
Numéro d’ordre : XXXXXXXXX

Université des Sciences et Technologies de Lille

Thèse

présentée pour obtenir le titre de
DOCTEUR spécialité Informatique

par

HUAFENG YU

UnModèle Réactif Basé sur MARTE
Dédié au Calcul Intensif à Parallélisme

de Données :
Transformation vers le Modèle Synchrone

Thèse soutenue le 27 novembre 2008,

devant la commission d’examen formée de :

François Terrier Professeur INSTN CEA Président

Françoise Simonot-Lion . . Professeur INPL, ÉNSMN . . Rapporteur

Charles André Professeur UNSA Rapporteur
Abdoulaye Gamatié CR CNRS Examinateur

Jean-Luc Dekeyser Professeur USTL Directeur

Éric Rutten CR INRIA Co-directeur

UNIVERSITÉ DES SCIENCES ET TECHNOLOGIES DE LILLE

U.S.T.L., Cité Scientifique, 59655, Villeneuve d’Ascq, France

2

Number : XXXXXXX

A MARTE-Based Reactive Model for Data-Parallel
Intensive Processing: Transformation Toward the

Synchronous Model
By

HUAFENG YU

A dissertation submitted in partial fulfillment of the
requirements for the degree of
DOCTOR OF PHILOSOPHY

in
Computer Sciences

in the
École Doctorale Sciences pour l’Ingénieur

in the
UNIVERSITÉ DES SCIENCES ET TECHNOLOGIES DE

LILLE

Committee in charge:
François Terrier Professor at INSTN CEA President

Françoise Simonot-Lion . . Professor at INPL, ÉNSMN . Rapporteur
Charles André Professor at UNSA Rapporteur

Abdoulaye Gamatié CNRS Research scientist Examinateur

Jean-Luc Dekeyser Professor at USTL Directeur

Éric Rutten INRIA Research scientist . . . Co-directeur

UNIVERSITÉ DES SCIENCES ET TECHNOLOGIES DE LILLE

U.S.T.L., Cité Scientifique, 59655, Villeneuve d’Ascq Cédex, France

2

Acknowledgements

First, I am grateful to the members of my dissertation committee. I wish to thank Prof.
François Terrier for his acceptance to be the president of committee, Prof. Françoise Simonot-
Lion and Prof. Charle André for their technical understanding, insight, and love of discovery
and investigation for this thesis.

This thesis would not have been possible without the guidance of my thesis advisors,
Prof. Jean-Luc Dekeyser, Dr. Éric Rutten and Dr. Abdoulaye Gamatié. Their continuous
supervision, encouragement, and of course constructive criticism have been great help and
support in my research work. Moreover, I would not forget the humour of Dr. Rutten and
luminous discussions in the office and metro with Dr. Gamatié.

I also need to thank the members of INRIA DaRT team and POP ART team, Adolf, Alain,
Anne, Antoine, Arnaud, Ashish, Calin, César, Éric P., Gwenaël, Imran, Julien S., Julien T.,
Karine, Lossan, Luc, Myriam, Ouassila, Pierre, Rabie, Sébastien, Vincent, Vlad, for sharing
the good ambiance during my stay at INRIA. In addition, I appreciate the review of this the-
sis by Imran, César and Lingbo. I also want to express my additional gratitude to Éric P. for
sharing accommodation with me, Imran for sharing experiences of outgoings and photogra-
phy.

Special thanks go to my family, I could not accomplish my study in France without your
support and encouragement for these five years.

Finally, thanks for the support and sponsorship given by the INRIA Lille Nord Europe,
region of Nord Pas De Calais, USTL, and LIFL.

Acknowledgements

II

Contents

Introduction 1

I State of the art 7

1 System on Chip 9

1.1 Introduction . 9
1.2 Application domains . 11
1.3 SoC design . 11

1.3.1 SoC codesign . 11
1.3.2 Productivity issue . 13
1.3.3 Validation in SoC . 14

1.4 Conclusions . 14

2 Data-intensive processing and the Array-OL formalism 15

2.1 Intensive digital signal processing . 15
2.2 A high-level data dependency model: Array-OL 17

2.2.1 Basic characteristics . 18
2.2.2 Task parallelism . 19
2.2.3 Data parallelism . 19
2.2.4 Compilation and optimization of the Array-OL language 22
2.2.5 Inter-repetition dependency . 23

2.3 The need for design environment and methodology 23
2.4 Conclusions . 24

3 Model-Driven Engineering and Gaspard2 25

3.1 Model-Driven Engineering . 26
3.1.1 Model and modeling . 26
3.1.2 Metamodel and metamodeling . 28
3.1.3 Model transformations . 30
3.1.4 MDE in practice . 33
3.1.5 Conclusions . 38

3.2 An MDE-based environment for SoC co-design: Gaspard2 39
3.2.1 High-level co-modeling for SoC design 40
3.2.2 Gaspard2 and MDE . 43
3.2.3 Modeling of high-level control in Gaspard2 44

3.3 Conclusions . 45

CONTENTS

4 Control and validation in Gaspard2 and reactive systems 47

4.1 Control and validation requirements in Gaspard2 47
4.1.1 Gaspard2 control requirements . 48
4.1.2 Validation issue of Gaspard2 . 49
4.1.3 Conclusions . 49

4.2 Reactive systems and the synchronous approach 50
4.2.1 Introduction . 50
4.2.2 The synchronous approach . 51
4.2.3 Synchronous languages . 52
4.2.4 Using synchronous languages for Gaspard2 control modeling and val-

idation . 65
4.3 Conclusions . 65

II Synchronous modeling and reactive control of DIP applications 69

5 Synchronous modeling of DIP applications 71

5.1 General modeling approach . 72
5.1.1 Step 1: space refactoring . 73
5.1.2 Step 2: space-time analysis and mapping 73
5.1.3 Step 3: synchronous modeling . 76
5.1.4 Step 4: code generation . 76

5.2 General synchronous modeling propositions 76
5.2.1 Array data structure . 76
5.2.2 Parallelism modeling . 77
5.2.3 Hierarchy and composition . 78

5.3 Gaspard2 and synchronous representations . 79
5.3.1 A Gaspard2 abstract syntax . 79
5.3.2 Synchronous equations abstract syntax 80

5.4 The translation between the two representations 81
5.4.1 Structural translation . 81
5.4.2 Translation of behavioral aspects . 81
5.4.3 Correctness of the translation . 83
5.4.4 Translation with serialization and partition semantics 85

5.5 Conclusions . 88

6 Reactive control extension of Gaspard2 89

6.1 Introduction . 90
6.1.1 Control modeling in DIP applications 90
6.1.2 Basic ideas of Gaspard2 control . 92
6.1.3 Previous control proposition in Gaspard2 96

6.2 An extension proposal for control . 96
6.2.1 Mode switch task and modes . 96
6.2.2 State graphs and state graph tasks . 97
6.2.3 Task compositions of SGT and MST in Gaspard2 101

6.3 Reactive control extension in Gaspard2 . 105
6.3.1 Gaspard2 control in a dataflow context 105

IV

CONTENTS

6.3.2 Reactive automata based control mechanism in Gaspard2 106
6.4 Typical examples . 107

6.4.1 A typical example of a counter . 107
6.4.2 A control example for cell phone video effect 109

6.5 Conclusions . 110

III Integration into an MDE framework and case study 113

7 Transformation from Gaspard2 to synchronous languages 115

7.1 The Gaspard metamodel and profile . 116
7.2 Synchronous equational metamodel . 117

7.2.1 Common aspects . 117
7.2.2 From abstract syntax to synchronous metamodel 118
7.2.3 Signal . 118
7.2.4 Equation . 119
7.2.5 Node . 120
7.2.6 Module . 121
7.2.7 IP deployment . 121

7.3 The transformation rules . 122
7.3.1 From Gaspard2 models to synchronous models 122
7.3.2 Transformation tools . 128
7.3.3 Template-based code generation and code generators 128
7.3.4 The synchronous transformation chain 128

7.4 Conclusions . 130

8 Transformation of the control extension of Gaspard2 131

8.1 MARTE-compatible control for Gaspard2 . 132
8.1.1 Mixed structure-behavioral modeling 132
8.1.2 System behavior modeling with the help of UML 132
8.1.3 Using UML state machines . 133
8.1.4 Using UML Collaborations in mode task component 138
8.1.5 A complete Gaspard2 control structure 139

8.2 Control extension to Gaspard2 metamodel . 139
8.2.1 The metamodel of state graphs . 140
8.2.2 The metamodel of events . 140

8.3 Extended synchronous metamodel . 140
8.3.1 StateMachine . 142
8.3.2 BooleanExpression . 142

8.4 Transformations . 142
8.4.1 From a UML model to a Gaspard2 model 144
8.4.2 From a Gaspard2 model to a synchronous mixed-style model 146
8.4.3 From a mixed-style model to an equational model 147
8.4.4 From a mixed-style model to an automaton model 151

8.5 Conclusions . 154

V

CONTENTS

9 A case study on multimedia cell phone 155

9.1 Introduction . 155
9.2 Modeling of the example in Gaspard2 . 156

9.2.1 A global view of the example . 156
9.2.2 A macro structure for the video effect processing 159
9.2.3 Repetitive modeling of video effect processing 159
9.2.4 A complete modeling of the phone example. 161
9.2.5 Requirements of formal application verification. 165

9.3 Application validation and analysis . 168
9.3.1 Functional validation and analysis . 168
9.3.2 Validation considering non-functional aspects 172

9.4 Discrete controller synthesis . 173
9.5 Related works . 175
9.6 Conclusions . 175

Conclusions 177

Bibliography 181

Appendix A The Gaspard2 metamodel 193

Appendix B Code examples 199

Nomenclature 213

Résumé/Abstract 216

VI

Introduction

Context: data-parallel intensive processing on SoC

Since its appearance, computer has a great influence on people. The evolution of electronics,
particularly integrated circuits (ICs) plays a significant role in this progress. More powerful,
reliable and complex, but less energy-consumptive, expensive and smaller summarize the
trend of this evolution. Compared to personal computer systems, which have been rapidly
developed in the past thirty years or so, embedded systems are taking over. Embedded
systems are generally specific-purpose computer system, which are assembled as a part of
electronic, mechanical or physical devices. They have also computing units, memory, I/O
devices, etc. In general, embedded systems are constrained with size, power consumption,
cost, etc., as a consequence of their built-in nature and mass production. They are used ev-
erywhere from daily life to industry, for instance, telecommunication, transport, aeronautics,
automobile and power plant.

Behind these superficial development of computer/embedded systems, the develop-
ment of IC technology, for instance, the photolithography (45 nm process now) enlarges
the circuit scale very quickly (more than 20 million gates at the moment). System-On-a-Chip
or System On Chip (SoC or SOC) is proposed as a new methodology for embedded system
design, which emerged around 2000. In SoC, the computing units, memory, I/O devices,
etc., are all integrated into a single chip. Thanks to the great-scale integration technology,
a single chip can accomplish complex tasks, which is even equivalent to some computer
systems. Moreover, multiple processors can be integrated into one chip (Multi-processor
System on Chip, MPSoC), in which communications can be achieved through Networks on
Chip (NoC).

Following the fast development of electronics, particularly the increment in computing
power, embedded systems become less specific than ever. Reconfigurable computing in em-
bedded system has emerged too. Field-Programmable Gate Arrays (FPGAs) contains pro-
grammable logic components and interconnects. These programmable parts make FPGAs
more flexible and fast to be adapted to new applications and new domains. General-purpose
computing units, such as processors, can be integrated into a chip, which offer even more
flexibility. Various flexible and dynamic applications can be implemented with them. More-
over, the emergence of middle-ware or real-time operating systems on embedded systems
make system adaptivity possible according to the constraints of environment, hardware,
platform, etc. For instance, adaptive systems help to manage the balance between perfor-
mance and energy.

In thewake of fast development in hardware, new SoC designmethodologies/languages
have emerged in succession. Computer-aided design tools lead to more interests in Hard-

Introduction

ware/Software (HW/SW) codesign, which signifies the design of software and hardware
are carried out concurrently to accelerate system design. This methodology benefits from
the advantages offered by both hardware and software, i.e., hardware provides high perfor-
mance, whereas software enables flexibility. In spite of the dominant position of hardware
design of ICs in the past decades, the current trend shows that software design is becoming
increasingly important, because software makes the products distinct from others, which is
critical in the SoCmarket. Meanwhile, hardware design is prone to being similar to software
design, for instance, programming languages (Hardware Description Language–HDL–, Sys-
temC) are used for hardware design. Moreover, high-level system design is possibly carried
out using a same programming language or modeling language.

Data processing becomesmore important in contrast to classical embedded controllers in
SoC applications. Signal processing, particularly multimedia processing, is one of the most
important applications of data processing. Nowadays multimedia mobile devices, such as
Personal Digital Assistant (PDA), multimedia cell phones and mobile multimedia players,
are ubiquitous. These devices provide many multimedia functionalities, such as mp3 play-
back, camera, video and mobile TV. These functionalities greatly contribute to making profit
in the market. These features, together with their small size and long power supply make
them irreplaceable in the market.

The previously mentioned multimedia data processing is considered as data-parallel in-
tensive processing (DIP), which also includes high-definition TV and radar/sonar signal pro-
cessing. Parallel processing is a key feature of these applications. Unlike general parallel ap-
plications, which focus on code parallelization and their communications, DIP applications
concentrate on regular data partition, distribution and their access. The data manipulated
in these applications are generally in multidimensional data structure, such as multidimen-
sional arrays.

Issues: complexity of design

According to the observation of Gordon E. Moore, the co-founder of Intel, the number of
transistors in an IC is doubled every two years. As the computing power is increased, more
functionalities are expected to be integrated into the system. As a result, more complex soft-
ware and hardware applications are integrated. This leads to the system complexity issue. For
instance, a multimedia cellular phone integrates different modules of telecommunication,
music/video playback, mobile TV and Global Positioning System (GPS). These different
modules require different expertise, development methodology and tools of their domains.
Each of these modules may have complex implementation to meet the requirements of end
users, such as reliability and user-friendliness. System complexity is currently a big con-
straint of SoC developments.

As a result of the overall complexity of SoCs, system design (particularly software de-
sign) is not expected to increase at the same pace of hardware, because of limited develop-
ment budget, staff, tools, etc. In addition, product life cycles shrink while design time seems
to increase. The system complexity makes the design more difficult, not only in analysis,
but also in development, integration, validation, etc. This evolution, which is out of balance
between production and design, has become an issue after 2000, and it finally leads to the
productivity gap.

In general, SoC designs are expected to be reliable, particularly in safety-critical embed-

2

Introduction

ded systems, such as aeronautics and power plant. SoC reliability can be ensured by safe
design approaches or the validation step in the design flow. Averagely, two third of the
time in the development cycle is dedicated to validation, which makes it a key factor in the
design. Validation can be achieved by formal verification, simulation, test, etc. However,
system size and complexity has a significant influence on validation. For instance, formal
verification could not be carried out on a complete SoC because of the state space explosion
problem. Hence, only certain critical parts of an SoC are verified by this technology, such
as communication protocols and some parts of digital circuits. Simulation and test can be
carried out on the whole system, but they cannot guarantee the correctness of system. Their
efficiency generally relies on the level of abstraction, at which they are carried out, e.g., high-
level simulation takes less time to accomplish, but it is less precise than the lower one.

Motivations: safe design via formal languages

Much research has been carried out to search solutions in relation to the previous mentioned
issues. Raising levels of abstraction has been widely studied to reduce the system design
complexity, e.g., the usage of high-level hardware description languages for circuit design.
System-level design with software and hardware partition also reduces the complexity, thus
accelerates the design process. Design and validation at a high level make development
more efficient and fast because of a more concise design description. Software and hardware
reuse helps to avoid "reinvent the wheels", hence enables to leverage the cost of design.
These reusable software or hardware blocks, called Intellectual Properties (IPs), may come
from third parties or in-house designs.

In recent years, using the same programming/modeling languages for both hardware
and software design (e.g., SystemC) attracts much research interests. High-level model-
ing based system design has also been developed rapidly, e.g. Model-Driven Engineering
(MDE). MDE enables high-level and system-level modeling with the possibilities of integra-
tion of heterogeneous components in the system. Model transformations can be carried out
to generate executable models (or executable code) from high-level models. Transformations
can be divided into several modular sub-transformations, each of which addresses some spe-
cific concerns. MDE is also supported by large number of standards and tools. They help
the spread of MDE in the SoC design.

Gaspard2 [65] is an MDE-based methodology and development environment dedicated
to high-level system design of DIP applications on chip. Benefiting from the advantages
offered by the MDE approach, particularly fast design and code generation, it currently pro-
vides high-level system modeling and model transformations towards different languages,
including SystemC, VHDL, OpenMP Fortran/C and synchronous languages. These lan-
guages are used for different purpose, e.g., simulation, synthesis, execution and validation.

Safe design is one of the main concerns of Gaspard2. Design considering desired prop-
erties and formal validation contribute to ensure design correctness. The first one helps to
reduce the cost of validation in the design. High-level specification and its transition to
low-level description, which are correct according to safe properties, enable to avoid the val-
idation, fault detection and correction iterations in the design. As safe properties are still
limited with regard to design correctness, formal validation is also encouraging.

In the embedded system design, formal models of computations (MoCs) help to describe
unambiguous behavior of system. For instance, synchronous languages for reactive systems.

3

Introduction

These MoCs help to build systems with rigorous semantics, on which system behavior can
be reasoned about so that the correctness of system can be ensured. Using these MoCs in
the design helps to verify the design correctness. Moreover, formal validation can also be
carried out at this level with the help of MoCs.

Integration of high-level safe control in DIP applications is another objective in Gaspard2.
This control contributes to endow Gaspard2 with dynamic behavior. This requirement of
safe control integration is due to the rapid development in software and hardware, where
applications are expected to be increasingly flexible and adaptive. In order to answer the safe
design requirements, this control mechanism is intended to exhibit unambiguous behavior
and clear semantics, so that the control can be ensured to be safe. Modeling this control with
MoCs is a promising approach, which can meet the previous requirements. Moreover, vali-
dation tools are also expected to be used to verify the correctness of the introduced control.

Synchronous languages, considered as a MoC for embedded systems, enable rigorous
system design. They have been successfully applied in several critical domains, such as
avionics, automotive and nuclear power plants. Moreover, great number of tools are pro-
vided for these languages for the purpose of analysis and validation, which is considered as
another advantage of using these languages.

Based on these observations, the work presented in this dissertation is involved in using
synchronous languages as a MoC for the safe design of DIP applications, which provide,
on one hand, safe operators proved by the MoC to ensure expected properties, on the other
hand, formal validation to check the correctness of Gaspard2 applications.

Contributions: synchronous modeling, control extension and trans-

formations in Gaspard2

The contributions of the work presented in this dissertation is within the context of SoC
productivity issue. High-level validation and safe control extension, which is based on the
study of synchronous languages, are two main objectives.

The synchronous modeling bridges the gap between DIP applications specified in
Gaspard2 and synchronous data-flow languages. This modeling is based on the core formal-
ism of data and task parallelism of Gaspard2. It is intended to capture the high-level prop-
erties of Gaspard2, such as parallelism and data dependency. The resulting model, which is
based on common aspects of synchronous languages, enables the code generation for Lustre,
Signal, Lucid synchrone, etc. High-level validation is then carried out with the code in order
to check the correctness of the corresponding Gaspard2 specifications.

Gaspard2 control has also been extended and improved to have formal semantics and
complex composition operators. This extension and improvement are based on the reactive
control. Reactive control exhibits unambiguous semantics and verifiability, which help to
check the correctness of the control. Moreover, some properties inbuilt in the reactive con-
trol help to reduce fault occurrences. This control extension mainly concerns state graphs
and their semantics and compositions. As this control is introduced in Gaspard2 without
consideration of any execution model, it remains generic at a high level of abstraction. Con-
sequently, it can be translated into or projected onto different execution models, e.g., the
synchronous model, which is presented here.

Implementations of modeling and transformation have been carried out in the frame-
work of Model-Driven Engineering (MDE). DIP applications are first specified with UML

4

Introduction

models in graphical form. With the help of the intermediate synchronous model, code in
Lustre and Signal can then be generated automatically from Gaspard2 models. Transforma-
tion rules are also given for the control extension, whose implementation is a perspective.
The generated code can be checked for the correctness of design. A case study of the mul-
timedia processing of cellular phones is finally illustrated, with emphasis on the high-level
modeling through Gaspard2 and the formal validation and controller synthesis of the appli-
cation through the tools associated with synchronous languages.

Outline

This dissertation has three Parts. Part I presents the state of the art. It has four chapters.
Chapter 1 and Chapter 2 discuss SoC and DIP applications, which are the context of this dis-
sertation. Chapter 3 concerns MDE and the Gaspard2 development environment dedicated
to DIP applications. Chapter 4 is related to control concerns, and concentrates on reactive
control in synchronous languages.

Part II exhibits the contributions of modeling, which has two chapters. Chapter 5
presents the synchronous modeling of DIP applications, and Chapter 6 focuses on the re-
active control integrated in Gaspard2.

Part III contains two chapters about implementations and one chapter about case
study. Model transformations in the framework of MDE are presented in Chapter 7, while
Gaspard2 control transformation is discussed in Chapter 8. Chapter 9 presents a case study,
which concerns the multimedia functionality of a modern cellular phone. This case study
illustrates the implementation of the proposed reactive control of Gaspard2, and formal val-
idation carried out on this control.

5

Introduction

6

Part I

State of the art

Chapter 1

System on Chip

1.1 Introduction . 9

1.2 Application domains . 11

1.3 SoC design . 11

1.3.1 SoC codesign . 11

1.3.2 Productivity issue . 13

1.3.3 Validation in SoC . 14

1.4 Conclusions . 14

1.1 Introduction

Nowadays, SoC is becoming one of the principle solutions for embedded systems. As the
name implies, all the needed electrical components in the system are directly integrated into
one single chip. The components to be integrated can be any of, but not restricted to, the
following components:

• processors (microprocessors, Digital Signal Processors (DSPs), etc.);

• memory blocks (RAM, ROM, flash, etc.);

• inter-component connections (bus, crossbar, etc.);

• external interfaces (USB, FireWire, Ethernet, etc.);

• analog/digital converters;

• timing sources (oscillators, phase-locked loops, etc.).

Compared to general purpose computer systems, SoCs are dedicated to applications that
need to be deployed in other systems. As the whole system is integrated into one single chip,
its size is restricted by the chip. Moreover, as the integration level increases, the chip size is
becoming smaller, e.g., TSMC started to produce 32 nanometer node 0.183 square microm-
eter six-transistor SRAM cell from 2005. The small size is beneficial to the development of

CHAPTER 1. SYSTEMON CHIP

Figure 1.1: An example of SoC from Wikipedia: a microcontroller-based SoC.

mobile electronic devices, such as PDAs and smart phones, which persist with miniaturiza-
tion. Hence, small size is a significant feature of SoCs. SoCs are generally required to have
low-energy consumption, as they are always embedded in other systems, or implemented as
mobile systems, which do not always provide sufficient energy. In comparison with comput-
ing power growth, the energy technology demonstrates tardy progress. In consequence, the
low-energy consumption will be a remedy for the mobile devices, as the on-die signal deliv-
ery in SoCs helps to consume less energy. Computer systems are designed as self-contained
systems, which perform general purpose computing tasks. Whereas SoCs can integrate dedi-
cated hardware, such as DSPs and accelerators, to boost performance for some specific appli-
cations (e.g., signal/image/video processing). Furthermore, multi-core processors in SoCs
make it possible to profit from parallel processing.

The previously mentioned characteristics make SoCs well adapted to the modernmobile
electronic products for great public (smart phones, PDAs, set-top boxes, DVD players, etc).

However, the design and manufacturing of SoCs require big investments. For instance,
the fabrication of SoCs requires masks, which are considered to be costly. Moreover, the pho-
tolithography requires mandatory ultra-clean workspaces. Hence, manufacturing of SoCs
is always involved in mass production, which helps to reduce the overall cost including
non-recurring engineering (NRE).

Multiprocessor SoC. Following the strong requirements of the mobile multimedia com-
puting, and considering constraints from time-to-market, cost, energy consumption, etc.,
for the system design, SoCs are expected to be specialized to answer the previously men-
tioned needs, as well as the needs of flexibility, high-performance, etc. Multiprocessors SoCs
(MPSoC) [67] are emerging, where multiple homogeneous or heterogeneous processing ele-

10

1.2. APPLICATIONDOMAINS

ments are integrated on the chip, togetherwith on-chip interconnection (e.g. interconnection
Networks on-Chip (NoC) [11], hierarchical memory, I/O components, etc. MPSoC is ex-
pected to satisfy the requirements of both high-performance and low-energy consumption
demanded by mobile multimedia applications.

1.2 Application domains

Benefiting from the advantages of small size, low-energy consumption and powerful com-
puting capacity, embedded systems are omnipresent nowadays. For instance, compared to
260 millions processors that were sold in the year of 2004, 14 billions embedded processors
(such as microprocessor, microcontroller, DSP, etc.) have been sold. They are widely used
in diverse domains, such as telecommunication, aeronautics, automobile, domestic appli-
ance products, medical equipments, mobile electronic products, etc. Embedded applications
cover both critical systems and simple systems. Among all these applications, SoCs become
increasingly important, as SoCs can be used in more complex systems, such as video pro-
cessing, Internet connectivity, electronic commerce, etc.

High-performance computing (HPC). HPC applications indicate a significant application
domain of SoCs, such as embedded multimedia devices, radar/sonar signal processing de-
vices, physical image equipments, etc., which have become quickly widespread over recent
years. The applications on these devices are always involved in signal (data)-intensive par-
allel computing, which are generally regular for reasons of high performance. Moreover,
some specific building blocks on SoCs are dedicated to handle large amount of data parallel
processing with performance. These blocks include DSPs, hardware accelerators, etc.

1.3 SoC design

The chip design becomes system design as the chip itself is a system. SoC system-level
design try to take the advantages of existing technologies to address SoC complexity is-
sue [26], such as system-level architecting and architectural verification, hardware/software
codesign, and high-level modeling.

1.3.1 SoC codesign

Gajski and Kuhn [44] presented the Y chart (Figure 1.2) for the system-level design of embed-
ded systems. No matter how complex a SoC design is, it supposes that the design can be
considered from three basic viewpoints, each of which concentrates on different properties
of the system. The Y Chart has three axes to represent behavioral specification, architectural
structure and physical design respectively. The Y Chart also depicts different levels of ab-
straction in the design. Four levels are illustrated through circles from outside to the center
in Figure 1.2, which include: system level, processor level, logic and circuit level. These
levels denote different time granularities and precisions in the design.

Inspired by the Y chart, the Y schema is usually adopted to represent the SoC design
approaches. Its three axes represent functional behavior, hardware architecture and imple-
mentation in specific technologies (e.g., circuit, programming languages, etc.). The central

11

CHAPTER 1. SYSTEMON CHIP

Figure 1.2: Y chart for the system-level design.

point of these three axes denotes the allocation of the resources provided by hardware ar-
chitecture to functional behavior. At the same time, elementary concepts in software and
hardware can be deployed with IPs implemented by some specific technologies.

SoCs are generally designed for some specific applications, dissimilar to computer sys-
tems. Given sufficient computing capacity, the SoC design obtains flexibility since applica-
tions can be partitioned into hardware and software designs. Figure 1.3 shows SoC hard-
ware/software codesign, which is similar to the Y Chart. The partition of hardware and soft-
ware is a trade-off between the performance provided by hardware and the flexibility given
by software. Application behavior (software) and architecture (hardware) can be developed
by different teams in order to benefit from their different experiences in the corresponding
domains. Moreover, the possible concurrent design of hardware and software by different
teams assists in shortening the design time. For instance, the software teams do not need to
wait for the configuration of architecture accomplished by hardware teams, to start software
development. The application behavior is then mapped onto the hardware architecture, on
which analyses can be carried. Analysis results can be used for the modification of the orig-
inal design at the modeling stage and at the mapping stage for different purposes. If the
mapping result is approved by the analysis, it can be utilized for implementation purpose.

In the hardware design, IP building blocks have been widely used in the SoC design
for re-usability and time-to-market reasons. SoC IPs involve processors, memory, standard
cell, I/O, etc. Software can also have IPs, such as some elementary functions in the multi-
media processing, which include Fast Fourier Transform (FFT), filters, encoding/decoding
algorithms, etc. IPs help SoC designers to avoid re-inventing the wheels for some existing
designs, which they do not necessarily have sufficient experience. IP technology turns out
to be one of the most encouraging aspects in the SoC approach.

In the past years, RTL-level languages such as Verilog HDL [107] or VHDL [5] are used
in the SoC design. This has been a great step in EDA (Electronic Design Automation) as
it releases designers from low-level logic design. Besides, behavioral aspects of a design
can be specified with C and C++, which are used to generate RTL-level languages through

12

1.3. SOC DESIGN

Figure 1.3: Design flow incorporating mapping and analysis [26].

behavioral synthesis. As systems become more complexe, system-level design languages at-
tract more attension, which include SystemC [63] and SystemVerilog [124]. Currently, UML
are also taken into account for the SoC design [87]. UML profile for SoC [105], the Systems
Modeling Language (SysML) [105], as well as the UML profile for Modeling and Analysis of
Real-Time and embedded Systems (MARTE) [98], etc, are proposed as OMG standards.

Using formal models of computation (MoCs) in software design makes it possible to
carry out fast validation and efficient synthesis. The MoCs [36] include finite state machines
(FSMs) models, data-flow models, synchronous models, etc. These MoCs are expected to be
composed together in a hierarchical way so that complex systems can be modeled. As these
models have finite states, consequently, they enable efficient synthesis. Their formal seman-
tics, together with their owing finite states make the formal analysis feasible. The current
trend shows that software design plays an increasing role in the SoC design, since software
helps the products of one company to be distinct from those of others, which is significant
in the market [132, 50]. However, the complexity of the software, such as multimedia appli-
cations on mobile devices is becoming the next bottleneck in SoC design [26].

1.3.2 Productivity issue

Current technology allows to integrate more than twenty million gates in a single chip,
which makes it possible: the number of gates available in a chip become more than the
requirement of software applications. As software design does not advance at the same
rhythm as that of hardware. In consequence, a gap has been emerging between hardware
manufacture and software design. Many partial solutions to address this issue are proposed,
which include IP reuse, behavioral synthesis, softwarization (memory, processor), system-
level hardware/software codesign, high-level abstraction, etc.

However, neither of these approaches can provide a complete solution. Hence, many of
these approaches are mixed to obtain the maximum efficiency in the design. For instance, IP
reuse, hardware/software codesign, high-level abstraction can be proposed in a framework
in order to benefit from the advantages provided by the three approaches: IP reuse helps to
separate concerns so that unacquainted work can be accomplished by certain experts of that
domain; hardware/software codesign enables concurrent design, moreover, hardware de-
sign becomes similar to software design, for instance, software programming languages are

13

CHAPTER 1. SYSTEMON CHIP

extended for the hardware design (e.g., VHDL, SystemC, etc.), which reduce the complexity
by using the same programming languages; high-level abstraction contributes to design a
system without too many implementation details.

1.3.3 Validation in SoC

Design correctness is an important issue in the SoC design, since it has a great impact on
user’s confidence on the products, time-to-market, cost, etc. For critical systems, ignorance
of design correctnessmay invoke a disaster which can cause a lost of human lifes. But design
correctness of SoCs always remains one of the critical challenges, although SoCs are turning
to be more complex. Validation accounts for nearly two-thirds of the overall chip design
cost, even so, design teams always deliver chips late and miss projected tape-out deadlines
due to verification problems.

Simulation and test offers a compromise between the verification quality and cost, which
is a main solution to this problem nowadays. However, formal methods are becoming inter-
esting because the formal models of computation (MoCs) are increasingly accepted to be
used for the specification of embedded systems. Using MoCs enables to specify the system
with unambiguous semantics, which offers the possibility of either correct-by-construction
or formal validation with associated tools. High-level validation is also encouraged as it
aids to find design bugs at the early design stage, which can avoid late bug discovery in the
design cycle.

1.4 Conclusions

As mentioned previously, SoCs exhibit interesting advantages over classical computer sys-
tems, which include smaller physical size, less energy consumption, improved performance
in certain situations, etc. Hence, SoCs are frequently found in embedded systems. How-
ever, SoCs provide less flexible functionality with regard to computer systems, particularly
when new applications are to be integrated into SoCs. Hardware and software codesign ap-
proaches are usually adopted in SoCs. The SoC validation is carried out through repetitive
simulation and verification, until the systems are completely considered to be validated.

In spite of the widespread usage, SoCs also face several challenges. The main challenge
is the productivity issue, which is caused by the balanceless advancement of hardware and
software. Another challenge is the validation issue, which is the most time-consuming stage
in the SoC design. Despite these challenges, newmethodologies and technologies are contin-
uously proposed to meet the requirements of SoC design. Particularly, using formal models
for the specification of SoCs and proposition of unified frameworks, which integrate differ-
ent approaches for fast and efficient design, are encouraged. In the context of this thesis, the
synchronous languages and an MDE framework are taken into account, which are presented
in the following chapters.

14

Chapter 2

Data-intensive processing and the
Array-OL formalism

2.1 Intensive digital signal processing . 15

2.2 A high-level data dependency model: Array-OL 17

2.2.1 Basic characteristics . 18

2.2.2 Task parallelism . 19

2.2.3 Data parallelism . 19

2.2.4 Compilation and optimization of the Array-OL language 22

2.2.5 Inter-repetition dependency . 23

2.3 The need for design environment and methodology 23

2.4 Conclusions . 24

Signal processing is one of the most important SoC applications. It concerns the interpre-
tation, analysis, storage and manipulation of signals, which can be signals of sound, image,
video, radar, etc. A signal is the carrier of the information of interest. According to the differ-
ent signals to be processed, these applications can be classified into: analog signal processing
(signals are captured by sensors, which are not yet digitized) and digital signal processing
(digitized signals that can be processed by SoCs or computers directly). Only digital signal
processing is involved here, which includes filtering, removal of noise, information extrac-
tion, compression and decompression, etc.

2.1 Intensive digital signal processing

Among various types of digital signal processing, we are interested in intensive signal pro-
cessing (ISP), which is always decomposed into two steps: systematic signal processing (SSP)
for the first step and intensive data processing (IDP) for the second. SSP involves regular pro-
cessing of large amounts of signal, which is independent of signal values. Whereas, IDP is
considered as irregular processing because the processing results rely on signal values. Fig-
ure 2.1 shows the relation between these classifications of digital signal processing.

CHAPTER 2. ARRAY-OL

Figure 2.1: Relations of different signal processing

Some application examples. Some typical examples of intensive signal processing are
presented here, which include:

• sonar signal processing: a submarine is equipped with several hydrophones around
it, which are used for listening to and recording underwater sounds. A classical sonar
signal processing chain is composed of several stages. The first stage involves sys-
tematic signal processing, which includes FFT. FFT adds a frequency dimension to the
processed signals. The results are used in the following stages for communication or
object detection purpose.

• Image encoding/decoding: JPEG 2000 is a wavelet-based image compression standard.
The encoder [2] can also be divided into several stages. The first ones are considered to
be systematic processing, which include Color components transformation and Tiling. The
following stages involve irregular processing, such as wavelet transform, quantization
and coding. The decoder works in an inverse way: irregular phases are followed by
systematic phases.

• Aspect ratio converting: the conversion of a high-definition video format (16:9) to a
standard-definition (4:3) [80] can also be divided into two stages: the first one consists
of line processing of the original 16:9 video signals in order to create pixels through
interpolation, the results are then processed by removing some lines so that the final
ration is 4:3.

These examples show how the signal processing can be divided into stages, such as SSP
and IDP. As SSP is independent from signal contents, it is possible to use certain generic
models for the processing specification. However, IDP involves the processing of signal
contents, which may vary from one to another according to the signal contents. Hence it is
not appropriate to use some generic models for the computing specification.

Multidimensional array. Multidimensional array are often used as the main data structure
in SSP applications. As signal contents are not involved in the processing, it is appropriate
to abstract them, which facilitates the modeling of SSP. Consequently, array type and array
shape are sufficient in the SSP modeling.

The previous examples also exhibit various semantics of signal dimensions (two dimen-
sions of an image, temporal dimension, frequency dimension, etc.). For instance, the tem-
poral dimension can be represented by an infinite dimension. The dimension number of a

16

2.2. A HIGH-LEVEL DATADEPENDENCYMODEL: ARRAY-OL

signal can also be changed (increased or decreased) in the processing. Moreover, some ap-
plications can have signals with toric dimensions, i.e., data stored in these dimensions are
processed in a moduloway.

Some Languages for signal processing. There already exist some languages for the speci-
fication of signal processing applications.

• StreamIt [129] and Synchronous Data Flow (SDF) [78] are stream processing languages,
but they are not considered to be multidimensional languages for signal processing.
StreamIt is an object-oriented imperative language that is intended to allow maximum
optimization for the specification of synchronous dataflow at a high level of abstrac-
tion. The extension of SDF,MultiDimensional SDF [95] is amultidimensional language,
whose applications are described using oriented acyclic graph. The nodes, called ac-
tors, in the graph consume and produce data, called tokens.

• The Alpha language [88] is a functional language, whose application are composed of
systems of recurrent equations. Alpha is based on polyhedral model, which is exten-
sively used for automatic parallelization and the generation of systolic arrays. Alpha
is a multidimensional language with single assignment specification.

• High-performance Fortran(HPF) [62] is a language dedicated to scientific parallel com-
puting. It takes high level of abstraction into account. HPF uses multidimensional
arrays in parallel loops, where operations are carried out on sub-arrays. It also enables
regular data distributions.

• Synchronous dataflow languages also defines arrays in order to deal with specific algo-
rithms and architectures. For instance, in Lustre, array has been introduced in order to
design and simulate systolic algorithms [56]. This work leads to the implementation of
their results on circuits [114]. More recently, an efficient compilation of array in Lustre
programs has been proposed [94]. It is similar to the Signal language. In contrast, ar-
ray of processes [16] has been introduced in Signal, which is adapted to model systolic
algorithms.

• Array-OL [19, 20] is also a multidimensional language for the specification of intensive
signal processing, which will be presented in the next section.

2.2 A high-level data dependency model: Array-OL

Array Oriented Language (Array-OL) is first proposed by Alain Demeure ([31] in French and
[30] in English) at THALES Underwater System (TUS) in 1995. It is dedicated to the specifi-
cation of intensive signal processing where large number of signals are regularly processed
by a set of repeated tasks. Its typical applications include radar/sonar signal processing and
multimedia (image, audio and video) processing.

Array-OL is not a programming language, thus no execution concerns are involved in
the language. It focuses on the full parallelism specification at a high level, hence it is not
associated with an execution model. Instead of specifying certain specific scheduling of
parallel tasks, only data dependencies between these tasks are specified. Some tasks that
achieve some computing functionalities, such as filters and FFT, are referred to as elementary

17

CHAPTER 2. ARRAY-OL

tasks, which are considered as black boxes provided with interfaces. All these features make
it possible to reduce the complexity of application design.

2.2.1 Basic characteristics

Some basic characteristics of this domain-specific language are presented here [19, 20]:

• multidimensional array: data manipulated in Array-OL are in the form of multidimen-
sional array, which has at most one possible infinite dimension. These arrays can be
specified with certain type specification, such as array shape. Nevertheless, data types,
e.g., Integer and Boolean, are unnecessary, because data values stored in the array are
not handled. Consequently data values are concealed. These features imply that only
array spatial manipulations are involved in the language. Moreover, these arrays can
be toroidal. This characteristic enables to model some spatial dimensions that represent
some physical tori (e.g. hydrophones around a submarine). Other examples are some
frequency domains obtained by FFTs.

• granularity: as data are represented as multidimensional arrays, which are repeatedly
processed, processing granularity is therefore flexible through re-organizing the re-
peated processing and these arrays.

• data dependency expressions: Array-OL expresses true data dependency in order to de-
scribe maximum parallelism in the application. In such a way, except for the minimal
partial order, which results from the specified data dependencies, no other order is a
priori assumed;

• functionally-deterministic specifications: any execution schedule that respects the data
dependencies specified in Array-OL necessarily leads to the same results;

• single assignment: the language handles values, not variables, so a value is produced
only once, hence Array-OL is a single assignment language;

• pure spatial specification: there are no time or order specifications defined in the lan-
guage, full parallelism is enabled by the pure spatial specification. In order to obtain
some specific implementations, such as data-flow implementations, a specific space-
time mapping should be defined. While the mapping is unnecessary to be defined in
the Array-OL specification.

An Array-OL application can be specified at two levels: global level and local level. A
global-level specification, which is called a global model, is dedicated to describe the data de-
pendencies between tasks. A task in Array-OL represents a functionality, which can be either
a hierarchical task or an elementary task. The data dependencies are expressed through ar-
rays. The local-level specification, which is called a local model, is dedicated to describe how
arrays are processed regularly and repeatedly through ODT (Opérateurs de Distribution de
Tableaux, array distribution operators in English) in Array-OL tasks.

The parallelism specified in Array-OL is classified into two families: task parallelism and
data parallelism. Task parallelism is expressed in the global model. On the contrary, data paral-
lelism is described in the local model.

18

2.2. A HIGH-LEVEL DATADEPENDENCYMODEL: ARRAY-OL

2.2.2 Task parallelism

A global-level specification is composed of a directed acyclic graph, where vertices represent
tasks and directed edges represent data dependencies between tasks: arrays. Figure 2.2
shows an example of a global model. There are neither specific restrictions on the array
number that tasks consume and produce, nor restrictions on the number of dimensions that
an array possesses. From another point of view, the term global signifies that the arrays
processed in this level are always complete arrays with regard to the arrays processed in a
finner level of granularity.

Figure 2.2: An example of a global-level Array-OL specification. The gray boxes represent
vertices in the graph, i.e., tasks, while the small white boxes on gray boxes represent data
required and produced by tasks. These data have shapes, which are specified in parentheses.
Data dependencies are specified by directed edges, i.e., directed arrows in the figure.

Task parallelism is expressed at this level. The graph can be considered as a network of
tasks, which run in parallel. Note that the directed graph merely expresses data dependen-
cies, i.e., it does not provide any specific scheduling solution. However from the dependency
specification, a minimum execution order can be deduced. The graph should be acyclic, oth-
erwise it results in self-dependency, which is not allowed in Array-OL.

2.2.3 Data parallelism

A local-level Array-OL specification is expressed by a repetition context task (RCT), which de-
fines a repetition context for certain repetitive tasks (RTs), i.e., the RTs are repeated in the RCT.
ODTs connect an RCT with its RTs, which define how the input/output arrays of the RCT
are regularly accessed by the RTs. Repetitions (or instances according to different context)
of an RT are supposed to be independent from one to another in general. The number of
repetitions of an RT is determined by the repetition space associated to this RT. The repetition
space is also defined as a multidimensional array. The product of all the elements in the rep-
etition space denotes the number of repetitions of this RT. From the point of view of some
languages that have loop operators, each dimension of this repetition space can be seen as a
parallel loop and the shape of the repetition space defines the bounds of the loop indexes of
the nested parallel loops [19].

Data parallelism [109] is expressed in the local model. Data parallelism is considered as a
kind of explicit parallelism for Single InstructionMultiple Data (SIMD) machines and vector
machines. Data parallelism is expressed in data parallel languages, where operations are
specified to run in parallel over collections of data. The parallelism is conceptually simple
and deterministic, compared to task parallelism, where asynchronous accesses of some share
memory may result in non-determinism. As data can be expressed in a uniform way, data

19

CHAPTER 2. ARRAY-OL

parallel languages are well adapted in large scale computing applications. This is the case of
Array-OL, where data are in the form of multidimensional array, and operations are stateless
tasks.

An RCT and any of its RTs do not have the same interfaces, therefore a special operator,
called tiler, is used to describe how to bridge between the two interfaces. A tiler describes
how an array can be cut into subarrays with the same shape in a regular way or how some
subarrays are used to build an array. These subarrays can be also multidimensional arrays,
which are inputs/outputs of the RT. Whereas, the whole arrays are inputs/outputs of the
RCT. In order to distinguish the different usages of these subarrays, they are called tiles in
the case that they are a part of an array that belongs to an RCT, in contrast to patterns, which
are taken as inputs/outputs of an RT. A tiler contains the following information, from which
the subarrays can be taken (resp. stored) from (resp. in) an array, i.e., the correspondence
between coordinate indexes of the array and their subarrays.

• F: a fittingmatrix (how array elements fill the tiles).

• o: the origin of the reference tile (for the reference repetition).

• P: a paving matrix (how the tiles cover arrays).

Fitting. In order to determine a tile in an array, a reference element should be given to in-
dicate the origin point, from which the positions of all its other elements in the tile can be
found. The fitting matrix is used in the computing to determine these elements in the tile.
Their coordinates, denoted by ei, are computed as in the following equation:

∀ i, [0, ..., 0] ≤ i < spattern, ei = (ref + F × i) mod sarray (2.1)

where spattern is the shape of the pattern (the same shape as the tile), sarray is the shape of
the array, F is the fitting matrix and [0, ..., 0] denotes a matrix filled with 0, whose shape is
identical to spattern .

Figure 2.3: An example of fitting. The shape of the pattern is determined by sshape, thus this
pattern has 6 elements, which are indexed by vectors. The pattern can be mapped onto an
array, which is illustrated by the right-hand figure.

Figure 2.3 shows an simple example of how fitting works. Here, there are 6 elements in
this tile since the shape of the pattern is

(

2
3

)

. The reference element is represented by vector
(

0
0

)

. The indexes of the remaining elements are thus
(

0
1

)

,
(

0
2

)

,
(

1
0

)

,
(

1
1

)

, and
(

1
2

)

. The positions
of these elements in the tile relative to the reference point are determined as follows:

F ×
(

0
0

)

=

(

0
0

)

, F ×
(

0
1

)

=

(

0
1

)

, F ×
(

0
2

)

=

(

0
2

)

, F ×
(

1
0

)

=

(

1
0

)

, F ×
(

1
1

)

=

(

1
1

)

, F ×
(

1
2

)

=

(

1
2

)

.

For each tile, its own reference element should be specified.

20

2.2. A HIGH-LEVEL DATADEPENDENCYMODEL: ARRAY-OL

Paving. A similar mechanism to fitting is used to determine all the reference elements of
each tile in the same array, which is called paving. The reference element for paving is given
by the origin vector, referred to as o. Each reference element of other tiles is built relatively
to this one, similar to fitting. The following equations illustrates the computing:

∀ r, [0, ..., 0] ≤ r < srepetition, refr = (o + P × r) mod sarray (2.2)

where srepetition is the shape of the repetition space, P the paving matrix and sarray the shape of
the array. Figure 2.4 illustrates an example of paving for a [9 × 8]-array, which is composed
of 6 tiles.

Figure 2.4: Paving example: a 2-dimension pattern tiling perfectly a 2-dimension array. The
figure at the bottom shows how the array is tiled six times respectively accroding to r. The
arrows in these figures illustrate how each reference element of the tiles are calculated from
the origin of the array.

An example of repetitive context task. A simple example (Figure 2.5) of matrix multiplica-
tion is illustrated by using the Array-OL language. The matrix A1 is with the size [5, 3] and
A2 is with the size [2, 5]. The matrix A3 is the matrix product of A1 and A2: A1 · A2 = A3.
The matrix product can be decomposed into scalar products of each line vector of A1 and ev-
ery column vector of A2. Because there are no dependencies between these scalar products,
they can execute in parallel. Figure 2.5 shows the Array-OL specifications of this matrix
multiplication. The elementary task is scalar product, which takes two vectors as inputs

21

CHAPTER 2. ARRAY-OL

and produces one vector as output. The vectors here are tiles taken from (stored in) the
corresponding arrays according to the associated tiler information. The repetition space as-
sociated to the scalar product task is [2, 3], which signifies:

• the scalar product task is repeated 2 × 3 (i.e. 6) times.

• the tiles are processed by a repetition of the task at the same point in the repetition
space, i.e., the repetition space defines the correspondence between input tiles and
output tiles.

The red dotted arrows and green arrows in the Figure 2.5 illustrate how tiles are obtained
from array according to the repetition space.

Figure 2.5: An example of scalar product illustrated by an original graphical formalism of
Array-OL, which is different from the one of [19]. This graphical formalism is adopted here
in order to explicitly illustrate the function of tiler.

2.2.4 Compilation and optimization of the Array-OL language

As a specification language, Array-OL is independent of execution platforms. It is not asso-
ciated with an execution model. The advantage is obvious: the designer is liberated from
low-level execution issues. However, when an Array-OL specification is implemented, ex-
ecution issues should be taken into account. Implementation of an Array-OL specification
can be considered as a language compilation. However, this compilation is difficult to ac-
complish in only one step because of the distinct differences between a programming lan-
guage and a specification language. In order to simplify the implementation, a re-factoring
step is introduced, at which an Array-OL specification is transformed to be implementable
on an execution platform [121, 32]. The re-factoring can be served as an optimization with
regard to a specific execution platform, for the purpose of better performance [19]. Some
re-factoring functions have been proposed in the theses of Julien Soula [121] and Philippe
Dumont [32]. These re-factoring functions allow to create or remove hierarchies, to manip-
ulate repetitions, etc. The second step of compilation concerns the implementation of the
re-factored Array-OL on specific execution platforms.

22

2.3. THE NEED FOR DESIGN ENVIRONMENTANDMETHODOLOGY

2.2.5 Inter-repetition dependency

In the first proposition of Array-OL, repetitions of an RT are independent from one to the
other, hence there are no data dependencies between these repetitions. This modeling con-
tributes to obtain maximum parallelism in the specification, but also adds a limit on its ap-
plication, since no dependency can be specified between these repetitions. The extension
of Array-OL with Inter-repetition dependency (IRD) [19] addresses this problem. It allows to
model uniform dependencies between repetitions in the form of patterns. An inter-repetition
dependency connects one of the outputs of an RT with one of its inputs in the condition that
the type of this input and output must be identical. From the point of view of the RT itself,
this inter-repetition dependencymakes it self-dependent. However, in the repetition context
of the RT, a dependency vector associated to the inter-repetition dependency is used to man-
ifest one repetition of the RT relies on another one (or some repetitions rely on some other
ones), i.e., it expresses the dependency relation in terms of vector. If the depended repetition
is not defined in the repetition space, a default value is then chosen.

