

Année : 2009

N° d'ordre : 40199

UNIVERSITE LILLE 1 SCIENCES ET TECHNOLOGIES

THESE DE DOCTORAT

Pour obtenir le grade de

DOCTEUR DE L'UNIVERSITE DES SCIENCE ET TECHNOLOGIES DE LILLE

Discipline : Génie Civil

Influence de l'interaction sol-structure sur le comportement sismique des bâtiments : analyse dans les domaines linéaire et non linéaire

Préparée au

Laboratoire de Mécanique de Lille UMR CNRS 8107 Ecole Polytechnique Universitaire de Lille

Par

Louay KHALIL

Soutenue le jeudi 3 décembre devant la commission d'examen composée de

Messieurs :

Président	A. ZAOUI	Professeur, Université Lille 1 Sciences et Technologies
Rapporteur	M. HJIAJ	Professeur, INSA Rennes
Rapporteur	M. ROUAINIA	Professeur Associé HDR, Université Newcastle Grande Bretagne
Examinateur	A. M. Duval	Docteur HDR, CETE Méditerranée Nice
Examinateur	B. HWAIJA	Professeur, Université Tichrine Syrie
Co-Directeur de thèse	M. SADEK	Maître de Conférences, Université Lille 1
Directeur de thèse	I. SHAHROUR	Professeur, Université Lille 1 Sciences et Technologies

RESUME

Le présent travail comporte une analyse de l'influence de l'interaction sol-fondationstructure sur le comportement sismique des structures de type bâtiment. L'étude est réalisée en utilisant une modélisation tridimensionnelle par différences finies intégrant dans la même analyse les différentes composantes du système, à savoir le sol, la fondation et la structure.

Le travail est présenté en trois chapitres.

Le premier chapitre comporte une étude de l'influence de l'interaction sol-fondationstructure sur la fréquence fondamentale des structures de type bâtiment. Le sol et la fondation sont modélisés à l'aide des éléments ressorts. L'analyse montre que l'interaction sol-fondationstructure peut réduire d'une manière très importante la première fréquence des structures de type bâtiment. Un abaque est proposé pour une prise en compte aisée de cette interaction dans l'évaluation de la première fréquence des bâtiments.

Dans le second chapitre, on présente une étude tridimensionnelle de l'interaction solstructure. Le comportement du sol est supposé élastique. L'analyse montre que la réponse de la structure dépend sensiblement de l'interaction complexe entre le sol et la structure, qui fait intervenir plusieurs paramètres, notamment le contenu fréquentiel du chargement, les fréquences propres du massif du sol et de la structure. Elle montre également que le comportement non linéaire du sol rend l'analyse plus complexe à cause de l'apparaitre de multiples fréquences dans le massif de sol.

Le troisième chapitre est consacré à l'étude de l'influence du comportement non linéaire du sol et de la structure sur l'interaction sol-fondation-structure. Cette étude montre que la plasticité du sol et des éléments de la structure peut avoir une forte influence sur la réponse sismique de la structure.

Mots Clés : bâtiment, fréquence, interaction, numérique, 3D, sismique, structure, élastique, non-linéaire, plasticité,

Abstract

The thesis concerns analysis of the influence of the soil-foundation-structure interaction on the seismic on the seismic response of buildings. The study is carried out using the finite differences method of the system soil, foundation and structure.

The thesis is composed of three parts.

The first one concerns analysis of the influence of the soil-foundation-structure interaction on the fundamental frequency of building. The soil-foundation system is modeled using translational and rotational discrete springs. Analyses conducted for various soil and structure conditions showed that the building fundamental frequency depends on the soil-structure relative rigidity (K_{ss}). A chart is proposed for an ease consideration of the influence of the SSI in the determination of the fundamental frequency of buildings.

The second part deals with the analysis of the soil-foundation-structure interaction in the elastic domain. It shows that the response of the structure depends on the complex interaction between the soil and the structure. It also shows that the elastic nonlinear behavior of soil makes induces additional difficulties because of the apparition of multiple frequencies in the soil.

The third chapter analyses the influence of the soil and structure nonlinearities on the seismic response of the system soil-foundation-structure. This study shows the plasticity of the soil and structural elements have a significant influence on the seismic response of the structure.

Keywords: building, frequency, interaction, numerical, 3D, seismic, structure, elastic, non-linearity, plasticity.

Remerciements

À Ma Femme (Manal)

Ł

Ma Fille (Mira)

Une thèse est un travail de longue haleine qui n'aurait pas été possible sans le soutien de nombreuses personnes que je tiens à remercier ici sincèrement.

Je tiens à saluer en premier lieu mon directeur de thèse Isam SHAHROUR pour m'avoir guidé et trouvé les mots dans les moments de doutes. Je le remercie pour la gentillesse, la disponibilité, les conseils et la confiance qu'il a pu m'accorder tout au long de ces années de travail.

Mes remerciements vont aussi à Marwan SADEK que je considère maintenant plus comme un ami qu'un encadrant. Je le remercie également pour son amitié et son aide dans la découverte du monde de la recherche.

J'aimerais également remercier les rapporteurs et examinateurs pour avoir accepté de faire partie du jury de cette thèse ainsi que pour le diplôme qu'ils m'ont accordé.

Durant ces années, j'ai également profité d'un environnement de travail très agréable. Je tiens à exprimer ma reconnaissance à tous mes collègues, actuels et anciens, ainsi qu'à mes amis au laboratoire pour les bons moments passés.

J'adresse un remerciement particulier à mon collègue, Sébastien BURLON pour tout le partage de connaissances et aussi pour son amitié.

Je remercie également tous ceux qui sont venus à ma soutenance pour m'encourager et me féliciter pour ce grand jour.

Je tiens à réaffirmer très sincèrement mes sentiments tendres et affectueux envers mes proches et mes vieux amis, qui resteront toujours les remparts inébranlables de ma volonté.

Je n'oublierai jamais de remercier du fond du cœur mes parents, mes frères (Adnan, Mouhammad, Oubai et Ali) et mes sœurs (Joumana, Jouliana, Kaoutar et Gaydaa) pour leur soutien.

Enfin, les dernières personnes, mais les plus chères de ma vie, que je remercie, sont mon épouse Manal et ma fille Mira.

Lille 3 décembre 2009

Table des matières

•

TABLE DES MATIERES

RES	SUME	•••••		
Abs	tract	•••••		5
Tab	le des m	atières		
Intro	oduction	ı générale		19
CHA Fon	APITRE damente	I : Influe ale Des str	ence de l'Interaction Sol-Structure (ISS) Sur ructures de Type Bâtiment	la fréquence
1.1	Intro	luction		
1.2	Form	ules propo	osées pour la prise en compte de l'ISS dans le	calcul de la
	fréqu	ence fonda	amentale de structures de type bâtiment	27
1.3	Étude	e de l'inf	luence de l'interaction sol-structure sur la f	réquence de
	struct	ures de typ	pe bâtiment	
	1.3.1	Modèle nu	mérique - Méthodologie	
	1.3.2	Exemple d	e référence	
	1.3.3	Étude para	métrique – construction d'abaque	
	1.3.4	Pris en cor	npte des dimensions de la fondation (b/a) et de l'ouvert	ure du portique
		(L)		35
	1.3.5	Prise en co	ompte du nombre d'étages et du nombre d'ouvertures	
		1.3.5.1	Influence du nombre d'étages	36
		1.3.5.2	Influence du nombre d'ouvertures	
1.4	Vérif	ication		
1.5	Compa	raison ave	ec la méthode proposée par Veletsos et Meek	(1974) et le
	règlem	ent BSSC		44
1.6	Conclu	sion		
CHA des	APITRE bâtimen	II : Influe ts : Analy.	ence de l'interaction sol-structure sur la répo se globale élastique	nse sismique

2.1	Introduction		
-----	--------------	--	--

2.2	Mode	èle numérique et programme de calcul	53
	2.2.1	Amortissement	4
	2.2.2	Méthodes d'analyse de l'interaction sol-structure	6
		2.2.2.1 Les méthodes de sous structurent	7
		2.2.2.2 Les méthodes directes 5	9
		2.2.2.3 Les méthodes hybrides et le concept du macroélément pour l'ISS 5	;9
	2.2.3	Code utilisé et discrétisation	i0
	2.2.4	Chargement 6	52
2.3	Anal	yse linéaire	54
	2.3.1	Structures à un seul niveau – sol homogène 6	j4
		2.3.1.1 Présentation de l'exemple6	54
		2.3.1.2 Résultats obtenus avec l'enregistrement de Chi-Chi	6
	2.3.2	Structures à un seul niveau -sol à module de déformation croissant avec	la
	profor	ndeur 6	9
	2.3.3	Structures à plusieurs étages – couche de sol homogène	72
	2.3.4	Structures à plusieurs étages – sol à module croissant avec la profondeur7	6
2.4 A	nalyse	e élastique non linéaire 8	0
	2.4.1	Présentation du modèle 8	30
		2.4.1.1 Domaine hystérétique stabilisé	31
		2.4.1.2 Domaine fortement non linéaire	2
		2.4.1.3 Modèle non linéaire utilisé dans le code FLAC3D	33
	2.4.2	Structures à un seul niveau	4
	2.4.3	Structures à 5 étages	2
2.5	5 Co	nclusion)7

3.1 Influence	ce du comportement élastoplastique du sol 101
3.1.1	Introduction
3.1.2.	Structure à un seul niveau 104
	<i>3.1.2.1. Sol cohérent</i>
	<i>3.1.2.2. Sol frottant</i> 111
3.1.3	Structure à 5 étages 117
	<i>3.1.3.1 Sol cohérent</i> 119
	<i>3.1.3.2 Sol frottant</i> 122
3.2 Influence	ce de la plasticité de la structure et du sol 126
3.2.1	Introduction
3.2.2	Structures à un seul niveau 128
	<i>3.2.2.1 Sol élastique</i> 128
	3.2.2.2 Sol à comportement élastique non linéaire
	3.2.2.3 Sol à comportement élastoplastique (sol cohérant, C=50 kPa) 135
3.2.3	Structures à plusieurs étages – sol homogène
	3.2.3.1 Sol élastique linéaire
	3.2.3.2 Sol à comportement élastoplastique
3.3 Conclus	sion
Conclusion	générale
REFEREN	CES
ANNEXE ((A)
ANNEXE	(B)

Introduction générale

INTRODUCTION GENERALE

La conception du bâtiment en zone sismique est généralement menée avec l'hypothèse d'encastrement à la base (ATC-3, NEHRP-97). Cette hypothèse néglige la flexibilité du sol qui induit une augmentation de la période fondamentale de la structure (Bielak, 1975 et Stewart et al., 1999). Gazetas et Mylonakis, (2000) ont montré que l'augmentation de la période fondamentale de la structure ne conduit pas toujours à une atténuation de l'amplitude sismique (figure 1). En conséquence, l'interaction sol-structure (ISS) peut avoir un effet nuisible sur la réponse de structure et la simplification de l'effet d'ISS dans des codes sismiques peut conduire à une mauvaise conception des structures. Shakib et al. (2004) ont montré que l'interaction sol-fondation-structure réduit le déplacement latéral et la torsion des bâtiments asymétriques.

Figure 1 : a)Forme des spectres de conception (spectre de réponse) employés par la plupart des codes sismiques ; b) Comparaison d'un spectr e sismique typique de conception de code aux spectres réels des tremblements de terre catastrophiques (amortissement = 5%) (Après Mylonakis et Gazetas 2000)

Les dernières actualisations des réglementations parasismiques américaines (FEMA 450, 2003) proposent des procédures simplifiées pour la prise en compte de l'effet de l'interaction sol-structure en utilisant une approche de dimensionnement en déplacement. Ces procédures sont basées sur les expressions traditionnelles de l'ISS, c'est-à-dire en gardant l'hypothèse d'un comportement linéaire-élastique pour le sol. Cependant, il est bien connu que le domaine du comportement linéaire-élastique du sol est très réduit (la déformation en cisaillement $\gamma \leq 10^{-5}$, Davidovici, 1985). Ce domaine est généralement dépassé lors d'un séisme susceptible d'endommager la structure (Chin et Aki, 1991).

L'objectif de ce travail est d'analyser à l'aide d'une modélisation numérique l'influence de l'interaction sol-fondation-structure sur la réponse sismique des bâtiments, et d'étudier l'effet du comportement non-linéaire du sol et des matériaux de la structure sur l'interaction solfondation-structure.

Le travail de thèse est présenté en trois chapitres :

Le premier chapitre comporte une étude de l'influence de l'interaction sol-fondationstructure sur la fréquence fondamentale des structures de type bâtiment. Le sol et la fondation sont modélisés à l'aide des éléments ressorts. L'analyse montre que l'interaction sol-structure peut réduire d'une manière très importante la première fréquence des structures de type bâtiment. Un abaque est proposé pour une prise en compte aisée de cette interaction dans l'évaluation de la première fréquence des bâtiments.

Dans le second chapitre, on présente une étude tridimensionnelle de l'interaction solstructure. Le comportement du sol est supposé élastique. L'analyse montre que la réponse de la structure dépend sensiblement de l'interaction complexe entre le sol et la structure, qui fait intervenir plusieurs paramètres, notamment le contenu fréquentiel du chargement, les fréquences propres du massif du sol et de la structure. Elle montre également que le comportement non linéaire du sol rend l'analyse plus complexe à cause de l'apparaitre de multiples fréquences dans le massif de sol.

20

Le troisième chapitre est consacré à l'étude de l'influence du comportement non linéaire du sol et de la structure sur l'interaction sol-fondation-structure. Cette étude montre que la plasticité du sol et des éléments de la structure peut avoir une forte influence sur la réponse sismique de la structure.

CHAPITRE I :

Influence de l'interaction sol-structure (ISS) sur la fréquence fondamentale des structures de type Bâtiment

CHAPITRE I :

Influence de l'interaction sol-structure sur la

fréquence fondamentale des structures de type bâtiment

1.1 Introduction

La période fondamentale de structures de type bâtiment constitue un paramètre majeur dans la conception et le calcul de structures en zone sismique. Ce paramètre est généralement déterminé en utilisant des formules empiriques fournies par les règlements sismiques. Le tableau 1.1 donne une synthèse des formules utilisées pour le calcul de ce paramètre. Ces formules négligent généralement l'interaction sol-structure. Or, cette interaction peut avoir une influence significative sur la période fondamentale de la structure et conduire ainsi à un mauvais dimensionnement de la structure. Des observations post-sismiques montrent que l'interaction sol-structure peut être nuisible (Gazetas et Mylonakis 1998, 2000). Des simulations numériques effectuées par Boris Jeremic et al. (2004) ont montré que l'interaction sol-structure peut avoir des effets avantageux ou nuisibles sur le comportement des structures, en fonction des caractéristiques de sol et de celles du chargement sismique.

Goel et Chopra (1998) ont montré que les formules empiriques proposées par UBC-1997 (Uniform Building Code) sont insuffisantes pour déterminer la période de structures contreventées par des murs en béton. Des séries de tests de micro-vibrations effectués sur 20 bâtiments fondés sur différents types de sol, ont montré l'insuffisance des formules proposées par l'UBC-97 et le NBCC-95 (le code national Canadien du bâtiment) (Ghrib et Mamedov 2004). Dans certains cas, l'écart entre les formules et les mesures atteint 60%.

Dans ce chapitre, on propose d'analyser à l'aide d'une modélisation numérique l'influence de l'interaction sol-structure sur la fréquence fondamentale de structures de type bâtiment. Des abaques seront proposés pour considérer d'une manière aisée cette influence dans le calcul de la fréquence fondamentale des structures posées sur différents types de sols.

Tableau 1.1 : dans les littératures des formules proposées pour le calcul de la période fondamentale de structures de type bâtiment (Masse : kg, force : N, longueur : m temps (période T_1) : sec. Note 2 : dans les structures en béton)

période T1	Origine des relations
$T = 2 - MH^3$	Formule exacte pour un oscillateur simple d'hauteur H
$I_1 = 2\pi \sqrt{\frac{3EI}{3EI}}$	Masse concentrée M en tête. Masse de barre $M_B = 0$
$T_{1} = 2\pi_{a} \frac{(M+0,24M_{B})H^{3}}{(M+0,24M_{B})H^{3}}$	Formule exacte pour un oscillateur simple.
¹ → V 3EI	En considérant la masse de la barre (M_B)
$T_1 = C_t \cdot H^{3/4}$	Eurocode 8.
	$C_t = 0,085$ portiques spatiaux en acier ;
	$C_t = 0,075$ portiques spatiaux en béton & ossature acier à triangulation
	excentrée ;
	$C_t = 0,050$ autre structure.
$T_1 = C_t \cdot H^{3/4}$	Eurocode 8
<i>H</i> hauteur du bâtiment en	$C_{t} = 0.075 / \sqrt{A_{c}} \qquad A_{c} = \sum \left[A_{i} \cdot (0.2 + (l_{wi} / H))^{2}\right]$
m depuis les fondations	A_c aire effective totale des sections des murs de contreventement au
	premier niveau du bâtiment en m ²
	A_i aire de la section du mur contreventement <i>i</i> au premier niveau du
	bâtiment en m ²
	l_{wi} longueur du mur de contreventement <i>i</i> au premier niveau dans la
	direction parallèle au forces appliquées en m, à condition que : $l_{wi} / H \le 0.9$
	\sum s'applique sur tous les murs <i>i</i> parallèles à la direction des forces
	appliquées
$T_1 = 2.\sqrt{d}$	Eurocode 8
	d déplacement horizontal du sommet du bâtiment en m dû aux charges
	gravitaires appliquées horizontalement
$T_1 = 0.10 \frac{H}{1}$	Victor Davidovici (1999) (PS 92/6.6.1.2.3)
$\sqrt{l_x}$	Ossatures non bloquées par un remplissage (maçonnerie)
	H hauteur du bâtiment en m
	l_x longueur le bâtiment dans la direction parallèle en m
$T_1 = 0.10 \frac{H}{H}$	Victor Davidovici (1999) (PS 92/6.6.1.2.3)
$\int \int \frac{1}{\sqrt{l_x}} \sqrt{l_x} + H$	Contreventement par voiles en béton armé ou chaînés contreventement par voiles et portiques.

1.2 Formules proposées pour la prise en compte de l'ISS dans le calcul de la fréquence fondamentale de structures de type bâtiment

Veletsos et Meek (1974) ont proposé l'expression suivante pour déterminer la période fondamentale d'une structure type bâtiment en considérant la flexibilité de la fondation :

$$\frac{\tilde{T}}{T} = \sqrt{1 + \frac{k}{k_x} + \frac{kH^2}{k_\theta}}$$
[Eq. 1.1]

 \tilde{T} : période fondamentale de la structure en considérant l'ISS ;

T: période fondamentale de la structure encastrée à sa base ;

 k_{x} et k_{a} : rigidités de translation et de rotation de la fondation ;

H et k : hauteur et rigidité à la flexion de la structure.

Une expression similaire est recommandée par le règlement BSSC (2003) (Building Seismic Safety Council) pour une structure fondée sur dalle :

$$\frac{\widetilde{T}}{T} = \sqrt{1 + 25\alpha \left(\frac{r_a \overline{h}}{v_s^2 T^2}\right) \left[1 + \left(\frac{1.12r_a \overline{h^2}}{\alpha_\theta r_m^3}\right)\right]}$$
[Eq. 1.2]

$$\overline{h} = 0,7h$$
[Eq. 1.3]

$$r_m = 4 \sqrt{\frac{4I_0}{\pi}} \qquad r_a = \sqrt{\frac{A}{\pi}}$$
[Eq. 1.4]

 α : paramètre relatif de la densité de structure et du sol $\alpha \approx 0,15$;

 v_s : vitesse de l'onde de cisaillement ;

 $A_{,}I_{0}$: aire et moment d'inertie de la fondation ;

 α_{e} : paramètre dépendant de la rigidité de la fondation.

Maravas et al. (2007) ont proposé une expression prenant en compte la rigidité de la fondation et l'amortissement de la structure et de l'ensemble sol-fondation :

$$\widetilde{\omega}^{2} = \left[\frac{1+4\widetilde{\zeta}^{2}}{\omega_{X}^{2}\left(1+4\zeta_{X}^{2}\right)} + \frac{1+4\widetilde{\zeta}^{2}}{\omega_{\theta}^{2}\left(1+4\zeta_{\theta}^{2}\right)} + \frac{1+4\widetilde{\zeta}^{2}}{\omega_{C}^{2}\left(1+4\zeta^{2}\right)}\right]$$
[Eq. 1.5]

$$\omega_{\theta} = \sqrt{\frac{K_{\theta}r^2}{m_{s}h^2}}$$
 [Eq. 1.6]

$$\omega_{x} = \sqrt{\frac{K_{x}}{m_{xt}}}$$
[Eq. 1.7]

$$\omega_c = \sqrt{\frac{K}{m_{sr}}}$$
 [Eq. 1.8]

 $\tilde{\omega}$: pulsation de la structure en tenant compte de l'ISS;

r : le rayon de fondation;

 m_{st} : la masse de la structure;

- ζ : coefficient d'amortissement de la structure
- $\tilde{\zeta}$: coefficients d'amortissement du system sol-structure;

 ζ_x et ζ_{θ} : coefficients d'amortissement de translation et de rotation de la fondation.

Stewart et al. (1999) ont réalisé des expérimentations sur 57 bâtiments. Les essais ont été analysés à l'aide de formules simplifiées proposées par Velelsos et Meek (1974), Veletsos et Nair (1975) et Bielak (1975). Ils montrent que ces formules donnent de bons résultats pour les structures à un degré de liberté (1DDL), mais qu'elles ne s'appliquent pas aux systèmes à plusieurs DDL. Dans les littératures plusieurs hauteurs ont proposé un modèle équivalant 1 DDL pour déterminer la fréquence fondamentale de structures en considérant l'ISS (Aviles et al., 1996, 1999 et 2002).

1.3 Étude de l'influence de l'interaction sol-structure sur la fréquence de structures de type bâtiment

1.3.1 Modèle numérique - Méthodologie

La structure est modélisée par un portique simple constitué de deux poteaux et une poutre représentant le plancher. L'ensemble sol-fondation est modélisé à l'aide de 6 ressorts : 3 en translation et 3 en rotation (Figure 1.1). Ce modèle a été adopté par Parmelee (1967), Veletsos et al. (1974, 1975, 1977), Jennings & Bielak (1973), Wolf (1985) et Aviles et al. (1996, 1998).

Les rigidités des ressorts en translation et en rotation sont déterminées à l'aide des formules suivantes (Newmark & Rosemblueth 1971):

- Translation verticale : $K_{\nu} = \frac{G_s}{(1-\nu)} \beta_z \sqrt{A}$ [Eq. 1.9]
- Translation horizontale: $K_h = 2(1+\nu)G_s\beta_x\sqrt{A}$ [Eq. 1.10]
- Rotation :

$$K_{\theta} = \frac{1+v}{4} G_s \beta_x (a^2 + b^2) \sqrt{A}$$
 [Eq. 1.11]

$$G_s = \frac{E}{2(1+\nu)}$$

A : aire de la fondation ;

a : dimension parallèle à la direction du séisme ;

b : dimension perpendiculaire à la direction du séisme.

 β_x et β_z : paramètres dépendant du rapport a/b.

v : coefficient de Poisson.

