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Abstract

This work aims at providing a solution to confidentiality issues in multiapplicative systems:
ensuring security for an application running on small and autonomous systems by verifying
information flow properties at deployment time. Existing work on information flow does not
scale to small open systems due to resources limitations and due to lack of modularity, which
is essential in a dynamically evolving environment. In order to provide a complete solution, we
address both practical and theoretical aspects. We first propose a model and a tool dedicated to
small open systems running Java bytecode, with support for inheritance and override. Our approach
is modular, hence the verification is incremental and is performed on the target device, the only
place where the security can be guaranteed. To our knowledge, it is the first information flow
verifier for embedded systems. To prove its usability, we ran different experiments and we tested
the tool in several contexts. Secondly, we tackle the information flow issue from a theoretical point
of view. We propose a formal model, based on abstract memory graphs; an abstract memory graph
is a points-to graph extended with nodes abstracting input values of primitive type and flows arising
from implicit flow. Our construction is proved correct with respect to non-interference. Contrary to
most type-based approaches, our abstract memory graph is built independently on any security level
knowledge. Information flow is checked a posteriori by labeling abstract memory graphs security
levels.

Résumé

Nos travaux ont pour but de fournir une solution aux problèmes de confidentialité dans les
systèmes multi-applicatifs: assurer la sécurité des applications dédiées aux systèmes portables et
autonomes en vérifiant des propriétés de sécurité en termes de flot d’information au moment du
chargement des applications, contrairement aux travaux existants qui ne sont ni modulaires ni
dynamiques. Afin de fournir une solution complète, nous avons traité les aspects à la fois pratiques
et théoriques du problème. Dans un premier temps, nous proposons un modèle et un outil adaptés
aux contraintes inhérentes aux systèmes embarqués. Notre approche est modulaire et supporte
l’héritage et la surcharge. La vérification est donc incrémentale et s’effectue sur le système cible, le
seul endroit ou la sécurité peut être garantie. Il s’agit, à notre connaissance, du premier vérifieur
embarqué pour l’analyse de flot d’information. Afin de prouver l’utilité pratique de notre modèle,
nous avons mené des expérimentations et nous avons testé l’outil dans des contextes différents.
Dans un deuxième temps, nous traitons les aspects théoriques: nous proposons un modèle formel
basé sur des graphes de l’abstraction de la mémoire. Un graphe de l’abstraction de la mémoire
est un graphe ≪points-to≫ prolongé par des noeuds de type primitif et par des liens issus de flots
implicites. Notre construction est prouvée correcte par un théorème de non-interférence. De plus,
les politiques de sécurité ne nécessitent pas d’être connues pendant l’analyse : le flot d’information
est vérifié a posteriori en étiquetant le graphe de l’abstraction de la mémoire avec des niveaux de
sécurité.
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1
Introduction

Computer systems handle a considerable amount of data carrying sensitive information that should
be protected from malicious users. Programs running on such systems may access data either to
perform computations or to transmit it over an output channel. Thus they can violate the security
of sensitive data either by releasing it to unauthorized users or by modifying it. In order to prevent
such situations, tracing data manipulation throughout programs is mandatory.

Mechanisms such as access control or cryptography provide some protection for accessing
and modifying confidential data, but they are insufficient to regulate data propagation once the
information has been released. For example, an authorized program can read sensitive data and
write it to a location accessible by an unauthorized program. These mechanisms guarantee security
only when it comes to completely trusted programs. The illegal transfer of information resulting
from interaction between untrusted programs may be circumvented by analyzing and controlling
the underlying information flow.

Information flow analysis [SM03] consists of statically analyzing the code of a program in
order to detect illicit data manipulations. Concretely, data manipulated by programs (e.g., objects,
parameters) are tagged with security labels and all information flows are traced. Usually, information
flow is associated with non-interference [GM82] which prevents all information flows from sensitive
data to non-sensitive data.

A considerable amount of work has been devoted to the design of methods for analysing
information flow, but despite their long history and appealing strengths, information-flow mechanisms

have not yet been successfully applied in practice[Zda04]. According to Steve Zdancewic [Zda04],
the real challenge for information-flow security is demonstrating that all of this theory and these

language designs are actually useful—we need to apply the technology to real problems, or, failing that,

understand why such an appealing technology is not useful in practice.

In this thesis, we tackle information flow from a practical point of view. We give solutions for some
challenges such as integration with existing security mechanisms, security verification integration
within modern deployment schemes, the inadequacy of strict noninterference, and the difficulty of
managing security policies.

Embedded information flow verification First, we address challenges raised by small open
environments such as smart cards, PDA, mobile phones, etc. by proposing an embedded information
flow model adapted to targeted platforms. As ubiquitous computing is evolving towards post
issuance and automatic execution of untrusted code, the security issue is getting more and more
intense with multiapplication platforms, dynamic code downloading and constant growth of the
complexity. Integrating information flow certification for mobile code in Java-enabled small open
embedded systems requires, at least, (i) separation of code and security policies and (ii) certification
at loading time.

In order to perform the certification at loading time, we use type inference and a technique in the
style of Necula’s proof carrying code (PCC) [RR98, Nec97]. This verifier scheme is an extension of
to the Java bytecode lightweight verification [RR98]. The idea is to separate the verification process
in two parts. An off card part (the prover), that infers a certificate and some “proof” indicating
that the code is correct with respect to the security policy and an on card part (the verifier), that
uses the proof to certify the correctness of downloaded code. To our knowledge, this is the first
implementation of an embedded information flow verifier. Experimental results show that our
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verifier can be efficiently used for our target applications and hence, it can be successfully applied
in practice.

Defining security policies Information flow analysis does not guarantee security by itself: it is a
powerful mechanism that can be exploited to implement the desired security policies. The difficulty
is to ensure that local checks (mechanisms) actually implement the global security policy of the
system (the security policy of each software unit in the system). Information flow mechanisms
are too coarse to express desired policies, thus one of their common pitfalls is to define and verify
complex policies, reflecting real attacking scenarios.

Hence, to enhance the power of the embedded information flow model and its usability, we
enrich it with security policies describing allowed collaborations between different software units in
a program. While the embedded information flow model enforces non-interference, the security
policies allow a form of relaxation and they have enough power to express the desired security in a
multiapplication small open system. In order to fit with the paradigm of Java Virtual Machine, the
security policies are not mixed with the code, and they are verified at loading time. Hence, defining
a new security policy does not require reanalyzing the entire system.

Integrating information flow certification in a framework Developping an information flow
verifier and defining security policies are not enough to make information flow appealing to real
users. A key issue in information flow security, and even computer security in general, is not only
detecting and preventing attacks, but also (i) helping the developer to build safe applications,
components and (ii) increasing user confidence in software products. In most current approaches to
information flow security of software units, security flaws are fixed only after the full implementation
of the software units or only after they have been exploited. To make information flow security more
appealing to the software industry, more proactive and durable security solutions are needed, by
addressing security requirements throughout the software system lifecycle, including requirements
and design specification, testing, and maintenance phases. Appropriate information flow security
analysis techniques must be used for each of these phases. Hence, to make information flow
appealing in practice, we make a step further by integrating the embedded information flow model
in a security analysis framework, which combines a quantitative design security analysis technique
(developed at the University of Victoria, Canada), with the embedded verifier.

Proving the soundness of an information flow model In order to have a complete model, both
usefull in practice and proved correct, the next step is to prove the soundness of the embedded
information flow model. To prove the correctness of the analysis, we define a new analysis, which is
more general as it does not need to consider the approximations imposed in the embedded model by
the constraint resources. The new analysis is more precise than the previous one while keeping the
main features: adapted to open systems, separation of concerns. The information flow is described
by means of abstract memory graphs (AMGs). Security policies are enforced by labeling a posteriori

the graph with security levels. As in the embedded information flow model, changing the security
levels does not require reanalyzing the entire system. The embedded information flow model can
be recovered as an approximation of the new analysis.

Throughout our approach, we tried to make usable our work on real Java software. This lead to
the development of a functional prototype, available online1, and to several practical experiments,
especially on Java applications for mobile phones. We begin this thesis by presenting a state of the
art for information flow security in the context of mobile code.

1http://www.lifl.fr/˜ghindici/STAN



Introduction (french)

La présence de petits appareils tels que les téléphones mobiles, cartes à puce, PDA, ou encore
GPS, pilotés par un système embarqué est de plus en plus forte. Dans un avenir proche, ces
différentes applications ne seront plus exécutées par différents systèmes dédiés à celles-ci mais
installées sur le même système hôte. Cette coexistence d’applications sur le même système pose un
certains nombre de problèmes de sécurité. Les informations confidentielles (codes PIN, dossiers
médicaux, etc) manipulées par ces applications doivent être accédées uniquement par des ayant-
droits (programmes et/ou utilisateurs), ce qui nécessite une protection adéquate du système
embarqué contre d’éventuelles attaques, délibérées ou non.

Les mécanismes de contrôle d’accès tels que l’identification par mot de passe permettent de limiter
l’accès aux données sensibles aux utilisateurs/programmes autorisés. Cependant, cela ne permet
nullement d’empêcher une application autorisée de divulguer une information secrète. Or une telle
fuite d’information est possible et peut venir d’une mauvaise implémentation/conception du code
lui-même, ou bien d’un code malfaisant. Pour détecter ces fuites, une analyse de flot d’information
est nécessaire: les données sont étiquetées avec des niveaux de securité, et leur propagation lors de
l’exécution d’un programme est étudiée.

Nous nous intéressons donc au flot des données au sein des applications. La vérification de cette
propagation des données sensibles permet de garantir que l’utilisation de celles-ci reste correcte, et
ne permet pas leur divulgation. Afin de fournir une solution complète, nous avons traité les aspects
à la fois pratique et théorique du problème.

Les contraintes des systèmes portables (puissance de calcul, capacité mémoire) ne permettent pas
la vérification de propriétés de sécurité directement sur le matériel cible. Pour rendre la vérification
de flot d’information utilisable en pratique, nous avons proposé un schéma d’analyse en deux étapes:
(1) une analyse externe [GGSR06a], qui peut être effectuée sur une machine assez puissante et
qui réalise un calcul du type, et (2) une analyse embarquée [GGSR07] qui vérifie, au moment
du chargement, l’exactitude de calcul du type effectué à l’extérieur. Le modèle présenté respecte
la non-interférence: en considérant deux niveaux de sécurité, secret et public, un programme est
sûr par rapport à la non-interference si, à partir des données étiquetées public en sortie, nous ne
pouvons déduire aucune information sur les données étiquetées secret.

La non-interférence est une proprieté puissante qui n’autorise que les flots d’information de secret

vers secret. Pourtant, la non-interférence ne fait aucune distinction entre les sources de données
secret. Les politiques de sécurité définies avec cette relation sont trop restrictives. De plus, dans la
majorité des cas et en particulier dans le cas des systèmes multi-applicatifs, elles ne sont pas assez
expressives. Pour offrir une solution à ce problème, nous raffinons la non-interférence en définissant
des politiques de sécurité plus complexes, qui prennent en considération les sources de données
secret [GSR08]. Pour échapper à la rigueur de la non-interférence, nous avons défini un langage
dédié qui décrit les flots d’information autorisés dans un programme et nous montrons comment les
politiques définies avec ce langage sont verifiées dans le schéma d’analyse presenté précédemment.

En collaboration avec l’université de Victoria, Canada, nous avons étudié l’utilisabilité de notre
solution sur un cas d’étude [GGSR+06b], qui consiste en l’utilisation d’une carte à puce réunissant
plusieurs applications médicales qui doivent respecter les politiques de sécurité définies par le BMA
(British Medical Association).

Ensuite, nous avons traité les aspects théoriques en présentant une analyse de flot d’information
pour le bytecode Java [GSRT09, GSRT07]. Notre approche consiste à calculer, pour différents points
du programme, un graphe de dépendances qui représente l’influence que les valeurs en entrée d’une
méthode ont sur les sorties. Ce calcul inclut une analyse de pointeurs (illustrant les dépendances
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entre objets) à laquelle sont ajoutées les dépendances issues des données de type primitif et du flot
de contrôle du programme. La construction de notre graphe est prouvée correcte par un théorème
de non-interférence qui énonce qu’une valeur de sortie n’est pas liée à une valeur d’entrée dans
le graphe de dépendances si la valeur de sortie ne change pas lorsque la valeur d’entrée varie. À
l’inverse de beaucoup de techniques basées sur des systèmes de types, notre approche ne nécessite
pas de connâıtre la politique de sécurité lors du calcul du graphe : le respect d’une politique de
≪sécurité≫ en termes de flot d’information est vérifié en étiquetant ≪a posteriori≫ le graphe de
dépendances avec des niveaux de sécurité.
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This dissertation involves several areas of reseach, including confidentiality, information flow,
type inference, Java security in the presence of dynamic downloading, software verification. We first
define confidentiality, then we introduce information flow security (e.g., challenges, approaches,
solutions). After that, we give a large view on application security for a Java Virtual Machine, and
we concentrate on information flow threats for multiapplication systems. We conclude with our
contributions and document structure.

2.1 Protecting data confidentiality

Computer security has been an important problem since computers have existed. In a rapidly
evolving computing infrastructure, where the security threats increase constantly, offering more
and more security-sensitive services is an essential goal. One of the main challenges in computer
security is to formally define security policies and to develop mechanisms which guarantee the
legitimate use of sensitive data.

Computer systems handle a considerable amount of data carrying sensitive information that
should be protected from malicious users. Programs running on such systems may access data
either to perform computations or to transmit it over an output channel. Thus they can violate the
security of sensitive data either by releasing it to unauthorized users or by modifying it.

Two major data security properties have been identified:
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p = false;

if(s)

nop;

else

p = true;

Figure 2.1: Implicit flow example

Confidentiality ensures that sensitive data is read only by authorized users.

Integrity ensures that sensitive data is modified only by authorized users.

This thesis focuses on data confidentiality. Since integrity and confidentiality go hand in hand,
deducting the integrity properties from the confidentiality properties is straightforward.

Access control The concept of confidentiality in computer systems is usually associated with
discretionary access control [DPS03], which consists of annotating each data/resource with a label
defining which users/programs may read/write it. An identification mechanism allows dynamic
monitoring of each access and unauthorized access is rejected. Even if it provides protection for
accessing and modifying confidential data, access control is insufficient to regulate data propagation
once the information has been released. For example, an authorized program can read sensitive
data and write it to a location accessible by an unauthorized program. This mechanism guarantees
security only when it comes to completely trusted programs.

Mandatory access control In order to address data propagation, access control techniques have
been graduatly refined, converging to mandatory access control [Den82]. This mechanism is a
transitive extension of access control, as it enlarges the scope of access restrictions from the point
where data has been released to any point where data is being used. To achieve the extended access
restrictions, data is labeled with security levels; data propagation is regulated by the system, which
augments normal data computation within programs with security label computations.

In this context, Bell and LaPadula [BL76] proposed a model which focuses on data confidentiality
and access to classified information. This security model is characterized by the phrase: no read up,

no write down. In other words, users can view content only at or below their own security level and
can create content only at or above their own security level.

The Bell-LaPadula model addresses only data confidentiality. To overcome this weakness, the
Biba model [Bib77], which describes rules for the protection of data integrity, has been developed.
In contrast with the Bell-LaPadula model, the phrase which characterizes the model is: no write up,

no read down, meaning that users can only create content at or below their own integrity level and
they can only view content at or above their own integrity level.

The most common approach to mandatory access control implementation is dynamic enforcement.
Fenton’s Data Mark Machine [Fen74] is one of the earliest abstract model that used the concept
of dynamic enforcement of confidentiality policies. But, besides the obvious runtime overhead (in
execution time and occupied memory), the weakness of dynamic enforcement mechanisms consists
of predicting implicit information flows which arise from the control structure of a program, as
opposed to explicit flows which are generated by direct assignment of confidential data to public
variables. Handling implicit flows correctly is essential for computer security, as they may disclose
data from the execution or non-execution of some program statements. Let us consider the example
in Figure 2.1. where s contains sensitive data and p insensitive data. The statement p = true

is executed only if s is not true. Hence, the insecurity arises from the fact that an observer of
the public value p may induce information about the sensitive data s. Dynamic enforcement for
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mandatory access control never detects an illegal data flow when executing the program with s

= true, but an observer could infer information from the final value of p and hence from the
non-execution of the statement p = true.

2.2 Information flow

Another more promising solution consists of analysing a priori the system or only a part of it (some
programs) to which we wish to grant some privileges on sensitive data, in order to determine
how it uses these privileges. If the static analysis guarantees that the behaviour of the system
is safe or acceptable, then the system is granted the privileges without any restriction and it is
executed without any further verification. If the analysis fails, its execution is rejected. This kind
of mechanism for enforcing security is called information flow analysis and unlike the previous
mechanisms, it does not rely on any trust relation. The correctness proof is sufficient to guarantee
security.

Information flow analysis is a language based technique as it uses language semantics and static
analysis to enforce security properties. Due to its static character, this approach presents two major
advantages. First, the analysis does not introduce any runtime overhead; the execution of a certified
system is similar to the execution of a system that does not perform any verification. Secondly, the
analysis can take into account all possible execution paths, instead of the single execution path
followed by a dynamic mechanism. Contrary to mandatory access control, an information flow
analysis detects implicit flows, as the one describes in Figure 2.1. Hence, information flow analysis
increases precision by correctly handling implicit flows.

2.2.1 Channels

Information flow analysis aims at enforcing confidentiality policies by controlling how data flows
take place within computations of programs. Data flows occur in different forms, or channels. The
most common channels, whose purpose is information transfer, are named direct channels or direct

flows. Direct flow means direct value passing including assignment and argument or return value
passing through method call. It is obvious that the statement p = s+10; generates a dependency
of p on s, through direct flow.

Channels which are not intended to serve as media for information transfer are called covert

channels [Lam73]. The most important covert channel is implicit flow, as already discussed for
example in Figure 2.1. As the implicit flow has already showed, covert channels represent a real
challenge in enforcing confidentiality properties. Other covert channels [SM03] include timing
channels (leaks information through the time at which an event occurs), termination channels
(leak information through the termination or nontermination of a program/statement), resource
allocation (leak data through the exhaustion of a limited resource such as memory, files or hard disk
space), power consumption, probabilistic channels, synchronization channels (in multithreaded
environments) etc.

This thesis accounts for the most important type of channels: direct flows and implicit flows
(excluding unchecked exceptions). To avoid data leaks from termination channels, we assume that
all programs terminate. Synchronization channels and hence multithreading are partially supported.
The other covert channels are left out of the scope of this document, as a model usually reflects
limited aspects of the real system and hence it cannot capture all channels.

2.2.2 Information flow policies

In order to specify which information flows are allowed, data sources are labeled with security levels
(in the same way as in mandatory access control). Data confidentiality is guaranteed if information
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Figure 2.2: Non-interference

is read only by subjects with an allowed security level. Hence, an ordering relation must be given
for security levels. Information is allowed to flow from a resource to another if the source has a
lower security level than the target. Complementary, to ensure data integrity, data of a resource is
allowed to flow to another one if it has a higher security level than the target.

Using the order relation, information flow policies can be described over a lattice of security
levels. This model was initially introduced by Denning [Den76]. The model defined in this thesis
follows the same approach, i.e., information is allowed to flow in only one direction, from lower
to higher security levels. Some applications need complex security lattice but usually, for sake of
simplicity, the security lattice is made of two security levels, secret (or high) and public (or low).
The order relation is obvious: low ≤ high, hence information flow is allowed to flow from public to
secret, but not in the opposite direction.

The decentralized label model [ML97, ML98] proposes a new type of information flow policies:
data belongs to owners (one or many) who decide how the information can be disseminated. Again
data is labeled with security levels, the difference from the lattice model being the definition of
a security level: in the decentralized model, the security level is a set of pairs with owners and
readers. A data can have multiple owners, and each owner can define its own security policy. Data
is released only if all owners agree.

2.2.3 Non-interference

The fact that a program is secure with respect to information flow is formally captured by the notion
of non-interference [GM82], which states that public, low outputs should not depend on secret, high
inputs. If we represent the execution of a program P as a box with public and secret inputs and
outputs, we define non-interference as changes in secret inputs do not cause changes in public outputs.
Figure 2.2 shows two executions of a program which satisfies non-interference. Since the only
difference in the two executions is the initial value of secret inputs (Isecret and I ′secret), the output
value of public variables Opublic cannot be different. However, the secret output can be changed,
since non-interference does not put any restrictions on the output of secret, high variables.

2.3 Embedded security in multiapplication environments

Information flow security represent a real threat in all environments handling confidential data,
including personal devices storing sensitive data (e.g., smartcards, mobile phones, PDAs). In this
thesis, we study information flow in the context of such devices, offering multiple and variable
services.

2.3.1 Information flow in multiapplication systems

Perhaps the greatest appeal of open systems (and especially smart card technology) is their ability
to consolidate multiple applications in a single, dynamic device. These devices simplify life for
end-users, by replacing many cards for payment and other transactions (loyalty card, ID card,
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medical card, etc). Multiapplication cards are beneficial for issuers as well, because they create
unique marketing opportunities. Because these cards deliver such highly personalized applications,
their perceived value among end-users is much higher and helps build stronger than average
customer loyalty.

These cards also raise special challenges; one of the most sensitive domain which must adapt
to these cards is security. Information flow and security in general has always been a big concern
for small embedded systems, but the issue is getting more intense with multiapplication platforms,
dynamic code downloading and the constant growth of the complexity. For example, a malicious
applet running on your mobile phone or smart card can do a lot of harm: it can disclose confidential
information, financial data, address book, social security number and medical files, etc.

Moreover, if the system runs multiple software units, possibly untrusted, which share code (e.g.,
API) or data (e.g., collaborative applications), then the underlying information flow [Gir99] must
be verified in order to ensure data confidentiality. The security threat may originate from the code
itself or from code shared with some malicious software which cannot be trusted.

2.3.2 Dynamic code downloading

Ubiquitous computing is evolving towards automatic execution of untrusted code. The main idea is
to enhance experience by automatically downloading and executing code embedded in various files.
Automatic execution of untrusted code has become popular with Java Web applets, and recently
in desktop computing. Nowadays, applet-style downloading of software units is also becoming
popular in certain embedded systems like mobile phones (Java “midlets” for MIDP-enabled phones),
smart cards (JAVACARD), etc.

Open embedded systems like JAVACARD provide developers with an opportunity to rapidly develop
software units. Moreover, they offer the possibility to download software units into the system a

posteriori. The main drawback with this kind of systems is the risk to download a hostile software
unit that may exploit a faulty implementation module of the platform.

Hence, allowing dynamic downloading dictates the need to verify that the incoming applet
respects desired security properties, e.g., type correctness, data confidentiality. In the case of Java
mobile code, compiled code (JVM bytecode) is downloaded through an unsecured channel. Thus,
similar to the bytecode verifier [RR98], the information flow certification must be done onboard,
preferably at loading time, in order to avoid runtime overhead. This way the security is enforced by
the virtual machine itself. Moreover, we argue that, in a runtime environment able to support the
deployment of several software units provided by self-sufficient issuers, the compilation of each
software unit must be done without any knowledge about the other potential software. In this case,
and because each runtime environment can embed a distinct set of software units, the only place
where the whole software units can be checked as a whole is the runtime environment where they
are run.

2.3.3 Motivating examples

In this section, we present two examples with security requirements which, due to their dynamic
environment, cannot be satisfied using existing techniques. The example focuses on multiapplication
smart cards supporting post issuance (i.e., dynamic code downloading).

Loyalty card

The LoyaltyCard is a multiapplication Java-enabled smart card composed of four loyalty software
units: two air companies (FlyFrance, FlyMaroc), a car rental company (MHz) and a hotel (Illtone).
The software units are installed dynamically, according to the deployment diagram in Figure 2.3.
Three of these software units form a group of partners. Partners can collaborate and share loyalty
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Figure 2.3: LoyaltyCard: Deployment process

points while collaborations with external software units, as depicted in Figure 2.4, may lead to
illegal flows of information.

LoyaltyCard

F lyF rance

MHz

F lyMaroc

Illtone

FlyFrance Parteners

Figure 2.4: LoyaltyCard: Informa-

tion flow in the deployed system

According to the commercial agreement between the
group of partners, part of FlyFrance points can be used
to obtain MHz and Illtone loyalty points. Meantime,
FlyFrance does not want FlyMaroc, a rival company, to
learn any information about the status of its clients (e.g.,
number of miles; status: gold, silver). But FlyMaroc
also has an agreement with MHz and offers a discount,
depending on the status of the MHz client. If asked by
FlyMaroc, MHz returns not only its loyalty points, but also
loyalty points of its partners (FlyFrance). FlyMaroc could
obtain information about the FlyFrance loyalty points
through MHz, as depicted in Figure 2.4. This way an
illegal information flow would be established. Illtone also
offers a discount for MHz clients but this time the flow of information is allowed as Illtone is one of
the partners of FlyFrance.

class FlyFrance {

private int miles;

[..]

public void updates() {

int i=0;

for(;i<noLoyalties;i++)

update(loyalties[i]);

}

void update(Loyalty l){

l.update(miles);

}

}

class MHz extends Loyalty{

private int points;

private int ppoints;

[..]

public void update(int p){

this.ppoints += p;

}

public int getLevel() {

if(points+ppoints>LGOLD)

return GOLD;

return SILVER;

}

}

class FlyMaroc {

private int discount;

[..]

void discount(MHz h){

int level;

level=h.getLevel();

if(level == GOLD)

discount = 20;

}

}

Figure 2.5: Excerpt from the Java implementation of LoyaltyCard

We want to be able to show that the implementations of the FlyFrance, MHz, FlyMaroc and Illtone
enforce information flow policies, i.e., each program shares confidential data only with trusted
software units.

Figure 2.5 shows an extract from the Java code of FlyFrance, FlyMaroc and MHz classes. The
confidential data of FlyFrance is stored in the field miles. The method update in FlyFrance

updates the points of its partners (MHz and Illtone). MHz stores the points of its partners in
field ppoints. Method MHz.getLevel() returns the status of MHz based on MHz points and on
partner points. This method is called by FlyMaroc.discount in order to offer a discount which
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leads to an unauthorized flow of information to a software unit untrusted by FlyFrance. The
MHz.getLevel() method is also called by Illtone, but in this case, the flow of information is
authorized as FlyFrance has an agreement with Illtone.

All these software units must communicate with remote software (e.g., terminal, ATM); in order
to secure the information exchange encryption mechanisms are used. Communication with the
terminal is encrypted using an encryption algorithm of type Cipher. Some algorithms, extending
the Cipher class, are provided in the initial system but other algorithms may be installed onboard
a posteriori. Insecurity may arise from a malicious Cipher which overrides the encryption method
in a malicious way: for example the encryption key could be copied in a shared location. Our aim
is to be able to allow the installation of new software units only if they enforce security for the
software units already installed.

Care card

CardManager

history Doctor

Nurse

advice

CareCard

Figure 2.6: CareCard example

The care card is a medical identification and information
card which securely maintains electronic medical records
of a specific patient who also is the holder of the card. A
patient’s record consists of two sections: prescription and
treatment. The treatment section represents the core of
the medical record in the sense that it carries the medical
history of the patient. Only authorized users (applets)
can read or modify the medical history.

The card is issued with an applet, the CardManager,
which handles the medical record. Two other applets,
Doctor and Nurse, are also installed and allow users to
interact with the card. Doctors have access to medical
history but they are not allowed to give it to other applets; nurses do not have access to medical
history. In the same time doctors and nurses share data as doctors may write care indications to
nurses.

Figure 2.6 summarizes the information flow between applets. Dashed arrows indicate illegal
information flow. The security threat is the following: the doctor applet can copy the medical
history from the CardManager applet to the advice field of nurses, which can send it through the
terminal to unauthorized users.

Consider now the following scenario: the patient joins a health insurance company and downloads
the corresponding applet. The health insurance company has access to expenses but not to medical
history. The goal is to allow installation of new applications, such as the insurance company, while
enforcing security for already installed applets and the new applet.

2.3.4 Definitions and challenges

The examples highlight the following definitions:

Software unit a coherent code unit compiled simultaneously by its producer in order to be
deployed in a multiapplication environment.

Open system a set of software units which can be extended dynamically with new software units
a posteriori.

The LoyaltyCard is an open system comprising four software units, while the CareCard is issued with
a software unit (CardManager) and extended with two other software units (Nurse and Doctor).

From the LoyaltyCard example, we identify two security challenges for open systems:
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Consistency guarantees the security of already installed software units while installing a new
software unit,

Incrementality certifies the secure information flow of a newly deployed software unit, according
to its security policy.

To prevent leaks, analyzing the underlying information flow is mandatory. Due to its complexity,
few models and implementations addressing information flow issues for small embedded systems
exist, and none of them offers support for post issuance. A few operating systems have been
proposed to manage multiapplication open platforms [MM08], but Java and Java Card technology
is the clear leader. The example described above is a real example with security risks of illegal
information flow. Therefore, in this thesis we address information flow issues in the context of open
systems running on a Java Virtual Machine.

2.3.5 Java Virtual Machine background

Java is a high-level language which gives the ability to write programs that can run on a variety of
platforms. Due to its portability and support for dynamic code loading, in the last decades Java has
emerged itself as the most common language for small systems. Java programs are compiled into a
form called Java bytecode, placed into class (.class) files, which are executed by the Java Virtual
Machine (JVM) [LY99]. Thus the Java bytecode can be thought of as the machine language of the
JVM.

To run a Java software unit the JVM needs to load the .class file containing the main() method
of that software unit. The loading process is performed by a class loader which, besides the loaded
class, loads various supporting classes such as the Object class inherited by all Java classes. A class
loader loads one class at a time. Class loaders are responsible for importing binary data that define
the running program’s classes and interfaces. Actually, there may be more than one class loader
inside a JVM, as the JVM has a flexible class loader architecture that allows a Java software unit to
load classes in custom ways, by downloading class files across a network for example. Moreover,
custom verifications, such as information flow security policies, can be performed at loading time.

Security for Java Because the class files of an applet are automatically downloaded (e.g., when a
user goes to the containing Web page in a browser), it is likely that a user will encounter applets
from untrusted sources. Without any security, this would be a convenient way to spread viruses and
perform unauthorized operations. Thus, Java has many built-in security mechanisms [JG96] (e.g.,
type safety, class and bytecode verifier, sandboxing, the JAVACARD firewall) which help make Java
suitable for dynamic downloading of untrusted code.

Java security fundamentally relies on ensuring type safety: running programs can access memory
only in a safe, structured way. Several built-in security mechanisms are operating as Java virtual
machine bytecodes. These mechanisms, which make Java programs robust, are: type-safe reference
casting, structured memory access (no pointer arithmetic), automatic garbage collection (cannot
explicitly free allocated memory), checking references for null, etc.

The class verifier contributes [JG96] to the Java Virtual Machine (JVM) security model by ensuring
that class files loaded from untrusted sources are safe for the JVM to use. Rather than crashing
upon encountering an improperly formed class file, the JVM class verifier rejects the malformed
class file and throws an exception. The class verifier catches problems caused by buggy compilers,
malicious crackers, or innocent binary incompatibility. One of the more important aspects of Java
architecture is the bytecode verifier [Ler03], a mechanism that can verify the integrity of a sequence
of bytecodes by performing a data-flow analysis on them. All JVM implementations must verify
the integrity of bytecodes in some way. The verification process is a real burden in an embedded
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sytem, due to its sparse resources. Eva Rose [RR98] proposes an alternative solution, the lightweight

bytecode verification, which splits the verification process in two parts: an off-card part which
builds a verification certificate shipped with the code, and an on-card part which certifies the code
using the verification certificate. Because information flow certification is even more expensive
than bytecode verification, implementing an on-card information flow verifier is unrealistic. To
overcome resource limitations, we adopt a technique in the style of Eva Rose’s lightweight bytecode
verification.

The Java sandbox security model [GM96] allows downloading code from any source. But as it
is running, the sandbox restricts code from untrusted sources from taking any actions that could
possibly harm the system. This approach largely prevents applications from sharing data. In some
cases, sharing data must be allowed.

As we can see, Java provides many security mechanisms. But either they are too restrictive for
open systems (the sandbox model forbids data sharing) or they do not ensure security in terms of
information flow (well typed programs can hide illegal flow of information). Hence, information
flow must be enforced by dedicated tools, which must fit nevertheless in the current JVM security
architecture.

2.3.6 Flow sensitivity vs. flow insensitivity

Enforcing non-interference requires the analysis of flow of information throughout the control flow
of the program. The control flow of a program plays an important role in static analysis and on the
precision of the results. With respect to the interpretation of control flow, program techniques can
be divided in two major categories: flow-insensitive and flow-sensitive.

Flow-insensitive analysis is independent of the control flow encountered as it does not take into
consideration the order in which the instructions are executed. The program is considered as a
set of statements. Information given simply indicates that a particular fact may hold anywhere
in the program because it does hold somewhere in the program. Flow-sensitive [HS06] analysis
depends on control flow. The program is considered as a sequence of statements. A given piece of
information indicates that a particular fact is true at a certain point in the program.

Considering that p is a public, low variable and s is a secret, high variable, the example

p = s;

p = 0;

yields an illegal flow of information in a flow-insensitive analysis, yet the program clearly satisfies
non-interference. Hence, flow-insensitive information is fast to compute, but not very precise.
Flow-sensitive analysis usually provides more precise information than flow-insensitive analysis but
it is also usually considerably more expensive in terms of computational time and space. This thesis
presents a flow-sensitive approach to information flow analysis. Considering that our target systems
have limited resources the flow-sensitive approach makes our goal more difficult to reach but in the
same time more challenging.

2.4 State of the art

Information flow enforcement is a well studied area. A considerable amount of work on information
flow control, based on static analysis, has been achieved in the last decades [Den76, Mye99a, VIS96].
A survey on language-based security and information flow techniques is presented in [SM03].
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2.4.1 Information flow analysis approaches

One of the early contribution in this area is the security lattice model of information flow defined
in [Den76] by Dorothy Denning. Information flow is allowed only when security labels on data along
the path increase monotonically. Based on this model, Denning and Denning presented in [DD77] a
certification mechanism for statically verifying the secure information flow in a program. These
models are informal, they do not provide correctness proof.

Most of the approaches are typed-based [BN02, SBN04]. In type-based approaches the security
level of any variable belongs to its type. Information flow security is checked by means of type
systems: well-typed programs enforce non-interference. Volpano et al. [VIS96, VS97] are the
pioneers of type-based approaches as they developed an elegant type system proved to enforce
non-interference. They considered a sequential imperative language with procedures; the language
is rather simple and it does not support object-oriented features nor polymorphism.

Type systems are usually simple to implement but they are often too imprecise. Their main
weakness is that they are flow insensitive. The program p = s; p = 0; (where s is a secret
variable and p a public variable) is rejected, as type systems require every subprogram to be well
typed. Recently, Hunt and Sands proposed a family of flow-sensitive type systems [HS06] for
tracking information flow.

In recent years, much of the litterature has focused on proving results for object-oriented [Mye99a,
BN02] and low-level languages [KS02, EBM05, RMB05]. As our goal is to check information flow
security for applications downloaded in a Java-enabled environment, in the following, we discuss
work that adresses non-interference for Java and object oriented languages [Mye99a] and low level
languages, more specifically, Java bytecode [BBR04, KS02, GS05].

Object-oriented languages and Java The type system of Volpano and Smith was extended by
Banerjee and Naumann [BN02, BN05] to support a realistic Java-like object-oriented language with
pointers, mutable object fields, dynamic dispatch and inheritance, type casts, mutually recursive
classes and methods. Their type system is proved to enforce non-interference manually [BN02] and
later mechanically using the PVS theorem prover [Nau05]. The result is important but the language
still lacks some advanced features such as exceptions and interfaces.

Sun et al. [SBN04, Sun08] use the sequential class-based language defined in [BN02] to present
an automatic inference algorithm of security type annotations of well-typed programs. Modular
inference is achieved in the presence of method inheritance and override. Security levels of fields in
a class are either defined or typed with a level variable which appears in types of method parameters
and in the result type. Hence, as a result of the modular inference, each class is parametrized by
the levels in its fields and each method in a class can be given a polymorphic signature. Due to
its modularity, this approach can be successfully used in an open environment. But, unfortunately,
it works as a source to source compiler and it does not addresses problems raised by our target
systems (i.e., scarce resources).

Amtoft et al. [ABB06] use pointer alias in order to perform an inter-procedural and flow sensitive
information flow. Their analysis is also modular and it can be performed even in the absence of
security levels. But again, their model checks a simple high-level imperative language, and hence it
cannot be applied in the context of embedded systems.

Other techniques have been used to enforce information flow security. Hammer et. al. use
program dependence graphs (PDG’s), usually used for program slicing [XQZ+05], to model
information flow through a high-level Java program [HKS06]. The PDGs are more powerful
than type based techniques as they are flow sensitive. PDGs express dependencies between program
statements and expressions and the order in which they should be executed; program statements or
expressions are the graph nodes. A data dependence edge x → y means that statement x assigns a
variable which is used in statement y (without being reassigned underway). A control dependence
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edge x→ y means that the mere execution of y depends on the value of the expression x (which is
typically a condition in an if- or while-statement). Computing PDGs is very expensive and hardly
imaginable to be used in a small system.

Low-level languages As we have shown, the information flow certification for open systems must
be done onboard, preferably at loading time, hence on already compiled code (i.e., Java bytecode).
Futhermode, in an ubiquitous environment, where software units are downloaded dynamically
from untrusted issuers, the sources code is not available. Hence, approaches described above, which
target Java source programs, cannot be applied in the desired environment. Working on bytecode
implies a more complex analysis including abstract interpretation of the Java Virtual Machine
framework (stack, local variables). Moreover, the certification of low-level languages is more
complex as the absence of high-level control constructs dictates the needs for other mechanisms
to correctly compute the implicit information flow. In addition, working directly on Java bytecode
presents the advantage of being less sensitive to evolutions of Java language.

Some works for assembly languages try to recover the source-level program abstractions, by pro-
ducing static type annotations which preserve the type compilation. Based on this idea, Zdancewic
and Myers used ordered linear continuations to simulate source-level program structures [ZM02].
The notion of linear continuation has been developped by Bonelli et al. [EBM05] in SIFTAL, a
typed assembly language for secure information flow, and improved in the SIF language [RMB05].
TALC [YI06] is another typed assembly language which enforces non-interference. However TALC
is richer than SIF as it supports code pointers and call stack.

Barthe et al. [BBR04] presented an information flow type system for a simple low level language
featuring jumps and calls (but no objects) and showed that the type system enforces non-interference.
In [BR05], Barthe and Rezk extend the information flow model defined in [BBR04] with new
features to include classes, objects and exceptions. They also prove that the information flow type
system enforces non-interference. The information flow type system defined in [BR05] is improved
in [BPR07] by adding support for arrays and methods; the soundness proof has been machine
checked using the proof assistant Coq [The04, Ber01]. This formalization allowed the extraction of
a certified bytecode verifier; it is the first sound and implemented information flow type system for
an expressive fragment of the JVM. The type system is elegant and strong, but it is flow insensitive
and it lacks features needed in an open systems, i.e., modularity.

In [BRN06], Barthe, Naumann and Rezk use certified compilers to study the formal connection
between security policies on source code and properties of compiled code. They extend the type
system in [BN05] to include exceptions and prove that, if the source program is typeable, then the
compliled bytecode is also typeable. They connect the source language to the low-level language of
Barthe and Rezk [BR05], for which non-interference has been proved correct.

The PACAP case study [BCG+02] uses model checking to verify secure interaction of multiple
JAVACARD applets on a single smartcard. The environment considered in the PACAP project is the
closest one to our target systems, but, unfortunately, even if multiple software units are considered,
the smartcard is not open: the analysis relies on a call graph. The SMV model checker assures
that an invariant which captures the absence of illegal information flows is maintained thoughtout
the execution of the program. Their approach has been refined by Bernardeschi et al., which
propose in [BF02] the use of abstract interpretation and model checking techniques to verify secure
information flow.

Bernardeschi et al. [BFLM04] propose a method that transforms the original Java bytecode and
class hierarchy so that illicit information flows are detected by the standard Java type verifier.
Security levels are modeled as abstract data types and the original code is transformed in such a way
that a typing error detected by the verifier on the transformed code corresponds to a possible illicit
information flow in the original code. Security levels are assigned to classes and the transformed



16 2 Preliminaries and state of the art

code has a class file for each security level; the class hierarchy implements the order among security
levels. Avvenute et al. [ABF03] propose an approach similar to type-level abstract interpretation
used in standard Java bytecode verification. The algorithm adopted by the standard bytecode
verifier is applied to the domain of secrecy levels (assigned to classes, methods parameters and
returned values) instead of types.

Genaim and Spoto [GS05] use abstract interpretation [CC77] and boolean functions to verify
context and flow-sensitive information flow for monothreaded Java bytecode. No formal proof is
given. Zanardini [Zan06] considers a fragment of Java bytecode and presents an analysis for check-
ing a weaker and more general form of non-interference called abstract non-intereference [GM04],
which allows some selected part of secret information to flow to public parts of program. No
implementation or solution for open systems is given.

Confidentiality and integrity properties for multiapplication JAVACARD smart cards have been
formally proven in [ACL03, And06]. Authors consider the applet isolation principle which forbids all
colaborations between applets. In this thesis, we make a step further as we address confidentiality
issues for multiapplication systems allowing collaborations and data sharing.

Dynamic enforcement All the previous work uses a static analysis to check secure information
flow. As discussed before, dynamic enforcement was considered unsatisfiable as leaks induced by
the execution or the non-execution of a branch were difficult to predict. Recently, static analysis and
dynamic enforcement have been combined [CF07, SST07] in order to avoid such leaks. Chandra
and Franz [CF07] present the implementation of an information flow framework that dynamically
certifies statically annotated Java bytecode programs. The dynamic enforcement of information
flow generates a slowdown factor of 2. In contrast we aim at a static analyis performed before code
execution which does not introduce any runtime overhead.

Another technique for dynamic information flow monitoring has been recently presented
in [CC08]. Authors consider that the only way data can leak is through output commands.
Hence, programs are statically analyzed, using slicing techniques. Dependeces between executed
program statement and output statements are classified in three categories: never leak sensitive
data, may leak data and always leak data. Commands that always leak sensitive data are statically
replaced by a skip command, while commands that may leak sensitive data are replaced on the
fly, if the execution is invalid. Monitoring is not implemented. Since dynamic on the fly code
transformation relies on dependences graphs, they must be available at runtime. The monitor is not
implemented so no indications on the possible overhead are provided.

2.4.2 Information flow policies

Most of these approaches enforce non-interference, which sometimes can be too restrictive. In
certain cases a program needs to leak some confidential information in order to achieve its purpose.
For example, a password checking application compares a user supplied password with a stored
password, which is secret data. Even if the boolean result depends on the stored password, such a
behaviour is acceptable and such programs should not be rejected by an information flow analysis.

Much research has been devoted to express more realistic information flow policies by modifying
or relaxing the definition of non-interference or by defining new formulations for secure information
flow. Smith defines probabilistic non-interference [Smi01] in which the initial values of secret
variables should not affect the joint probability distribution of the possible final values of any
public variables, while in [Lau01] secure information flow is defined in terms of computational
indistinguishability. In contrast with non-interference, which forbids any flow from secret to public,
this approach aims at verifying that an attacker cannot learn anything about secret inputs by
observing the public outputs. Computational indistinguishability lies on the idea that, at a certain
point, it is impossible to deduce secret data altered by arithmetical or logical operations from public
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outputs. For example, a trusted encryption function, which performs many operations on secret
data, does not leak any information in reality [HKM05]. Yet, non-interference rejects such functions.

Most of the efforts have been done in the direction of data declassification. There are a lot of efforts
on data downgrading using various approaches, including abstract non-interference [GM04, GM05],
relaxed non-interference [LZ05], robust declassification [ZM01, MSZ06, MSZ04], certificate-based
declassification [TZ05]. A complete survey on the recent research efforts on declassification is
available in [SS05, SS07].

Static, type-based information flow analysis techniques typically assume a global security policy
on object fields which can lead to the assignment of a fixed security level to each field. Recently,
authors present in [BB08] a flow-sensitive type system for statically detecting illegal flows of
information in a JVM-like language that allows the level of a field to vary at different object creation
points. They also prove a non-interference result for this language.

Despite all these efforts in relaxing non-interference and formulating new security models,
defining realistic information flow policies is still one of the most important challenges in information
flow security. Moreover, the security policies and code analysis are usually mixed; verifying a new
information flow policy requires the analysis of the entire system.

We claim that information flow analysis and security policies enforcement must be separated. The
information flow analysis must compute information flows and security policies must be verified
a posteriori using only the already computed result. The information flow analysis we present in
this thesis lies on this idea of separation of concerns. Moreover, we make a step further in the
direction of realistic policies by defining information flow policies using a domain specific language.
The language allows, on the one hand, data declassification, and on the other hand, it refines
non-interference by expressing allowed collaborations between programs.

2.4.3 Existing implementations

Despite a long history and a large amount of research, there are very few practical systems and
software that perform information flow analysis and enforce information flow security policies.
Some reasons could be the limitations of many existing information flow models. The more
precise information flow models are, the more they become complex and difficult to implement in
practice. The cost of implementing language-based security mechanism is considered too expensive.
Nevertheless, there are a couple of interesting examples.

Jif1 [Mye99a, Mye99b] is the most complete framework for detecting information flows in Java
applications. It is based on JFlow, an extension of the Java language that permits static checking of
flow annotations as an extended form of type checking. Jif offers a real programming environment
and it is based on a decentralized data model [ML97, ML98, ML00], which supports multiple owners
and declassification and allows users to explicitly declassify data. JFlow supports many language
features like subclassing, mutable objects and exceptions. JFlow is a powerful tool structured as
a source-to-source translator, the output being a Java program that can be compiled by any Java
compiler. It adds reliability to the software implementation but not to the deployment and link on a
platform. JFlow offers support to a reliable development by defining a new programming language
which mixes source code and security policies in a coherent set, but it does not adresses modularity
and incrementality issues.

Flow Caml [Sim03, Sim04] extends the Objective Caml language with a type system tracing
information flow. The implemented type system, Core ML, has been formally presented in [PS02,
PS03]. Moreover, a correctness proof for the non-interference property of the type system is
provided. As Jif , Flow Caml is a source-to-source translator: programs containing ML types

1http://www.cs.cornell.edu/jif/



18 2 Preliminaries and state of the art

annotated with security levels are statically checked and compiled into regular Objective C, files
that can be compiled by any compiler. In contrast to Jif , Flow Caml has full type inference as the
system verifies, without requiring source code annotations, that every information flow performed
by the analyzed program is legal w.r.t. the security policy specified by the programmer.

The PACAP framework is dedicated to Java enabled embedded systems [BCG+02]. The PACAP

framework involves a technique to verify interactions for Java enabled smartcards, based on
predefined patterns. However, it may not detect information flows that lie outside these models.
Moreover, the verification relies on the call graph, so it cannot be trusted in a Java/JAVACARD open
environment.

Recently a new platform for information flow security has been released. As JFlow, SecJ2 [Sun08]
acts as a source-to-source translator, the output being a Java file. In contrast with usual techniques,
which require manually annotating all fields, methods and parameters with security types, SecJ is
able to automatically infer security type annotations of well typed programs. Compared to Jif , the
strength of SecJ lies on its capability to perform type inference interprocedurally and modularly. In
our knowledge, it is the first tool that addresses the security type inference in a modular way and in
the presence of method inheritance and overriding.

All existing models are powerfull but, besides SecJ, they do not address the problems raised by
an open environment. Only SecJ takes modularity into account, but it works on source code and
it cannot be applied in an environment where assembly code is dynamically loaded. One of the
aims of this thesis is to provide a practical information flow model, which bridges the gap between
models such as JFlow and PACAP. The target are small open multiapplication systems.

2.5 Contributions and document structure

As we have seen before, information flow analysis has been actively investigated for several years,
leading to a rich theory and language design, based on type-checking or static analysis. However, the
information-flow based enforcement mechanisms have been scarcely applied in practice [Zda04],
even for desktop computers. Unfortunately, due to the high complexity of the algorithms and to
the lack of embedded resources, an information flow verifier has not yet been implemented on a
small, embedded device. The few practical approaches for embedded systems rely on the call graph,
they deal with offboard static verification, and they do not address the challenges raised by open
environments.

From the previous discussion, we identify some very important issues which had little or almost
no interest for the research community but which are essential in a small open environment:

• the verification must be done onboard, as it is the only place where security can be certified,

• as a consequence, the certified language must be Java assembly code (i.e., JVM bytecode),

• the verification algorithm must be lightweight, i.e., it must adapt to constraint resources of
open systems (e.g., limited memory, power consumption),

• in order to allow dynamic class loading and future evolutions of the open system, the
verification must be modular,

• the verification must be applied to real Java applications, as most of the applications are
written in Java and are downloaded in an executable form. Hence, programs must be
annotated with security policies a posteriori. Imposing a new programming language, in which
the programmer annotates the source code with security policies, is difficult, if not impossible,
to achieve.

2http://www.cs.stevens.edu/˜sunq/secj/
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In this thesis, we give a complete solution for applying information flow security in the context of
open systems. We address all the issues described above and we aim at a practical and automated
method, which requires only little interaction with the user. To achieve our goal, we identify three
major steps:

1. to propose a tool that integrates in the existing infrastructure, and that infers and verifies
information flows in a software unit,

2. to express desired information flows in terms of security policies which can be verified a

posteriori,

3. to prove the soundness of the model.

Our solutions rely on static analysis, abstract interpretation [CC77] and points-to analysis. Points-
to analysis [WR99, Hod07] computes how references point one to another in a program. It is
usually used for program optimization [GHSR06], but it is not sufficient for enforcing information
flow, as its abstract domain is limited to references and it does not take into account primitive values.
We extend points-to abstract domain with primitive values and, beside reference assignments, we
take also into account primitive assignments and implicit flows. Hence, our model is more general
than points-to analysis and points-to information can be easily recovered from our representation.

All these programming techniques are used in other contexts such as program slicing [XQZ+05].
Program slicing models compute dependencies between program statements and data in order to
eliminate statements that do not influence certain behaviours of the program. These models can
be exploited to verify safe information flow in programs, as it has been done in [HKS06], but the
analysis is more complex than classical information flow analysis and points-to analysis, since it
performs unnecessary computations (i.e., dependencies between program statements).

We now detail the contributions of this thesis and how we achieve the goals and the steps
mentioned above.

2.5.1 An information flow analysis for embedded systems

In Chapter 3 we present a technique for enforcing information flow model in open systems. To
adapt to the dynamic downloading from untrusted sources and throught insecure channels, we
certify Java assembly language (JVM bytecode), and the verification is performed at loading time.
Due to the limited resources of open systems, we split the verification process in two steps: (1) an
external analysis, that could be performed on any computer and which computes, for each method,
a flow signature containing all possible flows within the method, and proof elements which are
shipped with the code, and (2) an embedded analysis, which certifies the flow signature, using the
proof, at loading time.

The flow signature is computed using abstract interpretation and type inference techniques.
Hence, we have designed for the external analysis an automatic type inference system for object-
oriented languages. Our system does both inter-procedural and intra-procedural inference, in
contrast with previous work on information flow inference for object-oriented languages which
supports only intra-procedural inference [ML97]. Moreover, we perform modular inference, e.g.,
each flow signature is computed only once. The modularity is essential in our context; this means
that loading new classes does not require to reanalyze the entire system. Moreover, modularity
allows us to add support for overriding.

2.5.2 A language for defining information flow policies

One of the main challenges in current information flow research area is to define realistic security
policies that faithfully describe the desired information flow within a system. In the literature,
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information flow security policies are often limited to non-interference [GM82], where public
outputs cannot depend on secret inputs. Policies defined with such relation are too restrictive, and
not the desired policies in most of the cases, especially in open multiapplication systems [Gir99].
Moreover, policies are mixed with the code in a coherent set, hence redefining new policies requires
reanalyzing the entire system. In order to escape from non-interference strictness and to separate
policies and code, we define in Chapter 3.6 a domain specific language, which describes the allowed
flow of information between applications. Programs are certified, at loading time, by verifying that
the flow signatures (computed by the type inference system) respect the desired security policies.
Hence the security policies verification is an extension of the embedded information flow model: we
first compute the flow signature, and only after we define and verify the security policies. Changing
the security policy does not require to reanalyze the entire system.

2.5.3 Applying information flow in practice

Even if information flow security is a well studied area, it has failed to show its usefulness in practice.
The real challenge is not to define new information flow models, but to apply the results in practice
and, in our case, on small open systems. In Chapter 4 we show how our model can be successfully
applied in practice by: (1) showing experimental results, (2) integrating it in a general verification
framework, combining design and software validation, and (3) applying it to some particular cases
of Java applications such as J2ME MIDlets.

First, we briefly present the tools we developed that implement the models presented in the
previous chapter. We discuss experimental results and their performances, both offboard and
onboard, and then we compare them to other existing information flow verification tools, such as
Jif and SecJ.

Then we make the information flow model even more practical by showing how it can be used
in an integrated verification framework. Information flow leaks can appear not only in malicious
software, but also due to a bad design of the software unit or a bad implementation. Hence, a
continuous verification during the entire life cycle of the application is highly desired. In Section 4.2,
we aim at providing a development framework which performs software verification and validation
both at design time and implementation time. Hence, we combine our analysis tool with the USIE
(User-system interaction effect) model [LT04] designed at the University of Victoria, Canada. The
USIE model is used to capture and check security events at design time based on diagrams derived
from sequence diagrams.

Our information flow tools are dedicated to standard Java applications running on small systems.
By standard Java applications we mean applications storing sensitive data in their fields and which
can directly collaborate with other applications within the same system. Since this is not the case
for all small platforms supporting Java, our tools cannot be applied to all kinds of Java applications.
Our goal is to have a tool which requires only a few adjustments in order to be adapted to other kind
of Java applications, and that this adjustments can be done, in most of the cases, by the end users.
To verify these claims, we show in Section 4.3 how our analysis can be applied in the context of
J2SE and Java MIDlets. Moreover, the work has been done by an engineer who had no knowledge
about information flow security and about our analysis. The results were satisfactory: the engineer
has successfully adjusted our tool STAN to MIDlet in a short period of time and only with a few
modifications.

2.5.4 A sound dependency analysis using abstract memory graphs

A complete information flow framework should address both practical and theoretical aspects.
While before we concentrated on practical aspects, in Chapter 5 we tackle information flow problem
from a theoretical point of view. We define a formal framework in which information flows in
a method are modeled by means of abstract memory graphs. An abstract memory graph (or an
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AMG) is a points-to graph extended with primitive values and flows arising from implicit flows.
Throughout the remainder of this thesis, AMG will always stand for “abstract memory graph”. We
keep the practical side of information flow by separating analysis and security policies: this graph is
computed independently of any security policies, which can be applied later by labeling the edges
and nodes of the AMG. This leads to a more general analysis than information flow; many program
analyses such as points-to, purity analysis can be recovered from our model.

As the embedded model, the analysis certifies JVM bytecode in a modular way: each AMG is
computed only once. In Chapter 6 we prove the soundness of this approach for both intra-procedural
and inter-procedural analysis, by stating a non-interference theorem.

This analysis is more general than the information flow model for embedded systems, which can
be recovered as an approximation of the AMGs. A natural continuation would be to formally prove
that the embedded model is a correct approximation of the dependency model. We discuss this in
perspectives.
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In this chapter we present a model for checking secure information flow in Java-enabled, open,
multiapplication, small systems. We keep the main features of the Java Virtual Machine including
support for dynamic class loading and overriding. Moreover, the model supports collaboration
policies which can be specified and verified a posteriori.
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We use a technique in the style of Necula’s proof carrying code (PCC) to perform the onboard
verification [RR98, Nec97]. This verifier scheme is an extension of the the Java bytecode lightweight
verification [RR98]. The idea is to split the verification process in two parts. An offboard part (the

prover), that computes a certificate and some “proof” indicating that the code is correct with respect
to the security policy and an onboard part (the verifier), that uses the proof to certify the correctness
of downloaded code.

The verifier is implemented as a user-defined ClassLoader, which can be successfully used on any
Java Virtual Machine. Experimental results show that our verifier could be efficiently used for our
target systems and hence, it can be successfully applied in practice.

3.1 Preliminaries

In this section, we briefly introduce the Java Virtual Machine (JVM) language we use and we discuss
information flow issues and non-interference for small open systems. We conclude this section with
a description of our approach.

3.1.1 Notations and instructions set

Our tool1 supports the complete JVM specification [LY99], but in this document, due to limited
space and in order to facilitate the reading, we focus on a general and representative subset of
the JVM, depicted in Figure 3.1. The considered instructions retain the full power of expression
of the JVM language and the main features of Java are supported (objects, method invocation,
interfaces, static fields/methods, arrays, polymorphism and overriding, dynamic class loading).
The invoke instruction corresponds to a virtual invocation (i.e., invokevirtual in Java); all
types of invocation in Java (e.g., invokeinterface, invokestatic) are a simplified version
of virtual invocation, and hence they are supported by our model. Our model supports handled
exceptions, multi-threading and synchronization; you can notice that instructions dealing with such
cases (athrow, monitorenter, monitorexit) are not included in our initial instruction set.
Nevertheless, we discuss them extensively and add support later in this chapter.

We consider a set of class names Class, a set of methods names Method and a set Field of fields
names. For two classes B, C, B ≤ C if and only if B = C or B is a super class of C. We denote by
T (o) ∈ Class the type of an object o and by o.f the field f of o.

3.1.2 Information flow in open systems

In classical information flow analysis [Mye99a, BPR07], the source of information flow is large:
security levels are applied to methods parameters, return value, local variables etc. Recently,
in [ST07] authors state that the only real source of information flow are IO channels, thus policies
must be specified for input/output streams.

In our interpretation of Java, we consider that confidential data in small open systems (e.g., PIN
code, cryptographic key) typically resides in instance fields. The kind of information flow that we
prevent are leaks from high-security instance fields to low-security instance fields. We are concerned
only with security for heap contents and we allow programs to manipulate sensitive data and to
temporary store it on the operand stack and local variables. This approach to security is similar to
the one taken in [HP06].

