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General introduction

Context of the study

In the field of automotive vehicles, main recent applications require the perception of

the three-dimensional real world. In this field, the goal is not necessarily the automatic

steering of the vehicle, which will require further years of research and development, but

only assistance to the driver. In this case, the system overcomes the defects of the driver

such as the lack of vigilance and poor appreciation of distances by warning him when

there is a potential danger. So, automotive vehicles have to detect the different objects

that are on the road and represent them in the three-dimensional scene map.

To reach this goal, various sensor technologies can be used. For example, the radar

emits electromagnetic waves toward the environment and determines the presence of ob-

jects by analyzing the return time of reflected waves. Sonar and lidar operate on the same

principle, with a sound signal for the first, and a laser beam for the second. These sensors

are classified as active because they emit a signal, then analyze signals reflected by objects

in the scene.

Another type of sensors uses light from an outside source that has been reflected by

objects in the scene. They are called passive sensors, and one example is the camera.

The vision system objective is to mimic the visual system of animals or humans. A single

camera provides an image of the scene viewed from a single point of view. In this case, the

content of the image is analyzed to recognize, to a certain level of accuracy, the objects

present in the scene.

However, most systems based on cameras, for the purpose of environment perception,

use two cameras to observe the scene. Then, they use a technique similar to that used by

most animals whose vision system has two eyes. Analyzing two images of the scene obser-

ved at the same time allows, under certain conditions, to recover the three-dimensional
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information which has been lost during the image formation process.

Many projects today propose to combine information from various active and passive

sensors. The work in this thesis fits within one of the three components of the RaViOLi

project (Radar and Steerable Vision and Lidar) headed by F. Cabestaing and L. Duvieu-

bourg, Researchers in the LAGIS laboratory, and supported by the Regional Group of

Transportation Research of the Nord-Pas-de-Calais.

In this project a new stereoscopic sensor has been developed. It consists of a single-

CCD color camera, combined with a set of mirrors arranged in an original geometry to

obtain the best configuration for foveal vision (see figure 0.1). Each image of the stereo

pair is formed on one half of the CCD color camera using a specific arrangement of mirrors.

Such an arrangement can acquire color images of distant objects of the stereoscope, and

this, with excellent spatial resolution. This forms two virtual cameras from a single real

camera and for this reason it is called stereoscopic sensor. The two images formed by the

two virtual cameras are used to reconstruct the three-dimensional map of the observed

scene.

Figure 0.1 : Stereoscopic sensor equipped with one single-CCD color camera.

Stereovision

From two images (left and right) simultaneously acquired by two cameras, stereovision

systems aims to recover the third dimension which has been lost during image formation.
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The projections of the same scene point visible by the two cameras do not have the

same coordinates in the two image planes. The exact position of this scene point can

be retrieved if its two projections (called homologous) are identified. The problem of

identifying homologous pixels in the two images is called stereo correspondence problem.

Stereo matching methods try to solve the stereo correspondence problem. Throughout

this thesis, we concentrate our work on dense stereo matching methods that try to identify

all homologous pixels in the two images to yield a dense three-dimensional map of the

observed scene. Stereo matching methods are applied to pairs of stereo images that can

be gray-level images or color images. In gray-level images each pixel is characterized by

a gray-level value while in color images each pixel is characterized by three components

Red (R), Green (G) and Blue (B).

Chambon et al. have compared widely used stereo matching methods applied to gray-

level and color images [CC04]. They have shown that taking into account color information

generally improves the performance reached by the matching process [PSZ05]. However,

in their studies they did not mention how the color images had been acquired and it is

well known that the acquisition device influences the performance reached by any color

image analysis scheme.

Color images can be acquired by two types of cameras : those including three sensors

associated with beam splitters and color filters providing the so-called full color images

(each pixel is characterized by Red, Green and Blues levels), and those including a single-

sensor.

The single-sensor cameras do not provide a full color image but actually deliver a color

filter array (CFA) image, where each pixel is characterized by a single color component

which can be Red, Green or Blue. So, one has to estimate the missing color components at

each pixel. The process of estimating the missing color components is commonly referred to

as CFA demosaicing, and yields a demosaiced color image where each pixel is characterized

by an estimated color point [BGMT08].

Objective of the thesis

In the RaViOLi project, we use a single-CCD color camera to perceive the color of

the observed objects. A straightforward method to match pixels in stereo images acquired



4 General introduction

using single-CCD color cameras is to reconstruct color images by demosaicing and then

apply the matching process to the demosaiced color images.

As the demosaicing methods intend to produce “visually pleasing” demosaiced color

images, they attempt to reduce the presence of color artifacts, such as false colors or

zipper effects, by filtering the images [YLD07]. So, some useful color texture information

for stereo matching may be altered in the color demosaiced images. Thus, the quality of

stereo matching with demosaiced color stereo image pairs may suffer either from color

artifacts or from the alteration of color texture caused by demosaicing schemes.

The objective of our thesis is to find an alternative solution to match pixels by analy-

zing CFA stereo images without reconstructing the color images by demosaicing.

Outline of the thesis

This PhD manuscript is divided into four chapters and a conclusion.

In the first chapter, we present the fundamental concepts of stereovision. Then, we

define the stereo correspondence problem. We present dense stereo matching methods for

solving this problem. We describe the two main classes of dense stereo matching methods :

local and global ones. Global methods identify homologous pixels by analyzing the whole

image while local ones analyze local neighborhood of pixels. Since stereovision scheme

must respect real-time video constraints, we retain local methods which are less time

consuming than global ones.

In the second chapter, we introduce the use of color information in dense stereovision.

After having described why the demosaicing task is required by single-CCD color cameras,

we present the Bayer CFA solution. Then, an introduction to the demosaicing issue and

to its major solutions is exposed. After that, we show, thanks to a basic experiment, that

the loss of information and/or the non-specific demosaicing step have a strong influence

on the efficiency of color stereo matching techniques.

In the third chapter, we introduce a partial demosaicing scheme designed for images

acquired by single-CCD cameras. In the partial demosaicing scheme, each pixel is charac-

terized by two components and not three components as in a full demosaicing scheme.

We show that this partial demosaicing scheme is more adapted for stereo matching than

a full demosaicing scheme.
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In the fourth chapter, we compare the matching results by applying local stereo mat-

ching method to partially demosaiced color images and fully demosaiced color images on

benchmark images. Then, we try to show the reasons of the enhancement brought by

partial demosaicing. We also examine if using single-CCD cameras instead of gray-level

ones leads the stereovision schemes to improve their quality of matching.

Finally, we summarize all the topics discussed in this PhD and the main contributions

of our work. Several ideas for future works are also proposed.





Chapitre 1

Fundamentals of computational

stereovision

Résumé

Construire une description 3D d’une scène observée par des caméras représente un

véritable challenge. A partir de deux images obtenues simultanément, nous pouvons, sous

certaines conditions, retrouver partiellement l’information 3D qui a été perdue pendant

le processus de formation de l’image.

La stéréovision consiste à calculer l’information 3D de la scène à partir des images

de saisie 2D. Il s’agit d’une imitation d’une des capacités du système de vision de l’être

humain dans lequel cette tâche est automatiquement effectuée par le cerveau.

Dans cette thèse, nous porterons notre attention sur la stéréovision binoculaire qui

utilise deux caméras, appelées caméra gauche et caméra droite qui observent la scène à

partir de différents points de vue, comme cela est illustré dans la figure 1.1a. Dans cette

figure, qui montre la vue d’en haut d’une installation stéréovision, nous pouvons voir que

chaque caméra a son propre point de vue. Ainsi, la scène est divisée en quatre points de

vue :

– Le point de vue de gauche seulement, qui contient les points de la scène qui peuvent

apparâıtre sur l’image de gauche ;

– Le point de vue de droite seulement, qui contient les points de la scène qui peuvent

seulement apparâıtre sur l’image de droite ;
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– Le point de vue commun, qui contient les points de la scène qui peuvent apparâıtre

sur les images de gauche et de droite ;

– Le point de vue invisible par les deux caméras.

Par exemple, deux images capturées par les caméras gauche et droite sont montrées res-

pectivement dans les figures 1.1b and 1.1c. L’image de gauche (respectivement de droite),

est décomposée en deux parties, l’une correspondant à la projection des points de la scène

qui proviennent du point de vue de gauche (respectivement de droite), et l’autre corres-

pondant à la projection des points de la scène qui proviennent d’un point de vue commun

(voir figure 1.1d).

Examinons les parties des images de gauche et de droite qui correspondent au point de

vue commun. Dans le point de vue commun, une surface élémentaire d’un objet observé

par les deux caméras, peut être représentée par un pixel dans la partie de gauche et un

pixel dans la partie de droite. La localisation dans l’espace de ces pixels dans les images

de gauche et de droite est différente. La différence entre ces localisations est utilisée

pour estimer la distance qui sépare la surface élémentaire des caméras. En étendant cette

procédure à toutes les surfaces élémentaires observées par les deux caméras, nous pouvons

estimer les distances séparant chaque objet de la scène 3D des caméras.

Dans la première partie de ce chapitre, nous introduirons quelques propriétés de la

projection perspective. Ces propriétés seront ensuite utilisées pour décrire le modèle de

Pinhole d’une caméra. Puis, nous introduirons tous les paramètres nécessaires pour définir

la transformation d’un point d’une scène 3D en un point de l’image 2D dans l’image plane

de la caméra. Après cela, les différentes propriétés de la stéréovision binoculaire seront

décrites.

Dans une seconde partie, nous introduirons le problème de correspondance stéréovision

qui est accentué par plusieurs phénomènes. Ensuite, nous présenterons plusieurs hy-

pothèses qui seront utilisées pour simplifier sa résolution.

Enfin, nous présenterons les méthodes de correspondance stéréovision éparse et dense

utilisées pour résoudre le problème de correspondance stéréovision. Cependant, dans cette

présentation de l’état de l’art, nous limiterons notre description aux méthodes de corres-

pondance stéréovision dense utilisant les approches locales et globales.
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1.1 Introduction

Building a three-dimensional description of a scene observed by cameras is a chal-

lenging task. From two images simultaneously acquired, we can under certain conditions

recover partially the 3D information which has been lost during the image formation

process.

Stereovision consists in computation of the three-dimensional information of the scene

from two-dimensional input images. It is an imitation of one of the abilities of the human

vision system where this task is automatically performed by the brain.

In this thesis, we focus our attention on binocular stereovision which uses two cameras,

called left and right cameras, that observe the scene from different points of view, as

illustrated in figure 1.1a. In this figure, which shows the top view of a stereovision setup,

one can see that each camera has its own field of view. So, the scene is divided into four

fields :

– left field of view only, which contains scene points that may only appear on the left

image ;

– right field of view only, which contains scene points that may only appear on the

right image ;

– common field of view, which contains scene points that may appear on both left and

right images ;

– field invisible by both cameras.

For example, two images captured by left and right cameras are shown in figures 1.1b

and 1.1c, respectively. The left (right, respectively) image is decomposed into two areas,

one that corresponds to the projection of scene points that belong to the left (right,

respectively) field of view only and one that corresponds to the projection of scene points

that belong to the common field of view (see figure 1.1d).

Let us examine the areas in the left and right images that correspond to the common

field of view. In the common field of view, an elementary surface of an object that is

observed by the two cameras, can be represented by one pixel in the left area and one

pixel in the right area. The spatial locations of these pixels in the left and right images are

different. The difference between these spatial locations is used to estimate the distance

which separates the elementary surface from cameras. By extending this scheme to all
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elementary surfaces observed by both cameras, we can estimate the distances separating

each object in the three-dimensional scene from the cameras.

In the first part of this chapter, we introduce some properties of the perspective pro-

jection. These properties are then used for describing the pinhole model of a camera.

Then, we introduce all the camera parameters necessary to define the transformation of

a three-dimensional scene point into a two-dimensional image point in the camera image

plane. After that, the various properties of the binocular stereovision setup are described.

In the second part, we introduce the stereo correspondence problem that is complicated

by many phenomena. Then, we present several assumptions that are used to simplify its

resolution.

Finally, we present the sparse and dense stereo matching methods used to solve the

stereo correspondence problem. However, in this presentation of the state of the art, we

limit our description to dense stereo matching methods using local and global approaches.
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Left camera

Right camera

Left field of view only

Right field of view only

Common field of view

(a) Left and right cameras.

(b) Left image acquired by left camera. (c) Right image acquired by right ca-

mera.

Left field of view only Right field of view onlyCommon field of view

(d) Images representing the different fields of figure 1.1a.

Figure 1.1 : Stereovision example.



12 Chapitre 1. Fundamentals of computational stereovision

1.2 Perspective projection

In this section, we present some basic concepts of perspective projection which are

necessary for defining the geometrical model of a camera. The simplest approach to des-

cribing the properties of optical systems is the perspective projection. We begin by sho-

wing how to determine the projection of space points onto one projection plane. Then,

the case of two projections onto two planes is described. Finally, we present fundamental

properties of the epipolar geometry.

1.2.1 Single perspective projection

The projection of a space point P is located at the intersection of the straight line

connecting it with the center of projection O and the projection plane. This is shown in

figure 1.2. All the points on the straight line OP are projected onto the same point p. So,

this is a non inversible transformation.

O

Projection plane

Center of projection

P

p

Figure 1.2 : Single Projection.
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1.2.2 Two perspective projections

Let us consider now two projection planes. In order to define notations that will be

adapted to stereovision, we will call these planes respectively the left and right projection

planes and denote them l and r, respectively. The projection centers are respectively

denoted Ol and Or. The straight line connecting them is called the baseline. A space

point P is projected onto the left projection plane at pl and onto the right one at pr as

shown in figure 1.3.

As explained in the previous section, the two projections of P are given by the inter-

sections of the straight lines OlP and OrP with the projection planes l and r. In contrast

with single projection, the location of the space point P can be deduced from its two

projections pl and pr, since P lies at the intersection of the straight lines Olpl and Olpr.

Ol Or

P

prpl

l r

Figure 1.3 : Two perspective projections.

1.2.3 Epipolar geometry

A very interesting set of properties, called epipolar geometry, relates the two perspec-

tive projections shown in figure 1.3. We define several terms :

– the epipolar plane of a space point P is the plane determined by P and the

projection centers Ol and Or ;

– the left epipole is the projection onto the left projection plane of the right pro-

jection center and the right epipole is the projection onto the right projection
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plane of the left projection center. Eipoles are denoted el and er. In other words,

the left and right epipoles el and er are the two intersections of the baseline with

the projection planes ;

– to any space point, we associate two epipolar lines. The epipolar lines are the

intersections of the epipolar plane of the point with the projection planes. Analyzing

figure 1.4, we can deduce that the left and right epipolar lines are the projections

of the straight lines OrP and OlP onto the left and the right projection planes,

respectively. For this reason, all left and right epipolar lines pass through left and

right epipoles, respectively. We call the right epipolar line erpr, the epipolar line

corresponding to the left point pl and vice versa.

Ol Or

P

prpl
l r

el er

Figure 1.4 : Epipolar Geometry.

The epipolar geometry describes the relation between right and left projections of

a space point P . Hence, the very important property, called epipolar property : given

a space point P , its right projected point pr lies on the right epipolar line

corresponding to its left projected point pl and vice versa.
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1.3 Stereovision setup

1.3.1 Introduction

In this part, we introduce the geometry of the stereovision setup by first modeling the

image formation by a pinhole camera. The perspective projection explained in the previous

section is used for this purpose. The intrinsic and extrinsic parameters of the camera are

then defined. Using these parameters, we can define the transformation from scene points

to image points. Then, we present a binocular stereoscopic system. The various properties

of this system are detailed.

1.3.2 Camera model and image formation

An image results from the optical projection of a three-dimensional scene onto the

image plane. Modeling of image formation has been the subject of numerous works. The

pinhole camera model is the simplest and the most used for describing the geometrical

properties of cameras equipped with a thin lens. Geometrical properties of image formation

can be explained thanks to the perspective projection described in section 1.2. Light

rays reflected by each surface element of a scene object pass through the pinhole, called

hereafter optical center, before reaching the image plane of the camera. This model is

illustrated in figure 1.5.

In this figure, the pinhole camera produces an inverted image. In order to avoid the

inversion of coordinates, we can describe the projection using a direct configuration, i.e.

by placing the image plane in front of the optical center instead of behind. Doing this, we

no longer have to rotate the obtained image by 180◦ in order to well represent the scene

observed by the camera.

We write scene points with capital letters and their projected image points with small

letters. Unlike the perspective projection described in figure 1.2, which just defines the

geometrical transformation, each point p in the image plane can only correspond to one

scene point P that is visible by the camera.

The pinhole camera can be modeled by providing two set of parameters : the intrinsic

and extrinsic parameters. In order to clearly describe these parameters, let us define three

orthogonal coordinate systems (see figure 1.5) :
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yI

xI

f

o

O

YC

XC

ZC

XS

YS

ZS

Figure 1.5 : Pinhole camera model.

– the scene coordinate system (XS,YS,ZS) ;

– the camera coordinate system (XC,YC,ZC) ;

– the image coordinate system (xI,yI).

The camera coordinate system is adjusted so that its XC-axis and YC-axis are parallel

to the xI-axis and yI-axis of the image coordinates system, respectively. The ZC-axis is

the optical axis of the camera.

The intrinsic parameters represent the internal characteristics of the camera. This

includes scale change coefficients on the image, and the focal distance f of the camera

lens, i.e. the distance separating the optical center from the center of the image plane.

Using these parameters, we can define the transformation of a scene point in the camera

coordinate system into its projected point in the image coordinate system.

Let us denote by (XP
S

,Y P
S

,ZP
S

)T the coordinates of P in the scene coordinate system

and (XP
C

,Y P
C

,ZP
C

)T its coordinates in the camera coordinate system. The coordinates of

its projected point p are denoted (xp
I
,yp

I
)T .

In order to define this transformation with linear equations, we use the homogeneous

coordinates. The homogeneous coordinates of a scene point P in the camera coordinate

system are defined by the vector (XP
C

,Y P
C

,ZP
C
,1)T and the homogeneous coordinates of its

projected point p in the image coordinates system are defined by the vector (xp
I
,yp

I
,1)T .

Equation (1.1) defines the intrinsic matrix Mint of intrinsic parameters in homogeneous
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coordinates :

Mint =





f · αx 0 xo
I

0

0 f · αy yo
I

0

0 0 1 0



 , (1.1)

where αx and αy are scale change coefficients, and (xo,yo,1)T are the homogeneous coor-

dinates of the center o of the image in image coordinate system. In most cases, the center

o is the intersection of the optical axis with the image plane.

The extrinsic parameters of the camera are all the geometrical parameters necessary

to model the transformation from the camera coordinate system to the scene coordinate

system and vice versa. These parameters are described by the extrinsic matrix Mext,

presented in equation (1.2). This block matrix corresponds to the association of a rotation

matrix RC

S
and a translation vector TC

S
:

Mext =



RC

S
TC

S

03
T 1



 , (1.2)

where :

– the matrix RC

S
, of dimension 3×3, represents the orientation of the scene coordinate

system with respect to the camera coordinate system ;

– the column vector TC

S
, of dimension 3 × 1, represents the coordinates of the center

of the scene coordinate system in camera coordinate system ;

– 03 is a zero column vector of dimension 3 × 1 and 03
T is its transpose.

Thus, given a scene point P and its projected point p, we can use the equations (1.1)

and (1.2) to formulate the following relation :

ZP
C
·





xp
I

yp
I

1




= Mint ·





XP
C

Y P
C

ZP
C

1




= Mint · Mext ·





XP
S

Y P
S

ZP
S

1




= M ·





XP
S

Y P
S

ZP
S

1




, (1.3)

where M, called the projection matrix, is the product of the intrinsic and extrinsic ma-

trices.
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1.3.3 Binocular stereoscopic vision

Binocular stereoscopic vision systems use two cameras. Let P be a scene point visible

by the two cameras and projected onto pl in the left image plane and onto pr in the

right image plane. Since these image points pl and pr correspond to the same point of the

scene, they are called homologous points. We add the subscripts l and r to the notations

of projected points, coordinates and lines in the left and right image planes, respectively.

In this section, we will explain some properties of the binocular stereoscopic vision

systems that are very useful for the rest of our study in this chapter.

1.3.3.1 Epipolar property

Using properties of the epipolar geometry listed in section 1.2.3, we know that the

homologous points pl and pr lie in the epipolar lines corresponding to the same scene

point P . In homogeneous image coordinates, a straight line in the image plane can be

represented by a vector of dimension 3×1. Let vector L represent a line in an image plane.

Then, a point p with homogeneous image coordinates (xp
I
,yp

I
,1)T in this plane belongs to

line L if :

LT ·





xp
I

yp
I

1




= 0. (1.4)

So, let us denote by :

– Ll the vector representing the left epipolar line in homogeneous image coordinate

system of the left image ;

– Lr the vector representing the right epipolar line in homogeneous image coordinate

system of the right image ;

– (xp
Il,y

p
Il,1) the homogeneous coordinates of pl in the left image coordinate system ;

– (xp
Ir,y

p
Ir,1) the homogeneous coordinates of pr in the right image coordinate system.

Transposing the properties of epipolar geometry to cartesian formalism, it can be

shown that the equation of the epipolar line corresponding to pl in the right image is
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defined by the following equation :

Lr = F ·





xp
Il

yp
Il

1




, (1.5)

where F , called the fundamental matrix, fully describes the epipolar geometry of the

stereo system.

The fundamental matrix can be calculated in function of the projection matrices of

both camera by using the following equation [HZ04] :

F = skew(Mr · O
S

l ) · Mr · M
T
l · (Ml · M

T
l )−1, (1.6)

where :

– Mr is the projection matrix of the right camera ;

– Ml is the projection matrix of the left camera and MT
l its transpose ;

– OS

l represents the homogeneous coordinates of left camera optical center in scene

coordinate system ;

– skew(a) is the skew-symmetric matrix corresponding to a vector a = (a1,a2,a3)
T

defined as :

skew(a) =





0 −a3 a2

a3 0 −a1

−a2 a1 0



 . (1.7)

1.3.3.2 Half-occlusion phenomenon

In binocular stereoscopic vision, we want to project a scene point onto two image

planes. However, this is not possible for every point of the scene. The reason is that there

are scene points that are visible by only one camera [H0̈7, OFA05]. We refer to those

points as half-occluded. The half-occlusion phenomenon is illustrated in figure 1.6. In this

figure, the scene point B is projected onto bl in the left image plane but is not visible

by the right camera. Similarly, the scene point C is projected onto cr in the right image

plane but is not visible by the left camera. Analyzing figure 1.6, we deduce that all the

scene points between A and B are invisible for the right camera, while the scene points

between C and D are invisible for the left camera.
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Invisible for right camera Invisible for left camera

Ol Or

Left image plane Right image plane

A B C D

al ardl drbl cr

Figure 1.6 : Half-occlusion phenomenon.

1.3.3.3 Order phenomenon

In stereoscopic vision, one usually assumes that the rank order of XC-coordinates of

scene points is the same as that of their projections in both image planes. In figure 1.7a,

the rank order of the projections of scene points ABC is conserved in the left and right

image planes. However, the hypothesis of order conservation does not always hold true.

For example, when the scene points belong to objects which are half-occluded, the rank

order may not be respected, as shown by figure 1.7b.

1.3.3.4 Calibration of stereo setup

The calibration step consists in calculating the parameters required to compute pre-

cisely the transformation from coordinates of a three-dimensional scene point observed

by the two cameras to coordinates of its projected points onto the left and right image

planes [HS97].

These parameters are the intrinsic and extrinsic parameters of each camera of the

stereo system. Accurate estimates of these parameters are necessary in order to relate the
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Ol Or

A

B C

al bl cl ar br cr

xa
Il < xb

Il < xc
Il and xa

Ir < xb
Ir < xc

Ir

Left image Right image

planeplane

(a) Order respected.

Ol Or

A B

C

al blcl arbr cr

Left image Right image

planeplane

xc
Il < xa

Il < xb
Il and xa

Ir < xb
Ir < xc

Ir

(b) Order not respected.

Figure 1.7 : Order phenomenon.

scene coordinate system to the image coordinate system. From these parameters, we can

compute the fundamental matrix using equation (1.6).

However, we can also estimate the fundamental matrix without any prior knowledge of
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the cameras internal parameters or the relative position between them, by using the eight

point algorithm proposed by Longuet-Higgins [LH87]. This algorithm analyzes a predefi-

ned set of eight pairs of homologous points. The problem of performing stereo calibration

is well understood and high-quality software toolkits are available. For a detailed presen-

tation of recent works on calibration, the reader is invited to read [FL01, HZ04, Hen00].

1.4 Stereo correspondence problem

1.4.1 Introduction

In the previous section, we presented the binocular stereoscopic vision. From a scene

point P , using the projection matrices of the left and right cameras, we can find the

location of the projected points onto the left and right image planes. Suppose now that

the problem is inverted. The two projected points are identified, and we want to find the

location of the scene point P . P is the intersection of the straight lines Olpl and Orpr.

So, the scene point P can be recovered if the pair of left and right projected points are

identified.

Given only one projection of a scene point P , the correspondence problem consists

in determining its homologous one in the other image plane if it exists. It is a complex

problem that has received a huge attention for more than 40 years and till now. Inspite

of this, finding homologous points is not always possible.

Suppose that the spatial location of the projected point pl of P is known and that pr

exists. We want to find the location of pr in the right image plane. This seems to be a two-

dimensional search problem. However, thanks to the properties of the epipolar geometry

explained in section 1.2.3, we know that the right projection pr lies on the epipolar line

corresponding to pl in the right image plane. So, the correspondence problem is in fact

reduced to a one-dimensional search problem.

However, the homologous point might not even exist in case of half-occlusions as ex-

plained in section 1.3.3.2. In this case, there are several methods that handle this problem.

These methods are classified into three classes :

– methods that detect half-occlusion ;

– methods that reduce sensitivity to half-occlusion ;



1.4. Stereo correspondence problem 23

– methods that model the half-occlusion geometry.

A complete review of these methods was made by M.Z. Brown [BBH03] and by Cham-

bon [Cha05].

To identify homologous points, we need an extra information about them in addition to

their coordinates. This information, related to photometry, is delivered by digital cameras

which are presented in the following. Then, a variety of assumptions commonly exploited

to make the resolution of stereo correspondence problem possible are introduced. We

prefer to use the word ‘assumptions’ instead of ‘constraints’ since they do not always

hold true. On the opposite, the epipolar property imposes what is called the epipolar

constraint, since it always holds true unless the calibration data are erroneous.

1.4.2 Image digitizing

Till now, we talked about points projected onto image planes. However, in order to be

able to process an image by computers, it should be digital. Nowadays, digital images are

acquired by digital cameras. In these cameras, the image plane is digitalized into picture

elements called pixels. Each pixel is associated with a photosensor element which measures

the perceived light stimulus intensity. The gray-level value denoted I and associated to

the corresponding pixel depends on the measured intensity and on the camera bias and

gain.