Des analyses ont été effectuées pour différentes configuration de structure en faisant varier les paramètres affectant la fréquence. L'analyse statistique des résultats obtenus a permis la détermination d'un paramètre adimensionnel, appelé « rigidité relative sol-structure K_{ss} ». Un abaque a été construit en utilisant ce paramètre. Il présente la variation de la fréquence fondamentale de la structure en fonction de K_{ss} et en prenant en compte l'interaction sol-structure. L'étude a été ensuite généralisée pour des structures à plusieurs degrés de liberté en incluant les paramètres N_b, N_o, et N_e (nombre d'ouverture dans le sens horizontal et transversal et nombre d'étages respectivement).

1.3.2 Exemple de référence

Le modèle présenté ci-dessus a été utilisé pour calculer la fréquence fondamentale d'un portique en béton ayant les caractéristiques suivantes (Figure 1.1) :

- > longueur de travée L = 5,0 m,
- \blacktriangleright hauteur de colonne h = 4,0 m
- > section des poteaux $a^*a = 0,53x0,53 \text{ m}^2$
- → rigidité à la flexion $E_pI_p = 420\ 000\ kN.m^2$.
- \blacktriangleright épaisseur de plancher = 0,3 m d'épaisseur.

La structure repose sur des semelles superficielles carrées en béton de 2 m de côté. Le tableau (1.2) résume les caractéristiques des matériaux. Le calcul des raideurs de ressorts donne :

$$\begin{split} K_v &= 115\ 000\ kN/m;\\ K_h &= 100\ 000\ KN/m;\\ K_\theta &= 100\ 000\ kN.m/rd. \end{split}$$

L'analyse dynamique a été effectuée en utilisant le logiciel de calcul de structures Robot Millenium (code éléments finis). Le calcul donne une fréquence fondamentale F = 7,23 Hz. Cette fréquence est inférieure de 18% à la fréquence d'un portique similaire encastré à sa base (F_{en} =8,82 Hz).

	Masse volumique γ (KN/m ³)	Module de Young	Cœfficient de Poisson	vitesse des ondes sismiques	Rigidité à la flexion E _p I _p
		E (MPa)	ν	$v_s (m/sec)$	(kN.m ²)
sol	20	50	0,3	98	
portique	24,5	32 000	0,2		420 000

Tableau 1.2 : Caractéristiques mécaniques du système étudié (Exemple de référence)

Figure 1.1 : Modèle d'une structure d'un seul étage

1.3.3 Étude paramétrique – construction d'abaque

La fréquence fondamentale d'une structure de type bâtiment fondée sur un sol élastique peut être exprimée sous la forme :

$$F = (v_{e}, I_{e}, E_{e}, N_{e}, N_{e}, h, L, A)$$
 [Eq. 1.12]

Avec :

 v_{e} : vitesse des ondes de cisaillement dans le sol

E_p et I_p : module de Young et moment d'inertie des poteaux.

h: hauteur de niveau

L: ouverture entre poteaux dans le sens du mouvement.

A : aire de la fondation.

 N_{e}, N_{o} et N_{b} : nombre d'étages, et d'ouvertures du bâtiment dans les directions longitudinale et transversale.

Dans un premier temps, l'analyse est effectuée pour un portique simple comportant un seul étage et une seule ouverture (Figure 1.1). Dans ce cas, la fréquence fondamentale du portique s'exprime sous la forme :

$$F = f(v_s, I_p, E_p, h, L, A)$$
 [Eq. 1.13]

Des calculs ont été effectués pour les valeurs suivantes des paramètres :

- Rigidité à la flexion $I_p = 0,000139, 0,00135, 0,0131$ et 0,1357 m⁴.
- Hauteur de niveau h = 2, 4, 7, 10 et 13 m.
- Module de Young $E_{p} = 20000, 32000$ et 42000 MPa.
- Vitesse d'onde sismique $v_s = 98, 107, 140, 200, 250$ et 300 m/sec

Le tableau 1.3 donne les valeurs du rapport F/F_{en} (F : fréquence du portique ; F_{en} : fréquence du portique encastré à sa base) pour les cas étudiés. On peut noter que pour certaines configurations (structures rigides sur sol mou), le rapport F/F_{en} peut atteindre des valeurs faibles, proches de 0,3, ce qui signifie que l'interaction sol-structure conduit à une réduction de l'ordre de 70% de la fréquence fondamentale du portique. Ceci confirme la nécessité de prendre en compte l'interaction sol-structure lors de la détermination de la fréquence fondamentale de structures de type bâtiment.

Afin d'élaborer une méthode aisée pour prendre en compte l'interaction sol-structure dans le calcul de la fréquence fondamentale de la structure, on propose d'analyser les résultats donnés dans le tableau 1.3 pour déterminer un paramètre caractéristique de l'interaction solstructure (rigidité relative). La recherche d'une régression multilinéaire du de type :

$$\log(F/F_{e_n}) = A_1 * \log(v_s) + A_2 * \log(h) + A_3 * \log(E_p) + A_4 * \log(I_p)$$
 [Eq. 1.14]

donne

A₁ = 0,233, A₂ = 0,33, A₃ = -0,12, A₄ = - 0,07 Avec un coefficient de détermination R² = 0,76. La normalisation des coefficients par A3 donne : $A_1/A_3 \approx -2$, $A_2/A_3 \approx -3$

 $A_A/A_3 \approx 0.75$

D'après ces résultats, on propose d'utiliser le paramètre adimensionnel suivant (K_{ss}) pour exprimer la rigidité relative sol-structure :

$$K_{ss} = \frac{\rho \times v_s^2 \times h^3 \sqrt{\frac{A}{A_0}}}{E_p \times (I_p)^{3/4}}$$
 [Eq. 1.15]

 A_0 : surface de référence (1 m²)

La figure 1.2 illustre dans le plan (F/F_{en} , $log(K_{ss})$) les résultats obtenus pour les cas étudiés et pour 3 valeurs de la surface de la fondation superficielle (A= 1, 4 et 9 m²). On note que les valeurs du rapport F/F_{en} s'inscrivent dans un faisceau très serré, ce qui indique la possibilité d'utiliser ces résultats pour déterminer la fréquence fondamentale d'une structure en prenant en compte la rigidité de l'ensemble sol-fondation.

On note une forte variation du rapport F/F_{en} pour des valeurs de log (K_{ss}) comprises entre -1,5 et 1,2. Dans ce cas, non prise en compte de l'ISS conduit à une mauvaise estimation de la fréquence fondamentale de la structure. Pour des structures ayant log (K_{ss}) > 1,2, le rapport F/F_{en} est proche de 1, ce qui signifie que l'influence de l'interaction sol-structure peut être négligée lors du calcul de la fréquence fondamentale de ces structures.

Tableau 1.3. Influence de la variation de différents paramètres sur le rapport de fréquences F/F_{en} (Structure à un seul étage et à une seule ouverture)

Vs	h	Ep	Ip	E/E	Vs	h	Ep	Ip	E/E
(m/s)	(m)	(MPa)	(m^{4})	Γ/Γ_{en}	(m/s)	(m)	(MPa)	(m^{4})	Γ/Γ_{en}
98	4	32000	0,000139	1	200	4	20000	0,00135	0,996
107	4	32000	0,000139	1	250	4	20000	0,00135	0,997
140	4	32000	0,000139	1	300	4	20000	0,00135	0,998
200	4	32000	0,000139	1	98	4	42000	0,00135	0,961
250	4	32000	0,000139	1	107	4	42000	0,00135	0,967
300	4	32000	0,000139	1	140	4	42000	0,00135	0,981
98	4	32000	0,00135	0,973	200	4	42000	0,00135	0,991
107	4	32000	0,00135	0,976	250	4	42000	0,00135	0,994
140	4	32000	0,00135	0,985	300	4	42000	0,00135	0,996
200	4	32000	0,00135	0,995	98	4	20000	0,01315	0,881
250	4	32000	0,00135	0,998	107	4	20000	0,01315	0,899
300	4	32000	0,00135	0,999	140	4	20000	0,01315	0,936
98	4	32000	0,01315	0,819	200	4	20000	0,01315	0,968
107	4	32000	0,01315	0,833	250	4	20000	0,01315	0,979
140	4	32000	0,01315	0,891	300	4	20000	0,01315	0,985
200	4	32000	0,01315	0,949	98	4	42000	0,01315	0,787
250	4	32000	0,01315	0,967	107	4	42000	0,01315	0,814
300	4	32000	0,01315	0,976	140	4	42000	0,01315	0,877

98	4	32000	0,135752	0,576		200	4	42000	0,01315	0,936
107	4	32000	0,135752	0,589		250	4	42000	0,01315	0,958
140	4	32000	0,135752	0,686		300	4	42000	0,01315	0,969
200	4	32000	0,135752	0,823		98	4	20000	0,135752	0,666
250	4	32000	0,135752	0,876		107	4	20000	0,135752	0,699
300	4	32000	0,135752	0,908		140	4	20000	0,135752	0,785
98	2	32000	0,01315	0,548		200	4	20000	0,135752	0,878
107	2	32000	0,01315	0,584		250	4	20000	0,135752	0,917
140	2	32000	0,01315	0,682		300	4	20000	0,135752	0,939
200	2	32000	0,01315	0,804		98	4	42000	0,135752	0,523
250	2	32000	0,01315	0,862		107	4	42000	0,135752	0,558
300	2	32000	0,01315	0,896		140	4	42000	0,135752	0,657
98	4	32000	0,01315	0,819		200	4	42000	0,135752	0,784
107	4	32000	0,01315	0,833		250	4	42000	0,135752	0,845
140	4	32000	0,01315	0,891		300	4	42000	0,135752	0,883
200	4	32000	0,01315	0,949		98	2	32000	0,1315	0,316
250	4	32000	0,01315	0,967		107	2	32000	0,1315	0,338
300	4	32000	0,01315	0,976		140	2	32000	0,1315	0,413
98	7	32000	0,01315	0,963		200	2	32000	0,1315	0,557
107	7	32000	0,01315	0,983		250	2	32000	0,1315	0,661
140	7	32000	0,01315	0,963		300	2	32000	0,1315	0,735
200	7	32000	0,01315	0,983		98	7	32000	0,1315	0,842
250	7	32000	0,01315	0,989		107	7	32000	0,1315	0,863
300	7	32000	0,01315	0,993		140	7	32000	0,1315	0,911
98	10	32000	0,01315	0,966		200	7	32000	0,1315	0,954
107	10	32000	0,01315	0,972		250	7	32000	0,1315	0,971
140	10	32000	0,01315	0,983		300	7	32000	0,1315	0,978
200	10	32000	0,01315	0,992		98	10	32000	0,1315	0,911
250	10	32000	0,01315	0,995		107	10	32000	0,1315	0,924
300	10	32000	0,01315	0,996		140	10	32000	0,1315	0,953
98	13	32000	0,01315	0,979		200	10	32000	0,1315	0,977
107	13	32000	0,01315	0,985		250	10	32000	0,1315	0,986
140	13	32000	0,01315	0,987		300	10	32000	0,1315	0,987
200	13	32000	0,01315	0,994		98	13	32000	0,1315	0,953
250	13	32000	0,01315	0,997	1	107	13	32000	0,1315	0,955
300	13	32000	0,01315	1	1	140	13	32000	0,1315	0,974
98	4	20000	0,00135	0,981	1	200	13	32000	0,1315	0,988
107	4	20000	0,00135	0,985	1	250	13	32000	0,1315	0,993
140	4	20000	0,00135	0,991	1	300	13	32000	0,1315	0,995

gure 1.2 : Influence de la rigidité relative K_{ss} sur la fréquence d'une structure à un seul étage et à une seule ouverture (à partir des données du tableau 1.2)

1.3.4 Prise en compte des dimensions de la fondation (b/a) et de l'ouverture du portique (L)

La rigidité de l'ensemble sol-fondation $(K_v, K_h \text{ et } K_\theta)$ dépend des dimensions de la fondation (a et b) à travers le rapport b/a qui intervient dans les paramètres β_x et β_z . Le tableau 1.4 donne l'influence du ratio b/a sur le rapport de fréquences F/F_{en} pour différentes configurations de sols. On note que l'influence de ce paramètre est très faible (L'écart de F/F_{en} < 3%), par conséquent, ce paramètre peut être négligé lors du calcul de la fréquence fondamentale de la structure.

Des calculs ont été effectués également pour différentes valeurs de l'ouverture du portique (L). Les résultats obtenus avec différents types de sol sont donnés dans le tableau 1.5. On note une faible influence de L sur le rapport de fréquences F/F_{en}, ce qui signifie qu'on peut négliger ce paramètre lors du calcul de la fréquence fondamentale de la structure. Ceci est en

accord avec l'hypothèse d'un comportement infiniment rigide des planchers généralement admise dans le calcul sismique de bâtiments.

u (m/saa)		$\mathbf{E}_{\text{assurt}}(0/)$			
v_s (III/sec)	1 (2×2)	2,25 (3×1,3)	4 (4×1)	7 (5,3×0,75)	Ecalt (%)
	$\beta_{x}=1; \beta_{z}=2,18$	$\beta_x=1$; $\beta_z=2,2$	$\beta_x=1$; $\beta_z=2,4$	$\beta_x = 1,1; \beta_z = 2,7$	
98	0,825	0,826	0,832	0,844	2,25 %
107	0,848	0,850	0,855	0,865	1,96 %
139	0,901	0,902	0,906	0,913	1,3 %
200	0,949	0,950	0,952	0,956	0,7 %
250	0,967	0,967	0,968	0,971	0,4 %
300	0,976	0,976	0,977	0,979	0,3 %

Table 1.4 : Influence des dimensions de fondation (rapport b/a) sur le rapport de fréquences F/F_{en} (Structure à un seul étage et à une seule ouverture)

Table 1.5 : L'influence de l'ouverture du portique L sur le rapport de fréquences F/F_{en} (Structure à un seul étage et à une seule ouverture)

V		Maximum		
(m/sec)	$I_p = 0,01315 \text{ m4}, \text{ A} = (2)$			
(111/300)	L=3m	L=5m	L=7m	unrerence 70
98	0,779	0,819	0,838	5,90%
107	0,807	0,833	0,854	4,70%
139	0,869	0,891	0,901	3,20%
200	0,931	0,949	0,956	2,50%
250	0,959	0,967	0,971	1,20%
300	0,972	0,976	0,979	0,70%

1.3.5 Prise en compte du nombre d'étages et du nombre d'ouvertures

1.3.5.1 Influence du nombre d'étages

Nous avons suivi la méthodologie exposée ci-dessus, pour des structures à plusieurs niveaux. En premier temps, nous avons fait varier le nombre d'étages ($N_e = 1, 3, 5, 7$ et 10 étages) pour une seule ouverture. Nous avons aussi fait varier les valeurs des paramètres I_p, E_p, et v_s. Le tableau 1.6 donne une synthèse des résultats obtenus. Ces résultats ont été reportés dans le plan (F/F_{en}, K_{ss}) en prenant pour K_{ss} l'expression suivante :
$$K_{ss} = \frac{\rho \times v_s^2 \times h^3 \sqrt{\frac{A}{A_0}}}{N_e \times E_p \times (I_p)^{3/4}}$$
[Eq. 1.16]

On note que les valeurs du rapport F/F_{en} s'inscrivent dans un faisceau très serré, ce qui indique la possibilité d'utiliser cette figure pour déterminer la fréquence fondamentale d'une structure à plusieurs niveaux en prenant en compte la rigidité de l'ensemble sol-fondation à l'aide du paramètre « rigidité relative » donné dans l'équation 1.16. Par ailleurs, on peut noter que l'augmentation de nombre d'étages réduit la valeur de rigidité relative K_{ss}, ce qui a pour effet d'augmenter l'influence de l'interaction sol-structure sur la fréquence fondamentale du bâtiment.

Tableau 1.6 : Influence de la variation de différents paramètres sur le rapport de fréquences F/F_{en}, A = 4 m², E_p = 32000 MPa, h = 4 m, ρ = 2000 Kg/m³.

Vs	I _p	N	E/E	Vs	I _p	N	E/E
(m/s)	(m^4)	INe	171 en	(m/s)	(m^4)	INe	171 en
98	0,00135	3	0,934	98	0,00135	7	0,859
107	0,00135	3	0,944	107	0,00135	7	0,879
139	0,00135	3	0,964	139	0,00135	7	0,921
200	0,00135	3	0,983	200	0,00135	7	0,959
250	0,00135	3	0,989	250	0,00135	7	0,973
300	0,00135	3	0,992	300	0,00135	7	0,981
98	0,01315	3	0,719	98	0,01315	7	0,601
107	0,01315	3	0,749	107	0,01315	7	0,634
139	0,01315	3	0,824	139	0,01315	7	0,724
200	0,01315	3	0,895	200	0,01315	7	0,832
250	0,01315	3	0,933	250	0,01315	7	0,883
300	0,01315	3	0,951	300	0,01315	7	0,912
98	0,13575	3	0,504	98	0,13575	7	0,371
107	0,13575	3	0,533	107	0,13575	7	0,385
139	0,13575	3	0,615	139	0,13575	7	0,471
200	0,13575	3	0,737	200	0,13575	7	0,583
250	0,13575	3	0,803	250	0,13575	7	0,672
300	0,13575	3	0,847	300	0,13575	7	0,71
98	0,00135	5	0,894	98	0,00135	10	0,821
107	0,00135	5	0,909	107	0,00135	10	0,845
139	0,00135	5	0,943	139	0,00135	10	0,898
200	0,00135	5	0,971	200	0,00135	10	0,947
250	0,00135	5	0,981	250	0,00135	10	0,963
300	0,00135	5	0,986	300	0,00135	10	0,971
98	0,01315	5	0,647	98	0,01315	10	0,544
107	0,01315	5	0,679	107	0,01315	10	0,576
139	0,01315	5	0,765	139	0,01315	10	0,671
200	0,01315	5	0,863	200	0,01315	10	0,791
250	0,01315	5	0,905	250	0,01315	10	0,849

(Structure à plusieurs étages et à une seule ouverture)

300	0,01315	5	0,93	300	0,01315	10	0,886
98	0,13575	5	0,464	98	0,13575	10	0,338
107	0,13575	5	0,482	107	0,13575	10	0,369
139	0,13575	5	0,557	139	0,13575	10	0,454
200	0,13575	5	0,681	200	0,13575	10	0,568
250	0,13575	5	0,751	250	0,13575	10	0,642
300	0,13575	5	0,802	300	0,13575	10	0,698

Figure 1.3 : Influence de la rigidité relative K_{ss} sur la fréquence d'une structure à plusieurs étages (entre 3 et 10) et à une seule ouverture

1.3.5.2 Influence du nombre d'ouvertures

Des calculs ont été effectués en faisant varier les nombres d'ouvertures dans les deux directions (N_o et N_b) pour différentes configurations du sol. Le tableau 1.7 donne une synthèse des résultats obtenus en faisant varier les caractéristiques mécaniques et géométriques de la structure. Ces résultats ont été reportés dans le plan (F/F_{en} , K_{ss}) en prenant pour K_{ss} l'expression suivante :

$$K_{ss} = \frac{N_o \times N_b \times \rho \times v_s^2 \times h^3 \sqrt{\frac{A}{A_o}}}{N_e \times E_p \times (I_p)^{3/4}}$$
[Eq. 1.17]

A désigne une valeur moyenne des surfaces de fondations

On note que les valeurs du rapport F/F_{en} s'inscrivent dans un faisceau très serré, ce qui indique la possibilité d'utiliser l'abaque de la figure 1.4 pour déterminer la fréquence fondamentale d'une structure à plusieurs niveaux et à plusieurs ouvertures en prenant en compte la rigidité de l'ensemble sol-fondation à l'aide du paramètre « rigidité relative » donné dans l'équation 1.17. Par ailleurs, on peut noter que l'augmentation du nombre d'ouvertures induit une augmentation de la rigidité relative K_{ss} , ce qui a pour effet de réduire l'influence de l'interaction sol-structure sur la fréquence fondamentale du bâtiment.

Vs	h	Ep	Ip	N	N	N	А	E/E
(m/s)	(m)	(MPa)	(m^{4})	INe	INb	INO	(moyenne)	Γ/Γ_{en}
98	4	32000	0,0027	1	1	3	3,28	0,975
107	4	32000	0,0027	1	1	3	3,28	0,979
139	4	32000	0,0027	1	1	3	3,28	0,987
200	4	32000	0,0027	1	1	3	3,28	0,994
250	4	32000	0,0027	1	1	3	3,28	0,997
300	4	32000	0,0027	1	1	3	3,28	0,998
98	4	32000	0,0263	1	1	3	3,28	0,867
107	4	32000	0,0263	1	1	3	3,28	0,883
139	4	32000	0,0263	1	1	3	3,28	0,919
200	4	32000	0,0263	1	1	3	3,28	0,959
250	4	32000	0,0263	1	1	3	3,28	0,973
300	4	32000	0,0263	1	1	3	3,28	0,987
98	4	32000	0,0027	5	1	3	5,125	0,955
107	4	32000	0,0027	5	1	3	5,125	0,967
139	4	32000	0,0027	5	1	3	5,125	0,977
200	4	32000	0,0027	5	1	3	5,125	0,985
250	4	32000	0,0027	5	1	3	5,125	0,988
300	4	32000	0,0027	5	1	3	5,125	0,991
98	4	32000	0,0263	5	1	3	5,125	0,804
107	4	32000	0,0263	5	1	3	5,125	0,833
139	4	32000	0,0263	5	1	3	5,125	0,891
200	4	32000	0,0263	5	1	3	5,125	0,942
250	4	32000	0,0263	5	1	3	5,125	0,959
300	4	32000	0,0263	5	1	3	5,125	0,971
98	4	32000	0,004725	5	1	6	5,607	0,977
107	4	32000	0,004725	5	1	6	5,607	0,982
139	4	32000	0,004725	5	1	6	5,607	0,991
200	4	32000	0,004725	5	1	6	5,607	0,994

Table 1.7 : Influence de la variation de différents paramètres sur le rapport de fréquences F/Fen(Structure à plusieurs étages et à plusieurs ouvertures)

250	4	32000	0,004725	5	1	6	5,607	0,996
300	4	32000	0,004725	5	1	6	5,607	0,997
98	4	32000	0,046028	5	1	6	5,607	0,864
107	4	32000	0,046028	5	1	6	5,607	0,886
139	4	32000	0,046028	5	1	6	5,607	0,922
200	4	32000	0,046028	5	1	6	5,607	0,951
250	4	32000	0,046028	5	1	6	5,607	0,965
300	4	32000	0,046028	5	1	6	5,607	0,979
98	4	32000	0,059179	10	3	2	4,55	0,654
107	4	32000	0,059179	10	3	2	4,55	0,688
139	4	32000	0,059179	10	3	2	4,55	0,773
200	4	32000	0,059179	10	3	2	4,55	0,868
250	4	32000	0,059179	10	3	2	4,55	0,944
300	4	32000	0,059179	10	3	2	4,55	0,933
98	4	32000	0,610797	10	3	2	4,55	0,472
107	4	32000	0,610797	10	3	2	4,55	0,5
139	4	32000	0,610797	10	3	2	4,55	0,591
200	4	32000	0,610797	10	3	2	4,55	0,709
250	4	32000	0,610797	10	3	2	4,55	0,781
300	4	32000	0,610797	10	3	2	4,55	0,818
98	4	32000	0,271502	5	2	1	4	0,472
107	4	32000	0,271502	5	2	1	4	0,493
139	4	32000	0,271502	5	2	1	4	0,551
200	4	32000	0,271502	5	2	1	4	0,651
250	4	32000	0,271502	5	2	1	4	0,719
300	4	32000	0,271502	5	2	1	4	0,753
98	4	42000	0,271502	5	2	1	4	0,443
107	4	42000	0,271502	5	2	1	4	0,461
139	4	42000	0,271502	5	2	1	4	0,514
200	4	42000	0,271502	5	2	1	4	0,607
250	4	42000	0,271502	5	2	1	4	0,672
300	4	42000	0,271502	5	2	1	4	0,721
98	4	32000	0,026302	5	2	1	4	0,689
107	4	32000	0,026302	5	2	1	4	0,719
139	4	32000	0,026302	5	2	1	4	0,795
200	4	32000	0,026302	5	2	1	4	0,881
250	4	32000	0,026302	5	2	1	4	0,919
300	4	32000	0,026302	5	2	1	4	0,939

Figure 1.4 : Influence de la rigidité relative K_{ss} sur la fréquence d'une structure à plusieurs étages (entre 3 et 10) et à plusieurs ouvertures.

