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Résumé 

Ce travail a pour principal objectif la prédiction numérique de l'écoulement 

laminaire bidimensionnel d'un fluide viscoélastique autour d'un cylindre en milieu non 

confiné. La méthode des volumes finis en coordonnées orthogonales généralisées est ici 

adoptée pour résoudre les équations de conservation. Le modèle constitutif pour le 

fluide est de type Phan-Tien Tanner simplifié (S-PTT). Afin de stabiliser l'algorithme de 

résolution, le schéma dit "Elastic Viscous Split Stresses" (EVSS) est utilisé.  

Le code de calcul mis au point a été validé dans le cas de l’écoulement newtonien. 

Les résultats obtenus corroborent ceux de la littérature. Ensuite, ce code a été appliqué 

au cas d’un écoulement viscoélastique autour d’un cylindre non confiné. Dans ce cas, 

l’analyse a été réalisée pour différents nombres de Reynolds ( 200Re≤ ) et pour 

différents nombres de Deborah (0.0~0.25). Aussi, les caractéristiques principales de 

l’écoulement (les contraintes d’extra tension viscoélastiques, la première différence des 

contraintes normales et les champs de pression, de vitesses et de rotation) ont été 

présentées et commentées. Enfin, les évolutions de nombre de Strouhal, de la traînée et 

de la portance sont montrées.  

 

 



Abstract 

The two-dimensional viscoelastic incompressible flow past a non-confined cylinder 

is numerically simulated. The governing equations are stated in the generalized 

orthogonal coordinate system and the finite volume method is used to descritize them. 

For the viscoelastic constitutive equation, the simplified Phan-Thien-Tanner (S-PTT) 

model is employed. The quadratic scheme QUICK is applied to evaluate the convection 

terms. In order to enhance the stability of the computations, the Elastic Viscous Split 

Stress (EVSS) formulation is used to decompose the stress tensor.  

The developed code was validated for the Newtonian flow. Then the code is applied 

to predict the viscoelastic flow past a non-confined cylinder. Concerning this case, 

analysis was carried out for different Reynolds ( 200Re≤ ) and Deborah (0.0~0.25) 

numbers. The studied flow fields are the extra-shear stress, the first normal stress 

difference, the pressure field, the vorticity, and the velocity. Also, the results for the 

Strouhal number, the drag and the lift coefficient are presented and commented.  
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INTRODUCTION 

Turning mining waste into paste wins prize 

A chemical engineer, whose work in fluid mechanics is 
reducing the environmental impact of mining, has been awarded 
Australia's premier national award for scientific achievement. 
Professor David Boger of the University of Melbourne was awarded 
the Prime Minister's Prize for Science. Boger says his research has 
allowed some mines to convert their waste into a paste-like form 
that is less mobile and thus is less of a threat to the environment. 
His key contribution to science has been in the understanding of 
how "non-Newtonian" fluids behave.  

ABC Science Online - Wednesday, 5 October 2005 

 

In the last two decades, the interest in studying non-Newtonian fluids has increased. 

This is mainly due to their wide use in chemical process industries, food industry, 

construction, petroleum engineering, power technology, and many commercial and 

technological applications. Important examples of this type of fluids are slurries, 

ceramics, toothpaste, gels, various kinds of mineral oils, some types of suspensions, etc. 

Modelling the dynamics of such fluids in processes such as pipelining, extrusion, 

emulsification, etc., is often a delicate and challenging task, leading to mathematical 

problems of relevant difficulty. Viscoelastic fluids represent a category of non-

Newtonian fluids. These fluids exhibit not only viscous, but also elastic behaviour 

(including memory effects), which is not encountered in simple Newtonian fluids such 

as water or air. 

1.  Motivation and methodology 

The numerical simulation of viscoelastic fluid flow is a rich research area because 

of the need to understand the viscoelastic fluid behaviour in many engineering 

problems. Besides, the flow past a curved obstacle is one of the daily encountered 

problems in many applications. This work deals with the simulation of a viscoelastic 

fluid flowing past a non-confined cylinder. The viscoelastic fluid is described by a 

differential constitutive equation devised the Phan-Thien-Tanner (PTT) model [1]. To 
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carry out the simulation of this flow domain, the obstacle is assumed as a long cylinder 

placed inside the domain. The presence of such an obstacle exhibits some important 

changes in the flow field. One of these changes is the occurrence of the von Kármán 

vortex street phenomenon, beyond a critical Reynolds number, which is a repeating 

pattern of swirling vortices induced by the unsteady separation of flow over bluff 

bodies. On the other hand, it is known that the addition of small amounts of polymer to 

a Newtonian fluid can drastically change the properties of flows. However, these 

modifications such as the drag reduction effect or the suppression of small-scale 

fluctuations are still not well understood. Indeed, the link between these two phenomena 

remains especially unclear. Hence, simulating the viscoelastic fluid flow past a cylinder 

can be useful to better understand these phenomena. 

In viscoelastic fluid mechanics, a considerable amount of work deals with the 

viscoelastic fluid flow past a cylinder. However, most of these works have considered 

the problem of the cylinder placed symmetrically between two plates or inside a 

channel. This is the well-known confined cylinder problem. The blockage ratio defines 

the ratio of the cylinder diameter to the distance between the two plates (or the channel 

height). It is noted that the problem of a confined cylinder with blockage ratio of 0.5 has 

been dealt with extensively, while the problem of non-confined cylinder is almost 

unexplored. Up to our knowledge, no work is found simulating the PTT fluid flow past 

a non-confined cylinder. 

The presence of an obstacle inside the solution domain poses great complexity on 

the discretization technique. The usual Cartesian discretization of the domain fails to 

trace the curved profile of the obstacle. Polar and spherical coordinate systems may 

represent a solution but they face another problem in defining flat domain boundaries. 

Non-structured grids arise as an acceptable substitution for those traditional systems. 

However, this technique of space discretization has heavy complexity and 

computational cost. In the present study, the generalized orthogonal coordinate system 

is adapted to express the governing equations. This system of coordinates allows 

avoiding the problems of the traditional coordinate systems with a light computational 

cost.  
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The numerical approach is based on the Finite Volume Method (FVM) which is 

applied to descritize the governing equations. This method is very widely used in 

Newtonian fluid mechanics. Viscoelastic fluid mechanics was investigated, at early 

beginnings, by structural engineers so the Finite Element Method (FEM) is still 

dominating the field. With the introduction of FVM, viscoelastic fluid simulation has 

benefited from the simplicity and accuracy of this method. The implementation of the 

FVM in non-Newtonian fluid simulations is rapidly growing. Other methods (like 

Spectral Methods SM, Finite Difference Method FDM, and Boundary Element Method 

BEM) have been, also, used in research works.  

In summary, our main contribution in the present work consists of  

•  simulating the viscoelastic fluid flow with a PTT model,  

• considering the non-confined cylinder geometry, 

• and implementing the FVM in generalized orthogonal coordinates. 

2.  Outline of the thesis 

Motivated by the objective of the viscoelastic flow simulation, the entire work in 

this thesis is divided into four chapters. A brief literature review is presented in the first 

chapter. This survey introduces the previous works concerning the viscoelastic fluid 

flow simulation past a cylinder. This chapter reviews the recent experimental and 

numerical studies in the field. 

In the second chapter, the governing differential equations are stated. First, 

Cartesian conservation equations and the constitutive equation are written. Then, the 

transformation of coordinates is discussed and the equations are re-written in a 

generalized orthogonal coordinate system. The used stress splitting scheme is presented 

and the final form of the equations are stated.  

The third chapter discusses the numerical methodology, first introducing the grid 

generation technique. Then, the spatial discretization is depicted emphasizing the 

descritized components of velocity, pressure and stress. Next, the time marching 

technique is described. Finally, mesh optimization is performed. 
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In the fourth chapter, the physical results are shown and discussed. The numerical 

code is first validated for the Newtonian fluid flow. Then, the viscoelastic results are 

presented and commented. A particular attention is paid to the effects of Reynolds and 

Deborah numbers on velocity, vorticity, pressure, extra-shear stress, normal stress 

difference and the drag and lift forces. 

Finally, the conclusions of this work are drawn and perspectives for future work are 

proposed. 
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Chapter 1:  LITERATURE REVIEW 

1.1. Introduction 

In this chapter, a literature survey is presented for the recent work concerning the 

flow of viscoelastic fluid past a cylinder. To help out in the implementation of the 

results, the flow regimes of flow around a cylinder for Newtonian fluid are first defined. 

Then, the different viscoelastic models are reviewed to show the advances of theoretical 

work in the domain. After that, an overlook of the different numerical methods applied 

in the field of viscoelastic fluid flow past a cylinder are presented. Next, the main 

experimental work is summarized. Finally, a summary of this review justifies the choice 

of flow regime, viscoelastic constitutive equation, and the applied numerical method. 

1.2. Flow past a cylinder in Newtonian fluids 

Over decades, bluff body wake flows have had a great deal of interest because of 

their direct engineering significance. As we are interested here in the flow of 

viscoelastic fluids, it seems to us adequate to recall the different regimes of flow past a 

cylinder in the simpler case of Newtonian fluid. This will help to understand the effects 

of viscoelasticity on the flow. 

The Newtonian flow around a cylinder depends on the macroscopic Reynolds 

number: 

ν
DU=Re ,  1.1 

where D is the cylinder diameter, U is the magnitude of the free stream flow velocity, 

and ν  is the fluid kinematic viscosity.  

In the book of Sumer and Fredsøe [2], nine flow regimes are specified for the flow 

around a smooth, circular cylinder in a steady current. These regimes are:  
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• The creeping flow with no separation from the cylinder surface ( 5Re< ). 

• The flow with stable wake ( 40Re5 <≤ ). In this regime, a fixed pair of 

symmetric vortices are formed downstream the cylinder. 

• The laminar vortex shedding flow which is called in many references the 

von Karman street ( 200Re40 <≤ ). In this regime the flow is essentially 

two-dimensional with no variation in spanwise direction. 

• The transition to turbulence regime ( 300Re200 <≤ ). The region of 

transition to turbulence moves towards the cylinder with the increase of 

Reynolds number. The vortices become three-dimensional (Williamson 

[3]). 

• The subcritical regime ( 5103Re300 ×<≤ ) with completely turbulent 

wake. 

• The critical regime ( 55 105.3Re103 ×<≤× ) having a turbulent boundary 

layer at the separation point on only one side of cylinder. 

• The supercritical regime ( 65 105.1Re105.3 ×<≤× ). In this regime, the 

boundary layer becomes turbulent on both sides of the cylinder. However, 

the transition to turbulence in the boundary layer has not been completed 

yet. 

• The upper transition regime ( 66 104Re105.1 ×<≤× ). Here, the boundary 

layer on one side of cylinder is completely turbulent.  

• The final transcritical regime ( 6104Re ×> ) with a completely turbulent 

flow everywhere. 

The schematic drawings on Figure  1.1 summarize these flow regimes.  

From this description, it is shown that the flow is laminar for Re < 200. As the 

nature of the viscoelastic fluids has not been yet completely understood, the vast 

majority of numerical simulations are still limited to laminar flow regime and most 

practical applications are in the laminar regime, with the noticeable exception of the 

turbulent drag reduction. The present work investigates a new problem, so the two-

dimensional configuration will be considered. The three-dimensional analysis needs to 

employ the parallel computation techniques which are planned as a future step. Hence, 

we shall restrict this work to Re < 200 to perform laminar two-dimensional flow 

simulations. 
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Figure  1.1 Regimes of flow around a smooth, circular 
cylinder in steady current (source: Sumer and Fredsøe [2]) 
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1.3. Viscoelastic fluid models 

In general, there are two main classes of viscoelastic fluid models: differential 

models describing the dilute solutions of polymer molecules, and integral models which 

are more appropriate for more concentrated polymer solutions or for melts. The present 

work applies a viscoelastic fluid model of differential type. So, we survey here the 

recent literature models of the flow past a cylinder using both types of models, but 

focusing more on the differential type. In this section, a brief historical note about 

viscoelastic fluid models is presented first. Then, the published works of different 

viscoelastic models are reviewed.  

1.3.1 Brief history 

For viscoelastic fluids, in particular polymeric liquids, there are many different 

constitutive equations proposed and employed. However, they all point out to the 

presence of at least one characteristic time constant λ  in a differential or integral 

equation for the stress. The appearance of a time constant is related to the phenomenon 

of stress relaxation typical of viscoelastic fluids. The time constant λ  gives rise to a 

new non-dimensional parameter, the Deborah number 0De tλ=  where the unit of time 

0t  is a typical time scale of the flow. Another non-dimensional number is the 

Weissenberg number γλ &=Wi  which relates the relaxation constant to a typical shear 

rate γ& of the flow. 

The simplest model designed to capture the slowest and the most important 

relaxation mode of a polymer chain in a dilute polymer solution is the elastic dumbbell 

model proposed by Kuhn in 1934. This model considers an elastic dumbbell immersed 

in a Newtonian solvent. This dumbbell consists of two beads of mass 1m and 2m  

interconnected by a spring having a stiffness constant of k , as shown in Figure  1.2. The 

position vectors of the two masses are represented by 1r
r

 and 2r
r

. The forces of spring on 

the two beads are 1F
r

 and 2F
r

. 
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Figure  1.2 The dumbbell model 

From that time, almost all the models are based on this concept to simulate the 

viscoelastic effects. First, the Langevin equation is used to relate the strength of the 

Brownian forces to the mobility of the polymer beads through the fluctuation 

dissipation theorem and this represents the micro-scale level. Then, the Fokker-Planck 

equation for the density distribution function of the end-to-end polymer chain vector is 

used to describe the flow-induced deformations and the restoring forces. By that, the 

models advanced to the macro-micro-scale level. In 1950, Oldroyd transferred the 

models to the macro-scale level as he introduced an important derivative of the 

polymer-contributed stress to guarantee the objectivity of the stress tensor. This 

derivative is the upper convected derivative and the first model of this type is called the 

Upper Convected Maxwell (UCM) model. After that, Oldroyd introduced his 

constitutive equation called Oldroyd-B model which combines the solvent and the 

polymer contributed stresses. This model describes many features of dilute solutions of 

polymers in highly viscous solvents (Boger fluids). These models fail to simulate 

complex flows as they have two main problems. The first problem is that they count 

only for a constant shear viscosity. The second one is that they predict an infinite stress 

at finite elongation rate which is not physically realistic. To fix these problems, new 

models were proposed like Phan-Thien/Tanner (PTT) model, Giesekus model and the 

Finitely Extensible Nonlinear Elastic (FENE) model of long-chained polymers.  

m1 

m2 O 

k 

1F
r

 

2F
r

 
1r
r

 

2r
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1.3.2 Upper Convected Maxwell (UCM) and Oldroyd-B 

models 

The UCM and Oldroyd-B models were introduced as a result of the definition of the 

upper convected derivative. The upper convected derivative of a tensor A is defined as: 

( ) ( ) ( )vAAvAvAA ∇⋅−⋅∇−∇⋅+
∂
∂≡

∆
∆ T

tt
,  1.2 

where v  is the velocity vector and ∇  is the vector differential operator. 

These abovementioned constitutive equations simulate the viscoelastic effect as an 

upper derivative of the stress tensor. The constitutive equation of the UCM model is  

Dτ
τ

pt
ηλ 2=+

∆
∆

,  1.3 

where λ  is fluid time of relaxation, τ  is the viscoelastic stress tensor, pη  is the 

polymer-contributed viscosity and D  is the rate of deformation tensor. 

The Oldroyd-B model states that  

tt N ∆
∆+=+

∆
∆ D

Dτ
τ ληηλ 22 0 ,  1.4 

where 0η  is the total viscosity and Nη  is the Newtonian solvent viscosity. 

While the UCM constitutive equation remains an illustrative model and does not 

represent a real fluid behaviour, the Oldroyd-B model can represent some real Boger 

fluids. Since the introduction of these two models, many works have implemented them 

in many disciplines. We show here some examples of the use of theses models in the 

last decade for the flow past a cylinder. 

Oliveira et al. [4] introduced a new finite-volume collocated method. To validate 

this new method, calculations have been carried out for two problems: the entry flow 

and the bounded and unbounded flows around a circular cylinder. Phan-Thien & Dou 

[5] simulated the flow past a confined cylinder using parallel distributed computations. 

They tested the UCM model and applied the PTT model to count for shear-thinning. 

Dou & Phan-Thien [6] continued to focus on the parallelisation but they used only the 
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Oldroyd -B model and added discrete elastic viscous split stress (DEVSS) formulation 

together with an independent interpolation of the vorticity. To evaluate a new stabilized 

three-field velocity-pressure-stress Galerkin/Least-Squares (GLS3), Behr et al. [7] 

tested this formulation on the case of flow past a cylinder placed in a channel. Sahin and 

Wilson [8] extended a dilation-free semi-staggered finite volume method which was 

proposed by Sahin [9] for viscoelastic fluid flows. This method is based on solving the 

incompressible Navier-Stokes equations on all-quadrilateral (2D)/ hexahedral (3D) 

unstructured meshes. They applied it to the problem of confined cylinder with blockage 

ratio of 0.5. Recently, Dou and Phan-Thien [10] proposed a parallelized unstructured 

FVM using pressure correction with triangular meshes with a co-located mesh 

arrangement. They simulated the flow of the Oldroyd-B fluid past a circular cylinder in 

a channel to validate the proposed method. They used a fine grid to reach a Deborah 

number of De = 1.6 at low Reynolds Re < 3.  

