privileges to
users at some node of an XML document (DdVPS00, DdVPS02, DFGM08). Sev-
eral ACP models have been proposed. In (DdVPS00) for instance, the follow-
ing rule (direction, /child::job/child::candidate/child::decision, write, allow) gives
write privileges to the user group “direction” for subparts that can be accessed by
the XPath expression /child::job/child::candidate/child::decision. There are two
main approaches to XML queries: either generate a view of the document thanks
to the ACP and query the view, or rewrite the query so that it conforms to the ACP.
Although only unary queries have been considered, we think that n-ary queries are
an interesting issue in this context.
Still about ACPs, the typechecking problem in presence of ACPs is of practical
relevance. Consider a document transformation T , from a class of documents
constrained by an ACP Pin into a class of documents constrained by an ACP Pout.
It might be the case that the transformation of a document d into T (d) may cause
an information which was private in d (according to Pin) to be public in T (d)
(according to Pout). One may want to verify that such a situation cannot happen.
This asks two questions: how to express access constraints between the input and
the output, and how to decide them? Since it may be useful to check equalities
of whole subtrees between the input tree and the output tree, one way to tackle

1Given a homomorphism h and a regular tree language L, is h(L) also regular?

156 Chapter 7. Conclusion

the problem is to consider TAGED-definable transformations. A transformation
T is defined by a TAGED A if the language of trees of the form #(t, T (t))
for a fresh symbol # is equal to L(A). The policy, the transformation, and the
access constraints should be compiled into the TAGED-definable transformation.
In this context, it might be interesting to consider extensions of TAGEDs with
more general constraints instead of just tree equality or disequality, for instance
recognizable binary tree relations (CDG∗07).

Several papers consider first-order logic over the infinite structure whose do-
main is the set of all trees and predicates are operations on a tree algebra
(BLSS01, BLN07). In would be interesting to study variants of TQL where tree
operations are chosen in those papers and to see what would be the complexity of
the satisfiability problem, as well as the expressive power of these variants.

8RÉSUMÉ

8.1 MOTIVATIONS ET OBJECTIFS

Les langages de requêtes pour les bases de données ont été très étudiés par la com-
munauté base de données. Dans le contexte du Web cependant, les données ont
tendance à être structurées de manière arborescente, comme en témoigne la popu-
larité grandissante des langages à balises comme HTML et XML (BPSM∗06). Les
systèmes de base de données relationnelles ne sont pas bien adaptés aux données
arborescentes. Par conséquent, avec le développement des applications du Web,
le besoin d’avoir des outils spécifiques aux données arborescentes s’est consid-
érablement accru. En particulier, la capacité de faire des requêtes dans les données
XML est devenu crucial depuis qu’XML s’est imposé comme un standard pour
l’échange de données et le stockage d’information. Cela a donc renforcé le besoin
d’avoir des langages de requêtes conçus spécifiquement pour les données XML.
Les documents XML sont naturellement modélisés par des arbres, une des struc-
tures les plus utilisées et les plus étudiées en science informatique: l’algorithmique,
la logique, et la théorie des langages constituent quelques exemples de grandes dis-
ciplines de l’informatique ayant abordé les structures d’arbres. Néanmoins, les ap-
plications liées à XML posent de nouvelles questions qui nécessitent un va-et-vient
constant entre théorie et pratique.
Les documents XML sont semi-structurés: la structure et les données ne sont pas
séparées. Cela fait d’XML un format très flexible qui facilite l’échange de don-
nées provenant de différentes applications ou systèmes de bases de données. La
Figure 8.1 donne deux exemples de documents XML. Le premier représente un
bon de commande, avec l’adresse de livraison et l’adresse de facturation, ainsi que
la liste des produits commandés. Le second document représente l’ordre de livrai-
son lié au bon de commande. Les documents XML sont structurés par des balises
ouvrantes et fermantes, qui doivent être bien balancées, par exemple la balise ou-
vrante <ville> et la fermante </ville>. Entre une balise ouvrante et sa balise
fermante respective, il est possible d’inclure des données non-structurées (texte
brut), ou récursivement d’autres sous-parties XML. Les balises ouvrantes peuvent
contenir des attributs, c’est-à-dire des paires (nom,valeur), comme représenté sur
la figure.
Les documents XML peuvent naturellement être représentés par des arbres. Les
représentations arborescentes respectives du bon de commande et de l’ordre de
livraison sont données par la Figure 8.2. Chaque noeud est étiqueté par un symbole
et peut avoir un nombre arbitraire d’enfants, naturellement ordonnés par l’ordre
séquentiel de leur apparition dans les documents XML. Les attributs sont représen-
tés par des branches additionnelles dont les étiquettes de noeuds sont précédées du
symbole @. Le modèle d’arbre sous-jacent aux documents XML est plus connu

157

158 Chapter 8. Résumé

sous le nom d’arbres ordonnés d’arité arbitraire et noeuds étiquetés, à la dif-
férence des arbres d’arité fixée qui ne peuvent avoir qu’un nombre fixé d’enfants
par noeud.

8.1. Motivations et Objectifs 159

<bonCommande date="2008-06-30">

<Livraison pays="FR">

<nom>Pierre Jouet</nom>

<rue>132, rue Lecomte</rue>

<ville>Lille</ville>

<cp>59000</cp>

</Livraison>

<ListeProduits>

<Produit ref="1548732">

<NomProduit>OCaml reference manual</NomProduit>

<Quantité>1</Quantité>

<Prix>31.50</Prix>

</Produit>

<Produit ref="3213575">

<NomProduit>MSO for all</NomProduit>

<Quantité>1</Quantité>

<Prix>23.5</Prix>

</Produit>

</ListeProduits>

<Facture pays="BE">

<nom>Guy Hecke</nom>

<rue>10, rue Haute</rue>

<ville>Brussels</ville>

<cp>1000</cp>

</Facture>

</bonCommande>

<ordreLivraison>

<adresse>

<nom>Pierre Jouet</nom>

<rue>132, rue Lecomte</rue>

<ville>Lille</ville>

<cp>59000</cp>

<pays>FR</pays>

</adresse>

<références>

<ref>1548732</ref>

<ref>3213575</ref>

</références>

</ordreLivraison>

Figure 8.1: Représentations XML d’un bon de commande et de son ordre de
livraison.

160 Chapter 8. Résumé

bonCommande

Livraison Facture

nom

Pierre Jouet

rue

132, rue Lecomte

ville

Lille

@pays

FR

nom

Guy Hecke

rue

10, rue Haute

ville

Brussels

cp

1000

@pays

BE

ListeProduits

Produit Produit

NomProduit Quantité Prix @ref NomProduit Quantité Prix @ref

OCaml reference manual 1 31.50 1548732 MSO for all 1 23.5 3213575

cp

59000

Pierre Jouet 132, rue Lecomte Lille 59000 FR 1548732 3213575

référencesnom rue ville cp pays

adresse

ordreLivraison

Figure 8.2: Représentations arborescentes des documents XML de la figure 8.1

8.1. Motivations et Objectifs 161

La structure et la syntaxe des documents XML peuvent être contraintes par des
langages de schémas, l’exemple le plus connue étant lesDocument Type Definition
(DTD). Par exemple, une DTD pourrait contraindre un ordre de livraison XML à
toujours commencer par une balise ordreLivraison, et à toujours contenir
une adresse apparaissant avant les références de produits, comme sur la Figure 8.1.
Maintenant, on suppose que le vendeur (celui qui a reçu le bon de commande)
doit ordonner à un livreur indépendant la livraison des produits listés sur le bon de
commande de la Figure 8.1. En supposant que l’application du livreur n’accepte
que des ordres de livraison d’un certain format XML, l’application du vendeur doit
donc d’abord transformer le bon de commande en un ordre de livraison compatible
avec celui du livreur. Cela peut être fait par exemple avec des transformations XML
basées sur des requêtes XML.
Faire une requête dans un arbre consiste à en extraire (ou sélectionner) des par-
ties pertinentes. Ces parties sélectionnées sont généralement des sous-arbres, sou-
vent représentés par leur noeud racine. Ainsi plus formellement, faire une re-
quête dans un arbre consiste à sélectionner des noeuds de cet arbre. Ce type
de requêtes est appelé requêtes à sélection de noeuds. Elles sont au coeur
de beaucoup d’applications XML, comme les transformations de documents
(MBPS05), l’extraction d’information dans le web (GK04), la programmation
XML (HP03b, BCF03a), et l’échange de données (AL08). Les requêtes unaires
sélectionnent des ensembles de noeuds, alors que les requêtes n-aires sélectionnent
des ensembles de n-uplets de noeuds. Considérons encore le bon de commande et
l’ordre de livraison de la Figure 8.2. La première étape d’une transformation du
bon de commande en ordre de livraison pourrait être d’extraire l’adresse ainsi que
les références de produits. Extraire l’adresse peut être fait avec la requête 5-aire
qui sélectionne le nom, la rue, la ville, le code postal et le pays. Les références de
produits sont sélectionnées avec une requête unaire. En deuxième étape, les sous-
parties de documents représentées par les (uplets de) noeuds sélectionnés peuvent
être recombinées pour reformer un document XML correspondant à un ordre de
livraison compatible avec le schéma du livreur.
Les formalismes d’arbres ont été étudiés depuis longtemps par les communautés
de la théorie des langages et de la théorie des modèles finis. La plupart d’entre
eux ont été introduits pour les arbres d’arité fixée, mais depuis le succès grandis-
sant d’XML, plusieurs formalismes ont été revisités ou proposés dans le contexte
des langages de requêtes pour les arbres d’arité arbitraire. Ces formalismes se di-
visent principalement en deux catégories, les formalismes déclaratifs (comme les
logiques d’arbres) et les formalismes procéduraux (comme les automates d’arbres).
Il existe des liens très forts entre ces deux catégories, les formalismes procéduraux
étant souvent utilisés comme modèles de calcul pour les formalismes déclaratifs.
Un des liens les plus connus est la correspondance entre la logique monadique du
second ordre (MSO) et les automates finis d’arbres (TW68). En particulier, toute
requête définie par une formule de MSO peut-être définie par un automate d’arbres
et réciproquement.
La plupart des formalismes de requêtes existants sont des formalismes pour re-
quêtes unaires et binaires (Lib06). A l’exception de quelques formalismes procé-
duraux pour requêtes n-aires (NV02, NPTT05), les formalismes logiques pour
requêtes n-aires n’ont été que très peu étudiés, alors qu’ils l’ont été pour les cas
unaire et binaire. De plus, ils constituent un sujet de recherche important pour
la communauté XML, comme mentionné dans (GKS04, Lib06, ABL07, Sch07).
Le principal objectif de cette thèse est de proposer et d’étudier des formalismes

162 Chapter 8. Résumé

logiques pour requêtes n-aires. Nous proposons en particulier deux langages de
requêtes n-aires. Le premier est un langage de composition de requêtes qui permet
d’étendre tout langage de requêtes unaires ou binaires en un langage de requêtes
n-aires. Concernant ce langage, le sous-objectif était d’obtenir un langage de com-
position avec une bonne expressivité, et la possibilité de répondre aux requêtes en
temps polynomial (dans le nombre de réponses et la taille de la requête). Le second
langage proposé est une adaptation aux arbres ordonnés de la logique TQL (Tree
Query Logic), introduite par Cardelli et Ghelli (CG04) pour les arbres non ordon-
nés. L’objectif principal était de définir un fragment décidable expressif de TQL
permettant de définir des requêtes n-aires, car la logique TQL complète est indé-
cidable (pour le problème de satisfiabilité). Les deux langages proposés possèdent
des variables qui permettent de sélectionner les composantes des uplets réponses à
la requête.