In our vision, we consider IO channels as a possible source of information, and also a possible
destination. Moreover, IO channels are a public, observable source, thus writing confidential data to
an IO output channel is insecure; in order to send sensitive information from object fields to output

1http://www.lifl.fr/˜ghindici/STAN
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prim op primitive operation taking two operands, pushing the result on the stack
pop pop the top of the stack
bipush n push the primitive value n on the stack
aconst null push null on the stack
new C creates new object of type C in the memory
αnewarray C creates new array of primitives or of objects of type C in the memory
goto a jump to address a
ifeq a jump to address a if the top of the stack is equal to zero
ifnull a jump to address a if the reference on top of the stack is null
αload x push the content of the local variable x on the stack
αstore x pop the top of the stack and store it into the local variable x
getfield fC′ load the field fC′ of the top of the stack on the stack
putfield fC′ store the top of the stack in the field fC′ of an object on the stack
getstatic fC′ load the static field fC′ on the stack
putstatic fC′ store the top of the stack in the static field fC′

αaload pop the index and the array reference from the stack and push the element at index
αastore pop the element, index and array reference from the stack and store the element in array, at index
arraylength pop the array and push its length on the stack
invoke mC′ virtual invocation of method mC′

αreturn return an object or primitive value and exit the method

α denotes the type: i for primitive types, a for references, or nothing (i.e., return)

Figure 3.1: Instruction set

channels, declassification [SS05] techniques can be applied, by allowing release of confidential data
only in certain methods.

Let us define the non-interference property of a Java software unit:

Non-interference for Java Public instance fields do not provide any information about secret
instance fields, after executing the software unit.

In this context, we define three types of interference :

• interference through inference: information about secret fields can be inferred from public
fields (through implicit flow),

• interference through copy: information about values of secret fields can be read from public
fields (through explicit assignment),

• interference through aliasing: value of secret fields can be accessed through a reference
stored in a public field.

From an interference through copy we can obtain at least the same amount of information that
can be obtained from an interference through inference. In the same way, the interference through

aliasing provides at least the same information and privileges as the interference through copy. As a
conclusion, we consider that the amount of information leaked by an interference through aliasing is
bigger than the one leaked by an interference through copy; similarly, the amount of information
leaked by an interference through copy is bigger than the one leaked by an interference through

inference.

Finally, the property of non-interference defined before must be ensured while a new software
unit is deployed both for the consistency and incrementality of the open system.

Traditional non-interference enforcement relies on the call graph of the system of software units.
Obviously, this approach fails on a system which allows dynamic loading of software units. Our aim
is to allow dynamic downloading of new software units, while keeping the system safe. In other
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Figure 3.2: Lightweight information flow certification

terms, to certify the non-interference property of already installed software units (consistency)
and newly loaded software unit (incrementality), without reanalyzing the entire system.

In order to deal with openness, we perform a compositional analysis, computing for each method
a stand-alone flow signature. The flow signature of a method is independent of the context under
which the method is called. It contains the flows, potentially generated by the execution of the
method. One “type” is associated with every data source reflecting the flows generated by the
method between this source and the others. Based on the knowledge of the flows, a software unit
can verify its compliance with its own security policy. Thus, flows inside methods are detected by
traditional static analysis while flows generated by interactions between methods are detected by
composition of the methods signatures.

3.1.3 Our approach

The only place where security can be reasonably guaranteed for us is the Virtual Machine, while
loading a new class. The certification cannot be performed before because the deployment context
is unknown at compilation time and it would be harmful to be performed later as the execution
time of a program would be penalized. Unfortunately, performing certification at loading time in a
Virtual machine forces the developer to deploy its software unit in order to test its correctness. It is
necessary to provide software tools which allow the developper to test the correctness of its units at
compilation time.

As mentioned above, our goal is to support all Java features (especially inheritance and dynamic
class loading) and to adapt our analysis to mobile code and open systems. The main challenge is to
adapt the technique to the limited resources of open systems.

In the context of small systems, a technique known as “Lightweight bytecode verification” has
been developed in [RR98] for Java bytecode type verification. This technique, closely related to
proof-carrying code [Nec97], is interesting because:

1. it provides the developer with tools which are supposed to help him/her test the security of
his/her software unit before loading it in the embedded environment,

2. it allows an open system to verify code received from an untrusted source without relying on
a third party even if it does not have enough power to compute the proof itself.

It relies on the simple idea that it is easier to verify a result already computed. It consists of two
phases, as depicted in Figure 3.2:

the offboard phase (on the producer side) which is assumed to have access to infinite resources
(typically a personal computer compared to a small device), which computes the type
correctness and annotates the bytecode with some proof elements,
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the onboard phase (on the consumer side) which verifies, at loading time, the annotations
obtained during the first phase. The annotations are embedded within the code and verified.
The verification operation is linear in the code size and uses constant memory.

The first phase is performed by a prover while a verifier embedded in the JVM ClassLoader certifies
the second phase. This technique has been developed for type checking and it relies on the lattice
structure of types and on unification operations on this lattice. To use it in our context, we extend
this technique by proposing in the next section an encoding of the flow of information in the form
of a lattice. Moreover, we must deal with type inference and onboard certificate management.

We detect flows arising from assignments and implicit flows; we do not consider covert channels
such as termination, timing, power channels, etc.

3.1.4 Structure of the presentation

We structure the presentation in the following way: in Section 3.2, we propose an information flow
model which takes into account constraints of small open systems. We identify the main sources of
information flow and the abstract domain, we define the security lattice, the flow relation and the
flow signature of a method.

In Section 3.3, we detail how the information flow certificate and proof is computed during
the offboard step (by the prover). We first present the intra-procedural analysis, and after we
add support for method invocation. We also discuss some particular cases (exceptions, threads,
synchronization) and we show an analysis example on the LoyaltyCard.

The certificate computed by the prover is verified at loading time by the verifier. In Section, 3.4
we give solutions to challenges raised by limited resources and dynamic class loading (certification
and proof encoding, implicit flow verification, certificate management). In order to make our
analysis highly portable, we implement the verifier as a user-defined class loader, and we present
how we deal with virtual machines running a hierarchy of heterogeneous class loaders.

We continue by adding support, through contracts, for polymorphism and open class hierarchy in
Section 3.5. Contracts describe the required behaviour of pieces of code not yet loaded in terms
of information flow, more exactly the maximum flow of information that can be generated by the
execution of a virtual method. Contracts can be computed offboard starting from a class hierarchy,
or they can be manually defined. In order to be accepted onboard, newly loaded methods must
respect the contracts of the class hierarchy to which they belong.

Finally, in Section 3.6 we extend our model with support for collaboration policies using a
domain specific language which refines non-interference. Security policies are essential to finely
express allowed information flows in an open system. To make them practical, policies and source
bytecode are separated; hence policies can be defined a posteriori and verified only at loading time.
Information flow verification and policies enforcement are not mixed.

3.2 Information flow model

In this section, we formalize an information flow framework adapted to small systems. As the model
must be embedded with the code, the challenge is to express information flows in a method in a
concise, but yet expressive manner.

We first identify sources of confidential data, which, in small systems, typically reside in instance
fields. To express secrecy, we define a security lattice with two security levels (public and secret),
with which class fields are labeled.
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In order to keep the model as compact as possible, we perform a field independent, but security
level sensitive analysis. Thus, the abstract domain is restricted to parameters and other abstractions
for information flow sources (static fields, exceptions, return value of the method, etc.).

The support for openness and dynamic class loading is achieved by performing a compositional
analysis. For each method we compute a context-insensitive flow signature which contains all
potential flows between abstract values generated by the execution of the method. The definition of
the flow relation between abstract values allows for a compact representation of flow signatures:
one byte is sufficient to encode the possible flows between two abstract values.

Non-interference is ensured if flow signatures do not contain any flows from confidential data to
a public output.

3.2.1 Security lattice

To keep the system simple and suited to small systems, we define a security lattice composed of two
security levels:

L = {s, p},

where s stands for secret, high level and p stands for public, low security level. The order relation ⊑
between elements in L is defined as follows: p ⊑ s. Using this order relation, we define the security
lattice Ls of security levels. Nevertheless, adapting the present analysis to a more significant security
lattice is straightforward but not adapted to constraint devices. Using a more complex lattice will
result in more complex analysis and a considerable overhead (in time and mostly in memory) for
desktop computers and out of reach of small systems.

Security levels are associated to information flow sources, thus objects fields, and they should
not be confused with Java modifiers (private, public, protected). While Java modifiers
express accessibility for the Java language, the s defined above expresses secrecy, the fact that the
information must not be made accessible through information flow to unauthorized parties. The
default security level of object fields is p, but restrictions on classes and their fields can be specified
in an external file (e.g., an XML file). We denote by L(C, f) the level associated with field f in a
class C.

Tracing the behaviour of each field is expensive and memory consuming, thus this is not adequate
in the domain of mobile code and small open systems. To reduce the size of information flow
annotations, we perform a field independent but security level sensitive analysis. In a field independent
analysis, all the fields in a structure are modeled as having the same location; thus, a write into one
field writes to all the fields in the structure.

The security level sensitive analysis draws a distinction between fields of the same object having
different security levels. Hence, we define:

Security level sensitive analysis All the fields of an object having the same security level are
modeled as having the same location.

Thus, considering the security levels L = {s, p}, an object o is modeled as being made of two parts
(locations): a secret part (denoted by os), for fields with security levels s and a public part (denoted
by op), for fields with security level p. Our approach is more general than a fully field independent

analysis, but still less precise than field sensitive approaches [GSRT07] that track the individual
fields of individual pointers. A more precise analysis will produce more precise results, i.e., less
false flows, but abstract domain and the number of information flows will increase significantly,
which will be more difficult, if not impossible, to embed. For example, if we refine the analysis
and track individual fields of depth one, and if we consider an object o having three object fields
f1, f2, f3, than the abstract domain multiplies by three: it will contain the secret and public part of
each field (o.fs

1 , o.f
p
1 , o.fs

2 , o.f
p
2 , o.fs

3 , o.f
p
3 ). The abstract domain, and hence the complexity of the
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analysis, depends on the depth of the unfolded tree of fields and on the average number of fields of
objects. A more compact tree (as in our case) leads to a less precise, but less complex analysis.

To deal with security levels at different field depths, we use the following convention:

The secret part os of an object o contains all the field access paths that contain at least one field
having the security level s:

os = {o.f1 . . . fn | ∃0 < i ≤ n,L(T (o.f1 . . . fi−1), fi) = s}, (3.2.1)

The public part op of an object o refers to all fields of o that contain only fields with security
level p on their access path:

op = {o.f1 . . . fn | ∀0 < i ≤ n,L(T (o.f1 . . . fi−1), fi) = p}. (3.2.2)

3.2.2 The abstract domain

Sensitive data are stored in object fields, while objects are made accessible to a method through
parameters, objects allocated inside the method or objects returned by invoked methods. We use
the object allocation site model: all objects created/returned at the same program statement have the
same abstraction. Let P be the abstract domain for parameters of a method m (they are denoted
by p0, p1, . . . ). We denote by New the set of abstract values modeling the objects created by the
execution of the method; ni ∈ New is the abstraction of objects created at instruction i. The set
Ret models values returned by invoke statements in m: ri ∈ Ret denotes the return value of the
method invoked at instruction i. Besides parameters and newly created objects, we identify the
following abstract values, that might interfer in the information flow process:

• the return value of the current method, denoted by the abstract value R,

• input/output channels; all the channels are abstracted by a single value, IO ,

• static fields; all static fields are modeled as the fields of a single object, denoted by the abstract
value Static,

• exceptions; all thrown values flow to the abstract value Ex ,

• constants, pushed on the stack by the bipush instruction, and defined by the abstract value
Const ,

• an abstract value null for null reference.

Hence, the abstract domain of a method m is defined as

Σ̈m = P ∪New ∪ Ret ∪ {R, IO ,Static,Ex ,Const ,null}.

In order to unify the model, we associate security levels to all abstract values, including those not
abstracting objects. Hence, the input/output channels IO , the static world Static, the exceptions
Ex , the constants Const and null have the default security level p, as all sensitive data flowing to
them potentially leaks to unauthorized parties. Parameters of primitive type also have the security
level p. If a primitive instance field having the security level s is passed as parameter to m, its
security level is taken into consideration when applying the context call to m.

We can now enrich the abstract domain with security levels and obtain the set

Σ̈L
m = (P|Obj ∪ Ret |Obj ∪New)× L∪

(P|V al ∪ Ret |V al ∪ {R,Static,Ex , IO ,Const ,null})× {p}

where A|Obj represents the set A restricted to objects, A|V al the set A restricted to primitive values

and al is an equivalent notation for (a, l) ∈ Σ̈m × L. Moreover, we extend this notation to sets of
elements: Al = {al | ∀a ∈ A}, with A ⊆ Σ̈m and l ∈ L.
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(a)

class A {

int f;

B g;

}

class B {

int h;

}

(b)

void m(A o1, A o2, A o3){

o1.g = o2.g;

o2.g.h = o3.f;

}

0: aload 1

1: aload 2

2: getfield A.g

3: putfield A.g

4: aload 2

5: getfield A.g

6: aload 3

7: getfield A.f

8: putfield B.h

(c)

void m’(A o1, A o2, A o3){

o1.f = o2.f;

o2.f = o3.f;

}

0: aload 1

1: aload 2

2: getfield A.f

3: putfield A.f

4: aload 2

5: getfield A.g

6: aload 3

7: getfield A.f

8: putfield B.h

Figure 3.3: Flow propagation example

3.2.3 Flow relation

Data propagation example

In Section 3.1.2, page 24, we distinguish three types of interference: interference through inference,
interference through copy and interference through aliasing. To show the necessity of this distinction,
let us consider the example in Figure 3.3, where o1, o2 and o3 are three objects of type A, stored in
local variables 1, 2 and 3 respectively. For simplicity, we assume that all fields have the security level
p. The first assignment in Figure 3.3b, o1.g = o2.g, generates an interference through aliasing

between o1 and o2 (we recall that our analysis is field independent and all fields of an object have
the same abstract location). Thus, subsequent changes to o2 also affect o1. The second assignment,
o2.g.h = o3.f, not only creates an interference between o3 and o2, but also an interference
between o3 and o1, due to an alias between o2 and o1.

Let us now consider the second example in Figure 3.3c. The first assignment creates an
interference from o2 to o1, but this time it is an interference through copy, as the field f is of
primitive type. In this case, any subsequent modifications to o2 do not affect o1. Thus the second
assignment creates only an interference between o3 and o2.

Typing information flows

The example above shows that, in order to correctly propagate data, flows must be typed. This
choice is imposed by the approximation of the field independent analysis. In a field sensitive
analysis, this distinction is not mandatory, as every field of every object is tracked independently,
and the type of flow is given by the type of the field.

We now define the flow relation:

Flow relation There is a flow from an input a to an output b, denoted by b → a, if an observer of
b can learn information about a.

The analysis is an extension of a points-to analysis: besides aliases between objects, we also take
into consideration primitive assignments and implicit flows. Because alias may lead to further data
propagation while primitive assignments do not, we type the flow relation: a flow is denoted by

b
t
→ a, with t ∈ F , where

F = {r,v,i}
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denotes the set of possible flows, which correspond to the three forms of interference defined in
Section 3.1.2:

• reference flows (r), generate interference through aliasing and denote aliases that may lead to
further data transfers,

• value flows (v), generate interference through copy and represent data transfer of primitive
type,

• implicit flows (i), generate interference through inference and stand for flows arising from the
control structure of the program.

In Section 3.1.2, we show that the interference through aliasing is stronger than the interference
through copy, which is stronger than the interference through inference. Hence, we can define an
order relation on the type of flows:

Order relation on type of flows i ⊑ v ⊑ r.

Moreover, if we take into consideration the security levels and the fact that our model is security
level sensitive, a flow from b to a is a triple (l1, l2, φ), where l1 ∈ L represents the security level of a,
l2 ∈ L the security level of b and φ ∈ F the type of the flow. There can be several flows (triples)
between a and b. The example in Figure 3.3c generates a flow (p, p,v) between o1 and o2, meaning
that the public part of o2 flows to the public part of o1 through a primitive assignment, and the
flow (p, p,v) between o2 and o3.

Let ∆ = L2 × F be the set of all possible flows between two abstract values a and b. For
convenience, we denote a flow (l1, l2, φ) by

al1 φ
→ bl2 ,

and it can be read:

• either from the part l1 of a (or from a field having the security level l1 of a) we can learn

information about the part l2 of b (or about a field having the security level l2 of b) through a

flow of type φ,

• or the part l2 of b (or a field having the security level l2 of b) flows to the part l1 of a (or to a

field having the security level l1 of a) through a flow of type φ.

For example, the set {(s, s,v)} is denoted by as v
→ bs and represents an interference through

copy (value flow) between the secret part of a and the secret part of b. The arrow is about the path
to follow to get the information and not about the movement of the information.

Order relation and lattice of set of flows

Based on the order relation between types of flows, we define an order relation on ∆: given two
flows ϑ′, ϑ′′ ∈ ∆ such that ϑ′ = (l′1, l

′
2, φ

′) and ϑ′′ = (l′′1 , l
′′
2 , φ

′′), then ϑ′ ≤ ϑ′′ if and only if l′1 = l′′1 ,
l′2 = l′′2 and φ′ ⊑ φ′′.

There can be more than one flow between two abstract values, hence we express the flow relation
using set of flows, with values in ℘(∆), where ℘(∆) designates subsets of ∆. For example, the set

{(p, s,r), (s, s,r)} expresses two flows between a and b: ap r
→ bs and as r

→ bs. For convenience, we

denote this flow by ap,s r
→ bs. For two sets A and B, A

φ
→ B denotes that every element of A is

related to every element of B through a flow of type φ.

Using the order relation on ∆, we can define a partial order relation on ℘(∆):
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as i
→ bs ap i

→ bs ap i
→ bp

as v
→ bs

ap,s i
→ bs ap v

→ bs
ap i
→ bp,s ap v

→ bp

as r
→ bs ap,s v

→ bs ap r
→ bs ap v

→ bp,s ap r
→ bp

ap,s r
→ bs ap r

→ bp,s

ap,s r
→ bp,s

Figure 3.4: Extract of the lattice of flows

Order relation on sets of flows Given two sets of flows θ1, θ2 ∈ ℘(∆), θ1 ≤ θ2 if for any flow
ϑ1 ∈ θ1 there exists a flow ϑ2 ∈ θ2 such that ϑ1 ≤ ϑ2.

This order relation allows us to organise sets of flows as a lattice (Figure 3.4 shows an extract of it):

Lattice of sets of flows We define by Θ = (℘(∆),≤) the lattice of set of flows between two
abstract values. The join of two elements is the element generated by their union, and the
meet of two elements is their intersection. The bottom of the lattice is represented by an empty
set, meaning that there is no flow of information, while the top of the lattice is represented by

{ap,s r
→ bp,s}.

We define an equivalence relation, ∼ on Θ, as follows:

θ1 ∼ θ2 iff θ1 ≤ θ2 and θ2 ≤ θ1.

Informally, two sets of flows are equivalent if for any flow, from one of the sets, there exists a bigger
flow (according to the order relation on flows), in the other set. Thanks to the equivalence relation,
we can obtain a compact representation of the lattice of sets of flows, which is essential in the
context of small systems, with limited resources.

For example, the sets θ1 = {as r
→ bs} and θ2 = {as r

→ bs, as v
→ bs} are equivalent (θ1 ∼ θ2),

as as v
→ bs ≤ as r

→ bs and as r
→ bs ≤ as r

→ bs. Moreover, the equivalence class of {as r
→ bs} is

[{as r
→ bs}] = {{as r

→ bs}, {as r
→ bs, as v

→ bs}, {as r
→ bs, as i

→ bs}, {as r
→ bs, as v

→ bs, as i
→ bs}}.

There are 12 elements in ∆ (the cardinality of ∆ is |∆| = 12), and hence we can have 212 possible
flows between two abstract values (|℘(∆)| = 212). Some flows are equivalent according to relation
∼ relation, hence between two abstract values a and b we can have at most 256 distinct sets of
possible flows; in other words, there are 256 equivalence classes (|℘(∆)/ ∼ | = 28). This result is
very important for a constraint system, as it allows us to encode the flows between two abstract
values on a single byte. Moreover, the binary encoding allows to manipulate flows using simple
bitwise logical operations. For example, the join of two sets of flows θ1, θ2 ∈ Θ corresponds to the
bitwise OR operation.

Finally, in this subsection we have defined:

• an order relation between sets of flows,

• and a lattice of flows, which allows us to use the lightweight verification technique in our
context.
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3.2.4 The flow signature of a method

Based on the definition of the abstract domain and of the flow relation between abstract values, we
can finally define the flow signature of a method at the set of flows potentially generated by the
execution of a method. A flow signature carries relevant information for a later use of the method.

The flow signature of a method m The flow signature S̈m of method m contains flows (a, b, ϑ) ∈
Σ̈m × Σ̈m ×Θ such that the execution of m potentially generates a flow of type ϑ from b to a.

We denote by S̈m the domain of flow signatures for a method m. We extend the order relation
between flows in Θ to an order relation for flow signatures in S̈m.

Order relation on flow signatures Given two flow signatures S̈′m, S̈′′m ∈ S̈m, S̈′m is smaller than

S̈′′m, denoted by S̈′m ⊑ S̈′′m, if for all flows (a, b, ϑ′) ∈ S̈′m there exists a flow (a, b, ϑ′′) ∈ S̈′′m
such that ϑ′ ≤ ϑ′′.

This order relation allows us to define a lattice of flow signatures Λ = ℘(S̈m). The lattice of flow
signatures is a natural extension of lattice of flows. The union of two flow signatures S̈′m ⊔ S̈′′m is
the least upper bound flow signature between S̈′m and S̈′′m according to the lattice Λ.

Certain abstract values defined above (New , Ret , Const) are locally defined inside a method and
are not relevant outside. Thus, the global result must be restricted to the values that survive at the
end of the method:

Σm = P ∪ {R,Static,Ex , IO}.

The final flow signature of m contains only flows between values in Σm:

The final flow signature of a method m The final flow signature Sm of method m contains
flows (a, b, ϑ) ∈ Σm × Σm ×Θ such that the execution of m potentially generates a flow of
type ϑ from b to a.

The notation Sm gives the domain of final flow signatures. Throughout the remainder of this
thesis, the term flow signature of a method m will designate the final flow signature of m.

3.2.5 Enforcing non-interference

The flow signature of a method allows us to verify the non-interference [GM82]: a program is
secure w.r.t. non-interference if there is no flow of information from an abstract value with security
level s to an abstract value labeled with p. In our framework, a method is secure if for any flow

al1
φ
→ bl2 ∈ ∆, we have l2 ⊑ l1, according to the ordering relation on the lattice of security levels

Ls.
Considering L = {s, p}, a method is secure if there is no flow from an s value to a p value. Hence,

we can define non-interference w.r.t. to the flow signature of a method:

Non-interference for flow signatures The flow signature of a method, Sm, is secure w.r.t. to

non-interference if it does not contain flows of type ap φ
→ bs, except the case when a represents

the return value of the method, R. The verification of flows of confidential data to return
values is postponed until the method is invoked.

3.3 Information flow prover

Dynamic enforcement of information flow security policies had little attention from the research
community, as implicit flows, arising from the execution or non-execution of a branch of the
program, cannot be always detected. Unsatisfiable for a normal system, the dynamic enforcement
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is even less adapted to constraint systems, as it introduces a runtime overhead unjustified for the
end user. Hence, static enforcement of information flow policies is the obvious choice, as it has the
advantage of avoiding overheads, and detecting implicit flows.

In the previous section, we describe the behaviour of a method in terms of information flow using
flow signatures. The flow signature contains all flows potentially generated by the execution of
the method. To compute methods signatures, we perform for each method an intra-method static
abstract interpretation relying on a classical program semantics composed of a set of transformation
rules. The control flow structure of the Java bytecode dictates an iteration on the set of instructions
for each method.

The existence of recursive and inter-dependent methods dictates an incremental inter-method
analysis, starting with the set of empty signatures and iterating on a set of methods until a fixed-point
has been reached.

Hence, computing flow signatures onboard raises several problems:

• the fixed point computation and the iterations (on the set of instructions and on the set of
methods) requires many resources,

• in an open system, the software units and classes loaded are not available and are not known
from the start.

In order to overcome these limitations, we split the verification process in two steps: (1) an
external analysis, which computes flow signatures and some proof elements, and (2) an embedded
analysis which certifies at loading time, using the proof elements, the flow signatures.

Moreover, in order to comply with the Java paradigm of dynamic class loading and to support
open systems, the analysis is compositional, context-insensitive and it does not rely on the call
graph: the interpretation of an invoke bytecode consists of applying the flow signature of the called
method to the flow signature of the calling method. Such an approach has two main advantages:

1. the analysis of new classes does not require re-analyzing old code,

2. a class is verified using already certified signatures, and not with signatures used during
compilation.

In this section we describe the external analysis, performed by a prover. In the first part we
present the intra-procedural analysis, which concentrates on correctly computing flow signatures
for the JVM language without taking into consideration method invocation. We discuss implicit
flows and give the abstract semantics of Java bytecode.

In the second part, we add support for method invocation while presenting the inter-procedural
analysis. Finally, we discuss particularly cases of the JVM, such as exceptions and threads, and we
detail the analysis on an example from the LoyaltyCard.

3.3.1 Intra-procedural analysis

We now consider the analysis of a method without method call. We perform a flow-sensitive static
abstract interpretation of JVM bytecode, which computes, for each method, its flow signature.

The information flow analysis is an alias analysis extended to take into consideration flows of
primitive fields and implicit flows. Classical points-to analysis can be recovered as an abstract
interpretation of our information flow analysis by eliminating unnecessary flows.
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Flow sensitivity

In our framework, we perform a flow-sensitive analysis, as we follow all the control flow paths
in a program and compute, through static abstract interpretation, for each program point, a
flow signature. On the other side, flow-insensitive analysis is independent of the control flow
encountered, as they do not take into consideration the order in which the instructions are executed.

For example, the code

m(A o1, A o2, int a, int b){

A l = o1;

l.f = a;

l = b;

l.f = b;

}

creates two flows in a flow-sensitive analysis ( o1 → a and o2 → b) and four flows in flow insensitive
analysis ( o1 → a, o2 → b, o1 → b, and o2 → a).

The flow-sensitive approach give us a more precise follow-up for flow signatures but it is also
considerably more expensive in terms of computational time and space. According to our experience
the analysis time is actually expensive. Nevertheless, given our two step approach, only the offboard
analysis will suffer because of the the complexity of flow-sensitive analysis. For the onboard phase,
verification relies on the proof elements and is linear in time and space, hence it does not depend
on the control flow.

Thus, using the flow-sensitive analysis, we obtain more precise flow signatures without introducing
any overhead for the onboard verification.

Control dependency regions

To determine implicit flows and thus the scope of conditional instructions, we use existing techniques
[LT79], using the control flow graph of a program, postdominators and immediate postdominators,
which can be easily applied, as has already been done in [BPR07, BFLM04]. The low complexity
of these algorithms is adequate for the embedded verification of the implicit flows. In other work
on information flow [Mye99a], and especially in type-based systems, a special label pc holding the
security level of the program counter is being used.

Considering the instruction list Pm of a method m, the intra-method control flow graph CFm is
defined as usual: CFm is a graph with vertices in Pm ∪ {exit} and for each i ∈ Pm edges from i to
each element in succ(i), where succ(i) is defined according to the bytecode semantics as:

• succ(exit) = ∅,

• succ(i) = {exit} if Pm[i] = areturn,

• succ(i) = {a} if Pm[i] = goto a,

• succ(i) = {a, i+ 1} if Pm[i] = ifeq a,

• succ(i) = {i+ 1} otherwise.

We introduced a special node exit , with no successors, as the exit point of the method. We also use
the notation pred(i) = {j | i ∈ succ(j)}.

We use the notion of postdominance as defined in [Bal93]: in a control flow graph CFm of
a method m, a node n′ postdominates a node n if n′ 6= n and n′ belongs to every path from n
to exit . We denote PD(n) the set of postdominators of n. The immediate postdominator of n,
ipd(n) ∈ PD(n) satisfies that ∀n′′ ∈ PD(n), if n′′ 6= ipd(n), then n′′ ∈ PD(ipd(n)).

If instruction i is a conditional instruction (Pm[i] = ifeq a or Pm[i] = ifnull a), ipd(i) is the
first instruction that will be executed independently from the conditions tested by i, thus it is the
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void discount(Hertz h) {

int level = h.getLevel();

if(level == GOLD)

discount = 20;

}

0: aload 1

1: invoke getLevel

2: istore 2

3: iload 2

4: ifeq 6

5: goto 9

6: aload 0

7: bipush 20

8: putfield

9: return

0: aload 1

1: invoke

2: istore 2

3: iload 2

4: ifeq 6

6: aload 0

7: bipush 20

8: putfield

5: goto 9

9: return

exit

Figure 3.5: Control flow graph example

first instruction belonging to all the branches originated by the conditional instruction. We define
the control dependency region of a conditional instruction i as the set of instructions executed under
its condition:

cdr(i) = ReachCFm
(i)r ReachCFm

(ipd(i)),

where ReachG(u) denotes the set of vertices reached by the vertex u in a graph G, with u ∈
ReachG(u). Informally, all instructions in a path from i to ipd(i) belong to the dependency region of
i.

We compute a function cxt : Pm → ℘(Pm) representing the context (the set of conditional
bytecodes) under which each instruction is executed: cxt(i) = {j | i 6= j ∧ i ∈ cdr(j)}. Instruction i
may or may not be executed, depending on the condition tested by instructions in cxt(i).

Figure 3.5 depicts the control flow graph of method discount. The execution of instructions 5,
6, 7 and 8 depends on the conditional instruction 4, thus they belong to the control dependency
region of 4: cdr(4) = {5, 6, 7, 8}. The computation of cxt function is straightforward: cxt(5) =
cxt(6) = cxt(7) = cxt(8) = {4}.

We will denote by Γi the set of abstract values tested by instructions in cxt(i). Hence, all abstract
values manipulated by instruction i depend implicitly on values in Γi.

Abstract execution state

The intra-method analysis consists in an abstract interpretation of the method instructions (Java
bytecode). We use a classical operational semantics, which we will only sketch here. The JVM

behaviour is simulated using the abstract values Σ̈L
m. For a method m of a class C, nm denotes the

number of arguments of the method, Pm the instruction list and χm the local variables.

An abstract state of the JVM is a frame (ρ, s, S̈) where s denotes the local operand stack with
values in ℘(Σ̈L

m×F), ρ : χm → ℘(Σ̈L
m×F) the local variables, and S̈ ∈ S̈m the flow signature.

Building the flow signature requires to approximate local variables and stack contents, and to deal
with implicit flow, we must know the conditions under which the local variables and the stack are
modified. Thus, elements from stack and local variables have the form (a, φ), where a ∈ Σ̈L

m and
φ ∈ F . Let Q be the property space of frames in a method.

We consider the function Q which associates an abstract state to every instruction; given a method
m and i ∈ Pm, Qi denotes the state associated with instruction i and represents the state before
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executing the instruction. If Qi = (ρi, si, S̈i), then the flow signature S̈i is the set of flows realized
along an execution path from the entrance of the method to the program point i.

Our algorithm is a forward data flow may-analysis [NNH99], as the computed frame Qi for a
given program point i ∈ Pm is the union of frames created by all the execution paths reaching that
point.

Union relation on abstract states Given two states Q′ = (ρ′, s′, S̈′) and Q′′ = (ρ′′, s′′, S̈′′) from
the property space Q, their union Q′ ⊔Q′′ is defined as follows:

Q′ ⊔Q′′ = (ρ′ ⊔ ρ′′, s′ ⊔ s′′, S̈′ ⊔ S̈′′).

We assume the code was previously checked by the JVM bytecode verifier and so it is well typed.
This implies that the height of the stack is statically known at each instruction point, meaning that
the merge operation is always performed only on stacks having the same heights. The union of two
stacks and the union of local variables sets is an element by element operation. The result of S̈′ ⊔ S̈′′

is the least upper bound signature between S̈′ and S̈′′ according to the lattice of flow signatures Λ.
Moreover, based on the order relation for flow signatures, we can define an order relation on

abstract states:

Order relation on abstract states Given two abstract states Q′, Q′′ ∈ Q, Q′ is smaller than Q′′,
denoted by Q′ ⊑ Q′′, if s′ ⊑ s′′ (the stack s′′ contains at least all elements in s′), ρ′ ⊑ ρ′′ and
S̈′ ≤ S̈′′.

Abstract semantics and algorithm

The abstract interpretation relies on a set of transformation rules. The most significant bytecodes
and their rules are presented in Figure 3.6. The concatenation n :: s denotes a stack having n on
top, fC designates the field f of the class C, while f ′ = f [x 7→ e] is a function which agrees with f
on all elements except for x.

Algorithm 3.1 analyse(m): Intra-procedural analysis of a method m

compute cxt(i),∀i ∈ Pm

Q0 = ({0 7→ pr0, . . . , nm 7→ prnm
}, ǫ, ∅), with prj = (pp,s

j ,r) if pj ∈ P|Obj

or prj = (pp
j ,v) if pj ∈ P \ P|Obj

Qi = ({0 7→ ∅, . . . , nm 7→ ∅}, si, ∅), ∀i ∈ Pm \ {0}
PC = {0}
while PC 6= ∅ do

extract i from PC
Γi = {e | Qj = (ρ, (e, φ) :: s, S̈) ∧ j ∈ cxt(i))}
apply the embedded semantics of Pm[i]
for all j in succ(i) do

if Qj has changed then
PC = PC ∪ {j}

end if
end for

end while
return Sexit

The algorithm, depicted by Algorithm 3.1, starts with computing the control dependency regions
and the context of each instruction and populating the initial states. In the initial abstract state
Q0, the method parameters must be mapped to the local variables, while the stack and the flow
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Pm[i] = prim op Qi = (ρ, v1 :: v2 :: s, S̈)

Qi+1 = Qi+1 ⊔ (ρ, v1 ∪ v2 ∪ TVΓi
:: s, S̈)

Pm[i] = pop Qi = (ρ, v :: s, S̈)

Qi+1 = Qi+1 ⊔ (ρ, s, S̈)

Pm[i] = bipush n Qi = (ρ, s, S̈)

Qi+1 = Qi+1 ⊔ (ρ, {(Constp, v)} ∪ TVΓi
:: s, S̈)

Pm[i] = aconst null Qi = (ρ, s, S̈)

Qi+1 = Qi+1 ⊔ (ρ, {(nullp, v)} ∪ TVΓi
:: s, S̈)

Pm[i] = ifeq a Qi = (ρ, v :: s, S̈)

Qi+1 = Qi+1 ⊔ (ρ, s, S̈) Qa = Qa ⊔ (ρ, s, S̈)

Pm[i] = ifnull a Qi = (ρ, v :: s, S̈)

Qi+1 = Qi+1 ⊔ (ρ, s, S̈) Qa = Qa ⊔ (ρ, s, S̈)

Pm[i] = new C Qi = (ρ, s, S̈)

Qi+1 = Qi+1 ⊔ (ρ, {(ns,p
i , r)} ∪ TVΓi

:: s, S̈)

Pm[i] = αnewarray C Qi = (ρ, s, S̈)

Qi+1 = Qi+1 ⊔ (ρ, {(ns,p
i , r)} ∪ TVΓi

:: s, S̈)

Pm[i] = αload x Qi = (ρ, s, S̈)

Qi+1 = Qi+1 ⊔ (ρ, ρ(x) ∪ TVΓi
:: s, S̈)

Pm[i] = αstore x Qi = (ρ, v :: s, S̈)

Qi+1 = Qi+1 ⊔ (ρ[x 7→ v ∪ TVΓi
], s, S̈)

Pm[i] = getfield fC′ Qi = (ρ, v :: s, S̈)

Qi+1 = Qi+1 ⊔ (ρ, (v|f
C′

, T (fC′ )) ∪ v|v ∪ v|i ∪ TVΓi
:: s, S̈)

Pm[i] = putfield fC′ Qi = (ρ, v :: u :: s, S̈) φ′ = φ ⊓ TF (fC′ )

Qi+1 = Qi+1 ⊔ (ρ, s, closure(S̈ ⊔ {u|f
C′

φ′

→ e | (e, φ) ∈ v} ⊔ {u|f
C′

i
→ V u

i
∪ Γi}))

Pm[i] = getstatic fC′ Qi = (ρ, s, S̈)

Qi+1 = Qi+1 ⊔ (ρ, {(Staticp, TF (fC′ ))} ∪ TVΓi
:: s, S̈)

Pm[i] = putstatic fC′ Qi = (ρ, v :: s, S̈) φ′ = φ ⊓ TF (fC′ )

Qi+1 = Qi+1 ⊔ (ρ, s, closure(S̈ ⊔ {Staticp φ′

→ e | (e, φ) ∈ v} ⊔ {Staticp i
→ Γi}))

Pm[i] = αaload Qi = (ρ, v :: u :: s, S̈)

Qi+1 = Qi+1 ⊔ (ρ, u ∪ v ∪ TVΓi
:: s, S̈)

Pm[i] = αastore Qi = (ρ, v :: w :: u :: s, S̈)

Qi+1 = Qi+1 ⊔ (ρ, s, closure(S̈ ⊔ {V u
r

φ
→ e′ | (e′, φ) ∈ v} ⊔ {V u

r
i
→ V u

i
∪ Γi} ⊔ {V

v
r

i
→ V w

φ }))

Pm[i] = goto a Qi = (ρ, s, S̈)

Qa = Qa ⊔ (ρ, s, S̈)

Pm[i] = arraylength Qi = (ρ, u :: s, S̈)

Qa = Qa ⊔ (ρ, u ∪ TVΓi
:: s, S̈)

with φ, φ′ ∈ F V u
φ = {e | (e, φ) ∈ u ∧ e 6= null

p} u|φ = {(e, φ) | (e, φ) ∈ u} TVΓi
= {(e, i) | e ∈ Γi}

u|f
C′

= {approx(e, fC′ ) | e ∈ V u
r } TF (fC′ ) gives the type of field fC′ (v or r) with respect to F .

Figure 3.6: A subset of information flow transformation rules
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signature are empty; ǫ denotes the empty stack and prj ∈ Σ̈
L
m stands for the jth parameter of the

method. The rest of the states 2 Qi are initialized with a stack and local variable array populated
with empty sets of elements and with an empty signature S̈ = ∅ (we maintain the JVM property
stating that the stack in a program point has always the same height, as si denotes a stack of
empty elements and its height is equal to the statically computed height at instruction i). Next, the
algorithm consists of applying the rule corresponding to each instruction and performing a fixed
point iteration on the instructions set of the method, starting with the instruction at Pm[0]. The set
PC holds the intructions to be executed (it is initialized with {0}). The successors of the current
instruction i are going to be executed (and added to PC) only if their abstract state has changed.

The transformation rules are monotone as (1) we do not perform strong updates on flow-
signatures (i.e., flows are added and never deleted) and we perform weak updates on local variables
and operand stack (i.e., local variable updates erase previous content) and (2), at each step, we
make the union between the already computed state and the current state. The may-analysis, weak
updates, the monotonicity of transformation rules, the finite set of abstract values and the finite
lattice of flow signatures ensure that there is a the fixed point and that it is reached by the analysis.

The frame Qexit represents the state reached when exiting the method (e.g., after the execution
of the return bytecode). If Qexit = (ρexit , sexit , S̈exit), the final flow signature of a method m, Sm,
is the restriction of signature S̈exit to elements in Σm.

Transformation rules examples

To reflect the impact of control regions on stack and local variables array, every instruction modifying
the last two (push for stack or store for local variables array) takes into consideration the values
in the context. For example, the instructions new and bipush push new abstract values on the
stack as well as the context under which the operation takes place, meaning elements of type (e,i)
with e ∈ Γi. The αstore bytecode stores the top of the stack in the local variables array, as well as
elements (e,i) with e ∈ Γi.

Considering that v is the element on top of the stack before execution, the instruction getfield

performs the following operations:

• pushes the location of v.f on the stack, if v abstracts an object,

• keeps v on the stack if it abstracts a primitive value or arising from implicit flow (v|v and v|i),

• and pushes the values (e,i) in the context (e ∈ Γi), as the execution depends on values in Γi.

The most significant bytecode is putfield, as it generates information flows:

• from e such that (e, φ′) ∈ v to object abstractions in u (denoted by u|fC′
). The type of flow is

the least upper bound corner between φ and the type of the field, according to the lattice of
flows, Θ,

• from e such that (e,i) ∈ u to object abstractions in u; The presence of elements like (e,i) in u
signifies that the abstract values in u depend on e, most likely because the stack was modified
under the condition e,

• from abstract values in Γi to abstract values in u|fC′
.

Our analysis is field-independent but security level sensitive, as described in Section 3.2.1: all the
fields of an object having the same security level are modeled as having the same location. Hence,
given an abstraction of an object and a field f , we must compute its abstract location, according to

2To optimize, our implementation stores only the states associated to jump points.
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Equation 3.2.2. For u ∈ Σ̈L
m and a field f , the function approxL : Σ̈

L
m × Fields→ Σ̈L

m computes the
abstract location of u.f according to Equation 3.2.2 and to the security level of field f , defined by L:

approxL(u
l, fC) =

{
ul if L(f, C) = p
us if L(f, C) 6= p

For simplification, we may also apply approx on a set U ⊆ Σ̈L
m where approxL(U, fC) =

{approxL(u, fC) | u ∈ U}.

By closure we denote a function that computes the transitive closure on the set of flows with
propagation of the p and s security levels, and of the type of flow (r, v or i). The closure of a flow
signature must be computed after every flow creation, as the order in which flows are generated
and the type of flow influence the propagation. For the example in Figure 3.3b, the function closure,

called after adding the flow pp
2
v
→ pp

3, will generate, due to aliasing between o1 and o2 (pp
1
r
→ pp

2),

the flow pp
1
v
→ pp

3.

The function closure also handles flows potentially generated by encapsulation and by our field-
independent approach, which models all the fields in a structure as having the same abstract
location. Let us consider the example below:

static void m(A[] o, A o1, B o2){

o[1] = o1;

o[1].g = o2;

}

The first assignment generates a flow from o1 to o (pp
0
r
→ pp

1), the second assignment generates a

flow from o2 to o (pp
0
r
→ pp

2), as well as a flow from o2 to o1 (pp
1
r
→ pp

2) as o2 is stored in the field
g of o1. These kind of flows are detected by function closure, which creates flows from all abstract

values pointed by o (abstract values e such that there exists a flow pp,s
0

r
→ e) to o2.

3.3.2 Inter-procedural analysis

We saw how a simple method is analyzed, without any method call. Now we add support for
method invocation and take into consideration the analysis of a group of classes. We assume that
the method to be invoked is statically known; we add support for virtual invocation while we discuss
open world issues in Section 3.5.

Composing flow signatures

In an open and dynamic loading context, the target methods are not available, and can vary in time.
Hence, a compositional analysis is mandatory in such a context. Moreover, as in an open world the
call graph is not available, the flow signatures we compute are context-insensitive, meaning that
they are independent on the context under which the method might be invoked.

Invoking a method m’ in m consists in (1) mapping the arguments to parameters of m’ and (2)

transposing flows between parameters in m’ in flows between mapped values in m. This operation
is performed by the function apply. The mapping must take into consideration the p and s security
levels, as well as the conditions under which the local variables array and stack have been modified.
The semantics rules for invoke and αreturn bytecode are depicted in Figure 3.7. Note that
return bytecode generates flows between abstract value R and elements in the execution context
(Γi), while areturn also generates flows between R and elements on top of the stack. Semantics
rule for ireturn is similar to areturn, only that the type of flow , φ′ is computed as φ′ = φ ⊓ v
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Pm[i] = invoke m′
C′

Qi = (ρ, vnm :: .. :: v1 :: u :: s, S̈) Sm′ = R(m
′)

Qi+1 = Qi+1 ⊔ (ρ, {(rp,s
i , r)} :: s, closure(S̈ ⊔ apply(S̈, Sm′ , u, v1, .., vnm ))

Pm[i] = areturn Qi = (ρ, v :: s, S̈) φ′ = φ ⊓ r

Qexit = Qexit ⊔ (∅, ǫ, closure(S̈ ⊔ {Rp φ′

→ e | (e, φ) ∈ v} ⊔ {Rp i
→ Γi})

Pm[i] = return Qi = (ρ, v :: s, S̈)

Qexit = Qexit ⊔ (∅, ǫ, closure(S̈ ⊔ {Rp i
→ Γi})

R associates a flow signature to each method. φ, φ′ ∈ F

Figure 3.7: Information flow transformation rules for inter-procedural analysis.

Algorithm

The flow signature of a method depends on the flow signatures of invoked methods. The flow
signature of the calling method is correct only when the flow signatures of invoked methods are
correct. If there are no mutually recursive methods, we can define an order on methods and the
analysis could be achieved in only one step. But, in general, this is not possible because recursive
methods or inter-dependent methods are frequent in a software unit. That is why we must perform
an external analysis in many iterations. The flow signatures are computed simultaneously for a set
of classes (e.g., an API, an application, a JAR file, a bundle), which permits more accurate results
and a strict control on overriding.

Algorithm 3.2 analyse(Cl): Inter-procedural analysis of a set of classes Cl

Sm = ∅,∀m
change = true
while change == true do

change = false
for all C ∈ Cl do

for all m ∈ C do
S = analyse(m)
if S 6= Sm then

Sm = S
change = true

end if
end for

end for
end while

The analysis, depicted by Algorithm 3.2 is incremental: at the beginning, the flow signature
associated with each method m is empty Sm = ∅; during the analysis of Java bytecode, the newly-
found flows are added to the existing signatures. We perform weak updates: flows are added to
signatures, but never deleted. The algorithm is iterated for the entire set of analyzed classes 3, until
all the methods have the correct flow signatures, which means until a fixed point has been reached.
A fixed point exists because transformation rules are monotone (flows are only added and never

3To optimize, our implementation reduces at each step the set of methods on which we must iterate; only methods that
have not reach their “final” flow signature are kept.
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class Ex extends Exception{

int f;

...

}

class A {

int secret;

int public;

...

}

(a) Explicit flow

class A {

...

1: Ex e;

2: try{

3: e = new Ex();

4: e.f = secret;

5: throw e;

6: } catch(Ex e1) {

7: public = e1.f;

8: }

...

}

(b) Implicit flow

class A {

...

1: try{

2: if(secret)

3: throw new Ex();

4: } catch(Ex e) {

5: public = 1;

6: }

...

}

Figure 3.8: Information flow through exceptions

deleted), and the flow signatures form a finite lattice.
To have correct and precise results, our algorithm permits to annotate manually native methods

and inserting their flow signatures in the dictionary, before the offline analysis is executed. Native
methods without annotations are considered insecure. In this case, a default flow signature,
corresponding to the most pessimistic case, where everything flows to everything, is associated with
them. This creates a loss of precision but prevents any leakage. We detect all the leaks through I/O,
as native methods are the only place where they may appear. The result of the analysis is correct
with respect to manually annotated methods.

Manually annotating methods signatures also allows to express expected behaviours for different
methods. When writing abstract or interface methods, adding constraints for methods implementing
them can be easily done through manual annotation. This not only imposes restrictions on third-
party code, but also ensures that only code meeting established constraints will be allowed to
interact with existing software units.

3.3.3 Particular cases

Exceptions

Problems with exceptions Exceptions represent a source of information leak in Java programs
and must be treated carefully. An exception disrupts the normal flow of instructions and jumps
in the current method according to the try-catch statement or terminates the execution of the
method and returns itself to the caller. Exceptions can be raised explicitly by the athrow bytecode.

An exception raised during the execution of a program can disclose private information to an
attacker, both through explicit flows and implicit flows. Explicit flows occur when the thrown
object contains sensitive data and it is “sent” to the statement where the exception is catched. This
situation is depicted in Figure 3.8a, where the exception e is used as a buffer to store secret field
secret in the public field public. Implicit flows occur if the exception is thrown in one of the
branches of an conditional instruction. For example, in Figure 3.8b, the fact that the exception is or
not thrown reveals information about secret.

Exceptions can either be caught within the method raising the exception, using a try-catch
statement (as we have seen in example in Figure 3.8), or not caught (unchecked exceptions) and
the leak of information is thrown to the caller. For example, if lines 2, 6-8 in Figure 3.8a are not
present, then the exception is unchecked.

Treating exceptions is even more difficult, apart from exceptions thrown explicitly using the
athrow bytecode, since the JVM also supports runtime exceptions. Runtime exceptions are the
result of a programming problem, e.g., arithmetic exceptions (such as a division by zero), pointer
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exceptions (such as trying to access an object through a null reference) and indexing exceptions
(such as attempting to access an array element through an index that is too large or too small). For
example, the assignment x = y/z can throw a division by zero exception if the runtime value of
z is 0. Moreover, if z is a secret value, the raised exception will disclose its value. Even if their
number is more significant, runtime exceptions generate only the weakest form of interference
(implicit flows). For example NullPointerException is raised when a reference is null, hence
no explicit flow can be transmitted, but only an implicit one (e.g., the reference is null because the
sensitive data is equal to 1).

Simplifying assumptions Exceptions, and runtime exceptions in particular, are a result of a
programming problem; when it deals with an exception, the software tries to recover from an
abnormal execution state to a normal execution state. The answer to an exception should not be at
application level, and the exceptions treatment by an application should not interfer with public
and secret data manipulated by the software unit. Hence, we make the assumption that there is no
distinction between exceptions treatment: we use an abstract value Ex which stands for all thrown
objects. Throwing an object as exception makes the object available for public use.

Solution Treating the catched exceptions statically is straightforward: an edge from the instruction
throwing the exception (athrow) to the matching exception handler is added to the control flow
graph of the method. There can be more than one exception handler matching the thrown exception.
The order in which the exception handlers of a method are searched for a match is important and it
depends on the control flow and on the runtime type of the exception. As the runtime type is not
statically known, then an edge from the intruction throwing the exception to each handler is added.

As said before, we consider that exceptions put all thrown object at the disposal of the entire
system, through an abstract value name Ex . Hence, throwing an object stored in the abstract value

u (with the athrow bytecode) results in a flow Exp t
→ u, as well as in a flow from Ex to elements

in the context of the instruction:

Pm[i] = athrow Qi = (ρ, {(u, t)} :: s, S̈) j ∈ handler(T (u), i)

Qj = Qj ⊔ (ρ, {(u, t)} :: ǫ, closure(S̈ ⊔ {Exp t
→ u} ⊔ {Exp i

→ Γi}))

where handler returns the list of handlers matching the thrown exception. Moreover, using the
transitive closure, all abstract values that flow to u will flow to Ex , too.

Handling unchecked exceptions could be done in a similar way: an edge from the instruction
raising the exception to the exit point of the program must be added to the control flow graph,
and a flow from Ex to the abstract value generating the exception (for example, the assignment
x = y/z generates an exception if z is equal to zero and hence leads to a flow from Ex to the
abstraction of z). Unfortunately, the number of bytecode raising runtime exceptions is significant,
thus many instructions will have as immediate postdominant the exit node. This will lead to many
flows of information. Moreover, such behaviour should not occur in a small open system. Thus, our
model accounts for catched exceptions, but does not handle unchecked exceptions. This limitation
applies to all the other information flow systems for Java [Mye99a, CF07].

Threads and synchronization

Multithreading, which consists of simultaneous manipulation of shared objects, represents a threat
for confidentiality of shared secrets as (1) flows can be missed by the analysis (e.g., a thread A
can write sensitive data in a shared object and a thread B can read it) and (2) information can be
inferred from synchronization (e.g., some piece of code is synchronized in a branch of a conditional
instruction of a thread A, then a thread B trying to synchronize its execution may infer information
about the condition tested by A).
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Object sharing There are three ways in which objects can be shared between threads:

1. through a static field,

2. through the sharable service offered for example by JAVACARD. In this case, a sharable
object must be registered using the API, and a card applet can obtain the object through the
getShareable() method,

3. through the field of a thread set by the thread which created it.

In the first case, storing a sensitive data in a shared object (a static field) will lead to a flow from
Static to the shared object, hence from security level p to security level s; this flow is detected by
our analysis.

In the second case, the API is either implemented natively and our analysis is not able to compute
the flow signatures, hence we can declassify them manually, or is implemented in Java using a sort
of static hashset, hence using the API will “store” the sharable object in a static field. This case is
also correctly handled by our analysis.

The third possibility to share objects proves to be more complicated. Threads are implemented
as a part of the system, the JVM, and are accessible thought API methods. Hence, we make the
following assumption:

Thread-safety policy All objects of type Thread are static objects.

We need to redefine the abstract semantics of new, such that, when a thread is created, our analysis
attaches it to the abstract value Static:

Pm[i] = new C Qi = (ρ, s, S̈) T (C) ≤ Thread

Qi+1 = Qi+1 ⊔ (ρ, {(ns,p
i , r)} ∪ TVΓi

:: s, closure(S̈ ⊔ {Staticp r
→ ns,p

i } ⊔ {Staticp i
→ Γi}))

All subsequent computations involving threads (e.g., storing a secret value to the field of a thread)
will generate, through the transitive closure, flows to Static. As a thread is a static object, the
following corollary is obvious:

Thread-safety corollary All the fields of a class extending Thread are public fields.

Thread-safety is ensured by the abstract value Static modeling static fields: sensitive data flowing
to static fields and susceptible to be accessed through different threads is considered as leaked. We
now show how thread-safety is ensured by this property, both for problems arising from thread

flows and from synchronization.

Thread flows An example of thread flows is showed in Figure 3.9. ThreadA creates a thread
ThreadB (at line 1 in Figure 3.9a) and shares the object stored in field f (at line 2). Later, at
line i, ThreadA stores a sensitive data in the field s of f. Let us suppose that ThreadB reads the
field f.s and stores it in a public field p after ThreadA has stored the sensitive data (line j in
Figure 3.9b). Hence, a flow from sensitive data stored in field secret to the field p of ThreadB
occurs. Our analysis does not account directly for such flows.

Generally speaking, considering that o is a shared object, and ThreadA creates flows of type
o → o1 while ThreadB creates flows of type o2 → o, as depicted in Figure 3.10, then flows o2 → o1
are not directly visible in our analysis. The illegal flow arises when o1 contains sensitive data. But
our thread-safety policy saves us, as the sharing object is attached to the thread, and hence to
Static: Static → o. By transitive closure, we have Static → o1. The illegal flow will be detected
when analysis ThreadA and finding the flow Staticp → os

1. Hence, our analysis only fails to show
flows between data that is attached to Static, which is already considered as illegal.

Notice that the thread t created in ThreadA.run is local to the method, hence all flows to t

are not present in the final flow signature of ThreadA.run. Nevertheless, as t flows to Static, all
values flowing to t also flow to Static, and they are not lost.
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(a) ThreadA

class ThreadA extends Thread{

A f;

int secret;

public void run(){

1: t = new ThreadB();

2: t.f = f;

3: t.start();

...

i: f.s = this.secret;

...

}

...

}

(b) ThreadB

class A {

int s;

}

class ThreadB extends Thread{

A f;

int p;

public void run(){

...

j: this.p = f.s;

}

...

}

Figure 3.9: Multithreading example: flows detected indirectly by the analysis

ThreadA o1 → o
ThreadB o → o2

Thread flows o1 → o2

Figure 3.10: Multithreading: thread flows

Synchronization through monitors The mechanism that Java uses to support synchronization is
the monitor. A monitor is basically a guardian in that it watches over a sequence of code, making
sure only one thread at a time executes the code. Each monitor is associated with an object reference.
When a thread arrives at the first instruction in a block of code that is under the watch of a monitor,
the thread must obtain a lock on the referenced object; this is implemented by the monitorenter
bytecode or by a flag synchronized set in a method descriptor. The thread is not allowed to
execute the code until it obtains the lock. Once it has obtained the lock, the thread enters the block
of protected code. When the thread leaves the block, it releases the lock on the associated object, by
using the monitorexit bytecode. In the case of synchronized, the action usually performed
by monitorenter is performed by the invoke bytecode on the first argument, this, or on the
class for invokestatic.

In the example in Figure 3.11, ThreadA locks the monitor in a branch of a conditional instruction
(line i in Figure 3.11a). The thread ThreadB tries to access the monitor (line j in Figure 3.11b)
and it may infer information about the condition tested by ThreadA if the monitor is locked.

In order to detect such leaks, we add semantics rules for monitorenter and monitorexit

bytecode:

monitorenter pop the top of the stack and acquire the lock associated with this object
monitorexit pop the top of the stack and release the lock associated with this object

Pm[i] = monitorenter Qi = (ρ, (u, t) :: s, S̈)

Qi+1 = Qi+1 ⊔ (ρ, s, closure(S̈ ⊔ {u
i
→ Γi}))

Pm[i] = monitorexit Qi = (ρ, (u, t) :: s, S̈)

Qi+1 = Qi+1 ⊔ (ρ, s, S̈)

The semantics rule for monitorenter adds an implicit flow from the monitor (u) to the abstract
value in the context (Γi). In the example in Figure 3.11a, a flow from the abstraction of this.f
to the abstraction of this.secret is added. As the monitors are shared objects, they are of type
Thread they flow to an object of type Thread, which flows to Static. Then, monitors also flow to
Static. Hence, our analysis will detect implicit flows arising from synchronization when analysis the
thread which manipulates the sensitive data.
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(a) ThreadA

class ThreadA extends Thread{

A f;

int secret;

public void run(){

1: t = new ThreadB();

2: t.f = f;

3: t.start();

...

i: if(this.secret)

i+1: synchronize(this.f){

...

...

}

}

...

}

(b) ThreadB

class A {

int s;

}

class ThreadB extends Thread{

A f;

int p;

public void run(){

...

j: synchronize(f) {

j+1: this.p = 1;

}

...

}

...

}

Figure 3.11: Multithreading example: implicit flow through monitor observation

FlyFrance : Supdate = {ps
1
v
→ ps

0}

MHz : Supdate = {ps
0
v
→ p

p
1}

MHz : SgetLevel = {Rp i
→ p

p,s
0 ,Rp i

→ Staticp}

FlyMaroc : Sdiscount = {pp,s
0

i
→ p

p,s
1 , p

p,s
0

i
→ Staticp}

Figure 3.12: Flow signatures for LoyaltyCard

Synchronization through wait() and notify() Another way to protect against concurrent
access problems and to communicate between threads is to use the wait() and notify()

primitives defined in class Object. In addition to having a lock that can be grabbed and released,
each object has a system that allows it to pause or wait whilst another thread takes over the lock. To
ensure that the current code owns the monitor, wait and notify must be placed within synchronized
code.

From the point of view of software security, wait() and notify() represent another way to
leak information. From our point of view, the safety comes from the fact that these instructions
must be placed inside synchronized code, hence between a monitorenter and monitorexit.
Implicit flows that may occur due to this synchronization mechanism are detected in the same way
as for monitors (in fact, monitors include wait() and notify()).

Conclusion Due to the thread-safety policy, our analysis accounts for leaks arising from multi-
threading environments, but with a price to pay. As a consequence of our thread-safety management
policy, we forbid any exchange of sensitive data between threads. Moreover, all secrets attached to
a thread leak through the abstraction of static variables, Static.