Concerning integral models, Rasmussen [11] presented a new technique based on a 

Lagrangian kinematic description of the fluid flow and represents a further development 

of the 2D Lagrangian integral method (LIM) of UCM fluid. He attained a maximum 

Deborah number of De=0.8. The convergence of the method is demonstrated for the 

problem of a sphere moving in a cylinder filled with an UCM fluid. A highly parallel 

time integration method is presented by Caola et al. [12] to demonstrate the calculation 

of two-dimensional (2D) flow of an Oldroyd-B fluid around an isolated cylinder 

confined between two parallel plates. 

From this survey, it is shown that UCM and Oldroyd-B models are still considered 

in many works. However, they are mainly employed to validate new methods and 

techniques or to establish theoretical hypotheses like the work of Doering et al. [13] and 

Renardy [14].  

1.3.3 Phan-Thien/Tanner (PTT) model 

The Phan-Thien-Tanner (PTT) model was firstly introduced [1] to overcome the 

problem of infinite stress at finite elongation rate. This model constrains the dumbbell 

length to a maximum allowable length. After that, Phan-Thien [15] has modified the 

PTT model to consider the shear-thinning effects. The PTT constitutive equation is 

written as  
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Dτ
τ

pY
t

ηλ 2=+
∆
∆

.  1.5 

In this equation, the parameter Y  is a function of material properties which has 

either linear or exponential form. 

The PTT model represents some real dilute polymer solutions. In the work of 

Baaijens et al. [16], the authors investigated the flow of a low density polyethylene 

(LDPE) melts past a confined cylinder. They tested the performance of two constitutive 

models: the exponential version of the PTT model and the Giesekus model. They 

performed the work in two parts; numerical and experimental. The contribution of their 

work is that they fitted the experimental data to find the real values of the viscoelastic 

numerical model constants. Dou and Phan-Thien [17] studied the flow past a confined 

cylinder but focused on the parallelisation. They applied the simplified form of the PTT 

model. The main objective of their work is the implementation of distributed 

computations. Phan-Thien and Dou [5] studied the drag coefficient of confined cylinder 

using parallel computation and concluded that the distribution of pressure along the 

cylinder will be changed by the normal stress for viscoelastic fluid. Also, they found 

that the normal stress reduces drag due to the  non-symmetry about x-axis. They 

concluded that, for the PTT model, the drag reduction is mainly due to shear thinning. 

Chauviere and Owens [18] developed a new spectral element method for the accurate 

integration of the mixed elliptic hyperbolic system of partial differential equations. The 

method is illustrated by solving the benchmark problem of the flow of an Oldroyd-B 

and a PTT fluid past a cylinder in a channel. As stated in the previous section, Dou and 

Phan-Thien [10] simulated the PTT fluid flow past a confined cylinder to test the 

distributed computations for fine meshes. They found that the instability is due to an 

inflectional velocity profile, near the cylinder, generated by normal stress on the 

cylinder surface at high Deborah number. This can only be captured with fine meshes. 

Afonso et al. [19] studied the uniform steady flow of viscoelastic fluids past a cylinder 

placed between two moving parallel plates for five constitutive models (UCM, Oldroyd-

B, FENE-CR, PTT and Giesekus). The aim of using five models is to assess the effect 

of rheological properties on the flow kinematics and wake patterns. Simulations were 

carried out under creeping flow conditions. Accurate solutions were obtained for PTT 

and FENE-CR models. 
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The PTT fluid has, also, many applications like rectangular pipe flow (Xue et al. 

[20], Yamamoto et al. [21]), circular pipe and channel flows (Cruz et al. [22]), flow 

through a contraction (Alves et al. [23]), lubrication (Akyildiz and Bellout [24]) …etc. 

The PTT model is actively used in simulating the flow around a cylinder till 

recently. Also, it is noted that all these simulations concern the benchmark problem of a 

confined cylinder. Hence, simulating PTT fluid flow past a non-confined cylinder is a 

novelty, bearing in mind that the PTT model represents real fluids.  

1.3.4 Giesekus model  

The Giesekus model was introduced as a remedy for the problems of UCM and 

Oldroyd-B models. Its constitutive is equation states that 

( ) Dττ
τ

p
pt

η
η
αλλ 22 =++

∆
∆

,  1.6 

where α  is a parameter representing the dimensionless “mobility factor”. 

For the flow around a cylinder, the Giesekus model was used by Sun et al. [25] to 

simulate the case of confined cylinder using the FEM. The results showed a continuous 

decline of drag with Weissenberg number. Baaijens et al. [16] fitted a Giesekus 4-mode 

fluid to the low density polyethylene data. Hulsen et al. [26] implemented the FEM to 

investigate the flow of an Oldroyd-B and Giesekus fluids around a cylinder in a 

channel. They found that the Giesekus model gives convergent results for the stress in 

the wake beyond some rather small Weissenberg number. 

Despite that the Giesekus model represents some real viscoelastic fluids; the non-

linear term in its constitutive equation poses computational problems. This limits the the 

use of this model in numerical simulations.  

1.3.5 Finitely Extensible Nonlinear Elastic (FENE) 

family of models 

This type of models was introduced as an alternative to the Hookean spring force 

law. It uses the same dumbbell model but considers the connector force law proposed 

by Warner in 1972 stating that the force F  is 
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( )2
0

21 QQ

k

−
= Q

F .  1.7 

where Q  is the end-to-end vector of the polymer chain, QQTr2 =Q  and 0Q  is some 

finite constant representing the fully stretched length of the molecules. 

With this formulation, it is not possible to form the constitutive equation from the 

diffusion equation (Fokker-Planck equation) for the probability distribution function 

(PDF) directly as in the case of simple Hookean spring. Approximations are needed to 

form the constitutive equation. Each approximation approach leads to a different form 

of the constitutive equation. So, the FENE model is considered as a family of models 

according to the used approximation (FENE-P, FENE-L, FENE-CR). 

The FENE family of models is employed in many studies. In the domain of flow 

past a cylinder, Oliveira [27] implemented the molecular-based FENE family of models 

to simulate the flow around unbounded cylinder. Results are obtained for Re=50-120 

and De up to 80. His results showed that the formation length behind the cylinder is 

greatly increased for the elastic fluid, the vortex shedding frequency is attenuated by 

elasticity and time-averaged rms fluctuations of the spanwise velocity component are 

also much reduced. Lozinski and Chauvière [28] introduced a new method for solving 

efficiently the Fokker-Planck equation for FENE model. They studied the two-

dimensional FENE fluid past a confined cylinder using the spectral element method. 

They proved the advantages of the proposed scheme over traditional stochastic 

simulations. Dou and Phan-Thien [29] investigated the criteria for the negative wake 

generation for various viscoelastic fluids. They simulated the flow of the PTT, FENE-

CR, FENE-P, and Giesekus fluids past a cylinder in a channel, with the channel moving 

at a uniform speed. They showed that the critical condition for the negative wake 

generation and the amplitude of the velocity overshoot strongly depend on the value of 

gradient of the viscosity with respect to the shear rate. Ogata et al. [30] investigated the 

effect of surfactant solutions on the flow past a circular cylinder measuring the drag and 

by flow visualization. The used surfactant is a viscoelastic fluid equivalent to 200 ppm 

Ethoquad O/12 solutions. They fitted the results to the FENE-P fluid. They showed that 

the viscoelasticity, which related to the increased apparent shear viscosity, is one of the 

factors of the expansion of the stagnation zone upstream of the cylinder. 
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From this rapid survey, it is clear that the FENE family of models is more suitable 

to the micro-scale simulations and to study complex phenomena like turbulence. The 

impact of these models on the real fluids is still very limited. 

1.3.6 Other models 

In order to decrease the computational cost of the simulation process, Mompean et 

al. [31] presented a new methodology for the formulation of an algebraic extra-stress 

model (AESM) derivable from the Oldroyd-B constitutive equation for a viscoelastic 

fluid. An explicit algebraic tensor relation is derived directly from the differential 

constitutive relation by involving a slow variation condition on the evolution of the 

deviatoric part of the extra-stress tensor. Mompean [32] re-adapted this methodology 

for the PTT model. The application of this approach to viscoelastic fluids is very 

promising. The explicit AESM gives exactly the same results as the differential 

constitutive equations in the pure shear and pure elongational flows. In his thesis, Helin 

[33] applied two proposed algebraic models to simulate contraction flow 4:1 and curved 

circular channel. This family of models is promising because of their light 

computational cost. On the other hand, the determination of model coefficients is 

difficult and limited to benchmark problems which have well-established solutions. 

There are many other constitutive equations describing the viscoelastic fluid 

behaviour. However, these models are less used in the case of flow around a cylinder. 

One can refer to Tanner [34], Phan-Thien [35], and Owens and Phillips [36] who 

reviewed these models. 

1.4. Numerical work 

In this section, recent advances of numerical work for the viscoelastic fluid flow 

past a cylinder are considered. We review the Finite Difference Method (FDM), the 

Finite Element Method (FEM), the Finite Volume Method (FVM), and the Spectral 

Methods (SM).  

The FDM is based on the properties of Taylor expansions and on the 

straightforward application of the definition of derivatives. It is only applicable to 

structured grids and it remains the reference for all studies of numerical discretization. 
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Up to our knowledge, no FDM work is found in the last decade concerning viscoelastic 

flow around a cylinder. 

Hulsen et al. [37] used the FEM to simulate the flow past a confined cylinder by 

determining the polymer stress from a microscopic model. They replaced the collection 

of individual polymer molecules by an ensemble of configuration fields, representing 

the internal degrees of freedom of the polymers. Matallah et al. [38] simulated the 

creeping flow of an Oldroyd-B fluid past a confined cylinder using a Taylor-Galerkin 

pressure correction method with consistent streamline upwind scheme. They focused on 

the evaluation of the features of Elastic Viscous Splitting Scheme (EVSS) and the 

recovery of velocity gradients. They concluded that at low Deborah number (De), the 

use of the conventional scheme is more efficient, while at high De number the recovery 

scheme is the superior choice. Sun et al. [25] compared between three stress-splitting 

schemes. The first scheme is the discrete adaptive splitting method for preserving the 

ellipticity of the momentum/continuity pair (the DAVSS formulation). The second 

scheme is the independent interpolation of the components of the velocity gradient 

tensor (DAVSS-G). The third one applies the discontinuous Galerkin (DG) method for 

solving the constitutive equation (DAVSS-G/DG). The studied problem was the flow 

past a cylinder in a channel with the Oldroyd-B and Giesekus constitutive models. 

Results showed that the DAVSS-G/DG is a robust and accurate numerical algorithm 

and that for an Oldroyd-B fluid model the steep stress gradients develop adjacent to the 

cylinder and in the downstream wake for increasing De. Fan et al. [39] introduced a new 

stabilized splitting formulation named MIX1 based on the incompressibility residual of 

the finite element discretizations and used the problem of flow past a cylinder in a 

channel to compare between the three formulations (EVSS, DEVSS, MIX1). While, 

their results proved the stability and robustness of MIX1 in a narrow range, accuracy 

and stability need further investigations and the role played by the perturbation term of 

the MIX1 method in flows that have a substantial Newtonian solvent contribution is not 

yet fully understood.  

The high Weissenberg number problem (HWNP) arose to be a principal obstacle to 

the viscoelastic computations. This problem represents the critical value at which 

computations break down. Fattal & Kupferman [40] proposed that the cause of HWNP 

is a numerical instability caused by the failure to balance the exponential growth of the 
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stress (due to deformation) with convection. They introduced a remedy consisting in a 

change of variables into new variables that scale logarithmically with the stress tensor. 

This technique is adopted by Hulsen et al. [26] to the case of flow of an Oldroyd-B and 

a Giesekus fluids past a confined cylinder at high Wi. This problem is still under 

investigation as Coronado et al. [41] & [42] presented a new Galerkin/Least-Squares 

(GLS) stabilized finite element method for computing viscoelastic flows of Oldroyd-B 

and Larson-type fluids past a cylinder in a channel. 

With the introduction of FVM, the simulation of viscoelastic fluid flow has entered 

a new era. Dou and Phan-Thien [17] reported a Parallel Virtual Machine (PVM) 

implementation of an unstructured FVM for the simplified PTT constitutive model. 

They tested the performance of the distributed computations on the flow past a cylinder 

between two parallel plates. Following the same way of parallel computations, Dou and 

Phan-Thien [6] combined the idea of the discrete adaptive elastic viscous split stress 

(DAVSS) formulation with the independent interpolation of the vorticity to get a new 

splitting scheme called DAVSS-ω. To validate the new formulation, they simulated the 

flow of an Oldroyd-B fluid around a cylinder in a channel and reached De=1.8 using 

unstructured FVM. The obtained results lead to important findings about the influence 

of viscoelasticity on drag. They found that the drag coefficient decreases with mesh 

refinement for the Oldroyd-B model. The objective of the work of Oliviera et al. [4] was 

to present a finite-volume based numerical method for non-orthogonal collocated grids, 

and to include second-order accurate interpolation schemes, for the prediction of Non-

Newtonian flows. They tested this technique on an UCM fluid flowing past a cylinder in 

a channel for Re=20 and De=0.1-1.0. Continuing on the same road of collocated grids, 

Alves et al. [43] implemented two high-resolution schemes (MINMOD and SMART) to 

represent the convective terms. They computed the flow of UCM and Oldroyd-B fluids 

around a confined cylinder (blockage ratio 0.5). The results lead to predictions of the 

drag coefficient on the cylinder for the range of De = 0 – 0.9. The linear stability 

analysis for inertial flows of a viscoelastic fluid around a bluff body is studied by Sahin 

and Owens [44]. Their work consists of two folds; direct numerical simulation (DNS) 

and numerical simulation using a constant viscosity modified FENE-CR model. They 

investigated the problem of linear stability of two-dimensional viscous flow past a 

confined cylinder. With the same fluid model FENE-CR, Oliveira and Miranda [45] 

considered two-dimensional inertia-free (Re=0) flow of a constant-viscosity viscoelastic 
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fluid past a cylinder placed symmetrically in a channel with a blockage ratio of 0.5. 

Steady state results are obtained for De=0-10. Simulation showed that a small 

recirculation pulsating bubble was attached to the cylinder downstream stagnation point 

leading to an  increase of drag coefficient with elasticity. Such a phenomenon for the 

inertia flow of viscoelastic fluids has not been previously reported.  

In order to gain the advantages of the two methods, some hybrid Finite Element / 

Finite Volume (FE/FV) schemes were proposed. In the work of Wapperom and Webster 

[46] FEs are used to discretize the balance of mass and momentum and a FV method is 

used for the stress equation. This combination gives some improvements over the FE 

scheme. They tested the flow of an Oldroyd-B fluid past a confined cylinder. The 

benefit of the FE/FV hybrid scheme for complex flows appears in the improvement of 

efficiency. 

At the beginning of the eighties, Spectral Methods (SM) was introduced to the field 

of CFD. Since then, considerable number of articles have been elaborated concerning 

the viscoelastic flow around a cylinder. Chauvière and Owens [47] developed a 

stabilised SEM by solving the flow of an Oldroyd-B and a PTT fluid past a cylinder in a 

channel. The method proved its efficiency and a De = 1.85 was achieved. An a-

posteriori error indicator for viscoelastic flow calculations is proposed by Chauvière 

[48] for a previously proposed method. He verified this error indicator by solving the 

problem of the flow of an Oldroyd-B fluid past a cylinder in a channel. Owens et al. 

[49] developed a new spectral element scheme suitable for computations of viscoelastic 

flows at high Deborah numbers. They validated this scheme by simulating the flow past 

a single confined cylinder. They demonstrated the stability and accuracy properties of 

the new scheme.  

1.5. Experimental Work 

Like the numerical simulation, the experimental work on viscoelastic fluids faces 

many challenges because of the complexity of these fluids. In this section, a brief 

survey of the experimental work concerning the viscoelastic flow past a cylinder is 

presented.  
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Shiang et al. [50] used Particle Image Velocimetry (PIV) to measure the full-field 

instantaneous velocity in an inertia-less, viscoelastic flow past a confined circular 

cylinder. The investigated range of the Deborah number is De= 0.6-2.4. The flow is a 

creeping one with Re<5. They found that at relatively low De (0.6 - 1.2) the flow 

reached steady-state conditions rapidly (< 10 s) and for De = 1.8 - 2.4 the viscoelastic 

flow may require as long as 90 s to reach steady flow. Cadot and Lebey [51] visualized 

the wake behind a circular cylinder and concluded that a drastic change of the shape of 

the wake of viscoelastic solutions is observed compared to that observed for water 

injections. Also, they remarked that the aspect ratio of the wake is decreased, the 

wavelength of the vortices is increased, and a large region of slow fluid motion is 

developed behind the cylinder. This indicates a delay of the shear roll-up and thus an 

inhibition of the shear instability. Cadot & Kumar [52] found that viscoelasticity 

delayed the development of the two-dimensional instability and shifted it to longer 

wavelengths. They noted that the stabilizing effect of viscoelasticity inhibits the 

formation of vorticity filaments and reduce drag in turbulent flows. The paper of Cadot 

[53] continued the work aiming at giving a quantitative idea of the basic viscoelastic 

wake. He investigated the consequences of this modification on the pressure field. 