8.2 DESCRIPTION DE LA THÈSE

La thèse se divisent en deux parties indépendantes portant sur les deux langages de
requêtes n-aires proposés.

8.2.1 Langage de Composition

Le standard du W3C XPath (BBC∗07) est un langage navigationnel pour XML qui
permet de sélectionner des ensembles noeuds d’un arbre en se déplaçant dans cet
arbre grâce à des expressions de chemins. Par exemple, l’expression de chemin

/child :: Facture/child :: nom/child :: ∗

sélectionne dans le premier arbre de la Figure 8.2 le noeud étiqueté par le nom
de la personne à qui doit être envoyée la facture. Le symbole ’/’ est un opéra-
teur de composition d’expression de chemins. Cette requête XPath est interprétée
comme suit: on part de la racine de l’arbre, on descend à un noeud enfant éti-
queté par Facture, et finallement on accède à l’enfant étiqueté par le nom de la
personne (l’étoile signifie que n’importe quelle étiquette est acceptée). XPath est
utilisé comme langage de sélection de noeuds dans plusieurs autres standards du
W3C dédié au traitement de documents XML, comme par exemple le langage de
requêtes très haut niveau XQuery (BCF∗07), le langage de transformation XSLT
(Cla99), le langage de schémas XML Schema (FW04), ou le langage d’adressage
XPointer (DMJ01). L’essentiel du coeur navigationnel de XPath (sans sucre syn-
taxique) est formellement défini au Chapitre 2. Les expressions de chemins sont
généralement vues comme des requêtes unaires, puisqu’elles sont évaluées à partir
de la racine. Elles peuvent aussi être vues comme des requêtes binaires dès lors
qu’on les évalue depuis n’importe quel noeud de l’arbre. En particulier, elles re-
lient un noeud de départ de la navigation à un noeud d’arrivée: une paire de noeuds
(u, v) est sélectionnée par une expression de chemin p si le noeud v peut-être at-
teint en partant du noeud u et en suivant l’expression de chemin p.
Le langage de composition généralise le paradigme navigationnel à la XPath aux
requêtes n-aires: des variables de noeuds sont utilisées pour sélectionner les com-
posantes des uplets réponses au cours de la navigation. En toute généralité, tout
formalisme de requêtes binaires peut être utilisé pour la partie navigationnel du
langage de composition. En effet, une requête binaire q définit sur un arbre t

8.2. Description de la Thèse 163

une relation binaire entre noeuds qui peut permettre de se déplacer d’un noeud
à l’autre. L’idée du langage de composition est alors d’étendre tout formalisme
de requêtes binaires, permettant de naviguer dans l’arbre, avec des variables de
noeuds, permettant de sélectionner les réponses. Le langage est ensuite clos par
union et intersection pour ajouter plus d’expressivité. L’opérateur principal du lan-
gage de composition est l’opérateur de composition ◦. Par exemple, sélectionner
le triplet (NomProduit, Prix, Réference) dans le premier arbre de la Figure 8.2 peut
être fait comme suit: on part de la racine pour atteindre le nom du produit, on le
sélectionne avec une variable x, ensuite on part du nom de produit pour aller au
prix, qu’on capture avec une variable y, et finalement on va du prix à la référence,
capturée par une variable z. Les parties navigationnelles de cette requête peuvent
être exprimées dans n’importe quel formalisme binaire, XPath par exemple. Plus
formellement, cette requête s’écrit comme suit:

pprod ◦ x ◦ pprice ◦ y ◦ pref ◦ z

où pprod, pprice et pref sont des requêtes binaires définies par exemple par les
expressions de chemins XPath suivantes 1:

pprod = /child :: ListeProduits/child :: Produit/child :: NomProduit/child :: ∗
pprice = /parent :: ∗/next-sibling :: Quantité/next-sibling :: Prix/child :: ∗
pref = /parent :: ∗/next-sibling :: @ref/child :: ∗

Bien sûr il y a beaucoup de façons de définir une telle requête, et en général, la défi-
nition d’une requête dépend de ce qui est connu a priori sur la forme des documents
sur lesquels elle est appliquée. L’ensemble des requêtes de composition définies
sur un ensemble de requêtes binaires L est dénoté C(L). Nous décrivons main-
tenant les résultats obtenus pour le langage de composition, en terme d’expressivité
et de complexité de l’évaluation des requêtes.
Évaluer une requête sur un arbre signifie retourner toutes les solutions de celle-
ci. Ce problème prend donc en entrée un entier n ∈ N, une requête n-aire et
un arbre, et retourne en sortie l’ensemble des n-uplets solutions de cette requête.
Son problème de décision associé est le problème du model-checking. Il prend
un entier n ∈ N, une requête n-aire, un arbre, et un n-uplet de noeuds en entrée,
et retourne vrai si et seulement si le n-uplet est solution de la requête sur cet ar-
bre. Tout algorithme de model-checking peut être transformé en un algorithme
d’évaluation. Il suffit de générer tous les n-uplets de noeuds et de tester s’ils sont
solution. Bien que cette approche reste raisonnable pour des petits arbres et des re-
quêtes de faible arité, elle est impraticable en général. En effet, les arbres peuvent
être très grands (plusieurs gigaoctets (Wik)), et l’arité des requêtes élevée. Par ex-
emple, le bon de commande XML de la Figure 8.1 pourrait faire partie d’un grand
document XML regroupant plusieurs centaines de bons de commande, et pourrait
aussi contenir d’autres informations qu’il serait intéressant de sélectionner au sein
d’un long n-uplet, comme par exemple des commentaires de l’acheteur, le mode de
livraison, l’identifiant de l’acheteur, etc... L’évaluation d’une requête doit donc se
faire dans un temps proportionnel au nombre de solutions, et non proportionnel au
nombre de n-uplets de noeuds (qui est exponentiel). Nous définissons un fragment
simple et expressif de C(L), dénoté Cnvs(L). L’idée est d’interdire l’utilisation

1L’expression XPath “parent” (resp. “next-sibling”) relativise un noeud à son noeud parent (resp.
à son voisin de droite)

164 Chapter 8. Résumé

d’une même variable de chaque côté d’une composition, ce qui créerait des cy-
cles et forcerait à tester des égalités entre noeuds. Cette notion est assez proche
de la notion d’acyclicité dans les requêtes conjonctives sur des relations binaires.
Cependant, elle est plus simple et définie même en présence de disjonction (ce
qui n’est pas le cas pour les requêtes conjonctives). Les requêtes exprimées dans
le fragment Cnvs(L) peuvent être évaluées en temps polynomial dans l’arité de la
requête, la taille de la requête, la taille de l’arbre, mais aussi la taille de la sortie,
à condition que l’évaluation des requêtes binaires exprimées avec L soient elles
aussi évaluables en temps polynomial. Ce n’est en revanche plus possible si la
restriction syntaxique est levée.
La logique du premier ordre (FO) et la logique monadique du second ordre (MSO)
sont deux logiques généralement acceptées comme des standards auxquels les
autres formalismes de requêtes sont souvent comparés (Lib06). Ces logiques peu-
vent exprimées des requêtes n-aires, grâce à leurs variables, mais leur évaluation
est dure, lorsqu’on considère l’arbre et la requête comme faisant partie de l’entrée
(complexité combinée). Cependant, lorsque la requête est considérée fixée (ne
faisant pas partie de l’entrée), l’évaluation devient linéaire dans la taille de l’arbre
et le nombre de solutions (Bag06, Cou07), mais implique de grandes constantes
que l’on veut ici éviter. Nous prouvons que le langage Cnvs(L) permet de définir
toutes les requêtes n-aires exprimables en FO et MSO, dès lors que L permet
d’exprimer toutes les requêtes binaires définissables en FO et MSO respective-
ment. La preuve est assez standard et s’appuie sur des résultats connus de la théorie
des modèles finis, basée sur la méthode de composition de Shelah (She), souvent
utilisée dans la littérature, comme par exemple dans (Tho84, Sch00, Mar05a). En
se basant sur cette preuve, nous proposons une manière de composer des requête
unaires d’un langage L, tout en gardant le même pouvoir d’expressivité que le
langage de composition de requêtes binaires. Cela est possible en restreignant à
chaque étape de composition le domaine d’interprétation de la requête unaire.
A la différence de la première version de XPath, XPath 1.0 (CD99), sa seconde
version XPath 2.0 (BBC∗07) possède des variables de noeuds. Alors qu’XPath 2.0
est considéré comme un langage de requêtes unaires, nous montrons qu’il peut être
utilisé dans sa définition actuelle pour exprimer des requêtes n-aires. En se basant
sur le langage de composition, nous définissons un fragment de XPath 2.0 qui
permet d’exprimer toutes les requêtes n-aires FO-définissables, tout en admettant
un algorithme d’évaluation en temps polynomial.

8.2.2 La Logique TQL

La logique TQL (Tree Query Logic) est une logique spatiale introduite par Cardelli
et Ghelli (CG04) pour faire des requêtes dans des documents représentés par des
arbres non ordonnés. Cette logique permet de définir des requêtes n-aires grâce à
ses variables. Le problème de l’évaluation des requêtes pour TQL a été étudié dans
(CFG02). La satisfiabilité et l’expressivité de fragments de TQL sans variables ont
été étudiés dans (BTT05, Bon06). Cependant, rien n’est connu sur la satisfiabilité
de TQL en tant que langage de requêtes n-aires, ie sur des fragments avec vari-
ables. Nous étudions dans cette thèse le problème de satisfiabilité pour les arbres
ordonnés. L’étude de TQL dans les arbres ordonnés était mentionnée comme une
perspective intéressante dans plusieurs travaux (CG04, Gen06, Bon06). TQL est
un langage de requêtes qui généralise les langages de filtrage des langages de pro-
grammation XML XDuce et CDuce (HP03b, BCF03a).

