
Université des Sciences et Technologies de Lille – Lille 1

Département de formation doctorale en informatique École doctorale SPI Lille
UFR IEEA

Solving Dynamic Vehicle Routing Problems:

From Single-Solution Based Metaheuristics to

Parallel Population Based Metaheuristics

Résolution des Problèmes Dynamiques de Tournées de Véhicules:

De Métaheuristiques à Base de Solution Unique aux

Métaheuristiques Parallèles à Base de Population

THÈSE

présentée et soutenue publiquement le 02 décembre 2011

pour l’obtention du

Doctorat de l’Université des Sciences et Technologies de Lille

(spécialité informatique)

par

Mostepha Redouane Khouadjia

Composition du jury

Président : – Gilles Goncalves, Professeur des Universités, Université d’Artois, France.

Rapporteurs : – Pascal Bouvry, Professeur des Universités, Université du Luxembourg.
– Van-Dat Cung, Professeur des Universités, INPG, France.
– Geir Hasle, Research Director, SINTEF Applied Mathematics, Oslo, Norvège.

Examinateurs : – Gabriel Luque, Assistant Professor, Université de Málaga, Espagne.
– Dominique Feillet, Professeur des Universités, EM de Saint-Etienne, France.

Directeur de thèse : – El-Ghazali Talbi, Professeur des Universités, Université Lille-1, France.

Co-Encadreur de thèse : – Laetitia Jourdan, Professeur des Universités, Université Lille-1, France.

Laboratoire d’Informatique Fondamentale de Lille — UMR USTL/CNRS 8022
INRIA Lille - Nord Europe

Numéro d’ordre: 40638

Abstract

Many problems in the real world have dynamic nature and can be modeled

as dynamic combinatorial optimization problems. However, research on dy-

namic optimization focuses on continuous optimization problems, and rarely

targets combinatorial problems. One of the applications in dynamic combi-

natorial problems that has received a growing interest during the last decades

is the on-line or dynamic transportation systems. A typical problem of this

domain is the Dynamic Vehicle Routing Problems (DVRPs). In this latter,

the dynamism can be attributed to several factors (weather condition, new

customer order, cancellation of old demand, vehicle broken down, etc.). In

such application, information on the problem is not completely known a priori,

but instead is revealed to the decision maker progressively with time. Con-

sequently, solutions for different instances have to be found as time proceeds,

concurrently with managing the incoming information. Such problems call for

a methodology to track their optimal solutions through time.

In this thesis, the dynamic vehicle routing problem is addressed and de-

veloping general methodologies called metaheuristics to tackle this problem

is investigated. Their ability to adapt to the changing environment and their

robustness are discussed.

First, a definition and a description of the problem as well as measures of

algorithm performance are reviewed. Then, mechanisms to improve the abil-

ity of the algorithm to efficiently track optima shifting due to environmental

changes are investigated. These methods include adaptive changing of the

neighborhood in single solution based metaheuristics (S-metaheuristics), an

adaptive memory mechanism for population based metaheuristics (P-metaheu-

ristics), the use of parallel multi-populations approach as an additional means

to control diversity and the incorporation of flexibility into metaheuristics in

order to obtain robust algorithms able to produce good solutions by antici-

pating future changes.

Experimental results demonstrate that the methods are effective on this

problem and hence have a great potential for other dynamic combinatorial

problems.

Key-words: Dynamic vehicle routing problem, single-solution based meta-

heuristics, population-based metaheuristics, multi-population based metaheuri-

stics, flexibility and robustness.

1

2

Résumé

Beaucoup de problèmes dans le monde réel ont une nature dynamique et

peuvent être modélisés comme des problèmes dynamiques d’optimisation com-

binatoire. Cependant, les travaux de recherches sur l’optimisation dynamique

se concentrent essetiellement sur les problèmes d’optimisation continue, et ils

ciblent rarement les problèmes combinatoires.

Une des applications dans le domaine des problèmes dynamiques combina-

toires ayant reçu un intérêt croissant au cours de ces dernières décennies est

le système de transport en ligne où dynamique. Un problème typique de ce

domaine est le Problème Dynamique de Tournées de Véhicules (PDTV). Dans

ce dernier, le dynamisme peut être attribué selon plusieurs facteurs (condi-

tions météorologiques, nouvelle commande client, annulation d’une commande

précédente, véhicule tombant en panne, etc.). Dans un tel problème, les in-

formations ne sont pas complètement connues a priori, mais plutôt révélées

au décideur progressivement avec le temps. Par conséquent, les solutions des

différentes instances doivent être trouvées au fur et à mesure du temps simul-

tanément avec les informations entrantes. Ces problèmes font appel à une

méthodologie capable de suivre les solutions optimales au cours du temps.

Dans cette thèse, le problème dynamique de tournées de véhicules est étudié

et le développement de méthodologies générales appelées métaheuristiques

pour sa résolution est traité. Leur capacité à s’adapter à l’évolution de

l’environnement et leur robustesse sont discutées.

En premier, une définition et une description du problème ainsi que les mesures

de performance des algorithmes sont passées en revue.

Ensuite, les mécanismes permetant l’amélioration de la faculté de l’algorithme

pour suivre efficacement le déplacement de l’optimum sont étudiés. Ces

méthodes incluent le changement adaptatif du voisinage dans les métaheuristiques

à base de solution unique (S-métaheuristiques), des mécanismes de mémoire

adaptative pour les métaheuristiques à base de population (P-métaheuristiques),

l’utilisation des approches multi-populations parallèles comme moyen suppl-

mentaire de contrôle de diversité et enfin l’intégration de la flexibilité dans les

métaheuristiques afin d’obtenir des algorithmes robustes capables de produire

de bonnes solutions en anticipant les changements futurs.

Les résultats des expérimentations montrent que les méthodes sont efficaces

sur ce problème et ont donc un grand potentiel pour d’autres problèmes com-

binatoires dynamiques.

Mots-clés: problème dynamique de tournées de véhicules, métaheuristiques

à base de solution unique, métaheuristiques à base de population, métaheuristiques

à base de multi-population, flexibilité et robustesse.

3

Acknowledgments

I would like to extend my sincerest gratitude to all people who have assisted

me in completing this thesis. In particular, I would like to thank the following

individuals.

Thanks to Professor Laetitia Jourdan and Professor El-Ghazali Talbi for

supervising this work, for their background knowledge and for their support

and guidance throughout the research. To them my warmest thanks for spend-

ing and sharing their time with me during these years.

Thanks to the members of my thesis committee who have taken the time

to read the thesis and provide valuable comments on my work.

I am thankful for the financial support from the Associated Team Pro-

gram MOMDI, which allowed me to do several internships in Spain into NEO

research group and where I met excellent researchers who agreed to host me

in their research lab in order to learn from them.

Thanks to Professor Enrique Alba who roused up my interest in dynamic

optimization, and with whom I have shared many fruitful discussions.

I was very lucky to meet in this research group a wonderful colleagues and

friends and I want to thank them all for their interesting views on different

issues: Briseida, Juan José, Guillermo, José Manuel, Paco, Jamal, Francisco,

Javier and Pablo.

Thanks to my colleagues and the staff at INRIA Lille and Dolphin research

group for the friendly atmosphere, with special thanks to Marie-Eléonnore,

Moustapha, Mathieu, Yacine, Ahcéne, Karima, Imen, Thé Van, Khadidja,

Nadia and Inés.

Last, but not least, I am very grateful to my whole family for support-

ing me in this long journey, and especially to my parents who think of any

accomplishment of mine as their own.

