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Chapter 1

Introduction

1.1 Context

High performance computing has been introduced many years ago to accelerate the
solution of scientific and engineering problems by modelizing and simulating them
on supercomputers. Machines were initially dedicated to defense purposes and were
using specific processors. Performances were after raised by the architecture and
hardware enhancement of processor which are able to execute simultaneously multiple
instructions. That kind of chip are superscalar processors and had the ability to reach
a performance over Mflop/s. Another type of processor was also used at this time, the
vector processor which executes one instruction on a range of data. Hundred and thou-
sand of processors were after associated to reach a performance order of Tflop/s and
to have "parallel computing". Architecture improvement and the frequency increase
have mainly contributed to the throughput growth. However, frequencies have hit the
wall and cannot be increased any more because of energy limit on a chip and quantum
effect. This has conducted processors manufacturer to multiply cores on a chip in order
to continue the performance evolution which has lead to create a new level of paral-
lelism inside the chips. Pflop/s barrier has been broken since 2008 with RoadRunner
which is an hybrid supercomputer composed of multicore superscalar processors and
heterogeneous processors mixing a superscalar core and vector cores. This performance
range era has opened new possibilities to make scientific breakthrough and accelerate
the solution of engineering problems which were not computable in an acceptable time
before. Many areas such as oil and gas, aircraft design or domains like physics, biology,
weather science for the climate changes and so on use high performance computing
and exascale supercomputer are now on the way. Many scientists are thrilled to apply
this computing power to solve complex and large problems and make new breakthrough.

Nevertheless, many petaflops and excascale supercomputers challenge computer sci-
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entists by many aspects. These kind of machines will be massively multicore, hetero-
geneous with GPU, FPGA, Many-Integrated Core or vector processor and large with a
high number of cores, average of a billion, which introduces many issues such as fault-
tolerance, energy consumption, storage performance and programming. The failure
probability will be more important on that type of machine because they will be very
large. Fault-tolerant mechanisms must be supported at every level from the operating
system, the programming model up to the algorithm in order to run large applications
and re-execute a failed tasks and not all the application [1]. Energy consumption of
exascale supercomputers may be also a problem with an order of 25MW to 100MW
with conventional processor, following the projection of IESP. It is not conceivable that
high performance computing centers have the budget to pay for it or the adequate
infrastructure to deliver such power. Some solutions have to be explored to reduce
energy consumption like the frequency decrease of non-used core or the optimization of
data movement [2]. Storage is also a critical aspect of the next generation which will
need an order of half an exabyte and a high bandwidth of hundred TB/s. To get these
performances, I/O systems must be scalable and guaranty availability when millions of
cores access at the same time the storage. If these points can be solved, the problem of
how to program that kind of supercomputers remains in order to reach the maximum
performance efficiency of the machine with an application. The other issue is how to
manage many millions of threads running in parallel with the classical programming
paradigm MPI. The use of accelerator should also introduced heterogeneity that must
be taken into account and is not the case in the actual paradigm. All these issues mainly
challenge computer scientists to find a way to make concrete the use and the running
of applications for new scientific breakthrough on exascale supercomputers.

1.2 Motivation

Many issues of Exascale supercomputers must be faced and some are critical such
fault-tolerance and power consumption which are currently attacked for 10 Petaflop/s
systems. Fault-tolerant mechanisms are integrated in the third standard of the common
parallel programming model MPI and computation accelerators are added to get a
better flops/W ratio. To exploit this huge computation power, applications must be
split among processors to process in parallel sets of data. During the last decade, two
standards of programming models have been adopted to develop and run parallel appli-
cations such as MPI for distributed memory and OpenMP for shared memory machines.

Programming Exaflops supercomputers with billion cores and heterogeneous hard-
wares will be a problem with these common models [3]. A flat-MPI approach induces
to map one MPI process per core and it will be hard to manage billion of processes
and get the highest efficiency. However, the programming of million processes should
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be possible with some communication optimizations as described in [4] [5]. These
papers also underline that the scaling of global communications such as AllToAll,
AllGather,AllGatherv will suffer of latency issues and be not conceivable to get high
performances. The other issue is that MPI does not support heterogeneity which is
necessary with accelerator such as GPU that has a different programming paradigm.
MPI does not also consider the memory hierarchy of multicore processors. OpenMP is
dedicated to shared memory architecture and should be more adapted for multicore.
Despite this fact, a flat-MPI approach is in the most of cases more efficient than
OpenMP [6]. The reason of poor performances is the lack of modularity and expression
of locality optimizations which are crucial on multicore to minimize data movements
and cache defaults. An other problem of OpenMP is the doubt about the scaling
on 100-1000 cores processors of this programming model. Some researchers propose
for machines beyond 10 Petaflops a mixed programming paradigm of MPI+OpenMP.
This approach is not adapted for reasons that have been underlined but also for non
support and convenient programming of accelerators with OpenMP and for the low
level programming of MPI which involves a lack productivity. As we have explained,
many issues must be solved before running Exascale supercomputers and programming
paradigm is the third critical aspects to figure out with resilience and energy. Both
are also related to the programming paradigm which has to support fault-tolerance
mechanisms and energy consumption awareness.

The architecture of Exascale supercomputers is going to be different from known
systems and organized in a hardware hierarchy which has its own distinctiveness
of efficiency. The proposed programming paradigm for exaflops must harness those
particularities at each level. The massively multicore processors, including accelerator,
are going to be the base of computation nodes and thus be at the low level of the
system with 100 to 1000 cores per each. They have memories organized in hierarchy of
caches with low latency and a main memory shared among cores with a high latency.
Hence, data movements are crucial parameters to optimize in order to take advantage
of high speed and low latency of caches and avoid cache misses which generate a
bottleneck to the shared memory accessed in competition by cores. Data locality
and movements are thus a relevant criteria that must be considered to get the most
efficiency of massively multicore processors. The interconnection between nodes is
at an intermediate level of the hierarchy. This interconnection encompasses various
speeds inside the node with a fast optical interconnect of 1TB/s between sockets and
offside the node with the interconnect topology of 10GB/s. This difference must be
considered to optimize point-to-point communications and avoid the contribution of
other nodes in the network that degrades latency and bandwidth beyond one hop.
The large cluster composed of a huge number of nodes represents the high level of the
hardware hierarchy and should be around an average of 10 millions nodes to reach the
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billion cores for the total system. The orchestration and the load balancing of tasks
on this cluster are necessary to avoid lazy synchronizations and communications which
can be improved by aggregating and making them in an asynchronous way.

In this thesis funded by the oil and gas company Total, we have been attached to
take into account this hierarchy by proposing a global programming paradigm based
on a multi-level paradigm approach which is hierarchic and convenient from threads of
massively multicore processors to a large cluster. This topic is highly important for a
company like Total in order to start figuring out on the coming big turns with exas-
cale computing, especially programming paradigm which involves to educate users and
re-develop parts of applications. The purpose for the company is to get an idea on inter-
esting paradigms. According to the hardware hierarchy, each level is examined with a
proposed paradigm that corresponds to the specific features and the ideal efficiency. In
the next chapter, the state-of-art on programming paradigm is presented and explains
the advantage and inconvenient by trying to match requirements of a level. The chap-
ter 3 starts exploring the multi-paradigm proposal by focusing on a paradigm adapted
to massively multicore processor also known as many-cores to encompass conventional
CPU and accelerators. Issues of massively multicore processors are firstly outlined to
lead to the proposition of a convenient paradigm which is explored through experiments.
The middle level in the hierarchy is not presented because point-to-point communica-
tions are very well known through the message passing paradigm. Nevertheless, the
penultimate chapter deeply explains the place of this paradigm and its interaction with
others. The chapter 4 attacks the last and highest level in the programming hierarchy
devoted to the huge number of nodes. It exposes the issue of this large parallelism and
outlines the proposed paradigm through its advantage for productivity based on users
expertise and some experiments. This user knowledge and expertise are after explored
in the chapter 5 around the context of storage and their possible integration into a high
programming paradigm to realize optimized I/O in a delegated and transparent way
for end-users. After proposing and studying separately the levels, issues of exascale
are reminded and are viewed alongside our multi-paradigm programming proposal in
the chapter 6. An assembly of the programming stages is realized to demonstrate the
feasibility of the approach and a discussion is made on results. To conclude, the last
chapter summarizes the contribution of this thesis and proposes some future works to
extend this work through a discussion on exascale programming paradigm adoption.
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Chapter 2

Paradigm: State of the art

2.1 Message Passing

This programming paradigm has been created for parallel architectures with distributed
memory. Those machines have many processors with their own memory and commu-
nicate through the network. These interaction are managed by programmers which
distribute computations and data among the various processors. To realize communi-
cations between the different processing elements, messages are exchanged between a
sending and a receiving process. Those processes are identified by the programmer at
the development stage. The first Message Passing library was the Parallel Virtual Ma-
chine library (PVM) and has been replaced by the well known Message Passing Interface
(MPI). The execution model is Single Program Multiple Data (SPMD) which traduces
the writing and execution of one program executed by all processors. Different sets of
data are assigned and processed on each processor following the rank of the compute
element.

2.2 Multi-thread

The multi-thread programming paradigm is also named concurrent model for shared
memory and is mainly used for Symmetric Multi-Processing (SMP) machines which
have a shared memory between processors. OpenMP is the programming standard
for the programming of shared memory machines. This programming paradigm allows
to express task parallelism and data parallelism without any locality control. The
execution model is named FORK/JOIN in which threads are launched (FORK) to run
computation kernel and a barrier synchronization is made to wait the end of all threads
(JOIN). Programmer expresses parallelism with pragma annotation which are translated
by the compiler in parallel directive. Some other language like Cilk [7] uses keyword to
express parallelism. This programming paradigm achieves good performances on shared
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memory architecture but lack of locality control to realize communications between
processors.

2.3 Data Parallel

The data parallel paradigm has been introduced with the massively parallel computing
and SIMD machines (Single Instruction Multiple Data) like the CM-5. This program-
ming model allows to express data parallelism. It is focused on data mapping and
movements during the development stage. Data are distributed across numerous pro-
cessors which execute one instruction or operation on a set of data. One of the most
known data parallel language is High Performance Fortran (HPF) [8] which wanted
to be the successor of Fortran 90. Unfortunately, this language has not been popular
because the first version of the compiler was disappointing anf offered poor perfomance
which has not appeal to users. Other data parallel programming languages exist like
CM-Fortran dedicated to Connection Machine or Data Parallel C Extension (DPCE)
or C* [9]. Some other data parallel language are based on a different data parallelism,
named Nested Data-Parallelism like NESL [10]. It allows to run a function on a set
of values and this function may call another parallel function. Data parallelism has
the interest to avoid race conditions or deadlocks which are the most common errors in
parallel programming.

2.4 Stream

The stream programming paradigm is usually used in image and video processing. It
is based on computation kernels which are run on a stream of data. The parallelism
is expressed in pipeline between the computation kernels which are dependent. This
paradigm thus exploits data parallelism but also task parallelism for tasks which are not
dependent. Moreover, it has the particularity to reuse the local memory of processors
and thus to minimize the memory bandwidth. StreamIt [11], Stream-C, Brook [12] are
some examples of language which use this programming paradigm.

2.5 Workflow or Graph Description

The workflow paradigm allows to describe dependences between tasks through a graph
which represents the control-flow. Each node of the graph is a task and the edge rep-
resent task dependences. The parallelism description and the computation are thus
segregated. DagMan [13], UNICORE [14] and GridFlow [15] are some projects of work-
flow framework which are based on Directed Acyclic Graph (DAG) model). In contrast,
YML [16] is a framework based on a graph description language which adopts a Di-
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rected General Graph model. This graph model allows to express loops, iterations and
branching in opposite of other workflow framework. Those approaches are typically for
clusters. However, graph based on DAG are recently proposed and used on multicore
processors and accelerator such as PLASMA [17] and MAGMA [18].

2.6 Dataflow

Such as workflow, the dataflow programming paradigm allows to express dependences
through a graph description. However, the dataflow describes the flow of data and their
respective operations. Each node of the graph is a data and edges represent operations.
This paradigm is a fine grained parallelism and data oriented which induces a larger
graph to process when the amount of data and operations are huge. One of the most
known dataflow language is SISAL [19]. The StreamIt language is also associated with
the dataflow paradigm because it analyzes the dataflow to manage data locality and
transfer.

2.7 Partitioned Global Address Space

The partitioned global address space (PGAS) programming paradigm has the property
to consider distributed memory of nodes as a global address space available from each
node. It has been developed in the purpose to have a paradigm with the knowledge
of data locality. The application parallelization is realized with threads which have a
part of the address space. The programmer is in charge to manage data distribution
between processors and to express communications through get and put operations
to send or retrieve data. These communications are one-sided communications which
offers to avoid CPU participation by a direct access to the remote memory. Two libraries
GASNet [20] and ARMCI [21] are used by PGAS language and used for communications.
The well known language and candidate for exascale programming are Unified Parallel
C (UPC) [22] for C language developed at University of Berkeley, Co-Array Fortran
(CAF) [23] for Fortran developed at Rice University and Titanium [24] for Java language
developed at University of Berkeley. Other language such as X10 [25] and Chapel [26] are
based PGAS programming paradigm but are at a higher level because communications
are not expressed by end-user and generated by the compiler. XcalableMP (XMP) [27]
is also a PGAS language and standard which proposes to express parallelism with
annotation and should improve productivity.
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2.8 Object Oriented

In contrast to the message passing programming paradigm which exchanges messages
between processes, the object oriented programming paradigm exchanges information
between objects. The programmer is in charge to create, manage objects and coordinate
interactions between them. Cantor [28], Emerald [29], COOL [30] and Orca [31] are
some of the first languages to implement this programming paradigm. Charm++ [32]
is also a language based on this paradigm in which parallelism is expressed through
threads.

2.9 MapReduce

The MapReduce programming paradigm has been introduced by Google to realize com-
putations on a large set of data and on millions of computing nodes [33]. It takes its
inspiration from functional language and intensive computing. Only two functions are
available to the programmer, Map which generates a key/value pair by analyzing input
data and Reduce which reduces the set of same values in a list which is identified by an
unique key. The program is automatically parallelized and scheduled on a distributed
system which takes in account the data locality. This programming paradigm is also
currently experimented for multicore programming [34].

2.10 Bulk Synchronous Parallel

The Bulk Synchronous Parallel (BSP) [35] paradigm is a programming paradigm in
which communications property among threads are taken into account. These properties
are three of kinds: p the number of processors, l the synchronization time of a barrier
synchronization and g the communication time to exchange data over the network. A
program based on this paradigm is composed of p threads and divided into supersteps.
Each superstep executes a computation on a processor by using its local data. After each
processor sends its computation results to other processors and a barrier synchronization
is realized. So data are available locally for each processor. H-BSP [36] is an example
of implement of the BSP programming paradigm.

2.11 Transactional Memory

Transactional Memory is a control paradigm of concurrency for execution of atomic or
isolate operation. It is inspired from transactional data base for which concurrent ac-
cesses and failure are frequent. For multicore processors, some researchers propose this
paradigm with some adaptations for software, named Software Transactional Memory
(STM) [37]. One transaction is composed of three steps:
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• an initialization step: BeginTransaction

• a read / write step

• a finalizing step: EndTransaction

During the transaction, the data may be only accessed by the controlling thread which
has begun the transaction.
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Chapter 3

Data Parallelism on Many-Core

3.1 Introduction

Performance progression of processors was due to the improvement of hardware
design to execute more operations per clock cycle and mainly to the clock frequency
growth to speed computation processing. The increase of this parameter impacts the
power consumption of processor that states that has reached its acceptable limit and
conducted to stop the usual performance progression by hitting the "frequency wall".
Since the Moore’s law is still true doubling transistor every 18 months and pursue
the performance improvement, chip makers have found a solution to this issue by
multiplying processing cores on a chip. These cores were firstly segregated from each
other with their own small and fast memory, named cache. Different levels of cache
were after added across cores in order to share data between and to avoid frequent
accesses to the main memory by reusing data available in cache levels. However,
the non-exploitation of these levels leads to cache misses and a slower data access
through the main memory. The non-optimized use of cache levels also leads to a more
frequently competition between cores to send or retrieve data from the main memory
which creates a bandwidth bottleneck, known as the "memory wall". All of these may
appear billion times during computations and contributes severely to slow down global
performance on processors.

