
N◦ ordre 4280

Département de formation doctorale en informatique École doctorale SPI Lille
UFR IEEA

Un ensemble d’outils orientés modèle
pour développer et valider des cadres

logiciels à base d’annotations

THÈSE

présentée et soutenue publiquement le 25 Nov. 2008

pour l’obtention du

Doctorat de l’université des Sciences et Technologies de Lille

(spécialité informatique)

par

Carlos Noguera

Composition du jury

Président : Gilleron Rémi Professeur des Universités, Université Lille 3

Rapporteurs : Consel Charles Professeur des Universités, ENSEIRB
Jézéquel Jean-Marc Professeur des Universités, Université Rennes 1

Examinateurs : Deridder Dirk Docteur, Vrije Universiteit Brussel
Donsez Didier Professeur des Universités, Université Joseph Fourier
Pawlak Renaud Docteur, ISEP

Directrice : Duchien Laurence Professeur des Universités, Université Lille1

Laboratoire d’Informatique Fondamentale de Lille – UMR USTL/CNRS 8022 – INRIA Lille Nord Europe

Résumé

Les annotations, dans le langage de programmation Java, sont un moyen d'embarquer
des méta-données dans le code source d'un programme. Elles peuvent être utilisées pour
étendre le langage Java avec des concepts spéci�ques à un domaine. Utilisées de cette
manière, les annotations o�rent un moyen de réduire le fossé sémantique entre les concepts
du domaine et les concepts fournis par le langage de programmation. Pour l'utilisateur
de ce cadre d'annotations (c.-à-d., le développeur d'applications), il est important de
comprendre comment les di�érentes annotations se relient entre elles a�n de les utiliser
correctement et de détecter des erreurs d'utilisation au plus tôt.

Des cadres d'annotation ont déjà été adoptés par l'industrie. Cependant, leur développe-
ment demeure complexe et est fait, en grande partie, de façon ad-hoc. En développant
un cadre d'annotations, le développeur doit s'assurer que le programme qui emploie les
annotations est conforme aux contraintes dé�nies pour elles. Telles contraintes sont sou-
vent reléguées à la documentation du cadre logiciel, puisque les processeurs d'annotation
existants ne fournissent pas une façon de les spéci�er et véri�er. En plus de ceci, les
processeurs d'annotations existants o�rent comme entité de manipulation juste l'arbre de
syntaxe abstraite (AST) du programme. Ceci force le développeur à réi�er les annotations
elles-mêmes s'il veut des éléments d'abstraction d'un plus haut niveau.

Pour aider le réalisateur de cadre d'annotations, nous proposons deux cadres d'annotations.
Le premier, appelé AVal, fournit un nombre de contraintes réutilisables, déclaratives et
extensibles pour spéci�er un cadre d'annotation. Les applications annotées peuvent ainsi
être interprétées a�n de les valider. Le deuxième cadre, appelé ModelAn, permet au
réalisateur de cadre d'annotations de décrire un modèle qui correspond aux annotations
dé�nies dans cadre d'annotations. Par ce moyen, le réalisateur peut exprimer les con-
traintes en termes du modèle. Des programmes annotés sont alors représentés comme in-
stances du modèle (d'annotation), et les contraintes sont véri�ées sur cette même instance.
A partir de ce modèle d'annotations, les classes Java qui réi�ent les annotations sont pro-
duites. Les annotations réi�éess peuvent alors servir de point de départ à l'interprétation
du programme annoté.

Pour valider notre approche, nous avons construit le modèle d'annotation et décrit
leurs contraintes à l'aide d'AVal et d'expressions OCL pour trois cadres d'annotation
industriels: Fraclet, un cadre d'annotation pour le modèle composant de Fractal, JWS
pour le développement de services Web dans Java, et l'API de persistance Java, une partie
de la spéci�cation Java de EJB3.

Mots-clés: Programation à base d'annotations, Ingénierie dirigée par les Modèles, Lan-
gages Dédies, Validation de programmes

Abstract

Annotations, in the Java programming language, are a way to embed meta-data into
the source-code of a program. Annotations can be used to extend the Java language with
concepts speci�c to a domain. When used in this manner, annotations serve as means
to reduce the semantic gap between concepts in the problem domain and the concepts
provided by the programming language. For the annotation framework user (i.e., the
application programmer) it is important understand how di�erent annotations relate to
each other in order to correctly use them and to get errors as soon as possible when not.

Annotation frameworks are already being adopted by industry; however, their devel-
opment remains complex, and it is done largely in an ad-hoc manner. When developing
the annotation framework, the programmer must make sure that the program that uses
the annotation complies with the constraints de�ned for it. Such constraints are often
relegated to the documentation of the framework, since current annotation processors do
not provide a way to specify and check them. In addition to this, current annotation pro-
cessors just o�er to the framework programmer the AST of the program as manipulation
entity. This forces the programmer to reify the annotations himself if he wants higher
abstraction elements.

To help the annotation framework developer, we propose two annotation frameworks.
The �rst one, called AVal, provides a number of reusable, declarative and extensible
constraints that can be used to specify the annotation framework, and can be interpreted
in order to validate an annotated program. The second one, called ModelAn, allows the
annotation framework developer to describe a model that corresponds to the annotations
in the framework, and to express the constraints in terms of this model. Annotated
programs are then represented as instances of the (annotation) model, and the constraints
checked on it. From this model, Java classes that reify the annotations are generated.
The rei�ed annotations can serve as starting point for the interpretation of the annotated
program.

To validate the approach, we construct the annotation model, and describe the con-
straints as AVal and OCL expressions of three industrial annotation frameworks: Fraclet,
an annotation framework for the Fractal component model, JWS for the development of
web services in Java, and the Java Persistence API, part of the EJB3 speci�cation.

Keywords: Annotation-based programming, Model-Driven Engineering, Domain-Speci�c
Languages, Program Validation

Acknowledgement

I would like to start by thanking the members of the jury, especially my two reporters
Charles Consel and Jean-Marc Jézéquel for their time and valuable comments on the
document. I would also like to express my gratitude to the examinors, Rémi Gilleron,
Dirk Deridder and Didier Donsez. I would like to specially thank Renaud Pawlak, for his
participation on my jury, and more importantly for his guidance, advice and friendship
during the �rst half of my PhD. Be it in the lab, developping Spoon or in the �Paon
d'Or�; his knowledge, sense of humor and good disposition made my stay here all the
more enjoyable.

During this three years I have had the luck of encountering numerous colleges who
have since left, and from whom I have leaned much. To all of them I owe my gratitude:
Nicolas Petitprez, the original Spoon-man, Dolorès Diaz, Nicolas Pessemier, Guillaume
Dufrêne, Naouel Moha, Maja D'Hondt, Ellen Van Paeschen, Johan Brichau, Tom Mens,
Michal Malohlava and Jérémy Dubus. Among these temporary o�ce mates, Johan Fabry
occupies a special place, for in him I found an inconditional friend.

It goes without saying that I would not have been able to survive these three years
without the help and support of the permanents of the team: Anne-Françoise Le Meur
who was always there for reading a paper or just talking about life; Phillipe Merle, Lionel
Seinturier and Romain Rouvoy to whom I look up to, and who are my models on what
a researchers life should be. Finally, and more importantly Laurence Duchien, who more
than an advisor, was my guide during these three long years. Laurence was always there to
encourage me and she always had time to hear my problems both in the lab and outside.

To the PhD students with whom I shared times both hard and happy, know this: It
does end, and it is worth it. All the best of luck to Ales, Guillaume, Carlos, Daniel,
Gabriel, Mathiew, Hani, Alban and the other Guillaume; I know that you will be able
to get through the PhD and succeed in what ever path you choose to follow afterward.
Thanks to the engineers of the team: Nicolas, Pierre, Yann, Damien, and in particular
Frédéric, for co�ee breaks and small talk (not the language).

In a more personal level, I would like to thank my parents and brothers whose ever
present advice and support pushed me through even from a thousand miles away. Finally,
I could not have made it through these three years without the unconditional support,
advice and love of my wife Angela. With out you, I would not be the man I am today;
all I have I owe to you.

iii

iv

A Angela y a Angela

v

vi

Contents

List of Figures xiii

List of Tables xv

Chapter 1 Introduction 1

1.1 Annotation framework development . 2

1.2 Proposal . 3

1.3 How to read this document . 5

Part I State of the Art and Motivation 9

Chapter 2 State of the Art 11

2.1 Domain Speci�c Languages . 12

2.1.1 Domain-Speci�c Language Development 13

2.1.2 Relationship with annotation framework development 13

2.2 Program Transformation . 14

2.2.1 Spoon . 15

2.3 Model-Driven Engineering . 17

2.3.1 Model Development . 17

2.3.2 Relationship with annotation framework development 18

2.4 Aspect-Oriented Software Development 18

2.5 Program Validation . 19

2.6 Annotation Framework Development 20

2.6.1 Modeling Turnpike . 21

2.6.2 XIRC . 22

2.6.3 Attribute Dependency Checker 23

2.6.4 Comparison of each of the approaches 23

vii

Contents

2.7 Summary . 25

Chapter 3 Annotation Framework Development 27

3.1 Anatomy of an Annotation framework 28

3.1.1 Actors . 29

3.1.2 Annotation types . 29

3.1.3 Restrictions and limitations of Annotations 30

3.1.4 Annotation interpretation . 30

3.2 SaxSpoon - an Annotation Framework for XML Parsing 33

3.2.1 SaxSpoon annotation types . 34

3.2.2 SaxSpoon example . 34

3.3 SaxSpoon Interpretation . 36

3.3.1 Compile-time interpretation of SaxSpoon applications 36

3.3.2 Runtime interpretation of SaxSpoon applications 37

3.4 Challenges in annotation framework development 39

3.4.1 Design . 39

3.4.2 Implementation . 40

3.4.3 Challenges . 40

3.4.4 Proposal . 40

3.5 Summary . 41

Part II Proposal 43

Chapter 4 Annotation Constraints 45

4.1 Validating annotation constraints . 46

4.2 Kinds of constraints . 47

4.3 Generic constraints . 48

4.3.1 Annotation-wise generic constraints 49

4.3.2 Code-wise generic constraints 50

4.4 Composition of Generic Constraints . 51

4.4.1 Example . 52

4.5 AVal: a (Meta) annotation framework to Specify Constraints 55

4.5.1 AVal annotation constraints . 55

4.5.2 AVal constraint composition . 56

viii

4.5.3 Example . 56

4.6 AVal Interpretation . 58

4.6.1 Extending validations . 59

4.6.2 Problem �xers and Error messages 60

4.6.3 Library annotations . 61

4.6.4 Eclipse Integration . 62

4.7 Summary . 63

Chapter 5 Modeling Annotations 65

5.1 Representing annotations as objects . 66

5.2 Annotation Models . 66

5.2.1 De�ning annotation models . 69

5.2.2 Annotation associations . 69

5.2.3 Code associations . 69

5.2.4 Model consistency . 70

5.2.5 Default values . 70

5.2.6 Example . 71

5.3 ModelAn: Annotation framework for Annotation Model De�nition . . . 74

5.3.1 Model de�nition . 74

5.3.2 Model constraint de�nition . 76

5.3.3 Other means of model de�nition 78

5.4 ModelAn: Model Extraction . 80

5.4.1 Model construction . 81

5.4.2 Instantiator generation . 82

5.4.3 Instance construction . 83

5.4.4 Instance validation . 84

5.4.5 Instance visualization . 85

5.5 Summary . 85

Part III Validation 87

Chapter 6 Case Studies 89

6.1 Fraclet . 90

6.1.1 Description . 91

ix

Contents

6.1.2 Example application . 91

6.1.3 Constraints . 91

6.1.4 Annotation model . 92

6.1.5 Evaluation . 96

6.2 Java Web Services . 97

6.2.1 Description . 97

6.2.2 Example application . 97

6.2.3 Constraints . 98

6.2.4 Annotation model . 100

6.2.5 Evaluation . 105

6.3 Java Persistence API . 105

6.3.1 Description . 106

6.3.2 Example application . 106

6.3.3 Constraints . 108

6.3.4 Annotation model . 108

6.3.5 Evaluation . 116

6.4 Summary . 116

Part IV Conclusions and Future Work 121

Chapter 7 Conclusion and Perspectives 123

7.1 Contributions . 123

7.1.1 General Contributions . 124

7.1.2 Generic constraints . 125

7.1.3 Annotation models . 126

7.2 Comparison with other approaches . 127

7.3 Implemented Tools . 129

7.3.1 AVal . 129

7.3.2 ModelAn . 129

7.4 Perspectives . 130

7.4.1 Generic constraints . 130

7.4.2 Annotation Models . 130

Bibliography 133

x

Appendixes 141

Appendix A Formalization of Generic Constraints 143

A.1 Notations and De�nitions . 143

A.2 Annotation-wise Validations . 144

A.3 Code-wise Validations . 145

Appendix B Résumé en français 147

B.1 Développement de cadres d'annotations 148

B.2 Proposition . 149

B.2.1 Contraintes génériques . 150

B.2.2 Modèles d'annotation . 150

B.3 Contributions . 151

B.3.1 Contraintes génériques . 152

B.3.2 Modèles d'annotation . 153

B.4 Perspectives . 154

B.4.1 Contraintes génériques . 154

B.4.2 Modèles d'annotation . 155

xi

Contents

xii

List of Figures

2.1 Spoon process �ow . 15
2.2 Spoon annotation processor for the Test annotation on methods 16

3.1 An annotation type de�nition and use . 30
3.2 Recipes DTD and example . 35
3.3 SaxSpoon class to process Recipes . 35
3.4 Code transformation for SaxSpoon programs 37

4.1 Validation process �ow . 47
4.2 In this AST, annotations B is in the scope of A while C is not. The scope of

A is represented by the gray square. 48
4.3 Generic constraints applied to the SaxSpoon Annotation Framework 54
4.4 AVal Validation Process Flow . 54
4.5 SaxSpoon annotation types with AVal constraint annotations 57
4.6 AVal Architecture . 58
4.7 AVal integration with Eclipse IDE . 63

5.1 Annotation types and corresponding model 67
5.2 Annotation models are to annotation types like annotated programs are to

annotation model instances. 68
5.3 _annotation and target relations . 70
5.4 SaxSpoon annotation model . 71
5.5 SAXspoon Ecore Model and Annotated types 77
5.6 ModelAn interpretation �ow . 80
5.7 Model Construction . 81
5.8 Instanciator Construction . 82
5.9 Instance Construction . 83
5.10 OCLConstraintValidator class responsible for annotation model consistency

checking . 84
5.11 ModelAn Viewer Eclipse Plug-in for a Fraclet application 85
5.12 ModelAn Viewer Con�guration . 86

6.1 Client Component Fraclet Implementation 94
6.2 Fraclet Annotation Model . 96
6.3 JWS annotation model . 104
6.4 Example: JPA annotated class . 106

xiii

List of Figures

6.5 Subset of the JPA's annotation model . 117

xiv

List of Tables

2.1 Annotated application representation in the compared approaches 24
2.2 Constraints o�ered by the compared approaches 24
2.3 Interpretation support o�ered by the compared approaches 25

3.1 Overview of SaxSpoon annotations . 34

4.1 Generic constraints . 49
4.2 Constraints for SaxSpoon Annotations . 53
4.3 AVal constraint annotation types . 55

5.1 SaxSpoon Association Queries . 72
5.2 SaxSpoon Constraints . 73

6.1 Overview of Fraclet annotations . 92
6.2 Fraclet annotation's constraints . 93
6.3 Overview of JWS annotations . 98
6.4 JWS annotation's constraints . 99
6.5 Annotation types for the JPA . 105
6.6 Selected JPA annotation description . 107
6.7 Constraints for selected JPA annotations 109
6.8 Summary of the case studies . 119

7.1 Annotated application representation in the compared approaches (includ-
ing AVal/Modelan) . 128

7.2 Constraints o�ered by the compared approaches (including AVal/Modelan) 128
7.3 Interpretation support o�ered by the compared approaches (including AVal/-

Modelan) . 128

xv

List of Tables

xvi

1

Introduction

Contents
1.1 Annotation framework development 2

1.2 Proposal . 3

1.3 How to read this document 5

Programming consists of taking concepts of a problem domain and mapping them to
concepts o�ered by a programming language; for example, a Customer is mapped to a
class. The semantic distance between concepts existing in the problem domain and the
ones o�ered by the programming language constitutes a semantic gap. Ways to bridge
this gap have been, and still are, actively sought. When developing a programming
language one must balance the generality of the concepts o�ered by the language with
how large this semantic gap is. Programming languages that o�er concepts too generic
are hard to program for, while programming languages with concepts too speci�c are of
limited applicability. For example, in class-based object oriented languages such as Java,
classes are used to represent concepts in the problem domain, with �elds representing
their attributes, and methods the behaivour of those concepts. Although classes strike a
good compromise between genericity and speci�city, the fact remains that in the mapping
of domain-level concepts to classes information is lost. An example of this occurs in Java,
where whenever mapping behavior to methods it is imposible to expresss that certain
methods modify the state of the concept, while others do not.

One way to deal with this balance is to develop a language that provides support for
domain-speci�c extensions, so that the concepts in the program are generic, but more
speci�c ones can be provided. An example of such extension support is found in Common
Lisp's macros [MFK04]. In Java, such extensions are made possible with the inclusion
of annotations. Annotations are meta-data attached to program elements signifying that
they retain domain-speci�c semantics. In a manner, they are similar to compilation
directives or Pragmas, only that annotation's semantics are not de�ned by the language,
but by an external interpretation engine. The fact that annotations are accompanied of
an interpretation engine makes them closer to frameworks than to pre-processor directives
or macros. A framework is de�ned by Johnson [Joh97] as �a reusable design of all of parts
of a system that is represented as a set of abstract classes and the way their instances

1

Chapter 1. Introduction

interact�. In the case of annotation frameworks, instead of extending abstract classes, the
application developer annotates, and the way the annotations are interpreted is similar
to the computations resulting from the interaction of instances of the framework.

The use of meta-data attached to program elements on an application is being actively
applied in several frameworks both large and small [RPPM06, MK06, Zot05, BK06]. Nev-
ertheless, their development is still largely performed in an ad-hoc manner. Annotations
as de�ned in the Java language [GJSB05] allow the developer to tag certain elements of a
program (classes, packages, methods, etc.) to declare that they maintain domain-speci�c
semantics. The use of annotations provides a number of advantages: First, it provides
an additional interaction mechanism between an application and the framework that pro-
vides the annotations. Second, it enhances the decoupling between the interface of the
framework (represented as annotations) and its implementation (the interpretation of the
annotations). This decoupling makes annotations attractive for the development of spec-
i�cations that are to be implemented by third parties; for example the Java Persistence
API (a part of the EJB3 [MK06] speci�cation), or the Web Services Meta-data speci�ca-
tion for Java [Zot05]. Third, since annotated elements declare that those elements retain
a domain-speci�c meaning in addition to the one provided by the language, annotations
can be used to extend the Java language, as is the case in AspectJ5 [KHH+01]1.

The di�erent components of an annotation framework, as well as the challenges in
developing them are discussed in the next section 1.1, while our proposal to address the
identi�ed challenges is outlined in section 1.2. Finally, an overview of the rest of this
document is presented in section 1.3.

1.1 Annotation framework development

We de�ne an annotation framework as a framework [Joh97] that uses as means of inter-
action, annotations. They are comprised of two main parts: the set of annotation types
and the interpretation engine. The annotation types are the interface of the framework.
They represent concepts that the user of the framework needs to extend with his own in
order to use the services o�ered by the framework. Annotations in Java are types similar
to interfaces, which contain a number of annotation elements. They function as read-only
�elds in classes. The annotation user is in charge of mapping the concepts of his appli-
cation (represented as classes, packages, methods, �elds) to the concepts provided by the
framework. Such mapping is done explicitly by decorating the source code of the mapped
element with an annotation. When doing this, the annotation user must be aware of the
semantics of the annotation types he is using, and in turn, the annotation framework
must give timely errors and warnings whenever the developer violates the constraints of
the annotations.

In addition to the challenge of checking and specifying the semantics of the anno-
tation types, the annotation framework developer must overcome other challenges when
designing and implementing the framework. The annotation types, as already said, rep-
resent a number of concepts which stem from the domain the framework represents. It is
from this domain-model that some of the constraints of the annotation types originate.

1AspectJ � http://www.eclipse.org/aspectj/

2

1.2. Proposal

Now, in designing the annotation types for the framework, the developer is faced with the
limitations imposed by the programming language in the de�nition of annotation types:
Annotations can only de�ne a limited number of types for their elements, inheritance
between annotations is not supported, nor are associations between annotations. This
constitutes challenge I in the development of annotation frameworks. Challenge III is
that of de�ning and checking annotation constraints. Two kinds of constraints exist for
annotations: those that de�ne the relations between annotation types, and those that
de�ne the relations between annotations and the source-code elements on which they are
placed. The �rst kind of constraints is rooted on the domain-model that the annotations
represent; while the second one comes from the mapping of the domain-model onto the
code-model (AST) of the Java language. It is in de�ning this mapping that challenge II
is found.

Finally, challenge IV deals with the interpretation of annotated programs. Annotation
types in Java have no de�ned semantics. The behavior of an annotation is given by
the interpretation performed by the annotation framework. Annotated programs can be
interpreted either at compilation-time, where the source code of the annotated program is
transformed to an un-annotated one; or at runtime, where using the Java re�ection API,
the computations of the program are changed as directed by the annotations present. In
either case, to interpret annotations it is desirable to reify them so that they resemble
their originating domain models. Currently, no annotation processing tool o�ers such
rei�cation, leaving the task to the annotation framework programmer.

To summarize, the challenges identi�ed in the development of annotation frameworks
are:

I The representation of domain concepts as annotation types

II The mapping of annotation types to code elements

III The de�nition of constraints to validate annotated programs

IV The rei�cation of annotations for their interpretation.

1.2 Proposal

We propose to attack the challenges in annotation framework development in two steps.
First, by analyzing the constraints in existing frameworks, and from them extracting a
number of generic constraints. These constraints can then be parametrized by frame-
work developers to specify their annotation types. Second, by borrowing concepts from
the model-driven engineering domain to create annotation models that are of a higher
abstraction level than plain annotation types. Annotation models enable the de�nition
of the mapping of annotation types to code elements and provide support for the rei�ca-
tion of annotations in applications. The implementation of both approaches is based on
the Spoon[PNP06, Paw05] source code transformation framework. Spoon is particularly
suited for the analysis and transformation of annotations, since it supports Java5 syntax,
and provides special processors2 for annotated elements.

2Visitors of the AST of the program

3

Chapter 1. Introduction

Generic Constraints We classify constraints in annotation frameworks in two large
groups: Annotation-wise constraints, which deal with constraints on the possible values
for the elements of annotations, and on the relationships between annotations; and Code-
wise constraints, that deal with the properties that the code elements require in order to
be annotated with a particular annotation type. For each group we de�ne a number of
constraints, and we de�ne how they are composed in order to specify an annotation type.

In order to be able to use generic constraints, we have implemented an annota-
tion framework for the domain of annotation constraint de�nition and validation called
AVal3 [NP07, NP06]. Each of the generic constraints is represented by an annotation type.
The annotation framework developer uses AVal by putting the constraint annotation on
the annotation types of his framework. AVal relies on the Spoon framework to check the
constraints on application programs. This check is done over an AST representation of
the program provided by Spoon.

AVal annotations provide a generic, reusable and declarative way to specify the con-
straints of an annotation framework. In addition to this, AVal also provides a way to check
that annotated programs conform to the speci�cation of the annotation frameworks that
they use. Generic constraints and AVal are further discussed in chapter 4.

Annotation Models When designing annotation types, the framework developer must
cope with the restrictions the Java language imposes. Foremost among these restrictions
is the one that prevents annotation types from de�ning relations with other annotation
types. Relationships between annotations originate on the domain model that they rep-
resent, such relations are often necessary to de�ne constraints, and to interpret annotated
applications. Because of this, we propose to augment annotation types with the notion
of association. As with generic constraints, we implement this extension through an
annotation framework called ModelAn4 [ND08]. ModelAn de�nes an Association meta-
annotation that, when placed on an annotation type, represents an association with an-
other annotation type. The resulting graph of annotation types and the associations
between them is what we call an annotation model.

Since annotation models contain information that is closer to the one existing in the
domain model, annotation models address challenge I by relaxing the most troublesome
restriction when passing from a domain model to a set of annotation types: relations
between annotations. Entities representing annotation types in an annotation model are
associated to elements in the Java language AST; just like annotations are related to the
program elements on which they are placed. This association can be quali�ed by means of
a query expression that will represent the code element to which annotations are supposed
to be placed on. This partially addresses challenge II, since by using these queries, the
annotation framework developer can express the mapping between annotation types and
the code elements of the applications that will use them.

Finally, the entities in the annotation types are used to generate their rei�cation (chal-
lenge IV). With this rei�cation of the annotation types, the framework developer can then
interpret annotated applications without resorting to the representation of annotations

3for Annotation Validation
4for Modeling Annotations

4

1.3. How to read this document

on the AST. In addition to this, since ModelAn and the rei�ed annotations are based on
Spoon, the rei�ed annotations are accessible from the Spoon annotation processors.

ModelAn and AVal provide facilities to overcome the four challenges raised by anno-
tation framework development. Since both ModelAn and AVal process annotations in
the program's source code, they can specify and model annotations regardless of their
retention policy (whether the annotations are kept only in source code, byte-code or at
runtime). Also, rei�ed annotations can be useful both for compile-time interpretation
(using Spoon) or at runtime; although this last property is not yet implemented.

1.3 How to read this document

This document is divided in four main parts: in the �rst part we motivate the need for
support in the development of annotation frameworks by exploring related domains and
previous proposals in chapter 2 and in chapter 3 we present annotation frameworks and
their development in detail. In the second part, we describe in detail our proposal for
the development and validation of annotations frameworks: in chapter 4 we deal with the
problem of annotation constraint de�nition and checking, while in chapter 5 we propose
the use of domain models to streamline the development of annotation frameworks. In the
third part, (chapter 6), in order to validate our approach, we apply it to three annotation
frameworks. Finally, in the last part, we present the perspectives opened up by our work,
and conclude (chapter 7). Each of the chapters are introduced in detail below.

Chapter 2: State of the art In this chapter we start by comparing annotations as
a development tool to three other domains: Domain-speci�c languages, model-driven en-
gineering and aspect-oriented software development. We postulate that the annotation
types that are de�ned as part of a framework in fact represent a domain-speci�c language.
The domains of annotation framework engineering and domain-speci�c language devel-
opment are similar both in methodology and implementation strategies. Nevertheless,
annotation types lack a grammar that de�ne their correct use. We also postulate that
annotation types in fact represent a domain-model, and therefore, techniques and tools
useful for model-driven engineering are also applicable to the development of annotation
frameworks. However, annotation types count with numerous restrictions that impede
their use as modeling entities. From both these views of annotations as domain-speci�c
languages and annotations as models we base the main insights of this work: that an-
notation frameworks will bene�t of grammar-like rules to validate their use, and that
annotation frameworks will bene�t from modeling concepts in their development and im-
plementation. Finally, we compare annotations to aspects, since both serve to represent
crosscutting concerns. But, in contrast to aspects, that deal with both scattering and tan-
gling of concerns, annotations only provide un-tangling capabilities, since the annotations
themselves are still distributed all through the code of the program.

Since we identify (in chapter 3.4) annotation validation as a challenge in framework
development, we also discuss the �eld of program validation. We concentrate on the role
of meta-data (or annotation) directed validations, since this is the approach we take in
chapter 4 for the de�nition of annotation constraints.

5

Chapter 1. Introduction

We �nally discuss the state of the art in annotation framework development, presenting
three approaches: Modeling Turnpike, XIRC and ADC. We give an summary of their
functions, and compare each one to our proposal.

Chapter 3: Annotation Framework Development In this chapter we introduce
annotations and their development. We start by de�ning an annotation framework as a
framework that uses annotations as principal means of interaction with the application
that uses it. We identify two actors when dealing with annotation frameworks: on one
hand the annotation frameworks developer, who is in charge of de�ning the annotation
types and their interpretation, while on the other hand, there is the application developer,
in charge of mapping the annotations o�ered by the framework to the abstraction in
his application. To illustrate the development of annotation frameworks we introduce a
small framework called SaxSpoon. SaxSpoon o�ers a set annotations for parsing XML
documents. Using SaxSpoon we point out a number of challenges in the design and
development of annotation frameworks. These challenges are addressed in chapters 4
and 5. Challenges identi�ed are (I) The representation of domain concepts as annotation
types, (II) the mapping of annotation types to code elements, (III) the de�nition of
constraints to validate annotated programs, and (IV) the rei�cation of annotations for
their interpretation.

Chapter 4: Annotation Constraints In this chapter we address challenge III;
namely the de�nition and checking of constraints in annotated programs. To be able
to de�ne annotation constraints, we �rst divide them in two groups: those constraints
that annotations impose on other annotations (annotation-wise constraints), and con-
straints that annotations put on the code elements on which they are placed (code-wise
constraints). Having done this, we de�ne a set of generic annotations for both groups.
The generic annotations represent constraints commonly found on the speci�cation of
annotation frameworks; for example, that an annotation can only be placed on �elds of a
certain type, or that the use of an annotation in a class prohibits that class from carrying
another annotation.

In order to provide the annotation framework developers with an implementation of
these generic constraints, we introduce the AVal annotation framework. The idea is that
a constraint for an annotation is in fact a meta-datum, and as such, it can be represented
as a meta-annotation5. AVal o�ers a set of annotations, one for each generic constraint,
that serve as domain-speci�c language for specifying annotation frameworks. AVal also
implements an annotation processor that checks the constraints on an application's source-
code; whenever an annotated element violates a constraint, AVal will report the error as
if it was a compilation error. Finally, AVal is integrated into the Eclipse IDE.

We use the SaxSpoon annotation framework de�ned in chapter 3.2 to illustrate the
application of the generic constraints and AVal annotations to the speci�cation of the
framework.

5An annotation on an annotation's de�nition

6

1.3. How to read this document

Chapter 5: Modeling Annotations In this chapter we address the remaining chal-
lenges, I, II and IV; namely, representation of domain concepts as annotation types,
mapping of annotations to code elements, and rei�cation of annotations. We do this by
introducing the concept of annotation models. An annotation model is de�ned by mak-
ing the relationships between annotations explicit. By doing this, annotations achieve
a higher level of abstraction, bridging the gap between concepts of the domain and the
annotations that represent them in applications. Annotation models are realized by ex-
tending the de�nition of annotation types through a meta-annotation called Association.
Since annotation models are derived from the annotation types of the framework, the use
of these annotation types on a given application de�nes an instance of the annotation
model. By means of the Association meta-annotation, an interpretation engine, called
ModelAn is able to construct the annotation model for a given set of annotation types. It
also produces a source-code processor that takes an annotated application and produces
the corresponding annotation model instance.

Annotation models allow the framework developer to state the default values of ele-
ments of the annotation types (Default meta-annotation), they also permit to de�ne the
relationship between annotations and elements of the code (Targets meta-annotation),
and �nally serve as rei�cation for the application's interpretation. We also exploit the
tools for model constraint validation to complement the generic constraints de�ned in
chapter 4. The use of ModelAn is illustrated by means of the SaxSpoon annotation
framework.

Chapter 6: Case Studies In order to validate the use of AVal and ModelAn, we apply
them to three industrial and research annotation frameworks: Fraclet, Java WebServices,
and the Java Persistence API. Fraclet de�nes six annotations for the development of
primitive components in the Fractal component framework. Java WebServices (JWS) is
a Java speci�cation6 for the implementation of web services; it de�nes seven annotation
types. Finally, the Java Persistence API (JPA) is a part of the EJB3 speci�cation that
deals with the persistence of entities. To do so, 64 annotation types are included in the
speci�cation. Of these, we analyze ten.

From these three case studies, using a combination of AVal constraints and ModelAn
meta-annotations, we de�ned each annotation model, and for each one, we speci�ed the
constraints derived from the speci�cation (in the case of JWS and JPA) or from the
developers of the annotation framework (in the case of Fraclet).

Chapter 7: Conclusion and Perspectives Finally, in this chapter, we present possi-
ble avenues for future work, such as an expansion on the number of generic constraints by
analyzing other annotation frameworks, and advanced model extraction by interpreting
annotation types in a di�erent manner.

6JSR 181

7

Chapter 1. Introduction

8

Part I

State of the Art and Motivation

9

2

State of the Art

Contents
2.1 Domain Speci�c Languages 12

2.1.1 Domain-Speci�c Language Development 13

2.1.2 Relationship with annotation framework development . . . 13

2.2 Program Transformation . 14

2.2.1 Spoon . 15

2.3 Model-Driven Engineering 17

2.3.1 Model Development . 17

2.3.2 Relationship with annotation framework development . . . 18

2.4 Aspect-Oriented Software Development 18

2.5 Program Validation . 19

2.6 Annotation Framework Development 20

2.6.1 Modeling Turnpike . 21

2.6.2 XIRC . 22

2.6.3 Attribute Dependency Checker 23

2.6.4 Comparison of each of the approaches 23

2.7 Summary . 25

As discussed in the introduction (chapter 1), annotation frameworks act as extensions
to the Java language, by providing high-level domain-speci�c abstractions embedded in the
source code of an application. In this chapter we will start by discussing other approaches
to achieving these kind of abstractions, namely works on the area of Domain-Speci�c
Languages (DSL), Model-Driven Engineering (MDE) and Aspect-Oriented Software De-
velopment (AOSD). Having discussed the context in which annotation frameworks lay,
we present several works on annotation framework development which are directly com-
parable to the one presented in this thesis.

Software development strives to enhance programmer productivity. This is a conse-
quence of the cost reduction of computations, where raw e�ciency gives way to quicker

11

Chapter 2. State of the Art

development of quality, maintainable applications. In this regard, ways to bridge the
semantic gap that exists between the concepts of the problem domain, and those that
are manipulated by the programmer are sought both by academia and industry. Several
approaches to this problem are the subject of research; domain-speci�c languages, model
driven development, aspect orientation and annotation frameworks are just some of them.

In this chapter, we postulate that Domain-Speci�c Languages, Model-Driven Engineering
and Aspect-Oriented Software Development are in fact closely related to annotations, and
that the tools and techniques developed for each of these areas can be of bene�t when
developing annotation frameworks. We discuss each of these areas in sections 2.1, 2.3,
2.4 and 2.6. In section 2.5 we also review related work in the �eld of program valida-
tion, of which annotation validation lays, and in section 2.2 we discuss several program
transformation tools and techniques that can be used for the development of annotation
frameworks; in particular, Spoon, which is used to implement the tools proposed in this
document.

2.1 Domain Speci�c Languages

A domain-speci�c language (or DSL) has been de�ned as �a programming language or
executable speci�cation language that o�ers, through appropriate notations and abstrac-
tions, expressive power focused on, and usually restricted to, a particular problem do-
main.� [vDKV00]. In this de�nition, the goal of the DSL is stated to be that of providing
�focused expressive power�, through which a DSL programmer is supposed to bridge the
abstraction gap mentioned earlier. Domain-speci�c languages have a number of character-
istics that give advantages on their use over general-purpose languages (GPLs). Because
they are focused on a particular domain, their notions and abstractions are better suited
to solve problems in that domain than general abstractions. Applications that use DSLs
can also be safer, in the sense that since the language provides tailored abstractions for a
domain, it can also provide tailored checks that validate domain speci�c constraints.

When de�ning what a DSL is, it is necessary to contrast it with general purpose lan-
guages; however, the distinction between DSLs and GPLs can indeed be a fuzzy one.
Although it can be argued that languages such as COBOL and FORTRAN are DSLs
for the scienti�c and business domains, they are normally not considered as such. DSLs
tend to be small languages (they are also called mini-languages [Ray03] or little lan-
guages [Ben86]) and they tend to be declarative; of these two, COBOL and FORTRAN
are neither. Nevertheless, the nature of a DSL is also in the eye of the beholder; some
DSLs can be used to implement applications outside of their intended domain, thereby
losing their domain-speci�cness.

12

2.1. Domain Speci�c Languages

2.1.1 Domain-Speci�c Language Development

Regardless of where on the domain-speci�c vs. general purpose spectrum a language lays,
the development of DSLs remains largely an ad-hoc endeavor. Methodologies on how to
develop DSLs have been proposed in literature: Lengauer et al. [LBCO04] proposed a
structured way to develop DSLs based on the notion of program family [Par76]. A pro-
gram family is a set of programs that share enough characteristics that they can be taken
as representative of a domain. The idea is then to, based on a given program family,
identify concepts, assumptions and computations common to the family (and therefore
to the domain represented by the family). Then, from the program family, a library is
re�ned, and from the library an abstract machine that de�nes domain-speci�c instruc-
tions and domain-speci�c state is de�ned. The �nal step is then to guide the design of
the DSL through the abstract machine and the program family: common programming
patterns suggest syntactic constructs, the abstract machine gives insights to how to in-
terpret programs, and the implementation of the library can give insights on possible
optimizations.

A more general approach to the development of DSLs is proposed by Mernik et al.
in [MHS05] where they identify four phases in the development of DSLs, and for each a set
of patterns is proposed. In the Decision phase, the choice of constructing a new language
is made. Patterns to aid in this decision include whether existing DSLs can ful�ll the
requirements, and give common reasons to opt for a DSL, such as task automation or
GUI construction. The second phase, Analysis deals with identifying the domain for the
new language by relying on domain experts or domain analysis techniques such as the
program families discussed previously. Patterns for this phase include formal and informal
domain analysis. The third phase is the Design of the language; which can rely on existing
languages or not (language exploitation and language invention patterns) and whether the
language is formally or informally described. Finally, the Implementation phase proposes
as patterns interpretation, compiler/application generators, a preprocessor, embedding
the language in a host (general purpose) language or hybrid approaches.