5

Contents

Introduction 17

1 Dynamic Vehicle Routing Problems: Overview, Approaches,

and Performance Measures 23

1.1 Introduction . 23

1.2 Dynamic Vehicle Routing Problem 24

1.2.1 Problem Definition . 24

1.2.2 Formal Description . 25

1.2.3 Degree of Dynamism 28

1.2.4 Dynamic Versus Static 29

1.2.5 DVRP Interests . 30

1.2.6 Related Works . 32

1.3 Solution Representation . 38

1.4 Solving Methods . 39

1.4.1 Strategy-Based Algorithms 39

1.4.2 Heuristics . 41

1.4.3 Metaheuristics . 42

1.5 Dynamic Performance Measures 50

1.6 Benchmarks . 52

1.7 Conclusion . 56

2 Single-Solution Based Metaheuristics for Solving Dynamic

Vehicle Routing Problem 57

2.1 Introduction . 57

2.2 Single-Solution Based Metaheuristics 59

2.2.1 Neighborhood . 59

2.2.2 Initial Solution . 61

2.3 S-Metaheuristics for DVRP: Literature Review 62

2.4 Variable Neighborhood Search for Dynamic Vehicle Routing

Problem . 63

2.4.1 Variable Neighborhood Search (VNS) 63

2.4.2 DVRP Solution’s Representation 65

2.4.3 Neighborhood . 67

2.4.4 Initial Solution . 70

2.4.5 Evaluation of the Neighborhood 71

2.4.6 VNS-DVRP Algorithm 72

2.5 Simulation and Solving Framework 74

2.5.1 Event Manager . 74

2.5.2 Vehicle Schedule and Waiting Strategy 76

2.6 Experimental Results and Discussion 78

2.6.1 Benchmark Description 78

2.6.2 Comparison with State-of-the-Art Metaheuristics . . . 79

2.6.3 Performance on Large Scale Instances 80

2.6.4 Study on Varying the Degree of Dynamism 83

2.6.5 Dynamic Performance Assessment 83

2.7 Conclusion . 86

3 Population Based Metaheuristics for Solving Dynamic Vehicle

Routing Problem 89

3.1 Introduction . 89

3.2 Common Concepts for Population-Based Metaheuristics 90

3.2.1 Initial Population . 93

3.3 Particle Swarm Optimization 94

3.4 P-Metaheuristics for DVRP: Literature Review 97

3.4.1 Ant Colony Optimization (ACO) 98

3.4.2 Evolutionary Algorithms (EAs) 99

3.5 Particle Swarm Optimization for DVRP 99

3.5.1 Particle Representation 99

3.5.2 Review of Literature 100

3.5.3 Proposed Representation 101

3.5.4 Velocity vector . 102

3.5.5 Particle Movement . 103

3.5.6 Swarm Initialization 103

3.5.7 Adaptive Memory Mechanism 104

3.6 Adaptive Particle Swarm Optimization 107

3.6.1 APSO-DVRP Algorithm 107

3.6.2 Hybridization with Heuristics 108

3.7 Experimental Results and Discussion 111

3.7.1 Comparison with State-of-the-Art Metaheuristics . . . 111

3.7.2 Large Scale Instances 114

3.7.3 Study on Varying the Degree of Dynamism 117

3.7.4 Dynamic Performances Assessment 117

3.8 Conclusion . 120

4 Multi-Population Based Metaheuristics for Solving Dynamic

Vehicle Routing Problem 123

4.1 Introduction . 123

8

4.2 Multi-population Approaches for Dynamic Optimization Prob-

lems . 124

4.3 Parallel Design of MP-Metaheuristics for Dynamic Optimiza-

tion Problems . 127

4.3.1 Interests . 127

4.3.2 Cooperative Parallel Model for MP-Metaheurisitcs . . 128

4.4 Parallel Multi-Swarm Optimization for DVRP 131

4.5 Parallel Implementation of MP-Metaheuristics 133

4.6 Experimental Results and Discussion 134

4.6.1 Comparison with State-of-the-Art Metaheuristics . . . 135

4.6.2 Study on Varying the Number of Sub-Populations . . . 140

4.6.3 Dynamic Performance Assesment 141

4.6.4 Parallel Performance Assessment 145

4.7 Conclusion . 147

5 Flexibility and Robustness in Dynamic Vehicle Routing 151

5.1 Introduction . 151

5.2 Background . 152

5.3 Flexible Solving Strategy . 153

5.4 Flexible VNS for DVRP . 154

5.5 Experimental Results and Discussion 155

5.5.1 Study on Sensitivity of the Flexibility Parameter . . . 156

5.5.2 Comparison with State-of-the-Art Metaheurisitcs . . . 158

5.5.3 Flexibility vs Multi-Populations 158

5.5.4 Dynamic Performance Assessment 160

5.6 Conclusion . 163

Conclusions and Future Work 164

Bibliography 173

9

List of Figures

1.1 A dynamic vehicle routing with dynamic requests case. 27

1.2 Decomposition of a dynamic problem P = (P1, P2, P3, P4) in a

sequence of static instances. 28

1.3 Classification of DVRPs according to deterministic and stochas-

tic information related to customer requests. 33

1.4 Classification of solving methods proposed in literature for DVRPs. 39

2.1 Main principles of single-solution based metaheuristics. 59

2.2 An example of neighborhood for a permutation problem of size

3. For instance, the neighbors of the solution (2, 3, 1) are: (3,

2, 1), (2, 1, 3), and (1, 3, 2). 61

2.3 Local optimum and global optimum in a search space. A prob-

lem may have many global optimal solutions. 62

2.4 Variable neighborhood search using two neighborhoods. The

first local optimum is obtained according to the neighborhood

1. According to the neighborhood 2, the second local optimum

is obtained from the first local optimum. 64

2.5 The principle of the variable neighborhood algorithm. 65

2.6 The solution’s representation of the partial state of the problem.

The cross-hatched customers represent the visited part, those

without hatching are the unvisited part. 67

2.7 Example of the exchange operator. Two customers i, j from

different routes are simultaneously placed into the other routes. 68

2.8 Example of the λ-interchange operator (λ = 1). In this exam-

ple, it plays the role of relocate operator. The edges (i− 1, i),

(i, i + 1) and (j − 1, j) are replaced by (i − 1, i + 1), (j − 1, i)

and (i, j + 1), i.e., customer i from the origin route is placed

into the destination route. 69

2.9 Example of the 2-Opt operator applied to arcs a and b in one

single route. 69

2.10 Example of the 2-Opt* operator applied to arcs a and b belong-

ing to two different routes. 69

2.11 Cheapest Insertion Heuristic: (a) Initial subtour with potential

insertions.(b) The new subtour after applying the heuristic. . . 71

2.12 The savings heuristic. In the left part, customers i and j are

served by separate routes; in the right part, the routes are

combined by inserting customer j after i. 72

2.13 Simulation and solving framework for the Dynamic Vehicle

Routing Problem (DVRP). 75

2.14 Strategy to tackle dynamic instances: A sequence of VRP-like

problems. 77

2.15 Evolution of VNS-DVRP algorithm mean trace for each in-

stance and the optimum value for each time slice. Each square

on the left figure is enlarged in the right figure. 84

2.16 Evolution of accuracy and stability of VNS-DVRP across time

slices for each instance. 88

3.1 Main principles of P-metaheuristics. 91

3.2 Evolution based versus blackboard based strategies in P-metaheuristics. 93

3.3 Neighborhood associated with particles. (a) gbest Method in

which the neighborhood is the whole population (complete graph).

(b) lbest Method where a non complete graph is used to define

the neighborhood structure (e.g., a ring in which each particle

has two neighbors). (c) Intermediate topology using a small

world graph. 95

3.4 Movement of a particle and the velocity update. 97

3.5 Particle position and its velocity vector for PSO-DVRP. 102

3.6 Illustration of a particle’s movement: the velocity is updated

followed by the particle’s current position. 104

3.7 Movement of memory points. The curve is an example of a

dynamic changing optimum. The black circles are the best

memory points for the new environment, the light gray scaled

circles are the current positions of particles and the gray circle

is the best position found so far by particles. 108

3.8 The evolution of each algorithm mean trace for each instance;

each of them shows also the optimum value for each time slice

as obtained by running our algorithms over the static subprob-

lems. Each square on the left figure is enlarged in the right

figure. 116

3.9 Evolution of accuracy and stability across time slices for each

instance. 121

4.1 Design issues involved by the parallel algorithmic-level model

for metaheuristics. 129

4.2 Some classical regular topologies for exchanging information. . 131

4.3 Parallel insular model for multi-swarm. 132

4.4 The layered architecture of ParadisEO. 135

12

4.5 The evolution of each algorithm’s mean trace for each instance;

each of them shows also the optimum value for each time slice as

obtained by running our algorithms over the static subproblems.142

4.6 Evolution of accuracy and stability across time slices for each

instance. 143

4.7 The speedup of the algorithms on each instance. 148

4.8 The efficiency of the algorithms on each instance. 149

5.1 Teffective changes with α = 0.7, T = 500, Tts = 25, and dod = 0.5.154

5.2 Influence of the α parameter on quality solutions. 158

13

List of Tables

1.1 Major publications on different variants of Dynamic Vehicle

Routing Problems. 37

1.2 State-of-the-art metaheuristics for DVRP and its variants. . . 49

1.3 Benchmark data sets for dynamic vehicle routing problems. . . 55

2.1 Data sets: Features and properties. 78

2.2 Numerical results obtained by our V NS compared to AS, GA,

and TS. 81

2.3 Number of evaluations assigned to each instance as stopping

criterion with nts = 25. 82

2.4 Solutions obtained by V NS on static and dynamic instances. . 82

2.5 Solutions obtained by V NS with different degrees of dynamism. 85

2.6 Accuracy of the different metaheuristics on the Kilby’s instances. 86

2.7 Accuracy and stability of VNS on the dynamic k-series in-

stances over different time slices. 87

3.1 Search Memories of Some P-Metaheuristics. 93

3.2 Analysis of the different initialization strategies. The evalua-

tion is better with more sign (+). 94

3.3 Numerical results obtained by APSO and V NS compared to

AS, GA, and TS. 113

3.4 Solutions obtained by APSO and V NS on static and dynamic

instances. 114

3.5 Statistical results of comparing our algorithms with a multiple

comparison test. 115

3.6 Solutions obtained by APSO and V NS over different degrees

of dynamism. 118

3.7 Accuracy of the different metaheuristics on the Kilby’s instances.119

3.8 Accuracy and stability of APSO and VNS on the dynamic k-

series instances over different time slices. 120

4.1 Algorithm parameters for the multi-swarm metaheuristic. . . . 137

4.2 Numerical results obtained by MAPS0 compared to APSO,

VNS, AS, GA and TS. 139

4.3 Solutions obtained by MAPSO on dynamic k-series instances. 140

4.4 Statistical results of comparing our algorithms with a multi-

comparer test. 141

4.5 Accuracy of different metaheuristics on the Kilby’s instances. . 144

Introduction

4.6 Accuracy of MAPSO on the dynamic k-series instances over

different time steps. 146

4.7 Stability of MAPSO on the dynamic k-series instances over

different time steps. 147

4.8 Speedup and efficiency for MAPSO based algorithms. 147

5.1 Numerical results obtained by FVNS with different values of α. 157

5.2 Numerical results obtained by FVNS compared to AS, GA, and

TS. 159

5.3 Execution time in minutes of FVNS compared to AS, GA and

TS. 160

5.4 Comparison between FVNS and MAPSO. 161

5.5 Accuracy of FVNS compared with other metaheuristics on Kilby’s

instances. 162

16

Introduction

This Ph.D. thesis focuses on solving dynamic combinatorial problems and

particularly logistic and transportation problems. It is the results of three

years held in Dolphin1 research group of the French National Institute for Re-

search in Computer Science and Control INRIA Lille Nord Europe and Lille’s

Computer Science Laboratory (LIFL, CNRS, Lille-1 University).

Many complex real-world problems are dynamic, and change over time,

whether their objective function, decision variables, or the constraints. This

involves that the optimal solution might change at any time due to changes

in the environment. These problems are grouped into a class known as Dy-

namic Combinatorial Optimization Problems (DCOPs). This dynamism can

be attributed to several factors; natural (weather conditions), human and

material (absence and sickness of workers, machines broken down), or busi-

ness factors (new job opportunity, cancellation of old ones, production and

quality changing, etc.). In such applications, information on the problem is

not completely known a priori, but instead is revealed to the decision maker

progressively with time. Consequently, solutions for different instances of a

typical dynamic problem have to be found as time proceeds, concurrently with

the incoming information. Such problems call for a methodology to track their

optimal solutions through time.

Nowadays, real-time information and communication systems become in-

creasingly available and the processing of real-time data becomes increasingly

affordable, more and more new versions of highly dynamic real-world appli-

cations are created.

In distribution systems (repair services, courier mail services, dial-a-ride

services, etc.) most operations become under strict temporal restrictions. In

addition, recent advances in information and communication technologies, ve-

hicle fleets can now be managed in real-time. When jointly used, devices

like geographic information systems (GIS), global positioning systems (GPS),

traffic flow sensors and cellular telephones are able to provide real-time data,

such as current vehicle locations, new customer requests, and periodic esti-

mates of road travel times. This large amount of data can be used to reduce

the cost and improve the service level of companies, and might provide revised

routes that can be timely generated as soon as new events occur. This fact

has caused an increasing interest in dynamic or on-line transportation models

and systems in which data are considered to be time-dependent.

1Discrete multi-objective Optimization for Large scale Problems with Hybrid dIstributed
techNiques.

Introduction

One of the problems that has received a growing interest during the last

years in on-line transportation systems is the Dynamic Vehicle Routing Prob-

lems (DVRPs). The traditional Vehicle Routing Problem (VRP) consists in

constructing minimum cost routes for the fleet of vehicles to serve a set of

customers so that they are visited exactly once.

