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Abstract

Towards Online and Real-Time 3D Head Pose Tracking

Monocular 3D head tracking is a core technique for designing intelligent computer-
human interfaces. Over the last decade, long-term tracking in complex environ-
ments remains a challenging problem. In this thesis, we investigate this problem
by presenting two alternative frameworks and exploit its potential applications in
computer-human interactions.

The first framework is a robust implementation of the differential tracking ap-
proach along with a 3D ellipsoid for geometric reasoning. It recursively estimates
the head pose over time from prior prediction and dynamically updates its template
model built beforehand. This makes it robust to appearance changes and lead to
smooth estimations. However, they also bring two severe problems: the system can
only handle slowly moving targets and the need for updating the model makes it
prone to drift, which together make tracking over long periods of time impossible.

To avoid these important limitations, the second part of this thesis turns to a
novel tracking by detection approach. Compared to the last approach, it requires an
offline modeling and learning procedure, and performs tracking without the motion
prior and dynamic updating. Tracking is actually made by matching features de-
tected from the input images with the reference ones via a novel multi-view learning
scheme. The learning relies on face texture synthesis to produce training examples,
stable class detection and multi-view selection that are executed within a simple
head modeling system. Extensive experiments show that this prevents drift while
successfully tracking natural head motions. To further improve the performances,
we also integrate optical-flow correspondences to enforce temporal consistency and
incorporate color prior to identify possible outlier features. Finally, fusing all these
components leads to a system that can be used for computer-human interactions.

Lastly, we present two applications of the proposed 3D head tracking system.
The first estimates the user’s gaze direction in the presence of natural head rotations.
The second transfers facial expressions from a user to his online avatar. As a result,
integrating these two functions into a virtual collaborative system greatly improves
the communications of two remote partners.
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Résumé

Vers une suivi en temps réel de la position de la tête et du visage

Le suivi en 3d des mouvements de la tête avec une seule caméra est un sujet impor-
tant et difficile pour concevoir des interfaces informatiques. Dans cette thèse nous
proposons deux logiciels et étudions leurs applications à l’interface Homme machine.

Le premier logiciel propose un suivi différentiel d’un ellipsoïde en 3D. Il estime
récursivement la position de la tête avec des prédictions et mise à jour du modèle.
Cette solution, bien que robuste, souffre de deux limites : les mouvements de la
tête doivent être petits et il y a une importante dérive temporelle. D’autres pistes
doivent être envisagées.

La deuxième partie de cette thèse se tourne vers une nouvelle solution à détec-
tion. La nouveauté est de conduire conjointement la modélisation, l’apprentissage
et le suivi. Le suivi de position est réalisé en associant un suivi dynamique avec
un apprentissage hors ligne des textures de visage utilisant un modèle 3D élémen-
taire de la tête. De nombreuses expériences valident que les mouvements de la tête
sont suivi sans dérives. Pour améliorer les performances, nous avons ajouté un al-
gorithme de flux optique pour renforcer la cohérence temporelle en éliminant les
valeurs aberrantes.

Dans la dernière partie, nous présentons deux applications des algorithmes. La
première vise à estimer le regard à partir de la rotation de la tête. La seconde
permet d’afficher des avatars réalistes en plaquant la texture du visage extraite de
la vidéo.
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Chapter 1

Introduction

Understanding and reproducing human gestural communications is crucial for de-
signing intelligent computer-human interfaces. Among the various semantic abilities,
head gesture is a multi-functional one in that it takes charge of indicating human
attentions and expressing semantic behaviors, such as head nodding and shaking.
In the context of computer vision, 3D head pose/gesture tracking is to infer the 6
Degrees-of-Freedom (DOF) poses of a person’s head relative to the view of a camera.
In particular, the problem we will address refers to estimating continuous 6-DOF
head poses from a monocular video sequence.

3D head pose tracking is intrinsically linked with two other tracking issues. On
one hand, it is coupled with eye gaze estimation, which characterizes one’s gaze
direction and focus target. Physiological experiments have demonstrated that gaze
behavior is the coordination result of eye and head orientations. On the other hand,
it is fundamental to track non-rigid facial expressions. However, face appearance
results the combination of a rigid pose and simultaneous non-rigid facial variations.
In this sense, head pose tracking is indispensable to deliver gaze contact and drive
facial animation of an avatar embedded in a virtual environment, such as the Second
Life or 3D Poker. Such an example is illustrated in Figure 1.1, which is referred
as mixing video and avatar remote collaboration environment. Thanks to head and
gaze tracking, gaze focus and facial expression are simultaneously transferred from
a natural human user to a distant avatar, which enhances remote communications
in a collaborative virtual environment.

Before going further, we must clarify that the addressed 3D head tracking prob-
lem is not identical as several other related problems. First, it differs from estimating
head poses on static images. Since there is no temporal prior, the latter has to de-
pend on a strong prior model that is sufficiently trained beforehand. Second, it is
also different from 2D face detection which at most have four in-plane parameters
to estimate. Third, it is less challenging than facial action tracking since we have six
pose variables to estimate while the latter has more non-rigid unknowns. By these
comparisons, we may conclude that the addressed problem is a reasonable trade-off
between 2D face tracking and 3D non-rigid face tracking. To solve this problem,
learning from one instance (a reference images) is usually adequate and temporally
coherent observations can be relied on, which are often incomplete and correlated
with each other.
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Figure 1.1: A mixing video and avatar collaborative virtual environment. In the en-
vironment, three distant partners are co-designing a vehicle component via network
transmission. For better collaboration, the facial expressions and gaze information
are transferred from each human being to his/her avatar by using 3D head tracking
pose techniques.

1.1 3D Head Tracking Formulation

We start with addressing the formal definition of 3D head pose tracking from a
monocular video sequence. A video sequence is a dynamic mirror of the real world
with a camera as its eye. Suppose we have means to tell the computer a real object
in world coordinate and its correspondent in video frame, the goal of head tracking is
to recover the underlying structure that generates this correspondence. If we further
suppose the camera’s knowledge is known, the goal degenerates to estimating the
motion mode of the target head from a geometric perspective. Mathematically, the
problem can be formulated in the following compact way u

v

w

 =

 fu 0 uc

0 fv vc

0 0 1


︸ ︷︷ ︸
Intrinsic matrix A

 R11 R12 R13 T1

R21 R22 R23 T2

R31 R32 R33 T3


︸ ︷︷ ︸

Motion matrix M=[R|T]


X

Y

Z

1

 , (1.1)

where X =
[
X Y Z 1

]T and x =
[
u v w

]T are a pair of 3D-to-2D correspon-
dence in 3D and 2D homogeneous coordinates, respectively. Matrix A contains the
known intrinsic camera parameters, i.e. the focal length fu and fv and the principal
point (uc, vc). Matrix M is the motion matrix that we want to estimate, which
consists of a 3× 3 rigid rotational matrix R and a 3× 1 translational matrix T.

The image correspondents of target head are rendered as a set of pixels. In
presence of image noise, the reprojected image point A[R|T]X usually does not
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accurately equal to its corresponding pixel x. Considering this, with a set of ap-
proximate correspondences, we estimate the pursing M via minimizing the so-called
reprojection error

arg min
R,T

∑
i

‖A[R|T]Xi − xi‖2. (1.2)

which is a typical problem that has been well studied in 3D geometric vision. It is
usually solved in two stages: first establish the 3D-to-2D correspondences and then
estimate a 3D pose that best aligns these correspondences. In the following section,
we will first present the state of the art.

1.2 State of the Art

3D head pose tracking has been an active area of research in computer vision for more
than 20 years. Many approaches have been proposed to solve this problem. However,
pure 3D head pose tracking approach is not easily found because pose tracking is
always coupled with other problems, such as face detection, face alignment, facial
action recognition and even face recognition.

Recently a very complete survey was presented in [Murphy-Chutorian 2009],
which covers not only works on head detection and tracking but also the literature
of techniques that try to solve some related subproblems. In contrast, we provide a
more compact state-of-the-art review and do the classification more flexibly.

1.2.1 Model Flow Regularization Methods

This type of methods aims at interpreting image flow in terms of the motion pa-
rameters of a 3D model known in advance. DeCarlo & Metaxas [Decarlo 2000]
treated optical flow as a hard constraint on the extracted motion of a 3D model in
order to regularize 3D head pose as well as non-rigid motion tracking. Brand and
Bhotika [Brand 2001] tracked the flows of the densely sample vertices from a 3D
model to estimate rigid and nonrigid head motion in a recursive Bayesian frame-
work. The flows are the measured optical flow that are regularized by a flexible 3D
model. Zhang and Kambhamettu [Zhang 2002] addressed regularizing optical flow
with a 3D model in the presence of partial occlusions. In this paper, they introduced
a superquadric method to localize occluded areas, which is based on the estimated
residual error filed.

The main limits come directly from the assumptions made during flow field
computation. Most obvious is the assumption of brightness constancy during sparse
optical flow computation. Major lighting changes can cause tracking failure. In
addition, model flow cannot explain image flow when the image is rather noisy.

1.2.2 Template Matching Methods

Template matching takes the entire face appearance as a template and registers it
with input ones to recover 3D pose. Since all template pixels are considered, it turns
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to be more robust than the flow regularization ones. La Cascia et al. [Cascia 1999]
proposed to use a combined template of warped appearance texture and illumina-
tion basis. Similarly, Brown [Brown 2001] treated the texture mapped on a cylinder
model as its appearance template. The confidence on each appearance pixel is also
incorporated. Xiao et al. [Xiao 2003] presented a similar appearance-based method
but applied iteratively re-weighted least squares (IRIS) to accommodate non-rigid
motion and occlusion. Paterson and Fitzgibbon [Paterson 2003] casted tracking 3D
pose with a 3D morphable model as a non-linear optimization problem such that
various numerical methods can be applied. Dornaika and Ahlberg [Dornaika 2004]
proposed a faster local search method to fit 3D morphable model for head pose
tracking. Morency [Morency 2010] developed an adaptive appearance-based 3D
head tracking system. To remove drift caused by the adaptation, keyframe se-
lection scheme is integrated in the hope that drift-free static template can be chosen
occasionally. Wu and Toyama [Wu 2000] used Gabor wavelet features to replace the
direct appearance template for head pose estimation.

The representative template methods are the family of Active Appearance Mod-
els (AAMs), which couple appearance and face shape in a unified Principle Compo-
nent Analysis (PCA) model. While the original AAMs was proposed for shape fit-
ting [Cootes 2001], Matthews and Baker extended it to 2D face tracking by replacing
the slow forward search with a more efficient Inverse Compositional (IC) alignment
framework [Matthews 2004a]. To make AAMs handle global 3D head poses, Cootes
et al. [Cootes 2000] introduced View-based AAMs to simultaneously estimate head
orientations ahead of AAMs fitting. Alternatively, Xiao et al. [Xiao 2004] proposed
a combined 2D+3D AAMs that treated the 3D modes as a constraint to regularize
the general AAMs fitting. Both of these pseud 3D models may lead to ambiguous
pose and shape estimates that are impractical in 3D space. In contrast, the 3D
Morphable Model (3DMMs) [Blanz 1999a] are drawn from real 3D space and al-
ways produce plausible estimates. To make 3DMMs possible for tracking, its fitting
speed can be also improved via IC alignment [S. 2003]. More recently, Dornaika
and Davoine [Dornaika 2008a] took advantage of a simplified 3DMMs and achieved
real-time 3D pose and facial action tracking performances within the framework of
particle filter. The thorough comparisons between AAMs and 3DMMs can be found
in [Matthews 2007].

Template matching estimates pose with simple observations. When face appear-
ance is used as the template, updating it over time is cheap but could make the
template more reasonable to interpret current face. On the other hand, since the
template contains every pixel over the entire face region, matching it is usually per-
formed within a local parameter space that is predicted by a standard prediction
tool, such as Kalman filtering or Particle filtering.

1.2.3 Pure Learning Methods

Training neural networks for head pose tracking was popular thanks to its strengthes
that are proven by many applications. Niyogi and Freeman [Niyogi 1996] learned a
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tree-structured vector quantizer (TSVQ) classifier for nearest-neighbor example in-
dexing. Once learned, the classifier is no longer modified.Rae and Ritter [Rae 1998]
proposed to train three neutral networks to enhance the robustness of head orienta-
tion estimation. Voit et al. [Voit 2006] also trained neural networks for determining
3D head poses in the scenes of meeting rooms.

In terms of the popularity of manifold learning, training a manifold that is
embedded in view subspaces turns to a mainstream direction in 3D pose tracking.
Morency et al. [Morency 2003b] learned intensity and depth view-based subspaces
for 3D head pose tracking via SVD decomposition. Raytchev et al. [Raytchev 2004]
learn a nonlinear manifold of a large set of training faces by using Isomap embedding
method. Alternatively, Chen et al. [Chen 2003] proposed to learn the pose manifold
by using the Fisher Discriminant Analysis (FDA). Liao and Medioni [Liao 2008]
proposed to iteratively infer 3D pose and facial actions by decomposing the fields
of facial expressions into a basis of eight 1D manifolds. Wu and Trivedi [Wu 2008]
tested the PCA and Fisher LDA subspaces and their corresponding non-linear forms,
KPCA and KDA for 3D head pose tracking.

The two learning methods have two common limitations. First is that once
learnt, at testing stage, the model will be not adapted due to their complexity and
high time consumption. Thus, it usually has a weak generalization capability in
the sense that major unseen changes can seriously affect the query results. Second,
the training data must be well collected and carefully labeled. When the data is
rather noisy or the labeling is inaccurate, the learnt model is prone to being severely
biased.

1.2.4 Local Feature Matching Methods

3D head pose tracking can be equivalently casted as the problem of estimating
camera pose. The first way is to track and match online detected features to form a
Perspective-n-Point problem to recover 3D head pose. Strom [Strom 2002] tracked
online feature points and recovered 3D pose via Structure from Motion (SfM) by
propagating covariance matrices in the framework of Kalman filter. Ohayon and
Rivlin [Ohayon 2006] formulated head tracking as a wide-baseline feature matching
and camera pose estimation problem. Jang et al. [Jang 2008] employed the efficient
SIFT descriptor for this pose tracking task. Lepetit et al. [Lepetit 2004] integrated
offline acquired feature points and online detected ones to perform head tracking
via a keyframe selection scheme at each frame.

The alternate is to localize local semantic features to establish correspondences.
Wang and Sung [Wang 2001] localized eye-lines and mouth-line and infer 3D head
poses by detecting the vanishing points of these two lines. Robustness is achieved
if the vanishing points were stably found. Ji and Hu [Ji 2002] localized the two
pupil centers from special IR images to fit an ellipse to target face such that head
orientations are estimated from the geometric distortions of the ellipse. Horprasert
et al. [Horprasert 1996] tracked five semantic points (four eye corners and one nose
tip) and employed projective invariance of the cross-ratios of the eye corners and



6 Chapter 1. Introduction

anthropometric statistics to estimate head orientations. Hu et al. [Hu 2004] detected
facial components to make use of the heuristic relation between facial appearance
asymmetry and 3D geometry to recover 3D poses.

Combining semantic and online features can yield more robust results. Wang et
al. [Zhang 2008] proposed to combine the annotated semantic features in 3DMMs
and online features for deformable face tracking. The flexibility of online matches
and stability of semantic matches are naturally combined to complement each other
via an automatized RANSAC selection scheme.

1.2.5 Stereo Vision Methods

The aforementioned methods are all based on a single monocular camera. The
nature of its illposedness can be partially offset by considering stereovision infor-
mation. Seemann et al. [Seemann 2004] trained a neural network using the depth
information acquired from a stereo camera to estimate head pose. Ruddarraju et
al. [Ruddarraju 2003] used a multiple camera system to first localize eye region and
then estimate 3D head poses. Harville et al. [Darrell 1999] derived a new depth con-
straint equation for 3D pose tracking by integrating depth information obtained from
stereo cameras into the traditional linear brightness constraint equations. Moreno et
al. [Moreno 2002] resided on fusing depth information gather from stereo vision and
color histograms to track 3D poses. Yang and Zhang [Yang 2002b] made use of the
additional epipolar constraint from the stereo image pair to improve 3D model-based
head tracking results. By removing the stray points that violate this constraint, the
accuracy of 3D/2D registration is improved significantly. Morency [Morency 2003a]
presented a differential 3D head tracking approach to remove drift with stereo cam-
eras.

Stereovision provides more information that are useful to 3D head pose tracking.
The cost is also obvious that it must pay more to buy a stereo camera. Addition-
ally, the stereo camera must be carefully calibrated such that the yielded depth
information is accurate.

1.2.6 Hybrid Methods

Hybrid methods are those that combine at least two of the aforementioned methods
to estimate 3D pose. This category aims to extract the merits of the elementary
methods such that they are complementary to each other. Sung et al. [Sung 2008]
combined AAM and cylinder models for both facial action and face pose tracking.
The outcomes of cylinder flow-based tracking is used to initialize an AAM. Niko-
laidis and Pitas [Nikolaidis 2000] integrated curve detection, template matching,
active contour models and geometric information into a unified framework to deter-
mine 3D head poses. Sherrah [Sherrah 2001] proposed a head tracking framework
that fuses multiple visual cues and multiple tracking modules. Murphy- Chutorian
and Trivedi [Murphy-chutorian 2008] presented a hybrid head tracking system for
driver assistance. To be real-time, the sampling in particle filter are implemented
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in GPU. Malciu and Preteux [Malciu 2000] combined 3D/2D appearance matching
and optical flow measuring to track 3D head pose with a parametric model. Huang
and Trivedi [Huang 2004] jointed head detection and pose tracking in a multiple vi-
sual cue integrated framework. Vogler et al. [Vogler 2007] combined the strengths of
both 3D deformable models and ASMs to better handle non-rigid actions during 3D
head pose tracking. There are also some methods that cannot be classified to any of
the aforementioned categories. For example, Breitenstein et al. [Breitenstein 2008]
proposed to estimate 3D head pose of an unseen face from a single range image.

Integrating many methods is a promising direction to explore since each elemen-
tary method can only take charge of one of the many challenges during 3D head
pose tracking. However, building such a hybrid system needs to carefully investigate
the intrinsic links between the components and usually do many implementations in
parallel. Otherwise, the high complexity and source cost of a hybrid system would
offset the benefits it brings and thus make it hardly usable in practice.

1.3 Challenges and Motivations

Recovering 3D pose from monocular video sequence is ill-posed since only 2D obser-
vations are given. These observations are incomplete as target face is projected from
3D to 2D space. In practice, more challenging is that these incomplete observations
are disturbed by many noises:

• Illumination variations.

• Simultaneous non-rigid facial expressions.

• Occlusions and self-occlusions.

• Cluttered or ambiguous background.

