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Abstract

Wireless Sensor Networks (WSNs) are becoming largely adopted in diverse sectors such
as health care, home automation, industry process control, object tracking, etc. The
promise and application domain of this field continue to grow due to the emergence of
embedded, small and intelligent sensor devices in our everyday life. These devices are
getting smarter with their capability to interact with the environment or other devices,
to analyze data and to make decisions. They have made it possible not only gather data
from the environment, but also to bridge the physical and virtual worlds, assist peo-
ple in their activities, while achieving transparent integration of the wireless technology
around us. Along with this promising glory for WSNs, there are however, several chal-
lenges facing their deployments and functionality, especially for battery-operated sensor
networks. For these networks, the power consumption is the most important challenge.
In fact, most of WSNs are composed of low-power, battery-operated sensor nodes that
are expected to replace human activities in many critical places, such as disaster relief
terrains, active volcanoes, battlefields, difficult terrain border lands, etc. This makes their
battery replacement or recharging a non-trivial task. Hence, the main concern is how to
deal with their limited energy-resources, especially that the performance of the network
strongly depends on their lifetime. Therefore, energy saving becomes a serious and critical
requirement that can be gained by properly managing the energy resources.

We are concerned with the most energy consuming part of these networks, that is
the communication. We propose methods to reduce the cost of transmission in energy-
constrained sensor nodes. Our work aims at reducing the data transmission rate and
overhead. For this purpose, we observe the way data is collected and processed to save
energy during transmission. Our work is build on three basic axis: data estimation, data
similarity detection and abnormal behaviors detection. Nodes, in our work, have the
ability to accurately predict data and detect abnormal behaviors. During data collection,
the intermediate nodes can detect correlation among data and perform efficient data
fusion, in order to send the minimum amount of representative values to the destination.
These values are expected to assist the sink, so it can accurately re-construct the original
data from the minimum amount it receives. In our work, we try to strike the balance
between saving energy during transmission and the quality of data (sensed, transmitted
or re-constructed).

Based on the experimentation we made on different data series, results show that,
depending on data type, our prediction model can reduce the transmission rate about
70%. Nonetheless, the transmission overhead can be reduced to about 20% in most used
data types, using our correlation detection algorithm. As for the quality of data (sensed,
predicted or re-constructed), results show that the relative errors for prediction were
between 2% and 8%. Furthermore, data can be accurately re-constructed at the sink. The
relative error between the source and sink estimations were in [−7× 10−7, 10−6]. Finally,
the performance of our outliers detection algorithm was reflected, in our experimentation,
by its ability to detect accurately 78% up to 90% of slipped anomalous values.



Résumé

Les réseaux de capteurs sans fil (WSNs) sont largement adoptés dans divers secteurs
comme la médecine, la domotique, le contrôle de processus industriels, la localisation
des objets, etc. Les domaines d’application de ces réseaux continuent à crôıtre grâce à
l’émergence de capteurs de plus en plus petits et de plus en plus intelligents dans notre vie
quotidienne. Ces dispositifs interagissent avec l’environnement ou d’autres périphériques,
pour analyser les données et produire de l’information. En plus de créer de l’information,
les réseaux de capteurs permettent de créer des ponts entre le monde physique et le
monde virtuel. Les capteurs permettent, ainsi, une intégration transparente de la tech-
nologie virtuelle autour de nous. Il existe cependant plusieurs défis autour des réseaux de
capteurs, notamment au niveau de l’autonomie énergétique des capteurs. La consomma-
tion énergétique de ces petits objets devient le principale verrou technologique empechant
leur déploiement à grande échelle. En effet, la plupart des réseaux de capteurs sont com-
posés des nœuds de faible puissance et fonctionnant sur batterie. Ils sont souvent utilisé
dans des zones géographiques dangereuse et peu accessible, tels que les volcans actifs, les
champs de bataille, ou après une catastrophe naturelle etc. Ces zones critiques rendent
le remplacement ou la recharge des batteries de chaque capteur difficile voire impossible.
Ainsi, le principal défi dans les réseaux de capteurs est la gestion de la consommation
énergétique, pour permettre d’accrôıtre sa durée de vie.

Nous sommes intéressés par la partie la plus consommatrice d’énergie dans les réseaux
de capteurs: la communication ou l’envoi et la réception de données. Nous proposons des
méthodes pour réduire les transmissions des nœuds en réduisant le volume de données
a transmettre. Pour cela, nous observons la maniere dont les données corrélées pour
réduire le nombre de transmissions. Notre travail s’articule autour de trois axes fonda-
mentaux: la prédiction des données, la détection de similarité des données et la détection
des comportements anormaux. Les solutions utilisant les séries temporelles que nous
avons développées permettent de prédire efficacement les données et de détecter des com-
portements anormaux. Nous proposons aussi un mécanisme d’agrégation de données dans
lequel les nœuds intermédiaires (entre la source et la destination des données) observent
la corrélation entre les valeurs pour effectuer une fusion efficace de ces données, afin de
minimiser la quantité de données envoyées. Dans notre travail, nous essayons de trouver
l’équilibre entre l’économie d’énergie et qualité des données car toute prédiction ou fusion
provoque des pertes.

Nous avons lancés des expérimentations sur différentes séries de données. Les résultats
ont montré que notre solution de prédiction permet de réduire le taux de transmission
jusqu’à 70% par rapport à une solution sans prédiction. Quant à la qualité des données,
les résultats montrent que les erreurs relatives de prédiction sont compris entre 2% et 8%
par rapport aux valeurs réelles. Ce qui montre que les données peuvent être reconstruites
avec précision au niveau de la destination. L’erreur relative entre les estimations des
nœuds source et du puits se situe entre [−7 × 10−7, 10−6]. Enfin, notre algorithme de
détection des anomalies permet de détecter jusqu’à 90% des valeurs anormales.
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Chapter 1

Introduction

Summary

Wireless Sensor Networks (WSNs) have become a highly active research area due to their
increasing potential impact on the quality of people’s life and the health of the planet.
They are used in many application domains for monitoring and tracking purposes. The
significant shift in sensors characteristics (size, cost, limited power-source, intelligence ca-
pabilities, etc.) as well as their deployment in harsh environment, make it challenge for
these sensors to remain functional for a long period of time. These concerns, particularly
the power resource ones, pose considerable technical challenges in data processing, com-
munication, and sensor management. In this chapter, we highlight these challenges and
briefly describe the motivation and contribution of this work.
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1.1 Preliminary

The development of smart environments have been identified as one of the most important
challenges for the 21st century [248]. Designing systems with robust intelligence that are
capable of perceiving, reasoning, learning, and interacting with their environment has
been a pervasive goal in many research domains [52, 235]. Starting from the Internet
itself, to smart robotics and smart homes, now the Internet of Things (IoT) steel the
lights to become the new revolution of the Internet [235]. “Things” can be computers,
sensors, people, refrigerators, vehicles, mobile phones, passports, luggage, etc. Having
the capability to address and communicate with each other and verify their identities,
all these “things” will be able to exchange information and, if necessary, make decisions.
They can sense, communicate, interact, exchange data, information and knowledge. For
example, the plants decide to water themselves if they were thirsty. The alarm decides
to ring earlier if there is traffic or bad weather. A stolen object can interact with us to
tell us where it is. Objects get intelligence thanks to the fact that they can communicate
information about themselves and they can access information that has been aggregated
by other things. The intelligence capabilities rely first and foremost on sensory data from
the real world that are processed, analyzed and transmitted to other objects for further
processing and decision-making.

The information needed by smart environments are mostly provided by Wireless Sen-
sor Networks (WSNs), which are responsible for sensing, due to their ability to provide
unobtrusive wire-free communication. Wireless sensor networks consist of small nodes
with sensing, computation, and wireless communications capabilities [117]. They provide
information gathering based on the collective efforts of hundreds or thousands of wire-
less sensor nodes. Along with the trend towards smart environments, where objects are
embedded and fused around us, sensor nodes are intended to be physically small (such
as smart dust of 1 cubic millimeter [127]). These nodes are equipped with one or more
sensors, a short-range radio transceiver, a small micro-controller, and a power supply in
the form of a battery. Sensors will be used to measure everything from acceleration and
location to temperature, air pollution, and health conditions. Depending on the appli-
cation, sensors can be deployed on the ground, in the air, under water, on bodies, in
vehicles, and inside buildings. As each node is a data source, clearly, a lot of data is being
collected. The multi-sensor in one node can capture a variety of environmental data, in-
cluding, for example a mine temperature, humidity and gas concentration. By combining
these precise measurements, sensor nodes can effectively prevent accidents and facilitate
mine construction. The node can also send a series of commands to control the mine fans,
to achieve real-time monitoring and changing the mine environment. Implanting devices
inside of bodies will become commonplace. Three million pacemakers already implanted
in people worldwide and 600,000 additional ones are implanted each year [215]. Such
devices will be configured to allow invested parties (doctors, insurance companies, etc.)
to access patient information, gather data and alerts via the Internet.

The analysis of the data streams to get information to analyze and take appropriate
actions, is one of the design challenges for intelligent objects. Nonetheless, the rapid
analysis of data provides early warnings of significant events, from impending heart attacks
to climate change. Sensor data will be used to inform and modify human behavior on
a personal level (“hey, you need more water, more exercise, more sleep”), as well as on

2



a collective level (“tax policies need to be adjusted to discourage or encourage people’s
behavior such as vehicle road speed, etc). Important issues should be considered to provide
sensors a sufficient degree of smartness and collaborative functionality. Several challenges
should be taken into consideration: The networking aspects such as low resources in
terms of computation and energy consumption in sensor nodes (Section 1.3), as well as
the quality of data management (collection, processing and storage). These concerns
are somewhat related. The higher the data quality, the better will be the outcomes
(rapid events-trigger, patient symptoms detection, motion tracking, etc). “Better” here
means cheaper and of good quality. We mean: “cheaper” in terms of sensors lifetime
and resource constraints management in wireless sensor networks as we will see later
in the following sections. While “good quality” is related to many aspects in WSNs
(Quality of Information [95], Quality of Decision making (QoDm) [182], quality of routing
(QoR) [32, 128], etc.) (see Chapter 2).

The tight energy budgets of battery-operated sensors enforce energy efficient designs of
hardware components, network communication and applications algorithms. Challenges
on energy consumption are related to nodes’ sensing, communication and processing ca-
pabilities. Amongst these, it was reported that communication is the most power har-
vesting [116, 230, 271]. Thus, most approaches focus on the way nodes communicate and
exchange data in order to lengthen their lifetime and improve their functionality. Two
issues are taken into consideration: reducing communication to save energy but exchang-
ing useful data to improve applications performance. In this thesis, we are concerned
with how data sensed and aggregated by sensors can be processed to increase the per-
formance of Wireless Sensor Networks (WSNs) in terms of energy efficiency and quality
of information. In the following sections, we describe key concepts (data, information
and knowledge), then we observe three domains of energy consumption in wireless WSNs
(sensing, communication and processing). Our work tackles the impact of data collection
and processing on the communication cost reduction (i.e. the transmission cost). We
aim at reducing the number of transmissions between nodes (i.e. transmission rate) as
well as the number of transmitted bits (i.e. transmission overhead) for the sake of energy
efficiency of the sensor nodes. Then we move to present the motivation of our work and
we close this chapter with a summary of our thesis outline.

1.2 Data, information and knowledge

The terms Data and Information are frequently used and some people made ongoing con-
fusion between the two terms. Depending on the context, the meanings and use of these
words differ. Many definition have been given [153, 208, 227]. Both data and information
are types of knowledge. Data is the lowest level of knowledge while information is the
second level. Depending on [153], information is useful data that has been processed in
such a way as to increase the knowledge of the person who uses the data. From data to
information to knowledge, there is a continuous knowledge discovery process. Information
can be used as input for higher knowledge discovery level; And knowledge itself may be
processed to generate decisions and new knowledge [191]. In wireless sensor networks,
observations and recordings are done to obtain data (the lowest abstract or a raw input,
referred to as sensor reading, sensor value, or sample), which when processed, analyzed
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or arranged makes meaningful output called information. The quality level of this infor-
mation and its management affect the monitoring system performance. For example, in
robot localization and navigation, data coming from both static nodes and mobile nodes
can help to decide the location of a robot. The processing of this data guides a robot
to make a decision to reach an event location or a disaster environment [219, 262]. At a
minimum basis, a real-time data analysis for rapid response remains a research challenge.
Data has to be sent on time and should be efficient enough, so sensors can have the nec-
essary reactions to meet users and applications needs [16, 95, 182]. In WSNs, information
on nodes can be erroneous and may be affected by malfunctioning or anomalous nodes.
Due to the critical nature of many applications (such as disaster monitoring, war events
recognition and tracking, health monitoring system, etc.), the integrity and accuracy of
the sensed data are of high research and practical importance [41]. Actually, data collected
by nodes need to be examined dynamically to detect any abnormal events, to report use-
ful information and to avoid unnecessary communication cost. Thus, an efficient analysis
and usage of data affects the network performance and its energy consumption. In what
follows, we observe the factors that drain the source of energy on sensor nodes.

1.3 Energy consumption in WSNs

Typically, the architecture of a wireless sensor node consists of four main components:
sensing, processing, transmission, and power units (Figure 1.1 [117]). The sensing sub-
system includes one or more sensors (with associated analog-to-digital converters) for
data acquisition. The processing subsystem includes a micro-controller and memory for
local data processing. This unit allows sensor nodes to collaborate with each other to
carry out the assigned sensing tasks. The transmission unit is for wireless data commu-
nication. One of the most important components of a sensor node is the power unit,
which may be supported by a power-scavenging unit such as solar cells. Depending on
the specific application, sensor nodes may also include additional components such as a
location finding system to determine their position, a mobilizer to change their location
or configuration (e.g., antenna’s orientation), a power generator [117]. The development

Local Finding System Mobilizer

Sensor ADC
Processor

Storage

Tranceiver

Power Unit

Sensing Unit
Processing Unit Transmission 

Unit

Power

 Generator

Figure 1.1: Sensor node architecture.

of sensor networks over the years and their integration in many application domains,
have been changing the node architecture, size and weight. Additional constraints on the
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network performance have been imposed. The size of sensor node varies according to
the application requirements. For example, the radar dome on AWACS planes (Airborne
Warning and Control System), is 30 feet in diameter and six feet thick1. On the other
hand, in health applications, a pacemaker is few cubic centimeters in size2). The cur-
rent generation of wireless sensor hardware ranges from shoe-box sized such as Sensoria
WINS NG sensors [154] with an SH-4 microprocessor to matchbox sized like Berkeley
motes with an 8-bit microcontroller [116]. For smaller-size sensor nodes, the smart Dust
team, at the university of california, demonstrated the possibility of a millimeter scale
node called “smart dust” [127]. They also work on microflying insect or smart dust with
legs3. The cost of sensor nodes is similarly variable, ranging from hundreds of dollars to a
few pennies, depending on the complexity of the individual sensor nodes [189]. Size and
cost constraints on sensor nodes result in corresponding constraints on resources such as
energy, memory, computational speed and communications bandwidth [189]. With the
popularity of light-weight and small-size sensor nodes, challenges occur on their source
of energy and lifetime. In what follows, we observe challenges related to energy-limited
sensors. We detail the aspects that impact on the battery lifetime of sensors. These
aspects are: sensing, communication and data processing.

1.3.1 Battery-operated sensors

Most of today’s sensors are battery operated. This imposes challenges on their function-
ality because batteries are the only limited life source available to power these sensors.
Often, it is difficult even impossible to recharge batteries due to environmental conditions,
such as war, disaster, in-body, volcano monitoring, etc. Therefore, sensors have to be ex-
tremely power efficient. In cases where sensors should be unobtrusive, they need to be
lightweight with small form factor. The size and weight of sensors is predominantly deter-
mined by the size and weight of batteries. Batteries often constitute more than 50% of the
device’s weight and volume. For example, the Mica2 [82] sensor node, has a weight of 18g.
However, its two AA batteries weigh between 20 to 30g each. Hence, there is tradeoffs
between lifetime requirements. The small form and low weight factors of a sensor node.
Battery-operated sensors of small size have more restricted lifetime then large ones. In
Body Sensor networks (BSN), sensors are battery operated and are required to last longer
without any need of maintenance for about six months4. So frequent battery changes for
multiple body sensors would likely hamper user’s acceptance. Energy consumption is one
of the most important performance metrics for Wireless Sensor Networks, because it is
directly related to the operational lifetime of the network [93]. Due to the great attention
that power consumption gets, it is an important issue to study how to keep survivability
of nodes for the sake of network functionally and lifetime. The main task of a sensor node
in a sensor field is to detect events, perform quick local data processing, and transmit
data. Energy consumption in a sensor node can hence be divided into three domains [7]
(Figure 1.2): sensing, communication and data processing. We will discuss each of these
aspects in the next subsections.

1http://www.airforce-technology.com/projects/e3awacs/
2http://texasheart.org/HIC/Topics/Proced/pacemake.cfm
3http://www-bsac.eees.berkeley.edu
4http://texasheart.org/HIC/Topics/Proced/pacemake.cfm
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Figure 1.2: Sources of energy consumption in a sensor node.

1.3.2 Sensing

Some applications are sensing-constrained due to different factors [184] such as power
hungry transducers, power hungry A/D converters, long-time data acquisition, etc. For
example, Multimedia sensors [6] or biological sensors [71] are of power hungry transduc-
ers. They require more power to perform their data acquisition task (i.e sampling) [101].
Similarly, acoustic [209] and seismic transducers [250] require, generally, high-rate and
high-resolution A/D converters. The power consumption of the converters can account
for the most significant power consumption of the sensing subsystem, as in [199]. Energy
consumption in data acquisition can attain 66% of the total energy consumption of a
node, such as in H-mote with a Hybus sensor board that contains five set of air quality
monitoring sensors [129]. Energy consumed in sensing unit can thus impact on the sensor
performance (i.e its sensitivity and accuracy). Energy-efficient data acquisition techniques
are used to reduce the energy consumption in sensing unit. Among these, we mention
hierarchical sampling and adaptive sampling approaches [101]. Sampling is transforming
the analog information of the object which is detected and controlled, to corresponding
digital information. When a node is equipped with multiple sensors of different energy
consumption, hierarchical sampling approaches are used. These techniques aim to dy-
namically select which sensor to activate, in order to get a trade off between accuracy
and energy conservation. When an event is detected or a region has to be observed with
greater detail, the accurate power-hungry sensors can be activated [176, 199].

The energy consumption of sampling is related to the sampling rate or frequency (i.e
the number of samples per unit of time). Sampling with higher rate would generate
more data and consumes more energy. Energy-efficient data acquisition techniques do
not, exclusively, aim at reducing the energy consumption of the sensing subsystem. They
decrease the number of communications as well, by reducing the data sampled by source
nodes. Since samples can be correlated, adaptive sampling techniques can exploit this
correlation to reduce the amount of data to be acquired from the transducer. For example,
data of interest may change slowly with time, in this case, temporal correlations may be
exploited to reduce the number of acquisitions [10]. A similar approach can be applied
when the investigated phenomenon does not change sharply between areas covered by
neighboring nodes. In this case, energy due to sampling (and communication) can be
reduced by taking advantage from spatial correlations between sensed data [251].
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In what follows, we consider that the sensing consumption is negligible, We tackle the
data acquisition approaches related to communication rate reduction. More specifically,
we are concerned with the data collection and aggregation techniques that reduce, as
possible, the number of communication as well as the communicated overhead. In the
next subsection, we observe the impact of the communication on the energy consumption
of sensor nodes.

1.3.3 Communication

Typically, the operational states in a sensor node are: Transmit, Receive, Idle and
Sleep [174, 211]. These states form a cycle called the duty-cycle. It is a periodic cy-
cle between two states: wake-up state (transmit, receive, idle) and sleep state. Ideally, a
node turns its radio ON only when it is going to transmit or receive data. At all other
times, it should keep its radio off (i.e sleep state). When a radio is on but idle (wait-
ing for possible traffic), it consumes the same amount of energy as when it is receiving
data [183, 214]. The communication cost of a node is composed of the cost of transmis-
sion, reception and listening [155]. The cost of receiving or transmitting a packet is an
order of magnitude greater than the cost of computation. Between the two (transmission
and reception), transmitting a bit consumes twice as much energy as receiving a bit [116].
Tilak et al. show in [230] that the execution of 3000 instructions consumes the same
amount of energy as sending 1 bit over 100 meters by radio. Therefore, the main concern
for most WSNs algorithms [28, 146, 168, 256] is to keep the communication cost to a
minimum. In this thesis, we focus on the transmission cost. We aim at reducing the
number of transmissions between nodes (i.e the transmission rate) as well as the number
of transmitted bits (i.e the transmission overhead).