2.1.2 Relationship with annotation framework development

Going back to the de�nition of a DSL presented at the beginning of this section, it is not
di�cult to see the relationship between annotation frameworks and DSLs. DSLs provide
abstractions focused on a domain, while annotations also provide abstractions generally
linked to a given domain in the form of extensions to the semantics of the code elements
of the Java language. Also, annotations (as DSLs) tend to be small and declarative
(when a programmer annotates a piece of code, he only states what it represents, and
not how to interpret it). Even the implementation strategies for the interpretation of
annotated programs have parallels with those described in section 2.1.1; annotations can
be interpreted at compile-time with a preprocessor, or at runtime by an actual interpreter.
Because of this, one can think of annotation frameworks as embedded DSLs that extend
the semantics of the Java language. Despite this, calling annotation frameworks DSLs
might be a stretch, given that they do not explicitly de�ne a language, since no grammar
is de�ned for it. If each of the annotations in a framework is likened to a term in a DSL,

13

Chapter 2. State of the Art

no link between them can be made.

Having introduced the �eld of Domain-Speci�c Languages and their development, and
discussed its relation to annotation frameworks, in the next section we explore the relation
between annotations and models in the context of Model-Driven Engineering.

2.2 Program Transformation

Several of the implementation patterns for DSLs presented in [MHS05] deal with pro-
gram transformation: be it to implement the DSL by translating it to operations on a
base language, using a macro preprocessor, or extending an existing compiler; program
transformation tools are needed. As previsously discussed, the interpretation of annota-
tions in a program is similar to the implementation of DSLs therefore, in this section we
present some of the better known program transformation tools in the light of annotation
framework development.

There exist several well-established program transformation frameworks, we will con-
centrate on those dealing with term rewriting, and on those that are based on compile-time
re�ection. In the term-rewriting camp, some of the most representative are TXL [Cor06b]
and ASF-SDF [vDHK96], both these frameworks are based on term rewriting and include
some form of concrete abstract syntax (or native patterns as they are called in TXL). TXL
o�ers several transformation architectural styles [Cor06a], these architectures permit ei-
ther a sequential application of transformations (cascade), or a parallel one (aspect). In
ASF-SDF, the notion of traversal functions [vdBKV01] is included to control the way in
which the rewrite rules are be applied. They allow for bottom-up and top-down. Traversal
functions can also be distinguished by whether they changed the tree they travel (trafo),
extract information from it (accu) or both. Both TXL and ASF-SDF can be used to
implement the interpretation of annotation framework. However, they do not provide
any speci�c facilities to do so.

Stratego/XT [BKVV06], while being similar to ASF-SDF, provides a sophisticated
set of additional features, such as concrete syntax templates, rewriting strategies and dy-
namic rules (for non context-free rewrite rules). In particular, the Dryad library [KBV08]
complements Stratego with a bytecode interface that allows the translation of compiled
Java classes to Stratego's term grammar, and from this grammar to bytecode. It also
includes an experimental type-checking front that annotates Java expressions with its
compile-time type. It is important to note that these type-annotations are not related to
annotations in the Java sense; they are attributes of the terms representing the expressions
in the AST. Typing information is important when developing interpretation engines for
annotation framework development, since it is common for annotations to refer to classes
(types) in the program, and to be constrained by them. The use of attributed AST terms
for program transformation is the base of another rule-based tool called JastAdd [EH07].
JastAdd however (as of this time) does not fully support Java5, and therefore its use as
an annotation framework interpretation engine is limited.

14

2.2. Program Transformation

source code

parser

source code

source code

parser

AST

Spoon processor

AST

unparser

processors

Figure 2.1: Spoon process �ow

2.2.1 Spoon

Compile-time re�ection tools are based on the programmatic manipulation of the AST of
the program as re�ection of runtime entities. While several tools exist [TCKI00, Chi95,
LH01], we will concentrate on Spoon [PNP06, Paw05]7, since it will be used to imple-
ment the approaches proposed in chapters 4 and 5. Spoon is a compile-time re�ection
based program transformation tool, geared towards the processing and interpretation of
annotated programs.

Spoon [PNP06, Paw05] is a source-code processor based on a meta-model of the pro-
gram that models every code element, including statements and expressions. It relies
heavily on generics to ensure type safe processing, and uses the concept of processors as
units of program analysis and transformation. The process �ow of a Spoon run is shown
in Figure 2.1. The source code of a program is passed thorugh Spoon's parser, which
extends the Eclipse JDT parser. From this, an AST is obtained. The AST is then visited
by a number of processors that will perform the actual program transformation. Each
processor is passed once, and at the end of the processing round, a �nal Spoon processor
will pretty-print the AST back to valid Java code.

7http://spoon.gforge.inria.fr/

15

Chapter 2. State of the Art

In each visiting, the processor has complete (both read and write) access to the model.
Special processors are AnnotationProcessors that declare the annotation in which they
are interested, and the type of elements on which the annotation is applied. A processor
that goes over methods annotated by a Test annotation is shown in �gure 2.2.

public class TestProcessor extends

AnnotationProcessor <Test ,CtMethod >{

public void process(Test annotation , CtMethod meth){

// Testing code

}

}

Figure 2.2: Spoon annotation processor for the Test annotation on methods

Since Spoon's model is tied to the Java AST, it cannot be used to analyze programs
written in other languages as term-rewriting based frameworks. In addition to this, since
Spoon relies on a Java compiler, it requires the analyzed application to be compilable;
that is, in addition to require the source code to be syntactically correct, it requires the
libraries that are used by the application. Nevertheless, the use of JDT as �rst step
provides Spoon with a robust name and type resolution implementation that is updated
with each evolution of the Java language. In addition to this, Spoon provides advanced
services such as Concrete-Syntax templates for code generation and querying, and a static
analysis engine that provides a precise intra-procedural �ow-graph.

Spoon is used in a number of projects. SpoonGra�ti8 [FN07a] uses annotations to
implement call-back futures in distributed applications, AOKell9 [SPDC06] is an imple-
mentation of the Fractal component framework that uses Spoon to optimize the meta-
programming layer of the components, and JDiet10 eases the development of J2ME ap-
plications by transforming their source code.

An extension of Spoon, programmed by Barais [Bar06], models Spoon's Java meta-
model in the Eclipse's Modeling Framework. This extension, called SpoonEMF, takes
input �les, and from them produces an EMF model which can be processed by Spoon pro-
cessors in the same manner as with normal Spoon models. By doing this, the SpoonEMF
developer can manipulate the source code of a program via the Spoon API, the EMF API
or other EMF-aware langauges such as Kermeta [DFFV06]. For example, in [MJCH08]
Kermeta is used to implement a measurement system for models, and it is applied on
SpoonEMF-born models.

8http://spoon.gforge.inria.fr/SpoonGra�ti/Main
9http://fractal.objectweb.org/tutorials/aokell/
10http://spoon.gforge.inria.fr/JDiet/Main

16

2.3. Model-Driven Engineering

2.3 Model-Driven Engineering

A model is de�ned as �a simpli�ed representation of an aspect of the world for a speci�c
purpose� [Jéz08], In terms of software engineering, models are used as a mechanism to
cope with the complexity of large applications. The use of models in programming is not
new, going back to CASE tools in the 1980's. They are used as a way to communicate by
providing a common language among participants of the development of an application;
as a speci�cation tool where properties of the �nal application are de�ned in terms of its
model; and as an implementation aid, either serving as blue-prints for the application, or
by transformation it to a (possibly partial) application. Since models abstract represen-
tations, models that abstract from other models are used. Such models of the structure
models are called meta-models , and they are pivotal in the model world [FEBF06]. Do-
main models [SIP+05, RM06] are used to represent the concepts of the domain of a given
application, and in this sense, they are similar to DSLs. Indeed, programs written in a
DSL can be likened to domain models, where the DSL itself corresponds to the domain-
model's meta-model.

2.3.1 Model Development

Model-Driven Engineering MDE, consists of the placement of models at the heart of
software development. The idea is that models are useful for all the stages of software
development, from high-level requirements engineering, design, implementation, testing,
deployment, and maintenance and evolution. In MDA [MM03], the Object Management
Group de�nes a speci�cation of an architecture for MDE, based on the Uni�ed Modeling
Language (UML) [Obj04]. In it, the development of applications starts by the de�nition
of a computation independent model (CIM), which is a domain model that represents
the environment of the application and its requirements. Complementing it, a platform
independent model (PIM) which captures the structure and behavior of the application
without committing to a particular technological platform is constructed. Using the PIM,
a model that incorporates technical details of a particular platform is constructed (PSM).
This �nal model can then be translated into executable code in the target platform.
Although the MDA speci�cation singles out three models, there might be intermediate
models between them whenever this is deemed convenient by the model architect, for
example, detailing non-functional concerns which then are weaved into the other models
to obtain a complete representation of the application [Jéz08].

One of the attractive points of using a model-oriented approach to software develop-
ment is the ability of de�ning consistency constraints in terms of the models manipulated
at di�erent abstraction levels. One way to express these constraints is through the use
of the Object Constraint Language (OCL) [Obj06]. OCL allows the developer to express
constraints that represent invariants on the state of modeled elements, or queries over
them. In [CGQ+06] Costal et al. de�ne a number of patterns or generic constraints that
make the expression of common constraints in OCL easier to specify. These common
constraints are similar to the ones we de�ne in this thesis for the purpose of validating
annotation frameworks in section 7.1.2.

17

Chapter 2. State of the Art

2.3.2 Relationship with annotation framework development

The relationship between annotations and models (and MDE) can be seen in two axes.
First, annotations can be likened to domain models. As mentioned before (section 2.1.2),
annotations de�ne a set of domain-speci�c abstractions just as domain models do. It
can be argued that the annotation types de�ned in the framework are to their use in an
application, as a domain meta-model is to a domain model. That being said, domain
models remain at higher abstraction level than annotations, and they are not held back
by the restrictions that the Java language imposes on annotation types (no inheritance,
no associations between annotation types, etc.)

The second axis is how annotations �t into the model-oriented development method-
ology, that is, how to include annotations in the generation of applications. Annotations,
seen as meta-data attached to a code entity, are semantically close to stereotypes as de-
�ned in UML 2.0 [Obj04]. Indeed, it is common to represent annotations, during design,
as stereotypes [CK05]. Nevertheless, it is di�cult to establish a direct mapping between
stereotypes and annotations given the particularities of annotations. For example, annota-
tions do not allow for inheritance, an annotation can be placed on di�erent code elements
(stereotypes are restricted to one11), and most importantly, annotations can refer to types
that are de�ned in the program to which they are applied since for example, annotations
can contain as a property enums de�ned in the program. This last characteristic is the
most problematic, since it places annotation models somewhere in between levels M1 and
M2. Nevertheless, it seems possible to construct a mapping between UML pro�les and
annotation models.

In this section we have postulated that annotation frameworks are based on a domain
model, and that the development of annotation frameworks would bene�t from tools and
techniques existing in the domain of Model-Driven Engineering. In the next section we
present how annotations are related to the �eld of Aspect-Oriented Software Development,
since both provide support for the modularization of crosscutting concerns.

2.4 Aspect-Oriented Software Development

Annotation frameworks can also be compared with Aspects in the Aspect-Oriented Soft-
ware Development domain. Aspects [BCC05] modularize crosscutting concerns by fac-
torizing them into an advice which is then weaved into a set of places (joinpoints) in an
application as de�ned by a query expression (pointcut). Annotations can be seen as a kind
of aspect, the advice being the computations performed when interpreting the annotated
application, and the pointcut the set of places where the annotations are placed in the ap-
plication. Aspects provide two main properties: untangling and un-scattering [KLM+97].
Untangling means that the concerns present in the application are well separated from
each other, while un-scattering means that concerns are locally in the same place, and
not distributed all-over the application. Of these two properties, annotations provide

11This is true for stereotypes as de�ned in UML 1, in newer versions of the speci�cation (UML2), this
restriction is relaxed.

18

2.5. Program Validation

untangling, but not un-scattering; since the concerns that the annotations implement are
separated from the code of the application (and put into the annotations), but the anno-
tations themselves remain distributed all over the application. The relationship between
annotations and aspects is further discussed in [FN07b].

Aspects can also be used to interpret annotations. In this con�guration, the appli-
cation programmer explicitly enumerates the places on which an advice is to be applied
by annotating methods. An aspect will then use a pointcut that groups all occurrences
of an annotation and insert the corresponding advice. This use of annotations to declare
crosscutting concerns is detailed in the work by Kiczales and Mezini [KM05].

In the next section we will discuss the topic of program validation, since we have
found that the validation of the constraints of annotations is an important step on the
development of annotation frameworks.

2.5 Program Validation

The validation of the use of annotations in a program is an important step on the de-
velopment of annotation frameworks. Since annotations can be seen as extensions of the
Java language, non-specialized Java compilers12 perform limited tests on their use, leaving
them to the interpretation engine of the framework. In this regard, annotation framework
development borrows from the program validation domain. In this section we will explore
the use of annotations in the validation of programs.

Static validators allow developers to check properties of their code that go beyond
of that what is provided by normal compilers. Lint [Joh78] is one of the �rst tools to
provide such checks by relying on (lightweight) static analysis. To reduce the amount of
noise (false positives) that is normally generated by Lint-like tools, LCLint [EGHT94],
and later Splint [EL02], guide the validation of programs through annotations (stylized
code comments) that explicit programmer assumptions and intents.

In [Hed97], Hedin proposes an extensible, attribute-based static validator. In it, the
grammar of a language is extended to check that custom programming conventions are fol-
lowed. More recently, Eichberg et al. [EKKM08] propose a mechanism to check structural
constraints in programs using a set of facts in a Datalog database. Structural properties
are de�ned using annotations and gathered into overlapping ensembles which are then
checked by Datalog queries.

By regarding validation as a crosscutting concern in a program's code, it is possible
to encode it by means of Aspect Oriented techniques, this has been explored by Shomrat
et al. in [SY02]. Nevertheless, in an Aspect Oriented language such as AspectJ[HH04],
no extra re�ection facilities are provided, so the validation programmer must rely only on
Java re�ection which does not reify the body of methods.

In the next section we will explore the state of the art in annotation framework de-
velopment. Approaches in this domain are rooted either on the use of models, or on the

12Like Sun's javac http://java.sun.com/javase/technologies/core/toolsapis/javac/ or
Eclipse's JDT http://www.eclipse.org/jdt/

19

Chapter 2. State of the Art

application of program validation principles.

2.6 Annotation Framework Development

Annotation frameworks is the name that we use for frameworks that provide interaction
with the application through annotations. Such frameworks are a kind of what is known as
active libraries. Also known as semantically enhanced libraries, or library-level optimiza-
tions, Active Libraries [VG98] take an active role in interacting with programming tools.
Such interaction could, for example, instruct the compiler to check for certain unwanted
idioms, or could take an active role in transforming (optimizing) the program that uses
the library. Active libraries have been applied in the context of speci�c domains, such as
scienti�c computing and high-performance computing [Vel98, FJ97], and several generic
active library de�nition frameworks, Broadway [GL04] and Pivot [Str05] have been pro-
posed. These frameworks provide tools and abstractions so that the library programmer
can make its library active.

As discussed in previous sections (2.1.2, 2.3.2 and 2.4), annotation frameworks share
a number of similarities with Domain-Speci�c Languages, models in Model-Driven Engi-
neering and aspects in Aspect-Oriented Software development. Annotations in an appli-
cation can be seen as a kind of embedded DSL, which is then interpreted using techniques
similar to those employed for DSL implementation. This being said, a grammar that
links the di�erent annotations in an application cannot be de�ned, since no provisions
for it exist in the Java language. Annotations can also be seen as a modeling tool, where
di�erent concepts from a problem domain are mapped to elements of the Java language.
Annotations, however, are not expressive enough to be e�ectively used as a modeling
language: individual annotations can only de�ne data and not behavior, and no relation
between annotations can be de�ned. Finally, annotations can be seen as markers that
represent the places on an application in which special computations must take place. In
this case, annotations are more similar to aspects, with the interpretation of each set of
annotations being the advice, and the annotated program elements, the pointcuts. When
compared with aspects, annotations provide a degree of untangling of the code, since the
non-functional behavior is kept separate from the code of the annotated element. But,
unlike aspects, they do not provide unscattering of the non-functional behavior, since the
annotations themselves are still present all over the application. In addition to this, the
use of annotations breaks the concept of obliviousness since the application programmer
is aware that an �aspect� in the form of an annotation will apply at a given place in the
code. Whether this lack of obliviousness is a drawback of annotations with respect to
aspects is a matter of discussion.

Tools and techniques for the development of annotation frameworks are scarce in aca-
demic literature. In industrial applications, the only support for their development is
that given by the Java SDK in the form of the Annotation Processing Tool and the Plug-
gable Annotation Processing API. Both these tools give means to process annotations
present in an application, but give no aid in the development of the annotation types
themselves; leaving to the annotation framework developer the task of the design, speci�-
cation, validation and interpretation. In this section three approaches to the development

20

2.6. Annotation Framework Development

of annotation frameworks are presented: Modeling Turnpike, XIRC and Attribute De-
pendency Checker. They are compared in terms of whether they provide higher-level
abstractions for annotations and annotation types, whether they allow the declaration
and checking of constraints, and whether they give support for the interpretation of the
annotations.

2.6.1 Modeling Turnpike

The use of models for the development of annotation-based programs is explored in [WS05]
by Wada et al. They propose a full MDA approach that starts from a model, and ends
with an executable program. Modeling Turnpike (or mTurnpike) is divided into two
parts: the front-end system that maps domain-speci�c concepts from a modeling layer to
a programming layer; and the back-end which uses model and program transformation
to go from the programming layer to actual executable programs. In terms of annotation
frameworks, the front-end of mTurnpike describes an annotated program, and the back-
end its interpretation by transforming it to a un-annotated program.

mTurnpike's front-end is based on the concepts of Domain-Speci�c Model (DSM) and
Domain-Speci�c Code (DSC). A set of UML2 stereotypes represent the annotation types
provided by the framework, which in mTurnpike, is called a DSL. The DSM is a UML
Class diagram that uses the stereotypes de�ned in the DSL. From the DSM a set of Java
classes that compose the DSC are generated by mapping UML classes to Java classes,
stereotypes to annotations, etc. The skeleton classes of the DSC are then edited by a
programmer, �lling out the code for the methods. Transformations allow to go back to
the DSM from a given DSC.

The back-end takes the DSM and DSC and generates a set of Java classes that can
be �nally run. The UML class diagram that contains the DSM is transformed to one
in which the stereotypes in the classes are �unfolded� into associated classes that do not
carry the stereotypes (by for example translating a �Remote� stereotype in a class into a
super interface java.rmi.Remote). This unfolded UML diagram is transformed into Java
code. Since the UML diagram does not contain behavioral information, the generated
methods are left empty. The generated Java classes are then combined with the DSC, in
order to �ll out the body of the methods. When the combination is �nished, the result
should be a complete Java program.

Discussion The mTurnpike system gives a complete framework for the development
of annotated applications. It provides high-level constructions (the DSM) as well as low
level ones (the DSC) so that core concerns are separated from the domain-speci�c ones.
It also allows the speci�cation of the transformations through which the annotations in
the program are interpreted.

The system, however, supposes that the annotation types (the DSL) already exist,
and therefore provides no aid in their development. The idea of modeling annotation
types as stereotypes, while natural, might not be the most appropriated one (as discussed
in [CK05], where a class representation is preferred). In addition to this, the fact that
the annotation-types are explicitly modeled is not exploited fully; no de�nition of con-
sistency constraints is made, nor is checking of the validity of annotations in the DSC

21

Chapter 2. State of the Art

performed. Several implementation issues in the relationship between the DSM and DSC
are not clear: in the DSL (stereotype model) relationships between stereotypes are al-
lowed; however when the stereotypes are used in the class diagram, no mention of these
relationships is made. To better explain the problem with the representation of rela-
tionships between annotations, suppose that mTurnpike is used to develop an annotation
framework to develop component-oriented applications. Two stereotypes are de�ned in
the DSL: Component and Interface, and a provides relation between them. Now, sup-
pose that an application developer uses this framework by annotating DSM composed of
a Client class with Component, and two other classes Naming and Location. There is
no information on to which class is Client related by the provides relation. Now, the
information on the relation can be very important when transforming the DSM and DSC
to actual executable code.

2.6.2 XIRC

In [ESM05], Eichberg et al. outline a mechanism through which structural properties
(constraints) of classes can be checked. Their approach, called XIRC, is based on an
XML tree representation of an application's code for which XPath queries that represent
the properties to be checked are run. If the XPath query returns a non-empty set, then
the resulting entities are �agged as violating the structural property. Using XIRC, the
authors de�ne and check structural properties of the annotations de�ned in the EJB3
Java speci�cation [MK06].

XIRC works by �rst creating the XML representation of the application from its byte-
code, this is delegated to the Magellan [EMOS04] framework. Then the XPath queries that
de�ne the constraints are run. For convenience, XIRC allows �context de�ning� queries
that factorize commonly used expressions to reduce repetition on the de�nition of each
constraint. The XIRC framework is integrated into the Eclipse IDE compilation process,
and the constraint violations are presented in a transparent manner to the application
developer.

Discussion The use of XPath as a constraint de�nition language in XIRC seems moti-
vated by the application representation format, XML. A more declarative language, such
as OCL, could be more suited for this task. Regarding the use of XIRC to check annota-
tion constraints, several questions arise: �rst, the authors only check constraints imposed
by the use of annotations on code elements (for example that a class being annotated
@Entity cannot be �nal) and do not give examples of constraints between annotations
themselves (for example that an annotation cannot be placed on an element that already
sports another annotation). While nothing suggests that this kind of inter-annotation
constraint checking is not possible using XIRC, the lack of a specialized annotation rep-
resentation (such as mTurnpike's DSL model) might make the de�nition of annotation
constraints di�cult.

In addition to this, the decision of extracting the code model from the compiled byte-
code of the application limits the scope of annotation frameworks that can be checked
with XIRC. Annotations in Java can be made to exist only in source code, byte-code or
runtime; extracting them from the byte-code leaves out those annotations that are meant

22

2.6. Annotation Framework Development

to be source-code only. As it stands, the only place on which all annotations can be found
remains the source code of the application. Related to this, one of the possible targets
for annotation are local variables. Since the local variable information is lost when the
application is compiled to byte-code, XIRC will not be able to perform checks on the
validity of its use.

Finally, the de�nition of XIRC's constraints on a separate �le might go against the
philosophy of annotation-based development. Indeed, annotations provide a way to unify
programing artifacts by, for example embedding external con�guration �les on the source
code of the application. By using XIRC, the advantages of this use of annotations are
nuanced since the developer �nds himself with an additional external �le to manage when
trying precisely to reduce the number of such �les.

2.6.3 Attribute Dependency Checker

Microsoft's .Net platform [Pro02] provides a programming construct similar to annotations
in Java called custom attributes [LX07], Cepa et al. introduce in [CM04] the Attribute
Dependency Checker (ADC) tool to validate dependency constraints between .Net's cus-
tom attributes. The ADC is based on the idea of meta-attributes to declaratively de�ne
the dependency constraints between attributes. It de�nes a single meta-attribute called
DependencyAttribute which, when placed on an attribute de�nition, allows the devel-
oper to state which other attributes are required or disallowed at di�erent levels (assembly,
class or method). The DependencyAttribute does not de�ne how these dependencies are
checked, since it leaves the implementation to other tools, in this case the ADC. ADC is a
post-processor that uses the .Net re�ection API to interpret the DependencyAttributes
and raise errors when the speci�ed dependencies are not met.

Discussion The constraints o�ered by DependencyAttribute are limited to the re-
lations already present in the AST of the program: assembly-class, class-method. No
support is given for other kinds of inter-attribute relations (such as the ones between
attributes in two di�erent classes). In addition to this, no extensions to the checking
mechanism are provided, so it is not possible to de�ne more complex checks (for example
requiring one and only one attribute on a classes' method).

Although it is outside of the scope of ADC, a large number of constraints for annota-
tion/attribute frameworks deal with the relationship between the annotations/attributes
and the code on which they are placed. This makes the use of DependencyAttributes of
limited utility to specify a framework.

2.6.4 Comparison of each of the approaches

Having introduced the existing approaches to aid in the development of annotation frame-
work, we will now compare them to the one we propose. The comparison will be made
in three main axes: the representation of the annotated program, that is, what are the
abstractions to manipulate the program and the annotations in it, and whether all anno-
tations are supported; the constraints that are de�ned and checked, that is, whether con-
straints are declarative or explicit, and whether annotation-wise or code-wise constraints

23

Chapter 2. State of the Art

are supported; and what kind of support for the interpretation of annotated programs is
provided.

The comparisons between mTurnpike (section 2.6.1), XIRC (section 2.6.2), and ADC
(section 2.6.3) are summarized in tables 2.1, 2.2 and 2.3. Each table is followed by a
description of the criteria used.

Platform Representation
Code Annotation Support

mTurnpike Java model model yes
XIRC Java XML none noa

ADC .NET DOM none yes

aOnly represents annotations present in byte-code

Table 2.1: Annotated application representation in the compared approaches

Platform whether the approach is based on the Java or .Net platform.

Code Representation the way in which the application is represented; AST, a model,
an XML document.

Annotation representation whether annotations are represented explicitly in an spe-
cial manner other than their code representation.

Annotation Support whether the approach supports all possible uses of the annota-
tions.

Constraints
Code Annotation Declarative/ Explicit Embedded/ External

mTurnpike no no � external
XIRC yes noa explicit external
ADC no yes declarative embedded

aNo explicit support for annotation-wise constraints

Table 2.2: Constraints o�ered by the compared approaches

Code Constraints whether the approach provides support for the constraints that an-
notations impose on the code elements on which they are placed.

Annotation Constraints whether the approach provides support for the constraints
that annotations impose on other annotations.

Declarative Constraints whether the constraint de�nition is made in a declarative or
explicit way.

24

2.7. Summary

Interpretation
Support Compile-time Runtime

mTurnpike yes transformations �
XIRC no � �
ADC no � �

Table 2.3: Interpretation support o�ered by the compared approaches

External/Embedded Constraints whether the constraint de�nition is embedded in
the source code of the annotation framework or if it is de�ned externally.

Interpretation Support whether the approach provides support for the interpretation
of annotations.

Compile-time interpretation support for the interpretation of annotations at compile-
time.

Runtime Support support for the interpretation of annotations at runtime.

Of the analyzed approaches, all but one (ADC) are targeted to the Java platform.
All of them provide di�erent representations of the code (models, XML �les, the Code-
DOM re�ection API of .Net), but only mTurnpike provides explicit representation for the
annotations in the application. mTurnpike represents annotations as stereotyped UML
class diagrams. The utility of stereotypes to represent annotations is disputed in [CK05],
where class-based approach is preferred.

None of the approaches allow for the de�nition of constraints both between annota-
tions and between annotations and the code on which they are placed. XIRC does not
prohibit constraints that deal with annotations only, but it doesn't provide special fa-
cilities to do it. Of the three approaches that permit the de�nition of constraints, only
none accommodates for both declarative and explicit de�nitions, leaving the developer
the choice to use whichever is better �tted for the task at hand.

In terms of interpretation support, only mTurnpike provides it. Compile-time interpre-
tation support in mTurnpike is provided by the transformation of the stereotyped model to
Java skeleton classes and then the merging of the resulting code with the domain-speci�c
code

Finally, none of the approaches provide any support for the runtime interpretation of
annotated programs.

2.7 Summary

In this chapter we have presented di�erent approaches that help developers to cope with
the complexity of systems; in particular domain-speci�c languages, and models and model-
driven engineering. We have discussed the relations between them and annotation frame-
works, pointing out their di�erences and similarities (sections 2.1 and 2.3). Annotations

25

Chapter 2. State of the Art

provide a sort of domain-speci�c language that extends the general purpose one; in this
case Java. However, for annotations to be seen as a language, their grammar must �rst
be de�ned; the tools for which are not provided by the Java language. We then compare
annotations to models in the model-driven engineering sense. While annotations provide
abstractions that stem from a domain model, they are at a lower abstraction level than
that of models. In addition to this, annotations again su�er from the restricted language
in which they are expressed; indeed, associations between annotations and ways to de�ne
their semantics (and consistency constraints) are needed. The task of de�ning and vali-
dating consistency constraints source code is covered by the program validation domain,
which is discussed in section 2.5, where we look at how annotations are used to support
program validation, and present other ways to validate programs.

Having de�ned the context on which annotation framework development lays, we
explore di�erent approaches to their implementation in section 2.6. In it, we present three
proposals: Modeling Turnpike (section 2.6.1), XIRC (section 2.6.2) and the Attribute
Dependency Checker (section 2.6.3). They are compared approach in section 2.6.4, where
we argue that none of them provide support for the all the di�erent phases of annotation
framework development, Modeling turnpike being the one that arrives the closest to that
goal.

In the next chapter, the task of annotation framework development is discussed in
detail. The actors in the development of annotation frameworks and their interests are
identi�ed, the composition of an annotation framework is discussed, and by means of
an example, a number of challenges in the design, implementation and interpretation of
annotations are enumerated.

26

3

Annotation Framework Development

Contents
3.1 Anatomy of an Annotation framework 28

3.1.1 Actors . 29

3.1.2 Annotation types . 29

3.1.3 Restrictions and limitations of Annotations 30

3.1.4 Annotation interpretation 30

3.2 SaxSpoon - an Annotation Framework for XML Parsing . 33

3.2.1 SaxSpoon annotation types 34

3.2.2 SaxSpoon example . 34

3.3 SaxSpoon Interpretation . 36

3.3.1 Compile-time interpretation of SaxSpoon applications . . . 36

3.3.2 Runtime interpretation of SaxSpoon applications 37

3.4 Challenges in annotation framework development 39

3.4.1 Design . 39

3.4.2 Implementation . 40

3.4.3 Challenges . 40

3.4.4 Proposal . 40

3.5 Summary . 41

As stated in chapter 1, annotation frameworks are composed of two main parts: the
set of annotation types, and their corresponding interpretation engine. The annotation
types serve as the interface (or API) of the annotation framework, they are the entities
that are manipulated by the application programmer. The interpretation engine can
be likened to the implementation of the API de�ned by the annotation types. In this
regard, annotation frameworks provide a stronger separation between the interface of
the framework and its implementation than traditional frameworks that rely on Java
interfaces and extension relationships. In traditional frameworks the interaction between

27

Chapter 3. Annotation Framework Development

the application and the framework is made explicitly by means of method calls to the API,
or extension of framework classes; while in annotation frameworks this interaction is made
implicitly and declaratively through the use of annotated elements in the application's
code. Indeed, annotation frameworks and traditional ones are not exclusive in the sense
that it is possible (and common even) to use both kinds of mechanisms, allowing the
framework developer to use whichever interaction mechanism is better suited for each
case. An example of this is the Hibernate framework [BK06].

From the application developer's point of view, the use of an annotation framework
consists of deciding which annotations (provided by the framework) should be placed on
which elements of the application. This decision requires a good understanding of the
concepts that each annotation type represents from the application developer. This is
needed so that the application developer can correctly map the concepts of its applica-
tion (represented by classes, packages, �elds, etc.) to those provided by the annotation
framework; making a parallel to traditional frameworks, if a developer wants to use a
framework, he has to �rst study the concepts of the framework to know what methods to
call, or which classes to extend. The grasp of the semantics of the annotation framework
is also important because the way in which annotations are placed on the application
must comply with the assumptions of the annotation framework; this, in turn, is similar
to the requirement often present in traditional frameworks that require certain protocols
to be respected when invoking services of the framework (for example calling an open()

operation on a stream before being able to read() from it).

In this chapter we will concentrate on the development of pure annotation frameworks,
that is, those that exclusively rely on annotations. The process described in this chapter
can be extended to frameworks that use other kinds of interaction in addition to an-
notations. The chapter is organized as follows: �rst we discuss the two main parts of
an annotation framework (section 3.1), namely the annotation types and their interpre-
tation. Then we show the complete process of developing an annotation framework by
introducing an annotation framework for the development of SAX parsers in section 3.2
and discussing two possible interpretation engines, one at compilation time and one run-
time in section 3.3. Finally we discuss a number of challenges raised by the development
of annotation frameworks in section 3.4.

3.1 Anatomy of an Annotation framework

Just as with any framework, when confronted with the task of developing an annotation
framework, the developer must concern himself with two tasks: the interface, and its
implementation. In annotation frameworks, annotation types are the interface, and anno-
tation interpretation its implementation. Both components are discussed in this section,
but we �rst discuss the actors that deal with annotation framework development.

28

3.1. Anatomy of an Annotation framework

3.1.1 Actors

In the development of annotation frameworks it is important to distinguish two actors: the
developer of the framework, called the annotation framework developer and the developer
who uses the annotation framework, called the application developer. This distinction
is important since it is easy to confuse the two types of development. Obviously, it is
not required for these two actors to be single di�erent individuals; but rather roles that
developers (or teams of) can take. In order to clarify the remainder of this chapter, we
outline the tasks and interests of each of these actors.

Annotation Framework Developer This actor is responsible for the design and im-
plementation of the annotation framework. The annotation framework developer must
be �uent in the domain for which the framework provides services, so that it can cor-
rectly represent their concepts as annotations; as well as in metaprogramming techniques
required for the interpretation of annotated programs. In addition to this, the annota-
tion framework developer needs to produce the means for the application developers to
correctly use his framework; this comprises the documentation of the framework, and
development environment support.

Application Developer This developer is the user of the annotation framework, and
as such requires knowledge in the way in which the annotation framework expects to be
used. That is, the constraints and semantics of each annotation. He also needs to de�ne
the way in which the concepts of his application relate to the concepts represented by the
annotation framework. For this, the application developer relies on the documentation of
the frameworks, as well as on the support given by his development environment.

3.1.2 Annotation types

Annotation types in Java are de�ned in a similar way to Java interfaces. An annotation
type exists within a package, has a name (quali�ed by that of its containing package) and
it contains a number of elements. For a complete description of annotation types, please
refer to the Java Language speci�cation [GJSB05].

The code shown in Figure 3.1 contains the de�nition of an annotation type (lines
1 through 9) and its use on an application (lines 13 and 16). As mentioned before,
annotation types are similar to Java interfaces, as can be seen on its de�nition in line 3.
This particular annotation, called MyAnnotation, de�nes three elements, annotation, value,
and options. The annotation type also de�nes an inner enum called Options (line 8).

Annotation type elements named value carry special semantics in Java; normally, when
an annotation is used, the element/value pairs must be de�ned as element = name. If it
is the case that the only element that carries a value is the one called value, then the
name of the element can be omitted, as is the case in line 13. Also, it is possible to omit
elements that have default values when using the annotation type, as is the case with the
elements annotation and options in line 13, and annotation in line 16.

29

Chapter 3. Annotation Framework Development

1 package myPackage;

3 public @interface MyAnnotation {

4 AnotherAnnotation [] annotation () default {};

5 String value ();

6 Options options () default Options.O1;

8 enum Options {O1 , O2}

9}

11 //...

13 @MyAnnotation("aValue")

14 public class AClass{

16 @MyAnnotation(value = "aValue", options = MyAnnotation.Options.O2)

17 int foo;

19}

Figure 3.1: An annotation type de�nition and use

3.1.3 Restrictions and limitations of Annotations

There are a number of restrictions imposed by the Java language to the de�nition and
use of annotations. First of all, annotation types cannot inherit from other annotation
types, nor can they implement interfaces. This restriction impacts the expressive power
of annotations, as generalization/specialization of concepts represented by annotations
is impossible. Annotation type's elements are also restricted: the types allowed for ele-
ments are limited to those that can be expressed at compile time; namely primitive types
(integers, strings, etc), classes, other annotations and arrays of those types. In the case
of elements which contain annotations, due to the fact that inheritance is prohibited for
annotation types, elements that contain annotations must contain a single annotation
type; i.e., it is not possible to have an annotation type element to contain several di�er-
ent annotations. This makes it impossible to de�ne the annotation type equivalent of a
generic collection. As for the annotation use, there is a limited number of code elements
which can carry annotations. These are: Packages, types (including annotation types and
enums), constructors, methods, �elds, method and constructor's parameters, and local
variables. For each of these code elements, a single annotation of each type is allowed.

3.1.4 Annotation interpretation

Having de�ned the interface for the annotation framework, in the form of a set of anno-
tation types, the semantics of the framework must be de�ned. In traditional frameworks,
the semantics are implemented by a set of classes that provide the services o�ered by
the framework's interface. In annotation frameworks, semantics are implemented in an
interpretation engine. This engine takes as input an application whose elements (classes,
methods, etc) carry annotations, and performs the operations directed by them. In prac-

30

3.1. Anatomy of an Annotation framework

tice, interpretation engines take care of several concerns: �rstly, they take care of vali-
dating that the use of the annotations in the application respects the constraints de�ned
by the framework; this is done either explicitly, by checking the constraints and report-
ing violations back to the programmer, or implicitly, by having the interpretation fail
(sometimes silently). Apart from validating the input, annotation frameworks sometimes
build an in-memory representation of the annotations present on the code. This allows
the annotation framework developer to distance himself from the code of the application,
and to add additional information which is not present on the annotations (such as rela-
tionships between the di�erent annotations). Finally, the annotation framework performs
the actual interpretation which can happen either at compile or runtime. Compile-time
interpretation is performed by generating additional code, or modifying that of the an-
notated application. At runtime, the annotation framework can also use the information
present on the annotated application at runtime to modify the way in which it responds
to service requests. Examples of both kinds of interpretations are given in sections 3.3.1
and 3.3.2.

In both compile-time and runtime interpretations, annotation frameworks must re-
cur to some kind of metaprogramming facility. In the case of runtime interpretation, the
metaprogramming API used is normally Java's re�ection API. Annotations by default are
not reproduced in the classes' byte code, in order to change this, the annotation framework
developer must annotate its annotation types with @Retention(RetentionPolicy.RUNTIME).
As for compile-time interpretation, the annotation framework developer resorts to source
code preprocessors in order to �nd and manipulate the annotations; The Annotation
Processing Tool (APT) and Spoon are examples of annotation processors that provide
compile-time re�ection and metaprogramming. Both runtime and compile-time interpre-
tation are discussed next.

