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Introduction

Novice user: – How do I change the color of this sphere?

HCI chief designer: – Well, it’s simple, just hold your right hand in

the fist posture, rotate it 45 degrees clock-wise and use your left hand to

draw the letter C in mid-air while nodding your head. Say ”start” to

begin and ”stop” when you’re done. Doesn’t anyone read manuals any-

more?

...

(after 20 minutes)

...

Novice user: – It doesn’t work ?! All I get is the ”Error: Bad com-

mand” Ok/Cancel message box.

HCI chief designer: – Make sure that your C’s respect the 3:8 width:height

ratio !! And mind your speed, do it slowly !! Pfff... novices...

Gestures in human-computer interfaces have emerged for a few years now since

Bolt first demonstrated in the 80’s how to easily put that there [Bol80]. Ever since

then many technologies have been developed for the acquisition of gestures per-

formed by hands, arms, legs or entire body and many recognition algorithms have

been proposed of which [Wat93, PSH97, LaV99, TSW90] provide great surveys.

Equally important, interacting by gestures needs now its own chapter in the HCI
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book due to the many specifics that it brings up. Commercial or open source soft-

ware applications (see Mozzila) decided to include gesture commands on top of their

standard interaction techniques. The domain is a young one and clearly continuously

evolving. Even more, the general everyday perception of gestures is that they will

represent the ”next thing” in the near future of computer interaction, perception

that is very much sustained by the media and the film industry.

Things don’t currently stand as in the above imaginary discussion but the dialog

has its merits of highlighting a few important issues for the research community, such

as: gesture dictionaries, self-revelatory interfaces, appropriate feedback or multi-

user adaptive recognition algorithms. First of all, there is the obvious problem

of gesture dictionaries and finding the appropriate set of gesture commands for a

given application. An ideal gesture command should be precise, accurate, easy

to understand and memorize, ergonomic and, if at all possible, self-revelatory (no

manuals). Another interesting point that the above sketch brings up is related to

multi-user gesture recognition. It is a known fact that there is a certain amount of

variation that comes with each gesture execution: two users will execute the same

gesture differently and even more, the same user will input different strokes for

two consecutive executions of the same gesture command. Recognition algorithms

need to account for this variation and to adapt to users’ executions as failure of

incorporating this extra knowledge often leads to failure in recognition. Gesture

interfaces should be equally complemented by an appropriate visual feedback (no

more error messages) letting users be aware of their interaction success in a fluent

and graceful manner. Another important problem is related to the segmentation

of continuous motion trajectories into meaningful gesture patterns: should the user

be the one that clearly indicates where the gesture starts and where it ends or

should this be left to the system? Automatic segmentation of motion is a difficult

problem per se and, as to our knowledge, no robust real-time solution has been
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proposed so far. Many open questions exist regarding gesture interfaces, of which

one we extract from the above dialogue: do we need gestures in order to change

the color of a sphere or are there better ways to do this while gestures become just

complementary interaction?

This thesis deals with gesture recognition with the focus on providing a flexible

model for gestures as well as for the amount of variation present in gesture execution.

Variability in execution (VE) can be estimated for single or multiple users and the

model of variation may be used in order to address the hard problem of continuous

motion segmentation or performing ergonomic analysis on gesture dictionaries.

The first chapter presents an overview on the current state-of-the-art in gesture-

based interaction. We start by simply looking at human gestures and thus bring into

discussion several interesting results and observations as derived from various psy-

cholinguistic studies [Ken86, McN92, Cad94, Cas96]. We are first interested in what

a gesture is and what types of gestures are there and the psycholinguistic references

provide a great start on the subject. Definitions of gesture from different disciplines

of study are presented and an overview on gesture taxonomies is given. We then con-

tinue by inventorying the existing technologies that allow the acquisition of human

gestures and provide references to commercial or research prototype implementa-

tions from the literature. A special focus is put on video-based capture of gestures by

highlighting the advantages as well as drawbacks that come with vision processing.

All the practical implementations that served as support to the results of this the-

sis acquire gestures using video cameras hence we present and discuss the specific

challenges of vision processing right from the very starting chapter. The chapter

ends with a survey on recognition techniques for the tracking, posture and trajec-

tory matching of human gestures with references to the existing research literature

as well as to available products or libraries.

Chapter two addresses the problem of visual acquisition of gestures performed
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by one or both hands by discussing several specific details with regards to the in-

teraction scenario, hands detection, posture recognition and retrieving of motion

trajectories. We start by describing the gesture acquisition scenario that will be

used in all further experiments. A simple solution for hand postures recognition is

presented together with an interaction algorithm that implements a few common

operations for manipulating virtual objects inside virtual environments, namely se-

lection, translation, rotation and change of scale.

We introduce in the third chapter several models for gestures and dictionary

of gestures from the point of view of the human computer interaction domain. By

considering the amounts of static and dynamic information that are necessary in

order to sufficiently and completely describe a gesture command, we have identified

four distinct types of gesture commands that we referenced as simple static, complex

static, simple dynamic and complex dynamic. Mathematical formulations as well as

examples and discussions are given for each of the four gesture types. We provide a

general definition of gesture as command for HCI that involves the characteristics

of the four specific types. We further develop on top of our gesture definitions and

consider aspects related to gesture dictionaries. We introduce measures of similarity

and dissimilarity for gestures that we use in order to define several dictionary types.

In the end of the chapter, we follow and discuss the multiple representations that

gestures as commands take at various levels in human computer interaction systems.

The fourth chapter discusses the problem of detecting similarities between ges-

ture patterns and we introduce for this purpose a novel representation of gestures

based on spline modelling. The use of splines brings in a few advantages with regards

to mathematical modelling, data dimensionality, speed and accuracy of processing.

Gestures are known to contain embedded a certain degree of variability in the sense

that no two gesture stroke executions are exactly the same, even if acquired from

the same subject consecutively. We move toward this issue and further enhance our
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spline representations with elastic properties in analogy with the elasticity theory

from basic physics. We look at each spline gesture as a series of connected elas-

tic springs that may be subjected to deformations such as stretching and bending.

Our model becomes more flexible in order to accommodate the intrinsic variation of

multiple executions. The similarity measure that we use is influenced by the works

of [SKK03, SKK01, BCGJ98] on curves alignment using standard dynamic pro-

gramming techniques. We describe a training algorithm in the context of supervised

learning for automatic computation of gesture templates and test the performances

of our pattern matcher on a large set of gesture samples.

Chapter five strengthens our start-up approach of addressing variation issues

from chapter four by introducing a model that describes the amount of variability

present in gesture execution . We further demonstrate two immediate applications

of our variation execution (VE) model in connection with two important problems:

segmenting continuous motion and performing ergonomic analysis on gestures. We

begin by addressing a well-known hard problem which is the automatic segmentation

of continuous motion trajectories into meaningful gesture patterns. The problem is

hard due to the high complexity needed for the detection of patterns of any size,

at any rotation and at any starting point in a given larger trajectory. We discuss

an extension of our pattern matcher from chapter four for the detection of such

gesture patterns in continuous motions. We conclude the chapter with a validation

of our VE model by verifying two intuitive hypothesis on how execution is affected

by articulation speed or gesture complexity. Our discussions connect to existing

research, recently made available at ACM UIST in October 2007.
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Chapter 1

An Overview on Current
Gesture-based Interaction

We can pay our debt to the past
by putting the future in debt to ourselves.

John Buchan
(1875 – 1940)

The chapter describes the state-of-the-art in gesture-based interaction by con-

sidering general aspects related to human gestures as derived from various psycholin-

guistic studies, references to existing acquisition technologies and devices as well as

methods and techniques employed for the recognition of gestures.

We are firstly interested in defining human gestures and we consider for this

purpose several definitions as they are introduced by various research communities.

Interesting aspects on gestures and gesture execution are derived from psycholinguis-

tic studies that provide thorough gesture analysis as well as taxonomies on various

criteria. We equally define, discuss and highlight the difference between postures as

static information with respect to the dynamics of motion.

Current technologies for the acquisition of human gestures are further discussed

together with references to practical systems implementations from the literature.

Advantages as well as drawbacks of each technology are taken into account. A
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special subchapter is dedicated to video-based acquisition: we discuss the specific

advantages that video gesture acquisition brings as well as the current challenges

encountered in the computer vision community. Discussions and comments are

given with regards to the specific industry of gaming and the existing devices that

are commercially available for capturing the human motion for the purpose of game

control. Novel interaction techniques such as multi-touch screens or tabletops are

presented as well with references to current research and commercially available

products.

We continue with a survey on recognition techniques including template match-

ing, principal components analysis, neural networks and ad-hoc methods for the

tracking, posture recognition and trajectory matching of human gestures with refer-

ences to the existing research literature as well as to available products or libraries.
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1.1 Looking at Human Gestures

Gestures play an important part in our lives including art, science, music, dance,

allowing us to work, communicate, express feelings, enhance and accompany speech.

Using gestures is something we have been training for all our lives, still in the

process of learning, and make use of it according to our personalities, jobs, social

situations and events, most of the time without even realizing it. The naturalness

and familiarity of gesturing are revealed even more by the fact that blind people

gesture as they speak just as much as sighted individuals do, even when they know

their listener is also blind [IGM98].

The vocabulary of gestures that people use can be at once informative, enter-

taining but also dangerous. Gestures may be instructive such as the signs made by

an airport officer guiding planes or those performed by lecturers when sustaining

their presentations; gestures may be warm in the form of giving a hug or a confident

hand-shake; gestures may even be menacing: for example imagine two drivers that

’accidentally’ met on a freeway.

Gestures express ideas, feelings and intentions, sometimes replacing words and

enhancing speech. They convey information and are accompanied by content and

semantics. Various psycholinguistic studies have been conducted in what concerns

the understanding of gesture communication and they provide an excellent starting

material for gesture studying and understanding [Ken86, McN92, Cad94, Cas96].

1.1.1 Definition

Gestures may be bluntly looked upon as physical movements of hands, arms, face

and body with the intent of conveying information and meaning.

Actual definitions of gestures vary depending on the various research communi-

ties: sociologists, biologists, linguists, computer scientists (HCI, pattern recognition
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experts, practitioners), etc. For example, from a biological and sociological per-

spective, gestures are loosely defined and thus researchers are free to visualize and

classify gestures as they see fit. Biologists define gestures broadly, as in [NPL86]:

the notion of gesture is to embrace all kinds of instances where an indi-

vidual engages in movements whose communicative intent is paramount,

manifest, and openly acknowledged.

Distinction must be made between gesture and posture. There is the tendency

to capture the dynamic part in gesture while to consider posture as being static

[Mul86]. Consulting a few dictionaries [Com00, Inc02], we end up with the following

definitions for posture and gesture1:

Posture (noun): 1. a. A position of the body or of body parts: a sitting

posture. b. An attitude; a pose: assumed a posture of angry defiance.

Posture (noun): 1. The position or bearing of the body whether charac-

teristic or assumed for a special purpose: erect posture. 2. A conscious

mental or outward behavioral attitude.

Posture synonims: attitude, carriage, pose, stance. These nouns denote

a position of the body and limbs: erect posture; an attitude of prayer;

dignified carriage; a defiant pose; an athlete’s alert stance.

Gesture (noun): 1. A motion of the limbs or body made to express or

help express thought or to emphasize speech. 2. The act of moving the

limbs or body as an expression of thought or emphasis. (verb intr.) To

make gestures (verb tr.) To show, express or direct by gestures

We are thus further considering posture as describing the position of body or of

body parts. For example, holding the victory sign position for a certain amount of

1only fragments cited
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time is considered to be a posture. [LaV99] sees postures as static movements that

can be either simple or complex. For a simple posture each of the fingers is either

extended or flexed but not in between, e.g. fist, thumbs up, index pointing, victory

sign, while a complex posture allows for fingers to be bent at different angles other

than 0 or 90 degrees, e.g. the ok sign, pinch or various sign language postures. A

gesture is defined as a dynamic movement, such as waving good bye or describing

the shape of a circle. According to [LaV99], dynamic movements are also simple

and complex. Simple movements are represented by either a posture held still while

changing the position and orientation of the hand or by moving fingers, i.e. chang-

ing postures. A complex movement will include changes in posture, position and

orientation of the hand. Figure 1.1 illustrates the difference between our posture and

gesture concepts.

Figure 1.1: Posture as static (yoga pose) and gesture as dynamic (a karate kick).
Source: http://office.microsoft.com/en-us/clipart/default.aspx

Gestures posses a variety of distinct characteristics that make them distinguish-

able among other types of activities that relate to the human body [Ken96] such as

practical actions or postural adjustments:

• Gestures may be looked upon as excursions [Sch84] from a rest position always

returning to a rest state after execution.
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• They posses a peak structure with the center associated to the actual meaning

of gesture.

• Gestures are well bounded: the action phrases which are perceived and iden-

tified as gestures have clear onsets and offsets.

• Gestures are symmetric: it is remarkable difficult to spot the differences of

someone caught gesturing on a film that runs backwards and forwards.

Similarly to speech, gestures serve a variety of functions. They convey infor-

mation to listeners [Ken94]; facilitate some aspects of memory [BB78, KMSC91];

facilitate the smoothness of interactions and increase linking between interaction

partners [CB99]; communicate attitudes and emotions both voluntarily and involun-

tarily [GA75]; can provide insight into a speaker’s mental representations [McN92].

Equally important, we want to isolate for the purpose of our discussion only

those interactions for which gestures are articulated and recognized. The definition

of articulated gesture as in [KH90] is more appropriate in this case:

A gesture is a motion of the body that contains information. Waving

goodbye is a gesture. Pressing a key on a keyboard is not a gesture

because the motion of a finger on it’s way to hitting a key is neither

observed nor significant. All that matters is which key was pressed.

1.1.2 Gestures Taxonomies

Several taxonomies and classification criteria have been proposed for human ges-

tures. We therefore start by citing and providing a small overview on commonly

accepted classifications for human gestures as they may be encountered in the liter-

ature.

[Cad94] identifies three main categories by taking into account the functionality
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aspect of gestures that manipulate, sense and communicate with the environment

(Figure 1.2 illustrates a few examples):

• Ergotic gestures are associated with the idea of work and ability to model

and manipulate the environment. The ergotic gesture acts directly on the

environment by altering its form and properties, e.g. hand made pottery,

knitting or sculpting.

• Epistemic gestures offer information that reveals the environment through per-

ception of temperature, pressure, surface quality for a given object, shape,

orientation, weight, and so on. The environment gets revealed through tactile

experience or haptic exploration.

• Semiotic gestures produce meaningful informational messages for the environ-

ment and come as a result of commonly shared cultural experience. The intent

is to convey information.

Figure 1.2: Ergotic (painting, manipulating the environment), epistemic (heavy
lifting, sensing the environment) and semiotic (giving the ok sign) gestures. Source:
http://office.microsoft.com/en-us/clipart/default.aspx

Semiotic gestures are further classified by [McN92] according to their role in

communication:
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• Iconic gestures describe an actual concrete object or event. They are closely

related to the semantic content of speech, illustrating what is being said, e.g.

when using hands to describe a physical item in order to show how big or small

it is.

• Metaphoric gestures are similar to iconics but referring to abstract objects or

events, depicting a general abstract idea.

• Deictic or pointing gestures.

• Beat-like which are gestures that accentuate the meaning of a word or a phrase,

e.g. rhythmic beating of a finger or hand.

[Ken86] describes a gesture continuum that goes from gesticulation up to sign

languages, as follows:

• Gesticulation or spontaneous movements of hands and arms that take place

during speech and always accompany speech.

• Language-like gestures that represent gesticulation actually integrated into

speech that replaces a word or a phrase. An example would be the following

phrase: I enjoyed eating the grapes but the cake that came after was [gesture]

where [gesture] integrates grammatically inside the phrase.

• Pantomime are gestures that depict objects, events or actions that may or not

be accompanied by speech.

• Emblems or familiar gestures, e.g. the V sign for victory or thumbs up for ok.

• Sign languages are sets of gestures and postures that define linguistic commu-

nication systems such as ASL, the American Sign Language.
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Starting from gesticulation to sign languages, the association with speech gets more

and more reduced, spontaneity decreases and social regulation increases. In other

words, the formalized, linguistic component of the expression present in speech is

replaced by signs going from gesticulation to sign languages. This supports the idea

that gesture and speech are generated by one integral. The first category, gesticula-

tion as being spontaneous and associated with speech, represents approximate 90%

of the total amount of gesturing people perform. [McN92] concluded that there is

no body language but that instead gestures complement the spoken language. In

Kendon’s words [Ken80]:

the phrases of gesticulation that co-occur with speech are not to be thought

of either as mere embellishments of expression or as by-products of the

speech process. They are rather, an alternate manifestation of the pro-

cess by which ideas are encoded into patterns of behavior which can be

apprehended by others as reportive of those ideas.

Familiar gestures are culture dependent. Very few gestures are universally un-

derstood and interpreted with the same signification. What is perfectly acceptable

in the United States for example may prove be rude, inappropriate or even obscene

in other cultures. For example, nodding head up and down to intend and say Yes

actually means No in Bulgaria and Greece; passing an item to someone with one

hand is considered to be very rude in Japan, etc.

[NPL86] consider a more detailed approach and propose a 3-level classification.

With respect to the universality of gestures, the following types are identified:

• Arbitrary or uncommon gestures that need to be learned.

• Mimetic gestures, more common, usually encountered within culture.

• Deictic gestures similar to the classification of [McN92]. They include specifics
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(gestures that point to a particular object), generics (gestures that point to a

class of objects) and function indication gestures (that point to an object and

equally indicate an action).

[Cas96] considers two categories of gestures: autonomous (or independent) and

natural (or spontaneous). Autonomous gestures are not necessarily associated with

verbal communication, possess fixed spatial-temporal properties and are speaker

independent. Natural gestures are usually associated with speech in a conscientiously

or unconscientiously manner. They are speaker dependent and much influenced by

educational and cultural factors as well as by the actual situation at the moment

they are produced. They were further classified by [McN92] into iconic, metaphoric,

deictic and beat-like as discussed above.

The most numerous category of gestures is represented by gestures performed

by hand due to the the ability of the human hand to acquire a large number of

discernible configurations (the sign languages being a good example in this case). It

seems very likely that the first and oldest purpose of using our hands was in order

to perform actions on and to manipulate the physical world. This translates into

changing an object’s position, orientation, shape or any other property. [Mul86]

classifies ergotic hand movements according to physical characteristics: object type,

change effectuated, hands involved or indirection level.

It is more common to classify ergotic gestures according to their function, i.e.

as either prehensile or non-prehensile. Non-prehensile movements include pushing,

lifting, tapping and punching. Prehension may be looked upon as the application

of functionally effective forces by the hand to an object for a task in the presence of

various constraints. Prehensile movements are identified as being precision, power,

hook and scissor grips [Nap93]. The type of grip used in any given activity is a

function of the activity itself and does not depend on the shape or size of the object
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to be gripped. The classification relates to the muscular-skeletal properties of the

hand and merely refers to a frequently used hand movement.