In WSNs, data are transferred (i.e routed) from source sensors to the sink through
multi-hop communication paradigm [7]. For an efficient routing, different schemes have
been adopted, such as chain [137], tree [14] or clusters [264]. We aim at reducing the
transmission cost on one-hop communication between nodes towards the base station.
Description about these schemes is presented in Chapter 2. In this work, we suppose
having a suitable routing protocols that do not interfere with the algorithms proposed in
the following chapters.

1.3.4 Data processing

Nodes in WSNs gather, process and rely information to one or more other nodes. They
collaborate to produce better outcomes during event monitoring. Ideally, data is expected
to be accurate, arrive on time, processed and transmitted with lower energy consumption.
The amount of data exchanged between nodes is expected to be as minimum as possible.
However, data should be significant to respond to applications needs. For these purposes,
collected data need to be processed and analyzed in a way to remove any erroneous,
suspicious, redundant or other readings that may cause unnecessary computation and
communication cost. Challenges do not stop here. They continue to grow along with the
trends of producing mobile, smart or autonomous objects [235, 272]. Such objects require
intelligent data processing algorithms to avoid bad decisions that affect their energy con-
sumption. For example, an unreliable mobile node produces unpredictable motion and
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behaviors. It may decide to move in the wrong direction or take the longest route toward
a destination. Bad decisions may harm its source of energy. Malicious nodes may divert
traffic from the base station, drain energy of other nodes by producing fake information.
They may modify the collected data to cause the base station to make mis-informed deci-
sions. Such decisions are related to errors in data collection or errors in data processing,
or shortly the quality of data collection and processing. The collection of undetected erro-
neous or incomplete data (due to data loss, misbehaviors, etc.) affects the quality of data
analysis and the decisions made by sensors. Another negative impact is caused by the
presence of data redundancy. Nodes that are densely deployed (20 nodes/m3 [207]), and
sense the same property are expected to provide the same information. The transmission
of redundant data may waste energy. However, if data is filtered and redundancies are
detected, the communication overhead can be reduced and energy consumption can be
omitted. Fusion techniques were proposed to reduce the amount of data traffic, filter
noisy measurements, and make predictions about a monitored entity [163, 164]. However,
these techniques can lose much of the original structure in the data during compression,
aggregation or prediction. Therefore, they need to be convenient with the required quality
of data to prevent errors. For example, when sensor readings, from a number of sensors,
are aggregated into one value by taking the average over all these readings. This value is
used to represent each individual sensor reading. However, it deviates from the individual
sensor readings and thus introduces an error. Similarly, a loss of data may occur during
compression or predictions. In Chapter 2, we observe different data processing techniques
for WSNs, such as, data aggregation, compression, prediction, anomaly detection. In the
following section, we present the motivation and contribution of our work.

1.4 Motivation and contribution

WSNs are designed to sense, gather and transmit useful information to interested users
or applications. In some applications, sensor networks are expected to interact with the
physical world. They may respond to the sensed events by performing corresponding
actions and assist people in their life, such as in Wireless Sensors and Actuator Net-
works (WSANs). For example, in a fire handling system, the actuators can turn on the
water sprinklers upon receipt of a fire report [5]. Sensors can monitor and manipulate
the temperature and lighting in a smart office or the speed and direction of a mobile
robot [257]. To produce useful outcomes in a specific WSNs application, many sensors
collaborate in monitoring and gathering information. In patient monitoring system, sen-
sors can signal a possible health trouble, by gathering information from blood pressure,
glucose and other monitoring body sensors. An accurate data analysis and processing is
an important issue to increase the smartness and lifetime of nodes. However, data man-
agement (i.e collection, processing and communication) is not a trivial task, especially
for energy-limited sensor networks. The energy of a node is consumed in three aspects:
sensing, processing and communication. It has been mentioned in [192] that the amount
of energy consumed by the transceiver varies about 15% to about 35% of the total energy.
Nonetheless, the majority of energy is consumed in radio communication rather than in
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computation. For example, in Sensoria sensors5 and Berkeley6 motes, the ratio between
communication and computation energy consumption ranges from 103 to 104 [271]. More-
over, sending 1 bit over 100 meters consumes the same amount of energy as the execution
of 3000 instructions [230]. As for the transmission and reception costs, the transmission
of one bit consumes twice as much energy as receiving a bit [116]. Therefore, we focus
on reducing the communication cost rather than computation cost, as many approaches
did [74, 218, 271]. More specifically, we tackle the transmission cost reduction.
As each node is a data source that can be equipped with multiples sensors, a lot of
data can be collected, processed and transmitted, such as humidity, temperature, loca-
tion values, etc. The transmission of data is mostly realized through multi-hop network
architectures due to their energy-efficiency [175]. During this multi-hop transmission, the
communication overhead can be increased. Additional relevant information from other
sensors can be aggregated through in-network processing [118]. Aggregated data can be
large, erroneous, or redundant which may harm the sender’s source of energy. Therefore,
observing the quality of data during aggregation can omit unnecessary communication.
We aim at reducing the energy consumption during aggregation. We try to decrease the
transmission rate and overhead between nodes. Our concern is to strike the balance be-
tween the transmission cost reduction and the quality of collected data from the network.
We aim for a less but useful data transmissions. If data were erroneous or anomalous,
based on an application criteria, and they were not detected, they will surely affect the
behavior of sensors. They will decrease the network performance, since it impacts the
quality of produced information/decisions, as well as the energy consumption.
In this work, we do not study the computational cost of nodes. Rather, we aim at reduc-
ing the transmission cost, during aggregation, in energy-limited sensor networks. In this
thesis, we propose the following:

• A Prediction technique described in Chapter 3.

• A Data correlation and similarity detection technique described in Chapter 4.

• An Anomaly detection technique to increase the quality of sensed data, described
in Chapter 5.

1.5 Organization of the Thesis

This thesis is organized in five chapters.

• Chapter 2, presents different approaches, proposed in the literature, to save energy
for communication in Wireless Sensor Networks (WSNs). In this chapter, we ob-
serve data-driven techniques, such as in-network processing, data compression, data
prediction, etc. These techniques have been considered energy-efficient in terms of
communication [101]. Our algorithm relies on data aggregation and estimation to
decrease the transmission rate and overhead.

5Sensoria Corporation: http://www.sensoria.com
6http://www-bsac.eecs.berkeley.edu/
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• Chapter 3, presents our algorithms proposed for Energy-Efficient Estimation (such
as EEE, EEE+, EEE∗ algorithms). These algorithms aim at predicting local
readings and reducing the communication overhead. We adopt a cluster-based data
aggregation scheme and focus on reducing the transmission overhead between a
source node and its sink (i.e the Cluster-Head). We use static and dynamic bound
to observe the estimation quality. Simulations show that depending on data type,
transmission overhead and rate can be reduced. We noticed a reduction about
70% in transmission rate [100]. A considerable accuracy prediction can also be
obtained. Results show that the relative errors between predicted and sensed data
were between 2% and 8%.

• Chapter 4, investigates spatial and temporal data correlation in order to detect
redundancy and reduce data transmission overhead. We propose a data similarity
detection technique that relies on kernel-based methods. Simulations show a data
transmission overhead reduction of about 20%, in most used data types. While
for the accuracy on the base station estimations, results reveal a good estimation
quality since the relative error values between source and sink estimations were in
[−7× 10−7, 10−6].

• Chapter 5 presents a technique for anomaly detection in WSNs. Since Data mea-
sured and collected by WSNs is often unreliable and affected by different factors
(noise, error, abnormal and inconsistent data), an anomaly detection technique is
required to maintain the reliability of the network. Our algorithm produces high
detection rate of abnormal behaviors. It can accurately detect between 78% up to
90% of slipped anomalies. It also produces low false alarm rate (∼8%) for slow vari-
ation data types. The false alarm rate is the ratio between the number of normal
values that are incorrectly misclassified as outliers and the total number of normal
values.

• Chapter 6 summarizes the thesis and presents several perspectives of our work.
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Chapter 2

State of the Art

Summary

The core idea of this chapter is to highlight the way data management can impact the
energy consumed in Wireless Sensor Networks. We observe the transmission rate and
overhead. It first discusses the terms: data management, data quality and quality metrics.
Then it moves to present some data-driven techniques proposed in the literature to reduce
the energy consumption. The chapter is closed with a summary of our thesis contribution.

Contents
2.1 Data management in WSN middleware . . . . . . . . . . . . . 14

2.1.1 Data management . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.1.2 Quality of data . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.1.3 Errors Affecting Quality of Data . . . . . . . . . . . . . . . . . 17

2.2 Data quality Metrics . . . . . . . . . . . . . . . . . . . . . . . . 19

2.3 Data-driven techniques . . . . . . . . . . . . . . . . . . . . . . . 21

2.3.1 Data/Information fusion . . . . . . . . . . . . . . . . . . . . . . 21

2.3.2 Data aggregation . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.3.3 Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.3.4 Data redundancy . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.3.5 Outliers detection . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.4 Contribution Summary . . . . . . . . . . . . . . . . . . . . . . . 30

11



The innovation of smart environment is increased with the development of intelligent
systems related to industry, home, transportation, medicine, etc. [235]. In [51], smart
environment is defined as a world where different kinds of devices are continuously work-
ing to acquire and apply knowledge about the environment and its inhabitants; they aim
to make inhabitants’ lives more comfortable and improve their experience in that envi-
ronment. In this vision, the world around (homes, offices, hospitals, cars) is organized
as a pervasive network of intelligent devices that will cooperatively gather, process, and
transport information. The information from smart environment are mostly provided by
Wireless Sensor Networks (WSNs) [88]. Sensory data are collected from one or multiple
sensors. They can be processed in different ways. Data processing in WSNs is organized
into two groups: centralized and distributed processing [243]. In the centralized pro-
cessing, data are collected and sent to a central node for processing. In the distributed
processing, intermediate nodes become more aware of the final results or decisions. They
collect and pre-process data to obtain partial results sent to the sink. This type of pro-
cessing is called node-level distributed processing. To obtain a global information, final
decisions are made from the node-level output and from the information exchange be-
tween the sink and sensors as well as between intermediate nodes. This is called the
network-level distributed processings.

As examples, Botanicalls1 open a new channel of communication between people and
plants. They use moisture sensors, process sensed data and take a decision to communicate
with people. They may use twitter, make calls or send text messages, if they need to
be watered. Plants in a garden may also communicate with sprinklers. An automated
sprinkler system [83] is equipped with humidity sensors and sprinklers as actors. The
sprinklers are activated when the humidity sensor readings go below a certain bound.
Therefore, data are collected locally, and from surrounding nodes, and are processed to
take decision for irrigation. It is preferred that only a minimum subset of sprinklers is
activated to cover the entire region, so that the overall consumption of sprinkler resources
(i.e water), and energy is minimized. On the other hand, data collected can be similar,
redundant, erroneous or anomalous. The collection and accumulation of these data, results
on spending large amount of energy during transmission, which decreases the network
performance. Unwanted actions can be triggered due to low quality data gathering,
and nodes’ lifetime declines faster. Data fusion [164], is generally defined as the use of
techniques that combine and gather data from multiple sources an energy-efficient manner,
such as data aggregation, estimation and compression. The core idea of these techniques is
to reduce the energy consumption in the network. The encoding schemes [11] “compress”
data, in a way these data are represented by smaller number of bits. The more data are
represented using fewer bits, the less is the energy required by every node to transmit
these compressed data [224, 230]. Compression methods aim at presenting significant
and accurate data representation, so that the original data structure can be recreated
at the destination node from those few bits. Other techniques, were also proposed to
reduce the communication traffic while keeping a desired level of data quality, such as
outliers and redundancy detection [142]. Techniques, such as data prediction [124, 263],
can reduce the number of communication between nodes,i.e. the transmission rate. Thus,
communication between nodes will occur, if the tolerated bound for prediction error is

1http://www.botanicalls.com
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crossed.
Given that the computation consumes less energy than communication (as presented

in Chapter 1), we try, in our work, to reduce the energy consumption for transmission.
This work relies on data aggregation, estimation and outliers detection techniques. The
aim of this Chapter is to review some of the existing data-driven techniques (Section 2.3).
We first identify the terms data management and quality in Section 2.1. Then we move
to present some of the data quality metrics in Section 2.2. We end the chapter with a
summary of our contribution (Section 2.4.

2.1 Data management in WSN middleware

WSN middleware is a set of services and supports, located between the sensor application
and the networks stacks (transport, routing and MAC layers). It aims at improving the
system performance and the network efficiency (see Figure 2.1) [243]. WSNs middleware
acts as a broker between the applications and the network infrastructure. Some of its
services are: location tracking services [33, 150, 160], coverage [43, 245], data management
services such as data aggregation, routing service, cluster service [38, 148], etc. The main
purpose of middleware for sensor network is to support the development, maintenance,
deployment and execution of sensing-based applications. Good references on wireless
sensor network middleware and services are presented in [113, 243].

Figure 2.1: Reference model of WSN middleware.
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2.1.1 Data management

The data management is one of the basic and important services in WSNs [243]. It
provides services for data acquisition, processing and storage. Data acquisition is a service
aiming at delivering the relevant and accurate data required by an application. In [212],
data acquisition is stated as collecting, processing and transmitting data. It includes
sampling [101], network layer routing [152, 266], data aggregation [185], etc. The way
data are manipulated, is a fundamental issue [78]. It should take into consideration, the
sensor node’s processing capability and lifetime, as well as the application requirements
(data/information quality: accuracy, timeliness, etc.) [16, 78]. Some of energy-efficient
data-driven techniques are presented in Section 2.3. Data-driven, means that applications
collect and analyze data from the environment, and, depending on redundancy, noise,
and properties of the sensors themselves, can assign a quality level to the data [113]. The
quality of data and some of its metrics as well as the metrics we have used in this thesis
are discussed in Sections ( 2.1.2 and 2.2).

2.1.2 Quality of data

Quality is referred as the degree of satisfaction of a set of criterias. According to [177,
216], data quality is ’contextual’. The user defines what is good data quality for each
proposed use of the data, within its context of use. Many applications have real-time
deadline requirements for data collection, to proceed for the appropriate reactions, such
as, military applications, surveillance, fire detection and intrusion detection [36, 141].
Data should be accurate and transmitted in predetermined latency boundaries. If data
collected arrive beyond their validity to a central node for processing, they are not useful
at all. Nonetheless, if data are erroneous or anomalous based on the application criteria,
they will surely affect on the behavior and reaction of the application. For example,
in a smart nursing home WSN scenario, it is necessary to guarantee life-threatening
events such as heart-attacks. Information are communicated to doctors within a bounded
time [94, 140, 161]. Errors in estimating a patient-state, may decrease the possibilities
for rapid intervention to patient urgent-treatment.
The real concern with data quality is to ensure that data are accurate enough, timely
enough, and consistent enough to make appropriate and reliable decisions [20, 177, 182,
227]. Researches in the literature [34, 180, 202, 259] have measured the quality of data
in the context of their work, using different attributes: accuracy, timeliness, precision,
consistency [1]. In what follows, we define each attribute then we mention some of the
quality metrics in Section 2.2.

• Accuracy: It is the degree of closeness of measurements to the true value. The
accuracy of a sensed value is the difference between the sensed reading itself given
by the sensor and the true value from the environment. It is well known that no data
is completely accurate. Since the true value is not known by a WSN applications, the
true accuracy of sensor readings cannot be known. Actually, if a WSNs application
knew the true value, there would be no point in taking a sample. When a quantity
is measured, the outcome depends many factors, such as the measuring system, the
measurement procedure, the skills of the operator, the environment, etc. [17]. On
sensor level, the calibration of the device improves accuracy. Quality cannot be
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exactly determined, but must be assessed by means of estimation. In this work, we
consider accurate, the sensed data we have used for simulations. Theses values were
taken as reference to evaluate the accuracy of our proposed works.

• Consistency: It is a sub-aspect of accuracy. If a single or set of data is compliant
with a user-defined model, it is consistent. A user-defined model may, for example,
make an assumption between several sensor readings. It may require that for two
temperature readings taken at the same location, the difference may not exceed
0.5◦C. If data fulfill the requirements of the model, data is said to be consistent
with the model. We rely on the model proposed in Chapter 3, to observe data
consistency and detect anomalous values (see Chapter 5).

• Timeliness: It indicates whether the data reach the destination in time. It is influ-
enced by unreliable radio-communication and network latency. Timeliness is out of
the scope of this work. In the following chapters, we assume that data reach the
destination in a timely manner.

• Completeness: It is a property of a set of sensor readings. If a node has taken
(or received from the network) a sufficient number of samples to construct the true
value, then the set of samples is complete. In Chapter 3, we observe the adequate
prediction window for our estimation model. We mean by “prediction window”, the
number of samples used to estimate a value. Completeness is affected by errors at
sensor level as well as errors during data collection such as lost or duplicated data.
We assume that data reach destination, without loss, in a timely manner.

• Precision: It is the degree of reproducibility of measured values which may or may
not be close to the real world value. In Chapter 3, we observe the precision by cal-
culating the relative error for estimation, the percentage of accepted values. Values
are called accepted by our model, when they agree with the user-defined criteria
during the change of the window size.

While talking about the quality of data, it is important to observe the quality of in-
formation. It is affected by the quality of data used to complete information, in other
words, the quality of data collection and processing. In WSNs, the Quality of Information
(QoI) [21, 95, 229, 267] is significant. It indicates to what extent the network fulfills the
applications needs and network concerns. QoI in regard to monitoring environment is
described in [95], as “the difference between the data produced by the WSNs concerning
some event being monitored, and the actual events in that environment which one wishes
to observe or track”.

According to [267], QoI is “the collective effort of the sensor derived information, that
determines the degree of accuracy and confidence by which the aspects of the real world
(that are of interest to the user), can be represented by this information”.
Others, such [21], stated QoI as “a characterization of the goodness of the data captured by
and following through the WSNs, and the information derived from processing those data
along the way”. Hence, QoI should satisfy user requirements from the time of raw data
collection till the operations at the sink are conducted. To obtain information of greater
quality, data need to be collected, analyzed and fused in a way to gratify applications
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needs [239]. By taking advantage of the cooperative, complementary and redundant
aspects of data, quality of information can be improved in WSNs [164]. Let us, briefly,
describe these quality aspects of data fusion:

• Complementary: When information provided by the sources represent different por-
tions of a broader scene, information fusion can be applied to obtain a piece of
information that is more complete.

• Redundant: If two or more independent sources provide the same piece of informa-
tion, these pieces can be fused to increase the associated confidence (more accurate
information). Redundant fusion might be used to increase the reliability, accuracy,
and confidence of the information. Whereas, redundant fusion can provide high
quality information, it needs to be managed in an energy-efficient way to prevent
unnecessary redundant transmission (see Section 2.3).

• Cooperative: Two independent sources are cooperative when the information pro-
vided by them is fused into new information that, from the application perspective,
represents better the reality. A classical example of cooperative fusion is the com-
putation of a target location based on angle and distance information.

A major concern for WSNs design and deployment is to balance between the required
QoI and energy efficiency, to lengthen the lifetime of an application. In WSNs, different
Qo* exist, starting from the data collection level to the decision making level, such as
quality of event detection (QoD) [111], quality of routing (QoR) [32, 128], quality of
decision-making (QoDm) [182], etc. These Qo* are mainly based on QoI and are related
to Quality of Services (QoS) [16] in WSNs.

In our work, we take advantage of the collaborative aspect of sensors, to achieve effi-
cient data collection in terms of energy consumption. We aim at reducing the transmission
cost to save energy. As for the quality of data/information, we observe the estimation
accuracy on both the node-level and the sink level. Nonetheless, we track the data distri-
bution for any abnormal behaviors. Since the data collected should be useful and contain
less redundancy, we tackle data redundancy in Chapter 4. We propose a similarity de-
tection technique to exploit the correlation among the sensed data. This technique fuses
the similarity information, in a way to decrease the transmission overhead, while allowing
an accurate data reconstruction at the sink. Simulation results show a data transmission
overhead reduction of about 20%, in most used data types (see Chapter 4). As for the data
accuracy on the base station, results show a good estimation quality, since the relative
error values, between source and sink estimations, were in [−7× 10−7, 10−6]. Concerning
the detection of abnormal behaviors, experiments show the ability to detect between 78%
and 90% of slipped anomalous values (see Chapter 5).
In what follows, we present some of the factors that may affect the quality of data in
WSNs.

