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Résumé

Les Systèmes Hybrides (SH) sont des systèmes dynamiques dont le 

comportement résulte de l’interaction entre une dynamique continue et une 

dynamique discrète ou événementielle. L’étude des systèmes hybrides est motivée 

par la nature hybride de nombreux procédés industriels. Au cours des dix 

dernières années, de nombreux travaux ont été consacrés à l’étude de ces 

systèmes et des résultats importants ont été obtenus tant en modélisation, 

simulation, vérification et stabilité que pour la synthèse de contrôleurs.  

Les défauts (ou fautes, ou défaillances) dans les procédés automatisés 

entraînent souvent des réactions qui peuvent se révéler dangereuses pour 

l’installation elle-même ou/et son environnement. La commande tolérante aux 

fautes (en anglais FTC : Fault Tolerant Control) a pour but de garantir que le 

système continue de remplir au mieux ses objectifs malgré la présence des 

défaillances. Elle vise plus précisément à garantir une sûreté de fonctionnement 

(fiabilité, sécurité, disponibilité) acceptable. La commande tolérante aux défauts 

pour les systèmes dynamiques hybrides n’a été que très peu étudiée jusqu’à 

présent. Cette thèse apporte une contribution sur ce thème de recherche.  

Deux types de défauts sont considérés : les défauts dits continus qui affectent 

les comportements continus des différents modes de fonctionnement ; les défauts 

dits discrets qui affectent les conditions de commutation. La commande tolérante 

a deux principaux objectifs : maintenir les performances continues comme la 

stabilité à l’origine, les performances en régulation ou en suivi de trajectoire ; 

maintenir les spécifications discrètes comme une séquence de commutation 

spécifiée.

Dans une première partie, des méthodes de commande tolérante aux défauts 

sont proposées afin de maintenir les performances continues. Ces techniques 

reposent sur la théorie des systèmes continus. Différents systèmes hybrides sont 

considérés en fonction du type de commutation: commutation dépendante du 

temps, commutation dépendante de l’état, commutation stochastique. Deux idées 

sont naturellement développées: la première est de synthétiser dans un premier 

temps la loi de commande tolérante afin de stabiliser chaque mode défaillant puis 

d’appliquer les résultats sur la stabilité des SH. La deuxième idée est de 

rechercher directement la stabilité du SH sans reconfigurer le contrôleur dans 

chaque mode défaillant instable. L’objectif de la commande tolérante peut être 

atteint si les effets négatifs des modes instables sont compensés par ceux des 

modes stables.  



Dans une deuxième partie, différentes techniques sont proposées afin de 

maintenir les spécifications discrètes. Ces techniques sont issues naturellement de 

la théorie des systèmes à événements discrets. L’idée maîtresse est de reconfigurer 

la partie discrète en tenant compte de l’atteignabilité des dynamiques continues. 

Deux modèles de systèmes à événements discrets sont étudiés: les machines à état 

fini et les réseaux de Petri.     

Enfin, plusieurs solutions originales de commande supervisée tolérante aux 

défauts sont développées. Les schémas proposés ne nécessitent pas de banc de 

modèles ou de filtres pour localiser le défaut mais reposent sur un schéma simple 

de commutation de contrôleur. La stabilité du système pendant la le diagnostic et 

le retard d’application de la commande peut être garanti.  

De nombreux exemples sont traités tout au long du manuscrit pour illustrer 

l’applicabilité et les performances des résultats théoriques : systèmes 

électroniques, moteurs à courant continu, unité centrale de traitement, systèmes 

manufacturiers, systèmes de transport intelligent et véhicule électrique automatisé, 

etc

Mots clés: Systèmes hybrides, systèmes à commutation, systèmes à événements 

discrets, diagnostic de défauts, commande tolérante au fautes, commande 

supervisée, stabilité, observateurs.   



Abstract

Hybrid systems are dynamical systems that involve the interaction of con-
tinuous and discrete dynamics. The study of hybrid systems is motivated
by the fundamentally hybrid nature of many industrial systems. Over the
last decade, significant progress has taken place in modeling and simulation,
verification, stability and controller synthesis for hybrid systems.

Faults in automated processes will often cause undesired reactions that
may be dangerous for the system itself or its environment. Fault Tolerant
Control (FTC) aims at guaranteeing the system objectives to be achieved,
at best, in spite of faults. More precisely, FTC contributes to enhance the
dependability (safety, availability, security) of the system. The FTC theory
for hybrid systems has been very few studied in the literature. This thesis
brings a contribution in that important research field.

Two kinds of faults are considered: Continuous fault that affects each
continuous system mode; Discrete fault that affects the switching condi-
tions. The FTC design has two main objectives: To maintain the continuous
performances including various stabilities of the origin and the output track-
ing/regulation behaviors along the trajectories of HS; To maintain the dis-
crete specifications that have to be followed by HS, e.g. a desired switching
sequence.

Firstly, for HS with various switching, e.g., time dependent switching,
state dependent switching, impulsive switching and stochastic switching, a
set of FTC methods based on continuous system theories are proposed to
maintain the systems’ continuous performance. Two natural ideas are con-
sidered: One way is first to design FTC law to stabilize each faulty mode, and
then apply the stability results of HS. Another way is to research directly the
stability of HS without reconfiguring the controller in each unstable faulty
mode. The FTC goal can be achieved if the negative effects resulting from
unstable faulty modes are compensated for by that of stable modes.

Secondly, for HS where discrete specifications are imposed, a set of schemes
are derived from discrete event system (DES) point of view to keep these dis-
crete specifications. The key idea is to reconfigure the discrete part by taking
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CHAPTER 0. ABSTRACT

into account the reachability of the continuous dynamics, such that the spec-
ification is maintained. Two major DES models, i.e. finite state machine
and Petri net, are discussed.

Finally, based on HS approaches, several novel supervisory FTC schemes
are developed. The proposed FTC schemes do not need a series of models
or filters to isolate the fault, but only rely on a simple controller switching
scheme. The stability of the system during the fault diagnosis and FTC delay
can be guaranteed.

The materials in the monograph have explicit and broad practical back-
grounds. Many examples are taken to illustrate the applicability and perfor-
mances of the obtained theoretical results, e.g. Circuit systems; DC motors;
CPU process; Manufacturing system; Intelligent transportation systems and
electric automated vehicles, etc.

Keywords: Hybrid systems; Switched systems; Discrete event systems;
Fault diagnosis; Fault tolerant control; Supervisory control; Stability; Ob-
server.
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Chapter 1

Fault tolerant control and hybrid sys-
tems

Both research areas of fault tolerant control (FTC) and hybrid systems (HS)
have been developed separately for several decades, and fruitful results ap-
peared respectively. However, until now, the FTC problem of HS has not yet
attracted enough attention, and needs to be investigated due to its academic
meaning as well as practical one. Many modern complex systems have to
be modeled by HS and their safety and reliability are quite important. This
naturally motivates to study FTC for HS, which is the topic of this thesis.
In this chapter, we shall describe the relations between HS and FTC, and
present some examples of HS as well as their fault behaviors. Based on these
examples, we formulate the problems to be solved in this thesis.

1



CHAPTER 1. FAULT TOLERANT CONTROL AND HYBRID SYSTEMS

1.1 Background

HS are dynamical systems that involve the interaction of continuous and
discrete dynamics. This means that there are both continuous and discrete
states in such systems that influence each other’s behavior. The study of HS
is motivated by the fundamentally hybrid nature of many real life systems,
e.g., circuit systems, flight management system, process control and intelli-
gent transportation systems. Over the last decade, significant progress has
taken place in modeling and simulation [104], verification [158], [59], stability
[33], [65] and controller synthesis [139], [159] for HS.

The HS considered in this thesis can be illustrated using Fig.1.1, which
consists of a series of continuous modes (N maybe a finite or infinite number)
and a switching logic. These modes are switched among each other accord-
ing to a switching law generated from the switching logic. The framework in
Fig.1.1 is general and covers several different kinds of HS that have different
switching properties or performance requirements. Let us take three inter-
esting examples which will be discussed in details in the following chapters.

......

Switching scheme

mode 1 mode 3mode 2 mode N

Figure 1.1: The HS model

Example 1.1 : A simplified CPU processing control system is shown in
Fig.1.2. The key control problem is to deal with the trade-off between the
high-speed computing and the physical constraints. The CPU needs to oper-
ate at high clock frequency (voltage) to realize high-speed computing, while
a high clock frequency spends much energy and raises the CPU temperature,
which often leads to hardware trouble.

The system is naturally modeled as a HS with two modes.

Mode 1 (busy mode): the amount of CPU tasks is large while CPU
temperature is not too high.

Mode 2 (usual mode): the amount of CPU tasks is not large and more
energy is used for decreasing the temperature.

2



CHAPTER 1. FAULT TOLERANT CONTROL AND HYBRID SYSTEMS

Figure 1.2: The CPU model

A state dependent switching law could be designed i.e., switching occurs
when the temperature or the amount of CPU reaches some given values.

Example 1.2 : A hose insertion task shown in Fig. 1.3 is a typical example
of manipulation of deformable objects. The fingertip of the robot arm inserts
a deformable hose on the plug. The motion of the hose and the fingertip are
restricted in x1 − x2 plane. The completed work is to insert the hose onto
the plug. Such task can be modeled as a HS according to different contact
configurations between the hose and the plug when the fingertip is at different
positions.

Plug

Hose

Robot arm

Position of 

the fingertip(initial)

(initial)

(initial)

Figure 1.3: Hose insertion task

Example 1.3 : Consider a traffic flow control problem in intelligent trans-

3



CHAPTER 1. FAULT TOLERANT CONTROL AND HYBRID SYSTEMS

portation systems at the terminator of the bridge, where six roads are inter-
connected with the bridge, as in Fig. 1.4. The roads rout

1 , rout
2 and rout

3 are
the output roads to which the autonomous vehicles (AVs) go from bridge,
whereas the roads rin

1 , rin
2 and rin

3 are the input roads from which AVs go to
the bridge. There is a supervisor consisting of a series of internal logic lights
(similar to traffic lights for man-driven cars) for input roads, such that the
traffic flows from each input roads get into the bridge with the prescribed
sequence. The overall system is also a hybrid system involves the interaction
of continuous (AVs flows) and discrete dynamics (traffic lights).

Supervising 

lights

Bridge

in
r1

in
r2

in
r3

out
r1

out
r2

out
r3 the first part the second part

Figure 1.4: One terminator of the bridge

Faults in automated processes will often cause undesired reactions and
shut-down of a controlled plant, and the consequences could be damages
to technical parts of the plant or to its environment, so FD and FTC are
highly required for modern complex control systems. FD is concerned with
detecting, isolating and estimating the faults, while Fault Tolerant Control
(FTC) aims at guaranteeing the system goal to be achieved in spite of faults.
In the past 30 years, fruitful results have been obtained in this area, see
several excellent books [50, 74, 16, 26] for details.

Two main kinds of faults have been defined for HS [30]: One is continuous
fault that affects each continuous system mode, which corrupts the contin-
uous state behavior of the related mode. In example 1.1, if there exists a
fault in voltage input channel or clock frequency input channel, the system
behavior may become unexpected in busy mode or usual mode. Another one
is discrete fault that affects the switching sequence. In example 1.2, if there
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exists an abrupt change of the fingertip’s position due to physical faults of
the robot arm, the prescribed motion sequence may be changed. In example
1.3, the discrete faults represent the unexpected behaviors of traffic lights,
whereas the continuous faults describe the abnormal situations of AVs flows.

FD problem for HS has attracted some attentions. However, to the best
of the authors’ knowledge, until now, the FTC issue for HS has not yet been
intensively studied. FTC method for HS deserves further investigations due
to its academic meaning as well as practical one.

1. Motivation from academic research

It is well known that the stability and some specifications of HS can
be achieved under quite rigorous conditions. Most of existing results
are devoted to off-line analysis and design, such that the HS works well
as what it is expected. However, faults may abruptly change system
behavior, FTC strategies must be applied on-line, not only to keep the
stability but also to maintain some specifications of the HS in presence
of faults. This results in a great theoretical challenge, since many clas-
sical FTC methods for non-hybrid systems can not be easily extended
to HS. FTC theory for HS needs to be developed.

2. Motivation from practical applications

Many practical systems have to be modeled by hybrid models, e.g.
chemical processes, switched RLC circuits, intelligent transportation
systems, etc. The safety and reliability of these systems are needed, and
FTC techniques for HS are highly required. The RobucarTM vehicles
(Four-wheel-steering and four-wheel-driving electric vehicle in LAGIS
laboratory) is particularly focused on in this thesis whose dynamic
behavior can be researched using hybrid system approaches.

1.2 Hybrid model and FTC problem

We introduce a general HS model originated from hybrid automaton defined
as follows:

Definition 1.1 A hybrid automaton with fault is a collection

H = (Q,X, U, V,F , Y, ̥, Init, Inv, E, G, R) (1.2.1)

where

• Q = {1, 2, . . . , N} is the finite set of discrete states;

5
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• X is the set of continuous states;

• U defines the set of continuous inputs;

• V defines the set of discrete inputs;

• ̥ = ̥c ∪ ̥d denotes the set of faults, with ̥c and ̥d respectively,
continuous and discrete.

• F : Q × X × U × ̥c → X represents the set of vector fields for each
mode;

• Y is the set of continuous outputs;

• Init ⊆ Q × X is the set of initial states;

• Inv: Q → 2X assigns to each mode an invariant set;

• E : V × Fd → Q × Q is the set of discrete transitions between modes;

• G : E × Fd → 2X defines a guard set related to each (i, i′) ∈ E, where
the system can be switched from mode i to i′.

• R : Q × Q × X → X is the set of reset maps.

The above hybrid automaton model is an extension of usual ones as in e.g.,
[104] and [59] to the faulty cases. This model is also more general than that
in [200] where only the parameter faulty cases are considered.

It can be seen from model (1.2.1) that

- Continuous faults ̥c corrupt the equality constraints of the related
mode. Such kind of faults are similar to that considered in non-hybrid
systems.

- discrete faults ̥d affect the mode transitions by changing discrete tran-
sition set E or the guard sets G. Both the switching instants and
switching sequences may be changed unexpectedly. Such faults are
special for HS.

The FTC objective for HS is concerned with the system requirement,
i.e., to guarantee the system goal to be achieved in spite of continuous and
discrete faults. In this thesis, two main system requirements are considered:

- Continuous performance goal, e.g., the origin of the HS is stable (Lya-
punov stable, asymptotical stable, input-to-state stable) and the output
regulation/tracking problem is solvable.

6



CHAPTER 1. FAULT TOLERANT CONTROL AND HYBRID SYSTEMS

- Discrete specification goal, i.e., the HS has to satisfy some constraints
on discrete modes, e.g., the switching sequence.

To investigate continuous performance goal, a class of HS (1.2.1) named
switched systems are considered which take the form

ẋ = gσ(x, uσ, fσ)

y = hσ(x) (1.2.2)

where x ∈ X, uσ ∈ U , y ∈ Y , fσ ∈ ̥c. σ(t) : [t0,∞) → Q denotes the
switching function, which is assumed to be a piecewise constant function
continuous from the right. The dwell period of a mode represents the time
period during which this mode is activated. The switched system model
(1.2.2) emphasizes the vector fields F in (1.2.1), and captures the behavior
of continuous dynamics using ordinary differential equations. The affect of
the switching on each continuous mode is also clearly represented. Such
model allows us to analyze FTC problems using continuous system theories,
and to extend the existing FTC techniques of non-hybrid systems to the
hybrid cases.

Four kinds of switchings are considered:

- Time-dependent switching. Such switching occurs at a certain time in-
stant. These switching instants can be prescribed a priori and fixed,
or designed arbitrarily by engineers. The continuous states x are con-
tinuous at switching instants.

- State-dependent switching. Such switching occurs whenever the states
reach some given surfaces or satisfy an inequality. x are also continuous
at switching instants.

- Impulsive switching. Under such switching, x abruptly change due to
the impulse effect at each switching instant.

- Stochastic switching. Such switching is governed by some random pro-
cesses, i.e. Markov process.

The above various switchings are related with the guard set G, the dis-
crete transitions set E and the reset maps set R in (1.2.1), which determines
switching properties of system (1.2.2). As for above different HS, the continu-
ous performance can be investigated using various continuous system theories
as shown in Fig 1.5. Some existing FTC results for non-hybrid systems could
be potentially applied and combined with the stability conditions of HS. The
main idea is to design the FTC law in each faulty mode and develop an

7
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FTC for hybrid systems

Continuous performance Discrete specification

- FTC theory for 

   continuous systems

- Switched system 

   theory

- Impulsive system 

   theory

- Stochastic system 

   theory ......

- FTC theory for 

   Discrete event 

   systems

- Finite state machine 

   theory

- Petri net theory

- Abstraction theory

......

Figure 1.5: The FTC clue for HS

appropriate switching scheme such that the continuous performance goal is
maintained.

As for the discrete specification goal, one natural idea is to reconfigure
the discrete part of the HS after faults occur to maintain such specifica-
tion. The continuous system theories are limited in this case. However, the
discrete-event system (DES) supervisory control theories can be applied as
also indicated in Fig. 1.5.

A well known DES model named finite state machines will be utilized to
abstract the discrete part of (1.2.1) as

(Q,E, Td, Qd0, Qdm)

where Td denotes the activated discrete transition, Qd0 =
⋃

∀(x,q)∈Init q. Qdm ⊆
Q is the set of marked states. Such mode captures the behavior of discrete
dynamics. The affect of the switching sequences is particularly emphasized.
DES supervisory control theory [128] can be developed to reconfigure the
switching sequence after faults occur, which, together with some criteria im-
posed on continuous dynamics of HS, achieves the discrete specification goal.

Another important HS model named Hybrid Petri net (HPN) originating
from the DES model Petri net (PN) are also considered. HPN inherits all
the advantages of the PN and effectively captures behaviors including concur-
rency, synchronization and conflicts, which often appear in complex systems,
e.g., the traffic flow control problem in example 1.3. A HPN structure is the
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5-tuple
(P, T, Pre, Post, h)

where P is a set of places, T is a set of transitions; The set of places P
(resp. transitions T ) is split into two subsets: discrete places (resp. discrete
transitions) and continuous places (resp. continuous transitions). Pre and
Post assign the weights between transitions and places. More detailed for-
mulations will be given in Section 5.2. HPN is closely connected with hybrid
automaton (1.2.1), a hybrid automaton can be constructed associated with a
given HPN as reported in [138]. Different control schemes can be designed for
continuous part and discrete part of HPNs respectively such that the desired
discrete specifications are maintained.

One of the motivations of HS research arises from the hybrid control
problem. HS may present different control configurations. Commutation
from one configuration to another one is described using discrete event system
model as claimed in [149]. Thus the controlled system becomes hybrid due
to the switching control. Some novel supervisory FTC techniques are also
developed based on HS methods to improve non-hybrid (linear and nonlinear)
performance during FTC period. The hybrid automaton model (1.2.1) can
be applied after a minor modification, where each mode denotes respectively
faulty or healthy situations of the system. All the switching among modes
can be controlled by the user. The discrete fault disappears.

1.3 Structure of the thesis

The rest of this thesis is organized as follows: Chapters 2-3 provide new theo-
retical developments of FTC analysis and design for HS with time-dependent
and state-dependent switchings respectively. Chapter 4 discusses the HS
with impulsive and stochastic switchings based on some results in Chapter
2. These new approaches are based on continuous system theories and FTC
goals aim at maintaining the continuous performance. The switched system
model (1.2.2) is utilized in Chapters 2, 4 and Section 3.3. Chapter 5 considers
the HS with discrete specifications, FTC issue is addressed from DES point
of view and the discrete specification goal is emphasized. HPNs model is
applied in Section 5.2. The Hybrid automaton model (1.2.1) is considered in
Sections 3.2 and 5.1. As an important related issue of HS, supervisory con-
trol problems are addressed in Chapter 6, some new supervisory FTC results
are reported based on HS approaches developed in Chapters 2-3. A four-
wheel-steering and four-wheel-driving electric vehicle in LAGIS laboratory
is particularly focused on whose actuator faults are analyzed systematically
and the hybrid fault tolerant tracking control approach is applied. In the fi-
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nal Chapter, several future research directions are predicated related to FTC
of HS.

1.4 Restrictions

There are a lot of interesting problems beyond the scope of this thesis. The
restrictions are the following:

1. FTC methods have been proposed for hybrid systems with various
switching respectively. An integrated FTC technique is not provided
here for hybrid systems that have various switchings simultaneously.

2. Hybrid systems that have continuous faults and that have discrete
faults are researched separately from different point of view. An inte-
grated FTC method deserves further investigation for hybrid systems
where both continuous faults and discrete faults are considered simul-
taneously.

1.5 Notations

Throughout the thesis, we adopt the following general notations. let ℜ denote
the field of real numbers, ℜr the r-dimensional real vector space. | · | the
Euclidean norm. ‖ · ‖[a,b] denotes the supremum norm of a signal on the time
interval [a, b]. Class K is a class of strictly increasing and continuous functions
[0,∞) → [0,∞) which are zero at zero. Class K∞ is the subset of K consisting
of all those functions that are unbounded. β : [0,∞) × [0,∞) → [0,∞)
belongs to class KL if β(·, t) is of class K for each fixed t ≥ 0 and β(s, t)
decreases to 0 as t → ∞ for each fixed s ≥ 0. λmax(·) and λmin(·) denote the
maximal and minimal eigenvalues respectively. Lgh denotes Lie derivative
of h along a vector field g, Lgh = dh · g, Ln

gh = Lg(L
n−1
g h), where dh =

( ∂h
∂x1

· · · ∂h
∂xn

) is the differential of a smooth function, [g1, g2] = ∂g1

∂x
·g2− ∂g2

∂x
·g1,

where ∂g1/∂x and ∂g2/∂x denote the corresponding Jacobian matrices. (·)(i)

is the ith time derivative of the function. t− denotes the left limit time
instant of t. (·)⊤ is the transposition.

Other special notations will be introduced when they appear.
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Chapter 2

Hybrid systems with time-dependent
switching

This chapter considers a broad class of HS whose switchings are activated
according to time functions, i.e., a switching occurs at a certain time instant.
These switching instants can be prescribed a priori and fixed, or designed
arbitrarily by engineers. The motivation of researching HS appears from
many practical systems e.g., circuit system, and also the switching control
ideas. In this chapter, several FTC methods are presented for such HS. Two
natural ideas follow: One way is to design FTC law in each faulty mode
such that it is stable (Lyapunov stable, asymptotical stable or input-to-state
stable) or the output regulation problem of each mode is solvable, then apply
the standard stability results on HS (see sections 2.1-2.3). Another way is to
research directly the stability of HS without reconfiguring the controller in
each unstable mode (see sections 2.4-2.5). These two ideas will be developed
in this chapter. The switching control techniques as developed in Chapter 6
also have their roots in this chapter.

11
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2.1 Output-input stability technique

In this section, we apply the output-input stability concept proposed in [93,
94] to the FTC design of HS with continuous faults.

The concept of output−input stability (OIS) [93, 94] is a robust variant of
the minimum-phase property for general smooth nonlinear control systems.
Its definition requires the state and the input of the system to be bounded
by a suitable function of the output and derivatives of the output. Our
objective is to provide a fault tolerant strategy for a class of hybrid nonlinear
systems, in which each mode is output−input stable in the healthy situation
and without full state measurements. The main ideas are that:

1 An observer-based FTC method is proposed for each output−input
stable mode to make each mode asymptotically stable whenever faults
occur during its dwell period;

2 A set of switching laws based on this FTC method are designed to
guarantee the asymptotic stability of the overall HS.

To make this section more readable, we first discuss the FTC for nonlinear
systems in the following two subsections 2.1.1 and 2.1.2, then extend the
obtained results to hybrid case in subsection 2.1.3.

2.1.1 State feedback control for nonlinear system

Consider the following affine nonlinear system with faults

ẋ = f(x) + G(x)u + E(x)fa

y = h(x) (2.1.1)

where x ∈ ℜn is the non measured state, u ∈ ℜm is the input, y ∈ ℜp is
the output, and only the case m ≤ p is considered. Functions f(·), G(·),
E(·) and h(·) are smooth, and it is assumed that u ∈ Ck, the set of k times
continuously differentiable functions u : [0;∞) → ℜm, with k ≥ 1. For all
u ∈ Ck, derivatives ẏ, ÿ, . . . , y(k+1) are assumed to exist and to be continuous.

The fault effect is modelled by a “fault pattern”, described by the dis-
tribution matrix E(x) and a “fault parameter” fa ∈ ℜd, which can be time
varying, and is supposed to be norm bounded, i.e., ∃f1 : |fa| < f1. The fault
pattern describes the family of faults that are investigated [196], as iden-
tified e.g. through standard methods like failure modes and effect analysis
(FMEA) [16]. The fault parameter describes the size of the fault, and its

12
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time evolution. It is assumed that the distribution matrix E(x) satisfies the
so-called matching condition

E(x) = G(x) · W (x) (2.1.2)

i.e. it can be factorized as (2.1.2) for some m × d continuous matrix W (x).
The interpretation of the matching condition is that the effect of faults can
be described by a deviation of the control signal. This model covers actuator
faults and a large number of system faults.

Definition 2.1 [93] System (2.1.1) with fa = 0 is called output-input stable
if there exist a positive integer N , a function β of class KL, and a function
γ of class K∞ such that for every initial state x(0) and every input u ∈ CN−1

its solution x(t) satisfies
∣
∣
∣
∣

(
x(t)
u(t)

)∣
∣
∣
∣
≤ β(|x(0)|, t) + γ

(∥
∥
∥y

N

∥
∥
∥

[0,t]

)

(2.1.3)

for all t, where y
k

, (y⊤, ẏ⊤, ..., y(k)⊤)⊤.

Note that (2.1.3) implies

|x(t)| ≤ β(|x(0)|, t) + γ

(∥
∥
∥y

N

∥
∥
∥

[0,t]

)

(2.1.4)

According to [93], the system is said to be weakly uniformly 0-detectable of
order N if inequality (2.1.4) holds, or just weakly uniformly 0-detectable when
an order is not specified.

The weak uniform 0-detectability is independent on any input, which
implies that even when the faulty system is not output-input stable any
more, it is still weakly uniformly 0-detectable if faults satisfy the matching
condition (2.1.2). This property is very useful for FTC.

The following structure algorithm will be helpful to construct the feedback
controller later. Due to the structure of the fault distribution matrix (2.1.2),
the term G(x)u + E(x)fa is written as G(x)ū where ū = u + W (x)fa.

Algorithm 2.1 nonlinear structure algorithm
Step 1: Define h̃1(x) , Lfh(x), J̃1(x) , LGh(x). Differentiating y with

respect to time along the trajectories of (2.1.1) gives

ẏ = h̃1(x) + J̃1(x)ū (2.1.5)

Assume that matrix J̃1(x) has constant rank r1 and a fixed set of r1 rows that
are linearly independent for all x, these rows are taken as the first r1 rows of
J̃1(x).
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Denote ȟ1(x) and ĥ1(x) as respectively the first r1 and the last p − r1

components of h̃1(x), then Eq.(2.1.5) is divided into two parts as

ẏ1...r1 = ȟ1(x) + J1(x)ū

and
ẏr1+1...p = ĥ1(x) + Ĵ1(x)ū (2.1.6)

where (·)1...k denotes the first k elements of the signal. J1(x) is a matrix of
full row rank, and Ĵ1(x) = f1(x)J1(x) for some (p − r1) × r1 matrix f1(x).

Define h̄1(x, ẏ1...r1) , ĥ1(x) + f1(x)(ẏ1...r1 − ȟ1(x)). Eq.(2.1.6) can be
rewritten as

ẏr1+1...p = h̄1(x, ẏ1...r1) (2.1.7)

Step 2: Similar to Step 1, define

h̃2(x, ẏ1...r1 , ÿ1...r1) , Lf h̄1(x) +

r1∑

i=1

∂h̄1

∂ẏi

(x, ẏ1...r1)ÿi

J̃2(x, ẏ1...r1) , LGh̄1(x)

Differentiating (2.1.7) leads to

ÿr1+1...p = h̃2(x, ẏ1...r1 , ÿ1...r1) + J̃2(x, ẏ1...r1)ū (2.1.8)

The termination condition of the structure algorithm at Step 2, denoted
as C 1, is as follows:

C 1: The matrix

[
J1(x)

J̃2(x, ẏ1...r1)

]

is continuous and has constant rank m

and there is a fixed set of m− r1 rows of J̃2(x, ẏ1...r1) which together with the
rows of J1(x) form a linearly independent set for all x and ẏ1...r1. These rows
are taken as the first m − r1 rows of J̃2(x, ẏ1...r1).

Denote ȟ2(x) and ĥ2(x) as respectively the first m−r1 and the last p−m
components of h̃2(x). Under C 1, since m ≤ p, Eq.(2.1.8) can be written
similarly to Step 1 as

ÿr1+1...m = ȟ2(x, ẏ1...r1 , ÿ1...r1) + J2(x, ẏ1...r1)ū

and
ÿm+1...p = ĥ2(x, ẏ1...r1 , ÿ1...r1) + Ĵ2(x, ẏ1...r1)ū (2.1.9)

The following Lemma is a special case of Theorem 1 in [94], therefore its
proof is omitted. It gives a necessary and sufficient OIS condition.
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Lemma 2.1 Under the termination condition C 1, the system (2.1.1) with
fa = 0 is output-input stable if and only if it is weakly uniformly 0-detectable.

Based on Algorithm 2.1, a state feedback controller is now designed for
the healthy system, m = p is considered, the extension to m ≤ p is straight-
forward. Two assumptions are imposed.

Assumption 2.1 The vector ẏr1+1,...,m is not affected directly by input sig-
nals, which results, for an output-input stable system (2.1.1) with fa = 0, in
the fact that f1(x) = 0.

Assumption 2.2 Let χ ∈ ℜ2m−r1 , (y⊤
1...r1

, y⊤
r1+1...m, ẏ⊤

r1+1...m)⊤. When fa =
0, there exists an invertible map T : ℜn → ℜ2m−r1, such that χ = T (x).

Since m = p, Eq.(2.1.9) is removed. Under C 1 and assumptions 2.1-2.2,
the algorithm 2.1 leads to

[
ẏ1...r1

ÿr1+1...m

]

=

[
ȟ1(x)

ȟ2(x)

]

+

[
J1(x)
J2(x)

]

ū (2.1.10)

where ȟ2 = h̃2, J2 = J̃2.
The state feedback control design consists of the following three steps:
Step 1: Choose a Hurwitz matrix A10, which gives ẏ1...r1 = A10y1...r1

provided that J1(x)ū = ϑ1(x) with

ϑ1(x) , A10y1...r1 − ȟ1(x)

Step 2: Choose two (m− r1)× (m− r1) matrices A21 and A20 such that

ÿr1+1...m = A21ẏr1+1...m + A20yr1+1...m

The matrix

[
0 I(m−r1)×(m−r1)

A20 A21

]

is Hurwitz provided that J2(x)ū = ϑ2(x)

and
ϑ2(x) , A21ẏr1+1...m + A20yr1+1...m − ȟ2(x)

Step 3: Design the state feedback controller un(x) as

un(x) ,

[
J1(x)
J2(x)

]−1 [
ϑ1(x)
ϑ2(x)

]

(2.1.11)

Define

hχ(x) ,





ȟ1(x)
0

ȟ2(x)



 , Jχ(x) ,





J1(x)
0

J2(x)




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Ā ,





A10 0 0
0 0 I(m−r1)×(m−r1)

0 A20 A21





Then under the control un(x), the system (2.1.10) is augmented as

χ̇ = hχ(x) + Jχ(x)un = Āχ (2.1.12)

Therefore, un(x) in (2.1.11) asymptotically stabilizes system (2.1.12) if
A10, A20, and A21 are chosen such that Ā is Hurwitz. An “optimized” choice
of Ā can be refered to [81]. The weak uniform 0-detectability implies that
the closed-loop system is stabilized.

2.1.2 Observer-based FTC for nonlinear system

Now we provide an observer-based method to stabilize system (2.1.1) under
both healthy and faulty conditions.

The FD scheme in [76] is first applied to provide rapid and accurate
estimation of states and faults. Denote x̂ and f̂a as the estimates states and
faults respectively. Using the differential geometry theory, we can obtain (see
[76] for details) a global diffeomorphism z = N(x) with N(0) = 0 and z ∈ ℜn

that satisfies

|z̃| ≤ µ(λ∗)|z̃(0)| exp(−λ∗t) (2.1.13)

where z̃ , z − ẑ, λ∗ > 0, µ(λ∗) > 0 is polynomial in λ∗. We can also get
from [76] that fa(t)− f̂a(t) → 0 when z(t)− ẑ(t) = 0. This means that rapid
and accurate fault estimates can always be obtained when faults occur.

The following two lemmas provide the control strategy for the healthy
case and faulty case respectively.

Lemma 2.2 Suppose that the output-input stable system (2.1.1) with fa = 0

and m = p satisfies C 1 and assumptions 2.1-2.2. Given an initial x(0), there
exists a constant ǫ1 > 0 such that if |˜̄z(0)| ≤ ǫ1, then the control u(x̂) = un(x̂)
makes the origin of the closed-loop system asymptotically stable.

Proof : In the healthy case, system (2.1.12) controlled by un(x̂) is rewritten
as

χ̇ = Āχ + Jχ(x)(u(x̂) − u(x)) (2.1.14)

Let P be the symmetric positive definite solution of the Lyapunov equa-
tion Ā⊤P + PĀ = −Q with a given matrix Q > 0. Consider the Lyapunov
function V = χ⊤Pχ, its time derivative with respect to (2.1.14) is

V̇ = −χ⊤Qχ + 2χ⊤PJχ(x)(u(x̂) − u(x))

≤ −λmin(Q)|χ|2 + 2|χ| · |P | · |Jχ(x)| · |u(x̂) − u(x)| (2.1.15)

16



CHAPTER 2. HYBRID SYSTEMS WITH TIME-DEPENDENT SWITCHING

Consider the given initial x(0), and define Ω , {χ : V (χ) ≤ χ(0)⊤Pχ(0)},
which are the level sets of V with respect to χ (see Chapter 4 in [83]).

Note that |u(x̂) − u(x)| is continuous within the region Ω, and vanishes
when x̂ − x = 0, i.e., z̃ = 0. There exists two constants ǭ1 > 0 and κ1 > 0,
such that |˜̄z2| ≤ ǭ1 =⇒ |u(x̂) − u(x)| ≤ κ1|z̃|. From inequality (2.1.15) it
follows

V̇ ≤ −λmin(Q)|χ|2 + 2κ1|χ| · |P | · |z̃|
√

(λmax(J⊤
χ (x)Jχ(x)))(χ∈Ω)

≤ −(1 − r)λmin(Q)|χ|2 (2.1.16)

∀|χ| ≥

√
√
√
√

2κ1|P | · |˜̄z2|
√

(λmax(J⊤
χ (x)Jχ(x)))(χ∈Ω)

rλmin(Q)
, γ̄(|˜̄z2|), 0 < r ≤ 1(2.1.17)

where γ̄(·) is a class K function. There exists a constant ǭ2 such that |z̃| ≤
ǭ2 satisfies (2.1.17). Based on [83], the choice of |z̃(0)| ≤ ǫ1 where ǫ1 =
min(ǭ1, ǭ2), clearly results in χ being input-to-state stable with respect to
z̃. Note that limt→∞ z̃(t) = 0. Hence the origin of the system (2.1.14) is
asymptotically stable. On the other hand, the map T (x) is invertible and not
affected by the observer, and system (2.1.1) is weakly uniformly 0-detectable,
which leads to the asymptotic stability of the origin of the system.  

Lemma 2.3 Consider the output-input stable system (2.1.1) with fa = 0

and m = p satisfying C 1 and assumptions 2.1-2.2. Let a fault occur at
t = 0. Given an initial x(0), there exists a constant ǫ2 > 0 such that for
all |˜̄z2(0)| ≤ ǫ2, the control u(x̂) = un(x̂) − W (x̂)f̂a makes the origin of the
closed-loop faulty system (2.1.1) asymptotically stable.

Proof : In the faulty case, the system (2.1.10) controlled by un(x̂) −
W (x̂)f̂a is rewritten as

χ̇ = Āχ+Jχ(x)
(

un(x̂)−un(x)
)

+Jχ(x)W (x̂)(fa−f̂a)+Jχ(x)
(

W (x)−W (x̂)
)

fa

(2.1.18)
The time derivative of V along (2.1.18) is

V̇ = −χ⊤Qχ + 2χ⊤PJχ(x)
[(

un(x̂) − un(x)
)

+W (x)(fa − f̂a) +
(

W (x) − W (x̂)
)

fa

]

(2.1.19)

There exist two constants ǭ3 > 0 and κ2 > 0, such that |z̃| ≤ ǭ3 =⇒ |N(t) −
N̂(t)| ≤ κ2|z̃| within Ω. Similarly, there exist two constants ǭ4 > 0 and
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κ3 > 0, such that |z̃| ≤ ǭ4 =⇒ |W (x) − W (x̂)| ≤ κ3|˜̄z2|. Following (2.1.19),
appropriate selection of ˆ̄z2 leads to

V̇ ≤ −λmin(Q)|χ|2 + Ξ (2.1.20)

Ξ , 2|χ| · |P | · |z̃| ·
√

(λmax(J⊤
χ Jχ))(χ∈Ω)

·
[

κ1 + κ2

√

((λmax(η⊤η) · λmax(W⊤W ))(χ∈Ω) + κ3f1

]

(2.1.21)

where η is defined as in [76]. Given a physical bound of control signals and f1,
the value of λmax[η

⊤η] within Ω can be estimated. As in Lemma 2.2, there
exists a constant ǫ2 > 0 such that |z̃(0)| ≤ ǫ2 makes the origin of system
(2.1.14) asymptotically stable. On the other hand, from the structure of
faults in (2.1.2) and Assumption 2.2, T (x) exists and is still invertible, the
faulty system (2.1.1) is still weakly uniformly 0-detectable, which leads to
the asymptotic stability of the origin of the closed-loop system.  

The following theorem provides a reconfiguration strategy based on the
previous analysis.

Theorem 2.1 Assume the output-input stable system (2.1.1) with fa = 0

and m = p satisfies C 1, assumptions 2.1-2.3. Faults are assumed to occur
at t = tf . Given a x(0), there exists a constant ω = min(ǫ1, ǫ2) such that for
all |z̃(0)| ≤ ω, the following control

us(x̂, tfd) ,

{
un(x̂), t ∈ [0, tfd)

un(x̂) − W (x̂)f̂a, t ∈ [tfd,∞)
(2.1.22)

makes the origin of the closed-loop system asymptotically stable, where tfd is
the time instant when the fault has been estimated.

Proof: From Lemma 2.2, under the control un(x̂) with the initial |z̃(0)| ≤
ω, one has V̇ < 0,∀t ∈ [0, tf ), and χ(tf ) ∈ Ω̄, where Ω̄ ⊂ Ω. Eq.(2.1.13)
implies |z̃(tf )| ≤ |z̃(0)|. On the other hand, the fault can be detected at
tfd = tf if |z̃(0)| ≤ ω (see [76]), which means the faults are detected rapidly.
Therefore, after t = tfd, inequality (2.1.20) holds under the control un(x̂) −
W (x̂)f̂a. The result of Lemma 2.3 is then applied to complete the proof.  

Remark 2.1 Theorem 2.1 provides a flexible control architecture which guar-
antees that V̇ < 0 ∀t ∈ [0,∞) whenever the faults occur, this property is very
suitable for HS. The proposed strategy treats the healthy system and the faulty
system with different controllers, which leads to good system performance in
the sense of FTC.
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Example 2.1 : A DC motor example is employed to illustrate a potential
application field of this approach. A series DC motor is a DC motor where
the field circuit is connected in series with the armature circuit [28]. Under
the hypothesis that there is no magnetic saturation, the modified model of
this system is expressed as follows :





ẋ1

ẋ2

ẋ3



 =





−k1x1x2 − R
L
x1 + u1 + Lfa

−k2x2 + k1

JL
x2

1 − x3

J

u2 + 2k1x1fa



 (2.1.23)

[
y1

y2

]

=

[
x1

x2

]

where x1 = φf denotes the flux, x2 = ωf denotes the speed, x3 = TL denotes
time varying load torque, u1 and u2 are the voltage inputs. the speed and
the flux are measured.

Let us first consider the healthy case (fa = 0). Since x1 = y1, x2 = y2,
and |x3| = J |ẏ2

2 + k2y2 − k1

JL
y2

1| ≤ J |ẏ2|2 + Jk2|y2| + k1

L
|y1|2, it is seen that

the healthy system is weakly uniformly 0-detectable of order 1. The output
derivatives are

[
ẏ1

ẏ2

]

=

[
−k1x1x2 − R

L
x1

−k2x2 + k1

JL
x2

1 − x3

J

]

+

[
1 0
0 0

] [
u1

u2

]

so r1 = 1, differentiating the equality of ẏ2 leads to

ÿ2 = k2
2x2 −

k1k2

JL
x2

1 +
k2

J
x3 −

2k2
1

JL
x2

1x2 −
2k1R

JL2
x2

1 +
[

2k1

JL
x1 − 1

J

]
[

u1

u2

]

The matrix

[
1 0

2k1

JL
x1 − 1

J

]

is always nonsingular. The map T : x → χ is

also invertible and not affected by the observer. C 1 and assumptions 2.1-2.2
are satisfied. From (2.1.11), un can be designed as

un =

[
k1x1x2 + (R

L
− 1)x1

(Jk2
2 − k1

JL
)x2

1 − (2k1

L
+ k1k2

L
)x2

1 + (k2 + 1
J
)x3

]

which makes Ā Hurwitz.
Now consider the faulty case. It is clear that W (x) = (L, 2k1x1)

⊤,
fa is an actuator fault that affects both control channels. The invertible
transformation z1 = x2, z2 = −x3

J
+ k1

JL
x2

1 , z3 = x1 puts system (2.1.23) into
the form

[
ż1

ż2

]

=

[
z2 − k2y1

−2 k1

JL
y2(k1y1y2 + R

L
y2 − u1) − u2

J

]

(2.1.24)
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Figure 2.1: State trajectories

y2 = z1 (2.1.25)

ż3 = −k1y1y2 −
R

L
y1 + u1 + Lfa (2.1.26)

y1 = z3

Eq.(2.1.26) does not involve the estimation of z1 and z2, which implies
that fault estimates are obtained without any estimation error. So the fault
can be detected and compensated immediately after the fault occurs. Under
control un(x), one has χ̇ = Āχ, where χ = (y1, y2, ẏ2)

⊤.
In the simulation, the parameters are [28]: R = 0.0247, L = 0.06, J =

30.1, k1 = 0.04329, k2 = 0.0033. The initial x(0) = (0.5, 0.1, 1)⊤. x̂(3) =
0.85. The fault is considered as

fa =

{
0, 0s ≤ t < 2.5s

0.5 + 0.2 sin(5t), 2.5s ≤ t < 10s
(2.1.27)

Fig.2.1 shows state trajectories, the origin of the closed-loop system is asymp-
totically stable in spite of faults.

2.1.3 FTC for hybrid systems

The above FTC solution is now extended to a class of switched systems
taking the form

ẋ = fσ(x) + Gσ(x)uσ + Eσ(x)faσ

y = h(x) (2.1.28)

20



CHAPTER 2. HYBRID SYSTEMS WITH TIME-DEPENDENT SWITCHING

where each mode satisfies all the conditions in Theorem 2.1. σ(t) : [t0,∞) →
Q = {1, 2, . . . , N} is a switching signal, which is assumed to be a piecewise
constant function continuous from the right.

The switching property is considered as in [40]: (a) the switching sequence
is fixed, (b) there is a series of dwell periods ∆tkj for mode k when it is
activated for the jth time and mode k switches to mode (k + 1) for the jth
time at t = tkj when ∆t(k+1)j is elapsed, (c) the states do not jump at the
switching instants.

The observer-based method in Section 2.1.2 is modified for the HS as
follows:

• The observer and the fault estimates scheme are switched according to
the current mode at each switching time.

• The initial states of the current observer are chosen as the final states
of the previous observer. The fault estimates are set to zero at each
switching instant.

We also need to impose a condition on the above switching law such that
the weak uniform 0-detectability of the overall HS can be guaranteed.

Assumption 2.3 ∆tkj(k = 1, 2, . . . , N) are large enough such that for any
s ∈ ℜ+, we have

βk+1(2βk(2s, ∆tkj), ∆t(k+1)j) ≤ λ̄s < s ∀k ∈ Q (2.1.29)

where 0 < λ̄ < 1 and βk(k ∈ Q) satisfies (2.1.4) for mode k.

Lemma 2.4 Consider the HS (2.1.28) satisfying Assumption 2.3 in the healthy
case. Then, the overall HS is weakly uniformly 0-detectable.

Proof: Lemma 2.4 is an extension of Theorem 1 in [168] to the weak
uniform 0-detectability case, its proof is omitted.  

Let Vk, usk(x̂, tfdk), ωk be respectively V , us(x̂, tfd), ω for mode k. The
FTC problem for the system (2.1.28) with unfixed dwell periods and fixed
dwell periods will be discussed respectively.

Theorem 2.2 Under Assumption 2.3, consider the HS (2.1.28) under a
family of control laws uk(x̂, tfdk). There exists a constant ωk such that
|˜̄z2(0)| ≤ ωk with a given x(0). If, at any time instant t̄, the following
conditions hold:

|z̃(t̄)| ≤ ωk+1 (2.1.30)

Vk+1(χ(t̄)) < Vk+1(χ(t(k+1)(j−1))), j > 0 (2.1.31)
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then, choosing ∆tkj ≥ t̄−tkj, which satisfies (2.1.29), and setting σ(t) = k+1
at t = tkj +∆tkj guarantee that the origin of the overall HS is asymptotically
stable.

Proof: If the initial |z̃(0)| ≤ ωk for some k ∈ Q, it follows from Theorem
2.1 that V̇k < 0 as long as mode k remains active. If at some time instant t̄
one has |z̃(t̄)| ≤ ωk+1, and σ(t) = k+1 is set on, then for all t ∈ [t̄, tkj +∆tkj),
V̇k+1 < 0 as long as σ(t) = k + 1. It is concluded that if the kth mode is
activated only when |z̃(t)| ≤ ωk, then

V̇σ(t) < 0, ∀σ(t) = k (2.1.32)

Moreover, from (2.1.31), for any admissible switching time tkj one has

Vk+1(χ(t(k+1)j)) < Vk+1(χ(t(k+1)(j−1))) (2.1.33)

Since the kth faulty mode is still weakly uniformly 0-detectable, and T al-
ways exists, the Multiple Lyapunov function method [33] can be applied to
conclude that the origin of the hybrid system is Lyapunov stable. On the
other hand, for each switching time tkj, j = 1, 2, . . . such that σ(t+kj) = k, the
sequence Vσ(tkj) is decreasing and positive, and therefore has a limit ζ ≥ 0.
One has

lim
j→∞

[

Vk+1(χ(t(k+1)(j+1))) − Vk+1(χ(t(k+1)j))
]

= ζ − ζ = 0

Note that there exists a class K function α such that

0 = lim
j→∞

[

Vk+1(χ(t(k+1)(j+1))) − Vk+1(χ(t(k+1)j))
]

≤ lim
j→∞

[−α(‖χ(t(k+1)j‖)] ≤ 0 (2.1.34)

Inequality (2.1.34) together with Lemma 2.4 implies that x(t) converges to
the origin, which combined with Lyapunov stability, leads to the asymptotic
stability of the origin of the HS. This completes the proof.  

Remark 2.2 Inequality (2.1.31) is used only when the target k+1th mode has
been previously activated. Actually, when only a finite number of switchings
is considered over the infinite time-interval, Inequality (2.1.31) can be relaxed
to allow for finite increases in Vk+1, (see [39] and [40] for some analysis).
In this case, inequality (2.1.30) alone is sufficient to enforce the asymptotic
stability of the origin.

Many real systems work under a series of prescribed dwell periods, i.e.,
∆tkj is fixed. In this case, the goal of FTC must be achieved before each
switching time whenever the faults occur. This is possible because the decay
rate of Vk can be estimated. We have the following corollary.
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Corollary 2.1 Consider the HS (2.1.28) under a family of control laws
uk(x̂, tfdk) with fixed ∆tkj k ∈ Q which satisfies (2.1.29). If each faulty
mode satisfies (iv), T exists and is still invertible, and there exists a constant
ωk such that |˜̄z2(0)| ≤ ωk, then the origin of the overall hybrid system is
asymptotically stable.

Proof: It is clear from (2.1.13) that appropriate selection of λ makes
(2.1.30) hold at a given t(k+1)j. On the other hand, inequality (2.1.20) in
Lemma 2.3 leads to

V̇k ≤ −λmin(Qk)|χ|2 + Ξk ≤ −ιkVk + Ξk, ιk ,
λmin(Qk)

λmax(Pk)
(2.1.35)

Note that Ξk is bounded within a known region and converges to zero, so
the trajectory of Vk can be estimated by (2.1.35). The results of Theorem
2.2 can be applied to guarantee the asymptotic stability of the origin of the
HS.  

2.2 Overall fault tolerant regulation

This section extends the classical output regulation theories to hybrid non-
linear systems and analyzes its fault tolerance in the presence of continuous
faults modeled by the exosignals.

2.2.1 Fault tolerant regulation for nonlinear systems

The considered system takes the general nonlinear form

ẋ(t) = G(x(t), u(t), f(t)) (2.2.1)

y(t) = H(x(t), f(t)) (2.2.2)

ḟ(t) = S(f(t)) ∀t ≥ tf , with f(t) = 0 ∀t ∈ [0, tf ) (2.2.3)

e(t) = y(t) − yr(x(t)) (2.2.4)

with measurable state x ∈ ℜn, input u ∈ ℜp, output y ∈ ℜm. The regulated
error e denotes the output tracking error between y and the continuous ref-
erence signal yr(x) : ℜn → ℜm. The vector fields G, H are assumed to be
smooth and known.

Once the fault occurs, the fault signal f ∈ F ⊂ ℜq is generated by the
neurally stable exosystem (2.2.3), i.e., ∂S(0)/∂f has all its eigenvalues on
the imaginary axis, which means that f is always bounded. The function S
is also assumed to be smooth and known. Such model effectively describes
process, actuator and sensor faults.
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The following assumption is a basic requirement for the state feedback
output regulation design [75].

Assumption 2.4 There exist some u = α(x, f) with f = 0 such that x = 0
of healthy system (2.2.1) ẋ = G(x, α(x, 0), 0) is asymptotically stable.

Definition 2.2 Fault tolerant regulation problem (FTRP) for system (2.2.1)-
(2.2.4) is to find a FTC law u = α(x, f) such that ∀x(0) ∈ X with X ⊂ ℜn

a neighborhood of 0 and ∀f ∈ F , the trajectory of the closed-loop system
(2.2.1) ẋ = G(x, α(x, f), f) is bounded ∀t ≥ 0 and limt→∞ e(t) = 0.

Theorem 2.3 Suppose that the fault f can be detected/approximated accu-
rately, and there exists a u = α(x, f) satisfying Assumption 2.4. The FTRP
for system (2.2.1)-(2.2.4) is solvable if and only if there exists a Ck mapping
x = π(f) with π(0) = 0 defined for (x, f) ∈ X × F satisfying

∂π

∂f
S(f) = G(π(f), α(π(f), f), f) (2.2.5)

0 = H(π(f), f) − yr(π(f)) (2.2.6)

Proof: The proof follows the same way as that of Theorem 8.3.2 in [75],
which is thus omitted.  

Remark 2.3 It can be seen that FTRP is similar to the general output reg-
ulation problem with disturbances. Theorem 2.3 provides necessary and suf-
ficient conditions to solve FTRP in the classical faulty case. The existence
and the design of π(f) and α(x, f) have been deeply investigated in many
literatures, e.g. [75], [72], which are not focused on here.

2.2.2 Overall fault tolerant regulation

Now we consider the hybrid case. The system is

ẋ(t) = Gσ(t)(x(t), uσ(t)(t), fσ(t)(t)) (2.2.7)

y(t) = H(x(t), fσ(t)(t)) (2.2.8)

ḟσ(t)(t) = Sσ(t)(fσ(t)(t)) ∀t ≥ tf , with fσ(t)(t) = 0 ∀t ∈ [0, tf )(2.2.9)

where σ(t) : [0,∞) → Q also denotes a piecewise constant switching function.

Assumption 2.5 There exists a family of controllers ui = αi(x, fi) for i ∈ Q
solving the FTRP for system (2.2.4) and (2.2.7)-(2.2.9) with σ(t) = i.
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Assumption 2.5 means that the FTRP of each mode is solvable individ-
ually. The following definition is an extension of FTRP to the successional
faulty case.

Definition 2.3 Overall fault tolerant regulation problem (OFTRP) for sys-
tem (2.2.4) and (2.2.7)-(2.2.9) is to find a switching scheme among ui =
αi(x, fi), i ∈ Q such that ∀x(0) ∈ X and ∀fi ∈ F , the trajectory of the
closed-loop system (2.2.7) is bounded ∀t ≥ 0 and limt→∞ e(t) = 0.

Before solving the OFTRP, we give an important concept as follows

Definition 2.4 [68]: Let Nσ(T, t) denote the number of switchings of σ over
the interval (t, T ), if there exists a positive number τa such that

Nσ(T, t) ≤ N0 +
T − t

τa

, ∀T ≥ t ≥ 0 (2.2.10)

where N0 > 0 denotes the chattering bound, then the positive constant τa is
called average dwell time (ADT) of σ over (t, T ).

Definition 2.4 means that there may exist some switchings separated by
less than τa, but the average dwell period among switchings of modes is not
less than τa.

The following theorem establishes the sufficient conditions to solve OFTRP.

Theorem 2.4 Consider a system (2.2.4) and (2.2.7)-(2.2.9) satisfying As-
sumption 2.5. Suppose that each fault can be diagnosed without delay, and
each FTC law ui is applied once a fault fi occurs. The OFTRP is solvable if

C1) τa > ln B
a

, where B , maxi∈Q Bi, a , mini∈Q ai.
and either C2) or C3) holds for k = 1, 2, ...
C2) πσ(tk−1)(fσ(tk−1)(tk)) = πσ(tk)(fσ(tk)(tk)).
C3) −(a − ln B

τa
)(t − tk) + ln k < −a∗t, for t ≥ tk and a∗ > 0.