3.3.4 LoyaltyCard Example

Let us reconsider the LoyaltyCard example, explained in Section 2.3.3. Confidential data (loyalty
points of FlyFrance) reside in fields FlyFrance.miles and MHz.ppoints. Thus, the information
flow analysis is performed with security levels: L(FlyFrance, miles) = s and L(MHz, ppoints) = s.
The final flow signatures of methods in LoyaltyCard are depicted in Figure 3.12.
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(a) Source code

void discount(MHz h) {

int level = h.getLevel();

if(level == GOLD) {

this.discount = 20;

}

}

(b) Step by step analysis

Instruction i
Qi Γiρi si Si

0: aload 1 ρ0 ǫ ∅ ∅
1: invoke getLevel ∽ {(pp,s

1 ,r)} :: ǫ ∽ ∽

2: istore 2 ∽ {(rp
1 ,v)} :: ǫ S̈2 ∽

3: iload 2 ρ3 ǫ ∽ ∽

4: ifeq 6 ∽ {(rp
1 ,v)} :: ǫ ∽ ∽

5: goto 9 ∽ ǫ ∽ {rp
1}

6: aload 0 ∽ ǫ ∽ {rp
1}

7: bipush 20 ∽ {(pp,s
0 ,r), (rp

1 ,i)} :: ǫ ∽ ∽

8: putfield discount ∽ {(Constp,v), (rp
1 ,i)} :: {(pp,s

0 ,r), (rp
1 ,i)} :: ǫ ∽ ∽

9: return ∽ ǫ S̈9 ∅

exit ∅ ǫ S̈exit ∽

ρ0 = {(0 7→ (pp,s
0 ,r)), (1 7→ (pp,s

1 ,r)), (2 7→ ∅)}
ρ3 = {(0 7→ (pp,s

0 ,r)), (1 7→ (pp,s
1 ,r)), (2 7→ (rp

1 ,v))}

SgetLevel = {Rp i
→ p

p,s
0 ,Rp i

→ Staticp}

S̈1 = {rp
1
i
→ p

p,s
1 , r

p
1
i
→ Staticp}

S̈9 = S̈2 ⊔ {pp,s
0

v
→ Constp, p

p,s
0

v
→ r

p
1 , p

p,s
0

i
→ p

p,s
1 , p

p,s
0

i
→ Staticp}

S̈exit = S̈2 ⊔ S̈2 = {rp
1
i
→ p

p,s
1 , r

p
1
i
→ Staticp, p

p,s
0

v
→ Constp, p

p,s
0

v
→ r

p
1 ,

p
p,s
0

i
→ p

p,s
1 , p

p,s
0

i
→ Staticp}

Sdiscount = {pp,s
0

i
→ p

p,s
1 , p

p,s
0

i
→ Staticp}

Figure 3.13: A detailled analysis example

An illegal information flow is disclosed when analysing method FlyMaroc.discount: the flow

pp,s
0

i
→ pp,s

1 reflects the implicit flow from the secret part of parameter p0 (MHz) to public part of
parameter p0 (this). Hence, FlyMaroc can infer information about loyalty points of FlyFrance.

To illustrate the operational semantics, we give a sketch of the analysis based on the LoyaltyCard
example. In Figure 3.13, we detail the evolution of the states Q during the abstract interpretation
on the bytecode in method FlyMaroc.discount. The abstract domain Σ̈L

m is

Σ̈L
m = {pp,s

0 , pp,s
1 , rp,s

1 ,Rp,Staticp,Exp, IOp,Constp,nullp}

where r1 is the abstract value corresponding to the return of the invoke instruction at bytecode 1.
This abstract value is local to method and does not survive method’s execution; hence, the final
abstract domain, ΣL

m is

ΣL
m = {pp,s

0 , pp,s
1 ,Rp,Staticp,Exp, IOp}.

The symbol ∽ denotes repetition, i.e., a set equal to the one above in the column. The abstract
analysis starts with the initial state Q0, which contains an empty stack and an empty flow signature,
while the local variables are mapped to the methods parameters. Instruction 0 loads the local
variable 1 on the stack, while instruction 1 invokes method MHz.getLevel; the abstract interpre-
tation of invoke instruction consists in mapping the real arguments (stored on the stack) to formal
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parameters of the method and to translate flows between abstract values in the signature of invoked
method (SgetLevel) to flows between mapped abstract values to the current flow signature (S̈1).

It is worth noting that the instructions 5, 6, 7 and 8 belong to the control dependency region of
4, thus their execution depends on the value tested by the conditional instruction (the top of the
stack in Q4). Hence, we can compute Γ5 = Γ6 = Γ7 = Γ8 = {r

p
1}. For example, besides the content

of local variable 0, (pp,s
0 ,r), instruction 6 also pushes the element (rp

1 ,i) on the stack.

Let us denote by v the set {(Constp,v), (rp
1 ,i)} and by u the set {(pp,s

0 ,r), (rp
1 ,i)}; we can rewrite

the state Q8 as Q8 = (ρ3, v :: u :: ǫ, S̈2). The putfield instruction assigns v to a field of u. Thus,
flows from v to u are created; moreover, as the assignment takes place in the control dependency
region of instructions in cxt(8), flows from abstract values in Γ8 to u are generated too.

Concretely, the putfield instruction generates the following flows, according to abstract
semantics rule in Figure 3.6:

• pp,s
0

v
→ Constp and pp,s

0
v
→ rp

1

• pp,s
0

v
→ rp

1 (as rp
1 ∈ Γ8)

As, before the execution of putfield, the signature S̈2 contains the flows rp
1
i
→ pp,s

1 and rp
1
i
→

Staticp, the function closure generates the flows pp,s
0

i
→ pp,s

1 , pp,s
0

i
→ Staticp. Informally, as p0 points

to r1, and r1 points to p1 and Static, by transitivity, p1 also points to p1 and Static.

The flow signature for discount is Sexit , while the final flow signature, Sdiscount, is given by

S̈exit restricted to elements in ΣL
m, thus to elements that survive: Sdiscount = {p

p,s
0

i
→ pp,s

1 , pp,s
0

i
→

Staticp}.

3.4 Information flow verifier

In the previous section, we presented a compositional information flow analysis complying with the
Java dynamic class loading paradigm, which computes for each method a flow signature, containing
all possible flows of information in that method. But experimental results show that the analysis is
already expensive for a normal system and impracticable for a device with limited resources, both
in time and memory. These results justify an approach based on “Lightweight bytecode verification”
(LBV) [RR98] technique, which splits the analysis in two steps: an offboard phase, which computes
flow signatures and proof elements, and an onboard phase, which verifies the flow signatures
obtained in the offboard phase.

In this section we concentrate on the type verification and proof elements needed to perform it.
The type and proof computation can be performed by any device or tool, as the small open system
can verify the code it receives without relying on the external device. LBV relies on the lattice
structure of flows and on unification operations on this lattice. The lattice of flows depicted in
Figure 3.4 allows us to extend this technique and to use it in our context. While LBV checks explicit
Java types, our algorithm has to infer information flows. We have to deal with type inference and
with flow signature management.

Thanks to proof elements, the verification is linear in time and size, and it needs constant memory.
The verifier is implemented as a custom class loader so it can be used as a plug-in on any JVM.

We first detail the flow signature verification, by describing the proof elements and the embedded
verification algorithm. The proof elements are only used during the verification process and
discarded afterwards, while flow signatures must be kept onboard, in a repository, for future
verifications. Hence, as the correct and optimized use of the repository is a crucial element, we focus
our attention on flow signature management. Finally, we show how the verification is integrated in
a custom class loader, and how a heterogeneous class loader hierarchy is taken into account.
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3.4.1 Flow-signature verification

Proof elements

The flow signatures computed by the prover are shipped within the code and must be verified
onboard. The verification process is performed when loading a Java class.

In order to ease verification, we ship with each class C some proof elements:

• the abstract state for each jump target instruction in each method; this is needed in order to
avoid the iteration (dictated by the absence of high level control flow constructs) on the set of
bytecodes of a method m and to have a verification linear in code size,

• the flow signatures of methods invoked in C (pending signatures); due to the presence of
inter-dependent methods and the fact that the JVM loads one class at a time, C may need flow
signatures of methods not yet loaded; pending signatures are stored onboard and verified
when corresponding code arrives,

• abstract values tested by conditional instructions, needed to compute the implicit flows,

• the security levels of fields used in C.

The proof elements are defined as new attributes of the class file structure, so the annotated
classes can be loaded by any JVM, even by those not enforcing information flow security properties.
After using it to verify the flow signature, the proof is discarded and only the flow signature is kept
onboard. Almost constant memory is needed for the verification.

For example, for method discount, depicted in Figure 3.13, page 47, the proof elements are:
the abstract states Q6 and Q9 of the jump target bytecode 6 and 9; the pending signature of method
MHz.getLevel, SgetLevel; the top of the stack in Q4, corresponding to values tested by conditional
instruction 4.

Implicit flow verification

To infer implicit flows, we use the immediate postdominators [Bal93] in the control flow graph
of a program. To verify these flows, the notion of immediate postdominators must be used for
the embedded algorithm. There are two options: (1) either to compute postdominators offboard
and load some proof elements to verify them onboard, or (2) to compute postdominators onboard.
Many algorithms for verifying postdominators exist [GT05], but they do not improve considerably
the complexity of algorithms computing postdominators [LT79], which perform in linear time.
The main advantage of verifying instead of computing is that less memory is required. Still, the
difference is not significant even for a small system. Thus, due to the low complexity of algorithms
for computing postdominators, we chose to compute dominators onboard. The function computing
dominators belongs to our trusted computing base.

For a method m and an instruction i ∈ Pm, cxt(i) is computed locally. We remind that cxt(i)
denotes the set of conditional instructions on which the execution of i depends; Γi contains the
set of abstract values tested by instructions in cxt(i), thus the top of the stack for Qi. To ease the
implicit flow verification and the computation of Γi, we load, as proof elements, the top of the stack
for all conditional instructions, thus instructions that can be found in cxt(i). The soundness of this
proof element is similar to the soundness of frames for label bytecodes.

Embedded abstract semantics

Let Labels ⊆ Pm be the set of jump target bytecodes, Labels = {i ∈ Pm | ∃j ∈ Pm s.t. i ∈
succ(j) ∧ i 6= j + 1}. A jump target bytecode is a bytecode that can be reached through a branching
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Algorithm 3.3 Embedded verification of a method m

compute cxt(i),∀i ∈ Pm

initialize Qv

for i = 0 to |Pm| do
apply the embedded semantics of Pm[i]
for all i′ in succ(i) do

if i′ ∈ Labels then
assert Qv ⊑ Proof (i′)

end if
if i′ ∈ Cond then

let Qv = (ρ, n :: s, SA)
assert n ⊑ Proof ipd(i

′)
end if

end for
if i ∈ Labels then

Qv = Proof (i)
end if

end for

bytecode, such as ifeq a or goto a. In these examples, a represents the targeted bytecode, and so
a ∈ Labels.

With each target bytecode i ∈ Labels, we ship the abstract state Qi computed by the external
analysis, as presented in the previous section. Let Proof be a function that associates to each target
bytecode its state Qi.

Let Cond ⊆ Pm be the set of conditional bytecodes, Cond = {i ∈ Pm | Pm[i] = ifeq a}. For
i ∈ Cond , let Qi = (ρ, n :: s, S̈i) be the frame computed by the external analysis. Then, the value
n tested by i (e.g., the top of the stack), is shipped with the code. Let Proof ipd be a function that
associates n to each conditional bytecode.

The verification process consists in a sequential interpretation of bytecodes of each method of
the loaded class, starting with the first instruction (Pm[0]), as presented by Algorithm 3.3. The
semantics (a small subset is presented in Figure 3.14) is similar to the semantics for external
computation, the main difference consisting in the fact that there is only one frame, Qv, needed to
be stored in memory and not the entire function Q; each rule of an instruction i modifies the state
Qv, and not the states associated to successors of i.

When a target bytecode a is found, the current state of the JVM, Qv must be compatible with the
proof corresponding to the target bytecode, given by Proof (a): if the compatibility is not tested,
the class is rejected; otherwise the verification is carried on using as current state Qv either by the
result of the precedent instruction, if it is not a target bytecode, or by the proof loaded with the
bytecode otherwise. The compatibility relation corresponds to smaller than relation: a state Q′ is
compatible with Q′′ if Q′ ⊑ Q′′. The compatibility of two flow signatures is defined similarly.

By using this mechanism, a small system can certify a method using the proof computed by a
third party without relying on it. The mechanism is based on two main ideas:

1. the proof contains all possible conditions under which a bytecode can be executed (by
construction);

2. the code agrees with the proof as, for the target bytecodes, we verify the compatibility of the
state Qv under which they can be executed, with the proof.
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Pm[i] = pop Qv = (ρ, v :: s, S̈)

Qv = (ρ, s, S̈)

Pm[i] = ifeq a Qi = (ρ, v :: s, S̈)

Qv = (ρ, s, S̈)

Pm[i] = getfield fC′ Qv = (ρ, v :: s, S̈)

Qv = (ρ, (v|f
C′

, T (fC′ )) ∪ v|v ∪ v|i ∪ TVΓi
:: s, S̈)

Pm[i] = putfield fC′ Qv = (ρ, v :: u :: s, S̈) φ′ = φ ⊓ TF (fC′ )

Qv = (ρ, s, closure(S̈ ⊔ {u|f
C′

φ′

→ e | (e, φ) ∈ v} ⊔ {u|f
C′

i
→ V u

i
∪ Γi}))

Pm[i] = invoke m′
C′

Qv = (ρ, vnm :: .. :: v1 :: u :: s, S̈) Sm′ = lookup(C′.m′)

Qv = (ρ, {(rp
i , r), (rs

i , r)} :: s, closure(S̈ ⊔ apply(S̈, Sm′ , u, v1, .., vnm ))

with φ, φ′ ∈ F V u
φ = {e | (e, φ) ∈ u ∧ e 6= null

p} u|φ = {(e, φ) | (e, φ) ∈ u} TVΓi
= {(e, i) | e ∈ Γi}

u|f
C′

= {aprox(e, fC′ ) | e ∈ V u
r } TF (fC′ ) gives the type of field fC′ (v or r) with respect to F .

Figure 3.14: A subset of embedded information flow verifications rules.

Discussion

The embedded verification has the advantage that each instruction is interpreted only once and so
it is linear in time with the code size. Moreover, the proof is used only during the verification and
not stored in the system. Only the final flow signature of each method is kept onboard. Another
advantage is that each class is verified only once, even the code shared by many software units, as
the signatures are kept onboard in a repository. If the type inference of flow signature fails, the class
is rejected. If the type inference succeeds, we must ensure that the flow signatures used during
validation fit within the system.

Due to limited resources of small open systems, the size of proof elements must be as small as
possible. As the lattice of flows contains 256 possible elements, we chose a binary and compact
solution on 1 byte to encode the flows. This solution allows simple manipulation operations. For
example, adding a new flow to a flow signature requires only a bitwise logical operation. Formally,
θ ∪ θ′ = θ′′ iff encode(θ)&encode(θ′) = encode(θ′′) where encode gives a binary representation of a
flow in Θ (the lattice of possible flows between two abstract values, defined in Section 3.2.3) which
allows simplified bitwise operations.

Moreover, the flow signatures within the states of the JVM for each target instruction are
encoded incrementally: the first signature is encoded, while the subsequent signature is defined
by the difference from the previous signature (the flows added or removed since the last label).
Experimental results showed that signatures have few changes from one label to another.

Dead code is ignored by the external analysis and thus not annotated. In order to deal with this
situation, when a label bytecode without any proof annotation is found, we can assume it is the
beginning of a block which is never executed. In this case, all the bytecodes following the label
are ignored, until we meet an annotated label. If the label without a proof is not the start of a
dead block, then the class is rejected when the compatibility of predecessors instructions with the
proof of the label is tested. A simpler solution is simply to eliminate dead code, performing code
optimization at the same time.

The analysis guarantees non-interference for loaded classes. All the possible flows from secret to
public data are detected and stored in flow signatures. But, due to our simplifying assumptions, we
might detect false flows. Nevertheless, our experiments (described and discussed in Section 4.1)
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have shown that this is not an issue in practice.

3.4.2 Flow signature management

The flow signature of a method depends on flow signatures of invoked methods. Thus flow
signatures must be kept onboard, in a repository, denoted by R, for future use. The repository must
deal with two types of flow signatures:

• certified signatures, stored in a certified repository, Rc,

• pending signatures, stored in a pending repository, Rp.

Certified signatures refer to (1) flow signatures already verified, (2) hand-written signatures for
native methods, which belong to our trusting base and (3) signatures not available, which are set to
the top element according to the lattice of flow signatures.

Algorithm 3.4 init(C)

for all methods C ′.m′ invoked in C do
Let Sm′ be the announced flow signature
if C ′.m′ already loaded then

discard Sm′

else
if ∃Rp(C ′.m′) then

Let S′m′ = R
p(C ′.m′)

Rp = Rp[C ′.m. 7→ Sm′ ⊓ S′m′ ]
else

Rp = Rp[C ′.m. 7→ Sm′ ]
end if

end if
end for

Pending signatures correspond to methods not yet available when analyzing a method. In this
case, a signature can be announced, stored in the pending repository Rp and verified when code is
finally deployed in the virtual machine.

Algorithm 3.4 presents how pending signatures announced by a class C are handled, while
loading C. If the pending signature corresponds to a method already loaded, then it is ignored
and discarded. Otherwise, the pending signature is stored in the pending repository, Rp. There is
possible to have different pending signatures for the same method. The naive solution would be to
keep all pending signatures in Rp. On the other hand, due to context of small systems and limited
resources, the repository must be as small as possible. Thus, a way to reduce repository is to store
only a pending signature for a given method; if different signatures are announced, then we store
in the repository the infimum according to the lattice of flow signatures. The logic behind this idea
is straightforward: given two pending signatures, S′m and S′′m, and the certified signature Sm, Sm is
accepted if it is compatible with both S′m and S′′m (Sm ⊑ S′m and Sm ⊑ S′′m), hence if flows in Sm

are in both S′m and S′′m (Sm ⊑ S′m ⊓ S′′m).
The signature lookup algorithm (Algorithm 3.5) for a method C.m first searches in the certified

repository. If no signature is found, then it interrogates the pending repository. If the search fails
again, then the flow signature for C.m is set to the maximum and it is stored in Rp.

The validation of pending signatures is performed when code arrives, as depicted by the Algo-
rithm 3.6. The algorithm is performed after the verification of a class C, and consists of verifying,
for each method m in C, that the certified signature is compatible with pending signature (certified
signature must not contain more flows than pending signature). If the compatibility is not verified,
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Algorithm 3.5 lookup(C.m)

if ∃Rc(C.m) then
return Rc(C.m)

end if
if ∃Rp(C.m) then

return Rp(C.m)
end if
Let Sm = ⊤
Rp = Rp[C.m 7→ Sm]
return Sm

Algorithm 3.6 end(C)

for all m ∈ Method(C) do
Let Sm be the certified flow signature
if ∃Rp(C.m) then

Let S′m = Rp(C.m)
assert Sm ⊑ S′m
remove S′m from Rp

end if
Rc = Rc[C.m 7→ Sm]

end for

then the class C is rejected and not loaded. Otherwise, the pending signatures are erased from Rp

and verified signatures added to Rc.

The correctness of a flow signature also depends on the security levels of used fields. To have
access to security levels of fields of an unavailable class, we proceed similarly: we ship the security
levels of all fields and we keep them onboard on the pending repository (let us denoted it by Rp

f ).
When the classes containing the field definition are loaded, we check the compatibility of fields and,
if they are compatible, we erase them from the pending repository. Two fields are compatible if they
have the same security level.

3.4.3 The verifier as a user-defined class loader

The loading process in a JVM is performed by the class loaders. Programs implement subclasses
of ClassLoader in order to extend the manner in which the JVM dynamically loads classes. Class
loaders may typically be used to check security properties. The standard JVM deals with multiple
class loaders, hierarchically organized, and supports user-defined class loaders. The KVM virtual
machine [Sun] does not support user-defined class loaders and has a single built-in class loader
that cannot be overridden or replaced by the user.

We build a verifier that can be run on any JVM. It can be built in the single class loader of KVM
or installed as a user-defined class loader for a standard JVM. The embedded JVM [Aon, Jav, Sun]
are evolving towards the standard Java language, and therefore towards a multiple class loader
hierarchy. The recently presented JAVACARD 3.0 does the same. We now describe how the verifier
can be used as a plug-in within a standard JVM to validate annotated bytecode.

The verifier was implemented as a subclass of the ClassLoader class provided by the Java API,
named SafeClassLoader . Certifying the underlying information flow of a software unit requires the
instantiation of a SafeClassLoader with which the software unit should be loaded.
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Extending the delegation model to flow signatures lookup

In the JVM delegation model, class loaders are arranged hierarchically in a tree, with the bootstrap
class loader as the root of the tree. Each user-defined class loader has a “parent” class loader. When
a load request is made by a user-defined class loader, that class loader usually first delegates the
parent class loader, and only attempts to load the class itself if the delegate fails to do so. A loaded
class in a JVM is identified by its fully qualified name and its defining class loader. This is sometimes
referred to as the runtime identity of the class. Consequently, each class loader in the JVM can
be said to define its own name space. In the same manner, each SafeClassLoader defines its own
repository containing the signatures of loaded methods. For a class loader Scl , let Scl .Rc denote its
repository of certified flow signatures.

Algorithm 3.7 extended lookup(Scl .C.m)

while Scl 6= null do
if ∃Scl .Rc(C.m) then

return Scl .Rc(C.m)
end if
Scl = parent(Scl)

end while
if ∃Rp(C.m) then

return Rp(C.m)
end if
Let Sm = ⊤
Rp = Rp[C.m. 7→ Sm]
return Sm

In order to support multiple class loaders, we extend the lookup algorithm to take into consid-
eration the delegation model (as depicted by Algorithm 3.7). When a class loader Scl needs the
flow signature of a method C.m, it first searches in its own certified repository (Scl .Rc), and if
the search fails, it delegates the search to its parent, which repeats the procedure. If the parent
also fails to find the signature, the lookup continues in the pending repository. Pending signatures
are verified when code arrives. When Scl loads C.m, it must verify pending signatures for C.m
that were used in Scl , as well as in the classloaders that may delegate Scl (class loaders that have
Scl as parent or parent of parent, etc.). Thus, Scl must have access to pending signatures in its
child classloaders. In the same time, the JVM does not offer a mechanism which allows classloaders
to access or have any knowledge about their child class loaders. To overcome this limitation, we
implement the pending repository as a unique repository used by all class loaders. In order to allow
classloader and hence class removal, the unique repository uses weakreferences. When a reference
is broken by the garbage collector (i.e., when the classloader and associated classes are removed
from the JVM), the entry is removed from the pending repository. Otherwise the loaded class cannot
be unloaded by the runtime environment.

We showed how the SafeClassLoader extends the delegate model to the look up of a signature of
a method. The same search process is extended to the look up of the security level of a field.

Example

To better understand the lookup and delegation models, let us consider the class loader hierarchy in
Figure 3.15 containing three SafeClassLoaders: Scl2, Scl3 and their parent Scl1, and the following
loading scenario:

Scl2 loads class C

pending signature S2foo for Scl2.A.foo
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Scl1

Scl2 Scl3

Figure 3.15: SafeClassLoader hierar-

chy

Bootstrap

System CL

B1:CL A2:SCL

A1:SCL B2:CL A3:SCL

Figure 3.16: Class Loader hierarchy exam-

ple

Scl1 loads class D

pending signature S1foo for Scl1.A.foo

Scl1 loads class A

certified signatures Sfoo for Scl1.A.foo

Class loader Scl2 requests to load class C. At first, it delegates its parent class loader, Scl1, to load
C. If the delegation fails, Scl2 attempts to load the class by itself. While loading and verifying C,
Scl2 needs the flow signature of A.foo: it first searches in its own certified repository, and if the
search fails, it delegates the search to its parent, which repeats the procedure. If the parent also
fails, pending signature S2foo is used while validating C and stored in the pending repository. Class

loader Scl1 loads a class D announcing a different pending signature for A.foo. The signature S1foo

is stored in the pending repository and is associated with Scl1.

Finally, class loader Scl1 attempts to load class A. Let Sfoo be the certified signature of foo. Class
A will be loaded by Scl1 if and only if Sfoo is compatible with the pending signatures for foo in the
current class loader (Scl1) and with pending signatures in class loaders that can delegate Scl1. In
our case, Sfoo must be compatible with S1foo and S2foo. Otherwise, class A is rejected.

Mixed hierarchy of class loaders

We presented so far the case where all the class loaders in the hierarchy have the type
SafeClassLoader . Actually, the hierarchy contains different types of class loaders. As shown
in Fig. 3.16, the bootstrap class loader loads the classes from the JVM, as well as extensions to the
JDK. The system class loader loads all the classes provided by the classpath. In the end, we have
several additional class loaders, where SCL stands for SafeClassLoader and CL for any other type of
class loader.

As a consequence, we must take into consideration the validation of classes loaded by any class
loader. Let’s consider that A1 loads a class C that invokes a method of another class D already
loaded by the parent B1. As B1 is not a SafeClassLoader , the classes it has loaded have not been
validated at loading time. To ensure security for C, SafeClassLoader A1 will try to retrieve, using
the getResourceAsStream method, the .class files of the classes loaded by its parent and to verify
the announced signatures. If the streams cannot be found, or if they do not contain information
flow attributes, or if the signatures are not compatible with the announced ones, A1 rejects class
C. Otherwise, the signatures of classes belonging to a non-SafeClassLoader are stored in a special
dictionary, named “system dictionary”. The look up for a signature in a class loader is performed in
its dictionary, if the class loader is a SafeClassLoader , and otherwise in the system dictionary.

In order to support any JVM, we do not interfere while the Bootstrap and System class loaders
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load the JVM and classpath classes, and thus we consider their signatures as part of our trust
computing base.

3.5 Support for open class hierarchy

In the previous sections we showed how flow signatures are computed and verified. In this section,
we add support for polymorphism and open world.

3.5.1 Overriding methods

Global flow signature

In an open world, where software units are loaded dynamically, the entire call graph is not available.
The compositional analysis overcomes this limitation, as a context-insensitive (it does not depend on
the call site) flow signature is computed for each method. The flow signature of a method depends
on flow signatures of invoked methods. As the exact type of the called object (let us denote it by C)
cannot be statically determined and, moreover, it can be overridden by future programs, inheritance
and overriding can be a way to bypass the security controls. Loading a method overriding an
existing method can be a threat for code certified using the old method.

To avoid such security leaks, we define contracts for methods overriding already loaded methods,
called global flow signatures, which give the expected behaviour of new methods. Global flow
signatures are a support to extensibility and openness of small systems [AGGSR07], as they describe
the required behaviour of pieces of code not yet loaded in terms of information flow, more exactly
the maximum flows that can potentially be generated by the execution of a method.

In order to be accepted in the system, newly loaded methods must respect the contracts imposed
by the classes in its hierarchy.

Hence, we compute, for each method m in a class C, two flow signatures: (i) the exact flow
signature, Sm, and (ii) a global flow signature, Sg

m. The exact flow signature is the signature
computed by the intra-procedural analysis and it represents the flow of information generated if the
method m in class C is executed. The global flow signature is computed, at a certain time, from the
class hierarchy derived from C and stands true if any reimplementation of m in subclasses of C is
executed.

The global signatures are computed by the prover, during the external phase, and they are used
to validate methods in the class hierarchy in the embedded verification process.

During the compositional analysis, when an invoke instruction is encountered, if the exact type
of the called object is known, the exact flow signature is used, otherwise, the global flow signature
is used.

Exact type

In a static analysis, the run-time type of an object is not necessarily the declared type. The exact
type of an object [BSF04] represents the run-time type of the object, on which invoke calls will be
made.

For example, in the code below

static void foo(A a) {

a.m();

B b = new B();

C c = new B();

b.m1();

}
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the exact type of a (and of parameters, in general) cannot be statically determined. But the exact
type of b and c can be statically computed. In other words, the exact type of an object is known
if we can statically decide which allocation site (and so which class) has been used to create the
instance.

Knowing the exact type statically makes the analysis more precise, as the exact flow signature can
be applied, without even taking into consideration the inheritance issues. If the exact type cannot
be statically computed, then the global flow signature is used, which is an approximation of the
entire set of methods that can be invoked.

Therefore, besides computing flow signatures, we also make a type analysis, for determining the
exact types of objects. The function exactType(u), where u is a set of abstract values, returns true is
all abstract values have an exact type, of false otherwise.

The semantics rule of the invoke instruction which accounts for exact types is:

Pm[i] = invoke m′
C′

Qi = (ρ, vnm :: .. :: v1 :: u :: s, S̈) Sm′ = R(u, m′)

Qi+1 = Qi+1 ⊔ (ρ, {(rp,s
i , r)} :: s, closure(S̈ ⊔ apply(S̈, Sm′ , u, v1, .., vnm ))

withR(u, m′) = exactType(u)?Rexact (m′) : Rglobal (m′)

where R(u, m′) returns the exact flow signature (from the repository of exact flow signatures
Rexact) or global flow signature (from Rglobal) depending on the exact type of the object on stack u.
For instructions invokespecial, which invokes an instance method, and invokestatic, which
invokes a static method, the exact type is always known, hence they are a simplification of our
invoke instruction. The invokeinterface method is similar to virtual invocation.

Computing global flow signatures

A completely open system, where all global flow signatures are set to top, would yield imprecise
results, thus, when possible, we consider groups of classes and compute their global flow signatures;
later, the global flow signature represent open doors for loading new classes.

The global flow signature of a method can:

• either be computed from the signatures of methods in the class hierarchy, when a set of classes
is available,

• or defined manually in order to relax or define new contracts and allow more flexibility; in
this case, the danger is to define too pessimistic flow signatures. Nevertheless, they will be
accepted on the system only if they fit correctly in their class hierarchy.

In the first case, the global flow signature of C.m is the union of the exact signature of C.m and
of all global flow signatures of the method m implemented in the classes derived from the static
type of the object (C), formally

Global flow signature definition Given a class C, a method m in C and a set of classes Cl, the
global flow signature of mC , Sg

mC
is defined as

Sg
mC

=
⊔

∀C′∈Cl,C≤C′

SmC′

The global flow signature is the least upper bound element according to the lattice of flow signatures
for method mC . As a consequence of the construction of the global flow signature, we have the
following property:

Compatibility with global flow signature Given two classes C, C ′ such that C ′ extends C
(C ≤ C ′), a method m in C and C ′, then:

SmC′
⊑ Sg

mC
.
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Figure 3.17: Global signatures for class hierarchy

In the external phase, when a set of classes is being analyzed, global signatures can be relaxed:
if a less restrictive flow signature than the global signature is found, the global signature can
be adapted (relaxed) to include it. In the embedded phase, when loading new methods, their
signatures must be compatible with the global signatures, as we will explain in the next subsection.
Again, we rely on the idea that it is easier to verify the flow signatures compatibility (the ⊑ relation)
than to compute the least upper bound flow signature (the ⊔ relation).

This approach eases the use of our framework. The analysis allows the programmer to define a
coherent set of classes, to use any of the features of the Java language like interfaces, abstract classes,
without having to worry about signatures compatibility. Overriding does not necessarily require to
respect the signature of the superclass. The global signature is used to help the programmer; if the
global signature obtained is not satisfying, a manually generated and more pessimistic signature
can be defined and verified. In this way, unknown classes can be dynamically loaded.

Example

Let us consider the class hierarchy in Figure 3.17; the class C contains a method m and all classes in
the hierarchy override this method. For each class Cx, the exact signature of method m is Sx, and
the global signature is Sg

x. The global flow signatures are computed from the initial class hierarchy,
containing C, C1, C2 and C3.

As class C3 is at the bottom of the hierarchy and does not have any subclasses, the global
signatures of method m is equal to the exact flow signature: Sg

3 = S3. Instead, the global signature
of method C1.m and C.m must stand true for any possible virtual invocation. Hence, the global
flow signature of C1.m is the union of S1 and the global flow signatures in classes extending C1:

Sg
1 = S1 ⊔ Sg

3 .

The same affirmation is true for C:

Sg = S ⊔ Sg
1 ⊔ Sg

2 .

Global flow signature embedded verification

Global flow signatures are computed offboard, and shipped with the code onboard. When a new
class is loaded, the flow signatures of its methods must be compatible with the global flow signatures
of the class hierarchy to which they belong. A method and its signature are compatible with the
hierarchy if and only if it is compatible with (smaller than) the global signature of the classes above
in the hierarchy.

For example, let us consider that the class C4, extending C1, is added to the initial class hierarchy
in Figure 3.17. When loading class C4 in Figure 3.17, the following properties must hold: S4 ⊑ Sg

1 .
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From the same example, we can observe that there is an inclusion relation between global
signatures: Sg

3 ⊑ Sg
1 ⊑ Sg. Hence, it is sufficient to verify the compatibility of S4 with the class from

which it directly inherits (the class immediately above in the hierarchy): S4 ⊑ Sg
1 . By transitivity and

due to inclusion relation, further verifications are not required. We can now define the acceptance
rule for a method mC′ while loading class C ′: Formally,

Flow signature acceptance constraint Given a class C ′, its direct superclass C and a method
m, the method mC′ is loaded if and only if

SmC′
⊑ Sg

mC
.

This constraint ensures that the global signature compatibility property is always true. In the JVM

loading process, the superclass is always loaded before the child class, hence we have the insurance
that while loading C ′, the superclass C and its flow signatures are already loaded.

3.5.2 Inheriting fields

Besides inheriting methods, a class also inherits fields from all its superclasses, whether direct or
indirect. Extending a class and changing security policy of inherited fields represents a possible
way of leaking confidential data, as computed signatures of inherited methods change, and the
superclass must be reanalyzed. This is not convenient for our compositional approach and for an
open system. To prevent such security leaks, we impose a restriction regarding inherited fields:

Inherited fields restriction The security level of inherited fields cannot be changed by a child
class.

Nevertheless, the child class can declare new fields even with security level s.

3.5.3 Interfaces and abstract classes

Because object-oriented development efforts involve the interactions of objects, it is essential
to develop and enforce strong contracts between those objects. Interfaces and abstract classes
represent a way of establishing the interactions among the necessary objects, without forcing the
early definition of the supporting objects.

While an interface is a contract that classes must respect, an abstract class defines the core identity
of its descendants. Both abstract classes and interface define contracts through abstract methods,
which do not have any implementation and which are not necessary overridden when deployed.

The global flow signature allows the perfect integration of abstract methods in our system.
Considering an abstract class or an interface C and an abstract method m, then there is only a global
flow signature associated to C.m. Exact flow signatures will be computed in classes implementing
m as described in Section 3.5.1. Invoking an interface method Cm., using invokeinterface

instruction, consists of using the

3.5.4 Loyalty card post issuance example

In Section 3.1 we present an open system, LoyaltyCard, which consists of different loyalty software
units which implement loyalty services.

To perform credit/debit operations with loyalty points, the card must communicate with untrusted
hosts; to secure the communication, sent data is encrypted. JAVACARD offers different encryption
algorithms, as depicted in the class hierarchy in Figure 3.18. It is an extensible hierarchy, as other
encryption methods can be loaded later.

The encryption method must be of type Cipher, which offers the doFinal method as an
interface for encryption and decryption. All cryptographic algorithms must extend the abstract
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Initial
systemjavacardx.crypto.Cipher

doFinal(inBuff,inOffset,
inLen,outBuf,outOffset)
Sg = Saes ∪ Srsa

= {pp
4

v
→ pp

1}

AESCipher

doFinal(. . . )

Saes = {p
p
4

v
→ pp

1}

RSACipher

doFinal(. . . )

Srsa = {pp
4

v
→ pp

1}

MaliciousCipher

doFinal(. . . )

Smc = {pp
4

v
→ pp

1 ,

Staticp v
→ pp

1}

Figure 3.18: Javacardx.crypto.Cipher hierarchy

class Cipher and must overwrite the doFinal method. In our example, two algorithms are
implemented: AESCipher, implementing the encryption based on single key shared by both
parties, and RSACipher based on public/private key encryption.

The information flow analysis must hold for any encryption method in the Cipher hierarchy, so
we compute a global signature for doFinal method in the Cipher abstract class, containing all
possible flows of information in classes extending it. In the initial state, when only the RSACipher
and AESCipher implementations are available, the global signature for method doFinal is the
union of the implementation of this method in AESCipher and RSACipher. This signature
indicates that there is a flow from the input buffer to the output buffer.

A possible danger may come from a Cipher instance shared by multiple software units. In this
case it is possible that one software unit loads a class (e.g., MaliciousCipher) that overwrites
the method doFinal in a malicious way, for example, a method that assigns the input buffer to a
static variable accessible to a third party.

class MaliciousCipher implements Cipher{

public static byte[] s;

short doFinal(byte[] inBuff, short inOffset,

short inLength, byte[] outBuff,

short outOffset){

s = inBuff;

..}

..}

Our tool detects and prevents this kind of security threats, since when a class is added to
a hierarchy, overwriting existing methods, these methods are accepted if and only if their sig-
natures are compatible with the global signature of the class directly derived. Suppose that
MaliciousCipher implements a symmetric encryption method. The signature Smc for method
encrypt in MaliciousCipher will contain, besides the flow between the output buffer (p4) and
the input buffer (p1), a flow between the static value Static and the input buffer:

Smc = {p
p
4
v
→ pp

1,Static
v
→ pp

1}

The class MaliciousCipher is rejected at loading time, as the signature Smc is not compatible
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with the global signature Sg of the interface Cipher: in Smc contains a flow not specified in
Cipher. Even if the LoyaltyCard runs in an open environment, confidentiality is still enforced.

3.6 Collaboration policies for open multiapplication devices

One of the main challenge in current information flow research area is to define realistic security
policies that faithfully describe the desired information flow within a system. Most of the current
information flow models prevent all flows from secret data to public data by enforcing the non-
interference property. Unfortunately, non-interference is often inadequate and is too strict to
express desired security policies. There are a number of approaches that try to escape the limits
of non-interference through downgrading (or declassification), but they failed to impose themself
in practice as they are too restrictive or difficult to enforce. Moreover, usually these models mix
source code and security policies in a coherent set, and do not address the problems raised by open
environments; hence, redefining new policies requires reanalyzing the entire system. Integrating
information flow policies for mobile code in open embedded systems requires, at least,

1. separation of code and security policies,

2. policy certification at loading time.

In the literature, information flow security policies are often limited to non-interference [GM82],
as public outputs cannot depend on secret inputs. Non-interference policies do not allow any flows
from secret to public values, but only flows from secret to secret. Nevertheless, non-interference does
not make any distinction between the source of secrets. Policies defined with such a relation are too
restrictive, and not the desired policies in most of the cases, and especially in open multiapplication
systems [Gir99]. Our aim is to refine non-interference by defining more complex policies. In order
to escape from non-interference strictness, we define a domain specific language, which describes
the allowed flow of information between applications. The policies defined with our language are
intransitive (i.e., given three data sources a, b and c, if flows from a to b and from b to c are allowed,
then this does not imply that flows from a to c are also allowed) and asymmetric (i.e., if flows from
a to b are allowed, then this does not imply that flows from b to a are allowed). Programs are
certified by verifying that the flow signatures respect the desired security policies.

Our approach In the previous sections, we present an information flow analysis for open em-
bedded systems. The security policy enforced by the analysis is the non-interference. In this
section, we increase the practical side of our model by enriching it with security policies which relax
non-interference.

Our aim is (1) to be able to express realistic security policies for multiapplication open systems
and (2) to allow a posteriori definition of security policies.

In order to achieve our goal, we completely separate the definition and verification of security
policies from the information flow type computation. The policies are defined in an external file,
using a domain specific language. Verifying the security policy relies only on the knowledge of type
certificate (the flow signatures) computed by our analyser (the prover). Security policies definition
and verification extend our initial lightweight information flow certification model (Figure 3.19a)
and they are integrated as independent components which can be activate or not by the user, as
depicted in Figure 3.19b. Considering the dynamic loading of open systems, the security policies
verification must be performed on card. Hence the embedded verifier must certify, besides flow
signatures, the security policies. Nevertheless, in order to ease the development of safe software
units, we provide a tool which certifies policies off card.

The certification of information flow policies must ensure the incrementality and consistency
properties of the system, as defined in previous sections. Loading a software unit and its policy
guarantees both the security of the new software unit and of the open system.
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(a) Initial model: non-interference enforcement
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(b) Extended model: security policies enforcement
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Figure 3.19: Lightweight information flow certification

Which security policy? Non-interference allows only flows of information from secret sources
to secret destinations, without making any distinction between different sources and destinations.
Usually, this distinction is achieved by using different security levels. In our model, we use two
security levels, s for secret, confidential data and p public, observable data. As discussed in
Section 3.2.1 at page 28, increasing the number of security levels will lead to a higher complexity,
inadequate for small open systems. In order to distinguish different sources of information flow, we
define security policies which specify the sources and destinations between which secret data may
flow.

3.6.1 Example

Let us reconsider the LoyaltyCard example, described in previous chapter at page 9. The LoyaltyCard
is an open smart card, containing four loyalty applications. Three of them (i.e., FlyFrance, MHz
and Illtone) form a group of partners an can share fidelity points. In the previous sections we
showed how we infer information flows in JVM in these applications and how we enforce non-
interference. But, inevitably, the results, i.e., the flow signatures in Figure 3.12 at page 46, contain
flows rejected by non-interference. In this section we show how we define collaboration policies for
the LoyaltyCard and how we certify the flow signatures w.r.t. the defined policies.
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S ::= (Class|Package)[, S]
F ::= Field [, F ]
Rc ::= Class secret F ;
Rs ::= S shares with S;
Rp ::= S strict secret ;
P ::= (Rc|Rs|Rn)[, P ]

Figure 3.20: A DSL for information flow policies

3.6.2 A Domain Specific Language for information flow policies

A domain-specific language (DSL) is a small, usually declarative, language that targets a particular
kind of problem. The key characteristic of DSLs is their focused expressive power. DSLs are usually
concise, offering only a restricted suite of notations and abstractions, thus adapted to express
security policies.

DSL definition

In order to express security policies describing collaborations and information flows between
software units, we define the domain-specific language in Figure 3.20. The security policies that
can be expressed with the DSL are simple, but have enough power to model collaborations schemes
in an open system. The DSL was designed for multiapplication open systems, but it can be extended
to other systems, if necessary. The DSL consists in a set of rules describing trust relations between
terminals.

Terminals Multiapplication systems allow data sharing and service sharing in order to optimize
the use of resources (e.g., API) and to allow collaborative schemes (e.g., agreements or contracts
between applications). In an open system, the entities exchanging or sharing data are the software
units, thus the DSL contains rules defining trust relations between software units. Software units
are addressed either by package or class names, using elements in the sets of terminals Class and
Package; Field denotes a set of terminals containing field names.

DSL rules The DSL contains two types of rules: (1) rules identifying sources of secret data (Rc)
and (2) rules defining allowed flow of information between terminals (Rs, Rp).

Rule Rc : expresses the secrets of a class, by listing the fields that should remain confidential, and
thus that have the security level s. This rule relies on our interpretation of data sinks in Java
open systems: confidential data resides in instance fields.

Rule Rs : is the main rule of the DSL and describes the allowed information flows. For example,
the meaning of S1 shares with S2; is that all elements in S1 can share their secrets with all
elements in S2.

Rule Rp : rule Rp = S strict secret ; refines the security policies by specifying that an element A
in S must not share its secrets with other objects of type A. By default, an element in S can
share its secret with other elements having the same type (e.g., class A shares its secrets with
all instances of class A).

While the rule Rs defines type-based policies, rule Rp refers to instance-based policies, in the
case when the instances have the same type. Instance-based policies are stronger than type-based
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Figure 3.21: Certification process for security policy of class A

policies. Unfortunately, current models support type-based policies; the instance-based ones are
difficult to define, as instance identification is difficult to achieve, especially in an open system.

The shares with relation can be associated to the trust relation defined in [Gir99] by Girard:
one application transmits its secrets only to trusted applications. Moreover, the sharing relation has
the same properties as the trust relation, as the sharing relation is neither symmetric nor transitive:

asymmetry : if A trusts B then not necessarily B trusts A; formally A shares with B does not
imply B shares with A;

intransitivity : an application would not trust another application only because one of its trusted
applications does.

Transitivity corresponds to data propagation. Detecting data leaks due to transitivity is one of
the main concerns of information flow security. Allowing transitivity would make no distinction
between information flow and access control.

3.6.3 Enforcing security policies

The certification process of an information flow policy consists of enforcing different security
properties, mainly the asymmetry and intransitivity:

1. verifying simple class sharing (or SCS): an application gives its secrets only to trusted applica-
tions; this corresponds to the asymmetry property,

2. verifying intransitivity (or data propagation): an application trusted by A does not share
confidential data with applications untrusted by A.

The class sharing property reduces to inspecting the flow signatures of methods and detect un-
permitted data flows. Nevertheless, an object-oriented language offers other ways of bypassing
security, such as encapsulation and class inheritance. In order to prevent all types of possible leaks,
we identify a security property for each possible threat and give an algorithm which enforces the
property. The certification process of the security policy of a class A is depicted in Figure 3.21. First,
the rules of the DSL are normalized (packages are reduced to classes) and then possible conflicts
are solved. Then, the security properties are verified on the normalized and conflicts-free security
policies. The SCS property certifies the security policies w.r.t. flow signatures. Leaks arising from
transitivity, encapsulation and inheritance are checked afterwards.

We now present the security threats that are treated at each step of the certification process, and
we define the security property that must be verified in order to enforce the policies, under the
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assumptions that the security policies of all software units are available. In Section 3.6.7 we show
how security policies are enforced at loading time, when software units are downloaded one by one.

Normalization

The rule Pi shares with Pj , where Pi and Pj are two packages, can be read as “any class in package
Pi trusts any class in package Pj”. Hence, the DSL in Figure 3.20 can be reduced to rules having
the form A shares with B, where A and B are class names in Class. We can compute a function
share : Class → ℘(Class) which associates to each class the classes it trusts. By default, a class
trusts ifself, thus A shares with A; and A ∈ share(A). Verifying the security policy of a class
A ∈ Class reduces to verifying that secrets of A flow only to elements in share(A). Hence, we verify
security policies at the granularity level of classes:

Normalization property : all DSL rules are reduced to rules having the form A shares with B,
where A and B are class names in Class. Security policies are enforced at the granularity
level of classes.

Conflict resolution

While rule Rc and Rs are permissive, the rule Rp is restrictive and thus can generate conflicts. Let
us consider the following policy for a class x.A, where x is the package to which A belongs:

x.A strict secret ; x.A shares with x. ∗ ; .

In the first rule, x.A does not trust itself (i.e., it does not trust instances of the same type), while
in the second rule x.A trusts all classes in package x, and thus it trusts itself. To solve such conflicts,
we consider :

Conflict resolution property : the rules Rp ( strict secret ) prevail over rules Rs

( shares with ).

Thus, we first construct the function share, which identifies all trusted classes, and only after we
take into consideration the fact that a class A is strict secret or not; if A is strict secret , then we
remove A from share(A).

Simple class sharing (SCS) and flow signatures

We now show how policies defined using the DSL are enforced by the information flow analysis
described previously. Confidential data resides in object fields. Let fieldss : Class → ℘(Field) be a
function that associates to each class the fields having the security level s, thus fields in the rule
Rc = Class secret Field ; the function fields : Class → ℘(Field) gives all fields of a class.

Secrets can be made accessible either by direct access to fields or through method invocations
and operations performed by the method. In order to prevent direct access, secret fields of a class A
in fieldss(A) must be declared using the Java access modifier private. This restricts the access to
secret fields only in the class where they have been declared and thus to which they belong.

Based on this, certifying a class A with respect to an information flow policy consists of verifying
every method in A and methods that use the class A. Let Method be the set of method names and
methods : Class → ℘(Method) a function that gives the list of methods for each class.

Let us remind that our information flow model computes, for each method m ∈ Method , a
flow signature Sm containing all the possible flow of information between abstract values in Σm

(parameters, IO , Ex , Static, R). A flow is denoted by at1 t
−→ bt2 with t1, t2 ∈ L = {s, p} denoting

the security level, and t ∈ F = {r,v,i} denoting the type of interference (reference, value or
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Algorithm 3.8 scs(A): Certifying the SCS properties

1: for all f in fieldss(A) do
2: if f is not private then
3: return false
4: end if
5: end for
6: for all m in methods(A) do

7: if ∃ap f
→ bs ∈ Sm then

8: return false
9: end if

10: for all as f
→ bs ∈ Sm do

11: t1 = T (a), t2 = T (b)
12: if t1 /∈ share(t2) then
13: return false
14: end if
15: end for
16: end for
17: return true

implicit flow). Flows can be from public/secret parts of an abstract value to public/secret parts
of another abstract value. Security is concerned with protecting flows from the secret parts to
public/secret parts. As a general rule, flows from secret to public are forbidden, while flows from
public to public are always allowed. The DSL defines that a class A shares its secrets with classes in
share(A); hence, only flows from secret parts of parameters of type A to parameters with type in
share(A) and to return (R) are allowed.

We can conclude with the two security properties for simple class sharing:

SCS property 1 (for fields) : secret fields of a class A must be declared using the Java access
modifier private.

SCS property 2 (for methods) : flow signatures must contain only flows from secret parts of
parameters of type A to the secret part of parameters with type in share(A) and to return
(R).

Let T be a function which associates to an abstract value its definition type, in Class. The
algorithm that verifies the SCS properties in a class A is depicted in Algorithm 3.8. To permit the
flows to return, we consider that R ∈ share(A).

Intransitivity

Once a class A shares confidential data with a trusted class B, A loses control over its propagation.
The secret of A becomes the secret of B. The policy of A holds if the policy of B is more restrictive: B
does not share its secrets with applications untrusted by A. Formally, verifying safe data propagation
can be summed up to verifying the intransitivity property:

Intransitivity property : for all classes B ∈ share(A), share(B) ⊆ share(A) holds.

The algorithm enforcing the intransitivity property is depicted in Figure 3.9.
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Algorithm 3.9 intrans(A): Certifying the intransitivity properties

1: for all B ∈ share(A) do
2: if share(B) /∈ share(A) then
3: return false
4: end if
5: end for
6: return true

Encapsulation

The split of objects, due to our security level sensitive analysis, and the definition of secret/public
part may open a door to bypassing security checks through encapsulation. For example the code

a.p.r=a.s, where s and r have security level s and T (p) /∈ share(T (a)), generates a flow as v
→ as,

allowed by our analysis (as, by default, T (a) ∈ share(T (a))), but illegal as the secret of a flows
to an untrusted type (T (p)). In order to avoid such leaks, we define the following encapsulation
property:

Encapsulation property : all secret fields and sub-fields of a class A must be trusted by A,
where sub-fields refer to fields of fields and etc.

The verification of this property consists in unfolding the fields of each class and verifying that,
for each secret field f , we have T (f) ∈ share(A). Let encaps(A, B) be a function which verifies,
recursively, that all secret fields of class B are trusted by A (encaps : Class×Class → {true, false}).
The algorithm is depicted in Figure 3.10.

Algorithm 3.10 encaps(A, B): Certifying the ecapsulation property (fields of B are trusted by A)

1: for all f in fieldss(B) do
2: if T (f) /∈ share(A) then
3: return false
4: end if
5: end for
6: for all f in fields(B) \ fieldss(B) do
7: if scr∗C(T (f)) then
8: return encaps(A, T (f))
9: end if

10: end for
11: return true

If we take into consideration that only few classes contain secret fields, we can label the
classes containing only public fields and stop the unfolding when we meet such classes. Let
scrC : Class → {true, false} be a function which tests if a class contains some secret fields or not;
scrC(A) refers only to secrets defined in A. We define by scr∗C the closure of scrC , which refers not
only to secret fields defined in A but also to secret fields defined in fields of A, etc. Thus, to verify
that a class A respects the encapsulation property, a call to encaps(A, A) is sufficient.

3.6.4 Support for open class hierarchy

One of the most powerful attributes of object-oriented programming, and thus Java, is code reuse
and factorisation, by the means of inheritance. But, apart from providing this powerful functionality,
inheritance also provides means for leaking information. To prevent such leaks, we define some
relations between policies of subclasses and superclasses.
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Inheriting fields

The first restriction regards inherited fields:

Inheritance property 1 (inherited fields) : security levels of inherited fields cannot be changed
by the child class.

If the child class changes the security levels of inherited fields, then flow signatures of inherited
methods change, and the superclass must be reanalyzed. This is not convenient for our compositional
approach, and for open systems. Nevertheless, a child class can declare new fields even with security
level s.

Overridden methods

While extending a class, for example B extends A, the security policy of B must not only enforce
security for B (incrementality), but also for A and classes already verified using A (consistency). If
the policy of B is greater than the policy of A, formally share(B) ⊇ share(A), then the confidentiality
of A is not respected anymore, as B can trust and share its secrets (and thus those of A) with
classes which A does not trust. If the policy of B is smaller than the policy of A, formally
share(B) ⊆ share(A), in order to certify B we must reanalyse A, as A, and thus a part of B, have
been certified using a greater policy. From these examples, we can conclude with:

Inheritance property 2 (overridden methods) : the security policy of a class B must be the
same as the security policy of its superclass A; formally, share(B) = share(A).

Algorithm 3.11 inheritance(B, A): Certifying inheritance (the policy of class B extends A)

Require: A ≤ B
1: if fieldss(B) \ fieldss(A) ∩ fields(A) 6= ∅ then
2: return false
3: end if
4: if scr∗C(A) ∧ share(B) 6= share(A) then
5: return false
6: end if
7: return true

Extension for public classes: API, interfaces, abstract classes

The constraint above is too strict for API classes, which are public classes (we use this term to denote
classes which do not contain secret fields, hence classes for which scr∗C returns false). By default,
if A is such a class, then share(A) = ∅. If B extends A, then the inheritance property 2 requires
that share(B) = ∅, which is too restrictive. For example, share(Object) = ∅ and all classes extend
Object; with the rule above, we are not allowed to define new security policies and all classes
should have an empty policy. In order to deal with such classes as Object, and hence also API
classes, we relax the policy above in the following way:

Inheritance property 3 (relaxation) : the policy of a subclass must be the same as the policy
of the inherited class only if the inherited class contains secret fields.

Thus, the policy of a subclass can be any policy, if the inherited class is a public class. Problems
may arise if we cast a public class to a class which contains secrets. To deal with such situations, we
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extend the flow signature with the types in which public classes are cast inside the method, and we
take into consideration all these types while verifying the SCS property of the method.

For example, let us consider that we have B extends A. Security issues arise when class A does
not contain any secrets (fieldss(A) = ∅) and B declares secret fields (fieldss(B) 6= ∅). In this case,
the leak occurs only when a cast from A to B is made inside a method m. To solve this problem,
while analysing m, we extend the flow signature of m with the types in which classes of type A are
cast inside m.

Let castm : T → ℘(T ) be a function which associates to each type the types to which it may
be cast while executing the method m. In order to compute castm, we extend the prover. The
extension is straightforward and it is strongly related to the computation of exact types. If castm
returns only the direct cast, then the function cast∗m retuns the closure of castm. For example, if A
is cast to B and B is cast to C, then castm(A) = {B} while cast∗m = {B, C}.

Using the castm function, we can now define the extended flow signature, Ŝm:

Ŝm = (Sm, Scast
m )

where

• Sm is the flow signature,

• Scast
m contains the types in which public classes are casted inside m. Formally,

Scast
m = {(T (pi), cast∗m(T (pi))) | pi ∈ P|Obj ∧ scr∗C(T (pi)) == false}.

Scast
m associates to the type of each parameter pi of type reference (pi ∈ P|Obj), which does not

contain secret fields (scr∗C(T (pi)) == false), the list of classes to which it can be cast inside m
(cast∗m(T (pi))).

For example, if the parameter p1 of type B might be cast in C or in D in method m, then
Scast

m = {(B, {C, D})}. In other words, Scast
m (B) = {C, D}; if B is of primitive type or it is not a

public class (contains secret fields) or it is never casted inside the method, then Scast
m (B) = ∅. This

list must be kept only for types which do not contain secret fields, thus for which the function scr∗C
does not hold.

The algorithm in Figure 3.11 certifies the inheritance property for fields and for classes which
contain secret fields. In order to certify the third inheritance property, refering to public classes,
which do not contain secret fields, we must extend the verification of simple class sharing propery

(SCS), in Figure 3.8, to take into consideration the extended flow signatures. We achieve this
by defining a special TdSm

(A) which gives for a class A, and for a method m with extended flow

signature Ŝm, the type in which A can be casted inside m. Formally,

TdSm
(A) = T (A) ∪ Scast

m (A).

To complete the verification, we only have to replace T by TdSm
at line 11 of Algorithm 3.8, which

certifies the SCS property:
11: t1 = TdSm

(a), t2 = TdSm
(b)

Hence, when the security policies is certified w.r.t. the flow signature, will account not only for the
type parameter, but also for types into which parameters can be cast.

3.6.5 Example

Figure 3.22 presents the information flow policy for the LoyaltyCard example. The first three rules
define the confidential data, while the last two rules define the allowed information flow. The policy
respects transitivity, as the policies of applications trusted by FlyFrance (MHz, Illtone) are smaller
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FlyFrance secret miles;
MHz secret ppoints;
Illtone secret ppoints;
FlyFrance shares with MHz, Loyalty, Illtone;
MHz shares with Illtone;

Figure 3.22: Security policy for LoyaltyCard

than the policy of FlyFrance. The verification fails while trying to validate the method discount

defined in FlyMaroc (Figure 3.12 at page 46, as it contains a flow pp,s
0

i
→ ps,p

1 , where p1 denotes
the first parameter of the method, i.e., the MHz application.

3.6.6 Extensions

Localized declassification

The DSL and the security policies can be extended to express more detailed rules about the release
of information. The current DSL expresses policies that apply to entire program, and does not
specify where the information release is permitted. We can define rules that delimit the methods
where the information flow may occur, for example

Rm ::= S shares with (IO | S) in Method ;

where Method represents a method name or a list of methods and IO is a keyword (terminal)
standing for the abstract value IO . The declassification adds power of expression as it also allows
to send data on input/output channels.

Declassification relaxes the security policies in certain method. To support polymorphism and
dynamic class loading, all the overridden classes must agree on the declassification contract:

Declassification property : the declassification rule Rm defined in a method C.m must be
defined by every class in the class hierarchy derived from C.

Information flow policies as contracts

The DSL in Figure 3.20 allows the declarations of information flow policies for applications sharing
confidential data. Not only this language has a declarative value, but it also has a contractual
value. For example, with the rule FlyFrance shares with MHz, FlyFrance imposes a contract to
MHz: FlyFrance agrees to share its secrets with MHz only if MHz does not share its secrets with
applications not trusted by FlyFrance. Thus, the policies defined using the DSL are contracts that
applications must respect. An application accepts the contract of a trusted application only if it is
smaller than its own contract. In order to deal with openness and overriding, the DSL imposes that
the contracts of classes extending classes containing confidential data do not change, with respect
to the contract of overridden classes.