8.2. Description de la Thèse 165

La mise en correspondance de la formule TQL suivante

bonCommande[Livraison[⊤] ∧X | ⊤]

avec le premier arbre de la Figure 8.2 produit une fonction qui associe àX le sous-
arbre dont la racine est étiquetée par “Livraison”. En revanche, avec le deuxième
arbre de la Figure 8.2, la mise en correspondance échoue. Chaque étiquette de
noeud a est vue comme un constructeur d’arbre qui prend une séquence d’arbres
et l’enracine par un noeud étiqueté par a. Le symbole | est vu aussi comme un
constructeur qui prend deux séquences d’arbres et les concatènent. La formule ⊤
est satisfaite par n’importe quelle séquence d’arbres. Comme le montre l’exemple
précédent, les variables dénotent des arbres, à la différence des variables du lan-
gage de composition. En répétant une même variable plusieurs fois dans une for-
mule, il est possible d’exprimer des égalités entre sous-arbres. Par exemple, la
formule

bonCommande[⊤ | ListeProduits[⊤|X|⊤|X|⊤] | ⊤]

est satisfaite par un arbre qui représente un bon de commande si la liste des produits
achetés contient au moins un doublon. En utilisant la négation, il est aussi possible
de tester des différences entre sous-arbres:

bonCommande[⊤ | ListeProduits[⊤|X|⊤|¬X|⊤] | ⊤]

est satisfaite si la liste des produits contient au moins deux produits différents. Les
formules de TQL peuvent contenir aussi des opérateurs de point fixe permettant la
récursion. Par exemple, la formule

bonCommande[⊤ | ListeProduits[µξ.(X|ξ ∨ X)] | ⊤]

est satisfaite par un bon de commande si la liste des produits ne contient que des
produits identiques. La récursion permet aussi de se déplacer à des profondeurs
arbitraires dans un arbre. Par exemple, la formule

µξ.(a[ξ] ∨ b[⊤])

est satisfaite par un arbre s’il existe un chemin depuis la racine étiqueté par des as
seulement puis un b.
La satisfiabilité de TQL est indécidable (même sans variables). La première re-
striction est de contraindre les les récursions à être gardées, ie chaque variable de
récursion ξ doit apparaître sous un constructeur de la forme a[.], lui même dans la
portée de µξ. Cela implique que les récursions s’appliquent sur des arbres stricte-
ment moins hauts. Ensuite, la principale difficulté pour décider la satisfiabilité des
formules de TQL vient de leur capacité à tester des égalités ou des différences en-
tre sous-arbres. Nous définissons alors un fragment appelé fragment borné. Dans
le fragment borné, les récursions sont gardées et le nombre des tests de différences
pouvant être faits le long d’un chemin allant de la racine à une feuille est borné par
une constante indépendante de l’arbre.
La problème de satisfiabilité du fragment borné se réduit au test du vide pour une
nouvelle classe d’automates d’arbres avec contraintes d’égalités et de différences,
appelés TAGEDs. Les TAGEDs permettent de tester des égalités ou différences en-
tre sous-arbres qui peuvent être arbitrairement éloignés dans l’arbre, à la différence
des automates à contraintes classiques, qui ne testent que des égalités entre enfants

166 Chapter 8. Résumé

ou cousins (CDG∗07). Les TAGEDs restent néanmoins incomparables avec les au-
tomates à contraintes classiques. En effet, dans les TAGEDs, les contraintes sont
testées globalement avec les états, alors que pour les automates à contraintes clas-
siques, les contraintes sont testées localement au niveau de chaque transition de
l’automate. Nous prouvons que les langages définissables par TAGEDs sont effec-
tivement clos par union et intersection. Cependant, ils ne sont pas clos par com-
plément. De plus, les TAGEDs ne sont pas déterminisables et le test d’universalité
est indécidable. Nous prouvons la décision du test du vide pour plusieurs sous-
classes des TAGEDs: les TAGEDs positifs, qui ne font que des tests d’égalités, et
les TAGEDs négatifs, qui ne font que des tests de différences. Nous prouvons aussi
la décision du vide pour une sous-classe, appelé TAGEDs bornés, qui autorise les
deux types de tests, mais seulement un nombre borné de tests de différences le
long de tout chemin de la racine aux feuilles, comme pour le fragment borné de
TQL. Nous donnons une correspondance entre les TAGEDs bornés et le fragment
borné de TQL. Cette correspondance introduit une nouvelle construction qui doit
prendre en compte les variables de la logique, ce qui implique un comportement
non-déterministe de l’automate.
Finalement, nous donnons aussi une correspondance naturelle et effective entre les
TAGEDs bornés et une extension de MSO avec tests d’égalités. Cette extension de
MSO est par conséquent décidable (pour la satisfiabilité).

INDEX

ACQ, 42, 56
alphabet, 11

ranked alphabet, 11
unranked, 11
unranked alphabet, 11
weakly ranked alphabet, 11

arity, 11
assignment, 24
automata

hedge automata, 22
tree automata, 18, 19
tree automata with constraints see

TAGED, 88

caterpillars, 39
CDuce, 44
closed formula, 24
composition

composition formulas, 51
composition language, 51

evaluation, 61
examples, 52
expressiveness, 63
formulas, 51
non-variable sharing, 52
query non-emptiness, 58
semantics, 51
syntax, 51

Conditional XPath, 39
conjunctive queries, 41, 42, 56

acyclic, 42, 56
Yannakakis’s algorithm, 42

contexts, 15
elementary contexts, 106

CoreXPath 1.0 (see XPath), 35
CoreXPath 2.0 (see XPath), 35
CQ, 42

domain, 11
DTD, 33

Extended DTD, 34, 135

edge-isomorphism
paths, 95

Ehrenfeucht-Fraïssé games, 64
enumeration

conjunctive queries, 42
expressiveness, 17

TQL, 141
extended structure, 63

finite tree automata, 18
first order logic (see also FO), 23
first-child next-sibling encoding, 14
FO, 23, 54, 63

bounded variable, 26
FO+TC, 30
model-checking, 25
query language, 25
satisfiability, 26
state of the art, 25
syntax, semantics, 23
types, 63
with transitive closure, 30

free variables, 23
frontier, 107

maximal frontier, 107

games(Ehrenfeuch-Fraïssé), 64

hedge, 13
algebra, 13
operations, 13
root, 13

hedge automata, 22
determinism, 22
run, 22

Hintikka formulas, 64
horizontal language, 22
horizontal languages

167

168 Index

TQL, 143

infinite alphabet, 122
isomorphism, 12

edge-isomorphism, 12
partial isomorphism, 64
path, 95

logical type, 63

maximal frontier, 107
model-checking, 17, 43

FO, 25
MSO, 29
TQL, 136

monadic datalog, 41
monadic second order logic

with tree equality tests, 118
monadic second order logic (see also

MSO), 27
MSO, 27, 63

equivalence to tree automata, 27
model-checking, 29
state of the art, 28
syntax, semantics, 27
types, 63
with tree equality tests, 118

node equivalence, 95
normal form, 55

partial isomorphism, 64
path

XPath expressions, 35
path isomorphism, 95

quantifier depth, 24
query, 16

n-ary query languages, 43
arity, 16
evaluation, 17
non-emptiness, 17, 58
query language, 17

query language
expressiveness, 17

Regular XPath, 39
run, 19, 22

bounded, 104
run-based queries, 31
successful,accepting, 19, 89

satisfiability

MSO with tree equality, 118
MSO with tree equality tests, 118
TQL, 138

satisfiability problem, 18
schema languages, 32
sentence, 24
signature, 11
size

TAGED, 89
structure, 11

domain, 11
extended structure, 63
logical equivalence, 63
logical type, 63
signature, 11
vocabulary, 11

TAGED, 88
binary encoding, 123
closure, 90
complement, 92
deteminization, 91
membership, 90
negative, 89
negative (emptiness), 103
on unranked trees, 121
over an infinite alphabet, 122
positive, 89, 100
emptiness, 101
finiteness, 103
pumping lemma, 101

relation to MSO, 118
run, 89
size, 89
successful run, 89
universality, 94
vertically bounded, 104
emptiness, 105

temporal logics, 40
test

XPath expressions, 35
TQL, 7, 43, 127

bounded fragment, 139
expressiveness, 141
horizontal languages, 143
vbTAGED, 142

tree
alphabet, 11
binary encoding, 14
descendant, 12

Index 169

equality, 12
inner-node, 12
leaf, 12
ranked tree, 14
root, 12
subtree, 12
unranked tree, 11

tree automata, 18, 19, 22
accepting run, 19
canonical language, 30
decision problems, 21
determinism, 19
node-selection tree automata, 30
product automaton, 20
query language, 30
recognized language, 20
run, 19
run based queries, 30
successful run, 19

tree automata with constraints see
TAGED, 88

tree patterns, 42, 152
trees

hedge, 13
unordered, 43

unranked alphabet, 11
unranked tree, 11

valuation, 24
variables

free variables, 23
of a formula, 24

vocabulary, 11

XDuce, 44
XPath, 34, 39, 71

CoreXPath1.0, 35
complexity, 37
expressiveness, 37

CoreXPath2.0, 35
complexity, 38
expressiveness, 38

axis, 36
Conditional XPath, 39, 73
filters, 36
Regular XPath, 39
semantics, 35
syntax, 35

XQuery, 43

BIBLOGRAPHY

[ABD∗05] AFANASIEV L., BLACKBURN P., DIMITRIOU I., GAIFFE B.,
GORIS E., MARX M., RIJKE M. D.: Pdl for ordered trees. (Cited
page 41.)

[ABL07] ARENAS M., BARCELO P., LIBKIN L.: Combining temporal log-
ics for querying XML documents. In International Conference on
Database Theory (2007), pp. 359–373. (Cited pages 4, 43, 44, 49,
50, and 161.)

[ABS00] ABITEBOUL S., BUNEMAN P., SUCIU D.: Data on the Web: from
relations to semistructured data and XML. Morgan Kaufmann, 2000.
(Cited page 39.)

[ADdR03] ALECHINA N., DEMRI S., DE RIJKE M.: A modal perspective on
path constraints, 2003. Journal of Logic and Computation. (Cited
page 79.)

[AHV95] ABITEBOUL S., HULL R., VIANU V.: Foundations of Databases.
1995. (Cited page 42.)

[AKW95] AIKEN A., KOZEN D., WIMMERS E. L.: Decidability of systems
of set constraints with negative constraints. Information and Compu-
tation 122, 1 (1995), 30–44. (Cited page 105.)

[AL08] ARENAS M., LIBKIN L.: XML data exchange: Consistency and
query answering. J. ACM 55, 2 (2008). (Cited pages 4 and 161.)

[AM04] ALUR R., MADHUSUDAN P.: Visibly pushdown languages. In
36th ACM Symposium on Theory of Computing (2004), ACM-Press,
pp. 202–211. (Cited page 23.)

[ANR05] ANANTHARAMAN S., NARENDRAN P., RUSINOWITCH M.: Clo-
sure properties and decision problems of dag automata. Inf. Process.
Lett. 94, 5 (2005), 231–240. (Cited page 90.)

[AU69] AHO A. V., ULLMAN J. D.: Translations on a context free grammar.
In STOC ’69: Proceedings of the first annual ACM symposium on
Theory of computing (1969), pp. 93–112. (Cited page 22.)

[Bag06] BAGAN G.: Mso queries on tree decomposable structures are
computable with linear delay. In Computer Science Logic (2006),
vol. 4646 of Lecture Notes in Computer Science, Springer Verlag,
pp. 208–222. (Cited pages 6, 30, 31, 155, and 164.)