1.4 Vérification

On présente dans cette section une vérification de l'abaque proposé dans la figure 1.4 pour la prise en compte de l'interaction sol-structure lors du calcul de la fréquence fondamentale d'un bâtiment à plusieurs étages et à plusieurs ouvertures. L'exemple de vérification concerne un bâtiment à cinq étages avec trois ouvertures dans la direction longitudinale et 4 ouvertures dans la direction transversale (Figure 1.5). Les tableaux 1.8 et 1.9 donnent les caractéristiques retenues dans cet exemple de vérification. Différents types de sols ont été considérés : Module de Young E_s compris entre 50 et 458 MPa. Les autres caractéristiques sont :

- > Ouverture dans la direction longitudinale L = 3 m
- > Ouverture dans la direction transversale $L_t = 3,5 \text{ m}$,
- > Hauteur d'étage h = 3 m.

Le tableau 1.10 donne les résultats obtenus pour les configurations considérées. On note pour les cas étudiés une influence significative de l'interaction sol-structure sur la fréquence du bâtiment : le rapport de fréquence F/F_{en} varie entre 0,63 et 0,84. La figure 1.6 montre le report des résultats de l'exemple de vérification sur l'abaque proposé dans la figure 1.4. On note que les résultats obtenus sont très proches de l'abaque proposé. Ceci conforte la proposition d'utiliser l'abaque de la figure 1.4 dans le calcul de la fréquence fondamentale des structures de type bâtiment.

Figure 1.5. Exemple de vérification : Bâtiment 5 étages

	Murs contr	reventements	Fond	ations	N	
	axb (m)	I _x (m4)	axb (m)	A (m²)	⊥ \ e	
W1	2x0,2	0,133333	2,7x1,2	3,24	5	
W2	0,2x3	0,002	1,4x3,5	4,9	5	
C1	0,4x0,4	0,0021333	1,7x1,7	2,89	5	

Tableau 1.9 : Caractéristiques mécaniques des matériaux (exemple de vérification)

	Masse volumique	Module de Young	Cœfficient de	vitesse des ondes
	γ (KN/m3)	E (MPa)	Poisson v	sismiques v (m/sec)
sol	20	50, 60, 100, 208, 325 et 458	0,3	98, 107, 139, 200, 250 et 300
Béton	24,5	32 000	0,2	

v _s (m/sec)	h (m)	E _p (N.m ²)	$\sum_{(m4)} I_p$	Ne	N _b	No	ρ (kg/m^3)	A (moyenne)	log (K _{ss})	F/Fen
98	3	3,2E+10	0,54987	5	4	3	2000	3,677	-0,93254103	0,592
107	3	3,2E+10	0,54987	5	4	3	2000	3,677	-0,85622563	0,624
139	3	3,2E+10	0,54987	5	4	3	2000	3,677	-0,62896358	0,678
200	3	3,2E+10	0,54987	5	4	3	2000	3,677	-0,31293319	0,728
250	3	3,2E+10	0,54987	5	4	3	2000	3,677	-0,11911316	0,812
300	3	3,2E+10	0,54987	5	4	3	2000	3,677	0,03924933	0,843

Tableau 1.10 : Résultats de vérification de l'abaque de la figure 1.4 (Données : Figure 1.5 et tableaux 1.8 et 1.9).

Figure 1.6 : Vérification de l'abaque de la figure 1.4 (Données : Figure 1.5 et tableaux 1.8 et 1.9).

1.5 Comparaison avec la méthode proposée par Veletsos et Meek (1974) et le règlement BSSC

Dans cette partie, nous présentons une comparaison entre l'abaque de la figure 1.4 et les formules proposées par Veletsos et Meek (1974) [Eq. 1.1] et le règlement BSSC (2003) [Eq.

1.2] pour la prise en compte de l'ISS dans le calcul de la fréquence fondamentale de structures de type bâtiment. Nous transformons la structure à un modèle équivalant à un seul degré de liberté de la manière suivante:

- Inertie du modèle équivalant (I_E) est égale la somme des inerties des poteaux d'un seul étage.
- > Hauteur totale de la structure $H = N \times h$.
- > Aire de la fondation est égale la somme des aires des fondations de la structure.

Le tableau 1.11 donne les résultats obtenus pour les différentes configurations. Dans le cas d'une structure à un seul niveau, on note un bon accord entre la méthode proposée et les calculs effectués avec la méthode de Veletsos Meek et le règlement BSSC : l'écart reste inférieur à 2%. Pour des structures à plusieurs niveaux, l'écart entre la méthode proposée la méthode de Veletsos et Meek et le règlement BSSC devient important : il atteint 50 % avec la méthode Veletsos et Meek et 35% avec le règlement BSSC. Ces résultats confirment les observations de Stewart et al. (1999).

La figure 1.7 donne une comparaison entre les différentes méthodes. Cette figure montre un bon accord entre les 3 méthodes pour les structures ayant une rigidité relative élevée (log (K_{ss}) > 1). Pour des rigidités relatives plus faibles, on peut avoir des écarts très importants lorsque le nombre d'étages est élevé. Ces résultats montrent la nécessité de prendre en compte l'interaction sol-structure lors du calcul de la fréquence fondamentale des structures de type bâtiment. L'abaque proposé dans la figure 1.4 permet de prendre en considération cet aspect d'une manière aisée. L'annexe 1 donne des comparaisons sur d'autres configurations.

Tableau 1.11 : Comparaison de la méthode proposée avec la méthode de Veletsos & Meek et le règlement BSSC : Valeurs du rapport F/Fen pour différentes configurations

X 7	h	Б	ΣI			А		F/F _{en}			
v_s (m/sec)	(m)	$(N m^2)$	$\sum \mathbf{I}_p$ (m4)	N _e	N_b	No	(movenne)	DSSC	Veletsos et	Méthode	
(III/SEC)	(111)	(11.111)	(1114)				(moyenne)	DSSC	Meek	proposée	
98	4	32000	0,000139	1	1	1	4	0,993	0,998	1	
107	4	32000	0,000139	1	1	1	4	0,994	0,998	1	
139	4	32000	0,000139	1	1	1	4	0,997	0,999	1	
200	4	32000	0,000139	1	1	1	4	0,998	1,000	1	
250	4	32000	0,000139	1	1	1	4	0,999	1,000	1	
300	4	32000	0.000139	1	1	1	4	0,999	1,000	1	

98	4	32000	0,00135	1	1	1	4	0,953	0,983	0,973
107	4	32000	0.00135	1	1	1	4	0,960	0,986	0.976
139	4	32000	0.00135	1	1	1	4	0.976	0,991	0,985
200	4	32000	0.00135	1	1	1	4	0.988	0.996	0,995
250	4	32000	0.00135	1	1	1	4	0.992	0.997	0.998
300	4	32000	0.00135	1	1	1	4	0.995	0,998	0,999
98	4	32000	0.00135	3	1	1	4	0.972	0.995	0.934
107	4	32000	0.00135	3	1	1	4	0.976	0,996	0.944
139	4	32000	0.00135	3	1	1	4	0.986	0.998	0.964
200	4	32000	0.00135	3	1	1	4	0,993	0,999	0.983
250	4	32000	0.00135	3	1	1	4	0,996	0,999	0.989
300	4	32000	0.00135	3	1	1	4	0,997	0,999	0,992
98	4	32000	0.01315	3	1	1	4	0.869	0.853	0,002
107	4	32000	0.01315	3	1	1	4	0.886	0.873	0 749
130	4	32000	0,01315	3	1	1	4	0,000	0,013	0,740
200	4	32000	0,01315	3	1	1	4	0,020	0,910	0,024
250		32000	0,01315	3	1	1	4	0,303	0,000	0,000
300	4	32000	0,01315	3	1	1	4	0,370	0,972	0,955
08	4	32000	0,01315	3	1	1	4	0,303	0,300	0,504
107	4	32000	0,13575	3	1	1	4	0,079	0,435	0,504
130	4	32000	0,13575	3	1	1	4	0,710	0,400	0,555
200	4	32000	0,13575	3	1	1	4	0,795	0,564	0,015
200	4	32000	0,13575	3	1	1	4	0,004	0,720	0,737
200	4	32000	0,13575	<u> </u>	1	1	4	0,921	0,792	0,803
300	4	32000	0,13575	3 10	1	1	4	0,943	0,030	0,647
90	4	32000	0,059179	10	3	2	4,55	0,032	0,995	0,034
107	4	32000	0,059179	10	3	2	4,55	0,854	0,996	0,688
139	4	32000	0,059179	10	3	2	4,55	0,905	0,998	0,773
200	4	32000	0,059179	10	3	2	4,55	0,951	0,999	0,868
250	4	32000	0,059179	10	3	2	4,55	0,968	0,999	0,944
300	4	32000	0,059179	10	3	2	4,55	0,977	0,999	0,933
98	4	32000	0,610979	10	3	2	4,55	0,649	0,954	0,472
107	4	32000	0,610979	10	3	2	4,55	0,682	0,961	0,5
139	4	32000	0,610979	10	3	2	4,55	0,771	0,976	0,579
200	4	32000	0,610979	10	3	2	4,55	0,867	0,988	0,704
250	4	32000	0,610979	10	3	2	4,55	0,909	0,992	0,764
300	4	32000	0,610979	10	3	2	4,55	0,934	0,995	0,815
98	4	32000	0,271502	5	2	1	4	0,672	0,742	0,472
107	4	32000	0,271502	5	2	1	4	0,704	0,772	0,493
139	4	32000	0,271502	5	2	1	4	0,790	0,843	0,551
200	4	32000	0,271502	5	2	1	4	0,880	0,914	0,651
250	4	32000	0,271502	5	2	1	4	0,918	0,943	0,719
300	4	32000	0,271502	5	2	1	4	0,941	0,958	0,753
98	4	42000	0,271502	5	2	1	4	0,614	0,695	0,443
107	4	42000	0,271502	5	2	1	4	0,648	0,727	0,461
139	4	42000	0,271502	5	2	1	4	0,741	0,807	0,514
200	4	42000	0,271502	5	2	1	4	0,846	0,892	0,607
250	4	42000	0,271502	5	2	1	4	0,893	0,927	0,672
300	4	42000	0,271502	5	2	1	4	0,922	0,946	0,721
98	4	32000	0,13575	10	1	1	4	0,692	0,685	0,367
107	4	32000	0,13575	10	1	1	4	0,723	0,717	0,388
139	4	32000	0,13575	10	1	1	4	0,806	0,799	0,454
200	4	32000	0,13575	10	1	1	4	0,891	0,887	0,568
250	4	32000	0,13575	10	1	1	4	0,926	0,923	0,642
300	4	32000	0,13575	10	1	1	4	0,947	0,943	0,698

 $\label{eq:Figure 1.7} Figure 1.7: Comparaison de la méthode proposée avec la méthode de Veletsos-Meek et le règlement \\BSSC: Valeurs du rapport F/F_{en} pour différentes configurations$

1.6 Conclusion

Ce chapitre a comporté une analyse de l'influence de l'interaction sol-structure sur les fréquences de structures de type bâtiment. L'accent a été mis sur la première fréquence, qui joue un rôle important dans le calcul sismique de bâtiments.

L'analyse a été effectuée à l'aide d'une modélisation numérique simplifiée : la structure a été modélisée par des éléments poutres ; l'ensemble sol-fondation a été modélisé à l'aide de 6 ressorts (3 en translation et 3 en rotation) dont les rigidités ont été déterminées à l'aide des expressions proposées dans la littérature.

L'analyse montre que pour certaines configurations (structures rigides sur sol mou), l'influence de l'interaction sol-structure sur la 1^{ère} fréquence de bâtiment peut être très importante et conduire à une réduction de l'ordre de 70% de la fréquence de bâtiment calculée en assumant un encastrement à la base.

L'analyse a permis l'élaboration d'une méthode prenant en compte d'une manière aisée l'interaction sol-structure dans le calcul de la fréquence fondamentale des bâtiments. Cette méthode est fondée sur l'utilisation de l'abaque de la figure 1.4 qui fait intervenir un seul paramètre, appelé « rigidité relative », dont l'expression est donnée par :

$$K_{ss} = \frac{N_o \times N_b \times \rho \times v_s^2 \times h^3 \sqrt{\frac{A}{A_o}}}{N_e \times E_p \times (I_p)^{3/4}}$$

Avec :

- \triangleright v_s : vitesse des ondes de cisaillement (m/sec)
- \succ E_p et I_p : module de Young (MPa) et moment d'inertie des poteaux (m⁴).
- ▶ h : hauteur de niveau (m).
- \blacktriangleright A : aire de la fondation (m²).
- N_e, N_o et N_b: nombre d'étages, et d'ouvertures du bâtiment dans les directions longitudinale et transversale.

L'analyse montre que pour des structures ayant une rigidité relative élevée (log (K_{ss}) > 1,2), l'influence de l'interaction sol-structure peut être négligée lors du calcul de la première fréquence.

CHAPITRE II:

Influence de l'interaction sol-structure (ISS) sur réponse sismique des bâtiments : Analyse globale élastique

CHAPITRE II :

Influence de l'interaction sol-structure sur la

réponse sismique des bâtiments : Analyse globale élastique

2.1 Introduction

Ce chapitre présente une étude numérique de l'influence de l'interaction sol-structure sur la réponse sismique des structures de type bâtiment. L'analyse est effectuée d'une manière globale en considérant dans un seul calcul les trois éléments du problème, à savoir la structure, le sol et les fondations. Les calculs sont effectués avec des enregistrements sismiques réels. L'objet de cette analyse est de bien comprendre l'influence de l'interaction sol-structure sur la réponse des bâtiments. Le comportement du sol est supposé élastique avec un amortissement de type Rayleigh. Dans un premier temps, on suppose que le comportement est linéaire. Ceci permet d'avoir des indications pour les chargements sismiques de très faibles amplitudes. Dans un second temps, on considère un comportement élastique non linéaire prenant en compte la dégradation du module de déformation avec le niveau de déformation. Cette analyse permet de traiter des chargements à amplitude moyenne n'introduisant pas des déformations irréversibles significatives.

2.2 Modèle numérique et programme de calcul

Le problème d'interaction sol-structure sous chargement sismique peut être traité par une approche dynamique prenant en compte l'amortissement du sol et des éléments structuraux. L'équation de mouvement d'un système à plusieurs degrés de liberté sous chargement sismique s'écrit sous la forme matricielle suivante :

$$[M]{\ddot{u}} + [C]{\dot{u}} + [K]{u} = {F}$$
[Eq. 2.1]

[M], [C] et [K] sont respectivement les matrices de masse, d'amortissement et de rigidité ;

Le vecteur {F} représente le chargement extérieur exercé sur le système sol-structure ;

u, \dot{u} et \ddot{u} désignent respectivement les vecteurs déplacements, vitesse et accélération aux nœuds du maillage.

2.2.1 Amortissement

L'amortissement est pris en considération par la formulation de Rayleigh (Bathe et Wilson, 1976). La matrice d'amortissement C est construite par une combinaison des matrices de rigidités K et de masse M sous la forme :

$$C = \alpha . M + \beta . K$$
 [Eq. 2.2]

où α la contribution de la masse et β la contribution de la rigidité. Ces deux coefficients dépendant des caractéristiques d'amortissement du matériau.

Pour un système à N degrés de liberté, cette construction conduit à (Bathe and Wilson 1976) :

$$\alpha + \beta . \omega_i^2 = 2 . \omega_i . \xi_i$$
 [Eq. 2.3. a]

$$\boldsymbol{\xi}_{i} = \frac{1}{2} \left(\frac{\boldsymbol{\alpha}}{\boldsymbol{\omega}_{i}} + \boldsymbol{\beta} . \boldsymbol{\omega}_{i} \right)$$
 [Eq. 2.3. b]

 ξ i est la fraction critique de l'amortissement de Rayleigh du i^{ème} mode de vibration avec la fréquence angulaire ω_i .

La figure 2.1 donne la variation de la fraction de l'amortissement normalisée en fonction de la fréquence angulaire pour trois cas : la composante de l'amortissement due à la masse $\alpha = 0$, celle due à la rigidité $\beta = 0$ et la combinaison des deux. On peut constater que la contribution de la masse à l'amortissement est beaucoup plus importante pour les basses fréquences tandis que la contribution de la rigidité est dominante pour les hautes fréquences. La courbe qui représente l'amortissement total (masse et rigidité) atteint une valeur minimale qui permet de déterminer le centre fréquentiel de l'amortissement de Rayleigh. On utilise généralement un amortissement entre 2 et 10% pour les géomatériaux. Néanmoins, dans le cadre de la plasticité, il est connu qu'une quantité de l'énergie se dissipe lors de la mise en

plasticité du matériau ; par conséquence, un faible amortissement est nécessaire pour éviter la résonance du système en petites déformations. La sélection de l'amortissement est plus critique dans une analyse linéaire que dans une analyse non-linéaire. D'autre part, il est évident que la portion de l'énergie dissipée par l'amortissement de Rayleigh dépend de la fréquence utilisée. Néanmoins, cet amortissement a un domaine pour lequel la réponse est pratiquement indépendante de la fréquence utilisée, comme le montre la figure 2.2. Dans le cas d'un chargement harmonique, la détermination de la fréquence de cet amortissement est relativement simple étant donné que la fréquence du chargement domine le mouvement. Un enregistrement sismique présente plus de difficultés en ce qui concerne la détermination de cette fréquence. En effet, dans ce cas, un grand nombre des fréquences affectent le système ; il est par conséquent difficile à priori de déterminer la fréquence de cet amortissement. Une estimation préliminaire peut être réalisée par une analyse de Fourier du chargement et en connaissant les fréquences propres du site. Ensuite, la fréquence de cet amortissement peut être déterminée à la base d'une colonne de sol comme suit : on applique le séisme concerné sur le modèle et on fait varier la fréquence d'amortissement (dans le domaine intéressé), les réponses montrent généralement un domaine avec des faibles variations.

Figure 2.1 : Variation de l'amortissement avec la fréquence.

Figure 2.2 : Sélection de l'amortissement de Rayleigh.

2.2.2 Méthodes d'analyse de l'interaction sol-structure

L'interaction sol-structure est caractérisée par la modification de l'accélération à la surface du sol induite par la présence des fondations et de la superstructure. En l'absence de superstructure, l'interaction sol-fondations, appelée interaction cinématique, provient de différence de rigidité entre le sol et les fondations. Cette différence induit une modification de la réponse du sol dans le champ proche de la fondation. La présence de la superstructure génère des forces d'inertie qui sont à l'origine de l'interaction inertielle.

On se propose dans cette section les notions principales de l'interaction sol structure ainsi que les méthodes les plus importantes pour son analyse.

On définit le mouvement sismique (plus souvent, sous forme d'un accélérogramme ou d'un spectre d'accélération, ou d'un spectre de vitesse), qui servira comme mouvement de référence pour l'analyse de l'ISS. Ce mouvement est défini habituellement en un point de la surface libre, appelé point de contrôle, et on se réfère au mouvement au point de contrôle.

2.2.2.1 Les méthodes de sous structure

La méthode des sous-structures est fondée sur le principe de la décomposition du problème en étapes successives dont le traitement est plus simple et ensuite sur la superposition des solutions. Les étapes successives, schématisées sur la figure 2.3, sont les suivantes :

1) Initialement, on considère la sous-structure comportant le profil géotechnique et la fondation sans masse. On suppose que l'interface sol-fondation est infiniment rigide. On applique un mouvement à la base du profil géotechnique afin de calculer la réponse ü du système au niveau de l'interface rigide sol-fondation. La présence de la fondation rigide modifie le mouvement que l'on obtiendrait en champ libre. Cette modification est connue sous le nom d'interaction cinématique (IC). L'effet de l'interaction cinématique est important surtout dans le cas des fondations profondes massives, comme les caissons. (Beltrami et al. 2006). Dans la plupart des cas, l'interaction cinématique conduit à une réponse ü qui est plus petite que la réponse en champ libre mais qui contient une composante de rotation (Mylonakis et al., 2006).

2) Dans la seconde étape, on calcule la réponse du système global (sol + fondation + structure) lorsqu'il est soumis à l'action du champ ü calculé à l'étape précédente. La différence entre le champ obtenu, réponse du système global et le champ ü représente l'interaction inertielle qui provient de l'action des forces d'inertie. Pour les fondations superficielles (avec ou sans encastrement), l'évaluation de l'interaction inertielle s'effectue en deux étapes supplémentaires qui sont présentées sur la figure 2.3. Tout d'abord, on évalue les impédances dynamiques de la fondation, assemblées dans la matrice d'impédance [K]. Cette matrice représente la réponse dynamique (en termes de forces) de la fondation sans masse, posée sur le massif de sol pesant et soumise à une sollicitation de type harmonique d'amplitude unitaire, caractérisée par sa pulsation ω . Ensuite, on évalue la réponse de la structure soumise au champ ü déterminé dans l'étape de l'IC, en considérant qu'elle est reliée à des ressorts correspondants aux impédances dynamiques de la fondation.

Les impédances dynamiques de la fondation sont calculées pour chaque degré de liberté de la fondation (trois translations et trois rotations). Mylonakis et al. (2006) présentent une compilation révisée d'expressions et de méthodes pour l'évaluation des impédances dynamiques de plusieurs configurations de fondations. L'article de Gazetas (1991) et l'ouvrage de Sieffert et Ceveart (1992) constituent les travaux de référence pour la détermination des impédances dynamiques des fondations.

Figure 2.3 : (a) Le problème de l'ISS ; (b) La décomposition du problème de l'ISS en interaction cinématique (IC) et interaction inertielle (II) ; (c) Décomposition de II en deux étapes : détermination des impédances dynamique de la fondation et calcul de la structure reliée aux ressorts qui correspondent aux impédances déterminée (Mylonakis et al. 2006).

