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Résumeé

Ce travail a pour principal objectif la prédictiarumérique de I'écoulement
laminaire bidimensionnel d'un fluide viscoélastiquaour d'un cylindre en milieu non
confiné. La méthode des volumes finis en coordosinéogonales généralisées est ici
adoptée pour résoudre les équations de conservdt@omodéle constitutif pour le
fluide est de type Phan-Tien Tanner simplifié (SFRRfin de stabiliser l'algorithme de

résolution, le schéma dit "Elastic Viscous SplieSses” (EVSS) est utilisé.

Le code de calcul mis au point a été validé damsasede I'écoulement newtonien.
Les résultats obtenus corroborent ceux de ladiitée. Ensuite, ce code a été appliqué
au cas d'un écoulement viscoélastique autour dylimdre non confiné. Dans ce cas,
'analyse a été réalisée pour differents nombresReégnolds Re<200) et pour
différents nombres de Deborah (0.0~0.25). Auss, daractéristiques principales de
I'écoulement (les contraintes d’extra tension védaetiques, la premiere différence des
contraintes normales et les champs de pressionjitdseses et de rotation) ont été
présentées et commentées. Enfin, les évolutiomoddre de Strouhal, de la trainée et

de la portance sont montrées.
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Abstract

The two-dimensional viscoelastic incompressiblevflzast a non-confined cylinder
is numerically simulated. The governing equatiome atated in the generalized
orthogonal coordinate system and the finite volunethod is used to descritize them.
For the viscoelastic constitutive equation, thepdified Phan-Thien-Tanner (S-PTT)
model is employed. The quadratic scheme QUICK iag to evaluate the convection
terms. In order to enhance the stability of the potations, the Elastic Viscous Split

Stress (EVSS) formulation is used to decompossttiess tensor.

The developed code was validated for the Newtofitam Then the code is applied
to predict the viscoelastic flow past a non-condingylinder. Concerning this case,
analysis was carried out for different Reynold@eg€ 0OpR@nd Deborah (0.0~0.25)
numbers. The studied flow fields are the extra-shsteess, the first normal stress
difference, the pressure field, the vorticity, aheé velocity. Also, the results for the

Strouhal number, the drag and the lift coefficierg presented and commented.
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INTRODUCTION

Turning mining waste into paste wins prize

A chemical engineer, whose work in fluid mechanics is
reducing the environmental impact of mining, has been awarded
Australia's premier national award for scientific achievement.
Professor David Boger of the University of Melbourne was awarded
the Prime Minister's Prize for Science. Boger says his research has
allowed some mines to convert their waste into a paste-like form
that is less mobile and thus is less of a threat to the environment.
His key contribution to science has been in the understanding of
how "non-Newtonian" fluids behave.

ABC Science Online - Wednesday, 5 October 2005

In the last two decades, the interest in studyimg-Newtonian fluids has increased.
This is mainly due to their wide use in chemicabgass industries, food industry,
construction, petroleum engineering, power techgglcand many commercial and
technological applications. Important examples loik ttype of fluids are slurries,
ceramics, toothpaste, gels, various kinds of mirals, some types of suspensions, etc.
Modelling the dynamics of such fluids in processesh as pipelining, extrusion,
emulsification, etc., is often a delicate and dading task, leading to mathematical
problems of relevant difficulty. Viscoelastic flEdrepresent a category of non-
Newtonian fluids. These fluids exhibit not only eais, but also elastic behaviour
(including memory effects), which is not encountene simple Newtonian fluids such

as water or air.

1. Motivation and methodology

The numerical simulation of viscoelastic fluid flag/a rich research area because
of the need to understand the viscoelastic fluidhaveur in many engineering
problems. Besides, the flow past a curved obstaclene of the daily encountered
problems in many applications. This work deals wite simulation of a viscoelastic
fluid flowing past a non-confined cylinder. The sa®lastic fluid is described by a

differential constitutive equation devised the Rhid&men-Tanner (PTT) model [1]. To

© 2008 Tous droits réservés. http://www.univ-lille1.fr/bustl
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Introduction

carry out the simulation of this flow domain, thiestacle is assumed as a long cylinder
placed inside the domain. The presence of suchbatacde exhibits some important
changes in the flow field. One of these changakeasoccurrence of the von Karman
vortex street phenomenon, beyond a critical Reynaoldmber, which is a repeating
pattern of swirling vortices induced by the unsieagparation of flow over bluff
bodies. On the other hand, it is known that thatamdof small amounts of polymer to
a Newtonian fluid can drastically change the prapsrof flows. However, these
modifications such as the drag reduction effecttte suppression of small-scale
fluctuations are still not well understood. Indettek link between these two phenomena
remains especially unclear. Hence, simulating teeoelastic fluid flow past a cylinder

can be useful to better understand these phenomena.

In viscoelastic fluid mechanics, a considerable amoof work deals with the
viscoelastic fluid flow past a cylinder. Howeverpsh of these works have considered
the problem of the cylinder placed symmetricallyiween two plates or inside a
channel. This is the well-known confined cylindeolem. The blockage ratio defines
the ratio of the cylinder diameter to the distabeéveen the two plates (or the channel
height). It is noted that the problem of a confimgtinder with blockage ratio of 0.5 has
been dealt with extensively, while the problem an+tonfined cylinder is almost
unexplored. Up to our knowledge, no work is foundwugating the PTT fluid flow past

a non-confined cylinder.

The presence of an obstacle inside the solutionaffoqmoses great complexity on
the discretization technique. The usual Cartesiaoretization of the domain fails to
trace the curved profile of the obstacle. Polar apberical coordinate systems may
represent a solution but they face another prohitenefining flat domain boundaries.
Non-structured grids arise as an acceptable sutbistitfor those traditional systems.
However, this technique of space discretization Hasavy complexity and
computational cost. In the present study, the gdized orthogonal coordinate system
is adapted to express the governing equations. $yssem of coordinates allows
avoiding the problems of the traditional coordinaystems with a light computational

cost.
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The numerical approach is based on the Finite Velitethod (FVM) which is
applied to descritize the governing equations. Tisthod is very widely used in
Newtonian fluid mechanics. Viscoelastic fluid megita was investigated, at early
beginnings, by structural engineers so the Finitement Method (FEM) is still
dominating the field. With the introduction of FVMijscoelastic fluid simulation has
benefited from the simplicity and accuracy of tmethod. The implementation of the
FVM in non-Newtonian fluid simulations is rapidlyrayving. Other methods (like
Spectral Methods SM, Finite Difference Method FDivid Boundary Element Method

BEM) have been, also, used in research works.

In summary, our main contribution in the presentkvaonsists of

* simulating the viscoelastic fluid flow with a PTiiodel,
» considering the non-confined cylinder geometry,

* and implementing the FVM in generalized orthogamwirdinates.

2. Outline of the thesis

Motivated by the objective of the viscoelastic fl@wnulation, the entire work in
this thesis is divided into four chapters. A bilisdrature review is presented in the first
chapter. This survey introduces the previous warscerning the viscoelastic fluid
flow simulation past a cylinder. This chapter rewsethe recent experimental and

numerical studies in the field.

In the second chapter, the governing differentiglations are stated. First,
Cartesian conservation equations and the consggtwquation are written. Then, the
transformation of coordinates is discussed and dbeations are re-written in a
generalized orthogonal coordinate system. The aBeds splitting scheme is presented

and the final form of the equations are stated.

The third chapter discusses the numerical methggolfirst introducing the grid
generation technique. Then, the spatial discretizats depicted emphasizing the
descritized components of velocity, pressure amdsst Next, the time marching

technique is described. Finally, mesh optimizatsoperformed.
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In the fourth chapter, the physical results arenshand discussed. The numerical
code is first validated for the Newtonian fluid ito Then, the viscoelastic results are
presented and commented. A particular attentigraid to the effects of Reynolds and
Deborah numbers on velocity, vorticity, pressurgtraeshear stress, normal stress
difference and the drag and lift forces.

Finally, the conclusions of this work are drawn gmaspectives for future work are
proposed.
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Chapter 1: LITERATURE REVIEW

1.1. Introduction

In this chapter, a literature survey is presenteditie recent work concerning the
flow of viscoelastic fluid past a cylinder. To hetut in the implementation of the
results, the flow regimes of flow around a cylinéiar Newtonian fluid are first defined.
Then, the different viscoelastic models are revitveeshow the advances of theoretical
work in the domain. After that, an overlook of ttiéferent numerical methods applied
in the field of viscoelastic fluid flow past a aytler are presented. Next, the main
experimental work is summarized. Finally, a sumnw@rthis review justifies the choice

of flow regime, viscoelastic constitutive equatiand the applied numerical method.

1.2. Flow past a cylinder in Newtonian fluids

Over decades, bluff body wake flows have had atgteal of interest because of
their direct engineering significance. As we arderested here in the flow of
viscoelastic fluids, it seems to us adequate talkd¢ice different regimes of flow past a
cylinder in the simpler case of Newtonian fluid.iF ill help to understand the effects

of viscoelasticity on the flow.
The Newtonian flow around a cylinder depends on rtiecroscopic Reynolds
number:

Re:E, 1.1
v

whereD is the cylinder diametet) is the magnitude of the free stream flow velocity,

andv is the fluid kinematic viscosity.

In the book of Sumer and Fredsge [2], nine flowmeg are specified for the flow
around a smooth, circular cylinder in a steadyenitrrThese regimes are:
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* The creeping flow with no separation from the agénsurface Re< h

* The flow with stable wake5< Re< 40 In this regime, a fixed pair of
symmetric vortices are formed downstream the cglind

* The laminar vortex shedding flow which is callednmany references the
von Karman street40< Re< 2Q01In this regime the flow is essentially
two-dimensional with no variation in spanwise direa.

 The transition to turbulence regime00< Re< 300The region of
transition to turbulence moves towards the cylindéh the increase of
Reynolds number. The vortices become three-dimeaki@/illiamson
[3]).

« The subcritical regime 300< Re<3x10°) with completely turbulent
wake.

« The critical regime $x10° < Re< 35x10°) having a turbulent boundary
layer at the separation point on only one sideybhder.

« The supercritical regime35x10° < Re<15x10°). In this regime, the
boundary layer becomes turbulent on both sideketylinder. However,
the transition to turbulence in the boundary layas not been completed
yet.

« The upper transition regimel.6x10° < Re<4x10°). Here, the boundary
layer on one side of cylinder is completely turlmtle

« The final transcritical regimeRe> 4x10°) with a completely turbulent

flow everywhere.
The schematic drawings on Figurd summarize these flow regimes.

From this description, it is shown that the flowlasninar for Re < 200. As the
nature of the viscoelastic fluids has not been g@hpletely understood, the vast
majority of numerical simulations are still limiteéd laminar flow regime and most
practical applications are in the laminar regimé&hwhe noticeable exception of the
turbulent drag reduction. The present work inveddg a new problem, so the two-
dimensional configuration will be considered. Theee-dimensional analysis needs to
employ the parallel computation techniques whidah @anned as a future step. Hence,
we shall restrict this work to Re < 200 to perfotaminar two-dimensional flow

simulations.
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Figure 1.1 Regimes of flow around a smooth, circular
cylinder in steady current (source: Sumer and Fredsee [2])
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1.3. Viscoelastic fluid models

In general, there are two main classes of visctieldlsiid models: differential
models describing the dilute solutions of polymeiecules, and integral models which
are more appropriate for more concentrated polysokitions or for melts. The present
work applies a viscoelastic fluid model of diffet@h type. So, we survey here the
recent literature models of the flow past a cylindsing both types of models, but
focusing more on the differential type. In this temt, a brief historical note about
viscoelastic fluid models is presented first. Théme published works of different

viscoelastic models are reviewed.

1.3.1 Brief history

For viscoelastic fluids, in particular polymeriquids, there are many different
constitutive equations proposed and employed. Hewethey all point out to the
presence of at least one characteristic time cohstain a differential or integral
equation for the stress. The appearance of a tonstant is related to the phenomenon
of stress relaxation typical of viscoelastic fluid$he time constan#l gives rise to a

new non-dimensional parameter, the Deborah nurbleer A/t, where the unit of time
t, iIs a typical time scale of the flow. Another namednsional number is the
Weissenberg numbani = Ay which relates the relaxation constant to a typstadar

rate y of the flow.

The simplest model designed to capture the slovaest the most important
relaxation mode of a polymer chain in a dilute paty solution is the elastic dumbbell
model proposed by Kuhn in 1934. This model consider elastic dumbbell immersed
in a Newtonian solvent. This dumbbell consists wb tbeads of massnand m,
interconnected by a spring having a stiffness @mgf k, as shown in Figuré.2. The

position vectors of the two masses are represdntead andr,. The forces of spring on

the two beads ar€, andF, .
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Figure 1.2 The dumbbell model

From that time, almost all the models are basedh concept to simulate the
viscoelastic effects. First, the Langevin equati®rused to relate the strength of the
Brownian forces to the mobility of the polymer beathrough the fluctuation
dissipation theorem and this represents the micatedevel. Then, the Fokker-Planck
equation for the density distribution function bétend-to-end polymer chain vector is
used to describe the flow-induced deformations thedrestoring forces. By that, the
models advanced to the macro-micro-scale levell960, Oldroyd transferred the
models to the macro-scale level as he introducedngortant derivative of the
polymer-contributed stress to guarantee the objéctiof the stress tensor. This
derivative is the upper convected derivative arfitst model of this type is called the
Upper Convected Maxwell (UCM) model. After that, d@yd introduced his
constitutive equation called Oldroyd-B model whicbmbines the solvent and the
polymer contributed stresses. This model descmhasy features of dilute solutions of
polymers in highly viscous solvents (Boger fluid3hese models fail to simulate
complex flows as they have two main problems. Titet problem is that they count
only for a constant shear viscosity. The secondigmieat they predict an infinite stress
at finite elongation rate which is not physicalbalistic. To fix these problems, new
models were proposed like Phan-Thien/Tanner (PTdglely Giesekus model and the

Finitely Extensible Nonlinear Elastic (FENE) modé&élong-chained polymers.
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1.3.2 Upper Convected Maxwell (UCM) and Oldroyd-B

models

The UCM and Oldroyd-B models were introduced assalt of the definition of the

upper convected derivative. The upper convectedatere of a tensoA is defined as:

Ap=o —(Ov)" A -
EA_atA+(vD]])A (Ov)" A -ArOv), 1.2

wherev is the velocity vector and is the vector differential operator.

These abovementioned constitutive equations simtled viscoelastic effect as an

upper derivative of the stress tensor. The constgequation of the UCM model is

JAY »
A—+1= D, 1.3
At 21

where A is fluid time of relaxation,t is the viscoelastic stress tenser, is the

polymer-contributed viscosity and is the rate of deformation tensor.

The Oldroyd-B model states that

AD

JAY »
A—+1= D+2An,—, 1.4
At T 2’70 7N At

wherer, is the total viscosity ang,, is the Newtonian solvent viscosity.

While the UCM constitutive equation remains an sthative model and does not
represent a real fluid behaviour, the Oldroyd-B elochn represent some real Boger
fluids. Since the introduction of these two modetsny works have implemented them
in many disciplines. We show here some examplehefuse of theses models in the

last decade for the flow past a cylinder.

Oliveira et al. [4] introduced a new finite-voluneellocated method. To validate
this new method, calculations have been carriedfautwo problems: the entry flow
and the bounded and unbounded flows around a air@ylinder. Phan-Thien & Dou
[5] simulated the flow past a confined cylinderngsparallel distributed computations.
They tested the UCM model and applied the PTT maaoledount for shear-thinning.
Dou & Phan-Thien [6] continued to focus on the paligation but they used only the

10
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Oldroyd -B model and added discrete elastic visaplg stress (DEVSS) formulation
together with an independent interpolation of tbetigity. To evaluate a new stabilized
three-field velocity-pressure-stress Galerkin/Leéagtiares (GLS3), Behr et al. [7]
tested this formulation on the case of flow pasylander placed in a channel. Sahin and
Wilson [8] extended a dilation-free semi-staggefi@ite volume method which was
proposed by Sahin [9] for viscoelastic fluid flowihis method is based on solving the
incompressible Navier-Stokes equations on all-gladral (2D)/ hexahedral (3D)
unstructured meshes. They applied it to the proldéoonfined cylinder with blockage
ratio of 0.5. Recently, Dou and Phan-Thien [10]pm®ed a parallelized unstructured
FVM using pressure correction with triangular meshgith a co-located mesh
arrangement. They simulated the flow of the Oldr8ytluid past a circular cylinder in
a channel to validate the proposed method. Theg askne grid to reach a Deborah

number of De = 1.6 at low Reynolds Re < 3.

Concerning integral models, Rasmussen [11] predemtgew technique based on a
Lagrangian kinematic description of the fluid fl@and represents a further development
of the 2D Lagrangian integral method (LIM) of UCNuifl. He attained a maximum
Deborah number of De=0.8. The convergence of thihadeis demonstrated for the
problem of a sphere moving in a cylinder filled wvan UCM fluid. A highly parallel
time integration method is presented by Caola.€tl2] to demonstrate the calculation
of two-dimensional (2D) flow of an Oldroyd-B fluidround an isolated cylinder

confined between two parallel plates.

From this survey, it is shown that UCM and Oldrdyanodels are still considered
in many works. However, they are mainly employedv&idate new methods and
techniques or to establish theoretical hypothakeghe work of Doeringet al.[13] and
Renardy [14].

1.3.3 Phan-Thien/Tanner (PTT) model

The Phan-Thien-Tanner (PTT) model was firstly idtroed [1] to overcome the
problem of infinite stress at finite elongationerahis model constrains the dumbbell
length to a maximum allowable length. After thahaR-Thien [15] has modified the
PTT model to consider the shear-thinning effectse PTT constitutive equation is

written as

11
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JAY 4
A—+Yr = D. 1.5
At =2,

In this equation, the paramet®r is a function of material properties which has

either linear or exponential form.