3.6.7 Embedded verification of security policies

We have defined so far the DSL for information flow policies and we have shown how these policies
can be enforced under the assumption that all components of the system and all security policies
are available.
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As the compiled JVM bytecode is downloaded through an unsecured channel, the information
flow certification must be done oncard, preferably at load time, in order to avoid run-time overhead.
In this section, we present how information flow policies defined in previous section can be enforced
by any JVM.

The security policies are shipped on board within the code, as annotations to .class files and
verified by a custom class loader. Classes are loaded one by one, hence we have to deal with linear
verification and with security policies not yet loaded.

Both flow signatures and policies must be enforced by the embedded verifier. While the verification
of flow signatures was described in Section 3.4, here we deal only with the verification of information
flow policies.

Hence, in order to make the analysis practical and integrable with any existing JVM system, we

• load policies to be certified as attributes of .class files; systems not enforcing information flow
can ignore these attributes,

• verify security policies with a custom class loader, that can be installed on any system.

Annotating .class files with information flow security policies

The policy of a class A is the list of classes with which it can share confidential data (denoted by
share(A)). The .class attribute for the policy of A contains thus a list of class names. The class
names are represented by their index in the ConstantPool of the class A. Considering that in a small
open system the number of installed applications is not significant, thus the sharing policies are
quite simple, the newly added attribute contains usually only few entries. The small size of the
attribute is acceptable for a small system.

As classes are loaded one by one, it is possible to load A before loading all the classes used by A.
While validating a class A, we also validate the policies of classes used in A. Thus, to be able to
validate A, we also load the policies of classes used in A. If B is a class used by A, when loading
A either (i) we take into consideration the policy of B, if B has already been loaded or (ii) use
the policy of B that A announces and we keep it on board, in a temporary repository, in order to
validate (and remove) it when B is loaded.

Verifying security policies using a custom class loader

The loading process in a JVM is performed by the class loaders. In order to integrate the information
flow analysis on any JVM, the verification is performed by a custom class loader (SafeClassLoader),
which can be built in the single class loader of KVM or installed as a user-defined class loader for a
standard JVM. The SafeClassLoader must verify both flow signatures and security policies.

Classes are loaded one by one. Once the flow signatures of the class have been verified, the
SafeClassLoader validates the information flow policy, using the flow signatures. The difficulty
may arise from the fact that the loaded class A wants to share its secret with a class B not yet
loaded. As the class is not present in the system, we do not have its security policy and we cannot
verify the intransitivity, formally

share(B) ⊆ share(A).

In order to verify this condition when B is loaded, we keep a repository with rules having the form
share(B) ⊆ share(A). If B is used by another class C, the rule share(B) ⊆ share(C) must be added
to repository. In this case, the final rule kept in the repository is share(B) ⊆ share(A) ∩ share(C),
as the policy of B should be more restrictive than both policies of A and C.

Thus, when we load B, we also verify that share(B) ⊆ X with X denoting the intersection of
security policies of classes that trust B. Moreover, we verify that the loaded class has the same
policy as its super class: share(B) = share(B′) with B extends B′.
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The management of the repository of security policies is similar to the management of the
repository of flow signatures ; hence, we will not detail the algorithms again. In a few words, the
repository of security policies sums up to:

• the security policies of each class,

• the security policies of classes not yet loaded, but used while validating already loaded class.
These security policies are temporary stored; they correctness is verified when the classes are
loaded, and after they are deleted, on success,

• some security contracts needed to enforce the encapsulation property, as it will be describe in
a brief moment.

Hence, the lookup algorithm for flow signatures (in both cases when we have a single class loader
or an hierarchy of class loaders) is easily extended to the lookup for security policies.

Verifying encapsulation

While loading a class and its security policies, all security properties depicted in Figure 3.21 must be
enforced. In all the cases, except the encapsulation property, the verification algorithm is identical.
Special attention should be payed to the encapsulation property, as its certification uses a recursive
algorithm.

The problem that may arise when verifying encapsulation is similar to the one described above:
we load A, which has a field of type B, but B has not been yet loaded. The encapsulation property
of A depends on the encapsulation property of B. In order to verify, while loading B, that all secret
fields of B are trusted by A, we keep the following rule to the repository:

do encaps(A, B).

When loading B, if a rule do encaps(A, B) is found in the repository, than the function encaps(A, B)
(see Figure 3.10) is executed. If the test succeeds, the rule is removed from repository and the
loading process continues, by performing other checks.

The result of encaps(A, B) depends on scr∗C(B) (the function which tests if B or fields B contain
secret fields). The value returned by scr∗C(B) depends also on fields of B. Hence, the final value of
scr∗C(B) can be computed only when all fields, fields of fields, etc. have been loaded. To ensure the
correctness of scr∗C computation, we extend the repository with rules of type

scr∗C(B) = scr∗C(C1) ∨ scr∗C(C2) ∨ . . . ∨ scr∗C(Cn),

where C1 . . . Cn represent the type of fields of B not yet loaded. This rule is deleted from repository
when a class Ci is loaded with scr∗C(Ci) = true or when all classes C1 . . . Cn are loaded. Moreover,
to avoid the computation of scr∗C each time when it is needed, the known values of scr∗C are stored
on the card, in a special repository.

Hence, the algorithm verifying encapsulation at loading time is similar to the external one
(encaps) presented in Figure 3.10, except that it must also verify that the class T (f) has been
loaded; if not, we add encaps(B, A) to the repository.

3.7 Conclusion

This chapter describes a new model for detecting illegal information flows in small, Java enabled,
open systems. The model addresses one of the most important limitations of previous work in
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this area: it runs in an open world and supports dynamic class loading. We annotate methods
with statically computed signatures that are shipped with the code and verified at loading time.
Openness allows us to accept loading new classes, but patched or modified classes can be reloaded
only if they are compatible with already loaded and certified signatures.

We have achieved three challenges:

• to show the usefulness of information flow security mechanisms by applying them to real
problems,

• to support separate compilation and dynamic downloading of different software units,

• to allow the embedded environment (the code receiver) to certify the security of hosted
standard Java applications by itself.

The model is easy to use and can be applied to already existing programs as the separation
of concerns between the application functionality and security is ensured. Full Java features are
supported.

Motivated by the LoyaltyCard example, we extend the information flow framework with security
policies which define collaborations schema in multiapplication open systems. The desired security
policies are specified using a simple, but expressive domain specific language and are enforced are
load time.

On the one hand, this model bridges the gap between information flow models and current
running systems. While the foundations of information flow models are solid, their practical side is
still to be proved. Our approach limits the overhead for adding information flow security to existing
JVM, as security labels and policies are separated from the code, and the illegal information flow is
detected by a custom class loader, installed on any JVM.

On the other hand, our model bridges the gap between information flow security requirements and
actual security policies, which do not take into consideration data propagation due to information
flow.
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In the previous chapter, we define an information flow model which enforces non-interference for
Java-enabled embedded systems. From the start, the model was designed to address real problems
raised by small, open environments: limited resources, dynamic loading, etc. In this chapter we
show how our model can be successfully applied in practice in the context of small open systems.

First, we briefly present the tools implementing our model and we describe the results of
experiments run on some significant benchmarks. On the one hand, experimental results (such as
execution time, proof and certificate size) show that the two steps approach is justified, allowing
dynamic class loading. On the other hand, they prove that the verifier can be successfully embedded,
with an acceptable overhead at loading time and an acceptable size for the certificate that must be
kept onboard. We also compare our models with other information flow implementations for Java
and we discuss why our tool better fits the environment of embedded systems.

Secondly, we make a step further ahead to make the model easy to use by integrating it in a
security analysis framework, which combines our static analyzer with a quantitative design security
analysis technique (developped at University of Victoria, Canada). The security analysis framework
ensures verification during the entire lifecycle of software developement, which is highly desired in
order to eliminate security leaks due to bad design from early stages. To illustrate our approach, we
present the case study of a medical card, the CareCard, holding the medical file of a patient.

Finally, we apply the information flow analysis on a particular case of embedded Java applications
for mobile phones, i.e., MIDlets. We show that our analysis can be easily adapted and applied to
different cases. To better illustrate the approach, we reconsider the case study of the medical card
reimplemented as a MIDlet suite.
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AirFrance
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Figure 4.1: Information flow in PACAP

4.1 Implementation and experimental results

4.1.1 Prototype tools: STAN and VSTAN

Historically, JAVACARD was the first object oriented language dedicated to embedded systems and
dealing with the execution of Java code on processor cards (like smart cards). Nowadays, the
embedded virtual machines [Sun, Aon, Jav] are evolving towards the standard Java language. To
address future evolutions, our model and the implementation support standard JVM language.

To test our model, we have implemented two tools:

1. STAN - the prover, which acts as a stand-alone tool for the JVM language; STAN implements
the information flow model described in the previous chapter; it is a Java abstract analyser
that allows static alias analysis and information flow certification. The STAN tool statically
checks already compiled source code, computes the type inference and annotates the .class
files with proof elements and flow signatures verifiable at loading time,

2. VSTAN - the verifier, which is implemented as a custom class-loader; as already discussed in
Section 3.4 at page 48, in order to check information flow at loading time, the user must
use the classloader provided by VSTAN, i.e., SafeClassLoader . VSTAN verifies JVM bytecode
annotated by STAN.

The two prototypes, documentation and tutorials can be found at http://www.lifl.fr/

˜ghindici/STAN.

4.1.2 Use case study

Besides the LoyaltyCard example, we run experiments on a well known application from the
literature, a revised version [BFLM04] of the electronic purse case study of the PACAP project
[BCG+02]. PACAP project aims at checking information flows between objects on a JAVACARD

platform using static analysis and a given configuration.

The electronic purse case study consists of three applets, a purse applet and two loyalty applets: a
frequent flyer application (Loyalty AirFrance) and a car rental loyalty program (Loyalty RentaCar).
The applets can share data through common interfaces. The Electronic purse performs some
administration functions, and credit and debit operations which are kept in a transaction log.

Moreover, the electronic purse offers a service, logfull , which notifies the registered applets before
overwriting the log. Registered applets have a chance to update their loyalty points before old
transactions are deleted. Only Loyalty AirFrance has subscribed to logfull service, as the registration
to this service requires the payment of a fee. At the same time, there is an agreement between
AirFrance and RentaCar to exchange loyalty points: RentaCar points can be substituted for AirFrance
points. So, when AirFrance updates its points, it also asks the balance of the RentaCar Loyalty.
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Dhrystone 5 21 3 1.47 5.4 4.26 35.94 0.12 0.47 0.40 0.78 3.80
fft 2 20 3 1.82 6.8 1.72 7.98 0.05 0.23 0.21 0.67 3.33
201 compress 12 43 3 2.21 7.7 3.52 20.84 0.32 0.59 0.36 0.85 4.31
200 check 17 109 4 1.20 15.2 5.04 34.60 0.12 0.89 0.81 1.26 6.64

crypt 2 18 3 1.66 9.8 2.22 20.78 0.07 0.31 0.26 0.83 6.96
lufact 2 20 3 2.31 3.9 4.35 23.33 0.52 0.91 0.35 0.81 2.29
raytracer 12 72 5 1.85 8.7 2.54 25.23 0.08 0.58 0.54 0.84 3.33
Pacap 15 92 4 1.06 7.5 6.62 92.84 0.03 0.40 0.38 1.01 6.01

Figure 4.2: External analysis and embedded verification measurements

Supposing that AirFrance updates its points only when it is notified by the logfull service. In this
case, when Loyalty RentaCar receives a request from AirFrance, it can infer that the log is full even
if it has not subscribe for the service (Figure 4.1). It is not an implicit flow generated by the control
structure of the program, but a flow generated by objects interactions. Such flows are detected by
our analysis.

We ran two experiments on the electronic purse case study: first, we checked non-interference,
and, secondly, we detected the leak of information generated by the logfull service, as other papers
on PACAP did [BFLM04, BCG+02].

The electronic purse can perform credit/debit operations and administration functions. Before
allowing these operations, successful authentication is necessary. The Java representation of
electronic purse contains fields that ensure authentication (pin, apin, puk): the values of these
fields must remain confidential. To check this property, we ran our algorithm with a policy specifying
that these fields are secret and we analyzed the flow signatures of methods in the Electronic purse.
The result showed that the secret fields cannot be accessible through any method nor directly:
methods signatures do not contain any links to secrets and all secret fields have private access
right.

The second experiment regards the logfull service offered by the Electronic Purse which can be
accessed only by the AirFrance Loyalty, and cannot be accessed by the RentaCar Loyalty. Still, the
unauthorized loyalty can access the service through the AirFrance loyalty (see Figure 4.1). We
detected this leak of information using the following policy: the service is a secret of the purse,
and the purse can share its secrets only to the allowed loyalty (AirFrance). The illegal information
flow was found while we were trying to proof loyalty RentaCar, so, the embedded system will
refuse to load RentaCar because of the used policy. We detected the same leak as the other papers
[BFLM04, BCG+02] on PACAP, despite the fact that our conditions are more restrictive (open world
and embedded systems with restrained resources, while PACAP considers a close world).

4.1.3 Experimental results

This section describes the results of experiments run on some significant benchmarks such as
Dhrystone, a well known benchmark for embedded systems, The Fast Fourier Transform (FFT), a
common signal processing application, crypt (a data encryption algorithm), and PACAP [BCG+02].
We ran the experiments using a Java Runtime Environment Standard Edition (build 1.5.0 09), on a
Linux system running on a Intel(R) Pentium(R) M processor 2.13GHz with 1Gb memory.

First, we ran the external application (the prover) computing flow signatures and annotating
the classes (Figure 4.2, Prover) in order to find out how the algorithm performs in practice. We
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Figure 4.3: Size of annotations

measured the number of iterations for the inter-method analysis (iterations on a set of classes),
the iterations for the intra-method analysis (iteration on each method instruction set), and the
time needed to perform the analysis. The results showed that the computation algorithm is quite
expensive in terms of execution time: in average, we need 3 iterations on the set of classes, 1.7
iterations on the instruction set, and 0.22s for each method. For the JVM spec benchmarks, we
performed the library analysis before carrying out the experiments.

Secondly, we loaded the annotated software units generated by the prover (Figure 4.2, Verifier).
In order to find out how the JVM loading process is hampered by our verification, we measured
the execution time in two cases: with (SCL) and without (CL) information flow verification. We
observed that the verification implies an average execution time 3 times larger than the standard
one. But the information flow verification is performed only once, at loading time, so any subsequent
execution of the software units is not hindered. Moreover, the average verification time for a method
(0.013s) is more than 15 times smaller than the average analysis time (0.22s). As expected, the
verifier performs much faster than the prover.

Lastly, we measured the size of the proof and the flow signatures loaded with the code (Figure 4.3).
The proof, the pending flow signatures, and the pending security levels for fields represent 66%
of the total size of initial .class files. These data are used only during the verification process, at
loading time, and it is not stored on the device so its size does not have a significant impact on the
small open system. The flow signatures, which are stored in the dictionary and kept in the system,
make up 12% of the initial .class size, an acceptable overhead. Moreover, the flow signatures can
be used for other program analysis optimizations, such as escape analysis [GHSR07] and efficient
memory placement.

4.1.4 The impact of implicit flow

The first results we had for our analysis did not account for implicit flow. Adding support for implicit
flow and comparing the results lead to some interesting discussions and remarks regarding the role
of implicit flow in information flow security.

We first compare (Figure 4.4) the performances of the prover when it takes into account implicit
flow (IF, white columns) and when it does not (WIF, gray columns). While the number of iterations
for inter-method and intra-method analysis does not change considerably, the analysis time is quite
different. Sometimes, the IF analysis is even two times slower than the WIF analysis. As the number
of bytecode iterations does not change, the slowdown is due to the fact that the number of flows
increases. Hence, calls to the function which computes the closure over the flow signatures are
much more frequent. We recall that the closure is computed after each flow generation.
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memory
(Kb)

IF WIF IF WIF IF WIF IF WIF IF WIF

Dhrystone 5 21 3 3 1.47 1.35 5.4 3.1 4.26 2.66 35.94 35.80
fft 2 20 3 3 1.82 1.55 6.8 3.2 1.72 1.50 7.98 7.86
201 compress 12 43 3 3 2.21 1.84 7.7 4.4 3.52 2.02 20.84 20.68
200 check 17 109 4 4 1.20 1.18 15.2 8.7 5.04 3.87 34.60 34.45

crypt 2 18 3 3 1.66 1.32 9.8 4.1 2.22 2.91 20.78 20.58
lufact 2 20 3 3 2.31 1.75 3.9 3.4 4.35 3.90 23.33 23.22
raytracer 12 72 5 5 1.85 1.53 8.7 4.6 2.54 1.30 25.23 25.10
Pacap 15 92 4 4 1.06 1.05 7.5 4.7 6.62 3.00 92.84 92.68

Figure 4.4: External analysis measurements with (IF) and without (WIF) implicit flow
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Execution
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Execution
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(s)
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IF WIF IF WIF IF WIF IF WIF IF WIF

Dhrystone 5 21 0.12 0.11 0.47 0.37 0.40 0.31 0.78 0.36 3.80 2.05
fft 2 20 0.05 0.06 0.23 0.17 0.21 0.16 0.67 0.39 3.33 1.80
201 compress 12 43 0.32 0.32 0.59 0.52 0.36 0.25 0.85 0.37 4.31 2.31
200 check 17 109 0.12 0.12 0.89 0.88 0.81 0.79 1.26 0.58 6.64 3.51

crypt 2 18 0.07 0.04 0.31 0.26 0.26 0.22 0.83 0.56 6.96 3.68
lufact 2 20 0.52 0.53 0.91 0.87 0.35 0.30 0.81 0.45 2.29 1.25
raytracer 12 72 0.08 0.08 0.58 0.44 0.54 0.42 0.84 0.39 3.33 1.80
Pacap 15 92 0.03 0.03 0.40 0.28 0.38 0.27 1.01 0.38 6.01 3.19

Figure 4.5: Embedded verification measurements with (IF) and without (WIF) implicit flow

While the external analysis worsens due to the implicit flow, the embedded verification (Figure 4.5)
is almost unaffected. This is due to the fact that the analysis is linear in time and code.

But the most significant consequence of the implicit flow is the increased size of annotations,
which almost double, as depicted in Figure 4.6. Size of flow signatures (4.08% in WIF and 12.54%
in IF) has tripled. As we have used the same encoding in both cases (one byte to encode a flow), the
difference shows that almost two thirds of flows are implicit flows! This proves the complexity of
information flow analysis comparing to other program analysis techniques (e.g., points-to analysis
which has to deal only with reference flows). Size of label proofs (36.06% in WIF and 65.80% in
IF) is two times bigger if implicit flow is taken into account, but the proof elements are loaded one

Benchmark
Initial
.class
size(Kb)

Annotated
.class (Kb)

Flow Signa-
tures (%)

Labels
proof (%)

External
methods
(%)

External
fields (%)

IF WIF IF WIF IF WIF IF WIF IF WIF

Dhrystone 8.2 14.4 11.9 8.00 3.17 52.22 23.07 5.15 2.42 0.20 0.20
fft 6.8 15.1 11.3 16.60 4.53 91.09 48.47 7.23 5.17 0 0
201 compress 20.1 28.3 28.3 3.95 3.79 23.66 23.36 4.36 4.21 0.34 0.33
200 check 46.3 97.7 80.3 12.27 4.62 85.05 57.25 6.75 3.82 0.04 0.05

crypt 7.0 17.0 12.3 12.27 6.04 118.28 58.34 5.90 4.66 0.07 0.19
lufact 9.3 17.0 14.3 8.44 3.37 64.31 43.00 4.07 2.06 0.39 0.40
raytracer 24.0 42.8 33.4 20.44 1.41 36.12 16.62 12.06 5.51 0.57 0.63
Pacap 26.8 52.0 36.9 18.36 5.71 55.72 18.37 9.03 3.46 0.37 0.38

Total 148.5 284.3 228.7 12.54 4.08 65.80 36.06 6.81 4.03 0.24 0.27

Figure 4.6: Size of annotations with (IF) and without (WIF) implicit flow
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at a time and discarded when the loading process finishes.

So, as we expected, the implicit flow plays a very important role in an information flow analysis.
Due to implicit flow, the number of flows in a method has almost doubled, which, in our opinion, is
a normal result as methods contain many conditional bytecodes.

4.1.5 Comparison with other tools (Jif and SecJ)

In this section, we compare our tools, STAN and VSTAN, to the other tools enforcing information
flow security for Java programs. We concentrate on Jif [Mye99b], the most complete and mature
tool for information flow, and SecJ [Sun08], the closest prototype tool to ours, due to its modularity.

Source code vs. bytecode The first significant difference is that both Jif and SecJ work as a
source-to-source compiler. Both tools define their own languages, which are extensions of the Java
language, enriched with security levels annotations. The results of the compiler is a standard Java
source file.

Hence, the first step in a program verification is to rewrite the program from regular Java to the
new language syntax. Jif is very mature, as it supports almost all Java features and its language,
JFlow, subsumes the Java language syntax: most of the programs can be compiled without any
rewriting.

SecJ is still a prototype and its syntax is fairly simple, so considerable effort is needed to rewrite
programs. But many syntax restrictions are mainly because SecJ is still a prototype. Interfaces and
exceptions are not supported.

In contrast, STAN does not define its own language and it works directly on JVM bytecode. All
JVM programs can be analysed by our tool. To use SecJ and Jif , programs must be rewrite, hence
programming knowledge is required; moreover programmers must learn and deal with a new
syntax. In contrast, using STAN does not require any programming knowledge and hence it can be
done by any user. The user must only specify the security policy, in a separate file; to do this, he/her
should be able to identify the field which stores sensitive data.

Dynamic code download The reason while STAN checks JVM bytecode is that, in our target
environment (i.e., open systems), the only place where security can be guaranteed is the JVM itself.
Performing the certification earlier, on source code, as JFlow and SecJ do, would be harmful as (1)

the deployment context is unknown at compilation time and (2) the code is downloaded through
an unsecured channel.

Security labels annotations As said before, Jif and SecJ have their own syntax and Java code
must be rewritten: code must be annotated with security levels. STAN completely separates code
and security policies, which are specified in a file apart. Security policies consist of labeling sensitive
fields; if a field is not labeled, then its security level is considered as public.

In SecJ, security levels are part of the syntax; all types are augmented with security levels.
As in STAN, only few annotations are necessary, if the security policy is not complicated. The
rest of security levels are inferred using the inference engine. Figure 4.7 shows an excerpt from
the LoyaltyCard applications rewritten in SecJ. Note that the type of field FlyFrance.miles is
augmented with security level H (by default, the security lattice in SecJ contains two elements, H
and L, which correspond to our p and s security levels). Also note that we had to slightly modify
the code: we had to bypass the need for interfaces and hence to eliminate interface Loyalty, as
abstract classes and interfaces are not supported in SecJ. As a consequence, MHz does not extend
Loyalty interface anymore, while class FlyFrance has a member field for each partner instead
of an array of Loyalty. Moreover, we had to move the return statement at the end of each
method and we replaced static fields with constants.
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class FlyFrance {

private [int,H] miles;

private MHz mhz;

private Illtone ilt;

public void updates(){

mhz.update(miles);

ilt.update(miles);

}

}

class MHz{

private int points;

private int ppoints;

public void update(int p){

this.ppoints += p;

}

public int getLevel() {

int p = 1;

if(points+ppoints>1000)

p = 2;

return p;

}

}

class FlyMaroc{

int discount;

void discount(MHz h) {

int level=h.getLevel();

if(level == 2) {

this.discount = 20;

}

}

}

Figure 4.7: Excerpt from the Java implementation of LoyaltyCard in SecJ

In Jif , adding annotations is more complex and it requires much development time. Every class
member (field, method, local variables, etc.) must be labeled. On the one hand, this leads to more
flexibility and more sophisticated security policies, which cannot be expressed in STAN or SecJ.
On the other hand, STAN and SecJ are static checking tools, so they can never adapt to run-time
variables. On contrary, Jif integrates dynamic labels: when static checking is too restrictive, which
allows performing some checks at run-time.

Modularity and signature inference A crucial property in the context of dynamic code down-
loading is modularity: pieces of code can be certified separately, as all classes are not loaded in the
same time and the call graph is not available. Jif does not offer support for modularity and relies on
the call graph, hence it cannot be used in an dynamically evolving environment. On the other hand,
modularity is an important feature in SecJ. As in STAN, inference techniques are used to compute
a signature for each method. The SecJ signature contains constraints which describe the contexts
where the methods can be instantiated securely.

Figure 4.8 shows the security signatures produced by SecJ for methods in class MHz. If possible,
SecJ infers security levels such that the method is secure: for example, the analysis has inferred
that the field ppoints must have the security level H. Otherwise, the analysis uses levels variables
(which represent a constant from the security lattice) and the signature is made generic.

The security signature v37,() --<;v36>--> [int,H]; is inferred for method getLevel.
This means that the return of the method must have the level H, while v36 and v37 are level
variables for the heap effect of the method and the self level of the method (i.e., the security level
of the receiver cannot be lower than the self level).

For the FlyMaroc class, SecJ also infers that the field discount must have the security level H
(as depicted in Figure 4.9). To detect the illicit flow, the field discount should be annotated with
level L.

Jif performs only local type reconstruction, in the Java style. In particular, in Jif programs,
methods arguments must be annotated with their whole type, including the security annotations. Jif

programs do not need a separate signature file, because the labels in the program already represent
the full security policy.

Running in an embedded context To adapt to sparse resources of open systems, we do not track
fields individually. Our analysis is field independent, which leads to loss of precision. On contrary,
SecJ individually tracks every field of every (abstract) object. Naturally, their signatures are more
precise than ours but larger in size. Even if SecJ authors do not provide any measurements, we
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class MHz<v2>{

[int,v2] points;

[int,H] ppoints;

"MHz()":

MHz: v39,() --<{};v38>--> void;{}

"getLevel()":

getLevel: v37,() --<{};v36>--> [int,H];{}

"update(int)":

update: v33,([int,H]) --<{};v32>--> void;{}

}

Figure 4.8: Signatures of MHz class produced by SecJ

class FlyMaroc<v2>{

[int,H] discount;

"FlyMaroc()":

FlyMaroc: v46,() --<{};v45>--> void;{}

"discount(MHz)":

discount: v44,([MHz<v2>,v40]) --<{};v43>--> void;{}

}

Figure 4.9: Signatures of FlyMaroc class produced by SecJ

believe that the size of SecJ signatures is considerably bigger than our size, and hence difficult, if
not impossible, to embed.

Method override To deal with overriding, SecJ defines a subclassing invariance requirement:
overriding cannot bring new constraints other than those in the overridden method. For the moment,
this requirement prevents the support for interfaces and abstract classes. In STAN, to deal with
openness and inheritance, we define for each method two flow signatures: an exact flow signature,
which corresponds to the exact type of the method, and a global flow signature, which corresponds
to all the overriding methods in the class hierarchy. Overriding cannot bring new flows other than
those in the global signature of the overridden methods. Hence, the global signature approach in
STAN is more general and more flexible than the subclassing invariance in SecJ.

Exceptions STAN supports checked exceptions but it does not account for run-time and uncaught
exceptions. SecJ does not support exceptions at all, while Jif supports all types of exceptions but the
constraints are over-restrictive: all run-time exceptions must be protected by try-catch blocks,
hence Jif programs contain many try-catch blocks with empty code. We can apply the same
mechanisms for run-time exceptions in STAN (empty try-catch blocks); then we can say that our
tool completely supports exceptions, even if their use is very restricted.

Embedded verifier In the previous paragraphs, we have compared STAN to Jif and SecJ, two
powerfull tools for information flow enforcement. Due to its security policies, modularity and
inference features, SecJ is the tool that comes closest to STAN. This is why, we concentrate our
efforts on comparing STAN to SecJ. But the comparison refers always to STAN, the prover, and
never to our verifier, VSTAN. This is simply because the other models do not address the issues of
integrating the verification in a real virtual machine, as we have done in this thesis.
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USIE modelDesign

STANImplementation

Figure 4.10: The development process

4.2 Integrated security analysis framework

Software systems that run in open environments are facing more and more attacks or intrusions.
This situation has brought security concerns into the software development process. As stated in
the National Institute of Standards Technology (NIST) handbook on computer security, “Security,
like other aspects of a computer system, is best managed if planned throughout the computer
system life cycle [NIS]”. Generally, software services are expected not only to satisfy functional
requirements but also to be resistant to malicious attacks. Secure design of a software service has to
take into account the various situations under which the service may be misused. But secure design
does not guarantee secure software. Malicious or unintentional refinement of a design into some
implementation can lead to insecure software.

Addressing security issues from early design stages of the application improves software quality,
but does not ensure security properties. Errors injected in the implementation can be detected only
by analyzing the code ready to be executed. A safe and secure system requires security guarantees at
all stages of the software lifecycle [CFH+98] (i.e., design, implementation, deployment, operation,
and maintenance). We propose in this paper an integrated security validation and verification
framework that spans the entire software lifecycle.

As illustrated by Figure 4.10, the framework combines the USIE (User-System Interaction Effect)
paradigm, which is used to capture and check security events at design time, and the STAN (STatic
Alias aNalyser) environment, which is used to check the program code. A USIE model captures a
trace of the communication in a user-system interaction as defined by a UML interaction diagram
highlighting the security events involved [LT04]. Various metrics can be derived from such model
and used to analyze system security properties.

The code derived from the checked design is analyzed by STAN, our tool which implements
the embedded information flow model presented in the previous chapter and briefly described in
Section 4.1. STAN allows static alias analysis and checking of information flow, at deployment
time. STAN certifies, at loading time, Java compiled code (bytecode). Based on STAN feedback,
the developer can correct implementation errors, or, if there is a design error or the error is too
complex, the designer may use the corresponding feedback in revising the design.

In this section, we illustrate how the two existing models, USIE and STAN, can be combined
into a security validation and verification framework by presenting the case study of a patient
medical record keeping system implemented as a smart card, and by focusing only on confidentiality
properties.

We first present the medical case study and confidentiality properties to be validated; next, we
define some metrics for measuring confidentiality; finally, we describe the design validation process
using the USIE model, and the implementation process using STAN.
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4.2.1 Medical Identification and Information Card: Case study

There is a growing interest in storing personal medical information in smart cards, because they
are highly convenient from a practical perspective (e.g., mobility). As the use of smart cards is
growing, they are being associated with security since they provide a partial solution to the need for
personal identification and non-repudiation. The self-containment and tamper-resistance of smart
cards make them resistant to attacks, as they do not need to depend upon potentially vulnerable
external resources. Because of this, smart cards are often used in applications, which require strong
security protection and authentication.

The care card Our case study consists of a medical identification and information card, referred
to as a care card, which maintains securely electronic medical records of a specific patient, who is
the holder of the card. Emergency situations where vital health information of a patient cannot be
easily obtained are often experienced. A medical identification and information card would prove
to be invaluable in providing treatment in such situations.

Figure 4.11 illustrates the class diagram describing the business objects involved in the application.
A patient’s record (MedicalRecord class in Figure 4.11) consists of two sections: prescription (the
Prescription class) and treatment (the Treatment class). The treatment section represents the
core of the medical record, in the sense that it carries the medical history of the patient. Only
authorized doctors can read or modify a medical record. An authorized doctor is a registered doctor
that a patient has chosen either as his family doctor or as a specialist to whom he has been referred
to by his family doctor. (Authorized) nurses may only read prescriptions, but should not be allowed
to access to the rest of the patient’s record. The administrator is the only person who can create,
delete, read and modify a patient record.

The care card stores the patient’s medical record, so the information travels with the patient.
Data can be read/write (only by authorized users) from/to the card at various terminals (operated
by doctors, nurses, etc.).

The card contains two types of applications:

• a card manager (class CardManager), which handles access control rights and the medical
record,

• one or many installed applications (CardApplet). The initial system contains two applications:
a doctor application (Doctor) and a nurse application (Nurse).

The card manager also handles the list of the installed applications. Users can interact with
the card via commands to applets. To satisfy commands needing information from the medical
record, the applets will forward the requests to the card manager, which, based on the rights of
the identified users, will provide or not the data. Each card has an administrator (e.g., the family
doctor) who has the right to add/remove users and rights.

Resource sharing security issues Resource sharing represents a real threat for smart cards
security as the smart card technology evolves towards a “single card-multiple applications” approach
[DGGJ03]. As the number of applications increase, card issuers are targeting at the same time
significantly reduced time to market and lower costs, increasing the opportunity for more and
more security problems. Moreover, the smart card runs applications issued by different providers,
applications that may share resources or code. The insecurity may arise from the unauthorized
interactions between installed applications through shared resources.

A large number of security issues inherent in concurrent software services can be viewed as
negative side effects of (resource) sharing. The fact that several users may share resources poses
enormous threats regarding security and privacy. It is essential to ensure that shared resources
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Figure 4.11: The class diagram
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n:Nurse:mr:MedicalRecord:cm:CardManager:d:Doctor:user(doctor):

Sequence diagram

1) .getLastTreatment

1) treatment

2) .getLastTreatment

2) treatment

3) .[hasRight]getTreatment

3) treatment

.nurse.storeTreatment

4) .getApplet

4) nurse

Figure 4.12: Sequence diagram 1

n:Nurse:user(nurse):

Nurse sequence diagram

1) .getStoredTreatment

1) storedTreatment

Figure 4.13: Nurse sequence diagram
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mr:MedicalRecord:cm:CardManager:d1:Doctor:user (doctor):

Sequence diagram 2

1) .getLastTreatment

1) treatment

2) .getLastTreatment

2) treatment

3) .[hasRight]getTreatment

3) treatment

Figure 4.14: Sequence diagram 2

cannot be used as vehicles for leaking private information either directly or indirectly from a user
domain to that of peers, or any other unauthorized third parties. Confidential data must be properly
handled, and should not be made available to unauthorized applications.

Care card security issues Here, the medical record of the patient represents the confidential
data. Not only the access to the medical record should be protected, but malicious usage, too: an
authorized user should not make the data available to an unauthorized third-party. Hence, we can
define the following information flow rule withit the care card:

Information flow policy within the care card: Authorized users are allowed to read/write data
through the terminal connected to the card, but should not transfer the data to local storages
accessible to any other users.

Confidentiality is seen as a measure of potential interference between different actions.

In our case study, insecurity arises from malicious implementations, as depicted by the sequence
diagram in Figure 4.12. The diagram describes the interaction sequence involved in the method
getLastTreatment supported by the Doctor application, method that returns the last treatment.
The application requests the last treatment from the CardManager. Based on the rights of the
requesting user, the CardManager may or may not return the treatment. The result is sent to the
user at the terminal. At the same time, however, a malicious manipulation of the data by invoking
the method storeTreatment of the class Nurse, which stores in a public field the treatment passed
as parameter, will create an undesired information flow. An interaction of the nurse with the system,
as depicted in Figure 4.13, will allow nurses, which do not have the right to read the treatments, to
access confidential data. An alternative design is described by the sequence diagram of Figure 4.14,
which illustrates a more secure data access, as the treatment is no longer stored in a public field.
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4.2.2 Mesuring confidentiality

Confidentiality is viewed as a function of the interference occurring among interactions between
different users with the system. So possible measure of confidentiality may consist of evaluating this
interference. This could be conducted by evaluating the existence of potential information leakage
channels resulting from interference occurring among interactions between different users with the
system.

In [LT04], authors define a measure of confidentiality of a user-system interaction with respect to
another user-system interaction in terms of the number of significant information leakage channels
existing potentially between them. If IA represents an interaction of a user A with the system, and
IB an interaction of a user B with the system, we can define the confidentiality as

Conf(IA → IB) , or the confidentiality of IA with respect to IB , is a measure of how much B can
discover about IA via IB

This measure of confidentiality can be defined as:

Conf(IA → IB) =
1

1 +NOSILC(IA, IB)
(4.2.1)

Where “NOSILC(IA,IB)” represents the “Number Of Significant Information Leakage Channels” from
IA to IB .

Using this formula, we validate a system security both at design time (based on USIE model) and
at implementation time (based on the flow signatures of methods). In the next sections, we show
how the “Number Of Significant Information Leakage Channels” can be measured at both stages of
the software lifecycle (design and implementation).

4.2.3 Design validation

UML diagrams and security UML interaction diagrams can be used to describe collaborations of a
software application. An interaction diagram corresponds to a sequence diagram or communication
diagram, which are interchangeable because of their duality. However, security analysis is not
the primary concern of standard UML interaction diagrams. Security related events could not
be described satisfactorily using the basic or regular semantics of these diagrams. Moreover, the
modeling features provided by the UML interaction diagrams make it rather difficult to conduct
directly security analysis. For instance, the understanding of user interactions, the data and role
entities involved in a collaboration play important roles in the analysis of security events. But
regular UML sequence or collaboration diagrams provide only the communication information for
an interaction while the responses of role entities are not expressed.

In order to highlight security events and facilitate security analysis, the USIE model is used to
abstract collaborations. The primary design rationale of USIE paradigm is to provide convenient
semantics for software security analysis at the architecture level. By augmenting a UML model with
some predefined stereotypes expressing security events, corresponding USIE models can be derived
automatically from UML interaction diagrams.

The USIE model A USIE model consists of a directed graph involving two kinds of nodes
named InteractionStart and RoleEntity. An InteractionStart node represents the starting point
of a collaboration, and is in principle named after the collaboration name (i.e.,, the name of the
UML interaction diagram). A USIE graph involves a single InteractionStart node. In contrast, a USIE
graph can have multiple RoleEntity nodes. A RoleEntity node corresponds to a role entity contained
in a UML interaction diagram; it is named after corresponding role entity name and it can contain
optional security related characteristics defined by dedicated stereotypes in the corresponding
interaction diagram.
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I getLastTreatment

IgetStoredTreatment

1

3.2

S

st:StoredTreatment

1

nurse:Nurse

d:Doctor mr:MedicalRecord

0

cm:CardManager
st:StoredTreatment

Figure 4.15: USIE diagram derived from Figure 4.12

I getLastTreatment

IgetStoredTreatment

1

3.2

st:StoredTreatment

1

nurse:Nurse

d:Doctor mr:MedicalRecord

0

cm:CardManager

Figure 4.16: USIE diagram derived from Figure 4.14

In a USIE graph, an arrow linking a pair of nodes represents a single communication (sending an
event or invoking a method) between two role entities. Further characteristics of such communica-
tion link are expressed by associating with the arrow the communication order and some optional
attributes. There are two kinds of attributes named ChangeState and ReturnInformation. An edge
has ChangeState attribute if the communication modifies the state of its target role entity; it has
ReturnInformation attribute if the communication returns information to its source role entity. An
edge can have zero or more attributes. The edge attributes, ChangeState and ReturnInformation, are
expressed using the communication stereotypes of the interaction diagram semantics.

The USIE model for the Care Card We model the two designs of the getLastTreatement service
and the malicious service using USIE notations. Figure 4.15 shows the USIE models derived from
sequence diagram 4.12; Figure 4.16 shows the USIE models derived from sequence diagram 4.14.
In a USIE graph, InteractionStart nodes are modeled using double circles while RoleEntity nodes are
represented using single circles. Simple arrows represent communications without any specified
attribute; simple arrows crossed by a small bar depict communications with ChangeState attribute;
double-edges arrows depict communications with ReturnInformation attribute. The interested reader
is referred to [LT04] for more details about the graphical notations of USIE models.

Interference mesurements Based on the USIE models derived from the interaction diagrams, we
can measure confidentiality according to our definition in Section 4.2.2.

An information leakage channel exists between two USIE models, whenever they share a common
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Metrics
Conf(IgetLastTreament

→ IgetStoredTreament)
Sequence diagram 4.12 0.5

Sequence diagram 4.14 1

Table 4.1: Metrics values for confidentiality

RoleEntity node, which is targeted in one model by a ChangeState edge, and in the other model
by a ReturnInformation edge. Information leakage channels can be categorized according to their
importance. An information leakage channel between interactions is significant if the information
leaked by this channel can be sent to the InteractionStart node, otherwise the channel is secondary.
A dashed line linking the nodes represents an information leakage channel between two nodes. A
label “S” is used to indicate significant leakage channels, as illustrated by Figure 4.15.

Based on formula in Equation 4.2.1, we can assess and compare the two designs of the
getLastTreatement service of the medical record system with respect to a software service that may
be potentially misused. Table 4.1 summarizes the metrics values calculated for both designs. Ac-
cording to these results, the design based on the sequence diagram in Figure 4.14 is less vulnerable
to confidentiality breach than the design based on the sequence diagram in Figure 4.12.

4.2.4 Software validation

Data propagation through software units interactions

In the previous section we showed how security leaks can be detected and avoided during design
stage. Still, the code derived from the checked design is not certified, as security problems can arise
from human errors or malicious intentions during the implementation phase. We now show how
the Java mobile code implementing the functional requirements of the previously validated design
is statically certified by STAN, our tool implementing the information flow model presented in the
previous chapter. For more details on STAN, please refer to Section 4.1 at page 76 and to Chapter 3
for more details on the model that STAN implements.

The validation target in our case study is data confidentiality required in handling shared
resources, as secret or confidential data should not be made available through public means. As
stated in Section 4.2.2, confidentiality is viewed as a function of the interference occurring among
interactions between different users with the system. Because applications collaborate in order to
offer better services and because of limitations of small devices such as smart cards, applications
issued from different providers must share resources and code (e.g., API) and interact through it.
The medical identification card security property that we verify is concerned with secure interaction
between applications running on the card. Other security functions, like access control, are handled
by the card manager and are part of the computing trusting base.

A way to compute confidentiality for insecure interactions that may lead to leaking confidential
data through shared resources is to detect all the information flows from confidential storage to
shared resources. We remind that our algorithm computes for each method a flow signature that
carries the flows, potentially generated by the execution of the method, between elements that
survive the method execution.

Measuring confidentiality

Confidentiality is strongly related to non-interference, which requires that confidential data should
not interfer with public data. According to our definition of non-interference, a method is secure
if its flow signature, i.e., Sm, does not contain flows of type ap → bs, except flows allowed by
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class CardManager {

MedicalRecord mr; //secret field

CardApplet[] applets;

...

}

...

Figure 4.17: Source code

class Doctor extends CardApplet {

...

public void getLastTreatment(CardManager manager, String []params){

Treatment t = manager.getLastTreatments();

Nurse n = (Nurse)manager.getApplet("nurse");

n.storeTreatment(t);

Printer.streamPrintln(t.toString());

}

}

class Nurse extends CardApplet {

...

public Treatmenet channel;

public void storeTreatment(Treatment t) {

channel = t;

}

}

Figure 4.18: Code derived from sequence diagram in Figure 4.12

declassification. Let us denote by Dcl the set of allowed flows 1. In other words an insecure flow ϑ
is a flow of type ϑ = ap → bs such that ϑ /∈ Dcl. Hence, we can define the number of significant
leakage channels (NOSILC) as the number of insecure flows.

Defining the security policy

The STAN user must specify a policy, by labeling the confidential fields with security level s, for
secret, confidential data before the execution of the algorithm. Because Java applications not
concerned with propagation policies must run normally in our environment, the default policy
declares all fields with the public security level. Our care card application, which must protect the
propagation of the secret expressed by the MedicalRecord, accessible through the CardManager,
labels the MedicalRecord field in CardManager with security level s (Figure 4.172).

The getLastTreatment method must sent to the terminal (an I/O) a part of the medical file
stored in the card manager. As the medical file is secret, this operation naturally generates a flow

IOp r
→ ps

1, where IO is our abstraction for any I/O storage channel, while p1 denotes the first
parameter of the method, the CardManager. We remind that we perform a field-insensitive but
security-level sensitive analysis (as discussed in Section 3.2.1), hence all fields of an object having
the same security level are treated as a single location; in this example, ps

1 denotes all secret fields
of the CardManager and hence, the medical record. Then, it is obvious that our declassification
set contains this flow:

Dcl = {IOp r
→ ps

1}.

1This set contains flows between the return of the method to secret parts, but also other flows defined by the user.
2STAN works on Java bytecode but, for simplification, we will present the algorithm based on the source code.
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class Doctor {

...

public void getLastTreatment(CardManager manager, String []params){

Treatment t = manager.getLastTreatments();

Printer.streamPrintln(t.toString());

}

}

Figure 4.19: Code derived from sequence diagram in Figure 4.14

Interference measurements

Implementing the interaction in Figure 4.12 Analyzing the method getLastTreatment of the
class Doctor in Figure 4.18, corresponding to the interaction in Figure 4.12, leads to two possible
flows of information:

• a flow IOp r
→ ps

1 from the secret part of the CardManager to the I/O (as described above),
flow generated by the method streamPrintln which sends the parameter to an output
channel,

• a flow pp
1
r
→ ps

1 from the secret part of the CardManager, ps
1 (containing the MedicalRecord

which contains the Treatment) to the public part (denoted by pp
1) of the CardManager

(containing the Nurse applet). This flow is generated by the invocation of the
method storeTreatment which stores the parameter p1 in a public field of the Nurse:

SstoreTreatment = {pp,s
0

r
→ pp

1}. Note that the flow signature of storeTreatment is con-
text insensitive; the exact security level of its parameter is taken into account when the
method is invoked.

The flow signature of the method getLastTreatment, denoted by SgetLastTreatment, is:

SgetLastTreatment = {p
p
1
r
→ ps

1, IO
p r
→ ps

1}.

The flow pp
1
r
→ ps

1 is insecure in respect to the getStoredTreatment method declared in class Nurse,
which is a field of p1 (the CardManager). The getStoredTreatment method has the flow signature:

SgetStoredTreatment = {IO
p r
→ pp,s

0 }. This is explained by the fact that the fields of the Nurse serve
as temporary shared resources to store confidential data, which can readily be made available later
to unauthorized users, creating the potential for a significant leakage channel. In contrast, the flow

IOp r
→ ps

1 is secure as it belongs to the set Dcl of declassified flows.

Hence, there is one insecure flow and one significant information leakage channel:

NOSILC(IgetLastTreament → IgetStoredTreament) = 1

and, according to the formula in Equation 4.2.1, the confidentiality is measured as:

Conf(IgetLastTreament → IgetStoredTreament) = 0.5

Implementing the interaction in Figure 4.14 The code derived from the second design of
the getLastTreatment method (see Figure 4.14) is depicted by Figure 4.19. The corresponding
signature is

SgetLastTreatment = {IO
p r
→ ps

1}.
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This method is secure with respect to getStoreTreatment, since there is no insecure flow and no
leakage channel:

NOSILC(IgetLastTreament → IgetStoredTreament) = 0

Conf(IgetLastTreament → IgetStoredTreament) = 1.

Based on formula (4.2.1) defining a measure of confidentiality, we can assess and compare the
implementations corresponding to the two designs of the getLastTreatment service of the medical
record system, and obtain the same results as in Table 4.1.

The results show that the bytecode analysis is equivalent with the verification of the USIE models
derived from the sequence diagrams. The advantage of a two-steps integrated verification and
validation is that we can detect, at implementation level, interactions not expressed by sequence
diagrams. These critical points of the software should be transposed in sequence diagrams and
presented to the designer, in order to address the security weaknesses and restart the validation
process.

Discussion Increasing attacks and intrusions require secure software systems. Security must be
taken into consideration from early stages of software design to the deployment and production use
of the application. In this section we propose an integrated security and validation framework for
building secure applications. The framework combines the USIE (User-System Interaction Effect)
paradigm for checking security at design time and the STAN(STatic Alias aNalyser) tool for checking
the program code.

To illustrate our approach, we present the case study of a medical identification and information
card, which maintains medical records of the holder of the card. In this case study, we focus on
confidentiality properties and security breaches arising from users interactions with the system.

In the future, we plan to extend our approach to other security properties like integrity and
availability and to support more complex policies. In the long term, it would be extremely interesting
to use the integrated framework in a reverse engineering approach to point at design level security
leaks detected in the code.

4.3 Information flow in MIDlets: The CareCard MIDlet suite

MIDlets are a particular case of Java applications, hence our tool cannot be applied directly.
Nevertheless, as we will show in this section, only very few adjustements are required to adapt our
tools to MIDlets, and these adjustements can be done by any user.

Therefore, in this section we describe how our analysis can be applied to MIDlets. We first start
with a short introductions to MIDlets and to the Java ME security model. We then describe an
implementation of the medical application, that we have aready seen before, using MIDlets, and
finally we show how information flow security for the medical application is enforced using STAN.

4.3.1 Preliminaries

Java ME

Java 2 Micro Edition (Java ME) is a set of technologies and specifications developed for small
devices like pagers, mobile phones, and PDAs. Java ME uses subsets of Java Standard Edition (Java
SE) components, such as smaller virtual machines and leaner APIs.

Java ME does not define a new programming language. Rather, it adapts existing Java technology
to handheld and embedded devices. Java ME maintains compatibility with Java SE wherever
feasible. To address the stricter limitations of devices, Java ME sometimes replaces Java SE APIs
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and adds new interfaces. But the evolution of Java ME is as much about omitting unnecessary parts
of the Java SE and Java Enterprise Edition (Java EE) platforms as it is about overriding and adding
new ones.

Java ME, therefore, is divided into configurations, profiles, and optional packages. Configurations
are specifications that detail a virtual machine and a base set of APIs that can be used with a certain
class of device. A configuration, for example, might be designed for devices that have less than 512
KB of memory and an intermittent network connection.

The Connected Limited Device Configuration (CLDC) is a minimal Java ME configuration for
devices with stringent restrictions on computational power, battery life, memory, and network
bandwidth. These limits directly affect the kinds of Java technology-based applications they can
support. CLDC does not require a lot of resources. It supports devices with 16-bit or 32-bit processors
with at least 160 KB of persistent memory and at least 32 KB of volatile memory, for a total of
192 KB. Power consumption is low, and devices are typically battery-powered. At the heart of this
configuration is a Java virtual machine with some Java SE capabilities removed. For example, CLDC
does not support class finalization or thread groups.

Above the configuration are profiles and the application environment, which consist of the APIs
and application environment such as the Mobile Information Device Profile (MIDP) and the Java
Technologies for Wireless Industry.

Of the profiles designed for CLDC, MIDP is the most prevalent. As the first Java ME profile,
MIDP [KV04] is the most mature and widely adopted, with millions of deployments all around the
world, primarily on PDAs, cell phones, and other handheld communicators.

MIDlets

A MIDlet3 is a Mobile Information Device Profile (MIDP) application. Like an applet, a MIDlet is a
managed application. Instead of being managed by a web browser, however, it is managed by special-
purpose application-management software (AMS) built into the device. External management of
the application makes sense in this context because it may be interrupted at any point by outside
events. It would be poor behavior, for example, for a running application to prevent the user from
answering incoming phone calls while he/she is playing a game.

MIDlets security MIDlets run in a sandbox. The memory requirements of the Java SE security
classes alone exceed the total memory budget available to Java ME CLDC/MIDP. Hence the Java ME
CLDC specification dictates a much simpler ”sandbox” security model. A MIDP application (MIDlet)
therefore runs in a closed environment and is only able to a access a predefined set of classes and
libraries supported by the device.

A CLDC Virtual Machine has a built-in class loader. This class loader can however only load
classes from the predefined set of system classes or the application (MIDlet) JAR file. To avoid this
restriction being bypassed, unlike a Java SE Virtual Machine, the class loader cannot be replaced,
overridden or reconfigured by the user. Similarly there is no support for loading native libraries.

In short it is not possible for the user/developer to define his own class loader and to extend the
range of libraries (APIs) supported by a CLDC/MIDP phone beyond the pre-defined set that was
built into the device. The application (MIDlet) may make use of third-party pure Java CLDC/MIDP
libraries such as kSOAP or kXML by incorporating them into the application JAR file. Obviously
such third-party libraries must be written entirely in Java (no native code) using the CLDC/MIDP
API.

3http://java.sun.com/javame/reference/apis/jsr118/
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Figure 4.20: CareCard MIDlets Suite

MIDlets communication through persistent storage All these restrictions make impossible the
communication thought shared objects between MIDlets. The only way MIDlets can exchange data
is through the Record Management System (RMS), which offers persistent storage capabilities:
MIDlets packaged in the same MIDlet suite can access to the same record.

The MIDP provides a mechanism for MIDlets to persistently store data and retrieve it later. This
mechanism is a simple record-oriented database called the Record Management System (RMS). A
MIDP record store (or database) consists of a collection of records that remain persistent after the
MIDlet exits. When a MIDlet is invoked again, it can retrieve data from the persistent record store.

Record stores (binary files) are platform-dependent because they are created in platform-
dependent locations. MIDlets within a single application (a MIDlet suite) can create multiple
record stores (database files) with different names. The RMS APIs provide the following functional-
ity: (1) allow MIDlets to manipulate (add and remove) records within a record store; (2) allow
MIDlets in the same application to share records (access one anothers record store directly); (3) do
not provide a mechanism for sharing records between MIDlets in different applications.

4.3.2 Case study: The CareCard MIDlet suite

Having described Java ME and MIDlets specifications and requirements, we now show how the
medical CareCard, already described in Section 4.2.1 at page 84, is implemented on Java ME
using MIDlets. We will describe how illegal information flow can occur in such systems (intuitively,
through persistent records), and how it can be verified using our tool, STAN. The implementation of
the MIDlet suite for CareCard and the tests using STAN have been done by an engineer4 who had
no knowledge about information flow problems or about STAN before this experience.

Let us briefly recall the medical card requirements. The medical card is based on the BMA policy,
developed by Anderson in response to a growing demand for the protection of personal health
information in several countries [And96]. Due to space limitations, we only focus on information
flow items in the policy. The medical card is a card that can be used in hospitals to have access to
information about a patient. According to the BMA security policy, the medical file of a patient has
two parts: prescriptions and treatments. There are three types of users for this card : the doctor,
the nurse and the patient. The doctor can read and write both treatments and prescriptions record,

4We thank Antoine Neveu for his development work and useful comments.
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and he can also read patient private information; the nurse can only read patient information and
prescriptions.

The goal of this example is to show that a nurse cannot have access to treatments of a patient,
and to prove that a doctor or a patient cannot give to a nurse the access to an information she is not
supposed to know.

Implementation

Each actor of the system (patient, doctor and nurse) has his own MIDlet. Each MIDlet implements
functions associated with each actor according to the security policy (i.e., the Nurse MIDlet gives
access only to prescriptions and patient information).

A first security enforcement is access control via encryption keys. Each actor can login into the
system using his own key (the DoctorKey, NurseKey and PatientKey).

As we have explained above, the only way to store and to share information with MIDlets is to use
persistent storage, i.e., record store. Hence, treatments and prescriptions are stored in such record
stores, which can be accessed by all MIDlets in the medical MIDlet suite. But, according to the BMA
security policy, treatments must be accessed only by doctors and the patient, and not by nurses,
while prescriptions can be accessed by all actors. To implement this security requirements, we
define encrypted record stores, implemented in class EncryptRecord, in which each information
is encrypted with a key. Hence, the treatments record and prescriptions record are encrypted records
and they use different keys, as depicted in Figure 4.20:

• the treatments record is encrypted with the doctor key,

• the prescriptions record is encrypted with the nurse key.

With this system, the nurse can access the prescriptions record. The doctor has access to the
treatment record; moreover, to have access to the prescriptions record, it must know the nurse key:
hence, the nurse key is stored in a record encrypted with the doctor key. The patient must have
access to both prescriptions and treatments; hence, the doctor key is stored in a record encrypted
with the patient key (Figure 4.20).

The encryption keys are initialized when the actors first use their specific application. The only
constraint is the order in which the keys must be initialized: first, the patient key (needed to encrypt
the doctor key), then the doctor key (needed to encrypt the nurse key) and finally the nurse key.

Illegal information flow example

Apart encrypted record stores, there are also unencrypted records, implemented by the class
PublicRecord. A “public” record is shared between all MIDlets, hence data stored in public
records are not protected by any encryption mechanism and they can be accessed by all actors.

As MIDlets cannot interact with other MIDlets, the only way to share information is through shared
record stores. For example, an illegal use of information can occur if a malicious DoctorMIDlet reads
the treatments and stores them in a public record. The illegal scenario is depicted in Figure 4.21
and consists of three steps:

1. the doctor reads the treatment from the encrypted record and decrypts it using his key,

2. the doctor writes the treatment to a public record,

3. the nurse reads the treatment from the public record.

This example shows that the nurse can access to treatments despite the fact that this is forbidden
by the security policy. The only way for a nurse to read treatments is that someone who has the
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Figure 4.21: Illegal information flow in the CareCard MIDlets Suite

1 public class Doctor extends MIDlet implements CommandListener {

2 private static final Command cmdTreat=new Command("LT",Command.SCREEN,1);

3 private SecretRecord key;

4 [..]

5 public void commandAction(Command c, Displayable d) {

6 [..]

7 if (c == cmdTreat) {

8 String nurseKey = cm.getNurseKey(doctorKey);

9 Treatment[] t = cm.getTreatments(doctorKey, nurseKey);

10 Form listTreat = new Form("Treatments List");

11 try {

12 PublicRecord rs = new PublicRecord("test",true,true);

13 for (int i = 0; i < t.length; i++) {

14 String treat = t[i].toString();

15 listTreat.append("Treatment: "+treat+"\n");

16 byte[] b = t[i].toByteArray();

17 rs.addRecord(b, 0, b.length);

18 }

19 } catch (RecordStoreException e) {e.printStackTrace();}

20 [..]

21 display.setCurrent(listTreat);

22 }

23 }

24 }

Figure 4.22: Excerpt from Doctor MIDlet showing an illegal flow

right to read them to put them into a public record store, visible to everybody. Such illegal flow
cannot be detected and prevented by the control access mechanisms; therefore, the information
flow analysis is crucial. The goal of an information flow analysis for Java MIDlets is to detect if
secret data (i.e., read from an encrypted record) are stored in a public record.

The code in Figure 4.22 shows a part of the commandAction method in the class Doctor which
reads and decrypts treatments (line 9) and then stores them in a PublicRecord. The public
record is created at line 12 while the treatments are stored in the public record at line 17.
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PublicRecord : SgetRecord = {Rp,s r
→ IOp}

Figure 4.23: Manual flow signatures for MIDlets record store

Verifying information flow using STAN

We now show how the information flow is verified in the CareCard MIDlet suite using STAN. We first
describe the security policy we define, then we describe how the tool runs and detects illegal flows.
We put an accent on the slightly different information flow security model between standard Java
applications and MIDlets, and we detail the adjustements that have been made in order to adapt
our tool to the special requirements of MIDlets. We will see that these adaptations only consist of
adding some flow signatures by hand.