There are many applications in which the problem can be considered on-

line. To name a few examples; the routing of police cars, taxi services or

ambulances. Furthermore, there are even applications that would tradition-

ally be considered offline, but could be subject to sudden changes, like new

customers appearing that urgently need service, traffic accidents making the

planned routes impossible, changes in the demands of customers, changed

traveling times due to heavy traffic, vehicles breaking down, etc. We consider

here the Dynamic Capacitated Vehicle Routing Problem (DCVRP) where the

customer orders are unknown when the optimization process begins, i.e. their

orders and positions will be known only after the vehicles have left the starting

node. Thus, the initial problem’s specification can change while the vehicles

are serving their previously assigned customers. This involves that the optimal

solution might change at any time due to these new customer demands.

In the literature, many approaches for solving DVRP can be found. Some

of them correspond to simple, yet specialized, constructive/improvement heuris-

tics, while the rest represent sophisticated metaheuristics approaches. During

the last decade, metaheuristics are raising a large interest in dynamic op-

timization problems and particularly on-line transportation domain. They

represent more general approximate algorithms applicable to a large variety

of optimization problems. They provide acceptable solutions in a reasonable

time for solving hard and complex problems in science and engineering. Meta-

heuristics solve instances of problems by exploring large solution search space

of these instances. These algorithms achieve this by reducing the effective

size of the space and by exploring that space efficiently. Mainly, they can be

grouped into two classes of algorithms; single-solution based metaheuristics

and population based metaheuristics.

This thesis is concerned with the use of metaheuristics to tackle the dy-

namic vehicle routing problem with dynamic immediate requests. It provides

a state of the art and latest research on dynamic vehicle routing problems,

and how metaheuristics may be applied to face this kind of problems.

The research presented in this thesis has progressed in three phases. In

the first phase, state-of-the-art that covers a description and specificities of

the problem is given. Dynamic performance measures are presented in order

to quantify the adaptation of the algorithms throughout the optimization pro-

cess. Besides, the dynamic benchmarks of the problem and their development

and generation are reported to guide the future experiments.

18

Introduction

The second, the main phase, covers the development of adaptive algorithms

on DVRP. These algorithms cover the different classes of metaheuristics.

A class of approaches seem to be interesting for this problem is the Single-

solution based metaheuristics (S-metaheuristics). They could be viewed as

search trajectories over the search space of the problem. These trajectories

are performed by iterative procedures that move from the current solution to

another one in the search space.

One of the recent approaches in the filed of S-metaheuristic is Variable Neigh-

borhood Search (VNS). It consists in adaptively changing the neighborhood

in order to get different local optima and to escape from local optima. In

addition, the characteristic of changing the neighborhood structure might of-

fer a powerful mechanism of adaptivity to the environmental changing. Since

different neighborhoods generate different landscapes. Moreover, a solution

that is locally optimal on the search landscape with respect to a neighborhood

is probably not locally optimal with respect to another neighborhood and the

global optima is one of the local optima of a given neighborhood.

For that purpose, we address in this thesis the class of S-metaheuristics

represented by Variable Neighborhood Search for solving Dynamic Vehicle

Routing Problem.

Another class of metaheuristics might adapt to the changing in different

ways. Indeed, a standard approach to deal with dynamism in optimization

problems is to regard each change as the arrival of new problem instance that

has to be solved from scratch. However, this simple idea is often impracti-

cal. On the one hand, it could be too time-consuming. On the other hand,

environmental changes in real life typically do not alter the problem com-

pletely, but affect only some part of the problem at a time. For example, not

all vehicles break down at once, not all pre-made assignments are canceled,

weather changes affect only parts of roads, any other events like sickness of

employees and machine breakdown do not happen all at once. Thus, after

an environmental change, there remains some information from the past that

can be used in the future. The required algorithm should not only be able to

track combinatorial problems, but should also be adaptive to changes in the

environment.

Population-based metaheuristics (P-Metaheuristics) exhibit a number of

potential advantages for such purposes. They start from an initial population

of solutions and iteratively apply the generation of a new population and the

replacement of the current one.

Particle Swarm Optimization (PSO) is one of the most commonly used P-

Metaheuristic for solving dynamic continuous problems as it proved to be

effective solvers for a broad range of these problems. Second, there are several

characteristics inherent and attributed to PSO that encourage their use for

19

Introduction

dynamic problems.

For this purpose, we present in this thesis an Adaptive Particle Swarm

Optimization for solving Dynamic Vehicle Routing Problem. The underlying

principle this approach is based on swarm intelligence, and hence they are

expected to be capable of adaptation to environmental changes. In addition,

PSO has proved to be suitable for dynamic environments due to their ability

to store and exploit previous solutions. One of the most appealing features

for dynamic environments is that, at any given instant, it deals with a popu-

lation of solutions and even if the environment changes, it is likely that some

solutions in the population remain feasible and retain some of their good qual-

ity. These solutions could be useful for tracking the new optimum since the

dynamic change may cause the optima to be in the neighborhood of an old

solution more often.

However, the main problem with P-metaheuristics used for dynamic opti-

mization problems appears to be that they eventually converge to a non-global

optimum and thereby lose their diversity necessary for efficiently exploring

the search space. Consequently, also their ability to adapt to a change in

the environment when such a change occurs. Therefore, approaches should

counterbalance the effect of diversity loss by maintaining diversity throughout

the run. This may be achieved by a Multi-Population based Metaheuristics

(MP-Metaheuristics). In multi-population approach, a part of the popula-

tion clusters around any local optimum it may discover, and remains close

to this optimum for further exploration. The remainder of the population

continues to search for new local optima, and the process is repeated if any

more local optima are found. Furthermore, the subpopulation can cooperate

and exchange information during the search and be more reactive to the next

changing. Besides, parallelizing such a metaheuristics in real-time context is

an important aspect due to the hard requirement on search time especially

when we deal with strong dynamic problems in which changes occur in re-

peated manner and within short intervals.

Thus, we investigate in this thesis whether a multi-population metaheuris-

tic might also be beneficial in dynamic vehicle routing problems. For this

purpose, we elaborate a Multi-Swarm Optimization approach and evaluating

it on parallel architecture.

The third phase aims to demonstrate that developing a potentially effec-

tive algorithms is not enough. One should aim at creating robust solutions

that maintain high solution quality even when the environment changes. This

robustness can be implemented by a flexibility measure that allows the an-

ticipation of changes (future customer orders) and to explicitly search for

solutions that not only have high quality, but that allow the adaptation of a

high quality solutions after the environment has changed. S-Metaheuristics

20

Introduction

seem to be good candidates for implementing this robustness since they tend

to be more effective in terms of intensification than diversification in the search

which can lead to loss their ability to track the shifting optimum.

Therefore, the last objective of this thesis is to integrate the flexibility

measure into a S-metaheuristic such as Variable neighborhood search in order

to build a solution that might anticipate the forthcoming arrival of new or-

ders. In our context, if new requests are expected, rather than just react

to the new demand, one should anticipate a change by trying to maintain

flexibility. As we will show, for the dynamic vehicle routing problem such

flexibility can be maintained by an early assignment of vehicles in the service

area. This allows to increase the availability of vehicles for the new customer

orders leading to decrease the number of vehicle detours or new assignment

of vehicle that can increase the solution cost.

All these aspects are addressed in this thesis, providing a holistic view on

the challenges and opportunities of applying metaheuristics on Dynamic Ve-

hicle Routing Problems (DVRP), and suitable novel approaches are developed

for each aspect.

The structure of this thesis is described in what follows:

• Chapter 1 gives a general overview on Dynamic Vehicle Routing Prob-

lems (DVRPs). Different related approaches from single solution based

metaheuristics to population based metaheuristics are outlined. After-

wards, performance measures defined in the literature for dynamic op-

timization problems are presented. Finally, available benchmark data

sets of the problem are presented as well as our new class of benchmarks

and their generation.

• Chapter 2 deals with solving the dynamic vehicle routing with single

solution based metaheuristics. It begins with the common concepts of

this class of metaheuristics. Then, Variable Neighborhood Search (VNS)

is proposed for solving DVRP. A comparison with respect to the quality

of the solutions and execution time of our approach and state-of-the-art

metaheuristics is done. Lastly, dynamic performances of our approach

are assessed.

• Chapter 3 concerns the design and implementation of population-based

metaheuristics for solving our problem. The common and specific search

concepts of this class of metaheuristics are outlined. An Adaptive Par-

ticle Swarm Optimization (APSO) is proposed. Comparison is carried

out to investigate the merits of adapting solutions to changes by us-

ing adaptive memory mechanism. The adaptivity of our algorithm is

assessed throughout dynamic performance indicators.

21

Introduction

• Chapter 4 explores the possible ways that researchers have to pro-

duce parallel multi-population approaches to solve dynamic vehicle rout-

ing problems by using Multi-Adaptive Particle Swarm Optimization

(MAPSO). A unified cooperative parallel model for multi-population

metaheuristics is analyzed in terms of design. Experimental results are

provided to evaluate the dynamic as well as parallel performances of our

approach.

• Chapter 5 addresses the issue of finding solutions that are not only

optimal with respect to the current situation, but also with respect to

the expected changes in the environment. The aim is to find robust solu-

tions and flexible solutions that allow easy and successful adaptation by

anticipating future customer needs. As described previously, a flexibility

strategy is suggested and integrated in a Flexible Variable Neighborhood

Search (FVNS) that, when taken into account during optimization, may

yield significantly better results in a dynamic environment with new or-

ders arriving over the time. This strategy is validated with experiments

on conventional set of benchmarks.

This thesis concludes with a summary of our contributions and an outlook

on future work.

22

Chapter 1

Dynamic Vehicle Routing

Problems: Overview,

Approaches, and Performance

Measures

Contents
1.1 Introduction . 23

1.2 Dynamic Vehicle Routing Problem 24

1.3 Solution Representation 38

1.4 Solving Methods . 39

1.5 Dynamic Performance Measures 50

1.6 Benchmarks . 52

1.7 Conclusion . 56

1.1 Introduction

Thanks to recent advances in information and communication technologies,

vehicle fleets can now be managed in real-time. When jointly used, devices

like geographic information systems (GIS), global positioning systems (GPS),

traffic flow sensors and cellular phones are able to provide real-time data, such

as current vehicle locations, new customer requests, and periodic estimates of

road travel times. If suitably processed, this large amount of data can be used

to reduce the cost and improve the service level of a modern company. To

this end, revised routes have to be timely generated as soon as new events

occur [Ghiani 2003].