To face these difficulties, there have reached a widely accepted framework after
many years’ explorations. But the uncertainties of these challenges bring three new
dilemmas to our implementation. The pair of factors in each dilemma is collaborative
yet competitive and balancing them amounts to playing a seesaw, which is illustrated
in Figure 1.2:

• Dilemma 1: Offline Learning vs. Online Adaptation

• Dilemma 2: Neighboring Search vs. Full-scale Search

• Dilemma 3: Global Feature vs. Local Feature

In Dilemma 1, offline learning means learning a model ahead of tracking while online
adaptation is to dynamically update this model. The more complicated the learnt
model is, the less adaptable it is, e.g. a planar template is much easier to update than
the AAMs. Comparatively, learning-biased tracker has weak generalization ability
while adaptation-biased one is prone to model drift. In Dilemma 2, neighboring



8 Chapter 1. Introduction

Figure 1.2: The three dilemmas that a 3D head tracking algorithm has to balance.

search specifies searching a subset of input image while full-scale search represents
searching the entire image. By definition, neighboring search seeks a local minimum
and is fast while a full search aims at the global optimum and therefore needs more
computation time. In tracking, the neighboring region is usually predicted from
the temporal prior knowledge. In Dilemma 3, global feature is extracted from the
whole face while local feature specifies local semantic feature or online detected one.
Comparatively, global feature is computationally cheaper, occlusion-sensitive while
local one is more robust and accurate. These three dilemmas compromises our so-
called technical challenges that any head tracking system must be confronted with.
The work in this thesis proceed around how to overcome these dilemmas.

1.4 Thesis Contributions

Guided by the above analysis, we aim at developing a usable 3D head tracking
system that automatically provides an individualized head model with few training
images, and yields accurate, real-time and robust tracking results with a monocular
camera. By doing so, we can not only use it for many vision applications, but also
attempt to showcase the possibilities of our used technologies to solve this head
tracking problem such that future investigators can learn the experiences. In more
detail, our contributions can be described as follows:

• We first present a robust implementation of the differential-based tracking
framework that relies on a global feature, instant online adaptation and
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prediction-based neighboring search. We start with a generic ellipsoid model
for 3D geometric reasoning and take its mapped texture at the first frame as
the template. For each successive frame, 3D head pose estimate starts with
the value estimated at previous frame and then is iteratively refined by mini-
mizing template discrepancy with the steepest descent optimization approach.
An extensive number of experiments were conducted to reveal the strong and
weak points of this framework, which motivate our next work.

• We develop an interactive modeling system to generate individualized head
model in expecting better geometric reasoning than the ellipsoid model. It is
simple in that we adapt a generic head model to a specific person via a unified
Moving Least Squares (MLS) interpolation scheme constrained by a set of
anchor points interactively placed by users. The MLS is limited to be as rigid
as possible to allow the integrity of mesh triangles. The surface smoothness is
also guaranteed via a carefully selected smooth kernel. Our experiments show
both geometrically and photometrically realistic textured head models.

• We propose a new Tracking-by-Detection (TbD) framework based on match-
ing local keypoints. By attaching a descriptor to each keypoint, our key idea
is treating the matching as a classification problem, where all possible views
of such a descriptor constitutes a single class. In our framework, the 3D
head tracking is preceded by 1) learning a classifier via view set synthesis, 2)
solving for 3D-to-2D correspondences via keypoint classification, and 3) using
the correspondences to estimate an optimal 3D transform. Given only one in-
stance of each class, we synthesize more training data under the simulations of
3D rigid pose, non-rigid shape and illumination variations with texture map-
ping. With these view set, the classifier is trained to be robust to shape, pose
and illumination changes. Extensive experiments show that this framework
successfully gets rid of the drift problem while successfully tracking natural
motion. Then, to remove motion jitters, we also establish an additional set
of 3D-to-2D smooth correspondences by measuring sparse optical flow and in-
corporate them as a smoothness constraint. This leads to an improved TbD
solution that is different from the differential tracker by using temporal prior
as a soft aid rather than a hard prediction. Finally, in order to reduce outlier
correspondences, we learn a color prior from a reference image and compare
it with the color information of each detected keypoints. To make it discrim-
inative, we make use of the covariant color representation of a local keypoint
and the stored posteriors of a powerful Random Projection (RP) trees.

• Lastly, we present two applications of 3D head pose tracking. First is estimat-
ing eye gaze in the presence of natural head rotations. Our major contribution
lies in deriving a simplified linear relation between head orientation and eye
gaze within a pinhole camera model. The second is transferring facial ex-
pressions from natural human being to an online avatar within a prototyping
collaborative virtual environment.
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1.5 Thesis Organization

There are seven chapters in the thesis that systematically introduce our work from
idea inspiration, algorithm implementation to system application. The remaining
six chapters are organized as follows. In Chapter 2, we present the recursive track-
ing framework and focus on analyzing its drawbacks given a set of experimental
results. Chapter 3 introduces the human-assisted head modeling system. Chapter
4 presents the proposed wide-baseline tracking by detection scheme with the help
of an individualized head model. Chapter 5 describes our methods to enforce tem-
poral consistency by incorporating optical-flow correspondences and reject a large
number of outlier correspondences by considering color as a discriminative prior.
Chapter 6 presents two possible applications of our tracking system - estimating
eye gaze in the presence of head rotations and performing facial expression transfer
in a network-mediated collaborative environment. Chapter 7 gives a summary of
the mentioned work, discusses the remaining limitation and forecasts the potential
directions for further improvements.



Chapter 2

A Model-Based Short-Baseline
Solution

3D head pose tracking aims at continuously recovering the six degrees of freedom
of a human head. Based on motion continuity in video sequence, the short-baseline
framework is the most popular solution even up to today. It transfers the estimated
poses at previous to the next one to provide pose or measurement predictions. In this
chapter, we develop such a short-baseline solution by deriving technical components
from state-of-the-art systems. Before tracking, we use a generic ellipsoid model to
mimic target head and then employ an adaptive appearance-based scheme to track
head pose in monocular sequence. In addition, we also integrate robust techniques
to handle outliers and occlusions occurring to face appearance.

In the following, we start with formulating our solution in the popular Bayesian
tracking framework. Then we describe the proposed solution in detail and finally
analyze its efficiencies and drawbacks by doing a set of experiments on realistic
videos.

2.1 Bayesian Formulation

The visual tracking problem is usually formulated in terms of a dynamical process,
aiming at estimating the density of the state sequences {x1,x2, ...,xt} based on the
corresponding image measurements {z1, z2, ..., zt}. At a discrete time t, the goal
is to estimate the state xt from the available observations {z1, z2, ..., zt}. From a
Bayesian perspective, tracking is to recursively calculate some degree of belief in
the state xt at time t, given the measurements z1:t = {z1, z2, ..., zt} up to time t.
To do this, it is required to construct the probability density function p(xt|z1:t) and
estimate it via Bayes’s rule:

p(xt|z1:t) ∝ p(zt|xt)p(xt|z1:t−1). (2.1)

where p(zt|xt) is the likelihood function and p(xt|z1:t−1) is the prior probability,
from which the density propagation rule (2.1) starts. Based on the assumption
of Markov process, p(xt|z1:t−1) can be calculated from the Chapman-Kolmogorov
equation

p(xt|z1:t−1) =
∫

p(xt|xt−1)p(xt−1|z1:t−1)dxt−1, (2.2)

where
∫

is the integration over the set of possible values for the previous state
xt−1. The term p(xt−1|z1:t−1) is the previously estimated density function and
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Figure 2.1: The model-based short-baseline tracking framework. By starting with
the pose estimated in previous frame, the approach proceeds by 1) aligning the
template and the face candidates at current image, 2) handling outliers and occlusion
and 3) updating the template.

p(xt|zt−1) represents the prediction probability of applying a certain motion model.
Therefore, this term p(xt|z1:t−1) is a propagation of its previous density and the
motion prediction. In this sense, p(xt|z1:t) can be interpreted as a prediction density
weighted by the observation density p(zt|xt), which allows for taking into account
the features observed in the incoming image.

This Bayesian formulation provides a statistically well-grounded manner for vi-
sual tracking. If we only consider Gaussian distributions, it leads to the well-known
Kalman Filter and the Extended Kalman Filter. For more general distributions, it
yields the so-called Particle Filters. Each particle actually represents a hypothesis
of the state vector.

2.2 Framework Overview

3D head pose tracking is a specific problem in visual tracking. It is thus natural
to cast it into the Bayesian formulation. To simplify our solution, we ignore the
prior density p(xt|z1:t−1) is uniform and only consider the likelihood one p(zt|xt).
To enforce temporal consistency, the predicted xt is supposed be to around the
previously estimated one x̂t−1. Therefore, the optimal x̂t is determined via the
Maximum-Likelihood (ML) estimate

x̂t = arg max p(zt|xt). (2.3)

When we consider the Gaussian distribution

p(zt|xt) ∝ N(µ,Σ), (2.4)

the ML estimator is equivalent to minimize the following Mahalanobis distance

x̂t = arg min(zt(xt)− µt)TΣ−1(zt(xt)− µt). (2.5)
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where µt and Σ are the mean vector and covariance matrix of image measurements,
respectively. We suppose that they have been known before tracking and are time-
varied. In this sense, our problem turn to a standard template matching process,
from which pose can be recovered via regression.

In the context of 3D head tracking, the state vector x = [x, y, z, α, β, γ]T and
the measurements z is the frame image. The entire framework is summarized in
Figure 2.1, which is composed of two stages. During the offline stage, we build a
parametric 3D model to mimic head and adapt it in the beginning of the tracking.
During the online stage, we perform the above template matching to produce head
pose and update the template parameters dynamically.

2.3 A Parametric Ellipsoid Model

Since image is the 2D projection of our 3D world, tracking 3D head pose from it is a
ill-conditioned problem. To solve it, we build a 3D ellipsoid model to mimic the head
target and cast our problem as estimating the motion vector x = [x, y, z, α, β, γ]T of
this model in each frame. As shown in Figure 2.4, the model is parameterized by a
set of triangles, whose vertices are equally sampled from the model surface. Figure
2.2 shows the 3D motion flow fields of an ellipsoid. Their different appearances in
2D view make 3D head tracking possible by finding the best motion parameters that
yields a given appearance.

To each individual, the ellipsoid to mimic his head must be specified, i.e. its
three major axes and center coordinates must be given. To do this, we use two
separate operations. Before tracking, we capture two views of a human face and
adapt a generic ellipsoid according to the approximate shapes of his face shown at
the two view. At the same time, some feature points are automatically detected
using SIFT keypoints [Lowe 2004a]. Subsequently, in the beginning of tracking, if
we assume the face is at frontal view, the above fitted parameters can be adapted
by matching the learned and the newly detected SIFT feature points.

2.4 The Tracking Algorithm

2.4.1 2D Appearance Measurements

With a built ellipsoid, our head tracking objective turns to recovering its motion
vectors {x0,x1, ...,xn} from a video sequence {z0, z1, ..., zn} depicting a moving face.
To estimate a discrete pose xt, all the available observations {z0, z1, ..., zt−1} should
be used to provide information as more as possible. We regard a full input frame as
z. In detail, we first project the ellipsoidal model onto the 2D image plane to get
a 2D triangular mesh and then synthesize the texture by grabbing pixels from the
face region in input image covered by 2D triangular mesh using a piece-wise affine
warping function Ψ. Mathematically, the warping function Ψ applied to an input
image zt is denoted by:

yt = y(x̂t) = Ψ(zt,xt) (2.6)
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Figure 2.2: The 3D motion flow fields of an ellipsoid. The upper row shows the
translational flows along x, y, and z axes, respectively. Similarly, the lower displays
the rotational flows around x,y and z axes.

where yt represents the view-free texture vector, which is warped from input image
and mapped on the ellipsoid model at frontal view and xt is the estimated head pose
at time t. To use y as a template, we denote At as an adaptive view-free texture
that models all the view-free textures y up to time t− 1.

The way to compute the piecewise affine warp is illustrated in Figure 2.4. Con-
sider the pixel (s, t)T in the triangle (s1, t1)T ,(s2, t2)T and (s3, t3)T in the texture
plane. This pixel is uniquely expressed as:

(s, t)T = (s1, t1)T + α[(s2, t2)T − (s1, t1)T ] + β[(s3, t3)T − (s1, t1)T ] (2.7)

where (α, β)T is the barycentric coordinates of (s, t)T and satisfies 0 ≤ α ≤ 1,
0 ≤ α ≤ 1. Then the piecewise affine warping function is written as:

Ψ(z,x) = (u, v)T = (u1, v1)T +α[(u2, v2)T−(u1, v1)T ]+β[(u3, v3)T−(u1, v1)T ] (2.8)

where (u1, v1)T ,(u2, v2)T and (u3, v3)T are the vertices of the corresponding triangle
in z. The barycentric coordinates of each pixel can easily be computed from Equa-
tion 2.7. Once they are known, we could store them to perform a simple lookup
during tracking. But this occupies a large number of memory storages. Alterna-
tively, as described in [Iain 2004], we could only compute the affine warp coordinates
of each vertex and re-compute the barycentric coordinates of each pixel via simple
affine multiplications and additions during tracking.
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Figure 2.3: The definition of the appearance measurements. The view-free texture
is the warping outcome of Ψ. The intensity of each pixel within it is assumed to
follow an independent Gaussian distribution.

Ψ(u,v; x)(u1,t1)

(u2,v2) (u3,v3) (s2,t2)

(s1,t1)

(s3,t3)

(u,v)

(s,t)

image triangle texture triangle

Figure 2.4: Computing the warping function Ψ in a triangle. The vertex correspon-
dences are established via model projection while the inside ones are computed via
piece-wise linear interpolation.

To simplify future computation, the graylevel of each pixel within yt are as-
sumed to be mutually independent and follows a single Gaussian distribution: each
pixel yi is modeled by a mean value µi and a deviation value σi. Such a Gaussian
assumption can partially explain the appearance variations caused by facial anima-
tion, illumination changes and other factors. Thus, a multivariate Gaussian is used
to represent the view-free texture vector yt

P (zt|xt) =
n∏

i=1

N(yi : µi, σi)t, (2.9)

where N(yi : µi, σi)t is the single Gaussian distribution and n is the size of yt. As we
will show later, both µi and σi are dynamically updated as new image measurements
are known. For simplicity, we will use m to represent the mean vector µ1:n and Σ
for the diagonal covariance matrix of σ2

1:n.
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2.4.2 Gaussian-Newton Image Alignment

Given the Gaussian assumption, the cost function to stand for the discrepancy
between our template (mt,Σ) and an input texture yt is given as their Mahalanobis
distance

∆xt = arg min(yt −mt)TΣ−1(yt −mt) (2.10)

where Σ is the diagonal covariance matrix. This equation is a non-linear problem as
the appearance vector yt = Ψ(zt,xt) has an unknown form. To make the problem
tractable, we may assume yt as a linear function of the estimated x̂t−1 and use its
first-order Taylor expansion to replace it. That is, we expand Ψ(zt,xt) around x̂t−1

to a first-order Taylor expansion and obtain

Ψ(zt,xt) ' Ψ(zt,xt−1) + Jt∆xt. (2.11)

where Jt is the Jacobian matrix of Ψ and ∆xt is the pose displacement of xt−1.
With this simplification, the objective function becomes

arg min[Ψ(zt,xt−1) + Jt∆xt −mt]TΣ−1[Ψ(zt,xt−1) + Jt∆xt −mt]. (2.12)

By taking derivatives with respect to ∆xt and setting it to zero we have

JTΣ−1J∆xt = JTΣ−1[mt −Ψ(zt,xt−1)], (2.13)

which is also known as the normal equation. Solving it yields the following closed
form solution

∆bt = (JTΣ−1J)−1JTΣ−1[mt −Ψ(zt,xt−1)]. (2.14)

We can see that it corresponds to solve a weighted least-squares problem. In practice,
the matching error E of this linearized formulation is not always the minimum
one. To reach a minima, we run a steepest searching process via gradient-descent
optimization. Starting with x0 = x̂t−1, we derive an initial shift ∆x and a matching
error E(x) from Equations (2.14) and (2.10). Following it, we update the motion
vector and compute a new matching error according to{

x′ = x + ρ∆x

E′ = E(x′)
(2.15)

where ρ is a positive real. If E′ < E we accept this update and repeat the template
matching until converged; Otherwise, a smaller ρ will be used and iterate the oper-
ations (2.15) until E′ < E. If the matching error cannot be improved anymore or a
certain iteration number is reached, convergence is declared and the search stops.

Since the above search is performed around the neighborhoods of x̂t−1, the solu-
tion usually falls into a local minimum instead of the global one. In this sense, this
template matching is a compromise between fast computation and global optimum.
It can be close to the global minima only if the linearization is a good approximate.
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Figure 2.5: Illustrating the numerical way to compute the gradient matrix J.

To enhance its robustness, the Jacobian matrix Jt is computed via a set of its
numerical lists. Suppose the jth column of Jt is defined as

Jj =
∂Ψ(zt,xt)

∂xj
(2.16)

and its difference equation is given by

Jj =
Ψ(zt,xt + δqj)−Ψ(zt,xt)

δ
, (2.17)

where δ is a suitable step size and qj is the jth unit vector of a dim(xt) × dim(xt)
identity matrix. By using several steps around the current value xt, a more robust
estimate of Jj is expressed as the average

Jj =
1
K

K/2∑
k=−K/2,k 6=0

Ψ(zt,xt + kδjqj)−Ψ(zt,xt)
kδj

, (2.18)

where δj is the smallest perturbation associated with xj and K is the size of this
numerical spreading. A good set is K = 8 to trade off robustness and computational
efficiency.

Even with a moderate K, e.g. 8, the time cost of this numerical computation
remains a huge burden for real-time performance. Especially, with the gradient-
descent search, as x is varied at each iteration, Jt has to be re-computed as well. This
will lead to a occupation of the 80% tracking time. In practice, we do not update Jt

during the iterative search. For further efficiency, as suggested in [Dornaika 2008a],
Jt can be only re-computed by every five frames.

For better understanding, the visualizations of the numerical way to compute Jt

and the composition of the first-order solution are shown in Figure 2.5.

2.4.3 Confidence Map

On warping the input image into the texture plane, not all pixels have equal con-
fidences due to the nonuniform density of pixels. As proposed in [Cascia 1999], an
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approximate measure of the confidence can be derived in terms of the ratio of a
triangle’s area in the video image z over the triangle’s area in the normalized tex-
ture. The underlying idea is that the amount of information carried by a triangle
is directly proportional to the number of pixels it contains in the input image z.
Consider a triangle whose vertices in image coordinates are (u1, v1), (u2, v2) and
(u3, v3), and in texture coordinates are (s1, t1), (s2, t2) and (s3, t3). The ratio is
easily given as

c =

√
(u2 − u1)(v3 − v1)− (v2 − v1)(u3 − u1)√
(s2 − s1)(t3 − t1)− (t2 − t1)(s3 − s1)

. (2.19)

Parts of the texture corresponding to the nonvisible part of ellipsoid surface would
have zero confidence as they contribute no pixels. In practice, since only a 180◦ part
of the ellipsoid is visible at any instant, we could simply render a half ellipsoid as
our head model.