The PTT model represents some real dilute polynodutisns. In the work of
Baaijens et al. [16], the authors investigated ftbev of a low density polyethylene
(LDPE) melts past a confined cylinder. They testeslperformance of two constitutive
models: the exponential version of the PTT modal #me Giesekus model. They
performed the work in two parts; numerical and expental. The contribution of their
work is that they fitted the experimental dataitalfthe real values of the viscoelastic
numerical model constants. Dou and Phan-Thien $tifdied the flow past a confined
cylinder but focused on the parallelisation. Thpplaed the simplified form of the PTT
model. The main objective of their work is the ieplentation of distributed
computations. Phan-Thien and Dou [5] studied tlagy doefficient of confined cylinder
using parallel computation and concluded that ttstridution of pressure along the
cylinder will be changed by the normal stress fmceoelastic fluid. Also, they found
that the normal stress reduces drag due to the-syrometry about x-axis. They
concluded that, for the PTT model, the drag reducis mainly due to shear thinning.
Chauviere and Owens [18] developed a new spedeaient method for the accurate
integration of the mixed elliptic hyperbolic systerhpartial differential equations. The
method is illustrated by solving the benchmark peobof the flow of an Oldroyd-B
and a PTT fluid past a cylinder in a channel. Asest in the previous section, Dou and
Phan-Thien [10] simulated the PTT fluid flow pastcanfined cylinder to test the
distributed computations for fine meshes. They tbtimat the instability is due to an
inflectional velocity profile, near the cylinder.egerated by normal stress on the
cylinder surface at high Deborah number. This caly be captured with fine meshes.
Afonso et al. [19] studied the uniform steady flofwiscoelastic fluids past a cylinder
placed between two moving parallel plates for Bbeastitutive models (UCM, Oldroyd-
B, FENE-CR, PTT and Giesekus). The aim of using fivodels is to assess the effect
of rheological properties on the flow kinematicglamake patterns. Simulations were
carried out under creeping flow conditions. Accarablutions were obtained for PTT
and FENE-CR models.

12
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The PTT fluid has, also, many applications liketaagular pipe flow (Xue et al.
[20], Yamamoto et al. [21]), circular pipe and chahflows (Cruz et al. [22]), flow
through a contraction (Alves et al. [23]), lubricat (Akyildiz and Bellout [24]) ...etc.

The PTT model is actively used in simulating thewflaround a cylinder till
recently. Also, it is noted that all these simuat concern the benchmark problem of a
confined cylinder. Hence, simulating PTT fluid flgeast a non-confined cylinder is a

novelty, bearing in mind that the PTT model repnéseeal fluids.

1.3.4 Giesekus model

The Giesekus model was introduced as a remedyh®mptoblems of UCM and

Oldroyd-B models. Its constitutive is equation esathat

AE+T+—(T)2=2/7’)D, 1.6

wherea is a parameter representing the dimensionlessifityofactor”.

For the flow around a cylinder, the Giesekus mada$ used by Sun et al. [25] to
simulate the case of confined cylinder using thtMFEhe results showed a continuous
decline of drag with Weissenberg number. Baaijdred.416] fitted a Giesekus 4-mode
fluid to the low density polyethylene data. Hulsstmal. [26] implemented the FEM to
investigate the flow of an Oldroyd-B and Gieseklsds around a cylinder in a
channel. They found that the Giesekus model gieewergent results for the stress in

the wake beyond some rather small Weissenberg numbe

Despite that the Giesekus model represents sonheiseaelastic fluids; the non-
linear term in its constitutive equation poses cataponal problems. This limits the the

use of this model in numerical simulations.

1.3.5 Finitely Extensible Nonlinear Elastic (FENE)

family of models

This type of models was introduced as an alterpativthe Hookean spring force
law. It uses the same dumbbell model but consittersconnector force law proposed

by Warner in 1972 stating that the forEeis
13
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__ kQ

where Q is the end-to-end vector of the polymer ch&@i,= Tr(QQ) and Q, is some

finite constant representing the fully stretchatgd of the molecules.

With this formulation, it is not possible to forre constitutive equation from the
diffusion equation (Fokker-Planck equation) for gebability distribution function
(PDF) directly as in the case of simple HookeanngprApproximations are needed to
form the constitutive equation. Each approximat@proach leads to a different form
of the constitutive equation. So, the FENE modeatdasidered as a family of models
according to the used approximation (FENE-P, FENEENE-CR).

The FENE family of models is employed in many stégdiln the domain of flow
past a cylinder, Oliveira [27] implemented the noolar-based FENE family of models
to simulate the flow around unbounded cylinder. lResare obtained for Re=50-120
and De up to 80. His results showed that the faonaength behind the cylinder is
greatly increased for the elastic fluid, the vorghedding frequency is attenuated by
elasticity and time-averaged rms fluctuations o #panwise velocity component are
also much reduced. Lozinski and Chauviere [28]Jonhticed a new method for solving
efficiently the Fokker-Planck equation for FENE mebdThey studied the two-
dimensional FENE fluid past a confined cylinderngsthe spectral element method.
They proved the advantages of the proposed schewee toaditional stochastic
simulations. Dou and Phan-Thien [29] investigatiee triteria for the negative wake
generation for various viscoelastic fluids. Themsiated the flow of the PTT, FENE-
CR, FENE-P, and Giesekus fluids past a cylindex amnannel, with the channel moving
at a uniform speed. They showed that the critiGaidition for the negative wake
generation and the amplitude of the velocity oveoaslstrongly depend on the value of
gradient of the viscosity with respect to the shase. Ogata et al. [30] investigated the
effect of surfactant solutions on the flow pastrawtar cylinder measuring the drag and
by flow visualization. The used surfactant is acemastic fluid equivalent to 200 ppm
Ethoquad O/12 solutions. They fitted the resultth®n FENE-P fluid. They showed that
the viscoelasticity, which related to the increaapgdarent shear viscosity, is one of the

factors of the expansion of the stagnation zoné&regs of the cylinder.

14

© 2008 Tous droits réservés. http://www.univ-lille1.fr/bustl



These d'Hossam Kamal Ibrahim Abdelhamid, Lille 1, 2008

Literature Review

From this rapid survey, it is clear that the FENifly of models is more suitable
to the micro-scale simulations and to study comgiegnomena like turbulence. The

impact of these models on the real fluids is g#lly limited.

1.3.6 Other models

In order to decrease the computational cost osthmlation process, Mompean et
al. [31] presented a new methodology for the foatiah of an algebraic extra-stress
model (AESM) derivable from the Oldroyd-B constitat equation for a viscoelastic
fluid. An explicit algebraic tensor relation is ded directly from the differential
constitutive relation by involving a slow variatiarondition on the evolution of the
deviatoric part of the extra-stress tensor. Mompa2j re-adapted this methodology
for the PTT model. The application of this approdohviscoelastic fluids is very
promising. The explicit AESM gives exactly the samesults as the differential
constitutive equations in the pure shear and plarggational flows. In his thesis, Helin
[33] applied two proposed algebraic models to sateitontraction flow 4:1 and curved
circular channel. This family of models is promginbecause of their light
computational cost. On the other hand, the detetioin of model coefficients is

difficult and limited to benchmark problems whicave well-established solutions.

There are many other constitutive equations deasgrilihe viscoelastic fluid
behaviour. However, these models are less usdtkeircdse of flow around a cylinder.
One can refer to Tanner [34], Phan-Thien [35], &wens and Phillips [36] who

reviewed these models.

1.4. Numerical work

In this section, recent advances of numerical workthe viscoelastic fluid flow
past a cylinder are considered. We review the &ibifference Method (FDM), the
Finite Element Method (FEM), the Finite Volume Meth(FVM), and the Spectral
Methods (SM).

The FDM is based on the properties of Taylor exjenss and on the
straightforward application of the definition of rdatives. It is only applicable to

structured grids and it remains the reference flostadies of numerical discretization.

15
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Up to our knowledge, no FDM work is found in thetldecade concerning viscoelastic

flow around a cylinder.

Hulsen et al. [37] used the FEM to simulate thevfleast a confined cylinder by
determining the polymer stress from a microscopocieh. They replaced the collection
of individual polymer molecules by an ensemble offgyuration fields, representing
the internal degrees of freedom of the polymerstallh et al. [38] simulated the
creeping flow of an Oldroyd-B fluid past a confinedinder using a Taylor-Galerkin
pressure correction method with consistent stresmipwind scheme. They focused on
the evaluation of the features of Elastic Viscoyditthg Scheme (EVSS) and the
recovery of velocity gradients. They concluded tatatow Deborah number (De), the
use of the conventional scheme is more efficieihtjerat high De number the recovery
scheme is the superior choice. Sun et al. [25] @et between three stress-splitting
schemes. The first scheme is the discrete adapphtting method for preserving the
ellipticity of the momentum/continuity pair (the D/SS formulation). The second
scheme is the independent interpolation of the @orapts of the velocity gradient
tensor (DAVSS-G). The third one applies the discwdus Galerkin (DG) method for
solving the constitutive equation (DAVSS-G/DG). Téteidied problem was the flow
past a cylinder in a channel with the Oldroyd-B dambsekus constitutive models.
Results showed that the DAVSS-G/DG is a robust arcurate numerical algorithm
and that for an Oldroyd-B fluid model the steegst¢rgradients develop adjacent to the
cylinder and in the downstream wake for increa$deg Fan et al. [39] introduced a new
stabilized splitting formulation named MIX1 based the incompressibility residual of
the finite element discretizations and used theblpra of flow past a cylinder in a
channel to compare between the three formulati@&\sSE, DEVSS, MIX1). While,
their results proved the stability and robustnesMiX1 in a narrow range, accuracy
and stability need further investigations and thle played by the perturbation term of
the MIX1 method in flows that have a substantialidmian solvent contribution is not

yet fully understood.

The high Weissenberg number problem (HWNP) arogdeeta principal obstacle to
the viscoelastic computations. This problem reprisseéhe critical value at which
computations break down. Fattal & Kupferman [40jpwsed that the cause of HWNP

is a numerical instability caused by the failurebdance the exponential growth of the
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stress (due to deformation) with convection. Thatyoduced a remedy consisting in a
change of variables into new variables that saad@arithmically with the stress tensor.
This technique is adopted by Hulsen et al. [2&h® case of flow of an Oldroyd-B and
a Giesekus fluids past a confined cylinder at hiyh This problem is still under
investigation as Coronado et al. [41] & [42] prasena new Galerkin/Least-Squares
(GLS) stabilized finite element method for compgtwiscoelastic flows of Oldroyd-B

and Larson-type fluids past a cylinder in a channel

With the introduction of FVM, the simulation of eiselastic fluid flow has entered
a new era. Dou and Phan-Thien [17] reported a Rardirtual Machine (PVM)
implementation of an unstructured FVM for the siifigdl PTT constitutive model.
They tested the performance of the distributed adatns on the flow past a cylinder
between two parallel plates. Following the same wiayarallel computations, Dou and
Phan-Thien [6] combined the idea of the discreteptide elastic viscous split stress
(DAVSS) formulation with the independent interpasat of the vorticity to get a new
splitting scheme called DAVS®&- To validate the new formulation, they simulatbd t
flow of an Oldroyd-B fluid around a cylinder in &annel and reached De=1.8 using
unstructured FVM. The obtained results lead to irtgpu findings about the influence
of viscoelasticity on drag. They found that the gdiefficient decreases with mesh
refinement for the Oldroyd-B model. The objectiiaéle work of Oliviera et al. [4] was
to present a finite-volume based numerical metlwwdhbn-orthogonal collocated grids,
and to include second-order accurate interpolagcremes, for the prediction of Non-
Newtonian flows. They tested this technique on &MJluid flowing past a cylinder in
a channel for Re=20 and De=0.1-1.0. Continuinghendame road of collocated grids,
Alves et al. [43] implemented two high-resolutiashemes (MINMOD and SMART) to
represent the convective terms. They computeditive 6f UCM and Oldroyd-B fluids
around a confined cylinder (blockage ratio 0.5)eTRsults lead to predictions of the
drag coefficient on the cylinder for the range o¢ B 0 — 0.9. The linear stability
analysis for inertial flows of a viscoelastic fluadlound a bluff body is studied by Sahin
and Owens [44]. Their work consists of two foldgedt numerical simulation (DNS)
and numerical simulation using a constant viscositdified FENE-CR model. They
investigated the problem of linear stability of tdwnensional viscous flow past a
confined cylinder. With the same fluid model FENBR,COliveira and Miranda [45]

considered two-dimensional inertia-free (Re=0) flofxa constant-viscosity viscoelastic
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fluid past a cylinder placed symmetrically in a whal with a blockage ratio of 0.5.
Steady state results are obtained for De=0-10. Kion showed that a small
recirculation pulsating bubble was attached tocylander downstream stagnation point
leading to an increase of drag coefficient withsékity. Such a phenomenon for the

inertia flow of viscoelastic fluids has not beeeypusly reported.

In order to gain the advantages of the two methsdsie hybrid Finite Element /
Finite Volume (FE/FV) schemes were proposed. Invtbek of Wapperom and Webster
[46] FEs are used to discretize the balance of madsmomentum and a FV method is
used for the stress equation. This combinationsgga@ne improvements over the FE
scheme. They tested the flow of an Oldroyd-B flpiast a confined cylinder. The
benefit of the FE/FV hybrid scheme for complex ffoappears in the improvement of

efficiency.

At the beginning of the eighties, Spectral Meth@8lsl) was introduced to the field
of CFD. Since then, considerable number of artiti@ge been elaborated concerning
the viscoelastic flow around a cylinder. Chauviened Owens [47] developed a
stabilised SEM by solving the flow of an OldroydaBd a PTT fluid past a cylinder in a
channel. The method proved its efficiency and a-D&.85 was achieved. An a-
posteriori error indicator for viscoelastic flowlcalations is proposed by Chauviéere
[48] for a previously proposed method. He verifitags error indicator by solving the
problem of the flow of an Oldroyd-B fluid past aliogler in a channel. Owens et al.
[49] developed a new spectral element scheme $aifabcomputations of viscoelastic
flows at high Deborah numbers. They validated $iesiseme by simulating the flow past
a single confined cylinder. They demonstrated tiabikty and accuracy properties of

the new scheme.

1.5. Experimental Work

Like the numerical simulation, the experimental kvon viscoelastic fluids faces
many challenges because of the complexity of tHksds. In this section, a brief
survey of the experimental work concerning the adastic flow past a cylinder is

presented.

18

© 2008 Tous droits réservés. http://www.univ-lille1.fr/bustl



These d'Hossam Kamal Ibrahim Abdelhamid, Lille 1, 2008

Literature Review

Shiang et al. [50] used Particle Image VelociméRiV) to measure the full-field
instantaneous velocity in an inertia-less, viscsttaflow past a confined circular
cylinder. The investigated range of the Deborah Imeims De= 0.6-2.4. The flow is a
creeping one with Re<5. They found that at reldyidew De (0.6 - 1.2) the flow
reached steady-state conditions rapidly (< 10 d)fanDe = 1.8 - 2.4 the viscoelastic
flow may require as long as 90 s to reach steauly.fCadot and Lebey [51] visualized
the wake behind a circular cylinder and concludeat & drastic change of the shape of
the wake of viscoelastic solutions is observed canagb to that observed for water
injections. Also, they remarked that the aspecdboraft the wake is decreased, the
wavelength of the vortices is increased, and aelaggion of slow fluid motion is
developed behind the cylinder. This indicates ayl@lf the shear roll-up and thus an
inhibition of the shear instability. Cadot & Kum#s2] found that viscoelasticity
delayed the development of the two-dimensionalaimisity and shifted it to longer
wavelengths. They noted that the stabilizing effe€tviscoelasticity inhibits the
formation of vorticity filaments and reduce dragtimbulent flows. The paper of Cadot
[53] continued the work aiming at giving a quarttita idea of the basic viscoelastic
wake. He investigated the consequences of this flnation on the pressure field.
Cressman et al. [54] studied the velocity fluctoasi behind a rod in a quasi-two-
dimensional flowing soap film. They found that aioav concentration the velocity
fluctuations are suppressed. This implies that podymer strongly reduces the
magnitude of the velocity fluctuations. Coelho &hdho ([55], [56] and [57]) measured
the vortex shedding frequency and formation lerfgthflow around a cylinder with
Newtonian and shear-thinning aqueous solutions ethgh hydroxyethyl cellulose
(tylose) and carboxymethyl cellulose (CMC). Theyived at some important findings
concerning the critical Reynolds numbers markirgdhset and end of the various flow
regimes. They commented the boundary-layer thickaesl the diffusion length in the
laminar shedding regime versus the shear-thinning the fluid elasticity. This
enormous sophisticated study clearly emphasizedetfext of shear-thinning on the
flow properties. Pipe and Monkewtiz [58] have cleteazed the influence of small
amounts of fluid elasticity on the two-dimensiotehinar vortex shedding instability
and the effects on the fluctuating and time-averagecity fields. They mainly focused
on the evaluation of critical Reynolds number ah@ frequency of bluff body
fluctuations. It is remarked that only the last t@med work investigated the flow past
a non-confined cylinder.
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1.6. Summary of the literature survey

From the aforementioned survey, this work aimshatdimulation of the flow of a
viscoelastic PTT fluid past a cylinder placed inumtbounded media using FVM for the

following reasons:
1- The flow around a non-confined cylinder is almaséxplored area.

2- The PTT model represents real viscoelastic flugksides its simplicity
and accuracy, it is generally more stable thanQldroyd-B and UCM

models.