Cressman et al. [54] studied the velocity fluctuations behind a rod in a quasi-two-

dimensional flowing soap film. They found that at a low concentration the velocity 

fluctuations are suppressed. This implies that the polymer strongly reduces the 

magnitude of the velocity fluctuations. Coelho and Pinho ([55], [56] and [57]) measured 

the vortex shedding frequency and formation length for flow around a cylinder with 

Newtonian and shear-thinning aqueous solutions of methyl hydroxyethyl cellulose 

(tylose) and carboxymethyl cellulose (CMC). They arrived at some important findings 

concerning the critical Reynolds numbers marking the onset and end of the various flow 

regimes. They commented the boundary-layer thickness and the diffusion length in the 

laminar shedding regime versus the shear-thinning and the fluid elasticity. This 

enormous sophisticated study clearly emphasized the effect of shear-thinning on the 

flow properties. Pipe and Monkewtiz [58] have characterized the influence of small 

amounts of fluid elasticity on the two-dimensional laminar vortex shedding instability 

and the effects on the fluctuating and time-average velocity fields. They mainly focused 

on the evaluation of critical Reynolds number and the frequency of bluff body 

fluctuations. It is remarked that only the last mentioned work investigated the flow past 

a non-confined cylinder. 
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1.6. Summary of the literature survey 

From the aforementioned survey, this work aims at the simulation of the flow of a 

viscoelastic PTT fluid past a cylinder placed in an unbounded media using FVM for the 

following reasons: 

1- The flow around a non-confined cylinder is almost unexplored area. 

2- The PTT model represents real viscoelastic fluids. Besides its simplicity 

and accuracy, it is generally more stable than the Oldroyd-B and UCM 

models. 

3- The FVM is very effective in CFD owing to its simplicity and low 

computational cost. 
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Chapter 2:  THEORETICAL STUDY 

In this chapter, the theoretical bases of the study are introduced. First, the governing 

equations are stated. Then, the general characteristics of extra-stress constitutive 

equation are discussed and the employed equation is reported. After that, the 

transformation of coordinates is investigated and the equations are re-written in 

generalized orthogonal coordinates.  

2.1. Conservation equations 

The motion of a fluid is completely described by the conservation laws for the three 

basic properties: mass, momentum, and energy. Since the isothermal flow is considered 

here, the governing equations are reduced to the conservation of mass (continuity 

equation) and the conservation of momentum. For the case of incompressible, unsteady 

flow, and neglecting the body forces, the equation of conservation of mass is written in 

Cartesian coordinate system as: 

0. =∇ v ,  2.1 

and the equation of conservation of momentum is 

( )TIv +−∇= p
tD

Dρ ,  2.2 

where tDD  is the material (total) time derivative, ∇  is the gradient operator, v  is the 

velocity field, p  is the pressure field, I  is the identity tensor, and T  is the total stress 

tensor. 

To close the system, it is necessary to establish some connection between the 

(kinematic) stress tensor and the velocity field which is the constitutive equation. For 

Newtonian fluids the constitutive equation is the Newton's law of viscosity: 

DT Nη2= ,  2.3 
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where Nη  is the Newtonian fluid viscosity (solvent viscosity in case of polymeric 

solutions). The rate-of-strain tensor D  is defined as  

( )[ ]T

2

1
vvD ∇+∇= ,  2.4 

where ( ) jiij xv ∂∂=∇v is the macroscopic velocity gradient in the fluid and ( )Tv∇  is its 

transpose.  

The behaviour of polymer solutions is defined as a "mixture" of viscoelastic 

properties of the polymer fraction and the properties of the Newtonian solvent (which is 

assumed to be of low molecular weight). A natural way to model this is to split the 

stress tensor into a Newtonian stress and a polymer extra-stress tensorτ : 

τDT += Nη2 ,  2.5 

where τ  is the viscoelastic extra-stress tensor. The constitutive equation defines this 

extra-stress as a function of velocity field and viscoelastic material quantities like the 

relaxation time. 

2.2. The constitutive equation 

In order to find a constitutive equation that can represent the behaviour of the fluid, 

there are basically two approaches: 

1. In the continuum approach, Newton's law of viscosity is modified or new 

equations are set up to include certain features such as shear-dependent 

viscosity and stress relaxation. Concepts of continuum mechanics can be used 

to determine relevant variables and operations. An example of this approach is 

the Maxwell model. 

2. In the microstructure approach, the concepts of statistical mechanics are 

applied. Starting from a specific model for the individual polymer chains, 

microscopic expressions for the stress tensor and equations of motion can be 

derived. An example of this approach is the Oldroyd model.  
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The constitutive equation is expected to satisfy the following general requirements  

• Coordinate system independence: This is a logical requirement of merely all 

physical laws that their validity does not depend upon expression in a 

unique coordinate system. This requirement establishes the application of 

tensor notation in the expression of the constitutive equation.  

• Determinism and local action: Determinism concerns the time marching 

process. It ensures that the viscoelastic fluid has only memory and does not 

possess foresights. In other words, the stress is related to only the present 

and past time step values. Local action means the same property but for 

spatial discretization. This property guarantees that only the neighbouring 

particles are involved in determining the stress at a point. 

• Material objectivity: The physical interpretation of material objectivity 

means that the material behaviour must be indifferent to the motion of an 

observer. Mathematically, it states that the constitutive equation must be 

“frame-indifferent” or indifferent to rigid body translations and rotations of 

the material. 

• Equations for polymer solutions should also reduce to the Newtonian 

behaviour of the solvent at vanishing concentration.  

In the general case of stress, the normal stress components 332211 ,, τττ  are even 

functions of the shear rate. The shearing stress components 231312 ,, τττ  are odd functions 

of the shear rate by a symmetry argument. The differences between the normal 

components must be zero for any fluid whose viscosity depends linearly on shear rate. 

However, this fact does not hold for the viscoelastic fluids. In viscoelastic fluids, two 

independent normal stress differences ( 21,NN ) can be defined as functions of shear 

rate: 

( )
( ) .

,

33222

22111

ττγ
ττγ

−=
−=

&

&

N

N
  2.6 

These differences are vanishing for 0=γ& . 
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In the present work, the viscoelastic extra-stress tensor is related to the velocity 

field through the constitutive equation proposed by Phan-Thien and Tanner [59]: 

DττLLττ mY
t

ηλ 2
D

D T =+




 −− .  2.7 

where mη  is the molecular-contributed viscosity.  

The effective velocity gradient tensor is defined as: 

DvL ξ−∇= ,  2.8 

where ξ  is the Phan-Thien slip parameter which is estimated from linear-viscoelastic 

and viscometric data. 

The variable Y  has two forms: 

• The linear form 

τTrY
m0

1
η
ελ+= .  2.9 

• The exponential form 









= τTrY

m0

exp
η
ελ

.  2.10 

The variable ε  is a material constant related to its elongation behaviour. The zero-

shear rate molecular-contributed viscosity 0mη  is related to the molecular-contributed 

viscosity mη  through the relation [60]: 

( )
( )( ) 














Γ+

−+== −
2

1
22

22

0

1

21
        ,      

nmm

γ

γλζζµµηη
&

&
  2.11 

where DTr  2=γ&  is the shear rate, and Γ is a time parameter assumed here to be 

λ=Γ .  
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The constitutive equation can now be rewritten as a transport equation of τ : 

( ) ττLLτDτ Y
t

−++= T
0 2

D

D λµβηλ ,  2.12 

where 00 mN ηηη +=  is the zero-shear rate viscosity of the fluid  and 00 ηηβ m=  is the 

retardation ratio.  

According to the values of β, ε, and ξ, six models can be defined as shown on Table 

 2.1.  

Table  2.1 Different fluid models obtained by changing the 

constitutive equation parameters β, ε, and ξ 

ε ξ β Viscosity Model 

0 0 0 0ηη =N  Newtonian 

0 0 1 00 ηηη == mm  UCM  

0 0 0<    <1 0mm ηη =  Oldroyd-B 

- - 1 00 ηηη == mm  PTT 

- 0 1 00 ηηη == mm  SPTT (simplified PTT) 
- - -  MPTT (modified PTT) 

 

This form of the constitutive equation offers the following advantages: 

• Linear viscoelastic behaviour at small strains. 

• Good fit to viscosity and first normal stress difference for low density 

polyethylene for both steady and transient shearing. 

• A non-zero second normal stress difference. 

• Reasonable elongational behaviour at all elongation rates. 

Now, equations 2.1, 2.2 and 2.12 represent a closed system of equations written in 

the Cartesian coordinate system. As the cylinder is considered as a curved obstacle 

immersed in the solution domain, the governing equations will be rewritten in the 

generalized coordinates. 
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2.3. Transformation to general orthogonal 

coordinates 

Orthogonal curvilinear coordinate systems (or the general orthogonal coordinate) of 

various types turn out to be extremely useful in mechanics. For the complex geometries, 

the use of generalized coordinates is crucial. This type of coordinates stands to be an 

effective alternative to the unstructured grids. Working with these coordinate systems 

implies heavy mathematical work to transform the governing equations. Also, some 

terms are added to the governing equations due to the curvature of coordinates. This 

requires great attention to the physical significance of lengths and angles. 

In the present work, the transformation technique proposed by Pope [61] is adopted. 

In his work, he stated the Navier-Stokes equations in general orthogonal coordinates to 

calculate the turbulent recirculating flows in a diffuser. Magnaudet et al. [62] applied 

this methodology to simulate the laminar Newtonian flow around a sphere. Also, Thais 

et al. [63] adapted this technique to solve the flow around a cylinder. 

In this section, we introduce and discuss the transformation relations between the 

Cartesian and generalized orthogonal coordinate systems. Then, the governing 

equations are re-written in generalized orthogonal coordinates.  

2.3.1 Coordinate transformation 

Consider the physical Cartesian coordinate system ( ) ( ) 3,2,1,, =≡ iixzyxx
r

 and the 

generalized orthogonal coordinate system ( )321 ,, ψψψψr  as shown in Figure  2.1.  

The generalized coordinates are expressed as functions of the Cartesian coordinates: 

( )
( )
( )32133

32122

32111

,,

,,

,,

xxx

xxx

xxx

ψψ
ψψ
ψψ

=
=
=

.  2.13 
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Figure  2.1 Cartesian and generalized orthogonal coordinate 
systems 

The admissible transformation between two coordinate systems is carried out 

through the Jacobian: 
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The columns of the Jacobian matrix define the base vectors ib  of the curvilinear 

coordinates: 

.
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  2.15 

The metric tensor g  is defined as: 

jiijg bb ⋅= .  2.16 

x 

y 

1ψ  

2ψ  

3ψ  

z 
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The orthogonality condition implies that only the diagonal terms of the metric 

tensor are non zero. The scale factors ih  are defined as the square root of the diagonal 

elements of the metric tensor. Hence, the scale factors are written: 

jjj gh = .  2.17 

Cartesian coordinates have the physical dimensions of length but, in general, this 

cannot be expected for curvilinear coordinates. The infinitesimal physical distances 

iζd , in curvilinear coordinates, are evaluated using the scale factors: 

jjjjjj gh ψψζ ddd == .  2.18 

It should be noted here that the normalisation of these physical distances is crucial. 

In order to express the quantities in physical length, the spatial derivatives are stated as 

functions of the infinitesimal physical distances. The usage of the physical coordinates 

keeps the physical magnitude of length and angles. In this work, the physical 

components in the curvilinear coordinates are noted by the symbol “ 
(

”. For example, 

the physical components of a vector A  are noted iA
(

 and they are given by:  

iii AhA ≡
(

  2.19 

where iA  is the transformed component in curvilinear system. 

The advantage of expressing the variables in terms of their physical components, rather 

than their covariant or contravariant components, is that the vectors retain the same 

dimensions in all directions and in all locations. Besides, there are no additional terms 

for the stretching of the coordinate system. Accordingly, the physical velocity field 

( ) 3,2,1=iiv
((

v  is expressed as: 

iii vhv =(
.  2.20 

These velocity components are derived by the normalisation of the curvilinear 

velocity contravariant components tv ii ddψ= . It should be noted here that there is no 

summation on indices in equations from 2.17 to 2.20. 
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In orthogonal coordinate system, the curvilinear form for the divergence operator 

( )i∇  can be expressed in terms of stretching factors j
iH . The stretching factors are 

defined as 

j

i

ij

i

ji

j
i

h

h

h

hh
H

ζψ ∂
∂

=
∂
∂

≡ 11
,  2.21 

and they represent the inverse of the radius of curvature of the j th coordinate. 

The curvilinear form for divergence operator is given by: 

( ) ( ) ( ) ( )∑
≠

+
∂
∂

≡∇
ik

k
i

i
i H

ζ
.  2.22 

The transformation of governing equations to the generalized orthogonal 

coordinates can be carried out using the following rules (Pope [61]):  

• Scalars 

.

,

ii

A

x

A

AA

ζ∂
∂→

∂
∂

→
  2.23 

• Vectors 

( ) .

,

,

ii
i

i

ij
k

ik
i

jj
j

i

j

i

ii

A
x

A

HAHA
A

x

A

AA

(

((
(

(

∇→
∂
∂

+−
∂
∂→

∂
∂

→

δ
ζ

  2.24 

• Second-order tensors 

( ) ,

,

jk
k

j
j

iiiiji
i

ij

ijij

AHHAA
x

A

AA

(((

(

+−∇→
∂
∂

→
  2.25 

• Third-order tensors 

( ) ,

,

i
kkij

k
iiji

i
jjik

j
iiijiji

i

ijk

ijkijk

HAHAHAHAA
x

A

AA

(((((

(

+−+−∇→
∂

∂

→
  2.26 

where ijδ  is the Kronecker delta. 
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2.3.2 Governing equations in generalized orthogonal 

coordinate 

Using the transformation relations mentioned in the previous subsection, the 

velocity gradient is expressed as: 

( ) ( ) ∑+−
∂
∂

=∇
k

ijk
k
ji

j
i

i

j
ji vHvH

v
v δ

ζ
((

(
(

.  2.27 

Consequently, the form of the rate of deformation tensor in curvilinear coordinates 

is given by: 














+−−

∂
∂

+
∂
∂= ∑

k
ijk

k
ii

j
ij

i
j

i

j

j

i
ij vHvHvH

vv
D δ

ζζ
(((

(((
2

2

1
.  2.28 

The generalized representation of the effective velocity gradient tensor is given by: 

.2
2 


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  2.29 

The governing equations can now be rewritten in generalized orthogonal coordinate 

system as follows: 

The continuity equation is transformed as: 

( )( ) 0=∇∑
i

ii v
(

.  2.30 

The conservation of momentum equation is re-formulated to be: 

( ) ( )
( ) ( ).22

2

∑∑

∑

−−+−−−

∂
∂−=−−∇+

∂
∂

i
iiiiNii

j
i

i
ijijNji

i
j

ji
ijijNjiij

DvvHDvvH

p
Dvvv

t

τηρτηρ

ζ
τηρρ

((((((((

(((((

  2.31 
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The viscoelastic constitutive equation (equation 2.12) is re-written as: 

( )( )
( ) .2 0 ijkijkkjikij

k

k
jikj

k

j
kikk

k

k
ikji

k

i
kkjkijji

ij

τYLττLλD µβη

HτvHτvHτvHτvτv
t

τ
λ

((((((

((((((((((
(

−++=









+−+−∇+

∂
∂

∑∑∑∑
  2.32 

Now, the closed system of the three equations 2.30, 2.31, and 2.32 has to be solved 

to simulate the flow of a viscoelastic fluid. 

2.4. Stress splitting scheme 

Several methods have been proposed in the literature to retain an elliptic 

contribution of the momentum equation which is particularly important if a purely 

viscous contribution is absent or small compared to the viscoelastic contribution. One 

way to achieve this is the application of a change of variables, known as the Elastic-

Viscous Stress Splitting (EVSS) formulation. This scheme was introduced by Perera 

and Walters [64]. Later, Mendelson et al. [65] extended it for the flow of a second-order 

fluid. Beris et al. [66] adapted this scheme to viscoelastic fluid flows. The key point of 

the EVSS is to split the stress tensor into elastic and viscous components by separating 

explicitly the elastic and viscous stresses: 

.2 DΣτ mη+=   2.33 

The tensor Σ  represents the purely elastic stress, while the other term stands for the 

.viscous, or Newtonian-like, stress. By substitution, the constitutive equation 2.12 is 

written as follows: 

( ) DDΣΣ
t

YY
t mm ∆

∆−−=+
∆
∆ ληηλ 212   2.34 
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In the curvilinear coordinates, equation 2.32 is stated as: 
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2.5. Summary of the theoretical study  

• The governing equations of the problem under consideration are the 

conservation equations of mass and momentum and the viscoelastic 

constitutive equation. 

• The closed system of governing equations is presented in Cartesian 

coordinate system: equations 2.1, 2.2, and 2.7. 

• The equations are transformed to the generalized orthogonal coordinate 

system: equations 2.29, 2.30, and 2.31. 

• The stress splitting scheme (EVSS) is introduced. 

• The final system of equations to be resolved is: 
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Chapter 3:  NUMERICAL METHODOLOGY 

In this chapter, the numerical solution of the governing equations defined in the 

previous chapter is presented. Spatial and temporal stepping schemes are introduced. 

After that, the boundary conditions are established. Finally, the optimization of mesh is 

presented. 

3.1. The Finite Volume Method (FVM) 

The Finite Volume Method (FVM) is one of the most widely applied numerical 

methods today in Computational Fluid Dynamics (CFD). The appeal of this widespread 

method lies on its generality, its conceptual simplicity and it easiness of implementation 

for arbitrary grids, structured as well as unstructured [67]. The FVM is based on cell-

averaged values which distinguish it from the finite difference and finite element 

methods where the main numerical quantities are the local function values at the mesh 

points.  

The general form of the transport equation can be used to describe all the governing 

equations:  

( ) ( ) ,Φ+





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Φ∂Θ
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S
xx

u
xt jj

j
j

  3.1 

where Φ  is the transported quantity which can be a scalar, a vector component, or a 

tensor. The coefficients Θ  and Λ  have different meanings depending on the 

transported variable. The first left-hand side term is the temporal rate of change term, 

the second one is the convective term, the first right-hand side term is the diffusion 

term, and the last term ΦS  is the source term which includes all terms that cannot be 

accommodated in the convective or diffusive terms. Table   3.1 shows the different 

corresponding quantity for each governing equation.  
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Table   3.1 Variables of the generalized transport equation 
and their corresponding quantities in the governing equations. 