2.1.3 Errors Affecting Quality of Data

There are different types of errors that affect the data quality. There are errors related
to data collection and processing and others related to the device itself [159, 228].
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• Errors such as random error and systematic error, are errors at the node level [8, 222].
The main cause of random error in sensor readings is an unpredictable fluctuations
in the sensor device itself. Cheap sensor devices used in WSNs usually have lower
precision than more expensive devices. This leads to relatively high random error
in measurements. Common causes of a systematic error are incorrect calibration or
incorrect usage, such as a wrong supply voltage for a sensor device. The random
error of a sensor reading sv is the difference between the mean over all sensor
readings and the value of sv. The systematic error of all shown sensor readings is
the difference between the mean of the readings and the true value.

• Errors related to data collection and processing can occur due to incomplete or du-
plicate data, or due to processing techniques, such as aggregation, compression, etc.
Incomplete data can occur due to two reasons: The sampling rate and unreliable
radio communication. If the sampling rate is too low, relevant changes in the mea-
sured values may not be observed, leading to an incorrect perception of the sensor
reading. Nonetheless, if radio communication is unreliable, data may be lost (due to
radio interference, a node cannot be reached by the data source). Another situation
resembles data loss, that is outdated data. Data may be outdated if the network
delay is too high. Thus, data become irrelevant once they reach the destination.
The use of multi-path routing (Broadcast) in WSNs [165, 172], causes severe mes-
sage collision and channel contention. Data may be duplicated intentionally.
Techniques such as in-network data fusion, compression, data aggregation, are used
to reduce redundancy and communication traffic. They may loose much of the orig-
inal structure. This produces errors affecting the quality of data. For example,
readings from a number of sensors can be aggregated into one value by taking the
average over all. This value is used to represent each individual sensor reading.
However, it deviates from the individual sensor readings and thus introduces an
error. Also, loss of data can occur during compression techniques. Therefore, data
quality is an important factor for compression algorithms [224]. It is quantified by
percentage of distortion which is measured as the absolute difference between the
original and the reconstructed data at the base station [2]. It is calculated as

Distortion =| original − reconstructed
original

| ∗100% (2.1)

Estimation techniques also produce distortion from the true value. They aim at
obtaining a close estimate of a value based on a few previous samples [124, 171, 232].
We will use this quality metric during the evaluation of our work in the following
chapters.

• There are other types of errors that may occur in WSNs. They are the result of
abnormal or inconsistent values [37] due to external events (fire, fraud, etc.). Such
errors can change the data distribution and the behavior of an application.

In what follows, we assume that there is no data loss. In Chapters 3 and 4, we ignore errors
related to the device itself. We study the aspects of redundancy and estimation in WSNs
and we assume having a suitable compression and routing techniques. In Chapter 5, we
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try to detect abnormal behaviors in the sensed data. The main challenges in our work
are: Decreasing the transmission cost, i.e, the communication overhead and rate, and
maintaining adequate data quality to save energy.

2.2 Data quality Metrics

Techniques in the literature have used different metrics to evaluate the quality of data. In
what follows, we present some of the statistical metrics used in anomaly detection, data
correlation, compression and estimation techniques. These metrics are the Mean Squared
Error [136], Root Mean Square Error [106], relative error, detection rate [226], etc.

In the following, let X1,.., Xn be a series of n values, produced by the application that
is meant to represent n corresponding true values N1,...,Nn. The term ei = Xi − Ni is
referred to as the error in the value Ni.

• Mean Squared error (MSE): is defined as the average of the squared errors.

eMSE =
1

n

n
∑

i

e2i (2.2)

Due to the quadrature, MSE heavily weights outliers. If an application produces
highly accurate values, thus for most results the error is small. However, if for a
few values, errors were too large, then MSE will generally also be large. Normally,
outliers have higher errors, which increase the MSE [173, 241]. Thus, the MSE can
give an idea of the variance in error, but is not a good indicator of the average
accuracy, if it has a large value. Another alternative to the MSE is the Root mean
square error (RMSE). RMSE is defined as:

eRMSE =
√
eMSE =

√

√

√

√

1

n

n
∑

i

e2i (2.3)

It is a good measure of precision. The Root Mean Squared Error is commonly
used in statistics for evaluating the overall quality of a regression model. It gives
the standard deviation of errors. Thus, it estimates the concentration of the data
around the fitted equation. In [124], the performance of the Adpative prediction
model (A-ARMA), was evaluated by the root mean square error of the estimated
values, with respect to, the observed ones (i.e the sensor readings).
In [259], authors also refer to the RMSE as a quality metric. They propose a data
collection strategy to reduce the communication traffic. In this strategy, each sample
(or value) at the sensor node is checked if it is important to be sent to the sink.
On the sink side, the sink approximates the non received values by the previous
samples it receives. The quality of data is measured by the root-mean-square error
of the approximated data (at the sink) with respect to the sample value (i.e. sensor
reading). Despite its common use, some opinions point that its use is related to its
popularity with statisticians and not its efficiency in choosing accurate forecasting
methods[12, 39]. They pointed that it has poor reliability in models comparison
since it is not unit-free. RMSE has the same unit as the measurand (i.e. the value to
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be measured). Whereas, it is widely accepted that unit-free measures are necessary
for comparisons among forecast methods. One of the disadvantages of the RMSE is
its sensitivity to outliers as MSE does. To avoid such sensitivity, another measure
has been used, that is, the Mean Absolute Error (MAE) which is less sensitive than
RMSE for large errors.

• Mean absolute error : is a quantity used to measure how close forecasts or predic-
tions are to the eventual outcomes. The mean absolute error is a common measure
of forecast error in time series analysis. It has less outliers weights than RMSE,
thus, it is less sensitive to large errors:

eMAE =
1

n

n
∑

i

| Xi −Ni | (2.4)

In our work, we rely on the mean absolute error of a history of predicted/true
values in order to observe our model’s behavior and to set the model criterias (see
Chapter 3 and Chapter 5). As for the accuracy and efficiency of our work among
other models, we rely on the relative error, as a metric for evaluation.

• Relative error : The definition of relative error has computational advantages over
the other forms and it is unit-free. It is a proportional measure of the error and
provides information about the predictive capability of a model [70]. A low relative
error implies good model performance and vice versa.

Relative Error = (
Xi −Ni
Ni

) (2.5)

The relative error has been used in many approaches. In localization problems
of WSNs, relative error is always used to describe the localization accuracy [246].
In [9], the estimation of the power consumption is also evaluated by this metric.
In [180], it was also proposed as a query processing systems benchmark in WSNs
for data quality. Due to its simplicity and popularity in accuracy measurement, we
rely on this metric as a relative quantity.

• Other metrics: Techniques based on errors and accuracy are often not the best
measure to detect outliers or correlation among data [56, 80, 198]. In [54, 105], data
correlation techniques make use of kernel-based functions [90, 195, 268] while others
make use of two popular metrics: The Detection Rate and False Positive Rate [226].
The Detection rate (DR) is defined as the ratio between the number of correctly
detected attacks and the total number of attacks.

DR =
number of correctly detected attacks

Total number of attacks
(2.6)

The False Positive Rate is computed as the ratio between the number of normal
values that are incorrectly misclassified as attacks and the total number of normal
values.

FPR =
number of normal values misclassified as attacks

total number of normal values
(2.7)
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Often these metrics are displayed as a receiver operating characteristic (ROC) curve
to emphasize the tradeoff between them [226]. We use these metrics in our anomaly
detection techniques presented in Chapter 5 due to their popularity.

2.3 Data-driven techniques

2.3.1 Data/Information fusion

Many definitions has been given to data fusion in the literature. Data fusion is defined,
generally, as the use of techniques that combine data from one or multiple sources. They
gather information and achieve inferences, which will be more efficient and potentially
more accurate than if they were achieved by means of a single source [130, 164]. In [66],
it is defined as a “multilevel, multifaceted process dealing with the automatic detection,
association, correlation, estimation, and combination of data and information from mul-
tiple sources”. It was also defined as “a formal framework in which are expressed means
and tools for the alliance of data originating from different sources. It aims at obtaining
information of greater quality. The exact definition of ‘greater quality’ will depend upon
the application” [240].
Despite the difference between data and information, the terms Data fusion and informa-
tion fusion are usually accepted as overall terms [64, 164]. The term information fusion
was preferred to indicate the independence of a specific source of data [64]. It was stated
in [164], that “information fusion is a set of algorithms, tools and methods used to process
several sources of input data. They generate an output that is, in some sense, “better”
then the input data individually. Saying “better” data has at least two meanings: cheaper
and more accurate. In WSNs, the term “cheaper” is related to energy consumption. It
means the transmission and processing of less voluminous and filtered data. “Accurate”
is related to the quality of data. It means the extraction of significant outcomes, that
fulfill the application requirements. We obsreve both terms in our work.

In WSNs, Sensor fusion is known also as multi-sensor data fusion. It is a subset of
information fusion. It means combining sensory data/information from multiple sensors,
to provide ‘better’ analysis and decision making, if they were done using any single sen-
sor [75, 107, 178]. In what follows, we use the terms: data fusion and information fusion,
synonymously.

Data/Information fusion provides many solutions to the energy constraints in WSNs,
it uses data modeling, aggregation, time series analysis, on individual node, as well as
on clusters (or groups) of nodes [104, 258]. We are interested in data fusion techniques,
for battery-operated wireless sensor networks. We aim at improving energy saving during
transmission, as well as, the quality of data sensed or reconstructed at the sink. Central-
ized or decentralized fusion refers to where the fusion of data occurs. In centralized fusion,
the source nodes simply forward all of the data to a central location, where they are fused
or checked for correlation. In decentralized fusion, the sources take full responsibility for
fusing the data. In this case, every sensor or platform can be viewed as an intelligent
asset having some degree of autonomy in decision-making [258].

In this work, fusion is centralized in the sense that it occurs on intermediate nodes,
called clustrHeads. However, sensor nodes do not send all the data they receive to the
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central location. Knowing their weakness (limited-power resource), these nodes can make
predictions and detect abnormal behaviors, to prevent periodic and low quality data com-
munication. Based on our proposed algorithms, the decision for transmission is restricted
to a tolerated prediction error bound (Chapter 3) or abnormal behavior (Chapter 5)). We
try to reduce the transmission cost on one-hop, between a node and its sink. Intermediate
nodes (i.e. the fusers) use our data similarity method to fuse data in a way the original
data structure can be accuratly reconstructed at the destination node (Chapter 4). In
what follows, we present data reduction techniques related to information fusion such as
data aggregation, estimation, data redundancy, etc.

2.3.2 Data aggregation

Communication between nodes is the main source of energy consumption [147, 214]. Data
aggregation has emerged as an efficient approach to reduce the number of transmissions,
and minimize the overall power consumption in the network [135, 168, 185, 256]. Authors
in [86], define data aggregation as “the global process of gathering and routing information
through a multi-hop network, and processing data at intermediate nodes with the objec-
tive of reducing resource consumption (in particular energy), thereby increasing network
lifetime”.

An important aspect of data aggregation is the placement of aggregation points and
how to route data to these gathering points [258]. Cooperation is particularly required
between sensors to perform surveillance tasks across a region. Each sensor is expected to
make its own decision about what to sense and where to transmit. But these decisions
must be coordinated with other sensors to produce a global perception of the environment,
and to send data to destination in an energy-efficient manner. Thus establishing a proper
routing schemes makes data aggregation more efficient [242, 266].

On the other side, discovering the synergy among data can also bring significant ad-
vantages to develop efficient strategies for reducing energy consumption. In fact, the data
generated by sensor nodes in the network can be type-related. For example, the humidity
depends on the temperature. It is referred as dependencies among the attributes of the
sensor nodes. They can also be time-related. For example, the temperature may change
over time. Nonetheless, observations from the sensor nodes, which are in close proximity,
may be highly correlated and the degree of correlation depends upon the distance between
nodes [63, 238]. In this case, collected data are called spatio-related.

We suppose that sensors are sensing the same attributes. The idea is to combine the
spatially correlated data (i.e. coming from different sources), and/or temporally correlated
(i.e. coming from different periods of time) on the route towards the sink. Our goal is to
reduce the transmission rate and overhead, thereby the energy consumption. We suppose
having a proper routing protocols suitable to our techniques. In the following, we present
a short overview on the data aggregation schemes in WSNs.

The routing schemes organize the sensor nodes into chain, tree or clusters. As a
brief description: Cluster-based data aggregation algorithms organize sensors into clus-
ters. Each cluster has a designated sensor node as the cluster head which aggregates
data from all the sensors in the cluster and directly transmits the result to the sink.
By grouping sensor nodes into different clusters, clustering allows hierarchical structures
to be built on the nodes which can improve the scalability of multi-hop wireless sensor
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networks [270]. However, by selecting the cluster heads efficiently, hierarchical routing
protocols can be developed to reduce the power consumption and to maximize the net-
work lifetime. As examples, we mention the Low-Energy Adaptive Clustering Hierarchy
(LEACH) approach, and the Hybrid Energy-Efficient Distributed clustering approach
(HEED) [114, 264]. LEACH protocol has a randomized cluster head rotation. It as-
sumes that all sensors have enough power to reach the sink, if needed. In other words,
each sensor has the capability to act as a cluster head and to perform data fusion. This
assumption might not be valid with energy-constrained sensors. While HEED, assumes
multiple power levels in sensors. The cluster-head selection is based on a combination
of the residual energy of each node and its degree. The degree of a node is a secondary
parameter that depend on the node proximity to its neighbors. However, in both cases
(LEACH or HEED), if the cluster head is far away from the sensors, nodes might expend
excessive energy in communication. Further improvements in energy efficiency can be
obtained if sensors transmit only to close neighbors.

Chain-based data aggregation algorithms organize sensor nodes as a shortest chain
along which data is transmitted to the sink. In [138], a Power-Efficient Data-Gathering
Protocol for Sensor Information Systems (PEGASIS) has been proposed. The nodes can
form a chain by employing a greedy algorithm. In other words, nodes may have a global
knowledge of the network or the sink can determine the chain in a centralized manner.
The chain formation is initiated by the farthest node from the sink. At each step, the
closest neighbor of a node is selected as its successor in the chain. In each data-gathering
round, a node receives data from one of its neighbors, fuses the data with its own, and
transmits the fusion result to its other neighbor along the chain. The leader node, that is
similar to cluster head, transmits the aggregated data to the sink. PEGASIS assumes that
all sensors are equipped with identical battery power. In addition, It results in excessive
delay for nodes at the end of the chain which are farther away from the leader node.

Tree-based data aggregation algorithms organize sensor nodes into a tree. Data ag-
gregation is performed at intermediate nodes along the tree and a concise representation
of the data is transmitted to the root which is usually the sink [118, 146]. To construct
and maintain a data-aggregation tree in sensor networks, an energy-aware distributed
heuristic (EADAT) [73] has been proposed as well as another protocol called (PEDAP).
It requires global knowledge of the location of all nodes at the sink and operates in a
centralized manner where the sink computes the routing information.

Each of these data aggregation schemes has its advantage and disadvantages [85, 135,
185]. Since the energy cost of transmissions depend on the spatial distribution of nodes,
this precludes the optimality of a single scheme for all network sizes. In this work, we adopt
cluster-based data aggregation scheme. We observe the temporal and spatial correlation
among the sources nodes. The adoption of other schemes is among our future works. In
what follows, we present some data reduction techniques, which take advantage of the
spatio-temporal correlations to enhance the quality of data communication. They can
also reduce the communication traffic and rate. These techniques are: data estimation,
data redundancy detection and outliers detection.
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2.3.3 Estimation

As periodic sensor measurements rarely change over time, a receiver can often predict
them. Therefore, energy-expensive periodic radio transmission of measurements can often
be omitted. Data prediction has been proposed, in several works, to reduce the data traffic
in WSNs. It has been used in sensor networks monitoring (temperature, air pressure,
humidity or birds monitoring), location discovery, mobility tracking applications, etc.

Data collected by sensors can be considered discreet temporal series. The time cor-
responds to the instant when a given value is collected. The sensed data represent the
values, and the time range is determined by the duration time of the query. To predict
future values of sensed data, it is necessary to find a trend in the temporal series and to
observe the data distribution.
Most of data prediction works rely on times series forecasting with a linear regression
model [67, 69, 124, 233]. Different estimation methods use the laws of probability to com-
pute a set of measurements based on a sequence of measurement vectors [26]. Some of
these are: Maximum Likelihood, Maximum A Posteriori, Least Squares, Moving Average
filter and Kalman filter.

• Maximum Likelihood (ML): The likelihood function λ(x) is defined as the probability
density function (pdf) of an observation sequence z, given the true value of the state
x to estimate:

λ(x) = p(z | x) (2.8)

The Maximum Likelihood estimator (MLE) searches for the value of x that max-
imizes the likelihood function λ(x). The MLE is commonly used to solve location
discovery problems, such as Birds monitoring and localization [44]. In this context,
the method is often used to obtain accurate distance estimations, such as direction
or angle, that are used to compute the location of nodes or targets [44, 84, 171].

• Maximum A Posteriori (MAP): This method is based on Bayesian theory. It is
closely related to maximum likelihood (ML). However, (ML) method assumes that
x is a fixed, though unknown, point of the parameter space. MAP takes x as the
outcome of a random variable with prior pdf known. The MAP estimator was used
to find the joint positions of mobile robots in a known environment. It is used
to track the positions of autonomously moving objects [194], manage the collision
and traffic between the source nodes (detectors) and a fusers (cluster-heads). MAP
estimator computes the number of nodes that wish to transmit, so they can properly
update their retransmission probability [265].

• Least Squares: It is a mathematical optimization technique. It searches for a func-
tion that best fits a set of input measurements. This is achieved by minimizing
the sum of the square error, between points generated by the function, and the
input measurements. As a square-error metrics, we mention the root mean squared
error [106] and the ordinary squared error [30], which is suitable when the param-
eter to be estimated is considered fixed. The Least Squares method searches for
the value of x that minimizes the sum of the squared errors between actual and
predicted observations. To reduce communication, some methods [106], avoid the
transmission of the complete data stream from source to sink. They choose to share
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the parameters of a linear regression that describes the sensor data. The values of
these parameters are estimated by applying the Least Squares method with a root
mean squared error as the optimization metric.

Other methods [193] use a dual prediction scheme, in both the source and in the
sink, based on Least Squares filters. Only when a predicted value differs from the
actual one by more than a given error bound, it is transmitted to the sink. Least
square methods have been also used for node localization such in [139].

• AutoRegressive (AR)/MovingAverage (MA): The moving average filter is widely
adopted in digital signal processing (DSP) solutions [210]. It was used to estimate
the data traffic for routing-failure detection [163], and for target locations to reduce
errors of tracking applications [260].
Some approaches use a tool called AutoRegressive-Moving Average (ARMA) for
forecasting [40]. This tool contains a moving average (MA) model, as well as, an
AutoRegressive (AR) model. It is typically applied to autocorrelated time series
data. This model predicts future values in the series. It is referred usually to as the
ARMA(p,q) model as follows.

AR(p) : Xt = c+ ǫt +
p
∑

i=1

ϕiXt−i (2.9)

MA(q) : Xt = ǫt +
q
∑

i=1

θiǫt−i (2.10)

ARMA(p, q) : Xt = c+ ǫt +
p
∑

i=1

ϕiXt−i +
q
∑

i=1

θiǫt−i (2.11)

where c is constant (often omitted), p is the order of the autoregressive part and q
is the order of the moving average part. The terms ǫt,ǫt−1.. are referred as white
noise (i.e. a random error), ϕi and θi are the parameters of the AR and MA models
respectively. Approaches like [124, 233] use dual prediction AR/ARMA mod-
els contained in both the source and the sink models. In [233], the Probabilistic
Adaptable Query system (PAQ) relies on local probabilistic models computed and
maintained at each sensor. It uses an AR model as the probabilistic model. The
work in [233] is designed to be lightweight. It shows that AR models, while simple
(simpler then ARMA), still offer excellent accuracy in sensor networks for monitor-
ing applications, making such models practical on many current-generation sensor
networks. The sink node exploits AR model to predict local readings instead of
direct communicating with sensors. The prediction model is contained in both the
sink and each sensor. PAQ is highly adaptable to changes in the network, since
all data are local and a priming stage is not required. This also leads to fewer
transmissions between nodes, which increases its efficiency in sensor optimization.
Valois in his work [124], gives nodes additional task over environmental monitoring.
Every node calculates an Adaptive-ARMA (A-ARMA) for estimation. This model
is re-learned when a value is mispredicted. To prevent large data communication,
A-ARMA transmits the model parameters, and a sample of previous measurements
instead of raw sensor readings.
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The decision making for transmission, in these approaches [124, 233], is related to
a prediction error bound. However, in the absence of prior information about the
physical environment, setting this bound is a nontrivial task. The threshold can
be used as a tuning parameter to characterize the tradeoff between accuracy and
energy consumption. It can be user-defined [250] or dynamic threshold using slide
window method [179, 233].