2.2.2.2 Les méthodes directes

Les méthodes directes traitent le problème de l'ISS dans sa globalité : les déplacements dans le sol et dans la structure sont calculés simultanément. Les domaines de la structure et du sol sont discrétisés par éléments finis. Il est alors possible d'incorporer dans le modèle toutes les caractéristiques géométriques du problème, les hétérogénéités matérielles du sol ou de la superstructure et d'introduire les lois de comportement nécessaires pour la description des nonlinéarités et irréversibilités du système. La démarche de modélisation nécessite :

- > La définition des sollicitations sismiques à introduire dans le système.
- L'utilisation des éléments spéciaux à la frontière du domaine du sol afin de préserver son caractère non borné.
- Le choix d'une discrétisation du sol assez fine pour une bonne description de la propagation d'ondes de haute fréquence.
- L'application d'un schéma performant de résolution dans le domaine temporel.

2.2.2.3 Les méthodes hybrides et le concept du macroélément pour l'ISS

Les méthodes hybrides forment la troisième grande famille de méthodes pour le traitement de l'ISS. Ces méthodes sont situées entre les méthodes directes et les méthodes de sous-structures. L'idée principale consiste à séparer le sol en deux domaines distincts : le premier est un champ proche de la structure, où se développent les non – linéarités et irréversibilités, pertinentes pour le problème de l'ISS, sont développées. Le deuxième est le champ lointain le comportement du sol n'est pas affecté par l'interaction avec la fondation. Ainsi, le champ lointain peut être traité par les techniques adaptées pour les problèmes linéaires (exp. Impédances dynamiques), alors que le champ proche est incorporé dans le modèle de la superstructure et peut être traité par une méthode directe. Le point délicat des méthodes hybrides est la définition de la frontière entre le champ proche et le champ lointain.

2.2.3 Code utilisé et discrétisation

Le code FLAC3D (Fast Lagrangian Analysis of Continua in 3 Dimensions) est utilisé dans ce travail. Ce code utilise une représentation lagrangienne du mouvement. Il est basé sur la méthode explicite de différences finies pour résoudre les équations d'équilibre dynamique. La séquence basique de calcul est présentée dans la figure 2.4. La procédure commence par un appel à l'équation d'équilibre pour dériver les nouvelles vitesses et les nouveaux déplacements à partir des contraintes et des forces. Puis, les déformations sont obtenues à partir de ces vitesses et des nouvelles contraintes sont calculées. Chaque cycle représente un pas de temps.

Figure 2.4 : Cycle de base de calcul par la méthode explicite de différences finies.

Le code utilise la technique mixte de discrétisation proposée par Marti et Cundall (1982). Chaque zone est constituée de deux couches et chaque couche contient 5 tétraèdres superposés pour une zone à 8 nœuds. La taille de l'élément du maillage doit être adopté pour que le maillage puisse transmettre les ondes d'une façon appropriée et sans distorsion numérique de ces ondes. Cette taille dépend des fréquences de chargement et de la vitesse de propagation des ondes. Les fréquences les plus importantes sont reliées à la fréquence fondamentale du système par la relation :

$$f = \frac{v}{\lambda}$$
 [Eq. 2.4]

v est la vitesse de propagation des ondes. La longueur caractéristique d'onde λ dépend des conditions aux frontières. Dans le cas d'un système particulier où la fréquence fondamentale n'a pas pu être déterminée directement, une simulation préliminaire doit être réalisée pour déterminer les fréquences significations du système.

La distorsion numérique de la propagation des ondes dans un domaine peut se produire en fonction du maillage utilisé. Les fréquences de chargement et la vitesse de propagation des ondes affectent la précision de la solution numérique. Kuhlemeyer et Lysmer (1973) montrent que la taille de l'élément Δl doit être plus petite qu'un huitième à un dixième de la longueur d'onde λ associée à la plus haute fréquence f de chargement. Par conséquence, la fréquence maximale qui peut être modélisée correctement pour un élément de maillage, est donnée par :

$$f = \frac{v_s}{10.\Delta l}$$
 [Eq. 2.5]

Le code utilise les frontières visqueuses développées par Lysmer et Kuhlemeyer (1969). La méthode est basée sur l'utilisation d'une série d'amortisseurs indépendants attachés aux frontières dans les directions normale et tangentielle. Ces frontières sont efficaces pour absorber des ondes qui arrivent avec un angle d'incidence supérieur à 30°; l'absorption de l'énergie est indépendante des fréquences. La présence d'une structure en surface cause une grande perturbation de la propagation des ondes. Loin de la structure, on doit retrouver le mouvement en champ libre. Lors de la modélisation dynamique d'une structure, les frontières doivent être placées suffisamment loin de la structure pour minimiser la réflexion des ondes. Lorsque l'amortissement est très grand, cette distance est relativement petite (Seed et al, 1975). Par contre, quand l'amortissement est petit, cette distance peut être très grande, ce qui conduit à un modèle de taille importante. La solution est donc de forcer ces frontières à produire le mouvement de champ libre en absorbant les ondes venant de la structure. Le code utilise la technique développée par Cundall et al. (1980). La méthode est basée sur l'exécution d'un calcul de champ libre en parallèle de celui qui contient la structure. Le domaine en champ libre est couplé au domaine principal par des frontières absorbantes (présentées précédemment) et les forces non équilibrées de champ libre sont appliquées sur le domaine principal.

2.2.4 Chargement

Le chargement est appliqué à la base du massif de sol. Deux enregistrements sismiques sont utilisés dans ce travail (Tableau 2.1) : l'enregistrement du séisme de Kocaeli en Turquie survenu en 1999 et l'enregistrement du séisme de Chi-Chi en Taiwan survenu en 1999. La figure 2.5 montre les spectres de vitesse de ces chargements. Le contenu fréquentiel de l'enregistrement de Kocaeli est concentré entre 0,2 et 2Hz. L'enregistrement de Taiwan contient des fréquences plus hautes (entre 0,4 et 4 Hz). Le tableau 2.2 donne des informations sur le pic majeur de ces enregistrements.

L'amplitude de ces enregistrements est normalisée pour obtenir une amplitude de vitesse de 40 cm/s.

Enregistrement	date	station	Source des données	durée (sec)
Kocaeli, Turquie	17/08/1999	AMBARLI	KOERI	30
Chi-Chi, Taiwan	20/09/1999	ALS	CWB	11,8

Tableau 2.1 : Informations relatives aux enregistrements utilisés dans ce travail.

Tableau 2.2 : Pic majeur des chargements utilisés (V_g =40 cm/s).

Enregistrement	Fréquence (Hz)	Amplitude (10 ⁻⁴)
Kocaeli	0,90	3,19
Chi-Chi	1,53	7,76

Figue 2.5 : Enregistrements utilisés dans ce travail : Kocaeli (1999) et Chi-Chi (1999).

2.3 Analyse linéaire

2.3.1 Structures à un seul niveau – couche de sol homogène

2.3.1.1 Présentation de l'exemple

L'exemple traité est illustré dans la figure 2.6. Il concerne une structure à une seule ouverture de 4 m de coté, fondée sur un sol homogène de 15m de profondeur. Les caractéristiques du sol et de la structure sont données dans les tableaux 2.3 et 2.4. Le sol a un module de déformation constant avec la profondeur. La fréquence fondamentale de la couche du sol est égale à $f_1 = 1,08$ Hz. La structure repose sur des semelles superficielles isolées en béton de 2 m de côté. La masse du plancher est égale à $m_{st} = 80$ tonnes. La rigidité de la structure, supposée encastrée à sa base et sa fréquence sont déterminées par les expressions suivantes :

$$K_{st} = \frac{4 \times 12 \times (E_p \times I_p)}{H_{st}^3} , \ F_{st} = \frac{1}{2\pi} \sqrt{\frac{K_{st}}{m_{st}}}$$
[Eq. 2.6]

On obtient $K_{st} = 12149 \text{ kN/m}$ et $F_{st} = 1.9 \text{ Hz}$.

Figure 2.6 : Exemple de référence

Tableau 2.3 : Propriétés du sol

ρ_{s} (kg/m3)	E _s (MPa)	Coefficient de Poisson V_s	K_{0}	$\xi_{s(\%)}$
1700	20	0,4	0,5	5

Tableau 2.4 : Propriétés de la superstructure.

$ ho_{st}$ (kg/m3)	E _{st} (GPa)	ν_{st}	ξ _{st} (%)	E _{st} .I _{st} (MN.m2)	Masse (tonne)
2500	32	0,3	2	27,338	80

Le maillage utilisé est illustré dans la figure 2.7. Il comporte 12000 zones à 8 nœuds et 13776 nœuds.

Figure 2.7 : Maillage utilisé dans l'analyse de l'interaction sol-structure

2.3.1.2 Résultats obtenus avec l'enregistrement de Chi-Chi

La figure 2.8a montre la variation de la vitesse normalisée v/v_{bm} (v_{bm} désigne la vitesse nominale imposée à la base du massif = 40 cm/sec) en 3 points du système sol-fondation-structure :

- Le point A représentant la réponse de la structure.
- Le point B représentant le mouvement de la fondation.
- Le point C situé à l'extrémité du massif, qui représente la réponse du sol en le champ libre.

On note l'arrivée de l'onde en surface après près de 3 secondes. L'amplification dynamique maximale est observée au niveau de la structure. Elle atteint 3 après près de 5 secondes. L'amplification dynamique au niveau de la fondation et en champ libre atteint 1,94 et 1,88, respectivement. La figure 2.8b donne l'influence de la présence de la structure sur le profil de vitesse dans le massif du sol (comparaison entre le champ libre et la réponse dans l'axe du massif du sol en présence de la structure). On note un bon accord entre les deux profils, ce qui montre que la présence de la structure n'affecte pas la réponse sismique du massif du sol.

Les efforts maximaux induits par le chargement sismique à la base de la structure sont donnés dans le tableau 2.5. On note que le chargement induit un effort normal de 218 kN qui est supérieur de 9% à l'effort normal induit par le poids propre du plancher (200 kN). Le chargement dynamique induit à la base de la colonne un moment fléchissant M = 325kN.m à comparer avec le moment limite de la section ($M_e = 85$ kN.m).

M (kN.m)	N (kN)	T (kN)
325	218	220

Tableau 2.5 : Efforts induits à la base de la structure – enregistrement Chi-Chi

La figure 2.9 donne les spectres du chargement appliqué et des réponses en champ libre et au niveau de la structure. On note la présence de plusieurs pics qui correspondent respectivement à la fréquence fondamentale du massif du sol ($f_1 = 1,08$ Hz), le pic de chargement ($f_{ch} = 1,53$) et la fréquence de l'ensemble structure-fondation sol (SSFS) (F = 1,84 Hz). On note que le rapport entre la dernière fréquence avec celle d'une structure encastrée à sa base ($F_{en} = 1,9$) est de 0,968. Ce qui signifie que l'interaction sol-structure induit une réduction de l'ordre de 6% de la fréquence fondamentale de la structure. On peut comparer ce résultat avec l'abaque 1.4 présenté dans le premier chapitre (Khalil et al. 2007). Le calcul de la rigidité relative donne $K_{ss} = 4,82$. L'utilisation de l'abaque donne F/F_{en} = 0,95, ce qui est proche des résultats obtenus avec l'approche globale.

Temps (sec)

Figure 2.8a : Exemple de référence : amplifications de vitesse latérale (Séisme de Chi-Chi v_{bm} = 40 cm/sec)

Figure 2.8b : Exemple de référence : Vitesse latérale (profil de sol) Sous les fondations de structure et champ libre (mouvement libre)

Figure 2.9 : Spectres du chargement et des réponses de la structure et en champ libre (Structure présentée dans les figures 2.6 et 2.7, enregistrement Chi-Chi)

2.3.2 Structures à un seul niveau – couche de sol à module de déformation croissant avec la profondeur

Dans cette section on présente une analyse de la réponse sismique du bâtiment en considérant un sol ayant un module de déformation croissant avec la profondeur Z (Figure 2.10) selon l'équation suivante (Janbu 1963, Duncan and Chang 1970):

$$E_{S}(z) = E_{0S} \left[\frac{p(z)}{p_{a}} \right]^{A}$$
[Eq. 2.7]

avec :

$$P(Z) = \left[\frac{(1+2)K_{0}}{3}\right]\rho_{s}.Z$$
et P(z) = P_a si z < z0,

 E_{0S} : Module de Young de référence pour P (z)= P_a ,

 $E_{0S} = 20$ MPa pour le site variable,

P_a : pression de référence (100 kPa),

 z_0 : Épaisseur de la couche de surface à module constant ($z_0=1$ m)

A : paramètre dépendant de la porosité de sol (A=0,5).

 $\rho_{\rm S}$: masse volumique de sol (1700 kg/m³)

La fréquence fondamentale de la couche du sol a été déterminée en effectuant une analyse de Fourrier de la réponse en champ libre. On obtient : $F_1 = 1,08$ Hz.

Figure 2.10 : Profile du module de Young : Sol à module de déformation croissant avec la profondeur

Le tableau 2.6 présente les résultats obtenus avec les sols à module constant et à module croissant avec la profondeur. On note que l'amplification dynamique obtenue avec le sol à module croissant est de 20% supérieure à celle obtenue avec le sol à module constant. Ceci se traduit par une augmentation de l'ordre de 30% du moment fléchissant et de l'effort tranchant à la base de la structure.

	Vitesse (m/sec)			Efforts		
Sol	Champ libre (C)	Fondation (B)	Structure (A)	M (kN.m)	N N	T (kN)
E constant	0,754	0,777	1,21	325	218	221
E variable	0,892	1,012	1,45	430	216	291

Tableau 2.6 : Influence de la variation du module de Young sur la réponse sismique du bâtiment -Enregistrement de Chi-Chi

Tableau 2.7 : Influence de la sollicitation sismique sur la réponse sismique du bâtiment -

Enregistrement	Vitesse (m/sec)			Efforts		
(E variable)	Champ libre (C)	Fondation (B)	Structure (A)	M (kN.m) N (kN)	N (kN)	T (kN)
Chi-Chi	0,892	1,012	1,45	430	216	291
Kocaeli	0,785	0,884	1,474	352	212	239

Le tableau 2.7 donne une comparaison entre les réponses du bâtiment aux enregistrements de Chi-Chi et Kocaeli. On peut noter que l'amplification en champ libre de l'enregistrement de Kocaeli est de 10% inférieure à celle obtenue avec l'enregistrement de Chi-Chi. Les efforts induits à la base de la structure par l'enregistrement de Kocaeli sont de 18% inférieurs à ceux induits par l'enregistrement de Chi-Chi.

Les figures 2.11 et 2.12 donnent les spectres du chargement appliqué et des réponses en champ libre et au niveau de la structure pour les enregistrements de Chi-Chi et Kocaeli, respectivement. On note pour l'enregistrement de Chi-Chi, la présence de deux pics qui correspondent respectivement à la fréquence fondamentale du massif du sol ($f_1 = 1,08$ Hz) et la fréquence du pic de chargement ($f_{ch} = 1,53$). Pour l'enregistrement de Kocaeli, on note la présence de trois pics, qui correspondent respectivement à la fréquence fondamentale du massif

du sol ($f_1 = 1,08$ Hz), la fréquence du second pic de chargement ($f_{ch} = 0,9$ Hz) et la fréquence de l'ensemble structure-fondation sol (F = 1,84 Hz).

Figure 2.11 : Spectres du chargement et des réponses de la structure et en champ libre (Sol à module croissant avec la profondeur, enregistrement Chi-Chi)

Figure 2.12 : Spectres du chargement et des réponses de la structure et en champ libre (Sol à module croissant avec la profondeur, enregistrement Kocaeli)

2.3.3 Structures à plusieurs étages – couche de sol homogène

Présentation de l'exemple

Cette section présente l'étude de l'influence de l'interaction sol-structure sur la réponse sismique d'un bâtiment à 5 étages avec une seule ouverture (Figure 2.13). Le bâtiment est fondé sur une couche de sol homogène de 15m de profondeur ayant les mêmes propriétés que le sol utilisé dans l'étude du bâtiment à un seul étage (Tableau 2.3). La structure repose sur des semelles en béton de 2 m de côté. La masse du plancher de chaque étage est de 40 tonnes. Le calcul de la période fondamentale du bâtiment d'après l'Eurocode ($T = C_t (h_n)^{3/4}$ avec $c_t=0,075$) donne T=0,57 sec, ce qui donne une fréquence fondamentale $F_1 = 1,75$ Hz.

Figure 2.13 : Modèle utilisé pour étudier l'influence de l'ISS sur la réponse sismique d'un bâtiment à plusieurs étages
La figure 2.14 illustre le maillage utilisé pour le calcul. Le maillage du massif du sol comporte 12000 zones à 8 nœuds et 13776 nœuds.

Figure 2.14 : Maillage de l'ensemble sol-fondation-structure

Résultats obtenus avec l'enregistrement de Chi-Chi

La figure 2.15a montre la variation de la vitesse en 3 points du système sol-fondationstructure (A : la superstructure ; B : la fondation ; C : champ libre). On obtient une amplification dynamique de l'ordre de 2,5, 1,93 et 1,88 pour la structure, la fondation et en champ libre, respectivement. Les efforts maximaux induits à la base de la structure sont égaux à M = 1120 kN.m, N = 653 kN et T = 754 kN. A noter que l'effort normal induit par le chargement sismique est proche de l'effort normal dû au poids propre de la structure (N = 575 kN).

La figure 2.15b donne les spectres du chargement appliqué et des réponses en champ libre et au niveau de la structure. On note la présence de trois pics. Le premier correspond à la fréquence du massif du sol ($f_1 = 1,08$ Hz); les deux autres correspondent aux pics de chargement. On ne trouve pas de pic spécifique pour la fréquence fondamentale du bâtiment. Le calcul de cette fréquence à l'aide de la méthode simplifiée (abaque de la figure 1.4) donne F₁ =0,96 Hz (le calcul de la rigidité relative donne K_{ss} = 0,13. l'utilisation de l'abaque donne F/F_{en}=0,55). Ceci indique que la première fréquence de la structure est proche de celle de la couche de sol. Par conséquent, le premier pic de la figure 2.15b correspond à la fréquence fondamentale de la couche du sol et à celle de la structure.

Temps (sec)

Figure 2.15a : Exemple de référence : amplifications de vitesse latérale (Séisme de Chi-Chi v_{bm}= 40 cm/sec)

Figure 2.15b : Spectres du chargement et des réponses de la structure et en champ libre (Bâtiment à 5 étages, sol à module constant, enregistrement Chi-Chi)

Résultats obtenus avec l'enregistrement de Kocaeli

Le tableau 2.8 et la figure 2.16 présentent les résultats obtenus avec les enregistrements de Kocaeli et Chi-Chi. Il est clair que la réponse à l'enregistrement de Kocaeli est plus élevée que celle à l'enregistrement de Chi-Chi. Ceci n'est pas en accord avec la réponse en champ libre. Mais, les efforts dynamiques (moment fléchissent et effort tranchant) de l'enregistrement de Kocaeli à la fondation sont inférieurs à ceux de l'enregistrement de Chi-Chi (Tableau 2.8). L'analyse de Fourier (Figure 2.16) montre que la fréquence propre de sol réduit l'amplification du système sol-fondation-structure.

	Vitesse (m/sec)				Efforts			
séisme	Champ	Fondation	Structure	М	Ν	Т		
	libre (C)	(B)	(A)	(kN.m)	(kN)	(kN)		
Chi-Chi	0,754	0,774	1,0	1120	653	754		
Kocaeli	0,737	0,834	1,13	753	609	512		

Tableau 2.8 : Comparaison entre les réponses aux enregistrements Chi-Chi et Kocaeli (Structure à 5 étages, sol à module constant)

Figure 2.16 : Spectres de la réponse de la structure obtenus avec les enregistrements Chi-Chi et Kocaeli (Bâtiment à 5 étages, sol à module constant)

2.3.4 Structures à plusieurs étages -sol à module croissant avec la profondeur

Résultats obtenus avec l'enregistrement de Chi-Chi

Le tableau 2.9 présente les résultats obtenus avec les sols à module constant et à module croissant avec la profondeur. On note que l'amplification dynamique obtenue avec le sol à module croissant avec la profondeur est de 39% supérieure à celle obtenue avec le sol à module constant.

La figure 2.17 donne les spectres du chargement appliqué et des réponses au niveau de la structure pour les sols à module constant et à module variable. On note, pour les deux réponses, la présence de deux pics qui correspondent respectivement à la fréquence fondamentale du massif du sol ($f_1 = 1,08$ Hz) et à la fréquence du pic de chargement ($f_{ch} = 1,53$).

Tableau 2.9 : Influence de la variation du module de Young sur la réponse sismique du bâtiment de plusieurs étages - Enregistrement de Chi-Chi

		Vitesse (m/sec	Efforts			
Sol	Champ libre (C)	Fondation (B)	Structure (A)	M (kN.m)	N (kN)	T (kN)
E constant	0,754	0,774	1,0	1120	653	754
E variable	0,892	1,04	1,39	1106	610,6	754,9

Figure 2.17 : Spectres de la réponse de la structure obtenue avec l'enregistrement de Chi-Chi (Bâtiment à 5 étages, sol à module constant et variable)

Résultats obtenus avec l'enregistrement de Kocaeli

Le tableau 2.10 présente les résultats obtenus pour l'enregistrement de Kocaeli avec les sols à module constant et à module croissant avec la profondeur. On note que l'amplification dynamique obtenue avec le sol à module variable est de 10% supérieure à celle obtenue avec le sol à module constant. Ceci se traduit par une augmentation de l'ordre de 11% du moment fléchissant et de l'effort tranchant à la base de la structure.

La figure 2.18 donne les spectres de réponse de la structure pour les sols à module constant et variable. On note, pour les deux réponses, la présence de deux pics qui correspondent respectivement à la fréquence fondamentale du massif du sol ($f_1 = 1,08$ Hz) et à la seconde fréquence du pic de chargement. On note que la fréquence propre de sol domine la réponse du système sol-fondation-structure.

~		Vitesse (m/sec	E	fforts		
Sol	Champ libre (C)	Fondation (B)	Structure (A)	M (kN.m)	N (kN)	T (kN)
E constant	0,737	0,834	1,13	753	609	512
E variable	0,785	0,993	1 ,25	821	593	561

Tableau 2.10 : Influence de la variation du module de Young sur la réponse sismique du bâtiment -Enregistrement de Kocaeli

Figure 2.18 : Spectres de réponse de la structure obtenus avec l'enregistrement de Kocaeli (Bâtiment à 5 étages, sol à module constant et variable)

Le tableau 2.11 donne une comparaison entre les réponses du bâtiment aux enregistrements de Chi-Chi et Kocaeli. On peut noter que l'amplification en champ libre de l'enregistrement de Kocaeli est de 10% inférieure à celle obtenue avec l'enregistrement de Chi-Chi. Les efforts induits à la base de la structure par l'enregistrement de Kocaeli sont de 26% inférieurs à ceux induits par l'enregistrement de Chi-Chi.

		Vitesse (m/sec	Efforts			
enregistrement	Champ libre (C)	Fondation (B)	Structure (A)	M (kN.m)	N (kN)	T (kN)
Chi-Chi	0,892	1,04	1,39	1106	610,6	754,9
Kocaeli	0,785	0,993	1,25	821	593	561

Tableau 2.11 : Influence de la sollicitation sur la réponse sismique du bâtiment de plusieurs étages

2.4 Analyse élastique non linéaire

La non linéarité des sols se traduit par une diminution de l'amplification dynamique sous fortes sollicitations et changement des fréquences propres des sols (Field et al. 1997, Yv et al. 1993) et conduit souvent à un filtrage des hautes fréquences. Cette partie présente l'influence des non linéarités de sol sur la réponse sismique du système sol-fondation-structure. L'étude est réalisée à l'aide d'un modèle élastique non linéaire avec amortissement hystérétique. La rigidité de sol varie avec la profondeur. L'étude est réalisée d'abord pour un bâtiment à un seul étage, ensuite pour un bâtiment à plusieurs étages. On présente d'abord le modèle de comportement utilisé, ensuite on donne les résultats de l'étude de l'influence de l'ISS sur la réponse sismique des bâtiments.