Compile-time interpretation

Compile-time interpretation of annotated programs is performed by an external tool in
the compilation chain. Normally it is done as a pre-compilation step in a manner similar
to con�guration �le processing in traditional frameworks. The annotations in a compile-
time interpretation are used to direct the transformation or generation of code additional
to that of the annotated application. The generated code implements the functionality
declared by the annotation types. For example, if the annotation framework's purpose is
to enable the persistence of objects in an application, then the annotations will specify
the mapping between the classes of the application and the schema of the database. In
this case, the compile-time interpretation will generate the necessary code to connect to
a database, and commit, update or query it in order to persist or retrieve the objects
represented within.

Several tools to enable compile-time processing of annotated programs exist. These
are called annotation processors. With the release of Java 5, Sun made available the
Annotation Processing Tool (APT). This tool allows the processing of annotations using
the re�ective facilities of Java. The tool supports only the generation of code, and not its
transformation, since it does not provide access to the full AST of the program, not does it
allow its modi�cation. The Spoon [Paw05] remedies this by introducing full compile-time

31

Chapter 3. Annotation Framework Development

re�ection [TCKI00] and annotation processing facilities.

Runtime interpretation

Annotations by default are kept in the compiled bytecode, but are not retained by the vir-
tual machine at runtime. To change this, Java's API o�ers an annotation called Retention

which instructs the Java compiler to reproduce code annotations in the byte code, and to
make them available at runtime through the re�ection API. Therefore, runtime interpreta-
tion is only possible for annotation types that carry the Retention(RetentionPolicy.RUNTIME)
annotation. Other possible values for the Retention annotation are SOURCE, which instructs
the compiler not to reproduce the annotations in the bytecode, and CLASS which is the
default behavior.

Annotations are accessible at runtime by the getAnnotation() method de�ned by the
java.lang.reflect.AnnotatedElement implemented by the runtime re�ections of annotatable
elements. This method receives an annotation type as parameter, and returns a dynamic
proxy with the values of the annotation if present, and null otherwise. This means
that runtime annotation processing is restricted to code elements which have a re�ection
object, namely packages, classes, constructors, methods, their parameters, and �elds.
Local variables, although annotatable, are not accessible through runtime re�ection, so
their interpretation at runtime is impossible.

It is important to note that, while the interpretation of the annotation in the applica-
tion is carried out at runtime, the annotations remain compile-time entities. This means
it is not possible to assign new annotations to code elements nor change their value at
runtime. In addition to this, it is important to remember that annotations cannot be
placed on objects, but on the classes that de�ne them, that is, two objects of the same
class will carry the same annotations. These two restrictions limit the utility of run-
time interpretation of annotated programs, since the dynamic adaptation of annotations
cannot be performed.

One could imagine a mechanism, similar to the current annotations in Java, that allows
the attachment of meta-data to runtime entities. This mechanism would overcome the
restrictions that limit the usefulness of runtime interpretation of annotations by allowing
the modi�cation and late-binding of meta-data at runtime. These runtime annotations
would compose a meta-object facility that enhances the expressiveness of the language.
Such runtime annotations however, would fall outside of the scope of this work, since we
concentrate on the development of annotation frameworks as they are currently de�ned
in the Java language. Concepts, as de�ned in [Der05], are de�ned as elements of the
knowledge of a domain mapped to code elements are similar to the hypothetical runtime
annotations described here, and could provide a base for their implementation in the Java
language.

In the following section, we illustrate the development of an annotation framework by
means of an example. This example will de�ne the set of annotation types that composes

32

3.2. SaxSpoon - an Annotation Framework for XML Parsing

the annotation framework's interface, and present two possible interpretation engines, one
at compilation time using Spoon, and one at runtime using re�ection.

3.2 SaxSpoon - an Annotation Framework for XML

Parsing

To better explain the nature of annotation framework development, we present a simple
annotation framework, called SaxSpoon. SaxSpoon is a compile-time annotation frame-
work that aids the programmer in the construction of XML manipulation classes that use
the Simple API for XML (SAX) [MB02] in Java. SAX is an event-oriented API that
de�nes, in a ContentHandler interface, a number of call-back methods that the program-
mer must specialize in order to extract information from an XML �le. Among the events
emitted by a SAX parser, startElement(), endElement() and characters() deal with the
opening, closing and the text in between tags.

This means that if the SAX programmer is interested in the start of several tags,
he must place the tag handling code for each tag on the same startElement() method,
which reduces its cohesion since the method will manage the handling of di�erent tags.
In this case, a normal approach is to separate the code for each tag into a private handler
method, and have the startElement() method be a large case statement that dispatches
to the correct handler method in function of the name of the tag being handled. The
construction of the startElement() method is then repetitive, and therefore error prone.

For the characters() and endElement() methods, a similar problem arises. Since the
endElement() method is called for each closing tag, the method has a similar form as that
of the startElement() method, with the same drawbacks, and a similar solution pattern.
In the case of the characters() method, the SAX speci�cation states that the parser is not
forced to up-call the characters() method with the full content of tag, but that it can split
the contents of the tag into several chunks that result in multiple up-calls. Because of
this, the full contents of the tags is only known when the endElement() method is invoked.
To address this, SAX developers usually accumulate the data that is given through the
characters() method, and process it in the endElement() method.

SaxSpoon aims to rid the SAX developer of the repetitive, error prone tasks of writing
the startElement(), characters(), and endElement()methods, and concentrate on individual
methods for the handling of each individual tag. The main idea is then for the SaxSpoon
developer to write two methods for each tag (one for the start of the tag, and one for
the end of the tag), and use annotations to instruct SaxSpoon which methods handle
which tags. SaxSpoon then invokes the correct methods whenever the start or end of a
tag are found. The start tag handler methods, have one parameter per attribute of the
tag that they handle, while the end tag handlers have a single parameter that represents
the content (characters) contained on the tag. More than contribute to the state of the
art of XML technology, SaxSpoon's goal is to provide a concrete example of a simple, yet
not trivial annotation framework.

The annotations that are provided by SaxSpoon, as well as two interpretation engines
(one compile-time and one runtime) will be discussed next.

33

Chapter 3. Annotation Framework Development

Annotation Target Elements Description

XMLParser Class implementing

ContentHandler

dtd Marks a class as a

SaxSpoon class that

handles XML �les

conforming with a dtd

HandlesStartTag Method with arguments

for each tag attribute

tagName Method that handles

the start of a tag

HandlesEndTag Method tagName Method that handles

the end of a tag

Table 3.1: Overview of SaxSpoon annotations

3.2.1 SaxSpoon annotation types

Table 6.2 shows the three annotations de�ned by SaxSpoon. XMLParser marks a class
implementing the ContentHandler interface as a SaxSpoon class. It takes as a parame-
ter the DTD �le that describes what kinds of documents the class can handle, this is
used to automatically validate the incoming XML document. The HandlesStartTag and
HandlesEndTag annotations mark methods belonging to classes annotated with XMLHandler

as either start tag handlers or end tag handlers.

3.2.2 SaxSpoon example

To illustrate the use of SaxSpoon to process XML documents we show the following
example. Suppose a class of XML documents that de�ne cooking recipes. In �gure 3.2
the DTD that de�nes valid XML recipes and an example recipe are shown.

In the code listing in �gure 3.3, a TestParser class is de�ned in which SaxSpoon an-
notations are used to pretty print a recipe. In line 1, a XMLParser annotation de�nes
the TestParser class as using SaxSpoon. As a parameter, the annotation states which
DTD will be used to validate recipes. The TestParser class extends DefaultHandler, which
indirectly implements the ContentHandler interface, both are provided by Java's implemen-
tation of SAX. In lines 4 through 12 two methods are de�ned, startRecipe and endRecipe,
that will handle the start and end events for the recipe tag. They are marked by the
SaxSpoon annotations HandlesStartTag and HandlesEndTag respectively. Each of the Handles
annotations has as parameter the name of the tag which they handle.

Notice that the startRecipe method in line 5 de�nes no parameters, since the recipe
tag as de�ned in the DTD in listing 3.2 de�nes no attributes. In contrast, the startNutrition
method in line 16 de�nes a number of parameter congruent with the attributes for the
nutrition tag stated in the recipe DTD.

The use of SaxSpoon to the de�ne the XML handler brings a number of advantages over
simple SAX use. First, each of the methods handles a unique tag, which enhances their
cohesion, and understandability. Second, thanks to the HandlesStartTag and HandlesEndTag

annotations, the purpose of each of the methods is explicitly stated, just by looking at the
source code it is possible to know which method handles which tag. Finally, the repetitive,
error prone writing of the startElement, characters and endElement methods is relegated to

34

3.2. SaxSpoon - an Annotation Framework for XML Parsing

recipe.dtd margarita.xml

<!ELEMENT collection (description ,recipe *)>

<!ELEMENT description ANY>

<!ELEMENT recipe (title ,

ingredient*,

preparation ,

comment?,

nutrition)>

<!ELEMENT title (# PCDATA)>

<!ELEMENT ingredient

(ingredient*,preparation)?>

<!ATTLIST ingredient

name CDATA #REQUIRED

amount CDATA #IMPLIED

unit CDATA #IMPLIED >

<!ELEMENT preparation (step*)>

<!ELEMENT step (# PCDATA)>

<!ELEMENT comment (# PCDATA)>

<!ELEMENT nutrition EMPTY>

<!ATTLIST nutrition protein CDATA #REQUIRED

carbohydrates CDATA #REQUIRED

fat CDATA #REQUIRED

calories CDATA #REQUIRED

alcohol CDATA #IMPLIED >

<recipe >

<title>Margarita Cocktail </title>

<ingredient name="tequila"

amount="1.5" unit="Oz"/>

<ingredient name="triple sec (Cointreau)"

amount="0.5" unit="Oz"/>

<ingredient name="lime juice"

amount="0.5" unit="Oz"/>

<preparation >

<step>

Rum the rim of a cocktail glass

with lime juice , and dip in salt.

</step>

<step>

Shake all ingredients with ice ,

strain into the glass , and serve.

</step>

</preparation >

<nutrition

calories="153"

carbohydrates="7g"

fat="0"

protein="0.2"

alcohol="0.25"/>

</recipe >

Figure 3.2: Recipes DTD and example

1 @XMLParser(dtd = "http :// localhost/recipe.dtd")

2 public class TestParser extends DefaultHandler {

4 @HandlesStartTag("recipe")

5 public void startRecipe () {

6 System.out.println("Recipe");

7 }

9 @HandlesEndTag("recipe")

10 public void endRecipe(String chars) {

11 System.out.println("--");

12 }

13 //...

15 @HandlesStartTag("nutrition")

16 public void startNutrition(String calories , String protein , String fat ,

17 String carbohydrates) {

18 System.out.println("Nutrition Facts");

19 System.out.println("\tProteins\t " + protein);

20 //...

21 }

22}

Figure 3.3: SaxSpoon class to process Recipes

35

Chapter 3. Annotation Framework Development

the framework's interpretation engine, which will be discussed in the next sections.

3.3 SaxSpoon Interpretation

To illustrate the interpretation of annotation frameworks we present two implementations
for the annotation types de�ned in SaxSpoon: one takes a compile-time program transfor-
mation approach, and the other a runtime approach using Java's re�ection facilities. The
fact that two completely di�erent interpretations are possible without changing the anno-
tation framework's interface is a testament to the decoupling between annotation types
and their interpretation, which is one of the advantages of using annotation frameworks.

Both interpretation techniques o�er di�erent advantages and drawbacks. On one hand,
the compile-time approach, relying on code generation, produces an application which is
more e�cient than the runtime one, since it does not use costly runtime re�ection. On the
other hand, the runtime approach is easier to debug, since no hidden code is generated
which can be foreign to the application's developer. Both approaches, nevertheless, require
a validation of the annotated program to assure that the interpretation will succeed. In
these examples no special constraint validation will be performed to keep the example
clear; however, the places in which the violation of constraints will make the interpretation
fail will be pointed out. We start o� by describing the compile-time implementation of
the interpretation engine.

3.3.1 Compile-time interpretation of SaxSpoon applications

The �rst interpretation engine is one based on the transformation of classes that use
SaxSpoon into classes which use purely the SAX API. To this end, the Spoon program
transformation framework is used. The basic idea behind this program transformation is
to generate the startElement, characters and endElement methods, as depicted in �gure 3.4.
The generation of each of the SAX API methods is discussed next.

startElement() This method dispatches each of the incoming start tag events to the
corresponding method as stated by the SaxSpoon HandlesStartTag annotations. The
body of the startElement method is then a set of ifs that identi�es the method that
handles the incoming tag. Once the method identi�ed, each of the attributes of the
tag is retrieved and given as a parameter to the handler method. If the handler
method does not de�ne the correct names and number of parameters (i.e., those
de�ned in the DTD of the XML document) the interpretation engine will generate
incorrect (possible uncompilable) code.

characters() In this method, a bu�er is used to accumulate the characters present be-
tween tags. The bu�er will then be passed as a parameter to the endElement method.

endElement() For this method, a dispatch technique similar to that of the startElement

method is used. A set of ifs that invoke the correct handler method (as de�ned by
the HandlesEndTag annotations) for each tag. The current characters bu�er is sent
as a parameter to the handler method. As with the startElement method, if the

36

3.3. SaxSpoon Interpretation

Figure 3.4: Code transformation for SaxSpoon programs

handler method does not de�ne the correct parameter, the interpreter will generate
incorrect code.

The code transformation/generation is realized using Spoon by means of one annota-
tion processor, and six source code templates; ensemble, they total almost two hundred
lines of code.

3.3.2 Runtime interpretation of SaxSpoon applications

In order to show how an annotation framework can be interpreted in a runtime envi-
ronment, we present an alternative to the compile-time interpretation presented in the
previous section. The idea behind the runtime interpretation of SaxSpoon classes is the
same as for the compile-time one; namely dispatching events to their method handlers as
directed by the HandlesStartTag and HandlesEndTag.

In this interpretation engine, a single class, ReflectiveSaxDispatcher wraps an instance
of a class annotated with XMLParser, and uses re�ection to implement the startElement,
endElement and characters methods. The source code of this class is discussed below.

1 public class ReflectiveSaxDispatcher extends DefaultHandler{

3 Object wrapee;

4 StringBuffer charactersBuffer;

6 public ReflectiveSaxDispatcher(Object wrapee) {

7 //...

8}

10 public void startElement(String uri , String localName , String name ,

11 Attributes attributes) throws SAXException {

13 Method [] methods = wrapee.getClass (). getMethods ();

37

Chapter 3. Annotation Framework Development

15 for (int i = 0; i < methods.length; i++) {

16 Method method = methods[i];

17 HandlesStartTag hstt = method.getAnnotation(HandlesStartTag.class);

18 if(hstt != null){

19 if(hstt.value (). equals(name)){

20 // reflectively invoke method

21 }

22 }

24 }

25}

27 public void characters(char[] ch , int start , int length)

28 throws SAXException {

29 charactersBuffer.append(ch);

30}

32 public void endElement(String uri , String localName , String name)

33 throws SAXException {

34 super.endElement(uri , localName , name);

36 Method [] methods = wrapee.getClass (). getMethods ();

38 for (int i = 0; i < methods.length; i++) {

39 Method method = methods[i];

40 HandlesEndTag het = method.getAnnotation(HandlesEndTag.class);

41 if(het != null){

42 if(het.value (). equals(name)){

43 // reflectively invoke method

44 }

45 }

46 charactersBuffer = new StringBuffer ();

47}

49}

The wrapped object, and the bu�er in which the contents of each tag will be stored
are de�ned as �elds in lines 3 and 4. The startElement method in line 10 uses Java's
re�ection to traverse the methods of the wrapped class (lines 15- 24) and for each one,
tests if the method carries a HandlesStartTag annotation (lines 18- 19) and if that is the
case, it invokes the method, using as parameters strings containing the attributes of the
tag. As with the compile-time interpretation presented before, if the handler method does
not de�ne the correct number or order of parameters, the interpretation of the annotation
will fail. The implementation of the characters method is identical to the one generated
by the compile-time approach. Finally, the endElement method's body is similar to the
startElement's; the methods of the wrapped class are traversed, looking for the one that
handles the current tag. Once it is found, it is invoked with the contents of the bu�er as
parameter.

Compared to the compile-time interpretation, the runtime-one is more succinct, total-
ing under �fty lines of code. However, given its heavy use of re�ection it is considerably

38

3.4. Challenges in annotation framework development

slower . Notice that both interpretation techniques require the validation of the annotated
class in order to correctly behave; this suggests that the validation of annotated programs
is independent of the technique used to interpret them.

3.4 Challenges in annotation framework development

Taking SaxSpoon as example, we can illustrate a number of challenges that exist in the
development of annotation frameworks. These challenges involve both the annotation
framework developer and the application developer, and they are rooted in the design
and implementation of the frameworks.

3.4.1 Design

The task of designing an annotation framework is, in essence, a mapping from the concepts
of the domain that the framework is supposed to represent to annotation types, and
to the annotatable elements in a program. In the case of SaxSpoon, the concepts of
the framework are XML parsers, start tag handlers and end tag handlers. Each of the
concepts is mapped to an annotation type. In addition to this, each annotation type must
be mapped to an annotatable code element; in the case of SaxSpoon, XML parsers are
mapped to classes, while start and end tag handlers are mapped to methods.

The mapping of concepts from the framework to annotation types presents the �rst
challenge to address when designing an annotation framework. While it is true that
this task is similar to the task of mapping concepts of a domain to classes; something
which is well understood and commonly used in development, when mapping concepts
to annotation types, the annotation framework developer must deal with the fact that
annotation types are less expressive entities than classes. Indeed, restrictions such as lack
of inheritance in annotation types, restricted types for the elements of annotations, and
the fact that annotation types only carry data and not behavior, make the mapping to
annotation types harder than the mapping of concepts to classes.

The second challenge in designing annotation frameworks comes from the mapping of
the annotation types to code entities. The annotation framework developer must decide
which of the code elements (packages, classes, methods, etc) is more suited to represent
the concept embodied by an annotation type. When considering this, the annotation
framework developer must regard the ensemble of annotation types de�ned, since usually
the relationships existing between annotation types will be realized by the relationships
between code elements. For example, in SaxSpoon, tag handlers belong to a XMLParser;
this relationship is realized in the program by the fact that the XMLParser annotation
is mapped to classes, the Handles*Tag annotations are mapped to methods, and classes
contain methods; ergo, XMLParsers contain Handlers.

A third challenge we have identi�ed deals with the validation of annotated appli-
cations. When the framework developer writes the annotation types and decides their
mapping to code elements, a number of implied rules on the use of the annotation by
the application developer must be respected. To illustrate this, take the HandlesStartTag

annotation in SaxSpoon. This annotation is mapped to methods, but in addition to this,

39

Chapter 3. Annotation Framework Development

for the annotation to be meaningful, the method must belong to a class which carries
the XMLParser annotation. The constraints in the use of the annotation types are de�ned
during design, since they regard either the annotation types, that is the valid values for
their elements, or the code elements on which they can be placed in an application. The
de�nition of these constraints is important, since their violation impedes the correct in-
terpretation of an annotated program. The annotation framework developer needs then a
way in which he can de�ne constraints for his annotation framework, and a way in which
to check them prior to the interpretation phase.

3.4.2 Implementation

Challenges in the implementation phase of the development of an annotation framework
vary depending on the particular framework. Di�erent annotation frameworks require
di�erent interpretation techniques. Hybrid frameworks, i.e., those that use annotations
as well as other means to interact with the framework, will normally require a runtime im-
plementation. Frameworks in which annotations are used more as con�guration artifacts
favor compile-time interpretations; while other annotation frameworks such as SaxSpoon,
can use either. In all cases, a powerful metaprogramming facility is desired, since all
annotation frameworks require to reason about the program that they interpret. In this
regard, an interesting challenge arises when considering how annotations present in a pro-
gram are manipulated. By default annotation processing tools rely on a simple rei�cation
of the annotation which is a 1-to-1 mapping of the annotation type. This means that to
interpret the HandlesStartTag annotation, the annotation processing frameworks o�er an
object that contains only the elements declared in the annotation type. This rei�cation
does not re�ect the original design of the annotation framework, since associations be-
tween annotation types are lost; which, for the SaxSpoon example, makes it very di�cult
to know to which XMLParser does a handler method belongs.

Aside from this, annotation framework interpretation remains a very case-speci�c task,
and identifying phase-wide challenges is di�cult.

3.4.3 Challenges

In summary, the challenges identi�ed are:

I The representation of domain concepts as annotation types

II The mapping of annotation types to code elements

III The de�nition of constraints to validate annotated programs

IV The rei�cation of annotations for their interpretation.

3.4.4 Proposal

Taking into account the challenges raised above, we put forward the proposal of this thesis,
which proposes to ease the development of annotation frameworks by providing tools and

40

3.5. Summary

techniques that will help the annotation framework developer in the design, speci�cation,
representation and validation of the framework.

This will be achieved in two steps: �rst by studying existing annotation frameworks we
propose a set of generic constraints common to annotation frameworks. These constraints
are realized through the development of an annotation framework, called AVal, whose
annotations are used to specify the annotation types of an annotation framework. AVal
then interprets the annotated program, reporting violations to the constraints to the
developer. This step in the approach is described in chapter 4.

The second step consists on borrowing tools and techniques from the MDE �eld to
de�ne a model of the annotation types belonging to an annotation framework. This
annotation model is then used to specify the mapping of annotations to code elements
and to reify annotations in an application. Both goals are realized by the ModelAn
annotation framework. This step is further described in chapter 5.

Our proposal provides solutions to all the challenges identi�ed: AVal covers challenge
III while annotation models and ModelAn cover challenges I, II and IV.

3.5 Summary

In this chapter we have given an overview of the way in which annotation frameworks
are de�ned by analyzing the components of an annotation framework and discussing the
di�erent strategies for the interpretation of annotated applications. We have provided an
example of an annotation framework to illustrate its development process, and from this
process we have identi�ed a number of challenges in both the design and implementation
of annotation frameworks. Challenges identi�ed are (I) The representation of domain
concepts as annotation types, (II) the mapping of annotation types to code elements,
(III) the de�nition of constraints to validate annotated programs, and (IV) the rei�cation
of annotations for their interpretation. Based on this four challenges, we put forward a
proposal that addresses this issues.

In the following chapter we address challenge III, i.e., the de�nition of annotation
constraints. We will discuss the nature of annotation constraints, and propose an an-
notation framework for the de�nition and evaluation of these constraints on annotated
programs.

41

Chapter 3. Annotation Framework Development

42

Part II

Proposal

43

4

Annotation Constraints

Contents
4.1 Validating annotation constraints 46

4.2 Kinds of constraints . 47

4.3 Generic constraints . 48

4.3.1 Annotation-wise generic constraints 49

4.3.2 Code-wise generic constraints 50

4.4 Composition of Generic Constraints 51

4.4.1 Example . 52

4.5 AVal: a (Meta) annotation framework to Specify Con-

straints . 55

4.5.1 AVal annotation constraints 55

4.5.2 AVal constraint composition 56

4.5.3 Example . 56

4.6 AVal Interpretation . 58

4.6.1 Extending validations . 59

4.6.2 Problem �xers and Error messages 60

4.6.3 Library annotations . 61

4.6.4 Eclipse Integration . 62

4.7 Summary . 63

The Java type system for annotation is not expressive enough to ensure that the use
of an annotation framework is correct. This type system allows the annotation framework
developer to de�ne the names, types and default values of possible properties, and the
Java program elements to which it can be attached. It, however, leaves the responsibility
of more complex checks to the annotation framework developer.

Complex annotation frameworks, such as EJB3 [MK06], impose constraints on the use
of annotations that go beyond the capabilities o�ered by the Java programming language.
For example, the @Id annotation that marks a �eld in an entity class as its identi�er, can

45

Chapter 4. Annotation Constraints

only be placed in �elds belonging to a class annotated as @Entity. Rules such as these
are common among annotation framework speci�cations. These kinds of rules cannot be
enforced by the Java compiler, and it is up to the annotation developer to check them as
part of the annotation's processing phase.

In this chapter we address the problem of validating annotated programs, identi�ed in
chapter 3.4.4 as challenge III. In the �rst part of the chapter, we start by de�ning the
di�erent kinds of constraints that an annotated program must comply with in section 4.2.
Such constraints are speci�c to each annotation framework. In order to ease the task of
constructing annotation frameworks, we have identi�ed a number of generic constraints
(section 7.1.2) which are common to annotation frameworks. In the second part, we pro-
pose a mechanism, based on annotations, for the de�nition of the constraints of annotation
frameworks (section 4.5), and their validation in annotated programs section 4.6.

4.1 Validating annotation constraints

As discussed before, annotation frameworks imply a number of rules that govern the way
in which they are used. Indeed, this is not di�erent than as with any other framework.
However, in contrast to regular frameworks, annotation frameworks are static entities;
that is, their usage can be checked during the compilation of the program. This is done
so that the errors are provided to the �nal developer as soon as possible. Given the
static nature of the semantics of annotations, rule checking in annotation frameworks is
considerably easier than that of regular frameworks because, in general, no complex static
analysis must be performed.

We shall name the process of annotation constraint checking validation of an annotated
program, and the process of checking a single constraint, a validation. This process,
depicted in Figure 4.1, takes as inputs the set of annotation types and program carrying
the corresponding annotations and the set of constraints, de�ned over the annotation
types and checked against the program. As output, a set of errors corresponding to
the violations of the constraints as they are used in the program. In this process we
identify two actors: the developer of the annotation framework, i.e., the person that
implements the annotation types; and the program developer, i.e., the person that writes
and annotates the program. Since the annotation developer de�nes the semantics of the
framework, it is up to him to also de�ne the constraints that their use must comply with.

Although the process �ow for the validation of an annotated program is straightfor-
ward, the actual performed validations vary greatly in function of the particular anno-
tation framework. Indeed, each annotation framework counts with its particular set of
constraints that derive from the domain in which they lay. In order to derive a generic
approach to validation, commonalities among the di�erent constraints de�ned by di�er-
ent annotation frameworks must be found. Firstly, we classify the constraints annotation
frameworks in two kinds. Then, we propose a number of generic constraints in each one.

46

4.2. Kinds of constraints

Figure 4.1: Validation process �ow

Each generic constraint is parameterizable to the context of each annotation framework.
By using these generic constraints, an annotation framework developer is able to specify
the semantics of his framework.

4.2 Kinds of constraints

In the general case, annotation validations are of two kinds, those dealing with the re-
lationship between an annotation type and the code element on which it is placed, and
those dealing with the annotation type's properties, and its relationship with other anno-
tation types. The former are named code-wise validations, while the later annotation-wise
validations.

Annotation-wise Validations Structural rules de�ne the relationship between anno-
tations and between an annotation and its properties. In this case, a distinction is made
between the former (relationships), and the later (value validations). Value validations
restrict the possible values of the properties of the annotation type, for example, having
an integer within a certain range, or a string conforming to a regular expression.

We identify two types of annotation-wise relationship constraints: those constrained
by scope or by reference. We de�ne the scope of an annotation as the AST nodes of the
sub-tree of the element on which the annotation is placed (see Figure 4.2). This way
an annotation on an element can have a relation with annotations placed on elements
within its scope. In this sense, annotations placed on a method are within the scope of
the annotation placed on the class to which the methods belong. To better illustrate the
concept of scope, consider the relation rule between entities and ids in EJB3: an id must
be inside an entity.

References express relationships between annotations which are on di�erent scopes.
They are normally speci�ed through a special value on a property, either an identi�er, for
example the name of the referenced annotation, or a type which carries a given annotation.
For example, in EJB3 relationships between entities are speci�ed by, among others, the
annotation OneToOne that takes as an attribute the type which itself must be an entity.

47

Chapter 4. Annotation Constraints

Figure 4.2: In this AST, annotations B is in the scope of A while C is not. The scope of A
is represented by the gray square.

Code-wise Validations Code-wise validations deal either with the target of the anno-
tation type, that is the kind of code element on which the annotation type is allowed, or
with the characteristics of said target: the visibility of the class, the declared return type
of the method, etc. Given that annotations are always placed on code elements, code-wise
rules of usage are always present, albeit with varying degrees of complexity.

In general, code-wise validations are orthogonal between each other, i.e., the code-wise
rules for each annotation can be checked independently from the others. They, however,
depend on the code in which they are, requiring at times non-trivial source code analysis.

As an example of a code-wise validation, let us consider a rule that states that a certain
annotation @A can only be placed on �elds which are collections. In this case there are
two di�erent rules: one stating that the target is a code element of the kind �eld, and
the second one is a restriction on the type of this �eld. The �rst rule can be validated
in a straightforward manner, but a complete validation of the second one, may require
a complex analysis to derive the runtime type of the �eld in the case in which its static
type is not a direct subtype of a collection.

4.3 Generic constraints

Even though the set of constraints that de�ne the validity of each annotation framework
varies in function of each framework's particular needs, we have encountered that similari-
ties between them arise. We therefore propose a number of generic constraints that can be
reused and adapted to represent the individual needs of each annotation framework. It is
worth noting that this set of generic constraints does not cover all the possible constraints,
and that additional constraints remain a necessity. Generic constraints we identi�ed are
summarized in Table 4.1, and explained below. A formalization on the semantics of these
constraints is given in appendix A.

Generic constraints reason about three kinds of entities: annotation types, their in-
stances which are placed on AST nodes, and the types de�ned and used on the program
that is to be checked. Each of the generic constraints identi�ed are described in the

48

4.3. Generic constraints

Annotation-wise
Inside

Prohibits

Requires

Unique

RefersTo

Code-wise
Target

Type

Table 4.1: Generic constraints

following sections.

4.3.1 Annotation-wise generic constraints

Annotation-wise constraints restrict the placement of annotations relative to other anno-
tations (Inside, Prohibits, Requires, etc.) or the valid values of their elements. In both
cases, the validation of annotation-wise constraints is linked to their position on the AST
and to the concept of scope introduced in the previous section.

Inside As explained previously, one annotation being inside of another one, is a com-
monly expressed constraint in annotation frameworks. An Inside constraint takes as
parameters two annotation types, and requires that each instance of the second one to be
placed within the scope of at least one instance of the �rst one. To clarify this constraint,
suppose that two annotation types A and B, the �rst one placed on classes, and the second
one on methods; so that every method annotated with B must belong to a class annotated
with A. In this case, we would state the constraint B inside A.

Prohibits The placement of an annotation in a node can prevent other types of anno-
tations from being placed on that same node. This is common when annotation types
represent exclusive properties or concepts. If it is the case that an annotation type A and
an annotation type B cannot be placed on the same AST node, then A prohibits B.

Notice that the prohibits relation is symetric: although it is A that prohibits B, this
is equivalent to stating that B prohibits A. This constraint speci�es that nowhere in the
program, a node can have both A and B annotations.

Requires Similar to the prohibits predicate, the placement of an annotation on a node
can require another one. This is expressed as A requires B, and its application checks that
whenever a node is annotated with an instance of A, that node must also carry an instance
of B.

In contrast with the prohibits generic constraint, requires is not symmetric: A requires
B does not imply that B requires A. In the �rst case, it is correct to �nd a node annotated
with B and not A, while in the second one, the same case would be a violation of the
constraint.

49

Chapter 4. Annotation Constraints

RefersTo The three generic constraints introduced above rely on the relations of the
AST tree to specify the constraints by using either the scope (inside) relation or the target
relation (prohibits and requires). Nevertheless, it is often the case that more complex
constraints require relations not present in the AST, when this is the case, a reference
is used. We de�ne references as functions that map an annotation of one type to a set
of annotations of (possibly) a di�erent type. The corresponding constraint is that the
cardinality of the resulting set is to be greater or equal to one.

Referencing annotations can be done in two ways: by naming annotation instances,
using the value of an element as identi�er, or by using a type.

Id references create links between annotation instances by matching a value of an
annotation's element with the value of another one (possibly of a di�erent type). The
associated generic constraint takes four parameters: a starting annotation type, a target
annotation type, and the respective elements that link them. This way, if elements eA and
eB of annotation types A and B respectively serve as link between them, then instances of
A and B that have the same value are linked. This is represented as the generic constraint
A.eA refersTo B.eB, and it is valid when for all instances of A, there exists at least one
corresponding instance of B.

Type references are variations of the id references in which the value of the element
that binds the annotations is a Java type that carries an instance of the referenced an-
notation. In this case, the link takes three parameters: the annotation type, the element
de�ned in it, and the annotation type that goes on the Java type. Therefore, if the anno-
tation type A has an element e whose value must be a Java type that carries an annotation
of type B, then we say that Ae refersTo B.

Unique If it is the case that the id reference represents a one-to-one relation, then it is
desirable to express a constraint that requires all the values of an element in an annotation
type to be unique. This is achieved through the unique generic constraint. This constraint
takes as parameters an annotation type and an element that is de�ned in it. If the values
of an element e in an annotation type A are required to be unique, we say that A unique
e.

4.3.2 Code-wise generic constraints

Code-wise constraints deal with the relation between the annotation and the program on
which it is placed. The generic constraints we identi�ed are those that restrict the AST
node on which the annotation is placed (Target) and those that restrict the type of the
node (Type).

In contrast with annotation-wise constraints, code wise validations can be harder to
check because they can reason about the behavior of code at runtime. Take for example a
possible constraint that states that methods that carry a certain annotation cannot create
threads. The checking of this constraint statically requires non trivial analysis, since it
is necessary to �nd all possible execution paths originating in the annotated method,
and to assure that in none of them a thread is spawn. In addition to being complex,
constraints that deal with the runtime behavior of annotated code elements, such as this
one, are eminently speci�c to the annotation library in question, therefore di�culting its

50

4.4. Composition of Generic Constraints

generalization. Because of this, we have decided to delegate such checks to specialized
static analysis engines, and concentrate on the generic constraints enunciated above, and
explained below.

Target Target is the simplest kind of code-wise constraint. It constraints the kind of
AST node on which annotations can be placed, to for example Class or Field. This generic
constraint is actually provided as a part of the Java JDK[GJSB05]. Note that it is possible
to constraint annotation types to more than one target, or even to constraint annotation
to be used purely as elements of other annotations i.e., no target.

Type Type related constraints can be of several kinds depending on the target of the
annotation type. Type generic constraints have di�erent semantics depending on whether
the annotation is placed on a Type (class or interface), �eld, method, parameter or local
variable.

• Types if an annotation type A targeted to classes or interfaces is constrained to a
type T , then the type of the target must be a subtype of T .

• Constructors if an annotation type A targeted to a constructor is constrained to a
type T , then T must be a super type of the class that the constructor instantiates.

• Methods if an annotation type A targeted to methods is constrained to a type T
then the declared return type of the method must be a subtype of T .

• Fields, parameters and local variables if an annotation type A targeted to any
of these is constrained to a type T , then T must be a super type of the declared
type of the variable, �eld or method parameter.

• Package annotations that are placed on packages cannot be constrained by type.

4.4 Composition of Generic Constraints

Evidently, each annotation type belonging to a framework will require several instan-
tiations of generic constraints to specify its semantics. Each of the generic constraints
presented before is orthogonal13, so the most common composition of the constraints is
their conjunction, for example stating that an annotation A requires B and A inside C.
It is also possible to express alternative constraints, via a disjunction or negations, like
stating that A requires B or A requires C.

In addition to this, it can be of interest to the annotation framework developer to
restrict the scope of one of the constraints by, for example, stating that an annotation
must be unique in the scope of another one. The combinations are then reduced to the
use of inside as a scope restriction. We de�ne this scope restriction/extension only
for the annotation-wise constraints; although it would be possible to express them also

13Each constraint is de�ned independently from the others. While this does not mean that they cannot
contradict themselves, it allows for their independent checking

51

Chapter 4. Annotation Constraints

for code-wise constraints, we do not believe that such uses are meaningful as generic
constraints.

Inside prohibits If an annotation A prohibits another one B inside the scope of a third
one C, this means that not only it is forbidden to put A and B in the same AST node,
but on any node which lies in the scope of C.

Inside requires In a similar way as the previous combination, if an annotation A
requires another one B inside the scope of a third one C, then the scope of the requires
constraint is extended to the scope of the inside of annotation C.

Inside unique Finally, it is possible to restrict the scope of the unique constraint in a
similar way as the two above. If an annotation A must have a unique value inside B, then
there cannot be other instances of A with the same element value under the scope of B.

Other kinds of scope restrictions could be imagined. For example, restricting the scope
of the constraints to those nodes under a given package. We, however, have not found
these kinds of scoping restrictions in the annotation frameworks analyzed, and therefore
do not include them as generic constraints.

4.4.1 Example

To illustrate the use of generic constraints in an annotation framework, we get back to the
SaxSpoon annotation framework de�ned in chapter 3.2. The constraints for each of the
three annotation types in SaxSpoon, in natural language, are summarized in Table 4.2. In
this table, the constraints for annotation types (below the name of the annotation type)
and the constraints for each of the elements of the type are separated for clarity.

As shown on Table 4.2, the constraints to which programs using SaxSpoon must adhere
to are divided into generic ones (annotation on class, type of method, etc) and speci�c
ones (tags must be de�ned in a DTD). For each of the annotations, we will use the
constraints de�ned in the previous sections to partially de�ne the annotation's semantics.
The speci�cation of each of the annotation types in SaxSpoon is shown in Figure 4.3.

As we can see, most of the constraints of SaxSpoon can be speci�ed using the generic
constraints de�ned above. By doing this, the semantics of each of the annotations is
clear to the application developer. In the next section (4.5) we will introduce an applica-
tion called AVal that, based on the generic constraints described, allows the annotation
framework developer to declaratively describe the semantics of an annotation framework
by using a constraint annotation framework; and using this same framework, the appli-
cation developer can check whether his annotated program complies with the annotation
framework's constraints.

52

4.5. AVal: a (Meta) annotation framework to Specify Constraints

XMLParser

• Should be placed on Classes
• The class must (indirectly) implement the ContentHandler

dtd

• The string must be a valid URL.