If we reform the confidence map into a diagonal matrix W(s, t) to weight the
contribution of each texture pixel, the original cost function in equation (2.10) turns
to a weighted Mahalanobis distance measure

∆xt = arg min(yt −mt)TWΣ−1W(yt −mt), (2.20)

where W is the diagonal weight matrix, with the jth diagonal element corresponding
to the confidence value cj of the jth pixel of mt. Correspondingly, the weighted
least-squares solution becomes

∆xt = (JTWΣ−1WJ)−1JTWΣ−1W[mt −Ψ(zt, x̂t−1)]. (2.21)

2.4.4 Handling Outliers and Occlusion

To partially offset the influence of outliers that are not modeled by the current
template, we adopt a simple robust statistics function. For the ith pixel xi, if
|xt−µt

σt
| < c, then it will be announced as an outlier; otherwise, it is retained as

an inlier. For the outliers, we don’t use them to update the mean vector and the
covariance matrix. For the inliers, we update them by equation (2.24). In our
experiments, a proper value for c is 3.

As the prediction-based tracking approach always suffers from the drifting
problem, to define a strategy to correct it is indispensable. Iain Matthews
[Matthews 2004b] have proposed a simple strategy to partially correct this prob-
lem. While the registration error em is bigger than a threshold value edrift, we
say that drifting happens and correct the dynamic template by the initial one. As
our template is a multivariate Gaussian distribution, the mean pixel vector µ1:n in
current appearance template At is corrected as follows:

A∗(µ1:n)t = (1− θ)A(µ1:n)t + θA(µ1:n)0 (2.22)

A(µ1:n)0 is the initial template and θ is a weight value. The accumulative covariance
matrix is reset to be an identity matrix. Then the template matching will be run
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again with the above corrected template. The re-estimated head pose is denoted as
x∗t , which will replace the previous xt.

Occasionally, due to full occlusions or many other factors, the tracking may
completely fail. In these cases, the tracking must be re-initialized. We do this by
assigning a big threshold Em to bound the template matching error. If it exceeds
the given threshold, the tracking is probably failing and will have to be re-initialized
by matching SIFT keypoints.

2.4.5 Model Update

The estimated pose displacements ∆xt can be directly used to derive the current
pose:

xt = xt−1 + ∆xt. (2.23)

Meanwhile, once the above template matching is finished, we can use the derived
xt to synthesize a new view-free texture to update our Gaussian template. Similar
to the updating of Online Appearance Models (OAMs), our updating scheme is
simply as:

µi(t+1) = (1− α)µi(t) + αi(t) (2.24)

σ2
i(t+1) = (1− α)σ2

i(t) + α(xi(t) − µi(t))
2 (2.25)

where α = 1− exp(− log(2/nh)) is a forgetting factor, which weights past observa-
tions in recursive filters, and nh represents the half-life of the envelope in frames.
This links our approach to the recursive filter in online signal processing. In prac-
tice, equation(12) is not used until a stable variance σ2 is reached, e.g. after the
first 50 frames. Conversely, in the first 50 frames, a naive α = a/t is set to update
the variance (a makes sure α ∈ (0.01, 0.1)). Thus, the first 50 frames are for both
tracking and learning. Note that pose variations are restricted during this learning
stage for reliability.

2.5 Experiments and Discussions

We only conducted qualitative experiments to evaluate the presented head tracking
approach. There are in total five video clips captured for this purpose, namely,
‘Shangling’ ‘Haibo1’ ‘Fredric’ ‘Haibo2’ and ‘Jeremey’. The clip ’Shangling’ is cap-
tured via a hand-held camera while all the others are grabbed by a Logitech web-
cam. Their respective resolutions are 640 × 480, 320 × 240, 640 × 480, 640 × 480
and 640 × 480. On experiments, our unoptimized C/C++ code runs at about 15
frames/second on a Xeon 3.0GHz, 1.5G RAM computer, with setting K = 8 and
the template resolution to 40× 42. Almost 80% of the tracking time is occupied by
computing the numerical gradient matrix at each iteration.

Figure 2.6 shows two tracking snapshots with the ’Shangling’ clip. The built
ellipsoid is not well-shaped since his face is rather planar. Faces are successfully
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tracked most of the time. Figure 2.7 exhibits several tracking shots sampled from
the low-resolution ’Haibo1’ sequence. The used global template is rather robust to
the blurring face observations. On the other hand, the subject moves very slowly to
ensure the correctness of the motion prediction.

In Figure 2.8, the tracking approach is evaluated in facing the challenge of out-of-
plane rotations. The first two rows corresponds to nice results with negligible pose
drifts, while the last manifests visible drifts. For better illustration, Figure 2.9 re-
veals the appearance drift caused by self-occlusions and facial expressions. When the
drifted appearance is temporally integrated into the template, template matching
will produce an error-prone pose estimate, which in turn introduces a new erroneous
appearance. Finally, when the error of this loopy template-pose drift accumulates
to a certain degree, obvious tracking failures are observed as happens in the cases
of the last row in Figure 2.8.

Figure 2.10 shows the shots on tracking three challenging cases, that is, occlu-
sions, putting off glasses and moderate illumination variations. Since no large head
motions simultaneously happens, the faces remains being tracked. Similar results
are also demonstrated in Figure 2.11 and Figure 2.12 on the ’Jeremey’ clip.

Figure 2.6: Two tracking shots on the ’Shangling’ sequence. The appearance tem-
plate in gray scale and the current appearance feature in color scale are shown on
top left corner.

2.5.1 Discussions

The presented approach deals with the three dilemmas (Chapter 1) in a traditional
way. Verified by the experiments, its drawbacks can be summarized as follows:

First, the approach is biased for online adaptation while against offline learning.
The only fixed information is the template extracted at the first frame. The dy-
namic template updating makes the tracking error accumulated and comes back the
anchoring template only if pose was at neutral view again. In addition, the online
thresholding method to reject outlier and occlusions by its nature cannot overcome
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Figure 2.7: Tracking snapshots on the ’Haibo1’ sequence. The sequence is captured
at a lower 320× 240 resolution.

the difficulty.
Second, the approach realizes neighboring search based on the predictions from

temporal prior knowledge. This significantly limits the allowed speed of the tracking
target and raises the possibility of drifts. In front of a camera, user must move
very smoothly, which makes this method nearly unusable in practice. The better
prediction scheme, e.g. Kalman filter or Particle filter, with a high-order dynamic
equation would not solve this problem. A promising direction is to perform full-scale
search without no longer depending on temporal predictions.

Third, despite its robustness, the global appearance feature is less accurate and
occlusion-suffering. Some pixels or subregions within it may be less reliable, but
make equal contributions to the pose estimate in the global-based scheme. This
brings many difficulties to error measurements. Local features, decomposed from
the global one, must be considered in the first place such that global feature can
provide good reasoning to accept or reject certain local-based results.

In order to overcome these drawbacks, in the following chapters, we will present a
totally different tracking approach that employs an individualized head model, relies
more on offline learning, substitutes global template with local robust feature and



22 Chapter 2. A Model-Based Short-Baseline Solution

Figure 2.8: Tracking snapshots on the ’Fredric’ sequence. Large out-of-plane rota-
tions are the main challenge in this sequence. The first two rows correspond to nice
tracking images while the last row shows the bad ones. The sub-image on top left
corner is the appearance feature of current frame.

most importantly, gets rid of the dangerous prediction-based neighboring search.



2.5. Experiments and Discussions 23

Figure 2.9: The color face appearances of the first 168 frames on the ’Fredric’
sequence. The drift concept is clearly seen due to self-occlusions or facial expressions.
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Figure 2.10: Tracking snapshots on the ’Haibo2’ sequence. From top to bottom
each row represents one challenging cases: partial occlusion, putting off glasses and
illumination variations.
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Figure 2.11: Tracking results on the ’Jeremey’ sequence. The tracker deals well with
moderate facial expressions and large in-plane head orientations.
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Figure 2.12: More tracking results on the ’Jeremey’ sequence. Occlusions is handled
by an automatic recovery procedure.



Chapter 3

A Human-Assisted 3D Head
Modeling System

The first improvement over the solution in Chapter 2 is replacing the generic ellipsoid
model with a person-specific one. To do this, we develop a human-assisted modeling
system that is based on mesh editing technique with a Moving Least Squares (MLS)
function. The basic philosophy is involved with two steps: the first step requires
user to adjust the large-scale parameters of a generic model and fit its semantic
features to their corresponding locations on two given photos; the second step is
the automatic deformation of mesh vertices following the interpolation results of
Moving Least Squares. To be realistic, we adopt the concept of as-rigid-as-possible
during the MLS computation such that surface smoothness and shape locality can
be preserved, as happens with physical objects when deformation is applied to them.

The following sections introduce two alternative MLS methods, analyze the spe-
cialities of the as-rigid-as-possible MLS, describe the modeling implementation with
MLS, show experimental results and forecast its possible uses to our tracking tasks.

3.1 Introduction to Moving Least Squares

The Moving Least Squares (MLS) was first proposed by Lancaster and Salka-
uskas [Lancaster 1981] to tackle scattered data interpolation. It moves an arbitrary
fixed point over the entire parameter domain with a weighted least squares fitting
result. Due to its simplicity and flexibility in forms, it has attracted much atten-
tions in the field of mesh editing and shape deformation [Levin 1998, Schaefer 2006,
Cuno 2007, Fleishman 2005].

3.1.1 2D Affine Moving Least Squares

The Moving Least Squares method is capable of providing smoothing interpolations
and approximations for scattered data [Levin 1998]. Its power to support smoothing
deformations was successfully introduced in [Schaefer 2006]. In order to build surface
deformations based on the MLS, we have to define a set of anchor points with which
the user controls the deformations. Denote p as the control points set and q to be
their deformed positions. Given an arbitrary surface point vector v, we solve for
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Figure 3.1: The schematic illustration of using Moving Least Squares for surface
deformation.

the best local transformation function Lv(x) that minimizes∑
i

wi‖Lv(pi)− qi‖2 (3.1)

where pi and qi are row vectors and wi is a smooth kernel that weighs the distance
‖pi − v‖2α.

Since the smooth kernel wi depends on the surface point v, we will derive a spe-
cific transformation Lv(x) for each point. In the case of 2D surface, we may simply
consider the general affine transformation, which consists of a linear deformation
and translation matrices:

Lv(x) = Mx + T (3.2)

Replacing the transformation function in Equation (3.1) gives us a specific objective
function and solving it by using partial derivatives yields closed-form solutions

M = (
∑

i

p̂T
i wip̂i)−1

∑
j

wjp̂T
j q̂j (3.3)

Lv(x) = M(v − p∗) + q∗ (3.4)

As we can see, only the matrix M needs to be derived due to the fact that
the translation matrix T could be discarded by a simple transform. It was also
shown in [Schaefer 2006] that most of the calculations in Equation (3.3) could be
done ahead of the deformation such that real-time performances were yielded. This
illustrates the power of the MLS in real-time surface deformations, which also gives
the reason of our choosing it as our main approach for head model deformation.

3.1.2 3D As-Rigid-As-Possible Moving Least Squares

It is natural to apply the MLS algorithm to surface deformation in 3D space. If
the transformation is limited to be rigid, the resulted cost function would be a
complicated constrained quadratic formula when the 3× 3 rotation matrix is used.
Recently, Cuno et al. [Cuno 2007] proposed to employ the exponential map of the
rotation matrix, which in turn makes the problem solvable.
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Suppose the transformation is rigid in 3D space Lv(x) = Rx + T. In its expo-
nential map, R is expressed by a rotation of an angle α around an axis e:

Re,α(vT) = eTevT + cos(α)(I− eTe)vT + sin(α)e× v (3.5)

The resulted cost function of this change is a constrained quadratic maximization
problem:

arg max
e,α

eMeT + cos(α)(E − eMeT) + sin(α)VeT (3.6)

s.t. ‖ e ‖= 1 and cos(α)2 + sin(α)2 = 1 (3.7)

where the detailed expressions of M, E and V are given in [Cuno 2007]. As a
optimization problem, its Kuhn-Tucker conditions must be satisfied, which leads to
the following eigenvalue system:

(M + MT + aVTV)eT = λeT (3.8)

where the unknown rotation axis e corresponds to the eigenvector of matrix
M + MT + aVTV associated with the eigenvalue λ. Directly investigating the
eigenvalue λ amounts to solving this large linear system. Rather than doing so, the
authors made use of the characteristic polynomial of M + MT+aVTV and derived
a depressed quadratic equation which has a closed-form root. By assigning λ as the
largest real root of this polynomial, all the unknowns e, sin(α) and cos(α) are then
determined correspondingly.

3.2 Prior Work in Head Modeling

Head modeling has been investigated for several decades. Roughly speaking, the
existing approaches can be classified into two categories, depending on the amount
of necessary interactive manipulations.

The first category requires no or few human interactions with the aid of im-
age processing or vision techniques. Face modeling from a single image was
made possible by adapting a pre-learned 3D morphable model to the image
face [Blanz 1999b, Blanz 2003]. The only supervision is to provide an initial pose to
the model. Automatic face modeling from video sequence becomes feasible by fusing
the vision techniques of stereo calibration, model fitting and temporal flow track-
ing [Zhang 2001, Xin 2005]. With both photometric and geometric cues integrated,
this modeling process is able to reconstruct 3D faces without any supervision. How-
ever, on achieving automation, the modeling accuracy and robustness are sacrificed.
With the sampled image or video slightly changed, the modeling results might be
far away from the original ones.

The second category needs comparatively more human manipulations. The
concerned methods usually start with a parameterized model and then adapt it
to an individual’s face driven by certain physical laws or captured data. Par-
ticularly, the physical-driven modeling approaches have been thoroughly inves-
tigated for decades [Lee 1995, Terzopoulos 2004]. These approaches emphasize
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the modeling realism for which human supervision are indispensable. One of
their important motivations is to drive facial animations in game, film and
arts [DeCarlo 1998, Pei 2007, Haber 2004]. The main drawback of this category
is its long-term processing time and near-expert experience request. Thus, rapid
modeling for non-expert users are difficult. Consequently, the recent trend turns to
fusing graphics and vision. Chai et al. [Chai 2003], for example, fused video track-
ing and motion capture data to create arbitrarily realistic yet online available face
avatars.

Moreover, many researchers tend to use a generative modeling tool to edit face
model, ImageModeler1 as an example. Nevertheless, for a non-expert user, the
modeling process may be full of pain and takes longer time. Comparatively, our
modeling approach is in between of the two categories in that we perform automated
surface deformation with moderate supervision of anchor points fitting.

3.3 Using Moving Least Squares for Head Modeling

Using this MLS algorithm to build a head modeling system is encouraged by its good
performances in image and 3D shape deformations [Schaefer 2006, Cuno 2007]. We
aim at such a system that requires the manual operations of a non-expert user as
few as possible. To do this, we mark 35 semantic vertices in face model as the anchor
points for MLS. But only half of them need to be adjusted due to face symmetry.

3.3.1 Choosing An Appropriate Moving Least Squares

Figure 3.2: The comparisons of the 3D rigid and 2D affine Moving Least Squares
functions.

1http://usa.autodesk.com/
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At the first sight, both a 2D affine and a 3D rigid MLS might be suitable for our
modeling purpose. In both cases, the 2D position v′ in image plane of a 3D vertex
V is respectively written as

v′ = M(PV) + t and v′ = P(RV + T),

where P is the 3D-to-2D projective matrix. These two formula possess the same
six degrees of freedom and thus can lead to the same deformation range. However,
a simple analysis will show that the 3D rigid method is a more reasonable choice.
Denote the three vertices of a mesh triangle as v1,v2 and v3. When the deformation
remains small, the three vertices have approximately the same transformation. In
the 2D affine case we have

v′1 = MPV1 + t

v′2 = MPV2 + t

v′3 = MPV3 + t

⇒

{
v′2 − v′1 = MP(V2 −V1)

v′3 − v′1 = MP(V3 −V1)

Similarly in the 3D rigid case we have
v′1 = PRV1 + PT

v′2 = PRV2 + PT

v′3 = PRV3 + PT

⇒

{
v′2 − v′1 = PR(V2 −V1)

v′3 − v′1 = PR(V3 −V1)

The deformations of the two edges, v′3 − v′1 and v′2 − v′1, are respectively embodied
in M and R in the two cases. The affine motion M implicitly possesses a non-
isotropic scaling and a shearing distortion. This may destroy or even rend the
triangle. Conversely, the 3D rotation R imposes a rigid constraint in the two edges
to maintain the integrity of the triangle. If the number of triangular facets is large
enough, as 414 in our head case, the model plasticity can be guaranteed despite this
local rigidity constraint.

As a matter of fact, this as-rigid-as-possible paradigm has been widely realized
in shape deformation. How to integrate this paradigm into different optimization
framework has also been investigated in the literature [Alexa 2000, Sorkine 2007,
Cuno 2007]. As we illustrate in Figure 3.3, the major advantage of this paradigm
is that the integrities of all mesh triangles are always preserved no matter how the
surface is distorted.

3.3.2 Choosing A Smooth Kernel

The weighting function determines the amount of influence that an anchor point
gives to its neighbors. It must be differential everywhere such that the MLS func-
tional is differential as well. In this chapter, we experiment with three functions.
The first tested function is the Gaussian function,

w(d) = e−
d2

h2 (3.9)
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Figure 3.3: Illustrating the as-rigid-as-possible property that triangular cells are
always preserved no matter how the surface is deformed.

where d is the distance between interpolated point and anchor point and, h is a spac-
ing parameter to smooth out small features. The second function is the Wendland
function [Wendland 1995]:

w(d) =

{
(1− d

h)4(4d
h + 1) if d ∈ [0, h]

0 otherwise
(3.10)

which is well defined in the interval [0, h] to satisfy the smoothing conditions. The
third one is simply the Euclidean function,

w(d) =
1

d2 + ε2
(3.11)

where ε is a non-zero value to avoid singularity at d = 0.
Their respective influences are shown in Figure 3.4. The brighter the color is,

the larger the degree of influence is. For the Gaussian and Wendland cases, we also
show the influence of the bandwidth h. The larger it is, the heavier the influence
is. Our need is that facial anchor points merely affect their corresponding semantic
region (e.g. eye anchor points only affect the eye region.). As can be seen, two cases
are most likely to meet this wish: the Gaussian with h = 0.2 and the Wendland with
h = 0.5. Their color maps appear to be very similar. In our implementation, we
adopt the former case without any specific reason. One can also refer to [Dey 2005]
to investigate an appropriate way to automatically adapt this bandwidth.

