
École doctorale Sciences Pour l’Ingénieur N o order: 40437

Contribution á l’étude et au
développement de techniques de

gestion de fênetres

THÈSE

présentée et soutenue publiquement le le 15 décembre 2010

pour l’obtention du

Doctorat de l’Université Lille1 Sciences et Technologies

(spécialité informatique)

par

Xu Quan

Composition du jury:

Président : Luigi Lancieri

Directeurs de thèse : Pr. Christophe Chaillou
Dr. Géry Casiez

Rapporteurs : Pr. Karin Coninx
Dr. Emmanuel Dubois

Examinateur : Dr. Olivier Chapuis

Laboratoire d’Informatique Fondamentale de Lille — UMR CNRS 8022

To my family and friends.

Acknowledgements

I thank my family for all of their unwavering support and encouragement

over the years. A special thank you to my parents, Xu YinLong and Zhang

HouQing for your emotional (and financial) support and encouragement through-

out this Ph.D. and my entire education. To them and to the rest of my family,

almost all of whom asked me at least once ”So when do you graduate and come

back” thank you for the repeated reminders that I might want to think about

getting my work done. I thank my girl friend, Wang SiZhuo, for her never-

ending selfless support.

I thank my advisor, Professor Christophe Chaillou, for his continued guidance

throughout this dissertation. Thank you also to my co-supervisor, Associate

Professor Géry Casiez, for providing the original inspiration for this research,

and for your patience, guidance and proofreading of my work. Thank you to

Nicolas Roussel, Daniel Vogel and Olivier Chapuis for the discussions, sugges-

tions and constructive criticism during my research. I thank my dissertation

committee members for their helpful comments and suggestions concerning

this research.

I thank all of my colleagues in the Alcove and MINT Team in the INRIA

Lille/LIFL. I thank all of my friends who have provided sanity-saving distrac-

tions from my thesis.

Thank you to all of the participants who volunteered to give up their time

to take part in the studies and experiments that are conducted in this thesis.

Without you I would have no results.

Finally, I am indebted to China Scholarship Council for supporting this dis-

sertation.

Résumé

Le basculement de fentres est une des tches les plus frquentes de tout ges-

tionnaire de fentres (elle peut avoir lieu plusieurs centaines de fois par jour).

Cependant cette tche peut devenir ardue quand le nombre de fentres devient

important.

Cette thse propose dtudier les techniques existantes et de dvelopper de nou-

velles techniques de basculement de fentres. Pour comprendre comment les

utilisateurs grent actuellement leurs fentres, nous avons dvelopp un logiciel

denregistrement dactivit pour Windows. Trois techniques ont t dveloppes en

se basant sur les rsultats de cette tude.

Tout dabord, Push-and-Pull Switching, une technique de basculement de

fentres utilisant le chevauchement de fentres pour implicitement dfinir des

groupes. Cette technique permet par ailleurs de basculer entre des groupes

et de changer lordre daffichage de la fentre qui a le focus pour modifier son

groupe dappartenance. Des expriences contrles ont montr que cette technique

peut tre jusqu 50

Ensuite, Stack Scanning est une technique utilisant un widget qui combine

le dfilement dcran et de franchissement pour contrler lordre daffichage des

couches de fentres visibles. Des expriences contrles ont montr que cette tech-

nique est plus rapide quand le nombre de fentres devient important.

Finalement, nous avons propos onze principes de conception pour faciliter le

dveloppement de nouvelles techniques de basculement de fentres. Window-

Tagging a t dveloppe en suivant ces principes. Les valuations montrent que

cette technique est plus efficace quExpos et nettement prfre des utilisateurs.

Abstract

Window switching is one of the most frequent tasks of any window manager

happening several hundred times per day. However this task can become

laborious when the number of windows becomes important.

This dissertation aims at understanding and developing new switching tech-

niques to help users to improve task switching. In order to understand how

users manage their windows, a tool was developed to log user window manage-

ment activity in mainstream Windows OS. Three techniques: Push-and-Pull

Switching, stack scanning and WindowsTagging were designed and developed

based on the results of this data.

First, Push-and-Pull Switching, a window switching technique using window

overlapping to implicitly define groups. Push-and-Pull Switching further al-

lows switching between groups and restacking the focused window to any po-

sition to change its group affectation. The empirical evaluations showed that

it was 50

Second, stack scanning, a window switching technique based on a widget that

combines generalized scrolling and crossing to control the stack order of layers

of visible windows. The empirical evaluations showed that it was faster than

other techniques when the number of windows is high and the visual similarity

among windows is important. They also showed that Taskbar was the best

choice when the number of windows is small.

Finally, to theorize window and group switching, we provided eleven design

principles to help designers to design new switching techniques. Window-

sTagging was implemented based on these design principles. The empirical

evaluations showed that it was faster than Expos, and participants strongly

preferred it.

Contents

Nomenclature xix

1 Introduction 1

1.1 Problem Statement And Research Goal . 3

1.2 Research Approach . 4

1.3 Research Contributions . 5

1.4 Structure of the Dissertation . 6

2 Related Work 8

2.1 Introduction . 8

2.2 Window Switching Techniques . 9

2.2.1 Temporal Approach . 10

2.2.1.1 Alt+Tab . 10

2.2.1.2 RelAltTab . 10

2.2.2 Spatial Approach . 12

2.2.2.1 Taskbar/Dock . 12

2.2.2.2 Exposé . 14

2.2.2.3 EyeExposé . 14

2.2.2.4 Taskposé . 16

2.2.2.5 SCOTZ . 17

2.2.2.6 FST . 18

2.2.3 Hybrid Approach . 19

2.3 Group Switching Techniques . 19

2.3.1 Explicit Window Grouping Techniques 20

2.3.1.1 Virtual Desktop Managers 20

v

CONTENTS

2.3.1.2 GroupBar . 20

2.3.1.3 Elastic Windows . 21

2.3.1.4 Scalable Fabric . 22

2.3.1.5 SCWM . 22

2.3.2 Implicit Window Grouping Techniques 23

2.3.2.1 WindowScape . 23

2.3.2.2 Stack leafing . 23

2.3.2.3 SWISH . 24

2.4 Tabs Switching Techniques . 24

2.5 Desktop Organization and Switching Techniques 25

2.6 Spatial Memory And Visual Search . 26

2.6.1 Psychology of Visual Search and Memory 26

2.6.2 Spatial Memory and User Interfaces 27

2.6.3 Visual Search . 28

2.7 Finding obscured Windows . 29

2.8 Switching Techniques Time Model . 30

2.8.1 Hick-Hyman And Fitt’s Laws . 30

2.8.2 GOMS/KLM . 31

2.9 Log-based Empirical Methods . 32

2.10 Tags . 33

2.11 Summary . 35

2.11.1 Issues Associated With Log-based Empirical Methods on Window

Switching . 35

2.11.2 Issues Associated With Switching Techniques Evaluations 35

2.11.3 Leveraging Natural Human Capabilities 36

2.11.4 The Combination of Implicit and Explicit Grouping Techniques Are

The Best Way . 36

2.11.5 Window Tagging . 37

3 Log-Based Longitudinal Study 38

3.1 Introduction . 38

3.2 Experiment Objectives . 39

3.2.1 Quantitative Goals . 39

vi

CONTENTS

3.2.2 Qualitative Goals . 40

3.3 Longitudinal Study . 41

3.3.1 Definition . 41

3.3.2 Participants And Apparatus . 42

3.3.3 Design . 43

3.3.3.1 WindowsOSLog . 43

3.3.3.2 Log Information . 43

3.3.3.3 Information Incompleteness 46

3.4 Results And Analysis . 46

3.4.1 Number of windows on the desktop 48

3.4.2 Window Event . 49

3.4.3 Window Switching Techniques . 51

3.4.3.1 Window Switching Techniques Used to Switch Windows . 51

3.4.3.2 Cost of Error . 54

3.4.3.3 Types of Switching . 55

3.4.3.4 Tabbed Windows vs. Group Windows 56

3.4.4 Window Visibility . 57

3.4.4.1 Number of Visible Windows 57

3.4.4.2 Visible Windows vs. Window Switching Techniques 58

3.4.5 Spatial Memory . 59

3.4.6 Windows Layout . 60

3.4.6.1 The Distribution of Window Size 61

3.4.6.2 Windows Group . 61

3.4.7 TDI and MDI Applications . 64

3.4.7.1 The Number of Tabs/Documents 67

3.4.7.2 Switching Between Tabs/Documents 67

3.4.8 Active Window Sequences . 68

3.5 Conclusion . 70

4 Push-and-Pull Switching: Window Switching based on Window Over-

lapping 73

4.1 Introduction . 73

4.2 Push-and-Pull Switching . 76

vii

CONTENTS

4.2.1 Group Switching . 76

4.2.2 Restacking the Focused Window . 78

4.3 Experiments . 79

4.3.1 Experiment 1: Group Switching . 79

4.3.1.1 Apparatus . 79

4.3.1.2 Participants . 79

4.3.1.3 Experimental Design . 79

4.3.1.4 Procedure . 81

4.3.1.5 Results . 81

4.3.2 Experiment 2: Restacking the Focused Window 83

4.3.2.1 Apparatus and Participants 83

4.3.2.2 Experimental Design . 83

4.3.2.3 Procedure . 83

4.3.2.4 Results . 83

4.4 Longitudinal User Study . 84

4.5 Application . 86

4.6 Conclusion . 87

5 Stack Scanning Rules! 88

5.1 Introduction . 88

5.2 Stack Scanning . 90

5.3 Window Switching Time Model . 94

5.4 Experiment . 96

5.4.1 Visual Factors For Window Switching 96

5.4.2 Hypothesis . 98

5.4.3 Apparatus . 98

5.4.4 Participants . 98

5.4.5 Experimental Design . 99

5.4.6 Procedure . 101

5.5 Results . 101

5.5.1 Switching Time . 101

5.5.1.1 Main Experiment . 101

5.5.1.2 Second Experiment . 108

viii

CONTENTS

5.5.2 Error Rate . 109

5.5.2.1 Main Experiment . 109

5.5.2.2 Second Experiment . 110

5.5.3 Qualitative Results . 111

5.6 Discussion . 114

5.7 Conclusion . 115

6 WindowsTagging: Quick Task Switching Using Tags 116

6.1 Introduction . 117

6.2 Design Principles to Support Task Switching 119

6.2.1 Group Creation . 120

6.2.2 Group Edition . 121

6.2.3 Group Access . 121

6.2.4 Group Deletion . 123

6.3 WindowsTagging . 123

6.3.1 Group Creation . 123

6.3.1.1 Implicit Group Definition 124

6.3.1.2 Explicit Group Definition 125

6.3.2 Window & Group Access . 131

6.3.2.1 Window&Group Switching 131

6.3.2.2 Finding Windows . 133

6.3.3 Group Edition . 134

6.3.3.1 Adding/Removing windows in groups 134

6.3.3.2 Fixing Group . 134

6.3.3.3 Splitting Group . 134

6.3.4 Window & Group Deletion . 134

6.3.5 Implementation . 135

6.3.5.1 Group Layout . 135

6.3.5.2 Clipping Rectangle . 135

6.3.5.3 Splitting Group . 136

6.4 Experiment . 136

6.4.1 Hypothesis . 138

6.4.2 Apparatus . 138

ix

CONTENTS

6.4.3 Participants . 139

6.4.4 Experimental Design . 140

6.4.5 Procedure . 140

6.4.6 Results . 141

6.4.6.1 Switching Time . 141

6.4.6.2 Error Rate . 143

6.4.6.3 Qualitative Results . 144

6.5 User Evaluation . 145

6.5.1 Using Step-by-Step . 146

6.5.2 Results . 146

6.6 Discussion . 147

6.6.1 Overlapping Mechanism . 147

6.6.2 Grouping Mechanism . 149

6.6.3 Search Mechanism . 149

6.6.4 Stable Spatial Layout strategy . 149

6.7 Conclusion . 150

6.8 Future Work . 150

7 Conclusion And Future Work 152

7.1 Research Objectives . 152

7.2 Conclusion . 155

7.3 Future Work . 157

7.3.1 Window Tagging . 157

7.3.2 Theorize Window Switching . 157

7.3.3 Implicit Grouping Techniques . 158

7.3.4 A Standardized Evaluation Framework 158

References 171

x

List of Figures

2.1 Alt+Tab dialog in Windows XP showing icons for opened windows. A title

is displayed for only one icon at any time, and the same icon may appear

again for each application window opened. 11

2.2 Windows Vista or 7 Alt+Tab. It shows running application names along

with their live thumbnails so that you can see the window content before

switching to them. It also shows desktop in the list so that you can directly

access desktop icons without minimizing all running applications manually. 11

2.3 Windows Flip 3D renders live thumbnail images of the exact contents of

the opened windows. It allows users to switch between windows while

dynamically displaying them in a 3D view. 12

2.4 RelAltTab includes two types of background coloring: salmon for the se-

mantically related windows and light-blue for the temporally related win-

dows. It also displays a red number on top of each semantically related

window. This number allows the user to directly switch to the window by

pressing Alt + NUMBER. 13

2.5 Ungrouped window buttons on the Taskbar 13

2.6 Grouped application buttons on the Taskbar 14

2.7 Dock tool in Mac OS, which is used to launch applications, and switch

between running applications. 14

2.8 Visual TaskTip, it displays a thumbnail preview of the opened windows

when the mouse is hovered over Taskbar. 15

2.9 Exposé view of open applications. 15

xi

LIST OF FIGURES

2.10 The Taskposé visualization arranges open windows in two dimensions when

the visualization is called up. Windows automatically size relative to their

importance, and closely-related windows appear together. 16

2.11 SCOTZ . 18

2.12 Size morphing . 18

2.13 GroupBar is a prototype for demonstrating the use of window-grouping

features in an Windows XP TaskBar-like interface. 21

2.14 Scalable Fabric showing the representation of three tasks as clusters of

windows, and a single window being dragged from the focus area into the

periphery. 22

2.15 WindowScape represents windows as thumbnails and uses the timeline of

desktop states shown as a series of photograph-like snapshots. 24

3.1 Example box-and-whisker chart. 47

3.2 The number of opened windows on the desktop by each participant (some

participants did not close down their computers, so some minimum values

for the number of windows are not zero). 48

3.3 Cross participant means of the percentage of windows Event: Create, Ac-

tive and Destroy. Error bars show standard error (the standard error is too

small for dual monitors, so it may not display on the chart). 50

3.4 Cross participant means of the percentage of window move and maxi-

mize/minimize event in window activation event. Error bars show standard

error. 51

3.5 The percentage of window switching activated by Direct pointing, Taskbar,

Alt+Tab and Alt+Esc for 14 single monitor participants. 52

3.6 The percentage of window switching activated by Direct pointing, Taskbar,

Alt+Tab and Alt+Esc for 12 dual monitors particioants. 52

3.7 The number of press of the tab key when using Alt+Tab switching technique

(because some values (min, lower quartile, median) are equal, so it results

in some degenerated charts). 54

3.8 Cross participant means of the percentage of window switching activated by

Direct pointing, Taskbar, Alt+Tab and Alt+Esc. Error bars show standard

error. 55

xii

LIST OF FIGURES

3.9 Group Windows on Taskbar. 56

3.10 An example of tabbed windows technique. 57

3.11 The number of visible windows kept on the desktop by each participant. . 58

3.12 Mean of the percentage of window switching techniques to switch windows

when they are visible. 59

3.13 Mean of the percentage of window switching techniques to switch windows

when they are invisible. 60

3.14 Mean of the percentage of SmallWindow, NormalWindow and LargeWin-

dow accounts for the proportion of the total number of windows for single

monitor users. Error bars show standard error. 62

3.15 Mean of the percentage of SmallWindow, NormalWindow and LargeWin-

dow accounts for the proportion of the total number of windows for dual

monitors users. Error bars show standard error. 62

3.16 The number of groups of single monitor users when the overlapping thresh-

old is set to 25%. 65

3.17 The number of groups of dual monitors users when the overlapping thresh-

old is set to 25%. 66

3.18 Spy++ displays the tabs/documents information of applications. 67

3.19 Mean of the percentage of three types interaction pattern under NTChild

condition for each single monitor user. Error bars show standard error. . . 70

3.20 Mean of the percentage of three types interaction pattern under YTChild

condition for each dual monitors user. Error bars show standard error. . . 71

3.21 Mean of the percentage of three types interaction pattern under NTChild

condition. Error bars show standard error. 71

4.1 A typical windows organization with two closely related windows in the

foreground. To switch focus to the navigator window in the background

and then give back the focus to the two related windows is a tedious task

requiring multiple switching operation with current user interface switching

techniques. 75

xiii

LIST OF FIGURES

4.2 Push-and-Pull Switching example representing an initial layout (a) with

window W7 active (represented by the letter A). Windows are numbered

according to their stacking order. Pressing the Ctrl key computes the

following groups: (W6, W7), (W3, W4, W5), (W2) and (W1). Pushing

one time the frontmost group moves all its windows behind the ones from

the second group while respecting the relative stacking order within each

group (b). Pushing one more time moves the group behind the third one

(c). Releasing the Ctrl key gives the keyboard focus to the window with

the highest Z order (d). 76

4.3 Example for restacking the focused window. Figure (a) represents the ini-

tial layout in which window W7 is active (represented by the letter A)

and where windows are numbered according to their stacking order. Press-

ing Ctrl+Shift computes the following groups for the windows intersecting

window W7: (W4, W5), (W2), (W1). Pushing one time moves window

W7 behind the first group (b) and pushing one more time moves it behind

window W2 (c). Releasing the Crtl and Shift keys activates window W5 (d). 78

4.4 The initial layout for the 4 scenarios used in experiment one to compare

the switching time between Taskbar, Alt+Tab, Direct pointing and Push-

and-Pull Switching. The letter A represents the active window. Windows

are numbered according to their stacking order. Window numbers were

replaced by real application windows in the experiment. 80

4.5 Mean switching time for Switching Technique and Scenario. Error

bars represent 95% confidence interval. 82

4.6 Windows layout used in the second experiment with the initial layout on the

left and the target layout on the right. The letter A represents the window

in focus. Windows are numbered following their stacking order. Window

numbers were replaced by real application windows in the experiment. . . . 84

4.7 Mean switching time for Switching Technique. Error bars represent

95% confidence interval. 85

4.8 Typical mouse with five keys, there are two shortcut keys in the right side

of the mouse. In the default state, they are used to implement forward and

backward operations. 87

xiv

LIST OF FIGURES

5.1 Example for stack scanning. Figure (a) represents the initial layout with

window w5 focused (represented by the letter F). Windows are numbered

according to their stacking order. Pressing the mouse wheel (250 ms time-

out) computes the following layers: (W5, W4), (W3) and (W2, W1). Mov-

ing the mouse to (W2, W1) layer and leaving the widget, all windows

within this layer are brought closer to the foreground, the window with the

highest Z-order receives the keyboard focus. 93

5.2 Example of stack scanning extend function. Figure (a) represents an initial

layout with where window W5 is focused (represented by the letter F) and

where windows are numbered according to their stacking order, pressing

the mouse wheel, bringing up the widget. Moving the mouse to cross the

button, bring all windows within the layer closer to the foreground (b), the

mouse leaves from the left side of widget, only bringing the clicked window

within the layer to the foreground (c), the mouse leaves from the right side

of widget, bringing all windows within the layer closer to the foreground (d). 93

5.3 Stack scanning with 7 layers, using the original windows as representation. 96

5.4 Exposé view of 8 windows, representing them as thumbnails. 96

5.5 Alt+Tab represents windows as icons. 96

5.6 Taskbar in each of the 8, 12 and 16 windows conditions with NVS, repre-

senting windows as buttons. 97

5.7 The visual similarity between (1) and (2) is NVS, (1) and (3) is LVS and

(1) and (4) is HVS. 98

5.8 Mean switching time (ST) in s for Num and Technique. Error bars

represent 95% confidence interval. 103

5.9 Mean switching time (ST) in s for VS and Technique. Error bars repre-

sent 95% confidence interval. 104

5.10 Mean switching time (ST) in s for MLs and Technique. Error bars

represent 95% confidence interval. 105

5.11 Mean switching time (ST) in s for DisSize and Technique. 105

5.12 Mean switching time (ST) in s for AmOverlap and Technique. 106

5.13 Mean switching time(ST) in s for Num and Technique with the HVS.

Error bars represent 95% confidence interval. 107

xv

LIST OF FIGURES

5.14 Mean switching time(ST) in s for MLs and Technique with the 16 win-

dows. Error bars represent 95% confidence interval. 108

5.15 Mean switching time(ST) in s for VS and Technique with the 16 windows.

Error bars represent 95% confidence interval. 109

5.16 Mean switching time (ST) in s for each Technique, grouped by VS under

the Size001 condition. Error bars represent 95% confidence interval. . . . 110

5.17 Mean switching time (ST) in s for each Technique, grouped by MLs for

HVS under the Size001 condition. Error bars represent 95% confidence

interval. 111

5.18 Error rate for each Technique, grouped by Num. Error bars represent

95% confidence interval. 112

5.19 Error rate for each Technique, grouped by VS. Error bars represent 95%

confidence interval. 112

6.1 WindowsTagging presents windows and groups using thumbnails. Thumb-

nails are allowed to overlap within each group to identify groups more easily

and improve thumbnails legibility. In this example all opened windows (16)

were divided into ten groups. When moving the mouse, the group closest

to the cursor is expanded to make them easy to recognize and the titles of

all window within the group are displayed. 124

6.2 A simple example to describe the differences between the creating group

algorithm of Push-and-Pull switching and the new algorithm. For Push-

and-Pull switching, computing the following groups: (W3, W1), (W2), and

for the new algorithm, computing the following groups: (W3, W1), (W2,

W1). 126

6.3 WindowsTagging’s context menu, tag item is expanded to allow users to

select add/remove tag item. 128

6.4 Tag Management Dialog. 129

xvi

LIST OF FIGURES

6.5 Example of group reorganization using drag-and-drop. Figure (a) represents

the initial layout of groups. Moving a window to another group (b1 to e1) is

done by pressing the left mouse button on the thumbnail window W (b1).

Copying a window to another group (b2 to e2) is done by pressing the

Ctrl key and holding it down with the left mouse button on the thumbnail

window W (b2). The border color of the thumbnail window being moved

or copied is continuously updated with the color of the group hovered (c1,

d1; c2, d2). Releasing the left mouse button (or including the Ctrl key)

resizes the dropped window to prevent overlapping with another group (e1,

e2). 130

6.6 Exposé view of 12 windows, when moving mouse on the thumbnail of

window, the window’s title is displayed. 137

6.7 NSWindowsTagging view of 12 windows, when moving mouse on the thumb-

nail group, all windows within the group are expanded and all windows’

title are displayed in columns from top to bottom by the window z-order. . 138

6.8 SFWindowsTagging showed the result that users entered ”ppt” in the text

box, the search dialog located at the left-top (the red rectangle region).

Each time a new character is entered or removed, the list of the windows

corresponding to the search is updated and the windows that do not match

are darken but their content remains visible through transparency. 139

6.9 Mean switching time (ST) in s for Num and Technique. Error bars

represent 95% confidence interval. 143

6.10 Mean switching time (ST) in s for VS and Technique. Error bars repre-

sent 95% confidence interval. 144

6.11 Error Rate for Technique, grouped by Num. Error bars represent 95%

confidence interval. 145

xvii

List of Tables

3.1 Participants Information . 44

3.2 Example of user configuration information. 45

3.3 Description of the WindowsOSLog output stream 46

3.4 Users opened more windows on large display for single monitor users (s.d.

= standard deviation). 49

3.5 Users opened more windows on dual monitor system than on the single

monitor system (s.d. = standard deviation). 49

3.6 Users opened more windows on main monitor than on secondary monitor

for dual monitor system users (s.d. = standard deviation). 49

3.7 The average number of pressing tab when users used Alt+Tab technique

(s.d. = standard deviation). 53

3.8 Users kept more windows visible simultaneously on dual monitor system

than on the single monitor system (s.d. = standard deviation). 57

3.9 The distribution of window size. 63

3.10 The mean of number of groups of all participants for each overlapping

threshold condition (s.d. = standard deviation). 65

3.11 The mean of number of groups of main monitor and secondary monitor for

dual monitor system users for each overlapping threshold condition (s.d. =

standard deviation). 66

3.12 The mean of number of tabs/documents in the TDI/MDI applications (s.d.

= standard deviation). 68

3.13 The mean of percentage of switching techniques for TDI/MDI applications

(s.d. = standard deviation). 68

xviii

LIST OF TABLES

4.1 User satisfaction averages for on a five point scale where 1 = useless, 5 =

useful. 86

5.1 Pairwise comparisons between techniques condition on switching time. A

cell contains the means difference and the lower and upper bound of the

confidence interval. Underlined cells are significant. 102

5.2 Pairwise comparisons between techniques condition on switching error rate.

A cell contains the means difference and the lower and upper bound of the

confidence interval. Underlined cells are significant. 113

6.1 Pairwise comparisons between techniques condition on switching time. A

cell contains the means difference and the lower and upper bound of the

confidence interval. Underlined cells are significant. 142

6.2 User satisfaction averages for on a five point scale where 1 = useless, 5 =

useful. 148

xix

LIST OF TABLES

xx

Chapter 1

Introduction

The personal computer (PC) has undergone dramatic changes over the past 30 years.

The huge gains in processor speed and physical memory size and the large and multiple-

monitor now allow people to use computers in an astonishing variety of ways. A key

advantage of additional screen space is the ability to keep more windows open simulta-

neously, reducing the amount of resizing, repositioning, and other window-management

activities (Hutchings has shown that users had more than eight windows open more than

78% on the time Hutchings et al. (2004)). However, additional windows also mean that

more windows are competing for users’ attention D.Mackinlay & Royer (2007); Hutchings

et al. (2004).

Window switching is an integral part of our daily computing experience since com-

puters allow multi-tasking. Window switching includes two subtasks: first, finding the

window of interest, and second, bringing it to the foreground. With the advent and ubiq-

uity of graphical user interfaces and the desktop metaphor, window switching has become

one of the most common operations performed on a computer. Window switching is also

one of the most frequent tasks of any window manager happening several hundred times

per day (takes place on average once every 20.9s on large displays Hutchings et al. (2004),

the results were confirmed by D.Mackinlay & Royer (2007)). However this task can

become laborious when the number of windows becomes important. The difficulties for

finding the desired window come from two main reasons: 1) window overlapping, which

hides window information; and 2) the visual similarity of windows.

Although tiled windows system may be more efficient for window switching Bly &

Rosenberg (1986); Kandogan & Shneiderman (1996), the overlapping systems is the de

1

1. INTRODUCTION

facto standard for modern window management systems, and this situation will not dis-

appear with the advent of larger displays Chapuis & Roussel (2007); Hutchings & Stasko

(2004). With the increasing in the number of windows, it makes more difficult to switch

to the window of interest. Many works have been proposed to reduce the amount of over-

lapping between windows, including all tiling systems, leafing through stacked windows,

peeling them back Beaudouin-Lafon (2001), snip and snap Hutchings & Stasko (2007),

dynamic space management algorithm Bell & Feiner (2000), FST Ishak & Feiner (2004)

and Exposé Apple.

The importance and frequency of window switching has led to intensive research and

development into improving switching efficiency for window manager. There has been

many extensive researches in the area of window manager and task management Badros

et al. (2000); Beaudouin-Lafon (2001); Bell & Feiner (2000); D. Austin Henderson & Card

(1986); D.Mackinlay & Royer (2007); Dragunov et al. (2005); Faure et al. (2009); Kando-

gan & Shneiderman (1996); Robertson et al. (2000, 2004); Smith et al. (2003); Tak et al.

(2009a); Tashman (2006). However there has been little innovation in window switching.

Using the mouse to click on a region of the window of interest (Direct pointing, Xu &

Casiez (2010)) or using a key combination to navigate the list of windows or applications

(Alt+Tab/Cmd+Tab) or clicking on a representation of the windows or applications at

the bottom of the display with icons and text (Taskbar/dock) have been the de facto

standard for window switching for several years. Probably the most notable advance is

Exposé which tiles all opened windows or those of the focused application so that they are

all visible at once. However, as the number of opened windows increases, the legibility

of their content decreases, making them hard to distinguish (it solves the overlapping

problem but reduces windows to snapshot).

Many researches have hinted that traditional window switching techniques have po-

tential usability problems Czerwinski et al. (2003); Grudin (2001); Hutchings & Stasko

(2003). Another problem is that those window switching techniques have been used sev-

eral hundred times per day D.Mackinlay & Royer (2007); Hutchings et al. (2004) and

have been the de facto standard for window switching for several years, but we have not

found that they have been evaluated in any serious way. As a result, it is hard to assess

them whether they have affected the people experience on computers.

Furthermore, to reduce the number of switching operations, interaction techniques

have been proposed to explicitly or implicitly define groups (Kandogan & Shneiderman

2

1.1 Problem Statement And Research Goal

(1996); Robertson et al. (2000, 2004); Smith et al. (2003); Tashman (2006)). Whether

explicitly or implicitly defined, these grouping mechanisms have presented problems for

users. For explicitly defined groups, users may find it burdensome to explicitly classify

windows into tasks and even may be hard-pressed to decide on an appropriate classification

for each window. For automatically defined groups, the system can incorrectly infer

groups and create groups that may not correspond to users expectations. The limitation

of grouping mechanism they provided has restricted their use.

A thorough characterization of users’ activities in real-world window management

systems would significantly benefit interaction designers when developing new window

switching techniques. It would provide insights into users common operations on windows,

tasks and computer use.

To fill this knowledge gap, this dissertation aims at understanding and developing

new window switching techniques to help users to improve task switching. To achieve

this goal, we developed a tool we called WindowsOSLog to log window management

activity in mainstream Windows operating system by means of Windows messages and

hooks to understand how users manage their windows. 26 participants participated in

this study duration over 5-weeks. We also collected subjective data from participants by

means of questionnaires. Three window switching techniques: Push-and-Pull Switching,

stack scanning and WindowsTagging were designed and developed based on the results

of this data.

The remainder of this chapter formally defines the research goals, describes the ap-

proach for achieving these goals, provides scope for this work, presents the primary re-

search contributions and outlines the structure of the dissertation.

1.1 Problem Statement And Research Goal

The two primary goals of this dissertation are to understand how people manage their

windows and improve window switching techniques. The traditional window switching

techniques and windows grouping mechanism have presented potential problems. To

address those limitations, the dissertation sets out four goals that aim at understanding

and then improving window and group switching techniques, we would like to theorize

window and group switching and define types of task switching operations which have

been justified by read-world usage data. These goals are described as follow:

3

1. INTRODUCTION

1. Understand users’ activities on window management and the reasons users choose

to employ switching techniques. These results should also allow user activities to be

generalized or classified. Successful completion of this goal will explain the activities

observed in the long-term study. It will also provide insights into the limits of user

knowledge of current switching techniques.

2. Understand current window/group switching techniques where and when they are

effective and ineffective. This goal will provide the directions to design new switching

techniques.

3. Theorize window/group switching and define types of switching operations which

have been justified by read-world usage data, and then provide some design prin-

ciples to help designers to design switching techniques. Successful goal completion

will provide a basic theory to guide designers to develop new switching techniques.

4. Using the knowledge gathered in the previous goals, analyses, design and evaluate

new switching techniques based on design objective. Successful goal completion will

result in new switching techniques that empirically and subjectively outperforms

currently available alternatives.

1.2 Research Approach

Window switching is one of the most common operations and the most frequent task

of any window manager. This research focuses on understanding the switching techniques

used when interacting in real-world and then providing improvements and some design

principles to guide designers to develop new switching techniques. To implement the

first of these goals, we need to observe user window switching actions during a long

period of time. Techniques such as interviews and screen-recorders provide a contextual

understanding of user activities, but require a large amount of time to analyze, leading to

scalability issues in large studies. To achieve this goal, a log tool was developed to record

window management activity in mainstream Windows operating system in real-world.

We also collected subjective data from participants by means of questionnaires.

Having formed a good understanding of user window switching activity, the results

are then used to help designing new window/group switching techniques: Push-and-Pull

4

1.3 Research Contributions

Switching, stack scanning and WindowsTagging. We also conducted and ran a set of ex-

periments to compare the performance of our techniques to other techniques, the results

showed that our switching techniques could help users to switch between windows/groups

more effective than the traditional switching techniques, and users preferred our tech-

niques.

Finally, to theorize window/group switching, we defined types of switching opera-

tions which have been justified by read-world usage data and introduced window tagging

mechanism to provide a new alternative to the existing windows grouping techniques,

and then provide a set of design principles to help designers to design new switching tech-

niques. WindowsTagging was implemented as a prototype system based on those design

principles.

1.3 Research Contributions

This dissertation makes seven primary contributions to the research knowledge in the

domain of window/group switching techniques. These are:

1. A review of window/group switching techniques and related window management

systems. This review allow other researchers to more quickly understand and ana-

lyze current switching techniques.

2. A log-based longitudinal study about user window management activity, a log tool

called WindowsOSLog was developed to record user window management activity

in mainstream Windows operating system. 26 participants’ window management

activities were recorded during a period of 5-weeks.

3. Design and evaluation of Push-and-Pull Switching. Push-and-Pull Switching is a

window switching technique using window overlapping to implicitly define groups.

Push-and-Pull Switching further allows to switch between groups and restack the

focused window to any position to change its group affectation. The technique was

evaluated in an experiment showing that Push-and-Pull Switching allows to improve

switching performance by more than 50% compared to other switching techniques

in different scenarios. A longitudinal user study indicates that participants invoked

this switching technique 15% of the time on single monitor displays while they found

it easy to understand and use.

5

1. INTRODUCTION

4. Design and evaluation of stack scanning. Stack scanning is based on a widget that

combines generalized scrolling and crossing to control the stack order of layers of

visible windows. The empirical evaluations showed that stack scanning was faster

than other techniques when the number of windows is high and the visual similarity

among windows is important. They also showed that Taskbar was the best choice

when the number of windows is small, regardless of other visual factors conditions,

and for users who always maximized each window, Alt+Tab was the best choice

when the number of windows is important.

5. Provide eleven design principles and introduce window tagging mechanism to help

designers to design new window switching techniques. Those design principles pro-

vides a theory foundation to designers and researchers.

6. Design and evaluation of WindowsTagging. WindowsTagging was designed based on

the eleven design principles. It combines implicit and explicit definition of groups,

spatial and visual memories to help users to quickly find windows or groups and

switch between them. The empirical evaluations showed that WindowsTagging was

faster than Exposé technique, and participants strongly preferred it. The longitudi-

nal study also showed that WindowsTagging was very effective and could improve

task management.

1.4 Structure of the Dissertation

The remainder of this dissertation is organized as follows.

To begin, Chapter 2 reviews of the current related work in the domain of window and

group switching and the state-of-the-art in window and group switching techniques.

Chapter 3 describes a log-based longitudinal study, a log tool called WindowsOSLog

that was developed to record user window management activity in mainstream Windows

operating system. It can record low level interactions such as “Alt+Tab pressed” and “the

right mouse button pressed” as well as high level interactions such as windows selections.

WindowsOSLog was then installed on the computer of 26 participants duration over 5-

weeks. Finally, we describe the results and analysis of this study in details.