Remark 2.4 Before proving Theorem 2.4, we provide some insight into the
conditions C1)-C3): C1) requires that the switching of modes is slow aver-
agely, i.e., the frequency of switching is not too much. C2) imposes a condi-
tion on the mapping πi and the fault value fi. It can be seen that if there is
a common mapping x = π(fi) for all modes, and fσ(tk−1)(tk)) = 0, then C2)
holds. Generally, C2) is hard to satisfy even in the linear case [99]. In the ab-
sence of C2), C3) requires that the dwell period of each mode is long enough.
C3) can be verified by checking whether ln k + (a − ln B

τa
)tk < (a − ln B

τa
− a∗)t

holds or not for t ∈ [tk, tk+1).
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Proof of Theorem 2.4 : Since mode σ(tk) in the time interval [tk, tk+1) is
controlled by uσ(tk), thus its FTRP is solved from Assumption 2.5. According
to Theorem 8.3.2 in [75], a center manifold x = πσ(tk)(fσ(tk)) of mode σ(tk)
is locally attractive, i.e.,

|x(t) − πσ(tk)(fσ(tk)(t))| ≤ Be−a(t−tk)|x(tk) − πσ(tk)(fσ(tk)(tk))|, tk ≤ t < tk+1

(2.2.11)
Similarly, in [tk−1, tk) one has

|x(t−k )−πσ(tk−1)(fσ(tk−1)(t
−
k ))| ≤ Be−a(t−

k
−tk−1)|x(tk−1)−πσ(tk−1)(fσ(tk−1)(tk−1))|

(2.2.12)
Combining (2.2.11) with (2.2.12) yields

|x(t) − πσ(tk)(fσ(tk)(t))| ≤ Be−a(t−tk)
∣
∣
∣x(tk) − πσ(tk−1)(fσ(tk−1)(tk))

+πσ(tk−1)(fσ(tk−1)(tk)) − πσ(tk)(fσ(tk)(tk))
∣
∣
∣

≤ B2e−a(t−tk−1)|x(tk−1) − πσ(tk−1)(fσ(tk−1)(tk−1))|
+Be−a(t−tk)|πσ(tk−1)(fσ(tk−1)(tk)) − πσ(tk)(fσ(tk)(tk))| (2.2.13)

By induction, we obtain

|x(t) − πσ(tk)(fσ(tk)(t))| ≤ Bk+1e−at|x(0) − πσ(0)(fσ(0)(0))|

+
k∑

s=1

(

Bse−a(t−tk−s+1)|πσ(tk−s)(fσ(tk−s)(tk−s+1))

−πσ(tk−s+1)(fσ(tk−s+1)(tk−s+1))|
)

(2.2.14)

From C1), we can pick λ = a − ln B
τa

, we have τa = ln B
(a−λ)

. Based on (2.2.10),
we have

Bk+1e−at ≤ BN0+1e
t

τa
ln B−at < BN0+1e−λt (2.2.15)

If C2) holds, each term of the sum in (2.2.14) is zero. Substituting (2.2.15)
into (2.2.14), we further have

|x(t) − πσ(tk)(fσ(tk)(t))| ≤ BN0+1e−λt|x(0) − πσ(0)(fσ(0)(0))| (2.2.16)

Inequality (2.2.16) means that x−πσ(tk)(fσ(tk)) still converges to zero ∀t ≥ tk,
∀x(0) ∈ X and ∀fi ∈ F . By continuity of H and yr in each [tk−1, tk), it follows
that limt→0 e(t) = 0.
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If C2) does not hold, one has from C1) and (2.2.10) that

Bse−a(t−tk−s+1) ≤ BN0+
t−tk−s+1

τa e−a(t−tk−s+1)

≤ BN0e
t−tk−s+1

τa
ln B−a(t−tk−s+1)

≤ BN0e−λ(t−tk−s+1) (2.2.17)

Since each fi is bounded due to the neurally stable exosystems, there exists
a constant ξ > 0 such that ∀k = 1, 2, ..., and 1 ≤ s ≤ k

∣
∣
∣πσ(tk−s)(fσ(tk−s)(tk−s+1)) − πσ(tk−s+1)(fσ(tk−s+1)(tk−s+1))

∣
∣
∣ ≤ ξ (2.2.18)

It follows from (2.2.18) and C3) that

k∑

s=1

(

Bse−a(t−tk−s+1)|πσ(tk−s)(fσ(tk−s)(tk−s+1)) − πσ(tk−s+1)(fσ(tk−s+1)(tk−s+1))|
)

≤ ξBN0

k∑

s=1

e−λ(t−tk−s+1)

≤ ξBN0eln k−λ(t−tk)

≤ ξBN0e−a∗t (2.2.19)

By substituting (2.2.15) and (2.2.19) into (2.2.14), we conclude that x −
πσ(tk)(fσ(tk)) converges to zero ∀t ≥ tk, ∀x(0) ∈ X and ∀fi ∈ F . The result
follows.  

2.3 Multiple observers method

2.3.1 Problem formulation

Differently from sections 2.1-2.2, we address a class of HS with both contin-
uous faults and discrete faults in this section. The system takes the form

ẋ(t) = Aσx(t) + gσ(x(t), t) + Bσuσ(t) + Eσf
c
σ(t) (2.3.1)

y(t) = Cx(t) (2.3.2)

where x(t) ∈ ℜn is the non measured state, y(t) ∈ ℜp is the output, uσ(t) ∈
ℜm is the control. Aσ, Bσ, Eσ and C are real constant matrices of appropriate
dimensions. (Aσ, Bσ) is controllable. gσ(x(t), t) is a continuous Lipschitz
function, i.e., |gσ(x1, t) − gσ(x2, t)| ≤ Lσ|x1 − x2|, where Lσ > 0 is called the
Lipschitz constant. Moreover, gσ(0, t) = 0.
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The continuous actuator fault is modelled by a “fault pattern” as in
Chapter 2.1. Suppose that there exists two constants f 0

σ and f 1
σ such that

|f c
σ| ≤ f 0

σ , |ḟ c
σ| ≤ f 1

σ . Such fault model covers all faults that result in a
deviation of the control signal from normal.

Define Q = {1, 2, . . . , N}, where N is the number of modes. σ(t) :
[t0,∞) → Q denotes the switching function as in sections 2.1-2.2. Denote tj
as the jth switching instant of the system (2.3.1)(2.3.2). At tj, the system
switches to mode k, where k ∈ Q, j = 1, 2, ....

The switching property is considered as in [40]: a) the switching sequence
is fixed. b) there is a series of prescribed dwell periods between each switch-
ing. We also assume that the states do not jump at the switching instants.

The discrete fault is represented by the faulty switching function σf (t),
that forces the system to switch to a mode which is not the prescribed succes-
sor at the switching instant. Similarly, σH(t) denotes the healthy switching
function. If σ(t) = σH(t), then there is no discrete fault in the current mode.

The FTC problem in this section can be described as: Keep the states
of system (2.3.1)-(2.3.2) always bounded and make them converge to a small
closed set in spite of continuous and discrete faults.

Different from sections 2.1-2.2, the FTC of discrete faults must be taken
into account. Since the current mode after each switching time may be
unknown due to discrete faults, some identifying work must be applied for
a short period. Some related work can be seen in [168], [91], [67] and [30].
Whatever method used, the necessary time period in which mode is identified
(due to computation time, decision time) may cause instability. How to
overcome this finite delay is a problem to be addressed.

The main idea is as follows: 1) For the continuous faults in each mode, an
adaptive observer technique is proposed to provide the rapid fault estimation,
based on which the FTC law is designed. 2) For the discrete faults, a novel
model-free sliding mode observer is designed, which together with a series
of observers related to system modes, can identify the current mode quickly
while guaranteeing the stability of the system during each transition period.
3) The above two FTC strategies are combined with the average dwell time
scheme such that the states of the overall hybrid system are always bounded
and converge to a small closed set.

2.3.2 FTC for continuous faults

In this subsection, only f c
σ(t) is addressed. We introduce the input-to-state

practical stability and a lemma that will be used later.

Definition 2.5 [145] A system ẋ = f(x, u) is said to be input-to-state prac-
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tically stable (ISpS) over [0, t) w.r.t. u if there exist functions β ∈ KL,
α, γ ∈ K∞, and a constant ς > 0, such that for any bounded input u and any
initial condition x(0), we have

α(|x(t)|) ≤ β(|x(0)|, t) + γ(‖u‖[0,t)) + ς, ∀t ≥ 0

Note that when ς = 0, ISpS becomes input-to-state stability (ISS) [146] (see
also Definition 4.1 in Chapter 4).

It has been proven in Section VI of [145] that the following property holds.

Lemma 2.5 If there exist α1, α2, α3, γ1 ∈ K∞, ς1 > 0 and a smooth function
V : ℜn → ℜ≥0 such that

α1(|x|) ≤ V (x) ≤ α2(|x|) (2.3.3)

V̇ (x) ≤ −α3(|x|) + γ1(|u|) + ς1 (2.3.4)

Then the system ẋ = f(x, u) is ISpS over [0, t) w.r.t. u.

If ς1 = 0, then V is called ISS Lyapunov function[146], and the system is
ISS under (2.3.3) and (2.3.4) with the state x and the input u (see Lemma
2.14 in [146]).

Now let us consider the system (2.3.1)(2.3.2) with σ(t) = k for some
k ∈ Q starting from t = tj

ẋ(t) = Akx(t) + gk(x(t), t) + Bkuk(t) + Ekf
c
k(t) (2.3.5)

y(t) = Cx(t) (2.3.6)

Assumption 2.6 There exists a matrix Kk such that Gk(s) = C[sI − (Ak −
KkC)]−1Ek, is strictly positive real (SPR) :

∀ω > 0 : Re(Gk(jω)) > 0 (2.3.7)

Moreover
min
ω∈R+

σmin(Ak − KkC − jωI) > Lk (2.3.8)

where σmin (M) is the smallest singular value of M .

Remark 2.5 Assumption 2.6 is a restriction on the triple (Ak, C, Ek) in
terms of the fault to residual transfer of the observer-based residual generator
associated with the linear part of the system. A known necessary condition
for Gk(s) to be SPR is that (Ak, C) is observable and CEk is of full column
rank. It should be noted that CEk being of full column rank is a standard
assumption in fault isolation problem [16].
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Under Assumption 2.6, it has been proven in [131] that for any given
matrix Qk ∈ ℜn×n > 0 and scalar ε > 0, there exist two matrices Pk ∈
ℜn×n > 0 and Rk ∈ ℜr×q such that

PkEk = C⊤Rk (2.3.9)

and

(Ak − KkC)⊤Pk + Pk(Ak − KkC) + εL2
kIn +

P 2
k

ε
+ Qk ≤ 0 (2.3.10)

The FD scheme for mode k is designed as

˙̂x = Akx̂ + gk(x̂, t) + Bkuk + Ekf̂
c
k + Kk(y − ŷ) (2.3.11)

˙̂
f c

k = ΓkR
⊤
k (y − ŷ) − ϑkΓkf̂

c
k (2.3.12)

ŷ = Cx̂ (2.3.13)

where x̂ (t) , f̂ c
k (t) , ŷ (t) are the estimates of x (t) , f c

k(t), y (t). The weighting
matrix Γk = Γ⊤

k > 0, and the constant ϑk > 0 are chosen such that ϑk −
λmax(Γ

−1
k ) > 0.

Remark 2.6 The diagnostic scheme (2.3.11)-(2.3.13) plays an important
role to diagnose the f c

k. Our goal is to stabilize the system, we neither care
about when the fault occurs nor design a so-called detection observer as in
[79] to detect the fault. The diagnostic scheme (2.3.11)-(2.3.13) always works
no matter the mode k is faulty or not (i.e., the normal condition can be treated
as a special faulty case where f c

k = 0).

Denote ex(t) = x(t) − x̂(t), ey(t) = y(t) − ŷ(t), ef (t) = f c
k(t) − f̂ c

k(t), we
have the following lemma:

Lemma 2.6 [77] Define a set Sk as

Sk ,

{

(ex, ef )

∣
∣
∣
∣
λmin(Pk)|ex|2 + λmin(Γ

−1
k )|ef |2 ≤

βk

αk

}

where

βk , λmax(Γ
−1
k )(f 1

k )
2
+ σk(f

0
k )

2
, αk ,

min(ck1, ck2)

max[λmax(Pk), λmax(Γ
−1
k )]

ck1 , λmin(Qk) > 0, ck2 , ϑk − λmax(Γ
−1
k ) > 0 (2.3.14)

Then under Assumption 2.6, the fault diagnostic scheme (2.3.11)-(2.3.13)
guarantees that (ex, ef ) of mode k converges to Sk exponentially at a rate
greater than e−αkt.
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The following lemma gives a relation between ex and ef .

Lemma 2.7 Under Assumption 2.6, the fault diagnostic scheme (2.3.11)-
(2.3.13) guarantees that ex is ISS w.r.t. ef , i.e., there exist βek ∈ KL,
αek, γek ∈ K∞ such that

αek(|ex(t))| ≤ βek(|ex(tj)|, t) + γek(‖ef‖[tj ,t)), ∀t ≥ tj (2.3.15)

Proof : From (2.3.5), (2.3.6), (2.3.11) and (2.3.13), we have

ėx = (Ak − KkC)ex + gk(x, t) − gk(x̂, t) + Ekef (2.3.16)

Choose a Lyapunov candidate Θk = e⊤x Pkex, its derivative w.r.t. time along
(2.3.16) is

Θ̇k = e⊤x [Pk(Ak − KkC) + (Ak − KkC)⊤Pk]ex

+2e⊤x Pk(gk(x, t) − gk(x̂, t)) + 2e⊤x PkEkef

Note that, for two vectors ~a1, ~a2, it holds that 2~a1
⊤ ~a2 ≤ 1

ε
~a1

⊤ ~a1 + ε~a2
⊤ ~a2 for

ε > 0. Similarly, we can show that

2e⊤x Pk(gk(x, t) − gk(x̂, t)) ≤ e⊤x
P 2

k

ε
ex + εL2

k e⊤x ex (2.3.17)

From (2.3.10), we have

Θ̇k ≤ −e⊤x Qkex + 2e⊤x PkEkef

≤ (−λmin(Qk) + ε1)|ex|2 +
|PkEk|2

ε1

|ef |2 (2.3.18)

where ε1 > 0 is chosen such that −λmin(Qk) + ε1 < 0. Inequality (2.3.18)
implies that Θk is an ISS-Lyapunov function with the state ex and the input
ef . From Lemma 2.5, the result follows.

Moreover, we have

Θ̇k ≤ −λmin(Qk) + ε1

λmax(Pk)
Θk +

|PkEk|2
ε1

|ef |2 , ι1Θk + ι2|ef |2

Using the differential inequality theory (see Chapter 2 in [109]), we can obtain

Θk ≤ eι1(t−tj)Θk(tj) +

∫ t

tj

eι1(t−τ)ι2|ef (τ)|2dτ

≤ eι1(t−tj)Θk(tj) + sup
τ∈[tj ,t)

{ι2|ef (τ)|2}
∫ t

tj

eι1(t−τ)dτ

≤ eι1(t−tj)λmax(Pk)|ex(tj)|2
︸ ︷︷ ︸

βek(|ex(tj)|,t)

+
1

−ι1
sup

τ∈[tj ,t)

{ι2|ef (τ)|2}
︸ ︷︷ ︸

γek(‖ef‖[tj ,t))

(2.3.19)
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Define αek(·) = λmin(Pk)(·)2, which, together with βek, γek in (2.3.19),
leads to (2.3.15). This completes the proof.  

Supposed that ef (t) is norm bounded in each [tj, tj+1). Inequality (2.3.15)
means that given an initial |ex(tj)| (or a bound of |ex(tj)|, the value of |ex|
can be estimated. Define

ex(t)est , α−1
ek′′ ◦ βek′′(|ex(tj)|, t) + α−1

ek′′ ◦ γek′′(‖ef (t)‖[tj ,t)), tj ≤ t ≤ tj+1

(2.3.20)
ex(t)est is the estimates of |ex(t)|. It follows that |ex(t)| ≤ ex(t)est.

Now we are ready to design the FTC law. Since (Ak, Bk) is controllable,
let Wk = W⊤

k > 0 be associated with a given symmetric positive definite
matrix Hk by the Riccati equation

A⊤
k Hk + HkAk − 2HkBkB

⊤
k Hk + Wk = 0 (2.3.21)

The design of the proposed fault-tolerant controller makes use of the two
following assumptions.

Assumption 2.7 Given a solution Hk of (2.3.21), there exists a bounded
function ηk(x, t) > 0 such that

|x⊤Hkgk(x, t)| ≤ ηk(x, t)|x⊤HkBk| (2.3.22)

Assumption 2.8 rank(Bk, Ek) = rank(Bk).

Remark 2.7 Inequality (2.3.22) is not restrictive. Since gk(0, t) = 0, from
the Lipschitz condition, one has |gk(x, t)| ≤ Lk |x| and

∣
∣x⊤Hkgk(x, t)

∣
∣ ≤

Lk

∣
∣x⊤Hk

∣
∣ |x|. Since (Ak, Bk) is controllable, the ratio

∣
∣x⊤Hk

∣
∣ /

∣
∣x⊤HkBk

∣
∣ is

homogeneous and its maximal value is found by solving max(|x⊤Hk|) under
the constraint |x⊤HkBk| = 1 providing some bounded solution x∗. Assump-
tion 2.8 is naturally satisfied for the actuator faulty case. Indeed, rank(Bk) =
rank(Bk, Ek) ⇔ Im(Ek) ⊆ Im(Bk) which is equivalent to the existence of
B∗

k such that (I − BkB
∗
k)Ek = 0.

The fault-tolerant controller is constructed as

uk(x̂) = uk1(x̂) + uk2(x̂) (2.3.23)

where

uk1(x̂) , −B⊤
k Hkx̂ − B∗

kEkf̂
c
k , (2.3.24)

uk2(x̂) , − ηk(x̂, t)

|φk(x̂)| + ǫ/2
φk(x̂), φk(x̂) , ηk(x̂, t)B⊤

k Hkx̂(2.3.25)

with ǫ an arbitrarily small positive scalar.
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Lemma 2.8 Suppose that assumptions 2.6-2.8 are satisfied, under the feed-
back control (2.3.23)-(2.3.25), mode k in (2.3.5)(2.3.6) is ISpS over [tj, t)
w.r.t. ex, ef and a constant ςk > 0.

Proof : Applying the control (2.3.23) to (2.3.5) results in the closed-loop
dynamics

ẋ = (Ak − BkB
⊤
k Hk)x + BkB

⊤
k Hkex + Ekef + gk(x, t) + Bkuk2(x̂)(2.3.26)

Consider a Lyapunov candidate Vk(x) = x⊤Hkx, where Hk > 0 is defined by
(2.3.21). Its derivative along the system is

V̇k ≤ −λmin(Wk)|x|2 + 2|HkBkB
⊤
k Hk| · |x| · |ex|

+2|HkEk| · |x| · |ef | + 2x⊤Hk[Bkuk2(x̂) + gk(x, t)](2.3.27)

From (2.3.25), one has

2x⊤Hk[Bkuk2(x) + gk(x, t)]

=
−2η2

k(x, t)|x⊤HkBk|2 + 2x⊤Hkgk(x, t)ηk(x, t)|x⊤HkBk| + ǫx⊤Hkgk(x, t)

ηk(x, t)|x⊤HkBk| + ǫ/2

(2.3.28)

Substituting (2.3.22) into (2.3.28) yields

2x⊤Hk[Bkuk2(x) + gk(x, t)] ≤ ǫ|x⊤Hkgk(x, t)|
ηk(x, t)|x⊤HkBk| + ǫ/2

≤ ǫ(2.3.29)

Assumption 2.7 guarantees that the control uk2(x) is continuous and locally
bounded. There always exists a number δk > 0 such that |uk2(x̂)−uk2(x)| ≤
δk|ex| for a small |ex|. Due to the convergence of the estimation in Lemma
2.6, it follows that

2x⊤Hk[Bk(uk2(x̂) − uk2(x)] ≤ 2|HkBk| · δk|ex| (2.3.30)

where δk > 0. It also holds that

2|HkBkB
⊤
k Hk| · |x| · |ex| ≤ ε2|x|2 +

|HkBkB
⊤
k Hk|2

ε2

|ex|2

2|HkEk| · |x| · |ef | ≤ ε3|x|2 +
|HkEk|2

ε3

|ef |2
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where ε2, ε3 > 0 are chosen such that −λmin(Wk) + ε2 + ε3 < 0. Substituting
two inequalities above and (2.3.29), (2.3.30) into (2.3.27), one can further
obtain

V̇k ≤ (−λmin(Wk) + ε2 + ε3)|x|2

+
|HkBkB

⊤
k Hk|2

ε2

|ex|2 + 2|HkBk| · δk|ex| +
|HkEk|2

ε3

|ef |2 + ǫ

From Lemma 2.5, the result follows.  

Based on previous analysis for single mode, now we consider the HS
(2.3.1)(2.3.2). It can be obtained from Lemma 2.8 that there exist continu-
ously differentiable functions Vk : ℜn → ℜ≥0, k ∈ Q and γ̄1(·), γ̄2(·) ∈ K∞,
such that ∀p, q ∈ Q

ᾱ1|x|2 ≤ Vp(x) ≤ ᾱ2|x|2 (2.3.31)

V̇p(x) ≤ −λ0Vp(x) + γ̄1(|ex|) + γ̄2(|ef |) + ς0 (2.3.32)

Vp(x) ≤ µVq(x) (2.3.33)

where constants ᾱ1, ᾱ2, λ0, ς0 > 0, µ ≥ 1. The existence of µ is automatically
guaranteed for the quadratic Lyapunov functions, e.g., µ = ᾱ2/ᾱ1.

Since no discrete fault is considered, the system follows the prescribed
switching sequence at each switching instant. The observer is modified for
the overall system as follows:

• The fault diagnostic scheme is switched according to the current mode
at each switching instant.

• The initial states x̂ of the current observer are chosen as the final states
of the previous observer. The fault estimates f̂ c

k are set to zero at each
switching instant.

The following theorem provides a FTC strategy for the overall system
with continuous faults.

Theorem 2.5 Consider the HS (2.3.1)(2.3.2) with an initial x(0), each
mode satisfies assumptions 2.6-2.8. Let the switching function σ have an
ADT τa. If τa > ln µ

λ0
, where µ and λ0 are chosen from (2.3.32)-(2.3.33), and

ex(t
j(k + 1))est < ex(t

j(k))est where tj(k) denotes the time instant that mode
j is activated for the kth time, then under the diagnostic scheme (2.3.11)-
(2.3.13) and controller (2.3.23)-(2.3.25), the states of the overall switched
system are always bounded and converge to a small closed set.
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Proof : Define Gb
a(λ) =

∫ b

a
eλsΦds, where Φ , γ̄1(|ex|) + γ̄2(|ef |) + ς0. Let

T > 0 be an arbitrary time. Denote by t1, . . . , tNσ(T,0) the switching instants
on the interval (0, T ), where Nσ(T, 0) is defined in (2.2.10). Similar to [162],
consider the function

W (s) , eλ0sVσ(s)(x(s)) (2.3.34)

Since σ(s) is constant on each interval s ∈ [tj, tj+1), from (2.3.32), we
have Ẇ (s) ≤ eλ0sΦ,∀s ∈ [tj, tj+1). Integrating both sides of the fore-
going inequality from tj to t−j+1 and from (2.3.33), we obtain W (tj+1) ≤
µ(W (tj) + G

tj+1

tj (λ0)). Iterating the foregoing inequality from 0 to Nσ(T, 0),
we get

W (T−) ≤ µNσ(T,0)
(

W (0) +

Nσ(T,0)
∑

j=0

µ−jG
tj+1

tj (λ0)
)

(2.3.35)

where T− denotes the time instant just before T .
Pick λ ∈ (0, λ0 − ln µ

τa
), we have τa ≥ ln µ

(λ0−λ)
. Based on (2.2.10), we have

µNσ(T,0)−j ≤ µN0+ T
τa

−j+1−1

≤ µ1+N0eτa(λ0−λ)( T
τa

−1−j) ≤ µ1+N0e(λ0−λ)(T−tj+1) (2.3.36)

and

G
tj+1

tj (λ0) =

∫ tj+1

tj

eλ0sΦds ≤ e(λ0−λ)tj+1G
tj+1

tj (λ) (2.3.37)

Substituting (2.3.36), (2.3.37) into (2.3.35) yields

W (T−) ≤ µNσ(T,0)W (0) +

Nσ(T,0)
∑

j=0

µ1+N0e(λ0−λ)T G
tj+1

tj (λ)

≤ µ1+N0e−λT
(

eλ0T−(λ0−λ)τaW (0) +

Nσ(T,0)
∑

j=0

eλ0T G
tj+1

tj (λ)
)

≤ µ1+N0e−λT eλ0T
(

W (0) + G⊤
0 (λ)

)

It follows that

ᾱ1|x(T )|2 ≤ µ1+N0e−λT (ᾱ2|x(0)|2 + G⊤
0 (λ))

≤ µ1+N0e−λT ᾱ2|x(0)|2 + µ1+N0
1

λ

(

γ̄1(‖ex‖[0,T )) + γ̄2(‖ef‖[0,T ))
)

+ ς̄

where ς̄ , (µ1+N0 · ς0)/λ.
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This implies that the HS is ISpS w.r.t. ex, ef and a constant ς̄ > 0.
On the other hand, the inequality ex(t

j(k + 1))est < ex(t
j(k))est guarantees

the global convergence of ex, which together with the boundness of ef leads
to convergence of the states of the overall HS to a small closed set. This
completes the proof.  

Roughly speaking, Theorem 2.5 shows that, if the average dwell time
is large enough, then the overall HS is stable and the states are bounded
whenever the continuous actuator faults occur in each dwell period.

2.3.3 FTC for discrete faults

Since the discrete faults violate the prescribed switching sequence, one would
naturally try to first identify the current mode at the beginning of each time
interval [tj, tj+1) using a short time period ∆tj ≪ tj+1 − tj, and then control
the identified mode in the rest of the time interval.

In this section, a model-free sliding mode observer is proposed to estimate
the states of current unknown mode, which together with a series of observers
according to system modes, can identify the current mode quickly while
guaranteeing the stability of the system in each ∆tj.

In each ∆tj, the control signal is set to zero, thus no continuous fault
signal appears in ∆tj.

The system (2.3.5)-(2.3.6) without input can be written as

ẋ(t) = Ak′x(t) + gk′(x(t), t), y(t) = Cx(t) (2.3.38)

where k′ ∈ Q is unknown. The system (2.3.38) is rewritten as

ẋ(t) = Āx(t) + Fk′(x(t), t), y(t) = Cx(t) (2.3.39)

where Fk′(x, t) , Ak′x + gk′(x, t) − Āx, Ā is a matrix such that the pair
(Ā, C) is observable. There exists a matrix L̄ such that Ā − L̄C is Hurwitz
stable. Denote P̄ as the symmetric positive definite solution of the Lyapunov
equation (Ā − L̄C)⊤P̄ + P̄ (Ā − L̄C) = −Q̄ with a given symmetric positive
definite matrix Q̄.

A model-free sliding mode observer is designed as

˙̄x(t) = Āx̄(t) + S(ēx(t), ρj) + L(y(t) − ȳ(t)), ȳ(t) = Cx̄(t) (2.3.40)

where ēx , x − x̄, and

S(ēx(t), ρj) ,
P̄−1C⊤Cēx(t)

|Cēx(t)|
ρj
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with a constant ρj > 0 which will be designed later.
From (2.3.39) and (2.3.40), we have

˙̄ex(t) = (Ā − L̄C)ēx(t) − S(ēx(t), ρj) + Fk′(x(t), t) (2.3.41)

Assumption 2.9 There exists a bounded function hk′(x, t), |hk′(x, t)| < ̺|x|
for ̺ > 0 such that

Fk′(x, t) = −P̄−1C⊤hk′(x, t) (2.3.42)

Remark 2.8 Eq.(2.3.42) is not hard to be satisfied if Fk′(x, t) is bounded.
It is clear that there exists a constant F̄ > 0 such that |Fk′(x, t)| ≤ F̄ |x|. If
x is bounded in ∆tj (which will be shown later), then |Fk′(x, t)| is naturally
bounded.

Lemma 2.9 Under Assumption 2.9, there exists a ρj > 0 such that, if the
states in each ∆tj are bounded, then the origin of the system (2.3.41) is
asymptotically stable.

Proof : Consider a Lyapunov function candidate V̄ (ēx) = ē⊤x P̄ ēx. Its
derivative along the system (2.3.41) is

˙̄V = −ē⊤x Q̄ēx + 2ē⊤x P̄Fk′(x, t) − 2|Cēx|ρj

≤ −ē⊤x Q̄ēx + 2|Cēx| · |x|̺ − 2|Cēx|ρj (2.3.43)

If |x| is always bounded in ∆tj, then we can choose a ρj large enough such

that ˙̄V < −ē⊤x Q̄ēx in ∆tj. This completes the proof.  

In order to identify the current mode, a series of following observers are
also needed

observer i : ˙̂xi = Aix̂i + gi(x̂i, t) + Ki(y − ŷi), ŷi = Cx̂i, i ∈ Q (2.3.44)

which are the same as (2.3.11)-(2.3.13) without ui and f̂ c
i . exi denotes the

state estimation error using observer i.
The sliding mode observer in (2.3.40) and all observers in (2.3.44) are

invoked to estimate the current mode simultaneously in ∆tj. Set the initial
states of observers to x̂(t−j ) at t = tj. It is supposed that all modes are
discernable [30], i.e., for mode i without input, |exi| converges faster than
|exj|,∀j ∈ Q, j 6= i . This is a quite general condition for switching control
problem as for instance in [30],[168] and [91]. Roughly speaking, it means
that all the modes are not overlapping.

The identifiability is analyzed in the following lemma.
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Lemma 2.10 The current mode k′ can be identified at time instants tj+∆tj,
where ∆tj can be made arbitrarily small.

Proof : It is evident that |exk′| − |ēx| ≤ |x̄ − x̂k′| ≤ |exk′| + |ēx|, one has

|x̄ − x̂i| − |x̄ − x̂k′| ≥ χ, ∀i ∈ Q, i 6= k′

where χ , |exi| − 2|ēx| − |exk′|. All observers share the same initial states
at t = tj, so χ(tj) < 0. From Lemmas 2.7, 2.8, and (2.3.44), it follows that
if the current mode is mode k′, then |exk′| converges to zero at a given rate
depending on Kk′ and Qk′ . Lemma 2.9 ensures |ēx| also converges to zero
at a given rate. Note that all modes are discernable, there always exist Kk′ ,
Qk′ , L̄, Q̄ and ρj such that χ(t) > 0 ∀t ≥ tj +∆tj with arbitrarily small ∆tj.
It follows that |x̄ − x̂k′| is minimal ∀t ≥ tj + ∆tj. This implies that mode k′

can be identified.  

The work of identifier is to find x̂k′ that is most similar to x̄. Although ∆tj
can be made arbitrarily small as in Lemma 2.10, a small delay is necessary
to overcome the possible overshoot of the state trajectories. Since x̂i, x̂k′

and x̄ are all continuous and measurable, in the real implementation of the
identifier, high order time derivatives of the signals can help to find the
similarity (as using 1-order time derivative of signals in the simulation).

The following assumption is imposed to avoid that the system states
escape into infinity or a large region before a proper controller is invoked.

Assumption 2.10 The ∆tj determined by Lemma 2.10 is always within the
following set

Ω∆tj , {∆tj|∆tj < tj+1 − tj and |x̄(tj + ∆tj)| ≤ ξ|x̄(tj)|} (2.3.45)

where ξ ≥ 1, ∀k′ ∈ Q, j = 1, 2 . . ..

Remark 2.9 The selection of ξ depends on system dynamics. Assumption
2.10 is not hard to be satisfied, since ∆tj can be made arbitrary small (due to
Lemma 2.10). If the system without control is still stable or divergent slowly
(this is the ideal case), then it is also possible that |x̄(tj + ∆tj)| < ξ|x̄(tj)|
when the current mode is detected at t + ∆tj.

From (2.3.45), lemmas 2.7 and 2.9, we have

|x(tj + ∆tj)| ≤ |x̄(tj + ∆tj)| + |ēx(tj + ∆tj)|
≤ |x̄(tj + ∆tj)| +

√

ᾱ3eᾱ4∆tj |ēx(tj)|
≤ |x̄(tj + ∆tj)| +

√
ᾱ3ex(tj)est

≤ ξ|x̄(tj)| + ǫj (2.3.46)
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where ᾱ3 > 0, ᾱ4 < 0 are determined by P̄ , Q̄. k′′ denotes the mode activated
in [tj−1, tj). Note that ǫj > 0 can be calculated from the estimates ex(tj)est

in (2.3.20). The main contribution of inequality (2.3.46) is that it provides
a bound of |x(t)| in ∆tj, which can be used to design ρj in (2.3.40).

The proposed identifier in this section has three good properties:

• It can provide accurate state estimates after each ∆tj .

• It is not affected by continuous actuator faults since no control signal
are applied in ∆tj.

• It avoids the large transient overshoot of states in ∆tj.

2.3.4 FTC framework

Based on the analysis in sections 2.3.2-2.3.3, the FTC problem for both con-
tinuous and discrete faults is discussed in this section. Fig.2.2 shows the block
diagram of the framework, where the plant is connected with three parts: a
series of observers and controllers, a model-free observer, and an identifier.
The fault tolerant control framework works as the following procedure:

1) At switching instant tj, stop the fault diagnostic scheme (2.3.11)-(2.3.13),
set control signals and fault estimates to zero.

2) Invoke the model free observer (2.3.40), a series of observers (2.3.44),
initialize all observers at tj with the same states x̂(t−j ).

3) Choose ρj by (2.3.43) and (2.3.46), invoke the identifying scheme in
Lemma 2.10 into the system.

4) Determine ∆tj based on Lemma 2.10.

5) At tj+∆tj, stop the identifier, apply the fault diagnostic scheme (2.3.11)-
(2.3.13) and controller (2.3.23)-(2.3.25) into the system according to
the current mode.

6) At switching instant tj+1, go to 1).

The following theorem is given to guarantee the stability of overall system
with both continuous and discrete faults.

Theorem 2.6 Consider the HS (2.3.1)(2.3.2) with an initial x(0) satisfying
assumptions 2.9, 2.10, with each mode satisfying assumptions 2.6-2.8. Let
the switching function σ have an ADT τa. If τa > ln µ

λ0
, and ex(t

j(k +1))est <

ex(t
j(k))est, then the proposed FTC framework guarantees that the states of

the HS are always bounded and converge to a small closed set.
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Figure 2.2: The FTC framework

Proof : Following the result of Theorem 2.5, we have

W (tj+1) ≤ µ(W (tj + ∆tj) + G
tj+1

tj+∆tj
(λ0)) (2.3.47)

If the current mode is mode k′, then

W (tj + ∆tj) = eλ0(tj+∆tj)Vk′(x(tj + ∆tj)) (2.3.48)

From Lemma 2.9 and (2.3.45), we have

|x(tj + ∆tj)| ≤ |ēx(tj + ∆tj)| + |x̄(tj + ∆tj)|
≤

√

ᾱ3eᾱ4∆tj |ēx(tj)| + ξ|x̄(tj) − x(tj) + x(tj)|
≤ (

√

ᾱ3eᾱ4∆tj + ξ)|ēx(tj)| + ξ|x(tj)| (2.3.49)

From (2.5.2), we further have

Vk′(x(tj + ∆tj)) ≤ ᾱ2|x(tj + ∆tj)|2

≤ 2ᾱ2(
√

ᾱ3eᾱ4∆tj + ξ)|ēx(tj)|2 +
2ᾱ2ξ

2

ᾱ1

Vk′(x(tj)) (2.3.50)

Define ψ(tj) , 2ᾱ2(
√

ᾱ3eᾱ4∆tj + ξ)|ēx(tj)|2eλ0∆tj , ∆j ,
(2ᾱ2ξ2)

ᾱ1
eλ0∆tj . In each

period ∆tj, there are no input and continuous actuator fault, so ef (t) = 0

∀t ∈ [tj, tj + ∆tj), and it is natural that G
tj+1

tj+∆tj
(λ0) ≤ G

tj+1

tj (λ0). Iterating

the inequality (2.3.47) from 0 to Nσ together with (2.3.50), where Nσ denotes
Nσ(T, 0), we get

W (T−) ≤
(

µNσ

Nσ−1∏

s=0

∆s

)

W (0) +
Nσ−1∑

i=1

(

µNσ−i+1eλ0tiψ(ti−1)
Nσ−1∏

s̄=i

∆s̄

)
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+µeλ0T ψ(tNσ−1) +
Nσ−1∑

j=1

(

µNσ−j+1G
tj
tj−1

(λ0)
Nσ−1∏

l=j

∆l

)

+ µG⊤
tNσ−1

(λ0)

Since ∆tj is a bounded small time period, there exists a constant ∆̄ > 0 such

that
∏Nσ−1

s=i ∆s ≤ ∆̄ ∀i ∈ {1, 2, . . . , Nσ − 1}. Note that eλ0ti ≤ eλ0T , one has

W (T−) ≤ µNσ∆̄W (0) + eλ0T ∆̄
Nσ−1∑

i=1

(µNσ−i+1ψ(ti−1)) + µeλ0T ψ(tNσ−1)

+∆̄
Nσ−1∑

j=1

(µNσ−j+1G
tj
tj−1

(λ0)) + µG⊤
tNσ−1

(λ0) (2.3.51)

From (2.3.36) and (2.3.37), we get µNσ−j+1G
tj
tj−1

(λ0) ≤ µ1+N0e(λ0−λ)T G
tj
tj−1

(λ),
for 0 < λ < λ0. Taking the forgoing inequality into (2.3.51), and following
the same way as in Theorem 2.5, we can finally obtain

ᾱ1|x(T )|2 ≤ βa(|x(0)|, t) + γē(‖ēx(tj)‖[0,T ))

+γex(‖ex‖[0,T )) + γef (‖ef‖[0,T )) + ς̄2(2.3.52)

where βa ∈ KL, γē, γex, γef ∈ K∞, ς̄2 ≥ 0 are determined from (2.3.51).
The inequality (2.3.52) implies the ISpS of HS w.r.t. ex(t), ef (t), ēx(tj)

and a constant ς̄2 > 0, where j = 1, 2 . . . . which, together with ex(t
j(k +

1))est < ex(t
j(k))est and the boundness of ef guarantees the global conver-

gence of the states of the system to a small closed set.  

Remark 2.10 Note that ēx(tj) is a discrete vector, since its value is captured
only at each switching instant. Moreover, it has been shown that |ēx(tj)|
∀k ∈ Q is bounded. Theorem 2.6 also implies that the value of ∆tj ∈ Ω∆tj

does not change the system’s ISpS property. Appropriate selection of ∆tj can
reduce the bound of x in the sense of ISpS in (2.3.52).

Remark 2.11 Switching the input between the nominal control strategy and
zero value has been shown to be an efficient way for performance-based FTC
[130]. It is natural for HS that, at each tj, the controller is switched on
according to the next mode. Setting the input to zero during a short period
after each switching is reasonable.

Example 2.2 : A m̄-phase switched reluctance motor (SRM) system is
employed to illustrate a potential application field of the approach. x =
[θm, ωm]⊤ is the state, where θm, ωm denote the angular position and velocity
of the motors.
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The simplified system model is expressed as follows:

θ̇m = ωm

ω̇m = − κe

Jm

sin(θm) − bi

Jm

ωm +
ci

Jm

ui, i = 1, 2, . . . , m̄

where Jm denotes the inertia of the motor. κe > 0 is the elasticity constant.
ui is the voltage applied to the motor of phase i, with bi and ci being the
related viscous friction and the amplifier gain. In the simulation, m̄ = 3 is
considered. The parameters are Jm = 0.935 kgm2, κe = 0.311 Nm/rad,
b1 = 1.17 Nms/rad, b2 = 2.23 Nms/rad, b3 = 0.54 Nms/rad, c1 =
20.196 Nm/V , c2 = 35.31 Nm/V , c3 = 12.44 Nm/V . We further describe
the model by the general form (2.3.1)-(2.3.2) with

A1 =

[
0 1
0 −1.2513

]

, A2 =

[
0 1
0 −2.385

]

, A3 =

[
0 1
0 −0.5775

]

B1 =

[
0

21.6

]

, B2 =

[
0

37.765

]

, B3 =

[
0

13.305

]

, g(x) =

[
0

−0.333 sin x2

]

The position of the motor phase can be measured via the shaft position
sensor, while the motor velocity is often estimated by timing the interval
between phase commutations of SRM. A coupled output signal of the angular
position and velocity is obtained shared by all phases, the output matrix
C = [1 2].

The continuous actuator fault is considered only in mode 1 with E1 =
[0 − 12.5]⊤. The matrix K1 and Q1 are chosen as

K1 =

[
3

−1.8

]

, Q1 =

[
0.1105 −0.0007
−0.0007 0.0986

]

Solving Eqs.(2.3.9)-(2.3.10), we obtain R1 = 0.3225 and

P1 =

[
0.0157 0.0258
0.0258 0.0516

]

On the other hand, by choosing W1 = I2×2, we obtain the matrix H1 from
(2.3.21) as

H1 =

[
1.0330 0.0327
0.0327 0.0325

]

The bounded function η1(x, t) is selected from (2.3.22) as

η1(x, t) =
0.333|0.0151x1 − 0.0377x2|

|0.3266x1 − 0.8150x2|
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Mode 1

Mode 3

Mode 2

t=7s

Discrete fault  

Continuous fault  

t=1.5s

t=7s

Figure 2.3: An illustration of system’s behavior

Take Γ1 = 20, ϑ1 = 8, ǫ = 0.01. The related parameters of modes 2 and 3
can be obtained following the same way as for mode 1, which is omitted.

The considered switching sequence is: mode 1→ mode 2→ mode 3 as
shown in Fig. 2.3. N0 = 0. From (2.5.2)-(2.3.33), choose µ = 35, λ0 = 0.8.
The switching instants are prescribed as t1 = 7s, t2 = 14s, which satisfy the
ADT scheme in theorems 2.3 and 2.4. The system is initialized in mode 1
with x(0) = [0.05 0.2]⊤.

f c
1 is assumed to occur at t = 1.5s as

f c
1(t) =

{
0, 0s ≤ t < 1.5s

0.5 + 0.3 sin(4πt), 1.5s ≤ t < 7s

which corresponds to an increase in the friction of the motor, that makes the
voltage deviates from normal situation. Fig. 2.4 shows the fault estimation
performance, from which we can see that f̂ c

1 follows f c
1 rapidly with a very

small overshoot. The discrete fault occurs at t = t1 = 7s, which represents
the abnormal switching behavior of the motor phase that makes mode 1
switch to mode 3 as in Fig. 2.3. At t = 7s, the identifier scheme is invoked.
The parameter of the model free observer in (2.3.40) is designed as

Ā =

[
0 1
0 −1

]

, L̄ =

[
2.8
−1.6

]

, P̄ =

[
2.7055 4.5351
4.5351 9.0703

]

where P̄ is obtained with Q̄ =

[
0.6384 0.6540
0.6540 1.8141

]

. There exists a h(x, t)

with ̺ selected as 3. The speed of the rotor can cause an increase of the
current after the corresponding voltage control has been switched off. As
a consequence, such residual current can have an adverse effect on torque
production at each switching instant. To avoid an unexpected oscillation of
rotor, we select ξ = 2. From (2.3.43) and (2.3.46), we can also choose ρ1 = 5.
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Figure 2.5: FTC performance
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A boundary layer compensator technique [192] is used with a bound number
0.02 to eliminate the chattering.

Fig. 2.5(a) shows the performance of the identifier. Although |x̄ − x̂1| is
minimal at the beginning, |x̄ − x̂3| is minimal and decreases at 7.35s, while
|x̄− x̂1| and |x̄− x̂2| still diverge. This implies that Mode 3 and consequently
the discrete fault can be identified with ∆t1 = 0.35. The controller and fault
diagnostic scheme for mode 3 are invoked into the system at t = 7.35s. The
state trajectories throughout the system process is shown in Fig. 2.5(b), it
can be seen that the states are always bounded.

2.4 Global passivity

In sections 2.1-2.3, we designed FTC law in each faulty mode such that it is
stable, then applied the standard stability results for HS. In the following two
sections, we will research directly the stability of HS without reconfiguring
the controller in each mode. We introduce, for the first time, the passivity
theory into the FTC analysis of HS.

2.4.1 Passivity and fault diagnosis

Passivity theory, that provides a bridge between achievable system perfor-
mances and energy-like considerations, has been widely used to analyze sta-
bility of nonlinear systems, where systems can not store more energy than
that supplied by the environment outside [165]. Passivity concept has also
been adopted for switched and HS [201], [194], where each mode is assumed
to be passive.

We shall introduce the passivity theory into the FTC design for HS where
each mode is passive in the healthy situation, and may be not passive due to
the fault.

Consider the affine nonlinear system

ẋ = f(x) + g(x)u + ∆(x)

y = h(x) (2.4.1)

where x ∈ X ⊂ ℜn are measurable states, u ∈ U ⊂ ℜm are inputs, y ∈ Y ⊂
ℜm are outputs. The fault is modelled by an unknown function ∆(x) ∈ ℜn,
which effectively represents the process faults [16], and occurs at an unknown
time. f , g, h and ∆ are smooth functions.

Definition 2.6 [21] A system (2.4.1) with ∆ ≡ 0 is passive if there exists a
nonnegative function V : X → ℜ, which satisfies V (0) = 0, called the storage
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function, and a supply rate y⊤u, such that for all initial states x(0) ∈ X,
u ∈ U , and t ≥ 0

V (x(t)) − V (x(0))
︸ ︷︷ ︸

stored energy

≤
∫ t

0

y⊤(s)u(s)ds

︸ ︷︷ ︸

supplied energy

(2.4.2)

where x(t) are the states at time t.

The inequality (2.4.2) is called dissipativity inequality [165], which for-
malizes the property that the increase in stored energy is never greater than
the amount of energy supplied by the environment. A passive system is easy
to control, choosing u = −φ(y), where φ : U → Y is a smooth function
and φ(0) = 0, such that y⊤φ(y) > 0 for each nonzero y leads to Lyapunov
stability [21].

Now we address the FD problem. As shown in Fig. 2.6, most classical
methods [50, 26] are designed such that the explicit values of faults can
be estimated. Here we develop a novel energy based FD technique that is
concerned with the energy analysis and has its root in the passivity. Under
the passivity framework, we show that only a part of faults needs to be
detected and estimated implicitly.

detect nearly all faults  detect a part of faults

   estimate the 

   fault values  (explicit)

FTC(Passivity)FTC (Stability)

estimate the increasing 

fault energy (inplicit)

Classical FD Energy based FD

Figure 2.6: Comparison of FD methods

In the following, we assume that V is a C1 function. The passivity prop-
erty is equivalent to

[∂V

∂x
(x)

]⊤
[f(x) + g(x)u] ≤ y⊤u (2.4.3)
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Once a fault occurs, the constraint (2.4.2) may be violated. Adding ∆(x)
into (2.4.3) and integrating both sides yields

V (x(t)) − V (x(0)) ≤
∫ t

0

y⊤(s)u(s)ds

+

∫ t

0

[∂V

∂x
(x)

]⊤
∆(x(s))ds

︸ ︷︷ ︸

fault energy Ef

(2.4.4)

As indicated in (2.4.4), the energy dissipativity property changes due to the
fault. The fault may help to dissipate the stored energy (Ef < 0) or increase
the stored energy (Ef > 0). We only care about the faults that result in

V (x(t)) − V (x(0)) >
∫ t

0
y⊤(s)u(s)ds. A diagnosis threshold can be designed

as

V (x(t)) − V (x(0)) =

∫ t

0

y⊤(s)u(s)ds (2.4.5)

This is also called lossless property [21]. Note that the faults with Ef < 0
are not necessary to be detected since they do not change the energy dis-
sipativity. Once the left side of (6.1.6) becomes larger than the right side,
the fault is detected. We estimate such fault value implicitly as V (x(t)) −
V (x(0)) −

∫ t

0
y⊤(s)u(s)ds. More precisely, we estimate the energy that in-

creases due to the fault and check whether the system is still passive or not.
This information will be used for fault tolerance analysis.

2.4.2 Fault tolerance analysis of hybrid systems

The hybrid system takes the form

ẋ = fσ(x) + gσ(x)uσ + ∆σ(x)

y = hσ(x) (2.4.6)

where x ∈ X ⊂ ℜn is continuous everywhere, uσ ∈ ℜmσ , hσ ∈ ℜmσ . All fσ,
gσ, hσ and ∆σ are smooth functions. σ(t) : [t0,∞) → Q = {1, 2, . . . , N} de-
notes the switching function. We denote by tk, k = 1, 2, ... the kth switching
time. Nσ(t) represents the number of switchings in [0, t). tkj, k = 1, 2, ...,
j ∈ Q denotes the kth switching time that mode j is activated. Suppose
that there exists N non-negative storage functions Vp(x), and αp

1, αp
2 ∈ K∞,

∀p ∈ Q that satisfy
αp

1(|x|) ≤ Vp(x) ≤ αp
2(|x|) (2.4.7)

such that mode p is passive with Vp(x) in the healthy situation.
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In this work, we neither reconfigure the controller uσ nor adjust the
switching law σ. We analyze fault tolerance of the HS (2.4.6) under the
original uσ and σ. It will be shown that under the global energy dissipativity,
the stability of the HS can be achieved in spite of non passive modes.

Definition 2.7 A switched system (2.4.6) is globally passive if there exists
nominal controllers u1, u2, ...,uN , such that for all initial states x(0) ∈ X,
and T ≥ 0

Vσ(T )(x(T )) − Vσ(0)(x(0)) − Etr(x(0)) ≤
∫ T

0

W (s)ds (2.4.8)

where W (s) ≤ 0 is defined as

∫ T

0

W (s) ,

Nσ(T )
∑

k=0

∫ tk+1

tk

(

y⊤(s)uσ(s)(s)

+
[∂Vσ(s)

∂x
(x)

]⊤
∆σ(s)(x(s))

)

ds (2.4.9)

and Etr =
∑Nσ(T )

k=1

[

Vσ(tk)−Vσ(t−
k

)

]

is bounded by a constant and tends to zero

as x(0) goes to origin.

The left side of (2.4.8) represents the sum of stored energies of all modes,

which could also be written as
∑Nσ(T )

k=0

[

Vσ(t−
k+1) − Vσ(tk)

]

where t0 = 0,

tNσ(T )+1 = T . The formulation of (2.4.8) is consistent with the standard
passivity inequality, Etr denotes the total transient energy. As shown later,
Etr may be eliminated under some conditions.

It is clear from (2.4.9) that the right hand of (2.4.8) denotes the total
supplied energy and “fault” energy. Since W (s) ≤ 0, it follows that under
the nominal controllers u1, u2, ...,uN , the sum of the supplied energy during
[0, T ) can compensate the increasing energy due to faults. This means that
the total stored energies still dissipative in spite of faults.

Global passivity balances the total energy throughout the overall process,
while no individual passivity of each mode is required. We shall prove that
the global passivity includes the passivity property proposed in [201] as in
the following proposition.

Proposition 2.1 If each mode of a HS (2.4.6) is passive as in (2.4.2), and
there exist functions ωk+1

k (t), called cross supply rates such that ωk+1
k (t) ≤

φk+1
k (t) where φk+1

k (t) ∈ L1 and

Vq(x(tq(k+1))) − Vq(x(tqk)) ≤
∫ tq(k+1)

tqk

ωk+1
k (s)ds (2.4.10)
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then the system (2.4.6) is globally passive.

Proof : The passivity of each mode leads to the fact that each energy
is non-decreasing when the related mode is activated. Suppose mode q is
activated at the time T , from (2.4.10), we obtain

Vq(x(T )) − Vq(x(tq1)) − Θ(x(0)) ≤
∫ T

0

W (s)ds (2.4.11)

where W (s) ≤ 0, Θ(x(0)) is a constant and tends to zero as x(0) goes to the
origin. This constant is obtained from the fact that Σ∞

k=1

∫ tq(k+1)

tqk
ωk+1

k (s)ds is

bounded, since φk+1
k (t) ∈ L1. On the other hand, for any x(0), Vσ(0)(x(0)) is

bounded, there exists a constant Φ , Vσ(0)(x(0))−Vq(x(tq1)), which together
with (2.4.11), leads to the result.  

Global passivity implies the stability as shown below.

Theorem 2.7 If a HS (2.4.6) is globally passive, then the origin of the sys-
tem is stable in spite of faults.

Proof : For a given arbitrary ε > 0, since Vi is continuous and Vi(0) = 0,
based on (2.4.7), we can choose εi

2 > 0 such that Vi < εi
2 leads to (αi

1)
−1(Vi) <

ε. Pick ε3 = mini[ε
i
2], since Etr tends to zero as x(0) goes to the origin, we can

choose ε4 such that |x(0)| < ε4 results in maxi[α
i
2(|x(0)|) + Etr(x(0))] < ε3.

Thus, followed by (2.4.8), we find that if the system starts in B(ε4), we will
stay within B(ε). This completes the proof.  

Theorem 2.7 provides us a method to check the fault tolerance, which is
equivalent to check the global passivity. However, when we use (2.4.8) to
check the fault tolerance at any instant T , one obstacle appears since we are
not sure whether there is a constant bound of the total transient energy for
all t ≥ T . This motivates the following result.

Proposition 2.2 If a HS (2.4.6) is globally passive, and Vσ(t)(x(t)) ≤ Vσ(t−)(x(t))
at each switching instant t, then (2.4.8) holds with Etr = 0.

Proof : The result follows the fact that

Nσ(T )
∑

k=0

[

Vσ(t−
k+1)(x(tk+1)) − Vσ(tk)(x(tk))

]

= Vσ(T )(x(T )) − Vσ(tNσ(T )
)(x(tNσ(T )

)) + · · ·
+Vσ(t−

k+1)(x(tk+1)) − Vσ(tk)(x(tk)) + · · · + Vσ(t−1 )(x(t1)) − Vσ(0)(x(0))

≥ Vσ(T )(x(T )) − Vσ(0)(x(0)) (2.4.12)
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Thus, from (2.4.9), we have Vσ(T )(x(T )) − Vσ(0)(x(0)) ≤
∫ T

0
W (s)ds .  

The condition in Proposition 2.2 guarantees that the energy in the current
mode at switching time is always larger than that of the next mode. In this
case, the transient energy is negative.

To further overcome the obstacle in (2.4.8), and allow the increase of
energy at switching time, we provide a stronger version of global passivity,
named “periodic fault tolerant passivity”. We first define some mode sets:

• Q1 ⊂ Q denotes the set of healthy modes.

• Q2 ⊂ Q1 denotes the set of healthy modes that may be activated as
the initial mode or after a healthy mode.

• Q3 ⊂ Q1 denotes the set of healthy modes that are activated after a
faulty mode, meanwhile, are followed by a healthy mode or are the final
mode.

The relation of above several sets is illustrated by Fig.2.7, from which we
see that { 1, 3, 5, 6 } ∈ Q1. { 1, 6 } ∈ Q2. 5 ∈ Q3. Note that Mode 3 is
activated between two faulty modes. Thus 3 ∈ Q1 \ (Q2 ∪ Q3).