The image sensor is composed of M columns and N lines of photosensors, hence the

digital image is composed of M × N pixels. Let us denote hx and hy the side lengths of

image sensor along xI-axis and yI-axis, respectively. Then, the scale change coefficients

αx and αy of the intrinsic matrix of the camera (see equation (1.1) are defined as :

αx =
M

hx

(1.8)

αy =
N

hy

. (1.9)

So, each projected point p with coordinates (xp
I
,yp

I
)T in the image coordinate system

is associated to the pixel with integer coordinates (xp,yp) in pixel coordinate system. The

relation between the two coordinates is expressed as :

xp = int[xp
I
], (1.10)

yp = int[yp
I
], (1.11)
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where int[x] is the integer part of x. In other words, all image points in the surface of a

photosensor corresponding to a pixel are associated to it.

From now and on, we will use pixels instead of points in the image planes. For simplicity

purpose, we suppose that a visible scene point P is projected onto a pixel pl in the left

image with coordinates (xp
l ,y

p
l ) and onto a pixel pr in the left image with coordinates

(xp
r,y

p
r ) where xp

l , yp
l , xp

r and yp
r are integer values. Pixels pl and pr are characterized by

gray-levels Il(x
p
l ,y

p
l ) and Ir(x

p
r,y

p
r ), respectively. The superscript p in x and y coordinates

is deleted when its absence does not make confusion.

Pixels pl and pr are called homologous pixels, since they correspond to homologous

image points. It is important to notice that, because of the spatial sampling, one pixel

can have more than one homologous pixel.

In order to find homologous pixels, we analyze the gray-levels of pixels in the two

images.

1.4.3 Photometric consistency assumption

We assume that the Lambertian model is used for describing incident light reflection by

the surface of an object. This model explicits that the object’s surface reflects incident light

identically in all directions. When using this physical constraint, the same light stimulus

reflected by the surface element of an observed object reaches the two homologous pixels

in the two images. So, the gray-level values Il(xl,yl) and Ir(xr,yr) of these two pixels

should be equal, assuming that the gains and biases of both cameras are the same.

In practice, the assumption of Lambertian surfaces is violated by specular reflections.

The light stimulus perceived by each camera may substantially change depending on the

viewpoint. Therefore, the gray-levels of two homologous pixels can be different.

Even if the Lambertian assumption is not violated, there are other sources of variation

of the gray-levels, such as the difference in sensor characteristics of the two cameras.

Nevertheless, image acquisition is also commonly corrupted by a certain amount of noise

introduced by the camera electronic devices [WTTW06].
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1.4.4 Unicity assumption

The unicity assumption simply states that a pixel in one image has at most one

homologous pixel in the other image. We have seen that the spatial sampling process

theoretically removes the unicity property existing for double perspective projection in

the case of continuous images. However, when image sampling is fine enough, the unicity

assumption allows one to search a single homologous pixel rather than several ones.

This assumption is often used to identify half-occlusions by enforcing one-to-one cor-

respondences for scene points which are visible by the two cameras [Ble06].

Even in the case of fine sampling, the unicity assumption is violated for horizontally

slanted surfaces [OA05]. Let us consider a slanted segment and a fronto-parallel segment

bounded by points A and B which are observed by two the cameras (see figure 1.8). The

point A is projected onto pixel al with coordinates (xa
l ,y

a
l ) in the left image and onto

pixel ar with coordinates (xa
r ,y

a
r ) in the right image. Similarly, the point B is projected

onto pixel bl with coordinates (xb
l ,y

b
l ) in the left image and onto pixel br with coordinates

(xb
r,y

b
r) in the right image.

In the fronto-parallel case, the segment AB is projected onto the same number of

pixels in the left and right images (see figure 1.8a). Hence, the unicity assumption is not

violated.

However, in the slanted case, the segment AB is projected onto different number of

pixels in the left and right images (see figure 1.8b). Hence, there are pixels in one image

that are homologous to more than one pixel of the other image.

1.4.5 Order assumption

The order phenomenon in stereoscopic vision has been introduced in section 1.3.3.3.

When solving the stereo correspondence problem, many algorithms assume that the rank

order of pixels on which are projected the scene points is respected.
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(a) Projection of a fronto-parallel slanted line.
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(b) Projection of a horizontally slanted line.

Figure 1.8 : Unicity assumption.

1.5 Stereo matching strategies

Techniques for solving the stereo correspondence problem by analyzing a pair of stereo

images have a high computational complexity. For each pixel in the left image, there are

a lot of possible candidate right pixels to be examined in order to determine the best

correspondence. We assume that the homologous right pixel corresponds to the best cor-

respondence. Stereo matching methods, that intend to solve the correspondence problem,

can be divided into two classes : sparse and dense methods [Wor07].

Sparse methods match features that have been identified in the stereo image pair.

The used features are edges, line segments, curve segments, etc. For this reason, these

methods are also called feature-based methods. The matching process is applied only

on the detected features [Wu00]. Through 1980s, feature matching methods for stereo

correspondence received significant attention. It is mainly due to their low computational

complexity. So, they are well suited for real time applications [MPP06].

However, the interest in this type of methods has declined in the last decade. This is due

to the increase of applications that need an accurate identification of all the homologous

pixels in the stereo image pair [BBH03]. The stereo matching methods that provide all the
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homologous pixels in the stereo image pair are called dense methods. We will only present

the dense stereo matching methods that are proposed for solving the correspondence

problem.

Since there is a large amount of papers about solving the stereo correspondence pro-

blem, an exhaustive review is difficult to be achieved. We therefore focus our summary

on a few techniques that we consider as important ones. A review of recent dense ste-

reo matching methods has been published by Scharstein and Szeliski [SS02]. The authors

identify four steps that are usually performed by a dense stereo matching method :

– matching cost computation ;

– cost aggregation where the initial matching costs are spatially aggregated over a

pixel neighborhood ;

– optimization in which, the best correspondence is determined at each pixel ;

– matching results refinement where miss-matches are removed.

Some methods also add a preprocessing step, such as image segmentation, before

computation of the matching cost [BG07]. We focus our analysis on the optimization step

and split the description of dense stereo matching methods into local and global methods.

The optimization step of global methods usually involves a high computational effort

which does not make them suitable for real-time applications. Although global methods

provide the best results at the current state-of-the-art [SS02, BBH03], the interest in local

ones does not decrease due to their simplicity and low computational complexity.

Before introducing the local and global methods, we will present the canonical confi-

guration of a stereo setup. The use of canonical configuration simplifies the definition of

neighborhoods and matching costs for local methods. Then, we describe the local and

global methods.

1.5.1 Canonical configuration

Most binocular stereovision systems are based on the canonical configuration of ca-

meras. To obtain a canonical configuration geometry, we set up two identical cameras

according to the configuration shown in figure 1.9a. In this configuration, the two image

planes l and r coincide. The baseline is parallel to the two image planes so that the

epipolar geometry is simplified and the corresponding epipolar lines coincide. Hence, the
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homologous pixels pl and pr can then be found on the same straight line but at different

locations.

P

pl

pr

Ol

Or

(a) Canonical stereo configuration

P

dl(xl,y)

pl pr

xr xrxl

Epipolar line

Left image plane Right image plane

(b) Disparity between two homologous pixels

Figure 1.9 : Canonical configuration, i.e. the two image planes coincide, the focal

distances are equal and the baseline is parallel to the two image planes.

The spatial location of pixel pr in the right image appears shifted to the left compared

to that of the pixel pl in the left image. This shift between the coordinates of homolo-
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gous pixels is called disparity (see figure 1.9b). The disparity value dl(xl,y) at pl, whose

coordinates are (xl,y) in the left image plane, is denoted as :

dl(xl,y) = xl − xr, (1.12)

where (xr,y) are the coordinates of pr in the right image plane. We use y instead of yl

and yr in the coordinates of pl and pr since both pixels lie on the same horizontal line.

It can be easily proved that the disparity value is inversely proportional to the distance

separating the scene point from the camera planes. Moreover, depending on the parame-

ters of the stereo setup, the maximum possible disparity between the left and right images

can be defined. The correspondence problem in this configuration can be reformulated as :

given one projected pixel, we should find its disparity value.

Marr et al. [MP79] state that if the scene is separated into objects whose surface

geometries are smooth enough, then the disparity varies smoothly almost everywhere,

except at depth discontinuities. In other words, the disparity is a piecewise continuous

function. This assumption, called smoothness assumption, is often used with assumptions

explained in section 1.4.

Even when the canonical configuration in not used in the stereovision system, we can

still benefit from this simple geometry by projecting back the image planes onto a plane

that is parallel to the baseline as shown in figure 1.10. Each pixel pl of the left projection

plane is reprojected onto a virtual parallel left image plane l′. This new projected pixel

lies at the intersection of Olpl with l′. Similarly, each pixel pr in the right projection plane

is reprojected onto a virtual parallel right image plane r′. Since the reprojected pixels

may have non-integer coordinates, interpolation methods are required to estimate their

gray-levels.

This process is known as rectification or epipolar rectification [FL01]. By rectifying the

images, the corresponding epipolar lines coincide. Also, both computational complexity

and the possibility of false matches are greatly reduced [Zha96]. Various methods for

rectification have been proposed by [ATV00, Har99].

Throughout this thesis, we assume that the geometry of the stereovision setup is

precisely adjusted so that the epipolar lines correspond to horizontal lines in the image

planes. Therefore, each pair of homologous pixels lies in the same horizontal line.
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Figure 1.10 : Rectification process.

1.5.2 Local dense stereo matching methods

Local methods, also called window-based approaches, assume that the gray-levels confi-

gureation are similar in the neighborhood of homologous pixels. More particularly, they

assume that the gray-levels of neighbors of a left pixel are close to those of the same

neighbors of its homologous right pixel in the right image. So, a matching cost is defined

between the window around the left pixel to be matched and the windows around the

candidate right pixels in the corresponding epipolar line in the right image. This epipolar

line is a horizontal image line in the case of canonical stereo configuration.

The window is shifted over all possible candidate pixels so that a matching cost between

the left pixel and each candidate one in the right image is computed. The final disparity

estimation is obtained by selecting the window with the lowest matching cost. Since

local approaches match window areas, they are often called area-based or window-based

methods.

Window-based approaches exploit the concept of a support region. Each pixel receives

a support from its neighboring pixels. One assumes that pixels inside this support re-

gion are likely to have the same disparity and can therefore help to resolve matching

ambiguities. Usually, rectangular or square windows centered on the pixel to be matched

implement this concept.
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Let us consider an example, the sum of squared differences matching cost. In this cost,

the squared difference (SD) dissimilarity measure between gray-levels of pixels is used.

The SD between the gray-level Il(xl,y) of pixel pl with coordinates (xl,y) in the left image

and the gray-level Ir(xl−s,y) of a candidate pixel pr at a shift s with coordinates (xl−s,y)

in the right image can be written as :

SDg(xl,y,s) = (Il(xl,y) − Ir(xl − s,y))2, (1.13)

where the subscript g refers to gray-level images. The aggregation of the SD costs in the

window of size (2w + 1) × (2w + 1) centered at pl and a similar window centered at pr is

called sum of squared differences cost (SSD) and is defined for gray-level images as :

SSDw
g (xl,y,s) =

w∑

i=−w

w∑

j=−w

(Il(xl + i,y + j) − Ir(xl + i − s,y + j))2, (1.14)

where w is the window half-width.

We compute the SSD matching cost for all possible right candidates. Then, the homo-

logous right pixel is derived based on the winner-takes-all principle (WTA) as illustrated

in figure 1.11. The shift for which the matching cost is the lowest is selected. Thus, the

estimated disparity d̂w
l (xl,y) at the pixel pl corresponds to the shift s of the right pixel at

which the matching cost is the lowest. It is expressed as :

d̂w
l (xl,y) = arg min

s
(SSDw

g (xl,y,s)). (1.15)

We use the l subscript in the estimated disparity symbol since the left image pixel

is used as the reference in the cost computation, s ranging from smin to smax. We also

use the superscript w because the aggregation is based on a neighborhood window whose

half-width is w.

Once the disparity has been estimated at each pixel in the left image, the left dense

estimated disparity map is formed. The disparity map is the array of disparity values

computed for each pixel, which has the same size M × N as the digital images.

When there are untextured areas in the images, the matching cost does not reach a

global extremum at the correct disparity. Figure 1.12 shows an example of untextured

area. In this figure, the gray-levels of the left and right images are represented. If we

examine the gray-levels of nine pixels, we are not able to determine a correspondence
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g (xl,y,s)

d̂w
l (xl,y)

smin smax

s

Figure 1.11 : Winner-takes-all principle, [smin,smax] represents the possible shifts of the

searched pixel. At shift s equal to d̂w
l (xl,y) the matching cost value is minimum.
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Figure 1.12 : Matching untextured areas.

in the other image because the gray-level pattern is the same along the corresponding

epipolar lines in the two images.

Another source of ambiguity arises from the presence of a repetitive pattern [Cha05].

To avoid this problem, the matching cost and the aggregation area should be carefully

chosen to correctly match pixels.

1.5.2.1 Matching costs

To identify the right pixel which is homologous to a considered left pixel, a matching

cost is computed for each candidate right pixel. The simplest matching costs assume that

the gray-levels at homologous pixels are equal. More robust costs model explicitly or im-

plicitly certain radiometric changes and/or noise [HS07]. Common pixel-based matching
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costs include absolute differences, squared differences, sampling-insensitive absolute diffe-

rences [BT98], or truncated versions of these. Since costs are used by window-based stereo

methods, they are usually defined for a given window shape.

Some costs are insensitive to differences in camera gain or bias, for example gradient-

based measures [Sch94] and non-parametric measures such as rank and census trans-

forms [ZW94]. More robust similarity measures have been proposed, such as mutual in-

formation but they require more computation time [Rey00, Hir05].

In this section, we present the most used window-based matching costs. For a de-

tailed review about matching cost and its sensitivity to radiometric differences, one can

read [HS07].

The Sum of Absolute Differences (SAD), the Sum of Squared Differences (SSD) and

Normalized Cross Correlation (NCC) are the most used costs by stereo matching me-

thods. SSD is defined by equation (1.14) while the SAD cost for gray-level images can be

expressed as :

SADw
g (xl,y,s) =

w∑

i=−w

w∑

j=−w

|Il(xl + i,y + j) − Ir(xl + i − s,y + j)|. (1.16)

The NCC matching for gray-level images is defined as :

NCCw
g (xl,y,s) =

∑w
i=−w

∑w
j=−w |Il(xl + i,y + j) × Ir(xl + i − s,y + j)|

NormCw
lg(xl,y) × NormCw

rg(xl − s,y)
, (1.17)

where NormCw
lg(xl,y) and NormCw

rg(xl − s,y) are normalization coefficients of gray-levels

corresponding to pixels of a (2w + 1) × (2w + 1) aggregation window, centered respecti-

vely on (xl,y) in the left image and on (xl − s,y) in the right image. The normalization

coefficients are expressed as :

NormCw
lg(xl,y) =

√√√√
w∑

i=−w

w∑

j=−w

Il(xl + i,y + j)2, (1.18)

and

NormCw
rg(xl − s,y) =

√√√√
w∑

i=−w

w∑

j=−w

Ir(xl + i − s,y + j)2, (1.19)

where the subscripts lg and rg refer to the left and right gray-level images, respectively.

Birchfield and Tomasi have proposed a matching cost based on absolute difference

which is insensitive to image sampling [BT98]. Rather than just comparing gray-levels
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of pixels shifted by integral amounts, which may miss a valid match, they compare the

gray-levels of each pixel in the left image with a linearly interpolated function of the right

image.

Zabih and Woodfill [ZW94] have introduced non-parametric measures. They propose

to use ordering information among the gray-levels of pixels, rather than the gray-levels

themselves. A non-linear transform as the rank or census transform is applied to the

image, then an adequate matching cost is used. Matching costs using such transforms

may improve performance near object boundaries [PC03].

The census transform is based on a non linear transform of gray-levels in order to

compare them. It maps the local neighbors of a pixel p to a binary string, each bit

representing one neighboring pixel. The bit associated to a neighboring pixel is set to one

when its gray-level is higher than that of the central pixel, and set to zero otherwise. This

representation is largely immune to photometric variations, or variations of camera gain

or bias. Figure 1.13 shows the census transform process for two example windows, which

are finally described respectively by the strings 0111x0101 and 1001x1101.
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Figure 1.13 : Neighborhood census transform.

The strings of the census transformed windows are compared for similarity by using the

Hamming distance, i.e. the number of bits that differ in the two bit strings. For example,

the distance between the two windows of figure 1.13 is equal to 4. The best matching

is determined by searching the minimum of the Hamming distance between the window

centered on the left pixel and those of the right windows centered at the right candidate

pixels.
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1.5.2.2 Aggregation area

A straightforward aggregation approach consists in using a square window centered at

each pixel p. This square-window approach implicitly assumes that the disparity is similar

over all pixels in the square window. This assumption does not hold true near disparity

discontinuities. To overcome this problem, several works propose different aggregation

areas. First, the shiftable window approach is proposed, which considers multiple square

windows centered at different locations. It retains the window with the smallest cost [BI99,

FRT97].

For both square-window and shiftable-window approaches, the size of the support

window is fixed and is difficult to adjust. A small window may not include sufficient gray-

level variations for a good matching. A large one may violate the assumption of constant

disparity inside the window. By analyzing the image, we deduce that we can associate

each region representing the object surface with a window size. Thus, the window size

should be large for areas with low textures and small for areas with fine details. For this

reason, Kanade et al. propose an adaptive-window method which automatically selects

the window size and/or shape based on local information [KO94].

The window size is initially defined by another solution proposed by Perez, and called

SBAN (Similarity-Based Adaptive Neighborhood) [PBCC04]. In this method, only a few

neighboring pixels that are supposed to correspond to the same object in the window are

selected by a segmentation scheme for computing the matching cost.

The influence of the pixel location in the chosen window is also studied. Fusiello et

al. use several windows for cost aggregation, where the location of the pixel to be matched

varies from the center to the corners [FRT00].

They compute the SSD matching cost on nine rectangular windows in which the

current pixel is located at different places, and keep the window with the smallest SSD.

The idea is that a window yielding the smallest matching cost is the most likely to

cover a constant depth region. The multiple window approach decreases errors at object

boundaries.

Instead of keeping only one window as in [FRT00], Hirschmüller combines the costs

computed with different windows [HIG02]. For example, when using a central window

with 4 surrounding ones, the matching cost can be computed by adding the values of the
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two best surrounding windows to that of the middle one.

In these algorithms, the modification of window configuration is based on one or several

indices which define the confidence granted to the matching. The support regions in all

aggregation approaches detailed above are two-dimensional ones since one assumes that

the disparity is constant over a support region. So, these approaches favor fronto-parallel

surfaces.

In images of some natural scenes, this fronto-parallel plane assumption for which

pixels have the same disparity, is regularly violated because of the perspective effect.

Furthermore, complex objects cannot be accurately described with planes. In this case,

disparity errors and a blurring effect across depth discontinuities appear in the resulting

estimated disparity map. Moreover, the larger the size of the two-dimensional window, the

higher the error rate is. That led Lefebvre et al. to assume that the information located

on the epipolar line is sufficient to provide a good matching [LAC07]. For each pixel,

matching costs are computed for several widths of one dimensional windows and several

locations of the current pixel.

Another one dimensional approach to handling slanted surfaces is the oriented-rod

approach [KLCL05]. This approach aggregates costs along a group of line segments with

different orientations and retains the segment that gives the smallest matching cost.

1.5.3 Global dense stereo matching methods

In this section, we present the principle of global methods. In these methods, a global

cost function is evaluated between the left and right images. The estimated disparity map

computed by a global method is the map that minimizes the global cost.

The global cost function, denoted EGlobal, is composed of two cost functions :

– the correspondence cost Ecorrespondence ;

– the assumption cost Eassumptions.

The correspondence cost is expressed as for the local methods in terms of matching

costs applied to a chosen aggregation area. Generally, global methods make use of pixel-

based matching costs.

The assumption cost depends on a combination of the stereo correspondence assump-

tions presented in section 1.4. Once the global cost has been defined, a variety of optimi-
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zation methods can be used to find its extremum. These optimization methods include

dynamic programming, neural networks, genetic algorithms, graph cuts, etc.

As stated above, global methods generally make use of all the pixels in the image [BBH03].

However, some authors propose to reduce the global cost computation to a single epipolar

line [FKO+04] or to several adjacent epipolar lines [GY05].

In the next section, we present global methods that make use of one-dimensional

smoothness assumption and two-dimensional smoothness assumption.

1.5.3.1 Horizontal disparity smoothness assumption

Some global methods assume that the disparity smoothly varies along horizontal lines.

In this case, it is not necessary to define the global cost over all the image. In other words,

it is sufficient to define a global cost between two corresponding epipolar lines in both

images. Using this assumption, the problem of cost minimization can be transformed to

a minimum path search problem.

In this approach, the optimal path is searched in a two-dimensional matching array

representing all the possible matches. An example of a matching array is presented in

figure 1.14. Each cell in the two-dimensional matching array corresponds to a potential

match of two pixels. A lot of matches are excluded thanks to the order and maximum

allowed disparity assumptions.

For example, the order assumption forbids matching left pixels with xl coordinates to

right pixels with xr coordinates larger than xl. The cells of the matching array correspon-

ding to these forbidden matches are above the diagonal (marked in gray in figure 1.14).

Imposing a constraint on the maximum acceptable value of the disparity allows the re-

moval of cells in the lower right corner of the matching array.

A local cost, such as SSD or SAD, is associated to each cell. The correspondence cost

term Ecorrespondence of a path is equal to the sum of the local costs of all the cells it crosses.

The assumption cost Eassumptions, which represents the one-dimensional smoothness of

disparity, is a linear sum of the differences between disparities estimated at neighboring

pixels along the chosen path. Hence, the assumption cost penalizes disparity changes

between adjacent pixels.

A cell that is connected with its predecessor by a horizontal or vertical link represents
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an occlusion. The task of a stereo matching based on one-dimensional smoothness as-

sumption consists now in computing the path with minimum cost that connects the two

opposite corners start and end of the matching array.

Global approaches based on this assumption are generally solved using the dynamic

programming optimization method [GY07, CBR+07].
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Figure 1.14 : Matching array used by a global stereo scheme based on one-dimensional

smoothness assumption.

One major advantage of matching based on one-dimensional smoothness is to provide

global support for regions that are weakly textured and which otherwise would be in-

correctly matched . The computational cost of stereo matching algorithms based on this

assumption and using dynamic programming are low compared to other global approaches

imposing two-dimensional smoothness. However, a major disadvantage of this method is

that a local error can be spread over the whole line and cause a lot of false pixel matches.
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1.5.3.2 Horizontal and vertical disparity smoothness

This assumption imposes a two-dimensional smoothness of the estimated disparity

map. Hence, the global cost should be defined over the whole image. This type of assump-

tion has been proposed by Roy and Cox [RC98] and formalized by Veksler [Vek99] and

Kolmogorov and Zabih [KZ01]. The best way to explain the global cost in this case is by

using graph theory.

Nodes in the graph represent image pixels while the graph terminals represent all pos-

sible solutions, i.e. disparity affectation. Edges between nodes are weighted according to

assumption cost term which is here the smoothness, while Ecorrespondence is used to weight

the edges between nodes and terminals. Finding a solution is possible by cutting the graph

into many two-terminal graphs and determining the configuration with the lowest cost.

Once each pixel is attached to one single terminal, it is assigned to that terminal’s dispa-

rity value. In this case, graph cut optimization methods are the most suitable optimization

techniques to find a solution to the global cost minimization problem.

At the current state-of-the-art in stereo matching, global approaches using this as-

sumption give the most accurate experimental results. However, from a computational

viewpoint, it is very time consuming and not suited to real time applications.

1.6 Left-right consistency check

Different methods allow the refinement of the obtained estimated disparity maps.

They are used in the vast majority of stereo matching methods. These methods are used

as a post-processing step to improve disparity maps by removing false matchings or for

providing sub-pixel disparity estimation.

The most used method for detecting false matches is the left-right (LR) consistency

check. In the matching process, one image is taken as a reference and for each pixel in

this image (in the case of dense stereo matching), we seek its homologous in the other

image. This approach may yield one estimated disparity map for each image. The first

one based on the left image as reference and the second based on the right image as

reference [FHZF93].

Then, the LR consistency check asserts that the pixels pl and pr are homologous if the
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following condition is verified :

d̂l(xl,y) = d̂r(xr,y) = d̂r(xl − d̂l(xl,y),y) (1.20)

If this condition is not verified, then we consider that this position corresponds to a

half-occlusion case and so, no disparity value can be estimated at these pixels [FRT00].

Throughout this thesis, we are not going to check the LR consistency. Since only the

left estimated disparity map is computed, we will call it estimated disparity map, for

simplicity. Hence, the left estimated disparity and the left actual disparity values will be

denoted d̂ and d, respectively, without the l subscript.

1.7 Real-time stereo correspondence methods

The constraint of time in stereo matching methods is very important for applications

that run at video rate. So, the computation time has to be lower than the image acquisition

time, which is generally 40ms. A lot of research about real-time stereovision follow two

main axes :

– finding algorithms that do not need high computational time, while still providing

good matching results ;

– developing hardware devices for efficient implementation in order to decrease the

computation time.

These devices include special purpose hardware, such as digital signal processors (DSP)

or field programmable gate arrays (FPGA), and extensions to recent PCs, such as the

Multi-Media Extension (MMX) [FKO+04, HIG02] and the pixel/vertex shading instruc-

tions for the Graphics Processing Units (GPUs) [GY05, MPL04].

Due to the complexity of global methods, most of them are limited to applications

with non-real-time or near-real-time constraint. However, some global approaches can be

implemented in real-time. Forstmann and Kanou have proposed a real-time stereo sys-

tem based on dynamic programming [FKO+04]. For efficient computation, the proposed

system consists in a specific coarse to fine approach in combination with MMX imple-

mentation, to achieve real-time stereo matching. They reduce the research area and use

compiler optimization strategies to reach real-time performance. Another algorithm ba-

sed on dynamic programming for real-time stereo matching is proposed in [GY07]. The
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iterative best path tracing process used by traditional dynamic programming is replaced

by a local minimum search process, making the algorithm suitable for parallel execution.

However, almost all real-time stereo algorithms use local WTA optimization. For rec-

tangular aggregation windows of fixed size, a sliding window technique, as described by

Faugeras et al. [FHZF93] can be employed to make the complexity linear with respect to

the number of pixels and computed disparities. This gives rise to real-time implementa-

tions such as that of Point Grey Research 1. For a detailed review about real-time stereo

algorithms based on local methods, one can refer to [WGGY06].

1.8 Conclusion

In this chapter, the basics of stereovision have been presented. Then, we have detailed

the stereo correspondence that consists in finding pairs of homologous pixels in the left

and right images. We have studied the cases where stereo matching schemes fail, such as

for untextured regions or half-occlusion. We have also detailed the most frequently used

assumptions, such as smoothness, order and unicity.

We have described the local and global methods which are the two main classes of

stereo matching methods. The performances of these methods have been compared by

Scharstein et al. [SS02]. Local methods analyze local neighborhoods of pixels to identify

pairs of homologous pixels whereas global ones analyze all the pixels. Although global

methods give the best results in this taxonomy, the search for an optimal solution is very

time consuming and very hard to be built in embedded systems. On the opposite, local

methods based on WTA can easily be implemented in embedded systems using parallel

architectures.