1.2 Gesture Acquisition

1.2.1 Existing Technologies

The first step in order to use gestures as input for interacting with a computer

system is data acquisition. Technologies for the acquisition of human gestures have

been very rapidly proliferating and a great variety of trackers, pointing or whole

hand or body devices are available today commercially. One main property of all

these input devices is the number of DOFs (Degrees of Freedom) they posses. Data

may be collected several ways [LaV99] by using:

• capture devices that are worn by the user that may provide a fine level of

representation of the gesture (such as small variations when bending fingers as

outputted by sensor gloves). The users are required however to wear additional

equipment which may feel cumbersome and disturbing, burdening the actual

interaction.

• video cameras, one or multiple, that capture a sequence of images and allow

for detection of a 2D or 3D gesture. The main advantage is the feel of natural

interaction but the capturing accuracy and frequency are lower than in the

previous case.

• hybrid approaches that combine the above technologies.

[KS05] considers perceptual and non-perceptual input. Non-perceptual input

involves the use of devices that require physical contact in order to transmit location,

spatial or temporal information to the computing processor. Non-perceptual input

includes: mouse and pen input, touch and press input, electronic sensing (wearable
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or body mounted, gloves, sensor-embedded objects and tangible interfaces, tracking

devices), audio input. On the other hand, perceptual input enables gestures to be

recognized without requiring any physical contact via any input device or physical

objects, allowing the user to communicate gestures without having to wear, hold

or make any sort of physical contact [KS05]. Perceptual input technology includes

visual, audio or motion sensors that are capable of receiving sensory input data from

users directly from their actions, speech or physical location within the environment.

Taking into account the type of events the capturing devices are able to generate,

one may distinguish between:

• Discrete input devices that generate one event at a time according to the user’s

need (events are fired for example when the user presses a button). Examples

include the traditional keyboard, the pinch glove or the virtual tool belt. For

example, considering the case of Fakespace Labs Pinch Gloves [Fak07], users

will pinch two or more fingers for the device to signal an event (Figure 1.4 a).

The gloves detect when two or more fingers are in contact and, after contact

verification, a signal is fired. The time that elapsed between two consecutive

gestures is also recorded. A complex variety of actions based on the simple

pinch gesture can be programmed into applications (a pinching gesture may

be used to grab a virtual object; a finger snap between the middle finger and

thumb can be used to initiate an action, etc).

• Continuous input devices that generate a stream of events. Common examples

are position / orientation trackers and data gloves.

• Hybrid devices that combine both discrete and continuous events. Examples

include the ring mouse such as the Pegasus FreeD (Figure 1.4 b) and digital

pen based tablets [Peg07].
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With regards to tracking devices, one can discriminate between several tech-

nologies: magnetic, mechanical, acoustic, inertial, vision/video camera based or

hybrid.

Magnetic trackers (such as the Ascension’s Flock of Birds [Asc07], Figure 1.4 d)

use the low-frequency magnetic field emitted by a transmitter for the receiver sensor

to determine its position and orientation with respect to the magnetic source. The

main disadvantage is the distortion of the magnetic field that metal or conductive

metals will produce as well as the interference with nearby monitors. Mechanical

trackers (such as the BOOM Tracker from Fakespace Labs [Fak07]) have as advan-

tages accuracy and low latency. They may however be big or bulky with reduced

mobility. Also, they may exhibit expensive prices.

Bolt’s system Put-That-There [Bol80], the first system that implemented pos-

ture recognition, made use of such a magnetic-based space-sensing cube device at-

tached to the user’s wrist in order to capture position and orientation parameters,

as Figure 1.3 illustrates. Users control simple shapes on a large display inside the

Media Room by using pointing gestures and voice commands. Basic item shapes

include circles, squares and diamonds with variable attributes such as color and

size (large, medium, small). For example, users may point toward the screen where

a small cursor is displayed and use natural voice command such as ”Create a blue

square there” for the creation of a new square object. Other commands are possible,

for example [Bol80]: ”Move the blue triangle to the right of the green square” (voice

only); ”Move that to the right of the green square” (voice combined with point-

ing); ”Make the blue triangle smaller” becomes ”Make that smaller” with the use

of pointing; ”Name that ... calendar” in order to assign names to existing objects.

The rudimentary set of commands, concerning themselves with the simple manage-

ment of a limited ensemble of non-representative objects, is intended to suggest the

versatility and ease-of-use of voice and gesture for the management of the graphic



1.2: Gesture Acquisition 19

space.

Figure 1.3: Bolt’s system Put-That-There [Bol80]

Acoustic trackers (the Fly Mouse from Logitech [Log07]) prove to be relatively

inexpensive, lightweighted and with no interference with metals but they exhibit

line-of-sight issues as well as sensitiveness to noise, see Figure 1.4 c. They use high-

frequency sound emitted from a source placed on the object to be tracked while

microphones placed in the environment pick up the signals from the source in order

to determine its position and orientation. Inertial trackers (IS300 from Intersense

[Int07]) use a variety of inertial measurement devices such as accelerometers or

gyroscopes and have the advantage of speed, accuracy, long working range, non

interference with metals as well as no need for a transmitter. Figure 1.4e shows the

Intersense IS300 tracker. The sensors prove however to be bigger than the magnetic-

based ones and they are likely subject of error accumulation. Also, they usually track

only 3 DOFs: either position or orientation.
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Figure 1.4: Gesture acquisition devices. From top to bottom, left to right: Fakespace
Pinch Gloves [Fak07], Logitech Fly Mouse [Log07], Pegasus FreeD [Peg07], Ascen-
sion Flock of Birds [Asc07], Intersense IS300 [Int07], Phantom Omni and Phantom
Desktop Haptic Devices [Sen07], Cyber Grasp [Imm07], Cyber Touch [Imm07]
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Hybrid trackers (IS600 from Intersense [Int07]) have the advantage of combining

multiple technologies for improving on accuracy and reducing latency but all this

with a complexity cost however.

With respect to the main forms of feedback, one can classify devices into:

• Ground referenced (such as Sensable Phantom devices [Sen07], Figure 1.4 f).

• Body referenced (Cyber Grasp from Immersion [Imm07] which is a lightweighted

force-reflecting exoskeleton that fits over a Cyber Glove data glove wired ver-

sion and adds resistive force feedback to each finger as Figures 1.4 g and h

illustrate. Grasp forces are produced by a network of tendons routed to the

fingertips via the exoskeleton),

• Tactile (Cyber Touch from Immersion [Imm07], a tactile feedback option for

Immersion’s wired Cyber Glove instrumented glove. It disposes of small vibro-

tactile stimulators on each finger and the palm of the Cyber Glove system).

An example of a gesture recognition system using a data glove is Charade

[BBL93] which allows a speaker giving a presentation to control a remote computer

display with free-hand gestures while still using gestures for communicating with

the audience. Figure 1.5 presents the Charade system at work. A VPL DataGlove

measures the bending of each finger and the 3D orientation of the hand: when the

pointing direction of the hand enters an active zone, a cursor appears on the screen

and follows the hand. A gesture is detected when the user’s hand is pointing in the

active area while gesture segmentation is performed using start and end positions

defined by wrist orientation and finger positions. There are 16 gestural commands

for navigating through the hypertext and controlling the presentation (moving the

hand from left to right goes to the next slide; pointing and circling an area highlights

it on the screen). Recognition rates of up to 98% for trained users and 72% for first
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time users were reported.

Figure 1.5: Charade: free-hand gestures are used to control the progress of a public
presentation [BBL93]

1.2.1.1 Interaction for gaming

The gaming industry is a great target for gesture-based interfaces that would allow

players to immerse even more into the game environments. Gesture-based game

controlling was introduced by Playstation 2 in the form of EyeToy2. EyeToy makes

use of a video camera that gets mounted on the top of the TV screen facing the

player that sits in the range of a couple of meters away. The players are brought

into the game and allowed to interact with various game elements by using legs,

arms, head or the whole body. The processing technique is based on motion, color

detection and sound.

2http://www.eyetoy.com/index.asp
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Figure 1.6: EyeToy: players are emerged into the game. By making use of motion
detection the system allows players to interact with arms, legs or whole body. Source:
http://www.eyetoy.com/index.asp

Limitations of EyeToy are those common to computer vision applications: the

video camera needs to be used in a well-lit room and the player must be in view in a

given distance range. In order to help let the player know when there is not enough

light, a red LED on the front of the camera will flash indicating too dark working

conditions. Also, the gestures are limited to basic hit-like motions area-wise around

the player’s body.

Nintendo released at the end of 2006 the Wiimote3 controller for the Wii con-

sole. By using its motion sensing capability implemented using accelerometer and

optical sensors, the controller allows players to interact with game elements by mov-

ing, shaking or pointing. The Wiimote is multi-functional and adapts to all kinds

of games and scenarios. For example, in a tennis game, it serves as the racket play-

ers swing with their arms as Figure 1.7 illustrates; in a driving game, it serves as

the steering wheel; or it may act as a weapon for first-person shooters games. As

feedback, the Wiimote provides basic audio and rumble functionality.

3http://wii.nintendo.com/controller.jsp



1.2: Gesture Acquisition 24

Figure 1.7: The Wiimote and one of its extension (top) and players using the con-
troller during a tennis game (bottom). Source: http://wii.nintendo.com

1.2.1.2 Interaction with robots

Interaction with robots, either static or mobile, is another very active area of re-

search powered by the general propagated common belief that future will be filled

with robots that understand and respond appropriately to our gestures and speech.

Commercially available smart toys exist such as Sony AIBO4 which is able to move

around, look for toys, play and communicate with the owner. Honda’s humanoid

robot ASIMO5 is capable to interpret postures and gestures of humans and move in-

dependently in response. Using the visual information as aquired by a video camera

mounted at the head level, ASIMO is able to detect movements of multiple objects

and to estimate distance and direction. The result is moving according to indicated

4http://support.sony-europe.com/aibo/

5http://world.honda.com/ASIMO/
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directions, following persons or greeting people when they approach. With regards

to gestures detection and recognition, ASIMO is able to6: recognize an indicated

location and move to that location (posture recognition); shake a person’s hand

when a handshake is offered (posture recognition); or respond to a wave by waving

back (gesture recognition). On top, the built-in face recognizer helps remembering

a number of registered persons and allows addressing them by name.

Figure 1.8: Honda’s humanoid ASIMO leading the way and the four-legged
companion AIBO from Sony. Sources: http://support.sony-europe.com/aibo,
http://world.honda.com/ASIMO/

1.2.1.3 Multi-touch and tabletops

A particular technology for acquiring gestures makes use of touching. Touching

(screens, surfaces, etc) is intuitive and presents several advantages, the most impor-

tant being the direct contact as well as the haptic feedback the user immediately

receives.

[Han05] introduced a simple and inexpensive technique for enabling multi-touch

sensing at high resolution for interactive surfaces based on a technology called frus-

6http://world.honda.com/ASIMO/technology/intelligence.html
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trated total internal reflection. [DL01] describe a technique for creating a touch-

sensitive device that allows multiple users to simultaneously interact. Their surface

generates modulated electric fields at each location that are capacitively coupled to

receivers installed in the work environment.

Multi-touch may be implemented using computer vision as well. Wilson’s sys-

tem Touchlight [Wil04, Wil05b] uses image processing techniques in order to combine

video frames acquired from two cameras. The IR video cameras are placed behind a

semi-transparent plane facing the user together with a projector and mirror system

as Figure 1.9 illustrates. By combining the distortion-corrected information from

the two video sources, detection of objects that touch or are in a short distance of

the surface plane is achieved.

Figure 1.9: TouchLight: gesture interaction with input/output surface [Wil05b]

Multi-touch interaction is available commercially in the form of the Microsoft

Surface7. Surface computing is an intuitive way to interact with digital content

and approaches the tabletops interaction paradigms [WB03, Wil05a, WR06]. Cur-

rently applications include browsing photographs, playing videos, listening to music,

viewing map locations or ordering menus. Interesting interactions are achieved by

7http://www.microsoft.com/surface/
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connecting to external devices such as digital cameras or bluetooth mobile phones

in order to exchange photographs [WS07].

Figure 1.10: Microsoft Surface. Source: http://www.microsoft.com/surface/

1.2.2 Video-based Systems

Camera-based or vision trackers make use of video information and video-based

processing to achieve face, hand, fingers, arm or whole body tracking as Figure 1.11

illustrates.

The main advantage that comes with vision gesture acquisition and which pro-

vides the comfortable feeling of natural interaction is the fact that the technology is

non intrusive and does not require users to wear additional equipments or devices.

Users may interact freely with the system with no need for wearing or interacting

via an additional device that may distract, restrict or burden the natural movement

(e.g. wires more or less heavy attached to gloves or hand-wearable trackers, glove

sizes that may be a bit small or large). Of equally importance, vision-based solu-

tions are relatively inexpensive compared to trackers that exhibit a price range from

several hundreds to tens of thousands dollars.
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Figure 1.11: Video based gesture acquisition. Left: hands detection using a top-view
mounted video camera. Right: face detection from live video television stream.

1.2.2.1 Skin Color for Hands Detection

Color is an important feature that has been intensively used for hands detection. In-

stead of wearing distinctly colored gloves or rings [Dor94, ZCF+04] or using LEDs or

any other marker systems [SZ94], skin color detection has proven to be an important

intermediate step for face and hands tracking algorithms [Ang01, CJH01, VSA03].

It has been observed on large image datasets [JR98, COB02, COB03] that skin

color clusters in predefined intervals in several color spaces. Based on this comfort-

able property, a few approaches have been proposed: histograms of skin probability

at different resolutions [JR98], single or mixtures of Gaussians modeling [COB02],

elliptical [LY02], adaptive methods [VGD+05] or various curved and linear polygo-

nal segments for skin cluster delimitation. A common conclusion is that skin color

indeed clusters under known limits in several color spaces.

Using skin color as a feature may be divided into three subproblems: the choice

of an appropriate color space, a method of modeling the skin color distribution and

choosing the way segmentation gets performed - using independent pixel values or

considering neighborhood’s values as well.

There are several advantages when using skin color detection: invariance to
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orientation and size of the object being tracked (e.g. hands) and low computation

time. Skin processing also comes with a few drawbacks such as the dependence on

illumination - skin appears different under different illuminations hence skin color

depends on the scene context; skin color varies from person to person (Caucasian,

African, Asian, etc.); many real life objects present the same color as skin, i.e.

the color of skin (or its reflectance) is not unique and does not pertain to skin

only (particularly when captured with low spectral resolution observers like a RGB

camera).

A very simple and low cost procedure is to filter the current video frame using

simple static thresholds in a given color space, for example, the intervals [hlow, hhigh]

and [slow, shigh] for the hue and saturation components in the HSV color space.

1.2.2.2 Challenges in Video Acquisition

There are also drawbacks when it comes to processing video information for detecting

and recognizing gestures, many of which are commonly encountered when it comes

to computer vision applications:

• there is the dependency on the environment that translates into several issues:

time varying lighting conditions; video cameras settings; users skin color; back-

ground in motion. All these issues burden the task of detectors which must

prove to be stable, robust and continuously adapting to the environment.

• a calibration stage before using the system is required, usually related to color

or point of view correction.

• there are sometimes constraints on the gesture dictionary in what regards the

postures the system is able to successfully recognize. For example, fingers may

occlude themselves while in movement in a single camera view; hands may
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partially or totally occlude fingers or they can be as well occluded by other

objects from the scene.

• video processing is CPU intensive in the conditions where real-time processing

is a must for a natural interaction. There is a great demanding of processing

power especially if multiple cameras are involved and there is strong depen-

dency on computer vision algorithms which are very much currently under

development (relatively new field of study). Latest research on GPGPU (Gen-

eral Purpose computing on the Graphics Processor Unit) demonstrated the

use of the processing power of the GPU in order to run and execute highly-

intensive CPU demanding computer vision algorithms [FM04]. OpenNVIDIA

[FMA05] is an open source library that implements vision algorithms on com-

puter graphics hardware using OpenGL and Cg, available at8.

• technology and processing requirements limitations: video resolution may not

be sufficient for detecting high fidelity movements of fingers for example; 25

fps of ubiquitous video capture devices may not be enough to capture quick

hand movements (hand is quicker than the eye and or the capture device in

this case).

• portability is an issue for most vision systems that require still placements

of the video cameras. Nonetheless, mobile solutions exist and they consider

wearable video computing (laptops with built-in cameras, head mounted dis-

plays and cameras [KTH04]) but they come with all the problems related to

wearable equipments.

Special considerations for using video-based acquition solutions relate to:

8http://openvidia.sourceforge.net/
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• the number of cameras to be used (whether if 2D or 3D gestures are targeted

or depth or stereo information is needed).

• cameras placement in space should not affect the visibility of body parts that

are performing the gesture.

Commonly employed techniques include: motion detection and motion flow

following, color detection (and particularly skin color detection as a preprocessing

stage for hands or face detection), feature based detectors (e.g. Haar-like features),

non standard trackers (e.g. flock of birds) all combined with pattern recognition

methods and techniques.

1.3 Recognition Techniques

The section gives an overview on the current state-of-the-art in gesture recognition

including detection, tracking, pose and trajectory recognition techniques. The focus

is mainly oriented on gestures performed with one or two hands in a video-based

acquisition scenario although references to other body gestures or capture devices

are equally mentioned. [Wat93, PSH97, LaV99, TSW90] provide excellent reviews

on gesture recognition techniques. Also, good introductory courses on sketching

exist such as [JJL06, LaV07].

Segmentation is the process of partitioning an image into multiple regions ac-

cording to some predefined criteria, the goal being of separating the objects of inter-

est from the background. Popular approaches take into consideration color, contour

or custom defined local neighborhood image features in order to identify the objects

of interest. Tracking is the process of locating an object in time in a sequence of

video frames. There are several possible approaches to tracking such as blob, contour

or visual features tracking.
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1.3.1 Tracking

There are two main streams of research encountered in the literature with regards

to hand tracking, model-based and view-based approaches [PSH97]. Model-based

approaches make use of articulated 3D models of the hand that get projected onto the

image plane. An error function is computated between the parameters of the model

and various image features and the model parameters are adapted in correspondence

with the the minimization of a certain cost functional. The view-based approaches

use sets of features which are associated with a certain hand pose and common

classifiers are trained from a previously collected database of feature samples. The

set of features are searched for within the image, usually at multiple scales, looking

for a high classifier output. The approach proves useful when the number of hand

poses and the feature set is small.

Kolsch and Turk introduce a fast hand tracking technique that uses a flock of

KLT features together with a learned foreground color distribution [KT04b, KT05].

The tracker was implemented for wearable computing as Figure 1.12 illustrates.

Figure 1.12: Hand tracking using the flock of birds and wearable computing. Source:
http://www.movesinstitute.org/˜kolsch/HandVu/HandVu.html
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The KLT features, named after Kanande, Lucas and Tomasi [ST94], are based

on the observation that a steep brightness gradient along at least two directions

makes for a promising feature candidate to be tracked over time. A flock of features

contains multiple instances of KLT features whose locations are updated indepen-

dently from one video frame to another: they move to a new location for which the

highest match correlation is found. The features don’t follow a uniform direction,

some might be lost while others may venture far from the flock. The concept of

a flock inforces additional conditions with regards to features distribution: no two

features must be closer to each other than a threshold distance and no feature must

be farther away from the feature median than a second threshold distance. The

tracker is fast, robust against background noise and has the ability to track objects

that undergo rapid changes in orientation or deformations. An implementation is

available under the HandVu library [KHD04, Kol].