6

1.4 Structure of the Dissertation

Chapter 4 presents a new window switching technique, Push-and-Pull Switching, is a

window switching technique using window overlapping to implicitly define groups. Push-

and-Pull Switching further allows to switch between groups and restack the focused win-

dow to any position to change its group affectation. Two experiments were designed and

implemented to compare the performance of Push-and-Pull Switching to other window

switching techniques (Direct pointing, Taskbar, Alt+Tab) under different scenarios. Fi-

nally, a longitudinal user study was represented to show how users actually use it through

log analysis and users feedbacks.

Chapter 5 presents a new window switching technique, stack scanning, a window

switching technique based on a widget that combines generalized scrolling and crossing

to control the stack order of layers of visible windows. We conducted an experiment to

compare the performance and error rate of stack scanning to other four common window

switching techniques under a variety of visual conditions (e.g. the number of windows,

their visual similarity and windows layout). Results showed that stack scanning was

faster than other techniques when the number of windows is high and the visual similarity

among windows is important. They also showed that Taskbar was the best choice when

the number of windows is small, regardless of other visual factors conditions, and for users

who always maximized each window, Alt+Tab was the best choice when the number of

windows is important.

Chapter 6 presents eleven design principles which are based on the presented issues

on the existing window/group switching techniques. We then designed and developed a

prototype system called WindowsTagging based on those design principles. It combines

implicit and explicit definition of groups, spatial and visual memories to help users to

quickly find windows or groups and switch between them. An experiment was designed

to compare the performance and error rate of WindowsTagging to Exposé. Results showed

that WindowsTagging was faster than Exposé technique, and participants strongly pre-

ferred it. A longitudinal study also showed that WindowsTagging was very effective and

could improve task management.

Chapter 7 provides a discussion of the research and summarizes the findings and

conclusions of the work presented in this dissertation and future work in this area.

7

Chapter 2

Related Work

This chapter presents a review of the current knowledge in the domain of window/group

switching techniques. We first review the different window and group switching techniques

provided by modern window management systems and proposed by previous researchers

and their associated evaluations. We then describe related visual factors that can affect

the performance of switching technique (e.g. spatial memory, window visibility and win-

dows layout) and review the tags mechanism and their typical applications. Finally, we

describe the studies about window switching techniques, including interview-based study

and log-based study.

2.1 Introduction

Window switching is an integral part of our daily computing experience since com-

puters allow multi-tasking. Window switching is also one of the most frequent tasks of

any window manager happening several hundred times per day (takes place on average

once every 20.9s on large displays Hutchings et al. (2004), the results were confirmed by

D.Mackinlay & Royer (2007)). Window switching includes two subtasks: first, finding the

window of interest (visual search), and second, bringing it to the foreground. However

this process can be harder when the number of windows becomes important.

Users of desktop computers are increasingly turning to large displays and multiple-

monitor setups. A key advantage of additional screen space is the ability to keep more

windows open simultaneously, reducing the amount of resizing, repositioning, and other

8

2.2 Window Switching Techniques

window-management activity (Hutchings has shown that users have more than eight win-

dows open more than 78% on the time Hutchings et al. (2004); Robertson et al. (2005)).

However, additional windows also mean that more windows are competing for users’ at-

tention and users need to frequently manage them.

The importance and frequency of window switching has led to intensive research and

development into improving switching efficiency for window manager. Many researchers,

organizations, and individuals have proposed a variety of window/group switching tech-

niques.

This chapter is organized as follows. We first review all existed window and group

switching techniques provided by modern window management systems and proposed by

previous researchers and their associated evaluations. We then describe related visual fac-

tors that can affect the performance of switching technique (e.g. spatial memory, window

visibility and windows layout) and review the tags mechanism and their typical appli-

cations. Finally, we describe the studies about window switching techniques, including

interview-based study and log-based study.

2.2 Window Switching Techniques

There are many different window switching techniques provided by modern window

management systems and proposed by previous researchers.

Kumar et al. have categorized window switching techniques into three approaches

Kumar et al. (2007): Temporal, Spatial and Hybrid. Temporal approaches sort windows

based on their time of last access, and therefore the order in which the windows are shown

to the user changes depending on which window was used last (e.g. Alt+Tab/Cmd+Tab).

Such techniques make best use of the user’s temporal memory and make switching among a

limited number of windows very efficient. Spatial approaches may use an initial ordering

based on temporal information or on where the window is located on the screen. The

relative order of the windows in the window switching view does not change, unless there

is a change in the number or spatial location of the windows (e.g. Taskbar/dock, Exposé);

Hybrid approaches use a combination of temporal and spatial techniques to determine

how to present the list of windows to the user (e.g. Window Vista Alt+Tab, Windows XP

PowerToys Microsoft (b)).

9

2. RELATED WORK

2.2.1 Temporal Approach

2.2.1.1 Alt+Tab

Alt+Tab is the typical example of a temporal approach (Figure 2.1). It ranks the

window icons or thumbnails based on Z-order 1, which is related to the order with which

the windows were last accessed. Kumar et al. have observed that Alt+Tab is is very

efficient when the number of windows is low Kumar et al. (2007), but researchers have also

labelled the method ’tedious’ Grudin (2001) and reported that a very small percentage of

users regularly use the Alt+Tab key combination for window switching Czerwinski et al.

(2003).

Alt+Tab functionality in Windows Vista and 7 has been updated with Windows Flip

and Filp3D Microsoft (a). Flip allows users to view a preview of each opened window

instead of just the program icon as they press Alt+Tab (Figure 2.2). In addition, Windows

Flip 3D enables users to flip through a cascading stack of their opened windows using

the mouse scroll wheel or the keyboard. Windows can be stacked and rotated in 3D to

provide views of all of them simultaneously (Figure 2.3).

Some compositing window managers (Compiz Fusion 2) for the X Window System

have differ in the implementation of the Alt+Tab technique, when users select the icon,

the selected window will be brought to the foreground with the animation. However there

was no evaluation to compare with these two implementations.

2.2.1.2 RelAltTab

The RelAltTab is an enhanced Alt+Tab prototype that assists users in switching win-

dows Oliver et al. (2008). Authors used semantic and temporal information to create a

list of related windows to the window that the user is currently engaged in (the algorithm

is the same as SWISH system Oliver et al. (2006)). This ordering of the list was used to

replace the ordering of windows in the Alt+Tab user interface. The results have shown

that the related window list contained the next window that the user switched to in over

1Windows XP/2000 Alt+Tab list algorithm: For each visible window, walk up its owner chain un-

til you find the root owner. Then walk back down the visible last active popup chain until you find

a visible window. If you’re back to where you’re started, then put the window in the Alt+Tab list.

(http://blogs.msdn.com/b/oldnewthing/archive/2007/10/08/5351207.aspx)
2http://www.compiz.org/

10

2.2 Window Switching Techniques

Figure 2.1: Alt+Tab dialog in Windows XP showing icons for opened windows. A title

is displayed for only one icon at any time, and the same icon may appear again for each

application window opened.

Figure 2.2: Windows Vista or 7 Alt+Tab. It shows running application names along with

their live thumbnails so that you can see the window content before switching to them.

It also shows desktop in the list so that you can directly access desktop icons without

minimizing all running applications manually.

80% of the instances. The main assumption is that the user is more likely to switch to a

related window than to any other window in the system.

11

2. RELATED WORK

Figure 2.3: Windows Flip 3D renders live thumbnail images of the exact contents of the

opened windows. It allows users to switch between windows while dynamically displaying

them in a 3D view.

2.2.2 Spatial Approach

2.2.2.1 Taskbar/Dock

The Taskbar (Figure 2.5 and 2.6) or dock (Figure 2.7) follows a spatial approach in

its organization of window buttons (each containing an icon and a truncated piece of

the window title). Users can access any open window by clicking on a button or iconic

representation of the window. The location of icons or buttons on the Taskbar is fixed

and therefore this approach takes advantage of the user’s spatial memory. In addition,

the Taskbar can group by application when more than a certain number of windows

belonging to one particular application are opened. In this case, they collapse into a

single application button that activates a pop-up with a list of windows. Recent research

has hinted that the Taskbar has potential usability problems Hutchings & Stasko (2003).

One issue raised by some participants in a qualitative study is that when eight or more

windows are open, and the Taskbar is in its default position at the bottom of the monitor,

only a few (or none!) of the letters in the windows’titles are visible (In the default case,

once the number of windows reaches a certain amount (10 − 15 windows for a 1024 x

768 pixel resolution display), very little, if any, of the title bar can be read and only the

12

2.2 Window Switching Techniques

Figure 2.4: RelAltTab includes two types of background coloring: salmon for the semanti-

cally related windows and light-blue for the temporally related windows. It also displays

a red number on top of each semantically related window. This number allows the user

to directly switch to the window by pressing Alt + NUMBER.

icons remain). In that case, it would need more time to distinguish the windows which

have the same icons when using the Taskbar for window switching (visual similarity is

increased). Many researchers, including Mircosoft themselves, have attempted to improve

the Taskbar. Both Smith et al. Smith et al. (2003) and Robertson et al. Robertson

et al. (2004) claim that the grouping by application behavior confuses many users because

application windows may not be related to the same task. Smith et al. presented the

GroupBar Smith et al. (2003) as a solution, which allows user to arbitrarily assign groups.

Visual TaskTip (Figure 2.8) was developed to enhance the cognition of buttons on the

Taskbar, when the mouse is hovered over Taskbar, it displays a thumbnail preview of the

opened window 1. However there was no report of any form evaluation of the tool.

Figure 2.5: Ungrouped window buttons on the Taskbar

1http://www.pctipsbox.com/visual-task-tip-for-windows-xp/

13

2. RELATED WORK

Figure 2.6: Grouped application buttons on the Taskbar

Figure 2.7: Dock tool in Mac OS, which is used to launch applications, and switch between

running applications.

2.2.2.2 Exposé

Exposé 1 is another example of a spatial approach, which tiles all opened windows

or those of the focused application so that they are all visible at once Apple. But as

the number of opened windows increases, the legibility of their content decreases, making

them hard to distinguish. Exposé uses a non-stable spatial layout to arrange the opened

windows in a layout: when a window is repositioned or resized between two invocations

of the technique, the layout may completely change. When users want to switch back to

a window previously switched, they may no longer find it at its last location, wasting the

benefit of spatial memory.

2.2.2.3 EyeExposé

The EyeExposé system Kumar et al. (2007) presented an innovative extension of the

Exposé system by allowing users to use a combination of keyboard and eye gaze. This

approach combines the use of a two-dimensional layout visualization for showing to the

user all opened applications and the use of eye gaze tracking for selecting the window of

interest. The authors designed an experiment to evaluate EyeExposé and found Alt+Tab

in Windows XP that was faster when the number of open windows was low (4), and

EyeExposé had the lowest switching time when the number of open windows was high

(12). For Alt+Tab, its performance scaled worse relative to the other methods evaluated

as the number of open windows increased. However we were not able to find other research

1http://www.apple.com/pro/tips/switch expose.html

14

2.2 Window Switching Techniques

Figure 2.8: Visual TaskTip, it displays a thumbnail preview of the opened windows when

the mouse is hovered over Taskbar.

Figure 2.9: Exposé view of open applications.

evaluating the relative performance of Alt+Tab to support their findings. We could notice

that they did not take into account the visual similarity of windows in the experiment,

which directly impacts the visual search time for finding the target window.

15

2. RELATED WORK

Figure 2.10: The Taskposé visualization arranges open windows in two dimensions when

the visualization is called up. Windows automatically size relative to their importance,

and closely-related windows appear together.

2.2.2.4 Taskposé

Taskposé Bernstein et al. (2008b) (Figure 2.10) is another example of a spatial ap-

proach, which is a screen-filling visualization of user’s workspace in two-dimensions, rep-

resenting opened windows by thumbnails and using a degree-of-relatedness to implicitly

create task groupings. It uses the WindowRank algorithm and window switch history to

define the window association, and then using this association heuristic to layout related

windows near each other. It uses a non-stable spatial layout to arrange the opened win-

dows and the size of the thumbnails can also be changed. When users want to revisit a

window, the size and its last location may have changed, wasting the benefit of spatial

memory. However when users work on multiple tasks simultaneously, Taskposé would

move the tasks close together to make them difficult to distinguish. Meanwhile it does

not adequately use the space to display thumbnails as big as they can (the big thumbnail

can reduce the selection time). During longitudinal evaluation, authors observed that

Taskposé was most useful when the number of opened windows outstripped the space

available on the Windows Taskbar, In that case, the performance of Taskbar will greatly

decrease (see Section 2.2.2.1).

16

2.2 Window Switching Techniques

2.2.2.5 SCOTZ

Keith Humm presented Spatially Consistent Thumbnails Zones (SCOTZ, see Figure

2.11) which is an example of a spatial approach and uses the stable zones to display window

thumbnails Humm (2007). SCOTZ divides the entire screen space into a grid of equally-

sized zones. Each zone represents a group of thumbnails based on the same application,

and each thumbnail only belongs to one zone. Especially, zones are always located in the

same space and never move. Taken into account that windows are opened and closed

frequently, spacing inside zones must be much more dynamic than the zones themselves.

The author use a hybrid approach between zone sizing and space-filling techniques: a

zone is sized based on the nearest square number to the number of items required. When

resize occurs, the current grid is transposed to the upper left coordinates of the new grid.

The author evaluated SCOTZ and found that the performance of SCOTZ performs faster

than the other techniques (Grouped Taskbar (see Figure 2.6), Ungrouped Taskbar (see

Figure 2.5), and Alt+Tab (see Figure 2.1)) for both low (4, 8) and high window density

(16, 32). SCOTZ is more similar to Exposé than Taskbar and Alt+Tab (SCOTZ has

group mechanism and the property of spatial constancy, and Exposé may have bigger

size thumbnails), however the author did not compare with the Exposé, leading to results

not convincing. Meanwhile the author did not take into account the visual similarity of

windows in the experiment. This factor can also impact the results of the experiment.

Tak et al. added the size morphing (see Figure 2.12) operation to the SCOTZ (see Fig-

ure 2.11) technique, the size morphing operation allows for the addition of new items while

maintaining as much spatial stability as possible and allocating more space to frequently-

used applications and windows in order to reduce their selection time Tak et al. (2009a).

The authors investigated the performance impact of four different orderings (spatially

stable, recency order, frequency order, and random order) for tasks involving acquisition

of targets in a Zipf-like 1 distribution and found that the stable layout was significantly

faster than the recency layout, with performance benefits increasing with expertise. The

authors evaluated the size morphing operation and found that gradual size ’morphing’

of item areas in the display did not affect performance - importantly, morphing did not

substantially harm the participant’s spatial memory for target locations.

1http://en.wikipedia.org/wiki/Zipf’s law

17

2. RELATED WORK

Figure 2.11: SCOTZ

Figure 2.12: Size morphing

2.2.2.6 FST

FST technique has been proposed to view and manipulate hidden content through

unimportant regions of overlapping windows Ishak & Feiner (2004), and using mouse-

18

2.3 Group Switching Techniques

over pie menu to display thumbnails of all windows that lie beneath that selected pixel.

However, the techniques only considered the windows close to the mouse cursor, and

when the pie menu displays multi items, it becomes difficult to display thumbnails of each

window at a recognizable size.

2.2.3 Hybrid Approach

Hybrid approaches use temporal ordering but allow for random access. The Windows

XP PowerToys Microsoft (b) shows thumbnails of all the desktop top-level windows and

allows users to either cycle through the window by repeatedly pressing Alt+Tab or to use

the mouse to click on the thumbnail for the window of interest. Another example of a

hybrid approach is Windows Vista Alt+Tab (Task Switcher), which shows live thumbnail

of all the desktop top-level windows 1 and allows users to either cycle through them

by repeatedly pressing Alt+Tab or to directly switch to any window by clicking on its

thumbnail with the mouse.

2.3 Group Switching Techniques

To improve switching efficiency for window manager, researchers have in general re-

searched in two directions, one way is to develop new window switching techniques (see

section 2.2) and another research direction is to effectively organize windows (grouping

windows). We review related works of this research direction in this section.

To reduce the number of switching operations to achieve the objective of reducing

the switching time, switching techniques have been proposed to explicitly or implicitly

define window groups. For explicit way (manual control way), although users can define

groups in any way, users need to organize windows by themselves. The primary limitation

of this way is that users must carry out explicit actions to gain potential benefits (e.g.

GroupBar Smith et al. (2003) and Scalable Fabric Robertson et al. (2004)). For implicit

1Windows Vista Alt+Tab (Flip/Flip3D) list algorithm: Windows Vista changed the default be-

havior (Classic Alt+Tab, under most default installations) with its Flip interface. The six most

recently used items in the Flip tab-order work as described (thumbnails are still shown in Z-

order), then remaining windows are ordered alphabetically by application path (and optionally

grouped, depending on the ’group similar Taskbar buttons’ setting which is enabled by default.

(http://blogs.msdn.com/b/oldnewthing/archive/2007/10/08/5351207.aspx)

19

2. RELATED WORK

way (automatic way), by contrast, windows are organized to its most likely group based

on upon evidence group creation and manipulation, such as semantic data about the

windows (window title, window content), activation history. The big problem of this

way is that the system can incorrectly predict the users’ intention and users can fail to

understand the system prediction (e.g. WindowScape Tashman (2006)). In the following

paragraphs, we first describe related works of explicit window grouping techniques, then

reviewing current knowledge of implicit window grouping techniques.

2.3.1 Explicit Window Grouping Techniques

For explicit window grouping technique, users can define groups in any way, and it

requires to plan in advance the number of groups and associate each window to a group.

There are many techniques that have been proposed.

2.3.1.1 Virtual Desktop Managers

Virtual desktop managers (VDMs) have been one of the most popular solutions to

explicitly define groups but at the cost of a strict separation between them, making it

difficult to switch between windows from multiple groups. Meanwhile VDMs have limi-

tations in the flexibility of grouping mechanisms they provide, and the means offered for

finding particular windows. One of the earliest designs exploring a VDMs was Smalltalk

Project Views Goldberg & Robson (1983). Rooms D. Austin Henderson & Card (1986)

is probably the most famous of these kinds of systems. A number of these systems are

currently available, and are described in XDESK. None of these systems have been eval-

uated in a stringent way and no detailed study demonstrate how easy to learn they are,

or how well they integrate into real-world settings.

2.3.1.2 GroupBar

In addition to VDMs, a number of novel and more flexible solutions have been pro-

posed, such as GroupBar Smith et al. (2003), Scalable Fabric Robertson et al. (2004)

and SCWM Badros et al. (2000). GroupBar (Figure 2.13) used the same minimized

window representation used by Windows Taskbar to task creation and maintenance by

allowing users to create or remove a task by using a single dragging gesture and allowed

users to simultaneously display any subset of windows, even if they should be assigned to

20

2.3 Group Switching Techniques

Figure 2.13: GroupBar is a prototype for demonstrating the use of window-grouping

features in an Windows XP TaskBar-like interface.

different tasks. The design did not effectively leverage human spatial and visual recogni-

tion memory. GroupBar made limited use of spatial memory by allowing users to create

multiple bars, limitations stem from the bar design, which is linear, list-based, and did

not expose much virtual space in which to place tasks.

2.3.1.3 Elastic Windows

Kandogan et al. proposed Elastic Windows that was designed to provide an alterna-

tive to window management strategies for efficient personal role management based on

hierarchical window organization, multi-window operations and space-filling tiled layout

Kandogan & Shneiderman (1996). In Elastic Windows, window groups could be created

by opening a container window and dragging and dropping the selected items inside this

window. The authors compared Elastic Windows to an independent overlapping window

21

2. RELATED WORK

Figure 2.14: Scalable Fabric showing the representation of three tasks as clusters of win-

dows, and a single window being dragged from the focus area into the periphery.

manager in terms of user performance time on task environment, switching, and four task

execution types. They found almost in all cases that Elastic Windows resulted in faster

task completion and task switching times.

2.3.1.4 Scalable Fabric

Scalable Fabric (Figure 2.14) makes use of the periphery of the display for spatial

layout of tasks, in addition to leveraging users’ efficient visual recognition memory for

images, allocating screen real estate in accordance with a user’s attention, using a focus-

plus-context display, allowing users to group collections of windows that are used together

and to leave windows and clusters of windows open and visible at all times via a process

of scaling down and moving the windows and clusters to the periphery.

However users need to leverage the size of the focus area and the periphery in order

to operate (the focus area) and recognize (the periphery) the windows.

2.3.1.5 SCWM

The key feature of SCWM is the user’s ability to interact with groups of windows by

setting constraints on the windows, the constraints aim for windows layout, and lack of

control over windows stacking. Users create these constraints by using a relationship panel

that graphically represents the types of constraints that can be set. Using the panel hides

the details of the constraint system. An example constraint is adjacency, where some

22

2.3 Group Switching Techniques

window A is constrained to be adjacent to some other window B. Then, whenever a user

repositions either A or B, its partner is simultaneously repositioned without additional

user interaction. Unfortunately, there is not enough information about how users currently

use SCWM and where and how it is adequate.

A disadvantage faced by these systems is that requiring windows to be in a single

group forces users to decide ahead of time where a new window belongs. These systems

do not allow for windows to reside in multiple groups at the same time. Likewise, such a

single-group approach is inflexible, in that it neglects the possibility that some windows

might naturally be useful in several different groups.

2.3.2 Implicit Window Grouping Techniques

Compared to explicit window grouping techniques, implicit grouping techniques use

different methods, such as machine learning, to automatically define groups. However the

system can incorrectly infer groups and create groups that may not correspond to users

expectations. There are also many techniques that have been proposed.

2.3.2.1 WindowScape

WindowScape Tashman (2006) (Figure 2.15) is an example of implicit grouping tech-

nique which automatically creates groups by taking photograph-like snapshots each time

a window is expanded or miniaturized, using the timeline of desktop states shown as a

series of photograph-like snapshots. However, when a user wants to resume a group, it

may no longer be visible or the user may have to explicitly define favorite snapshots. Each

snapshot group can include many windows and two close groups may include the same

windows (windows have the same state (position, size)), this can lead to the snapshots

that look like very similar, thereby it may cause difficulties to distinguish between the

two groups. Similarly, WindowScape does not appear to have been evaluated.

2.3.2.2 Stack leafing

Stack leafing Faure et al. (2009) technique is another example of implicit grouping

techniques, which is based on widget that combines generalized scrolling and crossing

to control the stacking order of layers of non-overlapping windows. This technique has

the advantage of minimizing mouse navigation and preserving the size and position of

23

2. RELATED WORK

Figure 2.15: WindowScape represents windows as thumbnails and uses the timeline of

desktop states shown as a series of photograph-like snapshots.

windows while still providing access to all of their content. However, this technique does

not preserve the ordering by frequency and strict non-overlapping requirement also limits

its use.

2.3.2.3 SWISH

SWISH Oliver et al. (2006) uses semantic features (windows associated with the same

task share common words in their content, and, in particular, in their window titles)

and temporal features (windows associated with the same task are accessed in temporal

proximity to each other) to automatically divide windows into different groups. Their

evaluations suggested 70% accuracy rates in assigning windows to task groups.

2.4 Tabs Switching Techniques

With more and more applications based on tabs, the performance of switching among

the tabs directly impacts the user experience of application. The applications arrange the

tabs by default in one row and usually support drag and drop operation, and when the

number of tabs is over a threshold, they will add a horizontal scrollbar (e.g. Firefox) (For

those applications, generally, the width of each tab is the same and can be changed) or

add a pull-down menu (e.g. Visual Studio IDE) (For those applications, generally, the

24

2.5 Desktop Organization and Switching Techniques

width of each tab depends on its title and can not be changed) for hidden tabs. The

spatial approach is used to organize the tabs.

The Direct pointing is the main interaction technique for switching among tabs, key-

board shortcuts are also supported (e.g. Ctrl+Tab), it is based on temporal approach

as usual (like Alt+Tab), and a few applications can support the function like Exposé to

display all tabs as thumbnails with the keyboard shortcut (e.g. Internet Explorer 8).

2.5 Desktop Organization and Switching Techniques

Users have different ways in which they organize screen space. Some experiments

have shown that users can be divided into three groups depending on the way they

organize screen space: Maximizers (simply maximize all windows or almost all windows),

Near maximizers (these users have one or more smaller windows with which they

frequently interact or glance or leave a bank of desktop icons uncovered) and Careful

coordinators (those who tend to have many windows visible simultaneously (meaning

that none of them is maximized) or when they had a maximized window, were working

in an application that itself has many sub-windows). Careful coordinators represent 50%

of all users Hutchings & Stasko (2003).

Hutchings has shown that all maximizers (all were single monitor users and all used

MS Windows) used a Taskbar or Alt+Tab to switch among windows. This outcome is

expected as the Taskbar and keyboard can be easily accessed regardless of window size,

making window switching very easy for this type of user. Each near maximizer used Direct

pointing to switch between a nearly maximized window and a visible window elsewhere

on the desktop. But near maximizers composed a variety of interaction techniques for

switching among nearly maximized windows. Careful coordinators (many used multiple

desktops and high screen resolutions) used Direct pointing more, they seemed to use the

Taskbar only when the window to be switched to was not visible.

With the large displays and multiple-monitors, people have presented different inter-

action activities. A previous research has shown that multiple monitor users used Direct

pointing more and used the Taskbar less than single monitor users Hutchings et al. (2004).

Tak’s study has also shown the same results Tak et al. (2009a), and her study also showed

that dual monitor users used Alt+Tab less than single monitor users, and most users rely

heavily on mouse-based (Taskbar and Direct pointing) window switching methods.

25

2. RELATED WORK

2.6 Spatial Memory And Visual Search

In the real world, spatial memory (i.e. the ability to remember where you put some-

thing) helps us in finding things. For example, when we place a document on a pile in our

office, we are likely to remember approximately where that document is for a long time.

People hope that this ability works as well in the digital work environment as it does in

the physical world. Locating a desired target item in a scene with a number of competing

distractors is termed visual search. Visual search is an activity that we usually perform

many times each day, including in the physical world and the digital work environment.

When we want to operate with the target, the first thing is to find the target by visual

search. The performance of visual search can directly impact users experience. Many

researches have confirmed that performance with user interfaces is strongly predicted by

spatial aptitude and many techniques have been introduced to take advantage of human

spatial memory to improve users interactive capabilities.

Recent research in neuroscience has shown that object recognition in primates makes

use of features of intermediate complexity that are largely invariant to changes in scale,

location, and illumination (Tanaka (1997), Perrett & Oram (1998)). It is also known

that object recognition in the brain depends on a serial process of attention to bind

features to object interpretations, determine pose, and segment an object from a cluttered

background Treisman & Kanwisher (1998).

2.6.1 Psychology of Visual Search and Memory

Recognition of place, navigation, and formation of cognitive maps are among the

fundamental activities for any creature, and so it is not surprising that humans have

considerable skills in these areas. For example, Standing and Haber have hinted that

users who matched collections of hundreds or thousands of images are able to recognize the

previously shown images with an accuracy of 90% and more after only one brief viewing

Standing et al. (1970). Shepard has shown that memory for briefly shown pictures is

greater than that for words Shepard (1967), and searching for a picture of a particular

object among many is also faster than searching for the name of that object among

other words PAIVIO (1974). More generally the availability of rich visual cues in the

environment is believed to help in the formation of memory and play a role in developing

26

2.6 Spatial Memory And Visual Search

cognitive maps Searleman & Herrmann (1994); conversely, navigation in environments

without distinctive visual appearance is difficult.

Some evidences have been provided that humans often prefer to use visual skills in

organizing their works Lewis et al. (2004). Although haphazard ”stacks“ of papers

would seem to be an inefficient organizational strategy, stacks allow search based on

the remembered location and appearance of documents, rather than relying on their

more easily forgotten textual labels Lansdale (1988); Maglio & Barrett (1997). Jones

and Dumais Jones & Dumais (1986) provided some cautions on overreliance on spatial

organization. Their evaluation shows that semantic labels provide stronger retrieval cues

than spatial organization alone, but indicate that combinations of semantic and spatial

organization enhance performance.

2.6.2 Spatial Memory and User Interfaces

Prior research has shown that the efficient use of graphical user interfaces strongly

depends on human capabilities for spatial cognition Cockburn (2004). User interfaces

can improve task performance by exploiting the powerful human capabilities for spatial

cognition, this opportunity has been demonstrated by many prior experiments. Egan and

Gomez Egan & Gomez (1985) showed that measures of spatial memory and age provided

the best predictors of how well participants learned to use a text editor. Gagnon Gagnon

(1985) reported the surprising result that computer game scores were not correlated with

measures of hand-eye coordination, but were correlated with scores on a spatial memory

test. Vicente et al. Vicente et al. (1987) and Leitheiser and Munro Leitheiser & Munro

(1995) also concur that measures of spatial ability predict performance in hierarchical file

browsing tasks and in a variety of file management tasks.

Spatial memory is a valuable tool in supporting efficient information organization.

Some researches have shown that spatial organization of information allows efficient access

to items in graphical user interfaces (GUI). For example, Data Mountain Robertson

et al. (1998) is a user interface for document management designed specially to take

advantage of human spatial memory, which has been empirically shown that task times

and error rates were lower when retrieving web pages (from sets of 100 pages) using their

3D Data Mountain than when using a commercial program with a list-based interface

(the standard 2D ’Favorites’ mechanism of Internet Explorer). A subsequent evaluation

27

2. RELATED WORK

of the Data Mountain showed that subjects were able to rapidly retrieve pages six months

after creating their spatial organization Maarten et al. (1999). Furthermore, replacing

the thumbnail images with blank outlines did not detrimentally affect retrieval time.

The document thumbnails were no more effective than icons in a recall test-thumbnails

Maarten et al. (1999). The role of simulated location and context has been explored

in Infocockpit, a multiple-monitor and multimodal interface testbed Tan et al. (2001).

Subjects memorized word pairs shown at various points on a three-monitor display, and

in one condition a ”context” was created by projecting a photograph (e.g. of a museum

interior) as a panoramic backdrop in the test room. The panoramic context greatly aided

later recall Stefanucci & Proffitt (2002).

2.6.3 Visual Search

There is a large body of literature on visual search(e.g. Fisher et al. (1989); Treisman

& Gelade (1980); Wolfe et al. (1989)). Some of these studies have culminated in a set of

guidelines for designers of the digital work environment.

Feature integration theory Treisman & Gelade (1980) assumes that search proceeds in

two stages: an initial stage of pre-attentive search, where low-level features (such as color)

are efficiently extracted in parallel across the full field of view, and a stage of attentive

search, where interesting points identified in the first stage are visited serially. If an item

visually pops-out because a feature pre-attentively guides attention, the time required to

find it is independent of the number of distracters. Numerous studies have thus tried to

identify features that can guide attention. The most certain features are color, motion,

orientation, and size Wolfe et al. (2004). Other likely features are shape and shading.

Shading can enable the perception of depth which pops out Kleffner & Ramachandran

(1992). Not all guiding features have the same visual span, however. For example, motion

can be detected at greater distances from the point of fixation than color Bartram et al.

(2003) or shape. In general, targets far from the point of fixation are detected slower and

less accurately Wolfe et al. (1998). Furthermore it has been found that guiding features

are not truly independent: Random variations of color interfere with the ability to find

a target based on orientation Callaghan (1989) or shape Pashler (1988). The converse

may also be true but to a lesser degree, suggesting that there exists a hierarchy with some

features, such as color, dominating others, such as orientation or shape Callaghan (1989).

28

2.7 Finding obscured Windows

Complex backgrounds may also make it harder to separate items and thus also reduce

search efficiency Wolfe et al. (2002). In the presence of distracters, search becomes more

efficient when target and distracters are less similar. Heterogeneity among distracters

reduces search efficiency, but if distracters can be grouped by some criteria efficiency is

improved Duncan & Humphreys (1989).

Raphael et al. evaluated 9 graphical visual cues (five types of frames and mask around

the target window and four trails leading to the window) for window switching on large

screens Hoffmann et al. (2008). They evaluated each cue in isolation and some cues

combination model. The results have shown that combinations of trails and frames are

more effective than the cues in isolation and resulted in high subjective satisfaction (the

best cues were visually sparse-combinations of curved frames which use color to pop-out

and tapered trails with predictable origin).

2.7 Finding obscured Windows

Selecting a virtual object is a prerequisite for a variety of interaction. The speed

and accuracy to find a window can directly affect the subsequent interaction operation.

But sometimes it is very difficult to find the target window. Pierre Dragicevic Dragicevic

(2004) proposed “fold-and-drop” technique to avoid using traditional techniques (Taskbar,

Alt+Tab and Exposé) to find the target window for Dragging and Dropping object between

overlapping windows. He has hinted traditional techniques are not wholly satisfactory

because they require switching back and forth between two different representation of

the same window set. The biggest issue is that compact window visualization do not

show sufficient information for the target window to be recognizable while they are too

small to contain numerous drop targets. But using the “fold-and-drop” technique it is

sometimes also very difficult to find the target window (The example of Manipulating

Multiple Folds Interaction in Dragicevic (2004)). In the WindowScape system Tashman

(2006), the author allows users to bring all miniatures to the top of the z-order for finding

obscured windows, when users simply drag the cursor over the desktop background and

all miniatures and title bars appear, while everything else tints red to make the miniatures

visually stand out. But if one window’s title bar is fully covered with other windows, this

method is also very poor to find that window.

29

2. RELATED WORK

2.8 Switching Techniques Time Model

Window switching includes two subtasks: first finding the window of interest (visual

search) and second bringing it to the foreground. Each technique requires first a visual

search and second an action to select the window of interest. Then, interaction time

should be Tt(n, op) = Tv(n) + Ta(op), where Tt(n, op) is the total time for interaction

technique; Tv(n) is the visual search time as a function of windows set size; Ta(op) is the

time for action to select the window of interest as a function of the technique used for the

selection.

The time to perform this visual search depends on the number of items and the degree

of visual similarity between these different windows (more similarity requires more time).

The time to select the window of interest depends on the technique used, and the technique

implementation depends on the input devices. It can be a number of keystrokes or a target

selection task.

2.8.1 Hick-Hyman And Fitt’s Laws

The Hick-Hyman Law Hick (1952), Hyman (1953) describes human decision time

as a function of the information content conveyed by a visual stimulus. The amount of

time taken to process a certain amount of bits in the Hick-Hyman Law is known as the

rate of gain of information. Fitts’ Law Fitts (1954) describes the movement time taken

to acquire, or point to, a visual target. Both Hick-Hyman and Fitts’ Laws are derived

from information theory Shannon & Weaver (1949), where the information content H of

an event, measured in bits, is inversely proportional to its probability - likely events have

low information content; unlikely ones, high. The formula for information content is: H

= log2
1
p
, where p is the probability of the event.

The Hick-Hyman Law can be generalized in the case of choices with unequal proba-

bilities pi of occurring, to

T = a+ b×H (2.1)

where H is the information-theoretic entropy of the decision, defined as:

30

2.8 Switching Techniques Time Model

H =
n∑
i

pi log2(
1

pi
+ 1)

where pi refers to the probability of the ith alternative yielding the information-

theoretic entropy, The constants a and b are determined by linear regression. According

to Card et al. Card et al. (1983) , the +1 is ”because there is uncertainty about whether

to respond or not, as well as about which response to make”.