In this context, Dynamic Vehicle Routing Problems (DVRPs) are getting

increasingly important [Psaraftis 1995, Montemanni 2005b, Housroum 2006,

Hanshar 2007]. These problems are also known as on-line or real-time Vehicle

24
Chapter 1. Dynamic Vehicle Routing Problems: Overview,

Approaches, and Performance Measures

Routing Problems. The VRP [Dantzig 1959] is a well-known combinatorial

problem which consists in designing routes for a fleet of capacitated vehicles

that are to service a set of geographically dispersed points (customers, stores,

schools, cities, warehouses, etc.) at the least cost (distance, time, or any

other desired factor). It is possible to define several dynamic features which

introduce dynamism in the classical VRP: roads between two customers could

be blocked off, customers could modify their orders, the travel time for some

routes could be increased due to bad weather conditions, etc. This implies

that Dynamic VRPs constitute in fact a set of different problems, which are

of crucial importance in today’s industry, accounting for a significant portion

of many distribution and transportation systems.

The main goal of this chapter is to present the problem of DVRP and

methods from literature for its resolution. The remainder of this chapter is

organized as follows. Section 1.2 describes the dynamic VRP and its specific

characteristics. A succinct overview on the most proposed solution represen-

tations is given in Section1.3. A summary on solving methods from strategies

through heuristics and metaheurtistics is given in Section 1.4. In order to

measure the dynamic performances of approaches, Section 1.5 presents some

measures that can be used to this end. The most popular and available bench-

marks are reported in Section 1.6, and finally, Section 1.7 presents conclusion

and opens some lines for next chapters.

1.2 Dynamic Vehicle Routing Problem

In this section, we present the problem definition and its formal description

in Section 1.2.1 and Section 1.2.2. Then, Section 1.2.3 addresses how to

quantify the dynamism into such problem. Besides, Section 1.2.4 compare

both static and dynamic versions of the problem in terms of characteristics,

and Section 1.2.5 presents some interests of the problem. Finally, a state-of-the

art on the common variants of the problem is presented in the Section 1.2.6.

1.2.1 Problem Definition

Psaraftis [Psaraftis 1995, Psaraftis 1988] was among the first to study the Dy-

namic Vehicle Routing Problem (DVRP). He defines the static problem as:

“if the output of a certain formulation is a set of preplanned routes that are not

re-optimized and are computed from inputs that do not evolve in real-time”.

While he refers to a problem as dynamic if ”the output is not a set of routes,

but rather a policy that prescribes how the routes should evolve as a function

of those inputs that evolve in real-time”.

24

1.2. Dynamic Vehicle Routing Problem 25

This definition is elaborated in Larsen et al. [Larsen 2008], in which the prob-

lem is said dynamic when not all information relevant to the planning of the

routes is known by the planner when the routing process begins. Besides, the

information can change after the initial routes have been constructed. On the

counterpart, in the static vehicle routing problem, information is assumed to

be relevant, includes all attributes of the customers such as the geographical

location of the customers, the service time at each customer and all the details

about customer demand. Furthermore, the travel times of the vehicle between

the customers must be known by the planner.

From the above definitions, we can understand that when some inputs to the

problem are revealed during the execution of the algorithm. Thus, it is not

possible to determine in advance a set of optimized routes in a dynamic prob-

lem. Problem solution evolves as inputs are revealed to the algorithm and to

the decision maker.

Obviously, the DVRP is a richer problem compared to the conventional static

VRP. If the problem class of VRP is denoted P (V RP) and the problem class

of DVRP is denoted P (DV RP), then P (V RP) ⊂ P (DV RP). Given that

SVRP belongs to the class of NP-hard Problems, the DVRP belongs also to

this class, and it is more complicated than SVRP since a static problem should

be solved each time a new customer demand is received.

1.2.2 Formal Description

The conventional VRP can be mathematically modeled by using an undirected

graph G = (C,E), where C is a vertex set, and E is an edge set. They are

expressed as C = {c0, c1, ..., cn}, and E = {(ci, cj)|ci, cj ∈ C, i < j}. Further-

more, a set of m homogeneous vehicles each with capacity Q originate from a

single depot, represented by the vertex c0 and must service all the customers

represented by the set C. The quantity of goods qi requested by each customer

i (i > 1) is associated with the corresponding vertex. The goal is to find a

feasible set of tours with the minimum total traveled distance. The VRP thus

consists in determining a set of m vehicle routes of minimal total cost, starting

and ending at a depot, such that every vertex in C is visited exactly once by

one vehicle. The sum of the items associated with the vertexes contained in

it never exceeds the corresponding vehicle capacity Q. The capacity means

the quantity of items (goods) that the vehicle could carry during its travel.

Let be R1, . . . , Rm a partition of C representing the routes of the vehicles to

service all the customers. The cost of a given route Rj = {c0, c1, . . . , ck+1},

25

26
Chapter 1. Dynamic Vehicle Routing Problems: Overview,

Approaches, and Performance Measures

where ci ∈ C and c0 = ck+1 (denote the depot), is given by:

Cost(Rj) =
k∑
i=0

di,i+1 (1.1)

and the cost of the problem solution (S) is:

FV RP (S) =
m∑
j=1

Cost(Rj) (1.2)

With a constraint on the vehicle capacity:

k∑
i=1

qi × yji ≤ Qj (1.3)

Where:

qi: the associated quantity of the customer ci (items to be delivered/picked

up),

Qj: capacity of the vehicle j, and

yji =

{
1, if ci is served by the vehicle j

0, otherwise
(1.4)

We will consider a service time δi (time needed to unload/load all goods),

required by a vehicle to load the quantity qi at ci. It is required that the

total duration of any vehicle route (travel plus service times) may not surpass

a given bound T , so, a route Rj = {c0, c1, . . . , ck+1} is feasible if the vehicle

stops exactly once in each customer and the travel time of the route does not

exceed a prespecified bound T corresponding to the end of the working day.

k∑
i=0

di,i+1 +
k∑
i=1

δi ≤ T (1.5)

There may exist some restrictions such as the capacity of each vehicle,

total traveling distance allowed for each vehicle, time windows to visit the

specific customers, and so forth. The basic VRP deals with customers who

are known in advance; all other information such as the driving time between

the customers and the service times at the customers are also usually known

prior to the planning.

The Dynamic Vehicle Routing Problem (DVRP) [Psaraftis 1995] is

strongly related to the static VRP, as it can be described as a routing prob-

lem in which information about the problem can change during the opti-

mization process. Any dynamic combinatorial problem can be expressed as

26

1.2. Dynamic Vehicle Routing Problem 27

Figure 1.1: A dynamic vehicle routing with dynamic requests case.

P (t) = (X(t), f(t)), which is a time dependent formulation of the previous

definition of the static VRP. Thus, in that definition, any components of the

problem can change with time. Whether the objective function, decision vari-

ables, or the constraints. This involves that the optimal solution might change

at any time due to changes in the environment. The problem cannot be solved

in advance because the decision maker does not have a priori knowledge of the

entire problem [Bianchi 2009]. Therefore, the goal of the optimization process

is no longer finding a single optimal solution, but rather, tracking the shifting

optima over the time since the optimal solution for one instance could be a

poor solution or possibly even infeasible for the next environment.

Thus, a discrete-time dynamic problem and can be viewed as a series of

P instances; each instance is a static problem, which starts at time t and

must be solved within a specific deadline 4t. We summarize that as follows

(Figure 1.2):

P = {(Pi, ti,4t) / i = 0, 1, . . . , imax} (1.6)

with this information the duration of the instance i is 4i = ti+1 − ti. The

maximum number of instances imax can be infinite if the problem is open-

ended. A new instance Pi+1 is generated by the action of the environment

change δi+1 on the instance Pi. This is expressed by Pi+1 = Pi⊕ δi+1. So, the

solutions obtained at time ti could not be the feasible solutions for time ti+1 .

This change in the environment can be due to several factors; for example,

travel times can be time- [Haghani 2005] or traffic-dependent [Wang 2007],

orders may be withdrawn or changed [Sun 2007], some clients may be unknown

when the execution begins [Magalhães 2006], etc. One standard approach to

deal with this changing is to consider the entire problem as a series of instances.

Each change corresponds to the arrival of new optimization problem that has

27

28
Chapter 1. Dynamic Vehicle Routing Problems: Overview,

Approaches, and Performance Measures

to be solved. The time consecrated for solving each instance depends on the

frequency of changes [Branke 2002].

Figure 1.2: Decomposition of a dynamic problem P = (P1, P2, P3, P4) in a

sequence of static instances.

The goal is to design an optimization algorithm that is capable of con-

tinuously adapting the solution to a changing environment. This approach

is now commonly followed by the community that works on the DVRP do-

main [Kilby 1998, Montemanni 2005b, Housroum 2006, Hanshar 2007].

A simple example of a dynamic vehicle routing situation is shown in Fig-

ure 1.2.2. In the example, two un-capacitated vehicles must service both

known and new request customers.

1.2.3 Degree of Dynamism

Designing a real-time routing algorithm depends to a large extent on how

much the problem is dynamic. The dynamic aspect of the problem concerns

the number of dynamic events, their location and the time in when these

events take place. To quantify this concept, Lund et al. [Lund 1996] and

Larsen [Larsen 2000] have defined the degree of dynamism of a problem (dod).

Without loss of generality, we assume that the planning horizon is a given

interval [0, T], possibly divided into a finite number of time slices. Let ns and

nd be the number of static and dynamic requests, respectively. Moreover, let

ti ∈ [0, T] be the time when the request i appears. Static requests are such

that ti = 0 while dynamic ones have ti ∈]0, T]. Lunda et al. [Lund 1996]

define the degree of dynamism dod as :

dod =
nd

ns + nd
(1.7)

which may vary between 0 and 1. Larsen [Larsen 2000] generalizes the defi-

nition proposed by Lund et al. in order to take into account both dynamic

28

1.2. Dynamic Vehicle Routing Problem 29

request occurrence times and possible time windows. He observed that system

in which dynamic requests are received late of the planning horizon [0, T] is

more dynamic than others in which the requests occur at the beginning of the

working day. Thus, he introduces a new measure of dynamism :

edod =

∑ns+nd

i=1 (ti/T)

ns + nd
(1.8)

The effective degree of dynamism then represents an average of how late the

requests are received compared to the latest possible time the requests could

be received. It can easily be seen that edod ranges between 0 and 1. It is

equal to 0 if all user requests are known in advance while it is equal to 1 if all

user requests occur at time T .

Finally, Larsen extends the definition of edod to take into account possible

time windows on user service time. Let [ai, bi] be the interval time of the

client i referred as time window (tw), with ai and bi corresponding to the

earliest time the service begin and the latest possible time that service should

begin, respectively.

edodtw =

∑ns+nd

i=1 [T − (bi − ti)]/T
ns + nd

(1.9)

It is also obvious that edodtw varies between 0 and 1. Moreover, if no time

windows are imposed (i.e., ai = ti and bi = T), then edodtw = edod.