Haar-like features as introduced by Viola and Jones [VJ01] for rapid object

detection have been used for tracking and detection of several hand postures [KT04c,

KT04a]. The Haar-like features are defined for gray-levels images as differences

between the pixel intensities of various rectangle areas. A learning process will

find the features that perform best on the training set and combine them into more

powerful classifiers using Ada boosting methods. To achieve fast-real time detection,

the classifiers are arranged in a cascade structure for which the first levels will

discard most of the wrong candidates. The method is fast and combined with image

pyramids structures assures size invariant object detection as well.

When only motion is important, the hands postures information may be dis-

carded which takes the pressure off the tracking algorithms. Simple hand detection

may be done using color tracking such as following colored gloves [Dor94] or bright
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LEDs. Atlas Gloves9, see Figure 1.13, is a physical interface for controlling 3D map-

ping applications. The user interface is a pair of gloves that have LEDs attached.

The LEDs are used to track intuitive hand gestures like grabbing, pulling, reaching

and rotating. A video camera translates each LED-enabled gesture into a set of

possible actions: pan, zoom, rotate and tilt. Atlas Glove is open source software.

Figure 1.13: Atlas Glove: controlling Google Earth using simple and intuitive motion
gestures. Source: http://atlasgloves.org/

Although tracking techniques are useful as they offer the possibility of continu-

ously knowing the position, orientation or other parameters on the object of interest,

they may not always be the best approach for acquiring gestures. For example, Wil-

son [Wil06] presents a very intuitive method of interacting by means of gesture

using the pinch posture or the TAFFI interface (Thumb and Fore Finger). A cam-

era placed on the top of the computer screen detects the pinch gestures, i.e. when

the thumb and the fore fingers of the user’s hand touch as Figure 1.14 illustrates.

The tracking algorithms are avoided by only paying attention to the moment

when the actual gesture takes place, i.e. when the user performs the pinch posture.

Detection of the pinch posture is achieved using blob analysis by identifying the

blob that fits the specific constraints of the region between the thumb and the fore

9http://atlasgloves.org/
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Figure 1.14: Thumb and Fore Finger Interface [Wil06]

finger. A good contrast between the user’s hand and the background (represented

by the keyboard in the majority of cases) is mandatory. Also the user is required to

maintain the pinch posture as accurately as possible in the horizontal plane so that

a blob could form between the two fingers.

Active shape models or smart snakes have been designed for exactly locating

a feature in an image when given an initial guess. A contour, which is roughly the

shape of the feature to be located is placed on the image at the feature approximate

location. The contour is attracted to edges that are located near and its parameters

change deforming it so that in the end it will converge to the actual shape of the

feature. The process is iterative, moving and deforming the contour. The technique

can be extended to tracking features across video frames: the position and shape

of the feature in one frame is used as an approximation for the next frame. [HS95,

CKJK05] use active shapes for tracking hands in real-time video.
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1.3.2 Pose Recognition

1.3.2.1 Template matching

Template matching is one of the simplest techniques that have been used for recogniz-

ing hand postures [ZLB+87, Stu92, Wat93, New93]. Template matching determines

if a new posture can be classified to a number of class templates that have been

previously computed from training sets. The classification part is implemented by

computing a distance measure to each template. Commonly encountered measures

are the sum of absolute differences or city-block distance and the sum of squares.

Freeman and Weissman [FW94] demonstrate a TV-set control application using

the template matching technique. Only one posture is used: the open hand facing

the video camera. A hand icon on the computer screen display follows exactly the

movements of the user’s hand. The system thus exploits visual feedback: users see

the icon hand on the screen so they know how much to move their hands as Figure

1.15 illustrates.

Figure 1.15: Controlling a TV-set using hand gestures [FW94]
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The gesture is triggered when the user holds up the open hand facing the tele-

vision which determines the TV to enter control mode. Leaving the control mode is

achieved by closing the hand. Various graphical controls are adjusted using move-

ments of the hand. The problems they address are how to provide a rich set of

commands without training or memorizing complicated gestures and how to achieve

command recognition in a complex visual environment. There are many possible

commands to give the television (”mute”, ”channel 37”, ”louder”) yet no universal

set of hand signal to specify all of them. Voice is not appropriate for channel surfing

nor for changing parameters by incrementers such as volume control.

One particular application for which posture recognition plays an important

role is the automatic understanding of sign language. [Kad96] report recognition

of 95 samples from the Australian Sign Language with an 80% accuracy. Postures

are acquired using a Power Glove and matching is performed on features such as

bounding boxes, distance in time and histograms on the x, y, z coordinates.

The technique of template matching may be efficient for a relative limited set

of postures and it is simple to implement. It doesn’t work well however for large

sets of postures due to overlapping templates [Wat93].

1.3.2.2 Principal component analysis

Principal component analysis (PCA) is a statistical technique for reducing the di-

mensionality of a data set that contains interrelated variables while retaining as

much of the variation in the dataset as possible. It is the purpose of principal com-

ponents analysis to derive new variables, in decreasing order of importance, that are

linear combinations of the original variables and are uncorellated. The new vari-

ables, called principal components, are given in decreasing order of importance so

that the first variables contain most of the variation present in the original variables.

Eigenvectors and eigenvalues are computed for the original data set and the eigen-
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vector with the highest eigenvalue holds the highest variance. Similarly put, PCA

produces an orthogonal coordinate system in which the axes are ordered in terms

of the amount of variance in the original data for which the corresponding principal

components account [Web02].

[BMM97] use PCA in order to achieve recognition of 25 gestures from the inter-

national hand alphabet and report 99% recognition accuracy for 1500 test images

for which 1000 images were used during the training process. [DT02] use a combina-

tion of PCA/MDA (multiple discriminant analysis) for the recognition of a 100-signs

vocabulary.

1.3.2.3 Neural networks

Neural networks have been intensively used for gesture recognition [MT91, BF92,

BE92, FB93, FH93, FH95, VA95]. Common examples include multi-layered percep-

trons, radial basis functions or Kohonen networks. Neural networks are previously

learnt using a training set consisting of both positive and negative samples. For

feed-forward networks having differentiable activation functions there exists a pow-

erful and computationally efficient training method called error back-propagation for

finding the derivatives of an error function with respect to the weights and biases of

the network [Bis95].

[MT91] present a posture recognition system using recurent neural networks for

a finger alphabet of 42 symbols of the Japanese sign language. Recognition rates

varies between 77.0% and 98.0% depending on the number of training patterns and

the structure of the training and testing sets.

Glove-TalkII [FH95] translates hand gestures to speech using an adaptive inter-

face. Hand gestures are mapped continuously to 10 control parameters of a speech

synthesizer, allowing the hand to act as an artificial vocal tract that produces speech

in real-time. The gesture-to-speech task is divided into vowel and consonant pro-
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duction by using a gating network to weight the outputs of a vowel and a consonant

neural network.

1.3.3 Trajectory matching

Gestures do not consist in posture information only but they have motion trajectories

associated as well. For example, describing the shape of a circle in free air using the

hand may represent a gesture command for the creation of a circle or sphere-like

object in a virtual environment. Trajectory recognition is an important problem

and it relates to other fields such as handwritting or signature recognition or general

shape recognition. The difficulty of shape recognition in general, be it gesture,

handwritting or signature is represented by the variability that is present within

the data: users execute the same shape/gesture differently with each execution.

Providing robust algorithms that would take into account these variations whilst

providing good accuracy is a considerable challenge.

Gesture trajectories, as acquired using a given capture technology, are repre-

sented by an array of 2D or 3D points {p1, p2, . . . pn}. The data may be processed

directly for recognition or other features may be extracted. Feature extraction and

analysis usually consists in processing the low-level information from the raw data in

order to produce higher-level information in order to help the further representation

and recognition levels.

Rubine’s GRANDMA system [Rub91] performes recognition of 2D strokes using

a set of 13 features such as: sine and cosine of the initial angle of the gesture; the

length and angle of the diagonal of the bounding box; distance between first and

last point; cosine and sine of the angle between the first and the last point; the total

gesture length; total angle traversed; sum of the absolute value at each point; sum of

the squared angles; maximum speed (squared) of the gesture; time duration of the

gesture. Classification is done using a linear discriminator and reported recognition
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rates are above 98%.

Simple trajectory matching of mouse gestures is supported under the Mozilla

Firefox browser, Mozilla Thunderbird email client and Chatzilla. Figure 1.1610 lists

a few gesture types that Mozilla is able to recognize. The gestures are captured by

holding down a mouse button (usually the right one) and moving the mouse in a

certain pre-defined way (simple horizontal, diagonal or vertical strokes) in order to

form a gesture after which the mouse button is released.

Figure 1.16: Mouse gestures available under the Mozilla Firefox browser. Source:
http://optimoz.mozdev.org/gestures/

Mozilla gestures are combinations of URLD strokes (up/right/left/down) and

012 (left/middle/right mouse buttons). Mouse gestures operations include: working

10http://optimoz.mozdev.org/gestures/
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with history (backward/forward); working with windows and tabs (new window,

minimize, next tab, new tab, previous tab, close); scroll (up, down) and zoom;

working with images (double size, half size, hide image) and working with links

(link in new tab); miscellaneous (view source, add bookmark). The source code is

also available11.

[WWL07] introduce and make available to the HCI community an implementa-

tion of a simple yet robust algorithm for gesture trajectory matching12. They intitle

their classifier a ”$1 recognizier” as it is easy, cheap and may be implemented in

about 100 lines of code. The accuracy attained over a set of around 4000 gesture

samples was over 97% with only 1 loaded template and 99% accuracy with 3+ loaded

templates.

Several programming libraries offer APIs that support gesture recognition. An

example is the Siger library13 available for download14 for Microsoft Tablet PCs

which comes with a few pre-defined gestures as Figure 1.17 illustrates. The signifi-

cance of gestures is, from top-down and in left-right order: scratch-out - erase the

content; triangle - inserts; square and star - action item; check - check-off; curlicue

- cut; double curlicue - copy; circle is application specific; double circle - paste; left

semicircle - undo; right semicircle - redo; caret - paste, insert; inverted caret - insert;

chevron left and chevron right are application specific.

Each gesture comes with a hot point such as the starting point for circle, star,

rectangle, a distinguished hot point for curlicue or double curlicue, corner for check

11http://optimoz.mozdev.org/gestures/

12http://faculty.washington.edu/wobbrock/proj/dollar/

13http://msdn2.microsoft.com/en-us/library/aa480673.aspx

14http://sourceforge.net/projects/siger/
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Figure 1.17: Extracts of pre-defined gesture templates available as part of the
Siger library for Microsoft Tablet PCs. Source: http://msdn2.microsoft.com/en-
us/library/aa480673.aspx

or apex for carets and chevrons. Also, executions are guided by notes15 for each

gesture type: ”The upward stroke of the check must be two to four times as long

as the smaller downward stroke” for the check gesture, ”Draw the star with exactly

five points. Do this in a single stroke without lifting the pen” for star or ”Draw

both sides of the chevron with equal length. Make sure the angle is sharp and that

the point is not rounded to a curve” for the chevron right gesture.

Other library examples include SATIN [HL00, HLLM02], a java based toolkit

for informal ink-based applications16 or LipiTk [MVK06], an open source toolkit

for online handwriting recognition17. LipiTk contains generic algorithms for the

recognition of isolated handwritten shapes captured using TabletPCs, PDAs, stylus-

equipped SmartPhones or external tablets and notes taking devices. The toolkit

reports recognition accuracies of 97.94% for numerals, 93.35% for english upper and

88.34% for english lower characters and is available for Windows and several Linux

distributions.

15http://msdn2.microsoft.com/en-us/library/ms818591.aspx

16http://dub.washington.edu/projects/satin/

17http://lipitk.sourceforge.net/
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Chapter 2

Catching Movement:
A Vision-based Approach

The problem with video is that
it gives you a thousand possibilities.

Lars von Trier
(born 1956)

The chapter addresses the problem of visual detection of gestures performed by

one or both hands by discussing several specific details with regards to the acquisition

scenario, hands detection, posture recognition and retrieving of motion trajectories.

We start by describing the acquisition scenario that we use through all of our

experiments: users sit in front of a desk while a top-mounted video camera per-

manently monitors their hands watching for both postures and motions. The users

receive a visual feedback of their actions on the monitor screen located at the oppo-

site end of the interaction desk. The setup approaches somewhat the same scenarios

specifics to tabletops and assures a non-fatigation interaction due to the comfortable

sit position whilst the arms may rest as well on the surface of the desk.

Hands detection over the surface of the interaction table is further discussed

[VGD+05] together with a simple method for recognizing hand postures using neural

learning [VPC+06]. The chosen classifier was a multi layered perceptron with three
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layers. Details are given on selecting the architecture of the neural classifier as well as

on the recognition accuracy levels. A few hand postures were selected in accordance

with several commonly encountered operations for interacting and working with

virtual objects [VP06] such as: selection, translation, rotation and change in scale.

The operations are executed by using either one or both of the hands. An interaction

algorithm together with a simple demonstrative application for performing such

simple operations on virtual objects are discussed. By keeping all the processing at a

low level of complexity and by considering an appropriate control of the environment,

we obtain a real-time 25 fps functional system with high detection and recognition

accuracy results.

We can highlight the contributions of the chapter as: fast real-time hand detec-

tion technique in a non-fatigation interaction scenario; simple and robust method

for the recognition of several hand postures for commonly encountered operations in

virtual environments; proposal of an interaction algorithm for working with virtual

objects using one or both hands.
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2.1 Scenario Setup

The working scenario is presented in Figure 2.1: users sit in front of an interaction

desk while a top-mounted video camera monitors the working area as well as the

users’ hands. Visual feedback of hands detection, command recognition and result of

the command action are given on a monitor screen facing the users at the opposite

end of the table. The scenario approaches somehow tabletops systems [Wil05a,

WB03] but with the visual output being displayed on the facing monitor screen.

Users sit in a comfortable position in front of the desk watching the output of their

commands as well as the feedback of the hands detection on the monitor screen.

Hands rest on the surface of the desk which reduces the fatigue factor that may

intervene for longer working time intervals. The scenario is similar to others that

users are already accustomed to such as working with real objects on a desk or

typing at a keyboard while watching the results on the monitor screen.

Video capture is carried out at a resolution of 320x240 and 25 fps. The working

desk has an homogeneous background with a good contrast with respect to the skin

color which allows for a fast and accurate segmentation of the user’s hands. The

video camera auto controls the brightness and exposure settings. A snapshot of the

camera viewing angle is presented as well in Figure 2.1.

2.2 Hands Detection

Hands segmentation over the color of the interaction desk is achieved using a simple

low-cost skin filtering algorithm in the HSV color space on the hue and saturation

components:

pixel p is skin⇔ hue(p) ∈ [hlow, hhigh] ∧ sat(p) ∈ [slow, shigh] (2.1)
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Figure 2.1: The working scenario: gestures are captured over the surface of a table
using a top-mounted video camera. Left: system overview. Right: camera top view.

where p is the current pixel submitted to classification and [hlow, hhigh] and [slow, shigh]

are the lower and upper thresholds for the hue and saturation components. The tech-

nique is very fast with a complexity order of O(n) where n is the dimension of the

video frame. Also, the method assures a very accurate hands segmentation under the

previously mentioned working conditions. Segmentation results are given in Figure

2.2.

The values for the hue and saturation thresholds corresponding to skin color

were chosen experimentally as hlow = 10, hhigh = 100, slow = 0.07 and shigh = 0.6

where hue varies from 0 to 359 and saturation from 0 to 1. Figure 2.3 illustrates

the distribution of skin color in the Hue-Saturation space for a set of consecutive

video frames which allows experimentally retrieving of the color thresholds. The hue

component has been shifted right with 60 degrees in order for the hlow and hhigh

limits to respect hlow < hhigh as otherwise skin hue clusters at the two limits of the

hue range interval [0..359]. The HSV color space was chosen because it allows for
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Figure 2.2: Hand segmentation results (segmentation is performed in the HSV color
space by applying simple filters on the hue / saturation components).

separation of the brightness influence as given by the value component. Ignoring the

brightness information and analyzing only hue and saturation leads to better color

segmentation results (the same brightness value for example is scattered through all

the red, green, blue components of the RGB color space).

The hands segmentation filter outputs a binary image for which a blob de-

tection algorithm must be applied [Rus98, Pra07]. At the end, a set of blobs

are detected {blob1, blob2, . . . blobn} which must be filtered against area and ge-

ometry ratios in order to only keep the two hands. The area and size filters

Width (blobi) ∈ [Widthmin,Widthmax], Height (blobi) ∈ [Heightmin, Heightmax]

and Area (blobi) ∈ [Areamin, Areamax] make sure that only the blobs that fit the

hands restrictions on width, height and area are kept. Also, the aspect ration

AR = height/width is used as well in order to further filter the blobs based on

their bounding rectangle shape: AR (blobi) ∈ [ARmin, ARmax]. At the end, only

the blobs that respect the hands dimensions and ratios are considered for further

processing. The algorithm for filtering the hands from the set of blobs is given below.
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Figure 2.3: Three consecutive video frames and their associated 2D hue/saturation
color histogram. The hue component varies from 0 to 359 and saturation from 0 to
1. Hue has been shifted to the right with 60 degrees.

Filter-Hands(blobs)

1 for i = 1 to length[blobs]
2 do
3 if Width(blobs[i]) /∈ [Widthmin,Widthmax]
4 then blobs ← blobs − blobs[i ]
5 if Height(blobs[i]) /∈ [Heightmin, Heightmax]
6 then blobs ← blobs − blobs[i ]
7 if Area(blobs[i]) /∈ [Areamin, Areamax]
8 then blobs ← blobs − blobs[i ]
9 if AspectRatio(blobs[i]) /∈ [ARmin, ARmax]

10 then blobs ← blobs − blobs[i ]
11 return blobs

The actual threshold values were determined experimentally as follows: Widthmin =

30, Widthmax = 50, Heightmin = 30, Heightmax = 120, ARmin = 1.2, ARmax =

4.5, Areamin = 1000, and Areamax = 10, 000.

Extra processing includes blob rotation so that the blob’s longest axis should be

parallel to the vertical axis as see Figure 2.4 illustrates. Axis alignment is performed
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by computing the two axis of the ellipse of inertia having the same area and center

of mass as the hand blob.

Figure 2.4: Rotation of blob objects for automatic alignment with the vertical axis.

2.2.1 Posture Recognition

For the purpose of performing posture recognition, we represent each hand blob

using a 6 × 5 matrix with real values in the [0..1] interval for which each value

represents the percentage of pixels of the blob that lie in the corresponding cell as

given by the row and column indexes. Figure 2.5 illustrates the concept.

Figure 2.5: Representation of a hand blob as a pixel occupancy matrix.