The target acquisition stage is well described by Fitts’ law Fitts (1954) and is widely

verified (for example, Card et al. (1987) and MacKenzie et al. (1991)) and has been

heavily used in HCI research, largely because many expert tasks require low-level object

selection of graphical screen elements or of physical keys. In essence, Fitts’ law states

that objects that are smaller or further away will take longer to acquire than those that

are larger or closer. Equation 2.2 shows MacKenzie’s widely accepted improvement to

Fitts’ law. The movement time, MT, is proportional to the Index of Difficulty, ID. ID is

determined from A, the amplitude of movement and W, the target width, a represents

the start/stop time of the device (intercept) and b stands for the inherent speed of the

device (slope). The constants a and b are determined experimentally by fitting a straight

line to measured data (linear regression). From the equation, we see a speed-accuracy

trade off associated with pointing, whereby targets that are smaller and/or further away

require more time to acquire.

MT = a+ b× ID (2.2)

where:

ID = log2(
A
W

+ 1)

2.8.2 GOMS/KLM

GOMS is a modeling technique (more specifically, a family of modeling techniques)

that analyzes the user complexity of interactive systems. It is used by software designers

to model user behavior. The user’s behavior is modeled in terms of Goals, Operators,

Methods and Selection rules, which are described below in more detail. Briefly, a GOMS

model consists of Methods that are used to achieve Goals. A Method is a sequential list of

31

2. RELATED WORK

Operators that the user performs and (sub) Goals that must be achieved. If there is more

than one Method which may be employed to achieve a Goal, a Selection rule is invoked

to determine what Method to choose, depending on the context Card et al. (1983).

The Keystroke-Level Model (KLM) is a simplified version of GOMS. It was proposed

by Card et al. as a method for predicting user performance Card et al. (1983). The

KLM is an 11-step method that can be used by individuals or companies seeking ways

to estimate the time it takes to complete simple data input tasks using a computer and

mouse. Using KLM, execution time is estimated by listing the sequence operators and

then summing the times of the individual operators. The original KLM had six classes of

operators: K for pressing a key, P for pointing to a location on screen with the mouse, H

for moving hands to home position on the keyboard, M for mentally preparing to perform

an action, and R for system response where the user waits for the system. For each

operator, there is an estimate of execution time. Additionally, there is a set of heuristic

rules to account for mental preparation time.

GOMS and KLM models are limited for two reasons: they are confined to expert

performance of routine tasks, and they use a 1.10s average time for pointing the mouse

to an object on screen, which is crude compared to the precision accessible through the

Fitts’ law.

2.9 Log-based Empirical Methods

Recent researchers have performed many longitudinal studies using logging tools to

collect data. Hutchings (2004) used VibeLog tool to log each window management activity

that occured on mainstream Windows platform. The main feature of VibeLog is the

maintenance of two logs of window system information: events and windows. They logged

these information in order to understand and analyze the display space usage and window

management operation comparisons between single monitor and multiple monitor users

Hutchings et al. (2004). Oliver et al. (2008) also used VibeLog tool to log window

activity (window titles and all the window switching events) and tried to find semantic

and temporal related windows. Then they used related windows to automatically adapt

to users activities Oliver et al. (2006, 2008). Xiaojun et al. (2009) ran VibeLog and

MouseLog tools to log window management activities and mouse activities (including each

window event that occurred, detailed information of each running window and each mouse

32

2.10 Tags

activity) on different levels resolution display and compared users’ activities to understand

the differences and similarities between large high-resolution displays and single or dual

desktop displays for daily work Bi & Balakrishnan (2009). Through this study, Xiaojun et

al. discovered the differences and gave some advice to design new tools to support large

high-resolution displays. Keith Humm (2007) used TrayLog tool to log task switching

actions in Windows XP to understand task switching and then using the understanding

gained to help them to design SCOTZ interface that can better utilize spatial memory in

task switching Humm (2007). Mackinlay and Royer (2004) used the Glass Box Analysis

environment custom software that runs on Microsoft Windows platform to capture a

large amount data including mouse events, keyboard events, windows events, and so on.

They used collected data to analyze window thrashing and presented results as a timeline

D.Mackinlay & Royer (2007). Renaud and Gray (2004) used UAR tool based around

GRUMPS project to collect low-level usage data such as window focus events, mouse click

events and key press events. The GRUMPS system provides a mixture of data describing

different events at the user interface to support a variety of diverse investigations for

HCI practitioner to understand user activities. They also present a novel method of data

cleaning and analytical preparation and techniques to deal with missing actions Renaud

& Gray (2004). Tak et al. (2009) have carried out the longitudinal study to understand

users’ patterns of revisitation to windows and applications Tak et al. (2009a), after getting

the observed results, authors strongly suggested that supporting revisitation should be a

main design goal in window switching tools (see Section 2.2.2.5).

2.10 Tags

A tag is a non-hierarchical keyword or term assigned to a piece of information (such

as an Internet bookmark, digital image, or computer file). This kind of metadata helps to

describe an item and allows it to be found by browsing or searching. Tags are generally

chosen informally and personally by the item’s creator or by its viewer, depending on the

system. Tagging was popularized by websites associated with Web 2.0 and is an important

feature of many Web 2.0 services. 1

1http://en.wikipedia.org/wiki/Tag (metadata)

33

2. RELATED WORK

With the extensive application of Web 2.0 and the emergence and rapid prolifera-

tion of social resource sharing, social bookmarking tools become more and more popular

nowadays, such as BibSonomy 1, Flickr 2, Delicious 3, tagging has become a popular way

to organize the information and help people to recall or search the resources. People

can freely assign tags to any resource object (such as image, video, blog, media, photos,

articles), this mechanism is reshaping the way people manage and access visual content

Li et al. (2010). One might expect tag-based retrieval to be a natural and good starting

point for search. Compared to content-based image retrieval Datta et al. (2008), tag-

based retrieval copes more easily with semantic queries. Moreover, its scalability has been

verified by text retrieval research Bay et al. (2008).

Tags may be a ”bottom-up” type of classification, compared to hierarchies, which

are ”top-down”. In a traditional hierarchical system (taxonomy), the designer sets out a

limited number of terms to use for classification, and there is one correct way to classify

each item. In a tagging system, there are an unlimited number of ways to classify an

item, and there is no ”wrong” choice. Instead of belonging to one category, an item

may have several different tags. Some researchers and applications have experimented

with combining structured hierarchy and ”flat” tagging to aid in information retrieval

Heymann & Garcia-Molina (2006).

Social tagging has been popularized by ubiquitous and diverse content sharing services,

from bookmarks, articles, to photos and videos. Tagging systems have become major

infrastructures on the Web. Tagging is widely used to organize information and allow

users to recall or search the resources. Mark et al. presented a study for searching videos

that showed in the current context, social tags yield an effective retrieval process, whereas

automatically generated metadata do not Melenhorst et al. (2008). They had also found

some evidence that tagging is effective in the retrieval process.

Wetzker et al. have hinted that tags allow users to create tags that annotate and

categorize content and share them with other users, very helpful in particular for searching

multimedia content Wetzker et al. (2010).

SwingStates uses tags on 2D graphical objects to represent groups of 2D objects and

manipulate all the objects in a group at once Appert & Beaudouin-Lafon (2008). The

1http://www.bibsonomy.org/
2http://www.flickr.com/
3http://www.delicious.com/

34

2.11 Summary

SwingStates includes two types of tags: extensional tags, which are explicitly added to or

removed from a shape and intentional tags, which are specified by a predicate that tests

whether or not a shape has this tag. Presto uses tags on documents interaction to tag data

items with any relevant contextual information Dourish et al. (1999). Giornata uses tags

on activities to describe their semantics Voida et al. (2008). Each activity in Giornata

can be annotated with optional, freeform tags to describe its semantics and an activity

can have one or more tags associated with it. An activity’s tags help users to identify

the activity in which they are currently working on and distinguish among background

activities. The active activity’s tags are persistently visible, rendered over the desktop

wallpaper.

2.11 Summary

This chapter has presented a review of window and group switching techniques and

their associated evaluations and users activities of management windows longitudinal

studies based on logging tools. In order to improve the efficiency of windows switching, a

variety of new switching techniques are proposed.

2.11.1 Issues Associated With Log-based Empirical Methods on

Window Switching

To understand window and group switching, researchers have conducted interviews of

a variety of users with a variety of window managers and developed a variety of tools to

observe and record users’ activities. The results have shown users’ use of these window

and group switching techniques, but it is short of detailed analyzing and users feedback

about why and where users use these switching techniques (habit? or window layout? or

other cases?).

2.11.2 Issues Associated With Switching Techniques Evalua-

tions

Many switching techniques have not been evaluated or only informally, and only a few

of them have been evaluated. As a result, it is hard to assess the extent to which ad-

35

2. RELATED WORK

dressed problems actually exist in window/group switching practices. For group switching

techniques which have been evaluated, the authors mainly compared the performance of

their group switching technique to other window switching techniques (e.g. GroupBar,

Elastic Windows), no researchers have compared the performance of their group switching

technique to other group switching techniques, so it is difficult to conclude.

2.11.3 Leveraging Natural Human Capabilities

For switching techniques, the first step is to find the targets, this step depends on

people’s spatial memory and cognition capabilities. For Taskbar, users get the target

window according to the content of button (icon + text) and the location of the button

on the Taskbar; for Alt+Tab, according to the z-order or the icon and the title of the

target window; for Exposé, according to the thumbnail of the target window; for Direct

pointing, according to the appearance of the target window. From the traditional window

switching techniques, the location of window has not been considered closely (Jones et

al. has hinted name + location is better than name-only and location-only to recall an

object Jones & Dumais (1986)) and the appearance of the target window is used only

in the Direct pointing (when the target window is invisible, most time this technique is

not used). Replacing to use the appearance of the target window, users need to use other

representations of the same window to find the target window, users require switching

back and forth between two different representations of the same window set.

2.11.4 The Combination of Implicit and Explicit Grouping Tech-

niques Are The Best Way

Grouping windows techniques fall into two main categories: implicitly defined group

and explicitly defined group. The primary limitation of implicitly defining a group is that

they can incorrectly predict the user’s intention and that users can fail to understand

or anticipate the system’s adaptation. The combination of our analysis of the related

work on switching techniques, we believe such automation is critical (implicit grouping

technique), as users are typically disinclined to organize their personal information up-

front Bernstein et al. (2008a) and The new switching techniques should allow users to

control groups by manual (explicitly grouping technique), so the combination of implicit

36

2.11 Summary

and explicit methods is the best way. The strategies for implicitly defining group are

very important, this can effectively reduce users manual control, but a variety of used

strategies are short of theory foundation. The simple and good way is to analyze users’

activities to build the rules for creating groups.

2.11.5 Window Tagging

Tags was used in a variety of fields, including document management, activity, 2D

graphics, image searching, and so on. But this concept and mechanism are never used to

windows management, we explore the concept of window tagging instead of groups-as-lists

to support window switching.

37

Chapter 3

Log-Based Longitudinal Study

This chapter describes a log-based longitudinal study, a log tool called WindowsOSLog

was developed to record user window management activity in mainstream Windows op-

erating system. It can record low level interactions such as “Alt+Tab pressed” and “the

right mouse button pressed” as well as high level interactions such as windows selections.

The activity of 26 participants was monitored by WindowsOSLog during 5-weeks. We

describe the results and analysis of this study in details.

3.1 Introduction

Researchers investigating techniques for improving window switching would benefit

from a thorough empirical characterization that describes how current window manage-

ment systems are used by people in daily activities. Insights into the windows used and

patterns of window switching would provide evidence and motivation for the design and

development of new window switching techniques.

The log-based longitudinal study described in this chapter provides a foundation to

help designers to design new window switching techniques. This chapter is organized

as follows. To begin, we describe the study objectives, participants and methodology.

We then detail the design and implementation of the longitudinal study to collect data

from users. These data explicitly detail their window activities (including a questionnaire

investigation). Finally, we analyze this data to gain knowledge of how users manage their

windows and tasks.

38

3.2 Experiment Objectives

3.2 Experiment Objectives

The aims of this study are to understand how users manage their windows. On the

one hand, the aims are to identify trends observed within the participant group that can

be used alongside data from other studies (see Related Work), and to provide insight into

the causality of these trends. On the other hand, we want to get data that have not been

analyzed by other studies. Our aims include two ways:

1. Quantitative Goals: concerning quantifiable measurements of user activity

2. Qualitative Goals: using log data and subjective responses to help explain and

validate our measurements

3.2.1 Quantitative Goals

We will collect and analyze log data to provide statistical evidence to answer the

following questions:

1. How many windows are simultaneously opened?

Do users only keep the windows/applications about the current task or keep all

previously opened windows/applications?

2. Which window switching techniques do users often use?

Do users have some predilections to use some window switching techniques?

3. How many windows/applications do users frequently use?

Do users often switch to a large or a small number of windows/applications?

4. How do users arrange their windows/applications on the desktop?

Do users often change window size or use default window size?

5. How many visible windows/applications do users frequently keep?

Do users often keep some windows visible to quickly access or in order to get more

contents simultaneously visible?

6. How much time each window/application is active?

Do users frequently switch windows/applications?

39

3. LOG-BASED LONGITUDINAL STUDY

3.2.2 Qualitative Goals

We also collect subjective data from participants by means of a questionnaire to be

used in conjunction with the log data to both validate the log data and answer. Be-

cause it is sometimes different to understand users’ strategies only through log data, the

questionnaire is a good complementarity to understand users activities:

1. Which factors can affect the usage of window switching techniques? What do user

depend on when they choose window switching techniques?

The factors include: Position, Window Visibility, Recency Order, Number of win-

dows and device used to switch (Mouse/Keyboard)

2. Which factors do users remember best for a window?

The factors include: Content/Title/The type of application, Position, Recency Or-

der,...

3. When a technique is used and a wrong window/application appear, what technique

is used next?

the same technique or another one

4. How often windows/applications are open and closed, or windows are switched?

Creating/Closing Event vs. Switching Event

5. How individual work sessions differ?

6. Do users often coordinate windows to finish a task or do they only keep default

window size?

7. Getting general comments about window switching techniques;

Problems, improving, new functions?

Our questionnaire contained also 5-point Likert scales for rating Alt+Tab, Taskbar, Direct

pointing, including speed, accuracy, ease of use and user preference.

40

3.3 Longitudinal Study

3.3 Longitudinal Study

In order to fully understand users activities, we employed a broader user population

and a longer period of time. On the one hand users of desktop computers are increasingly

turning to large displays and multiple-monitor setup (over the past decade, the default size

of a desktop monitor has increased from 15” to 21” Grudin (2001)), and on the other hand

the display of laptop has not changed in the same way. Previous studies mainly focused on

the differences and similarities of the users for different monitor configuration conditions

(single monitor users vs. multiple monitor users) and they rarely took into account the

differences between the different display resolution with the same monitor configuration

condition. Taken into account this situation, our study employ some users who had a

wider range of differences in monitor resolution (from 1024 x 768 to 1680 x 1050). We

would like to understand whether there are some similarities or differences between these

users. Taken into account that some users simultaneously use multiple monitor and single

monitor (laptop) in their daily work, our study includes those participants and we want

to understand the differences and similarities of the same user who simultaneously works

on single monitor and multiple monitor computer.

3.3.1 Definition

Windows OS uses “click-to-focus focus model” (”focus follows click”), that means the

window clicked by the mouse can get focus and becomes the active window (i.e. the only

window receiving user input). It is brought to foreground and receives keyboard input.

We use input focus to refer to the window that has system focus, i.e. the window that

exclusively receives input from the user. We use user focus to refer to the window that

the user is actively viewing, which may or may not have input focus.

For a window w, there are several ways to make w active (also called switching to w),

including clicking on any part of w (Direct pointing), pressing a key combination Alt+Tab

and selecting w from the resulting window list, or clicking on w’s Taskbar button. Taskbar

is a special area that aids in window management by displaying a list of buttons (icon +

title), one for each application window. The user has the option of making the Taskbar

always on top so that other windows cannot occlude it, or autohide, so that Taskbar

slides out of focus (and out of sight) when not being activated. Special operations for

windows include minimize (which Myers refers to as iconify Myers (1988)) which hides

41

3. LOG-BASED LONGITUDINAL STUDY

a window from view but maintains its Taskbar button, and maximize, which grows a

window to the size of its current monitor. Windows can overlap, two windows are said

to overlap or intersect if the windows share at least one common pixel. Two windows

are adjacent if a section of each of their borders touch (so that there are no pixels in

between the two windows), but the two windows do not intersect. If two windows are

intersecting or overlapping, that covered windows have some valuable information which

is invisible for user. If the user wants to browse or check the information, (s)he must

move the upper window or bring the covered window to the front. A key attribute of a

window is its z-order, each window is assigned an integer (z) as its depth; the window

with the highest z-order is at the top of window stacking and the window with the lowest

z-order is at the bottom of window stacking. A window has a width (x-dimension), height

(y-dimension), and a depth (z-dimension), all of which can be manipulated directly by

the user. A window can be repositioned in many ways (width, height and depth, one of

which is changed). Resize means to change the height or width of a window, move means

to change the left-to-right or up-to-down position of a window, and stacking means to

change the z-order of a window.

An open window can be invisible to the user for two main reasons: (1) the user has

hidden the window, for example by minimizing it, and (2) the window is occluded because

another window or set of windows higher in the z-order obscure it.

We used the same definition as Oulasvirta & Saariluoma (2006) for sessions that

are periods of work within a day, separated by a long interruption. We used an idle

time tracker to record each time the computer has received no input. Because the large

majority of our participants are Ph.D student, engineer (from our lab), we will define long

interruption as anything longer than 30 minutes as an acceptable time for a meeting or

lunch break.

3.3.2 Participants And Apparatus

26 participants participated in this study with a mean age of 27 (SD = 2.4), 18 par-

ticipants (Group1) are from within the computer science department (8 Ph.D. students,

5 software engineers, 1 researcher, 4 electronic engineers), the remaining 8 participants

(Group2) were students, but they do not come from the computer science department.

Most of them use computers more than 8 hours every day. All participants are Windows

42

3.3 Longitudinal Study

Operating System users, including Windows XP (22), Vista (2), Window 7 (2). Display

resolution ranged from 1024 x 768 to 1680 x 1050 for single monitor participants, and

from 1024 x 768 to 1680 x 1050 per monitor for dual monitor participants. They were 12

participants using dual monitor in Group1. All participants in Group2 are single monitor

users. The study duration is over 5-weeks (eight of them is over 10-weeks). The detailed

information of participants is displayed in the Table 3.1.

3.3.3 Design

Participants were categorized into different groups according to their normal comput-

ing environments. We first divided participants into two groups according to their monitor

configuration condition: single monitor or dual monitors users. We then divided single

monitor participants into two groups according to their display resolution. Taking into

account that some participants simultaneously use single monitor and multiple monitor

systems, we specially considered these participants as one group.

We use a tool we called WindowsOSLog to log window management activity in main-

stream Windows operating system by means of Windows messages and hooks. After

running WindowsOSLog, then we collected users data and use a statistical analysis to

understand users activities. A questionnaire investigation helped us to understand users

activities.

3.3.3.1 WindowsOSLog

The WindowsOSLog application was built in Visual C# and can run on current main-

stream Windows platform. It hooks the Win32 API to listen to and publish window

events. The tool is used to log windows system information (events and windows) by

means of Windows messages and hooks. Static configuration information is collected at

the first startup, including the version of operating system, physical memory, the number

of monitors and coordinates of each monitor registered by the operating system (Table

3.2).

3.3.3.2 Log Information

The event log has an entry for each window management activity that occured. These

activities include window opening and closing, window activation, focus, movement, re-

43

3. LOG-BASED LONGITUDINAL STUDY

Table 3.1: Participants Information

Par. Sex Age Profession Display Resolution OS

1 F 24 geoscientist 1024x768 Windows Vista

2 M 26 computer scientist 1024x768 Windows XP

3 M 26 electronic engineer 1024x768 Windows Vista

4 M 25 mechanical engineer 1280x800 Windows XP

5 F 25 geoscientist 1280x800 Windows 7

6 F 24 geoscientist 1366x768 Windows 7

7 F 31 civil engineer 1280x1024 Windows XP

8 M 29 electronic engineer 1280x1024 Windows XP

9 F 29 civil engineer 1280x1024 Windows XP

10 M 26 electronic engineer 1280x1024 Windows XP

11 M 32 civil engineer 1280x1024 Windows XP

12 M 29 civil engineer 1680x1050 Windows XP

13 M 26 electronic engineer 1680x1050 Windows XP

14 M 24 computer scientist 1680x1050 Windows XP

15 M 25 computer scientist 1280x1024/1280x1024 Windows XP

16 M 25 computer scientist 1280x1024/1280x1024 Windows XP

17 M 26 computer scientist 1280x1024/1280x1024 Windows XP

18 M 23 computer engineer 1280x1024/1280x1024 Windows XP

19 M 27 computer scientist 1280x1024/1280x1024 Windows XP

20 F 26 computer scientist 1280x1024/1280x1024 Windows XP

21 M 25 computer scientist 1280x1024/1280x1024 Windows XP

22 M 27 computer scientist 1600x1200/1280x1024 Windows XP

23 F 27 computer scientist 1600x1200/1280x1024 Windows XP

24 M 32 computer scientist 1600x1200/1280x1024 Windows XP

25 M 26 computer scientist 1680x1050/1280x1024 Windows XP

26 M 27 computer scientist 1680x1050/1280x1024 Windows XP

44

3.3 Longitudinal Study

Table 3.2: Example of user configuration information.

Operating System Version: Windows XP Professional Service Pack 3 v5.1.2600

Physical: 2042 MB

Display Number: 2

Primary Screen Resolution : 1600 * 1200

Second Screen Resolution : 1280 * 1024

sizing, minimizing, maximizing, and so no. The window state includes window’s ID

(identified by window’s handle), title, host application, coordinates, z-order, monitor in-

formation, size state, styles, class name, process ID and executable name of the application

(e.g. Explorer.EXE). The size state has three kinds of cases: maximized, minimized, nor-

mal. The window styles define a series of attributes of the window, including whether

the window is (1) visible, (2) a popup window (typically used for dialog boxes), (3) a

toolbar, and (4) always on top. The monitor information identifies which monitor the

window locates on (the window may locate on more than one monitor, but this case is

rare). For single monitor system, it always returns the main monitor ; for multiple moni-

tor system, the result is calculated by the coordinates of the window and coordinates of

monitor system (each monitor has a coordinates range).

Because the switching events are not included in the event generated by the Windows

OS, and there is no window-switching and task-switching interface provided by Windows

OS, we track the input separately (thanks to alternative input devices abstracted by the

Windows OS, so the input type too appear as one of keyboard or mouse). We infer the

device used for switching by analyzing the keyboard and mouse events.), and attribute

the most recently generated input event to the window event, taking care to clear the

most recent input event as appropriate. We also used activation event to indicate a

window switch Humm (2007). If a user activates a window by using the key combination

Alt+Tab, the switching technique is Alt+Tab; if a user activates a window by clicking

in the Taskbar region, the switching technique is Taskbar ; if a user activates a window

by clicking outside Taskbar region, the switching technique is Direct pointing ; if a user

activates a window by using the key combination Alt+Esc, the switching technique is

Alt+Esc;when a window/dialog automatically pop-ups (e.g. message prompt dialog), the

switching technique is OtherSW.

45

3. LOG-BASED LONGITUDINAL STUDY

Table 3.3: Description of the WindowsOSLog output stream

Name of Event Description Example Value

Event Number Identify Event 3

Number of Windows Current number of windows opened 8

Number of visible Current number of visible windows 3

windows

Event Name CREATE, ACTIVE, etc. ACTIVE

Switching Technique which techniques are used Taskbar

to bring this window to the foreground

HWND Win32 window handle 132312

Title Current title of window Windowstack

Class Name Current window class name ExploreWClass

Process Name of executable Explorer.EXE

Name which owns the window

Position Current window coordinates (-4,-4)-(1684,1024)

Size State maximized/minimized/normal Normal

3.3.3.3 Information Incompleteness

For some applications, especially multi/tabbed document interface (MDI/TDI) appli-

cation such as Firefox, it is impossible to generate correct message streams or window sets

by means of OS windows message mechanism (it uses its own internal message mechanism

to operate). However it does not hinder us to obtain their window titles, positions and

other information. Meanwhile for technical reasons such as OS optimization of event gen-

eration and dispatch, a few windows may fail to generate correct message streams (such

as they fail to produce the activation event), but such cases are extremely infrequent

(Hutchings et al. (2004), Humm (2007)), therefore they will not affect our statistical

results.

3.4 Results And Analysis

We are interested in understanding how users operate and manage windows with

respect to the type digital work environment (operating system, single monitor, dual

46

3.4 Results And Analysis

monitors, display resolution). We hope to find some similar (or different) activities by

analyzing users actions in order to design and develop better interface to improve users

experience.

When summarizing data from many users, it is important to not let one participant’s

actions be lost or overshadow by those of the other participants. Statistics are generally

reported as the mean of participant means, this value is calculated by first determining

the mean value for each participant and then averaging those means to calculate a value.

In descriptive statistics, box-and-whisker charts 1 provide a convenient way of graphically

depicting groups of numerical data through their five-number summaries: the smallest

observation (sample minimum), lower quartile (Q1), median (Q2), upper quartile (Q3),

and largest observation (sample maximum). These are especially useful when users show

diverse behavior. For clarity, Figure 3.1 shows the values that are used on box-and-

whisker charts in this dissertation. The minimum, lower quartile, median, upper quartile

and maximum values are displayed, some charts will also illustrate mean values with the

use of a diamond. In the following parts, we present results that we got from the log.

0

2

4

6

8

10

12

14

16

1

Maximum

Mimimum

Median
Mean

Lower quartile

Upper quartile

Figure 3.1: Example box-and-whisker chart.

1http://en.wikipedia.org/wiki/Box plot

47

3. LOG-BASED LONGITUDINAL STUDY

{ {

Single Monitor Dual Monitor

1024*768 1280*1024

{
1280*1024/1280*1024

{
1680*1050/1280*1024

{

1280*800

{
1680*1050

Participants

0

5

10

15

20

25

30

35

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

Th
e
N
um

be
r o

f W
in
do

w
s

Figure 3.2: The number of opened windows on the desktop by each participant (some

participants did not close down their computers, so some minimum values for the number

of windows are not zero).

3.4.1 Number of windows on the desktop

The number of windows on screen is an important factor that can impact users’ activ-

ities. Sometimes this factor is even decisive Kumar et al. (2007). In this subsection, we

present information on how many windows users often keep on the desktop with respect

to monitor configuration.

Figure 3.2 shows that the number of windows opened by each participant during this

study. For single monitor user, the difference among the mean number of windows opened

is small with display resolution from 1024 x 768 to 1280 x 1024, but there was a difference

for 1680 x 1050, for which users opened more windows simultaneously (the mean number

of windows opened is 10) (Table 3.4).

Many researches have indicated that multiple monitor systems can help users be more

productive Czerwinski et al. (2003), one reason is that users who used multiple monitor can

open more windows simultaneously, reducing the amount of resizing, repositioning, and

48

3.4 Results And Analysis

Table 3.4: Users opened more windows on large display for single monitor users (s.d. =

standard deviation).

Resolution Mean Median s.d. Min Max

1024 * 768 5.7 5.0 0.01 0 31

1280 * 800 4.9 5.0 0.02 0 18

1280 * 1024 5.1 5.0 0.12 0 18

1680 * 1050 10.4 10.0 0.02 1 29

other window-management activity. The study data in Table 3.5 supports this conclusion,

the mean number of windows opened was 7 for single monitor user and 10 for dual monitors

user. Users also kept more windows on main monitor than on secondary monitor for the

dual monitors users (Table 3.6).

Table 3.5: Users opened more windows on dual monitor system than on the single monitor

system (s.d. = standard deviation).

Display Mean Median s.d. Min Max

Single monitor 6.8 5.9 0.01 0 31

Dual monitors 10.3 11 0.02 0 24

Table 3.6: Users opened more windows on main monitor than on secondary monitor for

dual monitor system users (s.d. = standard deviation).

Display Mean Median s.d. Min Max

Main monitor 6.9 7.0 0.01 0 18

Secondary monitor 3.3 3.0 0.01 0 11

3.4.2 Window Event

This analysis is conducted to understand users basic window management activities,

such as which window management activity frequently happens, whether users often move

windows or minimize or maximize windows, and so on.

49

3. LOG-BASED LONGITUDINAL STUDY

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

Create Activate Destroy
Windows Event

M
ea
n
pe

rc
en

ta
ge
 o
f t
ot
al
 e
ve
nt
s

Single Monitor

Dual Monitors

Figure 3.3: Cross participant means of the percentage of windows Event: Create, Active

and Destroy. Error bars show standard error (the standard error is too small for dual

monitors, so it may not display on the chart).

Figure 3.3 shows that window activation activity happens more frequently than win-

dow creation and destruction under both single monitor and dual monitors conditions

(A previous research has shown than window switching took place on average once 20.9s

on large displays Hutchings et al. (2004)). The frequency of window activation makes

the switching techniques to be particularly important for a window management system,

because its efficiency directly affects the efficiency of window management and the user

experience.

For dual monitors users, they could coordinate windows between two screens, so the

window move event should be more frequent than single monitor users. Our data prove

this result (Figure 3.4). We also observed that the single monitor users rarely moved

windows and there was no substantial difference for maximize/minimize event between

single monitor and dual monitors users.

50

3.4 Results And Analysis

0%

5%

10%

15%

20%

25%

Move Maximize/MinimizeWindows Event

M
ea
n
pe

rc
en

ta
ge
 o
f m

ov
e
an
d

m
ax
im

iz
e/
m
in
im

iz
e
ev
en

t i
n
th
e

w
in
do

w
 a
ct
iv
at
io
n
ev
en

t
Single Monitor

Dual Monitors

Figure 3.4: Cross participant means of the percentage of window move and maxi-

mize/minimize event in window activation event. Error bars show standard error.

3.4.3 Window Switching Techniques

We analyze the main four window switching techniques 1 currently used to switch

windows: Direct pointing, Taskbar, Alt+Tab, Alt+Esc. This analysis was conducted to

determine whether users made similar or divergent use of those techniques.

3.4.3.1 Window Switching Techniques Used to Switch Windows

Figure 3.5 shows single monitor users’ use of those techniques and Figure 3.6 shows

dual monitors users’ use of those techniques. We also observed some important results

from this data. First, there is substantial difference among users in their use of those

techniques. All users never used Alt+Esc. To understand why users did not use it, we

checked this problem in the questionnaire and we got the reason that most users (92.3%)

did not know this technique, only two users knew it, but they thought it was not useful

for them.

Second, we observed that users used less Alt+Tab than Direct pointing and Taskbar

1OtherSW switching technique data is removed from this analysis

51

3. LOG-BASED LONGITUDINAL STUDY

0%

10%

20%

30%

40%

50%

60%

70%

80%

1 2 3 4 5 6 7 8 9 10 11 12 13 14
Participants

Th
e
pe

rc
en

ta
ge
 o
f s
w
itc
hi
ng

te
ch
ni
qu

es

Direct pointing Taskbar Alt+Tab Alt+Esc

Figure 3.5: The percentage of window switching activated by Direct pointing, Taskbar,

Alt+Tab and Alt+Esc for 14 single monitor participants.

0%

10%

20%

30%

40%

50%

60%

70%

80%

15 16 17 18 19 20 21 22 23 24 25 26
Participants

Th
e
pe

rc
en

ta
ge
 o
f s
w
itc
hi
ng

te
ch
ni
qu

es

Direct pointing Taskbar Alt+Tab Alt+Esc

Figure 3.6: The percentage of window switching activated by Direct pointing, Taskbar,

Alt+Tab and Alt+Esc for 12 dual monitors particioants.

52

3.4 Results And Analysis

under both single monitor and dual monitors environment. Some users (5 female partici-

pants and three male participants) reported that they could not understand very well this

technique, because the order of presentation of items in Alt+Tab always changes, they do

not like this technique. Another reason is that some users (57.7%) prefer to use mouse to

switch windows, but no similar function is integrated into mouse.

Third, we observed that there was a difference among users in their use of Alt+Tab.

Male users use it more frequently than female users, and all 7 female users use it very

lightly or not at all (less than 1.87%, three of them did not use it). Ten male users also

use it very lightly or not at all (less than 1.0%, two of them did not used it). Three male

users use it fairly often (7.72%) and one single monitor user use it frequently (23.64%).

When users used Alt+Tab technique to switch windows, the average number of pressing

tab of all users is 1.4 by one time (Table 3.7), this result hints that users often use this

technique to switch between the current window and the last active window. A previous

research has also confirmed that Alt+Tab was very effective in this case Kumar et al.

(2007). Figure 3.7 shows the number of pressed tab key for each user.

Table 3.7: The average number of pressing tab when users used Alt+Tab technique (s.d.

= standard deviation).

Display Mean Median s.d. Min Max

Single monitor 1.3 1.2 0.04 1 13

Dual monitors 1.6 1.2 0.07 1 26

Total 1.4 1.2 0.04 1 26

Finally, there is a difference in the percentage of both using Direct pointing and Taskbar

technique to switch windows between single monitor and dual monitor users (Figure 3.8).

One main reason is that dual monitor users often switch from one display’s window to

other display’s window, when a window is visible, users often use the mouse to click.

Another reason is that dual monitor users often open more windows simultaneously (on

average 10), and recent research has hinted that the Taskbar has potential usability prob-

lems Hutchings & Stasko (2003) (Chapter 2 section 2.2.2.1). Five dual monitors users

reported that sometimes using Alt+Tab could lead to confusion, because they often use

direct pointing to switch between one display and another display, so when they used

53

3. LOG-BASED LONGITUDINAL STUDY

0

2

4

6

8

10

12

14

16

18

2 4 10 11 12 13 14 16 17 18 20 22 24 25 26

N
um

be
r o

f p
re
ss
in
g
ta
b
ke
y
w
he
n
us
in
g
Al
t+
Ta
b

Single Monitor Dual MonitorParticipants

Figure 3.7: The number of press of the tab key when using Alt+Tab switching tech-

nique (because some values (min, lower quartile, median) are equal, so it results in some

degenerated charts).

Alt+Tab to switch among windows, they might neglect/forget clicking action, and then

get a wrong window.

3.4.3.2 Cost of Error

When users use one technique and get a wrong window, most of the time they do not

change the technique, especially when they use Alt+Tab and Taskbar. When users used

Alt+Tab, if they got a wrong window, they said that they would still use Alt+Tab to

switch window, but they then could press the tab key slowly and more carefully to find

the desired window. When users use Direct pointing, if they switch a wrong window, this

might be fatal, because this can lead to make the desired window invisible. In this case,

users often choose Taskbar technique to switch to the desired window.

Through our investigation, some factors can impact users to use switching techniques,

such as: window visibility, current users work status (i.e. users are using mouse to

54

3.4 Results And Analysis

0%

10%

20%

30%

40%

50%

60%

70%

80%

Direct pointing Taskbar Alt+Tab Alt+Esc

Window Switching Techniques

M
ea
n
pe

rc
en

ta
ge
 o
f t
ot
al

sw
itc
hi
ng

Single Monitor

Dual Monitors

Figure 3.8: Cross participant means of the percentage of window switching activated by

Direct pointing, Taskbar, Alt+Tab and Alt+Esc. Error bars show standard error.

do something, then they may use mouse to switch; if users are using keyboard to do

something, they can use Alt+Tab to switch).