171

172 Biblography

[BBC∗07] BERGLUND A., BOAG S., CHAMBERLIN D., FERNÀNDEZ M. F.,
KAY M., ROBIE J., SIMÉON J.: XML path language (XPath)
2.0 w3c recommendation, 2007. http://www.w3.org/TR/2007/REC-
xpath20-20070123/. (Cited pages 5, 6, 34, 35, 162, and 164.)

[BC05] BOJAŃCZYK M., COLCOMBET T.: Tree-walking automata do not
recognize all regular languages. In 37th Annual ACM Symposium
on Theory of Computing (New York, NY, USA, 2005), ACM-Press,
pp. 234–243. (Cited page 22.)

[BC06] BOJAŃCZYK M., COLCOMBET T.: Tree-walking automata cannot
be determinized. Theor. Comput. Sci. 350, 2 (2006), 164–173. (Cited
page 22.)

[BCF03a] BENZAKEN V., CASTAGNA G., FRISCH A.: CDuce: an XML-
centric general-purpose language. In 8th ACM International Conf.
on Functional Programming (2003), pp. 51–63. (Cited pages 4, 7,
131, 161, and 164.)

[BCF03b] BENZAKEN V., CASTAGNA G., FRISCH A.: CDuce: an XML-
centric general-purpose language. ACM SIGPLAN Notices 38, 9
(2003), 51–63. (Cited page 44.)

[BCF∗07] BOAG S., CHAMBERLIN D., FERNÀNDEZ M. F., FLORESCU D.,
ROBIE J., SIMÉON J.: Xquery 1.0: An xml query language, w3c
recommendation, 2007. http://www.w3.org/TR/2007/REC-xquery-
20070123/. (Cited pages 5, 34, 43, and 162.)

[BDG07] BAGAN G., DURAND A., GRANDJEAN E.: On acyclic conjunctive
queries and constant delay enumeration. In Computer Science Logic,
21st International Workshop, CSL 2007, 16th Annual Conference of
the EACSL (2007), vol. 4646, pp. 208–222. (Cited pages 42 and 155.)

[BDM∗06] BOJANCZYK M., DAVID C., MUSCHOLL A., SCHWENTICK T.,
SEGOUFIN L.: Two-variable logic on data trees and xml reason-
ing. In ACM 25th Symp. on Principles of database systems (2006),
pp. 10–19. (Cited pages 26, 39, and 132.)

[Ber06] BERLEA A.: Online evaluation of regular tree queries. Nordic Jour-
nal of Computing 13, 4 (2006), 1–26. (Cited page 32.)

[BJ07] BENEDIKT M., JEFFREY A.: Efficient and expressive tree filters.
In Foundations of Software Technology and Theoretical Computer
Science (FSTTCS) (2007), vol. 4855 of Lecture Notes in Computer
Science, Springer, pp. 461–472. (Cited pages 32 and 154.)

[BK07] BENEDIKT M., KOCH C.: XPath leashed. ACM computing surveys
(2007). to appear. (Cited page 37.)

[BKS02] BRUNO N., KOUDAS N., SRIVASTAVA D.: Holistic twig joins: opti-
mal XML pattern matching. In Proceedings of the ACM SIGMOD In-
ternational Conference on Management of Data (2002), ACM Press,
pp. 310–321. (Cited pages 42 and 154.)

Biblography 173

[BKW98] BRUGGEMANN-KLEIN A., WOOD D.: One-unambiguous regular
languages. Information and Computation 140, 2 (1998), 229–253.
(Cited page 33.)

[BKW00] BRÜGGEMANN-KLEIN A., WOOD D.: Caterpillars, context, tree
automata and tree pattern matching. In Developments in Language
Theory, Foundations, Applications, and Perspectives (1999) (2000),
World Scientific, pp. 270–285. (Cited pages 39 and 40.)

[BKWM01] BRÜGGEMANN-KLEIN A., WOOD D., MURATA M.: Regular tree
and regular hedge languages over unranked alphabets: Version 1,
Apr. 07 2001. (Cited pages 19 and 22.)

[BL02] BENEDIKT M., LIBKIN L.: Tree extension algebras: Logics, au-
tomata, and query languages. In LICS (2002), IEEE Computer Soci-
ety, p. 203. (Cited page 152.)

[BL05] BARCELO P., LIBKIN L.: Temporal logics over unranked trees. In
20th Annual IEEE Symposium on Logic in Computer Science (2005),
IEEE Comp. Soc. Press, pp. 31–40. (Cited pages 41, 43, 71, 132,
and 144.)

[BLN07] BENEDIKT, LIBKIN, NEVEN: Logical definability and query lan-
guages over ranked and unranked trees. ACMTCL: ACM Transac-
tions on Computational Logic 8 (2007). (Cited page 156.)

[BLSS01] BENEDIKT M., LIBKIN L., SCHWENTICK T., SEGOUFIN L.: A
model-theoretic approach to regular string relations. In LICS (2001),
p. 431. (Cited page 156.)

[BMS∗06] BOJANCZYK M., MUSCHOLL A., SCHWENTICK T., SEGOUFIN
L., DAVID C.: Two-variable logic on words with data. In 21th
IEEE Symp. on Logic in Computer Science (2006), pp. 7–16. (Cited
pages 26 and 132.)

[Boj04] BOJAŃCZYK M.: Decidable Properties of Tree Languages. PhD
thesis, Warsaw University, 2004. (Cited page 26.)

[Bon06] BONEVA I.: Logics for unranked and unordered trees and their use
for querying semistructured data. PhD thesis. Université des Sciences
et Technologies de Lille - Lille 1, 2006. (Cited pages 7, 43, 131, 138,
139, 145, 152, and 164.)

[BPSM∗06] BRAY T., PAOLI J., SPERBERG-MCQUEEN C., MALER E.,
YERGEAU F.: Extensible markup language (xml) 1.0 (fourth
edition), w3c recommendation. http://www.w3.org/TR/REC-xml/,
2006. (Cited pages 1, 33, and 157.)

[BS04a] BERLEA A., SEIDL H.: Binary queries for document trees. Nordic
Journal of Computing 11, 1 (2004), 41–71. (Cited page 32.)

[BS04b] BERLEA A., SEIDL H.: Binary queries for document trees. Nord. J.
Comput 11, 1 (2004), 41–71. (Cited page 154.)

174 Biblography

[BS05a] BENEDIKT, SEGOUFIN: Towards a characterization of order-
invariant queries over tame structures. In CSL: 19th Workshop on
Computer Science Logic (2005), LNCS, Springer-Verlag. (Cited
page 43.)

[BS05b] BENEDIKT M., SEGOUFIN L.: Regular tree languages definable in
fo and fomod. In Proceedings of the 22nd Symposium on Theoretical
Aspects of Computer Science (STACS) (2005). (Cited page 26.)

[BSSS06a] BOJAŃCZYK M., SAMUELIDES M., SCHWENTICK T., SEGOUFIN
L.: Expressive power of pebbles automata. In International Col-
loquium on Automata Languages and Programming (ICALP’06)
(2006), Lecture Notes in Computer Science, Springer Verlag,
pp. 157–168. (Cited page 22.)

[BSSS06b] BOJAŃCZYK M., SAMUELIDES M., SCHWENTICK T., SEGOUFIN
L.: Expressive power of pebbles automata. In International Col-
loquium on Automata Languages and Programming (ICALP’06)
(2006), Lecture Notes in Computer Science, Springer Verlag,
pp. 157–168. (Cited page 30.)

[BT92] BOGAERT B., TISON S.: Equality and disequality constraints on di-
rect subterms in tree automata. In 9th Annual Symposium on Theoret-
ical Aspects of Computer Science (1992), vol. 577 of LNCS, pp. 161–
171. (Cited pages 89 and 90.)

[BT05] BONEVA I., TALBOT J.-M.: Automata and logics for unranked and
unordered trees. In 20th International Conference on Rewriting Tech-
niques and Applications (2005), Lecture Notes in Computer Science,
Springer Verlag. (Cited page 43.)

[BTT05] BONEVA I., TALBOT J., TISON S.: Expressiveness of a spatial logic
for trees. In 20th IEEE Symposium on Logic in Computer Science
(2005), pp. 280–289. (Cited pages 7, 43, 131, and 164.)

[Büc60] BÜCHI J.: On a decision method in a restricted second order arith-
metic. In Proc. Internat. Congr. on Logic, Methodology and Philoso-
phy of Science (1960), Press. S. U., (Ed.), pp. 1–11. (Cited page 27.)

[CC05] COMON H., CORTIER V.: Tree automata with one memory, set
constraints and cryptographic protocols. TCS 331, 1 (2005), 143–
214. (Cited page 90.)

[CD94] COMON H., DELOR C.: Equational formulae with membership
constraints. Information and Computation 112, 2 (1994), 167–216.
(Cited page 126.)

[CD99] CLARD J., DEROSE S.: Xml path language (xpath): W3c recom-
mendation, 1999. (Cited pages 6, 35, and 164.)

[CDG∗07] COMON H., DAUCHET M., GILLERON R., LÖDING C., JACQUE-
MARD F., LUGIEZ D., TISON S., TOMMASI M.: Tree automata
techniques and applications. Available on: http://www.grappa.univ-
lille3.fr/tata, 2007. (Cited pages 7, 18, 19, 20, 21, 22, 23, 27, 32, 91,
102, 103, 120, 121, 122, 156, and 166.)

Biblography 175

[CE82] CLARKE E. M., EMERSON E. A.: Design and synthesis of synchro-
nization skeletons using branching-time temporal logic. In Logic of
Programs, Workshop (London, UK, 1982), Springer-Verlag, pp. 52–
71. (Cited page 41.)

[CE95] COURCELLE B., ENGELFRIET J.: A logical characterization of the
sets of hypergraphs defined by hyperedge replacement.Mathematical
Systems Theory 28, 6 (1995), 515–552. (Cited page 29.)

[CFG02] CONFORTI G., FERRARA O., GHELLI G.: TQL algebra and its
implementation. In Proc. of IFIP TCS (2002), Kluwer Academic
Publishers, pp. 422–434. (Cited pages 7, 140, and 164.)

[CG04] CARDELLI L., GHELLI G.: TQL: A Query Language for Semistruc-
tured Data Based on the Ambient Logic. Mathematical Structures in
Computer Science 14 (2004), 285–327. (Cited pages 4, 7, 43, 129,
131, 141, 152, 153, 162, and 164.)

[CGG02] CARDELLI L., GARDNER P., GHELLI G.: A spatial logic for query-
ing graphs. In 29th International Colloquium on Automata, Lan-
guages and Programming (2002), vol. 2380 of Lecture Notes in Com-
puter Science, Springer, pp. 597–610. (Cited page 43.)

[CGLN08] CHAMPAVÈRE J., GILLERON R., LEMAY A., NIEHREN J.: Ef-
ficient inclusion checking for deterministic tree automata and
DTDs. In 2nd International Conference on Language and Au-
tomata Theory and Applications (Apr. 2008), Lecture Notes in
Computer Science, Springer Verlag. to appear. A long version is
available at http.www.grappa.univ-lille3.fr/ niehren/inclusion-june-
08.pdf. (Cited page 21.)