Posture recognition is performed using a Multi-Layered Perceptron organized

using a 3-layer structure of 39 neurons (30− 4− 3) [VPC+06], as follows:

1. The 1st layer consists of 30 input neurons, each coding the hand blob using 6 x

5 = 30 real normalized values in the interval [0..1]. Each value at position (i, j)

represents the percentage of pixel occupancy for the the rectangle cell (i, j),
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i = 1, 6 and j = 1, 5 as per Figure 2.5. The choice of the 6 × 5 structure was

experimentally found as giving the best performance together with the selected

number of neurons for the hidden layer, as shown by experimentations results

displayed in Figure 2.7.

2. The 2nd layer uses 4 hidden neurons. Experiments showed that 4 neurons in

the hidden layer offer the best performance on our testing set, see Figure 2.7

as well.

3. The 3rd layer is composed of 3 output neurons, each providing a real value

in the [0..1] interval representing the probability of appearance of one out of

the 3 hand postures at the entries of the network. The hand postures we se-

lected are illustrated in Figure 2.6 and they correspond to simple manipulation

operations on virtual objects as further discussed in the chapter.

Figure 2.6: Selected hand postures.

A database of 1665 hand postures samples was constructed, out of which 70%

(1166 samples) were chosen as the training set and 30% (499 samples) made up the

testing set. Data was acquired from a single subject using the scenario conditions

as presented. The training algorithm we used was the basic backpropagation [Bis95]

with no particular enhancements. We motivate our choice for the network architec-

ture as being the minimal structure with respect to the number of neurons in the

hidden layer that achieved the accuracy threshold of 98% of correct classification

on the testing set. We started from small networks architectures and iteratively
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incremented both the number of neurons from the input as well as from the hidden

layer. Figure 2.7 shows the experimentations performed on the architecture of the

neural network while Figure 2.8 gives the training error for the chosen (30− 4− 3)

configuration.

Figure 2.7: Accuracy on the testing set vs several choices for the neural network
architecture.

2.2.2 Postures-Based Command Application

In order to test the performance of our classifier, a simple posture-based command

application was implemented. The application allows one or two-handed manip-

ulation of virtual objects. We selected three hand postures by considering a few

common operations encountered when interacting with virtual objects such as: se-

lection, translation, rotation and resize [VP06, VPC+06] as Figure 2.9 illustrates:

• Selection is the operation used to indicate the object for which all the future

processing will apply to. Performing selection gets done using the first hand
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Figure 2.8: Total error on the training set vs number of iterations.

posture (index finger pointed) maintained for a short period of time in the

small vicinity of the target object. The operation is performed using only one

hand.

• Translation is the operation that allows moving the object in the virtual scene.

It is performed using one hand while holding the pinch posture: thumb and

index fingers are touching creating a small gap between them whilst the other

fingers are closed.

• Rotation is performed with two hands, both holding the pinch posture. Each

hand targets a point on the virtual object which determines rotation to be

performed around the axis as indicated by the two points.

• Change of scale is an operation performed with two hands as well, each hand

targeting a point on the virtual object while maintaining the open hand pos-

ture: all the fingers are open and the hand lays perpendicular to the table.
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Figure 2.9: Set of hand postures and associated commands for interacting with
virtual objects. First column: video snapshots, 2nd column: hands segmentation,
3rd column: corresponding action in the virtual environment.

For each hand posture a selection point is defined as presented in Figure 2.10.

It is this point that allows for the actual interaction to happen. The selection points

are computed as the closest points to the top-left corner of the bounding box for

the select and pinch postures and middle-left corner for the scale posture. The

interaction is always performed on the object that is closest to the selection point,

according to the current hand posture. The algorithm is given below in pseudocode

language formalism.

Figure 2.10: Selection points for each hand posture are used for the actual interac-
tion.
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Postures-Based-Interaction()

1 while image ← Acquire-Image-From-Video-Camera()
2 do
3 blobs ← Segment-Image-And-Retrieve-Blobs(image)
4 blobs ← Filter-Hands(blobs)
5 handleft , handright ← Classify-Hands-Using-MLP(blobs)
6 � If no hands are detected
7 � grab and process another video frame
8 if handleft = nil AND handright = nil
9 then goto 1

10 objectleft ← Get-Object-Close-To(handleft)
11 objectright ← Get-Object-Close-To(handright)
12 � If there are no objects in the range of the hands
13 � grab and process another video frame
14 if objectleft = nil AND objectright = nil
15 then goto 1
16
17 � Determine the interaction scenario: is it selection?
18 if Type(handleft) = Select-Posture
19 then Select-Object(objectleft)
20 if Type(handright) = Select-Posture
21 then Select-Object(objectright)
22
23 � Determine the interaction scenario: is it translation?
24 if Type(handleft) = Pinch-Posture
25 then Translate-Object(objectleft ,X(handleft),Y(handleft))
26 if Type(handright) = Pinch-Posture
27 then Translate-Object(objectleft ,X(handright),Y(handright))
28
29 � Is it two-handed interaction?
30 if Type(handleft) = Type(handright) AND objectleft = objectright

31 then
32 if Type(handleft) = Pinch-Posture
33 then
34 Rotate-Object(objectleft ,Axis(handleft , handright))
35 elseif Type(handleft) = Scale-Posture
36 then
37 Scale-Object(objectleft ,Axis(handleft , handright))
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Hands classification is achieved using the Multi-Layered Perceptron. An inter-

esting observation is that the hand postures are symmetrical with respect to the

vertical axis which leads to the possibility of discriminating between the left and the

right hand. Figure 2.11 presents the symmetry of the hand postures. Each of the 3

output neurons of the network outputs a value in the [0..1] interval that represents

the probability of the posture of being selection, pinch or scale. The maximum value

outputted by the three neurons which overpasses a given threshold of 0.7 determines

the hand posture. The pseudocode for the classification algorithm is given below.

Figure 2.11: Postures performed by the left and right hands are symmetrical with
respect to the vertical axis.

Classify-Hands-Using-MLP(blobs)

1 handleft ← nil, handright ← nil
2 for i = 1 to length[blobs]
3 do
4 posture, probability ←MLP(blobs[i])
5 postureReversed , probabilityReversed ←MLP (Reverse(blobs[i]))
6 if probability < 0.7 AND probabilityReversed < 0.7
7 then goto 3
8 if probability > Max(probabilityReversed ,Probability(handright)
9 then handright ← blobs[i ]

10 if probabilityReversed > Max(probability ,Probability(handleft)
11 then handleft ← blobs[i ]
12 return handleft , handright

The interaction always takes place on the object that is closest to the hand in

a given interaction area with the center being the selection point of each posture
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as they were illustrated in Figure 2.10. A few snapshots as captured while run-

ning the demonstrative application are illustrated in Figure 2.12 including selection,

translation, rotation and resize.

Figure 2.12: Snapshots captured while running the demonstrative application, illus-
trating selection, translation, rotation and change in scale.
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2.2.3 Acquisition of Motion Data

Hand postures represent the static information of gestures as discussed in the pre-

vious chapter. Apart from postures, motion is equally important in the description

and meaning of a gesture. As one may look at a dynamic gesture as a point moving

in time, we consider for our top-view video camera scenario the motion generator

point to be associated with the top of the forefinger while it is pointed. Figure 2.13

visually illustrates the acquisition of a trajectory motion describing the shape of a

circle.

Figure 2.13: Gesture trajectories correspond to the top of the forefinger while
pointed.

Motion data is acquired whilst the forefinger of the hand is pointed. Detection of

the pointed forefinger is achieved by monitoring for the select posture using the MLP

as discussed in the previous section. The index finger allows for several variations

to be implemented. For example, capturing a motion gesture may start when the

forefinger is stretched and ends when it is retracted back. This method may be

very well applied in order to acquire the exact trajectory of a given gesture, as it is
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perceived by the user and for which specific start and end timestamps are needed.

The user is thus in control by designating in time the actual gesture to be recognized

and interpreted by the system. Pointing/retracting the index finger may simulate as

well the traditional mouse click in a similar scenario like the one introduced by the

TAFFI interface [Wil06]. In the end, irrespectively whether the gesture trajectory is

precisely indicated by the user with click-like hand signals or auto-segmented from

a longer motion (see subsequent chapters), the motion component of gesture will be

represented as a time-ordered series of 2D points:

motion =
{
pi = (xi, yi) ∈ R2/i = 1, n

}
(2.2)
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Chapter 3

Constructing Semantics:
A Formalism for Gestures and
Gesture Dictionaries

It is interesting thus to follow the intellectual truths of analysis
in the phenomena of nature. This correspondence, of which the

system of the world will offer us numerous examples, makes one of
the greatest charms attached to mathematical speculations.

Pierre-Simon Laplace
(1749 – 1827)

We introduce and discuss in this chapter several models for gestures and dictio-

nary of gestures from the point of view of the human computer interaction domain.

We equally follow and discuss the multiple representations that gestures take at the

various levels of processing for an interaction system.

By considering the amounts of static and dynamic information that are needed

in order to sufficiently and completely describe a gesture command, we have iden-

tified four distinct types of gestures that we referenced as simple static, complex

static, simple dynamic and complex dynamic. The four types range from static pos-

tures held for a period of time through sequences of postures, motion trajectories

and sequences of consecutive or parallel motions. Mathematical formulations as well

as examples and discussions are given for each of the four gesture types. We provide
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a general definition of gesture as command for HCI that involves the characteristics

of the four specific types.

We further develop on top of our gesture definitions and consider aspects re-

lated to gesture dictionaries. We introduce measures of similarity and dissimilarity

for gestures that we use in order to define several dictionary types. We define ges-

ture dictionaries as sets of interesting gestures for which there exists a dissimilarity

measure such that any two gestures are considered different with respect to the given

measure. Various definitions, propositions and discussions are given with regards to

the mathematical formalization of gestures and gesture dictionaries [VP08].

In the end of the chapter, we discuss the multiple representations that gestures

as commands take at various levels in human computer interaction systems: they

are raw streams of data at the acquisition level, become mathematical models for

analysis and processing and event triggers in high-level programming languages. We

discuss the various issues that are encountered at each level of representation.

We can highlight the contributions of the chapter as: start-up grounds for a

gesture-as-command theory for Human Computer Interaction including models for

gesture and gesture dictionaries; an overview of gesture representations at various

levels of processing in information systems, as they are of interest for HCI.
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3.1 Defining gestures for HCI

When one looks at or considers gestures from the interaction point of view, the notion

of gesture may be thoroughly captured into a mathematical formalization. In order

to achieve this purpose, we need to look at the two components that gestures present:

the posture or the static information and the associated motion trajectories or the

dynamics. Depending on the interaction purpose and needs, a gesture command may

be fully and completely described by a simple posture for example when confirming

an application inquiry by holding the ”thumbs up”. Other interactions are described

by solely the motion information while the posture may not be important such as

when describing the shape of a circle or drawing an ”M” for menu. Complex tasks

may require complex gestures which in turn may take several forms: sequences of

postures, sequences of motions or combining motion with postures at key moments.

We start by defining posture as a n-valued array of measurements.

Definition 3.1 We understand by posture a set of measurements p = (p1, p2, . . . pn)

from given values domain pi ∈ Di that describe the pose of body or of body parts at

one instant of time.

Definition 3.2 Let P be the set of all postures P = {p/p = (p1, p2, . . . pn) , pi ∈ Di}.

The number of measurements being performed was denoted by n while pi repre-

sents the value of the ith measurement or feature. The features may be quantitative

(continuous, discrete) or qualitative (nominal, ordinal). Di may be a real-valued

domain such as <, <k or [0..1]k. For example, we may refer to hand posture as

the relative position and orientation of fingers at one instant of time. Consequently,

we may choose our measurements for describing a hand posture to be real valued

such as angles between fingers [WS99], relative distances between adjacent fingers,
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hand orientation [BCD06], moments of different order [LaV99]. We may as well use

qualitative variables such as {true, false} for given predicates [EGG+03].

Interaction is performed using both motion trajectories and postures hence dy-

namic and static information. We may thus provide the following classification of

gesture commands with regards to their structural pattern, i.e. the amount of pos-

ture / motion considered for performing the command:

• simple static

• complex static

• simple dynamic and

• complex dynamic gestures.

Simple static gestures (gss) are gestures that convey the desired information

only through the use of a single posture that is maintained for a certain amount of

time. They may be defined as the pair:

gss = (posture, time) ∈ P × [0,∞) (3.1)

where ss stands for static simple and P represents the set of all postures. Figure

3.1 illustrates the confirmation or acknowledge gesture as an example of gss.

We also define the set of the simple static gestures.

Definition 3.3 Let Gss be the set of all simple static gestures:

Gss = {gss/gss = (posture, time) ∈ P × [0,∞)}.

For completeness purposes we consider the empty gestures set Φ ⊂ Gss as the

set of simple static gestures for which the time component is 0:

Φ = {gss ∈ Gss/gss = (posture, 0)} (3.2)
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Figure 3.1: Example of a simple static gesture: the ”thumbs up” posture held for a
period of say 1 second may be associated with user acknowledging in response of an
application confirmation inquiry.

Definition 3.4 Any element φ ∈ Φ is an empty gesture.

Complex static gestures (gsc) are gestures that are represented by a series of

consecutive postures which are maintained for certain amounts of time. Again, only

posture information is sufficient for grasping the meaning of the gesture command.

They may be defined as a sequence of simple static gestures:

gsc =
{
g1
ss, g

2
ss, . . .

}
(3.3)

Equivalently, the complex static gesture may be defined as a subset of the partitions

set of Gss: gsc ⊂ Ψ {Gss}. Figure 3.2 illustrates the ”change scale” gesture as an

example of gsc.

A complex static gesture may be reduced to a simple gesture if the set order

|gsc| = 1. Also, a complex gesture may include at limit an infinity number of

postures.

Simple dynamic gestures (gds) are gestures for which the posture information is

not important as all the meaning lies within the underlying motion trajectory. As

an example, Figure 3.3 illustrates the ”undo” command. A simple dynamic gesture

may be defined as a function of time (either continuous or discrete) having as values
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Figure 3.2: Example of a complex static gesture: the scaling gesture executed with
one hand indicates a change in size or equivalently, a zoom operation that would
be proportional to the distance between the index and thumb fingers. The gesture
consists of several hand postures ranging say from a large distance to a small/null
one between the user hand’s index and thumb fingers.

the coordinates in Rd of the motion trajectory:

gds (t) : R→ Rd (3.4)

where ds stands for dynamic simple and d is the dimension of motion coordinates

space. d may be 2 for planar motions, 3 for gestures executed in space or it may

have an additional dimension for the time component.

In a similar manner with Gss we consider the set of simple dynamic gestures.

Definition 3.5 Let Gds be the set of all simple dynamic gestures:

Gds =
{
gds/gds (t) : R→ Rd

}
.

Complex dynamic gestures (gdc) are gestures that are represented by a series of

consecutive motions which may be separated by periods of pause. Again, only the

motion information is sufficient for grasping for which both the motion trajectory

and posture are equally important for grasping the meaning of the meaning of the

gesture command. They may be defined as a sequence of simple dynamic gestures:

gdc =
{
g1
ds, g

2
ds, . . .

}
(3.5)
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Figure 3.3: Example of a simple dynamic gesture: the gesture represented by an X-
cross may be associated with performing of an ”undo” operation, closing the current
window or a cut operation in an editing scenario.

Equivalently, the complex dynamic gesture may be defined as a subset of the

partitions set of Gds: gdc ⊂ Ψ {Gds}. An example of a complex dynamic gesture

would be drawing a rectangle for example that may be done by separately drawing

the 4 sides or by specifying it using the both hands as Figure 3.4 illustrates.

Figure 3.4: Example of a generalized dynamic gesture: specifying a rectangle shape
may be performed by two hands that control the distance between two opposite
corners.

We finally arrive at a general definition of gesture.

Definition 3.6 A gesture g is a sequence of functions of time with values into

the Cartesian product of the coordinate’s space Rd and the set of all postures P:

g =
{
g1 (t) : R→ Rd × P, g2 (t) : R→ Rd × P, . . .

}
.
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Definition 3.7 The cardinality of a gesture g is given by the number of functions

in the gesture set and is denoted by |g|.

The function components of a gesture may be in sequence for example when

drawing the four sides of a rectangle one after another or may very well overlap

in time for example when moving both hands in order to control the zoom and

orientation of a geometrical object. In the later case, each hand will follow its

motion trajectory and the orientation and size of the object would be proportional

to the distance between the hands. The gesture in this later case is completely

defined by the two motions of the hands and eventually their posture information.

As an example, Figure 3.5 illustrates the ”drag & drop” gesture that consists

in both posture and motion information with a cardinality of 1. Figures 3.6 and 3.7

illustrate the drawing and resizing of the rectangle examples with cardinalities of 4

and 2 respectively.

Figure 3.5: Example of a gesture of cardinality 1: the ”drag & drop” operation
may be implemented using two hand postures (”grab” and ”release”) and a motion
trajectory necessary for the start and end locations.

We can derive from the general representation of gesture all the particular struc-

tural types by restricting the dimension d of the coordinates space, the set of postures
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Figure 3.6: Example of a gesture of cardinality 4 with motions in sequence: drawing
a rectangle may be performed by consecutively drawing its four sides (not necessarily
in the order presented).

Figure 3.7: Example of a gesture of cardinality 2 with motions in parallel: rescaling
and rotating a rectangle may be done by controlling two opposites corners.
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P and the cardinality of the gesture g:

• |g| = 0 gives as the empty gesture

• for |g| = 1, d = 0 and P = {p0} the simple static gesture gss = p0 is obtained

• for |g| = 1 and d = 0 we get the complex static gesture gsc

• |g| = 1 and d > 0 provides for the simple dynamic gesture gds

• d > 0 gives the complex dynamic gesture gdc.

Figure 3.8 illustrates graphically the four structural gesture types with regards

to the amount of posture and motion information as well as their relations of inclu-

sion.

Figure 3.8: Gesture types function of the amount of posture and motion information
included in their structure.
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3.2 Gesture dictionaries

Definition 3.8 Let G be the set of all gestures.

Due to the fact that gesture is defined as a function over the whole range of

time values, we further introduce the restriction of this function to a limited time

range. This will allow us to select the ”interesting” part of gesture, i.e. the moment

when the gesture actually begins (for example the ”grab” posture as in Figure 3.5)

and the moment the gesture ends (the ”release” posture), moments that match the

start/stop sequence as perceived by the user.

Definition 3.9 Let g ∈ G be a gesture and a, b ∈ R, a ≤ b two real values. Then

g|a,b is the restriction of gesture g on the [a, b] time interval.

The restriction of a gesture to a time interval allows for further definitions of am-

plitude of gesture g(t), Ag and the interesting part of gesture, intg.

Definition 3.10 Let g ∈ G be a gesture. Let a = inf {t ∈ R/g(t) /∈ Φ} and b =

sup {t ∈ R/g(t) /∈ Φ}. Then Ag = b − a is the time amplitude of g and intg :

[0, Ag]→ Rd × P , intg = g(t+ a) is the interesting part of g.