2.3 The need for design environment and methodology

The first version Gaspard [128] (Gaspard classic) was a specification environment dedicated
to signal processing applications. It extends the Array-OL language. A basic compilation
strategy of Array-OL was defined but it does not allow to generate efficient code from any
Array-OL specification, especially those who define infinite arrays. So transformations have
been proposed to re-factor such Array-OL specifications to certain hierarchical ones that can
be compiled to produce efficient code on parallel (and even sequential) architectures. But
the Array-OL compiler provided by Gaspard remains limited with regard to the following
aspects:

• time: the development of a compiler through classical programming is time-
consuming, and the validation of the compiler shares the same feature.

• maintainability: reading and modification of the source code of a compiler for the
purpose of its maintenance always demand considerable effort.

• flexibility: the extension of a classical hard-coded compiler is not obvious, even if all
the interfaces of used functions are well defined.

• re-usability: one compiler is designed for one specific language in general, hence the
re-usability is a problem when some parts of the compiler are expected to be reused.

• documentation: hard code is not a good way to be used as documentation, even if it is
provided with comments.

Moreover, the complexity of integration of different heterogeneous components, such as
software and hardware components, on a single chip with functionalities specified in Array-
OL is another issue. As these components are heterogeneous, they usually have different
formalisms as well as different tools and platforms with regard to analysis, validation, simu-
lation, etc. These difficulties call for new technologies, methodologies and platforms for the
specification, modeling, code generation, simulation, validation and synthesis of intensive
signal processing.

23

CHAPTER 2. ARRAY-OL

On the contrary, the model-based approach has been widely adopted not only in the in-
dustry but in the academia. Model-based developments are becoming interesting in relation
to the constraints mentioned previously. In the next chapter, MDE and an MDE-based ver-
sion of Gaspard, i.e., Gaspard2, will be presented.

2.4 Conclusions

The Array-OL formalism dedicated to systematic intensive signal processing is presented
in this chapter. Nowadays, it is not limited for the specification of signal processing, other
similar processing, e.g., data-intensive processing, is also its application domain. Hence,
we call all these kinds of processing data-parallel intensive processing (DIP), which defines the
application domain of Array-OL and the context of this thesis.

Array-OL utilizes the multidimensional array data structure for the specification of in-
tensive data, which benefits from several advantages: toric array can be specified for some
special applications, such as sonar signal processing and frequency processing; temporal and
spatial dimensions are processed in the sameway, hence amaximum parallelism is specified,
which can be re-factored according to an architecture when the application is mapped onto
the architecture; ODT operators allow a high-level data dependency specification (such as
patterns) with regard to the manipulation of array indexes, as patterns are also array. This
kind of dependencies enables the specification of multi-granularity degrees, which makes
the application specification flexible. Array-OL only specifies data dependency, and it is in-
dependent from any execution model, which contributes to a fast application specification.
Properties, e.g., single assignment, are defined in Array-OL to guarantee the correctness of
specification.

The previous characteristics make Array-OL distinct from other languages in the same
application domain, such as SDF, Alpha, StreamIt, synchronous languages and HPF. How-
ever, as Array-OL is a specification language, it is possible to project it onto the execution
models provided by the previously mentioned languages [4, 33, 125, 133]. The following
chapters concentrate on the projection of Array-OL languages onto synchronous languages,
for application validation issues. Synchronous languages also contributes to the integration
of control with formal semantics into DIP. All these works have been achieved, however, in
the Gaspard2 environment, which takes Array-OL as core formalism of DIP.

24

Chapter 3

Model-Driven Engineering and
Gaspard2

3.1 Model-Driven Engineering . 26

3.1.1 Model and modeling . 26

3.1.2 Metamodel and metamodeling . 28

3.1.3 Model transformations . 30

3.1.4 MDE in practice . 33

3.1.5 Conclusions . 38

3.2 An MDE-based environment for SoC co-design: Gaspard2 39

3.2.1 High-level co-modeling for SoC design 40

3.2.2 Gaspard2 and MDE . 43

3.2.3 Modeling of high-level control in Gaspard2 44

3.3 Conclusions . 45

In Chapter 1, the advance of hardware, particularly in SoC, has been presented. On
one hand, the computing capability provided by a processing unit increases very quickly,
on the other hand, the parallel architectures play more important role. This leads to the
gap between software development and the hardware computing capability, as the former
does not benefit the same advancement rhythm as the latter. Moreover, following the com-
puting capability enhancement, computer systems or SoC are apt to be more complex, par-
ticularly, when heterogeneous components are integrated together in the system. Classical
programming languages are becoming difficult to be adapted in current systemdesigns. The
Array-OL language presented in Chapter 2 exhibits these problems. Dedicated to DIP, it is
difficult to fix its position in current signal processing applications implemented as SoC or
even MPSoC.

However, new software design and development methodologies, which are proposed
according to current system designs, emerge continuously. Among intensive research activi-
ties that are dedicated to address fast and efficient software design issues, MDE [116, 89] is
one of the most promising approaches that are unavoidable to be referred to. In Section 3.1,
MDE is briefly discussed, with emphasis on its principles. Then, Gaspard2, as a result of the
evolution of Array-OL adapted to MDE, is presented in Section 3.2.

CHAPTER 3. MODEL-DRIVEN ENGINEERING

3.1 Model-Driven Engineering

According to Wikipedia 1: "MDE pertains to software development, which refers to a range
of development approaches that are based on the use of software modeling as a primary
form of expression."With the fast development of MDE, it has become a promising approach
of software engineering, which attracts much attention in industry and academia. In this
dissertation, MDE plays a very important role, which contributes to modeling, automatic
code generation and a bridge between different technologies.

The key element in MDE is model. Two core relations around model in MDE is represen-
tation (model is a representation of a system) and conformance (model is conform to a meta-
model) [18]. These two relations are separately presented in Section 3.1.1 and Section 3.1.2.
As another key notion of MDE, model transformation is also discussed in Section 3.1.3. The
advantages of MDE are exhibited progressively following the introduction of the previous
concepts. MDE in practice is also considered in this section.

3.1.1 Model and modeling

A model refers to a representation of system with an accepted level of abstraction, i.e., all
unnecessary details of the system are neglected for the sake of simplicity, formality, com-
prehensibility, etc. However, the model concept is not a novelty. According to Favre [40],
the notion of model casts back to more than five thousand years. The alphabet of Ugaritic
cuneiform (3400 B.C.) already introduced the same notion by defining a set of abstract rep-
resentations (characters) and rules (pronunciations) that allowed the expression of some re-
ality (sentences). More recently, in the information technology, programming languages,
relational data bases, semantic web, etc., are all based on the same idea, where a set of pre-
defined and linked (or concatenated) concepts represent some reality once they are given
certain interpretations.

Intuitively, according to different granularity degrees of abstraction, there may exist sev-
eral levels of abstraction. But accepted levels of abstraction may not be unique, which is
determined up to certain specific requirements. However the choice of a good level of ab-
straction does not implies a simple and easy work. First, the evolution of abstraction level in
software design is briefly discussed, which partly explains the model notion in MDE.

3.1.1.1 Raising levels of abstraction in software design

The history of software evolution can be considered as a history of raising abstraction levels.
At the very beginning, machine code (first generation languages) helped people to escape
from direct manipulations of physical elements in a machine, but it is still not easy because
programming with large number of "1" and "0" does not imply an interesting work. The later
assembly languages (second generation languages) help to do this tedious work through
substituting the numbers by some literal instructions, but it still remains difficult for pro-
grammers because they need to know hardware instructions very well. It turns out to be a
big obstacle for those who do not know anything about hardware. Efforts were made so that
programming languages become independent from specific machines. High-level languages
(third generation languages), such as FORTRAN, LISP and C, make it possible. Developers
can put their focus on the functionalities, which appear more interesting to them. Some of

1http://en.wikipedia.org/wiki/Model-driven_engineering

26

3.1. MODEL-DRIVEN ENGINEERING

these languages, e.g., APL (A Programming Language), C, PROLOG, and ML (ML stands
for metalanguage) are major language paradigms still in use nowadays.

However, the increasing software complexity results in the software crisis, which in-
volves the development time, cost, etc. Object-Oriented Analysis and Design (OOAD) is
developed to partly address this problem. The basic principle is that a system is composed
of a set of interacting objects, which are independent from one another in the sense that
their local states are private and can be only accessed by some provided operations. The
independence of objects makes the re-usability possible. OOAD also involves the defini-
tions of object, class and their relations. These classes are independent from implementation
concerns. They share several features, such as encapsulation, modularity, polymorphism and
inheritance. At run time, objects are then created dynamically according to their class defini-
tions. The notions, such as class and object, imply a clear separation between specification and
implementation. However, the design of classes is still restrained by object-oriented languages
and the virtual machines on which their implementing objects execute.

OOAD helps to address the software complexity problem to some extent. Based on the
practices of object-oriented development, recent software research focuses on software/hard-
ware modeling, domain-specific modeling, heterogeneous system integration, high-level ab-
straction, etc., where OOAD is not well adapted.

3.1.1.2 Modeling with machine-recognizable model

Modeling approaches also play an important role in software evolution, particularly in sys-
tem analysis and modeling. Several modeling approaches that should be cited include:
Merise [127] (1970), Structured Systems Analysis and Design Methodology (SSADM) [38]
(1980) and Unified Modeling Language (UML) [104] (1995). These approaches help to un-
derstand the current MDE model concept. Each of them proposes certain concepts and a
notation to describe the system to be designed. In general, in each stage of the system life cy-
cle, a set of documents composed of some diagrams that allow designers, developers, users,
etc., to share their system designs.

These approaches have some important advantages. The abstraction conduced by mod-
eling allows to emphasize the overall system structure, while bypassing implementation
details and specific implementation technologies. This contributes to handle big and com-
plex systems rapidly and efficiently. These approaches enable to represent a system or a part
of the system with different point of views, which allows to separate the system by aspects
and to understand it with specific domain views. These approaches can also be found in the
Aspect-Oriented Programming (AOP) [69] and Domain-Specific Language (DSL) [91].

However, these approaches were criticized [40] for the heaviness and lack of flexibility in
a rapid software design and development. The resulting models of these approaches, which
is called contemplative models by Favre et al., are essentially used for communication and
apprehension. It remains passive with regard to production, although the first concern of
information technology is to produce the artifacts interpretable by machines [40]. Hence,
in order to be productive so as to accelerate system design and implementation, machine-
recognizable models, which are not only human-recognizable, become indispensable and
critical.

27

CHAPTER 3. MODEL-DRIVEN ENGINEERING

3.1.1.3 Model and MDE

MDE [116, 89] emerges to partly satisfy the requirements of two communities, i.e., pro-
gramming language community (particularly OOAD community) and system analysis and
modeling community. Model is the key concept in MDE, which is systematically utilized
throughout the whole system life cycle. Unlike classes and objects in OOAD, models in
MDE are flexible, as they do not require to take implementation aspects into account. The
modeling method proposed by MDE also makes up for the deficiency of traditional model-
ing approaches through the proposition of machine-recognizable model. MDE is intended
to provide a development framework, where models transit from a contemplative state to a
productive state. Thus, models become the first class elements in the software development
process, which aims at improving its portability and maintainability through separation of
concepts, particularly separation of concepts of specific domains or technologies in order to
boost productivity and quality, and also through improving its re-usability, which is always
proved by the tools and design patterns.

Transition from solution space to problem space Instead of focusing on the solution space,
which is a feature of programming languages, MDE helps to concentrate on the overall be-
havioral and structural modeling of a system without distraction due to some specific do-
mains of computing technologies. This analysis and modeling are always carried out by
using the concepts of application domains that forms the problem space, i.e., analysis and
modeling of the problem itself, not a solution to the problem.

There are several direct advantages of this transition: capability of representing large-
scale systems and capability of handling heterogeneous systems. First, one can focus on the
problem itself without knowing too many specific computing technologies, as a result, the
accessible system complexity can be raised.

Secondly, it is possible to separate different aspects of a system with different views. For
instance, it allows to express a system from a global or a simplified point of view of a system.
It also offers the possibility to separate the system model into different parts according to
the relations between the concepts in the model. The separation of views permits equally to
develop the system according to the domain aspects.

Thirdly, a model may be, although not evident, a composition of several models, each of
which is adapted to a specific formalism that is appropriate to a specific domain. The com-
position is possible because all the models can be expressed in a common uniform language.
Hence different development teams from different application domains can cooperate on the
same heterogeneous system with their specific domain concepts, where implementations of
different computing technologies are not involved.

3.1.2 Metamodel and metamodeling

In order to be interpretable by a machine, the expression, with which a model is represented
is pre-defined formally. This is achieved by a metamodel. In MDE, a metamodel allows the
definition of a model in a model specification language, which defines the concepts and their
relations that are available during designing the model, i.e., it defines the syntax of models.

A model that is designed according to a given metamodel is considered to conform to this
metamodel at a higher level. This relation is analogous to a text and its language grammar.
As the name implies, a metamodel is also a model, i.e., it conforms to another metamodel. In

28

3.1. MODEL-DRIVEN ENGINEERING

order to define a model, it is not convenient to define an infinite succession of metamodels,
each of which conforms to another one at a higher level. One formal solution to this issue is
the definition of a metamodel, which conforms to itself, i.e., it can be expressed only using
the concepts it defines. Currently, widely usedmetamodels, such as Ecore [34] andMOF [99],
are examples of such kind of metamodels or metametamodels.

Figure 3.1: Different levels of modeling.

Figure 3.1 illustrates the relation between models and metamodels. The M0 level is the
representation of some reality (a computer program). In this example, several variables
(Number and Balance) take values that are assigned to them. TheM1 level is the lowest level
of abstraction, where the concepts can be manipulated by developers. In this example, dec-
larations are found for the variables used at the M0 level and the notion of Account, which
contains these variables. The model at the M1 level conforms to the metamodel at the level
ofM2. The concepts manipulated by developers atM1 are defined and situated at this level.
One of the best known metamodel is UML metamodel. Account is a Class, whereas variable
declarations are Attributes enclosed in the Class. Finally, a metamodel at the M2 level con-
forms to a metametamodel (at the level ofM3). The latter conforms to itself. In the example,
the concepts, such as Class and Attribute, are metaclasses, whereas the containing relation is
a metarelation. The metametamodel can describe itself, e.g., metaclass and metarelation are
still metaclasses and relations, such as source and destination, are metarelations.

If the highest-level metamodel is defined so as to conform to itself in a formal way, and
the syntax and semantics of this metamodel are described explicitly, then the models that
conform to this metamodel can be interpreted by a computer. Once significations of the
concepts in this metamodel are programed, a computer will be capable to read any model
that conforms to this recursive metamodel directly or indirectly. However, a metamodel is
only composed of structural information in relation to its models, no semantics are involved

29

CHAPTER 3. MODEL-DRIVEN ENGINEERING

formally. A model makes sense with the help of its interpretation, either by users through
a provided specification, which includes the concepts of the metamodel, or by a machine
during the transformation of the model.

3.1.3 Model transformations

Model transformation is another key concept in MDE, which is always considered as a rou-
tine work in contrast to the intellectual modeling. Models in MDE are used for not only un-
derstanding and communication, but generating concrete results in the development, such
as source code. With the help of metamodel, to which they conform, models can be recog-
nized by machines. As a result, they can be processed, i.e., a model is taken as input (source)
and then somemodels (target) are generated. This process is called model transformation on
condition that both source and targetmodels conform to their explicitly specifiedmetamodel
respectively.

Figure 3.2: A model transformation allows to transform source models into target models
in consideration of a set of rules. These rules are defined by using the concepts of the meta-
models, to which the source/target models conform.

3.1.3.1 Model transformation classifications

Transformations can be classified according to different point of views. In the next, several
proposed classifications are briefly presented. According to the homogeneity and hetero-
geneity of the models in the two sides of transformation, [90] proposes two kinds of trans-
formations: exogenous and endogenous. An endogenous transformation only considers one
metamodel, i.e., the same metamodel for the source model and the target model. An exoge-
nous transformation uses different source metamodel and target metamodel. According to
the abstraction level of source and target models, a transformation can be considered as a
vertical one, when two levels are different, or a horizontal one when the models are situated
at the same level of abstraction.

In addition to the unidirectional transformation, whose direction is implied by source and
target, a transformation can also be bidirectional. In the unidirectional transformation case,

30

3.1. MODEL-DRIVEN ENGINEERING

only source mode can be modified by users, then target model is re-generated accordingly.
However, in the bi-direction case, the target model can be also modified, which requires the
source model to be modified in a synchronized way. Consequently, bidirectional transforma-
tion always leads to a model synchronization issue. [122] presents a survey on bidirectional
transformations.

3.1.3.2 Transformation rules

Model transformation is always implemented by an engine, which executes a set of (trans-
formations) rules. The rules can be declarative (which outputs are obtained from some given
inputs) or imperative (how to transform). For instance, declarative rules are, in general, ex-
pressed in three parts: two patterns and a rule body. The two patterns are source pattern and
target pattern respectively in a unidirectional transformation or both source/target patterns
in a bidirectional transformation. A source pattern is composed of some necessary informa-
tion about part of the source metamodel, according to which a segment of source model can
be found and transformed. Correspondingly, a target pattern consists of some necessary in-
formation about part of the target metamodel, according to which a segment of target model
can be generated. The link between these two patterns is the rule body (or a logical part
according to [29]), which defines the relation between the source pattern and the target pat-
tern. Figure 3.3 shows an example of a transformation rule in TrML [37]. In this example,
the source pattern is Tiler, the target pattern is Node and the rule body is called GTiler2SNode.
Moreover, external functions can be declared and associated with the rule body, which is
illustrated with the action annotation.

<<pattern>>

Tiler

<<rule>>

GTiler2SNode

<<pattern>>

Node

action
getInTilingIndices(td,rs,ps,as)

+synchronous+gaspard

Figure 3.3: A transformation rule expressed with TrML.

Declarative rules can be composed in a sequential way or a hierarchical way. Thus, flexi-
bility and re-usability of transformation can be obtained. In the sequential case, all the rules
can be executed one by one, hence, all the source patterns of these rules cover the source
model and all the target patterns cover the target model. In the hierarchical case, the root
rule can have sub-rules. Its source/target patterns cover directly the whole source/target
models. Transformation rules are in general mixed-style rules so that complex transforma-
tion can be implemented.

3.1.3.3 A multi-level approach in modeling and transformation

Between the abstraction levels of a model and its resulting code, intermediate levels can be
created. At each level, a model and its metamodel are defined, hence a complete model
transformation turns into a transformation chain, which consists of successive transforma-
tions. Apparently, these intermediate models are not added in order to increase the work-

31

CHAPTER 3. MODEL-DRIVEN ENGINEERING

load. On the contrary, they are added when it is difficult to bridge the gap between two
models directly. For instance, the models at the two levels are too different, which leads
to the requirements of supplementary information. A typical example is the Platform-
Specific Model (PSM) defined in Model-Driven Architecture (MDA) that is situated between
Platform-Independent Model (PIM) and the resulting code. This multi-level approach con-
tributes to reduce the complexity of transformation. For instance, the information needed
to transform a high-level model to a low-level one is divided into several portions, each of
which is included in a transformation. Hence it makes the transformations modular, i.e.,
modifications of one transformation will have no effect on other transformations if the inter-
mediate models are not changed. Another advantage is that the development of a chain of
transformations can be concurrent once intermediate models are defined.

3.1.3.4 Traceability

In some cases, model transformation information is expected to be logged for certain usage.
For instance, relations between the elements of source and target model and modifications
or debug information of the target model, are needed to be logged in order to backtrack and
find the corresponding elements in the source model. Traceability in the model transforma-
tion consists in finding the transformation relation between the elements in source/target
pattern. For instance, a trace can be observed and saved in the execution of a transforma-
tion [3], which enables the traceability. However, traceability is still not well supported in
the transformation tools currently.

3.1.3.5 Productivity issue

The modeling approach proposed in MDE and its correspondingmodel transformation help
to address the productivity issue. As mentioned in Section 3.1.1, high-level modeling re-
duces the complexity of system design, hence it contributes to improve productivity. More-
over, one of the distinct features of MDE from other modeling approaches is: models can
be directly used to generate implementation-level results (e.g., executable source code) from
high-level models. This production is achieved by automatic model transformations.

3.1.3.6 Transformation tools

Meta-Object Facility (MOF) Query/View/Transformation (QVT) [101] is an Object Manage-
ment Group (OMG) standard on model query and transformation. Several transformation
languages and tools, such as ATLAS Transformation Language (ATL) [64] and Kermeta [66]
already exist. ATL is a model transformation language (a mixed style of declarative and
imperative constructions) designed according to QVT. Kermeta is a metaprogramming en-
vironment based on an object-oriented Domain Specific Language. Eclipse Modeling Frame-
work Technology (EMFT) project was initiated to develop new technologies that extend or
complement Eclipse Modeling Framework (EMF). Its query component offers capabilities
to specify and execute queries against EMF model elements and their contents. EMF Java
Emitter Templates (JET) [35] is a generic template engine for the purpose of code genera-
tion. The JET templates are specified by using a JSP-like (JavaServer Pages) syntax and are
used to generate Java implementation classes. Finally, these classes can be invoked to gen-
erate source code, such as Structured Query Language (SQL), eXtensible Markup Language

32

3.1. MODEL-DRIVEN ENGINEERING

(XML), Java source code.

3.1.4 MDE in practice

MDE is still not completelywell-rounded, and there still exist propositions and initiatives. In
particular, we can find themwith various rules, undermany different names, such as Model-
driven Architecture (MDA),Model-Driven Development (MDD), Model IntegratedComput-
ing (MIC) and Model-Driven Software development (MDSD). We insist on the essence of all
proposals that form a foundation of principles and concepts rather than the subtle nuances
implied by these different names.

3.1.4.1 MDA

One of the best known MDE initiative is MDA [97, 92], which is proposed by OMG [96].
In MDA, two types of models are distinguished according to the abstraction level: PIM
and PSM. The former generally expresses functional requirements of a system, while PSM
generally involves implementation concerns, e.g., a PSM can be an executable model itself,
or be used to generate certain source code. Transformation specifications are also proposed
by OMG to bridge these two types of model, such as MOF QVT [101].

3.1.4.2 UML

UML is taken as one of the main unified visual modeling language in MDE. The UML
metamodel [104] was standardized in 1997 by OMG. As a standard, UML has been widely
adopted in industry and academia. It is proposed to answer the requirements of modeling
specification, communication, documentation, etc. It takes the advantages of component
re-use, unified modeling of heterogeneous system, different facet modeling of a system, etc.
The proposition of UML is based on several languages, such as OMT, Booch and OOSE,
which had a great influence on the object-based modeling approach. Consequently, UML is
very similar to object-based languages. As UML is wide spread in industry and academia
for modeling purpose, large number of tools2 have been developed to support it.

UML distinguishes structural and behavioral modeling. The fist one concentrates on the
static structure of a system,which involves the constructs, such as class, component and deploy-
ment. The second one focuses on behavioral aspects of the system, which can be expressed
by activities, interactions, state machines, etc.

However, its expressivity and precision are not always well defined in certain cases for
the specification of some specific systems. UML can be extended through profiles, which are
composed of stereotypes, tagged values, etc. The latter allow to specialize UML classes and
to be attached with tags, which make it possible to add attributes to these classes.

There are also discussions on the semantics of UML. Some believe its semantics is not
well defined. In particular, the semantics of UML behavioral modeling brings certain ambi-
guities [43]. This problem cannot be addressed by Object Constraint Language (OCL), which
is dedicated to the specification of static syntactic constraints on UML constructs. From this
point of view, the validation of UML applications cannot be achieved in a very precise way.
Related works [118, 51] have been carried out to give a clear and formal semantics to UML.

2http://en.wikipedia.org/wiki/List_of_UML_tools

33

CHAPTER 3. MODEL-DRIVEN ENGINEERING

UML components

A UML component is a self-contained, modular and reusable unit that is considered as
an autonomous unit in a system or a subsystem. It is also replaceable in its environment
at design time and run-time if its fungible component has compatible interfaces. A compo-
nent is provided only with its specified interfaces and the functionality that it provides. Its
implementation is concealed, and its behavior is defined in terms of its interfaces.

As a subtype of class, a UML component has an external view (or black-box view) through
its publicly visible properties and operations. Moreover, a behavior, such as state machines,
can be associated with the component in order to express a more precise external view. A
component also has an internal view (white-box view) via its private properties and realizing
classifiers. This view shows how the external behavior is realized internally [103].

State Machines

UML state machines are an object-based variant of State charts [58]. UML StateMachine
package defines similar concepts to State charts that can be used for either complex discrete
behavior modeling, or the expression of the usage protocol of a part of system. The former is
called behavioral state machines and the latter is called protocol state machines, which allow the
specification of a life-cycle of some objects or invocation order of its operations. Protocol state
machines are not involved in implementations; in contrast, they enforce legal object usage
scenarios.

Figure 3.4 illustrates an extract of the metamodel of UML state machines, which includes
the main concepts of UML state machines and their relations. Next, main concepts of UML
state machines are briefly presented:

StateMachine : a StateMachine is a concept used to exhibit the behavior of a part of system.
This behavior can be expressed by execution traces of the statemachine, obtainedwhen
transiting between states. The transitions are fired by events. During this execution, a
series of activities associated with the elements of the state machine can be carried out.
A StateMachine can be a sub-machine, i.e., it refines a state in another state machine. A
state machine may have Regions and Pseudostates.

Region : a Region is an orthogonal part of either a composite state or a state machine [103].
Simply, a region is introduced as an intermediate elements in order to describe the
relation between state machines and other concepts used in them (e.g., states and tran-
sitions). A region may contain vertices (states and pseudostates) and transitions.

Vertex : a Vertex is similar to a node if state machines are considered as node-edge graphs.
But a node does not necessarily imply a state, i.e., a vertex can be also a Pseudostate,
which is not a state but conveys some information about some states or the state ma-
chines.

State : A State in a state machine can be any of the following kinds: simple state, composite
state and sub-machine state. Composite states and sub-machine states make it possible
to define state machines in a hierarchical way.

• A simple state indicates the state is not refined, hence, it is a normal state. FinalState
is a special state, which indicates the termination of the system.

34

3.1. MODEL-DRIVEN ENGINEERING

Figure 3.4: An extract of the metamodel of UML state machines [103].

35

CHAPTER 3. MODEL-DRIVEN ENGINEERING

• A composite state implies the state is refined by some states, transitions, etc., which
are defined explicitly in the composite state. Figure 3.5 shows an example, where
the state EffectOn is refined. The refinement is explicitly defined by a set of inter-
connected state and transitions in the state EffectOn.

Figure 3.5: An example of composite state. This state machine represents a video effect
switch. User can switch the effect on, where one of the three effects can then be selected:
Low,Medium andHigh. User selection events can trigger the transitions, which is described
in Transitions section.

• A sub-machine state suggests that the state is refined by another state machine,
which is considered as a sub-machine. This enables re-usable state machines,
which can be referred to in some states of other state machines. Compared to
a composite state, whose refinement is directly defined in the state, the refine-
ment of a sub-machine state can be defined in another StateMachine diagram.
Figure 3.6 illustrates two state machines, which are defined in two different dia-
grams. The right-hand one, which is called EffectOnMachine, is referred to as a
sub-machine of the left-hand one through the state EffectOn.

Figure 3.6: An example of a sub-machine state, which is semantically equal to the one in
Figure 3.5.

Composite states and sub-machine states contribute to construct hierarchical state ma-
chines. Previously mentioned composition of states is considered as mutual exclusive
composition, i.e., the states are active in an exclusive way, which are called OR states.
States can also be composed together in a parallel way, i.e., they can be active at the
same time. These states are called AND states. Figure 3.7 shows an example that con-
tains both AND states and OR states.

Pseudostate : pseudostates can be classified into several families: initial, deepHistory, shal-
lowHistory, join, fork, junction, etc. These pseudostates convey the corresponding infor-
mation of the states or the state machine they are connected to.

36

3.1. MODEL-DRIVEN ENGINEERING

Figure 3.7: An example of the parallel composition of state machines.

• initial is connected to one of the states in a state machine (more precisely, in a
region), which is the initial state of the region.

• deepHistory represents the most recent active states in a composite state that con-
tains this pseudostate. This pseudostate is connected to a state if there is no most
recent active states (e.g., the composite state is entered for the first time). Other-
wise, it indicates which states should be reactivated upon entering the composite
state. Only one deep history pseudostate is allowed in a composite state, which is
inconsistently specified in UML [43].

• shallowHistory is similar to a deep history pseudostate, except that it indicates a
direct sub-state of the composite state (unlike a deepHistory, which memorizes all
the states to re-enter in the hierarchy). The sub-state denoted by shallow history
pseudostate is actually the initial state for the composite state (inconsistency in
UML [43]).

Transitions : a transition is a directed connection between a source vertex and a target vertex
(state or pseudostate). A transition can have several triggers, any satisfaction of these
triggers can fire the transition. In the previously illustrated examples, the prefix when
on a transition signifies a trigger associated with ChangeEvents. The prefix all indicates
a self transition when no triggers are satisfied.

Collaboration

A collaboration specifies the relation between collaborating elements from a point of
view of the functionality that they cooperate to accomplish. However, a collaboration is not
intended to define an overall structure of these elements. These elements in a collaboration
are called roles, whose properties or identification can be ignored, i.e., only their useful prop-
erties and types are referenced in the collaboration.

Figure 3.8 illustrates an example of collaborations, which are defined in a composite struc-
ture diagram with components. The two dashed ellipses express two collaborations, which

37

Gaspard2

Figure 3.8: An example of collaborations taken from [103].

are called Sale and BrokeredSale respectively. Sale describes the collaborating relation between
Seller and Buyer. Sale is then used in the BrokeredSale to depict a more complex collaborating
relation between Broker, Producer and Consumer.

3.1.4.3 Profiles for real-time and embedded system design

Systems Modeling Language (SYSML) [102] is an OMG standard that aims at describing
complex systems. However, SYSML does not put the accent on embedded system design.
This is not the case of the UML profile for Modeling and Analysis of Real-Time and embed-
ded Systems [98] (MARTE for short). As the name suggests, MARTE is intended to provide
sufficient concepts for the modeling and analysis of real-time and embedded systems. It,
on one hand, reuses some concepts (e.g., stereotypes) proposed in SYSML, on the other, de-
fines concepts compatible with SysML. However, MARTE provides precise concepts for the
detailed modeling of hardware architecture in relation to SoC. MARTE is considered as a
replacement and refinement of UML Profile for Schedulability, Performance and Time [100]
(SPT). With regard to SPT, MARTE refines their time concepts in order to model three types
of time: logical, discrete, and dense.

The repetitive structure modeling (RSM) package in MARTE offers the possibility of de-
scribing DIP applications. It enables to specify a regular repetition mechanism that can be
applied to both software and regular hardware architecture (e.g. vector processors and cell
processors). This package, which is partly compatible with Gaspard2, is proposed by the
DaRT team.

3.1.5 Conclusions

As previously mentioned, MDE has several advantages: the possibility of platform-
independentmodeling without involvement of implementation details; re-usability and pro-
ductivity of models; modeling and specification of different facets of a system from different
points of view; rapid automatic model transformations. Without doubt, these advantages
offered by MDE are highly attractive for the improvement of Gaspard. In next section, the
integration of Gaspard into MDE is presented.

38

3.2. AN MDE-BASED ENVIRONMENT FOR SOC CO-DESIGN: GASPARD2

3.2 An MDE-based environment for SoC co-design: Gaspard2

The newmethodology of MDE has been widely spread in the research because of the advan-
tages mentioned in Section 3.1. It also attracts the attention of the DaRT team. The compiler
of Gaspard has been integrated within the MDE framework. It leads to the emergence of
Gaspard2 [65], a new design methodology and development environment dedicated to DIP
applications for SoC. Gaspard2 enables fast design and code generation with the help of
UML graphical tools (e.g., MagicDraw UML3 and Papyrus4) and Eclipse EMF5.

Figure 3.9: A global view of the Gaspard2 environment for SoC design.

Figure 3.9 shows a global Gaspard2 environment. The main features of Gaspard2 are
classified into three families:

high-level co-modeling: it enables system design using the Gaspard2 profile [10] at a high
level of abstraction, which provides various packages of the concepts of software, hard-
ware, deployment, etc.

model transformation: transformation chains are developed to generate target code at the
implementation level.

Targeting different platforms: different target code can be used for different purpose, such
as validation, simulation, synthesis and execution.

These features are detailed in the following sections with the help of Figure 3.9.
3www.magicdraw.com/
4www.papyrusuml.org/
5www.eclipse.org/emf/

39

Gaspard2

3.2.1 High-level co-modeling for SoC design

One of the most important features of Gaspard2 is its software/hardware co-modeling at a
high level of abstraction. More precisely, it enables to model software applications, hardware
architectures, their association and IP deployment separately, but in a unique modeling environ-
ment. This concept is partially based on the Y-chart (Figure. 3.9 and [65]). Models of software
application and hardware architecture can be defined separately, independently and concur-
rently. Then, software application can be mapped onto hardware architecture. Moreover,
supplementary information of certain software and hardware implementations (IPs, such
as filters and FFT for software and processor and DSP for hardware) are described in the
model, which is called deployment. The whole model is platform-independent, i.e., they are
not associated with an execution, simulation, validation or synthesis technology generally.

3.2.1.1 Gaspard2 metamodel

The Gaspard2metamodel is originated from thework presented in [28]. The propositionwas
inspired by several OMG standards, including SPT [100] for the aspect of hardware architec-
ture, SysML [102] for the aspect of the association of hardware and software, and UML for
the aspects of component. The resulting modeling also takes the Array-OL language [31, 19]
into account for the specification of DIP applications.

The main features of the Gaspard2 metamodel is briefly presented here. More details
about the metamodel can be found in Appendix A.

• Component. Gaspard2 adopts a component-based approach. Gaspard2 components
are based on UML component constructs [103], which has been briefly presented in
Section 3.1.4.2. Figure 3.10 illustrates an example of a simple component ColorFilter,
which is stereotyped by ApplicationComponent. Gaspard2 components benefit from the
advantages of UML components, including modular and reusable definition (and us-
age) both in the specification context and in the execution context, hierarchical compo-
sition once being provided compatible interfaces, encapsulation and autonomy. These
features make it possible to construct complex and large-scale systems.

Figure 3.10: An example of Gaspard2 Component.

• Factorization is one of the most interesting feature provided by Gaspard2 metamodel.
With the help of the concepts defined in this package, Gaspard2 metamodel is capable
to express data parallelism in a compact manner. Factorization is inspired by Array-
OL, for the specification of regular repetitive structures present in software, hardware
and association. Several concepts defined in this package are described in the next:

Shape can be specified for an instance or a port of a component. It is specified through
the multiplicity property of the instance or the port, which implies a collection of the

40

3.2. AN MDE-BASED ENVIRONMENT FOR SOC CO-DESIGN: GASPARD2

corresponding elements. This collection is defined in the form of multidimensional ar-
ray, whose elements are positive integers indicating themaximum number of elements
stored in the corresponding array dimensions. For instance, a shape, [40, 30], defined
for an instance in a repetition context indicates that the instance is repeated 40 × 30
times. This shape is also called repetition space of this instance. This concepts is in-
spired by the bound notion of the parallelly nested loops, which are present in high-
performance computing languages [19]. The same shape [40, 30] on a port indicates
an [40, 30]-array that is processed by the component owning the port. A shape is
extended to have a special dimension, i.e., infinite dimension, which is the result of
mapping some discrete time computing (or dataflow) onto a space model.

Tiler in Gaspard2 represents a special connector, used in a repetition context, that is as-
sociated with some topological information for array processing. A Gaspard2 tiler is
equivalent to an Array-OL tiler in semantics. A tiler defines: a fitting matrix describ-
ing how array elements fill patterns; an origin of the reference pattern; a paving matrix
describing how patterns cover arrays. Figure 3.11 shows an example of Gaspard2 Tiler.
Two tilers are used to connectMonochromeMode components and its internal repetitive
component mono.

Figure 3.11: An example of Gaspard2 Tiler.

Reshape connects two arrays, which can be considered to be a transformation of array
between these two arrays. The values stored in the array remains unchanged after the
transformation. A reshape has two tilers at each end, which explain how to displace
a tile from the source array to the target array. A reshape represents run-time links
between the source and target array.

InterRepetition is used to specify an acyclic IRD among the repetitions of the same in-
stance, compared to a tiler, which describe the dependency between the repeated in-
stance and its owning component. Particularly, an IRD specification leads to the se-
quential repetition execution of an instance. A DefaultLink provides a default value for
repetitions whose dependency for the input is absent.

• Application focuses on the description of data parallelism and data dependencies be-
tween application components. These components and dependencies completely de-
scribe the functional behavior in terms of tasks. Application componentsmainly manip-
ulate multidimensional arrays. ODTs, such as tiler, offer the opportunity of expressing
data parallelism. Task parallelism can also specified through task-dependency graphs.
The tasks are either atomic computations (elementary task) on arrays or composite
tasks (hierarchical task).

• Architecture specifies the hardware architecture at a high abstraction level. It enables

41

Gaspard2

Figure 3.12: An example of Gaspard2 InterRepetition.

to dimension hardware resources. Amechanism, similar to the one used in application,
enables to specify repetitive architecture in a compact way to cope with the increasing
popularity of these kinds of regular parallel computation units in hardware.

• Association allows one to express how the application is projected on the hardware
architecture, i.e., which hardware component executes which functionality. One partic-
ularity of this metamodel is to consider the mapping as well as the parallelism both in
the application and architecture.

• Deployment enables to add supplementary information to elementary tasks,
which concerns implementation information about the compilation and the inter-
communications of their implementations. These implementations are always soft-
ware or hardware IPs.

3.2.1.2 Gaspard2 profile

The Gaspard2 profile [10] is very similar to Gaspard2 metamodel. As it is replaced by the
MARTE profile, it will not be detailed in this thesis. It provides a refinement of UML Com-
ponents with regard to DIP and SoC context. The functionalities (tasks) in the software ap-
plication are stereotyped by ApplicationComponents. As a result, a software application in
Gaspard2 can be considered as a set of component dependency graphs (see the concrete
example in Figure 3.13), which are often defined hierarchically. These components are con-
nected through ports stereotyped as In, Out, etc. Each port is defined with a multiplicity,
which indicates the shape of the data (array) that across the port.

Figure 3.13: An example dependency graph of Gaspard2 Components.

42

3.2. AN MDE-BASED ENVIRONMENT FOR SOC CO-DESIGN: GASPARD2

3.2.1.3 Domain-specific metamodels in Gaspard2

In addition to Gaspard2 metamodel previously presented, the Gaspard2 environment pro-
vides several other domain-specific metamodels, which bridge between Gaspard2 notions
and some specific technologies. These metamodels include: Polyhedron, Loop, OpenMP PL,
RTL and Synchronous metamodel.

• Polyhedron metamodel is intended to implicit the association in Gaspard2 through
polyhedral technique, which enables the representation of a spacial allocation of com-
puting resources (processors) to task repetitions through parametrized polyhedral con-
cepts.

• Loop metamodel has been proposed to refine the polyhedronmetamodel for code gen-
eration. Loop statements are described in this metamodel, compared to polyhedra
information in the polyhedron metamodel. Loop statements indicate how certain rep-
etitions of a task are executed by processors. They are therefore parametrized by the
processor indexes. SoC simulation and high-performance computing is the targeted
application domain.

• OpenMP PL metamodel allows to represent the essential part of some procedural lan-
guages, e.g., Fortran and C, accompanied with OpenMP statements [106]. This meta-
model is used for the code generation of high-performance computing on shared mem-
ory computers without communication between processors.

• RTL metamodel has been proposed to describe hardware accelerators, particularly the
FPGA accelerator, at RTL level (Register Transfer Level). It is independent from HDL
languages (e.g., VHDL and Verilog).

• Synchronous metamodel is one of the contributions of this thesis, which will be pre-
sented in the next parts.

3.2.2 Gaspard2 and MDE

Due to the points mentioned in Section 2.3 MDE has been adopted in Gaspard2. Gaspard2
benefits from several advantages provided by MDE: modeling at different levels of abstrac-
tion, which reduces the complexity in the modeling and model transformation through the
intermediate-level models; modeling in a uniform language helps to reduce the complex-
ity in the modeling and also in the integration of heterogeneous systems, technologies, etc.
UML-based profiles for specific systems, such as MARTE, are available as standards; re-
usability helps to build complex systems at a reduced cost; increasing tools of modeling and
transformation are developed with/for MDE, which offer a wide range of choice for the
development.

3.2.2.1 Model transformations

For the purpose of automatic code generation, Gaspard2 adopts MDE model transforma-
tions towards different languages, such as OPENMP FORTRAN/C, SYSTEMC, VHDL and
synchronous languages. Model transformations are organized as several transformation
chains for these languages, as illustrated in Figure 3.9.

43

Gaspard2

From Deployed models to Loop model. Two successive transformations are defined in
order to transform a deployed Gaspard2 model (a Gaspard2 model, in which elementary
tasks are deployed with IP models) into a Loop model (a model, which conforms to the
Loop metamodel). The first one involves the transformation of a Gaspard2 model into a
Polyhedron model, where repetitions are expressed by polyhedrons, data arrays are mapped
on the certainmemory, etc. The second transformation generates amodel of loop expressions
from the Polyhedron model, which conforms to the Loop metamodel.

From Loop model to SystemC/PA. This transformation enables the code generation for
SystemC at the TLM-PA level, where data access are based on patterns (instead of bytes).
The latter helps to speed up the simulation. The transformation generates the simulation of
hardware and software application components. The hardware components are transformed
into SystemC modules with their ports connected. A part of application that executes on
processors, is generated as sets of dynamically scheduled and synchronized activities. The
execution semantics of this part of application complies with the execution model defined
for the Gaspard2 MPSoC applications.

From Loopmodel to OpenMP Fortran/C. OpenMP Fortran/C code is also generated from
loop models. Two steps are involved in this transformation: (1). generation of an OpenMP
PL model, where task scheduling, variable declarations and synchronisation barrier are ad-
dressed; (2). generation OpenMP Fortran/C code from the OpenMP PL model.

From Deployed model to RTL model This transformation enables the generation of RTL
models from deployed Gaspard2 models. VHDL code can be generated from RTL models,
which can be easily synthesized onto FPGA.

3.2.2.2 Gaspard2 and MARTE

The UML profile for MARTE has been standardized by OMG in July 2007. The Repetitive
Structure Modeling package (RSM) in MARTE has been proposed according to Gaspard2.
Shape and LinkTopology are two main concepts in RSM. The first one enables the shape speci-
fication of an repetitive element throughmultiplicity, which is defined as a multidimensional
array. Shape implies a possible collection of link ends associated with the repetitive elements
[98]. LinkTopology consists in adding some topological information to data dependencies as-
sociated with certain repetitive elements, which enables the repetitions to determine their
input/output data at run-time.

3.2.3 Modeling of high-level control in Gaspard2

The Gaspard2 framework is particularly adapted for the design of DIP applications that com-
pute large amounts of data in a regular manner. However, compared to the structural model-
ing, it lacks features that enable behavioral specification, which can be caused by functional
requirements or adaptivity requirements of the environment. As dynamic behavior becomes
increasingly common in current DIP applications, e.g., mobile multimedia systems, due to
the requirements of market, QoS, etc., suitable behavioral modeling concepts are highly en-
couraged.

44

3.3. CONCLUSIONS

However, dynamic behavior is always considered to be a damage to the regularity in
Gaspard2 applications, which benefits high-performance computing. Consequently, behav-
ioral specification in Gaspard2 is expected to comply with the regularity to some extent. The
first proposition of control that enables dynamic behavior [72] is based on mode or configura-
tion concepts, which is inspired from mode automata [84]. However, the trace semantics of
mode automata is incompatible with the parallel semantics in Gaspard2, hence the resulting
automata-based control combines sequential automaton transitions and parallel repetitions,
through the inter-repetition dependency defined in Gaspard2. Some main features of this
proposition are given here:

• state-based control: the control is inspired from the synchronous mode automata,
which adopts state-based control of dataflows. It has several advantages: the control
design is simple and clean; state-based analysis and verification can be carried out in a
direct way.

• control-computation separation: unlike mode automata, the control and data compu-
tation is specified in a separate way. As a result, data computation can be specified
independently of control.

• multigranularity for the control: array multigranularity is used to keep the control in
accordance with data computation in case that they are not synchronized.

• inter-repetition dependency is used to handle the problem of the parallelism specified
in Gaspard2 and sequential execution of automata.

• a UML control profile and metamodel is proposed according to the previous features.
A simplified version of this metamodel is considered for the integration of control fea-
tures in VHDL code.

Extensions to this control have been proposed in [45] recently with regard to hierarchical
and parallel composition and formal semantics based on mode automata and the Array-OL
language. The extension of Gaspard2 with control features helps to strengthen its expressiv-
ity, which allows the specification of more complex behaviors in the applications. A formally
defined syntax and semantics also enable to benefit from formal validation techniques, such
as model-checking and discrete controller synthesis, to check the design correctness.

3.3 Conclusions

Based on an MDE approach, Gaspard2 has the advantages on high-level co-modeling for the
design of on-chip DIP applications through standard modeling language, fast model trans-
formation for the generation of low-level code in different languages. The Gaspard2 envi-
ronment provides the Gaspard2 profile and metamodel, as well as several domain-specific
metamodels, such as OpenMP Fortran/C, RTL, etc. Model transformations have also been
developed for the generation of low-level executable code. The generated code can be used
for the purpose of execution, simulation, synthesis, etc. These profiles, metamodels and
model transformations allow the code generation from a high-level graphical application
specification.

45

Gaspard2

However, design correctness is one of main concerns of Gaspard2. Here, we are inter-
ested in high-level validation issues. Design problems found in Gaspard2 can be: bad usage
of UML notations; violation of expected properties of Gaspard2, for instance safe array as-
signment, acyclic data dependency, etc.; violation of functional properties, e.g., Safe control and
correct implementation; incompatibility with the environment of the system, hardware archi-
tecture, etc. For instance, the synchronizability between components in relation to environ-
ment constraints, execution time, etc.

Currently, no tools are provided to guarantee the correctness of Gaspard2 specifications
with regard to the above problems. To solve this problem, using correct modeling concepts
and existing but sophisticated formal validation technologies and tools is one of the main
objectives of this thesis, which will be detailed in the following chapters.

As MARTE is becoming increasingly adopted, Gaspard2 is apt to be compatible with
MARTE, particularly, MARTE models are adopted in Gaspard2 for the specification of sys-
tematic signal processing. However, only MARTE RSM package is completely compatible
with Gaspard2, i.e., other Gaspard2 concepts in the application, hardware, association, de-
ployment and control packages are needed to be translated with MARTE concepts. The
control modeling, which is compatible with MARTE, as another contribution of this thesis,
will be presented in Chapter 6.

46

Chapter 4

Control and validation in Gaspard2
and reactive systems

4.1 Control and validation requirements in Gaspard2 47

4.1.1 Gaspard2 control requirements . 48

4.1.2 Validation issue of Gaspard2 . 49

4.1.3 Conclusions . 49

4.2 Reactive systems and the synchronous approach 50

4.2.1 Introduction . 50

4.2.2 The synchronous approach . 51

4.2.3 Synchronous languages . 52

4.2.4 Using synchronous languages for Gaspard2 control modeling and
validation . 65

4.3 Conclusions . 65

4.1 Control and validation requirements in Gaspard2

As mentioned in Chapter 1, the SoC hardware design/production advancement has greatly
changed our modern life, in particular, the mobile computing become progressively popular.
The electronic hardware provides enough computing capacity for more complex software
applications while reducing power consumption. As a result, applications on chips become
increasingly more complex following the trend of the integration of more and more vari-
ous functionalities into one single chip. For instance, various multimedia features, such as
video/mp3 playback, TV broadcast and camera/photo, are developed and integrated into
one multimedia cellular phone. These applications are not just a complement to the basic
communication functionality provided by the cellular phone, on the contrary, they are be-
coming killer applications. At the same time, end users are apt to purchase the cellular phones
that provide enough multimedia functionalities to obtain the mobile computing capability
at a minimum price.

Furthermore, a multimedia functionality, e.g., the video playback, may have different
modes due to the following possible requirements:

CHAPTER 4. CONTROL AND REACTIVE SYSTEMS

• end users: they may expect to change the video effect mode while watching a video
clip, which includes black and white mode, negative mode, etc. These modes provide
more choices for end users, which help to increase user satisfaction of the application;

• hardware/platform: in some cases, the hardware/platform may need to change ap-
plication modes owing to the resource change. For instance, while the processor load
is high, the application can be switched to a less processor load mode. Or inversely,
while the processor load is low, the application is changed so as to have a better ser-
vice quality;

• environment: communication quality can be considered as an environmental con-
straint. Thus, a low communication quality leads to a low video quality mode, e.g.,
the low resolution mode, so that the service is not interrupted.

• Quality of Service (QoS): so as to be friendly to end users, the passage from one mode
to another should be carried out in comfortable way, i.e., a progressive change.

The mode change mechanism confers flexibility onto the software application design:
first, dynamic behavior is enabled in the application from the a functional point of view;
second, the application has the ability to be adaptive to nonfunctional constraints. Conse-
quently, it provides a better QoS to end users.

4.1.1 Gaspard2 control requirements

Based on data dependencies and the repetition concepts in Array-OL, Gaspard2 allows a con-
cise specification for DIP applications, e.g., the previously mentioned mobile multimedia
applications. Consequently, it benefits from the design efficiency and rapid system perfor-
mance evaluation. However, Gaspard2 does not have any operators that allow the specifica-
tion of control behavior. Hence the application domain of Gaspard2 is limited. In particular,
design of more complex and flexible applications does not limited by hardware resource any
more. Consequently, the integration of control modeling in Gaspard2 is encouraging.

Control behavior can be modeled in different forms, at different levels, etc., in the ap-
plication. In Gaspard2, control behavior is introduced through a control model, which is
separated from the data computation. Thus the data computation and the control model is
independently reusable. Furthermore, the control model can act as an interface between the
application and its environment, platform or hardware, which enables application adaptiv-
ity. The expected control mechanism is based on the following characteristics:

High-level control. Gaspard2 is dedicated to high-level application specifications. Hence,
a corresponding high-level control mechanism is expected. This high-level control
should be concise but expressive and adequate enough to describe the expected ap-
plication behavior.

State-based control. State machines have been widely adopted in academia and industry,
which enable to specify control-oriented reactive systems. Its concurrent and hierarchi-
cal specifications make it possible to describe complex system too.

Control with safe concern. Gaspard2 takes safe design concerns into account. For instance,
certain properties that avoid faults in the design can be integrated into this control.