......mode 6mode 5

healthy

mode 4mode 3mode 1 mode 2

healthyfaultyhealthyfaulty healthy

Figure 2.7: Switching sequence

Definition 2.8 A HS (2.4.6) is periodically fault tolerant passive if there
exist nominal controllers u1, u2, ...,uN , such that for all initial states x(0) ∈
X, and T ≥ 0, the following inequalities hold:

• ∀i ∈ Q2

Vi(x(t(k+1)i)) − Vi(x(tki)) ≤ 0 (2.4.13)

where 0 ≤ t(k)i < t(k+1)i ≤ T .

• ∀i ∈ Q2, j ∈ Q3, such that mode j is the first mode of set Q3 activated
after mode i. Denote by Te, Ts the end time of mode j and the start
time of mode i respectively

Vj(x(Te)) − Vi(x(Ts)) ≤
∫ Te

Ts

W1(s)ds (2.4.14)

where W1(s) ≤ 0.
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• For the case that the initial mode i is faulty, and there exists j ∈ Q3

such that mode j is the first mode of set Q3 activated after initial mode
and is ended at Te

Vj(x(Te)) − Vi(x(0)) ≤
∫ Te

0

W2(s)ds (2.4.15)

where W2(s) ≤ 0.

• For the case that the final mode i is faulty, and there exists j ∈ Q2 such
that mode j is the last mode of set Q2 activated before the final mode
and is started at Ts

Vj(x(T )) − Vi(x(Ts)) ≤
∫ T

Ts

W3(s)ds (2.4.16)

where W3(s) ≤ 0.

• For the case that no mode of the set Q2 ∪ Q3 is activated

Vσ(T )(x(T )) − Vσ(0)(x(0)) ≤
∫ T

0

W4(s)ds (2.4.17)

where W4(s) ≤ 0.

Definition 2.8 is illustrated in Fig. 2.8, from which we can see that the
energy is dissipative in each small period that includes the faulty modes. Two
advantages result from this property, that is 1) Inequalities (2.4.14)-(2.4.17)
are not hard to justify. 2) We can check the fault tolerance in a short period
after the fault occurs.

......mode 6mode 1

healthy

mode 4mode 3mode 1 mode 2

healthyfaultyhealthyfaulty healthy

mode 4

faulty

mode 5

healthy

energy dissipative
energy dissipative

Figure 2.8: Switching sequence

Theorem 2.8 If a HS (2.4.6) is periodic fault tolerant passive, then the
origin of the system is stable in spite of faults.

Proof : We consider four cases as follows:
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• Case 1: The initial and final modes are not faulty. Note that each
healthy mode is passive. Inequalities (2.4.14)-(2.4.16) imply that every
time when we start in the mode of the set Q2, the energy is non-
increasing until the next mode of set Q2 is activated. The stability
follows from Theorem 2.3 in [19] and Theorem 2.7.

• Case 2: No mode of the set Q2 ∪ Q3 is activated. The stability is
achieved from (2.4.17) and Theorem 2.7.

• Case 3: The initial mode is healthy, and the final mode is faulty. It
follows from (2.4.16) that after the last mode of set Q2 before final mode
is activated, the energy is non-increasing. The stability is achieved from
Theorem 2.3 in [19] and Theorem 2.7.

• Case 4: The initial mode is faulty, and the final mode is healthy. Sim-
ilarly to Case 3, the result can be obtained from (2.4.15).  

Example 2.3 : A switched RLC circuit that is widely employed in order to
perform low-frequency signal processing in integrated circuits is taken as an
example to illustrate the results. As shown in Fig. 2.9, the circuit consists
of an input power source, a resistance, an inductance and N capacitors that
could be switched between each other. The two measurable state variables
are the charge in the capacitor and the flux in the inductance x = [qc, φL]⊤.
The input u is the voltage.

......

+

-

Figure 2.9: A switched RLC circuit

The dynamic equations are given by







ẋ1 = 1
L
x2

ẋ2 = − 1
Ci

x1 − R
L
x2 + u

y = 1
L
x2, i = 1, 2, ..., N
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where Ci denotes the ith capacitor. The energy function of each mode is
given as

Vi =
1

2Ci

x2
1 +

1

2L
x2

2

0 100 200 300 400 500 600 700 800 900 1000
−0.7

−0.6

−0.5

−0.4
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−0.2

−0.1

0

t/s

Stored energy 

Supplied energy 

Figure 2.10: Diagnosis performance (N=1)

Let us first consider the case N = 1, this RLC circuit is also discussed
in [118]. In the healthy situation, it can be obtained that V̇ = −R

L
x2

2 + yu
which satisfies the passivity. The nominal control is chosen as u = un = −y.
Now we consider a leakage fault that occurs in the capacitor at t = 200s, the
dynamic equation of ẋ2 is changed into

ẋ2 = − 1

C
x1 −

R

L
x2 +

k

C
x1 + u (2.4.18)

where k > 0 is an unknown faulty parameter. It follows that V̇ = −R
L
x2

2 −
k

LC
x1x2 + yu. If −R

L
x2

2 ≤ k
LC

x1x2, then such fault does not affect the pas-
sivity. Otherwise, the fault would be diagnosed. Set k = −200, L = 0.1H,
C = 100µF , R = 1Ω, the initial states are [0.2, 0.2]⊤. Fig. 2.10 shows the di-
agnosis performance, we can see that once the threshold is reached at nearly
370s, the fault is detected.

Suppose that N = 3, i.e., the system is switched among three capacitors.
C1 is activated in [t3n, t3n+1), C2 is in [t3n+1, t3n+2), and C3 is in [t3n+2, t3n+3),
n = 0, 1, .... The nominal input is ui = − 1

L
x2. The fault occurs in C2 as

(2.4.18) with k = −200, which violates the passivity of mode 2. It is clear that
1 ∈ Q2, 3 ∈ Q3. In the simulation, set L = 0.1H, C1 = 50µF , C2 = 100µF ,

53



CHAPTER 2. HYBRID SYSTEMS WITH TIME-DEPENDENT SWITCHING
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Figure 2.11: System performance (N=3)

C3 = 20µF and R = 1Ω. Assume that the dwell time t3n+3 − t3n+2 = 20s,
t3n+2 − t3n+1 = 20s, and t3n+1 − t3n = 20s. We can check that each period
[t3n, t3n+3) satisfies (2.4.14), and mode 1 satisfies (2.4.13). Thus the system
is periodic fault tolerant passive. Fig. 2.11 shows the state trajectory, the
system is still stable in spite of the fault.

2.5 General stability results in HS

Motivated by the fact that some modes may be unstable due to faults, in this
section, we establish a new sufficient stability condition named “ gain tech-
nique” for HS with unstable mode, and provide novel stabilizing switching
laws such that the stability is guaranteed and each mode can be activated
following any prescribed sequence whatever it is stable or not.

2.5.1 Preliminaries

The considered switched system takes the general form

ẋ(t) = fσ(t)(x(t)) (2.5.1)

where x ∈ X ⊂ ℜn are the states. fσ is a nonlinear smooth function. Define
Q = {1, 2, . . . , N}, where N is the number of modes. σ(t) : [0,∞) → Q
denotes the switching function, which is assumed to be a piecewise constant
function continuous from the right. fi, i ∈ Q are smooth functions with
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fi(0) = 0, hence, the origin is an equilibrium point. We denote by tj, j =
1, 2, ... the jth switching instant, t0 = 0. Let tik, i ∈ Q, k = 1, 2, ... be
the kth time when mode i is switched on. Nσ(t) represents the number of
switchings in [0, t). In this work, we only consider nonZeno sequences (i.e.,
sequences that switch at most a finite number of times in any finite time
interval). However, the developed theory allows infinite switchings in infinite
time interval. We also assume that the states do not jump at the switching
instants.

Specially, we define a class GKL function γ : [0,∞) × [0,∞) → [0,∞) if
γ(·, t) is of class K for each fixed t ≥ 0 and γ(s, t) increases as t → ∞ for
each fixed s ≥ 0.

Denote Qs ⊂ Q as the set of stable modes and Qus ⊂ Q the set of unstable
ones. Q = Qs ∪ Qus, Qs ∩ Qus = ∅ and Qs 6= ∅. Suppose that there exist
continuous non-negative functions Vp : ℜn → ℜ≥0, αp

1, αp
2 ∈ K∞, ∀p ∈ Q,

and φp ∈ KL ∀p ∈ Qs, φp ∈ GKL ∀p ∈ Qus that satisfy for k = 1, 2, ...

αp
1(|x|) ≤ Vp(x) ≤ αp

2(|x|), ∀p ∈ Q (2.5.2)

Vp(x(t)) ≤ φp(Vp(x(tpk)), t − tpk), ∀p ∈ Qs, φp ∈ KL, t ≥ tpk (2.5.3)

Vp(x(t)) ≤ φp(Vp(x(tpk)), t − tpk), ∀p ∈ Qus, φp ∈ GKL, t ≥ tpk (2.5.4)

Formulations (2.5.2)-(2.5.4) include various converging and diverging forms
(e.g., the exponential decay form [65], the constant gain form [200]). For each
stable mode, Vp in (2.5.3) is more general than a classic Lyapunov function
since a bounded increase is allowed. For unstable modes, inequality (2.5.4)
implies that Vp may increase infinitely as described by a GKL function if
t → ∞. GKL function is more general than the Lyapunov-like function in
[188] since we do not impose an upper bound on Vp. Note that (2.5.3)-(2.5.4)
are properties satisfied by functions of each mode, and do not depend on the
switching sequence. Vp (∀p ∈ Q) is not required to be differentiable.

Definition 2.9 Given a switching function σ(t), the origin of a switched
system (2.5.1) is said to be stable under σ if for any ǫ > 0, there exists a
δ > 0 such that |x(t)| ≤ ǫ, t ≥ 0, whenever |x(0)| ≤ δ.

Definition 2.9 describes the stability w.r.t. a given switching function σ(t).
The objectives of this section is to propose switching laws that stabilize the
system (2.5.1) satisfying (2.5.2)-(2.5.4) by determining the switching instants
according to any given switching sequence.

2.5.2 Stabilization of switched systems

In the following, we first establish a stability condition for the considered
switched systems in the finite time interval with finite numbers of switchings
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(Lemma 1). Based on such stability criterion, a stabilizing switching law will
be constructed (Theorem 1).

Lemma 2.11 Consider a switched system (2.5.1) satisfying (2.5.2)-(2.5.4).
Under σ(t), if there exists a constant β > 0 such that

Nσ(ts,t)
∑

k=0

( Nσ(ts,t)
∏

i=k

φ
ti+1−ti
σ(ti)

V ti
σ(ti)

)

≤ β, t > ts ≥ 0, where tNσ(ts,t)+1 , t, Nσ(ts,t) is finite

(2.5.5)
Then x is bounded in [ts, t). Moreover, for any bounded x(ts), the upper
bound of |x(t)| can be estimated.

Remark 2.12 Note that
φ

t−ti
σ(ti)

V
ti
σ(ti)

for t ≥ ti is the bound of the gain of function

Vσ(ti) when mode σ(ti) is activated. Condition (2.5.5) gives a relation among
the gains of each activated mode and its activating period. More precisely,
x is bounded in [ts, t) if the product of gains from each activated mode to
the terminated mode is bounded, and the sum of these products values is also
bounded. It deserves to point out that for a switched system with unstable
modes, even in the finite time interval with finite switching times, x may
escape to infinity under inappropriate switching law.

Proof of Lemma 2.11 : For the sake of clearness, suppose that ts = t0 = 0.
Denote Nσ(t) , Nσ(0,t).

Consider t ∈ [0, t1), we have V t
σ(0) ≤

φt
σ(0)

V 0
σ(0)

V 0
σ(0). Condition (2.5.5) ensures

that
φt

σ(0)

V 0
σ(0)

≤ β. It follows from (2.5.2)-(2.5.4) that

|x(t1)| ≤ (α
σ(0)
1 )−1 ◦ β ◦ α

σ(0)
2

︸ ︷︷ ︸

ϑt1

(|x(0)|) (2.5.6)

for ϑt1 ∈ K∞. According to (2.5.2), one has

V t1
σ(t1) ≤ V t1

σ(t−1 )
+ α

σ(t1)
2 (ϑt1(|x(0)|)) − α

σ(t−1 )
1 (ϑt1(|x(0)|)) (2.5.7)

Define αt1 = max[α
σ(t1)
2 ◦ ϑt1 , α

σ(t−1 )
1 ◦ ϑt1 ]. Since α

σ(t1)
2 , α

σ(t−1 )
1 , ϑt1 ∈ K∞, it is

clear that αt1 ∈ K∞ and

αt1(|x(0)|) ≥ α
σ(t1)
2 (ϑt1(|x(0)|)) − α

σ(t−1 )
1 (ϑt1(|x(0)|)) (2.5.8)

Substituting (2.5.8) into (2.5.7) results in

V t1
σ(t1) ≤ V t1

σ(t−1 )
+ αt1(|x(0)|) (2.5.9)
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For t ∈ [t1, t2), we have

V t
σ(t) ≤

φt−t1
σ(t1)

V t1
σ(t1)

V t1
σ(t1) ≤

φt−t1
σ(t1)

V t1
σ(t1)

[

V
t−1
σ(t−1 )

+ αt1(|x(0)|)
]

≤
φt−t1

σ(t1)

V t1
σ(t1)

φt1
σ(0)

V 0
σ(0)

V 0
σ(0) +

φt−t1
σ(t1)

V t1
σ(t1)

αt1(|x(0)|) (2.5.10)

Note that V 0
σ(0) is bounded and αt1 ∈ K∞. Condition (2.5.5) ensures that

φ
t−t1
σ(t1)

V
t1
σ(t1)

φ
t1
σ(0)

V 0
σ(0)

≤ β and
φ

t−t1
σ(t1)

V
t1
σ(t1)

≤ β. It follows from (2.5.2)-(2.5.4) and (2.5.10) that

|x(t2)| ≤ (α
σ(0)
1 )−1 ◦ β ◦

(

α
σ(0)
2 (|x(0)|) + αt1(|x(0)|)

)

︸ ︷︷ ︸

ϑt2 (|x(0)|)

(2.5.11)

for ϑt2 ∈ K∞. One further has

V t2
σ(t2) ≤ V t2

σ(t−2 )
+ α

σ(t2)
2 (ϑt2(|x(0)|)) − α

σ(t−2 )
1 (ϑt2(|x(0)|)) (2.5.12)

Define αt2 = max[α
σ(t2)
2 ◦ ϑt2 , α

σ(t−2 )
1 ◦ ϑt2 ]. Since α

σ(t2)
2 , α

σ(t−2 )
1 , ϑt2 ∈ K∞, it

follows that αt2 ∈ K∞ and

αt2(|x(0)|) ≥ α
σ(t2)
2 (ϑt2(|x(0)|)) − α

σ(t−2 )
1 (ϑt2(|x(0)|)) (2.5.13)

Substituting (2.5.13) into (2.5.12) results in

V t2
σ(t2) ≤ V t2

σ(t−2 )
+ αt2(|x(0)|) (2.5.14)

for αt2 ∈ K∞.
By induction, we find that under condition (2.5.5) there exists a function

α ∈ K∞ such that at each switching instant ti > 0, i = 1, 2, ..., Nσ(t)

Vσ(ti)(x(ti)) ≤ Vσ(t−i )(x(ti)) + α(|x(0)|) (2.5.15)

where α(|x(0)|) , supi=1,2,...,Nσ(t)
[αti(|x(0)|)].

Denote j = Nσ(t) for t ≥ 0, j ≥ 0, it follows from (2.5.3)-(2.5.4) that

Vσ(t)(x(t)) ≤ φ
t−tj
σ(tj)

=
φ

t−tj
σ(tj)

V
tj
σ(tj)

V
tj
σ(tj)

≤
φ

t−tj
σ(tj)

V
tj
σ(tj)

[

V
t−j

σ(t−j )
+ α(|x(0)|)

]
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≤
φ

t−tj
σ(tj)

V
tj
σ(tj)

φ
tj−tj−1

σ(tj−1) +
φ

t−tj
σ(tj)

V
tj
σ(tj)

α(|x(0)|)

≤
φ

t−tj
σ(tj)

V
tj
σ(tj)

φ
tj−tj−1

σ(tj−1)

V
tj−1

σ(tj−1)

V
t−j−1

σ(t−j−1)
+

[φ
t−tj
σ(tj)

V
tj
σ(tj)

φ
tj−tj−1

σ(tj−1)

V
tj−1

σ(tj−1)

+
φ

t−tj
σ(tj)

V
tj
σ(tj)

]

α(|x(0)|)

...

≤
Nσ(t)
∏

s=0

φ
ts+1−ts
σ(ts)

V ts
σ(ts)

Vσ(0)(x(0)) +

Nσ(t)
∑

k=1

( Nσ(t)
∏

i=k

φ
ti+1−ti
σ(ti)

V ti
σ(ti)

)

α(|x(0)|) (2.5.16)

Based on (2.5.2) and (2.5.15), since α ∈ K∞, there exists a K∞ function ᾱ
such that

ᾱ(|x(0)|) = max
[

α
σ(0)
2 (|x(0)|), α(|x(0)|)

]

(2.5.17)

Substituting (2.5.17) into (2.5.16), together with (2.5.5), yields

Vσ(t)(x(t)) ≤
Nσ(t)
∑

k=0

( Nσ(t)
∏

i=k

φ
ti+1−ti
σ(ti)

V ti
σ(ti)

)

ᾱ(|x(0)|) ≤ βᾱ(|x(0)|) (2.5.18)

From (2.5.2), we finally obtain

|x(t)| ≤ (α
σ(t)
1 )−1βᾱ(|x(0)|) (2.5.19)

Since β > 0 is a constant, α
σ(t)
1 , ᾱ ∈ K∞, the stability result follows.

From above procedures, one can find that under condition (2.5.5), given
any x(ts), β and switching sequence, each αti(|x(ts)|) can be calculated which
is independent from the switching instants. Thus, for any bounded x(ts), we
can find a function Ω(·) such that |x(t)| ≤ Ω(|x(ts)|). This completes the
proof.  

Remark 2.13 The main contributions of Lemma 2.11 are twofold: 1) Both
stable and unstable modes are allowed in the switched nonlinear system; 2)
The “µ” condition is removed by introducing a difference α(|x(0)|) among
functions Vp ∀p ∈ M. However, the condition (2.5.5) is independent from
α(|x(0)|). 3) The upper bound of |x(t)| can be estimated without the infor-
mation of switching instants in [0, t). This property will be very useful in
switching law design.

Remark 2.14 The condition (2.5.5) is valid since Vσ is a non-negative func-
tion and is impossible to become zero unless a stronger finite time stability
[15] is achieved. For the case that finite time stability is achieved, (2.5.5) is
available if we take j instead of Nσ(t) where V t

σ(t) > 0 for t < tj+1.
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Remark 2.15 It is often not easy to verify (2.5.5) on-line, which relies on
the solutions of the system. However, this condition can help to construct a
stabilizing switching law as shown below. The proposed stabilization scheme
will automatically guarantee the validation of (2.5.5).

Unlike the usual design methods that adjust both the switching sequence
and switching instants [200], [169], we only redesign the switching instants
such that the origin of switched system is always stable under any given
switching sequence where each prescribed mode can be activated.

Assumption 2.11 there exists a known constant χ ≥ 1 such that

χ = max
j∈M,k=1,2...

φj(Vj(x(tjk)), 0)

Vj(x(tjk))
(2.5.20)

Remark 2.16 Assumption 1 means that the initial gain of function Vj is
bounded when the corresponding mode j is just switched on at t = tjk. In
some situations, φj(Vj(x(tjk)), 0) is affine w.r.t. Vj(x(tjk)), e.g. the expo-
nential decay form [65], the constant gain form [200]. In these cases, χ can
be easily obtained a priori.

Without loss of generality, suppose that at for a given sequence, at most
m unstable modes (m is finite) are activated one by one without being inter-
rupted by stable modes.

Choose a constant β > max[m(1 + χ)χm,m(m + 1)χm+1], where χ is
defined in (6.1.37). Given any required upper bound ǫ of |x(t)| and switching
sequence, the switching law is designed as:

Switching law S (with a given ǫ and a switching sequence)

1. Let i = 0, choose x(0) such that (α
σ(0)
1 )−1φσ(0)(Vσ(0)(x(0), 0)) ≤ ǫ

2. If (C1) mode σ(ti) is stable and mode σ(ti+1) is stable, then

go to 3;

Else, go to 5.

3. Choose ti+1 such that (α
σ(ti+1)
1 )−1φσ(ti+1)(Vσ(ti+1)(x(ti+1), 0)) ≤ ǫ.

4. Let i = i + 1, go to 2.

5. If (C2) mode σ(ti) is stable and mode σ(ti+1) is unstable, and

there exist h−1 unstable modes (h ≤ m) activated successively

after mode σ(ti+1), then go to 6;
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Else, go to 9.

6. Determine the bound Ω(|x(ti+1)|) satisfying |x(ti+h+1)| ≤ Ω(|x(ti+1)|)
using (2.5.19) in Lemma 2.11, choose ti+1 such that

(α
σ(ti+h+1)
1 )−1φσ(ti+h+1)(α

σ(ti+h+1)
2 (Ω(|x(ti+1)|)), 0)) ≤ ǫ

let s = 0.

7. Choose ti+2+s such that

i+1+s∑

k=0

( i+1+s∏

j=k

φ
tj+1−tj
σ(tj)

V
tj
σ(tj)

)

≤ β

(h + 1 − s)χh+1−s
− 1

8. Let s = s + 1; If s 6= h, then go to 7; Else, let i = i + h, go

to 2.

9. If (C3) the initial mode σ(0) is unstable, and there exist h−
1 unstable modes (h ≤ m) activated successively after mode

σ(0), then go to 10.

10. Determine the bound Ω(|x(0)|) satisfying |x(th)| ≤ Ω(|x(0)|) using

(2.5.19) in Lemma 2.11, choose x(0) such that

(α
σ(th)
1 )−1φσ(th)(α

σ(th)
2 (Ω(|x(0)|)), 0)) ≤ ǫ

let s = 0.

11. Choose t1+s such that
∑s

k=0

(
∏s

j=k

φ
tj+1−tj

σ(tj)

V
tj

σ(tj)

)

≤ β
(h+1−s)χh+1−s − 1.

12. Let s = s + 1; If s 6= h, then go to 11; Else, let i = h, go

to 2. ¥

The main idea behind S is that for current stable mode σ(ti), if next
mode σ(ti+1) is stable, we let mode σ(ti) be activated until ti+1 such that
x(ti+1) results in |x(t)| ≤ ǫ during mode σ(ti+1)’s working period [ti+1, ti+2)
(step 3). When we predict that h unstable modes will be activated after
stable mode σ(ti), we let mode σ(ti) be activated long enough until ti+1 such
that x(ti+1) results in |x(t)| ≤ ǫ for t ∈ [ti+1, ti+h+2), i.e. the total activating
periods of all h unstable modes and stable mode σ(ti+h+1) (step 6). This can
be achieved because the upper bound Ω(|x(ti+1)|) can be obtained without
the information of switching instants ti+1, ..., ti+h+1. The switching scheme
among unstable modes is based on Lemma 2.11 (steps 7, 8, 11, 12). For initial
stable/unstable modes, the initial states x(0) are also chosen in different ways
(steps 1 and 10).
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Theorem 2.9 Consider a switched system (2.5.1) satisfying (2.5.2)-(2.5.4)
and Assumption 2.11. For any given ǫ > 0 and any switching sequence where
at most m unstable modes are activated one by one, under the switching law
S, there exist an initial states x(0) and a series of switching instants satisfy
0 < t1 < t2 < ..., such that the origin is stable and |x(t)| ≤ ǫ ∀t ≥ 0.

Proof : In the step 1 of S, choosing x(0) satisfying

(α
σ(0)
1 )−1φσ(0)(Vσ(0)(x(0), 0)) ≤ ǫ

which leads to |x(0)| ≤ ǫ when mode σ(0) is just activated. If mode σ(0)
is stable, we have from (2.5.2)-(2.5.3) that |x(t)| ≤ ǫ for t ∈ [0, t1). We will
consider respectively three cases C1-C3 in S.

For C1, since mode σ(ti) is stable, it follows from (2.5.2)-(2.5.3) that
there always exists a time instant ti+1 > ti satisfying

(α
σ(ti+1)
1 )−1φσ(ti+1)(Vσ(ti+1)(x(ti+1), 0)) ≤ ǫ

this implies that |x(ti+1)| ≤ ǫ when mode σ(ti+1) is just activated. Since
mode σ(ti+1) is also stable, we have |x(t)| ≤ ǫ for t ∈ [ti+1, ti+2).

For C2, switching on mode σ(ti+2) at t = ti+2 results in

φσ(ti+2)(V
ti+2

σ(ti+2), 0)

V
ti+2

σ(ti+2)

( i+1∑

k=0

( i+1∏

j=k

φ
tj+1−tj
σ(tj)

V
tj
σ(tj)

)

+ 1
)

≤ β

(h + 1)χh

Since β > m(m + 1)χm+1, h ≤ m, we have β
(h+1)χh < β

hχh − 1. Thus we can
choose ti+3 > ti+2 such that

φ
ti+3−ti+2

σ(ti+2)

V
ti+2

σ(ti+3)

( i+1∑

k=0

( i+1∏

j=k

φ
tj+1−tj
σ(tj)

V
tj
σ(tj)

)

+ 1
)

≤ β

hχh
− 1

By induction, for s = 1, 2, ..., h − 1 we have β
(h+1−s)χh−s < β

(h−s)χh−s − 1.
Choose ti+3+s as S, we obtain

φ
ti+3+s−ti+2+s

σ(ti+2+s)

V
ti+2+s

σ(ti+2+s)

( i+1+s∑

k=0

( i+1+s∏

j=k

φ
tj+1−tj
σ(tj)

V
tj
σ(tj)

)

+ 1
)

≤ β

(h − s)χh−s
− 1

Finally, we verify condition (2.5.5) with t = ti+1+h and ts = ti+1. There are
finite numbers of switchings occurring in (ti+1, ti+1+h], it follows from Lemma
2.11 that we can find a bound Ω(|x(ti+1)|) satisfying |x(ti+h+1)| ≤ Ω(|x(ti+1)|)
using (2.5.19). Since this bound is independent from the switching instants,
we can determine it before h unstable modes are switched into.
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Note that mode σ(ti) is stable, we can find a time instant ti+1 > ti such
that

(α
σ(ti+h+1)
1 )−1φσ(ti+h+1)(α

σ(ti+h+1)
2 (Ω(|x(ti+1)|)), 0)) ≤ ǫ

This guarantees that |x(t)| ≤ ǫ for t ∈ [ti+1, ti+h+1]. Mode σ(ti+h+1) is also
stable, we further have |x(t)| ≤ ǫ for t ∈ [ti+h+1, ti+h+2).

For C3, note that β > m(1+χ)χm and χ ≥ 1, which results in χ < β
hχh−1.

We can choose t1 such that
φ

t1
σ(0)

V 0
σ(0)

≤ β
hχh − 1, the rest of the proof follows the

same procedure as in C2, thus is omitted here. We finally obtain (2.5.5) with
t = th and ts = 0.

Based on above analysis, one finds that for a switched system with any
given switching sequence, finite or infinite numbers of switchings and both
stable and unstable modes, the switching law S maintains the stability of
the origin, and |x(t)| ≤ ǫ for t ≥ 0. This completes the proof.  

Remark 2.17 Roughly speaking, S lets the activating periods of stable modes
large enough and lets the activating periods of unstable modes small enough
such that the state trajectory is bounded under a given switching sequence.
Such idea is similar to that of dwell-time schemes in [179], [43] where an
aggregated system is considered including stable modes and consequently ac-
tivated unstable ones. This aggregated system would be stable if the total
activating periods of stable modes are sufficient large. However, S provides
an alternative way to approach stability in the absence of the “µ” condition.

Example 2.4 : Consider a numerical example with three modes. Let M =
{1, 2, 3}, x = [x1, x2]

⊤, the modes take the following forms

f1 =

[
−x1 + 4x3

2

−x1 − x2

]

, f2 =

[
x1 − x2

x2 + x3
1

]

, f3 =

[
x1 − 3x2

x1 + x2

]

The prescribed switching sequence is

mode 1 → mode 2 → mode 3 → mode 1 → · · · · · ·

For mode 1, it is not easy to find a quadratic Lyapunov function. However
the origin is still stable, we choose a polynomial Lyapunov function V1 =
x2

1 + 2x4
2, this results in V1(x(t)) < e−2tV1(x(0)) for t ≥ 0. Both mode 2 and

mode 3 are unstable, applying V1 to modes 2 and 3 yields

dV1(x)

dx
f2(x) ≤ V 0.5

1 (x) + 7V1(x) + 4V 1.5
1 (x) + 4V 3

1 (x) (2.5.21)

dV1(x)

dx
f3(x) ≤ V 0.5

1 (x) + 11V1(x) + 2V 1.5
1 (x) (2.5.22)
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It can be seen that a common Lyapunov function is hard to impose here
because inequalities (2.5.21)-(2.5.22) do not satisfy the general Lyapunov
function formulation in dwell-time scheme [95]. The method in [114] is also
not easy to be implemented since the right sides of (2.5.21) and (2.5.22) are
polynomial forms of V1 rather than aV m

1 (x) for a,m > 0 in [114], and the
exponents larger and smaller than 1 exist simultaneously.

We choose V2 = x4
1 + 2x2

2, V3 = x2
1 + x2

2. It follows that V2(x(t)) <
e4tV2(x(0)), V3(x(t)) < e2tV3(x(0)), for t ≥ 0. Note that MLFs techniques
are difficult to be applied since the state trajectories in unstable modes are
not bounded and Lyapunov-like functions are not easy to find. The “µ”
condition is also hard to impose here, because V1 and V2 are non-quadratic.

Set ǫ = 4 which means that |x(t)| ≤ 4 must hold for all t ≥ 0. The
prescribed switching sequence is

mode 1 → mode 2 → mode 3 → mode 1 → · · · · · ·

 4  3  2  1 0 1 2 3 4

 4

 3

 2

 1

0

1

2

3

4

x1

x
2

Figure 2.12: State trajectory

Now we design the switching instants according to S. Mode 1 is stable,
choose x(0) = [1, 2]⊤ from step 1 of S such that |x(t)| ≤ 4 for t ∈ [0, t1).
Since both mode 2 and mode 3 are unstable, the switching scheme based on
Lemma 1 is applied after t1. It can be obtained from (6.1.37) that χ = 1.
m = 2 due to two unstable modes. Choose β = 6.3 > 2(2+1). The activating
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periods of modes 2 and 3 can be calculated from step 7 of S: 0.0059s for
mode 2; 0.2602s for mode 3. Choose t1 = 0.9s from step 6 of S such that
|x(t)| ≤ 4 for t ∈ [0, t4). Consequently, choose t2 = 0.9059s, t3 = 1.1661s.
The activating period of mode 1 is set to be 0.9s in the following switching
process, i.e., t4 = 2.0661s. Although our theory allows infinite switchings
in infinite time interval, in the numerical simulation, a finite time interval
[0s, 4s] is considered. Other switching instants can be obtained straightly.
Fig.2 shows the state trajectory, from which we can see that the stability is
achieved and |x| ≤ 4 always holds.

2.6 Conclusion

In this chapter, several FTC methods have been proposed for HS with time
dependent switching. The known switching instants bring much convenience
to FTC design. In sections 2.1-2.3, FTC objective has been achieved via de-
signing the stabilizing controller in each faulty mode and a switching scheme.
Sections 2.4-2.5 researched directly the stability of HS without reconfiguring
the controller in each mode. It can be found that even some faulty modes
are unstable, the stability of overall HS is still maintained under appropriate
switching schemes.
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Chapter 3

Hybrid systems with state-dependent
switching

In this chapter, a class of HS with state dependent switching and without
full state measurement are investigated. The considered switching occurs
whenever the states reach some given domains which are defined through a
set of inequalities called guard set. Such kind of switchings appear widely in
applications, e.g., flow control, temperature control. Two FTC methods are
proposed for linear and nonlinear HS respectively.
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3.1 Preliminaries

The main difference between the considered systems and that in Chapter
2 is that the switching instant is not known a priori or can be designed.
The considered switching occurs whenever the states reach some given do-
mains which are defined through a set of inequalities called guard set. The
challenges of observer-based FTC for such systems are twofold:

1) to distinguish the effects of the continuous faults and mode transitions
(may include discrete faults) on the system. From the abnormal change of
state estimates provided by the observer, we should first identify whether
continuous faults in the current mode occur or another mode is switched
into, then treat the system with different control strategies.

2) to maintain the stability of overall HS in spite of these two kinds of
faults.

As for challenge 1), a natural idea is to design an observer whose estima-
tion error is not affected by (or robust to) continuous faults and sensitive to
mode transitions. Challenge 2) could also be solved if the accurate continu-
ous state estimates are obtained in Challenge 1). This idea will be followed
throughout this chapter.

3.2 Hybrid linear systems

In this section, we face the above challenges 1)-2), and propose an observer-
based FTC method for a class of hybrid linear systems. The main work is
outlined as follows:

1. Under some mild structure conditions, each mode of HS is transformed
into a new form which is friendly for the design of the observer and
FTC law.

2. A novel observer is proposed for each mode of new form whose esti-
mation error is not affected directly by continuous faults and sensitive
to mode transitions. Based on such observer, a time varying threshold
is proposed to detect rapidly each switching once it occurs in spite of
discrete faults.

3. An observer-based FTC law is developed for each mode to guarantee
the asymptotical stability of the origin. Moreover, sufficient conditions
are given such that the overall HS can be stabilized in the sense of
LaSalle invariance principle.
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3.2.1 FTC for linear systems

Consider a linear system

ẋ(t) = Ax(t) + Bu(t) + Ef c(t), |u| ≤ umax, x ∈ D

y(t) = Cx(t) = [C1 0r×n−r]x(t) (3.2.1)

where x ∈ D ⊆ ℜn are unmeasurable states, D is a physical domain of x.
y ∈ ℜr are outputs, C1 is an r × r nonsingular matrix. (C, A) is observable
and (A,B) is controllable, u ∈ ℜp are inputs with umax > 0 as its magnitude
constraint, f c ∈ ℜq , with q < r, denote actuator faults, the n × q constant
matrix E denotes fault distribution. Since the system inputs are bounded, it
is reasonable to assume that actuator faults are also bounded, i.e., |f c| ≤ f̄ c,
where f̄ c > 0.

Assumption 3.1 Rank (CE) = q

Assumption 3.1 guarantees that the matrix CE is of full column rank,
which implies that the effects of faults on outputs are independent.

Define a transformation x = N−1z, where

N =

[
C1 0
0 I

]

(3.2.2)

Then the system (3.2.1) can be transformed into

ż = Āz + B̄u + Ēf c =





Ā1

Ā2

Ā3



 z +





B̄1

B̄2

B̄3



u +





Ē1

Ē2

Ē3



 f c (3.2.3)

y = Cx = C̄z =

[
I(r−q)×(r−q) 0 0

0 Iq 0

]

z

where Ā = NAN−1, B̄ = NB, Ē = NE. z can be represented as

z = [z1 z2 z3]
⊤ = [y1 y2 z3]

⊤

where z3 ∈ ℜn−r. We just need to estimate z3. It follows from Assumption

3.1 that Rank

[
Ē1

Ē2

]

= q, it is also assumed that Ē2 is nonsingular.

Define

S =





I −Ē1Ē
−1
2 0

0 I 0
0 −Ē3Ē

−1
2 I



 (3.2.4)
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Left-multiplying (3.2.4) into (3.2.3), we have




ẏ1 − Ē1Ē
−1
2 ẏ2

ẏ2

ż3 − Ē3Ē
−1
2 ẏ2



 =





Ā1 − Ē1Ē
−1
2 Ā2

Ā2

Ā3 − Ē3Ē
−1
2 Ā2



 z +





B̄1 − Ē1Ē
−1
2 B̄2

B̄2

B̄3 − Ē3Ē
−1
2 B̄2



u +





0
Ē2

0



 f c(3.2.5)

The advantage of the form (3.2.5) is that the first and third blocks of
(3.2.5) are not affected directly by any fault, an observer can be designed for
these two blocks to estimate z3. This estimates is decoupled from the faults,
thus can be used to diagnose the faults in the second block of (3.2.5).

Define
̟j = Āj − ĒjĒ

−1
2 Ā2, Hj = B̄j − ĒjĒ

−1
2 B̄2

where j = 1, 3. Partitioning ̟j as

̟j = [̟j1 ̟j2 ̟j3] (3.2.6)

then the first and third block rows of system (3.2.5) can be written as

ż3 = ̟33z3 + s, v = ̟13z3 (3.2.7)

where

s = ̟31y1 + ̟32y2 + Ē3Ē
−1
2 ẏ2 + H3u

v = ẏ1 − Ē1Ē
−1
2 ẏ2 − ̟i11y1 − ̟12y2 − H1u

To estimate z3, an observer can be designed as

˙̂z3 = ̟33ẑ3 + s + ζ(v − ̟13ẑ3) (3.2.8)

assume (̟33, ̟13) is an observable pair, the observer gain ζ can be chosen
to make (̟33 − ζ̟13) stable.

From the above discussion, we can let x̂ = N−1ẑ = N−1[y1 y2 ẑ3]
⊤,

where ẑ3 is obtained in (3.2.8). Denote z̃3 = z3 − ẑ3, e(t) = x − x̂, one has

|e(t)| = |z3 − ẑ3| ≤ µ(λ∗)|z̃3(0)| exp(−λ∗t) (3.2.9)

where λ∗ > 0, µ(λ∗) = Mλ∗l is polynomial in λ∗ for M, l > 0.
The second block row in (3.2.5) can be written as

ẏ2 = Ā21y1 + Ā22y2 + Ā23z3 + B̄2u + Ē2f
c

Denote f̂ c as the fault estimate and f̃ c , f c − f̂ c. Then

f̂ c = Ē−1
2 (ẏ2 − Ā21y1 − Ā22y2 − Ā23ẑ3 − B̄2u) (3.2.10)

f̃ c = −Ē−1
2 Ā23z̃3 (3.2.11)
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From (3.2.9) and (3.2.10), one can see that the observer-based FD scheme
can provide rapid and accurate fault estimates, and meanwhile, also gives
accurate continuous state estimates which are not affected by faults.

Now we design the bounded FTC law. Consider the Lyapunov candidate
V = x⊤Px for (3.2.1), where P is a positive definite symmetric matrix that
satisfies the Riccati equation

A⊤P + PA − PBB⊤P = −Q (3.2.12)

for some positive definite matrix Q.
V can be regarded as a control Lyapunov function1 for system (3.2.1).

Using the results in [96] (see also [39]), a continuous bounded FTC law can
be designed as

u(x̂) = −K(L∗
AxV (x̂), x̂)(LBV )⊤(x̂) , b(x̂) (3.2.13)

with

K(L∗
AxV ) =

L∗
AxV +

√

(L∗
AxV )2 + (umax|(LBV )⊤|)4

|(LBV )⊤|2
[

1 +

√

1 + (umax|(LBV )⊤|)2
]

for (LBV )⊤ 6= 0, and K(L∗
AxV ) = 0, for (LBV )⊤ = 0, where L∗

AxV =
LAxV + ρV + |LEV |f̄ c, with LAxV = x̂⊤(A⊤P + PA)x̂, (LEV )⊤ = 2E⊤Px̂,
(LBV )⊤ = 2B⊤Px̂, ρ > 0.

For all initial states, the stability region of system (3.2.1) is defined by
the set

Φ , {x ∈ D : L∗
AxV (x) < umax|(LBV )⊤(x)|} (3.2.14)

A common way of estimating the stability region (3.2.14) is by using the
level sets of V (see Chapter 4 in [83]). An estimate is described by

Inv , {x ∈ D : V (x) ≤ cmax} (3.2.15)

where Inv is expected to be the largest invariant set of Φ, cmax is the largest
number for which Inv ⊆ Φ. Fig. 3.1 describes a system with two states,
where the relation of several sets are illustrated. The yellow region represents
Inv.

Lemma 3.1 Consider system (3.2.1), there exists a positive real number eu,
such that if |e(t)| ≤ eu,∀t ≥ 0, and the set {x ∈ ℜn : V (x) ≤ cmax} ⊆ D,
then the controller u = b(x̂) makes the origin of the system asymptotically
stable in spite of f c.

1Recall that a positive definite radially unbounded smooth function V : ℜn → ℜ is
called a control Lyapunov function for the system ẋ = f(x) + G(x)u, x ∈ ℜn, if we have
infu∈U{LfV + LGV u} < 0 ∀x 6= 0.
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x1

x2

Inv

  State  evolution

0

D

 })(:{
max2

cxVRx ≤∈

Figure 3.1: Relations among several regions

Proof : The time derivative of V along the closed loop trajectories is

V̇ = LAxV + LBV u(x) + LEV f c + LBV (u(x̂) − u(x))

=
(LAxV + LEV f c)

√

1 + (umax|(LBV )⊤|)2 + LEV f c

[

1 +
√

1 + (umax|(LBV )⊤|)2
]

−
|LEV |f̄ c + ρV +

√

(L∗
AxV )2 + (umax|(LBV )⊤|)4

[

1 +
√

1 + (umax|(LBV )⊤|)2
]

+LBV (u(x̂) − u) (3.2.16)

From (3.2.11), one has LEV f c ≤ |LEV |f̄ c. It is clear from (3.2.16) that, if
L∗

AxV (x) < 0, we have V̇ < −ρV + LBV (u(x̂) − u). When 0 ≤ L∗
AxV (x) <

umax|(LBV )⊤(x)|, we have

(LAxV + LEV f c)
√

1 + (umax|(LBV )⊤|)2

< (L∗
AxV − ρV )

√

1 + (umax|(LBV )⊤|)2

<

√

(L∗
AxV )2 + (umax|(LBV )⊤|)4

−ρV
√

1 + (umax|(LBV )⊤|)2 (3.2.17)

Substituting (3.2.17) in (3.2.16), we have that whenever L∗
AxV (x) <

umax|(LBV )⊤(x)|,

V̇ < −ρV + LBV (u(x̂) − u)

≤ −ρ∗|x|2 + MG|u(x̂) − u| (3.2.18)
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where ρ∗ > 0, MG = maxV =cmax(|LBV |), MG exists since |LBV (·)| is contin-
uous over the region Inv.

Since {x ∈ ℜn : V (x) ≤ cmax} ⊆ D, we have Inv = {x ∈ ℜn : V (x) ≤
cmax}. Firstly, we analyze V̇ on the boundary Inv. Inequality (3.2.18) can
be written as

V̇ < −ρcmax + MG|u(x̂) − u| (3.2.19)

Note that |u(x̂) − u(x)| is continuous ∀t ≥ 0 and vanishes when e = 0,
since e is always bounded which is not affected by faults, there exist two
positive real numbers eu and κ(eu), such that if |e| ≤ eu, then |u(x̂)−u(x)| ≤
κ|e| ≤ ρcmax/MG, which implies V is always negative on the boundary Inv,
so x(t) ∈ Inv ∀t ≥ 0.

Secondly, substituting the estimate κ|e| into (3.2.18) yields

V̇ < −ρ∗|x|2 + MGκ|e| ≤ −rρ∗|x|2,

∀|x| ≥
√

MGκ|e|
rρ∗ , γ(|e|) (3.2.20)

where γ(·) is a class K function. Based on [83], we have that, for any x(t) ∈
Inv, there exists a class KL function β(·, ·) and a class K function γ1(·), such
that

|x(t)| ≤ β(|x(0)|, t) + γ1(sup
τ≥0

|e(τ)|), ∀t ≥ 0 (3.2.21)

which means that x is input-to-state stable with respect to e. Note that Eq.
(3.2.8) and (3.2.9) ensure that limt→∞ e(t) = 0, which together with (3.2.21),
leads to limt→∞ x(t) = 0. This completes the proof.  

3.2.2 FTC for hybrid systems

Based on the above FTC solution for linear system, we focus on the HS
modeled by a hybrid automaton as defined in Definition 1.1.

The trajectories of a hybrid automaton H that start from some initial
state (q0, x0) ∈ Init consist of a sequence of continuous flows and discrete
transitions. When the discrete state q ∈ Q is maintained, the continuous
state x evolves according to the differential equation x = Fq(x, u, f c) where
Fq ∈ F as long as x ∈ Inv(q). After x reaches the guard set, the system
would switch into next mode. It is assumed that the states x are continuous
at each switching instant.

Definition 3.1 The system H is live if for i, i′ ∈ Q

∀x ∈ Inv(i) or x 6∈ Inv(i),∃e = (i, i′), x ∈ G(i, i′) (3.2.22)

∀e = (i, i′) and x ∈ G(i, i′), x ∈ Inv(i′) (3.2.23)
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The liveness of HS ensures the succession of the trajectory under ap-
propriate control input. Review Fig. 3.1, where x may escape from Inv
if {x ∈ ℜ2 : V (x) ≤ cmax} 6⊆ D. Condition (3.2.22) means that before or
when x escapes from the invariant set of the current mode, the switching
must happen. Condition (3.2.23) guarantees that x ∈ Inv(i′) after mode i′

is switched into.
This section models the plant as a class of H with the following properties:

- (P1) Both normal and faulty switchings are continuous state-dependent
and are not controlled by any discrete input V .

- (P2) The vector field F for mode i is of the form

ẋ(t) = Aix(t) + Biui(t) + Eif
c
i (t), |ui| ≤ umax

i , x ∈ Di

yi(t) = Cix(t) = [C1
i 0r×n−r]x(t), t ∈ [tk, tk+1) (3.2.24)

which satisfies the conditions imposed on the system (3.2.1). f c
i ∈ ℜq

denotes actuator faults for mode i, where |f c
i | ≤ f̄ c

i , where f̄ c
i > 0.

- (P3) The discrete fault fd ∈ Fd is such that x ∈ Inv(i)∧x ∈ G(i, i′, fd),
where the system is switched from i to i′ under G(i, i′, fd).

- (P4) The system is live in the heathy situation, and the switching
sequence is deterministic in both healthy and faulty situations, i.e., each
trajectory contains only one switching sequence for all initial (q0, x0) ∈
Init. No Zeno phenomenon occurs.

Remark 3.1 The considered model is more practical than that in [139], [159]
and [186], since it involves the strict physical bound of control signals and
unmeasurable states. The mode transition takes place just when states reach
the guard set G, the switching instants are not controllable by the so-called
discrete inputs as in [159].

The FTC Problem (P) for HS can be described as: Keep the HS live as in
(3.2.22)-(3.2.23), and make the origin asymptotically stable in spite of any
fault in P2, P3.

(P) is similar to the target control problem for HS in [159], where the
target objective is the origin. It is supposed that the prescribed determined
switching sequence can bring x to the origin under appropriate controllers
in the healthy situation. Details about how to choose such sequence can be
seen in [159].

The characteristics of continuous and discrete faults motivate us to con-
sider four faulty situations:
Under continuous faults f c

i :
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Case 1: x 6∈ Inv(i) ∧ x 6∈ G(i, i′).

Under discrete faults G(i, i′, fd):

Case 2: x ∈ Inv(i) ∧ x ∈ G(i, i′, fd) ∧ x ∈ Inv(i′).

Case 3: x ∈ Inv(i) ∧ x ∈ G(i, i′, fd) ∧ x 6∈ Inv(i′).

Case 4: x 6∈ Inv(i) ∧ x 6∈ G(i, i′, fd).

In Case 1, f c
i changes the dynamics of mode i, and makes the states

escape from the invariant set before switching happens, the liveness would be
violated. In Cases 2 and 3, Faulty switching happens under G(i, i′, fd). Note
that the system is still live in Case 2, whereas in Case 3, the faulty switching
makes the state escape from the invariant set of the next mode, which also
violates the liveness. In Case 4, the switching does not happen when the
continuous evolution is impossible, the system is locked. All the above four
cases may destroy the stability of the HS. We define two switchings: stable
switching (in the normal case and Cases 1,2) and unstable switching ( in
Cases 3,4).

In the following discussions, we first solve Cases 1 and 2 by applying the
method, then provide a relaxed FTC method to solve Case 3, and discuss an
active switching detection technique for Case 4. Finally, we present a FTC
framework.

Since each mode satisfies the conditions imposed on the system (3.2.1),
the observer-based FD and FTC methods developed in Section 3.2.1 is ap-
plied to each mode. The idea of switching detection appears from the analysis
of estimation error vi − ̟i13ẑ3 for mode i. If all the modes are not overlap-
ping, i.e., each observer works well only when applied to its related mode,
then, similar to fault detection problem [77], vi − ̟i13ẑ3 can be regarded as
a residual for mode i to detect the switching, since limt→∞(vi − ̟i13ẑ3) = 0
before switching occurs. We give a quite general assumption for switching
control problem [30] as follows:

Assumption 3.2 All modes of H are discernable, i.e., for mode i, the esti-
mation error |e(t)| is convergent as in (3.2.9) only under the observer (3.2.8)
which is associated with mode i.

Under Assumption 3.2, given an initial (i, x(tk)) ∈ Init(i) for mode i, any
mode transition can be detected using following time varying threshold:

|vi − ̟i13ẑ3| ≤ ̟i13µ(λ∗
i )|z̃3(tk)| exp(−λ∗

i (t − tk)) (3.2.25)
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Now consider the mode transition in Case 2. Two subcases of Case 2 can
be given:

x ∈ Inv(i) ∧ x ∈ G(i, i′, fd) ∩ Gc(i, i′), switch earlier

x ∈ Inv(i) ∧ x ∈ G(i, i′) ∩ Gc
f (i, i

′), switch earlier

Since the sequence is deterministic, once the mode transition is detected,
the controller (3.2.13) and the observer (3.2.8) are switched according to the
next mode. The initial states x̂ of the current observer are chosen as the final
states of the previous observer.

Recall that in the normal case, and Cases 1, 2, the switching (normal or
faulty) does not affect the liveness of HS, i.e., it always holds that x ∈ Inv(i′).
Fig. 3.2 shows the relation of several sets and the system trajectory. The
green and yellow regions denote respectively the invariant sets of two modes,
Inv(1), Inv(2). It can be seen that the state trajectory starting from mode
1 is always within Inv(2) under both G(1, 2) and G(1, 2, fd).

G (1,2)

x1

x2

Inv(2)

G  (1,2)f

  State  evolution

Inv(1)

0

G  (1,2)f

Figure 3.2: FTC for Case 1 and Case 2

The following theorem extends the LaSalle invariance principle to the HS
under Cases 1 and 2. For the sake of simplicity, denote Ḡ as the guard set
for both the normal situation and Case 2.

Theorem 3.1 Consider a HS satisfying P1-P4 and assumptions 3.1, 3.2,
the initial states (q0, x(t0)) ∈ Inv(q0) ∧ x(t0) ∈ Gc(q0, q1), x̂(t0) is such that
µ(λ∗

1)|e(t+0 )| ≤ min{eu,i,∀i ∈ Q}. Under the controller ui = bi(x̂) which is
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switched according to the mode transition, if ∀x ∈ Inv(i) ∧ x ∈ Ḡ(i, i′), the
following condition holds:

Vi′(x̂) + Mi + Mi′ < Vi(x̂) (3.2.26)

where Mi is such that |e| ≤ eu,i → |Vi(x) − Vi(x̂)| ≤ Mi, then the origin of
the HS is asymptotically stable in the normal case, and cases 1, 2.

Proof: Due to the continuity of Vi(·), there exists a positive real number
Mi such that if |e| ≤ eu,i, then |Vi(x) − Vi(x̂)| ≤ Mi. Therefore, we have

Vi′(x) − Mi′ ≤ Vi′(x̂) (3.2.27)

Vi(x) + Mi ≥ Vi(x̂) (3.2.28)

Inequalities (3.2.27) and (3.2.28), together with (3.3.33), lead to

Vi′(x) < Vi(x) (3.2.29)

Define Λi
1 = {x ∈ Inv(i) ∧ x ∈ Ḡc(i, i′) : V̇i = 0}, Λi

2 = {x ∈ Inv(i) ∧ x ∈
Ḡ(i, i′) : Vi = V ′

i }. Let Λ be the largest invariant subset of Λi
1 ∪ Λi

2 ∀i ∈ Q.
Λ is an invariant set to be attracted. It is clear from Lemma 3.1 that under
ui, V̇i is always negative, thus limtk+1→∞ Vi = 0 ∀i ∈ Q. On the other
hand, based on (3.2.29) and Theorem IV.1 in [104], one concludes that the
trajectory of H approaches Λ, thus the origin is asymptotical stable.  

Remark 3.2 The switching can be detected using the threshold (3.2.25) with
a short time delay. Due to the discernability of the modes, such delay is often
very short and much less than the activating period of mode i, which would
be acceptable for practical applications.

In Case 3, a new mode is switched into while the states do not belong
to its invariant set. This is very dangerous for the system since the states
would escape to a large region or infinity without being limited by any control
command and guard set. Indeed, continuous faults f c

i do not always exist, a
possible solution to solve Case 3 is to design a variable invariant set according
to the time when f c

i occurs.
Define two stability regions for mode i

Φh(i) , {x ∈ Di : L⋆
Aix

Vi(x) < umax
i |(LBi

Vi)
⊤(x)|}

Φf (i) , {x ∈ Di : L⋄
Aix

Vi(x) < umax
i |(LBi

Vi)
⊤(x)|}

where L⋆
Aix

Vi = LAixVi + ρiVi, and L⋄
Aix

Vi = LAixVi + ρiVi + |LEi
Vi| ¯̂f c

i +

|LEi
ViĒ

−1
i2 Āi23|e⋆1

u,i,
¯̂
f c

i > 0 is defined such that |f̂ c
i | ≤

¯̂
f c

i , e⋆1
u,i > 0 will be

given later.
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Design two controllers

ui(x̂) = −Ki(L
⋆
Aix

Vi(x̂), x̂)(LBi
Vi)

⊤(x̂) , bi
h(x̂)

ui(x̂) = −Ki(L
⋄
Aix

Vi(x̂), x̂)(LBi
Vi)

⊤(x̂) , bi
f (x̂)

Similar to (3.2.15), we define Invh(i) and Invf (i) as invariant subsets of Φh(i)
and Φf (i) respectively. We have the following Lemma:

Lemma 3.2 Consider system (3.2.24) with x(tk) ∈ Inv(i)∧x(tk) ∈ Gc(i, i′),
and {x ∈ ℜn : L⋆

Aix
Vi(x) < umax

i |(LBi
Vi)

⊤(x)|} ⊆ Di, {x ∈ ℜn : L⋆
Aix

Vi(x) <
umax

i |(LBi
Vi)

⊤(x)|} ⊆ Di. There exist two positive numbers e⋆1
u,i and e⋆2

u,i such

that if µ(λ∗
i )|e(t+k )| ≤ e⋆1

u,i and x̂(tfk) ∈ Invf (i)∧ |e(tfk)| ≤ e⋆2
u,i, where t = tfk is

the time when f c
i occurs, and Invf (i) is such that ∀|e| ≤ e⋆2

u,i, x̂ ∈ Invf (i) →
x ∈ Invf (i) ∧ x ∈ Gc(i, i′), then the bounded controller

u⋄
i (x̂) =

{
bi
h(x̂) t ∈ [tk, t

f
k)

bi
f (x̂) t ∈ [tfk , tk+1)

(3.2.30)

makes the origin of mode i asymptotically stable.