• Kalman Filter : It is a stochastic, recursive data filtering algorithm. It has been well
studied and widely applied to many data filtering and smoothing problems. It has
found applications in different fields of process control [181], multi-sensor data fu-
sion [253], motion-tracking [249], network-time keeping [24], and neural information
processing [254], etc. Kalman filter comprises a set of mathematic equations that
provide a recursive solution to the least-squares method.
Still in the context of data communication, approaches such as [122] use a dual
Kalman Filter where both source and sink nodes predict the sensed value. The
source node sends data only when the sink prediction is incorrect. Kalman filter
was also useful in routing algorithm such as the SCAR routing algorithm [152]. A
sensor node uses Kalman filter to predict context information about its neighbors
(mobility and resources). It chooses the best neighbor for routing its data relying
on such predictions.

In our work, the prediction model is an AutoRegressive-based model for data pre-
diction. It aims at predicting local readings and reducing the communication cost.
The model parameters are updated during the prediction process to keep accuracy
in predicted values. They are not transmitted to the sink as in [124]. Data are only
communicated, when the tolerated prediction error bound is crossed. The perfor-
mance of our estimation model was evaluated using static and dynamic threshold.
The experimentation included comparison with A-ARMA proposed in [124]. Re-
sults show that depending on data type, transmission overhead and rate can be
reduced (about 70% reduction in transmission rate [100]). A considerable accuracy
prediction can also be obtained. The relative errors, between predicted and real
sensed data, were between 2% and 8% (see Chapter 3).

2.3.4 Data redundancy

Redundancy in Wireless Sensor Networks can be classified into spatial redundancy, tem-
poral redundancy and information redundancy [59].
Spatial redundancy means the possibility to obtain a specific information from different
sources. Because nodes in WSNs are typically deployed densely [207], this provides a
large amount of redundant data in network coverage. Nonetheless, the use of multi-path
routing in WSNs [165, 172] may produce duplicated data.
Temporal redundancy may occur in sensing and communication. Temporal sensing re-
dundancy is defined as obtaining multiple measurements from the same sensor, skewed in
time (such as in video surveillance). Temporal communication redundancy is defined as
sending the same package of data more then once, skewed in time. Such as the Time-out
and retry mechanisms used by several communication protocols [3, 61].
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Information redundancy occurs using of redundant data. It is linked to spatial and tem-
poral redundancy.

In sensor networks, redundancy is both ally and enemy [59]. It is used sometimes
to improve the reliability of the entire system [221]. Kalman filters are very popular
fusion methods that benefits from redundant information to improve their data estimation
task [142]. They have been used for a long time in different application areas, such as in
algorithms for source localization and tracking, especially in robotics [142]. In biomedical
data fusion, redundant and complementary information can be useful. For example,
the fusion process can improve the detection of cardiac events including the ventricular
activity and the atrial activity [115, 161].
However, the collection and accumulation of redundant data (similar or duplicated data),
results on spending large amount of energy during transmission. This may drain the
source of energy. Along these concerns, data aggregation techniques [73, 166, 172, 185],
were used to minimize redundant data, thereby the transmission overhead, which prolongs
the network lifetime. Although redundancy might have its negative impact on the network
lifetime, however, it might be useful to increase the reliability, accuracy, and confidence
of the information. Decreasing the transmission rate and traffic may produce a loss of
accuracy during aggregation. Therefore, the compromise, between the desired level of
redundancy in the network, the quality of aggregated data and the network lifetime,
constitutes a performance measure of an efficient data aggregation algorithm [135, 185].

We tackle the issue of redundancy in Chapter 4. We propose a similarity detection
technique to observe the correlation among sensed data on the aggregator node. It fuses
the similarity degree, in order to decrease the transmission overhead and to allow the
reconstruction of fused data at the sink. Results of simulations show a data transmission
overhead reduction of about 20%, in most used data types. They also a good estimation
quality, on the base station. The relative error of prediction were in [−7× 10−7, 10−6].

2.3.5 Outliers detection

The quality of data (collected or communicated) in WSNs affects the performance of
nodes and the whole network. If data are not accurate or reliable, actions and decisions,
that will be taken based on such data, can not be reliable nor fulfilling the applications
needs. Such data produce fake information and may lead nodes to unpredicted behaviors
or unwanted motions which may affect the source of energy and degrade the performance
of the network. An unreliable home sensor, may signal a fake fire event, which activate
home sprinklers. An unreliable mobile node may take unwanted directions, it may increase
the data traffic, generates fraud information to other nodes and leads the base station to
make mis-informed decisions.
Raw data collected in Wireless Sensor Networks, are often unreliable and inaccurate due
to noise, faulty sensors and harsh environmental effects. Such data are generally called
“outliers”. Outlier detection techniques are proposed to reveal such cases and improve
the performance of the network. An outlier is defined as “an observation, which deviates
so much from other observations as to arouse suspicions” [110]. Barnet and al., defines
outlier as “observation (or subset of observations) which appears to be inconsistent with
the remainder of that set of data” [15]. Outlier detection can be extensively used in a wide
variety of applications such as fraud detection for credit card, mobile phone, insurance or

26



health care, image processing (satellite imagery, mammographic image analysis), military
surveillance for enemy activities, speech recognition, novelty detection in robot behavior,
etc.

Since outliers are patterns in data that do not conform to a well defined notion of nor-
mal behavior, the key challenge is how to define normal behavior. In several cases where
outliers are the result of malicious actions, the malicious adversaries adapt themselves
to make the outlying observations appear like normal. Thereby, they make the task of
defining normal behavior more difficult. Nonetheless, the boundary between normal and
outlying behavior is often not precise. Thus an outlying observation which lies close to
the boundary can actually be normal and vice versa. In many domains, normal behavior,
that keeps evolving with undetected malicious values, makes the current notion of normal
behavior insufficiently representative in the future.

Applying a technique developed in one domain to another is not straightforward. For
example, in the medical domain a small deviation from normal (e.g., fluctuations in body
temperature) might be an anomaly, while similar deviation in the stock market domain
(e.g., fluctuations in the value of a stock) might be considered as normal. In what
follows, we present some of the outliers sources in WSNs and some of the techniques used
in the literature.

Sources of outlier

Outliers in WSNs can be caused by different factors: errors (noise-related measurements
or a faulty sensors), duplicated data, abnormal or inconsistent data [37]. Outliers caused
by errors may occur frequently, while outliers caused by events (forest fire, chemical spill,
air pollution, etc) tend to have extremely smaller probability of occurrence [151]. Due to
the fact that such errors influence data quality, they need to be identified and corrected
in a way that data after correction may still be usable for data analysis. As events and
errors are hard to be identified, outlier detection techniques need to make use of the spatial
correlation between neighboring nodes for decision-making [143]. Several research topics
have been developing outlier detection techniques such as fault detection [45, 143], event
detection [72, 132, 151] and intrusion detection [19, 62].

Outliers Detection techniques

Different outlier detection techniques have been proposed for WSNs. Their evaluation de-
pends on whether they satisfy the accuracy requirements while maintaining nodes energy
consumption to a minimum [91]. The analysis and identification of outlier in WSNs can
be made in different levels in the network. Some approaches use a local outliers detec-
tion [18, 123, 255] and others use global outlier detection [167, 205, 217]. A local detection
is when each node identifies the anomalous values by only depending on its historical val-
ues. Another alternative is that in addition to its own historical readings, each sensor
node collects readings from its neighbors to collaboratively identify the anomalous values.
Compared with the first approach, the second takes advantage of the spatio-temporal
correlations among sensor’s data and improves the accuracy and robustness of the outlier
detection [18, 123, 255]. In a global detection, all data are transmitted to the sink node
for identifying outliers (as in a centralized architecture [205]). Data can also be sent to an
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aggregator/clusterhead that identifies outliers (as in clustered-based architecture [217]).
In the first architecture, this mechanism consumes much communication overhead and
delays the response time. The second architecture optimizes response time and energy
consumption. However this approach may have the same problem as centralized one, if
the aggregator/clusterhead has a large number of nodes under its supervision [37].

Different approaches for outliers detection has been proposed. Figure 2.2, presents a
toxonomy of outlier detection techniques for WSNs.

Outliers 

Detection 

Techniques

Statistical-

based Clustering-

based

Spectral 

decomposition-

based

Nearest 

neighbor- 

based

Figure 2.2: Taxonomy of outlier detection techniques in WSNs.

• Statistical-Based Approaches: They assume or estimate a statistical model. The
aim is to observe the distribution of data and evaluate data instances with respect
to how well they fit the model. These approaches differ based on how the statistical
model is built. Among these, we mention: Parametric-based approaches (Guassian
and non-Gaussian approaches) [18, 126, 255], and non-Parametric-based approaches
(Kernel-based and histogram-based approaches) [167, 205]. Parametric techniques
assume availability of knowledge about underlying data distribution, i.e., the data
is generated from a known distribution. However, in many real-life scenarios, no
a priori knowledge of the sensor stream distribution is available. Thus parametric
approaches may be useless. Non-parametric techniques do not assume availability
of data distribution. They typically define a distance measure between a new data
instance and the statistical model. They use some kind of thresholds on this distance
to determine whether the observation is an outlier.

• Nearest Neighbor-Based Approaches: They use several well-defined distance no-
tions to compute the distance between two data instance (e.g. [131, 187]). A data
instance is declared as outlier, if it is located far from its neighbors ( [37]). Tech-
niques, such in [273] take advantage of spatio-temporal correlations of sensor data
for identifying outliers. However, a drawback of this technique, is its dependency
on a suitable pre-defined threshold, that is not obvious to define.
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• Clustering-Based Approaches: Cluster analysis [121] is a popular technique to group
similar data instances into clusters, based on a similarity measure. Thus any data
point that does not fit in any cluster is called an outlier. Since the main aim is
to find clusters, such techniques are not optimized to find outliers. Other cluster-
ing based techniques have extended to time-series data [23] and other sequential
data [201]. The advantage of the cluster based techniques is that they do not have
to be supervised. Data points can be fed into the system and tested for outliers in
an incremental way (from cluster to another). However, clustering-based outlier de-
tection algorithms can not properly detect outliers in case of noisy data and unless
the number of clusters is known in advance [261].

• Classification-Based Approaches: They learn a classification model, then classify
data using two phases: The training and the testing phase. The training phase
builds a classification model using the available labeled training data. The testing
phase classifies a test instance, into normal or abnormal, using the learned model.
Among these approaches, we mention Support Vector Machines (SVM)-based ap-
proaches [186] and Bayesian network-based approaches [123]. They can provide an
exact outliers detection once the classification model is build. However, a main
drawback is their computational complexity and the choice of proper kernel func-
tion.

• Spectral decomposition-Based approaches: They try to find an approximation of the
data, using a combination of attributes that capture the variability in the data. Any
data instance that violates the data structure is considered as an outlier. Principal
component analysis (PCA) is used in several techniques such as [42] for data approx-
imation. It is a technique used to reduce dimensionality before outlier detection. It
finds a new subset of dimension which capture the behavior of data. The procedure
of selecting appropriate PCA is sometimes computationally expensive [37].

Many of previous techniques [37] explore the spatio (and/or) temporal correlations among
sensor data. They also differ by the outliers type they tackle (local or global) [18, 123, 167,
205, 217, 255]. Some of the oultiers detection techniques use a user-specified threshold
to determine outliers [81, 188, 190, 220, 247]. Since an appropriate threshold is not easy
to determine, it is usually fixed by the users. The challenge is to learn the threshold at
runtime, while observing the data behavior in time. Thus, some approaches prefer to
modify the threshold value when the normal data streaming is updated [269].

In our contribution for outliers detection, we use a combination of statistical and
nearest neighbor technique. We define a set of ranking conditions for detection. These
evaluation constraints are determined based on the previous samples of data behaviors and
correlation (see Chapter 5). The experimentations we made showed that our algorithm
produces high detection rate. It can accurately detect between 78% up to 90% of slipped
anomalies. It also produces low false alarm rate (∼8%) for slow variation data types.

2.4 Contribution Summary

A major concern in battery-operated Wireless Sensor Networks (WSNs), is to strike the
balance between the desired QoI and energy efficiency in the network. The goal is to
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lengthen the network lifetime and fulfill the application requirements [16, 20, 21, 32, 182].
Communication was declared as the major source of energy consumption in WSNs [6, 93].
The majority of energy is consumed in communication rather than computation2 [116,
230]. Therefore, we are concerned, with how data sensed and aggregated by sensors
can be processed to increase the performance of the networks. We observe the network
performance from two perspectives: the energy efficiency and the quality of Information.
We tackle the aspects of estimation, redundancy and anomaly detection in WSNs. In the
following, we present the principle assumptions and headlines in our work:

• We consider that the energy consumed in sensing is negligible and we focus on the
energy drained in communication. More precisely, we aim at reducing the transmis-
sion cost to save energy.

• For the sake of data consistency on node level, we consider true values, the input
data we used for simulations (except, of course, the anomalous values we slipped
among data for anomaly detection in Chapter 5).

• We assume that data reach the destination in a timely manner and there is no data
loss.

• We suppose having a suitable compression and routing techniques.

• In this work, fusion is centralized in the sense that data fusion is done on an inter-
mediate nodes. However, sensor nodes do not send all the data they receive to the
central location. The main reason behind, is to prevent unnecessary communication
and save energy. Based on our techniques, nodes have the ability to make predic-
tions and detect abnormal behaviors. Thereby, we try to reduce the transmission
cost on one-hop toward the base station, between a node and its sink.

• We adopt cluster-based data aggregation scheme and we tackle the temporal and
spatial correlation among the sources nodes. The adoption of other schemes is
among the future works.

• Our work is build on three related basics detailed in the following chapters: data
estimation (Chapter 3), data similarity or correlation (Chapter 4) and anomaly
detection (Chapter 5). Based on our proposed algorithms, nodes avoid periodic
communication . They can take decision for transmission based on a tolerated
prediction error bound (Chapter 3) or abnormal behavior detection (Chapter 5).
The intermediate nodes (i.e. the fusers), use our data similarity method to fuse
data for two objectives: Reduce the transmission cost and prevent loss of quality
for the aggregated data. The goal is to enable accurate data reconstruction at the
final destination (Chapter 4).

2Sensoria Corporation: http://www.sensoria.com
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Do you realize if it weren’t for Edison we’d be watching TV by candlelight?
∼∼∼∼Al Boliska

Sometimes a scream is better than a thesis.
∼∼∼∼Ralph Waldo Emerson



Chapter 3

Data prediction

Summary

Researches in Wireless Sensor Networks (WSNs) have been focusing on saving power in
sensor nodes. An efficient strategy to achieve this goal is to reduce the amount of data
sent through the network. The reason behind, is that communication between nodes is
the main source of energy consumption [147, 214]. One of the challenges for the aforemen-
tioned goal is to exploit data correlation. Ideally, if this correlation (the true distribution
of data) is known, the data transmission between nodes can be omitted. However, the
true data distribution cannot be known. For this purpose, data prediction has been pro-
posed as a way to discover the relation among data in order to reduce the data traffic.
The goal is to build a model that can predict− based on known samples collected in the
past− future values of some phenomenas (temperature, air pressure, humidity, etc). In
this chapter, we propose a data prediction algorithm to exploit the temporal data cor-
relation. The algorithm shows its efficiency in terms of transmission cost reduction and
quality of prediction as we will present later in this chapter.
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3.1 Introduction

Data collected by sensors can be considered as discreet temporal series. This collection
process is called temporal aggregation. The time corresponds to the instant when a given
value is collected. Periodic sensor measurements can change slowly over time, such as pe-
riodic temperature measurements, humidity, inbody glucose measurements, etc. Hence, a
receiver may prefer to predict these values, so that energy-expensive periodic transmission
of the measurements can be omitted. For an efficient temporal data aggregation, many
techniques relied on time series forecasting with linear regression models [67, 69, 124, 233].
In this work, we propose different algorithms based on time series forecasting. The goal
is to improve the performance of data aggregation in reducing the transmission cost in
WSNs. We assume having a cluster-based network and we focus on the reduction of the
data transmission cost on one hop communication (between a node and its cluster head).

In what follows, we provide an overview on time series forecasting, and a state of the
art showing recent works applying statistical modeling techniques in WSNs (Section 3.2).
Then, we describe the motivation and contribution of this work in the data prediction
(Section 3.3). In Sections ( 3.4 and 3.5), we introduce two forecasting algorithms (EEE
and EEE+). The fundamental assumptions and setup of these prediction models are
presented in Section 3.6. These algorithms were evaluated by taking a case study based on
real data series and using static prediction thresholds. The efficiency regarding accuracy
and energy consumption is explored in Sections ( 3.7 and 3.8). After comparison with
other prediction models, the experimentation results show an efficiency of about 70%
reduction in transmission overhead with ∼5% of relative errors. In order to enhance the
prediction accuracy, we extended the work to another algorithm (EEE∗) in Section 3.9.
The idea of EEE∗ is to estimate a dynamic threshold for prediction errors. Since the
choice of a static threshold depends on data type, a small or large static threshold can
strongly provide inaccurate estimations. A tolerated prediction bound depends on the
data distribution. When the distribution of data changes normally over time, the value
of the bound will be affected. In the experimentations below, we consider true the data
used for simulation. We assume that they do not contain abnormal behaviors so we can
refer to them to evaluate our work. Abnormal behaviors will be tackled in Chapter 5.

The prediction quality of the extended algorithm was evaluated in Section 3.10 and
compared to other prediction models. The experimentation was made on different real
data series in several domains: The monthly measurements of carbon dioxide above Mauna
Loa, the chemical process temperature readings taken every minute, daily morning tem-
perature of an adult female, the radioactivity in the ground at 1 minute intervals over one
day1, a garden temperature data [124], and cardiac frequency measurements2. We will
show later in this chapter, that a considerable accuracy prediction can be obtained with
EEE∗ algorithm. The relative errors between the predicted and real sensed data were
between 2% and 8% depending on the data type. To conclude, the chapter is summarized
in Section 3.11.

1http://www.robjhyndman.com/TSDL/
2http://www.inrialpes.fr/Xtremlog/
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3.2 Forecasting techniques

To improve the performance of data aggregation, Time series forecasting was proposed as
a means to reduce the amount of communication between the sensor and the sink. The
idea behind is that the sink exploits time series model to predict local readings instead of
direct communication with sensors. In this section, we provide an overview on time series
modeling and some related works in the literature.

3.2.1 Modeling time series

A time series is a set of observations Xt, each of which is recorded at time t, representing
a phenomena evolving over time. An important part of the time series analysis is the
description of an efficient data prediction model. The prediction of future values rely
on some recent history of readings. AutoRegressive (AR) and AutoRegressive Moving
Average (ARMA) are principal models for time series forecasting [29, 40]. The AutoRe-
gressive model (AR) is simpler than ARMA model due to its lower computational cost
and memory requirements [29]. It becomes popular in many domains (such as in finance,
communication, weather forecasting,etc.). The work in [233] shows that AR models, while
simple, still offer excellent accuracy in sensor networks for monitoring applications, mak-
ing such models practical on many current-generation sensor networks.
A time series model (AR) of order k is represented as follows:

AR(k) : Xi+k = a0 + a1Xi+k−1 + · · ·+ akXi (3.1)

a1,...,ak are the model parameters. Xt is an observation of the data series at time t. a0 a
white noise (i.e. random error).
We will adopt this model due to its simplicity, which leads to lower computational cost
and memory requirements unlike the general ARMA models.

3.2.2 Related works

Different techniques were introduced in the literature for data prediction in WSNs [67, 69,
122, 124, 233]. They differ by the prediction tool they use to explore the correlation among
data and reduce communication cost. Some approaches rely on Kalman filters [122] or use
relatively complex probabilistic models (e.g., multi-variate Gaussians [68] or generalized
graphical models). Other approaches [124, 233] use AR/ARMA models contained in both
the sink and each sensor. By modeling time series, the sink node exploits a time series
model to predict local readings instead of direct communication with sensors.

The work in [124], gives nodes, additional task over environmental monitoring. Every
node, has to calculate an Adaptive-ARMA model (A-ARMA) from a history of samples
to discover the time series correlation among measurements. Although it uses ARMA,
the work proposed in [124], is close to ours since it uses recent readings to predict future
local readings. When a reading is not properly predicted by the model, the sensor choose
to re-learn that model. Then notifies the sink by sending new model parameters and a
sample of recent readings. Predictions would then begin again, and continue, until an
error tolerance is violated.
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Other works such as [233] were more simpler. The framework relies mostly on local
probabilistic models computed and maintained at each sensor. This work uses the time
series forecasting model as the probabilistic model. It shows that AR models, while
simpler than ARMA, provide accurate estimations in monitoring applications. Similarly
to our work, each sensor continuously maintains its local model, and notifies the sink only
of significant changes. However, this work differs by the cost of its learning phase. It
solves a linear system to compute the model parameters. Authors refer to the standard
linear algebra text [50] for this computation. However, in our model, we use an iterative
method to compute the model parameters. Iterative methods produce less computational
cost [108]. The method tends to adapt to errors at each iterate until a sufficient accuracy
is achieved (see Section 3.4).