48

4.1. CONTROL AND VALIDATION REQUIREMENTS IN GASPARD2

Therefore it contributes to the construction of correct systems apriori and it reduces
the overall validation cost and time.

Verifiable control. Apart from conception with safe concerns, the verifiability of the pro-
posed control is another distinct feature, which enabless to ensure design correctness
by using aposteriori formal validation tools.

4.1.2 Validation issue of Gaspard2

DIP applications can be specified at a high level in the Gaspard2 framework, but there are no
tools that can guarantee the correctness of the specifications. However, design correctness is
one of the main properties expected in Gaspard2, which is also one of the most important
issues in the application design. Design with some safe concerns can only partly ensure the
correctness with regard to certain properties. Hence application validation through some
existing tools is necessary, which can offer a solution at a low cost. However, we are only
interested in high-level validation issues in Gaspard2, which are classified into four families:

• UML related problems (good usage of Gaspard2 UML notations) can be partially ver-
ified by OCL, UML graphical tools, model transformations, etc. However, as it is a
problem related to UML validation, this kind of validation is not involved in the cur-
rent work;

• Gaspard2 related problems concern the violation of the Gaspard2 properties, for in-
stance safe array assignment, acyclic data dependency, etc.;

• application functional problems denote the violation of expected functional properties.
Based on the verifiable control, correctness verification of an application is involved;

• non-functional problems are related to the incompatibility with the environment of the
system, hardware architecture, etc. For instance, the synchronizability between compo-
nents in consideration of environment constraints, execution time, etc. These problems
are expected to be verified at a high abstraction level to some extent in order to reduce
the design-validation loop.

4.1.3 Conclusions

Based on the previous analysis on requirements of control modeling and application valida-
tion, our contributions for satisfying these requirements are mainly inspired by synchronous
dataflow languages, which are detailed in the next Section 4.2. In particular, Mode au-
tomata [84] is well adapted in the Gaspard2 context, which is based on dataflow languages.
First it enables to specify state-based control. Second, it provides the possibility to spec-
ify dataflow processing. Mode automata are also designed in consideration of safety con-
cerns. The modes are exclusive so that, on one hand the exclusivity of modes makes a clear
separation of application functionality, which reduces possible fault risks, and on the other
hand the faults in one mode will not take effect in other modes. Moreover, we propose to
utilize the existing and sophisticated formal validation tools associated with synchronous
languages to address validation problems. The main advantage of using synchronous lan-
guages is to provide a set of solutions to current Gaspard2 requirements in the same syn-
chronous dataflow framework. Consequently, it avoids integrating heterogeneous technolo-

49

CHAPTER 4. CONTROL AND REACTIVE SYSTEMS

gies, each of which meet different requirements of Gaspard2, so as to reduce the system
complexity.

4.2 Reactive systems and the synchronous approach

4.2.1 Introduction

Embedded systems and real-time systems are two general terms that have been widely
adopted in the computer and electronic societies. But sometimes they are too general to
identify some specific systems, such as a system that reacts with its environment in a way
the latter cannot wait. Signal processing and critical control systems are this kind of systems,
which is called reactive system [61] in comparison with two other kinds of systems [53]:

• transformational systems that take some input values and transform them into output
values. These systems terminate after accomplishing these transformations. Compilers
are this kind of systems.

• interactive systems that their environments need to wait for the computing results from
the systems.

4.2.1.1 Reactive systems

More precisely, a reactive system reacts continuously to the external stimuli received from
its environment, then carries out the computing and triggers events that can be observed
in the system, and sends back computing results with the satisfaction of the response time
required by the environment.

Figure 4.1: A reactive system example.

A reactive system (Figure. 4.1) can be seen as a network of concurrent computing units,
which can communicate with each other. The system communicates with its environment
through two kinds of devices: sensor and actuator. Sensors are used to capture messages
(events and data) from the environment in the way that these messages can be processed
by the reactive system. Actuators send messages (computing results) to the environment
recognizable by the environment.

50

4.2. REACTIVE SYSTEMS AND THE SYNCHRONOUS APPROACH

Reactive systems have several features [53]: they are generally concurrent systems, which
require concurrency specification. Determinism is an expected property for reactive systems.
Time constraints should be imperatively satisfied, which include input frequency and system
response time with regard to the environment. Reactive systems are sometimes safety critical
systems, where design faults can cause unacceptable loose of money, market, even human
lives. This requires the system specification is correct.

However, classical languages are proved not appropriate to specify reactive systems. For
instance, concurrent programming languages, such as Ada or classical languages with con-
current constructs, are considered as asynchronous languages as their concurrent processes
execute independently from others in general. The communications among the processes
are asynchronous or synchronous, but without time limits. Hence synchronous languages
are proposed to specify reactive systems. Basic principles of synchronous languages are
subsequently presented in Section 4.2.2, and some synchronous languages are discussed in
Section 4.2.3.

4.2.2 The synchronous approach

Despite of the complexity in specifying concurrent processes and event occurrences in reac-
tive systems, which leads to the system undependability, the synchronous approach tries to
simplify the system design by proposing a simply but mathematical sound model, which is
inspired by the synchronous process algebras introduced by Robin Milner [93]. This model
considers a system that continuously reacts to external stimuli instantaneously, i.e., its exe-
cution is composed of infinite reactions and the execution time of each reaction is negligible
with respect to the response delays of its external environment. From this point of view, the
time behavior of a system is abstracted in a very simple but elegant way.

Signal. Signals or events are broadcast in the system and can be considered to be received
and emitted simultaneously in respect of the instantaneous reaction. The modeling of event
occurrences are therefore simply: the occurrences are considered to be simultaneous.

Figure 4.2: Illustration of possible event occurrences.

Consider the example in Figure. 4.2: (a) is a simple reactive system. e1 and e2 are two
events that are captured from the environment, and will be processed by the system. e3 is
the event that the system sends back to the environment. (b1), ..., (b5) illustrate some possible
event occurrences in each reaction. For instance, in (b1), e1 arrives at time t1, and e2 arrives

51

CHAPTER 4. CONTROL AND REACTIVE SYSTEMS

at time t2. Thus, there is a time difference between t1 and t2. e3 is produced after the reaction
at time t3. Whereas in (b2), the occurrences of e1 and e2 are inverse. In (b3), the two events
arrive at the same time. In (b4) and (b5), events maybe be absent, which is illustrated by a
hollow circle. Note that the time t1 denotes the occurrence time of the first event between
e1 and e2, t2 denotes the occurrence time of last event between e1 and e2 and t3 denotes the
moment that e3 appears.

From the point of view of the synchronous approach, the synchronousmodeling of event
occurrence in reactive systems can be illustrated in Figure 4.3. The concrete physical time
of the event occurrences and of the system execution in (b1), (b2) and (b3) is abstracted as an
instant in the logical time, where event occurrences and computing appear simultaneously
and instantaneously, as illustrated in c. c illustrates only one reaction. The continuous sys-
tem execution, which consists in infinite reactions in total order, can then be mapped onto a
sequence of instants in a discrete logical time.

Figure 4.3: Illustration of the synchronous modeling of event occurrences.

Reaction. The execution, referred to R, of a reactive system is composed of a set of infinite
non-overlapping reactions rk, denoted as R = { rt | t ∈ N }. As each reaction is considered
instantaneous, the set of reactions can be mapped onto a discrete logical time, where each
reaction corresponds to one instant. A reaction can be indexed by the instant number repre-
senting the time. Figure 4.4 illustrates an example of the reactions from the point of view of
the logical time.

Figure 4.4: Reactions of a reactive system on a logical time.

4.2.3 Synchronous languages

Graphical languages. Based on the synchronous model, some languages for the specifica-
tion of reactive systems have been proposed. The STATEMATE semantics of STATECHARTS

has been proposed in [59], which is based on STATECHARTS [58]. STATECHARTS is a graphi-
cal language based on automata in consideration of hierarchical composition and concurrent
communication for the specification of reactive systems. This language has beenwidely used

52

4.2. REACTIVE SYSTEMS AND THE SYNCHRONOUS APPROACH

in different application domains, which leads to a large quantity of variations in syntax and
semantics [130]. The semantics of STATECHARTS that is used here for illustration is the one
that is adopted in STATEMATE environment. A Statecharts diagram consists of states and
transitions. A state can be refined with some substates and internal transitions that define
the state hierarchy. Two such refinements are available: and and or states. An and state con-
tains substates that are activated concurrently , whereas an or state contains substates that
are activated in an alternative way. When a state is left, each substate is also left. The sub-
states of an and state may communicate by internal events which are broadcast all over the
scope of the events. Substates of an and state may contain transitions which can be executed
simultaneously.

Argos [83] is a graphical synchronous language, which is a variation of Statecharts. It
is a subset of Statecharts with synchronous semantics. Argos is based on Boolean Mealy
machines. It does not allow arrows that pass multi levels in the design. Compared to
STATEMATE, it has different step semantics . In the STATEMATE semantics of Statecharts,
it adopt delta-cycle microsteps, i.e., the effect that are caused by the transitions are taken into
consideration only in the next step, whereas in Argos, the effects are taken into consideration
immediately in the same reaction.

SyncCharts [6, 7] is a graphical model for the synchronous language Esterel (discussed in
the following section), which inherites many features from Statecharts and Argos. It adopts
synchronous semantics, which akins to Esterel, so it will be detailed in the following Esterel
section. Safe State Machine (SSM) [8] is a commercial version of SyncCharts. SyncCharts is
dedicated to control-dominated reactive systems, which are represented by a hierarchy of
communicating and concurrent finite state machines. Determinim is a important feature of
SyncCharts, which helps to build correct control systems.

Textual languages. Apart from the graphical languages, there are different styles of textual
synchronous languages: textual imperative languages, such as Esterel [21]; and declarative
data-flow languages, such as Lustre [54], Signal [76] and Lucid synchrone [112].

Esterel [21, 14] is a synchronous language dedicated to control-dominated reactive
systems, such as control circuits, human-machine interface and communication protocols.
Esterel has been developed since 1983 at CMA 1 (Applied Mathematics Center, Ecole des
Mines de Paris), and INRIA in Sophia-Antipolis 2. Esterel takes signals 3 as the main data
to be processed. A signal is either a pure signal that denotes the presence or absence of this
signal, or a signal carrying a value. Signals are synchronously broadcast to all the processes
instantaneously.

Compared to the event-driven style Esterel, Lustre and Signal are data-flow languages.
Inspired by the data-flow approach [68], Lustre and Signal concentrate on synchronous
bounded-memory data-flow systems. All classic operators in these languages are extended
to handle data-flows in a synchronous way. A program of Lustre and Signal is composed of
a system of equations, which are used to transform data-flows. These languages are consid-
ered as high-level languages with regard to some automatic control and electronic circuits
design, where their behaviors can be captured by dynamical equations.

1http://www.cma.ensmp.fr
2http://www-sop.inria.fr
3They are distinguished from the language Signal

53

CHAPTER 4. CONTROL AND REACTIVE SYSTEMS

Some applications. Despite of the different styles, all synchronous languages have strong
mathematical foundations that help to verify the design correctness. Hence, they are
adopted in the critical systemdesign. For instance, Schneider Electric uses the Scade environ-
ment, which is based on Lustre, to develop the control software for nuclear plants. Aerospa-
tiale uses the same environment for the development of Airbus flight control. Snecma uses
Sildex, a Signal-based tool to develop airplane engines.

In the following part, several languages are detailed. Lustre is taken as an example for
the introduction of some basic concepts in synchronous languages.

4.2.3.1 Lustre

Lustre [24, 54] has been defined at VÉRIMAG 4 in Grenoble, France at the end of 1980’s. It is
based on two approaches: the data-flow approach [68] and the synchronous model.

All the data manipulated in Lustre are data flows. A variable defined in Lustre signifies
a pair of two elements: value and clock. Hence a variable is a infinite sequence of values
associated with a logical clock on a discrete time, which denotes the presence of this variable.
So a variable is considered as:

X = { Xt | t ∈ N }

where t is a natural number that represents an instance in its logical clock associated with X.

Lustre operators. Classical operators over basic data types are available in Lustre (arith-
metic operators: +, −, /, ×, div, mod; binary operators: and, or, not; conditional operators:
i f then else). These operators are extended in order to process data flows that have the same
clock. For instance:

X = (A + B) + 1;

actually means:

∀ t ∈ N Xt = (At + Bt) + 1;

The conditional operator is different with regard to a classical one:

X = i f C > 0 then A else B;

has the same meaning as:

∀ t ∈ N i f Ct > 0 then Xt = At else Xt = Bt;

Lustre proposes other temporal operators that can handle the value relations at different
instants of the same clock or different clocks:

• pre operator can be used to get the variable value at the previous instant, i.e., the value
is memorized to be used at the next instant. For instance, the result of B = pre(A)
leads to a new variable B that has the same clock as A, but its values is that of A at the
previous instant (see the example in 4.5).

4http://www.verimag.fr

54

4.2. REACTIVE SYSTEMS AND THE SYNCHRONOUS APPROACH

• –> is an operator that operates two operands owning the same clock. It is used to set
the first value of a variable to the first value of another variable (see the example in 4.5).

• when is an operatorwhose result can have a slower clock than the clock of the operands.
It is similar to a sampling mechanism. The two operands of when share the same clock.
The second operand should be a Boolean variable, so the sampling occurs at the in-
stants when this variable is true. (see the example in 4.5)

• current is an operator that is inverse to when. Its result has a faster clock than the one
of the operand. The clock of the operand is defined from other variables, from which
the clock of the result of current is computed. The values of the result are the same as
those of the operand when they have the same presences, otherwise, the result takes
the value of previous presence of the operand (see the example in 4.5).

t t1 t2 t3 t4 t5 t6 t7 t8 t9 ...
A 7 5 7 1 5 3 9 8 4 ...
pre(A) nil 7 5 7 1 5 3 9 8 ...
3 3 3 3 3 3 3 3 3 3 ...
3 –> A 3 5 7 1 5 3 9 8 4 ...
B F T T F T T F F T ...
A when B 5 7 5 3 4 ...
current (A when B) nil 5 7 7 5 3 3 3 4 ...

Figure 4.5: Examples of some basic Lustre operators.

A Lustre syntax. Only a simplified version of Lustre syntax is given here. But it is expres-
sive enough to understand the following work presented in this thesis. The complete Lustre
syntax can be found in [54]. Some basic concepts are listed here:

node node_name ({input variable declaration list})
returns ({output variable declaration list})
var ({local variable declaration list})
let

({system of equations})
tel

Figure 4.6: Skeleton of Lustre node.

• Module: amodule, which can be considered as a package, is composed of a set of Lustre
programs. Moreover, these programs are declared in a flat (or non hierarchical) way in
its module;

• Node: a Lustre programs is aNode, which fulfills a certain functionality. A node is illus-
trated in the Figure 4.6. It is identified by its node_name. A node has interfaces, where
input/output variables are declared. It contains a set of equations. These equations,
which are called a system of equations, form a network of operators;

55

CHAPTER 4. CONTROL AND REACTIVE SYSTEMS

• Variable declaration: input/output variables are declared in the interfaces of a node,
whereas local variables are declared locally in a var statement. The variable is declared
as variable_name : type_name. An integer array variable with the shape [2, 2]
can be declared as: array_variable : integer^2^2;

• Equation: an equation is declared as identifier = expression;, which is consid-
ered as an assignment;

• Expression: an expression is either a signal, or an operation on signals.

Compilation of Lustre programs The Lustre compiler allows the static checking at com-
piling time, which helps to enforce the reliability of the Lustre programs [54]. The static
checking includes:

• type checking: the classical check on type consistency;

• definition checking: one and only one variable definition is allowed in Lustre, which
is also called single assignment;

• absence of infinite recursive node invocation: it helps guarantee the reaction time limit
and to obtain the executable code similar to automata;

• clock consistency: operands appeared in the equations should have consistent clocks.
Classical data-flow languages allow operations on different flows, which may need
unbounded memory to support these operations. Under the constraints of bounded
memory, Lustre only provides the operations on clock consistent flows;

• absence of cyclic definition: cyclic definition appeared at the same clock instant, e.g.,
X = Y; Y = X; may result in: X = X, which is causal cycle in Lustre. One of the
solutions is to use the pre operator to break this cycle: X = pre(Y); Y = X; .

Notwithstanding the concurrent specification, a Lustre program is compiled to the C
code within an infinite sequential loop (Figure. 4.7).

<Initialize memories>
Loop

<Read inputs>
<Update memories>
<Compute outputs>

Endloop

Figure 4.7: The generated loop from the Lustre program.

Program verification. The Lustre compiler provides the static syntactic verification, but
obviously, it is not enough for the specification of critical systems. Formal verification is an-
other technique that can check certain required properties specified for the programs. Lustre
proposes synchronous observers [55] to express the safety properties. The observers are spec-
ified in normal Lustre language, which consider the inputs and outputs of the programs.

56

4.2. REACTIVE SYSTEMS AND THE SYNCHRONOUS APPROACH

If the safety properties are satisfied for any inputs and outputs, then the observer always
responses OK, otherwise, the program fails to pass this verification. Assertions can also be
made to describe some environment hypotheses. Lustre is associated with some verification
tools, such as LESAR [55].

Lustre Array. Array, as a basic data structure in Lustre, was first introduced in [56] for the
purpose of systolic array design and simulation. [114] proposed a tool, POLLUX to generate
synchronous circuits. In [94], the author proposes an efficient compilation scheme as well
as optimizations for array iterators in Lustre. Recent work on Lustre array [57] involves the
array content analysis through abstract interpretation.

A code example. A node (Figure 4.8) is considered as a basic functionality unit in Lustre.
Each node produces the same results given the same inputs due to its determinism. Nodes
have modular declarations that enable their reuse. Each node has an interface (input at line
(l1) and output at (l2)), local variable declaration (l3), and equations (line (l5) and (l6)).
Variables are called signals in Lustre. Equations are signal assignments. In these equations,
there is a node invocation (l5) that is declared outside this node. In Lustre, modularity and
hierarchy are inbuilt. The composition of these equations, denoted by ";", stands for their
parallel execution with regard to the data dependencies between them. The node has the
same signification independently of the equation order.

node node_name (A1:int^4) (l1)
returns(A3:int^4); (l2)
var A2:int^4; (l3)
let (l4)

A2 = a_function(A1); (l5)
A3 = A1+A2; (l6)

tel (l7)

Figure 4.8: An example of Lustre code. The node takes A1 as input and the output is A3,
which is the sum of A1 and A2. A2 is a local signal, which is the transformation result of A1
through a function. A1, A2 and A3 are all array with size (4).

Some applications. Since about fifteen years, Lustre has been successfully transferred to
industry, e.g., the SCADE environment5, which takes Lustre as the core language. SCADE is
used by Airbus, Schneider Electric, Eurocopter, etc.

4.2.3.2 Other synchronous languages

Signal

Similar to Lustre, Signal is also a dataflow language and specifies systems in a block
diagram style. Certain signals (variables) are defined and related in a block. Each signal

5http://www.esterel-technologies.com

57

CHAPTER 4. CONTROL AND REACTIVE SYSTEMS

(e.g. x) represents an infinite typed sequence (e.g. (xτ)τ∈N), which is mapped onto the discrete
time. ⊥, which represents the absence of the signal at certain instant on this time, expands the
domain of the signal. The signal has an associated clock, which represents the set of instants
where the signal is present. A process (or a node) is considered as a block or a program,
which is composed of a system of equations over signals. Signal integrates the multiclock
mechanism, which enables a process to be deactivated while other processes are activated.
Hence, this process is considered to have its own and local clock.

Primitive constructs. Five primitive constructs of Signal are presented in the following
table, where the first column indicates their literal names, the second column shows Signal
equations and the last column provides their meanings in terms of values (indexed by t ∈ N)
in the sequence:

Relation Z := X op Y X, Y and Z have the same
clock, and Zt = Xt op Yt,
the operator op represents
generic operators, such as ad-
dition and subtraction, which
is applied point-wise on the
sequences of X, Y and Z.

Delay Y := X $ 1 init C ∀t Xt ,⊥⇔ Yt ,⊥ and ∀t > 0:
Yt = Xk, where k = max{t′ | t′ <
t and Xt′ ,⊥}, Y0 = C.

Undersampling Y := X when B This is a multiclock state-
ment, which implies:
Yt = Xt when Bt = true,
otherwise Yt = ⊥, where B is
a Boolean signal. Hence Y
oversamples X according to
B.

Merge Z := X default Y This is also a multiclock
statement, which signifies:
Zt = Xt when Xt , ⊥

, otherwise Zt = Yt.
Composition P | Q It is the composition of P and

Q.
Hiding P where x x is local to the process P.

From these constructs, other constructs can be derived, e.g., the cell operator. Figure 4.9
illustrates: C = A cell B, where the values of C are taken from A, but its clock is the union
of the clock of A and of when B.

Compared to Lustre, Signal allows to specify the oversampling mechanism. For instance,
for a given clock c1, a faster clock c2 can be built on c1 (see the following example in Fig-
ure 4.10).

58

4.2. REACTIVE SYSTEMS AND THE SYNCHRONOUS APPROACH

Figure 4.9: Illustration of C = A cell B.

1: process k_Overspl = {integer k;}
2: (? event c1; ! event c2;)
3: (| cnt:= (k-1 when c1) default (pre_cnt-1)
4: | pre_cnt:= cnt $ 1 init 0
5: | c1 ^= when (pre_cnt <= 0)
6: | c2:= when (^cnt)
7: |)
8: where integer cnt, pre_cnt;
9: end; %process k_Overspl%

c1 : tt ⊥ ⊥ ⊥ tt ⊥ ⊥ ...
cnt : 3 2 1 0 3 2 1 ...

pre_cnt : 0 3 2 1 0 3 2 ...
c2 : tt tt tt tt tt tt tt ...

Figure 4.10: A clock oversampling process in Signal and its corresponding trace.

An extension of Signal clock system. Signal also addresses hardware/software codesign
issue, e.g., the cospecification and cosimulation through the combination of Signal and
Alpha languages [120]. Signal takes the advantages of behavioral specification, whereas
Alpha [131] is dedicated to the specification on regular numeral computations. The former
enables control-based analysis and validation technologies and tools, but falls short of ma-
nipulation and optimization of multidimensional data processing. The latter is designed
for the algorithms of multidimensional data processing with the help of affine recurrence
equations, from which optimal hardware and software implementations can be derived for
specific architectures.

The refinement of signal clocks in Signal is carried out as a result of the refinement of
Alpha program while it is implemented as specific architectures. This clock refinement is
based on the affine transformation [119], which is built on the time indexes of signals. For
instance, two Signal clocks: c and c1 are considered synchronous, and their clock is denoted
as T = { t | t ∈ N}. The refinements of the two clocks are represented by the affine transforma-
tions, which are defined as: T1 = { nt + φ1 | t ∈ N} and T2 = { dt + φ2 | t ∈ N} respectively,
where n, d, φ1, φ2 ∈ N. The clock c1 is considered to be obtained through an (n, φ , d)-affine
transformation applied on the clock c, where φ = φ1 − φ2 and φ ∈ Z. Then c and c1 are
considered to have the (n, φ , d)-relation, which can then be used to analyze the synchroniz-
ability problem between several clocks undergoing the affine transitions. For instance, the
clocks c and c1 have the (n1, φ1 , d1)-relation, and clocks c and c2 have the (n2, φ2 , d2)-relation.
According to these two relations, the synchronization between c1 and c2 can be deduced.

Signal compiling. In the Signal compiling process, the compiler builds a dependency
graph from the Signal code. This graph is then used for the static correctness analysis, e.g.,
causal cycles and temporal inconsistency in terms of Signal clock.

Model checking. Model checking of Signal programs can be carried out by the Sigali tool-
box [17], which is associatedwith the Signal environment. Sigali adopts polynomial dynamical

59

CHAPTER 4. CONTROL AND REACTIVE SYSTEMS

systems (PDS) over Z/3Z = {-1, 0, 1}) as the formal model. Signal programs can be transformed
into polynomial equations, which are manipulated by Sigali. The three states of a Boolean
signal can be encoded as: true 7−→ 1, f alse 7−→ −1 and ⊥ 7−→ 0. In case of non-Boolean
signals, only their clocks are considered, i.e., their values are ignored.

PDS can seen as an implicit representation of an automaton. Each set of states can be
represented by its associated polynomials. By manipulating polynomial equations, Sigali
avoids the enumeration of the state space. In Sigali, a polynomial is represented by a Ternary
Decision Diagram (TDD), which is an extension of Binary Decision Diagram (BDD).

Model checking can be carried out on PDS [86] with regard to the following properties:

Liveness: the system can always evolve. This property can be checked through the Sigali
command: alive(system). system is the system to be checked;

Invariance: a set of states is invariant when all the recursive reachable states are
also in this set. This property can be checked through the Sigali command:
invariant(system, proposition). Each state in an automaton is associated
with propositions. In previous command, proposition can be considered as a
set of states whose proposition is true;

Reachability: iff the system has always a trajectory towards a state starting from the initial
states, this state is considered reachable. This property can be checked through the
command: reachable(system, proposition).

Discrete controller synthesis. Sigali is also a tool that enables discrete controller synthe-
sis [85]. A controller, which is specified with certain control objectives, is synthesized in
a system through running the controller with the system in parallel. The resulting system
is the desired system satisfying the control objectives. First, the PDS of a system can be
described as:

S =

X′ = P(X, Y,U)
0 = Q(X, Y,U)
0 = Q0(X)

where X, Y and U are sets of variables. Elements of X are state variables, which indicate
the current states of the system and X′ indicate their next states. Y and U are composed of
controllable event and uncontrollable event variables respectively. The controllability of events
is specified with regard to the controller to be synthesized in the system. Events from the
environment of the system are always uncontrollable, whereas the internal events in the
system are always controllable. The first equation implies state transitions. The second
equation is considered as a constraint equation. The last one is the initialization equation.

The controller can be defined with two equations C(X, Y,U) = 0 and C0(X) = 0, where
the first equation indicates the synchronous control, and the second one concerns the initial
states of the controller in consideration of the control objectives. Hence the resulting system
integrated with the controller is:

60

4.2. REACTIVE SYSTEMS AND THE SYNCHRONOUS APPROACH

S =

X′ = P(X, Y,U)
0 = Q(X, Y,U)
0 = C(X, Y,U)
0 = Q0(X)
0 = C0(X)

According to certain properties specified, the synthesized controller can ensure:

Invariance: the invariance of a set of states can be obtained by using:
S_Invariance(System, proposition);

Reachability: the reachability of a set of states is ensured by using:
S_Reachability(system, proposition);

Signal-Meta. Signal-Meta [22] is a metamodel dedicated to Signal. It is defined in Generic
modeling environment (GME) [1], a model-integrated configurable toolkit that supports the
creation of domain-specific models for large-scale systems. A tool is also developed to trans-
form the graphical Signal-Meta specifications into the Signal code.

Signal GTi. Signal GTi [115] is an extension to Signal with constructs for hierarchical task
preemption. Tasks are defined as the association of a data-flow process with a time interval
on which it is executed. In Signal, a process is defined to react to the environment in an infi-
nite way, however, no explicit constructs are defined to handle the termination, interruption
or sequencing of processes, which implies limitations of process behaviors to a slice of cer-
tain reaction instants. Both dataflow and tasking paradigms are available within the same
language-level framework.

Lucid synchrone

Lucid synchrone [111] is a language for the specification of reactive systems. It is based
on Lustre language from the point of view of time model, and it also benefits from OBJEC-
TIVE CAML, which is its host language. It is a strong typed and higher order functional
language. The type system presented in Lucid synchrone helps to achieve type and clock
inference, causality analysis.

Lucid synchrone distinguishes combinatorial functions and sequential functions. The
former represents the functions that do not have states. The latter implies the functions
whose results depend on its internal states. Lucid synchrone enables a multiclock system,
e.g., it has the downsampling operator when and oversampling operator merge, similar to
Lustre. Moreover, it oversampling mechanism makes it possible to define outputs that are
faster than inputs. The match/with statement makes it possible to activate different equations
according to the values of some variables. The following example shows a node containing
this statement:

type modes = Up | Down

let node m i = o where
match m with

61

CHAPTER 4. CONTROL AND REACTIVE SYSTEMS

Up -> do o = i + 1 done
| Down -> do o = i - 1 done

end

Another interesting feature is the explicit state machine specification in Lucid synchrone,
which is detailed in Section 4.2.3.3.

Esterel

Esterel [21, 14] adopts an event-driven style, compared to previouslymentioned dataflow
languages. Esterel is an imperative language, which is well situated for control-dominated
reactive systems. Esterel programs is composed of a set of nested threads that run concur-
rently or sequentially. Communications between threads are accomplished by pure signals or
valued signals, which are distinguished from the variable of other programming languages.
Signals in Esterel are considered as some kind of events, even they carry values. Whereas a
variable is similar to a unit of memory, whose value can be changed during execution.

Statements. Main statements of Esterel are based on the operations on signals:

• emit X: emit the signal X;

• present X then s1 else s2 end: monitor the signal X, if it appears, then exe-
cute the statement s1, otherwise, execute s2;

• await X: pause the execution until the next appearance of X.

Despite of the concurrent or sequential execution of the statements, Esterel has a single
and global clock, where the signals are manipulated at each instant. Multiclock Esterel has
also been studied recently in order to release initial single clock requirement [15]. The ex-
ecution of threads at each instant is considered instantaneous, which starts from where it
paused at the previous instant and pauses again or terminates when the execution (or reac-
tion) in this instant accomplishes. The following statements are involved in the organization
of statements:

• pause: pause the program until the next reaction;

• s1 ; s2: pass the control to s2 immediately when s1 finish;

• s1 || s2: start both statements s1 and s2 at the same time, and the control is passed
to next statements only when both these two statements finishes;

• loop s1 end: repeat the statements s1.

Esterel enables the preemption specification too. abort s1 when X is the statement that
has a strong preemption flavor. The statements s1 will be killed immediately when X ap-
pears. By comparison, weak abort s1 when X allows s1 to finish the execution of the
current reaction. Previously mentioned statements are considered as basic statements of
Esterel, more complex statements can be derived from these basic ones.

62

4.2. REACTIVE SYSTEMS AND THE SYNCHRONOUS APPROACH

Constructive causality analysis Causality analysis is a very important static analysis in
Esterel, which helps to find deadlocks in the specification. Compared to causality analysis in
Lustre, Esterel is based on constructive causality [13], which allows a finer grain verification
of certain causal statements by using constructive logic rules. As a result, it provides Esterel
a better solution compared to the Lustre one, which rejects all causality cycles.

4.2.3.3 Mixed-style languages

Mode automata and Matou

In several tools or development environment dedicated to dataflow applications, the
multi-paradigm has been proposed to integrate languages in different styles, i.e., dataflow
and some imperative feature:

• SIMULINK and STATEFLOW6 : the first one is used for the specification of block di-
agrams where some operators of STATEFLOW are used for the computation of some
dataflow. The results of the computation serve to control the system.

• SCADE and SyncCharts7: in the SCADE environement, state machines of SyncCharts
are embedded to activate dataflow processing specified in Lustre.

• PTOLEMY II [23]: state machines can be also mixed with dataflow equations.

Mode automata [82] derive from the concept of combination of formalisms, which is sim-
ilar to previous mentioned multi-paradigm. Mode automata are proposed to extend the
dataflow language Lustre with certain imperative style, without many modifications of lan-
guage style and structure.

Mode automata are mainly composed of modes and transitions. In an automaton, each
mode has the same interface. In each mode, equations can be specified. But only a subset
of Lustre is used for modes. For instance, operators, such as initialization, sampling and
oversampling, are not allowed to be used in modes. Transitions can be associated with
conditions, which act as triggers. However, the pre operator cannot be used in conditions.

Mode automata can be composed together in a parallel way, which is called parallel compo-
sition. The composition result is the Cartesian product of the sets of modes of the automata
to be composed. The composition also makes it possible that the automata communicate
with each other in a way that one output of one automaton can be taken as an input of an-
other automaton. In order to avoid the causality problem, weak transition is imposed in mode
automata, which implies that new values of a variable can only be taken into account in the
next instant.

Hierarchical composition is based on the refinement of certain modes in the automata.
At each level, the variables in the states are considered global, as all the state at this level can
see these variables. However, a variable cannot be multiply defined at different hierarchical
levels.

6http://www.mathworks.com/products/simulink
7http://www.esterel-technologies.com

63

CHAPTER 4. CONTROL AND REACTIVE SYSTEMS

Matou: an implementation of mode automata based on Lustre. In Matou, mode au-
tomata can be specified with the Targos format, which is an explicit specification of automata.
Then mode automata can be compiled into DC code, which is an intermediate format in
the process of compiling Lustre to C. Consequently, analysis and verification tools associ-
ated with DC can be used. Mode automata can also be compiled into polynomial dynamical
systems over Z/3Z, so that Sigali can be used for model checking and discrete controller
synthesis.

State machines in Lucid synchrone

In Lucid synchrone, state machines can be directly specified [112]. Lucid synchrone state
machines (LSM) can be composed in a parallel and hierarchical way. In each state of LSMs,
equations can be specified in the same way as mode automata.

However, LSMs make some distinctions or improvements from mode automata:

• Strong transitions are allowed in LSMs, compared to mode automata, which only en-
able weak transitions. Strong transitions enable strong preemption so that the transi-
tion conditions (guards) are evaluated in the same reaction and the equations in the
new states are evaluated immediately too;

• LSMs allow local variable definitions used in the states. However, variables used in
the states of mode automata are global variables;

• Computation defined in the states of LSMs can be resumed when these states are re-
entered. But it is not the same case asmode automata, where the computation is always
reset;

• LSM states can be parametrized, similar to a function. It enables to initialize a state
with some input values, which can be used in the equations in the state. In this manner,
information can be passed between states, and it helps to reduce the state number.

Polychronous mode automata

Polychronous mode automata [126] aim at extending Signal with multiclocked mode
automata. Polychronous mode automata also enable strong transitions, and at most two
transitions (strong transition and/or weak transition) can be fired in one reaction, which are
similar to Lucid synchrone state machines. However, polychronous mode automata allow
to define local clocks, which is considered as an advantage for the specification of multiclock
system. A meta model has been built for the polychronous mode automata, which enables
automatic Signal code generation.

Amixed control and data for the distribution

[108] presents anothermethod that combines control and data processing. Thismethod is
proposed to unify different specifications for the control and data processing for distributed
embedded systems. The resulting specification is a conditioned data flow graph. The Syn-
DEx software [74] is used to automatically generate a distributed and consistent implemen-
tation.

64

4.3. CONCLUSIONS

4.2.4 Using synchronous languages for Gaspard2 control modeling and valida-
tion

Synchronous languages are proposed to be used for the Gaspard2 control and validation
purpose. On one hand, system behavior specified with synchronous languages is clear and
deterministic. Their control mechanisms contribute to the construction of a safe control
mechanism for Gaspard2. On the other hand, synchronous languages provide associated
tools for the validation purpose, e.g., their compilers can check the causality, determinism
and reactivity of the synchronous programs; their associated model checkers can verify pro-
gram correctness according to specified properties. As a result, these languages have been
successfully used in several critical domains (e.g. avionics, automotive and nuclear power
plants.).

We therefore propose the transformation of Gaspard2 specifications into executable code
in synchronous languages in order to benefit from the existing validation tools associated
with these languages. This approach does not need intensive development of Gaspard2-
specific validation tools. In addition, it enables to borrow ideas of safe control with formal
semantics from synchronous languages.

4.3 Conclusions

This chapter first presented the control and validation requirements of Gaspard2. The ex-
pected control has the following characteristics: high-level and state-based. This helps to
build a simple but efficient control mechanism. These characteristics meet the requirements
for the high-level dynamic behavioral specification of DIP applications. Validation is another
concern of Gaspard2. First, verification of Gaspard2 applications without control is expected.
However, no tools are provided to support this verification. Second, the introduced control
should be safe and verifiable so that the control can also be verified with ease.

The proposed approach. Synchronous languages define unambiguous system behavior
and their associated tools enable formal analyses and verifications. The MDE framework
provides the solutions of modeling and model transformations that bridge the gap between
high-level specifications and low-level execution models. Hence it is natural to take the
advantages of these two technologies for themodeling, model transformation and validation
of Gaspard2 applications (Figure 4.11).

Figure 4.12 illustrates the global view of the proposed approach. The involved transfor-
mations are located in box S 1, which start from the Gaspard2 model. MDE transformations
(Transf1 in the figure) are then carried out on this Gaspard2 model into the synchronous
model. The obtained model serves to generate code in synchronous languages (Code genera-
tion in the figure).

Another work, which appears in box S 2, involves the integration of control in term of
automata in Gaspard2 and the previous synchronous modeling. The bridge between the
two modeling is Transf2 in the figure, which is an extension of Transf1 with control aspects.

With the help of the code and tools provided by synchronous languages, the application
analysis and validation are possible (box S 3 in Figure 4.12). For example, The generated code
in Lustre, Signal, Lucid synchrone and mode automata can be used for various purposes:
synchronizability analysis, causality verification, simulation, model checking, discrete con-

65

CHAPTER 4. CONTROL AND REACTIVE SYSTEMS

Figure 4.11: A combination of three domains.

Figure 4.12: A global view of the proposed approach.

66

4.3. CONCLUSIONS

troller synthesis, etc. The results of the analysis and valication contribute to uncovering the
corresponding problems that are present in the original Gaspard2 designs. The corrected de-
signs can be transformed into other low-level implementations for the purpose of simulation,
performance evaluation, compilation, etc.

The synchronous modeling without control concepts is presented first as a basis in this
thesis in Chapter 5. This modeling involves the construction of a synchronous equational
model, which is a common model to the three synchronous languages. A translation of
a Gaspard2 model into the synchronous model is also presented with only their abstract
syntax.

Then the model transformations between the two models, within the MDE framework,
are also presented in Chapter 7. These transformations are based on two metamodels, i.e.,
Gaspard2 metamodel and synchronousmetamodel, and a set of transformation rules. These
transformations have been implemented with the Eclipse environment.

Control concepts, which are integrated in Gaspard2 model and the synchronous model
are presented separately as well in Chapter 6. The control mechanism is inspired by mode
automata and is based on control and data computation separation. Parallel and hierarchical
composition, which contributes to build complex systems, is also described.

Extensions of the Gaspard2 and synchronous metamodels, in consideration of the intro-
duced control concepts, are then presented in Chapter 8. Transformation between Gaspard2
models and synchronous models is also discussed. Pure equational models or mode au-
tomata model can be obtained as a result of the transformation.

A case study is presented in the last Chapter 9. It first illustrates the modeling, including
DIP and control modeling, and formal analysis and validation carried out on the generated
code with the help of tools associated with synchronous languages.

67

CHAPTER 4. CONTROL AND REACTIVE SYSTEMS

68

Part II

Synchronous modeling and reactive
control of DIP applications

Chapter 5

Synchronous modeling of DIP
applications

5.1 General modeling approach . 72

5.1.1 Step 1: space refactoring . 73

5.1.2 Step 2: space-time analysis and mapping 73

5.1.3 Step 3: synchronous modeling . 76

5.1.4 Step 4: code generation . 76

5.2 General synchronous modeling propositions 76

5.2.1 Array data structure . 76

5.2.2 Parallelism modeling . 77

5.2.3 Hierarchy and composition . 78

5.3 Gaspard2 and synchronous representations 79

5.3.1 A Gaspard2 abstract syntax . 79

5.3.2 Synchronous equations abstract syntax 80

5.4 The translation between the two representations 81

5.4.1 Structural translation . 81

5.4.2 Translation of behavioral aspects . 81

5.4.3 Correctness of the translation . 83

5.4.4 Translation with serialization and partition semantics 85

5.5 Conclusions . 88

This chapter presents the synchronous modeling of DIP applications, in the form of
Gaspard2 data-dependency model1, so that a Gaspard2 model can be translated into an
executable model of synchronous dataflow languages, in consideration of the constraints of
these languages. This modeling bridges the gap between DIP and synchronous languages,
and also contributes to the analysis of DIP so that safe-design concepts (e.g., safe operators
and their formal semantics) can be integrated into DIP, and formal validation of design can
be carried out with its clear semantics.

1Although only Gaspard2 model is mentioned in this chapter, the MARTE RSM model is similar to the
Gaspard2 model, therefore, the synchronous modeling of the MARTE RSM model is the same as the Gaspard2
one.

CHAPTER 5. SYNCHRONOUS MODELING

5.1 General modeling approach

As a high-level specification language, Gaspard2 is not intended to be involved in imple-
mentation details that may mess up the specification. Furthermore, it provides the possibil-
ity to exploit the parallelism according to the hardware architecture on which it maps. These
features make it not obvious to translate Gaspard2 specifications into executable implemen-
tations in certain programming languages, because this is not a direct structural translation.
For instance, some features in Gaspard2, such as the infinite dimension and tiler, could not be
translated directly due to implementation constraints of programming languages, platforms
or hardware. These constraints involve memory space, computing power, execution time,
etc. In spite of the distinctions between the specification and implementations, a translation
is expected to preserve the properties of Gaspard2, such as parallelism and single assign-
ment.

Figure 5.1: An executable synchronous model is obtained after four steps of analysis and
modeling. This figure also illustrates the intermediate models in this process.

In order to obtain an eligible modeling, the previously mentioned problems are sepa-
rately addressed according to the separation of concerns approach. As a result, the translation
of a Gaspard2 model into synchronous languages can be divided into four steps: refactoring,
space-time analysis and mapping, synchronous modeling and code generation. Each of these steps
addresses a specific and independent problem, thus the overall complexity of translation can
be managed at an acceptable level. This translation process is illustrated in Figure 5.1.

72

5.1. GENERALMODELING APPROACH

5.1.1 Step 1: space refactoring

The first step ofmodeling involves the refactoring of an original Gaspard2 model. A refactor-
ing refers to a modification of original model without change of its functionality, e.g., change
of granularity of tiles, increment or decrement of the array dimension number, change of
component hierarchy, etc. It is carried out according to some requirements, which include
optimization of applications, improvement of computing performance, satisfaction of cer-
tain constraints, etc. However, this step is not always necessary, particularly if the model is
considered to satisfy the requirements. In Gaspard2, two kinds of analysis are supported:

• the first one involves some constraints that represent some non-functional aspects con-
sidering the platform, hardware and environment. For instance, execution rate, pro-
cessor number, etc., are considered as constraints for refactoring. Hence, a high-level
system analysis on performance can be carried out based on these factors. Currently,
modeling of these constraints and analysis of performance is an ongoing work;

• the second one concerns the parallelism optimization and compilation, which is sim-
ilar to loop transformation in some languages for high-performance computing. This
work has been studied for Array-OL and Gaspard2 in [121, 32, 49]. The refactoring is
composed of fusion, change of paving, tiling, collapse according to [49]. Implementation
tools are also developed to support the refactoring. How these tools can be also used
for the first kind of refactoring is still under study.

5.1.2 Step 2: space-time analysis and mapping

A refactored Gaspard2 model is considered as a pure-spatial parallel model, which can be
equally an infinite spatial model. The spatial parallel model implies all the elements in this
space may be processed in parallel, e.g., the repetition space in Gaspard2 defines one of this
kind of models. The parallel model is based on a hypothesis on computing resources that
are sufficient to fulfill the parallelism requirement. This characteristic leads to two prob-
lems while translating a Gaspard2 model into implementation models: the first one is that
the refactored Gaspard2 model is a timeless model whereas implementation models, such
as synchronous equational model (synchronous model for short) or FPGA model, are mod-
els with implicit time concepts (timed model for short). The second one is that a Gaspard2
model may be an infinite space model, whereas implementation models always suggest fi-
nite space models due to limited computing capacity. Hence, a space-time mapping is pro-
posed to address these problems. This mapping (it will be detailed in Section 5.1.2.3) is in-
tended to map some dimensions of space onto time, as a result, a finite-space timed model is
obtained from an infinite-space timeless model. Herein, this mapping contributes to bridge
the gap between two different models, i.e., specification model and implementation model.
[52] presents a similar work on space-time mapping on parallel loops.

However, a space-timemapping is not necessarywhen a Gaspard2model is a finite space
model, i.e., this model can be translated into some executable models, such as OpenMP
Fortran and SystemC directly, because the finite space of this model can be covered by the
parallelism provided by these executable models.

73

CHAPTER 5. SYNCHRONOUS MODELING

5.1.2.1 Time dimensions in Gaspard2

A Gaspard2 time dimension is a special spatial dimension, which can be processed by im-
plementations with time concept. For instance, the synchronous language Lustre has a basic
clock, which is considered to be implicit. This clock is composed of an infinite sequence of
instants, which are in total order and can be indexed by number. A Gaspard2 time dimen-
sion adopts the same point of view, i.e., all the elements in this dimension are considered to
be in total order and can be processed in a sequential way. Compared to time dimension,
spatial dimensions imply parallel processing.

In addition, some execution models, such as the synchronous model and the FPGA
model, supportmulticlock system, which makes it possible to adopt a multidimentional-time
mapping from a space model. From the same point of view, we can define some special
multi-space-dimension, which corresponds to the multiclock mechanism in implementation
models. These spatial dimensions are called multi-time-dimension. Other works on multidi-
mentional time issue can be found in [41, 42].

5.1.2.2 Space-time analysis

The space-time analysis contributes to determine which space dimensions are mapped onto
time dimensions. Initially, a Gaspard2 model has an infinite dimension, which is considered
as a special dimension that can be mapped onto a time dimension [19]. But it is not the
unique way, as multidimentional-time dimensions are introduced, the space-time relation
may be complex.

Another contribution of space-time analysis is to find appropriate space-time mappings
in a coherent manner when several mappings are considered at the same time. For instance,
it is not restricted to choose different mappings for different spatial parallel models, for in-
stance, the repetition spaces defined for different computing in a Gaspard2 application.

5.1.2.3 Space-time mapping

Once the previously mentioned analysis is obtained, a space-time mapping is determined
correspondingly. In this case, time tilers2 can be used to map an infinite-space timeless
Gaspard2 model onto a finite-space timed model. In Figure 5.2, some examples of space-
time mappings are illustrated, where the repetition space (A1 with the shape[5,4,*]) has an
infinite dimension (dimension Z). After the mappings, the infinite array A1 becomes several
flows of arrays. Each array in these flows corresponds to an array that can be processed at
one instant of the discrete time. In the mapping m1, the [5,4,*]-array is mapped onto a flow
of arrays, where the infinite dimension of [5,4,*]-array is mapped onto a discrete time dimen-
sion t. However this is not a unique way in the mapping. Taking the granularity level into
account is another important and interesting way. For instance, a [5,4,*]-array can be also
mapped onto a flow f2 of [5]-array where f2 is four-time faster than f1 (the mapping m2). In
an inverse way, the [5,4,*]-array A1 can be mapped onto a flow f3 of [5,4,2]-array where f3 is
two-time slower than f1 (the mapping m3).

When all the infinite dimensions (from different arrays) declared in a Gaspard2 model
are mapped on a common discrete time axe through time tilers, a new model is obtained,
in which a new hierarchy is added so that the infinite dimension (the time dimension) only

2A time tiler refers to a tiler that works on time dimensions in this thesis.

74

5.1. GENERALMODELING APPROACH

Figure 5.2: Illustration of space-time mapping of a [5,4,*]-array in consideration of different
granularity levels.

appears at the highest level in the hierarchy of the Gaspard2 model. The space-time analysis
and mapping results in a re-factorization of the original Gaspard2 model, which is similar
to the one in the step 1. The difference is that, the refactoring at the first step mainly con-
centrates on space refactoring, however the refactoring in this step also consider the time
issue.

5.1.2.4 Space-time mapping for synchronous modeling

According to different space-time mapping, many different results can be obtained. For in-
stance, in the previous example in Figure 5.2, three different mappings lead to three different
flows, i.e., f1, f2 and f3, from the same original array A1. Without any specified constraints,
the basic mapping, i.e., m1, illustrated in Figure 5.2 is chosen for the synchronous model-
ing in this thesis. This mapping represents a mapping such that the infinite dimension in a
Gaspard2 model is considered as the time dimension, which is translated by the basic clock
presented in synchronous languages. So in the synchronous model, there are no more ar-
rays that have infinite dimensions. A Gaspard2 model is considered to be uninterpretable by
a synchronous model (or an execution model) if there is still infinite dimensions after this
space-time mapping, for instance, there is still infinite dimensions in different hierarchies in
a Gaspard2 model.

This mapping has the following advantages. First, this mapping is general enough. For
instance, f2 and f3 can be obtained from f1 in a synchronous model by using the oversam-
pling or downsampling mechanism of synchronous languages straightforwardly. However,
it is not obvious to do it inversely. This mapping is also simple for the following model trans-
formations, because time tilers that implement this mapping are less difficult to implement
than other mappings.

75

CHAPTER 5. SYNCHRONOUS MODELING

5.1.3 Step 3: synchronous modeling

A mapped Gaspard2 model can then be translated into a synchronous equational model
thanks to the synchronousmodeling of Gaspard2 application specification. As the Gaspard2
model has been refactored and mapped on a discrete time, the main concern in this step is
the structural and semantic translation of Gaspard2 models. This translation is detailed in
the following sections.

5.1.4 Step 4: code generation

The synchronous equational model is translated into an executable model in this step. As
these two models are similar in both structure and semantics, then this translation is a direct
one, which is not detailed here.

5.2 General synchronous modeling propositions

The basic concepts of Gaspard2 (Chapter 3) and synchronous languages (Chapter 4) have
been presented in Part I separately. Only some summary comparisons on the similarities and
differences between these two languages are given here. More details will be given in the
description of the synchronous modeling in the following subsections. These comparisons
help the translation from one to another. These comparisons involve:

Gaspard2 synchronous languages

task parallelism concurrency
data parallelism concurrency

hierarchy hierarchical invocation
elementary task synchronous node
data dependency causality

timelessness synchronicity
array dataflow array

5.2.1 Array data structure

In most programming languages, array is defined as a built-in data structure, which has the
following characteristics:

• its elements have the same data type

• its elements occupy a contiguous area of storage

• its elements can be accessed by their regular contiguous indexes with regard to their
addresses.

These characteristics make array a good candidate for regular computing: such as loop
(e.g., for and while statements). Moreover, some programming languages support array op-
erators (e.g., APL [39], HPF [62]), which enable to operate array directly without a loop
statement. This simplification promotes the wide and easy use of array type in these lan-
guages.