Thus, the degree of dynamism measure gives rise to different dynamic lev-

els. It is possible to categorize the vast majority of routing systems found in

practice by using three echelons. We can discern between weakly, moderately,

and strongly dynamic systems. For instance, supply and distribution compa-

nies (such as those of distributing heating oil) are known as weakly dynamic.

Couriers and appliance repair service companies exhibit moderate dynamic

behavior. Finally, emergency services and taxicab services are strongly dy-

namic [Larsen 2000].

1.2.4 Dynamic Versus Static

Dynamic problems are typically derived from static ones, by revealing or up-

dating on-line one or more parameters of those which define static instance.

In the following we point out some important differences between static and

dynamic problems [Bianchi 2000].

Time The main feature of dynamic problems, which is not present in static

ones is the dimension of time as integral part of the instance description.

The dispatcher must as a minimum know the position of all vehicles at

29

30
Chapter 1. Dynamic Vehicle Routing Problems: Overview,

Approaches, and Performance Measures

any given moment and particularly when the request for service or other

information is received by the dispatcher.

Future information In a static problem all information is assumed to be

known and of the same quality. In a real-life dynamic routing problem

information about the input instance may be in part given a priori,

and in part dynamically revealed or updated. The future is almost

never known with certainty. It may be either completely unknown or at

least partially known under certain conditions with some probabilistic

assumptions. Bianchi [Bianchi 2000] preconizes that information update

mechanisms have to be integrated into the solution methods.

Objective function One may consider the dynamic problem as a series of

static problems (sub-problems), with the goal of tracking the objective

function optimum as closely as possible throughout the time. How-

ever, if some stochastic information is related to the problem, they

should be considered by the objective function. Depending on the

nature of the system, the objective to be optimized is often a com-

bination of different measures. DVRP inherits the classical objec-

tives defined into the conventional VRP. Moreover, the dynamic na-

ture of problem leads to emerging of new objectives. For instance,

in the weakly dynamic systems the focus is on minimizing routing

cost [Montemanni 2005b, Hanshar 2007]. However, in strongly dynamic

system such as an emergency services, the interest is to minimize the

expected response time (i.e. the expected time lag between the mo-

ment when the user request occurs and its service time) [Larsen 2002,

Mitrović-Minić 2004a, Gendreau 2006]. Furthermore, there are other

objectives such as maximizing the expected number of requests serviced

during a given period of time [Bent 2003, Bent 2004].

Strategy Strategy implies which actions should be taken at each state of the

problem progress. It can concern the way in which the vehicle have to be

positioned in the service area (see Section 1.4.1), as well as, the manner

in which the requests have to be handled. For instance, one can consider

a static new sub-problem each time a new customer request arrives, or

waiting a certain time period for a subset of new customers, or consider

a spatial clustering of customers and so on.

1.2.5 DVRP Interests

There are several important problems that must be solved in real-time. In

[Gendreau 1998, Larsen 2000, Ghiani 2003], the authors list a number of real-

30

1.2. Dynamic Vehicle Routing Problem 31

life applications that motivate the research in the domain of dynamic vehicle

routing problems.

• Supply and distribution companies : In seller-managed systems, distri-

bution companies estimate customer inventory level in such a way to

replenish them before stock depletion. Hence, demands are known be-

forehand in principle and all customers are static. However, because

demand is uncertain, some customers might run out their stock and

have to be serviced urgently.

• Courier Services : It refers to the international express mail services that

must respond to customer requests in real-time. The load is collected at

different customer locations and have to be delivered at another location.

The package to be delivered is brought back to a remote terminal for

further processing and shipping. The deliveries form a static routing

problem since recipients are known by the driver. However, most pickup

requests are dynamic because neither the driver nor the planner knows

where the pickups are going to take place.

• Rescue and repair service companies : Repair services usually involve a

utility firm (broken car rescue, electricity, gas, water and sewer, etc.)

that responds to customer requests for maintenance or repair of its fa-

cilities.

• Dial-a-ride systems : Dial-a-ride systems are mostly found in demand-

responsive transportation systems aimed at servicing small communities

or passengers with specific requirements (elderly, disabled). These prob-

lems are of the many-to-many when any node can serve as a source or

destination for any commodity or service.

Customers can book a trip one day in advance (static customers) or

make a request at short notice (dynamic customers).

• Emergency services : They cover the police, firefighting and ambulance

services. By definition, the problem is pure dynamic since all customers

are unknown beforehand and arrive in real-time. In most situations,

routes are not formed because the requests are usually served before a

new request appears. The problem then is to assign the best vehicle (for

instance the nearest) to the new request. Solving methods are based on

location analysis for deciding where to dispatch the emergency vehicles

or to escape the downtown traffic jam.

• Taxi cab services : Managing taxi cabs is still another example of a real-

life dynamic routing problem. In most taxi cab systems the percentage of

31

32
Chapter 1. Dynamic Vehicle Routing Problems: Overview,

Approaches, and Performance Measures

dynamic customers is very high, i.e., only very few customers are known

by the planner before the taxi cab leaves the central at the beginning of

its working day.

1.2.6 Related Works

In this section, we present a classification and an overview on the state-

of-the-art of dynamic vehicle routing problems. Different surveys have

been proposed on DVRPs [Bianchi 2000, Ghiani 2003, Branchini 2009].

Psaraftis [Psaraftis 1988] defines that a vehicle routing problem is dynamic

when some inputs to the problem are revealed during the execution of the

algorithm. Demand information is not known when vehicles are assigned, and

demand information is revealed on-line. Problem solution evolves as inputs

are revealed to the algorithm and to the decision maker. Possible information

attributes might include evolution of information (static/dynamic), quality

of information (known-deterministic/forecast/probabilistic/unknown), avail-

ability of information (local/global), and processing of information (central-

ized/decentralized).

From this definition, we propose to classify the DVRPs according to the

degree of knowledge that we have on the input data of the problem and quality

of the available information. A dynamic problem can be either deterministic

or stochastic (see Figure 1.3). DVRP is deterministic if all data related to

the customers are known when the customer demands arrive, otherwise it is

stochastic. Both of these classes can be subject to different factors such as ser-

vice time window, traffic jam, road maintenance, weather changes, breakdown

of vehicles and so on. These factors often change the speed of vehicles and

the travel time of arriving at the depot. Consequently, they lead to another

sub-variants of the problem (see Table 1.1):

1. Deterministic: In deterministic case, all the data related to the inputs

are known. For instance, when new customer demand appears, customer

location and the quantity of his demand are known. Different types of

deterministic DVRP can be found in the literature as:

(a) Dynamic Capacitated Vehicle Routing Problem

(DCVRP):

An important number of works exist on this vari-

ant [Kilby 1998, Gendreau 1999, Montemanni 2005b] which

represents the conventional definition of the problem, and where

the existence of all customers and their localizations are deter-

ministic, but their order can arrive at any time. The objective is

32

1.2. Dynamic Vehicle Routing Problem 33

Figure 1.3: Classification of DVRPs according to deterministic and stochastic

information related to customer requests.

to find a set of routes with the lowest traveled distance, and with

respect to vehicle capacity limit.

The Dynamic Traveling Repairman Problem (DTRP) belongs to

this class of problems. Bertsimas and Van Ryzin introduce this

problem in [Bertsimas 1991, Bertsimas 1993b]. It is described as

a problem in which demands arrive according to Poisson process

in Euclidean service region, and their locations are distributed

throughout the service region. The goal is to minimize the

expected time that the demand spends in the system (i.e. the

average time a customer must wait before its request is completed),

as opposed to the expected distance that the vehicle travels. The

service times of requests are not known to the dispatcher, until

the service at the respective customers is completed.

Where all demands are dynamic in DTRP, i.e. all customers are

immediate request customers. Larsenet al. [Larsen 2002] define the

Partially Dynamic Traveling Repairman Problem (PDTRP) that

is a variant of this problem involving both advance and immediate

request customers.

Furthermore, the problems seek to optimize different objective

functions. The dispatcher is more interested in minimizing the

distance traveled by the repairman than to minimize the overall

system time.

33

34
Chapter 1. Dynamic Vehicle Routing Problems: Overview,

Approaches, and Performance Measures

(b) Dynamic Vehicle Routing Problem with Time Win-

dows (DVRPTW): It is one of the most well-studied vari-

ant of DVRP [Larsen 2004, Mitrović-Minić 2004a, Alvarenga 2005,

Fabri 2006, Housroum 2006, Wang 2007, Oliveira 2008]. Besides,

the possibility of requiring services in real time, the time window

associated to each customer i follows a specific interval time [ai, bi],

that must be satisfied. Larsenet al. [Larsen 2002] proposed on-

line policies for the Partially Dynamic Traveling Salesman Problem

with Time Windows (PDTSPTW) that could be considered as an

instance of DVRPTW with a single vehicle.

The objective is to minimize the lateness at customer location. A

simple policy consists to require the vehicle to wait at the current

customer location until it can service another customer without

being early. Other policies, may suggest to reposition the vehicle

at a location different from that of the current customer based on

prior information on future requests.

(c) Dynamic Vehicle Routing Problem with time-dependent

Travel Times (DVRPTT): Described in [Haghani 2005], it as-

sumes that the travel times from the customer i to the customer j

is variable through the time. This variation could occur due to the

type of the road, weather and traffic conditions that may strongly

influence the speed of vehicles and hence travel times.

(d) Dynamic Pickup and Delivery Vehicle Routing Problem

(DPDVRP): Based on the conventional Pickup and Delivery Ve-

hicle Routing Problem (PDVRP) [Savelsbergh 1995]. The problem

consists of determining a set of optimal routes for a fleet of vehicles

in order to serve transportation requests [Mitrović-Minić 2004a].

The objective is to minimize total route length, i.e., the sum of

the distances traveled by all the vehicles, under the following con-

straints: all requests must be served, each request must be served

entirely by one vehicle (pairing constraint), and each pickup lo-

cation has to be served before its corresponding delivery location

(precedence constraint). The dynamic version arises when not all

requests are known in advance.

Swihart and Papastavrou [Swihart 1999] have introduced a new

variant of the DTRP where each service request has a pickup and

a delivery location. The objective is to minimize the expected

system time. The authors consider the unit-capacity case where

the vehicle can carry no more than one item, as well as the case

where the vehicle can carry an arbitrarily large number of items.

34

1.2. Dynamic Vehicle Routing Problem 35

Attanasio et al. present in [Attanasio 2004] parallel implementa-

tions of a tabu search method developed previously by Cordeau

and Laporte [Cordeau 2003] for the Dynamic Dial-a-Ride Problem

(DDARP). In this latter the requests are received throughout the

day and the primary objective is to accommodate as many requests

as possible according to the available fleet of vehicles. Furthermore,

the routes are designed under the constraint that customers spec-

ify pick-up and drop-off requests between origins and destinations.