Equation Φ  Θ  Λ  ΦS  

Continuity 1 0 ρ 0 

Momentum ui ηm0 ρ 
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The solution domain is discretized into mesh points. Once a grid has been 

generated, the FVM consists in associating a control volume (CV) to each mesh (nodal) 

point. The essential step in the FVM is the integration of the transport equation 3.1 over 

the CV, then applying Gauss’ divergence theorem yielding: 

( ) ( ) VSA
x

nAunV
t CVCS

j
CS jCV

dd.ˆd.ˆd ∫∫∫∫ Φ+














∂
Φ∂Θ=ΦΛ+ΛΦ

∂
∂

,  3.2 

where CS stands for control surface with n̂  defined as its outward unit vector and Ad  

as the infinitesimal area and Vd  is the infinitesimal volume.  

In time dependent problems, the integration is carried out in two steps; integration 

with respect to position (spatial discretization) and then integration with respect to time 

(time marching). The general integrated form of the transport equation is: 
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

 ΛΦ
∂
∂

  3.3 
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3.2. Spatial discretization 

For space discretization, the steady transport equation is derived from the general 

unsteady equation 3.3, as: 

( ) VSA
x

nAun
CVCS

j
CS j dd.ˆd.ˆ ∫∫∫ Φ+















∂
Φ∂Θ=ΦΛ   3.4 

The net diffusive flux (first right-hand term) affects the transported property along 

its gradients in all directions. On the other hand, the net convective flux (left-hand term) 

spreads influence only in the flow direction. The second right-hand term represents the 

generation or destruction of the property within the CV. The relative strength of 

convection and diffusion must be kept in mind while generating the mesh to get a stable 

computation process.  

Now, the differential equations are expanded to algebraic difference equations. The 

order of expansion influences the accuracy of computation. As the problem under 

consideration is a two-dimensional problem, the computations are carried out by 

sweeping the solution domain from west to east ant sweeping domain from south to 

north. Figure  3.1 illustrates the notation for points and distances of scalar-variables node 

(pressure nodes), x-direction vector-components (velocity node) and y-direction vector-

components. In this notation, iV  designates the physical volume of the control volume 

with the index vupi ,,=  standing for pressure, vector x-component, or vector y-

component volumes respectively.  
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Figure  3.1 Notation for points and distances for pressure 
velocity control volumes 

The physical surface area of the control volume face is denoted by nm
jiS ,  where the 

upper first index letter vupn ,,=  means the pressure, vector x-component, or vector y-

component volumes respectively and the second letter xym=  indicates the CV face 

either in x-direction or in y-direction, while the lower index letters give the order of the 

CV. Physical distances between successive nodes are noted by rqdx  for x-direction and 

rqdy  in y-direction where the first index letter vupr ,,=  means the pressure, vector x-

component, or vector y-component volumes respectively and the second letter 

wesnq ,,,=  indicates the attitude either north, south, east, or west. It is obvious that in 

the present 2D case, all areas are reduced to lengths and all volumes are reduced to 

areas. 

P 

P E W 

N 

S 

pwdx  pedx  

pndy  

psdy  

vwdx  vedx  

vndy  

vsdy  

jiu ,  

uwdx  uedx  

undy  

usdy  

jiu ,1+  jiu ,1−  

1, −jiu  

1, +jiu  

jiv ,  

1, −jiv  

1, +jiv  

jiv ,1−  jiv ,1+  

Pressure 
node 

x-component 
velocity node 

y-component 
velocity node 

px
jiS ,  

py
jiS 1, +  

px
jiS ,1+  

py
jiS ,  

vx
jiS ,  

vy
jiS 1, +  

vx
jiS ,1+  

vy
jiS ,  

ux
jiS ,  

uy
jiS 1, +  

ux
jiS ,1+  

uy
jiS ,  

vV  pV  

uV  

P 

P 



Numerical Methodology 

 37 

It should be reminded that the physical components in the curvilinear coordinates 

are noted by the symbol “ 
(

”. For example, the physical components of a vector A  are 

noted iA
(

. In the two-dimensional case, the physical velocity field is ( )vu
(((

,v . 

Accordingly, the continuity equation is discretized as: 
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The momentum equation in x-direction is developed as: 
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In this equation, the terms are evaluated using the u-CV.  

In order to carry out the computations in the highest possible accuracy, two second-

order interpolating schemes are used. The diffusion terms are calculated with the second 

order accurate Centered Difference Scheme. The convective terms are evaluated using 

the second-order accurate "Quadratic Upstream Interpolation Scheme for Convective 

Kinematics" (QUICK) scheme [68]. With that, the convective and diffusive terms are 

written at the four faces of the control volume as follows: 

At the ‘East’ face – term (1): 

The convective term is: 
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The stress is expressed as: 
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where 
( )jip

H
,

2
1 is the stretching factor calculated for the ( )thth ji ,  pressure control volume 

which belongs to the pressure node at the face “east”.  

At the ‘West’ face – term (2): 

The convective term is: 
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The stress is expressed as: 

( )
.

2
22 11

,11,1

,1

2
1

1,1

,1,
011110 Σ+












 +
+

−
=Σ+ −+−

−
+−

− (
((((

(( jiji

jipvy
ji

jiji vv
H

S

uu
D ηη   3.10 

At the ‘North’ face – term (3): 

The convective term is: 
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The stress is expressed as: 
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where 
( )1,

2
1 +jiu

H  is the stretching factor calculated for the ( )thth ji 1, +  control volume of 

x-direction vector component which belongs to the u-node at the “south” face. 

At the ‘South’ face – term (4): 

The convective term is: 
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The stress is expressed as: 
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The source term – term (5): 

The convective term is: 
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The stress is expressed as: 
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where 
( )jiu

H
,

2
1  is the stretching factor calculated for the ( )thth ji ,  control volume of x-

direction vector component.  

In a similar way, 
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All terms are evaluated in a similar way like convective and diffusive terms in 

momentum conservation equation.  

3.3. Time discretization 

For the time marching algorithm, the first-order accurate Euler forward explicit 

scheme is applied obeying the adaptation of Marker and Cell algorithm developed by 

Mompean and Deville [69]. In this method, the mass conservation equation, the 

pressure gradient term in the conservation of momentum equation and the boundary 

conditions are evaluated at the new time level (n+1). The other advection, diffusion, and 

source terms in the momentum conservation equation are evaluated at the old time level 

(n). This decoupling procedure is based on a semi-implicit projection method in 

pressure developed by Harlow and Welch [72]. 

The mass conservation equation is enforced in the new time level as: 
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The momentum conservation equation in x-direction is: 
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It can be rearranged in the form: 
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The solution algorithm consists of substituting the value of 1
,
+n
jiu

(
 at the mass 

conservation equation. Hence, a Poisson equation is obtained for the pressure: 
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Then, solving the linear system of equations n
p

m

n
m QpC =∑ +1  at each time step 

gives the pressure filed at 1+= nt . Finally, by re-substituting in equation 3.21 the new 

pressure field a new velocity field, obeying the incompressibility constraint, is obtained.  

As the matrix of coefficients of the pressure matrix depend only on the geometry, 

the matrix is formed once and for all after constructing the grid. In order to solve this 

linear system of equations, the Cholesky method is applied. Appendix A shows the 

flowchart of the developed code. 

3.4. Solution domain, boundary and initial 

conditions 

A schematic drawing of the solution domain is shown in Figure  3.2. The origin of 

coordinate system coincides with the cylinder centre. In order to reach a non-confined 

(unbounded) case, the boundaries of the domain are taken 30 times the cylinder radius 

upstream, 60 times downstream, and 30 times apart on each cylinder side. According to 

Persillon and Braza [70], extension of the solution domain 15 cylinder diameter 

upstream, 30 diameters downstream, and 10 diameters on each side is fair enough to 

avoid boundary effects.  

At the entry (west) side, the only imposed condition is the entry uniform velocity 

0U  in x-direction and since the entrance is sufficiently far from the cylinder, any 

curvature effect is negligible. At the outlet (east) side, a zero-pressure boundary 

condition is imposed. For the north and south sides, symmetry boundary conditions are 

imposed: zero-gradient across the boundary for x-direction component, and zero-

velocity for the y-direction component. At the beginning of computations, all velocities 

in internal CVs, pressures, viscoelastic stresses are zero-initialized. Also Figure  3.2 

illustrates the boundary conditions. 
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Figure  3.2 Schematic drawing showing the domain solution 
limits and boundary conditions 

3.5. Grid generation and optimisation 

3.5.1 Grid generation 

In 3D case the CVs are parallelogram with nodal point P and 6 faces noted by the 

capital letters N,S,E,W,T, and B which stand for north, south, east, west, top, and bottom 

respectively. In our 2D case the CVs are reduced to rectangles. Figure  3.3 shows the 3D 

and 2D control volumes. 

 

Figure  3.3 Control volume notation for 3D and 2D cases 
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However, if the velocities and pressures are both evaluated at the nodes of an 

ordinary CV a highly non-uniform pressure field can act like a uniform field in the 

discretized momentum equations [71]. To overcome this problem the technique of 

staggered grid is used [72]. The principle of this method is to evaluate the scalar 

quantities, like pressure and temperature, at nodal points and calculate the other vector 

components, like velocities, at the staggered grid centered on cell faces. Figure  3.4 

emphasizes the staggered grid with capital letters noting the pressure CV and small 

letters designating the velocity CV. 

 

Figure  3.4 Control volume for calculating scalar quantities 
(solid colour and capital letters) and control volume for 
evaluating vector components (hatched and dotted colours 
with small letters) 

In this work, the presentation of governing equations in generalized orthogonal 

coordinates is adopted. Hence, an admissible transformation of coordinates must be 

found. Aris [73] stated that the coordinate transformation is admissible (or proper) if it 

is invertible and if the ratio of volume elements in the two coordinate systems, which is 

called the Jacobian J, always exists and does not vanish.  
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In order to generate an orthogonal grid, we use the velocity potential φ  and the 

stream function ψ  of the potential flow past a cylinder: 
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.Cartesiandgeneralize zz =  for the 3D case,  3.27 

where 0U  is the free-upstream velocity, R is the cylinder radius and yx,  are the 

horizontal and vertical position measured at the Cartesian grid whose origin is located at 

the cylinder centre..  

It is obvious that these relations are valid only for Ryx ≥+ 22 .  The Jacobian of 

transformation from the Cartesian coordinate system ( )zyx ,,  to the generalized 

coordinate system ( )z,,ψφ  is defined as: 

z

z

z

y

z

x

zyx

zyx

J

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

=
ψψψ

φφφ

  3.28 

In the present work, the case of the long cylinder is considered; i.e. two-dimensional 

simulations. Hence, we shall continue with the two-dimensional analysis. 

The Jacobian of Cartesian to generalized coordinates J  can be found by solving 

the equations 3.25 and 3.226 for the variables ( )yx, . To achieve this it is better to 

divide the transformation into two steps; taking the standard polar coordinates (θ,r ) as 

intermediate coordinates. By that, we write: 
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The values of ( )θ,r  are calculated for each stream line; i.e. for fixed 0>ψ . For 

given ( )ψφ, , the value of 2r=α  is the root of the quadratic equation: 

( ) ( ) ,02 4222
0

22232242
0 =−−−++− RRURU αψφαψφα   3.31 

The value of θ  is calculated from: 

( ) .arccos 22
0










+
=

RrU

rϕθ   3.32 

If ( )yx,  are obtained from θcosrx =  and θsinry = . 

By applying these transformations, an orthogonal grid of the type shown in Figure 

 3.5 is obtained. 

 

(a)      (b) 

Figure  3.5 Generated orthogonal grid: 
(a) the whole grid, (b) zoomed view around the cylinder 
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After manipulating the equations, the Jacobian has the following form: 
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The columns of the Jacobian represent the base vectors ( jb ) of the generalized 

coordinate system.  
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  3.34 

The multiplication of the base vectors results in the metric tensor g : 





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
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
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



Κ

Κ
=

2
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2
0

1
0

0
1

U

U
g   3.35 

It is noted here that the off-diagonal terms are nil which proves the orthogonality of 

the considered curvilinear coordinate.  

3.5.2 Mesh optimization 

In order to get well converged results, five mesh grids are tested: M1 

( =21xNN 320x160), M2 (300x150), M3 (250x130), M4 (200x100), and M5 (160x80).  

The used machine is an office PC having an “Intel® Core™ 2 Quad” processor, 

Q6600- 2.40GHz, , 4 cores, and 4 logical processors and total physical memory of 

3325.14 MB. 

Table   3.2 shows the characteristics of the computational meshes and the 

corresponding computation time for each mesh. The total number of nodes is cN , the 

number of nodes on the cylinder is cylN . The symbols ( )vupisi ,, ,  maxmin/ =δ  stand for 

minimum and maximum side lengths of pressure, x-component, or y-component control 



Numerical Methodology 

 48 

volumes. The symbols ( )vupiV i ,, ,  maxmin/ =  represent the minimum and maximum areas 

of pressure, x-component, or y-component control volumes.  

Table   3.2 characteristics of the computational meshes.  

Mesh 21 NN ×  cN  psminδ  psmaxδ  usminδ  usmaxδ  vsminδ  vsmaxδ  

M1 320x160 51681 1.8419E-2 2.0184 1.9485E-2 2.0183 1.8427E-2 2.0176 
M2 300x150 45451 8.5977E-3 2.0149 8.5972E-3 2.0149 9.0946E-3 2.0120 
M3 250x130 32881 8.5980E-3 2.0160 8.5972E-3 2.0160 9.0951E-3 2.0131 
M4 200x100 20301 9.6126E-3 2.0224 9.6120E-3 2.0222 1.0234E-2 2.0188 
M5 160x80 13041 1.0435E-2 2.0272 1.0432E-2 2.0270 1.1167E-2 2.0231 

 

Mesh cylN  pVmin  pVmax  uVmin  uVmax  vVmin  vVmax  

M1 71 8.6414E-4 0.4169 8.6388E-4 0.4169 8.6387E-4 0.3987 
M2 65 8.0418E-4 0.4943 8.4744E-4 0.4943 8.4743E-4 0.4766 
M3 61 8.6227E-4 0.6961 9.0893E-4 0.6961 9.0887E-4 0.6959 
M4 55 1.3195E-3 1.3386 1.3987E-3 1.3386 1.3978E-3 1.2967 
M5 51 1.7186E-3 2.2308 1.8306E-3 2.2309 1.8312E-3 2.2303 

 

Table   3.3 illustrates the computational characteristics of the used grids. The symbol 

mem shows the quantity of total used memory by the code. the term compt  is the total 

computation time for a total physical time of 600 with a time step 3100.1 −×=∆t . These 

figures concerns a viscoelastic flow at Reynolds number Re = 100 and Deborah number 

De = 0.05. 

Table   3.3 computational characteristics of meshes. 

Mesh compt  [sec.] mem [MB]  

M1 425863.8 203.14 
M2 334510.6 171.97 
M3 292026.0 112.53 
M4 196527.6 62.59 
M5 110925.7 37.04 

 

In the anticipation of the results needed in chapter 4, four non-dimensional 

quantities are considered to evaluate the mesh senstivity: 

• The non-dimensional frequency represented by the Strouhal number 

02 URfStr =  where f  is the frequency of vortex shedding.  

• The drag force represented by the average drag coefficient dC . 
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• The lift force represented by the root mean square lift coefficient rmslC − . 

• The base pressure evaluated through the average base pressure coefficient bpC . 

Table   3.4 illustrates the values of non-dimensional quantities for different mesh 

grids.  

Table   3.4 Comparison of non-dimensional quantities for 
different mesh grids. 

 M1 M2 %
1

12

M

MM −  M3 %
1

13

M

MM −  M4 %
1

14

M

MM −  M5 %
1

15

M

MM −  

Str  0,1693 0,1694 0,02% 0,1697 0,21% 0,1690 -0,18% 0,1676 -1,03% 

dC  1,3739 1,3732 -0,05% 1,3750 0,08% 1,3697 -0,31% 1,3688 -0,37% 

rmslC −  0,1714 0,1732 1,03% 0,1766 3,01% 0,1900 10,84% 0,1989 16,05% 

bpC  -0,7766 -0,7767 0,01% -0,7807 0,52% -0,7820 0,69% -0,7824 0,74% 

 

From Table   3.4, it is clear that only the lift coefficient is sensitive to the mesh used. 

Mesh M3 represents an optimum grid as it offers moderate computational cost without 

loss of accuracy. However, upon implementation of the code for higher Deborah 

number, it is found that this grid is too fine that it limits the results to De = 0.1. Using 

the coarser grid M4 allows us to reach De = 0.25. From Table   3.4, it is observed that 

using grid M4 is still in acceptable limits for the different non-dimensional numbers. 

Bearing in mind that the uncertainty on the lift coefficient reaches 10%. Hence, grid M4 

is employed in the rest of the work. 

For this selected grid, the effect of the time step is studied. Four time steps are 

tested; 3
1 105.0 −×=∆t , 3

2 100.1 −×=∆t , 3
3 105.1 −×=∆t , and finally 3

4 100.2 −×=∆t  

which is the largest time step that gives convergent results.  