HandlesStartTag

• Should be placed on methods
• The method should be of return type void

• The method's parameters should be all of type String

• The names of the methods parameters must be the same as the attributes of the
tag handled by the method
• There can only be one Start method handler per tag
• A method cannot handle the start and end of a tag
• There should be a method that handles the end of every start tag

tagName

• The tag name must be a tag de�ned in the DTD of the
XMLParser annotation

HandlesEndTag

• Should be placed on methods
• The return type of the method should be void

• The method should have a single parameter of type String

• There can only be one end method handler per tag
• A method cannot handle the start and end of a tag
• There should be a method that handles the start of every end tag

tagName

• The tag name must be a tag de�ned in the DTD of the
XMLParser annotation

Table 4.2: Constraints for SaxSpoon Annotations

53

Chapter 4. Annotation Constraints

XMLParser

• XMLParser target Class
• XMLParser type ContentHandler

HandlesStartTag

• HandlesStartTag target Method
• HandlesStartTag type void

• HandlesStartTag inside XMLParser

• HandlesStartTag.tagName inside unique XMLParser

• HandlesStartTag prohibits HandlesEndTag

• HandlesStartTag.tagName refersTo HandlesEndTag.tagName

HandlesEndTag

• HandlesEndTag target Method
• HandlesEndTag type void

• HandlesEndTag inside XMLParser

• HandlesEndTag.tagName inside unique XMLParser

• HandlesEndTag prohibits HandlesStartTag

• HandlesEndTag.tagName refersTo HandlesStartTag.tagName

Figure 4.3: Generic constraints applied to the SaxSpoon Annotation Framework

Annotated Program

Annotation Framework
Developer

Annotation User

Annotation Types

@ @

@

AVal Constraint
Annotations

AVal Source Code Processor

Constraint
violations

@

@

@

@

@

@
@

@

@

@

Figure 4.4: AVal Validation Process Flow

54

4.5. AVal: a (Meta) annotation framework to Specify Constraints

Inside UniqueInside

Prohibits ProhibitsInside

Requires RequiresInside

Unique Modifier

RefersTo AValTarget

URLValue Type

RefersToAnnotatedElement

Table 4.3: AVal constraint annotation types

4.5 AVal: a (Meta) annotation framework to Specify

Constraints

With the aim of providing an useful way to use generic constraints on annotation frame-
works we have implemented a (meta) annotation framework that allows annotation frame-
work developers to specify the constraints of their annotation types in a declarative way.
Our tool, called AVal [NP07] � for Annotation Validation � consists of two parts: �rst,
a set of annotations types that represents the generic constraints we have introduced in
the past sections, and second, a source code processor that checks annotated programs in
accordance to the semantics provided by the annotation framework developer.

The concept of using meta-annotations to declare the restrictions of use of Java anno-
tations is already included in the JDK. Indeed, the Java Language Speci�cation [GJSB05]
de�nes a Target annotation that must be placed on annotation type de�nitions to restrict
where instances of the annotation type can be placed. However, asides from Target, no
other validation annotations are provided.

The process validating annotation frameworks using AVal is depicted in Figure 4.4. In
it, the constraints of the annotation framework are codi�ed as AVal annotations placed on
the annotation framework itself. The AVal source code processor takes as input both the
annotation framework and the annotated program, and reports constraint violations back
to the annotated program in a format similar to that of the warnings and errors raised by
a Java compiler. In the remainder of this section, we will introduce the annotation types
provided by AVal, the architecture of the source code processor, and the way in which
the AVal source code processor can be extended to deal with constraints other than those
already provided.

4.5.1 AVal annotation constraints

As explained before, AVal provides a number of annotation types to specify constraints in
annotation frameworks. This set of annotation types comes from the generic constraints
de�ned before, having one annotation type per generic constraint. The annotation types
o�ered by AVal is summarized in Table 4.3.

Inside, Prohibits, Requires, Unique, and Type are direct translations from the generic
constraints introduced before. UniqueInside, RequiresInside, and ProhibitsInside repre-
sent the scope restriction/extension of inside unique, inside requires and inside prohibits.

55

Chapter 4. Annotation Constraints

In a similar way, RefersTo and RefersToAnnotatedElement are the annotation type represen-
tation of id references and type references. AValTarget represents the target constraint,
renamed to avoid confusion with Java's own Target annotation. It takes as parameter
AST nodes as represented by classes of the Spoon compile-time re�ection API. Finally,
Modifier, Matches and URLValue are additional constraints that serve as example of the
extension points provided by AVal. Modifier takes as constraints the AST node on which
the annotation is placed to have a Java modi�er (public, private, final, etc.) Matches

checks String typed elements against a regular expression given as parameter; and URLValue

checks that a String element is a correctly formed URL.

4.5.2 AVal constraint composition

Generic constraints can be composed by a number of ways, as explained before. However,
when representing these constraints as annotation types, we run into the limitations im-
posed by the programming language on the manner in which annotations are placed on
code elements. The Java language speci�cation does not allow more than one annotation
of a given type to be placed on the same node. Because of this, it is impossible to, for ex-
ample, express that a given annotation type requires several others by just annotating the
type with several Requires. To allow the annotation framework developer to express these
compositions of AVal annotations of the same type, collection annotations are needed. A
collection annotation is an annotation type that serves as container to other annotations.
If such a collection annotation exists, then the problem of stating that an annotation type
requires several annotations is solved by creating a RequiresAll annotation type that has
as sole element an array of Requires annotations and represents the conjunction of the
requires constraints; a similar RequiresAny collection annotation could be constructed to
represent the disjunction. AVal provides then a *All and *Any collection annotation for
each of the basic constraint annotation types.

Having a di�erent collection annotation for each constraint seems wasteful, and one is
tempted to construct generic collection annotations All and Any that serve as containers to
arbitrary annotations, this however is forbidden by the language as elements of annotation
types cannot be just any annotation type. Because of this, the composition of several
collection annotations into patterns of *Anys and *Alls is impractical. This remains a
limitation of the approach.

4.5.3 Example

To illustrate how AVal constraint annotations can be used to specify the constraints of an
annotation framework, we go back to the example of SaxSpoon, and translate the generic
constraints introduced in the example of the previous section to meta-annotated types. In
the following Figure 4.5, the source code for each of the three annotations that compose
SaxSpoon augmented with AVal annotations is shown.

Each of the annotation types de�ned in �gure 4.5 uses AVal annotations to de�ne the
respective constraints. For the XMLParser annotation type, three constraints are de�ned:
it must be placed on classes (line 1), the class on which it is placed must be a subtype of
ContentHandler (line 2), and the dtd element must contain a string which is a valid URL

56

4.5. AVal: a (Meta) annotation framework to Specify Constraints

XMLParser.java HandlesStartTag.java

1 @AValTarget(CtClass.class)

2 @Type(ContentHandler.class)

3 public @interface XMLParser {

4 @URLValue

5 String dtd() default "";

6}

1 @Inside(XMLParser.class)

2 @Type(Void.class)

3 @Prohibits(HandlesEndTag.class)

4 public @interface HandlesStartTag {

5 @RefersTo(value=HandlesEndTag.class ,

6 attribute = "tagName")

7 @UniqueInside

8 String tagName ();

9}

HandlesEndTag.java

1 @Inside(XMLParser.class)

2 @Type(Void.class)

3 @Prohibits(HandlesStartTag.class)

4 public @interface HandlesEndTag {

5 @RefersTo(value=HandlesStartTag.class ,

6 attribute ="tagName")

7 @UniqueInside

8 String tagName ();

9}

Figure 4.5: SaxSpoon annotation types with AVal constraint annotations

(line 4). The HandlesStartTag and HandlesEndTag annotation types have similar constraints,
and are therefore meta-annotated similarly: the Inside annotation in line 1 is used to
state that the annotations can only be placed on sub-elements of that are annotated with
XMLParser. They must be placed on methods with no return type (the Type annotation
on line 2) and the tagName value must be unique on the subtree de�ned by the Inside

annotation (line 7). Each of the Handles annotations prohibits the other one (line 3) and
the RefersTo annotation checks that when a start tag event is handled, the corresponding
end tag handler is de�ned (line 6).

As it is apparent, the use of constraint annotations to augment the de�nition of anno-
tation types renders is a straightforward mapping from the generic constraints application
of the previous section. The use of annotations to specify the constraints has the added
value of making the annotation type's source code self documenting, in that their rules of
use is clear from reading the source code alone.

Now that the annotation types provided by AVal have been explained, we can look into
the way in which the actual constraint checking of an annotated program is carried out.
This is explained in the next sections.

57

Chapter 4. Annotation Constraints

4.6 AVal Interpretation

Once the constraints of an annotation framework are de�ned using AVal annotations,
the application developer can check whether these constraints are met in his application.
The process of checking constraints on an annotated application consists on traversing
the application's AST looking for annotations, once one is found, the de�nition of that
annotation (i.e., its annotation type) is searched for AVal annotations. If any are found,
the constraint that they represent is checked.

Annotates

Base Program

@

@

Domain-Specific
Annotations

@

@

@

Validation
meta-annotations

AVal source code processor

Validation
Implementation

@

@

Figure 4.6: AVal Architecture

The process of constraint checking is depicted in �gure 4.6. The base program's AST
carries annotations de�ned in the domain-speci�c annotation framework (represented by
dotted arrows). Some annotation types of the domain-speci�c annotation framework will
carry AVal annotations, which are themselves tied to a corresponding implementation
class. AVal, travels this annotation chain from an annotation in the base program, all the
way to the implementation layer, recording each of the layers in a context object that will
be used by the implementation to check the constraint. As a preliminary optimization, the
implementation is cached, so that if in the traversal of the program the same annotation is
found twice, the correct implementation is executed without processing the annotation's
de�nition again. Each of for layers is composed as follows:

Base program: The annotated program to be validated. Elements of the program are
annotated by annotations de�ned on the Annotation Framework layer.

Domain-Speci�c Annotation Framework: The domain speci�c annotations. Each
annotation is meta-annotated by an AVal meta-annotation that expresses the rules
for its validation.

AVal Annotation Types: AVal annotations that encode the rules to validate domain
speci�c annotations. Each annotation type represents a constraint, and is itself
annotated with the class that is responsible for its implementation.

58

4.6. AVal Interpretation

Implementation: A class per AVal annotation type. The class must implement the
Validator interface, and it uses the Spoon compile-time model of the base program,
Annotation Framework annotation, and annotation constraint in order to perform
the validation.

4.6.1 Extending validations

Even though the generic constraints de�ned so far cover many of the validation needs,
there are cases in which domain speci�c constraints need to be de�ned. For these cases
it is possible to extend the AVal's constraint annotations for a particular domain. AVal's
architecture accommodates for these extensions, by adding annotation types and their
corresponding implementations in the two upper layers; namely AVal annotation types
and implementation. The implementation of a constraint annotation is a class that im-
plements the Validator interface parametrized by the type of the annotation constraint.
This interface de�nes a check method that is called whenever the validated annotation is
found.

In order to carry out the constraint check, AVal provides the notion of a Validation
Point. A validation point represents the context in which the constraint will be checked.
It is composed of four parts: (1) the base program element in which the annotation to be
checked is; (2) the annotation instance to be checked; (3) its annotation type, and �nally
(4) the AVal annotation constraint that is placed on the annotation type's de�nition.
To illustrate this, imagine an annotation @A("bar") placed on a �eld (int foo;) within
a class; further more, suppose that the annotation type of public @interface A{} carries
an annotation constraint @Constraint("baz"). The corresponding validation point would
be 〈int foo;, @A("bar"), public @interface A{}, @Constraint("baz")〉. In AVal, validation
points are modeled as a class that contain the Spoon compile-time representations of each
of its components; this gives the annotation framework developer access to the complete
model of the base code, as well as to the model of his annotation framework. AVal uses
then the full Java language to check constraints, which allows the annotation framework
developer to delegate complex checks to specialized libraries and tools. For example, a
new validation annotation, and corresponding implementation, for checking that a value
is a valid URL would take this form:

@Implementation(

URLValueValidator.class)

public @interface URLValue {}

public class URLValueValidator

implements Validator <URLValue >{

public void check(

ValidationPoint <URLValue > vp){

// validation and error reporting ...

}

}

As a more complex example, consider a validation that ensures that the method on
which the annotation is placed does not throw any unchecked (i.e., runtime) exceptions.

59

Chapter 4. Annotation Constraints

This example takes advantage of the Spoon API that allows the programmers to introspect
the code inside the body of a method.

@Implementation(NoUncheckedExceptionsValidator.class)

public @interface NoUncheckedExceptions {}

public class NoUncheckedExceptionsValidator

implements Validator <NoUncheckedExceptions >{

public void check(ValidationPoint <NoUncheckedExceptions > vp) {

// get the method on which the annotation is placed

CtMethod <?> meth = (CtMethod <?>)vp.getProgramElement ();

// get all the throw clauses that throw an unchecked exception

List <CtThrow > matches = Query.getElements(meth.getBody(),

new UncheckedExceptionsFilter(outParam.getReference ()));

if(! matches.isEmpty ()) {

// report a warning on each throw clause

}

}

}

In the previous code, the check method uses the Spoon API to run a �lter-based query
on the body of the annotated method. A query scans the AST to return the nodes that
match the given �lter. Here UncheckedExceptionsFilter will match any occurrence of a
CtThrow node which thrown expression is a subtype of RuntimeException. In addition to
this, the �lter implementation can check that the thrown exception is not caught within
the method's body. Although this analysis is still local to the method body, it would also
be possible to implement an inter-procedural control-�ow analysis. However, the point
here is not to discuss complex static analysis, but more to show that the full program
AST is required when coming to implement more complex validations on the program.

4.6.2 Problem �xers and Error messages

Built-in generic constraints in AVal contain a number of special parameters, as de�ned
in Section 7.1.2. Aside from these, all the meta-annotations included in AVal state three
convenience elements: message, severity, and fixers. These elements permit the AVal user
to adjust the presentation of the errors to a particular Annotation Framework. Each of
these convenience elements are explained below.

Error Messages AVal allows the programmer to customize the messages raised by failed
validations in two ways: �rst, the severity of the message can be presented either as an
ERROR, a WARNING or a MESSAGE. Second, the text of the message can be customized to better
�t the context of the annotation framework subject of validation, to this end, a simple
template language is de�ned. Both these customizations are realized when the AVal meta-
annotation is used on an annotation type de�nition by providing values to the severity

and message elements. For example, in SaxSpoon, the de�nition of the HandlesStartTag is
annotated with a RefersTo meta-annotation to raise a warning when the start of a given
tag is handled but not the end tag:

public @interface HandlesStartTag {

@RefersTo(value=HandlesEndTag.class ,

60

4.6. AVal Interpretation

attribute="tagName",

message="No handler defined for the end of <?val > tag",

severity=Severity.WARNING)

String tagName;

}

Problem Fixers With Spoon (the annotation processor used by AVal), whenever an
error is reported to the environment, it is possible to provide a set of source code trans-
formations that can �x the error. These transformations, or problem �xers as de�ned in
the Spoon API, are classes implementing the ProblemFixer interface. They are applied
interactively by the user through the IDE (in our case Eclipse), and when invoked, a
problem �xer can manipulate the program's AST by using the Spoon API .

For example, consider the HandlesStartTag annotation in SaxSpoon. This annotation,
by means of the RefersTo meta-annotation, will produce a warning whenever no corre-
sponding method to handle the closing of its tag is found. In this case, a way to aid the
programmer would be to produce a stub of the missing method. This can be implemented
via a problem �xer, which is attached to the annotation as follows:

public @interface HandlesStartTag {

@RefersTo(value=HandlesEndTag.class ,

message="No handler defined for the end of <?val > tag",

severity=Severity.WARNING

fixers ={ AddEndHandlerStub.class })

String value ();

}

Problem �xers allow the programmer of the base application to choose a pre-de�ned
source code snippet template that help him to �x an error. The transformation is then
applied on the base program so that the programmer can customize the snippet. In the
case of the HandlesStartTag without its corresponding end handler, a method (with the
correct signature and annotation) is added. It is up to the programmer to write the code
to handle the end of the tag. The problem �xers are interactively invoked through the
IDE by the programmer.

4.6.3 Library annotations

So far, in order to use AVal on a given Annotation Framework, the source code of the
annotation types is necessary. Indeed, since the validation relies on meta-annotations,
the AVal programmer must be able to add and remove annotations to the Annotation
Framework. This, in principle, restricts the use of AVal to the annotation framework
developers, since only they have access to the source code of the framework, and can
modify it. Nevertheless, application programmers could also desire to enforce checks on
the use of annotations in their programs; be it in response to internal coding guidelines, or
because the annotation framework used does not provide an adequate constraint checker.
To overcome this issue, in AVal it is possible to add validations to annotations for which
the source code is not available by replacing those annotations during the validation phase.
The idea is to rewrite the annotation type de�nition, and use a ReplaceAnnotationInPackage

61

Chapter 4. Annotation Constraints

annotation to temporarily change the package of the new annotation. After the validation
round is over, replaced annotations are deleted from the model, restoring their original
implementation. This kind of replacement is safe, since the modi�ed version exists only
during the validation phase. The replaced version is checked by the AVal source code
processor so that it de�nes the same elements; doing this assures that the new meta-
annotated version is syntactically equivalent to the old one.

To illustrate this, consider the java.lang.SuppressWarnings annotation. It is de�ned
in the Java API to instruct the compiler to suppress certain warnings produced inside
annotated elements; however, the documentation of this annotation warns: �programmers
should always use this annotation on the most deeply nested element where it is e�ective.
If you want to suppress a warning in a particular method, you should annotate that
method rather than its class.�. Indeed, spurious use of this annotation (for example,
placing it on a package) may make the compiler disregard important, unintended warnings.
A way to avoid this case could be to restrict the SuppressWarnings to a �ner grain, like a
method.

package dummy;

@ReplacesAnnotationInPackage("java.lang")

@AValTarget(CtMethod.class)

public @interface SuppressWarnings{

String [] value ();

}

AVal can be used to further restrict the SuppressWarnings to methods only by including
the annotation type de�nition above on a dummy package and replacing the one in java.lang.
Because of this, whenever the AVal processor �nds a java.lang.SuppressWarnings annota-
tion, it will perform the checks required by the dummy.SuppressWarnings as directed by the
ReplaceAnnotationInPackage annotation; namely check that the annotation is placed on a
method.

4.6.4 Eclipse Integration

AVal is integrated with the Eclipse IDE through the Spoon JDT plug-in14. This plug-in
enables Spoon processors to be applied on a given Eclipse project each time it is compiled.
By doing this, the relevant validations are applied seamlessly as dictated by the meta-
annotations present on Annotation Frameworks that the programmer uses. Error and
warning messages are displayed in the same way as those raised by the Java compiler,
and problem �xers are displayed as Eclipse's quick �xes. This integration, for a SaxSpoon
program, is shown in Figure 4.7.

When an application developer wishes to use AVal to check the use of a given anno-
tation framework whose annotation types carry AVal meta-annotation, he must load the
spoonlet provided by AVal into the Spoon eclipse-plugin. The AVal plugin carries two
processors: the dummy processor that takes care of the rede�nition of annotations that
do not carry AVal annotations (as de�ned in section 4.6.3), and the AVal processor that
performs the validation of the application itself.

14http://spoon.gforge.inria.fr/Spoon/Installation

62

4.7. Summary

Figure 4.7: AVal integration with Eclipse IDE

4.7 Summary

In this chapter we have proposed a solution to the problem of de�ning and checking
constraints for annotation frameworks (challenge III). We provide a classi�cation of the
kinds of constraints in function of whether they deal with annotation types or with the
places in the code in which they lay. Based on this classi�cation, we have proposed a
number of reusable, declarative generic constraints which can be parametrized according
to the needs of each speci�c annotation framework.

We have also presented a meta annotation framework that implements generic con-
straints called AVal. AVal provides two contributions: �rst a set of annotation types that
represent the generic constraints we have identi�ed. These annotation types are used by
annotation framework developers to specify the constraints of their frameworks, which
have the advantage of making explicit the semantics of the annotations. Second, AVal
provides an extensible way to interpret these constraints, making it possible to add new,
possibly domain-speci�c constraints that can leverage existing tools.

The use of meta-annotations, as described in this chapter, to specify constraints in
annotation frameworks provides a twofold advantage. For the annotation framework
developer, it is a declarative, reusable, extensible way to specify constraints, and for the
annotation user, it provides timely constraint checking, and self documenting code.

Although ours is not the �rst approach that uses meta-annotations to check anno-
tation type constraints [CM04]; our work goes further by de�ning constraints on both
annotation's structure and the code on which they are placed. We have also based our
implementation on the extensibility of the checking processor so that new AVal annota-
tions can be de�ned (c.f. 4.6.1). Nevertheless, this extension mechanism remains tied to
the Spoon API, which may be a high barrier to overcome for annotation framework de-
velopers not familiar with the tool. Generic constraints and AVal only address challenge

63

Chapter 4. Annotation Constraints

III, in the next chapter we present how to address the three remaining challenges by
introducing the concept of annotation models.

64

5

Modeling Annotations

Contents
5.1 Representing annotations as objects 66

5.2 Annotation Models . 66

5.2.1 De�ning annotation models 69

5.2.2 Annotation associations . 69

5.2.3 Code associations . 69

5.2.4 Model consistency . 70

5.2.5 Default values . 70

5.2.6 Example . 71

5.3 ModelAn: Annotation framework for Annotation Model

De�nition . 74

5.3.1 Model de�nition . 74

5.3.2 Model constraint de�nition 76

5.3.3 Other means of model de�nition 78

5.4 ModelAn: Model Extraction 80

5.4.1 Model construction . 81

5.4.2 Instantiator generation . 82

5.4.3 Instance construction . 83

5.4.4 Instance validation . 84

5.4.5 Instance visualization . 85

5.5 Summary . 85

In chapter 3.4 we identi�ed a number of challenges that arise when developing annota-
tion frameworks. In the previous chapter we addressed challenge III; the de�nition and
evaluation of constraints that make an annotated program valid. In this chapter we will
address the remaining challenges, namely: I the representation of domain concepts as
annotations, II the mapping of annotation types to code elements, and IV the rei�cation
of annotations present in a program.

65

Chapter 5. Modeling Annotations

The rest of the chapter is organized as follows: in the next sections we introduce the
advantages of representing annotations with an object model (section 5.1) and introduce
the concept of annotation models (section 7.1.3. In section 5.3 we present an annotation
framework called ModelAn that allows the de�nition of annotation models by de�ning
three annotation types: Association, Default and Targets; as well as a new way to de�ne
annotation framework constraints based on their annotation model, with an annotation
type called OCLConstraint. In section 5.4 we present how annotation frameworks that use
ModelAn are interpreted. Finally, a summary of this chapter is given in section 6.4.

5.1 Representing annotations as objects

As discussed previously, the de�nition and interpretation of annotations is complicated by
the restrictions imposed by the Java language in their de�nition. Although annotations
are not objects, several bene�ts can be obtained by representing them and manipulating
them as if they were. Mapping concepts to objects is a much better understood process
than to map them to annotation types (challenge I), and if annotations were objects, their
rei�cation (challenge IV) when processing annotated programs would be straightforward.
It is for this reason, that we propose to represent annotations as objects.

A deeper look into the representation of annotations as objects brings up the following
advantages:

• Seeing annotations as a separate object model would bring their de�nition closer
to the domain model for the framework, since common modeling techniques rely
mostly on OO concepts (UML, MOF for example),

• Such a representation would simplify the manipulation of annotations when process-
ing them, since information such as the relationships between annotations would be
preserved in the translation between the domain model and the annotation types,

• Finally, seeing annotations as an object model during an application's interpretation
would allow a higher degree of abstraction over the manipulation of the AST of the
interpreted program.

Having explored the advantages of representing annotations in a program as objects,
the manner in which this will be achieved remains to be de�ned. This is the subject of
the following section.

5.2 Annotation Models

Annotation types represent concepts from a given domain (see chapter 3.1). These con-
cepts belong to a domain, which is the domain for which the annotation frameworks
provides a solution. To faithfully represent annotations as objects, they must be consis-
tent with the concepts of this domain, with their attributes, their relationships and their

66

5.2. Annotation Models

Figure 5.1: Annotation types and corresponding model

constraints. We will call the representation of the domain as de�ned by the annotation
types an annotation model.

The goal of the annotation model is to reduce the gap between the annotation types
and the domain model, by providing an intermediate representation which retains im-
portant information from the domain model, but remains close to the actual code that
de�nes the annotation types.

An annotation model is then a representation of the domain of the annotation frame-
work whose entities are those de�ned as annotation types. In addition to the concepts of
the annotation types, relationships between them must be also represented. Finally, in
order to have a complete representation, the annotation model must include a model of
the code elements on which annotations are meant to be placed. This model of the code
elements (code model) is the AST of the programming language, i.e., Java. On the left
side of �gure 5.1 an annotation framework composed of three annotation types: A, B, C
that are meant to be placed on classes, �elds and local variables respectably, is shown.
In the right side of �gure 5.1, the corresponding annotation model is shown. In it, the
concepts from the annotation types are reproduced, and the relationships between them,
which exist implicitly in the annotation types, are speci�ed. Also, in gray, a part of the
code model and the relations between it and the annotations are depicted by dashed lines.

Just as the annotation model represents the annotation types of a framework, it is
possible to think that instances of the annotation model will represent an annotated
program. The relationship between the set of annotation types, the annotation model, an
annotated program, and instances of the annotation model are depicted in Figure 5.2. In
it, the set of annotation types A,B and C is used in an application composed of two classes
Foo and Bar (left side of the �gure). The corresponding annotation and code model as
well as the instance of it are depicted in the right side of the �gure.

67

Chapter 5. Modeling Annotations

Annotation Types

@A @B

@C

Annotated Application

@A

@A

@C
@B

@A

@B

@C

Annotation & Code
ModelClass

FieldMethod

LocalVar

Class

FieldMethod

LocalVar

@A

@B

@C

Class

FieldMethod

LocalVar

@A

@B

@C

Annotation Model Instace

class Bar

int x;

class Foo

int y;

void m()

@C

@A

@A

@B

class Bar

int x;

class Foo

int y;

void m()

@C

@A

@A

@B

@A
class Foo{
 @B int x;

 void m(){
 @C int y;
 }
@A
class Bar {
 //...
}

public @interface A {}

public @interface B {}

public @interface C {}

Figure 5.2: Annotation models are to annotation types like annotated programs are to
annotation model instances.

68

5.2. Annotation Models

5.2.1 De�ning annotation models

In order to obtain an annotation model from a set of annotation types, and to instantiate
that model from an annotated program, the annotation types must be augmented with
the associations between them, default values and the constraints that will guarantee that
an annotated program will be translated into a valid annotation model instance. Each of
these additions will be discussed next.

5.2.2 Annotation associations

Associations between annotation entities in the annotation model describes semantic con-
nections between the concepts that they represent. Since it is not possible to de�ne such
connections in the annotation types themselves due to Java's limitations, the associations
must be externally de�ned. To model associations between annotation entities, we de�ne
an association as having a name and two ends: the owner of the association, and its tar-
get. This means that associations in the annotation model are binary and unidirectional.
To keep the annotation model simple, we make no distinction for containment relations
nor cardinality of the association's edges; both are handled via consistency constraints.

In order to be able to correctly create annotation model instances from annotated
programs, the associations in the model must include information not only of the type of
entities that are associated, but also of which particular instances of the entities partici-
pate. For example, consider our running example of SaxSpoon: the XMLParser annotation
type is associated with the HandlesStartTag annotation. This alone is not enough to con-
struct a model instance from an annotated program, since if several classes and methods
carry XMLParser and HandlesStartTag annotations, it is impossible to know which XMLParser

instances are associated with which HandlesStartTag instances. Because of this, in addition
to the name and ends, an association in an annotation model must also de�ne a query.
The query, in the example, would specify that a XMLParser annotation placed on a given
class is related only to HandlesStartTag annotations placed on methods on that same class15

The inclusion of the query in the association is what allows the automatic instantiation
of models from annotated programs.

5.2.3 Code associations

Annotations in applications are linked to the code elements on which they lay. Because
of this, a relationship between annotation entities and code entities exists in the an-
notation model. Two kinds of annotation-code association are modeled: a concrete one
between the annotation entity and the code element that represents the annotation, called
_annotation; and an abstract one between the annotation entity and the code element
on which the annotation is placed, called target.

The di�erence between these two relations is depicted in Figure 5.3. In it, the model
instance for a class Foo annotated with @A is presented. In white, the annotation entity
for the annotation type A has two relations, target going to code entities of type class
and _annotation to the code entity, in gray, that represents the annotation in the AST.

15This query, formalized in OCL can be seen in section 5.2.6

69

Chapter 5. Modeling Annotations

Figure 5.3: _annotation and target relations

5.2.4 Model consistency

As discussed in the previous chapter, annotation frameworks count with a number of
constraints that govern the way in which it can be used. These constraints stem from
the domain in which the annotation framework lies, and therefore, they must be re�ected
in the annotation model. With respect to the techniques exposed in the previous chap-
ter, constraint checking at the annotation model level brings a number of advantages:
constraint speci�cation and checking are well research domains, and numerous tools and
languages exist, allowing the annotation framework developer to leverage them. Also,
the annotation model is closer to the domain model, and therefore, rule translation is
simpli�ed, by for example taking advantage of associations between annotation entities,
which do not exist at the code level.

5.2.5 Default values

In annotation frameworks it is common to have the default value of an annotation type's
element be derived from the code element on which it is placed. For example, in Fra-
clet [RPPM06] � an annotation framework for the Fractal [BCL+06] component model
� an annotation type is used to mark a class as a component. By default, the name of
the component is the simple name of the class on which the annotation lays. Although
Java allows the de�nition of default values for annotation types, they must be compile-
time constants, so expressing the default name for a Fraclet component annotation is
impossible.

To remedy this, we propose to express the default value of annotation type's elements

70

5.2. Annotation Models

Spoon

SaxSpoon

XMLParser

HandlesStartTag

1 0..*

HandlesEndTag1 0..*

1

1

CtMethod
CtClass

1

1

1

11

1

dtdURL: String

value: String

value: String

target
target

correspondingEnd

startTag

endTag

target

correspondingStart

Figure 5.4: SaxSpoon annotation model

as a query on the annotation model for the framework. This provides an additional tool
to the annotation framework developer, and further reduces the semantic gap between
the domain of the framework and the annotation model.

5.2.6 Example

We will illustrate the annotation model de�nition process by de�ning one for the SaxSpoon
annotation framework introduced in chapter 3.2. There are three annotation types in the
framework: XMLParser, HandlesStartTag and HandlesEndTag that correspond to the concepts
of handlers of the start and end tags of an XML document and their corresponding
container.

SaxSpoon Annotation Model

The annotation model for SaxSpoon is depicted in �gure 5.4. In the model, two packages
are presented, one representing the annotation and the other, the code model. Each
annotation type is translated into a classi�er, and each annotation type element into an
attribute.

Associations

The annotation entities in the model are linked with three associations: start and end

denote the containment relation between a XMLParser annotation and its handlers; while

71

Chapter 5. Modeling Annotations

the corresponding association links handlers for a given tag (for example the start and
end handler for a recipe tag). Target associations link each of the entities to their
intended nodes in the AST of a program. In table 5.1, the queries expressed as Object
Constraint Language (OCL) queries, that complete the de�nition of the associations are
presented. These queries give the semantics of the associations by, for example, stating
to which XMLParser is a HandlesStartTag annotation linked to.

startTag

Context: XMLParser::startTag : Set(HandlesStartTag)

HandlesStartTag.allInstances()->select(hst|self.target.Methods->includes(hst.target))

endTag

Context: XMLParser::endTag : Set(HandlesEndTag)

HandlesEndTag.allInstances()->select(het|self.target.Methods->includes(hst.target))

correspondingEnd

Context: HandlesStartTag::correspondingEnd : Set(HandlesEndTag)

HandlesEndTag.allInstances()->select(handler|handler.value = self.value)

correspondingStart

Context: HandlesEndTag::correspondingStart : Set(HandlesStartTag)

HandlesStartTag.allInstances()->select(handler|handler.value = self.value)

Table 5.1: SaxSpoon Association Queries

The queries are executed in the context of the owner of the association; in the case
of start and end the owner is XMLParser, while for correspondingEnd the owner is
HandlesStartTag and correspondingStart the owner is HandlesEndTag. The context of
the query determines the type of the self pseudo-variable.

The start association query selects as participants of the association those instances of
HandlesStartTag whose target method is one of the methods of the class which is targeted
by the current XMLParser annotation (represented by self). For the end association,
a similar query is used. For the correspondingEnd, the query selects the instance of
HandlesEndTag that has the same value as the HandlesStartTag annotation represented by
self; a similar query is used for the correspondingStart association.

Model Consistency

Having de�ned the annotation model for SaxSpoon, it is possible now to express the
constraints that validate annotated programs as being correct SaxSpoon programs using
the model. This is done via OCL invariants that reason on both the annotation and code
model. Each of the constraints identi�ed for the framework is speci�ed in table 5.2.

Compared with the use of AVal for de�ning constraints, using OCL expressions over
the annotation model has several advantages: it is a uniform speci�cation, since all con-
straints are de�ned using the same language, as opposed to a mix of annotations and
Java; the semantics of the constraints are well understood since they rely on OCL and
the annotation and code model; and �nally, they are composable in a simple way, since
�rst order logic is provided by the OCL. Nevertheless, restricting the constraints to OCL
brings up a number of problems, all of them rooted in the fact that OCL expressions can

72

5.2. Annotation Models

XMLParser

.Should be placed on classes that implement ContentHandler

Context: XMLParser

self.target.SuperInterfaces->collect(sp|sp.SimpleName='ContentHandler').notEmpty()a

.There can only be one Start method handler per tag
Context: XMLParser

self.start->isUnique(value)

.There can only be one End method handler per tag
Context: XMLParser

self.end->isUnique(value)

HandlesStartTag

.The method should be of return type void

Context: HandlesStartTag

self.target.Type.SimpleName = 'void'

.Methods parameters should all be of type String
Context: HandlesStartTag

self.target.Method.Parameters->forAll(p|p.Type.SimpleName = 'String')

.A method cannot handle the start and end of a tag
Context: HandlesStartTag

HandlesEndTag.allInstances()->select(het| het.target = self.target).isEmpty()

HandlesEndTag

.The method should be of return type void

Context: HandlesEndTag

self.target.Type.SimpleName = 'void'

.The method should have a single parameter of type String

Context: HandlesEndTag

self.target.Method.Parameters->forAll(p|p.Type.SimpleName = 'String') and

self.target.Method.Parameters->size() = 1

awith the model alone it is not possible to check if the interface is implemented indirectly

Table 5.2: SaxSpoon Constraints

73

Chapter 5. Modeling Annotations

only reason on modeled entities. For example, the constraints dealing with Java types,
like classes annotated with XMLParser implementing ContentHandler, must be done using the
string representation of the class, since the type hierarchy of the annotated application is
not modeled and cannot be modeled at the same time as the annotation framework since
it would render the model speci�c to that application. Second, constraints dealing with
constructs that are not part of the annotation framework nor of the AST of the program
must be also included in the model. In the case of the constraints for the parameters of
the methods marked HandlesStart/EndTag, a knowledge of the DTD of the XML documents
on which the application will operate is needed. Without it, it is impossible, using OCL,
to check the constraint that states that the parameters of the method that handles a tag
must have the same names as the attributes de�ned for that tag. In AVal, both problems
are avoided by implementing the constraint checking in Java. Since AVal constraints are
implemented using Spoon they have access to both the AST and the types of the analyzed
program, therefore performing checks that require knowledge of the types de�ned in the
program is not an issue. Also, as AVal checkers have access to third-party libraries, they
can delegate to them the analysis of non-Java artifacts, for example the validation of a
DTD.

In the next section, we show a tool chain that allows the de�nition and instantiation
of annotation models presented in this section using a dedicated annotation framework
called ModelAn.

5.3 ModelAn: Annotation framework for Annotation

Model De�nition

In this section we present an annotation framework for the de�nition of annotation models
from the source code of an annotation framework called ModelAn. The approach taken by
ModelAn is similar to that of AVal (chapter 4.5): using annotations, the de�nition of the
annotation types is augmented with the information necessary to construct an annotation
model; namely the associations of which the annotation type participates, the default
values for its elements, and the constraints to guaranty the consistency of instances of
that model. Even though ModelAn takes a code-directed approach to de�ning annotation
models, other approaches to the construction of annotation models are discussed at the
end of this section. We start by introducing the annotation types that ModelAn o�ers in
the next section.

5.3.1 Model de�nition

The annotation model is extracted from the annotation types that compose the framework.
As a starting point, each annotation type is represented as an element of the model with
its corresponding attributes. The model is then augmented by the annotation framework

74

5.3. ModelAn: Annotation framework for Annotation Model De�nition

developer using three annotations on the annotation types: Association, DefaultValue and
Targets

Association

Associations de�ne the structural relations between annotations. An association must
de�ne a name, a type and a de�ning query. The OCL query is evaluated in the context of
the annotation type on which it is placed, and can only reason on associations on the code
model because it itself de�nes the associations on the annotation model. For example,
in the SaxSpoon annotation framework, there is a relation between a XMLParser and
its start and end handlers. Therefore, the de�nition of the XMLParser annotation type
would be as follows:

@Association(name = "Start",

type = HandlesStart.class ,

query =

"HandlesStart.allInstances()->

select(self.target.Methods ->includes(target))")

public @interface XMLParser {

String dtdURL () default "";

}

In this example, the query traverses all the HandlesStart elements, looking for those
which are placed on methods which belong to the class annotated with XMLParser. Hence,
this query constructively de�nes the relation start. A similar construction is used to de�ne
the relation between XMLParser and HandlesEnd

Default Value

Attributes in annotations often have default values. In the general case, the default value
is a static value (for example the empty string), but in some cases, the default value
depends on the place in which an annotation is placed. For example, suppose that the
name of the tag that a method handles is by default the name of the method. In this
case, the default value cannot be known when the annotation type is de�ned, since it will
change depending on the use of the annotation. The annotation framework developer can
then state, using an OCL query, what the default value of the property should be. In the
case of SaxSpoon, the de�nition of the HandlesStart would be:

public @interface HandlesStart{

@DefaultValue("self.target.SimpleName")

String value ();

}

Targets

As discussed in section 5.2.3, just as relations between annotation entities are quali�ed
by a query, relations between the annotation entities and code elements (i.e., the target
relation) can also be quali�ed by queries. To this end, ModelAn o�ers a Targets anno-
tations that allows the annotation framework developer to auto-annotate code entities

75

Chapter 5. Modeling Annotations

that correspond to a given OCL query. Suppose, for example, that in SaxSpoon, the
developer would like to annotate all classes that directly implement ContentHandler with
the XMLParser annotation. To do this, the de�nition of the XMLParser annotation would be
meta-annotated as follows:

@Targets("CtClass.allInstances()->

select(c |c.SuperInterface ->

any(si|si.SimpleName = 'ContentHandler ') <> null)")

public @interface XMLParser {

String dtdURL () default "";

}

5.3.2 Model constraint de�nition

Once the annotation model has been de�ned, the developer can de�ne the constraints
on it. In order to do this, ModelAn de�nes a single annotation, OCLConstraint that is to
be placed on the annotation type. The constraint is represented by an OCL expression
that is evaluated in the context of the annotation model element that corresponds to the
current annotation type.