Definition 3.11 Let intG be the set of all interesting gestures,

intG = {g̃ ∈ G/∃g ∈ G so that intg = g̃}.

The amplitude and the interesting restriction let us define identical gestures as

follows.

Definition 3.12 Two gestures g, h ∈ G are identical and we denote g = h⇔ Ag =

Ah and intg = inth.
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We further introduce similarity and dissimilarity measures over the set of all in-

teresting gestures as well as two propositions that allow for transforming a similarity

function into a dissimilarity one and vice-versa.

Definition 3.13 Let s : intG× intG→ R+. s is a similarity measure over intG if

the following conditions are met ∀g, h ∈ intG:

a) s(g, h) = s(h, g)

b) s(g, g) = s(h, h) ≥ s(g, h)

Definition 3.14 Let d : intG× intG→ R+. d is a dissimilarity measure over intG

if the following conditions are met ∀g, h ∈ intG:

a) d(g, h) = d(h, g)

b) d(g, g) = 0

The definitions of similarity and dissimilarity functions are symmetrical hence

one may turn a similarity measure into a dissimilarity one and vice versa.

Proposition 3.15 Let s : intG × intG → R+ be a similarity measure over intG

and max(s) = max {s(g, h)/g, h ∈ intG}. Then d : intG × intG → R+, d(g, h) =

max(s)− s(g, h) is a dissimilarity measure over intG.

Proposition 3.16 Let d : intG× intG→ R+ be a dissimilarity measure over intG

and max(d) = max {d(g, h)/g, h ∈ intG}. Then s : intG × intG → R+, s(g, h) =

max(d)− d(g, h) is a similarity measure over intG.

A set of interesting gestures and a dissimilarity measure permits definition of

gesture dictionaries.

Definition 3.17 Let D be a set of interesting gestures, D ⊂ P {intG} and d :

intG× intG→ R+ a dissimilarity measure over intG. Then D is discriminative of

degree 1 with respect to D if d(g, h) > 0 ∀g, h ∈ D.
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The degree 1 of discriminative power for a set D simply restricts that there are

no two gestures in the set that are similar with respect to a dissimilarity measure.

The definition below is more powerful and restricts the set D so that there are no

two gestures in the set g, h where h would be similar to any part of g.

Definition 3.18 Let D be a set of interesting gestures, D ⊂ P {intG} and d :

intG× intG→ R+ a dissimilarity measure over intG. Then D is discriminative of

degree 2 with respect to D if d(g, h|a,b) > 0 ∀g, h ∈ D ∀a, b ∈ [0, Ah], a ≤ b.

The next proposition states an inclusion level between the sets of discriminative

degrees 1 and 2.

Proposition 3.19 Let d : intG × intG → R+ a dissimilarity measure over intG,

D1|d be the set of all sets of interesting gestures that are discriminative of degree

1 with respect to d and D2|d be the set of all sets of interesting gestures that are

discriminative of degree 2 with respect to d. Then D2|d ⊂ D1|d.

We may now define a gesture dictionary.

Definition 3.20 Let D be a set of interesting gestures D ⊂ P {intG} and d :

intG × intG → R+ a dissimilarity measure over intG. The pair (D, d) is a ges-

ture dictionary if D is discriminative of degree 1 with respect to d.

Due to the fact that gestures are functions of time and considering the restric-

tions of HCI systems that need to process, recognize gestures and provide feedback

in real time, we introduce the sequentially gesture dictionary below.

Definition 3.21 Let D be a set of interesting gestures D ⊂ P {intG} and d : intG×

intG → R+ a dissimilarity measure over intG. The pair (D, d) is a sequentially

gesture dictionary if D is discriminative of degree 2 with respect to d.
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3.3 Gesture Representations in HCI

The complex nature of gesture recognition makes human gestures have different rep-

resentations at different levels. Three distinct processing layers may be identified

(see Figure 3.9) corresponding to the actual gesture execution in the real world,

acquisition process, modeling and application. We follow the gesture in all its rep-

resentations starting from the raw format as provided by an acquisition device to

the final actual interaction stage (where gesture triggers action) at the highest ap-

plication level.

Figure 3.9: Different levels of representation when dealing with gestures for Human
Computer Interaction.
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We address the multiple forms of representation that human gesture takes at

different levels for human computer interaction ranging from gesture acquisition,

mathematical model for analysis, pattern for recognition, record for database up to

end-level application event triggers.

3.3.1 Acquisition Level

At the acquisition level, a gesture is represented by a stream of data according

to the technology used of the capturing device. At this level we dispose of a raw

representation of the gesture that may contain a large amount of noise. For example,

a gesture may be represented by a single image that contains the user’s hand with a

specific posture in front of a working desk that may contain additional information:

part of the desk, notebooks, the PC keyboard, the user’s watch or the color of its

shirt as Figure 3.10 illustrates. We are dealing with the raw representation of gesture

as provided by the acquisition device and we can easily note the huge amount of

extra information that is not needed at all. Noise is heavily present in this basic

gesture representation.

Figure 3.10: Gesture is a raw stream of data at the acquisition level as outputted
by the capture device (picture represents a snapshot of lab developed hand gesture
acquisition system).

If the interest is on dynamic gestures implying motion trajectories and the
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technology is video, the raw representation as outputted by the capturing device

would be a sequence of video frames, each containing a huge amount of extra not

needed information that we can qualify as noise. Another raw representation of a

gesture at this level could be a stream of data points given say as (x, y, z) ∈ R3 pairs

as outputted by a tracking device, for example [Asc07, Sen07]. We would deal in

this case of an incomplete representation of our gesture as posture would not been

taken into account.

The gesture representation depends on the technology the captor uses. It may

be a single image or a sequence of video frames for visual gesture acquisition; a

stream of data points for a tracking device; a set of measurements (angles, flexions)

for a data glove and many others. This is due to a large amount of non-traditional

immersive devices for interacting with virtual environments that have been very

rapidly proliferating. They include spatial input devices (or trackers), pointing

devices and whole hand devices that allow for hand gestures input. The technology

varies including: magnetic, mechanical, acoustic, inertial, vision/video camera based

or hybrid [LaV99, VPC05].

3.3.2 Modelling, Recognition and Interpretation Level

At this level we dispose of a mathematical model for gesture, all related to the

interaction purpose as stated in the gesture definition paragraph above. We make

distinction between posture (as static information) and gesture (in dynamics).

Several stages may be encountered at this level as Figure 3.11 illustrates:

• Gesture modeling: we defined gestures as series of functions of time with

values into the Cartesian product of the coordinates space Rd and the set of

all postures P .

• Classification / Semantic Interpretation: gesture is also a pattern after feature
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extraction has been performed on the mathematical model. Pattern recogni-

tion at this level aims to classify data (patterns) based on either a priori knowl-

edge or on statistical information extracted from the patterns. The patterns

to be classified are usually groups of measurements or observations, defining

points in an appropriate multidimensional space. Semantic interpretation may

further associate the gesture to a class of semantic types such as commands,

gesticulation, etc. Production rules and formal logic or any other artificial

intelligence techniques for association to knowledge sets may be used.

• Gesture storage / dictionary of gestures: gesture is also a record in a database

that allows for storage of the gesture model (a bijection Ψ may be defined

between the gesture model representation and the database storage specific

format).

Real problems arise in what concerns choosing the best dictionary for human

gestures for a given application. Although gestures are perceived as a natural mean

of interacting and conveying information hence a gesture based interface would prove

to be ideal, gestures may also be described as imprecise, not self revealing and also

non ergonomic. A particular problem relates to finding the right gestures that

would feel comfortable and natural from the user’s experience point of view. Several

attempts have been made on defining gesture dictionaries for application specific

needs [Mul86, Soa04, Wex95]. [NMSG03] conducted an ergonomic study for selecting

the appropriate gesture commands for operations such as: selection, move, scale,

copy, confirm, yes / no, undo using both single hand and two hands gestures in a

video camera based top view of a working table.

Another problem arises from the fact that gesture commands have to be identi-

fied (or designed) with the particularity of assuring a natural and comfortable user

experience, all this considering the existing GUIs and interaction paradigms, for
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example WIMP (Windows, Icon, Menu, Pointing). In this particular case, which

would be the most suitable gesture for activating / closing a menu or for maximiz-

ing / minimizing an application window? A simple proposal is given in Figure 3.12

[VPC05] but the question still remains: are the proposed gestures natural or are we

looking for a compromise between natural and new to be learned gestures?

Figure 3.11: Gesture is a mathematical model, a pattern or a database record at
the Modeling, Recognition and Interpretation level.
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Figure 3.12: Sample dynamic gestures for Open Menu / Select Item / Undo com-
mands.

3.3.3 Application Level

At the application level, the gesture is associated with the trigger of a certain action,

according to the current selected working scenario. We can look at the gesture

as an event that is fired whenever the gesture interface is enabled and allows for

executing the associated action. This can be described using pseudo code language-

like formalism as follows:

Application app = new Application();

app.EventHandler += new EventHandler(OnGestureInputEvent);

...

result OnGestureInputEvent(EventParams e)

{

switch(e.GestureType)

{

// take appropriate action

}

}
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Chapter 4

Detecting the Similarity of
Gesture Patterns

Turn away with fear and horror from this lamentable plague of
continuous functions that do not have a derivative.

Charles Hermite
(1822 - 1901)

The chapter discuses the problem of motion recognition by introducing a novel

representation of gestures based on spline modelling. The use of splines brings in a

few advantages with regards to data dimensionality, speed and accuracy of process-

ing. We describe several algorithms for data reduction, spline creation, evaluation

and spline alignment.

We further enhance our spline model with elastic properties in analogy with the

elasticity theory from basic physics. We look at each spline gesture as a series of con-

nected elastic springs that may be subjected to deformations such as stretching and

bending. We may thus associate energy costs to the two deformation types by con-

sidering differences in length as representing stretching and differences in curvature

for bending. The formulation of energies and the spline alignment algorithm provide

for a measure of distance between two gestures represented as spline curves. The sim-

ilarity measure that we use is influenced by the works of [SKK03, SKK01, BCGJ98]
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on curves alignment using standard dynamic programming techniques. We formu-

late the gesture matching problem using the Nearest Neighbor approach for a set of

pre-defined gesture templates.

We equally provide a training algorithm in the context of supervised learning in

order to automatically compute gesture templates from examples acquired from user

subjects [VGP07]. We discuss for this purpose the average gesture as computed for a

set of samples using repeated alignment procedures. The performance of the gesture

matching algorithm is evaluated on our own-collected gestures dataset consisting in

multiple gestures executed by several subjects. In the end of the chapter we describe

a simple demonstrative application for our gesture matching algorithm that allows

creation of several 3D objects.

The contribution of this chapter is represented by the novel spline-based repre-

sentation we introduce to model motion gestures. We show how the use of splines

brings in a few advantages with regards to mathematical modelling, data dimension-

ality, speed and accuracy of processing. Also, our elastic-enhanced splines permit

addressing the issue of variability in execution.
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4.1 Spline-based Gesture Representation

As defined in a previous chapter, a simple gesture for which only the motion com-

ponent is important, i.e. a simple dynamic gesture, may be defined as a function of

time having values in a given coordinates space Rd:

g(t) : R→ Rd (4.1)

where d is the dimensionality of the coordinates space. We restrict our further

discussions to only planar gestures for which the dimensionality d = 2 however our

observations also apply for the 3D case as mentioned were appropriately in the

chapter.

We are thus looking at a gesture g as a two-dimensional point moving in time:

g(t) : R→ R2 (4.2)

4.1.1 Data reduction

The raw data, as acquired from the tracking device, may be subjected to small

acquisition errors, small user execution mistakes or may contain too many points

as needed. We are thus preprocessing the acquisition data with a simple filtering

algorithm inspired from the Douglas-Peucker polyline reduction algorithm [HS92].

The raw acquisition data comes from the tracking device as a series of r two-

dimensional points sampled at equal intervals of time:

graw = {p0, p1, . . . pr−1} = {p(0), p(T ), p(2 · T ), . . . p((r − 1) · T )} (4.3)

where T is the sampling interval in time and pi = p(i · T ) = (xi, yi) ∈ R2 the ith

two-dimensional sampled point.

An initial simple filter that may be applied on the raw data consists in removing

of all the points that are too close to their neighbours than a given threshold eps.
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The principle is illustrated in Figure 4.1. The pseudocode for the filter is given

below:

Data-Reduction-1(P, eps)

1 for i← 1 to length[P ]
2 do
3 � Remove the point P [i] if it is too close to its neighbour to the left
4 if Euclidean-Distance(P [i], P [i− 1]) ≤ eps
5 then
6 P ← P − i

The complexity of the algorithm is O (r) where r is the length of the points

array.

Figure 4.1: Data Reduction, first filter: points that are too close as given by a
threshold value eps may be removed.

We may further consider a second filter for which we see as superfluous hence

removable all the points pj of the raw data trajectory for which the euclidean distance

to the line segment having as extremities the previous and the next points pj−1 and

pj+1 is less than a given error margin eps. Even more, we can further enhance the

filter by removing all the points pj that lie between two points pstart and pend with

start < j < end, start, j, end ∈ {0..r} if the average euclidean distance from all the

points pj to the line segment having as extremities pstart and pend is less than eps.

The principle is illustrated in Figure 4.2.

The data reduction algorithm is given in psedo-code below:
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Data-Reduction-2(P, eps)

1 start ← 0
2 end ← 2
3 while end ≤ length[P ]
4 do
5 totalDistance ← 0
6 allPointsUnderLimit ← true
7 for i← start +1 to end
8 do
9 � Update the total distance

10 distance← Euclidean-Distance(P [i], P [start]P [end])
11 totalDistance ← totalDistance +distance
12 � Check average distance condition
13 if totalDistance /(i− start) > eps
14 then
15 allPointsUnderLimit ← false
16 � Exit loop
17 i← end
18 if allPointsUnderLimit = true
19 then
20 end ← end +1
21 else
22 � Remove points between start+ 1 and end− 2
23 P ← P − {start+ 1, start+ 2, . . . end− 2}
24 start ← start +1
25 end ← start +2
26 � Remove points at the end
27 P ← P − {start+ 1, start+ 2, . . . end− 2}

The complexity of the data reduction algorithm is O
(
r2
)

where r is the length of

the points array. A faster version with several enhancements running in O (r · log(r))

is described in [HS92].

After data has been reduced by running the two filters, it is sometimes useful to

add a number of N linearly interpolated points between any two consecutive points

pi and pi+1. The reason for this is that further modelling of the reduced points

using splines leads to a much finer and smoother result. Usually, good results are
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Figure 4.2: Data Reduction, second filter: points that are too close by a threshold
value eps from the line segment between neighbours may be removed.

obtained for N = 2 or N = 3 but this step is not mandatory. The linear interpolation

pseudocode is given below:

Data-Enhancement-1(P,N)

1 P ′ ← nil
2 for i← 0 to length[P ]− 1
3 do
4 for j ← 1 to N
5 do
6 � Interpolate the jth point out of N
7 t← (j − 1)/N
8 p ′ ← (1− t) · P [i] + t · P [i+ 1]
9 � Add interpolated point to the new array

10 P ′ ← P ′ ∪ p′

11 � Add last point
12 P ′ ← P ′ ∪ P [length[P ]]
13 return P ′

The complexity of the algorithm is O (N · r) where r is the length of the points

array but it may be considered as O (r) due to the fact that N takes small values

such as 1, 2 or 3. The interpolation may even further be constrained by the actual
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Figure 4.3: Linear interpolation between consecutive points on the trajectory.

distance between two consecutive points pi and pi+1 on the trajectory using same

conditions on a threshold value eps.

4.1.2 Catmull-Rom splines

Splines represent a powerful mathematical tool for the represention of curves through

the means of control points at given timestamps (knots) and blending functions that

allow computation of the curve points.

The Catmull-Rom splines are a family of cubic interpolating splines defined

such that the tangent ti at each control point pi is calculated using the previous and

next points on the spline, pi−1 and pi+1:

~ti = ri · ~pi−1pi + (1− ri) · ~pipi+1 (4.4)

or, equivalently:

~ti = ri · (pi − pi−1) + (1− ri) · (pi+1 − pi) (4.5)

The spline is completely defined by the control points pi and their associated

tangents ~ti, as Figure 4.4. The ith segment of the spline is defined between the

control points pi and pi+1 as:

λ(u) =
3∑

k=0

ck · uk (4.6)
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where u is a local parameter that varies between [0, 1]. The coefficients ck, k = 0, 3

are computed for each segment using end continuity conditions:
pi = λ(0) = c0

pi+1 = λ(1) = c0 + c1 + c2 + c3

ti = λ′(0) = c1

ti+1 = λ′(1) = c1 + 2c2 + 3c3

(4.7)

The system may be put under a concise matrix form:

C = G · P (4.8)

where C is the coefficients vector C = [c0 c1 c2 c3]T , P is the control points vector

P = [pi−1 pi pi+1 pi+2]T and G is the geometry matrix as given by:

G =


0 1 0 0
−ri 2ri − 1 1− ri 0
2ri −4ri + ri+1 − 1 2ri − 2ri+1 + 2 ri+1 − 1
−ri 2ri − ri+1 + 1 2ri+1 − ri − 2 1− ri+1

 (4.9)

Details of computations are given in Appendix A.

Figure 4.4: A Catmull-Rom spline is defined by the control points and the tangent
at each point.

The parameters ri are known as tensions and affect how sharply the curve bends

at the interpolated control point pi. A common value is 0.5. We have chosen ri to

be determined by the length of the adjiacent segments pi−1pi and pipi+1:

ri =
|pipi+1|

|pi−1pi|+ |pipi+1|
(4.10)
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where |·| denotes the length of a segment. This choice of the tension values allows

for each segment pipi+1 to be pondered inversely proportional to its length when

considered for the computation of the tangents. The result that is obtained in the

end is a much smoother curve shape. Also, in accordance with the computation

details available under the appendix A, the system 4.8 has an unique solution if

ri 6= 0 and ri+1 6= 1, conditions that are fullfiled due to the fact that 0 < ri < 1 as

it may be noted from equation 4.10.

The algorithms for computing the tension values, tangents and for generating

the Catmull-Rom spline curve from a series of points are given in pseudocode below.

Compute-Tensions(P )

1 � First tension needs to be aproximated
2 � because the previous point is not available
3 � use default value
4 r [0]← 0.5
5 for i← 1 to length[P ]− 1
6 do
7 distPrevious← Euclidean-Distance(P [i− 1], P [i])
8 distNext← Euclidean-Distance(P [i], P [i+ 1])
9 r[i]← distPrevious / (distPrevious + distNext)

10 � Last tension needs to be approximated
11 � because the next point is not available
12 r [length[P ]]← 0.5
13 return r
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Compute-Tangents(P, r)

1 � First tangent needs to be approximated
2 � because the previous point is not available
3 tangents[0]← r [0] · (P [1]− P [0])
4 for i← 1 to length[P ]− 1
5 do
6 tangents[i]← r [i] · (P [i]− P [i− 1]) + (1− r [i]) · (P [i+ 1]− P [i])
7 � Last tangent needs to be approximated
8 � because the next point is not available
9 tangents[length[P ]]← r [length[P ]] · (P [length[P ]− P [length[P ]− 1]

10 return tangents

Generate-Catmull-Rom-Spline(P )

1 r ← Compute-Tensions(P )
2 tangents ← Compute-Tangents(P, r)
3 T ← 0
4 for i← 0 to length[P ]− 1
5 do
6 � Solve the 4-variable unique-solution system 4.8
7 c[i][0..3]← Solve-System(P [i], tangents[i], P [i+ 1], tangents[i+ 1]
8 � Each segment is defined over [0..1]
9 T ← T +1

10 return c, idT

Together with the coefficients c[i][0..3] for each of the spline segment, the last

procedure also returns the total time-length of the spline, T . Creating a Catmull-

Rom spline from a series of r points P is achieved with a complexity of O(r) as the

r points are only traversed thrice: for the computation of tensions O(r), tangents

O(r) and finally for generating the spline coefficients O(r).