Exascale supercomputers will be composed of massively multicore processors
beyond 100 cores per chip for conventional processors (x86, IBM Power) or 1000 cores
for accelerators and their performance efficiency are the most significant factor to
reach Exaflops. These have the general term of many-core processors. For massively
multicore processors, data mapping and movements on the chip become highly
important in order to take advantage of different cache levels and to optimize the main
memory bandwidth which is a critical parameter. Common parallel programming such
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as MPI or OpenMP for shared memory have not a data-centric programming and do
not offer the possibility to use efficiently specific architecture features of many-core.
Programming paradigm of massively multicore should change and this thesis proposes
data parallel programming as a good candidate for the lower level of the hardware
hierarchy in an Exascale supercomputer. It is a data-centric paradigm by focusing
data mapping and data movements and avoids by nature usual parallel programming
issues like race conditions and deadlocks.

Graphic Processing Unit (GPU) have made the rebirth and the interest of data
parallel programming on massively multicore processors. More recently some initiatives
propose data parallel extension such as HTA (Hierarchic Tiled Array) [38] or Ct from
Intel [39]. In order to study data parallelism on many-core, GPU is taken as platform
because it is the most massively multicore chip available on the market and it is
of a high interest for the HPC community. GPU is different in some ways from
multicore such as one instruction unit for multiple cores in opposite to one per core for
usual multicore. However, GPU has some common features that corresponds of future
many-core architecture like the different cache levels with a fast access and a slow global
memory which is accessed by multiple cores at a time. Data parallel programming
should help to take advantage of cache levels but some computations are more difficult
to optimize with this programming paradigm such as sparse matrix computations.
They have irregular data structure and generate a memory bottleneck by accessing
data in a non-contiguous fashion which make them challenging to implement on GPU.

This chapter is thus focused on sparse matrix computations and mainly on the op-
timization of the sparse matrix vector product (SpMV) which is the most used kernel
in sparse computing. It is also the main performance key of iterative methods that
interest and are explored at TOTAL for seismic imaging and reservoir characterization.
The main optimization strategy to achieve best performances for sparse matrix com-
putations is to reduce main memory accesses and to make efficient data movements by
arranging data in a convenient manner. Sparse matrix formats define this arrangement
and are strongly involved in the performance achievement. In the following, sparse ma-
trix formats for SpMV are implemented and studied with a data parallel paradigm on
GPU in order to propose optimizations and examine performance of successful sparse
matrix formats on previous data parallel machines.

3.2 GPU Architecture

The work presented here is based on a Tesla T10P GPU architecture. It has a peak per-
formance of 1 TFlops in single precision (SP) and 86 GFlops in double precision (DP).
GPU has 240 cores which are spread among 30 multiprocessors, named streaming pro-
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cessor (SMs). Each has 8 scalar processors (SPs), two special function units (SFUs)
dedicated to perform specific mathematical operations and a multi-threader instruction
unit. Different memories are dispatched hierarchically on GPU and have various laten-
cies. All multiprocessors share at a high level the global memory which is an off-chip
"large memory" of 4GB, with a 512-bit interface, a 102GB/s bandwidth and a high
latency of 400-600 clock cycles. At a lower level, scalar processors of a SM share also
resources such as 16384 32-bit registers with a low latency of two clock cycles, 16KB
of shared memory organized in 16 banks and cache for constant and texture memo-
ries. Constant and texture memories are read-only regions of the global memory which
offers to speed up reads. The Figure 3.1 gives an overview of the T10P architecture
organization.

Figure 3.1: T10 GPU Achitecture

3.3 Programming and Performance Keys

The application programming on this architecture consists of a sequential program
executed on a host CPU which launches kernels written with the Compute Unified
Device Architecture (CUDA) technology on GPU. A kernel is run in parallel on a grid
of threads which are executed in a Single Instruction Multiple Threads (SIMT) and share
access to the global memory. Threads are organized into groups, named thread block
which have access to a shared memory space and are synchronized through the call of a
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barrier function. Each thread has its own local memory and register space. Each group
and each thread of a group have an unique identification, respectively named blockIdx
for a group and threadIdx for a thread of a group that allow to attribute different
set of data to compute per thread. Threads of blocks are managed and mapped on
each scalar processor by the multiprocessor and are executed into groups of 32 threads,
called warps. A single instruction at a time is performed by all threads of a warp. The
different latencies underline the memory access are strategic parameters. They can be
optimized according to some guidelines given in the CUDA Programming Guide [40].
All threads of a warp access the global memory with arbitrary addresses that may run
to multiple memory transactions. To optimize these transactions, memory accesses
have to be coalesced which is realized when a half-warp, i.e. 16 threads, reads or writes
a 128-bytes segment in the global memory. It results in one memory transaction if
threads of the half-warp address one segment. Memory transactions are also reduced
with the use of built-in vector types. They offer the ability to read or write 32, 64, 128
bit words in the global memory in one memory transaction. Both optimizations are the
most important to get maximum memory bandwidth and reach best performances.

3.4 Sparse Matrix Computations

Sparse matrix computations have irregular data structures and accesses which get low
throughput without any optimizations. Sparse matrix formats define the data orga-
nization in such way that get the maximum performance. These formats have been
refined during the last years on various type of architecture such as vector processor
or data parallel machines [41]. Different computation kernels have also been tailored
in relation to sparse formats and especially the SpMV which is mainly used in itera-
tive methods. The arriving of many-core processors has modified the chip architecture
and the programming paradigm that make interesting the efficiency re-examination of
sparse formats and SpMV. Before explaining our implementations and optimizations of
sparse formats on GPU, some related works of sparse matrix computations on multicore
are outlined and in the following common sparse matrix formats are listed.

3.4.1 Related Works

Many researches have been conducted to optimize this kernel implementation through
various sparse formats on many-core processors. On one core, the OSKI library [42]
provides auto-tuned computation kernels for sparse matrix computations which take
into account the particular cache size of the processors. On multicore processors, the
Block Compressed Sparse Row (BCSR) format has been evaluated and optimized on
different platforms like Cell BE, Intel, AMD and Sun processors [43]. It clearly achieves
the best performances by reusing sparse matrix elements in the different cache levels
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thanks to the register and cache blocking techniques. These techniques allow to reuse
data in cache and register levels and in consequence to optimize the use of main memory
bandwidth. On massively parallel architectures, some implementations of SpMV kernel
have been evaluated by using various sparse formats on NVIDIA GPUs [44]. They have
shown that their hybrid format (HYB) achieves the best performances on set of matrices
previously used on multicore processors. This format is a mix between Ellpack/ITpack
format which uses full-coalescing and the Coordinated format for irregular part of the
matrix. They have also demonstrated diagonal sparse format (DIA) and Ellpack/ITpack
format are the most efficient sparse formats for finite differences discretization of the
Laplacian. In our experiments, we propose a variation of the Ellpack/ITpack format
which uses vectorization and a row-major order of elements that corresponds to the
real data organization of 2D array in C language. In [45], authors have also proposed
an optimized implementation of the Compressed Sparse Row (CSR) format by using
vectorization and padding in order to get a multiple of 16 (half-warp) per row and a
partial-coalescing. Their implementation increases the efficiency and outperforms the
CSR vectorized version of Nvidia. A sparse linear solver [46] method has been developed
on GPU and proposed the implementation of the SpMV by using the BCSR format for
register blocking. In our evaluation, we have extended this format with vectorization,
implemented two blocking version and compared with set of matrices in order to position
performances of this sparse format. We also propose implementation and comparison of
column sparse formats and sparse formats which has succeed on data parallel machines,
like Connection Machine.

3.4.2 Sparse Matrix Formats

A wide variety of sparse matrix formats exists and have been adapted depending of
the application problem and processor architecture. This subsection outlines common
sparse matrix formats that are supported by the SPARSKIT library [47] and are mostly
convenient to general/many matrices for SpMV (y ← Ax) where A is a matrix m× n.
Some formats that have been successful on data parallel machines are also presented .

3.4.2.1 Compressed Sparse Row Format

One of the most used formats in sparse matrix applications is the Compressed Sparse
Row format (CSR), illustrated on Figure 3.2. This format compresses each row of a
matrix A and stores the non-zero values (nnz) in an array values. The column in-
formation is thus lost for each element in this array. In order to keep column index,
an array columns is created and stores column index of data. A last array rowIndex
stores the index of the element in the array values which is the first data of a row.
The array size is m + 1 in which the number of nnz is stored at the last element. An
implementation of the CSR format for the SpMV is given in the Algorithm 3.1.
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A =


11 12 0 2

0 6 0 8

0 0 0 3

13 0 14 16



values =
[
11 12 2 6 8 3 13 14 16

]
columns =

[
0 1 3 1 3 3 0 2 3

]
rowIndex =

[
0 3 5 6 9

]

Figure 3.2: CSR Format

for i = 0 to m− 1 do
for j = rowIndex[i] to rowIndex[i+ 1]− 1 do
y[i]← y[i] + values[j]× x[columns[j]]

end for
end for

Algorithm 3.1: Sparse matrix vector product implementation for the compressed
sparse row format

3.4.2.2 Compressed Sparse Column Format

The analog format of CSR is the Compressed Sparse Column (CSC), illustrated on
Figure 3.3. In opposite of the CSR, it compresses each column of a matrix. The format
has also three arrays such as array values in which the non-zero values are stored. The
second array rows stores the row index of each element. The third array columnIndex
stores the index from the array values of the first column element. The size of this
array is the number of n + 1 in which this index the number of nnz is stored. An
implementation of the CSC format for the SpMV is given in the Algorithm 3.2.

3.4.2.3 Block Compressed Sparse Row Format

The Block Compressed Sparse Row format (BCSR) is a blocked variant of the CSR
which offers the possibility to take advantage of the register by blocking computations.
This format is illustrated on Figure 3.4. The matrix A is divided into block rows of
dimension r × c and each dense block row is stored consecutively in an array values.
For each block in this array, the first column index is saved in an array ind in order
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A =


11 12 0 2

0 6 0 8

0 0 0 3

13 0 14 16



values =
[
11 13 12 6 14 2 8 3 16

]
rows =

[
0 3 0 1 3 0 1 2 3

]
columnIndex =

[
0 2 4 5 9

]

Figure 3.3: CSC Format

for i = 0 to n− 1 do
for j = columnIndex[i] to columnIndex[i+ 1]− 1 do
y[rows[j]]← y[rows[j]] + values[j]× x[i]

end for
end for

Algorithm 3.2: Sparse matrix vector product implementation for the compressed
sparse column format

A =


11 12 0 2

0 6 0 8

0 0 0 3

13 0 14 16



values =

[
11 12 0 2 0 0 0 3

0 6 0 8 13 0 14 16

]
ind =

[
0 1 0 1

]
ptr =

[
0 2 4

]

Figure 3.4: BCSR Format with r × c = 2× 2
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to find the column index of each element. A last array ptr is dedicated to store the
index in values of the first block in each row. The blocks are considered as dense and
incomplete blocks are filled with explicit zeros. An implementation of the 2× 2 BCSR
format for the SpMV is given in Algorithm 3.3.

for i = 0 to (m/r)− 1 do
for j = ptr[i] to ptr[i+ 1]− 1 do
col← ind[j]

y[i]← y[i] + values[j]× x[col] + values[j + 1]× x[col + 1]

y[i+ 1]← y[i+ 1] + values[j + 2]× x[col + 2] + values[j + 3]× x[col + 3]

end for
end for

Algorithm 3.3: Sparse matrix vector product implementation for the block com-
pressed sparse row format with r × c = 2× 2

3.4.2.4 ELLPACK / ITPACK Format

A =


11 12 0 2

0 6 0 8

0 0 0 3

13 0 14 16



values =


11 12 2

6 8 0

3 0 0

13 14 16

 indice =


0 1 3

1 3 −
3 − −
0 2 3



Figure 3.5: ELLPACK/ITPACK Format

The format ELLPACK/ITPACK (ELL), see Figure 3.5 is a well-suited format for
vector architectures and matrices which have approximately the same number of ele-
ments per row. The format is composed of two 2D arrays values and indice of dimension
m× s where s is the maximum number of element in a row. The first array stores each
compressed row of A in a row of value and the second array stores the corresponding
column of each element. A rows with fewer elements than s is padded with some extra
zeros which implies an extra storage. An implementation of the Ellpack/ITpack format
for the SpMV is given in the Algorithm 3.4.
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for i = 0 to m− 1 do
for j = 0 to s− 1 do
y[i]← y[i] + values[i][j]× x[indice[i][j]]

end for
end for

Algorithm 3.4: Sparse matrix vector product implementation for the Ellpack/ITpack
sparse format

3.4.2.5 Sparse General Pattern Format

A =


11 12 0 2

0 6 0 8

0 0 0 3

13 0 14 16



values =


11 12 14 2

13 6 0 8

0 0 0 3

0 0 0 16

 rowIndex =


0 0 3 0

3 1 − 1

− − − 2

− − − 3



index =


0 1 1 2

0 0 − 1

− − − 0

− − − 0



Figure 3.6: SGP Format

The last format of this evaluation is the Sparse General Pattern (SGP) [48] which
has succeeded on Connection Machine. The Figure 3.6 gives an example of SGP format
compression. It is composed of three 2D arrays of dimension nc × n where nc is the
maximum number of element in a column. The first array values stores the nnz of each
compressed column and the second array rowIndex stores the row index of each element
in values. The third array index stores the position index of each element in a row. For
example, for the 2 value of a row composed of 4 elements, 1 is stored in the array index.
This last array helps to change the matrix representation from a matrix column to a
compressed row matrix. An implementation of the SGP format for the SpMV is given
in the Algorithm 3.5.
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for i = 0 to nc− 1 do
for j = 0 to n− 1 do
tmp[i][j]← values[i][j]× x[j]

end for
end for
for i = 0 to nc− 1 do
for j = 0 to n− 1 do
tmp[i][j]← tmp[rowIndex[i][j]][index[i][j]]

end for
end for
for i = 0 to nc− 1 do
for j = 0 to n− 1 do
y[i]← y[i] + tmp[i][j]

end for
end for

Algorithm 3.5: Sparse matrix vector product implementation for the sparse general
pattern format

3.4.3 Implementations and Optimizations of Sparse Formats

Many sparse formats exist and have been optimized during the last years [47] [41]. They
define the data structure of matrices and thus play an important part in achieving the
best performance. On distributed computers, the critical parameter is communications
which depend on data mapping on nodes, induced by the format. On past data parallel
machines such as CM-5, communications were also an important parameter because
of the computation units were interconnected through a high performance network.
The GPU is a data parallel architecture which has made the rebirth of data parallel
computing. The difference with the CM-5 is has a large shared memory between cores.
As we have explained in the previous section, the tricky point is the minimization of
transactions to access data in the global memory. We present in this section some
implementations of usual formats and others which have greatly succeeded on this type
of architecture for the SpMV (y ← Ax) where A is a matrix m× n.

3.4.3.1 CSR

Two implementations of this formats are proposed. The first one is a naive paralleliza-
tion of the SpMV which assigns one thread to compute a matrix row, named CSR. The
second one is a vectorized version that has been proposed by Bell and Garland [44]. It
allows to take advantage of coalescing by vectorizing read accesses to the array values.
The vectorization is realized by using a warp to compute a matrix row and thus process
32 elements of a row at a time. Our implementation named CSR_Vec is different by
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assigning an half-warp to the vectorization and by adding extra zeros to each row. This
guarantees an entire half-warp execution and a better coalescing to realize in one mem-
ory transaction the read of 16 elements. After this step, partial-results are obtained and
put into the shared memory. A parallel reduction is performed to sum all partial-results
among threads of a half-warp. Then the result of each row is put in the vector y by the
first thread of the half-warp. Our implementation also uses caching by mapping the
vector x in the texture memory of the GPU in order to reduce the access time to it.

3.4.3.2 CSC

The analogous format to CSR with column compression storage, the CSC format, has
also benefited of two implementations with and without vectorization, named respec-
tively CSC and CSC_Vec. The first one assigns one thread to compute one matrix
column. The second one is composed of two computation steps. The first step com-
putes all products between the array values and the vector x with an half-warp. Then,
the results are put in a temporary array which thus contains the product operation of
each column element. The second step sums all data in the temporary array which be-
long to the same row. To make this operation, a fourth array is previously constructed
and is organized by row which contains the index of an element in values belonging to
the same row. The CSC format has the particularity to map one element of the vector
x per thread or half-warp which allows to access only one time to this vector at the
beginning of computations.