OCL expressions placed on annotation types can use the associations de�ned by the
Association annotation to express the constraints of the annotation framework. The
OCLConstraint annotation is an AVal annotation (see chapter 4.5) that de�nes a single
property that contains the expression itself. In SaxSpoon, the annotation framework
developer may want to specify a constraint stating that a warning should be raised if a
Sax parser handles the Start, but not the end of a given tag. For this, a constraint must
be placed in the corresponds relation:

@Association(name = "corresponds",

type = HandlesEnd.class ,

query =

"HandlesEnd.allInstances()->"+

"select(handler|handler.tagName = self.tagName)")

@OCLConstraint("self.corresponds ->size() = 1")

public @interface HandlesStart {

String value ();

}

In this example, a corresponds association is de�ned using the �rst Association anno-
tation, and the second OCLConstraint annotation places an OCL constraint that uses it to
specify that there should be a single corresponding tag handler for the same tag.

In �gure 5.5, the annotation model of SaxSpoon and its corresponding annotation
types marked with ModelAn annotations are shown.

The Targets annotation in conjunction with the DefaultValue annotation and the OCLConstraint
annotation can provide interesting possibilities. Suppose that annotations are used to
gather metrics of a system, one of them being the number of methods of classes in a given
package P. Further more, because of design restrictions, classes with a large number of

76

5.3. ModelAn: Annotation framework for Annotation Model De�nition

@Associations ({

@Association(name="startTag",

type = HandlesStartTag.class ,

query= "HandlesStartTag.allInstances()->"+

"select(self.target.Methods ->includes(target))"),

@Association(name="endTag",

type = HandlesEndTag.class ,

query= "HandlesEndTag.allInstances()->"+

"select(self.target.Methods ->includes(target))"),

})

public @interface XMLParser {

String dtdURL () default "";

}

@Associations ({

@Association(name = "correspondingEnd",

type = HandlesEndTag.class ,

query = "HandlesEndTag.allInstances()->"+"

select(handler|handler.value = self.value)")

})

@OCLConstraint("self.correspondingEnd ->size() = 1")

public @interface HandlesStartTag {

String value ();

}

@Associations ({

@Association(name = "correspondingStart",

type = HandlesStartTag.class ,

query = "HandlesStartTag.allInstances()->"+

"select(handler|handler.value = self.value)")

})

@OCLConstraint("self.correspondingStart ->size() = 1")

public @interface HandlesEndTag {

String value ();

}

Figure 5.5: SAXspoon Ecore Model and Annotated types 77

Chapter 5. Modeling Annotations

methods, �ve, are discouraged. By de�ning an annotation type NOM, and using the Targets

and DefaultValue annotations, it is possible to encode the interpretation of the annotation
in the annotation's de�nition itself:

1 @AValTarget(CtClass.class)

2 @Targets("CtClass.allInstances ()->(c |c.Parent.SimpleName = 'P')

3 @OCLConstraint("self.value < 5")

4 public @interface NOM{

5 @DefaultValue("self.Methods ->size()")

6 int value ();

7}

In line 1 the Target annotation states that this annotation is supposed to go on classes.
In line 2, it is stated the kind of classes on which this annotation will go (that is classes
on the package P). In line 5 the DefaultValue annotation states that the value of the
element of the annotation is, precisely, the number of methods of the class on which this
annotation lays. By processing this annotation de�nition with its interpretation engine,
all of the classes belonging to the package P will carry the annotation NOM with the number
of methods that they have. Finally, the OCLConstraint annotation in line 2, will instruct
ModelAn's interpretation engine to raise an error on NOMs annotations that have a value
greater than �ve: that is on those classes with more than �ve methods.

5.3.3 Other means of model de�nition

So far, Association, DefaultValue and OCLConstraint annotations have been used to de�ne
annotation models. There are however other means to specify the annotation models;
we present two: using AVal constraints to implicitly de�ne the annotation model, and
explicitly de�ning the model using traditional modeling techniques.

Using AVal for model de�nition

As we have seen in the previous sections, complex annotation frameworks require valida-
tions that concern both other annotations and the program on which they are used. But,
where do these constraints come from? Consider the Inside validation, if an annotation
type A is required to reside inside another one, B, this implies a relationship between them
since it makes no sense for A to be present in the program without its corresponding B.
Now, suppose that both A and B are classes in an UML class model, then the relationship
induced by the Inside validation could be described by means of a containment association
between them. Therefore, the Inside constraint actually represents both an association,
and a constraint over it.

We have identi�ed three AVal constraints that induce relationships in the annotation
model: Inside, Requires and RefersTo:

Inside As already mentioned, stating that an annotation is constrained to be inside
another one's scope implies a relationship. If the annotation developer states that A

inside B, in the annotation model, an association going from B to A will be constructed
with a name N. The query of the association will be

78

5.3. ModelAn: Annotation framework for Annotation Model De�nition

B.allInstances()->select(b | self.target.Methods->includes(b.target))

supposing that A's target is class and B's target is method. And, since Inside also
implies a constraint the following expression

A.allInstances()->forAll(a|B.allInstances()->exist(b|a.N = b))

will be added to B's invariant, stating that no instance of A can exist if it is not related
to an instance of A by the N association.

Requires When an annotation type A requires another one B, this means that the use
of A on a given element makes no sense if it is not already annotated with B. Because of
this, requires constraints imply an optional association. Supposing that the constraint
A requires B exists on an annotation framework, then an association with name N going
from B to A with the following query can be constructed.

A.allInstances()->select(a|a.target = self.target)

As the generic constraint must also be de�ned, the following expression is added to
the invariant of B

B.allInstances()->forAll(b| A.allInstances()->exist(a| a.N = b)

As with the Inside constraint, this constraint states that all instances of B must
participate in the association de�ned by the Requires constraint.

RefersTo These kinds of constraints are the ones that most strongly imply associations
between annotations. In chapter 7.1.2, two kinds of refersTo constraints are introduced:
id references and type references. In the �rst kind, an annotation A refers to an annotation
B by the value of one of their elements v. In this case, an association going from A to B

with the following query is constructed:

B.allInstances()->select(b| b.v = self.v)

In the case of type references, an annotation A has an element v that points to a Java
type that carries an annotation B. In this case, the association going from A to B has the
following query:

B.allInstances()->select(b| b.target.SimpleName = self.v.SimpleName)

In both cases, as with the previous AVal annotations, the constraint in the annotation
model is that all instances of B must participate in an association:

B.allInstances()->forAll(b| A.allInstances()->exists(a| a.N = b)

Manual Model Construction

It is also possible to de�ne the annotation model without resorting to annotating the
annotation types of the framework, by creating the model from scratch. In this case, a
modeling tool is used to construct the annotation model, creating by hand each of the
entities that represent the annotation type, and using the tool's facilities to construct the

79

Chapter 5. Modeling Annotations

Meta-annotated
Annotation Types

Model Extraction
Engine

Annotation Model
(EMF Ecore)

@ @

@

@ @

@

Model Instantiation
EngineAnnotated Program Annotation Model

InstanceApplication Developer

Annotation Framework
Developer

Figure 5.6: ModelAn interpretation �ow

associations between them and between the annotation entities and the code model. This
model, if it is to be integrated with the tool chains that extract annotation models from
ModelAn or AVal annotations, must be consistent with the way in which the annotation
entities are de�ned in this chapter; that is, the annotation entities must have the same
name and attributes as the annotation types, the associations must carry queries, and
links to the target and _annotation must exist for each annotation entity.

It is, of course, not a requirement that the annotation model be created by hand.
It is possible to imagine that the annotation model would be the last step in a model
transformation chain that start from a higher-level model. Such a transformation chain
would, however, fall outside of the scope of this work.

5.4 ModelAn: Model Extraction

As presented in the previous section, ModelAn de�nes a number of annotation types to
de�ne the annotation model of an annotation framework. In this section we present how
these annotations are interpreted in order to obtain an annotation model. The inter-
pretation of ModelAn annotations is composed of three stages: the model construction
from the annotation types, the generation of source code processors that will instantiate
the annotation model, and the instantiation of the model itself. The interpretation of
ModelAn annotations relies on several libraries. First of all, Spoon [PNP06] is used as
an annotation processor and code generator. The Eclipse Modeling Framework is used to
describe the annotation model, while SpoonEMF [Bar06] is used as a code model.

The general process for the interpretation of ModelAn�annotated frameworks is de-
picted in Figure 5.6. First, the annotation framework developer uses ModelAn annotations
to meta-annotate its framework. The meta-annotated types are fed into the model extrac-
tion engine. From the model extraction engine, two artifacts are produced: an EMF Ecore
model that represents the annotation model (section 5.4.1) and a model instantiation en-
gine (section 5.4.2). The application developer then inputs the program, annotated with
the annotation types of the framework, to the model instantiation engine produced in

80

5.4. ModelAn: Model Extraction

the previous phase. By analyzing the annotated program, the model instantiation engine
produces an instance of the annotation model (section 5.4.3).

Each of the phases of the interpretation of ModelAn is discussed in detail below.

5.4.1 Model construction

class Bar

int x;

class Foo

int y;

void m()

class Bar

int x;

class Foo

int y;

void m()

@C

@A

@A

@B

Class

FieldMethod

LocalVar

Class

FieldMethod

LocalVar

@A

@B

@C

AST

ModelBuilder

@A

@B

@C

@A

@B

@C

Annotation
Model

Targeting

Annotation
Model

Class

FieldMethod

LocalVar

@A

@B

@C

ModelDef

Annotation
Model

Class

FieldMethod

LocalVar

@A

@B

@C

Figure 5.7: Model Construction

The construction of the annotation model is performed in several steps by Spoon
source code processors. Each step contributes to the annotation model di�erent features.
�gure

The �rst processor, called ModelBuilder is in charge of constructing entities of the
annotation model. It starts by �rst creating the Ecore �le that will contain the annotation
model. Then, the processor visits each annotation type de�nition, creating an EClassi�er
(Ecore's classi�ers) with the same name as the annotation type. Each of the elements
of the annotation type is then added to the EClassi�er, converting them to attributes
for elements whose type are primitive types or enumerations, and as associations when
the type of the element is an annotation type. The package structure that contains each
annotation type is also reproduced in the annotation model. Finally, the _annotation

association representing a reference to the AST representation of the annotation is added
to the model. Since associations are constructed between annotation types and elements
which are annotation types, a second pass over the EClassi�ers, �xing dangling references
is made. At the end of the processing round made by ModelBuilder, all of the annotation
types are translated to EClassi�ers. The annotations are then saved to an Ecore �le, and
kept in an in-memory dictionary for the subsequent processors.

The second processor, TargetingProcessor will create the target relations between the
annotation entities in the model and their corresponding code elements. The target for
an annotation type is taken from two sources: Java's Target, or AVal's AValTarget meta-
annotations. If neither meta-annotations are present for a given annotation type, the
target relation will point to the root type of the code model; in the case of SpoonEMF,
this will be CtElement. If annotation type targets several code elements (for example, �elds
and local variables), several target relations will be created.

The third processor in the model extraction chain, ModelDefProcessor will be in charge
of constructing associations between the annotation types as directed by the Association

81

Chapter 5. Modeling Annotations

annotations. The processor traverses the EClassi�ers in the model, and for each one, it
�nds the corresponding annotation type (via the directory created by the ModelBuilder),
and constructs EReferences for each Association annotation found in it. The query of
the association is reproduced in the model as an EAnnotation on the reference. This
processor also reproduces the default value information placed on the annotation types
using the DefaultValue annotation on the model as EAnnotations on the attributes of the
corresponding EClassi�ers. At the end of the processing round, the annotation model
will be complete. Note that since all the information present on the ModelAn annotation
in the original annotation types is reproduced on the model, there is no further need for
them. Because of this, it is possible to construct model instances from applications that
use a version of the annotation framework that does not carry ModelAn annotations; this
is important for the distribution of ModelAn-based processing tools.

Finally, a fourth optional processor, AValModelBuilder, can be applied to interpret AVal
annotations to add associations to the annotation model as described in section 5.3.3.0.
This processor acts in a similar way to the ModelDefProcessor.

In summary, in this phase, annotation types that carry ModelAn or AVal annotations
is analyzed, and an Ecore �le containing the annotation model is produced. The model
extraction process is performed by four processors totaling close to 350 lines of code. The
following phase will generate a source code processor that will take an annotated program
and produce an instance of the annotation model.

5.4.2 Instantiator generationModelDef

Annotation
Model

Class

FieldMethod

LocalVar

@A

@B

@C

Annotation
Model

Class

FieldMethod

LocalVar

@A

@B

@C

EMF
CodeGen

Model Java
Classes

A
B

C

Instantiation
Generation

Spoon Instantion
Processor

A
B

C

Spoonlet
Generation

spoonlet Jar

Figure 5.8: Instanciator Construction

In this phase, a Spoon source code processor to instantiate the annotation model
produced in the previous phase is generated. The process is summarized in Figure 5.8. In
addition to this, a set of Java classes that reify the annotation model are produced. This
phase uses the EMF code generation facilities, as well as Spoon to analyze and generate
the processor. This phase is comprised of three steps: the generation of the Java classes
that will reify the model, the generation of the Spoon processor that will instantiate
these classes (and through them, the annotation model), and �nally, the generation of a
Spoonlet plug-in.

As a �rst step, EMF is used to generate the Java classes that represent the annotation
model. This process will translate EClassi�ers to Classes, attributes to �elds, and it will

82

5.4. ModelAn: Model Extraction

generate getter and setter methods for the associations. The use of EMF to generate
the classes brings as added bene�t the set of tools that are a part of EMF, in particular,
the OCL evaluation engine, which makes the implementation of the constraint checker
straightforward.

Once the Java classes have been generated, the second step generates a source code
processor that will instantiate them in accordance to an annotated program. The gen-
eration of the source code processor is carried out by the InstantiationGeneration Spoon
processor. This processor starts by constructing the instantiation processor class. In
essence, the instantiation processor will traverse annotations in a program, identifying
the corresponding annotation entity in the model, and instantiating its Java class. The
body of the instantiation processor is then a case statement to select the correct Java class
for a given annotation. Once each case statement is added to the instantiation processor
class, the InstantiationGeneration processor constructs a spoonlet descriptor.

Finally, in the last step, the EMF classes, the instantiation processor and the spoonlet
descriptor are packaged into a Jar can then be used by Spoon to generate annotation
model instances out of annotated programs.

By the end of the instantiator generation phase, the following artifacts are produced:
a set of classes representing the rei�cation of the annotations, a source code processor
that given an annotated program generates an object graph that represents an instance
of the annotation model, and a spoonlet jar that can be used by the Spoon plug-in to
process programs. In total, the instantiator generation phase is implemented in 255 lines
of code distributed in one processor and two source code templates.

5.4.3 Instance construction

class Bar

int x;

class Foo

int y;

void m()

class Bar

int x;

class Foo

int y;

void m()

@C

@A

@A

@B

ModelDef

Annotation
Model

Class

FieldMethod

LocalVar

@A

@B

@C

class Bar

int x;

class Foo

int y;

void m()

class Bar

int x;

class Foo

int y;

void m()

class Bar

int x;

class Foo

int y;

void m()

class Bar

int x;

class Foo

int y;

void m()

class Bar

int x;

class Foo

int y;

void m()

Code Model
(SpoonEMF)

Targeting

class Bar

int x;

class Foo

int y;

void m()

class Bar

int x;

class Foo

int y;

void m()

class Bar

int x;

class Foo

int y;

void m()

class Bar

int x;

class Foo

int y;

void m()

Code Model
(annotated)

Instantiation
Processor

class Bar

int x;

class Foo

int y;

void m()

@C

@A

@A

@B

class Bar

int x;

class Foo

int y;

void m()

@C

@A

@A

@B

Annotation and Code
Model

Default Value

class Bar

int x;

class Foo

int y;

void m()

@C

@A

@A

@B

Annotation and Code
Model

Figure 5.9: Instance Construction

The process of constructing an instance of a model from an input annotated program
comprises several steps (Figure 5.9). First, a Targeting processor is in charge of placing
annotations on the input program as directed by the Targets meta-annotations. This
is done by evaluating the OCL queries of the Targets annotations and annotating the
resulting code elements in the AST.

Following this, the instantiator processor generated in the previous phase is invoked.
At the end of the processing round, the in-memory object graph of the annotation model's

83

Chapter 5. Modeling Annotations

1 public class OCLConstraintValidator

2 implements Validator <OCLConstraint > {

4 public void check(ValidationPoint <OCLConstraint > vp) {

6 // retrieve ocl expression to evaluate

7 String oclExpr = vp.getValAnnotation (). value ();

9 //Set up EMF OCL evaluation engine

10 //...

11 //get annotation reification from broker and put it in modObject

12 EClass c = modObject.eClass ();

14 //Set context of OCL expression to current annotation entity

15 helper.setContext(c);

17 try {

18 // Evaluate OCL expression

19 OCLExpression exp = null;

20 exp = helper.createQuery(oclExpr);

21 boolean success = ocl.check(modObject ,exp);

22 if(! success){

23 // Report error

24 }

26 } catch (ParserException e) {}

27 }

29 }

Figure 5.10: OCLConstraintValidator class responsible for annotation model consistency
checking

instance is registered in a model broker that translates from annotations to their rei�ed
counterparts. In the last step, a DefaultValueProcessor will traverse the objects of the an-
notation model instance, evaluating the OCL queries that were de�ned in the DefaultValue

annotations, and replacing the values of the attributes.

At the end of this phase, an object graph representing the annotation model instance
that corresponds to the annotations present on the input program is obtained. This object
graph is accessible through a InstantiationBroker that, given an annotation, produces the
corresponding rei�cation. The object graph can then be used to validate the constraints
de�ned in the annotation model, to navigate the input program, or to aid in the inter-
pretation of the annotation framework. In the following sections we detail the validation
process and the visualization process.

5.4.4 Instance validation

The validation of the constraints of the annotation framework on the input program is
performed using AVal (chapter 4.5). For this, the OCLConstraint annotation introduced
in section 5.3.2 is annotated with @Implementation(OCLConstraintValidator.class). The
OCLConstraintValidator class will evaluate the OCL expression that represents the con-
straint, and report its possible violation.

84

5.5. Summary

Figure 5.11: ModelAn Viewer Eclipse Plug-in for a Fraclet application

5.4.5 Instance visualization

In addition to constraint checking, the instance of the annotation model for a program
can be used for program comprehension purposes. Given that the annotations used in
a program represent a domain model (the annotation model) projected into the abstrac-
tions of the program (classes, methods, etc), the instance of the annotation model gives
a domain-speci�c view on the application. For example, a complex application, using
several annotation frameworks, would bene�t from the direct visualization of each of the
annotation model instances, since each one represents a facet of the application.

To aid the programmer, we have developed an Eclipse plug-in that provides a tree-
based view of the annotation models in a given program. In �gure 5.11, the ModelAn
Viewer plug-in is used to visualize the use of the Fraclet annotation framework in a pro-
gram. In a tree, all the annotation entities that represent components in the applications
are displayed; drilling down on the tree, it is possible to see to which other annotation
entities the current component is associated to. In the lower part of the view, there is a
table with the attributes and values of the selected entity. When the programmer clicks
on an annotation entity, the corresponding associated code entity is displayed in the IDE's
editor, this is done via the target relations of annotation entities.

The viewer works by using the instantiation spoonlet discussed in section 5.4.2, and
it formats the object graph that results in a tree structure. To do this, it is necessary to
designate which elements will serve as roots to the tree, this is con�gured in the plug-in
via an OCL query (�gure 5.12).

5.5 Summary

In this chapter we have presented the notion of annotation models, and through it, we
have proposed solutions to the three remaining challenges of annotation framework de-
velopment. Annotation models provide a generic way of representing domain concepts as

85

Chapter 5. Modeling Annotations

Figure 5.12: ModelAn Viewer Con�guration

annotations (challenge I), the relationship between annotation types and code elements
can be formally speci�ed by the target relation (challenge II), and annotation mod-
els, when represented as Java objects, serve as a powerful rei�cation of the annotations
present in a program, since they provide direct access to associated annotations, and can
be manipulated by EMF tools, such as OCL queries and visualization plug-ins.

In the following chapter, we show how the techniques proposed in this, and the pre-
vious chapters apply to three real-world annotation frameworks: the Fraclet annotation
framework, the JSR 181 for web service development, and the Java Persistence API.

86

Part III

Validation

87

6

Case Studies

Contents
6.1 Fraclet . 90

6.1.1 Description . 91

6.1.2 Example application . 91

6.1.3 Constraints . 91

6.1.4 Annotation model . 92

6.1.5 Evaluation . 96

6.2 Java Web Services . 97

6.2.1 Description . 97

6.2.2 Example application . 97

6.2.3 Constraints . 98

6.2.4 Annotation model . 100

6.2.5 Evaluation . 105

6.3 Java Persistence API . 105

6.3.1 Description . 106

6.3.2 Example application . 106

6.3.3 Constraints . 108

6.3.4 Annotation model . 108

6.3.5 Evaluation . 116

6.4 Summary . 116

In this chapter we apply the techniques described in previous chapters 4.5 and 5.3
for de�ning, specifying and modeling three annotation frameworks: Fraclet, the JWS for
specifying web services, and the Java Persistence API. The case studies will serve as both
example, and validation of the usefulness of the proposed techniques.

The �rst case study, Fraclet, de�nes six annotations that represent basic notions in
the Fractal component model. Fraclet-annotated classes contain the implementation of

89

Chapter 6. Case Studies

primitive components by using a Component annotation to mark a class as a component,
Attribute and Requires annotation to mark �elds as containing attributes of the component
in the former case, or instances of required interfaces in the latter. In addition to this,
three annotations represent Interfaces, Lifecycle methods and Controller attributes.

The second case study, JWS, is a Java speci�cation for the use of meta-data anno-
tations to specify WebServices through seven annotations. Similar to Fraclet, classes
annotated with WebService represent webService implementations. Services are provided
through methods annotated with WebMethod, and con�guration of the parameters and re-
sult of a web operation are given via the WebParam and WebResult annotations. Other
annotations are used to specify the way the services are mapped to the underlying SOAP
infrastructure.

The third and �nal case study, JPA, is the part of the EJB3 speci�cation that de�nes
the persistence of entity components. This is by far the largest of the case studies, totaling
over sixty annotations. Annotations are used to map entities to tables, �elds to columns,
relationships between entities, queries, joint tables, etc. For brevity, in this document we
discuss ten annotations of the sixty de�ned in the speci�cation.

This chapter is divided into three parts, each dedicated to a case study: section 6.1 dis-
cusses Fraclet, an annotation framework for the Fractal component model; section 6.2
introduces the annotation framework for web service implementation JWS; and in sec-
tion 6.3 we present the annotation framework for the Java Persistence API. Each of the
case studies starts by giving an overview of the framework and an example of its use. This
is followed by the constraints we identi�ed, and the de�nition of the framework's annota-
tion model. Finally the case study closes with an evaluation. After the case studies, the
chapter is summarized in section 6.4.

6.1 Fraclet

Fraclet is an annotation framework for the Fractal component model [BCL+06]. In Frac-
tal, components can be of two kinds: composite components, and primitive components,
depending on whether they are composed of other components, or if they implement func-
tionality themselves. Both types of components are de�ned by means of an architectural
language called FractalADL16. In this language, the Fractal developer speci�es the archi-
tecture of the application by de�ning components, composing primitive components into
composite ones and de�ning the bindings between them and between the primitive compo-
nents and their corresponding implementations in an underlying programming language
(for example Java). The Fraclet annotation framework is used to ease the development
of primitive components by embedding their de�nition into their Java implementation.

16http://fractal.objectweb.org/tutorials/adl/

90

6.1. Fraclet

6.1.1 Description

The Fractal component model de�nes the notions of component, component interface, and
binding between components. Each of these main notions is re�ected in the annotation
types de�ned by Fraclet. There are two implementations of Fraclet [RPPM06], one using
XDoclet2 [WRO04], and the other one using Java5 annotations and Spoon annotation
processor17[PNP06]. We will study the latter in the remainder of this section.

Each of the annotation types de�ned in Fraclet are summarized in table 6.1. The
Component annotation type marks a class as implementing a Fractal primitive component.
Component de�nes two elements: the name of the component, and the set of Interfaces that
the component o�ers. The required interfaces for the component are speci�ed by tagging
�elds of the component class using the Requires annotation type. The Requires annotation
type de�nes three elements: the name of the interface being required, the cardinality of
the binding (i.e., whether the binding is a SINGLETON or a COLLECTION), and its
contingency (i.e., whether the binding is MANDATORY or OPTIONAL). Attributes of
the component are speci�ed by means of the Attribute annotation type, that tags �elds of
component classes. The Attribute annotation type has a name for the attribute, as well
as a default value, both speci�ed as elements of the annotation type. Dependencies to
the container (also known as controller in Fractal) of the component are speci�ed by the
Controller annotation, which has a single element that speci�es the name of the service
o�ered by the controller requested by the component. Finally, The Lifecycle annotation
type is used to mark special methods of the component that are to be up-called when
lifecycle-related events occur. The kind of event that each method handles is speci�ed by
the Lifecycle's element value.

A Fraclet annotated application is not enough to completely describe a Fractal-based
component architecture, since Fraclet only describes the implementation of individual
components. Nevertheless, Fraclet provides a link between the application's architecture
(described in the FractalADL language) and its implementation. Before the introduction
of Fraclet, this link was implicit in the code of the primitive components.

6.1.2 Example application

In Figure 6.1, Fraclet/Spoon is used to augment a Java class in order to represent a
Fractal primitive component. The Client class uses a Component annotation to represent
a component called helloworld.Client that provides a single interface named r. Fields of
this class are marked as attributes, required ports or controller hooks. Finally, a method
on the component is marked as a life-cycle handler.

6.1.3 Constraints

The use of Fraclet on applications to de�ne primitive components must adhere to a series
of constraints for the interpretation engine to correctly generate the corresponding Frac-
talADL and Java code. By discussing with the developers of Fraclet we have identi�ed

17http://fractal.objectweb.org/tutorials/fraclet/

91

Chapter 6. Case Studies

Annotation Location Parameter Description

Component Class name, provides Annotation to describe a Fractal compo-

nent and its provided interfaces

Interface Interface name, signature Annotation to describe a Fractal business

interface.

Attribute Field argument, value Annotation to describe an attribute of a

Fractal component.

Requires Field name, cardinality, con-

tingency

Annotation to describe a binding of a Frac-

tal component.

Lifecycle Method value Annotation that marks a method as a life-

cycle callback. The parameter speci�es the

step of the life-cycle.

Controller Field value Annotation that marks a �eld as an access

point to the component's re�ective services

Table 6.1: Overview of Fraclet annotations

the constraints presented in table 6.2. Based on the constraints, we will meta-annotate
each of the annotation types de�ned in Fraclet with AVal generic constraints.

6.1.4 Annotation model

Having studied the Fraclet annotation framework, and having identi�ed its constraints,
it is now possible to de�ne the Fraclet annotation model. For this, we use the AVal and
ModelAn annotation types that embed in the source code of Fraclet's annotation types the
associations and constraints of its annotation model. Each of the annotations is discussed
below.

Component

1 @Retention(RUNTIME)

2 @AValTarget(CtClass.class)

3

4 @OCLConstraint(self.contains_Attribute ->collect(name)"

5 +"union self.contains_Controller ->collect(value)"

6 +"union self.contains_requires ->collect(name)

7 +"isUnique(a |a)")

9 public @interface Component {

10 @Unique

11 @Default("self.target_CLASS.SimpleName")

12 String name() default EMPTY;

14 Interface [] provides () default {};

15 }

The target of the Component annotation type is speci�ed using the AValTarget annotation
in line 2, the AVal annotation is used because Java's Target annotation does not allow to

92

6.1. Fraclet

Component

• A Component's name must be unique in the application. By default, the name of a

component is the simple name of the class on which the Component annotation is placed.

• The names of the attributes, controllers and required interfaces must be unique to the

component.

Interface

• An interface's name must be unique in the application. Since bindings between components

and interfaces is made using the name of the interface, the name must be unique.

• When used inside a Component , Interface.signature must be implemented by the class

• Cannot be put on a class which is already annotated Component

Attribute

• Attribute �elds are only allowed on classes marked as component

• A Field on a Component cannot be at the same time Attribute and Required

• Attributes can only be placed on �elds that have a primitive type, because of the default

value element.

Requires

• Requires �elds are only allowed on classes marked as component

• A Field on a Component cannot be at the same time Attribute and Required

• A Required Interface must be de�ned. The name of the required interface is by default

the name of the �eld on which it is placed.

Lifecycle

• Lifecycle methods are only allowed on classes marked as component

• Lifecycle methods cannot have parameters

Controller

• Controller �elds are only allowed on classes marked as component

Table 6.2: Fraclet annotation's constraints

93

Chapter 6. Case Studies

@Component(name = "helloworld.Client",

provides = @Interface(name = "r",

signature = Runnable.class))

public class Client implements Runnable {

private final Logger log = getLogger("client");

@Attribute(value="Hello world") private String message;

@Requires(name="s") private Service service;

@Controller("name -controller") protected NameController nc;

@Lifecycle(CREATE) protected void whenCreated () {

log.info("helloworld.Client - created.");

}

public void run() {

this.service.print(this.message);

}

}

Figure 6.1: Client Component Fraclet Implementation

make the distinction between classes and interfaces as targets, grouping them into a single
TYPE target. In line 11, the default value for the name of the components is made to
be the simple name of the class on which the annotations are to be placed. Finally, an
Unique AVal annotation is used to state that the name of the components must be unique
throughout the application (line 10).

In line 4, we constraint attributes, controllers and required ports of this component to
have unique names.

Interface

1 @Retention(RUNTIME)

2 @AValTarget(CtInterface.class)

3

4 @OCLConstraint("self.target_INTERFACE.Superinterfaces ->"

5 +"exists(i|i.name= self.signature.SimpleName)")

6 public @interface Interface {

7 @Unique

8 String name() default EMPTY;

10 Class <?> signature () default Constants.class;

11 }

The Interface annotation type is meant to be placed on Java interfaces only, as stated
by the AValTarget annotation in line 2. The name of an Interface must be unique (line 7),
and, when used as an element of a Component annotation, the type declared in the signature
element must be implemented by the class. This is expressed in the OCLConstraint annotation
in line 4.

94

6.1. Fraclet

Attribute

1 @Retention(RUNTIME)

3 @Prohibits(Requires.class)

4 @Target(FIELD)

6 @Inside(Component.class)

7

8 @OCLConstraint("self.target_FIELD.Type.isPrimitive ()")

9 public @interface Attribute {

11 @Default("self.target_FIELD.SimpleName")

12 String name() default EMPTY;

14 String value() default EMPTY;

15 }

As �elds cannot carry at the same time Attribute and Requires annotations, the Attribute

annotation type prohibits the Requires annotation (line 3). The Inside annotation in line 6
is used to constraint Attributes to classes annotated with Component, and to create the
contains_Attribute association used in the de�nition of the Component's constraints. Fi-
nally, the OCL expression in line 8 constraints the type of the �elds on which an Attribute

can be places to primitive types.
The name of the Attribute is made to be the simple name of the �eld on which it is

placed (line 11).

Requires

1 @Retention(RUNTIME)

2 @Target(FIELD)

3

4 @Prohibits(Attribute.class)

5

6 @Inside(Component.class)

7

8 public @interface Requires {

10 @Default("self.target_FIELD.SimpleName")

11 String name() default EMPTY;

13 Cardinality cardinality () default SINGLETON;

15 Contingency contingency () default MANDATORY;

17 }

As with Attribute, Requires annotations must be placed with in �elds of Component classes,
and they prohibit the use of Attribute of the same target (lines 6, 2 and 4).

Controller

1 @Retention(RUNTIME)

2 @Target(FIELD)

3 @Inside(Component.class)

4 public @interface Controller {

5 String value() default "component";

6 }

95

Chapter 6. Case Studies

Figure 6.2: Fraclet Annotation Model

Controllers are meant to be placed on �elds belonging to Component classes (lines 2 and
3).

Lifecycle

1 @Retention(RUNTIME)

2 @AValTarget(CtMethod.class)

3 @Inside(Component.class)

4

5 @OCLConstraint("self.target_METHOD.Parameters.isEmpty ()")

6 public @interface Lifecycle {

7 Step value ();

8 }

Life cycle methods must have no parameters (line 5) and must be placed inside of
Component annotated classes (line 3).

Using the ModelAn tool-chain on the annotation types described above, the annotation
model shown in �gure 6.2 was produced.

6.1.5 Evaluation

There are several advantages of the use of AVal and ModelAn annotations on the Fraclet
annotation framework. For the application developer, the speci�cation of the framework is
now clearer. The documentation for the annotation framework is incomplete or ambiguous
in places (for example on the requirements of the Lifecycle annotation it is not clear if the
method on which the annotation is placed can have parameters). We remedy this by
embedding the constraints in the source code of the framework's interface; making in
self-documented. In addition to this, the extraction of the annotation model (�gure 6.2),
aids in the understanding of the framework for users, since the way in which annotations
relate to each other is now evident. For the annotation framework developer, in addition

96

6.2. Java Web Services

to clarifying the semantics of each of the annotation types, ModelAn annotations reduce
the burden of writing code to check the constraints, and, through the Default annotation,
simpli�es its interpretation.

In all of Fraclet's annotations, AVal annotations are used both to de�ne constraints and
to de�ne associations. The Inside(Component.class) annotation in Fraclet's Attribute, Controller,
Interface, Requires and Lifecycle annotations induces the contains_ relations that are shown
in �gure 6.2. This rids the Fraclet developer of the de�nition of these associations. How-
ever, the developer must be familiar with the way in which ModelAn interprets the Inside

annotation when using the associations de�ned by it, in particular, the sense of the asso-
ciation (which is inverse of the one de�ned by the Inside annotation) and the name of the
association (contains_ plus the name of the annotation).

The ModelAn tool-chain generated 1717 lines of code for the Fraclet annotation model.
Of these, 219 lines correspond to the instantiation processor, while the rest (1498) corre-
spond to the Java classes that represent the rei�cation of the annotation types.

6.2 Java Web Services

The Java Web Service (JWS) [Zot05] is a speci�cation for the description of web services
using pure Java objects. The JWS de�nes a set of annotations and their mapping to
the XML-Based Web Service Description Language. This speci�cation is made to ease
the development of web services in Java by merging the service's implementation with
its de�nition. Web services are composed of a number of web methods that actually
implement the services. The way in which the methods are invoked, their parameters and
return values managed, are all de�ned using annotations in JWS applications.

6.2.1 Description

The JWS speci�cation de�nes eight annotations for the implementation of web services.
These annotations are summarized in table 6.3.

Rules de�ned for the JSR describe restrictions not only on the use of the annotations,
but also on certain properties of the annotated elements, for example that a one-way
operation must have no return value.

6.2.2 Example application

To give a better idea of how the JWS annotations are used to de�ne a web service, consider
the following source code listing:

1 @WebService(targetNamespace="http ://www.openuri.org/jsr181/WebParamExample")

2 @SOAPBinding(style=SOAPBinding.Style.RPC)

3 public class PingService {

4 @WebMethod(operationName = "PingOneWay")

5 @Oneway

6 public void ping(PingDocument ping) {

7 //...

8 }

10 @WebMethod(operationName = "PingTwoWay")

11 public void ping(

97

Chapter 6. Case Studies

Annotation Location Parameter Description

WebService Class, Interface name, targetNames-

pace, serviceName,

wsdlLocation, end-

pointInterface

Class or Interface de�ning a web ser-

vice

WebMethod Method operationName, action Method exposed as a web service op-

eration

OneWay Method � Indicates that a given web server oper-

ation has only input messages and no

output.

WebParam Method Parameter name, targetNames-

pace, mode, header

Maps an individual operation parame-

ter to a web service message

WebResult Method name, targetNamespace Maps the operation's return value to a

web service result

HandlerChain Class, Interface �le, name Associates an externally de�ned han-

dler chain to a web service

SOAPBinding Class, Method style, use, parameter Speci�es the mapping of the WebSer-

vice onto the SOAP message protocol

Table 6.3: Overview of JWS annotations

12 @WebParam(mode=WebParam.Mode.INOUT)

13 PingDocumentHolder ping) {

14 //...

15 }

17 @WebMethod(operationName = "SecurePing")

18 @Oneway

19 public void ping(

20 PingDocument ping ,

21 @WebParam(header=true)

22 String secHeader) {

23 //...

24 }

25 }

In it, the PingService class implements a web service of the same name which uses the
targetNamespace de�ned by the URL in the WebService annotation in line 1. The web
service provides three web methods (de�ned with WebMethod annotations in lines 4, 10 and
17); of these, the PingOneway and SecurePing web methods are oneway methods. All
methods use RPC as invocation style, as speci�ed by the SOAPBinding annotation in line 2.

6.2.3 Constraints

Constraints de�ned in the JWS speci�cation are summarized in table 6.4. Using these
constraints, and the description of each annotation type in the JWS speci�cation we
will de�ne the framework's annotation model and based on it, use AVal and ModelAn
annotations to specify the framework.

98

6.2. Java Web Services

WebService

• The wsdlLocation element must be a URL.

WebMethod

• All methods of WebService classes are web methods

• Only methods belonging to WebService classes can be WebMethods

• If the exclude element is true, all other elements must remain empty.

Oneway

• Can only be placed on methods that carry the WebMethod annotation.