Moreover, in most cases, the information sent to the sink in [233], are the model
parameters and optionally a list of measures. We don’t send the list of parameters and/or
a list of measures. We reduce the transmission overhead by only sending a list of previous
errors to update the model (see Section 3.5). We will discuss the performance of our
model in Sections 3.9, 3.8 and 3.7.

3.3 Motivation and Contribution

Battery operated sensor nodes are energy-constrained and their battery may be difficult
to replace every time when consumed: such as in implantable body sensors, disaster or
battle field monitoring sensors, etc. It has been mentioned that the majority of energy
is consumed in the communication rather than computation [192, 271]. Moreover, it was
indicated by empirical studies [92, 147, 214, 230] that the transmission of one bit over
100 meters would cost about the same level of energy as executing 3000 instructions in
sensor node. Therefore, we aim at reducing the energy consumed in communication, more
precisely, decreasing the transmission cost.

The goal of this chapter is to reduce the transmission cost between neighboring nodes
on one hop communication. For this purpose, we rely on data prediction. The challenging
issue in prediction is to explore the temporal correlation among data and ensure accurate
predictions. In what follows, we declare the prediction scenario in our work.

Prediction scenario: Nodes monitor the same event. Each node has its local pre-
diction model. Basically, a sensor communicates with its sink once the sensed value is
mis-predicted. In other words, when a violation of a prediction error bound occurs. Regu-
larly, when a sensor collects a new observation, it computes the error value e between this
new observation and the predicted value from the model. If the prediction error becomes
bigger than some pre-specified error tolerance, the prediction is not acceptable. Hence,
the model risks to diverge from the data distribution. Thus, the sensor node re-computes
the parameters of the model from a recent data sample. It also notifies the sink about
the occurred changes, so that the latter can re-learn its prediction model. In most cases,
this notification includes the model parameters and optionally a list of measures such as
in [233] and [124]. In this work, we reduce the transmission overhead by sending only one
previous measure (Algorithm 1 denoted by EEE) or a list of recent errors (Algorithm 2
denoted by EEE+) [100] for more accuracy and energy-saving. We investigate the effi-
ciency of EEE+ algorithm in terms of communication traffic and energy consumption.
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Note that, we consider true values, the data used for simulations. More precisely, we as-
sume that data series do not contain anomalous values. Later in this chapter, we extend
EEE+ to EEE∗ algorithm for a dynamic prediction bound calculation. Then we discuss
its efficiency.

3.4 EEE Algorithm

Our model is an AR-based model that uses a sequential way to estimate the model
parameters, unlike other approaches that use Yule-Walker method [29] or the least squares
regression [233]. Our model is based on eq.( (3.1)) and is initialized as follows:











a0 = 0, ai = 1
k
for i = 1, ..., k

X0 = a0 +
∑k
i=1 ai ×N0 = N0

Xi+k = a0 + a1Xi+k−1 + · · ·+ akXi
(3.2)

where N0 represents the real value at a time instant t = 0. Our algorithm is based on
the following idea: When a sensor detects a threshold violation, re-learning the model
becomes necessary to prevent divergence. Thus, communication with the sink occurs for
notification. The sensor sends the most recently obtained observation to the sink. The
latter uses its previous predictions along with this observation to update its model.
This algorithm reduces the transmission overhead of the AR model part in [124]. It only
sends one observationNi at each re-parametrization step instead of k+1 model parameters
sent in [124]. The re-parametrization step is as follow for k = 3:
Notations:

• Ni is the observation at time t = i.

• Xi is the prediction that crosses the threshold.

• ei=Ni-Xi is the produced error at time i.

• (ai)i≤k is the sequence of parameters for the prediction model.

• a
′

i is the adjusted value of ai.

The new parameters of the model are computed sequentially (one after another). Every
time, a parameter a

′

i is adjusted, the value of Xi is increased by ei
k+1

. For example, after

the adjustment of the jth parameter (j ∈ [0, .., k]) of the sequence, Xi becomes:

Xi +
ei

k + 1
= (Ni − ei) +

ei

k + 1
= Ni −

jei

k + 1
. (3.3)

In other words, for k = 3, the re-parametrization of the model will start by adjusting the
3rd parameter a3 as follows:

a0 + a1Xi−1 + a2Xi−2 + a
′

3Xi−3 = Xi +
ei

k − 1
(3.4)
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We use the adjusted a
′

3 to compute a
′

2. Thus, Xi will be increased by 2ei
k+1

and so on.

Generally, a
′

j is adjusted as:

a
′

j =
1

Xi−j



Ni −
jei

k + 1
− (a0 +

j−1
∑

t=1

atXi−t +
k
∑

p=j+1

a
′

pXi−p)



 . (3.5)

It is important to notice here that this learning phase has very low computation complexity
compared to the classical computation methods in AR/ARMA models (i.e. Yule-Walker
or the least squares regression methods) [29, 233]. Because iterative methods produce
less computational cost [108]. Note also that our model re-learning is efficient regarding
communication overhead as we will show in Section 3.7.

3.5 EEE+ Algorithm

The main idea of this algorithm is motivated by previous energy optimization experiments
showing that the energy consumed for transmission is non negligible [92, 192, 271]. Two
main objectives for this algorithm are:

(1) Decreasing the transmission overhead (i.e. the number of bits transmitted to the
sink).

(2) Preserving the prediction accuracy.
Therefore, we decided to send the error value ei instead of the observation Ni sent in EEE.
Note that, the sink can easily calculate the value of Ni once it receives ei (ei = Ni −Xi).
By following the same adjustment procedure in EEE, the jth parameter will be computed
as follows:

a
′

j =
1

(Xi−j)
[Xi +

(k + 1− j)ei
k + 1

− (a0 +
j−1
∑

t=1

atXi−t +
k
∑

p=j+1

a
′

pXi−p)]. (3.6)

Till this stage, the sink adjusts its model relying on its previous predictions. These are
the accepted values, i.e. their produced prediction error do not cross the specified pre-
diction bound. However, the sink may perform accurate model adjustment, if it receives
the previous prediction errors. Therefore, to make accurate adjustment and decrease as
possible the divergence of the model, a sensor node sends the recent error ei = Ni−Xi as
well as the k previous errors. In other words, it sends the (k + 1) recent errors. Thus, a
sink can accurately update its prediction model, since it can easily calculate the previous
Ni observations from ei. Thus, better quality for estimations can be generated, which
will decreases the rate of re-parametrization. Thereby, energy consumption due to such
transmission rate can be omitted (as we will show in the coming sections).

3.6 Preliminaries-Choice of parameters

Our concern is to reduce the transmission cost on one-hop communication. We rely on
cluster-based data aggregation mechanisms in which each node can reach its corresponding
sink (e.g. Cluster Head) directly in one-hop (such as In/On-Body sensors for personal
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Figure 3.1: Influence of the prediction window size on the estimation precision using
EEE+ and therr = 0.05.
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Figure 3.2: Influence of the prediction window size on the estimation error using EEE+

and therr = 0.05.

health monitoring,..). We assume having a proper routing protocol. We employ an AR-
based model for data prediction to prevent unnecessary periodic communication. The
model is contained in both: the sink and each source sensor node. As [232], we ignore the
trend and seasonal components of the time series and we set a narrow prediction window,
denoted by k = 3 in order to decrease the complexity of learning and adapting the model.
The choice of a narrow prediction window is made for two reasons: (1) to simplify our
model similarly to [232, 233], (2) Our experiment results, depicted in Figure 3.1, show
that a large prediction window does not really increase the percentage of accepted values.
We mean by accepted values, the values that produce a prediction error respecting the
bound. In fact, a large window takes into account very old information that may have
changed, so the model reaction to the current change may be too slow. This could
explain the deviation in the number of accepted values when the window size increases.
Thereby, the rate of re-learning increases which rises the communication rate. Moreover,
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Figure 3.2 shows that the percentage of relative errors is limited to ∼5% while changing
the prediction window size for this data type. Consequently, an increased window size
will rise the communication rate, whereas similar percentage error is obtained with a
small window size. Therefore, for this data type, we consider a value of 3 a reasonable
compromise.

3.7 EEE+ versus EEE and AR/ARMA

In this part, we compare the efficiency of our algorithms and different other models
(such as classical AR/ARMA and A-ARMA). Table 3.1 shows the performance of the

r = 16
Models Threshold Accepted Rejected Overhead Total Over. m = 64

val. val. (in bits) (in bits)

AR(3)
0.05 14 1015 4 meas. 4060*m 259840

(1%)
0.1 26 1003 4 meas. 4012*m 256768

(2.5%)

ARMA(3,3)
0.05 3 1023 7 meas. 7161*m 458304

(0.2%)
0.1 5 1021 7 meas. 7147*m 457408

(0.4%)

A-ARMA(3,3)
0.05 63 963 7 param. 2247*m 143808

(6.1%)
0.1 135 891 7 param. 2079*m 133056

(13.1%)

EEE
0.05 668 364 1 meas. 364*m 2912

(64%)
0.1 169 863 1 meas. 863*m 55232

(16%)

EEE+ 0.05 717 313 k + 1 err. 313*r*(k+1) 2504
(70%)

0.1 816 214 k + 1 err. 214*r*(k+1) 13696
(79%)

Table 3.1: Comparison between different models using different threshold values.

prediction models in terms of communication overhead using different threshold values.
We notice that the number of mis-predictions is fewer for EEE and EEE+ than classical
AR and ARMA models. In other words, AR and ARMA models have higher transmission
rate. Nonetheless, Table 3.1 shows their total communication overheads. These models
generate large amount of data when the prediction bound is crossed. The low efficiency in
prediction, for classical AR(3) and ARMA(3,3), is due to lack in their model adjustment.
Actually, a prediction model that has been build from too old values may not remain
accurate in the future. The weight given to recent values may no longer be representative
for the data distribution. Thus, these algorithms lack for accuracy.
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The performance of the Adaptive-ARMA(3,3) proposed by [124] was also observed. A-
ARMA(3,3) has the ability to adjust the prediction model from time to time. Therefore,
it maintains a prediction accuracy level that is better then classical AR/ARMA. However,
It has larger window size than EEE and EEE+. Therefore, it produces less accuracy (as
shown in Figure 3.3). As for the communication overhead, Adaptive-ARMA(3,3) sends
7 parameters at each re-learning phase. So according to results shown in Table 3.1, A-
ARMA(3,3) has heavier communication overhead than our algorithms. We can also see
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Figure 3.3: Relative error produced using EEE+ and Adaptive-ARMA(3,3) with therr =
0.05.

from Table 3.1 that the prediction accuracy using EEE+ is better than using EEE. This
is related to the use of (k+ 1) recent errors to re-learn the model instead of 1 measure in
EEE.

As for the prediction bound value, we notice its influence on the prediction efficiency for
the different models. In fact, a large threshold value, can drive a model to divergence, since
it cumulates imprecisions with the predictions. However, a small threshold value causes
more model adjustments. This means more reactivity to changes and greater possibility
to produce good estimations. Indeed, the selection of an appropriate prediction bound
is a critical aspect, since it’s influenced by the data type as well as the desired level of
precision. We return to this idea in Section 3.9, where we propose a way to generate
dynamic prediction bound related to data variation.

In this section, we observed the behavior of our algorithms in terms of accuracy and
communication overhead. We noticed that EEE+ produces better outcomes. Therefore,
we continue to observe its energy efficiency facing other models.
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3.8 EEE+ energy efficiency

In WSNs, each node dissipates energy every time it needs to achieve a data analysis
or transmission operation. For the study of the energetic transmission consumption, we
consider the following simple model [244]:

E = Ed ∗ b+ γ (3.7)

where E is the energetic consumption for the transmission of b bits, Ed the transmission
energy of one bit to distance d and γ is an additional energetic consumption constant
related to the transceiver and to the network packet header. If we assume that sensors
use their maximum transmission power, we can set Ed = E+.

Therefore for each erroneous estimation, the energy consumption (depending on the
overhead type’s value) is:

Em = E+ ∗m+ γ (3.8)

Ekr = E+ ∗ (k + 1) ∗ r + γ (3.9)

Ek1 = E+ ∗ (k + 1) ∗m+ γ (3.10)

E2k1 = E+ ∗ (2k + 1) ∗m+ γ (3.11)

Let us consider that a measure is composed by m bits and an error is composed by r bits
with r < m. Em is the energy consumed by sending one measure (such as in EEE). Ekr

is the energy consumed by sending (k + 1) errors (such as in EEE+). Ek1 is the energy
consumed by sending (k + 1) measures (such as in AR). E2k1 is the energy consumed by
sending (2k + 1) measures/parameters (such as ARMA and A-ARMA).

To compute the energy consumed by each algorithm, we use the results from [112],
where an energy consumption per bits is given for the CC11003 transceiver. The results of
[112] show that we have γ ∼ 896µJ , and the transmission of one data bit is E+ ∼ 22µJ .
Based on Table 3.1 with therr = 0.05, the energy consumption of EEE is EEEE =
Em × 364 and is EAR(3) = Ek1 × 1015 for AR(3). We thus have:

EEEE < EAR(3) (3.12)

We can notice here that EAR(3) < EARMA(3,3) and if we assume that (k + 1).r < m then
EEEE

+

< EEEE. One way to have (k + 1).r < m is to reduce the number of bits needed
for the error ei by reducing its value and choosing an appropriate coding scheme.

In Section 3.9, the estimation accuracy is enhanced using dynamic threshold which
help to have (k+1).r < m. Results in Table 3.1, show that A-ARMA(3,3) is re-learned 321
times with a communication overhead of 7 parameters every time. This means, it is very
much heavier than EEE+ in terms of communication traffic (if we consider (k+1).r < m).
We thus have EEEE

+

< EA−ARMA(3,3) < EAR(3) < EARMA(3,3).
In the following, we consider EEE+ an adaptive algorithm for its efficiency in terms

of energy consumption and accuracy.

3http://focus.ti.com/docs/prod/folders/print/cc1100.html
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3.9 From EEE+ to EEE∗

3.9.1 Why EEE∗?

The prediction model requires training and re-training to maintain the prediction ac-
curacy. Thus, the threshold value constitutes a constraint that determines when the
adjustment is needed. The rate of adjustment depends on the non linearity of the data
and the acceptable error tolerance. In some studies, readings are omitted, neglected or
considered important when they cross certain threshold. Some events are detected using
user-defined threshold [250] or dynamic threshold using slide window method [179, 233].
In fact, since data may come from different application domain, a small static threshold
value can strongly increase the number of adjustment which is not energy efficient. Sim-
ilarly, a large static threshold value may provide inaccurate estimation. In this section,
we extend EEE+ to EEE∗ trying to estimate the threshold value at run time. Later in
Section 3.10, we examine its efficiency on real data in different application domains.

3.9.2 Threshold estimation

Since the threshold is a constraint for accuracy and data calibration, we propose to calcu-
late its value (denoted by therr) as follows. We assume that a sensor sends the following
values e0, e1, e2, e3 to the sink (according to EEE+). The threshold is calculated as
the mean of differences between the recent data samples N0,N1,N2,N3 (for k=3). That

is therr =
∑k
i=1( |Ni−Ni−1|

k
). Note that the choice of an error bound presents a trade-off

between accuracy and error probability (ability to meet a specified confidence bound).
Moreover, the estimation value is driven by a random process called white noise [60].
Some approaches like [233] consider a threshold tolerance with maximum bound equals
to ν.b(τ). b(τ) is the white noise’s standard deviation and ν a real-valued constant larger
than 1. In this work, we take into account the uncertainty of the estimation due to data

Garden Chemical carbon
Temperature process (T°) dioxide

% of therr < ths 81% 73% 50%
% accept. data (therr) 74% 78.9% 55%

Table 3.2: The percentage of accepted estimations.

dispersion and variability. To add some reliability to the threshold estimation, we choose
to add (to therr) a random value rrand ∈ [−cσ√

k
, cσ√
k
]. σ is the standard deviation of the

differences between the latest data samples Ni. c indicates the level of uncertainty (for a
confidence interval of 95% we choose c = 1.96). To observe the behavior and deviation of
the produced dynamic bound, we relied on the static bound ths. ths is a static threshold,
computed as the standard deviation of the differences between all the consecutive real
values of a data series. We generate results using different real data types: The monthly
measurements of carbon dioxide above Mauna Loa, the chemical process temperature
readings taken every minute, a garden temperature data [124].

Table 3.2 shows the percentage of the dynamic therr values that are less than ths. It
also indicates the percentage of accepted estimations. We notice that, depending on data
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type, the dynamic thresholds are, in most cases, narrower than ths. Nonetheless, with
these narrower values, there are 50% up to 80% of accepted estimations. This means that
the accepted predictions may be accurate and such dynamic threshold may be useful.
To observe such efficiency, we move to examine the performance of EEE∗ facing other
models and different data types in the following section.

3.10 EEE∗ model efficiency

Performance of the models is statistically evaluated in a panel of different tables such
as Data point statistics (RMSE, correlation coefficient,..), Relative error statistics (Mean
value of the relative error,..), etc. To evaluate the performance in estimation of our model
versus AR/ARMA models, we use: The relative error measure between the real values
and the estimated ones, the correlation coefficient and the scatterplots.

3.10.1 Prediction Accuracy

Information about the absolute error is little use in the absence of knowledge about the
the quantity to be measured. So, we choose to use the relative error between the estimated
and the real values, as follows: Ni−Xi

Ni
. We try to observe if the estimation error produced

is too high or accepted according to the dynamic prediction bound. Figures 3.4 and 3.5,
shows the relative error obtained using EEE∗ and different other prediction models such
as AR(2), AR(3), ARMA(3,3), on real data series such as: the monthly measurements of
carbon dioxide above Mauna Loa, the chemical process temperature readings taken every
minute, daily morning temperature of an adult female, the radioactivity in the ground at
1 minute intervals over one day4, a garden temperature data [124], and cardiac frequency
measurements5.

Data type AR(2) AR(3) ARMA(3,3) EEE∗

Garden (T°) up to 43% up to 50% Divergence up to 7%
Chemical process (T°) up to 40% up to 43% up to 41% up to 6%

Carbon dioxide up to 10% up to 11% up to 11% up to 2%
Cardiac frequency up to 50% up to 50% up to 35% 99% of errors

were ≤ 5%
Radiosity up to 60% up to 60% up to 60% 99% of errors

were ≤ 8%
Female (T°) ∼5% ∼5% ∼4% ∼3%

Table 3.3: The relative error produced by each model estimations: AR(2), AR(3),
ARMA(3,3) and EEE∗

We generate results from AR/ARMA models using different estimation methods such
as MLE, Burg, OLS and Yule-Walker. These methods produced similar results. The

4http://www.robjhyndman.com/TSDL/
5http://www.inrialpes.fr/Xtremlog/
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Figure 3.4: Relative error produced by EEE∗ and different other models such as AR(2),
AR(3) and ARMA(3,3) applied on some real time series data.

models did not produce better relative errors compared to our prediction model. Fig-
ures 3.4(a) and 3.5(b) show that AR/ARMA models tend to be divergent in some cases.
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Figure 3.5: Relative error produced by EEE∗ and different other models such as AR(2),
AR(3) and ARMA(3,3) on additional real data types.

This is due to the effects of looseness of accuracy along the prediction process.
As shown in Table 3.3, the relative error produced by EEE∗ did not exceed 8% for
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Figure 3.6: Relative error produced by Adaptive-ARMA(3,3) with a bound=0.05 and
EEE∗ applied on some data types.

most data types. In cases such as cardiac frequency, we notice that 99% of errors were ≤
5%. Note that few errors (about 12 of 2565 predictions errors) attained 15%. We consider
that this could be perturbed by different factors (sudden emotions or actions, etc..). Note
that in this section, we do not detect or take into consideration such events or even data
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Figure 3.7: Relative error produced by Adaptive-ARMA(3,3) with a bound=0.05 and
EEE∗ applied on additional data types.

intrusions that may occur in other WSNs applications. However some of these behaviors
will be tackled in Chapter 5.