3.4.3.3 BCSR

The parallelization of this format on GPU has been proposed in [46]. It is realized by
using the built-in-type vector for computations of one block row per thread in order
to minimize the memory transactions. This implementation is referenced as BCSR in
the evaluation. However this implementation may be improved with partial coalescing
by assigning an half-warp per each block row. Partial-results of a thread are stored in
registers to benefit of a faster during the processing of the assigned block rows. This
version is named BCSR_Vec and compared in our evaluation with the non-vectorized
version and the other sparse formats.

3.4.3.4 ELLPACK/ITPACK

Depending on the point of view, GPU is a data parallel or a vector architecture and
the ELLPACK/ITPACK format is well adapted for it as demonstrated in Bell and
Garland [44]. Their implementation named ELL is based on a column-major order in
memory of the ELLPACK/ITPACK format which offers to get full coalescing memory
access and thus optimize memory transactions. Each thread is assigned to multiply
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each element of a row by the corresponding element in the vector x and to put the
result in the vector y. The column major order used by this implementation is not the
order of the C language which orders elements of 2D arrays in row order in memory.
This is why we propose an implementation of the ELLPACK/ITPACK format with a
row-major order, named ELL_row. In the same way as the CSR_Vec implementation,
each row is computed by a warp and a parallel reduction is performed to sum partial-
results. The vectorization of computations offers to access the memory efficiently by
minimizing transactions. Both implementations also map the vector x into the texture
memory in order to cache data.

The analog format of ELL is ELLPACK with a column compression, named
ELL_Col. We have implemented ELL_Col on a GPU in the same mind as the CSC
format. One element of the vector x is mapped per thread in order to access only once
to these values which are reused during computations. All products between value and
the corresponding element of x are computed and put into a temporary array. Then,
all results of the temporary array belonging to the same row are summed and the final
result is saved into the vector y.

3.4.3.5 SGP

The interest of this sparse matrix format is that we can convert the matrix from a
compressed column representation into a compressed row representation. This feature
had a great interest for data parallel machines because it allows to re-map the vector
result y on each computation unit for the next SpMV during computations. It is
particularly interesting in algorithms where many spmv are used. The implementation
on GPU of this sparse format is done by mapping one element of vector x per thread
and assigning each thread to a column for the multiplication between the array values
and the corresponding element of x. After, the result is put into the 2D temporary
array in which results are organized in a compressed row representation. Then, each
value of a row is summed and put into the vector y.

3.5 Evaluation Methodology

After the overview of various sparse formats and the different ways to implement them
on many-core, this section presents a performance comparison of SpMV on GPU with
two methodologies. On one hand, a set of matrices previously used in others papers
are taken as reference in order to discuss the performances of our improvements and
the behavior of compressed column format. On the other hand, we propose to evaluate
the efficiency of sparse formats following the distribution of non-zero values with a
technique that has been used on data parallel machines.
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3.5.1 Reference Matrices

The set of sparse matrices comes from the University of Florida Sparse Matrix Col-
lection [49] and are given in the Table 3.1. They have different structures, sizes and
numbers of non-zero values which plays on performances achievement. In addition, two
sparse matrices from a finite difference discretization of the Laplace operator in 2D are
used with 5-point and 9-point stencil which represent an interest for Total and have a
regular data structure. These sparse matrices were also used in the paper [43] to com-
pare optimization and performance of SpMV on different multicore processors. In [44],
these sparse matrices are taken as reference to evaluate sparse formats and SpMV on
GPU. They are also used in our evaluation in order to get the same references and
compare a larger range of sparse formats for SpMV performances.

Matrix Name Dimensions NNZ NNZ/Row
Protein 36K x 36K 4.3M 119.3
FEM Spheres 83K x 83K 6.0M 72.1
FEM Cantilever 62K x 62K 4.0M 64.1
Wind Tunnel 218K x 218K 11.6M 53.3
FEM Harbor 47K x 47K 2.37M 50.6
FEM Ship 141K x 141K 3.98M 55.4
Economics 207K x 207K 1.27M 6.1
Epidemiology 526K x 526K 2.1M 3.9
FEM Accelerator 121K x 121K 2.62M 21.6
Finite Difference 5-point 1M x 1M 5M 5.0
Finite Difference 9-point 1M x 1M 9M 9.0

Table 3.1: Sparse Matrices used for this evaluation

3.5.2 Matrix Patterns to Modify the Distribution of Non-Zero Values

The data structure of matrices also takes part in achieving performances. The distri-
bution of non-zero may unbalance the computation burden per thread and penalize an
efficient access to the vector x. On past data parallel supercomputers like Connection
Machine, the distribution of data was a critical parameter because it defined commu-
nications between computation units. Some matrix patterns, named C-Diagonal and
C-Diagonal q-perturbed, were introduced to evaluate SpMV with various sparse formats
following the distribution of nnz in order to determine the best and worst performance
cases [48]. As GPU is a data parallel architecture, we propose to experiment this type
of matrices to compare the different format efficiency following the distribution of nnz.
The C-Diagonal matrix is defined as a matrix with nc diagonals from the main diagonal
to the right, as shown in Figure 3.7.

The C-Diagonal q-perturbed matrix is built from a C-Diagonal matrix by modifying
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Figure 3.7: C-Diagonal Matrix (nc=4)

the data structure with a random perturbation. Each element of the matrix has a
perturbation probability called q which defines whether the value has to be set at a
random distance from the main diagonal, the element column index must be modified.
During the random perturbation, a homogeneous distribution of the nnz per column is
guaranteed in order to have roughly the same number of accesses to the elements of the
vector x. An example of a C-Diagonal q-perturbed matrix with nc = 4 and q = 0.2 is
given in Figure 3.8.

Figure 3.8: C-Diagonal q-perturbed Matrix (nc = 4 and q = 0.2)

3.6 Performance Analysis

3.6.1 On a GPU

After the overview of various sparse formats and the different ways to implement them,
we present in this section a performance comparison on GPU. On one hand a set of
matrices previously used in other papers is taken as reference in order to discuss the
performances of compressed column format. On other hand, we propose to evaluate
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the efficiency of sparse formats following the distribution of nnz values with a technique
that has been used on data parallel machines.

3.6.1.1 Comparative Results

The various formats evaluation is based on matrices from the University of Florida
Sparse Matrix Collection. The matrices have different structures, sizes and numbers of
non-zero values which are reported in Table 3.1. We also use two matrices from a finite
difference discretization of the Laplace operator in 2D with different stencil, 5-point
and 9-point.

The best results are obtained with the ELL format on the finite difference matrices
with 17.98 Gflop/s for 5-point and 19.31 Gflop/s for 9-point in single precision (SP),
as the Figure 3.9 shows. The regular structure of these matrices allows to have ap-
proximately the same number of values per row and to have a balance of computation
load between threads. On the other matrices, the ELL format is also the most effi-
cient thanks to column-major order which permits the coalescing by accessing data in
a contiguous way and in consequence to minimize memory transactions. Our version
ELL_row with a row-major order is less efficient in spite of the use of entire warp to
read data from the array value. Data are accessed in a coalescing way by 16 threads but
not in a contiguous way in the entire memory. On finite difference, this format achieves
a poor performance because rows with a nnz less than a warp are padded with extra
zeros. It introduces new values and increases the number of elements to compute. The
CSR format performs poorly in this naive implementation. Performances of the CSR
format on finite differences represent 20.47% for 5-point and 11.88% for 9-point of ELL
results and the format achieves an average of 2.1 Gflop/s with others matrices. The
format implementation retrieves data in a non-optimized fashion because threads do
not read data in a contiguous access. A contrario, the CSR_Vec implementation uses
vectorization which allows to access data contiguously in memory and takes advantage
of coalescing. This CSR version performs better and is a little bit more efficient than
ELL.

The blocking version of CSR improves performances on non-structured matrices
with an average of 5.1 Gflop/s and offers a SpeedUp of 2.5 in comparison of CSR. This
improvement comes from the use of the built-in-type vector to access data by reading
4 values of the array value in one memory instruction. We have only evaluated two
different sizes of blocks, 2× 2 and 4× 4. The last dimension of blocks has realized the
best performances for many matrices but well-suited blocking heavily depends of the
matrix structure. For matrices Economics and Epidemiology, most of blocks are not
fully filled because the nnz are strongly shared out the matrix what generates blocks
with few elements and a lot of zeros. As we have explained previously the full-filled
by zeros in order to make dense block increases the number of values to compute and
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decreases performance. The BCSR_Vec kernel is the vectorized version which takes
advantage of coalescing by accessing 16 blocks of a row at a time. Performances are
really improved with a SpeedUp of 2 on all matrices, except on Economics, Epidemiology
and finite differences because of adding extra zeros to make dense blocks. We have also
proposed and evaluated some column sparse formats which avoids to access many times
to the vector x in opposition to compressed row formats. After reads optimization of
the array value, the vector x is the last non-contiguous access. However, the column
formats do not achieve the best performances of our evaluation. The CSC format is the
least efficient with 2.6 Gflop/s for the highest result on Epidemiology. Computations
are made in two steps. The first multiply each element of the array value and the second
sums all elements belonging to the same row. The sum operations are the main reason
of performance degradation because of irregular accesses to temporary array in which
results of the first step are stored. The ELL version with compressed column, ELL_Col,
has exactly the same issue but perform much better than CSC because of the coalescing
to read values in the temporary array and the array ptr. It sustains 7.7 Gflop/s and 8.4
Gflop/s on finite difference matrices what represents twice less than ELL performances.
The best results for this format are obtained on these matrices because of the regular
structure. The SGP format obtains more interesting results on all matrices and is the
best efficient compressed column sparse format. The implementation of this format
is also in two steps but the reason of non-achieving a better performance is different.
The source comes from the conversion of a compressed column representation into a
compressed row which generates irregular access and does not optimize the memory
transactions.

Figure 3.10 shows the results in double precision (DP) and the same analyze of
performance can be made. The ELL format performs the best results with 10.9 Gflop/s
and 12.3 Gflop/s on finite difference matrices. We can observe that performances de-
crease in double precision by achieving 57% of single precision performance for the
best case. Nevertheless, the best performance in SP only reaches 1% of the GPU peak
performance in opposite to the double precision which reaches 14.3%. It represents a
difference factor of 7.5 and underlines that double precision is more efficient in spite the
fact it achieves less performance.

3.6.1.2 Results Following the Distribution of Non-Zero Values

For experiments, the matrix size is set to N = 1008000 in order to reach the space
limit of shared memory for the most larger format. The number of diagonal nc is
fixed at different values, such as 4,8,16 and 32 successively, to increase the amount of
non-zero. Finally for each nc count, the perturbation q is varied from 0.0 to 1.0 which
respectively represent the best and worst case of distribution. The ELL implementation
still achieves the best performance with more than 20 Gflop/s in SP for a non-perturbed
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Figure 3.9: Sparse Matrix Vector Product Performance on a GPU in single precision
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Figure 3.10: Sparse Matrix Vector Product Performance on a GPU in double precision
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matrix (q=0.0) with nc = 16 or nc = 32 diagonals see Table 3.11. The other results
for nc = 4 and nc = 8 of this implementation are a little bit less with respectively
17 Gflop/s and 19 Gflop/s. The nnz per thread are decreased in this case what does
not allow to load the computation pipeline and avoid it latency. We can also see
that the previous comparison between formats is still correct when q = 0.0. However,
it is interesting to notice that for q > 0.5, the implementations efficiency are going
down with a difference of few Gflop/s between formats. When the matrix is totally
perturbed for q = 1.0 the same level of performance is reached by all formats, around
2 Gflop/s for ELL, ELL_usal and CSR_Vec and around 1 Gflop/s for the others.
This result demonstrates that it makes no odds to care about the well-suited format
for perturbed matrices on GPU with a perturbation greater than 50%. Moreover, the
vectorized formats such as ELL_usual, CSR_Vec and BCSR*_Vec perform very poorly
for a number of diagonals under 16. This is because vectorization is the fact to take
advantage of coalescing by using a half-warp, 16 threads. For nc = 4 and nc = 8, all
threads of the warp are not involved to compute a row which has less than 16 elements.
Then, the coalescing and the minimization of memory transactions are not realized and
it decreases performances. This observation is an obvious result and can be generalized
about all vectorized formats that do or do not use zero-padding to have 16 elements
per row.

Figure 3.11: SpMV performances with C-Diagonal q-perturbed matrix in single preci-
sion

In double precision, the ELL format is also the best implementation on GPU for
SpMV by sustaining 10 Gflop/s for q = 0.0 and 1.8 Gflop/s for the maximum per-
turbation, see the Figure 3.12. The behavior of other formats is still the same as in
single precision. We observe that for q < 0.5 the performance of each format in double
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precision represents 50% of the achievement in single precision. This comes from the
memory bandwidth use which is more expensive in double precision. For matrices with
a perturbation greater than 0.5, the difference between both precision is decreasing and
for q = 0.1 there are no differences between single and double precision performance.
This is an interesting point for iterative methods which need high precision to converge
faster without loosing global performance. The comparison of the ratio effective/peak
performance gives advantage on GPU to double precision with for the best case (q = 0.0)
2.06% in SP and 16.09% in DP and for the worst case (q = 1.0) 0.22% in SP and 2.07%
in DP.

Figure 3.12: SpMV performances with C-Diagonal q-perturbed matrix in double preci-
sion

The results are also interesting whether they are compared to past results on Con-
nection Machine. C-diagonal q-perturbed matrices have been introduced to evaluate
the impact on communications following the distribution of nnz. GPU and Connection
Machine are data parallel architectures but GPU has a shared memory which offers
low latency to access and transfer data between threads. In contrry, the Connection
Machine had an hypercube network which interconnected the computation units. The
distribution of nnz into the matrix should have less impact performances on GPU. Nev-
ertheless, curves show that the efficiency of the various formats used decreases more the
nnz are distributed. Results on GPU have the same trend as the Connection Machine
and the reason is the same. The access to the vector x is the source of performance
degradation. When the nnz are strongly distributed, values are dispatched in a non-
contiguous way through columns which does not allow to take advantage of coalescing.
Then the amount of memory transactions to read data are increased and performances
go down on GPU. The computation burden per thread is not implicated in our evalua-
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tion and analysis because only the column index is perturbed and we roughly guarantee
during the perturbation a homogeneous distribution of values per columns. For column
compressed format, the vector x is not in cause because one value is mapped on each
thread. The problem comes from row values which are arranged in a contiguous fashion
in a column. This leads to the same consequence such as a non-coalescing access to
row data. Except the fact that GPU is a new data parallel architecture with shared
memory, it has the same behavior than Connection Machine on strongly distributed
matrices. Despite matrices used here are not a realistic case, these experiments show
that it is always important to care about data access of the vector x on a low latency
architecture as on past data parallel supercomputers.

These results are also presented in [50] and some experiments on Fermi GPU have
been published in [51].

3.6.2 On Multi-GPUs

SpMV is one performance key of iterative methods in which multiple SpMV are exe-
cuted. Performance of the SpMV on a single many-core processor is one part of the
achievement when the method is run in parallel. Communications are the second part
involved. To parallelize the SpMV, a row wise decomposition is commonly applied
across processors. Each processor Pi is responsible to make the computation of a row,
as defined by yi = Ai,∗x. In an iterative methods, this operation is realized multiple
times. After each SpMV, each partial result of yi handled by a processor Pi must be sent
to all processors in order to get the full vector y which becomes the vector x for the next
SpMV. This operation may be summarized as y = A(Ax) and is executed many times in
an iterative method. Communication to send and receive the partial results of y highly
contribute in the performance achievement and scalability. However, some values of y
are not necessary on all processors because the vector x is not totally accessed during
the SpMV. This depends on the problem to solve. Graph [52] [53] and hypergraph [54]
decomposition help to minimize communication volume of the SpMV. Each node of the
graph represents the result of each rowk by the vector x. Each edge corresponds to the
dependence between each row and a column value which are generated by the previous
SpMV.