• Methods annotated with Oneway must be of type void, not throw checked exceptions and

have no parameters whose mode are INOUT or OUT.

• Requires WebMethod

WebParam

• This annotation can only be placed on parameters of a method with the WebMethod annota-

tion.

• The name element must be speci�ed if the WebMethod operation is DOCUMENT style, the

parameter style is BARE and the mode is OUT or INOUT

• If the header element is true, the type of the parameter must be a primitive type.

WebResult

• This annotation can only be placed on methods with the WebMethod annotation.

• If the handler element is true, then the type of the method must be primitive.

HandlerChain

• This annotation cannot be placed on methods nor �elds.

• The file element can only contain strings which are valid URLs.

SOAPBinding

• Can be in methods only if the style element is DOCUMENT

Table 6.4: JWS annotation's constraints
99

Chapter 6. Case Studies

6.2.4 Annotation model

We, again use ModelAn and AVal annotations to de�ne the annotation model and its
corresponding constraints for the JWS framework. The source code for each of the anno-
tation types and their corresponding annotations are explained below.

WebService

1 @Target(ElementType.TYPE)

2 @Retention(RetentionPolicy.RUNTIME)

4 public @interface WebService {

5 @Default("self.target_TYPE.SimpleName")

6 String name() default "";

8 String targetNamespace () default "";

10 @Default("self.target_Type.SimpleName.concat('Service ')")

11 String serviceName () default "";

13 @URLValue ()

14 String wsdlLocation () default "";

16 String endpointInterface () default "";

18 @Default("self.name.concat('Port ')")

19 String portName () default "";

20 }

The WebService annotation has only one constraint, that the wsdlLocation string ele-
ment be a valid URL. To check this we use the URLValue (line 13) AVal annotation introduced
in chapter 4.6.1. Three default values are used: the name of the webService is the simple
name of the type on which it is placed, the name of the service is the concatenation of
the name of the webService and �Service�, and the name of the port is the concatenation
of the name of the webService and �Port�. Each of these default values is implemented by
the Default annotations in lines 5, 10 and 18.

WebMethod

1 @Target (ElementType.METHOD)

2 @Retention(RetentionPolicy.RUNTIME)

4 @Inside(WebService.class)

5 @Associations ({

6 @Association(name="service",type=WebService.class ,

7 query="WebService.allInstances()->select(ws|ws.contains_WebMethod ->contains(self))")

9 @Association(name="SOAPBindings",type=SOAPBinding.class ,

10 query="SOAPBinding.allInstances()->select(s|s.target_METHOD = self.target_METHOD)"),

11 })

13 @OCLConstraint("self.exclude implies "+

14 "(self.action = '' and self.operationName = self.target_METHOD.SimpleName)")

16 @Targets("WebService.allInstances (). target_Class.Methods")

17

100

6.2. Java Web Services

18 public @interface WebMethod {

20 @Default("self.target_METHOD.SimpleName")

21 String operationName () default "";

23 String action () default "";

25 boolean exclude () default false;

26 }

WebMethods are only valid on methods of WebService classes. Furthermore, all methods
belonging to WebService classes are WebMethods. The �rst constraint is realized by the Inside

annotation in line 4. The second one is expressed by the Targets annotation in line 16. The
value of the Targets annotation is an OCL expression that evaluates to all the methods
belonging to a class annotated WebService. ModelAn annotation model instantiator will
then annotate each of these methods with a WebMethod annotation using its default values.
Another constraint states that the exclude element, when set to true, implies that no
other element in the annotation can be set. This is expressed by the OCLConstraint annotation
in line 13.

In addition to the constraints, we de�ne two associations. The service association
(line 6) serves as an inverse relation to WebService for the contains_WebMethod induced
by the Inside in line4. The second association is the SOAPBindings that relates the Web-
Method with its corresponding SOAP binding mapping (line 9).

Oneway

1 @Retention(RetentionPolicy.RUNTIME)

2 @Target ({ ElementType.METHOD })

4 @Requires(WebMethod.class)

5

6 @Association(name="WMethod",type=WebMethod.class ,

7 query="WebMethod.allInstances()->select(wm|wm.optional_Oneway = self)")

9 @OCLConstraints ({

10 @OCLConstraint("self.WMethod.contains_WebParam ->"+

11 "forall(wp | wp.mode <> 'INOUT' and wp.mode <> 'OUT'"),

12 @OCLConstraint("self.target_METHOD.ThrownTypes ->isEmpty ()")

13 })

14 @Type(Void.class)

15 public @interface Oneway {

17 }

Methods annotated Oneway must also carry the WebMethod annotation, which is stated with
the Requires annotation in line 4. In addition to this, Oneway method's parameters cannot
be marked INOUT nor OUT, and they must not throw checked exceptions. To specify
this, an association (inverse to that speci�ed with the Requires) must be included (line 6).
Using this WMethod association, OCL expressions to specify the constraints on the web
method's parameters are de�ned in lines 11 and 12. Finally, Oneway web methods must
have no return type (void), which is speci�ed by AVal's Type annotation in line 14.

101

Chapter 6. Case Studies

WebParam

1 @Target (ElementType.PARAMETER)

2 @Retention(RetentionPolicy.RUNTIME)

4 @Inside(WebMethod.class)

5 @Association(name="WMethod",type=WebMethod.class ,

6 query="WebMethod.allInstances()->select(wm|wm.contains_WebParam.contains(self))")

8 @OCLConstraints ({

9 @OCLConstraint("(self.WMethod.SOAPBindings.style = 'DOCUMENT '"

10 +" and self.WMethod.SOAPBindings.parameterStyle = 'BARE'"

11 + " and (self.mode = 'INOUT ' or self.mode = 'OUT '))" +

12 " implies self.name <> ''"),

14 @OCLConstraint("self.header implies self.Parent.Type.isPrimitive ()")

15 })

17 public @interface WebParam {

18 public enum Mode{IN, OUT , INOUT};

19 String name() default "";

20 String targetNamespace () default "";

21 Mode mode() default Mode.IN;

22 boolean header () default false;

23 String partName () default "";

24 }

The WebParam annotation is only valid in parameters for web methods (line 4). If the
SOAPBinding style of the web method is DOCUMENT.BARE, and the parameter is
either INOUT or OUT, the web parameter must be named, as stated in the OCLConstraint

annotation in line 9. Also, if the web parameter is to be passed in the header of the
message (header element is true), then the type of the method parameter must be a
primitive type (as per constraint in line 14).

As with other annotation types, we de�ne an association back to the containing ele-
ment, in this case WebMethod, to simplify the OCL constraints. This association is de�ned
in line 5.

WebResult

1 @Target (ElementType.METHOD)

2 @Retention(RetentionPolicy.RUNTIME)

4 @Requires(WebMethod.class)

5

6 @OCLConstraints ({

7 @OCLConstraint("self.header implies self.target_METHOD.Type.isPrimitive ()"),

8 @OCLConstraint("self.target_METHOD.Type.SimpleName <> 'void'")

9 })

10 public @interface WebResult {

11 String name() default "";

12 String targetNamespace () default "";

13 boolean header () default false;

14 String partName () default "";

15 }

We have three constraints for WebResult: First, it requires that the method carries the
WebMethod annotation (line 4), as with the WebParam annotation. Second, if the result is mapped
to the header of the message, the return type must be a primitive type (line 7).Third, the
method must have a return type (line 8).

102

6.2. Java Web Services

HandlerChain

1 @Target ({ ElementType.TYPE , ElementType.METHOD , ElementType.FIELD})

2 @Retention(RetentionPolicy.RUNTIME)

4 @Requires(WebService.class)

5

6 @OCLConstraints ({

7 @OCLConstraint("self.target_METHOD = null"),

8 @OCLConstraint("self.target_FIELD = null")

9 })

10 public @interface HandlerChain {

12 @URLValue

13 String file ();

15 @Deprecated

16 String name() default "";

17 }

Although the HandlerChain annotation can target types, methods and �elds (line 1), the
speci�cation states that it is only allowed to place it in types. The other two targets are
de�ned so that the annotation type is compatible with other frameworks. To check this,
two OCL constraints in lines 7 and 8 check the target of the annotation. In addition to
this, HandlerChain annotations can only be placed on types that are already annotated with
WebService (line 4).

The speci�cation states also that the name element should not be used (therefore
marking it Deprecated), and that the file element must be a valid URL (line 12).

SOAPBinding

1 @Target ({ ElementType.TYPE , ElementType.METHOD })

2 @Retention(RetentionPolicy.RUNTIME)

5 @OCLConstraint("self.target_METHOD <> null implies self.style = 'DOCUMENT '"),

6 public @interface SOAPBinding {

7 public enum Style{DOCUMENT , RPC};

8 public enum Use {LITERAL , ENCODED };

9 public enum ParameterStyle{BARE , WRAPPED };

10 Style style() default Style.DOCUMENT;

11 Use use() default Use.LITERAL;

12 ParameterStyle parameterStyle () default ParameterStyle.WRAPPED;

13 }

Constraints dealing with the SOAPBinding annotation have already been de�ned in the
WebParam and WebMethod annotation types. The last constraint states that the style DOCU-
MENT is required for annotations placed on methods.

Using the annotated types de�ned above, the ModelAn model extraction engine gener-
ates the model depicted in �gure 6.3. In it, both explicit associations expressed via the
Association annotation and implicit associations using the AVal annotations are shown. For
example, Oneway is marked with Requires(WebMethod.class), ModelAn interprets this as an im-
plicit relation between WebMethod and Oneway called optional_Oneway. However, in order to

103

Chapter 6. Case Studies

F
igu

re
6.3:

J
W
S
an
n
otation

m
o
d
el

104

6.3. Java Persistence API

AssociationOverride AssociationOverrides AttributeOverride AttributeOverrides
Basic Column ColumnResult DiscriminatorColumn
DiscriminatorValue Embeddable Embedded EmbeddedId
Entity EntityListeners EntityResult Enumerated
ExcludeDefaultListeners ExcludeSuperclassListeners FieldResult GeneratedValue
Id IdClass Inheritance JoinColumn
JoinColumns JoinTable Lob ManyToMany
ManyToOne MapKey MappedSuperclass NamedNativeQueries
NamedNativeQuery NamedQueries NamedQuery OneToMany
OneToOne OrderBy PersistenceContext PersistenceContexts
PersistenceProperty PersistenceUnit PersistenceUnits PostLoad
PostPersist PostRemove PostUpdate PrePersist
PreRemove PreUpdate PrimaryKeyJoinColumn PrimaryKeyJoinColumns
QueryHint SecondaryTable SecondaryTables SequenceGenerator
SqlResultSetMapping SqlResultSetMappings Table TableGenerator
Temporal Transient UniqueConstraint Version

Table 6.5: Annotation types for the JPA

check properties that Oneway induce on the WebMethod the inverse association is needed (from
Oneway to WebMethod).

6.2.5 Evaluation

In addition to the advantages of the use of ModelAn and AVal annotations on the JWS
annotation framework cited for the Fraclet case (see section 6.1.5); an additional advantage
comes from the use of the Targets annotation to represent implicit annotated elements. In
this case, the speci�cation states that methods belonging to a WebService class are by default
WebMethods. Through the Targets annotation, the annotation framework developer can capture
this knowledge, and seamlessly implement this behavior thanks to the targeting processor
that is part of the ModelAn tool chain. Using both AVal and ModelAn annotations we
are able to implement all the constraints de�ned in the JWS speci�cation.

The ModelAn model extraction and instantiation generation engine generate 2265
lines of code, 236 of them for the instantiation processor.

6.3 Java Persistence API

The Java Persistence API consists of the set of annotations de�ned in the EJB3 spec-
i�cation [MK06] that deal with the Object-Relational mapping for entities. The JPA
de�nes 64 annotations (presented in table 6.5) that are used by application developers to
specify how their entities will be persisted in a database. The speci�cation distinguishes
between annotations that de�ne entities and their corresponding entity managers, from
annotations that give the Object/Relational mapping.

The constraints to which an annotated program must adhere to are not well de�ned in
the speci�cation, and the relationships between the 64 annotations quite complex, further
emphasizing the need for explicit constraints and modeling such as the ones provided by
AVal and ModelAn.

105

Chapter 6. Case Studies

1 @Entity

2 public class Customer { @Id

3 @GeneratedValue(strategy=AUTO) Long id;

4

5 @Version protected int version;

6

7 @ManyToOne Address address;

8

9 @Basic String description;

10

11 @OneToMany(targetEntity=com.acme.Order.class , mappedBy="customer")

12 Collection orders = new Vector ();

13

14 @ManyToMany(mappedBy="customers")

15 Set <DeliveryService > serviceOptions = new HashSet ();

17 public Long getId() { return id; }

19 public Address getAddress () { return address; }

21 public void setAddress(Address addr) { this.address = addr; }

22 }

Figure 6.4: Example: JPA annotated class

6.3.1 Description

In order to give an idea of the way in which AVal and ModelAn are used to specify and
model the JPA we apply it to a subset of the JPA annotations. The rest of the annotations,
their constraints and associations can be found on ModelAn's web page18. The selected
subset consists of the annotations used to de�ne entities and their mappings, to de�ne
overrides to those mappings, to de�ne associations between entities, and to de�ne tables
and columns. The selected annotations are summarized in table 6.6

6.3.2 Example application

To give an idea of how the JPA is used to specify the persistence of an entity, we present
the Customer entity implemented in �gure 6.4. The example provided is taken from the
JPA speci�cation.

The Customer class is marked as an entity, as speci�ed by the Entity on line 1. By
marking the class Entity, the interpretation engine will annotate it with Table as well, using
the default values for its elements. The same strategy is applied for each of the �elds/prop-
erties of the class with the Column annotation. This clears the source code from unnecessary
annotations, but introduces hidden annotations that may hinder the understanding of the
source code.

The �elds of the class are annotated with a number of JPA annotations that describe
how to persist it: The id �eld serves as id for the table which is assigned a generated
value (line 3). The version �eld will keep a value that is used as optimistic lock value
(line 5). The Basic annotation in the description �eld on line 9 states that the value of
the �eld is to be mapped to a basic �eld on the primary table of the entity.

18http://spoon.gforge.inria.fr/ModelAn

106

6.3. Java Persistence API

Annotation Location Parameter Description

Entity Class name Speci�es a class as an entity.

MappedSuperclass Class - Designates a class whose mapping is to

be applied to entities that inherit from

it.

AttributeOverride Class,Method,Field name, columns Overrides the mapping of a property or

�eld de�ned in a mapped superclass.

AssociationOverride Class,Method,Field name,joinColumns Overrides a many-to-one or one-to-one

property or �eld relationship de�ned in

a mapped superclass.

ManyToMany Method,Field targetEntity,

cascade, fetch,

mappedBy

De�nes a many-valued association

with a many-to-many multiplicity with

the targetEntity.

OneToOne Method,Field targetEntity,

cascade, fetch, op-

tional, mappedBy

De�nes a single-valued association to a

targetEntity.

ManyToOne Method,Field targetEntity,

cascade, fetch,

optional

De�nes a single-valued association to a

targetEntity.

OneToMany Method,Field targetEntity,

cascade, fetch,

mappedBy

De�nes a many-valued association to a

targetEntity with a many-to-one mul-

tiplicity.

Table Class name, catalog,

schema, unique-

Constraints

De�nes the primary table for an entity.

Column Method,Field name, unique, nul-

lable, insertable,

updatable, colum-

nDe�nition, table,

lenght, precision,

scale

Speci�es a mapped column for a per-

sistent property or �eld.

Table 6.6: Selected JPA annotation description

107

Chapter 6. Case Studies

Fields of the class are also used to state relationships of the entity to other entities.
The address �eld represents a ManyToOne relation (line 7 with the Address entity. The
orders �eld, contains a OneToMany relation (line 12)with the Order class; note that since
just by looking at the type of the �eld it is not possible to know the type of the elements
of the collection, the targetEntity element of the OneToMany annotation is used. Also, the
mappedBy element states that the inverse relation on the Order entity is speci�ed by the
�eld called customers. The serviceOptions �eld contains a ManyToMany relation (line 14)
to the DeliveryService entity. As with the orders relation, this one is mappedBy a
�eld called customers however, in contrast with the orders relation, the targetEntity
is not speci�es, since type of the objects contained in the serviceOptions �eld can be
inferred from its type parameter.

6.3.3 Constraints

We summarize the constraints for the selected JPA annotations in table 6.7. The con-
straints are derived from the framework's speci�cation. The speci�cation, in contrast
with JWS's, does not always explicitly states constraints on the use of the annotations,
so some of the constraints here de�ned stem from our interpretation of the wording of the
spec.

To give an example of such interpretation, take the Entity's constraint that states that
the annotation cannot be placed on a class that has the MappedSuperclass annotation. This
constraint is not explicitly stated in the speci�cation, but given that mapped superclasses
have no associated table and that the annotation of a class with Entity implies an annota-
tion of Table with the default parameters, the use of Entity forbids the use of MappedSuperclass.

6.3.4 Annotation model

Having de�ned the constraints for the selected annotations of the JPA, we now present
how ModelAn and AVal annotations are used to de�ne JPA's annotation model, and its
corresponding constraints.

Entity

1 @Retention(RUNTIME)

3 @AValTarget(CtClass.class)

4 @Prohibits(MappedSuperclass.class)

5 public @interface Entity {

7 @Default("self.target_CLASS.SimpleName")

8 String name() default "";

9 }

The AValTarget annotation is used (line 3) instead of Java's Target annotation to narrow
the target of the annotation to only classes, since Target can only de�ne as target a type.
The Prohibits in line 4 is used to forbid the use of Entity on classes already annotated with

108

6.3. Java Persistence API

Entity

• Must only be placed on Classes
• The class cannot be annotated with

MappedSuperclass

MappedSuperclass

• Must only be placed on Classes
• The class cannot be annotated with

Entity

AttributeOverride

• If it is place on a class, the class
must extend a type annotated with
MappedSuperclass

• If on a �eld or method, the type of
the �eld/method must be annotated
MappedSuperclass

• The name element must be a Column of
the overridden type

AssociationOverride

• If it is place on a class, the class
must extend a type annotated with
MappedSuperclass

• If on a �eld or method, the type of
the �eld/method must be annotated
MappedSuperclass

• The name element must be a relation
(ManyToMany or OneToOne) of the overridden
type.

ManyToMany

• Type Collection
• if collection is not
generic,targetEntity element must
be de�ned
• The targetEntity element must refer
to a class that is annotated with Entity

OneToMany

• Type is collection
• if collection is not generic, One-
ToMany.targetType must be de�ned
• The targetEntity element must refer
to a class that is annotated with Entity

OneToOne

• The targetEntity element must refer
to a class that is annotated with Entity

ManyToOne

• The targetEntity element must refer
to a class that is annotated with Entity

Table

• Must be in classes already annotated
with Entity

• It cannot be in a class annotated with
MappedSuperclass

Column

• Must be placed on �elds/methods of
classes annotated with Table

Table 6.7: Constraints for selected JPA annotations

109

Chapter 6. Case Studies

MappedSuperclass. In accordance with the speci�cation, the default value for the name element
is made to be the simple name of the class on which the annotation is placed using the
Default annotation (line 7).

Associations between Entity and other annotations are de�ned by AVal annotations on
other annotation types.

MappedSuperclass

1 @AValTarget(CtClass.class)

2 @Prohibits(Entity.class)

3 public @interface MappedSuperclass {

4 }

Two AVal annotations are used to constraint MappedSuperclass annotations to classes
(line 1) not already annotated with Entity (line 2).

AttributeOverride

1 @Target ({TYPE , METHOD , FIELD})

2 @Retention(RUNTIME)

4 @RequiresAny ({

5 @Requires(Entity.class),

6 @Requires(Embedded.class)

7 })

9 @Prohibits(MappedSuperclass.class)

10

11 @OCLConstraints ({

12 @OCLConstraint("self.target_TYPE <> null implies"+

13 " MappedSuperclass.allInstances()->exists(m|m.target_TYPE.Reference"+

14 ".isAssignableFrom(self.target_TYPE.Reference))"),

15 @OCLConstraint("self.target_FIELD <> null implies"+

16 " MappedSuperclass.allInstances()->exists(m|m.target_TYPE.Reference"+

17 ".isAssignableFrom(self.target_FIELD.Type))"),

18 @OCLConstraint("self.target_METHOD <> null implies"+

19 " MappedSuperclass.allInstances()->exists(m|m.target_TYPE.Reference"+

20 ".isAssignableFrom(self.target_METHOD.Type))"),

22 @OCLConstraint("self.target_TYPE <> null implies"+

23 " Column.allInstances()->exists(c|c.name = self.name and "+

24 " c.Parent.oclAsType(CtType). Reference.isAssignableFrom(self.target_TYPE.Reference)"),

25 @OCLConstraint("self.target_FIELD <> null implies"+

26 " Column.allInstances()->exists(c|c.name = self.name and"+

27 " c.Parent.oclAsType(CtType). Reference.isAssignableFrom(self.target_FIELD.Type)"),

28 @OCLConstraint("self.target_METHOD <> null implies "+

29 "Column.allInstances()->exists(c|c.name = self.name and"+

30 " c.Parent.oclAsType(CtType). Reference.isAssignableFrom(self.target_METHOD.Type)")

31 })

32 public @interface AttributeOverride {

33 String name ();

34 Column column ();

35 }

AttributeOverride annotations require the type on which they are placed to be either an
entity or an embedded class (line 4). Since attribute overrides are used to change the
mappings de�ned on the class, the class cannot be annotated with MappedSuperclass (line 9).

110

6.3. Java Persistence API

Finally, two constraints are implemented in several OCL expressions. The constraint
that states that if the annotation is placed on a class, the class must extend a type
annotated with MappedSuperclass and if placed on a �eld or method, the type of the �eld
or return type of the method must be annotated with MappedSuperclass are speci�ed by the
expressions on lines 12, 15 and 18. All of these expressions �rst check if the corresponding
target (class, �eld or method) is present, and then traverse the instances of MappedSuperclass

to check if one of them is placed on a type which is a super type of the current target.
The second constraint states that the name of the overridden attribute must be a name

of a column de�ned on a super class. For this, again three expressions (lines 22, 25 and
28) are used. As with the previous constraints, �rst we check the target on which the
AttributeOverride annotation is placed. For each target, all the Column instances are traversed,
and if they are placed on a type which is a super type of the current type, there must exist
one whose name is equal to the name de�ned on the current AttributeOverride annotation.

AssociationOverride

1 @Target ({TYPE , METHOD , FIELD})

2 @Retention(RUNTIME)

4 @Associations ({

5 @Association(name="overriddenAssociationM2O",type=ManyToOne.class ,

6 query="ManyToOne.allInstances()->select(m2o | m2o.column.name = self.name)"),

7 @Association(name="overriddenAssociationO2O",type=OneToOne.class ,

8 query="OneToOne.allInstances()->select(o2o | o2o.column.name = self.name)"),

9 @Association(name="entity",type=Entity.class ,

10 query="Entity.allInstances()->select(e | e.target_CLASS = self.target_TYPE "

11 +"or self._annotation.Parent = e.target_CLASS)")

12 })

14 @OCLConstraints ({

15 @OCLConstraint("self.target_TYPE <> null implies MappedSuperclass.allInstances()->"+

16 "exists(m|m.target_TYPE.Reference.isAssignableFrom(self.target_TYPE.Reference))"),

17 @OCLConstraint("self.target_FIELD <> null implies MappedSuperclass.allInstances()->"+

18 "exists(m|m.target_TYPE.Reference.isAssignableFrom(self.target_FIELD.Type))"),

19 @OCLConstraint("self.target_METHOD <> null implies MappedSuperclass.allInstances()->"+

20 "exists(m|m.target_TYPE.Reference.isAssignableFrom(self.target_METHOD.Type))"),

22 @OCLConstraint("self.overriddenAssociationM2O ->notEmpty () "

23 +"or self.overriddenAssociationO2O ->notEmpty ()")

24 })

26 public @interface AssociationOverride {

27 String name ();

29 JoinColumn [] joinColumns ();

30 }

The AssociationOverride annotation type has a relationship for each of the associations
it overrides, as de�ned by the Association annotations in lines 5 and 7. It also de�nes a
relation to the entity for whom the associations are overridden (line 9).

In terms of constraints, AssociationOverride, has constraints similar to AttributeOverride. If
placed on a type, the type must extends a type annotated with MappedSuperclass (line 15). If
placed on a �eld or method, the type of the �eld, or return type of the method, must be
annotated with MappedSuperclass (lines 17 and 19). Finally, the overridden associations must
exist, that is, either the overriddenAssociationM20 or overriddenAssociationO2O re-

111

Chapter 6. Case Studies

lations must not be empty (line 22).

ManyToMany

1 @Target ({METHOD , FIELD})

2 @Retention(RUNTIME)

4 @Inside(Entity.class)

5 @Associations ({

6 @Association(name="assocTarget",type=Entity.class ,

7 query="Entity.allInstances()->"+

8 "select(e|e.target_CLASS.QualifiedName = self.targetEntity.QualifiedName)"),

9 @Association(name="otherSide",type=ManyToMany.class ,

10 query="ManyToMany.allInstances()->select(m2m|m2m.mappedBy = self.column.name"),

11 @Association(name="column",type=Column.class ,

12 query="Column.allInstances()->select(c| c._annotation.Parent = self._annotation.Parent")

13 })

15 @Type(Collection.class)

16 @OCLConstraints ({

17 @OCLConstraint("self.target_METHOD <> null implies "

18 +"self.target_METHOD.Type.ActualTypeArguments.isEmpty () implies self.targetEntity <> null"),

19 @OCLConstraint("self.target_FIELD <> null implies "

20 +" self.target_FIELD.Type.ActualTypeArguments.isEmpty () implies self.targetEntity <> null"),

22 @OCLConstraint("self.assocTarget ->notEmpty ()")

23 })

24 public @interface ManyToMany {

25 @Default(

26 "if self._annotation.Parent.oclAsType(CtTypedElement).Type.ActualTypeArguments ->isEmpty ()"+

27 " then null "+

28 " else self._annotation.Parent.oclAsType(CtTypedElement).Type.ActualTypeArguments.first()")

29 Class targetEntity () default void.class;

30 CascadeType [] cascade () default {};

31 FetchType fetch() default LAZY;

32 String mappedBy () default "";

33 }

The ManyToMany annotation represents relationships between two entities (as described by
the Inside and Association annotations in lines 4 and 6). A ManyToMany relation declared by an
entity can have a corresponding ManyToMany inverse relation on the target entity (Association
annotation on line 9). Also, for convenience, an association between the ManyToMany relation
and the column that represents it on the database is de�ned in line 11.

In terms of constraints, the type of the �eld on which the ManyToMany annotation is
placed should be a Collection, which is checked with the Type AVal annotation in line 15.
In lines 17 and 19, an OCL expression is used to validate that if the collection type of
the �eld or property that represents the many to many relation has no type-parameters,
then the targetEntity element must be de�ned. This constraint is closely related with
the default value expressed in line 23, which says that the value for the targetEntity

annotation is the generic type of the collection or null if no type parameter is used. For
an example of this, see the listing in section 6.3.2.

OneToOne

1 @Target ({METHOD , FIELD})

2 @Retention(RUNTIME)

112

6.3. Java Persistence API

4 @Inside(Entity.class)

5 @Associations ({

6 @Association(name="assocTarget",type=Entity.class ,

7 query="Entity.allInstances()->"

8 +"select(e|e.target_CLASS.QualifiedName = self.targetEntity.QualifiedName)")

9 @Association(name="column",type=Column.class ,

10 query="Column.allInstances()->select(c| c._annotation.Parent = self._annotation.Parent")

12 })

13 @OCLConstraint("self.assocTarget ->notEmpty ()")

14 public @interface OneToOne {

16 @Default("self._annotation.Parent.oclAsType(CtTypedElement).Type")

17 Class targetEntity () default void.class;

19 CascadeType [] cascade () default {};

20 FetchType fetch() default EAGER;

21 boolean optional () default true;

22 String mappedBy () default "";

23 }

The OneToOne annotation de�nes relations between entities (represented with the Inside

and Association annotations in lines 4 and 6). It also de�nes a convenience association
with the column to which the relation is mapped in the entities table, line 9 . Finally,
the value for the targetEntity defaults to the type of the �eld or method on which the
OneToOne annotation is placed (line 16). This type must be annotated with Entity, that is,
the assocTarget association must not be empty (line 13).

ManyToOne

1 @Target ({METHOD , FIELD})

2 @Retention(RUNTIME)

4 @Inside(Entity.class)

5 @Associations ({

6 @Association(name="assocTarget",type=Entity.class ,

7 query="Entity.allInstances()->"

8 +"select(e|e.target_CLASS.QualifiedName = self.targetEntity.QualifiedName)")

9 @Association(name="column",type=Column.class ,

10 query="Column.allInstances()->select(c| c._annotation.Parent = self._annotation.Parent")

12 })

13 @OCLConstraint("self.assocTarget ->notEmpty ()")

14 public @interface ManyToOne {

15 @Default("self._annotation.Parent.oclAsType(CtTypedElement).Type")

16 Class targetEntity () default void.class;

17 CascadeType [] cascade () default {};

18 FetchType fetch() default EAGER;

19 boolean optional () default true;

20 }

As with the two previous annotations, Inside and Association are used in lines 4 and 6 to
de�ne the relation between entities, and an additional Association is used to tie the ManyToOne

annotation to its corresponding Column (line 9). As with the previous annotation, the type
of the �eld/method gives the default value for the targetEntity element (line 15). Also,
the assocTarget association must not be empty (line 13).

113

Chapter 6. Case Studies

OneToMany

1 @Target ({METHOD , FIELD})

2 @Retention(RUNTIME)

4 @Inside(Entity.class)

5 @Associations ({

6 @Association(name="assocTarget",type=Entity.class ,

7 query="Entity.allInstances()->"+

8 "select(e|e.target_CLASS.QualifiedName=self.targetEntity.QualifiedName)")

9 @Association(name="column",type=Column.class ,

10 query="Column.allInstances()->select(c| c._annotation.Parent = self._annotation.Parent")

12 })

14 @Type(Collection.class)

15 @OCLConstraints ({

16 @OCLConstraint("self.target_METHOD <> null implies"+

17 " self.target_METHOD.Type.ActualTypeArguments.isEmpty () implies self.targetEntity <> null"),

18 @OCLConstraint("self.target_FIELD <> null implies"+

19 " self.target_FIELD.Type.ActualTypeArguments.isEmpty () implies self.targetEntity <> null"),

20 @OCLConstraint("self.assocTarget ->notEmpty ()")

21 })

22 public @interface OneToMany {

23 @Default("if self._annotation.Parent.oclAsType(CtTypedElement).Type.ActualTypeArguments ->isEmpty ()"+

24 " then null "+

25 " else self._annotation.Parent.oclAsType(CtTypedElement).Type.ActualTypeArguments.first()")

26 Class targetEntity () default void.class;

28 CascadeType [] cascade () default {};

29 FetchType fetch() default LAZY;

30 String mappedBy () default "";

31 }

The associations and constraints for the OneToMany annotation are analogous to those for
the ManyToMany: the assocTarget (line 6) to the associated entity and column (line 9) to the
column to which the relationship is mapped, the Inside AVal annotation (line 4) to specify
the owner of the annotation. Also, the OneToMany annotation type is meant to be placed on
�elds/methods of type Collection (line 14), and if the collection has no type parameter
the targetEntity element must be de�ned and point to a type annotated with Entity

(lines 23 and 20).

Table

1 @Target(TYPE)

2 @Retention(RUNTIME)

4 @Requires(Entity.class)

5 @Prohibits(MappedSuperclass.class)

6 @Association(name="entity",type=Entity.class ,

7 query="Entity.allInstances ->select(e|e.target_CLASS = self.target_TYPE)")

8

9 @Targets("CtClass.allInstances()->select(c|c.Annotations ->"

10 +"exist(a|a.AnnotationType.SimpleName = 'Entity ')")

11 public @interface Table {

13 @Default("self.entity.name")

14 String name() default "";

16 String catalog () default "";

17 String schema () default "";

114

6.3. Java Persistence API

18 UniqueConstraint [] uniqueConstraints () default {};

19 }

Given that by default all entities are persisted, the Table annotation uses the Targets

annotation to explicit the mapping of the Entity classes to a database table. For this, an
OCL expression (line 9) traverses all the classes in the application, looking for those that
have an Entity annotation and annotates them with Table if they are not already annotated.

Since MappedSuperclasses do not have an associated table, classes annotated with it cannot
be annotated with Table as speci�ed by the Prohibits annotation in line 5. The name of
the table defaults to the name of the corresponding Entity (line 13). To express this, a
convenience association called entity is de�ned in line 7.

Column

1 @Target ({METHOD , FIELD})

2 @Retention(RUNTIME)

5 @Inside(Table.class)

6

7 @Targets("CtField.allInstances()->select(f|" +

8 "not f.Annotations ->exists(a|a.AnnotationType.SimpleName = 'Transient ') and" +

9 "f.Parent.Annotations ->exists(a|a.AnnotationType.SimpleName = 'Entity '"+

10 " or a.AnnotationType.SimpleName = 'MappedSuperclass)"

11 ")")

13 @Association(name='belongs_table ',type=Table.class ,

14 query="Table.allInstances ->select(t|t.contains_Column = self). first()")

16 public @interface Column {

18 @Default("if self.target_FIELD <> null then self.target_FIELD.SimpleName " +

19 "else " +

20 "self.target_METHOD.SimpleName.substring(3,self.target_METHOD.SimpleName.size ())")

21 String name() default "";

23 boolean unique () default false;

24 boolean nullable () default true;

25 boolean insertable () default true;

26 boolean updatable () default true;

28 String columnDefinition () default "";

30 @Default("self.belongs_table.name")

31 String table() default "";

33 int length () default 255;

34 int precision () default 0;

35 int scale() default 0;

36 }

The Column annotation is to be placed in methods or �elds that belong to a class
annotated with Table (line 5). By default, all �elds of classes annotated with Entity or
MappedSuperclass carry an implicit Column annotation unless they are annotated with Transient.
This is speci�ed by the Targets ModelAn annotation in line 7. A link to the table to which
each column belongs is de�ned by the Association in line 13. Using this association, the
default value for the table element is de�ned (line 30). The default name of the column
is extracted from the name of the �eld or method on which the annotation is placed

115

Chapter 6. Case Studies

(line 18).

By interpreting the ModelAn and AVal annotations present in the selected JPA annotation
types, we extracted the annotation model shown in �gure 6.5.

6.3.5 Evaluation

Using ModelAn and AVal annotations we were able to explicitly state most of the con-
straints, associations and implicit annotations de�ned by the JPA speci�cation. Neverthe-
less, the large number JPA annotation types, and the complexity of the relations between
them put a strain in the use of ModelAn and AVal annotations to describe both constraints
and associations. In places, the number of lines of code devoted to meta-annotations su-
persede the lines of code for the de�nition of the annotation type itself. For example,
most of the complexity on the associations stem from the relations of di�erent annotation
types to the Entity and MappedSuperclass annotations. In the abstract, MappedSuperclass repre-
sents the same concept as Entity, since MappedSuperclass de�nes the mapping of its sub-classes
(sub-entities) to the database. Because of this, all the annotations in JPA that serve to
specify persistence (almost all of them) are related to both Entity and MappedSuperclass. To us,
this means that Entity and MappedSuperclass are actually sub-annotations19 of an abstract an-
notation, call it Mappable. If such a super annotation existed, then all the mapping-de�ning
annotations (Table, NamedQuery, etc) would be linked to it, instead of to both Entity and
MappedSuperclass; cutting the number of associations in the model by roughly half. However,
since inheritance between annotation is forbidden by the Java language, the annotation
model becomes much more complex.

Another factor that makes the de�nition of JPA's annotation model harder is the re-
liance of the speci�cation on properties. Properties are a pair of methods that encapsulate
the access to a �eld (getters and setters). The JPA uses �elds and properties in an inter-
changeable manner in many places (for example, the Column annotation can be placed on
a �eld or a method that represents a property). This makes the de�nition of constraints
for annotations that can go on either places more verbose since the constraint must be
replicated in the case that the annotation is placed on a method or on a �eld.

The generated Java classes that reify the 64 annotations of the JPA amount to a total
of over twelve thousand lines of code, eight hundred of them dedicated to the source code
processor that instantiates the annotation model from an annotated application.

6.4 Summary

In this chapter we have shown how ModelAn and AVal can be used to specify the an-
notation model and corresponding consistency constraints in three industrial annotation
frameworks of di�erent size.

19Here sub-annotation is taken similarly to subclass

116

6.4. Summary

F
ig
u
re

6.
5:

S
u
b
se
t
of

th
e
JP

A
's
an
n
ot
at
io
n
m
o
d
el

117

Chapter 6. Case Studies

Fraclet is an annotation framework for the Fractal component model. With Fraclet's
annotations, the developer de�nes the mapping of a class that serves as implementation of
a component to the architecture of the application de�ned in the ADL. We use ModelAn
and AVal to de�ne the constraints identi�ed for Fraclet, and to extract its corresponding
annotation model (section 6.1).

JWS is an annotation framework de�ned by Java for the development of WebServices.
Again, we use ModelAn and AVal to construct the annotation model corresponding to
the framework, and using this model we are able to validate all the constraints de�ne by
the speci�cation. In particular, we are able to describe implicit annotations on elements
of the program. In the case of JWS, by default all methods belonging to a class that
represent a web service are treated as if they were annotated with WebMethod. We are able to
reproduce this behavior by employing the Targets annotation described in section 5.3.1.0.