Proof : Since the system is fault-free (i.e., f c
i = 0) for t ∈ [tk, t

f
k). The

time-derivative of Vi along the closed-loop trajectories is

V̇i = LAixVi + LBi
Viu

⋄
i (x) + LBi

Vi(u
⋄
i (x̂) − u⋄

i (x))

It can be obtained similarly to Lemma 3.1 that there exists e⋆1
u,i such that

∀|e(t)| ≤ e⋆1
u,i and x(tk) ∈ Invh(i) ∧ x(tk) ∈ Gc(i, i′), the controller bi

h(x̂)
makes the origin of the ith mode asymptotically stable.

At t = tfk , the faults occur and are detected, the time-derivative of Vi

along the closed-loop trajectories under controller bi
f (x̂) is

V̇i = LAixVi + LBi
Viu

⋄
i (x) + LEi

Vif
c
i + LBi

Vi(u
⋄
i (x̂) − u⋄

i (x))

=
(LAixVi + LEi

Vif
c
i )

√

1 + (umax
i |(LBi

Vi)⊤|)2 + LEi
Vif

c
i

[

1 +
√

1 + (umax
i |(LBi

Vi)⊤|)2
]

−|LEi
Vi| ¯̂f c

i − |LEi
ViĒ

−1
i2 Āi23|e⋆

u,i + ρiVi
[

1 +
√

1 + (umax
i |(LBi

Vi)⊤|)2
]

+

√

(L⋄
Aix

Vi)
2 + (umax

i |(LBi
Vi)⊤|)4

[

1 +
√

1 + (umax
i |(LBi

Vi)⊤|)2
] + LBi

Vi(u
⋄
i (x̂) − u⋄

i )
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From (3.2.11), one has

LEi
Vif

c
i ≤ |LEi

Vi| ¯̂f c
i + |LEi

ViĒ
−1
i2 Āi23|e⋆1

u,i

The subsequent proof follows the same way as in Lemma 3.1, one can con-
clude that if x̂(tfk) ∈ Invf (i), then under bi

f (x̂), there exists a constant e⋆2
u,i > 0

such that ∀|e(t)| ≤ e⋆2
u,i, the states will stay in the region Invf (i), and the

origin of the ith mode is asymptotically stable.  

The main contribution of Lemma 3.2 is that it relaxes the invariant set
as shown in Fig.3.3. where Inv(2) ⊆ Invh(2). The Case 3 is said to be fault
tolerable if

(

x ∈ Inv(i)
)

∧ x ∈ G(i, i′, fd) ∧ x ∈ Invh(i
′) (3.2.31)

Theorem 3.1 can be directly extended to Case 3 as in the following corollary
without the proof.

Corollary 3.1 Consider a HS satisfying P1-P4 and assumptions 3.1, 3.2,
the initial states (q0, x(t0)) ∈ Inv(q0) ∧ x(t0) ∈ Gc(q0, q1), x̂(t0) is such
that µ(λ∗

1)|e(t+0 )| ≤ min{eu,i,∀i ∈ Q}. Under the controller u⋄
k(x̂) which

is switched according to the mode transition, if 1) conditions in Lemma 3.2
and (3.2.31) hold, 2) ∀x ∈ Inv(i) ∧ x ∈ G(i, i′, fd), the condition (3.3.33)
holds, then the origin of the HS is asymptotically stable.

G (1,2)

x1

x2

Inv(2)

G  (1,2)f

  State  evolution

Inv(1)

Inv (2)h

0

Figure 3.3: FTC for Case 3

In Case 4, the system is locked and does not respond to any control
command, nothing can be said about the subsequent system’s behavior, the
system may be entirely destroyed or some new modes occur which are not
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included in the original HS. To avoid this phenomenon, an active switching
detection technique is developed. The main idea is to generate a Switching
Alarm before the normal switching (when x ∈ G(i, i′)) occurs, and also
generates a Lock Alarm when we identify that x ∈ G(i, i′) but no switching
occurs. This is possible due to the structure of the observer in Section 3.2.1.
After Lock Alarm, some emergency measures must be taken to the system
by human (stop the system, or change equipments, or force the system to
switch, and so on).

For mode i, define a set Gnear(i, i
′) and three sets as

χs(i) , {x ∈ X : x ∈ Inv(i) ∧ x ∈ Gc
near(i, i

′)}
χn(i) , {x ∈ X : x ∈ Inv(i) ∧ x ∈ Gc(i, i′)}
χl(i) , {x ∈ X : x ∈ Inv(i) ∧ x ∈ G(i, i′)}

where Gnear(i, i
′) is close to G(i, i′) such that χs(i) ⊆ χn(i).

Since the observer (3.2.8) always follows the system (3.2.7), estimation
error converges to zero, similar to Lemma 3.2, we can define Ψs(i) and Ψl(i)
such that ∀|e| ≤ e⋆1

u,i, x̂ ∈ Ψs(i) → x ∈ χs(i), x̂ ∈ Ψl(i) → x ∈ χl(i). The
Active Switching Detection strategy for mode i is in two steps as shown in
Fig. 3.4:

1) When x̂ ∈ Ψs(i), Switching Alarm is generated.
2) If no mode transition occurs after x̂ ∈ Ψl(i), Lock Alarm is generated.

Remark 3.3 Due to estimation errors of the observer, the Lock Alarm will
be generated later for a short time delay after states reach the guard set.
This delay is acceptable in most situations, only except a very special case
that Case 4 occurs in this time delay (e.g., once the states reach the guard
set, the continuous evolution of the current mode is impossible).

We are in the position to provide a FTC framework

1) Apply the FD scheme in sections 3.2.2 and controller (3.2.13) for the
current mode.

2) When the mode transition is detected before Switching Alarm,
If x ∈ Inv(i′), go to 1);
If x ∈ Invh(i

′) ∩Invc(i′), apply the controller (3.2.30) for current mode.

3) When the mode transition is detected after Switching Alarm and before
Lock Alarm, go to 1).

4) When the mode transition does not occur after Lock Alarm, take some
measures to the system by human.
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x1

x2

Inv(2)

Inv(1)

0

Inv(2)

f

  State  evolution

G  (1,2)

G (1,2)

Switch Alarm

Lock Alarm

G        (1,2)near   

Figure 3.4: FTC for Case 4

Example 3.1 (Example 1.1 revisited) : Recall the CPU processing con-
trol system in Example 1.1. As described before, the system is modeled as
a hybrid automaton with two modes: busy mode and usual mode. Fig. 3.5
shows the determined sequence. x ∈ ℜ3 = [π, ρ, ω]⊤ is the state with π

G(12)  ( G  (12) )f
busy

mode

usual

mode

Figure 3.5: Switching sequence

being the amount of CPU tasks in the buffer, ρ the CPU temperature, and
ω angular velocity of a cooling fan. c ∈ ℜ and v ∈ ℜ are the clock frequency
and the voltage input of a cooling fan. The FTC objectives are to make
the above CPU process switch appropriately between two modes according
to the guard set (liveness), and to make the origin asymptotically stable in
spite of any fault. This means that the cost on the continuous states and
inputs is minimized, which leads to energy saving.

The continuous models around the equilibrium state2 are given as :

mode 1 :

2The state of system when a sufficiently long time has passed after booting the system
is defined as the equilibrium state of this model
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



π̇
ρ̇
ω̇



 =





0 0 0
0 −0.05 −0.5
0 0 −3









π
ρ
ω



 +





−2 0
0.2 0
0 0.5





[
c
v

]

+





2
−0.2

0



 f c
1

mode 2 :




π̇
ρ̇
ω̇



 =





0 0 0
0 −0.05 −0.5
0 0 −3









π
ρ
ω



 +





−1 0
0.1 0
0 1.5





[
c
v

]

+





1
−0.1

0



 f c
2

C1 = C2 =

[
1 −1 0
0 2 0

]

The models satisfy Assumption 3.1, we can see that both f c
1 and f c

2 affect
the clock frequency input channel. We obtain from (3.2.2) that N−1 =




1 0.5 0
0 0.5 0
0 0 1



, and from (3.2.3), we have

Ā1 = Ā2 =





0 0.025 0.5
0 −0.05 −1
0 0 −3



 , B̄1 =





−2.2 0
0.4 0
0 0.5



 , B̄2 =





−1.1 0
0.2 0
0 1.5





and Ē1 = [2.2 − 0.4 0]⊤, Ē2 = [1.1 − 0.2 0]⊤, then from (3.2.5) and (3.2.6),
we get ̟11 = ̟21 = [0 − 0.25 − 5], ̟13 = ̟23 = [0 0 − 3], it is clear
that [̟133, ̟113] and [̟233, ̟213] are observable, H13 = [0 0.5], H23 = [0 1.5].
The observers for modes 1 and 2 are designed from (3.2.8) with ζ1 = 0.4,
ζ2 = −0.2 respectively. Since the observer is of 1-order, the precise threshold
can be given to detect the mode transition without any delay, Assumption
3.2 is not required in this situation.

In mode 1, D1 = {x ∈ ℜ3 : π + ρ ≥ 8}, |c| ≤ 5, |v| ≤ 10. In mode 2,
D2 = {x ∈ ℜ3 : π+ρ ≤ 25}, |c| ≤ 2, |v| ≤ 5. G(1, 2) = {x ∈ ℜ3 : π+ρ ≤ 10}.
Assume |f c

1 | ≤ 2.5, |f c
2 | ≤ 1. Choose ρ1 = 0.05, ρ2 = 0.08, and

P1 =





0.0540 −0.0062 0
−0.0062 2.1310 0.1646

0 0.1646 2.4753



 , P2 =





1.0240 −0.0048 0
−0.0048 1.6200 0.1246

0 0.1246 1.9752





x(t1) = x(0) is assumed to be [8 9.5 9]⊤. From Lemma 3.1, x̂(0) is
chosen as [8 9.5 8.85]⊤. f c

1 = 2 + 0.2 sin(5t) which occurs at t = 0.15s.
Fig. 3.6 shows the switching detection performance using threshold (3.2.25),
the uncontrollable switching occurs at t = 0.41s, a short detection delay
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Figure 3.6: Switching detection performance with G(1, 2)

of 0.04s exists. Two states π and ρ are illustrated. System evolution is
shown in Fig. 3.7(a) where Inv(1) and Inv(2) are computed via level set
technique in [83]. We can see that, in the presence of f c

1 , stabilization of the
HS is achieved as in Lemma 3.1 and Theorem 3.1, the switching detection
delay nearly has no effect on the stability. Now consider the faulty guard set
G(1, 2, fd) = {x ∈ ℜ3 : π+ρ ≤ 10.5}, which implies that the mode transition
occurs with larger amount of CPU tasks and higher temperature. Fig. 3.7(b)
shows the stability of system.

Now we consider Case 3 with G(1, 2, fd) = {x ∈ ℜ3 : 0.8π+ρ ≤ 12}, from
Fig. 3.8(a), it is clear that x ∈ G(1, 2, fd) ∧ (2, x) 6∈ Inv(2), however, using
the relaxed method, it can be seen that (2, x) ∈ Invh(2). Consider f c

2 = 0.8
which occurs at t = 6s, Fig. 3.8(a) shows that the stabilization of the system
is achieved as in Corollary 3.1.

Next, we consider Case 4 with G(1, 2, fd) = {x ∈ ℜ3 : π + ρ ≤ 4}.
From Fig. 3.8(b), we can find that the system will be locked in mode 1
and is impossible to switch into mode 2, this is very dangerous since the
temperature in CPU can not decrease. The switching alarm and lock alarm
are generated at t = 2.21s and t = 2.34 respectively, which prevents the
system from being dangerous.
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Figure 3.7: FTC for the stable switchings
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Figure 3.8: FTC for the unstable switchings
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3.3 Hybrid nonlinear systems

Following the similar idea as in Section 3.2, we now focus on the output
tracking problem for a class of hybrid nonlinear systems with uncontrollable
state-dependent switching, parametric uncertainties, both continuous and
discrete faults, and without full state measurements. Firstly, under geometric
conditions, each mode of HS is transformed into a new form which is suitable
for both the observer and the FTC law design. Then, a novel observer is
designed for each mode whose estimation error is not affected by continuous
faults and sensitive to mode transitions. Such observer leads to a time varying
threshold for the switching detection of the HS. Finally, sufficient conditions
are given to solve the fault tolerant tracking problem for overall HS.

3.3.1 Preliminaries

The HS that we consider takes the form

ẋ = gσ
0 (x) + gσ(x)uσ + φσ(x, u)θσ + eσ(x)fσ

y = h(x) (3.3.1)

where x ∈ ℜn are unmeasurable states, uσ ∈ ℜpσ

are inputs, yσ ∈ ℜm are
outputs, θσ ∈ ℜlσ is an unknown constant vector representing parametric
uncertainties, |θσ| ≤ θσ

0 , for θσ
0 > 0.

The continuous fault is modelled by a “fault pattern”, which consists of
the distribution matrix ej(x) and a “fault signal” f j ∈ ℜqj

.
gσ
0 , gσ, φσ, eσ and hσ are smooth and known functions, and qσ < m ≤ pσ

is considered. σ(t) : [t0,∞) → Q = {1, 2, . . . , N} denotes the switching
function as in Chapter 2.

Define G : Q × Q → ℜn as a guard condition related to two modes. The
system is switched from mode i to mode j , i, j ∈ Q if the continuous states
x in mode i reach the guard set G(i, j). The discrete fault is represented by
the faulty guard set Gf : Q × Q → ℜn that makes the system switch under
an abnormal switching condition.

It is assumed that the states x are continuous at each switching instants,
and the switched sequence is prescribed and fixed in spite of faults.

The FTC problem is precisely described as: Keep the outputs of each mode
y asymptotically track the given reference signals yj

d = [yj
d1, y

j
d2, . . . , y

j
d(m)]

⊤ ∈
ℜm during the activating period of mode j in spite of continuous and dis-
crete faults, parametric uncertainties, meanwhile, make the continuous states
bounded.
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We discuss the system transformation, observer and FTC design problems
for non-hybrid systems in sections 3.3.2-3.3.3, then apply the results to hybrid
system in Section 3.3.4.

3.3.2 Fault diagnosis for nonlinear systems

Consider the following affine nonlinear system

ẋ = g0(x) + g(x)u + φ(x, u)θ + e(x)f

y = h(x) (3.3.2)

where x ∈ ℜn, u ∈ ℜp, y ∈ ℜm, f ∈ ℜq, θ ∈ ℜl play the same roles as in
(3.3.1). |θ| ≤ θ0 and q < m ≤ p, g0, g, φ, e and h are smooth and known.

Definition 3.2 The FD block strict feedback form of system (3.3.2) is

ż1 = Az1 + γ1(z1, y)u + γ2(z1, y) + ψ1(z1, u, y)θ (3.3.3)

ȳ1 = Cz1 (3.3.4)

ż2 = ψ0(z) + γ3(z2, y)u + ē(z)f + ψ2(z, u)θ (3.3.5)

ȳ2 = z2 (3.3.6)

where z = [z⊤1 , z⊤
2 ]⊤, z1 = [ξ⊤1 , ξ⊤2 , . . . , ξ⊤m−q]

⊤ ∈ ℜn−q, z2 = [ξ⊤m−q+1, . . . , ξ
⊤
m]⊤ ∈

ℜq are the states of system (3.3.3)-(3.3.6), with ξ = [ξ⊤1 , ξ⊤2 , . . . , ξ⊤m]⊤ ∈ ℜn,
ξi ∈ ℜ ¯̺i = [ξi1, . . . , ξi ¯̺i

]⊤. y = [ȳ⊤
1 , ȳ⊤

2 ]⊤ with ȳ1 ∈ ℜm−q, ȳ2 ∈ ℜq. More-
over, A = diag[A1, . . . , Am−q] ∈ ℜ(n−q)×(n−q), C = diag[C1, . . . , Cm−q] ∈
ℜ(m−q)×(n−q), with

Ai ∈ ℜ ¯̺i× ¯̺i =








0 1 · · · 0
...

...
. . .

...
0 0 · · · 1
0 0 · · · 0








, Ci ∈ ℜ1× ¯̺i =
[

1, 0, . . . , 0
]

for 1 ≤ i ≤ m − q. γ1(z1, y) = [ḡ⊤
1 , ḡ⊤

2 , . . . , ḡ⊤
m−q]

⊤ with

ḡi ∈ ℜ̺i×p =








ḡi1(ξ1, . . . , ξi−1, ξi1, yi+1, . . . , ym)
ḡi2(ξ1, . . . , ξi−1, ξi1, ξi2, yi+1, . . . , ym)

...

ḡi ¯̺i
(ξ1, . . . , ξi−1, ξi, yi+1, . . . , ym)








(3.3.7)

and γ2(z1, y) = [¯̄g⊤
1 , ¯̄g⊤

2 , . . . , ¯̄g⊤
m−q]

⊤ with

¯̄gi ∈ ℜ ¯̺i = [0 0 . . . 0, L ¯̺i
g0

hi(ξ1 . . . ξi−1ξiyi+1 . . . ym)]⊤ (3.3.8)

84



CHAPTER 3. HYBRID SYSTEMS WITH STATE-DEPENDENT SWITCHING

Remark 3.4 The form given in Definition 3.2 is an extension of the the
block parametric strict feedback form in [84] to the faulty case. In our model,
both ψ1 and ψ2 terms do not required to take the certain triangular forms as
in [84], since the parameter θ can be estimated by the observer rather than
the control strategy as shown later.

Assumption 3.3 There exists a set of integer numbers { ¯̺1, ¯̺2, . . . , ¯̺m} such
that

∑m
i=1 ¯̺i = n and ξ = T (x) ∈ ℜn is a diffeomorphism where

T (x) = [h1(x), Lg0(x)h1(x), . . . , L ¯̺1−1
g0(x)h1(x),

h2(x), . . . , L ¯̺2−1
g0(x)h2(x), . . . , L ¯̺m−1

g0(x) hm(x)]⊤

The relative degree of the rth output yr of system (3.3.2), denoted as ρr, is
such that ρr = ¯̺r = 1, m − q + 1 ≤ r ≤ m.

Under Assumption 3.3, dT (x) is invertible ∀x ∈ ℜn, let ri(x) be the ith
column of [dT (x)]−1 and R(i)j := span{rvi−j, . . . , rvi

}, where vi =
∑i

j=1 ¯̺j.

Lemma 3.3 Under Assumption 3.3, the diffeomorphism ξ = T (x) can trans-
form the system (3.3.2) into (3.3.3)-(3.3.6) if and only if

I [g0(x),R(i) ¯̺i−2] ⊂ R(i) ¯̺i−1 +R(i+1) ¯̺i+1−1 + · · ·+R(m− q) ¯̺m−q−1, for
2 ≤ i ≤ m − q.

II [g0(x),R(i)j] ⊂ R(i)j + R(i + 1) ¯̺i+1−1 + · · · + R(m − q) ¯̺m−q−1, for
1 ≤ i ≤ m − q, 0 ≤ j ≤ ¯̺i − 2.

III [g0(x),R(̄i) ¯̺̄i−2] ⊂ R(1) ¯̺1−2 + R(2) ¯̺2−2 + · · · + R(m − q) ¯̺m−q−2, for
m − q + 1 ≤ i ≤ m, 1 ≤ ī ≤ m − q.

IV LeL
s
g0

hi = 0, for 1 ≤ s ≤ ¯̺i − 1, 1 ≤ i ≤ m − q.

Proof: We first show that the conditions I and II lead to the block tri-
angular forms of γ1 and γ2 as in (3.3.7) and (3.3.8). By the construction of
R(i)j, we have in ξ−coordinate [106]

R(i)j = span{ ∂

∂ξ〈vi〉
, . . . ,

∂

∂ξ〈vi−j〉
} (3.3.9)

where ξ〈ι〉, 1 ≤ ι ≤ n − q denotes the ιth element of ξ.
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Define bg,l such that
∑m−q

i=1

∑ ¯̺i

j=1 LgL
j−1
g0

hi
∂

∂ξ〈vi−1+j〉
=

∑n−q
l=1 bg,l

∂
∂ξ〈l〉

. Con-

dition II can be represented in ξ−coordinate as

[

n−q
∑

l=1

bg,l
∂

∂ξ〈l〉
,

∂

∂ξ〈k〉
] ∈ span{ ∂

∂ξ〈vm−q〉
,

∂

∂ξ〈vm−q−1〉
,

. . . ,
∂

∂ξ〈vi〉
, . . . ,

∂

∂ξ〈vi−j〉
} (3.3.10)

for ¯̺i − j ≤ k ≤ ¯̺i. Note that [
∑n−q

l=1 bg,l
∂

∂ξ〈l〉
, ∂

∂ξ〈k〉
] =

∑n−q
l=1

∂bg,l

∂ξ〈k〉

∂
∂ξ〈l〉

, which,

together with (3.3.10) implies that
∂bg,l

∂ξ〈k〉
= 0, for 1 ≤ i ≤ m−q, 1 ≤ l ≤ vi−1,

and max(l + 1, vi−1 + 2) ≤ k ≤ vi.
Similarly, define bg0 ,

∑m−q
i=1 L ¯̺i

g0
hi

∂
∂ξ〈vi〉

, one can obtain from Condition I

that
∂bg0, ¯̺l

∂ξ〈k〉
= 0, for 2 ≤ i ≤ m− q, vi−1 + 2 ≤ k ≤ vi, and 1 ≤ l ≤ i− 1. The

block triangular forms of γ1 and γ2 follows.
Now we show that under Condition III, the term γ3(z2, y) is independent

on z1\ȳ1. Similar to (3.3.9), we have

R(̄i) ¯̺̄i−2 = span{ ∂

∂ξ〈vī〉

,
∂

∂ξ〈vī−1〉
, . . . ,

∂

∂ξ〈vī− ¯̺̄i+2〉
}

Condition III can be represented in ξ−coordinate as

[
m∑

i=m−q+1

Lg0hi
∂

∂ξ〈vi〉
,

∂

∂ξ〈k〉
] ∈ span{ ∂

∂ξ〈vm−q〉
,

∂

∂ξ〈vm−q−1〉
, . . . ,

∂

∂ξ〈vī− ¯̺̄i+2〉
. . . ,

∂

∂ξ〈v1− ¯̺1+2〉
} (3.3.11)

for ¯̺̄i−1 + 2 ≤ k ≤ ¯̺̄i. Note that

[
m∑

i=m−q+1

Lg0hi
∂

∂ξ〈vi〉
,

∂

∂ξ〈k〉
] =

m∑

i=m−q+1

Lg0hi
∂

∂ξ〈k〉

∂

∂ξ〈vi〉

which, together with (3.3.11) implies that Lg0hi
∂

∂ξ〈k〉
= 0(m− q +1 ≤ i ≤ m)

followed by the property that γ3(z2, y) is independent on z1\ȳ1.
Finally, condition VI decouples the subsystems (3.3.3)-(3.3.4) from con-

tinuous faults f .  

The form (3.3.3)-(3.3.6) that results from the transformation T (x) takes
several advantages:
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1. The subsystem (3.3.3)-(3.3.4) is not affected by continuous faults. An
observer can be designed for this subsystem to provide the estimates
of z1 and θ. These estimates are decoupled from the continuous fault,
thus they can be used to diagnose the faults in the subsystem (3.3.5)-
(3.3.6). Another benefit is to detect the switching of the HS as it will
be discussed in Section 3.3.4.

2. Both (3.3.3)-(3.3.4) and (3.3.5)-(3.3.6) are in the block strict feedback
form. Which are more friendly for FTC design than that in [45] and
[76]. The back-stepping control method in [84] can be developed to
achieve the fault tolerant tracking goal.

We present a novel observer for the subsystem (3.3.3)-(3.3.4), which re-
laxes the Lipschitz conditions as in the usual high gain observer. The observer
will be constructed firstly through the following several steps as in [88].

Step 1 : Define

M̄i(z1, u, y) , [C⊤
i , (CiFi(z1, u, y))⊤, . . . , (CiF

¯̺i−1
i (z1, u, y))⊤]⊤

for 1 ≤ i ≤ m − q, where Fi(z1, u, y) = Ai + Gij(z1, y)u, with Gij(z1, y) =
∂ḡi/∂ξj for 1 ≤ j ≤ m − q.

Step 2 : Let Ni = Ri(M̄iFiM̄
−1
i − Ai)

⊤Ri, where Ri = [βi Aiβi A ¯̺i−1
i βi]

with βi = [0 . . . 0 1]⊤. From the construction, Ni can be decomposed into
Ni = LiCi, where Li ∈ ℜ ¯̺i × 1.

Step 3 : Define

Wi(z1, u, y) , [C⊤
i , (CiĀi(z1, u, y))⊤, . . . , (CiĀ

¯̺i−1(z1, u, y))⊤]⊤

where Āi = Ai + Ni, and also define Mi = W−1
i M̄i.

We can obtain [88]

Mi(z1, u, y)Fi(z1, u, y)M−1
i (z1, u, y) = Ai + Li(x, u, y)Ci

CiM
−1
i (z1, u, y) = Ci (3.3.12)

Assumption 3.4

3.4.1 The partial derivatives of ḡi w.r.t. z1 and their respective time
derivatives are bounded.

3.4.2 There exists a function B(z1, u, y) ∈ ℜ(n−q)×(m−q) such that ψ1(z1, u, y) =
Bψ̄1(z1, u, y), where B is Lipschitz w.r.t. z1, |B| ≤ b0, and |ψ̄1| ≤
q̄(z1, u, y) ≤ q0 for a function q and numbers b0, q0 > 0.
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3.4.3 There exist matrices P = P⊤ ∈ ℜn×n = diag[P1, . . . , Pm−q] with
Pi = P⊤

i ∈ ℜ ¯̺i× ¯̺i and a function R(z1, u, y) ∈ ℜ such that

∆ǫP∆ǫM(z1, u, y)B(z1, u, y) = C⊤R(z1, u, y)

(Ai − KiCi)
⊤Pi + Pi(Ai − KiCi) = −Qi

where ∆ǫ = diag[∆ǫ1 , . . . , ∆ǫm−q
], ∆ǫi

= diag[1/ǫi, . . . , 1/ǫ ¯̺i

i ], with ǫ a
design parameter. M = diag[M1, . . . ,Mm−q], Qi = Q⊤

i > 0, Ki ∈ ℜ ¯̺i×1

are such that (Ai − KiCi) is stable.

Remark 3.5 Note that Conditions 3.4.1 and 3.4.2 are taken instead of Lip-
schitz conditions on γ1, γ2 and ψ1. Condition 3.4.3 is weaker than the strict
positive real (SPR) condition in [77], [76], since the term ∆ǫi

is involved.
Note that if ȳ1 is only single output (as in our application), the dimension of
B could be relaxed as B ∈ ℜ(n−q)×κ for κ > 0, and R could be chosen as a
vector to further relax Condition 3.4.3.

The observer is constructed as

˙̂z1 = Aẑ1 + ψ1(ẑ1, u, y)θ̂ + γ1(ẑ1, y)u + γ2(ẑ1, y)

+M−1(ẑ1, u, y)[L(ẑ1, y) + ∆−1
ǫ K](ȳ1 − ˆ̄y1)

+B̂sgn(R̂⊤)[θ0(q0 + q(ẑ1, y))sgn(ȳ1 − ˆ̄y1)] (3.3.13)

ˆ̄y1 = Cẑ1 (3.3.14)
˙̂
θ = Γψ̄⊤

1 (ẑ1, u, y)R⊤(ẑ1, u, y)(ȳ1 − ˆ̄y1) (3.3.15)

where L = diag[L1, . . . , Lm−q], and K = diag[K1, . . . , Km−q]. The weighting

matrix Γ = Γ⊤ > 0. Ξ̂ denotes Ξ(ẑ1, u, y). Denote ez = [e⊤1 , . . . , e⊤m−q]
⊤ with

ei = ξi − ξ̂i, 1 ≤ i ≤ m − q, eθ = θ − θ̂.

Theorem 3.2 Under Assumption 3.4, the observer described by (3.3.13)-
(3.3.14) together with the adaptive algorithm (3.3.15) can realize limt→∞ ez =
0 and limt→∞ eθ = 0 if there exist two positive constants σ and t0 such that
for all t, the following persistent excitation condition holds:

∫ t+t0

t

ψ⊤
1 (z1(s), y(s))ψ1(z1(s), y(s))ds ≥ σI (3.3.16)

Proof: The proof of the theorem follows the recursive way. Consider the
ith subsystem of (3.3.3) and (3.3.13), we have

ėi = Aiei + (ḡi − ˆ̄gi)u + ¯̄gi − ˆ̄̄gi − ˆ(M−1
i )(L̂i + ∆−1

ǫi
Ki)Ciei

+ψ1iθ − ψ̂1iθ̂ − Υi (3.3.17)
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where ψ1 = [ψ⊤
11, . . . , ψ

⊤
1(m−q)]

⊤, Υ = [Υ⊤
1 , . . . , Υ⊤

m−q]
⊤ , Bsgn(R⊤)[θ0(q0 +

q(ẑ1, y)) sgn(ȳ1− ˆ̄y1)]. Consider the transformation ẽi , ∆ǫi
M̂iei and choose

a Lyapunov candidate function Vi = ẽ⊤i Piẽi. Based on [88], it can be shown
that the time derivative of Vi along (3.3.17) satisfies

V̇i ≤ −ǫiλmin(Qi)|ẽi|2 +
i∑

j=1

µij|ẽi|2 +
i−1∑

j=1

µji|ẽj|2

+2ẽ⊤i Pi∆ǫi
M̂i(ψ1iθ − ψ̂1iθ̂ − Υi)

where µij, µji > 0.
Now, consider the Lyapunov candidate function as W (ez, eθ) = Vz + Vθ

for the overall system, where Vz =
∑m−q

i=1 Vi, Vθ = e⊤θ Γ−1eθ. Denote ẽ =
[ẽ⊤1 , . . . , ẽ⊤m−q]

⊤. The time derivative of W along (3.3.3), (3.3.13) and (3.3.15)
is

Ẇ ≤
m−q
∑

i=1

(

(−ǫiλmin(Qi) +

m−q
∑

j=1

µij)|ẽi|2
)

+ 2ẽ⊤P∆ǫM̂(ψ1θ − ψ̂1θ̂) − 2ẽ⊤P∆ǫM̂Υ − 2e⊤θ ψ̄⊤
1 R̂⊤Cez

︸ ︷︷ ︸

Ψ

Based on Assumption 3.4.3 and (3.3.12), we have

Ψ = 2ẽ⊤P∆ǫM̂B̂ ˆ̄ψ1eθ − 2e⊤θ
ˆ̄ψ
⊤
1 R̂⊤C∆−1

ǫ ẽ

+2ẽ⊤P∆ǫM̂B̂(ψ̄1 − ˆ̄ψ1)θ̂ + 2ẽ⊤P∆ǫM̂(B − B̂)ψ̄1θ̂

−2ẽ⊤P∆ǫM̂B̂sgn(R̂⊤)[θ0(q0 + q(ẑ1, y))sgn(ȳ1 − ˆ̄y1)]

≤ 2ẽ⊤P∆ǫM̂(B − B̂)ψ̄1θ̂ (3.3.18)

From Assumption 3.4.2, we further obtain

Ẇ ≤ −η|ẽ|2 (3.3.19)

where ǫi, 1 ≤ i ≤ m − p, is chosen such that η > 0.
Since M and ∆ǫ are all bounded and nonsingular, inequality (3.3.19)

implies the stability of the origin ez = 0, eθ = 0. One can get limt→∞ ez =
0, which, together with (3.3.15), the persistent condition (3.3.16) and the
uniform boundedness of eθ, leads to limt→∞ eθ = 0.  

The fault estimates can be obtained straightly from (3.3.5) as

ˆ̄ef̂ = ˙̄y2 − ψ̂0 − ψ̂2θ̂ − γ̄2u (3.3.20)

89



CHAPTER 3. HYBRID SYSTEMS WITH STATE-DEPENDENT SWITCHING

which yields ˆ̄ef̂ − ēf = (ψ0 − ψ̂0) + (ψ2θ − ψ̂2θ̂). Since limt→∞ ez = 0,
limt→∞ eθ = 0, due to the continuity of ē, ψ0 and ψ2, there always exist
two numbers kz, kθ > 0 such that for all bounded z, ẑ, if |ez| and |eθ| are
sufficiently small, the following inequality holds

|ˆ̄ef̂ − ēf | ≤ kz|ez| + kθ|eθ| (3.3.21)

Moreover, we have limt→∞ |ˆ̄ef̂ − ēf | = 0. Note that f can be estimated if
ē is invertible, however, it will be shown in the next section that inequality
(3.3.21) is enough to achieve the FTC objective.

3.3.3 FTC for the nonlinear system

The observer based fault tolerant tracking control strategy is discussed in
three parts. We first analyze the local controller to achieve the tracking
objective for z1 subsystem (3.3.3)-(3.3.4) and z2 subsystem (3.3.5)-(3.3.6)
respectively, then design the global fault tolerant tracking controller for the
overall system.

The tracking controller for the observer (3.3.13)-(3.3.14) of z1 subsystem
is designed first, the convergence of observer implies the availability of the
controller for z1 system. To facilitate the analysis, we give the following
assumption.

Assumption 3.5 There exists a set of relative degrees {ρ1, ρ2, . . . , ρm} such
that

∑m
i=1 ρi = n and ξ = T (x) ∈ ℜn is a diffeomorphism where

T (x) = [h1(x), Lg0(x)h1(x), . . . , Lρ1−1
g0(x)h1(x),

h2(x), . . . , Lρ2−1
g0(x)h2(x), . . . , Lρm−1

g0(x) hm(x)]⊤ (3.3.22)

Moreover, ρr = 1, m − q + 1 ≤ r ≤ m.

Under Assumption 3.5, the structure of ḡi in (3.3.7) is changed into

ḡi ∈ ℜρi×p = [0, 0, . . . , 0,
︸ ︷︷ ︸

ρi−1 order

ḡiρi
(ξ1, . . . , ξi−1, ξi, y)]⊤ (3.3.23)

γ̂1 in observer (3.3.13) is also modified to be consistent with the system.

Remark 3.6 If Assumption 3.5 does not hold, then the system (3.3.3)-
(3.3.4) would contain the tracking dynamics and zero dynamics, the proposed
method can be extended to that case if the system (3.3.3)-(3.3.4) is minimum
phase, i.e., the zero dynamics are input-to-state stable w.r.t. the linearizable
states as in most of related literatures [84].
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Define Θ = [Θ⊤
1 , . . . , Θ⊤

m−q]
⊤ with Θi , M̂−1

i [L̂i+∆−1
ǫi

Ki]Cez. Eq.(3.3.13)
is rewritten as

˙̂
ξij = ξ̂i(j+1) + ˆ̄∆ij, 1 ≤ j ≤ ρi − 1

˙̂
ξiρi

= υi 1 ≤ i ≤ m − q (3.3.24)

where

ˆ̄∆i = [ ˆ̄∆i1, . . . ,
ˆ̄∆i(ρi−1)]

⊤ , ψ̂1iθ̂ + Θi + Υi,
ˆ̄∆iρi

= 0

Υ = [Υ⊤
1 , . . . , Υ⊤

m−q]
⊤ , Bsgn(R⊤)[θ0(q0 + q(ẑ1, y))sgn(ȳ1 − ˆ̄y1)]

υi is the local controller for system (3.3.24).
Define ydi as a tracking signal for yi, where ydi has the bounded ρi-orders

time derivative, i.e., ẏdi, ..., y
(ρi)
di are all bounded.

Assumption 3.6 There exists a known smooth function ¯̟ ij(ξ̂i1, . . . , ξ̂ij) such

that |̟ij| ≤ ¯̟ ij, 1 ≤ j ≤ ρi, 1 ≤ i ≤ m − q, where ̟i1 , ˆ̄∆i1, ̟i2 ,

ˆ̄∆i2 − ∂αi1(ξ̂i1,t)

∂ξ̂i1

˙̂
ξi1 − ∂αi1

∂t
, and

̟ij , ˆ̄∆ij −
j−1
∑

s=1

∂αi(j−1)(ξ̂i1, . . . , ξ̂i(j−1), t)

∂ξ̂is

˙̂
ξis −

∂αi(j−1)

∂t
, 3 ≤ j ≤ ρi

αij is a fictitious controller to be chosen.

Define the tracking error as χi ∈ ℜρi = [χi1, . . . , χiρi
]⊤, where χis =

ξ̂is − y
(s−1)
di , 1 ≤ s ≤ ρi, and define the transformation χ̃i = [χ̃i1, . . . , χ̃iρi]

⊤

with χ̃i1 = χi1, and χ̃ij = χij − αi(j−1).

Lemma 3.4 Under assumptions 3.4, 3.5 and 3.6, there exists a series of
local controllers to make the output of the observer (3.3.13)-(3.3.14) expo-
nentially track the given signals ȳd ∈ ℜm−q , [yd1, . . . , yd(m−q)]

⊤ while the
continuous states are bounded.

Proof: From (3.3.24) and Assumption 3.6, we have ˙̃χi1 = χ̃i2 + ̟i1 + αi1.
αi1 is designed as

αi1 = −1

2
k̄iχ̃i1 −

¯̟ 2
i1χ̃i1

¯̟ i1|χ̃i1| + εie−ait
(3.3.25)

where k̄i, εi, ai > 0 are designed by the user. Consider the Lyapunov can-

didate function V̄i1 = 1
2
χ̃2

i1, it follows that ˙̄V i1 = χ̃i1(χ̃i2 + ̟i1 + ᾱi1) ≤
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−k̄iV̄i1 + χ̃i1χ̃i2 + εie
−ait. Similar procedures are introduced for χ̃ij , 2 ≤ j ≤

ρi. Consider the Lyapunov candidate function V̄ij = V̄i(j−1) + 1
2
χ̃2

ij, we have

˙̄V ij ≤ −k̄iV̄ij+χ̃ijχ̃i(j+1)+jεie
−ait with αij = −χ̃i(j−1)− 1

2
k̄iχ̃ij−

¯̟ 2
ij χ̃ij

¯̟ ij |χ̃ij |+εie−ait .

Finally, choose a Lyapunov function Vti = V̄i(ρi−1) + 1
2
χ̃2

iρi
, we obtain

V̇ti ≤ −k̄iVti + (ρi)εie
−ait (3.3.26)

which results from the local controller

υi = −χ̃i(ρi−1) −
1

2
k̄iχ̃iρi

− ¯̟ iρi
+2 χ̃iρi

¯̟ iρi
|χ̃iρi

| + εie−ait
+ y

(ρi)
di

This completes the proof.  

Similarly to the procedure for z1 subsystem, define the tracking error as
χi = yi − ydi, m − q + 1 ≤ i ≤ m. From (3.3.5)-(3.3.6), we have χ̇i =
ˆ̄∆fi − ẏdi +υi, m− q +1 ≤ i ≤ m, where υi also denotes the local controller,

and ˆ̄∆fi , ψ0i+ψ2iθ+ēif . Define ˆ̄∆i , (ψ0i−ψ̂0i)+(ψ2iθ−ψ̂2iθ̂)+(ēif−ˆ̄eif̂),

then based on Theorem 3.2 and (3.3.21), it is clear that | ˆ̄∆i| ≤ ¯̟ i for ¯̟ i > 0.
The local controller can be designed as

υi = −1

2
k̄iχ̃i + ẏdi −

¯̟ 2
i χ̃i

¯̟ i|χ̃i| + εie−ait
− ψ̂0i − ψ̂2iθ̂ − ˆ̄eif̂ (3.3.27)

for m−q+1 ≤ i ≤ m, which makes the time derivative of Lyapunov function
Vti = 1

2
χ̃2

i satisfy the inequality as in (3.3.26).

Theorem 3.3 Suppose that all the conditions in Lemma 3.3, Theorem 3.2
and assumptions 3.5, 3.6 hold. There exists a control law for the system
(3.3.2) to make the outputs asymptotically track the given signals yd ∈
ℜm = [ȳ⊤

d , ¯̄y⊤
d ]⊤ = [yd1, . . . , ydm]⊤ while guaranteeing that all the states x

are bounded in spite of faults and parametric uncertainties, if

Rank

[
γ1(ẑ1, y)
γ3(z2, y)

]

= m (3.3.28)

Proof: If Eq.(3.3.28) holds, the fault tolerant tracking controller is de-
signed as

u =

[
γ1(ẑ1, y)
γ3(z2, y)

]†
[υ̃1, . . . , υ̃m−q, υm−q+1, . . . , υm]⊤ (3.3.29)

where † denotes right inverse, υ̃i , υi − (ψ̂1(iρi)θ̂ + Θiρi
+ Υiρi

+ ˆ̄̄giρi
), 1 ≤

i ≤ m − q. It is clear that the controller (3.3.29) guarantees the tracking
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performance and the boundedness of states for systems (3.3.13)-(3.3.14) and
(3.3.5)-(3.3.6). From the convergence result of observer in Theorem 3.2, the
outputs of system (3.3.3) also asymptotically track ȳd and the states z1 are
bounded. This completes the proof.  

To this end, we summarize the FTC design procedure as follows:

1) Transform the original system (3.3.2) into the fault diagnosis block
strict feedback form (3.3.3)-(3.3.6).

2) Design the observer (3.3.13)-(3.3.15), and the fault diagnostic scheme
(3.3.20) .

3) Design the observer-based fault tolerant tracking controller (3.3.29).

3.3.4 FTC for hybrid nonlinear system

We are now in the position to extend the result in sections 3.3.2-3.3.3 to the
HS. The FTC framework, shown in Fig.3.9, consists of high level (discrete
event supervisor) and low level (continuous modes). The observer estimates
the current continuous states, and meanwhile, detects the switchings. Based
on the information from the observer, the controller, the fault diagnostic
scheme, and the observer itself are switched according to the current mode.

Observer
 for mode

Plant

Controller  
   for mode 

Diagnostic scheme
   for mode 

...

...
...

...
...

...

Signals of switching detection 

and mode identification 

Supervisor High Level

Low Level

Figure 3.9: the FTC framework for hybrid nonlinear systems

The idea of switching detection appears from the analysis of estimation
error ȳj

1 − ˆ̄y
j
1. If all the modes are not overlapping, i.e., each observer works

well only when applied to its related mode, then, similar to fault detection
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problem [77], ȳj
1 − ˆ̄y

j
1 can be regarded as a residual for mode j to detect the

switching, since limt→∞ ȳj
1 − ˆ̄y

j
1 = 0 before mode transition occurs. Here, we

propose a time varying threshold to detect the switching instants as in the
following Lemma.

Lemma 3.5 Suppose that all the modes of (3.3.1) satisfy the conditions in
Theorem 3.3. If all modes are discernable, i.e., for mode j, the estimation er-
ror |ej

z| is convergent as in (3.3.19) only under the observer (3.3.13)-(3.3.15)
associated with mode j, then all the normal switchings and faulty switchings
can be detected.

Proof: The proof follows the results of Theorem 3.2. We first consider
the initial period before any switching happens. Supposed the system is
initialized in mode j from t = 0, the inequality (3.3.19) can be rewritten as
V̇ j

z ≤ −η̄j
1V

j
z − V̇ j

θ , for η̄j
1 > 0. Using the differential inequality theory, we

have

V j
z (t) ≤ e−η̄j

1tV j
z (0) −

∫ t

0

e−η̄j
1(t−τ)V̇ j

θ (τ)dτ

= e−η̄j
1(t)V j

z (0) − e−η̄j
1t

[

V j
θ (τ)eη̄1τ |t0 − η̄j

1

∫ t

0

eη̄j
1τV j

θ (τ)dτ

]

≤ e−η̄j
1tV j

z (0) + e−η̄j
1t

[

V j
θ (0) + η̄j

1

∫ t

0

eη̄j
1τV j

θ (τ)dτ

]

(3.3.30)

where η̄j
1 ,

ηj
1

λmax(P j)
. Given an initial z1(0) or a bound of z1(0)(note that the

continuous state is always bounded from lemmas 3.4,3.5 and Theorem 3.3).
It follows from (3.3.30) that |ej

z(t)| ≤ ej
bound(0) with

(ej
bound(0))2 , e−η̄j

1t

[

η̄j
2|ej

z(0)|2 + η̄j
3

(

θj
0 + |θ̂j(0)|

)2

+η̄j
4

∫ t

0

eη̄j
1τ

(

θj
0 + |θ̂j(τ)|

)2

dτ

]

where η̄j
2 ,

λmax(P̄ j)

λmin(P̄ j)
, η̄j

3 ,
λmax((Γj)−1)

λmin(P̄ j)
, η̄j

4 , η̄j
1η̄

j
3, and P̄ , M⊤∆ǫP∆ǫM .

Since all the modes are discernable, no matter whether the discrete fault
occurs, once |ȳj

1(t) − ˆ̄y
j
1(t)| = |Cej

z(t)| >
√

mj − qjej
bound(0), the switching

that ends the activating period of mode j is detected.
By induction, denote tj(k) as the switching instant that activates mode

j for kth time, we have

V j
z (t) ≤ e−η̄j

1tV j
z (tj(k)) + e−η̄j

1t

[

V j
θ (tj(k)) + η̄j

1

∫ t

tj(k)

eη̄j
1τV j

θ (τ)dτ

]

(3.3.31)
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The time varying threshold is designed as

|ej
z(t)| ≤ ej

bound(t
j(k)) (3.3.32)

with

ej
bound(t

j(k)) , e−η̄j
1t

[

η̄j
2|ej

z(t
j(k))|2 + η̄j

3

(

θj
0 + |θ̂j(tj(k))|

)2

+η̄j
4

∫ t

tj(k)

eη̄j
1τ

(

θj
0 + |θ̂j(τ)|

)2

dτ

]

Once |ȳj
1(t) − ˆ̄y

j
1(t)| = |Cej

z(t)| >
√

mj − qjej
bound(t

j(k)), the switching that
ends the activating period of mode j is detected.  

After the switching detection, the controller (3.3.29) and the observer
(3.3.13)-(3.3.15) related to the current mode is activated. The initial states ẑ1

of the current observer are chosen as the final states of the previous observer.
The following theorem gives the conditions to guarantee the global tracking
property.

Theorem 3.4 Suppose that the conditions in lemmas 3.6, 3.7 hold, con-
sider the HS (3.3.1) under a family of controllers (3.3.29), diagnostic scheme
(3.3.20) and observers (3.3.13)-(3.3.15), where all the modes satisfy the con-
ditions in Theorem 3.3. If, at t = tj(k), the following inequalities hold :

V j
t (tj(k + 1)) < V j

t (tj(k)) (3.3.33)

ej
bound(t

j(k + 1)) < ej
bound(t

j(k)) 1 ≤ j ≤ N (3.3.34)

where Vt ,
∑m

i=1 Vti, then yj,∀j ∈ Q asymptotically tracks yj
d during the

activating period of mode j, while x is always bounded in spite of faults and
uncertainties.

Proof: Based on (3.3.26) in Lemma 3.4, we can further obtain that V̇ j
t ≤

−k̄jV j
t +nεje−ajt, where k̄j = k̄j

i , a
j = aj

i , 1 ≤ i ≤ m. Appropriate selections
of εj and aj can make V̇ j

t < 0, ∀σ(t) = j. If (3.3.33) holds, then the Multiple
Lyapunov functions (MLFs) method in [33] can be applied to conclude that
the tracking error of the HS is Lyapunov stable. On the other hand, for each
time tj(k) when mode j is identified, the sequence V j

t (tj(k)) is decreasing
and positive, and therefore has a limit ζ ≥ 0. One has

lim
k→∞

[

V j
t (tj(k + 1)) − V j

t (tj(k))
]

= ζ − ζ = 0

Note that there exists a class K function ω such that

0 = lim
k→∞

[

V j
t (tj(k + 1)) − V j

t (tj(k))
]

≤ lim
k→∞

[−ω(|χ̃j|)] ≤ 0 (3.3.35)
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Inequality (3.3.35) implies that the tracking error χ̃j converges to the origin,
which combined with Lyapunov stability, leads to the asymptotic stability
of χ̃j for the HS in spite of faults and parametric uncertainty. On the other
hand, Inequality (3.3.34) guarantees that limt→∞ ebound(t) = 0, which leads
to the global convergence of the estimation error ez to zero.  

Remark 3.7 The switching detection using Lemma 3.5 may have a short
time delay tj(k) − tj∗(k), where tj∗(k) is the real switching instant. The
effect of this delay is acceptable in the practical situation. Moreover, since
ej

z is always bounded in ej
bound, continuous state estimation performance is

guaranteed in the delay. For the case that x may diverge during the delay,
the non-decreasing MLFs control method in [200] could be applied.

Example 3.2 : [176] A well known three-tank system is employed to illus-
trate the application of our approach. The schematic diagram of the system
is depicted in Fig. 3.10. The system consists of three cylindrical tanks linked
to each other through connecting cylindrical pipes. Two pumps control two
incoming flows. The control objective is to keep h2 and h3 rise or drop
with given velocities and maintain the water levels in three tanks in certain
regions.

Figure 3.10: The three tank system

The system is modeled as a hybrid automaton with the following three
modes:

Mode 1 (save water): Valves V1, V2 are open, V3, V4 are closed. Levels
h2 and h3 rise according to given velocities.

Mode 2 (lose water): Valves V1, V2, V3, V4 are open. Levels h2 and h3

drop according to given velocities.
h1, h2, h3 are continuous states of the system with h2 and h3 as outputs

for both modes. In the following, (·)〈1〉 and (·)〈2〉 denote the parameters for
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mode 1 and 2 respectively.
In the normal situation, the switching sequence is prescribed as mode 1 →

mode 2 → mode 3 → mode 1, which would be affected by the faulty switch-
ing. Suppose that the coefficients of pipes Pi, 1 ≤ i ≤ 4 are the same. For
the sake of simplicity, only f and θ in mode 1 and Gf (1, 2) are considered.

We first verify the decomposition result of Lemma 3.3. According to the
Bernoulli’s principle and Toricelli’s law, the analytic model of mode 1 with
f and θ can be written as





ḣ1

ḣ2

ḣ3



 =





−a
√

h1 − h2

a
√

h1 − h2 − a
√

h2 − h3

a
√

h2 − h3



 +





Q1

S

0
Q3

S





+





−a
√

h1 − h2

0
a
√

h2 − h3



 f +






−0.006
√

h2−h3√
h1−h2

− 0.006a
s
√

h1−h2

Q1

S

0.006
0.006

√
h2−h3√

h1−h2
− 0.006

√
h2−h3

a




 θ

y1 = h2, y2 = h3

where the fault term corresponds to sediment deposit in P1 and P4, i.e.,
sections of P1 and P4 progressively change. The uncertainty term denotes the
modelling error and input disturbance related to Q1. It can be checked that
Assumption 3.5 is satisfied. Indeed, according to (3.3.22), a diffeomorphism

is chosen as ξ
〈1〉
1 = h2, ξ

〈1〉
2 = a(

√
h1 − h2 −

√
h2 − h3), ξ

〈1〉
3 = h3. Mode 1 in

ξ〈1〉-coordinate can be represented as

ξ̇
〈1〉
1 = ξ

〈1〉
2 + 0.006θ

ξ̇
〈1〉
2 = −a2

2
+

a3
√

y1 − y2

2(ξ
〈1〉
2 + a

√
y1 − y2)

− aξ
〈1〉
2

2
√

y1 − y2

+
a2Q1

2S(ξ
〈1〉
2 + a

√
y1 − y2)

+
aQ3

2S
√

y1 − y2

−0.006
( S2a3

√
y1 − y2 + a2Q1

2S2(ξ
〈1〉
2 + a

√
y1 − y2)2

+
a

2
√

y1 − y2

− 1

2

)

θ

y1 = ξ
〈1〉
1

ξ̇
〈1〉
3 = a

√
y1 − y2 +

Q3

S
+ a

√
y1 − y2f

+
( 0.006a

√
y1 − y2

ξ
〈1〉
2 + a

√
y1 − y2

− 0.006
√

y1 − y2

a

)

θ

y2 = ξ
〈1〉
3
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Table 3.1: Physical parameters of the three tank system

S1 = S2 = S3 = S =
0.0171m2

Tank cross-
section areas

Sc1 = Sc2 = Sc3 = Sc4 = 0.0002m2

Sc5 = Sc6 = 0.0004m2 Pipe cross-
section areas

azi = 0.5279(1 ≤ i ≤ 6) Pipe coefficients
hmax = 0.63m Maximum level
Qmax = 5 × 10−4m3/s Maximum In-

flow rate

which verifies Lemma 3.3. Moreover the persistent excitation condition
(3.3.16) holds since the coefficient matrix of θ does not tend to zero.

One further have that

M 〈1〉 =

[
1 0

S2a3√y1−y2+a2Q1

2S2(ξ
〈1〉
2 +a

√
y1−y2)2

+ a
2
√

y1−y2
1

]

L〈1〉 =





− S2a3√y1−y2+a2Q1

2S2(ξ
〈1〉
2 +a

√
y1−y2)2

− a
2
√

y1−y2
0

S2a3ξ
〈1〉
2 −Sa3Q1√

y1−y2(2Sξ
〈1〉
2 +2Sa

√
y1−y2)2

− aQ3−Saξ
〈1〉
2

4S
√

(y1−y2)3
0





The transformation of mode 2 and 3 similar to that of mode 1 is thus
omitted. It can be shown that Lemma 3.3 is applied for all three modes.
Also note that the dynamics of three modes are different from each other,
which guarantees the discernability as in Lemma 3.5.

Table 3.1 summarizes typical values of the three-tank system.
where the coefficient ai = azi(Sci/S)

√
2g(1 ≤ i ≤ 6) with g being the

gravitational constant. The system required behavior is shown in Table 3.2.