Computing the value of the two-dimensional point on the spline at a given

moment T is done in O(1) as presented in the pseudocode below although even

faster evaluation methods exist [BG88]:
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Evaluate-Spline(c, t, T )

1 timeLength ←
∑

t [i]
2 if T < 0 or T > timeLength
3 then return nil
4 else
5 � Compute the segment index j
6 j ← bTc
7 � ... and the local parameter u of the segment j
8 u ← T −bTc
9 return c[j][0] + c[j][1] · u+ c[j][2] · u2 + c[j][3] · u3

The Catmull-Rom splines have a few interesting properties [CR74]:

• They passes through all of the control points pi that are located at a time

interval of 1.0 one from another.

• They have local control which means that modifying one control point only

affects the part of the curve near that control point. This can be seen from

the system 4.8 where the coefficients of the cubic spline segment i only depend

on the points pi−1, pi, pi+1 and pi+2.

• Catmull-Rom splines are continuous functions of class C1, i.e. there are no

discontinuities in the tangent direction or magnitude. They are not C2 con-

tinuous however: the second derivative is linearly interpolated within each

segment, causing the curvature to vary linearly over the length of the segment.

• They present affine invariance which means that an affine change in the co-

ordinates system does not affect the geometry of the curve. Practically, the

curve shape rests the same whether it is rotated, scaled or translated.

• Catmull-Rom are cubic functions which makes them easy to compute.
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4.1.3 Gestures as splines

By using the spline modelling formalism for the gesture representations, the defini-

tion of the simple dynamic gesture takes the following particular form:

g(t) : [0, T ]→ R2, g(t) =



λ0(t) t ∈ [0, 1]
λ1(t− 1) t ∈ [1, 2]
...
λi(t− i) t ∈ [i, i+ 1]
...
λn−1(t− (n− 1)) t ∈ [n− 1, n]

(4.11)

where T is the time amplitude or time-length of the spline and restricts the definition

interval and n is the number of control points. Due to the fact that we used the

interval [0..1] as the range of the local parameter for all the spline segments, T and

n are the same in this case: T = n. λi are cubic polynomials that define the shape

of each segment:

λi(u) : [0..1]→ R2, λi(u) =
3∑

k=0

cik · uk (4.12)

Figure 4.5 illustrates the raw acquisition data and the associated spline repre-

sentation for a few gesture shapes: rectangle, triangle and heart. The raw acquisition

points as well as the control points of the splines are highlighted. Also, the raw data

and the spline representation are displayed once more overimposed for the purpose

of visual comparison.

Representing gesture motions as splines brings in several advantages:

• First of all, the dimensionality of data is considerably reduced. For example,

the triangle gesture as illustrated in Figure 4.5 may be represented using just

10 points instead ≈ 200. of the raw data; similarly, for the rectangle only 13

points are needed while the more complex shape of the heart requires 26 points

instead of ≈ 300.
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Figure 4.5: Examples of acquisition raw data and spline representation for three
gesture types: rectangle, triangle and heart.

• Second, we benefit of a continuous C1 class function for our gestures which

allows the application of results directly from differential geometry. This in

turn provides more accurate results for local or global shape parameters (such

as tangents for example) instead of values that would have been computed

through approximation methods.

• The interpolatory property of the spline may attenuate small execution mis-

takes or small acquisition errors, by providing in the end smooth curves.

• Spline gestures may be sampled at any given resolution, as fine as desired as

Figure 4.6 illustrates. The samplings at different resolutions, coarser or finer,

may be needed by further discrete computations. This useful property derives

directly from the fact that our representation takes the form of a continuous

function and hence we are allowed to select any sampling step TStep in the
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spline time-length interval [0..T ]. Equally important, the sampling may be

done uniformly, at equally spaced intervals, or non-uniformly which is a definite

improvement from the initial series of raw acquisition points.

• As Catmull-Rom splines are affine invariant, the gesture motion representa-

tions present as well translation, rotation and size invariance which is a defi-

nitely plus for any classifier algorithm that is comparing or matching shapes.

Figure 4.6: Spline gestures may be sampled at any resolution, fine or coarse, as
desired for further discrete computations.

4.1.4 Curvature functions

The curvature k(s) of a curve C at a given arc-length value s represents the rate of

change of the tangential angle with respect to arc-length:

k(s) =
dφ

ds
(4.13)

Figure 4.7 illustrates the concept visually. The same definition, expressed in time

coordinates for C(t) = (x(t), y(t)) becomes:

k(t) =
dφ/dt

ds/dt
=

dφ/dt√(
dx
dt

)2
+
(
dy
dt

)2
(4.14)

The arc-length s(t) represents the length of the curve up to t:

s(t) =
∫ t

0

√(
dx

du

)2

+
(
dy

du

)2

du (4.15)
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Figure 4.7: The curvature represents the rate of change of the tangential angle with
respect to arc-length.

By taking all s from 0 up to the total length of the curve, L, we obtain the

curvature function of the curve C:

k(s) : [0, L]→ R, k(s) =
dφ

ds
(4.16)

The fundamental theorem of differential geometry of curves [Car76] states that

the curvature signature function κ(s) of a planar curve C(s) parameterized by

arc-length s fully prescribes it up to a rigid motion transformation. Hence the

curvature functions describe the shape of gestures completely and may be used

for shape matching. Several existing shape analysis approaches work only with

the curvature information: some make use of curvature scale space representations

[AMK99, MA02], detect high curvature points [DF90], propose similarity measures

based on curvature differences [FRF04] or introduce different curvature based rep-

resentations [GGGZ05, MM92].

Moreover, plotting the curvature functions for multiple instances of the same

gesture visually confirms a clear discernible high inter-class variance and small intra-

class variance. Figure 4.8 illustrates plotting the curvature functions of several

gesture trajectories. The figure also gives an idea of the variability that exists within

gestures while they are executed. The three types of gestures illustrated, rectangle,

star and triangle shaped-like, were performed by the same user at different moments
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in time. The intra-class variance is given by variations in length and bending while

executing gestures.

Figure 4.8: Different representations for gestures acquired from the same user at
different moments in time. Top row: acquired trajectories. Middle: spline represen-
tations. Bottom: curvature functions.

4.1.5 Elastic gestures

We further enhance our gesture spline representations with elastic properties in

direct analogy with the elasticity theory from physics. The elastic view of splines

will prove useful in the subsequent chapters where we discuss classification and

matching algorithms.

We will be looking at a spline curve as a chain of connected elastic springs with

infinitesimal lengths. Figure 4.9 illustrates this idea for a star shape-like gesture.
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Figure 4.9: Elastic model for gesture: a gesture trajectory is seen as a chain of
connected elastic springs.

Each string may be subjected to stretching and bending. The stretching energy

required for deforming one spring of length ds to a new length ds may be given in

analogy with Hookes’ law from the elasticity theory as:

Estretching =
1
2
α
(
ds− ds

)2
(4.17)

where α is the stiffness coefficient of the spring. Similarly, instead of considering

springs of length we may consider springs that are associated with angles. The

energy needed to bend a spring of angle dφ to a new angle dφ may be expressed in

terms of curvatures as:

Ebending =
1
2
α
(
dφ− dφ

)2
=

1
2
α
(
dk · ds− dk · ds

)2
(4.18)

where the curvature is defined as the rate of change of the tangent angle with respect

to the arc-length dk = dφ
ds . Figure 4.10 illustrates the two types of deformation.

The amount of stretching is measured by the difference in length while bending

accounts for the difference in curvature. The larger these differences are, the larger

are the energy terms associated with them and hence the cost of deforming the

spring becomes bigger. The total energy of deformation required to stretch and
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Figure 4.10: String deformations: stretching as difference in length and bending as
difference in curvature.

bend a spring of length ds and curvature dk to a new length ds and curvature dk is

given by:

Edeformation = Estretching +R · Ebending
= 1

2α
(
ds− ds

)2
+R · 1

2α
(
dk · ds− dk · ds

)2 (4.19)

where R is a coefficient that controls the distribution of the energy terms.

4.2 Gesture Recognition

Prior to any analysis or matching between two gestures represented as spline curves,

an alignment process is necessary to be applied between the two curves. This will

make sure that corresponding parts on the two curves will be compared together, for

example a corner on the first curve will have a similar corresponding corner on the

second one or a semi-circle shaped like portion of the first curve should be matched

to a corresponding one on the second. All this of course if the two curves represent

the same gesture type, a star for example. Otherwise, the alignment procedure will

have as result an optimal association of similar regions of the two curves showing
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where they look alike and where they differ.

4.2.1 Energy-efficient Alignment of Curves

Deformation based approaches for aligning curves consider the transformation of one

curve into another by minimizing a performance functional of energies in accordance

with the elasticity theory [SKK03, CAS92, SKK01, BCGJ98, ACY96, VGP07]. Ideal

alignments between curves will allow for similar parts to be compared together,

leaving out errors that may be caused by articulations, deformation of parts or other

variations in the curves’ shapes. The main idea is that similar curves should need

small energy variations for transforming one into the other while different curves

would require bigger deformation costs.

Let C(s) and C(s) be two curves indexed by arc-length where s ∈ [0, L], s ∈

[0, L] and L,L are the length of the curves. Let a mapping

g : [0, L]→ [0, L], g(s) = s (4.20)

represent an alignment of the two curves. The principle of elastic deformation may

be described as in [CAS92] by comparing the displacement and bending energies of

the two curves using the following functional form:

µ[g] =
∫
C

(C(s)− C(s))2 +R · (k(s)− k(s))2ds (4.21)

where k(s), k(s) are the curvatures along the C,C curves and R is the parameter

that controls the contribution of each energy term. The optimal match is given as:

µ∗ = min
g
{µ[g]} (4.22)

A premise of the approach is that goodness of the optimal match is the sum of the

goodness of small infinitesimal matches.
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An equivalent form of the energy functional integral is given by [BCGJ98]. Both

these formulation however are asymmetric as they allow the explicit dependence on

the alignment function g. [Tag99] proposes a bimorphism to match the curves to be

compared by seeking a pair of two functions φ1, φ2 as part of the bimorphism which

optimize the energy functional.

The asymmetry issue is also approached by [SKK03, SKK01] by introducing the

notion of alignment curve which can be viewed as the pairing of two particles, one

on each curve traversing their respective paths monotonically but with finite stops

allowed. This alignment can be specified in terms of two functions h, h relating the

arc-lengths along C,C to a newly defined curve parameter ξ, s = h(ξ), s = h(ξ). The

energy functional formulation becomes:

µ[h, h] =
∫
ξ

∣∣∣∣∣dhdξ − dh

dξ

∣∣∣∣∣+R ·
∣∣∣∣∣k(h(ξ)) · dh

dξ
− k(h(ξ)) · dh

dξ

∣∣∣∣∣ dξ (4.23)

Furthermore, [SKK03] show that the optimal alignment of the two curves:

µ(h∗, h∗) = min(h,h)

{
µ[h, h]

}
(4.24)

respects the properties of a metric function.

In the discrete case, the two curves C,C are sampled into n and m points:

C = {pi = (xi, yi)/i = 1, n} and C = {qj = (xj , yj/j = 1,m}. Let also ki and kj

be the curvature values computed at each point i = 1, n and j = 1,m respectively.

Curvatures may be computed directly from the continuous spline representations

or using any approximation method of choice [HK07]. For example, the curvature

at point pi may be approximated as the angle between the two adjacent segments:

ki = angle 〈pi−1pi, pipi+1〉. Equally, the arc-length values si that measure the length

of the curve up to point pi become: si =
∑
j=2,i |pi−1pi|.

The alignment between the two curves is represented by a sequence of ordered

pairs αk = (sik , sjk) with (s1, s1) and (sn, sm) being the first and last pairs of the
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sequence, ik ∈ {1, n} and jk ∈ {1,m}. The optimal alignment is found via dynamic

programming considering an energy cost propagation scheme. Let costi,j be the

total cost of transforming the first i segments of curve C into the first j segments

of curve C. Also let ei→j be the energy term required to transform the ith spring

segment of curve C into the jth spring of curve C:

ei→j = estretching,i→j +R · ebending,i→j
= (dsi − dsj)2 +R · (ki − kj)2 (4.25)

where dsi = si − si−1 for i = 2, n, s0 = 0 and dsj = sj − sj−1 for j = 2, n, s0 = 0.

We also define the required energy for removing the ith spring as transforming

it into a void/nil spring of 0 length and 0 curvature:

ei→nil = ds2
i +R · k2

i (4.26)

The energy cost propagation scheme is given by the following equations and

visually illustrated in Figures 4.11 and 4.12.



cost1,1 = e1→1

cost1,j = cost1,j−1 + ej→nil
costi,1 = costi−1,1 + ei→nil

costi,j = min


costi−1,j−1 + ei→j
costi−1,j + ei→nil
costi,j−1 + ej→nil

(4.27)

The algorithm follows the standard dynamic programming approach [Bel03]:

the process of finding the total deformation cost is split in stages with a decision

required at each stage. The initialization stages consist in computing cost1,1 as

the transformation of the first segment of C into the first segment of C as well

as computing the costs cost1,j and costi,1 corresponding to costs of transforming

the first segment of C into the first j segments of C and vice-versa. The cost of

transforming the first i segments of C into the first j segments of j is found by

adding to the already optimum alignment (either costi−1,j−1, costi−1,j or costi,j−1)
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Figure 4.11: Alignment propagation scheme that choses the minimum energy trans-
formation cost path (i, j), (i− 1, j) or (i, j − 1) (splines view).

Figure 4.12: Alignment propagation scheme that choses the minimum energy trans-
formation cost path (i, j), (i− 1, j) or (i, j − 1) (matrix view).
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the connection of points that produces the total minimum deformation cost. In the

end, the deformation cost required to transform C into C is found to be costn,m.

Align-Splines(C, n,C,m)

1 � Cost of transforming the first segment of P
2 � into the first segment of Q
3 cost [1, 1]← Energy-To-Transform(P, 1, Q, 1)
4 � Compute the energy costs for deforming the first segment of P
5 � into the first j segments of Q
6 for j ← 1 to m
7 do
8 cost [1, j]← cost [1, j − 1] + Energy-To-Remove(Q, j)
9 � Compute the energy costs for deforming the first i segments of P

10 � into the first segment of Q
11 for i← 1 to n
12 do
13 cost [i, 1]← cost [i− 1, 1] + Energy-To-Remove(P, i)
14 � Compute the rest of the deformation costs
15 for i← 2 to n
16 do
17 for j ← 2 to m
18 do
19 cost1 ← cost [i− 1, j − 1] + Energy-To-Transform(P, i,Q, j)
20 cost2 ← cost [i− 1, j] + Energy-To-Remove(P, i)
21 cost3 ← cost [i, j − 1] + Energy-To-Remove[i, j − 1])
22 if cost1 ≤ cost2 and cost1 ≤ cost3

23 then
24 cost [i, j]← cost1

25 α← α ∪ (i− 1, j − 1)
26 elseif cost2 ≤ cost1 and cost2 ≤ cost3

27 then
28 cost [i, j]← cost2

29 α← α ∪ (i− 1, j)
30 else
31 cost [i, j]← cost3

32 α← α ∪ (i, j − 1)
33 return α, cost [n,m]

The algorithm for aligning the two spline curves C and C listed in the pseu-
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docode above returns the optimal alignment α as a set of connected points together

with the total energy deformation cost, costn,m. The complexity is quadratic with

respect to the number of spring segments of the two splines C and C, O (n ·m).

A few examples of the alignment procedure are illustrated in Figure 4.13 for two

gesture types, check and question-mark. Also, due to the fact that the curvatures

are functions of the arc-length s and in the propagation scheme the curvatures

values enter directly, we can further apply the alignment procedure directly on the

curvature functions as given in figure 4.8. An illustration of the alignment result

between the curvature functions of two star shape-like gestures is given in figure

4.14.

Figure 4.13: Trajectory alignment for the check and question-mark gestures.

Figure 4.14: Trajectory alignment for the star gesture applied directly on the cur-
vature functions.
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4.2.2 Recognition Algorithm

Recognizing a gesture may be performed by computing the alignment cost to several

pre-defined gesture templates and classifying the new gesture to the class for which

the deformation cost is minimum. The approach follows the standard procedure of

the Nearest Neighbor classification [CH67, DH73].

Let G be the spline representation of the new to be classified gesture. Also, let

T = {T1, T2, . . . Tp} be a set of spline templates corresponding to several gestures.

Determining the class index j ofG in accordance with the Nearest Neighbor approach

may be written as:

j = arg min
i=1,p

{µ[G,Ti]} (4.28)

The pseudcode for classifying a new gesture to a series of templates is given

below.

Classify-Gesture(G,T )

1 min ← Align-Splines(G, |G|, T [1], |T [1]|
2 class ← 1
3 for i← 2 to length[T ]
4 do
5 localMin ← Align-Splines(G, |G|, T [i], |T [i]|)
6 if min > localMin
7 then
8 min ← localMin
9 class ← i

10 return class

An additional improvement may be added to the matching algorithm in the

form of a rejection rule. If the minimum alignment cost is greater than a specified

threshold then the classification may be rejected with the statement that the new

gesture is unknown, not belonging to any of the pre-defined categories.

The complexity of matching a new gesture is O(p·r ·m) where p is the number of

gesture templates, r represents the number of segments of G and m is the maximum
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number of segments for all Ti: m = maxi=1,p |T [i]|. This is due to the fact that

computation of an alignment between two gestures is performed in quadratic time

and searching for the Nearest Neighbor requires computations to each of the template

in the set. The value of p is however small due to the limited number of gestures

that a dictionary may include, usually in the order of 5− 15. The limited choice of

p is also related to cognitive load issues and human capacity of memorizing gestures

as well as on the specifics of the actual application. Also, the values of r and m are

small as discussed in the results section.

4.2.3 Supervised Learning of Gesture Templates

The Nearest Neighbor matching algorithm classifies a new gesture to a set of pre-

defined templates. The only question that still needs to be addressed is how to

choose or build a gesture template for a given class of gestures, e.g. stars, rectangles

or triangles. In order to do this, we use the concept of average shape of [SKK01]

that we apply to our spline representations.