Figures 3.6 and 3.7, show the relative error produced by Adaptive-ARMA(3,3) pro-
posed in [124] and EEE∗ algorithm applied on the different data types. For the sake of
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fairness, we used A-ARMA(3,3) with a bound=0.05. We can notice that A-ARMA(3,3)
yields the predictions better then classical AR/ARMA models, due to its model adjust-
ment during the prediction process. However, it produces less accuracy then EEE∗.
Therefore, as for the accuracy and data transmission traffic, we deduce that EEE∗ is
an appropriate algorithm for slow variation data series measurements. We can notice
that EEE∗ does not provide greatest estimation quality for the radioactivity, as shown in
Figure 3.6(c). However, we note that ∼ 90% of relative errors produced for the radioac-
tivity were around 8%. In what follows, we try to observe the correlation between real
data and predicted ones. The purpose of this is to see how much the real data and the
samples produced by the discussed models are correlated. In other word, if two variables
are correlated, we can predict one based on the other.

3.10.2 RV coefficient

We refer to the correlation coefficient to observe the relationship between values. We can
notice in Table 3.5 that the correlation coefficient tends to 1 in EEE∗. It is greater than
other models correlation coefficient values. This indicates a strong linear relationship
between the value produced by our model and the real data. According to these results
and the estimation errors presented in Table 3.4, we consider that our model is a good
prediction model. It produces more accurate estimations then AR/ARMA models.

Data type AR(2) AR(3) ARMA(3,3) EEE∗

Garden (T°) up to up to Divergence up to
43% 50% 7%

Chemical up to up to up to up to
process (T°) 40% 43% 41% 6%

Carbon up to up to up to up to
dioxide 10% 11% 11% 2%
Cardiac up to up to up to 99% of errors

frequency 50% 50% 35% were ≤ 5%
Radiosity up to up to up to 99% of errors

60% 60% 60% were ≤ 8%
Female (T°) ∼5% ∼5% ∼4% ∼3%

Table 3.4: The relative error produced by each model estimations: AR(2),AR(3),
ARMA(3,3) and EEE∗

3.10.3 Scatterplots

Having a correlation coefficient value that tends to zero (such as for AR/ARMA in Ta-
ble 3.5), does not mean the absence of relation. There may be a non linear relation
between the models outputs and the real data. The possibility of such non-linear rela-
tionships is another reason why examining scatterplots is a necessary step in evaluating
every correlation.
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Garden Chemical Carbon dioxide Cardiac Freq.
Temperature process (T°)

AR(2) ∼1.956 e-08 ∼1.586e-06 5.58e-06 3.343e-06
AR(3) ∼0.01523 ∼3.363e-05 6.90e-07 2.752e-08
ARMA(3,3) 0.00439 0.018 0.00012 0.00012
EEE∗ 0.996 0.9889 0.983 0.964

Table 3.5: RV value measuring the correlation between real and predicted values by
AR(2), AR(3), ARMA(3,3) and EEE∗
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Figure 3.8: Scatterplots for some data types.

Figure 3.8 shows the relationships between the ARMA(3,3) and EEE∗ models and
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CO2 data values. It indicates that EEE∗ is a suitable algorithm to predict data studied
here then ARMA(3,3) model. As the scatterplots for other models revel similar results
using the different data types studied, we did not show them.

3.11 Conclusion

We aim for a long-lived sensor nodes by effectively reducing their energy consumption.
More specifically, we are interested in energy consumed for transmission. We adopt a
cluster-based data aggregation scheme. We focus on reducing the transmission cost be-
tween the source node and its sink (i.e. the Cluster-Head). Based on AR model, we
proposed two forecasting algorithms (EEE and EEE+). We evaluated their efficiency
for transmission cost and accuracy. The experimentation results showed that EEE+ al-
gorithm is more adaptive. It shows an efficiency of about 70% reduction in transmission
overhead. It also produces good predictions accuracy based on the experimentations we
have made. The relative errors for predictions were ∼5%.

In the other hand, we propose a method to calculate a dynamic prediction bound.
The motivation behind that is to observe its impact on accuracy. In fact, a threshold is a
constraint for data calibration along the process of prediction. The selection of a suitable
bound can avoid model adjustment and of course the need for communication. For this
purpose, we have extended EEE+ to EEE∗ with a dynamic threshold calculation. The
algorithm relies on the data distribution over time to estimate the prediction bound. Note
that we consider true values the data used for experimentations. We also assume that
they do not contain erroneous or anomalous values. Abnormal behaviors detection in
data stream will be discussed later in Chapter 5.
The experiments on different data types show that the relative errors for prediction do
not exceed 8% for most used data types. However, The errors produced by other models
were higher. Therefore, using our proposed model for data prediction, it is possible to
reduce the rate of model adjustment and communication overhead. Thus, it is possible
to decrease the number of computational operations. Hence, the node’s lifetime may be
increased which of course impacts the network longevity.
This work is part of an incremental process of analysis, experimentations and studies to
be done to reach energy-efficient algorithm. In the next chapter, we will investigate data
similarity measurements based on the spatial correlation. We propose a data similarity
detection algorithm to observe similar data in order to reduce the transmission overhead.
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Basic research is like shooting an arrow into the air and, where it lands, painting a
target.

∼∼∼∼Homer Adkins



Chapter 4

Data Similarity in In-network
processing

Summary

Due to the dense deployment in WSNs, neighboring nodes that sense the same property
and go through the same environmental conditions, are expected to provide similar infor-
mation. Thus, data communicated between nodes may be duplicated or redundant. This
may have its negative impact on the transmission cost for the limited energy resource
sensors. For this purpose, we present an algorithm to detect data similarity during ag-
gregation. The main goal, is not only decreasing the amount of transmitted data towards
destination. It is also to enable the destination to accurately reconstruct the information,
even with the fewer data amount it receives. The algorithm is based on the notion of
prediction proposed in Chapter 3. Experimentation results show a possibility to reduce
data transmission and provide an accurate data reconstruction.
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4.1 Introduction

Nodes in WSNs gather and rely information to one or more other nodes. One node, called
the leader, collects data from surrounding nodes and then sends the summarized informa-
tion to upstream nodes. With the many to one nature of WSNs, the dense deployment of
sensors and the use of multi-path routing [165, 172], data may be duplicated. It may also
happen that some nodes notify the sink about the same event, at almost the same time,
and approximately the same values. This induces a propagation of redundant highly cor-
related data. Redundancy is costly in terms of system performance. It results in energy
depletion, network overloading and congestion. Such data correlation can be related to
the environmental conditions that nodes go through, and to their spatial distribution.
Tobler’s first law of geography states that “Everything is related to everything else, but
near things are more related than distant things” [231]. This statistical observation im-
plies that data correlation increases when the spatial separation decreases. For example,
when the sun shines through a room’s window, nodes near the window tend to be hot,
the ones nearby are a little cooler, while the temperature of nodes on the other end of the
room depends on variations across the room.

Our goal is to observe similarity among collected data in order to reduce the trans-
mission overhead. In this chapter, we rely on the temporal data correlation, discussed in
Chapter 3. We employ the spatial data correlation to enhance our work and decrease the
transmission cost. Exploring data correlation (temporal/spatial) in the sensor readings
induces opportunities for data aggregation, which are very important considering severe
energy constraints of the sensor nodes.
In this chapter, data aggregation is performed in a cluster based manner. Nodes commu-
nicate their data to their cluster head. The latter will calculate the similarity amongst the
values. It checks the spatial correlation among sensors readings to observe redundancy
and reduce the transmission overhead. However, redundancy is both ally and enemy [59].
Collected redundancy can be used to improve the reliability of the entire system. For
this purpose, we decide to communicate the similarity degree among the redundant data.
Thus, we keep redundancy during transmission without harvesting the source of energy.
The tradeoffs between sending less amount of data, and the possibility to accurately re-
construct the original data on the sink, were among the challenges in this work. Our
algorithm shows its ability to reduce the total transmission overhead in terms of bits. It
reduces the transmission overhead by ∼ 10% to 20% depending on the data type used
in the experimentation. Nonetheless, it shows an accurate reconstruction of the original
data on the sink. Experimentation results show that the relative errors between estima-
tions made by the source sensors and the ones deduced by the sink, are very small. They
belong to [−7× 10−7, 10−6] (see Section 5.6).

This chapter is structured as follows: In Section 4.2, we introduce the notion of simi-
larity and present the similarity function used in this work. To measure the data similarity
we rely on kernel-based methods, due to their popularity in different applications [198].
We also observe the factors behind data correlation and the type of redundancy in WSNs.
Section 4.3 provides an overview of some recent spatio-temporal techniques in the domain.
We present our similarity detection algorithm in Section 4.4. Our work takes advantage
of spatio-temporal data correlations to detect and reduce redundancy. The main goal
is to reduce the communication cost and energy consumption. In Section 4.5, we ob-
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serve the quality of data reconstructed at the sink, as well as teh transmission overhead.
Section 4.6, concludes this chapter.

4.2 Preliminaries

4.2.1 Notion of similarity

Similarity measures play a central role in reasoning in many applications [4, 47, 103, 134]
such as bioinformatics, natural language processing (NLP), image processing, pattern
recognition and different other problems of information retrieval. The similarity functions,
called also affinity functions, are denoted by s : X×X −→ R. They are in some sense the
converse to dissimilarity functions. This means that the similarity between two objects
should grow if their dissimilarity decreases. In particular, a similarity function is supposed
to increase the more similar the points are [145]. In what follows, we present a brief
overview on special type of similarity functions: the “Kernel functions”. We will use
this type of function later in our algorithm (due to its popularity [198]). The goal is to
detect similarity among aggregated data. In what follows, we provide an overview on
kernel-based methods. We also introduce the kernel function used in this chapter.

4.2.2 Kernel-based methods

In the last years, a number of powerful kernel-based learning machines have been pro-
posed. Among these we mention: Support Vector Machines (SVMs) [25, 195, 197, 234],
kernel Fisher discriminant (KFD) [156, 157], and kernel principal component analysis
(KPCA) [158, 196]. Successful applications of kernel-based algorithms have been re-
ported for various fields: Optical pattern and object recognition [22, 65], text categoriza-
tion [76, 125], time-series prediction [109, 162], gene expression profile analysis [31, 89],
DNA and protein analysis [119, 274], and many more1. Kernel functions are one of the
most popular tools in Machine Learning. They have been used for relation extraction
within the field of information extraction, such as, in text recognition, images analysis,
ranking items, etc. They were used to discover if two or more candidate entities are
related and which relation includes between them.

Kernel-based learning algorithms [56] work by embedding the data points into a Hilbert
space, and searching for linear relations in such a space. The embedding is performed
implicitly, by specifying the inner product between each pair of points rather than by
giving their coordinates explicitly. This approach has several advantages. The most
important one derives from the fact that often the inner product, in the embedding space,
can be computed much more easily than the coordinates of the points themselves.
Suppose having an input set X, an embedding space F and a map φ : X → F . For two
points, xi ∈ X and xj ∈ X, the function that returns the inner product between their
images, in the space F , is known as the kernelfunction.

Definition 4.2.1. : A kernel k is a function, such that k(x, z) = < φ (x), φ (z)> for all
x, z ∈ X, where φ is a mapping from X to an (inner product) feature space F .

1See also Guyon’s web page http://www.clopinet.com/isabelle/Projects/SVM/applist.html on appli-
cations of SVMs.
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Kernel-based methods rely on measures of similarity called kernel functions. They
perform several tasks for pattern recognition [87, 198, 204], such as classification, regres-
sion. They find and study different types of relations in many types of data. Kernels
can be general or tailored to the specific domain from which the data arises. Among the
generic kernels, we mention the popular gaussian kernels (4.1) [198, 204]. These kernels
are widely used in many domains. For exmaples, they are used in statistics, where they
describe the normal distributions, in signal processing where they serve to define Gaus-
sian filters, in image processing where two-dimensional Gaussians are used for Gaussian
blurs, etc. We also mention other specific kernels, such as the Fisher kernels[120] and
kernels for specific structures, like data strings and tree [237]. Such kernels can be used
for biological sequences samples where data is represented as strings [77], and Natural
Language Processing (NLP) where the data is in a form of parse tree [49].

We use the following gaussian kernel function due to its popularity:

k(x, y) = exp
− ‖ x− y ‖2

2 ∗ σ2
(4.1)

where k(x, y) ∈ [0, 1], σ determines the width of the Gaussian kernel (Note that we
have x = y when k(x, y) = 1). We initialize σ = 1.74 as in [200].
This section was a preliminary for the proposed algorithm in Section 4.4. We highlighted
the importance of kernel-based methods and introduced the kernel function used in this
work. Next, we observe the similarity on nodes and their impact on the network.

4.2.3 Similar data and redundancy in WSNs

Correlation in sensors’ data occurs due to the similarity of environmental factors for sen-
sors. Nodes can have similar environmental conditions and spatial factors, which normally
produce similar or exact data. The communication of such data between nodes, yields
for redundancy which increases the energy consumption of the network. Nonetheless,
the dense deployment of sensor nodes to achieve satisfactory coverage [7] as well as the
mutli-path data routing (i.e broadcast), can increase the amount of redundancy. Thus,
information about an event can be captured by many surrounding sensor nodes. This
generates a large amount of traffic and consumes a lot of battery energy. However, if
redundancy is detected and reduced, unnecessary energy consumption can be omitted.

Redundancy among data in Wireless Sensor Networks can be spatial or temporal [59].
The spatial redundancy occurs if spatial data correlation exists. This means, when ob-
servations from the nodes that are in close proximity, are highly correlated. Furthermore,
the nature of the physical phenomenon constitutes the temporal correlation between each
consecutive observation of a sensor node. This is the temporal correlation. These spatio-
temporal correlations, and, the collaborative nature of WSNs, bring significant potential
advantages for an efficient data communication. Most existing approaches try to organize
sensors into groups based on their spatial relationships [46, 102, 169, 170, 203, 252]. This
induces opportunities for an efficient data aggregation in WSNs, especially energy-limited
sensor nodes. In what follows, we provide an overview of some recent spatio-temporal
techniques in the domain. Then, we present our similarity detection algorithm and show
its efficiency.
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4.3 Related works

A significant challenge in WSNs is to prolong the monitoring operation of sensor nodes by
efficiently using their limited energy, bandwidth and computation resources. By allowing
the nodes to corporate to carry out joint data from aggregation, the amount of data
communicated within the network can be reduced. Recent techniques for processing
multiple sensor streams in an energy efficient manner has been proposed. These techniques
make use of both spatial and temporal correlations, as well as, clustering approaches to
perform data reduction. In this section, we present some of these techniques.

The work in [106], proposes an algorithm that manages spatio-temporal data in a
distributed fashion. It performs in-network regression using kernel functions assuming
rectangular regions of support. The network is assumed to contain multiple overlapping
regions. In each region significant spatial correlations are expected to be observed. Au-
thors introduce the usage of kernel functions. They model the event, within each region,
using some basis functions. Data is approximated by a weighted linear combination of the
basis functions. They model spatial correlation using linear regression model of weighted
kernel functions.

Other technique, such as [68], proposes the use of statistical models of real world
processes. Its goal is to reduce the cost of sensing and communication in sensor networks.
The built prototype is Barbie-Q (BBQ). It consists of a declarative query processor and
a probabilistic model and planner, based on time-varying multivariate Gaussians. The
model runs at the base station, where users submit SQL-like queries that include error
intervals and confidence bounds. Another prototype built is Ken [48]. Ken utilizes a pair
of dynamic probabilistic models. One runs at the base station (sink) and the other runs
at each node in the network. It proposes a framework for selecting approximate data with
bounded-loss guarantees. The aim is to minimize the costs of communication throughout
the network. Ken bears several similarities to BBQ, as it evaluates a probability density
function and exploits both spatial and temporal correlations between sensors. Their key
difference lies in the fact that BBQ is pull-based, i.e. the base station acquires data from
the network only when necessary in order to satisfy queries. While Ken is push-based.
This means that source nodes monitor their data continuously. They only route values
towards the sink when its model needs to be synchronized with the local ones. In effect,
Ken addresses outliers detection, the basic weakness of BBQ. In order to utilize spatial
correlations, Ken partitions the sources into clusters, called cliques. The inference is done
on one node per clique, the clique root.

Our algorithm extends a previous work [99, 100] (already described in Chapter 3) to
integrate spatial similarity measurements. The main goal is to reduce the transmission
overhead in WSNs, in order to increase nodes’ lifetime. In the previous works, we adopted
a cluster-based data aggregation scheme. We focused on reducing the transmission rate
and overhead between the source node and its sink (i.e. the Cluster-Head). We proposed
an estimation algorithm that resides on time series forecasting described in Chapter 3. A
Sensor and a sink use the same prediction model. The communication between them is
restricted to a threshold violation. During communication, a sensor S sends, instead of
previous data raw samples to the sink, certain previous error values eSi . The aim is to
re-learn the prediction model at the sink, and improve its performance. Our experiments
show that the transmission cost can be reduced (about 70%) (see Chapter 3). On the other
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hand, the prediction accuracy has been also observed. Results show a relative prediction
errors between 2% and 8% depending on the data type. In this chapter, a cluster-head
(i.e. the aggregator) checks for spatial correlation among the data it collects, on order to
reduce the amount of data transmission.

Due to the spatial correlation in the sensed data, aggregation techniques were incor-
porated into the routing protocols. Different routing strategies involve data compression
via coding in correlated data aggregation, to reduce data traffic. These strategies (such as
aggregation with Distributed source coding strategy-DSC [55]) have been based on loss-
less coding schemes, such as Slepian-wolf coding in data aggregation [53]. In this work,
we do not propose a clustering/routing methods or discuss a coding schema and its de-
pendence on optimal cluster-sizes. We suppose that clusters and clusters heads (CH) are
determined using distributed or centralized methods such as LEACH, HEED [114, 264]
or others [206]. We assume having a suitable routing protocols that do not interfere with
the spatial aggregation described in Section 4.4.

In our work, each non cluster head node sends data to the CH in its own cluster
instead of the base station (BS).
The approach of clustering has the following advantages:
1) Non-CH nodes can save energy consumption. They have to send data to their own CH
nearby. Thereby, they can avoid long-distance communication.
2) The amount of data sent towards the base station (BS) can be reduced due to data
fusion, which again saves energy.
Our work relies on the idea of decreasing the communication overhead between nodes by:
1- Detecting and reducing redundancy using data similarity measurements.
2- Reducing the number of communicated bits, since it was indicated that the transmission
of one bit over 100 meters would cost about the same level of energy as executing 3000
instructions in sensor node [92, 230]. In what follows, we present the proposed algorithm
for data similarity measurements.

4.4 Our data similarity detection algorithm

Given a typical WSNs in which each node records information from its vicinity and trans-
fers this information to a centralized base station. Nodes which are close to each other,
eventually sense similar information. Hence the information is geographically correlated.
So, before sending it to the central agent, a huge saving in transmission cost may be
achieved. That is by aggregating information from nearby nodes, removing redundancy
and keeping data transmission to a minimum. We will call these geographical regions:
”similarity regions”, denoted by Rj. We consider that these regions are pre-defined on the
base station at the deployment time. Clusters are determined based on nodes’ battery
level, their coverage capabilities, the communication cost and the node density, such as
in [35, 114, 264]. So, it may happen that two neighboring clusters share spatial data
correlation. Hence, a similarity region may contain different clusters spatially correlated
as shown in Figure 4.1. We denote by Λj the number of clusters in a similarity region Rj .

Our goal is to detect data similarities during aggregation to keep data transmission
overhead to a minimum. During aggregation (intra-/inter-clustering aggregation), an
aggregator verifies the source of each received data. It checks if it is a source node inside
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its own cluster or a CH node of a neighboring clusters. It also examines the degree of
similarity among the received data. Note that along this process of similarity detection,
abnormal behaviors may be observed. However, detecting such behaviors are out of the
scope of this chapter, and will be observed later in Chapter 5. Returning to our algorithm,

Base 

Station

Figure 4.1: The concept of similarity region.

let us first describe some notations used in this section:

• δ: the spatial similarity degree threshold. More specifically, δRj and δc are respec-
tively the degree of similarity thresholds inside a similarity region Rj and cluster.
They are set during the clustering and the definition of similarity regions.

• Γ: the data similarity threshold. Precisely, ΓRj and Γc refers respectively to the de-
gree of data similarity inside a region Rj and a cluster. The choice of Γ values could
be a user defined threshold when clusters and similarity regions are determined.

• dn1n2
: the distance between two nodes n1 and n2. For simplicity, we refer to the

euclidean distance.
For every pair of nodes n1 and n2 belonging to the same cluster, dn1n2

≤ δc. While
belonging to the same similarity region, dn1n2

≤ δRj . We denote by dSCH the
distance between a source S and a cluster head CH. If Λj = 1, the similarity region
Rj is a cluster with δRj = δc and ΓRj = Γc.