76

5.2. GENERAL SYNCHRONOUSMODELING PROPOSITIONS

The data structure manipulated in Gaspard2 is multidimensional array. As Gaspard2
is not a programming language, but a specification language, the data type of array is not
important, so some common data types are used for the specification. However, during
implementation stage, data types of IPs, which will be deployed on elementary tasks, will be
taken into consideration. In contrast, the shape of arrays are important for the specification,
which should be preserved.

In synchronous languages, array is also adopted as a basic data type, but in different man-
ner. Lustre and Signal have array data type as a basic data type, whereas Lucid synchrone
inherits the array data type from its host language OCAML. Array was first introduced in
Lustre in [114], which helps the description of circuits. Later work on Lustre array in [94]
favors a concise specification on array operations.

The synchronous modeling. The multidimensional arrays are translated into array-type
signals in synchronous language in consideration of the following concerns: the data type
of arrays in Gaspard2 are replaced by data types defined in synchronous languages (as a
convention, they are compatible); the shape of an array declared in the original Gaspard2
may be changed due to the differences between these two languages. For instance, array
shape differences caused by the space-time mapping.

5.2.2 Parallelism modeling

5.2.2.1 Task parallelism

All the tasks defined in the Gaspard2 dependency graph are considered as parallel tasks
in spite of dependencies between these tasks. As synchronous languages allow to specify
concurrency, Gaspard2 task parallelism can be translated as node/process concurrency.

5.2.2.2 Data parallelism

Inspired by the parallel nested loop definition in languages for high-performance comput-
ing, Gaspard2 uses a similar concept: repetition space. In addition to the repetition number
that can be calculated from the repetition space, each element in this repetition space defines
a repetition position for each repetition of the repetitive task. This repetition position also
identifies the correspondences between input tiles, task repetitions, and output tiles. Ac-
cording to the data parallelism definition in Gaspard2, this repetition space does not force
an order of the execution of the task repetitions.

The repetition space (Section 2.2.3) is however unfolded (as a repetition space is defined
as a multidimensional array) in the synchronous modeling, i.e., there are the same number
of task repetitions as the repetition number obtained by the product of all the elements in
the shape of a repetition space. Repetition position of task repetitions is implicit and the
correspondence between tiles and task repetitions is also pre-set.

The data that a repetitive task consumes and produces is defined by tilers over the input
and output arrays. The implementation of a tiler can be divided into two steps: first, indexes
of tiles are calculated according to the tiling information associated to a tiler, then tiles are
built from the input/output array with the help of the indexes calculated from tilers. Ac-
cording to these two steps, two possible solutions are available for the tiler implementation:

77

CHAPTER 5. SYNCHRONOUS MODELING

• The tiler is implemented by external functions, i.e., external functions calculate all the
indexes that are needed to build the tiles during translation. Hence, these indexes
are considered to be pre-defined and can be used directly in the target model. In the
current synchronous modeling, this solution is adopted. The indexes are calculated by
some external functions during the translation so that the target synchronous model is
free of tiler computation, hence will not be complicated.

• The tiler is implemented directly in target model, i.e., tiler computation functions are
designed in the target model. The indexes are calculated at run time. This solution is
obviously a dynamic one, because the indexes can be calculated dynamically at run
time. However, the resulting model is complicated and the run-time tiler computation
will increase execution time. For instace, when a Gaspard2 model is transformed into
a OpenMP Fortran model, the computation of tiler indexes is implemented by Fortran
language, and it is embedded in the target OpenMP Fortran model.

5.2.3 Hierarchy and composition

5.2.3.1 Gaspard2 hierarchy and composition

Hierarchy in Gaspard2. Gaspard2 hierarchical specification enables the design of complex
applications. As presented in Chapter 3, Gaspard2 models can be considered to have a re-
cursive two-level hierarchy. The high-level hierarchy represents the task parallelism, where
it contains an acyclic graph of tasks. The tasks are connected to each other by their data
dependencies. Each task in this graph can be refined by another graph of tasks, or by a task
that expresses data parallelism. A task, which is situated at the lowest level, is considered as
a functionality of certain regular computing that can be deployed by an IP.

Hierarchical composition in Gaspard2. The composition defined in Gaspard2 is similar
to component composition or object composition, where the interfaces of components or
objects are well defined in order to guarantee the correct composition, as well as some com-
position conventions. Only data dependencies are involved in the composition definition in
Gaspard2, i.e., elements in a Gaspard2 model are composable if they have compatible data
dependency.

5.2.3.2 Hierarchy and composition in synchronous languages

Hierarchy in synchronous languages. In Lustre and Lucid synchrone, node are declared in
a non-hierarchical way or in a flat way. But a node can be invoked in another node. Hence
these two languages prefer modular definition, rather than hierarchical definition. Whereas
in Signal, one process are preferred to be defined in another process if it is invoked by that
process.

Synchronous compositionality. The compositionality in synchronous languages has al-
ready been studied, for instance, [12] for data-flow languages and [81] for Argos. Details on
synchronous compositionality will be given in the following translation.

78

5.3. GASPARD2 AND SYNCHRONOUSREPRESENTATIONS

5.2.3.3 Synchronous modeling

Hierarchy in Gaspard2 can be translated into, on one hand, the modularity of nodes in Lustre
and Lucid synchrone, and their invocations in a hierarchical way, on the other hand, the
hierarchical definition of processes in Signal. Parallel and synchronous composition operators
in synchronous languages guarantee the same composition properties as those of Gaspard2.

5.3 Gaspard2 and synchronous representations

The translation of a Gaspard2 model into a synchronous model is presented through two
abstract syntax of these languages, i.e., Lustre, Signal and Lucid synchrone. The presented
abstract syntax aims to give a brief description of these two languages without involving too
many technical details.

5.3.1 A Gaspard2 abstract syntax

Application ::= {Task}; {Connection}; {Deployment} (r0)
Task ::= taskname ; Inter f ace ; Body (r1)
Inter f ace ::= i, o : {Port} (r2)
Port ::= datatype ; shape (r3)
Body ::= S tructureh | S tructurer | S tructuree (r4)
S tructuree ::= null (r5)
S tructurer ::= ti : {Tiler} ; (r, Task) ; to : {Tiler}

| ti : {Tiler} ; (r, Task) ; to : {Tiler} ; {IRD} (r6)
Tiler ::= Connection ; (F; o; P) (r7)
S tructureh ::= Application (r8)
Connection ::= pi, po : Port (r9)
IRD ::= Connection ; depvector; de f ault (r10)
Deployment ::= {ipname ; taskname ; deploymentin f ormation} (r11)

Figure 5.3: An abstract syntax of Gaspard2 concepts.

The Gaspard2 abstract syntax is illustrated in Figure 5.3. A Gaspard2 Application (rule
(r0) where {} denotes a set) consists of a set of Tasks, Deployment and Connections (rule
(r9)), which connect the tasks. These tasks share common features (rule (r1)): a taskname, an
interface (rule (r2)) and a Body (rule (r4)). Interface specifies input/output Ports (typed by i
or o in rule (r2), and Port is defined in rule (r3)) from which each task receives and sends
multidimensional arrays. Body (rule (r4)), which depends on the type of task as follows:

• Elementary task (rule (r5)). It corresponds to an atomic computation block. Typically, it
represents a function or an IP. Elementary task can be associated with an IP through
Deployment, which contains deployment information (rule (r11), but only elementary
task is involved in Deployment).

• repetition context task(RCT) (rule (r6)). It expresses data-parallelism in a task. The repeti-
tions of the associated repetitive task are assumed to be independent and schedulable
following any order, generally in parallel. The attribute r (in the rule (r6)) denotes

79

CHAPTER 5. SYNCHRONOUS MODELING

the repetition space, which indicates the number of repetitions. In addition, each task
repetition consumes and produces sub-arrays with the same shape, which are defined
via tilers (rule (r7)). IRD can be also specified in an RCT (rule (r10)), which describes
the dependency between repetitions of the repetitive task. depvector specifies which
repetition relies on which repetitions and default gives default value.

• Hierarchical task (rule (r8)). It is represented by a hierarchical acyclic task graph, in
which each node consists of a task, and edges are labeled by arrays exchanged between
task nodes.

5.3.2 Synchronous equations abstract syntax

This abstract syntax is constructed based on common aspects of synchronous languages,
which is intended for the modeling of three synchronous dataflow languages. The syntax is
illustrated in Figure 5.4:

Module ::= {Node} (s1)
Node ::= nodename ; Inter f ace ; EqS ystem (s2)
Inter f ace ::= Inter f acei ; Inter f aceo (s3)
Inter f acei ::= {S ignalDeclaration} (s4)
Inter f aceo ::= {S ignalDeclaration} (s5)
S ignalDeclaration ::= signal ; DataType (s6)
DataType ::= type ; shape (s7)
EqS ystem ::= {Equation} | extnodelink (s8)
Equation ::= EqLe f t ; EqRight (s9)
EqLe f t ::= null | signal (s10)
EqRight ::= signal |S ignalDelay | Invocation (s11)
Invocation ::= nodename ; {signal} (s12)
S ignalDelay ::= signal ; delayinstant ; {de f aultvalue} (s13)

Figure 5.4: An abstract syntax of synchronous concepts.

As synchronous languages have been presented in a detailed way in Chapter 4, only a
brief description of this syntax is given here. All the nodes are declared in a module (rule
(s1)). A node is composed of Inter f ace and EqS ystem (rule (s2)). An Inter f ace is divided into
two families: Inter f acei and Inter f aceo (rule (s3)). In Signal, Inter f acei and Inter f aceo can
be absent for a node. An EqS ystem (rule (s8)) can have at least one Equation, or extnodelink,
which indicates an external implementation of the node. An equation may be assignment
of a signal, S ignalDelay or just an Invocation of another node (rule (s9), (s10) and (s11)). A
S ignalDelay is similar to a pre operation, which takes the value of the signal at the previous
delayinstant instant (rule (s13)). {de f aultvalue} are default values when no values are provided
for the previous instants.

This syntax is also the basis of the metatmodel of synchronous dataflow languages pre-
sented in Chapter 7.

80

5.4. THE TRANSLATIONBETWEEN THE TWO REPRESENTATIONS

5.4 The translation between the two representations

The first step of the translation of Gaspard2 model into synchronousmodel is structural, and
the second step involves the semantic explanations. Some proofs of translation correctness
are then given after these two steps. In the following translation, Gaspard2 concepts are in
italic font and synchronous concepts are in monospace font.

5.4.1 Structural translation

The synchronous Module (s1) is the container of all nodes. A Gaspard2 Application (r0) is

first translated into a synchronous Node (s2): Application
T
=⇒ Node (A

T
=⇒ B denotes A is

transformed into B). A Task (r1) is translated into a Node: Task
T
=⇒ Node. An Interface (r2) can

be translated into synchronous Interfaces (s3): Interface
T
=⇒ Interface. A Port (r3) is a

connection point of a task, it is translated into a synchronous signal: Port
T
=⇒ signal.

A Body (r4) represents the internal structure of a task. It can be considered as an

Eqsystem (s8): Body
T
=⇒ Eqsystem. Three kinds of structures are involved in a body. A

S tructuree (r5) represents the structure of an elementary task, so no direct translation is car-
ried out. However, deployment will be used for further translation of an elementary task. A
S tructurer (r6) is translated into a set of equations (s9) explained later. A S tructureh (r8) is
a structure that has a compound task. This compound task is an application that has been
explained previously. Deployment (r10) is translated into an extnodelink (s8): Deployment
T
=⇒ extnodelink.

IRD is translated by SignalDelay: IRD
T
=⇒ SignalDelay, depvector is translated by

delayinstant: depvector
T
=⇒ delayinstant, and default is translated by signal: default

T
=⇒ signal.

5.4.2 Translation of behavioral aspects

Except the structural translation, some special aspects in translation are presented here.
These special aspects are usually caused by the different levels of the two languages from
the point of view of programming languages. Synchronous languages involve some exe-
cution aspects in contrast to Gaspard2, so these execution aspects should be added in the
translation.

5.4.2.1 Translation of tasks and their connections

Tasks, which are used in other tasks, are translated into Invocations: Task
T
=⇒

Invocation, in addition to their translations into nodes. The connections between

tasks are translated into signals: Connection
T
=⇒ signal, which can be used in both

SignalDeclarations and Equations.
Tiler (r7) is a special connection that has a tiling tag, which is identified by (F; o; P). In

addition to being translated into signal (s6, s10 and s11): Tiler
T
=⇒ signal, a tiler node

81

CHAPTER 5. SYNCHRONOUS MODELING

should be created additionally, which achieves the tiling function (see Section 5.2.2.2): Tiler
T
=⇒ Node.

5.4.2.2 Repetition context task translation

Figure 5.5: Synchronous modeling of tilers and a repetition context task. The left-side figure
illustrates the structual translation, which focus on resulting nodes. The right-side figure
exhibits data dependency and tile construction in resulting nodes. The relation between
data dependency and tiles are built according to the repetition space specified for Task2.

A RCT can be translated by a set of nodes where one node invokes all others. Figure 5.5
shows an example of this translation. The two sub-figures illustrate the translation from
different point of views. The left-hand one focuses on node invocations, whereas the right-
hand one concentrates on construction of tiles. The Gaspard2 RCT Task1 is translated into
a set of nodes with invocation relations between them: Task1 node is the main node, in
which there are four equations for invocations to others nodes: Tiler1 node, Tiler2
node, Tiler3 node and repTask2 node. Tiler1 node, Tiler2 node and Tiler3
node are nodes that achieve tiling function of Tiler1, Tiler2 and Tiler3. repTask2 node is a
node that regroups all the repetitions of Task2 node.

Repetitive task translation. A repetitive task (Task2 in Figure 5.5) inside a RCT (Task1) is
translated into two nodes: Task2 node and repTask2 node.

• Task2 node is the translation of the task Task2 itself.

• The second node repTask2 node is the modeling of the repetition of the task Task1,
in which |r| (three in the example) invocations to Task2 form the equation system of
repTask2 node. repTask2 node is then invoked in the RCT Task1.

82

5.4. THE TRANSLATIONBETWEEN THE TWO REPRESENTATIONS

5.4.3 Correctness of the translation

The correctness of the translation of the Gaspard2 model into the synchronous model can be
checked at two levels: task level and task graph level. At the task level, elementary task and
RCT are checked. At the task graph level, application or hierarchical task are checked.

5.4.3.1 Elementary task

Elementary task is considered as a transformation from inputs to outputs in Gaspard2, which
can be implemented by IPs. This transformation has several properties:

• timelessness: the transformation time is not considered in Gaspard2, therefore it has
no effect on task behavior.

• statelessness: there is no state memorized in the task, so the outputs only relies on
inputs.

• determinism: the same outputs are produced if the inputs are the same. So this trans-
formation is independent from the environment, its internal states, etc.

• synchronization between inputs and between outputs: according to the data depen-
dency definition in Gaspard2, only the presence of all the inputs can fire the following
computing task. A synchronous node adopts the same property, for instance, the en-
dochrone respected by Lustre and Signal guarantees the same property in the transla-
tion.

An elementary task node in the synchronous model has the same properties exactly. Un-
der the synchrony hypothesis, the reaction time of a node is negligible. No memory op-
erators are introduced into the model, hence nodes are stateless. A synchronous node is
determinist according to the synchronous language definition. Hence a synchronous node
and a Gaspard2 task share the same properties.

5.4.3.2 Repetition context task

A Gaspard2 RCT has also the previous mentioned properties owned by an elementary task.
In addition, its behavior of the transformation from inputs into outputs is specialized by its
exposed internal structure. First, suppose that the internal repetitive task is an elementary
task, the equivalence between an RCT and its translating node is illustrated hereinafter.

As illustrated in Figure 5.5, a single repetitive context task is translated into a set of nodes.
The relation between these nodes are also shown in the same figure. Figure 5.6 illustrates
the detail of these synchronous nodes with simplified equations.

First of all the four previously mentioned properties are checked here.

• timelessness: in spite of some tiling actions specified in a Gaspard2 RCT, an RCT is still
considered to be timeless. The synchronous composition also guarantees the instanta-
neity of the results.

• statelessness: the tilers do not introduce state, so the RCT keeps stateless. The trans-
lated nodes presented in Figure 5.5 are all stateless nodes.

83

CHAPTER 5. SYNCHRONOUS MODELING

A1 A3

A2

t23

tk3

t11
t21

tk1

t13

...

E

E

E

t11 := A1[< ind1
1 >]

t21 := A1[< ind2
1 >]

tk1 := A1[< indk
1 >]

A3[< ind1
3 >] := t13

A3[< ind2
3 >] := t23

A3[< indk
3 >] := tk3

t22

t12

tk2

...

t12 := A2 [< ind1
2 >]

t22 := A2 [< ind2
2 >]

tk2 := A2 [< indk
2 >]

Tiler 1

Tiler 2

Tiler 3Task

Repetition context task

Figure 5.6: Synchronous modeling of tilers and a repetition context task.

• determinism: in the definition of a tiler node as presented in Figure 5.6, the output
array is in fact a part of input array, and their indexes are pre-calculated, so the output
relies only on the input. The result of composition of all the nodes from an RCT is
still determinist because of the determinism, timelessness and statelessness of all these
nodes.

• synchronization: the same as an elementary task.

The full parallelism specified in an RCT is completely preserved thanks to the syn-
chronous composition operator, which allows a simultaneous, concurrent as well as non
interleave composition of equations. It is true not only for the repetitive task, and also for
the building of the tiles.

Finally, correctness of structural translation is checked here. Regardless of the multiple
node declaration for the purpose of translation of an RCT, Figure 5.6 can be written in a
textual equation system as in Equation 5.1. There is only a presentation form difference
between Figure 5.6 and Equation 5.1.

t1
1 := A1[< ind1

1 >] ; ... ; tk
1 := A1[< indk

1 >];

t1
2 := A2[< ind1

2 >] ; ... ; tk
2 := A2[< indk

2 >];

t1
3 := E(t1

1, t
1
2) ; ... ; tk

3 := E(tk
1, t

k
2);

A3[< ind1
3 >] := t1

3 ; ... ; A3[< indk
3 >] := tk

3;

(5.1)

where in the first two lines, patterns (t1
1 , ... , tk

1, t1
2,...,t

k
2) are constructed from the two

input arrays (A1,A2), in the third line, the k repetitions on E are illustrated, and the fourth
line shows how patterns (t1

3 , ... , tk
3) are used to build the output array (A3). < ind j

i > denotes
a set of index associated with the elements of a tile that corresponds to the point j in the
repetition space; Only part of equations are given here for the sake of conciseness and clarity.
If the tiler for an array Ai is (Fi, oi, Pi), spi is the shape of the pattern associated with the task
E tiles in array Ai and sai is the shape of array Ai, then < ind j

i > denotes the following set of
indexes (Equation 5.2):

∀ j ∈ repetition space, < ind j
i >= {oi + jPi + xFi mod sai , where 0 ≤ x < spi} (5.2)

84

5.4. THE TRANSLATIONBETWEEN THE TWO REPRESENTATIONS

The equation system (5.1) is well structured, but is not a presentation with regard to its
original Gaspard2 specification. Particularly, the repetitions are not clear. However, it can be
resolved by considering the commutativity and associativity properties of the composition
operator in synchronous languages. The operator helps to permute the equations in 5.1 so
as to obtain the equations in 5.3.

t1
1 := A1[< ind1

1 >] ; t1
2 := A2[< ind1

2 >] ; t1
3 := E(t1

1, t
1
2) ; A3[< ind1

3 >] := t1
3

...

tk
1 := A1[< indk

1 >] ; tk
2 := A2[< indk

2 >] ; tk
3 := E(tk

1, t
k
2) ; A3[< indk

3 >] := tk
3

(5.3)

where each line demonstrates one repetition j in the repetition space.
Each line of the equation system (5.3) consists of the introduction of a few intermediary

local signals in the following equation (5.4), hence it can be trivially proved equivalent:

∀ j ∈ repetition space, A3[< ind j
3 >] := E(A1[< ind j

1 >], A2[< ind j
2 >]) (5.4)

However, it is costless to introduce intermediary signals, as they can be compiled away
by the synchronous compilers and optimizers.

The modeling of a repeated computation then amounts to the synchronous composition
of all the models of each point in the repetition space.

5.4.3.3 Hierarchical task

A hierarchical task is considered as a task that contains a task graph, whose internal tasks
can be elementary tasks, RCTs or hierarchical tasks. A simple hierarchical task with only ele-
mentary tasks and RCTs will be considered first. As all the internal tasks in this hierarchical
task are timeless, stateless and determinist, the same properties are also passed to the hier-
archical task. Analogously, the nodes translated from the hierarchical task are all timeless,
stateless, determinist nodes. A hierarchical task also expresses task parallelism, i.e., all the
tasks in the hierarchical task run in parallel. Nodes obtained from the translation have the
same property, i.e., all the nodes are concurrent.

A complex hierarchical task may have hierarchical tasks inside or it is an RCT whose
internal repetitive task is still a hierarchical task, etc. Once a simple hierarchical task is
proved to have the same properties, the same proof can be carried out recursively on the
hierarchical task so that a complex hierarchical task is checked completely.

5.4.4 Translation with serialization and partition semantics

In addition to the translation presented previously, which is called translation with parallel
semantics, other refined translations are discussed here, i.e., translation with serialization
semantics and translation with partition semantics. These different semantics are distin-
guished according to the translation of the parallelism defined in an RCT, i.e., how the paral-
lelism of its repetitions is handled in the translation. The translation with parallel semantics
preserves the maximum parallelism of a Gaspard2 model, i.e., a full parallel model, new
translations consider different constraints that result in fully or partly serialized models.

85

CHAPTER 5. SYNCHRONOUS MODELING

5.4.4.1 Translation with serialization semantics

While the parallel model (the result of the translation with parallel semantics) fully preserves
the data-parallelism, a serialized model (the result of the translation with serialization se-
mantics) offers the serialization of the parallelism, which makes sense when Gaspard2 tasks
run on a single processor.

The difference between this translation and the previous translation with parallel seman-
tics is the translation of the repetitive context task, in which the serialization is carried out,
and of its internal elements, i.e., tilers and the repetitive task. In addition to computing tiles,
an input tiler is also a flow generator, which sends the tiles in a dataflow manner. Inversely,
an output tiler receives a flow of tiles and assembles them into arrays. The repetitive task
has only one instance, which is repeatedly called in a sequential way so that flows of input
tiles are processed in a dataflow way and the flow of output tiles are sent.

Figure 5.7: Result of a translation of the repetition context task in Figure 5.6, in which the
repetitions of the repetitive task are serialized.

Tiler translation. Compared to the previous translation of tiler in a parallel model, the
translation here should also take flows into account, which includes the following aspects:
1) clock: tilers in this model have different clocks for the inputs and outputs, which have an
oversampling or downsampling relation, in order to build flows from an array or inversely.
For instance, the input tiler utilizes an oversampling mechanism so that the output is faster
than the inputs, moreover, the outputs are serialized into a flow due the oversampling mech-
anism. 2) memorization: the input and output clocks of a tiler are different, but the array (as
input or output) should always be available for any clocks associated with the tile genera-
tion, which are faster than the clock of the array. Hence, the memorization of the array is
necessary. 3) scheduling: the flows produced by an input tiler should be coherent (particu-
larly in order) with the flows taken by the output tilers, hence a common sequencer should
be considered here, which is dedicate to scheduling of the tiles in a coherent way for both
input and output tilers. [47] presents two examples of input and output tiler translation,
which is encoded in Signal.

Repetition context task translation. A RCT is modeled by the composition of the three
kinds of tasks, tilers and repetitive task. The former is described already, the latter is repre-
sented by a single invocation of the node representing the repeated body.

86

5.4. THE TRANSLATIONBETWEEN THE TWO REPRESENTATIONS

Conclusions. In spite of the different semantics of the parallel model and serialized model,
they are strictly functional equivalence (or flow-equivalence [77]). The following analysis
gives the proof:

• timelessness: the transformation of inputs into outputs of an RCT is always timeless,
even if the tiles are serialized. Hence, the serialized time model does not change the
behavior of an RCT.

• statelessness: memory are introduced in the model, but it is does not introduce execu-
tion states for the task, because it is always equivalent to inputs.

• determinism: a common sequencer is integrated for input and output tilers, however,
the order of tiles decided by the sequencer does not change the values of tiles and
output arrays. Hence a RCT is still determinist from the point of view of its interface.

The serialized model is more compact in comparison with the parallel model because it
only defines one instance of the repetitive task in a RCT. It therefore significantly reduces
the size problem, which is always caused by the enumeration of all repetitions of a repetitive
task. More generally, Gaspard2 applications can be modeled by combining both parallel and
serialized models, which extends the scalability of the synchronous modeling [47].

5.4.4.2 Translation with partition semantics

Mixed parallel and serialized model provides a refined modeling of a Gaspard2 model, this
mixture can still be refined from a parallelism partition view, which enables partial paral-
lelism specification, compared to the full parallelism specified by a parallel model. This
partition modeling is reasonable from the point of view of the allocation of repetitive tasks
on multi-processors, each of which executes certain serialized repetitions. Figure 5.8 shows
an example of this modeling. The repetitive task E has six repetitions, which are partitioned
into two groups. Each group is executed in a sub RCT, which executes three serialized repe-
titions. This modeling is based on the parallel and serialized modeling with an extension of
repetition partition.

The partition is mainly carried out on the repetition space, as a result, some sub-spaces
are defined. Each sub-space represents the repetitions that are serialized in the same sub RCT,
similar to the serialized model. However, between these sub-spaces, they are considered to
be processed in a parallel manner, similar to the parallel model. This partition of repetition
space is predefined, where the translation can directly take the partition result into account.

The translation of a partitioned model is a little different from the previous translations
of parallel and serialized model. The main difference is the introduction of sub-RCTs, each
of which concentrates on the processing of a sub repetition space. However, the translation
of a sub-RCT is similar to the one of the serialized model. The translation of tilers in an RCT
is a little different from the one of the parallel model. According to the sub repetition space,
the tiles are assembled into groups, which is very simple in the translation.

A serialized model is equivalent to a parallel model from a functional point of view. Due
to the same reason, a partitioned model is equivalent to a parallel or a serialized model.
As the partition is predefined and determinist, the partitioned model preserves the same
properties as those of a parallel or serialized model. Moreover, a partitioned model is more
suitable to model applications running on multi-processors.

87

CHAPTER 5. SYNCHRONOUS MODELING

Figure 5.8: Result of a translation of the repetition context task in Figure 5.6, in which repeti-
tions are partitioned for processing.

5.5 Conclusions

The previously presented synchronous modeling leads to an intermediate model between
data-parallel applications (Chapter 3) and synchronous data-flow languages (Chapter 4).
First, this model is generic enough so that it will not suffer from the complexity and par-
ticularity of target languages (Lustre, Signal and Lucid synchrone). It preserves only the
common aspects of these languages. Hence, on one hand, it is possible to generate these
three languages with only one model, on the other hand, this model is easy to be extended to
adapt to anyone of these languages with its particular aspects. Moreover this synchronous
model enables potential improvements, for instance, the integration of application control
(Chapter 6).

Secondly, this model is intended to capture as many as possible the properties of the
original Gaspard2 data-dependency model, such as the parallelism, determinism, data de-
pendency and hierarchy. These properties are preserved in the resulting synchronous model
with the help of similar properties in synchronous languages, such as concurrency, modu-
larity, re-usability, causality and hierarchy. The property coherence between the two models
contributes to guarantee that the verification carried out on the resulting synchronous code
is also valid for the original Gaspard2 model.

Apart from the parallel model, serialized and partitioned models are also proposed for
a wider adaption with non-functional constraints. These two models, which were briefly
presented in this chapter, offer certain refined view of the basic parallel model at a high
level.

Finally, this modeling provides the possibility to be implemented with the MDE ap-
proach. This implementation includes metamodeling, model transformations with the help
of some MDE-based tools, which is detailed in Chapter 7.

88

Chapter 6

Reactive control extension of
Gaspard2

6.1 Introduction . 90

6.1.1 Control modeling in DIP applications 90

6.1.2 Basic ideas of Gaspard2 control . 92

6.1.3 Previous control proposition in Gaspard2 96

6.2 An extension proposal for control . 96

6.2.1 Mode switch task and modes . 96

6.2.2 State graphs and state graph tasks . 97

6.2.3 Task compositions of SGT and MST in Gaspard2 101

6.3 Reactive control extension in Gaspard2 . 105

6.3.1 Gaspard2 control in a dataflow context 105

6.3.2 Reactive automata based control mechanism in Gaspard2 106

6.4 Typical examples . 107

6.4.1 A typical example of a counter . 107

6.4.2 A control example for cell phone video effect 109

6.5 Conclusions . 110

This chapter presents the study of control-related behavior specification for DIP appli-
cations, particularly in the Gaspard2 framework, and the integration of reactive and state-
based control in Gaspard2 in accord with MARTE. This work is based on the previous propo-
sition of Ouassila Labbani [71], which introduced a control mechanism in Gaspard2. The
previously proposed control mechanism is intended to satisfy the requirement of behavioral
specification in Gaspard2. However, some important features are absent in this proposition,
which include parallel and hierarchical composition definition of control operators, formal
semantics of the control model, etc. These features provide the possibility to build complex,
but safe and unambiguous systems.

Therefore, the study presented here leads to the proposition of a refinement and exten-
sion of previous Gaspard2 control with new operators and refined semantics, which inte-
grate the previously mentioned features. Moreover, the new control mechanism takes the
following aspects into account:

CHAPTER 6. REACTIVE CONTROL EXTENSION

• the control mechanism should be compatible with newly proposed UML MARTE pro-
file, i.e., the control can bemodeled by using the MARTE profile or MARTE compatible
concepts;

• the control needs to consider conciseness and clarity, which will benefit, on one hand
the documentation and communication, and on the other hand model transformation
that enables the implementation level code generation;

• the control also needs to take safe design into account, particularly expected properties
in the design, i.e., at the high-level design stage, which helps to reduce fault risks so as
to reduce verification cost and time. Besides, it needs to provide the formal semantics
to enhance verifiability, so that its behavior can be deduced or checked to be correct.

This extension is considered orthogonal to the synchronous modeling introduced in
Chapter 5, i.e., a similar extension in the synchronous model is necessary. The control in
the synchronous model should be compatible with the Gaspard2 one so that the translation
of one into another is not difficult.

The proposed control extension does not aim at Array-OL, which is a pure data par-
allelism specification language. It is integrated into Gaspard2, which is subject to the re-
factoring and space-time mapping steps from the original Array-OL one. Thereby, the
Gaspard2 specifications are optimized and executable in relation to some particular tech-
nologies or hardware architecture. Some primitive ideas of a state-based control mechanism
in alignment with Array-OL and Gaspard2 are briefly presented in Section 6.1. New oper-
ators of the control extension are then presented in Section 6.2. The corresponding reactive
control in Gaspard2 is presented in Section 6.3. Some examples are then given in the last
Section 6.4.

6.1 Introduction

6.1.1 Control modeling in DIP applications

The core formalism of data parallelism in Gaspard2, namely Array-OL, allows a concise
specification for DIP applications. It is based on data dependency descriptions and repetition
operators to express data parallel applications. It allows to specify static applications, more
precisely, it is not possible to change data processing at run-time. For instance, in the high-
performance video and image processing, once filters are chosen, the application behavior is
completely fixed statically. It is not possible to change the application configuration at run-
time. Obviously, this kind of applications benefits from the simplicity in design and high
performance in execution. Moreover, the system performance can be easily evaluated.

However they are considered as advantage only for the systems that do not require many
resources for processing, such as memory, computing power, energy and communication.
The disadvantages of these systems are evident: they are too specific and static. Even a small
replacement or a modification of a functionality in the system leads to the reconstruction of
the system. The absence of behavioral specification becomes a big constraint in current DIP
applications, where abundant hardware resources provide the potentiality of application
flexibility, in particular. For instance, the increasing processing capability of modern multi-
media cellular phones permits to choose different video effects while playing back a video
clip.

90

6.1. INTRODUCTION

System behavior in systems can be specified in different forms, and at different levels,
etc. In this thesis, we focuses on control-related behavior, which will only be called behavior
afterwards for simplicity. According to the context of Gaspard2, the behavior modeling is
based on the following characteristics:

High-level control. Behavior is present at several levels in a system with regard to Array-
OL tasks: a) intra-task level, which is the finest level that makes a task dynamic, for
instance, the if/then/else statements specified in a task result in dynamic changes dur-
ing the execution of the task;

b) inter-task level (only atomic tasks are considered here), where dynamic application is
specified, i.e., through the changes of tasks, the application is given a behavior; c) appli-
cation level, where applications can be changed through the switches between applica-
tions. An application here refers to a hierarchical task that can accomplish a complete
functionality. The overall behavior of the system is the composition of the control at
these three levels. But we are only interested in the high level control in Gaspard2, in-
cluding inter-task and application level control. The intra-task level control is too fine
thus does not help to simplify the application specification, particularly, an atomic task
(it does not have any hierarchy) is considered as an elementary task, whose behavior
is not visible.

Data/control separation. The data control separation has been studied in the previous work
of Ouassila Labbani [71]. Her study is based on SCADE1, which integrates imperative
features in the dataflow language Lustre. The imperative part can be specified with
state machines, and the data computation part can be specified in Lustre.

State-based control. A state-based control mechanism, e.g., state machines, is preferred in
Gaspard2, not only because of its wide adoption in academia and industry, but its
verifiability supported by large quantity of formal verification tools. New extensions
has been proposed based on the mode automata [84]. There are evident advantages:
mode automata are a simplified version of Statecharts [58] in syntax, which have been
adopted as a specification language for control oriented reactive systems. Mode au-
tomata has a clear and precise semantics, which makes the inference of system behav-
ior possible and is supported by formal verification tools.

Safe control. The integrated control in Gaspard2 is intended to take safety design concerns
into account, including safe properties and verifiability. The first one enables to build
the system in a correct manner, which reduces the overall verification cost and time.
The second one involves the verification of the resulting specification in a simple, fast
and reliable way. Mode automata are designed in consideration of safety concerns.
The modes are exclusive so that, on one hand the exclusivity of modes makes a clear
separation of application functionality, which reduces possible fault risks, and on the
other hand the faults in one mode will not take effect in others modes, which helps to
avoid fault propagation.

Previous discussions exhibit the basic requirements of Gaspard2 with regard to the be-
havioral specification. The proposed control mechanism is based on these requirements.

1http://www.esterel-technologies.com

91

CHAPTER 6. REACTIVE CONTROL EXTENSION

In the next section, these requirements are considered in combination with the Array-OL
language, which is dedicated to the full parallelism specification that enables parallelism ex-
ploitations on different hardware architectures. In order to preserve the full parallelism ad-
vantage, the control extension is therefore carried out in Gaspard2, which integrates Array-
OL main features in consideration of implementation aspects through certain techniques,
such as space-time mapping and re-factoring of original Array-OL specifications. In our point
of view, a Gaspard2 model is taken as a machine interpretable version of Array-OL for the
purpose of implementation.

6.1.2 Basic ideas of control in accordance with the Gaspard2 core formalism

This subsection first presents the study of control notion in the context of Gaspard2 in a
conceptual way without involvement of any execution model, i.e., a control mechanism that
is compatible with the Array-OL specification model. Then the integration of this control
mechanism in Gaspard2 is presented.

6.1.2.1 Array-OL-compatible behavior change

For the purpose of a better understanding, the expected behavior change of Gaspard2 is il-
lustratedwith an Array-OL graphical syntax, where no executionmodel is involved. First of
all, how the control mechanism can work in a Gaspard2 RCT model is presented. Figure 6.1
shows an example of RCT, where four main types of elements in an Array-OL local-level
specification are found: array, tiler, task and repetition space. Intuitively the behavior of a
RCT can be achieved by changing any of these main elements or any combination of these
elements. In the following examples, these possibilities are demonstrated in a functional
point of view, which neglects when and how the control takes effect so as to make the RCT
dynamic.

Figure 6.1: An example of Array-OL specification with regard to a task. A task, which is
represented by the box in the center, is connected to its input array (left-hand box) and its
output array (right-hand box) through tilers. The repetition space of the task is illustrated
above the task box. The patterns taken by the task as input and output are also placed aside
of the task in the task box. Only the tiles used by the task repetition at [0,0] in the repetition
space are surrounded by a box with dash-lines.

• change of a task (Figure 6.2): a task can be changed in a local model in response to
some change requirements from the environment, the platform or the application. For
instance, the change of algorithms (image style, image quality, etc.) in a mobile multi-
media device in order to answer user choices. In Figure 6.2, only one task, either Task1

92

6.1. INTRODUCTION

or Task2 is selected to run according to some control, which is not shown here. A pre-
requisite of this change is that the two tasks have the same interface so that they are
compatible with other elements in the local model.

Figure 6.2: An example of task change in Array-OL specification.

• change of the repetition space: the repetition space associated to each task can also be
changed, which leads to the coverage change of the input and output array process-
ing. For instance, when watching a video clip, the window is changed to be bigger
or smaller without the change the video display size, hence only the coverage of the
video display through the window is changed. The video and its processing task are
not changed.

• change of a tiler (Figure 6.3): a tiler in a local model can be changed under some condi-
tions. A tiler makes a bridge between an array to be processed and a task. Furthermore,
the corresponding interface of the task determines the pattern shape of the tiler. Thus,
the change of a tiler without change of the corresponding task requires that the pattern
shape of this tiler should not be changed. For instance, consider the zoom feature in a
picture viewer: when the zoomed picture is larger than the display window, we need
to move the display window so that we can see somewhere else in the picture. The
original picture, the zoom algorithm (or the zoom task), and the size of display win-
dow are not changed, only the reference point in the picture for the display window is
changed. This can be modeled as a tiler change, i.e., the changes of original points in the
tiler.

• change of the input/output arrays (Figure 6.4): the input arrays or output arrays can be
changed too. For instance, while watching a video clip on a cellular phone, its source
can be changed: from an online library to local memory storage if they have the same
video size.

• change of any combinations of task, tiler, array and repetition space: it is possible to
change any combination of these four elements at the same time. In this case, the
change can be seen as a change of the RCT directly, which is easier to model.

6.1.2.2 Array in representation of control

The changes of task, tiles or arrays in a local model should follow some control events. As all
the data in Gaspard2 are modeled as array, it is natural to model the control events as arrays,

93

CHAPTER 6. REACTIVE CONTROL EXTENSION

Figure 6.3: An example of tiler change in Array-OL specification.

Figure 6.4: An example of array change inArray-OL specification.

e.g., an infinite flow of control events is modeled as an infinite array. However, Gaspard2
specifications do not take environment or platform aspects into account. Hence, the control
event array is also modeled independently from environment constraints in the same way as
data, e.g., what they are and when and how they are present. Control event arrays, similar
to data arrays, are supposed to construct and exhibit data dependencies between tasks.

6.1.2.3 The correspondence between control and data array

In low-level implementation, according to the environment or platform, different dataflow
may have different clocks, particularly dataflow and control flows, which leads to the syn-
chronization problem in the composition of these flows. However, only data dependency is
taken into account in Gaspard2, which is a high-level specification language, i.e., no execu-
tion model or non-functional constraints are involved, hence the synchronization between
control and data computation or data computation granularity with regard to control [71] is
not considered here.

As a dependency specification, data and control arrays are considered to be matched to
each other, i.e., a good correspondence is required. The correspondence between control and
data array indicates the control array can be regularly mapped onto the data array, which
also implies the control scope of the data. This mapping can be considered as an affine-
transformation that leads to two possible control scope levels: task level and repetition level.
The first one indicates all the repetitions of a task are changed into those of other tasks.

94

6.1. INTRODUCTION

Hence this is a complete change of task. The second one, repetition-level control enables to
change the task at a finer level, which allows the switch between the repetitions of different
tasks. As the control array can be mapped onto the data array, they can be also mapped onto
the same concrete time.

Although at the specification level, the control array can be mapped onto the data array,
this is not always true at the implementation level because of the non-functional constraints
on control and data flows, e.g., a dataflow may have different clock from the clock of con-
trol events, which is not a determinist flow with regard to the dataflow. This issue will be
discussed in Section 6.3 when the reactive execution model is introduced.

6.1.2.4 Synthesis and conclusions

Presented in the previous subsections, the Gaspard2 control can be summarized by the fol-
lowing characteristics: a) task level control enables to change arrays, tilers and tasks; b) con-
trol events are modeled as an array, which is considered similar to a data array; c) controls
arrays only denote data dependency, hence they share the same time dimension with other
arrays;

Figure 6.5 illustrates an example of the control mechanism for Gaspard2. In this example,
an RCT Task has two input arrays and two output arrays. The Task can be divided into two
parts: controller part and data computation part. The two input arrays are control array and
data array, which are consumed by controller task and repetitive tasks (including Task1 and
Task2) respectively. The data part selects the right task (Task1 and Task2 are two exclusive
tasks, which can be called a mode each) according to the computation results, called mode
values, of the controller task. The whole RCT can be considered as a specialized Gaspard2
RCT, and it can be composed with other Gaspard2 RCTs.

Figure 6.5: An example of the control analysis for Array-OL. The communication between
the controller task and the repetitive tasks is not shown in this example.

In spite of the detailed analysis of Array-OL control, we do not aim at proposing new con-
trol concepts for Array-OL, because Array-OL is kept as a specification language. However
this analysis helps to identify the appropriate control behavior for Gaspard2, and a control
model for Gaspard2 is proposed accordingly.

95

CHAPTER 6. REACTIVE CONTROL EXTENSION

6.1.3 Previous control proposition in Gaspard2

Based on almost the same analysis of control requirements for Array-OL, a control mecha-
nism has been already proposed in Gaspard2 [71]. A brief description of this proposition is
given in Section 3.2.3. This proposition builds basic Gaspard2 control concepts, however, it
has several limits:

• parallel and hierarchical composition of automata are not defined although it is based
on mode automata. These compositions are considered as basic mechanisms that en-
able to specify complex reactive control systems in Statecharts [58].

• the synchronization between control and computation is not well defined to guarantee
a safe design. In mode automata, computations in each state share the same basic clock
with events (or condition expressions) that fire the transitions. As a result, there is the
coherence between the computations and events with regard to their clocks. Unlike
mode automata, the independence between control and computation make it possible
to have incompatible correspondence. The latter leads to an unsafe design.

• multigranularity is proposed for computations to match control. But it is difficult to
handle this problem in the specification level. On one hand, only data dependency is
specified in Gaspard2, thus the timing aspect of different dataflow is invisible. On the
other hand, the appearances of control events are non-deterministic in general, which
is not visible for the designer.

Hence, in Section 6.2, a refinement of this proposition is presented so as to satisfy the safe
control requirement. Furthermore, it is extended in order to specify more complex system.

6.2 An extension proposal for control

Several basic control concepts, such as mode switch task, state graphs and state graph task, are
presentedfirst. Then a basic composition of these concepts, which builds themode automata,
is discussed.

6.2.1 Mode switch task and modes

Figure 6.6: A mode switch task.

96

6.2. AN EXTENSION PROPOSAL FOR CONTROL

6.2.1.1 Mode switch tasks

A mode switch task (MST) has at least one mode and achieves a switch function that chooses
one mode to execute from several alternative modes [72]. The MS T in figure 6.6 (inspired
from [71]) illustrates such a task through a window with multiple tabs and interfaces. For
instance, it has m (mode value input) and id (data input) as inputs and od (data output) as
output. Moreover, it is composed of several modes M1, M2, ..., Mn (tabs in the window). The
switch between these modes is carried out according to the mode value received through
m. All the inputs and outputs share the same time dimension, which ensures the correct
one-to-one correspondence between all the inputs and outputs.

6.2.1.2 Modes

The modes, i.e., M1, ..., Mn, in an MST are identified by the mode values: m1, ..., mn. Each
mode Mk(k ∈ {1, ..., n}) is associated with a mode task MTk, which can be a hierarchical task
or an elementary computation task. The mode task transforms the input data id into the
output data od. All the tasks MTk(k ∈ {1, ..., n}) have the same interfaces (i.e., id and od). The
activation of one certain mode task MTk relies on the reception of mode value mk by the MS T
through m. For any received mode value mk, the modes run exclusively, i.e., whenever the
MST executes, only the mode task MTk associated with the received mode mk is activated.

This modeling derives from the mode conception in mode automata [82]. The notion of
exclusion among modes helps to separate different computing. As a consequence, programs
are well structured and fault risk is reduced.

6.2.2 State graphs and state graph tasks

6.2.2.1 State graphs

A state graph in Gaspard2 is similar to state charts [58], which is used to model the behavior
using a state-based approach. It is also proposed to be a graphical representation of transi-
tion functions discussed in [45]. A state graph is composed of a set of vertices, which are
called states. A state connects with other states through directed edges. These edges are
called Transitions. Transitions can be conditioned by some events or Boolean expressions.
A special label all, on a transition outgoing from state s, indicates any other events that do
not satisfy the conditions on other outgoing transitions from s. Each state is associated with
some mode value specifications, which provide mode values in this state.

A state graph can be specified with the help of state charts or state tables. The left-hand
figure in Figure 6.7 shows a state graph similar to state charts. The right-hand figure in
Figure 6.7 illustrates a state graph represented by a state-transition table, where the columns
and lines represent source and target states.

Definition of state graphs

A Gaspard2 state graph is a sextuplet (Q, Vi, Vo, T , M, F) where:

• Q is the set of states defined in the state graph;

• Vi, Vo are the sets of input and output variables, respectively. Vi and Vo are disjoint, i.e.,
Vi ∩ Vo = ∅. V is the set of all variables, i.e., Vi ∪ Vo;

97

CHAPTER 6. REACTIVE CONTROL EXTENSION

Figure 6.7: Different representations of a state graph.

• T ⊆ Q×C(V)×Q is the set of transitions, labeled by conditions on the variables of V . The
conditions C are Boolean expressions on V ;

• M is the set of modes defined in the state graph;

• F ⊆ Q × M represent a set of surjective mappings between Q and M.

Compared to state charts and mode automata, initial states are not required in the state
graph. In state charts or mode automata, transitions are carried out in an automatic way, i.e.,
the source state of one transition step is supposed to be identical to the target state of the
previous transition. If a previous transition does not exist, the initial state is taken by default.
Inversely a state graph only defines the transitions between states, which does not claim an
automatic sequential execution. In this manner, sets of source states and events, in the form
of array, can be provided to the state graph in order to get sets of target states and mode
values also in the form of array. Consequently, a state graph is not an automaton. Figure 6.8
shows the input and output table of the example in Figure 6.7. This feature is proposed to
adapt state graphs in the Gaspard2 repetition context. However, automata can still be built
with the help of certain Gaspard2 operators, which are presented later.

Figure 6.8: A table representing the mapping of a state graph. The last line shows "parallel
transitions”, where multiple source states are provided. Each of these states is associated
with a trigger, and a target state is entered accordingly.

Parallel composition of state graphs

A set of state graphs (Figure 6.9) can be composed together. The composition of state
graphs in this manner is considered as parallel composition. Figure 6.9 illustrates a parallel

98

6.2. AN EXTENSION PROPOSAL FOR CONTROL

composition example. The two state graphs are placed in the same ellipse, but separated by
a dash line.

Figure 6.9: An example of the parallel composition of state graphs.

Two state graphs G1: = (Q1, V1
i , V1

o , T 1, M1, F1) and G2: = (Q2, V2
i , V2

o , T 2, M2, F2) are
considered here to illustrate the composition. The Composition operator is noted as: ‖. The
parallel composition is defined as:

(Q1, V1
i , V1

o , T 1, M1, F1) ‖ (Q2, V2
i , V2

o , T 2, M2, F2)
= ((Q1 × Q2), (V1

i ∪ V2
i)\(V

1
o ∪ V2

o), (V
1
o ∪ V2

o), T , (M1 × M2), F),

where

F = {((q1, q2), (m1,m2)) |(q1,m1) ∈ F1 ∧ (q2,m2) ∈ F2 },

and

T = {((q1, q2), C, (q1′, q2′))|(q1,C1, q1′) ∈ T 1 ∧ (q2,C2, q2′) ∈ T 2 },

where C is a new expression on C1 and C2: C = C1 and C2, and (V1
i ∪ V2

i)\(V
1
o ∪ V2

o) implies
any output variable is not considered as an input variable in the composed graphs, hence it
should be removed from the input variable set.

These state graphs in a parallel composition can be triggered to carry out transitions at
the same time, upon the presence of the source states and events of both two state graphs.
Moreover, the number of transitions fired is supposed to be always the same for these state
graphs, i.e., the inputs of these state graphs have the same size.

Hierarchical composition of state graphs

Another interesting composition of state graphs is their hierarchical composition. A
state in the state graph A can be refined by another state graph B, where B is considered as
sub graph of A. Consider a state graph G: = (Q, Vi, Vo, T , M, F) where Q = {q0, q1, ..., qn} and
a corresponding set of refining automata {Gk}k∈[0,n], where Gk = (Qk, Vk

i , Vk
o , T k, Mk, Fk). The

composition can be defined (inspired from [84]) as:

G ⊲ {Gk}k∈[0,n] = (Q′,V ′i ,V
′
o, T

′,M′, F′)

99

CHAPTER 6. REACTIVE CONTROL EXTENSION

Figure 6.10: An example of hierarchical composition of state graphs.

where

Q′ = Q ⊲ {Qk}k∈[0,n] =
⋃n

k=0{q
k ⊲ qk

j | j ∈ [o, nk]} ,

V ′o = Vo ∪
⋃n

k=0Vk
o ,

V ′i = (Vi ∪
⋃n

k=0Vk
i)\V ′o ,

T ′ = {(qk ⊲ qk
j1
,C, qd′ | (qk,C, qd) ∈ T ∧ j1 ∈ [0, nk]}

∪{(qk ⊲ qk
j1
, (C ∧ ¬

∨

(qk,Cm,qd)∈T Cm), qk ⊲ qk
j2

) | (qk
j1
,C, qk

j2
) ∈ T k ∧ j2 ∈ [0, nk]} ,

M′ = M ∪
⋃n

k=0Mk ,

and

F′ = {((q, q1, .., qn), (m,m1, ...,mn)) | (q,m) ∈ F ∧ (q1,m1) ∈ F1 ∧ ... ∧ (qn,mn) ∈ Fn } ,

qk ⊲ qk
j denotes the state qk is refined by the state qk

j . T ′ has two kinds of transitions:
{(qk ⊲ qk

j1
,C, qd | (qk,C, qd) ∈ T ∧ j1 ∈ [0, nk]} implies the transitions of G, and qk and qd denotes

the source and target state respectively. As qk is refined by states of Gk, qk ⊲qk
j1
is used instead

of qk. The target state is also a refined state of qd, however, which state is entered is decided
at run time. Hence, qd′ is used instead. {(qk ⊲ qk

j1
, (C ∧ ¬

∨

(qk ,Cm,qd)∈T Cm), qk ⊲ qk
j2

) | (qk
j1
,C, qk

j2
) ∈

T k ∧ j2 ∈ [0, nk]} denotes the transitions in Gk, i.e., these transitions are fired when no transi-
tions of Gk are fired. This condition is expressed by: ¬

∨

(qk,Cm,qd)∈T Cm. qk
j1
and qk

j2
denote the

source and target states of a transition in Gk. Figure 6.10 shows an example of the hierarchi-
cal composition of state graphs. In this example, the state S 3 is refined by the state graph
composed of states S 4 and S 5, denoted by S 3 ⊲ S 4 and S 3 ⊲ S 5.