3.3.3 Modeling Details

We use a generic model consisting of 414 triangular facets, formed by 229 vertices
sampled from facial feature domains. From these vertices, we choose 32 visible
anchor points at frontal view and 10 of them as anchor points at profile view. The
32 anchor points are then partitioned into five groups. The group depicting face
contour is allowed to deform the entire surface while all the others, including the Eye,
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Figure 3.4: The influence fields of different weight functions. The first row shows
the case of Euclidean distance. The second and third rows correspond to the cases
of Gaussian and Wendland distances, as varying the local window size h.

Eyebrow, Nose and Mouth groups, are restricted to influence only their neighboring
vertices. The used model and the feature groups are depicted in Figure 3.5.

Our modeling system first captures two roughly orthogonal photos, one at frontal
view and another at profile view. In such a way, for a certain control point v ∈ R3,
we can only adjust its x, y coordinates at frontal view and y, z coordinates at profile
view. As a result, its 3D position is easily derived by only normalizing the two
different y values. Then all the vertices that are not control points will follow this
deformation to a new place smoothly interpolated by the MLS computation.

3.3.4 Texture Synthesis and Mapping

The texture mapping procedure is schematically illustrated in Figure 3.6. In order
to synthesize realistic modeling results, the cylindrical projection [Pighin 1998] is
adopted, which will first project mesh vertices on a cylinder plane and then un-roll
the cylinder to get planar facial texture by mapping the frame pixels into the plane.
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Figure 3.5: Illustrating the used generic model and the definition of control points
and their five groups.

To save computing time, the barycentric coordinates are used to correspond texture
pixels to image ones such that the pixel color is assigned. Suppose the head model
is already well fitted to the face regions at the captured frame, the texture synthesis
can be then proceeded as follows:

(i) Project the model facets onto the cylinder plane to yield a list of planar tri-
angles (we assume the basic facet is triangle within the head model). The projected
position of each vertex is regarded as its texture coordinate;

(ii) Un-roll the cylinder to get a planar texture. For each texture pixel, compute
its barycentric coordinates and mark it as an inlier. Otherwise, if no coordinates
found, then the pixel is regarded as an outlier;

(iii) Back-project each inlier pixel to the model surface to find the corresponding
frame pixel. Then use bilinear interpolation around the found frame pixel to fill the
color of the inlier pixel.

As the last step, the interpolated texture is smoothed by a 3×3 Gaussian Filter
such that interpolation noises may be eliminated. Once the texture synthesis is
completed, it can be easily mapped onto head model to render realistic face. The
vertex positions on cylinder plane is re-used as texture coordinates.

3.4 Experiments & Results

We select 32 out of the 229 mesh vertices as anchor points. Then on making use of
face symmetry, only 23 out of the 32 anchor points must be manually fitted. The
used MLS scheme meets the requirements of smooth deformation and constraint
enforcement in a natural way. The non-iterative MLS scheme makes the entire
modeling procedure nearly real-time on a common modern PC.

The deformation ability of the proposed scheme is specifically examined here.
Individual variation across the three example faces in Figure 3.7 encompass a range
of features: clear differences are found in the zoomed regions of eye, nose and
mouth. The clear differences of the overall shapes of modeled samples can be seen
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Figure 3.6: Illustrating the procedures of model texture synthesis and mapping.
Procedure (a) represents texture synthesis while procedure (b) stands for mapping
the texture onto the built model.

in Figure 3.8.

We do not quantify the comparison between modeling samples and ground truth,
but measure its qualities based on human perceptions. Figure 3.9 shows four mod-
eling samples by using the static photos in the INRIA database [Nicolas 2004]. One
can easily see the strong similarities between the realistic pictures and the synthe-
sized ones in the core proportions of eye sockets, nose and mouth. Of course, there
are also visible differences due to insufficient deformation forces. One example is
the depth of the eye sockets, which is either deeper or lighter than the realistic one
as no anchoring points are assigned around it. Another observable problem is that
since the texture is only extracted from the realistic face at frontal view, its profiling
view appears to be different from that of the ground truth.

Figure 3.10 shows four more modeling results by using live-captured images.
The textures look less realistic than those based on the static images, mainly due to
the non-uniform face reflections. Another problem happens with the glasses, which
is not virtually realized and thus looks obviously unrealistic at profiling view. De-
spite these flaws, the generated model is suitable for the model-based head tracking
framework given its high efficiency. Even being roughly realistic, it is able to syn-
thesize reality-similar textures at multiple views and provide model constraint and
geometric reasoning (such as reasoning for self-occlusion).
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Figure 3.7: Illustrating the individual variations across three face models deformed
from the same prototype one. The slopes of eye, nose and mouth are zoomed to
demonstrate their topological differences.

Figure 3.8: Six sample face models that are derived from the same prototype model.

3.5 Conclusions and Discussions

This chapter presents a head modeling system requiring simple interactive opera-
tions of a non-expert user. The core idea relies on casting modeling as a surface
deformation process, which is implemented via the as-rigid-as-possible 3D MLS. The
suitable choices of the MLS form and the smooth kernel are empirically verified in
the above descriptions. Experimental results are also shown on a set of given photos.

Developing this modeling system is to provide a person-specific model to facili-
tate head tracking. In the next chapter, we will show that the built model is used to
render a set of face textures at various viewpoints, which are then applied to provide
many interest points. The possible improvements over this system will be made in
two aspects. First, the current constraints to MLS computation are the movements
of the assigned semantic vertices placed by the user. However, even such placing
work may be still tedious for users. Since many online face dataset are available, it
is possible to perform facial feature localizations with auto detections. Second, only
point constraints are not adequate to model some regional features. More sketched
constraints, such as reserving line or gradients, can be added to yield more accurate
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Figure 3.9: The modeling faces based on the photos given in dataset [Nicolas 2004].
At each row, the first two pictures are the ground truth at frontal and profile views
while the left are the synthesized textures.

faces. Moreover, relighting problem should be tackled to create various photometric
scenes.
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Figure 3.10: The built models based on four live-captured photos. At each row, the
first two pictures are the ground truth at frontal and profile views while the left are
the synthesized textures.



Chapter 4

Tracking by Detection - A
Wide-Baseline Approach

The nature of the differential-based approach in Chapter 2 is recursively applying a
temporal prior to the pose estimate for the next frame. The merit is to make efficient
local pose estimate reasonably feasible. Nevertheless, this merit can become deathful
when the prior is unreliable after a complete occlusion of the head or an incorrect
estimate. Such a weakness leads to the widely recognized drifting issue that obsesses
all tracking algorithms. Thus, re-initialization is indispensable once the system gets
lost. In this chapter, we employ a totally different approach that estimates pose
by independently detecting it in the entire input image. It is termed as tracking
by detection as temporal prior is no longer considered [Lepetit 2005]. Although the
efficiency of local estimate is lost, we benefit more from being far away from its
damage, e.g. obtaining higher reliability and robustness.

A 3D model is known to greatly facilitate the tracking task, if it is available. The
traditionally model-based methods were more aware of its value to partially offset
the illedposeness of the tracking problem during tracking [Basu 1996, Cascia 1999,
Morency 2003a, Dornaika 2008b]. Then recently, with the popularity of learning,
more researchers realized that a 3D model is also greatly helpful during the tracker
training [Lepetit 2004, Liebelt 2010]. As initial trials, their proposals did not un-
cover the full potentials of a 3D model for learning due to lack of a supportive
system. With our MLS-based modeling system, we propose an extended scheme to
take full advantage of a 3D model in tracking by detection .

In implementing tracking by detection, we consider matching only the interest
points that are distinctive and repeatable out of the entire image pixels. Since
the viewpoints of the input images can be very different from those of the training
images, wide-baseline matching is performed in essence. To address it, we develop
a multi-view local feature learning paradigm such that the matching can tolerate
moderate view deviation from the training ones.

In the following, we start by addressing the bayesian formulation of tracking by
detection and then present the proposed approach hierarchically.

4.1 The Bayesian Formulation

Tracking by detection is a special case of the recursive tracking in terms of the
Bayesian formulation. The sequences of states of the tracked object and image
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Figure 4.1: The framework of our tracking approach. It involves two stages. The
offline stage consists of interactive modeling, face texture synthesis and stable feature
selections to provide a feature classifier. The online stage performs tracking by
matching feature points and solving a Perspective-n-Point problem.

observations up to time t are denoted by {x1,x2, ...,xt} and {z1, z2, ..., zt}, respec-
tively. The goal of tracking at time t is to estimate the state xt from the available
observations {z1, z2, ..., zt}.

In short-baseline tracking, estimating state xt starts with an initial vector that
is predicted from its previous state xt−1. However, the dynamical probability
p(xt|xt−1) may be unreliable after an abrupt motion or if xt−1 is estimated incor-
rectly. Moreover, only local convergence can be reached since xt is estimated only
in the neighboring range of the predicted state. Alternatively, tracking-by-detection
is to perform state estimation independently at each frame, which amounts to re-
garding the density of xt as uniform and setting p(xt|xt−1) ∝ constant. From the
Bayes rule, we can write

p(xt = γ|z1:t) ∝ p(zt|xt = γ), (4.1)

where γ is the independently estimated state. Unlike the recursive tracking, its
initial value is independent of the pose estimated at the previous frame. Then we
consider more state candidates and attain the one with maximum measure proba-
bility

γ̂ = arg max p(zt|xt = γ). (4.2)

Since consecutive motion cue is neglected here, the observation z must be reliable
enough to recover the right x.

4.2 Approach Overview

Our tracking-by-detection approach builds on matching interest points on each frame
to the model ones. The key ingredient is casting matching as a point classification



4.3. Multi-View Class Detection with a 3D Model 41

problem. A class c is defined as all the possible views of the patch around a feature
point k. Suppose we set up a set of classes C = {c1, c2, ..., cn} and a compact
classifier R during training. Given an input patch p, the classification goal is to
assign it a class label Ŷ = R(p) such that P (Ŷ 6= Y ) is smallest.

We develop a system to implement the approach. There are two separate stages
as demonstrated in Figure 4.1 in the system. The offline stage aims at setting up
the class set C and growing the compact classifier R via 3D modeling, texture syn-
thesis and class view selection. The online stage performs the actual classification
of all online patches so as to provide us a set of 3D-to-2D correspondences. Follow-
ing it, we solve a Perspective-n-Point problem to recover 3D poses with all these
correspondences. Since the classification is matched independently at each frame,
tracking-by-detection is actually employed.

4.3 Multi-View Class Detection with a 3D Model

4.3.1 Face Texture Synthesis and Stable Patch Selection

Once the 3D model building is completed, we can generate a large number of face
views via random geometric transforms as if many realistic training data are avail-
able. In detail, the geometric sample space is defined as

{θ, φ, λ1, λ2, tu, tv, α, β, γ}, (4.3)

where {θ, φ, λ1, λ2, tu, tv} are the 2D affine transform parameters and {α, β, γ} de-
note the 3D orientation angles. We first generate a set of perspective views with the
textured model by running 3D random rotation transforms by n1 times

T1 = RαRβRγ . (4.4)

On each perspectively synthesized image, we then perform the random affine trans-
form by n2 times to simulate planar or small non-planar changes

T2 = RθR−φdiag(λ1, λ2)Rφ. (4.5)

We set n1 = 4 ∼ 10 and n2 = 10000 to trade off between training time and view
number. To be more realistic, random lighting variations are imposed during the T1

transform and random white noises are inserted into the T2 transform.
Not all the synthetic interest points will appear during tracking. To be efficient,

we propose to select the most stable ones by extending the way as developed in
[Lepetit 2006]. For a single feature point k, we test its stability by counting how
often it is found throughout a large number of random T1 and T2 transforms. By
denoting the respective finding frequencies under the two transforms as P (k|T1) and
P (k|T2), we rank all the detected feature points according to P (k|T1)P (k|T2) and
only retain the 100 ones with the highest values.
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Figure 4.2: Illustrating multi-view class detection and classifier building. On the
frontal view, all features are accepted as new classes (marked in blue color) to train
a basic classifier. As a new synthetic view is available, we identify new class views
and new classes (marked in sky-blue color) and discard the outliers (marked in red
color). In such a way, the basic classifier is incrementally updated to be stronger
and more robust. The green circle implies the scale at which the feature point is
found. The discarded patches are shown with an X on the upper line.

4.3.2 Multi-View Patch Class Detection

Figure 4.2 depicts this multi-view class detection process. With the beginning frontal
texture, we treat all the detected feature points as our classes, except the very edging
ones. The classifier R0 built with these classes are named as the basic classifier. As
a perspectively synthesized texture is available, we detect new feature points and
extract their surrounding patches. Typically, the patch around each feature point
belongs to one of the three categories:

1. the new view of an existing class,

2. the first view of a new class and

3. a flawed patch due to modeling or texture-mapping faults.

To identify them, we first back-project all detected feature points onto the 3D model
and match them by looking for the closest back-projected 3D positions to get c. Then
we use the current R to classify the point with a matched class c′. The one whose
classified label c satisfies c = c′ is retained as the new view of the existing class c.
The point having c′ 6= c is likely to be mis-classified and thus is discarded for safety
purpose. However, for the left point without matched classes, finding its category is
rather difficult. We observe that it is possible to treat them together by computing
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Algorithm 1: Multi-view patch class detection
Input: a set of T1-transformed face views {T1,T2, ...,Tt} and the basic

classifier R

Output: an augmented classifier R+

for Ti = T1 to Tt do
1. Detect feature points K = {k1, k1, .., km} on Ti.
2. Back-project each kj , j = 1, 2..,m, to 3D model and match it with a
class cj by searching the nearest 3D position. All these with matched
classes form a subset Kr of size mr.
3. Each point in Kr is classified with the current R to find a c′j . If
c′j = cj , kj is regarded as a new view of class c′j . Otherwise, abandon it.
4. If mr/m < δ, the set K −Kr are retained as new classes; Otherwise,
abandon them.
5. Update R with N T2-transformed new patch views of all the new class
views and stable new classes.

the ratio of the new view number mr to the number of detected points m. If mr/m

is smaller than a threshold, the global view tends to be partially self-occluded and
hence we accept all of them as new classes. Otherwise, we give them up. After
the above feature categorization, we perform T2 transformations to synthesize new
homographic views of new class views and new classes, check the stability of new
classes via small T1 transformations and utilize the stable new classes and all new
views to update the current R. The new classes are simply imposed into the R

while new views are used to update their corresponding classes by either updating
the mean descriptor at this view or the corresponding posterior probabilities. A
summary of the procedures is presented in Algorithm 1.

Searching the 3D position of a feature point is implemented via an efficient
color-filling technique. As shown in Figure 4.3, we render a color map at the same
viewpoint of the synthetic texture beforehand. Each triangular facet is coded by a
unique color. For an interest point u, its belonging facet f̂ is indexed by decoding
the color at the same p point of the color map. Denote (V1,V2,V3) as the three
vertices of f̂ in 3D space and (u1,u2,u3) their respective projections in image plane.
As u is inside of triangle f̂ , it can be expressed as a weighted sum of these projections

u = α1u1 + α2u2 + (1− α1 − α2)u3 (4.6)

where (α1, α2) is the unique barycentric coordinates. By assuming the same relation
holds in the 3D facet plane, we also write

V̂ = α1V1 + α2V2 + (1− α1 − α2)V3 (4.7)

where this V̂ is the 3D position of u. When the size of facet f̂ is small, the aliasing
effect in rasterizing may cause offset of its filled-in color such that the chosen facet
f̂ is incorrect. To deal with it, we iteratively search every facet in the range of
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Figure 4.3: Illustrating the color-filling technique for fast 3D position assignment.

Figure 4.4: The pipeline of feature matching via classification.

[f̂ − 8, f̂ + 8] and stop until the barycentric coordinates (α1, α2) that satisfy 0 ≤
α1 ≤ 1, 0 ≤ α2 ≤ 1 are found.

4.4 Testing Feature-Classifier Combinations

3D Pose is recovered from a set of 3D-to-2D correspondences that associate 3D
positions to interest image points that ought to be repeatable and distinctive over
different views. The local patch around such a point is extracted to represent its
specific properties. The correspondences are established by matching query patches
to the model ones processed during training. In this section, we test two alternative
combinations that detect, describe and match local patches in two different direc-
tions. Particularly, both the classifiers are tree-structured but one emphasizes speed
while the other favors accuracy. Figure 4.5 shows a generic pipeline.
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4.4.1 Harris Detector, Random Binary Feature and Ferns classifier

4.4.1.1 Harris Detector

A local feature is such an image pattern that differs from its immediate neigh-
borhood. Among existing feature types, Local interest point, typically either a
corner or a junction point, is the most popular one due to its easy description.
To localize interest points in images, a local neighborhood of pixels needs to be
analyzed. Those whose neighborhood is repeatable and distinctive are the most fa-
vorable [Mikolajczyk 2004]. The Harris detector localizes corner points as the local
maxima of a directional variance measure [Harris 1988]. This measure relies on a
second moment matrix of the neighborhood computed with Sobel derivatives and a
Gaussian window

M = σ2
DG(σI) ∗

[
I2
x(x, σD) IxIy(x, σD)

IxIy(x, σD) I2
y (x, σD)

]
(4.8)

Given the two eigenvalues of this matrix, a corner is then decided via a function
comprising its determinant and trace

cornerness = det(M)− λtrace(M) (4.9)

where a typical value for λ is 0.04. The cornerness corresponds to both eigenval-
ues being large. Specifically, adding the second terms with the trace suppress the
responses of strong straight contours that only have one big eigenvalue. Moreover,
such a measure is much less demanding than actually performing the eigen decom-
position as both its determinant and trace can be computed without knowing the
eigenvalues explicitly.

To be scale-invariant, the Harris-Laplace detector is usually used, which starts
with a multi-scale Harris detector and determine the characteristic scale that attains
an extremum over its scale space. The Laplacian operator is known to be best for
this scale selection, after which the detector is named.

4.4.1.2 Random Binary Features

The random binary feature captures both the textural and spatial information of a
target region in a simple way. It is composed of binary sequences, each of which is
assigned by comparing the intensities of two randomly picked pixels m1 and m2 of
a local patch I:

fi =

{
1, I(m1) ≤ I(m2)

0, otherwise
. (4.10)

In order to attain robustness, the features are computed over example patches
seen from different viewpoints. This is achieved via random affine synthesis of the
given patch as described in the last subsection. At training stage we may need a
long sequence of binary features

{f1, f2, f3, ..., fN} (4.11)
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Figure 4.5: The conditional distributions of an example class over all the leaves of
all the ferns.

where a suitable choice is N = 104 for a 32 × 32 patch. Contrarily, at run-time,
the sequence length needs to be proper to trade off efficiency and preciseness, for
example, 300 for a 32× 32 testing patch.