Running STAN on an application consists of the following steps:

1. specifying security levels (i.e., label fields that containt sensitive data with security level s),

2. adding declassification (i.e., hand written flow signatures which declassify information flow
in a method),

3. running STAN and computing flow signatures,

4. specifying the security policy which describes collaborations between applications using the
Domain Specific Language,

5. verifying the security policy w.r.t. flow signatures.

Step 1: Secret fields In the first step, we must identify the “secret” fields, i.e., fields which will
store confidential data. This is required because in “normal” Java applications sensitive data is
stored in class fields, but in the CareCard MIDlet suite, sensitive data is stored in an encrypted
record store and not in class fields. Hence, in this case, there is no need to specify secret fields: all
fields are public, by default.

Step 2: Declassification through manual flow signatures As discussed above, secret data is
stored in encrypted records. Only authorized users can access the secret data. Writing and
reading data to/from the encrypted record store is done using the addRecord and getRecord

functions. As these functions perform encryption/decryption and in the same time write/read to a
file stream (using native methods), we choose to add manually written flow signatures, as depicted
in Figure 4.23.

Hence, the flow signature of addRecord contains a flow IOs r
→ ps,p

1 , meaning that the first
parameter of the method is written to a “secret” record store. The flow signature of putRecord

contains a flow Rs,p r
→ IOs meaning that the method returns a value read from a “secret” record

store. We remind you that the abstract value IO stands from input/output files.

In the same way, we manually add flow signatures for addRecord and getRecord methods in
the PublicRecord class. The flow signatures are also presented in Figure 4.23. The difference
between PublicRecord and SecretRecord is that PublicRecord reads from/writes to a
“public” record store.
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Figure 4.24: Computed flow signatures for MIDlets record store

Manually adding flow signatures for these classes implies that their implementation belongs to
our Trusting Computing Base. In the same time, this allows to “label” encrypted record stores with
the security level s.

Step 3: Computing flow signatures The next step in verifying information flow security is to
compute the flow signatures. We only concentrate on methods which present a special interest for
our case study in order to show the illegal information flow, hence on method commandAction in
the class Doctor. The implementation of this method has already been presented in Figure 4.22.

The complete flow signature of commandAction is shown in Figure 4.24. You can notice that
the flow signature contains many information flows. This is due to the fact that the method is
complex, it deals with many variables (the IO, the display - which is a static variable, the encryption
keys - which are fields of the Doctor class). We do not detail all flows here, we will only show later
how this flow signature does not respect the desired security policy.

Step 4: Specifying the security policy As we explained before, the only way in which MIDlet
can collaborate and exchange information is through record stores. Secret data are kept in an
encrypted record which can be accessed only by authorized MIDlets. If an authorized MIDlet wants
to give the sensitive data to an unauthorized user, it must write it in a public record, accessible to
all MIDlets. Hence the illegal information flows are flows from a secret record (i.e., IOs) to a public
record (i.e., IOp). All the other flows inside a MIDlet must be allowed, as the MIDlet runs in an
isolated sandbox.

Our DSL for specifying collaboration policies allows specifications in the opposite way: we
suppose that all flows are forbidden, and we define allowed flows explicitly. Hence, to be able to
apply our DSL in the context of MIDlets, we had to slightly extend it: a policy must always start
with defining a type, i.e., positive or negative. A negative policy is the one presented in the previous
chapter: everything is denied except explicit flows. A positive policy is the one needed in the case of
MIDlets: everything is allowed except explicit flows. In the case of positive policies, we must specify
forbidden flows, i.e., IOs does not shares with IOp.

Defining new types of security policies does not require changing the analysis, as each security
policy is translated in a class extending a predefined class Report which offers methods for
accepting/rejecting flows.

Step 5: Verifying the security policy The security policy verification consists of inspecting all
flows signatures of methods in the MIDlet suite in order to detect flows forbidden by the policy,

i.e., flows of type IOp r,v,i
−→ IOs. The policy certification fails while analysing the flow signature of

Doctor.commandAction (depicted in Figure 4.24) as it contains a forbidden flow: IOp r
→ IOs.
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4.4 Conclusion

In this chapter, we tackle the practical side of our information flow model. Experiments conducted to
evaluate the model show that it can be successfully applied to small systems and that our simplifying
assumptions are reasonable in practice. Moreover, we have shown that previous models cannot be
successfully applied on the target devices.

To prove the ease of use, we have integrated our model in a security verification framework which
ensures software verification and validation from the early stage of the development cycle.

Then, we have presented a case study based on J2ME MIDlets which are different from normal
Java applications: sensitive data is stored in record stores and not in class fields. We have seen
that adapting our analysis on different targets does not require many efforts: we had to add only a
few manual flow signatures (which belong to our TCB) and to specify a security policy. The only
difficulty is the onboard verification, as the J2ME relies on a built-in class loader. The integration
requires little effort, but the major challenge is to convince J2ME platform providers to integrate
the information flow verifier in the OS of their devices.
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The information flow model and the extensions presented in the previous chapters have been
designed aiming at a practical framework, which addresses real security problems. The goal was
to have a practical model which can also be formally proven sound. To prove the soundness of
the embedded analysis, we defined a more general analysis, which does not need to aproximate
the abstract model anymore and which can be applied in a wider context. The new analysis keeps
the main features of the previous one: flow-sensitivity and compositionality. The main difference,
motivated by correctness considerations, consists of representing the flows by means of abstract
memory graphs, which are an abstract representation of objects in the memory enriched with
information regarding fields of primitive values and dependencies induced by the control flow
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Figure 5.1: Dependency analysis schema for secure information flow

of the program. In order to adjust to the constraints of small open systems, the previous model
approximates fields of objects and performs an object-sensitive, field-insensitive but security level-
sensitive analysis. The AMG1, the purpose of which is to be a general analysis framework, provides
more precise results, as it is the result of a field-sensitive and object-sensitive analysis. The flow
signature of a method is an approximated representation of the AMG of a method.

Our approach consists of computing, at different program points, an AMG, which tracks how
input values of a method may influence its outputs. This computation subsumes a points-to analysis
(reflecting how objects depend on each other) by extending it with dependencies arising from
data of primitive types and from the control flow of the program. In contrast to many type-based
information flow techniques, our approach does not require security levels to be known during the
computation of the graph: security aspects of information flow are checked by labeling the AMG
with security levels a posteriori.

In this chapter we present the construction of the AMG, while in the next chapter, our graph
construction is proven sound by establishing a non-interference theorem. The theorem states that
if an output value is unrelated to an input value in the AMG, then the output remains unchanged
when the input is modified.

5.1 Preliminaries

5.1.1 General presentation

In this chapter we present a general analysis for Java bytecode, computing an AMG including
references and primitive types. The AMG is computed without any knowledge about information
security. Security levels are applied a posteriori, by an annoter, as depicted in Figure 5.1. The result
is a labeled AMG on which different security properties, such as non-interference, can be certified.
The AMG can be successfully used for other program analysis applications such as points-to analysis,
purity analysis, etc.

AMG description The AMG is a points-to graph extended with primitive values and dependencies
raised by control flow. Nodes of the graph are objects and fields of objects, while edges represent
names of fields and the type of flow (direct or implicit). On the one hand, the graph characterizes
how fields of objects point to other objects. On the other hand, it describes the dependencies
between primitive values through direct or indirect flow, in the sense of non-interference.

Figure 5.2 shows some examples2 and the corresponding AMGs. The instruction a.e = b in
Figure 5.2b creates an edge from a to b, labeled with 〈e,d〉, meaning that the fields e of a points to

1Recall that, throughout the remainder of this thesis, AMG abbreviates “abstract memory graph”.
2Our analysis works on JVM bytecode, but for simplification, we will show some examples at source level.
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Figure 5.2: AMG example

the object b. The second element of the label (d) indicates that the edge originates from a direct
assignment. This edge is created by a normal points-to analysis, as it indicates to which object the
field e of a might point to in the memory.

In addition to the points-to graphs, we also consider nodes and assignments of primitive type. For
easier reading, nodes with dashed surroundings (e.g., g) depict primitive values. The instruction
a.f = g creates an edge from a to g, labeled with 〈f,d〉.

Flows arising from the control structure of the program are identified by the second element in
the label of an edge: i. The code if(h) a.f = g in Figure 5.2c creates two edges:

1. an edge from a to g, due to the assignment, as explained above,

2. an edge from a to h, labeled with 〈f,i〉, meaning that: the field f of a depends, through
implicit flow, on h.

Note that our AMG should not be confused with data dependency graphs such as in [CPS+00]
which represent dependencies among registers and memory reads and writes and aim to be used
for program slicing.

AMG construction To obtain a modular analysis, we split the construction of the AMG in two
steps:

1. an intra-procedural analysis which constructs the AMG for programs without method invoca-
tion,

2. an inter-procedural analysis which adds support for method calls.

Labeling the AMG with security levels Our analysis is more general than “traditional” informa-
tion flow analysis as it computes an AMG abstracting the dependencies between program data: a
node a is related to b if the value of b may influence the value of a. These dependencies are not
made explicit in “traditional” information flow analysis and replaced by coarser flows of security
levels from an a priori fixed security lattice [Den76].

In our work, we compute these dependencies between values independently of any a priori

information like security levels, and hence we can use the AMG for other program analysis
applications, such as escape analysis, etc. The AMG (the nodes and edges) is labeled with different
security policies a posteriori. Therefore, when applied to secure information flow, our approach
allows to reuse the same analysis for various security lattices without re-analysing the code.

Let us consider a security lattice with two security levels, low and high. Applying security levels
to the graph in Figure 5.2c results in the labeled graphs in Figure 5.3. The first graph, in Figure 5.3b,
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(a) Source code

class A {

B e;

int f;

}

A a;

B b;

int g,h;

(b) Unsecure program
...

a.e = b;

if(h)

a.f = g;

a

b g

h

〈f
,
d〉

low〈e
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d
〉
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w
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(c) Secure program
...

a.e = b;

if(h)

a.f = g;

a

b g

h

〈f
,
d〉

high〈e
,
d
〉

lo
w

〈f, i〉

high

high

lowlow

Figure 5.3: AMG labeled with security levels

reveals an illegal information flow as some high data, h, can be read from an object low, on a low
path. The second graph and its security policies, as depicted in Figure 5.3c, corresponds to a secure
program as there is no path from a low to a high.

Non-interference Our AMG is an abstraction of the memory and contains possible relations (due
to assignments or implicit flow) between objects and input primitive values. The non-existence of a
path in our graph between two nodes ensures that the two nodes are not related. Hence, we can
informally state the non-interference for a AMG:

Non-interference property : If a node a is not related to a node b in the AMG (in the sense that
there is no path from a to b), then a does not depend on b. In other words, changing the input
value of b does not affect the output value of a (i.e., the graph of a does not change).

Soundness The correctness of our construction with respect to non-interference is formally proved
in the next chapter.

Chapter structure We first present the instruction set of our analysis and then we formally define
the AMG of a method. We continue by presenting the intra-procedural analysis for a sequential
program (without method calls). Next, support for method invocation through a compositional
analysis is added. We conclude by applying the AMG to information flow. and by showing other
possible applications of our analysis.

5.1.2 Hypothesis and the JVM instruction set

We reconsider the instruction set used for the embedded information flow model presented in
Figure 3.1 page 25. The instruction set contains all representative Java features, such as objects,
method invocation, static fields, arrays.

In this model, we only deal with mono-threaded executions which terminate and do not throw
exceptions. Recall that we assume the bytecode programs to be well-typed and to successfully
pass the class file verifier. We deal only with flows arising from direct assignments or from implicit
flow. Our model does not take into account flows from covert channels, such as timing channels,
termination channels, resource exhaustion etc.

5.1.3 Notations

As in the previous chapters, we consider a set of class names Class, a set of methods Method , and a
set Field of field names. For a method m of class C, nm denotes the number of its arguments and
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Pm its instruction list; Pm[i] denotes the ith bytecode of the method m, while fC′ designates the
field f of the class C ′.

We consider finite graphs whose edges are labelled by elements of the set L: a graph G is given
by (V,E) where V is its set of vertices (or nodes), and E ⊆ V × V ×L is its set of labelled edges.
In a graph G, the edge from vertex u to v, labeled with l is denoted by (u, v, l), and adjG(u, l) is the
set of adjacent vertices of u in G, reached by an edge labeled with l. A node u is a leaf in a graph
(V,E) if for any node v and label l, (u, v, l) 6∈ E.

A vertex v is reachable from u in a graph G if there is a path (a sequence of edges leading) from
u to v. By ReachG(u) we denote the set of vertices reachable from u in G; u ∈ ReachG(u). We
define G⌊u⌋ as the subgraph of G = (V,E) given by (ReachG(u), {(v, w, l) | (v, w, l) ∈ E and v, w ∈
ReachG(u)}). The union of two graphs (V1, E1)∪ (V2, E2) is the graph (V1 ∪V2, E1 ∪E2); the graph
inclusion (G1 ⊆ G2) is defined accordingly.

For a graph G = (V,E), G[(u, f) 7→ v] agrees with G except that all the edges of the form (u, u′, f)
in E are replaced by a unique edge (u, v, l).

Finally, for D, a subset of the domain of the function f , f|D is the restriction of f on D.

5.2 Abstract memory graph definition

In the next paragraphs, we give an informal definition and an intuitive explanation of our abstract
model for a AMG. An AMG is an abstraction of the JVM heap model, obtained during the execution of
a program: nodes in the AMG abstract either objects or input primitive values (method parameters,
object fields).

5.2.1 Nodes

Nodes can be classified in two main categories: reference nodes, abstracting from objects, and
primitive nodes, abstracting from primitive input values. Let us denote the set of nodes of AMGs by
Node.

Reference nodes may abstract method parameters, objects created inside a method (i.e., inside
nodes), static nodes. Primitive nodes abstract parameters of primitive types, constants, and initial
values for primitive fields of parameter and inside objects. Moreover, there are special kinds of
nodes: the special node nnull⊥ which models the special reference value null, and the return node
which holds as fields nodes returned by the method.

Some kind of reference nodes (inside nodes, parameter nodes, static nodes) are the root of a
graph structure containing the abstractions of the object fields.

Inside nodes They model objects created by the analyzed method m. An inside node, denoted by
nn

pc with pc ∈ Pm, models all the objects created by the execution of the object allocation instruction
pc (new or newarray). We use the object allocation site model as all objects created at the same
program statement have the same abstraction. Each graph structure rooted at nn

pc contains nodes
for each primitive field and edges to the nnull⊥ node for object fields.

Constant nodes Denoted by nc
pc, pc ∈ Pm, constant nodes model constant values created at

instruction pc. The constant value is encoded in the instruction itself; hence, it represents a source
of information which must be taken into account. There is a unique node for every constant creation
statement in the method.
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Return node This node, denoted by nr
⊤, is used to indicate the return of the method being

executed. Fields of the return node represent objects or primitive values returned using an αreturn
instruction.

Context node The context node, denoted by ncxt
⊥ , is used to correctly model implicit flows in the

compositional approach, where the calling context, hence the condition on which the execution
of a method depends, is not available. During the intra-procedural analysis we consider that the
execution of the analyzed method implicitly depends on ncxt

⊥ ; during the inter-procedural analysis,
we map the real nodes on which the method invocation depends to ncxt

⊥ .

Static nodes To model static fields, we create a static node ns
C for each class C containing static

fields. If the class C has several static fields, they are modeled as normal fields of ns
C . Hence, this

static node acts as a wrapper for the static fields of the class C.

Parameter nodes For compositional reasons, the analysis of a method cannot use (and does not
have access to) objects created outside the scope of the method. Hence, to deal with parameters, we
use placeholders, which model objects used by method m but created before the method was called.

For each parameter i of a method m, np
i denotes the ith parameter of the method. Parameter nodes

abstract both parameters of reference type and of primitive type. We assume that the the parameters
are maximally unaliased by introducing one parameter node np

i for each concrete parameter of a
method m. If two parameters are aliased, we discover it in the inter-procedural analysis and we
merge the aliased parameters by mapping them to the same nodes. Aliased parameter represent
an important case which can easily generate mistakes, hence we carrefully treat them during the
composition of two AMGs in Section 5.4.

Outside nodes The outside nodes of a method m model objects created by one of the methods
transitively called by the analyzed method. These nodes could be computed during the analysis,
but, for simplicity, we consider that they are known from the beginning. We give details how these
nodes are computed while explaining the inter-procedural analysis; for now we leave them out of
discussion.

5.2.2 Edges

Edges model, on the one hand, heap references and on the other hand, the type of flow. Hence,
an edge from a node u to a node v has two labels: 〈f, t〉, where f ∈ Field is the name of the field
through which u might point to v and t ∈ F = {d,i} is the type of flow: i for implicit flow and d

for direct flows, with the order relation i ⊑ d. Hence, edges are modeled as quadruples from the
set Node \ {nnull⊥ } ×Node × Field ×F . If Edges denotes the set of edges in AMGs, then

Edges = ℘(Node \ {nnull⊥ } ×Node × Field ×F)

and we denote an edge by (u, v, 〈f, t〉).

Direct and implicit edges

Depending on the type of flow (t ∈ F), we can distinguish two types of edges: direct edges and
implicit edges.

Direct edges Direct edges, labeled with 〈f,d〉, model heap references. For example, the edge
(a, b, 〈b,d〉) in Figure 5.2b shows that a points to b through the field b. Both, a and b, are object
abstractions; the edge (a, g, 〈f,d〉) indicates that the field f of a may contain the value abstracted
by the primitive node g.
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Implicit edges Implicit edges, labeled with 〈f,i〉, model data flows arising from the control
structure of the program. An edge (u, v, 〈f,i〉) in the AMG means that the field f of u depends
(through implicit flow) on v. In the example in Figure 5.2c, the edge (a, h, 〈f,i〉) shows that the
value of the field f of a depends on the condition tested by the if instruction: someone who knows
the control structure of the program and the value of h can infer information about the field f of a.

As the conditional instructions usually test primitive values, implicit edges are between reference
nodes and primitive nodes. Bytecode such as ifnull which makes reference comparison is
discussed in the next paragraphs.

5.2.3 Modeling of array cells

In Java, arrays are a special kind of objects. Hence, we model an array as an object having two
fields: (1) a primitive field, l, holding the size of the array and (2) a reference field, [], holding the
cells of the array.

5.2.4 Reference comparison

Some bytecodes (if acmp, ifnull, ifnonnull) perform reference comparison. For example,
ifnull a jumps to a if the reference comparison between the top of the stack and null succeeds.
This may lead to implicit flows between references.

To unify the model, we add a special value field ref of primitive type to each object, which holds
the address of the object. When comparing two objects or an object to null, the value tested is the
ref field. The code if(o == null) a.f = b generates an implicit flow from the field f of a to
the address ref of o ( (a, o.ref , 〈f,i〉)).

The special field ref allows us to keep an important graph property stating that implicit edges are
always between a reference and a primitive node.

5.2.5 Abstract memory graph definition

The AMG computed by the analysis for a given program point conservatively models the memory
state created by any execution path that reaches that point. At a certain program point, the AMG G
is a representation of the concrete memory such that, when restricted to objects, G and the concrete
memory (which we will later define as a memory graph) are related by an abstraction relation.
Then this abstraction is extended with primitive values and implicit flow dependencies.

Formally, an AMG G is a pair

G = (V,E) ∈ ℘(Node)× Edges

consisting of the set of nodes V and the set of edges E.
For an AMG G = (V,E), O(V ) = O(G) denotes the set of reference nodes (abstracting JVM

objects), while V(V ) = V(G) denotes the set of primitive nodes (corresponding to primitive values).
The function Type : O(V )→ Class returns the type of a reference node.

AMG properties

Implicit flows are from objects modified inside a region to values on which the execution of the
region depends. These facts, combined with the use of the special field ref , allow us to deduce the
properties of an AMG G:

Property 5.1. In an AMG G = (V,E), any primitive node u ∈ V(G) ∪ {nnull⊥ } is a leaf.

Property 5.2. In an AMG G = (V,E), for any implicit edge of type (u, u′, 〈f,i〉) ∈ E, u is a reference

node and u′ is a primitive node (u ∈ O(G) \ {nnull⊥ } and u′ ∈ V(V )).
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These properties state that edges between two references are always direct edges: if u1, u2 ∈ O(G)
and (u1, u2, 〈f, t〉) ∈ E then t = d. Primitive nodes are always leaves; reference nodes, except nnull⊥

are never leaves, and implicit edges are always connecting a reference and a primitive node. Thus,
the edges generated by the information flow and the primitive values are not imprecated in the
graph restricted to objects. Our construction is a points-to graph prolonged with primitive nodes
and edges to primitive nodes.

This property is crucial for the soundness of our analysis, as it allows us to split the correctness
proof in two parts: we first show the correctness of the points-to graph, and secondly we prove the
correctness of the prolongation (with primitive nodes) by stating a non-interference theorem.

5.2.6 Non-interference definition

Having modeled the AMG, we can now analyse the graph in order to verify the non-interference
between two nodes. First of all, we define a non-interference predicate for an AMG G, which states
that two nodes, u and v, do not interfere if there is no path from u to v (or v is not reachable from
u, formally v /∈ ReachG(u)).

Definition 5.3 (Non-Interference predicate). Given an AMG G = (V,E), a reference node u ∈ O(G)
and a primitive node v ∈ V(G), the non-interference predicate niG(u, v) holds if v /∈ ReachG(u).

5.3 Intra-procedural analysis

Next, we present the intra-method analysis for building the AMG of a method m, focusing on
programs without method calls: the algorithm consists of computing an AMG for each program
point of the method m. The method invocation and the compositional inter-method analysis are
addressed in Section 5.4. In Chapter 6, we prove the correctness of our construction by defining
non-interference for a concrete JVM and by proving the soundness of (1) the restriction of the AMG
to reference nodes (the points-to graph) and (2) a non-interference theorem for primitive nodes.

The algorithm is a flow-sensitive abstract interpretation which relies on an abstract transformation
rule for each bytecode. The result of the algorithm is an AMG for each method. The construction
is context-insensitive: the analysis starts from a “general” initial state, which does not take into
account the context under which the method might be called. This leads to an analysis which is
more general than a context-sensitive one, but it lies on the simple idea that it is easier to consider
unaliased nodes and merge them later (during the inter-procedural analysis) than to consider
aliasing and split nodes afterwards.

5.3.1 Control dependency regions

In order to deal with implicit flows, we use the notion of postdominance, as already described in
Chapter 3 at page 35. Recall that CFm denotes the intra-method control flow graph of a method
m. For techniqual reasons, we split the instructions on blocks, and we extend the postdominance
definitions to CFB , the control flow graph of blocks.

For a method m, a block B is a subset of the instruction list Pm together with a distinguished
instruction, called the entry-point of B (Entry(B)), such that the control flow graph CFB of B is a
subgraph of CFm; all vertices in CFB are reachable from Entry(B) and CFB has a unique exit-point
(Exit(B)). We assume that Pm is itself a block by adding a unique exit-point to its control flow
graph.

We extend the definition of postdominance to the control flow graph of blocks: in a control
flow graph CFB of a block B, a node n′ post-dominates a node n if n′ belongs to every path from
n to Exit(B). We denote PD(n) the set of post-dominators of n. The definition of immediate
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post-dominator ipd , control dependency region cdr and context cxt are also extended to blocks and
CFB . Recall that function cxt(i) gives the set of conditional instructions under which i is executed;
by Γi we denote the set of abstract values tested by conditional instructions in cxt(i). Hence, all
abstract values manipulated by instruction i implicitly depend on values in Γi. See page 35 for
exact definitions.

5.3.2 Abstract domain and abstract execution state

The abstract domain of a method m is represented by the nodes presented in the AMG of the
method. The nodes are abstractions of concrete JVM objects and initial primitive values manipulated
by a virtual machine.

Building the AMG requires the approximation of local variables array and stack contents. In order
to deal with implicit flow, we need to know the conditions under which the local variables and the
stack are modified. Thus, elements in the stack and local variables have the form (u, t) where u ∈ V
and t ∈ F .

Hence, an abstract state has the form Q = (ρ, s, (V,E)) where (V,E) is the AMG, ρ denotes the
local variables array and it is a mapping from χm to ℘(V ×F), while s is the operand stack with
elements in ℘(V ×F).

5.3.3 Initial abstract execution state

The analysis of a method starts from an initial abstract state, which initializes the local variables
array, the operand stack and the AMG.

We define an initial abstract state of a method m as Qinit
m = ({0 7→ (np

0,d), . . . , n 7→
(np

n,d)}, ǫ, Ginit). The initial local variables array stores, in each local variable i, the ith pa-
rameter node. The initial state also contains an empty operand stack, denoted by ǫ, and the initial
AMG, Ginit such that Ginit = (V,Ei), where V is the set of nodes required by the analysis of m and
Ei is the set of initial edges between nodes in V , as we will explain in the following paragraphs
(e.g., edges between parameters and their fields).

The nodes of the abstract graph, V , could be computed during the analysis, but for simplicity
we consider that all the nodes are available from the start. This implies that for each reference
parameter (np

i ) and each inside node (nn
i ), the initial graph not only contains the abstract node

designating the object, but also the graph rooted by this abstract node representing all the contents
of this object (For parameters of type reference, all the object fields are considered as not null). For
convenience, we add all the nodes to the initial graph even if some of them are not used in the
method, they are eliminated later at the end of the analysis. Figure 5.4 depicts the initial graph of
the method m, by showing different subgraphs rooted by the parameter nodes, the inside nodes,
and static nodes needed in m. The complete initial graph of method m is the union of all subgraphs
depicted in the figure.

The set V also contains all constant nodes, the return node, the context node (as depicted in
Figure 5.4g), the null node, and all the static nodes. Moreover, some nodes manipulated by a
method m are created in methods called by m. The initial graph must contain these nodes and
subgraphs rooted by these nodes. By Gm

m we denote the initial graph for nodes created in methods
invoked by m. The difficulty arises from the existence of inter-dependent methods. During the
inter-procedural analysis we show how this graph is computed.

Unfolding parameter nodes Each parameter is abstracted by a node: np
i denotes the ith param-

eter of the method. Hence, we add the minimal subgraph rooted by np
i , Gp

i = (V p
i , Ep

i ) to Ginit .
This graph represents the parameter and all of its contents; all object fields are considered as not
null. For example, the graph in Figure 5.4b shows the subgraph rooted by the parameter 1 of the
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(a) Data structure declaration and source code

class A {

int f;

B b;

static B st;

static int s;

}

class B {

int g;

}

List {

int v;

List next;

}

void m(A a, List l){

...

i: new A

...

j: anewarray A

...

k: getstatic A.st

...

k’: getstatic A.st

...

l: putstatic A.s

...

o: bipush 2

...

}
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Figure 5.4: The initial AMG of a method m

method; all reference nodes are non null and are completely unfolded. We can define the minimal
subgraphs rooted by parameters of a method m as:

Gp
m =

⋃

0≤i≤nm

Gp
i .

Recursive data structure A special case is represented by the recursive data structures (such as
linked lists), as the unfolding process cannot be precise in a static analysis. To avoid infinite graphs
which might be generated by such structures, we use a parameter h, which is called the depth of
the unfolding, and represents how deep we unfold the recursive data structures. The graph Gp

i is
the minimal graph that contains the parameter node np

i such that ∀u ∈ O(Gp
i ), for each field f1 of

Type(u):

• either there exists a path u11u
1
2 . . . u1ku21u

2
2 . . . u2k . . . uh

1u
h
2 . . . uh

ku labelled by

(〈f1,d〉〈f2,d〉〈f3,d〉 . . . 〈fk,d〉)h in Gp
i such that ∀1 ≤ i ≤ h, 1 ≤ j ≤ h, Type(ui

l) = Type(uj
l ),



5.3 Intra-procedural analysis 111

then (u, uh
1 , 〈f1,d〉) ∈ Ep

i .

• or u.f1 ∈ V p
i and (u, u.f1, 〈f,d〉) ∈ Ep

i .

Let us consider the class List of Figure 5.4 which implements a linked list. The subgraph rooted
by the second parameter (of type List) of method m is depicted in Figure 5.4c. The depth of the
unfolding considered in this example is equal to 1. Hence, the node np

2.n abstracts the field n of np
2

but also all subsequent fields n.

Unfolding inside nodes For each allocating instruction pc, nn
pc denotes the abstraction of all

objects created at instruction pc. The initial graph Ginit contains the subgraph rooted at nn
pc,

Gn
pc = (V n

pc, E
n
pc). This graph contains nodes for each primitive field, and edges to the abstraction of

null for object fields. We define the minimal subgraphs rooted by inside nodes of a method m as:

Gn
m =

⋃

Pm[pc]=new

Gn
pc ∪

⋃

Pm[pc]=anewarray

Gn
pc.

The initial graphs for the new instruction at bytecode i is depicted in Figure 5.4e, while the creation
of an array with the instruction anewarray at bytecode j is depicted in Figure 5.4f.

Unfolding static nodes To model static fields, we define a node ns
C for each class C holding its

static fields. For each class we build its static graph, Gs
C containing the the root node ns

C and a node
for each static field of C. If the static field is of primitive type, then we have a primitive node; if
the static field is a reference, the minimal graph rooted by this node is added (similar to reference
parameters: all object fields are considered as non null).

By Gs we denote the static graph of all classes: Gs = {Gs
C | C ∈ Class}. As this graph can

statically be computed, we consider that it is known from the start and the initial graph Ginit of a
method contains it: Gs ⊂ Ginit .

Initial abstract memory graph: definition We can now formally define the initial AMG of a
method m as the union of initial graphs of formal parameters, of inside nodes, and of static
nodes; moreover the initial graph contains the constant nodes, and the rest of special nodes
(nnull⊥ , nr

⊤, ncxt
⊥ ):

Ginit
m = Gp

m ∪Gn
m ∪Gs ∪Gm

m ∪ ({n
null
⊥ , nr

⊤, ncxt
⊥ } ∪ {nc

pc | Pm[pc] = bipush}, ∅)

5.3.4 Abstract semantics

So far we defined the design of the AMG. The AMG of a method is constructed from an initial
state by applying abstract semantics rules corresponding to JVM instructions. We now give these
semantics rules and explain how they model the behaviour of the JVM w.r.t. the abstract execution
state and AMG.

For each bytecode b, we define an abstract rule Q′ = instrb(Q,Γ) where Γ is the set of nodes u
corresponding to values on which the execution of the bytecode depends, reflecting the impact of
the implicit flow. In order to simulate the context under which a method might be called, we use a
dummy node, ncxt

⊥ . Hence in the initial state, Γinit = {ncxt
⊥ }. The abstract rules are presented in

Figure 5.5.

To reflect the impact of control regions on the stack and the local variables array, every instruction
modifying the last two (push for stack or store for local variables array) takes the values in the
context Γ into consideration. For example, the instructions new and bipush push new abstract
values on the stack as well as the context under which the operation takes place, represented by
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(ρ, {(e, t) | e ∈ adjG(e
′, 〈fC′ , t〉) ∧ e′ ∈ V u

d } ∪ {(e, i) | e ∈ V u

i
} ∪ TVΓ :: s, G)

getfield fC′

(ρ, v :: u :: s, (V, E))
„

ρ, s,

„
V,

E ∪{(e, e′, 〈fC′ , t〉)|(e, d) ∈ u, e 6= nnull
⊥ , (e′, t) ∈ v}

∪{(e, e′, 〈fC′ , i〉)|(e, d) ∈ u, e 6= nnull
⊥ , e′ ∈ Γ ∪ V u

i
}

«« putfield fC′

(ρ, s, G)

(ρ, {(e, t) | e ∈ adjG(n
s
C′

, 〈fC′ , t〉)} ∪ TVΓ :: s, G)
getstatic fC′

(ρ, v :: s, (V, E))

(ρ, s, (V, E ∪ {(ns
C′

, e′, 〈fC′ , t〉)|(e′, t) ∈ v} ∪ {(ns
C′

, e′, 〈fC′ , i〉)|e
′ ∈ Γ}))

putstatic fC′

(ρ, v :: u :: s, G)

(ρ, {(e, t) | e ∈ adjG(e
′, 〈[], t〉) ∧ e′ ∈ V u

d } ∪ {(e, i) | e ∈ V u

i
} ∪ TVΓ ∪ v :: s, G)

αaload

(ρ, v1 :: v2 :: u :: s, (V, E))
„

ρ, s,

„
V,

E ∪{(e, e′, 〈[], t〉)|(e, d) ∈ u, e 6= nnull
⊥ , (e′, t) ∈ v1}

∪{(e, e′, 〈[], i〉)|(e, d) ∈ u, e 6= nnull
⊥ , e′ ∈ Γ ∪ V u

i
}

«« αastore

(ρ, u :: s, G)

(ρ, {(e, t) | e ∈ adjG(e
′, 〈l, t〉) ∧ e′ ∈ V u

d } ∪ {(e, i) | e ∈ V u

i
} ∪ TVΓ :: s, G)

arraylength

with V u

d = {e | (e, d) ∈ u} V u

i
= {e | (e, i) ∈ u} TVΓ = {(e, i) | e ∈ Γ}

Figure 5.5: Subset of the abstract transformation rules

elements in TVΓ = {(e,i) | e ∈ Γ}. The αstore bytecode not only stores the top of the stack in the
local variables array, but also the elements in TVΓ, as the writing is done under their control.

Most of the instructions are trivial and the details will not be given here. We explained how the
implicit flow is taken into account by the abstract semantics and now we discuss the most important
bytecodes, which handle object fields and generate dependencies (i.e., putfield and getfield).
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(a) Part of the control flow graph

i: getfield f

i+1: getfield g

Qi = (ρ, {(np
0 , d)} :: s, G)

Qi+1 = (ρ, {(np
0 .f, d), (np

1 , i)} :: s, G)

Qi+2 = (ρ, {(np
0 .f.g, d), (np

1 , i)} :: s, G)

(b) Part of the AMG G

n
p
0 n

p
0 .f n

p
0 .f.g

n
p
1

〈f, d〉 〈g, d〉

〈f
,
i〉

Figure 5.6: Getfield example

If u is a reference node, the adjacent of u is pushed on the stack by the instruction getfield.
If u is a primitive node arising from implicit flow, the instruction keeps it on the stack. As the
instruction modifies the stack, values in the context (TVΓ) are also pushed on the stack. Let us
consider the example in Figure 5.6a and a part of the corresponding AMG in Figure 5.6b. The first
getfield, starting from the state Qi, will push the field f of np

0 (hence, the node (np
0.f,d)) on

the stack, but also (np
1,i) as the field f implicitly depends on np

1 (there is an edge (np
0, n

p
1, 〈f,i〉)

in the AMG). The second getfield instruction, executed on the newly obtained state Qi+1, will
push (np

0.f.g,d) (the field g of np
0.f) on the stack, and it will keep (np

1,i) on the stack. The intuition
behind is that if the field f of np

0 implicitly depends on a node (np
1 in our case), then all fields of

fields f and so on also implicitly depend on this element.

The most significant bytecode is putfield, as it modifies the AMG. It adds three types of edges:

• edges between direct nodes in u (having the form (e,d)), and elements in v. The type of flow
preserves the type of elements in v (if (e′,i) ∈ v, then the edge arises from implicit flow, too),

• implicit flow edges from direct nodes in u (of form (e,d)) to implicit nodes in u (of form
(e′,i)). The presence of pairs like (e′,i) in u means that the reference nodes in u depend on
e′. Thus, we propagate the implicit dependencies of an object to every field being modified of
that object,

• implicit flow edges from the nodes being modified ((e,d) ∈ u) to nodes in Γ (nodes cor-
responding to values on which the execution of the instruction depends). The idea is that
someone who knows the control structure of the program and can observe the field f of nodes
being modified, is able to deduce the values in Γ.

For instance, the example in Figure 5.7 sets the field g of np
0.f to np

2. Informally, np
0.f.g = np

2.
Instruction getfield loads the field f of np

0 on the stack, while iload loads np
2 on the stack.

The putfield instruction, executed on Qi+2, adds two edges: (1) an edge (np
0.f, np

2, 〈g,d〉) which
corresponds to the direct assignment and (2) an edge (np

0.f, np
1, 〈g,i〉). The second edge is a result

of the fact that (np
1,i) was loaded on the stack by the getfield bytecode. Hence, the node

np
0.f implicitly depends on np

1 and, as a consequence, all fields of np
0.f should also depend on np

1

implicitly.

The rules dealing with static variables (getstatic, putstatic) and with arrays (αaload,
αastore) are similar to getfield and putfield. The instructions getstatic and
putstatic are a simplified version as the reference on which we get/put a field is a statically
known class, abstracted by node ns

C′ . Instructions αaload and αastore deal with arrays and with
the special field [], which holds all elements of an array.
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(a) Part of the control flow graph

i: getfield f

i+1: iload 2

i+2: putfield g

Qi = (ρ, {(np
0 , d)} :: s, G)

Qi+1 = (ρ, {(np
0 .f, d), (np

1 , i)} :: s, G)

Qi+2 = (ρ, {(np
2 , d)} :: {(np

0 .f, d), (np
1 , i)} :: s, G)

Qi+3 = (ρ, s, G′)

(b) Part of the AMG

n
p
0 n

p
0 .f n

p
0 .f.g

n
p
1 n

p
2

〈f, d〉 〈g, d〉

〈f
,
i〉

〈g
,
d〉

〈
g

,
i
〉

Edges before putfield (G)

Edges added by putfield (G′)

Figure 5.7: Putfield example

5.3.5 Algorithm

Our analysis is flow sensitive, computing an AMG at each program point; it is defined in the context
of a monotone framework [NNH99] for data flow analysis. To comply with this framework, we
define an order relation ⊑ and a join operator ⊔ on the property space S (the set of pairs (Q,Γ)
augmented with ⊥ the neutral element of ⊔) such that (S,⊑,⊔) forms a semi-join lattice which
satisfies the Ascending Chain Property [NNH99] (all increasing sequences in S eventually become
constant).

Definition 5.4 (Ordering relation on S). Let S1 = ((ρ1, s1, G1),Γ1) ∈ S and S2 =
((ρ2, s2, G2),Γ2) ∈ S be two states. Then, S1 is said to be smaller than S2, i.e., S1 ⊑ S2 if
and only if s1 ⊑ s2, ρ1 ⊑ ρ2, G1 ⊆ G2 and Γ1 ⊆ Γ2.

To order the local variables arrays ρ1 and ρ2, we use the classical point-wise ordering relation
between functions. Given two stacks s1 and s2, s1 is said to be smaller than s2, i.e., s1 ⊑ s2, if both
stacks are empty or if s1 = v1 :: s

′
1 and s2 = v2 :: s

′
2 with v1 ⊆ v2 and s′1 ⊑ s′2.

The join operator is defined as follows: (Q1,Γ1)⊔(Q2,Γ2) = (Q1⊔Q2,Γ1∪Γ2). The join operator
⊔ on two states (ρ1, s1, G1)⊔ (ρ2, s2, G2) = (ρ1 ⊔ ρ2, s1 ⊔ s2, G1 ∪G2) is a component-wise operator.

Then, (S,⊑,⊔) forms a semi-join lattice which satisfies the Ascending Chain Property [NNH99]
(all increasing sequences in S eventually become constant) required by the monotone framework.

The execution of a method is abstracted to a set of equations based on the abstract rules instrb:
the analysis of a block of instructions B ⊆ Pm of a method m, assumed to be represented by
its control flow graph, is described by an equation system EB, starting from a given initial state
(Qinit ,Γinit) (recall that we consider terminating executions without exceptions and initial states
that allow such executions). For every node i in the control flow graph of B, (Qi,Γi) represents the
state and the context (required by the implicit flow) under which the instruction i is executed. The
context represents the conditions tested (the top of the stack) by the instructions in cxt(i). Thus,
for all nodes i in CFB:

(Qi,Γi) = (SQ ⊔ (⊔j∈pred(i)instrB[j](Qj ,Γj)),
SΓ ∪ {val(u) | 〈u, t〉 ∈ v with Qk = (ρ, v :: s, G), k ∈ cxt(i)})

(5.3.1)

where (SQ, SΓ) equals to (Qinit ,Γinit) if i = Entry(B) and to (⊥, ∅) otherwise; val(u) = u if
u ∈ V(G), or val(u) = u.ref if u ∈ O(G).

The abstract rules are monotone with respect to the ordering relation ⊑, thus we can solve the
system (5.3.1) using standard methods for monotone dataflow analysis.
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Lemma 5.5 (Monotonicity of the transformation rules). For every instruction b, the transformation

rule instrb is monotone with respect to the ordering relation ⊑.

Proof. The Proof of this Lemma is made by case analysis on each instruction b, based on the
transformation rules in Figure 5.5, it is given in Appendix A.1.

Our algorithm is a forward dataflow may-analysis [HBCC99], similar to [SR01, WR99], as the
computed AMG for a given program point is the union of graphs created by all the execution
paths reaching that point. For a block B and a pair (Q,Γ), we define instrB(Q,Γ) as the state
instrB[e](Qe,Γe) where e = Exit(B) and (Qe,Γe) is obtained as the least solution of the system of
equations EB starting from the initial state (Q,Γ).

Example 5.1. Based on the source code for tax calculation in Figure 5.8a, a detailed analysis
example is presented in Figure 5.8. Method tax computes the tax based on the salary and some
predefined rates. The table in Figure 5.8e presents, for each instruction i, its associated abstract
state Qi. Recall that Qi represents the state before executing instruction i. Note that the symbol ∽

denotes repetition, i.e., an equal set to the one above in the column.
The analysis consists of applying each instruction i on the state Qi, starting from an initial state

Q0 = (ρinit, ǫ, Ginit) and Γ0 = {n
cxt
⊥ }, according to equation 5.3.1. The initial local variables array

contains formal parameters:

ρinit = {0 7→ {(np
0,d)}, 1 7→ {(np

1,d)}, 2 7→ ∅}.

The initial AMG Ginit, depicted in Figure 5.8c, unfolds the fields of formal parameters and contains
also the context node ncxt

⊥
3.

A state Qi is computed as the union of states created by each execution path reaching i. The
only instruction having two predecessors is 13, hence Q13 is the union of states resulting from the
execution of 9 and 12. The equation system ensures that all execution paths are considered, as
the algorithm iterates on the set of instructions until a fixed point has been reached. The table in
Figure 5.8e shows the abstract states for the final iteration.

Regarding implicit flows, all instructions depend on the dummy node ncxt
⊥ . Moreover, instructions

6-12 belong to the control dependency region of 54, cdr(5) = {6, 7, 8, 9, 10, 11, 12}. Hence, their
execution depends on the values tested by the comparison bytecode 5 (that is to say, the top of
stack in Q5), hence

Γ6 = · · · = Γ11 = Γ12 = Γ′ = {np
1.avg, np

0.sal, ncxt
⊥ }.

All operations performed by these instructions (push, array store, load) take Γ′ into account.
The only instruction modifying the AMG is putfield, at line 18. It assigns a value to field

tax of np
0 and generates the following edges: (i) edges labeled 〈tax,d〉 from np

0 to np
0.sal, np

1.min,
np
1.max and (ii) edges labeled 〈tax,i〉 from np

0 to np
0.sal, np

0.avg and ncxt
⊥ , as the local variable 2,

was modified in a control region depending on these nodes. Hence, the AMG of the method tax

contains dependencies between fields tax and sal, min, max (due to direct flow) and between
tax and avg, sal (due to implicit flow). The resulting graph, depicted in Figure 5.8d, is also the
final graph of the method.

3The initial graph must also contain the special node nnull
⊥

, but, for simplicity reasons and since it is not revelant for our
example, we ommit it.

4The instruction ifle a is similar to ifeq only that it jumps to address a if the top of the stack is less than 0.
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(a) Source code

class Rate {

int avg, min, max;

}

class Income {

int sal, tax;

..

void tax(Rate p1){

int tmp;

if(sal < p1.avg)

tmp = p1.min;

else

tmp = p1.max;

tax = sal * tmp;

}

}

(b) Control flow graph, CFtax

0: aload 0

:

5: ifle 10

6: aload 1

:

9: goto 13

10: aload 1

:

12: istore 2

13: aload 0

:

19: return

exit

(c) Initial AMG Ginit
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(d) AMG G
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(e) Step by step analysis

Instruction i
Qi Γiρi si Gi

0 : aload 0 ρinit ǫ Ginit Γ0
1 : getfield sal ∽ {(np

0,d), (n
cxt
⊥

,i)} :: ǫ ∽ ∽

2 : aload 1 ∽ {(np
0.sal,d), (ncxt

⊥
,i)} :: ǫ ∽ ∽

3 : getfield avg ∽ {(np
1,d), (n

cxt
⊥

,i)} :: {(np
0.sal,d), (ncxt

⊥
,i)} :: ǫ ∽ ∽

4 : isub ∽ {(np
1.avg,d), (ncxt

⊥
,i)} :: {(np

0.sal,d), (ncxt
⊥

,i)} :: ǫ ∽ ∽

5 : ifle 10 ∽ {(np
1.avg,d), (np

0.sal,d), (ncxt
⊥

,i)} :: ǫ ∽ ∽

6 : aload 1 ∽ ǫ ∽ Γ′

7 : getfield min ∽ {(np
1,d)} ∪ TVΓ′ :: ǫ ∽ ∽

8 : istore 2 ∽ {(np
1.min,d)} ∪ TVΓ′ :: ǫ ∽ ∽

9 : goto 13 ρ9 ǫ ∽ ∽

10: aload 1 ρinit ǫ ∽ Γ′

11: getfield max ∽ {(np
1,d)} ∪ TVΓ′ :: ǫ ∽ ∽

12: istore 2 ∽ {(np
1.max,d)} ∪ TVΓ′ :: ǫ ∽ ∽

13: aload 0 ρ9 ⊔ ρ12 ǫ ∽ Γ0
14: aload 0 ∽ {(np

0,d), (n
cxt
⊥

,i)} :: ǫ ∽ ∽

15: getfield sal ∽ {(np
0,d), (n

cxt
⊥

,i)} :: {(np
0,d), (n

cxt
⊥

,i)} :: ǫ ∽ ∽

16: iload 2 ∽ {(np
0.sal,d), (ncxt

⊥
,i)} :: {(np

0,d), (n
cxt
⊥

,i)} :: ǫ ∽ ∽

17: imul ∽ u :: {(np
0.sal,d), (ncxt

⊥
,i)} :: {(np

0,d), (n
cxt
⊥

,i)} :: ǫ ∽ ∽

18: putfield tax ∽ u ∪ {(np
0.sal,d), (ncxt

⊥
,i)} :: {(np

0,d), (n
cxt
⊥

,i)} :: ǫ ∽ ∽

19: return ∽ ǫ G ∽

Γ′ = {np
1.avg, n

p
0.sal, ncxt

⊥
}

TVΓ = {(e,i) | e ∈ Γ}
ρinit = {0 7→ {(np

0,d)}, 1 7→ {(np
1,d)}, 2 7→ ∅}

ρ9 = {0 7→ {(np
0,d)}, 1 7→ {(np

1,d)}, 2 7→ {(np
1.min,d)} ∪ TVΓ′}

ρ12 = {0 7→ {(np
0,d)}, 1 7→ {(np

1,d)}, 2 7→ {(np
1.max,d)} ∪ TVΓ′}

u = {(np
1.max,d), (np

1.min,d), (np
1.avg,i), (np

0.sal,i), (ncxt
⊥

,i)}

Figure 5.8: Example 5.1
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5.4 Inter-procedural analysis: a compositional approach

The previous section enforces non-interference for sequential programs. In order to be context-
insensitive, the analysis is compositional and computes an AMG for each method. In this section,
we add support for method invocation by describing the composition of two AMGs (of the caller
and callee).

A context-insensitive AMG is computed for each method; this graph represents the execution of
the method on formal parameters (i.e., without considering any particular context). Then, when
a method m is invoked, we compose the AMG of method m with the current state, instead of
analysing the code of m.

In this section, we concentrate on a complete definition and description of the composition
process. We discuss the soundness of method invocation in Chapter 6. To prove the soundness of
this approach, we show that the result of composition gives an AMG at least equal to the graph
obtained by an approach based on the inter-procedural control flow graph (ICFG). Hence, first we
present and prove the correctness of the ICFG approach, and afterwards we prove the correctness
of the compositional approach, by comparing it with the ICFG approach.

5.4.1 The initial AMG of a method

We define the AMG of a method as the graph resulting from the execution of the method on formal
parameters, starting from the initial state as defined in Section 5.3.3. Recall that the initial state is
(Qinit

m ,Γinit
m ), with

Qinit
m = ({0 7→ {(np

0,d)} . . . n 7→ {(np
n,d)}}, ε,Ginit

m ),
Γinit

m = {ncxt
⊥ }.

Thus, the stack (that corresponds to the concrete new frame) is empty at the beginning of the
method, and the local variables array contains formal parameters.

Initial and new edges

We need to distinguish two kinds of edges: initial edges, which belong to the initial graph, and
model dependencies between nodes which might exist before the execution of the method; and new

edges, which model edges created by the analyzed scope (the current method and by one of the
methods transitively called by it).

This distinction is needed by the compositional approach: in the inter-procedural analysis, initial
edges are used to map nodes first, while new edges are translated to edges between the mapped
nodes afterwards.

Hence, in the inter-procedural analysis we define the AMG G as G = (V,E ∪ Ec), where E
represent the initial edges (i.e., the edges from Ginit) and Ec the edges added by the analysis. Using
this notation, all edges generated by the abstract semantics rules belong to Ec. Note that E∩Ec 6= ∅,
as edges from E might be added to Ec (e.g., by the dummy assignment p0.f = p0.f).

Addition to the definition of the initial graph

The graph Ginit
m is the initial AMG. For simplicity, we assume that all the nodes of the graph are

known from the start, but they could be computed during the analysis. Hence, the initial graph
contains, among others, the subgraphs rooted by parameter nodes, by inside nodes (created in
the method), etc., but also contains subgraphs rooted by nodes created in invoked methods, in
methods invoked in invoked methods, etc. (we denote the union of all these subgraphs by Gm).
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In Section 5.3.3, we presented the initial graph but we left the computation of Gm outside of the
discussion. Here, we present how we deal with such subgraphs.

First, we extend our naming strategy to keep disjoint instruction number sets for methods and
unique node names in the AMG. Thus, each instruction pc of a method m is now named mpc (with
m the fully qualified name of the method). Therefore, in node names of the AMG like nc

pc and nn
pc,

pc now encodes the fully qualified name of the method and the line number. For example, a newly
allocated object at instruction i in m is identified by nn

mi .

Thus, if m1 calls the method m2 at instruction i,

m1

...

pc: invoke m2

...

the initial graph of m1 contains the subgraphs of surviving nodes of m2 (nodes created in m2); we
denote this subgraph by Gm

m1,m2,pc. The graph Gm
m1,m2,pc contains nodes created in m2 but we have

to add a proper renaming in order to have a unique identifier for each node: intuitively, they will
have the form nm

pc.u, where u represents the surviving nodes in m2. Hence, we can define the initial
graph of nodes created by methods invoked by m1 as

Gm
m1

=
⋃

Pm1
[pc]=invoke m2

Gm
m1,m2,pc.

We now formally define Gm
m1,m2,pc; let Gm

m1,m2,pc = (V,E ∪ Ec). We first consider the case when
m1 and m2 are not mutually recursive methods, and then we add support for such a case.

Non-recursive methods In the case when m1 and m2 are not inter-dependent methods (i.e., m2 or
methods invoked in m2 etc. do not invoke m1), the graph definition of Gm

m1,m2,pc is straightforward:
it contains nodes having the form nm

pc.u, where u represents the surviving nodes in m2 (i.e., nodes in

subgraph of surviving nodes in m2, GSurv
m2

= (V ′, E′ ∪Ec′)) and translates edges between surviving
nodes (i.e., edges between newly allocated objects and their primitive fields):

V = {renm1,m2
(u, pc) | u ∈ V ′}

E = {(renm1,m2(u, pc), renm1,m2(v, pc), 〈f, t, 〉) | (u, v, 〈f, t, 〉) ∈ E′}
Ec = {(renm1,m2(u, pc), renm1,m2(v, pc), 〈f, t, 〉) | (u, v, 〈f, t, 〉) ∈ Ec′}.

The function renm1,m2 : V
′ × Pm1 → V renames surviving nodes in m2 in the following way:

renm1,m2
(u, pc) =

{
nnull⊥ if u = nnull⊥

nm
pc.u otherwise

This function ensures that there is only a unique node nnull⊥ .

We only need to define GSurv
m2

= (V ′, E′, Ec′), which denotes the subgraphs rooted in surviving
nodes in m2. Surviving nodes of m2 are nodes whose lifetime may exceed the execution of the
method, i.e., nnull⊥ , constant nodes of form nc

i , inside nodes (nodes representing objects created in
m2 and denoted by subgraph Gn

m2
), and surviving nodes of methods called by m2. We can formally

define GSurv
m2

as:

GSurv
m2

= {nnull⊥ } ∪ (∪Pm2
[i]=bipush{n

c
i}∅) ∪Gn

m2
∪Gm

m2
.

Note that the definition of Gm
m1

depends on GSurv
m2

which depends on Gm
m2

. In the case when m1

and m2 are mutually recursive methods, the definition of Gm
m2

will also depend on Gm
m1

, hence to a
loop of recursive definitions. This is the reason why we treat mutually recursive methods separately.
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Mutually recursive methods A challenge arises from the renaming of nodes created in recursive
methods or in inter-dependent methods. To solve this problem and avoid infinite loops, we propose
a solution based on automata building starting from the call graph of the recursive method. We aim
at targeting open systems and, as a consequence, we do not rely on the call graph of a particular
application. However, to be able to analyse inter-dependent methods, we need to have access to
their code (or at least to their AMG). Thus, for a method m, we can consider the set InterDep(m)
which is the minimal set of inter-dependent methods containing m1. Then, for each set of methods
M = InterDep(m1) for some m1, we build an automaton AM = (S,Σ, δ, m1, F ) such that:

F = {nc
i | ∃m

′ ∈ M, nc
i ∈ V init

m′ }
∪ {n | ∃m′ ∈M,n ∈ V with Gn

i = (V,E ∪ Ec) ∈ Ginit
m′ }

S = M ∪ F
Σ = {nm

i | ∃m1, m2 ∈ M, Pm1
[i] = invoke m2}

∪ {nc
i | ∃m

′ ∈M,nc
i ∈ V init

m′ }
∪ {nn

i | ∃m
′ ∈M,nn

i ∈ V init
m′ }

∪ {f | ∃m′ ∈M,nn
i .f ∈ V(V init

m′ })
δ = {(m1, m2, n

m
i ) | m1 ∈M,m2 ∈M, Pm1

[i] = invoke m2}
∪ {(m′, nc

i , n
c
i ) | m

′ ∈M, nc
i ∈ V init

m′ }
∪ {(m′, nn

i , nn
i ) | m

′ ∈M, nn
i ∈ V init

m′ }
∪ {(nn

i , nn
i .f, f) | m′ ∈M,nn

i ∈ V init
m′ , nn

i .f ∈ V(V init
m′ )}

where Ginit
m′ = (V init

m′ , Einit
m′ )

The set of states of the automaton, S, is represented by methods in M and by surviving nodes in
M , denoted by the set F (i.e., constant nodes and inside nodes). The initial state is the method m1.
The transition function δ creates

• a transition from m1 to m2, labeled with nm
i , if m1 invokes m2 at instruction i,

• a transition from m′ to nc
i/nn

i , labeled with nc
i/nn

i , if method m′ creates a constant/reference
at instruction i,

• a transition from nn
i to nn

i .f , labeled with f , if method m′ creates a reference at instruction i
and f is a primitive field.

Hence, the alphabet Σ of the automaton is given by the labels described above.

Using this automaton, we can define Gm
m1,m2,pc = (V,E ∪ Ec), for the case when m2 ∈

InterDep(m1):

V = {l0.l1 . . . lk | δ(m1, l0.l1 . . . lk) = u with l0 = nm
pc, u ∈ F and ∀i 6= j ⇒ li 6= lj}

∪ {nnull⊥ }
E = {(u0 . . . uk, u0 . . . uk.f, 〈f, t〉) | u0 . . . uk, u0 . . . uk.f ∈ V, uk−1 = m′,∃Gn

i ∈ Ginit
m′

and (uk, f, 〈f, t〉) ∈ V n
i }

∪ {(u0 . . . uk, nnull⊥ , 〈f, t〉) | u0 . . . uk ∈ V, uk−1 = m′,∃Gn
i ∈ Ginit

m′

and (uk, nnull⊥ , 〈f, t〉) ∈ V n
i }

Ec = ∅

The automaton builds nodes based on labels; the loops are eliminated by only considering paths
containing distinguished nodes. Recall that, in the inter-procedural analysis, pc refers to the fully
qualified name of the method. This allows us to distinguish calling sites at the same program
counter, but in different methods.

This procedure allows us to correctly rename inside nodes and their primitive fields: not only the
nodes are renamed and added, but also edges between inside nodes and primitive fields, and inside
nodes and nnull⊥ .
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(a) Source code for

m1

m1

...

i: invoke m2

j: invoke m3

...

(b) Source code for

m2

m2

...

i’: new A

...

(c) Source code for

m3

m3

...

k: invoke m4

k’: bipush

...

(d) Source code for

m4

m4

...

l: invoke m1

l’: new A

...

(e) Call graph of m1

m1

m2 m3

m4

(f) Gn
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∈ GSurv
m2

: surviv-

ing graph of m2
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〉
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(h) Renaming automaton AInterDep(m1)

m1start

m3

m4

nc
k′

nn
l′

nn
l′

.f

nm
j

nm
k

nc
k′

nm
l

nn
l′ f

(i) Gm
m1,m3,j

nnull
⊥

nm
j .nm

k
.nn

l′

nm
j .nm

k
.nn

l′
.f

nm
j .nc

k′

〈f, d〉

〈b, d〉

Figure 5.9: Renaming example

Renaming function

Based on the automaton, we can extend the function ren to deal with renaming of nodes from
mutually recursive methods:

renm1,m2
(u, pc) =






nnull⊥ if u = nnull⊥

nm
pc.u if m2 /∈ InterDep(m1)

nm
pc.v if m2 ∈ InterDep(m1) and ∃w s.t. w.nm

pc.v = u

Hence, for mutually recursive methods, ren detects loops and eliminates them by cutting them
(i.e., the node nm

pc.w.nm
pc.v is beeing cutted to nm

pc.v).

Example 5.2. Let us consider the example in Figure 5.9 and the call graph of Figure 5.9e for a
method m1. The graph Gm

m1
⊂ Ginit

m1
of nodes created by methods invoked in m1 is computed as:

Gm
m1

= Gm
m1,m2,i ∪Gm

m1,m3,j .

The set of methods which mutually depend on m1 is InterDep(m1) = {m1, m3, m4}.
As m2 is not an interdependent method, Gm

m1,m2,i
is computed by renaming nodes in GSurv

m2

(depicted in Figure 5.9f) and translating edges between renamed nodes. Every non null node of
GSurv

m2
is prefixed with nm

i ; the result, Gm
m1,m2,i

, is depicted in Figure 5.9g.