• We choose to capture the (dis)similarity between two arrays of data A and B of
length p by K(A,B) = Πpi=0k(Ai, Bi).
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In this work, the temporal data correlation is modeled using EEE∗ algorithm [100] (see
Chapter 3). Each sensor S uses a prediction model to estimate future environment values.
It communicates with the sink only when a prediction threshold violation occurs. The
values to be transmitted are no more the model parameters or recent data raw, but a
recent number p of error values eSi where i ∈ {0, .., p}. An aggregator, while monitoring
the environment, may receive an array of data error values (eSi ) from a source sensor in its
cluster or a CH node in the neighborhood. It may combine these values with its own error
values eaggi , if it has, then routes them to the base station. However, during aggregation
it is important to distinguish between the fused data. Simply speaking, fusing similar
data can ensure redundancy and lead to huge communication cost. For this purpose,
we try to observe the spatial correlation. For two nodes n1 and n2 that are located in
the same similarity region or cluster, the transmission overhead may be reduced, if their
values (en1

i ) and ( en2

i ) are highly correlated. The benefit of similarity detection is not only
restricted to redundancy detection. It may ensure reliable abnormal behavior detection
during inter-clustering fusion. For example, suppose that a CH node sends a value to
another CH resided in the same similarity region. If the values are not similar, while they
should be, one can deduce that something interesting happened.

We assume that neighbor nodes monitor the same event, the position of each sensor
is predetermined. Our algorithm is presented as follows:
A sensor node S sends data array (eSi ) to a CH node (based on EEE∗ algorithm). The
latter -before starting tranmission- calculates the spatial degree of similarity between its
own values and the aggregated ones. This is to ensure if they are (i.e the CH and source
nodes) in the same cluster or similarity region.

• If dSCH ≤ δc: The source and the CH nodes are in the same cluster. Then, the
aggregator uses the Gaussian kernel function to calculate the degree of data simi-
larity K(eS, eCH) = Πpi=0k(e

S
i , e
CH
i ) between its array of data (eCHi ) and ( eSi ) of the

source.

– if K(eS, eCH) ≥ Γc, the values are highly spatially correlated and redundancy
occurs. Then the aggregator routes its own data values ( eCHi ) toward the
sink. However, the sink needs to accurately update its prediction model to
improve the quality of estimation. Therefore, CH sends in addition to its own
values, the array of similarity measures k(eSi , e

CH
i ) between its data values and

the sensors’ ones. These values belong to [0, 1]. We consider that sending their
decimal part (integer values) instead of the main error values (eSi ) (float values)
can help in reducing the data traffic in terms of number of bits.

– if K(eCH , eS) ≺ Γc. This indicates that an anomaly occured, sensors are mis-
behaving or that something interesting has happened. For example, the sensor
became hot due to a fire that started nearby. The sink should be aware of such
abnormal cases. Thus, the aggregator decides to send both values eCHi and eSi
toward the sink.

• Otherwise, if sensors are in the same similarity region (dSCH ≤ δRj ) , the CH node
follows the same process mentioned above by changing Γc to ΓRj
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• Note that if both sensors are not in the same similarity region, the aggregator decides
to send both values eCHi and eSi .

In the following section, we assume that there is no data loss. We propose having a
suitable routing methods and coding scheme. We apply our methodology on a simple case
study. We focus on observing the transmission overhead and the data prediction accuracy
between the sink and the source sensors. Note that a sensor and a sink use the same time
series prediction model (with p = 3). The degree of similarity between two values is set
according to an application requirements. In the experimentation below, we considered
that two values are similar when their degree of similarity is greater then 30%. Hence,
k(eSi , e

CH
i ) ≥ 0.3. Since K(eS, eCH) = Πpi=0k(e

S
i , e
CH
i ). Then, K(eS , eCH) ≥ (0.3)p. We

then set Γc = 0.027.

ParisLille Base station

(CH)(Source)

Figure 4.2: Wind speed measurement: the source sensor is located at Lille while the
cluster head at Paris.

4.5 Experimentation and accuracy results

We applied our algorithm on a simple 2-hop network topology composed of a sensor,
an aggregator and a sink. We assume that the source sensor and the CH nodes are in
the same similarity region Rj . Thus Λj = 1, ΓRj = Γc = 0.027. Since our prediction
model in [99, 100] is suitable for slow variation measurements, we applied our algorithm
on such real data values2 : Wind speed at Lille (aggregator at Paris) (see Figure 4.2),
Humidity average at Limoges and Sea Low Level pressure at Limoges (aggregator at
Lyon). Currently, we observe the impact of similarity detection on the transmission cost
reduction. We also observe the quality of prediction at the sink, since it updates its model
according to the received values.

Figure 4.3 shows that the relative error values, between source and sink estimations,
belong to [−7× 10−7, 10−6]. This means that data are acuratlyreconstructed at the sink.
In addition, Table 4.1 shows the number of data aggregated and communicated to the
base station, before and after using the similarity measurement. The data could be the
error values (float numbers) and/or the similarity degree (integer values) according to
the similarity algorithm. We can see that the number of floats communicated using the
similarity measurement is reduced about 41% for wind speed, ∼ 20% for humidity and
∼ 39% for sea low level pressure. This indicates that energy saving can be increased,
since the number of transmitted bits is reduced. Table 4.2 represents the total overhead
in terms of bytes, before and after using the similarity measurements. If we consider that

2http://www.wunderground.com/global/stations/
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Figure 4.3: The relative error between the sensor and sink estimations.

an integer is represented on 4 bytes and a float on 8 bytes. Our experiment shows a
reduction, in terms of bits, of about ∼ 20% for wind speed, ∼ 10% for humidity and ∼
20% for sea low level pressure.
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Using sim. meas. Without sim. meas.

Data traffic # float(a) # int. # float(b) (a)
(b)

Wind speed 51 36 87 ∼ 0.586
Humidity 24 6 30 0.8
Pressure 69 42 111 ∼ 0.62

Table 4.1: The data traffic before and after using the similarity measurements.
Here (a)

(b)
, is the fraction between the data traffic (in terms of floats) before and after

using similarity measurements .

Data traffic Without sim.(a) Using sim.(b) (b)
(a)

Wind speed 696 bytes 552 bytes ∼ 0.79
Humidity 240 bytes 216 bytes 0.9
Pressure 888 bytes 720 bytes ∼ 0.81

Table 4.2: The data traffic in bytes before and after using the similarity measurements.

4.6 Conclusion

The key idea in this chapter is to observe data correlation during aggregation. We con-
sider a cluster-based scheme. The similarity detection among data is performed on the
intermediate nodes (i.e. the aggregator nodes). In our work, all nodes are capable to
make predictions using the EEE∗ algorithm proposed in Chapter 3. Nodes communicate
their values to the aggregator, which in turn, checks out for similarity amongst the re-
ceived ones. The presence of spatial correlation is checked before transmitting data to the
destination. By allowing the nodes to corporate to carry out joint data from aggregation
and check for similarity, the amount of data communicated within the network can be
reduced. However, collecting and transmitting less amount of data was not the only con-
cern in this chapter. Another concern was the significance of the transmitted data and
their ability to reconstruct the original data structure at the sink. Since the transmission
is restricted to a prediction bound violation, the sink node may ask for new values to
update its prediction model. These values are aggregated from the sensor nodes. During
this aggregation, less amount of data is expected to be collected for the sake of energy
saving. Hence, it is important to observe the quality of collected data, to provide the sink
node with accurate values so it can continue predicting correctly. Our experiments show
that it’s possible to reduce the communication overhead between nodes while ensuring a
reasonable data quality and accuracy. We noticed that the total overhead can be reduced
about 20% for wind speed, 10% for humidity and 20% for sea low level pressure. As for
the quality of predictions between a source sensor and a sink, the relative errors were in
[−7 × 10−7, 10−6]. Thus, by taking advantage of the spatial correlation and introducing
the similarity measurement, significant advantages are gained in terms of energy savings
and accuracy. In our future work, we aim at enhancing our algorithm. Since our ex-
periments adopt a simple case topology. We will continue to observe the performance of
our algorithm on complex topologies with clustering and routing methods. The following
chapter tackles abnormal behaviors detection in sensor nodes.
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To study the abnormal is the best way of understanding the normal.
∼∼∼∼William James



Chapter 5

Anomaly Detection in WSNs

Summary

Data analysis in Wireless Sensor Networks faces different challenges. One of the main
challenges is to identify normal and abnormal (anomalous) behaviors with high accuracy.
The importance of anomaly detection is due to the fact that anomalous data can signif-
icantly impact on the behavior of an application in a variety of domains. If such data is
not detected, inaccurate information can be produced. Such information can change the
behavior of an application to a critical and unwanted actions. For constrained WSNs, ad-
ditional challenge subsists which is the energy consumption. Sensors have limited resource
capabilities. Moreover, they need to examine data coming from many streams, dynam-
ically, to avoid combining untrusted ones or make unnecessary actions/communication.
In this chapter, we propose an algorithm for temporal anomaly detection in Wireless
Sensor Networks. Our experiments results show that the proposed algorithm can accu-
rately detect abnormal behaviors in sensor measurements. It also produces low false alarm
rate for slow variation time series measurements without harvesting the source of energy.
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5.1 Introduction

Abnormal data detection is a long studied problem in data analysis. It has various names:
outliers detection, novelty detection, fraud detection, anomaly detection, etc. The term
abnormal data detection seeks to identify instances of unusual activities present in the
data [37, 269]. Or in another words, it is the identification of measurements that deviate
markedly from the normal pattern of data [37] in many application domains. For example,
speech or handwritten digit recognition [58], radar target detection [13], novelty detection
in robot behavior [57], detection of malignant tumors in mammograms [213, 225], etc.

Detecting abnormal behavior in sensor networks is an interesting issue. It is important
to keep observing reliability of sensor data in order to make appropriate decisions and
extracting useful knowledge. The presence of inconsistent data may cause undesirable
outcomes. An unreliable mobile node produces unpredictable motion and behaviors which
affect its source of energy and deliver fake information or knowledge. Malicious nodes
may divert traffic from the base station. They may modify the collected data to cause the
base station to make mis-informed decisions, etc. WSNs are susceptible to many types of
attacks because they are deployed in open and unprotected environments. They incline to
outliers due to several factors, such as malicious attacks, changes in the observed external
phenomena or errors in communication, etc [269].

Research on the detection of outliers/anomalies in WSNs include: fault detection [144]
(such as noise, errors), event detection [132, 151] (such as fire, explosion detection) and
intrusion detection [19, 62] such as malicious attacks. These techniques are widely em-
ployed to remove inaccurate data in order to improve data quality. However classifying a
behavior as abnormal is not trivial. It is related to define a normal region that encom-
passes every possible normal behavior, which is often difficult [272]. In fact, most data
in WSNs are coming from unknown generative processes. In other words, the real data
distribution is not known, whether in environmental monitoring (temperature, humidity,
etc) or in medicine where patients respond differently to treatments, etc. Thus, the idea
of abnormality detection techniques is to build a model of normality of the training data
using only normal examples and then compare the test patterns against this model. They
try to approximate the distribution of the data and then, they term outliers the values
that deviate significantly from that model [19, 57, 81, 149, 188, 190, 201, 225, 233, 269].

In our work, we detect data anomalies with respect to previous history of collected
data over time. We first model time series data to predict behaviors. Then, we define
some ranking conditions under which a reading is marked as abnormal. In our detection
techniques, a sensor marks a reading as outlier depending on the extent to which the
reading disagrees with the data distribution history. In other words, when the reading
breaks the ranking conditions. These ranking conditions are calculated from the history
of normal data. The main challenge in our work is to accurately model the data and
detecting abnormality. The goal is to achieve this with low false alarm rate and less energy
consumption. Note that a false alarm refers to a value ranked abnormal while it is normal.
We use the prediction model proposed in Chapter 3 (EEE∗ alogorithm). We adapt
dynamically the model of data distribution and the ranking conditions to the changing
environmental conditions (i.e. to the temporal data correlation). In this work, we oriented
our efforts to improve data quality related to the accuracy of anomaly detection not only
the quality of prediction. Our experimentation results show that our proposed technique
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can detect about 78% up to 90% of slipped anomalies. The undetected ones were the
values that are too close to the normal ones. They were generated by a perturbation rate
less than 1% on the real values. Nonetheless, results show the efficiency of our technique
concerning its low false alarm rate (∼8%).

This chapter is organized as follows: Section 5.2 provides an overview of previous
studies in the fields of outlier/event detection. Section 5.3 introduces the motivation
and contribution our work. Section 5.4 presents the different notations, equations and
terminologies we will use throughout the chapter to describe our detection technique. In
Section 5.5, our outlier detection technique and its expected benchmarks are presented.
Section 5.6 discusses the experimentation results and Section 5.7 concludes this chapter.

5.2 Related works

Many outlier detection techniques have been developed for WSNs, some are: statistical-
based, nearest neighbor-based, clustering-based, classification-based techniques.

Statistical-based approaches are among the earlier and widely used anomaly detection
techniques. Some of these approaches are Gaussian-based and kernel-based approaches.
In [255], two local Gaussian-based techniques were presented for identification of outlying
sensors as well as identification of event boundary in sensor networks. These techniques
employ the existing spatial correlation among the readings of neighboring nodes to distin-
guish between outlying sensors and event boundary. Accuracy of these outliers detection
techniques is not relatively high due to the fact that they ignore the temporal correlation
of sensor readings. In ecological applications of WSNs, [18] identifies errors and detect
events using local technique based on spatio-temporal correlations of sensor data. The de-
tected anomalous measurement may be considered as event if it is likely to be temporally
different from its previous measurements but spatially correlated. Its main drawback is
that it relies on the choice of the appropriate threshold values.

A kernel-based technique for online identification of outliers in streaming sensor data
have been proposed in [167]. It uses kernel density estimator to approximate the un-
derlying distribution of sensor data. Thus, each node can locally identify outliers if the
values deviate significantly from the model of approximated data distribution. Another
work [233] is called PAQ (for Probabilistic Adaptable Query system). It exploits tem-
poral/spatial correlation using a combination of AR models (AutoRegressive models) to
probabilistically answer queries. PAQ allows the sensor to detect data anomalies with
respect to previous history, where a data anomaly is a sensor value that the model does
not predict to within the user-specified error bound.

In nearest neighbor-based (distance-based) approaches, anomaly detection is based on
the average distance between every data measurements to its corresponding qth closest
neighbor. If the distance from a given data measurement to its qth closest neighbor is
significantly bigger than the average, then the data measurement is considered as an
outlier [223]. The work in [27] proposes a technique based on distance similarity to
identify global outliers. Each node uses distance similarity to locally identify outliers and
then broadcasts the outliers to neighboring nodes for verification. The technique does
not adopt any network structure so that every node uses broadcast to communicate with
other nodes in the network, which will cause too much communication overhead.
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Clustering-based techniques seek to divide a data set into several groups. Data points
belonging to the same group are more similar to one another than they are to those in a
different group. Data are considered as outliers if they do not belong to clusters or if their
clusters are significantly smaller than other clusters. Euclidean distance is often used as
the dissimilarity measure between two data instances.

Classification-based approaches are categorized as Bayesian network-based and support
vector machine-based approaches based on type of classification model that they use.
The main challenge for all outliers detection techniques for WSNs relies on the accuracy
requirements and the maintaining of less resource consumptions [79]. The reliability and
accuracy of sensor data before the decision-making process is extremely important.
Our model is designed with the energy restrictions in mind. It aims at monitoring changes
in the physical phenomena, detecting outliers and reducing the communication between
a sensors and its sink. In this work, we use a statistical technique combined with nearest
neighbor technique to detect anomalies in WSNs. This work relies on a previous work of
us [100] described in Chapter 3. We model time series forecasting in WSNs and we term
outliers the values that do not respect the model of data. We aim for energy efficient data
collection and communication. In the following section, we discuss the contribution and
motivation of our work.

5.3 Motivation and Contribution

Sensor nodes rely on each other in their sensing, data transmission, and decision-making
prcesses. They collaborate in monitoring and reporting observed events. However, data
reported need to be of good quality. It should be accurate and sent on time in order to
allow for appropriate actions in a timely manner to serve an application requirements.
The accuracy of data does not only increase the reliability of the network. It may have its
influence on the energy resources of nodes especially for resource constraint ones. Actu-
ally, the accumulation of undetected abnormal values during data collection drain nodes
performance in their behaviors as well as their lifetime. We are concerned on observing
accuracy among data in order to reveal abnormal behaviors. Several problems affect the
accuracy of sensor data: hardware defects, environmental variations, missing sensor val-
ues, etc. Data generated by sensors observing the same phenomena may be temporally
and spatially correlated. Whereas, outlying readings are geographically independent [132].
They are also values that do not conform with the normal distribution of data in time.
Malicious attacks try to adapt themselves to the reading and be masked.

In our work, we try to detect temporal abnormal behaviors. Our approach is based
on exploiting the temporal relationships among data collected by sensors to ensure the
reliability of this data and to detect outliers. This task is based on our previous work
in [100], in which we use a predictive time-series model based on autoregressive models
(AR). The future readings of a node are predicted from a number of previous history
of sensed values. We consider the work in [100] efficient in reducing the communication
traffic between sensors and their sink. It also maintains an acceptable prediction accuracy
according to the data type and provides less resource consumption for sensors (refer to
Chapter 3).

In order to adapt our local prediction model to variations in the data distribution, each
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sensor continuously maintains its local model. It monitors the variation and correlation of
previous data to detect significant changes. The quality of the model is supervised by two
evaluation constraints: an error bound above which the prediction model re-adjustment
is needed; and a ranking conditions for anomaly detection. These evaluation constraints
are determined based on previous history data behaviors and correlation.

Our model is similar to the work in [233] in that it uses auto-regressive prediction
model built at each sensor node to reduce communications and detect anomalies. Authors
rely on two thresholds (δ and ε) to distinguish between actions. If the absolute value of
the prediction error falls in [0, δ], then the model is a good predictor of the data. If
it falls in [δ, ε], the data is still within the user specified error bound but the model
might need to be updated. Finally, if the error prediction exceeds ε, then the data is an
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Figure 5.1: Example of masked anomalies.

outlier. Their approach differs from ours in that they use a user-defined prediction while
we compute a dynamic error bound value [100] (see previous chapters). In addition, they
consider an anomaly bound that is always greater then the re-learning bound which helps
to incorrectly classify masked anomalies as normal. An anomaly may be “masked”, in
the sens that the difference between its value and the corresponding predicted one by the
model, is less than the error bound. Figure 5.1, illustrates an example.
Suppose having a data series (Ni)i=0..3 = {1, 2, 3, 4}. The error prediction bound e = 1
(based on the calculation proposed in [100]). One can produce an anomaly by signaling
N3 value as 2.9. If X3 = 3.7, no event/anomaly will be detected since |X3 − N3| ≤ e.
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Thus 2.9 will be ranked as normal. Actually, repeating such behaviors forces the sensing
operation and the prediction model to diverge from the real data distribution. Since
re-learning the prediction model is based on previous values considered to be true.

The choice of a suitable error prediction bound and an anomaly bound is not a trivial
task. In this work, we rely on our previous work to calculate a dynamic error bound
[100] (EEE∗ algorithm). As for anomalies detection, we do not rank each point on the
basis of its distance to its qth nearest neighbor as in distance-based approaches [187].
We do not also consider an anomaly bound greater of an error bound as in [233]. Since
anomalous values, typically deviate from the normal data distribution, we observe different
criterion: The weight of a point with respect to its previous data points (using kernel
density estimation), the current spreading of each pair of observations as well as the
chosen prediction error bound. In what follows, we define these criterion and present the
notations in our algorithm.

5.4 Preliminaries

Along the process of sensing and predicting, each observed data point contributes−to
some extent− in the estimation of future data points. This contribution depends on how
much these points are apart. In order to understand the relation between data points,
their dispersion and the influence of each one among the distribution, we associate to each
observation Nt at time t, two attributes denoted by dens(t) and sp(t). In this section, we
describe the symbols and notations used by our algorithm in this chapter.

• Nt: An observed value at time instant t.

• Xt: The prediction value of Nt.

• k: The order of prediction model.

• q: A rank for closest neighbor.

• The popular gaussian kernel used to measure similarity between Xt and Xp:

K(
Xt −Xp
h

) =
1√
2π

exp
−(Xt −Xp)2

2 ∗ h2
(5.1)

• h: The width of the Gaussian kernel (we set h = 1.74[200]).