Yang et al. [Yang 2004] introduce a real-time multi-vehicle truck-

load pickup and delivery problem. They propose a mixed-integer

programming formulation for the off-line version of the problem

and propose a new rolling horizon re-optimization strategy for a

dynamic version.

2. Stochastic: In stochastic dynamic problems (also known as probabilis-

tic dynamic problems) uncertain data are related to customer locations,

demands or travel times and are represented by stochastic processes.

(a) Dynamic and Stochastic Capacitated Vehicle Routing

Problem (DSCVRP): It considers customer requests are un-

known and revealed over time. In addition, customer loca-

tions and service times are random variables and are realized

dynamically during plan execution. Bent and Van Hentenryck

[Bent 2003, Bent 2004] considered DVRP with stochastic cus-

tomers. They proposed a multiple scenario approach that contin-

uously generates routing plans for scenarios including known and

immediate requests to maximize the number of serviced customers.

The approach was adapted from Solomon benchmarks with varying

the degree of dynamism. Hvattum et al. [Hvattum 2006] addressed

this variant of the problem. The authors consider both customer lo-

cations and demands may be unknown in advance. They formulate

the problem as a multi-stage stochastic programming problem, and

a heuristic method was developed to generate routes by exploiting

the information gathered on future customer demand.

(b) Dynamic and Stochastic Vehicle Routing Problem with

Time Windows (DSVRPTW): It has been introduced

in [Pavone 2009]. In this problem, each service request is gener-

ated according stochastic process; once a service request appears,

it remains active for a certain deterministic amount of time, and

then expires. The objective is to minimize the number of possible

vehicles and ensure that each demand is visited before its expira-

35

36
Chapter 1. Dynamic Vehicle Routing Problems: Overview,

Approaches, and Performance Measures

tion. Furthermore, this problem has been considered by Bent et al.

in [Bent 2007].

(c) Dynamic Vehicle Routing Problem with Stochastic Travel

Times (DVRPSTT):

It assumes that the problem is subject to a stochastic travel time

which represents a random variable in an interval. The travel times

change from one period to the next. Some works present this ver-

sion of the problem as in [Potvin 2006], where the the travel time

to the next destination is perturbed by adding a value generated

with a normal probability law. This perturbation represents any

unforeseen events that may occur along the current travel journey.

It is known to the dispatching system only when the vehicle arrives

at its planned destination.

(d) Dynamic and Stochastic Pickup and Delivery Vehicle

Routing Problem (DSPDVRP):In this version of the problem

stochastic process concerns the quantity of demand that the vehicle

must pick or delivery to each customer. Thus, we have vagueness in

quantities to pick up or deliver at the customers’ location [Xu 2008].

The demand of each customer is revealed only when the vehicle

reaches the customer. The distribution can be modeled by using

a probabilistic law, such as a normal law for example, or by using

fuzzy logic.

36

1.2. Dynamic Vehicle Routing Problem 37

T
ab

le
1.

1:
M

a
jo

r
p
u
b
li
ca

ti
on

s
on

d
iff

er
en

t
va

ri
an

ts
of

D
y
n
am

ic
V

eh
ic

le
R

ou
ti

n
g

P
ro

b
le

m
s.

D
V

R
P

s
A

u
th

o
r
s

C
la

ss
e
s

C
h
a
r
a
c
te

r
is

ti
c
s

O
b
je

c
ti

v
e
s

D
e
te

r
m

in
is

ti
c

P
sa

ra
ft

is
et

a
l.

[P
sa

ra
ft

is
1
9
8
8
]

D
C

V
R

P
D

y
n

a
m

ic
re

q
u

es
ts

M
in

im
iz

a
ti

o
n

o
f

th
e

K
il
b
y

et
a
l.

[K
il
b
y

1
9
9
8
]

M
o
n
te

m
a
n
n

i
et

a
l.

[M
o
n
te

m
a
n

n
i

2
0
0
5
b

]
H

a
n

sh
a
r

et
a
l.

[H
a
n

sh
a
r

2
0
0
7
]

V
eh

ic
le

h
a
s

a
li
m

it
ed

ca
p

a
ci

ty
to

ta
l

tr
a
v
el

ed
d

is
ta

n
ce

B
ra

n
ch

in
i
et

a
l.

[B
ra

n
ch

in
i

2
0
0
9
]

la
te

n
es

s
a
t

th
e

cu
st

o
m

er
B

er
ts

im
a
s

a
n

d
V

a
n

R
y
zi

n
[B

er
ts

im
a
s

1
9
9
1
,

B
er

ts
im

a
s

1
9
9
3
b

]
O

li
v
ei

ra
et

a
l.

[O
li
v
ei

ra
2
0
0
8
]

D
V

R
P

T
W

D
y
n

a
m

ic
re

q
u

es
ts

G
en

d
re

a
u

et
a
l.

[G
en

d
re

a
u

1
9
9
9
]

M
in

im
iz

e
th

e
to

ta
l

M
it

ro
v
ić

-M
in

ić
et

a
l.

[M
it

ro
v
ić

-M
in

ić
2
0
0
4
a
]

tr
a
v
el

ed
d

is
ta

n
ce

L
a
rs

en
et

a
l.

[L
a
rs

en
2
0
0
4
]

a
n

d
m

in
im

iz
e

th
e

su
m

o
f

H
o
u

sr
o
u

m
et

a
l.

[H
o
u

sr
o
u

m
2
0
0
6
]

T
im

e
w

in
d

o
w

la
te

n
es

s
a
t

th
e

cu
st

o
m

er
A

lv
a
re

z
et

a
l.

[A
lv

a
re

n
g
a

2
0
0
5
]

H
a
g
h

a
n

i
et

a
l.

[H
a
g
h

a
n

i
2
0
0
5
]

D
V

R
P

T
T

D
y
n

a
m

ic
re

q
u

es
ts

M
in

im
iz

e
th

e
su

m
o
f

V
a
ri

a
b

le
T

ra
v
el

T
im

es
la

te
n

es
s

a
t

th
e

cu
st

o
m

er
G

en
d

re
a
u

et
a
l.

[G
en

d
re

a
u

2
0
0
6
]

D
P

D
V

R
P

D
y
n

a
m

ic
re

q
u

es
ts

M
in

im
iz

a
ti

o
n

o
f

to
ta

l
tr

a
v
el

ti
m

e,
M

it
ro

v
ić

-M
in

ić
et

a
l.

[M
it

ro
v
ić

-M
in

ić
2
0
0
4
a
]

P
ic

k
u

p
a
n

d
D

el
iv

er
y

A
n

g
el

el
li

et
a
l.

[A
n

g
el

el
li

2
0
0
4
]

la
te

n
es

s
o
v
er

a
ll

p
ic

k
-u

p
a
n

d
d

el
iv

er
y

lo
ca

ti
o
n

s
Y

a
n

g
et

a
l.

[Y
a
n

g
2
0
0
4
]

a
n

d
su

m
o
f

o
v
er

ti
m

e
o
v
er

a
ll

v
eh

ic
le

s
S

w
ih

a
rt

a
n

d
P

a
p

a
st

a
v
ro

u
[S

w
ih

a
rt

1
9
9
9
]

S
to

c
h
a
st

ic

B
en

t
et

a
l.

[B
en

t
2
0
0
3
,

B
en

t
2
0
0
4
]

D
S

C
V

R
P

R
a
n

d
o
m

cu
st

o
m

er
lo

ca
ti

o
n

s
M

a
x
im

iz
e

th
e

n
u

m
b

er
o
f

se
rv

ic
ed

cu
st

o
m

er
s

H
v
a
tt

u
m

et
a
l.

[H
v
a
tt

u
m

2
0
0
6
]

R
a
n

d
o
m

se
rv

ic
e

ti
m

es
M

in
im

iz
e

th
e

to
ta

l
tr

a
v
el

ed
d

is
ta

n
ce

P
a
v
o
n

e
et

a
l.

[P
a
v
o
n

e
2
0
0
9
]

D
S

V
R

P
T

W
R

a
n

d
o
m

cu
st

o
m

er
lo

ca
ti

o
n

s
M

in
im

iz
e

th
e

n
u

m
b

er
o
f

v
eh

ic
le

s,
B

en
t
et

a
l.

[B
en

t
2
0
0
7
]

R
a
n

d
o
m

se
rv

ic
e

ti
m

es
a
n

d
th

e
tr

a
v
el

ed
d

is
ta

n
ce

T
im

e
w

in
d

o
w

M
in

im
iz

e
th

e
w

a
it

fo
r

co
m

p
le

ti
o
n

o
f

se
rv

ic
e

P
o
tv

in
et

a
l.

[P
o
tv

in
2
0
0
6
]

D
V

R
P

S
T

T
D

y
n

a
m

ic
re

q
u

es
ts

a
n

d
M

in
im

iz
e

th
e

tr
a
v
el

ti
m

es
,

D
ja

d
a
n

e
et

a
l.

[D
ja

d
a
n

e
2
0
0
6
]

tr
a
v
el

ti
m

es
a
re

su
b

je
ct

ed
to

la
te

n
es

s
a
t

cu
st

o
m

er
lo

ca
ti

o
n

s
st

o
ch

a
st

ic
v
a
ri

a
ti

o
n

s
a
n

d
la

te
n

es
s

a
t

th
e

d
ep

o
t

X
u

et
a
l.

[X
u

2
0
0
8
]

D
S

P
D

V
R

P
S

to
ch

a
st

ic
p

ic
k
u

p
a
n

d
d

el
iv

er
y

M
in

im
iz

e
th

e
to

ta
l

d
is

ta
n

ce
co

v
er

ed
b
y

v
eh

ic
le

s,
se

rv
ic

e
a
n

d
la

te
n

es
s

a
t

cu
st

o
m

er

37

38
Chapter 1. Dynamic Vehicle Routing Problems: Overview,

Approaches, and Performance Measures

1.3 Solution Representation

Different works have been achieved for solving the DVRP in the literature.

Nevertheless, few works emphasize the representation used for problem’s so-

lution [Montemanni 2005b, Housroum 2006, Hanshar 2007].

The underlying idea is to use a dynamic structure with a variable length.