For the inter-dependent methods, we build the the automaton AInterDep(m1) in Figure 5.9h.
The graph Gm

m1,m3,j
, depicted in Figure 5.9i, is computed according to this automaton; labels on
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loop-free paths, starting from m1 and ending in nodes in F = {nc
k′ , n

n
l′ , n

n
l′ .f} result in the nodes to

be added: nm
j .nm

k .nn
l′ , nm

j .nm
k .nn

l′ .f and nm
j .nc

k′ .

5.4.2 Abstract semantics

Having defined the complete initial state, we can now define the AMG of a method as the result of
our abstract interpretation, starting from the initial state:

Definition 5.6 (AMG of a method). The AMG of a method m, i.e., Θ(m) is the simplified AMG in the
final state Qf = (ρf , sf , Gf ) obtained after solving the equations system (5.3.1) with (Qinit

m ,Γinit
m )

as initial state:
Θ(m) = sim(Gf ).

The function sim removes unnecessary nodes in Gf .

The analysis simplifies the resulting AMG by removing unreachable nodes and edges; in other
words, nodes and edges which are not critical for the correctness and which are not necessary for
the AMG of the method. We discuss this simplification in Section 5.4.6, page 129.

Invoke The result of the abstract execution of an invoke bytecode is the composition of the AMG
G1 before invocation and the AMG Θ(m2) of the invoked method, based on an initial mapping
relation ∼ι, which puts in relation actual arguments (anm2

:: · · · :: a0) to parameters of m2. The
abstract semantics rule for the method invocation is:

PCm1 [pc] = invoke m2 Q = (ρ, anm2
:: · · · :: a0 :: s, G1) G2 = Θ(m2)

Q′ = (ρ, map∼ι(ret(G2)) :: s, G1 ⊕∼ι G2)

The graph composition operation is performed by the ⊕ operator, starting from an initial mapping
relation ∼ι. Note that the mapping relation ∼ι depends on the calling context, (Q,Γ) and on the
program counter pc; a correct definition of ∼ι would have the form ∼Q,Γ,pc

ι complicating readability.
For simplification, the mapping relation is denoted by ∼ι.

If the exact type of a0 is not statically known, it is impossible to find which of the possible
callees is called in a specific execution of the invoke instruction. To deal with such a situation, we
conservatively join the AMGs computed for all possible callees.

Besides the graph composition, the invoke instruction pushes nodes on the stack mapped to
nodes returned by the invoked method, denoted by map∼ι

(ret(G2)). Intuitively, the set ret(G2)
contains nodes returned by m2 (i.e., fields of node nr

⊤ in G2), while the function map∼ι
(u) returns

nodes mapped to nodes in ret(G2). We precisely define these functions later, after the definition of
the mapping relation.

Return To indicate the return of the method we use a dummy node, nr
⊤, with a single field, r.

Nodes returned by the method through αreturn bytecode are fields of nr
⊤. The abstract semantics

rule of the αreturn instruction is:

(ρ, u :: s, (V, E ∪ Ec))

(ρ, ǫ, (V, E ∪ (Ec ∪ {(nr
⊤, e, 〈r, t〉)|(e, t) ∈ u} ∪ {(nr

⊤, e′, 〈r,i〉)|e′ ∈ Γ}))
αreturn

The method returns elements on the top of the stack (e, such that (e, t) ∈ u) and elements in the
context Γ (e′ ∈ Γ), as the return may depend on the control flow of the method.
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AMGs composition outline The composition of two AMGs is performed by the ⊕ operator and it
has two steps:

1. First, the analysis computes a mapping function ∼: Nodes×Nodes×F between nodes of G1

and nodes of the AMG of the invoked method G2.

2. Next, the analysis uses the mapping function ∼ to combine the two AMGs, G1 and G2. The
composition translates edges between two nodes in G2 to edges between mapped nodes in
G1.

In the next paragraphs we present each step in detail. Subsequently, we prove that method
invocation instructions, invoke and αreturn, fit into the monotone data flow framework. Finally
we show how an AMG can be simplified to keep only relevant information and we discuss native
methods and inheritance issues.

5.4.3 The mapping relation

In the context of graph composition, the mapping relation is needed to put in relation (i) initially,
actual arguments and formal parameters, and (ii) the rest of the nodes starting from the initial
mapping. We first informally describe the meaning of a mapping relation and afterwards we define
it formally in the context of method invocation.

A mapping relation ∼: Nodes×Nodes×F between the two AMGs G1 and G2 puts in relation
the nodes from the AMG of the caller, G1, to nodes from the AMG of the callee, G2. More exactly, ∼
puts in relation nodes from the final graph to nodes from G2, but as we assume that all nodes are
known from the start, the nodes of G1 and nodes of the final graph are identical.

Mapping relation definition As the graph is enriched with implicit flows and the edges are
labeled with the field and the type of the flow, the mapping relation must also take into account the
the type of flow (elements in F). We recall that the set of flows is defined as F = {d,i}. Hence,
given two graphs G1 = (V1, E1 ∪Ec

1) and G2 = (V2, E2 ∪Ec
2), the mapping relation ∼ is defined on

V1 × V2 ×F . Let v1 ∈ V1, v2 ∈ V2 and t ∈ F . If (v1, v2, t) ∈∼, we read v1 maps to v2 through a flow

of type t. For convenience, we use the equivalent notation v1
t
∼ v2.

The relation
d
∼ (or ∼ ∩V1 × V2 × {d}) maps the nodes without taking into account the implicit

flow. This relation is possible only between nodes of the same type (reference or primitive). If a
d
∼ b,

either both a and b are primitive nodes (a ∈ V(V1) and b ∈ V(V2)), or they are reference nodes
(a ∈ O(V1) and b ∈ O(V2)).

The relation
i
∼ (or ∼ ∩V1×V2×{i}) adds support for implicit flow. In contrast to

d
∼, the relation

i
∼ is not necessarly between nodes of the same type. If a

i
∼ b, then

• either a is a primitive node (a ∈ V(V1)) and b is a reference node (b ∈ O(V2)); in this case,

nodes related to b through direct flow implicitly depend on a (if a′
d
∼ b, then a′ depends on a

through implicit flow); this case is illustrated by rule 2b of Definition 5.9 (Graph composition):
each time the composition adds an edge from a′ labeled with 〈f,d〉 (which corresponds to
modifying a′), an edge from a′ to a labeled with 〈f,i〉 is also added;

• or both a and b are primitive nodes (a ∈ V(V1) and b ∈ V(V2)); for example, ncxt
⊥

i
∼ ncxt

⊥ ; this
means that for all nodes b′ that implicitly depend on b, then all nodes mapped to b′ implicitly
depend on a.
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The relation a
i
∼ b with a being a reference node in O(V1) is impossible, as the analysis generates

implicit dependencies only on primitive nodes (according to AMGs properties stated in Section
5.2.5, page 107).

Now that we explained the intuition behind the mapping relation, we define it formally.

Construction of mapping relation The construction of the mapping relation starts from an initial
relation; next, the relation is extended by matching edges (cf. constraints in Definition 5.8).

For invoke bytecode, the initial relation ∼ι maps the actual arguments to formal parameters of
the called method.

Definition 5.7 (Initial mapping relation for invoke). If Q = (ρ, anm2
:: · · · :: a0 :: s, G1 =

(V1, E1 ∪ Ec
1)) and Γ is the abstract state before the invocation of method m2 at instruction pc in

m1, and G2 = (V2, E2 ∪Ec
2) is the AMG of the called method, then the initial relation ∼ι is defined

as follows:

∼ι: V1 → V2 ×F

u
t
∼ι np

j if (u, t) ∈ aj (5.4.1)

u
d
∼ι v if u = renm1,m2(v, pc) (5.4.2)

u
i
∼ι ncxt

⊥ if u ∈ Γ (5.4.3)

nnull⊥
d
∼ι nnull⊥ . (5.4.4)

Constraint 5.4.1 puts in relation the actual arguments (anm2
:: · · · :: a0) to formal parameters in

G2 (np
m2

:: · · · :: np
0). Constraint (5.4.2) maps inside nodes of G2 to corresponding renamed nodes.

Constraint (5.4.3) maps nodes in the calling context Γ to the node ncxt
⊥ , while the last constraint

(5.4.4) maps the unique null node.

Based on an initial relation, we now define the closure of a mapping relation between two AMGs
G1 and G2. The closure extends the initial mapping relation by relating nodes based on the AMGs
(e.g., the fields f of two related nodes are also related).

Definition 5.8 (Closure of a mapping relation). For two AMGs, G1 = (V1, E1 ∪ Ec
1) and G2 =

(V2, E2 ∪ Ec
2), and a given initial relation ∼ι⊆ V1 × V2 × F we define the mapping relation

∼G1,G2
ι ⊆ V1 × V2 ×F as the closure of ∼ι on G1 and G2 and thus as the least relation such that :

1. ∼ι⊆∼
G1,G2
ι ,

2. If v1
d
∼ι

G1,G2

v2, (v1, v
′
1, 〈f, t〉) ∈ E1 ∪ Ec

1, and (v2, v
′
2, 〈f, t〉) ∈ E2 ∪ Ec

2 then v′1
t
∼ι

G1,G2

v′2,

3. If v1
d
∼ι

G1,G2

v2, v1
d
∼ι

G1,G2

w2, (v2, v
′
2, 〈f,d〉) ∈ E2 ∪ Ec

2, (w2, w
′
2, 〈f,d〉) ∈ E2 ∪ Ec

2 and

v′1
d
∼ι

G1,G2

v′2 then v′1
d
∼ι

G1,G2

w′2,

4. If (u, v1, 〈f,d〉) ∈ E1 ∪ Ec
1, (u, v′1, 〈f,i〉) ∈ E1 ∪ Ec

1 and v1
d
∼ι

G1,G2

w then v′1
i
∼ι

G1,G2

w,

5. If v1
i
∼ι

G1,G2

v2, (v2, v
′
2, 〈f,d〉) ∈ E2 ∪ Ec

2, then v1
i
∼ι

G1,G2

v′2.

The first constraint of the definition initializes the relation ∼G1,G2
ι , while the others extend it by

matching edges. As more and more mappings are discovered, the mapping function goes deeper
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Figure 5.10: Closure of a mapping relation

and deeper into the AMGs, and more matching edges can be applied. Accordingly, Constraints 2,
3, 4 and 5 are repeatedly applied until no further progress is possible, and a fixed point is reached.

The constraints are depicted in Figure 5.10. The second constraint puts in relation the same fields
of two nodes which are already related (Figure 5.10a). The third constraint is needed (Figure 5.10b)
to solve well known aliasing problems. In a nutshell, it detects relations between aliased nodes; if
two nodes v2 and w2 are related to the same node v1, then they might be aliased nodes, hence fields
f of v2 and w2 might also be aliased. As a consequence, nodes related to field f of v2 must also be
related to fields f of w2. A detailed example showing the utility of this constraint is presented in
Appendix A.2, at page 165. The fourth constraint (Figure 5.10c) is needed in order to correctly take
into account the implicit flow. The last rule (Figure 5.10d) propagates the implicit dependency: if a
node implicitly depends on a node v1, then all its fields, fields of fields, etc. also implicitly depend
on v1.

(a) Source code

class B { int g;}

class A { B b;

void m1(int p1) {

...

i: iload 0

j: invoke m2

...

}

void m2(){

...

}

}

(b) AMGs and mapping nodes

n
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0 n
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〈b,
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d d d

i

i

i

(c) Legend

Part of the AMG G1 for method
m1, before invoking m2

Part of the AMG G2 for method
m2

New mapping relation

Initial mapping relation

AMG edge

Figure 5.11: Mapping example

Example 5.3. Let us consider the example in Figure 5.11. The initial mapping relation, ∼ι, maps
the actual argument with which m1 invokes m2 (this or np

0) to the first parameter of m2 (np
0):
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np
0
d
∼ι np

0. By applying Constraint 2, which puts in relation the same fields of mapped nodes, we

obtain: np
0.b

d
∼ι np

0.b and np
0.b.g

d
∼ι np

0.b.g.

In the AMG of method m1, the field b of node np
0 implicitly depends on np

1. Hence, all subsequent
changes to the nodes related to the field b implicitly depend on np

1. Our mapping takes into
consideration this reasoning in two steps: first, it puts in relation the nodes np

1 to np
0, by applying

Constraint 4: np
1
i
∼ι np

0; second, it will map np
1 to all fields of np

0, according to Constraint 5. The

second step leads to the mappings: np
1
i
∼ι np

0.b and np
1
i
∼ι np

0.b.g.

(a) Source code

class B { int g;}

class A {

B b;

void m1(int p1,B p2){

if(p1 != 0)

this.b = p2;

this.m2();

}

void m2() {

this.b.g = 5;

}

...

}

m1

0: iload 1

1: ifeq 5

2: aload 0

3: iload 2

4: putfield b_A

5: aload 0

6: invoke m2

m2

0: aload 0

1: getfield b_A

2: bipush 5

3: putfield g_B

(b) Legend

Graph of m1

Graph of m2

Reference node

Primitive node

Initial edge (in E)

New edge (in Ec)

(c) AMG for m before method call, G
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Figure 5.12: AMGs for Example 5.4

Example 5.4. Let us consider the example in Figure 5.12. Method m1 in class A calls method
m2. Let G1 = (V1, E1 ∪ Ec

1) be the graph of m1 before the call (depicted in Figure 5.12c) and
G2 = (V2, E2 ∪ Ec

2) be the graph of m2 (Figure 5.12d). The call from instruction 7 invokes the
method m2 with the argument np

0 (this), hence the initial mapping ∼ι: V1 × V2 ×F is defined as:

∼ι: np
0

d
∼ι np

0

ncxt
⊥

i
∼ι ncxt

⊥

nm
6 .nc

2
d
∼ι nc

2.

The initial mapping puts in relation the actual arguments to the first parameter in m2 (np
0), and the

context nodes. The node nm
6 .nc

2 represents the renamed constant node nc
2, created by instruction
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(a) Node mapping for the initial relation ∼ι
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(b) Node mapping added by Constraint 2 of mapping closure (Definition 5.8)
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(c) Node mapping added by Constraints 4 and 5 of mapping closure (Definition 5.8)
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Figure 5.13: Mapping relation for Example 5.4

bipush at instruction 2 in method m2 (called at instruction 6). Obviously, nm
6 .nc

2 is related with
the node nc

2 in m2. The initial mapping relations are depicted in Figure 5.13a by dotted edges.

Next, we compute the closure of initial relation ∼ι, ∼
G,G1
ι . By applying Constraint 2 of Defini-

tion 5.8, we map the fields of nodes which are already related; as np
0
d
∼ι np

0, we map the field b,

which leads to mapping relations 5.4.5 and 5.4.6 (Figure 5.13b). As np
0.b

d
∼ np

0.b, we can map their
fields g and obtain the mapping relations 5.4.7 and 5.4.8. Similarly, we map the field g of np

2 and
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np
0.b and obtain the mapping relations 5.4.9 and 5.4.10.

np
0
d
∼ι np

0 ⇒ np
0.b

d
∼ np

0.b (5.4.5)

np
2

d
∼ np

0.b (5.4.6)

np
0.b

d
∼ np

0.b ⇒ np
0.b.g

d
∼ np

0.b.g (5.4.7)

np
0.b.g

d
∼ nc

2 (5.4.8)

np
2
d
∼ np

0.b ⇒ np
2.g

d
∼ np

0.b.g (5.4.9)

np
2.g

d
∼ nc

2 (5.4.10)

The edge (np
0, n

p
1, 〈b,i〉) in the graph G1 of m1 illustrates that field b of np

0 implicitly depends
on np

1. Hence, all changes to field b of np
0 (and fields of fields etc.) also implicitly depend on np

1

(Figure 5.13c). To reflect this, Constraint 4 puts in relation np
1 with all nodes in G2 related, through

direct flow, to fields b of np
0 (np

0.b and np
2). As np

0.b
d
∼ np

0.b, then

np
1

i
∼ np

0.b. (5.4.11)

In the same way, np
2
d
∼ np

0.b, hence we obtain the same relation 5.4.11. We note that the implicit
mapping is between a primitive node and a reference node, in contrast to direct mapping which
relates nodes of the same type.

Constraint 5 propagates the implicit mapping to fields of fields b of np
0 etc. Hence, it puts in

relation np
1 with all nodes in G2 related, through direct flow, to fields of fields b of np

0 (np
0.b.g and

np
2.g). As np

0.b.g
d
∼ np

0.b.g, we obtain the mapping relation 5.4.12, and as np
0.b.g

d
∼ nc

2, we obtain the
mapping relation 5.4.13.

np
1

i
∼ np

0.b.g (5.4.12)

np
1

i
∼ nc

2. (5.4.13)

Computing the return of the callee The abstract semantics of invoke instruction pushes the
set map∼ι

(ret(G2)) on the stack, representing the nodes mapped to nodes returned by the callee.
The function ret(G2) contains nodes returned by m2, i.e., fields of node nr

⊤ in G2. Formally,

ret(G2) = {(u, t) | u ∈ adjG2
(nr
⊤, 〈r, t〉)}.

The function map∼ι
returns the nodes mapped to ret(G2) through the closure of the initial mapping

relation, i.e., ∼G1,G2
ι . Formally, the mapping of a set of nodes (v, t) ∈ e through the relation ∼G1,G2

ι

is

map∼ι
(e) = {(u, t2) | (v, t) ∈ e ∧ u

t1∼ι

G1,G2

v ∧ t2 = t ⊓ t1}.

The type of the node (u, t2) is the meet between t and t1, i.e., t2 = t ⊓ t1, according to the set of
flow types F = {d,i} and to the order relation i ⊑ d. The intuition behind it is that if the flow
type resulting from two different flow types is always equal to the smallest (the weakest) of the
flows. For example, if t = d and t1 = i, then t = i.

5.4.4 Combining two AMGs

Once we have the mapping relation, we combine the AMG for the program point before the invoke,
G1, with the AMG of the callee, G2, to obtain the AMG for the program point right after the invoke.
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Figure 5.14: Rules for combining two AMGs

n
p
0

n
p
0 .b n

p
0 .b.g

〈b
,
d
〉

〈g, d〉

n
p
2 n

p
2 .g

〈g, d〉

n
p
1ncxt

⊥

〈b,
d〉

〈b, i〉

〈b, i〉
nm
6 .nc

2

〈g
,
d〉

〈g
,
d
〉

〈
g

,
i
〉

〈
g

,
i
〉

〈g
, i
〉

〈g, i〉

Reference node

Primitive node

Initial edge (in E)

New edge (in Ec)

New edge added by ⊕ (in Ec)

Figure 5.15: Combined AMGs for Example 5.4, G⊕∼ι
G1

The combination is done by the ⊕∼ι
operator. Intuitively, ⊕ returns the union between G1 and the

projection of G2 through the mapping ∼ι
G1,G2 .

Definition 5.9 (Graphs composition). Given two AMGs, G1 = (V1, E1∪Ec
1) and G2 = (V2, E2∪Ec

2),
and an initial relation ∼ι⊆ V1 × V2 × F , we define G = (V1, E1 ∪ Ec) = G1 ⊕∼ι

G2 as the least
graph such that:

1. Ec
1 ⊆ Ec,

2. If v1
d
∼ι

G1,G2

v2, v′1
t
∼ι

G1,G2

v′2, v1 6= nnull⊥ and (v2, v
′
2, 〈f, t1〉) ∈ Ec

2

a) then (v1, v
′
1, 〈f, t ⊓ t1〉) ∈ Ec,

b) if v′′1
i
∼ι

G1,G2

v2 then (v1, v
′′
1 , 〈f,i〉) ∈ Ec.

The composition extends G1 with edges between surviving nodes in G2. Thus G1 ⊆ G. The first
constraint initializes edges in G, while the second one (depicted in Figure 5.14a) translates edges
between nodes in G2 to edges between nodes related in G. The new edge is typed with t ⊓ t1, as
the flow type of the new edge is the smallest of the two flow types which generated the edge. The
third constraint, depicted in Figure 5.14b, propagates implicit flows: if node v2 in G2 is implicitly
mapped to v′′1 , then all changes to v2 (all edges created in G2) implicitly depend on v′′1 . Hence,
when an edge starting from v2 is translated to G, an implicit edge to v′′1 must also be translated.

Example 5.5 (Example 5.4 continued). Figure 5.15 shows the result of the graph composition
G1 ⊕∼ι

G2 in the context of Example 5.4 (Figure 5.12). The construction of the AMG is straightfor-



5.4 Inter-procedural analysis: a compositional approach 129

ward by applying the rules of Definition 5.9. Edges added by the composition are depicted by extra
thick dashed lines. We give the added edges and the rules applied to obtain them:

rule 2a : (np
0.b, n

m
6 .nc

2, 〈g,d〉)
rule 2b : (np

0.b, n
p
1, 〈g,i〉)

rule 2a : (np
2, n

m
6 .nc

2, 〈g,d〉)
rule 2b : (np

2, n
p
1, 〈g,i〉)

rule 2a : (np
0.b, n

cxt
⊥ , 〈g,i〉)

rule 2a : (np
2, n

cxt
⊥ , 〈g,i〉).

5.4.5 Compatibility with the monotone framework

In order to keep the compatibility within the monotone framework, we need to show that the
transfer rules for invoke and αreturn are monotone.

Lemma 5.10 (Monotonicity of transformation functions (cont. Lemma 5.5)). The transformation

rule of invoke instruction is monotonic both in state Q (the state before the call) and in G2 (the AMG

of the invoked method).

Proof. The monotonicity in Q is straightforward: starting from a smaller AMG, we obtain a smaller
closure for the mapping relation and we add less edges than if we start from a bigger graph. The
monotonicity in G2 is also straightforward: with a smaller graph, we can compute less mapping
relations and, hence, we add less edges in the resulted graph (i.e.,, G1 ⊕∼ι

G2).

Lemma 5.11 (Monotonicity of transformation functions (cont. Lemma 5.5)). The transformation

rule of αreturn instruction is monotonic w.r.t. ordering relation ⊑.

Proof. We consider two pairs

(Q1,Γ1) = ((ρ1, u1 :: s1, (V1, E1 ∪ Ec
1)),Γ1) (Q2,Γ2) = ((ρ2, u2 :: s2, (V2, E2 ∪ Ec

2)),Γ2)

from the property space S such that (Q1,Γ1) ⊑ (Q2,Γ2), and let

Q′1 = (ρ1, ǫ, E1 ∪ (E
c
1 ∪ Eu1 ∪ EΓ1)) Q′2 = (ρ2, ǫ, E2 ∪ (E

c
2 ∪ Eu2 ∪ EΓ2))

be the result of applying abstract semantics of αreturn on (Q1,Γ1) and (Q2,Γ2) respectively,
where

Eu = {(n
r
⊤, e, 〈r, t〉)|(e, t) ∈ u} EΓ = {(n

r
⊤, e′, 〈r,i〉)|e′ ∈ Γ}.

We need to prove that Q′1 ⊑ Q′2, hence that Eu1 ⊆ Eu2 and EΓ1 ⊆ EΓ2 .
By hypothesis, u1 ⊆ u2 holds which immediately leads to Eu1 ⊆ Eu2 . Also by hypothesis, Γ1 ⊆ Γ2,

hence EΓ1 ⊆ EΓ2 .

The monotonicity of the invoke and αreturn transformation rules guarantees on the one
hand the termination of the intra-procedural analysis and on the other hand the termination of
inter-procedural analysis (this is due to fact that the rule is monotone in G2).

5.4.6 AMG simplification

Once the analysis completed, the AMGs can be simplified in order to reduce their size. The
simplification removes nodes and edges insignificant for a method (recall that in our analysis all the
nodes are computed statically, at the beginning of the analysis, and they are included in the initial
graph). Therefore, it must be performed once the inter-procedural analysis has ended. An earlier
simplification of the AMG might lead to a loss of nodes which are still needed by the analysis.



130 5 A sound dependency analysis using abstract memory graphs

We define nodes significant for a method as the set of nodes reachable from parameters of the
method (hence from the subgraph Gp

m), from static fields (hence from Gs) or from the dummy
node nr

⊤. The rest of the nodes are local to the method and are invisible to an external caller.

Considering the AMG of a method m, Gm, the simplified graph, sim(Gm) is formally defined as:

sim(Gm) = Gm⌊G
p
m ∪Gs⌋ ∪Gm⌊n

r
⊤⌋

where G⌊G′⌋ represents the subgraph of G reduced to nodes reachable from nodes in G′. The
simplification eliminates nodes allocated in a method and which are solely used for local needs
(e.g., to perform some computations).

5.4.7 Discussion

Native methods and I/Os

Native methods are used when a Java application needs to access some platform-dependent features
not supported by Java (e.g., the I/Os) or to use a library written in other language. Native methods
bring many benefits to Java as well as security concerns. As they are written in other languages
than Java, they cannot be analyzed by our model or any other Java security tool. To support them,
native methods must be hand-annotated, just as flow signatures, and their AMG will belong to our
trusting computing base.

Native methods represent the only place when a read/write to/from an I/O can occur. To model
I/Os, we introduce a special node nio

⊤ and a special field io. Writing a node u into an I/O is
represented by an edge (nio

⊤ , u, 〈io, t〉) in the AMG, while reading from an I/O to the field f of a
node u is represented by an edge (u, nio

⊤ , 〈f, t〉). For simplicity, we use a single node to abstract all
read/write sites; separating different sites is straightforward: the user (who manually defines the
AMG of the native method) can add a unique identifier j to each node, i.e., nio

j .

Inheritance and virtual invocation

To deal with virtual calls and to simplify the model and the soundness proof, we chose to conser-
vatively take all AMGs matching the call site. Obviously, we can improve precision by adapting a
technique similar to the one used in the embedded model: we perfom an exact type computation,
and, if the exact type is known, then the exact AMG is used; if not, a global AMG is used. The
global AMG is a door to openness and it is computed similarly with the global flow signature: either
from the class hierarchy by computing the union of all AMGs of overwriting methods, or manually
defined (as for native methods). Later, new overriding methods can be accepted in the system if
their AMG is compatible with the global AMG of the class hierarchy to which they belong.

5.5 Analysis applications

The main goal of our analysis was to build a sound framework for secure information flow. Finally,
we obtain a more general framework which can successfully be used for other program analysis
domains. We now show how our analysis applies to information flow, but also other applications
such as points-to and purity analyses.

5.5.1 Secure information flow

Most of the previous works on non-interference require the lattice security model of information
flow to be known from the beginning. Our AMG contains points-to and control flow dependency
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information, without any information concerning security policies. Once computed, the AMG can
be labeled with security levels and non-interference can be checked.

Let (L,⊔,⊑) be a lattice of security levels; for simplicity, let us consider L = {low, high},
low ⊑ high. We can now define security levels on types: let λt : Field × Class → L be a function
that associates a security level with a field of a class. Let us consider a method m, its AMG
Θ(m) = (V,E ∪Ec) and the initial subgraph of parameters Gp

m = (V p, Ep ∪ ∅). A security function
is a function that associates security levels to input values (the primitive nodes) and to return values
(primitive nodes reached from the return node nr

⊤ and denoted by the set Rr = ReachΘ(m)(n
r
⊤)):

λι : V(V
p ∪ Rr )→ L such that if v is the field f of a class C, then λι(v) = λt(f, C).

Informally, we say that a method is secure if it respects the following properties:

1. no confidential data flows to a static field; static fields are considered as having the lowest
security level, i.e., ⊥,

2. values accessible from parameters or return value on paths contain at least a field of higher
security level than their own. This corresponds to our convention we used to define the
secret/public part of an object in Section 3.2.1, page 28 (Equations 3.2.1 and 3.2.2). In this
convention, the secret part of an object contains all access paths that contain at least one
secret field. We extend this convention to a general security lattice, (L,⊔,⊑). If ℓ ∈ L is
a security level, than the part of an object with security level ℓ contains all access paths to
primitive fields that contain at least a field with security level ℓ and all other security levels ℓ′

on the path are smaller than ℓ, i.e., ℓ′ ⊑ ℓ.

Formally, we define the secure information flow as follows:

Theorem 5.12 (Secure information flow). Let m be a method, Gp
m = (V p, Ep, ∅) the initial subgraph

of its parameters, Θ(m) = (V,E ∪Ec) its AMG, and λι a security function. Let Rr = ReachΘ(m)(n
r
⊤).

m has secure information flow with respect to L if

1. for every node v ∈ V(V p ∪Rr ) such that ⊥5
< λι(v), there is no path ns

C

〈f1,t1〉
−→ o1 . . . ok−1

〈fk,tk〉
−→

v,

2. and for every node v ∈ V(V p ∪ Rr ) and every path o0
〈f1,t1〉
−→ o1 . . . ok−1

〈fk,tk〉
−→ v, ∃i such that

λι(v) ⊑ λt(fi,Type(oi)).

The advantage of our approach is that security annotations must not be known a priori. Changing
a security level does not require a new analysis. Note that we can also have more precise policies on
instances: if o and o′ have the same type, o.f and o′.f can be given different security levels using a
function λe : E → L instead of λt. It is more precise but requires the user to precise all the policies.

Example 5.6 (Example 5.1 continued). Recall the Example 5.1, page 115; its AMG is depicted in
Figure 5.8, page 116. Let us consider a security lattice L = {low, high}. For example, we can define
two security policies:

• λt(sal, Income) = high and λt(tax, Income) = high, as depicted in Figure 5.16a,

• λt(sal, Income) = high and λt(tax, Income) = low, as depicted in Figure 5.16b.

The program is secure w.r.t. the first security policy, but it is unsecure w.r.t. to the second

security policy. The insecurity arises from the path np
0

〈tax,d〉
−→ np

0.sal, as λι(n
p
0.sal) = high and

λt(tax, Income) = low. Hence, a high input value is accessible to the low part of the parameter np
0.

5⊥ designates here the infimum of the security lattice L
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Figure 5.16: AMG of method tax labeled with security levels (Example 5.1 cont.)

5.5.2 Points-to analysis

In object oriented languages, like Java [LY99], the analysis of information flow is related to the
analysis of references. Points-to analysis [And94], or pointer analysis, is a static analysis which
computes for every object the set of objects to which it may point at runtime. Points-to analysis has
been developed for applications such as escape analysis [SR01, WR99], shape analysis [SRW99]
or optimizations (stack allocation, synchronization removal, etc). It gives more accurate memory
dependence analysis and data flow analysis. A more precise points-to analysis allows more aggressive
optimization and scheduling.

Here, we show how our analysis can be applied for one points-to application, i.e., stack allocation.
We believe that our analysis can successfully be applied to other applications and optimizations, but
this is out of the scoope of this thesis.

One of the main applications of points-to analysis is stack allocation [CGS+03]: if an object is not
reachable after the end of its allocating method, i.e., the method that allocated it through a new
instruction, then it can be allocated in the stack frame of the method instead of the heap (which
is garbage collected). This optimization has several benefits: less overhead for garbage collection,
as the objects allocated in stack are implicitly deallocated when the method’s execution ends, and
better memory access times.

As our algorithm is a pointer analysis extended with primitive values, using our framework for
points-to applications is straightforward.

In our analysis, stack allocation techniques can be applied for inside nodes. Given a method m,
inside nodes abstract objects allocated in m and have the form nn

pc. An inside node nn
pc captures all

objects allocated at site pc. An object can be allocated in the local stack if the inside node abstracting
it is not reachable from the parameters of the method, from the return value of the method, or from
a static variable. Formally, if G is the AMG of m and pc an allocation site, then nn

pc can be allocated
in the stack of m if

ReachG(G
p ∪Gs) ∪ ReachG({n

r
⊤}) ∩ {n

n
pc} = ∅.

Recall that Gp is the initial graph of method parameters while Gs is the graph containing all static
fields.
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5.5.3 Purity analysis

Purity analysis has become important as the number of software constantly increases. Hence, their
verification is crucial in order to ensure correctness. Specification languages [LBR06] use assertions
which describe program behaviour or program properties. The use of method calls in such assertions
raises several problems: the methods should not modify the objects used in the program, they must
only have an observational purpose. Such methods, which have no externally visible side-effects,
are called pure methods.

We use the same definition of method purity as in JLM (Java Modeling Language) [LBR06] and
also used by Salcianu in [Sal06]:

Definition 5.13 (Pure method). A method is pure if any of its executions

• does not mutate static fields,

• does not perform I/O operations,

• does not mutate methods parameters.

Note that pure methods allow mutations of newly allocated objects. Moreover, a pure method
can invoke an impure method. Sun et al. have defined this notion of purity as observational purity

[BNS04, BNSS06, Sun08]. The definition allows to allocate and throw exceptions; otherwise the
definition would be too strict, as almost all JVM instructions can throw runtime exceptions.

In our analysis, method purity can be defined as a property of the AMG of the method. Intuitively,
the execution of a method does not mutate static fields and parameters if it does not add edges
initiating from static or from parameter nodes. To verify this property, we need the initial graph
of the method, before the start of the method analysis. Let Ginit

m be the initial AMG of a method
m. Recall that Gp

m = (V p
m, Ep

m ∪ ∅), Gp
m ⊂ Ginit

m is the initial subgraph rooted from parameters and
Gs = (V s, Es, ∅), Gs ⊂ Ginit

m is the initial static graph of all classes. If Gm is the AMG of m, we can
define the purity predicate as follows:

Lemma 5.14 (Purity predicate). Consider a method m, its AMG Gm. The method is pure, i.e., the

predicate pure(m) holds, if

Gp
m = Gm⌊G

p
m⌋ ∧ Gs = Gm⌊G

s⌋ ∧ ReachGm
(nio
⊤) ∩ (V

p
m ∪ V s) = ∅.

Hence, a method is pure if the initial subgraphs rooted by parameters and static nodes have not
been changed by the execution of the method and if they have not been written to I/Os (reading
from I/O leads to a mutation, hence we do not need to check it separately).

Information flow analysis has already been used in purity analysis by Bannet et al. [BNSS06].
They state that observational purity is a novel application of information flow analysis in software
verification. The problem on observational purity is reduced to a non-interference problem: internal
data that the side-effect is on are treated as having security level high, while other classes have low
security level. If the non-interference holds, i.e., there is no leak of information from high to low,
then the internal data do not mutate.

5.6 Conclusion

In this chapter, we showed the definition and construction of the AMGs for JVM methods. The graph
contains dependencies between JVM objects and primitive values. The main goal was to build a
graph for information flow verification, but, as a result, our construction can be used for many
other program analysis techniques, such as points-to and purity analysis. The main contribution
of this chapter is the formal definition of inter-procedural analysis, as modularity is an essential
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requirement in a computing world evolving towards mobility and untrusted code downloading.
Moreover, security policies and AMG construction are completely separated: policies are specified
and verified a posteriori. In the next chapter, we show the soundness of our construction by proving
a non-interference theorem.
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This chapter proves the soundness of the dependency analysis presented in previous chapter.
Most of this section is dedicated to the proof of the following theorem:

Theorem 6.1 (Correctness of non-interference hints). Consider a method m, and let Θ(m) = (V,E)
be the AMG of a method m. Let a be a concrete object and b a primitive input value in the concrete

execution of m, and a and b their abstractions in the abstract model. If niΘ(m)(a, b), i.e., a and b do

not interfer, then changing the input value b does not affect the output value of a, i.e., the abstraction

of a does not change.

The text in the theorem is not very formal. In particular, we do not say what we mean by concrete

execution, abstraction relation, input value, output value etc. We clarify all these notions along the
proof. Moreover, we define additional models (e.g., a concrete execution model, an intermediate
model) and we prove additional results (e.g., memory abstraction, state variation) needed to prove
the non-interference theorem.

6.1 Proof outline

In order to study the correctness of the analysis, we needed to define a concrete execution model
for the JVM and to prove that if a non-interference property in the abstract model holds, then the
non-interference property in the concrete model also holds. The definition of the concrete model
requires to define the memory heap, concrete objects and concrete semantics for the analyzed
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language. While the abstract semantics has an intuitive, abstract view about the execution of a
program, the concrete semantics has a precise, operational view. The concrete semantics precisely
defines the execution of a program, while the abstract semantics gives an approximation which
holds for every possible execution of the program.

In order to take in consideration method calls, most of the previous approaches[Mye99a] rely
on the call graph. This requires the entire class set to be known from the begining, which is not
possible in an open environment. As we target open devices, we define a modular approach for the
inter-procedural analysis. Proving the soundness of the modular approach is a complex task and
it represents an important and sensitive part of the proof: we must show that graph composition
safely approximates concrete method invocation.

We split the prove in two parts: (i) we first prove the correctness of the intra-procedural analysis
by considering programs without method invocation; (ii) in the second part, we complete the proof
by showing the soundness of the inter-procedural analysis.

(i) In order to prove the correctness of our construction during the intra-procedural analysis, we
need to investigate the relation between the AMG resulted from our analysis and the concrete state
resulted from the concrete semantics. Due to the fact that we consider primitive values in our graph,
we cannot create a relation between them in a single step. Again, we split the proof in two parts:

1. First, we prove the correctness of our AMG restricted to references; the restraint graph
(points-to graph) is related directly to the concrete model through an abstraction relation.

2. Next, we concentrate on primitive values and we show that our construction is correct w.r.t.
to non-interference.

(ii) The proof for inter-procedural analysis must show the correctness of the abstract execution of
the invoke instruction (which combines the AMGs of the caller and of the callee). Unfortunately,
due to the significant difference between the abstract and the concrete semantics of the invoke
instruction, we cannot investigate the proof and the relation between the two semantics in a single
step. Hence, we introduce an intermediate layer between concrete semantics and dependency
analysis. The intermediate semantics is similar to the abstract semantics, except for the invocation
model: the intermediate semantics steps into the callee and it corresponds to unfolding method
calls, just as the concrete semantics does. Based on this intermediate layer, we split the proof of
inter-procedural analysis in two steps:

1. First, we proof the correctness of the intermediate layer.

2. Then, we show that the AMG of a method resulted from the abstract semantics contains at
least the same edges as the AMG resulted from the intermediate layer.

6.2 Concrete model and concrete semantics

To simplify the proofs, we restrict ourselves to a subset of the instruction set considered for the
abstract model. The initial instruction set is depicted in Figure 3.1 page 25, while the restricted
instruction set (which we will consider for the concrete model) is depicted in Figure 6.1. The subset
keeps the main features of JVM, such as pointer manipulation, method call, jumps, etc. The subset
is just a simplification of the initial intruction set (e.g., it does not contain bytecodes dealing with
static variables and arrays as they are a particular case of getfield and putfield and their
proofs are similar).

The concrete model precisely defines the execution of JVM programs. The set of JVM values is
defined as Jv = Val ∪Obj where Val is the set of primitive values (restricted to int), and Obj the
set of objects, including the special value null. We extend the function Type to the concrete model:
Type : Obj → Class returns the type of an object.
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prim op primitive operation taking two operands, pushing the result on the stack
pop pop the top of the stack
bipush n push the primitive value n on the stack
aconst null push null on the stack
new C creates new object of type C in the memory
goto a jump to address a
ifeq a jump to address a if the top of the stack is equal to zero
αload x push the content of the local variable x on the stack
αstore x pop the top of the stack and store it into the local variable x
getfield fC′ load the field fC′ of the top of the stack on the stack
putfield fC′ store the top of the stack in the field fC′ of an object on the stack
invoke mC′ virtual invocation of method mC′

αreturn return an object and exit the method

α denotes the type: i for primitive types, a for references

Figure 6.1: Subset of the instruction set in the concrete model

6.2.1 Memory model

We define the memory heap as a directed graph1. The memory is represented by a memory graph

G which is a triple G = (V,E, ς) defined in the following. A node of V designates a location: V
is partitioned into O(V ) ⊆ Obj for locations containing object references and V(V ) for locations
containing values of Val . As for the AMGs, for a memory graph G = (V,E, ς) we use O(G) and
V(G) instead of O(V ) and V(V ) respectively. As values contained in locations may change during
the execution, we use an injective function ς : V(V ) −→ Val that labels each node from V(V ) with
the value stored in this location; edges represent field references and are labeled with field names
(from Field). The unique node null and nodes of V(V ) (primitive values) are leaves. For each
primitive field of an object, the memory has a location (node) containing (labeled with) the value
of the field, and this vertex is the target of a unique edge.

We consider an allocator function G′ = new(o, C) which creates a new graph structure for an
object named o of type C; o is the root of the graph. If the object is allocated at instruction i, then o
has the form Ck

i , where k is a counter such that Ck
i is uniquely used in G. The graph G′ contains

the initial values of the new created object (vertices containing 0 for fields of primitive type and
edges to null for fields of type object).

For a memory graph G = (V,E, ς), G[u 7→ l] designates the graph (V,E, ς[u 7→ l]). We extend
naturally the definition of union, inclusion, G⌊u⌋, and G[(u, f) 7→ v] to memory graphs. Moreover,
we denote G1 ≡ G2 if the memory graphs G1 and G2 are isomorphic (considering both edge and
vertex labelling).

Example 6.1 (Memory graph example). Figure 6.2a shows the result of the allocator function for
A01, thus after executing instruction 1. Figure 6.2b shows the memory graph after executing the
entire code from Figure 6.2. Affecting the object B21 to the field b of A01 (bytecodes 6-8) consists of
creating a new edge labelled with b from A01 to B21, while the assignment of the value 3 to the field
f of A01 (bytecodes 12-14) changes the label of the node reached from A01 with an f-edge.
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class A {

int f;

B b;

}

class B {

int g;

}

0 : new A

1 : astore 0

2 : new B

3 : astore 1

4 : new A

5 : astore 2

6 : aload 0

7 : aload 1

8 : putfield b_A

9 : aload 2

10: aload 1

11: putfield b_A

12: aload 0

13: bipush 3

14: putfield f_A

15: aload 2

16: aload 0

17: getfield f_A

18: putfield f_A

(a) After 0

A
0
1

null 0

b f

(b) After 18

A
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3 B
2
1 3
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ff bb

g

Figure 6.2: Memory Example
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Figure 6.3: Memory Graph for tax method

6.2.2 Operational semantics

A (concrete) state of our machine is a pair Q = (fr , G), where fr represents a stack of frames
corresponding to a dynamic chain of method calls (with the current frame on the top), and G
is the memory graph. A frame has the form (pc, ρ, s), where pc ∈ Pm is the program counter,
ρ : χm → Jv represents a value assignment of local variables, and s is a stack with elements in Jv .
The operational semantics of Java bytecode, denoted by instrb(Q), is presented in Figure 6.4.

A state Q = ((i, ρ, s) :: fr,G) is a good initial state for a block B, if B[i] is defined and executing
the block B starting from the state Q terminates in a state denoted by instrB(Q).

For example, the putfield bytecode has two rules depending on the type of the manipulated
field: changing the value of a primitive field means changing the label of a vertex, whereas changing
an object field consists of changing the edge to the vertex containing the new pointed object.
Figure 6.3 shows memory graphs of the tax method (the source code was described in Example 5.1,
page 115 and depicted in Figure 5.8, page 116). Figure 6.3a shows the memory graph at the
beginning of the method, while Figure 6.3b shows the memory graph after executing the entire
method. Note that the putfield bytecode at instruction 18, which assigns a value to the field
tax, actually modifies the label of the memory location corresponding to the tax field.

1The advantage of this representation is the independence between objects and actual locations where these objects are
allocated. However, the graph representing the memory is isomorphic to any address assignment in an execution. This
independence property is crucial when comparing memories for two executions of the same method for different input
values.
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Pm[i] = prim op n = op(n1, n2)

((i, ρ, n1 :: n2 :: s) :: fr, G) −→ ((i + 1, ρ, n :: s) :: fr, G)

Pm[i] = goto a

F −→ ((a, ρ, s) :: fr, G)

Pm[i] = aconst null

F −→ ((i + 1, ρ, null :: s) :: fr, G)

Pm[i] = pop

((i, ρ, n :: s) :: fr, G) −→ ((i + 1, ρ, s) :: fr, G)

Pm[i] = bipush n

F −→ ((i + 1, ρ, n :: s) :: fr, G)

Pm[i] = new C o = C
fresh(Ci,G)

i G′ = new(o, C)

F −→ ((i + 1, ρ, o :: s) :: fr, G ∪G′)

Pm[i] = ifeq a n! = 0

((i, ρ, n :: s) :: fr, G) −→ ((i + 1, ρ, s) :: fr, G)

Pm[i] = ifeq a n == 0

((i, ρ, n :: s) :: fr, G) −→ ((a, ρ, s) :: fr, G)

Pm[i] = αload x

F −→ ((i + 1, ρ, ρ(x) :: s) :: fr, G)

Pm[i] = αstore x

((i, ρ, n :: s) :: fr, G) −→ ((i + 1, ρ[x 7→ n], s) :: fr, G)

Pm[i] = getfield fC′ n 6= null n′ ∈ adjG(n, fC′ ) n′ ∈ Obj

((i, ρ, n :: s) :: fr, G) −→ ((i + 1, ρ, n′ :: s) :: fr, G)

Pm[i] = getfield fC′ n 6= null n′ ∈ adjG(n, fC′ ) n′ 6∈ Obj

((i, ρ, n :: s) :: fr, (V, E, ς)) −→ ((i + 1, ρ, ς(n′) :: s) :: fr, (V, E, ς))

Pm[i] = putfield fC′ n 6= null v ∈ Val n′ ∈ adjG(n, fC′ )

((i, ρ, v :: n :: s) :: fr, G) −→ ((i + 1, ρ, s) :: fr, G[n′ 7→ v])

Pm[i] = putfield fC′ n 6= null v /∈ Val

((i, ρ, v :: n :: s) :: fr, G) −→ ((i + 1, ρ, s) :: fr, G[(n, fC′ ) 7→ v])

Pm[i] = invoke mC′ o 6= null

((i, ρ, pnm :: · · · :: p1 :: o :: s) :: fr, G) −→ ((0, {0 7→ o, 1 7→ p1 . . . nm 7→ pnm}, ǫ) :: (i, ρ, s) :: fr, G)

Pm[i] = areturn

((i, ρ, v :: s) :: (i′, ρ′, s′) :: fr, G) −→ ((i′ + 1, ρ′, v :: s′) :: fr, G)

where F = ((i, ρ, s) :: fr, G). prim op stands for primitive operations with two parameters. The function

fresh(c, G) returns a natural k such that ck is not used as a vertex label in G.

Figure 6.4: A subset of operational semantics rules

6.3 Non-interference for concrete model

Our analysis computes an abstraction on how the value of some objects may depend or not on the
value of others. We formalize this notion of dependency through non-interference: roughly, at the
method level, the non-interference between an object o and an input value ι (of primitive type)
can be stated as “changing the value of ι does not affect the value of o”. The “value” of an object
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0: void m (A p1, A p2) {

1: int i=1;

2: int j=0;

3: int k=2;

4: p1.f = i;

5: p2.f = k-p1.f-j;

6: }

0: bipush 1

1: istore 3

2: bipush 0

3: istore 4

5: bipush 2

6: istore 5

8: aload 1

9: iload 3

10: putfield f_A

13: aload 2

14: iload 5

16: aload 1

17: getfield f_A

20: isub

21: iload 4

23: isub

24: putfield f_A

(a) memory graph

p1 p2

1 1

f f

(b) AMG

n
p
1 n

p
2

nc
0 nc

2 nc
5

f f

ff

Figure 6.5: Relations Example

is defined by the values of its fields of primitive type and recursively, by the “values” of its object
fields. An input value of a block is a value of primitive type chosen in the concrete state before the
execution of the block; formally:

Definition 6.2 (Set of input values). Let Q = ((i, ρ, s) :: fr,G) be a state. Then, the set of input

values of Q is I(Q) = V(G) ∪ {x ∈ χm | ρ(x) ∈ Val}.

Definition 6.3 (Value-change). The value-change of a state Q = ((i, ρ, s) :: fr,G) and an input
value ι from I(Q) is a state Q′ = ((i, ρ′, s) :: fr,G′) such that for some value a of primitive type,

• either ι ∈ V(G), ρ = ρ′ and G′ = G[ι 7→ a],

• or ι ∈ {x ∈ χm | ρ(x) ∈ Val}, ρ′ = ρ[ι 7→ a] and G′ = G.

Definition 6.4 (Non-interference). For blocks B and each state Q1, let G1, G2 be the memory
graphs of Q1 and instrB(Q1) respectively. For any input value ι from I(Q1) and for any object
node o in G1, ι does not interfere in B with o if for any value-change Q′1 of Q1 and ι, one has
G2⌊o⌋ ≡ G′2⌊o⌋, G′2 being the memory graph of instrB(Q

′
1).

6.4 Relations between abstract and concrete models

Notation. As, in the next sections, we compare concrete and abstract worlds, throughout the
remainder of this thesis, by e we denote a concrete element and by e an abstract element. Note that
e is just an abstract element, and not necessarily the abstraction of e.

We first relate the abstract and the concrete semantics formally: we consider an abstraction
function to relate memory graphs restricted to objects nodes and AMGs. Because of the allocation
site model, it is possible to relate concrete nodes to abstract nodes in a non ambiguous manner.
However, for complete graphs (including primitive nodes), we cannot define an abstract relation as
it is not possible to associate uniquely a concrete primitive node with an abstract one.

An example is described in Figure 6.5. The execution of the method m leads to the memory graph
in Figure 6.5a, while our analysis computes the AMG in Figure 6.5b for m. For example, it is not
possible to decide which node to associate with the concrete dashed node: n0

c, n2
c, or n5

c since the
value 1 is the result of a calculus that implies several values. This is the reason why the abstraction
relation is only defined for the restriction of graphs to their object part.
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Definition 6.5 (Abstraction function). Let W and W be two sets of nodes. A relation α from W to
W is an abstraction function if it is a mapping that respects the allocation site model: for all k, all
the Ck

i are mapped to nn
i , and α(null) = nnull⊥ .

Definition 6.6 (α-abstraction). Let G = (V , E, ς) be a memory graph and G be an abstract graph.
Let α be an abstraction function between the sets of nodes O(G) and O(G). Then, G is an
α-abstraction of G, denoted by G ⊳

α G if α(G) ⊆ G, where α(G) is the graph ({α(u) | u ∈
O(G)}, {(α(u), α(v), 〈f,d〉) | u, v ∈ O(G) ∧ (u, v, f) ∈ E}). 2

The abstraction function is carried over concrete and abstract states.

Definition 6.7 (State abstraction). Let α be an abstraction function. Given a concrete state
Q = ((pc, ρ, s) :: fr,G) and an abstract state Q = (ρ, s,G), Q is an α-abstraction of Q (denoted
by Q ⊳

α Q) if G ⊳
α G, s ⊳

α s, and ρ ⊳
α ρ, with s ⊳

α s if s,s are both empty or if s =v :: s1,
s =v :: s1, s1 ⊳

α s1, and (α(v),d) ∈ v if v ∈ O(G).

The local variables abstraction, denoted by ρ ⊳
α ρ, is defined similarly to stack abstraction. We

now extend the abstraction relation to take into account primitive nodes which correspond to input
values.

Definition 6.8 (α-abstraction extension). Let Q = ((i, ρ, s) :: fr , (V , E, ς)) be a concrete state, and
Q = (ρ, s, (V,E)) such that Q ⊳

α Q. Then, αQ : I(Q) −→ ℘(V(V )) is the unique extension of α in
Q if

∀ι ∈ I(Q) ∩ V(V ), αQ(ι) = {ι | ∃(α(u), ι, 〈f,d〉) ∈ E, with(u, ι, f) ∈ E}
∀ι ∈ I(Q) ∩ χm, αQ(ι) = {e | 〈e,d〉 ∈ ρ(ι))}

Definition 6.9. Let Q = (ρ, s, (V,E)) be an abstract state. Let β ⊆ V(V ). For any o ∈ O(V ), we
have free(o, β,Q) if one of the following conditions holds:

• ∃ (u, o, 〈f,d〉) ∈ E and β ∩ adj(V,E)(u, 〈f,i〉) = ∅,

• ∃x such that (o,d) ∈ ρ(x) and 6 ∃(ι,i) ∈ ρ(x) with ι ∈ β,

• ∃i such that (o,d) ∈ s[i] and 6 ∃(ι,i) ∈ s[i] with ι ∈ β.

The function free(o, β, Q) expresses that o is not bound to any ι of β in Q, meaning that at
least one presence of o on stack, local variables or in AMG does not implicitly depend on β. In
the non-interference theorem, this condition ensures the existence of o (with α(o) = o) after a
value-change, as varying ι may influence the execution path, and thus the objects being created.

Theorem 6.10 (Non-interference). Let B be an instruction block, Q be a concrete state, and Q
be an abstract state such that Q ⊳

α Q. Let G be the memory graph of Q and G′ be the abstract

graph of instrB(Q,Γ). For a reference node o in O(G) and an input value ι from I(Q) such that

free(α(o), αQ(ι), Q), if ReachG′(α(o) ∩ αQ(ι)) = ∅ then ι does not interfere with o in B.

This is the main theorem of the correctness proof. Next sections are devoted to additional
definitions and lemma needed by the proof, and finally we conclude with the proof of Theorem6.10.

6.5 Soundness of intra-procedural analysis

We now prove the correctness of the AMG construction, as presented in Section 5.3, with respect
to non-interference: if there is no dependency (path in the abstract graph) between an object and
an input value, then changing the input value in the concrete graph will not affect the concrete
graph of the object. Thus, this section is devoted to the proof of the non-interference theorem in a
program without method calls.

2Recall that the AMG has the property that there are only direct flows (edged labeled 〈f,d〉) between references nodes.
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6.5.1 Points-to correctness

We first show that when the AMGs are restricted to references, our analysis is a sound points-to
analysis. We rely on the dataflow framework which is slightly adapted to take into account the flow
information of the Γ’s.

Proposition 6.11 (Points-to correctness). Let B be a block, Q be a good initial (concrete) state for

B, α be an abstraction function, and Q be an abstract state. Then, for any set of abstract values Γ,

Q ⊳
α Q implies instrB(Q) ⊳

α instrB(Q,Γ).

Proof. We split the proof of Proposition 6.11 in two parts: first we prove the local soundness (the
theorem holds for blocks containing a single instruction). Later we address structured blocks
containing many instructions.

Single instruction block (local soundness)

We prove the points-to correctness for single instruction blocks by case analysis on each instruction.
The complete proof is presented in Appendix A.3.1, page 166.

Points-to correctness for blocks

The proof relies on the general theorem stating the correctness of the global soundness provided
that the local correctness holds. However, our system of equations is defined for a pair (Q,Γ) and
the computation of the values of Γ’s is not performed structurally on the control flow graph but
based on regions instead.

Our proof will simply show that the restriction to objects of AMGs from the computed abstract
states Q are independent from the Γ’s. Therefore, we will be able to define a new system of equation
E ′B for a block B that differ from EB only on the interpretation of the functionals appearing in the
system, that becomes independent of Γ. But it turns out that the points-to graphs in the states
computed for EB and E ′B are identical.

Given a memory graph (V , E, ς), we define by ΠObj((V , E, ς)) the subgraph of (V , E) restricted
to objects as (O(V ), {(u, v, f) | u, v ∈ O(V ) and (u, v, f) ∈ E}). We extend this definition to AMGs:
ΠObj((V,E)) = (O(V ), {(u, v, 〈f,d〉) | u, v ∈ O(V ) and (u, v, 〈f,d〉) ∈ E}).

For two AMGs, G and G′, we write G
.
= G′ if and only if G and G′ are equal when restricted to

their object part, i.e., ΠObj(G) = ΠObj(G
′). This relation

.
= is also defined on sets of typed-flow

vertices as : S1
.
= S2 if {e | 〈e,d〉 ∈ S1 ∧ e ∈ VO} = {e | 〈e,d〉 ∈ S2 ∧ e ∈ VO}, where VO is a set of

vertices. This relation is extended to abstract states as follows: Q = (ρ, s,G)
.
= (ρ′, s′, G′) = Q′ if

G
.
= G′ and

• for all x in χm, ρ(x)
.
= ρ′(x)

• either s = s′ = ε or s = u :: st, s′ = u′ :: s′t, u
.
= u′ and st

.
= s′t.

Proposition 6.12. For any concrete state Q, for any abstract states, Q and Q′, if Q ⊳
α Q and Q

.
= Q′

then Q ⊳
α Q′.

Proof. Let Q = ((i, ρ, s) :: fr,G), Q = (ρ, s,G) and Q′ = (ρ′, s′, G′). From the definition 6.7
of state abstraction, Q ⊳

α Q′, if s ⊳
α s′, ρ ⊳

α ρ′ and G ⊳
α G′. By hypothesis, Q ⊳

α Q thus
s ⊳

α s, ρ ⊳
α ρ and G ⊳

α G. Moreover Q
.
= Q′ thus s

.
= s′, ρ

.
= ρ′ and G

.
= G′.

Let us first prove that G ⊳
α G′. From G

.
= G′ we have ΠObj(G) = ΠObj(G

′). Since G ⊳
α G,

α(G) ⊆ G. From the Definition 6.5 of abstraction of a memory graph and the definition of
ΠObj(G), we deduce the following property α(G) ⊆ ΠObj(G). As ΠObj(G) = ΠObj(G

′), then
α(G) ⊆ ΠObj(G

′) ⊆ G′. Thus G ⊳
α G′.
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Let us now prove that s ⊳
α s′. Let s = u :: st, s = u :: st and s′ = u′ :: s′t. As s ⊳

α s, thus
st ⊳

α st and (α(u),d) ∈ u if u ∈ O(G). If u ∈ O(G), then α(u) ∈ O(G).
By hpothesis, s

.
= s′. From the definition of s

.
= s′ if s = s′ = ǫ or, u

.
= u′ and st

.
= s′t. Moreover,

the two sets of typed-flow nodes, u and u′, are equal accoding to
.
= relation if {e | 〈e,d〉 ∈ u ∧ e ∈

O(G)} = {e | 〈e,d〉 ∈ u′ ∧ e ∈ O(G′)}. Thus, if α(u) ∈ O(G) and (α(u),d) ∈ u then (α(u),d) ∈ u′.
Hence s ⊳

α s′.
The proof for local variables array is similar.

Proposition 6.13. For all abstract states Q1, Q
′
1, Q2, Q

′
2,

• if Q1
.
= Q2 and Q′1

.
= Q′2 then Q1 ⊔Q′1

.
= Q2 ⊔Q′2,

• for any bytecode b, for any Γ1,Γ2, if Q1
.
= Q2 then

instrb(Q1,Γ1)
.
= instrb(Q2,Γ2)

Proof. For the first point, as ⊔ is defined component-wise for stacks and mappings ρ, the only
part to be proved is for graphs. Let Q1 = (ρ1, s1, G1), Q2 = (ρ2, s2, G2), Q′1 = (ρ′1, s

′
1, G

′
1) and

Q′2 = (ρ′2, s
′
2, G

′
2).