3.4.3.3 Types of Switching

Although many researchers, organizations and individuals have proposed many group

switching techniques, users rarely used these group switching techniques to manage their

windows (only two users used VDMs, but not often). The main reason is that many

of those systems were only prototype systems and there were no evaluation in any strict

ways. However many users (65.4%) reported that they needed group switching techniques

to support them to organize and manage their windows. Users reported that they needed

at least three types of switching: 1) between windows; 2) between groups; and 3) between

selected windows of groups. So that when we design new window switching techniques,

those types of switching should be supported.

55

3. LOG-BASED LONGITUDINAL STUDY

3.4.3.4 Tabbed Windows vs. Group Windows

When the number of windows on the Taskbar reaches a threshold value (see Chapter

2 Section 2.2.2.1), the title on each button can not be read and only the icons remain.

In this case, users often change the default configuration of Taskbar to use two rows to

display items. Most users (73.1%) do not like the group windows function of Taskbar

(Figure 3.9). They prefer to use tabbed windows technique (Figure 3.10) 1.

They made this conclusion mainly based on the experience of their use of some browsers

based on tabs metaphor (e.g. Firefox 2 and Google Chrome 3). However there is an

important difference between windows and the web pages. Windows often need to be

resized, moved, and rearranged in order to make the best use of their contents and of the

rest of the desktop. When users browse the web, they can not do the same operations on

tabs. One of the big disadvantages of tabs compared to windows is that it is not possible

to see the content of two tabs simultaneously by default (although some applications can

support this operation). With windows, it is possible to arrange two windows side-by-

side, or only partially overlapping. While this is useful in some cases (comparing two

documents, typing in one windows while using another for reference, etc.), it is not often

needed when browsing the web. We can not confirm whether users like it or not in desktop

usage.

Six windows were grouped in one tab

Figure 3.9: Group Windows on Taskbar.

1The first application for Windows OS that introduced tabbed browsing was QT Tab Bar (http:

//qttabbar.wikidot.com/) which added that functionality to Windows OS Explorer, but no participants

used this tool and there was also no any study for this tool.
2http://www.mozilla.com/en-US/products/
3http://www.google.com/chrome

56

http://qttabbar.wikidot.com/
http://qttabbar.wikidot.com/

3.4 Results And Analysis

Six windows were tabbed in one window

Figure 3.10: An example of tabbed windows technique.

3.4.4 Window Visibility

One of the major advantages of a multitasking window system is the ability to both run

and display many applications simultaneously. Since screen space is a limited resource, it

seems likely that any opened window with some part visible at a particular point in time

is of some importance to the user. We thus developed a line of analysis that focus on this

measure of importance by calculating the percentage of visible area of a window for each

window.

3.4.4.1 Number of Visible Windows

Users of multiple monitor system are expected to keep more windows visible simultane-

ously than single monitor system users Hutchings et al. (2004), and our results confirmed

that expectation (Table 3.8). Here, we used the same definition as Hutchings et al. (2004)

for window visible that a window is not entirely covered (not obscured).

Figure 3.11 shows that the number of visible windows kept simultaneously during this

study. For single monitor user, the difference among the mean number of visible windows

is small with display resolution from 1024 x 768 to 1280 x 1024, but there is a difference

for 1680 x 1050, where users kept more windows visible simultaneously for 1680 x 1050.

Table 3.8: Users kept more windows visible simultaneously on dual monitor system than

on the single monitor system (s.d. = standard deviation).

Display Mean Median s.d. Min Max

Single monitor 1.8 1.5 0.02 0 11

Dual monitors 4.2 4.1 0.01 0 14

57

3. LOG-BASED LONGITUDINAL STUDY

0

2

4

6

8

10

12

14

16

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

Th
e
nu

m
be
r
of
 v
is
ib
le
 w
in
do

w
s

{ {

Single Monitor Dual Monitors

1024x768 1280x1024
{

1280x1024/1280x1024

{
1680x1050/1280x1024

{

1280x800

{

1680x1050

Participants

Figure 3.11: The number of visible windows kept on the desktop by each participant.

3.4.4.2 Visible Windows vs. Window Switching Techniques

The visible window is very meaningful for users. On the one hand users can see

information from them, and on the other hand when users want to switch to them,

it is easy to use Direct pointing technique to finish this action. Our results (Figure

3.12 and 3.13) confirmed this deduction. When the target window is visible, users used

Direct pointing more than other techniques under both single monitor and dual monitors

conditions, when the target window is invisible, users mainly used Taskbar technique (a

few users also used frequently Alt+Tab to switch windows) and Direct pointing was not

used in this case.

The visible windows can reduce users visual search time. In this situation users do

not need to switch back and forth between two different representations of the same

window set (e.g. when users use Exposé to switch windows, users need to switch back

and forth between windows and thumbnails) (A previous search has shown that there was

58

3.4 Results And Analysis

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

Participants

M
ea
n
of
 th

e
pe

rc
en

ta
ge
 o
f s
w
it
ch
in
g

te
ch
ni
qu

es
 w
he

n
th
e
ta
rg
et
 w
in
do

w
 is

vi
si
bl
e

Direct pointing Taskbar Alt+Tab

Figure 3.12: Mean of the percentage of window switching techniques to switch windows

when they are visible.

a potential problem for users to switch back and forth between different representations

of windows Dragicevic (2004)). Another advantage to keep windows visible is to help

users remember their positions. This can also help users to quickly revisit them (spatial

memory).

3.4.5 Spatial Memory

People’s spatial memory ability is a valuable characteristic in supporting efficient in-

formation organization. Some evidences have been provided that humans often prefer to

use this skill to organize their tasks in the workspace Lewis et al. (2004) (See Related

Work). We would like to understand what content people often remember when they

use some windows and whether they hope to use this information to help them to revisit

those windows. We finished this study through our questionnaire investigation.

Users reported that they could often remember the topic of their tasks, and also

remember the main application (e.g. Word, Excel), but it was difficult to remember

which windows they used for their tasks, sixteen of them said that they did not take

into account this matter. For the current task, they reported that they often remember

some keywords of related windows, such as partial characters from the window’s title and

59

3. LOG-BASED LONGITUDINAL STUDY

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

Participants

M
ea
n
of
 th

e
pe

rc
en

ta
ge
 o
f s
w
itc
hi
ng

te
ch
ni
qu

es
 w
he

n
th
e
ta
rg
et
 w
in
do

w

is
 in
vi
si
bl
e

Direct pointing Taskbar Alt+Tab

Figure 3.13: Mean of the percentage of window switching techniques to switch windows

when they are invisible.

window’s content. They could also remember the type and icon of applications that they

used frequently. The position can become an important factor for them to switch when

windows are visible. Almost all users said that they did not want to have the burden

of memory, so the stability is very important to them. When designing new switching

techniques, designers should adopt the stability strategy as much as they can to reduce

the users’ memory burden. This can be easy to explain why users used Alt+Tab technique

less often. From this study, we can get and sort users’ memory factors used to switch

windows is: content (some semantic keywords, including title, window’s content) > the

type of application > position > recency order. This is very useful as we can use this

information to help users to quickly revisit the desired windows.

3.4.6 Windows Layout

Aforementioned, we have mentioned that users have different ways in which they

organize screen space, and window switching techniques heavily depends on the windows

layout. To understand how users organize their windows on the desktop, we need to

analyze each window layout represented by users. A window layout can be summarized as

these three main factors: 1) the number of windows; 2) window size; and 3) relationship

60

3.4 Results And Analysis

between window position (e.g. the order of window z-order, overlapping). We have

described the factor of the number of windows in section 3.4.1, so we are goning to

analyze in detail the other two factors in the following subsection.

3.4.6.1 The Distribution of Window Size

Hutchings has shown that many users often show just a small portion of a window

to use its information Hutchings & Stasko (2004). Meanwhile many applications use by

default a small window to display information, such as instant messenger application,

where users set the size and position of those windows, but rarely maximize. We use the

concept SmallWindow to define the window size is less than 25% of screen resolution (the

total pixels of the window is less than 25% screen pixels), LargeWindow to define the per-

centage is more than 75% and NormalWindow to define the percentage between 25% and

75%. We could understand the distribution of different sizes of window and know whether

there are some differences among SmallWindow, NormalWindow and LargeWindow.

Figure 3.14 and 3.15 show that the distribution of SmallWindow, NormalWindow

and LargeWindow in single monitor system and dual monitors system. We also observed

some important results from this data. First, we observed that there were some differences

among users in their use of different sizes of windows. Five users used the proportion of

large window more than 70% of the time, six users used them around 60%, two users

less than 10%, nine users used between 20% and 30% of the time. Twelve users used the

proportion of small window less than 20% of the time, and nine users used them more

than 40% of the time. Second, single monitor users used more large windows and less

small windows than dual monitors users (Table 3.9).

3.4.6.2 Windows Group

Hutchings simply divided users into three groups by interviewing users how to orga-

nize screen space Hutchings & Stasko (2003): Maximizers, Near maximizers and

Careful coordinators (Chapter 2 section 2.5). This simple categorization can not

effectively detail real situation of users on how they organize windows. Users often work

on more than one task simultaneously, and they often coordinate some windows to finish

their tasks (Careful coordinators represent 50% of all users Hutchings & Stasko

(2003)).

61

3. LOG-BASED LONGITUDINAL STUDY

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

1 2 3 4 5 6 7 8 9 10 11 12 13 14
Single Monitor Participants

M
ea
n
of
 th

e
pe

rc
en

ta
ge
 o
f t
hr
ee

ty
pe

s
w
in
do

w
 s
iz
e

SmallWindow

NormalWindow

LargeWindow

Figure 3.14: Mean of the percentage of SmallWindow, NormalWindow and LargeWindow

accounts for the proportion of the total number of windows for single monitor users. Error

bars show standard error.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

15 16 17 18 19 20 21 22 23 24 25 26
Dual Monitors Participants

M
ea
n
of
 th

e
pe

rc
en

ta
ge
 o
f t
hr
ee

ty
pe

s
w
in
do

w
 s
iz
e

SmallWindow

NormalWindow

LargeWindow

Figure 3.15: Mean of the percentage of SmallWindow, NormalWindow and LargeWindow

accounts for the proportion of the total number of windows for dual monitors users. Error

bars show standard error.

62

3.4 Results And Analysis

Table 3.9: The distribution of window size.

Display Window size type Mean Median s.d. Min Max

Single monitor

SmallWindow 25.3% 16.7% 0.05% 0% 100%

NormalWindow 20.6% 16.7% 0.04% 0% 100%

LargeWindow 54.1% 50.0% 0.05% 0% 100%

Dual monitors

SmallWindow 44.2% 40.0% 0.07% 0% 100%

NormalWindow 13.9% 25.0% 0.05% 0% 100%

LargeWindow 41.9% 50.0% 0.07% 0% 100%

Total

SmallWindow 29.6% 25.0% 0.04% 0% 100%

NormalWindow 19.1% 12.5% 0.03% 0% 100%

LargeWindow 51.3% 50.0% 0.05% 0% 100%

Hutchings and Stasko have also shown that a significant group of users tend to have

many windows opened simultaneously Hutchings & Stasko (2004). We would like to

analyze all windows by each window’s position and z-order to understand whether users

keep some windows (group) belonging to the same activity visible by trying to avoid

or minimize the amount they overlap. Groups are defined by considering windows in

decreasing Z order, from foreground to background, and creating a new group each time

when the amount of overlapping for a window is beyond a given overlapping threshold (we

would like to get this threshold value from this analysis, so that we could use this value

to help users to define groups). Here the amount of overlapping (AmOVERLAP) for a

given window is computed as the percentage of pixels occluded. For the dual monitors

system, groups are defined by each monitor (each monitor is as an independent unit), the

total number of groups is the sum of the number of groups of each monitor. We tested

AmOVERLAP with 4 levels (0%, 25%, 50%, 75%), and 0% AmOVERLAP indicates

that windows within a group do not overlap each other.

The algorithm of computing windows group as following:

63

3. LOG-BASED LONGITUDINAL STUDY

Algorithm 1: Compute the grouped windows

Input: the ungrouped windows
Output: the group windows
foreach Window Wi in the windows stacking from foreground to background do

flag←false
Create a new group Gk and add Wi to this group

foreach Window Wj in the windows stacking from Wi+1 to background
do

Create temporary rectangle group TG

foreach Wt in the group Gk

do
if Wj has intersection with Wt then

Add intersection rectangle Rjt to the group TG
if TG

⋂
Wj ≥ setvalue * Wj then

flag←true break

if !flag
then

Add Wj to this group Gk

Figure 3.16 and 3.17 show that the number of groups of single monitor users and dual

monitors users when the overlapping threshold is set to 25%. Table 3.10 shows that the

mean number of groups of both single monitor and dual monitor participants for each

overlapping threshold condition. Table 3.11 shows that the distribution of the number of

groups on the main monitor and secondary monitor for dual monitor for each overlapping

threshold condition.

3.4.7 TDI and MDI Applications

Tabs have become the standard in web browsers to browse Internet pages (refer to

tabbed document interfaces (TDI) applications). Meanwhile many multiple document

interfaces (MDI) applications are also used every day. MDI is similar to TDI, they allow

multiple documents to be contained within a single window, using tabs as a navigational

widget for switching sets of documents, but TDI does not form part of the Microsoft

Windows User Interface Guidelines. However there were few studies in this area to know

how people manage and switch with tabs and MDI applications. Only Patrick Dubroy

& Balakrishnan (2010) did a study of tabbed browsing among Mozilla Firefox users.

64

3.4 Results And Analysis

0

5

10

15

20

25

30

1 2 3 4 5 6 7 8 9 10 11 12 13 14

Single Monitor Participants

Th
e
nu

m
be

r o
f g
ro
up

s
w
he

n
th
e
ov
er
la
pp

in
g

th
re
sh
ol
d
is
 s
et
 to

 2
5%

Figure 3.16: The number of groups of single monitor users when the overlapping threshold

is set to 25%.

Table 3.10: The mean of number of groups of all participants for each overlapping

threshold condition (s.d. = standard deviation).

Display AmOVERLAP Mean Median s.d. Min Max

Single monitor

0% 3.9 3 0.00 1 28

25% 3.6 3 0.00 1 26

50% 3.2 3 0.00 1 26

75% 3.0 3 0.00 1 23

Dual monitors

0% 9.0 9 0.01 1 25

25% 7.5 8 0.01 1 18

50% 7.0 7 0.01 1 17

75% 6.7 7 0.01 1 17

The biggest challenge in this field is that these applications are impossible to generate

correct message streams by means of OS windows message mechanism (section 3.3.3.3), so

researchers have to develop different tools based on their own internal message mechanism

to log users interaction information.

65

3. LOG-BASED LONGITUDINAL STUDY

0

2

4

6

8

10

12

14

16

18

20

15 16 17 18 19 20 21 22 23 24 25 26
Dual Monitors Participants

M
ea
n
of
 th

e
nu

m
be

r o
f g
ro
up

s
w
he

n
th
e

ov
er
la
pp

in
g
th
re
sh
ol
d
is
 2
5%

Figure 3.17: The number of groups of dual monitors users when the overlapping threshold

is set to 25%.

Table 3.11: The mean of number of groups of main monitor and secondary monitor

for dual monitor system users for each overlapping threshold condition (s.d. = standard

deviation).

Display AmOVERLAP Mean Median s.d. Min Max

Main monitor

0% 6.2 6 0.01 1 18

25% 5.0 5 0.01 1 13

50% 4.7 5 0.01 1 12

75% 4.5 4 0.01 1 12

Secondary monitor

0% 3.1 3 0.01 1 11

25% 2.8 2 0.00 1 9

50% 2.6 2 0.01 1 8

75% 2.6 2 0.00 1 8

In this subsection, we would like to understand some basic activities for a few specific

MDI and TDI applications (Firefox, Visual Studio series, Internet Explorer (IE), Google

Chrome and all other MDI applications), such as the number of tabs/documents, which

66

3.4 Results And Analysis

Figure 3.18: Spy++ displays the tabs/documents information of applications.

switching technique users often use to switch among tabs/documents, because we can

get this information by means of Windows OS windows message mechanism. Figure

3.18 shows that Microsoft Spy++ 1 displays the partial tabs/documents information of

applications (this information was recorded in the log).

3.4.7.1 The Number of Tabs/Documents

The number of tabs/documents of a TDI/MDI application is basic and very impor-

tant factor. Table 3.13 shows that the mean of number of tabs/documents in our study

applications.

3.4.7.2 Switching Between Tabs/Documents

There are two main types of switching techniques to be used for switching between

tabs/documents: Direct pointing and Ctrl+Tab (some applications may use different key-

board shortcuts) (see Chapter 2 section 2.4).

1http://msdn.microsoft.com/en-us/library/aa264396(VS.60).aspx

67

http://msdn.microsoft.com/en-us/library/aa264396(VS.60).aspx

3. LOG-BASED LONGITUDINAL STUDY

Table 3.12: The mean of number of tabs/documents in the TDI/MDI applications (s.d.

= standard deviation).

Application Type Mean Median s.d. Min Max

Firefox 8.4 8 0.03 1 27

Visual Studio series 7.2 7 0.02 1 22

IE 4.3 4 0.02 1 10

Google Chrome 5.1 5 0.02 1 14

Other MDI applications 3.5 3 0.04 1 11

Table 3.13: The mean of percentage of switching techniques for TDI/MDI applications

(s.d. = standard deviation).

Switching Techniques Mean Median s.d. Min Max

Direct pointing 99.86% 100% 0.00 99.42% 100%

Ctrl+Tab 0.06% 0.05% 0% 0.00 0.12%

3.4.8 Active Window Sequences

Hutchings has shown the average amount of time that any window was active was

20.9 seconds and half of all window activation lengths are quite short Hutchings et al.

(2004). Thanks to users switch frequently among windows, it is very important to under-

stand what kind of windows users switch frequently. The following rules are processed to

construct the active windows sequences to get this result:

• according to time sequence;

• each session constructs one sequence (the definition of session 3.3.1);

• using the top-level windows activation event to construct.

Many TDI and MDI applications fail to produce correct message streams (section

3.3.3.3), some applications may adjust the title bar of parent window when the tab or

child window’s title changes (e.g. Firefox), and we can not get this information by means

of Windows OS windows message mechanism, so we use a polling loop every 150ms to

detect title text, and when the new title text does not match the last stored text, this

68

3.4 Results And Analysis

may indicate that the tab or MDI child window may have changed or open a new tab or

child window 1. When we define the active window sequence, we will take into account

this case (IsTChild). On one hand we do not take into account those tabs or child

windows (NTChild) (we will mainly analyze this case), only using their parent window

to construct it. On the other hand we take into account those tabs or child windows as

a separate window (YTChild). In order to deal with those windows sequences, we use a

simple symbol to identify a window (e.g. w1), using the same symbol to identify the same

window in a sequence, so the sequence can be like this:

w1 w2 w3 w1 w2 w1 w2 w4 w3 w5 w4 w6 w5......

This sequence means: the first active window is w1, then w2 is active, after w3 is

active, then w1 is active again, the rest can be done in the same manner. We can

consider this sequence as a string sequence, each active window is as a basic element in

the string, so we can deal with this sequence by using string processing method. We

can easily find the windows that users switch frequently in a period of time by means of

the sequence. We use the term AnWs to define that users switch frequently among n

windows, so A2Ws, A3Ws, A4Ws correspond respectively to switching frequently among

two windows, three windows, four windows. The sequence string, A2Ws, A3Ws, A4Ws

are defined detailedly as follow:

• A2Ws : the substring includes only two elements and the length of substring is

greater than 3 (e.g. w1 w2 w1 w2 w1);

• A3Ws : the substring includes only three elements and the length of substring is

greater than 5 (e.g. w1 w2 w3 w1 w3 w2);

• A4Ws : the substring includes only four elements and the length of substring is

greater than 7 (e.g. w1 w2 w3 w4 w1 w2 w4 w3 w1);

We use regular expression to parse the active windows sequences. Figure 3.19 and

3.20 show that the results of the mean of percentage of three types interaction pattern

under NTChild condition for each single monitor and dual monitors user. We observed

1Sometime the problem still exists, because some applications allow users to open the tabs or docu-

ments with the same title.

69

3. LOG-BASED LONGITUDINAL STUDY

some important results from this data. First, users frequently switched among a small

number of windows (A2Ws + A3Ws + A4Ws are over 60.0%). Second, we observed that

there were small differences among single monitor users in interaction pattern A3Ws and

A4Ws and there were only small differences among dual monitors users in all interaction

patterns. Third, there was a small difference between single monitor and dual monitors

users in interaction pattern (Figure 3.21).

0%

5%

10%

15%

20%

25%

30%

35%

40%

45%

1 2 3 4 5 6 7 8 9 10 11 12 13 14

Single Monitor Participants

M
ea
n
of
 th

e
pe

rc
en

ta
ge
 o
f t
hr
ee

ty
pe

s
in
te
ra
ct
io
n
pa
tt
er
n

A2Ws A3Ws A4Ws Other

Figure 3.19: Mean of the percentage of three types interaction pattern under NTChild

condition for each single monitor user. Error bars show standard error.

3.5 Conclusion

A log-based longitudinal study was described in this chapter. We developed a log

tool called WindowsOSLog to record users window management activity in mainstream

Windows operating system. WindowsOSLog was then installed to 26 participants during

5-weeks. After 5 weeks, we collected data from users and analyzed this data to gain

knowledge on how users manage their windows and tasks.

This chapter lays the foundation for further research in this area. As the future

work, we would like to use the understanding gained from the log data and questionnaire

70

3.5 Conclusion

0%

5%

10%

15%

20%

25%

30%

35%

40%

45%

15 16 17 18 19 20 21 22 23 24 25 26

Dual Monitors Participants

M
ea
n
of
 th

e
pe

rc
en

ta
ge
 o
f t
hr
ee

ty
pe

s
in
te
ra
ct
io
n
pa
tt
er
n

A2Ws A3Ws A4Ws Other

Figure 3.20: Mean of the percentage of three types interaction pattern under YTChild

condition for each dual monitors user. Error bars show standard error.

0%

5%

10%

15%

20%

25%

30%

35%

40%

Single Monitor Dual MonitorsM
ea
n
of
 th

e
pe

rc
en

ta
ge
 o
f t
hr
ee

 ty
pe

s
in
te
ra
ct
io
n

pa
tt
er
n
w
ith

 N
TC

hi
ld
 c
on

tid
iti
on

A2Ws
A3Ws
A4Ws
Other

Figure 3.21: Mean of the percentage of three types interaction pattern under NTChild

condition. Error bars show standard error.

71

3. LOG-BASED LONGITUDINAL STUDY

investigation to help us to design new window and task switching techniques in order to

improve people to more efficiently and conveniently interact with computer.

72

Chapter 4

Push-and-Pull Switching: Window

Switching based on Window

Overlapping

This chapter proposes Push-and-Pull Switching, a window switching technique using

window overlapping to implicitly define groups. Push-and-Pull Switching further allows

to switch between groups and restack the focused window to any position to change its

group affectation. The technique was evaluated in an experiment showing that Push-and-

Pull Switching allows to improve switching performance by more than 50% compared to

other switching techniques in different scenarios. A longitudinal user study indicates that

participants invoked this switching technique 15% of the time on single monitor displays

while they found it easy to understand and use.

4.1 Introduction

Window switching is one of the most frequent tasks of any window manager hap-

pening several hundred times per day (takes place on average once every 20.9s on large

displays Hutchings et al. (2004)). Window switching includes two subtasks: first finding

the window of interest and second bringing it to the foreground. Unlike other operations

on windows like moving and resizing that do not vary much across window managers,

different techniques exist for window switching. The most common techniques are Direct

pointing by using the mouse to click on a region of the window of interest, Alt+Tab /

73

4. PUSH-AND-PULL SWITCHING: WINDOW SWITCHING BASED ON
WINDOW OVERLAPPING

Cmd+Tab that consists in using a key combination to navigate the list of windows or ap-

plications, Taskbar/dock that provides a representation of the windows or applications at

the bottom of the display with icons and text, and Exposé which tiles all opened windows

so that they are all visible at once.

These techniques allow to directly select the window of interest by clicking on the win-

dow itself or one of its representations (Direct pointing, Alt+Tab, Taskbar and Exposé)

or first select a group of windows (Cmd+Tab and dock) and then select the window of

interest. For the two latter techniques on Mac OS X, groups are defined by the win-

dows belonging to the same application. However according to Robertson et al. Smith

et al. (2003), grouping windows by application confuses many users because application

windows may not be related to the same task Robertson et al. (2004). Virtual desktops

and Task gallery Robertson et al. (2000) alleviate these problems by allowing users to

explicitly define groups of windows but at the cost of a strict separation between them. In

contrast Scalable Fabric Robertson et al. (2004) and GroupBar Smith et al. (2003) allow

to interact with windows from multiple groups at once without affecting the group struc-

ture. However the user has to plan in advance the number of groups needed to accomplish

his tasks and affect each window to a group to leverage the benefit of the window grouping

system. WindowScape Tashman (2006) proposes to automatically create groups by tak-

ing photograph-like snapshots each time a window is maximized or minimized. However

when a user wants to resume a group it may no longer be visible or the user may have to

explicitly define favorite snapshots.

Our work builds upon the informal observation that users try to keep windows belong-

ing to a same activity visible by trying to avoid or minimize the amount of overlapping.

As a result groups are implicitly created by the user. The following scenario illustrates

such a situation:

Peter is editing some code using his favorite editor and uses a terminal window to

compile and run his program. The terminal window is positioned to avoid occlusion of any

line of code displayed in the editor window. He uses a third maximized window to repeatedly

search information on Internet. Switching back and forth between the group represented

by the editor and terminal windows and the Internet window is time consuming and error

prone with Direct pointing, Alt+Tab/Cmd+Tab, Taskbar or Exposé techniques. Peter

could use a virtual desktop to explicitly assign the Internet window to one group and the

editor and terminal windows to a second group but he does not want a strict separation

74

4.1 Introduction

between these groups as he wants to be able to read some information on the Internet

window while editing his code (Figure 4.1). He could use Scalable Fabric, GroupBar or

WindowScape to display the two groups at once but he does not want to explicitly manage

groups nor he wants to waste some display space required to operate these techniques.

Figure 4.1: A typical windows organization with two closely related windows in the fore-

ground. To switch focus to the navigator window in the background and then give back the

focus to the two related windows is a tedious task requiring multiple switching operation

with current user interface switching techniques.

To address these limitations, we have designed Push-and-Pull Switching, a switching

technique based on window overlapping to implicitly define groups and help users quickly

switch between them. We first describe the windows stacking model. We then giving

an overview of Push-and-Pull Switching technique, after this we present an experiment

comparing Push-and-Pull Switching to other techniques in different scenarios. Finally we

present the results of a longitudinal user study and conclusions.

75

4. PUSH-AND-PULL SWITCHING: WINDOW SWITCHING BASED ON
WINDOW OVERLAPPING

Timeline

（a） （b） （c）

W3

Desktop

W1

W2

W5

W4

W7

Desktop

W1

W2

W7

Desktop

W1

W3

W5

W4

W3

W5

W4

W7

W2

（d）

Desktop

W1

W3

W5

W4

W7

W2
W6 W6 W6W6

A

A

A

A

Figure 4.2: Push-and-Pull Switching example representing an initial layout (a) with win-

dow W7 active (represented by the letter A). Windows are numbered according to their

stacking order. Pressing the Ctrl key computes the following groups: (W6, W7), (W3,

W4, W5), (W2) and (W1). Pushing one time the frontmost group moves all its windows

behind the ones from the second group while respecting the relative stacking order within

each group (b). Pushing one more time moves the group behind the third one (c). Re-

leasing the Ctrl key gives the keyboard focus to the window with the highest Z order

(d).

4.2 Push-and-Pull Switching

In the following we describe how the Push-and-Pull Switching technique is used to

create and switch between groups. We then present a variation of the algorithm to easily

change the Z order of the focus window.

4.2.1 Group Switching

When invoked, our algorithm first creates groups of non overlapping windows. Groups

are created by considering windows in decreasing Z order, from foreground to background,

and creating a new group each time a window overlaps with one of the windows of the

current group. This algorithm is similar to the stack leafing algorithm proposed by Faure

et al. Faure et al. (2009) to facilitate drag-and-drop between overlapping windows. In

76

4.2 Push-and-Pull Switching

addition, our algorithm uses a configurable allowable overlap parameter when considering

whether a window will be included in the current group or not. The overlap for a given

window is computed as the percentage of pixels which are covered by the rest of the group.

Preliminary tests helped us to adjust the default overlap threshold to 15%.

The algorithm of computing windows group as following:

Algorithm 2: Compute the grouped windows

Input: the ungrouped windows
Output: the group windows
foreach Window Wi in the windows stacking from foreground to background do

flag←false
Create a new group Gk and add Wi to this group

foreach Window Wj in the windows stacking from Wi+1 to background
do

Create temporary rectangle group TG

foreach Wt in the group Gk

do
if Wj has intersection with Wt then

Add intersection rectangle Rjt to the group TG
if TG

⋂
Wj ≥ setvalue * Wj then

flag←true break

if !flag
then

Add Wj to this group Gk

Push-and-Pull Switching is invoked using keyboard shortcuts or the mouse wheel.

For keyboard shortcuts, we use Ctrl+↑ to push a group and Ctrl+↓ to pull a group.

Pressing the Ctrl key and rotating the mouse wheel forward pushes a group and rotating

backward pulls a group. A press on the Ctrl key calls the above algorithm to create

groups. Pushing and pulling consist in swapping all the windows from one group to the

other while preserving the relative Z order within each group. Pulling a group brings

all windows within the group closer to foreground. Pushing a group does the opposite.

During push and pull operations, only the first group created (closer to foreground) can

be pushed or pulled (Figure 4.2). Upon release of the Ctrl key, the window with the

highest Z order gets the keyboard focus. We chose to give the keyboard focus to that

window as it is the last accessed one within the group and we consider the user more

likely to interact with it. In the following sections, we will refer to this frontmost window

77

4. PUSH-AND-PULL SWITCHING: WINDOW SWITCHING BASED ON
WINDOW OVERLAPPING

Timeline

W3

Desktop

W1

W2

（a） （b） （c）

W5

W4

W7

W3

Desktop

W1

W2

W7

W3

Desktop

W1
W5

W4
W2

W5

W4

W7

（d）

W3

Desktop

W1

W2

W5

W4

W7

W6 W6 W6 W6

A

A

A

A

Figure 4.3: Example for restacking the focused window. Figure (a) represents the initial

layout in which window W7 is active (represented by the letter A) and where windows are

numbered according to their stacking order. Pressing Ctrl+Shift computes the following

groups for the windows intersecting window W7: (W4, W5), (W2), (W1). Pushing one

time moves window W7 behind the first group (b) and pushing one more time moves it

behind window W2 (c). Releasing the Crtl and Shift keys activates window W5 (d).

with the keyboard focus as the active window.

4.2.2 Restacking the Focused Window

Push-and-Pull Switching can also be used to change the Z order of the focused window.

Upon invocation using Ctrl+Shift keys instead of Ctrl, our algorithm creates groups by

considering only the windows in intersection with the focused window (considering all

windows would end with pushing or pulling operations with no visible effect). Pushing

or pulling moves it in front or behind the related group. Releasing Ctrl+Shift gives the

keyboard focus to the window with the highest Z order from the frontmost group (Figure

4.3).

Moving a window to the background is a feature proposed by some X window managers

but no modern window manager allows to precisely define the Z order of a window. This

technique can be used to affect a window to another group and it is also interesting for

restacking a window to its original position without modifying the Z order of the other

78

4.3 Experiments

windows. A typical example is to restack an instant messaging window after chatting and

return to previous work.

4.3 Experiments

We conducted an experiment to compare the performance of Push-and-Pull Switching

to other techniques (Direct pointing, Taskbar and Alt+Tab) in different scenarios.

4.3.1 Experiment 1: Group Switching

4.3.1.1 Apparatus

The Push-and-Pull Switching technique was implemented in C# on Windows XP/Vista1.

We used a PC running Microsoft Windows XP using a 22 inch LCD monitor with a 1680

× 1050 resolution. The mouse is a standard optical one with two buttons and a clickable

wheel that can be used as a middle button.

4.3.1.2 Participants

8 people (5 male, 3 female) with a mean age of 27 (SD=2.2) participated. They were

recruited from the computer science department and reported to spend at least 8 hours a

day working on a Microsoft Windows system. Most participants reported to mainly use

Direct pointing and Taskbar (with the group by application option disabled) and three

reported to often use Alt+Tab.

4.3.1.3 Experimental Design

A repeated measure design was used. The independent variables were switching tech-

nique (SwT) with the three switching techniques available on Windows XP (Taskbar,

Alt+Tab, Direct pointing) and the Push-and-Pull Switching technique, and Scenario

with four levels. The first scenario consists in switching back and forth between window

W7 and window W8 (Figure 4.4a). In the second scenario, participants were asked to

switch back and forth between the group represented by windows (W7, W8) and window

W6 in Figure 4.4b. The third scenario consists in switching back and forth between the

1http://code.google.com/p/push-and-pull-switching

79

h

4. PUSH-AND-PULL SWITCHING: WINDOW SWITCHING BASED ON
WINDOW OVERLAPPING

Desktop
W1W4

W2

W2

Desktop
W1W2 W4

A

（c） （d）

W3

Desktop
W1

W4

W5

W2

Desktop
W1W2 W5

（a） （b）

W7

W6

W8

W4

W3

A

W5W7

W8

W6

W5W3

A

W7

W8

W6

A

A

W3
W6

W8W7

A

Figure 4.4: The initial layout for the 4 scenarios used in experiment one to compare

the switching time between Taskbar, Alt+Tab, Direct pointing and Push-and-Pull Switch-

ing. The letter A represents the active window. Windows are numbered according to

their stacking order. Window numbers were replaced by real application windows in the

experiment.

group represented by windows (W6, W7, W8) and window W5 in Figure 4.4c. In the

fourth scenario, participants were asked to switch back and forth between the groups

represented by windows (W7, W8) and windows (W5, W6) in Figure 4.4d. Each sce-

nario consists of 8 windows. The scenarios were composed of real Windows applications

arranged in layouts corresponding to realistic activities. For each application, we chose

documents that participants could easily distinguish.

Participants were asked to run each scenario 10 times with the four switching tech-

niques before moving to the next one. The scenario were run from a to d but the tech-

niques were counter-balanced across participants using a balanced Latin square. Before

starting the experiment, participants had a 5-10 minutes training period to get used to the

switching techniques and windows content. Before each scenario, participants were clearly

explained the layouts they had to switch between. The experiment lasted approximately

80

4.3 Experiments

25 minutes.

4.3.1.4 Procedure

The task was to switch back and forth between windows presented in different sce-

narios. Each trial started with an initial layout (Figure 4.4). After pressing the space

bar, the task was to switch to a specific layout and then switch back to the initial layout

before pressing the space bar again to end the trial. To help participants, the initial and

target layouts for each scenario were printed on a paper positioned under the screen. Par-

ticipants had to successfully reach the target layout and successfully return to the initial

one before moving to the next trial. The experimenter warned the participants when a

wrong layout occurred but he gave no indication how to correct it.