The system is initialized in mode 1, one switching and the operation of two
modes are considered in the simulation. The initial levels are [0.48 0.37 0.25]⊤.
As for mode 1, f = 0.3−0.3e−0.05(t−10) which is assumed to occur at t = 10s,
θ = 0.9m/s is unknown, θ0 = 1. The parameters of the observer are

chosen as Γ〈1〉 = 5, ǫ
〈1〉
1 = 3, K〈1〉 = [1 0.25]⊤, P 〈1〉 =

[
1.25 −0.5
−0.5 3

]

,

R〈1〉 = 0.1481, it can be seen that Condition 2.3 is satisfied with ψ̄
〈1〉
1 = 0.006,

Q〈1〉 =

[
2.25 −1
−1 1

]

, θ̂(0) = 0. The parameters of the controller are designed

as ¯̟
〈1〉
11 = 0.0026, ¯̟

〈1〉
12 = 2.5|ξ̂〈1〉2 |, k̄〈1〉 = 5, ε〈1〉 = 0.0002, and a〈1〉 = 5. Re-
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Table 3.2: System required behavior

Mode Reference signals guard set

Mode 1
y
〈1〉
d1 = 0.45 − 0.08e−0.01(t−t1(k))

y
〈1〉
d2 = 0.33 − 0.08e−0.01(t−t1(k))

G(1, 2) = {h1 ≥
0.545}

Mode 2
y
〈2〉
d1 = 0.35 + 0.08e−0.01(t−t2(k))

y
〈2〉
d2 = 0.23 + 0.08e−0.01(t−t2(k))

G(2, 3) = {h1 ≤
0.495}

Mode 3
y
〈3〉
d1 = 0.35 + 0.06e−0.008(t−t2(k))

y
〈3〉
d2 = 0.23 + 0.06e−0.008(t−t2(k))

G(3, 1) = {h1 ≤
0.485}

lated parameters of mode 2 and 3 can be obtained following the same way,
which are omitted.
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Figure 3.11: Estimation performance

Fig. 3.11 shows the estimation performance, where rapid and accurate
estimates of θ can be provided after t = 2s which verifies Theorem 3.2. Note
that ē〈1〉 is invertible, f is also estimated effectively. Fig. 3.12(a) shows that
the switching occurs at t = 98.28s when h1 reaches the guard set, and is
detected at t = 98.298s with a delay of 0.018s, the region of h1(98.298) is
obtained from Lemma 3.6 as [0.546 − 6.5 × 10−6, 0.546 + 6.5 × 10−6] which
belongs to Inv(2)\Inv(3), so mode 2 can be identified as the current mode.
Figures 3.12 shows the behaviors of h1, h2, h3 and two inputs, from which

99



CHAPTER 3. HYBRID SYSTEMS WITH STATE-DEPENDENT SWITCHING

98.25 98.26 98.27 98.28 98.29 98.3 98.31 98.32 98.33 98.34 98.35
5

6

7

8

9

10

11
x 10

−6

t/s

0 50 100 150
0.48

0.5

0.52

0.54

0.56

0.58

t/s

h
1

threshold
estimation error

Guard set 

(a) Switching detection and h1’s be-
havior

0 50 100 150
0.37

0.38

0.39

0.4

0.41

0.42

0.43

0.44

t/s

0 50 100 150
0.25

0.26

0.27

0.28

0.29

0.3

0.31

0.32

t/s

h2
reference signal<1>
reference signal<2>

h3
reference signal<1>
reference signal<2>

(b) The behaviors of h2 and h3

Figure 3.12: FTC performance
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Figure 3.13: System behavior
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we can see that the tracking performance is always maintained in spite of
continuous faults and uncertainties, and h1, h2, h3 are always in the invariant
set, the switching detection delay is acceptable.

Now consider the discrete fault as Gf (1, 2) = {h1 ≥ 0.543}, the switching
is detected at t = 86.572s, and mode 2 can also be identified according to
Lemma 3.6. Fig. 3.13 shows the behaviors of three levels, which implies that
the faulty switching can be detected rapidly and the tracking performance is
guaranteed with the continuous state staying in the invariant set.

3.4 Conclusion

This Chapter has investigated the observer-based FTC problem of HS with
uncontrollable state-dependent switching. The key idea is to design, under
some structure conditions imposed on each mode, the observer for each mode
whose estimation error is not affected by continuous faults and sensitive to
mode transitions.
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Chapter 4

Hybrid systems with impulsive and stochas-
tic switching

In this chapter, two important classes of HS are considered that are with im-
pulsive and stochastic switchings. For the former system, the FTC strategy
is based on the trade-off between the frequency of switching, the impulsive
magnitude, and the decreasing rate of Lyapunov functions along the solution
of the system; Similarly, for the latter one, the FTC objective is achieved
via the trade-off among the fault occurrence transition rate, the frequency of
switching, and the decreasing rate of Lyapunov functions. The work in this
chapter can be regarded as an extension of that in Section 2.3.
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4.1 Impulsive switching case

Hybrid impulsive systems (HIS) represent an important type of hybrid sys-
tems [59] that have gained much attention in engineering, where the con-
tinuous states abruptly change due to the impulse effect at each switching
instant. Examples of HIS include some biological neural networks, frequency-
modulated signal processes, flying object motions [92, 58].

In this section, we focus on the FTC problem for hybrid nonlinear im-
pulsive systems with both continuous and discrete faults, and without full
state measurements. An observer-based FTC law is designed for each mode,
and two consequent cases are considered. For the case that each mode is
input-to-state stable (ISS) w.r.t. the estimation error as the input, an ADT
scheme is proposed such that the ISS property of the HIS is maintained in
spite of faults and impulse effects. For the case that only partial modes are
ISS under the FTC law, a novel double ADT scheme is developed to keep
the overall system still ISS.

4.1.1 Preliminaries

The HIS that we consider takes the form
{

ẋ(t) = Aσ(t)x(t) + Gσ(t)(x(t))θσ(t)(t) + Bσ(t)uσ(t)(t)
y(t) = Cσ(t)x(t) t 6= tk, k ∈ {1, 2, ...}

(4.1.1)
{

x(t) = fσ(t−),σ(t)

(

x(t−), uσ(t−)(t
−), θd

σ(t−),σ(t)(x(t−))
)

y(t) = Cσ(t)x(t) t = tk, k ∈ {1, 2, ...}
(4.1.2)

where x(t) ∈ ℜn is the non measured state which is continuous between
impulses. y(t) ∈ ℜr is the output, uσ(t) ∈ ℜm is the control. Aσ, Bσ and Cσ

are real constant matrices of appropriate dimensions. (Aσ, Bσ) is controllable,
(Aσ, Cσ) is observable. θσ ∈ ℜj is a bounded parameter, |θσ| ≤ θ̄σ for
θ̄σ > 0. In the fault-free case, we have θσ = θHσ with θHσ a known constant
vector. The nonlinear term Gσ(x) is a continuous Lipschitz function, i.e.,
|Gσ(x1) − Gσ(x2)| ≤ Lσ|x1 − x2| for Lσ > 0. It is assumed that Gσ(0) = 0,
and |Gσ(x)| ≤ ḡσ for ḡσ > 0.

The continuous fault changes the parameter θσ unexpectedly as in [80].
In the faulty case, θσ = θHσ + θfσ, where θfσ denotes the unknown constant
fault vector, |θfσ| ≤ θ̄fσ, for θ̄fσ > 0.

Define Q = {1, 2, . . . , N}, where N is the number of modes. σ(t) :
[0,∞) → Q denotes the piecewise constant switching function [92]. At the
kth switching instant tk, the system (4.1.1) switches from mode i to mode
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j, where i = σ(t),∀t ∈ [tk−1, tk) and j = σ(t),∀t ∈ [tk, tk+1). It is supposed
that the switching can be detected at each switching instant.

The impulsive dynamics (4.1.2) is activated at each tk. The discrete fault
is considered as an abnormal impulse effect, which is represented by the
unknown function θd

σ(t−),σ(t)(x(t−)), and does not exist in the fault-free case.
There are quite a few practical systems that can be described by the

HIS model (4.1.1)-(4.1.2), e.g., the biped walking robot [57], the switched
reluctance motor [148], etc. The objective is to design the FTC law uσ and
provide a sufficient condition on the switching frequency of σ such that the
state x is always bounded in spite of faults and impulse effects.

4.1.2 FTC for single mode

Let us first consider the system (4.1.1) with σ(t) = j for some j ∈ Q starting
from t = tk, and design the controller uj such that mode j is stabilized in
spite of fault θfj.

Assumption 4.1 There exist two constant matrices Ej, Kj ∈ ℜn×r such
that Gj(x) = EjḠj(x), and for a given matrix Qj ∈ ℜn×n > 0, it holds that

(Aj − KjCj)
⊤Pj + Pj(Aj − KjCj) = −Qj, and PjEj = C⊤

j Rj

for a matrix Pj ∈ ℜn×n > 0 and scalar Rj. Moreover, rank(Bj, Ej) =
rank(Bj).

The FD observer for mode j is designed as

˙̂x(t) = Ajx̂(t) + Gj(x̂(t))θ̂j(t) + Bjuj(t) + Kj(y(t) − ŷ(t)) (4.1.3)

ŷ(t) = Cjx̂(t) (4.1.4)

˙̂
θj(t) = ΓjG

⊤
j (x̂(t))Rj(y(t) − ŷ(t)) (4.1.5)

where x̂ (t) , θ̂j (t) , ŷ (t) are the estimates of x (t) , θj(t), y (t). The matrix
Γj = Γ⊤

j > 0.
Similarly as in section 2.2, the observer (4.1.3)-(4.1.5) always diagnoses

θj no matter the mode j is faulty or not. Denote ex(t) = x(t)− x̂(t), ey(t) =

y(t) − ŷ(t), eθ(t) = θj(t) − θ̂j(t).

Lemma 4.1 Under Assumption 4.1, the observer described by (4.1.3)-(4.1.5)
can realize limt→∞ ex = 0 and limt→∞ eθ = 0 if there exist two positive con-
stants ̺ and t0 such that for all t, the following persistent excitation condition
holds: ∫ t+t0

t

Ḡ⊤
j (x(s))Ḡj(x(s))ds ≥ ̺I (4.1.6)
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Proof : The proof can be obtained following the procedure in [80], which
is omitted.  

Lemma 4.1 means that the observer (4.1.3)-(4.1.5) provides both the con-
tinuous state estimates x̂ and the fault estimates θ̂j, which will be used for
controller design.

Definition 4.1 [147]: A system ẋ = f(x, u) is said to be input-to-state
stable (ISS) w.r.t the input u if there exist functions β ∈ KL, α, γ ∈ K∞
such that for any initial x(0), we have

α(|x(t)|) ≤ β(|x(0)|, t) + γ(‖u‖[0,t)), ∀t ≥ 0

Lemma 4.2 [147]: If there exist α1, α2, α3, γ1 ∈ K∞, and a smooth function
V : ℜn → ℜ≥0 such that α1(|x|) ≤ V (x) ≤ α2(|x|), V̇ (x) ≤ −α3(|x|)+γ1(|u|)
then the system ẋ = f(x, u) is ISS w.r.t. u.

Recall that (Aj, Bj) is controllable. Let Wj = W T
j > 0 be associated with

a given symmetric positive definite matrix Hj by the Riccati equation

AT
j Hj + HjAj − 2HjBjB

T
j Hj + Wj = 0 (4.1.7)

Since Gj(x) satisfies |Gj(x)| ≤ Lj|x|. It has been shown in [58] that there
exists ηj > 0 such that

θ⊤HjG
⊤
j (x)Hjx ≤ ηjx

⊤Hjx (4.1.8)

To this end, our fault-tolerant controller is constructed as

uj(x̂) = −BT
j Hjx̂ − B∗

j EjḠj(x̂)(θ̂j − θHj) (4.1.9)

Theorem 4.1 Suppose that Assumption 4.1 is satisfied. Under the feedback
controller (4.1.9), mode j in (4.1.1) is ISS w.r.t. ex and eθ, i.e. there exist
functions β ∈ KL, α, γ1, γ2 ∈ K∞ such that for any initial state x(tk) and
t ≥ tk, we have α(|x(t)|) ≤ β(|x(tk)|, t) + γ1(‖ex‖[tk,t)) + γ2(‖eθ‖[tk,t)) if

−λmin(Wj) + ηj|Hj| < 0 (4.1.10)

Proof : Applying the control (4.1.9) to mode j in (4.1.1) results in the
closed-loop dynamics

ẋ = (Aj − BjB
⊤
j Hj)x + BjB

⊤
j Hjex + Gj(x)θHj

+Ej

(

Ḡj(x)θfj − Ḡj(x̂)θ̂fj

)

(4.1.11)
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where θ̂fj , θ̂j − θHj. Consider a Lyapunov candidate Vj(x) = x⊤Hjx with
Hj > 0 defined by (4.1.7). Its derivative along the system (4.1.11) is

V̇j = −x⊤Wjx + 2x⊤HjBjBj
⊤Hjex + 2x⊤HjG(x)jθHj

+2x⊤HjEj(Ḡj(x)θfj − Ḡj(x̂)θ̂fj) (4.1.12)

It is clear that

Ḡj(x)θfj − Ḡj(x̂)θ̂fj = Ḡj(x̂)(θfj − θ̂fj) + (Ḡj(x) − Ḡj(x̂))θfj (4.1.13)

Substituting (4.1.8) and (4.1.13) into (4.1.12), together with the fact that
there exists an arbitrary ǫ > 0 such that 2ab ≤ ǫa2 + b2/ǫ for two numbers
a, b, yields

V̇j ≤ (−λmin(Wj) + ηj|Hj| + ǫ1 + ǫ2 + ǫ3)|x|2

+
( |HjBjB

T
j Hj|2

ǫ1

+
|HjEjLj|2θ̄2

fj

ǫ2

)

|ex|2 +
|HjEj|2ḡ2

j

ǫ3

|eθ|2(4.1.14)

where ǫ1, ǫ2, ǫ3 > 0, θ̄fj and ḡj denote the norm bounds of θfj and Gj. If the
condition (4.1.10) holds, ǫ1, ǫ2, ǫ3 > 0 can be chosen small enough such that
Vj satisfies Lemma 4.2, the result follows.  

If we can choose Hj and Wj such that (4.1.10) is satisfied, then each single
mode is ISS w.r.t ex and eθ in spite of continuous faults, which, together with
Lemma 4.1, implies that x converges to zero.

4.1.3 FTC for hybrid impulsive systems

In this section, we first consider that all modes are ISS w.r.t. ex and eθ, then
extend the result to the case that some modes may be not stabilized in the
sense of ISS, because (4.1.10) does not hold. We will show that under some
switching conditions, it is not necessary to design the stabilizing controller
for each faulty mode. The stability of the overall HIS is still guaranteed.

Consider the HIS (4.1.1)-(4.1.2). Since all modes are ISS, it can be ob-
tained from Theorem 4.1 that there exist continuously differentiable functions
Vk : ℜn → ℜ≥0, k ∈ Q and γ̄1(·), γ̄2(·) ∈ K∞, such that ∀p ∈ Q

ᾱ1|x|2 ≤ Vp(x) ≤ ᾱ2|x|2 (4.1.15)

V̇p(x) ≤ −λ0Vp(x) + γ̄1(|ex|) + γ̄2(|eθ|) (4.1.16)

where constants ᾱ1, ᾱ2, λ0 > 0.

Assumption 4.2 There exist two numbers ξ1, ξ2 ≥ 0 such that the impulsive
dynamic (4.1.2) with discrete faults satisfies

|x(tk)| ≤ ξ1|x(t−k )| + ξ2|ex(t
−
k )|, k ∈ {1, 2, ...} (4.1.17)
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Remark 4.1 Assumption 4.2 is a mild condition due to the following as-
pects: 1) Since the impulsive dynamics includes x and x̂, the discrete fault
is also a function of x, the form of (4.1.17) appears naturally for the norm
bound of x(tk). 2) The magnitudes of ξ1 and ξ2 are not restricted, and can
be taken arbitrarily large. 3) Inequality (4.1.17) does not restrict the decay
rate of the impulsive dynamics as in [92], [97], and has no relation with the
continuous dynamics.

The FD observer (4.1.3)-(4.1.4) and the controller (4.1.9) are switched
according to the current mode at each switching instant tk. The initial ob-
server state of the current mode is chosen as the previous value x̂(t−k ). The

parameter estimates θ̂σ(tk) are set to θHσ(tk) at tk.

Theorem 4.2 Consider the HIS (4.1.1)-(4.1.2) that satisfies Assumption
4.2, and all modes are ISS w.r.t. ex(t), eθ(t). The HIS is ISS w.r.t. ex(t),
eθ(t) in spite of any fault and any large impulse effect if the switching function
σ has an ADT τa such that

τa >
ln ̟

λ0

(4.1.18)

where ̟ ,
2ᾱ2ξ2

1

ᾱ1
and ̟ ≥ 1.

Proof : The proof can be straightly obtained following the same line as
that of Theorem 2.6, thus it is omitted.  

Roughly speaking, Theorem 4.2 shows that, under a low switching fre-
quency, the overall HIS is ISS w.r.t. ex, eθ.

Remark 4.2 The condition (4.1.18) is similar to the condition in Theorem
2.6 for the non-impulsive systems. However, if ̟ ≤ 1, i.e., the impulsive
dynamics decreases the norm bound of x, then the HIS can switch arbitrarily
without affecting the ISS. This property is unavailable for non-impulsive HS.

Remark 4.3 The discrete fault is hard to be detected since it appears and
vanishes instantaneously, unless the impulsive dynamics satisfies some special
structures such that the fault can be detected rapidly from outputs. Theorem
4.2 shows that the discrete fault detection and diagnosis is not necessary to
keep the HIS ISS.

Now consider the case that some modes are ISS while others may be not.
Define two subsets of Q as Q = Qs ∪Qus, where Qs (Qus) denotes the set of
modes that are (not) ISS.

The following two inequalities are considered instead of inequality (4.1.16)
{

V̇p(x) ≤ −λ0Vp(x) + γ̄1(|ex|) + γ̄2(|eθ|) ∀p ∈ Qs

V̇q(x) ≤ λ1Vq(x) + γ̄1(|ex|) + γ̄2(|eθ|) ∀p ∈ Qus
(4.1.19)
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where 0 < λ1 , maxj∈Qus
{−λmin(Wj) + ηj|Hj|}. In this case, the continuous

flow in mode p ∈ Qus can potentially destroy ISS.
Define Ts (Tus) the dwell period of ISS (non-ISS) modes in [t, T ). Then

we define the double ADT as follows, which generalizes Definition 2.4 (ADT)
and provides two ADT scales for the HIS with both ISS and non-ISS modes.

Definition 4.2 Let N s
σ(T, t) (Nus

σ (T, t)) denote the number of switchings of
σ during the period Ts (Tus), if there exist two positive numbers τs and τus

such that

N s
σ(T, t) ≤ N0 +

Ts

τs

, Nus
σ (T, t) ≤ N0 +

Tus

τus

, ∀T ≥ t ≥ 0 (4.1.20)

where N0 > 0, then τs and τus are called double ADT of σ over (t, T ).

Consider the time interval [0, T ) for T > 0, for the sake of simplicity, in
the following, we divide [0, T ) = [0, T−

c ) ∪ [Tc, T ) and focus on two cases:
Case 1, Tus = Tc, Ts = (T − Tc), i.e., non-ISS modes work in [0, T−

c ) and ISS
ones work in [Tc, T ). Case 2, Ts = Tc, Tus = T − Tc, i.e., ISS modes work in
[0, T−

c ) and non-ISS ones work in [Tc, T ). The results can be extended to the
more general case. It is still assumed that ̟ ≥ 1.

Theorem 4.3 Consider the HIS (4.1.1)-(4.1.2) that satisfies Assumption
4.2. The HIS is ISS w.r.t. ex(t), eθ(t) in spite of any fault and impulse
effect, if the switching function σ has the double ADT τs, τus such that

λ0τs > ln ̟, Tus = Tc, Ts = (T − Tc) > 0 (4.1.21)

λ0τs > max
{

ln ̟, ln ̟
Tus

τus

+ λ1Tus

}

Ts = Tc > 0, Tus = T − Tc(4.1.22)

where T > 0 is an arbitrary time.

Before proving Theorem 4.3, we provide some insight into the conditions
(4.1.21)-(4.1.22): if the system remains in an ISS mode after the last switch-
ing instant, then the HIS with partial ISS modes is ISS under the same
conditions as that with all ISS modes. In contrast, if the system stays in a
non-ISS mode after the last switching instant, then (4.1.22) implies that

• The larger (smaller) λ1 is, the longer (shorter) ADT of ISS modes is
needed.

• The larger (smaller) λ0 is, the shorter (longer) ADT of ISS modes is
needed.
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• With a frequent switching of non-ISS modes, a long ADT of ISS modes
is needed.

• With a long dwell period of non-ISS modes, a long ADT of ISS modes
is needed.

The above analysis reflects the trade-off among the frequency of switching,
and the decreasing rate of Lyapunov functions along the solution of ISS
modes and non-ISS ones. It can be seen that ISS can still be achieved if the
negative effect on the ISS resulting from non-ISS modes can be compensated
by the positive effect of ISS modes.

Proof of Theorem 4.3 : Let T > 0 be an arbitrary instant. The function
W (s) is modified as

W (s) =

{
eλ0sVσ(s)(x(s)) ∀σ(s) ∈ Qs

e−λ1sVσ(s)(x(s)) ∀σ(s) ∈ Qus
(4.1.23)

Then we have Ẇ (s) ≤ eλ0sΦ,∀s ∈ Ts, and Ẇ (s) ≤ e−λ1sΦ,∀s ∈ Tus. Denote
by tus

1 , . . . , tus
Nus

σ
, and ts1, . . . , t

s
Ns

σ
the switching instants on the interval Tus and

Ts respectively.
Case 1 : Tus = Tc, Ts = (T − Tc).

We first consider the time interval [Tc, T ), following the results of theo-
rems 2.6, 4.2 and (4.1.23), one has

W (T−) ≤ ̟Ns
σe(λ1+λ0)T−

c W (T−
c )

+

Ns
σ∑

i=1

(

̟Ns
σ−iχs

i

)

+

Ns
σ∑

j=1

(

̟Ns
σ−jG

ts−j+1

tsj
(λ0)

)

(4.1.24)

where χs
k , 2eλ0ts

k ᾱ2ξ
2
2 |ex(t

s−
k )|2, tsNσ+1 = T . Similarly to the iterative proce-

dure in Theorem 2.6, we can obtain

W (T−
c ) ≤ ̟Nus

σ W (0) +

Nus
σ∑

i=1

(

̟Nus
σ −iχus

i

)

+

Nus
σ∑

j=0

(

̟Nus
σ −jG

tus−
j+1

tus
j

(−λ1)
)

(4.1.25)

where χus
k , 2e−λ1tus

k ᾱ2ξ
2
2 |ex(t

us−
k )|2.

Combining (4.1.24) and (4.1.25) leads to

W (T−) ≤ ̟Ns
σ+Nus

σ e(λ1+λ0)T−
c W (0) + e(λ1+λ0)T−

c

Nus
σ∑

i=1

(

̟Nus
σ +Ns

σ−iχus
i

)
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+e(λ1+λ0)T−
c

Nus
σ∑

j=0

(

̟Nus
σ +Ns

σ−jG
tus−
j+1

tus
j

(−λ1)
)

+

Ns
σ∑

i=1

(

̟Ns
σ−iχs

i

)

+

Ns
σ∑

j=1

(

̟Ns
σ−jG

ts−j+1

tsj
(λ0)

)

(4.1.26)

From the condition (4.1.21), choose a number λ < λ0 − ln ̟
τs

, one has the
following inequalities

̟Ns
σ+Nus

σ e(λ1+λ0)T−
c ≤ ̟2N0eτs(λ0−λ)(T−Tc

τs
)̟

Tc
τus e(λ1+λ0)Tc

≤ ̟2N0e(λ0−λ)T eln ̟ Tc
τus

+(λ1+λ0)Tc

≤ ̟2N0∆(τus, Tc)e
(λ0−λ)T (4.1.27)

where ∆(τus, Tc) , eln ̟ Tc
τus

+(λ1+λ0)Tc is a positive number.

e(λ1+λ0)T−
c ̟Nus

σ +Ns
σ−iχus

i ≤ 2̟2N0∆(τus, Tc)ᾱ2ξ
2
2 |ex(t

−
i )|2eλ0T(4.1.28)

e(λ1+λ0)T−
c ̟Nus

σ +Ns
σ−jG

tus−
j+1

tus
j

(−λ1) ≤ ̟2N0∆(τus, Tc)e
(λ0−λ)T G

tus−
j+1

tus
j

(λ)(4.1.29)

Substituting (4.1.27)-(4.1.29) into (4.1.26), together with the results of the-
orems 2.6 and 4.1, yields

ᾱ1|x(T )|2 ≤ ̟2N0∆(τus, Tc)e
−λT (ᾱ2|x(0)|2 + GT

0 (λ)) + γ̄4(‖ex(t
−
i )‖[t1,tNσ ]

(4.1.30)

where the function γ̄4 ∈ K∞. The ISS result follows from Theorem 2.6.
Case 2 : Ts = Tc, Tus = T − Tc.

Similar to (4.1.26), we can obtain

W (T−) ≤ ̟Ns
σ+Nus

σ e−(λ1+λ0)T−
c W (0) + e−(λ1+λ0)T−

c

Ns
σ∑

i=1

(

̟Nus
σ +Ns

σ−iχi

)

+e(λ1+λ0)T−
c

Ns
σ∑

j=0

(

̟Nus
σ +Ns

σ−jG
ts−j+1

tsj
(λ0)

)

+

Nus
σ∑

i=1

(

̟Nus
σ −iχus

i

)

+

Nus
σ∑

j=1

(

̟Nus
σ −jG

tus−
j+1

tus
j

(−λ1)
)

(4.1.31)
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From the condition (4.1.22), choose a number λ satisfying λ < min
{

λ0 −
ln ̟
τs

, λ0 − ln ̟ Tus

τus·τs
− λ1Tus

τs

}

. The following inequalities can be obtained

̟Ns
σ+Nus

σ e−(λ1+λ0)T−
c ≤ ̟2N0+1eτsλ0(Tc

τs
−1)̟

Tc
τus e−(λ1+λ0)Tc

≤ ̟2N0+1eλ0Ts+ln ̟ Tus
τus

−(λ1+λ0)Ts

≤ ̟2N0+1e−λ1T e−λτs (4.1.32)

Since λ > 0, there always exists a λ∗ > 0 such that λ∗T = λτs.

e−(λ1+λ0)T−
c ̟Nus

σ −iχus
i ≤ 2̟2N0ᾱ2ξ

2
2 |ex(t

−
i )|2eλ0τse−λ1T (4.1.33)

e−(λ1+λ0)T−
c ̟Nus

σ −jG
tus−
j+1

tus
j

(−λ1) ≤ ̟2N0eλ0τse−λ∗T e−λ1T G
tus−
j+1

tus
j

(λ) (4.1.34)

Substituting (4.1.32)-(4.1.34) into (4.1.31), together with the results of the-
orems 2.6, 4.1 and Case 1, yields

ᾱ1|x(T )|2 ≤ ̟2N0+1e−λ∗T ᾱ2|x(0)|2 + γ̄5(‖ex‖[0,T )) + γ̄6(‖eθ‖[0,T ))(4.1.35)

where the functions γ̄5, γ̄6 ∈ K∞. This completes the proof.  

Theorem 4.3 relaxes the condition that all modes are required to be ISS,
the overall HIS in the presence of faults can still be ISS with partial ISS
modes. This result is very useful for stabilization of HIS and non-impulsive
hybrid sytems with unstable modes due to faults.

Example 4.1: An example borrowed from [92] is given to illustrate the
theoretical results. Consider a HIS with two modes as

mode 1:







ẋ1 = 1
8
x1 − x2

ẋ2 = x1 + 1
8
x2 + (sin2 x1 + sin x1)θ1 + u1

y = x1 − x2

mode 2:







ẋ1 = −4x1 + x2

ẋ2 = x1 − 3x2 + (sin2 x1)θ2 + u2

y = x1 − x2

f1,2 :

{
x1 = 2

3
x1 + θd

1,2(x)
x2 = 1

3
x1 + 2

3
x2

, f2,1 :

{
x1 = x1 + θd

2,1(x)
x2 = 1

2
x1 + x2

where θH1 = 1
8
, θH2 = 1, the bounds of faulty parameters are assumed to be

θ̄f1 = 1
8
, θ̄f2 = 1, and θ̄1 = 1

4
, θ̄2 = 2. It can be seen that E1 = E2 = [0 1]⊤,

L1 = 3, L2 = 2, ḡ1 = 2, ḡ2 = 1.
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As for mode 1, the matrix K1 and Q1 are chosen as Q1 =

[
0.9993 −0.5788
−0.5788 1.9412

]

and K1 =

[
−1
−5

]

, we can obtain P1 =

[
1.3564 −0.3376
−0.3376 0.3376

]

and R1 =

−0.3376. Note that Assumption 4.1 holds, which implies that the FD ob-
server works well.

On the other hand, by choosing W1 = I2×2, we obtain the matrix H1 from

(4.1.7) as H1 =

[
2.0048 −0.5003
−0.5003 1.0646

]

. Simple calculation leads to that

η1 = 0.6366 in (4.1.8), it can be checked that −λmin(W1) + η1|H1| = 0.5136,
which means mode 1 is not ISS.

As for mode 2, K2 and Q2 are chosen as Q2 =

[
10.8180 −0.7843
−0.7843 1.0912

]

,

K2 =

[
−1
−5

]

, one has R2 = −0.0341 and P2 =

[
1.7348 −0.0341
−0.0341 0.0682

]

.

Assumption 4.1 also holds.

By choosing W2 = I2×2, we obtain H2 =

[
0.1350 0.0417
0.0417 0.1708

]

, and η2 =

2.8497, it follows that −λmin(W2) + η2|H1| = −0.3572, which implies mode 2
is ISS w.r.t. ex, eθ.

From above calculations, we get ᾱ1 = 0.1076, ᾱ2 = 2.2212 in (4.2.6),
λ0 = 0.3572, λ1 = 0.5136 in (4.1.19).

Now consider the impulsive dynamics, assume θd
1,2 = 1

3
x1, θd

2,1 = x1, we
have ξ1 = 1.8028 in (4.1.17), it follows that ln̟ = 4.8992.

Now we illustrate the results of Theorem 4.3, we consider two cases: the
HIS is initialized at mode 1 then switches to mode 2, and the converse. For
the former case, the HIS is ended at ISS mode 2, from the condition (4.1.21),
if the dwell time of mode 2 is larger than ln ̟

λ0
= 13.6876s, then HIS is ISS

w.r.t. ex, eθ. For the latter case, the HIS is ended at non-ISS mode 1,
provided that the dwell time of mode 1 is 10s, i.e., Tus = 10s, from the
condition (4.1.22), if the dwell time of mode 2 is larger than 28.0751s, then
HIS is still ISS w.r.t. ex, eθ.

4.2 Stochastic switching case

In this section, we address the stability issue of a class of stochastic HS
called switching diffusion processes (SDP) where each mode is represented
by a stochastic differential equation, the mode switching is governed by a
Markov process [125], [105]. This work is motivated by the fact that SDP
often models stochastic systems with faults, since SDP model can represent
the fault process in different state spaces such that the consideration of FD
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and FTC is natural [105].
The main idea is to transfer the FTC problem of a stochastic system into

the stability problem of a SDP. It will be shown that the fault tolerability of
a stochastic system relies on the trade-off among the fault occurrence tran-
sition rate, the frequency of switching, and the decreasing rate of Lyapunov
functions along the solution of the SDP.

4.2.1 Preliminaries

The SDP takes the form

dx(t) = fσ(t)(x(t), u(t))dt + gσ(t)(x(t), u(t))dW (t) (4.2.1)

where the state x ∈ ℜn, the input u ∈ ℜm. W is an r-dimensional standard
Brownian motion. Both fσ and gσ satisfy the Lipschitz and the linear growth
conditions which guarantee that each mode has a unique solution for any
initial state.

Denote P(·) as the probability, whereas E[·] represents the expectation.
Let (Ω,F ,P) be a complete probability space of the fault occurrence, the
switching function σ(t) is a right-continuous Markov chain on the probability
space taking values in a finite state space Q = {1, 2, ..., N} with generator
matrix Γ = (ρij)N×N given by

P{σ(t + ∆) = j|σ(t) = i} =

{
ρij∆ + o(∆) if i 6= j
1 + ρii∆ + o(∆) if i = j

(4.2.2)

where 0 ≤ ρij < 1 represents the fault occurrence rate from mode i to mode
j if i 6= j, and ρii = −∑

j 6=i ρij. ∆ > 0 is the infinitesimal transition time
interval and o(∆) is composed of infinitesimal terms of order higher than
that of ∆ > 0. We assume that the Markov chain σ is independent of the
Brownian motion W .

For any given Vq(x) : ℜn → ℜ+ ∈ C2 associated with the mode q of the
system (4.2.1), we define the differential operator as

LVq(x) =
∂Vq(x)

∂x
fq(x, u) +

1

2
Tr[g⊤

q (x, u)
∂2Vq(x)

∂x2
gq(x, u)] (4.2.3)

We also define the following generator

LVq(x) = LVq(x) +
N∑

j=1

ρqjVj(x) (4.2.4)
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According to the generalized Itô formula [144], one has

E[Vσ(t2)(x(t2))] = E[Vσ(t1)(x(t1))] + E
[ ∫ t2

t1

LVσ(t)(x(t))dt
]

(4.2.5)

for any stopping times t1, t2 as long as the involved integrals exist and are
finite. In the following, we assume that the integrals in (4.2.5) always exist
and are finite for any 0 ≤ t1 ≤ t2 < ∞.

Definition 4.3 The system (4.2.1) is said to be input-to-state stable (ISS)
w.r.t the input u if there exist functions β ∈ KL, α, γ ∈ K∞ such that for
any initial x(0), we have

E[α(|x(t)|)] ≤ β(|x(0)|, t) + γ(‖u‖[0,t)), ∀t ≥ 0

The difference of Definition 4.3 from usual ISS formula (Definition 4.1)
is the introduction of the expectation. It has been proven in [98] that the
following ISS property of the single stochastic system holds.

Lemma 4.3 The system dx = f(x, u)dt+g(x, u)dW is ISS w.r.t. u, if there
exist α1, α2, α3, γ1 ∈ K∞, and a smooth function V (x) ∈ C2(ℜn;ℜ+) such
that α1(|x|) ≤ V (x) ≤ α2(|x|), LV (x) ≤ −α3(|x|) + γ1(|u|).

In the following, a series of sufficient conditions of fault tolerance are
derived such that the SDP can be stabilized in the sense of ISS in general
cases:

1) where each individual mode is ISS, i.e. the stochastic system is ISS
separately in the healthy situation and in the faulty situations.

2) where some modes are ISS, while others are not ISS. This comes from
the fact that some modes representing the faulty situations may be not
ISS.

3) where no mode is ISS. This is the worst case where the stochastic
system is not ISS separately whatever it is healthy or not.

4.2.2 Fault tolerance analysis

We shall first establish the general fault tolerability conditions.

Theorem 4.4 The SDP (4.2.1) is ISS w.r.t. u if there exist α1, α2, χ ∈ K∞,
ω > 0 and smooth functions Vk ∈ C2(ℜn;ℜ+) k ∈ Q such that ∀q ∈ Q

α1(|x|) ≤ Vq(x) ≤ α2(|x|) (4.2.6)

LVq(x) ≤ −ωVq(x) + χ(|u|) (4.2.7)
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where the generator L is defined in (4.2.3)-(4.2.4).

Proof : Since any t is supposed to be a stop time, applying the generalized
Itô formula derives

E[Vσ(t)(x(t))] = E[Vσ(0)(x(0))] + E
[ ∫ t

0

(

ωVσ(s)(x(s)) + LVσ(s)(x(s))
)

ds
]

We further have

E[eωtVσ(t)(x(t))] = E[Vσ(0)(x(0))] + E
[ ∫ t

0

eωs
(

ωVσ(s)(x(s)) + LVσ(s)(x(s))
)

ds
]

≤ α2(|x(0)|) + E
[ ∫ t

0

eωs
(

ωVσ(s)(x(s)) − ωVσ(s)(x(s)) + χ(|u|)
)

ds
]

≤ α2(|x(0)|) + E
[ ∫ t

0

eωs
(

χ(|u|)
)

ds
]

≤ α2(|x(0)|) +
1

ω
(eωt − 1) sup

τ∈[0,t)

{χ(|u|)}

Consequently, we obtain

E[α1(|x(t)|)] ≤ e−ωtα2(|x(0)|) +
1

ω
sup

τ∈[0,t)

{χ(|u|)

This completes the proof.  

It is interesting to analyze the condition (4.2.7). It follows from the
definition of L in (4.2.4) that if there is only one mode in the system or there
is a common V (x) for all modes, then LVq(x) = LVq(x). In these two cases,
Theorem 4.4 and Lemma 4.3 are equivalent. Thus we obtain the property

• If there is a common ISS-Lyapunov function for the normal and all
faulty modes, then ISS of each individual mode implies ISS of the
overall stochastic system.

This property is very useful in the practical situation, if we find that
the healthy and faulty mode share the same ISS-Lyapunov function, then
what we need to do is just to preserve ISS of each individual mode without
consideration for the transient behavior.

We continue to observe (4.2.4), it is clear that

N∑

j=1

ρqjVj(x) =
∑

j 6=q

ρqjVj(x) − |ρqq|Vq(x)

we further conclude from (4.2.7) that
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• If
∑

j 6=q ρqjVj(x) ≥ |ρqq|Vq(x), then ISS of SDP implies the ISS of mode
q.

• If
∑

j 6=q ρqjVj(x) < |ρqq|Vq(x), then ISS of SDP can be achieved even
mode q is non ISS.

• If
∑

j 6=q ρqjVj(x) < |ρqq|Vq(x), ∀q ∈ Q, then ISS of SDP can be achieved
without any ISS mode.

The above three properties reflect to some extents the effect of fault occur-
rence transition rate on the fault tolerance of the stochastic system. However,
these properties are not easy to be verified since Vq(x) is not unique.

Theorem 4.4 implicitly quantifies the trade-off between frequency of switch-
ing/dwell time and rate of decrease of the Lyapunov function. In order to
analyze more precisely the relations among these factors to achieve the ISS,
we will adopt the method in determined hybrid systems in the following dis-
cussions. The three cases where all modes are ISS, only some modes are ISS
and no mode is ISS, will be successively studied.

Consider the SDP (4.2.1) where each mode is ISS. More formally, suppose
that there exist α1, α2, χ ∈ K∞, λ0 > 0, µ > 1 and smooth functions
Vk ∈ C2(ℜn;ℜ+) k ∈ Q, such that ∀p, q ∈ Q

α1(|x|) ≤ Vq(x) ≤ α2(|x|) (4.2.8)

LVq(x) ≤ −λ0Vq(x) + χ(|u|) (4.2.9)

Vp(x) ≤ µVq(x) (4.2.10)

Theorem 4.5 The SDP (4.2.1) satisfying (4.2.8)-(4.2.10) is ISS w.r.t. u if

µ <
λ̃

λ̄
, with λ̄ , max{|ρii||i ∈ Q}, λ̃ , max{ρij|i, j ∈ Q} (4.2.11)

where µ is defined in (4.2.10), ρij represents the fault occurrence rate defined
in (4.2.2).

In order to prove Theorem 4.5, the following lemma is needed.

Lemma 4.4 [25] Suppose that σ is a Markov chain satisfying (4.2.2). It
holds that ∀t ≥ 0, ∀k ∈ N

P(Nσ(t) = k) ≤ e−λ̃t(λ̄t)k

k!

where λ̃ and λ̄ are defined in (4.2.11). Nσ(t) denotes the number of switchings
of σ over the interval [0, t) as defined in Definition 2.4.
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Proof of Theorem 4.5 : Let T > 0 be an arbitrary time. Denote by
τ1, . . . , τNσ(T,0) the switching instants on the interval [0, T ), where Nσ(T, 0) is

defined in (4.2.14). Denote Gb
a(λ) =

∫ b

a
e−λ(b−s)χ(|u|)ds. Since d

dt
E[V (x)] =

E[LV (x)], it follows from (4.2.9) and (4.2.10) that for t ∈ [τi+1, τi+2)

E[Vσ(τi+1)(x(t))] ≤ E[Vσ(τi+1)(x(τi+1))]e
−λ0(t−τi+1) + E[Gt

τi+1
(λ0)]

≤ E[µVσ(τi)(x(τi+1))e
−λ0(t−τi+1)] + E[Gt

τi+1
(λ0)]

≤ E[µVσ(τi)(x(τi))e
−λ0(t−τi)]

+E[µe−λ0(t−τi+1)Gτi+1
τi

(λ0) + Gt
τi+1

(λ0)]

≤ E[µ2Vσ(τi−1)(x(τi−1))e
−λ0(t−τi−1)] + E[µ2e−λ0(t−τi)Gτi

τi−1
(λ0)]

+E[µe−λ0(t−τi+1)Gτi+1
τi

(λ0) + Gt
τi+1

(λ0)]

...

...

Denote Nσ , Nσ(T, 0), following the above iterative procedure, we finally
obtain

E[Vσ(T )x(T )] ≤ E[µNσ ]e−λ0T Vσ(0)(x(0)) + E[GT
τNσ

(λ0)]

+E
[ Nσ−1∑

j=0

µNσ−je−λ0(T−τj+1)Gτj+1
τj

(λ0)
]

(4.2.12)

Based on Lemma 4.4, one has

E[µNσ ] =
∞∑

k=0

µkP(Nσ = k) ≤
∞∑

k=0

µk e−λ̃T (λ̄T )k

k!
= e(µλ̄−λ̃)T (4.2.13)

Under the condition (4.2.11), substituting (4.2.13) into (4.2.12) leads to

E[Vσ(T )x(T )] ≤ e−λ0T Vσ(0)(x(0)) + E
[ ∫ T

0

χ(|u|)ds
]

The result follows directly from the proof of Theorem 4.4.  

Roughly speaking, if each mode is ISS, and the fault occurrence transi-
tion rate max{ρij} is large enough, then the ISS of the stochastic system is
guaranteed. It can be seen from the proof of Theorem 4.5 that, the condition
(4.2.11) can be removed if there is only one mode in the system or there is a
common V (x) for all modes. This is consistent with Theorem 4.4.

Theorem 4.5 completely depends on the fault occurrence transition rate
without consideration of the frequency of switching and the decreasing rate of
ISS-Lyapunov functions. We shall relax the condition (4.2.11) by introducing
the concept of stochastic average dwell time defined as follows.
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Definition 4.4 If there exist a series positive numbers τk ∀k ∈ N∪{0} such
that

k ≤ N0 +
T − t

τk

, ∀T ≥ t ≥ 0 (4.2.14)

where N0 > 0 denotes the chattering bound, then Θ = {τk, k ∈ N ∪ {0}} is
called the set of stochastic average dwell time (sADT) of σ over [t, T ).

Definition 4.4 extends the ADT (see Definition 2.4 in Chapter 2.2) to
the stochastic case, which means that for each possible switching number k,
there may exist some switchings separated by less than τk, but the average
dwell period among switchings is not less than τk.

Theorem 4.6 The SDP (4.2.1) satisfying (4.2.8)-(4.2.10) is ISS w.r.t. u if
∀k ∈ N ∪ {0}

µ < min
{λ0 + λ̃

λ̄
, eλ0τk

}

(4.2.15)

λ̄ ≤ λ̃ (4.2.16)

where τk ∈ Θ, Θ is the set of sADT defined in Definition 4.4, λ̃ and λ̄ are
defined in (4.2.11).

Proof : Following the proof of Theorem 4.5, inequality (4.2.12) is rewritten
as

E[Vσ(T )x(T )] ≤ E[µNσ ]e−λ0T Vσ(0)(x(0))

+
Nσ−1∑

j=0

E
[

µNσ−je−λ0(T−τj+1)Gτj+1
τj

(λ0)
]

+ E[GT
τNσ

(λ0)] (4.2.17)

It follows from (4.2.15), (4.2.16) and Lemma 4.4 that

E[µNσ ] ≤ e(µλ̄−λ̃)T ≤ eλ0T (4.2.18)

E
[

µNσ−je−λ0(T−τj+1)
]

=
∞∑

k=0

P(Nσ = k)
(

µk−je−λ0(T−τj+1)
)

≤
∞∑

k=0

P(Nσ = k)
(

µ
N0+ T

τk
−j+1−1

e−λ0(T−τj+1)
)

≤
∞∑

k=0

P(Nσ = k)
(

µ1+N0e
τkλ0( T

τk
−j−1)

e−λ0(T−τj+1)
)
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≤
∞∑

k=0

P(Nσ = k)
(

µ1+N0eλ0(T−τj+1)e−λ0(T−τj+1)
)

≤ µ1+N0

∞∑

k=0

e−λ̃T (λ̄T )k

k!
≤ µ1+N0 (4.2.19)

Substituting (4.2.18), (4.2.19) into (4.2.17), we have

E[Vσ(T )x(T )] ≤ Vσ(0)(x(0)) + µ1+N0E
[ ∫ T

0

χ(|u|)ds]

The result follows.  

Theorem 4.6 shows that, if the ADT is large enough, i.e., the switching is
slow averagely, the stochastic system does not change too frequently among
healthy and faulty modes, then a less restrictive condition on transition rates
is required than (4.2.11) to achieve the ISS of the SDP.

Remark 4.4 Generally, the condition (4.2.15) can not be used to verify a
priori whether the system is ISS. Since the switching of SDP (i.e. the instant
of fault occurrence ) is random, Nσ(T, t) is not determined at each time T , a
series of ADT have to be provided to include all possible switching numbers.
However, inequality (4.2.15) is very useful to check on-line the ISS of the
system in the current situation.

Now we consider the case that some modes of SDP are ISS while others
may be not. This work is motivated by the fact that some modes that
represent the faulty situations are often not ISS.

Define two subsets of Q as Q = Qs ∪Qus, where Qs (Qus) denotes the set
of modes that are (not) ISS.

Consequently, the inequality (4.2.9) is modified as

LVq(x) ≤ −λ0Vq(x) + χ(|u|), ∀q ∈ Qs (4.2.20)

LVq(x) ≤ λ1Vq(x) + χ(|u|), ∀q ∈ Qus (4.2.21)

where λ1 > 0. In this case, the continuous flow in mode q ∈ Qus can
potentially destroy ISS.

Similarly to Chapter 4.1, divide the time interval [t, T ) = Ts ∪Tus, where
Ts (Tus) denotes the dwell period of ISS (non-ISS) modes in [t, T ). Then we
define the double sADT, which generalizes Definition 4.4 and provides two
ADT scales for the SDP with both ISS and non-ISS modes.

Definition 4.5 Let N s
σ(T, t) = ε1, ε1 ∈ N ∪ {0} (Nus

σ (T, t) = ε2, ε2 ∈ N ∪
{0}) denote the number of switchings of σ during the period Ts (Tus). If there
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exists a series of positive numbers τ s
ε1

∀ε1 ∈ N ∪ {0}, and τus
ε2

∀ε2 ∈ N ∪ {0}
such that

ε1 ≤ N0 +
Ts

τ s
ε1

, ε2 ≤ N0 +
Tus

τus
ε2

, ∀T ≥ t ≥ 0 (4.2.22)

where N0 > 0, then Θd = Θs ∪ Θus is called the set of double stochastic
average dwell time of σ over [t, T ), where Θs = {τ s

ε1
, ε1 ∈ N ∪ {0}}, and

Θus = {τ s
ε2

, ε2 ∈ N ∪ {0}}.
Consider the time interval [0, T ) for arbitrary time T > 0. For the sake

of simplicity, in the following, we divide [0, T ) = [0, T−
c ) ∪ [Tc, T ) and focus

on two cases: Case 1: Tus = T−
c , Ts = T − Tc, i.e., non-ISS modes work in

[0, T−
c ) and ISS ones work in [Tc, T ). Case 2: Ts = T−

c , Tus = T − Tc, i.e.,
ISS modes work in [0, T−

c ) and non-ISS ones work in [Tc, T ).

Theorem 4.7 The SDP (4.2.1) satisfying (4.2.8),(4.2.10),(4.2.20)-(4.2.21)
is ISS w.r.t. u if ∀ε1, ε2 ∈ N ∪ {0}

{

µ < min
{

λ0+λ̃
λ̄

, eλ0τs
ε1

}

λ̄ ≤ λ̃
for Case 1 (4.2.23)







µ < min
{

λ0+λ̃
λ̄

, eλ0τs
ε1 , e

(λ0τs
ε1

−λ1Tus)τus
ε2

Tus

}

λ̄ ≤ λ̃
for Case 2 (4.2.24)

where λ̃ and λ̄ are defined in (4.2.11).

Proof of Theorem 4.7 : Denote by τus
1 , . . . , τus

Nus
σ

, and τ s
1 , . . . , τ s

Ns
σ

the switch-
ing instants on the interval Tus and Ts respectively.
Case 1 : Tus = [0, T−

c ), Ts = [Tc, T ).
During the time interval [Tc, T ), following the proof of Theorem 4.5, one

has

E[Vσ(T )x(T )] ≤ E[µNs
σe−λ0(T−Tc)Vσ(T−

c )(x(T−
c ))]

+E
[ Ns

σ−1
∑

j=0

µNs
σ−je−λ0(T−τs

j+1)G
τs
j+1

τs
j

(λ0)
]

+ E[GT
τs
Ns

σ

(λ0)] (4.2.25)

Similarly, during the time interval [0, T−
c ), we obtain

E[Vσ(T−
c )x(T−

c )] ≤ E[µNus
σ eλ1TcVσ(0)(x(0))] + E[GTc

τus
Nus

σ

(−λ1)]

+E
[ Nus

σ −1
∑

j=0

µNus
σ −jeλ1(Tc−τus

j+1)G
τus
j+1

τus
j

(−λ1)
]

(4.2.26)
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Combining (4.2.25) and (4.2.26) leads to

E[Vσ(T )x(T )] ≤ E[µNs
σ+Nus

σ e−λ0T+(λ0+λ1)TcVσ(0)(x(0))]

+E
[ Nus

σ −1
∑

j=0

µNs
σ+Nus

σ −je−λ0T+(λ0+λ1)Tc−λ1τus
j+1G

τus
j+1

τus
j

(−λ1)
]

+E[µNs
σe−λ0(T−Tc)GTc

τus
Nus

σ

(−λ1)]

+E
[ Ns

σ−1
∑

j=0

µNs
σ−je−λ0(T−τs

j+1)G
τs
j+1

τs
j

(λ0)
]

+ E[GT
τs
Ns

σ

(λ0)] (4.2.27)

Under condition (4.2.23), it follows that E[µNs
σ+Nus

σ ] ≤ eλ0T , and

E[µNs
σ ] =

∞∑

ε1=0

µε1P(N s
σ(T, Tc) = ε1)

≤
∞∑

ε1=0

µε1
e−λ̃(T−Tc)(λ̄(T − Tc))

ε1

ε1!
= e(µλ̄−λ̃)(T−Tc) ≤ eλ0(T−Tc)

On the other hand, G
τus
j+1

τus
j

(−λ1) ≤ e(λ1+λ0)τus
j+1G

τus
j+1

τus
j

(λ0). Consequently, we get

E[Vσ(T )x(T )] ≤ e(λ0+λ1)TcVσ(0)(x(0)) + e(λ0+λ1)TcE
[ Nus

σ −1
∑

j=0

G
τus
j+1

τus
j

(λ0)
]

+e(λ0+λ1)TcE
[

GTc

τus
Nus

σ

(λ0)
]

+ µ1+N0E
[ Ns

σ−1
∑

j=0

G
τs
j+1

τs
j

(λ0)
]

+E[GT
τs
Ns

σ

(λ0)]

Define Υ , max{e(λ0+λ1)Tc , µ1+N0}, we further have

E[Vσ(T )x(T )] ≤ ΥVσ(0)(x(0)) + ΥE
[ ∫ T

0

χ(|u|)ds
]

The ISS result follows.
Case 2 : Ts = [0, T−

c ), Tus = [Tc, T ).
Similarly to (4.2.27), we can obtain

E[Vσ(T )x(T )] ≤ E[µNs
σ+Nus

σ eλ1T−(λ0+λ1)TcVσ(0)(x(0))]

+E
[ Ns

σ−1
∑

j=0

µNs
σ+Nus

σ −jeλ1T−(λ0+λ1)Tc+λ0τs
j+1G

τs
j+1

τs
j

(λ0)
]
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+E[µNus
σ eλ1(T−Tc)GTc

τs
Ns

σ

(λ0)] + E[GT
τus
Nus

σ

(−λ1)]

+E
[ Nus

σ −1
∑

j=0

µNus
σ −jeλ1(T−τus

j+1)G
τus
j+1

τus
j

(−λ1)
]

(4.2.28)

From the condition (4.2.24), the following inequalities can be obtained

µε1+ε2eλ1T−(λ0+λ1)Tc ≤ µ2N0+1e
τs
ε1

λ0( Tc
τs
ε1

−1)
µ

T−Tc
τus
ε2 eλ1T−(λ0+λ1)Tc

≤ µ2N0+1e
−τs

ε1
λ0+ln µ Tus

τus
ε2

+λ1Tus

≤ µ2N0+1 (4.2.29)

µε1+ε2−jeλ1T−(λ0+λ1)Tc+λ0τs
j+1 ≤ µ2N0+1e

τs
ε1

λ0( Tc
τs
ε1

−j−1)
µ

T−Tc
τus
ε2 eλ1T−(λ0+λ1)Tc+λ0τs

j+1

≤ µ2N0+1e
−τs

ε1
λ0+ln µ Tus

τus
ε2

+λ1Tus

≤ µ2N0+1 (4.2.30)

Since λ0 > 0, there always exists a λ∗ > 0 such that λ∗Tc = λ0τ
s
ε1

. It holds
that

µε2eλ1(T−Tc) = eλ∗Tce−λ0τs
ε1µε2eλ1(T−Tc) ≤ eλ∗TcµN0 (4.2.31)

µε2−jeλ1(T−τus
j+1) ≤ µε2eλ1T e−λ1τus

j+1 ≤ e(λ∗+λ1)TcµN0e−λ1τus
j+1 (4.2.32)

Let us come back to inequality (4.2.28), under (4.2.29)-(4.2.32), we further
have

E[Vσ(T )x(T )] ≤ µ2N0+1

∞∑

ε1=0

∞∑

ε2=0

P(N s
σ = ε1, N

us
σ = ε2)

·
(

Vσ(0)(x(0)) + e(λ∗+λ)Tc

Nus
σ −1
∑

j=0

∫ τus
j+1

τus
j

χ(|u|)ds

+eλ∗TcGTc

τs
Ns

σ

(λ0) +

Ns
σ−1

∑

j=0

G
τs
j+1

τs
j

(λ0) + e(λ∗+λ1)Tc

∫ T

τus
Nus

σ

χ(|u|)ds

)

≤ µ2N0+1Vσ(0)(x(0)) + µ2N0+1e(λ∗+λ1)Tc

∫ T

0

χ(|u|)ds

This completes the proof.  

Theorem 4.7 shows explicitly the balance of dwell periods between ISS
modes and non ISS ones that is needed for ISS of overall SDP.
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Remark 4.5 It can be seen that even the stochastic system is not separately
ISS in faulty situations, the overall system process may be still ISS. This
means that it is not necessary to design the FTC law to guarantee the stability
of each system mode as in [105], less control effort is required. Compared with
the general FTC methods [16], our results imply that we do not always have
to stabilize the system in the post-fault situation.

Finally, let us consider the worst case where no mode is ISS. The inequal-
ity (4.2.9) is changed into

LVq(x) ≤ λ1Vq(x) + χ(|u|), ∀q ∈ Q (4.2.33)

where λ1 > 0. We have the following result:

Theorem 4.8 The SDP (4.2.1) satisfying (4.2.8),(4.2.10) and (4.2.33) is
ISS w.r.t. u if

µλ̄ + λ1 < λ̃ (4.2.34)

where λ̃ and λ̄ are defined in (4.2.11), λ1 is given in (4.2.33).