Communications are more crucial in performance achievements of multiple GPU
applications. Because the link between host and GPU has a low bandwidth and is
considered as the bottleneck. Thereby, minimize data transfer between the GPU and
host is highly important for the SpMV. In this subsection, we propose to use a row
wise and a graph decomposition in order to reduce communication between processors
and between host and GPU for the y = A(Ax) operation on a multi-GPU cluster.
Experiments are made to observe the performance and scalability of the SpMV on
multi-GPU with and without communications between host and GPU. For this, we
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have implemented two version of this operation.
The first one only minimizes the communication with the graph decomposition

across processors. In more detail, after transferring data of the matrix on GPU, the
first SpMV is executed and data generated, i.e. the partial vector y, are copied from
GPU to the host. Next, MPI processes exchange the necessary data between processors
based on the graph decomposition. Hence, data received are scattered to x on the host
which is after integrally copied from the host to the GPU. To end, the second SpMV is
processed.

The second one minimizes both communications, among processors and between
host and GPU. In the same way, data of the matrix are firstly transferred to the GPU
and the first SpMV is executed. By using the graph decomposition information, only
local values of y are copied from the GPU to the host. Based on the index of the value
to send, data of y are gathered into a SendBuffer which is transferred to the host.
The values of the buffer are after sent to the corresponding processors through MPI
communications still based on the graph decomposition. Hence, data are received in a
RecvBuffer which is copied from the host to the GPU. The value of the RecvBuffer on
the GPU are after scattered to x to the corresponding index of the value received. To
end, the second SpMV is executed. Thereby with this version, data transfer between
host and GPU are minimized by only exchanging the necessary values.

In order to compare both versions, experiments are run on a cluster composed of
20 GPUs (S1070) which are spread by 2 per host. A third version is added at our
evaluation. It is the practical peak achievable by the y = A(Ax) operation without
any communications. The addition of this version is to evaluate the efficiency of our
fully-optimized communication implementation. For our experiments, the sparse format
that achieves the best performance on a GPU is used, i.e. Ellpack/ITpack. Two large
matrices are taken for this evaluation. A C-Diagonal matrix with 32 diagonals (nc = 32)
and a number of row equal to 1008000. A matrix from a 5-pt discretization of the
Laplacian operator in 2D of a grid 1000× 1000 (number of rows = 1000000).

Our implementation with communications minimized between nodes and host and
GPU performs better than the non-optimized version. A speedup of 2 is obtained for a
small number of GPU and is growing with the adding of GPUs to reach a speedup of 5
for 20 GPUs, as shown on the Figure 3.13. Those accelerations of the A(Ax) operation
traduces the highly importance of communications between host and GPU and their
minimization. We also observe that our approach scale better than the version with only
MPI communications are reduced. The performance difference between the practical
peak achievable and our version is also growing in relation to the adding of GPUs to
compute A(Ax). It is explained by the fact that communications also increase with the
number of GPUs and take increasingly a higher part in the global execution time.

The C-Diagonal matrix is an ideal in which values are close to the diagonal and
has only one reception communication per process of the values handled by the process
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Figure 3.13: A(Ax) performance and scalability with the Ellpack/ITpack sparse format
and a C-Diagonal matrix (nc=32) on a multiGPUs-cluster in Single Precision

Figure 3.14: A(Ax) performance and scalability with the Ellpack/ITpack sparse for-
mat and a 5-point finite difference dicretization of the Laplacian operator in 2D on a
multiGPU-cluster in single precision

rank+ 1, except for the last process. Experiments realized with a matrix which comes
from the 5-point discretization of the Laplacian operator 2D is a more real case. All the
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case of different GPU number has not been evaluated because the matrix has 1000000
which can not be homogeneously distributed across processors. On the Figure 3.14, we
can observe for this matrix that the speedup is higher than the ideal case with a factor
of acceleration from 2 to 10. The scalability still true for this matrix bu the performance
difference between the practical peak and our implementation is more important than
on the C-Diagonal. This traduces the fact that communications are more numerous and
take a higher in the performance achievements as the number of contributing GPUs is
growing.

Figure 3.15: Performance comparison between Ellpack/ITpack and CSR Vectorized for
A(Ax) with a C-Diagonal matrix (nc=32) on a multiGPUs-cluster in Single Precision

The communication volume is the same for all compressed row format. Thereby, only
the performance of the SpMV kernel on a GPU has an importance in the achievement
of multiple SpMV operation on a multi-GPUs cluster. As the comparison between the
Ellpack/ITpack format shows on the Figure 3.15.

As we have seen, our optimization of communications for the A(Ax) operation offers
scalability and high performance speedups comparing to no communication reducing
between host and GPU. In iterative methods, the SpMV is executed more times than
twice. In consequence a poor SpMV on multi-GPUs may impact performances and
scalability of these methods at a higher degree without any communication minimization
between host and accelerator.
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3.7 Conclusion

In this chapter, the data parallel paradigm has been explored on a many-core processor
with sparse matrix computations which are the most difficult to optimize with this
paradigm. To illustrate that, we have proposed and evaluated the sparse matrix
vector product on a GPU with the common sparse matrix formats which define
the data structure and play a role on performance achievements. As results have
demonstrated the Ellpack format offers the best performances for common matrices
by optimizing accesses to the main memory. Our variant of Ellpack with a row-major
order (Ell_Row) also performs well, depending on the matrix structure. For matrices
with a nnz per row lower than 16, our proposed implementation and all vectorized
formats perform poorly because the vectorization is not completely realized and dos
not gives partial-coalescing. The padding with extra zeros to get 16 values per row
correct this problem as shown in [45]. However, padding generates extra computations
that can degrade performance. Our implementation of BCSR with vectorization also
achieves good performances on matrices with a sufficient nnz to have an optimized
blocking.

Compressed column formats have the advantage to reduce irregular accesses to the
vector x and have achieved good performances on Connection Machine. Unfortunately,
results have shown that type of format perform less than compressed row format
because of the non-possibility to exchange data directly between cores. The study of
sparse formats performance following the distribution of nnz has also shown interesting
results about the choice of format for different matrix structure. ELL implementation
with column-major order stays the most efficient format. Nevertheless, we have seen
for sparse matrices with a strong distribution of nnz that the various formats achieve
approximately the same performance by reaching 2.0 Gflop/s. Moreover, for this
matrix structure type performances in SP and DP on GPU have a gap of a few
flop/s. As we have underlined, this can be interesting for iterative methods which
require high precision to keep stability and converge faster without loosing performance.

On multi-GPU clusters, we have investigated a minimization of communications
between host and GPU based on a graph decomposition. Experiments show that our
proposition offers scalability and a high performance speedup in comparison of an
approach with only the minimization of communications between processors. Hence,
these results and our proposition contribute to the performance and scalability of
iterative methods multi-GPUs cluster.

The interest for TOTAL in this study was to get information about sparse matrix
format performances. On one hand these results may be used for seismic imaging where
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some applications are based on iterative solvers and a finite-differences discretization
of the Laplacian operator which composes the equation. On the other hand, iterative
methods are currently explored for reservoir characterization which are based on a finite
element discretization. Results following the nnz distribution should contribute to help
the decision of the convenient sparse format. The SpMV has not been integrated in
these solver because they are currently in development and need some supplementary
works on mathematical aspects before any acceleration with GPU.

As we have seen, sparse matrix computations are challenging to optimize. Never-
theless, the past knowledge on data parallel programming has helped to take advantage
of the memory hierarchy and to optimize accesses to the main memory which is the
main bottleneck. However, experiments have pointed out that it is not easy to use
shared caches (shared memory for GPU) for irregular computations. They have been
only used for reduction among cores. Some difficulties with some formats such as SGP
have also outlined that GPU and in general many-core suffer from the lack of direct
communication possibilities between cores. This induces to use the main memory for
data exchange and thus degrades considerably performances. This point is highly im-
portant for exascale computing because it traduces the impossibility to optimize data
movement on the chip. This parameter is critical in order to avoid a bottleneck to
the main memory and to minimize the energy consumption. Some chip makers have
whereas the consciousness of this issue and are currently releasing research processors
with a network-on-chip (NoC) such as Intel with its Single-chip Cloud Computer (SCC)
and their 80-cores processor. Nvidia has also some plans to integrate communications
possibilities in their GPU that should contribute to reduce the bandwidth consumption
of the main memory and optimize data movements on chip.
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Chapter 4

A Graph Description Paradigm for
Asynchronous Coordination and
Communications on Large Clusters

4.1 Introduction

A common trend in supercomputers is the aggregation of many processors to gain
computing power. The arrival of multicore processors has not modified this trend
but it has changed the base type of the counting from processors to cores. Exascale
supercomputers should have billions of cores organized in millions of nodes based
on many-core processors. The large parallelism created by these machines should
be hard to manage with common programming paradigms such as a flat-MPI or a
mixed MPI+OpenMP approach to get the best efficiency, as we have underlined in
the chapter 1. For exascale computing, programming paradigms must scale to run
applications on millions of nodes and high level to improve productivity. The program
scalability is mainly due to communications and essentially on those that involve a
large number of cores. Partial or global synchronization of participating elements take
a high amount of execution time which slows down the global application performance.
Asynchronous communications avoid this coordination and have also the asset of
allowing to overlap computations during data transfer. However, their management at
a low level by end-user may be complex, inefficient and unproductive for exascale. A
support at a high level and a run-time management should help to realize asynchronous
and optimized communications in a transparent manner. Typically, a parallel and
distributed application is constituted of a succession of tasks. The load balancing and
the scheduling of tasks are also important in order to avoid barrier synchronization
and start a task as soon as possible. This task orchestration must be also supported
at run-time to load-balance computations and use efficiently available computing
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resources. Such a system may also contribute to reduce programming complexity
by giving transparent and productive parallel programming through a high level
description.

In our approach of programming exascale, we have proposed a multi-paradigm
programming and have explored for many-core processors a data parallel programming
paradigm. The problem is now parallelism at a high level between nodes or node groups
following the points underlined previously. Different solutions are possible to program
this last level. Domain specific languages are good candidate to improve productivity
with an orientation to a specific domain. They may also provide portability by
generating convenient code for a targeted platform. For example, Liszt [55] is designed
for mesh-based partial differential equation and can be compiled to MPI cluster or
GPU. Nevertheless, these languages are restricted to some application areas and
are not general purpose parallel programming models. Some other candidates for
exascale programming are more general models such as Unified Parallel C (UPC) [56]
for C, Co-Array Fortran (CAF) [23] for Fortran and Titanium [24] for Java. These
languages rely on a Partitioned Global Address Space (PGAS) model and provide
improved performance by exploiting locality and hardware protocol with one-sided
communication. They have the shortcoming to be in the same mind of message passing
with explicit communications expressed by end-users which are not managed and
optimized at run-time. Other approaches are possible for exascale programming to
manage large parallelism between nodes and improve productivity. Workflow or graph
description languages are more end-user oriented by expressing task dependencies
through a graph. They offer many information that may be used at run-time for task
orchestration and asynchronous communication.

In this chapter, we propose to explore this graph description paradigm for the highest
level of the hardware hierarchy through one implementation,named YML [57], that have
developed in relation with our team. The next section outlines the mainly known work-
flow or graph description languages and their differences with the language proposed.
The design and the language of the YML Framework are presented in the third section.
The interest and the evaluation of the Framework are demonstrated on a nation-wide
cluster of clusters and based on a dense matrix inversion method which are outlined
in the fourth section . The contribution of this framework to the Time-To-Solution
minimization are presented in the fifth section through two adaptations of a dense ma-
trix inversion method which is implemented with YML and a performance evaluation.
Mechanisms of data persistence and data migration anticipation may improve achieve-
ment by avoiding or making in advance some communications. A graph description
paradigm may be contribute to anticipate data migration, i.e. realize asynchronous
communications, without any extra programming for end-users The graph analysis at
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run-time may give information to find out future data movements and anticipate them.
More details are given in the sixth section in which we explain how this may be sup-
ported in YML. Actually, these mechanisms are not supported in the framework because
backends which bind up the independent part of YML and middleware are not able to
take these optimizations into account. In consequence, a performance pre-evaluation
to estimate the YML overhead in this context is made by emulating these mechanisms
and comparing to an implementation with these features in OmniRPC which is a mid-
dleware supporting the data persistence. The last section concludes and discusses on
the contribution of a graph description paradigm to improve productivity, manage task
orchestration, realize asynchronous communications in a transparent way and other
necessary points that have been explored here for programming exascale machines.

4.2 Related works

To simplify parallel and distributed programming, some high level approach like work-
flow or graph description languages have been developed for grids and clusters. DAG-
Man [13] is one of them. It is a workflow engine and a meta-scheduler for the Condor-G
middleware [58]. The expression of cycle are not possible and thus does not prevent
dead-locks. Data migration must be explicitly managed by the end-user. GridAnt [59]
is a workflow system which uses a language based on XML to describe the workflow. It
associates an operation to a tag. To be executed, an operation needs to wait the end
of all tags on which it depends. Pregel [60] is targeted to run parallel and distributed
application on large data-center. The framework is based on a BSP execution paradigm
and claims to scales on billions cores. The parallelism is expressed through a C++ API
to declare tasks which can exchange messages between them. These and many other
workflow approaches such as UNICORE [14] and GridFlow [15] are based on a Directed
Acyclic Graph (DAG) which allows to express a static workflow. YML [57] is another
graph approach which is developed at the University of Versailles and University of Lille.
It is a high level language and framework to develop and run parallel and distributed
applications on several middleware. In contrary to the previous workflow mentioned,
the graph description language provided by YML is based on Directed General Graph
(DGG). This graph model gives the possibility to express loops, iterations and branch-
ing. Moreover, YML is independent from middleware with a design composed of two
parts. The first is in charge to manage the development and the execution of parallel and
distributed applications. The second binds up the first part and the middleware chosen
by end-user. This and the component programming approach provide modularity and
reusability to allow the reduction of the development time.
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4.3 YML Framework

4.3.1 YML Design

YML is a framework dedicated to the development and the execution of parallel and dis-
tributed applications on cluster, grids and peer-to-peer middleware. It has a component-
oriented programming approach which offers modularity and reusability. Furthermore,
YML applications are independent from middleware thanks to the design of YML which
is composed of two parts presented in Figure 4.1. The first part of the design is the
frontend which encompasses a compiler for the dedicated graph description language, a
just-in-time scheduler [61] and a development catalog. The compiler translates applica-
tions expressed by the graph description language into an intermediate representation.
This representation describes the dependences between tasks through an event mech-
anism. The combination of events are the pre- and post-conditions and determine
whether a task can be executed or not. The just-in-time scheduler is in charge to man-
age application executions. It resolves tasks dependences at run-time by detecting tasks
which are ready to run. Thereafter, the scheduler generates a set of parallel tasks which
become computing requests through the backend part. The development catalog stores
components and data type information used during the development step. This set
contributes to validate the graph description input program. The frontend is the mid-
dleware independent part and is associated to a second part, named backend, in charge
to generate the binaries and binds up the frontend and the chosen middleware which
dispatches tasks with its own scheduler among the computation resources. Actually,
YML supports two middleware: XtremWeb and OmniRPC. A multi-backend manage-
ment [62]. is also implemented and offers the use of both middleware at the same time.
Those supported middleware and the multi-backend management are presented in the
following of this chapter. The data repository server provides the component binary
and data requested by YML workers. They after compute the assigned task on the
data set and take over results to the data repository server when the task is finished.
A presentation in more details of different YML parts is given in [16].

To describe applications and their executions, YML includes a dedicated graph de-
scription language called Yvette which is based on control flow expression. The graph
of an application is constituted by different elements. The nodes represent tasks and
the edges are the dependences between them. Thereby, this high level type of language
offers implicit communications which are optimized by the compiler and not managed
by end-users in contrary to MPI or OmniRPC for example. The YML language al-
lows to describe scientific application graphs in opposition to Kepler [63] or YAWL [64]
which are graphical languages of workflow. The declaration of three or more dimen-
sions for application graphs is difficult with this type of language. Yvette offers to
express graphs in many dimensions and has also an easy parsing thanks to a LL(1)
grammar. The framework has also a component-oriented approach which is different
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Figure 4.1: YML Design

from other component-oriented workflow like AGWL [65] or GFDL the language used
in GridFlow [66]. Thereby, it has two description aspects which are encapsulated in
XML document for homogeneity: describing components and the application graph.
The development of a YML application is made with components which are three of
kinds:

• Abstract component: an abstract component defines the communication interface
with the other components. This definition gives the name and the communication
channels with other components. Each channel corresponds to a data in input,
in output or both and is typed. This component is used during the development
and the code generation stages to create the graph. An example is given on the
Figure 4.2.

• Implementation component: an implementation component is the implementation
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Figure 4.2: YML Abstract Component Declaration

of an abstract component. It provides the description of computations and it
is used during the execution. The implementation is done by using common
languages like C or C++. They can have several implementations for the same
abstract component. This type of component is illustrated in the Figure 4.3.