Figure  3.6 shows the effect of changing the time step on the instantaneous values of 

the vertical velocity, drag coefficient and lift coefficient. It is seen that the increase of 

the time step leads to a phase shift of the three quantities. For the drag force, the change 

of the time step increases the mean drag coefficient. The running time for different time 

steps is shown in Table   3.5. Values of the four non-dimensional quantities are also 

calculated and the relative change with respect to the smallest time step is computed for 

each non-dimensional quantity are given in Table   3.6.  



Numerical Methodology 

 50 

From Table   3.6 and Table   3.5, it is seen that 3101 −×=∆t  offers good accuracy 

with a reasonable running time. 

Table   3.5 Running time for different time steps. 

Time step Running time [sec.] 

3
1 105.0 −×=∆t  257526.9 

3
2 100.1 −×=∆t  196527.6 

3
3 105.1 −×=∆t  139780.0 

3
4 100.2 −×=∆t  105790.1 

Table   3.6 Relative change of values of non-dimensional 
quantities for different time steps. 

 %
1d

1d2d

t

tt −
 %

1d

1d3d

t

tt −
 %

1d

1d4d

t

tt −
 

Str  0,02% 0,21% -0,18% 

dC  -0,05% 0,08% -0,31% 

rmslC −  1,03% 3,01% 10,84% 

bpC  0,01% 0,52% 0,69% 

Finally, the influence of the number of points on the cylinder surface on the 

obtained results is checked. For the selected grid M4 and with the optimized time step 

3101 −×=∆t , four values of cylN  are checked; 611 =−cylN , 512 =−cylN , 413 =−cylN , and 

314 =−cylN . Greater values did not give convergent results and smaller values 

dramatically deteriorate the results. Figure  3.7 shows the results of the non-dimensional 

quantities for different numbers of points on the cylinder. Figure  3.7 proves that 

41=cylN  is the most convenient. In summary, the selected grid is M4 (200x100) with 

41=cylN  and sec100.1 3−×=∆t . 
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(a) 

 
(b) 

 
(c) 

Figure  3.6 Effect of changing the time step on  
(a) vertical velocity, (b) drag coefficient and (c) lift coefficient 
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Figure  3.7 Values of non-dimensional quantities for different 
number of points on cylinder 

3.6. Summary of numerical methodology 

• The Finite Volume Method (FVM) with a staggered grid is applied to solve 

the governing equations. 

• The convective terms are evaluated using the second-order accurate QUICK 

scheme. The diffusion terms are calculated with the second order accurate 

centred difference scheme. 

• For the time marching algorithm, the first-order accurate Euler forward 

explicit scheme is applied obeying the adaptation of Marker and Cell 

algorithm 

• The velocity potential and the stream function of the potential flow are used 

to generate the mesh. 

• A grid dependence study was carried out. The grid is has 200x100 nodes 

with 41 grid points on the cylinder and a time step 3100.1 −×=∆t  
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Chapter 4:  RESULTS AND DISCUSSION  

4.1. Overview 

After stating the governing equations and discussing the numerical method, this 

chapter introduces the physical results for the problem under consideration. The case of 

viscoelastic PTT fluid past a non-confined cylinder is almost unexplored. As mentioned 

in the literature review, almost all the published works concern the confined cylinder 

because it is considered as one of the benchmark problems used to validate numerical 

codes. Up to our knowledge, only two works can be found treating the non-confined 

cylinder; the article of Oliveira [27] who simulates the FENE-CR fluid and that of Pipe 

& Monkewitz [58] who investigated experimentally the Ginzburg-Landau fluid flow. 

On the other hand, many results are available for the Newtonian fluid flow past a non-

confined cylinder; e.g. Willamson [74], Persillon & Braza [70], Thais et al. [75], 

Ramšak et al. [76]. Consequently, the simulation of Newtonian fluid flow is first carried 

out to validate the present code. For the viscoelastic fluid case, the results are validated 

by comparing the behaviour of the different quantities against the corresponding results 

for the confined cylinder case and against those of other viscoelastic fluids flowing past 

a non-confined cylinder. 

The outline of this chapter is arranged to show the Newtonian fluid results at first. 

Then, the viscoelastic fluid results are presented. For the viscoelastic results, we show 

the results of the particular quantities directly related to the viscoelastic fluids which are 

the extra-shear stress and the normal stress difference. Then, the results for the main 

physical quantities influenced by the elasticity of the fluid are presented. These 

quantities are the pressure, the velocity field and the vorticity. For each quantity, an 

overall view of the flow domain is drawn for Reynolds and Deborah numbers. To 

quantify the results, curves are plotted versus Reynolds and Deborah numbers. The final 

part of this section discusses the viscoelastic effects on Strouhal number, lift and drag 

coefficients. In each step, the trend of the present findings is commented and compared 

to the previous literature.  
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4.2. Results for Newtonian fluid 

The developed code is tested for the Newtonian case by setting the polymer 

relaxation time to zero. The results of this work are compared with the works of: 

• Liu et al. [77] who studied the transition to turbulence using a numerical 

approach based on multigrid and preconditioning methods. 

• Thais et al. [63] who carried out their work for a Newtonian laminar flow 

using a staggered FVM. 

• Oliveira [27] who simulated the viscoelastic flow with a collocated FVM.  

• Ramšak et al. [76] who applied the Boundary Element Method (BEM) to 

simulate the unsteady laminar flow. 

Table  4.1 shows the number of points cN  and the non-dimensional quantities: the 

Strouhal number Str , the average drag coefficient dC , the root mean square of the lift 

coefficient rmslC − , and the average base pressure coefficient bpC  for the present work 

and the literature at Re = 100. 

Table  4.1 Verification of Newtonian results versus 
literature (Re = 100) 

 Present work Liu et al. Thais et al. Oliveira Ramšak et al. 

cN  20000 12228 12800 19860 50000 
Str  0.173 0.164 0.171 0.167 0.172 

dC  1.356 1.350 1.348 1.370 1.299 

rmslC _  0.173 0.339 0.261 - 0.173 

bpC  -0.788 -0.848 -0.808 - - 

Values in Table  4.1 show a good agreement with the present work. The present 

value of Strouhal number is close to the previous works (0.0% - 4.2%) although our 

result is systematically larger. This is possibly due to the finer mesh and the used 

discretization method of the present work. For the average drag coefficient, the range of 

difference with other works is 0.36% - 5.9% and the present result seems to be larger. 

Regarding the root mean square lift coefficient, there is a noticeable dispersion of the 

values. For the average base pressure, the values are also very close (2.0% - 6.6%).  
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Another way to asses the present results is the phenomenon of vortex shedding 

which is called in many references the “von Kàrmàn street”. Present simulations show 

up that the flow past a cylinder exhibits three successive regimes:  

• Creeping regime (Re < 5) with no separation from the cylinder. 

• Laminar steady regime (5 ≤ Re < 47) in which two steady vortices are created 

behind the cylinder. The vortices are symmetric about the x-axis. As the 

Reynolds number increases the inertia force dominates over the viscous force 

and the instability region becomes bigger and elongated. 

• Laminar vortex shedding regime (Re ≥ 47) where the two vortices are no 

longer symmetric or steady announcing the onset of the von Kàrmàn street. 

Our present results agree very well with the previous literature like the experimental 

work of Williamson [74] who found 49Re =cr , Pipe & Monkewitz [58] who arrived at 

50Re =cr , and Coutanceau & Defaye [78] with 47Re =cr . Figure  4.1 depicts the 

velocity profile around the cylinder for Re=4, 40, and 47 respectively clarifying the 

different pre-mentioned flow regimes. Results for the Newtonian case are summarized 

in Table  4.2.  

 

Table  4.2 Results for Newtonian case. 

Re Str  dC  rmslC _  bpC  

40 0.1177 1.5400 0.0005 -0.5788 
45 0.1200 1.4700 0.0017 -0.5662 
47 0.1210 1.4477 0.0063 -0.5643 
50 0.1252 1.4332 0.0225 -0.5783 
60 0.1388 1.4030 0.0630 -0.6289 
80 0.1584 1.3691 0.1238 -0.7142 
100 0.1726 1.3558 0.1729 -0.7883 
125 0.1862 1.3538 0.2251 -0.8706 
150 0.1957 1.3593 0.2622 -0.9357 
175 0.2052 1.3647 0.2994 -1.0007 
200 0.2120 1.3693 0.3231 -1.0472 
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(a) 

 

(b) 

 

(c) 

Figure  4.1 Velocity field for a Newtonian fluid flow at: 
(a) Re = 4, (b) Re = 40, and (c) Re = 47 
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4.3. Viscoelastic Results 

The experimental literature ([51], [54], [56]) indicates that a very small amount of 

polymer additives strongly affects the flow properties compared to the purely 

Newtonian flow. The viscoelastic effects manifest themselves mainly in the reduction of 

the drag force, the reduction of the frequency of vortex shedding, and the increase in the 

length of formation of the downstream instability region. The higher elongational 

viscosity of viscoelastic fluids is quoted as responsible for these observations. It is 

expected from the numerical simulation to corroborate these experimental results.  

The applied viscoelastic fluid model is the simplified Phan-Thien-Tanner (SPTT) 

model in its exponential form. The used model parameters are 0=Nη , 0=ξ , 1.0=ε , 

1=β and 1=n  (equations 2.10, 2.11, and 2.12) 

Results are obtained by fixing the overall fluid density at unity and assuming a unit 

velocity at the far upstream entry and changing the polymer viscosity to get different 

Reynolds number for the same Deborah number. Then, the polymer relaxation time is 

increased to vary the Deborah number.  

Two longitudinal sections (S1 and S2), two cross sections (S3 and S4), two 

streamlines (SLu and SLd) and a downstream point on the x-axis (h) are selected (cf. 

Figure  4.2) to study the evolution of the main flow properties.  

 

Figure  4.2 Longitudinal and cross sections, and streamlines 
used to quantify the results. 

h 
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4.3.1 Extra-Shear Stress 

Viscoelastic fluids are characterized by introducing extra-stresses to the flow. These 

stresses change all fluid fields and bring up the well-known properties of rod climbing, 

die swell…etc. Till now, the full comprehension of these extra-stresses and the 

accompanied phenomena is not complete and several researches are still exploring these 

areas.  

In this section and in the next one, these extra-stresses are introduced and 

commented. This section concerns the off-diagonal component of the stress tensor 

which represents the shear stress. In the next section, the diagonal components (normal 

stresses) will be presented. 

4.3.1.a Influence of Reynolds number on the extra-shear stress 

It is well known that the shear stresses are directly related to the fluid viscosity. The 

main objective of this section is to explore and quantify this relation. As usual, the 

Reynolds number is used as an indicator of the fluid viscosity as they are in inverse 

proportionality.  

In order to represent the distributions and values of the extra-shear stress, the 

following expression of the normalized extra-shear stress is used: 

R

U 00
1212

ηττ =   4.1 

where 12τ  is the calculated value of extra-shear stress, 0η  is the total fluid viscosity, 0U  

is the far upstream entry velocity, and R  is the cylinder radius. 
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(a) 

 
(b) 

 
(c) 

Figure  4.3 Extra-shear stress distribution for De = 0.15 at 
(a) Re = 40, (b) Re = 60, and (c) Re = 100 
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Figure  4.3 depicts the extra-shear stress distributions for De = 0.15 with Re= 40, 60, 

and 100 respectively. From these shear distributions, it is clear that extra-shear stress is 

strongly influenced by the increase of the Reynolds number. The maximum extra-shear 

stress zone is located at the cylinder surface on the upstream side and this location does 

not change with the Reynolds number. Before the onset of the laminar vortex shedding 

instability, the extra-shear stress is symmetrically distributed about the x-axis. With the 

onset of the von Karman vortex street, the extra-shear stress contours are extended and 

deformed. With further increase of the Reynolds number, a periodic alternance of 

positive and negative shear zone are found along the x-axis which indicates strong flow 

instabilities.  

For the flows having crReRe< , the zero-extra-shear stress contour is plotted on 

Figure  4.4 for a viscoelastic fluid (De=0.15) flowing with Re = 40 and 45. This figure 

illustrates that the change of the shear stress is very slight for this flow regime. 

x

y
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-2

-1

0
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3

Re = 40
Re = 45

De =0.15 -150 secτ12

  

Figure  4.4 Zero-extra-shear stress contour at De = 0.15 for 
Re=40 and 45. 

With the onset of vortex shedding, the extra-shear stress becomes extremely 

complicated as shown on Figure  4.5. This figure shows the zero-extra-shear stress for 

De=0.15 at Re = 80, 100 and 125. 
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Figure  4.5 Zero-extra-shear stress contour at De = 0.15 for 
Re=80, 100 and 125. 

Figure  4.5 shows the non-homogeneity of the extra-shear stress which is linked to 

the increase of Reynolds number. Simultaneously, the contours tend to be vertical 

downstream the cylinder for elevated Reynolds number. This is possibly due to the 

decrease of fluid viscosity and the normal stress differences. This shows the complexity 

of viscoelastic flows with instabilities. 

Some sample values of the extra-shear stress are given in Figure  4.6 which plots 

these values for Deborah number of De = 0.15 at different Reynolds number at section 

S1, section S2, and streamline SLu. These curves are plotted for the time instant. 
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(c) 

Figure  4.6 Extra-shear stress magnitudes at De = 0.15 for 
Re = 40, 60, and 80 along : 
(a) section S1, (b) section S2, and (c) streamline SLd. 
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Curves on Figure  4.6 show that the normalized magnitude of the extra-shear stress 

reaches a maximum of order 6 on the streamline adjacent to the cylinder on the 

upstream side. This maximum value increases by 19% when the Reynolds number 

increases from 40 to 60. For a Reynolds number increase from 60 to 80, the maximum 

normalized value of the shear stress increases by 22%. The increase of Reynolds 

number leads to strong changes downstream till a distance about 4~8R, then the 

fluctuations of the extra-shear stress become longitudinal waves with decaying 

amplitude. Note that the changes of the upstream flow are almost negligible. 

4.3.1.b Influence of Deborah number on the extra-shear stress 

In this subsection, we consider the influence of the Deborah number. To explore 

this effect, flows with a fixed Reynolds number are examined at different Deborah 

numbers. For this, we consider two of flow kinds: the first one is the stable flow with 

the steady vortices and the other is the flow with laminar vortex shedding instability. 

For a steady flow, Figure  4.7 shows the contour lines of opposite signed shear stress 

(0.5 and -0.5) for Re = 40 at different Deborah numbers. This figure demonstrates that 

the fluid elasticity causes the shear stress contour to shrink and shift in the flow 

direction. This effect is noticeable on the upstream side of the cylinder, while it is 

negligable downstream the cylinder. 
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Figure  4.7 Extra-shear stress contours for Re = 40 and 
different Deborah numbers 
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Magnitudes of the extra-shear stress are plotted for a flow with Re = 40 at different 

Deborah numbers along section S1 and along streamline SLu (Figure  4.8). This figure 

shows that the difference in magnitudes of shear with Deborah number is very small 

and almost unnoticeable for this flow regime.  
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(b) 

Figure  4.8 Extra-shear stress magnitude for Re = 40  at 
different Deborah number along (a) section S1 and (b) 
streamline SLu 

Figure  4.9 shows the extra-shear stress distribution for the critical Reynolds number 

Re = 47 at De=0.05, 0.15, and 0.25, respectively. We can see the asymmetry of the 

extra-shear stress at De = 0.05. Also, it is remarked that the increase of Deborah number 

restores the symmetry of the extra-shear stress distribution which indicates a restoring 

of the flow stability and the suppression of the vortex shedding instability.  
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(a) 

 
(b) 

 
(c) 

Figure  4.9 Extra-shear stress at Re = 47 with: 
(a) De = 0.05, (b) De = 0.15, and (c) De = 0.25 
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The reduction of the shear stress contour asymmetry is shown on Figure  4.10 as 

contour lines of normalized shear stress of 0.5 and -0.5 are drawn for De = 0.05, 0.15, 

and 0.25 at Re = 47. The difference between negative and positive shear stress contours 

are indicated for different Deborah numbers. While this difference is 1.9 unit length in 

the case of De = 0.05, it reduces to zero for De = 0.25.  
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Figure  4.10 Extra-shear stress contour at Re = 47 for De = 
0.05, 0.15, and 0.25 with indication of asymmetry reduction 

To review the magnitudes of the extra-shear stress, Figure  4.11 and Figure  4.12 

provide these magnitudes for all sections defined in Figure  4.2 for a flow having Re = 

47 with various Deborah numbers. From these curves, it is noticed that the effect of the 

increased Deborah number manifests itself in relaxing the fluctuations on section S2. 

On Figure  4.11 b, the magnitude of the negative shear stress peak is augmented by 8% 

for a Deborah number increase from 0.05 to 0.25. At the streamline SLu, the shear 

stress peak increases by 27% when the Deborah number increases from 0.05 to 0.25. 
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Figure  4.11 Extra-shear stress magnitudes for Re = 47 along: 
(a) section S1, (b) section S2 and (c) streamline SLu 
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(a)      (b) 

Figure  4.12 Extra-shear stress magnitudes for Re = 47 at: 
(a) section S3 and (b) section S4 

It should be noted here that in the case of the bounded cylinder the boundary 

conditions impose zero-velocity at the boundaries located at 2R. From Figure  4.12, it is 

remarked that the largest magnitude of shear stress is found near the location 2R leading 

to differences between the confined and non-confined cylinder cases.  

4.3.2 Normal stress difference 

For a Newtonian fluid in a laminar shear flow, the normal stresses are always equal. 

Because of the viscoelastic properties, the normal stresses are different and two normal 

stress differences are established to express the change of normal stresses. For two-

dimensional flows, only the first normal stress difference ( 22111 σσ −=N ) is relevant. 