Proof : Following the similar procedure in the proof of Theorem 4.5 yields

E[Vσ(T )x(T )] ≤ E[µNσeλ1T Vσ(0)(x(0))]+E
[ Nσ−1∑

j=0

µNσ−jeλ1(T−τj+1)Gτj+1
τj

+Gt
τNσ

]

(4.2.35)
Under condition (4.2.34), it holds that

E[µNσ ] ≤ e(µλ̄−λ̃)T ≤ e−λ1T (4.2.36)

Equality (4.2.36), together with (4.2.35), leads to the result.  

Theorem 4.8 shows that if the fault occurrence transition rate max{ρij}
is larger than that of any previous cases (All ISS modes, partial ISS modes),
the ISS of SDP is achieved without any ISS mode. This result implies that,
under the condition (4.2.34), we do not need to design the stabilizing con-
troller even the stochastic system is not stable separately in the healthy and
faulty situations.

Example 4.2 : A fault-prone manufacturing system originated from [51] is
a good example to illustrate our results. Consider a machine producing a
single commodity, the SDP model takes the form

dx(t) = (fσ(t)(x(t)) − d)dt + g(x)dW (t) (4.2.37)
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where the state x(t) ∈ ℜ denotes the inventory, d ≥ 0 is a constant represent-
ing the demand rate, which is regarded as the input. W is a one-dimensional
Brownian motion independent of σ(t). fσ(x) is the state feedback control
policy which is the production effort. The term g(x)dW is often interpreted
as ”sales return”, ”inventory spoilage”, or ”sudden demand fluctuations”.

Two modes are considered, σ(t) = 1 or 2, depending on whether the man-
ufacturing system is in the functional state or the actuator faulty situation re-
spectively. σ(t) is modeled as a Markov chain with generator −ρ11 = ρ12 > 0
and −ρ22 = ρ21 > 0. This means λ̄ = λ̃.

In mode 1, f1(x) = −x, g(x) = 1
2
x, this means that the backlogged

demand is required in the healthy situation. In mode 2, the actuator fault
occurs due to the abnormal behavior of the machine’s production scheme.
Here our objective is to check whether the overall system process is ISS
w.r.t. the demand rate d in spite of the faults.

Two faulty cases are considered.
Faulty case 1 : f2(x) = −2x.

Choosing V1(x) = V2(x) = x2 leads to

LV1(x) = LV1(x) = −2x2 − 2xd +
1

4
x2

LV2(x) = LV2(x) = −4x2 − 4xd +
1

4
x2

The condition of Theorem 4.4 is satisfied, so the SDP is ISS. On the other
hand, both two modes are ISS and share the same ISS-Lyapunov function,
Theorem 4.5 could also be used to verify the ISS property. The condition
of Theorem 4.6 also holds, in this case, we do not have to reconfigure the
controller after the fault occurs, and the frequency of the fault occurrence
also has no effect on the ISS of the system. In the simulation, suppose that
−ρ11 = ρ12 = 0.5 and −ρ22 = ρ21 = 0.8, d = 1. Fig. 4.1 illustrates the state
trajectory, from which we can see that the system is always ISS with respect
to the demand rate d in spite of the fault.
Faulty case 2 : f2(x) = 2x.

We can get

LV2(x) = LV2(x) = 4x2 − 4xd +
1

4
x2

Theorem 4.4 is unavailable now. It can be seen that the faulty mode may
become non-ISS. Choose λ0 = 1.5, λ1 = 4.5 that satisfy (4.2.20) and (4.2.21).
It follows from Theorem 4.7 that, if the system is ended at mode 1, i.e. the
machine finishes the work normally, then ISS is achieved as shown in Fig.
4.2(a). If the machine stops at the faulty mode (mode 2), it is obtained from
(4.2.24) that if τ s ≥ 3Tus, i.e. the dwell period of the healthy mode is large
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Figure 4.1: State trajectories in faulty case 1

enough and the time that the machine works in faulty mode is small enough,
then ISS of the overall system process is still guaranteed. Suppose that the
system stops at t = 47s, Fig. 4.2(b) shows the trajectories in this case, the
system is stable in the sense of ISS.
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Figure 4.2: State trajectories in faulty case 2

4.3 Conclusion

The main contribution of this chapter is the generalization of ISS theory
to hybrid impulsive systems and stochastic hybrid systems. For a hybrid
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impulsive system, it has been shown that ISS is achieved in spite of partial
non-ISS modes. Whereas for a stochastic hybrid system, ISS is maintained
even no mode is ISS. The obtained results are useful for stabilization of HS
with unstable faulty modes.
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Chapter 5

Hybrid systems with discrete specifi-
cations

In chapters 2-4, FTC design methods for several different classes of HS have
been discussed from the stability point of view (i.e., continuous states are
globally convergent whatever mode is activated). These methods are based
on the continuous system theory, and limited for more general discrete faults,
especially, when certain discrete specifications are required.

This chapter considers HS with certain discrete specifications, i.e., it has
to follow some specifications imposed on the discrete part of the system.
A discrete fault would violate these specifications. As for such fault, one
natural idea is to reconfigure the discrete part after faults occur, which can be
achieved from discrete event system (DES) point of view. However, compared
with pure DES, continuous system behaviors must be taken into account in
HS. Two major discrete event system models, namely finite state machine
and Petri net are used respectively.
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5.1 Qualitative FTC based on finite state machine

In this section, we consider a class of HS with certain discrete specifications,
i.e., it has to follow the desired switching sequence and finally reach the target
mode. A discrete fault would change the sequence and violate these specifi-
cations. Fault tolerability properties of such HS is analyzed in a qualitative
manner.

5.1.1 Problem formulation

As for the considered discrete fault, one natural idea is to reconfigure the
switching sequence after faults occur to maintain the specification, which
could be achieved by the discrete event system (DES) supervisory control
theory [128]. However, compared with pure DES, continuous dynamics have
to be considered for HS, the reachability must be checked after reconfigura-
tion of the sequence. It has been shown that checking reachability for very
simple class of HS is a difficult work, and the accurate mathematic model of
the system must be known. In fact, the hybrid models of physical environ-
ment in real world are usually too large and complicated. How to link the
continuous and discrete parts for the purpose of fault tolerance analysis is
one challenge that is to be faced in this work.

Abstraction is a technique to reduce the complexity of the system design,
while preserving some of its relevant behaviors, so that the simplified system
is more accessible to analysis tools [3]. Such method leads to a lower compu-
tation level than that for the original system. Qualitative abstraction (QA)
originates from the qualitative theory that has been shown to be effective
tools to analyze system behavior in the absence of complete knowledge [85].
Several results have been reported about QA for HS, e.g., [11, 157], most of
these works focus on the linear HS. In [14], a qualitative description of the
nonlinear systems’ behavior is proposed while HS are not considered.

Above results of QA inspire us to link qualitatively the continuous and
discrete parts of HS. The novelty of this work is that a new clue to solve the
FTC problem of HS is provided, that is in a qualitative manner and from
discrete event system (DES) point of view.

A hierarchical model is developed to describe the HS. Such model not
only represents the discrete-event dynamics that is appropriate to find the
supervisor, but also provides absolute temporal information. Moreover, the
discrete and continuous parts are linked qualitatively such that the reacha-
bility and fault tolerability properties of HS can be analyzed.

The proposed model consists of four parts from bottom to top: hybrid
automaton, qualitative abstraction, discrete abstraction, and supervisor as
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in Fig.5.1. The hybrid automaton models the original HS; QA is a finite
state machine which captures the information of the time derivatives and
the positions of continuous states, and describes the qualitative behavior of
HS based on the incomplete system’s knowledge. QA is a link between con-
tinuous and discrete part of HS, the reachability can be analyzed effectively
in this level; Discrete abstraction is also a finite state machine which repre-
sents the discrete modes and the switchings among them, while the behavior
of continuous modes is removed. Fault tolerance is discussed in this level us-
ing DES supervisory control theory [128]; Supervisor determines whether the
controllable switching between modes is activated or not, and reconfigures
the switching sequence after faults occur.

Plant

Hybrid Automaton

Qualitative Abstraction

Discrete Abstraction
Supervisor

Figure 5.1: The hierarchical FTC model

It will be shown that under this model, it is easy to check if the switch-
ing sequence design based on discrete abstraction is available for original
HS, the reachability and fault tolerability properties of HS can be analyzed
systematically. The main contributions of this work are twofold:

1. A qualitative description is derived for a class of HS. Such qualitative
model links well the continuous and discrete parts of HS. Reachability
can be analyzed in a qualitative manner.

2. Fault tolerance of HS is discussed from DES point of view, which is
effective for HS with the desired discrete specification. The intelligent
supervisor is less conservative than those robust ones.

It should be pointed out that this model is similar to that in [102] and
[103]. However, in [102], the Petri net is used to model the abstraction
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of the system. Our work utilizes the finite state automata which is more
suitable for fault tolerance analysis of discrete fault. In [103], the objective
is to handle a kind of continuous systems with the discrete inputs. The
qualitative abstraction in [103] relies on the behavior theory which is also
quite different from ours.

The HS is modeled by a hybrid automaton H as Definition 1.1 where the
outputs and continuous faults are not involved. The trajectories of H that
start from some initial state (q0, x0) ∈ Init consist of a sequence of continuous
flows and discrete transitions. When the discrete state q is maintained, the
continuous state x evolves according to the differential equation ẋ = f q(x),
as long as x ∈ Inv(q). After x reaches the guard set, the system would switch
into next mode under discrete controller v.

As mentioned before, under certain discrete specifications, the HS has to
follow a marked switching sequence and reach the target mode to complete
the task as shown in Fig.5.2 (which describes a system with 2 continuous
states and 4 modes).

Mode 1

Mode 2

Mode 3

Mode 4

Discrete state trajectory

Continuous state trajectory

Figure 5.2: Illustration of the system trajectory

The considered discrete faults Fd affect the discrete transitions E : V ×
Fd → Q × Q, that forces the system to switch into a mode which is not the
prescribed successor. such faulty switching is not affected by the discrete
controller V , this implies that discrete faults are uncontrollable switchings
that change the prescribed sequence.

The fault tolerance problem can be described as: make the HS reach the
target mode according to discrete specifications in spite of discrete faults. We
will analyze detailed procedures of the hierarchical model (Fig.5.1) in the
following sections.
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5.1.2 Qualitative abstraction for nonlinear system

The purpose of qualitative behavior analysis is to build a bridge that connects
the continuous and discrete parts of HS. This section derives a qualitative
description for HS. For the sake of notational simplicity, the superscript q
that denotes mode q is omitted in this section.

We first define sign as the symbol of the scalar, i.e., for a scalar α,
sign(α) = −1, if α < 0; sign(α) = 0, if α = 0; sign(α) = 1, if α > 0. Define
the set S , {ς = [ς1, ..., ςn]T ; ςk ∈ {−1, 1}}. It is clear that S contains 2n

elements. Denote ςk as the kth element of S. The matrix diag(β) is the
diagonal matrix having the vector β on its main diagonal.

Consider the nonlinear system

ẋ = f(x) (5.1.1)

where x = [x1, ..., xn]T ∈ ℜn, f(x) = [f1(x), ..., fn(x)]T is a smooth function.
It is not assumed to have the complete knowledge of f(x), only two qualitative
properties are required: sign(fi(x)) and sign( ∂fi

∂xj
), ∀i, j ∈ {1, 2, ..., n}.

Consider a point x∗, which divides the domain ℜn of x into 2n regions,
denoted as Ωq , {x ∈ ℜn|diag(ςq)(x−x∗) > 0̄}, for ςq ∈ S. 0̄ is a null vector
of dimension n. Each region Ωq has n neighbors that share a hyperplane with
Ωq. It is clear that one of continuous states xj equals x∗

j which is on this
hyperplane, for j ∈ {1, 2, ..., n}. Denote M(pq,j) as the hyperplane between
two neighboring regions Ωp, Ωq, and xj = x∗

j . Also denote sign(fi(x))Ωq
as

the sign of fi(x) in Ωq. When x goes from one region to another, we say that
a continuous transition occurs.

Definition 5.1 The nonlinear system (5.1.1) is said to be point monotonous
if there exists a point x∗ such that
1) ∀i ∈ {1, 2, ..., n}, ∀ςq ∈ S, sign(fi(x))Ωq

is fixed, i.e. the value of
sign(fi(x))Ωq

is unique.
2) there is a fixed k ∈ {1, 2, ..., n}, s.t. sign(fk(x))Ωq

6= sign(fk(x))Ωp
, and

∀j ∈ {1, 2, ..., n}, j 6= k, sign(fj(x))Ωq
= sign(fj(x))Ωp

, where Ωp, Ωq are
two neighboring regions.

The following Lemma gives the method to check which fi changes the
symbol between neighboring regions.

Lemma 5.1 Consider a point monotonous nonlinear system (5.1.1) and two
neighboring regions Ωp, Ωq. If ∀x ∈ M(pq,s), for s, i ∈ {1, 2, ..., n}, we have
fi(x) = 0 and

∑

j∈{1,2,...,n},j 6=i

( ∂fi

∂xj

fj

)

6= 0
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then sign(fi(x))Ωq
6= sign(fi(x))Ωp

.

Proof : Differentiating equation (5.1.1) w.r.t the time leads to

ẍi =
∂fi

∂xi

ẋi +
∑

j∈{1,2,...,n},j 6=i

∂fi

∂xj

fj (5.1.2)

Note that ∀x ∈ M(pq,s), fi(x) = 0 implies xi admits an extremum at M(pq,s).
The following two cases are considered.

- For the case that sign(
∑

j∈{1,2,...,n},j 6=i
∂fi

∂xj
fj) = 1, it is obtained from

(5.1.2) that ẍi > 0 ∀x ∈ M(pq,s). So ẋi changes monotonously at
M(pq,s). On the other hand, sign(fi(x)) is fixed respectively in Ωp and
Ωq, we have that sign(fi(x))Ωq

> 0, and sign(fi(x))Ωp
< 0, xi reaches

a maximal point or sign(fi(x))Ωq
< 0 and sign(fi(x))Ωp

> 0, xi reaches
a minimal point. It follows that sign(fi(x))Ωq

6= sign(fi(x))Ωp
.

- For the case that sign(
∑

j∈{1,2,...,n},j 6=i
∂fi

∂xj
fj) = −1, it follows that ẍi <

0 ∀x ∈ M(pq,s). Thus ẋi also changes monotonously at M(pq,s), the
similar procedure as for case 1 can be done to obtain the results.  

Lemma 5.1 captures the symbolic change of ẋ among different regions,
this is very useful for continuous transition analysis as in Lemma 5.2.

Lemma 5.2 Consider a point monotonous nonlinear system (5.1.1), Ωp, Ωq

are two neighboring regions sharing M(pq,j), and sign(fi(x))Ωq
6= sign(fi(x))Ωp

.
-If sign(xj − x∗

j)Ωp
= −sign(fj)Ωp

, then crossing of M(pq,j) is possible
from Ωp to Ωq.

-If sign(xj−x∗
j)Ωq

= −sign(fj)Ωq
, then crossing of M(pq,j) is possible from

Ωq to Ωp.

Proof : For the case that sign(xj − x∗
j)Ωp

= −sign(fj)Ωp
, without loss of

generality, assume that in Ωp, sign(xj − x∗
j) = 1, and sign(fj) = −1, then

xj would converge to x∗
j and reach the M(pq,j) from Ωp, then go to Ωq. If in

Ωp, sign(xj −x∗
j) = −1, and sign(fj) = 1, then xj would also converge to x∗

j

and reach the M(pq,j). The proof of the transition from Ωq to Ωp is the same
as above, which is omitted.  

Based on the above analysis, we define the qualitative states of point
monotonous system (5.1.1) as ϑ : x → M = {1, 2, ..., 2n}, which is a finite
set of variables interpreted over 2n regions of system (5.1.1), e.g., ∀x ∈ Ωq,
ϑ(x) = q, which is denoted as ϑq.
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Example 5.1 : Consider the Lotka-Volterra system describing the relation
between a population of preys (x1) and a population of predators (x2):

{
ẋ1 = ax1 − bx1x2

ẋ2 = −cx2 + dx1x2

where a, b, c and d are positive. The system is point monotonous with
x∗ = [c/d a/b]T . Fig. 5.3(a) shows its four regions divided by x∗: Ω1, Ω2,
Ω3 and Ω4. sign(fi) is also fixed in each region as in Fig.5.3: sign(f1)Ω1 < 0,
sign(f1)Ω2 < 0, sign(f1)Ω3 > 0, sign(f1)Ω4 > 0. sign(f2)Ω1 > 0, sign(f2)Ω2 <
0, sign(f2)Ω3 < 0, sign(f2)Ω4 > 0. Based on Lemma 5.2, four continuous
transitions can be obtained: from Ω1 to Ω2, from Ω2 to Ω3, from Ω3 to Ω4,
from Ω4 to Ω1. Fig. 5.3(b) shows the graph of qualitative states.
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Figure 5.3: qualitative behavior of the system

5.1.3 Qualitative abstraction of hybrid systems

The above qualitative description can be extended naturally to HS with all
modes satisfying the point monotony property. For HS, two transitions have
to be considered:

-Continuous transitions (in each mode): The rule for constructing con-
tinuous transitions in each mode is the same as in Lemmas 5.1, 5.2. Denote
Ec as the continuous transition set of HS.

-Discrete transitions (between modes): As in Definition 5.1, when x in
mode i reaches the guard set G, and (i, i′) ∈ E, then the system can be
switched from mode i to i′ under v.

The region of mode i is denoted as Ωi = [Ωi
1, ..., Ω

i
2n ]T , where

Ωi
q , {x ∈ ℜn|(diag(ςq)(x − x∗(i)) > 0̄) ∩ Inv(i), ςq ∈ S} (5.1.3)

133



CHAPTER 5. HYBRID SYSTEMS WITH DISCRETE SPECIFICATIONS

where x∗(i) is related to the point monotony property of mode i. From
(5.1.3), it follows that some regions Ωi

q may be empty if (diag(ςq)(x − x∗) >
0̄) ∩ Inv(i) = ∅. The qualitative states of mode i are denoted as ϑi =
[ϑi

1, ..., ϑ
i
ι(i)]

T , where 0 < ι(i) ≤ 2n, ϑi
q is related to x ∈ Ωi

q 6= ∅.

Definition 5.2 The region Ωi
q is said to be determined if only discrete tran-

sitions or only one continuous transition may occur from Ωi
q.

The ”determined region” is a special case of the ”good region” defined
in [4], which ensures the uniqueness of the continuous transition from each
region.

The QA of HS is constructed as a finite state machine QA = (Q̂, q̂0, Σ̂, T ),
where Q̂ =

⋃

i∈Q ϑi is the state set, Q̂0 =
⋃

∀(x,i)∈Init,x∈Ωi
q 6=∅ ϑi

q is the initial

state, Σ̂ = E
⋃

Ec is the transition set T : Σ̂ × Q̂ → Q̂ is the activated
transition1. Divide T = Tc∪Td, where Tc is the set of continuous transitions,
Td the discrete one. The number of operations required to build the QA
depends on the number of qualitative states that the HS generates. The
computational complexity is O(

∑N
i=1 |ι(i)|).

Compared with the abstraction in the usual sense [3], [157], QA corre-
sponds to the qualitative behavior of HS, since the continuous state in each
region of HS has a unique related state in QA. The following theorem proves
the qualitative reachability equivalence between QA and the original system.

Theorem 5.1 Consider a HS where each mode is point monotonous and all
the regions are determined. For any x1 ∈ Ωi

q, x2 ∈ Ωj
p, if there exists a

solution x(t) of HS and t1, t2, s.t. 0 ≤ t1 ≤ t2, x(t1) = x1, x(t2) = x2, then
QA has a solution q̂(t) ∈ Q̂ s.t. q̂(t1) = ϑi

q, and q̂(t2) = ϑj
p.

Proof : Consider two points x1 ∈ Ωi
q, x2 ∈ Ωj

p, s.t. x(t1) = x1, x(t2) = x2

for 0 ≤ t1 ≤ t2. From the structure of QA, it follows that for every transition
of HS, there is a unique related transition in QA. If t1 = t2, then q̂(t) is a
trivial solution satisfying the theorem. If t1 < t2, denote q̂0, q̂1, ...q̂m as the
state sequence of QA in the interval [t1, t2]. If x1 and x2 are within the same
region of the same mode, i.e. i = j, p = q, then no transition occurs, m=0,
q̂0 = q̂(t1) = q̂(t2) = ϑi. If x1 and x2 are within the different regions of
the same mode, i.e., i = j, p 6= q, continuous transitions must occur from
x(t1) to x(t2), so m > 0, and all q̂0, ..., q̂m ∈ ϑi, with q̂0 = q̂(t1) = ϑi

q, and
q̂m = q̂(t2) = ϑi

p. If x1 and x2 are within the different regions of the different
modes, i.e., i 6= j, p 6= q, then both discrete and continuous transitions occur,
we have q̂0 = q̂(t1) = ϑi

q, and q̂m = q̂(t2) = ϑj
p.  

1In some literatures of DES, Σ is also called ”Event”, and T is called ”transition”.
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The converse version of Theorem 5.1 is not true, i.e., for q̂(t1) = ϑi
q, and

q̂(t2) = ϑj
p x1 ∈ Ωi

q, x2 ∈ Ωj
p, it may not hold that the solution x(t) of HS

satisfies x(t1) = x1, x(t2) = x2, but x(t1) ∈ Ωi
q, x(t2) ∈ Ωj

p as in the following
corollary.

Corollary 5.1 Consider a HS where each mode is point monotonous and all
the regions are determined. For any x1 ∈ Ωi

q, x2 ∈ Ωj
p, if there exists t1, t2,

s.t. 0 ≤ t1 ≤ t2, q̂(t1) = ϑi
q, and q̂(t2) = ϑj

p, then there exists a solution x(t)
s.t. x(t1) ∈ Ωi

q, x(t2) ∈ Ωj
p.

Proof : Consider the state sequence q̂0, q̂2, ...q̂m of QA in the interval
[t1, t2], Similarly to the proof of Theorem 5.1, if m=0, then both x1, x2 are
within the same region of the same mode, which leads to x(t1), x(t2) ∈ Ωi

q.
In the sequel, suppose m > 0, we have q̂(t1) = ϑi

q, q̂(t2) = ϑj
p. From the

definition of ϑj
p, there must be a solution x(t) s.t. x(t1) ∈ Ωi

q, x(t2) ∈ Ωj
p.  

Example 5.2 : Consider a HS with two modes as

mode 1:

{
ẋ1 = 3x1 − 1.5x1x2

ẋ2 = −2x2 + x1x2
, mode 2:

{
ẋ1 = 2x1 − x1x2

ẋ2 = −4x2 + x1x2

where Inv(1) = {x1 ≥ 3}, Inv(2) = {x1 ≤ 3}. The guard set G(1, 2) = {x ∈
ℜ2, x1 ≤ 3}, G(2, 1) = {x ∈ ℜ2, x1 ≥ 3}, and x is continuous everywhere.
Both two modes are point monotonous with x∗(1) = (2, 2), x∗(2) = (4, 2).
Consequently, four regions can be divided for each mode. However, only
two regions are used to build the QA as shown in Fig. 5.4(a), since other
regions of the mode do not intersect its invariant set. It can be seen that all
regions are determined, from the transition set, we have that x ∈ Ω2

2 could
be reached from x ∈ Ω1

1. This is also reflected in the qualitative state graph
as in Fig. 5.4(b).

5.1.4 Discrete abstraction

Discrete abstraction (DA) is connected with the supervisor, which can be
viewed as a reduction of QA by removing the qualitative behavior of each
mode, such that the DES theory can be applied.

The DA of HS is also constructed as a finite state machine

DA = (Qd, Σ, Td, Qd0, Qdm)

where Qd = Q and Σ = E are the same as in Definition 5.1; Td denotes the
activated discrete transition as in QA, Qd0 =

⋃

∀(x,q)∈Init q. Qdm ⊆ Q is the
set of marked states.
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Figure 5.4: qualitative behavior of the HS

The following theorem shows discrete reachability equivalence between
DA, QA and the original system.

Theorem 5.2 Consider a HS where each mode is point monotonous and all
the regions are determined. For any x1 ∈ Inv(p), x2 ∈ Inv(q), if there exists
a solution x(t) of HS and t1, t2, s.t. 0 ≤ t1 ≤ t2, x(t1) = x1, x(t2) = x2, then

-there is a solution q̂(t) of QA s.t. q̂(t1) ∈ ϑi, and q̂(t2) ∈ ϑj.
-there is a solution qd(t) of DA s.t. qd(t1) = p, and qd(t2) = q.

Proof : The result can be obtained following the same procedure in proof
of Theorem 5.1.  

The following definition gives the relations between the transitions of QA
and DA.

Definition 5.3 A transition sequence s = e1e2 · · · em of QA, ei ∈ Σ̂, i =
1, 2 . . . , m for m > 0 is consistent with the transition sequence δ = ε1ε2 · · · εu

of DA, εi ∈ Σ, i = 1, 2 . . . , u for u > 0 if at any t, s.t. q̂(t) ∈ ϑi under s,
then q̂d(t) = i under δ, where q̂(t) is the solution of QA along s, and q̂d(t) is
the solution of DA along δ.

5.1.5 Fault Tolerance

Let us recall that the discrete faults force the system to switch into an un-
prescribed successive mode, and may violate the discrete specification of the
HS.

From sections 5.1.3 and 5.1.4, it can be seen that QA and DA are gen-
erated by the normal HS off-line, and then works in parallel with HS. QA
receives all the switchings and state information from HS, and triggers its
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corresponding transitions to keep itself synchronized with HS. Meanwhile
QA sends the information of discrete transitions to DA, such that DA is
also synchronized with HS. Since the set of faulty switchings is not included
in normal HS, once the fault occurs, its information may be missing for QA
or sent to QA by the HS with delays of several discrete steps. This motivates
the following definition:

Definition 5.4 A fault is said to be diagnosable w.r.t QA and DA, if when
such faulty switching occurs in HS, the corresponding transitions occur in
QA and DA before the next discrete switching in HS occurs.

Definition 5.4 is equivalent to the diagnosability with 0-delay step in [119].
This is possible for HS. Compared with the pure DES system, the continuous
dynamics in HS can help to detect the discrete faults rapidly based on the
trajectory of continuous states. Such property of HS also allows us not to
consider the observability of faults as in [137]. If the full measurement of
continuous states is unavailable, some more complicated techniques have to
be applied, e.g. the multi-mode identifier in Chapter 2.2.

Once QA receives the information of faulty switching, and sends it to
DA, the transition set Σd in DA would be updated, and partitioned as
Σ = Σn ∪ Σf , where Σn are normal transition sets corresponding to E in H,
and Σf corresponds to faulty transitions.

In this section, fault tolerance problem is discussed on DA under the DES
framework, the resulting fault tolerant supervisor is applied to the original
system as shown in Fig. 5.1.

We first introduce some notations used in the following, the reader is
referred to [128] for more detailed notations. Σ∗ denotes the set of all finite
strings of elements of Σ, including the empty string ǫ. A subset of Σ∗ is
called a language over Σ. The prefix closure of L ⊆ Σ∗ is defined as L :=
{u ∈ Σ∗|uu′ ∈ L for some u′ ∈ Σ∗}. The closed behavior of DA is L(DA) :=
{s ∈ Σ∗|Td(s,Qd0) is defined}, which is the set of transition sequences. The
marked behavior of DA is Lm(DA) := {s ∈ Σ∗|Td(s,Qd0) ∈ Qdm} which
represents the completed tasks. A(qd) denotes the set of transitions that are
possible at qd. A supervisor S ⊆ Σ∗ → 2Σ specifies the set of transitions for
the system’s desired specification. The behavior of DA supervised by S is
denoted by L(S/DA).

Assume that a supervisor S has been designed for the healthy system
satisfying the specifications. In the following, we will focus on how to update
S for the purpose of fault tolerance. Denote Bid and Ba as the ideal behav-
ior and the acceptable behavior respectively, where Bid ⊆ Ba ⊆ Lm(DA).
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Moreover, for κ, κ′ ∈ Σ∗, define

L(qd, ω) := {κ|Td(κ
′, Qd0) = qd, and κ′ωκ ∈ L(DA)}

which is a set of transition sequences generated in DA after the transition ω
occurs at the state qd. Similarly, define

LBid
(qd, ω) := {κ|Td(κ

′, Qd0) = qd, and κ′ωκ ∈ Bid}

LBa
(qd, ω) := {κ|Td(κ

′, Qd0) = qd, and κ′ωκ ∈ Ba}
The following definition gives conditions for discrete faults to be tolerable.

Definition 5.5 The transition ω that occurs at qd is an absolutely tolerable
fault w.r.t. Qdm, if

1) There exists a nonempty K ⊆ LBa
(qd, ω) s.t. KΣf ∩ L(qd, ω) ⊆ K.

2) There exist a transition sequence s from q̂i in QA that is consistent
with K, where q̂i is the state of QA reached due to the fault.

Condition 1) means that K is controllable w.r.t. L(qd, ω) [128], which
implies that for a faulty transition ω, the system DA can still be driven
to the marked states. Condition 2) ensures that the discrete switching se-
quence designed from DA is possible for HS, i.e., there exists a trajectory of
continuous states in HS that is consistent with the discrete sequence.

Definition 5.5 is a little conservative since the worst case that all possible
faults occur simultaneously is considered. This is relaxed in the following
definition, where the single faulty case is considered.

Definition 5.6 The transition ω that occurs at qd is a tolerable fault w.r.t.
Qdm, if 2) in Definition 5.5 holds, and there exists a nonempty K ⊆ LBa

(qd, ω).

Denote Σtf ⊆ Σf as the set of tolerable faults. In the following, we restrict
our attention to the single faulty case, the results can be extended straightly
to multi-faulty case.

Now we design the ideal fault tolerant supervisor.

Definition 5.7 The transition sequence s = e1e2 · · · em ∈ Bid(DA), ei ∈
Σ, i = 1, 2 . . . , m for m > 0 is called an ideal tolerable fault marked sequence
(ITFMS) if any transition in A(qd(i−1)) − {ei} ∈ Σ ∪ Σtf , where qdi−1 :=
Td(ei−1, Qd0) and e0 := ǫ.
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Definition 5.7 means that ITFMS is a transition sequence which can drive
the initial state to the marked states within an ideal behavior in spite of the
interference of tolerable faults.

Define IT (DA) := {t ∈ L(DA)|t is an ITFMS}. For a language L and
s ∈ L, define ψL(s) := {α ∈ Σ|sα ∈ L}. We have the following theorem.

Theorem 5.3 Consider a HS where each mode is point monotonous and all
the regions are determined. Suppose that DA has a fault transition ω ∈ Σf

at qd, which is diagnosable w.r.t QA, DA, and IT (DA) 6= ∅. There exists
an ideal fault tolerant supervisor Sid for HS if

1) ∃K ⊆ IT (DA) s.t. ∀s ∈ K, ψK(s) ⊆ ψIT (DA)(s) and {sω}∩IT (DA) ⊆
K.

2) There exists a transition sequence s from q̂i in QA that is consistent
with K, where q̂i is the state of QA that is reached due to the fault.

Proof : Consider a supervisor Sid = ψK(s) = {α ∈ Σ|sα ∈ K}, which
represents the set of enabled transitions after the string s. Firstly, let
s = ǫ. Since IT (DA) 6= ∅, we have ψIT (DA)(ǫ) 6= ∅, which implies that
ψL(Sid/DA)(ǫ) 6= ∅, and ψL(Sid/DA)(ǫ) ⊆ ψIT (DA)(ǫ). Secondly, let s 6= ǫ, fol-
lowing the same procedure, it can be proven that ψL(Sid/DA)(s) ⊆ ψIT (DA)(s),
∀ψIT (DA)(s) 6= ǫ.

Also, since {sω} ∩ IT (DA) ⊆ K, we have sω ∈ K and ω ∈ ψK(s) =
Sid(s), which further leads to that ω ∈ ψL(Sid/DA)(s). To this end, it can be
obtained that L(Sid/DA) = K, which means that the abstraction DA under
Sid generates a nonempty subset of ITFMS’s set.

On the other hand, Condition 2) implies that after a fault occurs, there
exists a state trajectory of QA from q̂i that reaches the q̂m, s.t., q̂m ∈ ϑQdm .
From theorems 5.1 and 5.2, it follows that there exists a continuous state
trajectory from the region related to q̂i in HS that is consistent with the
discrete sequence, and will reach the marked mode.  

Theorem 5.3 gives not only the existence condition of the ideal fault
tolerant supervisor, but also its construction method. Obtaining IT (DA)
requires the calculations of ψIT (DA)(s) which needs O(N) computation, where
N is the number of states in Q.

We denote Supdated = Sid, which is the updated version of the original S
after a fault occurs. This means that S is applied to the normal plant. Once
a discrete fault occurs and Sid has been obtained, S will be self updated
into Supdated = Sid, as shown in Fig. 5.5. In the healthy situation, it can be
proven that L(S/DA) = L(Sid/DA) following the procedure in [137].
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Figure 5.5: Updating of the supervisor

Remark 5.1 The proposed intelligent supervisor is less conservative than
those ones obtained assuming that possible faults occur from the beginning
as in [134]. Compared with the pure DES in [134], the reachability problem
of continuous systems has to be considered for HS, as the condition 2) in
Theorem 5.3.

When the ideal behavior is not feasible under discrete faults, one natural
idea is to let the system work in an acceptable behavior that exceeds but
stays close to the ideal behavior. We have the following definition.

Definition 5.8 The transition sequence s = e1e2 · · · em ∈ Ba(DA), ei ∈
Σ, i = 1 . . . m for m > 0 is called an acceptable tolerable fault marked
sequence (ATFMS) if any transition in A(qdi−1) − {ei} ∈ Σ ∪ Σtf , where
qdi−1 := Td(ei−1, Qd0) and e0 := ǫ.

From Definition 5.8, it follows that ATFMS can still drive the initial state
to the marked states within an acceptable behavior in spite of tolerable faults.
Define AT (DA) := {t ∈ L(DA)|t is an ATFMS}. The following corollary is
an extension of Theorem 5.1.

Corollary 5.2 Consider a HS where each mode is point monotonous and all
the regions are determined. Suppose that DA has a fault transition ω ∈ Σf

at qd which is diagnosable w.r.t QA, DA, and AT (DA) 6= ∅. There exists
an ideal fault tolerant supervisor Sa for H if Condition 2) in Theorem 5.3
holds and

1) ∃K ⊆ AT (DA) s.t. ∀s ∈ K, ψK(s) ⊆ ψAT (DA)(s) and {sω}∩AT (DA) ⊆
K.

Note that the candidate transition sequences L(Sa/DA) obtained from
Corollary 5.2 may not be unique. We propose an optimized choosing method,
which makes the system work within an acceptable behavior that is most
similar to the ideal one.
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Definition 5.9 [22] A (1-bounded) metric space is a pair (Xd; d) consisting
of a nonempty set Xd and a function d : Xd ×Xd → [0, 1] which satisfies the
following conditions:

1) d(a, b) = 0 if and only if a = b;

2) d(a, b) = d(b, a), ∀a, b ∈ Xd;

3) d(a, c) ≤ d(a, b) + d(b, c), ∀a, b, c ∈ Xd.

The distance d(a, b) measures the similarity between a and b. The less the dis-
tance is, the more similar the two elements are. We endow Σ∗ with the metric
induced by d, which measures the distance between transition sequences, Let
s = e1e2 · · · el(s) and ρ = ̺1̺2 · · · ̺l(ρ) be two transition sequences in Σ∗, and
l(s, ρ) := max{l(s), l(ρ)}. If l(s) 6= l(ρ), e.g. l(s) < l(ρ), set ei = ǫ ∀i > l(s).
Define

dr(s, ρ) :=

l(s,ρ)
∑

i=1

1

2i
d(ei, ̺i)

set d(a, ǫ) = d(ǫ, a) = 1 for a ∈ Σ. It is verified that dr gives rise to a metric
on Σ∗. The following corollary gives an optimal choosing method, which can
be verified from Definition 5.9.

Corollary 5.3 Consider a candidate transition sequence s ∈ L(Sa/DA) ob-
tained from Corollary 5.1. If s = arg min{maxρ∈Bid

dr(s, ρ)}, then s is a
sequence that is most similar to the ideal one in the sense of metric space.

Once the optimal s, denoted by s∗ is obtained, S is updated into Supdate

s.t. L(Supdate/DA) = s∗.

Consider a HS where each mode is point monotonous and all the regions
are determined, based on previous analysis, a fault tolerance framework for
HS can be provided as

(1) Build H of HS.

(2) Describe the qualitative behavior of each mode based on Section 5.1.2.

(3) Build QA and DA of the HS based on sections 5.1.3, 5.1.4.

(4) Apply the supervisor S to the HS, let the QA and DA work in parallel
with HS. Once a fault occurs, go to (5). When the task is completed
without fault, go to (8).
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(5) If 2) in Theorem 5.3 holds, send the information of fault to QA and
DA, go to (6), else go to (8).

(6) If 1) in Theorem 5.3 holds, update S into Supdate = Sid, apply Supdate

to HS until the task is completed, go to (8), else go to (7).

(7) If condition 1) in Corollary 5.2 holds, update S into Supdate, apply
Supdate to HS, until the task is completed, go to (8), else go to (8).

(8) Stop the system.

Example 5.3 (Example 1.2 revisited) : Recall Example 1.2 as shown in
Fig. 1.3. The system can be modeled as a hybrid automaton, two contin-
uous states x1 and x2 represent the positions of the fingertip. The angle θ
of the fingertip is assumed to be adjusted according to its position by the
robot arm. Discrete states, i.e., modes are defined based on the contact
configuration between the hose and the plug, as shown in Fig. 5.6. Eight
configurations are considered, each one can be further divided into two con-
figurations with different form of hose, e.g. B̃1 (convex upward) and B̃2 (con-
cave upward). The completed work is to insert the hose onto the plug. There
are two operation situations of the fingertip: “PUT” vertically in Ã, J̃ , and
“SWING” horizontally in other modes. According to the working process,
three normal switching sequences are designed: Ã → C̃1 → D̃1 → J̃ → K̃,
Ã → B̃1 → Ẽ2 → F̃2 → J̃ → K̃, and Ã → B̃1 → B̃2 → C̃2 → D̃1 → J̃ → K̃.
A hybrid automaton is constructed as in Fig. 5.7.

(convex upward)

(concave upward)

Figure 5.6: Contact configuration

Since x in each mode has constant derivatives, all modes are point monotonous
with x∗ = [∞ ∞]T , and there is no continuous transition in each mode. It
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can be checked that each region is determined. The QA is not given, which is
the same as DA. The DA of the system is shown in Fig. 5.8, where the K̃ is
the target mode, e1, . . . , e11 are corresponding events. The marked behavior
is Lm(A) = {e1e2e3e4, e5e6e7e8e4, e5e9e10e11e4}. The desired specification
is that in one working process, modes C̃1 and D̃1 must be visited, and D̃1

is not visited until C̃1 has been visited. So Bid = e1e2e3e4. In the healthy
situation, the supervisor S enables events {e1, e2, e3, e4} while disable others.
The initial of the fingertip’s position is (2, 5). Fig. 5.9 shows the continu-
ous state trajectory, which implies that the work is completed with an ideal
behavior.
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Figure 5.8: Abstraction of the hybrid automaton

Now consider two faulty cases of abrupt changes of the fingertip’s position,
which, as shown in Fig. 5.10, are due to physical faults of the robot arm.

Case 1: The system is switched into (x1, x2) = (0.7, 3) of B̃1 from
(x1, x2) = (1.5, 3) of C̃1.

Case 2: The system is switched into (x1, x2) = (−1.5, 3) of Ẽ2 from
(x1, x2) = (1.5, 3) of C̃1.
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Figure 5.9: Continuous state trajectory

Case 1 Case 2

Figure 5.10: Abrupt change of the fingertip’s position
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In Case 1, B̃1 is activated due to the fault. The conditions of Theorem
5.3 hold. Indeed, there exists a ITFMS satisfying the system specification
as in Fig. 5.11(a) e1ef1e9e10e11e3e4. Assume that there is a time delay of
0.2s to detect this fault. The ideal fault tolerant supervisor Sid enables
events {e1, e2, e3, e4, e9, e10, e11,ef1

}, and set Supdate = Sid. Fig. 5.11(b) shows
the continuous state trajectory, it can be seen that fault tolerance goal is
achieved.
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Figure 5.11: FTC performance

In Case 2, the conditions of Theorem 5.3 do not hold, which means that
no sequence can satisfy the system specification. However, the conditions
of Corollary 5.2 hold. There still exists one and only one ATFMS driving
the system to the marked state as in Fig. 5.12(a): e1ef2e7e8e4, which can
be considered as the most similar behavior to the ideal one. The acceptable
fault tolerant supervisor Sa enables events {e1, e2, e3, e4, e7, e8, ef2}, and set
Supdate = Sa. Fig. 5.12(b) shows the continuous state trajectory, which
implies that the fault tolerance goal is achieved with an acceptable behavior.

5.2 FTC via hybrid Petri nets

This section proposes a novel FTC scheme for HS modeled by hybrid Petri
nets (HPNs). HPNs are widely used for modeling hybrid complex systems
[31, 143] e.g., autonomous manufacturing, traffic control, and chemical pro-
cess. Such model inherits all the advantages of the PNs model such as the
ability to capture behaviors including concurrency, synchronization and con-
flicts.
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Figure 5.12: FTC performance

To the best of our knowledge, until now, only few attempts have been
made to FTC for HS modeled by HPNs such as [7, 71], where the FTC goal
is to prevent the system from deadlock. However, fruitful results of diagnosis
methods for PN can be used as the basis of further FTC researches. In
[13], an unfolding based diagnosis approach is provided for asynchronous
discrete-event systems. A diagnoser is given based on the concept of basis
marking in [55]. An on-line diagnosis method is proposed in [129], where the
output information of marking has to be used. The identification scheme
developed in [35] relies on full observable events. The method derived in
[90] is based on marking variation and causality relationships. In [166], the
parity space method is extended to Petri net. In most of these works, it
is assumed that either the partial marking is measurable or initial marking
is known, such that the current marking just before faults occur can be
calculated. Most recently, the marking estimation from event observations
with unknown initial marking has been discussed in [53] and [54]. However,
these works do not consider faulty behaviors.

The faulty behaviors considered in this work are represented in two forms:

- (F1) Faults produce unobservable and uncontrollable discrete transi-
tions as in [55, 90], which may violate timed-PN’s general mutual ex-
clusion constraints (GMEC) that is the basic requirement for system’s
stability (the former definition of GMEC will be given later), or affect
continuous PNs where the optimality should be kept.

- (F2) Faults generate the normal discrete transitions that occur at ab-
normal time as in [166], which do not violate GMEC, but affect the
optimality of continuous PNs.
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The faults in continuous PNs, similar to the continuous faults defined in
switched system or hybrid automata (See chapters 2-4), will not be addressed
in this section.

In this work, we propose a novel hierarchical FTC scheme which con-
sists of two parts: a FTC law in discrete PN and a reconfiguration rule in
continuous PNs. The main contributions are as follows:

1. An observer-based FD method is proposed for discrete timed-PN with
unknown initial marking and the known initial macromarking (defined
later), which estimates the unmeasurable marking in discrete place and
meanwhile, diagnoses the fault (F1).

2. Based on the marking estimates, an adaptive FTC scheme is designed
for timed-PN with (F1) to maintain the GMEC. The general condi-
tion of controller design, that imposes the GMEC is not affected by
unobservable transitions, is relaxed.

3. FTC for faults (F2) and (F1) that do not violate GMEC in discrete
timed-PN is achieved in continuous PNs by adjusting the firing speed
of continuous transitions. Such FTC rule maintains the optimality of
the system.

4. Finally, the proposed method is applied to an intelligent transportation
system consisting of automated vehicles on a bridge.

5.2.1 Model setting

We first recall the HPNs formalism. The reader can find a more detailed
presentation of HPNs in [31, 143, 41, 42] and PNs in [115]. A HPN structure
is the 5-tuple N = (P, T, Pre, Post, h), where P is a set of m places, T
is a set of n transitions; The set of places P (resp. transitions T ) is split
into two subsets: md discrete places PD (resp. nd discrete transitions TD)
and mc continuous places PC (resp. nc continuous transitions TC), where
m = md + mc, n = nd + nc.

Pre : P × T → {R+,∀pi ∈ PC , or N,∀pi ∈ PD} that assigns a weight
to any arc between a transition tj and its input place pi, where R+ denotes
the set of positive real numbers, and N the set of natural numbers. Post :
P × T → {R+,∀pi ∈ PC , or N,∀pi ∈ PD} that assigns a weight to any arc
between a transition tj and its output place pi. The preset and postset of a
node X ∈ P ∪ T are denoted •X and X•.

The marking of an HPN is the function M : P → {R+,∀pi ∈ PC , or N,∀pi ∈
PD} which assigns a nonnegative integer number of tokens to each discrete
places and a nonnegative real number to each continuous place.
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The following two transition rules are considered:
Firing of discrete transitions: A discrete transition t ∈ TD is enabled,

if M ≥ Pre(·, t) and may fire yielding M ′ = M + C(·, t), where C(p, t) ,

Post(p, t)− Pre(p, t), ∀p ∈ PD. Firing of tj ∈ TD lasts dj time units, where
dj is a nonnegative deterministic number. Denote M [ω〉M ′ such that the
enabled sequence of transitions ω may fire at M yielding M ′.

Firing of continuous transitions: A continuous transition tj ∈ TC is en-
abled if M(p) ≥ Pre(p, tj),∀p ∈ •tj∩PD, and M(p) ≥ 0,∀p ∈ •tj∩PC . Note
that tj is affected by the discrete places of timed-PN if •tj ∩ PD 6= ∅ (this
is consistent with our application as shown later). Given two time instants
τ and τ ′, the evolution of the marking is given as M(p, τ) = M(p, τ ′) +
ϑ(p, t, τ, τ ′), ∀p ∈ PC , where ϑ(p, t, τ, τ ′) ,

∑

tj∈•p Postp,tj ·
∫ τ

τ ′ vtj(s)ds −
∑

tk∈p• Prep,tk ·
∫ τ

τ ′ vtk · (s)ds, vtj and vtk denote the firing speeds of tj and tk
at the time s respectively.

In general, both continuous and discrete transitions may have input and
output places that are either continuous or discrete. In this work, we suppose
that all discrete input places must also be output places, and vice-versa with
arcs of the same weight. The firing of a continuous transition cannot modify
the marking of the discrete part (This property will also be illustrated in our
application).

Define two sets PDC = {p ∈ PD|∃t ∈ TC , p ∈ •t ∩ t•} and TCD = {t ∈
TC |∃p ∈ PD, t ∈ p• ∩ •p}. A place p ∈ PDC and a transition t ∈ TCD are
related if p ∈ •t ∩ t• (t ∈ p• ∩ •p). Note that PDC and TCD describe the
relations between discrete part and continuous part of the HPN.

As already described, the fault is defined as two sets Tf and TIMEf ,
where TD = TN ∪ Tf , TN ∩ Tf = ∅ with TN the set of normal transitions,
Tf the set of faults (F1), that is the set of unobservable and uncontrollable
discrete transitions. TIMEf denotes the set of faults (F2), such that the
firing of normal transition in TN lasts abnormal time denoted as df . Fig.
5.13 shows a net with these two types of faults.

From a graphical point of view, discrete places are represented by cir-
cles, discrete transitions are represented by thick bars ( thin bars denote
the immediate discrete transitions i.e., d = 0) whereas continuous places are
represented by double circles and continuous transitions are represented by
boxes. Finally, the marking are represented by the dot in places.

Example 5.4 (Example 1.3 revisited): Recall the traffic flow control
problem shown in Fig. 1.4. The specification can be described as

P1 (stable): the AVs from different input roads never get into the bridge
simultaneously. This is the basic requirement on the initial performance,
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Figure 5.13: A PN with the fault

which must be guaranteed, otherwise the AVs may crash.
P2 (optimal): The AVs flow from different input roads keeps a safe dis-

tance with others on the bridge as shown in Fig. 5.14. This is the optimal
specification for the safe purpose.

We consider the worst case where all input roads have infinitely long AVs
flows. The proposed method can be modified for the better case.

 
safeD  

safeD
 

1
AV

2
AV

3
AV flow flowflow

Figure 5.14: Segment of AVs flow on the bridge

The fault considered in this system represents the abnormal behavior of
the supervising light, i.e. the logic lights do not work as prescribed. Under
such fault, both P1 and P2 may be affected. Note that P2 can be achieved in
the presence of local faults in AVs by adjusting the speed of AVs on-line as in
[52, 126], where the problem of online-speed adjustment has been intensively
investigated, which is not addressed in this work. We assume that, after an
AVs flow from one input road accelerates to a speed vnormal, it always keeps
vnormal on the bridge.

The HPN model of the of AVs transporting process of bridge related to
Fig.1.4 is shown in Fig.5.15, where a discrete PN illustrates the working
process of supervisory lights, and three continuous PNs model the AVs flows
from different input roads. A detailed description of places and transitions
is given in Table 5.1. Compared with the HPN model in [41, 42], red lights
are considered in ours, which is more suitable for fault modeling and FTC
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Figure 5.15: HPN model of AVs transportation of the bridge

design. For more complicated traffic networks as in [9, 36], coloured timed
Petri nets can be used to model the vehicle flows.

Note that the first and second parts of the bridge bf
i and bs

i are divided
as in Fig.1.4, where the length of the first part is equal to 3vnormal, i.e. the
distance that AVs pass through in the yellow period. In the healthy case,
the initial speed of AVs flows from ith input road is vi(τ) = min{ai(τ −
τ s
i ), vnormal}, where ai is the accelerate speed and τ s

i is the time when tbfi
starts firing. We assume that ai = a, i = 1, 2, 3. Since the accelerating time

is much less than green period, we further have Dsafe = 3vnormal +
v2

normal

2a
.

Moreover, vmax
i represents the maximal speed, and M b denotes the capacity

of (bf
1 + bs

1), i.e. the full length of the bridge. From physical point of view,
bf
i and bs

i for i = 1, 2, 3 in Fig. 5.15 represent the same bridge.
From Fig. 5.15, it is much more clear that the FTC objectives are :

1) (stability) To reconfigure the discrete timed-PN such that at each time,
only one green light is activated in the presence of faults (F1).

2) (optimality) To adjust the firing speed of tbfi such that Dsafe is kept in
the presence of faults (F2).

To make the HPNs mode closer to our application, we impose the follow-
ing hypothesis throughout Section 5.2.

H1 (timed-PN) All t ∈ TN are controllable and observable. All t ∈ Tf

are uncontrollable and unobservable. ∀p ∈ PD, Pre(p, ·) = Post(p, ·).
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Table 5.1: Places and transitions of the HPN in Fig.5.16
Place Meaning

gi green period of AVs flow from i th input road
yi yellow period of AVs flow from i th input road
ri red period of AVs flow from i th input road

bf
i the first part of the bridge from i th input road

bs
i the second part of the bridge from i th input road

Transition Meaning

tbfi AVs flow get into the first part of the bridge
from ith input road

tbsi AVs flow get into the second part of the bridge
from ith input road

tout
i AVs flow from ith input road gets out from the bridge

M(p) is unmeasurable. The initial marking is unknown while the initial
macromarking is known.

H2 (continuous PN) All t ∈ TCD are measurable with alterable firing
speeds. All t ∈ TC \ TCD are measurable with fixed firing speeds.
∀p ∈ PC , M(p) is unmeasurable. ∀X ∈ PC ∪TC , both •X ∩ (PC ∪TC)
and X• ∩ (PC ∪ TC) are singleton.

H3 (interconnection) For p ∈ PDC and t ∈ TCD that are related,
Pre(p, t) = Post(p, t), such that the firing of a continuous transition
cannot modify the marking of discrete places.

5.2.2 FD and marking estimation

In this section, we consider the problem of FD and observer design in the level
of discrete timed-PN. If there is no additional remark, all the PNs, places
and transitions discussed in this section are related to the discrete PN.

Denote TS as the set of transition sequences, and TSo the set of ob-
servable transition sequences. Similarly to finite state machine formulation
in [136], let P : TS → TSo denote a projection operator that “erases” the
unobservable transitions in a transition sequence. The inverse projection
operator is defined as

P
−1(y) = {s ∈ TS : P(s) = y}

The diagnosability definition of finite state machine in [136] is extended
to PN as follows:
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Definition 5.10 A PN is diagnosable with respect to t ∈ Tf , if ∃n ∈ N, and
an observable transition sequence ω, such that ‖ω‖ ≥ n ⇒ t ∈ P−1(P(ψ(t)ω)),
where ψ(t) denotes the observable sequence that is ended at t, ‖ω‖ is the length
of the sequence ω.

The above definition of diagnosability means the following: Let ψ(t) be
any transition sequence that is ended at a fault t ∈ Tf , and let ω be any
sufficiently long continuation of ψ(t). t ∈ P−1(ψ(t)ω) means that every
transition sequence, that produces the same record of observable transitions
as the sequence ψ(t)ω, should contain a fault in it. This implies that along
every continuation ω of ψ(t), one can detect the occurrence of a fault t with
a finite delay (n steps).

Before giving the conditions of diagnosability, the following definitions
are also introduced.

Definition 5.11 Given a PN N , and a subset T ′ ⊆ T of its transitions, we
define the T ′-induced subnet of N as the new net N ′ = (P, T ′, P re′, Post′)
where Pre′ and Post′ are the restriction of Pre, Post to T ′.

The net N ′ can also be obtained from N by removing all transitions in
T \ T ′.

Definition 5.12 An induced subnet of an unobservable transitions subset
of a PN is acyclic if no oriented cycle of sequences in this PN occurs that
contains only unobservable transitions in this subset.

Definition 5.13 A PN is forward conflict (FC) if there exist two transitions
which have at least one common input place. A PN is backward conflict (BC)
if there exist two transitions which have at least one common output place.
A PN is absolutely conflict (AC) if it is both FC and BC.

We also say that a PN is forward (resp. backward) conflict free (FCF
(resp. BCF)) if it is not forward (resp. backward) conflict.

Lemma 5.3 A PN is diagnosable with respect to t ∈ Tf , if

1) Tf -induced subnet is acyclic.

2) Tf -induced subnet Nf is not AC.

3) the initial marking M0(pb) = M0(pa) = 0, where pb ∈• t, pa ∈ t•.

4) •pa \ t do not fire before p•b \ t or p•a fire.