Let C(g) =
{
C1, C2, . . . Cn

}
be n spline representations of the same gesture g

acquired from the one or multiple users. We will call C(g) the training set of the

gesture g. Also, let sti and kti be the arc-length and curvature values for the tth

sample, t = 1..n and i = 1..|Ct|, where |Ct| is the number of sampled points on Ct.

When two gestures Ct and Cu are aligned, each arc-length/curvature pair(
sti, k

t
i

)
of Ct corresponds to a set of pairs αti =

{(
suj , k

u
j

)}
from Cu. Aligning

Ct to all the rest of the curves u = 1, n, u 6= t will result in the pair
(
sti, k

t
i

)
to corre-

spond to the set {αui /u = 1, n, u 6= t}. The concept is illustrated visually in Figure

4.15. By having computed all these alignment sets, we may consider the curve Ct

as being a reference curve and compute the average arc-lengths s̃i and curvatures k̃i

that correspond to each sti and kti pair on the reference curve, i = 1, |Ct|:
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s̃i =

n∑
u=1,u6=t

∑
αu

i =(st
i→s

u
jr

)
sujr

n∑
u=1,u6=t

∑
αu

i =(st
i→s

u
jr

)
1

(4.29)

k̃i =

n∑
u=1,u6=t

∑
αu

i =(kt
i→k

u
jr

)
kujr

n∑
u=1,u6=t

∑
αu

i =(kt
i→k

u
jr

)
1

(4.30)

where
(
sti → sujr

)
means that the arc-length value sti is to sujr and

(
kti → kujr

)
denotes

the same for curvatures.

Figure 4.15: A point on a spline may be aligned to multiple consecutive ordered
points on the other splines.

The average gesture C̃ will have the same number of sampled points as the

reference curve Ct: |C̃| = |Ct|. [SKK01] note that choosing any shape from the set

as being the reference has little impact on the average shape result. However, we
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choose as being the reference the gesture index t∗ that minimizes the sum of elastic

alignments to it:

t∗ = arg min
t=1,n

 ∑
i=1,n,i6=t

µ[Ct, Ci]

 (4.31)

The pseudocode for computing the average template for gesture g from a given

set of samples C(g) and a reference index curve t is given below.

Compute-Gesture-Template(C, t)

1 � Initial starting values
2 for i ← 1 to |C[t]|
3 do
4 C̃[i]← (0, 0)
5 ñ[i]← 0
6 � Align Ct to the rest of gestures Cu

7 for u ← 1 to length[C], u 6= t
8 do
9 α← Align-Splines(C[t], |C[t]|, C[u], |C[u]|)

10 for i ← 1 to length[α]
11 do
12 � α[i] represents an association between two indexes
13 � j and r from the align curves C[t] and C[u]
14 (j, r)← α[i]
15 s̃[j]← s̃[j] + s[u][r]
16 k̃[j]← k̃[j] + k[u][r]
17 ñ[j]← ñ[j] + 1
18 � Perform averaging
19 for i ← 1 to |C[t]|
20 do
21 C̃[i]← (s̃[i]/ñ[i], k̃[i]/ñ[i])
22 return C̃

Computing the average gesture is performed with a complexity order of O(n ·

|Ct| · m where n is the number of samples in the training set and m represents

the maximum number of sampled points from all the curves in the set: m =

maxu=1,n {|Cu|}.
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4.2.4 Results and Discussion

We acquired a data set of 2, 000 gesture samples from 10 volunteers. Each volunteer

performed each of the 10 gesture types from Figure 4.16 several times. Figure 4.17

lists a few matching results. The classification results are given twice: as actual cost

values and using visual cues. The gray-levels cues range from white to black where

black means maximum difference from gesture to template and white perfect match.

Figure 4.16: Set of 10 gesture types.

For each gesture type, we had a total of 200 samples. Out of these samples, we

chose T that made up the training set.We performed the training stage 100 times by

randomly choosing the T samples. The rest of 200 − T samples were added to the

testing set. From each testing set for each of the 10 gesture types, one sample was

randomly selected and classified against the just-trained classifiers. We performed

these steps 100 times and updated each time the classification error rate (10 x 100

= 1,000 tests were computed for a specified T value). We varied T from 2 to 10

samples which lead us to an error rate value of 6% (or 94% accuracy) when using only

2 training samples to an error rate value of 2.5% (97.5% accuracy) for 10 training

samples (or 1 sample from each user).

The main cause of classification errors was related to wrongly classifying down-

left gestures as right-arrows and down-right gestures as left-arrows and vice versa.

This is due to the fact that our classifiers are rotation invariant hence the only
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Figure 4.17: Numerical classification results for a few gesture shapes.

difference between the mentioned gesture types only stands in their turn angle (which

is 90 degrees for down-left and down-right gestures and smaller for right- and left-

arrows). By selecting only 2 stroke samples from the entire data acquired from 10

users (or 0.2 samples per user), the accuracy performance achieved was of 94%. The

performance accuracy percent went up to 97.5% with 10 stroke samples (or 1 sample

from each user) which makes our method suitable for multi-user gesture recognition.

4.3 Motion-based Command Application

In order to test our gesture recognition technique, we set up a simple demonstrative

application that allows creating and translating virtual objects. The following ges-

ture commands (which may be looked upon as a raw and basic gesture dictionary)

have been selected, see Figures 4.18 and 4.19:
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• Rectangle, triangle and circle shaped-like gestures determine creation of cor-

responding virtual objects: a cube, cone or sphere.

• Left and right arrows enforce the previous created virtual object to leave the

scene to the indicated direction.

Figure 4.18: Five gesture trajectory commands for a demonstrative application.
Top row commands (rectangle, triangle, circle) create virtual objects (cube, cone,
sphere). Bottom row commands (go right, go left) allow objects to leave the scene
to the indicated direction.

The acquisition scenario is as described in chapter 2 with the video camera

mounted on top and monitoring the user’s hand above the surface of the working

desk. The gesture input corresponds to the motion trajectory captured between the

moments when the indexfinger is pointed and when it is retracted back.

There is a permanent visual feedback displayed on the screen that allows the

user to see the result of both the hand detection as well as the trajectory capture

processes. Tthe detected hand region is visually marked by overimposing a white

bounding rectangle as well as a green filled circle representing the center of the

hand on top of the video information. Equally, the entire trajectory is displayed on

top of the video feed using distinctive colors that code the total time of execution:

brightest red for the most recently captured points back to black for the oldest

points. This visual feedback helps subjects see how the system is doing in terms of
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accuracy and, in case of failure in hand detection or trajectory acquisition, adjust

their hand posture accordingly. As described in chapter 2 the acquisition process is

fast and robust although there are situations when the index-pointed posture is not

correctly detected which leads to failure in the trajectory acquisition. However, the

permanent visual feedback makes users aware of this in due time.

Figure 4.19: Creating a cube object and making it leave the scene to the left.

Video-based acquisition testing was performed on a dual core P4 2.66GHz Win-

dows machine with DirectShow 9 installed. Processing was carried out at a video

rate of 25fps with an image resolution of 320x240 pixels. The CPU load varied

around 25 − 30% for the entire running mainly due to the video acquisition part

(15− 20%).

The maximum allowed time frame interval for executing a gesture was of 5 sec-

onds which at a processing speed of 25fps allowed for an accumulation of maximum

125 control points for our spline representations. The resolution step chosen for the
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spline segments was 5 giving in the end a maximum dimensionality for the algo-

rithm data of order n ≈ 600 with an average of n ≈ 250. The complexity of our

classification algorithm for a gesture set composed of |G| templates is O(|G| · n ·m)

where n and m are the dimensionalities of the spline representations for the two

gestures. The complexity is quadratic however, due to our spline representation, the

dimensionality of each component is very small of order 250 in the average case.
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Chapter 5

Dealing with Variability:
From Continuous Motion to
Gesture Patterns

Variability is the law of life, and as no two faces
are the same, so no two bodies are alike,

and no two individuals react alike and behave alike.
William Osler

(1849 - 1919)

In this chapter we describe a technique for measuring the amount of variability

that is present in gesture execution by introducing a model composed of stretching

and bending variation terms. The problem we address, and which has been left

unattended so far, is how to provide quantitative criteria for both measuring and

comparing the variability in execution across multiple users and multiple gesture

types. The model may serve as a basis or provide valuable criteria for researchers

involved in gesture recognition and gesture-based interfaces by letting them know

in advance how much variability to expect at the user execution level and thus tune

the gesture recognizers appropriately. The method is also suited for HCI researchers

addressing questions on human factors in gesture execution.
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We further use the VE model in order to address a well-known hard problem

which is the automatic segmentation of motion trajectories. The problem is hard

due to the high complexity needed of detecting patterns of any size, at any rotation

and at any point in a given larger trajectory. We present an extension of our elastic

matching algorithm for the detection of such gesture patterns in continuous motions.

The algorithm is fast as per our discussions on its complexity. Also, our method

is invariant to rotation, translation and, very important, to the size of the gesture

patterns.

In the end, we validate our VE model by verifying two intuitive hypothesis on

how execution is affected by articulation speed or gesture complexity. We discuss

experimental results for a database of gestures made very recently (October 2007)

specially available for the HCI community that consists in multiple gesture types,

multiple users and several speeds of execution.

We can highlight the contributions of the chapter as follows: we introduce a

model that measures the amount of variation present in gesture execution and discuss

its direct applications to segmentation of continuous motion into gesture patterns as

well as performing ergonomic analysis on gesture dictionaries. The model may be

used for addressing other open problems in HCI and may provide useful for other

research comunities as well, as we discuss in the chapter.
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5.1 Variation in Execution

Irrespectively of the methods that are used for acquisition and recognition, there

is always a common problem that gesture recognizers have to face and which may

be easily observed by looking at the acquisition data: there is a certain amount

of variability that comes with each gesture execution. Different users will execute

the same gesture differently and, even more, the same user will perform the same

gesture with several variations with each execution.

Figure 5.1 illustrates the Variability in Execution problem for single and mul-

tiple users. It may be easily observed that the variation is much smaller for the

single user case where 10 executions are showed rather than when we selected one

execution from 10 users and displayed them over-imposed. The variation is much

greater when even more executions are displayed together: 10 users x 10 times =

100 executions.

Figure 5.1: Variability in execution. Top left: the check gesture. Top right: 10
executions performed by the same user. Bottom left: 10 executions from 10 users
(one execution per user). Bottom right: 100 executions from 10 users.
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We further address the problem of Variability in Execution (VE) by introducing

a model that measures how much users tend to variate their executions at any point

of their gesture trajectories. The parameters of the model consist in variations in

length and curvature corresponding to local stretching and bending tendencies in

execution and are computed directly from a set of gesture examples.

Despite the developments and advances in gesture recognition technique as well

as applied systems, few models have been proposed for assessing the human perfor-

mance for making stroke gestures. Equally, to our knowledge, there is no method

or model that would describe the variations that users tend to have when execut-

ing gestures. A model for stroke gestures that used the number of approximating

straight line segments in a gesture as a predictor of complexity correlating to writ-

ing time was introduced in [Iso01]. A quantitative performance model based on

Curves, Lines and Corners (CLC) for single-stroke pen gestures was introduced in

[CZ07] having error constraints in terms of production time. The relation between

figural and kinematic aspects of movement was studied in handwriting and drawing

[VT82]. It was found that, throughout the movement, the tangential velocity V

is proportional to the radius of curvature r of the trajectory: V = k · r. Gesture

analysis under the scope of motor control theory is equally performed by [GKP03]

that describe a few typical invariants for planar pointing and tracing gestures.

Measuring the amount of variability may act as an important feature for re-

vealing several aspects related to a particular gesture and may affect the decision of

including that specific gesture in the gestures set of a given application. Designers

of gestures dictionaries may benefit of an objective and quantitative measure of how

users will execute gestures and the importance they give to particular details in the

structure of each gesture - which may lead to more robust dictionary designs; gesture

recognizers may be tuned in advance for how much toleration to allow based on the

amount of variability in execution as computed from the examples set; researchers



5.1: Variation in Execution 115

working on human factors aspects related to gesture execution are given a model for

quantitative analysis and comparison of different executions.

5.1.1 A model for Variability in Execution

Our VE model builds on the average gesture for a given set of samples, as defined

in the previous chapter.

Let C(g) =
{
C1, C2, . . . Cn

}
be the training set for gesture g, composed of

n spline representations acquired from the one or multiple users. Let also C̃ the

average gesture computed in accordance with equations 4.29 and 4.30.

Having computed all the alignments αu from all the u = 1, n, u 6= t samples in

the set to the reference gesture gt, standard deviations for length and curvature may

be determined as well. The alignments to one point are visually illustrated in Figure

4.15. The deviations in length σs,i account for tendencies in local stretching while

deviations in curvature σk,i model the users’ tendency to bend their executions,

i = 1, |Ct|. Standard deviations are computed at each sample point
(
s̃i, k̃i

)
of the

average gesture C̃ by considering the arc-length and curvature values from all the

points of the gestures in the samples set that are aligned to
(
s̃i, k̃i

)
:

σs,i =


n∑

u=1,u6=t

∑
αu

i =(st
i→s

u
jr

)

(
sujr − s̃i

)2

n∑
u=1,u6=t

∑
αu

i =(st
i→s

u
jr

)
1


1
2

(5.1)

σk,i =


n∑

u=1,u6=t

∑
αu

i =(kt
i→k

u
jr

)

(
kujr − k̃i

)2

n∑
u=1,u6=t

∑
αu

i =(kt
i→k

u
jr

)
1


1
2

(5.2)

The pseudocode for computing the VE model of standard deviations for gesture

g from a given set of samples C(g) and the average gesture C̃ is given below.
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Compute-VE-Model(C, C̃)

1 � Initial starting values
2 for i ← 1 to |C̃|
3 do
4 σs[i]← 0
5 σk[i]← 0
6 ñ[i]← 0
7 � Align C̃ to the gestures Cu from the training set
8 for u ← 1 to length[C̃]
9 do

10 α← Align-Splines(C̃, |C̃|, C[u], |C[u]|)
11 for i ← 1 to length[α]
12 do
13 � α[i] represents an association between two indexes
14 � j and r from the aligned curves C̃ and C[u]
15 (j, r)← α[i]
16 σs[j]← (s[u][r]− s̃[j])2

17 σk[j]←
(
k[u][r]− k̃[j]

)2

18 ñ[j]← ñ[j] + 1
19 � Perform averaging and extract square root
20 for i ← 1 to |C̃|
21 do
22 σs[i]← Square-Root(σs[i]/ñ[i])
23 σk[i]← Square-Root(σk[i]/ñ[i])
24 return σs, σk

The algorithm returns the standard variations in arc-length σs = (σs,i) and

curvature σk = (σk,i) where i = 1, ñ and ñ is the number of sampled points on

the average gesture C̃. The complexity order is O(n · ñ · m) where m represents

the maximum number of segments for the splines Cu from the training set: m =

maxu=1,n|Cu|.

VE in the form of standard deviations may be illustrated more clearly in the

curvature-length (k, s) space where s is the normalized arc-length ranging from 0

to 1 while the curvature k takes values in the [−π, π] interval. Figure 5.2 visually

illustrates our VE model for the check gesture in the (k, s) space with standard
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deviations being represented as ellipses. The model was built from 10 executions

acquired from the same user, as they were presented in Figure 5.1.

Figure 5.2: VE model in the (k, s) space for the check gesture. Top: 10 executions
and average gesture over-imposed. Bottom: standard deviations in length σs and
curvature σk measure the users’ local tendency to stretch or bend their executions.

Local standard deviations in length σs,i and curvature σk,i may be summed

together into a single value which will give a global estimate of the VE that is

embedded in the set of execution samples. We introduce the Amount of Variation
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in Execution (AVE) that will be further used in our validation experiments as an

estimator of VE:

AV E =
1
ñ

ñ∑
i=1

(σs,i · σk,i) (5.3)

where ñ is the number of sampling points of the average gesture C̃ of the set for

which we are computing VE. As σs,i and σk,i are bounded in the [0..1] and [0..π]

intervals, AVE will take values in the range [0..π]. Due to our definition of AVE

as product of standard deviations, the actual domain range is shifted toward the

[0..10−1] interval as actual computed values showed. As a numerical example, AVE

is 0.0015 for the check gesture example illustrated in Figure 5.2.

5.2 Automatic Segmentation of Continuous Motion

The concept of Variability in Execution as well as the models of deviations in arc-

length and curvature permit addressing the problem of detecting gesture patterns in

continuous motion. In other words, a given motion trajectory may be automatically

segmented into meaningful components from a set of pre-defined gestures. We make

use of the VE model in order to enhance our gesture recognition algorithm and to

propose a solution to automatic segmentation.

Many existing gestures-based interaction techniques isolate movements by mak-

ing use of user-driven discrete events, e.g. using mouse clicks up/down, stylus

up/down or users are being required to maintain a button pressed while working

with the some tracking device. By taking this approach, it is the users that actually

classify their movements and let the system know where the actual gesture command

starts and where it ends. Recognition and interpretation is further applied on the

already user-segmented gesture trajectory by using shape similarity-based methods

that are well established in the pattern recognition community.

Ideal freehand gestural interaction would not require explicit start/stop events
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for delimitation of gesture commands: this is clearly irrelevant to the fluidity of

the interaction process. Dealing with on-the-fly gesture segmentation is, to our

knowledge, still identified as an open problem, e.g. see the conclusions section in

[CB05].

The challenge is related to the segmentation of the input trajectory into mean-

ingful command patterns: given a much wider input trajectory, how can we decide

under the constraints of real-time processing whether a gesture pattern is present

within. The aim is to achieve freehand unrestricted interaction hence the user cannot

be required to explicitly input start / stop commands by any means (mouse clicks,

holding buttons pressed on a tracking device, etc). The challenge is even more diffi-

cult if the relative scale of the pattern to be searched for with respect to the wider

input trajectory is not known in advance. Thorne et al. describe a method for seg-

menting strokes made with a stylus into smaller tokens [TBvdP04] in the context of

a very interesting application for animating a virtual character. Their technique is

based on corner detection and classification of the inter-corner segments as lines or

arc segments with various considerations on direction and orientation. Gestures are

defined as consecutive association of several tokens. We discuss a more general ap-

proach by making use of a spline-based representation for our gestures and working

with curvature information in the continuous space. For the purpose of automatic

multi-scale segmentation, we propose a very fast technique by computing the inte-

gral of absolute curvature and using it for fast discrimination with regards to the

start position or the scale a particular pattern may appear at any given point.

Let Γ(s), C(s) be two curves sampled in si, i = 1, n and sj , j = 1,m respectively

and we pose the problem of finding the occurrences of C(s) in Γ(s) at different

scales, see Figure 5.3. The obvious solution is to use the curve comparison method

presented above between C(s) and several parts of Γ(s). The problem that arises

in this case is related to the scale at which C(s) may be found in Γ(s). Choosing
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different scales of comparison and dividing Γ(s) into equal lengths according to

the current scale becomes computationally expensive as it gives a complexity of

O (m× n× |S|) where |S| represents the number of scales to search for.

Figure 5.3: Continuous gesture trajectory (left) and identified gesture templates:
alpha, star, triangle (right). No assumptions on when templates start or end or on
their relative scale with rapport to the entire motion trajectory.