Figure 4.3: YML Implementation Component Declaration

• Graph component: a graph component carries a graph expressed in Yvette instead
of a description of the computation. The graph can contain parallel and sequential
sections and usual constructions such as branches and loops. The synchronization
between the different steps is done with the event mechanism.
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Figure 4.4: Block Matrix-Matrix Product in Yvette

4.3.2 Yvette Language

In more details about Yvette, the syntax of the language is similar to Pascal and C.
The different existing keywords in Yvette are as follow. Parallel sections are declared
to make concurrency and are defined such as par Section1 // Section2 endpar. The
loops are expressed in two ways: par do ... enddo structure is for parallel loop and seq
do ... enddo is for sequential loop. The conditional structure is defined by the use of
the usual if(condition)...then... else ... endif structure. The different tasks of the graph
are synchronized through events with two keywords: wait(event) and notify(event).
Components declared previously are called with the compute keyword followed by the
component name. An example of an Yvette program is given in the Figure 4.4 through
a typical BLAS3 operation, a block matrix-matrix product.

4.3.3 Supported Middleware

4.3.3.1 XtremWeb

XtremWeb is a desktop middleware dedicated to grid computing which is develop in Java
language. This middleware has a master-worker programming model which is based on
an architecture organized as client, coordinator,worker. The client has tasks to compute
in parallel on a set of worker nodes which are put in relation by the coordinator The
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binding between workers and client is not the only role of the coordination which is
also in charge to collect results and exchange information in the system. In opposite to
other master-worker model, XtremWeb has the particularity to have worker in a pull
model. This mode allows to each work to be not managed by a central manager and to
retrieve their computations by requesting the coordinator. This worker model has been
integrated into XtremWeb in order to support very large and volatile resources.

4.3.3.2 OmniRPC

OmniRPC is a thread-safe remote procedure call (RPC) system, based on Ninf [67],
for cluster and grid environments. It supports the parallelism described in the mas-
ter/worker model. Then an OmniRPC application contains a client program which
expresses the control flow and calls a remote executable. The scheduling is determinis-
tic because it is written by the user through the control flow. A schedule is also done
to assign a worker node for a remote execution. The remote executables are programs
which contain remote procedure whose the execution is synchronous or asynchronous.
The declaration of a remote procedure is defined by an interface definition language
(IDL). It defines the interface and its implementation which writes in familiar scien-
tific computation language like FORTRAN, C or C++. Data persistence mechanism
is supported with the handle function which creates a remote connection to a host and
allows to use data as a remote object. Moreover, an agent is in charge to invoke the
remote executable and manage communications with client programs.

4.3.3.3 Multi-Backend Management

YML also supports multiple middleware at the same time for running applications
on Peer-To-Peer networks and clusters. The binding of YML to middleware is made
through a back-end. To support the execution of application on multiple middleware, a
new back-end the Multi-backend back-end has been created. In opposite to others this
back-end does not communicate directly with middleware but it is connected to the
Back-end Manager. The Back-end Manager is in charge to schedule dynamically tasks
to middleware and acts as a proxy between YML workflow processes and the multiple
middleware through the Back-end Connector. This last component is in charge to relay
information between the Back-end Manager and the regular back-end.

4.4 Experimental Platform and a Dense Matrix Inversion
Method

For demonstrating and evaluating the interest of YML, experiments have been realized
on a heterogeneous and highly reconfigurable platform, Grid’5000. A dense matrix
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inversion method is used as demonstrating algorithm which provides the advantage to
have different levels of parallelism and is a complete matrix inversion method in opposite
to LU.

4.4.1 A National Distributed Cluster of Clusters: GRID’5000

Grid’5000 [68] is a large scale infrastructure for grid research. It is composed of nine
geographically distributed clusters and each one has between 100 to 1000 heteroge-
neous nodes to reach 5000 cores. This cluster of clusters is interconnected by the
French national research network RENATER. Grid’5000 provides reconfiguration and
monitoring tools to find out grid issues. This platform allows users to make reser-
vation, reconfiguration, run preparation and run experiments by using OAR [69] and
Kadeploy [70] for nodes reservation and deployment of specific environment which built
by user. Grid’5000 is used to investigate issues at different levels of the grid. This
includes network protocols, middleware, fault tolerance, parallel/distributed program-
ming, scheduling and issues in performance.

4.4.2 Block-based Gauss-Jordan Method

We consider the block-based Gauss-Jordan method as a linear algebra method example
for our experiments and it is presented below. Let A be a dense real matrix of dimension
N and let B the inverse of A, i.e. AB = BA = I. Let A and B be partitioned into
matrices of p x p blocks of dimension n which n = N

p .

4.4.2.1 Intra-Step

This method is described by Agorithm4.1 and has p steps composed of four parts. At
each step k, the part (0) is used to get the inverted block matrices Bkk. The part (1)
assigns the block product of matrix Aki and Bkk to the block Aki. The part (2) consists
of two parts of matrix products. The part (2.1) computes the column blocks belonging
to the pivot and the (2.2) operation computes the corresponding parts of matrix B.
The part (3) is composed of two parts which calculates the blocks of all columns of the
matrix A with index i above and below that of the pivot row. The part (3.1) calculates
the corresponding parts of matrix B. At last, the part (3.2) is used to compute the
blocks of the column number k of matrix B except Bkk.
Finally, for one step of the loop k, one block inversion, 2(p − 1) block products and
(p − 1)2 block triadics are computed. So at maximum, (p − 1)2 computations run in
parallel. Then (p − 1)2 processors are necessary for computations when the k loop is
executed sequentially.
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Require: A (partitioned into p× p blocks)
Ensure: B = A−1

for k = 0 to p− 1 do
Bkk = A−1

kk (0)
for i = k + 1 to p− 1 do
Aki = Bkk ×Aki (1)

end for
for i = 0 to p− 1 (2) do
if (i 6= k) then
Bik = −Aik ×Bkk (2.1)

end if
if (i < k) then
Bki = Bkk ×Bki (2.2)

end if
end for
for i = 0 to p− 1 (3) do
if (i 6= k) then
for j = k + 1 to p− 1 do
Aij = Aij −Aik ×Akj (3.1)

end for
for j = 0 to k − 1 do
Bij = Bij −Aik ×Bkj (3.2)

end for
end if

end for
end for

Algorithm 4.1: Block Gauss-Jordan Matrix Inversion
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4.4.2.2 Inter-Steps

There is the parallel possibility existing between different iterative step. The parallelism
comes from the data dependence between different operations in different iterative steps.
See all the data dependence between two iterative steps through figure 4.5. Its algorithm
and adaptive algorithm can be found in [71]. To state conveniently, we call the intra-step
and inter-steps based parallel Block Gauss-Jordan algorithm as inter-steps algorithm in
the following part of this subsection.

Figure 4.5: All these Data Dependence in Block based Gauss-Jordan algrithm

Figure 4.6: Data dependence between operations based on inter-step parallelism

Then all data dependences of the block-based Gauss-Jordan algorithm are summa-
rized in Figure 4.6.
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4.4.2.3 Difference between two kinds of parallel block-based Gauss-Jordan
Algorithms

Intra and inter-steps algorithm shares the same operations (elementary BLAS3 types).
The main difference between these algorithms are the dependence condition of oper-
ations. The condition in intra-step based parallel algorithm is two dimensions, one
dimension is the index of matrix column and the other is the index of matrix row. The
parts available to be executed in parallel are fixed intra an iterative step and operations
can be controlled by a serious of two dimensions based precedent conditions. While
conditions in inter-steps based parallel algorithm is three dimensions and one more di-
mension is iterative step. It can not only control parallel execution presented above in
intra-step algorithm but also support parallel execution between steps.

4.5 Time-To-Solution Minimization

In this section, both parallel and distributed adaptations of block Gauss-Jordan are
implemented with the framework. These implementations are made to show an example
in YML and illustrate how it may reduce the development time just by modifying the
graph component of application. However, YML is on top of middleware with its high
level approach and may generate an overhead in comparison to the direct use of a
middleware. We take as reference the intra-step implementation in OmniRPC which is
a cluster oriented middleware to compare and evaluate the YML overhead. Different
cluster architectures are used to vary some parameters like network or CPU speed and
some optimizations are proposed to improve the YML overhead.

4.5.1 Programming using OmniRPC

OmniRPC is a middleware for cluster and grid environment which has a master/worker
programming model based on a thread-safe remote procedure call (RPC) system. Users
can call remote procedures from the client program without having any knowledge of
network programming to parallelize operations. However, users should know in a first
place the API functions provided by OmniRPC such as OmniRpcCall, OmniRpcWait or
OmniRpcCreateHanlde and how to use them. In a second place, they develop remote
libraries which contain a set of remote procedures defined by an interface definition
language (IDL). It defines the interface and its implementation which can be written
in familiar scientific computation language like FORTRAN, C or C++. To end, users
develop the OmniRPC application which contains a client program expressing the con-
trol flow and calling remote libraries. The expression of the control flow leads to a
static scheduling. To run the application, a host file of computation resources has to be
defined with the host name, the number of cores and the type of protocol to use (rsh
or ssh). After, the OmniRPC agent is in charge to schedule tasks among processors by



4.5. Time-To-Solution Minimization 49

invoking remote procedures and to manage communications with the client program.
OmniRPC has also the advantage to support data persistence mechanism through the
handle function which creates a remote connection to a host and allows to use data as
a remote object.

4.5.2 Programming using YML

YML is a component based framework which is used to develop scientific program. As
we saw previously, three component types are necessary to create an application. The
block Gauss-Jordan method is composed of four different computing tasks. A block
matrix inversion (step 0), a block matrix product (step 1 and 2.2), a negative block
product (2.1) and a triadic product (step 3.1 and 3.2) are tasks of the algorithm as
described above. Four abstract and implementation components are defined in YML:

1. inversion: to inverse one matrix block

2. prodMat: to compute the two blocks products

3. mProdMat: to compute the negative of two blocks products

4. ProdDiff: to compute the triadic product

The last component to define is the graph component in which the task dependences
and thus the parallelism are described through the graph description language, Yvette.
The following gives the intra-step implementation of the block Gauss-Jordan matrix
inversion method.

Intra-step algorithm in Yvette
Input: A,B matrices partitioned into p× p blocks of size n

Output: B = A−1

seq (k:=0; p-1)
do
# Step 0
compute inversion(A[k][k],B[k][k],n,n);
notify(bInversed[k][k]);

# Step 1 - Parallel loop
par (i:=k + 1; p - 1)
do
wait(bInversed[k][k]);
compute prodMat(B[k][k],A[k][i],p);
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notify(prodA[k][i]);
enddo

par(i:=0; p - 1)
do
# Step 2.1
if(i neq k) then
wait(bInversed[k][k]);
compute mProdMat(A[i][k],B[k][k],B[i][k],n);
notify(mProdB[k][i][k]);

endif # Step 2.2

if(k gt i) then

wait(bInversed[k][k]);

compute prodMat(B[k][k],B[k][i],n);

notify(prodB[k][i]);

endif

enddo

par( i:= 0; p - 1)

do

if (i neq k) then

# Step 3.1

par (j:=k + 1;p - 1)

do

wait(prodA[k][j]);

compute prodDiff(A[i][k],A[k][j],A[i][j],n);

notify(prodDiffA[i][j][k]);

enddo

# Step 3.2

par(j:=0; k - 1)

do

wait(prodB[k][j]);

compute prodDiff(A[i][k],B[k][j],B[i][j],n);
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Site Nodes CPU/Memory
Nancy 53 2x DC Intel Xeon, 1.6GHz/2GB

47 2x AMD64 Opteron, 2.0GHz/2GB
Rennes 99 2x AMD64 Opteron, 2.0GHz/2GB

25 2x DC Intel Xeon, 2.33GHz/8GB
Sophia 25 2x AMD64 Opteron, 2.2GHz/4GB

Bordeaux 25 2x Intel Xeon, 3.0GHz/2GB
Toulouse 25 2x AMD64 Opteron, 2.6GHz/8GB

Table 4.1: Computational nodes of Grid’5000 used for experiments

enddo

endif

enddo

endseq

In bold, the name of component called by the keyword compute. After compiling
all components, the application file (graph component) is set to the YML scheduler
to be run. The scheduler gives tasks through the backend to the middleware which is
in charge to distribute them among processors. The program example illustrates the
separation between the computational code and the parallelism which permits to reuse
components for an other application or another adaptation. The second implementation
of block Gauss-Jordan that we have realized, the inter-step version, has been made by
reusing these components and by modifying the graph. End-user which wants to make
these modifications with a lower level approach like a middleware, should rewrite all the
application and have a complex system to manage the massive parallelism of the inter-
step version. Thus the development time is reduced through the high level programming
paradigm of YML.

4.5.3 Performance comparison between YML and OmniRPC

The framework reduces the development time by reusing components but execution time
may be also reduced with a massively parallel implementation like the inter-step version.
Performances of both adaptations in YML and the intra-step version in OmniRPC
are compared in this subsection to show the implementation efficiency and the YML
overhead. Experiments are done on Grid’5000 with 100 nodes of the Nancy cluster.
The details of used resources are given in the Table 4.1.
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p×p Number Matrix YML YML Gain
of tasks size intra-steps inter-steps

2×2 8 3000 344 s 343 s 0.29 %
3×3 27 4500 559 s 465 s 16.81 %
4×4 64 6000 914 s 748 s 18.16 %
5×5 125 7500 1359 s 992 s 27.00 %
6×6 216 9000 2070 s 1362 s 34.20 %
7×7 343 10500 3103 s 2220 s 28.45 %
8×8 512 12000 5008 s 3122 s 37.65 %

Table 4.2: Time comparison between intra-steps and inter-steps for a cluster of 100
nodes on the site of Nancy, with block size = 1500
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p×p Number Matrix YML YML Gain
of tasks size intra-steps inter-steps

2×2 8 3000 274 s 237 s 13.50 %
3×3 27 4500 409 s 346 s 15.40 %
4×4 64 6000 640 s 538 s 15.94 %
5×5 125 7500 824 s 699 s 15.16 %
6×6 216 9000 1114 s 969 s 13.02 %
7×7 343 10500 1530 s 1179 s 22.94 %
8×8 512 12000 2052 s 1645 s 19.83 %

Table 4.3: Time comparison between intra-steps and inter-steps using 100 nodes in
Rennes, with block size = 1500

The YML inter-steps version is a massively parallel implementation which should be
faster than the YML intra-step. This fact is demonstrated in the Figure 4.7, on which we
see that the YML inter-steps performs better than the intra-step version in YML and its
performance is closer to the intra-step OmniRPC implementation. The execution time
is reduced with this implementation in spite of the YML overhead is still present and is
growing with the number of tasks. This is a consequence of the graph analysis by the
just-in-time scheduler which are in charge to solve task dependences at run-time and the
data repository server which sends and receives data from workers. As the number of
blocks is growing the number of tasks is also increased and generates more computing
load to find dependences. However, those results are very encouraging because the
massively parallel implementation has more task dependences to solve than the intra-
step implementation and is faster. The just-in-time scheduler is thus well suited to
analyze and find out the dependences in time. Moreover, the improvement in the
Table 4.2 between both adaptations in YML is over 25% of execution time, depending
on the number of tasks. To get this improvement, end-user has just to modify the graph
component by expressing a different graph of dependences with the Yvette language.
Though, there is an overhead between the OmniRPC program and the massively parallel
YML implementation. We can notice that the components reuse for different parallelism
and the reduction of execution time decrease the Time-To-Solution by two aspects.
Furthermore, YML is independent from middleware that allows YML applications to
be reused on a different platform which operates another middleware. One of most
important challenges in scientific computing is to get the solution faster and easier.
From a computer point of view, faster means good efficiency and easier means less time
spent on development of parallel programs. So it is very important for scientific users
to modify and improve their parallel program in an easy way by reusing kernels and
running them on a different platform conveniently.