[Cha99] CHARATONIK W.: Automata on DAG Representations of Finite
Trees. Tech. rep., 1999. (Cited page 90.)

[Che06] CHE D.: Mytwigstack: A holistic twig join algorithm with ef-
fective path merging support. In 7th International Conference on
Software Engineering, Artificial Intelligence, Networking and Paral-
lel/Distributed Computing (SNPD) (2006), IEEE Computer Society,
pp. 184–189. (Cited pages 42 and 154.)

[Chu36] CHURCH A.: A note on the entscheidungsproblem. Journal of Sym-
bolic Logic 1, 1 (1936), 40–41. (Cited page 26.)

[Cla99] CLARK J.: Xsl transformations (xslt) version 1.0, w3c recommenda-
tion, 1999. http://www.w3.org/TR/1999/REC-xslt-19991116. (Cited
pages 5, 34, and 162.)

[CM01] CLARK J., MURATA M.: Relax ng specification. http://www.oasis-
open.org/committees/relax-ng/spec-20011203.html, 2001. (Cited
page 34.)

[CNT04] CARME J., NIEHREN J., TOMMASI M.: Querying unranked trees
with stepwise tree automata. In 19th International Conference on
Rewriting Techniques and Applications (2004), vol. 3091 of Lecture

176 Biblography

Notes in Computer Science, Springer Verlag, pp. 105 – 118. (Cited
page 23.)

[CO07] COURCELLE B., OUM S.: Vertex-minors, monadic second-order
logic, and a conjecture by seese. J. Comb. Theory Ser. B 97, 1 (2007),
91–126. (Cited page 29.)

[Cou90a] COURCELLE B.: Graph rewriting: and algebraic and logic ap-
proach. In Handbook of Theoretical Computer Science, vol. B. Else-
vier, 1990, pp. 193–242. (Cited page 29.)

[Cou90b] COURCELLE B.: The monadic second-order logic of graphs I. recog-
nizable sets of finite graphs. Information and Computation 85 (1990),
12–75. (Cited page 43.)

[Cou91] COURCELLE B.: The monadic second-order logic of graphs v: On
closing the gap between definability and recognizability. Theor. Com-
put. Sci. 80 (1991), 153–202. (Cited page 43.)

[Cou94] COURCELLE B.: Monadic second-order definable graph transduc-
tions: a survey. Theoretical Computer Science 126, 1 (1994), 53–75.
(Cited pages 29 and 155.)

[Cou97] COURCELLE B.: Handbook of graph grammars and computing
by graph transformations, volume 1: Foundations. In Handbook of
Graph Grammars (1997), Rozenberg G., (Ed.). (Cited page 29.)

[Cou07] COURCELLE B.: Linear delay enumeration and monadic second-
order logic. To Appear in Discrete Applied Mathematics. (Cited
pages 6, 30, and 164.)

[CP94] CHARATONIK W., PACHOLSKI L.: Set constraints with projections
are in NEXPTIME. In IEEE Symposium on Foundations of Computer
Science (1994). (Cited page 105.)

[CT01] CHARATONIK W., TALBOT J.: The Decidability of Model Check-
ing Mobile Ambients. In 15th Annual Conference of the European
Association for Computer Science Logic (2001), vol. 2142 of Lecture
Notes in Computer Science, Springer, pp. 339–354. (Cited page 141.)

[CW87] COPPERSMITH D., WINOGRAD S.: Matrix multiplication via arith-
metic progressions. In ACM conference on Theory of computing
(1987). (Cited page 81.)

[DCC95] DAUCHET M., CARON A.-C., COQUIDÉ J.-L.: Reduction proper-
ties and automata with constraints. JSC 20 (1995), 215–233. (Cited
pages 89 and 90.)

[DdVPS00] DAMIANI E., DI VIMERCATI S. D. C., PARABOSCHI S., SAMA-
RATI P.: Securing xml documents. In EDBT ’00: Proceedings
of the 7th International Conference on Extending Database Tech-
nology (London, UK, 2000), Springer-Verlag, pp. 121–135. (Cited
page 155.)

Biblography 177

[DdVPS02] DAMIANI E., DI VIMERCATI S. D. C., PARABOSCHI S., SAMA-
RATI P.: A fine-grained access control system for xml documents.
ACM Trans. Inf. Syst. Secur. 5, 2 (2002), 169–202. (Cited page 155.)

[DFGM08] DAMIANI E., FANSI M., GABILLON A., MARRARA S.: A general
approach to securely querying xml. Comput. Stand. Interfaces 30, 6
(2008), 379–389. (Cited page 155.)

[DG06] DURAND A., GRANDJEAN E.: The complexity of acyclic conjunc-
tive queries revisited. CoRR abs/cs/0605008 (2006). informal publi-
cation. (Cited page 42.)

[DGG04] DAWAR A., GARDNER P., GHELLI G.: Expressiveness and Com-
plexity of Graph Logic. Tech. rep., Imperial College, 2004. (Cited
page 43.)

[dM60] DE MORGAN A.: On the syllogism, no. iv, and on the logic of re-
lations. Trans. Cambridge Phi. Soc. 10 (1860), 331–358. (Cited
page 40.)

[DMJ01] DEROSE S., MALER E., JR. R. D.: Xml pointer language (xpointer)
version 1.0, 2001. http://www.w3.org/TR/2001/WD-xptr-20010108/.
(Cited pages 5, 35, and 162.)

[Don70] DONER J. E.: Tree acceptors and some of their applications. Journal
of Computer and System Science 4 (1970), 406–451. (Cited pages 18,
26, 27, and 28.)

[EF05] EBBINGHAUS H., FLUM J.: Finite Model Theory. Springer Verlag,
Berlin, 2005. (Cited pages 25, 41, 63, 67, and 134.)

[EH99] ENGELFRIET J., HOOGEBOOM H. J.: Tree-walking pebble au-
tomata. In Jewels are Forever, Contributions on Theoretical Com-
puter Science in Honor of Arto Salomaa (1999), Springer-Verlag,
pp. 72–83. (Cited page 22.)

[EH07] ENGELFRIET J., HOOGEBOOM H. J.: Automata with nested pebbles
capture first-order logic with transitive closure. LMCS 3 (2007), 3.
(Cited page 22.)

[EHB99] ENGELFRIET J., HOOGEBOOM H. J., BEST J.-P. V.: Trips on trees.
Acta Cybern. 14, 1 (1999), 51–64. (Cited page 22.)

[EJ91] EMERSON E. A., JUTLA C. S.: Tree automata, mu-calculus and de-
terminacy. In Proceedings of the 32nd annual symposium on Foun-
dations of computer science (1991), pp. 368–377. (Cited page 41.)

[EvO97] ENGELFRIET J., VAN OOSTROM V.: Logical description of context-
free graph languages. J. Comput. Syst. Sci. 55, 3 (1997), 489–503.
(Cited page 29.)

[FG02] FRICK M., GROHE M.: The complexity of first-order and monadic
second-order logic revisited. In LICS ’02: Proceedings of the 17th
Annual IEEE Symposium on Logic in Computer Science (Washing-
ton, DC, USA, 2002), pp. 215–224. (Cited pages 28 and 29.)

178 Biblography

[FGK03] FRICK M., GROHE M., KOCH C.: Query evaluation on com-
pressed trees. In 18th IEEE Symposium on Logic in Computer Sci-
ence (2003), pp. 188–197. (Cited page 31.)

[FNTT07] FILIOT E., NIEHREN J., TALBOT J.-M., TISON S.: Polynomial
time fragments of xpath with variables. In ACM Symposium on Prin-
ciples of Database Systems (2007). (Cited page 38.)

[FTT07] FILIOT E., TALBOT J.-M., TISON S.: Satisfiability of a spatial logic
with tree variables. In Computer Science Logic (2007), pp. 130–145.
(Cited page 144.)

[FTT08] FILIOT E., TALBOT J.-M., TISON S.: Tree automata with global
constraints. In 12th International Conference on Developments in
Language Theory (DLT) (2008), Lecture Notes in Computer Science,
Springer Verlag. To appear. (Cited pages 127 and 155.)

[FW04] FALLSIDE D. C., WALMSLEY P.: Xml schema part 0: Primer sec-
ond edition, October 2004. http://www.w3.org/TR/2004/

REC-xmlschema-0-20041028/. (Cited pages 5, 34, and 162.)

[GCNT08] GAUWIN O., CARON A.-C., NIEHREN J., TISON S.: Complexity of
earliest query answering with streaming tree automata. In ACM SIG-
PLAN Workshop on Programming Language Techniques for XML
(PLAN-X) (Jan. 2008). PLAN-X Workshop of ACM POPL. (Cited
pages 32 and 154.)

[Gen06] GENEVÈS P.: Logics for XML. PhD thesis, Institut National Poly-
technique de Grenoble, December 2006. (Cited pages 7, 18, 38, 41,
43, 120, 131, 152, and 164.)

[Giv06] GIVANT S.: The calculus of relations as a foundation for mathemat-
ics. J. Autom. Reason. 37, 4 (2006), 277–322. (Cited page 40.)

[GK04] GOTTLOB G., KOCH C.: Monadic datalog and the expressive power
of languages for web information extraction. Journal of the ACM 51,
1 (2004), 74–113. (Cited pages 4, 41, 42, and 161.)

[GKB∗04] GOTTLOB G., KOCH C., BAUMGARTNER R., HERZOG M.,
FLESCA S.: The Lixto data extraction project - back and forth be-
tween theory and practice. In 23rd ACM SIGPLAN-SIGACT Sympo-
sium on Principles of Database Systems (2004), ACM-Press, pp. 1–
12. (Cited page 42.)

[GKP03a] GOTTLOB G., KOCH C., PICHLER R.: The complexity of xpath
query evaluation. In 22nd ACM SIGMOD-SIGACT-SIGART Sympo-
sium on Principles of Database Systems (2003), pp. 179–190. (Cited
page 37.)

[GKP03b] GOTTLOB G., KOCH C., PICHLER R.: Xpath processing in a nut-
shell. SIGMOD Rec. 32, 2 (2003), 21–27. (Cited page 37.)

[GKP05] GOTTLOB G., KOCH C., PICHLER R.: Efficient algorithms for pro-
cessing XPath queries. ACM Transactions on Database Systems 30,
2 (2005), 444–491. (Cited pages 35, 37, and 81.)

Biblography 179

[GKPS05] GOTTLOB G., KOCH C., PICHLER R., SEGOUFIN L.: The complex-
ity of xpath query evaluation and xml typing. J. ACM 52, 2 (2005),
284–335. (Cited page 38.)

[GKS04] GOTTLOB G., KOCH C., SCHULZ K. U.: Conjunctive queries over
trees. In Proceedings of the 23rd ACM SIGMOD-SIGACT-SIGART
Symposium on Principles of Database Systems (NewYork, NY, USA,
2004), ACM-Press, pp. 189–200. (Cited pages 4, 42, 43, 70, 154,
and 161.)

[GKV97] GRÄDEL E., KOLAITIS P. G., VARDI M. Y.: On the decision prob-
lem for two-variable first-order logic. The Bulletin of Symbolic Logic
3, 1 (1997), 53–69. (Cited page 26.)