3- The FVM is very effective in CFD owing to its sinmpty and low

computational cost.
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In this chapter, the theoretical bases of the sardyintroduced. First, the governing
equations are stated. Then, the general charduisrief extra-stress constitutive
equation are discussed and the employed equatiorepsrted. After that, the
transformation of coordinates is investigated ahd tquations are re-written in

generalized orthogonal coordinates.

2.1. Conservation equations

The motion of a fluid is completely described bg tonservation laws for the three
basic properties: mass, momentum, and energy. $uecisothermal flow is considered
here, the governing equations are reduced to tmsecwation of mass (continuity
equation) and the conservation of momentum. Foc#se of incompressible, unsteady
flow, and neglecting the body forces, the equatbnonservation of mass is written in

Cartesian coordinate system as:

Lv=0, 2.1
and the equation of conservation of momentum is

p%v:D(— pl +T), 2.2

where D/Dt is the material (total) time derivativé] is the gradient operatoy, is the
velocity field, p is the pressure field, is the identity tensor, andl is the total stress

tensor.

To close the system, it is necessary to establishesconnection between the
(kinematic) stress tensor and the velocity fieldaohhis the constitutive equation. For
Newtonian fluids the constitutive equation is thewtion's law of viscosity:

T=2,D, 2.3
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where 77,, is the Newtonian fluid viscosity (solvent viscgsin case of polymeric

solutions). The rate-of-strain tensDris defined as

D:%[Dv+(Dv)T], 2.4

where (Dv)ij =0V, /0x, is the macroscopic velocity gradient in the flurldv)" is its

transpose.

The behaviour of polymer solutions is defined asnaxture" of viscoelastic
properties of the polymer fraction and the progsrtof the Newtonian solvent (which is
assumed to be of low molecular weight). A naturalywwo model this is to split the

stress tensor into a Newtonian stress and a polgxtea-stress tensor.

T=2p,D+1, 2.5

where 1 is the viscoelastic extra-stress tensor. The datige equation defines this
extra-stress as a function of velocity field andceelastic material quantities like the

relaxation time.

2.2. The constitutive equation

In order to find a constitutive equation that capresent the behaviour of the fluid,

there are basically two approaches:

1. In the continuum approach, Newton's law of visgos# modified or new
equations are set up to include certain featureh sas shear-dependent
viscosity and stress relaxation. Concepts of comtim mechanics can be used
to determine relevant variables and operationseXample of this approach is
the Maxwell model.

2. In the microstructure approach, the concepts ofissitaal mechanics are
applied. Starting from a specific model for the iundual polymer chains,
microscopic expressions for the stress tensor gudt®ns of motion can be
derived. An example of this approach is the Oldroyatiel.
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The constitutive equation is expected to satisgyftllowing general requirements

* Coordinate system independentais is a logical requirement of merely all
physical laws that their validity does not depemubmu expression in a
unique coordinate system. This requirement estaddighe application of
tensor notation in the expression of the constieuéiquation.

* Determinism and local actionDeterminism concerns the time marching
process. It ensures that the viscoelastic fluiddrdg memory and does not
possess foresights. In other words, the stresslased toonly the present
and past time step values. Local action means dhee sproperty but for
spatial discretization. This property guarantees timly the neighbouring
particles are involved in determining the stress pbint.

* Material objectivity: The physical interpretation of material objectvit
means that the material behaviour must be indiftete the motion of an
observer. Mathematically, it states that the coutste equation must be
“frame-indifferent” or indifferent to rigid body anslations and rotations of
the material.

* Equations for polymer solutions should also redtcethe Newtonian

behaviour of the solvent at vanishing concentration

In the general case of stress, the normal stresgpaoentsr,,,7,,,7,;, are even
functions of the shear rate. The shearing stresgpoaentsr,,, 7,5, 7,, are odd functions
of the shear rate by a symmetry argument. The rdifices between the normal
components must be zero for any fluid whose visgagepends linearly on shear rate.
However, this fact does not hold for the viscoetaitiids. In viscoelastic fluids, two
independent normal stress differencds,,(N,) can be defined as functions of shear
rate:

Nl(y) =1~ Ty,

2.6
Nz(y) =Ty ~ 133

These differences are vanishing for . 0
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In the present work, the viscoelastic extra-stitessor is related to the velocity
field through the constitutive equation proposedbgan-Thien and Tanner [59]:

A[%T—LT—TLT}+YT=2/7mD. 2.7

wherer,, is the molecular-contributed viscosity.

The effective velocity gradient tensor is defined a

L=0Ov-&D, 2.8
where ¢ is the Phan-Thien slip parameter which is estichétem linear-viscoelastic
and viscometric data.

The variableY has two forms:

e The linear form

Y =1+ ﬂTr(r). 2.9

”mO

* The exponential form

Y =ex ﬂTr<1r>j ) 2.10
,7m0

The variables is a material constant related to its elongatiehdviour. Thezero-

shearrate molecular-contributed viscosity,, is related to the molecular-contributed

viscosity 7,, through the relation [60]:

_ 2.2
=gy 011
o)

,7m:,7m0/'1 ' /j:

where y=,/2 Tr(D) is the shear rate, aridis a time parameter assumed here to be

r=A.
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The constitutive equation can now be rewritten aram@sport equation of :
D T
Aar=2u,8/70D+/1(Lr+rL )-vr, 2.12

wheren, =1y +1,, is the zero-shear rate viscosity of the fluid ghen,,/7, is the

retardation ratio.

According to the values @, & and{¢, six models can be defined as shown on Table

2.1.

Table 2.1  Different fluid models obtained by changing the
constitutive equation parameters £, & and &

£ ¢ B Viscosity Model

0 0 0 NI Newtonian

0 0 1 Mon =Moo =10 UCM

0 0 o< <1 N =No Oldroyd-B

- - 1 Mon =Moo =10 PTT

- 0 1 N =0 =M SPTT (simplified PTT)

- - - MPTT (modified PTT)

This form of the constitutive equation offers tlbldwing advantages:

* Linear viscoelastic behaviour at small strains.

* Good fit to viscosity and first normal stress diffiece for low density
polyethylene for both steady and transient shearing

* A non-zero second normal stress difference.

* Reasonable elongational behaviour at all elongatites.

Now, equations 2.1, 2.2 and 2.12 represent a clegst@m of equations written in
the Cartesian coordinate system. As the cylindecoissidered as a curved obstacle
immersed in the solution domain, the governing &qoa will be rewritten in the

generalized coordinates.
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2.3. Transformation to general orthogonal

coordinates

Orthogonal curvilinear coordinate systems (or teeegal orthogonal coordinate) of
various types turn out to be extremely useful irchamics. For the complex geometries,
the use of generalized coordinates is crucial. Type of coordinates stands to be an
effective alternative to the unstructured grids.rifey with these coordinate systems
implies heavy mathematical work to transform thevegaing equations. Also, some
terms are added to the governing equations dubetcurvature of coordinates. This
requires great attention to the physical signifceaof lengths and angles.

In the present work, the transformation techniguppsed by Pope [61] is adopted.
In his work, he stated the Navier-Stokes equatinrgeneral orthogonal coordinates to
calculate the turbulent recirculating flows in dfwber. Magnaudet et al. [62] applied
this methodology to simulate the laminar Newtorflaw around a sphere. Also, Thais

et al. [63] adapted this technique to solve the/fwound a cylinder.

In this section, we introduce and discuss the fommsmtion relations between the
Cartesian and generalized orthogonal coordinateesys Then, the governing

equations are re-written in generalized orthogonatdinates.

2.3.1 Coordinate transformation

Consider the physical Cartesian coordinate sysﬁé(m Y, z)E(xi )i=12,3 and the

generalized orthogonal coordinate sysrﬁ(u/l,wz,wg) as shown in Figurg.1.

The generalized coordinates are expressed asdusaii the Cartesian coordinates:

Y, :wl(xl’xz’xs)
W, =, (%, %, %) 2.13
Wy =5(% %0 %)
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w, \lﬂl

Figure 2.1

Cartesian and generalized orthogonal coordinate
systems

The admissible transformation between two coordingystems is carried out

through the Jacobian:
X 0% 0 |
oY, 0y, 0y,
3= 0% _| 0%, 0%, 0% - 214
oy, |0y, 0y, 0y,
0%y 0% 0%,
0y, 0, Oy

The columns of the Jacobian matrix define the hasxtorsb, of the curvilinear
coordinates:

blz{ax1 ox, 0%, }

oY, 0y, oy,
bzz[ax1 0X, axs} 215
oy, oy, oy,

b ={ax1 0X, axﬂ
P Loy, oy, oy,
The metric tensog is defined as:

g, =b, b, . 2.16
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The orthogonality condition implies thanly the diagonal terms of the metric

tensor are non zero. The scale factarsare defined as the square root of the diagonal

elements of the metric tensor. Hence, the scatermare written:
hj = ,gjj . 2.17

Cartesian coordinates have the physical dimensbriength but, in general, this
cannot be expected for curvilinear coordinates. rimitesimal physical distances

dd, , in curvilinear coordinates, are evaluated usiegscale factors:
dd; =h,dy, =1/gjjd(//j. 2.18

It should be noted here that the normalisatiorhegé physical distances is crucial.
In order to express the quantities in physical fenthe spatial derivatives are stated as
functions of the infinitesimal physical distanc@&$ie usage of the physical coordinates
keeps the physical magnitude of length and anglesthis work, the physical

components in the curvilinear coordinates are nbtethe symbol *”. For example,

the physical components of a vectdrare notedA and they are given by:
A=hA 2.19
where A is the transformed component in curvilinear system

The advantage of expressing the variables in teftiseir physical components, rather
than their covariant or contravariant componergsthat the vectors retain the same
dimensions in all directions and in all locatioBesides, there are no additional terms
for the stretching of the coordinate system. Acowly, the physical velocity field

is expressed as:

\7(\7| )i =123

<

=hv,. 2.20

These velocity components are derived by the nasataédn of the curvilinear

velocity contravariant components =d, /dt. It should be noted here that there is no

summation on indices in equations from 2.17 to 2.20
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In orthogonal coordinate system, the curvilineanfdor the divergence operator

U can be expressed in terms of stretching factdfs The stretching factors are

defined as
HijE 1 ah' :iahi 5 2.21
hh, dy, h o,
and they represent the inverse of the radius ofature of thg™ coordinate.
The curvilinear form for divergence operator isegiby:
00()=20 e s (). 022
¢, =

The transformation of governing equations to thenegalized orthogonal

coordinates can be carried out using the followirlgs (Pope [61]):

e Scalars
A= A
0A O0A 2.23
ox  9g
e Vectors
A - A,

ai_,ai—AjHjihﬁH.kd, 2.24
ox,  oc,

« Second-order tensors

Aj _’Aj'
oA, -~ . 2.25
o oA ~AHHHTA,

e Third-order tensors

Ajk - Ajk’
OA]- - - % P = K = i 2.26
ax - D(i)Aj _Aij Hi +AjikHj _Aji Hi +A<ink )

where g; is the Kronecker delta.
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2.3.2 Governing equations in generalized orthogonal

coordinate

Using the transformation relations mentioned in fhrevious subsection, the

velocity gradient is expressed as:

D(i)(v,.)::%—Hiivi +Zk:ij\7k5ij. 2.27

Consequently, the form of the rate of deformatiemsor in curvilinear coordinates

is given by:

) o,
5, == M+ N _piy - py + 2y Hiwg, | 2.28
az o7

The generalized representation of the effectivearglgradient tensor is given by:

ov,

Eij :a_ZJ‘_Hijviﬁ_;H;(kaij

a' N 2.29
é NI, - HY 25 H, G, |

2(0¢; 94 k

The governing equations can now be rewritten in gaized orthogonal coordinate

system as follows:

The continuity equation is transformed as:

>.0p(v)=0. 2.30
The conservation of momentum equation is re-fornedlab be:

ai/ﬁj +ZD(i)(/77ivi =270, -7
-2 Hi (o, ~27,0; =1, )+ T 1) o

o, 2.31
v -
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The viscoelastic constitutive equation (equatid®pis re-written as:

] 2.32

or, o gy
ﬂ,(a_t]*'m(i)(VjTij)_;Vkaij +ZVT|<J ZV,( ficHi +zv’r'k

=2upn, 5ij + A(Eik fkj + fjk l:ki )_Yfij :
Now, the closed system of the three equations 2.31, and 2.32 has to be solved

to simulate the flow of a viscoelastic fluid.

2.4. Stress splitting scheme

Several methods have been proposed in the literatar retain an elliptic
contribution of the momentum equation which is jgatarly important if a purely
viscous contribution is absent or small compareth&viscoelastic contribution. One
way to achieve this is the application of a chanfj@ariables, known as the Elastic-
Viscous Stress Splitting (EVSS) formulation. Theheme was introduced by Perera
and Walters [64]. Later, Mendelson et al. [65] exied it for the flow of a second-order
fluid. Beris et al. [66] adapted this scheme taoeastic fluid flows. The key point of
the EVSS is to split the stress tensor into elaatit viscous components by separating

explicitly the elastic and viscous stresses:
t=X+27.D. 2.33
The tensorX represents the purely elastic stress, while therderm stands for the

.viscous, or Newtonian-like, stress. By substitutithe constitutive equation 2.12 is

written as follows:

A A
A2y ivz=27 1-Y)D-24r. 2D 2.34
~ 27,(1-Y) Mo pe
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In the curvilinear coordinates, equation 2.32 a&test as:

05, ) o s o e
/1|:a—tJ+D(i)VjZij _Zk:vkzijk +;vi£iji"_Zk:kaikaJ +;V,—ZikH,—k:l

_/](Eikikj +§jk Eki)+Y§ij = an(l_Y)Ijij +2/1,7m(|:ik ij + Djk l:ki)
_af)ij ~ 2.35
—ZAUm F"‘ D(i)vj Dij

_ZAUm ka[jijki _2\7. I:V)ijik +Z\7k|jikaj _Zvj ljikij:|
Lk k k k

2.5. Summary of the theoretical study

The governing equations of the problem under camaitbn are the

conservation equations of mass and momentum andvigmelastic

constitutive equation.

» The closed system of governing equations is predernih Cartesian
coordinate system: equations 2.1, 2.2, and 2.7.

 The equations are transformed to the generalizétbgonal coordinate
system: equations 2.29, 2.30, and 2.31.

* The stress splitting scheme (EVSS) is introduced.

* The final system of equations to be resolved is:

>.0p(vw)=0 2.30

2.31
_ZH;(/)V'VI _2,7N|jli _T-ii)+ZHIJ( VIVI _2,7N|5|| _T-II)
0} _ o o o o
A T-'-D(')VJZ'I _gvkzijk +;ViZkJHI _Zk:vkzuka +;VJZ.kHJ
_A(I:ikikj +§Jk Lk')+Y2ii = an(l_Y)Dij +2/"7m(|:|k ij + Djk l:kl)
aD, 3
=20 55+ By, D"} 2.35

http://www.univ-lille1.fr/bustl



These d'Hossam Kamal Ibrahim Abdelhamid, Lille 1, 2008

Chapter 3: NUMERICAL METHODOLOGY

In this chapter, the numerical solution of the gougy equations defined in the
previous chapter is presented. Spatial and temsbeglping schemes are introduced.
After that, the boundary conditions are establisttédlally, the optimization of mesh is

presented.

3.1. The Finite Volume Method (FVM)

The Finite Volume Method (FVM) is one of the mosidely applied numerical
methods today in Computational Fluid Dynamics (CFD}e appeal of this widespread
method lies on its generality, its conceptual sioifyl and it easiness of implementation
for arbitrary grids, structured as well as unstuedl [67]. The FVM is based arell-
averaged valuesvhich distinguish it from the finite difference arfinite element
methods where the main numerical quantities ardoited functionvalues at the mesh

points.

The general form of the transport equation candael wo describe all the governing

equations:
2(/\¢)+i(/\ujd)):i @aﬁ +S®, 3.1
ot 0X; 0X; 0x

where ® is the transported quantity which can be a scalarector component, or a
tensor. The coefficients© and A have different meanings depending on the
transported variable. The first left-hand side tesnthe temporal rate of change term,
the second one is the convective term, the figittshand side term is the diffusion
term, and the last terrg, is the source term which includes all terms traatnot be
accommodated in the convective or diffusive terifable 3.1 shows the different

corresponding quantity for each governing equation.
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Table 3.1 Variables of the generalized transport equation
and their corresponding quantities in the governing equations.

Equation | & | © | A Se

Continuity | 1| 0] p 0

ZH (ov, 2/7N]-—fn-)
+ZH#( P, - 27,0, -7;)
2uBn D, +i(L,krkj+r )

- +3'V v,
Constitutive] 7 | 0 | A z 7y H Z TgH

Momentum| Ui | mo | £

"|(

+2VkrlkH V;Ty

k

The solution domain is discretized into mesh poir@ice a grid has been
generated, the FVM consists in associating a cbontlome (CV) to each mesh (nodal)
point. The essential step in the FVM is the intégraof the transport equation 3.1 over

the CV, then applying Gauss’ divergence theorenuiyig:

91 (Ao + [ AlAuopa=] A (egi?]dA+ [,SaV, 3.2

at cv

where CS stands for control surface with defined as its outward unit vector add

as the infinitesimal area ardy/ is the infinitesimal volume.