As we saw, the high level approach of YML has introduced an overhead compar-
ing to use directly a programming middleware. The graph analysis to find out task
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dependences by the just-in-time scheduler and the data repository server in charge of
data exchange between the master and worker nodes are sources of the overhead. It
is a system burden which needs computing power to process and answer requests in
time. In this part, we propose to change for a more adapted cluster configuration for
YML. Experiments are now made on the cluster of Rennes with 100 nodes composed
by 99 AMD nodes and one Intel node. The scheduler and the data repository server are
placed on a more powerful node, i.e. the Intel node, to respond to the burden. Both
adaptations in YML are more efficient compared to results on Nancy because of the
global increasing of computing power. The massively parallel implementation is over
15% faster than the intra-step version, see the Table 4.3. The gain is reduced between
both implementations compared to previous results. As expected, the YML overhead
is considerably reduced that is pointed out on the Figure 4.8. The intra-step version of
the block Gauss-Jordan in OmniRPC is slower than the YML implementation, except
when the number of tasks becomes higher where the YML overhead reappears.

The increase of computing power has offset the overhead by reducing the consuming
resolution of task dependences. However, the difference of scheduling between Om-
niRPC and YML has also an influence. The first declares dependences through Om-
niRpcCall and OmniRpcWait functions expressed in a sequential order. This involves
a static scheduling in which all dependent tasks must be completed before running the
next set of parallel tasks. A more sophisticated implementation could be realized to
manage the start and the end of tasks but this is a complex solution for end-users.
The second expresses dependences through a graph which is managed at run-time. The
just-in-time scheduler is responsible of its management by solving task dependences and
allows to run immediately a task when all its dependences are satisfied. This dynamic
execution offers the possibility to schedule a tasks when it is ready in an asynchronous
way and without carrying end-users. This kind of approach is not recent and has been
examined in [72]. YML gives a newer experience of this idea with a higher level pro-
gramming and its dynamic scheduling has a real advantage in comparison to OmniRPC
by running a task as soon as possible. Experiments show this high level approach helps
to decrease its overhead when a powerful resource is given to schedule and exchange
data.

Results in [73] have shown that the YML overhead is also decreased on a cluster
of clusters because of numerous levels of communications which are balanced by the
dynamic scheduling of tasks. Our platform distributed over three sites (Lille and Orsay
in France and Tsukuba in Japan) and interconnected clusters as TeraGrid, DEISA or
NAREGI generate a motivation to evaluate the YML overhead with a more convenient
resource configuration on a cluster of clusters. The cluster of clusters architecture is
composed of 100 nodes distributed over four clusters: Rennes (Intel nodes), Sophia,
Bordeaux and Toulouse. The scheduler and the data repository server are placed on a
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p×p Number Matrix YML YML Gain
of tasks size intra-steps inter-steps

2×2 8 3000 406 s 275 s 32.27 %
3×3 27 4500 490 s 425 s 13.27%
4×4 64 6000 685 s 573 s 16.35 %
5×5 125 7500 936 s 770 s 17.74 %
6×6 216 9000 1210 s 1149 s 05.04 %
7×7 343 10500 1552 s 1532 s 01.29 %
8×8 512 12000 2023 s 1801 s 10.97 %

Table 4.4: Time comparison between intra-steps and inter-steps using 100 nodes dis-
tributed over 4 clusters, with block size = 1500
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node of Rennes. Results in the Table 4.4 show that the gain between both adaptations
in YML is approximately the same as the previous experiments on Rennes from 4 ×
4 to 5 × 5 blocks. The gain is hardly existent as the number of tasks to schedule
is growing, for p > 6 × 6. This cluster configuration introduces different levels of
networks which have various speeds, latencies and can slow down the execution. The
dynamic resolution of dependences by the YML scheduler allows to hide some of these
characteristics. Thereby, YML is faster than OmniRPC on this configuration, as shown
on the Figure 4.9. Thus the overhead is highly reduced thanks to the use of a more
powerful node to schedule and transfer data. The high level approach is helpful in
this case of distributed infrastructures and also allows end-users to write easily various
parallel adaptation of an application by modifying the dependence graph. All of these
contribute to minimize the Time-To-Solution.

4.6 Contribution of a Graph Paradigm for Data Migration
Anticipation and Data Persistence

We have seen that Time-To-Solution is decreased with YML through the reusability of
components for another parallel implementation. The framework could be also useful
to support in a transparent way some mechanisms to reduce execution time and thereby
to minimize the development for end-users. Data persistence and data migration antic-
ipation are two optimizations which contribute to reduce the execution time. The first
permits to reduce communications by assigning a data set to a node at the beginning of
the execution. Computations steps modify them and only the additional data are trans-
fered to achieve the task. The second makes in advance data transfer by migrating or
pre-deploying data on a node where they will be needed. Data are migrated when a task
ended to the dependent task before it execution and thus overlap communications and
computations. Implementation of these techniques often depends on the middleware
used. YML has a high level approach which may support them in a transparent way for
end-users. The graph description language may be used to anticipate data migration
and make data persistence. It describes the control flow from which is induced the data
flow after compiling. The just-in-time scheduler could take advantage of these infor-
mation to anticipate data migration by analyzing the graph. The states of tasks and
dependences are known at run-time then it can send in advance data to the core where
they are needed to compute the next task. End-users have not to modify their YML
programs to use these crucial optimizations. OmniRPC is one of supported middleware
by YML and has a data persistence mechanism through handle functions which creates
a remote connection to a host. The assignment of persistent data to a host and data
migration anticipation have to be managed explicitly. The integration in YML of the
presented features would generate a system burden to solve dependences and send data
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p×p Number Matrix OmniRPC OmniRPC Gain
of tasks size with DP

2×2 8 3000 328 s 317 s 03.35 %
3×3 27 4500 530 s 508 s 04.15 %
4×4 64 6000 752 s 719 s 04.38 %
5×5 125 7500 1003 s 951 s 05.18 %
6×6 216 9000 1289 s 1210 s 06.12 %
7×7 343 10500 1614 s 1498 s 07.18 %
8×8 512 12000 2294 s 1828 s 20.30 %

Table 4.5: Time comparison between OmniRPC and OmniRPC with DP on the Nancy
site, with block size = 1500

by anticipation. We want to make a pre-evaluation of the YML overhead by comparing
OmniRPC using data persistence and data migration anticipation and YML having the
same behaviours without any concrete management of these techniques. Middleware
do not offer a direct support for a direct use of them, thus the actual backends of YML
are not able to take into account these mechanisms. That is why they are not really
managed in the framework. To make the pre-evaluation, the data persistence (DP)
in YML is emulated by regenerating the persistent blocks on the node where the task
is executed. The data migration anticipation is really made and explicitly expressed
through the graph description language. In consequence, the YML implementation has
the same behaviour than the OmniRPC program. The OmniRPC implementation is
inspired from [74], each block is generated and referenced on a processor. One block
is sent between the steps (1), (2) and (3) of the algorithm. Computations are made
where the data are written. In the loop (1), the block Aki is pre-deployed (generated
on a node). When the computation of the block Bkk is made, it is sent to the loop (1)
and (2). In the loop (2), the blocks Aki and Bki are pre-deployed at each step k. In the
loop (3), the blocks Aik are pre-deployed at each step k too. The blocks Bkj and Akj

are sent to the loop (3) when they are ready. For YML, the implementation is the same
except that persistent blocks are not referenced but regenerated on nodes where they
are needed and one block per task is transferred. Furthermore, the mechanism of data
persistence and data migration anticipation in YML are not implemented yet, then in
all of these experiments the overhead does not take into account the time to schedule,
the analysis of the graph dependences to anticipate data migration and data placement
induced by the data persistence. As a result, a value due of these mechanisms is to add
to the overhead.

The data persistence allows to reduce communications and data migration anticipa-
tion allows to overlap computations and communications. The usual main consequence
is the decrease of the execution time. Results in the Table 4.5 compare OmniRPC pro-
grams with and without these techniques. They show a gain of performance from 3 to
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p×p Number Matrix OmniRPC YML Overhead
of tasks size with DP with DP

2×2 8 3000 317 s 295 s -06.94 %
3×3 27 4500 508 s 437 s -13.97 %
4×4 64 6000 719 s 674 s -06.26 %
5×5 125 7500 951 s 787 s -17.24 %
6×6 216 9000 1210 s 1161 s -04.04 %
7×7 343 10500 1498 s 1516 s 01.20 %
8×8 512 12000 1828 s 1889 s 03.33 %

Table 4.6: Time comparison between YML and OmniRPC with DP on the Nancy site,
with block size = 1500

20% in relation to the number of blocks growth. The number of tasks evolves with the
number of blocks according to the relation p3 tasks. Communications decrease by using
data persistence and this reduction becomes more important as the number of tasks
grows. To have this gain of performance, end-users have to rethink their program and
loose time in changing or rewriting the code. If you are not an expert in parallel com-
puting, the balance between the execution time and development can be important to
make those modifications. YML could allow to use a mechanism of data persistence and
data migration anticipation in a transparent way for end-users. The graph description
language could help to anticipate data migration by analysing the graph at run-time as
previously explained. The pre-evaluation of YML overhead are given in Table 4.6 . It
shows that YML is more or equally efficient than OmniRPC from an overhead of -17%
to 1.2% for the test cases presented. The overhead becomes bigger as the number of
tasks increases, 3% for 64 blocks (p = 8).

The negative overhead comes firstly from the difference of scheduling between the both
software. YML is based on a graph description programming paradigm that allows to
solve dependences at runtime with the just-in-time scheduler. In contrast, OmniRPC
has a static scheduling described by the programmer with some call or wait functions.
Secondly, both implementations in OmniRPC and YML have the same parallelism and
data movements (one block is only transfered between loops). The data repository
server is in consequence less requested for data transfer. Results in [73] have shown
that the scheduler and the data repository server are the reasons of the overhead but
without a very clear distinction. The data persistence in these new results avoids to
use the data repository server and gives to the scheduler a more important role to play
in the source of the overhead. Results show the YML overhead is small in this case
and demonstrate that the scheduler is quite efficient and the data repository server is
the main overhead source. Moreover, YML with this emulation of data persistence and
data migration anticipation allows to reduce the processor usage for the send and the
receive of data managed by the data repository server. So, the tasks dependences are
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solved faster because the program does not need to wait the end of all tasks of one loop
before launching an other and the processor is more available to solve dependences. The
Figure 4.10 recaps all results and points out that data persistence and data migration
anticipation implementation in YML is very efficient.
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Figure 4.10: Execution time of OmniRPC and YML with and without data persistence
on Nancy with block size = 1500

The comparison between YML and YML with data persistence emulation and data
migration anticipation have shown that the data repository server is the main source
of performance deterioration. The reduce of work for the data repository server with
the use of data persistence has balanced the main computational load on the scheduler.
Moreover, the growth of tasks increases the overhead because there are more depen-
dences to solve, more computations to schedule and more data exchange between the
data repository server and workers. In spite the size of data to send and receive cannot
be reduced, the data repository server can be accelerated for an heavy load. It needs
computing power because one instance per worker is launched to answer to the requests.
A just-in-time scheduling also needs resources to be sufficiently fast enough to process
in time the tasks. A lack of computing power is also a factor which has an impact on
the overhead.
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4.6.1 Overhead of YML in a favorable case

The need of computational power by YML has been introduced in the third section
and the previous part to improve performance and decrease the overhead of YML.
It is so necessary to evaluate the overhead of YML with a powerful node where the
scheduler and the data repository server in the context of data persistence and data
migration anticipation to see how much performances can be improved. The same
cluster configuration of Rennes is taken then the third section, i.e. a cluster of 100
nodes composed by 99 AMD nodes and one Intel node which is reserved for YML.

p×p Number Matrix OmniRPC YML Overhead
of tasks size

2×2 8 3000 325 s 274 s -15.69 %
3×3 27 4500 528 s 409 s -22.53 %
4×4 64 6000 736 s 640 s -13.04 %
5×5 125 7500 992 s 824 s -16.93 %
6×6 216 9000 1250 s 1114 s -10.88 %
7×7 343 10500 1568 s 1530 s -02.42 %
8×8 512 12000 1949 s 2000 s 02.61 %

Table 4.7: Time comparison between OmniRPC and YML on Rennes, with block size
= 1500

p×p Number Matrix OmniRPC YML Overhead
of tasks size with DP with DP

2×2 8 3000 272 s 247 s -09.19 %
3×3 27 4500 450 s 359 s -20.22 %
4×4 64 6000 635 s 556 s -12.44 %
5×5 125 7500 856 s 692 s -19.15 %
6×6 216 9000 1092 s 984 s -09.89 %
7×7 343 10500 1357 s 1332 s -01.84 %
8×8 512 12000 1662 s 1660 s -00.12 %

Table 4.8: Time comparison between OmniRPC and YML with data persistence on
Rennes, with block size = 1500

Execution times have been reduced with this new configuration, a few or hundred
seconds for OmniRPC and from 50 to 700 seconds for OmniRPC with data persistence,
see Table 4.7 and 4.8. The lowest execution time results are obtained by the use of data
persistence and data migration anticipation with OmniRPC. They come from the reuse
of data on a node which allows to have less data exchange and to decrease the amount
of communications. Furthermore, as expected by the increase of the computational
power, the performances of YML are improved and the comparison between the results
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Figure 4.11: Execution time of OmniRPC and YML with and without data persistence
on Rennes with block size = 1500
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of Nancy on Figure 4.10 and the results of Rennes on Figure 4.11 are more interesting.
The execution times of YML without data persistence and data migration anticipation
implementation are faster than the previous on Nancy, from 20% to 50% on the new
cluster configuration. In the same way, the YML implementation with data persistence
and data migration anticipation is a little bit faster from 12% to 17%. These results
with a different cluster configuration show the performances of YML can be globally
improved when it has more computational power to solve dependences and transfer
data. As a consequence, the overhead is decreased with the use of a powerful node and
that is demonstrated in the Table 4.7. The overhead is reduced 2% for 64 blocks and
is also negative from -10% to -22%. YML is in consequence faster than the OmniRPC
implementation. For the use of data persistence and data migration anticipation in
YML, overhead is decreased too but of a few percent. The reduction comes from the
supplementary power which allows to YML to solve task dependences more efficiently.
Moreover, the data repository server can answer to the requests and distribute data
faster.

The previous part and this one have demonstrated two elements for YML. The first
is YML can be an interesting framework to program an application with the use of
data persistence and data migration anticipation because it does not generate a huge
overhead without rewriting the application. The second is it has been demonstrated
that the data repository server is mainly responsible of the overhead because the use of
data persistence has reduced data transfer and has decreased requests to it. This part
has confirmed this point with a different cluster configuration which is more adapted
for YML with a powerful node. The overhead is also decreased in this case. YML
can be interesting for performance because it uses a graph description paradigm with
a component approach. This approach offers to end-users the possibility to minimize
the Time-To-Solution with a low cost and without any extra programming by reusing
components and running the same code on different middleware.

4.6.2 Cluster of clusters

As presented in the third section, we have an interest to evaluate YML on a cluster of
clusters. The same platform is now used in the context of data persistence and data
migration anticipation to observe the impact of it.

The cluster of clusters architecture introduces different levels of network communi-
cations which can slow down the execution of an application. This is pointed out in
the Table 4.12 and 4.10 where all-times of execution are increased if they are compared
with the results obtained on Rennes. The performances of YML with and without
data persistence and data migration anticipation are closer to the execution time get
on the cluster of Rennes for p greater than 3. By contrast, OmniRPC performances are
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p×p Number Matrix OmniRPC YML Overhead
of tasks size

2×2 8 3000 345 s 406 s 17.68 %
3×3 27 4500 595 s 490 s -17.64 %
4×4 64 6000 915 s 685 s -25.13 %
5×5 125 7500 1356 s 936 s -30.97 %
6×6 216 9000 1951 s 1210 s -37.98 %
7×7 343 10500 2708 s 1552 s -42.69 %
8×8 512 12000 4250 s 2034 s -52.14 %

Table 4.9: Time comparison of OmniRPC and YML on a cluster of clusters of 100
nodes, with block size = 1500

p×p Number Matrix OmniRPC YML Overhead
of tasks size with DP with DP

2×2 8 3000 309 s 310 s 00.32 %
3×3 27 4500 566 s 431 s -23.85 %
4×4 64 6000 1019 s 656 s -35.62 %
5×5 125 7500 1727 s 765 s -55.70 %
6×6 216 9000 2146 s 1113 s -48.13 %
7×7 343 10500 3036 s 1441 s -52.53 %
8×8 512 12000 4197 s 1767 s -57.89 %

Table 4.10: Time comparison of OmniRPC and YML with data persistence on a cluster
of clusters of 100 nodes, with block size = 1500

decreasing drastically. In the same way than previous parts, the dynamic tasks schedul-
ing permits to hide some communications latency which are generated by the different
levels of network. Moreover, the use of a more powerful node drastically decreases the
overhead and allows to YML to be faster than OmniRPC, see the Table 4.9 and 4.10.
For the best case that we have evaluated, the overhead is -52% for YML without data
persistence and data migration anticipation, then the execution is divided by two and
the worse result is 17% for 4 blocks (p = 2). This loose of performance is explainable by
the fact that the tasks scheduling takes more time than computations. The overhead
for the data persistence and data migration anticipation implementation is also reduced
in the same order 57% for the best and 0.32% for the worse. The comparison of YML
with and without data persistence and data migration anticipation points out a small
gap of execution time, see Figure 4.12. The data repository is the main responsible
for this lack of performance but the data persistence implementation where the just-
in-time scheduler is mainly used shows that this point can be improved with a more
powerful node in this cluster configuration. The overhead is in consequence negative
and demonstrates the efficiency of YML when the scheduler and the data repository
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server use an adequate powerful resource.