[GL06] GENEVÈS P., LAYAÏDA N.: A system for the static analysis of
XPath. ACM Trans. Inf. Syst. 24, 4 (2006), 475–502. (Cited page 38.)

[GLS07] GENEVÈS P., LAYAÏDA N., SCHMITT A.: Efficient static analysis
of XML paths and types. In PLDI ’07: Proceedings of the 2007
ACM SIGPLAN conference on Programming language design and
implementation (2007), pp. 342–351. (Cited page 41.)

[GM05] GORIS E., MARX M.: Looping caterpillars. In Proceedings of the
Twentieth Annual IEEE Symp. on Logic in Computer Science, LICS
2005 (June 2005), Panangaden P., (Ed.), IEEE Comp. Soc. Press,
pp. 51–60. (Cited page 40.)

[GMT08] GODOY G., MANETH S., TISON S.: Classes of tree homomor-
phisms with decidable preservation of regularity. In Foundations of
Software Science and Computational Structures, 11th International
Conference, FOSSACS (2008), vol. 4962 of Lecture Notes in Com-
puter Science, Springer, pp. 127–141. (Cited page 127.)

[Grz53] GRZEGORCZYK A.: Some classes of recursive functions. Rozprawy
Matematyczne 4 (1953), 1–45. (Cited page 28.)

[GS00] GROHE, SCHWENTICK: Locality of order-invariant first-order for-
mulas. ACMTCL: ACM Transactions on Computational Logic 1
(2000). (Cited page 43.)

[GTT94] GILLERON R., TISON S., TOMMASI M.: Some new decidability re-
sults on positive and negative set constraints. In CCL ’94: Proceed-
ings of the First International Conference on Constraints in Compu-
tational Logics (1994), pp. 336–351. (Cited page 105.)

[GTW02] GRÄDEL E., THOMAS W., WILKE T. (Eds.): Automata logics, and
infinite games: a guide to current research. Springer-Verlag New
York, Inc., New York, NY, USA, 2002. (Cited page 41.)

[Hid03] HIDDERS J.: Satisfiability of XPath expressions. In The 9th Inter-
national Workshop on Data Base Programming Languages (2003),
pp. 21–36. (Cited page 39.)

180 Biblography

[HP03a] HOSOYA H., PIERCE B.: Regular expression pattern matching for
XML. Journal of Functional Programming 6, 13 (2003), 961–1004.
(Cited page 44.)

[HP03b] HOSOYA H., PIERCE B. C.: XDuce: A statically typed xml pro-
cessing language. ACM Trans. Internet Techn. 3, 2 (2003), 117–148.
(Cited pages 4, 7, 131, 161, and 164.)

[HT87] HAFER T., THOMAS W.: Computation tree logic ctl* and path
quantifiers in the monadic theory of the binary tree. In 14th In-
ternational Colloquium on Automata, languages and programming
(London, UK, 1987), Springer-Verlag, pp. 269–279. (Cited page 41.)

[IK89] IMMERMAN N., KOZEN D.: Definability with bounded number of
bound variables. Information and Computation 83 (1989), 121–139.
(Cited page 26.)

[Imm87] IMMERMAN N.: Languages that capture complexity classes. SIAM
J. Comput. 16, 4 (1987), 760–778. (Cited page 30.)

[JRV06] JACQUEMARD F., RUSINOWITCH M., VIGNERON L.: Tree au-
tomata with equality constraints modulo equational theories. Re-
search Report LSV-06-07, LSV, ENS Cachan, France, 2006. (Cited
pages 89 and 90.)

[JWLY03] JIANG H., WANG W., LU H., YU J. X.: Holistic twig joins on
indexed XML documents. In Proceeding of VLDB (2003), pp. 273–
284. (Cited pages 42 and 154.)

[Kay08] KAY M.: XSLT 2.0 and XPath 2.0 Programmer’s Reference. Wrox,
4th edition, 2008. (Cited page 35.)

[KL06] KARIANTO W., LÖDING C.: Unranked Tree Automata with Sibling
Equalities and Disequalities. Research Report 0935-3232, RWTH
Aachen, Germany, Oct. 2006. 34 pages. (Cited pages 89 and 90.)

[KM06] KUTSIA T., MARIN M.: Solving regular constraints for hedges and
contexts. In Proceedings of the 20th International Workshop on Uni-
fication (UNIF’06) (2006), pp. 89–107. (Cited page 126.)

[Koc05] KOCH C.: On the complexity of nonrecursive XQuery and functional
query languages on complex values. In 24th SIGMOD-SIGACT-
SIGART Symposium on Principles of Database systems (2005),
ACM-Press, pp. 84–97. (Cited page 43.)

[Koz83] KOZEN D.: Results on the propositional µ-calculus. Theoretical
Computer Science 27, 1 (1983), 333–354. (Cited pages 41 and 132.)

[Lew80] LEWIS H. R.: Complexity results for classes of quantificational for-
mulas. J. Comput. Syst. Sci. 21, 3 (1980), 317–353. (Cited page 26.)

[Lib04a] LIBKIN L.: Elements of Finite Model Theory. Springer Verlag, 2004.
(Cited page 25.)

[Lib04b] LIBKIN L.: Elements Of Finite Model Theory. SpringerVerlag, 2004.
(Cited pages 43 and 63.)

Biblography 181

[Lib06] LIBKIN L.: Logics over unranked trees: an overview. Logical Meth-
ods in Computer Science 3, 2 (2006), 1–31. (Cited pages 4, 6, 19, 27,
41, 43, 161, and 164.)

[Loh01] LOHREY M.: On the parallel complexity of tree automata. In In-
ternational Conference on Rewriting Techniques and Applications
(RTA) (2001), pp. 201–215. (Cited page 21.)

[Mar04] MARX M.: XPath with conditional axis relations. In 9th In-
ternational Conference on Extending Database Technology (2004),
vol. 2992, Springer Verlag, pp. 477–494. (Cited page 39.)

[Mar05a] MARX M.: Conditional XPath. ACM Transactions on Database
Systems 30, 4 (2005), 929–959. (Cited pages 6, 38, 39, 42, 49, 50,
63, 73, 75, 76, and 164.)

[Mar05b] MARX M.: First order paths in ordered trees. In International Con-
ference on Database Theory (2005), pp. 114–128. (Cited pages 26,
38, 78, and 80.)

[Mar05c] MARX M.: Xml navigation and tarski’s relation algebras. In Com-
puter Science Logic (2005). (Cited page 40.)

[Mat02] MATEESCU R.: Local model-checking of modal mu-calculus on
acyclic labeled transition systems. In TACAS ’02: Proceedings of the
8th International Conference on Tools and Algorithms for the Con-
struction and Analysis of Systems (2002), Springer-Verlag, pp. 281–
295. (Cited page 41.)

[MBPS05] MANETH S., BERLEA A., PERST T., SEIDL H.: XML type check-
ing with macro tree transducers. In Proceedings of the Twenty-
Fourth ACM SIGMOD-SIGACT-SIGART Symposium on Principles
of Database Systems (PODS) (2005), ACM Press, pp. 283–294.
(Cited pages 4 and 161.)

[MdR05] MARX M., DE RIJKE M.: Semantic characterizations of naviga-
tional xpath. SIGMOD Rec. 34, 2 (2005), 41–46. (Cited page 38.)

[Mey73] MEYER A. R.: WEAK MONADIC SECOND ORDER THEORY OF
SUCCESSOR IS NOT ELEMENTARY-RECURSIVE. Tech. rep., Mas-
sachusetts Institute of Technology, 1973. (Cited page 28.)

[MLM01] MURATA M., LEE D., MANI M.: Taxonomy of XML schema lan-
guages using formal language theory. In Extreme Markup Languages
(Montreal, Canada, 2001). (Cited pages 33 and 34.)

[MNS04] MARTENS W., NEVEN F., SCHWENTICK T.: Complexity of de-
cision problems for simple regular expressions. In Mathematical
Foundations of Computer Science 2004, 29th International Sympo-
sium (2004), pp. 889–900. (Cited page 33.)

[MNSB06] MARTENS W., NEVEN F., SCHWENTICK T., BEX G. J.: Expres-
siveness and complexity of xml schema. ACM Trans. Database Syst.
31, 3 (2006), 770–813. (Cited pages 27 and 34.)

182 Biblography

[Mon81] MONGY J.: Transformation de noyaux reconnaissables d’arbres.
Forêts RATEG. PhD thesis, Université de Lille, 1981. (Cited pages 90
and 95.)

[Mor75] MORTIMER M.: On languages with two variables. Z. Math. Logik
Grundlagen Math 70, 4 (1975), 569–572. (Cited page 26.)

[Mor94] MORIYA E.: On two-way tree automata. Inf. Process. Lett. 50, 3
(1994), 117–121. (Cited page 32.)

[MP71] MCNAUGHTON R., PAPERT S. A.: Counter-Free Automata (M.I.T.
research monograph no. 65). The MIT Press, 1971. (Cited pages 24
and 26.)

[MR03] MOLLER F., RABINOVICH A.: Counting on CTL: on the expressive
power of monadic path logic. Information and Computation 184, 1
(2003), 147–159. (Cited pages 49, 50, and 63.)

[MS04] MIKLAU G., SUCIU D.: Containment and equivalence for a frag-
ment of XPath. Journal of the ACM 51, 1 (2004), 2–45. (Cited
page 38.)

[Nev00] NEVEN F.: Extensions of attribute grammars for structured doc-
ument queries. In DBPL ’99: Revised Papers from the 7th Inter-
national Workshop on Database Programming Languages (2000),
Springer-Verlag, pp. 99–116. (Cited page 32.)

[Nev02] NEVEN F.: Automata, logic, and XML. In Computer Science Logic
(2002), Lecture Notes in Computer Science, Springer Verlag, pp. 2–
26. (Cited pages 11, 19, and 27.)

[Ng84] NG K. C.: Relation Algebras with Transitive Closure. PhD thesis,
University of California, Berkeley, 1984. (Cited page 40.)

[Niw88] NIWINSKI D.: Fixed points vs. infinite generation. In Proceedings
of the Proceedings of the Third Annual Symposium on Logic in Com-
puter Science (1988), pp. 402–409. (Cited page 41.)

[NPTT05] NIEHREN J., PLANQUE L., TALBOT J.-M., TISON S.: N-ary
queries by tree automata. In 10th International Symposium on
Database Programming Languages (2005), vol. 3774 of Lecture
Notes in Computer Science, Springer Verlag, pp. 217–231. (Cited
pages 4, 27, 31, 43, 122, and 161.)

[NS00] NEVEN F., SCHWENTICK T.: Expressive and efficient pattern
languages for tree-structured data. In Proceedings of the Nine-
teenth ACM SIGMOD-SIGACT-SIGART Symposium on Principles of
Database Systems (2000), ACM, pp. 145–156. (Cited pages 27, 29,
and 43.)

[NS02a] NEVEN F., SCHWENTICK T.: Query automata over finite trees.
Theoretical Computer Science 275, 1-2 (2002), 633–674. (Cited
pages 27, 31, 32, and 65.)