4.3.1.5 Results

The dependent variable is switching time as the time measured between two presses

on the space bar. Repeated measures analyses of variance showed a significant main effect

for SwT (F3,21=13.5, p<0.001) and Scenario (F3,21=28.6, p<0.001) on switching time.

More interestingly we also found a significant interaction between SwT and Scenario

(F9,63=7.5, p<0.001). Pairwise comparisons found a significant difference between Taskbar

and all other techniques (p<0.02) for scenario a with Taskbar being 45% slower on average.

For scenario b, c and d we observed significant differences (p<0.03) between Push-and-

Pull Switching and the other techniques although the difference is marginal (p<0.08) with

Direct pointing for scenarios c and d. On average Push-and-Pull switching is 50% faster

than Direct pointing and Taskbar, and 70% faster than Alt+Tab for these three scenarios.

During the experiment we observed that participants were more error prone with

Alt+Tab which can explain the more important switching time for this technique. In fact,

participants did not use the Shift key to move back in the window list when they missed

the target window and preferred to iterate through the entire list. The error rate for

Alt+Tab is equal to 5% while it is equal to 2% for Taskbar, 1% for Direct pointing and 0%

for Push-and-Pull Switching. Overall, participants had no problem understanding and

using Push-and-Pull Switching.

In this experiment, we focused on the Push-and-Pull Switching performance in differ-

ent scenarios where the implicit creation of groups based on window overlapping is realis-

81

4. PUSH-AND-PULL SWITCHING: WINDOW SWITCHING BASED ON
WINDOW OVERLAPPING

0 

1 

2 

3 

4 

5 

6 

7 

a  b  c  d 

Sw
it
ch
in
g 
*
m
e 
(s
) 

Scenario 

Alt+Tab 

Direct poin:ng 

Taskbar 

Push‐and‐Pull 

Figure 4.5: Mean switching time for Switching Technique and Scenario. Error bars

represent 95% confidence interval.

82

4.3 Experiments

tic. The results confirm that Push-and-Pull Switching can significantly improve switching

time compared to other techniques when users switch between groups containing two or

more windows.

4.3.2 Experiment 2: Restacking the Focused Window

4.3.2.1 Apparatus and Participants

This second experiment was run after the first experiment with the same participants

and the same hardware configuration.

4.3.2.2 Experimental Design

A repeated measure design was used. The independent variables were switching tech-

nique SwT with the three switching techniques available on Windows XP (Taskbar,

Alt+Tab, Direct pointing) and the Push-and-Pull Switching technique. The techniques

were counterbalanced across participants and we used the same applications as in the first

experiment. The experiment lasted approximately 5 minutes.

4.3.2.3 Procedure

The task was to change the Z order of the focused window represented in Figure 4.6a

to get the layout represented in Figure 4.6b. A trial started and finished by pressing the

space bar. Participants had to successfully get the target layout before moving to the

next trial. The task was repeated 10 times.

4.3.2.4 Results

The dependent variable is restacking time as the time measured between two presses on

the space bar. Repeated measures analyses of variance showed a significant main effect for

SwT (F3,21=5.11, p=0.008) on restacking time. Pairwise comparisons found significant

difference between Push-and-Pull (1.4s) and Alt+Tab (3.0s) (p=0.026) and Push-and-

Pull and Taskbar (2.4s) (p<0.001). The difference observed with Direct pointing (2.1s) is

marginal (p=0.07). Push-and-Pull switching reduces restacking time by 52% compared to

Alt+Tab and 40% compared to Taskbar. All participants found Push-and-Pull switching

83

4. PUSH-AND-PULL SWITCHING: WINDOW SWITCHING BASED ON
WINDOW OVERLAPPING

W3

Desktop
W1

W4

W5

W6

W2

W7

W3

Desktop
W1

W2

Timeline

W7

W4

W5

W6

A

A

（a）
（b）

Figure 4.6: Windows layout used in the second experiment with the initial layout on the

left and the target layout on the right. The letter A represents the window in focus.

Windows are numbered following their stacking order. Window numbers were replaced

by real application windows in the experiment.

as the most direct and intuitive technique to perform this task and most commented that

the technique mimics how people classify files in piles of documents.

4.4 Longitudinal User Study

In order to understand how people actually use the Push-and-Pull Switching technique,

we performed a longitudinal field study on a small number of participants over one week.

8 people (7 male, 1 female), aged between 24 and 31, participated in the study. There

were 1 civil engineer, 1 mechanist, 1 electronic engineer and 5 computer scientists. Half

of the participants used a single monitor and the other half two monitors. Participants

were instructed how to use the Push-and-Pull Switching technique and were given an

executable. After one week, participants were interviewed to collect details and com-

ments about how they utilized Push-And-Pull Switching and how useful they found it to

84

4.4 Longitudinal User Study

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Alt+Tab Direct pointing Taskbar Push‐and‐Pull

Technique

Sw
it
ch
in
g
ti
m
e
(s
)

Figure 4.7: Mean switching time for Switching Technique. Error bars represent 95%

confidence interval.

be. In addition, the application recorded any switching operation and the corresponding

technique used.

Single monitor users had on average 5 windows simultaneously opened on their desk-

top. They used mainly Direct pointing (47%) and Taskbar (36%) wheras Alt+Tab was

used 2% of the time and Push-and-Pull Switching 15%. Dual monitors users kept on aver-

age 8 windows simultaneously opened on their desktop. They used mainly Direct pointing

(64%) and Taskbar (26%) while Alt+Tab was used 3% of the time and Push-and-Pull 7%.

The restack of the focused window represents 10% of Push-and-Pull Switching invocations.

Participants reported to mainly use Push-and-Pull Switching when they want to keep

two or more windows grouped. They also use the restack functionality as a replacement

for Alt+Tab when they want to access a window they know is just behind another. Using

a 5 points Likert scale, participants rated the technique as useful (averaged response =

3.9) (1=disagree, 5=agree) and easy to use (4.1). Half participants (mostly single monitor

users) reported to reposition and resize windows more frequently than usual to leverage

full benefit from Push-and-Pull Switching.

85

4. PUSH-AND-PULL SWITCHING: WINDOW SWITCHING BASED ON
WINDOW OVERLAPPING

Table 4.1: User satisfaction averages for on a five point scale where 1 = useless, 5 =

useful.

Questionnaire Item
Average Response

(1 = useless, 5 = useful)

Usefulness 3.88

Comments about the window that 3.63

get focus once Ctrl is released:

is it the right window

Easiness 4.13

It is useful to be able to 3.88

rearrange some windows to finish

one task with less switching time

It is useful to be able to switch 4.38

more windows at once

It is useful to be able to restack 3.63

the focused window

It is useful to be able to work 3.63

with more tasks simultaneously

Participants used a 5 points Likert scale to answer the following questions:

4.5 Application

The users longitudinal studies provide important finding that most users rely heavily

on mouse-based window switching methods (Taskbar and Direct pointing). In order to

effectively use Push-and-Pull Switching and enhance the interaction function of mouse, we

would like to add this technique to the common mouse. Figure 4.8 is a typical mouse with

five keys (There are two shortcut keys in the right side of the mouse), this type of mouse is

becoming increasingly common (Logitech/Microsoft). In general, these two shortcut keys

are used to implement forward and backward operations for browsing the web or accessing

folder, some advanced mice even allow users to define the function for these two shortcut

keys by themselves. Before they were used for navigating within application, now we can

86

4.6 Conclusion

integrate Push-and-Pull Switching technique to enhance their functions so that users can

use them to switch windows, using up key to implement Push operation and down key to

implement Pull operation. During the interview, we told users this idea, most users were

very interested in this idea and thought this would be very useful for them.

Figure 4.8: Typical mouse with five keys, there are two shortcut keys in the right side

of the mouse. In the default state, they are used to implement forward and backward

operations.

4.6 Conclusion

Push-and-Pull Switching provides a lightweight alternative to other grouping tech-

niques. We demonstrated with our in situ and laboratory user studies that the defini-

tion of groups based on windows overlapping constitutes a valid approach and helps to

drastically reduce switching time compared to traditional switching techniques. In our

experiments, participants were explained how to utilize Push-and-Pull switching. Future

work includes adding visual feedback for novice users to help visualize groups by changing

the color of the windows border when the technique is invoked.

87

Chapter 5

Stack Scanning Rules!

This chapter presents stack scanning, a window switching technique based on a widget

that combines generalized scrolling and crossing to control the stacking order of layers of

visible windows. With stack scanning, the visual information for each window is max-

imized as each window remains at its original size while the ordering by frequency is

preserved. We conducted an experiment to compare the performance and error rate of

stack scanning technique to other four common window switching techniques under a

variety of visual factor conditions (e.g. the number of windows, their visual similarity).

Results showed that stack scanning is faster than other techniques when the number of

windows is high and the visual similarity among windows is important. They also showed

that Taskbar is the best choice with a small number of windows condition, regardless of

other visual factor conditions, and for users who always maximize their windows, Alt+Tab

is the best choice when the number of windows is important.

5.1 Introduction

Users of desktop computers are increasingly turning to large displays and multiple-

monitor setups. A key advantage of additional screen space is the ability to keep more

windows open simultaneously, reducing the amount of resizing, repositioning, and other

window-management activity (Hutchings has shown that users have more than eight win-

dows open more than 78% on the time) Hutchings et al. (2004); Robertson et al. (2005).

However, additional windows also mean that more windows are competing for users’ at-

tention. This can make it harder for users to switch the desired target. For many window

88

5.1 Introduction

interaction operations (e.g. copy-and-paste), one important thing is to find the desired

window. The speed and accuracy to find the window of interest can directly affect the

subsequent interaction operations. But sometimes it is very difficult to find the desired

window, and this process can become a laborious visual task when the number of win-

dows becomes important. The difficulties for finding the desired window come from two

main reasons: 1) window overlapping, which hides window information; and 2) the visual

similarity of windows. However, the overlapping model is now the dominant model for

modern window systems and this situation will not disappear with the advent of larger

displays Chapuis & Roussel (2007); Hutchings & Stasko (2004).

Window switching is one of the most frequent task of any window manager and can oc-

cur several hundred times per day (on average, once every 20.9s Hutchings et al. (2004) on

large displays). Switching windows first requires to find the desired window, and second,

bringing it to the foreground. There exist different techniques for window switching where

the most common techniques are Direct pointing, Taskbar/dock, Alt+Tab/Cmd+Tab and

Exposé Xu & Casiez (2010).

However, many researches have hinted that traditional window switching techniques

have potential usability problems. Hutchings has hinted that it becomes difficult to rec-

ognize buttons on Taskbar when the number of windows is high Hutchings & Stasko

(2003). Kumar et al. have observed that Alt+Tab is very efficient when the number

of windows is low Kumar et al. (2007), but researchers have also labelled the method

’tedious’ Grudin (2001) and reported that a very small percentage of users regularly use

the Alt+Tab key combination for window switching Czerwinski et al. (2003). A previous

research Dragicevic (2004) has hinted that some window switching techniques (Taskbar,

Alt+Tab, Exposé) are not wholly satisfactory because they require switching back and

forth between two different representations of the same window set (e.g. Exposé switches

back and forth between thumbnails and windows, and Taskbar 1 switches back and forth

between buttons and windows).

Although many window switching techniques have been proposed, only a few of them

have been evaluated. The biggest challenge is that window switching techniques are

heavily affected by the window layout. Kumar et al. proposed an experiment to compare

EyeExposé to Alt+Tab, Exposé and Taskbar Kumar et al. (2007). However they only

considered the number of windows condition and ignored visual similarity and window

1Windows 7 uses the big icon to replace the traditional button on the Taskbar

89

5. STACK SCANNING RULES!

layout. As a result, it is hard to assess the extent to which addressed problems actually

exist in window switching practices.

To reduce the number of switching operations, interaction techniques have been pro-

posed to explicitly or implicitly define groups (some previous work also refer to task)

(e.g. virtual desktop mangers). Although grouping mechanism can reduce partially the

problem of switching operations, users still need to switch windows within one group. So

window switching techniques continue to be important when window grouping is used.

In this chapter, we propose a window switching technique, stack scanning, a window

switching technique based on a widget that combines generalized scrolling and crossing

to control the stacking order of layers of visible windows. We describe an experiment

to compare the performance and error rate of stack scanning technique to other four

commonly window switching techniques (Direct pointing, Taskbar, AltTab and Exposé)

under a variety of combination conditions (the number of windows, visual similarity and

windows layout). Results from the experiment showed that stack scanning was faster than

other techniques when the number of windows is high and the visual similarity among

windows is important. They also show that Taskbar was the best choice when the number

of windows is small, regardless of other visual factor conditions, and for users who always

maximize their windows, Alt+Tab was the best choice when the number of windows is

important.

5.2 Stack Scanning

Our technique aims are:

• Providing as much visual information as possible for each window (that is no creation

of thumbnails) to help the visual search

• Increasing the user expectancy to find a given window at a given position to help

the visual search (if the user knows a window is at the bottom left then he will look

at bottom left)

• Reducing the number of steps to find and select the window of interest to reduce

the search time and the selection time

90

5.2 Stack Scanning

• Preserving an ordering by frequency: the most recent windows come first. This is

intended to reduce the search time (the user expects to get a window more quickly

if it was recently used)

The aims of our proposal are preserved through the scanned stack algorithm. When

invoked, all windows in the stacking are scanned in decreasing Z-order, from foreground

to background, and layers are created at the same time. Windows are added to the cur-

rent layer as long as they remain visible. Windows are taken in the stack order (when

the overlap of a window is less than a given allowable overlap within the current layer,

we refer as that the window is visible). The overlap for a given window is computed as

the percentage of pixels which are covered by the windows with the higher Z-order in the

current stack. The default overlap threshold is set to 75%, that is, when the overlap of a

window is less 75%, the window is considered to be visible for users and it can be easily

recognized. With this algorithm, each layer includes all the windows which are ‘visible’.

If the layer is brought closer to the foreground, all windows within the layer are visible

for users. This is different from Xu & Casiez (2010), for the algorithm of Push-And-Pull

Switching, once a window overlaps with the current group (or the overlap of a window is

over the allowable overlap), a new group will be created and other windows which have

the lower z-order than this window in the stack will be not computed for others group

(they will be computed for the new group). For our algorithm, when a window is not

visible, we will continue to scan other windows which have the lower z-order than this

window until the bottom of stack.

91

5. STACK SCANNING RULES!

Algorithm 3: Compute the scanned stack

Input: the unscanned stack
Output: the scanned stack

foreach Window Wi in the stack St taken from foreground to background
do

Create a new layer Lj and add Wi to the layer Lj

foreach Window Wk in the stack St from Wi+1 to background
do

Compute the overlap of Wk with Lj

if The overlap of Wk is less than a given allowable overlap parameter
then

Add Wk to the layer Lj;

Get a visible layer Lj and remove all windows from the current layer in the
stack St
Update St and j++

*Wi+1 is the next window of Wi in the stack St

With this technique, the visual information for each window is maximized as each

window remains at its original size. The expectancy to find a given window at a given

position are high as windows positions do not change (compared to Exposé), and then

the number of steps to get the window of interest is reduced as the scanned stack reduces

the size of the stack compared to the traditional Alt+Tab (but at the cost of a pointing

action). The windows are still ordered from the most recently used to the least recently

used. In this way, we hope to reduce the time to find the window of interest and then

select it.

Stack scanning is invoked using the mouse wheel. A long click on the mouse wheel

(250 ms timeout Faure et al. (2009)) brings up the widget which is made of buttons

(each button represents one layer, the buttons are arranged from top to bottom by the

Z-order), and the above algorithm is invoked to create layers. Moving the mouse to cross

one button brings all windows within the layer closer to the foreground. Once the mouse

leaves the widget, the widget disappears, the window with the highest Z-order of that

layer receives the keyboard focus (Figure 5.1).

When the mouse leaves the widget, the mouse can be moved from the right side or the

left side of the widget. To conveniently and efficiently allow users to use stack scanning

technique, we expand the stack scanning function to allow two actions (out from right

92

5.2 Stack Scanning

Desktop

W1

W2
W4

F W3

W5

W5/W4

W2/W1

W4

Desktop

W4

W3

W3

W5 W1

W2

F
W2/W1

W3

W5/W4

（ ） （ ）

Figure 5.1: Example for stack scanning. Figure (a) represents the initial layout with

window w5 focused (represented by the letter F). Windows are numbered according to

their stacking order. Pressing the mouse wheel (250 ms timeout) computes the following

layers: (W5, W4), (W3) and (W2, W1). Moving the mouse to (W2, W1) layer and leaving

the widget, all windows within this layer are brought closer to the foreground, the window

with the highest Z-order receives the keyboard focus.

Desktop

W1

W2
W4

F W3

W5 W4
Desktop

W4

W
3

W5 W1

W2

F

（ ） （ ）

W1

Desktop
W4

W3W5
F

W4
W2

Desktop
W4

W
3

W5 W1

W2

F

（ ）（ ）

W5/W4

W2/W1

W3

W5/W4

W2/W1

W3

W5/W4

W2/W1

W3
W5/W4

W2/W1

W3

Figure 5.2: Example of stack scanning extend function. Figure (a) represents an initial

layout with where window W5 is focused (represented by the letter F) and where windows

are numbered according to their stacking order, pressing the mouse wheel, bringing up

the widget. Moving the mouse to cross the button, bring all windows within the layer

closer to the foreground (b), the mouse leaves from the left side of widget, only bringing

the clicked window within the layer to the foreground (c), the mouse leaves from the right

side of widget, bringing all windows within the layer closer to the foreground (d).

93

5. STACK SCANNING RULES!

side or left side, visual feedback is added to prompt that the mouse is at right or left side).

Moving the mouse to get out from the right side of the widget allows the action described

before and getting out from the left side of the button allows the following operation:

when moving the mouse to cross one button, the action is the same, all windows within

this layer are brought closer to the foreground, but the mouse leaves the widget from

the left side, users click the window of interest and only this window is brought to the

foreground. The other windows go back to their original stack position (Figure 5.2 (c)).

5.3 Window Switching Time Model

Each window switching technique requires first a visual search and second an action

to select the window of interest. Then, the interaction time should be Tt(n, op) = Tv(n)

+ Ta(op), where Tt(n, op) is the total time for the interaction technique; Tv(n) is the

visual search time as a function of the number of windows; Ta(op) is the time to select

the window of interest depending on the technique used.

The visual search usually involves two kind of search which may or may not be related

to each other (referred to as ”mixed visual”). This is because window switching techniques

represent windows as various forms which are often composed of image and text. Thus,

search is both over the images (referred as ”image visual”) and over the text attached

to the image, termed ”semantic search”. For some window techniques (such as Alt+Tab,

Taskbar), the window of interest may have the same icon as other windows simultaneously

present on the display. This makes necessary to read the text attached to the window

most or all the time in order to compensate for the fact that the icon alone is ambiguous

in that it may not represent the target window.

The time to perform this visual search depends on the number of items (which time

can be predicted by Hick’s law) and the degree of visual similarity between these different

windows (more similarity requires more time). The time to select the window of interest

depends on the technique used. It can be a number of keystrokes or a target selection

task predicted by Fitts’law.

There is some evidence Byrne (1993); Fisher et al. (1989) that mixed search is actually

a two-stage process: the user uses an image search to narrow down the semantic search.

For example, the user first finds the icon on the Taskbar with icons that match the target

window and then reads the text only on those icons. Then, visual search time should be

94

5.3 Window Switching Time Model

Tv(n) = Ti(n) + Ts(k), where Tv(n) is the total time for the visual search (mixed search),

Ti(n) is the image search time as a function of the number of windows, and Ts(k), the

semantic search time as a function of the average number of images matching the target

window image (k). The semantic search is a standard self-terminating serial search Byrne

(1993), since there is no visual guidance for the search, one can reasonably expect that

the user will read each text attached to the window and decide if it is the target window,

so in that case, search time should be a function of the average number of windows to

search, which is n/2. That is, Ts(k) for the number of windows k, should be a linear

function of the form Ts(k) = ms ∗ (k/2) + bs. If the user knows the text of target window,

the decision process should be quicker, and therefore the slope ms shallower. But if the

user only knows partial or no characters of the target window text, and meanwhile other

windows have similar characters of their text, the slope ms will be larger.

Times for Tt(n, op) and Ta(op) can be empirically estimated, and then it should be

possible to estimate Tv(n) by simple subtracting Ta(op). So we can compare Ta(op) and

Tv(n) for each window switching technique to know which is the dominant time factor,

so as to improve them and help us to design the new window switching techniques. It

can also be possible to estimate Ti(n) time by Tv(n) - Ts(k), to know which image type

is more effective to search (icon vs. thumbnail).

Taskbar involves a visual search (on Windows, only the icon and the begin of each

title are visible in the Taskbar) and then a target selection.

Direct pointing includes two cases: first when the window of interest is directly visible

so the time can be easily predicted by Fitts’ law; another way is to minimize (in this case,

moving is less used) the current window and selecting the desired window. It involves a

serial visual search and window minimization.

For Alt+Tab, the visual search depends on the visual content provided: images or/and

text. The selection is done by a number of keystrokes where the maximum number is the

total number of windows minus one (n is the number of windows, the average number of

keystrokes is
n∑

i=1

(i− 1)/(n− 1)).

Exposé requires first pressing a key on the keyboard to call it, then a visual search

and a target selection.

For Stack scanning, first pressing the mouse wheel to call it, and moving the mouse

to bring windows closer to the foreground (the distance to cover with the mouse depends

on the layer order), then a visual search and a target selection.

95

5. STACK SCANNING RULES!

5.4 Experiment

We conducted an experiment to compare the performance and user preferences for

the Taskbar (Figure 5.6), Alt+Tab (Figure 5.5), Direct pointing, Exposé (Figure 5.4) and

stack scanning (Figure 5.3) techniques in different scenarios.

Stack Scanning Widget

Figure 5.3: Stack scanning with 7 layers, us-

ing the original windows as representation.

Figure 5.4: Exposé view of 8 windows, rep-

resenting them as thumbnails.

Figure 5.5: Alt+Tab represents windows as icons.

5.4.1 Visual Factors For Window Switching

There are many visual factors that can impact the performance of window switching

techniques, including the number of windows, windows layout, visual similarity.

96

5.4 Experiment

Figure 5.6: Taskbar in each of the 8, 12 and 16 windows conditions with NVS, representing

windows as buttons.

Number of windows. Probably the best-studied factors in window switching techniques

is this factor.

Windows Layout. The performance of window switching techniques heavily depends

on the windows layout, which is also the most difficult to consider. To quantify this factor,

we use three factors: window size, amount of overlapping and window Z-order to define

a windows layout.

• Window size. It can directly impact the time of visual search and selection. We

divided windows into three categories by window size: SmallWindow (the window

size is less than 25% of screen resolution), NormalWindow (between 25% and 75%),

LargeWindow (greater than 75%);

• Amount of overlapping. It may impact the visibility of windows, and this can

directly impact the performance of visual search. Meanwhile the amount of over-

lapping determines the number of layers in stack scanning technique;

• Window Z-order. It can affect the duration of operations when the technique de-

pends on this factor (such as, Alt+Tab)

Visual similarity. Window switching techniques use various visualizations to repre-

sent windows (such as, icon+title, thumbnail), different visualizations have different visual

stimulus for users. We divide visual similarity between windows into three types: un-

similar (NVS) (different application type, the title, icon and the content of window are

different, and it can be easy to distinguish them), low similar (LVS) (same applica-

tion type, the icon is the same, and the title characters are partial same, the content is

different), high similar (HVS) (same application type, the same icon and most of the

title characters are similar, the content of window is also similar) (Figure 5.7).

97

5. STACK SCANNING RULES!

(1) (2) (3) (4)

Figure 5.7: The visual similarity between (1) and (2) is NVS, (1) and (3) is LVS and (1)

and (4) is HVS.

5.4.2 Hypothesis

H1 The stack scanning is expected to reduce the search and selection time compared to

other techniques, especially when the number of windows is high and the visual similarity

is important because the other techniques may fail due to the difficulty to identify a specific

window (Exposé, Taskbar, Alt+Tab, Direct pointing) or when the number of keystrokes

becomes too high (Alt+Tab).

5.4.3 Apparatus

The stack scanning technique was implemented in C# on Windows XP/Vista. We

used our implementation of an Exposé clone to perform the experiment in a Windows

environment and our implementation is similar to the Apple’s Exposé (Figure 5.4). We

used a PC running Microsoft Windows XP using a 22 inch LCD monitor with a 1680 ×
1050 resolution. The mouse is a standard optical one with two buttons and a clickable

wheel that can be used as a middle button.

5.4.4 Participants

10 people (6 male, 4 female) with a mean age of 27.4 (SD=2.95) participated. They

were recruited from the university (2 civil engineer, 1 mechanic, 1 electronic engineer, 1

chemical engineer and 5 computer scientists) and said they spent at least 8 hours a day

working on a Microsoft Windows system. The female participants reported that they

98

5.4 Experiment

mainly used Direct pointing and Taskbar (with the group by application option disabled)

and four reported that they often used Alt+Tab.

5.4.5 Experimental Design

A repeated measures within-subjects design was used. The independent variables

were Technique with 5 levels (Direct pointing, Exposé, Taskbar, Alt+Tab, stack scan-

ning), number of windows Num with 3 levels (8, 12, 16), distribution of window size

DisSize with 4 levels (SmallWindow, NormalWindow, LargeWindow, the proportion of

three types of window in the total number of windows, 2:1:1 (Size211), 1:2:1 (Size121),

1:1:2 (Size112), 0:0:1 (Size001) (all windows are maximum size, but they have not been

maximized, because when the window is maximized, it can be not moved by the mouse)).

For example, when the number of windows is 8, Size211 shows that four of them are

SmallWindow, two of them are NormalWindow and other two windows are LargeWin-

dow. Amount of overlapping (AmOverlap) with 4 levels (0%, 25%, 50%, 75%).

The visual similarity (VS) between windows with 3 levels (NVS, LVS, HVS). The

size of the match set match levels (MLs) with 3 levels (1, 2, or 3), the match level

(1, 2, or 3) had a different meaning in each number of windows, With Num equal to 8,

the match set is 1, 2, or 4, corresponding to the match levels of 1, 2, and 3. With Num

of 12 and 16 match sets of 1, 3, 6 and 1, 4, 8, respectively. The MLs defines the number

of windows in total Num (distractors) is similar with the target window. For example,

when Num is eight, MLs is the third level (match set is four) and VS is HVS, this means

that four of eight windows have high similar with the target window.

The two main factors are the window switching techniques (Taskbar, Alt+Tab, Di-

rect pointing, Exposé, stack scanning and the scenario conditions (Num, MLs, DisSize,

AmOverlap). The main measure is the completion time and error rate to perform a

window switching technique to find the window of interest in different scenarios. Our

experiment used real application windows such as Notepad, Word and PDF document as

the target windows. We believed that participants would easily be able to recognize real

application windows. In the Taskbar condition, the number of windows on the Taskbar

never exceeded a threshold that would cause it to add a second line with a scroll button

and the group by application option was disabled.

99

5. STACK SCANNING RULES!

When the distribution of window size condition is Size001(all windows are maximum

size, the overlap of any window (except the foreground window) is 100%, the AmOverlap

condition only has one level (75%), so in order to ensure a balance design, the (Size001)

condition will be handled as a separate part of our main experiment, and we analyzed it

separately.

The experiment consists of 1620 (Num x VS x MLs x DisSize x AmOverlap x

Technique) (Main experiment) + 135 ((Num x VS x MLs x Technique)) (DisSize is

Size001) (Second experiment) trials. Orders for techniques, number of windows, visual

similarity and amount of overlapping conditions were counter-balanced across partici-

pants using a balanced Latin-square. For distribution of window size condition, each trial

first used the distribution of Size001, order for other three distribution conditions were

counter-balanced across participants following a Latin-square. Taking into account the

total time for this experiment (over 5 hours), we divided the experiment into three parts

by the number of windows.

The performance of some techniques depends on the target window’s position in the

stack (Z-order) and the performance difference would be great between different window

Z-order in the stack (e.g. for Alt+Tab, the difference can be important between pressing

one time Tab key and pressing ten times Tab key to get the target window). So if the

target window is randomly presented in the stack, the performance may be very volatile

for a small number of trials (4 trials).

To overcome this issue, the target window can be randomly positioned in the stack

but the average Z-order for one subgroup trial has to respect the theoretical median Z-

order. We used the mean time of that subgroup to compute one successful trial. For

example, participants used Alt+Tab to switch windows, the number of windows is 8 and

the theoretical average number of pressing the tab keyboard is
8∑

i=1

(i− 1)/(8− 1) = 4

(median Z-order position), the target window is randomly presented in the stack, but the

average number of pressing Tab key in one subgroup should be 4 times. Stack scanning

also depends on the target window Z-order. So the number of layers is very important

parameter for stack scanning. With 8 windows, the number of layers of stack scanning is

5 on average, and for 12 and 16 windows, it is 7 and 9 on average.

100

5.5 Results

5.4.6 Procedure

A trial consists of a series of five window switching techniques. During each trial, the

participants’ task was to find the window of interest by using five window switching tech-

niques in the different scenarios. Before starting each part of the experiment, participants

had a 15-20 minutes training period to get used to the switching techniques and windows

content (participants allowed to train as long as they want, training until they feel at ease

with the technique). Participants are instructed to ”perform as fast as possible without

error”. Participants first pressed a ”Layout” button to initialize a windows layout, and

the target window was presented to participants (the title + icon), then pressing the

”start” button to start a trial, participants were asked to find the target window with

one switching technique. After finishing this process, they were asked to press the space

bar to start the next trial until (s)he had completed 4 successful trials. Then the system

gave the prompt to change the technique to continue. When participants had successfully

performed five techniques in one scenario, the system gave the prompt for another sce-

nario. We recorded the amount of time it took to select the target window, starting from

the time a participant clicks the ”start” button. If the participant switched to a wrong

window, we recorded an error.

5.5 Results

The dependent variables are the switching time (ST in seconds) and the error rate.

The switching time is measured from the time the participant clicked the ”start” button to

the time the participant brought the window of interest to foreground. We first performed

a repeated measures analysis of variance (ANOVA) for our main experiment, participant

as a random effect factor and Num, VS, MLs, DisSize, AmOverlap and Technique

as fixed effect factors. We first analyze the main experiment, then the second experiment.

5.5.1 Switching Time

5.5.1.1 Main Experiment

The results of ANOVA showed a significant main effect for Num (F2,18 = 59.19,

p<0.001), VS (F2,18 = 54.96, p<0.001), AmOverlap (F3,27 = 147.16, p<0.001) and

101

5. STACK SCANNING RULES!

Technique (F4,36 = 42.13, p<0.001) on switching time, and MLs (F2,18 = 3.46, p=0.054)

and DisSize (F2,18 = 2.44, p=0.116) were not significant on switching time.

We use the LSD (Least Square Difference) test with α = 0.05 for the pairwise compar-

isons between techniques (We mainly focus on techniques). Table 6.1 shows the results of

those tests in detail.

Table 5.1: Pairwise comparisons between techniques condition on switching time. A cell

contains the means difference and the lower and upper bound of the confidence interval.

Underlined cells are significant.

AltTab Direct pointing Expose Stack scanning Taskbar

AltTab 0 -2.060 -0.237 0.212 0.489

0 -2.589 -0.872 -0.209 0.040

0 -1.531 0.398 0.633 0.939

Direct p. 2.060 0 1.823 2.272 2.549

1.531 0 1.074 1.744 2.010

2.589 0 2.572 2.799 3.088

Expose 0.237 -1.823 0 0.449 0.726

-0.398 -2.572 0 0.063 0.435

0.872 -1.074 0 0.834 1.018

Stack s. -0.212 -2.272 -0.449 0 0.278

-0.633 -2.799 -0.834 0 0.054

0.209 -1.744 -0.063 0 0.501

Taskbar -0.489 -2.549 -0.726 -0.278 0

-0.939 -3.088 -1.018 -0.501 0

-0.040 -2.010 -0.435 -0.054 0

More interestingly we found some significant interactions between those visual fac-

tors and Technique (we mainly focused on the interactions between visual factors and

technique):

• Two-way interactions: between Num and Technique (F8,72 = 6.22, p<0.001), be-

tween VS and Technique (F8,72 = 28.58, p<0.001), between MLs and Technique

(F8,72 = 3.83, p<0.001), between DisSize and Technique (F8,72 = 3.33, p<0.003),

between AmOverlap and Technique (F12,108 = 158.05, p<0.001);

102

5.5 Results

0

1

2

3

4

5

6

7

8

9

10

8 12 16
Number of Windows

M
ea
n(
ST
) i
n
s

Alt+Tab

Direct pointing

Expose

Stack scanning

Taskbar

Figure 5.8: Mean switching time (ST) in s for Num and Technique. Error bars represent

95% confidence interval.

• Three-way interactions: between Num, VS and Technique (F16,144 = 7.49, p<0.001),

between Num, MLs and Technique (F16,144 = 2.30, p<0.005), between VS, MLs

and Technique (F16,144 = 1.98, p<0.018).

Interpreting two-way interactions

Pairwise comparisons is used to analyze and interpret those two-way interactions.

Num x Technique. For all Num conditions, Direct pointing is significantly more than

40% slower compared to other techniques. For the 8 windows and 12 windows conditions,

Taskbar is significantly (p<0.013) faster than the other techniques. On average, for 8

windows, Taskbar is 49% faster, and for 12 windows, Taskbar is 35% faster). We also

observed a significant difference (p<0.035) between stack scanning and other techniques

for 16 windows condition. On average stack scanning is 17% faster than Taskbar, Exposé

and Alt+Tab, and 65% faster than Direct pointing (H1 is supported) (Figure 5.8).

VS x Technique. There is a significant difference between stack scanning and other

103

5. STACK SCANNING RULES!

0

1

2

3

4

5

6

7

8

HVS LVS NVS
Visual Similarity

M
ea
n(
ST
) i
n
s

Alt+Tab

Direct pointing

Expose

Stack scanning

Taskbar

Figure 5.9: Mean switching time (ST) in s for VS and Technique. Error bars represent

95% confidence interval.

techniques (p<0.018) for HVS. On average stack scanning is 24% faster than Taskbar,

Exposé and Alt+Tab, and 49% faster than Direct pointing. For LVS and NVS conditions,

we observed significant differences (p<0.005) between Taskbar and other techniques. On

average Taskbar is 26% faster than stack scanning, Exposé and Alt+Tab, and is 97% faster

than Direct pointing for these two VS conditions (Figure 5.9).

MLs x Technique. There is a significant difference between Direct pointing and

other techniques (p<0.001) for all match level conditions with Direct pointing being 49%

slower on average. For the first match level, we observed a significant difference between

Taskbar and other techniques (p<0.001). On average, Taskbar is 17% faster than stack

scanning, Exposé and Alt+Tab, and is 72% faster than Direct pointing (Figure 5.10).

DisSize x Technique. There is a significant difference between Taskbar and other

techniques (p<0.045) for all the distributions of window size. On average Taskbar is 12%

faster than stack scanning, Exposé and Alt+Tab, and 63% faster than Direct pointing for

those three DisSize conditions (Figure 5.11).