4.4.1.3 Ferns Classifier

The Ferns classifier is a derivation of the powerful Randomized Trees [Ozuysal 2009].
It is non-hierarchical and building on the fact that combining groups of binary
features rather than the tree structure itself allows improved classification rates.
The random binary features are used in such a way that each node corresponds to a
single binary test. Suppose there are H patch classes extracted from training data.
For each feature patch pi, i = 1, ...,H, its class label is found by

ĉi = arg max
ci

P (C = ci|f1, f2, ..., fN ) (4.12)

≈ arg max
ci

P (f1, f2, ..., fN |C = ci) (4.13)

Here we assume the Bayesian prior are uniform and thus neglect it. Given the N -
length binary sequence of a training patch, we assume partial independence and
partition them into M independent groups of size S = N

M ,

P (f1, f2, ..., fN |C = ci) =
M∏

k=1

P (Fk|C = ci) (4.14)
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Such a random group Fk = {fσ(k,1), fσ(k,2), ..., fσ(k,S)} is a fern and σ(k, j) is a
random permutation function with range 1, ..., N . Each conditional probability
P (Fk|C = ci) is attained by repeating the random grouping many times such that
every leaf of each fern possesses a probability belonging to each class

P (Fm = k|C = ci) =
Nk,ci

+ Nr

Nci + K ×Nr
(4.15)

where Nr is a uniform Dirichlet prior to avoid zero probability. As a class view
is found, we simply update the probabilities stored in the leaves that are reached.
More simply, new classes are added by creating new conditional probabilities of each
leave of each fern.

Correspondingly, for a query feature patch p, it is labeled by dropping its com-
pact features {f ′1, f ′2, .., f ′n} down each fern to certain leaves and multiplying these
reached conditional probabilities

ĉi = arg max
ci

P (C = ci|f ′1, f ′2, .., f ′n) (4.16)

≈ arg max
ci

M∏
j=1

P (L(Fj , p)|C = ci), (4.17)

where P (L(Fj , p)|C = ci) is the posterior probability stored in the leaf L(Fj , p) of
fern Fj reached by the random features. If 30 ferns of size S = 30 are used, the
query features {f ′1, f ′2, .., f ′n} needs also to be randomly partitioned into 30 groups
of size 30. The simplicity of binary features determines the computational efficiency
of this patch classification.

4.4.2 SURF Detector, Descriptor and Nearest-Neighbor Classifier

4.4.2.1 SURF Detector

The alternative interest point to corners is the blob-like point. The effective way for
its localization is the Hessian detector. It explores the second order derivatives of a
local window (the Hessian matrix) and returns a blob-like structure that corresponds
to the maxima determinant of this matrix

H =
[

Ixx(x, σD) Ixy(x, σD)
Ixy(x, σD) Iyy(x, σD)

]
(4.18)

where Ixx etc. are second-order Gaussian image derivatives. Similar to the Harris
detector, the Hessian detector is usually extended to be scale-invariant by using
the laplacian of Gaussian to select the scale. To efficiently compute it, Bay et
al. [Bay 2006] proposed the Speeded-Up Robust Features (SURF) which roughly
approximates the Hessian matrix by using a set of box-type filters. The filters
are built by cropping the gaussian second-order partial derivatives over continuous
parts such that integral images, independent of filter size, can be used. Moreover,
the determinant of the approximated Hessian is given by

det(Happrox) = DxxDyy − (0.9Dxy)2 (4.19)
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with smallest estimation error to compensate the error introduced by the approx-
imated values of Dxx, Dyy and Dxy. This efficient implementation leads to much
faster yet similarly accurate blob localizations.

4.4.2.2 SURF Descriptor

SURF also provides a specific way to describe the detected interest points. It first
estimates a reproducible orientation based on the wavelet responses of a circular
region and align a square region to the orientation. Then, it splits up the region
into 4×4 square sub-regions and describe each sub-region with the sum of its wavelet
responses,

v = (
∑

dx,
∑

dy,
∑

|dx|,
∑

|dy|) (4.20)

where dx etc. the Haar wavelet response in the x direction. || denotes the absolute
operation. Thus, each sub-region yields a four-dimensional descriptor and a descrip-
tor vector for all 4 × 4 sub-regions of length 64. As a result, such a vector shows
robustness against both geometric deformations and illumination offsets.

4.4.2.3 K-D Nearest-Neighbor Classifier

Labeling a query SURF descriptor Vq is to find its nearest neighbor from the training
feature database

ĉi = arg min
ci

‖ Vq −V ‖, (4.21)

During training, we extract SURF descriptors from interest points and adopt a k-d
tree as our classifier. As each new view arrives, we renew the existing descriptor to
be a weighted mean.

Practically, the k-d tree classifier is replaced with the optimized trees imple-
mented in the public FLANN library [Muja 2009]. It first uses cross-validation to
identify the best algorithm among many modified k-d trees, e.g. k-means trees and
randomized kd-trees. Meanwhile, it also uses cross-validation to search for opti-
mal configurations that best trade off given query and memory costs. In addition,
the nearest-neighbor classification is speeded up via the approximate best-bin-first
search strategy [Beis 1997].

4.5 3D-to-2D Correspondences Setup

The actual classification is made in a simple discriminative way. Let us denote the
largest and second largest classification responses of a query patch k as Lk(ĉ1) and
Lk(ĉ2) respectively. The acceptance correspondence is the one that satisfies

Lk(ĉ1)
Lk(ĉ2)

≥ σ1 (4.22)
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where ci represents the estimated class label. To be symmetric, there should be a
similar measure for each training class. Thus, the acceptance condition becomes

Lk(ĉ1)
Lk(ĉ2)

≥ σ1 and
Lc(k̂1)

Lc(k̂1)
≥ σ2, (4.23)

where Lc(k̂1) is the largest response to training class c. The values of δ1 and δ2 are
varied in the range of 0.49 ∼ 0.59, depending on the number of available correspon-
dences. As each class has a known 3D position, feature matching actually establishes
a set of 3D-to-2D correspondences that allows us to derive 3D poses from them.

4.6 3D Pose Recovery

Given all the 3D-to-2D correspondences via feature matching, the objective is to
recover the underlying 3D positions of orientations of a camera. It forms a typical
Perspective-n-Point problem or PnP in short as so-named in computer vision field.
Many solutions to this problem have been proposed, which can been broadly clas-
sified into iterative and non-iterative ones. Among the non-iterative methods, the
Direct Linear Transformation (DLT) algorithm [Hartley 2004] is the popular one
that efficiently handles the cases of arbitrary n. However, it is such simple that
generally the estimate result is less stable. A recent algorithm that has the com-
plexity of O(n) was proposed in [Moreno-Noguer 2007a]. It leads to pose estimates
as accurate as iterative ones yet much faster to compute. Therefore, We adopt this
algorithm to avoid that large number of correspondences slow tracking speed down.
We now briefly introduce how it works.

Suppose we have a set of correspondences with known 3D coordinates {Pi} and
known 2D image projections {ui}, i = 1, 2, ..., n. The algorithm attempts to seek
four control points such that all others can be expressed as a weighted sum of them.
That is, each reference point is expressed as

Pi =
4∑

j=1

αijcw
j with

4∑
j=1

αij = 1. (4.24)

where the αij are homogeneous barycentric coordinates, that can be uniquely com-
puted and cw

j is the jth control point in the world coordinate system. Similarly in
the camera coordinate system, the same relation holds and we also write

Pc
j =

4∑
j=1

αijcc
j (4.25)

where Pc
j and cc

j are the respective correspondents of Pj and cw
j in the camera co-

ordinate system. By choosing the {cw
j } properly, we have the following relationship

wi

[
ui

1

]
= APc

i = A
4∑

j=1

αijcc
j (4.26)
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where

ui =
[

ui

vi

]
, A =

 fu 0 uc

0 fv vc

0 0 1

 , cc
j =

 xc
j

yc
j

zc
j

 (4.27)

In this equation, the unknown variables are the control camera coordinates cc
j , j =

1, 2, 3, 4. By concatenating the equations for all the reference points, we have a
linear system of the form

Mx = 0, with x = [cc
1
T , cc

2
T , cc

3
T , cc

4
T ]T (4.28)

It is easy to see that the solution x belongs to the null space of M, or equivalently
the null space of matrix MTM in the case of 2n > 12

x =
N∑

i=1

βivi (4.29)

where vi is the ith null eigenvectors of MTM. In theory the value of N ought to vary
from 1 to 4, corresponding to the projection model changing from the perspective
projection to the orthogonal one. The final solution corresponds to the one with the
smallest reprojection error

min
R,T

∑
i

‖A[R|T]Mi −mi‖2, (4.30)

subject to the distance constraints between pairs of control points. The N is assigned
as the one that yields the smallest reprojection error.

As usual, the above closed-form solutions are refined using iterative Gauss-
Newton optimization. Specifically, it is only performed with respect to the four
coefficients β = [β1, β2, β3, β4]T . As a result, this step brings higher estimate accu-
racy, with negligible computational burdens. More details about how to determine
the value of N is thoroughly described in the original paper.

4.7 Experimental Results

We integrated all the above components into a C/C++ system that comprises head
modeling, unsupervised learning and online tracking modules. To test its perfor-
mance, we used a USB camera to capture five video sequences at a resolution of
640 × 480. Their representative frames are shown in Figure 4.6 while detecting
interest points at their frontal training images is shown in Figure 4.7. For each
tracking, we render six perspective textures at alternative viewpoints by drawing γ

uniformly from the interval [−60◦, 60◦], and α, β from the interval [−45◦, 45◦]. For
the affine transforms, θ and φ are drawn uniformed from the interval [−π; +π], and
λ1 and λ2 from the interval [0.6; 1.5]. This range of scales in conjunction with the
multi-scale selection by interest point detection can handle sufficiently large scale
changes of the target head. The tracking quality is measured in terms of the number
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Figure 4.6: From left to right, snapshots of the test videos ‘v1’, ‘v2’, ‘v3’, ‘v4’ and
‘v5’.

Figure 4.7: The feature point detections at the frontal view of each tester. Their
distributions spread over the entire faces with major focus on salient regions, e.g.
glasses, mouth and moustache. Note that the SURF detector is used here.

of inliers nin and the reprojection error e. If e < 3.0 pixels and nin > 5 are satisfied,
we say that the estimated head pose is correct at this time.

The first experiment tested the better combinations between the local binary
feature + ferns classifier (FERNS) and the SURF descriptor + flann K-D Trees
(SUNN). The test sequence ’v1’ was used with the length of 500 frames. During
the training, the SUNN learns about 323 model feature points while FERNS learns
only 167 ones. The results are shown in Figure 4.9. We see that the SUNN has
a higher pose recognition rate, which reflects the better discriminative ability of
the SURF descriptor. On the other hand, the FERNS outperforms the SURF in
terms of the tracking speed. A more precise comparison on the sequence ‘v1’ is
presented in Table 4.7. For accuracy purpose, we adopt the SUNN in all the sub-
sequent experiments. Practical applications can switch to the FERNS for real-time
performance.

The merit of multi-view class detection is illustrated in Figure 4.8. Clearly, it
leads to matching more interest points. Figure 4.11 shows a set of representative
frames. Faces are successfully tracked in spite of the challenges of fast motion, facial
expressions, partial occlusions and large illumination changes.

The tracking accuracy of our system was also assessed by conducting experiments
on the ground-truth database from Boston University [Cascia 1999]. The testing
sequences were first resized from 320 × 240 to 640 × 480 to increase the number
of feature points. Figure 4.12 depicts the recovered 3D head poses on the ’ssm1’
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e(pixels) nin td(ms) tm(ms) tp(ms)
FERNS 2.07 14.9 15.67 45.52 2.11
SUNN 2.27 26.7 80.82 12.0 1.24

Table 4.1: Precise comparisons in the case of 100 model feature points. From left
to right, the respective items are the reprojection error, the number of inliers, the
feature extracting time, feature matching time and the pose recovery time. Obvi-
ously, the FERN reduces the time cost by shifting the burden of feature extraction
to feature classification. This however leads to a loss of almost half feature inliers.

Figure 4.8: Comparing the tracking performances of single-view with multi-view
class detection. The left image of each pair is the single-view based performances.
Both tracking inaccuracy and failures are reduced due to the fact that more class
views lead to more matches.

sequence. As can be seen, the estimated curves are consistent with the ground truth
most of the time except the small shifts in the angle graphs that are caused by the
different rotation axes of our head model.

Finally, we compare our system with the popular Watson system 1 that is a
representative of the recursive tracking algorithms. For authenticity, we directly
run the provided Watson API with our test videos to capture snapshots. The same
intrinsic parameters are used via a camera calibration. Several snapshots are shown
in Figure 4.13. The comparison is not fully fair in that we use a person-specific model
while Watson uses a generic ellipsoid model. But one can still see the significant
difference that Watson suffers from drifting while ours does not.

4.8 Conclusion

This chapter presents a 3D head tracking approach that requires a short-term learn-
ing stage and relies on tracking by detection. To handle wide-baseline matching,
we propose a multi-view class detection scheme by bridging modeling and learning.
The role of a 3D model during learning is fully investigated by texture and view
synthesis, stable interest point selection and multi-view class detection. The de-
rived system succeeds in getting rid of the repetitive tracking-failure-reinitialization

1http://groups.csail.mit.edu/vision/vip/watson/index.htm
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module as in the traditionally recursive tracking systems.
Pure wide-baseline matching brings two problems. Without temporal consis-

tency constraint makes the estimated poses jittering. Moreover, the phenomena of
large ratio of outlier matchings and insufficient matchings makes our system lost
in certain frames. The next chapter will address how we try to solve these two
problems.
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Figure 4.9: Comparing FERN and SUNN with respect to the pose recognition rate
and tracking speed. We show the averages over the 500-frame-long video sequence
as varying the number of model feature points. We say that head pose is recognized
if its depicting frame is tracked successfully.
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Figure 4.10: SUNN-based feature matchings. At the first row, fewer outliers happen
since the background is fairly flat while the left rows contain many mismatches due
to the cluttered background scene. Note that poses are correctly estimated for all
these frames with the help of RANSAC.
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Figure 4.11: The first three rows show tracking of a face in the challenging video
‘v5’. From left to right, each column represents one of the following challenges:
low face resolution, facial expressions, partial occlusions, large pose variations and
illumination changes. The left three rows show snapshots of tracking the videos ‘v2’
‘v3’ and ‘v4’, respectively.
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Figure 4.12: Illustrating the tracking accuracy of our system on the sequence ‘ssm1’
from Boston University [Cascia 1999]. In all graphs, the dashed broad curve depicts
the estimated poses and the solid curve depicts the ground truth. The shift in the
orientations is due to that our rotation origin (defined with our model) differs from
that of the ground truth.



58 Chapter 4. Tracking by Detection - A Wide-Baseline Approach

Figure 4.13: Comparison with the Watson system on the videos ‘v3’ and ‘v2’. The
bounding box as well as the axes indicate the estimated 3D pose. In each group,
the upper row shows the results of our system while the lower depicts the results
of the Watson system. Due to being insensitive to drift, the bounding boxes of our
system fit the human faces more precisely.



Chapter 5

Temporal Consistency and
Discriminative Color Prior

In the last chapter, we have presented a 3D head tracking solution based on pure
wide-baseline feature matching. It overcomes the drifting difficulty in differential
tracking and leads to robust and stable pose estimates. However, it suffers from
two new problems that severely affect its performances. On one hand, temporal
coherence is not considered and the motion discrepancy between consecutive frames
can be large, thus yielding jittering. On the other hand, the used spatial descriptor is
not sufficiently discriminative such that many mismatches are introduced to reduce
tracking speed and even cause tracking failures. In this chapter, we present our
approaches that fuse more visual cues to tackle them.

5.1 Temporal Consistency

Motion smoothing is one of the fundamental topics in visual tracking. A smoothing
filter was proposed to smooth the outputs of particle filter in the forward-backward
scheme [Isard 1998]. This approach however can not be transferred to tracking-by-
detection as temporal prediction is still propagated in it. Alternatively, the simple
way is to add a smoothing regularization term in the cost function composed of
image detection correspondences. But defining an appropriate term is not trivial.
Too tight a term would over-smooth the raw motion while too loose one would hardly
take effect. The usually feasible method is to assign an empirical term via cross-
validation and repeat the process in a new scenario. Recently, many researchers
realize that transient image features can be used as smoothness constraint. One
typical example is in face tracking, e.g. Vacchetti et al. [Vacchetti 2004] proposed
using cross-reprojected features to penalize the motion estimated from wide baseline
matching. However, the currently used features either are complicated to compute
[Vacchetti 2004] or require semantic knowledge for guiding local search [Zhang 2008].
There is a need to discover a much simpler yet efficient feature.

Full-scale based tracking can be smoothed by neighboring search based method.
Our idea is to establish a set of optical flow correspondences as smoothness con-
straints. This mainly comes from the temporal consistency attribute of optical
flow. The relevant work is in 3D pose tracking. In [Brox 2006], optical flow corre-
spondences are fused with other wide-baseline feature correspondences by assigning
a relative weight empirically. However, finding an optimal weight is often time-
consuming or even infeasible and there is no support to justify its optimality for all
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experiments. An alternative related work is in [Decarlo 2000], which treats optical
flow as a hard constraint to serve edge and shape correspondences. The problem is
that it cannot handle large target motion as flow smoothness is over emphasized as
such a constraint. To overcome these limits, we assign no relative weights but adapt
the number of flow correspondences to that of the feature ones to automatically
adjust their contributions. We also associate flow and feature correspondences by
sampling a set of image points that have both feature and flow correspondences. By
biasing for one while against the other, this association allows us to further tune
their relative contributions in small scale. Furthermore, without any prediction,
we treat all correspondences equally and adopt a robust algorithm to select inliers
that are consistent with a global geometric model. In such a way, the dilemma of
fusing large motion displacements in the feature correspondences and local motion
smoothness in the flow ones are naturally solved.

5.1.1 The Bayesian formulation

A typical tracking problem is usually formulated in terms of a dynamical process.
The sequences of states of the tracked object and image observations up to time t

are denoted by {x1,x2, ...,xt} and {z1, z2, ..., zt}, respectively. The goal of tracking
at time t is to estimate the state xt from the available observations {z1, z2, ..., zt}.
Given this notation, temporal consistency is to restrict the derivative of any two
consecutive states to a small range

‖xt − xt−1‖2 < δ, (5.1)

where δ is a small positive threshold. This consistency is often valid as long as
video capture rate is not too low. We will describe its roles in visual tracking in the
following subsection.