The challenge is to reduce the complexity of sub curve searching by eliminating

issues related to the scale dependence, hence to perform a fast search that would

consider multiple scales.

In order to achieve this, we use the notion of integral absolute curvature. For a

given curve C(s) parameterized by arc-length s with curvature k(s), the integral of

absolute curvature is defined as:

K(s) =
∫ s

0
|k(s)| ds (5.4)

Examples of plotting the cumulative absolute curvature for two gesture types and

the correspondences to the curvature function are given in the Figure 5.4.
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Figure 5.4: Templates for the integral of absolute curvature for two gesture types:
rectangle (left) and triangle (right).

Figure 5.5: Integral of absolute curvature vs curvature for two types of gestures:
rectangle (left) and triangle (right) shaped-like. Top row: multiple instances of the
integral absolute curvature superimposed. Bottom row: curvature template and
standard deviations. Integral of absolute curvature and curvature are related by the
arc-length parameter.
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The integral absolute curvature is not a curve invariant due to the fact that

the curvature k(s) may take negative values as well. Thus, the integral absolute

curvature cannot be used by itself for curve matching like the curvature function.

However, it has an important propriety: it is monotonically ascending and we can

associate values of integral absolute curvature with values of arc-length s (a property

that is not met by the curvature function). This enables us to start computing the

integral of absolute curvature on the curve Γ(s) between two arc-lengths si ≤ sj (we

start at the beginning of Γ(s) with si = s0 = 0). The value of the integral absolute

curvature between arc-lengths si ≤ sj is given by:

K(si, sj) = K(sj)−K(si) =
∫ sj

si

|k(s)| ds (5.5)

Comparing K(si, sj) at the current processing step with a template for the in-

tegral absolute curvature for the class of curves C(s) belongs to will provide for an

estimation of the arc-length s which actually gives the information regarding the rel-

ative scale of C(s) in Γ(s). This means that we must also pre compute templates for

integral absolute curvatures along with our original curvature templates as discussed

in the previous section, using the same training algorithm in the context of super-

vised learning. As the processes are similar, they can be carried out simultaneously

during the training stage.

Due to the fact that the integral absolute curvature is not an invariant to be used

for curve matching, we use the estimated arc-length s as an entry for the template

curvature function, see Figure 5.4. If both curvatures on C(sj) and Γ(sj) match at

sj with respect to the standard error functions σ(s) and σ(k) then we may have a

partial match starting at si on Γ(s) up to sj . We thus may proceed at incrementing

sj until we find a perfect match for the entire length of C(s). The main idea is

to increment sj when a partial matching criterion is met and to advance with si

otherwise. The algorithm is given in pseudocode below.
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Detect-Gesture-Pattern(Γ, C)

1 si ← 1
2 sj ← si +1
3 totalK ← 0
4 while si < sj
5 do
6 � Update the total absolute curvature
7 totalK ← totalK + |kΓ [sj ]|
8 � Get the arc-length that corresponds to the total curvature totalK
9 � for the gesture pattern C

10 sC , indexC ← Get-ArcLength-From-Total-Curvature(C, totalK )
11 � Does C match up to the point sj ?
12 if |kΓ[sj ]− kC [indexC ]| ≤ α · σkC [indexC ]
13 then
14 if indexC = length[C ]
15 then
16 � A match was found
17 return si , sj

18 sj ← sj +1
19 else
20 � C cannot start at si

21 � hence update si and retry the matching process
22 totalK ← totalK − kΓ [si ]
23 si ← si +1
24 sj ← si +1
25 return nil

The algorithm traverses the curve Γ(s) twice (due to the fact that sj is reseted

back to si + 1 when a match cannot be found in between si and sj) hence we have

a complexity of O(n2) where n is the number of samples on the discrete curve Γ(s).

Note that the algorithm does not depend on m, the number of sample points of

the curve C(s) and it also has the ability of identifying C(s) at different scales.

The lowest scale at which C(s) may be matched in Γ(s) actually depends on the

sampling resolution n chosen for Γ(s). Retrieving the arc-length s from the integral

curvature for Γ(s) may be done in O(1) time by performing pre-computations on
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K(s) and this is exactly what the function Get-ArcLength-From-Total-Curvature

from the pseudocode implements.

5.3 Ergonomic Aspects of Gesture Execution

We further validate our VE model and verify two intuitive hypotheses on gesture

execution for multiple gesture types and multiple subjects:

Hypothesis 1. Articulation speed at which gestures are performed affects the

variability in execution. Intuitively, executions performed at low speed should de-

termine users to focus on the details of the gesture and on the accuracy of their

executions hence the amount of VE should be small. At the same time, rapid exe-

cutions will present more variation.

Hypothesis 2. Gesture complexity affects the variability in execution. Simple

and shorter gestures are likely to be performed with small variations while complex

or time demanding gestures will show greater VE values.

Test gesture database

In order to test our hypotheses we used a database composed of 16 distinct gestures

as presented in Figure 5.6. 10 subjects executed each gesture for 10 times at 3

different speeds (slow, medium and fast) giving in the end a total number of 16 x

10 x 10 x 3 = 4800 gesture samples. Gestures were acquired using a stylus pen

on a Pocket PC. The full details on the database and the acquisition process are

described in [WWL07].

Results and Discussion

We computed AVE values for the 10 subjects, 16 gestures and the 3 different speeds.

Figures 5.7, 5.8, 5.9 display the AVE amounts for the slow, medium and fast speeds.
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Figure 5.6: Set of 16 gesture types [WWL07]: triangle, x, rectangle, circle, check,
caret, question-mark, arrow, left square bracket, right square bracket, v, delete, left
curly brace, right curly brace, star, pigtail.

AVEs are presented twice as numerical values as well as using visual cues as rectan-

gles for which the color varies from white to black. A darker colour means a greater

AVE value.

Figure 5.10 displays a summary of 48 mean AVE values together with standard

deviations for each gesture type and each execution speed. The mean values are

computed by averaging AVEs from all the 10 subjects for a given gesture type

(10 subjects x 10 executions = 100 samples were considered for each gesture type

at a given speed). Figure 5.11 summarizes the data from Figure 5.10 even more by

computing mean AVE values factor of speed execution only (1600 samples considered

for each speed).

Several observations may be easily drawn from these charts. First of all, Hy-

pothesis 1 verifies which may be easily observed from the 2nd chart: the mean AVEs

are 0.0041 for slow, 0.0043 for medium and 0.0057 for fast speed which translates in

a variation increase of 33% from medium to fast and 39% from slow to fast. There

is no significant difference between executions at slow and medium speeds (5% only)

however the differences from medium to fast and slow to fast are considerably im-

portant.
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Figure 5.7: Mean AVE values factor of articulation speed of execution.
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Figure 5.8: Mean AVE values factor of articulation speed of execution.
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Figure 5.9: Mean AVE values factor of articulation speed of execution.
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Figure 5.10: Mean AVE values and standard deviations for each of the 16 gestures
types (gestures are listed in the same order as in Figure 5.6).

Figure 5.11: Mean AVE values factor of articulation speed of execution.
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Hypothesis 2 verifies as well as the 1st chart reveals. Gesture no. 8, the arrow,

has the biggest AVE value followed by gestures no. 13 and 14, left curly brace and

right curly brace. The arrow gesture is the only one from the set that requires a 180

degree shift in execution. The observations are in agreement with qualitative results

from [WWL07] where subjects, being questioned on the gestures they executed,

commented that they disliked the curly braces. Also, [WWL07] report that the left

curly brace was the most difficult gesture to recognize using 2 out of 3 different

gesture recognition algorithms. On the other hand, simple and familiar gestures

such as triangle, rectangle, circle or caret present the smallest variation amounts

irrespectively of the execution speed. As a numerical example, the difference between

arrow and triangle overpasses 1000%: 0.0179 vs 0.0015 (medium speed).

Another interesting observation relates to gestures that are symmetric such as

left square bracket and right square bracket, caret and v, left curly brace and right

curly brace for which the AVEs are close at particular speeds. For example, the

difference between left square bracket and right square bracket are of 4% at slow and

0% at fast speed but 26% at medium speed.
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Conclusions

The thesis deals with the gesture recognition problem by addressing specific ques-

tions while having the main focus centered on providing a flexible model for gestures

as well as for the amount of variation present in gesture execution. Variability in exe-

cution (VE) has been estimated for single or multiple users and the model of variation

was used in order to address the hard problem of continuous motion segmentation

and performing ergonomic analysis on gesture dictionaries. The presented models,

techniques and results contribute to the concerned research communities by dealing

with video acquisition, similarity between gesture patterns, measuring variability in

execution, automatic segmenting continuous motions or ergonomic analysis.

We start our conclusions with a few personal observations that may be drawn

from the current existing research and state-of-the-art in gesture-based interaction

for which the references where given in the first chapter. The contributions presented

in this thesis are then listed and commented distinctly in a separate section. The

chapter ends with a dedicated section that presents interesting directions of research

as opened by the results of this thesis.

Looking at the last several years advances in technological development, we

can say that the technology allowing for gesture acquisition is almost there. Many

trackers are commercially available and provide high resolution data at high reading

frequencies: flock of birds, gloves, finger rings, etc, in general worn equipment.

Their only drawback relates to the fact that users have to wear them which has in
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the end a negative input on the overall interaction process. Acquiring gestures by

means of video cameras comes to alleviate this problem giving the users the feel

of interacting naturally (with their bear hands, arms, face or entire body) without

being restricted to the use of additional devices. Although computation demands are

high for computer vision algorithms, reliable hand tracking results [KT05], fast and

innovative implementations of face detectors [VJ01] or migration to unconventional

processors [FMA05] have been reported. In addition to this, the last years showed

a grow interest in multi-touch processing [Wil04, Han05] and commercial systems

such as the Microsoft Surface are available. It can be noted the general tendency of

moving gesture interaction toward tabletops scenarios. Bottom line, we can affirm

that many acquisition technologies are available today for capturing gestures inside

different types of environments although enhancements are still expected from the

vision research community.

A second observation is that there is no unified theoretic model of what a gesture

represents from the HCI point of view. Different works address specific problems on

gesture interaction such as acquisition, recognition or ergonomic aspects and they

use simplistic models or they introduce their own that will suit the purpose. As far

as we know, there is no thorough mathematical definition of gesture for the purpose

of issuing commands in HCI systems nor there are theoretical grounds for defining

gesture vocabularies or dictionaries. A sound theoretical model for gestures and

gesture dictionaries as the one we start-up in this thesis would prove beneficial for

the gesture interaction community.

Many motion recognition algorithms are available reporting good accuracy re-

sults. Motion trajectory recognition is a hard problem due to the variability that

comes with each execution: users will perform the same gesture differently with each

execution. There is once a level of variability for the same user executing gestures

and there is a much greater variability when it comes to multi-user gesture recog-
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nition. As to our knowledge, there is no objective measure that would take into

account the amount of variability that exists within the executions of a given ges-

ture set although this will bring an interesting insight into the usability of a gesture

vocabulary for a given application.

Another particular hard problem relates to the automatic segmentation of mo-

tion trajectories for identifying meaningful gesture patterns. This problem is usually

looked over by adding extra constraints for the users in order to segment themselves

the gestures they execute: for example holding a given hand posture in order to

signal the start and end timestamps of the gesture execution. Addressing automatic

segmentation is difficult and there is no robust solution available that would achieve

this in terms of translation, rotation or scale invariance of the gesture patterns with

respect to the longer trajectory.

Thesis Contributions

We presented in this thesis the following contributions, each discussed in detail by

the various chapters:

1. Models for both gestures and gesture dictionaries were introduced together

with thorough mathematical definitions and propositions. Examples and dis-

cussions were given for each gesture and dictionary type. We are interested

in the problem of modelling the human gesture as command for interaction

purposes and we introduced concepts for several gesture types according to

the inner structure of posture and motion information they embed.

Our formalizations permit easy identification of what gesture command types

may be used for a given application and what is their mathematical model to be

particularized according to the given interaction scenario. To our knowledge,

such formalizations of gestures and dictionaries have not yet been proposed
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in this complete form and may open interesting directions of development

especially on top of our startup of gesture dictionary theory.

2. A model for gesture motions was proposed that makes use of elastic enhanced

spline curves. Splines bring a few advantages for gesture motion processing

such as: reduction of data dimensionality; more accurate processing by using

smoother shapes which attenuate small execution mistakes or small acquisition

errors; splines provide a mathematical representation that allows direct appli-

cation of results from differential geometry, e.g. computing local parameters

such as tangents provides more accurate results; affine invariance of represen-

tation; sampling at any resolution, fine or coarse.

The spline model was further used in order to perform curves alignment as

well as gesture matching within the Nearest Neighbor approach.

3. A training algorithm was proposed in the context of supervised learning for

automatically computing gesture templates from a set of user acquired data

samples. The algorithm makes use of the average gesture representation for a

given set of samples.

4. A model for the variability encountered in gesture execution was introduced

on the top of the average gesture template by considering local variations in

length and curvature in the form of standard deviations. The model may

serve as a basis or provide valuable criteria for researchers involved in gesture

recognition and gesture-based interfaces by letting them know in advance how

much variability to expect at the user execution level and thus tune the ges-

ture recognizers appropriately. The method is also suited for HCI researchers

addressing questions on human factors in gesture execution.

5. We proposed an extension of the elastic gesture matching algorithm enforced
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with our VE model for the automatic segmentation of motion trajectories.

This is a known hard problem due to the high complexity needed for detecting

patterns of any size, at any rotation and at any point in a given larger tra-

jectory. We presented an extension of our elastic matching algorithm for the

detection of such gesture patterns in continuous motions. The algorithm is

fast as per our discussions on its complexity. Also, our method is invariant to

rotation, translation and, very important, to the size of the gesture patterns.

6. Verification of several hypothesis on ergonomic gesture execution was achieved

using our proposed VE model. We showed quantitatively how variation in

execution varies in accordance with the articulation speed of execution as well

as together with the complexity of gestures. We performed our validation

by connecting to the newest existing research and making use of a gesture

database very recently made available for the HCI community at ACM UIST

in October 2007.
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as a research of exellence Eiffel Egide scolarship by the French Ministry for Foreign

Affairs for 10 months (not accepted due to superposition of multiple scolarships).

Future directions of research

Several future directions of research are interesting to be followed, as they are opened

by the various ideas introduced in this thesis:

1. It would be interesting to continue on and advance the theoretical develop-

ments of the gesture dictionaries that we introduced in chapter 3. Areas of

future work may include: providing a general measure for the appropriateness

of the dictionary for a given application; defining and implementing operations

for adding and removing gestures and how this would globally affect the dic-

tionary appropriateness measure; could one dictionary be reused for multiple

applications and at which costs, etc.

2. Our pattern matcher for detecting gesture similarities presents several weak-

nesses as it is not invariant with respect to the starting point or the direction

of execution. For example, drawing a rectangle one direction and the other

or choosing different starting points will lead to different curvature functions

(that are either of opposite sign or represent translations on the arc-length

axis of the trained gesture pattern) hence the recognition algorithm will fail

at correctly classifying them. Future work could address recognition of execu-

tions that are invariant with respect to the starting point or the direction of

execution with the direct benefit of more freedom and less constraints for the

users. The same point applies for our proposed extension for the automatic

segmentation of continuous motion into gesture patterns.
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3. Work can be continued on the analysis of human gestures by using the amount

of variation in execution technique we introduced in chapter 5. We showed how

variation is influenced by the execution speed or the complexity of gestures

but other directions may be interesting investigating such as: is variation

in execution influence by fatigue, experience or advanced training? can a

variation measure be associated to a given gesture dictionary and what is it

exactly over the entire range of users working with a given application? The

model may serve as a basis or provide valuable criteria for researchers involved

in gesture recognition and gesture-based interfaces by letting them know in

advance how much variability to expect at the user execution level and thus

tune the gesture recognizers appropriately. The method is also suited for HCI

researchers addressing questions on human factors in gesture execution.
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Appendix A

Computing the Catmull-Rom
spline coefficients

The Catmull-Rom spline is completely defined by specifying its control points pi

and the associated tangents ti. Each segment of the spline between two consecutive

control points, pi and pi+1 is a cubic polynomial of the form:

λ(u) =
3∑

k=0

cku
k (A.1)

where u is a local parameter that varies between [0, 1]. The coefficients ck, k = 0, 3

may be computed for each segment using end continuity conditions:
pi = λ(0) = c0

pi+1 = λ(1) = c0 + c1 + c2 + c3

ti = λ′(0) = c1

ti+1 = λ′(1) = c1 + 2c2 + 3c3

(A.2)

Consecutively, the system becomes:
c0 = pi
c0 + c1 + c2 + c3 = pi+1

c1 = ri · (pi − pi−1) + (1− ri) · (pi+1 − pi)
c1 + 2c2 + 3c3 = ri+1 · (pi+1 − pi) + (1− ri+1) · (pi+2 − pi+1)

(A.3)
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
c0 = pi
c1 = ri · (pi − pi−1) + (1− ri) · (pi+1 − pi)
c2 = (2ri − ri+1 + 1) · (pi+1 − pi) + ri · (pi − pi−1)− (1− ri+1) · (pi+2 − pi+1)
c3 = (ri+1 − ri − 1) · (pi+1 − pi) + (1− ri+1) · (pi+2 − pi+1)

(A.4)

and further,
c0 = pi
c1 = −ri · pi−1 + (2ri − 1) · pi + (1− ri) · pi+1

c2 = 2ri · pi−1 + (−4ri + ri+1 − 1) · pi + (2ri − 2ri+1 + 2) · pi+1 + (ri+1 − 1) · pi+2

c3 = −ri · pi−1 + (2ri − ri+1 + 1) · pi + (2ri+1 − ri − 2) · pi+1 + (1− ri+1) · pi+2

(A.5)

The system may be put under a concise matrix form:

C = G · P (A.6)

where C is the coefficients vector C = [c0 c1 c2 c3]T , P is the control points vector

P = [pi−1 pi pi+1 pi+2]T and G is the geometry matrix as given by:

G =


0 1 0 0
−ri 2ri − 1 1− ri 0
2ri −4ri + ri+1 − 1 2ri − 2ri+1 + 2 ri+1 − 1
−ri 2ri − ri+1 + 1 2ri+1 − ri − 2 1− ri+1

 (A.7)

The determinant of the geometry matix G may be succesively reduced to:

|G| = −

∣∣∣∣∣∣∣
−ri 1− ri 0
2ri 2ri − 2ri+1 + 2 ri+1 − 1
−ri 2ri+1 − ri − 2 1− ri+1

∣∣∣∣∣∣∣ (A.8)

and further to

|G| = ri · (1− ri+1) ·

∣∣∣∣∣∣∣
1 1− ri 0
−2 2ri − 2ri+1 + 2 −1
1 2ri+1 − ri − 2 1

∣∣∣∣∣∣∣ (A.9)

and after evalation:

|G| = ri · (1− ri+1) (A.10)

which means that the above system has alwas an unique solution C if ri 6= 0 and

ri+1 6= 1.
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