Both the normal stress differences and the shear viscosity are called the viscometric 

functions characterizing the material viscometric properties of the fluid.  

In this section, the effects of Reynolds and Deborah numbers on the normal stress 

difference are presented. The calculated values of normal stress difference are scaled as: 
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where 1N  is the dimensional value of the first normal stress difference, 0η  is the total 

fluid viscosity, and 0U  is the far entry free stream velocity. 

4.3.2.a Influence of Reynolds number on the normal stress difference 

The increase of the Reynolds number leads to the onset of the von Karman street 

instability. Normally, the initiation of flow instabilities brings up strong perturbations in 

the flow properties. The normal stress difference is not expected to deviate from this 

rule. As the Reynolds number increases, the viscous forces decrease and the effect of 

the normal stresses becomes more obvious. 

Figure  4.13 illustrates the change of the normal stress difference distribution around 

the cylinder for fluids at De = 0.15 and for Re = 45, 80, and 150, respectively. All these 

distributions show that the increase of the Reynolds number leads to increase of the 

positive normal stress difference. This indicates that the normal stresses in the flow 

direction are growing faster than the stresses in the lateral direction. This shows the 

extensional effects of the viscoelasticity. 

Concerning the steady vortex regime, Figure  4.14 shows the zero-normal stress 

difference for Re = 40 and 45 and fixed Deborah number De =0.15. This figure 

illustrates that the contours appear to be regular and symmetric. With the increase of 

Reynolds number, the contour is simply extended with no deformation. 
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(a) 

 
(b) 

 
(c) 

Figure  4.13 First normal stress difference distribution for De 
= 0.15 at: (a) Re = 45, (b) Re = 80 and (c) Re = 150 
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Figure  4.14 Zero-normal stress difference contour for De = 
0.15 at Re = 40 and 45 

For the regime of laminar vortex shedding, the changes in the normal stresses 

caused by the increase of Reynolds number are complex. In order to demonstrate this, 

Figure  4.15 shows the zero-normal stress difference contour for De = 0.15 at Re = 80, 

100, and 125. This figure depicts the strong changes with fluid viscosity. Oppositely to 

the steady regime, the increase of the Reynolds number leads to shrinkage of the 

contours. Also, it is noted that the contours are deformed especially around the cylinder. 

This illustrates the complexity of the interaction of flow instability with viscoelasticity. 
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Figure  4.15 Zero-normal stress difference contour for  
De = 0.15 at Re = 80, 100 and 125 
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The magnitudes of the first normal stress difference at De = 0.15 are plotted on 

Figure  4.16 and Figure  4.17 for the sections S3, S4, S1, and S2, and streamline SLu, 

respectively. From these figures, on can observe that: 

• Along the x-axis, the maximum magnitudes are found with on the cylinder 

surface. The maximum is increased by about 23% when the Reynolds number 

increases from 40 to 80. 

• The values and fluctuations on the lower section S2 are stronger than their 

corresponding on section S1. The maximum value occurs on the lower 

section at a distance of about 10R. This maximum increases by about 80% 

when the Reynolds number increases from 60 to 80. 

• On the two cross-sections, the upstream side does not largely affected by the 

Reynolds number as the maximum value decreases by about 2% keeping the 

symmetry around the x-axis. For the downstream side, the changes are very 

remarkable in behaviour and magnitudes as the maximum magnitude 

increases about 135% for the increase of the Reynolds number from 40 to 60. 

One should bear in mind the onset of the flow instability at Re = 47. 
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(a)     (b) 

Figure  4.16 Normal stress difference magnitudes for De = 
0.15 at: (a) section S3 and (b) section S4. 
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(c) 

Figure  4.17 Normal stress difference magnitudes for De = 
0.15 at: (a) section S1, (b) section S2, and (c) streamline SLu. 
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4.3.2.b Influence of Deborah number on the normal stress difference 

As shown for the shear stress, the increased Deborah number suppresses the flow 

fluctuations while restoring the flow stability. In order to demonstrate this effect on the 

normal stress difference, we consider the case of Re = 40 ( crReRe< ) and the flow at 

Re = 47 ( crReRe= ).  

For the steady vortex regime, Figure  4.18 shows the normal stress difference for 

Re= 40 at De = 0.1 and 0.2, respectively. On this figure, we notice a small reduction of 

normal stress difference on both sides of the cylinder with increasing Deborah number. 

 
(a) 

 
(b) 

Figure  4.18 Normal stress difference distribution for Re = 40 
at: (a) De = 0.1 and (b) De = 0.2 



Results and Discussion 

 75 

The zero-normal stress difference contour line is plotted on Figure  4.19 for Re = 40 

at De = 0.05, 0.1, 0.15, and 0.2. Downstream of the cylinder, these contours show a 

tendency to shrink the negative zones of the normal stress difference which means the 

increase of the first normal stress. The downstream zero-contour length decreases by 

about 8% when Deborah number increases from 0.1 to 0.2. On both sides of the 

cylinder, the contours extend and their width increases. 
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Figure  4.19 Zero-normal stress difference contour for Re = 40 

The magnitudes of the normal stress difference are drawn on Figure  4.20 for Re =40 

at De = 0.1, 0.15, and 0.2 along section S1 and along streamline SLu. Through these 

curves, we can see that the influence of the fluid elasticity manifest itself in a zone 

which is extended almost to 25 R downstream of the cylinder. Also, this influence 

changes the magnitudes of normal stress difference within a narrow range of about 5% 

for Deborah number increase of 0.1. On the x-axis and in the neighbourhood of the 

cylinder, the fluid elasticity shifts the range of normal stress difference by about 3% 

towards the positive values. 
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(b) 

Figure  4.20 Normal stress difference values for Re = 40 
along: (a) section S1 and (b) streamline SLu 

For the regime of crReRe≥ , Figure  4.21 represents the first normal stress 

difference for the critical Reynolds number (Re = 47) at De = 0.05, 0.15, and 0.25, 

respectively.  
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(a) 

 
(b) 

 
(c) 

Figure  4.21 Normal stress difference distribution for Re = 47 
at: (a) De = 0.05, (b) De = 0.15 and (c) De = 0.25 
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Figure  4.22 demonstrates the zero-normal stress contour line for Re = 47 and 

De=0.05, 0.15, and 0.25. This figure illustrates the reduction of the instability with 

increased Deborah number. Also, one can notice the increase of the stresses in the flow 

direction (extensional stresses) over the lateral stresses causing the extension of the  

instability zones and the reduction of their width. 
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Figure  4.22 Zero-normal stress difference contour for Re = 47 
at De = 0.05, 0.15 and 0.25 

The magnitudes of the normal stress difference, shown on Figure  4.23, are drawn 

for Re = 47 with different Deborah number along sections S1 and S2, and along 

streamline SLu, respectively. The trend of these values resembles the same trend as the 

values of extra-shear stress. The effect of fluid elasticity is more obvious on the lower 

section S2. Fluid elasticity suppresses the fluctuations on the x-axis by about 7% but 

shifts the range to higher values. Along upper section S1, the values for De = 0.05 

coincide with those for De = 0.25 while for section S2, there is a pronounced difference 

between the two Deborah numbers. 
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(c) 

Figure  4.23 Normal stress difference magnitudes for Re = 47 
along: (a) section S1,  (b) section S2, and (c) streamline SLu 
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4.3.3 Pressure distribution 

In the literature, the reduction of the drag force in the presence of viscoelasticity is 

strongly related to the change of the pressure distribution around the cylinder. The 

proposed mechanism linking the pressure distribution and the drag reduction assumes 

that the interaction between the shear layer and the recirculating flow decreases with the 

elasticity. As a result, the entrainment of fluid from the formation region is reduced. 

Consequently the base pressure has to increase to compensate for the reduced shear 

stresses in order to maintain the force equilibrium. The increase of pressure behind the 

cylinder decreases the pressure drop across the cylinder. In this section, the pressure 

distribution is introduced revealing its change with viscoelasticity. 

4.3.3.a Influence of Reynolds number on the pressure 

We consider here the change of the pressure distribution with the increase of the 

Reynolds number. The normalized values of pressure 2
02 UPPn =  are used to evaluate 

the viscoelastic effects on flow pressure. Figure  4.24 illustrates the pressure distribution 

of the flow with Re = 40, Re = 80, and Re = 150 at De=0.1. In this figure, it can be 

observed that while the positive pressure area (upstream) is very lightly influenced, the 

negative pressure area (downstream) is strongly influenced with the growing Reynolds 

number. This relative difference leads to greater pressure drop across the cylinder. Also, 

it is remarked the obvious effect of the flow instability on the pressure distribution as 

we pass from Re = 40 (Figure  4.24 a) to Re = 80 (Figure  4.24 b). Further increase of the 

Reynolds number increases the negative pressure magnitudes downstream the cylinder.  
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(a) 

 
(b) 

 
(c) 

Figure  4.24 Pressure distribution for viscoelastic fluid at 
De=0.1 for: (a) Re = 40, (b) Re = 60, and (c) Re = 100 
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To better understand this effect, three pressure contour lines are drawn in Figure 

 4.25 and Figure  4.26. These contour levels are the zero-pressure level, a positive 

pressure level, and the corresponding negative pressure level. In Figure  4.25, the 

pressure contours are drawn for Re = 35, 40, and 45 ( crReRe< ), while Figure  4.26 

represents the same contours for Re = 80, 100, and 125 ( crReRe> ). An examination of 

these figures allows extracting the following remarks: 

• For both regimes, the positive-pressure contour keeps its uniformity and it 

shrinks with increasing the Reynolds number. 

• For crReRe< , the negative-pressure contour shrinks while keeping its 

uniformity.  

• For crReRe> , the negative-pressure contour loses its uniformity and 

approaches the cylinder. 

• In general, while the positive pressure area shrinks with increasing Reynolds 

number, the negative-pressure area extends which means increased pressure 

drop. 

• For crReRe> , there is an asymmetry about the x-axis which is clear from the 

zero-pressure line. This is a consequence of the developed normal stresses due 

to the fluid elasticity (see section 4.3.1). 
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Figure  4.25 Pressure contours for viscoelastic fluid at De = 
0.1 for Re = 35, 40, and 45. 
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Figure  4.26 Pressure contours for viscoelastic fluid having De 
= 0.1 for Re = 80, 100, and 125 

To quantify the present results, the normalized magnitudes of pressure are plotted 

along the sections S3, S4, S1, and S2 and the upper streamline SLu, respectively, for 

Reynolds numbers Re= 40, 60, and 80 for De = 0.1 as shown in Figure  4.28 and Figure 

 4.29. 
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(a)      (b) 

Figure  4.27 Magnitudes of pressure for De =0.1 and different 
Re at: (a) section S3 and (b) section S4 
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Figure  4.28 Pressure for De =0.1 and different Re  
along: (a) section S1, (b) section S2 and (c) streamline SLu 
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Based on Figure  4.28 and Figure  4.29, it seems clear that: 

• Increasing the Reynolds number mainly affects the wake donstream the 

cylinder (negative pressure values).  

• From section S3, the reduction of the fluid viscosity causes some negative 

pressure values at the lower upstream cylinder side which assists the change of 

lift force. 

• From section S4, the maximum value of negative-pressure increases with the 

Reynolds number (22% for Reynolds number increase from 40 to 60 and 100% 

for Reynolds number increase from 40 to 100). 

• For sections S1 and S2, the increasing Reynolds number causes pressure 

fluctuations which may reach positive-pressure values downstream the 

cylinder. 

• The reduction of the positive-pressure range on the upstream side is (15~32%), 

while the change on the down stream side may reach 100% at Rx 8≈ . 

• Along the x-axis, the pressure drop is always maintained as the positive 

pressure upstream the cylinder attains a value of order 1.25, while the negative 

pressure downstream the cylinder does not exceed -1.  

To spot the pressure drop across the cylinder, Figure  4.29 provides a look on the 

values of pressure over the cylinder surface. From this figure, we observe negative 

pressure values upstream the cylinder. These values increase with increased Reynolds 

numbers which can contribute to the drag reduction. 
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Figure  4.29 Normalized pressure over the cylinder surface for 
De=0.15 and different Reynolds numbers 
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A final remark can be drawn from the shift of the separation point towards the 

upstream with growing Reynolds number. This shift is demonstrated at Figure  4.30 by 

taking a zoomed view at the upper zero-pressure line. The separation point is defined by 

the wake angle wθ  measured from the upstream and increases in clockwise sense.  
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Figure  4.30 Shift of separation point with increased Reynolds 
number 
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Figure  4.31 Wake angle versus Reynolds number for 
different Deborah numbers 
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Figure  4.31 gives the values of the wake angle versus Reynolds number expressed 

at different Deborah number. From Figure  4.30 and Figure  4.31, it is clear that the wake 

angle decreases with the reduction of the fluid viscosity but in a narrow range (40°-49°). 

These results are in good agreement with the experimental results of Coelho & Pinho 

[57] and numerical simulation of Sahin & Owens [44] which are both carried out for a 

confined cylinder. In the work of Coelho & Pinho [57], they found that the wake angle 

range is (70°-73°). We believe that the difference between the present results and their 

result is due to the difference of the studied range of Reynolds number adopted by these 

authors (Re = 103 ~ 105).  

4.3.3.b Influence of Deborah number on the pressure 

Experimental and numerical investigations show that, for a constant viscosity, the 

fluid elasticity has a stabilizing effect upon two-dimensional viscoelastic fluid flow past 

a confined cylinder. In this subsection, the effect of fluid elasticity is investigated for 

the non-confined cylinder. Generally speaking, the extensional properties of viscoelastic 

fluids reduce the flow kinetic energy contained in the downstream flow fluctuations. 

This leads to more stabilized flow and reduced pressure distributions. 

For flows with crReRe< , Figure  4.32 shows three pressure contour liness (zero-

pressure, negative-pressure, and positive-pressure) at Re = 40 for De = 0.0, 0.1, and 0.2. 

From this figure, it is noted that, even in this stable regime, the effect of Deborah 

number is small. The effect of increasing Deborah number is very small on the positive 

(upstream) pressure. For the zero-pressure contour lines, the increase of Deborah 

number shifts the contour downstream leading to a smaller pressure drop. For the 

negative-pressure, the contours shrink especially near the stagnation point giving more 

relaxation to the pressure drop across the cylinder. 

The magnitudes of pressure on the section S1 and the streamline SLu are plotted in 

Figure  4.33 for Re = 40 at De 0.0, 0.1, and 0.2. These curves show a very slight change 

of normalized pressure magnitudes with the increase of Deborah number. 
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Figure  4.32 Effect of fluid elasticity on pressure contours at 
Re = 40 with De = 0.0, 0.1, and 0.15 
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(b) 

Figure  4.33 Magnitudes of the normalized pressure at Re = 
40 on (a) section S1 and (b) streamline SLu. 
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For the flows in the laminar vortex shedding regime, Figure  4.34 demonstrates the 

pressure distribution at Re = 60 for a Newtonian flow with De = 0.0 and a viscoelastic 

fluid with De = 0.05 and De = 0.15, respectively. Despite the very slight increase of the 

fluid elasticity (De = 0.05), the negative pressure contours downstream the cylinder 

strongly decreases from Newtonian fluid (Figure  4.34 a) to viscoelastic fluid (Figure 

 4.34 b). With further increase of Deborah number, most of maximum negative pressure 

zone downstream the cylinder vanishes as shown in Figure  4.34 c. On the other hand, 

the effect of fluid elasticity on the positive pressure zone upstream the cylinder is 

unnoticeable on these plots. In order to a clear overview over this effect, Figure  4.35 

shows three normalized pressure contours (zero-pressure, positive pressure, and 

negative pressure) for Newtonian fluid and viscoelastic fluids with De = 0.05 and De = 

0.15 at Re = 60. On Figure  4.35, it is noticed that the fluid elasticity shifts the zero-

pressure contour towards downstream which leads to a reduction of the pressure drop 

across the cylinder. On the upstream side, the change of positive-pressure contour is 

negligible. On the downstream side, the negative-pressure contours are strongly affected 

as the contours are obviously extended. It should be noticed that further increase of the 

Deborah number re-shifts the negative-pressure contour upstream. 

For the wake angle, the fluid elasticity shifts the separation point downstream but 

further increase of fluid elasticity does not remarkably affects the separation point 

which is clear from Figure  4.36. 
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(a) 

 
(b) 

 
(c) 

Figure  4.34 Effect of fluid elasticity on pressure distribution 
at Re= 60 (a) De = 0.0, (b) De = 0.05, and (c) De = 0.15 
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Figure  4.35 Effect of fluid elasticity on pressure contours at 
Re=60 and different Deborah numbers 
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Figure  4.36 Effect of Deborah number on the separation point 
at Re= 60. 
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Figure  4.37 plots the values of the wake angle versus the Deborah number for 

various Reynolds numbers. From this figure, one can observe that the wake angle 

increases to a plateau with the fluid elasticity then decreases with a slower rate. For 

each Reynolds number, the range of change, is narrow (2° - 3°). It is noted that, the 

Newtonian fluid always has the smallest wake angles.  
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Figure  4.37 Wake angle versus the Deborah number for 
different Reynolds number. 

Figure  4.38 shows the values of the normalized pressure along section S1, along the 

lower streamline SLd, and at the cross-sections S3 and S4 for Re = 60 at De = 0.0, 0.1, 

and 0.2. On this figure, we can see no remarkable change at the upstream values and a 

slight decrease of pressure value downstream the cylinder. The range of pressure value 

change on downstream side is about 7%.  