The tracking-by-detection framework does not incorporate temporal consistency
and thus leads to jittering or even trembling results. To solve it, one solution is to
associate xt with the estimated value γ̂t−1 of the last state xt−1. For example, we
can take p(xt|xt−1) to be

p(xt|xt−1) ∝

{
K(−‖xt − γ̂t−1‖2), if γ̂t−1 is valid
constant, otherwise

(5.2)

where K(·) is a kernel function, e.g. a Gaussian kernel. Consequently, we should
consider a new objective pdf p(xt = γ,xt−1 = γ̂t−1|z1:t). From the Bayes’ rule, we
can derive that:

p(xt = γ,xt−1 = γ̂t−1|z1:t) ∝ p(zt|xt = γ) (5.3)

Since p(xt−1 = γ̂t−1|z1:t−1) is independent of γ, the estimator to select the best γ

becomes
γ̂t = arg max

γ
p(zt|xt = γ)p(xt = γ|xt−1 = γ̂t−1), (5.4)

which simultaneously maximizes p(zt|xt = γ) and minimizes the relative state dis-
crepancy as introduced in p(xt = γ|xt−1 = γ̂t−1), when γ̂t−1 is valid. Therefore, in
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(a) (b) (c)

Figure 5.1: Illustrating the three different tracking frameworks. (a) The Bayesian
tracking framework under a Markovian chain model; (b) The independent tracking-
by-detection framework; (c) The tracking-by-detection framework with temporal
consistency constraints. In this graph, the dashed line implies that xt−1 affects xt,
but unlike the solid line, xt−1 does not necessarily cause xt.

such a framework (as shown in Figure 5.1 (c)), temporal consistency is considered
as a smoothness constraint to regularize large relative state estimations.

5.1.2 Incorporating Optical-Flow Correspondences

Jitters can be reduced by minimizing the relative pose discrepancy between consec-
utive frames [Lepetit 2005]. Among many eligible features, we find that optical flow
is particularly suitable due to its easy computation and low cost. In addition, many
mature optical flow algorithms provide us a lot of options to choose in facing differ-
ent situations. To simplify our problem yet without loss of generality, we neglect the
routine of forward-backward smoothing [Isard 1998] and restrict ourselves to forward
smoothing, meaning that we merely smooth the raw state xt based on the previous
ones {xt−1, ...,x1}. For the same reason, only xt−1 is involved. Consequently, our
problem is degenerated to smooth the raw output xt from the knowledge of xt−1,
zt−1 and zt.

Our idea is to use sparse optical flow that is calculated locally as the addition-
ally smoothing correspondences. Among the plentiful methods, the Lucas-Kanade
algorithm provides an efficient way to track such sparse optical flow [Lucas 1981].
Within a small window, this algorithm estimates the flow velocity at a pixel i in the
image I via

Avi = b (5.5)

where

A =
[ ∑

w I2
x

∑
w IxIy∑

w IxIy
∑

w I2
y

]
, vi =

[
ui

vi

]
, b =

[
−

∑
w IxIt

−
∑

w IyIt

]
, (5.6)

where Ix and Iy are the spatial derivatives and It is the time derivatives. ui and
vi are the components of the flow velocity. w is the size of the local window. We
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Figure 5.2: Histogram of the number of inlier correspondences and tracking trajec-
tory. The upper row shows the case of feature correspondences (blue bar) and the
estimated (x, y, z) trajectory. The lower row shows the case of combined feature and
optical-flow (red bar) correspondences and the estimated trajectory as well. Fifteen
flow points are randomly sampled at each frame. Note that the lower trajectory
appears to be smoother than the upper one.

employ the iterative multi-resolution implementation proposed in [Bouguet 2002] to
achieve robust performance.

To illustrate its smoothness role, let us consider the general case of tracking
3D motion based on a sufficient set of 3D-to-2D correspondences, which is posed
as a Perspective-n-Point (PnP) problem. Suppose there are Nf pairs of feature
correspondences Cf and Ns pairs of optical-flow correspondences Cs. As xt is valid,
we aim at estimating xt+1 by minimizing the reprojection errors of these given
correspondences

xt+1 = arg min
xt+1

(
Nf∑
i=1

‖ Φ(Pi,xt+1)− pi
t+1 ‖ +

Ns∑
j=1

‖ Φ(Pj ,xt+1)− pj
t+1 ‖), (5.7)

where Φ is the 3D-to-2D projection function. Typically the solution is a linear
combination of the eigenvectors of a null space spanned by Cf and Cs [Hartley 2004,
Moreno-Noguer 2007a]. As Cf comes from feature matching via full-scale search,
it implicitly introduces large displacements in the null eigenbasis. Alternatively, Cs

arises from short-baseline tracking and thus pullbacks the large-displaced eigenbasis
to small scale. An experiment with and without Cs is depicted in Figure 5.2.

To make Cf and Cs collaborate properly, there remains several tightly coupled
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issues to deal with. The first issue is how to select optical-flow seeds and establish
their 3D-to-2D correspondences. The second is to balance the relative contributions
of large displacements in Cf and temporal consistency in Cs. Meanwhile, the issue
of discarding outliers in both Cf and Cs should also be considered. The following
describes how we handle these issues.

5.1.3 Balancing the Two Worlds

The selected optical flow seeds should satisfy two conditions: having solvable flow
equations (5.5) and having clearly known 3D positions to establish Cs. To this end,
we consider two sparse sources: A - image features matched at previous frame; B

- a subset of randomly drawn vertices. If we denote their respective optical-flow
correspondences as C(A)

s and C(B)
s , then we have Cs = C(A)

s ∪ C(B)
s . Besides the

smoothness role, C(B)
s and C(B)

s have two additional functions. First, C(A)
s might

have both a feature and an optical-flow correspondences (termed as ‘competitive’
correspondences). This links the two worlds to allow us to flexibly bias for one
while against the other. Second, C(B)

s provides complementary correspondences in
the cases of inadequate feature correspondences.

Balancing the contributions of Cf and Cs and rejecting outliers are simultaneously
considered. Since Cf and Cs come from two different worlds, the cost function
(5.7) leaves us a bi-criterion optimization problem. The conventional approach
simply assigns a relative weight to each term [Brox 2006] or treats optical flow as a
constraint [Decarlo 2000]. The shortcomings are that the two worlds are regarded
independently and the empirical weights are as varied as each experiment. Instead of
doing so, we assign no relative weights but equally minimize their reprojection errors
with the help of a robust Progressive Sample Consensus (PROSAC) [Chum 2005]
algorithm. This has two advantages: First, only these correspondences in Cf and Cs

are selected if they are consistent with a global geometric model. Second, too large
feature and too small flow correspondences are naturally discarded as outliers.

Still in favor of tracking-by-detection, we take the following simple actions to
encourage feature correspondences. The first action is setting the respective size of
A and B at current frame as adaptive as the Nf matched in the previous frame:
N(C(A)

s ) = Nf , N(C(B)
s ) = Nf . The insight is that more feature correspondences

need more flow correspondences to smooth themselves, and vice versa. Thus, Ns

is given by Ns = inlier(N(C(A)
s )) + inlier(N(C(B)

s )), where inlier() denotes the
number of inliers of an entry. The second action is that for the element in C(A)

s ,
if it has a pair of ‘competitive’ correspondences, its flowed position is biased for
its matched feature position. To summarize, the following operations take place to
combine the two worlds:
At frame t− 1, with an estimated x̂t−1,

1. add the reprojected positions of all the n matched feature correspondences
under x̂t−1 as optical flow seeds;

2. randomly draw n visible vertices of the 3D model and add their reprojected
positions under x̂t−1 as optical flow seeds.
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Figure 5.3: Starting from the same original point pt at frame t, optical flow seeks
its new position pt+1 in a neighboring window around pt (the left figure) based on
its normal equation while feature feature looks for its new position pt+1 among the
feature points detected in the entire frame and acquires the one that is best matched
(the right figure). Motion smoothness is naturally embedded in the neighboring
search of optical flow computation.

At frame t, after feature matching and optical flow tracking,
1. select inliers from the pool of feature and optical-flow correspondences with

PROSAC and optimize equation (5.7) to compute a raw x̃t with these inliers;
2. for a point having ‘competitive’ correspondences, if its optical-flow correspon-

dence is chosen as an inlier, the flowed position is tuned to be the mean of the flowed
and feature-matched positions (u

′
o, v

′
o) = (uf+vo

2 ,
uf+vo

2 );
3. repeat Step 1 to select new inliers and compute a feature-favored yet optical-

flow-smoothed pose xt by optimizing equation (5.7).

5.1.4 Evaluations

We conducted experiments on tracking 3D rigid head pose to verify the approach
proposed for motion smoothness.

We first compared the proposed smoothing approach with the ‘Lowess’ smooth-
ing algorithm implemented in Matlab (The other algorithms are also tested but
perform a little worse). Specifically, we apply it in both an offline manner (Lowess)
and a sequential manner (SLowess). In Figure 5.4, all the three smoothing methods
yield similar trajectories. But the proposed approach outperforms both Lowess and
SLowess, in that it smoothes out most of the small peaks while the others do not. A
typical example is at frame 49, where jittering is successfully filtered merely by our
approach. The respective model-mapped faces are also shown there, in the same
order of legend display. The remaining two peaks at frames 76 and 118 are caused
by erroneous optical-flow measures due to sudden movements.

Several representative frames that justify the smoothness role of incorporating
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Figure 5.4: Comparing the different smoothing approaches on the roll angle. The
results on other motion components are similar and not shown here.

optical-flow correspondences are shown in Figure 5.5. Large jittering are corrected,
especially at the moments of 165, 171 and 181.

The last experiment compared the tracking performances of different methods.
The experimental data are the same as used in last chapter. The pose tracking rates
of four corresponding methods are specified: the combined local feature+optical-
flow method (SUNN+OP), local feature matching only (SUNN), 70 optical-flow
correspondences only (OP-Only-70), and 35 optical-flow correspondences only (OP-
Only-35). As shown in Table 1, the SUNN+OP outperforms others in all the cases.
One interesting thing is that OP-Only-70 performs worse than OP-Only-35, which
reflects that more samples may be not helpful.

v1 v2 v3 v4 Average
Video Length 500 626 2010 518 913.5
OP-Only-35 71.6% 79.6% 80.5% 74.7% 76.6%
OP-Only-70 69.4% 77.2% 79.2% 73.2% 74.8%

SUNN 96.0% 87.2% 86.2% 90.0% 89.9%
SUNN + OP 100.0% 94.4% 89.6% 92.9% 94.2%

Table 5.1: Pose tracking rates on the ‘v1’ ‘v2’ ‘v3’ and ‘v4’ test sequences.

5.2 Discriminative Color Prior

In cluttered scenes, many incorrect correspondences are introduced. How to ef-
fectively reduce these outliers remains a challenging problem in matching-based
technologies. As for tracking, the estimated pose from previous frame is usually
employed as a temporal-prior term to output a prediction region [Vacchetti 2004].
The matches that are out of the region are identified as outliers in either a hard
or a soft manner. A simple heuristic variant was also introduced in [Wang 2006].
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Figure 5.5: Example tracking frames 163, 165, 168, 171, 175, 181 from the ’v1’
sequence. The upper row depicts the results without optical-flow correspondences
while the lower depicts the results with them.

The main problems with these approaches are that the temporal prior may be not
reliable if the prediction is far away from the true position.

Face color, on the other hand, is a stabler cue to indicate rough face localiza-
tion. In earlier years, color-based methods are widely applied to localize human
faces. See [Yang 2002a] for the literature survey. Most of these works focus on
finding such a color space and its distribution function that are generative enough
to model skin color. Many color spaces have been explored while the Mixture Of
Gaussians (MoG) is the most popular function to model its histogram distribution.
Unfortunately, neither a perfect color space nor a perfect distribution model has
been found. Inspired by feature selection, discriminative color spaces start to be
investigated [Collins 2005]. One example is the so-called Fisher color space that
best separates foreground and background [Moreno-Noguer 2007b] under the crite-
rion of Fisher discriminant. Such a space is usually sensitive to light illumination
disturbances and thus must be dynamically updated.

Our objective is to incorporate color information as a prior term to alleviate
outliers as more as possible. Unlike the above mentioned efforts, we attempt to
investigate the possibility of using a discriminative distribution model with a simple
color space. The underlying idea is that a strongly discriminative model is more
likely to create a powerful color representation than a strongly discriminative color
space. Our specialities lie in two points: (i) Similar to the spatial descriptor, the
color information is represented by its compact covariance descriptor (RGB Sigma
Set). (ii) Color prior is modeled as the conditional posterior distributions stored
in Random Projection (RP) based classification trees, which are trained with both
positive and negative samples. Recently, Yin and Collins [Yin 2009] and Zhou et
al. [Zhou 2010] have proposed to perform color-based segmentation to create a
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region prior for the posterior tracking. In contrast, we only considers the colors
of the local regions around feature points. The advantage is that some redundant
colors are abandoned such that time cost is reduced and precision is improved. As
demonstrated later, without any dynamic space or model update, the prior created
from the first image is robust enough to recognize inlier features over the sequences
that contain sharp illumination changes.

5.2.1 Color Prior Formulation

In feature-based head tracking, the key step is to establish a set of geometric 3D-to-
2D correspondences by matching individual features to a database of features learnt
from reference images. The feature is computed from a local patch around a keypoint
in graylevel space. For the i sample k̃i in our keypoint database

{
k̃1 . . . k̃m

}
, denote

f(k̃i) as its graylevel feature and Ui its associated 3D position. At run-time, given
the keypoint set K = {k1...kn} from a video frame, each geometric correspondence
Ui ↔ vj is determined by the feature matching with highest probability,

arg max
Ui↔vj

P (f(k̃i)|f(kj)) (5.8)

where vj is the 2D position of kj . In practice, this matching can cause outlier cor-
respondences from background clutter, mostly because the used feature descriptor
is not discriminative enough. If there were excessive erroneous correspondences, it
will be impossible to find the consistent pose parameters. In observation, color in-
formation is usually distinctive enough to distinguish face from background clutter.
Denote c(kj) as the color feature of keypoint kj . To integrate color, we change the
above decision function to be

arg max
Ui↔vi

P (f(k̃i)|f(kj))f(c(kj)) (5.9)

where f(c(kj)) is a binary function that stands for the inlier/outlier attribute of kj

given its color feature c(kj). Since it gives a priori confidence to feature matching
from color measurement, we call it color prior. In the following, we will describe
how to yield and use this prior.

5.2.2 Creating the Prior

The color prior is defined in terms of a new color descriptor and a discriminative
classifier based on Random Projection (RP) trees. Fig. 5.6 illustrates the pipeline.
Color feature c(k) is represented as a novel RGB Sigma Set vector that captures
covariant relationship of color channels. The prior comes from the classification
responses by dropping c(k) down the RP trees based classifier. Specifically, the
classifier is trained with labeled color descriptors {{c(k1), y1} . . . {c(km), ym}} from
a reference image, where y ∈ {+1,−1}, +1 is the label for face region and −1 the
label for background clutter. Note that c(k) will be short as c in the following
sections.
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Figure 5.6: Pipeline to yield the color prior. The covariance matrix of RGB values
in the local patch of keypoint k is calculated and the RGB sigma set descriptor
c(k) is built on the Cholesky-decomposed lower triangular matrix of this covariance
matrix. Then c(k) is classified by the trained RP based classification trees. Its
discriminative responses are finally used to generate the binary color prior f(c(k))
of keypoint k.

RGB Sigma Set - The sigma set is a second order statistics calculated from the
covariance matrix. Here we adopt the RGB information of each pixel and calculate
their covariance matrix. Thus we use a dp = 3 dimensional vector zij , j = 1, 2, . . . , k

to encode the RGB values of each pixel in one patch. The covariance matrix
[Tuzel 2006] of these k pixels is given as

Ci =
1

k − 1

k∑
j=1

(zij − µ)(zij − µ)T (5.10)

where µ is the mean vector of the k pixels inside the patch µ = 1
k

∑k
j=1 zij . Note

that the computational cost of the covariance matrix can be made independent of
the size of the patch with the help of pre-computed integral images [Tuzel 2006].

For the covariance matrix does not lie on Euclidean space, its distance com-
putations required for patch classification are usually computationally complex.
We use an alternative second order descriptor derived from it, as proposed
in [Hong 2009] [Kluckner 2009]. Let Ci = LLT be the Cholesky decomposition
on the covariance matrix of the patch. A set of dp-dimensional sigma points
S =

{
µ + l1, µ + l2, . . . , µ + ldp , µ, µ− l1, . . . , µ− ldp

}
are obtained from the

lower triangular matrix L. (li is the α-weighted ith column of L, with α =
√

k)
and µ is the mean vector talked beforehand. This sigma set represents the statistics
of the patch up to second order, and allows simple similarity measurement on a
Euclidean vector space. Then we define the feature vector cj for one patch as the
concatenation of these points which is a d = dp(2dp +1)-dimensional vector and use
it as the input of the following classification trees.

RP based Classification - RP tree is proposed for vector quantiza-
tion [Freund 2007] and the efficiency comes from its particular binary splitting
method: instead of dividing a given region into two along coordinate directions
at the median, they divide along a random direction. In [Freund 2007], the authors
consider two different types of splits at each node (or cell) of the tree: the first
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type is chosen such that it maximally decreases average squared interpoint distance
in the cell and the second one is based on the distance from the mean of the cell
and mainly used when the data in the cell is present at very different scales. Using
these splits, the expected average diameter of cells is shown to be halved at every
O(dI) levels, where dI is the intrinsic dimensionality that is much lower than the
high-dimensional extrinsic dimensionality.

In our discriminative model, each d-dimensional keypoint descriptor c is required
to be classified. The label for each keypoint is denoted as y. That is, c is classified
as belonging to face (y = +1) or background (y = −1). We propose our binary clas-
sifier based on random projections. This binary classification task is accomplished
through an ensemble (a forest) of N classification trees. Since the trees are designed
for classification not vector quantization, different split strategy is adopted from
original random projection trees. As for classification, we intend to best separate
data of two classes at each node. Our algorithm makes use of an entropy based
score measure written as a particular normalization of the information gain:

Sc(L, T ) =
2 Ic,T (L)

Hc(L) + HT (L)
(5.11)

For the split T , Hc(L) denotes the entropy of the classification in the leaf L, HT (L)
denotes the split entropy and Ic,T (L) denotes the mutual information of the split
and the classification. Our classification trees split the training data at each node
by a simple linear function given as:

if bTc + t ≤ 0, split right; otherwise, split left (5.12)

where b is a d-dimensional random projection vector and t is a random scalar
threshold.