Properties of state graphs

Determinism is required for the definition of state graphs, i.e., for each state in the graph,
the input events can only satisfy the trigger of one transition. The determinism help to define
unambiguous behavior, as a result, it reduces the fault risks.

100

6.2. AN EXTENSION PROPOSAL FOR CONTROL

Multi mode values can be defined in a single state if thesemode values belong to different
mode value sets, or they are used for different purpose, e.g., an SGT is used for the control
of several MSTs, which uses different mode sets.

6.2.2.2 State graph tasks

A state graph task (SGT) (Figure 6.11) is a Gaspard2 task that is associatedwith state graphs. It
achieves the functionality of mode value definition according to its associated state graphs.
The mode values serve to activate different computations in MSTs. Hence, SGTs are ideal
complements of MSTs, which are connected through mode values, i.e., An SGT acts as a
controller and a MST plays a computation switch role according to the controller.

Figure 6.11: Examples of SGTs.

Similar to other Gaspard2 tasks, an SGT also defines its interfaces, which include the
event inputs from its environment, source state inputs, target state outputs and mode out-
puts. The event inputs are used to trigger the transitions. The source state inputs indicate
from which states transitions are triggered. Similarly, target state outputs are the target
states of fired transitions. The mode outputs are associated with an MST so as to choose the
mode to execute. In some cases, the output mode value could be different from the output
state because of different mode definitions, e.g., the output state always indicates the target
state of the fired transition, whereas the mode value can be that of the source or target state
according to the mode definition.

6.2.3 Task compositions of SGT and MST in Gaspard2

Based on the previous presented SGTs and MSTs, different compositions of these Gaspard2
tasks are presented in this section.

6.2.3.1 A macro structure

Once theMST and the SGT are introduced, aMACRO can be used to compose them together.
The macro task in Figure 6.12 illustrates one possible composition, which will be used as a
basic composition. In this macro, the SGT produces a mode value (or a set of mode values)
and sends it (them) to the mode task. The latter switches the modes accordingly.

6.2.3.2 Parallel composition of SGTs

In addition to the parallel composition of state graphs presented previously, the parallel
composition can be also applied to a set of SGTs. An example is illustrated in Figure 6.13.

101

CHAPTER 6. REACTIVE CONTROL EXTENSION

Figure 6.12: An example of a macro structure. The SGT is a controller that decides the right
mode to run. According to SGT, MST selects the right mode task to run.

Because the SGTs are considered as normal Gaspard2 tasks, the resulting task (e.g., the SGT
in the example) composed of several SGTs can be also considered as a normal Gaspard2 task.
Thus it can be composed with other Gaspard2 tasks.

Parallel composition in different contexts

The interfaces of an SGT determine how many transitions should be fired for this SGT,
e.g., eight inputs fired eight transitions, hence produce eight outputs. In this example, the
repetition of transition is implicit. According to the number of transitions that are fired
according to the interfaces of an SGT, several contexts are distinguished when several SGT
are composed together: compatible context and incompatible context. The first one indicates all
the SGTs share the same number of fired transitions. Otherwise, they are considered to be
incompatible. The differences of the composition in these two contexts are:

• parallel composition in a compatible context makes it possible to have the same tran-
sition rate (or number), within one reaction of the task, for all the state graphs in the
composition, thus they can be translated into the parallel composition of automata un-
der certain conditions (e.g., inter-repetition dependency) presented in the next section.
In this context, the SGT in the Figure 6.13 is semantically equal to a task that is associ-
ated with the state graphs in Figure 6.9.

• parallel composition in an incompatible context cannot be translated into parallel com-
position of automata because of their different transition rate. Although this composi-
tion is possible in STATEMATE semantics of state charts and SyncCharts, is not possi-
ble for mode automata. Consequently, this composition is only considered as a normal
composition of Gaspard2 tasks, which can not be translated into automata.

Parallel composition with other Gaspard2 tasks

These SGTs can also be composed with standard Gaspard2 tasks, which can handle the
control out of capacity of state graphs, e.g., some binary operations on events or conditions
on numbers.

102

6.2. AN EXTENSION PROPOSAL FOR CONTROL

Figure 6.13: An example of parallel composition of SGTs.

6.2.3.3 Hierarchical composition

Hierarchical composition of state graphs using SGTs and MSTs can be also achieved. In
this case, an SGT acts as a mode in an MST, which is only activated in this mode. The
hierarchical composition presented in this section involves only the composition of SGTs via
the MST. The MST defines the relation between an SGT and other SGTs, where state graphs
in the latter act as refinements of state graph states in the former. This composition structure
defines a two level hierarchy of SGTs with regard to their associated state graphs. Certainly,
a nested definition can be applied in specification of the hierarchy.

An example is illustrated in Figure 6.15. The state graph associated with S GT1 has three
states: S 1, S 2 and S 3, which correspond to three modes M1, M2 and M3 respectively. In the
MS T , the mode task of M3 is S GT2, i.e., S GT2 is activated only when S 3 is active. Hence the
state graph of S GT2 is considered as a refinement (sub state graph) of S 3.

Similar to the parallel composition case, here we are interested in the composition in a
compatible context. Moreover, the repetition context is also considered in the hierarchical
composition in a finer way, i.e., two repetition contexts are taken into account: a simple rep-
etition context and a hierarchical repetition context. The simple repetition context indicates the
elements in this context are simply repeated with the same number. A repetition task de-
fines a simple repetitive context with regard to its internal repeated tasks. The hierarchical
repetition context defines repetitions in a nested way. For instance, a repetition context task
T1 (Figure 6.14) defines a repetition context C1 with regard to its internal repeated task T2.
Besides, T2 is itself a repetition context task that defines a repetition context C2 with regard
to its internal repeated task T3. Thus T1 and T2 define a hierarchical repetition contextC1×C2

to T3. The right-hand figure in Figure 6.14 illustrates the repetition traces of T1, T2 and T3 in
case that C1 and C2 are equal to 2.

Hierarchical composition in a simple repetition context. A typical composition is an SGT
and its associated MST are specified in the same repetition context, which leads to the fact
that all the SGTs are specified in the same repetition context. It helps to ensure that the
state graph share the same transition number for one reaction. The example in Figure 6.15

103

CHAPTER 6. REACTIVE CONTROL EXTENSION

Figure 6.14: An example of hierarchical composition of SGTs in the same repetition context.

illustrates this kind of composition. The state graph of S GT2 acts as a refinement of the
state S 3. S GT1 and S GT2 share the same repetition context provided by RT . This example is
similar to the example illustrated in Figure 6.10, except that the composition is carried out in
a component composition way.

Hierarchical composition in a hierarchical repetition context. Apart from the previous
definition in the simple repetition context, another interesting hierarchical composition is
SGTs are defined in a hierarchical repetition context, i.e., the low level state graphs have a
regularly more fast transition rate than the high level ones.

Figure 6.15: An example of hierarchical composition of SGTs in the same repetition context.

104

6.3. REACTIVE CONTROL EXTENSION IN GASPARD2

6.2.3.4 Conclusions

Inspired from mode automata and control-computation separation, we define the basic con-
trol mechanism based on state graph and mode switch. In order to be compatible and uti-
lizable in Gaspard2, the SGT and MST are also defined. SGTs and MSTs can then be used
as standard tasks in Gaspard2. These concepts provide the possibility for behavioral spec-
ification with necessary expressivity and compatibility with regard to Gaspard2. However,
their semantics should be more precise for the safe design of DIP applications, with regard
to their semantics and verifiability. The next Section 6.3 presents a dependable but not the
unique usage of these control concepts in a synchronous reactive dataflow context, which
enhances these concepts with formal semantics and also verifiability, which favor the safe
design.

6.3 Reactive control extension in Gaspard2

Based on the previous mentioned control constructs, the reactive control is presented in this
section. This control is based on mode automata [84], which aims at conferring safe design
properties onto these control constructs. Section 6.3.1 discusses some issues of the Gaspard2
control used in a synchronous dataflow context. The synchronous reactive control is pre-
sented in Section 6.3.2.

6.3.1 Issues of Gaspard2 control specification in a dataflow context

The previous Section 6.1.2.1 illustrates the relation between the control and the data com-
putation. In order to be compatible with Gaspard2 specifications, the control is modeled
as an array (Section 6.1.2.2), which can be mapped onto the same time dimension as other
data arrays do (Section 6.1.2.3), hence this time dimension is common to all arrays in the
specification. However, an issue emerges when Gaspard2 specifications are mapped onto
an execution model, e.g., a dataflow model. This issue involves the relation of control event
and dataflow, which are always ambiguous in the specification. This issue does not come
from the previous control proposition, but from the specification and implementation gap of
Gaspard2 behavior.

When Gaspard2 specifications are mapped onto a dataflow model, the relation between
control event and data specified in Section 6.1.2.3 implies that the two flows (event and data)
have the same clock or they can be synchronized. However, this is only an ideal case, as
Gaspard2 is not associated with any executionmodel. In an executionmodel, a control event
may be uncorrelatedwith the repetitions of data computationwith regard to their clocks. For
instance, a user takes a remote control for a television. His commands of channel change do
not correlate with the TV dataflow. This problem is caused by different specification styles
of control and data computation, i.e., state-based control adopts event-driven style [58, 60]
and data computation adopts dataflow style [19].

Although this problem is not discussed here, in order to avoid this problem in our syn-
chronous model, we propose to use a classical synchronous dataflow control mechanism,
which includes synchronization and memory. This control mechanism is illustrated in Fig-
ure 6.16. It can be achieved by using a clock mechanism, for instance, an equation in Signal
as follows:

105

CHAPTER 6. REACTIVE CONTROL EXTENSION

Df3 = (Df2 cell ^Df1) when ^Df1

Figure 6.16: Memory is used for the control.

Based on this control mechanism, control event, from now on, is considered to be a flow
synchronized to other dataflow in the synchronous model. Hence in Gaspard2, control and
data computation can be specified to share the same time dimension. This result has been
used for the illustration of Gaspard2 control in Section 6.1.2.

6.3.2 Reactive automata based control mechanism in Gaspard2

The basic concepts of the state graph based control in Gaspard2 have been presented in
the previous section, but its semantics is not clear, we propose to integrate mode automata
semantics in the Gaspard2 state graphs (GSG) under certain conditions, so as to enable safe
properties and enhance its correctness verifiability. As mode automata are proposed in the
synchronous reactive dataflow context, additional constructs (inter-repetition dependency
and default link) are used in Gaspard2 to build Gaspard2 mode automata (GMA).

6.3.2.1 From Gaspard2 state graphs to Gaspard2 mode automata

The first problem of the construction of GMA is the incompatibility between Array-OL par-
allel semantics and automaton semantics in term of sequential traces. Even when an Array-
OL specification is mapped on a time model, the problem cannot be completely addressed,
because not always all space dimensions can be mapped onto the time dimension. Hence
two kinds of execution are discriminated here: parallel execution and sequential execution
according to the context:

Parallel execution. Acting as a controller, an SGT can be put in a repetition context, where
the SGT is supposed to be repeated in parallel. Each repetition of the SGT is independent
from other repetitions as the inputs required by each repetition of the SGT are provided
at the same time (since they are in a parallel context). Hence, the SGT and its associated
state graphs here serve as a simple case statements that has no memory of previous status.
From the point of view of an automaton, these state graphs are automata that have only one
transition step in their life cycles. These parallel automata are not addressed in this thesis.

106

6.4. TYPICAL EXAMPLES

Serialized execution. Compared to the parallel execution, an SGT also adopts the serial-
ized execution, where a special dependency between the repetitions of the SGT. This de-
pendency, called inter-repetition dependency, serializes the repetitions and conveys values be-
tween these repetitions (e.g., states). With the help of inter-repetition dependency, it is possible
to establish GMA from GSGs, which requires two steps:

• Firstly, the structure of GMA is presented by a composition of a SGT and an MST,
i.e., the MACRO in Figure 6.12. The SGT in this macro structure acts as a state-based
controller and the MST achieves the mode switch function. Compared to synchronous
mode automata (SMA), where computations are set in the states, the computations in
GMA is placed in the MST, i.e., outside of the GMA states.

• Secondly, IRD specifications should be specified for this macro structure when it is
placed in a repetition context. The reasons are twofold: the macro structure repre-
sents only one map from source state on target state, whereas an SMA has continuous
transitions that form an execution trace. Hence the macro should be repeated to have
multiple transitions. An IRD forces the continuous sequential execution, which makes
it similar to the execution of the SMA. Consequently, the repetition context is trans-
formed into a serialized one. In this manner, the mode automata can be built and
executable.

6.3.2.2 Synchronous mode automata modeling in Gaspard2

With the previous presented constructs, the modeling of synchronous mode automata in
Gaspard2 is demonstrated here. Themodeling result is the Gaspard2 mode automata, which
can be eventually translated into synchronous mode automata. This modeling is illustrated
with an example in Figure 6.17, where how to assemble these constructs are presented. The
main idea is to place the MACRO in a repetitive context, where each of its repetitions models
one transition of mode automata. An IRD links the repetitions of MACRO and conveys the
current state (sends the target state of one repetition as the source state to the next repetition)
between these repetitions. The states and transitions of the automata are capsulated in the
S GT . The data computations inside the mode are set in the mode tasks. S GT and its mode
tasks share the same repetition space, so they run at the same rate or clock. The detailed
formal semantics of GMA can be found in [45].

6.4 Typical examples

Two examples are illustrated in this section. The first one is a typical example found in
mode automata, which shows the construction of a complex mode automata, particular in
the control part. The second example concerns the video color style processing on mobile
multimedia devices. In this example, the construction of the Gaspard2 mode automata is
shown.

6.4.1 A typical example of a counter

The example in Figure 6.18 is a typical example of mode automata, the computation result
with regard to variable X is illustrated in the following table:

107

CHAPTER 6. REACTIVE CONTROL EXTENSION

Figure 6.17: An example of the macro structure in a repetition context.

Figure 6.18: A typical example of mode automata.

108

6.4. TYPICAL EXAMPLES

instant 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
X 0 1 2 3 4 5 4 3 2 1 0 1 2 3 4 5

The corresponding GMA to the example in Figure 6.18 is illustrated in Figure 6.19. Com-
pared to previous examples, this example makes several distinctions:

• certain data calculated in the data computation, e.g., X, is used in the control part,
which in turn selects the right mode for the computation. Apparently, there is a depen-
dency cycle in the specification. However, this cycle is specified by the IRDx, which
avoids the causality problem. It is similar to the Lustre, where a pre operator helps to
avoid the same problem.

• an IRD, i.e., IRDx in the example, is also specified for the data computation. Whereas
in the SMA case, a global variable, namely X, is used instead.

Figure 6.19: The Gaspard2 mode automata corresponding to the mode automata in Fig-
ure 6.18. This example is only used to illustrate how to use the control concepts without
data-paralllel specifications.

6.4.2 A control example for cell phone video effect

Figure 6.20 illustrates an example of color style processing module (ColorStyleProcessing)
used in a multimedia cellular phone. This module is used to manage the color style of a
video clip. It provides two possible styles: color or monochrome, which are implemented by
MonochromeFilter and ColorFilter respectively. These two filters are elementary tasks in this
modeling, which should be deployed with IPs. The changes between these two filters are
achieved by ColorStyleSwitch upon receiving mode values through its mode port colorMode.
The mode values are determined by ColorStyleController, whose behavior is demonstrated by
its associated state graph.

109

CHAPTER 6. REACTIVE CONTROL EXTENSION

The ColorStyleFilters is a MACRO, which is composed of ColorStyleController and Col-
orStyleSwitch. ColorStyleFilters illustrates the processing of one frame of the video clip, which
should be repeated. In the example ColorStyleProcessing provides the repetition context for
ColorStyleFilters. The asterisk specified in ColorStyleFilters indicates that ColorStyleFilters will
be repeated for infinite times, i.e., it can be seen as a temporal dimension. In addition, shapes
of all the ports of ColorStyleProcessing, except InitialState, are added with a temporal dimen-
sion, indicated by an asterisk. An IRD is also defined, which connects the target states output
(targetState) to the source state input (sState) of ColorStyleController. A vector associated with
the IRD indicates the dependency relation between repetitions, e.g., [-1] in the example sig-
nifies the source state of one ColorStyleController repetition relies on the target state of its
previous ColorStyleController repetition.

The whole ColorStyleProcessing can be translated by a synchronous mode automata fi-
nally.

Figure 6.20: An example of color style filter in a multimedia phone modeled with the
Gaspard2 mode automata. MonochromeFilter inside ColorStyleSwitch is considered to be an
elementary task, which is deployed with an IP to fulfill the filter function.

6.5 Conclusions

This chapter presents the control extension of Gaspard2. This control mechanism is first
discussed according to the requirements of control in DIP applications in terms of Gaspard2
model. This Gaspard2 model is considered to be a high-level model and independent from
any execution models. The change of tiler, task, array and repetition space is discussed
separately.

Based on the previous discussions, we present an extension proposal for the Gaspard2
control, which include state graphs, SGTs and MSTs. This extension has several advantages:
formal semantics of state graphs is given (formal semantics of tasks is presented in [45]),
parallel and hierarchical composition is formally defined. As the control is introduced in
Gaspard2 without consideration of any execution model, it is generic and high-level. Conse-
quently, it can be translated into or projected onto different execution models.

110

6.5. CONCLUSIONS

The extended control is then discussed in the context of synchronous reactive systems,
where the synchronous executionmodel is involved. The problem of synchronization of con-
trol flow and dataflow is illustrated and discussed with examples. As the synchronous exe-
cution model is chosen, not all state graphs of Gaspard2 can be translated into synchronous
automata, particularly the state graphs that enable parallel execution. Two typical examples
of the control application, i.e., a counter and a color style filter, are shown finally.

This chapter concentrates on the modeling problems of the Gaspard2 control, it does
not involve the transformation of the control into synchronous automata and the graphical
implementation of the control. The transformation and graphical implementation of the
control are presented in Chapter 8.

111

CHAPTER 6. REACTIVE CONTROL EXTENSION

112

Part III

Integration into an MDE framework
and case study

Chapter 7

Transformation from Gaspard2 to
synchronous languages

7.1 The Gaspard metamodel and profile . 116

7.2 Synchronous equational metamodel . 117

7.2.1 Common aspects . 117

7.2.2 From abstract syntax to synchronous metamodel 118

7.2.3 Signal . 118

7.2.4 Equation . 119

7.2.5 Node . 120

7.2.6 Module . 121

7.2.7 IP deployment . 121

7.3 The transformation rules . 122

7.3.1 From Gaspard2 models to synchronous models 122

7.3.2 Transformation tools . 128

7.3.3 Template-based code generation and code generators 128

7.3.4 The synchronous transformation chain 128

7.4 Conclusions . 130

This chapter focuses on the transformation from UML-based Gaspard2 model towards
synchronous executable code [135, 134]. Unlike in the previous chapter 5 where only the
abstract transformation from an Array-OL model to a synchronous equational model is pre-
sented, this chapter presents a concrete transformation implementation based on the MDE
approach and tools. This transformation relies on two metamodels: Gaspard2 metamodel
and synchronous metamodel. These two metamodels are implemented with UML graphi-
cal modeling tools, which is called MagicDraw 1. The Gaspard2 metamodel is detailed in
the appendix A. However, the example in this chapter for the illustration of the transforma-
tion is modeled utilizing the Gaspard2 profile [10], which has only minor difference from
the Gaspard2 metamodel. In order to be concise, the profile is not presented here. The syn-
chronous metamodel is equally detailed in this chapter, which is considered as one of the
contributions of this thesis. As the synchronous model is only an intermediate model, so

1http://www.magicdraw.com/

CHAPTER 7. MDE TRANSFORMATION

no profile is needed here. Model transformation is then detailed in terms of transformation
rules. In summary, the modeling andmodel transformation are carried out in the framework
of MDE.

Users specify their applications in a graphical UML modeling tool with the Gaspard2
concepts, and then the UML graphical specifications are transformed into Gaspard2 models,
from which the model transformation towards synchronous model is carried out. Finally
the synchronous model is used to generate different executable code in Lustre and Signal.

7.1 The Gaspard metamodel and profile

As the Gaspard2 metamodel has been briefly presented in chapter 3 and detailed in ap-
pendix A, it will not be introduced here again. The Gaspard2 UML profile is a minor modi-
fication of Gaspard2 metamodel dedicated to specify the applications with the help of UML
graphical modeling tools. The concepts appeared in the profile and in the metamodel are
almost similar, so here only an example is given to illustrate how to use the profiles (more
details about the metamodel and profile can be found in Section 3.2.1.1 and 3.2.1.2).

Figure 7.1: An example of downscaler.

An example of a Gaspard2 application An example, called Downscaler, which is always
found in video or image processing, is illustrated. However, only main part of this example
is shown here. The example is a downscale application that downscales from a flow of
images of size [640, 480] into a a flow of images of size [320, 240] (Figure 7.1), which is the
one of the standard sizes of video displayed on cell phones. A downscaling filter is supposed
to work on [8, 8]-array, so it will be repeated (80×60) times for the processing of one image.

Figure 7.2: The compound task of repFilter.

The repeated filter can be decomposed into two filters (Figure 7.2): Vertical_Filter and
Horizontal_Filter. The first one is the processing on columns of an image, and the second one
concerns the lines.

Figure 7.3 illustrates how lines are processed, where eight lines are processed by HFilter
from a tile of size [8,8]. The HFilter is an elementary task that should be deployed, as in

116

7.2. SYNCHRONOUS EQUATIONALMETAMODEL

Figure 7.3: A detailed view on the horizontal filter.

Figure 7.4. This deployment gives the implementation code of the filters. More details can
be found in chapter 3 and appendix A.

Figure 7.4: The deployment of the elementary task of HFilter.

7.2 Synchronous equational metamodel

7.2.1 Common aspects

The metamodel proposed here aims at three synchronous data-flow languages at the same
time. These languages have considerable common aspects, which enable their code genera-
tion with the help of only one metamodel. In addition, because of the obvious differences be-
tween Gaspard2 and synchronous languages, an intermediate model is necessary to bridge
the gap between them as well. A synchronous model is therefore proposed, which follows
the synchronous modeling of DIP applications in chapter 5. It aims to be generic enough

117

CHAPTER 7. MDE TRANSFORMATION

to target the synchronous data-flow languages mentioned earlier and to be adequate to ex-
press data-parallel applications. So, it is not intended to have exactly the same expressivity as
these languages. But this is not the case of the SIGNALMETA metamodel [22], which is specifi-
cally dedicated to the Signal language. This metamodel completely defines all programming
concepts of Signal. It has been specified in the Generic Modeling Environment (GME), devel-
oped at Vanderbilt University.

7.2.2 From abstract syntax to synchronous metamodel

The abstract syntax presented in chapter 5 illustrates the relations between the synchronous
notions in a concise way. But the metamodel illustrated here will give a more concrete defi-
nition. The metamodel is presented in several parts. Each part involves a key synchronous
concept. But all these parts are not necessarily separated. First of all, Signals is presented,
and then Equation, NodeModule are presented sequentially.

<<metaclass>>
IndexValueSet

<<metaclass>>
SignalDeclaration

<<metaclass>>
SignalUsage

<<metaclass>>
Signal

<<metaclass>>
Argument

<<metaclass>>
IndexValue

+signalUsage

1

+arguments

0..*

+indexValue

{ordered}

1..*

+owner

+signal

1
+signal

1

+declaration

1
+indexValueSet

0..1

+signalUsage

1

Figure 7.5: Extract of the synchronous metamodel: Signal.

7.2.3 Signal

According to synchronous languages, all input, output or local variables are called Signals
(see Figure 7.5). Each Signal can be typed by Boolean, Integer, Real, etc.. These Signals are
single-valued Signals. Complex Signals can be defined on these basic Signals, such as
array Signals. An array Signal are defined with a shape, which indicates the size of the
array. The shape of a signal is defined as its attribute.

Signal declaration. A Signal must be declared before using it. It is modelled by
SignalDeclaration,which declares the name and type of the Signal.. But a Signal can
be declared in different ways, such as a local declaration for a local signal and an interface
declaration for an input/output signal. These aspects are captured by SignalLocalDec
and SignalInterDec.

118

7.2. SYNCHRONOUS EQUATIONALMETAMODEL

Signal usage. Once a Signal is declared, it can be used (or referenced). One
SignalUsage represents one operation (read/write) on the Signal. If the Signal is an
array, a SignalUsage can be an operation on a segment of this array. Hence, if this ar-
ray can be divided into several segments (more precisely, it is called tiles in Gaspard2), the
Signal is then associated to the same number of SignalUsage correspondingly. Each of
these SignalUsages has an IndexValueSet, which is a set of IndexValue of the associ-
ated Signal. The associated IndexValues of a SignalUsages indicate the scope of one
operation on a Signal.

Signals are used in both sides of equations, which are taken as equation arguments.
Hence a SignalUsage is associated with at least one Argument (to be explained later) of
equations.

7.2.4 Equation

<<metaclass>>
Argument

<<metaclass>>
Invocation

<<metaclass>>
FunctionIdentifier

<<metaclass>>
Equation

<<metaclass>>
EquationRightPart

<<metaclass>>
ArrayExpression

<<metaclass>>
EquationLeftPart

<<metaclass>>
Node

+arguments

{ordered}

1..*

+equationLeftPart

0..1

+arguments

1..*

+arrayExpression

0..1

+arguments

{ordered}

0..*

+invocation

0..1

+left

0..1 +owner

+invocatedFunction

1

+invocation

+instantiatedNode

1

+right
1+owner

Figure 7.6: Extract of the synchronous metamodel: Equation.

Equations (Figure 7.6) indicate relations between signals. These signals used in an
equation are considered as Arguments of the equation. But Signals and Arguments do
not have a direct relation, SignalUsages play a intermediate role.

Structure of an equation. An Equation has an EquationRightPart and at most
one EquationLeftPart. The latter has directly Arguments as Equation out-
puts. EquationRightPart is either an ArrayAssignment or an Invocation.
ArrayAssignment has Arguments, and indicates that the Equation is an array assign-
ment. Invocation is a call to another Node (see section 7.2.5). In an Invocation,

119

CHAPTER 7. MDE TRANSFORMATION

FunctionIdentifier indicates the called function. An Invocation may have an or-
dered list of Arguments, which is used as the inputs of the function call.

<<metaclass>>
Equation

<<metaclass>>
EquationSystem +equation

1..*

+owner

1

Figure 7.7: Extract of the synchronous metamodel: EquationSystem.

EquationSystem. Equations can be assembled together to provide a specific functional-
ity. This set of equations are called an EquationSystem (Figure 7.7). There is no order
requirement for these equations.

7.2.5 Node

<<metaclass>>
SignalInterDec

<<metaclass>>
Interface

<<metaclass>>
Node

<<metaclass>>
SignalLocalDec

<<metaclass>>
LocalDeclarations

<<metaclass>>
NodeVariables

<<metaclass>>
EquationSystem

+nodeVariables

0..1

+owner

1

+interface

0..1

+owner

1

+equations

1

+owner

1

+localNodes

0..*

+localDefinitions

0..1

+owner

1

+parameters

{ordered}

0..*

+interface

1

+outputs

{ordered}

0..*

+interface

1

{ordered}

+locals

1..*

+owner

1

{ordered}

+inputs

0..*

+interface

1

Figure 7.8: Extract of the synchronous metamodel: Node.

Synchronous functionalities are modeled as Nodes (see Figure 7.8). A Node has no more
than one Interface, LocalDeclaration, NodeVariables, an EquationSystem and
some Implementations and CodeFiles. NodeVariables is the container of Signals
and SignalUsages.

Interface. Each input/output Signal is associated with a SignalDeclaration, which
belongs to the Interface, while local Signals’ SignalDeclarations belong to
LocalDeclaration.

120

7.2. SYNCHRONOUS EQUATIONALMETAMODEL

<<metaclass>>
SynchronousEquationModule

<<metaclass>>
Node

<<metaclass>>
Implementation

<<metaclass>>
CodeFile

+mainInstance

1

0..*

+ip

+owner

+nodes

1..*

+owner

1

+codeFiles

0..*

+owner

Figure 7.9: Extract of the synchronous metamodel: Module.

7.2.6 Module

All Nodes are grouped in a Module (Figure 7.9), which represents the package of the whole
application. It contains one Node as the main Node of the application. Each Node is either
defined in the Module or linked to an external function through IP deployment. These IP
concepts (section 7.2.7), such as CodeFile and Implementation are also grouped in the
Module.

7.2.7 IP deployment

<<metaclass>>
SynchronousEquationModule

<<enumeration>>
ImplementationLanguage

LucidSynchrone

Lustre
Signal

<<metaclass>>
PortImplementation

<<metaclass>>
CodeFile

<<metaclass>>
Parameter

<<metaclass>>
Implementation

<<metaclass>>
Specializable

<<metaclass>>
Characterizable

+portImplementation

1..*

+codeFiles

0..*

+owner

+characteristics

{ordered}

0..*

+specialization

0..*

+implementingFiles

0..*

Figure 7.10: Extract of the synchronous metamodel: Deployment. Details of Gaspard2
deployment can be found in Appendix A.

121

CHAPTER 7. MDE TRANSFORMATION

Nodes that are not defined in the Module should be declared inside and defined outside.
As a consequence, they should be deployed. The equivalent of these nodes in Gaspard2
are elementary tasks. An Implementation (Figure 7.10) associated with a Node contains
the information of the external function. Parameters of external function are represented by
PortImplementations. Their order are defined in the Implementation so that parame-
ters are passed correctly to the application. An Implementation is associated with at least
one CodeFile, which represents the code/source file of the external function.

7.3 The transformation rules

Transformations of Gaspard2 models into synchronous specifications consist of two steps
(Figure 7.11): firstly, a transformation of Gaspard2 models into synchronous models; and
then, the generation of synchronous code from synchronous models obtained from the first
step.

Figure 7.11: MDE-based model transformation. This figure is similar to Figure 4.12. How-
ever, an MDE-based approach is detailed in this figure.

7.3.1 From Gaspard2 models to synchronous models

Basic transformation principle is first given. Components and ComponentInstances
are transformed into Nodes and Equations respectively. Ports, PortInstances and
DefaultLink connectors in a Component are transformed into Signals, whereas Tiler
connectors are transformed into Equations as well as Nodes. This transformation is im-
plemented by a set of rules. The reason why we develop multiple rules is that: each notion
has its distinct semantics, in this case, one rule is dedicated to one notion, which helps to
separate concerns and reduce the overall complexity.

7.3.1.1 Transformation rules

The whole transformation can be represented through a tree structure (see Figure 7.12). The
unique initial (root) rule is GModel2SModel. It transforms a whole deployed Gaspard2 ap-
plication into a synchronous module. This rule then calls its sub-rules: GApplica-

122

7.3. THE TRANSFORMATIONRULES

tion2SNode, GTiler2SNode, GACI2SNode, GAConsumer2SNode, GAProducer2SNode, GCode-
File2SCodeFile, GASImpl2SImpl,etc. GApplication2SNode has also three sub-rules: GElemen-
tary2SEquationSystem, GCompound2SEquationSystem, GRepetitive2SEquationSystem. Note that
not all rules in the transformation are given here. In the following, only rules presented in
the Figure 7.12 are described. Among them,GTiler2SNode and GApplication2SNode are a little
more detailed. The other rules are constructed in the same way.

Figure 7.12: Hierarchy of the transformation rules.

• GTiler2SNode (Figure 7.13 in which each element is numbered). It is a rule for the
transformation of Tiler connectors into synchronous input or output tiler Node. An
input tiler Node is taken as an example for the construction of a synchronous node.
First of all, the Node (numbered 1) is created and is associated with its Module. The
Port and PortInstance 2 connected by this tiler are then transformed into input
and output Signals respectively. One Port corresponds to one input signal, and
one PortInstance corresponds to several output signals, whose quantity, n, is calcu-
lated from the repetition space defined in its connected ComponentInstance. The
input signal is associated with n SignalUsages (4) and an output signal are as-
sociated with a SignalUsages (8). Interface (2) is then created and associated
with SignalDeclarations (3, 9) that are associated with signals. Note that there
are no LocalDeclarations in this node. Next, an EquationSystem contains n
Equations (5). In each Equation, the EquationLeftPart has an Argument (6)
which is associated with a SignalUsage of an input signal. EquationRightPart is
directly an ArrayAssignment. Its Argument (7) is associated with a SignalUsage
(8) of a corresponding output.

• GRepetitive2SEquationSystem. In this rule (Figure 7.14), an EquationSystem is first
created. And then three types of Equation are created: input tiler Equations, repet-
itive task Equation and output tiler Equations. Tiler connectors are transformed

2These two concepts are first defined in UML. Port is associated with components in our case, while
PortInstance are associated with component instances. The latter helps to distinguish dependecies specified
on component and its instances.

123

CHAPTER 7. MDE TRANSFORMATION

Figure 7.13: Transformation of the tiler. The numerated notions: node (1); interface (2); signal
declarations (3, 9); signal usage (4, 8); equation (5); argument (6, 7).

into input/output tiler Equations, which are invocations to Nodes generated by
GTiler2SNode, and the internal ComponentInstance is transformed into repetitive
task Equation. A relevant repetitive task Node is then created, in which n equations
invoke the task node corresponding to the component that declares the internal com-
ponent instance.

Figure 7.14: Transformation of the repetition context task.

• GCompound2SEquationSystem. Each internal ComponentInstance is transformed
into an equation. Connectors between these ComponentInstances are transformed
into local Signals.

• GElementary2SEquationSystem. No Equation is created because its owner Node is im-
plemented externally and Deploymentmodels are used to import its external declara-
tions. However an Interface is created according to the component’s ports.

124

7.3. THE TRANSFORMATIONRULES

Note that hierarchical composition in Gaspard2 models is preserved in synchronous
models by node invocations.

7.3.1.2 Illustration of a rule model

These transformation rules are always difficult to describe with natural languages. The com-
plete explanation is very tedious and takes long time for understanding, whereas a curtailed
one is always ambiguous for lack of details. It is also impossible to show the implemented
code for demonstration. Hence a new language is needed for the efficient description of
these transformations.

Figure 7.15: TrML patterns and rule.

TrML [37] is a TRansformation Modeling Language, which offers a graphical representa-
tion of model transformations through:

• its UML profile,

• its portable notation which is independent from any existing transformation engines,

• its mechanisms to divide transformation into rules.

Furthermore a metamodel is provided for the modeling. Note that model elements are
in bold and associations between them are in italics in the following explanation. In a TrML
rule (Figure 7.15), a transformation is divided into three parts: input pattern (Tiler in
Figure 7.15), rule (GTiler2SNode), and output pattern (Node). The input pattern in-
dicates the set of model elements to be transformed, which are based on the input model
concepts (indicated by gaspard, the association between GTiler2SNode and Tiler). Sim-
ilarly, the output pattern indicates the set of model elements to be generated, which are
based on output model concepts (synchronous). Rule takes the input pattern and transforms
it into output pattern. Some external functions used in the transformation are showed in the
note (annotation boxes with action). Note that TrML allows the modeling of bidirectional
transformations, but here, only one direction from Gaspard2 into synchronous is illustrated.

A typical transformation is illustrated with the help of TrML. The transformation of a
Gaspard2 Tiler into a Node, called GTiler2SNode, is detailed in the order of input pat-
tern, rule, and output pattern. Figure 7.16 shows the main part of this transformation, a
finer description of the output pattern Node is illustrated in Figure 7.17.

The root element of the Input pattern is a Gaspard2 Tiler. In the transformation,
however, more model elements execpt Tiler are needed. These elements can then be found
through the associations connected to this Tiler. The TilingDescription stores the tiler’s
F, O, P information, which can be found through the tiling. A tiler is connected to, on
one hand, a Port through the Source, which indicates the input array of the application
component; on the other hand, a PortInstance through the Target, which indicates the

125

CHAPTER 7. MDE TRANSFORMATION

Figure 7.16: An extract of the TrML representation of a tiler transformation.

input pattern of the repetitions of the internal component. The port is connected to a Shape
so as to indicate the array shape. The port instance is connected to ComponentInstance
through the componentInstance, from which the shape of its port can be found. The port
instance is also connected to Part by the part, from which the shape of repetition space
can be found. Finally, from the association of owner of the tiler, the ApplicationPart
and then ApplicationModel can be found.

Rule is the bridge between input and output patterns. The black box functions used by
the transformation are specified in an annotation box that is linked to this rule, for instance,
getTilingIndices(td, rs, ps, as) in the annotation box tagged with "action". This
is a function implemented in Java that calculates the array indices from the tiling information.
The arguments of the function come from the input pattern.

The root element of the Output pattern is a Node of the synchronous model (Fig-
ure 7.17). The node is associated with its owner, called Module, by the association owner.
The Module can be found through the Gaspard2 ApplicationModel from the input pat-
tern. All the elements required in the node are then associated to the node. For instance,
Interface, EquationSystem and NodeVariables are associated to the node by inter-
face, equations and nodeVariables respectively. Similarly, other elements are associated to
Interface, EquationSystem and NodeVariables and so on. Some black box func-
tions can be used during the creations of the model elements and their associations, such as
CreatIndexValue().

However, the transformation illustrated in the Figure 7.16 and Figure 7.17 is not a com-
plete one because of the lack of expressivity of imperative aspects in TrML, for instance,
the iterated creations of Equation, Signal, and IndexValue and the associations of the
signals to their index values. Despite of this disadvantage, this graphical transformation lan-
guage greatly helps to understand syntactic and certain semantic transformations between
input/output models.

126

7.3. THE TRANSFORMATIONRULES

Figure 7.17: A detailed description of the output patten Node, which completes Figure 7.16
for the illustration of the Tiler transformation.

127

CHAPTER 7. MDE TRANSFORMATION

7.3.2 Transformation tools

These transformations were implemented with the help of specifications, standards and
transformation languages. Some of them are briefly presented here. Although ATL and
Kermeta are widely used, but they lack of extension capability specially when some exter-
nal functions are needed to be integrated into the transformation during the development
of this transformation. The MoMoTE (MOdel to MOdel Transformation Engine) tool is then
developed in the team, which is in accord with MOF QVT. MoMoTE, which is based on the
EMFT QUERY and is integrated into Gaspard2 as an internal plugin, is a Java framework
that allows to perform model to model transformations. It is composed of an API and an
engine. It takes input models that conform to some metamodels and produces output mod-
els that conform to other metamodels. A transformation by MoMoTE is composed of rules
that may call sub-rules. These rules are integrated into an Eclipse plugin. In general, one
plugin corresponds to one transformation. During model transformations, these plugins are
automatically invoked one by one.

7.3.3 Template-based code generation and code generators

The implemented code generation (Figure 7.18) from synchronous models is based on EMF
JET (Java Emitter Templates) [35]. MoCodE (MOdels to CODe Engine) is another Gaspard2
internal plugin, which works with JET for the code generation. MoCodE offers an API that
reads the input models, and also an engine that recursively takes elements from input mod-
els and executes a corresponding JET Java implementation class on them.

Figure 7.18: Generation of synchronous code from synchronous models.

The automatically generated code of the downscaler example takes a very big size, so an
extract of the code can be found in Appendix B.

7.3.4 The synchronous transformation chain

Gaspard2 models are specified in the graphical environment MagicDraw, and are exported
as EclipseModeling Framework (EMF) [34]models. EMF is amodeling framework and code
generation facility. In the following transformation phase, these models are transformed
into EMF Gaspard2 models. These two previous transformations will not be detailed here.
Then the EMF Gaspard2 model is transformed into the EMF synchronous equational model,
which is finally used to generate synchronous language code (e.g. Lustre and Signal code).

128

7.3. THE TRANSFORMATIONRULES

An automated model transformation chain (Figure 7.19) is then defined through the concate-
nation of these transformations from MagicDraw UML models to data-flow languages.

Figure 7.19: The detailed synchronous transformation chain.

A prototype model transformation tool, based on MDE has been developed in order
to enable the automatic transformation of Gaspard2 models into synchronous programs.
This tool is called Gaspard2 synchronous transformation chain. All the transformation pre-
sented in this chapter has been implemented by this tool. New features are still being de-
veloped and integrated into this tool, which will be described in the next chapter. Based
on a generic metamodel for synchronous equational dataflow languages, the transformation
targets Lustre, Lucid synchrone and Signal at the same time.

Figure 7.20: The architecture of the implementation tools.

129

CHAPTER 7. MDE TRANSFORMATION

Figure 7.20 illustrates a typical transformation chain with the Lustre and Signal as target.
The DIP applications are first specified in MagicDraw with the help of the Gaspard2 UML
profile. The specifiedmodel are then exported so as to be used in Eclipse environment, where
automatic model transformations are carried out according to Gaspard2 and synchronous
metamodels. Then the results of these transformations are Signal code.

The repetition size that could be handled in the transformation within the Eclipse capac-
ity is about forty thousands. The implementations are carried out on a desktop computer
that is equipped with two Quad-Core Intel Xeon processors for a total sum of eight cores.
The computer has 2 Gigabyte memory and runs on Linux. Running on Java virtual machine,
Eclipse java plugins meet a problem of memory size limit. For instance, the transformation
plugin calculates array indexes and stores them in the memory temporarily, hence when
the array size or the repetition number is too big, the plugin will run out of the available
memory. As a result, there is a maximum repetition number. But certain optimizations on
memory usage can be done to improve the repetition number that can be handled, for in-
stance, by storing the array indexes in temporary files during the plugin execution in order
to reduce the memory usage.

7.4 Conclusions

This chapter presents a concrete implementation of the synchronous modeling in the frame-
work of MDE, in addition, a flow of design is also illustrated: the UML profiles (particularly
Gaspard2 profile) are used for the high-level and heterogeneous modeling (application, ar-
chitecture, association, deployment, etc.) of DIP applications; the graphical design is trans-
formed into executable code in synchronous languages through a chain of model transfor-
mations, where the Gaspard2 model and the synchronousmodel act as intermediate models;
execution or validation can then be carried out on the resulting code (a case study of formal
validation is presented in Chapter 9).

The implementation presented in this chapter shows the advantages of the MDE ap-
proach: firstly, it simplifies the modeling of DIP applications by using simple but standard
UML notations, including its extension (Gaspard2 profile). In addition, the simple organi-
zation of these notations in a UML or object manner liberates users from heavy syntax and
grammar of classical languages.

Secondly, the model transformation is efficient and flexible with regard to classical com-
pilers. As intermediate models can be introduced in this transformation, the complexity of
the transformation can be reduced according to separation of concerns, i.e., one transforma-
tion addresses one certain problem. Hence each transformation can be kept simple. Another
advantage is that modifications of an intermediate model will not lead to the modifications
of all transformations, hence it makes it possible to follow the modern rapid software evolu-
tion. Using transformation rules is another advantage, because they are modular and hence
easy to maintain. These rules are defined to be declarative, which include input pattern, out-
put pattern and the transformation relation. However, imperative aspects of transformation
can also be specified to enhance the processing capacity of rules.

Finally, the number of tools associated with or dedicated to MDE have been dramatically
increased, which provide a good support for the MDE-based development.

130

Chapter 8

Transformation of the control
extension of Gaspard2

8.1 MARTE-compatible control for Gaspard2 132

8.1.1 Mixed structure-behavioral modeling 132

8.1.2 System behavior modeling with the help of UML 132

8.1.3 Using UML state machines . 133

8.1.4 Using UML Collaborations in mode task component 138

8.1.5 A complete Gaspard2 control structure 139

8.2 Control extension to Gaspard2 metamodel 139

8.2.1 The metamodel of state graphs . 140

8.2.2 The metamodel of events . 140

8.3 Extended synchronous metamodel . 140

8.3.1 StateMachine . 142

8.3.2 BooleanExpression . 142

8.4 Transformations . 142

8.4.1 From a UMLmodel to a Gaspard2 model 144

8.4.2 From a Gaspard2 model to a synchronous mixed-style model 146

8.4.3 From a mixed-style model to an equational model 147

8.4.4 From a mixed-style model to an automaton model 151

8.5 Conclusions . 154

This chapter presents the implementation of the previous reactive control modeling in
Gaspard2 in Chapter 6, which results in a model transformation chain from UML/MARTE
models to synchronous models. According to the different stages in the model transfor-
mation chain, the whole implementation can be presented in four parts: the graphical rep-
resentation of control using UML diagrams and MARTE profile, the extension of Gaspard2
metamodel with state-based control concepts, the extension of synchronousmetamodel with
control concepts and transformation rules that bridge the gap between UML/MARTE and
synchronous models with the help of their metamodels.

CHAPTER 8. CONTROL TRANSFORMATION

8.1 Extended Gaspard2 graphical interface in conformity with

MARTE

8.1.1 From structural modeling to mixed structure-behavioral modeling

The previous version of Gaspard2 profile without control modeling is mainly based on UML
diagrams for the structural specification. The internal structures and the static connections
between components can be clearly specified. However the control introduced in Chapter 6
concerns behavioral aspects, which can not be expressed by structural modeling only. Hence
an enrichment of Gaspard2 with behavioral modeling concepts is necessary. As a whole, we
are interested in two kinds of behaviors: the first one is state-based individual behavior,
which shows the state change during the life cycle of the individual in reaction to some
external stimuli. In this case, we are not interested in how it communicates with other indi-
viduals. The second kind of behavior is the communication behavior between a component
and its internal components in terms of connections. This connection behavior is always a
consequence of state changes of another component.

8.1.2 System behavior modeling with the help of UML

In Chapter 6, the Gaspard2 control has been presentedwith clear syntax and semantics spec-
ifications. These specifications are declared in natural language, e.g., English. As Gaspard2
aims to provide a development environment with a graphical interface, these control spec-
ifications should also take a graphical form in alignment with other Gaspard2 concepts in
terms of Gaspard2 UML profile.

In the evolution of Gaspard2, the newMARTE profile for the real-time embedded design
has great influence on Gaspard2 in the sense that all Gaspard2 concepts will be integrated
into or bemodified in accordance with MARTE, for instance, the repetitive operator concepts
has been integrated into MARTE. Following this trend,

MARTE-compatible behavioral modeling for Gaspard2 is expected. But MARTE does
not provide appropriate state-based behavioral modeling concepts as we presented in Chap-
ter 6. The basic UML behavior modeling concepts is then proposed for our control modeling,
such as State Machines and Collaborations [103]. In the proposition of control extension, Be-
havioral State Machines are chosen to demonstrate the state-based behavior of an individual
component, which acts as a controlling element in the system. State Machines are the first
choice because they are compatible with the state-based modeling presented in the previ-
ous Chapter 6. As in Gaspard2, control and computation are separated, the single structure
modeling of the controlled computation is not enough, Collaborations is used to illustrate the
behavior between components, which are controlled elements in the system.

From now on, Gaspard2 actually denotes a new MARTE-compatible version, i.e.,
MARTE concepts are adopted in Gaspard2.

In Chapter 6, we presented the automata-based control, however UML state machines
can not be used directly in Gaspard2 for the following reasons:

• Gaspard2 adopts a component-based approach, where the interfaces indicate the func-
tionality provided by this component. UML behavioral state machines can be associ-
ated with components, however they work on attributes and operations of a component
in preference to its ports, compared to UML protocol state machines.

132

8.1. MARTE-COMPATIBLE CONTROL FOR GASPARD2

• Gaspard2 is dedicated to the specification of DIP applications, which is different from
event-driven nature of UML state machines. UML state machines are different from
mode automata in synchronous languages for the same reason.

The next subsection is dedicated to the description of a specific usage of UML state ma-
chines (the same case as collaborations) so that they can be used in Gaspard2 in a compatible
way with other existing Gaspard2 concepts. The specific usage of UML will not change
the syntax of state machines or collaborations. However their semantics are changed under
some conventions. The result of this change can then be considered as a variant of UML
state machines.

8.1.3 Using UML state machines

8.1.3.1 The component associated to UML state machines

In Gaspard2, the component, with which UML state machines are associated, SMC (State
Machine Component) for short, is always a controlling component (it is required to produce
mode values for other components). An SMC (see an example in Figure 8.1) is an implemen-
tation of its associated state machines, SM for short.

Figure 8.1: An example of state machine component. This component is associated with
the state machne presented in Figure 8.2. The component has three event inputs: ctr_color,
event_color_down, and event_color_up, which are used to trigger transitions. State_in is used
to indicate which state of the state machine is the source state. The target state and mode are
outputed through State_out and mode_out respectively.

Port specialization in an SMC

As to an SMC, only its interfaces are exhibited. And the interfaces are actually presented
by Ports. These ports are stereotypedas flow ports. SM are supposed to react to the values that
pass through these ports. The shape of a port indicates how many values arrive at this port
at one time. As we take only dataflow into consideration, the shape is defined to correspond
to one reaction of the state machines, i.e., the shape is always {1}.

The input ports of an SMC are two kinds of ports: event ports and state ports. Event ports
indicate that values, which go through these ports are of Boolean type, and they are used
usually in triggers of transitions. Event ports are UML Behavioral ports. Values going through
State ports are considered as state values, which are identifications of states in the SM. These
values provide the initial state upon entering the SM, similar to the initial pseudostate. As the

133

CHAPTER 8. CONTROL TRANSFORMATION

state machine can be a hierarchical one, so multiple initial states are needed. In this case,
each state port is associated with a region by using the same name. As a convention, the
initial state defined by the initial pseudostate in the region is replaced by the state obtained
through the state port. Note that it is different from UML state machine, where the starting
state can be only given by the initial pseudostate.

An SMC have also two kinds of output ports: state ports and mode ports. Similar to the
input state ports, the output state ports provides the next states of the statemachines (the states
after the fired transitions). The output mode ports carry mode values that are transmitted to
other components for the purpose of mode choice. These mode values are defined in the
application independent from the SMC and its mode switch component for reuse purpose.
As a result, any of these components (SMCs) can be replaced by a third one, if the third one
is still compatible with the predefined mode values.