In our thesis, we use local methods based on WTA to calculate dense estimated dis-

parity maps. Till now, we have limited our study to gray-level based stereo matching

methods. In the next chapter we will see how color information can be used in stereo-

vision. The different architectures of color cameras and their influence on pixel stereo

matching performance will be also examined.

1. http ://www.ai.sri.com/∼ konolige/svs/svm.htm





Chapitre 2

Color stereovision and demosaicing

Résumé

Dans le chapitre précédent, les principes de base de la stéréovision ont été introduits,

tout comme les méthodes dont l’objectif est de résoudre le problème de correspondance à

travers le voisinage de pixels. Cependant, nous nous sommes concentrés sur les techniques

qui permettent de calculer les features à partir des niveaux de gris des pixels, c’est-à-dire

des techniques qui peuvent s’appliquer seulement sur les images de niveau de gris.

Dans la première partie de ce chapitre, nous élargirons notre étude sur les méthodes

de correspondance stéréovision qui traitent des paires d’images couleur. Dans ce but, nous

détaillerons les quatre étapes suivies pour résoudre le problème de correspondance stéréo

en prenant en compte les couleurs de pixels. La solution du problème de correspondance

est basée sur une configuration et un modèle de caméras spécifiques. Ainsi, prendre en

compte la couleur nécessite d’étudier comment les caméras couleur sont modelées.

Dans les caméras récentes, les images sont la plupart du temps acquises par un simple

capteur associé à un color filter array CFA. Ce principe et les techniques de dematriçage

qui donnent une image couleur à partir d’une image brute acquise par le capteur, se-

ront décrits dans la seconde partie de ce chapitre. Cette description est basée sur une

étude exhaustive du dématriçage effectuée par les membres de notre laboratoire. Puis,

nous montrerons que puisque les images couleur interpolées à partir d’images brutes sont

corrompues par des estimations artefacts, nous devrons les utiliser avec précaution pour

résoudre le problème de correspondance stéréo.
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2.1 Introduction

In the previous chapter, basic principles of stereovision have been introduced, as well

as a review of methods which aim at solving the so-called correspondence problem through

pixel, neighborhood, or feature matching. However, we stayed focused on techniques that

compute features from pixel gray-levels, i.e. that can deal only with gray-level images.

In the first part of this chapter, we extend the review to stereo matching methods that

process pairs of color images. For this purpose, we detail how the four steps followed to

solve a stereo correspondence problem take into account the color of pixels. We have also

seen that solving the correspondence problem is based on a specific configuration and

model of cameras. So, taking into account color requires to study how color cameras are

modeled.

In recent cameras, images are most of the time acquired by a single sensor associated

to a color filter array (CFA). This principle, and the demosaicing techniques that yield a

color image from the raw image acquired by the sensor, are described in the second part

of this chapter. This description is based on an exhaustive review of color demosaicing

done by members in our laboratory [LMY10]. Finally, we show that since color images

interpolated from raw images are corrupted by estimation artifacts, one should use them

cautiously for solving the stereo correspondence problem.

2.2 Color stereo correspondence

Until the end of the 90’s, color cameras were very expensive and using color images

required a lot of processing power. Now, with the advances in camera technology and the

increase of computational device speed, using color images has become more frequent in

computer vision [CC04, OT92].

Many authors have reported that the use of color can highly improve the accuracy of

stereo matching results [Cha05, CTB06, Kos96]. Indeed, color information can sometimes

help remove matching ambiguities, notably in the case of metamerism [CTB06]. Anyway,

it is clear that, in most situations, a full color image carries more information in its three

chromatic components than a monochromatic image of the same scene.

Each pixel with coordinates (x,y) of a color image I is associated with a point in the
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three-dimensional RGB color space. The coordinates of this color point, denoted R(x,y),

G(x,y) and B(x,y) are the trichromatic components of the pixel. Therefore, a digital color

image can be considered as an array of color points I(x,y) = (R(x,y),G(x,y),B(x,y))T . The

color image I can be split into three component planes or component images, namely R, G

and B. In each component image, a pixel is characterized by one single color component

level.

In section 1.5 of chapter one, we stated that according to [SS02], most dense stereo

matching methods intending to solve the correspondence problem can be decomposed into

four steps. In the following, we present how color information can be exploited to improve

the performance of each of these steps.

2.2.1 Color and cost computation

The generalization to digital color images of the sum of squared differences cost

(SSDw
g , equation (1.14)), computed between the left pixel with coordinates (xl,y) and

a candidate pixel in the right image, with s-shifted coordinates (xl − s,y), is expressed

as :

SSDw
c (xl,y,s) =

w∑

i=−w

w∑

j=−w

‖Il(xl + i,y + j) − Ir(xl + i − s,y + j)‖2 , (2.1)

where ‖ · ‖ is the euclidean norm. Therefore, ‖ . − . ‖2 is the squared euclidean distance

between two points of the three dimensional RGB color space. In equation (2.1), Il and Ir

are the color points associated respectively with the left and right pixels, s is the spatial

shift along the horizontal epipolar line, and w the half-width of a (2w + 1) × (2w + 1)

aggregation window [Kos93].

Similarly, the gray-level version of the sum of absolute differences (SADw
g , equation

(1.16)), can be generalized to deal with color images as follows :

SADw
c (xl,y,s) =

w∑

i=−w

w∑

j=−w

(
|Rl(xl + i,y + j) − Rr(xl + i − s,y + j)|

+|Gl(xl + i,y + j) − Gr(xl + i − s,y + j)| (2.2)

+|Bl(xl + i,y + j) − Br(xl + i − s,y + j)|

)
,

in which the squared euclidean norm used in SSDw
c is in fact replaced by the L1 norm.
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The normalized cross-correlation cost (NCCw
g , equation (1.17)) can be generalized to

color images using the expression :

NCCw
c (xl,y,s) =

∑w
i=−w

∑w
j=−w |Il(xl + i,y + j) · Ir(xl + i − s,y + j)|

NormCw
lc(xl,y) × NormCw

rc(xl − s,y)
, (2.3)

where NormCw
lc(xl,y) and NormCw

rc(xl−s,y) are normalization coefficients of color points

corresponding to pixels of a (2w + 1) × (2w + 1) window, centered respectively on (xl,y)

in the left image and on (xl − s,y) in the right image :

NormCw
lc(xl,y) =

√√√√
w∑

i=−w

w∑

j=−w

‖Il(xl + i,y + j)‖2 , (2.4)

and

NormCw
rc(xl − s,y) =

√√√√
w∑

i=−w

w∑

j=−w

‖Ir(xl + i − s,y + j)‖2 . (2.5)

Non-parametric costs, such as the census transform associated with the Hamming

distance (see section 1.5.2.1), can easily be adapted to take into account color information.

For instance, a census transform can be computed separately for each of the three channels

R, G, and B. Then, in the case of a 3 × 3 window, the census string associated with a

pixel is composed of 24 bits, instead of 8 bits for a gray-level image.

The matching costs described above use explicitly the RGB color space. However,

the color components of a pixel can also be defined in other tri-chromatic color spaces.

Chambon has tested the performance of matching techniques with three costs defined on

nine color spaces, in order to determine which one gives the best results [Cha05]. According

to this empirical work, H1H2H3 and XY Z color spaces provide the best results on about

60% of the studied stereo pairs. However, since most color cameras acquire the raw color

information through RGB filters, we will keep this specific but widely used color space in

our study.

2.2.2 Color and cost aggregation

In section 1.5.2.2, we showed that one crucial problem posed by local matching me-

thods was how to choose the shape and size of the cost aggregation window. One generally

assumes that all the pixels in the aggregation window are equivalent, i.e. that they have the
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same weight in the expression used for aggregation. In the case of color images, some au-

thors have proposed to weight the pixels in the aggregation window according to their color

similarity and geometrical proximity with the central pixel [XWFS02, YK06, PCC05].

Yoon et al. measures the euclidean distance between the color point associated with

the central pixel and those associated with its neighboring pixels in the aggregation win-

dow [YK06]. The weight of each neighboring pixel is then defined as a decreasing function

of the color distance. Perez et al. proposes to include or not a pixel in the aggregation

window if it belongs to the same color class as the central pixel [PCC05]. In fact, this

technique corresponds to associating a binary weight to each neighbor pixel, determined

by thresholding an implicit distance in the color space.

2.2.3 Color and optimization

In most of the papers dealing with color stereovision found in the literature, there is no

dedicated optimization technique making use of color information. The optimization step

is usually the WTA for local methods or graph cut and dynamic programming for global

ones. However, some authors propose to split the color stereo correspondence problem into

three gray-level stereo correspondence problems and then apply a fusion rule to compute

the disparity map [BCP00, CC04].

Chambon et al. calculate a matching cost for each color channel and then apply the

WTA selection technique to estimate three disparities for each pixel. If two or three of

these disparities are equal, then this value is kept as the disparity estimation for the

pixel. When this condition is not verified, several strategies are used to compute the final

disparity estimation. For example, the minimum, maximum, average or weighted average

of the three estimated disparities can be selected [BCP00].

2.2.4 Preprocessing

Color can also be used in the preprocessing step. In [BG07], color images are segmented

into disjoint regions before computing matching costs, using a technique that yields over-

segmented images. Then, a smoothness constraint is introduced to estimate disparities in

each region. Region boundaries are supposed to coincide with depth discontinuities.
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2.2.5 Conclusion

We have seen that gray-level based stereo matching methods can be modified to take

color information into consideration. As far as sensor resolution and size are the same,

the three components of a full color image contain more information than the single

component of the equivalent gray-level image. Therefore, stereo matching methods that

take advantage of this extra amount of information should yield a denser and/or more

accurate disparity map.

However, this increase of performance is no more guaranteed if image resolutions are

different, or if the quality of color images is lower than the quality of gray-level ones. In

the following, we will see that, with some image sensors, color information is acquired to

the detriment of resolution. In this case, one can no more consider that color based stereo

matching is systematically more efficient than gray-level based stereo matching.

2.3 Color image acquisition and color demosaicing

In this part, we describe the various image sensing and processing techniques used in

recent color cameras. Then, we will show that the quality of estimated disparity maps

strongly relies on the type of color camera used in the application.

Digital images or videos are currently a preeminent medium in environment perception.

Acquisition techniques of color images in particular have involved much research work and

undergone many changes. Despite major advancements, mass-market color cameras still

often use a single sensor and require subsequent processing to deliver color images. This

procedure, named demosaicing, is introduced in the following.

2.3.1 Single-CCD vs. three-CCD color cameras

Digital area scan cameras are devices able to convert color stimuli from the observed

scene into a color digital image (or image sequence) thanks to photosensors. Such an

output image is spatially digitized, i.e. composed of pixels. With each pixel is generally

associated a single photosensor element, which captures the incident light intensity of the

color stimulus.



2.3. Color image acquisition and color demosaicing 49

The two main technology families available for the design of digital camera photo-

sensors are CCD (Charge-Coupled Device) and CMOS (Complementary Metal-Oxide Se-

miconductor) technologies, the former being the most widespread one today. The CCD

technology uses the photoelectric effect of silicon substrate, while CMOS is based on a

photodetector and an active amplifier. Both photosensors overall convert the intensity

of light reaching each pixel into a proportional voltage. Additional circuits then convert

this analog voltage signal into digital data. For illustration and explanation purposes, the

following text relates to the CCD technology.
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prism
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(a) Beam splitting by a trichroic prism assembly.
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(b) Relative spectral sensitivity of the Kodak

KLI-2113 sensor.
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Figure 2.1 : Three-CCD technology.
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Various digital color cameras available on the market may also be distinguished ac-

cording to whether they incorporate a single sensor or three sensors. In accordance with

the trichromatic theory, three-CCD technology incorporates three CCD sensors, each one

being dedicated to a specific primary color. In most devices, the color stimulus from the

observed scene is split onto the three sensors by means of a trichroic prism assembly, made

of two dichroic prisms (see figure 2.1a) [Lyo00]. Alternately, the incident beam may be

dispatched on three sensors, each one being covered with a spectrally selective filter. The

three component images R, G and B are simultaneously acquired by the three CCD sen-

sors, and their combination leads to the final color image. Each digital three-CCD camera

is characterized by its own spectral sensitivity functions SR(λ), SG(λ) and SB(λ) (see

figure 2.1b for an example), which differ from the International Commission on Illumi-

nation (CIE) color matching functions Rc(λ), Gc(λ) and Bc(λ) of the standard observer

(see figure 2.1b).

Although three-CCD technologies yield high quality images, manufacturing costs of

the sensor itself and of associated optical devices are high. Sensor size in such cameras is

also limited by mechanical constraints. Calibrating the sensors of two cameras in order to

reach the canonical configuration for stereovision (see figure 1.9a) is also very delicate. It

requires a perfect parallelism of the three pairs of image planes, i.e. condition for epipolar

lines to become parallel to horizontal lines.

In order to overcome cost constraints, a technology using a single sensor has been

developed. The solution suggested by Bayer from the Kodak company in 1976 [Bay76]

is still the most widely used today in commercial digital cameras. It uses a CCD or

CMOS sensor covered by a filter (Color Filter Array, or CFA) designed as a mosaic of

spectrally selective color filters, each of them being sensitive to a specific wavelength

range. At each element of the CCD sensor, only one out of the three color components

Red (R), Green (G) or Blue (B) is sampled (see figure 2.2a). Consequently, only one color

component is available at each pixel of the image provided by the CCD charge transfer

circuitry. This image is often related to as the raw image, but color filter array image (CFA

image) is preferred hereafter in our specific context. In order to obtain a color image from

the latter, two missing levels must be estimated at each pixel by a demosaicing algorithm

(sometimes spelled demosaicking).
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(a) Single-CCD technology outline, using the Bayer Color Filter Array (CFA).
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Figure 2.2 : Internal structure of a single-CCD color camera.

A very large majority of cameras are equipped with Bayer filter arrays based on

R, G and B primary color components. The Bayer array includes twice as many filters

sensitive to the green primary as filters sensitive to blue or red color. This stems from

Bayer’s observation that the human eye has a greater resolving power for green color.

Moreover, the photopic luminous efficiency function of the human retina – also known

as the luminosity function – is similar to the CIE 1931 green matching function CG(λ),

with a maximum reached in the same spectral domain. Bayer therefore both makes the

assumption that green photosensors capture luminance, whereas red and blue ones capture
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chrominance, and suggests to fill the CFA with more luminance-sensitive (green) elements

than chrominance-sensitive (red and blue) elements.

As shown in figure 2.2b, many other processing tasks are classically achieved within a

single-CCD color camera [LP07]. They consist for instance in raw sensor data correction

or, after demosaicing, in color improvement, image sharpening and noise reduction, so

as to provide a “visually pleasing” color image to the user. These processing tasks are

essential to the quality of the provided image and, as a matter of fact, discriminate

the various models of digital cameras, since manufacturers and models of sensors are

not so numerous. The related underlying algorithms have common features or basis, and

parameter tuning is often a key step leading to more or fewer residual errors. Together with

noise characteristics of the imaging sensor, such demosaicing schemes may incidentally be

used to typify each camera model [BSM08].

2.3.2 Demosaicing formalization

scene optical device

R sensor

G sensor

B sensor

R image

G image

B image

color image
I

(a) Three-CCD camera.

cfscene optical device

CFA filter

sensor

CFA image
CFA

demosaicing

estimated color
image Î

(b) Single-CCD color camera.

Figure 2.3 : Color image acquisition outline, according to the camera type.

In order to set a formalism for the demosaicing process, let us compare the acquisition

process of a color image in a three-CCD camera and in a single-CCD camera. Figure 2.3a
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outlines the three-CCD camera architecture, in which the color image of a scene is formed

by combining data from the three sensors. The resulting color image I is composed of

three color component planes R, G and B.

In a color single-CCD camera, the color image generation is quite different, as shown

in figure 2.3b : the single sensor delivers a CFA image denoted CFA. If the Bayer CFA

is considered, with each pixel of coordinates (x,y) in CFA is associated a single color

component R(x,y), G(x,y) or B(x,y) (see figure 2.4) :

CFA(x,y) =






R(x,y) if x is odd and y is even, (2.6a)

B(x,y) if x is even and y is odd, (2.6b)

G(x,y) otherwise. (2.6c)

G(0,0) R(1,0) G(2,0) R(3,0) G(4,0) ...

B(0,1) G(1,1) B(2,1) G(3,1) B(4,1) ...

G(0,2) R(1,2) G(2,2) R(3,2) G(4,2) ...

B(0,3) G(1,3) B(2,3) G(3,3) B(4,3) ...

G(0,4) R(1,4) G(2,4) R(3,4) G(4,4) ...

... ... ... ... ... ...

Figure 2.4 : CFA image from the Bayer filter. Each pixel is artificially colorized with

the corresponding filter main spectral sensitivity, and the presented arrangement is the

most frequently encountered in the literature (i.e. G and R levels available for the first

two row pixels).

The demosaicing scheme F , most often implemented as an interpolation procedure,

consists in estimating a color image Î from CFA. At each pixel of the estimated image,

the color component available in the CFA image at the same pixel location is picked up,
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Figure 2.5 : 3 × 3 neighborhood structures of pixels in the CFA image.

whereas the other two components are estimated :

Î(x,y) =






(R(x,y),Ĝ(x,y),B̂(x,y))T if x is odd and y is even, (2.7a)

(R̂(x,y),Ĝ(x,y), B(x,y))T if x is even and y is odd, (2.7b)

(R̂(x,y), G(x,y), B̂(x,y))T otherwise. (2.7c)

Each triplet in equations (2.7) stands for a color point, whose color component available

at pixel with coordinates (x,y) in CFA is denoted R(x,y), G(x,y) or B(x,y), and whose

other two components among R̂(x,y), Ĝ(x,y) and B̂(x,y) are estimated for Î(x,y).

Before we get to the heart of the matter, let us still precise a few notations that will be

most useful later in this section. In the CFA image (see figure 2.4), four different structures

are encountered for the 3 × 3 spatial neighborhood, as shown on figure 2.5. For each of

these structures, the pixel under consideration for demosaicing is the central one, at which

the two missing color components should be estimated thanks to the available components

and their levels at the neighboring pixels. Let us denote the aforementioned structures by

the color components available on the middle row, namely {GRG}, {GBG}, {RGR} and

{BGB}. Notice that {GRG} and {GBG} are structurally similar, apart from the slight

difference that components R and B are exchanged. Therefore, they can be analyzed in

the same way, as can {RGR} and {BGB} structures. A generic notation is hence used in
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the following : the center pixel is considered having (0,0) coordinates, and its neighbors

are referred to using their relative coordinates (δx,δy). Whenever this notation bears no

ambiguity, (0,0) coordinates are omitted.

2.3.3 Basic Schemes and Demosaicing Rules

The first solutions for demosaicing were proposed in the early eighties. They process

each component plane separately and find the missing levels by applying linear interpo-

lation on the available ones, in both main directions of the image plane. Such a bilinear

interpolation is traditionally used to resize gray-level images [GB04]. Considering the

{GRG} structure, the missing blue and green component levels at the center pixel are

respectively estimated by bilinear interpolation thanks to the following equations :

B̂ =
1

4
(B−1,−1 + B1,−1 + B−1,1 + B1,1) , (2.8)

Ĝ =
1

4
(G0,−1 + G−1,0 + G1,0 + G0,1) . (2.9)

As for the {RGR} structure, the missing red and blue component levels are estimated

as follows :

R̂ =
1

2
(R−1,0 + R1,0) , (2.10)

B̂ =
1

2
(B0,−1 + B0,1) . (2.11)

Bilinear interpolation is easy to be implemented and not time consuming, but generates

severe visible artifacts, as also shown in figure 2.6. The above scheme provides satisfying

results in image areas with homogeneous colors, but many false colors in areas with spatial

high frequencies – as for the fence bars in this extract.

One can state that two main conditions have to be verified so as to improve demosaicing

results : spatial correlation and spectral correlation.

– Spectral correlation.

For a natural image, Gunturk et al. show that the three color components are also

strongly correlated [GAM02]. The authors apply a bidimensional filter built on a

low-pass filter h0 = [1 2 1]/4 and a high-pass one h1 = [1 − 2 1]/4, so as to split

each color component plane into four subbands, resulting from row and column
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CFA image CFA
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2. Demosaicing

3. Comparison according to criteria

Figure 2.6 : Classical evaluation procedure for the demosaicing result quality (example

of bilinear interpolation on an extract from the Kodak benchmark image “Lighthouse”).

filtering : (LL) both rows and columns are low-pass filtered ; (LH) rows are low-

pass and columns high-pass filtered ; (HL) rows are high-pass and columns low-pass

filtered ; (HH) both rows and columns are high-pass filtered.

For each color component, four subband planes are obtained in this way, respec-

tively representing data in rather homogeneous areas (low-frequency information),

horizontal detail (high-frequency information in the horizontal direction), vertical

detail (high-frequency information in the vertical direction) and diagonal detail

(high-frequency information in both main directions). The authors then compute

a correlation coefficient rR,G between red and green components over each subband

according to the following formula :

rR,G =

M−1∑
x=0

N−1∑
y=0

(
R(x,y) − µR

) (
G(x,y) − µG

)

√
M−1∑
x=0

N−1∑
y=0

(R(x,y) − µR)2

√
M−1∑
x=0

N−1∑
y=0

(G(x,y) − µG)2

, (2.12)

in which R(x,y) (G(x,y), respectively) is the level at (x,y) pixel in the red (green,

respectively) component plane within the same subband, µR and µG being the ave-

rage of R(x,y) and G(x,y) levels over the same subband planes, M and N are the
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number of columns and rows, respectively.

The correlation coefficient between the blue and green components is similarly com-

puted. Test results on twenty natural images show that those coefficients are always

greater than 0.9 in subbands carrying spatial high frequencies at least in one di-

rection (i.e. LH, HL and HH). As for the subband carrying low frequencies (LL),

coefficients are lower but always greater than 0.8. This reveals a very strong cor-

relation between levels of different color components in a natural image, especially

in areas with high spatial frequencies. Using a wavelet coefficient analysis, Lian

confirms that high-frequency information is not only strongly correlated between

the three component planes, but almost identical [LCZT06]. Such spectral corre-

lation between components should be taken into account to retrieve the missing

components at a given pixel.

– Spatial correlation.

A color image can be viewed as a set of adjacent homogeneous regions whose pixels

have similar levels for each color component. In order to estimate the missing levels

at each considered pixel, one should therefore exploit the levels of neighboring pixels.

However, this task is difficult at pixels near the boundary between two adjacent

regions due to high local variation of color components. As far as demosaicing is

concerned, this spatial correlation property avoids to interpolate missing components

at a given pixel thanks to levels of neighboring pixels which do not belong to the

same homogeneous region.

These two principles are generally taken into account sequentially by the demosaicing

procedure. In the first step, demosaicing often consists in estimating the green component

using spatial correlation. According to Bayer’s assumption, the green component has

denser available data within the CFA image, and represents the luminance of the image

to be estimated. Estimation of red and blue components (assimilated to chrominance)

is only achieved in a second step, thanks to the previously interpolated luminance and

using the spectral correlation property. Such a way of using both correlations is used by

a large number of methods in the literature. We also notice that, although red and blue

component interpolation is performed after the green plane has been fully populated,

spectral correlation is also often used in the first demosaicing step to improve the green
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plane estimation quality.

2.3.4 Demosaicing schemes

In this section, the most known and widely used demosaicing schemes proposed in

the literature are described. We distinguish two main procedure families, according to

whether they scan the image plane or chiefly use the frequency domain.

2.3.4.1 Edge-adaptive demosaicing methods

Estimating the green plane before R and B ones is mainly motivated by the double

amount of G samples in the CFA image. A fully populated G component plane will sub-

sequently make the R and B plane estimation more accurate. As a consequence, the G

component estimation quality becomes critical in the overall demosaicing performance,

since any error in the G plane estimation is propagated in the following chrominance

estimation step. Important efforts are therefore devoted to improve the estimation qua-

lity of the green component plane – usually assimilated to luminance –, especially in

high-frequency areas. Practically, when the considered pixel lies on an edge between two

homogeneous areas, missing components should be estimated along the edge rather than

across it. In other words, neighboring pixels to be taken into account for interpolation

should not belong to distinct objects. When exploiting the spatial correlation, a key issue

is to determine the edge direction from CFA samples.

Gradient computation is a general solution to edge direction selection. Hibbard’s me-

thod [Hib95] uses horizontal and vertical gradients, computed at each pixel where the

G component has to be estimated, in order to select the direction which provides the

best green level estimation. Let us consider the {GRG} CFA structure for instance (see

figure 2.5a). Estimating the green level Ĝ at the center pixel is achieved in two successive

steps :

1. Approximate the gradient module (hereafter simply referred to as gradient for sim-

plicity) according to horizontal and vertical directions, as :

∆x = |G−1,0 − G1,0| , (2.13)

∆y = |G0,−1 − G0,1| . (2.14)
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2. Interpolate the green level as :

Ĝ =






(G−1,0 + G1,0)/2 if ∆x < ∆y , (2.15a)

(G0,−1 + G0,1)/2 if ∆x > ∆y , (2.15b)

(G0,−1 + G−1,0 + G1,0 + G0,1)/4 if ∆x = ∆y. (2.15c)

R−2,−2 G−1,−2 R0,−2 G1,−2 R2,−2

G−2,−1 B−1,−1 G0,−1 B1,−1 G2,−1

R−2,0 G−1,0 R0,0 G1,0 R2,0

G−2,1 B−1,1 G0,1 B1,1 G2,1

R−2,2 G−1,2 R0,2 G1,2 R2,2

Figure 2.7 : 5 × 5 neighborhood with central {GRG} structure in the CFA image.

Laroche et al. suggest to consider a 5×5 neighborhood for partial derivative approxima-

tions thanks to available surrounding levels [LP93], for instance ∆x = |2R − R−2,0 − R2,0|.

Moreover, Hamilton and Adams combine both approaches [HA97]. To select the interpola-

tion direction, these authors take into account both gradient and Laplacian second-order

values by using the green levels available at nearby pixels and red (or blue) samples lo-

cated 2 pixels apart. For instance, to estimate the green level at {GRG} CFA structure

(see figure 2.7), Hamilton and Adams use the following algorithm :

1. Approximate the horizontal ∆x and vertical ∆y gradients thanks to absolute diffe-

rences as :

∆x = |G−1,0 − G1,0| + |2R − R−2,0 − R2,0| , (2.16)

∆y = |G0,−1 − G0,1| + |2R − R0,−2 − R0,2| . (2.17)



60 Chapitre 2. Color stereovision and demosaicing

2. Interpolate the green level as :

Ĝ =






(G−1,0 + G1,0) /2 + (2R − R−2,0 − R2,0) /4 if ∆x < ∆y, (2.18a)

(G0,−1 + G0,1) /2 + (2R − R0,−2 − R0,2) /4 if ∆x > ∆y, (2.18b)

(G0,−1 + G−1,0 + G1,0 + G0,1) /4

+ (4R − R0,−2 − R−2,0 − R2,0 − R0,2) /8 if ∆x = ∆y. (2.18c)

This proposal outperforms Hibbards’ method. Indeed, precision is gained not only

by combining two color component data in partial derivative approximations, but also

by exploiting spectral correlation in the green plane estimation. We also notice that, in

these equations, horizontal gradients are assumed to be similar for both red and blue

components.