2.4.1 Présentation du modèle

Le comportement de sol sous chargement cyclique dépend sensiblement du niveau des déformations induites. D'une manière générale, le comportement de sol est classé en trois domaines, à savoir (Davidovici 1985):

- élastique linéaire ;
- hystérétique stabilisé ;
- fortement non linéaire.

Le tableau 2.12 donne les recommandations du type d'analyses à effectuer en fonction des déformations de cisaillement induites par le chargement sismique.

Tableau 2.12 : Modèles de comportement et méthode d'analyse en fonction de l'amplitude de la déformation cyclique (d'après Davidovici 1985)

Déformation en cisaillement	Inférieure à 10 ⁻⁵	Entre 10^{-5} et 10^{-4}	Supérieure à 10 ⁻³
Loi de comportement	Linéaire	Hystérétique stabilisé	Fortement non linéaire
Représentation du sol	Élastique linéaire	Viscoélastique	Lois incrémentales
Méthode d'analyse	Linéaire	Linéaire équivalent	Intégration pas à pas

Dans la pratique ; pour évaluer si un sol se comporte de façon non linéaire, on peut utiliser la relation empirique de Bruno et al. (2004) :

 $PGV/v_{s} > 0.06\%$

- PGV est l'amplitude maximale en vitesse du signal
- v_s la vitesse des ondes de cisaillement de la couche de sol susceptible d'avoir un comportement non linéaire sous forte sollicitation.

2.4.1.1 Domaine hystérétique stabilisé

Lorsque l'amplitude des déformations cycliques en cisaillement dépasse 10⁻⁵, les dissipations plastiques dans le milieu deviennent non négligeables et le module de cisaillement diminue lorsque le cisaillement augmente. On sort du domaine élastique et on entre dans le domaine d'hystérésis stabilisé (Figure 2.19). Tant que la déformation en cisaillement reste inférieure à 10⁻⁴, la forme des cycles ne varie pas avec la répétition du chargement et chaque cycle peut être caractérisé par le module de cisaillement sécant (dont la valeur est inférieure au module de cisaillement du même sol dans le domaine linéaire) et un coefficient d'amortissement. On observe alors, en première approximation, que la valeur du module de cisaillement sécant et du coefficient d'amortissement dépend surtout de l'amplitude des déformations cycliques, ce qui définit le modèle de comportement du matériau.

Connaissant l'intensité du chargement sismique, on peut alors modéliser le sol par un matériau élastique avec amortissement visqueux, dont la rigidité et la dissipation d'énergie sont globalement équivalentes à la rigidité et la dissipation du sol réel pour ce chargement. C'est la base de l'analyse linéaire équivalente, souvent utilisée en pratique.

Figure 2.19 : Comportement du sol dans le domaine hystérétique.

2.4.1.2 Domaine fortement non linéaire

Au-delà d'une déformation de 10⁻⁴, le sol entre dans le domaine hystérétique non stabilisé. On observe une modification de la forme des cycles avec la répétition du chargement qui est la manifestation de la tendance de l'assemblage des grains à prendre une configuration plus compacte. Dans le domaine fortement non linéaire, des changements importants de la microstructure (réarrangement des grains) interviennent, engendrant des déformations irréversibles, de cisaillement et de volume, significatives. Ces changements de microstructure se traduisent par des variations de volume (tassement) dans les matériaux non saturés et par une augmentation de pression interstitielle dans les matériaux saturés. Cette augmentation de pression interstitielle peut conduire à la liquéfaction.

Ce type de comportement engendrant des déformations irréversibles significatives ne peut être abordé que par des modèles non linéaires. L'expérience acquise montre que les modèles élasto-plastiques avec écrouissage sont les mieux adaptés à la description de ce comportement.

2.4.1.3 Modèle non linéaire utilisé dans le code FLAC3D

Dans ce travail, nous avons utilisé le modèle élastique non linéaire (sinusoïdal - sig3) intégré dans le code FLAC3D. Le module de cisaillement normalisé ($M_s = G/G_0$) est décrit par l'expression :

$$M_{s} = \frac{a}{1 + \exp(-(\log(\gamma) - x_{0})/b)}$$
 [Eq. 2.9]

a, *b* et x_0 sont les paramètres du modèle. Les valeurs suivantes ont été proposées pour ces paramètres :

- Pour les sables : a = 1,014, b = -0,4792 et $x_0 = -1,249$ (Seed & Idriss, 1970).
- Pour l'argile : a = 1,017, b = -0,587 et $x_0 = -0,633$ (Seed & sun, 1989).

La figure 2.20 illustre la variation du module de cisaillement normalisé et du taux d'amortissement avec le cisaillement.

Figure 2.20 : Variation du module de cisaillement G et du taux d'amortissement ξ avec le cisaillement (Modèle sig3 – Code FLAC3D)

2.4.2 Structures à un seul niveau

Présentation de l'exemple

L'exemple traité concerne un portique à une seule ouverture de 4 m de coté, fondé sur une couche de sol de 15m de profondeur (Figure 2.21). Le comportement de sol est supposé élastique non-linéaire avec un amortissement hystérétique. Les paramètres de modèle sont donnés par a = 1,017, b = -0,587 et $x_0 = -0,633$ (Seed & sun, 1989). Le module de déformation du sol E_{0s} varie avec la profondeur selon l'équation 2.7 ($E_{0s} = 20$ MPa, $P_a = 100$ kPa, $z_0 = 1$ m, A=0,5 $\rho_S = 1700$ kg/m³). Les caractéristiques de sol sont données dans le tableau 2.13. La structure repose sur des semelles superficielles isolées de 2 m de côté. La masse du plancher est égale à 80 tonnes. La rigidité de la structure, supposée encastrée à sa base et sa fréquence sont respectivement égales à $K_{st} = 12149$ kN/m et $f_{st} = 1,9$ Hz

Le calcul a été effectué avec l'enregistrement de séisme de Taiwan (Chi-Chi 20/09/1999, V_s = 40 cm/sec, f_{ch} = 1,53 Hz).

Figure 2.21 : Exemple de référence

Tableau 2.13 : propriétés du sol

$\rho_{s \text{ (kg/m3)}}$	E _{os} (MPa)	V_{s}	K_0
1700	20	0,4	0,5

Résultats obtenus avec l'enregistrement de Chi-Chi

Réponse en champ libre

La figure 2.22 donne le profil de vitesse en champ libre obtenu avec l'enregistrement de Chi-Chi ; ce profil est comparé à celui obtenu avec le même chargement pour un sol ayant un comportement élastique-linéaire. On note que l'amplification dynamique obtenue avec le modèle non linéaire est plus faible que celle obtenue avec le modèle linéaire : on obtient une amplification en surface de l'ordre de 0,85 pour le modèle non linéaire et de 2,24 pour le modèle linéaire. Ce résultat est en accord avec les observations de Yv et al. (1993).

La figure 2.23 montre les spectres de vitesse en champ libre à la surface du sol. On note que le modèle non linéaire comporte plusieurs pics. Les premiers pics sont éloignés des pics de chargement, ce qui signifie que le modèle non linéaire conduit à l'apparition des fréquences fondamentales à basses fréquences. Ce résultat peut être expliqué par la forte diminution de la rigidité avec la déformation du sol. La figure 2.24 présente le cisaillement maximal induit par le chargement sismique. On note des déformations de l'ordre de 1%, ce qui donne un module de cisaillement normalisé G/G0 de l'ordre de 40% et un amortissement de l'ordre de 15% (Figure 2.20). Ces résultats confirment la forte réduction du module de cisaillement et par conséquent l'apparition des basses fréquences propres et l'atténuation de l'amplification dynamique, notée ci-dessus.

Amp. normalisée

Figure 2.22 : Influence du modèle de comportement sur la réponse du sol en champ libre (amplification de la vitesse) (enregistrement de Chi-Chi)

Figure 2.23 : Spectres des réponses en champ libre – influence du comportement des sols (Enregistrement Chi-Chi)

Figure 2.24 : Profil du cisaillement maximal en champ libre (Enregistrement Chi-Chi)

Système sol-fondation-structure

La figure 2.25 présente l'influence de la présence de la structure sur l'amplification dynamique dans le sol. On note que cette présence induit une augmentation de l'amplification au voisinage de la surface du sol. Qui atteint 15% par rapport à l'amplification en champ libre.

Le tableau 2.14 présente l'influence du modèle de comportement du sol (élastique linéaire, élastique non linéaire) sur la réponse sismique du système sol-fondation-bâtiment. On note que la non linéarité du sol induit une nette diminution de l'amplification en vitesse, qui atteint 50%, 60% et 62% pour la structure (A), la fondation (B) et le champ libre (C). La forte réduction de l'amplification dynamique conduit à une réduction sensible des efforts à la base de la structure : La réduction du moment fléchissant et de l'effort tranchant est égale à 45%.

La figure 2.26 donne les réponses en champ libre et au niveau de la structure. On note que la réponse de la structure présente un pic majeur qui apparaît au voisinage de la fréquence F

= 1,6 Hz. Cette fréquence correspond également au pic principal de chargement. On note la faible influence des basses fréquences en champ libre sur la réponse de la structure. Ceci s'explique par l'écart important entre ces fréquences et la fréquence fondamentale de la structure ($F_1 = 1,84$ Hz).

	V	vitesse (m/se	c)	Efforts		
Modèle	Champ	Fondation	Structure	М	Ν	Т
	libre (C) (B)		(A)	(kN.m)	(kN)	(kN)
Non linéaire	0,3368	0,3953	0,7164	238	222	160
Linéaire	0,892	1,012	1,45	430	216	291

Tableau 2.14 : Influence du modèle de comportement sur la réponse sismique du système sol-fondationbâtiment (Enregistrement de Chi-Chi)

Amplification (v/v_{bm})

Figure 2.25 : Influence de la présence de la structure sur l'amplification dynamique (Modèle non linéaire, enregistrement Chi-Chi)

Figure 2.26 : Spectres du chargement et des réponses de la structure et en champ libre (Modèle non linéaire, enregistrement Chi-Chi)

Résultats obtenus avec l'enregistrement de Kocaeli

Le tableau 2.15 donne une comparaison des réponses de la structure aux enregistrements de Chi-Chi et Kocaeli. On note que l'enregistrement de Kocaeli induit une amplification dynamique plus forte que celle de l'enregistrement de Chi-Chi : le rapport entre les deux amplifications atteint 2,1 en champ libre et 1,15 au niveau de la structure. La faible augmentation de l'amplification au niveau de la structure se traduit par une légère augmentation des efforts maximaux à la base de la structure (de l'ordre de 4%).

La figure 2.27 donne le profil d'amplification de la vitesse dans le massif du sol. On note la forte amplification de la réponse à l'enregistrement de Kocaeli par rapport à celle de l'enregistrement de Chi-Chi, notamment dans la partie supérieure de la couche du sol.

La figure 2.28b donne les spectres de la réponse en champ libre. On note l'apparition des pics à faibles fréquences dans la réponse à l'enregistrement de Kocaeli. Ceci est conforme à la

présence des basses fréquences dans le spectre de ce chargement et à la présence des modes propres à basses fréquences pour le massif du sol.

La figure 2.28a donne les spectres de réponse de la structure. On note l'apparition des pics à faibles fréquences dans la réponse à l'enregistrement de Kocaeli et la présence d'un pic majeur pour cet enregistrement à la fréquence F = 1,75 Hz. Pour l'enregistrement de Chi-Chi, on note la présence d'un pic à la fréquence F = 1,52 Hz. Les pics majeurs sont proches de la « fréquence fondamentale de l'ensemble sol-fondation-structure ». A noter que cette « fréquence » n'est pas intrinsèque, car elle dépend du niveau de déformations induites lors du chargement (modèle élastique non linéaire).

Enregistre		Vitesse (m/sec)	Efforts			
ment	Champ libre (C)	Fondation (B)	Structure (A)	M (kN.m)	N (kN)	T (kN)
Kocaeli	0,709	0,69	0,83	247,8	213,7	162,2
Chi-Chi	0,3368	0,3953	0,7164	238,3	222,4	159,5

 Tableau 2.15 : Comparaison entre les réponses aux enregistrements Chi-Chi et Kocaeli (Structure à un seul étage, modèle élastique non linéaire)

Figure 2.27 : Influence du chargement sur l'amplification de la vitesse latérale (Modèle élastique non linéaire)

Figure 2.28a : Influence du chargement sur le spectre de vitesse de la structure (Modèle élastique non linéaire)

Figure 2.28b : Influence du chargement sur le spectre de vitesse en champ libre (Modèle élastique non linéaire)

2.4.3 Structures à 5 étages

Dans cette section nous étudions l'influence de l'interaction sol-fondation-structure sur la réponse d'une structure à cinq étages (Figure 2.29).

Figure 2.29 : Modèle utilisé pour étudier l'influence de l'ISS sur la réponse sismique d'un bâtiment à plusieurs étages

Résultats avec l'enregistrement de Chi-Chi

La figure 2.30 présente la variation de la vitesse en différents points du système solfondation-structure (A, B et C). On remarque que l'amplification de vitesse au niveau de la structure (A) est supérieure à celle de la fondation (B), et toutes les deux sont largement supérieures à celle du champ libre. On obtient une amplification de l'ordre de 1,4, 1,07 et 0,84 pour la structure, la fondation et le champ libre, respectivement.

Figure 2.30 : Variation de la vitesse en différents points du système sol-fondation-structure (Modèle élastique non linéaire, enregistrement de Chi-Chi)

Le tableau 2.16 donne l'influence du comportement du sol sur la réponse sismique du système sol-fondation-structure. On note que l'amplification dynamique du système avec un comportement élastique non linéaire est largement inférieure à celle du système avec un comportement élastique linéaire. Le rapport entre les deux amplifications au niveau de la structure est égal à 0,4. La faible amplification du système non linéaire conduit également à des faibles efforts au niveau de la base de la structure, notamment pour le moment fléchissant et l'effort tranchant. Le moment fléchissant et l'effort tranchant obtenus avec un système non linéaire sont de l'ordre de 40% de ceux obtenus avec un système linéaire.

Tableau 2.16 : Influence du modèle de comportement sur la réponse sismique du système sol-fondation-
bâtiment (Enregistrement de Chi-Chi)

Séisme	V	itesse (m/se	c)	Efforts		
E (z)	Champ	Fondation	Structure	М	Ν	Т
	libre (C)	(B)	(A)	(kN.m)	(kN)	(kN)
Non linéaire.	0,3368	0,429	0,562	408,8	594	275,5
Linéaire	0,892	1,04	1,39	1106	610,6	754,9

La figure 2.31 donne les spectres du chargement appliqué et des réponses en champ libre et au niveau de la structure. On note que la réponse de la structure présente plusieurs pics dont la majorité coïncide avec les pics de chargement et de la couche du sol en champ libre (fréquences propres de la couche du sol).

Figure 2.31 : Spectre du chargement et de la réponse de la structure (Modèle élastique non linéaire, enregistrement de Chi-Chi)

Résultats avec l'enregistrement de Kocaeli

Le tableau 2.17 donne l'influence du comportement du sol sur la réponse sismique du système sol-fondation-structure à l'enregistrement de Kocaeli. On note que l'amplification dynamique du système avec un comportement élastique non linéaire est largement inférieure à celle du système avec un comportement élastique linéaire. Le rapport entre les deux amplifications au niveau de la structure est égal à 0,6. La faible amplification du système non linéaire conduit à des faibles efforts au niveau de la base de la structure, notamment pour le

moment fléchissant et l'effort tranchant. Les valeurs de ces deux efforts obtenues avec un système non linéaire sont de l'ordre de 45% de celles obtenues avec un système linéaire.

		F	Efforts			
Modèle	Champ	Fondation	Structure	М	Ν	Т
	libre (C) (B)		(A)	(kN.m)	(kN)	(kN)
Non linéaire	0,709	0,729	0,781	372	614	254
Linéaire	0,785	0,993	1,25	821	593	561

 Tableau 2.17 : Influence du modèle de comportement sur la réponse sismique du système sol-fondationbâtiment (Enregistrement de Kocaeli)

La figure 2.32 donne les spectres de réponses. On note que la réponse de la structure présente plusieurs pics dont la majorité coïncide avec les pics de chargement et du sol en champ libre.

Figure 2.32 : Exemple de référence : Analyse de Fourier structure et champ libre (Sous le chargement de Kocaeli)

La figure 2.33 donne les spectres de réponse de la structure obtenus avec les deux enregistrements. On note l'apparition des pics à faibles fréquences dans la réponse à l'enregistrement de Kocaeli dans la gamme de fréquence (0,5 - 1,5 Hz). Pour l'enregistrement de Chi-Chi, on note la présence de deux pics majeurs. Le premier correspond à la « fréquence fondamentale de l'ensemble sol-fondation-structure » ; le second correspond au pic de l'enregistrement.

Figure 2.33 : Influence du chargement sur le spectre de vitesse de la structure de cinq étages (Modèle élastique non linéaire)

1.4 Conclusion

Ce chapitre a comporté une analyse élastique linéaire et non linéaire de la réponse sismique de structure de type bâtiment à des enregistrements sismiques réels. Les analyses ont été effectuées à l'aide d'une approche globale intégrant le sol, la fondation et la structure.

L'analyse montre que l'interaction sol-fondation-structure est complexe. Elle fait intervenir plusieurs paramètres, notamment le contenu fréquentiel du chargement, les fréquences propres du massif du sol et de la structure. Les fréquences du chargement et du massif du sol conditionnement l'amplification du mouvement sismique à la base de structure ; la réponse de la superstructure fait intervenir par la suite sa fréquence propre.

Le comportement non linéaire du sol rend l'analyse de l'interaction sol-structure plus complexe à cause de l'apparition de multiples fréquences dans le massif de sol. L'influence de ces fréquences peut être faible dans le cas où elles sont éloignées des fréquences dominantes du chargement. Dans les cas traités, nous avons constaté une influence très importante du comportement non linéaire, avec une réduction de l'amplification dynamique de l'ordre de 50% par rapport au modèle élastique linéaire.

Dans le chapitre suivant, nous allons étudier à l'aide d'un modèle élastoplastique l'influence de l'interaction sol-structure sur la réponse sismique des bâtiments.

CHAPITRE III :

Analyse élastoplastique de l'interaction sol-fondation-structure

CHAPITRE III :

Analyse élastoplastique de l'interaction sol-fondation-structure

Dans ce chapitre, on propose d'étudier l'influence du comportement non linéaire du sol et de la structure sur l'interaction sol-fondation-structure. Le chapitre est composé de deux parties. La première traite de l'influence du comportement élastoplastique du sol, la seconde traite du comportement non linéaire du sol et de la structure.

3.1 Influence du comportement élastoplastique du sol

3.1.1 Introduction

Les dégâts causés par plusieurs tremblements de terre (Bhuj 2001, Gujarat 2001, Kocaeli 1999, Chi-Chi 1999, Kobé 1995, Northridge 1994, Loma Prieta 1989) ont révélé que les nonlinéarités des matériaux devraient être prises en compte dans la conception et le calcul des ouvrages en zone sismique.

La non linéarité des sols réduit généralement l'amplification dynamique et affecte les fréquences du système sol-structure. Sur le site instrumenté de Garner Valley (California, USA), Archuleta (1992) a observé que le facteur d'amplification des mouvements faibles est significativement supérieur à celui issu des mouvements forts dans la gamme de fréquences 3 - 40 Hz (Figure 3.1).

Figure 3.1 : Variation de l'amplification avec la fréquence (Archuleta, 1992)

Field et al. (1997) ont mené une étude sur le séisme de Northridge (17 janvier 1994, magnitude 6,7 à Los Angeles, USA). Ils ont montré une dépendance de l'effet de site vis-à-vis de la magnitude du séisme. Les sites étudiés par Field et al. (1997) ont montré une amplification deux fois plus faible que celle observée lors des répliques. Cette propriété peut être interprétée comme une conséquence du comportement non-linéaire des sols.

Diverses observations sismologiques (Archuleta, 1992 ; Anderson et al., 2001) indiquent que les non linéarités apparaissent habituellement pour des sollicitations en accélération de l'ordre de 0,1 à 0,2g. A ce niveau d'accélération, l'amplification dépend de l'amortissement.

Su et al. (1998) ont analysé les enregistrements sur les sites alluvionnaires situés dans le bassin de San Fernando et de Los Angeles. Ils ont noté un effet des non linéarités pour des enregistrements ayant un PGA (amplitude maximale de l'accélérogramme) supérieur à 0,3g, ou un PGV (amplitude maximale du vélocigramme) supérieur à 20 cm/s (Figure 3.2).

Figure 3.2 : Rapports spectraux moyens entre les réponses de site sous mouvement faible et sous mouvement fort sur une gamme de fréquence allant de 0,5 à 15 Hz en fonction du PGA (a) et du PGV (b) (Su et al., 1998).

Trifunac et al. (2001) ont analysé les fréquences enregistrées d'un bâtiment de 7 étages en Californie. Ils ont noté des modifications de la fréquence dominante avec la modification de l'amplitude de chargement. Ils ont attribué cette modification aux non linéarités du sol.

Halabian et al. (2002) ont étudié l'influence de la plasticité du sol sur la réponse dynamique des structures massives. Ils ont trouvé que la non-linéarité de sol réduit la fréquence fondamentale des structures massives fondées sur des sols argileux ou sableux (Figure 3.3).

Sol sableux Sol argileux Figure 3.3 : influence de la plasticité sur la réponse des structures massives. (Amir M. Halabian, et al. 2002)

La modélisation du comportement non-linéaire de sol sous chargement sismique remonte à plus d'une cinquantaine d'années. Certains chercheurs ont utilisé la méthode de linéarisation «Equivalent Linear Method» (Iwan, 1967, Seed et Idriss, 1968, 1969, Schnabel et al., 1972, Idriss et Sun, 1992, Yoshida et all. 2002), d'autres ont utilisé des modèles non linéaires (Kondner 1963, Streeter et al. 1974, Joyner et Chen, 1975, Lee et Finn, 1978, 1991, Martin et Seed, 1982, Elgamal, 1991, Wang et al., 1992, Pyke, 1992, Lok, 1999, Borja et Amies, 1994 et Barcena et al. 2007). La simplicité de la première approche l'a rendue très populaire. Elle a été introduite dans plusieurs codes de calcul tels que SHAKE, FLUSH ou FLAC3D. Les modèles basés sur la plasticité sont moins utilisés. Kramer et Paulsen (2005) ont montré que le critère de Mohr-Coulomb et le modèle hyperbolique sont les plus utilisés dans l'analyse sismique de l'interaction sol-structure. Makdisi et Wang (2004) indiquent que ces deux modèles reproduisent plusieurs aspects de la réponse sismique.

Dans cette partie, on propose d'analyser l'influence de la plasticité sur l'interaction solstructure en utilisant un modèle élastique parfaitement plastique avec le critère de Mohr-Coulomb. Ce modèle est largement utilisé en géotechnique en raison de sa simplicité et du nombre réduit de ses paramètres. Ses paramètres ont un sens physique et peuvent être déterminés à partir des essais simples.