8.1.3.2 A subset of UML state machines

Figure 3.4 shows the metamodel of UML state machines, which seems to be too complex.
The state machines used for the modeling of Gaspard2 control are only a subset of UML
state machine. There are two reasons: a) UML state machines are intended to be applied in
all applications, however many concepts are not needed in Gaspard2; b) in consideration of
a concrete implementation of model transformation, Gaspard2 should remain concise but
expressive enough to simplify the development. The main concepts of UML state machines
used in Gaspard2 are enumerated: StateMachine, Region, State, Vertex, Transition, Pseudostate,
PseudostateKind, etc. Relations between these concepts are illustrated in the Figure 3.4.

StateMachine

StateMachine is a Behavior, which is used to exhibit the behavior of part of a system, for
instance, a controlling component. A state machine may have at least one regions, which
contain vertices and transitions.

Region

A region is an orthogonal part of either a composite state or a state machine [103]. It
contains vertices (states and pseudostates) and transitions.

States

A Gaspard2 state used in an SM can be any of the following kinds: simple state, compos-
ite state and sub-machine state. The composite state and sub-machine state make it possible
to specify state machines in a hierarchical way.

A state has a specific doActivity , where we can specify a behavior carried out in this state.
This behavior can be specified as an OpaqueBehavior, which can be written in any language,
such as a natural language. In Gaspard2, we use this OpaqueBehavior in natural language to
specify values that are sent to output ports when the state is active. For instance, in Figure 8.1,
the SMC has two output ports: state port and mode port. The first one indicates the current

134

8.1. MARTE-COMPATIBLE CONTROL FOR GASPARD2

state of the state machine and second one indicates the mode to execute at this moment. The
doActivity can be specified as:

region.ostate=self.name and app.mode=enumeration.M1

where the left part of the equations concerns the port and the right part concerns their
values. For instance, region.ostate and app.mode are port names of the component.
region is the name of a region, which owns the current state. ostate is a string that
denotes a state port. app represents the name of an application that requires this mode
values. mode is also a string that denotes a mode port. self indicate the state itself, it is
used to distinguish its containing state, super, or its sub-state, sub, in case of state hierarchy.
self indicates the name of the state itself in case of simple state and M1 is a mode value,
which is defined in a enumeration outside the state machines. The enumeration can be found
through enumeration.

Vertex

A vertex is either a state or a Pseudostate. It is used to indicate the source and the target of
transitions.

Pseudostate

We are interested in three types of pseudostates: initial pseudostate, deepHistory pseudostate
and shallowHistory pseudostate. Note that these pseudostates do not exist in GSGs, but they
greatly simplify the graphical design in UML, hence they are kept in the proposition, which
is based on UML. They are finally translated intoDefaultLink and InterRepetition in Gaspard2.

• initial pseudostate is connected to one of the states in a state machine (more precisely,
a region), which is the initial state of the state machine (region). But if there is an
input state port defined for the same region, the initial state indicated by the initial
pseudostate is re-defined by the state obtained from the state port.

• deepHistory pseudostate represent the most recent active states in a composite state that
contains this pseudostate. This pseudostate is connected to a state in case that there is
no most recent active states (for instance, the composite state is entered for the first
time). Otherwise, it indicates which states should be reactivated upon entering the
composite state. Only one deep history pseudostate is allowed in a composite state
(inconsistency in UML [43]).

• shallowHistory pseudostate is similar to a deep history pseudostate, except that it indi-
cates directly the sub-states of the composite state (unlike a deepHistory, which mem-
orizes all the states in the hierarchy). The sub-state denoted by shallow history pseu-
dostate is actually the initial state for the composite state (inconsistency in UML [43]).

135

CHAPTER 8. CONTROL TRANSFORMATION

Transitions

A transition is a directed link between a source vertex and a target vertex (state or pseu-
dostate). A transition can have several triggers, any satisfaction of these triggers can fire
the transition. Figure 8.2 show an example of a transition, where the trigger is defined as
when event_color_up and ctr_color.

Triggers

A trigger is related to an event that may cause the execution of an associated behavior
(In Gaspard2, it means an associated transition), for instance, the trigger when e1 and e2
in Figure 8.2. when event_color_up and ctr_color is a Boolean expression that rep-
resent an event.

Events

The events used in Gaspard2 in a trigger of a transition is generally a ChangeEventwhich
is associated to an input port. The event has an Expression, called changeExpression, which is
Boolean expression that can result in a change event. Another kind of event is also used in
Gaspard2 is AnyReceiveEvent 1, written as all in the example in Figure 8.2. AnyReceiveEvent
can be considered as a default event when all the triggers of the transitions from the same
vertex are not satisfied.

Expression

The expression used in Gaspard2 is an binary expression that can generate a change
event when it is evaluated true. The variables in the expression are declared as MARTE
primitive Boolean type. These variables are associated to the values that go through the input
event ports (names of variables here are the same as those of the corresponding ports). For
instance, event_color_up, ctr_color in the trigger appeared in the Figure 8.2. They are used in
a binary expression: when event_color_up and ctr_color. And event_color_up
and ctr_color are also associated with the event ports that have the same name.

From the syntactic point of view, Gaspard2 state machines are a subset of UML stan-
dard state machines. But they do not have the same semantics. The concrete semantics
of Gaspard2 state graph are presented after an example of a Gaspard2 state graph in next
subsection 8.1.3.4.

8.1.3.3 An example of a simple state machine

Figure 8.2 illustrate an example of a complete state machine. This state machine has three
states. One of them is connected to the initial pseudostate, which indicates that the state is
the initial state. Some transitions connect these states, which can be fired by triggers on the
transitions. Trigger are defined on events, which are Boolean expressions of the event port
variables (event_color_up, ctr_color).

1AnyReceiveEvent is defined in UML, see [103] for more details of this event type.

136

8.1. MARTE-COMPATIBLE CONTROL FOR GASPARD2

Figure 8.2: An example of a state machine.

8.1.3.4 Gaspard2 state graphs in a UML component context

From the point of view related to Gaspard2 semantics, UML state machines are not appro-
priate. From now on, we use the term Gaspard2 state graph (GSG for short) to distinguish
UML state machines. A GSG is associated with a Gaspard2 component in order to give a
more precise external view with regard to its ports. This is different from UML state ma-
chines, which is associated to a component to give more precise dynamical constraints on
operations of the component.

8.1.3.5 Gaspard2 state graphs in a dataflow context

UML state machines adopt the event-driven style, i.e., the state machines react to some
events issued in its context classifier. However, a Gaspard2 component associated with a
state graph is a dataflow processing component, and the state graph specifies the compo-
nent behavior in response to the values that pass through the flow ports of the component.
Hence transitions of the state graph correspond to arrivals of new values through the ports.
The GSG is supposed to accomplish its transitions before the arrivals of new values. Un-
changed values lead to self transitions of the state graph through the ports. These arrivals
and changes of values are supposed to be captured by some ChangeEvents associated with
the ports, for instance event_color_up and event_color_down in Figure 8.2.

8.1.3.6 Gaspard2 state graphs in a repetition context

According to the control modeling presented in Chapter 6, a component associated with a
GSG (i.e., a state graph component, SGC for short) is translated differently according to it
repetition context. In case that some inter-repetition dependency is introduced in the repe-
tition context, a GSG is translated to be repeated multiple times in a sequential way, hence
the GSG associated to an SGC can be translated into an automaton. In this case, the input
state ports of an SGC are set by the inter-repetition dependencies. But if inter-repetition de-
pendency is absent in the repetitive context, an SGC is translated into multiple instances that
execute in parallel. This is not handled in this thesis.

8.1.3.7 Gaspard2 state graphs in a hierarchical context

An SGC can be composed with other Gaspard2 component if their interfaces are compatible.
In this case, the SGC is considered as a normal Gaspard2 component.

137

CHAPTER 8. CONTROL TRANSFORMATION

8.1.4 Using UML Collaborations in mode task component

The mode switch component for the mode switch task

A Gaspard2 mode switch component (MSC for short) corresponds to mode switch task
introduced in Chapter 6. An MSC have several normal data ports and a mode port (a behav-
ioral port). A MSC is the containing component of several mode task components (MTC for
short). EachMTC in the context of anMSC is called a mode of theMSC. TheMSC defines the
collaboration behavior of these modes according to the values of its mode port. These MTCs
correspond to several mutual exclusive modes, which have the same interfaces. They have
also the same interfaces as their MSC, except the mode port of MSC. An MSC is connected
with its MTCs with the help of delegation connectors through their ports.

Figure 8.3 shows an example of an MSC. The MSC, called ColorEffectSwitch, has three
ports: mode_color, i and o. mode_color is a behavior port which is used to obtain mode values.
The mode values are then used by ColorEffectSwitch to choose the execution of the corre-
sponding mode. Modes in ColorEffectSwitch, c and m, are instances of mode tasks ColorMode
and MonochromeMode respectively. The input port i of ColorEffectSwitch is connected to the
input ports of c and m, in the same way, the output port o of ColorEffectSwitch is connected
to the output ports of c and m. Actually, only one mode, either c or m is selected to execute
according to the mode value provided by mode_color of ColorEffectSwitch. Mode values in
this example are ModeColor andModeMono, which are denoted by the collaboration names.

Figure 8.3: An example of collaboration.

The mode switch component associated with collaborations

138

8.2. CONTROL EXTENSION TO GASPARD2METAMODEL

The MSC is structurally presented in the previous subsection. Obviously the execution
semantics or how the internal parts of the MSC collaborate is not defined. The behavior
of MSC can be expressed in any natural language, e.g., choose a mode according to the
mode value provided by its mode port. However this English sentence remains obscure
to a machine-interpretable formalism. UML proposes to use collaborations to specify roles
of components (instances level collaboration) by using parts and connectors in composite
structures. A collaboration depicts the relation of some collaborating elements, which are
called roles in the collaboration. These roles, each of which provides a specialized function,
accomplish some desired functionality in a collective way. In a collaboration only the con-
cerned aspects of a role are included, other details (identification, unused interfaces, etc.) are
suppressed. Figure 8.3 illustrates the collaborations of an MSC and its MTCs. For instance,
the collaboration ModeColor shows how the MSC ColorEffectSwitch works with the MTC Col-
orMode. The connections between them are showed in the collaboration. As in this mode,
only ColorMode is supposed to execute, another mode MonochromeMode is suppressed. The
collaboration is finally connected to ColorEffectSwitch.

8.1.5 A complete Gaspard2 control structure

Both SGCs and MSCs are considered as normal Gaspard2 components, hence they can be
used in an application as other Gaspard2 components once they are provided compatible
interfaces.

Here an example of a typical complete Gaspard2 control structure is given in Figure 8.4.
In general, as a state machine cannot be modelled in the composite structure diagram, the
state machine cannot be displayed with components at the same time in MagicDraw and
Papyrus. Hence, in order to give a global view of a control structure, the example in Fig-
ure 8.4 is not modelled in a UML graphical environment, but it is very close to UML model-
ing.

8.2 Control extension to Gaspard2 metamodel

The first control extension with control proposed in [71] took a controlling component (SGC
in this thesis) as an elementary component so the controlling component should be associ-
ated with an external implementation. But in the current proposition of this thesis, as men-
tioned in the previous subsection, the controlling component is associated with a UML state
machine diagrams where state graphs can be drawn. Hence no external implementation is
needed.

The state graph metamodel is based on UML state machine metamodel. More precisely,
it is a simplified subset of UML state machine metamodel. First, as UML is already a stan-
dard, it is not necessary to create another similar metamodel for automata. Secondly, UML
state machines are relatively stable which provide the capacity of enough expression for
the modeling of automata. Thirdly, UML state machine is too complex with regard to our
requirements for Gaspard2 control, so only a necessary subset is used in the Gaspard2 meta-
model.

139

CHAPTER 8. CONTROL TRANSFORMATION

Figure 8.4: An example of a complete Gaspard2 control structure.

8.2.1 The metamodel of state graphs

This metamodel (Figure 8.5) mainly depicts the relations between StateGraph, Region, Transi-
tion, State and Trigger. As UML state machines have been presented in Chapter 3, the details
of this metamodel are not given here.

8.2.2 The metamodel of events

This metamodel (Figure 8.6) mainly specifies the relations between Event, Trigger, Expression
and ValueSpecification. For the same reason as given for the previous state graph metamodel,
the details of this metamodel are not given here.

8.3 Extended synchronous metamodel

There are two ways to present the state-based control in synchronous languages. The first
one is to translate the control directly into synchronous equations, i.e., all the states and tran-
sitions are coded in equations. An advantage of this method is that little modifications are
needed in the synchronous model presented in previous chapter. However, this approach
has also its disadvantages: a) the resulting equations are not easy to read; b) explicit-state-
based verification and analysis tools, such as Matou, cannot be applied. The second ap-
proach is to integrate a metamodel of automata (state machines) in the synchronous model.

140

8.3. EXTENDED SYNCHRONOUSMETAMODEL

Figure 8.5: An extract of Gaspard2 StateGraph, which is proposed according to the meta-
model of UML state machines.

141

CHAPTER 8. CONTROL TRANSFORMATION

Figure 8.6: The extract of the Eventmetamodel in Gaspard2.

This explicit automata help greatly in automata-based model checking and the transforma-
tion from Gaspard2 state graphs to synchronous automata is almost straightforward.

8.3.1 StateMachine

This metamodel (Figure 8.7) mainly depicts the relations between Node, Automaton, Transi-
tion, State, Trigger, BooleanExpression, and Equation. This metamodel is a metamodel of flat
automata, i.e., the automaton itself is not hierarchical, the hierarchy of automata is expressed
by node hierarchy. A Node can contain an Automaton. The latter can have States, Transi-
tions, History and Reset. A State can have Equations as its internal computation, where other
automaton nodes can be invoked. Transitions are associated with source and target states.
Transitions contain Triggers, which in turn have BooleanExpressions.

8.3.2 BooleanExpression

The metamodel of BooleanExpression (Figure 8.8) shows how to build Boolean expressions
from operators (such as And, Or, Not, IfThen and IfThenElse.) and operands (such as Sig-
nalUsage and other BooleanExpressions.).

8.4 The translation rules based on metamodels

This section explains how a Gaspard2 UML model can be transformed into a synchronous
model by means of transformation rules (similar to the previous chapter). First of all, some
intermediate models are presented:

142

8.4. TRANSFORMATIONS

Figure 8.7: The extract of the StateMachine metamodel in synchronous model.

Figure 8.8: The extract of the Expression metamodel in synchronous model.

143

CHAPTER 8. CONTROL TRANSFORMATION

• Gaspard2 UML model: this model corresponds to a model obtained from a graphical
UML tool, such as Papyrus2 and MagicDraw3. This model contains both Gaspard2
and UML concepts at the same time.

• Gaspard2 model: this model is a pure Gaspard2 model, where only Gaspard2 domain
concepts retain.

• synchronous mixed style model: the mixed style model is a mixture of an automata
model and an equation model. This model enables to preserve explicit automata (com-
pared to equations) directly, which is in favour of generating code in the form of mode
automata in synchronous languages.

• synchronous equational model: this model is a pure equational model, where all au-
tomata are coded directly in equations.

• synchronous automata model: this model is a mode automata style model, which en-
ables to generate code of mode automata for Lustre (by means of Matou), Lucid syn-
chrone, polychronous mode automata.

Figure 8.9 illustrates a transformation flow in consideration of previously mentioned
models. T1, the transformation from a UML model into a Gaspard2 model, is explained
in Section 8.4.1. T2, the transformation from Gaspard2 model into synchronous mixed style
model, is discussed in Section 8.4.2. T3, the transformation from a synchronous mixed style
model into an equational model, is presented in Section 8.4.3. T4, the transformation from
the synchronous mixed style model into a synchronous automaton model, is shown in Sec-
tion 8.4.4.

8.4.1 From a UML model to a Gaspard2 model

This section concerns the transformation of the MARTE UML model into the Gaspard2
model. As transformations of MARTE UML model without concepts of state machines and
collaborations have been already presented in the previous chapter, only transformations
related to UML state machines and collaborations are presented here.

State machine component and mode switch component. A MARTE component associ-
ated with UML state machines is transformed into a Gaspard2 ApplicationComponent associ-
atedwith Gaspard2 state graphs. AMARTE component associatedwith UML collaborations
is transformed into a Gaspard2 ApplicationComponent associated with Gaspard2 collabora-
tions. These transformations concern only structural aspects, hence they are very direct.

UML state machines and collaborations. As the metamodel of Gaspard2 state graphs is a
subset of the metamodel of UML state machines, the translation is obviously direct and sim-
ple. In general, they are one-to-one translations on the condition that the application is only
specified with the defined concepts in Gaspard2 state graph. However, a UML graphical
tool provides all the features of UML state machine, so the right usage (using only concepts
defined in Gaspard2 state graphs) of the graphical tool is very important.

2http://www.papyrusuml.org
3http://www.magicdraw.com

144

8.4. TRANSFORMATIONS

Figure 8.9: The transformation flow from UML model to synchronous equational model

145

CHAPTER 8. CONTROL TRANSFORMATION

8.4.2 From a Gaspard2 model to a synchronous mixed-style model

8.4.2.1 Application component and its associated state graphs

Similar to the previous Chapter 7, the transformation rules can be illustrated in a hierarchical
structure (Figure 8.10). For reason of clarity, only transformations of some key concepts are
showed in this figure. The root rule of the transformation involves ApplicationComponent
that is associated to state graphs. Its sub-rule concerns the StateGraph rule, which transforms
the state graph associated to the previous component. And It is then followed by Regions
of the StateGraph. Vertex and Transition rules are invoked in the Region rule. Vertex can be
divided into two sub-rules: Pseudostate rule and State rule. Finally, Trigger rule is a sub-rule
of Transition rule.

Figure 8.10: The transformation hierarchy of Gaspard2 state graph.

Component associated with state graphs. A Component associated with state graphs is
transformed into a synchronous node. The interfaces of the node are defined by the
ports attached to the component. This node invokes the nodes of state graphs (defined
in the following rule: StateGraph).

StateGraph. A StateGraph is transformed into a synchronous node. The interfaces of the
node are the same as the node that invokes it (the node from theApplicationComponent).
Node(s) of region(s) (defined in the following rule: Region) associated with the state
graph are invoked in the StateGraph node.

Region. A Region is transformed into a synchronous automaton node. Compared to the
previous transformation in Chapter 7, the automaton node does not have an Equation-

System, it contains an Automaton that defines the functionality instead.

Vertex. A Vertex is an abstract class, so it is not transformed here. However it calls two
sub-rules State and Pseudostates.

State. According to the different types of a State, the transformation varies too. A simple
State is transformed into a synchronous State. However, the transformations of a com-
posite state or a submachine state are more complex. Regardless of the different forms
of a composite state and a submachine state, they have the same semantics. Hence they

146

8.4. TRANSFORMATIONS

are treated in the same way in the transformation. A composite state or a submachine
state is transformed into a State first. Then The internal structure in a composite state
or a submachine are considered as StateGraphs, which can be transformed by using the
StateGraph rule. Then, the State transformed from a composite state or a submachine
state is attached with an Equation, where the nodes transformed from the previous
StateGraph rule is invoked.

Pseudostates. The transformation of Gaspard2 pseudostates, such as Initial, deepHistory and
shallowHistory, has different rules respectively. Initial pseudostate is transformed into a
dependency between the state machine and the corresponding state, namely the initial
state. A ShallowHistory pseudostate is transformed into aHistory, which is connected
to an automaton and a state. deepHistory is also transformed into aHistory. Moreover,
it declares all its sub automata have their ownHistory.

Reset. The Reset concepts in Gaspard2 is transformed into an Reset of the automata. When
an automata has a Reset, theHistory is no longer useful in the automata.

Transition and Trigger. Gaspard2 Transition and Trigger are transformed into synchronous
Transition and Trigger in a direct structural way.

Event, MessageEvent and ChangeEvent. A Gaspard2 Event, such as MessageEvent and
ChangeEvent, is transformed into synchronous BooleanExpressions.

8.4.2.2 Mode switch component and its associated collaborations

A mode switch component is transformed into a synchronous Node, in which several
mode task nodes4 are invoked in a mutual exclusive way. This requires the match/with5

or if/then/else control structure in a node. The pattern of the match/with or the condition of
the if/then/else are obviously mode values, and the statements are invocations of these mode
task nodes. The correspondence between mode values and mode task nodes is indicated by
the collaborations, which are associated to the mode switch component. Hence Collaborations
are transformed into dynamical invocations of nodes.

8.4.3 From a mixed-style model to an equational model

The transformation from a synchronous mixed style model into an equational model aims
to obtain a pure equational model, i.e., nodes have only equations (no automata). The latter
enables to generate code without explicit automata6.

As the previous T2 step has transformed: a) corresponding Gaspard2 concepts into
nodes; b) state graph hierarchy into node hierarchy, the aim of this step T3 is to transform
automaton nodes into pure equational nodes, i.e., only automaton nodes are involved in this
step.

4A node that implements a mode
5Different languages have different forms, this form belongs to Lucid synchrone à la Object Caml. Signal has

the form case/in/end, C language has the form switch/case, etc.
6On one hand, in Lustre, there is not explicit automata concepts. On the other hand, oversampled automata

could not be expressed by mode automata in synchronous languages (Chapter 6)

147

CHAPTER 8. CONTROL TRANSFORMATION

There are two aspects of the transformation of an automaton node into an equational
node. The first one concerns the transformation of the structure of an automata, which in-
cludes states and conditioned transitions. The second one involves the execution semantics
of some concepts, such as History and Reset.

8.4.3.1 Transformation of automaton structure into equations

A very simple way to transform the structure of state-transition based automaton into equa-
tions is to use match/with statement or if/then/else statement. The two transformations are
described separately.

Match/with case

In the match/with case, the state/transition can be translated by two levels of nodes in
a hierarchical way. The high level is a state-match node, which matches the source state.
Once the source state is matched, the corresponding statement invokes a transition-match
node. In the latter node, one of all the possible transitions from the source state is matched
according to the Boolean expression attached on the transition, as a result the corresponding
statement is carried out.

A transition can be a strong transition or a weak transition, which leads to different
transformations. Matou only supports weak transitions, whereas Lucid synchrone supports
both. In the following example, both two kinds of transitions are illustrated.

Figure 8.11: An example of automaton to be transformed.

Figure 8.11 shows an example of an automaton which is transformed into equations in
the terms of match/with in Figure 8.12 and Figure 8.13. The automaton has two states: s1
and s2. s1 has two outgoing transitions: one transition targets s2 in the conditions that
Boolean expression e1 is true, the other transition targets s1 itself when e1 is not true. Every
state has equations attached. For example, region.ostate = self.name and app.mode = enumer-
ation.M1 in state s1. As the example is a simple state machine, the previous equation is
directly translated in the target language: state = s1 and mode = M1.

Figure 8.12 (strong transition version) and Figure 8.13 (weak transition version) illustrate
the results in a concise way, which try to avoid too many technical details. It adopts key
words from Lucid synchrone and Lustre. A node, called state-match-auto is a state-match
node. It matches the previous value of a signal, called state. According to the value of

148

8.4. TRANSFORMATIONS

state, node transition-match-s1 or node transition-match-s2 is invoked. In node transition-match-
s1, expressions, such as e1, e2 are evaluated in the match statement. According to their
values, either (true, _) (whatever the value of e2), either (_) (whatever other values), one of
the two transitions is fired (their equations are evaluated). The interfaces of these node are
not involved for reason of clarity. But they are presented in the next subsection.

node state-match-auto
match pre(state) with

s1 ->
do transition-match-s1 done

| s2 ->
do transition-match-s2 done

end

node transition-match-s1
match (e1, e2) with

(true, _)s1 ->
do state = s2 and mode = M2 done

| _ ->
do state = s1 and mode = M1 done

end

node transition-match-s2
match (e1, e2) with

(_, true) ->
do state = s1 and mode = M1 done

| _ ->
do state = s2 and mode = M2 done

end

Figure 8.12: An extract of if/then/else example (without interfaces), which is obtained from
the transformation of an automaton in Figure 8.11: strong transition version.

If/then/else case

As the match/with statement can be translated in an if/then/else statement naturally,
we will not detail this translation. However we just give an example of transformation of
the previous automaton (Figure 8.11). This is an example of the strong transition version
(Figure 8.14).

8.4.3.2 Transformation of InitialState, History and Reset

The three concepts InitialState, History and Reset define which state is the starting state when
the automaton is activated or reactivated. But there is a priority between them: Reset is
prior to History and History is prior to InitialState. This order means that if Reset is true, the
InitialState is always the starting state, otherwise, the starting state is indicated by History if
History is set. When History is unset, the InitialState is always the starting state.

149

CHAPTER 8. CONTROL TRANSFORMATION

node state-match-auto
match pre(nextstate) with

s1 ->
do state = s1 and mode = M1 and

transition-match-s1 done
| s2 ->

do state = s2 and mode = M2 and
transition-match-s2 done

end

node transition-match-s1
match (e1, e2) with

(true, _) ->
do nextstate = s2 done

| _ ->
do nextstate = s1 done

end

node transition-match-s2
match (e1, e2) with

(_, true) ->
do nextstate = s1 done

| _ ->
do nextstate = s2 done

end

Figure 8.13: An extract of if/then/else example (without interfaces), which is obtained from
the transformation of an automaton in Figure 8.11: weak transition version.

node state-match-auto
if pre(state)=s1 then transition-match-s1
else if pre(state)=s2 then transition-match-s2

end

node transition-match-s1
if e1=true then state = s2 and mode = M2
else state = s1 and mode = M1

end

node transition-match-s2
if e2=true then state = s1 and mode = M1
else state = s2 and mode = M2

end

Figure 8.14: An extract of if/then/else example (without interfaces), which is obtained from
the transformation of an automaton in Figure 8.11: strong transition version.

150

8.4. TRANSFORMATIONS

As InitialState and Reset are not changed once the automaton is designed, so they can
be modeled by local constant signals. History is a little special in the sense that they can be
changed according to its context. In fact it is a memory of the last recent active state(s). It
can be modeled by using memory operators, such as pre (followed by), which supports to
get the value of a signal at a previous instance (transition) and -> (default), which gives the
default value.

8.4.3.3 A complete example of transformation

Figure 8.15 gives an example in consideration of InitialState, History and Reset. The interfaces
are also included. But note that this example is only used to illustrate a skeleton of the
resulting code, so it can not be submitted to be compiled. Both match/with and if/then/else
are used in this example, but if/then/else has nothing to do with automata, compared to
the example in Figure 8.14. This example in Figure 8.15 can also be translated into pure
equational code as mentioned before.

The input arguments of the node: e1 and e2 are the same as in the previous example
(Figure 8.11). Active indicates if this automaton is active in case that this automaton is a
sub automaton. Compulsivestate indicates a compulsive starting state for the automaton no
matter what the automaton has as its initial state. This compulsive state is associated with
the input state port of a component (SGC). When it is set, a local Boolean signal compulsive
is set to true. State and mode are output arguments, which indicate the current state and the
corresponding mode after the fired transition.

Local signals are initialstate, reactive, compulsive, starting state, historystate, history and re-
set. Initialstate, compulsive, history and reset are considered as constant signals, whose values
are determined at the transformation time, i.e., they can be obtained from the information
of the original UML specification. Compulsive, history and reset are Boolean signals, which
indicate the presence/absence of compulsive state, history and reset concepts. Initialstate
indicates the default starting state of an automaton. Reactive, startingstate and historystate are
dynamically changed according to the execution context. Reactive indicates if the automaton
is entered or reentered. Startingstate indicates the resulting starting state in consideration of
all the constraints, including compulsive state, reset, history and initial state.

8.4.4 From a mixed-style model to an automaton model

An automaton model is used to generate code for mode automata or Lucid synchrone. Com-
pared to the previous transformation T3, which transforms the synchronous mixed-style
model into equations, this transformation T4 attempts to extract the automata structure from
the mixed-style model. The metamodel is very similar to the synchronous mixed style meta-
model, except some concepts, such as compulsivestate, which are absent in the automaton
model.

Transformation towards Lucid synchrone

Lucid synchrone mode automata enable both weak transitions and strong transitions.
Two corresponding examples are illustrated in Figure 8.16 and Figure 8.17 respectively.

In case that History is set but Reset is not set, the example of Lucid synchrone mode
automaton is illustrated in Figure 8.18.

151

CHAPTER 8. CONTROL TRANSFORMATION

node state-match-auto (e1, e2, active, compulsivestate)
returns state, mode
var initialstate, reactive, compulsive, startingstate,

historystate, history, reset
initialstate = s1
reactive = if not(true->pre active) and active then true

else false
historystate = if not active and not reset and history

then initialstate -> pre historystate
else if active and reactive and not reset and history

then initialstate -> pre historystate
else if active and not reactive

then initialstate -> pre state
else initialstate

startingstate = if compulsive then compulsivestate
else historystate

match startingstate with
s1 ->

do (state, mode) =
transition-match-s1(e1, e2, active) done

| s2 ->
do (state, mode) =

transition-match-s2(e1, e2, active) done
end

node transition-match-s1 (e1, e2, active)
returns state, mode

match (e1 and active, e2 and active) with
(true, _)s1 ->

do state = s2 and mode = M2 done
| _ ->

do state = s1 and mode = M1 done
end

node transition-match-s2 (e1, e2, active)
returns state, mode
match (e1 and active, e2 and active) with

(_, true) ->
do state = s1 and mode = M1 done

| _ ->
do state = s2 and mode = M2 done

end

Figure 8.15: An extract of the code example, which is obtained from the transformation of an
automaton in Figure 8.11. In the first node, i.e., state-match-auto, if/then/else statements,
which are considered as primitive statements defined in the programming language, are
only used to calculate some local signals. On the contrary, the match/with statement is used
to translate the automaton.

152

8.4. TRANSFORMATIONS

let node auto e1, e2 = (state, mode) where
automaton
s1 -> do state = s1 and mode = M1 until e1 then s2

| s2 -> do state = s2 and mode = M2 until e2 then s1
end

Figure 8.16: An extract of the Lucid synchrone code example in terms of automaton, which
is obtained from the transformation of an automaton in Figure 8.11: weak transition version.

let node auto e1, e2 = (state, mode) where
automaton
s1 -> do state = s1 and mode = M1 unless e1 then s2

| s2 -> do state = s2 and mode = M2 unless e2 then s1
end

Figure 8.17: An extract of the Lucid synchrone code example in terms of automaton, which is
obtained from the transformation of an automaton in Figure 8.11: strong transition version.

let node auto e1, e2 = (state, mode) where
automaton
s1 -> do state = s1 and mode = M1 until e1 continue s2

| s2 -> do state = s2 and mode = M2 until e2 continue s1
end

Figure 8.18: An extract of the code example in terms of automaton with a history, which
comes from the transformation of an automaton in Figure 8.11.

153

CHAPTER 8. CONTROL TRANSFORMATION

Transformation towards Lustre mode automata

When a synchronous mixed model is transformed into Lustre mode automata in terms
of Matou, several concepts are not always compatible with the definitions of Lustre mode
automata. For instance, the history semantic is not supported, hence when reentering an au-
tomaton, it acts as there is always a reset. Moreover, compared to Lucid synchrone mode
automata, only weak transition is supported for Lustre mode automata. Lustre mode au-
tomata supports priorities on transitions, but it is not supported in UML state machines.
Figure 8.19 shows an example Lustre mode automata transformed from the previous exam-
ple shown in Figure 8.11.

AUTOMATON auto
STATES

s1 init [state = s1; mode = M1;]
s2 [state = s2; mode = M2;]

TRANS
FROM s1 TO s2 WITH rien0 [e1 = true]
FROM s2 TO s1 WITH rien0 [e2 = true]

PROCESS auto [in(e1, e2), out(state, mode)]

Figure 8.19: An extract of the code example in terms of Lustre mode automaton, which
comes from the transformation of an automaton in Figure 8.11.

8.5 Conclusions

This chapter presented the implementation of the state-based control in Gaspard2 (Chap-
ter 6) in conformity to MARTE. The implementation involves: a) a proposition of an exten-
sion of MARTE profile with UML state machines and collaborations so as to model state-
based control; b) an extension of Gaspard2 metamodel with state graphs; c) an extension
of synchronous metamodel with automata; d) a transformation chain, which is an ongoing
work, from graphical MARTE/UML descriptions to synchronous languages in considera-
tion of language particularities. The targeted languages include Lustre, Lucid synchrone
and Signal. Mode automata of these three languages are also taken into account.

This implementation of state-based control enables to generate synchronous model au-
tomata. The latter makes it possible to use: a) model-checking tools to verify the control
correctness with regard to some specifications; b) discrete controller synthesis tools for safe
control. The usage of these two formal techniques is illustrated in the next chapter with a
case study.

154

Chapter 9

A case study on multimedia cell phone

9.1 Introduction . 155

9.2 Modeling of the example in Gaspard2 . 156

9.2.1 A global view of the example . 156

9.2.2 A macro structure for the video effect processing 159

9.2.3 Repetitive modeling of video effect processing 159

9.2.4 A complete modeling of the phone example. 161

9.2.5 Requirements of formal application verification. 165

9.3 Application validation and analysis . 168

9.3.1 Functional validation and analysis . 168

9.3.2 Validation considering non-functional aspects 172

9.4 Discrete controller synthesis . 173

9.5 Related works . 175

9.6 Conclusions . 175

9.1 Introduction

Following the advances in mobile computing in the hardware architecture and energy tech-
nology, e.g., smaller physical size, increasing computing capability and less cost, multimedia
mobile devices have been spreading rapidly. As a result, these devices augment the number
and improve the quality of the functionalities, which contribute to gain of a dominant foot in
the commercial market. For instance, a modern cellular phone provides complex functional-
ities, such as camera, music/video playback, video games, GPS, mobile TV and radio.

Among these applications, those which involve multimedia processing attract a good
deal of interest. They are generally DIP applications. For instance, in a camera phone, in
general, the image/video processing can be divided into multi-stages [123]: 1) image cap-
ture: images are captured by sensors, such as charged-coupled devices (CCDs) and comple-
mentary metal oxide semiconductor (CMOS); 2) signal processing: images are rendered so
as to be processable in the system; 3) application processing: images are processed accord-
ing to predefined specifications; 4) display/storage: images are displayed on the screen or

CHAPTER 9. CASE STUDY

stored in the flash memory in the cell phone. The signal and application processing stages
are considered as DIP processing, which can be modeled in the Gaspard2 framework.

Mobile multimedia applications designed for cellular phones require to take user require-
ments and QoS into consideration in order to obtain an advantageous market evaluation,
e.g., various multimedia effects to meet user’s special favor, continuous and dependable
service. These requirements are generally considered as, but not restricted to, application
controllability, adaptivity and dependability .

• Application controllability Example. Users can watch video clips with their cellular
phones, which can be obtained from the local memory, an on-line video library or the
built-in camera on the phone. While watching a video clip, the phone allows to choose
different video effects, such as B&W (Black & White), Negative (a tonal inversion style
of a positive image), Sepia (a dark brown-grey color style) and Normal (no effect), by
using buttons on the phone. Users can also change the resolution of the video, such as
High, Medium and Low, or video color, e.g., Color andMonochrome.

• Application adaptivity and dependability Example. In addition to user control, pre-
viously mentioned video functionality is also supervised by the phone system to meet
some QoS requirements, e.g., continuous and dependable service, minimum or opti-
mal resource consumption. These requirements are fulfilled in consideration of the
platform, hardware and environment status, which typically include the status of com-
puting power, available memory, available communication and energy. For instance,
communication quality (or available communication) can result in changes of some
communication-sensitive video modes in order to obtain a better video quality, or in-
versely to save energy, etc.

This chapter first presents the modeling of a video effect processing module of a multi-
media cellular phone within the Gaspard2 framework, which involves the embedded mul-
timedia software design for a cell phone. The processing in the module corresponds to ap-
plication processing in the multi-stage video processing. The modeling illustrates the usage
of our proposed behavioral modeling constructs, which mainly concerns high-level func-
tionality modeling of the data-parallel intensive video processing. Videos in this case study
are modeled as flows of decompressed images. Access of videos through camera sensor,
local memory storage, telecommunication networks, etc., are indifferent and the videos are
modeled as multidimensional arrays. In addition to the modeling of the multimedia mod-
ule, formal validation and discrete controller synthesis are also presented in this chapter by
utilizing synchronous languages, which contribute to obtain a correct and safe application
design.

9.2 Modeling of the example in Gaspard2

9.2.1 A global view of the example

The multimedia processing module in this case study (Figure 9.1) is mainly composed of
seven software components, which include:

EnergyStatus : it indicates the energy level according to the events received from the energy
detection component (not presented here);

156

9.2. MODELINGOF THE EXAMPLE IN GASPARD2

CommQuality : it determines the communication level to be used in the phone, according
to energy level notified by the energy component and available communication quality
received from antenna component (not included here);

Controller : this component can control or validate mode change requests from the follow-
ing components according to current mode configuration and available resources, such
as energy and communication quality;

VideoSource : it represents the component that choose the right video source according to
user change requests and the controller’s authorizations, or direct commands of the
controller;

Resolution : it contains a state-based control part, which can change the resolution of the
video according to user requests and the controller’s authorizations, or direct com-
mands of the controller, and a DIP part, which is composed of several modes of pro-
cessing.

ImageStyle : it is similar to the resolution component, except that it concerns image style
processing;

ColorEffect : it is also similar to the resolution component, except that it involves the pro-
cessing of video color effect;

Figure 9.1: A global view of the multimedia processing module in a cellular phone example,
which is composed of seven components.

In this example, modes defined in several components can be characterized by some
quantitative attributes that represent certain non-functional properties, such as energy, com-
munication quality, computing resource and memory. Table 9.1, Table 9.2, Table 9.3 and
Table 9.4 illustrate the non-functional quantitative characteristics that are associated with
the automata of color effect, video source, image style and resolution respectively.

The modeling of this example will be illustrated as follows: a typical components,
namely the ColorEffect component, will be presented first. The Gaspard2 repetition and con-
trol modeling is illustrated with this component. Then, a complete modeling is illustrated.
Finally, construction of model automata is discussed.

157

CHAPTER 9. CASE STUDY

mode name energy communication computing memory
quality resource

Color 30 50 40 20
Monochrome 20 40 25 20

Table 9.1: Non-functional quantitative attributes associated with the ColorEffect automata.

mode name energy communication computing memory
quality resource

Online 30 40 50 20
Camera 30 0 35 25
Memory 20 0 35 30

Table 9.2: Non-functional quantitative attributes associated with the video source automata.

mode name energy communication computing memory
quality resource

Normal 10 0 25 20
Negative 10 0 25 20
B&W 10 0 25 20
Sepia 10 0 25 20

Table 9.3: Non-functional quantitative attributes associated with the ImageStyle automata.

mode name energy communication computing memory
quality resource

Low 30 30 30 10
Media 40 40 40 20
High 50 50 50 30

Table 9.4: Non-functional quantitative attributes associated with the Resolution automata.

158

9.2. MODELINGOF THE EXAMPLE IN GASPARD2

9.2.2 A macro structure for the video effect processing

Figure 9.2: The ColorEffect component is composed of a state machine component and a
mode switch component. The ColorEffect component has an interface that includes ports
such as cCE, aCE, eCE, mo, i, and o. cCE, aCE, and eCE are ports that convey events for the
ColorControl component in order to trigger transitions. They will be detailed in Figure 9.5. i
and o are data ports, where the video passes.

The ColorEffect component (Figure 9.2), which represents a macro structure, is composed
of two components: ColorControl (SMC) and ColorEffectSwitch (MSC). The first one plays a
controller role, and the second one acts as a switch of several modes.

9.2.3 Repetitive modeling of video effect processing

The DIP parts of Resolution, ImageStyle and ColorEffect are similar, hence their modeling is
almost the same, except the used filters are different. Here, an example of one mode in Color
Effect using the MARTE RSM is shown in Figure 9.3, which shows the data parallelism
specification. It illustrates how a monochrome filter (MonoFilter) is used for the processing
of a [320, 240]-image. MonoFilter is modeled as a component that will be deployed with
a particular IP. Because it only works on small [8, 8]-pixel patterns, it should be repeated
40×30 times to cover a whole image. The other mode of ColorEffect, i.e., the ColorMode, can
be constructed in the same way, except that the filterMonoFilter is replaced by ColorFilter.

9.2.3.1 Control concept modeling in Gaspard2

Mode switch component. The mode switch component ColorEffectSwitch, which achieves
a switch function between modes, has two modes ColorMode and MonochromeMode in the
example in Figure 9.4. It has mode_color and i as inputs and o as outputs. Mode_color is
a UML behavior port, which conveys mode values (e.g., ModeColor and ModeMono in the
example). According to these values, modes are activated correspondingly. The activation
behavior is specified by UML collaborations, i.e., the ColorMode is activated only in themode
ModeColor, which is indicated by the name of the collaboration.

Themode switch components of Resolution and ImageStyle can be constructed in the same
way on the condition that the modes are replaced by the right ones.

State machine component. The state machine component, ColorControl in Figure 9.5)
serves to determine mode values that are used by mode switch components to execute dif-
ferent computation modes. This component is associated with UML state machines. The

159

CHAPTER 9. CASE STUDY

Figure 9.3: The color and monochrome effect filters in repetition context component.

Figure 9.4: UML collaborations and their associated MSC. The latter acts as a switch of the
color effect in the phone example. The collaboration names are defined in the enumeration
ColorModes, which is composed of the mode values of this switch.

160

9.2. MODELINGOF THE EXAMPLE IN GASPARD2

latter expresses transition functions carried out on the states in the machine. Each state is
associated with a mode, e.g., a one-to-one mapping between states and modes. Hence, a
state machine component is an ideal complement to a mode switch component. The state
machines adopted in Gaspard2 are only a subset of UML state machines, where certain con-
cepts, such as Constraints and Events, are simplified.

Figure 9.5: The ColorControl state machine component, which is associated with a state ma-
chine, acts as the color effect controller. eCEU and eCED indicate user’s up and down selec-
tion commands respectively. They are simplified to eCE in Figure 9.2 and Figure 9.7. cCE
indicates controller’s active command for mode change. aCE signifies controller’s authoriza-
tion upon user’s change mode requests.

As shown in Figure 9.5, a state machine component has an interface that includes the
input Boolean ports cCE, aCE, eCEU and eCED, and output mode portmo. Values from input
ports are dispatched to trigger transitions. cCE conveys the commands of controller that
are used to change mode even without user request. In contrast, aCE indicates controller’s
authorizations in relation to the requests of users (through eCEU and eCED). eCEU and eCED
indicate up and down (of modes) respectively. Transition conditions are prefixed by when.
A transition with an all tag represents a self-transition. A mode value, which is specified in
the doActivity in a state, is conveyed through the mo port. An important required property
of the state machines is determinism, i.e., for each state, input events lead to the firing of at
most one transition .

Figure 9.5 shows the state machine defined in the ColorEffect component. Figure 9.6 illus-
trates all the state machines defined in the Resolution, Resolution, ImageStyle and ColorEffect.
Their controller component are specified in the same way as ColorControl in ColorEffect.

9.2.4 A complete modeling of the phone example.

With the help of the mode automata, the overall cellular phone multimedia functionality is
modeled and shown in Figure 9.7. The componentCellPhoneExample shows the processing of
only one frame, which can be repeated to process a video clip. The ports on the left-hand side
of the component represent its inputs, including events that indicate: the image resolution,
style or color, the energy level, the computing resource, the communication quality and the
image inputs (e.g. local storage, online library, camera). The output of the component is the
processed image.

Apart from the previous mentioned component, the Controller component is imple-
mented as an IP, which can be manually programmed by the developer. It is used to decide
if a request of mode change from users is valid or not according to energy, communication

161

CHAPTER 9. CASE STUDY

Figure 9.6: State machines associated with EnergyStatus, CommQuality, VideoSource, ColorEf-
fect, ImageStyle and Resolution component.

162

9.2. MODELINGOF THE EXAMPLE IN GASPARD2

Figure 9.7: The main component of the cellular phone example, which is designed with the
UML tools: MagicDraw.

levels and status of other components. The EnergyStatus component is composed of a three-
states automata, which is used to indicate the energy status according to the energy change
events. The EnergyStatus component is composed of a three-states automata, which is used
to indicate the communication quality level according to available communication quality
and energy.

9.2.4.1 Construction of mode automata

Mode automata can be constructed from the previously defined concepts. First, the structure
of mode automata is presented by the macro structure as illustrated by the ColorEffect com-
ponent in Figure 9.2. In this example, the state machine component produces mode values
consumed by the mode switch component in order to achieve a switch function between the
modes. In order to simplify the illustration, eCEU and eCED are only shown as eCE.

Secondly, this typical composition should be placed in a repetition context with at least
one IRD specification. The reasons are twofold: ColorEffect suggests the processing of one
frame of a video clip, so it should be repeated; an IRD specifies the sequential processing of
these frames. Hence the repetition context of the ColorEffect is a serialized one. In this man-
ner, the mode automata can be built and executable. On the contrary, if this composition is
placed in a parallel repetition context, statemachines will be translated differently. Figure 9.8
shows the CellPhoneExample is placed in the repetition context defined by theMainRepetition
component. IRDs are not shown in the UML modeling for the sake of simplicity. As state
machine components are defined in the CellPhoneExample, IRDs will be added by default
during the transformation.

163

CHAPTER 9. CASE STUDY

Figure 9.8: The CellPhoneExample component is placed in a repetition context component, i,e.,
MainRepetition, which makes it possible to construct mode automata with SMCs and MSCs
defined in CellPhoneExample. Note that inter-repetition dependencies are considered to be
specified implicitly at this repetition level as state machines are defined in CellPhoneExample.

164

9.2. MODELINGOF THE EXAMPLE IN GASPARD2

9.2.5 Requirements of formal application verification.

Design correctness is one of the main concerns of Gaspard2. Here, we are only interested
in high-level validation issues. With the help of the automatically or manually generated
code in synchronous languages, it is possible to validate the high-level Gaspard2 models,
which is one of the motivations that we connect these two technologies. Figure 9.9 shows
the methodology used here for the purpose of Gaspard2 application validation. The overall
design process is divided into four stages: application specification, specification implementation,
executable implementation and application verification.

Figure 9.9: The general schema of (software) application validation for Gaspard2.

• Application specification. The first stage concerns (software) application specification,
which is an abstract specification of an application, i.e., although it involves certain
specific technologies that will be used to implement the application, concrete imple-
mentation details, in particular tool-related details are avoided at this stage. In the
context of our work, the specification is considered as a combination of three different
aspects: Array-OL (repetitive structure modeling and language properties defined in
the Array-OL language and passed to Gaspard2), Functionality, Control (in the form of
mode automata), which are illustrated by three circles in the application specification
box in Figure 9.9.

– Array-OL aspect concerns data parallelism that can be specified by existing DIP
specifications (e.g., Gaspard2). For instance, how to use the Gaspard2 ODTs to
design the data-parallel computing part of the application.

– Control aspect enables dynamic behavior of the applications. It involves the de-
sign of automata and mode selection according to the automata.

165

CHAPTER 9. CASE STUDY

– Functionality aspect denotes what is the functionality or usage of an application.
For instance, the application is implemented as a downscaler or a black and white
filter, etc.

• Specification implementation. The second stage is specification implementation, which sig-
nifies the implementation of the first-stage specification in the Gaspard2 development
environment. All the aspects considered in the first stage are implemented by concrete
Gaspard2 concepts, which also include MARTE and UML concepts.

• Executable implementation. Model transformations are carried out on the specification
implementations in order to obtain executable implementations at the third stage. The exe-
cution implementation denotes the generated code in synchronous languages, such as
Lustre, Signal and mode automata.

• Application verification. The last stage in the design process consists in application valida-
tion, which is carried out by using compilers and formal verification tools built around
synchronous languages. According to the different aspects of applications introduced
in application specification, a similar partition of the validation is presented here.

However, as implementation languages and tools (e.g., UML) are involved in the pro-
cess, additional verifications are required to verify the properties related to these tools.
In addition, some non-functional properties can also be checked if some non-functional
aspects are considered. These last two verifications are represented by two ellipses in
the application verification box in Figure 9.9. A detailed discussion about these verifi-
cations are given hereinafter:

– Array-OL-related verification:

∗ data dependency analysis contributes to find cyclic dependency in the appli-
cation, which is not allowed in Gaspard2. Data dependency analysis corre-
sponds to causality analysis in synchronous languages. The causality issue
is caused by the self dependency under the instantaneous semantics of syn-
chronous languages. Two approaches of causality analysis are distinguished
according to the different mechanisms defined in Lustre and in Signal. In
Lustre, specifications are analyzed by the compiler syntactically, and those
which have potential causality issues are rejected by the compiler. In Signal,
the compiler considers as well a clock analysis to determine the causality,
which provides a finer analysis than that of Lustre. This analysis helps to
check the existence of cyclic dependencies specified in Gaspard2. They are
not always obvious to be detected because the specification and component
hierarchy can probably conceals the potential real data dependency (or de-
pendency in execution).

∗ single assignment indicates that no data element is ever written twice but it
can be read several times. This property can be easily checked by compilers
of Lustre and Signal.

∗ array initializationmay cause problemswhen there is only partial initialization
of Gaspard2 arrays, e.g., the non-initialized array elements are used in the
following processing. Lustre and Signal are distinguished while addressing
such an issue. Lustre imposes complete initialization, hence the compiler

166

9.2. MODELINGOF THE EXAMPLE IN GASPARD2

rejects the programs that have partially initialized arrays. Whereas Signal
enable to fill the non-initialized array elements with default values.

– Control introduction in the system benefits application flexibility and adaptivity,
however, safe control of the application is not always ensured. Correctness ver-
ification is therefore necessary. Control-related (pure functional) verification in-
volves safety and reachability. The former can be checked if an invariance of
system states are defined for the model checking. Reachability of certain system
status can also be checked.

• Functionality can be checked by functional simulation through the simulators provided
by synchronous language. Simulation enables both functional and non-functional ver-
ification, performance analysis, etc. Functional simulation allows the verification of
the application correctness during its execution. Both Lustre and Signal provide sim-
ulators. Typical examples of Gaspard2 are image processing, such as rotation and fil-
tering, whose processing can simulated and the result can be checked through some
image display tools.

• UML-related verification involves the problems of good usage of UML concepts, such
as class, component and data types. This issue is not addressed in this thesis, but a
related work [25] proposes to use OCL for the UML model validation.