In time dependent problems, the integration isiedrout in two steps; integration
with respect to position (spatial discretizationfidhen integration with respect to time

(time marching). The general integrated form ofttla@sport equation is:
0 (,[ .
[ (E [, () dvj at+ (Al @) da)dt
= U n{@achdAj t+j([ S, dV .
At| JCS 0%

3.3
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3.2. Spatial discretization

For space discretization, the steady transporttequés derived from the general

unsteady equation 3.3, as:

[ AlAu o pA= Icsﬁ{eg_ﬂd“ [, Seav 3.4
The net diffusive flux (first right-hand term) affts the transported property along
its gradients in all directions. On the other hahd, net convective flux (left-hand term)
spreads influence only in the flow direction. Tleeand right-hand term represents the
generation or destruction of the property withire t&8V. The relative strength of
convection and diffusion must be kept in mind wigénerating the mesh to get a stable

computation process.

Now, the differential equations are expanded telalgic difference equations. The
order of expansion influences the accuracy of cdatmn. As the problem under
consideration is a two-dimensional problem, the potations are carried out by
sweeping the solution domain from west to eastsargeping domain from south to
north. Figure3.1 illustrates the notation for points and distenof scalar-variables node
(pressure nodes), x-direction vector-component®¢ity node) and y-direction vector-
components. In this notatiok, designates the physical volume of the control n@lu

with the index i = p,u,v standing for pressure, vector x-component, or oregt

component volumes respectively.
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d)g,wviviﬂ‘lli d)ﬂle‘

1 [
) ]
- .b-&-hhdld.dlldlhlﬂcll-hld R

<

D QW
y-component ! S Pressure

| velocity node v, . , Tg ' ; node i

:| x-component
1| velocity node

Figure 3.1 Notation for points and distances for pressure
velocity control volumes
The physical surface area of the control volume fiscdenoted byS"" where the

upper first index letten = p,u,v means the pressure, vector x-component, or vgetor
component volumes respectively and the second lette xy indicates the CV face
either in x-direction or in y-direction, while thewer index letters give the order of the
CV. Physical distances between successive nodesoged bydx,, for x-direction and
dy,, in y-direction where the first index letter= p,u,v means the pressure, vector x-

component, or vector y-component volumes respdygtiand the second letter

g=n,s,e,w indicates the attitude either north, south, eastyest. It is obvious that in

the present 2D case, all areas are reduced tohkeragtd all volumes are reduced to

areas.
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It should be reminded that the physical componenthie curvilinear coordinates
are noted by the symbol®. For example, the physical components of a veétoare

noted A . In the two-dimensional case, the physical vejofiild is v(,V).
Accordingly, the continuity equation is discretizasl
( U S, 1+l_ui,is?ix) ( Vi S~ V,jS?jy)zo 3.5

The momentum equation in x-direction is developgd a

(@)V Y+ (ijlj - (2’70 D11 + 211))31)1, - (ljij (2’70 D11 + Z11)) iy

1 2

+ (0\7 - (2’705 + ilZ ))8:%1 ( V- (2’70 I512 + i12 ))Suy 3.6

4

:[ uy+SJzk }/ [H vv 2,70D22+222)) 12(V'j_(2’70|521"'izl))}\/u

In this equation, the terms are evaluated usingHG¥ .

In order to carry out the computations in the hgjhmossible accuracy, two second-
order interpolating schemes are used. The diffussons are calculated with the second
order accurate Centered Difference Scheme. Theectine terms are evaluated using
the second-order accurate "Quadratic Upstreamplok&ion Scheme for Convective
Kinematics" (QUICK) scheme [68]. With that, the gentive and diffusive terms are

written at the four faces of the control volumdabws:
At the ‘East’ face — term (1):

The convective term is:

1 o1 o0 - -u
au :E(U-’- +Ui,,+1{2U FUu+ g(zun,i T Un _unﬂi)} 3.7

i+1 ... [u|]+u ]<O,

i+1,j
wheren =

i . lb +qﬂj>0
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The stress is expressed as:

|j +i _ lji+1,j_ui,j+H2 \7i,j+1+\7i,j +i 3.8
2’70 11 11—2’70 vy 1 p0) 2 11° .

L
where Hf‘p(i ) is the stretching factor calculated for t(h‘é, jt“) pressure control volume
which belongs to the pressure node at the facd™eas
At the ‘West’ face — term (2):

The convective term is:

Uu:%hu+Qi%%uu+HHJ+%@QﬂJ_mQJ_mJ@ 3.9
i . %hu+qﬂj<q
wheren = 1
i-1 . E[ui,j v, ]zo0

The stress is expressed as:

L G, -0, Vo +V, ) -
27,D,, +2,, = 2’70[ =t .V_y1,-+11'] + le‘p(i_“)—l'] 12 = J'*‘ 2. 3.10

At the ‘North’ face — term (3):

The convective term is:

__ 1 _ 1. _ 1/._ _ _
w _E(Vi,jﬂ +Vi—],j+11:§ui,j +ui,j—1 +§(2ui,n—l U, _ui,n)} 3.11
i*1 . gy ]<o
_ 2" ’
wheren =
i 1F +“]>0
J EVi'jH' Vii[2 Y
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The stress is expressed as:

4 < i,j+1 \7'—],'+1 1 \7i,'+1 +\7i—],'+1
27,0, +2,, = MO(T -H, u(i,,-ﬂ)%

! 3.12
a .., —u. a V.. | -
i,j+1 ij _ 2 i,j+1 N
where Hfu(i ) is the stretching factor calculated for t(iﬂé, j +1‘“) control volume of

x-direction vector component which belongs touh®sde at the “south” face.
At the ‘South’ face — term (4):

The convective term is:

W=%(\7., +\7i—1,j1:%ui,j—1+ui,j—2+%(2lji,n—2 v —3_U|n—1)} 3.13
] [v +v,]_1]
wheren =
-1 E[vi,j+\7i,j_1]zo.

The stress is expressed as:

- - V.. —V_, . V.. +V ..
27,D, +2,, = 2’70( - Suyl - H; u(i i) = 2_| = ]
N '
3.14
u.—u. u.+v
+ ] L1 g2 i i,j-1 +
2’70[ Sv}]/ Hl u(l ]) 2 ] Z12
The source term —term (5):
The convective term is:
1 2
w = [4(\/ +V, j+1 +\7i—1,j+1 +\7i—1,j)} ) 3.15
and
VU=—\V; +V g Vg TV U .
vu 411 VitV Y Vi, )G 3.16
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The stress is expressed as:

- = Vi VitV — Vi 3
2/70D22+222=2,70( J+L Suly; 1+Suyj 1] —H; ”u.’.J+222, 3.17
L J

where Hf‘u(i ) is the stretching factor calculated for t(i@, j““) control volume of x-

direction vector component.

In a similar way,

D. +5. = Ui,j+l_ui,j —H2 _
2,70 21 21_2,70 Sy+S\/y 1 U(i,j)ui’j
Lo 3.18
+2n \7i,j+1_\7i—lj+1+\7i,j _\7i—1j —H? \7|1 +\7i,j+1+\7i—1,j+1+\7i—1,j +5
0 uy uy 2|6 21
S+ 57 o 4

All terms are evaluated in a similar way like coctwe and diffusive terms in

momentum conservation equation.

3.3. Time discretization

For the time marching algorithm, the first-ordeccaate Euler forward explicit
scheme is applied obeying the adaptation of Maaket Cell algorithm developed by
Mompean and Deville [69]. In this method, the massservation equation, the
pressure gradient term in the conservation of maeamerequation and the boundary
conditions are evaluated at the new time len¢lL]J. The other advection, diffusion, and
source terms in the momentum conservation equatemvaluated at the old time level
(n). This decoupling procedure is based on a semiimpbrojection method in

pressure developed by Harlow and Welch [72].

The mass conservation equation is enforced in thetinge level as:

0, [@™)+o, (v™)=o0. 3.19
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The momentum conservation equation in x-direction is

E ffou- D+l u - (r0,+ )

+ (W - (2/70 I512 + i12 ))S|UT+1 ( (2’70 Dy, + zlz ))SUT

- [H;(W - (2’70522 + i22))_ |_|1 (\7ij - (2’70D21 + Z21))}\/ }n 3.20
_ _l[zvu(p(i,k) - p(i—l,k))]n+l
Pl SY+S. '
It can be rearranged in the form:
vn+1 — At B[?. - 1 (Z\/U(E(Ik) _up(i—l,k))jnﬂ , 321
S +STa
with
Blix = _{( (2’70 Dy, + le)) 4] (uu (2’70511 + i11)) M
S 3.22

SN

( (2,70 D12 + Z12 ))S j+1 (U\7 - (2’70 512 + Z12 ))SUT
- [H;(W B (2,70522 * 522))_ le(\7l] B (2’70521 + 521))}\/u}“ * Z_t

The solution algorithm consists of substituting thedue of U V”ﬂ at the mass

conservation equation. Hence, a Poisson equatiobtésned for the pressure:

C.ph; +Copih; + Gl +Cupl - Coply = Q" 3.23
where
_ 28§
tosesn,
_ 28y
2 ux ux !
S+1,j + $+1,j
C, = 3.24
’ S\ﬁ,j+1+3\-/+x1,j, '
25"

tosh S
C,=C+C,+C,+C,, and

Q" =%,Bll, - STl

py n py pn
+SJ+lBv - S’j BVij'

i+l
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Then, solving the linear system of equatioE§Cmpn+1 =Qp” at each time step
m

gives the pressure filed &&= n+ . Einally, by re-substituting in equation 3.21 tiew

pressure field a new velocity field, obeying theampressibility constraint, is obtained.

As the matrix of coefficients of the pressure mattepend only on the geometry,
the matrix is formed once and for all after consting the grid. In order to solve this
linear system of equations, the Cholesky methodpiglied. Appendix A shows the
flowchart of the developed code.

3.4. Solution domain, boundary and initial

conditions

A schematic drawing of the solution domain is shawtrigure3.2. The origin of
coordinate system coincides with the cylinder aanlin order to reach a non-confined
(unbounded) case, the boundaries of the domaitaken 30 times the cylinder radius
upstream, 60 times downstream, and 30 times apatoh cylinder side. According to
Persillon and Braza [70], extension of the solutdomain 15 cylinder diameter
upstream, 30 diameters downstream, and 10 diameteesach side is fair enough to

avoid boundary effects.

At the entry (ves) side, the only imposed condition is the entryfanmn velocity

U, in x-direction and since the entrance is suffitiedar from the cylinder, any

curvature effect is negligible. At the outletag) side, a zero-pressure boundary
condition is imposed. For theorth andsouthsides, symmetry boundary conditions are
imposed: zero-gradient across the boundary forreetion component, and zero-
velocity for the y-direction component. At the beging of computations, all velocities
in internal CVs, pressures, viscoelastic stresseszaro-initialized. Also Figur&.2
illustrates the boundary conditions.
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Figure 3.2 Schematic drawing showing the domain solution
limits and boundary conditions

3.5. Grid generation and optimisation

3.5.1 Grid generation

In 3D case the CVs are parallelogram with nodahpBiand 6 faces noted by the
capital letterdN,SE,W, T, andB which stand for north, south, east, west, top, @rttbm
respectively. In our 2D case the CVs are reduceddtangles. Figurd.3 shows the 3D

and 2D control volumes.

! —N
v N
‘,
—ly [ ) | — W o E
w P «—E P
/ﬁ
«
J S
- /
S B
3D 2D

Figure 3.3 Control volume notation for 3D and 2D cases
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However, if the velocities and pressures are botlluated at the nodes of an
ordinary CV a highly non-uniform pressure field cact like a uniform field in the
discretized momentum equations [71]. To overconmis fioblem the technique of
staggered gridis used [72]. The principle of this method is tealeate the scalar
guantities, like pressure and temperature, at npoialts and calculate the other vector
components, like velocities, at the staggered gaedtered on cell faces. FiguB4
emphasizes the staggered grid with capital letbeting the pressure CV and small

letters designating the velocity CV.

“““ i

J-1

b -1
|+2

Figure 3.4 Control volume for calculating scalar quantities
(solid colour and capital letters) and control volume for
evaluating vector components (hatched and dotted colours
with small letters)

In this work, the presentation of governing equation generalized orthogonal
coordinates is adopted. Hence, aimissible transformatiomf coordinates must be
found. Aris [73] stated that the coordinate transfation is admissible (or proper) if it
is invertible and if the ratio of volume elememsthe two coordinate systems, which is
called the Jacobial always exists and does not vanish.
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In order to generate an orthogonal grid, we usevtfecity potential¢ and the

stream functiony of the potential flow past a cylinder:

RZ

w:UOX(l'l'XZTyZ], 325
RZ

MZL%%}_XL+WJ’ 3.26

for the 3D case, 3.27

Z)generalizd - Z)Cartesian

where U, is the free-upstream velocitR is the cylinder radius andc,y are the

horizontal and vertical position measured at theeSan grid whose origin is located at

the cylinder centre..

It is obvious that these relations are valid ordy {/x*+y? >R. The Jacobian of
transformation from the Cartesian coordinate systémy, z) to the generalized

coordinate systenp,y, z) is defined as:

o oy
dp Jdp 0@
|J|: ox o0y o0z 308
oy oY oy
x oy oz
0z 0z 0z

In the present work, the case of the long cylindeonsidered; i.e. two-dimensional
simulations. Hence, we shall continue with the tumensional analysis.

The Jacobian of Cartesian to generalized coords'datecan be found by solving

the equations 3.25 and 3.226 for the varialles/). To achieve this it is better to
divide the transformation into two steps; taking #tandard polar coordinates ) as

intermediate coordinates. By that, we write:
RZ
p=U, cosé{r +Tj’ 3.29
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RZ
l//=UOSinH(I’ —TJ. 3.30

The values of(r,8) are calculated for each stream line; i.e. fordixg> 0. For

given (g ), the value ofa =r? is the root of the quadratic equation:
Ula* - (@ +@?)o® +2R% (¢ —? -UZR?)a® -R* = 0, 3.31
The value of@ is calculated from:

re

@ =arcco m) . 3.32
0

If (x,y) are obtained fromx=r cosd and y =rsiné.

By applying these transformations, an orthogonal gf the type shown in Figure
3.5 is obtained.

&EE

-25 o 25 50

() (b)

Figure 3.5 Generated orthogonal grid:
(a) the whole grid, (b) zoomed view around the cylinder
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After manipulating the equations, the Jacobianthagollowing form:

2 2
1 1—izc0529 izsinze
J=—T1K; K=l I r : 3.33
UolK|

—izsinze l—izcosze
r r

The columns of the Jacobian represent lihee vectorgb,) of the generalized

coordinate system.

2 2
b, = L {1—&2%526; —izsinze}
r r

, , 3.34
b, = L ;izsinze 1—&200520 :
UK r r
The multiplication of the base vectors resultsh@retric tensorg:
1
U,’[K
g= °| | 1 3.35

UK

It is noted here that the off-diagonal terms aftevhich proves the orthogonality of
the considered curvilinear coordinate.

3.5.2 Mesh optimization

In order to get well converged results, five meshdgy are tested: M1
(N,xN, =320x160), M2 (300x150), M3 (250x130), M4 (200x10&nd M5 (160x80).

The used machine is an office PC having an “th@bre™ 2 Quad” processor,

Q6600- 2.40GHz, , 4 cores, and 4 logical procesaod total physical memory of
3325.14 MB.

Table 3.2 shows the characteristics of the computatiom&shes and the

corresponding computation time for each mesh. dke humber of nodes i8l_, the
number of nodes on the cylinder ié,, . The symbolsd,,,... (i = p,u,v) stand for

minimum and maximum side lengths of pressure, xgmment, or y-component control

a7
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volumes. The symbolg! (i = p,u,v) represent the minimum and maximum areas

min/ max !

of pressure, x-component, or y-component contrales.

Table 3.2 characteristics of the computational meshes.

Mesh Nl x N2 NC érgin érgax £r1:1in érl;ax ér\;in ér\;ax
M1 | 320x160| 51681 1.8419E-2 2.0184 1.9485E12 2.0183 1.8427E-2.017B
M2 | 300x150| 45451 8.5977E-3 2.0149 8.5972E13 2.0149 9.0946E-3.012D

M3 | 250x130| 32881 8.5980E-3 2.016( 8.5972E13 2.0160 9.0951E-3.013

3
2

M4 | 200x100| 20301 | 9.6126E-3] 2.0224 9.6120E 2.0222 1.0234E-2.0183
M5 | 160x80 | 13041 | 1.0435E-2| 2.0272 1.0432E 2.0270 1.1167E-2.0231

Mesh N cyl Vrrﬁn Vrr?ax Vrrlljin Vr::ax Vr:1/in Vr::ax
M1 71 8.6414E-4 0.4169 8.6388E+t4 0.4169 8.6387E-4 87.39
M2 65 8.0418E-4 0.4943 8.4744Et4 0.49438 8.4743E-4 6B.47
M3 61 8.6227E-4 0.6961 9.0893Et4 0.6961 9.0887E-4 59.69
M4 55 1.3195E-3 1.3386 1.3987E+3 1.3386 1.3978E-3  6I.29
M5 51 1.7186E-3 2.2308 1.8306E+3 2.2309 1.8312E-3 (&23

Table 3.3 illustrates the computational characteristicthe used grids. The symbol

men shows the quantity of total used memory by theecdde termt Is the total

comp

computation time for a total physical time of 60@hna time stepAt =1.0x107°. These
figures concerns a viscoelastic flow at Reynoldsiber Re = 100 and Deborah number
De = 0.05.

Table 3.3 computational characteristics of meshes.

Mesh tcomp [SeC.] men [MB]
M1 425863.8 203.14
M2 334510.6 171.97
M3 292026.0 112.53
M4 196527.6 62.59
M5 110925.7 37.04

In the anticipation of the results needed in chapte four non-dimensional

guantities are considered to evaluate the meshiggns

 The non-dimensional frequency represented by theouBal number
Str=2Rf/U, where f is the frequency of vortex shedding.
* The drag force represented by the average dragiaest C, .
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» The lift force represented by the root mean sqliftreoefficient C,_,, ..