4.7 Conclusion

In this chapter, we have seen that a graph description paradigm is a high level pro-
gramming approach. It allows end-users to develop parallel program without express-
ing communications between tasks. Those communications are extracted from the task
dependences graph which is expressed separately from computational code. This seg-
regation between the description of parallelism and computational kernel is realized
by the component-oriented programming of YML. It also helps to modify parallelism
without interfering in the writing of computational code. An illustration of this aspect
has been given through two parallel and distributed adaptations of the block Gauss-
Jordan method. The first adaptation was the parallelization of the different loops which
compose a computation step. The second adaptation was a massively parallel imple-
mentation of the matrix inversion method which consists of adding the parallelization
of the computation steps. This adaptation has been written by modifying the graph of
dependences and reusing components of the first adaptation. Thereby, the development
time has been reduced by reusing computational kernels and expressing a different par-
allelization easily through the graph description. So the graph description paradigm
contributes to reduce development time and improve productivity which is a criteria for
the programming paradigm candidate for exascale. This paradigm should also increase
productivity for debugging by extending implementation component of YML with a
graph which should give information on where the program has unexpectedly stopped.
For fault-tolerance, the graph description of application and components should offer
to restart application exactly where a fault has occurred.

Moreover, the graph description paradigm avoids end-users to manage explicitly com-
munications which are managed at run-time. The just-in-time scheduler is in charge
to drive communications and task running by solving task dependencies during the
application execution. Unfortunately, communications in YML are only synchronous.
However, the just-int-time scheduler may be extended to analyze the graph of depen-
dencies at run-time to know when and where data are necessary and anticipate their
migration by making asynchronous communications. Data persistence and data migra-
tion anticipation experiments with YML were good example to illustrate this point.
Experiments have shown YML is faster than OmniRPC which has a static-scheduling
in opposite to YML thanks to the dynamic dependences resolution during the run-time.
The use of the graph dependences to take advantage of data persistence and data mi-
gration anticipation, asynchronous communications, gives end-users the possibility to
exploit these optimizations without any extra programming. This contributes to reduce
development and execution time and so to minimize the Time-To-Solution.
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For exascale computing, the productivity is an important criteria to satisfy for the
programming paradigm candidate but efficiency is the first critical parameter. The
management of communications and computation resources by a scheduler should con-
tribute to improve efficiency and discharge end-users to write sophisticated management
systems. As we have seen, a graph description paradigm like YML provides many infor-
mation which help to schedule task and may help to realize asynchronous and optimized
communications. These information may also contribute to optimize and get efficient
data movement. However, this just-in-time scheduling in YML based on graph suffers
of performance degradations that are planned to correct with some research works on
grid scheduling and Many-Task Computing. The other problem with this paradigm
for exascale is scalability which is highly important. Considering that in our proposal,
the graph description paradigm is to program supercomputers at the high level, so at
coarse-grain, graph management should scale to million of tasks. Nevertheless, this
point remains to demonstrate with YML.

The interesting points underlined for exascale are also valuable for TOTAL. For their
applications, a graph description may increase productivity and the run-time manage-
ment may improve efficiency with task scheduling and asynchronous communications
which are frequent in the main used domain decomposition application for seismic imag-
ing, i.e. the reverse time migration [75]. As we have pointed out, the graph description
provides many information to optimize communications, restart applications where it
stops unexpectedly in case of faults or execute tasks when they are ready to run. Nev-
ertheless, tasks and I/O dependences may be also extracted from the graph in order
to anticipate data buffering (prefetching) and move data in advance where they will
be needed, in the same way as data migration anticipation. In the next chapter, we
propose to explore a such advantage of the graph description paradigm to optimize I/O.
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Chapter 5

Asynchronous and Smart IO
Delegation System:ASIODS

5.1 Introduction

As computing power growth to reach Exaflops, the amount of data processed and gen-
erated by applications should also increase and exascale storage systems should have
half an Exabyte of memory to handle this deluge of data. Those storage systems should
be scalable to be accessed simultaneously in competition by million of cores and be able
to deliver an average bandwidth of tens TB/s. To get this throughput, storage sys-
tems should be organized in a memory hierarchy of RAM, Solid State Disks (SSD) and
drives which require to be exploited efficiently to unveil their maximum potential. The
problem is common storage systems are built to handle the worst case of synchroniza-
tion, conflicts and coherence, considering I/O as separate activities from computations.
Thereby, the various memories of exascale storage systems should only use common
caching techniques such as least recently used and most frequently accessed files which
do not take advantage of end-users information about application I/O. As the previ-
ous chapter has shown, a graph description paradigm gives many information on task
dependencies and may be extended to extract I/O and task dependencies. This depen-
dency knowledge should help to perform I/O in advance in order to hide disk latencies
and realize asynchronous storage accesses to overlap I/O and computations.

In this chapter, we propose to use end-users knowledge about task and I/O depen-
dencies to optimize and realize "smarter" I/O. The end-user expertise may be also
combined with I/O performed in delegation, also known as I/O forwarding, which has
demonstrated improved performances on large systems by avoiding disk contention by
competing accesses. To demonstrate the interest of such approach, we have developed an
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asynchronous and smart IO delegation system (ASIODS) which combines both aspects
of end-user expertise and I/O delegation. For the moment, this system has not been in-
tegrated in a graph description paradigm such as YML which may help to support I/O
into the programming paradigm and offer a transparent processing of I/O to end-users.
The next section outlines related work on I/O optimization such as I/O forwarding or
collectives I/O and explains the differences with our approach. The architecture and
the implementation design of ASIODS are presented in the third and fourth section.
A preliminary evaluation on a common BLAS3 operation is realized and presented in
the fifth section. An analysis and a discussion around the interest of such approach for
exascale supercomputers are made in the last section of this chapter which concludes
and outlines the further extension and integration in a graph description paradigm.

5.2 Related Works on I/O Optimizations

To improve storage performance, the main optimization of file system is to keep the most
recent used data in system memory to get a faster access. This method is named caching
and allows to take advantage of the read output of RAM which is 10 times faster and
has a lower latency than hard drives. In parallel and distributed programming, the most
common used library (MPI) offers some I/O optimizations with ROMIO [76] such as
caching or collective operations. Some other researches have increased performances by
delegating I/O operations, also known as I/O forwarding, to a subset of nodes [77] [78]
to avoid the disk contention and to not overload disks with a huge number of requests.
The mix of both ideas has been tried and is successful to increase storage performances
by delegating I/O and caching on a system formed by a group of nodes [79]. All of
these techniques rely on collective I/O, caching and I/O forwarding to optimize disk
accesses and by keeping most recent used data in a fast memory zone. However, this
kind of technique is limited and does not give the possibility to use efficiently the cache
for irregular I/O accesses and take in account the user expertise on applications. One
solution is to prefetch data in a memory zone which has a fast access rate and a low
latency. Our proposal uses this knowledge and in contrary to the proposed approaches
does not rely on specific operating system to make I/O forwarding. In [80], a fragment
of application is firstly run to identify future I/O references and generate prefetch
requests. Our approach does not use a pre-execution to determine prefetch requests
but I/O is expressed in relation to tasks separately from the computation code by the
end-user. Although our first implementation lacks of maturity and is not completed,
it offers to insulate computations and I/O by using the parallelism is expressed at a
high level by end-users. These expressions come from the fact that many algorithms of
scientific computing are deterministics in number of operations, data exchange and I/O.
Therefore, this knowledge may be used to prefetch data in a smart way and may offer
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to overlap computations and communications. The memory zone where data are put in
advance could be also used to write data asynchronously on the storage. We propose to
explore an advanced approach for an asynchronous and smart I/O management based
on the I/O delegation for prefetching or write through on a dedicated part by using the
I/O dependency graph of applications.

5.3 Architectural Approach

Supercomputers are designed to achieve high performance for intensive computing by
running many thousand cores interconnected through a high bandwidth network and a
shared high performing storage. However, machines can be seen as a distributed system
composed of two subsets. The first one is composed of cores dedicated to computations
and the second one is a set of cores and disks of the storage. Both are thus in charge
of specific tasks. The I/O delegation allows to take advantage of the specialization
by separating concerns of computations on the Cluster part and storage accesses on
Storage part which exchange data through a memory zone named the Global Buffer
Memory (GBM), as shown on the Figure 5.1. The Cluster part (red circle) is composed
of cores dedicated to computations (small pink circles). The computation cores execute
scientific kernels of the parallel application. One node of the Cluster or outside, the
Master, does not run any computations and is in charge of managing the application
execution. It has the graph of I/O dependencies, each node of the graph corresponds
to a task associated to different files needed, the size of data, the offset, the process
ranks and a completion status of the I/O. Each I/O operation is considered as a request
and all are sent to the I/O Manager of the Storage part in order to make a copy. A
synchronization is regularly made between both parts to update the completion status
which are used to authorize computation cores to read or write data into the GBM. The
Storage part (green circle)is composed of cores dedicated to the storage (small green
circles) and an I/O Manager process. The I/O Manager is in charge to receive the
requests from the Master and to dispatch it to the storage cores. Each storage core has
its own request list to process and manages the space available of its physical memory
which belongs to the GBM. The I/O Manager is synchronized with storage cores to
know the completion status of each request and the space available into the GBM. To
exchange data between computation and storage cores, a memory zone is defined, the
Global Buffer Memory. Data are placed in this memory in order to be processed from
or to the storage. The properties of the memory zone are very low latency and high
read/write performances, in fact better than the storage system drives. The GBM is
physically distributed among many devices to load balance the processing burden and
reach a large space of exchange which is considered as one memory space managed by
the I/O Manager. Devices is a generic word to refer to various storage elements which
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can be different kind of natures. It can be a bunch of Solid State Disk (SSD) set on
each nodes to give a large and fast storage for each processor, some distributed memory
on non-used nodes of the Cluster to offer to transfer needed data as close as possible
of processors or storage nodes to enhance caching capabilities by reading in advance
data. All these configurations depend on the most suitable strategy for a determined
application because they have some trade-offs.

Figure 5.1: Asynchronous and Delegated I/O Architecture

5.4 ASIODS Design

After the presentation of the architecture, this section explains how the storage part
and the I/O Manager are implemented to form the ASIODS Server. It also details the
functioning of the cluster part and the Master which form the ASIODS client and are
illustrated through an application example of a dense matrix-matrix multiplication.

5.4.1 Server Side

In our implementation of the server, the I/O Manager is integrated as a part of the
storage core which runs on a multicore processor. Figure 5.2 shows the organization of
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parts and illustrates how they interact. The server is in charge to receive requests from
the Master over the network. These requests are get and placed into the request list
to be processed. The I/O Thread Pool is composed of a pool of threads which are in
number of two in our case, but a higher number can exist if necessary. Threads retrieve
requests in a FIFO order from the list and process I/O. If the request contains an I/O
read, data are processed from the storage into the GBM. In opposite, if the request
contains an I/O write, data from the GBM are written to the storage. The completion
status of the request is after changed to complete in order to update the list handled by
the Master during the synchronization. At each processing, the available space in the
GBM is monitored and updated before any operation on it. Another thread pool, the
Data Exchange Thread Pool, is in charge to send or receive data to/from computational
cores. The thread pool has three threads in our case. Each thread processed a request
received from a computation core and looks for it in the request list. The found request
contains the pointer where data are located into the GBM. This pointer is used to send
or receive data over the network to or from the computation in demand. For the GBM,
we have chosen to allocate the RAM of one node as but it could be partitioned among
various nodes which will be managed by the I/O Manager.

5.4.2 Client Side

In our implementation of the client, end-user declares I/O and task dependencies
through an API which takes as parameters the file name, the offset, the size, the number
of accesses and the task name. These dependencies are handled by the Master as an or-
dered list that is planned to be extended by a graph and high level management of tasks
in a next version to get a transparent support. The Master is composed of two threads.
The first one is the Exchange Thread which is dedicated to send requests at start-up
and synchronize the completion status of requests with the I/O Manager. During the
synchronization initiated the Master, unnecessary requests are removed from the I/O
manager in order to get free space in the GBM. These requests are those which are
no longer necessary because data have been retrieved by the computation cores. The
second thread is the Authorization Thread which is in charge to allow computation
cores to access the GBM. It receives request details from a computation core and looks
for the completion status in the ordered list of requests. If the I/O of the request has
been processed, the thread sends the authorization access to the requesting core. In
other case, the computation core is placed in a waiting state until the completion status
of the request changes to complete. It will be notified and granted of an authorization
access at the next synchronization between the Master and the I/O Manager, if the
completion status has changed. The computation core is only composed of one thread
in charge to ask authorization access at the GBM to Master and to retrieve data. All
these explanations are illustrated and summarized in the Figure 5.3.
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Figure 5.2: ASIODS Server
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Figure 5.3: ASIODS Client

5.4.3 Example: Matrix-Matrix Product

The classical version of the algorithm computes successively a product between each
element of a row and each element of a column of two square dense matrices, A and
B, and sums the result of each element product which is an element of a result dense
matrix C. For the blocked version, square dense matrices A, B and C are defined and
partitioned into NbBlock×NbBlock blocks of dimension BlockSize×BlockSize. Each
block is also divided into sub-blocks of a fixed size (2000 × 2000) in order to increase
the number of read accesses. To process the product, this version uses Algorithm 5.1
which has 3 loops to multiply each block row I of A by each block column J of B,
sums the block I,J of C and puts the result into it. We notice that a matrix-matrix
product is realized to multiply each block. To run it on many cores, the algorithm
is parallelized with MPI (Message Passing Interface) by allocating each block C[I,J]
computations on a core such as rank = I ∗ NbBlock + J . The algorithm order is of
NbBlock3 and runs on p cores such as p = NbBlock2. We have developed three versions
of the block matrix multiplication in order to compare the peak performance reachable
by the application in different modes. The first one is named No I/O which computes
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all data from RAM. The second one is named Classical I/O reads at each step of the
loop K the blocks A[I,K] and B[K,J] and keep in RAM the block C[I,J]. The third one
is our approach of I/O delegation and is named ASIODS. The Master sends all I/O
to the I/O Manager which registers it. The computation processes ask for data in the
same way as the Classical I/O version and receive it when they are loaded in the GSM.
Thereby, the Classical I/O and ASIODS version have the same I/O behavior and read
2 ∗ (NbBlock ×Blocksize/2000)3 blocks during the execution.

Require: A (partitioned into NbBlock ×NbBlock)
Ensure: C = A×B

for I = 1 to NbBlock do
for J = 1 to NbBlock do
for K = 1 to NbBlock do
CIJ = AIK ×BKJ

end for
end for

end for
Algorithm 5.1: Block Matrix Product Algorithm

5.5 Experimental Platform

After the presentation of the design, this section presents the performance results of
ASIODS in order to evaluate our approach and to find improvement points. Experi-
ments are based on a platform composed of one client for computations and one storage
node which are directly interconnected through an InfiniBand link. The client and the
storage node configurations are given in Table 5.1. The storage node has 120 drives
formatted with the GPFS file system to provide a total capacity of 5.5TB. For our
evaluation, we have chosen to take advantage of the open space to users on the storage
platform and use as GBM the memory available in the storage node, i.e. 10GB. Exper-
iments compare performances of a block matrix product algorithm with classical I/O
and with ASIODS. Only the blocks in input are retrieved from the storage. Various
number of blocks and block sizes of the algorithm have been set to modify the number
of I/O and see the performance behaviors.