Biblography 183

[NS02b] NEVEN F., SCHWENTICK T.: Xpath containment in the presence of
disjunction, dtds, and variables. In ICDT ’03: Proceedings of the 9th
International Conference on Database Theory (London, UK, 2002),
Springer-Verlag, pp. 315–329. (Cited pages 38 and 89.)

[NT77] NG K. C., TARSKI A.: Relation algebras with transitive closure.
Notices of the American Mathematical Society 24 (1977), A29–A30.
(Cited page 40.)

[NV02] NEVEN F., VAN DEN BUSSCHE J.: Expressiveness of structured
document query languages based on attribute grammars. Journal of
the ACM 49, 1 (2002), 56–100. (Cited pages 4, 27, 32, 43, and 161.)

[Olt07] OLTEANU D.: SPEX: Streamed and progressive evaluation of
XPath. IEEE Trans. Knowl. Data Eng 19, 7 (2007), 934–949. (Cited
page 154.)

[Pap94] PAPADIMITRIOU C.: Computational Complexity. Addison Wesley,
1994. (Cited page 21.)

[PQ68] PAIR C., QUERE A.: Définition et étude des bilangages réguliers.
Information and Control 13, 6 (1968), 565–593. (Cited pages 19
and 22.)

[Pra92] PRATT V. R.: Origins of the calculus of binary relations. In Logic in
Computer Science (1992), pp. 248–254. (Cited page 40.)

[PV00] PAPAKONSTANTINOU Y., VIANU V.: DTD Inference for Views
of XML Data. In Proceedings of the Nineteenth ACM SIGMOD-
SIGACT-SIGART Symposium on Principles of Database Systems
(2000), pp. 35–46. (Cited page 34.)

[Rey02] REYNOLDS J. C.: Separation logic: A logic for shared mutable data
structures. In 17th IEEE Symp. on Logic in Computer Science (2002),
IEEE, pp. 55–74. (Cited page 43.)

[Sch65] SCHÜTZENBERGER M. P.: On finite monoids having only trivial
subgroups. Information and Control 8 (1965), 190–194. (Cited
page 26.)

[Sch00] SCHWENTICK T.: On diving in trees. In 25th International Sym-
posium on Mathematical Foundations of Computer Science (2000),
pp. 660–669. (Cited pages 6, 43, 44, 49, 50, 63, and 164.)

[Sch04] SCHWENTICK T.: Trees, automata and xml. In PODS ’04: Proceed-
ings of the twenty-third ACM SIGMOD-SIGACT-SIGART symposium
on Principles of database systems (2004), ACM, pp. 222–222. (Cited
page 19.)

[Sch07] SCHWENTICK T.: Automata for xml – a survey. J. Comput. Syst.
Sci. 73, 3 (2007), 289–315. (Cited pages 4, 19, 22, 32, 89, and 161.)

[See91] SEESE: The structure of the models of decidable monadic theories of
graphs. Annals of Pure and Applied Logic 53 (1991). (Cited page 29.)

184 Biblography

[See96] SEESE D.: Linear time computable problems and first-order descrip-
tions. Mathematical Structures in Computer Science 6, 6 (1996),
505–526. (Cited page 29.)

[Sei92] SEIDL H.: Finite tree automata with cost functions. In CAAP ’92:
Proceedings of the 17th Colloquium on Trees in Algebra and Pro-
gramming (1992), Springer-Verlag, pp. 279–299. (Cited page 143.)

[Sei96] SEIDL: Least and greatest solutions of equations over N. In Nordic
Journal of Computing, vol. 3. 1996. (Cited page 142.)

[She] SHELAH S.: The monadic theory of order. Annals of Mathematics,
102, 379–419. (Cited pages 6, 49, 50, 63, and 164.)

[Shi08] SHIPMAN J. W.: XSLT Reference. 2008. (Cited pages 36 and 190.)

[SIP96] SIPSER M.: Introduction to the Theory of Computation. PWS,
Boston, MA, 1996. (Cited page 141.)

[SM73a] STOCKMEYER L. J., MEYER A. R.: Word problems requiring ex-
ponential time. In STOC ’73: Proceedings of the fifth annual ACM
symposium on Theory of computing (1973), pp. 1–9. (Cited pages 28
and 123.)

[SM73b] STOCKMEYER L. J., MEYER A. R.: Word problems requiring ex-
ponential time: Preliminary report. In STOC (1973), pp. 1–9. (Cited
page 144.)

[Ste94] STEFANSSON K.: Systems of set constraints with negative con-
straints are nexptime-complete. In IEEE Symposium on Logic in
Computer Science (1994). (Cited page 105.)

[Sto74] STOCKMEYER L. J.: The Complexity of Decision Problems in Au-
tomata Theory. PhD thesis, Department of Electrical Engineering,
MIT, 1974. (Cited pages 25, 28, 29, and 77.)

[SV01] SATTLER, VARDI: The hybrid mu-calculus. In IJCAR: International
Joint Conference on Automated Reasoning (2001), LNCS. (Cited
page 71.)

[Tak75] TAKAHASHI M.: Generalizations of regular sets and their applica-
tion to a study of context-free languages. Information and Control
27, 1 (1975), 1–36. (Cited pages 19 and 22.)

[Tar41] TARSKI A.: On the calculus of relations. Journal of Symbolic Logic
6, 3 (1941), 73–89. (Cited page 40.)

[tC06] TEN CATE B.: The expressiveness of XPath with transitive clo-
sure. In 25st ACM SIGMOD-SIGACT Symposium on Principles of
Database Systems (2006), ACM-Press. (Cited page 39.)

[tCL07] TEN CATE B., LUTZ C.: The complexity of query containment in
expressive fragments of xpath 2.0. In PODS ’07: Proceedings of the
twenty-sixth ACM SIGMOD-SIGACT-SIGART symposium on Princi-
ples of database systems (2007), ACM, pp. 73–82. (Cited page 38.)

Biblography 185

[tCM07] TEN CATE B., MARX M.: Axiomatizing the logical core of XPath
2.0. In International Conference on Database Theory (2007). (Cited
pages 35 and 38.)

[tCS08] TEN CATE B., SEGOUFIN L.: Xpath, transitive closure logic,
and nested tree walking automata. In PODS ’08: Proceedings of
the twenty-seventh ACM SIGMOD-SIGACT-SIGART symposium on
Principles of database systems (2008). (Cited pages 22, 30, and 39.)

[Tho84] THOMAS W.: Logical aspects in the study of tree languages. In
Proceedings of the 9th International Colloquium on Trees in Algebra
and Programming, CAAP ’84 (1984), pp. 31 – 50. (Cited pages 6,
49, 50, 63, and 164.)

[Tho97] THOMAS W.: Languages, automata, and logic. Handbook of formal
languages, vol. 3: beyond words (1997), 389–455. (Cited pages 18,
27, and 28.)

[Tra75] TRAKHTENBROT B.: The impossibility of an algorithm for the de-
cidability problem on finite classes. Doklady AN SSR 21 (1975),
135–140. (Cited page 26.)

[Tur37] TURING A. M.: Computability and lambda-definability. Journal of
Symbolic Logic 2, 4 (1937), 153–163. (Cited page 26.)

[TW68] THATCHER J. W., WRIGHT J. B.: Generalized finite automata with
an application to a decision problem of second-order logic. Mathe-
matical System Theory 2 (1968), 57–82. (Cited pages 4, 18, 26, 27,
28, 122, and 161.)

[Var82] VARDI M. Y.: The complexity of relational query languages (ex-
tended abstract). In STOC ’82: Proceedings of the fourteenth annual
ACM symposium on Theory of computing (1982), ACM, pp. 137–
146. (Cited pages 25 and 29.)

[Var95] VARDI M. Y.: On the complexity of bounded-variable queries. In
Fourteenth ACM SIGACT-SIGMOD-SIGART Symposium on Princi-
ples of Database Systems (1995), pp. 266–276. (Cited page 25.)

[Var98] VARDI M. Y.: Reasoning about the past with two-way automata.
In ICALP ’98: Proceedings of the 25th International Colloquium on
Automata, Languages and Programming (1998), pp. 628–641. (Cited
page 41.)

[VJK08] VACHER C., JACQUEMARD F., KLAY F.:, 2008. Mostrare Seminar,
INRIA Lille-Nord Europe. (Cited page 127.)

[Wik] XML Wikipedia Database.
http://en.wikipedia.org/wiki/Wikipedia:Database_download. (Cited
pages 70 and 163.)

[Woo03] WOOD P. T.: Containment for xpath fragments under dtd constraints.
In ICDT ’03: Proceedings of the 9th International Conference on
Database Theory (London, UK, 2003), Springer-Verlag, pp. 300–
314. (Cited page 38.)

186 Biblography

[Yan81] YANNAKAKISM.: Algorithms for acyclic database schemes. In Pro-
ceeding of VLDB (1981), IEEE Computer Society, pp. 82–94. (Cited
pages 42, 57, 58, and 61.)

[Zei94] ZEITMAN R. S.: The composition method. PhD thesis, 1994.
Adviser-Yuri Gurevich and Adviser-Alexis Manaster Ramer. (Cited
page 63.)

[ZXM07] ZHOU J., XIE M., MENG X.: Twigstack+: Holistic twig join prun-
ing using extended solution extension. 855–860. (Cited pages 42
and 154.)

NOTATIONS

Notation Description Section
Generic Notations

def
= definition
N set of natural numbers
◦ composition operator
|A| cardinality of the set A
‖A‖ size of the representation of A
2S powerset of set S
πi i-th projection
J.K semantics
L.M translation
A tree automaton
L(A) language recognized by A
‖A‖ size of the tree automaton A 2.3.1
 query expression 2.2.2
Q set of query expressions 2.2.2
Q(.) interpretation of query expressions as queries 2.2.2

Trees and Hedges

Pcf (Λ) cofinite (and finite) subsets of Λ 2.1.7
Σ finite alphabet (ranked or unranked) 2.1.3
Λ infinite alphabet (ranked or unranked) 2.1.7
σunr(Σ) signature of unranked trees over Σ 2.1.3
‖t‖ size of the tree t 2.1.3
Dom(t) domain of t 2.1.2
≺tfc first-child relation in t 2.1.3
≺tns next-sibling relation in t 2.1.3
≺tns+ transitive closure of ≺tns ??