• Non-functional aspects involve the problems of the incompatibility with the environ-
ment of the system, hardware architecture, etc. For instance, the synchronizability
between components in consideration of environment constraints, execution time, etc.

– synchronizability: Gaspard2 application components can be deployed onto dif-
ferent hardware nodes, which may have different rates, the synchronizability can
be checked by the Signal compiler if the rates of these hardware nodes can be
expressed by related clocks [47, 46].

– resource load: resources, such as computing power, energy, communication and
memory, can be modeled in a quantity manner, which can be integrated in the
automata-based systems. Then resource load related safety and reachability can
also be checked by model checkers [136].

– execution time: certain non-functional simulation is also studied in the Signal
language, such as performance evaluation for temporal validation [70]. Temporal
information is associated to the Signal program, from which an approximation of
the program execution time can be calculated.

Some of the previous verifications are guided by the application specification of the first
stage, which can be considered as verification objectives. Consequently, the validation re-
sults are used to expose the problems between application specification and specification imple-
mentation, for instance implementations do not comply with their specifications. In this case,
the specification implementations should be modified according to the original specifica-
tions and the validation results. Note that this process can be iterated until the conformance
relation is satisfied.

167

CHAPTER 9. CASE STUDY

9.3 Application validation and analysis

9.3.1 Functional validation and analysis

This section involves data-dependency analysis, functional simulation and verifications of
single assignment and array initialization. As the last two ones can be checked directly by
compilers of Lustre and Signal, they are not detailed here.

9.3.1.1 Safe array assignment

Single assignment is a basic property of Gaspard2. It indicates that no data element is ever
written twice but it can be read several times. This constraint can be easily checked by com-
pilers of Lustre and Signal. Another concern is the partial initialization of Gaspard2 arrays
that may cause problems when the non-initialized array elements are used later. Lustre and
Signal provide different way to address such an issue as mentioned previously.

9.3.1.2 Data dependency analysis

Figure 9.10: A cyclic data dependency example in the cell phone.

Currently, dependency analysis of Gaspard2 specifications is still not available in any
Gaspard2 tools. Hence, we propose to do it with the help of synchronous language compil-
ers. Causality analysis have been experimented with different Lustre programs that are au-
tomatically generated from Gaspard2 models in order to verify the absence of dependency
cycles. For instance, in this case study, if we take a closer look at the dependencies illus-
trated in Figure 9.7, some cyclic data dependency specification can be found. One of them
is illustrated in Figure 9.10. The dependencies between the four ports, e.g., mVS and cVS
of supervisor, and cVS and mo of vs form a dependency cycle. However, this cycle maybe
a false cycle, e.g., Figure 9.11 shows a possible implementation of supervisor and vs, where
these two components are illustrated with their internal structure. Hence, the analysis can
be carried out in a finer grain manner. In this example, the dependency cycle does not exit
any more.

168

9.3. APPLICATIONVALIDATION AND ANALYSIS

Figure 9.11: Causality analysis

Dependency in specification or dependency in execution? From the previous analysis,
the dependency specified in Gaspard2 can be divided into two families: dependency in spec-
ification and dependency in execution (or dependency at run time). Obviously, the cyclic
dependency that is to be avoided in Gaspard2 is the cyclic dependency in execution, as only
this kind of dependency causes problems, such as the deadlock problem. Gaspard2 cyclic
dependencies in specification does not necessarily lead to cyclic dependencies in execution.
Synchronous languages help to find cyclic dependencies in execution when interface speci-
fications of the components are given. These interface specifications describe the routing of
the dependencies at run time.

The dependency cycle illustrated in 9.10 shows a cyclic dependency in specification,
which can be easily broken by add a pre operator to the input port of Controller orVideoSource
in their implementations. This results in a different dependency routing that resolves the cy-
cle problem.

9.3.1.3 Functional simulation

In order to verify the functional correctness of applications, the functional simulators are
then used [134]. The simulation is carried out through the graphical simulator SIMEC [79],
which is distributed with the Lustre environment.

9.3.1.4 Model checking

The cellular phone example has been modeled within the Gaspard2 environment. The cor-
rectness of the controller can be checked by model checking first. As this verification only
involves control-part of the application, data parallel computation is not necessary, so they
can be removed thanks to the control-data separation. Hence, only control part of the exam-
ple is translated into model automata. The ColorEffect component is taken as an example to
illustrate the translation. Other components are translated in the same way.

Translation into mode automata. The ColorEffect component can be translated into mode
automata [137]. However, as the objective of this translation is to obtain the automata de-
fined in the application, which are required to be verified, the data computation part, i.e.,
the mode switch component ColorEffect component, which is not necessary in the verifica-
tion, is removed form the generated code. The translation result is illustrated in Figure 9.12.

Other components, which are similar to ColorEffect can be translated in the same way,
hence, we can obtain a system composed of the mode automata of Energy, CommQuality,

169

CHAPTER 9. CASE STUDY

AUTOMATON ColorEffect
STATES
Color init [CEModeC = true; CEModeM = false;]
Monochrome [CEModeC = false; CEModeM = true;]
TRANS
FROM Color TO Monochrome WITH rien0

[(eCEU and not eCED and aCE) or cCE]
FROM Monochrome TO Color WITH rien0

[eCED and not eCEU and aCE]

Figure 9.12: The automaton ofColorEffect in the format of Targos. This automaton is extracted
from the ColorControl component. For the sake of simplicity, it is called ColorEffect.

Controller, VideoSource, Resolution, ImageStyle, ColorEffect. The Controller, which avoids the
concurrent occurrences of the B&W and Color states, is coded in equations (Figure 9.13).

aCE = not(CEModeM and (ISModeB or
(ISModeN and eISD and not eISU and aIS) or
(ISModeS and eISU and not eISD and aIS)));

aIS = true;
aR = not(RModeM and
(CEModeC or (CEModeM and eCED and aCE)) and
(ESModeL or (ESModeM and not (eEnergyU and not eEnergyD))
or (ESModeH and (eEnergyD and not eEnergyU))));

aVS = true;
cR = RModeH and
(CEModeC or (CEModeM and eCED)) and
(ESModeL or (ESModeM and not (eEnergyU and not eEnergyD))
or (ESModeH and (eEnergyD and not eEnergyU)));

cCE = (ISModeN and eISD and not eISU and aIS) or
(ISModeS and eISU and not eISD and aIS);

cVS = false;

Figure 9.13: The controller manually coded in equations.

Once all the mode automata enumerated previously are translated and regrouped in an
automaton system, the interface and composition structure can be defined for the system
(Figure 9.14). All the outputs of the automata are declared in the out statement, and all the
inputs, which exclude the outputs, are declared in the in. All the automata used in the ex-
ample are composed together in a parallel way, which is specified by the PAR statement. The
complete specification of these automata and their composition can be found in Appendix B.

Model checking through Sigali. Figure 9.15 shows the tools used in the validation work.
Matou automata are first specified in Targos format (with explicit state and transition decla-
rations), which can be compiled into polynomial dynamical systems over Z/3Z ({-1, 0, 1}).
The latter is used by Sigali to carry out model-checking.

170

9.3. APPLICATIONVALIDATION AND ANALYSIS

PROCESS CellularPhoneExample [in(CEU,eCED,...: bool),
out(CEModeC=true,CEModeM=false,...,

aCE=true,cCE=false,...:bool)]

PAR
RAFF ColorEffect
RAFF EnergyStatus
RAFF CommQuality
RAFF Controller
RAFF VideoSource
RAFF Resolution
RAFF ImageStyle
RAFF ColorEffect

ENDPAR

Figure 9.14: Declaration of the interface and composition of automata.

Figure 9.15: The tools involved in the model checking.

171

CHAPTER 9. CASE STUDY

The previous automaton system is compiled into the polynomial system, which is repre-
sented by Z/3Z. This system is then used in the Sigali, together with some specified proper-
ties to be verified, the model checking can be carried out. Figure 9.16 shows this process in
Sigali. A proposition, called Prop1, is specified in the verification. This proposition is true
when the two states B&W and color are active at the same time. Then the reachability can
be checked through Prop1 on the system S. The model checker answers false as these two
states are not reachable at the same time.

read("task.z3z");
S : processus(conditions, etats, evolutions,

initialisations, [gen(contraintes)],controlables);

read("Property.lib");
read("Verif_Determ.lib");
p1 : BNW_de_ImageStyle_3 and Color_de_ColorEffect_2;
Prop1 : B_True(S,p1);
Reachable(S,Prop1);

Figure 9.16: The model checking process carried out in Sigali.

9.3.2 Validation considering non-functional aspects

9.3.2.1 Model checking considering non-functional aspects

The previous section shows the classical model checking of the translated automaton system,
which include verification of some safety and reachability properties. This section presents
the model checking considering non-functional aspects, which is represented by quantita-
tive attributes of used resources, for instance, resources provided by the environment, the
platform or the hardware. These kinds of verification helps to handle the complex system
evaluation at a low cost in a fast way with regard to other methods that take all the elements
(software, hardware, etc.) in the system into account.

Cost functions. In Sigali , we encode non-functional properties, e.g., cost requirements on
energy, communication quality, computing resource, and memory, by utilizing a mechanism
of cost functions, which can be associated with Boolean states or event variables. A cost func-
tion associated with a state defines a set of quantitative attributes with regard to state status,
for instance, active and inactive. A global cost can also be defined with the composition of
states, e.g., by adding local costs of parallel states. A bound can be associated with a cost
function and one can check invariance of the property that the global cost is less than the bound
in all reachable states.

In the cellular phone example, we associate cost functionswith each state of the automata
specified in Figure 9.6. For instance, the color effect automaton has two states, each state is
associated with cost functions that characterize its required energy, communication quality,
computing resource and memory. These cost functions describe the bound, in the form of
percentage, of used resources by each state when it is active. For Color and Monochrome
states, the cost functions are respectively (30, 50, 40, 20) and (20, 40, 25, 20) with regard to

172

9.4. DISCRETE CONTROLLER SYNTHESIS

the previously mentioned four resources (Table. 9.1). (0, 0, 0, 0) and (0, 0, 0, 0) are specified
for these states when they are inactive. The sum of the resource consumption of the color
effect filter is computed directly from these cost functions. Other cost functions defined for
the automaton of video source (Table 9.2), image style(Table 9.3) and resolution (Table 9.4).
(0, 0, 0, 0) are defined as the cost function of all inactive states in these automata.

By associating each state of the automata in Figure 9.6 with similar cost functions, a
global cost function has been computed when composing these automata in parallel. This
global function defines for each resource, the sum of its cost functions computed from all
possible combinations of active states in the global automaton. A bound is then specified,
for example (90, 90, 90, 90), in the system. Finally, a reachability of certain states is checked
under this configuration of resource costs.

Verification of correctness of the controller. As cost functions are associatedwith the states
of the automata, the controller can then be verified in consideration of these cost functions
[136]. Figure 9.17 shows an extract of this checking, which only takes energy resource into
account:

CE_Color : a_var(Color, 0, 30, 0); L1
CE_Monochrome : a_var(Monochrome, 0, 20, 0); L2
CE_ColorE f f ect : CE_Color + CE_Monochrome; L3
CE_GL : CE_ColorE f f ect + CE_ImageS tyle + ...; L4
MAX_En : 110; L5
CE_Limitation : a_sup(CE_GL, CE_MAX); L6
Reachable(S , CE_Limitation); L7

Figure 9.17: An extract of Sigali command for the modeling checking.

a_var command in Sigali takes four parameters: the name of the state, the cost value
when the state is absent, the cost value when it is present and true and the cost value when
it is present and false. The energy cost functions of Color and Monochrome (states of the
ColorEffect automaton) are specified in L1 and L2. CE_ColorEffect (L3) represents the
cost function associated with the automaton CE_ColorEffect, which is a sum of the cost
functions of the states of CE_ColorEffect. CE_GL (L4) is the cost function of all the au-
tomata in relation to energy resource. L5 specifies a bound of the energy resource, and L6
applies this bound to the CE_GL. The reachability can then be checked, i.e., certain states,
which uses more energy resource than the bound, can be reached even if a controller is used
to control the system. The model checker answers false to the reachability analysis in this
example, i.e., the controller is a correct one.

9.4 Discrete controller synthesis

From the previous example, a controller that takes all the bound of resource usage is not
easily programmedmanually. Thus, a controller that can be synthesized into the system and
guarantee all the expected properties are highly demanded. Discrete controller synthesis
(DCS) [85] is proposed to answer this demand. In this case study, a controller can be syn-
thesized in the system, which contributes to guarantee that the pre-defined bounds are not
surpassed. This controller is not the Controller presented in the cellular phone example. In

173

CHAPTER 9. CASE STUDY

order to distinguish the two controllers, the former, which is synthesized into the system,
will be called supervisor form now on. Therefore, the controlled system is a correct system as
the supervisor is used to guarantee the expected properties.

The previous example are still used for DCS. Particularly, the automata and the cost func-
tions associated to their states. Figure 9.18 shows the change of some output variables in the
model checking, which are changed to the controllable variables in the system. These con-
trollable variables, which is prefixed by *, can be controlled by the supervisor. In addition,
the controller is removed from the system, because a supervisor will be integrated into the
system.

PROCESS CellularPhoneExample [
in(eESD,eESU,eCQU,eCQD,eCEU,eCED,eRU,eRD,

eVSU,eVSD,eISU,eISD,*aCE,*aIS,*aR,*aVS,

*cCE,*cIS,*cR,*cVS: bool),
out(ESModeH=true,ESModeM=false,ESModeL=false,

CQModeH=false,CQModeM=true,CQModeL=false,
CEModeC=true,CEModeM=false,ISModeN=true,
ISModeB=false,ISModeE=false,ISModeS=false,
VSModeC=false,VSModeO=false,VSModeM=true,
RModeH=false,RModeM = true,RModeL=false:bool)]

PAR
RAFF EnergyStatus
RAFF CommQuality
RAFF ColorEffect
RAFF ImageStyle
RAFF Resolution
RAFF VideoSource

ENDPAR
ENDTARGOS

Figure 9.18: Declaration of the interface and composition of automata.

Figure 9.19 shows the commands used in Sigali for DCS. L1 to L2 specify a proposition,
which the two states, BNW and Color are exclusive. L3 synthesizes a supervisor that satisfies
this property of exclusivity. L4 to L6 specify the property that the energy used used by the
system will not go above current energy status indicated by the EnergyStatus automaton.
L7 synthesizes a supervisor that satisfies this property. In order to verify the synthesized
controller, a simulation tool, called Sigalsimu, can be used. In the simulation, the supervisor
does not allow the simultaneous occurrences of certain states by forbidding some control-
lable events, e.g., whenColorE f f ect is Color, ImageS tyle can not be changed to B&W through
controlling the event aIS .

Reachability checking. The resulting system of DCS are guaranteed to be correct in rela-
tion to some properties (we can call them supervisor properties for short). However, it is still
interesting to check other properties, such as reachability, of the new system. As these prop-
erties are not necessarily included in the supervisor properties, it is feasible to carry out the

174

9.5. RELATEDWORKS

p1: BNW_de_ImageS tyle_3 and Color_de_ColorE f f ect_2; L1
Prop1: B_False(S , p1); L2
S : S _S ecurity(S , Prop1); L3
CE_Prod: CE_EnergyS tatus; L4
CE_Global: CE_Cons + CE_Prod; L5
CE_Limitation: a_in f (CE_Global, 0); L6
S : S _S ecurity(S ,CE_Limitation); L7

Figure 9.19: An extract of Sigali commands for discrete controller synthesis.

check. A similar work can be found in [48]. In the phone example, a tenth command (L8)
can be appended in Figure 9.19 so that the reachability of certain states (Color state here) can
be checked on S 1.

Reachable(S 1, B_True(S ,Color)); L8

9.5 Related works

The OMEGA project [51] provides a model-based framework for real-time and embedded
systems. It proposes the OMEGA UML profile, which allows to specify functionality, timing,
architecture, etc. A set of analysis and verification tools have been associatedwith the profile,
which involve syntax checker, model checkers, proof-based tools, etc. Compared to OMEGA,
we concentrate on DIPs, and adopt model transformations to bridge UML and synchronous
validation tools.

DIPLODOCUS [9] adopts a similar approach. Applications can be specified using
DIPLODOCUS UML profile, from which LOTOS or UPPAAL code can be generated. The
last two languages enable formal verifications to check certain given properties, such as pres-
ence of deadlock, reachability, liveness. However, DIPLODOCUS does not adopt an MDE
approach or a standard UML profile, compared to our work.

Compared to some previous work on model checking of UML state machines and col-
laborations [117, 73], our work makes several distinctions: non functional aspects are con-
sidered in the model checking. Hence we can reach a wider scope, extending from strictly
Boolean properties, i.e., some non-functional properties are handled using cost functions as-
sociated with states. The ongoing automatic MDE model transformation bridges the gap
between UML models and synchronous languages; other static verification can also be car-
ried out besides model checking; UML state machines and collaborations are applied in a
dataflow context, hence mode automata semantics of state machines is adopted.

9.6 Conclusions

In this chapter, a multimedia processing functionality on cellular phone is modeled in the
Gaspard2 environment. The modeling of DIP and control is illustrated with concrete ex-
amples. Based on this cellular phone example, Gaspard2 validation has been carried out
and illustrated, which include formal analyses and verifications of pure functional and non-
functional properties. These analyses and verifications are carried out at a high level, as a
result it allows a fast verification feed-back rhythm for the application design.

175

CHAPTER 9. A CASE STUDY ONMULTIMEDIA CELL PHONE

Although many tools associated with synchronous languages are used, users are not
required to knowmuch about synchronous languages to achieve the validation. But at least,
they need to be acquainted with the specification of the properties to be verified and to know
how to use the verification and synthesis tools.

176

Conclusions

The work presented in this dissertation is carried out in the context of SoC design dedi-
cated to DIP applications, particularly in the Gaspard2 environment. It mainly involves
the synchronous modeling of DIP applications, which bridges Gaspard2 specifications with
synchronous languages. The latter enables high-level formal validation of Gaspard2 spec-
ifications. Reactive control modeling for Gaspard2 is also described, which is based on a
previous control proposition. An MDE-based approach contributes to support the imple-
mentation of the previous mentioned work, which includes modeling and model transfor-
mations.

Contributions

Synchronous modeling. We first propose the synchronous modeling of DIP applications,
which leads to an intermediate parallel model, i.e., the synchronous equational model, be-
tween data-parallel applications and synchronous data-flow languages. On one hand, this
model preserves the properties of original Gaspard2 specifications, such as multidimen-
sional array data structure, data dependency, single assignment, task parallelism, data par-
allelism, etc. The preserved properties contributes to guarantee that verifications carried out
on thismodel or the executable code generated from thismodel is also valid for the Gaspard2
model. On the other hand, it only keeps common aspects of synchronous languages (Lustre,
Signal and Lucid synchrone) so that it is simple and generic, hence the complexity and par-
ticularity of target languages is not involved in this model. It enables to generate these three
languages with only one model. While the parallel model is a direct modeling of original
Gaspard2 models, two other models are also proposed, e.g., serialized and partitioned mod-
els. These two models can be obtained by different space-time mappings in consideration
of the non-functional constraints. These two models offer certain refined view of the basic
parallel model at a high level.

A major objective of the synchronous modeling is that the resulting models allow the
formal validation of high-level Gaspard2 models, which is indispensable for the safe appli-
cation design. As low-level validation, e.g., SystemC simulation or circuit verification, is
considered to be costly, a high-level validation helps to reduce the validation cost by finding
faults at high-level.

Model transformations. According to the synchronous modeling, a synchronous meta-
model has been proposed. Corresponding model transformations from DIPs specified in
Gaspard2 into synchronous languages have also been developed in the Eclipse environment,
through an MDE approach. A flow of design is also illustrated: the UML profiles (particu-

CHAPTER 9. A CASE STUDY ONMULTIMEDIA CELL PHONE

larly Gaspard2 profile) are used for the high-level and heterogeneous modeling (applica-
tion, architecture, association, deployment, etc.) of DIP applications; the graphical design
is transformed into executable code in synchronous languages through a chain of model
transformations. In this transformation, the Gaspard2 model, the synchronous model act as
intermediate models; execution or validation can then be carried out on the resulting code.

Reactive control modeling. Another main contribution is the reactive control modeling of
Gaspard2. Gaspard2 control mechanism is first proposed in [71] based on mode automata.
However this proposition has some constraints, e.g., lack of formal semantics and paral-
lel and hierarchical composition operators, etc., hence an extension and improvement are
proposed here. The Gaspard2 control is first discussed at a high-level, which is indepen-
dent from any execution models. The change of tiler, task, array and repetition space is
presented separately. Based on these discussions, an extension proposal for the Gaspard2
control is presented, where formal semantics is given, parallel and hierarchical composition
is formally defined. The control introduced in Gaspard2 remains generic and high-level,
because no execution model involved. The control can be projected onto different execu-
tion models, for instance, the synchronous execution model, which is also discussed. The
problem of synchronization of control flow and dataflow is illustrated and discussed with
examples. However, not all state graphs of Gaspard2 can be translated into synchronous
automata, particularly the state graphs that enable parallel execution. Once the Gaspard2
control is transformed into synchronous automata, formal techniques, such as model check-
ing and discrete controller synthesis can be carried out for the purpose of safe design.

The graphical implementation of the Gaspard2 control in accord with MARTE is pre-
sented. This implementation is based on the UML state machines and collaborations. Exten-
sions of Gaspard2 metamodel and synchronous metamodel and a transformation chain (not
implemented yet) from graphical MARTE/UML descriptions into synchronous languages
are also described. The targeted languages include Lustre, Lucid synchrone and Signal, and
mode automata.

Formal validation and analysis. While the synchronous model is suitable to express data-
parallelism and task parallelism in DIP applications, the code generated from this model
allows to reason about critical design properties of these applications, i.e., formal validation
and analysis based on the generated code enable the safe design of Gaspard2. The valida-
tion and analysis involve single assignment, acyclic dependency, array initialization, model
checking, etc. The first three is carried out according to the corresponding properties defined
in Gaspard2, and the fourth one is intended to check the safe control in Gaspard2 applica-
tions. Functional simulation is also illustrated with the generated code through the SIMEC
simulator available in the Lustre environment. It contributes to check the functional cor-
rectness of the application. Non-functional aspects related verification, particularly model
checking, is equally shown. It is used for the check of some properties, such as invariance
and reachability under the non-functional constraints of the system. Discrete controller syn-
thesis is also involved in non-functional aspects. By synthesizing a proper task controller,
this technique can be used to enforce safety properties in the system. Finally, all these verifi-
cation and analysis results can be exploited by Gaspard2 users to achieve a correct applica-
tion design.

In order to illustrate the previous work, a case study of a multimedia processing func-

178

9.6. CONCLUSIONS

tionality on cellular phone is presented. The case study is modeled with the repetition and
control operators in the Gaspard2 environment. Some verifications and analyses are also
carried out on this case study.

Advantages of MDE The presented implementation in the framework of MDE shows the
advantages of the MDE approach: firstly, it simplifies the modeling of DIP applications by
using simple but standard UML notations, including its extension (Gaspard2 profile). In ad-
dition, the simple organization of these notations in a UML or object manner liberates users
from heavy syntax and grammar of classical languages. Secondly, the model transformation
remains efficient and flexible with regard to classical compilers. As intermediate models can
be introduced in this transformation, the complexity of the transformation can be divided
according to separation of concerns, i.e., one transformation addresses one certain problem.
Hence each transformation can be kept simple. Another advantage is that modifications
of an intermediate model will not lead to the modifications of all transformations, hence it
makes it possible to follow themodern rapid software evolution. Using transformation rules
is another advantage, because they are modular and hence easy to maintain. These rules are
defined to be declarative, which include input pattern, output pattern and the transforma-
tion relation. However, imperative aspects can also be specified to enhance the processing
capacity of rules. Finally, the tools associated with or dedicated to MDE have been dramati-
cally increased, which provide a good support for the MDE-based development.

Perspectives

Code optimization. The presented transformation chain shows promising results. How-
ever, a main limitation involves the size problem of resulting synchronous models, which
can be very huge due to the explicit instantiation of Gaspard2 data-parallel constructs. As
these instances are supposed to run in parallel, hence no loop statements are introduced.
Consequently, it leads to big number of repetitive equations. In implementation, the Eclipse
plugin, which is used to generate these equations, also suffers from this problem, as too
much memory is used for the computing of patterns. A serialized model, where repetitions
can be specified using a loop-similar operator, can help to reduce the repetition number.
Moreover, external files can be used in the Eclipse plugin to store information of computed
patterns in order to reduce the memory load of this plugin.

Automatic control transformation. One of our ongoing works concerns the extension of
the transformation chain [135] with control concepts. This mainly includes an extension of
metamodels and transformation rules with UML state machines and collaborations. The
metamodels of Gaspard2 model and synchronous model with control concepts are very sim-
ilar to themetamodel of UML, hence the transformation is almost a direct one. The UML col-
laborations are not transformed in a structural way, because they only express the dynamic
behavior of the cooperating elements. The code generations from these models are different,
for instance, when pure equations are needed, UML state machines will be transformed into
if/then/else statements, etc. But when automata are needed, UML state machines will be
transformed into mode automata. As the code examples are already illustrated, the exten-
sion is not a different work.

179

CHAPTER 9. A CASE STUDY ONMULTIMEDIA CELL PHONE

Control application in FPGA and SystemC. The presented control is mainly applied in
the context of synchronous reactive systems for the purpose of application control valida-
tion, however, it is possible to apply it in other context, such as FPGAs and SystemC for
application control. A simple version of the control has been developed [75] for the con-
trol of applications implemented on FPGA accelerator. However, it is not involved in the
reconfigurability of FPGAs, i.e., the control uniquely acts as a switch between different re-
gions of FPGA, where each region implements a mode task. It is interesting to introduce
the control for the reconfigurability of FPGA [113]. The introduction of control in SystemC
is another perspective, as the current SystemC model in Gaspard2 does not include control
feature. GSGs that cannot be mapped onto the synchronous execution model, such as par-
allel execution of SGTs, can be possibly achieved in a SystemC execution model. However,
the SystemC model does not ensure a synchronous execution of control, which needs more
studies for safe design reasons.

Space-time mapping and clock based analysis. The synchronous modeling adopts a sim-
ple version of space-time mapping. However, it is possible to use a more complex one in
consideration of non-functional aspects. There are several possibilities of this extension: ar-
rays can have different clocks according to the different architecture when they are mapped
onto flows; arrays and computation carried on these arrays may have different clocks due to
the same reason; memory is needed when multi-processor and serialized execution are con-
sidered. The first two result in a synchronizability analysis of different clocks. [47] presents
an analysis based on affine-clock system. The last one leads to a memory usage analysis,
which is similar to the problem presented in [27]. The synchronous model is also expected
to be extended with clock system, so that the parallel, serialized and partitioned models can
be used for sophisticated clock-related analysis.

180

Bibliography

[1] M. Maroti A. Ledeczi and P. Volgyesi. The Generic Modeling Environment. In Proceed-
ings of the IEEE Workshop on Intelligent Signal Processing (WISP’01), 2001. 61

[2] M. D. Adams. The JPEG-2000 still image compression standard. Technical Report
Report N2412, ISO/IEC JTC 1/SC 29/WG 1, JPEG, septembre 2001. 16

[3] N. Aizenbud-Resher, R. F. Paige, J. Rubin, Y. Shalam-Gafni, and D. S. Kolovos. Opera-
tional semantics for traceability. In ECMDA Traceability Work-shop (ECMDA-TW) 2005,
2005. 32

[4] A. Amar, P. Boulet, and P. Dumont. Projection of the Array-OL specification language
onto the Kahn process network computation model. In Proceedings of the International
Symposium on Parallel Architectures, Algorithms, and Networks, Las Vegas, Nevada, USA,
December 2005. 24

[5] VHDL Analysis and Standardization Group. VHDL.
http://www.eda.org/vhdl-200x/, 2008. 12

[6] Charles André. Representation and Analysis of Reactive Behaviors: A Synchronous
Approach. In Computational Engineering in Systems Applications (CESA), pages 19–29,
Lille, July 1996. IEEE-SMC. 53

[7] Charles André. SyncCharts: a Visual Representation of Reactive Behaviors. Research
Report 96.56, I3S, Sophia Antipolis, April 1996. 53

[8] Charles André. Semantics of SSM (Safe State Machine).
http://www.esterel-technologies.com, April 2003. 53

[9] L. Apvrille, W. Muhammad, R. Ameur-Boulifa, S. Coudert, and R. Pacalet. A UML-
based Environment for System Design Space Exploration. Electronics, Circuits and Sys-
tems, 2006. ICECS ’06. 13th IEEE International Conference on, pages 1272–1275, Dec. 2006.
175

[10] R. B. Atitallah, P. Boulet, A. Cuccuru, J.-L. Dekeyser, O. Labbani A. Honoré,
Sébastien Le Beux, É. Piel P. Marquet, J. Taillard, and H. Yu. Gaspard2 UML profile
documentation. Technical Report RR-0342, INRIA, DaRT team, September 2007. 39,
42, 115

[11] L. Benini and G. De Micheli. Networks on chips: a new SoC paradigm. Computer,
35(Issue: 1):70–78, Jan 2002. 11

http://www.eda.org/vhdl-200x/
http://www.esterel-technologies.com

BIBLIOGRAPHY

[12] A. Benveniste, P. Le Guernic, and P. Aubry. Compositionality in Dataflow Synchronous
Languages: Specification and Code Generation, volume LNCS 1536, page 61. Springer, Ma-
lente, Germany, 1997. Proceedings of the 1997 Workshop on Compositionality Albert
Benveniste, Paul Le Guernic, and Pascal Aubry. 78

[13] G. Berry. The constructive semantics of pure Esterel. 63

[14] G. Berry and G. Gonthier. The ESTEREL synchronous programming language: design,
semantics, implementation. Sci. Comput. Program., 19(2):87–152, 1992. 53, 62

[15] G. Berry and E. Sentovich. Multiclock esterel. In Proc. CHARME’2001, Correct Hardare
Design and Verification Methods, Edinburgh, 2001. Springer-Verlag. LNCS 2144. 62

[16] L. Besnard, T. Gautier, and P. Le Guernic. Signal Reference Manual., 2006.
www.irisa.fr/espresso/Polychrony. 17

[17] L. Besnard, H.Marchand, and E. Rutten. The Sigali Tool Box Environment. InWorkshop
on Discrete Event Systems, WODES’06, Ann-Arbor (MI, USA), July 2006. 59

[18] J. Bézivin. On the unification power of models. Software and System Modeling (SoSym),
4(2):171–188, 2005. 26

[19] P. Boulet. Array-OL revisited, multidimensional intensive sig-
nal processing specification. Research Report RR-6113, INRIA,
http://hal.inria.fr/inria-00128840/en/, February 2007. 17, 18, 19,
22, 23, 40, 41, 74, 105

[20] P. Boulet. Formal Semantics of Array-OL, a Domain Specific Language for Intensive
Multidimensional Signal Processing. Technical Report 6467, INRIA, France, March
2008. http://hal.inria.fr/inria-00261178/en. 17, 18

[21] F. Boussinot and R. de Simone. The Esterel language. another look at real time pro-
gramming. Proceedings of the IEEE, Special Issue 79(9):1293–1304, 1991. 53, 62

[22] C. Brunette, J.-P. Talpin, L. Besnard, and T. Gautier. Modeling multi-clocked data-
flow programs using the Generic Modeling Environment. In Synchronous Languages,
Applications, and Programming. Elsevier, March 2006. 61, 118

[23] J. Buck, S. Ha, E. Lee, and D. Messerschmitt. Ptolemy: A framework for simulating
and prototyping heterogeneous systems. International Journal of computer Simulation,
4:155–182, April 1994. Special issue on Simulation Software Development. 63

[24] P. Caspi, D. Pilaud, N. Halbwachs, and J.A. Plaice. Lustre: a declarative language for
real-time programming. In Proceedings of the 14th ACM SIGACT-SIGPLAN symposium
on Principles of programming languages (POPL’87), pages 178–188. ACM Press, 1987. 54

[25] A. Charfi, A. Gamatié, A. Honoré, J.-L. Dekeyser, and M. Abid. Validation de modèles
dans un cadre d’IDM dédié à la conception de systémes sur puce. In 4èmes Jounées sur
l’Ingénierie Dirigée par les Modèles - IDM’08, Mulhouse - France, June 2008. 167

[26] T. A.C.M. Claasen. System on a Chip: Changing IC design today and in the future.
IEEE Micro, 23(3):20–26, May/Jun 2003. 11, 13

182

www.irisa.fr/espresso/Polychrony
http://hal.inria.fr/inria-00128840/en/
http://hal.inria.fr/inria-00261178/en

BIBLIOGRAPHY

[27] A. Cohen, M. Duranton, C. Eisenbeis, C. Pagetti, F. Plateau, and M. Pouzet. N-
sychronous Kahn networks. In ACM Symp. on Principles of Programming Languages
(PoPL’06), Charleston, South Carolina, USA, January 2006. 180

[28] A. Cuccuru. Modélisation Unifiée des Aspects Répétitifs dans la Conception Conjointe Logi-
cielle/Matérielle des Systèmes sur Puce à Hautes Performances. PhD thesis, Université des
Sciences et Technologies de Lille, Lille, France, December 2005. 40

[29] K. Czarnecki and S. Helsen. Classification of model tranformation approaches. In
Proceeding of OOPSLA Workshop on Generative Techniques in the Context of Model Driven
Architecture, 2003. 31

[30] A. Demeure and Y. Del Gallo. An array approach for signal processing design.
In Sophia-Antipolis conference on Micro-Electronics (SAME’98), System-on-Chip Session,
France, October 1998. 17

[31] A. Demeure, A. Lafage, E. Boutillon, D. Rozzonelli, J.-C. Dufourd, and J.-L. Marro.
Array-OL: Proposition d’un formalisme tableau pour le traitement de signal multi-
dimensionnel. In Colloque GRETSI sur le Traitement du Signal et de l’Image, Juan-Les-Pins,
France, September 1995. 17, 40

[32] P. Dumont. Spécification multidimensionnelle pour le traitement du signal systématique.
PhD thesis, Université des Sciences et Technologies de Lille, France, December 2005.
Dumont Philippe. 22, 73

[33] P. Dumont and P. Boulet. Another multidimensional synchronous dataflow: Simu-
lating Array-Ol in Ptolemy II. Technical Report 5516, INRIA, France, March 2005.
available at www.inria.fr/rrrt/rr-5516.html. 24

[34] Eclipse. Eclipse Modeling Framework. http://www.eclipse.org/emf. 29, 128

[35] Eclipse. EMFT JET. http://www.eclipse.org/emft/projects/jet. 32, 128

[36] S. Edwards, L. Lavagno, E.A. Lee, and A. Sangiovanni-Vincentelli. Design of embed-
ded systems: formal models, validation, andsynthesis. Proceedings of the IEEE, 85:366–
390, 1997. 13

[37] A. Etien, C. Dumoulin, , and E. Renaux. Towards a Unified Notation to Represent
Model Transformation. Research Report 6187, INRIA, 05 2007. 31, 125

[38] M. Eva. SSADM Version 4: A User’s Guide. McGraw-Hill Publishing Co, april 1994. 27

[39] A.D. Falkoff and K.E. Iverson. The design of APL. IBM Journal of Research and Develop-
ment, 17(5):324–334, 1973. 76

[40] J-M. Favre, J. Estublier, and M. Blay-Fornarino, editors. L’ingénierie dirigée par les mod-
èles, au-delà du MDA. Hermès Science, Lavoisier, Jan. 2006. 26, 27

[41] P. Feautrier. Some efficient solutions to the affine scheduling problem. Part I One Di-
mensional Time. International journal of parallel programming, 21(5):313–348, October
1992. 74

183

www.inria.fr/rrrt/rr-5516.html

BIBLIOGRAPHY

[42] P. Feautrier. Some efficient Solutions to the Affine Scheduling Problem. Part II Multidi-
mensional Time. International journal of parallel programming, 21(6):389–420, December
1992. 74

[43] H. Fecher, J. Schönborn, M. Kyas, andW. P. de Roever. 29 new unclarities in the seman-
tics of UML 2.0 state machines. In ICFEM, volume 3785 of Lecture Notes in Computer
Science, pages 52–65. Springer, 2005. 33, 37, 135

[44] D. D. Gajski and R. Kuhn. Guest editor introduction : NewVLSI-tools. IEEE Computer,
16(12):11–14, Dec. 1983. 11

[45] A. Gamatié, E. Rutten, and H. Yu. A Model for the Mixed-Design of Data-
Intensive and Control-Oriented Embedded Systems. Research Report RR-6589, INRIA,
http://hal.inria.fr/inria-00293909/fr, July 2008. 45, 97, 107, 110

[46] A. Gamatié, É. Rutten, H. Yu, P. Boulet, and J.-L. Dekeyser. Modeling and formal
validation of high-performance embedded systems. In 7th International Symposium on
Parallel and Distributed Computing (ISPDC’08), Krakow Poland, July 2008. 167

[47] A. Gamatié, É. Rutten, H. Yu, P. Boulet, and J.-L. Dekeyser. Synchronous
modeling and analysis of data intensive applications. EURASIP Journal on Em-
bedded Systems, 2008. To appear. Also available as INRIA Research Report:
http://hal.inria.fr/inria-00001216/en/. 86, 87, 167, 180

[48] A. Girault and H. Yu. A flexible method to tolerate value sensor failures. In 11th
IEEE International Conference on Emerging Technologies and Factory Automation (ETFA’06),
Prague, Czech Republic, September 2006. 175

[49] C. Glitia and P. Boulet. High level loop transformations for multidimensional signal
processing embedded applications. In International Symposium on Systems, Architec-
tures, MOdeling, and Simulation (SAMOS VIII), Samos, Greece, July 2008. 73

[50] R. Goering. SoC value linked to software. EE Times, Dec. 2005. 13

[51] S. Graf. Omega – Correct Development of Real Time Embedded Systems. SoSyM, int.
Journal on Software & Systems Modelling, 7(2):127–130, 2008. 33, 175

[52] M. Griebl, P. Faber, and C. Lengauer. Spacetime mapping and tiling: a helpful combi-
nation. Concurr. Comput. : Pract. Exper., 16(2-3):221–246, 2004. 73

[53] N. Halbwachs. Synchronous programming of reactive systems. Kluwer Academic Pub.,
1993. 50, 51

[54] N. Halbwachs, P. Caspi, P. Raymond, and D. Pilaud. The synchronous dataflow pro-
gramming language Lustre. Proceedings of the IEEE, 79(9), September 1991. 53, 54, 55,
56

[55] N. Halbwachs, F. Lagnier, and P. Raymond. Synchronous observers and the verifica-
tion of reactive systems. In M. Nivat, C. Rattray, T. Rus, and G. Scollo, editors, Third
Int. Conf. on Algebraic Methodology and Software Technology, AMAST’93, Twente, June
1993. Workshops in Computing, Springer Verlag. 56, 57

184

http://hal.inria.fr/inria-00293909/fr
http://hal.inria.fr/inria-00001216/en/

BIBLIOGRAPHY

[56] N. Halbwachs and D. Pilaud. Use of a real-time declarative language for systolic array
design and simulation. In International Workshop on Systolic Arrays, Oxford, July 1986.
17, 57

[57] N. Halbwachs andM. Péron. Discovering properties about arrays in simple programs.
In PLDI 2008, June 2008. 57

[58] D. Harel. Statecharts: A Visual Formalism for Complex Systems. Science of Computer
Programming, 8(3):231–274, June 1987. 34, 52, 91, 96, 97, 105

[59] D. Harel, H. Lachover, A. Naamad, A. Pnueli, M. Politi, R. Sherman, A. Shtull-
Trauring, and M. B. Trakhtenbrot. STATEMATE: A working environment for the de-
velopment of complex reactive systems. Software Engineering, 16(4):403–414, 1990. 52

[60] D. Harel and A. Naamad. The STATEMATE Semantics of Statecharts. ACM Transac-
tions on Software Engineering and Methodology, 5(4):293–333, 1996. 105

[61] D. Harel and A. Pnueli. On the development of reactive systems, pages 477–498. Springer-
Verlag New York, Inc., New York, NY, USA, 1985. 50

[62] High Performance Fortran Forum. High performance fortran language specification,
January 1997. http://hpff.rice.edu/versions/hpf2/index.htm. 17, 76

[63] Open SystemC Initiative. SystemC. http://www.systemc.org/home. 13

[64] INRIA Atlas Project. ATL. http://modelware.inria.fr/rubrique 12.html. 32

[65] INRIADaRT Project. Gaspard2. https://gforge.inria.fr/projects/gaspard2.
3, 39, 40

[66] INRIA Triskell Project. Kermeta. http://www.kermeta.org/. 32

[67] A. Jerraya andW.Wolf, editors. Multiprocessor Systems-on-Chip. Elsevier Morgan Kauf-
mann, San Francisco, California, 2005. 10

[68] G. Kahn. The semantics of simple language for parallel programming. In IFIP Congress,
vol 74 of Information Processing, pages 471–475, 1974. 53, 54

[69] G. Kiczales, J. Lamping, A. Menhdhekar, C. Maeda, C. Lopes, J.-M. Loingtier, and
J. Irwin. Aspect-oriented programming. In Mehmet Ak¸sit and Satoshi Matsuoka,
editors, Proceedings European Conference on Object-Oriented Programming, volume 1241,
pages 220–. Springer-Verlag, 1997. 27

[70] A. Kountouris and P. Le Guernic. Profiling of Signal programs and its application in
the timing evaluation of design implementations. In Proceedings of the IEE Colloq. on
HW-SW Cosynthesis for Reconfigurable Systems, pages 6/1–6/9, Bristol, UK, February
1996. HP Labs. 167

[71] O. Labbani. Modélisation à haut niveau du contrôle dans des applications de traitement
systématique à parallélisme massif. PhD thesis, USTL, 2006. 89, 91, 94, 96, 97, 139, 178

185

http://hpff.rice.edu/versions/hpf2/index.htm
http://www.systemc.org/home
https://gforge.inria.fr/projects/gaspard2
http://www.kermeta.org/

BIBLIOGRAPHY

[72] O. Labbani, J.-L. Dekeyser, P. Boulet, and E. Rutten. Introducing control in the Gas-
pard2 data-parallel metamodel: Synchronous approach. In Int’l Workshop on Modeling
and Analysis of Real-Time and Embedded Systems (MARTES’05), Montego Bay, Jamaica, Oc-
tober 2005. 45, 97

[73] D. Latella, I. Majzik, and M. Massink. Automatic Verification of a Behavioural Subset
of UML Statechart Diagrams Using the SPIN Model-Checker. Formal Aspects Comput-
ing, 11:637–664, 1999. 175

[74] C. Lavarenne, O. Seghrouchni, Y. Sorel, and M. Sorine. The SynDEx software environ-
ment for real-time distributed systems, design and implementation. In Proceedings of
European Control Conference, ECC’91, Grenoble, France, July 1991. 64

[75] S. Le Beux, P. Marquet, O. Labbani, and J.-L. Dekeyser. FPGA implementation of em-
bedded cruise control and anti-collision radar. In 9th Euromicro Conference on Digital
System Design (DSD’2006), Dubrovnik, Croatia, August 2006. 180

[76] P. Le Guernic, T. Gautier, M. Le Borgne, and C. Le Maire. Programming real-time
applications with SIGNAL. Proceedings of the IEEE, 79(9):1321–1336, Sep 1991. 53

[77] P. Le Guernic, J.-P. Talpin, and J.-C. Le Lann. Polychrony for System Design. Journal
for Circuits, Systems and Computers, 12(3):261–304, April 2003. 87

[78] E. A. Lee and D. G. Messerschmitt. Synchronous data flow. Proceedings of the IEEE,
75(9):1235–1245, September 1987. 17

[79] Lustre. Vérimag. http://www-verimag.imag.fr/SYNCHRONE/
index.php?page=lang-design. 169

[80] R. Manduchi, G. M.Cortelazzo, and G. A. Mian. Multistage sampling structure con-
version of video signals. IEEE Transactions on circuits and systems for video technology,
3:325–340, 1993. 16

[81] F. Maraninchi and Y. Rémond. Compositionality criteria for defining mixed-styles
synchronous languages. In International Symposium: Compositionality - The Significant
Difference, Malente/Holstein, Germany, September 1997. 78

[82] F. Maraninchi and Y. Rémond. Mode-Automata: About Modes and States for Reac-
tive Systems. In European Symposium On Programming, Lisbon (Portugal), March 1998.
Springer verlag. 63, 97

[83] F. Maraninchi and Y. Rémond. Argos: an automaton-based synchronous language.
Computer Languages, 27:61–92, 2001. 53

[84] F. Maraninchi and Y. Rémond. Mode-automata: a new domain-specific construct for
the development of safe critical systems. Sci. Comput. Program., 46(3):219–254, 2003. 45,
49, 91, 99, 105

[85] H. Marchand, P. Bournai, M. Le Borgne, and P. Le Guernic. Synthesis of Discrete-Event
Controllers based on the Signal Environment. Discrete Event Dynamic System: Theory
and Applications, 10(4):325–346, October 2000. 60, 173

186

BIBLIOGRAPHY

[86] H. Marchand, E. Rutten, M. Le Borgne, and M. Samaan. Formal Verification of pro-
grams specified with Signal : Application to a Power Transformer Station Controller.
Science of Computer Programming, 41(1):85–104, August 2001. 60

[87] G. Martin and W. Mueller, editors. UML for SoC Design. Springer, June 2005. 13

[88] C. Mauras. Alpha : un langage équationnel pour la conception et la programmation
d’architectures parallèles synchrones. PhD thesis, Université de Rennes I, France, De-
cember 1989. 17

[89] Planet MDE. Model-Driven Engineering. http://planetmde.org. 25, 28

[90] T. Mens and P. Van Gorp. A taxonomy of model transformation. In Proceedings of the
International Workshop on Graph and Model Transformation (GraMoT 2005), volume 152
of Electronic Notes in Theoretical Computer Science, pages 125–142, March 2006. 30

[91] M. Mernik, J. Heering, and A. M. Sloane. When and how to develop domain-specific
languages. ACM Comput. Surv., 37(4):316–344, 2005. 27

[92] J. Miller and J. Mukerji. Model Driven Architecture (MDA). Technical report, OMG,
2001. 33

[93] R. Milner. Calculi for synchrony and asynchrony. Theoretical Computer Science, 25:267–
310, 1983. 51

[94] L. Morel. Array iterators in Lustre: From a language extension to its exploitation in
validation. EURASIP Journal on Embedded Systems, 2007, 2007. 17, 57, 77

[95] Praveen K. Murthy and Edward A. Lee. Multidimensional synchronous dataflow.
IEEE Transactions on Signal Processing, 50:3306–3309, 2002. 17

[96] Object Management Group Inc. http://www.omg.org. 33

[97] Object Management Group Inc. Model-driven architecture (mda).
http://www.omg.org/mda. 33

[98] Object Management Group Inc. Modeling and analysis of real-time and embedded
systems (MARTE). http://www.omgmarte.org/. 13, 38, 44

[99] Object Management Group Inc. MOF 2.0 core final adopted specification.
http://www.omg.org/cgi-bin/doc?ptc/03-10-04, Oct. 2003. 29

[100] Object Management Group Inc. Uml profile for schedulability, performance and time.
Technical report, OMG, Sept. 2003. 38, 40

[101] Object Management Group Inc. MOF Query / Views / Transformations.
http://www.omg.org/cgi-bin/doc?ptc/2005-11-01, Nov. 2005. 32, 33

[102] Object Management Group Inc. Final adopted omg sysml specification.
http://www.omg.org/cgi-bin/doc?ptc/06-0504, mai 2006. 38, 40

187

http://www.omg.org
http://www.omg.org/mda
http://www.omg.org/cgi-bin/doc?ptc/03-10-04

BIBLIOGRAPHY

[103] Object Management Group Inc. Omg unified mod-
eling language (OMG UML), superstructure, v2.1.2.
http://www.omg.org/spec/UML/2.1.2/Superstructure/PDF/, Nov. 2007.
34, 35, 38, 40, 132, 134, 136

[104] Object Management Group Inc. Uml 2 infrastructure (final adopted specifca-
tion). http://www.omg.org/spec/UML/2.1.2/Infrastructure/PDF/, Nov.
2007. 27, 33

[105] OMG. UML Profile for System on a Chip (SoC), June 2006. 13

[106] OpenMP Architecture Review Board. OpenMP application programme interface.
http://www.openmp.org/drupal/mp-documents/spec25.pdf,May 2005. 43

[107] Samir Palnitkar. Verilog HDL: A Guide to Digital Design and Synthesis. Prentice Hall
PTR, second edition edition, February 2003. 12

[108] N. Pernet and Y. Sorel. A design method for implementing specifications including
control in distributed embedded systems. In Proceedings of the 10th IEEE International
Conference on Emerging Technologies and Factory Automation, ETFA’05, Catania, Italy,
September 2005. 64

[109] G.-R. Perrin and A. Darte, editors. The Data Parallel Programming Model: Foundations,
HPF Realization, and Scientific Applications, volume 1132 of Lecture Notes in Computer
Science. Springer, 1996. Guy-René Perrin and Alain Darte. 19

[110] E. Piel. Ordonnancement de systèmes parallèles temps-réel. PhD thesis, Université des
Sciences et Technologies de Lille (USTL), 2007. 196

[111] M. Pouzet. Lucid synchrone: Reference manual.
www.lri.fr/~pouzet/lucid-synchrone. Marc Pouzet. 61

[112] M. Pouzet. Lucid Synchrone, version 3. Tutorial and reference man-
ual. Université Paris-Sud, LRI, April 2006. Distribution available at:
www.lri.fr/∼pouzet/lucid-synchrone. 53, 64

[113] I. Quadri, S. Meftali, and J.-L. Dekeyser. High LevelModeling of Partially Dynamically
Reconfigurable FPGAs with MDE and MARTE. In The Reconfigurable Communication-
centric Systems-on-Chip workshop 2008 (ReCoSoC’08), 2008. 180

[114] F. Rocheteau. Extension du langage Lustre et application la conception de circuits: le langage
Lustre-V4 et le système Pollux,. PhD thesis, Institut National Polytechnique de Grenoble,
Grenoble, France, 1992. 17, 57, 77

[115] E. Rutten and F. Martinez. SIGNAL GTi: implementing task preemption and time
intervals in the synchronous data flow language SIGNAL. In 7th Euromicro Workshop
on Real-Time Systems (EUROMICRO-RTS’95), pages 176–183. IEEE, 1995. 61

[116] D.-C. Schmidt. Model-Driven Engineering. IEEE Computer, 39(2):25–31, 2006. 25, 28

[117] T. Schäfer, A. Knapp, and S. Merz. Model checking UML state machines and collabo-
rations. In CAV 2001 Workshop on Software Model Checking, ENTCS 55(3), Paris, France,
2001. 175

188

http://www.omg.org/spec/UML/2.1.2/Superstructure/PDF/
http://www.omg.org/spec/UML/2.1.2/Infrastructure/PDF/
http://www.openmp.org/drupal/mp-documents/spec25.pdf
www.lri.fr/~pouzet/lucid-synchrone

BIBLIOGRAPHY

[118] B. V. Selic. On the semantic foundations of standard UML 2.0. In M. Bernardo and
F. Corradini, editors, Formal Methods for the Design of Real-Time Systems, International
School on Formal Methods for the Design of Computer, Communication and Software Systems,
SFM 2004, volume 3185 of Lecture Notes in Computer Science, Bertinoro, Italy, septembre
2004. Springer-Verlag. 33

[119] I. Smarandache. Transformations affines d’horloges: application au codesign de systèmes
temps réel en utilisant les langages Signal et Alpha. PhD thesis, Université de Rennes 1,
Rennes, France, October 1998. 59

[120] I.M. Smarandache, T. Gautier, and P. Le Guernic. Validation of mixed Signal-
Alpha real-time systems through affine calculus on clock synchronisation constraints.
In World Congress on Formal Methods (2), pages 1364–1383, 1999. 59

[121] J. Soula. Principe de Compilation d’un Langage de Traitement de Signal. PhD thesis, Uni-
versité de Lille 1, December 2001. In French. 152 pages Julien Soula. 22, 73

[122] P. Stevens. A landscape of bidirectional model transformations. In Summer school on
Generative and Transformational Techniques in Software Engineering 2007 (GTTSE’07), 2007.
31

[123] S. Sundaram. More is more: Improvements in camera phone performance drive in-
creased sales. Toshiba America Electronic Components, Inc. White papar., 2008. 155

[124] SystemVerilog. http://www.systemverilog.org/. 13

[125] J. Taillard, F. Guyomarc’h, and J.-L. Dekeyser. OpenMP code generation based on
an Model-Driven Engineering approach. In The 2008 High Performance Computing &
Simulation Conference (HPCS 2008), Nicosia, Cyprus, June 2008. 24

[126] J.-P. Talpin, C. Brunette, T. Gautier, and A. Gamatié. Polychronous mode automata. In
EMSOFT ’06: Proceedings of the 6th ACM & IEEE International conference on Embedded
software, pages 83–92, New York, NY, USA, 2006. ACM. 64

[127] H. Tardieu, A. Rochfeld, and R. Colletti. La Méthode Merise : Principes et outils. Editions
d’Organisation, 1991. 27

[128] West Team. Gaspard classic: Graphical array specification for parallel and distributed
computing. http://www2.lifl.fr/west/gaspard/classic.html. 23

[129] W. Thies, M. Karczmarek, and S. P. Amarasinghe. Streamit: A language for stream-
ing applications. In CC ’02: Proceedings of the 11th International Conference on Compiler
Construction, pages 179–196, London, UK, 2002. Springer-Verlag. 17

[130] M. von der Beeck. A comparison of statecharts variants. In ProCoS: Proceedings of
the Third International Symposium Organized Jointly with the Working Group Provably Cor-
rect Systems on Formal Techniques in Real-Time and Fault-Tolerant Systems, pages 128–148,
London, UK, 1994. Springer-Verlag. 53

[131] D. Wilde. The ALPHA Language. Technical Report 827, IRISA - INRIA, Rennes, 1994.
available at www.irisa.fr/bibli/publi/pi/1994/827/827.html. 59

189

http://www.systemverilog.org/
http://www2.lifl.fr/west/gaspard/classic.html
www.irisa.fr/bibli/publi/pi/1994/827/827.html

BIBLIOGRAPHY

[132] W. Wolf. A decade of hardware/software codesign. Computer, 36(Issue: 4):38– 43,
April 2003. 13

[133] H. Yu, A. Gamatié, É. Rutten, P. Boulet, and J.-L. Dekeyser. Vers des transformations
d’applications à parallélisme de données en équations synchrones. In 9ème édition
de SYMPosium en Architectures nouvelles de machines(SympA’2006), Perpignan, France,
Octobre 2006. 24

[134] H. Yu, A. Gamatié, E. Rutten, and J.-L. Dekeyser. Model transformations from a data
parallel formalism towards synchronous languages. Research Report RR-6291, INRIA,
http://hal.inria.fr/inria-00172302/en/, Sept. 2007. 115, 169

[135] H. Yu, A. Gamatié, E. Rutten, and J.-L. Dekeyser. Embedded Systems Specification and
Design Languages, Selected Contributions from FDL’07 Series, volume 10 of Lecture Notes
Electrical Engineering, chapter 13: Model Transformations from a Data Parallel Formal-
ism towards Synchronous Languages. Springer Verlag, 2008. ISBN: 978-1-4020-8296-2.
115, 179

[136] H. Yu, A. Gamatié, É. Rutten, and J.-L. Dekeyser. Safe design of high-performance em-
bedded systems in a mde framework. Innovations in Systems and Software Engineering
(ISSE), 4(3), 2008. NASA/Springer journal ISSE. 167, 173

[137] Huafeng Yu, Abdoulaye Gamatié, Éric Rutten, and Jean-Luc Dekeyser. Safe design of
high-performance embedded systems in a mde framework. In 1st IEEE International
UML & Formal Methods workshop (UML&FM’08, hosted by ICFEM 2008), Kitakyushu,
Japan, october, october 2008. Accepted in a special issue of NASA/Springer journal
ISSE. 169

190

Appendices

Appendix A

The Gaspard2 metamodel

Some general ideas of Gaspard2 are presented in Chapter 3. In addition, a Gaspard2 ab-
stract syntax is introduced in Chapter 5, which helps to understand some general concepts
of Gaspard2. Here the Gaspard2 metamodel is presented, which enables the model trans-
formations in an MDE framework. The metamodel is presented according to their different
owning packages: Component, Factorization, Application, Deployment, etc..