If G1
.
= G2 then the two graphs are equal when restricted to their object part, thus ΠObj(G1) =

ΠObj(G2). Moreover, ΠObj(G
′
1) = ΠObj(G

′
2), hence ΠObj(G1) ∪ΠObj(G

′
1) = ΠObj(G2) ∪ΠObj(G

′
2).

We must prove that ΠObj(G1 ∪G′1) = ΠObj(G2 ∪G′2). It is enough to prove that, for two AMGs
G and G′, ΠObj(G ∪G′) = ΠObj(G) ∪ΠObj(G

′).
The proof lies on the property of AMGs stating that any node u ∈ V(G) is a leaf. Thus, an AMG

contains only edges between two reference nodes or edges from a reference node to a primitive
node: there is no edge from a primitive node to a reference node. When making the union of two
AMGs, the only edges between objects can come from the two AMGs. Thus, the restriction to objects
part of the union of two graphs is equal to the union of the restrictions of the two graphs to objects:
ΠObj(G ∪G′) = ΠObj(G) ∪ΠObj(G

′).

For the second point, we make a case analysis on each bytecode instruction in Appendix A.3.2,
page 168.

Let us consider the system of equations EB . Each right-hand side can be seen as a functional over
(Qi,Γi), the unknowns. Let us define the system E ′B with (Q0, ∅) for initial state:

(Qi,Γi) =






(Q0 ⊔j∈pred(i) instrB[j](Qj ,Γj), if i = Entry(B)
{u | 〈u, t〉 ∈ v with Qk = (ρ, v :: s, G), k ∈ cxt(i)})

(⊔j∈pred(i)instrB[j](Qj ,Γj), otherwise
{u | 〈u, t〉 ∈ v with Qk = (ρ, v :: s, G), k ∈ cxt(i)})

We define for a block B and the system E ′B , the mapping instr′B(Q,Γ) as we did for instrB(Q,Γ)
and EB .

Obviously, for the least solution of E ′B, we have that Γi = ∅ for all i. Therefore, the functionals
in the right-hand side and thus, the solution of the system are independent from the Γ′. As
Proposition 6.11 establishes the local soundness for all Γ’s, in particular for ∅, we have that the
global soundness holds for the system E ′B , that is

Q ⊳
α Q implies instrB(Q) ⊳

α instr ′B(Q, ∅) (6.5.1)

However, the system EB involves the Γ’s which influence on the values of the Q’s but not on their
object part as we show now.
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Proposition 6.14. Provided that their respective initial states satisfies Q
.
= Q′, then for the respective

least solution of EB and E ′B , we have that Qi
.
= Q′i for all i.

Proof. We rely here on the iterative construction of the least solution of equation systems. Starting
from the valuation assigning the least value of the lattice to all the unknowns, that is the (Qi,Γi)’s
and the (Q′i,Γ

′
i)’s respectively, we compute a new value for these valuations (at the left-hand side of

equalities) by using the old values in the right-hand side. Eventually, a fixed point is reached during
that computation.

Then, the proof goes by induction on n, the minimal number of iterations required to reach a
fixed point in both system using Proposition 6.13 for the induction step.

Proposition 6.15. For any block B, for any Γ1,Γ2, if Q1
.
= Q2 then instrB(Q1,Γ1)

.
= instr′B(Q2,Γ2)

Proof. Straightforward from Propositions 6.14 and 6.13.

By combining the global soundness (6.5.1), Propositions 6.15 and 6.12, we get Proposition 6.11
as result. This ensures correctness for AMG restricted to references.

We now prove the correctness of the primitive edges (implicit and direct flow) as a non-
interference theorem relying on the correctness for the points-to analysis.

6.5.2 Correctness for primitive values

To prove the non-interference theorem, according to Definition 6.4, we need to make values vary at
some program point according to Definition 6.3 and to check the impact of this variation on objects
at another program point. Thus, we first define the notion of state variation that captures how a
concrete execution state, corresponding to a program point i, might change when an input value ι
has changed in the past of this execution. Definition 6.16 contains an over estimation of the set of
states that the JVM can reach after this change: the main impact is on the memory graph, but the
local variables and stack can also be affected. The correctness of the definition is proved later in
Proposition 6.18.

Definition 6.16 (State variation). Let Q = ((i, ρ, s) :: fr,G) and Q′ = ((i, ρ′, s′) :: fr,G
′
) be two

concrete states. Let Q = (ρ, s,G) be an abstract state. Let α be an abstraction function. Let
β ⊆ V(G) be a set of primitive nodes.

Then Q and Q′ are state variation from each other with respect to Q and β, denoted by Q
Q,β
←→ Q′,

if Q ⊳
α Q, Q′ ⊳α Q and

• ∀x, ρ(x) = ρ′(x) ∨ ∃ι ∈ β such that (ι, t) ∈ ρ(x),

• ∀i, s[i] = s′[i] ∨ ∃ι ∈ β such that (ι, t) ∈ s[i],

• for all v ∈ O(G) ∪ O(G
′
), either v ∈ O(G) ∩ O(G

′
) or ¬free(α(v), β, Q),

• for all v in O(G) ∩ O(G
′
), for all fields f from Type(v),

– either there exists a unique node w such that (v, w, f) is an edge from G and from G
′

and, moreover, if w ∈ V(G
′
), then ς(w) = ς ′(w),

– or some edge (α(v), ι, 〈f, t〉) exists in G for some ι in β.

From state variation definition, we can state that the variation of a state regarding to a set β does
not impact the objects o which have no dependence to any node of β.
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Lemma 6.17. Let α be an abstraction function, Q= ((i, ρ, s) :: fr,G) a concrete state, and Q=(ρ, s,G)
an abstract state with Q ⊳

α Q. Let β ⊆ V(G), and o ∈ O(G) such that there exists no path from

α(o) to any node of β in G. Then, in any state variation Q
′ Q,β
←→ Q with Q

′
= ((i, ρ′, s′) :: fr,G

′
), if

o ∈ O(G
′
), we have G⌊o⌋ ≡ G

′
⌊o⌋.

Proof. The differences between G = (E, V , ς) and G
′
= (E

′
, V

′
, ς ′) are given by rules of Defini-

tion 6.16. If o ∈ O(G
′
), then, for any reference node v of the subgraph rooted by o, there exists an

edge (u, v, f) ∈ E such that u belongs to the subgraph rooted by o with:

• β ∩ adjG(α(u), 〈f, t〉) = ∅ because ReachG(α(o)) ∩ β = ∅,

• u ∈ O(G
′
) because either u = o, or u belongs to O(G

′
) for the same reason.

Thus, v ∈ O(G
′
) and (u, v, f) ∈ E

′
.

For the leaves of the subgraph rooted by o, the value of v is randomized if there is an edge
(u, v, f) ∈ E and a flow from α(u) to an element of β labelled with f in G. As by hypothesis there
is no path from α(o) to any element of β in G, it is obvious that this modification does not affect the
subgraph rooted by o.

Proposition 6.18 states the state variation correctness, by claiming that changing an input value
and executing a block with a state variation leads us to a state variation.

Proposition 6.18 (State variation correctness). Let B be an instruction block. For all concrete states

Q1, Q′1, for all abstract state Q1, for all Γ1,

If Q′1
Q1,β
←→ Q1 then instrB(Q′1)

instrB(Q1,Γ1),β
←→ instrB(Q1).

We split the proof of Proposition 6.18 in two parts: first we prove the theorem holds for blocks
containing a single instruction. Later we address blocks containing many instructions.

State variation correctness for single instruction block

We prove the state variation correctness for single instruction block by case analysis on each
instruction, in Appendix A.3.3, page 170.

State variation correctness for blocks

Let us now prove the state variation correctness. The blocks we consider have a single entry point
and a single exit point, thus, they are sets of instructions closed by region (this is the case of any
method).

Remember the definition of a block B: it is a method m or a connected subgraph of the control
flow graph CFm with a single entry point, a single exit point such that each vertex of B is reachable
from Entry(B). Thus we can deduce the following property:

Property 6.19. Let B be a block of a method m. Then, for each i ∈ B either reg(i) ∪ {IPD(i)} ⊆ B
or reg(i) ∪ {IPD(i)} ∩B = ∅ or i = Exit(B).

We want to show the State variation correctness.

Proof. Let B be an instruction block, Qk a concrete state, Qk an abstract state with Qk ⊳
α Qk,

Ql = instrB(Qk), and Ql = instrB(Qk,Γk).

Let Q
′
k

Qk,β
←→ Qk and Q

′
l = instrB(Q

′
k), we want to show that Q

′
l

Ql,β←→ Ql.
Let us consider the sequences of concrete states corresponding to both executions of B: T =

Qi0Qi1 . . . Qin
and T ′ = Q

′
j0Q

′
j1 . . . Q

′
jm

with i0 = j0 = k and in = jm = l. Both traces may have
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different length and use different paths. We will show that traces end at the same instruction by
states that are variations from each other by induction on the length of the longest trace.

Let us consider the pair of prefixes of T and T ′ such that P and P ′ are respectively the longuest
prefix of T and T ′ such that:

• they respectively start with Qi0 and Q
′
j0 ,

• P ends with the first Qik
such that ik = ipd(i0) and ik+1 6∈ reg(i0),

• P ′ ends with the first Q
′
jk

such that jk = ipd(i0) and jk+1 6∈ reg(i0).

Case 1. If length of P is 1 and length of P ′ is 1, then i1 = j1 and we have proved by case study

on bytecodes that Qi1

Q′j1 ,β
←→ Q

′
j1 . Since Qi1 . . . Qin

and Q
′
j1 . . . Q

′
jm

are shortest than T and T ′ with
i1 = jj and in = jm = k, we are done.

Case 2. If i1 6= j1, then Pm[i0] = ifeq, and Qi0 = ((i0, ρi0 , ι :: si0) :: fr,Gi0) with α(ι) ∈ β.

Thus, for each l ∈ reg(i0), α(ι) ∈ Γl and we can deduce that for each Qil
= ((i, ρ, s) :: fr,G) that

belongs to P , with Qil
= (ρ, s,G), we have:

• ∀x, ρ(x) = ρi0(x) ∨ (ι, t) ∈ ρ(x),

• ∀i, s[i] = si0 [i] ∨ (ι, t) ∈ s(x),

• for all v ∈ O(G) \ O(Gi0), ¬free(α(v), β,Qil
),

• for all v in O(G) ∩ O(Gi0), for all fields f from Type(v),

– either there exists a unique node w such that (v, w, f) is an edge from G and from Gi0

and, moreover if w ∈ V(G
′
), then ς(w) = ςi0(w),

– or an edge (α(v), α(ι), 〈f, t〉) exists in G.

and we have the same properties for each Qjl
= ((i, ρ, s) :: fr,G) that belongs to P ′.

Thus, before the execution of the instruction ipd(i0), we have these properties for Qipd(i0) and

Q
′
ipd(i0) and then it is obvious that Qipd(i0)

Qipd(i0)
,β

←→ Q
′
ipd(i0).

Since the rest of T and T ′ are shortest than T and T ′, we are done.

We can now conclude with the proof of the non-interference theorem.

Proof of Theorem 6.10. Let B be an instruction block. Let Q1 = ((i, ρ1, s1) :: fr1, G1) be a
concrete state, Q1 = (ρ1, s1, G1) an abstract state such that Q1 ⊳

α Q1, Q2 = instrB(Q1), and
Q2 = instrB(Q1,Γ1). Let o ∈ O(G1) be a reference node and ι ∈ I(Q1) be an input value. Let us
consider a value-change Q′1 = ((i, ρ′1, s1) :: fr1, G′1) of Q1 and ι. According to Definition 6.3, either
ι is a value node of G1 and then G′1 = G1[ι 7→ v], or ι is a local variable and then ρ′1 = ρ1[ι 7→ v]
(for some v ∈ Val). Let us denote β = αQ1(ι), then, the first case corresponds to the graph variation
rule in Definition 6.16, the second case to the local variables variation rule of Definition 6.16, thus

Q′1
Q1,β
←→ Q1. We denote Q′2 = instrB(Q′1). According to Proposition 6.18, we have Q′2

Q2,β
←→ Q2. As

freeα(α(o), αQ1
(ι), Q1), graph variation rule of Definition 6.16 says that o ∈ O(G′1)∩O(G

′
2). As by

hypothesis, ReachG2
(α(o) ∩ αQ1

(ι)) = ∅, by applying Lemma 6.17, we obtain G2⌊o⌋ ≡ G′2⌊o⌋ (for

G2, G′2 the memory graphs of resp. Q2, Q′2), ie ι does not interfer with o in B.
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Figure 6.6: Proof schema for inter-procedural analysis

6.6 Soundness of inter-procedural analysis: intermediate

model

Showing the correctness of the compositional method invocation directly has proved difficult
because of the differences between the concrete and abstract rules; hence, we have chosen a proof
in two steps (Proof schema is depicted in Figure 6.6):

Step 1: we introduce an intermediate layer, which is similar to the abstract layer except for the
inter-procedural part. This layer is closer to the concrete layer than the abstract layer because
it unfolds the inter-procedural control flow graph (ICFG), and steps into method’s body, as in
a concrete execution. The intermediate layer is proved correct w.r.t. the concrete layer.

Step 2: we prove the correctness of the abstract layer by showing that it gives at least the same
results as the intermediate layer. Hence, by transitivity, the abstract layer is correct w.r.t. the
concrete layer.

In this section, we present the intermediate layer and we prove its soundness. The intermediate
layer is similar to the abstract layer, but handles method invocation differently. Hence, for each

bytecode b we define an intermediate rule, denoted by înstrb in the following way:

înstrb =






̂invoke if b = invoke

̂αreturn if b = αreturn
instrb otherwise

where ̂invoke and ̂αreturn are the transformation rules that we define in the following para-
graphs, and instrb are the transformation rules of the abstract model, as defined in the intra-
procedural analysis in Figure 5.5, page 112. Intuitively, învoke steps into the callee, while αr̂eturn
returns from the callee to the caller.

We first show how the inter-procedural control flow graph is built, then we give the sematics
rules for învoke and ̂αreturn. Finally, we prove the correctness of the intermediate model w.r.t.
the non-interference, by showing that the two bytecodes that perform method invocation have the
same properties as the rest of the bytecode (monotonicity, points-to correctness, state variation
correctness).

6.6.1 Construction of the inter-procedural control flow graph

We now present some details about the construction of the inter-procedural control flow graph that
we use. The inter-procedural control flow graph [CBC93, LR04] consists of connecting isolated
control flow graphs of single methods, by adding edges from the call site of a method m (e.g.,
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instruction i) to its first instruction, and from the return instruction of the callee m to the next
instruction in the caller (e.g., i+ 1).

We use the same framework and the same equation system as in the intra-method analysis and
we perform a context insensitive analysis. We only have to define the inter-procedural control flow
graph.

Context-insensitive ICFG We use an interprocedural control flow graph (ICFG), that is to say, the
union of the control flow graphs of all the methods. To built the ICFG, we need to keep disjoint
instruction number sets for methods and unique node names in the AMG, hence we use the extended
naming strategy defined in the inter-procedural analysis of the abstract model. Therefore, in node
names nc

pc and nn
pc, pc encodes the fully qualified name of the method and the line number.

Then, the ICFG of a set of methodsM is a graph built by connecting each invoke instruction to
the first node of the invoked method and each αreturn to the successor of invoke in the calling
method.

Overriding and dynamic binding makes almost impossible to guess statically which one of
the possible callees is called in a specific execution of the invoke instruction. Our analysis
conservatively takes into account all possible callees. Let us denote by m′ ≤ m if m′ overrides m.
Then, each call site invoke m is connected to all methods m′ such that m′ ≤ m.

Formally, if CFm = (Vm, Em) is the control flow graph of a method m, and ICFGM = (VM, EM),
then

VM =
⋃

m∈M

Vm

EM =
⋃

m∈M

{(u, v) | (u, v) ∈ Em, Pm[u] 6= invoke m’} (6.6.1)

∪ {(mi
1, m

0
2′) | m1, m2, m2′ ∈M, Pm1 [m

i
1] = invoke m2, m2′ ≤ m2} (6.6.2)

∪ {(ml
2′ , m

j
1) | m1, m2, m2′ ∈M, Pm1 [m

i
1] = invoke m2,

j = succCFm1
(mi

1), Pm2′
[ml

2′ ] = αreturn, m2′ ≤ m2} (6.6.3)

The set of nodes of the graph is simply the union of all nodes in the control flows graph of
methods m ∈ M. The edges are built in the following way: equation (6.6.1) keeps all edges
except those starting from invoke instructions; (6.6.2) adds an edge from each call site mi

1 to the
first instruction of all possible invoked methods (m0

2′ such that m2′ ≤ m2); (6.6.3) connects each
αreturn instruction in methods m2′ ≤ m2 to the successor j of each call site invoking m2.

Example 6.2. Figure 6.7 depicts the inter-procedural control flow graph ICFG for a set of methods
M = {m1, m2}. Note that both call sites for method m2, mi

1 and mk
1 , connect to the same node,

m0
2. Moreover, the method m2 is recursive, hence it loops on itself.

6.6.2 Abstract semantics of the method invocation

Now that we have defined the construction of the inter-procedural call graph, we show how the
connection between control flow graphs of different methods is integrated in our framework.

To deal with method calls, the JVM keeps a method call stack, which contains the frames of
methods in the execution chain. When a method m invokes m′, the frame of m is pushed on the call
stack (in order to remember the return point) and a new frame, which becomes the current frame,
is created for m′. When m′ finishes its execution, the last frame on the call stack is being popped
and it becomes the current frame. Hence, the call stack is very important as it remember the JVM

context under which a method is called and the return point when a method finishes executing.
In static analysis of inter-procedural programs, one of the main problems is that the size of the

call stack in the concrete execution is not bounded. Thus, with finite abstract domains, the abstract
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(a) Code

m1

0: ...

i: invoke m2

j: ...

k: invoke m2

l: areturn

m2

0: ...

i: ifcpm k

j: invoke m2

j+1: goto l

k: ...

l: areturn

(b) ICFG

m0
1

mi
1

mj
1

mk
1

ml
1

m0
2

mi
2

mj
2

mj+1
2

mk
2

ml
2

Figure 6.7: Context-insensitive inter-procedural control flow graph example

rule for invoke cannot stick to the operational one, as we cannot define a finite abstract call stack.
Some works of the literature propose an abstraction of the call stack [JS04].

(a) Original code

i− 1 : ...

i : invoke m

i + 1 : ...

(b) Transformed code

i− 1 : ...

i′ : bipush 0

a0 : ifeq c0
b0 : pop

: ...

bnm : pop

bnm+1 : aconst null

bnm+2 : goto h(i + 1)

c0 : învoke m

h(i + 1) : ...

Qi = (ρ, unm :: · · · :: u0 :: s, G)

Qa0
= (ρ, 0 :: unm :: · · · :: u0 :: s, G)

Qb0
= (ρ, unm−1 :: · · · :: u0 :: s, G)

Qc0 = ({0 7→ u0, . . . , nm 7→ unm}, ǫ, G)

Qh = (ρ, null :: s, G)

⇓

Qi+1 = (ζ, u, G
′
) ⊔Qh

(c)
Orig-

inal

Con-

trol

Flow

i− 1

i

i + 1

Qi−1

Qi

Qi+1

Qi+2

(d) Transformed Control

Flow

i− 1

i′

a0

Qi

Qa0

b0

bnm

bnm+1

bnm+2

Qi

Qb0

(ρ, s, G)

Qh

c0

Pm[0]

Pm[j]

Qi

Qc0

h(i + 1)
Qh(ζ, u, G′)

Qi+2

Figure 6.8: Bytecode transformation

To overcome this limitation, we chose an analysis without any abstraction of the call stack, thus
we use a code transformation which keeps the same finite abstract domain as in the intra-method
analysis and which “remembers” the context under which a method was called. To achieve this
goal, we replace each invoke bytecode by an “if” region as depicted in Figure 6.8: in one branch
we execute method invocation, while the other branch “remembers” the context under which the
method was called. The junction of if merges the return of the invoked method (i.e., the heap and
the return value) with the initial context.
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Moreover, this transformation does not need any new instruction. We only use existing instruc-
tions. The only thing needed is to define “adapted” abstract semantics rules for invoke and
αreturn bytecodes which connect the control flow graphs of methods (where ζ is a special value):

(ρ, unm :: · · · :: u0 :: s, G)

({0 7→ u0, . . . , nm 7→ unm}, ǫ, G)
învoke m

(ρ, u :: s, G)

(ζ, u, G)
̂αreturn

This simply means that we connect each ̂invoke instruction to the first node of the invoked
method and each α ̂return to the node following the invocation in the calling method. In this way,
we occult the call stack and only consider the current frame of the method.

This transformation is syntactical and only used for technical reasons in the analysis of the abstract
model: we insert some code and rename the following bytecode numbers with a function h. It does
not change the semantics of the program since we only add dead code: the path b0 . . . bnm+2 is never
executed and is used to “transmit” the current context (the context we had before the invocation),
to the immediate successor of the invocation, thus simulating the context save and reload that occur
in the concrete execution of an invocation. The equivalent of a context reload is done by the join
operator when computing Qh(i+1). We extend the operator to the case where the local variables
have the special value ζ: (ζ, u, G)⊔ (ρ, v :: s, G′) = (ρ, v :: s, G′)⊔ (ζ, u, G) = (ρ, u :: s, G⊔G′), thus
Qh(i+1) = (ρ, u :: s, G′) (since G ⊔G′ = G′), which contains the local variables of Qa0 , the stack of
Qa0 increased with the return value of m, and the memory resulting from the execution of m.

This is exactly the state we would obtain by saving the calling context and reloading it after the
method execution. Note that the extension of the join operator does not affect the previous uses of
the operator since we only introduce the special value ζ in the αr̂eturn rule. Moreover to have a
complete definition of ⊔, we can define the last case: (ζ, u, G) ⊔ (ζ, u′, G′) = (ζ, u ⊔ u′, G ⊔G′).

It is obvious that any concrete execution Q0Q1 . . . Qi−1QiQ
′
iQPm[0] . . . QPm[j]Qi+1 of the original

program corresponds to an execution Q0Q1 . . . Qi−1Qi′Qa0Qc0QPm[0] . . . QPm[j]Qh(i+1) with Qi+1 =
Qh(i+1). Thus, we obtain the same state that we would obtain by saving the calling context and
reloading it after the method execution.

Note that we keep the usual Java properties: the stack is well typed and has always a fixed size at
each program point.

6.6.3 Correctness

The intermediate model is based on the inter-procedural control graph and on a code transformation
in order to avoid unbounded call stack. The code transformation fits the previous framework, as it

relies on instructions already proved correct and on two new instructions: ̂invoke and ̂αreturn.
Hence, in order to show that the intermediate abstract model is sound with respect to the non-

interference, it is sufficient to prove that the abstract semantics rules for ̂invoke and ̂αreturn
have the same properties as the rest of bytecode. We only have to define an extension of the relation
⊳

α for an abstraction relation α taking into account the new value ζ.

Definition 6.20 (State abstraction (extension)). Let α be an abstraction function. Given a concrete
state Q = ((pc, ρ, s) :: fr,G) and an abstract state Q = (ρ, s,G), Q is an α-abstraction of Q (denoted
by Q ⊳

α Q) if G ⊳
α G and:

• v ⊳
α s with s = v :: s′ if ρ = ζ

• s ⊳
α s, and ρ ⊳

α ρ, otherwise.

The extension is necessary for the αreturn bytecode, in order to prove the relation ⊳
α for the

value returned by the invoked method. This definition is sufficient, since the relation ⊳
α for the

rest of the calling context is being insured by the code transformation presented in the previous
paragraphs.
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Figure 6.9: Relation between intermediate model and abstract model

For the same reasons, we need to define an extension for the state variation definition: for the
αreturn bytecode, and thus the special value ζ, the state variation must hold only for the returned
value.

Definition 6.21 (State variation (extension)). Let α be an abstraction function. Let Q = ((pc, ρ, s) ::
fr,G) be a concrete state, Q = (ρ, s,G) an abstract state such that Q ⊳

α Q. Let β ⊆ V(G) be
a set of primitive nodes. Then Q′ is a state variation of Q with respect to Q and β, denoted by

Q
′
= ((i, ρ′, s′) :: fr,G

′
)

Q,β
←→ Q, if G

′ G,β
←→ G and:

• v′
s,β
←→ v with s = v :: s′′ and s′ = v′ :: s′′′ if ρ = ζ

• s′
s,β
←→ s, and ρ′

ρ,β
←→ ρ, otherwise.

We still need to prove that the abstract semantics rules for ̂invoke and ̂αreturn have the same
properties as the rest of bytecode: the monotonicity (cf. Lemma 5.5 page 115), the local soundness
for the points-to correctness (Proposition 6.11 at page 142), the

.
= relation (Propositon 6.13 at

page 143) needed to prove the points-to correctness for blocks, and the state variation correctness
(Proposition 6.18 at page 145).

The proofs are done on case analysis for each bytecode, and are similar to the proofs for other
bytecodes, therefore we detail them in Appendix A.4, page 173.

6.7 Soundness of inter-procedural analysis: abstract model

(compositional)

Proof outline This section is dedicated to the Step 2 (Figure 6.6, page 147) of the correctness
proof for the inter-procedural analysis. While in the previous section we show the correctness of the
intermediate layer (which is based on ICFG), here we prove the correctness of the abstract layer
(compositional approach) by showing that the abstract layer gives at least the same results as the
intermediate layer.

Intuitively, as illustrated in Figure 6.9, if G0 is the AMG in the abstract state before the method
call, G the AMG obtained in the intermediate layer, Gm the AMG of invoked method, ∼ι a initial
mapping relation between G0 and Gm then:

G ⊆ G0 ⊕∼ι
Gm

where G0 ⊕∼ι
Gm is the graph obtained after method invocation in the abstract layer.
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For simplicity, we redefine the relation above using the � operator in the following way:

Definition 6.22 (The �∼ι relation for AMGs). Given three AMGs, G = (V,E ∪Ec), G′ = (V ′, E′ ∪
Ec′) 3 and G0, such that G0 ⊆ G and an initial relation ∼ι⊆ V × V ′, then:

G �∼ι

G0
G′ if G ⊆ G0 ⊕∼ι

G′.

In order to prove the soundness of abstract layer:

1. we first prove that it fits the equation system EB , hence the � relation respects the following
two properties:

the monotonicity of abstract transfer functions w.r.t. to � relation : if G �∼ι

G0
G′ then

instrb(G) �
∼ι

G0
instrb(G

′) 4. The monotonicity enforces correctness at bytecode level, by
showing that executing apart each instruction and composing the result with the state
before execution G gives at least the same result as if the instruction was applied on G.

the preservation of union : if G1 �
∼ι

G0
G′1 and G2 �

∼ι

G0
G′2 then G1 ∪G2 �

∼ι

G0
G′1 ∪G′2.

As the AMG, stack and local variables interplay, the relation �, and the two properties above
must be extended to the stack and local variables array, and hence to the entire abstract
state. In Section 6.7.1 we define formally the � relation on abstract states, then we proof in
Section 6.7.2 some technical lemmas, and finally, in Section 6.7.3, we proof the two properties
described above.

2. then, in Section 6.7.4, we compare the abstract layer to the intermediate layer by showing
that, given the same initial state Q0 before method invocation, the result of method invocation
in the intermediate layer, i.e., Q1, and the result of method invocation in the abstract layer,
i.e., Q2, then Q1 ⊑ Q2.

6.7.1 Definition of the � relation

Let us now give a complete definition of � relation. We first define the relation � on sets of abstract
values. If ∼⊆ A×B×F , we first define the � relations on sets in A and B (this is needed to define
the order relation on Γ), and secondly we define the � relation on sets in A×F and B ×F (this
relation is needed to order the stack and the local variables array).

Definition 6.23 (The � relation on simple sets). Given two sets A and B and two subsets, A′ ⊆ A
and B′ ⊆ B, and a mapping relation ∼⊆ A×B × F , we say that A′ �∼t B′ if for all a ∈ A′ there

exists b ∈ B′ such that a
t
∼ b.

Definition 6.24 (The � relation on typed sets). Given two sets A and B and two subsets, A′ ⊆
(A×F) and B′ ⊆ (B ×F), and a mapping relation ∼⊆ A×B ×F , we say that A′ �∼ B′ if:

1. for all (a,d) ∈ A′ there exists (b,d) ∈ B′ such that a
d
∼ b,

2. for all (a,i) ∈ A′

a) either there exists (b,i) ∈ B′ such that a
i
∼ b,

b) or there exists (b,d) ∈ B′ and (a′,d) ∈ A′ such that a
i
∼ b and a′

d
∼ b.

3Recall that, for technical reasons, during the inter-procedural analysis we define the AMG as G = (V, E ∪ Ec) where
E denotes the edges from the initial graph while Ec the edges generated by the abstract semantics rules and by the
composition.

4instrb is defined on abstract states and not on graph. As the � relation has not yet been defined on abstract states, we
use here instrb(G), to ease the comprehension.
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The � relation on typed sets is needed to define the � relation on stack and local variables array.
Rule 1 of Definition 6.24 stands for alias (direct) mapping, while rule 2 takes into account the

implicit flow; an element (a,i) can be found on the stack in two cases:

• a belongs to the context of execution (a ∈ Γ), and, in this case, a must be mapped through
implicit flow to an element b which also belongs to the context of execution (rule (2a): there

exists (b,i) ∈ B′ such that a
i
∼ b),

• an object o implicitly depends on a; this means that there exists an object o′, two edges
(o′, o, 〈f,d〉) and (o′, a, 〈f,i〉). In the same time, the mapping relation says that all elements b

directly mapped to o (o
d
∼ b), are also mapped to a (a

i
∼ b). If the code is executed inline5, the

instruction putfield will load (o,d) and (a,i) on the stack, while, if the code is executed by
a method, the instruction will only load b on the stack. The rule (2b) describes this situation:
if (a,i) is on the stack, then the object that implicitly depends on a must also be on the stack.

Using the relation � on typed sets of elements, we can now define the � relation for stacks, which
is a component wise operation:

Definition 6.25 (The � relation on stacks). Given two stacks, s1 and s2, with elements in S1 ×F
and S2 × F respectively, and a mapping relation ∼⊆ S1 × S2 × F , we say that s1 �

∼ s2 if both
stacks are empty or, for s1 = u1 :: s

′
1 and s2 = u2 :: s

′
2, u1 �

∼ u2 and s′1 �
∼ s′2.

The � relation on local variables arrays is defined similarly: two local variables arrays are in �
relation if each component of the array respect this relation.

Definition 6.26 (The � relation for abstract states). Given three abstract states Q = (ρ, s,G =
(V,E ∪ Ec)), Q′ = (ρ′, s′, G′ = (V ′, E′ ∪ Ec′)) and Q0 = (ρ0, s0, G0 = (V,E0 ∪ Ec

0)), such that
Q0 ⊑ Q, and an initial relation ∼ι⊆ V × V ′ ×F , we say that Q �∼ι

Q0
Q′, if

1. s �∼
G,G′

ι s′,

2. ρ �∼
G,G′

ι ρ′,

3. G �∼ι

G0
G′.

6.7.2 Technical lemmas

Lemma 6.27. Consider two sets A and B, a mapping relation ∼⊆ A × B × F , and four subsets

A′, A′′ ⊆ (A×F) and B′, B′′ ⊆ (B ×F).
If A′ �∼ B′ and A′′ �∼ B′′, then (A′ ∪A′′) �∼ (B′ ∪B′′).

Proof. We show that for all (u, t) ∈ (A′ ∪ A′′), with t ∈ F , Definition 6.24 holds. There are two
cases:

1. either (a, t) ∈ A′,

2. or (a, t) ∈ A′′.

We consider only the first case, the second is similar. As A′ �∼ B′, then for each (a,d) ∈ A′ there

exists (b,d) ∈ B′ ⊆ (B′ ∪B′′) such that a
d
∼ b.

Also, for each (a,i) ∈ A ⊆ (A′ ∪A′′)

• either there exists (b,i) ∈ B′ ⊆ (B′ ∪B′′) such that a
i
∼ b,

5We use this term to designate code executed during the ICFG analysis.
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• or there exist (b,i) ∈ B′ ⊆ (B′ ∪B′′), (a′,d) ∈ A′ ⊆ (A′ ∪A′′) such that a
i
∼ b and a′

d
∼ b.

Lemma 6.28. Let G1 = (V1, E1∪Ec
1), G′1 = (V1, E

′
1∪Ec′

1), G2 = (V2, E2∪Ec
2), G′2 = (V2, E

′
2∪Ec′

2)
be four AMGs and ∼ι: V1 × V2 ×F and a mapping relation.

If G1 ⊆ G′1 and G2 ⊆ G′2 then ∼ι
G1,G2 ⊆∼

G′1,G
′
2

ι .

Proof. Straightforward, by construction: as G1 ⊆ G′1 and G2 ⊆ G′2, then all the mapping relations
generated by the closure of ∼ι on G1 and G2 will also be generated by the closure of ∼ι on G′1 and
G′2 set ∼ι

G1,G2 .

Lemma 6.29. Consider three graphs G0 = (V0, E0 ∪ Ec
0), G1 = (V,E1 ∪ Ec

1), G2 = (V,E2 ∪ Ec
2),

and an initial relation ∼ι: V0 × V ×F .

If G1 ⊆ G2, then G0 ⊕∼ι
G1 ⊆ G0 ⊕∼ι

G2.

Proof. Let G0 ⊕∼ι
G1 = G′1 = (V0, E0 ∪ Ec′

1) and G0 ⊕∼ι
G2 = G′2 = (V0, E0 ∪ Ec′

2).
We need to show that Ec′

1 ⊆ Ec′
2, that is to say, for each (u, v, 〈f, t〉) ∈ Ec′

1, we have (u, v, 〈f, t〉) ∈
Ec′

2. If (u, v, 〈f, t〉) ∈ Ec′
1 then

• either (u, v, 〈f, t〉) ∈ Ec
0 ⊆ Ec′

2,

• or the edge was added by the composition, according to Definition 5.9.

If the edge was added by the composition, (by the ⊕∼ι
operator applied on G0 and G1), then

• either, according to Definition 5.9, there exist u
d
∼ι

G0,G1

u′, v
t2∼ι

G0,G1

v′, (u′, v′, 〈f, t1〉) ∈
Ec′

1 ⊆ Ec′
2, with t = t1 ⊓ t2. Since G1 ⊆ G2, by applying Lemma 6.28, we obtain

∼ι
G0,G1⊆∼ι

G0,G2 . Hence, u
d
∼ι

G0,G2

u′, v
t2∼ι

G0,G2

v′, and, by applying Definition 5.9,
(u, v, 〈, f, t〉) ∈ Ec′

2,

• or, if t = i ( (u, v, 〈f,i〉) ∈ Ec′
1), then, there exist u

d
∼ι

G0,G1

u′, u1
t2∼ι

G0,G1

v′, v
i
∼ι

G0,G1

u′

(u′, v′, 〈f, t1〉) ∈ Ec′
1 ⊆ Ec′

2. Since ∼ι
G0,G1⊆∼ι

G0,G2 , we have u
d
∼ι

G0,G2

u′, u1
t2∼ι

G0,G2

v′,

v
i
∼ι

G0,G2

u′, and, by applying Definition 5.9, (u, v, 〈, f,i〉) ∈ Ec′
2.

6.7.3 Proofs of � properties

Having defined the � on abstract states, we can now prove the properties of the relation: the
monotonicity of abstract transfer functions w.r.t. � and the preservation of union by �. These
properties are needed to integrate the method calls into the equation system EB .

Lemma 6.30 (Monotonicity of transfer rules w.r.t. to �). Let b be an instruction. For all abstract

states Q = (ρ, s,G = (V,E ∪ Ec)) and Q′ = (ρ′, s′, G′ = (V ′, E′ ∪ Ec′)), an initial state Q0 =
(ρ0, s0, G0 = (V,E ∪Ec

0)) such that Q0 ⊑ Q, and an initial relation ∼ι⊆ V × V ′ ×F , and for all Γ
and Γ′ such that Q �∼ι Q′ and Γ �∼ι

i
Γ′, we have

instrb(Q,Γ) �∼ι

Q0
instrb(Q

′,Γ′).

Proof. By case analysis, on each instruction type. See Appendix A.5.1



6.7 Soundness of inter-procedural analysis: abstract model (compositional) 155

Lemma 6.31 (Preservation of union by � relation). Let Q1 = (ρ1, s1, G1 = (V,E1 ∪ Ec
1)), Q2 =

(ρ2, s2, G2 = (V,E2 ∪Ec
2)), Q′1 = (ρ′1, s

′
1, G

′
1 = (V ′, E′1 ∪Ec′

1)), Q′2 = (ρ′2, s
′
2, G

′
2 = (V ′, E′2 ∪Ec′

2))
be four abstract states, an initial abstract state Q0 = (ρ0, s0, G0 = (V,E0 ∪ Ec

0)) and an initial

relation ∼ι: V × V ′ ×F .

If Q1 �
∼ι

Q0
Q′1 and Q2 �

∼ι

Q0
Q′2, then Q1 ⊔Q2 �

∼ι

Q0
Q′1 ⊔Q′2

Proof.

Q1 ⊔Q2 = (ρ1 ⊔ ρ2, s1 ⊔ s2, G1 ∪G2)

Q′1 ⊔Q′2 = (ρ′1 ⊔ ρ′2, s
′
1 ⊔ s′2, G

′
1 ∪G′2)

From the Definition 5.8 of closure of a mapping relation, ∼ι
G1,G

′
1 is the closure of ∼ι on G1 and

G′1, while ∼ι
G2,G

′
2 is the closure of ∼ι on G2 and G′2.

From the Definition 6.26:

• if Q1 �
∼ι

Q0
Q′1 then s1 �

∼ι
G1,G′1 s′1, ρ1 �

∼ι
G1,G′1 ρ′1 and G1 �

∼ι

G0
G′1,

• if Q2 �
∼ι

Q0
Q′2 then s2 �

∼ι
G2,G′2 s′2, ρ2 �

∼ι
G2,G′2 ρ′2 and G2 �

∼ι

G0
G′2,

• Q1 ⊔Q2 �
∼ι

Q0
Q′1 ⊔Q′2 if s1 ⊔ s2 �

∼ι
G1∪G2,G′1∪G′2 s′1 ⊔ s′2, ρ1 ⊔ ρ2 �

∼ι
G1∪G2,G′1∪G′2 ρ′1 ⊔ ρ′2 and

G1 ∪G2 �
∼ι

G0
G′1 ∪G′2.

From Lemma 6.28, we obtain ∼ι
G1,G

′
1⊆∼ι

G1∪G2,G
′
1∪G′2 , as G1 ⊆ G1 ∪G2 and G′1 ⊆ G′1 ∪G′2.

Let us first prove the � relation on local variables array: ρ1 ⊔ ρ2 �
∼ι

G1∪G2,G′1∪G′2 ρ′1 ⊔ ρ′2. We show

that for all local variables x, ρ1(x) ∪ ρ2(x) �
∼ι

G1∪G2,G′1∪G′2 ρ′1(x) ∪ ρ′2(x). Let (u, t) ∈ ρ1(x) ∪ ρ2(x);
either (u, t) ∈ ρ1(x) or (u, t) ∈ ρ2(x). We consider the first case, the second one is similar.

If t = d (hence (t,d) ∈ ρ1(x)), and as ρ1 �
∼ι

G1,G′1 ρ′1, from Definition 6.24, there exists (v,d) ∈

ρ′1(x) ⊆ ρ′1(x) ∪ ρ′2(x) such that u
d
∼ι

G1,G
′
1

v. From ∼ι
G1,G

′
1⊆∼ι

G1∪G2,G
′
1∪G′2 , u

d
∼ι

G1∪G2,G
′
1∪G′2

v.

Hence, for t = d, the Definition 6.24 holds and ρ1(x) ∪ ρ2(x) �
∼ι

G1∪G2,G′1∪G′2 ρ′1(x) ∪ ρ′2(x).
If t = i, there are two cases:

• either there exists (v,i) ∈ ρ′1(x) ⊆ ρ′1(x) ∪ ρ′2(x) such that u
i
∼ι

G1,G
′
1

v. If u
i
∼ι

G1,G
′
1

v, then

u
i
∼ι

G1∪G2,G
′
1∪G′2

v and the definition holds,

• or there exists (v,d) ∈ ρ′1(x) ⊆ ρ′1(x) ∪ ρ′2(x) and (u′,d) ∈ ρ1(x) ⊆ ρ1(x) ∪ ρ2(x) such

that u
i
∼ι

G1,G
′
1

v and u′
d
∼ι

G1,G
′
1

v. Hence u
i
∼ι

G1∪G2,G
′
1∪G′2

v and u′
d
∼ι

G1∪G2,G
′
1∪G′2

v and

ρ1(x) ∪ ρ2(x) �
∼ι

G1∪G2,G′1∪G′2 ρ′1(x) ∪ ρ′2(x).

The proof for stack is similar to local variables array and will not be detailed here.

Let us now proof the � relation for graphs: G1 ∪ G2 �
∼ι

G0
G′1 ∪ G′2, which corresponds to

G1 ∪G2 ⊆ G0 ⊕∼ι
(G′1 ∪G′2).

Let
G1 = (V,E1 ∪ Ec

1) G2 = (V,E2 ∪ Ec
2) G1 ∪G2 = (V, (E1 ∪ E2) ∪ (E

c
1 ∪ Ec

2))
G′1 = (V ′, E′1 ∪ Ec′

1) G′2 = (V ′, E′2 ∪ Ec′
2) G′1 ∪G′2 = (V ′, (E′1 ∪ E′2) ∪ (E

c′
1 ∪ Ec′

2))

Let G′ = G0 ⊕∼ι
(G′1 ∪G′2) = (V,E′ ∪ Ec′). By definition of ⊕, E′ = E0.

We need to show that E1 ∪ E2 ⊆ E′ and Ec
1 ∪ Ec

2 ⊆ Ec′.

Let
G0 ⊕∼ι

G′1 = (V,E0 ∪ Ec′
01)

G0 ⊕∼ι
G′2 = (V,E0 ∪ Ec′

02).
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(a) The � relation on blocks and abstract states

(Q,Γ)

instrB(Q,Γ)

(Q′,Γ′)

instrB(Q
′,Γ′)

�∼ι

Q0

�∼ι

Q0

in
s
tr

B

in
s
tr

B

(b) The � relation on blocks and AMGs

G

instrB(G)

G0 ⊕∼ι
G′

G0 ⊕∼ι
instrB(G

′)

⊆

⊆

in
s
tr

B

in
s
tr

B

Figure 6.10: The � relation on blocks and abstract states

By hypothesis,
G1 ⊆ G0 ⊕∼ι

G′1 → E1 ⊆ E0

G2 ⊆ G0 ⊕∼ι
G′2 → E2 ⊆ E0.

Hence, E1 ∪ E2 ⊆ E0, and as E′ = E0, then E1 ∪ E2 ⊆ E′.
Moreover, Ec

1 ⊆ Ec′
01 and Ec

2 ⊆ Ec′
02.

Let us now show that Ec
1 ∪Ec

2 ⊆ Ec′: for each (u, v, 〈f, t〉) ∈ Ec
1 ∪Ec

2, then (u, v, 〈f, t〉) ∈ Ec′.
Let us consider the case when (u, v, 〈f, t〉) ∈ Ec

1 ( the case (u, v, 〈f, t〉) ∈ Ec
2 is similar). From

Lemma 6.29, G0 ⊕∼ι
G′1 ⊆ G0 ⊕∼ι

(G′1 ∪ G′2). If (u, v, 〈f, t〉) ∈ Ec
1 ⊆ Ec′

01 then (u, v, 〈f, t〉) ∈
Ec′.

We recall that our methods are defined as blocks. From the two properties above, we can state
the monotonicity of the � property on blocks.

Lemma 6.32 (Monotonicity of transfer rules w.r.t. to � and instruction blocks). Let B be a block.

For all abstract states Q = (ρ, s,G = (V,E ∪ Ec)) and Q′ = (ρ′, s′, G′ = (V ′, E′ ∪ Ec′)), an initial

state Q0 = (ρ0, s0, G0 = (V,E ∪ Ec
0)) such that Q0 ⊑ Q, and an initial relation ∼ι⊆ V × V ′ × F ,

and for all Γ and Γ′ such that Q �∼ι Q′ and Γ �∼ι

i
Γ′, we have

instrB(Q,Γ) �∼ι

Q0
instrB(Q

′,Γ′).

Proof. Straightforward, from Monotonicity on single instruction blocks (Lemma 6.30) and from
Lemma 6.31.

This property is very important, as it states that the relation � on abstract states is preserved on
any type of blocks (see Figure 6.10a). Moreover, the � relation on AMGs gives the expected result
for a modularity, as depicted in Figure 6.10b: the graph obtained by executing block B from an
initial graph G 6, such that G ⊆ G0 ⊕∼ι

G′, is included in the graph obtained from the composition
of G0 with instrB(G

′).

6.7.4 Relating the intermediate model and abstract model

If we consider that B is the code of a method m, G′ is the initial graph of that method and
instrB(G

′) = Θ(m), then we can obtain the modularity property for methods and for invoke
instruction. But, this cannot be achieved in a single step, due to the fact that in the intermediate
model, we made a code transformation in order to avoid unbounded call stack. Hence, to prove the
� relation for invoke instruction, we make a transformation on the abstract model as depicted in
Figure 6.11: this code transformation (depicted in Figure 6.11b) is similar to the one done for the
intermediate model, which will allow us to apply Lemma 6.32; the only difference consists of the

6Again, for simplicity we restrict instrB to AMGs, but it works on abstract states.
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transformation rule for ̂invoke bytecode. The new semantics, denoted by invoke*, is similar to
the abstract model from the point of view of AMGs, as it combines the AMGs of the caller and the
callee, and it is also similar to the intermediate model from the point of view of operand stack and
local variables array:

PCm1 [i] = invoke* m2 (ρ, unm :: · · · :: u0 :: s, G1) G2 = Θ(m2)

(ζ, map∼ι(ret(G2)), G1 ⊕∼ι G2)

(a) Transformed Control

Flow for Intermediate

model

i− 1

i′

a0

Qi

Qa0

b0

bnm

bnm+1

bnm+2

Qi

Qb0

(ρ, s, G)

Qh

c0

Pm[0]

Pm[j]

Qi

Qc0

h(i + 1)
Qh(ζ, u, G1)

Qi+2

(b) Transformed

Control Flow for

Abstract model

i− 1

i′

a0

Q′i

Q′a0

b0

bnm

bnm+1

bnm+2

Q′i

Q′b0

(ρ′, s′, G′)

Q′h

invoke∗

Q′i

h(i + 1)
Q′h

(ζ, u′, G′′1 )

Q′′i+2

(c) Abstract model

i− 1

i : invoke

i + 1

Q′i−1

Q′i

Q′i+1

Q′i+2

Qi = (ρ, unm :: · · · :: u0 :: s, G)

Qa0
= (ρ, 0 :: unm :: · · · :: u0 :: s, G)

Qb0
= (ρ, unm−1 :: · · · :: u0 :: s, G)

Qc0 = ({0 7→ u0, . . . , nm 7→ unm}, ǫ, G)

Qh = (ρ, null :: s, G)

⇓

Qi+1 = (ζ, u, G1) ⊔Qh

Q
′′
i+1 = (ζ, u, G

′′
1 ) ⊔Q

′
h

Figure 6.11: Bytecode transformation

From this code transformation and from Figure 6.11, we can deduce two important results:

1. if Qi �
∼ι

Q0
Q′i and Γi �

∼ι

i
Γ′i, then, from Lemma 6.32, we obtain that Qi+1 �

∼ι

Q0
Q′′i+1, where

Qi+1 is the result of method invocation in the intermediate model and Q′′i+1 is the result on
method invocation in the transformed abstract model;

2. if we apply semantics rule bytecode by bytecode in Figure 6.11b, we obtain that Q′′i+1 = Q′i+1,
where Q′i+1 is the result of method invocation in the abstract model.

From the two results above, we obtain that, if Qi �
∼ι

Q0
Q′i, Γi �

∼ι

i
Γ′i, m is a method and B

the instruction block corresponding to instructions in Pm, Q′i+1 = invoke(Q′i,Γ
′
i) and Qi+1 =

înstrB(Qi,Γi), then Qi+1 �
∼ι

Q0
Q′i+1.

Hence, the compositional approach gives at least the same AMG as the intermediate model.

6.8 Conclusion

In this chapter we proved the soundness of the dependency analysis presented in previous chapter.
The soundness of the AMG was splitted in two parts: first, we proved the soundness of the points-to
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analysis, and then we showed the soundness of the extended graph by stating and proving a
non-interference theorem. While the previous models rely on a call graph approach, we present
here a modular approach, which is more complex but, in the same time, more adapted to an open
environment. Due to its complexity, we have not achieved to prove the soundness of the modular
model in a single step. Therefore, we have defined a sound intermediate model, based on ICFG.
This model corresponds to the previous approaches based on call graphs. Then, we compare the
modular model to the intermediate model and we prove its correctness.
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Information flow has been an intensively researched domain during the last decades. But all these
efforts lead to a rich theory and a poor utilisation in practice. The main challenge in information
flow security is to apply the results in practice and to show their usefulness.

Along this thesis, we have always tried to build a complete solution which addresses information
flow issues in embedded systems. We can sum up the goals of this thesis in two major points:

• to give solutions which show the usefulness of information flow analysis. We believe that, in
order to successfully apply information flow techniques in practice, both adequate tools and
formal proofs for correctness must be provided,

• to adapt this solutions to the specific domain of embedded systems, supporting multiple
collaborative applications and dynamic installation.

In the context of open and dynamically evolving systems, the verification must be modular
and split in independent parts. Therefore, our models present two essential properties: (i)

compositionality (i.e., each application can be verified independently) and (ii) separation of concerns
between the information flow analysis and security policies (i.e., security policies are defined a

posteriori and changing them does not require to re-analyze the entire system).

The approach followed in this thesis was to provide security guarantees as soon as possible, so
that an application can not be installed on the target system if it does not respect the required
security properties. In fact, the results of the analysis can be transposed as a typing systems, which
allows the use of known verification techniques from this domain. In this sense, we extended
the lightweight bytecode verification of Eva Rose and obtained a lightweight information flow
verification in two steps:

1. first, a phase external to the embedded system, which precisely computes the information
flow in terms of types,

2. secondly, the onboard verification of the types previously computed, in order to overcome the
complexity of the external algorithm.

This strategy allows the encoding of different properties as a type. In our case, we identify two
kind of typing systems: not only the type associated to an abstract value, as usual, but also the
type associated to a method. This leads to an analysis more complex than the lightweight bytecode
verification. While we applied it here to an information flow analysis, the strategy can be generalized
and applied to other security properties, as long as they can be transposed as a type system.
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7.1 Contributions

We now detail the contributions of each chapter:

7.1.1 A lightweight information flow model and tool for embedded systems

In Chapters 3 and 4 we addressed security challenges raised by interactions between different
software units in the context of a small open environment. We presented a model and a tool
dedicated to the target systems. We tried to adapt the model as much as possible to the environment
(i.e., limited resources) by making a compromise between the precision of results given an entirely
known system and the overhead generated by the analysis onboard (while talking into account the
dynamic downloading).

The algorithm is lightweight, meaning that, in order to ease the embedded verification, the
certification is performed in two phases: an external one, computing information flow information
as types, and an embedded one which verifies the computed types. Therefore, the verification is
done onboard, the only place where security can be guaranteed, while loading a new software unit.

The embedded verifier was designed as an user-defined class loader, hence it can be used on any
system as a plug-in. Apart type verification, it deals with class by class validation (i.e., loaded class
needs a class not yet loaded), inheritance (a class is loaded only if it respects the security properties
of the parent class) and multiple class loaders.

Security policies The lightweight information flow model enforces non-interference, which
a strong security property but, unfortunately, not sufficient to express more complex security
policies. To refine non-interference, we defined a domain specific language which describes allowed
collaborations between different software units composing the open system. In order to keep the
analysis as modular as possible and to avoid code re-analysis, the information flow analysis and
security policies enforcement are separated, as policies are specified and verified a posteriori, on the
target system, based on the results of information flow analysis.

Even if the domain specific language is quite simple, it has enough power to express desired
policies in the domain of multiapplicative systems and it can easily be extended to define more
complex policies.

As a consequence of the fact that we adapted our model to small open systems, the domain
specific language specifies only allowed collaborations a posteriori; the sensitive object fields must
be specified a priori to the information flow analysis, and, for now, we support only two security
levels. Increasing the number of security levels will lead to a more precise analysis but more difficult
to embed.

Case studies and practical results Throughout our research, we tried to provide a model usable
on real Java software and easily integrable on existing platforms. This lead to:

• the development of two functional prototypes, STAN - the external tool computing types, and
VSTAN - the embedded verifier defined as a plug-in for any Java Virtual Machine,

• experimental results showing that the tools can be efficiently be used in a domain with
restraint resources,

• several practical experiences, especially on Java applications for mobile phones,

• an integrated analysis framework which combines our model with a design security analysis
technique.
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7.1.2 A sound model for information flow analysis

In Chapter 5 we addressed information flow issues from a theoretical point of view. We defined a
formal model which expresses information flow in terms of abstract memory graphs (or AMGs). An
AMG is a points-to graph (i.e., a graph which describes relations between references in a program),
extended with primitive values and flows arising from primitive assignments and implicit flow. The
AMG is computed independently on any security level, hence the analysis is more general than a
normal information flow one: several other analysis can be recovered from our model (e.g., alias
analysis, purity analysis). Information flow analysis can be considered as a particular case of the
framework, obtained by labeling the nodes and the edges with security levels a posteriori. The
analysis keeps the main features of the embedded model (i.e., modularity, inheritance), the goal
being to use it in the context of embedded models.

The model is proved correct with respect to non-interference in Chapter 6. Due to its complexity,
the proof schema was split in several parts. First we proved the soundness of the points-to analysis
by using a general technique. Then, we proved the correctness of the extended graph by showing a
non-interference theorem which states that an output does not depend on an input value if changing
the input does not affect the AMG of the output.

The proof of the inter-procedural analysis relies on a composition operator (⊕). We believe that
the proof schema can be made generic w.r.t. the composition operator respecting a set of properties.

7.1.3 Discussion

By defining a lightweight analysis for embedded systems and a general sound model, we obtained
two models totally opposite in terms of precision:

• the sound model is the most precise model possible, as no approximation and no compromise
have been made.

• the embedded model is the “smallest” model possible, pushing the approximations and
compromises to the limit. This was imposed by the limited resources of the target systems.

Due to its high precision, the sound model can be declined in a family of models and tools, of
different precisions, depending on the target systems and on the needs of the users. The embedded
model is the smallest model in this family, with the lowest precision.

7.2 Perspectives

7.2.1 Soundness of the embedded model

As we said before, in order to make information flow analysis appealing, adequate tools must be
provided. Moreover, to ensure security, these tools must be proved correct. In the last chapters of
this thesis, we define and we prove the soundness of an elegant analysis framework, which we call
the dependency model and which is based on AMGs. It is a general framework, as many analysis
can be recovered from our model. The embedded model, which we present in the first chapters of
this thesis, can also be recovered as an approximation of the dependency model. Hence, to prove
the soundness of the embedded model it is enough to prove that it is a correct approximation of the
dependency analysis.

The flow signature of a method (which expressed information flows in the embedded model) can
be recovered as an approximation of the AMG of a method. In fact, the entire embedded model
can be defined as approximation of the dependency model, starting with the abstract domain. As
the dependency model has been proved correct w.r.t to non-interference, in order to prove the
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correctness of the embedded model requires to define an approximation function and to prove its
correctness w.r.t. to the AMG.

Hence, proving the soundness of the embedded system is an interesting challenge for two reasons:
on the one hand, this will lead to a tool completely proved correct, and on other hand, there are
many difficulties that make this approach appealing. The difficulties lies in the approximations of
the abstract domain made in the embedded model and the fact that we perform a field-insensitive
analysis, while the dependency model unfolds all object fields and performs a field-sensitive and
object-sensitive analysis.

7.2.2 Tool support

One direction for future work concerns tool support and case studies.

Reverse Engineering tool The certification must be done onboard due to the fact that the
applications are loaded using an unsecured channel and must be adapted to the limited resources
of the system. In the same time, the external analysis is supposed to be done on an system offering
unlimited resources comparing with a small system. Thus optimization and complexity are not an
issue. Moreover, the external resources can be used for other purposes, for example for offering an
easy development environment to programmers.

Security must be ensured for different attacks against computing systems, for both deliberate or
accidental attacks. Information flow insecurity may arise from malicious, untrusted code or from the
programmer’s own code. In the later case, the insecurity is due to bad conception of the application
or to bad implementation. When the information leak comes from a bad implementation due to
human error, it is not always obvious for the developer to correct the application in order to make it
safe. The development environment should detect illicit flows and help the developer to correct his
mistakes by offering all the necessary information.

The point of failure in the program certification is usually not the real source of informa-
tion leak. For example, the certification of LoyaltyCard fails while analysing the method
FlyMaroc.makeGetLevel. But the illegal information flow comes from the implementation
of method getLevel in class MHz, where the computation of fidelity level for MHz takes into
consideration the points of partners.

To detect the failure source, we can imagine a backward iterative algorithm, which, at each
step, tries to detect an information flow in a method. The algorithm is similar to tracking thrown
exceptions in Java programs. Let us assume that we have a recursive method detect(m, f, pc) which
detects where the flow f occurred in method m by performing a backward analysis starting from
the program point pc. If the flow f was created due to another flow f1, the method detect(m, f1, pc)
is called recursively. If the flow f was created in a method m1 invoked at pc, the algorithm calls
detect(m1, f, pcf ), where pcf is the program counter corresponding to the return instruction in
method m1.

This approach is expensive in memory and thus cannot be performed onboard, but it can explore
the unlimited resources of the external analyser.
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A.1 Proof of Lemma 5.5 (Monotonicity of the abstract

transformation rules)

We consider two pairs (Q1,Γ1) and (Q2,Γ2) from the property space S such that (Q1,Γ1) ⊑ (Q2,Γ2).
Let Q′1 = instrb(Q1,Γ1) and Q′2 = instrb(Q2,Γ2). We must prove that Q′1 ⊑ Q′2. By TVΓ we denote

We make a proof by case analysis on each instruction b, based on the transformation rules in
Figure 5.5, page 112.