 The base pressure evaluated through the averagelessure coefficier@,, .

Table 3.4 illustrates the values of non-dimensional guastfor different mesh

grids.

Table 3.4 Comparison of non-dimensional quantities for
different mesh grids.

M2-M1 M3-M1 M4-M1 M5-M1
% % %
M1 M2 vl Pl M3 vl 2| M4 vl Pl MS vE

Str | 0,1693| 0,1694 0,02%| 0,1697 0,21% 0,190 -0,18% 78,16 -1,03%
Cq 1,3739| 1,3732 -0,05% 1,3750 0,08% 1,3697 -0,31% 6883 -0,37%
0,1714| 0,1732 1,03%| 0,1766 3,01% 0,1900 10,84% 89,1916,05%

-0,7766|-0,7767| 0,01% | -0,7807 0,52% | -0,7820 0,69% | -0,7824 0,74%

%

I-rms

bp

From Table 3.4, it is clear that only the lift coefficient $&nsitive to the mesh used.
Mesh Mg represents an optimum grid as it offers moderataputational cost without
loss of accuracy. However, upon implementation feg tode for higher Deborah
number, it is found that this grid is too fine tlialimits the results to De = 0.1. Using
the coarser gridV, allows us to reach De = 0.25. From Tal8e4, it is observed that
using gridMy is still in acceptable limits for the different malimensional numbers.
Bearing in mind that the uncertainty on the lifefccient reaches 10%. Hence, ghti

is employed in the rest of the work.

For this selected grid, the effect of the time stetudied. Four time steps are
tested; At, = 05x107°, At, =10x107°, At,=15x10°, and finally At, =20x10°

which is the largest time step that gives convergesults.

Figure3.6 shows the effect of changing the time stepheniristantaneous values of
the vertical velocity, drag coefficient and lifteficient. It is seen that the increase of
the time step leads to a phase shift of the thuemtities. For the drag force, the change
of the time step increases the mean drag coefficidre running time for different time
steps is shown in Table8.5. Values of the four non-dimensional quantiges also
calculated and the relative change with respetiieésmallest time step is computed for

each non-dimensional quantity are given in TaBlé.
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From Table 3.6 and Table3.5, it is seen thaft =1x10™ offers good accuracy

with a reasonable running time.

Table 3.5 Running time for different time steps.

Time step Running time [sec.]
At, = 05x1073 257526.9
At, = 1.0x10° 196527.6
At, =15x10° 139780.0
At, = 20x107 105790.1

Table 3.6 Relative change of values of non-dimensional
quantities for different time steps.

dt2-dtl, | d3-dtl, | dt4-dtl,

dt1 dt1 dt1
Str 0,02% 0,21% -0,18%
C, -0,05% 0,08% -0,31%
Crine 1,03% 3,01% 10,84%
Cop 0,01% 0,52% 0,69%

Finally, the influence of the number of points dre tcylinder surface on the
obtained results is checked. For the selectedsidnd with the optimized time step
=51, N

At =1x107, four values ofN,, are checkedN,,, = 61N, ois = 41, and

N, =31. Greater values did not give convergent resultsl amaller values

dramatically deteriorate the results. FigBré shows the results of the non-dimensional
quantities for different numbers of points on thdinder. Figure3.7 proves that

N, =41 is the most convenient. In summary, the selectetiig M4 (200x100) with

N, =41 andAt =1.0x10" sec
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Figure 3.6 Effect of changing the time step on
(a) vertical velocity, (b) drag coefficient and (c) lift coefficient
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Figure 3.7 Values of non-dimensional quantities for different
number of points on cylinder

3.6. Summary of numerical methodology

* The Finite Volume Method (FVM) with a staggereddgs applied to solve

the governing equations.

* The convective terms are evaluated using the seocatet accurate QUICK
scheme. The diffusion terms are calculated withseond order accurate

centred difference scheme.

* For the time marching algorithm, the first-ordercaate Euler forward
explicit scheme is applied obeying the adaptatibnMarker and Cell

algorithm

* The velocity potential and the stream functionha potential flow are used

to generate the mesh.

* A grid dependence study was carried out. The gritias 200x100 nodes
with 41 grid points on the cylinder and a time sfdp= 1.0x107
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Chapter 4: RESULTS AND DISCUSSION

4.1. Overview

After stating the governing equations and discugsire numerical method, this
chapter introduces the physical results for thdlerm under consideration. The case of
viscoelastic PTT fluid past a non-confined cylindealmost unexplored. As mentioned
in the literature review, almost all the publishedrks concern the confined cylinder
because it is considered as one of the benchmaikgons used to validate numerical
codes. Up to our knowledge, only two works can @menfl treating the non-confined
cylinder; the article of Oliveira [27] who simulat¢he FENE-CR fluid and that of Pipe
& Monkewitz [58] who investigated experimentallyetiGinzburg-Landau fluid flow.
On the other hand, many results are availablehferNewtonian fluid flow past a non-
confined cylinder; e.g. Willamson [74], Persillon Braza [70], Thais et al. [75],
Ramsak et al. [76]. Consequently, the simulatioNedvtonian fluid flow is first carried
out to validate the present code. For the visctielfiaid case, the results are validated
by comparing the behaviour of the different quagitagainst the corresponding results
for the confined cylinder case and against thosattuér viscoelastic fluids flowing past

a non-confined cylinder.

The outline of this chapter is arranged to showNlegtonian fluid results at first.
Then, the viscoelastic fluid results are presenked.the viscoelastic results, we show
the results of the particular quantities directiated to the viscoelastic fluids which are
the extra-shear stress and the normal stress ehffer Then, the results for the main
physical quantities influenced by the elasticity thie fluid are presented. These
quantities are the pressure, the velocity field #mal vorticity. For each quantity, an
overall view of the flow domain is drawn for Reydsland Deborah numbers. To
guantify the results, curves are plotted versusnBlels and Deborah numbers. The final
part of this section discusses the viscoelastiecedfon Strouhal number, lift and drag
coefficients. In each step, the trend of the preSedings is commented and compared

to the previous literature.
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4.2. Results for Newtonian fluid

The developed code is tested for the Newtonian d¢Bsesetting the polymer

relaxation time to zero. The results of this wor& eompared with the works of:

e Liu et al. [77] who studied the transition to tuldmce using a numerical
approach based on multigrid and preconditioninghogs.

e Thais et al. [63] who carried out their work forNewtonian laminar flow
using a staggered FVM.

* Oliveira [27] who simulated the viscoelastic flovithva collocated FVM.

« Ramsak et al. [76] who applied the Boundary Elemdethod (BEM) to

simulate the unsteady laminar flow.

Table4.1 shows the number of point$, and the non-dimensional quantities: the
Strouhal numbeiStr, the average drag coefficie@,, the root mean square of the lift

coefficient C and the average base pressure coeffidigptfor the present work

I-rms?

and the literature at Re = 100.

Table 4.1  Verification of Newtonian results versus
literature (Re = 100)

Present work Liu et al. Thagt al. | Oliveira | RamsSak et al.
N, 20000 12228 12800 19860 50000
Str 0.173 0.164 0.171 0.167 0.172
Cq 1.356 1.350 1.348 1.370 1.299
C s 0.173 0.339 0.261 - 0.173
Cop -0.788 -0.848 -0.808 - -

Values in Table4d.1 show a good agreement with the present work. dilesent
value of Strouhal number is close to the previowsks (0.0% - 4.2%) although our
result is systematically larger. This is possiblyedto the finer mesh and the used
discretization method of the present work. Fordherage drag coefficient, the range of
difference with other works is 0.36% - 5.9% and pinesent result seems to be larger.
Regarding the root mean square lift coefficiengréhis a noticeable dispersion of the

values. For the average base pressure, the vakiessa very close (2.0% - 6.6%).
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Another way to asses the present results is thegohenon of vortex shedding
which is called in many references the “von Karrsémeet”. Present simulations show

up that the flow past a cylinder exhibits threecassive regimes:

e Creeping regime (Re < 5) with no separation froemdylinder.

* Laminar steady regime (6Re < 47) in which two steady vortices are created
behind the cylinder. The vortices are symmetricualibhe x-axis. As the
Reynolds number increases the inertia force doménaver the viscous force
and the instability region becomes bigger and edte)

* Laminar vortex shedding regime (Re47) where the two vortices are no

longer symmetric or steady announcing the onstieof’on Karman street.

Our present results agree very well with the previliterature like the experimental

work of Williamson [74] who foundRe, = 49Pipe & Monkewitz [58] who arrived at
Re, =50, and Coutanceau & Defaye [78] witRe, = AFigure 4.1 depicts the

velocity profile around the cylinder for Re=4, 48nd 47 respectively clarifying the
different pre-mentioned flow regimes. Results tog Newtonian case are summarized
in Table4.2.

Table 4.2  Results for Newtonian case.

Re Str C, C ims Cop

40 0.1177 1.5400 0.0005 -0.5788
45 0.1200 1.4700 0.0017 -0.5662
47 0.1210 1.4477 0.0063 -0.5643
50 0.1252 1.4332 0.0225 -0.5783
60 0.1388 1.4030 0.0630 -0.6289
80 0.1584 1.3691 0.1238 -0.7142
100 0.1726 1.3558 0.1729 -0.7883
125 0.1862 1.3538 0.2251 -0.8706
150 0.1957 1.3593 0.2622 -0.9357
175 0.2052 1.3647 0.2994 -1.0007
200 0.2120 1.3693 0.3231 -1.04772
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Newtonian - Re=4.0
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2

Newtonian - Re = 40

(b)

Newtonian - Re =47

L=

3f

()

Figure 4.1 Velocity field for a Newtonian fluid flow at:
(a) Re =4, (b) Re = 40, and (c) Re = 47
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4.3. Viscoelastic Results

The experimental literature ([51], [54], [56]) imdtes that a very small amount of
polymer additives strongly affects the flow propest compared to the purely
Newtonian flow. The viscoelastic effects manifésrhselves mainly in the reduction of
the drag force, the reduction of the frequencyatex shedding, and the increase in the
length of formation of the downstream instabilitggion. The higher elongational
viscosity of viscoelastic fluids is quoted as rasfible for these observations. It is

expected from the numerical simulation to corrobothese experimental results.

The applied viscoelastic fluid model is the simplif Phan-Thien-Tanner (SPTT)
model in its exponential form. The used model patens are7, = 0£&=0, £=01,

[ =1andn= 1(equations 2.10, 2.11, and 2.12)

Results are obtained by fixing the overall fluichdigy at unity and assuming a unit
velocity at the far upstream entry and changingpblmer viscosity to get different
Reynolds number for the same Deborah number. Tthenpolymer relaxation time is

increased to vary the Deborah number.

Two longitudinal sections (S1 and S2), two crosstises (S3 and S4), two
streamlines (SLu and SLd) and a downstream poirntherx-axis ) are selected (cf.

Figure4.2) to study the evolution of the main flow propes.

Figure 4.2 Longitudinal and cross sections, and streamlines
used to quantify the results.
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4.3.1 Extra-Shear Stress

Viscoelastic fluids are characterized by introdgagxtra-stresses to the flow. These
stresses change all fluid fields and bring up tled-known properties of rod climbing,
die swell...etc. Till now, the full comprehension diese extra-stresses and the
accompanied phenomena is not complete and seesednches are still exploring these

areas.

In this section and in the next one, these extesses are introduced and
commented. This section concerns the off-diagomahponent of the stress tensor
which represents the shear stress. In the nexbeethe diagonal components (normal

stresses) will be presented.
4.3.1.alnfluence of Reynolds number on the extra-shear séiss

It is well known that the shear stresses are dyreetated to the fluid viscosity. The
main objective of this section is to explore anamfify this relation. As usual, the
Reynolds number is used as an indicator of thel fluscosity as they are in inverse

proportionality.

In order to represent the distributions and valoéshe extra-shear stress, the

following expression of the normalized extra-sh&agss is used:

T, 4.1
R

T12 = T12

whereT,, is the calculated value of extra-shear strggss the total fluid viscosityl

Is the far upstream entry velocity, aRdis the cylinder radius.
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Figure 4.3 Extra-shear stress distribution for De = 0.15 at
(a) Re = 40, (b) Re = 60, and (c) Re = 100
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Figure4.3 depicts the extra-shear stress distribution®&= 0.15 with Re= 40, 60,
and 100 respectively. From these shear distribgtitins clear that extra-shear stress is
strongly influenced by the increase of the Reynoldsber. The maximum extra-shear
stress zone is located at the cylinder surfacéherupstream side and this location does
not change with the Reynolds number. Before thetoofthe laminar vortex shedding
instability, the extra-shear stress is symmetrcdistributed about the x-axis. With the
onset of the von Karman vortex street, the extemsistress contours are extended and
deformed. With further increase of the Reynolds bhem a periodic alternance of
positive and negative shear zone are found alomg-#xis which indicates strong flow
instabilities.

For the flows havingRe< Re,, the zero-extra-shear stress contour is plotted on

r?

Figure4.4 for a viscoelastic fluid (De=0.15) flowing witke = 40 and 45. This figure

illustrates that the change of the shear stregsrisslight for this flow regime.

112 De =0.15 -150 sec

Re =40
— - — Re =45

N
LANLIL Y L Y IE

N
LA L L L

Figure 4.4 Zero-extra-shear stress contour at De = 0.15 for
Re=40 and 45.

With the onset of vortex shedding, the extra-shetaess becomes extremely
complicated as shown on Figu#es. This figure shows the zero-extra-shear st@ss
De=0.15 at Re = 80, 100 and 125.
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Figure 4.5 Zero-extra-shear stress contour at De = 0.15 for

Re=80, 100 and 125.

Figure4.5 shows the non-homogeneity of the extra-sheassthich is linked to

the increase of Reynolds number. Simultaneously, dbntours tend to be vertical

downstream the cylinder for elevated Reynolds numbhis is possibly due to the

decrease of fluid viscosity and the normal streerdnces. This shows the complexity

of viscoelastic flows with instabilities.

Some sample values of the extra-shear stress aea @ Figure4.6 which plots

these values for Deborah number of De = 0.15 & réiit Reynolds number at section

S1, section S2, and streamline SLu. These cureeglaited for the time instant.

© 2008 Tous droits réservés.
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Figure 4.6 Extra-shear stress magnitudes at De = 0.15 for
Re =40, 60, and 80 along :
(a) section S1, (b) section S2, and (c) streamline SLd.
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Curves on Figurd.6 show that the normalized magnitude of the estti@ar stress
reaches a maximum of order 6 on the streamlinecadjato the cylinder on the
upstream side. This maximum value increases by ¥9%n the Reynolds number
increases from 40 to 60. For a Reynolds nhumbeeass from 60 to 80, the maximum
normalized value of the shear stress increases28y. Zrhe increase of Reynolds
number leads to strong changes downstream till stamiie about 4+8 then the
fluctuations of the extra-shear stress become fodigial waves with decaying

amplitude. Note that the changes of the upstream dlre almost negligible.
4.3.1.binfluence of Deborah number on the extra-shear str&s

In this subsection, we consider the influence @ Breborah number. To explore
this effect, flows with a fixed Reynolds number aeamined at different Deborah
numbers. For this, we consider two of flow kindse first one is the stable flow with
the steady vortices and the other is the flow \athinar vortex shedding instability.

For a steady flow, Figuré.7 shows the contour lines of opposite signedrssteass
(0.5 and -0.5) for Re = 40 at different Deborah bars. This figure demonstrates that
the fluid elasticity causes the shear stress contoushrink and shift in the flow
direction. This effect is noticeable on the upstieside of the cylinder, while it is

negligable downstream the cylinder.

112 Re =40 —— De=0.05

o

Figure 4.7 Extra-shear stress contours for Re = 40 and
different Deborah numbers
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Magnitudes of the extra-shear stress are plotted ftow with Re = 40 at different
Deborah numbers along section S1 and along stnear8liLu (Figuret.8). This figure
shows that the difference in magnitudes of she#in Weborah number is very small

and almost unnoticeable for this flow regime.
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Figure 4.8 Extra-shear stress magnitude for Re = 40 at
different Deborah number along (a) section S1 and (b)
streamline SLu

Figure4.9 shows the extra-shear stress distributionHerctitical Reynolds number
Re = 47 at De=0.05, 0.15, and 0.25, respectivelg. &n see the asymmetry of the
extra-shear stress at De = 0.05. Also, it is reetatkat the increase of Deborah number
restores the symmetry of the extra-shear stresshdison which indicates a restoring

of the flow stability and the suppression of thetew shedding instability.
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Figure 4.9 Extra-shear stress at Re = 47 with:
(a) De = 0.05, (b) De = 0.15, and (c) De = 0.25
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The reduction of the shear stress contour asymmetspiown on Figuré.10 as
contour lines of normalized shear stress of 0.5-8rfsl are drawn for De = 0.05, 0.15,
and 0.25 at Re = 47. The difference between negatind positive shear stress contours
are indicated for different Deborah numbers. Whils difference is 1.9 unit length in

the case of De = 0.05, it reduces to zero for Me25.

‘Re=47

0 | | | | 5 | | | | 10

Figure 4.10 Extra-shear stress contour at Re = 47 for De =
0.05, 0.15, and 0.25 with indication of asymmetry reduction

To review the magnitudes of the extra-shear striéggjre 4.11 and Figuret.12
provide these magnitudes for all sections defime#8igure4.2 for a flow having Re =
47 with various Deborah numbers. From these cuivesnoticed that the effect of the
increased Deborah number manifests itself in rathe fluctuations on section S2.
On Figure4.11 b, the magnitude of the negative shear spreak is augmented by 8%
for a Deborah number increase from 0.05 to 0.25that streamline SLu, the shear

stress peak increases by 27% when the Deborah mumebeases from 0.05 to 0.25.
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Figure 4.11 Extra-shear stress magnitudes for Re = 47 along:
(a) section S1, (b) section S2 and (c) streamline SLu
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Figure 4.12 Extra-shear stress magnitudes for Re = 47 at:

(a) section S3 and (b) section S4

It should be noted here that in the case of thentded cylinder the boundary
conditions impose zero-velocity at the boundaresied at R. From Figure4.12, it is
remarked that the largest magnitude of shear sgsdesind near the locatiorR4deading

to differences between the confined and non-codfeyinder cases.