To perform the classification task, the node parameters b and t should be learned
beforehand. That is, training the trees is to select best b and t for each node. Here b
is chosen from a preselected small dictionary of d-dimensional projection directions.
The trees are constructed given the whole training set and projection direction
dictionary. In [Bosch 2007], authors propose a ’feature cue selective’ classifier, for
example to be selective for shape or appearance of the objects to classify. They
select specific cues by filling associated components of b with 0 or 1. We select
the best parameters b and t in (5.12), by maximizing the entropy Sc(L, T ) like
in [Moosmann 2008]. The recursive tree building algorithm stops when the node
receive too few data or when its depth reaches a maximum. Once the forest of
N trees is trained, all the leaves encode conditional probabilities for each class.
We define P i

j (c|y = +1) and P i
j (c|y = −1) as the conditional probabilities of face

and background respectively at jth leaf of ith tree. Hence, P i
j (c|y = +1) =

N+
ij

N+

and P i
j (c|y = −1) =

N−
ij

N− . N+
ij , N−

ij are the number of training samples of face
and background at this leaf. While N+, N− denote the whole number of face and
background training data.
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At classification stage, an image patch represented as a vector c is dropped down
the forest and reaches N leaves. Thus, the final conditional probability of c is the
average of all the conditional probabilities of its reaching leaves:

P (c|y) =
1
N

N∑
i=1

P i
lj
(c|y) (5.13)

where P i
lj
(c|y) is the conditional probability at the reaching leaf lj of i tree for c.

According to Bayes equation P (y|c) = P (c|y)P (y)
P (x) , we can obtain

P (y|c) ≈ P (c|y) (5.14)

by assuming equal prior.

5.2.3 Defining the Color Prior

Fig. 5.7 illustrates the definition of the color prior. It is given by comparing the
two class posteriors P (y = +1|c) and P (y = −1|c), that is,

f(c) =

{
1 P (y = +1|c) > αP (y = −1|c)
0 otherwise

(5.15)

Here the prior f(c) is simplified to be a 0-1 function. With its binary decision, we
can declare a keypoint k as an outlier just before matching its graylevel feature,
which saves plenty of time in practice. Note that we set α = 0.9 that lowers the
true negative rate as compared to α = 1.0.

5.2.4 Evaluations

The experiments aims at showcasing the strength of the proposed way to incorporate
color information. They were conducted with respect to two aspects. The first one
validates the discriminative superiority of the RGB Sigma Set in comparison to
various invariant color histograms. The second shows the significant reduction of
outliers with the color prior integrated.

5.2.4.1 Color Histograms

The comparison with histogram is natural in view of their widespread use in mod-
eling color distribution. In particular, we build four different color histograms -
the RGB color histogram, opponent color histogram, normalized RGB color his-
togram and the transformed color histogram [van de Sande 2010], in order to show
the strength of RGB Sigma Set. The derived color spaces are given in terms of the
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Figure 5.7: Defining the binary color prior f(c). It outputs 1 when we have P (y =
+1|c) > αP (y = −1|c) and 0 otherwise. α is set to 0.9 to have a lower true negative
rate.
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The histogram bins are independently estimated in each color channel and placed
together to form our color histogram. Each channel intensity is quantized into 15
bins with the interval of 17. By definition, the color histogram captures no spatial
information but the statistics of the first-order color information.

5.2.4.2 Discriminability Comparison

The ‘ssm1’ sequence from Boston University [Cascia 1999] was used for this com-
parison. The training RGB Sigma Set descriptors as well as the four color histogram
descriptors are collected from the first frame of this video. All these descriptors are
then classified using the same classifier that compromises 20 RP trees with 200 pres-
elected RP directions and 5-level depth. On testing each query feature, its belonging
is determined according to Equation (??). The ground truth are automatically an-
notated with a manually selected rectangle that bounds face. The measure is the
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Figure 5.8: Comparing the classification precisions of five different descriptors.

RGB Sigma Set RGB hist Opponent hist RG hist Trans hist RGB Sift
21 45 45 30 45 384

0.9882 0.9117 0.9252 0.9347 0.8843 0.6280

Table 5.2: Mean inlier recognition precision. The second row shows the length of
each descriptor. The third row shows the precision.

standard classification precision defined as follows:

Precision =
TP

TP + TN
(5.17)

where TP and TN stand for true positive and true negative, respectively. The
precisions over the sequence are shown in Figure 5.8. The mean precisions as well as
the length of each descriptor are shown in Table 5.2. As shown, the RGB Sigma set
outperforms all the color histograms with a lower dimensionality (21). Therefore,
covariance matrix is a compacter yet more discriminative way to represent features
than the common histograms.

On the other hand, one may wonder why not to fuse color and spatial features.
With the available ColorSift software [van de Sande 2010], we test the RGB Sift’s
performance in this binary classification task. The mean precision over the ‘ssm1’
sequence is also given in Table 5.2.4.2. Surprisingly, the precision (0.628) is much
worse than any of the color-based descriptors although it dimensionality is extremely
high (384). It reflects that color space is the dominant subspace that distinguishes
face from background. This fused descriptor may be more suitable for a multi-class
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classification task. In future, we will test its performances to replace the SURF
descriptor for 3D head tracking.

5.2.4.3 Outlier Reductions

This subsection assesses the roles of the proposed color prior in 3D head pose track-
ing. Only Sigma Set descriptor is used due to its better performance as verified in
the last experiment. Both quantitative and qualitative experiments were conducted.

The quantitative experiment was conducted with the same ‘ssm1’ sequence. The
measure is defined as the ratio of inliers to all the matched keypoints during pose
tracking. This is reasonable since it is critical to the final PROSAC ( and its original -
RANSAC) selector. Fig. 5.10 depicts the ratio improvement from about 0.2 to about
0.3 after the color prior is imposed. As seen in the snapshots, the gain comes from
the fact that many SURF model features are attracted to the cluttered background
that many books and a bookshelf constitute. Consequently, this improvement saves
the number of PROSAC iterations such that pose tracking is speeded up by about
two times.

The qualitative experiments were carried out with live-captured video sequences
that contain challenging situations. It is measured by observing how pose tracking is
improved. Fig. 5.11 shows the comparative results with and without color prior. As
can be seen, without color prior, a large percentage of matched features come from
the cluttered background. This leads to wrong pose estimation or even tracking
failures. The typical case is the moment when lighting condition suddenly switches
as shown in rows 3 and 4 of Fig. 5.11. As it is becoming darker or brighter, without-
color-prior tracker loses the target face with no mesh displayed in Fig. 5.11 while
with-color-prior tracker still does the correct estimation. The results show that with
the color priors, larger portion of inliers is reached and the tracker is more robust
to large head movements and sudden changes of lighting conditions.
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Figure 5.9: From top to bottom each row corresponds to the interest point classi-
fication of RGB Sigma Set, RGB histogram, Opponent histogram, RG histogram,
Transformed color histogram and RGB sift. The color mapping for the interest
points is defined as: P (ĉ|ω1)/P (ĉ|ω2) > 3 : red, 3 ≥ P (ĉ|ω1)/P (ĉ|ω2) ≥ 1 :
magenta, P (ĉ|ω1)/P (ĉ|ω2) < 1 : blue.



5.2. Discriminative Color Prior 75

0 20 40 60 80 100 120 140 160 180 200
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Tracked frame

R
at

io
 o

f i
nl

ie
s

with color prior
without color prior

Figure 5.10: The plot compares the ratios of inliers with and without color prior.
The image pairs are the matching examples without and with color prior.
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Figure 5.11: Selection of challenging frames to show the advantage of using color
prior for tracking including strong illumination changes and pose variations. The
left image of each row shows the tracking result with color prior while the right one
without color prior.



Chapter 6

Towards Applications

The motivation that drives our 3D head tracking research is a project whose goal
is to develop a cheap yet efficient way to represent remote human beings who are
collaborating in an online shared virtual environment. We call it a mixing video
and avatar human representation. At its heart is the vision-based techniques to
capture and reproduce three non-verbal functionalities - facial expressions, gaze
and gesture expressions. Among them, 3D head pose tracking are crucial for the
last two modules. In this chapter, we will present this mixing video and avatar
idea with emphasis on the two head-pose-involved modules. For facial expression
reproducing, we adopt a simple strategy, that is, extracting pose-normalized face
textures from videos, transferring and directly mapping them on an avatar model.
Then in terms of gaze channel, we specialize in the problem of simultaneous gaze
and head pose estimations. We employ a simplified linear head-eye coordination
model and measure gaze vector with only light calibrations.

6.1 Mixing Video and Avatar

Videoconferencing is a set of interactive telecommunication technologies which allow
two or more locations to interact via two-way video and audio transmissions simulta-
neously [Joerg 2005]. It captures the 2D video mirrors of a local user and transmits
the videos sequentially to his/her partners who are at physically remote places such
that their conversations are like face-to-face. With the incrementing focus on inter-
acting with 3D target objects, videoconferencing becomes insufficient considering its
two-dimensional nature. In this context, many new tele-collaboration concepts have
emerged, e.g. Collaborative Virtual Environment (CVE) or Computer-Supported
Collaborative Workspace (CSCW) [Takemura 2002]. Although video remains a ma-
jor media, the way to use it is changed so that the information lost in videos can be
extracted and recovered as more as possible. In the following, we give a brief study
of the emerging collaboration solutions.

Immersive Reality (IR), or shared reality or augmented reality, merges visual
human embodiment into a physically realistic environment. In this solution, user is
usually embodied by a video-based agent, in the form of either 2D images or extended
2.5D stereo streams [Leung 2000, Lee 2006, Regenbrecht 2003, Kauff 2002]. In prin-
ciple, IR is able to generate impressive collaboration environment. The main obsta-
cle is its dependencies on highly expensive and intrusive equipments, which makes
it hardly usable in real applications. Virtual Reality (VR), works in a completely
different way. It builds a shared virtual collaborative platform where avatars that
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represent remote partners are embodied. The avatar is usually a virtual agent that
resembles the semantic behaviors of his human counterpart [Bailenson 2004]. To be
realistic, avatar can be built via the intrusive and expensive equipments as in IR.
But the pure video-based techniques are more economic. Hauber et al. [Joerg 2005]
created a simple 3D ‘TV’ that is mapped by face videos and rotated it to indicate
the possible gaze directions of users.

In this chapter, we propose a cheap yet efficient approach to represent remote
human in IR or VR. It is featured in that video and avatar are mixed together to yield
a functional and vivid human agent. In particular, our 3D head tracker is applied
in two aspects. First, facial expression is directly transferred to a built avatar by
extracting pose-normalized face from the tracked region. Second, head tracker helps
to determine eye gaze in the way mentioned in the last section. In our approach,
facial expression and gaze information (lost in video) are successfully recovered and
embodied in avatar. In addition, a prototype system is also developed to test the
functionalities of the proposed human agent in the task of distant collaboration.

6.1.1 Related Work

The earlier study of virtual humans representation went back to
embodied agents that are digital models driven by computer algo-
rithms [Cassell 2000a, Pelachaud 2002]. For example, the Embodied Conversational
Agent (ECA) [Cassell 2000b] was built to have the conversational ability. Later,
Helmut [Prendingery 2001, Helmut PRENDINGERY 2003] built his animated
agents with the capability of affective communications. The basic elements of
embodiments that determine the technical designs of these agents, such as degree
of presence, identity and viewpoint, were summarized in [Benford 1995]. More
recently, with the popularity of virtual reality, the concept avatar started to emerge
thanks to the advancements of visualization techniques [Schroeder 2002]. Avatars
can be defined as digital models of people that either look or behave like the users
that they represent. A good overview of avatar was studied by Bailenson and
Blascovich [Bailenson 2004], in which the determinant factors of an avatar is to be
behavioral realism and photographic realism.

How to define the modalities of virtual human in the presence of mediated com-
munications, e.g. CVE, CSCW, has attracted a great deal of interests from the
communities of both computer and sociological sciences. Their principles are to
augment the functional modalities and decrement the nonfunctional ones in remote
communications. Since the 1990s, Steve Whittaker et al. [Whittaker 1991] had con-
centrated on the theoretical analysis of different modalities and the design and
implementation of virtual humans in collaborative systems and mediated communi-
cations. His experiments revealed that linguistic cue conveys the richest information
of communications while the visual cues, such as facial expressions and gestures, can
substantially enhance the efficiency of verbal communications. According to this
theory, our system considers expressing facial emotions and replicating semantic
gestures. More specifically, we focus on the implementations of the two non-verbal
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modalities: facial expressions and semantic gestures.
There have been many previous attempts that tried to mix video and avatar by

combining the merits of both. One commercial example is the Workspace3D 1 that
simultaneously places a separate video window containing face and a virtual avatar in
an identical interface. The similar idea was proposed by P. Quax et al. [Quax 2003]
that simply replaced the avatar head with the video window. These easy ideas may
seem weird as they do not bridge the gap between two-dimensional video and three-
dimensional avatar. Additional techniques must be considered to mix video and
avatar naturally. Schreer et al. [Schreer 2005] applied video processing to steer the
gestures of a toy avatar. By comparison, we consider more modalities and implement
the non-verbal ones by more intelligent tracking algorithms.

6.1.2 Mixing Video and Avatar

The MVA framework requires only two ordinary input devices, a webcam and an
audio recorder, for capturing video and audio sources respectively. On a local com-
puter, these two sources are processed by intelligent techniques to generate data to
broadcast to remote terminal PC in the same network. All the data are packaged
and encoded before emitting and unpackaged and decoded on receiving. The de-
coded data, including textures, postures and audio streams, are then used to drive
corresponding parts of an avatar agent. In figure 6.1, the architecture summarizes
the entire procedures. In more detail, each module and their major components are
implemented as follows:

• Face expression transfer. We apply the 3D head tracking technique to track 3D
poses from monocular video sequences and extract neutral-view face texture by
image warping. The texture containing facial emotions as well as the tracked
orientations {αh, βh, γh} are transmitted for avatar animation. Specifically,
textures are compressed into JPEG format using an open DevIL library.

• Eye gaze estimation. The gaze direction of each eye {α, β, γ} is tracked using
a combined iris-corner detection method (introduced in the next section). At
the same time, the proposed 3D head tracking technique is fused to handle
coordinated head rotations.

• Semantic gesture tracking. During the training stage, we learn six semantic
behaviors from 20 testers and train a generative model by extracting features
in the Curvature Scale Space (CSS) of body contour. At run-time, we match
the detected CSS features with the trained model and declare its semantic
category with highest matching score. For each frame, the three positions of
all six joints are emitted to drive avatar gesture.

• Audio capture and transmission. Audio stream A is captured using the func-
tions in the OpenAL library and to avoid network blocks, it is compressed
using the Speex audio compressor.

1http://www.3d−test.com/interviews/tixeo1.html
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Figure 6.1: The framework of our remote human representation method that mixes
video and avatar.
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Figure 6.2: Illustrating the direct face transfer.

• Network strategy. The multicast strategy is employed to transmit data pack-
age. As compared to unicast and broadcast, multicast, in the communication-
first mode, is a nice trade-off to avoid data blocks.

• Rendering module. On each remote PC, we build an avatar agent based on
the H-anim standard. The received data stream needs first to be separate
{If , {αh, βh, γh}, {αi, βi, γi}n=2

i=1 , {xi, yi, zi}n=6
i=1 ,A}, where If is the neutral face

texture, {αh, βh, γh} are the head orientations, {αi, βi, γi}n=2
i=1 are the gaze

directions of two eyes, {xi, yi, zi}n=6
i=1 represents semantic gestures and A is

the audio data block. Then each data term is used to drive its corresponding
part of the avatar.

6.1.3 Primary Results

Testing the main components of the platform is still under construction. Here
we only show the exemplar results of face transfer. Figure 6.2 illustrates the face
transfer that extracts face texture from a live-captured frame and maps on an remote
avatar agent after network transmission. Figure 6.3 and Figure 6.4 show the results
with two different users. After head tracking and network transmission, the face
textures are simply rendered at both the original and neutral viewpoints. All these
results show that direct face transfer can reproduce facial emotions as compared to
data-driven face animation.

To be as realistic as the original facial expression was, there are still many work to
do. When re-mapping face texture at an alternative viewpoint, direct gaze contact
is lost and gaze correction would be an indispensable rectification step as done
in [Yang 2002c]. The skin color of the extracted face texture should be re-painted
so as to be consistent with its virtual surrounding environment.

6.2 Natural Eye Gaze Estimation

Eye gaze estimation can applied to the design of next-generation computer-human
interfaces, e.g. using it to replace mouse. Since the last decade, an extensive
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Figure 6.3: Face transfer examples. From left to right each column corresponds
to live-captured frames, rendered face at original viewpoint and rendered face at
neutral viewpoint.
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Figure 6.4: Another face transfer examples. From left to right each column cor-
responds to live-captured frames, rendered face at original viewpoint and rendered
face at neutral viewpoint.
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Figure 6.5: Illustrating the difference of head-restrained gaze and natural gaze.
When head motion is restrained, only eye pose that moves within our orbite domain
accounts for the gaze shifts. Conversely, when head is free to move, namely natural
gaze, eye motion is accompanied by a concurrent head rotation in the same direction.

number of non-intrusive eye gaze systems have been proposed [Heinzmann 1998,
Baluja 1993, Guestrin 2003, Beymer 2003, Wang 2003]. Although good perfor-
mances have been achieved [Takahiro Ishikawa 2004], these earlier systems are lim-
ited in keeping head still while estimating eye gaze.

Recent efforts have attempted to incorporate head motion into eye gaze esti-
mation. These attempts can be broadly clustered to be 3D gaze direction-based
and 2D mapping-based [Zhu 2005]. The former method determines gaze point by
recovering 3D gaze direction and simply intersecting with the scene. It allows free
head motion, but can only estimate gaze direction rather than giving gaze tar-
gets [Yamazoe 2008, Kinoshita 2006]. On the contrary, the latter method encodes
a set of eye-related vectors as inputs for a calibrated mapping function to deter-
mine gaze targets. This method is widely used due to its high tracking accuracy.
One typical example is the pupil center and corneal reflections technique, a.k.a.
PCCR [Guestrin 2003, Yoo 2002]. However, the classical PCCR suffers from a
calibration-decay problem caused by head motion [Zhu 2005]. In order to over-
come it, multiple stereo cameras or IR lights must be added in the PCCR systems
[Guestrin 2003, Zhu 2002]. In this way, they are able to track eye gaze under fully
natural head motion(6 DOF). The main drawbacks are that the camera sets need
to be carefully calibrated and IR lights are expensive and usually inconvenient to
be mounted.