Component package

Gaspard2 adopts component-based design method, so the Component (Figure A.1) package
is first presented. A Component is a named element, which may have ports as its interface.
As a structured element, the Component may have internal structures, such as Elementary,
Repetitive, Compound, etc.. Elementary indicates that the component is an elementary function
component, which is a black box.

<<metaclass>>
Element

(gaspard2.kernel)

<<metaclass>>
Component

+getPort() : Port [0..*]
+getModel() : Model

<<metaclass>>
ComponentInstance

<<metaclass>>
InternalStructure

<<metaclass>>
NamedElement

(gaspard2.kernel)

<<metaclass>>
Repetitive

<<metaclass>>
Elementary

<<metaclass>>
Connector

<<metaclass>>
Compound

+structure

1

+component

1

+part

1..*

+connector

*

Figure A.1: Extract of the Gaspard2 metamodel: Component.

Port (Figure A.2)may have name and be connected to other elements. It is associatedwith
a DataType, which indicates the type of the data that pass through the port. According to the

APPENDIX A. THE GASPARD2METAMODEL

direction of data that pass through the port, the port is classified into InputPort, OutputPort,
InputOutputPort.

<<metaclass>>
DataType

(gaspard2.kernel)

<<metaclass>>
NamedElement

(gaspard2.kernel)

<<metaclass>>
Shape

(gaspard2.kernel)

<<metaclass>>
ConnectableElement

<<metaclass>>
InputOutputPort

<<metaclass>>
InputPort

<<metaclass>>
OutputPort

<<metaclass>>
Port

<<metaclass>>
Component

+type

0..1

+dim

1

+owner

1

Figure A.2: Extract of the Gaspard2 metamodel: Port.

Factorization package

The key notion in the factorization package is Repetitive (Figure A.3) and Tiler. As an internal
structure, Repetitive has port that can connect to the port of the owning component. It has
also the ComponentInstance.

In a repetitive component, which has a Repetitive as internal structure, the connectors
that link the component with the internal structure are generally Tilers (Figure A.4). A Tiler
is associated to a TilingDescription in order to indicate how to tile the arrays. It has a intVector
to store the original point of the array, and two Matrix, which are filing and paving matrix
respectively.

In the case of inter-repetition dependency, the additional connectors are introduced: In-
terRepetition, DefaultLink. An InterRepetition connector links an output port of a repetitive
instance to one of its input port. But note that the input/output ports do not belong to the
same repetition defined in the repetition space, this is denoted by the Shape associated with
the InterRepetition. DefaultLink is used to give the default value on the occasion of the absence
of input value for some input ports.

Application package

The application package contains all the software application elements. ApplicationModel
(Figure A.5) is the root of the Application package. One of the basic elements in the Applica-
tion package is ApplicationComponent (Figure A.6), which models functionalities (called task

194

<<metaclass>>
InternalStructure

(gaspard2.component)

<<metaclass>>
ComponentInstance

(gaspard2.component)

<<metaclass>>
Repetitive

<<metaclass>>
RepetitionConnector

+internalComponent

1

+connector

*

Figure A.3: Extract of the Gaspard2 metamodel: Repetitive.

<<metaclass>>
IntVector

(gaspard2.kernel)

<<metaclass>>
Matrix

(gaspard2.kernel)

<<metaclass>>
Connector

(gaspard2.component)

<<metaclass>>
TilingDescription

+cyclic : Boolean

<<metaclass>>
Shape

(gaspard2.kernel)

<<metaclass>>
RepetitionConnector

<<metaclass>>
InterRepetition

<<metaclass>>
Tiler

<<metaclass>>
DefaultLink

+fitting

0..1

+paving

1

+origin

1

+repetitionSpaceDependence

1 +tiling

1

Figure A.4: Extract of the Gaspard2 metamodel: Tiler.

195

APPENDIX A. THE GASPARD2METAMODEL

<<metaclass>>
ApplicationComponentInstance

<<metaclass>>
ApplicationComponent

<<metaclass>>
ComponentModel

(gaspard2.component)

<<metaclass>>
ApplicationModel

+component

1..*

+model

1

+mainInstance

1

Figure A.5: Extract of the Gaspard2 metamodel: ApplicationModel.

in Array-OL). ApplicationComponent has Ports, from which the component receives/sends
data. An ApplicationComponent also has an InternalStructure, such as Elementary, Compound
and Repetitive. These internal structures are defined according to the component instances
inside the ApplicationComponent. Elementarymeans no component instance defined in an Ap-
plicationComponent, so it should be deployed with an IP. If the ApplicationComponentInstances
inside an ApplicationComponent have no multipilicity and are connected in a concatenation
or parallel way, the internal structure is called Compound. The component instances are con-
nected through their PortInstances and Connector. But if an ApplicationComponentInstance has
multipilicity defined on itself, its internal structure is called Repetitive. The internal compo-
nent is connected to its owning component through Tilers. Some information about tiling is
given, such as FittingMatrix, PavingMatrix and OriginalPoint.

Deployment package

The deployment package (Figure A.7) in the Gaspard2 metamodel is dedicated to provide
enough information about the deployment of IPs in Gaspard2. According to the usage of
these pieces of information, two classes are distinguished: specilizable and characterizable. The
first one denotes the information that is passed to the compiler of an IP so as to have a spe-
cialized implementation from this IP. Whereas characterizable indicates the information to be
delivered to the transformation so that the implementation of an IP is integrated in the appli-
cation. AbstractImplementation is used to indicate a functionality that could be implemented
by several Implementations. Each Implementation is linked to a CodeFile, which indicates the
physical source or implementation of an IP.

The deployment in this section only concerns the software application deployment. The
complete modeling and explanation of Gaspard2 deployment can be found in the theses of
Eric Piel [110].

196

<<metaclass>>
ApplicationComponentInstance

<<metaclass>>
Component

(gaspard2.component)

<<metaclass>>
ComponentInstance

(gaspard2.component)

<<metaclass>>
ApplicationComponent

<<metaclass>>
ArraysConsumer

<<metaclass>>
InputPort

<<metaclass>>
ArraysProducer

<<metaclass>>
OutputPort

<<metaclass>>
Port

<<metaclass>>
Application

+component

1

+port 1..*+port 1..* +port 0..*

Figure A.6: Extract of the Gaspard2 metamodel: ApplicationComponent.

<<metaclass>>
Implementation

+language : ImplementationLanguage
+functionName : String
+parameters : PortImplementation [*]{ordered}
+indicesInParameters : boolean = false

<<metaclass>>
AbstractImplementation

+getImplementation() : Implementation [1..*]

<<metaclass>>
AbstractSoftwareImplementation

<<enumeration>>
ImplementationLanguage

hardwareImplemented

LucidSynchrone

softwareBinary

SystemC

Fortran

Lustre
Signal

VHDL

Java
CPP
C

+filePath : String
+compilationLine : String [0..1]
+linkingLine : String [0..1]

<<metaclass>>
CodeFile

<<metaclass>>
SoftwareImplementation

<<metaclass>>
Specializable

<<metaclass>>
Implementor

<<metaclass>>
Characterizable

+implementation

1..*

+implementingFiles

0..*

Figure A.7: Extract of the Gaspard2 metamodel: software deployment.

197

APPENDIX A. THE GASPARD2METAMODEL

198

Appendix B

Code examples

The generated code of the downscaler example

Section 7.1 shows an example of downscaler modeled with the Gaspard2 profile, the extract
of the generated code from the downscaler can be found in the following:

node TILER_INPUT_VERTICALFILTER_1 (
Tiler_Input_Array:int^4^8)

returns
(Tiler_Pattern_0:int^8;Tiler_Pattern_1:int^8;
Tiler_Pattern_2:int^8;Tiler_Pattern_3:int^8);

let
(Tiler_Pattern_0[0],...,Tiler_Pattern_0[7])
=(Tiler_Input_Array[0,0],...,Tiler_Input_Array[0,7]);

(Tiler_Pattern_1[0],...,Tiler_Pattern_1[7])
=(Tiler_Input_Array[1,0],...,Tiler_Input_Array[1,7]);

...

(Tiler_Pattern_3[0],...,Tiler_Pattern_3[7])
=(Tiler_Input_Array[3,0],...,Tiler_Input_Array[3,7]);

tel

node TILER_OUTPUT_VERTICALFILTER_2 (
Tiler_Pattern_0:int^4;
Tiler_Pattern_1:int^4;Tiler_Pattern_2:int^4;
Tiler_Pattern_3:int^4;)

returns
(Output_Array:int^4^4);

let
(Output_Array[0,0], Output_Array[0,3]) =
(Tiler_Pattern_0[0],...,Tiler_Pattern_0[3]);

...
(Output_Array[3,0], Output_Array[3,3]) =

APPENDIX B. CODE EXAMPLES

(Tiler_Pattern_3[0],...,Tiler_Pattern_3[3]);
tel

node TILER_INPUT_DOWNSCALER_3 (
Tiler_Input_Array:int^640^480)

returns
(Tiler_Pattern_0:int^8^8,
...
Tiler_Pattern_479:int^8^8);

let
(Tiler_Pattern_0[0,0],Tiler_Pattern_0[1,0],
Tiler_Pattern_0[2,0],Tiler_Pattern_0[3,0],
Tiler_Pattern_0[4,0],Tiler_Pattern_0[5,0],
Tiler_Pattern_0[6,0],Tiler_Pattern_0[7,0],
Tiler_Pattern_0[0,1],Tiler_Pattern_0[1,1],
Tiler_Pattern_0[2,1],Tiler_Pattern_0[3,1],
...
Tiler_Pattern_0[4,7],Tiler_Pattern_0[5,7],
Tiler_Pattern_0[6,7],Tiler_Pattern_0[7,7]) =
(Tiler_Input_Array[0,0],Tiler_Input_Array[0,1],
Tiler_Input_Array[0,2],Tiler_Input_Array[0,3],
Tiler_Input_Array[0,4],Tiler_Input_Array[0,5],
Tiler_Input_Array[0,6],Tiler_Input_Array[0,7],
Tiler_Input_Array[1,0],Tiler_Input_Array[1,1],
...
Tiler_Input_Array[7,6],Tiler_Input_Array[7,7]);
...

tel

node TILER_OUTPUT_DOWNSCALER_4 (
Tiler_Pattern_0:int^4^4,...,
Tiler_Pattern_479:int^4^4,)

returns
(Output_Array:int^320^240);

let
(Output_Array[0,0],Output_Array[1,0],
Output_Array[2,0],Output_Array[3,0],
...
Output_Array[0,3],Output_Array[1,3],
Output_Array[2,3],Output_Array[3,3]) =
(Tiler_Pattern_0[0,0],Tiler_Pattern_0[1,0],
Tiler_Pattern_0[2,0],Tiler_Pattern_0[3,0],
Tiler_Pattern_0[0,1],Tiler_Pattern_0[1,1],
...
Tiler_Pattern_0[0,3],Tiler_Pattern_0[1,3],
Tiler_Pattern_0[2,3],Tiler_Pattern_0[3,3]);

...

200

tel

node TILER_OUTPUT_HORIZONTALFILTER_5 (
Tiler_Pattern_0:int^4;
...
Tiler_Pattern_5:int^4;Tiler_Pattern_6:int^4;
Tiler_Pattern_7:int^4)

returns
(Output_Array:int^4^8);

let
(Output_Array[0,0],...Output_Array[3,0]) =
(Tiler_Pattern_0[0],Tiler_Pattern_0[1],
Tiler_Pattern_0[2],Tiler_Pattern_0[3]);

...
(Output_Array[0,7],...Output_Array[3,7]) =
(Tiler_Pattern_7[0],Tiler_Pattern_7[1],
Tiler_Pattern_7[2],Tiler_Pattern_7[3]);

tel

node TILER_INPUT_HORIZONTALFILTER_6 (
Tiler_Input_Array:int^8^8)

returns
(Tiler_Pattern_0:int^8;Tiler_Pattern_1:int^8;
Tiler_Pattern_2:int^8;Tiler_Pattern_3:int^8;
Tiler_Pattern_4:int^8;Tiler_Pattern_5:int^8;
Tiler_Pattern_6:int^8;Tiler_Pattern_7:int^8);

let
(Tiler_Pattern_0[0],...,Tiler_Pattern_0[7]) =
(Tiler_Input_Array[0,0],...,Tiler_Input_Array[7,0]);
...
(Tiler_Pattern_7[0],...,Tiler_Pattern_7[7]) =
(Tiler_Input_Array[0,7],...,Tiler_Input_Array[7,7]);

tel

node APP_VFILTER (VFILTERINPUT_ARRAY_0:int^8)
returns
(VFILTEROUTPUT_ARRAY_1:int^4);

let
(VFILTEROUTPUT_ARRAY_1) =
INVOCATION_VFILTER(VFILTERINPUT_ARRAY_0);

tel

node APP_HFILTER (HFILTERINPUT_ARRAY_0:int^8)
returns (HFILTEROUTPUT_ARRAY_1:int^4);
let

201

APPENDIX B. CODE EXAMPLES

(HFILTEROUTPUT_ARRAY_1) =
INVOCATION_HFILTER(HFILTERINPUT_ARRAY_0);

tel

node APP_VERTICALFILTER (INPUT_ARRAY_0:int^4^8)
returns (OUTPUT_ARRAY_1:int^4^4);
var
TILER_IN_0_PATTERN_0:int^8;
...
TILER_IN_0_PATTERN_3:int^8;
TILER_OUT_1_PATTERN_0:int^4;
...
TILER_OUT_1_PATTERN_3:int^4;

let
(TILER_IN_0_PATTERN_0,TILER_IN_0_PATTERN_1,
TILER_IN_0_PATTERN_2,TILER_IN_0_PATTERN_3) =
TILER_INPUT_VERTICALFILTER_1(INPUT_ARRAY_0);

(OUTPUT_ARRAY_1) =
TILER_OUTPUT_VERTICALFILTER_2(
TILER_OUT_1_PATTERN_0,TILER_OUT_1_PATTERN_1,
TILER_OUT_1_PATTERN_2,TILER_OUT_1_PATTERN_3);

(TILER_OUT_1_PATTERN_0,TILER_OUT_1_PATTERN_1,
TILER_OUT_1_PATTERN_2,TILER_OUT_1_PATTERN_3)=
TASK_REPETITION_VFILTER(
TILER_IN_0_PATTERN_0,TILER_IN_0_PATTERN_1,
TILER_IN_0_PATTERN_2,TILER_IN_0_PATTERN_3);

tel

node TASK_REPETITION_VFILTER(
PATTERN_IN_0_0:int^8; PATTERN_IN_1_0:int^8;
PATTERN_IN_2_0:int^8; PATTERN_IN_3_0:int^8;)

returns
(PATTERN_OUT_0_1:int^4;PATTERN_OUT_1_1:int^4;
PATTERN_OUT_2_1:int^4; PATTERN_OUT_3_1:int^4);

let
(PATTERN_OUT_0_1)=APP_VFILTER(PATTERN_IN_0_0);
(PATTERN_OUT_1_1)=APP_VFILTER(PATTERN_IN_1_0);
(PATTERN_OUT_2_1)=APP_VFILTER(PATTERN_IN_2_0);
(PATTERN_OUT_3_1)=APP_VFILTER(PATTERN_IN_3_0);

tel

node APP_HORIZONTALFILTER (INPUT_ARRAY_0:int^8^8)
returns (OUTPUT_ARRAY_1:int^4^8);
var
TILER_IN_0_PATTERN_0:int^8; TILER_IN_0_PATTERN_1:int^8;

202

TILER_IN_0_PATTERN_2:int^8; TILER_IN_0_PATTERN_3:int^8;
TILER_IN_0_PATTERN_4:int^8; TILER_IN_0_PATTERN_5:int^8;
TILER_IN_0_PATTERN_6:int^8; TILER_IN_0_PATTERN_7:int^8;
TILER_OUT_1_PATTERN_0:int^4;TILER_OUT_1_PATTERN_1:int^4;
TILER_OUT_1_PATTERN_2:int^4;TILER_OUT_1_PATTERN_3:int^4;
TILER_OUT_1_PATTERN_4:int^4;TILER_OUT_1_PATTERN_5:int^4;
TILER_OUT_1_PATTERN_6:int^4;TILER_OUT_1_PATTERN_7:int^4;

let
(TILER_IN_0_PATTERN_0,TILER_IN_0_PATTERN_1,
TILER_IN_0_PATTERN_2,TILER_IN_0_PATTERN_3,
TILER_IN_0_PATTERN_4,TILER_IN_0_PATTERN_5,
TILER_IN_0_PATTERN_6,TILER_IN_0_PATTERN_7) =
TILER_INPUT_HORIZONTALFILTER_6(INPUT_ARRAY_0);

(OUTPUT_ARRAY_1) =
TILER_OUTPUT_HORIZONTALFILTER_5
(TILER_OUT_1_PATTERN_0, TILER_OUT_1_PATTERN_1,
TILER_OUT_1_PATTERN_2,TILER_OUT_1_PATTERN_3,
TILER_OUT_1_PATTERN_4, TILER_OUT_1_PATTERN_5,
TILER_OUT_1_PATTERN_6, TILER_OUT_1_PATTERN_7);

(TILER_OUT_1_PATTERN_0,TILER_OUT_1_PATTERN_1,
TILER_OUT_1_PATTERN_2,TILER_OUT_1_PATTERN_3,
TILER_OUT_1_PATTERN_4,TILER_OUT_1_PATTERN_5,
TILER_OUT_1_PATTERN_6,TILER_OUT_1_PATTERN_7) =
TASK_REPETITION_HFILTER(
TILER_IN_0_PATTERN_0, TILER_IN_0_PATTERN_1,
TILER_IN_0_PATTERN_2, TILER_IN_0_PATTERN_3,
TILER_IN_0_PATTERN_4, TILER_IN_0_PATTERN_5,
TILER_IN_0_PATTERN_6, TILER_IN_0_PATTERN_7);

tel

node TASK_REPETITION_HFILTER (PATTERN_IN_0_0:int^8;
PATTERN_IN_1_0:int^8;PATTERN_IN_2_0:int^8;
PATTERN_IN_3_0:int^8;PATTERN_IN_4_0:int^8;
PATTERN_IN_5_0:int^8;PATTERN_IN_6_0:int^8;
PATTERN_IN_7_0:int^8)

returns
(PATTERN_OUT_0_1:int^4;PATTERN_OUT_1_1:int^4;
PATTERN_OUT_2_1:int^4;PATTERN_OUT_3_1:int^4;
PATTERN_OUT_4_1:int^4;PATTERN_OUT_5_1:int^4;
PATTERN_OUT_6_1:int^4;PATTERN_OUT_7_1:int^4);

let
(PATTERN_OUT_0_1) = APP_HFILTER(PATTERN_IN_0_0);
(PATTERN_OUT_1_1) = APP_HFILTER(PATTERN_IN_1_0);
...
(PATTERN_OUT_6_1) = APP_HFILTER(PATTERN_IN_6_0);

203

APPENDIX B. CODE EXAMPLES

(PATTERN_OUT_7_1) = APP_HFILTER(PATTERN_IN_7_0);
tel

node APP_DOWNSCALER (INPUT_ARRAY_1:int^640^480)
returns
(OUTPUT_ARRAY_0:int^320^240);

var
TILER_OUT_0_PATTERN_0:int^4^4;
...
TILER_OUT_0_PATTERN_479:int^4^4;
TILER_IN_1_PATTERN_0:int^8^8;
...
TILER_IN_1_PATTERN_479:int^8^8;

let
(OUTPUT_ARRAY_0) =
TILER_OUTPUT_DOWNSCALER_4(TILER_OUT_0_PATTERN_0);

(TILER_IN_1_PATTERN_0,...,TILER_IN_1_PATTERN_479)=
TILER_INPUT_DOWNSCALER_3(INPUT_ARRAY_1);

(TILER_OUT_0_PATTERN_0,...,TILER_OUT_0_PATTERN_479)=
TASK_REPETITION_HVFILTER(
TILER_IN_1_PATTERN_0,...,TILER_IN_1_PATTERN_479);

tel

node TASK_REPETITION_HVFILTER (PATTERN_IN_0_1:int^8^8,
..., PATTERN_IN_0_479:int^8^8)

returns
(PATTERN_OUT_0_0:int^4^4,...,PATTERN_OUT_0_479:int^4^4);
let
(PATTERN_OUT_0_0) = APP_HVFILTER(PATTERN_IN_0_1);
...
(PATTERN_OUT_0_479) = APP_HVFILTER(PATTERN_IN_0_479);

tel

node APP_REPDSMAIN (
APP_REPDSMAIN_INPUT_ARRAY_0:int^640^480)

returns
(APP_REPDSMAIN_OUTPUT_ARRAY_1:int^320^240);

let
(APP_REPDSMAIN_OUTPUT_ARRAY_1) =
APP_DOWNSCALER(APP_REPDSMAIN_INPUT_ARRAY_0);

tel

node APP_HVFILTER (APP_HVFILTER_INPUT_ARRAY_0:int^8^8)
returns

204

(APP_HVFILTER_OUTPUT_ARRAY_1:int^4^4);
var
APP_HVFILTER_LOCAL_ARRAY_0:int^4^8;

let
(APP_HVFILTER_OUTPUT_ARRAY_1) =
APP_VERTICALFILTER(APP_HVFILTER_LOCAL_ARRAY_0);

(APP_HVFILTER_LOCAL_ARRAY_0) =
APP_HORIZONTALFILTER(APP_HVFILTER_INPUT_ARRAY_0);

tel

node MAIN_APPLICATION(
APP_REPDSMAIN_INPUT_ARRAY_0:int^640^480)

returns (APP_REPDSMAIN_OUTPUT_ARRAY_1:int^320^240);
let
(APP_REPDSMAIN_OUTPUT_ARRAY_1)=
APP_REPDSMAIN(APP_REPDSMAIN_INPUT_ARRAY_0);

tel

Automata in Targos and Sigali commands of the case study

Automata of the case study

The automata in the form of Targos that are used in the case study are illustrated in the next:

TARGOS

AUTOMATON EnergyStatus
STATES

High init [ESModeH=true; ESModeM=false;ESModeL=false;]
Medium [ESModeH=false;ESModeM=true;ESModeL=false;]
Low [ESModeH=false;ESModeM=false;ESModeL=true;]

TRANS
FROM High TO Medium WITH rien0 [eESD and not eESU]
FROM Medium TO Low WITH rien0 [eESD and not eESU]
FROM Low TO Medium WITH rien0 [eESU and not eESD]
FROM Medium TO High WITH rien0 [eESU and not eESD]

AUTOMATON CommQuality
STATES

Hign [CQModeH=true; CQModeM=false; CQModeL=false;]
Medium init [CQModeH=false; CQModeM=true;

CQModeL=false;]
Low [CQModeH=false; CQModeM=false; CQModeL=true;]

TRANS

205

APPENDIX B. CODE EXAMPLES

FROM Hign TO Medium WITH rien0 [eCQD and
not eCQU or ESModeL]

FROM Medium TO Low WITH rien0 [eCQD and not eCQU]
FROM Low TO Medium WITH rien0 [eCQU and not eCQD]
FROM Medium TO Hign WITH rien0 [eCQU and

not eCQD and ESModeH]

AUTOMATON ColorEffect
STATES

Color init [CEModeC=true; CEModeM=false;]
Monochrome [CEModeC=false; CEModeM=true;]

TRANS
FROM Color TO Monochrome WITH rien0 [

(eCEU and not eCED and aCE) or cCE]
FROM Monochrome TO Color WITH rien0 [

eCED and not eCEU and aCE]

AUTOMATON ImageStyle
STATES

Normal init [ISModeN=true;ISModeB=false;
ISModeE=false;ISModeS=false;]

BNW [ISModeN=false;ISModeB=true;
ISModeE=false;ISModeS=false;]

Negative [ISModeN=false;ISModeB=false;
ISModeE=true;ISModeS=false;]

Sepia [ISModeN=false;ISModeB=false;
ISModeE=false;ISModeS=true;]

TRANS
FROM Normal TO BNW WITH rien0

[eISD and not eISU and aIS]
FROM BNW TO Sepia WITH rien0

[eISD and not eISU and aIS]
FROM Sepia TO Negative WITH rien0

[eISD and not eISU and aIS]
FROM Negative TO Normal WITH rien0

[eISD and not eISU and aIS]
FROM BNW TO Normal WITH rien0

[eISU and not eISD and aIS]
FROM Normal TO Negative WITH rien0

[eISU and not eISD and aIS]
FROM Negative TO Sepia WITH rien0

[eISU and not eISD and aIS]
FROM Sepia TO BNW WITH rien0

[eISU and not eISD and aIS]

AUTOMATON VideoSource
STATES

206

Camera [VSModeC=true; VSModeO=false; VSModeM=false;]
Online [VSModeC=false; VSModeO=true; VSModeM=false;]
Memory init [VSModeC=false; VSModeO=false; VSModeM=true;]

TRANS
FROM Online TO Memory WITH rien0

[eVSD and not eVSU and aVS or cVS]
FROM Memory TO Online WITH rien0

[eVSD and not eVSU and aVS or cVS]
FROM Camera TO Online WITH rien0

[eVSD and not eVSU and aVS or cVS]
FROM Online TO Camera WITH rien0

[eVSU and not eVSU and aVS or cVS]
FROM Camera TO Memory WITH rien0

[eVSU and not eVSU and aVS or cVS]
FROM Memory TO Online WITH rien0

[eVSU and not eVSU and aVS or cVS]

AUTOMATON Resolution
STATES
High [RModeH=true; RModeM=false; RModeL=false;]
Medium init [RModeH=false; RModeM=true; RModeL=false;]
Low [RModeH=false; RModeM=false; RModeL=true;]

TRANS
FROM High TO Medium WITH rien0 [(eRD and not eRU) or cR]
FROM Medium TO Low WITH rien0 [(eRD and not eRU) or cR]
FROM Low TO Medium WITH rien0 [eRU and not eRD and aR]
FROM Medium TO High WITH rien0 [eRU and not eRD and aR]

Sigali commands for model checking

The Sigali commands for model checking in consideration of cost functions:

read("task.z3z");
S : processus(conditions, etats, evolutions,
initialisations, [gen(contraintes)],controlables);

read("Property.lib");
read("Synthesis.lib");
read("Verif_Determ.lib");
read("Simul.lib");
read("Synthesis_Partial_order.lib");

CE_Color_de_ColorEffect_2: a_var(
Color_de_ColorEffect_2,0,30,0);

CE_Monochrome_de_ColorEffect_2:
a_var(Monochrome_de_ColorEffect_2,0,20,0);

CE_Normal_de_ImageStyle_3: a_var(

207

APPENDIX B. CODE EXAMPLES

Normal_de_ImageStyle_3,0,10,0);
CE_BNW_de_ImageStyle_3: a_var(

BNW_de_ImageStyle_3,0,10,0);
CE_Negative_de_ImageStyle_3: a_var(

Negative_de_ImageStyle_3,0,10,0);
CE_Sepia_de_ImageStyle_3: a_var(

Sepia_de_ImageStyle_3,0,10,0);

CE_High_de_Resolution_4: a_var(
High_de_Resolution_4,0,50,0);

CE_Medium_de_Resolution_4: a_var(
Medium_de_Resolution_4,0,40,0);

CE_Low_de_Resolution_4: a_var(
Low_de_Resolution_4,0,30,0);

CE_Camera_de_VideoSource_5: a_var(
Camera_de_VideoSource_5,0,30,0);

CE_Online_de_VideoSource_5: a_var(
Online_de_VideoSource_5,0,30,0);

CE_Memory_de_VideoSource_5: a_var(
Memory_de_VideoSource_5,0,20,0);

CE_ColorEffect: CE_Color_de_ColorEffect_2 +
CE_Monochrome_de_ColorEffect_2;

CE_ImageStyle: CE_Normal_de_ImageStyle_3 +
CE_BNW_de_ImageStyle_3 +
CE_Negative_de_ImageStyle_3 +
CE_Sepia_de_ImageStyle_3;

CE_Resolution: CE_High_de_Resolution_4 +
CE_Medium_de_Resolution_4 +
CE_Low_de_Resolution_4;

CE_VideoSource: CE_Camera_de_VideoSource_5+
CE_Online_de_VideoSource_5 +

CE_Memory_de_VideoSource_5;
CE_Cons: CE_ColorEffect +

CE_ImageStyle+CE_Resolution +
CE_VideoSource;

CE_High_de_EnergyStatus_0: a_var(
High_de_EnergyStatus_0,0,-120,0);

CE_Medium_de_EnergyStatus_0: a_var(
Medium_de_EnergyStatus_0,0,-110,0);

CE_Low_de_EnergyStatus_0: a_var(
Low_de_EnergyStatus_0,0,-110,0);

CE_EnergyStatus: CE_High_de_EnergyStatus_0 +
CE_Medium_de_EnergyStatus_0 +

208

CE_Low_de_EnergyStatus_0;
CE_Prod: CE_EnergyStatus;
CE_Global: CE_Cons + CE_Prod;
CE_Limitation : a_sup(CE_Global, 1);

Reachable(S, CE_Limitation);

209

APPENDIX B. CODE EXAMPLES

210

Nomenclature

Array-OL Array Oriented Language

DIP Data-Intensive Processing

EMFT Eclipse Modeling Framework Technology

EMF Eclipse Modeling Framework

MARTE Modeling and Analysis of Real-Time and embedded System

MOF Meta-Object Facility

MoMoTE MOdel to MOdel Transformation Engine

OMG Object Management Group

QVT Query/View/Transformation

AOP Aspect-Oriented Programming

ATL ATLAS Transformation Language

CAD Computer-Aided Design

DCS Discrete Controller Synthesis

DIP Data-Intensive Processing

DSL Domain-Specific Language

DSP Digital Signal Processor

FFT Fast Fourier Transform

FPGA Field-Programmable Gate Array

FSM Finite State Machine

GMA Gaspard2 Mode Automata

GPS Global Positioning System

GSG Gaspard2 state graph

APPENDIX B. CODE EXAMPLES

HDL Hardware Description Language

HPF High-Performance Fortran

IC Integrated Circuits

IP Intellectual Property

IRD Inter-Repetition Dependency

JET Java Emitter Templates

MDA Model-Driven Architecture

MDE Model-Driven Engineering

MoC Model of Computation

MPSoC Multi-processor System on Chip

MST Mode Switch Task

MT Mode Task

MTC Mode Task Component

MTD Multidimentional-Time Dimension

NoC Networks on Chip

OCL Object Constraint Language

ODT Opérateurs de Distribution de Tableaux or array distribution operators in English

OOAD Object-Oriented Analysis and Design

PDA Personal Digital Assistant

PIM Platform-Independent Model

PSM Platform-Specific Model

RCT Repetition Context Task

RSM Repetitive Structure Modeling

RT Repetitive Task

RTOS Real-Time Operating System

SGC State Graph Component

SGT State Graph Task

SMC State Machine Component

SoC System on Chip or System-on-a-Chip

212

SPT Schedulability, Performance and Time

SQL Structured Query Language

SSADM Structured Systems Analysis and Design Methodology

SysML SystemModeling Language

UML Unified Modeling Language

XML eXtensible Markup Language

213

APPENDIX B. CODE EXAMPLES

214

Un Modèle Réactif Basé sur MARTE Dédié au Calcul Intensif à Parallélisme de Données :
Transformation vers le Modèle Synchrone

Résumé: Les travaux de cette thèse s’inscrivent dans le cadre de la validation formelle et le contrôle réactif de
calculs à haute performance sur systèmes-sur-puce (SoC).

Dans ce contexte, la première contribution est la modélisation synchrone accompagnée d’une transformation
d’applications en équations synchrones. Les modéles synchrones permettent de résoudre plusieurs questions
liées à la validation formelle via l’usage des outils et techniques formels offerts par la technologie synchrone.
Les transformations sont développées selon l’approche d’Ingénierie Dirigé par les Modèles (IDM).

La deuxième contribution est une extension et amélioration des mécanismes de contrôle pour les calculs
à haute performance, sous forme de constructeurs de langage de haut-niveau et de leur sémantique. Ils ont
été défini afin de permettre la vérification, synthèse et génération de code. Il s’agit de déterminer un niveau
d’abstraction de représentation des systèmes où soit extraite la partie contrôle, et de la modéliser sous forme
d’automates à états finis. Ceci permet de spécifier et implémenter des changements de modes de calculs, qui
se distinguent par exemple par les ressources utilisées, la qualité de service fournie, ou le choix d’algorithme
remplissant une fonctionnalité.

Ces contributions permettent l’utilisation d’outils d’analyse et vérification, tels que la vérification de pro-
priétés d’assignement unique et dépendance acyclique, model checking. L’utilisation de techniques de synthèse
de contrôleurs discrets est également traitée. Elles peuvent assurer la correction de faĉon constructive: à partir
d’une spécification partielle du contrôle, la partie manquante pour que les propriétés soient satisfaites est cal-
culée. Grâce à ces techniques, lors du développement de la partie contrôle, la spécification est simplifiée, et le
résultat est assuré d’être correct par construction.

Les modélisations synchrone et de contrôle reposes sur MARTE et UML. Les travaux de cette thèse sont été
partiellement implémentés dans le cadre deGaspard, dédié aux applications de traitement de données intensives.
Une étude de cas est présentée, dans laquelle nous nous intéressont à une application de système embarqué pour
téléphone portable multimédia.
Mots clefs: MARTE, parallélisme, contrôle réactive, systèmes-sur-puce, calculs à haute performance, Gaspard,

ingénierie dirigée par les modèles, UML, model checking, synthèse de contrôleurs, langages synchrones.

A MARTE-Based Reactive Model for Data-Parallel Intensive Processing:
Transformation Toward the Synchronous Model

Abstract: The work presented in this dissertation is carried out in the context of System-on-Chip (SoC) and
embedded system design, particularly dedicated to data-parallel intensive processing applications (DIPs). Ex-
amples of such applications are found in multimedia processing and signal processing. On the one hand, safe
design of DIPs is considered to be important due to the need of Quality of Service, safety criticality, etc., in these
applications. However, the complexity of current embedded systems makes it difficult to meet this requirement.
On the other hand, high-level safe and verifiable control, is highly demanded in order to ensure the correctness
and strengthen the flexibility and adaptivity of DIPs.

As an answer to this issue, we propose to take advantage of synchronous languages to assist safe DIPs
design. First, a synchronous modeling bridges the gap between the Gaspard framework, which is dedicated to
SoC design for DIPs, and synchronous languages that act as a model of computation enabling formal validation.
The latter, together with their tools, enable high-level validation of Gaspard specifications.

Secondly, a reactive extension and improvement to a previous control proposition in Gaspard, is also ad-
dressed. This extension is based on mode automata and contributes to conferring safe and verifiable features
onto the previous proposition. As a result, model checking and discrete controller synthesis can be applied for
the purpose of correctness verification.

Finally, a Model-Driven Engineering (MDE) approach is adopted in order to implement and validate our
proposition, as well as benefit from the advantages of MDE to address system complexity and productivity
issues. Synchronous modeling, MARTE-based (the UML profile for Modeling and Analysis of Real-Time and
Embedded system) control modeling, and model transformations, including code generation, are dealt with in
the implementation.
Keywords: MARTE, parallelism, reactive control, systems-on-chip, high-performance computing, Gaspard,

model-driven engineering, UML, model checking, controller synthesis, synchronous languages.

	Title
	Contents
	Introduction
	Part I : state of the art
	Chapter 1 : system on chip
	1.1 Introduction
	1.2 Application domains
	1.3 SoC design
	1.3.1 SoC codesign
	1.3.2 Productivity issue
	1.3.3 Validation in SoC

	1.4 Conclusions

	Chapter 2 : data-intensive processing and the Array-OL formalism
	2.1 Intensive digital signal processing
	2.2 A high-level data dependency model: Array-OL
	2.2.1 Basic characteristics
	2.2.2 Task parallelism
	2.2.3 Data parallelism
	2.2.4 Compilation and optimization of the Array-OL language
	2.2.5 Inter-repetition dependency

	2.3 The need for design environment and methodology
	2.4 Conclusions

	Chapter 3 : model-driven engineering and gaspard2
	3.1 Model-Driven Engineering
	3.1.1 Model and modeling
	3.1.1.1 Raising levels of abstraction in software design
	3.1.1.2 Modeling with machine-recognizable model
	3.1.1.3 Model and MDE

	3.1.2 Metamodel and metamodeling
	3.1.3 Model transformations
	3.1.3.1 Model transformation classifications
	3.1.3.2 Transformation rules
	3.1.3.3 A multi-level approach in modeling and transformation
	3.1.3.4 Traceability
	3.1.3.5 Productivity issue
	3.1.3.6 Transformation tools

	3.1.4 MDE in practice
	3.1.4.1 MDA
	3.1.4.2 UML
	3.1.4.3 Profiles for real-time and embedded system design

	3.1.5 Conclusions

	3.2 An MDE-based environment for SoC co-design: Gaspard2
	3.2.1 High-level co-modeling for SoC design
	3.2.1.1 Gaspard2 metamodel
	3.2.1.2 Gaspard2 profile
	3.2.1.3 Domain-specific metamodels in Gaspard2

	3.2.2 Gaspard2 and MDE
	3.2.2.1 Model transformations
	3.2.2.2 Gaspard2 and MARTE

	3.2.3 Modeling of high-level control in Gaspard2

	3.3 Conclusions

	Chapter 4 : control and validation in Gaspard2 and reactive systems
	4.1 Control and validation requirements in Gaspard2
	4.1.1 Gaspard2 control requirements
	4.1.2 Validation issue of Gaspard2
	4.1.3 Conclusions

	4.2 Reactive systems and the synchronous approach
	4.2.1 Introduction
	4.2.1.1 Reactive systems

	4.2.2 The synchronous approach
	4.2.3 Synchronous languages
	4.2.3.1 Lustre
	4.2.3.2 Other synchronous languages
	4.2.3.3 Mixed-style languages

	4.2.4 Using synchronous languages for Gaspard2 control modeling and validation

	4.3 Conclusions

	Part II : synchronous modeling and reactive control of DIP applications
	Chapter 5 : synchronous modeling of DIP applications
	5.1 General modeling approach
	5.1.1 Step 1: space refactoring
	5.1.2 Step 2: space-time analysis and mapping
	5.1.2.1 Time dimensions in Gaspard2
	5.1.2.2 Space-time analysis
	5.1.2.3 Space-time mapping
	5.1.2.4 Space-time mapping for synchronous modeling

	5.1.3 Step 3: synchronous modeling
	5.1.4 Step 4: code generation

	5.2 General synchronous modeling propositions
	5.2.1 Array data structure
	5.2.2 Parallelism modeling
	5.2.2.1 Task parallelism
	5.2.2.2 Data parallelism

	5.2.3 Hierarchy and composition
	5.2.3.1 Gaspard2 hierarchy and composition
	5.2.3.2 Hierarchy and composition in synchronous languages
	5.2.3.3 Synchronousmodeling

	5.3 Gaspard2 and synchronous representations
	5.3.1 A Gaspard2 abstract syntax
	5.3.2 Synchronous equations abstract syntax

	5.4 The translation between the two representations
	5.4.1 Structural translation
	5.4.2 Translation of behavioral aspects
	5.4.2.1 Translation of tasks and their connections
	5.4.2.2 Repetition context task translation

	5.4.3 Correctness of the translation
	5.4.3.1 Elementary task
	5.4.3.2 Repetition context task
	5.4.3.3 Hierarchical task

	5.4.4 Translation with serialization and partition semantics
	5.4.4.1 Translation with serialization semantics
	5.4.4.2 Translation with partition semantics

	5.5 Conclusions

	Chapter 6 : reactive control extension of Gaspard2
	6.1 Introduction
	6.1.1 Control modeling in DIP applications
	6.1.2 Basic ideas of control in accordance with the Gaspard2 core formalism
	6.1.2.1 Array-OL-compatible behavior change
	6.1.2.2 Array in representation of control
	6.1.2.3 The correspondence between control and data array
	6.1.2.4 Synthesis and conclusions

	6.1.3 Previous control proposition in Gaspard2

	6.2 An extension proposal for control
	6.2.1 Mode switch task and modes
	6.2.1.1 Mode switch tasks
	6.2.1.2 Modes

	6.2.2 State graphs and state graph tasks
	6.2.2.1 State graphs
	6.2.2.2 State graph tasks

	6.2.3 Task compositions of SGT andMST in Gaspard2
	6.2.3.1 A macro structure
	6.2.3.2 Parallel composition of SGTs
	6.2.3.3 Hierarchical composition
	6.2.3.4 Conclusions

	6.3 Reactive control extension in Gaspard2
	6.3.1 Issues of Gaspard2 control specification in a dataflow context
	6.3.2 Reactive automata based control mechanism in Gaspard2
	6.3.2.1 From Gaspard2 state graphs to Gaspard2 mode automata
	6.3.2.2 Synchronousmode automata modeling in Gaspard2

	6.4 Typical examples
	6.4.1 A typical example of a counter
	6.4.2 A control example for cell phone video effect

	6.5 Conclusions

	Part III : integration into an MDE framework and case study
	Chapter 7 : transformation from Gaspard2 to synchronous languages
	7.1 The Gaspard metamodel and profile
	7.2 Synchronous equational metamodel
	7.2.1 Common aspects
	7.2.2 From abstract syntax to synchronous metamodel
	7.2.3 Signal
	7.2.4 Equation
	7.2.5 Node
	7.2.6 Module
	7.2.7 IP deployment

	7.3 The transformation rules
	7.3.1 From Gaspard2 models to synchronous models
	7.3.1.1 Transformation rules
	7.3.1.2 Illustration of a rule model

	7.3.2 Transformation tools
	7.3.3 Template-based code generation and code generators
	7.3.4 The synchronous transformation chain

	7.4 Conclusions

	Chapter 8 : transformation of the control extension of Gaspard2
	8.1 Extended Gaspard2 graphical interface in conformity with MARTE
	8.1.1 From structural modeling to mixed structure-behavioral modeling
	8.1.2 System behavior modeling with the help of UML
	8.1.3 Using UML state machines
	8.1.3.1 The component associated to UML state machines
	8.1.3.2 A subset of UML state machines
	8.1.3.3 An example of a simple state machine
	8.1.3.4 Gaspard2 state graphs in a UML component context
	8.1.3.5 Gaspard2 state graphs in a dataflow context
	8.1.3.6 Gaspard2 state graphs in a repetition context
	8.1.3.7 Gaspard2 state graphs in a hierarchical context

	8.1.4 Using UML Collaborations in mode task component
	8.1.5 A complete Gaspard2 control structure

	8.2 Control extension to Gaspard2 metamodel
	8.2.1 The metamodel of state graphs
	8.2.2 The metamodel of events

	8.3 Extended synchronous metamodel
	8.3.1 StateMachine
	8.3.2 BooleanExpression

	8.4 The translation rules based on metamodels
	8.4.1 From a UML model to a Gaspard2 model
	8.4.2 From a Gaspard2 model to a synchronous mixed-style model
	8.4.2.1 Application component and its associated state graphs
	8.4.2.2 Mode switch component and its associated collaborations

	8.4.3 From a mixed-style model to an equational model
	8.4.3.1 Transformation of automaton structure into equations
	8.4.3.2 Transformation of InitialState, History and Reset
	8.4.3.3 A complete example of transformation

	8.4.4 From a mixed-style model to an automaton model

	8.5 Conclusions

	Chapter 9 : a case study on multimedia cell phone
	9.1 Introduction
	9.2 Modeling of the example in Gaspard2
	9.2.1 A global view of the example
	9.2.2 A macro structure for the video effect processing
	9.2.3 Repetitive modeling of video effect processing
	9.2.3.1 Control concept modeling in Gaspard2

	9.2.4 A complete modeling of the phone example
	9.2.4.1 Construction of mode automata

	9.2.5 Requirements of formal application verification

	9.3 Application validation and analysis
	9.3.1 Functional validation and analysis
	9.3.1.1 Safe array assignment
	9.3.1.2 Data dependency analysis
	9.3.1.3 Functional simulation
	9.3.1.4 Model checking

	9.3.2 Validation considering non-functional aspects
	9.3.2.1 Model checking considering non-functional aspects

	9.4 Discrete controller synthesis
	9.5 Related works
	9.6 Conclusions

	Conclusions
	Bibliography
	Appendices
	Appendix A : the Gaspard2 metamodel
	Appendix B : code examples

	Abstract-Résumé

	source: Thèse de Huafeng Yu, Lille 1, 2008
	d: © 2009 Tous droits réservés.
	lien: http://doc.univ-lille1.fr