4.3.2 Normal stress difference

For a Newtonian fluid in a laminar shear flow, tieemal stresses are always equal.
Because of the viscoelastic properties, the nosmatses are different and two normal
stress differences are established to expresshiege of normal stresses. For two-
dimensional flows, only the first normal stressfetiénce (N, = 0,, — 0,,) is relevant.
Both the normal stress differences and the shesmosity are called the viscometric

functions characterizing the material viscometrggerties of the fluid.

In this section, the effects of Reynolds and Deborambers on the normal stress

difference are presented. The calculated valueswhal stress difference are scaled as:
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N, = N1 T, 4.2
R

where N, is the dimensional value of the first normal strdéfference,;, is the total

fluid viscosity, andJ,, is the far entry free stream velocity.

4.3.2.alnfluence of Reynolds number on the normal stressifference

The increase of the Reynolds number leads to tetasf the von Karman street
instability. Normally, the initiation of flow instalities brings up strong perturbations in
the flow properties. The normal stress differercéat expected to deviate from this
rule. As the Reynolds number increases, the visémaes decrease and the effect of

the normal stresses becomes more obvious.

Figure4.13 illustrates the change of the normal strefsrdince distribution around
the cylinder for fluids at De = 0.15 and for Re5; 80, and 150, respectively. All these
distributions show that the increase of the Reymaldmber leads to increase of the
positive normal stress difference. This indicatest the normal stresses in the flow
direction are growing faster than the stressehélateral direction. This shows the
extensional effects of the viscoelasticity.

Concerning the steady vortex regime, Figdr&4 shows the zero-normal stress
difference for Re = 40 and 45 and fixed Deborah beimDe =0.15. This figure
illustrates that the contours appear to be regamal symmetric. With the increase of
Reynolds number, the contour is simply extendetl wit deformation.
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Figure 4.13 First normal stress difference distribution for De
=0.15 at: (a) Re = 45, (b) Re = 80 and (c) Re = 150
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Figure 4.14 Zero-normal stress difference contour for De =
0.15 at Re = 40 and 45

For the regime of laminar vortex shedding, the gesnin the normal stresses
caused by the increase of Reynolds number are exminl order to demonstrate this,
Figure4.15 shows the zero-normal stress difference coritouDe = 0.15 at Re = 80,
100, and 125. This figure depicts the strong changéh fluid viscosity. Oppositely to
the steady regime, the increase of the Reynoldsbeurteads to shrinkage of the
contours. Also, it is noted that the contours a®aned especially around the cylinder.

This illustrates the complexity of the interactioinflow instability with viscoelasticity.

1F

N1 De=0.15 -150 sec

Figure 4.15 Zero-normal stress difference contour for
De =0.15at Re = 80, 100 and 125
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The magnitudes of the first normal stress diffeeeat De = 0.15 are plotted on
Figure4.16 and Figurel.17 for the sections S3, S4, S1, and S2, andnslirea SLu,

respectively. From these figures, on can obserae th

e Along the x-axis, the maximum magnitudes are fowiith on the cylinder
surface. The maximum is increased by about 23% \leReynolds number
increases from 40 to 80.

e The values and fluctuations on the lower sectiona&2stronger than their
corresponding on section S1. The maximum value rscam the lower
section at a distance of aboutRLOThis maximum increases by about 80%
when the Reynolds number increases from 60 to 80.

* On the two cross-sections, the upstream side doeksugely affected by the
Reynolds number as the maximum value decreasebdayt 2% keeping the
symmetry around the x-axis. For the downstream, dltke changes are very
remarkable in behaviour and magnitudes as the mawrimmagnitude
increases about 135% for the increase of the Rdgrmaimber from 40 to 60.
One should bear in mind the onset of the flow ipiéitg at Re = 47.

De=0.15 Section S3 De=0.15 Section S4

30

30

20 20

10 10

>0

[]%

-10 -10

-20 -20

|
-0.5
N1

(@) (b)

Figure 4.16 Normal stress difference magnitudes for De =
0.15 at: (a) section S3 and (b) section S4.
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Figure 4.17 Normal stress difference magnitudes for De =
0.15 at: (a) section S1, (b) section S2, and (c) streamline SLu.
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4.3.2.binfluence of Deborah number on the normal stress ffierence

As shown for the shear stress, the increased Dieburmber suppresses the flow
fluctuations while restoring the flow stability. brder to demonstrate this effect on the

normal stress difference, we consider the caseeof RO Re< Re, ) and the flow at

Re =47 Re=Re,).

For the steady vortex regime, Figuel8 shows the normal stress difference for
Re= 40 at De = 0.1 and 0.2, respectively. On figisré, we notice a small reduction of
normal stress difference on both sides of the dglirwith increasing Deborah number.

Re=40-De=0.1 M
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0.2
0.40
0.0
£0.03
£0.03
L0
0.45
£0.75
0585
-1.30
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2.3
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-3.00
-3.42
385
427
.70
5.2
555
£.39

Re=40-De=0.2 M1

1.24
0.&2
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0.00
0.03
.05
£.10
045
0.75
.88
-1.30
.73
215
2487
-3.00
=342
385
427
470
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545
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(b)

Figure 4.18 Normal stress difference distribution for Re = 40
at: (a) De = 0.1 and (b) De = 0.2
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The zero-normal stress difference contour lindasted on Figuret.19 for Re = 40
at De = 0.05, 0.1, 0.15, and 0.2. Downstream ofcyimder, these contours show a
tendency to shrink the negative zones of the nostraks difference which means the
increase of the first normal stress. The downstream-contour length decreases by
about 8% when Deborah number increases from 0.0.20 On both sides of the

cylinder, the contours extend and their width iases.

N1 Re=40

Figure 4.19 Zero-normal stress difference contour for Re = 40

The magnitudes of the normal stress differencelea@n on Figure.20 for Re =40
at De = 0.1, 0.15, and 0.2 along section S1 andgastreamline SLu. Through these
curves, we can see that the influence of the falakticity manifest itself in a zone
which is extended almost to 2% downstream of the cylinder. Also, this influence
changes the magnitudes of normal stress differaiiten a narrow range of about 5%
for Deborah number increase of 0.1. On the x-ar@ i@ the neighbourhood of the
cylinder, the fluid elasticity shifts the range mbrmal stress difference by about 3%

towards the positive values.
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Figure 4.20 Normal stress difference values for Re = 40
along: (a) section S1 and (b) streamline SLu
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For the regime ofRe=Re,, Figure 4.21 represents the first normal stress

difference for the critical Reynolds number (Re A 4t De = 0.05, 0.15, and 0.25,

respectively.
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Figure 4.21 Normal stress difference distribution for Re = 47
at: (a) De = 0.05, (b) De = 0.15 and (c) De = 0.25
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Figure 4.22 demonstrates the zero-normal stress contaer for Re = 47 and
De=0.05, 0.15, and 0.25. This figure illustrates tleduction of the instability with
increased Deborah number. Also, one can noticentirease of the stresses in the flow
direction (extensional stresses) over the latetr@sses causing the extension of the

instability zones and the reduction of their width.

N1- Re =47

Figure 4.22 Zero-normal stress difference contour for Re = 47
at De = 0.05, 0.15 and 0.25

The magnitudes of the normal stress differencewshon Figure4.23, are drawn
for Re = 47 with different Deborah number alongtiees S1 and S2, and along
streamline SLu, respectively. The trend of thedaesaresembles the same trend as the
values of extra-shear stress. The effect of fll@stecity is more obvious on the lower
section S2. Fluid elasticity suppresses the fluoina on the x-axis by about 7% but
shifts the range to higher values. Along upperisectl, the values for De = 0.05
coincide with those for De = 0.25 while for secti®®, there is a pronounced difference

between the two Deborah numbers.
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Figure 4.23 Normal stress difference magnitudes for Re = 47
along: (a) section S1, (b) section S2, and (c) streamline SLu

79

© 2008 Tous droits réservés. http://www.univ-lille1.fr/bustl



These d'Hossam Kamal Ibrahim Abdelhamid, Lille 1, 2008

Results and Discussion

4.3.3 Pressure distribution

In the literature, the reduction of the drag fonteéhe presence of viscoelasticity is
strongly related to the change of the pressureildigton around the cylinder. The
proposed mechanism linking the pressure distribuéiod the drag reduction assumes
that the interaction between the shear layer aadeébirculating flow decreases with the
elasticity. As a result, the entrainment of flurdrh the formation region is reduced.
Consequently the base pressure has to increasentpeasate for the reduced shear
stresses in order to maintain the force equilibritifme increase of pressure behind the
cylinder decreases the pressure drop across tiedewl In this section, the pressure

distribution is introduced revealing its changehwitscoelasticity.
4.3.3.alnfluence of Reynolds number on the pressure

We consider here the change of the pressure disbibwith the increase of the

Reynolds number. The normalized values of pres§re2P/U,? are used to evaluate

the viscoelastic effects on flow pressure. Figu@# illustrates the pressure distribution
of the flow with Re = 40, Re = 80, and Re = 15Mat=0.1. In this figure, it can be
observed that while the positive pressure areatr@eg®s) is very lightly influenced, the
negative pressure area (downstream) is stronglyented with the growing Reynolds
number. This relative difference leads to greatesgure drop across the cylinder. Also,
it is remarked the obvious effect of the flow irsli#y on the pressure distribution as
we pass from Re = 40 (Figude24 a) to Re = 80 (Figu#e24 b). Further increase of the

Reynolds number increases the negative pressureitmags downstream the cylinder.
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Figure 4.24 Pressure distribution for viscoelastic fluid at
De=0.1 for: (a) Re = 40, (b) Re = 60, and (c) Re = 100
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To better understand this effect, three pressunéooo lines are drawn in Figure
4.25 and Figure4.26. These contour levels are the zero-presswd, l@ positive
pressure level, and the corresponding negativespreslevel. In Figure4.25, the

pressure contours are drawn for Re = 35, 40, an@R&< Re,, ), while Figure4.26
represents the same contours for Re = 80, 100125 dRe> Re,, ). An examination of

these figures allows extracting the following reksar

« For both regimes, the positive-pressure contouipkees uniformity and it
shrinks with increasing the Reynolds number.

» For Re<Re,, the negative-pressure contour shrinks while kegpits
uniformity.

» For Re>Re,, the negative-pressure contour loses its unifgrmand
approaches the cylinder.

* In general, while the positive pressure area sbrinkh increasing Reynolds
number, the negative-pressure area extends whi@nsnecreased pressure
drop.

* For Re>Re

cr !

there is an asymmetry about the x-axis whicHaarcfrom the

zero-pressure line. This is a consequence of tiielolged normal stresses due

to the fluid elasticity (see section 4.3.1).

P -De=0.15

2

Figure 4.25 Pressure contours for viscoelastic fluid at De =
0.1 for Re = 35, 40, and 45.
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Figure 4.26 Pressure contours for viscoelastic fluid having De
= 0.1 for Re = 80, 100, and 125

To quantify the present results, the normalized mitages of pressure are plotted
along the sections S3, S4, S1, and S2 and the w@amline SLu, respectively, for
Reynolds numbers Re= 40, 60, and 80 for De = Oshawn in Figuret.28 and Figure

4.29.
De =0.15 Section S3 De =0.15 Section S4

30 g 30 |

! 25 | !
20k —A—— Re=40 -
, —<&— Re=60 20
L —8— Re=80 -
- 15
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> 0fF >0 :_
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-10 -10F
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-20 -20F
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0 0.25 0.5 0.75 -0.6 0.4 -0.2 0
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Figure 4.27 Magnitudes of pressure for De =0.1 and different
Re at: (a) section S3 and (b) section S4
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Figure 4.28 Pressure for De =0.1 and different Re
along: (a) section S1, (b) section S2 and (c) streamline SLu
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Based on Figurd.28 and Figurd.29, it seems clear that:

* Increasing the Reynolds number mainly affects thekewvdonstream the
cylinder (negative pressure values).

* From section S3, the reduction of the fluid vistpsiauses some negative
pressure values at the lower upstream cylinderwldeh assists the change of
lift force.

* From section S4, the maximum value of negativequnesincreases with the
Reynolds number (22% for Reynolds number increasa #0 to 60 and 100%
for Reynolds number increase from 40 to 100).

* For sections S1 and S2, the increasing Reynoldsbaurnauses pressure
fluctuations which may reach positive-pressure esludownstream the
cylinder.

» The reduction of the positive-pressure range orufistream side is (15~32%),
while the change on the down stream side may r&@@%o atx =8R.

* Along the x-axis, the pressure drop is always naametd as the positive
pressure upstream the cylinder attains a valueddrd..25, while the negative

pressure downstream the cylinder does not exceed -1

To spot the pressure drop across the cylinder,ré&igi29 provides a look on the
values of pressure over the cylinder surface. Ftbiw figure, we observe negative
pressure values upstream the cylinder. These vahgesase with increased Reynolds

numbers which can contribute to the drag reduction.

——-4&—— Re=140

Figure 4.29 Normalized pressure over the cylinder surface for
De=0.15 and different Reynolds numbers
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A final remark can be drawn from the shift of theparation point towards the
upstream with growing Reynolds number. This shiftiémonstrated at Figu#e30 by
taking a zoomed view at the upper zero-pressuee Tihe separation point is defined by

the wake angl&g, measured from the upstream and increases in clselsense.

P -De=0.15

Figure 4.30 Shift of separation point with increased Reynolds
number

De

—— 0,00
49 -

45 -

Wake angle [deg]
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37 ~
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Re

Figure 4.31 Wake angle versus Reynolds number for
different Deborah numbers
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Figure4.31 gives the values of the wake angle versus &tégymumber expressed
at different Deborah number. From Figdr80 and Figurd.31, it is clear that the wake
angle decreases with the reduction of the fluidaggty but in a narrow range (40°-49°).
These results are in good agreement with the expetal results of Coelho & Pinho
[57] and numerical simulation of Sahin & Owens [44jich are both carried out for a
confined cylinder. In the work of Coelho & Pinho7|5they found that the wake angle
range is (70°-73°). We believe that the differebeéwveen the present results and their
result is due to the difference of the studied eaofjReynolds number adopted by these
authors (Re = 10~ 10).

4.3.3.binfluence of Deborah number on the pressure

Experimental and numerical investigations show,tf@ta constant viscosity, the
fluid elasticity has a stabilizing effect upon twonensional viscoelastic fluid flow past
a confined cylinder. In this subsection, the effetfluid elasticity is investigated for
the non-confined cylinder. Generally speaking,gki&ensional properties of viscoelastic
fluids reduce the flow kinetic energy containedtie downstream flow fluctuations.

This leads to more stabilized flow and reduced saresdistributions.

For flows with Re< Re

. » Figure4.32 shows three pressure contour liness (zero-
pressure, negative-pressure, and positive-presauRg = 40 for De = 0.0, 0.1, and 0.2.
From this figure, it is noted that, even in thisldé regime, the effect of Deborah
number is small. The effect of increasing Deboramiber is very small on the positive
(upstream) pressure. For the zero-pressure conioess, the increase of Deborah
number shifts the contour downstream leading tanallsr pressure drop. For the
negative-pressure, the contours shrink especia&y the stagnation point giving more

relaxation to the pressure drop across the cylinder

The magnitudes of pressure on the section S1 anstteamline SLu are plotted in
Figure4.33 for Re = 40 at De 0.0, 0.1, and 0.2. Theseesushow a very slight change
of normalized pressure magnitudes with the incredfeborah number.
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Figure 4.32 Effect of fluid elasticity on pressure contours at
Re = 40 with De = 0.0, 0.1, and 0.15
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Figure 4.33 Magnitudes of the normalized pressure at Re =
40 on (a) section S1 and (b) streamline SLu.
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For the flows in the laminar vortex shedding regifAgure4.34 demonstrates the
pressure distribution at Re = 60 for a Newtonianvflwith De = 0.0 and a viscoelastic
fluid with De = 0.05 and De = 0.15, respectivelydpite the very slight increase of the
fluid elasticity (De = 0.05), the negative pressommtours downstream the cylinder
strongly decreases from Newtonian fluid (Fig4r84 a) to viscoelastic fluid (Figure
4.34 b). With further increase of Deborah numbersthof maximum negative pressure
zone downstream the cylinder vanishes as shownguré-4.34 c. On the other hand,
the effect of fluid elasticity on the positive psese zone upstream the cylinder is
unnoticeable on these plots. In order to a cleanosw over this effect, Figur4.35
shows three normalized pressure contours (zersgres positive pressure, and
negative pressure) for Newtonian fluid and viscstafluids with De = 0.05 and De =
0.15 at Re = 60. On Figu# 35, it is noticed that the fluid elasticity skifthe zero-
pressure contour towards downstream which leads reduction of the pressure drop
across the cylinder. On the upstream side, thegeghah positive-pressure contour is
negligible. On the downstream side, the negatiwsgure contours are strongly affected
as the contours are obviously extended. It shoelddiiced that further increase of the

Deborah number re-shifts the negative-pressureooconipstream.