Our objective is to track eye gaze under natural head motion with only an or-
dinary camera. However, Guestrin et al. [Guestrin 2003] proved that using a single
camera was impossible to track eye gaze under natural head motion. On the other
hand, neurophysiological studies [Hanes 2006, Freedman 2000, Freedman 2001]
manifest that the free head motions along gaze shift are usually the rotations in
the same directions. They specify this phenomenon as eye-head coordination of
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gaze shift. We therefore turn to explore the possibility of tracking gaze with one
camera, while only considering the coordinated head rotations. This is proven fea-
sible by developing a new tracking approach in this paper. Within this approach,
the price we have to pay is two-time calibrations, although acceptable in practice.
In particular, our approach follows the 2D mapping-based scheme [Zhu 2005] to
directly output the targeted points. In order to compensate the affect of head rota-
tions, we first derive a linear relationship between gaze vector and head rotations,
and then develop a monocular vision-based framework to track gaze, which needs
to detect iris-corner vector, track head rotations and warp facial images to extract
a head-normalized iris-corner vector.

6.2.1 A Case Study

Naturally eyeball movements are always coupled with head orientation variations
to gaze at a target. For empirical support, we conducted a study to investigate
the frequencies of eye-head coordination in gaze behaviors. Based on the theory
proposed by E.G. Freedman et al. [Freedman 2000, Freedman 2001] that the total
head movement amplitude and gaze amplitude are linearly correlated in a certain
range, we examine such linearity as the quantitative evidence of the occurrence of
eye-head coordination.

Figure 6.6: The PMCC values between head and gaze amplitude among 11 partici-
pants.

The study was conducted with 11 participants from our laboratory. Each par-
ticipant is asked to stare at a visual sphere moving arbitrarily on a 19-in screen.
Meanwhile, the trajectory of the sphere is recorded as gaze amplitude and the par-
ticipant’s head amplitude is tracked using the developed head pose tracker (See
Section 4). The correlations between head rotation and gaze amplitude is measured
in terms of the Pearson Product-Moment Correlation Coefficient (PMCC), which is
shown in Figure 6.6. We can see that the PMMC is significantly different as different
person. If PMMC>= 0.6 indicates a possible linear relationship, we find that there
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are seven possible linearities in both directions. We also assess the influence of the
distance between participant and screen on eye-head coordination. It turns out that
the farther participant stays away from the screen, the less likely head rotations
are to occur. Therefore, we can conclude that the occurrence of eye-head coordina-
tion is very likely to occur in gaze behaviors, although it is circumstance-dependent
and varied among different persons. This study validates our proposal that it is
indispensable to incorporate head rotations in eye gaze tracking.

6.2.2 Problem Formulation

Let us consider tracking eye gaze in front of a monitor screen. The gaze directions are
measured with respect to the horizontal and vertical ones of the monitor plane. We
adopt some notations from Zhu and Ji [Zhu 2005] to describe our problem. First of
all, via an interactive calibration, we are able to obtain a set of head-stationary gaze
vectors {v′1,v′2, ...,v′n} and its associated set of fixation positions{S1, S2, ..., Sn}
on the screen. The data are then used to compute the coefficients in a mapping
function z such that given any head-stationary gaze vector v′, its fixed position S

can be yielded: S = z(v′). z is often a first or second order polynomial function.
Then suppose at time t of tracking stage, we succeed in tracking head motion bh =
{βx, βy}(only pitch and yaw rotations) and gaze vector vt. Since head motion
bh results in a change of the eye pose, the gaze vector vt is no longer a correct
input of the mapping function z. In order to reuse z, we need to compensate vt

for the head-caused bias to form an equivalently head-compensated gaze vector v′t:
v′t = i(vt,bh), where i stands for the head compensation function. This also means
that v′t are supposed to look at the same point St as vt does, which yields:

St = z(v′t) = z(i(vt,bh)) (6.1)

The key of our approach is thus to derive an appropriate i function so that the
head rotation bias on iris-corner vector can be compensated. This can be done by
projecting the iris-corner vector on image coordinate via a pinhole camera model.

6.2.3 A Head-Eye Coordination Model

To derive i, we have to analyze the kinematics of eye-head coordination using the
pictorial notations in Figure 6.7. In the figure, eyeball is modeled as a sphere with
a gray iris inside, and eye direction is denoted as the ray shooting from eyeball
center to the target point. E1 represents the eyeball center position when head
stays frontal. Initially, in order to look at the target point S, eyeball rotates by a α′

angle. When head shifts by a β angle, moving the eyeball center from E1 to a new
position E2, the eyeball has to re-rotate to a new angle α to still look at S. The iris
center is defined as the intersection point of gaze ray and iris outer surface, which
is denoted by P1 and P2 at the two different locations.

Suppose that the head rotates around its axis with the radius R = OE1 = OE2.
From the geometrical relationships in 4E2PS, 4E1O

′S and 4OE′E2, we can get
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Figure 6.7: Eye-Head Coordination Model. The model is depicted in top-view.

PS = E2P tan(α + β), O′S = E1O
′ tanα′ and O′P = E′E2 = R sinβ. Then insert

them into the equation O′S = O′P + PS and we have:

E1O
′ tanα′ = E2P tan(α + β) + R sinβ (6.2)

In practice, the difference between E1O
′ and E2P is negligible. We thus replace

them with h = E1O
′ = E2P in equation (6.2):

tanα′ − tan(α + β) =
R

h
sinβ (6.3)

Since the radius R is usually much smaller than the distance term h, we can assume
R � h and plug it into (6.3) to get a simpler equation:

α′ ≈ α + β. (6.4)

It can be seen that the total gaze amplitude is approximately the sum of
eye and head amplitudes, which has also been empirically verified in neuroscience
[Freedman 2000, Freedman 2001].

6.2.4 Coupling Head and Eye Pose Vectors

The next step is to explore the relationship between iris-corner and the concurrent
head rotations, based on the derived sum principle. We assume that the iris-corner
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Figure 6.8: Illustration of projecting eyes onto visual image plane via the pinhole
camera model(Top view).

vector is generated via a pinhole camera projection. As shown in Figure 6.8, we
denote C1 as an eye corner point, located in a face plane that is close to the eyeball
surface. We assume that the face plane still remains stationary when eyeball rotates
so that the corner point keeps a gaze-stationary point. As shown, when the head
rotates by β angle, the corner point moves from C1 to a new position C2. Based
on the geometrical relationship shown in the figure, we are able to derive a linear
formula written in the matrix form as:

bh = C4v (6.5)

where

bh =
[
βx

βy

]
, C =

[
Cx 0
0 Cy

]
and 4v =

[
xP ′

1C′
1
− xP ′′

2 C′′
2

yP ′
1C′

1
− yP ′′

2 C′′
2

]
(6.6)

We name C the coefficient matrix. In order to determine it, we need a re-calibration
procedure, during which the user is asked to look at the calibrated points with
natural eye-head coordination. Thus, we can acquire a set of pairs of bh and 4v.
All the calibrated pairs form a linear system, which can be solved using least squares
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solution to estimate the matrix C. Without loss of generality, if we assume the C
is non-singular, the head-compensated gaze vector v′ is simply calculated by

v′ = C−1bh + v′′ (6.7)

Note, that we introduce a head-normalized gaze vector v′′ that accounts for normal-
izing the head rotations with the observable iris-corner vector

−−−→
P ′

2C
′
2. In the following

section, we will give the details about how to extract v′′ and track 3D head rotations
bh from grabbed images.

6.2.5 Extracting Iris-Corner Vector

Figure 6.9: Illustration of iris ellipse fitting. Follow the arrow direction: Original
eye image → Meanshift Segmentation → Histogram-based binary segmentation →
’Open’ morphology → Canny edge operation → Largest contour finding → Keeping
near vertical edge points → Fitted ellipse

We follow the technique in [Zhu 2002] to detect iris-corner vector as the eye
gaze indicator. In our vector detection, a face detector is first employed to localize
face region and then an eye detector is used to find the potential eye region on the
localized face, both of which are based on the object detection cascade of boosted
classifier [R.Lienhart 2002]. Subsequently, the iris and corner points are accurately
found using the following method.

We combine the SIFT matching-based method and an ellipse fitting method to
detect iris center. The SIFT was proposed by David Lowe [Lowe 2004b] to detect
feature points in images. We use the SIFT codes provided by Rob Hess 1 in our
system. The reference SIFT features for iris center is manually selected during cal-
ibration. Setting the ratio of Euclidean distances between two nearest neighbor
features r = 0.65 performs best in our tests. When the SIFT-based method fails,
an ellipse fitting approach will take it over. This happens when the SIFT features
between successive frames are over the matching threshold. The ellipse fitting ap-
proach, illustrated in Figure 6.9, is similar to the one proposed in [Wang 2003]. On
the other hand, the ellipse-fitted method may fail when the iris contour is unclear.
In this case, the SIFT-based method will be re-evoked. Therefore, combining them
enables us to acquire more robust iris detection results.

1http://web.engr.oregonstate.edu/∼hess/
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The SIFT-based method is also employed to detect the eye corner. Each single
eye has two corners: inner corner and outer corner, but neither of them can be
reliably detected over all the frames. Our strategy is to detect both of them and
choose the one with smaller matching residual to form iris-corner vector. To gain
robust performance, for both iris and corner points, their reference SIFT features
are updated after each correct match. The SIFT-based detection is illustrated in
Figure 6.10. Moreover, some distance and geometrical constraints, between the left
and right eye, are added to eliminate the apparently wrong detections.

6.2.6 Extracting Normalized Gaze Vector

Extracting the head-normalized gaze vector
−−−→
P ′′

2 C ′′
2 (shown in Figure 6.8) consists

of two steps: head normalization and iris-corner vector detection. The head nor-
malization refers to normalizing the head rotations with the observable gaze vector−−−→
P ′

2C
′
2, which is implemented by an image warping operation. We define the warp

operator W : R2 → R3 → R2 as follows: a pixel point vector x = {x, y}T on the
face image plane is projected onto a 3D head surface(ellipsoidal in our case); then
we transform the pose of head surface by 4bh and back project the point from the
3D surface onto the image plane. For any given pixel x, the warping function can
yield its corresponding normalized point W(x;−bh). Denote p′

2 as the point vector
of P ′

2 and c′2 as the point vector of C ′
2. Their normalized points p′′

2 and c′′2 can be
given by: p′′

2 = W(p′
2;−bh); c′′2 = W(c′2;−bh).

In practice, we have two alternative options to extract
−−−→
P ′′

2 C ′′
2 . The first solution is

to extract the points p′
2 and c′2 on frame image I(x) and then find the corresponding

points p′′
2 and c′′2. Contrarily, the second one is to first perform W to construct a

head-normalized face image I(W(x;−bh)), and then run iris-corner extraction to
locate p′′

2 and c′′2 on I(W(x;−bh)). The essential difference between them is that the
SIFT-based vector extraction will be applied before or after the head normalization.
Although due to constructing I(W(x;−bh)), the second solution consumes more
computational time, it’s expected that applying the SIFT-based vector extraction
on I(W(x;−bh)) will be superior to applying it on I(x). Therefore, a comparative
experiment is undertaken to evaluate the SIFT-based vector detection with and
without head normalization. As shown in Figure 6.10, the results suggest that
applying it after head normalization substantially outperforms the one before head
normalization. We therefore adopt the second solution to extract

−−−→
P ′′

2 C ′′
2 .

6.2.7 Experimental Results

Performance of the method extracting iris-corner vector was tested on real video
clips containing eye gaze shift. The resolution of each video is 640× 480 while the
extracted eye region is about 85 × 40. Figure 6.11 shows some vector extraction
results. We can see most of the iris-corner vectors are accurately extracted. In our
tests, due to the usage of the combined detection methods, the vector detector is
robust to facial variations and illumination changes to a certain degree. A full video
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Figure 6.10: The comparisons of SIFT-based gaze detection before and after head
normalization. (a) The reference SIFT features are automatically detected on the
eye region of the image I0(x). Two eye sub-images, extracted from input frame
Ix and the normalized image I(W(x;−bh)), serve as the instances to detect SIFT
feature points and match with the reference ones. The correct gaze point matchings
are marked in red color. We can see that (1)(3) outperforms (2)(4) in the number
of correct matchings. (b) Plots (1)-(4) show the matching residuals in (1)-(4) of
sub-figure (a) respectively. X-Label denotes reference feature points and Y-Label
means the query feature points. It is shown that the differences between marked
peaks and noisy peaks in (1)(3) are more distinguished than in (2)(4). The average
residuals in (1)(3) are 7.3 × 104 and 3.9 × 104, which are smaller than the ones of
(2)(4), i.e. 1.0× 105 and 6.0× 104.



92 Chapter 6. Towards Applications

Figure 6.11: Extracting the iris-corner vectors. The yellow point denotes the SIFT-
detected point and the one surrounded by an ellipse stands for the fitted ellipse
center.

demo is shown in http://video.google.com/videoplay?docid= 6450216116737564885.
We have also applied the proposed framework to a gaze tracking system to test

the accuracy of gaze estimation. The system was written in C/C++, using the
renowned OpenCV and OpenGL library. In order to evaluate its accuracy, we test
the system by collecting several image sequences with several testers. The tests
are undertaken in front of a 19-in monitor with a video camera (640 × 480 pixels)
mounted under it. There are two stages in the data collections. In the calibration
stage, the testers are asked to stare at 12 evenly-distributed mark points in turn and
yet maintain their heads stationary. In the tracking stage, the testers are allowed to
freely rotate eye and head to stare the yellow-colored point that is randomly selected
from the 12 calibrated points. The length of collected video for each tester is about
2 minutes.

We tested the accuracy of the gaze tracking with three actors. We first apply
the system to extract calibrated iris-corner vectors, track head rotations and extract
head-normalized gaze vectors. The maximum tracked head rotations in horizontal
and vertical directions are 21.2◦ and 9.75◦ respectively. We then use these data
to compute the matrix C and calculate the head-compensated vectors according to
equation (6.5). The system accuracy is measured in the compensated errors, the
pixel errors between the head-compensated vectors and calibrated vectors. For com-
parisons, we also measure the pixel errors between the observable vectors(such as
−−−→
P ′

2C
′
2 in Figure 6.8) and calibrated vectors, called non-compensated errors. Figure

6.12 displays the statistics of the total accuracy measurements. As the four plots
suggest, the compensated errors are substantially smaller than the non-compensated
ones in horizontal direction while only slightly better in vertical direction. Since the
right part in equation (6.5) actually equalizes to the gaze tracking angle, we use this
to compute the gaze tracking error. The average head-compensated error is about
5.06◦ and the non-compensated one is about 8.30◦. We can see that compensating
head rotation improves the gaze tracking accuracy by about 3.3◦, which is a consid-
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Figure 6.12: The average pixel errors of eye gaze tracking under coordinated head
rotations.

erable value for a gaze tracking system. That is to say, ignoring the head rotations
will significantly lower the accuracy of the gaze tracking system.





Chapter 7

Conclusion and Perspectives

7.1 Conclusion

In this dissertation, we have investigated the problem of tracking 3D head pose
from a monocular video sequence. By studying state of the art, we have found out
three basic dilemmas that any a head tracking system must face up with. Then our
explorations proceed around how to handle these dilemmas in a practically usable
tracking system and our findings lie in three aspects.

The short-baseline solution fully depends on model adaptation and has no priori
learning except for a 3D model prior and the initialization at first frame (in Chapter
2) while the tracking-by-detection method is only involved with prior learning (in
Chapter 4). Each has its own attributes and drawbacks, but comparatively the
second is more feasible in practice since it does not suffer from the assumption of
smooth head movements and model drifting although the first handles ever-changing
environments more intrinsically. A sound consideration is to combine the proposed
prior learning with its online adaptation for a stable yet flexible head tracker.

The fundamental difference between the short-baseline tracker (in Chapter 2)
and the tracking-by-detection approach (in Chapter 4) is the scale of the search
state space. The former seeks potential pose in a neighboring space that is predicted
from the previous estimated one and proceeds along the gradient descent direction.
Contrarily, the latter utilizes no prediction but intends to recover optimal pose
in the entire state space. As illustrated, the former often reaches local minima
which causes drifting and tracking failures in tandem with online update. On the
other hand, the former seems more efficient by a local search, but in practice the
deficiency of the latter paradigm is successfully overcome by only considering the
detected feature points. Furthermore, we also succeed in incorporating prediction-
based scheme (optical flow) to deal with motion smoothness in the latter paradigm
(in Chapter 5). What we learn from this comparison is that for the sake of permanent
tracking, prediction-based prior is better to work as a complementary factor rather
than a determinant one.

The short-baseline solution makes use of global appearance feature (in Chapter 2)
while the tracking-by-detection one combines local invariant features and global rigid
model constraint during tracking (in Chapter 4). Compared to the local distinctive
features, the global appearance is more general in the sense that local features are
very few in less textured faces and low-resolution videos. However, its drawbacks are
also obvious, i.e. containing many redundant pixels that can damage the tracking
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accuracy and prone to partial occlusions. Experimentally, as long as local features
on face are sufficiently found, the combination of local invariant features and global
model constraint outperforms the global appearance in most challenging cases, such
as moderate lighting and non-rigid face variations.

Moreover, we have demonstrated two example applications of 3D head pose
tracking to eye gaze estimation and facial expression transfer. Integrating them into
a prototyping virtual collaborative platform has shown perceptually acceptable re-
sults. In future, we will quantify their complementary functions in enriching remote
human-human collaborations by conducting extensive user studies.

7.2 Perspectives

Our future work will concentrate on the tracking-by-detection 3D head tracking al-
gorithm until a usable system that is insensitive to any challenges is accomplished.
To this ultimate end, future improvements will proceed towards the online adapta-
tion of this framework and integrating more contextual information. On one hand,
the proposed tracking-by-detection solution (in Chapter 4 and 5) matches online
features with the model ones that are learnt before tracking. Their large view dis-
crepancy often leads to insufficient feature matchings. On the contrary, the view
discrepancy between consecutive frames is often small (when motion is smooth),
and thus we can retain the features learnt from historical frames and incorporate
them as additional model features to produce more correspondences. These pooled
features can be simultaneously used or alternatively, we can make key-view selec-
tion as done in [Vacchetti 2004, Wang 2006] to keep the matching more efficient.
On the other hand, currently we have only considered the feature points that are
localized at frontal face view. This is problematic when out-of-plane rotations oc-
cur, e.g. head nodding or turning left by over 90◦. In these cases, the profiling
or top view of head turns to be visible and can be nice heuristic information to
infer head poses. The way to learn these contextual information from given video
examples [Ozuysal 2006, Yao 2010, H. Grabner 2010] usually cannot produce a gen-
erative model. Unlike them, we intend to do all the things in an online model to
infer head poses by exploiting both structural and textural contexts.
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