5) After one transition from •pb fired, •pb do not fire again before p•b fire.
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Proof: From the graph point of view, there exist two transition sets •pb

and p•a before and after t. Condition 3) implies that a transition tb ∈• pb must
fire before t since M0(pb) = 0. Condition 1) means that the occurrence of
a fault must be interconnected with the firing of normal transitions. Under
the condition 2), three cases are considered as follows:

Case 1: The Nf is FCF and BCF. Since Pre(p, ·) = Post(p, ·) from H1
and M0(pb) = 0, Condition 5) implies that if ∃̺ ∈ p•b \ t fires, then t must not
occur. On the other hand, M0(pa) = 0, Condition 4) means that before we
determined whether the fault occurs or not, •pa \ t do not fire, i.e., M0(pa) do
not change due to the firing of •pa \ t. Thus t can be diagnosed once ta ∈ p•a
fires.

Case 2: The Nf is FC and BCF. Several faults share one same input
place. The fault t may not be identified from tb, while a smaller region than
Tf in which the fault belongs to can be determined. The property of BCF
ensures that t can still be diagnosed once ta fires.

Case 3: The Nf is BC and FCF. Since each fault has one different input
place, the fault that may occur can be distinguished from tb. Although several
faults share one same output place, t can be diagnosed once ta fires.  

Remark 5.2 The conditions in Lemma 5.3 depend only on the observable
transitions, no information of marking is needed [185], while the marking
information is required in [129, 90, 166]. The diagnosis procedure derived in
[55] also relies on the observable transitions while the initial marking has to
be known.

Remark 5.3 Lemma 5.3 guarantees that at most one fault from one input
place really occurs. Under Conditions 1)-5), the unique fault identification is
always achieved. Such diagnosability property is also available when several
faults from different places occur simultaneously. Checking 5) may require
some external information of macromarking (as shown in our application), if
5) is removed, multiple faults may occur from one input place simultaneously,
more restrictive conditions need to be imposed.

The purpose of the observer design for discrete timed-PN is to provide
the marking estimates in discrete places in the presence of faults. The partial
information of the initial marking in discrete places is available in the form
of macromarking defined as follows.

Definition 5.14 Assume that the set of places PD can be written as the
union of r+1 subsets: PD = P0∪P1∪ . . .∪Pr such that P0∩Pj = ∅, ∀j > 0.
The number of tokens contained in Pj(j > 0) is known to be bj, while the
number of tokens in P0 is unknown. For each Pj, let vj be its characteristic
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vector, i.e., vj(p) = 1 if p ∈ Pj, else vj(p) = 0. Let V = [v1, . . . , vr] and
b = [b1, . . . , br]. The macromarking is defined as the set V(V, b) = {M ∈
Nmd |V T M = b}.

The following definition describes consistent markings as in [53].

Definition 5.15 After the transition sequence ω has been observed, we de-
fine the set of ω-consistent markings C(ω) = {M |∃M ∈ Nmd

,M ′[ω〉M} as the
set of all markings in which the system may be given the observed behavior
and the initial macromarking.

Denote χ(~t) as the set of all transition sequences that ~t may follow, with
~t = {t1, t2, ..., tq} ∈ Tf .

Assumption 5.1 If ωi ∈ χ(~t), then all the faults in ~t share the same input
place.

Assumption 5.1 means that once the faults from one input place occurred
and have not been diagnosed, the faults from other input places do not occur.
That is to say we just take into account the possible faults from one input
place before they are diagnosed.

Based on the conditions in Lemma 5.3 and Assumption 5.1, the following
algorithm provides the marking estimates in the form of consistent markings
iteratively in spite of faults.

Algorithm 5.1 marking estimation with event observation, initial macro-
marking and faults

1. Let the initial estimate M e
ω0

(p) = 0, the initial complementary estimates
M c

ω0
= M e

ω0
.

2. Let the initial bound Bω0 = b−V T M e
ω0

, the initial complementary bound
Bc

ω0
= Bω0.

3. Let i = 1.

4. Wait until tαi fires.
If for i ≥ 2, tαi ∈ t••j where tj ∈ Tf , then
M e

ωi−1
= M cj

ωi
, Bωi−1

= Bcj
ωi

, go to 6.
end if.

5. If for i ≥ 2, ωi ∈ χ(~t) then
Let M ′

ωi
(p) = max{M e

ωi−1
(p), P re(p, tαi)},

Let M e
ωi

= M ′
ωi

+ C(·, tαi), Bωi
= Bωi−1

− V T · (M ′
ωi
− M e

ωi−1
).
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Let M cj′
ωi+1

(p) = max{M cj
ωi

(p), P re(p, tαi)},
Let M cj

ωi+1
= M cj′

ωi+1
+ C(·, tαi), Bcj

ωi+1
= Bcj

ωi
− V T · (M cj′

ωi+1
−M cj

ωi
), go to

9.
end if.

6. Let M ′
ωi

(p) = max{M e
ωi−1

(p), P re(p, tαi)}.

7. Let M e
ωi

= M c
ωi

= M ′
ωi

+ C(·, tαi), Bωi
= Bcj

ωi
= Bωi−1

− V T · (M ′
ωi

−
M e

ωi−1
).

8. If ∃p̄ ∈ t•αi, and t1, . . . , tq ∈ Tf , such that p̄ ∈• tj, (1 ≤ j ≤ q) then
For 1 ≤ j ≤ q
Let M cj′

ωi+1
(p̄) = max{M e

ωi
(p̄), P re(p̄, tj)}.

Let M cj
ωi+1

= M ci′
ωi+1

+ C(·, tj), Bcj
ωi+1

= Bcj
ωi
− V T · (M ci′

ωi+1
− M cj

ωi
)

End for.
Let M c

ωi
=

⋃
M cj

ωi
, Bc

ωi
=

⋃
Bcj

ωi
.

end if.

9. Let i = i + 1, go to 4. ¥

Algorithm 5.1 extends the algorithm in [53] to the faulty case. Its nov-
elty is the utilization of complementary estimates. The main idea behind
Algorithm 5.1, as shown in Fig. 5.16, is that, when we predict that a fault
may occur at next transition (steps 8 and 5), we consider all the possible
markings that may be reached under this fault, which are recorded in the
complementary marking estimate M c

ω. When we determine that the fault
has occurred (Step 4), M c

ω will be used to update the marking estimate M e
ω.

Otherwise, M e
ω will not be changed (steps 6 and 7).

Now we analyze the computational complexity. Once a transition is ob-
served, Algorithm 5.1 not only updates M e

ω, Bω as the algorithm in [53], but
also updates complementary estimates M c

ω and Bc
ω. The number of opera-

tions required depends on how many times the for cycle in Step 8 is executed.
Both the number of M c

ω and Bc
ω are q, the complexity is O(3 × |q|).

Remark 5.4 Algorithm 5.1 can also be extended to the case of faults from
multiple input places. Suppose that there are N input places such that the
faults from these places may occur simultaneously, or before a fault is diag-
nosed, the faults from other N − 1 input places may occur. Assume that the
ith place may fire qi possible faults, 1 ≤ i ≤ N . In this case, to consider all
possible faults, (

∏

i∈[1,N ](qi + 1) − 1) complementary marking estimates have

to be used, the complexity becomes O
(

3 × (|∏i∈[1,N ] qj + 1| − 1)
)

. In the
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 M

 M

Figure 5.16: Marking estimation of Algorithm 5.1

following discussion, Assumption 5.1 always holds, i.e., we only consider the
case of faults from the single input place.

The set of consistent markings provided by Algorithm 5.1 is as follows.

Theorem 5.4 Supposed that Assumption 5.1 and Conditions 1)-5) in Lemma
5.3 hold. Consider a PN with initial macromarking V(V, b), an observed tran-
sition sequence ωi, the fault transition t ∈ Tf , and M e

ωi
, Bωi

M c
ωi+1

, Bc
ωi+1

computed by Algorithm 5.1. The set of ωi-consistent markings is

C(ωi|V, b) =

{
C1 if ωi 6∈ χ(~t)

C1 ∪ C2, if ωi ∈ χ(~t)
(5.2.1)

where
C1 ,

{

M ∈ Nmd |V T M = V T M e
ωi

+ Bωi
,M ≥ M e

ωi

}

C2 ,

{

M ∈ Nmd |V T M = V T M cj
ωi+1

+ Bcj
ωi+1

,M ≥ min
j
{M cj

ωi+1
}
}

Proof: For the case ωi 6∈ χ(~t), i.e., no fault occurs, the proof is similar to
[53], and thus is omitted.

For the case ωi ∈ χ(~t), we first consider that the Tf -subnet is FCF,
i.e., only one possible fault t may occur after ωi. In this case, ωi-consistent
markings C(ωi|V, b) should include the marking that may be reached under
ωit. This can be provided by M c

ωi
and Bc

ωi
as follows.

Steps 6 and 7 in Algorithm 5.1 ensure M e
ωi

= M c
ωi

and Bωi
= Bc

ωi
before t

occurs. Let us show that C(ωi|V, b) = {M ∈ Nmd |V T M = V T M c
ωi

+Bc
ωi

,M ≥
M e

ωi
} ⇒ C(ωit|V, b) = {M ∈ Nmd |V T M = V T M c

ωi+1
+ Bc

ωi+1
,M ≥ M e

ωi+1
}.
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In fact,

C(ωit|V, b) = {M ∈ Nmd |∃M ′ ∈ C(ωi|V, b),M ′ ≥ Pre(·, t),M = M ′ + C(·, t)}
= {M ∈ Nmd |∃M ′, V T M ′ = V T M c

ωi
+ Bc

ωi
,

M ′ ≥ M e
ωi

,M ′ ≥ Pre(·, t),M = M ′ + C(·, t)}

which together with the step 8 of Algorithm 5.1, leads to M ′ ≥ M c′
ωi

. We
further have from the step 8 that V T M c

ωi
+Bc

ωi
= V T M c′

ωi+1
+Bc

ωi+1
. Therefore,

C(ωit|V, b) = {M ∈ Nmd |∃M ′, V T M ′ = V T M c′
ωi+1

+ Bc
ωi+1

,

M ′ ≥ M e
ωi

,M = M ′ + C(·, t)}
= {M ∈ Nmd |V T M = V T M c

ωi+1
+ Bc

ωi+1
,M ≥ M e

ωi+1
}

For the case that the Tf -subnet is FC, it can be seen from the analysis
above that C(ω|V, b) defined in (5.2.2) includes all markings that may be
reached by any fault tj. Once we determined whether the fault occurs or
not from Lemma 5.3, C(ω|V, b) will be updated as in Algorithm 5.1, which
always gives the set of all markings in which the system may be given the
observed behavior. This completes the proof.  

Some properties about the observer of Algorithm 5.1 can also be discussed
similar to [53].

Proposition 5.1 Let ωi be an observed transition sequence. Under Assump-
tion 5.1 and Conditions 1)-5), the estimate computed by Algorithm 5.1 is a
lower bound of actual marking. i.e., ∀i, min{M e

ωi
, minj{M cj

ωi+1
}} ≤ Mωi

.

Proof: If ωi 6∈ χ(~t), it holds that M e
ωi

≤ Mωi
, the proof is similar to [53],

and thus is omitted.
If ωi ∈ χ(~t), we consider two cases:
Case 1: tj ∈ ~t really occurs. Before tj is diagnosed, according to Step

8 of Algorithm 5.1, we can prove that minj{M cj
ωi+1

} ≤ Mωi
using the result

of [53]. Once tj has been diagnosed, from Step 4 of Algorithm 5.1, we have
M e

ωi
= M cj

ωi+1
, which further leads to M e

ωi
= M cj

ωi+1
≤ Mωi

from [53].

Case 2: tj ∈ ~t does not occur. Algorithm 5.1 guarantees that M e
ωi

is not
affected by the fault if it does not occur. Thus we obtain M e

ωi
≤ Mωi

.  

Denote two positive numbers ε1 and ε2 such that, the sequence ωε1 may
be followed by the fault, and the sequence ωε2 determines whether the fault
occurs or not. The following proposition gives the estimating convergence
property.
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Proposition 5.2 Given Mωi
and M e

ωi
, under Assumption 5.1 and Condi-

tions 1)-5), the estimation error e(Mωi
,M e

ωi
) =

∑

p∈P D(Mωi
(p) − M e

ωi
(p))

has the following property:

{
e(Mωi

,M e
ωi

) ≥ e(Mωi+1
,M e

ωi+1
) for 0 ≤ i ≤ ε1 − 1 and ε2 ≤ i

e(Mωε1
,M e

ωε1
) ≥ e(Mωε2

,M e
ωε2

)

(5.2.2)

Proof: For 0 ≤ i ≤ ε1 − 1 and ε2 ≤ i, no fault may occur or we have
determined whether the fault occurs or not, following the same procedure as
in [53], we can prove that e(Mωi

,M e
ωi

) ≥ e(Mωi+1
,M e

ωi+1
), i.e., the estima-

tion error is monotonically nonincreasing. During the interval between the
sequences ωε1 and ωε2 , Algorithm 5.1 leads to that M e

ωi
is not affected by

the fault before we determine whether the fault occurs or not. If the fault tj
occurs and has been diagnosed, M e

ωi
is set to the same as M cj

ωi+1
. Note that

M cj
ωi+1

is updated according to tj, thus e(Mωε1
,M e

ωε1
) ≥ e(Mωε2

,M e
ωε2

).  

Algorithm 5.1 just relies on the observation of discrete transitions. Thanks
to the structure of HPNs defined in Section 5.2.1, the following algorithm
shows that the information of continuous transitions can help to estimate
the marking in discrete places.

Algorithm 5.2 marking estimation with additional observation of continu-
ous transitions

1. Let the initial estimate M e
ω0

(p) = 0
If ∃t̄ ∈ TCD related to p̄ ∈ PDC is firing, then
Let M e

ω0
(p̄) = Pre(p̄, t̄)

end if.
Let the initial complementary estimates M c

ω0
= M e

ω0
.

2. Let the initial bound Bω0 = b−V T M e
ω0

, the initial complementary bound
Bc

ω0
= Bω0.

3. Let i = 1.

4. Wait until tαi fires.
If for i ≥ 2, tαi ∈ t••j , then
M e

ωi−1
= M cj

ωi
, Bωi−1

= Bcj
ωi

, go to 6.
end if.

5. If for i ≥ 2, ωi ∈ χ(~t) then
Let M ′

ωi
(p) = max{M e

ωi−1
(p), P re(p, tαi)}, M e

ωi
= M ′

ωi
+ C(·, tαi),

Let M cj′
ωi+1

(p) = max{M cj
ωi

(p), P re(p, tαi)}, M cj
ωi+1

= M cj′
ωi+1

+ C(·, tαi),
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If ∃t̄ ∈ TCD related to p̄ ∈ PDC fires, then
Let M e

ωi
(p̄) = max{M e

ωi
(p̄), P re(p̄, t̄)}, M cj′

ωi+1
(p̄) = max{M cj′

ωi+1
(p̄), P re(p̄, t̄)},

end if.
Let Bωi

= Bωi−1
−V T ·(M ′

ωi
−M e

ωi−1
), Bcj

ωi+1
= Bcj

ωi
−V T ·(M cj′

ωi+1
−M cj

ωi
),

go to 9.
end if.

6. Let M ′
ωi

(p) = max{M e
ωi−1

(p), P re(p, tαi)}.

7. Let M e
ωi

= M c
ωi

= M ′
ωi

+ C(·, tαi), Bωi
= Bcj

ωi
= Bωi−1

− V T · (M ′
ωi

−
M e

ωi−1
).

8. If ∃p̄ ∈ t•αi, and t1, . . . , tq ∈ Tf , such that p̄ ∈• tj, (1 ≤ j ≤ q) then
Let M cj′

ωi+1
(p̄) = max{M e

ωi
(p̄), P re(p̄, tj)}.

Let M cj
ωi+1

= M ci′
ωi+1

+ C(·, tj), Bcj
ωi+1

= Bcj
ωi
− V T · (M ci′

ωi+1
− M cj

ωi
)

Let M c
ωi

=
⋃

M cj
ωi

, Bc
ωi

=
⋃

Bcj
ωi

.
end if.

9. Let i = i + 1, go to 4. ¥

Algorithm 5.2 provides the set of ωi-consistent markings in the same form
as (5.2.2), which, however, is more accurate than, or at least as accurate as
that computed by Algorithm 5.1, since in Algorithm 5.2, the observation of
continuous transitions may increase Mω which is closer to the actual marking.

5.2.3 FTC design

We first give the definition of generalized mutual exclusion constraints (GMEC)
for discrete timed-PN that had been considered in [54, 111, 73].

Definition 5.16 Given an integer matrix L = [l1 . . . ls] with lj ∈ Zmd

and an
integer vector k = [k1, . . . , ks] with kj ∈ Z, a GMEC of the discrete timed-PN

(L, k) defines the set of legal markings L = {M ∈ Nmd |LT · M ≤ k}.
For the two FTC objectives of our application described in Section 5.2.1,

i.e. stability and optimality, we consider three sets of markings:

A set of forbidden markings F = {M ∈ Nmd |M 6∈ L}.

A set of ideal markings Li that is optimal for system’s normal operation.

A set of unideal markings Lu that is non-optimal for system’s normal
operation.
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It is clear that Li ∩ Lu = ∅, F ⊆ Lu. Forbidden markings violate L,
which must be prevented from being reached (e.g., in the AVs transportation
process, no more than one green light can be activated simultaneously). The
FTC for such forbidden markings is designed at timed-PN level. Unideal
markings may affect the performance of continuous PNs, the related FTC
problem will be considered at continuous PNs level.

Before an adaptive FTC scheme is designed for time-PN, the following
assumption is given.

Assumption 5.2 The initial actual marking in discrete places M0 ∈ L.

Note that Assumption 5.2 is quite general, if the initial situation violates
the GMEC, the system would be destroyed at the beginning.

Algorithm 5.3 Computation of the PN based FTC law using observer

1. Given the observed ωi, solve for each j(1 ≤ j ≤ s) the IPP







max LT
j · M

s.t.
M ∈ C(ωi|V, b)
M ∈ L

(5.2.3)

and let hj be its optimal solution.

2. Update the FTC controller with
{

Ccj = −LjC
Mcj = kj − hj

(5.2.4)

where Ccj and Mcj denote the row j of the incidence matrix and the
element j of markings of the controller.

3. Let i = i + 1, go to 1. ¥

Remark 5.5 Compared with the logical control design in [54] and [70], the
control law (5.2.4) is based on place invariants [111], which is updated based
on the consistent markings of the observer at each time when a normal dis-
crete transition fires, and disables some controllable discrete transitions such
that F is never reached, and does not require separate computation as in [70].

Theorem 5.5 Supposed that Assumptions 5.1, 5.2 and Conditions 1)-5) in
Lemma 5.3 hold. The controller (5.2.4) guarantees that F is never reached
in spite of fault t ∈ p•, if

Mωitj ∈ L,∀tj ∈ p• (5.2.5)
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Proof: Since M0 ∈ L from Assumption 5.2, and the fault does not occur
as the first transition from Lemma 5.3, based on the result in [111], the
controller (5.2.4) ensures that Mω1 ∈ L.

As for i ≥ 2, assume that t may follow ωi, condition (5.2.5) guarantees
that once a fault from input place p occurs, the GMEC is still not violated.
On the other hand, under Assumption 5.1, only the faults from one input
place is considered before it is determined to occur or not. So the controller
(5.2.4) only disables the controllable normal transition rather than the fault
transitions at each step. From Theorem 5.4, C(ωi|V, b) includes all markings
that may be reached by possible faults after observed ωi, which together with
the result in [111], leads to that F is never reached in spite of faults.  

Remark 5.6 The condition (5.2.5) is less restrictive than the general con-
dition in most literature ( see for instance [111],[73]), where L ·C(·, tuo) = 0,
i.e., the unobservable transition tuo ∈ Tuo can not change the markings in
places that are related to the GMEC. Our method can be applied even if
L · C(·, t) 6= 0 for t ∈ Tf as shown in the application.

If Tf -subset is FC, i.e. some faults share the same input discrete place,
then C(ωi|V, b) has to include more possible markings, which would lead to
more restrictive controller. The following result can help to analyze the
permissiveness of the controller.

Proposition 5.3 Suppose that the conditions in Theorem 5.5 hold. Let
C(ωi)FC, C(ωi)FCF be two sets of ωi-consistent markings under FC and FC
free Tf -subsets respectively, and the same observable subset. The controller
(5.2.4) based on C(ωi)FCF is at least as permissive as that based on C(ωi)FC.

Proof: For all ωi, Theorem 5.4 implies that C(ωi)FCF ⊆ C(ωi)FC , it follows
that hjFCF ≤ hjFC , where hjFCF and hjFC denote the solutions of Algorithm
5.3 with C(ωi)FCF and C(ωi)FC respectively, which, together with (5.2.4),
leads to McjFCF ≤ McjFC i.e., the marking in control places under C(ωi)FCF

is equal to or less than that under C(ωi)FC . Based on the result in [111],
it holds that more controllable transitions may be disabled under C(ωi)FC .
This completes the proof.  

Remark 5.7 The observer-based controller may be more restrictive than that
obtained when the actual marking is known, which may lead to a deadlock,
under such case, the concept of Siphon can be used to prevent the PN from
the deadlock as in [71],[54] and [73].

Even the GMEC L is satisfied, the unideal markings may affect the op-
timality of the continuous PN, e.g., in our transportation system, this cor-
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responds to the case where lights do not switch following the prescribed
sequence, such that before the flow from one input road completely passes
through the first part of the bridge, the flow from another input road gets
in, this makes the distance between vehicles less than Dsafe. We discuss the
FTC problem at the level of continuous PN in this section.

The reconfiguration of continuous PN is achieved by adjusting the firing
speed of transitions t ∈ TCD as shown in the following algorithm. Two time
instants τ s

i and τ e
i denote respectively, when the transition ti starts firing and

ends firing.

Algorithm 5.4 Reconfiguration of continuous PN using observer

1. Given the current time instant τ0.
If the transition t1 ∈ TCD starts firing at τ0 then
Find the transition t2 ∈ TCD that fired most recently, capture the time
information (τ ••

2 )s, (τ ••
2 )e, go to 2

else, go to 5.
end if.

2. If (τ ••
2 )e ≤ τ0 then

Go to 3,
else go to 4,
end if.

3. If the equations

{
1
2
a · (t′)2 + at′t′′ = M b − Dsafe

t′ + t′′ =
Mb−v2·df

i

v2

have the positive solutions t′ and t′′, then
Set the firing speed v1(τ) = min{a(τ − τ0), at′, vmax

1 },
else set v1(τ) = min{a(τ − τ0), v

max
1 }

end if, go to 5.

4. Let v1 = 0 until the firing of t••2 ends. Then let v1(τ) = min{a(τ −
(τ ••

2 )e), v2} after the time τ = (τ ••
2 )e.

5. Go to 1. ¥

Algorithm 5.4 can always be applied without consideration whether there
is a fault or not. For the faulty status that makes the distance larger, Step
3 accelerates the firing speed v1 such that the distance converges to Dsafe.
On the other hand, for the status that shortens such distance, Step 4 sets v1
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to zero until t••2 end firing. These two schemes guarantee the optimality of
continuous PN related to our application.

Example 5.4 (continued): Now we apply the proposed method to the
intelligent transportation process of AVs on the bridge. Let us come back to
the HPN model in Fig. 5.15. It can be obtained that L = {M ∈ N12|M(g1)+
M(g2) + M(g3) ≤ 1}, i.e., only one green light can be activated at one time.
Li = {M ∈ N12|M(gi) + M(rj) + M(rh) = 3,M(yp) + M(rq) + M(rm) =
3, i 6= j 6= h, p 6= q 6= m, with the green light sequence g1 → g2 → g3 → g1,
and dg

i = 57s, dy
i = 3s, dr

i = 120s}, this means that if one green light or one
yellow light is activated, the other two should be red lights. We also suppose
that if more than one green light can be activated simultaneously, the green
light that satisfies the ideal marking set is chosen to avoid the conflict. In
the simulation, the firing speed is vnormal = 8m/s, the acceleration of each
AVs flow at beginning is a = 2m/s2, the length of the bridge is 4855m.

Let us first consider the faulty-free case to show the performance of
observer-based controller. The macromarking is







M(g1) + M(y1) + M(r1) = 1
M(g2) + M(y2) + M(r2) = 1
M(g3) + M(y3) + M(r3) = 1

(5.2.6)

The initial marking is

M(g1)M(y1)M(r1)M(p1)M(g2)M(y2)M(r2)M(p2)M(g3)M(y3)M(r3)M(p3)

= (100000100010)

which is unknown. The system is initialized when tpf
1 fires, i.e., the AVs flow

from the first input roads is getting into the bridge. The firing of tpf
1 can

help to estimate the marking. Fig. 5.17 shows the evolution of the estimation
based on Algorithm 5.2, which shows that the estimate is the low bound of
actual marking, and equal to the actual marking after t6 fires, which verifies
propositions 5.1 and 5.2. The Fig. 5.18 shows the controller designed from
Algorithm 5.3. In the healthy case, the marking always belongs to Li. Fig.
5.19 illustrates the AVs flows on the bridge, where the accelerating behavior
is not reflected. We can see that the AVs flows from three input roads keep
the prescribed distance Dsafe = 40m with each other.

The following 4 faulty cases are simulated:
Case 1: ∃t1f ∈ Tf as shown in Fig. 5.20. In this case, after t2 fired,

more consistent markings have to be provided. Note that Assumption 5.1 is
satisfied, since after t2 fired, t2 is impossible to fire again before t9 or t1f fires.
If t1f really occurs, it can be diagnosed once t2 fires as shown in Lemma 5.3.
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Figure 5.18: Timed-PN in the healthy case
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Figure 5.19: The AVs flow on the bridge in the healthy case
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Fig. 5.21 shows the marking estimation which illustrates Algorithms 5.1, 5.2,
one complementary marking estimate is required. After t2 fires, the marking
estimate is updated by the complementary estimate. Propositions 5.1 and
5.2 can also be verified, indeed, min{M e

ωi
,M c

ωi+1
} ≤ Mωi

, for 1 ≤ i ≤ 5, and
e(Mωi

,M e
ωi

) ≥ e(Mωi+1
,M e

ωi+1
) for 0 ≤ i ≤ 2, e(Mω3 ,M

e
ω3

) = e(Mω5 ,M
e
ω5

).

If t9 fires before t2, then it is determined that t1f does not occur. The fault
tolerant controller after t2 fired is also given in Fig. 5.20, which ensures that
t1f does not violate the GMEC. Even t1f and t3 fire simultaneously, GMEC is
still maintained.
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Case 2: ∃t1f , t
2
f ∈ Tf as shown in Fig. 5.23. Note that LC(·, t2f ) 6= 0,

which violates the condition in [111] and [73]. Two complementary marking
estimates are required. The Tf -subnet is FC since t1f and t2f share the same
input place r1. However, the controller after t2 fired, shown in Fig. 5.22
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is less permissive than that in Case 1. Due to possible fault t2f which may
activate g1, the controller must disable t3, i.e., the green light g2 can not be
activated. This verifies the Proposition 5.3. In fact, under t2f , the system
gets deadlock unless t2f really occurs.
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Figure 5.22: Timed-PN in the faulty case 2

Case 3: ∃t1f ∈ Tf which occurs at 87s, as in Fig. 5.23, the controller
after t3 fired, shown in Fig. 5.25 is the same as in Case 1, since L will not
be violated. However, the performance of the continuous PN is affected.
According to Algorithm 5.4, set the firing speed of tbf3 to zero until the time
tbs2 stops firing. Fig. 5.24 shows the AVs flows on the bridge, from which we
can see that the prescribed distance is still kept.
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Figure 5.23: Timed-PN in the faulty case 3

Case 4: ∃t1f ∈ TIMEf such that dy
2 = 8, i.e., the firing of t5 lasts 8s.

Such fault also affects the continuous PN. After the first part of the bridge
becomes empty, the AVs flow from the 3th input road still stops and does
not get into the bridge. According to Algorithm 5.4, we could accelerate the
firing speed of tbf3 as at′ = 8.066m/s to accommodate this fault, the AVs
flows are presented in Fig. 5.25, where the distance between AV2 and AV3
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Figure 5.25: The AVs flow on the bridge in the faulty case 4
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converges to Dsafe, and finally equals Dsafe when AV1 completely leaves the
bridge.

5.3 Conclusion

In this Chapter, we have provided a new clue to investigate FTC problem
of hybrid systems, that is from discrete event point of view. It has been
shown that whatever the finite state machine or Petri net mode is used, dis-
crete faults can be accommodated effectively, The continuous system theories
described in chapters 2-4 are limited to deal with such kind of faults.

In Section 5.1, the continuous faults can also be considered qualitatively
in the QA of the proposed hierarchical model. The sign of the vector field
would change due to continuous faults, fault tolerance analysis could be done
by rebuilding the continuous transition sequence, and checking whether the
designed discrete switching sequence is available for the reconstructed system.

In Section 5.2, the FTC design that deals with faults in both discrete
and continuous PNs is still an open problem. In this case, the continuous
system theory could be extended under the continuous Petri net framework,
which combines the proposed results in this chapter could provide a solution
to such problem.

168



Chapter 6

Hybrid control approach in FTC de-
sign

The potential faults in a system often range over a very large region. A sin-
gle controller (even an adaptive one) is hard to stabilize all faulty situations
effectively. However, hybrid control approach can significantly improve the
FTC performances including robustness, the speed of response, and optimal-
ity, etc. In this chapter, we apply the results of HS proposed in Section 2 to
hybrid control design in the FTC system. Three supervisory FTC algorithms
are developed. Finally, A four-wheel-steering and four-wheel-driving electric
vehicle in LAGIS laboratory is particularly focused on whose actuator faults
are analyzed systematically and the hybrid fault tolerant tracking control
approach is applied.

6.1 Supervisory FTC via hybrid system approaches

Hybrid control seeks to achieve system’s performance objectives by switching
between members of an a priori specified family of feedback controllers. One
of the motivations of HS research arises from the hybrid control problem.
HS could present different control configurations. Commutation from one
configuration to another one is described using discrete event system model
as claimed in [149] and [120] and [121]. Thus the controlled system becomes
hybrid due to the switching control.

The potential faults in a system often range over a very large region. A
single controller (even an adaptive one) is hard to stabilize all faulty situ-
ations effectively. The supervisory FTC approach assumes that the plant
model belongs to a pre-specified set of models, including the nominal situ-
ation and all possible faulty situations, and that there exists a finite family
of candidate FTC laws controllers such that the faulty system is stabilized
when controlled by at least one of those candidate controllers.
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Consider the general nonlinear system

ẋ(t) = G(x(t), u(t), f(t)) (6.1.1)

y(t) = H(x(t), f(t)) (6.1.2)

with measurable states x ∈ X ⊂ ℜn, inputs u ∈ U ⊂ ℜp, outputs y ∈ Y ⊂
ℜm. Process and/or actuator and/or sensor faults are represented by the
function f ∈ F =

⋃

i∈Q={1,...,M} Fi ⊂ ℜq and Fi is the set of fault vectors
that are associated with fault mode number i and fault free operation is fault
mode FM = {0} . Both G and H are smooth functions.

The classical supervisory FTC approach follows three steps [149]: 1) De-
tect the occurrence of faults; 2) Identify the current fault mode; 3) Switch
to the related controller as shown by Fig. 6.1(a). This scheme obviously
introduces a FDI delay to identify the current fault mode. During this delay,
the faulty system is controlled using an inappropriate controller, which may
result in an unstable behavior.

In our proposed schemes in this section, a sequence of controllers are
switched, until the appropriate one is found (Fig. 2(b)). A delay in selecting
the correct controller (selection delay) still exists, but no isolation algorithm
is required (only fault detection is needed), which makes the scheme simpler
and more easily verifiable. Moreover, this selection delay can be controlled,
and conditions for the state to remain bounded during this delay can be
exhibited.
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Figure 6.1: FTC framework

The novelty of the proposed approaches in this section is twofold:

1) The states are ensured to be bounded during the FDI delay and the
functionality of the system is preserved throughout the FDI/FTC pro-
cess.
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2) Unlike the multiple model FDI /FTC method [198, 18] or supervisory
control technique [191], we do not need a series of models or filters to
work concurrently with the plant in order to identify the current situ-
ation. The proposed methods only rely on a simple switching scheme
among candidate controllers.

6.1.1 FTC via overall regulation

We first apply the overall regulation theories in Section 2.2 to supervisory
FTC design. Consider the system (6.1.1)-(6.1.2) with the fault and regulated
error defined as

ḟi(t) = Si(fi(t)), ∀i ∈ Q, ∀t ≥ tf , with fi(t) = 0 ∀t ∈ [0, tf )(6.1.3)

e(t) = y(t) − yr(x(t)) (6.1.4)

Supposed that Si is neurally stable. The initial fault value fi(tf ) are assumed
to be known as a constant f(in)i.

Assumption 6.1 There exists a family of controllers ui = αi(x, fi) for fi ∈
Fi, i ∈ Q solving the fault tolerant regulation problem (FTRP) for system
(6.1.1)-(6.1.4).

Assumption 6.1 means that the FTRP of the plant with each fault is
solvable under a candidate controller.

Now we consider fault detection problem. Recall the materials in Section
2.2. It can be seen from Theorem 2.3 and Assumption 6.1 that under the FTC
law ui, the system (6.1.1)-(6.1.3) with fi has a center manifold x = πi(fi)
[75]. We further obtain that the equilibrium (x, fi) = (0, 0) of system (6.1.1)
and (6.1.3) is stable and this center manifold is locally attractive, i.e.,

|x(t) − πi(fi(t))| ≤ Bie
−ai(t−tik)|x(tik) − πi(fi(tik))| for Bi, ai > 0 (6.1.5)

where tik denotes the time at which controller ui(t) is applied for the kth

time.
The following assumption means that all modes are discernable.

Assumption 6.2 Inequality (6.1.5) does not hold if the system (6.1.1)-(6.1.3)
is controlled by uj, ∀j ∈ Q \ {i}.

Consider a time window where the control law ui and the fault fi are in
adequacy, therefore (6.1.5) holds, and a simple fault detection law is given

|x(t) − πi(fi(t))| > Bie
−ai(t−tik)|x(tik) − πi(fi(tik))| =⇒ detection (6.1.6)
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Proposition 6.1 Under assumptions 6.1 and 6.2, the fault detection law
(6.1.6) is implementable.

Proof : Note that the state is measurable. Without loss of generality,
suppose that there is no fault at the beginning of the system process. The
healthy system (6.1.1)-(6.1.3) with i = 0 is controlled by u = α0(x, 0). Ac-
cording to Assumption 6.1 and (6.1.5), we have

|x(t)| ≤ B0e
−a0t|x(0)|, t ≥ 0 (6.1.7)

Once a fault occurs at t = tf , Assumption 6.2 ensures that (6.1.7) is violated.
The following inequality holds

|x(tfd)| > B0e
−a0tfd |x(tfd)| (6.1.8)

where tfd ≥ tf , thus the fault can be detected using the detection law (6.1.6)
at t = tfd. Note that x is still bounded at t = tfd.

Next consider t ≥ tik at which the system (6.1.1)-(6.1.3) has the fault fi

and is controlled by u = αi(x, fi) (the accurate value of fi can be approxi-
mated via the proposed supervisory FTC scheme as shown later). Inequality
(6.1.5) holds for t ≥ tik. Once a fault occurs at t = tf ≥ tik, we can also find
a tfd ≥ tf such that (6.1.5) is violated for t ≥ tfd, which implies that the
fault can be detected using (6.1.6) at t = tfd. This completes the proof.  

The fault detection may have a short time delay tfd− tf . Due to the time
varying threshold, tfd − tf is often much shorter than the activating period
of the mode. The effect of this delay is acceptable in the practical situation.
In the following discussion, we assume that there is no fault detection delay,
i.e., tfd = tf .

We propose a novel fault isolation method based on control switching.
Since a series of controllers have been designed a priori for the plant with
different faults, the fault isolation problem boils down to the problem of
finding the correct controller. Such fault isolation approach also integrates
the FTC problem, since the correct controller can be directly applied.

Define σ(t) : [0,∞) → Q as the switching function of the candidate
controllers, which is assumed to be a piecewise constant function continuous
from the right. Denote by t0, t1, t2, ... the switching instants of σ(t). These
notations will also be used in sections 6.1.2-6.1.3. To exhaustively span all
controllers, we will pick a non-repeated switching sequence of controllers as
in the following definition.

Definition 6.1 A switching sequence of controllers is said to be non-repeated
if σ(ti) 6= σ(tj) for i ≥ 0, j ≥ 0, and i 6= j.

172



CHAPTER 6. HYBRID CONTROL APPROACH IN FTC DESIGN

Theorem 6.1 Consider a system (6.1.1)-(6.1.4), and a family of controllers
ui satisfying assumptions 6.1, 6.2. Suppose that a fault f ∈ Fι, ι ∈ Q occurs
and is detected simultaneously at t = tf via the threshold (6.1.6), then there
exists a control switching scheme such that the FTRP of system (6.1.1)-
(6.1.4) is solvable ∀t ≥ tf .

Proof : Choose a constant β > 1. The switching law is designed as:

Algorithm 6.1 Switching law of the controllers

1. Denote t0 = tf ; Let s = 0; Define Q⋆ , Q − {σ(tf )}; Set σ(t0) = i⋆

where
i⋆ = arg min

i∈Q⋆

(

y(t0) − yr(πi(f̂i(t0)))
)

(6.1.9)

with f̂i the fictitious fault generated from the system
˙̂
f i = Ŝi(f̂i) with

the function Ŝi(·) = Si(·), the initial f̂i(t0) = f(in)i.

2. Choose t1+s such that

|x(t1+s) − πi⋆(f̂i⋆(t1+s))| ≤ M−1
√

β|x(ts) − πi⋆(f̂i⋆(ts))| (6.1.10)

If |x(t1+s) − πi⋆(f̂i⋆(t1+s))| ≤ Bi⋆e
−ai⋆ (t−ts)|x(ts) − πi⋆(fi⋆(ts))|

then apply the controller uσ(ts)(t) ∀t ≥ t1+s; Stop the switching.
else, go to 3.

3. Let Q⋆ = Q⋆ − {σ(ts)}; Set σ(t1+s) = i⋆ where

i⋆ = arg min
i∈Q⋆

(

y(t−1+s) − yr(πi(f̂i(t
−
1+s)))

)

(6.1.11)

Apply the controller uσ(t1+s)(t) at t = t1+s; Let s = s + 1; Go to 2. ¥

We shall prove that Algorithm 6.1 solves the FTRP.
Note that the performance driven switching sequence obtained from (6.1.9)

and (6.1.11) is non-repeated, since at each switching instant, the next con-
troller is selected from the set Q⋆ where the uncorrect controller activated
before has been removed (Step 3). Thus at most M − 1 switchings occur be-
fore the controller uι(t) related to f ∈ Fι is applied. We consider the worst
situation that σ(tM−2) = ι. The results in other situations are obtained
straightly.

Because the function Ŝi(·) = Si(·), the initial f̂i(t0) = f(in)i, and the fault
detection delay is not considered, there must be one fictitious fault signals
f̂i which is the same as the real fault signal fi. Note that β > 1 and control
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mode σ(t0) is faulty, according to Assumption 6.2, we can choose t1 > t0
such that (6.1.10) holds with s = 0.

Since σ(tM−2) = ι, it holds that f̂σ(tM−2) = fσ(tM−2). By induction, we can
obtain for t ≥ tM−1

|x(t) − πσ(tM−2)(fσ(tM−2)(t))|
≤ βBe−a(t−tM−2)|x(t0) − πσ(t0)(f̂σ(t0)(t0))|

+Be−a(t−tM−2)

M−1∑

s=1

(

β
s

M−1 |πσ(tu
M−1−s

)(f̂σ(tM−1−s)(tM−1−s))

−πσ(tM−s)(f̂σ(tM−s)(tM−s))|
)

(6.1.12)

Inequality (6.1.12) means that x−πσ(tM−2)(fσ(tM−2)) converges to zero ∀t ≥ tf .
It follows that limt→0 e(t) = 0.  

Remark 6.1 Under Algorithm 6.1, the switching stops after a finite time.
Assumption 6.2 could be loosened as inequality (6.1.5) still holds under non-
relevant controllers. In this case, the FTRP of one faulty plant can be solved
by multiple candidate controllers. Less switching numbers are required, and
the controller that terminates Algorithm 6.1 maybe not relevant to the current
situation. This means that the fault is not isolated accurately. However the
FTC goal is still achieved.

Remark 6.2 The transient behavior during the controller setting delay largely
depends on the value of β. A large β may result in a large overshoot, whereas
a small β would make the controllers switch too fast, which may lead to
some unexpected phenomena. Section 6.1.3 makes some discussions about
this point. Optimal selection of β is still an open problem that deserves fur-
ther investigation.

Example 6.1 : A DC motor investigated in [148] is employed to illustrate a
potential application field of our approach. x = [θm, ωm]T is the state, where
θm, ωm denote the angular position and velocity of the motor. The system
model is:

θ̇m = ωm

ω̇m = − κe

Jm

sin(θm) − b

Jm

ωm +
c

Jm

u

y = θm + f1 (6.1.13)

e = y − yr = y − 2θm = −θm + f1
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where Jm denotes the inertia of the motor. κe > 0 is the elasticity constant.
u is the voltage. b and c are the related viscous friction coefficients and the
amplifier gain. f1 denotes the sensor fault.

In the fault-free case, design the controller u = K(x) = Jm

c

(
κe

Jm
sin(θm) +

b
Jm

ωm + K1θm + K2ωm

)

such that the matrix

[
0 1

K1 K2

]

is Hurwitz. This

leads to the asymptotical stability of the origin x = 0.
For the sake of clearness, we denote (·)(i) as the parameter of mode i.

Three sensor faulty cases are considered as follows which result in a deviation
of the output signal from normal:

f(1) : y = θm + f1 (6.1.14)

f(2) : y = θm + 2f1 (6.1.15)

f(3) : y = θm + 4f1 (6.1.16)

where f1 is generated by the following exosystem

{
ḟ1 = f2

ḟ2 = −f1
(6.1.17)

Choosing a mapping x = π(1)(f) =

[
π(1)1(f)
π(1)2(f)

]

=

[
f1

f2

]

leads to

∂π(1)1(f)

∂t
= π(1)2(f)

∂π(1)2(f)

∂t
= − κe

Jm

sin(π(1)1(f)) − b

Jm

π(1)2(f) +
c

Jm

C(f)

0 = y(π(1)(f)) − yr(π(1)(f)) (6.1.18)

where C(1)(f) = Jm

c

(
κe

Jm
sin(π(1)1(f))+ b

Jm
π(1)2(f)−π(1)1(f)

)

. We can design

the fault tolerant regulation law for fault mode 1 as

u(1) = α(1)(x, f) = C(1)(f) + K(x) − K(π(1)(f)) (6.1.19)

It is clear that controller (6.1.19) solves the FTRP.

Similarly, we choose two mappings π(2)(f) =

[
2f1

2f2

]

, π(3)(f) =

[
4f1

4f2

]

,

design

C(2)(f) =
Jm

c

( κe

Jm

sin(π(2)1(f)) +
b

Jm

π(2)2(f) − π(2)1(f)
)
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Figure 6.2: Fault detection

C(3)(f) =
Jm

c

( κe

Jm

sin(π(3)1(f)) +
b

Jm

π(3)2(f) − π(3)1(f)
)

The FTC law can be provided as

u(2) = α(2)(x, f) = C(2)(f) + K(x) − K(π(2)(f)) (6.1.20)

u(3) = α(3)(x, f) = C(3)(f) + K(x) − K(π(3)(f)) (6.1.21)

Controllers (6.1.20) and (6.1.21) solve the FTRP for fault modes 2 and 3
respectively. Assumption 6.1 is verified.

In the simulation, the parameters are Jm = 0.935 kgm2, b = 1.17 Nms/rad,
κe = 0.311 Nm/rad, c = 20.196 Nm/V . Assume that f(1) occurs at t = 3s,
and Algorithm 6.1 is applied. Fig. 6.2 shows that the fault f(1) is detected at
nearly t = 3s using threshold (6.1.6). We choose β = 1.5. The non-repeated
switching sequence obtained from (6.1.38) and (6.1.40) is u(2) → u(1). The
dwell period of u(1) is 0.245s; Once the fault is detected at t = 3s, u(2) is
applied, then switch to u(1) at t = 3.245s. f(2) is assumed to occur at t = 8s.
Fig. 6.3 shows the trajectories of the states and the regulated error, which
means that the FTRP is solved.

6.1.2 FTC via global dissipativity

In this section, we extend the global passivity concept developed Section 2.4
and apply it to the supervisory FTC design.
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Figure 6.3: Trajectories of x and e

Definition 6.2 [21] A system (6.1.1)-(6.1.2) with f ≡ 0 is dissipative if
there exists a nonnegative function V : X → ℜ, which satisfies V (0) = 0,
called the storage function, and a supply rate W (y, u), such that for all initial
states x(0) ∈ X, u ∈ U , y ∈ Y and t ≥ 0

V (x(t)) − V (x(0))
︸ ︷︷ ︸

stored energy

≤
∫ t

0

W (y(s), u(s))ds

︸ ︷︷ ︸

supplied energy

(6.1.22)

where x(t) are the states at time t.

Definition 6.2 is more general than Definition 2.6. Similarly to assump-
tions 6.1 and 6.2, the following assumption ensures the recoverability of each
fault mode and discernability of all modes.

Assumption 6.3 There exist a family of functions Vi(x) ∈ C1(ℜn; R≥0) and
functions αi

1, α
i
2 ∈ K∞, φi

1 < 0, and φi
2 ≥ 0 such that

∀i ∈ Q : αi
1 (|x|) ≤ Vi(x) ≤ αi

2 (|x|) (6.1.23)

u = ui(t) =⇒
{

f ∈ Fi : Vi(x(t)) − Vi(x(tik)) ≤
∫ t

tik
φi

1(s)ds

f ∈ Fj, j 6= i : Vi(x(t)) − Vi(x(tik)) ≤
∫ t

tik
φi

2(s)ds

(a)
(b)

(6.1.24)
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Remark 6.3 Assumption 6.3 explicitly addresses the behavior of the plant
under the correct controller (u = ui(t) when f ∈ Fi ) or incorrect ones
(u = ui(t) when f ∈ Fj, j 6= i ). For faults f ∈ Fi, the controller ui(t) makes
the plant still dissipative, as it can be seen from (6.1.24)(a), which means
that all fault modes are recoverable. For faults f /∈ Fi, the function Vi may
increase due to more stored energy. This implies that x may escape to a large
region or infinity.

We first address fault detection issue. Consider a time window where the
control law and the fault mode are in adequacy, therefore (6.1.24)(a) holds.
Once a fault occurs, the constraint (6.1.24)(a) may be violated. Similarly to
the diagnosis idea in Section 2.4.1, we have

Vi(x(t)) − Vi(x(tik)) ≤
∫ t

tik

φi
1(s)ds +

∫ t

0

[∂Vi

∂x
(x)

]⊤
f(x(s), ui(s))ds

︸ ︷︷ ︸

“fault” energy Ef

(6.1.25)

As indicated in (6.1.25), the energy dissipativity property changes due to
the fault. A fault detection law is given as

Vi(x(t)) − Vi(x(tik)) >

∫ t

tik

φi
1(s)ds =⇒ detection (6.1.26)

so that tfd is the first time at which inequality (6.1.24)(a) is violated. Note
that the faults with Ef < 0 are not necessary to be detected since they do
not change the energy dissipativity.

Define σ(t) : [0,∞) → Q and t0, t1, t2, ... as in Section 6.1.1. The following
theorem provides a supervisory FTC scheme.

Theorem 6.2 Consider a system (6.1.1)-(6.1.2) and a family of controllers
satisfying (6.1.23)-(6.1.24) and assumption 6.3. Suppose that a fault f ∈ Fι,
ι ∈ Q occurs at t = tf and is detected at t = tfd via the threshold (6.1.26),
then there exists a control switching scheme such that the origin of the system
is stable for all t ≥ tf .

Proof : Choose a constant β > 0. The switching law is designed as:

Algorithm 6.2 Switching law of the controllers

1. Denote t0 = tfd; Let s = 0; Define Q⋆ , Q − {σ(tf )}; Set σ(t0) = i⋆

where
i⋆ = arg min

i∈Q⋆
Vi(x(t−0 )) (6.1.27)
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2. Choose t1+s such that

Vσ(t−1+s)
(x(t−1+s)) − Vσ(ts)(x(ts)) ≤

β

M − 1
(6.1.28)

If Vσ(t−1+s)
(x(t−1+s)) − Vσ(ts)(x(ts)) ≤

∫ t−1+s

ts
φ

σ(ts)
1 (s)ds

then apply the controller uσ(ts)(t) ∀t ≥ t1+s; Stop the switching.
else, go to 3.

3. Let Q⋆ = Q⋆ − {σ(ts)}; Set σ(t1+s) = i⋆ where

i⋆ = arg min
i∈Q⋆

Vi(x(t−1+s)) (6.1.29)

Apply the controller uσ(t1+s)(t) at t = t1+s; Let s = s + 1; Go to 2. ¥

We shall prove that Algorithm 6.2 implies the stability.
Note that at most M − 1 switchings occur before the controller uι(t)

related to f ∈ Fι is applied. We consider the worst case that σ(tM−2) = ι.
The results for other cases are obtained straightly.

Since β > 0, and control mode σ(t0) is non-dissipative, it follows from
(6.1.24)(b) that we can choose t1 > t0 such that Vσ(t−1 )(x(t−1 ))−Vσ(t0)(x(t0)) ≤

β
M−1

. We further have from (6.1.23) that

|x(t−1 )| ≤ (α
σ(t0)
1 )−1 ◦

(
β

M − 1
+ α

σ(t0)
2 (|x(t0)|)

)

(6.1.30)

Note that the fault detection law ensures that x(t0) is bounded, thus x(t−1 )
is also bounded since the increasing stored energy is bounded during [t0, t1).

By induction, it can be obtained at t = tM−1 that

Vσ(tM−1)(x(tM−1)) − Vσ(t0)(x(t0)) − Etr(x(t0)) ≤ β (6.1.31)

where Etr =
∑Nσ(tM−1)

k=1

[

Vσ(tk) − Vσ(t−
k

)

]

. The correct controller uι is se-

lected and applied ∀t ≥ tM−1, we have

Vι(x(t)) − Vι(x(tM−1)) ≤
∫ t

tM−1

φι
1(s)ds, t ≥ tM−1 (6.1.32)

for φι
1 < 0.

Combining (6.1.31) with (6.1.32) leads to

Vι(x(t)) − Vσ(t0)(x(t0)) − Etr(x(t0)) ≤
∫ t

tM−1

φι
1(s)ds + β (6.1.33)
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Since φι
1(s) < 0, β > 0 is a bounded constant, there exists a time instant

t > tM−1 such that the inequality (6.1.33) satisfies the condition (2.4.8) in
Definition 2.7 (global passivity). This means that the system is periodically
fault tolerant dissipative during [t0, t). On the other hand, it follows from
(6.1.26) that during [tf , t0), the energy is still dissipative. The stability result
follows from Theorem 2.7.

For the general case where uι(t) is selected before M − 2 switchings occur,
we can verify (6.1.33) with β∗ instead of β where β∗ < β.  

6.1.3 FTC via gain technique

The gain technique proposed in Section 2.5 is utilized to supervisory FTC
design. Consider the system (6.1.2), the following assumption ensures the
recoverability of each fault mode and discernability of all modes.

Assumption 6.4 There exists a family of continuous non-negative functions
Vi(x) : ℜn → ℜ≥0, and functions αi

1, α
i
2, γ ∈ K∞, φi

1 ∈ KL, and φi
2 ∈ GKL

such that
∀i ∈ Q : αi

1 (|x|) ≤ Vi(x) ≤ αi
2 (|x|) (6.1.34)

u = ui(t) =⇒
{

f ∈ Fi : Vi(x (t)) ≤ φi
1 (Vi (x (tik)) , t − tik)

f ∈ Fj, j 6= i : Vi(x (t)) ≤ φi
2 (Vi (x (tik)) , t − tik)

(a)
(b)

(6.1.35)

Let us consider a time window where the control law and the fault mode
are in adequacy, therefore (6.1.35)(a) holds, and a simple fault detection law
is given by

Vi(x (t)) > φi
1 (Vi (x (tik)) , t − tik) =⇒ detection (6.1.36)

so that tfd is the first time at which inequality (6.1.35)(a) is violated.

Assumption 6.5 There exists a known constant χ ≥ 1 such that

χ = max
j∈Q,k=1,2...

φj(Vj(x(tjk)), 0)

Vj(x(tjk))
(6.1.37)

Assumption 6.5 is similar to Assumption 2.11, which is required for the
switching control design as shown in the following theorem. Note that φσ(ti)

will be taken instead of φ
σ(ti)
2 in (6.1.35)(b) only.

Theorem 6.3 Consider a system (6.1.1) and a family of controllers satisfy-
ing (6.1.34)-(6.1.35) and assumptions 6.4-6.5. Suppose that a fault f ∈ Fι,
ι ∈ Q occurs at t = tf and is detected at t = tfd via the threshold (6.1.36),
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then there exists a control switching scheme such that x is bounded for all
t ≥ tf .

Proof : Choose a constant β > max[(M − 2)(1 + χ)χM−2, (M − 2)(M −
3)χM−3], where χ is defined in (6.1.37). The switching law is designed as:

Algorithm 6.3 Switching law of the controllers

1. Denote t0 = tfd; Let s = 0; Define Q⋆ , Q − {σ(tf )}; Set σ(t0) = i⋆

where
i⋆ = arg min

i∈Q⋆
Vi(x(t0)) (6.1.38)

2. Choose t1+s such that

s∑

k=0

( s∏

j=k

φ
tj+1−tj
σ(tj)

V
tj
σ(tj)

)

≤ β

(M − 2 − s)χM−2−s
− 1 (6.1.39)

If Vσ(ts)(x(t1+s)) ≤ φ
σ(ts)
1 (Vσ(ts)(x(ts)), t − ts)

then apply the controller uσ(ts)(t) ∀t ≥ t1+s; Stop the switching.
else, go to 3.

3. Let Q⋆ = Q⋆ − {σ(ts)}; Set σ(t1+s) = i⋆ where

i⋆ = arg min
i∈Q⋆

Vi(x(t1+s)) (6.1.40)

Apply the controller uσ(t1+s)(t) at t = t1+s; Let s = s + 1; Go to 2. ¥

Algorithm 6.3 implies the stability. The proof is quite similar to that of
Theorem 2.12, and is omitted.  

It can be seen from Algorithm 6.3 that switching among a large number of
controllers may result in a large β. In the following, the transient performance
is improved by reducing the number of switchings.

Assumption 6.6 There exists a family of continuous non-negative functions
Ṽi(x) : ℜn → ℜ≥0, ∀i ∈ M and γ̃ ∈ K∞, ξi ∈ GKL such that

Ṽi(x(t)) ≤ ξi(Ṽi(x(tjk)), t − tjk) (6.1.41)

∀f ∈ Fi, u = uj(x), j 6= i, t ≥ tjk, k = 1, 2, ...