2.3.4.2 Demosaicing using the frequency domain

Some recent demosaicing schemes rely on a frequency analysis, by following an ap-

proach originated by [ASH05]. The fundamental principle is to use a frequency represen-

tation of the Bayer CFA image 1. In the spatial frequency domain, such a CFA image may

be represented as a combination of a luminance signal and two chrominance signals, all

three being well localized. Appropriate frequency selection therefore allows one to esti-

mate each of these signals, from which the demosaiced image can be retrieved. We notice

that frequency-based approaches do not use Bayer’s assumption that assimilates green

levels to luminance, and blue and red levels to chrominance components.

A simplified derivation of Alleysson et al. ’s approach has been proposed by [Dub05],

whose formalism is retained here to present the general framework of frequency-domain

representation of CFA images. Let us assume that, for each component of a color image,

there exists an underlying signal fk, k ∈ {R,G,B}. Demosaicing then consists in com-

puting an estimation f̂k coinciding with the estimated component at each pixel. Let us

assume similarly that there exists a signal fCFA which underlies the CFA image. This

signal is referred to as CFA signal and coincides with CFA at each pixel. The CFA si-

gnal value at each pixel with coordinates (x,y) may be expressed as the sum of spatially

1. Let us make here clear that frequency (i.e. spatial frequency), expressed in cycles per pixel, corres-

ponds to the inverse number of adjacent pixels representing a given level series according to a particular

direction in the image (classically, the horizontal or vertical direction).
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sampled fk signals :

fCFA(x,y) =
∑

k=R,G,B

fk(x,y)mk(x,y) , (2.19)

where mk(x,y) is the sampling function for the color component k, k ∈ {R,G,B}. For the

Bayer CFA of figure 2.4, this set of functions is defined as :

mR(x,y) =
1

4

(
1 − (−1)x

) (
1 + (−1)y

)
, (2.20)

mG(x,y) =
1

2

(
1 + (−1)x+y

)
, (2.21)

mB(x,y) =
1

4

(
1 + (−1)x

) (
1 − (−1)y

)
. (2.22)

With the definition
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fR
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fB




, the expression of fCFA be-

comes :

fCFA(x,y) = fL(x,y) + fC1(x,y)(−1)x+y + fC2(x,y)
(
(−1)x − (−1)y

)

= fL(x,y) + fC1(x,y)ej2π(x+y)/2 + fC2(x,y)
(
ej2πx/2 − ej2πy/2

)
. (2.23)

The CFA signal may therefore be interpreted as the sum of a luminance component fL

at baseband, a chrominance component fC1 modulated at spatial frequency (horizontal

and vertical) (0.5,0.5), and of another chrominance component fC2 modulated at spatial

frequencies (0.5,0) and (0,0.5). Such an interpretation can be easily checked on an achro-

matic image, in which fR = fG = fB, the two chrominance components being equal to

zero.

Provided that functions fL, fC1 and fC2 can be estimated at each pixel from the CFA

signal, estimated color levels f̂R, f̂G and f̂B are simply retrieved as :




f̂R

f̂G

f̂B




=





1 −1 −2

1 1 0

1 −1 2









f̂L

f̂C1

f̂C2




. (2.24)

To achieve this, the authors take the Fourier transform of the CFA signal (equation

(2.23)) :

FCFA(u,v) = FL(u,v) + FC1(u − 0.5,v − 0.5) + FC2(u − 0.5,v) − FC2(u,v − 0.5), (2.25)
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expression in which terms are, respectively, the Fourier transforms of fL(x,y), of fC1(x,y)(−1)x+y,

and of the two signals defined as fC2a(x,y)
△
= fC2(x,y)(−1)x and fC2b(x,y)

△
= −fC2(x,y)(−1)y.

(a) “Lighthouse” CFA image.

C1C1

C1

L

C2b

C2b
C1

C2aC2a

v

u-0.5 0 +0.5

-0.5

0

+0.5

(b) Normalized energy (frequencies in cycles/pixel).

Figure 2.8 : Localization of the energy (Fourier transform module) of a CFA signal in

the frequency domain [ASH05].

It turns out that the energy of a CFA image is concentrated in nine areas of the

frequency domain (see example of figure 2.8), centered on spatial frequencies according to

equation (2.25) : energy of luminance FL(u,v) is mainly concentrated at the center of this

domain (i.e. at low frequencies), whereas that of chrominance is located on its border (i.e.

at high frequencies). More precisely, the energy of FC1(u− 0.5,v − 0.5) is located around

diagonal areas (“corners” of the domain), that of FC2(u−0.5,v) along u axis of horizontal

frequencies, and that of FC2(u,v − 0.5) along v axis of vertical frequencies. These areas

are quite distinct, so that isolating the corresponding frequency components is possible by

means of appropriately designed filters. But their bandwidth should be carefully selected,

since the spectra of the three functions overlap. In these frequency areas where luminance

and chrominance cannot be properly separated, the aliasing phenomenon might occur and

color artifacts be generated.

In order to design filter bandwidths which achieve the best possible separation of
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luminance (L) and chrominance (C1, C2), Dubois proposes an adaptive algorithm that

mainly handles the spectral overlap between chrominance and high-frequency luminance

components [Dub05]. The author observes that spectral overlap between luminance and

chrominance chiefly occurs according to either the horizontal or the vertical axis. Hence he

suggests to estimate fC2 by giving more weight to the sub-component of C2 (C2a or C2b)

that is least prone to spectral overlap with luminance. The implemented weight values

are based on an estimation of the average directional energies, for which Gaussian filters

(with standard deviation σ = 3.5 pixels and modulated at spatial frequencies (0,0.375)

and (0.375,0) cycles per pixel) are applied to the CFA image.

2.4 Stereo matching of demosaiced color images

In the preceding sections, we detailed the main demosaicing methods used to estimate

the color image from the CFA one. However, since the demosaicing methods intend to

produce “visually pleasing” demosaiced color images, they attempt to reduce the presence

of color artifacts, such as false colors or zipper effects, by filtering the images [YLD07]. So,

the color texture information which is useful to match homologous pixels, is sometimes

removed from the demosaiced color images.

Rather than displaying images, window-based stereo matching costs locally analyze

texture information from estimated colors in order to search for homologous pixels. The

efficiency of stereo matching costs computed on demosaiced color images may suffer from

either color artifacts or absences of color texture caused by demosaicing schemes. In this

section, we study the effect of demosaicing on the quality of pixel matching. We will show

that applying standard pixel matching methods to demosaiced color images does not yield

good results, and that one must consider developing dedicated techniques.

2.4.1 Demosaicing then matching

The straightforward method to match pixels in stereo image pairs acquired with single-

CCD cameras is to first reconstruct a pair of color images by demosaicing. Once this pair

of color images has been reconstructed, a standard color stereo matching algorithm can

be applied. This procedure is called standard method and is summarized in figure 2.9.
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Figure 2.9 : Standard method flowchart.

Here, we use a local stereovision algorithm based on matching costs and winner-takes-

all (WTA) method. A matching cost adapted to full color images, such as SSDw
c (see

equation (2.1)), SADw
c (see equation (2.2)) or NCCw

c (see equation (2.3)), is evaluated

between the left pixel with coordinates (xl,y) and a candidate pixel in the right image,

with the s-shifted coordinates (xl − s,y).

In order to avoid ambiguities, the matching costs computed on demosaiced color images

will be denoted with a ST subscript (standing for standard) and therefore called stan-

dard costs since two of the three color components used in the cost expression are in

fact estimations rather than measurements. Therefore, SSDST , SADST and NCCST de-

note respectively the SSD, SAD and NCC matching costs computed on demosaiced color
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images, whereas SSDc, SADc and NCCc denote the same costs computed on full color

images. When a generic notation of a matching cost will be required, we will use COSTST

when the latter is computed on demosaiced color images and COSTc when it is computed

on full color images.

During the second step of the matching technique, costs computed for several right

candidates, i.e. for several shifts s, are compared. With respect to the WTA method, the

candidate pixel yielding the extremum cost is matched to the considered left pixel. The

extremum is marked at the minimum of the costs in the case of SSD and SAD and at the

maximum in the case of NCC.

2.4.2 Experimental protocol

In order to experimentally show the limits of the matching results reached by applying

different matching costs to a pair of demosaiced color images, we use ‘Murs’ full color stereo

synthetic images designed by Bocquillon and available at http://www.irit.fr/~Benoit.

Bocquillon/MYCVR/download.php, whose left disparity map is available. The disparity map

contains the disparity value for each pixel, if it exists, or zero if it does not. Figure 2.10a

shows the left image of the ‘Murs’ full color stereo image pair.

Our experimental procedure is decomposed into successive steps. First, in order to

produce left and right CFA images from full color images, we simulate the CFA sampling

process by keeping only one out of the three color components at every pixel. This is

performed according to the spatial arrangement of the Bayer CFA (see figure 2.4). Then,

the two missing color components at each pixel of the so-formed CFA images are estimated

by either Hamilton’s method [HA97] or Dubois’ method [Dub05].

We have retained these two demosaicing schemes since Losson et al. have shown that

Dubois’ method provides the best performance with respect to different quality measure-

ments and Hamilton’s method reaches the best compromise between quality and compu-

tation time [YLD07].

The original left full color image (see figure 2.10a) and the left demosaiced color

image demosaiced using Hamilton’s method (see figure 2.10c) or Dubois’ method (see

figure 2.10e) look very similar. However, zooming on the square areas outlined in red in

these three images (see figures 2.10b, 2.10d and 2.10f) shows that textured areas are

http://www.irit.fr/~Benoit.Bocquillon/MYCVR/download.php
http://www.irit.fr/~Benoit.Bocquillon/MYCVR/download.php
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(a) left full color image (b) zoom on full color image

(c) left demosaiced color image by Hamil-

ton’s method

(d) zoom on demosaiced color image by Ha-

milton’s method

(e) left demosaiced color image by Dubois’

method

(f) zoom on demosaiced color image by Du-

bois’ method

Figure 2.10 : ‘Murs’ left image.
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locally different : several artifacts have been generated by the demosaicing methods.

In a second step, we match all the pixels of the left image by computing the standard

and color matching costs. By comparing the estimated disparity d̂(xl,y) and the disparity

d(xl,y), we estimate the rate of correctly matched pixels, denoted RCMP hereafter for

simplicity. A matching is considered as valid when the absolute difference between the

disparity and the estimated one is lower than or equal to δ, where δ is the disparity

error tolerance. Since the disparity map is available with a sub-pixel precision whereas

the estimations obtained with the used matching cost can reach only a pixel precision, δ

is set to 0.5.

To capture the color by a single-sensor cameras, the bayer CFA is placed in front of

the sensor. It is interesting to examine if putting a CFA inside the camera improves the

RCMP reached by a stereovision scheme. When there is no CFA, pixels are characterized

by gray-levels. From a full color image, the gray-level of a pixel with coordinates (x,y) is

estimated as :

I(x,y) =
R(x,y) + G(x,y) + B(x,y)

3
. (2.26)

Once the stereo gray-level images have been determined from the full color stereo

images, we match all the pixels by gray-level matching costs denoted COSTg (generic

notation of equations (1.14), (1.16) and (1.17)). The RCMP obtained by analyzing gray-

level images can be then compared with that obtained by analyzing demosaiced color

images.

2.4.3 Experimental results

Figure 2.11 displays the RCMP obtained using three matching costs. In each of the

six subfigures, the three curves represent the RCMP with respect to different aggregation

window half-widths w. The black curve corresponds to the RCMP in the original full color

image pair, using COSTc for cost computation. The blue dotted curve corresponds to the

RCMP in the gray-level image pair, using COSTg for cost computation. Finally, the red

dotted curve corresponds to the RCMP in the pair of demosaiced color images, using

COSTST for cost computation. The left column shows results for Hamilton’s demosaicing

scheme and the right column for Dubois’ scheme. The three lines correspond to the SSD,

SAD and NCC matching costs, respectively.
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Whatever the image type and the matching cost, the matching performance increases

with aggregation window half-width. Small windows do not contain enough information

to allow a correct matching. At the opposite, large aggregation windows may cover image

regions containing pixels with different disparities, which explains the decrease of matching

performance. Here, for ‘Murs’ stereo image pair, the most adapted aggregation window

half-width appears to range between 6 and 8 pixels.

Curves of figure 2.11 also show that, whatever the matching cost and the half-width w,

the RCMP is lower for gray-level images than for full color images. The difference between

RCMP ranges between 0.25% (SSD, large aggregation window) and 5.2% (NCC, small

aggregation window). The increase of performance due to color is noticeably higher when

the aggregation window is small. This tends to show that for small aggregation windows,

color information is very useful, whereas for larger windows, image texture becomes a

significant information.

Finally, the RCMP in demosaiced color images is lower that those of full color and

gray-level images, except for the NCC cost when computed on small aggregation win-

dows of gray-level images. For the Hamilton’s demosaicing scheme, the difference between

RCMP in demosaiced color images and full color images ranges between −4.6% (SAD,

small aggregation window) and −1.8% (NCC, large aggregation window). Still for Ha-

milton’s demosaicing scheme, the difference between RCMP in demoisaiced color images

and gray-level images ranges between −2.7% (SAD, middle size aggregation window) and

0.8% (NCC, small aggregation window). This last situation is the only one for which the

matching with Hamilton’s demosaiced color images performs better than with gray-level

images. We can see that the difference between RCMP in images demosaiced with Dubois’

scheme and full color or gray-level images is even higher than for images demosaiced with

Hamilton’s scheme.

We can assume that the difference between the RCMP in full color and demosaiced

color images is only caused by the errors introduced by the estimation of missing color

components. On the other hand, the difference between the RCMP in gray-level and

demosaiced color images is probably caused by the loss of texture.

These basic experimental results demonstrate, on a single image pair, that the CFA

color sampling highly degrades the quality of stereo matching. This problem is not com-
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pensated by the demosaicing step, even when the most efficient demosaicing techniques

are used. That leads us to propose a partial demosaicing scheme specifically designed for

CFA dense stereovision.
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(a) Hamilton’s demosaicing - SSD matching cost.
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(b) Dubois’ demosaicing - SSD matching cost.
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(c) Hamilton’s demosaicing - SAD matching cost.
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(d) Dubois’ demosaicing - SAD matching cost.
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(e) Hamilton’s demosaicing - NCC matching

cost.
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(f) Dubois’ demosaicing - NCC matching cost.

Figure 2.11 : Rate of correctly matched pixels (RCMP) obtained with three matching

costs computed on ‘Murs’ stereo image pair for δ set to 0.5.



2.5. Conclusion 71

2.5 Conclusion

In this chapter, we have studied how color information can be used in stereovision.

Since three-CCD color cameras which deliver full color images cannot be easily used by a

stereovision setup due to their high cost, one generally use single-CCD color cameras. After

having described why the demosaicing step is required to reconstruct the color images of

scenes observed by single-CCD color cameras, the Bayer CFA solution has been presented.

The simple bilinear interpolation has allowed us to introduce both artifact generation that

demosaicing methods have to overcome, and two major rules widely used in the proposed

approaches : spatial and spectral correlations. The vast majority of demosaicing methods

strive to estimate the green component first, which bears the high-frequency information.

The quality of this estimation strongly influences that of red and blue components.

Even if recent demosaicing methods yield very good images for human observers, none

can actually recover the information that is lost during the image acquisition process. We

have shown, thanks to a basic experiment, that the loss of information and/or the non-

specific demosaicing step have a strong influence on the efficiency of color stereo matching

techniques.

This basic experiment has been focused on the pixel matching quality obtained from

the analysis of images acquired by single-CCD cameras. Two kinds of cameras are used,

gray-level cameras that deliver gray-level images and color cameras which deliver color

images that have been demosaiced by a scheme. Testing on ‘Murs’ stereo image pair,

matching costs computed on the gray-level images outperforms matching costs computed

on demosaiced color images. We can deduce that when the demosaicing scheme and /or the

matching cost are not specifically designed for stereovision, then using gray-level cameras

provides better results than using single-CCD color cameras.

However, this experiment shows that analyzing well represented full color information

improves the performances reached by a pixel matching scheme. In the next chapter, we

will present possible solutions to apply stereo matching to CFA image pairs rather than

to the demosaiced color image pairs.





Chapitre 3

CFA stereovision

Résumé

Nous proposerons d’estimer la carte de disparité directement à partir des paires d’images

stéréo CFA acquises par deux mono-CCD caméras couleur. Cette approche est nommée ci-

après stéréovision CFA. Nous n’avons pas trouvé d’algorithme disponible dans la littérature

qui estime la carte de disparité en analysant directement deux images stéréo CFA.

Le problème principal avec la stéréovision CFA est que les composants couleur dispo-

nible aux pixels homologués dans les images de gauche et de droite peuvent être différents.

Par exemple, examinons la figure 3.1 qui montre un cas où le point P de la scène est pro-

jeté sur un pixel vert pl dans l’image gauche CFA et sur un pixel rouge pr dans l’image

droite CFA. Un pixel vert (rouge, respectivement) sur l’image CFA est caractérisé par

seulement le composant vert (rouge, respectivement). Ainsi, on ne peut supposer que le

niveau vert du pixel de gauche est égal au niveau rouge de son pixel homologue dans

l’image droite CFA.

Les fonctions de coûts de mise en correspondance qui sont calculées directement à

partir des niveaux CFA ne donnant pas de résultats satisfaisants puisque l’hypothèse

que les niveaux de pixels homologues sont similaires n’est pas vérifiée pour les disparités

impaires. Plus précisément, la disparité entière pour chaque pixel de gauche peut être :

– Paire : Le pixel homologue de droite est caractérisé par le même composant cou-

leur disponible dans l’image droite CFA. L’hypothèse des niveaux de similarité est

vérifiée.

– Impaire : Le pixel homologue de droite est caractérisé par un autre composant
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couleur disponible dans l’image droite CFA. L’hypothèse des niveaux de similarité

n’est pas vérifiée.

Dans la partie suivante, nous présenterons deux solutions différentes pour calculer la

carte de disparité paire à partir des images stéréo CFA. Ces deux solutions sont basées

sur les fonctions des coûts de correspondance désignées pour comparer seulement les

composantes couleur disponible entre les images CFA de gauche et de droite.

Comme l’estimation d’une carte de disparité paire ne peut fournir de résultats satis-

faisants, nous proposerons une méthode ‘coarse to fine’ pour estimer les disparités dans la

troisième partie. Tout d’abord, une disparité paire est ‘coarsely’ estimée pour chaque pixel

en analysant les composants couleurs disponible des images CFA. Ensuite, une étape fine

basée sur l’hypothèse de variations locales est calculée pour affiner la carte de disparité

paire.

Des résultats expérimentaux avec la paire des images ‘Murs’ stéréo montrent les limites

de l’estimation des disparités par l’analyse uniquement des niveaux CFA. Ceci nous mène

à proposer une nouvelle approche basée sur une méthode de dematriçage spécialement

désignée pour la mise en correspondance.

Dans la quatrième partie, nous présenterons un nouveau type d’images couleur appelé

images couleur partiellement dematriçées. Ensuite, nous modifierons les coûts de corres-

pondance standard pour qu’ils puissent être calculés avec ces images couleur partiellement

dematriçées. Enfin, nous comparerons les résultats de mise en correspondance obtenus en

utilisant les images couleurs dematriçées et les images couleurs partiellement dematriçées.

3.1 Introduction

We propose to estimate the disparity map directly from the pair of CFA stereo images

acquired by two single-CCD color cameras. This approach is called hereafter CFA stereo-

vision. We have found no algorithm available in the literature that estimates the disparity

map by analyzing directly two CFA stereo images.

The main problem with CFA stereovision is that the color components available at

homologous pixels in the left and right images may be different. For example, let us

examine figure 3.1 that shows a case when a scene point P is projected onto a green pixel
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pl in the left CFA image and onto a red pixel pr in the right CFA image. A green (red,

respectively) pixel in a CFA image is characterized by only the green (red, respectively)

color component. Therefore, one cannot assume that the green level of the left pixel is

equal to the red level of its homologous pixel in the right CFA image.

P

pl pr

xrxl

Epipolar line

Left image plane Right image plane

Figure 3.1 : Problem of matching CFA images. The homologous pixels are not charac-

terized by the same color component. The left pixel is a green pixel while its homologous

pixel is red.

Window-based matching costs computed directly from CFA levels do not provide sa-

tisfying results since the assumption that the CFA levels of homologous pixels are similar

is not met for odd disparities. More precisely, the integer disparity for each left pixel can

be :

– even : the right homologous pixel is characterized by the same available color com-

ponent in the right CFA image. The assumption about similarity of levels is met ;

– odd : the right homologous pixel is characterized by another available color com-

ponent in the right CFA image. The assumption about similarity of levels is not

met.

In the next section, we present two different solutions to compute the even estimated
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disparity maps from the pair of stereo CFA images. These two solutions are based on

matching costs designed for comparing only similar available color components between

the left and right CFA images.

As estimating an even disparity map cannot provide satisfying results, we propose a

coarse to fine disparity estimation scheme in the third section. First, an even disparity is

coarsely estimated for each pixel by analyzing similar available color components of CFA

images. Then, a fine step based on an assumption about the local variations of levels is

computed in order to refine the even estimated disparity map.

Experimental results with ‘Murs’ stereo image pair show the limits of disparity esti-

mation by analyzing only the CFA levels. This leads us to propose a new approach based

on a partial demosaicing scheme specially designed for stereo matching.

In the fourth section, we present a new kind of color images called partially demosaiced

color images. Then, we modify the standard matching costs so that it can be computed

with these partially demosaiced color images. Finally, we compare the matching results

obtained using demosaiced color images and partially demosaiced color images.

3.2 Even estimated disparity

In this section, we aim to calculate the best “even” estimated disparity at each pixel.

Even if the disparity of a pixel is odd, its estimated disparity will be even. For example,

if a pixel pl in the left image has an odd disparity equal to 2k + 1 where k is an integer

number, then the best even estimated disparity will be either 2k or 2k + 2, yielding a

disparity estimation error of one pixel.

In order to provide the even estimated disparity map, we can follow two strategies.

3.2.1 Even disparity estimation method 1 (EDE1)

The first one, called hereafter even disparity estimation method 1 (EDE1), splits the

left (right, respectively) CFA image whose size is M × N pixels into three images as

illustrated in figure 3.2 :

– one composed of only green pixels : the left (right, respectively) green image whose

size is M
2
× N ;
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– one composed of only red pixels : the left (right, respectively) red image whose size

is M
2
× N

2
;

– one composed of only blue pixels : the left (right, respectively) blue image whose

size is M
2
× N

2
.
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Figure 3.2 : CFA image splitting into three images : red, blue and green images.
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The stereo matching process is simplified by matching pixels in the left red, green

and blue images with pixels in the right red, green and blue images, respectively. The

flowchart of this method is illustrated in figure 3.3.

Figure 3.3 : Even disparity estimation method 1 (EDE1) flowchart.

Gray-level versions of SSD, SAD and NCC matching costs (COSTg) can be computed

on the pairs of red, green and blue images. However, in order to follow the same notation

as that used in chapter 2, we will replace the subscript g in the gray-level versions of these

costs with the subscript R (G and B, respectively) when it is applied to red (green and

blue, respectively) images. So, the generic notation of these costs will be COSTR, COSTG
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and COSTB.

At the end of the matching process, the red, green, and blue estimated disparity

maps have to be combined so that the even estimated disparity map is retrieved. In the

combined even estimated disparity map, at each red (green and blue, respectively) pixel,

we double its corresponding estimated disparity value calculated using the red (green and

blue, respectively) images.

3.2.2 Even disparity estimation method 2 (EDE2)

The second method, called hereafter even disparity estimation 2 (EDE2), consists in

analyzing the CFA images as gray-level images. Then, we apply gray-level stereo matching

methods by modifying the matching costs to take into consideration only pixels at even

shifts.

Thus, SSDw
g (see equation (1.14)), SADw

g (see equation (1.16)) and NCCw
g (see equa-

tion (1.17)) matching costs are modified in order to take only even shifts.

For example, the SSDw
g cost defined for gray-level images in equation (1.14) is modified

to SSDw
EDE2 and expressed as :

SSDw
EDE2(xl,y,2k) = (3.1)

w∑

i=−w

w∑

j=−w

(CFAl(xl + i,y + j) − CFAr(xl + i − 2k,y + j))2,

where k is a positive integer, and CFAl(xl,y) is the available color component of pixel

with coordinates (xl,y) in the left CFA image. Similarly, we can define SADw
EDE2 and

NCCw
EDE2. The generic notation of these costs is COSTEDE2 and the flowchart of this

method is illustrated in figure 3.4.

The difference between the two even disparity estimation methods is that the aggre-

gation window used by the second method contains all kinds of pixels (red, blue, green)

whereas the aggregation window used by the first method contains only pixels with the

same available color component as the central pixel (specifically red, green or blue pixels).
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Figure 3.4 : Even disparity estimation method 2 (EDE2) flowchart.

3.2.3 Experimental results with even disparity estimation me-

thods

To assess the efficiency of even disparity estimation methods, we compare RCMP

reached by using the standard method (see flowchart in figure 2.9) and both even methods

(see flowcharts in figures 3.3 and 3.4) applied to ‘Murs’ stereo image pair.

Our experimental procedure is decomposed into successive steps. First, in order to

produce left and right CFA images from full color images, we simulate the CFA sampling

process by keeping only one out of the three color components at every pixel. This is

performed according to the spatial arrangement of the Bayer CFA (see figure 2.4). Then,

the two missing color components at each pixel of the so-formed CFA images are estimated

by either Hamilton’s or Dubois’ method.

At pixels where the disparity is odd, the even estimated disparity error is at least one

pixel. So, when the disparity error tolerance δ is set to 0.5, all pixels with odd disparities

will not be correctly matched. Moreover, when the disparity map is available with sub-
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pixel precision, all pixels whose disparity values do not range between 2k−0.5 and 2k+0.5

cannot be correctly matched by even disparity estimation methods.

In ‘Murs’ stereo image pair, 51.9% of the left pixels cannot be correctly matched by

even disparity estimation methods when δ is set to 0.5. However, when δ is set to 1, all

pixels can be correctly matched. Hence, the RCMP will be calculated when δ is set to 1.

Figure 3.5 displays the RCMP obtained using three matching costs. In each of the

of the six subfigures, the three curves represent the RCMP with respect to different

aggregation window half-widths w.

The red dotted curve corresponds to the RCMP in the pair of demosaiced color images,

using COSTST for cost computation. The green dotted curve corresponds to the RCMP

in CFA image pair, using COSTR, COSTG and COSTB for cost computation. Finally, the

magenta dotted curve corresponds to the RCMP in CFA image pair, using COSTEDE2

for cost computation. The left column shows results for Hamilton’s demosaicing scheme

and the right column for Dubois’ scheme. The three lines correspond respectively to the

SAD, SSD and NCC matching costs.