Case: b = prim op

Let Q1 = (ρ1, v1 :: v
′
1 :: s1, G1) and Q2 = (ρ2, v2 :: v

′
2 :: s2, G2). Since (Q1,Γ1) ⊑ (Q2,Γ2), then ρ1 ⊑

ρ2, s1 ⊑ s2, G1 ⊆ G2, v1 ⊆ v2, v′1 ⊆ v′2 and TVΓ1 ⊆ TVΓ2 . Hence, (v1∪v′1∪TVΓ1) ⊆ (v2∪v′2∪TVΓ2).
From the transformation rule, Q′1 = (ρ1, v1∪v′1∪TVΓ1 :: s1, G1) and Q′2 = (ρ2, v2∪v′2∪TVΓ2 :: s2, G2),
and as the partial order relation holds on each component, we can conclude with Q′1 ⊑ Q′2.

Case: b = pop

Let Q1 = (ρ1, v1 :: s1, G1) and Q2 = (ρ2, v2 :: s2, G2), Q′1 = (ρ1, s1, G1) and Q′2 = (ρ2, s2, G2). From
hypothesis, (ρ1, v1 :: s1, G1) ⊑ (ρ2, v2 :: s2, G2), and thus (ρ1, s1, G1) ⊑ (ρ2, s2, G2).

Case: b = ifeq a

Let Q1 = (ρ1, v
′ :: s1, G1) and Q2 = (ρ2, v

′′ :: s2, G2), Q′1 = (ρ1, s1, G1) and Q′2 = (ρ2, s2, G2). From
hypothesis, (ρ1, v

′ :: s1, G1) ⊑ (ρ2, v
′′ :: s2, G2), and thus (ρ1, s1, G1) ⊑ (ρ2, s2, G2).
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Case: b = goto a

The abstract semantics rules do not change the input, thus instrb(Q1,Γ1) = Q1 and instrb(Q2,Γ2) =
Q2. Since Q1 ⊑ Q2, we can conclude straightforward with instrb(Q1,Γ1) ⊑ instrb(Q2,Γ2).

Case: b = bipush n or b = newiC or b = aconst null

The instruction adds an abstract element on the stack (the same abstract element for Q1 and Q2).
Thus, the monotonicity is preserved.

Case: b = αload x

From hypothesis, (ρ1, s1, G1) ⊑ (ρ2, s2, G2) and Γ1 ⊆ Γ2. Thus, ρ1(x) ⊆ ρ2(x), TVΓ1 ⊆ TVΓ2 and
(ρ1, ρ1(x) ∪ TVΓ1 :: s1, G1) ⊑ (ρ2, ρ2(x) ∪ TVΓ2 :: s2, G2).

Case: b = αstore x

Let Q1 = (ρ1, u1 :: s1, G1), Q2 = (ρ2, u2 :: s2, G2), instrb(Q1,Γ1) = (ρ1[x 7→ u′1], s1, G1), where
u′1 = u1 ∪ {(t,i) | t ∈ Γ1}], and instrb(Q2,Γ2) = (ρ2[x 7→ u′2], s2, G2), where u′2 = u2 ∪ {(t,i) |
t ∈ Γ2}]. To prove the monotonicity, we must show that u′1 ⊆ u′2. As Q1 ⊑ Q2 and Γ1 ⊆ Γ2(from
hypothesis), we also have u1 ⊆ u2 and {(t,i) | t ∈ Γ1} ⊆ {(t,i) | t ∈ Γ2}. Hence, u′1 ⊆ u′2 and
instrb(Q1,Γ1) ⊑ instrb(Q2,Γ2).

Case: b = getfield fC′

Let Q1 = (ρ1, u1 :: s1, G1), Q2 = (ρ2, u2 :: s2, G2), instrb(Q1,Γ1) = (ρ1, u
′
1 :: s1, G1) and

instrb(Q2,Γ2) = (ρ2, u
′
2 :: s2, G2). To prove the monotonicity, we must show that u′1 ⊆ u′2,

where u′1 = {(e,d) | e ∈ adjG1
(e′, 〈fC′ ,d〉) ∧ (e

′,d) ∈ u1} ∪ {(e,i) | (e,i) ∈ u1}. From u1 ⊆ u2,
obviously, {(e,i) | (e,i) ∈ u1} ⊆ {(e,i) | (e,i) ∈ u2}. Let us denote by u′′1 the first set in u′1. We
now show that u′′1 ⊆ u′′2 , where

u′′1 = {(e,d) | e ∈ adjG1
(e′1, 〈fC′ ,d〉) ∧ (e

′
1,d) ∈ u1}

u′′2 = {(e,d) | e ∈ adjG2
(e′2, 〈fC′ ,d〉) ∧ (e

′
2,d) ∈ u2}.

Since G1 ⊆ G2 and u1 ⊆ u2, all the adjacents labeled by fC′ of e′1 (where (e′1,d) ∈ u1) are also
adjacents of e′2 (where (e′2,d) ∈ u2). Thus u′′1 ⊆ u′′2 and u′1 ⊆ u′2.

Case: b = putfield fC′

Let Q1 = (ρ1, v1 :: u1 :: s1, (V1, E1)), Q2 = (ρ2, v2 :: u2 :: s2, (V2, E2)). Moreover, let
instrb(Q1,Γ1) = (ρ1, s1, (V1, E

′
1)) and instrb(Q2,Γ2) = (ρ2, s2, (V2, E

′
2)). To prove the mono-

tonicity, we must show that E′1 ⊆ E′2. From putfield abstract transformation rule in Figure 5.5,
E′1 = E1 ∪ E′′1 ∪ E′′′1 , where

E′′1 = {(e, e
′, 〈fC′ , t〉)|(e,d) ∈ u, (e′, t) ∈ v1},

E′′′1 = {(e, e′, 〈fC′ ,i〉)|(e,d) ∈ u1, e
′ ∈ Γ ∪ V u1

i
},

V u1
i

= {e | 〈e,i〉 ∈ u1}.

The definition of E′2 is similar. By hypothesis, u1 ⊆ u2 and v1 ⊆ v2 , thus E′′1 ⊆ E′′2 . Moreover, as
Γ1 ⊆ Γ2, the inclusion E′′′1 ⊆ E′′′2 also holds. Thus, E′1 ⊆ E′2.
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(a) Source code

class A {

B b;

static C s;

void m1(){

A v0 = new A();

B v1 = new B();

v0.b = v1;

this.b = v1;

this.m2(v0);

}

...

}

m1

0: new A

1: astore 1

2: new B

3: astore 2

4: aload 1

5: aload 2

6: putfield A_b

7: aload 0

8: aload 2

9: putfield A_b

10: aload 0

11: aload 1

12: invoke A_m2

class B { C c; ... }

class C { ... }

class A {

void m2(A p1){

B v0 = this.b;

v0.c = new C();

p1.b.c=new C();

A.s = v0.c;

}

...

}

m2

0: aload 0

1: getfield A_b

2: astore 2

3: aload 2

4: new C

5: putfield B_c

6: aload 1

7: getfield A_b

8: new C

9: putfield B_c

10: aload 2

11: getfield B_c

12: putstatic A_s

(b) Legend

Graph of m1

Graph of m2

Reference node

Primitive node

Initial edge (in E)
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(c) AMG for m1 before method call, G
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Figure A.1: Tricky aliasing example from the litterature

A.2 Tricky aliasing example from litterature

Aliasing is carrefully treated in our analysis. The AMG computed for each method is context-
insensitive, hence different aliasing between parameters are available only when the method is
invoked; in our analysis, when we compute the mapping relation. Constraint 3 in Definition 5.8,
page 123, accounts for aliased nodes. We show how our constraint correctlly detects aliased nodes
on an example from litterature.

Let us consider the example in Figure A.1, inspired from the master thesis of Salcianu [Sal01].
The example consists of two method, m1 and m2.

Method m1 creates two new objects and sets the field b of first parameter, np
0, and of the new

object created at line 0, nn
0 , to nn

2 ; in the end, it calls method m2 passing as arguments np
0 and

nn
0 , which are aliased as their field b points to the same object nn

2 . The AMG of method m1 before
invocation is depicted in Figure A.1c.
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Figure A.3: AMG at the end of m1

The context-insensitive AMG for method m2 is depicted in Figure A.1d. Note that the two
parameters are treated as totally unaliased objects. The concrete execution of method m2 leads to
the memory graph in Figure A.2; the static node ns

A points to nn
8 and not to nn

4 ! Hence, the AMG of
m1 after method invocation (Figure A.3) must also contain an edge from ns

A to nm
12.n

n
8 .

To detect aliases, Constraint 3 supposes that two nodes related to the same node might be aliased
nodes. In our example, it is obvious1 that nn

2 is related to both np
0.b and np

1.b:

nn
2

d
∼ι np

0.b

nn
2

d
∼ι np

1.b.

As a consequence, nodes np
0.b and np

1.b might be aliased, and all their field might be aliased as well.
Contraint 3 will add the following relations2:

nm
12.n

n
8

d
∼ι nn

4

nm
12.n

n
4

d
∼ι nn

8 .

Hence, all edges to nn
4 will be translated to edges to nm

12.n
n
8 also. Consequently, our analysis detects

the edge (ns
A, nm

12.n
n
8 , 〈s,d〉).

A.3 Soundness of the intra-method analysis

A.3.1 Proof of Proposition 6.11 (Points-to correctness for single instruction
block)

We prove the points-to correctness for single instruction block by case analysis on each instruction.
Except for the new bytecode, the other intructions do not add new nodes to the memory graph

and do not change the location of objects. Thus, for a concrete state Q = ((pc, ρ, s) :: fr,G) and
Q′ = instrb(Q) = ((pc′, ρ′, s′) :: fr,G′) and b a instruction which does not modify the graph, we
have O(G) = O(G′).

Case: b = prim op

From the operational semantics of prim op (Figure 6.4, page 139), Q = ((i, ρ, v1 :: v2 :: s) :: fr,G)
and instrb(Q) = ((i + 1, ρ, op(v1, v2) :: s) :: fr,G). From the abstract semantics rule of prim,

1From the initial mapping between argumets and parameters and from Constraint 2
2For simplification, we show a simplified version of the graphs, and concentrate only on relevant relations.
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Q = (ρ, v1 :: v2 :: s, G) and instrb(Q,Γ) = (ρ, v1 ∪ v2 :: s, G). From hypothesis, we have G ⊳
α G,

ρ ⊳
α ρ, s ⊳

α s and since v1, v2 /∈ O(G), we also have (op(v1, v2) :: s) ⊳
α (v1 ∪ v2 :: s), and hence

we can conclude with instrb(Q) ⊳
α instrb(Q,Γ).

Case: b = pop

From operational semantics, Q = ((i, ρ, n :: s) :: fr,G) and instrb(Q) = ((i+1, ρ, s) :: fr,G). From
the abstract rules, Q = (ρ, v :: s, G) and

instrb(Q,Γ) = (ρ, s,G). As we have Q ⊳
α Q from hypothesis, it is obvious that instrb(Q) ⊳

α

instrb(Q,Γ).

Case: b = ifeq a

From operational semantics, Q = ((i, ρ, n :: s) :: fr,G) and instrb(Q) = ((j, ρ, s) :: fr,G), where j
is i + 1 or a. From the abstract rules, Q = (ρ, v1 :: s, G) and instrb(Q,Γ) = (ρ, s,G). As we have
Q ⊳

α Q from hypothesis, it is obvious that instrb(Q) ⊳
α instrb(Q,Γ).

Case: b = goto a Let Q = ((i, ρ, s) :: fr,G) and instrb(Q) = ((a, ρ, s) :: fr,G). The abstract
semantics of goto instruction does not change the input state Q, and thus instrb(Q,Γ) = Q. The
concrete semantics rule makes a jump to address a and leaves unchanged the rest of the frame Q.
Hence the α-abstraction relation is preserved, and instrb(Q) ⊳

α instrb(Q,Γ).

Case: b = bipush n

The bytecode adds a primitive value on top of the stack, thus since primitive values are not concerned
by α-abstraction, we have instrb(Q) ⊳

α instrb(Q,Γ).

Case: b = aconst null

The bytecode pushes null on the concrete stack and nnull⊥ on the abstract stack. By definition,
α(null) = nnull⊥ , which gives the abstraction relation between stacks.

Case: b = new C

The instruction pushes a new object on the stack. By construction, due to the allocation site model,

the value pushed by the abstract rule (nn
i ) is the abstraction of the concrete object (C

fresh(Ci,G)
i )

pushed on the concrete stack. The concrete graph G is enlarged with the new object, while the
AMG already containts the abstract node (we remind that we suppose that all abstract values are
computed from the begining).

Case: b = αload x

Let Q = ((i, ρ, s) :: fr,G) and Q = (ρ, s,G). From the operational semantics rule of αload x

(Figure 6.4), we have instrb(Q) = ((i+ 1, ρ, ρ(x) :: s) :: fr,G). From the abstract transformation
rule of αload x (Figure 5.5), we have instrb(Q,Γ) = (ρ, ρ(x) :: s, G). By hypothesis, we have
Q ⊳

α Q, thus by definition, we have s ⊳
α s, ρ ⊳

α ρ and G ⊳
α G

The local variables array abstraction relation ρ ⊳
α ρ implies that for all x such that ρ(x) ∈ O(G),

we have (α(ρ(x)),d) ∈ ρ(x). Since s ⊳
α s, the definition of stack abstraction gives us (ρ(x) :: s) ⊳

α

(ρ(x) :: s). We can conclude with instrb(Q) ⊳
α instrb(Q,Γ).

Case: b = αstore x

From the concrete semantics rule, if Q = ((i, ρ, n :: s) :: fr,G), then instrb(Q) = ((i + 1, ρ[x 7→
n], s) :: fr,G). From the abstract rules, if Q = (ρ, u :: s, G), then instrb(Q,Γ) = (ρ[x 7→ u∪ {(e,i) |
e ∈ Γ}], s,G). The α-abstraction on stacks and graphs is straightforward. For the local variables
array, we distinguish two cases:
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1. either n ∈ Val , thus the location x in the local variables array contains a primitive value and
the α abstraction does not apply to it,

2. or n ∈ O(G); from hypothesis and the α-abstraction definition on stack, we have α(n) ∈ u,
thus (ρ(x),d) ∈ ρ(x), and, as the other elements of the local variables array do not change,
ρ ⊳

α ρ.

Moreover, by hypothesis s ⊳
α s and G ⊳

α G, thus the local soundness holds.

Case: b = putfield fC′

Let Q = ((i, ρ, v :: u :: s) :: fr,G) and Q = (ρ, v :: u :: s, G). We consider the case when v /∈ Val

(the case v ∈ Val is straightforward, as the edges between references do not change and neither
does the stack nor the local variables array).

From the operational semantics rule of putfield (Figure 6.4), we have instrb(Q) = ((i+1, ρ, s) ::
fr,G′). From the abstract transformation rule of putfield (Figure 5.5), we have instrb(Q,Γ) =
(ρ, s,G′). From the hypothesis, s ⊳

α s, ρ ⊳
α ρ.

We still need to prove that G′ ⊳
α G′. Since G ⊳

α G and because we only add and never delete
edges to/from G, all we need to prove is that the edge added by instrb respects the abstraction
property i.e., the abstraction of the edge added by instrb in G must be in G.

As, by definition, G′ = G[(u, fC′) 7→ v], the only edge added to G′ is (u, v, fC′). From Q ⊳
α Q and

the stack abstraction definition, we have (α(v),d) ∈ v and (α(u),d) ∈ u.

The abstract transformation rule of putfield adds to G′ edges having the form (n′, n, 〈fC′ ,d〉),
∀n′ ∈ u and ∀n ∈ v.

Thus, it also adds the edge (α(u), α(v), 〈fC′ ,d〉). Thus G′ ⊳α G′.

Case: b = getfield fC′

From the semantics rule of getfield, the local variables array and the memory graph do not
change. Thus, we only need to prove the α-abstraction for the stack. Let Q = ((i, ρ, n :: s) :: fr,G)
and Q = (ρ, u :: s, G). Let n′ = adjG(n, fC′); we distinguish two cases:

1. either n′ 6∈ Obj ,

2. or n′ ∈ Obj .

In the first case, the α-abstraction does not apply to primitive values, thus we have the α-abstraction
between stacks.

We now consider the second case, n′ ∈ Obj . By concrete and abstract semantics rules, instrb(Q) =
((i+ 1, ρ, n′ :: s) :: fr,G) and instrb(Q,Γ) = (ρ, u′ :: s, G). By hypothesis, we have s ⊳

α s, hence
we still need to show that the α-abstraction is preserved for the top of the resulted stack (between
n′ and u).

From Definition 6.7 of stack abstraction, we must prove that (α(n′),d) ∈ u.

By hypothesis, we also have G ⊳
α G, which means that α(G) ⊆ G. Let G = (V , E, ς), G = (V,E)

and α(G) = (V α, Eα).

By definition, Eα = {(α(v), α(v′), 〈e,d〉) | v, v′ ∈ O(G) ∧ (v, v′, e) ∈ E}. As Eα ⊆ E and
(n, n′, fC′) ∈ E, we have (α(n), α(n′), 〈fC′ ,d〉) ∈ E, and from the value of u′ from the abstract
transformation rule of getfield, we can conclude with (α(n′),d) ∈ u′.

A.3.2 Proof of Proposition 6.13

Case: b = prim op

The instruction pops two operands from the stack and pushes back the result of op on these operands.
The operands are primitive nodes. Thus the relation

.
= holds for the resulted stack. The local

variables array and the graph are not changed.
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Case: b = pop

From the abstract semantics in Figure 5.5, Q1 = (ρ1, v1 :: s1, G1) and instrb(Q1,Γ1) = (ρ1, s1, G1).
As the only operation performed by this bytecode is a pop from the stack, obviously instrb(Q1,Γ1)

.
=

instrb(Q2,Γ2).

Case: b = ifeq a

From the abstract semantics in Figure 5.5, we have Q1 = (ρ1, v :: s1, G1) and instrb(Q1,Γ1) =
(ρ1, s1, G1). As the only operations are two pops from the stack, obviously instrb(Q1,Γ1)

.
=

instrb(Q2,Γ2).

Case: b = goto a

The transformation rule does not change the input, thus instrb(Q1,Γ1) = Q1 and instrb(Q2,Γ2) =
Q2. Since Q1

.
= Q2, we can conclude straightforward with instrb(Q1,Γ1)

.
= instrb(Q2,Γ2).

Case: b = bipush iv or b = aconst null or b = new iC

These instructions add an abstract element on the stack, either (nc
i,d) or (nnull⊥ ,d) or (nn

i ,d),
which is always the same for Q1 and Q2. Thus, the

.
= relation is preserved.

Case: b = αload x

From hypothesis, (ρ1, s1, G1)
.
= (ρ2, s2, G2). Thus, ρ1(x)

.
= ρ2(x) and thus (ρ1, ρ1(x) :: s1, G1)

.
=

(ρ2, ρ2(x) :: s2, G2).

Case: b = αstore x

Let Q1 = (ρ1, u1 :: s1, G1), Q2 = (ρ2, u2 :: s2, G2), instrb(Q1,Γ1) = (ρ1[x 7→ u′1], s1, G1), where
u′1 = u1 ∪ {(t,i) | t ∈ Γ1}], and instrb(Q2,Γ2) = (ρ2[x 7→ u′2], s2, G2), where u′2 = u2 ∪ {(t,i) |
t ∈ Γ2}]. To prove the relation

.
=, we must show that u′1

.
= u′2, which holds because by hypothesis

we have u1
.
= u2 and the restriction of set {(t,i) | t ∈ Γ1} to objects is the empty set ∅. Hence,

instrb(Q1,Γ1)
.
= instrb(Q2,Γ2).

Case: b = getfield fC′

Let Q1 = (ρ1, u1 :: s1, G1), Q2 = (ρ2, u2 :: s2, G2), instrb(Q1,Γ1) = (ρ1, u
′
1 :: s1, G1) and

instrb(Q2,Γ2) = (ρ2, u
′
2 :: s2, G2). To prove the relation

.
=, we must show that u′1

.
= u′2, where

u′1 = {(e,d) | e ∈ adjG1(e
′, 〈fC′ ,d〉) ∧ (e

′,d) ∈ u1} ∪ {(e,i) | (e,i) ∈ u1}. The elements in
{(e,i) | (e,i) ∈ u1} refer to primitive nodes, thus they do no present any interest here. Let us
denote by u′′1 the first set in u′1. We now show that u′′1

.
= u′′2 , where

u′′1 = {(e,d) | e ∈ adjG1
(e′1, 〈fC′ ,d〉) ∧ (e

′
1,d) ∈ u1}

u′′2 = {(e,d) | e ∈ adjG2(e
′
2, 〈fC′ ,d〉) ∧ (e

′
2,d) ∈ u2}.

Since G1
.
= G2 and u1

.
= u2, all the adjacents labeled with fC′ of e′1 (where (e′1,d) ∈ u1) are also

adjacents of e′2 (where (e′2,d) ∈ u2). Thus u′′1
.
= u′′2 and u′1

.
= u′2.

Case: b = putfield fC′

Let Q1 = (ρ1, v1 :: u1 :: s1, (V1, E1)), Q2 = (ρ2, v2 :: u2 :: s2, (V2, E2)),

instrb(Q1,Γ1) = (ρ1, s1, (V1, E
′
1)) and instrb(Q2,Γ2) = (ρ2, s2, (V2, E

′
2)). To prove the relation

.
=,

we must show that (V1, E
′
1)

.
= (V2, E

′
2), thus the putfield abstract rule must add the same edges

between reference nodes in E′1 and in E′2.

From abstraction transformation rule in Figure 5.5, E′1 = E1 ∪ E′′1 ∪ E′′′1 , where E′′1 =
{(e, e′, 〈fC′ , t〉)|(e,d) ∈ u, (e′, t) ∈ v1} and E′′′1 = {(e, e′, 〈fC′ ,i〉)|(e,d) ∈ u1, e

′ ∈ Γ ∪ V u
i
},

V u1
i

= {e | 〈e,i〉 ∈ u}. The definition of E′2 is similar. Edges in E′′′1 are between references

and primitive nodes, thus are not considered by
.
=. We must refer only to E′′1 and E′′2 . From

hypothesis, u1
.
= u2 and v1

.
= v2 , thus E′′1

.
= E′′2 . Thus, (V1, E

′
1)

.
= (V2, E

′
2).
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A.3.3 Proof of Proposition 6.18 (State variation correctness for single
instruction block)

We prove the state variation correctness for single instruction block by case analysis on each
instruction.

Case: b = prim op

The local variables array, the memory graph and the AMG are not affected by the execution of this
bytecode, thus we still need to prove the state variation for the stack.

Let Q1 = ((i, ρ1, s1) :: fr,G1), with s1 = n1 :: n2 :: s11, Q1 = (ρ, n1 :: n2 :: s, G), Q′1 =
((i, ρ′1, s

′
1) :: fr,G′1). From the operational semantics rule of prim op in Figure 6.4, we have

Q2 = ((i + 1, ρ1, s2) :: fr,G1), with s2 = op(n1, n2) :: s11 and, from the abstract transformation
rule, Q2 = (ρ, (n1 ∪ n2) :: s, G).

If there exists ι ∈ β, t ∈ F such that (ι, t) ∈ n1, then the value on the top of the stack is
randomized and s′1 = s1[0 7→ x] with x ∈ Val . Thus, s′2 = s2[0 7→ op(x, n2)], which corresponds
to Definition 6.16, as (ι, t) belongs to the top of the stack in Q2 ((ι, t) ∈ n1 and obviously

(ι, t) ∈ (n1 ∪ n2)). Thus s′2
s1,β
←→ s′1.

Case: b = pop

In both concrete and abstract semantics, the instruction pops a value from the stack. The rest of the
stack, the local variables array, the memory graph and the AMG remain unchanged. Thus, if Q′1 is
the state variation of Q1 with respect to Q1 and β, Q′2 = instrb(Q′1) and Q2 = instrb(Q1,Γ), then
Q′2 is a state variation of Q2 with respect to Q2 and β.

Case: b = goto a or b = ifeq a

The proof is similar with the one for pop bytecode, as the instruction does not change the local
variables array, the memory graph and the AMG and moreover, does not change the stack.

Case: b = bipush n or b = newiC or b = aconst null

A constant value is pushed on the stack (for both states Q1 and the state variation Q′1). The rest of
the frame remains unchanged, thus the proof is straightforward.

Case: b = αload x

Let Q1 = (ρ, s,G), Q2 = (ρ, ρ(x) :: s, G) (from the abstract tranformation rules in Figure 5.5),
Q1 = ((i, ρ, s) :: fr,G) and Q2 = ((i+1, ρ, ρ(x) :: s) :: fr,G) (from the semantics rule in Figure 6.4).

Let Q′1 = ((i, ρ′, s′) :: fr,G′) be the state variation , and Q′2 = ((i+ 1, ρ′, ρ′(x) :: s′) :: fr,G′).

The bytecode only pushes an element on the stack, thus the graph and local variables array do not

change. From hypothesis, we have G′
G,β
←→ G, thus the AMG in Q′2 is a state variation of the graph

in Q2 with respect to the graph in Q2 and β. The same reasonement applies to the local variables.
We still need to prove the state variation for stacks. We know that s′ is a state variation of s with
respect to s and β. The top of the stack in Q′2 (ρ′(x)) agrees with the local variables array variation,
and thus it is a state variation of the top of the stack in Q2 (ρ(x)) with respect to the top of the stack
in Q2 (ρ2(x)) and β.

Case: b = αstore x

The instruction stores the top of the stack in the local variable x. The proof is similar to the αload
x bytecode: the top of the stack in the state variation Q′1 agrees with the stack variation definition,
thus the local variable x in Q′2 agrees with the local variables array variation.
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Case: b = putfield fC′

Let Q1 = ((i, ρ1, s1) :: fr,G1), Q′1 = ((i, ρ′1, s
′
1) :: fr,G′1), with s1 = v :: u :: s2 and s′1 = v′ ::

u′ :: s′2. From the semantics rule of putfield, we have Q2 = ((i + 1, ρ1, s2) :: fr,G2) and
Q′2 = ((i+ 1, ρ′1, s

′
2) :: fr,G′2),

Since putfield does not affect the local variables and it only pops elements from the stack, the
state variation is preserved for the local variables array and for the operand stack.

To completely prove the state variation correctness, we still need to prove the graph variation:

G′2
G2,β
←→ G2.

Let Q1 = (ρ1, s1, G1) with s1 = v :: u :: s2.

Depending on the type of the top of the stack v, there are two semantics rules for the putfield
instruction (as depicted in Figure 6.4). We consider each case: v is a primitive node or a reference
node.

Let us first consider that the field manipulated is of primitive type (v ∈ Val).

We will make a case study based on the values of v and u, depending on β. We distinguish the
following possibilities:

• for v ∈ Val :

– either ∃ι ∈ β, t ∈ F such that (ι, t) ∈ v
– or ∀ι ∈ β, t ∈ F(ι, t) /∈ v.

• for u /∈ Val :

– either ∃ι′ ∈ β such that (ι′,i) ∈ u
– or ∀ι′ ∈ β, (ι′,i) /∈ u.

Based on the combination of cases presented above, we distinguish the following cases for the
abstract stack, thus the following possibilities to compute the state Q′1.

Case I: ∀ι ∈ β, t ∈ F , (ι, t) /∈ v and ∀ι′ ∈ β, (ι′,i) /∈ u

In this case, the rules of the state variation do not apply on v and u, thus v′ = v and
u′ = u. Since putfield is executed on the same objects, the same edges are added and since

G′1
G1,β
←→ G1, the conclusion is obvious G′2

G2,β
←→ G2.

Case II: ∃ι ∈ β, t ∈ F such that (ι, t) ∈ v and ∀ι′ ∈ β, (ι′,i) /∈ u

We have a new value for v′ and u is not affected by the state variation (u = u′). According
to the concrete semantics, G2 = G1[n′ 7→ v] and G′2 = G′1[n

′ 7→ v′], where n′ = adjG(u, fC′).
Applying the abstract semantics of putfield, an edge (α(u), ι, 〈fC′ , t〉) is added to G2. Thus,
G′2 is a graph variation of G2 with respect to G2 and β.

Case III: ∃ι′ ∈ β such that (ι′,i) ∈ u

According to Definition 6.16 of stack variation, u 6= u′ and u′ = α−1(o), with (o,d) ∈ u. The
transformation rule of putfield creates the links (α(u), ι, 〈fC′ ,i〉) and (o, ι, 〈fC′ ,i〉) in G2.
At the concrete level, the semantics will change the value of adjacent of α−1(o) and not u,
which respects the graph variation definition.

We now consider the case when the field fC′ is of type reference (v ∈ Obj ).

The idea is the same as the previous case, when v ∈ Val : we will make a case study based on the
values of v and u, depending on β. We distinguish the following possibilities:

• for v ∈ Obj :

– either ∃ι ∈ β such that (ι,i) ∈ v
– or ∀ι ∈ β, (ι,i) /∈ v.
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• for u ∈ Obj :

– either ∃ι′ ∈ β such that (ι′,i) ∈ u
– or ∀ι′ ∈ β, (ι′,i) /∈ u.

Case I: ∀ι ∈ β, (ι,i) /∈ v and ∀ι′ ∈ β, (ι′,i) /∈ u

In this case, the rules of the state variation do not apply on v and u, thus v′ = v and
u′ = u. Since putfield is executed on the same objects, the same edges are added and since

G′1
G1,β
←→ G1, the conclusion is obvious G′2

G2,β
←→ G2.

Case II: ∃ι ∈ β such that (ι,i) ∈ v and ∀ι′ ∈ β, (ι′,i) /∈ u

According to Definition 6.16 of stack variation, v 6= v′ and v′ = α−1(o), with (o,d) ∈ v.
The transformation rule of putfield creates the links (α(u), ι, 〈fC′ ,d〉) and (α(u), o, 〈fC′ ,d〉)
in G2. At the concrete level, the semantics rule will add the edge (u, α−1(o), fC′) in G′2
and not (u, v, fC′), as in G2. The α-abstraction is still preserved for G′2 and G2, as the

(α(u), o, 〈fC′ ,d〉) ∈ G2. Thus G′2 ⊳
α G2 and G′2

G2,β
←→ G2.

Case III: ∃ι ∈ β such that (ι,i) ∈ v and ∃ι′ ∈ β such that (ι′,i) ∈ u

According to stack variation in Definition 6.16, u 6= u′ and u′ = α−1(o), with (o,d) ∈ u. In the
same way, v 6= v′ and v′ = α−1(o′), with (o′,d) ∈ v.

The execution of putfield creates the edges (α(u), ι, 〈fC′ ,d〉), (o, ι, 〈fC′ ,d〉),
(α(u), o′, 〈fC′ ,d〉) and (o, o′, 〈fC′ ,d〉) in G2. At the concrete level, the semantics will add
the edge (α−1(o), α−1(o′), fC′) in G′2 and not (u, v, fC′), as in G2. The α-abstraction is still

preserved for G′2 and G2, as the (o, o′, 〈fC′ ,d〉) ∈ G2. Thus G′2 ⊳
α G2, and G′2

G2,β
←→ G2.

Case IV: ∀ι ∈ β, (ι,i) /∈ v and ∃ι′ ∈ β such that (ι′,i) ∈ u

This case is a simplification of the previous one, thus the proof is similar.

Case: b = getfield fC′

The instruction pops an object and pushes the field fC′ of this object on the stack. Thus, to prove
the state variation correctness, we must refer only to the new object/value pushed on the stack (the
field fC′) and prove that it can change only accordingly to stack variation rule of Definition 6.16.

Let Q1 = ((i, ρ1, u :: s1) :: fr,G1), Q′1 = ((i, ρ′1, u
′ :: s′1) :: fr,G′1). From the concrete semantics rule

of getfield: Q2 = ((i+ 1, ρ1, v :: s1) :: fr,G1), Q′2 = ((i+ 1, ρ′1, v
′ :: s′1) :: fr,G′1). Moreover, let

Q1 = (ρ, u :: s, G) and Q2 = (ρ, v :: s, G).

We can have two cases: 1) for all ι ∈ β , (ι,i) /∈ u or 2) there exists ι ∈ β such that (ι,i) ∈ u.

1) Let us consider the first case: the top of the stack in Q1 does not change, thus u′ = u. The
getfield bytecode pushes the adjacent of u in G1 on the stack. Since G′1 is a state variation of
G1 with respect to G1 and β, G1 is an α-abstraction of G′1 (G′1 ⊳

α G1). Again, we distinguish two
cases:

• either β ∩ adjG1(α(u), fC′) 6= ∅

• or β ∩ adjG1
(α(u), fC′) = ∅

In the second case, the adjacent labeled fC′ of u does not change, thus the instruction pushes the
same object/value on the stack for both G′1 and G1 (v = v′).

We now consider the first case (α(u) has an adjacent in β in G1 ). Than there exists ι ∈ β and t ∈ F
and an edge (α(u), ι, 〈fC′ , t〉) in G1, We have two possibilities: fC′ is of primitive type or is of type
reference.

If the field fC′ is of primitive type, the value of adjG1
(u, fC′) might change according with the graph

variation definition (Definition 6.16). Thus, the value pushed on the stack in G′1 will differ from the
one in G1, but it will respect the stack variation rule, since the abstract value (ι, t) will be pushed
on the abstract stack in Q2 ((ι, t) ∈ v′ since (α(u), ι, 〈fC′ , t〉) ∈ G1 ⊆ G2).
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If the field fC′ is of type reference, the adjacent of u might change. Since G′1 ⊳
α G1 and from the

points-to correctness (Proposition 6.11), instrb(Q′1) ⊳
α instrb(Q1,Γ) or Q′2 ⊳

α Q2. Thus s′2 ⊳
α s2,

(ι,i) ∈ v′ and α(v′) ∈ v′. Hence the stack respects the stack variation definition.

2) Let us now consider the case when there exists ι ∈ β such that (ι,i) ∈ u. Thus the stack variation
rule of Definition 6.16 applies to u, and u′ = α−1(o), with (o,i) ∈ u. From the abstract semantics
of getfield, (ι,i) is kept on the stack ((ι,i) ∈ v). Thus, the value of v′ will change, but it will
respect the stack variation rules of state variation definition (the proof is similar with the previous
case, depending on the type of fC′ , primitive or reference).

A.4 Soundness of inter-procedural analysis: intermediate layer

We now prove that the semantics rules for ̂invoke and ̂αreturn in the intermediate model have
the same properties as the rest of bytecode. We have to add the cases of the two new bytecodes

( ̂invoke and ̂αreturn), to the proofs that have been previously done by case analysis on each
bytecode.

A.4.1 Addition to proof of Lemma 5.5

We must show that the abstract semantics rules are monotone. We consider two pairs (Q1,Γ1) and
(Q2,Γ2) from the property space S such that (Q1,Γ1) ⊑ (Q2,Γ2), and let Q′1 = instrb(Q1,Γ1) and

Q′2 = înstrb(Q2,Γ2). We prove that Q′1 ⊑ Q′2.
By case analysis on each instruction b, based on the transformation rules presented in Section 6.5.

Case: b = invoke m

Let Q1 = (ρ, unm
:: · · · :: u0 :: s, G) and Q2 = (ρ′, u′nm

:: · · · :: u′0 :: s′, G′). From the semantics of

̂invoke,
înstrb(Q1,Γ1) = ({0 7→ u0, . . . , nm 7→ unm

}, ǫ, G)

înstrb(Q2,Γ2) = ({0 7→ u′0, . . . , nm 7→ un′m
}, ǫ, G′).

As Q1 ⊑ Q2 and Γ1 ⊆ Γ2, we have u0 ⊆ u′0 . . . unm
⊆ u′nm

, s ⊑ s′ and G ⊆ G′, thus înstrb(Q1,Γ1) ⊑

înstrb(Q2,Γ2).

Case: b = αreturn

Let Q1 = (ρ, u :: s, G) and Q2 = (ρ′, u′ :: s′, G′). From the semantics of ̂αreturn, înstrb(Q1,Γ1) =

(ζ, u, G) and înstrb(Q2,Γ2) = (ζ, u′, G′).

As Q1 ⊑ Q2 and Γ1 ⊆ Γ2, we have u ⊆ u′ and G ⊆ G′, thus înstrb(Q1,Γ1) ⊑ înstrb(Q2,Γ2).

A.4.2 Addition to proof of Proposition 6.11 (Points-to correctness)

In this section, we prove the local soundness of the intermediate model, that is the abstract semantics

rules for ̂invoke and ̂αreturn respect the local soundness, as defined in Proposition 6.11.

Case: b = invoke m

From the operational semantics of invoke m (Figure 6.4), we have a concrete state Q

Q = ((i, ρ, pnm
:: · · · :: p1 :: p0 :: s) :: fr,G)

instrb(Q) = ((0, {0 7→ p′0, 1 7→ p1 . . . nm 7→ pnm
}, ǫ) :: (i, ρ, s) :: fr,G).
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From the abstract rule of ̂invoke m (defined in Section 6.5),

Q = (ρ, unm
:: · · · :: u0 : s, G)

înstrb(Q,Γ) = ({0 7→ u0, . . . , nm 7→ unm
}, ǫ, G).

From hypothesis, we have G ⊳
α G, p0 ⊳

α u0 . . . pnm
⊳

α unm
. Moreover, the stacks are empty and

⊳
α. Thus, instrb(Q) ⊳

α înstrb(Q,Γ) according to Definition 6.20 .

Case: b = αreturn From the operational semantics of αreturn in Figure 6.4, we have

Q = ((i, ρ, v :: s) :: (i′, ρ′, s′) :: fr,G)

instrb(Q) = ((i′ + 1, ρ′, v :: s′) :: fr,G).

From the abstract rule of ̂αreturn:

Q = (ρ, u :: s, G)

înstrb(Q,Γ) = (ζ, u, G).

From hypothesis, Q ⊳
α Q, hence G ⊳

α G, ρ ⊳
α ρ, v ⊳

α u and s ⊳
α s.

Since the local variables array in înstrb(Q,Γ) equals to ζ, instrb(Q) ⊳
α înstrb(Q,Γ) according to

Definition 6.20 if G ⊳
α G and v ⊳

α u which holds by hypothesis.

A.4.3 Addition to proof of Proposition 6.13

We prove the second point of the Proposition for both bytecodes, ̂invoke and ̂αreturn: for any

Γ1,Γ2, if Q1
.
= Q2 then înstrb(Q1,Γ1)

.
= înstrb(Q2,Γ2).

Case: b = invoke m

Let Q1 = (ρ, unm
:: · · · :: u0 :: s, G) and Q2 = (ρ′, u′nm

:: · · · :: u′0 :: s′, G′). From the semantics of

̂invoke,

înstrb(Q1,Γ1) = ({0 7→ u0, . . . , nm 7→ unm
}, ǫ, G)

înstrb(Q2,Γ2) = ({0 7→ u′0, . . . , nm 7→ un′m
}, ǫ, G′).

As Q1
.
= Q2, we have u0

.
= u′0 . . . unm

.
= u′nm

and G
.
= G′, thus înstrb(Q1,Γ1)

.
= înstrb(Q2,Γ2).

Case: b = αreturn

Let Q1 = (ρ, u :: s, G) and Q2 = (ρ′, u′ :: s′, G′). From the semantics of ̂αreturn,

înstrb(Q1,Γ1) = (ζ, u, G)

înstrb(Q2,Γ2) = (ζ, u′, G′).

As Q1
.
= Q2, we have u

.
= u′ and G

.
= G′, thus înstrb(Q1,Γ1)

.
= înstrb(Q2,Γ2).
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A.4.4 Addition to proof of Proposition 6.18 (State variation correctness)

Case: b = invoke m

From the operational semantics of invoke (Figure 6.4), we have

Q = ((i, ρ, pnm
:: · · · :: p1 :: p0 :: s) :: fr,G)

instrb(Q) = ((0, {0 7→ p0, 1 7→ p1 . . . nm 7→ pnm
}, ǫ) :: (i, ρ, s) :: fr,G).

From the abstract rule of ̂invoke,

Q = (ρ, unm
:: · · · :: u0 : s, G)

înstrb(Q,Γ) = ({0 7→ u0, . . . , nm 7→ unm
}, ǫ, G).

Let Q′ be the state variation and

Q′
Q,β
←→ Q = ((i, ρ′, p′nm

:: · · · :: p′1 :: p
′
0 :: s

′) :: fr,G′)

instrb(Q′) = ((0, {0 7→ p′0, 1 7→ p′1 . . . nm 7→ p′nm
}, ǫ) :: (i, ρ′, s′) :: fr,G′).

From hypothesis, we have G′
G,β
←→ G. The stacks are empty, thus the state variation relation holds.

We need to prove the state variation for the local variables array. In Q′, p′0 varies according to stack
variation rule of Definition 6.16 in function of β and u0 (the corresponding value on the abstract
stack). In instrb(Q′), the value of local variable 0 (which is p′0) is a variation of the local variable 0

in the abstract state înstrb(Q,Γ) (which is u0) and of β, thus it respects the local variables variation
rule of Definition 6.16. We apply the same reasonment on the rest of the local variables, and we
obtain the state variation for the local variables array.

Thus instrb(Q′)
înstrb(Q,Γ),β
←→ instrb(Q).

Case: b = αreturn

From the operational semantics of αreturn (Figure 6.4), we have

Q = ((i, ρ, v :: s) :: (i0, ρ0, s0) :: fr,G)

instrb(Q) = ((i0 + 1, ρ0, v :: s0) :: fr,G).

From the abstract rule of ̂αreturn:

Q = (ρ, u :: s, G)

înstrb(Q,Γ) = (ζ, u, G).

Let Q′ be the state variation and

Q′
Q,β
←→ Q = ((i, ρ′, v′ :: s′) :: (i0, ρ0, s0) :: fr,G′)

instrb(Q′) = ((i0 + 1, ρ0, v′ :: s0) :: fr,G′).

Since the local variables array in înstrb(Q,Γ) equals to ζ, instrb(Q)
înstrb(Q,Γ),β
←→ instrb(Q′) if

v′
u,β
←→ v and G

G,β
←→ G′. By hypothesis, Q′

Q,β
←→ Q and thus the two required relations hold.
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A.5 Soundness of inter-procedural analysis: abstract layer

A.5.1 Proof of Lemma 6.30 (Monotonicity of the abstract transformation
rules w.r.t. the � relation)

Proof. By case analysis, on each instruction type.

Let
Q = (ρ, s,G = (V,E ∪ Ec

1))
Q′ = (ρ′, s′, G′ = (V ′, E′ ∪ Ec′

1))
Q1 = instrb(Q,Γ) = (ρ1, s1, G1 = (V,E ∪ Ec

1))
Q′1 = instrb(Q

′,Γ′) = (ρ′1, s
′
1, G

′
1 = (V ′, E′ ∪ Ec′

1))

From Definition 6.26, if Q �∼ι

Q0
Q′ then s �∼ι

G,G′

s′, ρ �∼ι
G,G′

ρ′ and G �∼ι

G0
G′.

Some semantics rules do not modify the AMG, hence G = G1, G′ = G′1 and ∼ι
G,G′=∼ι

G1,G
′
1 .

Case: b = prim op

Let Q = (ρ, v1 :: v2 :: s, G) and Q′ = (ρ′, v′1 :: v
′
2 :: s

′, G′). From the abstract semantics rule of prim
op in Figure 5.5, instrb(Q,Γ) = (ρ, v1 ∪ v2 ∪ TVΓ′ :: s, G) and instrb(Q

′,Γ′) = (ρ′, v′1 ∪ v′2 ∪ TVΓ′ ::
s′, G′), with TVA = {(e,i) | e ∈ A}.

As G = G1, G′ = G′1 hence ∼ι
G,G′=∼ι

G1,G
′
1 . By hypothesis, ρ �∼ι

G,G′

ρ′, s �∼ι
G,G′

s′ and

G �∼ι

G0
G′. As ∼ι

G,G′=∼ι
G1,G

′
1 , we obtain ρ �∼ι

G1,G′1 ρ′, s �∼ι
G1,G′1 s′ and G �∼ι

G0
G′1.

We still need to prove that (v1 ∪ v2 ∪ TVΓ) �
∼ι

G1,G′1 (v′1 ∪ v′2 ∪ TVΓ′).

As v1 �
∼ι

G,G′

v′1 and v2 �
∼ι

G,G′

v′2, according to Lemma 6.27, (v1 ∪ v2) �
∼ι

G,G′

(v′1 ∪ v′2).

The relation Γ �∼ι
G,G′

i
Γ′ leads to TVΓ �

∼ι
G,G′

TVΓ′ . By applying again Lemma 6.27, we obtain

(v1 ∪ v2 ∪ TVΓ) �
∼ι

G,G′

(v′1 ∪ v′2 ∪ TVΓ′) (we recall that ∼ι
G,G′=∼ι

G1,G
′
1).

Case: b = pop or b = ifeq a

Let Q = (ρ, v :: s, G) and Q′ = (ρ′, v′ :: s′, G′). The abstract semantics rule of pop pops the top of
the stack, hence instrb(Q,Γ) = (ρ, s,G) and instrb(Q

′,Γ′) = (ρ′, s′, G′). The AMG is not modified,

hence ∼ι
G,G′=∼ι

G1,G
′
1 and instrb(Q,Γ) �∼ι

Q0
instrb(Q

′,Γ′).

Case: b = goto This instruction does not modify the abstract state, hence the � relation is
preserved.

Case: b = bipush iv or b = aconst null or b = new iC

Similar to case b = prim op.

Case: b = αload x

From hypothesis, (ρ, s,G) �∼ι

Q0
(ρ′, s′, G′). Thus, ρ(x) �∼ι

G,G′

ρ′(x); moreover TVΓ �
∼ι

G,G′

TVΓ′ ,
hence (ρ, ρ(x) ∪ TVΓ :: s, G) �

∼ι

Q0
(ρ′, ρ′(x) ∪ TVΓ′ :: s

′, G′).

Case: b = αstore x

From hypothesis, (ρ, u :: s, G) �∼ι

Q0
(ρ′, u′ :: s′, G′). Thus, u �∼ι

G,G′

u′; moreover TVΓ �
∼ι

G,G′

TVΓ′ ,
hence (ρ, ρ[x 7→ u ∪ TVΓ], s,G) �

∼ι

Q0
(ρ′[x 7→ u′ ∪ TVΓ], s

′, G′).

Case: b = getfield fC′
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Let Q = (ρ, u :: s, G) and Q′ = (ρ′, u′ :: s′, G′). From the abstract semantics rule of getfield in
Figure 5.5, instrb(Q,Γ) = (ρ, u1 :: s, G) and instrb(Q

′,Γ′) = (ρ′, u′1 :: s
′, G′), with

u1 = {(e, t) | e ∈ adjG(e1, 〈fC′ , t〉) ∧ e1 ∈ V u
d} ∪ {〈e,i〉 | e ∈ V u

i} ∪ TVΓ

and u′1 = {(e, t) | e ∈ adjG′(e2, 〈fC′ , t〉) ∧ e2 ∈ V u′

d
} ∪ {〈e,i〉 | e ∈ V u′

i
} ∪ TVΓ′ .

where V u
t = {e ∧ (e, t) ∈ u}, t ∈ F , TVA = {(e, i) ∧ e ∈ A}.

Let us denote
v = {(e, t) | e ∈ adjG(e1, 〈fC′ , t〉) ∧ e1 ∈ V u

d}

w = {(e,i) | e ∈ V u
i}.

Hence, u = v ∪ w ∪ TVΓ.

We define similary v′ and w′, and u′ = v′ ∪ w′ ∪ TVΓ′ .

The bytecode does not modify the AMG, hence ∼ι
G,G′=∼ι

G1,G
′
1 .

By hypothesis: ρ �∼ι
G,G′

ρ′, s �∼ι
G,G′

s′, G �∼ι

G0
G′, Γ �∼ι

G,G′

i
Γ′ and u �∼ι

G,G′

u′.

Since Γ �∼ι
G,G′

i
Γ′, then

TVΓ �
∼ι

G,G′

TVΓ′ (A.51)

Let us now show that v �∼ι
G,G′

v′.

Let e ∈ adjG(e1, 〈fC′ ,d〉) and e11 ∈ adjG(e1, 〈fC′ ,i〉) (if it exists). Of course, (e1, e, 〈fC′ ,d〉) ∈ G
and (e1, e11, 〈fC′ ,i〉) ∈ G.

As u �∼ι
G,G′

u′, then for all (e1,d) ∈ u there exists (e2,d) ∈ u′ such that e1
d
∼ι

G,G′

e2. In other

words, for all e1 ∈ V u
d

there exists e2 ∈ V u′

d
such that e1

d
∼ι

G,G′

e2.

Moreover, let e′ ∈ adjG′(e2, 〈fC′ ,d〉), and (e2, e
′〈fC′ ,d〉) ∈ G′. In other words, (e′,d) ∈ v′.

From e1
d
∼ι

G,G′

e2, (e1, e, 〈fC′ ,d〉) ∈ G (e2, e
′〈fC′ ,d〉) ∈ G′ and Constraint 2 of Definition 5.8, we

can deduce e
d
∼ι

G,G′

e′.

From e1
d
∼ι

G,G′

e2, (e1, e, 〈fC′ ,d〉) ∈ G, (e1, e11, 〈fC′ ,i〉) ∈ G and Constraint 4 of Definition 5.8,

we can deduce e11
i
∼ι

G,G′

e′.

Hence,

• for all (e,d) ∈ v, there exists (e′,d) ∈ v′ such that e
d
∼ι

G,G′

e′,

• for all (e11,i) ∈ v, there exist (e′,d) ∈ v′, (e,d) ∈ v such that e
d
∼ι

G,G′

e′ and e11
i
∼ι

G,G′

e′.

We can conclude with

v �∼ι
G,G′

v′ (A.52)

Let us now show that w �∼ι
G,G′

v′ ∪ w′.

We remind that w = {(e,i) | e ∈ V u
i
}, where V u

i
= {e | (e,i) ∈ u}.

By hypothesis, u �∼ι
G,G′

u′; hence, for all (e,i) ∈ u (or for all (e,i) ∈ w)
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• either there exists (e′,i) ∈ u′ such that e
i
∼ι

G,G′

e′; in other words, there exists (e′,i) ∈ w′

such that e
i
∼ι

G,G′

e′,

• or there exist (e′,d) ∈ u′, (e1,d) ∈ u such that e
i
∼ι

G,G′

e′, e1
d
∼ι

G,G′

e′. For (e1,d) ∈ u,

e1
d
∼ι

G,G′

e′, let (e1, e
′
1, 〈fC′ ,d〉) ∈ G, (e′, e′2, 〈fC′ ,d〉) ∈ G′. By applying Constraint 2 of

Definition 5.8, we obtain e′1
d
∼ι

G,G′

e′2. Moreover, from e
i
∼ι

G,G′

e′ and from Constraint 5, we

obtain e
i
∼ι

G,G′

e′2.

We can hence conclude with

w �∼ι
G,G′

v′ ∪ w′ (A.53)

From (A.51), (A.52), (A.53) and by applying Lemma 6.27 we obtain

v ∪ w ∪ TVΓ �
∼ι

G,G′

v′ ∪ w′ ∪ TVΓ′

Case: b = putfield fC′

Let Q = (ρ, v :: u :: s, G = (V,E ∪ Ec)) and Q′ = (ρ′, v′ :: u′ :: s′, G′ = (V ′, E′ ∪ Ec′)). From the
abstract semantics rule of putfield in Figure 5.5,

instrb(Q,Γ) = (ρ, s,G1 = (V,E ∪ (Ec ∪ E1)))

instrb(Q
′,Γ′) = (ρ′, s′, G′ = (V ′, E′ ∪ (Ec′ ∪ E′1)))

with

E1 = {(e, e′, 〈fC′ , t〉) | (e,d) ∈ u, (e, t) ∈ v, e 6= nnull⊥ }∪
{(e, e′, 〈fC′ ,i〉) | (e,d) ∈ u, e 6= nnull⊥ e′ ∈ Γ ∨ (e′,i) ∈ u}.

E′1 is defined similary for u′, v′ and Γ′.

As G ⊆ G1, G′ ⊆ G′1, by applying Lemma 6.28 we obtain ∼ι
G,G′⊆∼ι

G1,G
′
1 .

By hypothesis, Q �∼ι
G,G′

Q0
Q′, hence ρ �∼ι

G,G′

ρ′, s �∼ι
G,G′

s′, v �∼ι
G,G′

v′, u �∼ι
G,G′

u′ and

G �∼ι

G0
G′. As ∼ι

G,G′⊆∼ι
G1,G

′
1 , then ρ �∼ι

G1,G′1 ρ′, s �∼ι
G1,G′1 s′.

We still need to prove that G1 �
∼ι

G0
G′1, which corresponds to G1 ⊆ G0 ⊕∼ι

G′1, or

(V,E ∪ (Ec ∪ E1)) ⊆ (V,E ∪ Ec
0)⊕∼ι

(V ′, E′ ∪ (Ec′ ∪ E′1))
= (V,E ∪ (Ec

0 ∪ Ec′
1)).

As G �∼ι

G0
G′, then G ⊆ G0 ⊕∼ι

G′ or

(V,E ∪ Ec) ⊆ (V,E ∪ Ec
0)⊕∼ι

(V ′, E′ ∪ Ec′)
= (V,E ∪ (Ec

0 ∪ Ec′′)).

The idea is to show that Ec ∪ E1 ⊆ Ec
0 ∪ Ec′

1, or for all (x, y, 〈f, t〉) ∈ Ec ∪ E1, we also have
(x, y, 〈f, t〉) ∈ Ec

0 ∪ Ec′
1.

There are two cases: (1) either (x, y, 〈f, t〉) ∈ Ec or (2) (x, y, 〈f, t〉) ∈ E1. In the first case, as
G ⊆ G0 ⊕∼ι

G′, then Ec ⊆ Ec
0 ∪ Ec′′; hence (x, y, 〈f, t〉) ∈ Ec

0 ∪ Ec′′. From G′ ⊆ G′1 and from
Lemma 6.29 we obtain G0 ⊕∼ι

G′ ⊆ G0 ⊕∼ι
G′1, hence Ec

0 ∪ Ec′′ ⊆ Ec
0 ∪ Ec′

1.

We now consider the second case, (x, y, 〈f, t〉) ∈ E1. We have three cases:
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1. (x, y, 〈f, t〉) ∈ {(e, e′〈fC′ , t〉) | (e,d) ∈ u, (e′, t) ∈ v, e 6= nnull⊥ }

2. (x, y, 〈f,i〉) ∈ {(e, e′〈fC′ ,i〉) | (e,d) ∈ u, e′ ∈ Γ, e 6= nnull⊥ }

3. (x, y, 〈f,i〉) ∈ {(e, e′〈fC′ ,i〉) | (e,d) ∈ u, (e′,i) ∈ u, e 6= nnull⊥ }

As u �∼ι
G,G′

u′, then:

• forall (eu,d) ∈ u there exists (eu′ ,d) ∈ u′ such that eu
d
∼ι

G,G′

eu′ ,

• forall (ev,d) ∈ v there exists (ev′ ,d) ∈ v′ such that ev
d
∼ι

G,G′

ev′ ,

• forall (e′u,i) ∈ u then

– either there exists (e′u′ ,i) ∈ u′ such that e′u
i
∼ι

G,G′

e′u′

– or there exist (e′′u′ ,d) ∈ u′, (e′′u,d) ∈ u such that e′u
i
∼ι

G,G′

e′′u′ and e′′u
d
∼ι

G,G′

e′′u′
• forall (e′v,i) ∈ v then

– either there exists (e′v′ ,i) ∈ v′ such that e′v
i
∼ι

G,G′

e′v′

– or there exist (e′′v′ ,d) ∈ v′, (e′′v ,d) ∈ v such that e′v
i
∼ι

G,G′

e′′v′ and e′′v
d
∼ι

G,G′

e′′v′

We now consider each of the three cases listed above:

1. (x, y, 〈f, t〉) ∈ {(e, e′〈fC′ , t〉) | (e,d) ∈ u, (e′, t) ∈ v, e 6= nnull⊥ }

For (eu,d) ∈ u , there are three posibilities:

• t = d, hence (ev,d) ∈ v and (eu, ev, 〈fC′ ,d〉) ∈ E1. From the putfield abstract
semantics rule, (eu′ , ev′ , 〈fC′ ,d〉) ∈ E′1. From the Rule 2a of Definition 5.9, the edge
(eu, ev, 〈fC′ ,d〉) is added by the ⊕∼ι

operation, hence (eu, ev, 〈fC′ ,d〉) ∈ Ec′
1,

• t = i, (e′v,i) ∈ v, and there exists (e′v′ ,i) ∈ v′ such that e′v
i
∼ι

G,G′

e′v′ . From the
putfield abstract semantics rule, (eu′ , e

′
v′ , 〈fC′ ,i〉) ∈ E′1. From the Rule 2a of Defini-

tion 5.9, the edge (eu, e′v, 〈fC′ ,i) is added by the ⊕∼ι
operation, hence (eu, e′v, 〈fC′ ,i〉) ∈

Ec′
1,

• t = i, (e′v,i) ∈ v, and there exist (e′′v′ ,d) ∈ v′, (e′′v ,d) ∈ v such that e′v
i
∼ι

G,G′

e′′v′ and

e′′v
d
∼ι

G,G′

e′′v′ From the putfield abstract semantics rule, (eu′ , e
′′
v′ , 〈fC′ ,d〉) ∈ E′1. From

the Rule 2a of Definition 5.9, the edge (eu, e′′v , 〈fC′ ,d〉) is added by the ⊕∼ι
operation,

hence, from Rule 2b the edge (eu, e′v, 〈fC′ ,i)〉 is also added.

2. (x, y, 〈f,i〉) ∈ {(e, e′〈fC′ ,i〉) | (e,d) ∈ u, e′ ∈ Γ, e 6= nnull⊥ }

As Γ �∼ι
G,G′

i
Γ′, then for all e ∈ Γ there exists e′ ∈ Γ′ such that e

i
∼ι

G,G′

e′. From putfield

semantics, (eu′ , e
′, 〈fC′ ,i〉) ∈ E′1. By applying Rule 2a, we add the edge (eu, e, 〈fC′ ,i, 〉) to

Ec′
1,

3. (x, y, 〈f,i〉) ∈ {(e, e′〈fC′ ,i〉) | (e,d) ∈ u, (e′,i) ∈ u, e 6= nnull⊥ }

For (e′u,i) ∈ u there are two cases:

• either there exists (e′u′ ,i) ∈ u′ such that e′u
i
∼ι

G,G′

e′u′ . From putfield semantics,
the edge (eu′ , e

′
u′ , 〈fC′ ,i〉) ∈ E′1. By applying Rule 2a of the composition, the edge

(eu, e′u, 〈fC′ ,i〉) is added to Ec′
1,

• or there exist (e′′u′ ,d) ∈ u′, (e′′u,d) ∈ u such that e′u
i
∼ι

G,G′

e′′u′ and e′′u
d
∼ι

G,G′

e′′u′ . From
putfield semantics, (eu′ , e

′′
u′ , 〈fC′ ,d〉) ∈ E′1; from Rule 2a, the edge (eu, e′u, 〈fC′ ,i〉 ∈

Ec′
1.
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