The dynamic encoding is justified by the fact that demands arrive over

the time and have to be inserted in the existing routes or by creating new

ones. The representation must take into account the routes and information

related to the customers as well as the vehicles. It must distinguish the

pending customers that have newly been added to the day’s schedule, but

not yet assigned to any vehicle and committed customers that have already

been visited by a given vehicle. In [Montemanni 2005b], Montemanni et al.

propose a representation for their Ant Colony System (ACS) algorithm. The

authors consider v dummy depots (one for each vehicle of the fleet) and they

refer to them as d1, ..., dv . Solutions retrieved by ants will be represented as

long, single tours. In this context, nodes contained within two consecutive

dummy depots da and db (with da , db ∈ {1, ..., v}) form the (partial) tour

associated with vehicle a. The partial tour associated with vehicle b will

start from the dummy depot db, which corresponds to the location of the

last customer committed to vehicle b. The starting time from db corresponds

to the end of the serving time for the last customer committed to vehicle b,

while the capacity of b will be equal to the residual capacity of b, i.e. Qb

minus the quantity ordered by customers already committed to vehicle b.

Another representation is proposed by Hanshar et al.[Hanshar 2007] for a

Genetic Algorithm for DVRP. Their chromosomal representation consists

of two types of nodes: a node with a positive integer number representing

a single customer (who has not yet been assigned to a vehicle) and node

depicted with a negative integer number representing a group of clustered

customers that have already been committed to a given vehicle. Thus,

the chromosome consists of integers, where new customers are directly

represented on a chromosome with their corresponding positive index number

and each committed customer is indirectly represented within one of the

groups representing a given deployed vehicle. When the chromosome is

decoded, new customers could be added to these pre-existing vehicles (i.e.,

groups) if they still have the capacity to accommodate new customer orders.

Always in this connection, Garrido and al. [Garrido 2010] have tackled

the DVRP by an Evolutionary Hyper-Heuristics (EH-DVRP). The authors

propose a chromosome representation for the low-level heuristics composed by

two main data structures; a list of new unassigned customers represented by

their identifier, and a set of routes which represents a set of partial solutions

38

1.4. Solving Methods 39

or states of the problem, formed by committed and uncommitted requests.

1.4 Solving Methods

In solving Dynamic Vehicle Routing Problems, we have to take into ac-

count two important aspects; the events managing and the resolution pro-

cess. The event managing task is in charge of collecting new demands and

keeps trace of already served customers and of the position of the vehicles.

It uses this information in order to generate a sequence of static VRP sub-

problems which are solved by one of the methods described below. Also,

the event manager plays the role of scheduler which commits the vehicles to

customers according to the solution obtained by the solving method. Differ-

ent event managers have been developed in literature and have similar job

[Montemanni 2005b, Housroum 2006, Hanshar 2007]. For the optimization

task, it consists in providing feasible solutions according to the static problem

input. In this section, we present a classification and a brief overview of the

main methods proposed in literature for dynamic vehicle routing problems.

As seen in Figure 1.4, solving methods can be divided into three main cate-

gories: positioning strategies, heuristics, and metaheuristics.

Figure 1.4: Classification of solving methods proposed in literature for

DVRPs.

1.4.1 Strategy-Based Algorithms

Generally, the strategies are represented as simple policies, which specifie the

actions that the system should bring to handle the current state and the

39

40
Chapter 1. Dynamic Vehicle Routing Problems: Overview,

Approaches, and Performance Measures

properties of the dynamic problem (for example, location of appearance, fre-

quency of events, number of orders known beforehand, length of the working

day, duration of the planning horizon, and so on) [Bianchi 2000, Ghiani 2003].

In [Bertsimas 1991, Bertsimas 1993a, Bertsimas 1993b, Papastavrou 1996,

Swihart 1999, Song 2005, Song 2005, Branke 2005b] strategies have been de-

fined for single or multi vehicles conditions. They consider the spacial and

time distributions of the dynamic requests and enable the system to plan the

service each time the problem changes.

Strategies are applied repeatedly in order to dispatch requests to vehicles

and build routes. We outline some of them :

1. First Come First Served (FCFS): Requests are served in the order

in which they are received by the dispatcher.

2. Stochastic queue median (SQM): Locate the vehicle at the median

position in the service region and serve the customer according to FIFO

strategy. When the service is finished, the vehicle returns to the median.

3. Nearest Neighbor (NN): A greedy strategy in which the vehicle

serves the nearest unserviced request after a service.

4. Traveling Salesman (TS): Requests are collected into a sets of a

given size. Once a set of demands has been batched the TSP is solved.

The demands are serviced by following the optimal tour which start and

end at the depot [Bertsimas 1993b, Bertsimas 1993a].

5. Partitioning (PART): The service area is partitioned into sub-regions.

A vehicle visits the sub-regions in a given order and with respect of

passing from one sub-region to an adjacent one. Demands into each

sub-region are serviced in a FIFO order [Bertsimas 1991].

6. Generation (GEN): This strategy combines SQM and TSP strate-

gies. It consists to position the vehicle at the median of the region

service and serve the request when it arrives (generation). At the com-

pletion time, the vehicle returns to the median if there are no requests

in a waiting queue. Otherwise, the TSP is solved on the existing re-

quests and the vehicle is committed according to the optimal tour (next

generation) [Papastavrou 1996].

7. Space Filling Curve (SFC): It services customers as they are encoun-

tered in repeated clockwise sweeps of a circle which guides the routes

construction [Bertsimas 1991, Bertsimas 1993b].

40

1.4. Solving Methods 41

8. Waiting (WAIT): It aims to find an optimal waiting schedule for the

vehicles to maximize the probability that a new customer can be incor-

porated into one of the tours while reducing the average length of the de-

tour that is necessary to serve this customer. Larsen et al.[Larsen 2004]

proposed strategies to deal with the Partially Dynamic Traveling Sales-

man Problem with Time Windows (PDTSPTW) in which the aim is to

minimize lateness. One strategy requires the vehicle, when idle, to wait

at the current customer location until it can service another customer

without being early. Another strategy, propose to reposition the vehicle

at a location different from that of the current customer based on a priori

information on future requests. Vehicle relocation is also addressed by

Bent and Van Hentenryck [Bent 2007]. Computational results indicate

that these two strategies are very effective in maximizing the number

of served customers, particularly for strong dynamic systems where the

dod is high. Branke et al. [Branke 2005b] as well as Mitrovic-Minic and

Laporte [Mitrović-Minić 2004b], have found that in the case of several

vehicles, waiting allows the vehicles to remain at suitable locations dur-

ing their tours, and improves the probability of being able to serve new

customers.

1.4.2 Heuristics

Usually, simple strategies are related to specific conditions, which leads to

lower empirical performance in other operational conditions. In these con-

ditions, heuristics could be employed to improve the performance of the al-

gorithms [Psaraftis 1988, Kilby 1998, Mitrović-Minić 2004a, Hvattum 2006,

Branchini 2009]. These heuristics are essentially constructive and improve-

ment procedures. Constructive heuristics create initial solutions, i.e., set of

routes, from scratch. On the contrary, as support mechanisms, improvement

procedures repair previously constructed solutions by performing simple re-

assignment moves. According to the planning horizon, these procedures re-

optimize the vehicle route when new demand customer appears. The cus-

tomers are inserted on the routes following the cheapest insertion (i.e. best

position of the current routes) [Psaraftis 1988].

Mitrović-Minić et al. [Mitrović-Minić 2004a] apply the cheapest insertion

procedure in order to determine the overall best insertions for the locations of

a request before its insertion. The improvement procedure is based on Tabu

Search (TS). It is applied after the reinsertion procedure and it runs while

new requests are being received.

Kilby et al. in [Kilby 1998] use an insertion heuristic which inserts cus-

tomers and is improved by using different heuristics as 2-Opt [Lin 1965], Or-

41

42
Chapter 1. Dynamic Vehicle Routing Problems: Overview,

Approaches, and Performance Measures

Opt [Or 1996], relocate, exchange, and cross [Breedam 1994].

Branchini et al. [Branchini 2009] propose an adaptive granular local search

heuristic for the DVRP. This heuristic has a reduced neighborhood based on

candidate-list strategy. Such neighborhood discards long tour segments which

represent high costs arcs due to the small probability of these being part of

good quality solutions and focuses on promising short tour segments. The

heuristic adaptation assumes adjusting the size of the search space according

to the short time that is available for the optimization method in different

periods of the working day.

1.4.3 Metaheuristics

Metaheuristics design a computational method that optimizes a problem by

iteratively trying to improve a candidate solution with regard to a given mea-

sure of quality. They make few or no assumptions about the problem being

optimized and can search very large spaces of candidate solutions. They pro-

vide acceptable solutions in a reasonable time for solving hard and complex

problems in science and engineering. Their main exploring characteristic is

based on the balance between diversification and intensification. The term

diversification generally refers to the exploration of the search space, whereas

the term intensification refers to the exploitation of the accumulated search

experience. This balance between diversification and intensification is impor-

tant, on one side to quickly identify regions in the search space with high

quality solutions and on the other side not to waste too much time in regions

of the search space which either are already explored or do not provide high

quality solutions.

Metaheuristics can be grouped into two classes of algorithms;

single-solution based metaheuristics and population based metaheuris-

tics [Talbi 2009].

Single-solution based metaheuristics (S-metaheuristics) could be viewed as

search trajectories over the search space of the problem. These trajectories

are performed by iterative procedures that move from the current solution to

another one in the search space. Furthermore, they incorporate techniques

that enable the algorithm to escape from local minima. This class of meta-

heuristic algorithms includes -but is not restricted to- tabu search, simulated

annealing, threshold accepting, variable neighborhood search, iterated local

search, guided local search, GRASP, and so on.

On the other side, the population based metaheuristics (P-metaheuristics)

start from an initial population of solutions and iteratively apply the gen-

eration of a new population and the replacement of the current one. They

regroup algorithms such as evolutionary algorithms (genetic algorithms, evolu-

42

1.4. Solving Methods 43

tion strategies, genetic programming, evolutionary programming, estimation

of distribution algorithms, differential evolution, and co-evolutionary algo-

rithms), swarm intelligence-based methods (e.g., ant colonies, particle swarm

optimization), scatter search, bee colony, artificial immune systems, and so

on.

We give an overview on the main existing works in literature on both

classes of metaheuristics for dynamic vehicle routing problems in what fol-

lows:

1.4.3.1 Single-Solution Based Metaheuristics

Many works are related to trajectory-based metaheuristics for solving DVRP

(see Table 1.2). Gendreau et al. in [Gendreau 1999] propose a parallel tabu

search heuristic with an adaptive memory mechanism taken from Rochat and

Taillard work [Rochat 1995]. The adaptive memory stores previously found

elite solutions and used them to generate new starting points for the tabu

search. This is achieved by combining routes taken from different solutions

in memory. Any new solution produced by the tabu search is included in

the memory if it is not filled yet. Otherwise, the new solution replaces the

worst solution in memory, if it is better. The parallelization of the procedure

was achieved at two different levels: (1) different tabu search threads run in

parallel, each of them starting from a different initial solution; and (2) within

each search thread, many tabu searches run independently on subproblems

obtained through a decomposition procedure of the whole problem. For the

parallel implementation a masterslave scheme was chosen to implement the

procedure. The master process manages the adaptive memory and creates

initial solutions for the slave processes that run the tabu search.