For the wake angle, the fluid elasticity shifts S8eparation point downstream but
further increase of fluid elasticity does not rekadnly affects the separation point

which is clear from Figuré.36.
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Figure 4.34 Effect of fluid elasticity on pressure distribution
at Re= 60 (a) De = 0.0, (b) De = 0.05, and (c) De = 0.15
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Figure 4.35 Effect of fluid elasticity on pressure contours at
Re=60 and different Deborah numbers
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Figure 4.36 Effect of Deborah number on the separation point
at Re= 60.
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Figure 4.37 plots the values of the wake angle versusDiaborah number for
various Reynolds numbers. From this figure, one chserve that the wake angle
increases to a plateau with the fluid elasticitgrtidecreases with a slower rate. For
each Reynolds number, the range of change, iswma2d - 3°). It is noted that, the

Newtonian fluid always has the smallest wake angles
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Figure 4.37 Wake angle versus the Deborah number for
different Reynolds number.

Figure4.38 shows the values of the normalized pressorggadection S1, along the
lower streamline SLd, and at the cross-sectionar83S4 for Re = 60 at De = 0.0, 0.1,
and 0.2. On this figure, we can see no remarkdid@ge at the upstream values and a
slight decrease of pressure value downstream tivedey. The range of pressure value
change on downstream side is about 7%.

It should be noted here, that the present findemgsconsistent with the results of
Coehlo & Pinho [57], McKinley et al. [79] and Cadbt_eby [51].
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Figure 4.38 Normalized pressure at Re = 60 on (a) section S1,
(b) Streamline SLd, (c) section S3, and (d) section S4.
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4.3.4 Vorticity

In Newtonian fluid mechanics, Helmholtz decompasitiproposes that, under
certain conditions, the solution of Navier-Stokegiaions can be decomposed into a
rotational part and an irrotational part satisfylraplace’s equation [80]. Generally, the
rotational and irrotational velocities are stronglyupled and they have to satisfy the
boundary conditions. In viscoelastic fluids, theupgling of the rotational and
irrotational flows is more complicated than in Newian fluids because in most models
of viscoelastic fluids, the stress is expresse@ a®n-linear function of the velocity
field. This is the main reason which restricts thisrk to thelaminar vortex shedding
regime. At higher Reynolds number, the vorticesobse three dimensional and the

turbulent regime appears with all its complexity.

The main objective of this section is to introdtice effect of viscoelastic fluids on

the vorticity (the rotational part of the velocityjhe vorticity is expressed as

i

w="C[x0. 4.3

In the present work, the values of the vorticity presented in the normalized form

R

W= W, 4.4
UO

where & is the dimensional value of vorticity.

First, the influence of Reynolds number is discdsSéen, the effect of the fluid
elasticity is introduced.

4.3.4.alnfluence of Reynolds number on the vorticity

In order to show the effect of Reynolds number be vorticity, the Deborah
number is fixed and the Reynolds number is increpsFigure4.39 illustrates the
vorticity of a viscoelastic fluid having De= 0.1caRe = 40, 80, and 150 respectively.
This figure shows that the vorticity is maximum sdoto both sides of the cylinder.

There, two opposite-sign high vorticity zones arerid.
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Figure 4.39 Normalized vorticity profile for De = 0.15 at: (a)
Re =40, (b) Re = 80 and (c) Re = 150
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The two vorices start upstream the cylinder ané@rekidown stream. Increasing the
Reynolds number, the flow becomes less stable lamdato vortices fluctuate and lose

their symmetry about the x-axis. Hence, the flowses to the unsteady regime.

Figure4.40 gives an insight on the influence of Reynaldsiber on the vorticity as
it shows the zero-vorticity contour for the twouMlaegimes. Figurel.40 a represents
the steady vortex regime with Re = 35, 40, andwttile Figure4.40 b represents the
laminar vortex shedding regime with Re = 80, 100@| &425.

De=0.15

De =0.15

(b)

Figure 4.40 Zero-vorticity contour for De = 0.15 at
(a) Re = 35, 40, and 45, and (b) Re = 80, 100, and 125.
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It can be seen from Figu#.40 that the increase of Reynolds number tends to

narrow the cylinder wake for both flow regimes. FRe< Re,,, the vorticity contour is

.
uniform and symmetric about the x-axis. With thesetnof the von Karman street, the
recirculation zone becomes very complicated onupstream side. The increase of
Reynolds number beyonRe, causes the recirculation zone to approach thedey

announcing stronger flow instability. In both flawgimes, it should be noted that the

width of the recirculation zone extends up to ab@@dR This leads to obvious

differences between the confined and non-confindidaer cases.

The magnitudes of the vorticity for Re = 40, 60¢g &9 at De = 0.15 are given on
Figure4.41 and Figurd.42.

De =0.15 Section S3 De =0.15 Section S4
30— 30 |
i 25F | |
B - —4A—— Re =40
20 20F —— Re=60
| - ——&8—— Re=80
B 15
101~ 10F
> ofF——F—= =

>

[ sE
10 -10fF

i a5
20k 20F

i 25
e T B0

vort
(a) (b)

Figure 4.41 Normalized vorticity values for De = 0.15 at
(a) Section S3 and (b) Section S4
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Figure 4.42 Normalized vorticity values for De = 0.15 along
(a) Section S1, (b) Section S2 (c) Upper streamline SLu
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From Figure4.41 and Figurd.42, it can be concluded that:

* On the sections S1 and S2, the change of the maxiabsolute magnitude of
the vorticity is changed with the Reynolds numbgabout 3%.

* The maximum magnitude of the vorticity is (2~4.Bgadt takes place close to
the cylinder on the upstream side. Over the resh@fdomain, the magnitude
of the vorticity is in the range of (-0.5~0.5). Thecation of maximum
magnitude is strongly related to the separationtpef. Figure4.30).

* The principal changes of vorticity take place dotneem the cylinder at a
distance of 5~1R. These changes compromise both values and sighthan
are not systematic.

* For the cross sections, while the change in veytisalues upstream the
cylinder range is (-0.001~0.001), the range of éseshange downstream the
cylinder is (-0.6~0.6).

4.3.4.binfluence of Deborah number on the vorticity

This subsection is devoted to the study of theceftd Deborah number on the

vorticity. We introduce first the case of flow witRe<Re,. Next, this effect is

introduced foRe= Re,, .

In order to examine the flows with Reynolds numlmver than the Newtonian
critical Reynolds number, Figu#43 shows the vorticity of the case of Re = 45hwit
De = 0.0 and 0.2. We can see here that the flastillsuniform and stable. Only small

difference can be seen between the profiles.

Figure4.44 plots the zero-circulation contour for the-Ré40 at De = 0.0, 0.1, and
0.2. On this figure, it is noticed that the increasf Deborah number inhibits the
fluctuations of the vorticity contour on both sid#fsthe cylinder. Also, it decreases the
width of the vorticity zone. On the upstream sioerease of Deborah number has a
complicated effect that cannot be described by Emgduction or extension. Recalling
that the maximum vorticity magnitudes occur upstre¢his shows the complexity of
the viscoelastic fluids.
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Figure 4.43 Vorticity profile for Re = 45 with
(a) De = 0.0, (b) De = 0.1 and (c) De = 0.2

«w Re=40
8

Figure 4.44 Zero-vorticity contours for Re = 40 with different
Deborah number
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Figure 4.45 Vorticity profile for Re = 100 with
(a) De = 0.0, (b) De = 0.05 and (c) De = 0.15
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For flows in the laminar vortex shedding regime,setéected the flow at Re=150 to
draw the vorticity contours at De = 0.0, 0.1 antbQrespectively (cf. Figuré.45). This

figure shows that fluid elasticity extends the i@ty contours. Figuret.46 shows the

zero-viscosity contour for a viscoelastic flow hayiRe = 60 with De = 0.0, 0.10, and
0.2.

Figure 4.46 Vorticity profile for Re = 100 with
(a) De = 0.0, (b) De = 0.05 and (c) De = 0.15

From Figure4.46, we see that, in general, the vorticity contextends with the
fluid elasticity if we look on far downstream. Hovex, on near downstream and on

both sides of the cylinder, the situation is tompticated to be distinguished.

Figure4.47 and Figurd.48 show the magnitudes of the vorticity alonggbetions
S1, S2, S3, and S4 and the streamline SLu. Frose thgures we see that for De = 0.2
the peaks are reduced of about 3~5%. Also, it ic@d that the magnitude range at the

upstream section S3 is £ 0.0005, while at the dtneam side the range is + 0.6.
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Figure 4.47 Magnitudes of vorticity for Re = 100 at
(a) Section S1 and (b) Upper streamline SLu
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Figure 4.48 Magnitudes of vorticity for Re = 100 at
(a) Section S1 and (b) Upper streamline SLu

These results agree with the experimental work res€man et al. [54] who found
that the polymer lengthens the boundary layer litkine rod. They believed that this
stretching effect arises from the elongational @ssty. They showed the vortex street in
a polymer free film and in a film where the polynoencentration 30 wppm. Also, the
present results are consistent with the measurewfe@oehlo & Pinho [56]. These
authors found that fluid elasticity was found tovéahe opposite effect to shear-
thinning, reducing the vortex shedding frequenaycsiit increased the formation

length.
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4.3.5 Velocity profile

The modifications of the flow velocity profile byheé addition of long chain
polymers are the issue of many studies either @axpatal or numerical. Up till now,
the full understanding of these modifications id nomplete. As mentioned in the
literature survey, most of the elaborated work be viscoelastic fluid flow past a

cylinder concerns the bounded cylinder case.
4.3.5.alnfluence of Reynolds number on the flow velocity

In this subsection, a fixed Deborah number is aereid and the Reynolds number
is changed to plot the flow velocity profile paketcylinder. Figuret.49 shows the
normalized velocity magnitude for De = 0.1 at R85; 60, and 125 respectively. These
velocity profiles show the strong effect of the Relgls number on the flow behaviour.
Both the upstream and downstream zones are infgkerthe upstream zone shrinks
with the increase of the Reynolds number, while dog/nstream zone extends and
fluctuates laterally with growing Reynolds numbas. the Reynolds number increases
beyond the critical Reynolds number, both the atwgdi and frequency of the

fluctuations increase progressively.

Figure 4.50 gives a more detailed view of this influensetle contour of unit
normalized velocity is drawn for Re = 35, 40, artd(Bigure4.50 a) representing the
steady vortex regime and at Re = 80, 100 and 1REesenting the laminar vortex
shedding regime (Figurd.50 b). From this figure, it is noted that, in gea, the
upstream zone is less influenced then the dowmstreae. For the steady regime,
increasing the Reynolds number widens the velamtytour. For the unsteady regime,
the contours approach the cylinder when increasiadReynolds number.
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Figure 4.49 Normalized velocity for viscoelastic fluid with
De=0.1 at: (a) Re = 35, (b) Re = 60, and (c) Re = 125
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(b)

Figure 4.50 Contour of unit normalized velocity for De = 0.15
at: (a) Re = 35, 40 and 45 and (b) Re = 80, 100, and 125.
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Figure 4.51 Velocity magnitudes for De = 0.15 at Re =40,60,
and 100 along the streamline SLu
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Figure 4.52 Velocity magnitudes for De = 0.15 at:
(a) section S1, (b) section S2, (c) section S3, and (d) section S4
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To quantify the effect of the Reynolds number amftbw velocity, Figured.51 and
Figure 4.52 provide the magnitudes of the normalized vglaglong sections S1, S2,
S3, and S4 and the streamline SLu at De =0.15 éor RO, 60 and 80. From these two

figures, it is noted that:

» There is no velocity fluctuation at Re = 40 whishexpected from the steady
regime. For higher Reynolds numbers in the unsteadiyne, the fluctuations
of the downstream velocity decay gradually till thet of the domain.

* At sections S1 and S2, the differences in the apsirregion are negligible
compared to the differences in downstream region.

« For section S3, the velocities exhibit a symmatriafile, while for section S4,
the symmetry breaks down at the unsteady Reynalaars.

* On the x-axis, the velocity values are of same odemagnitude as the far
entry velocity, while at sections S1 and S2 the imam velocity values

increase about 30% above the entry velocity.

A downstream pointh (cf. Figure4.2) on the x-axis has been chosen to visualize the
instantaneous fluctuations of the velocity fieldg(ife 4.53). These time histories prove
that the velocity fluctuations are very small (60 and decay for the Re = 40 which is
expected behaviour as this value is still in thgime of laminar steady flow. The time

histories in the two other casefR€>Re,) do not decay but they arrive at an
asymptotic fluctuating state (or maximum amplitufte) Re< Re,, after a certain time.

This rise timet, is decreasing with Reynolds number. It is also ehdibat the amplitude

of the fluctuations is progressively increasinghathe Reynolds number. Figude54
shows the monotonic change in the vertical velo@typlitude as a function of
Reynolds number for different Deborah numbers.
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Figure 4.53 Time history of vertical velocity component for
De=0.1 at (a) Re = 40, (b) Re = 50, and (c) Re = 100
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Figure 4.54 Amplitude of vertical velocity fluctuations versus
Reynolds number for different Deborah numbers

It is evident from Figurel.54 that the amplitude of the vertical velocitgreases
monotonically beyond the critical Reynolds numbeélso, the amplitude for

viscoelastic flow is always less than for the cepanding Newtonian flow.

The rise time of fluctuations is plotted on Figdr&5 against the Reynolds number
for various Deborah numbers. For steady flow (v on Figuret.55), before the
onset of laminar vortex shedding, the fluctuatiatiain the maximum amplitude after
about 14 and then the fluctuations decay. Visctielas seems to delay the critical
Reynolds number since the amplitude for Re = 475hi$ nil for De = 0.01 and 0.05.
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Figure 4.55 Rise time of velocity fluctuations versus Reynolds
number for different Deborah numbers

With the onset of the von Karman street instahilihe fluctuations do not decay
and reach the maximum amplitude after longer tirk@s.increasing Deborah number,
the peak of the rise time shifts towards higherri®éys number; which implies a higher

critical Reynolds number for viscoelastic fluids.

An important quantity that expresses the flow fliations is the frequency of these
fluctuations. This frequency is used to couple flbe to the structure in studies of
fluid-structure interaction. In most of literatutudies the fluctuation frequency
presented as non-dimensional form represented dystiouhal numbeStr=df /U, .
However, the only experimental work treating theenflof viscoelastic fluid past @on

confined cylinder, up to our knowledge, is the wofkPipe & Monkewtiz [58]. In this

work, they expressed the non-dimensional frequeisayg the Roshko number which is

defined as
2
R, =22 4.5
o
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where f is the frequencyp is the fluid densityD is the cylinder diameter, angj, is

the fluid total viscosity.

Pipe & Monkewtiz [58] stated that the relation beém Roshko number and
Reynolds number is represented by the quadratjfofiDe = 0.01~0.03).

R, =—229+ 015Re+ 325x10™ Re’ 4.6

We compared our results to this relation and foexckllent agreement. Figudeb6
represents Roshko number (Rsk) versus the Reymuldser for different Deborah
numbers together with Pipe & Monkewtiz [58] relatidn this figure, we can see the

increase of the Roshko number with the increasiegnBlds number.
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Figure 4.56 Roshko number versus Reynolds number for
different Deborah numbers with comparison to the formula of
Pipe & Monkeuwtiz [58]
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4.3.5.binfluence of Deborah number on the velocity field

In this subsection, the influence of the fluid &tasy on the velocity field is
studied. The Reynolds number is fixed and the Dedbarumber is increased as an
indicator of the fluid elasticity. It is known fronthe previous experimental and
numerical studies that viscoelasticity has a stabg effect on the velocity field ([10]

[16], and [56]). The study here distinguish betwé®ss steady regimeRe< Re,, ) and

the unsteady regimeRe= Re,, ).

Looking at this effect for the steady regimBeg< Re, ), Figure 4.57 shows the

velocity field for Re = 45 at De = 0.0 and 0.2. Fligure shows almost no difference
despite the difference of Deborah number. The flevstill steady but the velocity
contours are slightly extended. Figut&8 visualises this extension as it plots a single
velocity contour for Re = 40 at different Deboralmbers. This figure illustrates the
extension of the velocity contours with the inceshdluid elasticity. However, it is
noted that for De = 0.2 the velocity contour rewsks. Unfortunately, we cannot get
higher values of Deborah to complete this invesibigaas many references mentioned
the critical Deborah number at which the laminarte shedding is initiated. This will

be one of our future work goals.
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Figure 4.57 Normalized velocity profile for Re = 45 at
(a) De = 0.0, (b) De = 0.2
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Figure 4.58 Effect of fluid elasticity on velocity contours for
Re<Recr

115

© 2008 Tous droits réservés. http://www.univ-lille1.fr/bustl



These d'Hossam Kamal Ibrahim Abdelhamid, Lille 1, 2008

Results and Discussion

Concerning the unsteady regime, Figdrg9 shows the velocity profile for Re=100
and De = 0.0, 0.1, and 0.15 respectively. ThesBlggshow the strong influence of the
Deborah number on the downstream instability zaNeen increasing the Deborah

number, the velocity contours extend and the widitthe downstream wake decreases.

To get a more quantified view on the change ofviélecity contours with the fluid
elasticity, Figure4.60 demonstrates only one velocity contour draasmRe = 60 at
De=0.0, 0.1, and 0.2. It can observed in this ggime decrease of the contour length
with the Deborah number. Also, the elongation o ttontours with the Deborah

number is clear.

To get an idea about the fluid elasticity effecttba values of the flow velocities,
Figure4.62 and Figuré.61 show the values of flow velocity along thetgecS1, the
streamline SLu, the section S3, and the sectiomespectively for a flow having Re =

60 and different Deborah number. From these twardig, it is remarked that:

* The maximum reduction of velocity occurs at theoselcdownstream velocity
peak. This reduction is of the order 10% for De2 0

» The suppression of the velocity is obvious along xkaxis, while the higher
velocity values occur far from the x-axis.