3.1.2. Structure à un seul niveau

3.1.2.1. Sol cohérent

L'exemple traité est illustré sur la figure 3.4. Il concerne un portique à une seule ouverture de 4 m de coté, fondé sur une couche de sol de 15m de profondeur. Le sol a une rigidité croissante avec la profondeur selon l'expression 2.7 (voir chapitre II ; $E_{0s} = 20$ MPa, Pa = 100 kPa, $z_0 = 1$ m, A=0,5 ρ S =1700 kg/m3). La fréquence fondamentale de la couche du sol est égale à f₁ = 1,09 Hz. Elle a été déduite de la réponse élastique en champ libre. La structure repose sur des semelles isolées en béton de 2 m de côté. La masse du plancher est égale à 80 tonnes. La rigidité de la structure, supposée encastrée à sa base, et sa fréquence sont respectivement égales à $K_{st} = 12149 \text{ kN/m}$ et $f_{st} = 1.9 \text{ Hz}$.

Le comportement du sol est régi par le critère de Mohr-Coulomb. Les caractéristiques du sol sont résumées dans le tableau 3.1. Un amortissement de type (Rayleigh) est assigné au sol pour éviter la pseudo-résonance en petites déformations. Le centre fréquentiel de l'amortissement est supposé égal à la fréquence du chargement. Le taux d'amortissement de Rayleigh est de 5%. Le comportement du système fondation-structure est supposé élastique. Le calcul a été effectué avec l'enregistrement de Chi-Chi (Taiwan, 1999) (V_s= 40 cm/sec, f_{ch} = 1,53 Hz) présenté dans le chapitre II (Figure 3.4).

Charge sismique appliquée à la base du massif de sol

Figure 3.4 : Exemple traité: Structure à un seul étage

ρ_s (kg/m ³)	E_{s} (MPa)	V_s	K_0	ξ_s (%)	C KPa	$\varphi_{(^\circ)}$	ψ (°)
1700	20 f(z)	0,4	0,5	5	50	0	0

Tableau 3.1 : Propriétés du sol cohérent

La figure 3.5a montre la variation de la vitesse normalisée (V/V_{bm}) dans la direction du chargement en différents points du système sol-fondation-structure. On note que l'amplification de la fondation est supérieure à celle de la surface du sol, et toutes les deux sont inférieures à celle de la superstructure. On obtient des vitesses de l'ordre de 1,24, 0,622 et 0,541 m/sec pour la structure, la fondation et la surface de sol, respectivement.

La figure 3.5b présente les spectres normalisés de vitesse en différents points du système sol-fondation-structure ($S_v/S_v du champ libre$).Elle confirme la forte amplification du mouvement au niveau de la structure ; elle atteint 2,54.

La figure 3.6 illustre les zones plastifiées au cours du chargement. On note une progression de la plasticité en partant de la base du massif du sol. A l'instant t = 11,8 sec, la plasticité couvre la moitié inférieure du massif du sol. La zone supérieure du massif du sol reste élastique.

La figure 3.7 donne l'analyse de Fourier du chargement appliqué et des réponses en champ libre et au niveau de la structure. On note que la réponse de la structure présente trois pics qui correspondent respectivement à la fréquence fondamentale du massif du sol ($f_1 = 1,08$ Hz), la fréquence du pic de chargement ($f_{ch}=1,53$ Hz) et la fréquence de l'ensemble structure-solfondation (F=1,78 Hz). Le pic principal coïncide avec celui du massif du sol.

Les efforts dynamiques maximaux à la base de structure sont égaux à 329 kN.m, 218 kN et 224 kN pour le moment fléchissant, l'effort normal et l'effort tranchant, respectivement. Remarquons que l'effort normal total sur la fondation est de 218 kN, le poids propre induit une part importante de cet effort (200 kN). Les valeurs élevées du moment fléchissant et de l'effort tranchant résultent de la forte amplification du mouvement au niveau de la structure, qui atteint 2,54.

(Enregistrement de Chi-Chi)

Figure 3.6 : Sol cohérent - Extension de la plasticité dans le sol

Figure 3.7 : Sol cohérent – Analyse de Fourier de la vitesse (Enregistrement de Chi-Chi)

Les figures 3.8a et 3.8b montrent une comparaison entre les réponses élastique et élastoplastique du système sol-fondation-structure. On note au début du chargement un accord entre les deux réponses, par la suite la plasticité induit un amortissement supplémentaire qui cause une réduction de l'amplification du mouvement. Cette réduction se traduit par une diminution des efforts induits au niveau de la fondation. Cela peut être expliqué par le fait que la mise en plasticité du sol réduit l'énergie transmise vers la superstructure.

Le tableau 3.2 donne une comparaison des deux réponses en termes de vitesse, et d'efforts maximaux au niveau de la fondation. On constate que la plasticité induit une réduction de l'ordre de 24% de l'effort tranchant et du moment fléchissant.

Figure 3.8a : Sol cohérent - Influence de la plasticité sur la réponse du système sol-fondationstructure (vitesse de la structure)

Figure 3.8b: Sol cohérent - Influence de la plasticité sur la réponse du système sol-fondation-structure (Amplification de vitesse dans la couche du sol)

Tableau 3.2 : Influence de la plasticité sur la réponse du système sol-fondation-structure (Sol cohérent, Enregistrement de Chi-Chi)

		Efforts				
Comportement	Champ libre (C)	Fondation (B)	Structure (A)	M (kN.m)	N (kN)	T (kN)
Elastoplastique	0,541	0,6219	1,24	329,8	218,8	224,2
Elastique	0,892	1,012	1,45	430	216,6	291,1

3.1.2.2 Sol frottant

L'étude précédente a été reprise pour un sol frottant dont les caractéristiques sont données dans le tableau 3.3

Tableau 3.3 : Propriétés du sol frottant

$\rho_s (\text{kg/m}^3)$	E_{s} (MPa)	V_{s}	K_0	ξ_s (%)	C (kPa)	$\varphi_{(^\circ)}$	ψ (°)
1700	20 f(z)	0,4	0,5	5	3	30	0

La figure 3.9a montre la variation de la vitesse en différents points du système solfondation-structure. On note que l'amplification de la fondation est supérieure à celle de la surface du sol, et toutes les deux sont inférieures à celle de la masse de la structure. On obtient une vitesse de l'ordre de 1,25, 0,835 et 0,739 m/sec pour la structure, la fondation et en champ libre, respectivement.

La figure 3.9b présente les spectres normalisés de vitesse en différents points du système sol-fondation-structure. Elle confirme la forte amplification du mouvement au niveau de la structure, qui atteint 2,41.

La figure 3.10 illustre l'extension de la plasticité au cours du chargement. On note une progression de la plasticité en partant de la surface du sol vers la base. Ceci résulte de l'augmentation du confinement du sol avec la profondeur, qui induit une augmentation de sa résistance au cisaillement avec la profondeur. A l'instant t = 11,8 sec, la plasticité couvre l'ensemble du massif du sol.

La figure 3.11 donne l'analyse de Fourier du chargement appliqué et de la réponse de la structure. On note que la réponse de la structure présente deux pics qui correspondent respectivement à la fréquence fondamentale du massif du sol ($f_1 = 1,08$ Hz) et la fréquence du pic de chargement ($f_{ch} = 1,53$ Hz). Le pic correspondant à la fréquence de l'ensemble structure-sol-fondation n'apparaît pas clairement, il est proche de la fréquence du pic du chargement.

Les efforts dynamiques maximaux à la base de la structure sont égaux à 330 kN.m, 231 kN et 224 kN pour le moment fléchissant, l'effort normal et l'effort tranchant, respectivement. Remarquons que l'effort normal total sur la fondation est de 231 kN, le poids propre induit une part importante de cet effort (200 kN). Les valeurs élevées du moment fléchissant et de l'effort tranchant résultent de la forte amplification du mouvement au niveau de la structure, qui atteint 3,12.

Temps (sec)

Figure 3.9b : Sol frottant - Analyse spectrale de la vitesse (Enregistrement de Chi-Chi)

Figure 3.10 : Sol frottant - Extension de la plasticité dans le sol

Figure 3.11 : Sol frottant – Analyse de Fourier de la vitesse (Enregistrement de Chi-Chi)

La figure 3.12 montre une comparaison entre les réponses élastique et élastoplastique du système sol-fondation-structure. On note au début du chargement un accord entre les deux réponses, par la suite la plasticité du sol induit une réduction de l'amplification du mouvement. Cette réduction se traduit par une diminution des efforts induits au niveau de la fondation.

Le tableau 3.4 donne une comparaison de ces deux réponses. On constate une diminution de la vitesse pour les différents points du système, Cette diminution est égale à 18% pour les points (B et C) et à 16% pour le point (A). Remarquons que la diminution de l'effort tranchant et du moment fléchissant est de l'ordre de 24%.

Figure 3.12 : Sol frottant- Influence de la plasticité sur la réponse du système sol-fondation-structure (Vitesse de la structure)

	V	/itesse (m/sec	Efforts			
Comportement	Champ	Fondation	Structure	М	Ν	Т
	libre (C)	(B)	(A)	(kN.m)	(kN)	(kN)
Elastoplastique	0,739	0,835	1,249	330	230,6	224
Elastique	0,892	1,012	1,45	430	216,6	291,1

Tableau 3.4 : Influence de la plasticité sur la réponse du système sol-fondation-structure (Sol frottant, Enregistrement de Chi-Chi)

Une analyse a été effectuée avec l'enregistrement de Kocaeli. La figure 3.13 illustre l'analyse de Fourier du chargement appliqué et de la réponse de la structure. On note la présence de trois pics, qui correspondent respectivement à la fréquence fondamentale du massif du sol ($f_1 = 1,08$ Hz), la fréquence du second pic de chargement ($f_{ch} = 1,0$ Hz) et la fréquence de l'ensemble sol-fondation-structure (F = 1,73 Hz).

Le tableau 3.5 donne une comparaison des réponses élastique et élastoplastique en termes de vitesse et des efforts maximaux au niveau de la liaison portique-fondation. On constate que la plasticité induit une diminution de la vitesse pour les différents points de système et une réduction de l'ordre de 13% de l'effort tranchant et du moment fléchissant

		Efforts				
Comportement	Champ	Fondation	Structure	М	Ν	Т
	libre (C)	(B)	(A)	(kN.m)	(kN)	(kN)
Elastoplastique	0,766	0,782	1,19	306	254	206
Elastique	0,785	0,884	1,47	352	212	239

Tableau 3.5 : Influence de la plasticité sur la réponse du système sol-fondation-structure (Sol frottant, Enregistrement Kocaeli)

Figure 3.13 : Sol frottant – Analyse de Fourier de la vitesse (Enregistrement de Kocaeli)

3.1.3 Structure à 5 étages

Cette section présente une analyse de l'influence de la plasticité sur l'interaction solfondation-structure d'une structure de cinq niveaux dont les propriétés sont illustrées dans la figure 3.14. Les propriétés mécaniques de l'ensemble sol-fondation-structure sont identiques à celles retenues dans l'étude du système à un seul niveau.

Figure 3.14 : Structure à 5 niveaux

3.1.3.1 Sol cohérent

La figure 3.15a montre la variation de la vitesse latérale en différents points du système solfondation-structure. On obtient une vitesse maximale de l'ordre de 0,954, 0,697 et 0,541 m/sec pour la structure, la fondation et la surface de sol, respectivement. La figure 3.15b présente les spectres normalisés de vitesse en différents points du système sol-fondation-structure. On note que l'amplification du mouvement en tête de la structure atteint 1,88. La figure 3.16 illustre la zone plastifiée au cours du chargement. On note que la plasticité couvre la moitié inférieure du massif du sol et le voisinage de la fondation.

La figure 3.17 donne l'analyse de Fourier du chargement appliqué et de la vitesse en tête de la structure. On note que la réponse de la structure présente deux pics. La fréquence du pic majeur est proche de la fréquence fondamentale du massif du sol ($f_1 = 1,08$ Hz) et de la première fréquence du système sol-fondation-structure. La fréquence du second pic est proche de celle de la fréquence du pic majeur du chargement ($f_{ch}=1,53$ Hz).

Les efforts dynamiques maximaux à la base de structure sont égaux à 823 kN.m, 630 kN et 557 kN pour le moment fléchissant, l'effort normal et l'effort tranchant, respectivement. L'effort normal total sur la fondation est de 630 kN, le poids propre induit une part importante de cet effort (557 kN).

Temps (sec)

Figure 3.16 : Sol cohérent - Extension de la plasticité dans le sol

Figure 3.17 : Sol cohérent – Analyse de Fourier de la vitesse (Enregistrement de Chi-Chi)

Le tableau 3.6 montre une comparaison entre les réponses élastique et élastoplastique du système sol-fondation-structure. On note que la plasticité du sol induit une réduction de l'amplification du mouvement. Cette réduction se traduit par une diminution de l'ordre de 26% de l'effort tranchant et du moment fléchissant.

	,	Vitesse (m/sec	Efforts			
Comportement	Champ	Fondation	Structure	М	Ν	Т
	libre (C) (B)		(A)	(kN.m)	(kN)	(kN)
Elastique	0,892	1,04	1,39	1106	611	755
Elastoplastique	0,541	0,697	0,954	823	630	557

Tableau 3.6 Influence de la plasticité sur la réponse du système sol-fondation-structure(Sol frottant, Enregistrement de Chi-Chi)

3.1.3.2 Sol frottant

La figure 3.18a illustre la variation de la vitesse en différents points du système solfondation-structure. On note une forte amplification de la vitesse au niveau de la structure.

La figure 3.18b présente les spectres normalisés de vitesse en différents points du système sol-fondation-structure. Elle montre une amplification de l'ordre de 1,7 en tête de la structure. La figure 3.19 illustre l'extension de la plasticité induite par le chargement. On note que la plasticité couvre quasiment l'ensemble du massif du sol.

La figure 3.20 donne l'analyse de Fourier du chargement appliqué et de la réponse de la structure. On note que la réponse de la structure présente un pic majeur dont la fréquence (f = 1,1Hz) est proche de celle du massif du sol et de la première fréquence du système solfondation-structure. Le second pic se produit à une fréquence f = 1,5Hz. Sa contribution au mouvement est faible par rapport à celle du premier pic.

Les efforts dynamiques maximaux à la base de structure sont 670 kN.m, 7501 kN et 446 pour le moment fléchissant, l'effort normal et l'effort tranchant, respectivement. Le poids propre induit une part importante de l'effort normal (575 kN).

Le tableau 3.7 donne une comparaison entre les réponses élastique et élastoplastique On note que la plasticité induit une forte diminution de l'ordre de 40% de l'effort tranchant et du moment fléchissant. La forte influence de la plasticité résulte de sa très forte extension dans le massif du sol.

Figure 3.18a : Sol frottant - Amplification de la vitesse latérale (Enregistrement de Chi-Chi)

Figure 3.18b : Sol frottant - Analyse spectrale de la vitesse (Enregistrement de Chi-Chi)

Figure 3.19 : Sol frottant - Extension de la plasticité dans le sol

Figure 3.20 : Sol frottant – Analyse de Fourier de la vitesse (Enregistrement de Chi-Chi)

Tableau 3.7 : Influence de la plasticité sur la réponse du système sol-fondation-structure (Sol frottant, Enregistrement de Chi-Chi)

	Y	Vitesse (m/sec		Efforts		
Comportement	Champ libre (C)	Fondation (B)	Structure (A)	M (kN m)	N (kN)	T (kN)
Elastique	0,892	1,04	1,39	1106	611	(RIV) 755
Elastoplastique	0,739	0,74	1,2	670	750	446

3.2 Influence de la plasticité de la structure et du sol

3.2.1 Introduction

Des études ont montré que le comportement non linéaire des matériaux peut avoir une influence très importante sur la réponse sismique des structures de type bâtiment. Une étude expérimentale réalisée par Gallipoli et al. (2004) a montré que les dommages des éléments de structure produisent une diminution de l'ordre de 25% de la fréquence fondamentale de la structure (Figure 3.21).

Figure 3.21: Influence de dommage de la structure sur sa fréquence fondamentale (Gallipoli 2004)

Dans le cadre du programme européen ECOLEADER, des essais ont été réalisés sur la table sismique du laboratoire LNEC à Lisbonne. La structure testée correspond à un bâtiment de 5 niveaux à murs porteurs. Une série d'accélérations ($TO_x = 0.3$ g à $T6_x = 0.85$ g) a été appliquée à la maquette suivant la direction X et la direction Y. Des signaux naturels de type séisme proche (séisme Tolmezzo-Italie) ont été utilisés. Les résultats obtenus montrent que l'endommagement de la structure induit une chute de l'ordre de 50% de sa fréquence (Contrat DRAST/Mission Génie Civil N° 04 MGC 5 07)

Figure 3.22 : Essai : Spectre de réponse des déplacements relatifs en tête selon X (Contrat DRAST/Mission Génie Civil N° 04 MGC 5 07). J. MAZARS et al. (2005)

Figure 3.23 : Modèle simplifié: Spectre de réponse des déplacements relatifs en tête selon X (calcul postessais) (Contrat DRAST/Mission Génie Civil N° 04 MGC 5 07). J. MAZARS et al. (2005)

Dans cette partie, le comportement non linéaire des éléments de la structure est décrit à l'aide d'un modèle élastique parfaitement plastique pour le moment fléchissant. Ce modèle constitue une importante simplification du comportement d'un élément de structure en béton armé. Il est néanmoins communément accepté moyennant une certaine diminution de la résistance à la compression du béton qui dépend de la fragilité de son comportement (Muttoni et al. 1997, SIA 2003c). L'étude est réalisée pour trois types de sol :

- Sol élastique linéaire
- Sol à comportement élastique non linéaire avec amortissement hystérétique
- Sol élastoplastique.

L'étude est effectuée pour des structures à un et à 3 niveaux.

3.2.2 Structures à un seul niveau

3.2.2.1 Sol élastique

L'exemple traité concerne un portique à une seule ouverture de 4 m de coté, fondé sur une couche de sol de 15m de profondeur (Figure 3.24). Le module de déformation du sol E_{0s} varie avec la profondeur selon l'équation 2.7 ($E_{0s} = 20$ MPa, $P_a = 100$ kPa, $z_0 = 1$ m, A=0,5 $\rho_S = 1700$ kg/m³). Les caractéristiques du sol sont données dans le tableau 3.8a. La structure repose sur des semelles superficielles isolées de 2 m de côté. La masse du plancher est égale à 80 tons. Le comportement des éléments de la structure est supposé élastique parfaitement plastique en flexion. Les caractéristiques de la structure sont données dans les tableaux 3.8b. La rigidité de la structure, supposée encastrée à sa base, et sa fréquence sont respectivement égales à $K_{st} = 12149$ kN/m et $f_{st} = 1.9$ Hz, la résistance en flexion de la section est égale à Mp =100.9 kN.m.

Le calcule a été effectué avec l'enregistrement de Chi-Chi.

Tableau 3.8a : Propriétés du sol

ρ_{s} (kg/m3)	E _s (MPa)	V _s	K_{0}	$\xi_{(\%)}$
1700	20	0,4	0,5	5

Tableau 3.8b : Propriétés de la superstructure.

ρ _{st} (kg/m3)	E _{st} (GPa)	ν_{st}	ξ _{st} (%)	E _{st} .I _{st} (MN.m2)	Masse (tonne)
2500	32	0,3	2	27,338	80

Charge sismique appliquée à la base du massif de sol

Figure 3.24 : Exemple de référence

La figure 3.25 donne l'influence du comportement élastoplastique de la structure sur l'interaction sol-fondation-structure. On note que la plasticité dans les éléments de la structure induit une très forte réduction de l'amplification dynamique de la superstructure. Cette réduction atteint 45% par rapport à la réponse obtenue avec un comportement élastique de la structure. La figure 3.26 donne l'analyse de Fourier des réponses obtenues avec un comportement élastique et un comportement élastoplastique de la structure. On note que la plasticité filtre les pics correspondants aux fréquences élevées (1,5 Hz et 2 Hz). La réponse de la structure est dominée par la fréquence propre de la couche du sol.

La figure 3.27 illustre la variation du moment fléchissant à la liaison structure-fondation. On note que le seuil du moment fléchissant est très vite atteint. La plasticité limite le transfert du moment fléchissant entre la superstructure et le système sol-fondation.

Le tableau 3.9 donne l'influence du comportement de la structure sur les efforts maximaux induits à la liaison structure-fondation. On note que la plasticité induit une réduction de l'ordre de 75% de l'effort tranchant.

Temps (sec)

Figure 3.25 : Influence du comportement élastoplastique de la structure sur l'amplification de la vitesse en tête de la structure (Sol élastique)

Figure 3.26 : Analyse du Fourier de la vitesse en tête de la structure (Structure élastique et élastoplastique, sol élastique, enregistrement de Chi-Chi)

 Tableau 3.9 : Influence du comportement de la structure sur l'interaction sol-fondation-structure (Sol élastique)

Comportement de la	Efforts				
structure	M (kN.m)	N (kN)	T (kN)		
Elastique	430	216	291		
Elasto-plastique	100	208	72		

Figure 3.27 : Variation du moment fléchissant à la liaison structure-fondation (Sol élastique)

3.2.2.2 Sol à comportement élastique non linéaire

Les analyses présentées dans la section précédente ont été reprises en assumant un comportement élastique non linéaire du sol, qui est régi par le modèle présenté dans le second chapitre (section 2.4.1).

La figure 3.28 donne l'influence du comportement élastoplastique de la structure sur l'amplification dynamique au niveau de la structure. On note que la plasticité induit une réduction de l'ordre de 20% de l'amplification dynamique. La figure 3.29 présente une analyse de Fourier des réponses obtenues avec un comportement élastique et un comportement élastoplastique de la structure. On note que la plasticité réduit la contribution du pic à la fréquence f = 1,55 Hz et fait croître celle du pic à la fréquence f = 1,27 Hz.

La figure 3.30 illustre la variation du moment fléchissant à la liaison structure-fondation. On note que le seuil du moment fléchissant est vite atteint dans cette section. La plasticité limite le transfert du moment fléchissant entre la masse de la structure et le système sol-fondation.

Le tableau 3.10 donne l'influence du comportement de la structure sur les efforts maximaux induits à la liaison structure-fondation. On note que la plasticité induit une réduction de l'ordre de 55% de l'effort tranchant.

Figure 3.28 : Influence du comportement élastoplastique de la structure sur l'amplification de la vitesse en tête de la structure (Sol élastique non linéaire)

Figure 3.29 : Analyse du Fourier de la vitesse en tête de la structure (Structure élastique et élastoplastique, sol élastique non linéaire)

Figure 3.30 : Variation du moment fléchissant à la liaison structure-fondation (Sol élastique non linéaire)

	Efforts				
Modèle de la structure	М	Ν	Т		
	(kN.m)	(kN)	(kN)		
Elastique	238	222	160		
Elastoplastique	100	210	70		

 Tableau 3.10: Influence du comportement de la structure sur l'interaction sol-fondation-structure (Sol élastique non linéaire)

3.2.2.3 Sol à comportement élastoplastique (sol cohérant, C=50 kPa)

L'étude présentée ci-dessus a été reprise pour un sol cohérent dont le comportement est régi par un modèle élastique parfaitement plastique. Les propriétés des sols sont résumées dans le tableau 3.11.