It should be noted here, that the present findings are consistent with the results of 

Coehlo & Pinho [57], McKinley et al. [79] and Cadot & Leby [51]. 
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(c)      (d) 

Figure  4.38 Normalized pressure at Re = 60 on (a) section S1, 
(b) Streamline SLd, (c) section S3, and (d) section S4. 
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4.3.4 Vorticity 

In Newtonian fluid mechanics, Helmholtz decomposition proposes that, under 

certain conditions, the solution of Navier-Stokes equations can be decomposed into a 

rotational part and an irrotational part satisfying Laplace’s equation [80]. Generally, the 

rotational and irrotational velocities are strongly coupled and they have to satisfy the 

boundary conditions. In viscoelastic fluids, the coupling of the rotational and 

irrotational flows is more complicated than in Newtonian fluids because in most models 

of viscoelastic fluids, the stress is expressed as a non-linear function of the velocity 

field. This is the main reason which restricts this work to the laminar vortex shedding 

regime. At higher Reynolds number, the vortices become three dimensional and the 

turbulent regime appears with all its complexity. 

The main objective of this section is to introduce the effect of viscoelastic fluids on 

the vorticity (the rotational part of the velocity). The vorticity is expressed as  

.u
rrr

×∇=ω   4.3 

In the present work, the values of the vorticity are presented in the normalized form  

,
0U

Rωω =   4.4 

where ω  is the dimensional value of vorticity. 

First, the influence of Reynolds number is discussed. Then, the effect of the fluid 

elasticity is introduced. 

4.3.4.a Influence of Reynolds number on the vorticity 

In order to show the effect of Reynolds number on the vorticity, the Deborah 

number is fixed and the Reynolds number is increasing. Figure  4.39 illustrates the 

vorticity of a viscoelastic fluid having De= 0.1 and Re = 40, 80, and 150 respectively. 

This figure shows that the vorticity is maximum close to both sides of the cylinder. 

There, two opposite-sign high vorticity zones are found. 
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(a) 

 
(b) 

 
(c) 

Figure  4.39 Normalized vorticity profile for De = 0.15 at: (a) 
Re = 40, (b) Re = 80 and (c) Re = 150 



Results and Discussion 

 96 

The two vorices start upstream the cylinder and extend down stream. Increasing the 

Reynolds number, the flow becomes less stable and the two vortices fluctuate and lose 

their symmetry about the x-axis. Hence, the flow passes to the unsteady regime. 

Figure  4.40 gives an insight on the influence of Reynolds number on the vorticity as 

it shows the zero-vorticity contour for the two flow regimes. Figure  4.40 a represents 

the steady vortex regime with Re = 35, 40, and 45, while Figure  4.40 b represents the 

laminar vortex shedding regime with Re = 80, 100, and 125. 
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(b) 

Figure  4.40 Zero-vorticity contour for De = 0.15 at  
(a) Re = 35, 40, and 45, and (b) Re = 80, 100, and 125. 
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It can be seen from Figure  4.40 that the increase of Reynolds number tends to 

narrow the cylinder wake for both flow regimes. For crReRe< , the vorticity contour is 

uniform and symmetric about the x-axis. With the onset of the von Karman street, the 

recirculation zone becomes very complicated on the upstream side. The increase of 

Reynolds number beyond crRe  causes the recirculation zone to approach the cylinder 

announcing stronger flow instability. In both flow regimes, it should be noted that the 

width of the recirculation zone extends up to about 12R. This leads to obvious 

differences between the confined and non-confined cylinder cases. 

The magnitudes of the vorticity for Re = 40, 60, and 80 at De = 0.15 are given on 

Figure  4.41 and Figure  4.42. 
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(a)      (b) 

Figure  4.41 Normalized vorticity values for De = 0.15 at 
(a) Section S3 and (b) Section S4  
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(c) 

Figure  4.42 Normalized vorticity values for De = 0.15 along 
(a) Section S1, (b) Section S2 (c) Upper streamline SLu 
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From Figure  4.41 and Figure  4.42, it can be concluded that: 

• On the sections S1 and S2, the change of the maximum absolute magnitude of 

the vorticity is changed with the Reynolds number by about 3%. 

• The maximum magnitude of the vorticity is (2~4.5) and it takes place close to 

the cylinder on the upstream side. Over the rest of the domain, the magnitude 

of the vorticity is in the range of (-0.5~0.5). The location of maximum 

magnitude is strongly related to the separation point (cf. Figure  4.30). 

• The principal changes of vorticity take place downstream the cylinder at a 

distance of 5~10R. These changes compromise both values and signs and they 

are not systematic.  

• For the cross sections, while the change in vorticity values upstream the 

cylinder range is (-0.001~0.001), the range of theses change downstream the 

cylinder is (-0.6~0.6). 

4.3.4.b Influence of Deborah number on the vorticity 

This subsection is devoted to the study of the effect of Deborah number on the 

vorticity. We introduce first the case of flow with crReRe< . Next, this effect is 

introduced for crReRe≥ .  

In order to examine the flows with Reynolds number lower than the Newtonian 

critical Reynolds number, Figure  4.43 shows the vorticity of the case of Re = 45 with 

De = 0.0 and 0.2. We can see here that the flow is still uniform and stable. Only small 

difference can be seen between the profiles.  

Figure  4.44 plots the zero-circulation contour for the Re = 40 at De = 0.0, 0.1, and 

0.2. On this figure, it is noticed that the increase of Deborah number inhibits the 

fluctuations of the vorticity contour on both sides of the cylinder. Also, it decreases the 

width of the vorticity zone. On the upstream side, increase of Deborah number has a 

complicated effect that cannot be described by simple reduction or extension. Recalling 

that the maximum vorticity magnitudes occur upstream, this shows the complexity of 

the viscoelastic fluids.  
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(a) 

 
(b) 

Figure  4.43 Vorticity profile for Re = 45 with 
(a) De = 0.0, (b) De = 0.1 and (c) De = 0.2 
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Figure  4.44 Zero-vorticity contours for Re = 40 with different 
Deborah number 
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(a) 

 
(b) 

 
(c) 

Figure  4.45 Vorticity profile for Re = 100 with 
(a) De = 0.0, (b) De = 0.05 and (c) De = 0.15 
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For flows in the laminar vortex shedding regime, we selected the flow at Re=150 to 

draw the vorticity contours at De = 0.0, 0.1 and 0.15, respectively (cf. Figure  4.45). This 

figure shows that fluid elasticity extends the vorticity contours. Figure  4.46 shows the 

zero-viscosity contour for a viscoelastic flow having Re = 60 with De = 0.0, 0.10, and 

0.2.  
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Figure  4.46 Vorticity profile for Re = 100 with 
(a) De = 0.0, (b) De = 0.05 and (c) De = 0.15 

From Figure  4.46, we see that, in general, the vorticity contour extends with the 

fluid elasticity if we look on far downstream. However, on near downstream and on 

both sides of the cylinder, the situation is too complicated to be distinguished.  

Figure  4.47 and Figure  4.48 show the magnitudes of the vorticity along the sections 

S1, S2, S3, and S4 and the streamline SLu. From these figures we see that for De = 0.2 

the peaks are reduced of about 3~5%. Also, it is noticed that the magnitude range at the 

upstream section S3 is ± 0.0005, while at the downstream side the range is ± 0.6. 
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(c) 

Figure  4.47 Magnitudes of vorticity for Re = 100 at 
(a) Section S1 and (b) Upper streamline SLu 
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(a)      (b) 

Figure  4.48 Magnitudes of vorticity for Re = 100 at 
(a) Section S1 and (b) Upper streamline SLu 

These results agree with the experimental work of Cressman et al. [54] who found 

that the polymer lengthens the boundary layer behind the rod. They believed that this 

stretching effect arises from the elongational viscosity. They showed the vortex street in 

a polymer free film and in a film where the polymer concentration 30 wppm. Also, the 

present results are consistent with the measurement of Coehlo & Pinho [56]. These 

authors found that fluid elasticity was found to have the opposite effect to shear-

thinning, reducing the vortex shedding frequency since it increased the formation 

length. 
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4.3.5 Velocity profile 

The modifications of the flow velocity profile by the addition of long chain 

polymers are the issue of many studies either experimental or numerical. Up till now, 

the full understanding of these modifications is not complete. As mentioned in the 

literature survey, most of the elaborated work on the viscoelastic fluid flow past a 

cylinder concerns the bounded cylinder case.  

4.3.5.a Influence of Reynolds number on the flow velocity 

In this subsection, a fixed Deborah number is considered and the Reynolds number 

is changed to plot the flow velocity profile past the cylinder. Figure  4.49 shows the 

normalized velocity magnitude for De = 0.1 at Re = 35, 60, and 125 respectively. These 

velocity profiles show the strong effect of the Reynolds number on the flow behaviour. 

Both the upstream and downstream zones are influenced. The upstream zone shrinks 

with the increase of the Reynolds number, while the downstream zone extends and 

fluctuates laterally with growing Reynolds number. As the Reynolds number increases 

beyond the critical Reynolds number, both the amplitude and frequency of the 

fluctuations increase progressively.  

Figure  4.50 gives a more detailed view of this influence as the contour of unit 

normalized velocity is drawn for Re = 35, 40, and 45 (Figure  4.50 a) representing the 

steady vortex regime and at Re = 80, 100 and 125 representing the laminar vortex 

shedding regime (Figure  4.50 b). From this figure, it is noted that, in general, the 

upstream zone is less influenced then the downstream one. For the steady regime, 

increasing the Reynolds number widens the velocity contour. For the unsteady regime, 

the contours approach the cylinder when increasing the Reynolds number.  
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(a) 

 
(b) 

 
(c) 

Figure  4.49 Normalized velocity for viscoelastic fluid with 
De=0.1 at: (a) Re = 35, (b) Re = 60, and (c) Re = 125 



Results and Discussion 

 107 

x

y

0 10 20-6

-4

-2

0

2

4

6

De = 0.15

Re = 45
Re = 40
Re = 35

 
(a) 

x

y

0 10 20 30 40-10

-8

-6

-4

-2

0

2

4

6

8

10

De = 0.15

Re = 125
Re = 100
Re = 80

 
(b) 

Figure  4.50 Contour of unit normalized velocity for De = 0.15 
at: (a) Re = 35, 40 and 45 and (b) Re = 80, 100, and 125. 
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Figure  4.51 Velocity magnitudes for De = 0.15 at Re =40,60, 
and 100 along the streamline SLu 
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(c)      (d) 

Figure  4.52 Velocity magnitudes for De = 0.15 at: 
(a) section S1, (b) section S2, (c) section S3, and (d) section S4 
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To quantify the effect of the Reynolds number on the flow velocity, Figure  4.51 and 

Figure  4.52 provide the magnitudes of the normalized velocity along sections S1, S2, 

S3, and S4 and the streamline SLu at De =0.15 for Re = 40, 60 and 80. From these two 

figures, it is noted that: 

• There is no velocity fluctuation at Re = 40 which is expected from the steady 

regime. For higher Reynolds numbers in the unsteady regime, the fluctuations 

of the downstream velocity decay gradually till the exit of the domain.  

• At sections S1 and S2, the differences in the upstream region are negligible 

compared to the differences in downstream region. 

• For section S3, the velocities exhibit a symmetric profile, while for section S4, 

the symmetry breaks down at the unsteady Reynolds numbers. 

• On the x-axis, the velocity values are of same order of magnitude as the far 

entry velocity, while at sections S1 and S2 the maximum velocity values 

increase about 30% above the entry velocity. 

A downstream point h (cf. Figure  4.2) on the x-axis has been chosen to visualize the 

instantaneous fluctuations of the velocity field (Figure  4.53). These time histories prove 

that the velocity fluctuations are very small (±0.005) and decay for the Re = 40 which is 

expected behaviour as this value is still in the regime of laminar steady flow. The time 

histories in the two other cases ( crReRe> ) do not decay but they arrive at an 

asymptotic fluctuating state (or maximum amplitude) for crReRe<  after a certain time. 

This rise time rt is decreasing with Reynolds number. It is also noted that the amplitude 

of the fluctuations is progressively increasing with the Reynolds number. Figure  4.54 

shows the monotonic change in the vertical velocity amplitude as a function of 

Reynolds number for different Deborah numbers.  
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(a) 

 
(b) 

 
(c) 

Figure  4.53 Time history of vertical velocity component for 
De=0.1 at (a) Re = 40, (b) Re = 50, and (c) Re = 100 
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Figure  4.54 Amplitude of vertical velocity fluctuations versus 
Reynolds number for different Deborah numbers 

It is evident from Figure  4.54 that the amplitude of the vertical velocity increases 

monotonically beyond the critical Reynolds number. Also, the amplitude for 

viscoelastic flow is always less than for the corresponding Newtonian flow. 

The rise time of fluctuations is plotted on Figure  4.55 against the Reynolds number 

for various Deborah numbers. For steady flow (not shown on Figure  4.55), before the 

onset of laminar vortex shedding, the fluctuations attain the maximum amplitude after 

about 14 and then the fluctuations decay. Viscoelasticity seems to delay the critical 

Reynolds number since the amplitude for Re = 47 and 50 is nil for De = 0.01 and 0.05. 
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Figure  4.55 Rise time of velocity fluctuations versus Reynolds 
number for different Deborah numbers 

With the onset of the von Karman street instability, the fluctuations do not decay 

and reach the maximum amplitude after longer times. For increasing Deborah number, 

the peak of the rise time shifts towards higher Reynolds number; which implies a higher 

critical Reynolds number for viscoelastic fluids. 

An important quantity that expresses the flow fluctuations is the frequency of these 

fluctuations. This frequency is used to couple the flow to the structure in studies of 

fluid-structure interaction. In most of literature studies the fluctuation frequency 

presented as non-dimensional form represented by the Strouhal number 0UdfStr = . 

However, the only experimental work treating the flow of viscoelastic fluid past a non-

confined cylinder, up to our knowledge, is the work of Pipe & Monkewtiz [58]. In this 

work, they expressed the non-dimensional frequency using the Roshko number which is 

defined as 

,
0

2

η
ρDf

Rsk =   4.5 
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where f  is the frequency, ρ  is the fluid density, D  is the cylinder diameter, and 0η  is 

the fluid total viscosity.  

Pipe & Monkewtiz [58] stated that the relation between Roshko number and 

Reynolds number is represented by the quadratic fit (for De = 0.01~0.03). 

24 Re1025.3Re15.029.2 −×++−=skR   4.6 

We compared our results to this relation and found excellent agreement. Figure  4.56 

represents Roshko number (Rsk) versus the Reynolds number for different Deborah 

numbers together with Pipe & Monkewtiz [58] relation. In this figure, we can see the 

increase of the Roshko number with the increasing Reynolds number. 
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Figure  4.56 Roshko number versus Reynolds number for 
different Deborah numbers with comparison to the formula of 
Pipe & Monkewtiz [58] 
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4.3.5.b Influence of Deborah number on the velocity field 

In this subsection, the influence of the fluid elasticity on the velocity field is 

studied. The Reynolds number is fixed and the Deborah number is increased as an 

indicator of the fluid elasticity. It is known from the previous experimental and 

numerical studies that viscoelasticity has a stabilizing effect on the velocity field ([10] 

[16], and [56]). The study here distinguish between the steady regime ( crReRe< ) and 

the unsteady regime ( crReRe≥ ). 

Looking at this effect for the steady regime ( crReRe< ), Figure  4.57 shows the 

velocity field for Re = 45 at De = 0.0 and 0.2. This figure shows almost no difference 

despite the difference of Deborah number. The flow is still steady but the velocity 

contours are slightly extended. Figure  4.58 visualises this extension as it plots a single 

velocity contour for Re = 40 at different Deborah numbers. This figure illustrates the 

extension of the velocity contours with the increased fluid elasticity. However, it is 

noted that for De = 0.2 the velocity contour re-shrinks. Unfortunately, we cannot get 

higher values of Deborah to complete this investigation as many references mentioned 

the critical Deborah number at which the laminar vortex shedding is initiated. This will 

be one of our future work goals. 
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(a) 

 
(b) 

Figure  4.57 Normalized velocity profile for Re = 45 at 
(a) De = 0.0, (b) De = 0.2 
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Figure  4.58 Effect of fluid elasticity on velocity contours for 
Re<Recr 
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Concerning the unsteady regime, Figure  4.59 shows the velocity profile for Re=100 

and De = 0.0, 0.1, and 0.15 respectively. These profiles show the strong influence of the 

Deborah number on the downstream instability zone. When increasing the Deborah 

number, the velocity contours extend and the width of the downstream wake decreases.  

To get a more quantified view on the change of the velocity contours with the fluid 

elasticity, Figure  4.60 demonstrates only one velocity contour drawn for Re = 60 at 

De=0.0, 0.1, and 0.2. It can observed in this figure the decrease of the contour length 

with the Deborah number. Also, the elongation of the contours with the Deborah 

number is clear. 

To get an idea about the fluid elasticity effect on the values of the flow velocities, 

Figure  4.62 and Figure  4.61 show the values of flow velocity along the section S1, the 

streamline SLu, the section S3, and the section S4, respectively for a flow having Re = 

60 and different Deborah number. From these two figures, it is remarked that: 

• The maximum reduction of velocity occurs at the second downstream velocity 

peak. This reduction is of the order 10% for De = 0.2. 

• The suppression of the velocity is obvious along the x-axis, while the higher 

velocity values occur far from the x-axis. 