» For the cross sections, the maximum change of wgltakes place on the x-
axis on the upstream side. The velocity at thisipioicreases 14% for Deborah

number 0.2.
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Figure 4.59 Normalized velocity field for Re = 100 at
(a) De = 0.0, (b) De = 0.1, and (c) De = 0.15
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Figure 4.60 change of velocity contours with the Deborah
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Figure 4.61 Normalized velocity magnitudes for Re = 60 at
(a) Section S3 and (b) Section S4
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Figure 4.62 Normalized velocity values for Re = 60 at
(a) Section S1 and (b) Upper streamline SLu

119

http://www.univ-lille1.fr/bustl



These d'Hossam Kamal Ibrahim Abdelhamid, Lille 1, 2008

Results and Discussion

The characteristics of the flow fluctuations aresoalinfluenced by the fluid
elasticity. Normally, the extended velocity con®uare accompanied with reduced
fluctuations. Figurel.63 presents the reduction of the amplitude daig} fluctuations

with the fluid elasticity for different Reynolds mbersRe>Re,, .

Figure4.64 shows the rise time of the flow fluctuationghe maximum amplitude
versus the Reynolds number for various Deborah eusnlit is noticed from this figure,
that the critical Reynolds number for the Newtonilund exhibits increasing rise time
which attains its maximum at De = 0.1 then re-deses. This explains the balance
between the reduction of viscous forces, the cafisastability, and the increase of
fluid elasticity which re-stabilizes the flow. Noathy, the rise time for already stable
flows does not affected by fluid elasticity (in died range of Deborah number), while
the flows with laminar vortex shedding are influeddy the fluid elasticity as the rise

time decreases.

0,70

% Re
S 0,60 - o © 0
g ——50
£ A A S e G D
0,50 -
O e — —A—80
040 1 & o —B- 100
5 _ _ —o—125
030 1 [ R = —%— 150
A A A —A— 175
0,20 - T
—0— 200
0101 © T —o— o
M ———
e
0,00 : ‘ ‘ ‘ —&
0,00 0,01 0,05 0,10 0,15 0,20 0,25

De

Figure 4.63 Amplitude of vertical velocity fluctuations versus
Deborah number for different Reynolds numbers
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Figure 4.64 Rise time of velocity fluctuations versus Deborah
number for different Reynolds numbers

For Re = 60, it is important to notice here thatphmde of the fluctuations
decreases with the increasing Deborah number atrd-463, while the rise time
increases (see Figude64). This indicates the complexity of the problasmnot only the
elastic properties of the fluid will stabilize tfilew so simply. It is proposed that the
effect of normal stresses play an important roléhan force balance. This is supported
by the concept of critical Deborah number whicldiscussed by Mckinely et al. [79]
who studied the purely elastic flow instabiliti€dince we use the PTT model which
ignores the solvent (Newtonian) viscosity, the déged equation of momentum
conservation becomes less stable. Hence, higheorBlelmumbers cannot be achieved.
In our future work, it is intended to use some ssidated splitting schemes to enhance
the computational stability in order to reach higpeborah numbers. However, in the
present range of Deborah number, we cannot vehniéydoncept of critical Deborah

number at which the flow returns to the laminarterrshedding instability.
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4.3.6 Strouhal number

The frequency of the flow field fluctuations is mmportant quantity of the unsteady
flow field. We preferred to devote a separate sectior studying this frequency
because of its importance. As most of the flow props, the frequency is expressed in
the literature in a non-dimensional form. One o thidely spread form of the nod-

dimensional frequency is the Strouhal number

Str=£, 4.7
U

0

where f is the frequency of the flow fieldD is the cylinder diameter, ard, is the

free stream velocity.

In the present work, the frequency is evaluatedakyng the Fourier transform for
the vertical component of velocity. In this sectidine change of the Strouhal number

versus the Reynolds number and the Deborah numsipeesented.

Figure 4.65 presents the Strouhal number plotted versaiRRetynolds number for
different Deborah numbers. It is noted that a pgegive increase of the frequency of
the flow fluctuations takes place at the criticayRolds nhumber. The augmentation of
the fluctuation frequency is explained by the reduc of the fluid viscosity which
decreases the flow stability. Also, the introduetmf normal stresses in the flow as an
important feature of the viscoelastic fluids enlemndhese fluctuations. On the
molecular level, this can be explained by the &lasharacteristics of the polymer

particles considered in the dimple assumption.
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Figure 4.65 Strouhal number versus Reynolds number for
different Deborah numbers.
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Figure 4.66 Strouhal number versus Deborah number for
different Reynolds numbers.
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Figure 4.66 illustrates the Strouhal number versus theobsb number. These
curves show that a very small change is noticell thi¢ Deborah number. For moderate
Reynolds numbers, the Strouhal number decreasbgshé@tDeborah number, while for
larger Reynolds numbers, the Strouhal number iseavith the Deborah number. As
the fluctuation of the flow field is a result obfl/ instability and fluid viscoelasticity, it
is difficult to owe this frequency augmentatioratgsingle reason.

These results are in acceptable agreement witrethdts of Oliveira [27] , Afonso
et al. [19], and Coelho and Pinho [56].

4.3.7 Drag Force

All the flow quantities discussed above can beumesd in the computation of the
forces on the cylinder. Note that the force ondylender is a very important quantity to
evaluate the effect of the fluid properties ancaaple the present results with further
analyses. In our two-dimensional analysis, dragldnhtbrces are used to evaluate the
fluid property influences. Lift and drag forces aadculated from the resolution of the

total forceF exerted on the cylinder which defined as:

Fj pl +1)ndS 4.8

where S is an infinitesimal line segment on the streane landn is the unit vector

directed outward. Hence, in generalized orthogenatdinates the liff, and the drag

F, forces are expressed as:

ox ox
FL J-(le azl ( p'*'rzz)a_zzjds

dy ay
F _I(lZ a(l (_p+r22)azzjds

The drag force is more important in our case fov teasons. Firstly, the laminar

4.9

flow past a cylinder produces no lift before vortdedding and very small IitD(e—3)

with the vortex shedding instability. Secondly, timst obvious effect of polymer
addition is the drag reduction. In this sectiore tirag force is studied and the next

section is devoted to the lift force.
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In the following discussion, the effect of the duviscosity is introduced firstly,

then the influence of fluid elasticity is presented

The drag force per unit length of cylinder is exgsed through the drag coefficient:

C, = F{%j 4.10
PRU,

Figure 4.67 plots the average drag coefficient versus Dieborah number for
different Reynolds number. Figuré.68 expresses root mean square of the drag
coefficient against the Deborah number. These dégullustrate some increase of the
drag force with the Deborah number till 0.05. Thixe, well-known drag decrease starts
for De > 0.05. It is thought that the introductiohnormal stresses to the flow induces
an increase of the drag in the beginning of thesgges from Newtonian to viscoelastic
fluid. After that, the extensional properties coower the effect of normal stresses and
cause drag reduction. It should be noted that @#V@7] got similar results. In his his
work, he showed that the drag coefficient incredse®e = 0.5 and 1.0, then drag re-

decreases.

Physically, the drag has two main origins; pressuné stresses. We can split drag
into four parts [5]: the pressure drop across Wlmder, the pressure drop due to the
shear stress distribution, the pressure drop oworifpe normal stress, and the friction
shear stress. The viscoelastic effects stabiliedlthw and reduce both the pressure drop
across the cylinder and the shear stress distoiuéiithough, normal stresses appear in
viscoelastic fluids, the friction factor is reduceks a result the drag force decreases

because of viscoelastic effects.
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Figure 4.67 Average drag force coefficient versus Deborah
number for different Reynolds numbers
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Figure 4.68 Root mean square drag force coefficient versus
Deborah number for different Reynolds numbers
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It should be noted that these results are onlyieddafor the non-confined cylinder,
while for the literature treating the confined ogler, the drag decreases with a minor
amount of the fluid elasticity. This increase aaelecrease of the drag can be explained
as a difference between confined and non-confiyédder problems. This is proven by
referring to Figuret4.11, Figure4.23, Figure4.38, Figure4.47, and Figuré.61 which
show the magnitudes of the flow fields at secti®@isand S2. In all these figures,
remarkable values of the stresses, pressure, dodityeare found at a side distance

(-3R to 10 R). In the case of the confined cylindleese values are forced to zero.

A downstream point on the x-axis is selected td file time history of the drag.
Figure4.69 shows the instantaneous drag coefficientigtpihint for Re = 100 and the
different Deborah numbers. This figure illustratbat for De > 0.1, the drag force
rapidly decreases. Also, even at this point thg doa De = 0.1 is greater than that for
the Newtonian fluid.

Re =100 -drag

1 1 1 1 1 1 1 1 | 1 L L L 1 1 1 1 1 |
0 a0 100 130 200

Figure 4.69 Time history of the drag at Re = 100 for different
Deborah number

The increase of the Reynolds number reduces tlmoussstresses and allows the
normal stresses to play greater roles causingreéigetion. Figurel.70 and Figurd.71
illustrate the average drag coefficient and itst o®@an square versus the Reynolds
number for different Deborah number. On this figurés that the drag force decreases
with Reynolds number. The rate of decrease of drageases with the Deborah

number. It is also noted from these figures thahwhe onset of vortex shedding
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instability, the Newtonian drag is always greatert the drag of viscoelastic fluid with

De > 0.05.
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Figure 4.70 Average drag force coefficient versus the
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4.3.8 Lift Force

For the flow past a cylinder, the lift force reprats 0~5% of the force on cylinder.
This fact remains in the case of viscoelastic Buiihe principal effects of the fluid
elasticity occur because of the extensional pragsedf fluid which means that the drag
force is substantially affected by the fluid elegyi. The lift force per unit length of

cylinder can be introduced via the lift coefficient

C = FL(%J 4.11
PRU,

Figure4.72 plots the root mean square of lift coefficieatsus Deborah number for
different Reynolds numbers. This figure shows therdase of the lift coefficient with

the increase of Deborah number

Looking to the influence fluid viscosity on lift foe, Figure4.73 represents the root
mean square of the lift coefficient versus Reynaldsber. Results show increasing
root-mean-square value of lift coefficient with Reyds number.
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Figure 4.72 Root mean square of the lift coefficient versus the
Deborah number for different Reynolds number
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Figure 4.73 Root mean square of the lift coefficient versus the
Reynolds number for different Deborah number
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Chapter 5: CONCLUSIONS & PERSPECTIVES

5.1. Conclusions

The two-dimensional flow of a viscoelastic PTT @iypast a non-confined cylinder
iIs simulated numerically. The Cartesian governiggations are transformed to the
generalized orthogonal coordinates and solved \witHinite volume method on
staggered grid. An x-direction unit entry far upsim velocity is imposed at the west
boundary limit, while symmetry boundary conditioase imposed at both north and
south boundaries. At the outlet (east) side, a-pegsesure boundary condition is
imposed. The domain is sufficiently extended torgotee a non confined geometry.
The studied range of Reynolds number is limitedtlie two-dimensional flow
instabilities (Re < 200) and Deborah number vameithe range 0.0 to 0.25.

The convective terms are evaluated using the secaodet accurate QUICK scheme
[68]. The diffusion terms are calculated with thecend order accurate centred
difference scheme. For the time marching algorithihe first-order accurate Euler
forward explicit scheme is applied obeying the aadign of Marker and Cell algorithm.
The grid is optimized to be is 20000 nodal points.

The obtained results for Newtonian flow, indicatettthe flow exhibits three
regimes; creeping regime (Re < 5) with no sepandtiom the cylinder, laminar steady
regime (5< Re < 47) in which two steady symmetric vorticee areated, and the
laminar vortex shedding regime (Re47) in which the two vortices are no longer
symmetric and steady and the von Karman streetsiablished. Results for the
Newtonian case are compared to the literatures $een that the present values are in
close agreement with previous studies: the diffegan (0.0% - 4.2%) for the Strouhal
number and (0.36% - 5.9%) for the drag coeffici@ifiese results can be considered as

a good validation.

The viscoelastic results are validated by compatirg non-dimensional fluctuations

frequency (Roshko number) to the equation repdrie®ipe & Monkewitz [58] which
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relates the Reynolds number and the Roshko nurilber.present results show good
agreement in trend and values with this equatiome Ppresent viscoelastic results

provide the following conclusions:

* The extra-shear stress

Extra-shear stress is strongly influenced by thgnBkls number. The maximum
extra-shear stress zone is located at the cylisgidace on the upstream side and
this location does not change with the Reynolds mennFor the steady flow
regime, the extra-shear stress is symmetricalliridiged about the x-axis. With
the onset of the von Karman vortex street, theaestiear stress zones are
extended and well deformed. With further increabehe Reynolds number, a
periodic alternance of positive and negative skeae are found along the x-axis.
The increase of Reynolds number causes strong ebadgwnstream till a
distance of about 1® then the fluctuations of the extra-shear stressoime

longitudinal waves with decaying amplitude.

For steady flow regime, the Deborah number affdesupstream shear stress and

the downstream shear is almost unaffected.

* The first normal stress difference:

The normal stress magnitudes increase with the ®d@ymumber. These effects
show the increase of the stresses in the main dliogction (extensional stresses)
over the lateral stresses causing the extensiorstatbility zones and reduction of
their width.

Increasing the Deborah number suppresses the dlimtuof the stress field. The
influence of the Deborah number manifests itselfaireone of about 2R
downstream the cylinder. The Deborah number chatigemagnitude of the first

normal stress difference within a narrow range.

* The pressure distribution:

With the increase of the Reynolds number, the pasgiressure area (upstream) is
lightly influenced, while the negative pressureaaf@ownstream) is strongly

influenced. The positive-pressure contour keeparnt®rmity with the increasing
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Reynolds number. On the other side, the negatigespire contour loses its
uniformity. The increase of the Reynolds numberseausome negative pressure
values at the lower upstream cylinder side whicisés the change of lift force.
The wake angle decreases with the reduction ofitiekviscosity but in a narrow
range (40°-49°).

Despite the very slight increase of the Deborah bennthe negative pressure
contours downstream the cylinder strongly decredsea Newtonian fluid to
viscoelastic fluid. With further increase of Debloraumber most of maximum
negative pressure zone downstream the cylindeskasi On the other hand, the
effect of Deborah number on the positive pressoreaipstream the cylinder is
unnoticeable. The range of change of the wake af@le@ach Reynolds number,
Is very narrow (2° - 3°). The Newtonian fluid h&ag targest wake angles.

» The vorticity:

With the increase of Reynolds number, the flow Ipees less stable and the two
recirculation zones extend and fluctuate. At higRelynolds numbers, another
two recirculation zones appear downstream on theix- At a side distance of
2R, the change of the maximum vorticity magnitud@as largely changed with
the fluid viscosity (3%). The maximum magnitude \afrticity occurs on the

cylinder surface at the upstream side.

* The velocity field:

The upstream velocity field shrinks when increasaigthe Reynolds number,
while the downstream zone extends and fluctuatesaldy with the Reynolds

number. As the Reynolds number increases beyondritieal Reynolds number,
both amplitude and frequency of fluctuations insee@rogressively. On the x-
axis, the velocity values are in the same ordemafjnitude as the far entry
velocity, while at a side distance ofR2the maximum velocity magnitude
increases by about 30% higher than the entry wglodVhen increasing the
Deborah number, the velocity contours extend amdwidth of the instability

zone decreases. The reduction of velocity is irotiger of 10% for De = 0.2.
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* The Strouhal number

The Strouhal number increases with the ReynoldsbeunThe results show that
a very small change of the Strouhal number is edtigith the Deborah number.
For moderate Reynolds numbers, the Strouhal nundieereases with the
Deborah number, while for larger Reynolds numbéhng, Strouhal number
increases with the Deborah number. The frequencyfloftuations for

viscoelastic fluids is always smaller than the esponding Newtonian fluid.

* The drag force:

The drag force decreases with the Reynolds nunitde.rate of decrease of
drag increases the Deborah number. Results iltest@me increase of the drag
force with the increased Deborah number till De.650 Then, the well-known

drag decrease starts for De > 0.05. Oliveira [D]symilar results.
» The lift force:
Results show increasing lift coefficient with Reldsnumber and decrease of

the lift coefficient with Deborah number.

5.2. Perspectives

The following points are recommended for future kvor

* Increasing the range of Deborah number range teezk0.25.

» Transferring the code to parallelized one to stiee3D flow.

» Working with other more complex geometries.

» Coupling fluid mechanics problem to the structuir¢he obstacle to pass

to the fluid-structure interaction.
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APPENDIX: FLOWCHART OF THE DEVELOPED CODE

Variable declaration

'

Initialization of variables and arrays

'

Opening /O files

'

Reading I/P geometrical data

'

Initialization and computation of control
volumes in generalized coordinates

!

Mesh generation in transverse direction

!

Reading I/P physical properties

'

Initialization and preparation of system
matrices to use conjugate gradient method

i

Printing initial data in O/P files

'

Loop point A > Optimization of time step
1

|

Calculation of velocity gradients

135

© 2008 Tous droits réservés. http://www.univ-lille1.fr/bustl



Appendix

These d'Hossam Kamal Ibrahim Abdelhamid, Lille 1, 2008

Checking non-Newtonian

Calculation of trace of extra-stress tensor

!

Calculation of damping parameter ¢

!

Calculation of shear rate

¢

Calculation of non-Newtonian viscosity /7,

!

Calculation of extra-stress tensor

A

Calculation of covariant velocity derivatives

¢

Wake calculation

Calculation of velocity component at mid
line

+

< Loop point A

Y

Solution of equation of momentum

!

Solution of velocity field

!

Solution of forces on cylinder

v

Checking the convergence and printing
|
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(]

Printing final results
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