Tableau 3.11 : Propriétés du sol cohérent

$\rho_s (\text{kg/m}^3)$	E_{s} (MPa)	V_s	K_0	ξ_{s} (%)	C (kPa)
1700	20 f(z)	0,4	0,5	5	50

La figure 3.31a donne l'influence du comportement élastoplastique de la structure sur l'amplification dynamique au de la superstructure. On note que la plasticité dans la structure induit une réduction de l'ordre de 42% de l'amplification dynamique. La figure 3.31b illustre la variation du moment fléchissant à la liaison structure-fondation. On note que le seuil du moment fléchissant est vite atteint dans cette section.

La figure 3.32 présente l'analyse de Fourier des réponses obtenues avec un comportement élastique et un comportement élastoplastique de la structure. On note que la plasticité réduit la contribution des pics ayant des fréquences élevées (1,5 et 1,7 Hz) et fait croitre celle du pic à basse fréquence (f = 1,1 Hz).

Le tableau 3.12 donne l'influence du comportement de la structure sur les efforts maximaux à la liaison structure-fondation. On note que la plasticité induit une réduction de l'ordre de 68% de l'effort tranchant et du moment fléchissant.

Figure 3.31a : Influence du comportement élastoplastique de la structure sur l'amplification de la vitesse en tête de la structure (Sol cohérent)

Temps (sec)

Figure 3.31b : Influence du comportement élastoplastique de la structure sur le moment fléchissant à la liaison structure-fondation (Sol cohérent)

	Efforts				
Structure	М	Ν	Т		
	(kN.m)	(kN)	(kN)		
Elastique	330	219	224		
Elastoplastique	100	220	71		

Tableau 3.12 : Influence du comportement de la structure sur l'interaction sol-fondation-structure (Sol cohérent)

Figure 3.32 : Analyse du Fourier de la vitesse en tête de la structure (Sol cohérent, structure élastoplastique, Enregistrement de Chi-Chi)

3.2.3 Structures à plusieurs étages – couche de sol homogène

On présente dans cette section l'effet de la plasticité de la structure sur l'interaction solfondation-structure pour une structure à 3 niveaux. Les propriétés des éléments de la structure sont résumées dans le tableau 3.13 et la figure 3.33. La première fréquence de la structure supposée encastrée à sa base est *égale à* $f_{st} = 1,66$ Hz. La résistance à la flexion des éléments de la structure est égale à Mp =110 kN.m.

ρ _{st}	E _{st}	ν_{st}	ξ _{st}	E _{st} .I _{st}	Masse
(kg/m3)	(GPa)		(%)	(MN.m2)	(tonne)
2500	32	0,3	2	41,667	24

Tableau 3.13 : Propriétés de la superstructure (structure à 3 niveaux)

Figure 3.33 : Structure à 3 niveaux

3.2.3.1 Sol élastique linéaire

La figure 3.34 donne l'influence du comportement élastoplastique de la structure sur l'amplification dynamique au niveau de la structure. On note que la plasticité induit une réduction de l'ordre de 60% de l'amplification dynamique. La figure 3.35 illustre l'analyse de Fourier des réponses obtenues avec un comportement élastique et un comportement élastoplastique de la structure. Pour la structure élastique, on note la présence de deux pics qui correspondent à la fréquence fondamentale du massif du sol (f_1 =1,08 Hz) et à la fréquence du système sol-fondation-structure (F_{st} =1,6 Hz). Pour la structure à comportement élastoplastique, on note la présence d'un seul pic qui correspond à la fréquence fondamentale du sol. La plasticité filtre les pics à fréquences élevées.

Le tableau 3.14 donne l'influence du comportement de la structure sur les efforts maximaux à la liaison structure-fondation. On note que la plasticité induit une réduction de l'ordre de 73% de l'effort tranchant et du moment fléchissant.

Temps (sec)

Figure 3.34 : Influence du comportement de la structure sur l'amplification dynamique en tête de la structure (sol élastique, structure à 3 niveaux)

Figure 3.35 : Analyse du Fourier de la vitesse en tête de la structure (Sol élastique, structure élastoplastique à 3 niveaux)

Tableau 3.14 : Influence du comportement élastoplastique de la structure sur l'amplification de la vitesseen tête de la structure (Sol élastique, structure à 3 niveaux)

Stanotha	М	Ν	Т
Structure	(kN.m)	(kN)	(kN)
élastique	408	215	285
Elastoplastique	110	204	75

3.2.3.2 Sol à comportement élastoplastique

L'étude présentée ci-dessus a été reprise pour un sol cohérent dont les propriétés sont résumées dans le tableau 3.11.

La figure 3.36 donne l'influence du comportement élastoplastique de la structure sur l'amplification dynamique de la superstructure. On note que la plasticité induit une réduction de l'ordre de 48% de l'amplification dynamique.

La figure 3.37 illustre l'analyse de Fourier des réponses obtenues avec un comportement élastique et un comportement élastoplastique de la structure. Pour la structure élastique, on note la présence de deux pics qui correspondent à la fréquence fondamentale du massif du sol $(f_1=1,08 \text{ Hz})$ et à la fréquence du système sol-fondation-structure ($F_{st}=1,6 \text{ Hz}$). Pour la structure à comportement élastoplastique, on note la présence de deux pics, avec une forte atténuation du pic à fréquence élevée.

Le tableau 3.15 donne l'influence du comportement de la structure sur les efforts maximaux à la liaison structure-fondation. On note que la plasticité induit une réduction de l'ordre de 65% de l'effort tranchant et du moment fléchissant.

Temps (sec)

Figure 3.36 : Influence du comportement de la structure sur l'amplification dynamique en tête de la structure (sol cohérent, structure à 3 niveaux)

Figure 3.37 : Analyse de Fourier de la vitesse en tête de la structure (Sol cohérent, structure à 3 niveaux)

Tableau 3.15 : Influence du comportement élastoplastique de la structure sur l'amplification de la vitesseen tête de la structure (Sol cohérent, structure à 3 niveaux)

Stanoture	М	N	Т
Structure	(kN.m)	(kN)	(kN)
élastique	319	210	216
Elasto-plastique	110	210	74

3.3 Conclusion

Ce chapitre a comporté une étude numérique de l'influence du comportement non linéaire du sol et des matériaux de la structure sur l'interaction sol-fondation-structure.

Un modèle élastique parfaitement plastique, fondé sur le critère de Mohr-Coulomb, est utilisé pour le sol. Le choix de ce modèle est justifié par sa large utilisation en géotechnique. Les analyses ont été effectuées avec des enregistrements réels pour des sols cohérent et frottant. Pour les deux types de sol, les analyses montrent que la plasticité dans le sol induit deux effets : (i) un amortissement supplémentaire dû à la dissipation par déformations plastiques et (ii) une réduction des « fréquences propres » du système sol-fondation due à la réduction de la « rigidité » induite par la plasticité. L'ampleur de l'influence de la plasticité dépend de son extension dans le massif du sol, qui dépend de l'amplitude du chargement, de son contenue fréquentielle, et des fréquences propres du système sol-fondation-structure. Les analyses effectuées montrent que la plasticité induit une réduction de l'amplification dynamique et par conséquence des efforts induits dans la structure. Pour certaines configurations, la plasticité du sol induit une réduction de l'ordre de 25% des efforts dans la structure.

Le comportement non linéaire des éléments de la structure a été décrit par un modèle élastique -parfaitement plastique en flexion. Les analyses ont été effectuées pour trois modèles de comportement du sol : élastique, élastique non linéaire et élastoplastique.

Les analyses effectuées montrent que la plasticité des éléments de la structure affecte d'une manière très importante l'interaction sol-fondation-structure. La plasticité apparaît généralement à la liaison structure-fondation. Lors de son apparition, elle limite le transfert d'efforts entre la superstructure et la fondation, ce qui a pour effet de réduire les efforts inertiels. Pour certaines configurations étudiées, cette réduction atteint 75%.

Ce chapitre montre l'importance de la prise en compte du comportement non linéaire du sol et de la structure lors de la conception des structures en zone sismique.
Conclusion générale

Conclusion générale

Le présent travail a comporté une analyse à l'aide d'une modélisation numérique de l'influence de l'interaction sol-fondation-structure sur le comportement sismique des structures de type bâtiment. Il a été réalisé en utilisant une modélisation tridimensionnelle par différences finies intégrant dans la même analyse les différentes composantes du système, à savoir le sol, la fondation et la structure et prenant en compte les non linéarités du sol et des matériaux de la structure.

L'étude de l'influence de l'interaction sol-fondation-structure sur la fréquence fondamentale des structures de type bâtiment a montré que l'interaction sol-structure peut réduire d'une manière très importante la première fréquence des structures de type bâtiment. Un abaque a été proposé pour la prise en compte d'une manière simple de l'influence de cette interaction dans le calcul de la première fréquence des bâtiments. Cet abaque fait intervenir la rigidité relative sol-structure.

L'analyse tridimensionnelle du comportement sismique du système sol-fondationstructure a montré que de la réponse sismique de la structure dépend d'une manière sensible de l'interaction sol-structure. Cette dernière fait intervenir des mécanismes complexes qui dépendent du contenu fréquentiel du chargement, les fréquences propres du massif du sol et de la structure et du comportement non linéaire du sol et des matériaux de la structure.

Le comportement élastique non linéaire du sol rend l'analyse de l'interaction solstructure très complexe à cause de l'apparition de multiples fréquences dans la réponse du massif de sol. L'influence de ces fréquences peut être faible dans le cas où elles sont éloignées des fréquences dominantes du chargement. Dans les cas traités, nous avons constaté une influence importante du comportement non linéaire du système élastique, avec une réduction de l'amplification dynamique de l'ordre de 50% par rapport au modèle élastique linéaire.

L'étude de l'influence de la plasticité du sol sur l'interaction sol-structure a montré que la plasticité du sol induit deux effets, à savoir un amortissement supplémentaire dû à la dissipation par déformations plastiques et une réduction des « fréquences propres » du système sol-fondation due à la réduction de la « rigidité » induite par la plasticité. L'ampleur de l'influence

de la plasticité dépend de son extension dans le massif du sol, qui dépend de l'amplitude du chargement, de son contenu fréquentiel et des fréquences propres du système sol-fondationstructure (SSFS). Pour certaines configurations, la plasticité du sol a induit une réduction de l'ordre de 25% des efforts dans la structure.

L'étude de l'influence de la plasticité des matériaux de la structure sur l'interaction solstructure a montré que la plasticité des éléments de la structure affecte d'une manière très sensible l'interaction sol-fondation-structure. La plasticité apparaît généralement à la liaison structure-fondation. Lors de son apparition, elle limite le transfert d'efforts entre la superstructure et la fondation, ce qui a pour effet de réduire les efforts inertiels. Pour certaines configurations étudiées, cette réduction a atteint 75%.

Le travail de thèse a été mené avec des modèles simples pour le sol et les matériaux de la structure. Dans l'avenir, il faut reprendre ce travail avec des modèles plus avancés pour le sol et la structure et prendre en compte l'interaction fluide - milieux poreux, notamment pour les sols liquéfiables.

REFERENCES

- Amir M. Halabian, M. & Hesham El Naggar. (2002) "Effect of non-linear soil-structure interaction on seismic response of tall slender structures" Soil Dynamics and Earthquake Engineering, Vol .22, 2002., 639–658
- Anderson, J.G., Zeng, Y. & Sucuoglu, H. (2001) "Analysisof accelerograms from the October 1995 Dinar, Tukey earthquake" Bull. Seismol. Soc. Am., 91, 2001, 1433-1445.
- Archuleta, R. J., Seale, S. H., Sangas, P. V., Baker, L. M., & Swain, S. T. (1992).
 "Garner Valley down hole array of accelerometers: Instrumentation and preliminary data analysis" Bull. Seismological Soc. Of Am., 82(4), 1592–1621.
- Avilés, J. & Martha Suárez (2002) "Effective periods and dampings of buildingfoundation systems including seismic wave effects" Engineering Structures, Volume 24, Issue 5, May 2002, 553-562
- Aviles, J. & Perez-Rocha, L.E. (1996) "Evaluation of interaction effects on the system period and the system damping due to foundation embedment and layer depth" Soil Dynamics & Earthquake Engineering. 15(11), 27, 1996
- Aviles, J. & Perez-Rocha, L. E. (1998) "Effects of foundation embedment during building-soil interaction", Earthquake Engineering & Structural Dynamics, 27(12), 1523-1540, 1998
- Aviles, J. & Perez-Rocha, L. E. (1999) "Diagrams of Effective Periods and Damping of Soil-Structure Systems.", Journal of Geotechnical and Geoenvironmental Engineering, Vol. 125, No. 8, August, 1999. ASCE.
- ATC-3 [1978] "Tentative provisions for the development of seismic regulations of buildings: a cooperative effort with the design profession, building code interests, and the research community." National Bureau of Standards, Washington DC.

- Bathe, K. J., &.Wilson. E. L (1976) "Numerical Methods in Finite Element Analysis." Englewood Cliffs, New Jersey: Prentice-Hall, Inc.
- Barcena, A. & Esteva, L. (2007) "Influence of dynamic soil-structure interaction on the nonlinear response and seismic reliability of multi-storey systems" Earthquake engineering and struct. Dyn. 2007; 36:327-436.
- Beltrami, C., LAI, C., G., & Pecker, A. (2006) "Seismic Soil Structure Interaction in Large Diameter Shaft Foundations." Research Report No. ROSE – 2006/04, ROSE School – EUCENTRE, Pavia, Italy.
- Bielak, J. (1975). "Dynamic behavior of structures with embedded foundations." J. Earthquake Engrg. Struct. Dyn., 3(3), 259–274.
- Borja, R.I., & Amies, A.P. (1994) "Mutiaxial Cyclic Plasticity Model for Clays" Journal of Geotechnical Engineering., ASCE, 120(6), 1051-1070.
- Boris, J., Sashi, K., & Feng, X. (2004) "Influence of soil-foundation-structure interaction on seismic Response of the I-880 viaduct." J. Struct. Engrg., 26(2004) 391-402
- Building Seismic Safety Council (BSSC) (2003) "The 2003 NEHRP Recommended Provisions For New Buildings And Other Structures Part 2: Commentary (FEMA 450)." Federal Emergency Management Agency, Washington, D.C.
- Bruno, H. & Marc, Nicolas (2004) "La non linéarité des sols en sismologie." in CEA/DIF/DASE/LDG/311/2004/DO.
- Chin, B. H. and Aki, K. (1991) "Simultaneous study of the source, path, and site effects on strong ground motion during the 1989 Loma Prieta earthquake: a preliminary result on pervasive nonlinear site effects." Bull. Seism. Soc. Am., 81, 1859-1884.
- Ciampoli, M. & Pinto, P. E. (1995) "Effects of soil-structure interaction on inelastic seismic response of bridge piers," J. Struct. Engry. ASCE 121(5), 806-814.

- Cundall, P. A., Hansteen, H. Lacasse, S. & Selnes. P. B. (1980) "NESSI Soil Structure Interaction Program for Dynamic and Static Problems" Norwegian Geotechnical Institute, Report 51508-9, December 1980.
- Davidovici, V., (1985) "Génie Parasismique," Presse de l'école nationale des ponts et chaussées.
- Davidovici, V., (1999) "La construction En Zone sismique," ISBN: 2.281.11180.6 Groupe Moniteur (Editions Le Moniteur). Paris.
- Duncan, J.M., and Chang, C. (1970) « Nonlinear analysis of stress and strain in soils »Journal of the Soil Mechanics and Foundations Division, ASCE, 96(SM5), pp.1629– 1653.
- Elgamal, A. W. (1991) "Shear hysteretic elasto-plastic earthquake response of soil systems" Earthquake Eng. Struct. Dyn., 20, 371-387.
- Eurocode EC8 (1994), "Structures in seismic regions, Part 5: Foundations, Retaining Structures, and Geotechnical Aspects".
- Field, E.H., P.A. Johnson, I.A. Beresnev, & Y. Zeng, (1997) "Nonlinear ground motion amplification by sediments during the 1994 Northridge earthquake" Nature, 390, 599-601, 1997.
- FLAC3D "Fast Lagrangian Analysis of Continua in 3D Dimensions" VSER'S GUIDE Version 3.0 Itasca Consulting. Inc.
- Gallipoli, M.R. Mucciarelli, M. Castro, R.R. Monachesi, G. & Contri P. (2004) "Structure, soil-structure response and effects of damage based on observations of horizontal-to-vertical spectral ratios of microtremors" Soil Dynamics & Earthquake Engineering. 24 (2004) 478-495.
- Gazetas, G. (1991) "Formulas and charts for impedances of surface and embedded foundations. Journal of Geotechnical Engineering ASCE, 117, No. 9, pp. 1363 1381.

- Gazetas, G. & Mylonakis, G. (1998) "Seismic Soil-Structure Interaction: New Evidence and Emerging Issues", Emerging Issues Paper, Geotechnical Special Publication No 75, ASCE, Vol III., pp. 1119-1174.
- Gazetas, G. & Mylonakis, G., (2000) "seismic soil-structure interaction: beneficial or detrimental." J. Earthquake Engrg.vol. 4, No 3(2000) 277-301.
- Ghrib, F., & Mamedov, H. (2004) "Period formulas of shear wall buildings with flexible bases." J. Earthquake Engrg. Struct. Dyn., 33, 295–314.
- Goel RK. & Chopra AK. "Period formulas for concrete shear wall buildings." Journal of Structural Engineering (ASCE) 1998; 124:426–433. DOI: 10.1061/(ASCE)0733-9445(1998)124:4(426).
- Idriss, I.M. and Seed H.B. (1968). "Seismic response of horizontal soil layers. Proceedings of the Amer". Soc. Civil Engin., J. Soil Mech. and Found. Div., ASCE, 94:1003-1031.
- Idriss, I.M. and Sun, J. (1992) "User's Manual for SHAKE 91" Center for Geotechnical Modeling, Dep. of Civil & Env. Engng, University of California, Davis.
- Iwan, W.D. (1967). "On a class of models for the yielding behavior of continuous and composite systems". J. Appl. Mech., 34:612-617.
- Janbu, N. (1963) «Soil Compressibility as Determined by Oedometer and Triaxial Tests» European Conf. Soil Mechanics and Foundation Engg., Wiesbaden, 1, pp. 19-25.
- Jennings, P.C. & Bielak, J. (1973) "Dynamics of building-soil interaction.", Bulletin of the Seismological Society of America, 63(1) 9-48, 1973
- Joyner, W. B. & Chen, A. T. F. (1975) "Calculation of non-linear ground response in earthquakes" Bull. Seism. Soc. Am., 65, 1315-1336.
- Kondner, R.L. (1963) "Hyperbolic stress-strain response: cohesive soil" Journal of the soil Mechanics and Foundation Division, ASCE, 89(1), pp. 115-143.

- Khalil, L., Sadek M. & Shahrour I. (2007) "Influence of the soil-structure interaction on the fundamental period of buildings" Earthquake Engng Struct. Dyn. 2007; 36: 2445-2453.
- Kramer S. L. & Paulsen S. B. (2005) "Practical Use of Geotechnical Site Response Models" University of Washington,
- http://peer.berkeley.edu
- Kuhlemeyer, R. L. & Lysmer, J. (1973) "Finite Element Method for Accuracy for Wave Propagation Problems," J. Soil Mechanicals and Foundations Div. ASCQ, Vol. 99, No. SM5, May, 421-427.
- Lee, M.K.W., & Finn, W.D.L. (1978) "DESRA-2: Dynamic effective stress response analysis of soil deposits with energy transmitting boundary including assessment of liquefaction potential" Soil Mechanics Series, No. 38, Department of Civil Engineering, University of British Columbia, Vancouver, B.C.
- Lee, M.K.W., & Finn, W.D.L. (1991) "DESRA-2C: Dynamic effective stress response analysis of soil deposits with energy transmitting boundary including assessment of liquefaction potential" University of British Columbia, Faculty of Applied Science.
- Lok, M.H. (1999) "Numerical modeling of seismic soil-pile-superstructure-interaction in soft clay" Ph.D. Dissertation, University of California, Berkeley.
- Luco, E. (1982) "Linear soil-structure interaction: a review," Earthquake Ground Motion and Effects on Structures ASME, AMD 53, 41-57.
- Lysmer, J., & R. L. Kuhlemeyer. (1969) "Finite paDynamic Model for Infinite Media" J. Eng. Mech., 95(EM4), pp. 859-877.
- Makdisi F. I. & Wang Z. L. (2004) "Non linear Analyses for Site Response Opinion Paper" International Workshop on the Uncertainties in Nonlinear Soil Properties and their Impact on Modeling Dynamic Soil Response.

- Maravas, A., Mylonakis, G. & Karabalis D. L. "Dynamics Characteristics of Structures on Piles and Footings", 4th International Conference on Earthquake Geotechnical Engineering June 25-28, 2007 Paper No. 1672
- Marti, J., & P. Cundall. (1982) "Mixed Discretization Procedure for Accurate Modelling of Plastic Collapse" Int. J. Num. & Analy. Methods in Geomech., 6, 129-139.
- Martin, P. P., & Seed, H. B. (1982) "One-dimensional dynamic ground response analyses" J. Geotech. Engng. Div., ASCE, 108(7), pp. 935-953.
- Mazas J. (2005) "Etude sur le fonctionnement sismique de structure à murs à cellules contreventées" Ministère de l'équipement, des transports, de l'aménagement du territoire, du tourisme et de la mer. Contrat DRAST/Mission Génie Civil N° 04 MGC 5 07, Novembre 2005.
- Muttoni A., Schwartz J. & Thürlimann B., Bemessung von Betontragwerken mitSpannungsfeldern, Birkhäuser, Design of Concrete Structures with Stress Fields, 145 p., Basel, Suisse, 1997.
- Mylonakis, G., Nikolaou, S., & Gazetas, G. (2006) "Footings under seismic loading: Analysis and design issues with emphasis on bridge foundations." Soil Dynamics and Earthquake Engineering, 26, No. 9, pp. 824 –853.
- National Research Council Canada. (1995) Supplement to the national building code of Canada (NBCC-95), Ottawa, Canada.
- NEHRP (1997) "Recommended Provisions for Seismic Regulations for New Buildings and other Structures", Building Seismic Safety Council, Washington, D.C.,
- Newmark, N. M. & Rosenblueth, E. (1971) "Fundamentals of Earthquake Engineering," Prentice Hall Inc.
- Parmelee, R. (1967) "Building-foundation interaction effects", Journal of Engineering Mechanics Division, ASCE, 93(EM2), 131-152, 1967
- PEER Strong Motion Database, Pacific Earthquake Engineering Research Centre. (http://peer.berkeley.edu/)

- Pyke, R.M. (1992) "A computer program for nonlinear ground response analyses" TAGA Engin. Systems and Software, Lafayette, CA.
- Règles *PS* applicables aux bâtiments, dites règles *PS 92*, Norme NF P 06-013, AFNOR, 1995
- Roesset, J. M. (1980) "A review of soil-structure interaction," soil-structure interaction: The status of current analysis methods and research, ed. J. J. Johnson, Report Nos. NUREG/CR-1780 and UCRL-53011, US Nuclear Regulatory Commission and Lawrence Livermore Laboratory.
- Seed, H.B. & Idriss I.M. (1969). "The influence of soil conditions on ground motions during earthquakes". J. Soil Mech. Found. Engin. Div., ASCE, 94:93-137.
- Seed, H. B., Martin P. P & Idriss I. M (1970) "Soil module and damping factors for dynamic response analysis", Earthquake Engineering Research centre-University of California, Berkeley. Report EERC 70-10.
- Seed, H. B., Martin P. P. & Lysmer, J. (1975) "The Generation and Dissipation of Pore Water Pressures During Soil Liquefaction", University of California, Berkeley, Earthquake Engineering Research Center, NSF Report PP 252 648.
- Seed, H. B. & Sun J. I. (1989) "Implications of site Effects in the Mexico City Earthquake of September 19, 1985 for Earthquake – Resistant Design Criteria in the San Francisco Bay Area of California", Report N°. UCB/EERC-98-03, Earthquake Engineering Research Centre, University of California at Berkeley.
- Schnabel, P. B., Lysmer, J., & Seed, H. B. (1972) "SHAKE A computer program for earthquake response analysis of horizontally layered soils" Report No. EERC-72/12, University of California, Berkeley.
- Shakib, H. & Fuladgar, A. (2004), "Dynamic soil-structure interaction effects on the seismic response of asymmetric buildings" Soil Dynamics and Earthquake Engineering 24 (2004) 379–388.
- SIA, SIA 262 Construction en béton, Société Suisse des Ingénieurs et des Architectes, 94 p., Zurich, Suisse, 2003.