JPA The Java Persistence Framework describes sixty-four annotations to describe how
entities in EJB3 are persisted. This is the largest of the three case studies, and in this
document we present in detail ten annotations. The annotation model that resulted from
applying ModelAn annotations to the reference implementation of JPA describes the as-
sociations between all sixty-four annotations, which reduces the e�ort in understanding
the framework. In addition to this, we extracted the constraints implicit in the speci�-
cation of JPA, and translated them into AVal and OCL constraints. Nevertheless, the
complex nature of the annotation types de�ned in JPA show some of the limitations of
both annotations as an abstraction mechanism and the use of ModelAn and AVal to spec-
ify them. First, we found that the number of meta-annotations required to fully specify
a JPA annotation-type would sometimes exceed the number of lines of code needed to
de�ne the annotation type. This is a testament of the importance of explicitly stating the
semantics of annotation types. Second, the constraints we identi�ed remain one possible
interpretation of the speci�cation, since in contrast with JWS's, JPA's speci�cation does
not explicitly address the constraints on the use of the annotations it de�nes. Finally,
some annotation types de�ned in JPA hint at the limitations of Java annotations to de�ne
complex concepts: lack of inheritance begets repetition of constraints and associations;
and since annotations cannot be repeated on a place in the code, almost all annotation
types are de�ned with an accompanying collection annotation type, which nearly doubles
the number of annotation types.

A summary of the case studies presented in this chapter can be seen in Table 6.8.
It is interesting to note that, although the three case studies de�ne a similar number of
annotation types (between 7 and 10), their complexity is quite di�erent. The number of
constraints for the JPA is more than double than for Fraclet, although the former has
only four more annotation types than the later. The use of AVal and ModelAn meta-
annotations exposes this otherwise hidden complexity.

The use of ModelAn and AVal on the three annotation frameworks evidences some
strengths and weaknesses of our approach. On one hand, the annotation model gives an
insight on the way on which di�erent annotation types relate to each other, in the complete

118

6.4. Summary

Framework Annotation types Constraints Default Values Targets Generated
Code (SKLoC)

Fraclet 6 14 2 0 1.7
JWS 7 25 4 1 2
JPA 10 (of 64) 42 8 2 12

Table 6.8: Summary of the case studies

model, almost all of the annotations have some sort or relation with other annotations;
which, by looking at the un-annotated source code is not evident. Also, we were able to
specify the behavior of implicit annotations, such as the tables that accompany entities,
or the columns that accompany �elds and methods of entity classes; these are also not
necessarily evident in the source code of the application.

On the other hand, the amount of ModelAn and AVal annotations may overwhelm
the programmer, in particular in annotation types for which they total more lines of code
than the annotation type itself. In these cases, it would be worthwhile to search for ab-
straction mechanisms to be able to factorize common OCL expressions for example. This
can be achieved by an OCL header annotation at package level that would contain let

expressions that would be available to all OCLConstraint and Association annotations present
in code elements with in the package.

In the next chapter, we will present perspectives and conclude.

119

Chapter 6. Case Studies

120

Part IV

Conclusions and Future Work

121

7

Conclusion and Perspectives

Contents
7.1 Contributions . 123

7.1.1 General Contributions . 124

7.1.2 Generic constraints . 125

7.1.3 Annotation models . 126

7.2 Comparison with other approaches 127

7.3 Implemented Tools . 129

7.3.1 AVal . 129

7.3.2 ModelAn . 129

7.4 Perspectives . 130

7.4.1 Generic constraints . 130

7.4.2 Annotation Models . 130

This chapter presents a summary of the contributions of this thesis, and gives per-
spectives on future work.

7.1 Contributions

The objective of this thesis is to provide tools and techniques to aid in the development
of annotation frameworks. In order to do this, we analyzed the design and development
of annotation frameworks and identi�ed four challenges that the annotation framework
developer must deal with:

I The representation of domain concepts as annotation types

II The mapping of annotation types to code elements

III The de�nition of constraints to validate annotated programs

IV The rei�cation of annotations for their interpretation.

123

Chapter 7. Conclusion and Perspectives

We have achieved this in two parts: First by introducing generic constraints to spec-
ify annotation frameworks and an annotation framework that uses generic constraints to
embed consistency constraints in the source code of the annotation framework and latter
checks the constraint in an annotated program (challenge III). Second, by de�ning an-
notation models that augment annotation types with the notion of association between
annotation types, we rise the level of abstraction of annotation types closer to that of
their domain models, making their representation easier (challenge I). Using this annota-
tion model, the annotation framework developer can explicitly de�ne the relation between
annotation types and the code on which they are placed (challenge II). Finally, the an-
notation model is used to generate classes that represent the annotations present on an
application, thus addressing challenge IV.

General contributions of the approaches are described below.

7.1.1 General Contributions

Exposing Complexity The semantics of an annotation are hidden in its interpretation,
while its constraints are informally described in its documentation. Looking at the case
studies, there is a stark contrast in complexity between Fraclet and JPA. In Fraclet we
have identi�ed 14 constraints for 6 annotation types (giving an average of 2.3 constraints
per annotation); while in the JPA we identi�ed 42 constraints for the 10 annotation types
analysed (4.2 constraints per annotation). This suggests that the number of annotation
types that a framework de�nes is not a good indicator of its complexity.

By using AVal/ModelAn to specify the constraints, default values and targets of the
annotation types of a framework, its complexity is exposed. This will make the use of the
annotation framework easier, since the annotation user will know the constraints that it
must respect in order to develop annotation-wise valid programs.

Enhanced Expressiveness The annotations de�ned by AVal and ModelAn enhance
the expressiveness of the Java language when de�ning new annotation types. The targets
annotation extends the Java-provided target by allowing the developer to specify, not
only to which kinds of code elements an annotation can be bound to; but also to which
elements in particular. This permits the developer to express implicit annotations found
in the Java Web Services and Java Persistence API case studies c.f. 6.26.3.

The annotation framework developer, through AVal annotations and OCL constraints,
can express the constraints to which programs that use his annotations must adhere to.
The use of AVal does not only allows the de�niton of constraints, but it also provides
a way to check them, thereby reducing the development type of annotation frameworks
and enhancing the interpretation engine's cohesion by removing the validation related
concerns from its code.

Enhanced Code Comprehension Applications developed with annotation frame-
works that use AVal-ModelAn are easier to comprehend. The visualization of the annota-
tion model that is represented by the annotations in the program presents an additional

124

7.1. Contributions

domain-speci�c view of the application. In this view, the developer navigates concepts of
the domain, rather than Java concepts which are mapped to concepts of the domain.

The use of AVal-ModelAn also enhances the understandability of annotation frame-
works that use them. First, the annotation model exposes the relations between annota-
tion types, and the default value and targets annotation make explicit the semantics of
annotations and their elements.

Contributions speci�c to each of the two parts of the approach are desribed below.

7.1.2 Generic constraints

We have developed a classi�cation of the constraints present in annotation frameworks
depending on the subject of the constraint. Two classes of constraints are de�ned:
annotation-wise for constraints that deal with the properties of annotations and their el-
ements; and code-wise for constraints that deal with the properties of the code on which
annotations are placed. By analyzing existing annotation frameworks we identi�ed seven
generic constraints; and based on them, implemented the AVal annotation framework.
AVal counts with the following properties:

Generic AVal annotations, as demonstrated in chapter 6, can be applied to real annota-
tion frameworks, and common constraints can be expressed with a (combination of) AVal
annotations. In addition to this, generic constraints can be used to extract the annota-
tion model of the annotation types that they constraint. For example, if an annotation
requires another one, this can be seen as an optional association between them.

However, since generic constraints must remain generic, they cannot address con-
straints speci�c to a given annotation framework. In these cases, the extensibility of
AVal's implementation allows for easily implementing new constraints.

Declarative AVal constraint annotations are a declarative speci�cation for the anno-
tation types in a framework. The framework developer does not need to explicitly state
the manner in which the constraints will be checked in annotated programs.

Parameterizable Most constraint annotations in AVal can be parametrized in order to
customize the messages presented to the user when constraints are violated. In addition
to this, it is possible to attach a code transformation to each AVal annotation that will
provide a way to �x the error. The possibility of customize the error messages is essential
to AVal, given that, since its constraints are generic, their default error messages are
equally generic and give little insight to the user on the cause of the error or what steps
to take in order to �x it. The knowledge of both lays with the annotation framework
developer.

Extensible AVal provides an API that allows annotation framework developers to con-
struct their own constraint annotations when deemed necessary.

125

Chapter 7. Conclusion and Perspectives

Composable In chapter 4.4 we outline the way in which constraint annotations are
composed while respecting the constraints of the Java language on the placement of
annotations on a code element.

Enhances code understandability The inclusion of AVal constraints on annotation
types enhances their understandability, since the rules of use of the annotations are ex-
plicitly stated. This facilitates their use by application developers.

AVal's generic constraints, when compared to other approaches in literature (section 2.6.4)
is the only one to allow for both annotation and code-wise constraints. In addition to
this, it is the only one to provide an extension mechanism to de�ne new constraints, and
customization points for de�ning error messages and quick-�x transformations.

7.1.3 Annotation models

We propose an extension to annotation types in Java to express relations between them.
Using this extension, we address the three remaining challenges, while complementing
challenge III addressed by AVal. Challenge I, the representation of domain concepts
as annotations is addressed by constructing an annotation model from the annotation
types and the relations between them. The mapping between annotation types and code
elements, challenge II, is addressed by augmenting annotation types with OCL queries
that resolve to the elements to which they are mapped. We also extend AVal, so that
constraints can be de�ned as OCL expressions on this annotation model. Finally, the
elements de�ned in the annotation model are transformed to Java classes that serve as
rei�ed annotations present in the application. These rei�ed annotations can be used to
interpret the application's source code (challenge IV).

The extension is realized through the Association annotation that is o�ered by the Mod-
elAn annotation framework that we have developed. Using this extensions, we extract an
annotation model that represents the annotation types, their relations, the Java AST and
the relations between the annotation types and the language's AST. The construction
of the annotation model carried out by ModelAn takes the annotation types annotated
with Association and constructs an Ecore-based model that represents the annotation types,
their attributes, their relation to Java's AST and the relations de�ned by the Association

annotation. In parallel to the construction of this model, a source-code processor that
instantiates this model is generated. The model instantiation engine takes an annotated
application and constructs an instance of the annotation model generated before. It is
on this instance that constraints, default values and mapping information between the
framework's annotation types are applied.

Annotation models count with the following properties:

Complements annotation type de�nition The addition of associations to anno-
tation types brings them closer to the domain model that they represent. By de�ning
associations, the framework developer can make the transition between the domain model
and the development of annotation types easier.

126

7.2. Comparison with other approaches

High-level view of annotation framework The domain model also gives a higher
level view on the annotation framework than the one provided by the source code alone. In
it, interactions between annotation types are explicitly stated. This makes the annotation
model an useful tool for documenting the framework.

Bridges annotations and models Annotation models also bridge the gap between
annotations and models. The annotation framework developer can take advantage of tools
and techniques existing in the model-driven engineering domain, and apply them to the
annotation framework development. In this thesis we exploit this bridge by implementing
annotation constraints and queries in the OCL, and by leveraging the tools o�ered by the
Eclipse Modeling Framework to implement the rei�cation of annotations.

Extensible Model Although an annotation model represents the annotation types
of a single framework, several instances of di�erent annotation model can co-exist in
a same application. When an application uses di�erent annotation frameworks, their
annotation model instances are merged into a large model that includes representation
for all annotations as well as for the code in the application.

Multidimensional View of an Application Since several annotation models co-exist
in an application, each annotation model instance represents a domain-speci�c view. If a
large application uses an annotation framework for persistence and another for web-page
navigation; then there will be an annotation model instance that de�nes the application's
navigation graph, and another that shows the ER persistence schema.

Constraint Checking We extend AVal's generic constraint annotations with an anno-
tation that takes as parameter an OCL expression that will be evaluated in the annotation
model's instance. The use of OCL to express constraints does not require knowledge of the
Spoon API, and therefore should be more accessible to annotation framework developers.

De�nition of Complex Default Values By using OCL queries over the annotation
model, we allow the framework developer to describe complex default values for annotation
elements. No other annotation development tool allows for this.

Explicit Annotation-Code Relations Also through OCL queries, we allow the anno-
tation framework developer to specify the relation between annotations and the code on
which they are placed. This makes annotations closer to aspect by providing them with
a pointcut mechanism. It is also used to express implicit annotations present in complex
annotation frameworks.

7.2 Comparison with other approaches

In order to position the work of this thesis with relation to others in the �eld, we compare
AVal/ModelAn with the works presented in section 2.6 in tables 7.1, 7.2 and 7.3.

127

Chapter 7. Conclusion and Perspectives

Platform Representation
Code Annotation Support

mTurnpike Java model model yes
XIRC Java XML none noa

ADC .NET DOM none yes
AVal/ModelAn Java ASTb model yes

aOnly represents annotations present in byte-code
bThe AST is represented using EMF

Table 7.1: Annotated application representation in the compared approaches (including
AVal/Modelan)

Constraints
Code Annotation Declarative/ Explicit Embedded/ External

mTurnpike no no � external
XIRC yes noa explicit external
ADC no yes declarative embedded

AVal/ModelAn yes yes bothb bothc

aNo explicit support for annotation-wise constraints
bDeclarative AVal constraints and explicit OCL constraints
cMeta-annotations and Dummy annotations

Table 7.2: Constraints o�ered by the compared approaches (including AVal/Modelan)

Interpretation
Support Compile-time Runtime

mTurnpike yes transformations �
XIRC no � �
ADC no � �

AVal/ModelAn yesa Transformationsb Partialc

aAlthough neither AVal nor ModelAn explicitly support interpretation, they are
integrated into the Spoon annotation processing engine

bUsing Spoon
cAnnotation rei�cation can be made available at runtime

Table 7.3: Interpretation support o�ered by the compared approaches (including AVal/-
Modelan)

128

7.3. Implemented Tools

The criteria for comparison is the same one as the one de�ned in section 2.6.4. Ta-
ble 7.1 compares the platform supported by the tools, the representation of both code
and annotation elements in an application, and whether or not the tool provides full an-
notation support. Table 7.2 compares the tools on their support for constraint de�nition
and validation. AVal/ModelAn is the only approach to support both code and annotation
constraints, to provide both declarative and explicit constraint de�nition, and it is the
only one to permit the de�nition of constraints both embedded in and external to the an-
notation framework. Finally, table 7.3 compares the support provided by the tools for the
interpretation of annotated programs. Of the existing tools, only mTurnpike provides any
kind of support for the compile-time interpretation of annotations. While the interpre-
tation of annotated programs is not directly addressed by AVal/ModelAn, they are both
integrated into the Spoon source-code processing framework. Also, the rei�ed annotations
provided by ModelAn ease the interpretation's implementation both at compilation and
runtime.

As evidenced by tables 7.1, 7.2 and 7.3, AVal and ModelAn �ll out the voids not
covered by existing tools, thereby providing the annotation framework developer with the
means to design, implement and validate and interpret annotation frameworks.

7.3 Implemented Tools

For the realization of the approaches presented in this thesis, two tools were implemented:
AVal and ModelAn

7.3.1 AVal

AVal implements the seven generic constraints identi�ed in section 7.1.2 by de�ning an
annotation framework that provides one annotation per constraint. In order to ease
the development of further annotation constraints, AVal exposes an API with which the
framework may be extended. This extension feature is used to incorporate in AVal the
checking of OCL-de�ned constraints.

AVal is implemented in Java, using the Spoon processing framework. It was developed
in 1.5 KSLoC and it is available from the Spoon gforge website20 where it has been
downloaded more than a thousand times.

7.3.2 ModelAn

ModelAn is an annotation framework that allows the de�niton and generation of an
annotaiton model from a set of annotation types. ModelAn de�nes three annotations, and
it relies on SpoonEMF and the Eclipse Modeling Framework to generate the annotation
models and their corresponding instances. An Eclipse plug-in that visualizes annotation
models and allows their navigation was also developed.

20http://gforge.inria.fr/projects/spoon/

129

Chapter 7. Conclusion and Perspectives

ModelAn is also implemented in Java, using the Spoon processing framework, SpoonEMF,
and the EMF code generation facilities. It was developed in four modules, totaling
1.2KSLoC and one 1KSLoC for the visualization plug-in.

7.4 Perspectives

Our work opens up several perspectives for future work. In this section we discuss some
of them. Perspectives are separated in two areas: the ones pertaining generic constraints,
and the ones related to annotation models.

7.4.1 Generic constraints

Augment the number of Generic Constraints We have contributed seven generic
constraints, both annotation and code wise. It is clear that they do not cover all possible
constraints that arise in annotation framework development. Further analysis of existing
annotation frameworks would certainly uncover other generic constraints, for example,
constraints de�ning property methods as found in JPA (see section 6.3.5).

Extend Generic Constraints to Non-annotation Frameworks In addition to this,
the idea of using an annotation framework to express constraints in frameworks is appli-
cable to frameworks other than annotation-based ones. Indeed this is a domain actively
researched on [EKKM08, CGQ+06], and the lessons learned on the development of AVal
would be of use in this direction. In particular, the importance of relations between en-
tities represented in the framework, since a large number of constraints are attached to
these relations.

Constraint Dependencies One of the strengths of generic constraints, as we have de-
�ned them, is that they are orthogonal. That is, each annotation can be checked by itself,
independently of other annotations present. Nevertheless, in checking related annotations,
sometimes it is useful to share information between di�erent constraint implementations.
For example, in SaxSpoon, the XMLParser annotation requires its parameter to be an URL
that points to a DTD �le. In addition to this, the HandlesStartTag annotation placed on
methods that handle the start of a particular tag, require the names of the parameters
of said method to be consistent with the attributes de�ned by the tag. This attribute
information is present in the DTD. Now, if one were to write AVal constraints annota-
tions to check these properties, it would be necessary to parse the DTD twice, once for
the XMLParser and again to check the HandlesStartTag. In addition to this, it would make no
sense to check the HandlesStartTag if the DTD is already proved to be invalid. Therefore,
further research into how to de�ne and implement dependencies between AVal checkers is
required.

7.4.2 Annotation Models

130

7.4. Perspectives

Enhance Annotation-to-Model Mapping So far, the extraction of the annotation
model from the annotation types is straightforward. Annotation types are converted into
EClassi�ers, and Association annotations express relations. This interpretation, while it
results in valid models, might be too close to the original de�nition of the annotation types.
This means that the annotation model would inherit the workarounds to the language's
restrictions for annotation de�nition. A higher-level annotation-to-model mapping would
be interesting by, for example, ignoring annotations that only contain other annotations,
mapping marker annotations to boolean attributes instead of relations, and using the
RequiresAny AVal constraint as a heuristic to discover inheritance relations.

Annotations that only contain other annotations are used to get around Java's re-
striction of only allowing one instance of an annotation on a given code element. When
translated to the annotation model, these �collection annotations� would be translated to
an association with unbounded cardinality to the collected annotations. Marker annota-
tions (those that de�ne no annotation elements) are normally used to mark the presence
of a characteristic (for example the Oneway annotation on WebMethods). Their mapping to
the annotation model would be better represented as a boolean attribute that marks its
presence on a code element. Finally, when a set of annotation types have the RequiesAny

to the same annotations, this can be a clue to a hidden super-annotation from which the
required annotation inherit. This is the case of the Entity and MappedSuperclass in the JPA.

Complement Annotation Models So far, annotation models are only linked to a
model of the code on which they lay. In general, the development of a complex application
deals with artifacts other than source code. The existing constraints on annotations
sometimes refer to these artifacts, as is the case with SaxSpoon and the DTD of the
parsed XML �les. Such constraints are not expressible with the current implementation
of ModelAn, since they are neither in the annotation or code models. If one were to
de�ne a model of DTD's, and then to write a tool that would take a given DTD and
generate a DTD's model instance (a model contributor), then it would be possible to
check constraints like the one that states that the names of the parameters of methods
annotated with HandlesStartTag must be consistent with the names of the attributes de�ned in
the DTD. Such model contributors would greatly enhance the expressiveness of ModelAn's
constraints, as well as help in giving the application programmer a complete view of his
application.

Publications

International Journals

[1] Carlos Noguera and Renaud Pawlak. AVal: an extensible attribute-oriented program-
ming validator for java. Journal of Software Maintenance and Evolution: Research
and Practice, Volume 19 Issue 4:253 � 275, July 2007.

131

Chapter 7. Conclusion and Perspectives

International Conferences

[2] Carlos Noguera and Laurence Duchien. Annotation framework validation using do-
main models. In Fourth European Conference on Model Driven Architecture Founda-
tions and Applications, pages 48�62, Berlin, Germany, June 2008.

[3] Carlos Noguera, Ellen Van Paesschen, Carlos Parra, and Johan Fabry. Context distri-
bution for supporting composition of applications in ubiquitous computing. In SAC
'08: Proceedings of the 2008 ACM symposium on Applied computing, pages 1647�1648,
New York, NY, USA, 2008. ACM.

[4] Johan Fabry and Carlos Noguera. Abstracting connection volatility through tagged
futures. In Proceedings of the 2nd Ambient Intelligence Developments (AmI.d) Con-
ference, pages 2�12, 2007.

International Workshops

[5] Johan Fabry and Carlos Noguera. Is AOP equal to untangling and unscattering?
questions from an ambient intelligence application scenario. In I Latin American
Workshop on Aspect-Oriented Software Development (LA-WASP'2007), Joao Pessoa,
Paraiba - Brasil, October 2007.

[6] Coen De Roover, Theo D'Hondt, Johan Brichau, Carlos Noguera, and Laurence
Duchien. Behavioral similarity matching using concrete source code templates in logic
queries. In PEPM '07: Proceedings of the 2007 ACM SIGPLAN symposium on Partial
evaluation and semantics-based program manipulation, pages 92�101, New York, NY,
USA, 2007. ACM.

[7] Carlos Noguera and Renaud Pawlak. Aval: an extensible attribute-oriented program-
ming validator for java. In SCAM '06: Proceedings of the Sixth IEEE International
Workshop on Source Code Analysis and Manipulation, pages 175�183, Washington,
DC, USA, 2006. IEEE Computer Society.

[8] Carlos Noguera and Renaud Pawlak. Open static pointcuts through source code
templates. In AOSD 2006 Workshop on Open and Dynamic Aspect Languages, 2006.

[9] Renaud Pawlak, Carlos Noguera, and Nicolas Petitprez. Spoon: Program analysis
and transformation in java. Technical Report 5901, INRIA, May 2006.

132

Bibliography

[Bar06] Olivier Barais. SpoonEMF, une brique logicielle pour l'utilisation de l'IDM
dans le cadre de la réingénierie de programmes Java5. In Journées sur
l'Ingénierie Dirigée par les Modèles (IDM), June 2006. Poster. 16, 80

[BCC05] Klaas van den Berg, Jose Maria Conejero, and Suzanna Chitchyan. AOSD
ontology 1.0. Technical report, AOSD-Europe Network of Excellence, May
2005. 18

[BCL+06] Eric Bruneton, Thierry Coupaye, Matthieu Leclercq, Vivien Quéma, and
Jean-Bernard Stefani. The FRACTAL component model and its support in
java: Experiences with Auto-adaptive and Recon�gurable systems. Software:
Practice and Experience, 36(11-12):1257�1284, 2006. 70, 90

[Ben86] Jon Bentley. Programming pearls: little languages. Communications ACM,
29(8):711�721, August 1986. 12

[BK06] Christian Bauer and Gavin King. Java Persistence with Hibernate. Manning
Publications, 2006. ISBN 978-1932394887. 2, 28, 147

[BKVV06] Martin Bravenboer, Karl Trygve Kalleberg, Rob Vermaas, and Eelco Visser.
Stratego/xt 0.16. components for transformation systems. In ACM SIGPLAN
2006 Workshop on Partial Evaluation and Program Manipulation (PEPM
'06), pages 95�99, Charleston, South Carolina, January 2006. ACM SIG-
PLAN. 14

[CGQ+06] Dolors Costal, Cristina Gómez, Anna Queralt, Ruth Raventós, and Ernest
Teniente. Facilitating the de�nition of general constraints in uml. In Model
Driven Engineering Languages and Systems, 9th International Conference,
MoDELS 2006, pages 260�274, 2006. 17, 130, 155

[Chi95] Shigeru Chiba. A metaobject protocol for c++. In Proceedings of the ACM
Conference on Object-Oriented Programming Systems, Languages and Appli-
cations (OOPSLA), pages 285�299, October 1995. 15

[CK05] V. Cepa and S. Kloppenburg. Representing Explicit Attributes in UML. In
7th International Workshop on Aspect-Oriented Modeling (AOM), 2005. 18,
21, 25

133

Bibliography

[CM04] Vasian Cepa and Mira Mezini. Declaring and enforcing dependencies be-
tween.NET custom attributes. In Gabor Karsai and Eelco Visser, editors,
Generative Programming and Component Engineering: Third International
Conference, GPCE 2004, Vancouver, Canada, October 24-28, 2004. Proceed-
ings, volume 3286 of Lecture Notes in Computer Science, pages 283�297.
Springer, 2004. 23, 63

[Cor06a] James R. Cordy. Source transformation, analysis and generation in txl. In
PEPM '06: Proceedings of the 2006 ACM SIGPLAN symposium on Partial
evaluation and semantics-based program manipulation, pages 1�11, New York,
NY, USA, 2006. ACM Press. 14

[Cor06b] James R. Cordy. The txl source transformation language. Science of Com-
puter Programming, 61(3):190�210, 2006. 14

[Der05] Dirk Derrider. A Concept-Centric Environment for Software Evolution in an
Agile Context. PhD thesis, Vrije Universiteit Brussel, 2005. 32

[DFFV06] Zoé Drey, Cyril Faucher, Franck Fleurey, and Didier Vojtisek. Kermeta lan-
guage reference manual, 2006. 16

[EGHT94] David Evans, John Guttag, James Horning, and Yang Meng Tan. LCLint:
A tool for using speci�cations to check code. In Proceedings of the ACM
SIGSOFT '94 Symposium on the Foundations of Software Engineering, pages
87�96, 1994. 19

[EH07] Torbjörn Ekman and Görel Hedin. The jastadd extensible java compiler. In
OOPSLA '07: Proceedings of the 22nd annual ACM SIGPLAN conference
on Object oriented programming systems and applications, pages 1�18, New
York, NY, USA, 2007. ACM. 14

[EKKM08] Michael Eichberg, Sven Kloppenburg, Karl Klose, and Mira Mezini. De�ning
and continuous checking of structural program dependencies. In ICSE '08:
Proceedings of the 30th International Conference on Software Engineering,
pages 391�400, New York, NY, USA, 2008. ACM. 19, 130, 155

[EL02] David Evans and David Larochelle. Improving security using extensible
lightweight static analysis. IEEE Software, 19(1):42�51, January/February
2002. 19

[EMOS04] M. Eichberg, M. Mezini, K. Ostermann, and T. Schafer. Xirc: a kernel for
cross-artifact information engineering in software development environments.
Reverse Engineering, 2004. Proceedings. 11th Working Conference on, pages
182�191, Nov. 2004. 22

[ESM05] Michael Eichberg, Thorsten Schäfer, and Mira Mezini. Using Annotations
to Check Structural Properties of Classes. In Maura Cerioli, editor, Fun-
damental Approaches to Software Engineering, 8th International Conference,

134

volume 3442 of Lecture Notes in Computer Science, pages 237�252, Edin-
burgh, Scotland, 2005. Springer. 22

[FEBF06] Jean-Marie Favre, Jacky Estublier, and Mirelle Blay-Fornarino, edi-
tors. L'ingénierie dirigée par les modèles. Informatique et Systèemes
d'Information. Lavoisier � Hermes Science, 2006. 17

[FJ97] Matteo Frigo and Steven G. Johnson. FFTW: The fastest fourier transform
in the west. Technical Report MIT-LCS-TR-728, MIT LCS, 1997. 20

[FN07a] Johan Fabry and Carlos Noguera. Abstracting connection volatility through
tagged futures. In Proceedings of the 2nd Ambient Intelligence Developments
(AmI.d) Conference, pages 2�12, September 2007. 16

[FN07b] Johan Fabry and Carlos Noguera. Is AOP equal to untangling and unscat-
tering? questions from an ambient intelligence application scenario. In I
Latin American Workshop on Aspect-Oriented Software Development (LA-
WASP'2007), Joao Pessoa, Paraiba - Brasil, October 2007. 19

[GJSB05] James Gosling, Bill Joy, Guy Steele, and Gilad Bracha. The Java Language
Speci�cation. Addison-Wesley, third edition, May 2005. 2, 29, 51, 55, 147

[GL04] Samuel Z. Guyer and Calvin Lin. Broadway: A compiler for exploring the
domain-speci�c semantics of software libraries. In Proceedings of the IEEE,
2004. 20

[Hed97] Görel Hedin. Attribute extensions - a technique for enforcing programming
conventions. Nord. J. Comput, 4(1):93�122, 1997. 19

[HH04] Erik Hilsdale and Jim Hugunin. Advice weaving in AspectJ. In AOSD '04:
Proceedings of the 3rd international conference on Aspect-oriented software
development, pages 26�35, New York, NY, USA, 2004. ACM Press. 19

[Joh78] Stephen Johnson. Lint, a C Program Checker, programmer's manual, AT&T
bell laboratories, 1978. 19

[Joh97] Ralph E. Johnson. Frameworks = (components + patterns). Communications
ACM, 40(10):39�42, 1997. 1, 2, 147, 148

[Jéz08] Jean-Marc Jézéquel. Model driven design and aspect weaving. Software and
Systems Modeling, 2008. 17

[KBV08] Lennart C. L. Kats, Martin Bravenboer, and Eelco Visser. Mixing source
and bytecode. A case for compilation by normalization. In G. Kiczales, edi-
tor, Proceedings of the 23rd ACM SIGPLAN Conference on Object-Oriented
Programing, Systems, Languages, and Applications (OOPSLA 2008), vol-
ume 43�10 of Lecture Notes in Computer Science, pages 91�108, Nashville,
Tenessee, USA, October 2008. ACM Press. 14

135

Bibliography

[KHH+01] Gregor Kiczales, Erik Hilsdale, Jim Hugunin, Mik Kersten, Je�rey Palm, and
William G. Griswold. An overview of aspectj. In Jørgen Lindskov Knudsen,
editor, ECOOP, volume 2072 of Lecture Notes in Computer Science, pages
327�353. Springer, 2001. 2

[KLM+97] Gregor Kiczales, John Lamping, Anurag Mendhekar, Chris Maeda,
Cristina Videira Lopes, Jean-Marc Loingtier, and John Irwin. Aspect-
oriented programming. In ECOOP, pages 220�242, 1997. 18

[KM05] Gregor Kiczales and Mira Mezini. Separation of concerns with procedures,
annotations, advice and pointcuts. In Andrew P. Black, editor, ECOOP,
volume 3586 of Lecture Notes in Computer Science, pages 195�213. Springer,
2005. 19

[LBCO04] Christian Lengauer, Don Batory, Charles Consel, and Martin Odersky, edi-
tors. Domain-Speci�c Program Generation, chapter From a Program Family
to a Domain-Speci�c Language, pages 19�28. Springer-Verlag, 2004. 13

[LH01] Andreas Ludwig and Dirk Heuzeroth. Metaprogramming in the large. In
GCSE '00: Proceedings of the Second International Symposium on Generative
and Component-Based Software Engineering-Revised Papers, pages 178�187,
London, UK, 2001. Springer-Verlag. 15

[LX07] Jessy Liberty and Donald Xie. Programming C#. O'Reilly, third edition,
2007. 23

[MB02] W Scott Means and Michael A Bodie. The Book of SAX: The Simple API
for XML. No StarchPress, 2002. 33

[MFK04] Matthew Flatt Matthias Felleisen, Robert Bruce Findler and Shriram Krish-
namurthi. Building little languages with macros. Dr. Dobb's Journal, April
2004. 1, 147

[MHS05] Marjan Mernik, Jan Heering, and Anthony M. Sloane. When and how to
develop domain-speci�c languages. ACM Computing Surveys, 37(4):316�344,
2005. 13, 14

[MJCH08] Martin Monperrus, Jean-Marc Jézéquel, Joël Champeau, and Brigitte
Hoeltzener. A model-driven measurement approach. In In Proceedings of
ACM/IEEE 11th International Conference on Model Driven Engineering
Languages and Systems (MoDELS 08), Toulouse, France, October 2008. 16

[MK06] Linda De Michel and Michael Keith. Enterprise JavaBeans, Version 3.0. Sun
Microsystems, May 2006. JSR-220. 2, 22, 45, 105, 147, 148

[MM03] Jishnu Mukeji and Joaquin Miller. MDA Guide. OMG, 2003. Version 1.0.1.
17

136

[ND08] Carlos Noguera and Laurence Duchien. Annotation framework validation
using domain models. In Fourth European Conference on Model Driven Ar-
chitecture Foundations and Applications, pages 48�62, Berlin, Germany, June
2008. 4, 150

[NP06] Carlos Noguera and Renaud Pawlak. Aval: an extensible attribute-oriented
programming validator for java. In SCAM '06: Proceedings of the Sixth IEEE
International Workshop on Source Code Analysis and Manipulation, pages
175�183, Washington, DC, USA, 2006. IEEE Computer Society. 4, 150

[NP07] Carlos Noguera and Renaud Pawlak. AVal: an extensible attribute-oriented
programming validator for java. Journal of Software Maintenance and Evo-
lution: Research and Practice, Volume 19 Issue 4:253 � 275, July 2007. 4, 55,
150

[Obj04] Object Management Group. Uni�ed Modelling Language Infrastructure,
November 2004. Version 2.1.2. 17, 18

[Obj06] Object Management Group. Object Constraint Language Speci�cation, 2006.
Version 2.0. 17

[Par76] David Lorge Parnas. On the design and development of program families.
Software Engineering, IEEE Transactions on, SE-2(1):1�9, March 1976. 13

[Paw05] Renaud Pawlak. Spoon: annotation-driven program transformation � the
AOP case. In AOMD '05: Proceedings of the 1st workshop on Aspect oriented
middleware development, pages 1�6. ACM Press, 2005. 3, 15, 31, 149

[PNP06] Renaud Pawlak, Carlos Noguera, and Nicolas Petitprez. Spoon: Program
analysis and transformation in java. Technical Report 5901, INRIA, May
2006. 3, 15, 80, 91, 149

[Pro02] Je� Prosise. Programming Microsoft .Net. Microsoft Press, 2002. 23

[Ray03] Eric S. Raymond. The Art of UNIX Programming. Professional Computing
Series. Addison Wesley, 2003. 12

[RM06] Awais Rashid and Ana Moreira. Domain models are not aspect free. In In-
ternational Conference on Model Driven Engineering Languages and Systems
(MODELS), pages 155�169. Springer, 2006. 17

[RPPM06] Romain Rouvoy, Nicolas Pessemier, Renaud Pawlak, and Philippe Merle. Us-
ing attribute-oriented programming to leverage fractal-based developments.
In Proceedings of the 5th International ECOOP Workshop on Fractal Com-
ponent Model (Fractal'06), Nantes, France, July 2006. 2, 70, 91, 147

[SIP+05] Friedrich Steimann, Fachbereich Informatik, Lehrgebiet Programmiersys-
teme, Fernuniversität In Hagen, and D-Hagen. Domain models are aspect
free. In Proc. MODELS 2005, pages 171�185. Springer, 2005. 17

137

Bibliography

[SPDC06] Lionel Seinturier, Nicolas Pessemier, Laurence Duchien, and Thierry Cou-
paye. Component-Based Software Engineering, volume Volume 4063/2006,
chapter A Component Model Engineered with Components and Aspects,
pages 139�153. Springer Berlin, 2006. 16

[Str05] Bjarne Stroustrup. A rationale for semantically enhanced library languages.
In Library-Centric Software Design LCSD'05, October 2005. 20

[SY02] Mati Shomrat and Amiram Yehudai. Obvious or not?: regulating architec-
tural decisions using aspect-oriented programming. In AOSD '02: Proceedings
of the 1st international conference on Aspect-oriented software development,
pages 3�9, New York, NY, USA, 2002. ACM Press. 19

[TCKI00] M. Tatsubori, S. Chiba, M.-O. Killijian, and K. Itano. OpenJava: A Class-
Based Macro System for Java. In Re�ection and Software Engineering, Papers
from OORaSE 1999, 1st OOPSLA Workshop on Re�ection and Software
Engineering, volume 1826 of Lecture Notes in Computer Science, pages 117�
133. Springer Verlag, Denver, Colorado, USA, 2000. 15, 32

[vdBKV01] M. van den Brand, P. Klint, and J. Vinju. Term rewriting with traversal
functions. Technical report, Centrum Wiskunde & Informatica (CWI), 2001.
14

[vDHK96] Arie van Deursen, Jan Heering, and Paul Klint, editors. Language Proto-
typing: An Algebraic Speci�cation Approach, volume 5 of AMAST Series in
Computing. World Scienti�c Publishing Co., 1996. 14

[vDKV00] Arie van Deursen, Paul Klint, and Joost Visser. Domain-speci�c languages:
An annotated bibliography. ACM SIGPLAN Notices, 35(6):26�36, June 2000.
12

[Vel98] Todd L. Veldhuizen. Arrays in Blitz++. In Proceedings of the 2nd Inter-
national Scienti�c Computing in Object-Oriented Parallel Environments (IS-
COPE'98), Berlin, Heidelberg, New York, Tokyo, 1998. Springer-Verlag. 20

[VG98] Todd L. Veldhuizen and Dennis Gannon. Active libraries: Rethinking the
roles of compilers and libraries. In Proceedings of the SIAM Workshop on
Object Oriented Methods for Inter-operable Scienti�c and Engineering Com-
puting (OO'98), Philadelphia, PA, USA, 1998. SIAM. 20

[WRO04] Craig Walls, Norman Richards, and Rickard Oberg. XDoclet in Action. Man-
ning Publications, 2004. 91

[WS05] Hiroshi Wada and Junichi Suzuki. Modeling turnpike frontend system: A
model-driven development framework leveraging UML metamodeling and
attribute-oriented programming. In Model Driven Engineering Languages
and Systems, 8th International Conference, MoDELS 2005, Montego Bay,
Jamaica, October 2-7, 2005, Proceedings, pages 584�600, 2005. 21

138

[Zot05] Brian Zotter. Web Services Metadata for the Java Platform, Version 2.0.
BEA Systems, June 2005. JSR-181. 2, 97, 147, 148

139

Bibliography

140

Appendixes

141

A

Formalization of Generic Constraints

A.1 Notations and De�nitions

Let n be a node in the AST of a program and ntype a function that maps n to the
kind of element that it represents (ClassN , InterfaceN , EnumN , MethodN , FieldN ,
AnnotationN , AnnotationElementN). Node types are partially ordered by the subtype
relation <:N and nodes of the AST are partially ordered by the transitive ancestor relation
<T . Let annot be a function that maps nodes of the AST to the set of annotation instances
in that node. Let a an annotation and type a function that maps a to the actual type
of the annotation. Types are partially ordered by the transitive subtype relation <:. An
array of type t is noted t[]. Finally, the function def maps annotation instances, or their
elements, to the AST node in which they are de�ned.