• For the cross sections, the maximum change of velocity takes place on the x-

axis on the upstream side. The velocity at this point increases 14% for Deborah 

number 0.2. 
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(a) 

 
(b) 

 
(c) 

Figure  4.59 Normalized velocity field for Re = 100 at 
(a) De = 0.0, (b) De = 0.1, and (c) De = 0.15 
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Figure  4.60 change of velocity contours with the Deborah 
number at Re = 60. 
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(a)      (b) 

Figure  4.61 Normalized velocity magnitudes for Re = 60 at 
(a) Section S3 and (b) Section S4 
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(c) 

Figure  4.62 Normalized velocity values for Re = 60 at 
(a) Section S1 and (b) Upper streamline SLu 
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The characteristics of the flow fluctuations are also influenced by the fluid 

elasticity. Normally, the extended velocity contours are accompanied with reduced 

fluctuations. Figure  4.63 presents the reduction of the amplitude of velocity fluctuations 

with the fluid elasticity for different Reynolds numbers crReRe> .  

Figure  4.64 shows the rise time of the flow fluctuations to the maximum amplitude 

versus the Reynolds number for various Deborah numbers. It is noticed from this figure, 

that the critical Reynolds number for the Newtonian fluid exhibits increasing rise time 

which attains its maximum at De = 0.1 then re-decreases. This explains the balance 

between the reduction of viscous forces, the cause of instability, and the increase of 

fluid elasticity which re-stabilizes the flow. Normally, the rise time for already stable 

flows does not affected by fluid elasticity (in studied range of Deborah number), while 

the flows with laminar vortex shedding are influenced by the fluid elasticity as the rise 

time decreases. 
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Figure  4.63 Amplitude of vertical velocity fluctuations versus 
Deborah number for different Reynolds numbers 
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Figure  4.64 Rise time of velocity fluctuations versus Deborah 
number for different Reynolds numbers 

For Re = 60, it is important to notice here that amplitude of the fluctuations 

decreases with the increasing Deborah number at Figure  4.63, while the rise time 

increases (see Figure  4.64). This indicates the complexity of the problem as not only the 

elastic properties of the fluid will stabilize the flow so simply. It is proposed that the 

effect of normal stresses play an important role in the force balance. This is supported 

by the concept of critical Deborah number which is discussed by Mckinely et al. [79] 

who studied the purely elastic flow instabilities. Since we use the PTT model which 

ignores the solvent (Newtonian) viscosity, the descritized equation of momentum 

conservation becomes less stable. Hence, higher Deborah numbers cannot be achieved. 

In our future work, it is intended to use some sophisticated splitting schemes to enhance 

the computational stability in order to reach higher Deborah numbers. However, in the 

present range of Deborah number, we cannot verify the concept of critical Deborah 

number at which the flow returns to the laminar vortex shedding instability.  
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4.3.6 Strouhal number 

The frequency of the flow field fluctuations is an important quantity of the unsteady 

flow field. We preferred to devote a separate section for studying this frequency 

because of its importance. As most of the flow properties, the frequency is expressed in 

the literature in a non-dimensional form. One of the widely spread form of the nod-

dimensional frequency is the Strouhal number 

,
0U

fD
Str =   4.7 

where f  is the frequency of the flow field, D  is the cylinder diameter, and 0U  is the 

free stream velocity. 

In the present work, the frequency is evaluated by taking the Fourier transform for 

the vertical component of velocity. In this section, the change of the Strouhal number 

versus the Reynolds number and the Deborah number is presented. 

Figure  4.65 presents the Strouhal number plotted versus the Reynolds number for 

different Deborah numbers. It is noted that a progressive increase of the frequency of 

the flow fluctuations takes place at the critical Reynolds number. The augmentation of 

the fluctuation frequency is explained by the reduction of the fluid viscosity which 

decreases the flow stability. Also, the introduction of normal stresses in the flow as an 

important feature of the viscoelastic fluids enhances these fluctuations. On the 

molecular level, this can be explained by the elastic characteristics of the polymer 

particles considered in the dimple assumption.  
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Figure  4.65 Strouhal number versus Reynolds number for 
different Deborah numbers. 
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Figure  4.66 Strouhal number versus Deborah number for 
different Reynolds numbers. 
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Figure  4.66 illustrates the Strouhal number versus the Deborah number. These 

curves show that a very small change is noticed with the Deborah number. For moderate 

Reynolds numbers, the Strouhal number decreases with the Deborah number, while for 

larger Reynolds numbers, the Strouhal number increases with the Deborah number. As 

the fluctuation of the flow field is a result of flow instability and fluid viscoelasticity, it 

is difficult to owe this frequency augmentation to a single reason. 

These results are in acceptable agreement with the results of Oliveira [27] , Afonso 

et al. [19], and Coelho and Pinho [56].  

4.3.7 Drag Force 

All the flow quantities discussed above can be  resumed in the computation of the 

forces on the cylinder. Note that the force on the cylinder is a very important quantity to 

evaluate the effect of the fluid properties and to couple the present results with further 

analyses. In our two-dimensional analysis, drag and lift forces are used to evaluate the 

fluid property influences. Lift and drag forces are calculated from the resolution of the 

total force F  exerted on the cylinder which defined as: 

( )∫ +−=
S

Sp d.nτIF   4.8 

where S  is an infinitesimal line segment on the stream line and n  is the unit vector 

directed outward. Hence, in generalized orthogonal coordinates the lift LF  and the drag 

DF  forces are expressed as: 

( )

( )∫

∫










∂
∂+−+

∂
∂=










∂
∂+−+

∂
∂=

SD

SL

dS
y

p
y

F

dS
x

p
x

F

2
22

1
12

2
22

1
12

.

.

ζ
τ

ζ
τ

ζ
τ

ζ
τ

  4.9 

The drag force is more important in our case for two reasons. Firstly, the laminar 

flow past a cylinder produces no lift before vortex shedding and very small lift ( )3−eO  

with the vortex shedding instability. Secondly, the most obvious effect of polymer 

addition is the drag reduction. In this section, the drag force is studied and the next 

section is devoted to the lift force.  
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In the following discussion, the effect of the fluid viscosity is introduced firstly, 

then the influence of fluid elasticity is presented. 

The drag force per unit length of cylinder is expressed through the drag coefficient: 











= 2

0

1

RU
FC Dd ρ

  4.10 

Figure  4.67 plots the average drag coefficient versus the Deborah number for 

different Reynolds number. Figure  4.68 expresses root mean square of the drag 

coefficient against the Deborah number. These figures illustrate some increase of the 

drag force with the Deborah number till 0.05. Then, the well-known drag decrease starts 

for De > 0.05. It is thought that the introduction of normal stresses to the flow induces 

an increase of the drag in the beginning of the passage from Newtonian to viscoelastic 

fluid. After that, the extensional properties come over the effect of normal stresses and 

cause drag reduction. It should be noted that Oliveira [27] got similar results. In his his 

work, he showed that the drag coefficient increases for De = 0.5 and 1.0, then drag re-

decreases.  

Physically, the drag has two main origins; pressure and stresses. We can split drag 

into four parts [5]: the pressure drop across the cylinder, the pressure drop due to the 

shear stress distribution, the pressure drop owing to the normal stress, and the friction 

shear stress. The viscoelastic effects stabilize the flow and reduce both the pressure drop 

across the cylinder and the shear stress distribution. Although, normal stresses appear in 

viscoelastic fluids, the friction factor is reduced. As a result the drag force decreases 

because of viscoelastic effects.  
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Figure  4.67 Average drag force coefficient versus Deborah 
number for different Reynolds numbers 
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Figure  4.68 Root mean square drag force coefficient versus 
Deborah number for different Reynolds numbers 
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It should be noted that these results are only obtained for the non-confined cylinder, 

while for the literature treating the confined cylinder, the drag decreases with a minor 

amount of the fluid elasticity. This increase and re-decrease of the drag can be explained 

as a difference between confined and non-confined cylinder problems. This is proven by 

referring to Figure  4.11, Figure  4.23, Figure  4.38, Figure  4.47, and Figure  4.61 which 

show the magnitudes of the flow fields at sections S1 and S2. In all these figures, 

remarkable values of the stresses, pressure, and velocity are found at a side distance     

(-3R to 10 R). In the case of the confined cylinder, these values are forced to zero.  

A downstream point on the x-axis is selected to plot the time history of the drag. 

Figure  4.69 shows the instantaneous drag coefficient at this point for Re = 100 and the 

different Deborah numbers. This figure illustrates that for De > 0.1, the drag force 

rapidly decreases. Also, even at this point the drag for De = 0.1 is greater than that for 

the Newtonian fluid.  

 

Figure  4.69 Time history of the drag at Re = 100 for different 
Deborah number 

The increase of the Reynolds number reduces the viscous stresses and allows the 

normal stresses to play greater roles causing drag reduction. Figure  4.70 and Figure  4.71 

illustrate the average drag coefficient and its root mean square versus the Reynolds 

number for different Deborah number. On this figure, it is that the drag force decreases 

with Reynolds number. The rate of decrease of drag increases with the Deborah 

number. It is also noted from these figures that with the onset of vortex shedding 
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instability, the Newtonian drag is always greater than the drag of viscoelastic fluid with 

De > 0.05. 
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Figure  4.70 Average drag force coefficient versus the 
Reynolds number for different Deborah number 
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Figure  4.71 Average root mean square drag force coefficient 
versus the Reynolds number for different Deborah number 
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4.3.8 Lift Force 

For the flow past a cylinder, the lift force represents 0~5% of the force on cylinder. 

This fact remains in the case of viscoelastic fluids. The principal effects of the fluid 

elasticity occur because of the extensional properties of fluid which means that the drag 

force is substantially affected by the fluid elasticity. The lift force per unit length of 

cylinder can be introduced via the lift coefficient 
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  4.11 

Figure  4.72 plots the root mean square of lift coefficient versus Deborah number for 

different Reynolds numbers. This figure shows the decrease of the lift coefficient with 

the increase of Deborah number  

Looking to the influence fluid viscosity on lift force, Figure  4.73 represents the  root 

mean square of the lift coefficient versus Reynolds number. Results show increasing 

root-mean-square value of lift coefficient with Reynolds number. 

-0,05

0,00

0,05

0,10

0,15

0,20

0,25

0,30

0,35

0,000 0,010 0,050 0,100 0,125 0,150 0,175 0,200 0,225 0,250

De

C
l_

rm
s

47

50

60

80

100

125

150

175

200

Re

 

Figure  4.72 Root mean square of the lift coefficient versus the 
Deborah number for different Reynolds number 
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Figure  4.73 Root mean square of the lift coefficient versus the 
Reynolds number for different Deborah number 
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Chapter 5:  CONCLUSIONS & PERSPECTIVES 

5.1. Conclusions 

The two-dimensional flow of a viscoelastic PTT fluid past a non-confined cylinder 

is simulated numerically. The Cartesian governing equations are transformed to the 

generalized orthogonal coordinates and solved with a finite volume method on 

staggered grid. An x-direction unit entry far upstream velocity is imposed at the west 

boundary limit, while symmetry boundary conditions are imposed at both north and 

south boundaries. At the outlet (east) side, a zero-pressure boundary condition is 

imposed. The domain is sufficiently extended to guarantee a non confined geometry. 

The studied range of Reynolds number is limited to the two-dimensional flow 

instabilities (Re < 200) and Deborah number varied in the range 0.0 to 0.25. 

The convective terms are evaluated using the second-order accurate QUICK scheme 

[68]. The diffusion terms are calculated with the second order accurate centred 

difference scheme. For the time marching algorithm, the first-order accurate Euler 

forward explicit scheme is applied obeying the adaptation of Marker and Cell algorithm. 

The grid is optimized to be is 20000 nodal points.  

The obtained results for Newtonian flow, indicate that the flow exhibits three 

regimes; creeping regime (Re < 5) with no separation from the cylinder, laminar steady 

regime (5 ≤ Re < 47) in which two steady symmetric vortices are created, and the 

laminar vortex shedding regime (Re ≥ 47) in which the two vortices are no longer 

symmetric and steady and the von Kàrmàn street is established. Results for the 

Newtonian case are compared to the literature. It is seen that the present values are in 

close agreement with previous studies: the difference is (0.0% - 4.2%) for the Strouhal 

number and (0.36% - 5.9%) for the drag coefficient. These results can be considered as 

a good validation.  

The viscoelastic results are validated by comparing the non-dimensional fluctuations 

frequency (Roshko number) to the equation reported by Pipe & Monkewitz [58] which 
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relates the Reynolds number and the Roshko number. The present results show good 

agreement in trend and values with this equation. The present viscoelastic results 

provide the following conclusions: 

• The extra-shear stress 

Extra-shear stress is strongly influenced by the Reynolds number. The maximum 

extra-shear stress zone is located at the cylinder surface on the upstream side and 

this location does not change with the Reynolds number. For the steady flow 

regime, the extra-shear stress is symmetrically distributed about the x-axis. With 

the onset of the von Karman vortex street, the extra-shear stress zones are 

extended and well deformed. With further increase of the Reynolds number, a 

periodic alternance of positive and negative shear zone are found along the x-axis. 

The increase of Reynolds number causes strong changes downstream till a 

distance of about 10 R, then the fluctuations of the extra-shear stress become 

longitudinal waves with decaying amplitude. 

For steady flow regime, the Deborah number affects the upstream shear stress and 

the downstream shear is almost unaffected. 

• The first normal stress difference: 

The normal stress magnitudes increase with the Reynolds number. These effects 

show the increase of the stresses in the main flow direction (extensional stresses) 

over the lateral stresses causing the extension of instability zones and reduction of 

their width.  

Increasing the Deborah number suppresses the fluctuation of the stress field. The 

influence of the Deborah number manifests itself in a zone of about 25 R 

downstream the cylinder. The Deborah number changes the magnitude of the first 

normal stress difference within a narrow range.  

• The pressure distribution: 

With the increase of the Reynolds number, the positive pressure area (upstream) is 

lightly influenced, while the negative pressure area (downstream) is strongly 

influenced. The positive-pressure contour keeps its uniformity with the increasing 
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Reynolds number. On the other side, the negative-pressure contour loses its 

uniformity. The increase of the Reynolds number causes some negative pressure 

values at the lower upstream cylinder side which assists the change of lift force. 

The wake angle decreases with the reduction of the fluid viscosity but in a narrow 

range (40°-49°).  

Despite the very slight increase of the Deborah number, the negative pressure 

contours downstream the cylinder strongly decreases from Newtonian fluid to 

viscoelastic fluid. With further increase of Deborah number most of maximum 

negative pressure zone downstream the cylinder vanishes. On the other hand, the 

effect of Deborah number on the positive pressure zone upstream the cylinder is 

unnoticeable. The range of change of the wake angle, for each Reynolds number, 

is very narrow (2° - 3°). The Newtonian fluid has the largest wake angles. 

• The vorticity: 

With the increase of Reynolds number, the flow becomes less stable and the two 

recirculation zones extend and fluctuate. At higher Reynolds numbers, another 

two recirculation zones appear downstream on the x-axis. At a side distance of 

2R, the change of the maximum vorticity magnitude is not largely changed with 

the fluid viscosity (3%). The maximum magnitude of vorticity occurs on the 

cylinder surface at the upstream side. 

• The velocity field: 

The upstream velocity field shrinks when increasing of the Reynolds number, 

while the downstream zone extends and fluctuates laterally with the Reynolds 

number. As the Reynolds number increases beyond the critical Reynolds number, 

both amplitude and frequency of fluctuations increase progressively. On the x-

axis, the velocity values are in the same order of magnitude as the far entry 

velocity, while at a side distance of 2R the maximum velocity magnitude 

increases by about 30% higher than the entry velocity. When increasing the 

Deborah number, the velocity contours extend and the width of the instability 

zone decreases. The reduction of velocity is in the order of 10% for De = 0.2.  
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• The Strouhal number 

The Strouhal number increases with the Reynolds number. The results show that 

a very small change of the Strouhal number is noticed with the Deborah number. 

For moderate Reynolds numbers, the Strouhal number decreases with the 

Deborah number, while for larger Reynolds numbers, the Strouhal number 

increases with the Deborah number. The frequency of fluctuations for 

viscoelastic fluids is always smaller than the corresponding Newtonian fluid. 

• The drag force: 

The drag force decreases with the Reynolds number. The rate of decrease of 

drag increases the Deborah number. Results illustrate some increase of the drag 

force with the increased Deborah number till De = 0.05. Then, the well-known 

drag decrease starts for De > 0.05. Oliveira [27] got similar results. 

• The lift force: 

Results show increasing lift coefficient with Reynolds number and decrease of 

the lift coefficient with Deborah number. 

5.2. Perspectives 

The following points are recommended for future work: 

• Increasing the range of Deborah number range to exceed 0.25. 

• Transferring the code to parallelized one to solve the 3D flow. 

• Working with other more complex geometries. 

• Coupling fluid mechanics problem to the structure of the obstacle to pass 

to the fluid-structure interaction. 
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APPENDIX: FLOWCHART OF THE DEVELOPED CODE 

 

 

 

Start 

Variable declaration  

Initialization of variables and arrays 

Opening I/O files 

Reading I/P geometrical data 

Initialization and computation of control 
volumes in generalized coordinates 

Mesh generation in transverse direction 

Reading I/P physical properties 

Initialization and preparation of system 
matrices to use conjugate gradient method 

Printing initial data in O/P files 

continue (I) 

Calculation of velocity gradients 

Time loop 

Loop point A Optimization of time step 
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continue (I) 

Checking non-Newtonian No 

Calculation of trace of extra-stress tensor 

Calculation of damping parameter g  

Calculation of shear rate γ&  

Calculation of non-Newtonian viscosity mη  

Calculation of covariant velocity derivatives 

Wake calculation 

Calculation of velocity component at mid 
line 

Solution of equation of momentum 

Solution of velocity field 

Solution of forces on cylinder 

Checking the convergence and printing  

Calculation of extra-stress tensor 

Printing final  results 

Time loop Loop point A 

End 
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