Curves of figure 3.5 show that, whatever the matching cost and the half-width w, the

RCMP is higher for EDE2 method than for EDE1 method. The difference between RCMP

ranges between 3% (SSD, large aggregation window) and 17% (NCC, small aggregation

window). This proves that taking into account all the pixels in the aggregation window

provides better results than taking into account only pixels for which the same color

components available in the aggregation window.

We notice also that the RCMP reached by using the standard method is higher than

that of even disparity estimation methods. For the Hamilton’s demosaicing scheme, the

difference between RCMP using the standard method and EDE2 (which is better than

EDE1 method) ranges between 3% and 12%. For Dubois’ demosaicing scheme, the diffe-

rence ranges between 2% and 15%.

As a conclusion, even if the acceptable disparity error tolerance is set to one, the stan-

dard method outperforms the even disparity estimation ones. However, a more accurate

disparity map is needed in most cases. So, the RCMP is calculated for δ set to 0.5. In this

case, the RCMP reached by using an even disparity estimation method on ‘Murs’ CFA

image pair cannot be higher than 48.06% since 51.94% of left pixels cannot be correctly
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matched.

For this reason, we propose another method which refines a posteriori the even esti-

mated disparity map calculated by EDE2 method.
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(a) Hamilton’s demosaicing - SSD matching cost.
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(b) Dubois’ demosaicing -SSD matching cost.
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(c) Hamilton’s demosaicing - SAD matching cost.
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(d) Dubois’ demosaicing -SAD matching cost.
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(e) Hamilton’s demosaicing - NCC matching cost.
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(f) Dubois’ demosaicing -NCC matching cost.

Figure 3.5 : Rate of correctly matched pixels (RCMP) obtained with three matching

costs computed on ‘Murs’ stereo image pair for δ set to 1 using standard, EDE1 and

EDE2 methods.
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3.3 Coarse to fine disparity estimation

3.3.1 RGGBD cost

Let us examine the case of odd disparities, when the available color components of

homologous pixels are different. This occurs, for example, when a red pixel pl with coor-

dinates (xl,y) in the left CFA image is homologous to a green pixel pr in the right CFA

image. The homologous pixel pr is at a horizontal shift from pl in the right image equal

to d(xl,y), so its coordinates are (xl − d(xl,y),y). We assume that when pl is homologous

to pr, the variation between the red level of pl and the green level of its right neighbor is

close to the variation between the green level of pr and the red level of its right neighbor.

In this case, the following approximation can be accepted as illustrated in figure 3.6 :

|Rl(xl,y) − Gl(xl + 1,y)| ≈ |Gr(xl − d(xl,y),y) − Rr(xl − d(xl,y) + 1,y)| . (3.2)

Using this approximation, a new difference cost is used by the matching process. The

new cost, denoted as RGGBDw (which stands for R-G G-B difference), is defined as :

RGGBDw(xl,y,s) =
∑w

j=−w

∑w
i=−w (diffl(xl + i,y + j)

− diffr(xl − w + s + i,y + j))2 ,
(3.3)

where diffl(xl,y) is the absolute difference between the available color component levels

of two consecutive pixels in the left image defined as :

diffl(xl,y) = |CFAl(xl,y) − CFAl(xl + 1,y)|. (3.4)

The left absolute difference between two consecutive pixels in the aggregation window

can have several forms depending on the position of (xl,y) as summarized in the following :

diffl(xl,y) =






|Gl(xl,y) − Rl(xl + 1,y)| if xl is even and y is even,

|Rl(xl,y) − Gl(xl + 1,y)| if xl is odd and y is even,

|Bl(xl,y) − Gl(xl + 1,y)| if xl is even and y is odd,

|Gl(xl,y) − Bl(xl + 1,y)| if xl is odd and y is odd.

(3.5)
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Rl(xl − 2,y)

Gr(xl − 2 − d(xl,y),y)

Gl(xl − 1,y)

Rr(xl − 1 − d(xl,y),y)

Rl(xl,y)

Gr(xl − d(xl,y),y)

Gl(xl + 1,y)

Rr(xl + 1 − d(xl,y),y)

Rl(xl + 2,y)

Gr(xl + 2 − d(xl,y),y)

pl

pr

|Rl(xl,y) − Gl(xl + 1,y)| ≈

|Gr(xl − d(xl,y),y) − Rr(xl − d(xl,y) + 1,y)|

If the two pixels are homologous then

Figure 3.6 : RG-GB difference approximation.

3.3.2 Coarse to fine disparity estimation method (CTFDE)

We apply it as a refinement step after having computed the even estimated disparity

map using EDE2 method explained in section 3.2.

The idea is to use the even estimated disparity map as a coarse guess of the estimated

disparity map. For each pixel pl with coordinates (xl,y) in the left CFA image, we will use

the even estimated disparity value to identify the possible candidate pixels in the right

image. Let us denote the even estimated disparity of pl by d̂w
EDE2(xl,y) where we added
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the subscript EDE2 to the symbol of estimated disparity. So, the fine estimated disparity

value d̂w(xl,y) is defined as :

d̂w
l (xl,y) = arg min

s
(RGGBDw

g (xl,y,s)), (3.6)

where s ∈ [d̂w
EDE2(xl,y) − 1,d̂w

EDE2(xl,y) + 1]. In other words, the fine homologous pixel

will be the homologous pixel found by EDE2 or its left neighbor or its right one. The

flowchart of this method is shown in figure 3.7.

Figure 3.7 : Coarse to fine disparity estimation method flowchart.

3.3.3 Experimental results

In this section, we compare the matching results reached by standard method (see

flowchart in figure 2.9) and CTFDE method (see flowchart in figure 3.6) on ‘Murs’ stereo
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image pair. We also include the results of the EDE2 method since it is the coarse estimation

of the CTFDE method.

Our experimental procedure is decomposed into successive steps. First, in order to

produce left and right CFA images from full color images, we simulate the CFA sampling

process by keeping only one out of the three color components at every pixel. This is

performed according to the spatial arrangement of the Bayer CFA (see figure 2.4). Then,

the two missing color components at each pixel of the so-formed CFA images are estimated

by either Hamilton’s method or Dubois’ method.

Figure 3.8 displays the RCMP obtained using three matching costs. In each of the

of the six subfigures, the three curves represent the RCMP with respect to different

aggregation window half-widths w.

The red dotted curve corresponds to the RCMP in the pair of demosaiced color images

using the standard method. The magenta dotted curve corresponds to the RCMP in the

pair of CFA images using EDE2 method. Finally, the blue dotted curve corresponds to the

RCMP in the pair of CFA images, using the new CTFDE method. The left column shows

results for Hamilton’s demosaicing scheme and the right column for Dubois’ scheme. The

three lines correspond respectively to the SAD, SSD and NCC matching costs.

The disparity estimation tolerance δ is set to 0.5 in this experiment. In this case,

as explained before, 51.94% of the left pixels cannot be correctly matched using EDE2

method. For this reason we add to each graph a horizontal black line at 48.06% to show

the maximum limit of RCMP using EDE2 method.

Curves of figure 3.8 show that, whatever the matching cost and the half-width w, the

RCMP is lower for EDE2 method than for CTFDE method. The difference between RCMP

ranges between 0% (small aggregation window) and 15% (large aggregation window). We

also notice that RCMP of CTFDE is higher than the 48.06% when w is larger than 3.

This proves that coarse to fine method improves the even disparity estimation.

However, we still notice that the RCMP reached by using the standard method is

higher than that of CTFDE method. That leads us to propose a new approach which

consists in partial demosaicing of CFA images.
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(a) Hamilton’s demosaicing - SSD matching cost.
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(b) Dubois’ demosaicing - SSD matching cost.
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(c) Hamilton’s demosaicing - SAD matching cost.
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(d) Dubois’ demosaicing - SAD matching cost.
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(e) Hamilton’s demosaicing - NCC matching cost.
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(f) Dubois’ demosaicing - NCC matching cost.

Figure 3.8 : Rate of correctly matched pixels (RCMP) obtained with three matching

costs computed on ‘Murs’ stereo image pair for δ set to 0.5 using standard, EDE2 and

CTFDE methods.
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3.4 Partial demosaicing for CFA stereovision

3.4.1 Second and third color components

We assume that matching errors generated by the different matching costs applied to

demosaiced color images are mainly caused by estimation errors on the two missing color

components at each pixel.

The Bayer pattern which is the most widely used, is designed so that the pixels in one

line of the CFA image are characterized by one among two possible color components.

Figure 2.4 shows that pixels of even (odd, respectively) lines are characterized by red or

green levels (blue or green levels, respectively).

Using a demosaicing scheme, the missing components for each pixel can be estimated.

The estimated components are denoted second color component (SCC) and third color

component (TCC). SCC is the estimated component that is available at the same line

where TCC is the one that is not available. This means that SCC is the green color

component for all red and blue pixels. However, for green pixels the SCC is the red

color component for even lines and the blue one for odd lines. This is summarized by the

following :

SCC(x,y) =






Ĝ(x,y) for red and blue pixels, (3.7a)

R̂(x,y) for green pixels in even lines, (3.7b)

B̂(x,y) for green pixels in odd lines. (3.7c)

TCC(x,y) =

{
B̂(x,y) in even lines, (3.8a)

R̂(x,y) in odd lines. (3.8b)

To evaluate the estimated color image quality in comparison with the original full

color image, an objective criterion is used, namely the peak signal-to-noise ratio (PSNR)

derived from the mean square error (MSE) between the two images. On the red plane

for instance, these quantities are defined as :
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MSER =
1

MN

M−1∑

x=0

N−1∑

y=0

(
R(x,y) − R̂(x,y)

)2

, (3.9)

PSNRR = 10 · log10

(
2552

MSER

)
. (3.10)

Considering the left demosaiced color image of the ‘Murs’ stereo image pair, we calcu-

late the PSNR for SCC, TCC, red, green and blue color components when using either

Hamilton’s method or Dubois’ method. The results are grouped in tables 3.1 and 3.2.

Table 3.1 : PSNR for SCC, TCC, red, green and blue color components for ‘Murs’ stereo

image pair where missing components are estimated using Hamilton’s method.

PSNRR PSNRG PSNRB PSNRSCC PSNRTCC

Images

Left image 28.596 29.348 28.441 31.523 26.758

right image 28.563 29.356 28.456 31.528 26.745

Table 3.2 : PSNR for SCC, TCC, red, green and blue color components for ‘Murs’ stereo

image pair where missing components are estimated using Dubois’ method.

PSNRR PSNRG PSNRB PSNRSCC PSNRTCC

Images

Left image 31.487 33.866 31.262 33.946 29.768

right image 31.382 33.811 31.227 33.889 29.694

We found that for both demosaicing methods, PSNRSCC is higher than PSNRTCC .

We can deduce that the estimation quality of the third color component is lower than

that of the second color component. For this reason, we propose to reduce the matching

error by estimating only SCC.

3.4.2 Partial demosaicing then matching

A partial demosaicing scheme characterizes each pixel of an even (odd, respectively)

line only by its red (blue, respectively) and green levels in the so-called partially demo-

saiced color image (as illustrated in figure 3.9).
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Each pixel with coordinates (x,y) in the partially demosaiced color image is characte-

rized by a two-dimensional partial color point denoted ÎPA(x,y). This partial color point

is composed of the available color component and the estimated second color component

and is defined as :

ÎPA(x,y) =






(R(x,y),Ĝ(x,y))T if x is odd and y is even, (3.11a)

(R̂(x,y), G(x,y))T if x is even and y is even, (3.11b)

(Ĝ(x,y), B(x,y))T if x is even and y is odd, (3.11c)

(G(x,y),B̂(x,y))T if x is odd and y is odd, (3.11d)

where the SCC color component is estimated by Hamilton’s or Dubois’ approach.

R̂(0,0) G(0,0) R(1,0) Ĝ(1,0) R̂(2,0) G(2,0) R(3,0) Ĝ(3,0) R̂(4,0) G(4,0) R(5,0) Ĝ(5,0)

Ĝ(0,1) B(0,1) G(1,1) B̂(1,1) Ĝ(2,1) B(2,1) G(3,1) B̂(3,1) Ĝ(4,1) B(4,1) G(5,1) B̂(5,1)

Blue component not estimated in the even line

Red component not estimated in the odd line

Figure 3.9 : Partially demosaiced color image.

Once the pair of partially demosaiced color images has been reconstructed, a matching

algorithm can be applied. The flowchart of this method called partial method is shown in

figure 3.10.

Here, we use a local stereo matching algorithm based on matching costs and WTA

method. Thus, SSDw
c (see equation (2.1)), SADw

c (see equation (2.2)) and NCCw
c (see

equation (2.3)) matching costs are modified in order to take into account partial color

points rather than color points.

The generalization to partially demosaiced color images of the sum of squared diffe-

rences cost computed between the left pixel with coordinates (xl,y) and a candidate pixel

in the right partially demosaiced color image, with s-shifted coordinates (xl − s,y), is

expressed as :
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SSDw
PA(xl,y,s) =

w∑

i=−w

w∑

j=−w

∥∥∥ÎlPA(xl + i,y + j) − ÎrPA(xl + i − s,y + j)
∥∥∥

2

,(3.12)

where ‖ · ‖ is the euclidean norm. In equation (3.12), ÎlPA and ÎrPA are the partial color

points associated respectively with the left and right pixels, s is the spatial shift along

the horizontal epipolar line, and w the half-width of a (2w + 1) × (2w + 1) aggregation

window.

Similarly, SADw
c can be generalized to deal with partially demosaiced color images

as :

SADw
PA(xl,y,s) =

w∑

i=−w

w∑

j=−w

AD(xl + i,y + j,s), (3.13)

where AD(xl,y,s) is the sum of the absolute difference between the corresponding com-

ponents of the partial color points ÎlPA(xl,y) and ÎrPA(xl − s,y) defined as :

=






|CFAl(xl,y) − CFAr(xl − s,y)| + |SCCl(xl,y) − SCCr(xl − s,y)| if s is even,

|CFAl(xl,y) − SCCr(xl − s,y)| + |SCCl(xl,y) − CFAr(xl − s,y)| if s is odd.

(3.14)

The normalized cross-correlation cost (NCCw
c , see equation (2.3)) can be generalized

to partially demosaiced color images using the expression :

NCCw
PA(xl,y,s) =

∑w
i=−w

∑w
j=−w |ÎlPA(xl + i,y + j) · ÎrPA(xl + i − s,y + j)|

NormCw
lPA(xl,y) × NormCw

rPA(xl − s,y)
,(3.15)

where NormCw
lPA(xl,y) and NormCw

rPA(xl − s,y) are normalization coefficients of partial

color points corresponding to pixels of a (2w+1)×(2w+1) window, centered respectively

on (xl,y) in the left image and on (xl − s,y) in the right image :

NormCw
lPA(xl,y) =

√√√√
w∑

i=−w

w∑

j=−w

∥∥∥ÎlPA(xl + i,y + j)
∥∥∥

2

, (3.16)

and

NormCw
rPA(xl − s,y) =

√√√√
w∑

i=−w

w∑

j=−w

∥∥∥ÎrPA(xl + i − s,y + j)
∥∥∥

2

. (3.17)

The generic notation of SSD, SAD and NCC matching costs when computed on par-

tially demosaiced color images will be denoted as COSTPA.
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Since pixels of horizontal lines with the same parity in the left and right partially

demosaiced color images are characterized by the same two color components, we can

reasonably assume that the partial color points of two homologous pixels are similar.

Since our partial costs compare the partial color points of left and right pixels located on

the same horizontal lines, we assume that they reach an extremum when the shift s is

equal to the disparity.

Figure 3.10 : Partial method flowchart.

3.4.3 Experiments on ‘Murs’ stereo image pair

First of all, we simulate the CFA color sampling and then calculate the demosaiced

and partially demosaiced color images using both Hamilton’s and Dubois’ demosaicing
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methods. After that, we apply a local stereo matching method to full, demosaiced and

partially demosaiced color images using SSD, SAD and NCC matching costs.

Figure 3.11 displays the RCMP obtained using these three matching costs. The dis-

parity error tolerance δ is set to 0.5. In each of the six subfigures, the three curves re-

present RCMP with respect to different aggregation window half-widths w. The black

curve corresponds to the RCMP in the original full color image pair, using COSTc for

cost computation. The blue dotted curve corresponds to the RCMP in the partially de-

mosaiced color image pair, using COSTPA for cost computation. Finally, the red dotted

curve corresponds to the RCMP in the pair of demosaiced color images, using COSTST

for cost computation. The left column shows results for Hamilton’s demosaicing scheme

and the right column for Dubois’ scheme. The three lines correspond respectively to the

SAD, SSD and NCC matching costs.

Curves of figure 3.11 show that, whatever the matching cost and the half-width w, the

RCMP is higher for partially demosaiced color images than for demosaiced color images.

The difference between RCMP ranges between 1% and 1.5% when using Hamilton’s de-

mosaicing scheme. For Dubois’ demosaicing scheme, this difference ranges between 1%

and 2%.

Obviously, the matching quality reached on partially demosaiced color images is glo-

bally lower than that obtained on full color images, even if the difference between these

two rates decreases when the size of the aggregation window increases.

This basic experimental results demonstrate, on a single stereo image pair, that the

partial demosaicing scheme is more adapted to stereo matching than the classical full

demosaicing scheme. Furthermore, the processing time needed for partial demosaicing

and for computing the partial matching costs is lower than the time required by full

demosaicing and standard matching costs computation. Partial demosaicing estimates one

color component for each pixel while the full demosaicing estimates two color components

for each pixel. Moreover, the partial matching costs use only two color components for each

pixel while the standard matching costs use three ones. Finally, the number of operations

needed to compute the partial matching costs is lower than that needed to compute the

standard matching costs.
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Figure 3.11 : Rate of correctly matched pixels (RCMP) obtained with three matching

costs computed on ‘Murs’ stereo image pair for δ set to 0.5.
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3.5 Conclusion

In this chapter, we have introduced the problem of CFA stereovision which consists in

pixel matching by taking into account CFA levels. Different solutions have been proposed.

First, we have proposed a coarse to fine solution that consists in calculating an even

estimated disparity at each pixel and then in refining the estimation.

A simple experiment with one pair of stereo images has shown that matching results

using the standard method based on the analysis of the fully demosaiced color images are

better than using the coarse to fine one.

Furthermore, we propose to divide the two color components that are determined

by the demosaicing scheme into second and third color components. By measuring the

fidelity between the demosaiced color images and the original full color images, we found

that the third color component estimation fidelity is worse than that of the second color

component.

For this reason, we propose to reconstruct partially demosaiced color images from the

CFA images to be used by the matching process. Pixels in the partially demosaiced color

images are characterized by both the available color component and the second color

component. Then, we adapted color matching costs to partially demosaiced color images.

We have shown, thanks to a basic example, that our partial matching costs computed

on the partially demosaiced color images can enhance the matching results obtained by

the standard matching costs computed on demosaiced color images. In the next chapter,

we will present more experiments on benchmark images.



Chapitre 4

Experimental evaluations and

discussion

Résumé

Dans le chapitre précédent, nous avons présenté une méthode partielle pour la mise en

correspondance des paires d’images stéréo CFA. Pour évaluer l’efficacité de notre méthode,

nous comparerons ses performances à celles qui ont été obtenues par la méthode standard

expliquée dans la partie 2.4. Pour ce faire, nous utiliserons la base de données bien connue

Middlebury (http://vision.middlebury.edu/stereo/). Chaque ensemble de données de

cette base de données est constituée d’une paire d’images stéréo et de la carte de disparité

correspondante.

Parmi les 24 ensembles de données de cette base de données, nous en avons sélectionné

quatre (‘Cones’, ‘Poster’, ‘Tsukuba’ et ‘Venus’) pour l’étude expérimentale de ce chapitre.

Nous utiliserons également deux ensembles de données stéréo conçus par Bocquillon, inti-

tulé ‘Journaux’ et ”Plante” et disponible sur ~http://www.irit.fr/Benoit.Bocquillon/

MYCVR/download.php. Ces images stéréo résultent de la simulation d’acquisition des images

par les caméras couleur à trois capteurs.

Grâce à la carte de disparité et compte tenu d’une tolérance sur l’erreur de dispa-

rité, nous pouvons déterminer les pixels qui sont correctement appariés par les méthodes

partielles et standard appliquées à un ensemble de pair des images stéréo. Toutefois, une

comparaison des performances basée sur le taux global de pixels qui sont correctement

http://vision.middlebury.edu/stereo/
~ http://www.irit.fr/ Benoit.Bocquillon/MYCVR/download.php
~ http://www.irit.fr/ Benoit.Bocquillon/MYCVR/download.php
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appariés par les méthodes partielle et standard n’est pas suffisante. En effet, cela ne signi-

fie pas que tous les pixels correctement appariés par la première méthode, sont également

bien appariés par la seconde. Donc, il est intéressant d’examiner plus précisément les

positions spatiales des pixels qui sont correctement appariés par les deux méthodes.

Pour cela, nous diviserons les pixels en différents sous-ensembles en fonction des

résultats de mise en correspondance obtenus par les méthodes partielle et standard. Pour

comparer les performances obtenues par les deux méthodes, on compare la taille de ces

sous-ensembles. Cette procédure expérimentale est détaillée dans la deuxième partie de

ce chapitre.

Dans la troisième partie de ce chapitre, nous comparerons les taux de pixels qui sont

correctement appariés en suivant cette procédure expérimentale. Les expériences sont

réalisées avec les six ensembles de données choisis.

Dans la quatrième partie, nous essayerons d’expliquer les raisons pour lesquelles les

taux de pixels qui sont correctement appariés par notre méthode partielle, sont plus

élevés que ceux qui sont correctement appariés par la méthode standard. À cette fin, nous

devons nous concentrer sur la méthode de dématriçage qui estime les composantes de

couleur manquant à chaque pixel.

Les deux méthodes analysent la seconde composante couleur (SCC) estimée à chaque

pixel alors que la troisième composante couleur (TCC) n’est prise en compte que par la

méthode standard. Analyser ou non cette troisième composante couleur estimée est l’une

des principales différences entre les méthodes partielle et standard. Ainsi, la qualité de

l’estimation de la TCC devrait influer sur la qualité de l’appariement de pixel.

Dans les troisième et quatrième parties, nous mesurerons les performances de mise en

correspondance stéréo en calculant le taux de pixels correctement appariés. Ces expériences

nécessitent un ajustement de la tolérance sur l’erreur de la disparité afin de déterminer

les pixels correctement appariés. En outre, les systèmes de stéréovision dense cherchent

à estimer de manière la plus précise possible les cartes de disparité. Dans la cinquième

partie, nous comparerons la précision des cartes de disparité estimées grâce aux deux

méthodes, en calculant la racine d’erreur quadratique moyenne.

Les deux méthodes sont conçues pour la mise en correspondance de paires d’images

stéréo CFA. Cependant, ces images peuvent être corrompues par le bruit d’acquisition.
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Dans la sixième partie, nous comparerons la robustesse des performances obtenues par les

méthodes standard et partielle contre le bruit d’acquisition.

Enfin, le dispositif stéréo utilisé est composé de caméras couleur équipées d’un capteur

unique. Pour être spectralement sensible aux couleurs, une CFA est placée en face de

chaque capteur de telle sorte que les caméras fournissent des images CFA. En l’absence

de CFA, les caméras délivrent des images en niveaux de gris.

Donc, nous devrons examiner si la présence de CFA à l’intérieur des caméras pour

capturer les informations de couleur, améliore ou non la qualité de la mise en correspon-

dance. Pour ce faire, nous comparerons la qualité des pixels correspondant fournie par

nos coûts partiels calculés sur les paires des images CFA et celle fournie par les coûts des

niveaux de gris calculés sur des images en niveaux de gris dans la dernière partie.

4.1 Introduction

In the previous chapter, we have presented a partial method to match CFA stereo

image pairs. To assess the efficiency of our method, we compare its performance with that

reached by the standard method explained in section 2.4. For this purpose, we use the well

known Middlebury database (http://vision.middlebury.edu/stereo/). Each dataset of

this database is made up of a pair of stereo images and the corresponding disparity map.

In these datasets, the color stereo images are acquired by high resolution cameras

(Canon G1) equipped with one single-sensor [SS02]. So, the full color images are in fact

color images which have been demosaiced by a specific chip inside the camera. They could

yet contain artifacts caused by the demosaicing step.

Moreover, applying a demosaicing step on CFA images which have been generated

by sampling color components from these previously demosaiced color images, involves

applying two successive demosaicing steps on the CFA images acquired by the camera.

However, as Middlebury is the most used database for stereovision, we must compare the

performances of the tested methods applied to these datasets.

Among the 24 datasets of this database, we have selected four ones (‘Cones’, ‘Poster’,

‘Tsukuba’ and ‘Venus’) for the experimental study in this chapter. The complete results

with all datasets are presented in appendix A.

http://vision.middlebury.edu/stereo/
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We also use two stereo datasets designed by Bocquillon, entitled ‘Journaux’ and ‘Plan-

te’ and available at http://www.irit.fr/~Benoit.Bocquillon/MYCVR/download.php. The

stereo images result from the simulation of image acquisition by three-sensor color came-

ras which deliver full color images. The left and right color images and disparity map for

each stereo dataset examined in this chapter are shown in figure 4.1.

Thanks to the disparity map and given a tolerance about the disparity error, we can

determine the pixels that are correctly matched by partial and standard methods applied

to a dataset. However, a comparison of the performances based on the global rates of pixels

that are correctly matched by the partial and standard methods is not sufficient. Indeed,

this does not mean that all pixels which are correctly matched by the first method, are

also correctly matched by the second one. So, it is interesting to examine more accurately

the spatial locations of pixels that are correctly matched by the two methods.

For this purpose, we divide pixels into different subsets according to the matching

results obtained by the partial and standard methods. For comparing performances rea-

ched by the two methods, we compare the sizes and the intersection of these subsets. This

experimental procedure is detailed in the second section of this chapter.

In the third section of this chapter, we compare the rates of pixels that are correctly

matched by following this experimental procedure. Experiments are achieved with the six

chosen datasets in order to measure the robustness of performances against the parameter

adjustment.

In the fourth section, we attempt to explain the reasons why the rates of pixels that

are correctly matched by our partial method, are higher than those that are correctly

matched by the standard one. For this purpose, we have to focus on the demosaicing

scheme which estimates the missing color components at each pixel.

The two methods analyze the second color component (SCC) estimated at each pixel

whereas the third color component (TCC) is taken into account by only the standard

one. Analyzing or not this estimated third color component is one of the main differences

between the partial and standard methods. So, the quality of TCC estimation should

influence the quality of pixel matching.

One generally compares the quality of estimation of a color component thanks to its

fidelity to its true one in the full color image. For this purpose, we study the correlation

http://www.irit.fr/~Benoit.Bocquillon/MYCVR/download.php


4.1. Introduction 101

between the fidelity of TCC estimation and the performance of pixel matching reached

by the two methods.