• The kernel density estimation of Nt among its k recent readings:

dens(t) =
1

k × h
t−k
∑

p=t−1

K(
Xt −Xp
h

) (5.2)

• The expected deviation of Nt from its previous data neighbors:

exp(t) =
t−k
∑

j=t−1

dens(j)× sp(j) (5.3)
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• The average distance between pair of points from Nt to its k previous data points
considered as normal (the spreading function):

sp(t) =
t−k
∑

p=t

|Np −Np−1|
k

(5.4)

We denote by dens(t) (eq.((5.2))), the kernel density estimation, to evaluate the den-
sity of Nt within the distribution. In this chapter, we will adopt the popular gaussian
kernel used in many applications domains [87, 198, 204].

We denote by sp(t) (eq.((5.4))) the average distance between pair of points from Nt
to its k previous data points considered as normal. We will use these functions in our
proposed method for anomaly detection. In addition, we estimate for each observed
value Nt its deviation exp(t) from its previous data neighbors. The expected deviation
(eq.((5.3))) is computed using the process of convolution (aggregation of coefficients)
between its density and the spreading function. The purpose of doing this is to track the
effect of past observations, their distribution and their density to the current observed
value. In our algorithm, a value is considered anomalous if its deviation and density with
respect to other points do not agree with the expected benchmarks of our algorithm. Our
anomaly detection technique is described in the next section.

5.5 Our anomaly detection technique

Developing a model that facilitates the representation of sensor data and ensures a desired
level of accuracy, presents many challenges. In fact, the boundary between normal and
outlying behavior is often not precise. For anomaly detection algorithms in WSNs, the
key challenge is to maintain an accurate anomaly detection rate, a lower false alarm rate
as well as the resource consumption.

Our algorithm relies on our previous work on time series forecasting [100] and focuses
on the temporal anomaly detection. We aim at observing the temporal correlation among
data, to distinguish between: mispredicted values, “weird” and normal behaviors at time
instant t. The study of spatial correlation for anomaly detection will be integrated in our
future work. For instance, we assume having a suitable spatial aggregation techniques and
network topology. Our technique is composed of two main units: A predictive modeling
unit (described in Chapter 3) and an anomaly detection unit described in what follows.

5.5.1 Detection criterias

The temporal anomaly detection is the main task of this chapter. A sensor marks a
reading as outlier depending on the extent to which the reading disagrees with the data
distribution history. In other words, an observed value Nt at time t is ranked as “normal”
if it has these characteristics:

(i) If its degree of similarity with the previous k data points do not tend to zero.

(ii) If the current spreading sp(t) (eq.((5.4))) of Nt with the previous k data points is
less than the expected deviation exp(t) (eq.((5.3))). Thus sp(t) ≤ exp(t).
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Note that if an observation breaks the above ranking conditions, it is considered
“weird/abnormal”. The sensor then, moves to discuss with its neighbors the real state of
this observation. In fact, the spatial anomaly detection is out of the scope of this work.
Therefore, we assume having a suitable protocol for spatial correlation that is able to
replace this value with the real one.

Calibration for ranking conditions:

The idea of condition calibration is motivated by the relation between the error prediction
bound th, the current spreading of points sp(t) and the expected deviation exp(t) of the
observed value Nt. Note that:

sp(t) =
k − 1

k
× th+

|Nt −Nt−1|
k

± rrand (5.5)

Since the generated values of th, sp(t) and exp(t) belong to a range of scores (an interval),
we replace the condition in (ii) by intervals comparison.

We denote by Isp(t) and Iexp(t), the estimate intervals of sp(t) and exp(t) at time t
respectively. The condition (ii) becomes:

sp(t) ≤ exp(t) ‖ Isp(t) ⊆ Iexp(t) (5.6)

In the other hand, MaxBound(Iexp(t))− exp(t) is the expected data spreading range.
So in order to control the spreading of a predicted value from the previous k values, we
add the following condition:

|Nt −Xt| ≤ MaxBound(Iexp(t))− exp(t) (5.7)

5.5.2 Summary of our technique

The major steps of our algorithm are as follows:

1. Monitoring data distribution for anomaly detection: Normal versus intrusion classifi-
cation is made by the following ranking conditions: (i), eq. (5.6) and eq. (5.7).

a. If an observed value Nt at time t satisfies the ranking conditions, it is then classified
as “normal”. Then, the sensor moves to the next step.

b. Otherwise, the sensor marks Nt as “weird/abnormal” and turns to settle the issue
with its neighbors nodes to get the normal value.

2. Identification of model misprediction: Once an observed value Nt had passed the above
ranking conditions, it will contribute to observe the prediction model behavior. Hence,
EEE+ algorithm is fired:

a. If e > th, the model needs to be adjusted and a communication between the sensor
and the sink occurs. Hence, previous prediction errors are sent to the sink based on
[100]).

b. If e ≤ th, no need for communication.
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5.6 Evaluation methodology and Setup

The key challenge of an anomaly detection algorithm is to maintain high detection rate
while keeping low false alarm rate. This requires the construction of an accurate and rep-
resentative normal profile, a task that can be very difficult for sensor network applications.
In this section, we evaluate the efficiency of our algorithm on real data series in differ-
ent fields: The chemical process temperature readings taken every minute, the monthly
measurements of carbon dioxide above Mauna Loa1, a garden temperature data [124] and
cardiac frequency measurements2.

5.6.1 Generating anomalous data

To slip abnormal behaviors in the data, we relied on the confidence interval to make the
perturbation. Given σ and n, the population standard deviation and size, the confidence
intervals [µ̄ ± σ√

n
], [µ̄ ± 1.96σ√

n
] and [µ̄ ± 3σ√

n
] are of confidence level 68%, 95% and 99%

respectively. We evaluate our technique by choosing random anomalous data in [µ̄± σ
2
√
n
]

to have lowest confidence level.
First, we slipped 50 anomalous values among the real observations on a positions of

time in [4,226] with a random perturbation rate. Then we increased the outliers quantities.
As sample, Figure 5.2 represents normal versus intrusive data for the chemical process
temperature, as well as the random perturbation rate generating 50 intrusions.

5.6.2 Evaluation metrics

The effectiveness of anomaly-detection techniques is generally evaluated by their ability
to distinguish between normal and abnormal behaviors. An approach’s ability to correctly
classify behavior is essentially interpreted in terms of four possibilities:

• True-positive (TP) events that are attacks instances detected as abnormal.

• False-positive (FP) are events incorrectly classified as abnormal.

• True-negative (TN) are events correctly identified normal behavior.

• False-negative (FN) are abnormal behavior incorrectly classified as normal.

To evaluate these possibilities, two metrics were used. These are the most commonly used
metrics in research work (see [226]):

• The detection rate (DR): a ratio between the number of correctly detected attacks
and the total number of attacks.

• The false positive rate (FPR): computed as the ratio between the number of normal
connections that are incorrectly misclassified as attacks and the total number of
normal connections.
Often these metrics are displayed as a receiver operating characteristic (ROC) curve

1http://www.robjhyndman.com/TSDL/
2http://www.inrialpes.fr/Xtremlog/
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Figure 5.2: Anomalous v/s normal data and the random perturbation rate generating 50
outliers for the chemical process temperature.

to emphasize the tradeoff between them. We will use these metrics to evaluate our
technique.
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5.6.3 Results and performance

• Case study of 50 anomalous values: The performance of our algorithm concerning
the detection rate (DR) is presented in Table 5.1 for different data types. It is 92%
for CO2 measurements, about 78% for garden temperature, 90% for chemical process
temperature, and up to 80% for cardiac frequency measurements (which is high
detection rate). As for the false-negative (FN) events. Our experimentation results

CO2 Garden Cradiac Chemical
T° Freq. T°

TPR (DR) 92% 78% 80% 90%
FPR 11% 5% 17% 8.5%

Table 5.1: TP rate and FP rate produced by our technique for each data type.

show that (FN) values are the measurements obtained by a very low perturbation
rate on the real data values. This perturbation rate made them undetected by our
algorithm. Figures 5.3 and 5.4 show the relative perturbation rate of the undetected
anomalous values for different data types. It indicates a perturbation rate less then
5%. We then consider our algorithm efficient with high anomalies detection rate.

The misclassification of data (false alarms) is one of the primary drawbacks of
anomaly detection techniques. Therefore, we observe the false alarm rate in our
experimentation. False alarms occur when normal behaviors are marked as anoma-
lous. This can be related to the natural changes in the external observed phenomena
(the real data behavior). False alarm rate may produce heavy effect on the energy
consumption for WSNs. Table 5.1 shows the false alarm rate (FPR) of our tech-
nique. We clearly observe that the false alarm rate for garden and chemical process
temperatures is low and is about 5% and 8% respectively. Our previous work in
[100] (Chapter 3) shows that our prediction model is efficient in terms of energy
consumption. It produces about 70% reduction in terms of communication traffic
for some data types. After the extension of that work to an anomaly detection tech-
nique in this chapter, we noticed that the efficiency in terms of energy consumption
did not decrease significantly for slow variation times series measurements (such as,
garden and chemical process temperature measurements). This is due to a low false
alarm rate detected about 8%.

On the other hand, we noticed that our algorithm is not suitable for high variation
time series measurements (such as cardiac frequency and CO2 measurements). The
produced false alarm rate increases the communication cost and of course harvest
energy.

• Detection accuracy: To study the efficiency of our technique in terms of accuracy,
we compared our results to TRAMO/SEATS3 program results.

TRAMO (“Time Series Regression with ARIMA noise, Missing values, and Out-
liers”) is a program for estimation and forecasting of regression models as well as

3http://www.bde.es
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Figure 5.3: The perturbation rate of undetected anomalous values for some data type.

identifying outliers. For reason of fairness, we fixed the outlier detection threshold
to its default in TRAMO (which is 3.5 [236]) for each data type. We also tested our
algorithm with a static error threshold, we chose it as the data standard deviation
for each data type. Figures 5.5 and 5.6 show the results obtained by each algo-
rithm. The ROC curves were smoothed after slipping different outliers quantities.
Since the accuracy of detection is indicated by the rise or “bowness” of the ROC
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Figure 5.4: The perturbation rate of undetected anomalous values for additional data
type.

curve, the perfect ROC curve passes through the point (0,1). Among the different
curves shapes, we notice that our algorithm produces higher detecting accuracy.
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Figure 5.5: ROC curves for Chemistry process temp. and Garden temperature data.

5.7 Conclusion

Detecting and reporting abnormal behaviors in sensor nodes is one of the main challenges
in WSNs. Whereas sensors may have limited resource capabilities, data coming from
different streams need to be examined dynamically for any occurrence of abnormality. It
is important to process as much of the data as possible in a decentralized fashion (locally
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Figure 5.6: ROC curves for CO2 and Cardiac frequency data.

on nodes), so as to avoid unnecessary communication costs. However, the construction
of an accurate and representative normal profile of data that is able to distinguish weird
and normal behavior is not trivial. Our work first approximates the data distribution
dynamically from a set previous values. We use a prediction model to estimate an event
behaviors over time (temperature, humidity, etc.). Second, we observe the evaluation of
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data over time to differentiate between mispredicted values, abnormal and normal ones.
For this purpose, we formulate a set of criteria for detection or ranking conditions from a
history of normal behaviors. In our technique we concentrate our efforts on the accuracy
of both the data prediction and the abnormality detection. Our anomaly detection tech-
nique relies on the prediction model proposed in Chapter 3 and tries to detect temporal
anomalous values.

The experimentation results show that our algorithm produces high detection rate of
abnormal behaviors. It can accurately detect between 78% up to 90% of slipped anomalies.
It also produces low false alarm rate (∼8%) for slow variation data types. Although it
produces a good accuracy detection, the weakness of our algorithm is that it is not suitable
for high variation time series data. Since it produces about 17% of false alarm rate which
increases the energy consumption. In this chapter, we studied simple events that require
only participation of a single sensor (local temporal detection). It is an initial step for
spatio-temporal anomaly detection that will be a part of our future works.
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If we knew what it was we were doing, it would not be called research, would it?
∼∼∼∼Albert Einstein

You should never be ashamed to admit you have been wrong. It only proves you are
wiser today than yesterday.
∼∼∼∼Jonathan Swift



Chapter 6

Conclusions and Future works

Summary

In this chapter, we summarize the conclusions and insights we have discussed
throughout the thesis and present some future research directions.
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6.1 Outline of results

A fundamental challenge in the design of Wireless Sensor Networks (WSNs) is to max-
imize their lifetime. In this thesis, we observe the issue of saving energy by reducing
the transmission rate and overhead through data fusion. Although data fusion conserves
energy, it can lose much of the original structure in the data during compression, ag-
gregation, etc. Such looseness affects the quality of information constructed at the base
station. Therefore, we observe the performance of the network in terms of quality of col-
lected data, as well as the energy consumption. We propose a suit of techniques including
time series forecasting, similarity measurements and outliers detection techniques. The
core idea of these techniques is to decrease the transmission cost (overhead/rate) of nodes
towards the base station by:

• Achieving an accurate data prediction at the node/sink level. We use an AR-based
model for prediction, to avoid high communication rate and to keep data consistency.

• Detecting and reducing redundancy among the transmitted data by observing sim-
ilarity of measurements. Data aggregated at the intermediate nodes are checked
for spatial/temporal correlation, before being transmitted toward the destination.
Kernel-based methods were used for this purpose.

• Detecting anomalous values with high accuracy to maintain data reliability. A set of
ranking rules were proposed to distinguish between normal and abnormal behaviors.

In [96, 99, 100], we propose an estimation based-AR (AutoRegressive) model to reduce en-
ergy spent for communication. Nodes prefer to predict data accuratly, to avoid periodic
or unnecessary energy consumption. Three algorithms for Energy-Efficient Estimation
were proposed (EEE, EEE+ and EEE∗ algorithms). We use static and dynamic bound
to evaluate their estimation quality. Based on the experiments results, EEE∗ shows a
possibility for an accurate and energy-efficient estimation. This algorithm uses a small pre-
diction window, as well as a dynamic learning for the prediction bound. It was compared
in its efficiency to other models, such as AR/ARMA/A-ARMA [29, 40, 124]. Results
show that, depending on data type, the transmission overhead and rate can be reduced
(about 70% reduction in transmission rate [100]). A considerable prediction accuracy can
be also obtained, since the relative errors for prediction were between 2% and 8%.

Our thesis proposes additional algorithm to reduce the transmission overhead [97, 100].
It observes similarity aspects among collected data through the spatio-temporal correla-
tions. In this algorithm, we perform a cluster-based data aggregation and focus on re-
ducing the transmission overhead during intra-/inter clusters aggregation. The algorithm
uses the idea of “similarity regions”. Each region is composed of different clusters expect-
ing to have spatial data correlation. It takes advantage of the similarity measurements to
detect data correlations and to reduce the transmission overhead. The experiments show
a transmission overhead reduction of about 20%, in most used data types. As for the
quality of data constructed at the base station, accurate results were revealed. In fact,
the relative errors between the source and sink estimations were in [−7× 10−7, 10−6].

We also tackle the temporal anomaly detection in our work. The algorithm proposed
aims at detecting anomalies based on some ranking conditions. These conditions classify
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a data point as abnormal based on its consistency with other neighboring points in the
data distribution [98]. For the evaluation, we generate a random perturbation rate on the
data and slipped a number of anomalous values. The performance of outliers detection
was reflected by its high detection rate with low false alarms. The proposed algorithm
can accurately detect between 78% up to 90% of slipped anomalies. It also produces low
false alarm rate (∼8%) for slow variation data types.
Our thesis was a small contribution in the wide sensor networks research area and specif-
ically for the energy consumption related studies. In what follows, we present some
enhancement and future related works.

6.2 Future works

6.2.1 Short and medium terms

In the short term, we will continue to embed other analysis to examine our algorithms
performance and reveal their limitations. Proposing a coding and representation schemes
for the data transmitted in our algorithms, will help to evaluate the transmission cost as
well as the energy consumption.

Later, our work can be enhanced by observing additional aspects for communication
cost reduction. One of the main challenges of data aggregation and compression is to
explore not only the correlation of data in time and space. In fact, exploring the similar
conditions that nodes go through can also be useful. Sensors in similar environmental
conditions, that are not necessarily spatially correlated, can report correlated data. For
example, sensors nearby opened windows report high readings due to the external light.
These readings should be similar to those sensors nearby light sources inside the building.
Hence, correlation exists due to the similarity of environmental factors. Spatial correlation
can be seen as one specific case of this because nearby nodes can have similar conditions.
Investigating the data similarity by environmental factors, while building an efficient
data aggregation techniques, will be among our medium term works. Such similarity
aspects can improve the definition of the similarity regions and their contribution in the
information fusion and communication cost reduction. Sensors can be classified in regions
based on the rules for their similarity aspects. Such relations may be useful in tracking
events and classifying objects behaviors. For example, monitoring animals behavior in
labs, or human and plant reactions facing common conditions. We will investigate how
to model data related by common conditions and how to learn (i.e. predict) data from
similar regions. Another issue to consider is the possibility to automatically group sensors
into regions, once the similarity conditions change. For example, sensors nearby the light
sources will no longer belong to the same similarity regions as sensors nearby opened
window, at night-time. The classification of data, however, faces different challenges.
One of these challenges is to differentiate between normal and abnormal behaviors, that
have changed the common conditions between sensors. The spatial correlation can be
observed along with the similar conditions to produce accurate classification.
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6.2.2 Long term

EEE∗ and anomaly detection algorithms are suitable for low variations time series (as
mentioned in the chapters before). However, this does not mean they cannot be enhanced
for other kind of data distribution. In the contrary, the existence of a possible enhance-
ment has its signs in the experimentations results. For example, 80% of slipped anomalous
values in the cardiac frequency measurement can be detected while 17% of false alarm
is produced. As for the prediction accuracy, the performance of EEE∗ algorithm, was
not bad for high variation time series measurement. 99% of relative errors for the cardiac
frequency and the radiosity measurements were less then 5% and 8% respectively.

We foresee a possible enhancement with the extension of our work to integrate type-
related data studies. For example: heart rate is related to blood pressure, the readings
of humidity and barometric pressure sensors are related to the readings of the tempera-
ture sensors, and so on. Capturing type-related data (i.e. attributes) helps to improve
information accuracy. However, this task is not trivial. The extraction of accurate and
significant information, typically, requires to fuse and transform measurements from dif-
ferent sensors (i.e. heterogeneous sensors). Besides using data fusion, we will integrate
knowledge extraction techniques from the fused data (inference, classification, etc.), to
improve the quality of information. Prediction can not only be performed on the sequence
of observed readings of an event, but also using the temporal relation information from
other observed events. In-network knowledge aggregation is a high-level fusion. Exploring
knowledge-based data aggregation will be amongst our future works.

A systematic study for efficiently extracting information/knowledge during in-network
data aggregation is one of the promising strategies. It gains more importance, especially
in the vision of ambient intelligence of the Internet of Things (IoT). In a smart home,
for example, time series knowledge representation, can predict the temporal order of
actions and objects behaviors. If a habitant enters a room, the light will turn on and
if it is summer and it is hot inside the room, the AC will turn as well. An alarm can
ring early after an analysis of the traffic and weather state. More complex information
extraction can be made depending on the level of required knowledge. However, high
level of information may require sophisticated analysis. Such analysis may drain energy
for battery-operated sensor networks. The efficiency of information extraction in WSNs is
related to the desired level of information and the network lifetime. One of the challenges
is to observe the impact of knowledge-based data aggregation on the energy consumption.
The selection of an aggregation point or the routing decisions may be influenced by the
wisdom degree of a specified node. We mean by “wisdom”, the contribution degree of a
node in the global knowledge extraction at the sink. The choice of the routing path, for
example, may not only refer to the communication overhead, coverage and energy level
of nodes. It will be interesting to observe an additional factor, that is the level of wisdom
owned by nodes. A node may observe the event-relation with its neighboring nodes to
perform energy-efficient in-network knowledge aggregation. One of the challenging issues
is to select the routing path that aggregates most useful information with less energy
consumption during knowledge aggregation.

Knowledge discovery from heterogeneous sensors occurs in many applications such as
health care, smart home, sports, etc. In Body Sensor Networks (BSNs), the knowledge
extraction poses several analytic challenges driven by the heterogeneous multi-modal na-
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ture. For example, BSNs in sports have been used for monitoring of player performance
during training and for improving player techniques. For instance, TennisSense [133], a
multi-modal sensing platform, uses a Wireless Inertial Monitoring Unit on the racquet
arm of the player, combined with nine external networked digital video cameras, and a
set of Ubisense 3D-tracking sensors around a tennis court, to review the performance
of each player. Similar applications have also been developed for training snowboarders
and golfers. There are several systems, communications, and sensor design challenges
that need to be overcome. Importantly, body sensor data collected from different sources
need to be supported by efficient techniques (classification, mining, analysis, retrieval and
visualization techniques) to provide an appropriate knowledge extraction.
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