104

5.5 Results

0

1

2

3

4

5

6

7

8

First Match Level Second Match Level Third Match Level
Match Levels

M
ea
n(
ST
) i
n
s

Alt+Tab Direct pointing Expose Stack scanning Taskbar

Figure 5.10: Mean switching time (ST) in s for MLs and Technique. Error bars repre-

sent 95% confidence interval.

0

1

2

3

4

5

6

7

8

Size211 Size121 Size112

Distribution of Window Size

M
ea
n(
ST
) i
n
s

Alt+Tab Direct pointing Expose Stack scanning Taskbar

Figure 5.11: Mean switching time (ST) in s for DisSize and Technique.

105

5. STACK SCANNING RULES!

0

1

2

3

4

5

6

7

8

0% 25% 50% 75%
Amount of Overlapping

M
ea
n(
ST
) i
n
s

Alt+Tab Direct pointing Expose Stack scanning Taskbar

Figure 5.12: Mean switching time (ST) in s for AmOverlap and Technique.

AmOverlap x Technique. We found that stack scanning was significantly (p<0.033)

faster than the other techniques for the 0% AmOverlap (this also hinted that Direct

pointing is faster than other techniques when the target window is visible). On average

stack scanning is 21% faster than Taskbar, Exposé and Alt+Tab, and 79% faster than

Direct pointing. For 75% and 50% AmOverlap we observed a significant difference

(p<0.035) between Taskbar and other techniques. On average Taskbar is 15% faster than

Exposé and Alt+Tab, and is 34% faster stack scanning, and is 63% faster than Direct

pointing (Figure 5.12).

Interpreting three-way interactions

We had observed some significant differences between visual factors and techniques in

the three-way interactions, we now interpret those significant interactions.

Num, VS and Technique. The Num x VS interaction is larger for Taskbar (F4,12951

= 402.43, p<0.001) than other techniques. With stack scanning, the difference between

VS by Num is very small. With Taskbar, the difference between Num is large, especially

when the VS is important (Figure 5.13). With Direct pointing, the difference between

VS by Num is small whereas there is a large difference between Num. With Exposé, the

106

5.5 Results

0

1

2

3

4

5

6

7

8

9

10

8 12 16
Number of Windows

M
ea
n(
ST
) i
n
s

Alt+Tab

Direct pointing

Expose

Stack scanning

Taskbar

Figure 5.13: Mean switching time(ST) in s for Num and Technique with the HVS.

Error bars represent 95% confidence interval.

difference between Num for each VS condition is larger, when the VS is important, the

difference is more obvious.

Num, MLs and Technique. The Num x MLs interaction is larger for Taskbar

(F4,12951 = 31.75, p<0.001) than other techniques. With Exposé, stack scanning and

Direct pointing, the difference between MLs is small for each the Num condition. With

Taskbar, the difference between the Num by the MLs is larger than other techniques,

and the difference between the MLs is smaller for 8 and 12 windows than for 16 windows

condition (Figure 5.14).

VS, MLs and Technique. The VS x MLs interaction is larger for Taskbar (F4,12951

= 14.13, p<0.001) than other techniques. With Taskbar, the difference between the VS

is larger than other techniques (Figure 5.15). With stack scanning and Direct pointing

the differences between the MLs are small for each the VS condition. With Alt+Tab, the

difference between VS is large for each the VS condition.

107

5. STACK SCANNING RULES!

0

1

2

3

4

5

6

7

8

9

10

The First Match Level The Second Match Level The Third Match Level
Match Levels

M
ea
n(
ST
) i
n
s

Alt+Tab
Direct pointing
Expose
Stack scanning
Taskbar

Figure 5.14: Mean switching time(ST) in s for MLs and Technique with the 16 windows.

Error bars represent 95% confidence interval.

5.5.1.2 Second Experiment

For the Size001 of the distribution of window size condition, we performed an ANOVA

similar to our main ANOVA. The results of ANOVA showed a significant main effect for

Num (F2,18 = 75.01, p<0.001), VS (F2,18 = 40.75, p<0.001) and Technique (F4,36 =

53.17, p<0.001) on switching time. Comparing to the main experiment, there was a

difference for MLs condition. For the Size001, it showed a significant main effect for

MLs (F2,18 = 5.21, p<0.048) on switching time. There was only one significant two-way

interactions between VS and Technique (F8,72 = 19.93, p<0.001) (Figure 5.16) .

For the Size001 condition, each layer of stack scanning only includes one window,

participants need to cross more layers to get the target window, so it is slower than

other DisSize conditions. With Exposé, the similar window size would result in similar

thumbnail size, and the thumbnail of window is smaller than other DisSize condition.

So with the visual similarity increasing, it is slower than other DisSize conditions.

For the HVS condition, Exposé is slower than other techniques for each Num con-

dition. Taskbar is still the best choice under the low Num condition, it is significantly

108

5.5 Results

0

1

2

3

4

5

6

7

8

9

10

NVS LVS HVS
Visual Similarity

M
ea
n(
ST
) i
n
s

Alt+Tab
Direct pointing
Expose
Stack scanning
Taskbar

Figure 5.15: Mean switching time(ST) in s for VS and Technique with the 16 windows.

Error bars represent 95% confidence interval.

faster than other techniques for 8 and 12 windows, and AltTab is the best choice when the

number of windows is high. It is faster than other techniques (Figure 5.17). For the LVS

and NVS conditions, Taskbar is faster than other techniques for each Num condition, so

it is the best choice for users.

5.5.2 Error Rate

5.5.2.1 Main Experiment

The overall error in the experiment was 4.83%. ANOVA showed a significant main

effect for Num (F2,18 = 20.89, p<0.001), VS (F2,18 = 19.35, p<0.001), MLs (F2,18 =

7.48, p<0.008) and Technique (F4,36 = 18.70, p<0.001) on switching errors. We also

observed some significant interactions between visual factors and techniques, including

between Num and Technique (F8,72 = 18.70, p<0.012) (Figure 5.18), between VS and

Technique (F8,72 = 3.25, p<0.032) (Figure 5.19), between MLs and Technique (F8,72

= 3.99, p<0.015). There are also three-ways significant interactions between Num, VS

and Technique(F16,144 = 2.78, p<0.027), between Num, MLs and Technique(F16,144

109

5. STACK SCANNING RULES!

0

1

2

3

4

5

6

7

8

9

10

NVS LVS HVS
Visual Similarity

M
ea
n(
ST
) i
n
s

Alt+Tab Direct pointing Expose Stack scanning Taskbar

Figure 5.16: Mean switching time (ST) in s for each Technique, grouped by VS under

the Size001 condition. Error bars represent 95% confidence interval.

= 3.99, p<0.009), between VS, MLs and Technique(F16,144 = 3.93, p<0.009). The

results reveal that Direct pointing is less error prone than other techniques and Exposé is

more error prone than other techniques for each combination of levels of the other visual

factors conditions.

We use the LSD (Least Square Difference) test with α = 0.05 for the pairwise compar-

isons between techniques condition on switching error rate. Table 5.2 shows the results

of those tests in detail.

5.5.2.2 Second Experiment

The overall error for the Size001 condition was 6.31% (it is higher than other DisSize

conditions). However, a new ANOVA only shows that Exposé is more error prone than

other techniques: the Num (F2,18 = 3.95, p<0.050) and MLs (F2,18 = 5.88, p<0.038) are

significant factors, but the techniques are not and there is no evidence of an interaction

110

5.5 Results

0

2

4

6

8

10

12

14

8 12 16
Number of Windows

M
ea
n(
ST
) i
n
s

Alt+Tab
Direct pointing
Expose
Stack scanning
Taskbar

Figure 5.17: Mean switching time (ST) in s for each Technique, grouped by MLs for

HVS under the Size001 condition. Error bars represent 95% confidence interval.

between visual factors and techniques.

5.5.3 Qualitative Results

At the end of experiment, participants were asked to rate those five window switching

techniques and visual factor conditions. Nine participants said that they preferred stack

scanning when the number of windows and the visual similarity is high or the number of

layers is low, and four of them liked the overlapping mechanism of stack scanning very

much, they said that it provided a good way to support them to organize their windows by

groups (task) to allow windows overlapping, and they considered that this could improve

the efficiency of their work. There were different opinions for Exposé, three participants

said they liked Exposé, two participants said they did not like Exposé, because the thumb-

nails were small and it was difficult to distinguish them. They could only use the label

attached to the thumbnails to recognize the target window. All participants commented

111

5. STACK SCANNING RULES!

‐0.20

0.00

0.20

0.40

0.60

0.80

1.00

1.20

1.40

8 12 16

Number of Windows

Er
ro
r
Ra

te

Alt+Tab
Direct pointing
Expose
Stack scanning
Taskbar

Figure 5.18: Error rate for each Technique, grouped by Num. Error bars represent 95%

confidence interval.

‐0.20

0.00

0.20

0.40

0.60

0.80

1.00

1.20

1.40

NVS LVS HVS

Visual Similarity

Er
ro
r
Ra

te

Alt+Tab
Direct pointing
Expose
Stack scanning
Taskbar

Figure 5.19: Error rate for each Technique, grouped by VS. Error bars represent 95%

confidence interval.

112

5.5 Results

Table 5.2: Pairwise comparisons between techniques condition on switching error rate.

A cell contains the means difference and the lower and upper bound of the confidence

interval. Underlined cells are significant.

Alt+Tab Direct pointing Expose Stack scanning Taskbar

Alt+Tab 0 0.0012 -0.0054 -0.0012 -0.0010

0 0.0006 -0.0080 -0.0021 -0.0020

0 0.0019 -0.0027 -0.0003 0.0000

Direct p. -0.0012 0 -0.0066 -0.0024 -0.0023

-0.0019 0 -0.0095 -0.0033 -0.0033

-0.0006 0 -0.0037 -0.0015 -0.0013

Expose 0.0054 0.0066 0 0.0042 0.0044

0.0027 0.0037 0 0.0017 0.0016

0.0080 0.0095 0 0.0067 0.0071

Stack s. 0.0012 0.0024 -0.0042 0 0.0001

0.0003 0.0015 -0.0067 0 -0.0008

0.0021 0.0033 -0.0017 0 0.0011

Taskbar 0.0010 0.0023 -0.0044 -0.0001 0

0.0000 0.0013 -0.0071 -0.0011 0

0.0020 0.0033 -0.0016 0.0008 0

on Exposé that the location of windows was not fixed made them very frustrated. Six

participants(4 female) reported that they preferred the techniques based on the mouse

(Direct pointing, Taskbar and stack scanning).

All participants said that they did not like the high visual similarity condition. Eight

participants said that they used Direct pointing less often with the window of interest

which was obscured, but seven participants (six from those eight participants) cited Di-

rect pointing as their preferred way with the window which is visible (the experiment has

proven that it was faster than other techniques when the target window is visible). Five

participants cited Taskbar as their preferred technique with the low number of window:

the button location fixed on the Taskbar was interesting for them. Participants who used

Alt+Tab never used the Shift key to move back in the window list when they missed the

target window, and preferred to iterate through the entire list instead. Participants said

113

5. STACK SCANNING RULES!

that it was inconvenient and uncomfortable to press the Shift key in this case (simultane-

ously press the Alt and Tab key). Three participants who used Alt+Tab technique said

that the changing of windows order in the list could make them feel confused, because

the stability is very important for them.

5.6 Discussion

Taskbar is fast when the number of windows and the visual similarity are low. When

the number of windows is constant, the fixed button location on the Taskbar can also help

users to revisit the window (when the number of windows is changed, the button location

will also change). The main problem with Taskbar is that its performance becomes worse

and worse with a high number of windows and a high visual similarity. One possible

solution is to allow the user to define a relevant region on the Taskbar to put some

important windows (drag-and-drop operation is added to help users to rearrange the

windows) and this region size is not affected by the change in the number of windows on

the Taskbar. In this way, all windows in the special region can be very easy to find (fix

location and the icon and title are visible).

The main problem with Exposé is the high visual similarity between windows and non-

stable spatial layout. The visual similarity mainly includes two aspect: 1) the window size

(the thumbnail size is decided by layout algorithm); 2) the window content, and when

the thumbnail size is small, the content is difficult to recognize. To reduce the visual

similarity, one possible solution is to use real windows to replace thumbnails, the title bar

of these windows is the same as the original windows, and the content of these windows

use the same content as the last time access of the original windows. For non-stable

spatial layout mechanism, the direct way uses a stable spatial layout mechanism. Other

ways, include adding visual feedback to identify frequently accessed window (i.e., using

the number 1, 2, 3 to identify frequently accessed three windows or adding the trails

between them Hoffmann et al. (2008)).

For Alt+Tab, in addition to the performance issues (the high number of keystrokes),

the interaction way based on the keyboard is another problem for some users. They are

more accustomed to using the mouse, so we can consider integrating this technique with

mouse shortcuts.

114

5.7 Conclusion

The performance of stack scanning mainly depends on the number of layers and the

amount of overlapping of the target window. Most text documents being left-aligned,

overlapping them on the right side usually leaves more content visible than on the left

side, we can develop some placement strategies to keep windows to overlap on the right

side as possible as we can. In this case, we may easily recognize each window for using

stack scanning. Push-And-Pull Switching has been proved that it is efficient to quickly

switch between the current group and the closer, but it appears more difficult to switch

to any group Xu & Casiez (2010). Stack scanning has a potential possible and advantage

to be used to group switching, it can address that problem (switch to any group) very

well, and we believe it will have a good performance for group switching (it does not need

to implement the pointing action).

5.7 Conclusion

In this chapter, we examined the problems related to switch windows under various

visual factors conditions. We proposed a new window switching technique, stack scanning.

It provides a lightweight alternative to other window switching techniques. We conducted

an experiment to compare the performance and error rate of stack scanning to other 4

window switching techniques. Results showed that stack scanning was faster than other

techniques when the number of windows is high and the visual similarity is important,

and participants strongly preferred it in this condition. They also showed that Taskbar

was the best choice when the number of windows is small, regardless of other visual factor

conditions and for users who always maximize their windows, Alt+Tab was the best choice

when the number of windows is important. For the potential problems with the current

window switching techniques, we provide some solutions to improve them.

115

Chapter 6

WindowsTagging: Quick Task

Switching Using Tags

In this chapter, we first discuss and give eleven design principles which are based on the

presented issues on the existing task switching techniques. Those design principles provide

a theory foundation to help designers to develop new window switching techniques. We

then designed and developed a prototype system called WindowsTagging based on those

design principles. It combines implicit and explicit definition of groups, spatial and vi-

sual memories to help users to quickly find windows or groups and switch between them.

WindowsTagging represents windows as thumbnails, displaying all groups at the same

time and allowing windows to exist simultaneously in multiple groups. WindowsTagging

exploits users’ spatial and visual memories by providing a relative stable spatial layout

with larger thumbnails using overlapping. Groups are first automatically created based

on a window overlapping algorithm. Window tagging mechanism was used to allow users

to explicitly create or modify groups by tags. The Drag-and-drop and splitting group

functions also allow users to explicitly define or modify groups. A search function is pre-

sented to help users finding a window by its title or tags. An experiment was designed to

compare the performance and error rate of WindowsTagging to Exposé. Results showed

that WindowsTagging was faster than Exposé technique, and participants strongly pre-

ferred it. Finally, we showed in a user longitudinal study that WindowsTagging was very

effective and can improve the efficiency of users task management.

116

6.1 Introduction

6.1 Introduction

Throughout the history of personal computing, the limited display space has always

been a problem. On the one hand users are increasingly turning to use larger display and

multiple-monitors system, on the other way users keep more opened windows simultane-

ously with the additional display space Smith et al. (2003). This results in that users

may still face the same window management and interaction problems that occur on the

small displays when using modern overlapping window management systems with large

displays.

Virtual desktop managers (VDMs) have been one of the popular solutions to the space

management problem, such works can be traced back to Card and Henderson’s Rooms

which used ‘rooms’ to organize windows and in an entirely manual way D. Austin Hen-

derson & Card (1986). In Rooms, Card and Henderson D. Austin Henderson & Card

(1986) observed that people tend to use windows in groups. They also identified desirable

properties of task management systems (to correspond with windows group), including

1) fast task switching, 2) fast task resumption, and 3) easy reacquisition of the cognitive

context associated with a task.

Card and Henderson proposed those desirable properties mainly based on the per-

formance of task switching. However we did not find that they provided some design

principles to help researchers to implement those properties except an example (Rooms).

Another problem is that they only focused on task switching, they did not discuss the

problem how to create tasks which is also very important for task management systems.

It is a prerequisite for the task switching and can directly affect subsequent interaction.

Since then, researchers have spent considerable effort on this topic and have proposed

a variety of task management systems (e.g., Elastic Windows Kandogan & Shneiderman

(1996), Task Gallery Robertson et al. (2000), Scalable Fabric Robertson et al. (2004),

GroupBar Smith et al. (2003) and WindowScape Tashman (2006)) and each has exhibited

some of these properties. Those systems have proposed two main ways to help users

define tasks: 1) automatically group windows into tasks; and 2) give users manual control

over these groupings. Whether groups are explicitly or implicitly defined, however, these

grouping mechanisms present problems for users. For groups explicitly defined, users may

find it burdensome to explicitly classify windows into tasks and even may be hard-pressed

to decide on an appropriate classification for each window. For groups automatically

117

6. WINDOWSTAGGING: QUICK TASK SWITCHING USING TAGS

defined, the system can incorrectly infer groups and create groups that may not correspond

to users expectations.

But in spite of those system successes, the limitation of grouping mechanism they

provided has restricted their use. Tagging has proven a powerful alternative to existing

top-down categorization techniques, tags are more flexible in organizing objects Wetzker

et al. (2010).

Tags are an important information source in Web 2.0. They can be used to describe

user’ topic preferences as well as the content of items to make personalized recommen-

dations. A tag is a non-hierarchical keyword or term assigned to a piece of information.

It helps to describe an item and allows it to be found again by browsing or searching.

Tagging has emerged as a powerful mechanism that enables users to find, organize and

understand online entities Sen et al. (2009). Tagging systems have already showed their

value in many areas, such as query expansion Biancalana et al. (2008), web search Bao

et al. (2007), personalized search Schmidt et al. (2009); Xu et al. (2008), resource classifi-

cation Yin et al. (2009) and clustering Ramage et al. (2009), retrieval process Melenhorst

et al. (2008) and information memory and organization.

Since tags are created by users, they represent concepts meaningful for them. Tag-

ging allows users to choose the labels that match their real needs, tastes, or language,

which reduces the required cognitive efforts Wetzker et al. (2010). Because tags are

easily comprehended by users, tags serve as a bridge enabling users to better understand

an unknown relationship between an object and themselves. Their advantages can be

summarized as follows:

• Allows users to classify their objects in the ways that they find useful (classification);

• Allow for more flexibility in organizing content. They can mark and represent

the thinking of users, users can easily resume and recognize objects (users can use

semantic information to mark their groups, because it can be difficult to reacquire a

task based on the content of windows only, especially after a long time interruption);

• Facilitate content retrieval (search by tags is faster and more accurate than search

by the content of objects);

• Represent the correlation between object and object. One object may have some

different attributes (tag), and an attribute (tag) can be marked on different objects.

118

6.2 Design Principles to Support Task Switching

This gives us the ability to link different objects, which is difficult to achieve with

the title only;

• Facilitate the annotation process because little or no knowledge about the system

is required (easy to use and understand for users).

Taking into account their advantages, we can easily find that the tagging mechanism is

a very powerful and can be used in window management to enhance grouping mechanism

for modern window management systems.

So far, although many task management systems have been proposed, no system has

described in details what kinds of operations we should provide to users and how to effi-

ciently perform those operations. Twenty years ago, Bannon et al. gave some suggestions

to support task switching Bannon et al. (1983). However the personal computer (PC)

has undergone dramatic changes over the past 30 years. The huge gains in processor

speed and physical memory size and the large and multiple-monitor have allowed people

to keep more windows on the desktop. we re-examine those suggestions and give some

new design principles to support task switching.

In this chapter, we would like to ”theorize” task switching and define types of task

switching operations which have been justified by real-world usage data. First, we ana-

lyze the problems posed by the proposed task management systems and use the results

of longitudinal study in the aforementioned chapter to give some basic design principles

to support task switching. After describing the design principles, we present a prototype

system called WindowsTagging to implement those basic design principles and use the

tagging mechanism to address the limitations of other task management in the grouping

mechanism, window tagging, which uses tags to define groups. We then detail the op-

erations that WindowsTagging provides to users. Finally, we present the results of an

informal study and discuss some disadvantages of tagging mechanism and future work.

6.2 Design Principles to Support Task Switching

The first thing a window management system should provide to manage groups is the

following operations:

• group creation;

119

6. WINDOWSTAGGING: QUICK TASK SWITCHING USING TAGS

• group edition;

• group access (switch between groups);

• group deletion.

In the following, we analyze each step and give some design principles to help re-

searchers design new task management systems.

6.2.1 Group Creation

Separating explicitly and implicitly definition of groups present problems, and a previ-

ous research has also shown that users were typically disinclined to organize their personal

information up-front Bernstein et al. (2008a), so we would like a system with the following

property:

C1 1. Allow implicit and explicit methods to create groups.

We wish to implicitly define groups to free users from the initial task of explicitly

defining groups.

The position relationship among windows is very important for users, and users often

coordinate windows to finish their works Hutchings & Stasko (2004), so we would like to

maintain it to decrease the manual operations of rearranging groups. The second design

principle is:

C2. Keep the position relationship among windows as much as possible with automat-

ically defining groups.

With the large displays and multiple-monitors popularization, users can keep more

windows open simultaneously Smith et al. (2003), so that we should not neglect the

possibility that some windows might naturally be useful in several groups. Researches

have hinted that a disadvantage faced by many systems (e.g. virtual desktop managers

(VDMs), Scalable Fabric Robertson et al. (2004), Groupbar Smith et al. (2003)) is that

requiring windows to be in a single group forces users to decide ahead of time where a

new window belongs. So our the third principle is:

C3. Allow a window to be in multiple groups at the same time.

1‘C’ is the first character of create and ‘1’ represents the first principle for creating groups operation.

And the following symbols have the similar meanings.

120

6.2 Design Principles to Support Task Switching

6.2.2 Group Edition

Bernstein et al. Bernstein et al. (2008b) observed that tasks can evolve constantly,

and what might have been a correct groups an hour ago may be inappropriate now. As

users change their tasks, a system should provide some mechanisms to help users quickly

rearrange windows to adapt to the new task, so we wish a system that has the property

to help users edit groups:

E1. Allow users to explicitly change groups structure, including adding/removing win-

dows in groups and creating new groups using existing groups.

6.2.3 Group Access

Twenty years ago, Bannon et al. observed that people often switch between concurrent

tasks. Today, this conclusion was confirmed again and quantified (window switching takes

place on average once every 20.9s on large displays Hutchings et al. (2004), the results

were confirmed by D.Mackinlay & Royer (2007)). This frenetic frequency of window

switching illustrates that task switching is still the focus problem of task management

systems, and the quality of interaction efficiency can directly impact on users’ experience

and tasks productivity.

With modern window management systems, users want at least three types of switch-

ing: 1) between windows; 2) between groups; and 3) between selected windows of groups

(these operations have been justified by real-world usage data (the longitudinal study)).

So the first design principle for switching groups is:

A1. Allow users to switch between windows or groups or selected windows of groups.

One limitation of VDMs is a strict separation between windows group, making it

difficult to switch between windows from multiple groups at the same time. In the new

design, we should avoid this problem, so the second design principle for switching groups

is:

A2. Allow users to switch between windows from multiple groups at once and without

affecting the grouping structure.

Although users may switch among groups in a self-guided manner, a significant portion

of group switching is caused by external interruptions Czerwinski et al. (2004). To quickly

resume the tasks, it is sometimes difficult to do it by only according to the content of

windows. The reasons mainly come from two aspects: 1) some tasks may share different

121

6. WINDOWSTAGGING: QUICK TASK SWITCHING USING TAGS

windows, and 2) the content of windows may not represent the task topic well. So we

wish that the semantic information can be introduced to mark tasks in order to easily

recognize them, the third design principle for switching groups is:

A3. Allow users to add semantic information to mark their tasks.

Search function is widely used in people’s physical environment and digital environ-

ment and it has become the most basic way for people to get information from Internet

and Desktop environment. A variety of search services (such as Desktop Search and Web

Search) have been developed to support people requests. However, we are not aware of

any of modern window management systems that have provided the search function for

windows/groups and little work has been done by the HCI community on this problem

(We only found that Ishak proposed CAL approach that uses the content of windows to

automatically rearrange their windows Ishak (2007). It is only a prototype system and

we did not find any evaluation about it). So we would like a system have the property:

A4. Allow users to search windows or groups by some keywords.

Prior research has shown that the efficient use of graphical user interfaces strongly

depends on human capabilities for spatial cognition Cockburn (2004). User interfaces

can improve task performance by exploiting the powerful human capabilities for spatial

cognition. This opportunity has been demonstrated by many prior experiments Egan &

Gomez (1985); Gagnon (1985); Leitheiser & Munro (1995); Vicente et al. (1987). Many

techniques have been introduced to take advantage of human spatial memory to improve

users interactive capabilities Robertson et al. (1998); Tan et al. (2001). Meanwhile some

techniques have exposed this problem, such as Exposé Apple. So we would like a system

that can maintain a stability of the layout as much as possible, following the design

principle:

A5. Keep a stable groups layout to allow users to make effective use of their spatial

memory.

Taken into account the task as the basic organization way in the task management

systems, we wish a system that can provide some operations for groups similar to windows,

so we have the following design principle:

A6. Provide some operations for groups, such as move, resize.

122

6.3 WindowsTagging

6.2.4 Group Deletion

When users finish a task or they have to close a task to do other things, a system

should allow users to use a simple way to close it, so we would wish the system have the

property:

D1. Allow users to delete groups.

We have developed a prototype system called WindowsTagging based on the design

principles aforementioned. We explore the concept of window tagging instead of groups-

as-list in WindowsTagging. Each window in WindowsTagging can be annotated with

optional, freeform tags to describe its semantics. All windows in WindowsTagging can

be tagged, and a window can have several tags (it is easy to address the problem which

allows one window to reside in different groups) and a given tag can be attached to several

windows (define a group). With the application of tags in WindowsTagging, users can

find windows or groups by searching their tags and it can help users to resume tasks

according to the tags without regard to the content of tasks.

In the following we describe the WindowsTagging operations and implementation in

details.

6.3 WindowsTagging

WindowsTagging is a screen-filling visualization of the user’s workspace in two dimen-

sions which displays all groups and windows at the same time using thumbnails (Figure

6.1). The different operations to automatically define groups, switch to a group or a

window, select windows of groups, explicitly reorganize groups and finding windows are

presented below.

6.3.1 Group Creation

WindowsTagging combines implicit and explicit definition of groups (C1 is sup-

ported). When WindowsTagging is initially invoked, groups are implicitly created.

123

6. WINDOWSTAGGING: QUICK TASK SWITCHING USING TAGS

6.3.1.1 Implicit Group Definition

Push-and-Pull switching proposed to use window overlapping to implicitly define

groups Xu & Casiez (2010) based on the observation that users try to keep windows

belonging to the same activity visible by trying to avoid or minimize the amount they

overlap. This is also supported by Hutchings and Stasko who found similar results Hutch-

ings & Stasko (2004). However Push-and-Pull switching did not allow a window to be in

multiple groups at the same time. To address this limitation, we propose a new algorithm

to implicitly create groups based on overlapping windows and allow a window to be in

multiple groups at the same time. Groups are also created by considering windows in

decreasing Z order, from foreground to background, and creating a new group each time

Figure 6.1: WindowsTagging presents windows and groups using thumbnails. Thumbnails

are allowed to overlap within each group to identify groups more easily and improve

thumbnails legibility. In this example all opened windows (16) were divided into ten

groups. When moving the mouse, the group closest to the cursor is expanded to make

them easy to recognize and the titles of all window within the group are displayed.

124

6.3 WindowsTagging

the amount of overlapping for a window is beyond an overlapping threshold (C2 and C3

are supported). The algorithm is defined as follow:

Algorithm 4: Compute Windows Group

Input: windows on the desktop
Output: windows group
Initialization: Create a group container G

foreach Window Wi in the window stacking taken from top to bottom
do

flag←false

foreach group Gi from top to bottom in G
do

if the intersection between Wi and the group Gi is not over the overlapping
threshold value then

Add Wi to the group Gi

flag←true

if !flag then
Create a new group and add Wi to this group

When initially invoked, our algorithm 4 first creates groups of overlapping windows.

Here the amount of overlapping for a given window is computed as the percentage of

pixels occluded. We set the default overlapping threshold to 25% (users can define this

value by themselves). The biggest difference between our algorithm and the algorithm

of Push-and-Pull switching Xu & Casiez (2010) is that our algorithm allows a window

to reside in multiple groups simultaneously (Figure 6.2). When a window is computed

and added to a group, the window does not take part in other groups computing for the

algorithm of Push-and-Pull switching, and it will continue to be computed with other

groups for our algorithm.

6.3.1.2 Explicit Group Definition

We allow two means to manually reorganize groups in WindowsTagging, one is to use

the drag-and-drop operation and another is to use tags. Drag-and-drop provides a natural

way to allow users to explicitly define and change groups. The cost is that users need to

use drag-and-drop operations. Tags allow users more flexibility to explicitly define and

modify groups. Users can add tags to windows (we call this process as tagging) in order

to make them become one group and remove tags of the window in order to remove the

125

6. WINDOWSTAGGING: QUICK TASK SWITCHING USING TAGS

W1

W3

W2

Figure 6.2: A simple example to describe the differences between the creating group algo-

rithm of Push-and-Pull switching and the new algorithm. For Push-and-Pull switching,

computing the following groups: (W3, W1), (W2), and for the new algorithm, computing

the following groups: (W3, W1), (W2, W1).

window from the group. This method can easily make one window reside in multiple

groups simultaneously (attaching the tags to groups), compared to drag-and-drop, it does

not need to copy the window (E1 is supported).

Window Tagging

A tag is a collection of windows that can be enumerated using an iterator. Each window

in WindowsTagging can be tagged, and can have several tags. A given tag can be attached

to several windows. Windows are initially created without tags in WindowsTagging. A

tag can include any valid character. When users add a tag to a window, the window

position information (screen coordinates) is saved automatically and attached to this tag.

When users add a tag to a group, each window within the group is tagged with this tag.

The tag structure is like: chi:(200, 200, 800, 800), the ”chi” is the semantic information

that is tagged by users, ”(200, 200, 1200, 800)” is the window’s coordinates (left, top,

width, height). It is created by the system and automatically attached to the tag. With

the coordinates information, a window’s tag can correspond to a specific position of the

126

6.3 WindowsTagging

window, so when a window is in multiple groups as the same time, it can anchor at the

different position in different groups (it can be better to maintain the position relationship)

((A3 is supported)).

WindowsTagging uses two types of tags: extensional tags, which are explicitly added

to or removed from a window and intentional tags, which are specified by a predicate

that tests whether or not a window has this tag and are used to define a group windows

according to a given criterion.

Extensional tags. Users need to explicitly add or remove extensional tags for a window.

In WindowsTagging, users can click the right mouse button on the target window to open

a popup hierarchical menu and select the Window Tagging item from the menu (Figure

6.3). Users can also add or remove tags for all windows within one group at the same time,

replacing the Window Tagging item, users use the Group Tagging item to implement this

function. When users add a tag, users can select an existing tag or create a new tag. If

users choose to create the new tag, a popup window with a text box is opened to type

characters. For Window Tagging, the default content in the text box is the window’s title.

For Group Tagging, the default content in the text box is the title of the window which

is the topmost z-order in this group.

Intentional tags. Intentional tags are used to define group of windows according to a

given criterion (e.g. all ”pdf” windows). Each time an intentional tag is used, the group

of tagged windows is recomputed. In WindowsTagging, we implement it in a simple way

with searching function (see Finding Windows), the criterion is given by entering the

search keywords in the text box and the search results will be as a group, when users click

the Tagging button (at the right of text box), the criterion is tagged to this group. For

example, users want to bring all windows with “ pdf ” in the title closer to the foreground,

users can type “ pdf ” in the text box, and then clicking the Tagging button. Finally,

clicking Foreground item from the tag function menu will bring all windows with “ pdf ”

in the title closer to the foreground (We plan to enhance this function to support more

general operations, such as, users can enter “ pdf ”, and bring all windows without “ pdf

” in the title closer to the foreground).

Tag management. The tag management window is used to implement the tag man-

agement function (Figure 6.4). The tag management includes basic operations for tags

and methods to deal with the identified group by a tag. The basic operations, such as:

add tag(s) to window(s), remove tag(s) to window(s) and edit tags. The methods mainly

127

6. WINDOWSTAGGING: QUICK TASK SWITCHING USING TAGS

System context menu

Figure 6.3: WindowsTagging’s context menu, tag item is expanded to allow users to select

add/remove tag item.

include: bring a window to the foreground, bring group closer the foreground, close group

(if a window has other tags, this window can not be closed). Users can see all tags that

have been used and each window or group has been tagged. Users can check each tag

to see which windows or groups are tagged with the same tag, this process is similar as

searching windows by window’s tag (see Finding Windows via window’s tag), the windows

which do not include the tag are darken but their content remains visible through trans-

parency. By default, tags do not display on thumbnails, users can click the Display Tags

button to display all tags, and they will be displayed on thumbnails. We use different

colors to identify different tags. The same tags have the same color.

Drag-and-drop

WindowsTagging allows users to explicitly modify groups using drag-and-drop. Groups

modification includes window reorganization within a group: users can change the position

and Z order of each window within the group by dragging or selecting the corresponding

thumbnail. Thumbnails can also be dragged-and-dropped between groups to change the

group belonging of a window. Windows can also belong to different groups using the copy

function.

128

6.3 WindowsTagging

Tag Management Dialog

Figure 6.4: Tag Management Dialog.

Moving a window to another group is done using drag-and-drop with the left mouse

button. The border color of the thumbnail begin dragged is first orange when it is hovered

and it changes to red when it starts being dragged (Figure 6.5 (b1)). The thumbnails

within each group then appear with a different color to clearly show the different groups

(Figure 6.5 (c1)). The border color of the dragged thumbnail is then updated with the

color of the group for which the intersection area is the most important (Figure 6.5 (c1)

and (d1)).

If the dragged thumbnail does not intersect with any group or if the area of intersection

with two other groups is exactly the same then the color border of the thumbnail is not

changed.

Once the border color of the thumbnail changes to the color of the destination group

the user can drop it or continue to adjust its position within the group before dropping

it (Figure 6.5 (d1)). Once dropped, the dragged window is clipped if it is in intersection

with other groups (Figure 6.5 (e1)).

Copying a thumbnail window is similar to moving a window (Figure 6.5 (b2)) except

the users press the Ctrl key and hold it down after the drag operation has been initiated

to indicate the copy operation (Figure 6.5 (c2)).