In the third and fourth sections, we measure the stereo matching performances by

computing the rates of correctly matched pixels. These experiments require to adjust

the tolerance about disparity error in order to determine the correctly matched pixels.

Furthermore, dense stereovision schemes estimate as accurate disparity maps as possible.

In the fifth section, we compare the accuracies of the disparity maps estimated thanks to

the two methods, by computing the root mean square error.

The two methods are designed to match CFA stereo image pairs. However, these images

can be corrupted by acquisition noise. In the sixth section, we compare the robustness of

performances reached by partial and standard methods against the acquisition noise.

Finally, the examined stereo device is composed of color cameras equipped with one

single sensor. To be spectrally sensitive to the colors, a color filter array is placed in front

of each sensor so that the cameras deliver CFA images. When no CFA is added in the

cameras, they deliver gray-level images.

So, we should examine if putting a color filter array inside the cameras to capture color

information, leads the stereovision schemes to improve their quality of pixel matching.

For this purpose, we compare the quality of pixel matching provided by our partial costs

computed on CFA stereo image pairs and that provided by gray-level costs computed on

gray-level images in the last section.
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(a) ‘Cones’

(b) ‘Poster’

(c) ‘Tsukuba’

(d) ‘Venus’

(e) ‘Journaux’

(f) ‘Plante’

Figure 4.1 : (a), (b), (c) and (d) are stereo images taken from Middlebury, (e) and (f)

are stereo images taken from Bocquillon. The first and middle columns represent the left

and right images, respectively. The last column is the corresponding disparity map.
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4.2 Experimental procedure

Since the datasets contain left and right full color images, we have to follow a spe-

cific experimental procedure. First we simulate the CFA stereo images, by sampling the

available color components according to Bayer’s CFA.

Then, we estimate the fully demosaiced and partially demosaiced color images by

applying Hamilton’s and Dubois’ demosaicing methods to the CFA stereo image pairs.

Two local stereo algorithms are used to estimate the disparity at each left pixel. The

first one is based on the standard matching costs computed on the fully demosaiced color

images (standard method) and the second is based on the partial matching costs computed

on the partially demosaiced color images (partial method).

The single parameter required by matching costs is the half-width w of the aggregation

square window. First, we consider a special case when w is set to 3 and compare the results

provided by the two methods. Then, we extend the results for different window sizes.

The two local stereo algorithms provide two estimated disparity maps. Given w, let

us denote d̂w
ST (xl,y) and d̂w

PA(xl,y) the disparities estimated by the standard method and

our partial method at the left pixel with coordinates (xl,y) in the left image Il of a stereo

dataset, respectively.

To compare the performances reached by the standard and partial methods, we divide

the left pixels into different disjoint subsets with respect to the quality of matching. Given

the disparity error tolerance δ, we can build two different subsets of pixels in the left CFA

image :

– subset ST δ,w :
{

(xl,y) so that |d̂w
ST (xl,y) − d(xl,y)| <= δ

}
of left pixels that are

correctly matched by the standard method ;

– subset PAδ,w :
{

(xl,y) so that |d̂w
PA(xl,y) − d(xl,y)| <= δ

}
of left pixels that are

correctly matched by our partial method.

Since left pixels can be correctly matched by both methods, these two subsets can

overlap. Comparing the performances reached by the two methods requires to examine

the union and intersection of the subsets.

So, left pixels of the image Il can be divided into 4 disjoint subsets :

– subset PSδ,w = PAδ,w∩ST δ,w of pixels that are correctly matched by both methods
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(PSδ,w= Partial Standard) ;

– subset POδ,w = PAδ,w − PAδ,w ∩ ST δ,w of pixels that are correctly matched only

by our partial method (POδ,w= Partial Only) ;

– subset SOδ,w = ST δ,w −PAδ,w ∩ST δ,w of pixels that are correctly matched only by

the standard method (SOδ,w = Standard Only) ;

– subset NOδ,w = Il−PAδ,w∪ST δ,w of pixels that are not correctly matched by both

methods (NOδ,w = no cost provides good pixel matching).

The union of these 4 subsets is the left image. We propose to compare the sizes of

these subsets for the discussion purposes. We generally express the size of a subset as the

rate of pixels belonging to it, expressed as its cardinal divided by the number M × N of

pixels in the image multiplied by 100. For example, the rate SOδ,w% of pixels that are

correctly matched only by the standard method is expressed as :

SOδ,w% = 100.
card(SOδ,w)

M.N
. (4.1)

The higher POδ,w% and the lower SOδ,w%, the higher the improvement of results

brought by our partial method is.

4.3 Rates of correctly matched pixels (RCMP)

4.3.1 Experiments with ‘Journaux’ dataset

First, we apply the two methods to ‘Journaux’ dataset (see figure 4.1e). The disparity

has been estimated by using SSD matching cost when the window half-width w is set to

3. Table 4.1 shows the sizes of the subsets obtained when the disparity error tolerance δ

is set to 0.5.

In this table, we focus on the size of the subset of pixels matched only by our par-

tial method (PO0.5,3) and that of pixels matched only by standard one (SO0.5,3). The

highest size between these two subsets is marked as bold. The size of these two subsets
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Table 4.1 : Size of left pixel subsets of ‘Journaux’ dataset using SSD cost.

pixels correctly pixels correctly pixels correctly pixels not

matched by matched by matched by matched correctly

both methods partial method only standard method only by both methods

PS0.5,3 % PO0.5,3 % SO0.5,3 % NO0.5,3 %

Demosaicing

Hamilton 84.40 2.53 .70 12.20

Dubois 86.50 1.04 .63 11.70

is low compared with that of pixels which are correctly matched by both methods. As

we apply a simple stereovision algorithm that does not analyze half-occlusions and depth

discontinuities, at least 11% of left pixels are never correctly matched (subset NO0.5,3).

For the two used demosaicing schemes, the population of left pixels which are correctly

matched only by the partial method (PO0.5,3) is higher than that of pixels which are

correctly matched by only the standard one (SO0.5,3).

By examining figure 4.2 which displays the different subsets, we see that left pixels

which are never correctly matched subset (NO0.5,3), are mainly located at transition areas

between objects. Moreover, left pixels that are correctly matched only by one of the two

matching methods, are scattered through the image. So, there is no specific location of

pixels belonging to SO0.5,3 or to PO0.5,3.

4.3.2 Comparison between RCMP with fixed aggregation win-

dow size

We compare the size of subset SO0.5,3 of pixels that are correctly matched only by the

standard method and the size of subset PO0.5,3 of pixels that are correctly matched only

by our partial method. For this purpose, we use SSD, SAD and NCC matching costs. Let

us examine the results shown in tables 4.2 and 4.3 with the six datasets of figure 4.1 for

Hamilton’s and Dubois’ demosaicing schemes, respectively. At each comparison, the value

printed in bold typeface highlights the best result.

Tables 4.2 and 4.3 show that except for ‘Cones’ dataset, PO0.5,3% is higher than
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(a) Subset PS0.5,3 (b) Subset NO0.5,3

(c) Subset SO0.5,3 (d) Subset PO0.5,3

Figure 4.2 : Subsets of left pixels of ‘Journaux’ dataset using SSD cost (Hamilton

demosaicing scheme).

Table 4.2 : RCMP by partial method only (PO0.5,3%) and by standard method only

(SO0.5,3%) (Hamilton’s demosaicing method).

Matching cost SSD SAD NCC

PO0.5,3% SO0.5,3% PO0.5,3% SO0.5,3% PO0.5,3% SO0.5,3%

Dataset

Plante 3.23 2.30 3.54 2.66 3.22 2.28

Journaux 2.53 0.70 2.11 0.76 2.74 0.71

Cones 1.24 1.29 1.31 1.77 1.25 0.98

Poster 2.33 1.71 2.30 1.91 2.39 1.89

Tsukuba 2.07 0.93 2.11 1.03 2.36 1.01

Venus 2.32 1.91 2.53 2.15 2.20 2.01
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Table 4.3 : RCMP by partial method only (PO0.5,3%) and by standard method only

(SO0.5,3%) (Dubois’ demosaicing method).

Matching cost SSD SAD NCC

PO0.5,3% SO0.5,3% PO0.5,3% SO0.5,3% PO0.5,3% SO0.5,3%

Dataset

Plante 2.04 1.80 2.74 2.07 1.91 1.83

Journaux 1.04 0.63 1 0.79 1.15 0.69

Cones 0.95 1 1.02 1.73 0.95 0.62

Poster 1.40 0.96 1.43 1.20 1.26 0.99

Tsukuba 1.23 0.66 1.20 0.82 1.36 0.73

Venus 1.31 1.20 1.45 1.50 1.23 1.20

SO0.5,3%, whatever the used demosaicing scheme and matching cost. So, the partial ap-

proach outperforms the standard one except for ‘Cones’ dataset with SSD, SAD matching

cots. So, matching performance using NCCPA partial matching cost is always better than

the standard matching costs in our experiment.

The complete results for the 26 datasets are included in appendix A in tables A.1 and

A.2. For 24 datasets, the partial method provides better results than the standard one.

So, these extensive experiments show that when the window half-width size w is set to

3 and the error tolerance δ is set to 0.5, our partial method provides better results than

those provided by the standard one.

4.3.3 Comparison between rates of correctly matched pixels

Now, let us examine the behavior of both approaches with respect to w. For this

purpose, we propose to compute statistics for comparing the results provided by both

tested methods. Let us define the improvement Impδ,w as the difference between the rate

POδ,w% of correctly matched pixels using partial method and the rate POδ,w% of correctly

matched pixels using standard one for a given window half-width w and a disparity error

tolerance δ. It is expressed as :

Impδ,w = (POδ,w% − SOδ,w%). (4.2)
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A positive value of Impδ,w means that the partial method outperforms the standard

one.

Taking ‘Journaux’ dataset, Imp0.5,w with respect to w and when using SSD matching

cost is shown in figure 4.3. We see that the improvement varies but is always positive. Since

it is fastidious to examine such a figure for the other datasets, we propose to compute

the mean improvement brought by our method instead of showing figures. The mean

improvement measure for a given δ is formulated as :

Imp
δ

=
1

9

10∑

w=2

Impδ,w. (4.3)
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(a) Hamilton’s demosaicing- SSD matching cost.
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(b) Dubois’ demosaicing- SSD matching cost.

Figure 4.3 : imp0.5,w for ‘Journaux’ dataset.

Tables 4.4 and 4.5 display Imp
δ

when using Hamilton’s and Dubois’ demosaicing

methods, respectively. We compute the improvement when δ is set to 0.5 and 1. Since

most of the examined datasets have a disparity map with subpixel accuracy and since

the retained stereovision scheme cannot provide subpixel disparity estimation, we do not

examine the case when δ is set to 0. The positive values are marked in bold.

Imp
δ

is positive with most of the test datasets using three matching costs and the two

demosaicing methods, except for ‘Cones’ dataset. As for the overall results presented in

tables A.3 and A.4 in appendix A, the mean improvement is positive for 23 datasets when

the Hamilton’s demosaicing method is used and for 22 datasets when Dubois’ demosaicing

method is used. These experimental results prove the improvement brought by our partial
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Table 4.4 : Mean improvement Imp
δ

(Hamilton’s demosaicing method).

δ = 0.5 δ = 1

Matching cost SSD SAD NCC SSD SAD NCC

Dataset

Plante 0.24 0.24 0.24 0.59 0.58 0.53

Journaux 0.66 0.48 0.75 1.31 1 1.44

Cones -0.11 -0.33 0.04 -0.14 -0.36 0.01

Poster 0.34 0.37 0.34 0.46 0.35 0.39

Tsukuba 0.77 0.67 0.82 0.77 0.68 0.83

Venus 0.30 0.19 0.16 0.47 0.31 0.30

Table 4.5 : Mean improvement Imp
δ

(Dubois’ demosaicing method).

δ = 0.5 δ = 1

Matching cost SSD SAD NCC SSD SAD NCC

Dataset

Plante 0.22 0.23 0.21 0.55 0.55 0.48

Journaux 0.67 0.49 0.76 1.34 1.02 1.47

Cones -0.12 -0.33 0.04 -0.15 -0.35 0.01

Poster 0.34 0.36 0.34 0.45 0.34 0.38

Tsukuba 0.77 0.66 0.83 0.77 0.68 0.84

Venus 0.28 0.18 0.15 0.46 0.29 0.30

demosaicing approach. Although the mean improvement rates are low (less than 1%), we

should not forget that our partial approach is less time consuming than the standard one.

4.4 Fidelity of estimated TCC and matching perfor-

mance

The main difference between the standard and our partial method is the analysis of

the third color component. The standard method takes into account TCC whereas the
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partial one neglects it. As the preceding results show that the partial method outper-

forms the standard one, we propose to compare the estimation quality of SCC and TCC

thanks to the PSNR criterion. In this section, we study the relationship between the

quality estimation of the third color component TCC by a demosaicing scheme and the

rate of correctly matched pixels. For this purpose, we first achieve a global analysis of

the estimation quality of TCC. Then, we combine the study of estimation quality and

matching performance by measuring PSNR inside the subsets POδ,w and SOδ,w.

4.4.1 Global analysis

Table 4.6 displays the PSNR of SCC and TCC, estimated by Hamilton’s and Dubois’

demosaicing schemes applied to the left CFA images of the six examined stereo datasets.

At each comparison, the value printed in bold typeface highlights the best result. We see

that PSNR of SCC is always higher than that obtained by the estimation of the third

color component TCC. Hence, the quality of estimation of the third color component is

lower than that of the second component. Moreover, table 4.7 shows the PSNR of the

estimated color components R, G, and B computed with the same images. As shown by

Yang et al. [LMY10], the fidelity of color component G estimation provides the highest

PSNR.

Moreover, by comparing tables 4.6 and 4.7, we see that the PSNR of the third color

component TCC is always the lowest one. So, the estimation fidelity of the third color

component is vey bad compared with that of the other components. The same conclusions

arise from the analysis of the complete tables presented in tables A.5 and A.6 of appendix

A.

So, it is interesting to study in depth the relationship between the bad estimation

fidelity of TCC and the pixel matching performance.

4.4.2 Subset analysis

A global study across the left image is not sufficient to measure the relationship bet-

ween the fidelity of color estimation and matching performance. So, we propose to measure

the fidelity of color estimation across the four subsets PSδ,w, POδ,w, SOδ,w and NOδ,w

that can be built from the comparison of matching performances reached by the standard
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Table 4.6 : PSNR of SCC, TCC estimated by Hamilton’s and Dubois’ demosaicing

methods applied to left images.

Demosaicing Hamilton Dubois

PSNRSCC PSNRTCC PSNRSCC PSNRTCC

Dataset

Plante 34.76 30.07 36.81 32.87

Journaux 35.39 30.36 38.86 34.6

Cones 32.27 28.24 31.34 27.23

Poster 30.55 25.79 29.35 24.97

Tsukuba 37.48 32.28 37.23 32.15

Venus 34.44 29.41 33.49 29.18

Table 4.7 : PSNR of R, G, and B estimated by Hamilton’s and Dubois’ demosaicing

methods applied to left images.

Demosaicing Hamilton Dubois

PSNRR PSNRG PSNRB PSNRR PSNRG PSNRB

dataset

Plante 31.65 32.49 31.98 34.29 36.48 34.53

Journaux 32.20 33.32 32.17 36.24 38.86 36.22

Cones 29.74 33.87 29.86 28.71 31.45 28.93

Poster 26.98 31.55 28.22 26.21 29.36 27.09

Tsukuba 33.30 38.24 35.19 33.18 38.31 34.98

Venus 31.29 34.26 31.17 30.93 33.02 30.72

and partial methods.

The subsets PSδ,w and NOδ,w regroup left pixels that have been correctly matched

by both methods and by no method, respectively. At these pixels, the TCC estimation

quality does not impact the quality of matching. So, we do not examine these subsets.

At pixels belonging to SOδ,w, taking into account TCC improves the quality of mat-

ching whereas at pixels belonging to POδ,w, taking into account TCC decreases the quality

of matching. So, we propose to examine PSNR of TCC at pixels belonging to one of these
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two subsets.

4.4.2.1 PSNR of TCC

Tables 4.8 and 4.9 display PSNR of TCC at pixels belonging to PO0.5,3 and SO0.5,3,

when Hamilton’s and Dubois’ demosaicing schemes are applied, respectively. At each

comparison, the value printed in bold typeface highlights the highest PSNR. We see that

PSNR of TCC at pixels belonging to SO0.5,3 is always higher than that of pixels belonging

to PO0.5,3, except for the SSD matching cost used to match pixels of ‘Tsukuba’ dataset.

These tables show that PSNR value strongly changes according to the considered subsets

of pixels. So, the quality of TCC estimation is not constant across the image.

Moreover, by comparing PSNR of TCC across the image (see table 4.6) and at pixels

belonging to SO0.5,3 (see tables 4.8 and 4.9), we see that PSNR of TCC is always higher

at pixels that are well matched by the standard matching than across the image. So, the

estimation quality of pixels belonging to SO0.5,3 is higher than for the other pixels.

We can conclude that the estimation of TCC is good enough in subset SO0.5,3 to

improve matching performance. In other subsets, the estimation of TCC is so bad that it

does not impact or decreases the matching quality. We obtain the same conclusions with

the images of the other datasets (see tables A.7 and A.8 in appendix A).

Table 4.8 : PSNR of TCC estimated by Hamilton’s demosaicing method at left pixels

belonging to different subsets.

Matching cost SSD SAD NCC

Subset PO0.5,3 SO0.5,3 PO0.5,3 SO0.5,3 PO0.5,3 SO0.5,3

Dataset

Plante 29.5 31.9 30.3 32.7 29.1 31.5

Journaux 25.3 31.6 25.8 32.6 25.4 31.5

Cones 28 30 28 30.3 27.4 30.1

Poster 25.2 26.8 25.5 27 25 27.5

Tsukuba 35.1 33.9 33.6 35.8 34.4 34.9

Venus 29.8 32.3 30.4 32.3 29.8 32.1
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Table 4.9 : PSNR of TCC estimated by Dubois’ demosaicing method at left pixels

belonging to different subsets.

Matching cost SSD SAD NCC

Subset PO0.5,3 SO0.5,3 PO0.5,3 SO0.5,3 PO0.5,3 SO0.5,3

Dataset

Plante 34 35.1 33.8 34.5 33.7 34.5

Journaux 30.2 36.5 31.3 36.9 30.5 35.6

Cones 27.3 28.6 27.4 28.8 27.4 27.6

Poster 24.6 27 24.7 26.2 24.5 27.4

Tsukuba 34.4 33.2 33.8 34.4 34.4 35.6

Venus 30.7 33 32.3 32.5 31 33.4

4.4.2.2 Pixel matching based on TCC Only

In order to prove that the third estimated color component TCC mainly causes the

difference between the two subsets PO and SO, we propose to match the pixels by taking

into account only it.

SSD, SAD and NCC matching cost can be computed when using only the TCC com-

ponent of the image pairs. In this case, the gray-level version of these costs is computed.

However, in order to follow the same notation as that used in chapter 2, we will replace

the subscript g in the gray-level versions of these costs with the subscript TCC. So, the

generic notation of these costs will be COSTTCC .

We focus on the subsets PO0.5,3 and SO0.5,3 of left pixels. Their sizes have been

displayed in tables 4.2 and 4.3. Among the pixels of a subset, we propose to count those

which are correctly matched by the matching cost COSTTCC . Tables 4.10 and 4.11 (and

tables A.9 and A.10 in appendix A) show the rate of pixels belonging to the subset PO0.5,3

or SO0.5,3, that are correctly matched by the matching cost COSTTCC (w set to 3 and δ

set to 0.5). The highest rate between these two subsets is marked as bold.

First, we notice that whatever the used matching cost, the performances are very

close. Then, we notice that among the pixels which are correctly matched only by partial

method (PO0.5,3), a very few pixels (often less than 3) are also correctly matched by

taking into account only the third color component TCC.
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On the opposite, most of pixels of the subset SO0.5,3, i.e. pixels which are correctly

matched only by the standard method, are also correctly matched by taking into account

only the third color component TCC. This phenomenon can be explained by the quality

of TCC estimation inside these two subsets. Indeed, high PSNR of TCC inside subset

SO0.5,3 (see tables 4.8 and 4.9) indicates that the third color component TCC is well

estimated at these pixels. So, taking it into account provides good quality of pixel matching

inside the subset SO0.5,3. On the opposite, as the PSNR of TCC is low inside subset

PO0.5,3, the fidelity of estimation of TCC is not good enough to correctly match these

pixels.

Experiments in section 4.3.3 show that the number of pixels which are correctly mat-

ched by our partial method is higher than that of pixels which are correctly matched by

the standard one. The partial method does not take into account the estimated third color

component TCC whereas the standard one does. This result can be explained by the low

quality of TCC estimation provided by the demosaicing schemes which are yet the most

efficient ones. The TCC is so badly estimated that it often decreases the performance of

pixel matching.

To provide a more detailed analysis of the disparity maps calculated using the partial

and standard methods, a statistical study will be done in the next section.

Table 4.10 : Rate of pixels belonging to different subsets that are correctly matched by

COSTTCC (TCC estimated by Hamilton’s demosaicing method) (δ set to 0.5 and w set

to 3).

Matching cost SSD SAD NCC

Subset PO0.5,3 SO0.5,3 PO0.5,3 SO0.5,3 PO0.5,3 SO0.5,3

Dataset

Plante 0 77.4 0 77.6 .04 74.3

Journaux .08 83.9 .23 83.7 .25 84.7

Cones .11 90.2 .26 90.4 1.68 85.3

Poster .09 83.8 .06 82.3 .62 84.8

Tsukuba 0 81.2 0 82.1 .22 81.7

Venus 0 82.4 .24 80.4 .37 80.9



4.5. Root mean square error 115

Table 4.11 : Rate of pixels belonging to different subsets that are correctly matched by

COSTTCC (TCC estimated by Dubois’ demosaicing method) (δ set to 0.5 and w set to

3).

Matching cost SSD SAD NCC

Subset PO0.5,3 SO0.5,3 PO0.5,3 SO0.5,3 PO0.5,3 SO0.5,3

Dataset

Plante 0 78.5 0 80.2 .12 77.5

Journaux .33 85.9 .57 86 .96 86.7

Cones .07 91.8 .47 92.5 1.07 86.2

Poster .1 86.8 0 83.3 1.58 87.3

Tsukuba 0 91.3 0 90.1 0 88.4

Venus .05 89.4 .09 87.3 .65 86.3

4.5 Root mean square error

Since all datasets used in our experiments contain the disparity maps, we can calculate

the error on the disparity estimation at each left pixel. So, for each stereo image pair, we

compute statistics on disparity error for all the pixels. Thus, we compare the performances

reached by the standard and partial methods with respect to the accuracy of the estimated

disparity.

For this purpose, we process the root mean square error RMSEw [SS02] (measured in

disparity units) between the estimated disparity d̂w(xl,y) provided by a matching method

using an aggregation window whose size is (2w + 1)× (2w + 1) and the disparity d(xl,y) :

RMSEw =

(
1

MN

M−1∑

x=0

N−1∑

y=0

(
d̂w(xl,y) − d(xl,y)

)2
) 1

2

. (4.4)

A low level of RMSE indicates that the accuracy of the estimated disparity map is

high.

We propose to compare the partial and standard methods thanks to RMSE. Tables 4.12

and 4.13 show RMSE3 computed with the 6 retained datasets using Hamilton’s and Du-

bois’ demosaicing schemes, respectively. The lowest error between these two methods is

marked as bold, for each of three matching costs SSD, SAD and NCC. By examining these
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tables, we see that RMSE3 is very high (close to 10) for ‘Plante’, ‘Journaux’ and ‘Cones’

datasets. This is caused by the retained simple stereovision scheme which does not notably

analyze the half-occlusion cases. Moreover, the aggregation window size depending on w

is too low to provide satisfying results for complex scenes. However, that does not matter

since we want only to compare the performances of the two tested approaches.

When SSD matching cost is used, RMSE3 measured with partial method is lower than

that measured with standard one for all datasets when Hamilton’s demosaicing scheme is

used and 5 among 6 when Dubois’ demosaicing scheme is used.

For SAD matching cost, RMSE3 measured with partial method is lower than that

measured with standard one for all datasets when Hamilton’s demosaicing scheme is used

and 4 among 6 when Dubois’ demosaicing scheme is used.

Finally, when colors (or partial colors) of pixels are compared thanks to NCC matching

cost, standard and partial methods provide similar results.

Results with all the datasets (see tables A.11 and A.12) show that for 95 over 156

studied cases (since we use 26 datasets, three matching costs and two demosaicing schemes,

we have 156 cases), RMSE3 measured on the disparity computed thanks to our partial

method is lower than that measured thanks to the standard one.

Table 4.12 : RMSE3 (Hamilton’s demosaicing method).

Matching cost SSDPA SSDST SADPA SADST NCCPA NCCST

Images

Plante 10.4 10.6 9.47 9.64 12.4 12.5

Journaux 8.46 9.18 8.58 9.08 8.44 9.49

Cones 8.39 8.4 8.32 8.34 8.88 8.84

Poster 3.25 3.31 3.26 3.32 3.5 3.5

Tsukuba 1.95 2.02 1.9 1.95 2.14 2.21

Venus 3.91 3.93 3.88 3.88 4.26 4.2
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Table 4.13 : RMSE3 (Dubois’ demosaicing method).

Matching cost SSDPA SSDST SADPA SADST NCCPA NCCST

Dataset

Plante 10.4 10.4 9.41 9.52 12.4 12.3

Journaux 8 8.08 8.15 8.14 7.62 7.69

Cones 8.24 8.23 8.23 8.19 8.78 8.72

Poster 3.15 3.2 3.16 3.22 3.41 3.41

Tsukuba 1.99 2.02 1.94 1.97 2.19 2.22

Venus 3.92 3.92 3.82 3.82 4.32 4.25

4.6 Robustness against noise

As the partial and standard methods are designed to match CFA stereo image pairs, we

have to measure its robustness against the acquisition noise. In order to test the behavior

of our partial approach in presence of noise within CFA images, we use a simplified version

of the noise model developed by Irie et al. [IMUW08] and dedicated to CCD sensors.

First, we simulate the CFA sampling in order to produce the left and right ‘Journaux’

CFA images. Then, we separately corrupt the CFA images by two different kinds of noise,

i.e. additive and multiplicative non-correlated gaussian noise.

In the first case, we add non-correlated gaussian noise with a standard deviation σA. In

the second case, we add the level of each pixel with its product with a white multiplicative

gaussian noise whose standard deviation is σM .

First, the noisy demosaiced and partially demosaiced color images are determined by

Hamilton’s or Dubois’ demosaicing schemes. Then, partial matching costs are computed

on the noisy partially demosaiced color images and the standard ones are computed on

the demosaiced color images.

The rates of correctly matched pixels (δ set to 0.5, w set to 3) with respect to the

standard deviations σA and σM are shown by figures 4.4 and 4.5, respectively.