≺tns∗ transitive and reflexive closure of ≺tns 2.1.3
≺tch child relation in t 2.1.3
≺tch+ transitive closure of ≺tch 2.1.3
≺tch+ transitive and reflexive closure of ≺tch 2.1.3
roott root of t 2.1.3
labt(u) label of u in t 2.1.3
labta set of nodes of t labeled a 2.1.3
t|u subtree of t at nodes u 2.1.3
h|shu subhedge of h at nodes u 3.5.2
Tunr(Σ) set of unranked trees over Σ 2.1.3
H(Σ) set of hedges over Σ 2.1.4

187

188 Notations

Notation Description Section
Tran(Σ) set of ranked trees over Σ 2.1.5
Ti(Σ) set of ranked trees over Σ of arity at most i 2.1.5
Twran(Σ) set of weakly ranked trees over Σ 2.1.5
ar(Σ) arity of alphabet Σ
nodet(w) node of t at position w
0 empty hedge 2.1.4
.|. hedge concatenation 2.1.4

FO, MSO and the Composition Language

‖φ‖ size of the FO or MSO formula φ 2.4.1
|= satisfiability relation 2.4.1
ρ valuation 2.4.1
Var(φ) variables of φ 2.4.1
FVar(φ) free variables of φ 2.4.1
typeLn(M) set of L-formulas of quantifier depth less than n

satisfied in the structureM
3.5.1

≡Ln equivalence relation on structures 3.5.1
FOk k-variable fragment of FO
FObin FO formulas with two free variables
◦ composition operator 3.2.1
‖φ‖ size of the composition formula φ 3.2.1
C(L) composition formulas over L 3.2.1
Cnvs(L) composition formulas over L with non-variable

sharing
3.2.2

NVS(◦) non-variable sharing restriction 3.2.2
llca(u, v) least left common ancestor ??

Axis set of XPath axis 2.8
x ∼ y tree equality predicate 5.6
MSO[∼] MSO formulas over ≺ch1

,≺ch2
and ∼ 5.6

diffkX,Y k-bounded difference predicate 5.6
MSO∃= existential MSO fragment with equality tests 5.6

TAGED

=A equality relation on states 5.2
6=A disequality relation on states 5.2
dom(=A) domain of =A 5.2
dom(6=A) domain of 6=A 5.2
‖A‖ size of the TAGED A 5.2
idQ identity relation on Q
L(A) language recognized by A 5.2
patht(u, v) shortest path from u to v in t 5.3.3
∼t,r equivalence relation on nodes 5.3.3
↔t,r pre-equivalence relation on nodes 5.3.3
(A, k) vertically bounded TAGED 5.5
Cr roots of elementary contexts of r 5.5.1
cxtr(u) elementary context rooted at node u 5.5.1
≺∼t,r partial order on ∼t,r-equivalence classes 5.5.1

Notations 189

Notation Description Section
[u]t,r ∼t,r-equivalence class of u 5.5.1
F frontier 5.5.1
Fmax(t, r) maximal frontier of t and r 5.5.1
P predicate 5.5.1
Rep repair predicate 5.5.1
↑(U) set of ancestors of the nodes of U 5.5.3

TQL

ξ recursion variables 6.2.1
µξ.φ least fixpoint constructor 6.2.1
FL(φ) Fisher-Ladner closure of φ 6.2.1
rd(φ) recursion-depth of φ 6.2.1
≺H(Λ) partial order on hedges over Λ 6.2.1
≺ partial order on hedges and TQL formulas 6.2.1
ρ valuation of tree variables 6.2.2
δ valuation of recursion variables 6.2.2
J.Kρ,δ semantics of TQL formulas under the valuations

ρ and δ
6.2.2

φ[ξ 7→ φ′] substitution of ξ by φ′ in φ 6.2.1
qd(φ) quantifier depth of φ 2.4.1
0 empty hedge 2.1.4
.|. hedge concatenation 2.1.4
X̂ negation of X in the tree domain (X̂ = Λ[⊤] ∧

¬X)
6.6

Aφ TAGED associated with φ 6.6.3
Vert(φ) number of vertical variable occurences of φ 6.5.2
Subext(φ) formulas of FL(φ) of the form α[ψ], X , or X̂ 6.6.2
w ⊕ w′ word combination 6.6.2
hedges(w, ρ) set of hedges defined by w under the valuation ρ 6.6.2
Hψ horizontal language defined by ψ 6.6.2
ρr valuation associated with the run r 6.6.5

LIST OF FIGURES

1.1 Seller and shipper XML orders. 2
1.2 Tree representations of seller and shipper XML orders. 3

2.1 Main relations of an unranked tree structure t 13
2.2 An unranked tree (i) and its first-child next-sibling encoding (ii). . 15
2.3 Substitution of a binary context by two trees 15
2.4 A tree over Σb and a successful run of Ab on it. 20
2.5 XPath axes starting from the bold node (picture taken from

(Shi08)) . 36
2.6 Syntax of Core XPath 1.0 . 37
2.7 Semantics of Core XPath 1.0 . 37
2.8 Syntax of CoreXPath2.0 . 38
2.9 Semantics of the new expressions of CoreXPath2.0 38

3.1 The tree t and their node identifiers 52
3.2 From ACQs to Composition Formulas 58
3.3 Computing of the answer set Q(ξ∆)(t) with implicit memoization. 62
3.4 Operation on extended hedges 66
3.5 A hedge h and its subhedge h|shu at node u 68

4.1 Syntax of CXPathnary . 75
4.2 From CoreXPath2.0nvs to Cnvs2 (CoreXPath2.0varfree) 83

5.1 Tree tn . 94
5.2 representation of a solution of PCP 96
5.3 Equivalence relation where q =A q 98
5.4 Parallel pumping of state q . 104
5.5 Elementary contexts of a run r over {q, p, qf , q=, p=, s=}

where q= =A q=, p= =A p= and s= =A s=. Their root
nodes are identified by natural numbers. The set C(r) is
equal to {1, 2, 3, 4, 5, 6, 7, 8}. The maximal frontier is equal
to {{1, 2}, {3, 4, 5}, {6, 7, 8}}. 108

5.6 A configuration where Rep(t, r, F, v1, v2, u) holds. 110
5.7 parallel pumping in elementary contexts 111
5.8 . 113
5.9 Example satisfying the hypothesis of Lemma 5.5.6 115
5.10 parallel growth in elementary contexts 117

6.1 Semantics of TQL formulas . 134
6.2 Properties of the Satisfaction Relation 135
6.3 A tree with T 6= S . 137

190

List of Figures 191

8.1 Représentations XML d’un bon de commande et de son ordre de
livraison. 159

8.2 Représentations arborescentes des documents XML de la figure 8.1 160

	Titre
	Contents
	Foreword
	1. Introduction
	1.1 Motivations and objectives
	1.2 Overview of the dissertation
	1.2.1 Composition Language
	1.2.2 Tree Query Logic
	1.2.3 Organization of the Dissertation

	2. Trees and queries
	2.1 Tree models
	2.1.1 Alphabets
	2.1.2 Logical Structures
	2.1.3 Unranked Trees
	2.1.4 Hedges and Tree Operations
	2.1.5 Ranked Trees and Binary Encoding
	2.1.6 Contexts
	2.1.7 Trees over an Infinite Alphabet

	2.2 Queries
	2.2.1 Definition
	2.2.2 Query Languages
	2.2.3 Query Evaluation and Decision Problems

	2.3 Finite tree automata
	2.3.1 Tree Automata for Ranked Trees
	2.3.2 Tree Automata for Unranked Trees

	2.4 First order logic (FO)
	2.4.1 Syntax, Semantics, and Examples
	2.4.2 FO: State of the Art

	2.5 Monadic second order logic (MSO)
	2.5.1 Syntax and Semantics
	2.5.2 Correspondence between MSO and recognizable languages
	2.5.3 MSO: State of the Art

	2.6 Tree automata as a query language
	2.7 Schema languages
	2.7.1 Document Type Definition
	2.7.2 Extended DTD
	2.7.3 Other schema languages

	2.8 XPath 1.0 and 2.0
	2.8.1 Syntax and Semantics
	2.8.2 Expressiveness and Complexity of CoreXPath1.0
	2.8.3 Expressiveness and Complexity of CoreXPath2.0
	2.8.4 XPath-like languages
	2.8.5 Caterpillars

	2.9 Temporal logics
	2.10 Monadic datalog and conjunctive queries
	2.11 Unordered trees
	2.12 n-ary query languages

	Part I : from binary to arbitrary arity queries
	3. Composing binary queries
	3.1 Introduction
	3.2 Composition language
	3.2.1 Syntax and Semantics
	3.2.2 The non-variable sharing fragment Cnvs(L)
	3.2.3 Examples

	3.3 Relation to FO and conjunctive queries
	3.3.1 Relation to FO
	3.3.2 Relation to Conjunctive Queries

	3.4 Query non-emptiness and query evaluation
	3.4.1 Query Non-Emptiness and Model-Checking
	3.4.2 Query Evaluation

	3.5 Expressiveness of the composition language
	3.5.1 Brief reminder on fundamental properties of finite model theory
	3.5.2 FO and MSO completeness
	3.5.3 Composition of monadic queries over hedges

	3.6 Conclusion

	4. Application to XPath fragments with variables
	4.1 Conditional XPath with variables
	4.2 A polynomial-time fragment of CoreXPath2.0
	4.2.1 XPath 2.0 and FO
	4.2.2 Towards a polynomial-time fragment of CoreXPath2.0
	4.2.3 The variable-free fragment
	4.2.4 Relation to the composition language

	Part II : a Spatial Logic for Trees
	5. Tree automata with global constraints
	5.1 Introduction
	5.2 Definition and examples
	5.3 Closure properties of TAGED and decision problems
	5.3.1 Closure Properties of TAGED-definable languages
	5.3.2 Universality is undecidable
	5.3.3 On restricting the equality relation
	5.3.4 A Normal Form for the Runs when =A⊆ idQ

	5.4 Positive and negative TAGEDs
	5.4.1 Emptiness of Positive TAGEDs
	5.4.2 Pumping Lemma for Positive TAGEDs
	5.4.3 Emptiness of Negative TAGEDs

	5.5 Vertically bounded TAGEDs
	5.5.1 A Characterization of the Non-Emptiness Problem
	5.5.2 Proof of the Forth Direction of Theorem 5.5.4
	5.5.3 Proof of the Back Direction of Theorem 5.5.4

	5.6 MSO with tree equality tests
	5.7 TAGEDs for unranked trees over an infinite alphabet
	5.7.1 Extension to an Infinite Alphabet
	5.7.2 Binary Encoding

	5.8 Conclusion

	6. Tree query logic
	6.1 Introduction
	6.2 Syntax and semantics
	6.2.1 Syntax
	6.2.2 Semantics

	6.3 Examples
	6.4 Model-checking algorithm
	6.5 TQL fragments and satisfiability
	6.5.1 Undecidable Fragments
	6.5.2 The Bounded Fragment
	6.5.3 Discussion on Expressiveness

	6.6 Bounded TQL formulas to vbTAGEDs
	6.6.1 Elimination of Negation
	6.6.2 Horizontal Languages
	6.6.3 Construction of the vbTAGED
	6.6.4 Examples
	6.6.5 Proof of Correctness

	6.7 Conclusion

	7. Conclusion
	7.1 Main results
	7.2 Perspectives

	8. Résumé
	8.1 Motivations et objectifs
	8.2 Description de la thèse
	8.2.1 Langage de Composition
	8.2.2 La Logique TQL

	Bibliography
	List of figures

	source: Thèse d'Emmanuel Filiot, Lille 1, 2008
	d: © 2010 Tous droits réservés.
	lien: http://doc.univ-lille1.fr