Annotation instances in nodes and their de�nition must be de�ned (def) by an anno-
tation node, which is part of the AST:

type(a) <: Annotation

ntype(def(a)) = AnnotationN

Annotations can de�ne annotation elements and the arguments of the annotation
instances (dotted notation) have their corresponding de�nition nodes in the AST also:

type(a) <: Annotation

ntype(def(a.e)) = AnnotationElementN

Having de�ned the tools to express ASTs and annotations we can de�ne the notion of
scope of an AST node:

scopeN : N → Set(N)

scopeN(n : N) := {x : N |n <N x}
And the scope of an annotation instance:

scopeA : A→ Set(A)

scopeA(a : A) := {b : A|target(b) ∈ scopeN(target(a)}

143

Appendix A. Formalization of Generic Constraints

A.2 Annotation-wise Validations

These meta-annotations de�ne restrictions on where the Annotation Framework annota-
tions can be placed with respect to other annotations: Inside, Prohibits, Requires, or restric-
tions on the values of their elements: RefersTo.

Inside

When an annotation instance a is of a type annotated with an Inside meta-annotation in
that refers to another annotation type B, the use of the annotation a on an AST node
n is valid only if it occurs on an AST node that has a (indirect) parent node annotated
by an instance of B. The Inside annotation de�nes a single element value that contains the
containing annotation type.

type(a) <: Annotation
type(in) = Inside in ∈ annot(def(a)) in.value = B n ∈ AST

a ∈ annot(n)→ ∃m ∈ AST (m <T n ∧ (∃b : B (b ∈ annot(m))))

A typical application of this meta-annotation is given by Saxpoon to implement the
rule that methods marked with HandlesStartTag and HandlesEndTag will only be translated if
they belong to a class marked with XMLParser. So, in Saxpoon, HandlesStartTag and HandlesEndTag

is meta-annotated with Inside(value=@XMLParser).

Prohibits

Given a node n that is annotated by an instance a whose annotation type is itself an-
notated by an instance pr of type Prohibits with an argument B prevents instances of B
to annotate n. The Prohibits annotation de�nes a single value element that contains the
prohibited annotation type.

type(a) <: Annotation
pr : Prohibits ∈ annot(def(a)) pr.value = B n ∈ AST

a ∈ annot(n)→ ¬ ∃b : B (b ∈ annot(n))

Saxpoon's a constraint states that no methods can be marked with HandlesStartTag and
HandlesEndTag at the same time. So, in Saxpoon, HandlesStartTag is meta-annotated with
Prohibits(value=@HandlesEndTag) and HandlesEndTag is meta-annotated with Prohibits(value=@HandlesStartTag).

Requires

This annotation is the dual of Prohibits. It requires that all nodes n, annotated with
an annotation instance a whose type has an annotation re of type Requires, to be also
annotated with an instance of its argument B. The Requires annotation de�nes a single
value element that contains the required annotation type.

type(a) <: Annotation
re : Requires ∈ annot(def(a)) re.value = B n ∈ AST

a ∈ annot(n)→ ∃b : B (b ∈ annot(n))

144

A.3. Code-wise Validations

RefersTo

An instance of this annotation is placed on an annotation element def(a.i) of an annota-
tion type of the Annotation Framework. It states that the values of the annotated element
on an annotation instance a must be equal to the value of an annotation instance of type
B present in the AST. The RefersTo contains two elements: type that de�nes referred anno-
tation type, and id that de�nes the argument to which a.i must point to, which defaults
to value.

type(a) <: Annotation
rt : RefersTo ∈ annot(def(a.i)) rt.type = B rt.id = j

∀n1 ∈ AST (a ∈ annot(n1)→ ∃n2 ∈ AST (n1 6= n2 ∧ ∃b : B ∈ annot(n) (a.i = b.j))

This annotation is not used in Saxpoon. It is, however, used on the Fraclet component
Annotation Framework presented Section 6.1 to specify bindings between components.
Indeed, each annotation that de�nes a binding must state to which component it will be
bound to. This is veri�ed by annotating the binding annotation with RefersTo(Component,name).

Unique

If a and b are instances of the same annotation, and an element i of this de�nition has
the Unique annotation, then, two AST nodes carrying a and b have the same value for
the element i, they must be the same node.

type(a), type(b) <: Annotation ∧ def(a) = def(b) u : Unique ∈ annot(def(a.i))

∀n1, n2 ∈ AST (a ∈ annot(n1) ∧ b ∈ annot(n2) ∧ a.i = b.i→ a = b ∧ n1 = n2)

A.3 Code-wise Validations

These meta-annotations express restrictions on the locations in the program in which
Annotation Framework annotations can be placed, with respect to the program elements
themselves.

Target

This annotation restricts the type TN of nodes of the AST on which an annotation a of a
given annotation type can be placed. This meta-annotation de�nes a single value element
which contains the node type.

type(a) <: Annotation
at : AV alTarget ∈ annot(a) at.value = TN n ∈ AST

a ∈ annot(n)→ ntype(n) = TN

145

Appendix A. Formalization of Generic Constraints

Type

This annotation restricts the (program) type T on which a certain annotation a can be
placed. Depending of the type of AST node n, type(n) denote di�erent elements: if the
node n is a Type (i.e. CtClass, CtInterface, etc) then the type function is the type that the class
or interface represents. If the node n represents a method or a constructor (CtExecutable)
then the type function evaluates to the return type of the method21 or constructor, and
if the node n is a �eld (CtField), then the type function is the type of the �eld. Type de�nes
a single element value which contains the program type.

type(a) <: Annotation t : Type ∈ annot(a) t.value = T n ∈ AST

a ∈ annot(n)→ type(n) = T

21for methods returning void, a V oid type is used

146

B

Résumé en français

L'art de la programmation consiste à prendre des concepts dans un domaine donné et à
les projeter dans des concepts o�erts par un langage de programmation. Par exemple,
un client est représenté par une classe dans un langage à objets. La distance sémantique
entre les concepts existants dans le domaine du problème et ceux o�erts par le langage
de programmation constitue un fossé sémantique. Les façons d'établir le lien entre le
domaine et sa représentation dans un langage de programmation sont toujours des su-
jets de recherche actuels. Lorsque l'on développe un langage de programmation, on se
doit d'équilibrer la généralité des concepts o�erts par le langage en fonction de la largeur
voulue du fossé sémantique. Les langages de programmation qui o�rent des concepts
trop généralistes sont di�ciles à utiliser, alors que les langages de programmation qui
proposent des concepts très spéci�ques ont une applicabilité limitée. Une manière de
trouver un équilibre est de développer un langage généraliste qui fournit des extensions
spéci�ques à un domaine, de sorte que les concepts du programme restent génériques,
mais que les concepts plus spéci�ques peuvent être exprimés, tel est le cas, par exemple,
avec les macros de Common Lisp [MFK04]. Dans le langage Java, de telles extensions
sont possibles par l'inclusion d'annotations. Les annotations sont des méta-données as-
sociées aux éléments de programme. Elles apportent une sémantique spéci�que à un
domaine. En quelque sorte, elles sont similaires aux directives de compilation ou Prag-
mas, sauf que la sémantique de ces annotations n'est pas dé�nie par le langage, mais
par un moteur externe d'interprétation. Le fait que des annotations soient accompagnées
d'un moteur d'interprétation les rend plus proches des cadres logiciels que des directives
de pré-processeur. Un cadre logiciel est dé�ni par Johnson [Joh97] comme a reusable de-
sign of all of parts of a system that is represented as a set of abstract classes and the way
their instances interact. Dans le cas des cadres à base d'annotations, à la place d'étendre
des classes abstraites, le concepteur d'applications annote son programme et la manière
avec laquelle les annotations seront interprétées est similaire aux traitements qui résultent
de l'interaction avec les instances du cadre.

L'association de méta-données à des éléments de programme est actuellement utilisée
par plusieurs cadres logiciels de grande ou petite taille [RPPM06, MK06, Zot05, BK06].
Néanmoins, leur développement est encore, en grande partie, e�ectué de façon ad-hoc . Les
annotations, telles que dé�nies dans le langage Java [GJSB05], permettent au développeur
d'annoter certains éléments d'un programme (classes, paquets, méthodes, etc.) pour dé-

147

Appendix B. Résumé en français

clarer qu'elles respectent une sémantique spéci�que à un domaine. L'utilisation des anno-
tations fournit un certain nombre d'avantages. D'abord, elles fournissent un mécanisme
d'interaction aditionnelle entre l'application et le cadre logiciel qui propose les annota-
tions. En second lieu, elles améliorent le découplage entre l'interface du cadre (représentée
sous la forme d'annotations) et son exécution (l'interprétation des annotations). Ce dé-
couplage rend les annotations attractives pour le développement des caractéristiques qui
doivent être réalisées par des tiers. Par exemple, l'API de persistance de Java (une partie
de la spéci�cation Java EJB3 [MK06]), ou la spéci�cation de méta-données de services
Web pour Java [Zot05]. Troisièmement, en faisant en sorte que les éléments annotés
déclarent qu'ils o�rent une sémantique spéci�que à un domaine en plus de celle fournie
par le langage, les annotations peuvent alors être utilisées pour étendre le langage Java
(comme cela est fait avec AspectJ5).

B.1 Développement de cadres d'annotations

Nous dé�nissons un cadre d'annotations comme un cadre logiciel [Joh97] qui propose
des annotations en tant que moyens d'interaction. Une cadre d'annotation est composé
de deux parties: l'ensemble des types d'annotation et le moteur d'interprétation. Les
types d'annotation correspondent à l'interface du cadre d'annotations. Ils représentent
les concepts que l'utilisateur du cadre doit étendre avec ses propres annotations a�n d'en
utiliser les services. Les annotations en Java sont des types similaires aux interfaces,
qui contiennent un certain nombre d'éléments d'annotation. Ils fonctionnent comme des
champs statiques dans les classes. L'utilisateur d'annotations est responsable de mettre en
correspondance les concepts de son application tels que les classes, paquets, méthodes ou
champs avec les concepts fournis par le cadre d'annotations. Cette mise en correspondance
est faite explicitement en décorant le code source de l'élément ciblé avec une annotation.
En faisant ceci, l'utilisateur d'annotations doit être conscient de la sémantique des types
d'annotation qu'il emploie, et à son tour, le cadre d'annotations doit fournir les erreurs
et les avertissements opportuns toutes les fois que le développeur viole les contraintes des
annotations.

En plus du dé� de véri�er (et spéci�er) la sémantique des types d'annotation, le
développeur du cadre d'annotations doit surmonter d'autres dé�s en concevant et en réal-
isant le cadre. Les types d'annotation, comme déjà dit, représentent un certain nombre
de concepts qui proviennent du domaine que le cadre représente. De ce modèle de do-
maine vont provenir certaines des contraintes sur les types d'annotation. En concevant les
types d'annotation pour ce cadre, le développeur est confronté aux limitations imposées
par le langage de programmation dans la dé�nition des types d'annotation. Il s'agit, par
exemple, du fait que les annotations peuvent seulement dé�nir un nombre limité de types
pour leurs éléments, ou encore que l'héritage entre des annotations ainsi que les associ-
ations entre annotations ne soient pas permis. Ceci constitue le dé� numéro I dans le
développement des cadres d'annotations. Le dé� numéro II est celui de la dé�nition et de
la véri�cation des contraintes d'annotation. Deux types de contraintes existent pour des
annotations: ceux qui dé�nissent les relations entre les types d'annotation, et ceux qui
dé�nissent les relations entre les annotations et les éléments du code source sur lesquels

148

B.2. Proposition

elles sont placées. Le premier type de contraintes est enraciné dans le modèle de domaine
que les annotations représentent ; tandis que le second vient de la mise en correspondance
du modèle de domaine avec le modèle du code (c'est-à-dire de l'arbre de syntaxe abstraite
ou AST) du langage Java. La dé�nition de ces deux types de contraintes représente le
dé� numéro III

Finalement, le dé� numéro IV traite de l'interprétation des programmes annotés. Les
annotations en Java ne dé�nissent pas une sémantique. Leur comportement est donné
par leur interprétation par le cadre d'annotations. Les programmes annotés peuvent
alors, être interprétés au moment de la compilation, en transformant le code source du
programme annoté en code source sans annotations, ou encore au moment de l'exécution
en utilisant l'API de ré�exion de Java, le traitement du programme est alors changé car
dirigé par la présence des annotations. Dans l'un comme dans l'autre cas, pour interpréter
les annotations, il est souhaitable de les réi�er de sorte à ce qu'elles ressemblent à leurs
modèles du domaine d'origine. Actuellement, aucun outil de traitement des annotations
n'o�re de telles réi�cations, laissant la tâche au développeur du cadre d'annotations.

Pour récapituler, les quatre dé�s identi�és dans le développement des cadres d'annotations
sont :

I la représentation des concepts du domaine comme des types d'annotation,

II la mise en correspondance des types d'annotation avec les éléments du code,

III la dé�nition des contraintes pour la validation des programmes annotés,

IV le réi�cation des annotations pour leur interprétation.

B.2 Proposition

Nous proposons de résoudre ces dé�s dans le développement de cadres d'annotations en
deux étapes: la dé�nition de contraints génériques et la dé�nition de modèles d'annotation.
D'abord, nous analysons les contraintes dans les cadres existants, puis nous extrayons un
certain nombre de contraintes génériques. Ces contraintes peuvent alors être paramétrées
par des développeurs de cadres d'annotations pour spéci�er leurs types d'annotation.
En second lieu, nous empruntons des concepts l'ingénierie dirigée par des modèles pour
créer les modèles d'annotation qui sont d'un niveau d'abstraction plus élevé que les types
simples d'annotation. Les modèles d'annotation permettent la dé�nition de la mise en
correspondance des types d'annotation avec les éléments de code et fournissent une base
pour la réi�cation des annotations dans les applications. L'exécution des deux approches
est basée sur le moteur de transformation Spoon[PNP06, Paw05]. Spoon est approprié
en particulier pour l'analyse et la transformation des annotations, puisqu'il est fondé sur
la syntaxe de Java5, et qu'il fournit des processeurs22 spéciaux pour des éléments de code
annotés.

22visiteurs de l'AST du programme

149

Appendix B. Résumé en français

B.2.1 Contraintes génériques

Nous classi�ons les contraintes dans les cadres d'annotations en deux grands groupes: les
contraintes liées aux annotations, qui traitent des contraintes sur l'ensemble des valeurs
possibles pour les éléments des annotations et sur les relations entre les annotations, et les
contraintes liées au code, qui traitent des propriétés que les éléments du code demandent
a�n de pouvoir être annotées avec un type particulier d'annotation. Pour chaque groupe
d'annotations, nous dé�nissons un certain nombre de contraintes, et nous dé�nissons
comment elles se composent a�n de spéci�er un type d'annotation.

A�n de pouvoir employer ces contraintes génériques, nous avons mis en place un cadre
d'annotations pour la dé�nition et la validation des contraintes d'annotation du domaine
appelé AVal23 [NP07, NP06]. Chacune de ces contraintes génériques est représentée par
un type d'annotation. Le développeur du cadre d'annotations utilise AVal en positionnant
une annotation contrainte sur les types d'annotation de son cadre. AVal est fondé sur le
cadre logiciel Spoon pour véri�er les contraintes sur les applications. Cette validation est
faite en utilisant une représentation de l'AST du programme fourni par Spoon.

Les annotations d'AVal fournissent un moyen générique, réutilisable et déclaratif pour
spéci�er les contraintes d'un cadre d'annotations. En plus, AVal fournit également un
moyen de véri�er que les programmes annotés sont conformes aux spéci�cations des cadres
d'annotations qu'ils utilisent.

B.2.2 Modèles d'annotation

Au moment de la conception, le développeur du cadre d'annotations doit faire face aux
restrictions que le langage Java impose. La première de ces restrictions est celle qui
empêche de dé�nir des relations entre types d'annotation. Les relations entre les annota-
tions sont dé�nies à partir du modèle de domaine qu'elles représentent. De telles relations
sont souvent nécessaires pour dé�nir des contraintes et pour interpréter les applications
annotées. Pour cette raison, nous proposons d'ajouter aux types d'annotation avec la no-
tion d'association. Comme pour les contraintes génériques, nous mettons en place cette
extension par un cadre d'annotations appelé ModelAn24 [ND08]. ModelAn dé�nit une
méta-annotation (Association) qui, une fois placée sur un type d'annotation, représente une
association avec un autre type d'annotation. Le graphe résultant des types d'annotation
et de ces associations est ce que nous appelons un modèle d'annotations.

Comme les modèles d'annotation contiennent des informations qui sont plus proches
de celles existantes dans le modèle de domaine, le dé� numéro I est résolu par les mod-
èles d'annotations en rendant plus faible les relations entre les annotations, c'est-à-dire
la restriction la plus ennuyeuse quand on passe du modèle du domaine à un ensemble
de types d'annotation. Des entités représentant des types d'annotation dans un modèle
d'annotations sont associées aux éléments de l'AST du langage Java de la même manière
que des annotations sont liées aux éléments du programme sur lesquels elles sont placées.
Cette association peut être quali�ée par une requête qui représentera l'élément de code
sur lequel des annotations seront censées être placées. Ceci relève le dé� numéro III,

23en anglais pour Annotation Validation
24en anglais pour Modeling Annotations

150

B.3. Contributions

puisqu'en employant ces requêtes, le développeur du cadre d'annotations peut exprimer
la mise en correspondance entre les types d'annotation et les éléments du code des appli-
cations qui les utiliseront.

En conclusion, les entités dans les types d'annotation sont employées pour générer leur
réi�cation (dé� numéro IV). Avec cette réi�cation des types d'annotation, le développeur
de cadre peut alors interpréter des applications annotées sans avoir recours à la représen-
tation de l'annotation sur l'AST. En plus, comme ModelAn et les annotations réi�ées
sont basés sur Spoon, ces dernières sont accessibles depuis les processeurs d'annotation
de Spoon.

Ainsi, ModelAn et AVal fournissent des moyens pour venir à bout des quatre dé�s
identi�és dans le développement de cadres d'annotation. Comme ModelAn et AVal trait-
ent des annotations au niveau du code source des programmes, les développeurs peuvent
spéci�er et modéliser des annotations indépendamment de leur politique de conservation
(si les annotations sont traitées uniquement dans le code source, dans le byte-code ou
au moment de l'exécution). En outre, les annotations réi�ées peuvent être utiles que ce
soit dans le cas d'une interprétation au moment de la compilation (utilisant Spoon) ou
au moment de l'exécution; bien que cette dernière propriété ne soit pas encore mise en
application.

Ce mémoire de thèse est composé de sept chapitres. Le chapitre 1 sert d'introduction,
le chapitre 2 décrit les autres travaux dans des domaines proches comme l'ingénierie
dirigée les modèles, les langages dédies et la programmation orientée aspect. Le chapitre 3
propose une introduction aux cadres logiciels à base d'annotations. Le chapitre 4 dé�nis
des contraintes génériques pour la spéci�cation et validation des cadres d'annotations,
tandis que le chapitre 5 propose des modèles d'annotation pour le développement des
cadres d'annotation. Les propositions des chapitres 4 et 5 sont mise en ÷uvre dans les
cadres d'annotation existantes en le chapitre 6 pour valider son utilité. En�n, le chapitre 7
présente un bilan des travaux de cette thèse et donne des perspectives de recherche.

Les prochaines sections présent les contributions et perspectives de cette thèse.

B.3 Contributions

L'objectif de cette thèse est donc de fournir des outils et des techniques pour l'aide au
développement de cadres d'annotation. A�n de faire ceci, nous avons analysé la conception
et le développement des cadres d'annotation et avons identi�é quatre dé�s auxquels le
développeur de cadre d'annotations doit répondre :

I la représentation des concepts de domaine comme types d'annotation,

II la mise en correspondance des types d'annotation avec les éléments de code,

III la dé�nition de contraintes pour la validation de programmes annotés,

IV le réi�cation des annotations pour leur interprétation.

Les contributions sur les deux parties de l'approche, contraintes génériques et modèles
d'annotation, sont détaillés ci-dessous.

151

Appendix B. Résumé en français

B.3.1 Contraintes génériques

Nous avons dé�ni une classi�cation des contraintes présentes dans des cadres d'annotation
en fonction du sujet de la contrainte. Deux classes de contraintes sont dé�nies : celles
liées aux annotations pour les contraintes qui traitent des propriétés des annotations et
de leurs éléments ; et celles liées au code, pour les contraintes qui traitent des propriétés
du code sur lequel des annotations sont placées. En analysant les cadres d'annotations
existants, nous avons identi�é sept contraintes génériques et nous avons fondé sur celle-ci
la mise en ÷uvre du cadre d'annotation AVal. AVal possède les propriétés suivantes:

Générique Les annotations d'AVal peuvent être utilisées sur des cadres d'annotations
industrielles, et des contraintes communes peuvent être exprimées avec une combinaison
d'annotations AVal. En plus, des contraintes génériques peuvent être employées pour
extraire le modèle d'annotation du cadre d'annotations. Par exemple, si une annotation
est requise par une autre, ceci peut être vu comme une association optionnelle entre elles.

Cependant, puisque les contraintes génériques doivent rester génériques, elles ne peu-
vent pas adresser des contraintes spéci�ques à un cadre donné d'annotations. Pour cela,
l'extensibilité du cadre AVal permet facilement la prise en compte de nouvelles contraintes.

Déclaratif Les annotations contraintes d'AVal sont des spéci�cations déclaratives pour
les types d'annotation dé�nis dans un cadre. Le développeur du cadre n'a pas besoin de
préciser explicitement la façon dont les contraintes seront véri�ées dans les programmes
annotés.

Paramétrisable La plupart des annotations contraintes dans AVal peuvent être para-
métrées a�n d'adapter les messages présentés à l'utilisateur lorsque les contraintes sont
violées. Il est possible, aussi, d'attacher une transformation de code à chaque annota-
tion AVal qui fournira un moyen de corriger l'erreur. La possibilité d'adapter les mes-
sages d'erreur est essentielle dans AVal, étant donné que ses contraintes sont génériques,
les messages d'erreur par défaut sont également génériques et donnent peu de indices à
l'utilisateur sur la cause de l'erreur ou sur les étapes qui doivent être suivies pour leur
résolution. La connaissance des deux con�gurations est à la charge du développeur de
cadre d'annotations.

Extensible AVal fournit un API qui permet aux développeurs de cadre d'annotations
de construire leurs propres annotations contraintes lorsque cela est nécessaire.

Composable Nous décrivons la manière dont des annotations contraintes se composent
tout en respectant les contraintes du langage Java sur le placement des annotations sur
un élément de code.

Augmentation de la compréhension du code L'inclusion de contraintes AVal sur
des types d'annotation augmente leur compréhension, puisque les règles d'utilisation des

152

B.3. Contributions

annotations sont explicitement énoncées. Ceci facilite leur utilisation par les développeurs
d'applications

L'approche de contraintes génériques d'AVal, comparée à d'autres approches dans la
littérature, est la seule à tenir compte des contraintes liées aux annotations et au code.
En plus, elle est la seule à fournir un mécanisme d'extension pour dé�nir de nouvelles
contraintes, et une personnalisation permet la dé�nition de messages d'erreur et de trans-
formations correctrices.

B.3.2 Modèles d'annotation

Nous proposons une extension des types d'annotation Java par l'expression de relations
entre eux. En utilisant cette extension, nous repondons aux trois autres dé�s, tout en
complétant le dé� III résolu par AVal. Le dé� I, la représentation du domaine des con-
cepts comme annotations est adressée en construisant un modèle d'annotation des types
d'annotation et a leurs relations. La mise en relation entre les types d'annotation et les
éléments de code, dé� II, est prise en considération en ajoutant aux types d'annotation
des requêtes OCL qui résolvent les éléments sur lesquels ils sont tracés. Nous prolon-
geons également AVal, de sorte que des contraintes puissent être dé�nies comme des
expressions OCL sur ce modèle d'annotation. Finalement, les éléments dé�nis dans le
modèle d'annotation sont transformés en classes Java qui servent d'annotations réi�ées
dans l'application. Ces annotations réi�ées peuvent être utilisées pour interpréter le code
source de l'application (dé� IV).

Les modèles d'annotation contiennent les propriétés suivantes :

Dé�nition complémentaire du type d'annotation L'addition des associations aux
types d'annotation les rend plus proche du modèle de domaine qu'ils représentent. En
dé�nissant des assocations, le développeur de cadre peut faire plus facilement la transition
entre le modèle de domaine et le développement des types d'annotation.

Abstraction de plus haut niveau pour le cadre d'annotation Le modèle de do-
maine permet une abstraction de plus haut niveau pour la dé�nition du cadre d'annotations
que celle fournie par le code source seul. Le modèle de domaine permet l'expression ex-
plicite des interactions entre les types d'annotation. Ceci fait du modèle d'annotation un
outil utile pour la documentation du cadre.

Rapprochement entre annotations et modèles Les modèles d'annotation permet-
tent également le rapprochement entre les annotations et les modèles. Le concepteur
de cadre d'annotation peut alors tirer des avantages des outils et techniques existants
dans l'ingénierie dirigée par les modèles et les utiliser dans le cadre du développement
orienté annotation. Dans cette thèse, nous exploitons ce rapprochement en réalisant des
contraintes et des requêtes d'annotation en OCL et également en renforçant l'outillage du
cadre logiciel Eclipse par la réalisation de la réi�cation des annotations.

153

Appendix B. Résumé en français

Modèle extensible Bien qu'un modèle d'annotation représente les types d'annotation
de cadres simples, plusieurs instances di�érentes de modèles d'annotation peuvent co-
exister dans une même application. Quand une application emploie di�érents cadres
d'annotation, leurs instances de modèle d'annotation sont fusionnées dans un modèle
unique qui inclut la représentation de toutes les annotations ainsi que le code de l'applica-
tion.

Vue multidimensionnelle d'une application Quand plusieurs modèles d'annotation
coexistent dans une application, chaque instance de modèle d'annotation représente une
vue spéci�que à un domaine. Si une application complète emploie un cadre d'annotations
pour la persistance et un autre pour la navigation dans les pages Web, alors il y aura une
instance de modèle d'annotation qui dé�nit le graphe de navigation de l'application et un
autre qui montre le schéma de persistance.

Véri�cation de contraintes Nous prolongeons les annotations contraintes génériques
d'AVal par une annotation qui prend en paramétre une requête OCL qui sera évaluée
par l'instance du modèle d'annotation. L'utilisation d'OCL pour exprimer des con-
traintes n'exige pas la connaissance l'API Spoon, et devrait donc être plus accessible
aux développeurs de cadre d'annotations.

Dé�nition des valeurs complexes par défaut En employant des requêtes OCL au-
dessus du modèle d'annotation, nous permettons, au développeur de cadre, l'écriture de
valeurs complexes par défaut pour les éléments d'annotation. Aucun autre instrument de
développement d'annotation actuel ne permet ceci.

Relations explicites Annotation-Code Par l'utilisation de requêtes OCL, nous per-
mettons également au développeur de cadre d'annotations de dé�nir la relation entre les
annotations et le code sur lequel elles sont placées. Ceci rend les annotations proches des
aspects en leur fournissant un mécanisme de point de coupe. Ces relations sont également
utilisées pour exprimer des annotations implicites présentes dans des cadres d'annotations
complexes.

B.4 Perspectives

Notre travail ouvre plusieurs perspectives pour des travaux futurs. Dans cette section
nous discutons certains d'entre eux. Ces perspectives sont séparées en deux grandes
parties : celles concernant les contraintes génériques et celles se rapportant aux modèles
d'annotation.

B.4.1 Contraintes génériques

L'augmentation du nombre de contraintes génériques Nous avons dé�ni sept
contraintes génériques qui s'appliquent soit côté annotation soit côté code. Il est clair

154

B.4. Perspectives

qu'elles ne couvrent pas toutes les contraintes possibles qui surgissent lors du développe-
ment de cadre d'annotations. L'analyse approfondie des cadres existants d'annotation
permettrait certainement de découvrir d'autres contraintes génériques, comme par exem-
ple, des contraintes dé�nissant des méthodes de propriété comme nous avons trouvées
dans JPA.

Extension des contraintes génériques aux cadres sans annotation En plus de
ceci, l'idée de l'utilisation d'un cadre d'annotations pour exprimer des contraintes dans
des cadres logicels est applicable aux cadres autres que ceux basés sur les annotations.
En e�et, la validation des cadres logicielles est un domaine de recherche actif [EKKM08,
CGQ+06], et l'expérience acquise avec le développement d'AVal serait utile dans cette
direction. Par exemple, avec AVal les relations entre les entités représentées dans le cadre
sont importantes à cause du grand nombre des contraintes attachées à ces relations; et
aucune des approches mentionnes dans la littérature ne fait référence à ces relations.

Dépendances entre contraintes Une des forces de la notion de contrainte générique,
telle que nous l'avons dé�nie, est que celles-ci sont orthogonales, c'est-à-dire que chaque
annotation peut être véri�ée par elle-même, indépendamment des autres annotations
présentes. Néanmoins, en testant des annotations dépendantes, il est parfois utile de
partager l'information entre les di�érentes réalisations des contraintes. Par exemple, dans
SaxSpoon, l'annotation de XMLParser exige que son paramétre soit une URL qui pointe
dans une DTD. En plus de ceci, l'annotation HandlesStartTag placée sur les méthodes qui
gèrent le début d'une étiquette tag particulière, exige que les noms des paramètres de
ladite méthode soient compatibles avec les attributs dé�nis par l'étiquette. Cette infor-
mation d'attribut est présente dans la DTD. Maintenant, si on souhaitait d'écrire des
annotations contraintes AVal pour véri�er ces propriétés, il serait nécessaire d'analyser la
DTD deux fois, une fois pour le XMLParser et une fois pour le HandlesStartTag. De plus, il
ne semblerait pas raisonnable de véri�er le HandlesStartTag si la DTD s'avère invalide. Par
conséquent, il est nécessaire de mener d'autres investigations sur la façon de dé�nir et
d'instrumenter les dépendances entre les contrôleurs d'AVal.

B.4.2 Modèles d'annotation

Complément pour la mise en correspondance des annotations et du mod-
èle L'extraction du modèle d'annotations à partir des types d'annotation a été claire-
ment identi�ée. Les types d'annotation sont convertis en EClassi�ers, et les annotations
association correspondent aux relations mises en place entre annotations. Cette interpré-
tation, alors qu'elle a pour conséquence de la mise en place modèles valides, peut être
vue comme trop proche de la dé�nition originale des types d'annotation. Ceci signi�e
que le modèle d'annotation hériterait des contours des restrictions du langage de dé�ni-
tion d'annotation. Une mise en correspondance de plus haut niveau entre annotations
et modèle serait intéressante, par exemple, pour ignorer les annotations qui contiennent
uniquement d'autres annotations, pour gérer la mise en correspondance des annotations
marqueurs par des attributs booléens à la place des relations ou encore pour l'utilisation

155

Appendix B. Résumé en français

des contraintes Aval RequiresAny comme heuristique de découverte des relations d'héritage.
Des annotations qui contiennent uniquement d'autres annotations sont utilisées pour

détourner la restriction de Java qui permet une et une seule instance d'annotation sur un
élément de code donné. Une fois traduites dans le modèle d'annotation, les collections
d'annotations devraient être transformées en une association avec une cardinalité non
bornée vers des annotations collectées. Les annotations marqueurs (ceux qui ne dé�nissent
aucun élément d'annotation) sont normalement employées pour marquer la présence d'une
caractéristique (par exemple l'annotation Oneway sur WebMethods). Leur mise en relation sur le
modèle d'annotation serait mieux perçue par un attribut booléen qui marque la présence
dans un élément du code. Finalement, quand un ensemble de types d'annotation applique
RequiesAny sur les mêmes annotations, ceci peut être un indice d'une super annotation
cachée dont l'annotation requise hérite. C'est par exemple le cas des annotations Entity et
MappedSuperclass dans JPA.

Complément pour les modèles d'annotation Jusqu'ici, des modèles d'annotation
étaient uniquement liés à un modèle de code sur lequel les annotations sont déployées.
Généralement le développement d'une application complexe traite d'artefacts autres que
le code source. Les contraintes existantes sur des annotations se rapportent parfois à ces
artefacts, comme cela est le cas pour SaxSpoon et la DTD des �chiers XML parsés. De
telles contraintes ne sont pas exprimables dans l'implémentation courante de ModelAn,
puisqu'elles ne sont ni dans les modèles d'annotation ni dans le modèle de code. Si on
dé�nit un modèle de DTD et que l'on écrit alors un outil qui prendrait une DTD donnée
et générait une instance du modèle de DTD (un contributeur de modèle), alors il serait
possible de véri�er des contraintes comme celles qui déclarent que les noms des paramètres
des méthodes annotées avec HandlesStartTag doivent être compatibles aux noms des attributs
dé�nis dans la DTD. De tels contributeurs de modèles augmenteraient considérablement
l'expressivité des contraintes de ModelAn en donnant au programmeur d'application la
possibilité d'avoir une vue complète de son application.

156

	Titre
	Résumé
	Abstract
	Contents
	List of Figures
	List of Tables
	Chapter 1 : introduction
	1.1 Annotation framework development
	1.2 Proposal
	1.3 How to read this document

	Part I : state of the art and motivation
	Chapter 2 : state of the art
	2.1 Domain Specific Languages
	2.1.1 Domain-Specific Language Development
	2.1.2 Relationship with annotation framework development

	2.2 Program Transformation
	2.2.1 Spoon

	2.3 Model-Driven Engineering
	2.3.1 Model Development
	2.3.2 Relationship with annotation framework development

	2.4 Aspect-Oriented Software Development
	2.5 Program Validation
	2.6 Annotation Framework Development
	2.6.1 Modeling Turnpike
	2.6.2 XIRC
	2.6.3 Attribute Dependency Checker
	2.6.4 Comparison of each of the approaches

	2.7 Summary

	Chapter 3 : annotation framework development
	3.1 Anatomy of an Annotation framework
	3.1.1 Actors
	3.1.2 Annotation types
	3.1.3 Restrictions and limitations of Annotations
	3.1.4 Annotation interpretation

	3.2 SaxSpoon - an Annotation Framework for XML Parsing
	3.2.1 SaxSpoon annotation types
	3.2.2 SaxSpoon example

	3.3 SaxSpoon Interpretation
	3.3.1 Compile-time interpretation of SaxSpoon applications
	3.3.2 Runtime interpretation of SaxSpoon applications

	3.4 Challenges in annotation framework development
	3.4.1 Design
	3.4.2 Implementation
	3.4.3 Challenges
	3.4.4 Proposal

	3.5 Summary

	Part II : proposal
	Chapter 4 : annotation constraints
	4.1 Validating annotation constraints
	4.2 Kinds of constraints
	4.3 Generic constraints
	4.3.1 Annotation-wise generic constraints
	4.3.2 Code-wise generic constraints

	4.4 Composition of Generic Constraints
	4.4.1 Example

	4.5 AVal: a (Meta) annotation framework to Specify Constraints
	4.5.1 AVal annotation constraints
	4.5.2 AVal constraint composition
	4.5.3 Example

	4.6 AVal Interpretation
	4.6.1 Extending validations
	4.6.2 Problem fixers and Error messages
	4.6.3 Library annotations
	4.6.4 Eclipse Integration

	4.7 Summary

	Chapter 5 : modeling annotations
	5.1 Representing annotations as objects
	5.2 Annotation Models
	5.2.1 Defining annotation models
	5.2.2 Annotation associations
	5.2.3 Code associations
	5.2.4 Model consistency
	5.2.5 Default values
	5.2.6 Example

	5.3 ModelAn : Annotation framework for Annotation Model Definition
	5.3.1 Model definition
	5.3.2 Model constraint definition
	5.3.3 Other means of model definition

	5.4 ModelAn: Model Extraction
	5.4.1 Model construction
	5.4.2 Instantiator generation
	5.4.3 Instance construction
	5.4.4 Instance validation
	5.4.5 Instance visualization

	5.5 Summary

	Part III : validation
	chapter 6 : case studies
	6.1 Fraclet
	6.1.1 Description
	6.1.2 Example application
	6.1.3 Constraints
	6.1.4 Annotation model
	6.1.5 Evaluation

	6.2 Java Web Services
	6.2.1 Description
	6.2.2 Example application
	6.2.3 Constraints
	6.2.4 Annotation model
	6.2.5 Evaluation

	6.3 Java Persistence API
	6.3.1 Description
	6.3.2 Example application
	6.3.3 Constraints
	6.3.4 Annotation model
	6.3.5 Evaluation

	6.4 Summary

	Part IV : conclusions and future work
	Chapter 7 : conclusion and perspectives
	7.1 Contributions
	7.1.1 General Contributions
	7.1.2 Generic constraints
	7.1.3 Annotation models

	7.2 Comparison with other approaches
	7.3 Implemented Tools
	7.3.1 AVal
	7.3.2 ModelAn

	7.4 Perspectives
	7.4.1 Generic constraints
	7.4.2 Annotation Models

	Bibliography
	Appendixes
	Appendix A : formalization of generic constraints
	A.1 Notations and Definitions
	A.2 Annotation-wise Validations
	A.3 Code-wise Validations

	Appendix B : résumé en français
	B.1 Développement de cadres d'annotations
	B.2 Proposition
	B.2.1 Contraintes génériques
	B.2.2 Modèles d'annotation

	B.3 Contributions
	B.3.1 Contraintes génériques
	B.3.2 Modèles d'annotation

	B.4 Perspectives
	B.4.1 Contraintes génériques
	B.4.2 Modèles d'annotation

	source: Thèse de Carlos Noguera, Lille 1, 2008
	d: © 2009 Tous droits réservés.
	lien: http://www.univ-lille1.fr/bustl