In each subfigure of these figures, the red dotted curve corresponds to the RCMP

in the noisy demosaiced color image pair, using COSTST for cost computation while the

blue dotted curve corresponds to the RCMP in the noisy partially demosaiced color image
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pair, using COSTPA for cost computation. The left column shows results for Hamilton’s

demosaicing scheme and the right column for Dubois’ scheme. The three lines correspond

respectively to the SAD, SSD and NCC matching costs.

For the Hamilton’s demosaicing scheme, the difference between RCMP in noisy par-

tially demosaiced color images and noisy fully demosaiced color images ranges between

0.5% and 2%. For the Dubois’ demosaicing scheme, this difference ranges between 0% and

0.5%. We can clearly see that the partial method outperforms standard one for all the

tested σA and σM values.
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Figure 4.4 : Rate of correctly matched pixels (RCMP) by three matching costs computed

on ‘Journaux’ stereo image pair corrupted with additive noise for δ set to 0.5 and w set

to 3.
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(f) Dubois demosaicing - NCC cost.

Figure 4.5 : Rate of correctly matched pixels (RCMP) by three matching costs computed

on ‘Journaux’ stereo image pair corrupted with multiplicative noise for δ set to 0.5 and

w set to 3.
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4.7 Single-CCD or Gray-level cameras for stereo mat-

ching

In this work, we consider that the stereo device is composed of cameras equipped with

single-CCD sensors. To be spectrally sensitive to color primaries, a color filter array is

placed in front of the sensor. Our partial method is designed to match pixels from images

generated by this kind of cameras. However, we should examine if putting a color filter

array inside the cameras helps the stereovision schemes to improve their quality of pixel

matching.

When the camera is not equipped with a color filter array, pixels whose coordinates

are (x,y), are characterized by gray-levels I(x,y). From a full color image, we can estimate

the gray-level at each pixel using equation (2.26).

We propose to compare the performances reached by a dense stereovision scheme

which analyses CFA images delivered by color cameras equipped with single-CCD and

those reached by a dense stereovision which analyses gray-level images delivered by gray-

level cameras.

Two local stereo algorithms are used to estimate the disparity at each left pixel. The

first one is based on the partial matching costs computed on the partially demosaiced

color images (Partial method) and the second one is based on gray-level matching costs

computed on the gray-level images (Gray-level method). For this purpose, we examine

RCMP when w is set to 3 and δ is set to 0.5 and RMSE3 .

Tables 4.14 and 4.15 show the rates of pixels that are correctly matched by the two

compared methods. For these experiments, w is set to 3 and δ is set to 0.5, as for expe-

riments detailed in section 4.3. At each comparison, the value printed in bold typeface

highlights the best result.

For the three used matching costs, RCMP in partially demosaiced color images is

higher than those of gray-level images for 2 among 6 datasets when Hamilton’s or Dubois’

schemes are used.

Results with all datasets (see tables A.13 and A.14) show that for 127 cases (we studied

156 cases), RCMP in partially demosaiced color images is lower than that in gray-level

images. So, when the aggregation window half-width is small, the gray-level approach
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outperforms the partial one.

In order to confirm these results, we also compare the accuracy of the disparity estima-

tion provided by the partial and gray-level methods. Tables 4.16 and 4.17 show RMSE3

when using both methods.

When SSD matching cost is used, RMSE3 with partially demosaiced color images

is lower than those with gray-level images in 3 among 6 datasets for Hamilton’s scheme

and 4 among 6 for Dubois’ schemes. When SAD matching cost is used, the two methods

provide similar results. Finally, when NCC matching cost is used, RMSE3 obtained with

partially demosaiced color images is lower than those of gray-level images for all the

retained datasets for Hamilton’s scheme and for 5 among 6 for Dubois’ scheme.

Results with all datasets (see tables A.15 and A.16) show that for 107 over 156 studied

cases, RMSE3 measured on the disparity computed using partially demosaiced images is

lower than that measured using gray-level images.

We can conclude from these results that matching using gray-level images generally

provides higher RCMP than matching using partially demosaiced color images. However,

the accuracy of the estimated disparity map using gray-level images is lower than that

calculated using partially demosaiced color images.

Table 4.14 : RCMP (Hamilton’s demosaicing method used by COSTPA, w is set to 3

and δ is set to 0.5).

Matching cost SSDPA SSDg SADPA SADg NCCPA NCCg

Images

Plante 45.51 45.53 49.17 50.31 42.78 41.88

Journaux 87 86.45 86.4 85.89 89.25 88.52

Cones 67.19 72.26 65.99 70.71 70.92 76.11

Poster 61.89 70.83 61.53 69.19 62.66 74.35

Tsukuba 69.77 67.46 69.82 65.81 69.75 67.15

Venus 67.68 75.73 67.54 74.66 66.96 76.28
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Table 4.15 : RCMP (Dubois’ demosaicing method used by COSTPA) (w set to 3 and

δ set to 0.5).

Matching cost SSDPA SSDg SADPA SADg NCCPA NCCg

Images

Plante 45.88 45.53 50.17 50.31 43.27 41.88

Journaux 87.58 86.45 86.88 85.89 90.19 88.52

Cones 65.37 72.26 63.91 70.71 68.35 76.11

Poster 55.4 70.83 53.69 69.19 55.78 74.35

Tsukuba 65.1 67.46 64.38 65.81 63.75 67.15

Venus 65.22 75.73 64.39 74.66 64.34 76.28

Table 4.16 : RMSE3 (Hamilton’s demosaicing method used by COSTPA).

Matching cost SSDPA SSDg SADPA SADg NCCPA NCCg

Images

Plante 10.4 11.4 9.47 10.1 12.4 15.3

Journaux 8.46 9.01 8.58 9.03 8.44 10.2

Cones 8.39 8.3 8.32 8.21 8.88 9

Poster 3.25 3.38 3.26 3.5 3.5 3.5

Tsukuba 1.95 1.93 1.9 1.87 2.14 2.16

Venus 3.91 3.68 3.88 3.74 4.26 4.32

Table 4.17 : RMSE3 (Dubois’ demosaicing method used by COSTPA).

Matching cost SSDPA SSDg SADPA SADg NCCPA NCCg

Images

Plante 10.4 11.4 9.41 10.1 12.4 15.3

Journaux 8 9.01 8.15 9.03 7.62 10.2

Cones 8.24 8.3 8.23 8.21 8.78 9

Poster 3.15 3.38 3.16 3.5 3.41 3.5

Tsukuba 1.99 1.93 1.94 1.87 2.19 2.16

Venus 3.92 3.68 3.82 3.74 4.32 4.32
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4.8 Conclusion

In this chapter, experiments have been achieved to assess the efficiency of our partial

method that is applied to partially demosaiced color images. For this purpose, we have

compared its performances with those reached by the standard matching cost applied

to fully demosaiced color images. The performances have been measured thanks to the

rates of correctly matched pixels and the root mean square estimated disparity error.

Experiments show that the performance improvement is robust against the aggregation

window size adjustment, the used demosaicing scheme, the disparity error tolerance and

the acquisition noise.

Even if the improvement brought by our partial method is often slight, our scheme

is less time consuming than the standard one. First, partial demosaicing is less time

consuming than the full one since it estimates only one single color component. Moreover,

our partial cost takes into account two color components at each pixel whereas that used

by the standard cost takes into account three color components.

To explain the reasons why our partial cost outperforms the standard one, we have

focused on the demosaicing scheme which estimates the two color components at each

pixel. The two methods analyze the second color component (SCC) estimated at each

pixel whereas the third color component (TCC) is taken into account by only the stan-

dard one. We have experimentally shown that the quality estimation of the third color

component is so bad that it decreases the quality of pixel matching in many cases.

Finally, we have examined the quality of matching improvement brought when using

single-CCD color cameras instead of gray-level ones. For this purpose, we have compared

the quality of pixel matching of CFA stereo image pairs using partial costs and that

provided by the gray-level costs computed on the gray-level stereo image pairs.

We conclude from this comparison that matching using gray-level images generally

provides higher RCMP than matching using partially demosaiced color images when the

aggregation window is low. However, the accuracy of the estimated disparity map using

partially demosaiced color images is higher than that calculated using gray-level images.
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This work achieved during the preparation of this PhD thesis concerns the development

of a partial demosaicing scheme specially designed for stereo matching of CFA images.

We divided our PhD thesis manuscript into four chapters. In the first chapter, we

have introduced the fundamentals of computational binocular stereovision. This includes

the various properties of a stereovision setup, the stereo correspondence problem and

matching methods.

The stereo correspondence problem consists in identifying homologous pixels in the

two images. In our work, the cameras included in the retained stereovision setup respect

the canonical configuration, so that the homologous pixels lie in the same line in the

two images but at different locations. Methods that aim at solving the correspondence

problem are called stereo matching methods and are divided into local and global ones.

Local methods implicitly apply a smoothness assumption while the global ones expli-

citly model it. Local methods compare the local neighborhoods of pixels to identify the

homologous pixels whereas global ones take into account the whole image. Even if global

methods provide better matching results according to recent taxonomies, they are not well

adapted to real-time applications since they are time consuming. On the opposite, local

methods based on WTA can easily be implemented in embedded systems using parallel

architectures. The study in this chapter is limited to gray-level stereo matching methods.

In the second chapter, we have extended gray-level stereo matching methods to color

stereo matching methods since many authors have reported that the use of color can

highly improve the accuracy of stereo matching results.

We have studied how color information can be used by each one of the four steps

that constitute generally a stereovision scheme : preprocessing, cost computation, cost

aggregation, and optimization. However,the quality of color representation depends on the
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type of color cameras. Color images can be acquired by three-CCD cameras or single-CCD

ones. Three-CCD color cameras deliver full color images where pixels are characterized

by R, G, and B color components. Since Three-CCD cameras cannot be easily used

by a stereovision setup which respects the canonical configuration, one generally uses

single-CCD color cameras. Single-CCD cameras provide CFA images where each pixel is

characterized by one single color component (R, G or B). A demosaicing step estimates

the two missing color components to reconstruct the color images. We have introduced

different demosaicing methods that exploit spatial and/or frequency domains to estimate

the missing components.

For our study, we have retained Dubois’s method since it provides the best performance

with respect to different quality measurements and Hamilton’s method since it reaches

the best compromise between quality and computation time.

In order to match homologous pixels in stereo image pair acquired by single-CCD

color cameras, the standard method consists in first reconstructing the demosaiced color

images, and then appling a color stereo matching method to the demosaiced color images.

Since demosaicing methods intend to produce “perceptually satisfying” demosaiced

color images, they attempt to reduce the presence of color artifacts by filtering the images.

So, some useful color textures information may be altered in the demosaiced color images.

However, to match homologous pixels, window-based stereo matching costs need as much

local texture information as possible.

Testing on the ’Murs’ stereo image pair, window-based matching costs computed on

the gray-level images outperforms matching costs computed on demosaiced color images.

So, when the demosaicing scheme and /or the matching cost are not specifically designed

for stereovision, using gray-level cameras provides better results than using single-CCD

color cameras.

In the third chapter, we have proposed a specific demosaicing scheme adapted to

stereo matching applied to CFA stereo image pairs. For this purpose, we have studied

the behavior of the full demosaicing scheme which estimates two color components at

each every pixel, i.e. the second and the third color components with respect to CFA

arrangement. By measuring the fidelity between the demosaiced color images and the

original full color images, we found that the third color component estimation fidelity is
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worse than that of the second color component.

That leads us to propose a partial demosaicing scheme instead of a full one. Partial

demosacing scheme only estimates the second color component at each pixel in the CFA

images. So, pixels in the partially demosaiced color images are characterized by both

the available color component and the second color component. Then, we adapted color

matching costs so that they can be computed on partially demosaiced color images.

Hence, to identify the homologous pixels of CFA stereo image pairs, we propose to fol-

low a partial approach instead of the standard one. Experiments have shown using ‘Murs’

stereo image pair that our partial matching costs computed on the partially demosaiced

color images can enhance the matching results obtained by the standard matching costs

computed on fully demosaiced color images.

In the last chapter, we have compared the matching results of our partial method

and those of standard one based on 26 stereo datasets. The performances have been

measured thanks to the rates of correctly matched pixels and the root mean square error

of the estimated disparity. In addition to reducing the processing time of matching process,

partial method improves the matching results obtained using the standard one. A detailed

study of the estimation quality has been achieved in order to explain the reasons of this

improvement.

As a conclusion, it is recommended to use the partial approach instead of the standard

one when using single-CCD cameras for stereo matching. However, an important question

rises here : should we choose single-CCD cameras for stereo matching or gray-level ones ?

To answer this question, we have examined the matching quality improvement when

using single-CCD cameras instead of gray-level ones. The matching results obtained with

gray-level images are better than those obtained with partially demosaiced color images

when compared with respect to RCMP.

This leads us to conclude that for applications which make use of cameras only for

the purpose stereo matching, it seems that the gray-level cameras are more adapted than

the single-CCD cameras. However, if color is needed for other purpose and for stereo

matching, then the partial method applied on the CFA stereo images has proven to give

better matching results than the standard method.

In future research, there are some topics that we are planning to address :
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– We will try to study in more details the difference in matching results when using

single-CCD and gray-level cameras.

– Another point to study is the partial demosaicing method. Although Dubois’s me-

thod is classified as better than Hamilton’s method in the taxonomies about de-

mosaicing, the stereo matching results using Hamilton’s scheme was better than

that using Dubois’s one. For this reason, we will try to find, in future work, the

best partial demosacing method which is adapted to stereo matching of CFA stereo

images.

– It would be also interesting to test a stereo matching method of CFA stereo images

which is between the partial and standard one (we will call it adapted method). In

this method, for certain pixels we use the partial method to identify their homologous

and for others we use the standard one. In other words, the third color component

will be used for the matching process of certain pixels and ignored for others. For

example, the generalization to this adapted approach of the sum of squared diffe-

rences cost computed between the left pixel with coordinates (xl,y) and a candidate

pixel in the right demosaiced color image, with s-shifted coordinates (xl − s,y), is

expressed as :

SSDw
AD(xl,y,s) =

w∑

i=−w

w∑

j=−w

(∥∥∥ÎlPA(xl + i,y + j) − ÎrPA(xl + i − s,y + j)
∥∥∥

2

(4.5)

+β(xl,y) · ‖TCC(xl + i,y + j) − TCC(xl + i − s,y + j)‖2

)
,

where β(x,y) is equal to one for pixels where TCC is used and zero otherwise. The

problem of attributing a β values for each pixel should be studied. The idea of this

approach is to use the third color component when necessary to enhance the results

of the partial method.



Annexe A

Tables of experimental results over

all datasets

The left image of each stereo image pair used in our experiments is shown in figure

A.1 and its corresponding left disparity map are shown in figure A.1.
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(a) ‘Barn’ (b) ‘cones’ (c) ‘Poster’ (d) ‘Sawtooth’

(e) ‘Teddy’ (f) ‘Tsukuba’ (g) ‘Venus’ (h) ‘Aloe’

(i) ‘Art’ (j) ‘Baby1’ (k) ‘Books’ (l) ‘Bowling1’

(m) ‘Cloth1’ (n) ‘Dolls’ (o) ‘Flowerpots’ (p) ‘Lampshade1’

(q) ‘Laundry’ (r) ‘Midd1’ (s) ‘Moebius’ (t) ‘Monopoly’

(u) ‘Plastic’ (v) ‘Reindeer’ (w) ‘Rocks1’ (x) ‘Wood1’

(y) ‘Plante’ (z) ‘Journaux’

Figure A.1 : Left image of each tested stereo image pair.
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(a) ‘Barn’ (b) ‘cones’ (c) ‘Poster’ (d) ‘Sawtooth’

(e) ‘Teddy’ (f) ‘Tsukuba’ (g) ‘Venus’ (h) ‘Aloe’

(i) ‘Art’ (j) ‘Baby1’ (k) ‘Books’ (l) ‘Bowling1’

(m) ‘Cloth1’ (n) ‘Dolls’ (o) ‘Flowerpots’ (p) ‘Lampshade1’

(q) ‘Laundry’ (r) ‘Midd1’ (s) ‘Moebius’ (t) ‘Monopoly’

(u) ‘Plastic’ (v) ‘Reindeer’ (w) ‘Rocks1’ (x) ‘Wood1’

(y) ‘Plante’ (z) ‘Journaux’

Figure A.2 : Disparity maps of tested stereo image pairs shown in figure A.1.
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Table A.1 : RCMP by partial method only (PO0.5,3%) and by standard method only

(SO0.5,3%) (Hamilton’s demosaicing method).

Matching cost SSD SAD NCC

PO0.5,3% SO0.5,3% PO0.5,3% SO0.5,3% PO0.5,3% SO0.5,3%

Dataset

Plante 3.23 2.3 3.54 2.66 3.22 2.28

Journaux 2.53 0.7 2.11 0.76 2.74 0.71

Barn 1.73 2.64 2.01 3.14 1.62 2.03

Cones 1.24 1.29 1.31 1.77 1.25 0.98

Poster 2.33 1.71 2.3 1.91 2.39 1.89

Sawtooth 1.52 1.6 1.78 1.51 1.6 1.65

Teddy 2.35 1.72 2.7 1.93 2 2.01

Tsukuba 2.07 0.93 2.11 1.03 2.36 1.01

Venus 2.32 1.91 2.53 2.15 2.2 2.01

Aloe 1.34 0.88 1.53 0.9 1.43 0.9

Art 1.5 1.2 1.52 1.49 1.66 1.19

Baby1 2.19 1.32 2.12 1.55 2.71 1.31

Books 2.41 1.41 2.26 1.62 2.42 1.47

Bowling2 1.51 1.19 1.35 1.13 3.36 1.41

Cloth1 0.91 0.72 1.11 0.7 0.96 0.67

Dolls 1.27 1.11 1.45 1.28 1.66 1.09

Flowerpots 1.91 1.49 1.85 1.7 3.77 1.76

Lampshade1 2.53 1.84 2.47 2.24 3.4 1.46

Laundry 2.32 1.06 2.12 1.19 3.01 1.21

Midd1 1.19 1.08 1.11 1.44 1.78 0.84

Moebius 1.43 1 1.5 1.26 1.78 0.99

Monopoly 1.37 1.17 1.53 1.51 2.31 1.25

Plastic 1.38 1.12 1.4 1.06 2.84 1.71

Reindeer 2.84 0.96 2.61 1.23 2.99 1.01

Rocks1 1.11 0.82 1.22 1.02 1.6 0.95

Wood1 2.17 2.01 2.15 2.66 2.45 1.25
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Table A.2 : RCMP by partial method only (PO0.5,3%) and by standard method only

(SO0.5,3%) (Dubois’ demosaicing method).

Matching cost SSD SAD NCC

PO0.5,3% SO0.5,3% PO0.5,3% SO0.5,3% PO0.5,3% SO0.5,3%

Dataset

Plante 2.04 1.8 2.74 2.07 1.91 1.83

Journaux 1.04 0.63 1 0.79 1.15 0.69

Barn 1.07 1.97 1.25 2.34 0.98 1.52

Cones 0.95 1 1.02 1.73 0.95 0.62

Poster 1.4 0.96 1.43 1.2 1.26 0.99

Sawtooth 1.13 0.83 1.36 0.97 1.16 0.88

Teddy 1.73 1.31 1.99 1.63 1.54 1.29

Tsukuba 1.23 0.66 1.2 0.82 1.36 0.73

Venus 1.31 1.2 1.45 1.5 1.23 1.2

Aloe 1.09 0.62 1.17 0.71 1.23 0.64

Art 1.27 1.13 1.27 1.31 1.68 0.97

Baby1 3.37 1.25 3.72 1.33 4.65 0.95

Books 2.02 1.24 2.04 1.44 2.33 1.18

Bowling2 1.62 1.44 1.34 1.5 5.11 1.44

Cloth1 0.64 0.3 0.7 0.38 0.6 0.26

Dolls 1.08 0.89 1.26 1.11 1.75 0.88

Flowerpots 2.42 1.31 2.35 1.65 4.14 1.27

Lampshade1 2.29 1.15 1.92 1.64 3.24 0.75

Laundry 1.82 0.87 1.69 1 2.61 1.02

Midd1 1.04 0.85 1.12 1.35 1.99 0.61

Moebius 1.1 0.9 1.22 1.1 1.45 0.82

Monopoly 1.33 1.06 1.54 1.54 2.79 1.04

Plastic 1.25 0.96 1.3 1.08 2.04 1.1

Reindeer 1.57 0.94 1.66 1.06 2.13 0.98

Rocks1 0.67 0.55 0.76 0.71 1.12 0.52

Wood1 1.82 1.58 1.86 2.23 2.57 0.86
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Table A.3 : Mean improvement Imp
δ

(Hamilton’s demosaicing method).

δ = 0.5 δ = 1

Matching cost SSD SAD NCC SSD SAD NCC

Dataset

Plante 0.24 0.24 0.24 0.59 0.58 0.53

Journaux 0.66 0.48 0.75 1.31 1 1.44

Barn -0.57 -0.84 -0.17 -1.02 -1.36 -0.36

Cones -0.11 -0.33 0.04 -0.14 -0.36 0.01

Poster 0.34 0.37 0.34 0.46 0.35 0.39

Sawtooth 0.08 0.15 0.09 0.16 0.24 0.17

Teddy 0.37 0.33 0.17 0.36 0.31 0.12

Tsukuba 0.77 0.67 0.82 0.77 0.68 0.83

Venus 0.3 0.19 0.16 0.47 0.31 0.3

Aloe 0.16 0.24 0.15 0.61 0.77 0.59

Art 0.06 0.01 0.07 0.19 0.02 0.29

Baby1 0.15 0.11 0.16 0.63 0.53 0.77

Books 0.22 0.18 0.21 0.61 0.53 0.67

Bowling2 0.02 -0.01 0.74 0.13 0.05 1.87

Cloth1 0.02 0.05 0 0.24 0.4 0.17

Dolls 0.05 0.05 0.11 0.15 0.2 0.32

Flowerpots 0.2 0.06 0.85 0.54 0.27 1.9

Lampshade1 0.3 0.19 0.7 0.51 0.22 1.53

Laundry 0.31 0.2 0.35 1.44 1.08 1.81

Midd1 -0.02 -0.17 0.22 0.05 -0.27 0.63

Moebius 0.09 0.09 0.12 0.32 0.26 0.53

Monopoly 0.13 0.13 0.42 0.2 0.18 0.99

Plastic 0.11 0.17 0.55 0.2 0.33 1.25

Reindeer 0.41 0.31 0.47 1.1 0.84 1.21

Rocks1 0.1 0.06 0.27 0.19 0.1 0.54

Wood1 0 -0.15 0.25 0.21 -0.13 0.85

average 0.17 0.11 0.31 0.40 0.27 0.74
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Table A.4 : Mean improvement Imp
δ

(Dubois’ demosaicing method).

δ = 0.5 δ = 1

Matching cost SSD SAD NCC SSD SAD NCC

Dataset

Plante 0.22 0.23 0.21 0.55 0.55 0.48

Journaux 0.67 0.49 0.76 1.34 1.02 1.47

Barn -0.56 -0.84 -0.18 -1.02 -1.36 -0.37

Cones -0.12 -0.33 0.04 -0.15 -0.35 0.01

Poster 0.34 0.36 0.34 0.45 0.34 0.38

Sawtooth 0.06 0.14 0.08 0.16 0.23 0.16

Teddy 0.34 0.32 0.17 0.32 0.29 0.11

Tsukuba 0.77 0.66 0.83 0.77 0.68 0.84

Venus 0.28 0.18 0.15 0.46 0.29 0.3

Aloe 0.15 0.24 0.14 0.61 0.77 0.6

Art 0.05 0.01 0.08 0.17 0 0.27

Baby1 0.14 0.11 0.16 0.62 0.52 0.76

Books 0.22 0.17 0.2 0.61 0.54 0.69

Bowling2 0.04 -0.02 0.72 0.17 0.04 1.88

Cloth1 0 0.05 0 0.2 0.39 0.17

Dolls 0.04 0.04 0.09 0.15 0.19 0.31

Flowerpots 0.2 0.07 0.84 0.59 0.3 1.94

Lampshade1 0.32 0.19 0.71 0.53 0.25 1.53

Laundry 0.29 0.2 0.35 1.43 1.09 1.81

Midd1 -0.03 -0.18 0.2 0.04 -0.27 0.63

Moebius 0.1 0.08 0.13 0.32 0.26 0.53

Monopoly 0.13 0.13 0.42 0.2 0.18 0.98

Plastic 0.1 0.16 0.54 0.2 0.32 1.27

Reindeer 0.41 0.31 0.48 1.08 0.88 1.22

Rocks1 0.09 0.05 0.27 0.2 0.1 0.57

Wood1 -0.01 -0.16 0.25 0.14 -0.2 0.75

average 0.16 0.10 0.31 0.39 0.27 0.74
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Table A.5 : PSNR of SCC, TCC estimated by Hamilton’s and Dubois’ demosaicing

methods applied to left images.

Demosaicing Hamilton Dubois

PSNRSCC PSNRTCC PSNRSCC PSNRTCC

Dataset

Plante 34.76 30.07 36.81 32.87

Journaux 35.39 30.36 38.86 34.6

Barn 35.16 30.07 33.97 29.24

Cones 32.27 28.24 31.34 27.23

Poster 30.55 25.79 29.35 24.97

Sawtooth 34.86 29.96 34.8 29.81

Teddy 33.84 29.15 32.4 28.16

Tsukuba 37.48 32.28 37.23 32.15

Venus 34.44 29.41 33.49 29.18

Aloe 35.29 29.26 34.35 28.66

Art 39.22 33.69 37.3 31.33

Baby1 35.98 29.93 33.92 27.81

Books 36.93 31.26 36.14 30.03

Bowling2 42.48 36.67 39.93 33.67

Cloth1 35.33 29.29 34.11 28.36

Dolls 37.79 32.14 36.06 30.59

Flowerpots 46.73 40.31 43.35 37.79

Lampshade1 44.7 38.33 41.17 36.51

Laundry 34.97 30.07 36.88 32.04

Midd1 41.87 35.99 40.72 35.05

Moebius 38.98 34.07 37.74 32.6

Monopoly 38.97 33.59 36.8 31.76

Plastic 44.02 39.19 41.34 35.71

Reindeer 38.85 33.1 38.58 32.7

Rocks1 40.88 35.25 41 35.33

Wood1 45.95 39.88 43.77 37.99
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Table A.6 : PSNR of R, G, and B estimated by Hamilton’s and Dubois’ demosaicing

methods applied to left images.