5.6 Performance Study

The knowledge of the relation between tasks and their I/O needs offers the opportunity
to have a better cache management by moving in advance necessary data from the stor-
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Name Processor Cores Memory Network
Storage Xeon E5530 2.40 GHz 4 10GB Mellanox IB

(Nehalem) 4xQDR (40 Gb/s)
Client 2x Xeon E5410 2.33 GHz 8 16GB Mellanox IB

(Harpertown) 4xQDR (40 Gb/s)
Storage Configuration

File System Capacity GPFS Read Bandwidth
GPFS 5.5 TB 2.7 GB/s

Table 5.1: Hardware Resources

age to a memory zone with a higher throughput. ASIODS is aware of these information
and also insulates I/O by delegating these operations on a dedicated node. Thereby,
our approach may accelerate accesses to the storage in comparison to a classical I/O
use. For a block matrix multiplication partitioned into 2× 2, 4 processes are executed
in parallel and get back at each computation step two blocks of matrix A and B from
the storage. The implementation of the algorithm with ASIODS gives an average of
8% of execution improvement over the version with the classical I/O, as shown in the
Figure 5.4. Moreover, the performance gap becomes smaller between ASIODS and the
No I/O version which is the peak performance sustainable by the application.

Figure 5.4: Performance for a block matrix product of 2x2 blocks
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To evaluate our approach with a higher number of requests at the same time, the block
matrix product is now partitioned into 3× 3 blocks and run 9 processes in parallel. As
shown in the Figure 5.5, ASIODS gives 11% of execution improvement over the Classical
I/O version for a block size of 2000× 2000 and it is still achieving good performances
on other cases. However, results decrease as the block size grows, i.e. number of I/O.
This comes from the data status checking between the Master and the computation
processes in order to give the authorization access to the GBM. In our implementation
of ASIODS, only one thread is dedicated to receive requests to check if data are ready
or not to be retrieved for computations. It creates a communication bottleneck that we
plan to correct in a next version.

Figure 5.5: Performance for a block matrix product of 3x3 blocks

In previous experiments, both versions have been evaluated by modifying the problem
size to increase the number of I/O. Data size to retrieve from the storage was at a fixed
dimension that have a constant I/O access time and did not significantly involve the
network latency. The ratio between computation time of sub-block products and I/O
access time to get data was thus kept at the same value. We now propose to play on
these parameters by fixing the block size and by modifying variously the size of sub-
blocks. A matrix block in our algorithm is divided into sub-blocks which are read from
storage at each computation step. Smaller is the sub-block size, higher is the number
of sub-blocks and thus the number of I/O which takes a higher part of the computation
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time. ASIODS also achieves good performances with an average of 10% of acceleration
in comparison to a classical I/O usage, as shown on the Figure 5.6. This result is
especially for small sub-block cases in which more data are read in advance and placed
in the global buffer memory. It allows to hide the disk latency that is more important
when a small data set must be read and play a higher part in the global execution
time, in particularly when the range of data to process has a short computation time.
However, ASIODS generates a penalty for larger sub-blocks when blocks have a small
division and the amount of I/O decreases. In our model, the Master sends requests
to the I/O Manager which has to move forward from the storage to the GBM. The
transmission of requests and the synchronization between both parts is impacted by
the network latency that involves lower performance on large sub-blocks. It was not
clear on previous experiments because the amount of data read in advance was sufficient
to hide this problem. In these cases also, the computation time of sub-blocks is higher
than the I/O access time which involves a lower contribution of I/O in the global
computation time. ASIODS should improve the performance, a little bit less because of
this point, but the request processing is also in cause of this performance degradation.
The request transmission and processing must be improved in a next version in order
for our approach to be efficient in most I/O cases. Despite the fast ASIODS suffers from
performance loss. The approach offers a segregation between computation and I/O and
so a more transparent way for end-users to use efficient I/O by taking advantage of
smarter cache management.

5.7 Conclusion and Perspectives

In this chapter, we have presented the design of an asynchronous and smart I/O del-
egation system and have evaluated the first implementation in order to validate the
proof of concept and its potential. Those results have been also presented in [81]. The
simple algorithm benchmark with a low I/O bandwidth has demonstrated an execu-
tion improvement of 8% than a classical I/O usage by moving in advance data from
storage to a high throughput memory zone in order to get faster accesses and hide
disk latency. Performance speedup obtained is not very high and without our approach
can be balanced with a supplementary I/O rack in order to get more I/O bandwidth.
However, results have shown ASIODS helps to go closer to the peak performance of the
application and we have explained the source of performance degradation. Problems
are the transmission latency of requests between the Master which knows the relation
tasks dependencies and I/O and the I/O Manager which is in charge to move data
from the storage to a memory zone with a higher throughput, the GBM. The request
processing by the I/O Manager was also detected as a bottleneck. We plan in a second
stage to improve these points and extend the evaluation to write performances on a real
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Figure 5.6: Performance for 3x3 blocks with a fixed block size of 10000× 10000

application.

Moreover, ASIODS allows to hide disk latency by reading advance data and also avoid
disk contention by minimizing the number of clients which access the storage at a time.
The relation knowledge between task dependencies and I/O gives a more end-users
approach in which I/O are expressed at a high level and are transparently processed
and optimized. We have observed during the implementation of our benchmark that it is
easy to describe the task dependencies and I/O for a simple application with common
programming language but it should be more complex for direct methods. A better
way and more end-users oriented to express task dependencies should investigate such
as the graph description language of YML [16]. With a high level programming language
and the description of the relation between tasks dependencies and I/O offer a way to
integrate I/O into a programming model for Excascale supercomputers. The delegation
is also an interesting point for some applications which need to apply a pre or post-
processing treatment on data, such as some computational fluid dynamic applications.
This operation with our approach and the filtering approach of DataCutter [82] could
be put together in order to delegate on a node pre and post-processing treatments and
thus speedup execution of parallel and distributed applications.
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Chapter 6

Conclusions and Future Work

6.1 Conclusions

This thesis proposes a global programming paradigm for exascale supercomputers
which relies on a multi-level programming paradigm. Those paradigms are proposed
in relation to the hardware decomposition of these machines in 3 levels. At the
low level, the base computing element should be many-cores processors. We have
proposed for this hardware level a data parallel programming paradigm in the third
chapter. It has the particularity to be focused on data movements and mapping
which are crucial on many-cores. These parameters are typically hard to optimize
with irregular data accesses such as sparse matrix computations. Data structures
defined by sparse formats play an important role in the performance achievement
of sparse matrix computations. To explore data parallelism, we have implemented
and evaluated the common sparse formats on a many-core processor (GPU) for
the sparse matrix vector product. Our analysis has shown data parallelism offers
to exploit the different memory levels on the chip and to optimize accesses to the
main memory. However, for matrices with highly irregular data structures and
for some sparse formats like column compressed, the lack of direct communication
possibilities between cores inevitably generates penalizing accesses and a bottleneck
of the main memory. This should be avoided on the future many-cores with the
integration of network-on-chip between cores. This feature should allow to optimize
communications on the chip, avoid cache misses and thus reduce the main memory
bandwidth consumption. The problem of many-cores programming is not very new
and is continuing to grow with the multiplication of cores. Unfortunately, we can
notice that few initiatives of programming framework and standard have been set out
on to attack this issue, except HTA,OpenCL [83], Ct or OpenMP locality extension [84].
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At the middle hardware level of excascale machines, socket of many-cores processors
should be interconnected by an optical link with a high bandwidth. To take advantage
of this fast communication path and network topology between nodes, we have proposed
a message passing paradigm to realize point-to-point communications between sockets
or groups of node located at one hop. This paradigm and communication aggregation
have not been explored in this thesis because it is a well known programming paradigm
used for many supercomputers.

At the high hardware level, exascale machines will be composed of millions of nodes
to reach a total core counting of a billion. For this level, a graph description paradigm
has been proposed in the fourth chapter. The YML framework has been used to explore
this paradigm for these particularities to provide a component-oriented programming
and a graph description language based on a direct general graph. Through the
programming of two parallel and distributed adaptations of a dense matrix inversion
method, we have underlined that a graph description paradigm contributes to improve
productivity and minimize the Time-To-Solution. The development time is reduced
by the segregation between the computational code and the description of parallelism
that may be easily modified. The component-oriented programming contributes also
to the productivity by giving re-usability and modularity. Furthermore, the support of
heterogeneous hardware like GPU can be made easily with multiple implementation
for one abstract component with an automatic detection of underlying hardware
at run-time. The high level programming approach avoids end-users to explicitly
manage communications which may be managed and optimized during the execution.
Experiments have pointed out that the graph description gives many information that
could help to anticipate data migration with asynchronous communications and also
a better coordination of tasks by scheduling them when they are ready to run. For
exascale computing, partial or global synchronization are not scalable and will slow
down application performances. Asynchronous communications are highly important
to make program scalable. They also increase performance by offering to overlap
communications and computations. With a graph description paradigm, end-users are
not in charge to express communications which are transparently declares through the
description of task dependencies. These dependencies can be also used at run-time to
realize asynchronous communications by analyzing the graph and taking in account
the state of tasks.

Fault-tolerance is critical for exascale computing and can be supported by the
last proposed paradigm. The graph description paradigm offers to restart and
locate a failed task in the global application execution flow. Considering, the global
application state and data available extracted from the graph, the necessary tasks
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can be relaunched in order to restore the entering state of the failed task. The task
in which a fault has occurred can be also simply restarted and independent tasks
can continue their processing. In consequence with graph, faults can be managed
at run-time, can avoid checkpoints and the application restart at the last context saving.

As we have pointed out, the potential issue with the graph description paradigm is the
application scalability because graph are NP − hard problem to schedule. Moreover,
an overhead is also to consider for the scheduling and the run-time management system
based on graph. Nevertheless, this paradigm in our proposal is at a high level and
thus for coarse-grained tasks. It induces that this paradigm should scale for million of
tasks regarding to this paper [85]. However, some research stay to do to get efficient
scheduling and tolerable overhead.

In our experiments, we have shown that data migration anticipation may be realized
automatically and transprently for end-users by analyzing the graph of dependencies
during the execution. However, other operations may be anticipated and extracted
from the graph information, such as I/O. The fifth chapter has presented and explored
the use of graph dependencies to realize anticipated and delegated I/O. Asynchrony of
anticipated storage accesses gives the possibility to get a fast data access and overlap
computations and I/O. Delegation participate to reduce disk contentions coming from
the massive competition accesses of cores which should be highly present in exascale
systems. The exploitation of task dependencies offers a transparent management of I/O
to end-users by supporting I/O directly into the programming paradigm. The segrega-
tion between I/O and computations gives also a layer to optimize storage accesses with
collective I/O at run-time. The graph analysis and the information of task mapping
also offers to move data from the storage to the closest place where data are going
to be processed. The knowledge of future I/O accesses may also contribute to exploit
the memory hierarchy of future storage systems. The high level support and I/O op-
timizations at run-time should lead to an improvement of productivity and increase
performance of applications to sustain many petaflops on exascale machines.

6.2 Consequences and Future Works

Two programming ways are possible for exascale, an uniform programming with one
programming paradigm or a hybrid with the aggregation of multiple paradigm. Our
proposal is a hybrid form which is based on the exploitation of three different program-
ming paradigms. However, it involves some trade-offs and consequences. The use of
multiple paradigm makes more complex the programming for end-users by exposing the
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different levels. They must be aware and care about the different levels of parallelism
and use the convenient programming paradigm. This point may appropriate to decrease
the programming productivity.

As an extension of this work, it will be interesting to study how these paradigms
may be integrated together to create a general programming model. This should be
investigated during the ANR-JST FP3C project which is a collaboration between France
and Japan to work on framework and programming models for post-petascale machines.
One of the purpose is to adapt YML to have the possibility to use XMP as a language
for implementation components. Moreover, each XMP component must support and
interact with a run-time for many-cores processors. The interaction between those three
will be studied and integrated in order to propose general programming model. For this
project, YML should be extended with an asynchronous global address space support in
order to allow interaction between XMP and YML and also in order to realize automatic
data migration anticipation. Scheduling strategies for graph must be also improved in
YML to support a better scaling and to deliver higher performances.

Another consequence of a multi-level paradigm programming is the redesign of algo-
rithms. They should take into account the hierarchy decomposition to get the maximum
performance efficiency. This induces a lot of effort to re-think and redesign numerical li-
braries and also to rewrite applications. A hybrid programming model is highly possible
considering the complexity of the hierarchy and the heterogeneity of exacale machines.
Run-time should integrate an automatic data distribution and mapping engine in or-
der to take into account this hierarchy and the various performance and memory size
available from the computation elements.

In our opinion, the future programming model for exascale should be not rely on
a compiler. They commonly need a long time to reach maturity in order to provide
reliability and deliver performances. API or language extension are the best candidates
because they provide incremental modifications from actual applications and not a
re-program from scratch. We also think that run-time should take advantage of the
end-user expertise at the application level in order to provide auto-tuning. This should
help to adapt program on targeted machines and exploit the maximum performance.

Despite our approach is not complete and need to be pursued in order to finalize
some ideas and demonstrate its potential through the integration of the different levels
of paradigms. We believe that we have given some research direction and arguments
in the orientation of the future programming paradigm for exascale computing. We
estimate also that the education of end-users is highly strategic and they should start to
focus on hybrid programming and application. We are also convinced that they should
work jointly with computer scientists in order to prepare the turn of exascale which
should be the key for many science breakthrough and for the design of revolutionary
engineering solutions.
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Résumé:

L’arrivée des supercalculateurs post-petascales et exascales offre la perspective
d’accélérer la résolution des problèmes d’ingénierie aux modélisations hautement com-
plexes. Cependant, ces futurs systèmes posent des problèmes aux informaticiens pour
construire de telles machines. De nombreux problèmes doivent être résolus comme la
tolérance aux pannes, la consommation énergétique et la programmation de ces systèmes
complexes composés de milliard de coeurs.

Dans cette thèse, nous nous sommes concentrés sur l’aspect programmation et pro-
posons un paradigme de programmation multi-niveaux composé de trois niveaux. Pour
le bas niveau, un paradigme data parallèle est proposé pour programmer les processeurs
à nombreux coeurs pour sa focalisation sur la distribution et le mouvement des données.
Nous avons implémenté et évalué le produit matrice vecteur creux suivant différents for-
mats de matrice creuse sur un GPU pour illustrer ce point. Pour le niveau intermédiaire,
nous proposons un paradigme à passage de messages de manière à optimiser les com-
munications inter-processeurs et inter-noeuds. Pour le haut niveau, un paradigme de
description de graphe est proposé pour programmer et gérer le parallélisme entre les
noeuds.

Avec une méthode d’inversion matricielle dense développée en YML, nous soulignons
l’intérêt des graphes pour la minimisation du temps à la solution et pour le support
des communications asynchrones de facon transparente. L’intérêt des graphes est égale-
ment démontré pour les optimisations d’entrées/sorties et leur support dans un modèle
de programmation. Nous concluons finalement en analysant une telle proposition de
paradigme de programmation pour les machines exascales et présentons la direction des
travaux futurs.

Mots Clés: paradigme, exascale, YML, GPU, data parallèle, description de graphe,
délégation d’entrée/sortie





Abstract:

The coming of post-petascale and exascale supercomputers offers the perspective to
accelerate the solving of engineering problems which have highly complex modeling.
However, these future systems challenge computer scientists to built such machines.
Many issues must be faced such as fault-tolerance, energy consumption and the pro-
gramming of these complex systems composed of billions cores.

In this thesis, we have focused on the programming aspect and propose a multi-level
programming paradigm composed of three levels. For the low level, a data parallel
paradigm is proposed to program many-cores processors for its focus on data mapping
and movements. We have implemented and evaluated the SpMV with various sparse
matrix formats on GPU to illustrate this point. For the intermediate level, we propose
a message passing paradigm in order to optimize inter-sockets and inter-nodes commu-
nications. For the high level, a graph description paradigm is proposed to program and
manage the parallelism between nodes.

With a dense matrix inversion method developed in YML, we underline the interest
of graph for the Time-To-Solution minimization and for the support of asynchronous
communications in a transparent way. The interest of graph is also demonstrated for I/O
optimizations and for their direct support into the programming model. We conclude
finally by analyzing a such proposition of programming paradigm for exascale machines
and outline the future work direction.

Keywords: programing paradigm, exascale, YML, GPU, data parallel, graph de-
scription, I/O delegation
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