129

6. WINDOWSTAGGING: QUICK TASK SWITCHING USING TAGS

w

（b1）

w
w w

（c1） （d1） （e1）

（b2）

w w

（c2） （d2） （e2）

w
w

w www
（a）

ww

Figure 6.5: Example of group reorganization using drag-and-drop. Figure (a) represents

the initial layout of groups. Moving a window to another group (b1 to e1) is done by

pressing the left mouse button on the thumbnail window W (b1). Copying a window to

another group (b2 to e2) is done by pressing the Ctrl key and holding it down with the

left mouse button on the thumbnail window W (b2). The border color of the thumbnail

window being moved or copied is continuously updated with the color of the group hovered

(c1, d1; c2, d2). Releasing the left mouse button (or including the Ctrl key) resizes the

dropped window to prevent overlapping with another group (e1, e2).

Visible windows snapshot

Drag-and-drop and attaching tags provide two simple way to allow users to explicitly

define and change groups. In the process of drag-and-drop, users can coordinate the group

structure and position relationship among the thumbnails (using tags can only coordinate

the group structure), but the position relationship among the thumbnails can not map

nicely to the windows on the desktop (thumbnails and windows have different sizes) and

users can not effectively control it. However sometimes the position relationship among

the windows (windows layout) is very important and significative for users as it directly

affect the visibility of the contents of the windows (windows overlapping). Hutchings has

shown that 50% users tend to have many windows visible simultaneously Hutchings &

Stasko (2003). If the user’s organization results of windows can be saved and be resumed

by a simple way, it can evidently improve the interaction efficiency of users.

130

6.3 WindowsTagging

WindowsTagging provides a simple operation to support this requirement based on

window tagging. Users can press the F10 key to save all the current visible windows to one

group (if one window is covered by no more than 75%, we refer to the window as visibile

window), after pressing the the F10 key, the tag management window will be opened, and

users can select one existing tag (this group will include other windows) or enter a new

tag to be attached to those visible windows. This functionality provides another way to

explicitly define group and can protect windows layout stability as much as possible.

6.3.2 Window & Group Access

6.3.2.1 Window&Group Switching

WindowsTagging is invoked using a keyboard shortcut (F9) or clicking the Window-

sTagging icon in the system tray. When the WindowsTagging is first invoked, the al-

gorithm 4 is called to create groups. For the following invocations, the implicit group

definition algorithm will only be executed when a new window is opened or when there

was an important number of modifications on windows such as closing, resizing and mov-

ing windows. In practice, the implicit group definition algorithm is called when there was

at least three windows that were modified. Otherwise the groups structure and spatial

layout from the last invocation are preserved (A5 is supported).

We consider several factors to decide which groups participate in the implicit group

definition algorithm. First we consider that groups explicitly modified by users (refer to

”Fixed Group”) should not be altered by an automatic process. Users can get frustrated if

the time they spent defining groups is lost. As a result the groups for which windows were

added are not implicitly changed. When a new window is opened or there was at least

three windows that were modified, the implicit group definition algorithm is called, and

the explicitly defined groups will be taken into account as a whole (like a big ’window’)

and the highest Z order of the window within that group will be as the Z order of that

131

6. WINDOWSTAGGING: QUICK TASK SWITCHING USING TAGS

group. The new algorithm is as follow:

Algorithm 5: Compute Windows Group

Input: windows on the desktop
Output: windows group
Initialization: Create a group container G

foreach Window Wi in the window stacking taken from top to bottom
do

flag←false

foreach group Gi from top to bottom in G
do

if Wi belongs to a ”Fixed Group” FG then
if the intersection between FG and the group Gi is not over overlap
threshold value then

Add FG to the group Gi

flag←true

else
if the intersection between Wi and the group Gi is not over overlap
threshold value then

Add Wi to the group Gi

flag←true

if !flag then
Create a new group and add Wi FG or to this group

The WindowsTagging visualization then overlaps user’s screen and displays thumb-

nails of all opened windows at once (Figure 6.1). Thumbnails are organized in groups

with overlapping between thumbnails within each group. Groups are visually separated

by preventing any overlapping between the thumbnails belonging to different groups.

When users move the mouse pointer on a group, all thumbnails within the group are

expanded and their borders are highlighted in orange. These two feedbacks allow a better

identification of the windows belonging to a group and the thumbnails expansion allows

to improve their legibility and visual recognition.

Switching to a window and bring it to foreground is done by clicking on the corre-

sponding thumbnail using the left mouse button. Switching to a group and bringing all

its windows to foreground is done by pressing the Alt key and clicking on any thumbnail

within the group using the left mouse button. Switching to selected windows of groups is

done by pressing the Ctrl key and using the left button to select the windows of interest

132

6.3 WindowsTagging

(they can come from different groups), pressing Ctrl + G brings them to foreground.

During group switching, the Z order of all windows matches the one of thumbnails. The

window with the highest Z order within that group receives the keyboard focus. We

chose to give the keyboard focus to that window since it was the last one accessed within

that group, so we consider the user more likely to interact with it (A1 and A2 are

supported).

6.3.2.2 Finding Windows

Via window’s title

WindowsTagging additionally provides a search technique for finding a window us-

ing its title. This functionality can be useful when the number of windows gets really

important or for users who have more facilities for remembering a window title than its

visual content. After the invocation of WindowsTagging, the search window appears at

the left-top with a text box to type characters (get the focus by default). Each time a new

character is entered or removed, the list of the windows corresponding to the search is

updated and the windows that do not match are darken but their content remains visible

through transparency. If only one thumbnail remains visible then the user can press the

enter key to bring the corresponding window to foreground or if several remains visible

he can use the mouse to select the thumbnail of interest (A4 is supported).

Via window’s tag

This process is similar to finding windows via their title. Users can search windows via

window’s tag, users can enter characters to match the possible tags and select the desired

tags, or users directly select the tag from the list where all used tags are displayed, and

users can select multiple tags at the same time, then using those tags to search the

windows of interest. Each time a new tag is added or removed, the list of the windows

corresponding to the search is updated and the windows which do not include the tags

are darken but their content remains visible through transparency. The search results

display all the windows which include the input tags (A4 is supported).

133

6. WINDOWSTAGGING: QUICK TASK SWITCHING USING TAGS

6.3.3 Group Edition

6.3.3.1 Adding/Removing windows in groups

Drag-and-drop operation is also an efficient way to add/remove windows in groups.

Another way is to use tags to implement this operation when the group has been tagged,

users only need to add/remove the tags to the object windows, then the windows can

be added/removed in this group. Drag-and-drop operation is more natural way to define

groups than tags (A6 is supported).

6.3.3.2 Fixing Group

In the aforementioned subsection, we mentioned groups explicitly modified by users

that can not be altered by an automatic process. However, if users do not want to modify

the structure of an implicitly defined group and do not want this group to be modified

by an automatic process, users can use fixing group function. Users can click the right

mouse button on the target group to open a popup menu, and selecting the Fixing Group

item to fix group.

6.3.3.3 Splitting Group

Splitting group function is used to create new groups. This is done by selecting, within

a group, one or more windows that are going to belong to the new group. The selection

is done by pressing the Ctrl key and selecting each thumbnail window. Pressing Ctrl+S

creates a new group with the selected thumbnails.

The splitting algorithm make some room next to the group where the different thumb-

nails were selected by resizing and translating the other groups. The thumbnails of the

original group are scaled down and the new group appears next to it.

6.3.4 Window & Group Deletion

WindowsTagging allows users to close one window or group with right button popup

menu. When users close a group, if the windows within this group also belong to other

groups (they are tagged by other tags), the closing action can not close those windows,

but the system will automatically delete the tag from this group, the windows remain in

place (D1 is supported).

134

6.3 WindowsTagging

6.3.5 Implementation

WindowsTagging prototype has been implemented on Windows operating system us-

ing C++, in the following subsections, we describe WindowsTagging’s implementation in

details, focusing on the main algorithms for group layout, clipping rectangle and splitting

group.

6.3.5.1 Group Layout

The algorithm of group layout was inspired by the Exposé patent in Apple’s Mac OS X

operating system patent: US 2004/0261038 A1 (2004). We first compute the minimum

enclosing rectangle for each group (MERects), then we invoke the similar algorithm of

Exposé to detect the best position and size of those rectangles (BPRects). Finally, we

compute the position and size for each window according to the position of two rectangles

mapping relations (the transformation matrix from MERects → BPRects).

Algorithm 6: Group Layout

Input: windows on desktop
Output: The position and size of each thumbnail
Compute the minimum enclosing rectangle for each group (MERects)
Invoke the similar algorithm of Exposé windows layout, get the position and size of
those rectangles (BPRects)
Compute each transformation matrix Mi from MERects → BPRects

foreach window Wi on the desktop
do

Wi to do matrix Mi transformation

6.3.5.2 Clipping Rectangle

When users use drag-and-drop operation, once dropped, the dragged window is clipped

if it intersect with other groups Figure 6.5 (e1). In order to make the clipped window

135

6. WINDOWSTAGGING: QUICK TASK SWITCHING USING TAGS

keep the size as big as possible, the clip algorithm is invoked.

Algorithm 7: Clipping Rectangle

Input: the dragged window
Output: the best window size
Initialization: Create a rectangle container vecRectangles

foreach group Gi which intersects with the dragged window
do

foreach window Wi within the Gi

do
if Wi intersects with the dragged window then

Get the intersection rectangle ri
Detect all the largest empty-space rectangles when ri is added to the
dragged window Bell & Feiner (2000), then adding all largest
empty-space rectangles to vecRectangles

Sort vecRectangles by the rectangle area

foreach rectangle esri within the vecRectangles
do

if esri intersects with the target group then
Clip the dragged window
return

6.3.5.3 Splitting Group

This process is similar with the initialization group layout process, we first detect the

largest empty-space rectangles and sort them by area. We then find out the rectangle

from the largest empty-space rectangles which contains the target group. Finally, we

implement the algorithm of group layout 6 in this rectangle region.

6.4 Experiment

We conducted an experiment to compare the performance and users’ preferences of

WindowsTagging and Exposé (Figure 6.6) in different scenarios. To understand if the

search function can improve the performance of switching, we use two prototypes for

WindowsTagging, one is with search function (refer to as Prototype SFWindowsTagging

(Figure 6.8)), and another one is not (refer to as Prototype NSWindowsTagging (Figure

6.7)).

136

6.4 Experiment

Figure 6.6: Exposé view of 12 windows, when moving mouse on the thumbnail of window,

the window’s title is displayed.

137

6. WINDOWSTAGGING: QUICK TASK SWITCHING USING TAGS

Figure 6.7: NSWindowsTagging view of 12 windows, when moving mouse on the thumb-

nail group, all windows within the group are expanded and all windows’ title are displayed

in columns from top to bottom by the window z-order.

6.4.1 Hypothesis

H1 WindowsTagging is expected to reduce the switching time compared to Exposé.

Because WindowsTagging uses thumbnails overlapping to intuitively represent groups,

this representation of groups will improve the finding of individual windows through the

visual recognition of other windows belonging to the same group giving hint towards the

right window.

H2 SFWindowsTagging is expected to reduce the switching time compared to NSWin-

dowsTagging, especially when the number of windows is high.

6.4.2 Apparatus

WindowsTagging prototype has been implemented on Windows operating system us-

ing C++. We used our implementation of an Exposé clone to perform the experiment in

138

6.4 Experiment

Figure 6.8: SFWindowsTagging showed the result that users entered ”ppt” in the text

box, the search dialog located at the left-top (the red rectangle region). Each time a new

character is entered or removed, the list of the windows corresponding to the search is

updated and the windows that do not match are darken but their content remains visible

through transparency.

a Windows environment and our implementation is similar to the Apple’s Exposé (Win-

dowsTagging and Exposé clone use the similar layout algorithm) (Figure 6.6, 6.8 and 6.7).

We used a PC running Microsoft Windows XP using a 22 inch LCD monitor with a 1680

× 1050 resolution.

6.4.3 Participants

9 people (6 male, 3 female) with a mean age of 27.5 (SD=2.87) participated. They were

recruited from our lab and university (2 civil engineer, 1 mechanic, 1 electronic engineer,

1 chemical engineer and 4 computer scientists) and said they spent at least 8 hours a day

working on the computer. Among them, eight use a Microsoft Windows system and one

139

6. WINDOWSTAGGING: QUICK TASK SWITCHING USING TAGS

uses a Microsoft Windows system and Apple Mac OS X simultaneously.

6.4.4 Experimental Design

A repeated measures within-subjects design was used. The independent variables were

Technique with 3 levels (Exposé, SFWindowsTagging and NSWindowsTagging), number

of windows Num with 3 levels (8, 12, 16), distribution of window size DisSize with 3

levels (SmallWindow : NormalWindow : LargeWindow (the definitions are the same as

in Chapter 5 Section 5.4.5), 2:1:1 (Size211), 1:2:1 (Size121), 1:1:2 (Size112)), visual

similarity (VS) with 3 levels (NVS, LVS, HVS).

The two main factors are the window switching techniques (Exposé, SFWindowsTag-

ging and NSWindowsTagging and the scenario conditions (Num, VS, DisSize). The

main measure is the completion time and error rate to perform a window switching tech-

nique to find the window of interest in different scenarios. Our experiment used real

application windows such as Notepad, Word and PDF document as the target windows.

We believed that participants would easily be able to recognize real application windows.

The number of groups may affect the performance of WindowsTagging, and the

amount of overlapping determines the number of groups in our technique WindowsTag-

ging. So in here we use the number of groups to replace this factor in our experiment.

With the 8 windows, the number of groups in the WindowsTagging is 5 on average, and

for 12 and 16 windows, it is 7 and 9 on average. The size and position of each window

are random but they have to respect the number of groups in a trial.

The experiment consists of 81 (Num x VS x DisSize x Technique) trials. Orders

for the techniques, the number of windows, visual similarity, and distribution of window

size conditions were counter-balanced across participants using a balanced Latin-square.

6.4.5 Procedure

A trial consists of a series of three window switching techniques. During each trial,

the participants’ task was to find the window of interest by using three window switching

techniques in different scenarios. For Exposé, first pressing the F9 key on the keyboard

to call it, then finding the window of interest and selecting it. For NSWindowsTagging,

first pressing the F10 key on the keyboard to call it, then finding the window of interest

and click it. For SFWindowsTagging, first pressing the F11 key on the keyboard to call

140

6.4 Experiment

it, then typing characters to select the window. Each time a new character is entered or

removed, the list of the windows corresponding to the search is updated and the windows

that do not match are darken but their content remains visible through transparency.

When only one thumbnail remains visible then the user can press the enter key to bring

the corresponding window to foreground or if several remains visible he can use the mouse

to select the thumbnail of interest.

Before starting each part of the experiment, participants had a 15-20 minutes training

period to get used to the switching techniques and windows content (participants allowed

to train as long as they want, training until they feel at ease with the technique). Par-

ticipants are instructed to ”perform as fast as possible without error”. Participants first

pressed a ”Layout” button to initialize a windows layout, and the target window was pre-

sented to participants (the title + icon), then pressing the ”start” button to start a trial,

participants were asked to find the target window with one switching technique. After

finishing this process, they were asked to press the space bar to start the next trial until

(s)he had completed 4 successful trials. Then the system gave the prompt to change the

technique to continue. When participants had successfully performed three techniques in

one scenario, the system gave the prompt for another scenario. We recorded the amount

of time it took a participant to select the target window, starting from the time a par-

ticipant to click the ”start” button. If the participant switched to a wrong window, we

recorded an error.

6.4.6 Results

The dependent variables are the switching time (ST in seconds) and the error rate.

The switching time is measured from the time the participant clicked the ”start” button

to the time the participant brought the window of interest to foreground.

6.4.6.1 Switching Time

A repeated measures analysis of variance (ANOVA) showed a significant main effect

for Num(F2,16 = 54.19, p<0.001), VS (F2,16 = 90.26, p<0.001), DisSize (F2,16 = 40.60,

p<0.001) and Technique (F2,18 = 30.53, p<0.001) on switching time.

141

6. WINDOWSTAGGING: QUICK TASK SWITCHING USING TAGS

Table 6.1: Pairwise comparisons between techniques condition on switching time. A cell

contains the means difference and the lower and upper bound of the confidence interval.

Underlined cells are significant.

Exposé NSWindowsTagging SFWindowsTagging

0 0.074 0.829

Exposé 0 0.512 1.273

0 0.950 1.718

-0.950 0 0.562

NSWindowsTagging -0.512 0 0.761

-0.074 0 0.959

-1.718 -0.959 0

SFWindowsTagging -1.273 -0.761 0

-0.829 -0.562 0

We use the LSD (Least Square Difference) test with α = 0.05 for pairwise comparisons

between techniques condition on switching time (We mainly focus on techniques). Table

6.1 shows the results of those tests in detail.

More interestingly we found some significant interactions between Num and Tech-

nique (F4,32 = 12.42, p<0.008), between VS and Technique (F4,32 = 7.36, p<0.027).

Pairwise comparisons were used to analyze and interpret these two-way interactions.

Num x Technique. For all levels of Num, SFWindowsTagging is faster than other

techniques (H2 is supported). For the 8 windows, we found no significant difference

among them and the difference among means is small (SFWindowsTagging was 10.5%

faster than NSWindowsTagging and 2.8% faster than Exposé). For the 12 and 16 win-

dows conditions, SFWindowsTagging was significantly faster than NSWindowsTagging

and Exposé (p<0.001) and we also observed a significant difference between NSWindow-

sTagging and Exposé (p<0.028). On average, for the 12 windows, SFWindowsTagging was

25.9% faster than NSWindowsTagging and 42.1% faster than Exposé, NSWindowsTagging

was 12.8% faster than Exposé, and for 16 windows, SFWindowsTagging was 27.5% faster

than NSWindowsTagging and 60.7% faster than Exposé, NSWindowsTagging was 25.5%

faster than Exposé (Figure 6.9) (H1 is partially supported, when the number of windows

is high (12/16), it is supported).

142

6.4 Experiment

0

1

2

3

4

5

6

7

8

8 12 16
Number of Windows

M
ea
n(
ST
) i
n
s

Expose

NSWindowTagging

SFWindowTagging

Figure 6.9: Mean switching time (ST) in s for Num and Technique. Error bars represent

95% confidence interval.

VS x Technique. There was a significant difference (p<0.017) between SFWindow-

sTagging and other techniques for all visual similarity conditions. On average SFWin-

dowsTagging was 16.2% faster than NSWindowsTagging and 28.2% faster than Exposé for

the 8 windows, and SFWindowsTagging was 14.7% faster than NSWindowsTagging and

33.3% faster than Exposé for the 12 windows, and SFWindowsTagging was 31.1% faster

than NSWindowsTagging and 44.3% faster than Exposé for the 16 windows. For HVS

and LVS conditions, we found no significant difference between NSWindowsTagging and

Exposé (On average NSWindowsTagging was 13.2% faster than Exposé) (Figure 6.10).

6.4.6.2 Error Rate

The overall error in the experiment was 3.1%. A new ANOVA only showed a sig-

nificant main effect for Num (F2,16 = 5.75, p<0.043) on switching errors. We found no

significant main effect for other visual factors and we also found no significant interac-

143

6. WINDOWSTAGGING: QUICK TASK SWITCHING USING TAGS

0

1

2

3

4

5

6

7

NVS LVS HVS
Visual Similarity

M
ea
n(
ST
) i
n
s

Expose

NSWindowTagging

SFWindowTagging

Figure 6.10: Mean switching time (ST) in s for VS and Technique. Error bars represent

95% confidence interval.

tions among Num, VS, DisSize and Technique. When the number of windows is high,

SFWindowsTagging was less error-prone than other techniques (Figure 6.11).

6.4.6.3 Qualitative Results

One final question was presented for those three techniques, inquiring whether they

prefer to use Exposé or SFWindowsTagging or NSWindowsTagging.

All of 9 participants reported that they preferred SFWindowsTagging when the num-

ber of windows or the visual similarity is high. They said they often remembers some

characters of a window’s title, even if sometimes it was not precise match with the target

windows, they also would like to filter down some windows using the search function,

then using the mouse to select the target window. When the number of windows or visual

similarity is high, it was really difficult to recognize the thumbnails.

144

6.5 User Evaluation

‐0.1

‐0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

8 12 16

Number of Windows

Er
ro
r
Ra

te

Expose NSWindowTagging SFWindowTagging

Figure 6.11: Error Rate for Technique, grouped by Num. Error bars represent 95%

confidence interval.

6.5 User Evaluation

To understand how WindowsTagging might be used in real situation, we performed a

longitudinal field study on a small number of users over 15 days.

5 people(3 male, 2 female), age between 25 and 32, participated in the study. There

were 2 computer scientists, 1 system administrator and 2 geoscientists. Among them,

one used a Ubuntu Linux system 1 and a Microsoft Windows system simultaneously,

three used a Microsoft Windows system and one uses a Microsoft Windows system and

Apple Mac OS X simultaneously. For three Windows system users, they know the Exposé

function on Apple Mac OS, but they never used it. The user who used a Ubuntu Linux

and Windows system and used a similar function (Scale plugins) with Compiz Fusion 2

on the Ubuntu Linux. Two of them used a two monitors, and other used a single monitor.

1http://www.ubuntu.com/
2http://www.compiz.org/

145

6. WINDOWSTAGGING: QUICK TASK SWITCHING USING TAGS

6.5.1 Using Step-by-Step

Participants were instructed how to use WindowsTagging technique step-by-step and

were given an executable. At the beginning to the study, participants were instructed

to use WindowsTagging with those functions (automatic management): implicitly de-

fine groups (pressing F9 to automatically implement), switching window or group and the

function of searching windows by their title. After five days, participants were interviewed

to collect details and comments about how they utilized WindowsTagging and how useful

they found it to be. Meanwhile participants were instructed that they could use some

new functions (manual management), including drag-and-drop operation, visible windows

snapshot operation, edit group, splitting group and delete group. After another five days,

we interviewed them and collected details and comments about how they utilized Win-

dowsTagging and how useful they found it to be. Meanwhile we introduced the window

tagging mechanism to them and instructed how to use it (window tagging), including

adding tags, editing tags, deleting tags and searching windows or groups by tags. Finally,

participants were interviewed to collect details and comments about how they utilized

WindowsTagging and whether they found it useful.

6.5.2 Results

All participants found that WindowsTagging was very useful, and easy to use to

define and switch between windows/groups. One participant who used both Windows

and Mac OS simultaneously said that WindowsTagging was much improved compared

to Exposé, the stable windows layout strategy was very useful. Another one who used

both Windows and Ubuntu simultaneously said that it was very cool. He often arranged

windows on desktop to finish tasks and WindowsTagging provided a very powerful tool.

All participants reported that the search function was very good and important for them,

it was easy to use and could quickly find the window of interest.

All participants commented that the window tagging mechanism provided a good way

to help them mark their tasks that could help to quickly resume and find tasks, and it

was easy to use and understand. They also hoped that we can provide a prompt dialog

on the desktop to display some of recently accessed tasks. Two participants reported that

this grouping mechanism is very interesting, they often use it, but other two participants

146

6.6 Discussion

said that they preferred to use drag-and-drop operation, because this operation provided

an intuitive way to define groups.

WindowsTagging has also revealed potential usability problems. One participant said

that the algorithm of implicitly creating groups sometimes did not work very well. She did

not like to rearrange some windows manually and she hoped the system could improve

the automatic creation of groups. Secondly, when the number of window is high, the

legibility of some thumbnails was poor. Although the search function was a good way to

help them find the window of interest, but sometimes as one of their hands was always

on the mouse, moving the mouse to click the target window was more convenient than

typing the character.

Using a 5 points Likert scale, participants rated the technique as useful (averaged

response = 4.02) (1=disagree, 5=agree) and easy to use (3.83). Participants reported

that the technique is useful to implicitly create groups (2.87) and switch between groups

(4.04). Meanwhile Participants also rated that the technique’s search function is useful to

find windows and groups (4.25). Table 6.2 shows all questions and users’ average response.

6.6 Discussion

6.6.1 Overlapping Mechanism

WindowsTagging share similarities with other window switching / grouping tech-

niques. Like Exposé, Taskposé, WindowScape and Scalable fabric, WindowsTagging uses

thumbnails to represent windows. In contrast to these techniques where thumbnails leg-

ibility can be really low, and WindowsTagging uses the overlapping mechanism, it can

have large groups of thumbnails, and it can improve the legibility of groups.

We use thumbnails overlapping to intuitively represent groups. Compared to other

grouping techniques like Groupbar where buttons represent groups, we think it can im-

prove the recognition of groups by their visual content. In addition we expect that this

representation of groups will improve the finding of individual windows through the visual

recognition of other windows belonging to the same group giving hint towards the right

window. Compared to Exposé, this may improve the efficiency of window switching.

147

6. WINDOWSTAGGING: QUICK TASK SWITCHING USING TAGS

Table 6.2: User satisfaction averages for on a five point scale where 1 = useless, 5 =

useful.

Questionnaire Item
Average Response

(1 = useless, 5 = useful)

It is useful for users 4.02

It is easy to use 3.83

It is useful to be able to

predict groups by the implicitly 2.87

define group mechanism

It is useful to be able to

rearrange some windows to 3.78

change the groups structure

It is useful to be able to 4.04

switch between groups

It is useful to be able to

use window tagging mechanism 3.40

to define groups

It is useful to be able to

use visible window snapshot 2.82

function to define groups

It is useful to be able to 3.23

operate groups

It is useful to be able to

use search function to 4.25

find windows or groups

It is useful to be able to

allow one window in multiple 3.23

groups at the same time

148

6.6 Discussion

6.6.2 Grouping Mechanism

WindowsTagging is based on automatic group definition, but also supports users to

explicitly define groups by drag-and-drop, splitting group and window tagging operations.

Therefore the layout of groups may be very different but reflecting users expectations and

it can have potential advantages to help users to find the window/group of interest. Users

can also organize groups using different shapes to help them reducing the visual search

time.

Like Taskposé Bernstein et al. (2008b) and WindowScape Tashman (2006), Win-

dowsTagging allows windows to reside in multiple groups simultaneously, so users can

easily switch windows from multiple groups at once, and without affecting the grouping

structure.

Window tagging provides a powerful and flexible windows grouping mechanism, es-

pecially, when it combines the search function. This mechanism has shown a powerful

advantage for window switching. It can easily address the problem that one window can

be in multiple groups at the same time. It provides the important semantic information

for groups, making task resumption easier. Although when tags are widely used in the

Internet, it has shown some issues Golder & Huberman (2006); Guy & Tonkin (2006);

Mathes (2004), such as semantic ambiguity. Compared to the Internet, people only need

to manage very few tags on the desktop and we can also provide some mechanisms to

help users to distinguish the used tags (e.g. when typing tags, we can prompt the used

tags and give some candidate keywords).

6.6.3 Search Mechanism

We did not find any commercial window management systems to support searching

windows by their title. However the experiment and the longitudinal study have proved

that this is very effective to switch windows and groups, especially when we add the tags

to windows and groups, this is more effective.

6.6.4 Stable Spatial Layout strategy

The stable spatial layout has proved that is very useful for users revisiting a target

Tak et al. (2009b). But considering the existing grouping and switching techniques, only

149

6. WINDOWSTAGGING: QUICK TASK SWITCHING USING TAGS

WindowScape Tashman (2006) uses a stable spatial layout to help finding previously

switched windows. Taskposé Bernstein et al. (2008b), GroupBar Smith et al. (2003) and

most similar systems do not support this feature, and WindowsTagging implement the

algorithm of creating groups by keeping a relative stable spatial layout.

6.7 Conclusion

In this chapter, we first discussed and gave eleven design principles which were based

on the presented issues by the existed task switching techniques and real-world usage

data (a longitudinal study). Those design principles provided a theory foundation to help

designers to develop new window switching techniques. We then designed and developed

a prototype system called WindowsTagging based on those design principles. Window-

sTagging combines implicit and explicit definition of groups, spatial and visual memories

to help users to quickly find windows or groups and switch between them, providing a

lightweight alternative to other grouping techniques.

Windows are represented as large thumbnails which can be dragged and dropped by the

user. WindowsTagging allows groups to be defined implicitly and explicitly and windows

can exist in multiple groups simultaneously. Window tagging mechanism provides a more

powerful and flexible grouping techniques to help users to explicitly define groups. By

using tags, users allow to go through the semantic information to find the windows and

resume their tasks. The drag-and-drop and splitting group functions were provided to

allow users to intuitively and explicitly define or modify groups. A search function is also

provided to help users to find the desired windows by their titles or tags.

We conducted an experiment to compare the performance and error rate of Win-

dowsTagging to Exposé. Results showed that WindowsTagging was faster than Exposé

technique, and participants strongly preferred it. We also showed in a user longitudinal

study that WindowsTagging was very effective and can improve task management.

6.8 Future Work

We will perform a long-term longitudinal field study with about 20 participants over

4-weeks in order to understand how people actually use the WindowsTagging through

log analysis and users feedbacks. We will also continue to complete the ”theory” of task

150

6.8 Future Work

switching and expand the window tagging mechanism to improve the efficiency of task

switching.

151

Chapter 7

Conclusion And Future Work

In this dissertation, we have described a set of contributions to the study and de-

velopment of window management techniques. The work presented in this dissertation

contributes to understand users’ activities on window management, build the theory of

window switching and conceptualize some operations, and provide some design principles

to improve window switching techniques. In this final chapter we first re-examine and

discuss the research objectives presented at the beginning of this dissertation. We then

summarize the findings and conclusions of the work. Finally, we provide several potential

avenues for future work.

7.1 Research Objectives

The over-arching goal of this dissertation was to understand and improve window

switching techniques. More specifically, the dissertation set out to achieve four goals:

1. Understand users’ activities on window management and the reasons users choose

to employ switching techniques.

2. Understand current window/group switching techniques where and when they are

effective and ineffective.

3. Theorize window/group switching and define types of switching operations which

have been justified by read-world usage data, and then provide some design princi-

ples to help designers to design new switching techniques.

152

7.1 Research Objectives

4. Using the knowledge gathered in the previous goals, analyses, design and evaluate

new switching techniques based on the design objective aforementioned.

We defined these four goals at the beginning of this dissertation 1, now we examine

and discuss the implementation of these goals with the alignment of the research outputs.

Objective 1 was completed via a log-based longitudinal study and a questionnaire

investigation. To implement this study, WindowsOSLog was developed to log user actions

in mainstream Windows operating system. The window management activities of 26

participants were monitored over 5-weeks. Chapter 3 presented the process and results

of this study in details. A large range of activities statistics were reported including the

number of windows opened simultaneously on the desktop, the distribution of window

size, the occurrence ratio of the main window events, the distribution of window switching

techniques, types of switching of users requirement, the number of visible windows and

the number of window groups.

Objective 2 was completed via a review of previous work and an experiment to compare

current window switching techniques in different scenarios. Chapter 2 described a review

of the current knowledge in the domain of window and group switching techniques, the

disadvantages and advantages of some window switching techniques were also presented in

this chapter. However the previous work could not accomplish this goal, so an experiment

was conducted to help us to achieve this goal. Chapter 5 presented the experiment to

compare all mainstream window switching techniques in different scenarios. The results

showed that Taskbar was the best choice when the number of windows is small and for

users who always maximize their windows, Alt+Tab was the best choice when the number

of windows is important.

Objective 3 required an explanation of the observations from the longitudinal study

and a review of previous work. The previous work was presented in Chapter 2. Chapter 6

presented the eleven design principles, including: 1) allow implicit and explicit methods to

create groups, 2) keep the position relationship among windows as much as possible with

automatically defined groups, 3) allow a window to be in multiple groups at the same

time, 4) allow users to explicitly change groups structure, including adding/removing

windows in groups and creating new groups using existing groups, 5) allow users to switch

between windows or groups or selected windows of groups, 6) allow users to switch between

windows from multiple groups at once and without affecting the grouping structure, 7)

153

7. CONCLUSION AND FUTURE WORK

allow users to add semantic information to mark their tasks, 8) allow users to search

windows or groups by some keywords, 9) keep a stable groups layout to allow users to

make effective use of their spatial memory, 10) provide some operations for groups, such

as move, resize, and 11) allow users to delete groups.

Objective 4 was deemed successful if the newly designed window switching techniques

was significantly faster and subjectively preferred over the traditional window switching

techniques. Chapter 4 presented the analysis, design and evaluation of the Push-and-Pull

Switching, a window switching technique using window overlapping to implicitly define

groups. The empirical evaluations found that Push-and-Pull Switching was 50% faster

than other switching techniques in different scenarios. The longitudinal user study indi-

cates that participants invoked this switching technique 15% of the time on single monitor

displays while they found it easy to understand and use. Chapter 5 presented stack scan-

ning, a window switching technique based on a widget that combines generalized scrolling

and crossing to control the stack order of layers of visible windows. The empirical eval-

uations found that stack scanning was faster than other techniques when the number of

windows is high and the visual similarity among windows is important. Chapter 6 pre-

sented WindowsTagging, a task switching techniques that combines implicit and explicit

definition of groups, spatial and visual memories to help users to quickly find windows

or groups and switch between them. Window tagging mechanism was first used in the

domain of task switching techniques to allow users to explicitly create or modify groups

by tags. The empirical evaluations found that WindowsTagging was faster than Exposé

technique, and participants strongly preferred it. The longitudinal study also showed that

WindowsTagging is very effective and can improve task management.

Finally, in line with the overall research objective, this dissertation has presented char-

acterizations that have significantly improved the research knowledge of window switch-

ing techniques. The value of this knowledge to improve window switching techniques was

demonstrated in the design of the Push-and-Pull Switching, stack scanning and Window-

sTagging.

154

7.2 Conclusion

7.2 Conclusion

The motivation of this dissertation was to understand user window management ac-

tivity and develop new switching techniques to support people more efficiently and con-

veniently to interact with computer. To achieve these goals, a log tool was developed to

record user window management activity in mainstream Windows operating system. 26

participants participated in this study and the duration was over 5-weeks. Push-and-Pull

Switching and stack scanning switching techniques were developed based on the results of

log-based longitudinal study, and a series of experiments were designed and implemented

to evaluate them. To theorize window/group switching, we defined types of switching

operations and introduced window tagging mechanism to provide a new alternative to

the existing windows grouping mechanisms, and then provide eleven design principles to

help designers design new switching techniques. Finally, we proposed a prototype system,

WindowTagging, was designed and implemented based on those design principles. The

empirical evaluations showed that WindowsTagging was faster than Exposé technique and

participants strongly preferred it.

Our contributions are:

1. A review of window/group switching techniques and related window management

systems. This review allow other researchers to more quickly understand and ana-

lyze current switching techniques.

2. A log-based longitudinal study about user window management activity, a log tool

called WindowsOSLog was developed to record user window management activity

in mainstream Windows operating system. 26 participants’ window management

activities were recorded during a period of 5-weeks.

3. Design and evaluation of Push-and-Pull Switching. Push-and-Pull Switching is a

window switching technique using window overlapping to implicitly define groups.

Push-and-Pull Switching further allows to switch between groups and restack the

focused window to any position to change its group affectation. The technique was

evaluated in an experiment showing that Push-and-Pull Switching allows to improve

switching performance by more than 50% compared to other switching techniques

in different scenarios. A longitudinal user study indicates that participants invoked

155

7. CONCLUSION AND FUTURE WORK

this switching technique 15% of the time on single monitor displays while they found

it easy to understand and use.