Demosaicing Hamilton Dubois

PSNRR PSNRG PSNRB PSNRR PSNRG PSNRB

dataset

Plante 31.65 32.49 31.98 34.29 36.48 34.53

Journaux 32.2 33.32 32.17 36.24 38.86 36.22

Barn 31.79 35.41 32.02 30.87 34.06 31.11

Cones 29.74 33.87 29.86 28.71 31.45 28.93

Poster 26.98 31.55 28.22 26.21 29.36 27.09

Sawtooth 32.55 34.17 31.08 32.42 34.91 30.95

Teddy 31.04 35.02 30.74 29.87 32.42 29.7

Tsukuba 33.3 38.24 35.19 33.18 38.31 34.98

Venus 31.29 34.26 31.17 30.93 33.02 30.72

Aloe 30.24 34.34 32.71 29.72 34.28 31.78

Art 34.67 40.36 36.88 32.71 37.35 34.13

Baby1 30.98 37.34 33.28 29.34 33.89 30.48

Books 32.72 37.32 33.8 31.73 36.36 32.48

Bowling2 38.6 43.7 38.74 35.77 39.4 35.75

Cloth1 30.06 34.69 33.14 29.26 34.08 31.8

Dolls 33.67 37.93 34.59 32.19 35.98 32.87

Flowerpots 41.75 47.69 43.25 39.02 43.37 40.59

Lampshade1 41.03 46.31 39.92 38.27 39.97 38.21

Laundry 31.57 35.8 32.18 33.36 37.21 34.33

Midd1 38.07 40.7 37.94 36.97 40.34 37.07

Moebius 35.02 40.49 36.92 33.81 37.83 35.19

Monopoly 34.81 39.9 36.3 33 36.57 34.28

Plastic 45.18 46.83 38.87 38.83 40.72 36.76

Reindeer 34.38 39.12 35.94 33.96 38.86 35.64

Rocks1 37.45 39.42 36.98 37.39 40.78 37.2

Wood1 42.05 45.08 41.81 39.55 43.68 40.45
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Table A.7 : PSNR of TCC estimated by Hamilton’s demosaicing method at left pixels

belonging to different subsets.

Matching cost SSD SAD NCC

Subset PO0.5,3 SO0.5,3 PO0.5,3 SO0.5,3 PO0.5,3 SO0.5,3

Dataset

Plante 29.5 31.9 30.3 32.7 29.1 31.5

Journaux 25.3 31.6 25.8 32.6 25.4 31.5

Barn 33.8 34.2 33.7 34.2 33.2 33.8

Cones 28 30 28 30.3 27.4 30.1

Poster 25.2 26.8 25.5 27 25 27.5

Sawtooth 31.9 32.6 32.2 32.9 31.8 33.2

Teddy 31.4 30.9 30.7 31.3 30.3 31.2

Tsukuba 35.1 33.9 33.6 35.8 34.4 34.9

Venus 29.8 32.3 30.4 32.3 29.8 32.1

Aloe 29.3 29.9 29 30.3 29.6 29.9

Art 32.9 34.6 33.4 34.6 33 35.2

Baby1 29.5 32.6 30.2 32.4 30.6 31.4

Books 28.1 33.4 29.4 33.7 28.6 32.9

Bowling2 35.8 40.3 37.2 39 39 40.3

Cloth1 28.8 29.2 29.1 29.5 29.1 29.1

Dolls 32.3 33 31.7 32.7 31.8 33.1

Flowerpots 40.9 39.9 40.9 40.1 42.9 41.4

Lampshade1 37.1 40 37.3 38.6 37.5 39.6

Laundry 26.5 30.8 26.8 32.2 28.8 30.8

Midd1 36.8 36.9 36.4 39.1 38.4 36.7

Moebius 33.1 34.8 33.4 34.3 34.3 33.9

Monopoly 34.1 33.4 33.7 32.9 35.9 35

Plastic 40.6 38 40.6 39.7 41.9 38.7

Reindeer 28.5 33.7 28.9 34.1 29.5 32.1

Rocks1 30.5 35 30.9 35.2 31.9 35.3

Wood1 39.8 40.6 39.6 40.7 40.4 40.5
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Table A.8 : PSNR of TCC estimated by Dubois’ demosaicing method at left pixels

belonging to different subsets.

Matching cost SSD SAD NCC

Subset PO0.5,3 SO0.5,3 PO0.5,3 SO0.5,3 PO0.5,3 SO0.5,3

Dataset

Plante 34 35.1 33.8 34.5 33.7 34.5

Journaux 30.2 36.5 31.3 36.9 30.5 35.6

Barn 32.3 33.8 32.4 32.9 31.6 33.9

Cones 27.3 28.6 27.4 28.8 27.4 27.6

Poster 24.6 27 24.7 26.2 24.5 27.4

Sawtooth 33.5 33.7 33.9 34 32.9 33.9

Teddy 31 31.2 31.6 30.3 30.3 31.6

Tsukuba 34.4 33.2 33.8 34.4 34.4 35.6

Venus 30.7 33 32.3 32.5 31 33.4

Aloe 29.4 30.4 28.9 30.1 29.1 30.4

Art 32.8 33.2 31.6 32.7 33.8 33.3

Baby1 34.1 35.4 34.7 33.8 35.3 35.2

Books 31.9 32.5 31 31.3 32.1 32

Bowling2 35.2 38.3 36.4 37.9 38.8 37.9

Cloth1 28 29.1 28.4 29.1 27.7 29.4

Dolls 30.7 33 31.7 32 34.4 33.3

Flowerpots 39.2 38.7 39.2 38.2 40.8 39.9

Lampshade1 38.4 40 38.8 39.4 39.1 39.7

Laundry 30.6 32.5 30.9 32.7 32.4 32.8

Midd1 35.9 36.6 36.8 35.7 38.4 36.4

Moebius 32.9 34.3 32.8 34.3 34.1 34

Monopoly 30.9 32.4 32.4 32.6 34.3 34.3

Plastic 38.6 38.3 38.9 36.9 38.4 38.3

Reindeer 33.1 34.8 35.1 35.1 33.8 36.9

Rocks1 29.4 37.2 31.7 35.5 31.4 36.6

Wood1 38.9 39.5 39.2 39.3 39.5 39.2
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Table A.9 : Rate of pixels belonging to different subsets that are correctly matched by

COSTTCC (TCC estimated by Hamilton’s demosaicing method) (δ set to 0.5 and w set

to 3).

Matching cost SSD SAD NCC

Subset PO0.5,3 SO0.5,3 PO0.5,3 SO0.5,3 PO0.5,3 SO0.5,3

Dataset

Plante 0 77.4 0 77.6 0.04 74.3

Journaux 0.08 83.9 0.23 83.7 0.25 84.7

Barn 0.16 76.1 0.1 74.4 3.87 80.2

Cones 0.11 90.2 0.26 90.4 1.68 85.3

Poster 0.09 83.8 0.06 82.3 0.62 84.8

Sawtooth 0.09 87 0.08 84.6 2.36 84.2

Teddy 0.14 81.1 0.25 80.3 5.08 77.6

Tsukuba 0 81.2 0 82.1 0.22 81.7

Vensus 0 82.4 0.24 80.4 0.37 80.9

Aloe 0 91.7 0 92.9 1.07 88.2

Art 0 90.1 0 90.6 0.24 86.6

Baby1 1.71 90.7 0 91.4 0.35 86.2

Books 0 87.6 1.47 85.2 0.22 85

Bowling2 1.17 87 1.92 86 0.73 78.1

Cloth1 1.92 91.4 0.59 95.8 0.45 94.5

Dolls 0 91.5 1.44 91.1 1.01 88.2

Flowerpots 0.21 89.3 0.22 90 0.81 77.1

Lampshade1 0.94 70 0.14 75.2 1.23 64.7

Laundry 0 78.1 0.77 79.8 0.2 79.7

Midd1 0 90.7 0 89.1 0.68 82.2

Moebius 0 88.2 0.43 90.3 0.4 86.9

Monopoly 1.59 89 2.06 83.5 3.68 74.6

Plastic 0.52 73.7 0.92 71.6 1 70.8

Reindeer 0.36 81.6 0.44 79.8 0.02 78

Rocks1 0.2 94.3 1.26 88.4 0.97 85.1

Wood1 0 88 0 86.9 0.73 84.6
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Table A.10 : Rate of pixels belonging to different subsets that are correctly matched

by COSTTCC (TCC estimated by Dubois’ demosaicing method) (δ set to 0.5 and w set

to 3).

Matching cost SSD SAD NCC

Subset PO0.5,3 SO0.5,3 PO0.5,3 SO0.5,3 PO0.5,3 SO0.5,3

Dataset

Plante 0 78.5 0 80.2 0.12 77.5

Journaux 0.33 85.9 0.57 86 0.96 86.7

Barn 0.38 81.9 0.6 80.8 4.88 86.2

Cones 0.07 91.8 0.47 92.5 1.07 86.2

Poster 0.1 86.8 0 83.3 1.58 87.3

Sawtooth 0.24 92.5 0.2 90.1 0.29 91.2

Teddy 0.08 85.9 0.24 83.8 3.07 83.3

Tsukuba 0 91.3 0 90.1 0 88.4

Vensus 0.05 89.4 0.09 87.3 0.65 86.3

Aloe 0 91.5 0 92.1 1.37 85.9

Art 0 91.2 0 89.3 0.27 86.5

Baby1 0 92.4 0 89.9 0.09 90.4

Books 0 91.9 0 91.1 0.08 89.2

Bowling2 0 89 0 90.9 0.26 87.3

Cloth1 0 97.3 0 97.9 0.12 97.5

Dolls 0 92.5 0 93 0.33 88.3

Flowerpots 0 87.5 0 89.2 0.43 79.1

Lampshade1 0 75.3 0 80 0.85 68.9

Laundry 0 82.4 0 83.8 0.23 83.7

Midd1 0 93.5 0 93.8 0.14 89.7

Moebius 0 90.1 0 91.1 0.09 87.6

Monopoly 0 86.9 0 86.1 1.97 75.1

Plastic 0 78.2 0 74.6 1.08 74.7

Reindeer 0 88.2 0 86.1 0.19 89.9

Rocks1 0 97.8 0 97.2 0.13 92.2

Wood1 0 91.4 0 91.4 0.57 83.6



142 Annexe A. Tables of experimental results over all datasets

Table A.11 : RMSE3 (Hamilton’s demosaicing method).

Matching cost SSDPA SSDST SADPA SADST NCCPA NCCST

Images

Plante 10.4 10.6 9.47 9.64 12.4 12.5

Journaux 8.46 9.18 8.58 9.08 8.44 9.49

Barn 3.13 2.96 3.24 2.98 3.51 3.4

Cones 8.39 8.4 8.32 8.34 8.88 8.84

Poster 3.25 3.31 3.26 3.32 3.5 3.5

Sawtooth 2.3 2.26 2.14 2.14 2.65 2.62

Teddy 7.99 8.02 8.02 8.03 8.28 8.32

Tsukuba 1.95 2.02 1.9 1.95 2.14 2.21

Venus 3.91 3.93 3.88 3.88 4.26 4.2

Aloe 11.2 11.1 10.7 10.7 12.1 12

Art 15.9 15.9 15.6 15.6 16.2 16.3

Baby1 9.29 9.32 9.76 9.64 6.97 7.02

Books 11.1 11.1 11.4 11.7 11.7 11.9

Bowling2 18 17.9 18.2 18.1 16.2 16.3

Cloth1 9.12 8.83 8.8 8.82 9.63 9.44

Dolls 11.1 11 11.4 10.7 11.6 11.5

Flowerpots 9.89 9.94 9.93 9.96 9.91 10

Lampshade1 13.2 12.6 14.1 13.4 11.9 12

Laundry 15 15.4 16.2 15.4 16.3 16.3

Midd1 15.6 15.7 15.7 15.7 15.9 15.9

Moebius 11.5 11.3 12.3 12.1 9.81 9.73

Monopoly 23.4 24.7 23.5 24 15.6 15.9

Plastic 23 22.9 23.3 23.3 20.1 20.2

Reindeer 14 14.2 14 14.1 14.3 14.6

Rocks1 10.1 10.2 10.2 10.1 10.2 10.4

Wood1 13.6 13.6 14.3 14.3 11.8 11.9
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Table A.12 : RMSE3 (Dubois’ demosaicing method).

Matching cost SSDPA SSDST SADPA SADST NCCPA NCCST

Dataset

Plante 10.4 10.4 9.41 9.52 12.4 12.3

Journaux 8 8.08 8.15 8.14 7.62 7.69

Barn 3.14 3.03 3.13 3.01 3.45 3.39

Cones 8.24 8.23 8.23 8.19 8.78 8.72

Poster 3.15 3.2 3.16 3.22 3.41 3.41

Sawtooth 2.31 2.32 2.16 2.2 2.72 2.68

Teddy 7.9 7.89 7.92 7.85 8.05 8.06

Tsukuba 1.99 2.02 1.94 1.97 2.19 2.22

Venus 3.92 3.92 3.82 3.82 4.32 4.25

Aloe 11.2 11.1 10.7 10.7 12.2 12.1

Art 15.7 15.6 15.4 15.4 16 16

Baby1 9.25 9.15 9.63 9.45 6.9 6.99

Books 11.1 11.1 11.5 11.5 11.3 11.3

Bowling2 17.6 17.7 18 18 16.1 16.3

Cloth1 8.36 8.38 8.36 8.38 8.88 8.9

Dolls 11.4 11.3 11.2 11.1 11.3 11.2

Flowerpots 9.32 9.38 9.3 9.31 9.18 9.18

Lampshade1 13 12.4 13.8 13.1 11.7 11.9

Laundry 15 14.9 15.6 15 15.9 15.7

Midd1 15.6 15.5 15.7 15.6 15.7 15.7

Moebius 11.4 11.2 12.2 12 9.44 9.33

Monopoly 23.8 25.4 24.8 26.3 14.6 14.8

Plastic 23.1 22.9 23.4 23.3 20.4 20.3

Reindeer 13.5 13.5 13.5 13.5 13.7 13.8

Rocks1 9.81 9.76 9.83 9.75 10.1 10.1

Wood1 13.5 13.5 14.2 14.2 11.6 11.7



144 Annexe A. Tables of experimental results over all datasets

Table A.13 : RCMP (Hamilton’s demosaicing method used by COSTPA, w is set to 3

and δ is set to 0.5).

Matching cost SSDPA SSDg SADPA SADg NCCPA NCCg

Images

Plante 45.51 45.53 49.17 50.31 42.78 41.88

Journaux 87 86.45 86.4 85.89 89.25 88.52

Barn 75.35 79.41 75.08 78.65 75.37 79.8

Cones 67.19 72.26 65.99 70.71 70.92 76.11

Poster 61.89 70.83 61.53 69.19 62.66 74.35

Sawtooth 75.17 80.72 76.42 80.66 74.14 80.12

Teddy 59.36 65.35 59.65 64.5 61.27 70.51

Tsukuba 69.77 67.46 69.82 65.81 69.75 67.15

Venus 67.68 75.73 67.54 74.66 66.96 76.28

Aloe 63.02 64.76 64.3 66.01 64.59 66.47

Art 35.31 35.96 35.1 35.5 43.98 46.04

Baby1 58.15 63.45 55.36 58.91 67.53 75.11

Books 46.68 47.08 44.18 44.16 51.66 51.85

Bowling2 24.53 26.53 21.28 21.64 43.84 55.51

Cloth1 79.67 82.86 79.86 82.77 79.96 83.08

Dolls 49.85 51.44 50.44 51.77 55.43 58.12

Flowerpots 34.77 34.81 32.04 31.01 51.95 55.28

Lampshade1 32.98 34.88 29.72 30.38 42.2 52.48

Laundry 33.22 34.79 31.47 32.35 40.77 45.31

Midd1 29.56 30.99 28.38 29.54 34.71 36.93

Moebius 54.11 54.48 53.1 53.27 59.07 61.19

Monopoly 31.78 31.24 29.16 27.55 40.43 47.92

Plastic 14.53 14.11 13.17 12.49 21.88 25.83

Reindeer 46.55 50.92 44.95 49.98 53.95 58.46

Rocks1 58.46 58.68 58.13 58.13 62.11 63.99

Wood1 54.23 55.62 49.45 48.98 63.97 67.29
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Table A.14 : RCMP (Dubois’ demosaicing method used by COSTPA) (w set to 3 and

δ set to 0.5).

Matching cost SSDPA SSDg SADPA SADg NCCPA NCCg

Images

Plante 45.88 45.53 50.17 50.31 43.27 41.88

Journaux 87.58 86.45 86.88 85.89 90.19 88.52

Barn 74.92 79.41 74.93 78.65 74.72 79.8

Cones 65.37 72.26 63.91 70.71 68.35 76.11

Poster 55.4 70.83 53.69 69.19 55.78 74.35

Sawtooth 76.18 80.72 77.39 80.66 74.94 80.12

Teddy 56.69 65.35 56.46 64.5 58.15 70.51

Tsukuba 65.1 67.46 64.38 65.81 63.75 67.15

Venus 65.22 75.73 64.39 74.66 64.34 76.28

Aloe 61.74 64.76 62.57 66.01 63.04 66.47

Art 34.45 35.96 33.79 35.5 42.56 46.04

Baby1 52.85 63.45 50.09 58.91 60.16 75.11

Books 47.38 47.08 44.51 44.16 51.86 51.85

Bowling2 24.36 26.53 20.81 21.64 42.43 55.51

Cloth1 76.18 82.86 74.5 82.77 75.96 83.08

Dolls 48.12 51.44 48.43 51.77 53.05 58.12

Flowerpots 33.95 34.81 31.66 31.01 47.74 55.28

Lampshade1 29.34 34.88 26.32 30.38 36.32 52.48

Laundry 31.53 34.79 29.79 32.35 37.79 45.31

Midd1 28.49 30.99 27.21 29.54 32.34 36.93

Moebius 52.54 54.48 51.36 53.27 57 61.19

Monopoly 30.65 31.24 28.06 27.55 39.66 47.92

Plastic 14.52 14.11 12.88 12.49 21.3 25.83

Reindeer 47.2 50.92 46.06 49.98 54.5 58.46

Rocks1 58.93 58.68 58.57 58.13 61.91 63.99

Wood1 51.45 55.62 46.89 48.98 61.25 67.29
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Table A.15 : RMSE3 (Hamilton’s demosaicing method used by COSTPA).

Matching cost SSDPA SSDg SADPA SADg NCCPA NCCg

Images

Plante 10.4 11.4 9.47 10.1 12.4 15.3

Journaux 8.46 9.01 8.58 9.03 8.44 10.2

Barn 3.13 2.73 3.24 2.81 3.51 3.08

Cones 8.39 8.3 8.32 8.21 8.88 9

Poster 3.25 3.38 3.26 3.5 3.5 3.5

Sawtooth 2.3 2.08 2.14 2.07 2.65 3.02

Teddy 7.99 8.3 8.02 8.25 8.28 8.45

Tsukuba 1.95 1.93 1.9 1.87 2.14 2.16

Venus 3.91 3.68 3.88 3.74 4.26 4.32

Aloe 11.2 11.3 10.7 10.6 12.1 12.8

Art 15.9 16.6 15.6 16.4 16.2 18.1

Baby1 9.29 10.6 9.76 11.5 6.97 8

Books 11.1 11.5 11.4 12 11.7 12

Bowling2 18 18.1 18.2 18.4 16.2 14.2

Cloth1 9.12 8.64 8.8 8.61 9.63 9.09

Dolls 11.1 11.9 11.4 11.8 11.6 13.2

Flowerpots 9.89 9.56 9.93 9.63 9.91 11.5

Lampshade1 13.2 16.1 14.1 16.9 11.9 15.6

Laundry 15 16 16.2 16.1 16.3 16.4

Midd1 15.6 16.7 15.7 16.8 15.9 18.6

Moebius 11.5 12.5 12.3 13.2 9.81 11.3

Monopoly 23.4 26.1 23.5 26.5 15.6 15.6

Plastic 23 24.6 23.3 24.9 20.1 19.5

Reindeer 14 13.7 14 13.6 14.3 14.5

Rocks1 10.1 10.1 10.2 10.2 10.2 9.75

Wood1 13.6 13.7 14.3 14.6 11.8 10.6
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Table A.16 : RMSE3 (Dubois’ demosaicing method used by COSTPA).

Matching cost SSDPA SSDg SADPA SADg NCCPA NCCg

Images

Plante 10.4 11.4 9.41 10.1 12.4 15.3

Journaux 8 9.01 8.15 9.03 7.62 10.2

Barn 3.14 2.73 3.13 2.81 3.45 3.08

Cones 8.24 8.3 8.23 8.21 8.78 9

Poster 3.15 3.38 3.16 3.5 3.41 3.5

Sawtooth 2.31 2.08 2.16 2.07 2.72 3.02

Teddy 7.9 8.3 7.92 8.25 8.05 8.45

Tsukuba 1.99 1.93 1.94 1.87 2.19 2.16

Venus 3.92 3.68 3.82 3.74 4.32 4.32

Aloe 11.2 11.3 10.7 10.6 12.2 12.8

Art 15.7 16.6 15.4 16.4 16 18.1

Baby1 9.25 10.6 9.63 11.5 6.9 8

Books 11.1 11.5 11.5 12 11.3 12

Bowling2 17.6 18.1 18 18.4 16.1 14.2

Cloth1 8.36 8.64 8.36 8.61 8.88 9.09

Dolls 11.4 11.9 11.2 11.8 11.3 13.2

Flowerpots 9.32 9.56 9.3 9.63 9.18 11.5

Lampshade1 13 16.1 13.8 16.9 11.7 15.6

Laundry 15 16 15.6 16.1 15.9 16.4

Midd1 15.6 16.7 15.7 16.8 15.7 18.6

Moebius 11.4 12.5 12.2 13.2 9.44 11.3

Monopoly 23.8 26.1 24.8 26.5 14.6 15.6

Plastic 23.1 24.6 23.4 24.9 20.4 19.5

Reindeer 13.5 13.7 13.5 13.6 13.7 14.5

Rocks1 9.81 10.1 9.83 10.2 10.1 9.75

Wood1 13.5 13.7 14.2 14.6 11.6 10.6
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Résumé

Les coûts de mise en correspondance supposent que les pixels homologues ont presque

les mêmes composantes couleur. Les composantes couleur sont dégradeés par le dématriçage

quand les images couleur ont été acquises par un caméra équipée d’un seul capteur. L’idée

est de tenter une mise en correspondance directement à partir des images CFA. De cette

façon, il serait possible de travailler sur des intensités de couleurs dont on est sûr. Le fait

de travailler sur les images CFA soulève différents problèmes. Tout d’abord, le nombre

d’informations est considérablement réduit par rapport à une image couleur idéale : nous

en avons trois fois moins. Il faut donc que nous travaillions avec des outils capables de pal-

lier cette carence. Ensuite, rien ne nous permet d’affirmer que des pixels homologues vont

être codés dans des couleurs similaires dans les deux images stéréoscopiques CFA. Nous

suggérons d’estimer partiellement les éléments manquants et ensuite de mettre en cor-

respondance les pixels. Nous avons prouvé que ce dématriçage partiel donne de meilleurs

résultats que le dématriçage total.

Mots clés : stéréovision couleur, mise en correspondance, images CFA, dématriçage.

Abstract

Most color stereovision setups include single-sensor cameras which provide Color Fil-

ter Array (CFA) images. In those images, a single color component is sampled at each

pixel rather than the three required ones (R,G,B). We show that standard demosaicing

techniques, used to determine the two missing color components, are not well adapted

when the resulting color pixels are compared for estimating the disparity map. In order to

avoid this problem while exploiting color information, we propose a partial demosaicing

scheme designed for dense stereovision based on pairs of Bayer CFA images. Finally, expe-

rimental results obtained with benchmark stereo image pairs show that stereo matching

applied to partially demosaiced images outperforms stereo matching applied to standard

demosaiced images.

Key-words : color stereovision, stereo matching, CFA images, demosaicing.


	Title

	Table des matières
	Table des figures
	General introduction
	Chapitre 1 : Fundamentals of computational stereovision
	1.1 Introduction
	1.2 Perspective projection
	1.2.1 Single perspective projection
	1.2.2 Two perspective projections
	1.2.3 Epipolar geometry

	1.3 Stereovision setup
	1.3.1 Introduction
	1.3.2 Camera model and image formation
	1.3.3 Binocular stereoscopic vision
	1.3.3.1 Epipolar property
	1.3.3.2 Half-occlusion phenomenon
	1.3.3.3 Order phenomenon
	1.3.3.4 Calibration of stereo setup


	1.4 Stereo correspondence problem
	1.4.1 Introduction
	1.4.2 Image digitizing
	1.4.3 Photometric consistency assumption
	1.4.4 Unicity assumption
	1.4.5 Order assumption

	1.5 Stereo matching strategies
	1.5.1 Canonical configuration
	1.5.2 Local dense stereo matching methods
	1.5.2.1 Matching costs
	1.5.2.2 Aggregation area

	1.5.3 Global dense stereo matching methods
	1.5.3.1 Horizontal disparity smoothness assumption
	1.5.3.2 Horizontal and vertical disparity smoothness


	1.6 Left-right consistency check
	1.7 Real-time stereo correspondence methods
	1.8 Conclusion

	Chapitre 2 : Color stereovision and demosaicing
	2.1 Introduction
	2.2 Color stereo correspondence
	2.2.1 Color and cost computation
	2.2.2 Color and cost aggregation
	2.2.3 Color and optimization
	2.2.4 Preprocessing
	2.2.5 Conclusion

	2.3 Color image acquisition and color demosaicing
	2.3.1 Single-CCD vs. three-CCD color cameras
	2.3.2 Demosaicing formalization
	2.3.3 Basic Schemes and Demosaicing Rules
	2.3.4 Demosaicing schemes
	2.3.4.1 Edge-adaptive demosaicing methods
	2.3.4.2 Demosaicing using the frequency domain


	2.4 Stereo matching of demosaiced color images
	2.4.1 Demosaicing then matching
	2.4.2 Experimental protocol
	2.4.3 Experimental results

	2.5 Conclusion

	Chapitre 3 : CFA stereovision
	3.1 Introduction
	3.2 Even estimated disparity
	3.2.1 Even disparity estimation method 1 (EDE1)
	3.2.2 Even disparity estimation method 2 (EDE2)
	3.2.3 Experimental results with even disparity estimation methods

	3.3 Coarse to fine disparity estimation
	3.3.1 RGGBD cost
	3.3.2 Coarse to fine disparity estimation method (CTFDE)
	3.3.3 Experimental results

	3.4 Partial demosaicing for CFA stereovision
	3.4.1 Second and third color components
	3.4.2 Partial demosaicing then matching
	3.4.3 Experiments on ‘Murs’ stereo image pair

	3.5 Conclusion

	Chapitre 4 : Experimental evaluations and discussion
	4.1 Introduction
	4.2 Experimental procedure
	4.3 Rates of correctly matched pixels (RCMP)
	4.3.1 Experiments with ‘Journaux’ dataset
	4.3.2 Comparison between RCMP with fixed aggregation window size
	4.3.3 Comparison between rates of correctly matched pixels

	4.4 Fidelity of estimated TCC and matching performance
	4.4.1 Global analysis
	4.4.2 Subset analysis
	4.4.2.1 PSNR of TCC
	4.4.2.2 Pixel matching based on TCC Only


	4.5 Root mean square error
	4.6 Robustness against noise
	4.7 Single-CCD or Gray-level cameras for stereo matching
	4.8 Conclusion

	General conclusion
	Annexe A : Tables of experimental results over all datasets
	Bibliographie
	Résumé - Abstract


	source: Thèse d'Hachem Halawana, Lille 1, 2010
	d: © 2011 Tous droits réservés.
	lien: http://doc.univ-lille1.fr