- Sieffert, J. G. & Ceveart, F. (1992) "Manuel des functions d'impédances", Fondations superficielles. Ouest ed. Presses Académiques.
- Stewart, J. P., Seed, R. B. & Fenves, G. L. (1999) "Seismic soil-structure interaction in buildings. II: Empirical findings" Journal of geotechnical and geoenvironmental engineering, ASCE, 1090-0241/99/0001-0038–0048.
- Streeter, V. L., Wylie, E. B. & Richart, F. E. (1974) "Soil motion computations by characteristics method" J. Geotech. Engng. Div., ASCE, 100(3), pp. 247-263.
- Su, F., Anderson, J. G. & Zeng, Y. (1998) "Study of weak and strong ground motion including nonlinearity from the Northridge, California, Earthquake sequence" Bull. Seismol. Soc. Am., 88, 1411-1425, 1998.
- Trifunac M. D., Ivanovic, S. S. & Todorovska M. I. (2001) "Apparent periods of a building. I: Fourier analysis" Journal of Structural Engineering, Vol. 127, No. 5, May, 2001. ASCE,
- Trifunac M. D., Ivanovic, S. S. & Todorovska M. I. (2001) "Apparent periods of a building. II: Time-Frequency analysis" Journal of Structural Engineering, Vol. 127, No. 5, May, 2001. ASCE,
- Uniform Building Code (UBC) (1997). "International conference of building officials.", Whittier, U.S.A.
- Veletsos, A. S. (1977) "Dynamics of Structure-Foundation Systems.", in: Hall, W. J. (ed.), Structural & Geotechnical Mech., Prentice-Hall, 1977
- Veletsos, A.S., & Meek, J.W. (1974) "Dynamic behavior of building-foundation systems." J. Earthquake Engrg. Struct. Dyn., 3(2),121–138.
- Veletsos, A. S., & Nair, V. V. (1975) "Seismic interaction of structures on hysteretic foundations." J. Struct. Engrg., ASCE, 101(1), 109–129.
- Wolf, J. P.(1985) "Dynamic Soil-Structure Interaction," Prentice Hall, 1985

- Wang Z, Li X. S. L., Shen C. K. (1992) "A Nonlinear Procedure for Response Analysis of Horizontally-layered Sites Subjected to Multi-directional Earthquake Loading" Department of Civil Engineering, University of California, Davis.
- Yoshida. N., Kobayashi. S., Suetomi. I. & Miura. K. (2002). "Equivalent linear method considering frequency dependent characteristics of stiffness and damping" Soil Dynamics and Earthquake Engineering, Volume 22, Issue 3, April 2002, 205-222
- Yv, G., Anderson, J. G. & Siddharthan, R. (1993) "On the characteristics of nonlinear soil response", Bull. Seismol. Soc. Am., 83, 218-244.

ANNEXE (A)

Lois de comportements du sol :

1. comportement élastique non linéaire avec amortissement hystérétique

Le comportement du sol sous chargement cyclique se caractérise par une courbe de contrainte-déformation particulière appelée boucle d'hystérésis (Figure A. 1). Sur cette figure, les extrémités de la boucle correspondent à l'amplitude des cycles appliqués. Celles-ci sont situées sur la courbe de premier chargement passant par l'origine et s'incurvant pour des déformations croissantes. Cette boucle d'hystérésis est déterminée par le module sécant G, qui donne la pente de la droite joignant les deux extrémités de la courbe et passant par l'origine, et le coefficient d'amortissement ξ , correspondant à l'aire formée par la boucle et caractérisant l'énergie dissipée par le matériau au cours d'un cycle. G et ξ vérifient les relations suivantes :

$$G = \frac{\tau_c}{\gamma_c}$$
$$\xi = \frac{W_d}{4\pi W}$$

 W_s représente l'énergie emmagasinée au cours d'un cycle ; elle est donnée par :

$$W_s = \frac{1}{2}\tau_c\gamma_c = \frac{1}{2}G\gamma_c^2$$

G et ξ sont fonction de la distorsion γ_c . Leur variation est donnée par de nombreuses courbes expérimentales (Figure A.2) Des exemples de données pour les courbes de $G - \gamma$ et $\xi - \gamma$ sont présentés par Hardin et Drnevitch (1970), Kramer (1996), Seed and Idriss (1970), Seed et al. (1986), Sun et al. (1988) et Vucetic et Dobry (1991).

igure A.1 : Courbe de contrainte-déformation pour un sol sous chargement cyclique, boucle d'hystérésis.

Figure A.2 : Variation du module de cisaillement G et du coefficient d'amortissement ξ sous chargement cyclique en fonction de la distorsion γ_c .

2. Modèle élastique parfaitement plastique utilisant le critère de Mohr-Coulomb

Ce modèle élastique parfaitement plastique est utilisé pour décrire le comportement des sols pulvérulents (sable), des sols cohérents à long terme (argiles et limons) et de certaines roches. Dans l'espace des contraintes principales effectives, la surface définie de charge F:

$$F(\sigma'_{ij}) = \left|\sigma'_1 - \sigma'_3\right| - (\sigma'_1 + \sigma'_3)\sin\varphi' - 2c'\cos\varphi' = 0$$

où $\sigma'_1 \text{ et } \sigma'_3$ représentent les contraintes principales extrêmes ($\sigma'_1 \ge \sigma'_2 \ge \sigma'_3$) Le potentiel plastique est donné par :

$$G(\sigma'_{ij}) = \left|\sigma'_1 - \sigma'_3\right| - (\sigma'_1 + \sigma'_3)\sin\psi$$

La partie élastique du comportement est définie par l'élasticité linéaire isotrope de Hooke. Au total, la loi de Mohr-Coulomb comprend cinq paramètres E (module d'Young), ν (coefficient de Poisson), c' (cohésion), ϕ' (angle de frottement) et ψ (angle de dilatance).

ANNEXE (B)

	1.	Б	Σī					1	F/F _{en}		
Vs	n	E _p	\sum_{a}	Ne	$N_{\rm h}$	No	Α	log		Veletsos	Méthode
m/sec	m	N.m ²	m	·c	.0	.0		(Kss)	BSSC	et Meek	proposée
98	4	32000	0.000139	1	1	1	4	2 203	0.993	0.998	1
107	4	32000	0.000139	1	1	1	4	2,282	0.994	0.998	1
139	4	32000	0.000139	1	1	1	4	2.504	0.997	0.999	1
200	4	32000	0.000139	1	1	1	4	2.822	0.998	1.000	1
250	4	32000	0.000139	1	1	1	4	3.016	0,999	1.000	1
300	4	32000	0.000139	1	1	1	4	3.165	0.999	1.000	1
98	4	32000	0.00135	1	1	1	4	1.453	0.953	0.983	0.973
107	4	32000	0.00135	1	1	1	4	1.532	0.960	0.986	0.976
139	4	32000	0,00135	1	1	1	4	1,754	0,976	0,991	0,985
200	4	32000	0,00135	1	1	1	4	2,072	0,988	0,996	0,995
250	4	32000	0,00135	1	1	1	4	2,266	0,992	0,997	0,998
300	4	32000	0,00135	1	1	1	4	2,415	0,995	0,998	0,999
98	4	32000	0,00135	3	1	1	4	0,561	0,972	0,995	0,934
107	4	32000	0,00135	3	1	1	4	0,640	0,976	0,996	0,944
139	4	32000	0,00135	3	1	1	4	0,862	0,986	0,998	0,964
200	4	32000	0,00135	3	1	1	4	1,180	0,993	0,999	0,983
250	4	32000	0,00135	3	1	1	4	1,374	0,996	0,999	0,989
300	4	32000	0,00135	3	1	1	4	1,523	0,997	0,999	0,992
98	4	32000	0,01315	3	1	1	4	-0,180	0,869	0,853	0,719
107	4	32000	0,01315	3	1	1	4	-0,101	0,886	0,873	0,749
139	4	32000	0,01315	3	1	1	4	0,121	0,928	0,918	0,824
200	4	32000	0,01315	3	1	1	4	0,439	0,963	0,958	0,895
250	4	32000	0,01315	3	1	1	4	0,633	0,976	0,972	0,933
300	4	32000	0,01315	3	1	1	4	0,782	0,983	0,980	0,951
98	4	32000	0,13575	3	1	1	4	-0,941	0,679	0,453	0,504
107	4	32000	0,13575	3	1	1	4	-0,861	0,710	0,486	0,533
139	4	32000	0,13575	3	1	1	4	-0,640	0,795	0,584	0,615
200	4	32000	0,13575	3	1	1	4	-0,322	0,884	0,720	0,737
250	4	32000	0,13575	3	1	1	4	-0,128	0,921	0,792	0,803
300	4	32000	0,13575	3	1	1	4	0,021	0,943	0,838	0,847
98	4	32000	0,00135	5	1	1	4	0,339	0,952	0,989	0,894
107	4	32000	0,00135	5	1	1	4	0,418	0,959	0,991	0,909
139	4	32000	0,00135	5	1	1	4	0,640	0,975	0,994	0,943
200	4	32000	0,00135	5	1	1	4	0,958	0,988	0,997	0,971
250	4	32000	0,00135	5	1	1	4	1,152	0,992	0,998	0,981
300	4	32000	0,00135	5	1	1	4	1,301	0,995	0,999	0,986
98	4	32000	0,01315	5	1	1	4	-0,402	0,810	0,905	0,647
107	4	32000	0,01315	5	1	1	4	-0,323	0,834	0,919	0,679
139	4	32000	0,01315	5	1	1	4	-0,101	0,891	0,949	0,765
200	4	32000	0,01315	5	1	1	4	0,217	0,943	0,974	0,863
250	4	32000	0,01315	5	1	1	4	0,411	0,962	0,983	0,905
300	4	32000	0,01315	5	1	1	4	0,560	0,973	0,988	0,93
98	4	32000	0,13575	5	1	1	4	-1,162	0,612	0,552	0,464
107	4	32000	0,13575	5	1	1	4	-1,083	0,646	0,587	0,482
139	4	32000	0,13575	5	1	1	4	-0,861	0,740	0,683	0,557
200	4	32000	0,13575	5	1	1	4	-0,543	0,845	0,804	0,681
250	4	32000	0,13575	5	1	1	4	-0,350	0,892	0,860	0,751
300	4	32000	0,13575	5	1	1	4	-0,201	0,921	0,895	0,802
98	4	32000	0,00135	/	1	1	4	0,193	0,942	0,992	0,859
107	4	32000	0,00135	7	1	1	4	0,272	0,951	0,993	0,879
139	4	32000	0,00135	/	1	1	4	0,494	0,970	0,996	0,921
200	4	32000	0,00135	/	1	1	4	0,812	0,985	0,998	0,959
250	4	1 37000	1 0.00135	1 /	1 1		4	1 1.006	0.990	0.999	0.973

Tableau A1 : Comparaison de la méthode proposée avec la méthode de Veletsos Meek et le règlement BSSC : Valeurs du rapport F/Fen pour différentes configurations.

300	4	32000	0,00135	7	1	1	4	1,155	0,993	0,999	0,981
98	4	32000	0,01315	7	1	1	4	-0,548	0,773	0,930	0,601
107	4	32000	0.01315	7	1	1	4	-0.469	0.799	0.940	0.634
139	4	32000	0.01315	7	1	1	4	-0.247	0.865	0.963	0.724
200	4	32000	0,01315	7	1	1	4	0,071	0,928	0,982	0,832
250	4	32000	0.01315	7	1	1	4	0.265	0.952	0.988	0.883
300	4	32000	0.01315	7	1	1	4	0.414	0.966	0.992	0.912
98	4	32000	0.13575	7	1	1	4	-1 309	0.565	0.617	0.393
107	4	32000	0.13575	7	1	1	4	-1 229	0.599	0.652	0.418
130		32000	0,13575	7	1	1		-1 008	0,000	0,002	0,410
200		32000	0,13575	7	1	1		-0.600	0,037	0,740	0,407
200	4	32000	0,13575	7	1	1	4	-0,090	0,013	0,040	0,000
200	4	22000	0,13575	7	1	1	4	-0,490	0,000	0,095	0,003
300	4	22000	0,13575	10	1	1	4	-0,347	0,903	0,922	0,739
90	4	32000	0,00135	10	1	1	4	0,030	0,967	0,994	0,021
107	4	32000	0,00135	10	1	1	4	0,117	0,972	0,995	0,845
139	4	32000	0,00135	10	1	1	4	0,339	0,983	0,997	0,898
200	4	32000	0,00135	10	1	1	4	0,657	0,992	0,999	0,947
250	4	32000	0,00135	10	1	1	4	0,851	0,995	0,999	0,963
300	4	32000	0,00135	10	1	1	4	1,000	0,996	0,999	0,971
98	4	32000	0,01315	10	1	1	4	-0,703	0,857	0,949	0,544
107	4	32000	0,01315	10	1	1	4	-0,624	0,876	0,957	0,576
139	4	32000	0,01315	10	1	1	4	-0,402	0,921	0,974	0,671
200	4	32000	0,01315	10	1	1	4	-0,084	0,959	0,987	0,791
250	4	32000	0,01315	10	1	1	4	0,110	0,973	0,992	0,849
300	4	32000	0,01315	10	1	1	4	0,259	0,981	0,994	0,886
98	4	32000	0,13575	10	1	1	4	-1,464	0,692	0,685	0,367
107	4	32000	0,13575	10	1	1	4	-1,384	0,723	0,717	0,388
139	4	32000	0,13575	10	1	1	4	-1,162	0,806	0,799	0,454
200	4	32000	0.13575	10	1	1	4	-0.844	0.891	0.887	0,568
250	4	32000	0.13575	10	1	1	4	-0.651	0.926	0.923	0.642
300	4	32000	0.13575	10	1	1	4	-0.502	0.947	0.943	0,698
98	4	32000	0.0027	1	1	3	3 28	1 247	0.995	0.964	0.975
107	4	32000	0.0027	1	1	3	3.28	1,326	0,000	0.970	0.979
130	4	32000	0.0027	1	1	3	3.28	1,620	0,000	0.982	0.987
200	4	32000	0.0027	1	1	3	3.28	1,866	0,000	0,002	0.994
250		32000	0.0027	1	1	3	3.28	2 059	0,000	0,001	0,007
300		32000	0,0027	1	1	3	3.28	2,000	0,333	0,994	0,997
00	-	22000	0,0027	1	1	2	2.20	2,200	0,333	0,330	0,990
107	4	32000	0,0203	1	1	3	3.20	0,505	0,903	0,730	0,007
120	4	32000	0,0203	1	1	2	3,20	0,004	0,970	0,707	0,003
139	4	32000	0,0203	1	1	<u> </u>	3,20	0,000	0,962	0,000	0,919
200	4	32000	0,0203	1	1	<u> </u>	3,20	1,124	0,991	0,922	0,959
250	4	32000	0,0263	1	1	3	3,20	1,310	0,994	0,948	0,973
300	4	32000	0,0263	1	1	3	3,28	1,467	0,996	0,962	0,987
98	4	32000	0,0027	5	1	3	5,125	0,644	0,969	0,997	0,955
107	4	32000	0,0027	5		3	5,125	0,724	0,973	0,998	0,967
139	4	32000	0,0027	5	1	3	5,125	0,946	0,984	0,999	0,977
200	4	32000	0,0027	5		3	5,125	1,264	0,992	0,999	0,985
250	4	32000	0,0027	5	1	3	5,125	1,457	0,995	1,000	0,988
300	4	32000	0,0027	5	1	3	5,125	1,606	0,996	1,000	0,991
98	4	32000	0,0263	5	1	3	5,125	-0,097	0,836	0,974	0,804
107	4	32000	0,0263	5	1	3	5,125	-0,018	0,857	0,978	0,833
139	4	32000	0,0263	5	1	3	5,125	0,204	0,907	0,987	0,891
200	4	32000	0,0263	5	1	3	5,125	0,522	0,952	0,993	0,942
250	4	32000	0,0263	5	1	3	5,125	0,716	0,968	0,996	0,959
300	4	32000	0,0263	5	1	3	5,125	0,865	0,978	0,997	0,971
98	4	32000	0,004725	5	1	6	5,607	0,783	0,733	0,999	0,977
107	4	32000	0,004725	5	1	6	5,607	0,862	0,762	0,999	0,982
139	4	32000	0,004725	5	1	6	5,607	1,084	0,837	0,999	0,991
200	4	32000	0,004725	5	1	6	5,607	1,402	0,910	1,000	0,994
250	4	32000	0,004725	5	1	6	5,607	1,596	0,940	1,000	0,996
300	4	32000	0,004725	5	1	6	5,607	1,745	0.957	1.000	0.997
98	4	32000	0,046028	5	1	6	5,607	0,041	0,356	0,990	0,864
107	4	32000	0,046028	5	1	6	5,607	0,120	0,384	0,991	0,886
-						-			, -	, -	,

139	4	32000	0,046028	5	1	6	5,607	0,342	0,475	0,995	0,922
200	4	32000	0,046028	5	1	6	5,607	0,660	0,613	0,997	0,951
250	4	32000	0,046028	5	1	6	5,607	0,854	0,697	0,998	0,965
300	4	32000	0,046028	5	1	6	5,607	1,003	0,759	0,999	0,979
98	4	32000	0,059179	10	3	2	4,55	-0,387	0,832	0,995	0,654
107	4	32000	0,059179	10	3	2	4,55	-0,308	0,854	0,996	0,688
139	4	32000	0,059179	10	3	2	4,55	-0,086	0,905	0,998	0,773
200	4	32000	0,059179	10	3	2	4,55	0,232	0,951	0,999	0,868
250	4	32000	0,059179	10	3	2	4,55	0,426	0,968	0,999	0,944
300	4	32000	0,059179	10	3	2	4,55	0,575	0,977	0,999	0,933
98	4	32000	0,610979	10	3	2	4,55	-1,147	0,649	0,954	0,472
107	4	32000	0,610979	10	3	2	4,55	-1,068	0,682	0,961	0,5
139	4	32000	0,610979	10	3	2	4,55	-0,846	0,771	0,976	0,579
200	4	32000	0,610979	10	3	2	4,55	-0,495	0,867	0,988	0,704
250	4	32000	0,610979	10	3	2	4,55	-0,334	0,909	0,992	0,764
300	4	32000	0,610979	10	3	2	4,55	-0,185	0,934	0,995	0,815
98	4	32000	0,271502	5	2	1	4	-1,087	0,672	0,742	0,472
107	4	32000	0,271502	5	2	1	4	-1,008	0,704	0,772	0,493
139	4	32000	0,271502	5	2	1	4	-0,786	0,790	0,843	0,551
200	4	32000	0,271502	5	2	1	4	-0,468	0,880	0,914	0,651
250	4	32000	0,271502	5	2	1	4	-0,274	0,918	0,943	0,719
300	4	32000	0,271502	5	2	1	4	-0,125	0,941	0,958	0,753
98	4	42000	0,271502	5	2	1	4	-1,205	0,614	0,695	0,443
107	4	42000	0,271502	5	2	1	4	-1,126	0,648	0,727	0,461
139	4	42000	0,271502	5	2	1	4	-0,904	0,741	0,807	0,514
200	4	42000	0,271502	5	2	1	4	-0,586	0,846	0,892	0,607
250	4	42000	0,271502	5	2	1	4	-0,392	0,893	0,927	0,672
300	4	42000	0,271502	5	2	1	4	-0,243	0,922	0,946	0,721
98	4	32000	0,026302	5	2	1	4	-0,327	0,851	0,963	0,689
107	4	32000	0,026302	5	2	1	4	-0,248	0,871	0,969	0,719
139	4	32000	0,026302	5	2	1	4	-0,026	0,917	0,981	0,795
200	4	32000	0,026302	5	2	1	4	0,292	0,957	0,991	0,881
250	4	32000	0,026302	5	2	1	4	0,486	0,972	0,994	0,919
300	4	32000	0,026302	5	2	1	4	0,635	0,980	0,996	0,939

 $\label{eq:Figure B1} Figure \ B1: Comparaison \ de \ la \ methode \ proposée \ avec \ la \ methode \ de \ Veletsos \ / \ Meek \ et \ le \ règlement \ BSSC: Valeurs \ du \ rapport \ F/F_{en} \ pour \ différentes \ configurations$

RESUME

Le présent travail comporte une analyse de l'influence de l'interaction sol-fondationstructure sur le comportement sismique des structures de type bâtiment. L'étude est réalisée en utilisant une modélisation tridimensionnelle par différences finies intégrant dans la même analyse les différentes composantes du système, à savoir le sol, la fondation et la structure.

Le travail est présenté en trois chapitres.

Le premier chapitre comporte une étude de l'influence de l'interaction sol-fondationstructure sur la fréquence fondamentale des structures de type bâtiment. Le sol et la fondation sont modélisés à l'aide des éléments ressorts. L'analyse montre que l'interaction sol-fondationstructure peut réduire d'une manière très importante la première fréquence des structures de type bâtiment. Un abaque est proposé pour une prise en compte aisée de cette interaction dans l'évaluation de la première fréquence des bâtiments.

Dans le second chapitre, on présente une étude tridimensionnelle de l'interaction solstructure. Le comportement du sol est supposé élastique. L'analyse montre que la réponse de la structure dépend sensiblement de l'interaction complexe entre le sol et la structure, qui fait intervenir plusieurs paramètres, notamment le contenu fréquentiel du chargement, les fréquences propres du massif du sol et de la structure. Elle montre également que le comportement non linéaire du sol rend l'analyse plus complexe à cause de l'apparaitre de multiples fréquences dans le massif de sol.

Le troisième chapitre est consacré à l'étude de l'influence du comportement non linéaire du sol et de la structure sur l'interaction sol-fondation-structure. Cette étude montre que la plasticité du sol et des éléments de la structure peut avoir une forte influence sur la réponse sismique de la structure.

Mots Clés : bâtiment, fréquence, interaction, numérique, 3D, sismique, structure, élastique, non-linéaire, plasticité,