4. Design and evaluation of stack scanning. Stack scanning is based on a widget that

combines generalized scrolling and crossing to control the stack order of layers of

visible windows. With stack scanning, the visual information for each window is

maximized as each window remains at its original size and while the ordering by

frequency is preserved. The empirical evaluations showed that stack scanning was

faster than other techniques when the number of windows is high and the visual

similarity among windows is important. They also showed that Taskbar was the

best choice when the number of windows is small, regardless of other visual factors

conditions, and for users who always maximized each window, Alt+Tab was the best

choice when the number of windows is important.

5. Provide eleven design principles and introduce window tagging mechanism to help

designers design new window switching techniques. Those design principles provides

a theory foundation to designers and researchers.

6. Design and evaluation of WindowTagging. WindowsTagging was designed based on

the eleven design principles. It combines implicit and explicit definition of groups,

spatial and visual memories to help users to quickly find windows or groups and

switch between them. WindowsTagging represents windows as thumbnails, display-

ing all groups at the same time and allowing windows to exist simultaneously in

multiple groups. WindowsTagging exploits users’ spatial and visual memories by

providing a relative stable spatial layout with larger thumbnails using overlapping.

Groups are first automatically created based on a window overlapping algorithm.

Window tagging mechanism was used to allow users to explicitly create or modify

groups by tags. The Drag-and-drop and splitting group functions also allow users

to explicitly define or modify groups. A search function was presented to help users

finding a window by its title or tags. An experiment was implemented to com-

pare the performance and error rate of WindowsTagging to Exposé. Results showed

that WindowsTagging was faster than Exposé technique, and participants strongly

preferred it.

156

7.3 Future Work

This research provides the foundation for further work in this area. Researchers can use

these findings as a platform for future observations of switching techniques and designers

can use these observations and design principles to design new switching techniques.

7.3 Future Work

Window switching is a well known problem in overlapping windows environments

and is far from being solved. This dissertation has provided to the best of the author’s

knowledge. The remainder of this section suggests possible areas for future work.

7.3.1 Window Tagging

Push-and-Pull Switching and stack scanning are based on windows stacking and only

allow to implicitly define groups. They provide effective operations to manage users

windows stacking, and their grouping mechanisms may limit their use. Window tagging

provides a powerful windows grouping mechanism, adding this mechanism to Push-and-

Pull Switching and stack scanning can expand their use. Window tagging mechanism can

easily add to these two techniques. For example, adding a menu item to system context

menu, then users can click the right button on the target window to popup a menu and

add tags to this window. Users can select the content from the target window or input

any valid character as tags. For stack scanning, the label of each layer button is only used

to identify the number of layers. When we add tags, we can use them to display tags,

this can help users to quickly find the group with the tags.

7.3.2 Theorize Window Switching

This dissertation has provided eleven design principles to help designers to develop new

window switching techniques. We would like to continue to theorize window switching and

related problems. A further longitudinal study could be implemented to wider participants

to understand the different types of window switching operations that might be desirable

for different group participants. Then we should think about the ways these operations

can be conceptualized. Push-and-Pull Switching, stack scanning, WindowsTagging and

157

7. CONCLUSION AND FUTURE WORK

future techniques should be seen as partial and potentially combinable solutions with

this context. They should be described in terms of the operations they support and the

concept they use to present them.

7.3.3 Implicit Grouping Techniques

Researchers have proposed various implicit grouping techniques, such as Push-and-Pull

Switching Xu & Casiez (2010), based on overlapping windows; WindowScape Tashman

(2006), using all windows on the desktop except minimize windows; Taskposé Bernstein

et al. (2008b), based on the results of a ’WindowRank’ algorithm; and SWISH Oliver

et al. (2006), using temporal relationships between window focus events as well as window

titles to establish semantic relationships (its evaluations suggested 70% accuracy rates in

assigning windows to task groups). There was not any study and experiment to compare

the accuracy rates of predicting groups structure between them. So we do not know which

method is the best or in which conditions they are useful.

The direct and effective method is to use the real-world data to compute the ac-

curacy rates of predicting groups by their grouping algorithms. A further longitudinal

study could be implemented to employ a wider range of users to log their window man-

agement activities. Then we construct active windows sequences and use each grouping

algorithm to construct groups to analyze the accuracy rates of predicting. The analysis

of active windows sequences also provides a effective way to create new implicit grouping

techniques.

7.3.4 A Standardized Evaluation Framework

Window management researchers would benefit from a standardized methodology for

evaluating newly developed window or group switching techniques, as is available in other

areas of HCI. All window and group switching techniques evaluations are currently per-

formed in an ‘ad hoc’ manner, with individual researchers selecting windows, tasks and

conditions that they believe to be a fair evaluation of their system. Unfortunately, this

makes it difficult for later comparison of switching techniques without reproduction of the

original evaluation.

158

7.3 Future Work

A switching techniques evaluation framework would create standardized windows and

groups (based different grouping algorithm). It would provide some standardized scenarios

(tasks) that can be used to evaluate switching techniques (Chapter 4).

The framework would integrate current standardized window switching techniques,

such as Direct pointing, Alt+Tab, Taskbar and Exposé. Researchers can easily set up

experiments to compare the performance of their new techniques to those standard tech-

niques. Taken into account the performance of window and group switching techniques

depend on the windows layout, visual similarity, and so on, so the framework would allow

researchers to set visual factor parameters to create a window layout, include the number

of windows, distribution of window size, the amount of overlapping, window z-order and

position and visual similarity between windows.

However, the frameworks must still be supported by standardized evaluation method-

ologies, such as the ISO9241 Douglas et al. (1999) standard that specifies the evaluation

conditions for Fitts’ law Fitts (1954) experiments.

159

References

Appert, C. & Beaudouin-Lafon, M. (2008). Swingstates: adding state machines to

java and the swing toolkit. Softw. Pract. Exper., 38, 1149–1182. 34

Apple (2003). Apple mac os x exposé. http://www.apple.com/pro/tips/switch expose.html.

2, 14, 122

Badros, G.J., Nichols, J. & Borning, A. (2000). Scwm: An intelligent constraint-

enabled window manager. In In Proc. AAAI Spring Symposium on Smart Graphics ,

20–22, Society Press. 2, 20

Bannon, L., Cypher, A., Greenspan, S. & Monty, M.L. (1983). Evaluation and

analysis of users’ activity organization. In CHI ’83: Proceedings of the SIGCHI con-

ference on Human Factors in Computing Systems , 54–57, ACM, New York, NY, USA.

119

Bao, S., Xue, G., Wu, X., Yu, Y., Fei, B. & Su, Z. (2007). Optimizing web search

using social annotations. In WWW ’07: Proceedings of the 16th international conference

on World Wide Web, 501–510, ACM, New York, NY, USA. 118

Bartram, L., Ware, C. & Calvert, T. (2003). Moticons: Detection, distraction and

task. 28

Bay, H., Ess, A., Tuytelaars, T. & Van Gool, L. (2008). Speeded-up robust

features (surf). Comput. Vis. Image Underst., 110, 346–359. 34

Beaudouin-Lafon, M. (2001). Novel interaction techniques for overlapping windows. In

UIST ’01: Proceedings of the 14th annual ACM symposium on User interface software

and technology , 153–154, ACM, New York, NY, USA. 2

160

REFERENCES

Bell, B.A. & Feiner, S.K. (2000). Dynamic space management for user interfaces. In

UIST ’00: Proceedings of the 13th annual ACM symposium on User interface software

and technology , 239–248, ACM, New York, NY, USA. 2, 136

Bernstein, M., Van Kleek, M., Karger, D. & Schraefel, M.C. (2008a). Infor-

mation scraps: How and why information eludes our personal information management

tools. ACM Trans. Inf. Syst., 26, 1–46. 36, 120

Bernstein, M.S., Shrager, J. & Winograd, T. (2008b). Taskposé: exploring fluid

boundaries in an associative window visualization. In UIST ’08: Proceedings of the 21st

annual ACM symposium on User interface software and technology , 231–234, ACM,

New York, NY, USA. 16, 121, 149, 150, 158

Bi, X. & Balakrishnan, R. (2009). Comparing usage of a large high-resolution display

to single or dual desktop displays for daily work. In CHI ’09: Proceedings of the 27th

international conference on Human factors in computing systems , 1005–1014, ACM,

New York, NY, USA. 33

Biancalana, C., Micarelli, A. & Squarcella, C. (2008). Nereau: a social ap-

proach to query expansion. In WIDM ’08: Proceeding of the 10th ACM workshop on

Web information and data management , 95–102, ACM, New York, NY, USA. 118

Bly, S.A. & Rosenberg, J.K. (1986). A comparison of tiled and overlapping windows.

SIGCHI Bull., 17, 101–106. 1

Byrne, M.D. (1993). Using icons to find documents: Simplicity is critical. In S. Ashlund,

K. Mullet, A. Henderson, E. Hollnagel & T. White, eds., Proc. ACM Conf. Human Fac-

tors in Computing Systems, INTERCHI (INTERACT & CHI), 446–453, ACM Press.

94, 95

Callaghan, T. (1989). Interference and dominance in texture segregation: hue, geo-

metric form, and line orientation. Perception Psychophys , 46, 299–311. 28

Card, S.K., Newell, A. & Moran, T.P. (1983). The Psychology of Human-

Computer Interaction. L. Erlbaum Associates Inc., Hillsdale, NJ, USA. 31, 32

161

REFERENCES

Card, S.K., English, W.K. & Burr, B.J. (1987). Evaluation of mouse, rate-

controlled isometric joystick, step keys, and text keys, for text selection on a crt.

386–392. 31

Chapuis, O. & Roussel, N. (2007). Copy-and-paste between overlapping windows.

In CHI ’07: Proceedings of the SIGCHI conference on Human factors in computing

systems , 201–210, ACM, New York, NY, USA. 2, 89

Cockburn, A. (2004). Revisiting 2d vs 3d implications on spatial memory. In AUIC ’04:

Proceedings of the fifth conference on Australasian user interface, 25–31, Australian

Computer Society, Inc., Darlinghurst, Australia, Australia. 27, 122

Czerwinski, M., Smith, G., Regan, T. & Meyers, B. (2003). Toward characterizing

the productivity benefits of very large displays. In Proc. Interact , 9–16, Press. 2, 10,

48, 89

Czerwinski, M., Horvitz, E. & Wilhite, S. (2004). A diary study of task switching

and interruptions. In CHI ’04: Proceedings of the SIGCHI conference on Human factors

in computing systems , 175–182, ACM, New York, NY, USA. 121

D. Austin Henderson, J. & Card, S. (1986). Rooms: the use of multiple virtual

workspaces to reduce space contention in a window-based graphical user interface. ACM

Trans. Graph., 5, 211–243. 2, 20, 117

Datta, R., Joshi, D., Li, J. & Wang, J.Z. (2008). Image retrieval: Ideas, influences,

and trends of the new age. ACM Comput. Surv., 40, 1–60. 34

D.Mackinlay, J. & Royer, C. (2007). Log-based longitudinal study finds window

thrashing. In Technical Report 6 , 3333 Coyote Hill Road, Palo Alto, CA 94304. 1, 2,

8, 33, 121

Douglas, S.A., Kirkpatrick, A.E. & MacKenzie, I.S. (1999). Testing pointing

device performance and user assessment with the iso 9241, part 9 standard. In CHI

’99: Proceedings of the SIGCHI conference on Human factors in computing systems ,

215–222, ACM, New York, NY, USA. 159

162

REFERENCES

Dourish, P., Edwards, W.K., LaMarca, A. & Salisbury, M. (1999). Using prop-

erties for uniform interaction in the presto document system. In UIST ’99: Proceedings

of the 12th annual ACM symposium on User interface software and technology , 55–64,

ACM, New York, NY, USA. 35

Dragicevic, P. (2004). Combining crossing-based and paper-based interaction

paradigms for dragging and dropping between overlapping windows. In UIST ’04: Pro-

ceedings of the 17th annual ACM symposium on User interface software and technology ,

193–196, ACM, New York, NY, USA. 29, 59, 89

Dragunov, A.N., Dietterich, T.G., Johnsrude, K., McLaughlin, M., Li, L.

& Herlocker, J.L. (2005). Tasktracer: a desktop environment to support multi-

tasking knowledge workers. In IUI ’05: Proceedings of the 10th international conference

on Intelligent user interfaces , 75–82, ACM, New York, NY, USA. 2

Dubroy, P. & Balakrishnan, R. (2010). A study of tabbed browsing among mozilla

firefox users. In CHI ’10: Proceedings of the 28th international conference on Human

factors in computing systems , 673–682, ACM, New York, NY, USA. 64

Duncan, J. & Humphreys, G. (1989). Visual search and stimulus similarity. Psycho-

logical Review , 96, 433–458. 29

Egan, D. & Gomez, M. (1985). Assaying, isolating, and accommodating individual

differences in learning a complex skill. In Individual Differences in Cognition, 173–217,

Academic Press. 27, 122

Faure, G., Chapuis, O. & Roussel, N. (2009). Power tools for copying and moving:

useful stuff for your desktop. In Proc. CHI ’09 , 1675–1678. 2, 23, 76, 92

Fisher, D., Coury, B., Tengs, T. & Duffy, S. (1989). Minimizing the time to

search visual displays: the role of highlighting. Human Factors , 31, 17–30. 28, 94

Fitts, P.M. (1954). The information capacity of the human motor system in controlling

the amplitude of movement. Journal of Experimental Psychology , 47, 381–391. 30, 31,

159

163

REFERENCES

Gagnon, D. (1985). Videogames and spatial skills: An exploratory study. In Educational

Communication and Technology , 263–275. 27, 122

Goldberg, A. & Robson, D. (1983). Smalltalk-80: the language and its implementa-

tion. Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA. 20

Golder, S.A. & Huberman, B.A. (2006). Usage patterns of collaborative tagging

systems. Journal of Information Science, 32, 198–208. 149

Grudin, J. (2001). Partitioning digital worlds: focal and peripheral awareness in multiple

monitor use. In CHI ’01: Proceedings of the SIGCHI conference on Human factors in

computing systems , 458–465, ACM, New York, NY, USA. 2, 10, 41, 89

Guy, M. & Tonkin, E. (2006). Folksonomies: Tidying up tags? D-Lib Magazine, 12.

149

Heymann, P. & Garcia-Molina, H. (2006). Collaborative creation of communal hi-

erarchical taxonomies in social tagging systems. Preliminary Technical Report . 34

Hick, W.E. (1952). On the rate of gain of information. The Quarterly Journal of Exper-

imental Psychology , 4, 11–26. 30

Hoffmann, R., Baudisch, P. & Weld, D.S. (2008). Evaluating visual cues for win-

dow switching on large screens. In CHI ’08: Proceeding of the twenty-sixth annual

SIGCHI conference on Human factors in computing systems , 929–938, ACM, New York,

NY, USA. 29, 114

Humm, K. (2007). Improving task switching interfaces. In COSC460 Honours Report ,

University of Canterbury, Christchurch, New Zealand. 17, 33, 45, 46

Hutchings, D.R. & Stasko, J. (2003). An interview-based study of display space man-

agement. In GVU Technical Report; GIT-GVU-03-17 , Georgia Institute of Technology,

Atlanta, GA, USA. 2, 12, 25, 53, 61, 89, 130

Hutchings, D.R. & Stasko, J. (2004). Revisiting display space management: under-

standing current practice to inform next-generation design. In GI ’04: Proceedings of

164

REFERENCES

Graphics Interface 2004 , 127–134, Canadian Human-Computer Communications Soci-

ety, School of Computer Science, University of Waterloo, Waterloo, Ontario, Canada.

2, 61, 63, 89, 120, 124

Hutchings, D.R. & Stasko, J. (2007). Quantifying the performance effect of window

snipping in multiple-monitor environments. In Human Computer Interaction, INTER-

ACT 2007 , 461–474, Springer Berlin/Heidelberg, New York, NY, USA. 2

Hutchings, D.R., Smith, G., Meyers, B., Czerwinski, M. & Robertson, G.

(2004). Display space usage and window management operation comparisons between

single monitor and multiple monitor users. In Proc. AVI ’04 , 32–39. 1, 2, 8, 9, 25, 32,

46, 50, 57, 68, 73, 88, 89, 121

Hyman, R. (1953). Stimulus information as a determinant of reaction time. Journal of

Experimental Psychology , 45, 188–196. 30

Ishak, E.W. (2007). Content-Aware Interaction in User Interfaces . Ph.D. thesis,

COLUMBIA UNIVERSITY, New York, USA, adviser-Steven Feiner. 122

Ishak, E.W. & Feiner, S.K. (2004). Interacting with hidden content using content-

aware free-space transparency. In UIST ’04: Proceedings of the 17th annual ACM sym-

posium on User interface software and technology , 189–192, ACM, New York, NY,

USA. 2, 18

Jones, W.P. & Dumais, S.T. (1986). The spatial metaphor for user interfaces: exper-

imental tests of reference by location versus name. ACM Trans. Inf. Syst., 4, 42–63.

27, 36

Kandogan, E. & Shneiderman, B. (1996). Elastic windows: improved spatial layout

and rapid multiple window operations. In AVI ’96: Proceedings of the workshop on

Advanced visual interfaces , 29–38, ACM, New York, NY, USA. 1, 2, 21, 117

Kleffner, D.A. & Ramachandran, V.S. (1992). On the perception of shape from

shading. Perception Psychophysics , 52, 18–36. 28

Kumar, M., Paepcke, A. & Winograd, T. (2007). Eyeexpos: Switching applications

with your eyes. In Technical report , Stanford University, USA. 9, 10, 14, 48, 53, 89

165

REFERENCES

Lansdale, M. (1988). The psychology of personal information management. Applied

Ergonomics , 19, 55–66. 27

Leitheiser, B. & Munro, D. (1995). An experimental study of the relationship be-

tween spatial ability and the learning of a graphical user interface. In In Proceedings of

the Inaugural Americas Conference on Information Systems . 27, 122

Lewis, J.P., Rosenholtz, R., Fong, N. & Neumann, U. (2004). Visualids: auto-

matic distinctive icons for desktop interfaces. In SIGGRAPH ’04: ACM SIGGRAPH

2004 Papers , 416–423, ACM, New York, NY, USA. 27, 59

Li, X., Snoek, C.G.M. & Worring, M. (2010). Unsupervised multi-feature tag rele-

vance learning for social image retrieval. In CIVR ’10: Proceedings of the ACM Inter-

national Conference on Image and Video Retrieval , 10–17, ACM, New York, NY, USA.

34

Maarten, Czerwinski, M.P., Dantzich, M.V., Robertson, G. & Hoffman,

H. (1999). The contribution of thumbnail image, mouse-over text and spatial location

memory to web page retrieval in 3d. In In Proc. INTERACT , 163–170, Press. 28

MacKenzie, I.S., Sellen, A. & Buxton, W.A.S. (1991). A comparison of input

devices in element pointing and dragging tasks. In CHI ’91: Proceedings of the SIGCHI

conference on Human factors in computing systems , 161–166, ACM, New York, NY,

USA. 31

Maglio, P.P. & Barrett, R. (1997). On the trail of information searchers. In In Pro-

ceedings of the Nineteenth Annual Conference of the Cognitive Science Society. Mah-

wah, 466–471. 27

Mathes, A. (2004). Folksonomies - cooperative classification and communication

through shared metadata. Tech. Rep. LIS590CMC, Graduate School of Library and

Information Science, University of Illinois Urbana-Champaign. 149

Melenhorst, M., Grootveld, M., van Setten, M. & Veenstra, M. (2008).

Tag-based information retrieval of video content. In UXTV ’08: Proceeding of the 1st

international conference on Designing interactive user experiences for TV and video,

31–40, ACM, New York, NY, USA. 34, 118

166

REFERENCES

Microsoft (2002b). Windows xp powertoys. http://www.microsoft.com/windowsxp

/downloads/powertoys/xppowertoys.mspx. 9, 19

Microsoft (2006a). Windows vista features. http://windows.microsoft.com/en-

us/windows-vista/products/features. 10

Myers, B.A. (1988). A taxonomy of window manager user interfaces. IEEE Comput.

Graph. Appl., 8, 65–84. 41

Oliver, N., Smith, G., Thakkar, C. & Surendran, A.C. (2006). Swish: semantic

analysis of window titles and switching history. In IUI ’06: Proceedings of the 11th

international conference on Intelligent user interfaces , 194–201, ACM, New York, NY,

USA. 10, 24, 32, 158

Oliver, N., Czerwinski, M., Smith, G. & Roomp, K. (2008). Relalttab: assisting

users in switching windows. In IUI ’08: Proceedings of the 13th international conference

on Intelligent user interfaces , 385–388, ACM, New York, NY, USA. 10, 32

Oulasvirta, A. & Saariluoma, P. (2006). Surviving task interruptions: Investigating

the implications of long-term working memory theory. Int. J. Hum.-Comput. Stud., 64,

941–961. 42

PAIVIO, A. (1974). Pictures and words in visual search. Memory & Cognition, 3, 515–

521. 26

Pashler, H. (1988). Cross-dimensional interaction and texture segregation. Perception

Psychophys , 43, 307–318. 28

patent: US 2004/0261038 A1, U.S. (2004). Computer interface having a virtual

single-layer mode for viewing overlapping objects. 135

Perrett, D.I. & Oram, M.W. (1998). Visual recognition based on temporal cortex

cells: Viewer-centred processing of pattern configuration. Zeitschrift fr Naturforschung

(C), 53, 518–541. 26

Ramage, D., Heymann, P., Manning, C.D. & Garcia-Molina, H. (2009). Clus-

tering the tagged web. In WSDM ’09: Proceedings of the Second ACM International

Conference on Web Search and Data Mining , 54–63, ACM, New York, NY, USA. 118

167

REFERENCES

Renaud, K. & Gray, P. (2004). Making sense of low-level usage data to understand

user activities. In SAICSIT ’04: Proceedings of the 2004 annual research conference

of the South African institute of computer scientists and information technologists on

IT research in developing countries , 115–124, South African Institute for Computer

Scientists and Information Technologists, , Republic of South Africa. 33

Robertson, G., Czerwinski, M., Larson, K., Robbins, D.C., Thiel, D. & van

Dantzich, M. (1998). Data mountain: using spatial memory for document manage-

ment. In UIST ’98: Proceedings of the 11th annual ACM symposium on User interface

software and technology , 153–162, ACM, New York, NY, USA. 27, 122

Robertson, G., van Dantzich, M., Robbins, D., Czerwinski, M., Hinckley,

K., Risden, K., Thiel, D. & Gorokhovsky, V. (2000). The task gallery: a 3d

window manager. In Proc. CHI ’00 , 494–501. 2, 3, 74, 117

Robertson, G., Horvitz, E., Czerwinski, M., Baudisch, P., Hutchings, D.R.,

Meyers, B., Robbins, D. & Smith, G. (2004). Scalable fabric: flexible task man-

agement. In Proc. AVI ’04 , 85–89. 2, 3, 13, 19, 20, 74, 117, 120

Robertson, G., Czerwinski, M., Baudisch, P., Meyers, B., Robbins, D.,

Smith, G. & Tan, D. (2005). The large-display user experience. IEEE Computer

Graphics and Applications , 25, 44–51. 9, 88

Schmidt, K.U., Sarnow, T. & Stojanovic, L. (2009). Socially filtered web search:

an approach using social bookmarking tags to personalize web search. In SAC ’09:

Proceedings of the 2009 ACM symposium on Applied Computing , 670–674, ACM, New

York, NY, USA. 118

Searleman, A. & Herrmann, D. (1994). Memory from a Broader Perspective.

McGraw-Hill Companies, New York, USA. 27

Sen, S., Vig, J. & Riedl, J. (2009). Tagommenders: connecting users to items through

tags. In WWW ’09: Proceedings of the 18th international conference on World wide

web, 671–680, ACM, New York, NY, USA. 118

Shannon, C. & Weaver, W. (1949). The mathematical theory of communication. 30

168

REFERENCES

Shepard, R.N. (1967). Recognition memory for words, sentences and pictures. Journal

of Verbal Learning and Verbal Behavior , 6, 156–163. 26

Smith, G., Baudisch, P., Robertson, G., Czerwinski, M., Meyers, B., Rob-

bins, D. & Andrews, D. (2003). Groupbar: The taskbar evolved. In Proc. OZCHI

2003 , 34–43. 2, 3, 13, 19, 20, 74, 117, 120, 150

Standing, L., Conezio, J. & Haber, R.N. (1970). Perception and memory for pic-

tures: Single-trial learning of 2560 visual stimuli. Psychonomic Sci , 19, 73–74. 26

Stefanucci, J.K. & Proffitt, D. (2002). Providing distinctive cues to augment hu-

man memory. In the 24th Annual meeting of the Cognitive Science Society , 840. 28

Tak, S., Cockburn, A., Humm, K., Ahlström, D., Gutwin, C. & Scarr, J.

(2009a). Improving window switching interfaces. In INTERACT (2), 187–200. 2, 17,

25, 33

Tak, S., Cockburn, A., Humm, K., Ahlström, D., Gutwin, C. & Scarr, J.

(2009b). Improving window switching interfaces. In INTERACT (2), 187–200. 149

Tan, D.S., Stefanucci, J.K., Proffitt, D.R. & Pausch, R. (2001). The infocock-

pit: providing location and place to aid human memory. In PUI ’01: Proceedings of the

2001 workshop on Perceptive user interfaces , 1–4, ACM, New York, NY, USA. 28, 122

Tanaka, K. (1997). Mechanisms of visual object recognition: monkey and human stud-

ies. Current Opinion in Neurobiology , 7, 523–529. 26

Tashman, C. (2006). Windowscape: a task oriented window manager. In Proc. UIST

’06 , 77–80. 2, 3, 20, 23, 29, 74, 117, 149, 150, 158

Treisman, A.M. & Gelade, G. (1980). A feature-integration theory of attention.

Cognitive Psychology , 12, 97–136. 28

Treisman, A.M. & Kanwisher, N.G. (1998). Perceiving visually presented objects:

recognition, awareness, and modularity. Current Opinion in Neurobiology , 8, 218–226.

26

169

REFERENCES

Vicente, K.J., Hayes, B.C. & Williges, R.C. (1987). Assaying and isolating indi-

vidual differences in searching a hierarchical file system. Hum. Factors , 29, 349–359.

27, 122

Voida, S., Mynatt, E.D. & Edwards, W.K. (2008). Re-framing the desktop interface

around the activities of knowledge work. In UIST ’08: Proceedings of the 21st annual

ACM symposium on User interface software and technology , 211–220, ACM, New York,

NY, USA. 35

Wetzker, R., Zimmermann, C., Bauckhage, C. & Albayrak, S. (2010). I tag,

you tag: translating tags for advanced user models. In WSDM ’10: Proceedings of the

third ACM international conference on Web search and data mining , 71–80, ACM, New

York, NY, USA. 34, 118

Wolfe, J., Cave, K. & Franzel, S. (1989). Guided search: an alternative to the

feature integration model for visual search. Journal of Experimental Psychology: Human

Perception and Performance, 15, 419–433. 28

Wolfe, J., P, O. & S.C, B. (1998). Why are there eccentricity effects in visual search?

visual and attentional hypotheses. Perception Psychophys , 60, 140–156. 28

Wolfe, J., Oliva, A., Horowitz, T., Butcher, S. & Bompas, A. (2002). Seg-

mentation of objects from backgrounds in visual search tasks. Vision Research, 42,

2985–3004. 29

Wolfe, J., Cave, K. & Franzel, S. (2004). What attributes guide the deployment

of visual attention and how do they do it? Nat Rev Neurosci , 5, 495–501. 28

XDESK (1996). http://www.virtual-desktop.info/. 20

Xu, Q. & Casiez, G. (2010). Push-and-pull switching: window switching based on

window overlapping. In CHI ’10: Proceedings of the 28th international conference on

Human factors in computing systems , 1335–1338, ACM, New York, NY, USA. 2, 89,

91, 115, 124, 125, 158

170

REFERENCES

Xu, S., Bao, S., Fei, B., Su, Z. & Yu, Y. (2008). Exploring folksonomy for person-

alized search. In SIGIR ’08: Proceedings of the 31st annual international ACM SIGIR

conference on Research and development in information retrieval , 155–162, ACM, New

York, NY, USA. 118

Yin, Z., Li, R., Mei, Q. & Han, J. (2009). Exploring social tagging graph for web

object classification. In KDD ’09: Proceedings of the 15th ACM SIGKDD international

conference on Knowledge discovery and data mining , 957–966, ACM, New York, NY,

USA. 118

171

	Titre
	Résumé
	Abstract
	Contents
	List of Figures
	List of Tables
	Chapter 1 : 1 Introduction
	1.1 Problem Statement And Research Goal
	1.2 Research Approach
	1.3 Research Contributions
	1.4 Structure of the Dissertation

	Chapter 2 : Related Work
	2.1 Introduction
	2.2 Window Switching Techniques
	2.2.1 Temporal Approach
	2.2.1.1 Alt+Tab
	2.2.1.2 RelAltTab

	2.2.2 Spatial Approach
	2.2.2.1 Taskbar/Dock
	2.2.2.2 Exposé
	2.2.2.3 EyeExposé
	2.2.2.4 Taskposé
	2.2.2.5 SCOTZ
	2.2.2.6 FST

	2.2.3 Hybrid Approach

	2.3 Group Switching Techniques
	2.3.1 Explicit Window Grouping Techniques
	2.3.1.1 Virtual Desktop Managers
	2.3.1.2 GroupBar
	2.3.1.3 Elastic Windows
	2.3.1.4 Scalable Fabric
	2.3.1.5 SCWM

	2.3.2 Implicit Window Grouping Techniques
	2.3.2.1 WindowScape
	2.3.2.2 Stack leafing
	2.3.2.3 SWISH

	2.4 Tabs Switching Techniques
	2.5 Desktop Organization and Switching Techniques
	2.6 Spatial Memory And Visual Search
	2.6.1 Psychology of Visual Search and Memory
	2.6.2 Spatial Memory and User Interfaces
	2.6.3 Visual Search

	2.7 Finding obscured Windows
	2.8 Switching Techniques Time Model
	2.8.1 Hick-Hyman And Fitt's Laws
	2.8.2 GOMS/KLM

	2.9 Log-based Empirical Methods
	2.10 Tags
	2.11 Summary
	2.11.1 Issues Associated With Log-based Empirical Methods on Window Switching
	2.11.2 Issues Associated With Switching Techniques Evaluations
	2.11.3 Leveraging Natural Human Capabilities
	2.11.4 The Combination of Implicit and Explicit Grouping Techniques Are The Best Way
	2.11.5 Window Tagging

	Chapter 3 : Log-Based Longitudinal Study
	3.1 Introduction
	3.2 Experiment Objectives
	3.2.1 Quantitative Goals
	3.2.2 Qualitative Goals

	3.3 Longitudinal Study
	3.3.1 Definition
	3.3.2 Participants And Apparatus
	3.3.3 Design
	3.3.3.1 WindowsOSLog
	3.3.3.2 Log Information
	3.3.3.3 Information Incompleteness

	3.4 Results And Analysis
	3.4.1 Number of windows on the desktop
	3.4.2 Window Event
	3.4.3 Window Switching Techniques
	3.4.3.1 Window Switching Techniques Used to Switch Windows
	3.4.3.2 Cost of Error
	3.4.3.3 Types of Switching
	3.4.3.4 Tabbed Windows vs. Group Windows

	3.4.4 Window Visibility
	3.4.4.1 Number of Visible Windows
	3.4.4.2 Visible Windows vs. Window Switching Techniques

	3.4.5 Spatial Memory
	3.4.6 Windows Layout
	3.4.6.1 The Distribution of Window Size
	3.4.6.2 Windows Group

	3.4.7 TDI and MDI Applications
	3.4.7.1 The Number of Tabs/Documents
	3.4.7.2 Switching Between Tabs/Documents

	3.4.8 Active Window Sequences

	3.5 Conclusion

	Chapter 4 : Push-and-Pull Switching: Window Switching based on Window Overlapping
	4.1 Introduction
	4.2 Push-and-Pull Switching
	4.2.1 Group Switching
	4.2.2 Restacking the Focused Window

	4.3 Experiments
	4.3.1 Experiment 1: Group Switching
	4.3.1.1 Apparatus
	4.3.1.2 Participants
	4.3.1.3 Experimental Design
	4.3.1.4 Procedure
	4.3.1.5 Results

	4.3.2 Experiment 2: Restacking the Focused Window
	4.3.2.1 Apparatus and Participants
	4.3.2.2 Experimental Design
	4.3.2.3 Procedure
	4.3.2.4 Results

	4.4 Longitudinal User Study
	4.5 Application
	4.6 Conclusion

	Chapter 5 : Stack Scanning Rules!
	5.1 Introduction
	5.2 Stack Scanning
	5.3 Window Switching Time Model
	5.4 Experiment
	5.4.1 Visual Factors For Window Switching
	5.4.2 Hypothesis
	5.4.3 Apparatus
	5.4.4 Participants
	5.4.5 Experimental Design
	5.4.6 Procedure

	5.5 Results
	5.5.1 Switching Time
	5.5.1.1 Main Experiment
	5.5.1.2 Second Experiment

	5.5.2 Error Rate
	5.5.2.1 Main Experiment
	5.5.2.2 Second Experiment

	5.5.3 Qualitative Results

	5.6 Discussion
	5.7 Conclusion

	Chapter 6 : WindowsTagging: Quick Task Switching Using Tags
	6.1 Introduction
	6.2 Design Principles to Support Task Switching
	6.2.1 Group Creation
	6.2.2 Group Edition
	6.2.3 Group Access
	6.2.4 Group Deletion

	6.3 WindowsTagging
	6.3.1 Group Creation
	6.3.1.1 Implicit Group Definition
	6.3.1.2 Explicit Group Definition

	6.3.2 Window & Group Access
	6.3.2.1 Window&Group Switching
	6.3.2.2 Finding Windows

	6.3.3 Group Edition
	6.3.3.1 Adding/Removing windows in groups
	6.3.3.2 Fixing Group
	6.3.3.3 Splitting Group

	6.3.4 Window & Group Deletion
	6.3.5 Implementation
	6.3.5.1 Group Layout
	6.3.5.2 Clipping Rectangle
	6.3.5.3 Splitting Group

	6.4 Experiment
	6.4.1 Hypothesis
	6.4.2 Apparatus
	6.4.3 Participants
	6.4.4 Experimental Design
	6.4.5 Procedure
	6.4.6 Results
	6.4.6.1 Switching Time
	6.4.6.2 Error Rate
	6.4.6.3 Qualitative Results

	6.5 User Evaluation
	6.5.1 Using Step-by-Step
	6.5.2 Results

	6.6 Discussion
	6.6.1 Overlapping Mechanism
	6.6.2 Grouping Mechanism
	6.6.3 Search Mechanism
	6.6.4 Stable Spatial Layout strategy

	6.7 Conclusion
	6.8 Future Work

	Chapter 7 : Conclusion And Future Work
	7.1 Research Objectives
	7.2 Conclusion
	7.3 Future Work
	7.3.1 Window Tagging
	7.3.2 Theorize Window Switching
	7.3.3 Implicit Grouping Techniques
	7.3.4 A Standardized Evaluation Framework

	References

	source: Thèse de Quan Xu, Lille 1, 2010
	d: © 2011 Tous droits réservés.
	lien: http://doc.univ-lille1.fr