The following table shows the difference between Assumption 6.6 and
Assumption 6.4. Assumption 6.4 assumes the existence of functions such
that (6.1.35)(a) and (6.1.35)(b) are satisfied (rows 1 and 3 in the table)
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Table 6.1: Comparing Assumptions 6.4 and 6.6

Fault Control Assumption
1 f ∈ Fi u = ui(x) Vi(x (t)) ≤

φi
1 (Vi (x (tik)) , t − tik)

2 f ∈ Fi u =
uj(x), j 6= i

Ṽi(x (t)) ≤
ξi

(

Ṽi (x (tjk)) , t − tjk

)

3 f ∈ Fj, j 6= i u = ui(x) Vi(x (t)) ≤
φi

2 (Vi (x (tik)) , t − tik)

while Assumption 6.6 adds the existence of functions that satisfy also the
conditions on row 2.

Note that the inequality (6.1.41) may still hold for f 6∈ Fi. However, the
converse is not true, i.e., if (6.1.41) is violated, it must hold that f 6∈ Fi.
Inequality (6.1.41) can be obtained a priori when a family of candidate FTC
laws are designed.

Algorithm 6.4 Accelerating switching law of the controllers

1. Denote t0 = tfd; Let s = 0; Define M⋆ , Q − {σ(tf )}; Set σ(t0) = i⋆

where
i⋆ = arg min

i∈Q⋆
Vi(x(t0))

2. Choose t1+s such that

s∑

k=0

( s∏

j=k

φ
tj+1−tj
σ(tj)

V
tj
σ(tj)

)

≤ β

(M − 2 − s)χM−2−s
− 1 (6.1.42)

If Vσ(ts)(x(t1+s)) ≤ φ
σ(ts)
1 (Vσ(ts)(x(ts)), t − ts)

then apply the controller uσ(ts)(x) ∀t ≥ t1+s; Stop the switching.
else, let Q⋆ = Q⋆ − {σ(ts)}; Go to 3.

3. Set σ(t1+s) = i⋆ where

i⋆ = arg min
i∈M⋆

Vi(x(t1+s))

If Ṽσ(ti⋆ )(x(t1+s)) > ξσ(ti⋆ )(Ṽσ(ti⋆)(x(ts)), t − ts)
then let Q⋆ = Q⋆ − {σ(ti⋆)}; Go to 3.
else, apply uσ(t1+s)(x) at t = t1+s; Let s = s + 1; Go to 2. ¥
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The main idea behind Algorithm 6.4 is that at each switching instant,
we check whether the fault mode satisfies (6.1.41), and remove incorrect
candidate controllers from the switching sequence.

We shall prove that Algorithm 6.4 improves the transient behavior w.r.t.
Algorithm 6.3. Denote x(tA1) σ(tA1) and tA1|s (respectively x(tA2) σ(tA2)
and tA2|s) the state trajectory, switching function and the sth switching time
under Algorithm 6.3 (respectively Algorithm 6.4). We have the following
result.

Corollary 6.1 Consider a nonlinear system (3.3.2) and a family of con-
trollers satisfying (4.2.6)-(6.1.35) and assumptions 6.4-6.6. Supposed that
a fault f ∈ Fι, ι ∈ M occurs at t = tf and is detected at t = tfd via the
threshold (6.1.6), then

1) Algorithm 6.4 guarantees that x is bounded for all t ≥ tf and the system
is ISS w.r.t. d̄ after the correct controller uι(t) is applied.

2) If σA2(tA2|s) = σA1(tA1|r) = ι, then |xA2(tA2|s)| ≤ |xA1(tA1|r)|.

Proof : 1) can be obtained following the same line as for Theorem 6.3.
2). Since the correct controller is selected after s+1 number of switchings

under Algorithm 6.4, it can be concluded that s ≤ r ≤ M−2. Let us consider
the worst case that r = M − 2.

Choose tA2|s as (6.1.42), we obtain

s−1∑

k=0

( s−1∏

j=k

φ
tA2|j+1−tA2|j

σ(tA2|j)

V
tA2|j

σ(tA2|j)

)

≤ β

(M − 1 − s)χM−1−s
− 1 (6.1.43)

Since s ≤ M − 2, we verify condition (2.5.5) with β∗ instead of β where
β∗ = β

M−1−s
≤ β at t = tA2|s.

It follows that

|x(tA2|s)| ≤ (α
σ(tA2|s)

1 )−1 ◦ β∗ᾱ(|x(t0)|) (6.1.44)

where ᾱ is defined in (2.5.19). Comparing (6.1.44) with (2.5.19) in Theorem
2.9 leads to the result. For the general case where r < M − 2, the result can
be obtained following above procedure.  

Example 6.2 : Consider a one-link manipulator, whose revolution joint is
actuated by a DC motor. The joint elasticity is modeled by a linear torsional
spring [77]. The states are the angular positions and velocities of the motor
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Table 6.2: Faulty cases

Fault mode Reason
Case
1

b is changed within [10m,
15m]

an increase in the friction of
the motor

Case
2

κ reduces to 25% ∼ 50% an unexpected change on
elasticity condition

Case
3

κ reduces to 50% ∼ 75% an unexpected change on
elasticity condition

Case
4

c is changed within
[30Nm/V, 40Nm/V ]

amplifier malfunction

and of the link x = [θm, ωm, θ1, ω1]
⊤. The control u is the torque delivered

by the motor. The state-space model is

θ̇m = ωm

ω̇m = − κ

Jm

(θ1 − θm) − b

Jm

ωm +
c

Jm

u

θ̇1 = ω1

ω̇1 = − κ

J1

(θ1 − θm) − mgh

J1

sin(θ1) (6.1.45)

where Jm and J1 denote respectively the inertia of the motor and of the link.
κ is the elasticity constant, b denotes the related viscous friction coefficient,
and c is the amplifier gain. The numerical values of the parameters given
in [77] are: Jm = 0.935 kgm2, J1 = 23.303 kgm2, κ = 45.440Nm/rad,
b = 1.169 Nms/rad, c = 20.196 Nm/V . mgh = 7.760Nm/rad.

Table 6.2 describes four considered faulty cases, where cases 1-3 are con-
cerned with process faults, and Case 4 is related to actuator faults. Con-
sequently, we divide F into five parts as F ⊂ ⋃

i∈Q={1,2,...,5} Fi, where Fi

is related to the fault values in Case i. F5 denotes the fault-free situation.
According to the FTC design procedure described in [77], we can design a
nominal controller u5(x) for the healthy plant and four candidate controllers
ui(x), i = 1, 2, 3, 4 for cases 1-4 respectively. The details are omitted here.
Moreover, for each controller ui, we can obtain Vi(x) = x⊤Hix where Hi is a
positive definite matrix. V5 denotes the function of the healthy plant.

In the simulation, suppose that Case 1 happens, b = 11.69m, we further
have

V1(x(t)) ≤ e−1.1840tV1(x(0)), ∀f ∈ F1, u = u1(x), t ≥ 0

V2(x(t)) ≤ e6.2893tV2(x(0)), ∀f ∈ F1, u = u2(x), t ≥ 0
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Figure 6.4: Fault detection

V3(x(t)) ≤ e18.8439tV3(x(0)), ∀f ∈ F1, u = u3(x), t ≥ 0

V4(x(t)) ≤ e1.4031tV4(x(0)), ∀f ∈ F1, u = u4(x), t ≥ 0

It can be seen that Assumption 6.2 is satisfied. In fact, the system with the
fault mode 1 is stabilized only by controller u1(x). Suppose that the initial
states are [1 0.4 0.5 0.1]⊤. Case 1 occurs at t = 1.5s, Fig. 6.4 shows that the
fault is detected at t = 2.343s using threshold (6.1.36).

Now we apply Algorithm 6.3 to achieve the FTC goal. It can be obtained
from (6.1.37) that χ = 1, this satisfies Assumption 6.5. Since there are
three unstabilizing controllers that may be activated, M − 2 = 3. We choose
β = 6.5 > 3×2. The non-repeated switching sequence obtained from (6.1.38)
and (6.1.40) is u2 → u3 → u4 → u1. Simple calculation based on (6.1.39)
of Algorithm 6.3 leads to the dwell periods of three controllers: 0.0245s
for u2(x); 0.0020s for u3(x); 0.3750s for u4(x). These dwell periods can be
determined without checking the value V t

σ(t). Once the fault is detected,

u2(x) is selected from (6.1.38) and applied at t = 2.343s, then switch to
u3(x) at t = 2.3675s, and switch to u4(x) at 2.3695s. At t = 2.7445s, the
fault is identified to be Case 1, the correct controller u1(x) is applied for
t ≥ 2.7445s. The blue lines in Fig.6.5 shows the state trajectories, it can be
seen that the FTC goal is achieved and during the delay [1.5s, 2.7445s), the
states are always bounded.
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Figure 6.5: state trajectories

Now we illustrate Algorithm 6.4. It follows from the control design pro-
cedure in [77] that

Ṽ2(x(t)) ≤ e12.4639tṼ2(x(0)), ∀f ∈ F2, u 6= u2(x), t ≥ 0

Ṽ3(x(t)) ≤ e24.7468tṼ3(x(0)), ∀f ∈ F3, u 6= u3(x), t ≥ 0

Ṽ4(x(t)) ≤ e4.3206tṼ4(x(0)), ∀f ∈ F4, u 6= u4(x), t ≥ 0

The obtained switching sequence is the same as that using Algorithm 6.3.
However, at the second switching instant, the controller u3(x) is removed
from the sequence using the Step 3 of Algorithm 6.4. It follows from (6.1.42)
that the dwell period of controller u4(x) becomes 0.0269s. Thus we first apply
u2(x) at t = 2.343s, then switch to u4(x) at t = 2.3675s. At t = 2.3944s,
the fault is identified to be Case 1, the correct controller u1(x) is applied
for t ≥ 2.3944s. The red lines in Fig.6.5 shows the state trajectories under
Algorithm 6.4, it can be seen that during the delay [1.5s, 2.7445s), the states
are also bounded, and the transient performance is better than that under
Algorithm 6.3.
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6.2 Hybrid control based FTC for automated vehicles

In the final section of this chapter, we investigate the path tracking problem
for four-wheel-steering and four-wheel-driving (4WS4WD) electric vehicles
with input constraints, actuator faults and the external resistance. A hybrid
FTC approach, which combines the linear quadratic control method in [151]
and the control Lyapunov function technique in Section 3.2 is proposed. It
not only maintains the vehicle’s tracking performance in spite of faults, input
constraints and the external resistance, but also reduces the cost of the fault
tolerant process. A prototype vehicle in LAGIS laboratory is particularly
focused on to illustrate the proposed approach.

6.2.1 Background

Electric vehicles (EV) are attracting a great deal of interest as a powerful
solution to environmental and energy problems [24]. The four-wheel steering
and four-wheel driving (4WS4WD) EV does not only take the advantage of a
4WD vehicle where the individual torque of each drive wheel can be controlled
independently [135], but also benefits from the 4WS structure where both the
steering positions of front wheels and rear wheels can be controlled [60, 113].
Such structure significantly improves EV’s lateral dynamics, especially in the
situation of path tracking [123], [112, 127].

Faults may lead to vehicle’s abnormal behaviors. The faults that mainly
degrade the vehicle’s performance include faults of sensors that provide im-
portant physical characteristics ( e.g., the vehicle speed, the sideslip angle)
and actuator faults such as the malfunction of the steering systems and wheel
torque controllers. The fault detection and isolation (FDI) techniques of vehi-
cles have been investigated intensively by Isermann’s group [44, 153], Ding’s
group [49], the PATH project [126], and also our LAGIS laboratory [37].
FTC approaches of vehicles have also been developed in order to guarantee
the safety of the vehicle [17, 38].

However, few contribution has been made for the fault tolerant path track-
ing control of EV, e.g. [180], [184]. Path tracking of vehicles is one of the
key issues in an intelligent transportation system. The tracking performance
must be maintained in spite of faults, otherwise, traffic accidents may oc-
cur, which may lead to the vehicle destruction. Moreover, most of related
FTC works do not address the issues of optimality, input constraints and the
external resistance.

- Optimality means to reduce a cost function of the states and inputs of
the vehicle systems as much as possible that is needed for FTC.
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- Input constraints are involved to prevent the vehicles from skidding or
spinning when FTC is activated.

- External resistance includes the air resistance, wind effects, the defor-
mation of the wheels, and the internal friction of the vehicle. These
factors always affect the vehicle.

Figure 6.6: The RobucarTM in LAGIS

In this section, we focus on the optimal fault tolerant path tracking control
for a 4WS4WD EV in LAGIS as shown in Fig. 6.6. This prototype vehi-
cle, named RobuCarTM, is built by the Robosoft Company [205]. Several
important types of actuator faults are considered as in [180]. A hybrid con-
trol approach is proposed, which combines the linear quadratic (LQ) based
progressive accommodation (PA) method [151] and the control Lyapunov
function (CLF) technique in Section 3.2. The motivation of developing such
control structure is to maintain the vehicle’s tracking performance in spite of
faults, input constraints and the external resistance, and meanwhile, reduce
the cost function of states and inputs that results from the FTC algorithm.
This work focuses on the FTC design and we do not consider the FDI tech-
nique of vehicles. The readers interested by fruitful results on such FDI
techniques are referred to [44, 37]. The sensor faults are also not involved,
some related work can be seen in [161].

6.2.2 Vehicle Model and fault setting

The features of the RobuCarTM dynamics are described in Fig. 6.7. Our
system comprises a 4WS4WD vehicle body, four wheels, and a reference
path for tracking. The distance between the center of gravity (CG) and
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the front axle (resp. rear axle) is lf (resp. lr), ld is one half of the tread.
rei(i = 1, 2, 3, 4) denotes the effective radius of the wheel i.
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Figure 6.7: The vehicle system

The state variables are the speed of CG v, the sideslip angle β, the yaw
rate γ, the perpendicular distance yc between the vehicle and the reference
path, the angle φ between the vehicle and the tangent to the path curvature
ρref . The traction forces fxi and fyi are transmitted from the road surface
via the wheels to the vehicle chassis. The input variables to be applied are
the steering angle δi and the torque Ti. Denote δf , δ1 = δ2 and δr , δ3 = δ4

as the steering angles of front wheels and rear wheels respectively.
The detailed dynamical equations of the vehicle body, wheel, and path

tracking can be seen in [123], [2] and [37], thus are omitted here. Around
the free-rolling equilibrium point: v = v0, β = 0, γ = 0, yc = 0, φ = 0, and
ρref = 0, a linearized vehicle model can be obtained as

ẋ = Ax + BKus + R (6.2.1)

where x = [(v − v0) β γ yc φ]⊤ are measurable states, us = [T c
1 + T r

1 T c
2 +

T r
2 T c

3 + T r
3 T c

4 + T r
4 δc

f δc
r]
⊤ are torques and steering controllers’ output

vector, T c
j is used for the path tracking control design, while T r

j is applied to
overcome the external resistance, denoted as R = [R̄ 0 0 0 0]⊤. R̄ is assumed
to be a known constant around the free-rolling equilibrium point. Denote the
plant input vector as ū = [T1 T2 T3 T4 δf δr]

⊤ as shown in Fig.6.7. ū = Kus,
with K defined as the actuator gain matrix, and K = diag[η1, η2, . . . , η6],
ηi = 1 in the healthy situation, and will be defined later for the faulty cases.
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Moreover

A =











0 0 0 0 0

0 −Cf+Cr

mv0
− lf Cf−lrCr

mv2
0

− 1 0 0

0 − lf Cf−lrCr

Jz
− l2

f
Cf+l2rCr

Jzv0
0 0

0 0 0 0 −v0

0 −Cf+Cr

mv0
− lf Cf−lrCr

mv2
0

0 0











,

B =











1
mre1

1
mre2

1
mre3

1
mre4

0 0

0 0 0 0
Cf

mv0

Cr

mv0
−ld

Jzre1

ld
Jzre2

−ld
Jzre3

ld
Jzre4

lf Cf

Jz
− lrCr

Jz

0 0 0 0 0 0

0 0 0 0
Cf

mv0

Cr

mv0











where m denotes the mass of the vehicle. Jz is the moment of inertia. The
constant coefficients Cf and Cr are cornering stiffness of the front and rear
wheels. Cf = Cf1 + Cf2, Cr = Cr1 + Cr2. The pair (A,B) is controllable.
Note that the developed model is more general than the usual vehicle’s lateral
model as in [135], [112] and [127] where only δf and δr are applied as the
inputs, and the resistance factors are not considered.

The structure of B ensures the existence of constant torques T r
i , i =

1, 2, 3, 4 such that

4∑

i=1

(
ηiT

r
i

mrei

) = −R̄ (6.2.2)

4∑

i=1

(
(−1)ildηiT

r
i

Jzrei

) = 0 (6.2.3)

This implies that 4 constant torques T r
i can be applied to overcome the

external resistance.
The input constraints have to be considered for the saturation property

of the wheel slip which is related to the road condition. The relation between
input (Ti, δi) to the wheel slip Si at the free-rolling equilibrium point can be
given as in [123] and [2]

Si =

[
Tiki

reiCfi

−β − lf
v0

γ + δi

]

, i = 1, 2. (6.2.4)

Si =

[ Tiki

reiCri

−β − lr
v0

γ + δi

]

, i = 3, 4. (6.2.5)
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where ki represents the tire-tread-profile attenuation factor. From (6.2.4)-
(6.2.5), it can be seen that Ti and δi need to be constrained to ensure the
magnitude of Si below the prescribed value c, i.e., |Si| ≤ c, with | · | the
Euclidean norm. More precisely, since ηiT

r
i is a constant, a constant bound

can be imposed on ηiT
c
i , while a state dependent bound should be imposed

on ηiδ
c
i .

The control objective in the healthy situation is to let the vehicle track
the reference path, i.e. to make the origin of the system (6.2.1) asymptotical
stable, and meanwhile, restrict the magnitude of Si into the prescribed region
to prevent the vehicle from skidding or spinning.

torque 

controller 1

front steering 

controller
rear steering 

controller

torque 

controller 2

torque 

controller 3

torque 

controller 4

Figure 6.8: The schematic diagram of the RobuCarTM

Once an actuator fault occurs at t = tf , the system (6.2.1) can be repre-
sented as

ẋ = Ax + Bfus + R (6.2.6)

where Bf , BK denotes the fault input distribution matrix. It is assumed
that (A,Bf ) is still controllable. In this work, both faults of steering sys-
tems and wheel torque control systems are considered. Fig. 6.8 shows the
schematic diagram of the RobuCarTM. Four faulty cases are investigated:

- (F1) The failure of one steering controller (front or rear), which may
result from the broken wires, the malfunction power amplifier or the
steeling motor breakdown. In this case, the steering actuator float
with zero moment and does not contribute to the control authority.
Consequently, η5 = 0 or η6 = 0, which is consistent with Bf5 = 0 or
Bf6 = 0, where Bfi denotes the ith column of Bf .

- (F2) The loss of control effectiveness of steering controllers, which does
not destroy the steering controller, but influences its control gain. In
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this case, η5 and η6 represent the loss of effectiveness factors and are
such that 0 < η5 < 1, 0 < η6 < 1. If ηi = 0, this faulty case is consistent
with F1.

- (F3) The failure of wheel torque controllers, which may result from
the inverter failure, the brake system failure or the wheel motor failure,
such that no torque input is generated. In this case, ηi = 0, or Bfi = 0,
i ∈ {1, 2, 3, 4}.

- (F4) The loss of control effectiveness of wheel torque controllers, which
does not destroy the torque controller, but influences its control gain.
Consequently, 0 < ηi < 1, i ∈ {1, 2, 3, 4}.

The FTC objective in this work is to let the vehicle track the reference
path in spite of input constraints, the external resistance and actuator faults
F1-F4.

In the sequel, we consider that the torque inputs T r
i are chosen to over-

come the resistance term R, i.e. equations (6.2.2)-(6.2.3) are solvable. This
implies that at least 2 wheel torque controllers are available. Consequently,
equations (6.2.1) and (6.2.6) are rewritten as

ẋ = Ax + Bu (6.2.7)

ẋ = Ax + Bfu (6.2.8)

where u = [T c
1 T c

2 T c
3 T c

4 δc
f δc

r]
⊤.

We will first recall the progressive accommodation (PA) strategy proposed
in [151], and analyze its availability in the presence of input constraints, then
combine such optimal FTC approach with the CLF based bounded controller.
The resulting hybrid control approach takes both advantages of the optimal
control and the bounded control.

6.2.3 Hybrid FTC scheme

The LQ optimal control objective is to transfer the system state from the
initial value x(0) = x0 to some final value x(∞), while minimizing the cost
function

J(u, x0) =

∫ ∞

0

(u⊤Ru + x⊤Qx)dt

where Q and R are symmetric matrices. From the classical theory, the so-
lution is given by u = −R−1B⊤Pnx , −Fnx where Pn is the unique posi-
tive definite solution of the algebraic Riccati equation PnA + A⊤Pn + Q −
PnBR−1B⊤Pn = 0.
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In the practical faulty situations, three time instants, namely tf , tfdi, tftc

have to be considered, leading to four time windows :

[0, tf [ Nominal system, (A,B) is controlled by u = −Fnx
[tf , tfdi[ Diagnostic delay, (A,Bf ) is controlled by u = −Fnx
[tfdi, tftc[ FTC delay, (A,Bf ) is controlled by u = −Fnx
[tftc,∞) Fault is accommodated, (A,Bf ) is controlled by the FTC law

The pair (A,B) is changed into (A,Bf ) at time tf due to the actuator
faults. Once Bf has been identified at t = tfdi under some FD schemes, the
classic FTC law can be designed as u = −R−1B⊤

f Pfx and applied at t = tftc,
where Pf is the unique positive definite solution of

PfA + A⊤Pf + Q − PfBfR
−1B⊤

f Pf = 0 (6.2.9)

The delay tftc− tfdi is mainly due to the computation of the Riccati equation
(6.2.9).

The PA strategy aims at minimizing the cost in tftc − tfdi. Such strategy
is based on the following Newton-Raphson scheme:

Let Pi be the unique solution of the Lyapunov equation

Pi(Af − BfFi−1) + (Af − BfFi−1)
⊤Pi = −Q − F⊤

i−1RFi−1 (6.2.10)

where Fi = R−1B⊤
f Pi for all i = 1, 2, · · · and the initial F0 is given.

The Newton-Raphson scheme is one of the effective solutions for (6.2.9).
The computation of (6.2.10) is much faster than (6.2.9). The PA strategy is
to apply ui = −Fix as soon as it is obtained. The system behavior after the
fault occurrence is therefore

ẋ = (A − BfFn)x, t ∈ [tf , t0[

ẋ = (A − BfF0)x, t ∈ [t0, t1[

ẋ = (A − BfFi)x, t ∈ [ti, ti+1[, i = 1, 2, ...

where t0 > tfdi and F0 define the algorithm initialization. It has been proven
in [151] that limi→∞Pi = Pf , and the PA strategy significantly reduces the
loss of cost that results from the classic FTC law in the time delay tftc− tfdi.

Now we consider the input constraints. In the fault-free situation, u =
−Fnx is applied. We can find a region

Ψ = {x ∈ ℜn|x⊤Pnx ≤ r} (6.2.11)

where r is small enough such that ∀x ∈ Ψ, the ith input |ui| < umax
i (x),

∀i = {1, ..., 6}. umax
i (x) > 0 is a constant or a state dependent bound of the
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ith input from (6.2.4)-(6.2.5). It follows that if the initial state x(0) is chosen
within Ψ, then u = −Fnx is always available.

In the faulty situation during [ti, ti+1[, the PA control law u = −Fix is
applied. Note that after the fault occurs, T r

i is adjusted to overcome R,
denote

∆ηiT
r
i , ηiT

r
i − ηi(n)T

r
i (n)

where ηi(n)T
r
i (n) is related to the normal situation, and ηiT

r
i corresponds to

the new controller in the faulty case. If all ηi 6= 0 i = 1, 2, 3, 4, then each
ηiT

r
i keeps a unique constant throughout the process, i.e. ∆ηiT

r
i = 0, and

does not affect the bound of the T c
i . Similarly, define the region

Ψ̄i = {x ∈ ℜn|x⊤Pix ≤ εi} (6.2.12)

where εi is small enough such that ∀x ∈ Ψ̄i, |ui| < u∗max
i (x) ,

umax
i (x)−∆ηiT

r
i

ηi
,

for ηi 66= 0, and u∗max
i (x) = 0, for ηi = 0, where umax

i (x)−∆ηiT
r
i (i = 1, 2, 3, 4)

is assumed to be positive, and T r
5 , T r

6 do not exist. If ηi = 0, it follows that
ui = 0 from the LQ control method. Note that if x(ti) ∈ Ψ̄i, then u = −Fix
is available throughout the interval [ti, ti+1[. We also obtain the following
property

Proposition 6.2 If x(ti) ∈ Ψ̄i such that

|(−R−1B⊤
f )j| · |Pi| · |x| ≤

u∗max
i (x)

ηi

,∀j = {1, ..., 6}

then the PA strategy is available throughout the interval [ti,∞).

Proof : The result follows the fact that the iterating algorithm (6.2.10)
leads to Pf ≤ · · · ≤ Pi+1 ≤ Pi ≤ · · · ≤ P1 [151]. Since x(ti) ∈ Ψ̄i, then under
the controller −Fix, Ψ̄i is an invariant set for x, i.e., x(t) ∈ Ψ̄i,∀t ∈ [ti, ti+1[.

|(−R−1B⊤
f )j| · |P1| · |x| ≤ u∗max

i (x)

ηi
implies that |(−R−1B⊤

f )j| · |Pi+1| · |x| ≤
u∗max

i (x)

ηi
, thus −Fi+1x is available throughout the interval [ti+1, ti+2[, Ψ̄i is

still an invariant set for x. Finally, it can be concluded that the optimal
FTC strategy is available for t ∈ [ti,∞).  

Such property is useful to reduce the computation level. If we have

checked at t = ti that |(−R−1B⊤
f )j| · |P1| · |x| ≤ u∗max

i (x)

ηi
, then we do not

have to check at every following instants tκ, for κ ≥ i.
However, we can not always guarantee the availability of the PA strategy.

If x(ti) 6∈ Ψ̄i, such strategy would lead to the input saturation and the
system’s performance will be degraded.

To avoid the input saturation, a CLF based bounded FTC method in
Chapter 3.2 is developed, which will be combined with the PA strategy.
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Reformulate the faulty system (6.2.8) as

ẋ = Ax + Bu + Bf (6.2.13)

where the fault is represented as an additive term Bf . f = (K − I)u, I is
the unit matrix, and K = diag[η1, ..., η6] with 0 ≤ ηi ≤ 1 defined in Section
6.2.2. Since the system inputs are bounded, it is reasonable to assume that
actuator faults are bounded, i.e., |f | ≤ f̄ , where f̄ > 0. It is also assumed
that |∆ηiT

r
i | ≤ ∆̄i for ∆̄i > 0 and umax

i (x) − ∆̄i (i = 1, 2, 3, 4) is positive.
Consider a Lyapunov function V = x⊤Px for the system (6.2.13), where

P is a positive definite symmetric matrix that satisfies the Riccati equation
A⊤P + PA − PBB⊤P = −W for a positive definite matrix W .

V can be regarded as a control Lyapunov function for system (6.2.13).
The continuous bounded FTC law can be designed as

ui = −Υi(V )(LBi
V )⊤(x) , bi(x), i = 1, ..., 6 (6.2.14)

with

Υi(V ) =







ϑ(V )+
√

ϑ(V )2+(u⋆ max
i (x)|(LBi

V )⊤|)4

|(LBi
V )⊤|2

[

1+

√

1+(u⋆ max
i (x)|(LBi

V )⊤|)2
] , (LBi

V )⊤ 6= 0

0, (LBi
V )⊤ = 0

where ϑ(V ) , 1
6
(LAxV + ρV + |LIV |f̄), L denotes the Lie derivative, i.e.,

LAxV = x⊤(A⊤P +PA)x, (LBi
V )⊤ = 2B⊤

i Px, and ρ > 0. u⋆ max
i , umax

i (x)−
∆̄i.

For all initial states, the stability region of system (6.2.13) is defined by
the set

Ω = {x ∈ ℜn|V (x) ≤ cmax} (6.2.15)

where cmax is small enough such that ϑ(V ) < mini∈{1,2,...,6} u⋆ max
i |(LBi

V )⊤|
for all x ∈ Ω.

Proposition 6.3 For the initial state x(0) ∈ Ω, the bounded controller u =
b(x) with b(x) , [b1(x)...b6(x)]⊤ in (6.2.14) makes the origin of the system
(6.2.13) asymptotically stable in spite of faults.

Proof : the result can be straightly obtained from Lemma 3.1.  

Proposition 6.3 provides a result for the multiple state dependent input
constraint form, i.e. |ui| < u⋆ max

i (x), i = 1, ..., 6. It can be seen that for any
x(0) ∈ Ω, the controller u = b(x) can always be applied and does not need
to be modified in the presence of faults.
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Based on above analysis, a hybrid control method can be provided as

u =







−Fnx, for x ∈ Ψ ∩ Ω, t ∈ [0, tfdi[, with x(0) ∈ Ψ ∩ Ω
b(x), for x ∈ Ψ ∩ Ω, t ∈ [tfdi, t1[
−Fix, for x ∈ Ψ̄i ∩ Ω, t ∈ [ti, ti+1[
b(x), for x 6∈ Ψ̄i ∩ Ω, t ∈ [ti, ti+1[, i = 1, 2, ...

(6.2.16)

where Ψ, Ψ̄i and Ω are defined respectively in (6.2.11), (6.2.12) and (6.2.15).
Fig. 6.9 shows the block diagram of the control system.

Vehicle plant

FDI
PA controller

CLF based 

controller

Switching 

decision

Figure 6.9: The block diagram of the FTC system

Discussion:

1. Compared with the convex conjugacy technique [56] that requires x ∈
Ψ, the bounded hybrid controller (6.2.16) restricts x into a relative
small region Ψ ∩ Ω, which, however, leads to a low computation level.
Since b(x) can be designed off-line, we do not have to solve the backward
Hamiltonian system every time when x reaches the bound of Ψ ∩ Ω as
in [56].

2. Since the initial state x(0) ∈ Ψ ∩ Ω, the controller −Fnx ensures that
x(tf ) ∈ Ψ∩Ω. Nothing can be said about the state trajectory during the
diagnosis delay tfdi−tf . Effective diagnosis approaches can significantly
shorten this delay. Assuming x(tfdi) ∈ Ψ∩Ω is quite acceptable in the
practical application.

3. Applying b(x) at the beginning of the FTC process [tfdi, t1[ shortens the
initial time of PA strategy in [151]. Moreover, in each interval [ti, ti+1[,
once x 6∈ Ψ̄i∩Ω, the controller b(x) can always make x return to Ψ̄i∩Ω
as in Proposition 6.2, such that the controller −Fix is available.

4. The region Ω in (6.2.15) is based on a fixed norm bound of faults f̄ .
This region could be zoomed in since faults impossibly exist all the
time. The reader can see the related work in Section 3.2.
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Table 6.3: Parameters of RobuCarTM and the reference path

Parameter Value
m (kg) 350
lf (m) 0.401
lr (m) 0.802
ld (m) 0.605
rei (m) 0.350
Cf (N/rad) 2000
Cr (N/rad) 2000
Jz (kgm2) 82
v0 (m/s) 5
ρref (m−1) 0

5. In this work, a straight reference path is considered, i.e. the curvature
ρref ≈ 0. For the curving path with ρref 6= 0, an additional term
[0 0 0 v0ρref ]

⊤ should be added in the system equation (6.2.1). The
robust design of LQ control [152] and CLF based control can be applied.

6. If three wheel torque controllers are faulty (F3), the remaining wheel
torque can not overcome the resistance factor. This also leads to the
robust problem as in D5.

6.2.4 Simulation results

The proposed FTC method is now applied to the path tracking of RobuCarTM

system (6.2.1). The parameters are given in Table 6.3. The vehicle starts the
path tracking with the initial values v(0) = 5 m/s, β(0) = 0 rad, γ(0) = 0
rad/s, yc(0) = 0.2 m, and φ(0) = 0 rad. In accordance with the road con-
dition and vehicle data stated in Table 6.1, the resistance factor R̄ is as-
sumed to be −0.5 m/s2. We set the wheel slip constraint as c = 0.3, the
attenuation factor in (6.2.4)-(6.2.5) is ki = 0.2. The input constraints are
imposed as −0.0004 Nm ≤ T c

i ≤ 0.0004 Nm, (−0.18 + 0.08γ + β) rad ≤
δc
i ≤ (0.18+0.08γ+β) rad, for i = 1, ..., 4. Since the vehicle’s speed is around

a constant v0, small torques T c
i are required. The objective is to obtain the

tracking behavior as fast as possible (under no fault and faulty conditions)
while maintaining the input constraints. We will consider in the following
the four faulty cases F1-F4 described in Section 6.2.2 and will illustrate the
tracking performance.

We first consider the fault of wheel torque control system. Suppose that
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the inverters of the two front wheels broke down at t = 0.3 s. These fail-
ures make the motor torques of the two wheels become zero, i.e., η1 and η2

abruptly change from 1 to 0 after 0.3 s, Bf1 = Bf2 = 0. The consequence
is a big yaw moment and the unstable vehicle motion. In addition, there is
a 75 percent loss of control effectiveness of rear right wheels after t = 0.3 s,
i.e., η4 = 0.25.

Both Q and R are chosen as the unit matrices. The classic FTC law
uf = −Ffx can be obtained after 2 iterations of (6.2.10), i.e., Ff = F2.
Assume it takes 0.1 s for fault diagnosis, 0.1 s for the initialization of PA
strategy, and 0.1 s for each iteration of PA. The classic FTC approach would
apply −Fnx until t = 0.5 s and then −F2x, while the PA strategy applies
−Fnx until 0.4 s and then applies b(x) at 0.4 s, and the sequence −F1x and
−F2x at respective times 0.5 and 0.6 s. Fig. 6.10 shows the input trajectories.
Due to the complete failures of two wheels’ inverters, the inputs T1, T2 are not
provided any more after 0.3 s. The tracking performance is maintained by
the tradeoff among T3, T4, δf and δr. Although T r

i (i = 1, 2, 3, 4) are adjusted
abruptly after the fault occurs. The original input constraints imposed on δc

i

and T c
i are still available.

Fig.6.10 shows the trajectories of the PA controller output vector. It
can be seen that both δc

f and δc
r are adjusted to compensate for the big

yaw moment due to faults. All the inputs are within the constraints, the PA
controller is always available. Fig.6.11 shows the torques T r

j for the resistance
rejection, T r

1 and T r
2 are not provided any more after 0.3 s. Once the fault is

diagnosed at 0.4 s, both T r
3 and T r

4 are adjusted to overcome the resistance.
Fig.6.12 illustrates the vehicle motion behavior, the tracking goal is achieved

at nearly t = 2 s. After a very short overshoot at the beginning, v is always
maintained at 5 m/s, this validates the linearized model (6.2.1). The input
trajectories and vehicle motion behavior under the classic FTC law are sim-
ilar as that in Fig. 6.10, thus are not presented here. Fig.6.13 gives the
evolution of the system cost with the classic and PA methods. It is seen
that the PA approach widely improves system performance during the fault
accommodation transient.

Now we address the fault of steering system. Suppose that the front
steering system is broken at t = 2 s that leads to η1 = 0. Such failure is also
consistently represented by Bf5 = 0. In addition, there is a 90 percent loss of
control effectiveness in the power amplifier of the rear steering actuator after
t = 2 s, i.e., η6 = 0.1. In this case, the tracking performance is maintained
only by applying T1, T2, T3, T4 and δr.

The classic FTC law uf = −Ffx can be obtained after 3 iterations of
(6.2.10), i.e., Ff = F3. To illustrate our approach, assume it takes 2 s for
FD, 0.1 s for the initialization of PA strategy, and 0.9 s for each iteration
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Figure 6.10: Input trajectories

0 0.5 1 1.5 2 2.5 3
0

20

40

60

80

100

120

140

t/s

 
3

T

 
4

T

 
2

T 
1

T

r

r

r r

Figure 6.11: Torque inputs for resistance rejection

199



CHAPTER 6. HYBRID CONTROL APPROACH IN FTC DESIGN

0 1 2 3 4
0.01

0

0.01

0.02

0.03

0.04

t/s

0 1 2 3 4
0.05

0

0.05

0.1

0.15

0.2

t/s

0 1 2 3 4
0.01

0

0.01

0.02

0.03

0.04

0.05

0 1 2 3 4

5

5

5

t/s

β

γ

 
c

y

φ

 

v

t/s t/s

-

--

5

Figure 6.12: Vehicle motion behavior

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.05

0.1

0.15

0.2

0.25

t/s

S
y
s
te

m
 c

o
s
t

Optimal FTC
Classic FTC

Figure 6.13: Cost comparison

200



CHAPTER 6. HYBRID CONTROL APPROACH IN FTC DESIGN

of PA. However, −F1x exceeds the input bound of Ti at t = 4.1 s, thus the
CLF based controller is applied until 4.2 s, and then the PA controller is
activated. −F2x satisfies the property of Proposition 6.3 at t = 5 s, which
implies that the PA control is always available after 5 s.

Fig. 6.14 shows the trajectories of the hybrid controller. It can be seen
that all T c

i are adjusted abruptly to compensate for the faults. All the torques
T r

i = 15.315 Nm i = 1, 2, 3, 4, which do not change since no fault occurs at
torque control system. Fig. 6.16 illustrates the vehicle motion behavior. Af-
ter t = 2 s, the trajectory of the vehicle deviates from the reference path,
while the tracking goal is achieved at nearly t = 8 s, v is also maintained
at 5 m/s. Fig. 6.16 illustrates the trajectories of the controller that com-
bines the classic LQ method and CLF technique. The classic LQ controller
exceeds the constraints at 5.9 s and is not applied until 6.8 s. It can be
seen that much more control effort has to be made than the hybrid control
one. Fig.6.17 illustrates the vehicle motion behavior. The vehicle tracks the
path again at nearly t = 10 s. Fig. 6.18 gives the evolution of the system
cost with the classic and PA methods, which also implies the good system
performance during the fault accommodation transient under the proposed
hybrid approach.
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6.3 Conclusion

This chapter has discussed the supervisory FTC problem using hybrid system
approaches. Three novel switching control based FDI/FTC schemes have
been proposed for general nonlinear systems. The good feature of these
three switching schemes is that no additional model or filter is needed to
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compare with the plant. However, how to improve the transient performance
deserves further investigations.

This chapter has also proposed an optimal hybrid FTC approach with
application to the path tracking control problem for 4WS4WD RobuCarTM

vehicle in LAGIS. Several important types of actuator faults are addressed.
More directions would be associated with the robust fault tolerant path track-
ing control design of 4WS4WD vehicles.
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Chapter 7

Conclusion and future research direc-
tions

FTC of HS is a hot research topic that intersects two communities of fault
diagnosis/tolerance and HS. This thesis has presented several interesting the-
ories and applications on FTC for HS. It has been shown that both the con-
tinuous system theories and DES theories can be applied. This conclusion
seems natural since HS consists of continuous and discrete dynamics. How-
ever, it deserves to point out that the utilizations of these two main theories
in HS field are quite different from that in their own fields.

Due to the special structures and properties of HS, many non-hybrid
system FTC methods are unavailable directly for HS. Continuous system
theories for non-hybrid systems have to be modified and the switching prop-
erties must be taken into account, the difficulty of such work are reflected in
Chapters 2-4. DES theories also can not be applied directly. Compared with
pure DES, the continuous dynamics of HS have to be considered as indicated
in Chapter 5.

There are still many open problems to be further investigated. We shall
conclude this thesis by providing some future research directions, which we
hope could be a helpful guide to interested readers when exploring FTC for
HS.

1. To consider optimality as a FTC goal besides the continuous stability
and the discrete specification. The optimality is very important for the
modern systems with considerations for the environment and energy
problems. Optimal FTC goal not only requires the stability of the
faulty systems but also needs it to be as optimal as possible in spite
of faults. Such goal could be potentially achieved by combining the
optimal theories of HS [12, 124] and the proposed FTC methods in this
thesis.
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2. To relax the constraints about the structure of HS, e.g., consider the
stability at non-zero equilibriums. Many HS that are widely used in
process control have non-zero equilibriums [108]. On the other hand,
the time-variant continuous vector fields as described in [89] also de-
serve further investigations.

3. To combine continuous system theories with DES ones such that an
integrated fault tolerance framework can be provided with application
to real systems. In many real situations, a complex system may have
various faults (both continuous and discrete ones) occurring simultane-
ously. The nondeterministic finite automata model developed in [101]
maybe a good tool to address this issue.
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quet, Exact differentiation and sliding mode observers for switched La-
grangian systems,”Nonlinear Analysis, 65(5), 1050-1069, 2006.

[134] A. Saboori, and S. H. Zad, Robust nonblocking supervisory control of
discrete-event systems under partial observation, Systems and Control
Letters, 55(10), 839-848, 2006.

[135] S. Sakai, H. Sado, and Y. Hori, Motion Control in an electric vehicle
with four independently driven in-wheel motors, IEEE/ASME Trans.
on Mechatronics, 4(1), 9-16, 1999.

[136] M. Sampath, S. Lafortune, and D. Teneketzis, Active diagnosis of dis-
crete event systems, IEEE Trans. on Automatic Control, 43(7), 908-929,
1998.

218



BIBLIOGRAPHY

[137] A. M. Sánchez, and F. J. Montoya, Safe supervisory control under
observability failure, J. Descrete Event Dynamics Systems, 16(4), 493-
525, 2006.

[138] A. T. Sava and H. Alla, Combining hybrid Petri nets and hybrid au-
tomata, IEEE Trans. on Robotics and Automation, 17(5), 670-678, 2001.

[139] C. Seatzua, D. Gromovb, J. Raischb, D. Corona, and A. Giua, Opti-
mal control of discrete-time hybrid automata under safety and liveness
constraints, Nonlinear Analysis, 65(6), 1188-1210, 2006.

[140] R. Sepulchre, M. Jankovic, and P. V. Kokotovic, Constructive Nonlin-
ear Control, New York: Spinger-Verlag, 1997.

[141] P. Shi, Y. Xia, G. Liu, and D. Rees, On designing of sliding-mode
control for stochastic jump systems, IEEE Trans. on Automatic Control,
51(1), 97-103, 2006.

[142] P. Shi, E. K. Boukas, and R. K. Agarwal, Control of Markovian jump
discrete-time systems with norm bounded uncertainty and unknown de-
lay, IEEE Trans. Automatic Control, 44(11), 2139-2144, 1999.

[143] M Silva, and L Recalde, On fluidification of Petri nets: from discrete
to hybrid and continuous models, Annual Reviews in Control, 28(2),
253-266, 2004.

[144] A. V. Skorohod, Asymptotic Methods in the Theory of Stochastic Dif-
ferential Equations, American Mathematical Society, Providence, RI,
1989.

[145] E. Sontag, and Y. Wang, New characterizations of input-to-state sta-
bility, IEEE Trans. on Automatic Control, 41(9), 1283-1294, 1996.

[146] E. Sontag and Y. Wang, On characterizations of the input-to-state
stability property, Systems and Control Letters, 24(5), 351-359, 1995.

[147] E. D. Sontag, Smooth stabilization implies coprime factorization, IEEE
Trans. on Automatic Control, 34(4), 435-443, 1989.

[148] M. I. Spong, R. Marino, S. M. Peresada, and D. G. Taylor, Feedback
linearizing control of switched reluctance motors, IEEE Trans. on Au-
tomatic Control, 32(5), 371-379, 1987.

[149] M. Staroswiecki and A-L Gehin, From control to supervision, Annual
Reviews in Control, 25, 1-11, 2001.

219



BIBLIOGRAPHY

[150] M. Staroswiecki, and G. Comtet-Varga, Analytical redundancy rela-
tions for fault detection and isolation in algebraic dynamic systems,
Automatica, 37(5), 687-699, 2001.

[151] M. Staroswiecki, H. Yang, and B. Jiang, Progressive accommodation of
parametric faults in linear quadratic control, Automatica, 43(12), 2070-
2076, 2007.

[152] M. Staroswiecki, Robust Fault Tolerant Linear Quadratic Control
based on Admissible Model Matching, Proc. of 45th IEEE Conference
on Decision and Control, 3506-3511, 2006.

[153] H. Straky, M. Kochem, J. Schmitt and R. Isermann, Influences of brak-
ing system faults on vehicle dynamics, Control Engineering Practice,
11(3), 337-343, 2003.

[154] Z. Sun, A note on marginal stability of switched systems, IEEE Trans.
on Automatic Control, 53(2), 625-631, 2008.

[155] D. Swaroop, J. C. Gerdes, and J. K. Hedrick, Fault tolerant control of
automatically controlled vehicles in response to brake system failures,
Proc. of 1997 IEEE International Conference on Control Applications,
Hartford, CT, 705-710, 1997.

[156] F. Tao, and Q. Zhao, Synthesis of stochastic fault tolerant control
systems with random FDI delay, Int. J. Control, 80(5), 684-694, 2007.

[157] A. Tiwari and G. Khanna. Series abstractions for hybrid automata. Hy-
brid Systems: Computation and Control, LNCS, 2289, 465-478, Springer
Verlag, Berlin Heidelberg, 2002.

[158] C. J. Tomlin, I. Mitchell, A. M. Bayen, and M. Oishi, Computational
techniques for the verification of hybrid systems, Proceedings of the
IEEE, 91(7), 986-1001, 2003.

[159] A. Trontis, and M. P. Spathopoulos, Hybrid control synthesis for even-
tuality specifications using level set methods, Int. J. Control, 76(16),
1599-1627, 2003.

[160] J. Tsinias, Stochastic input-to-state stability and applications to global
feedback stabilization, Int. J. Control, 71(5), 907-930, 1998.

[161] I. Unger, and R. Isermann, Fault tolerant sensors for vehicle dynamics
control, Proc. of 2006 American Control Conference, Minnesota, USA,
3948-3953, 2007.

220



BIBLIOGRAPHY

[162] L. Vu, D. Chatterjee, and D. Liberzon, Input-to-state stability of
switched systems and switching adaptive control, Automatica, 43(4),
639-646, 2007.

[163] D. Wang, M. Pham, and C. B. Low, Development and implemen-
tation of a fault-tolerant vehicle-following controller for a four-wheel-
steering vehicle Proc. of IEEE/RSJ International Conference on Intel-
ligent Robots and Systems, Beijing, China, 13-18, 2006.

[164] W. Wang, D. H. Zhou, and Z. Li, “Robust state estimation and fault
diagnosis for uncertain hybrid systems,” Nonlinear Analysis, 65(12),
2193-2215, 2006.

[165] J. C. Willems, Dissipative Dynamical Systems, European Journal of
Control, 13, 134-151, 2007.

[166] Y. Wu, and C. N. Hadjicostis, Algebraic approaches for fault identi-
fication in discrete-event systems, IEEE Trans. on Automatic Control,
50(12), 2048-2053, 2005.

[167] G. M. Xie, and L. Wang, Necessary and sufficient conditions for control-
lability and observability of switched impulsive control systems, IEEE
Trans. on Automatic Control, 49(6), 960-966, 2004.

[168] W. X. Xie, C. Y. Wen, and Z. G. Li, Input-to-state stabilization of
switched nonlinear systems, IEEE Trans. on Automatic Control, 46(7),
1111-1116. 2001.

[169] A. Xu, and Q. Zhang, Nonlinear system fault diagnosis based on adap-
tive estimation, Automatica, 40(7), 1181-1193, 2004.

[170] X. Xu and G. Zhai, Practical stability and stabilization of hybrid and
switched systems, IEEE Trans. on Automatic Control, 50(11), 1897-
1903, 2005.

[171] X. Xu, and P. Antsaklis, Stabilization of second-order LTI switched
system, Int. J. of Control, 73(14), 1261-1279, 2000.

[172] H. Yang, B. Jiang, and V. Cocquempot, A fault tolerant control frame-
work for periodic switched nonlinear systems, Int. J. of Control, 82(1),
117-129, 2009.

[173] H. Yang, B. Jiang, and M. Staroswiecki, Observer based fault tolerant
control for a class of switched nonlinear systems, IET Control Theory
and Applications, 1(5), 1523-1532, 2007.

221



BIBLIOGRAPHY

[174] H. Yang, B. Jiang, and V. Cocquempot, Observer-based fault tolerant
control for constraint switched systems, Int. J. of Control, Automation
and Systems, 5(6), 707-711, 2007.

[175] H. Yang, B. Jiang, and V. Cocquempot, Qualitative fault tolerant anal-
ysis for a class of hybrid systems, Nonlinear Analysis: Hybrid Systems,
2(3), 846-861, 2008.

[176] H. Yang, V. Cocquempot, and B. Jiang, Robust fault tolerant track-
ing control with applications to hybrid nonlinear systems, IET Control
Theory and Applications, 3(2), 211-224, 2009.

[177] H. Yang, V. Cocquempot, and B. Jiang, Fault tolerance analysis for
switched systems via global passivity, IEEE Trans. on Circuits and Sys-
tems II, 55(12), 1279-1283, 2008.

[178] H. Yang, B. Jiang, and V. Cocquempot, Fault tolerance analysis for
stochastic systems using switching diffusion processes, Int. J. of Control,
82(8), 1516-1525, 2009.

[179] H. Yang, B. Jiang, and V. Cocquempot, Observer-based fault-tolerant
control for a class of hybrid impulsive systems, Int. J. of Robust and
Nonlinear Control, 2009, in press.

[180] H. Yang, V. Cocquempot, and B. Jiang, Optimal fault tolerant path
tracking control for 4WS4WD electric vehicles, IEEE Trans. on Intelli-
gent Transportation Systems, revised.

[181] H. Yang, B. Jiang, V. Cocquempot, and Marcel Staroswiecki, Adap-
tive fault tolerant strategy for a class of hybrid systems with faults
independently effecting on outputs, Proc. of 6th IFAC Symposium on
Fault Detection, Supervision and Safety of Technical Processes, Beijing,
China, 1021-1026, 2006.

[182] H. Yang, V. Cocquempot, and B. Jiang, Fault diagnosis and fault tol-
erant control design for a class of hybrid systems, Proc. of European
Control Conference ’07, Kos, Greece, 3539-3545, 2007.

[183] H. Yang, B. Jiang, and V. Cocquempot, Fault accommodation for hy-
brid systems with continuous and discrete faults, Proc. of 10th Interna-
tional Conference on Hybrid Systems: Computation and Control, Pisa,
Italy, 2007.

222



BIBLIOGRAPHY

[184] H. Yang, V. Cocquempot, and B. Jiang, Fault tolerant strategy for
hybrid longitudinal control system of automated vehicles, Proc. of 46th
IEEE Conference on Decision and Control, New Orleans, LA, USA,
3176-3181, 2007.

[185] H. Yang, B. Jiang, and V. Cocquempot, Fault accommodation for dis-
crete event systems using Petri nets with application to traffic light
control, Proc. of 17th IFAC World Congress, Seoul, Korea, 1218-1223,
2008.

[186] Z. Yang, An algebraic approach towards the controllability of controlled
switching linear hybrid systems. Automatica, 38,(7), 1221-1228, 2002.

[187] Z. Yang and M. Blanke, A unified approach to controllability analysis
for hybrid control systems, Nonlinear Analysis: Hybrid Systems, 1(2),
212-222, 2007.

[188] H. Ye, A. N. Michel, and L. Hou, Stability theory for hybrid dynami-
cal systems, IEEE Transactions on Automatic Control, 43(4), 461-474,
1998.

[189] C. Yfoulis, R. Shorten, A computational technique characterizing the
asymptotic stabilizability of planar linear switched systems with unsta-
ble modes Yfoulis, Proceedings of 43rd IEEE Conference on Decision
and Control, Atlantis, Paradise Island, Bahamas, 2792-2797, 2004.

[190] G. Yin, N. Chen, and P. Li, Improving handling stability perfor-
mance of four-wheel steering vehicle via µ-synthesis robust control, IEEE
Trans. on Vehicular Technology, 56(5), 2432-2439, 2007.

[191] T-W Yoon, J-S Kim, and A. S. Morse, Supervisory control using a new
control-relevant switching, Automatica, 43, 1791-1798, 2007.

[192] W. Yu, M. A. Moreno, and X. Li, Observer-based neuro identifier, IEE
Proceedings: Control Theory and Applications, 147(2), 145-152, 2000.

[193] C. Yuan, and J. Lygeros, Stabilization of a class of stochastic differen-
tial equations with Markovian switching, Systems and Control Letters,
54(9), 819-833, 2005.

[194] M. Zefran, F. Bullo, M. Stein, A notion of passivity for hybrid systems,
Proceedings of the 40th IEEE Conference on Decision and Control, Or-
lando, Florida, 768-773, 2001.

223



BIBLIOGRAPHY

[195] G. Zhai, B. Hu, K. Yasuda, and A. N. Michel, Stability analysis of
switched systems with stable and unstable subsystems: an average dwell
time approach. Int. J. System Science, 32(8), 1055-1061, 2001.

[196] X. Zhang, T. Parisini, and M. M. Polycarpou, Adaptive fault-tolerant
control of nonlinear uncertain systems : an information-based diagnostic
approach. IEEE Trans. Automatic Control, 49(8), 1259-1274, 2004.

[197] X. Zhang, M. M. Polycarpou, and T. Parisini, Design and analysis of a
fault isolation scheme for a class of uncertain nonlinear systems, Annual
Reviews in Control, 2008, in press.

[198] Y. M. Zhang, and J. Jiang. Integrated active fault-tolerant control us-
ing IMM approach, IEEE Trans. on Aerospace and Electronic Systems,
37(4), 1221-1235, 2001.

[199] Y. M. Zhang, and J. Jiang. Fault tolerant control system design with ex-
plicit consideration of performance degradation. IEEE Trans. Aerospace
and Electronic Systems, 39(3), 838-848, 2003.

[200] F. Zhao, X. Koutsoukos, H. Haussecker, J. Reich, P. Cheung, Moni-
toring and fault diagnosis of hybrid systems, IEEE Trans. on Systems,
Man, and Cybernetics-Part B: Cybernetics, 99(14), 1225-1240, 2005.

[201] J. Zhao, and D. J. Hill, Passivity and stability of switched systems:
A multiple storate function method, System and Control Letters, 57(2),
158-164, 2008.

[202] J. Zhao, and D. Hill, On stability, L2 gain and H∞ control for switched
systems, Automatica, 44(5), 1220-1232, 2008.

[203] M. Zhong, H. Ye, P. Shi, and G. Wang, Fault detection for Marko-
vian jump systems, IEE Proceedings-Control Theory and Applications,
152(4), 397-402, 2005.

[204] Partners for Advanced Transit and Highways (PATH) project,
http://www.path.berkeley.edu/

[205] http://www.robosoft.fr/eng/.

224