Gendreau et al. [Gendreau 2006] develop a tabu search heuristic for the

Dynamic Vehicle Routing Problem with Pickup and Delivery (DPDVRP).

The neighborhood structure is based on the ejection chain heuristic in which

a request is taken from one route and moved to another route, thus forcing a

request from that route to move to yet another route, and so on. The chain

may be of any length and may be cyclic or not. The authors reuse the mech-

anism of adaptive memory.

Ichoua et al. in [Ichoua 2000] reuse the same algorithm with some enhanc-

ing related to the strategy for assigning customer requests to vehicles.

Mitrović -Minić et al. [Mitrović-Minić 2004a] deal with the Dynamic

Pickup and Delivery Problem with Time Windows (DPDVRPTW) and ap-

plied the cheapest insertion procedure in order to determine the overall best

insertions for the locations of a request before its insertion. The improvement

procedure is based on Tabu Search (TS). It is applied after the reinsertion

43

44
Chapter 1. Dynamic Vehicle Routing Problems: Overview,

Approaches, and Performance Measures

procedure and it runs while new requests are being received.

Hanshar et al. implement a basic tabu search in [Hanshar 2007]. Two

operators are employed as neighborhood structure procedures; inversion oper-

ator and λ-exchange operator [Osman 1993], each one was applied according

to some probability. Furthermore, Montemanni [Montemanni 2005b] imple-

ment a GRASP (Greedy Randomized Adaptive Search Procedure) for dealing

with DVRP. Basically, initial tours are generated by iteratively selecting the

next customers to visit. The procedure is repeated until a complete solution

is built.

Attanasio et al. present in [Attanasio 2004] use different neighbor for

their parallel tabu search implemented for the Dynamic Dial-a-Ride Prob-

lem (DDARP). A neighbor solution is obtained by applying a simple operator

that removes a customer from a route and reinserted it into another one.

1.4.3.2 Population-Based Metaheuristics

Several population-based metaheuristics have been proposed in the literature

(see Table 1.2). An outline on the major works on these approaches is given

in what follows:

1.4.3.3 Ant Colony Optimization

Ant System (AS) has been applied to tackle a large variety of Dynamic Ve-

hicle Routing Problems [Gambardella 2003, Tian 2003, Montemanni 2005b,

Rizzoli 2007, Jun 2008]. In this metaheuristic a colony of artificial ants is

used to construct solutions guided by the pheromone trails and heuristic in-

formation.

Tian et al. [Tian 2003] present a hybrid Ant System to handle the dy-

namism by means of modifying the pheromone matrix in order to take ad-

vantage of the old information gathered during the previous search. They

propose a new pheromone initialization for new demands, which works better

than a re-start optimization. Furthermore, they use a simple strategy that

consists in grouping new requests at every fixed interval-time before their in-

troduction into the system. In addition, they make further improvements on

vehicle routes with the local search 2-Opt heuristic.

Jun et al. [Jun 2008] address a hybrid multi-objective ant colony algo-

rithm for solving DVRPTW. They consider two sub-objectives such as ve-

hicle number and the time cost as an independent objective. In their Ant

Colony Algorithm, an Evolutionary Algorithm (EA) is embedded to increase

the pheromone update. They explain that EA participates to speed up the

convergence of their algorithm.

44

1.4. Solving Methods 45

Montemanni et al. [Montemanni 2005b] exploit some characteristics of

the Ant Colony System optimization paradigm to smoothly save information

about promising solutions when the optimization problem evolves because of

the arrival of new orders. One of these characteristics is the pheromone con-

servation procedure. It contains information about the characteristics of good

solutions for these problems. In particular, pairs of customers who have been

visited in sequence in good solutions, will have high values in the correspond-

ing entries of the pheromone matrix. In dynamic context, it is used to pass

information about the properties of good solutions from a previously obtained

results for the new changing environment since the two problems are poten-

tially very similar. This operation avoids the restarting of the optimization

at each time from scratch.

Based on the Montemanni’s algorithm, Rizzoli et al. [Rizzoli 2007] discuss

the applications of ACO on a number of real-world problems. They propose

some results obtained by their algorithm on an on-line VRP for fuel distri-

bution in the city of Lugano (Switzerland). Oliveira et al. [Oliveira 2008]

propose an Ant Colony Algorithm for the DVRPTW with two different forms

of attractiveness (time windows and distance) for building the vehicle routes.

According to their experiments, more the degree of dynamism is higher, fewer

customers will be served.

Chitty et al. [Chitty 2004] introduce a hybrid dynamic programming-ant

colony optimization approach to solve bi-criterion Vehicle Routing Problems.

The aim is to find routes that have both shortest overall travel time and the

smallest variance in travel time. The hybrid approach uses the principles of

dynamic programming to first solve simple problems using ACO (routing from

each adjacent node to the end node), and then builds on this to eventually

provide solutions (i.e. Pareto fronts) for routing between each node in the

network and the destination node. However, the hybrid technique updates

the pheromone concentrations only along the first edge visited by each ant.

As a result it is shown to provide the overall solution in quicker time than

an established bi-criterion ACO technique that is concerned only with rout-

ing between the start and destination nodes, allowing re-routing vehicle to

dynamic changes within the road network.

1.4.3.4 Evolutionary Algorithms

Another popular P-metaheuristic is the Genetic Algorithm (GA) in which a

population of individuals is modified by recombination and mutation opera-

tors.

Hanshar and Ombuki-Berman [Hanshar 2007] propose a GA that handles

the optimization of the static VRP like-instances that correspond to the whole

45

46
Chapter 1. Dynamic Vehicle Routing Problems: Overview,

Approaches, and Performance Measures

dynamic problem. The GA is launched at each fixed duration and must run

within an efficient amount of time. The fitness evaluation involves the vehi-

cle routes obtained after the translation of the chromosome representation.

It returns the total travel distance/cost of the routes. The Best-Cost Route

Crossover (BCRC) is used as crossover operator, and the inversion operator

as mutation.

Housroum et al. [Housroum 2006] deal with Dynamic Vehicle Routing

Problem with Time Windows (DVRPTW). The authors propose an approach

based on genetic algorithm. For their algorithm, they suggest PMX crossover,

and different mutation operators such as Or-Opt, 1-Opt, or swap. They val-

idate their approach on modified Solomon’s benchmarks which have been

proposed by Gendreau et al. [Gendreau 1999]. Zhao et al. in [Zhao 2008]

use a similar GA than Housroum’s algorithm [Housroum 2006] for solving

the Dynamic Vehicle Routing Problem with time-dependent Travel Times

(DVRPTT).

Alvarenga et al. propose in [Alvarenga 2005] a hybrid GA with Col-

umn Generation Heuristic for the DVRPTW. The authors propose a specific

crossover, where at the first step, it makes a random choice of routes from

each parent involved. After all feasible routes are inserted in the offspring.

New routes are created if some customers remain after the insertion step. As

mutation operator, a total of eight different operators are used in their work.

Branke et al. [Branke 2005b] propose a GA with different waiting strategy

for vehicles for DCVRP. A two-point crossover is chosen and the mutation is

done by adding to each value a normally distributed random value.

For their Evolutionary Hyper-Heuristics (EH-DVRP) [Garrido 2010], Garrido

et al. propose a high-level algorithm which evolves and combines different

types of low-level heuristics (constructive, perturbation, and noise heuristics)

to solve the problem. Each individual of the population refers to a sequence

of genes that correspond to a constructive and improvement heuristics which

gradually inserts customers and repairs the set of routes created so far. These

dedicated heuristics are applied to construct and improve partial states of

the problem. The hyper-heuristic uses four operators to find new individuals:

One recombination and three mutation-like operators. The recombination

operator performs a one point crossover to generate two new offspring. For

the mutation operators, the first one randomly selects and copies one of the

heuristics to another position in the chromosome which allows to include new

heuristics in a different steps of the algorithm. The second operator selects

and replaces a gene by one single heuristic. The authors’ idea is to give an

alternative heuristic which may perform better in cooperation with existing

ones. The last operator deletes a gene from the chromosome and discards

some heuristics which cannot be useful to improve candidate solutions.

46

1.4. Solving Methods 47

Wang et al. [Wang 2007] propose an EA for solving the DVRPTW. For

the algorithm’s reproduction phase, the authors use two-points crossover op-

erator and a mutation operator that consists in changing the assignment of

unserved customers to another vehicle. In order to enhance their algorithm,

the authors hybridize their algorithm with a modified Dijkstras algorithm for

finding the real-time shortest paths.

Jih et al. [Jih 1999] address a hybrid genetic algorithm for solving single-

vehicle pickup and delivery problem with time windows and capacity con-

straints (DPDVRPTW). The approach enables dynamic programming to

achieve real-time performance and genetic algorithms to approximate opti-

mal solutions. The initial population is created by the dynamic programming

instead of generating it randomly. The dynamic programming passes the un-

finished routes to genetic algorithms to produce final solutions. The authors

compare the performance of four crossover operators. These operators are:

order crossover (OX), uniform order-based crossover (UOX), merge cross #1

(MX1) and merge cross #2 (MX2) [Blanton 1993]. In addition, they consider

three mutation operators: (i) Two genes are selected randomly, and their

positions are interchanged (swap operator). (ii) Randomly two cut sites are

chosen, and the order of the sub-route specified by the genes is inverted (in-

verse operator). (iii) If the vehicle arrives at the ith stop and violates the

constraints, it disturbs the order of the genes within the first ith sub-route

(rearrangement operator).

Haghani et al. [Haghani 2005], deal with the pick-up and delivery vehi-

cle routing problem with soft time windows in which are considered multi-

ple vehicles with different capacities, real-time service requests, and real-time

variations in travel times between demand nodes. This algorithm includes a

vehicle merging operator in addition to the generic genetic operators, namely

the crossover and the mutation operators.

Bosman et al. [Bosman 2006] introduce a probabilistic model to describe

the behavior of the load announcements. This allows the routing to make

informed anticipated moves to customers where loads are expected to arrive

shortly. The approach outperforms the EA which only considers currently

available loads. Only mutation is considered. In the mutation of an individ-

ual, two vehicles are chosen randomly (could be the same), and two customers

from their respective routes are chosen randomly, and are swapped. This op-

erator allows visits to customers to be exchanged between vehicles or to be

re-ordered in the route of a single vehicle directly.

Van Hemertand and La Poutré [Van Hemert 2004] present an evolutionary

algorithm that is able to provide solutions in real-time for the DVRP. The

authors analyze the benefit of anticipatory vehicle moves within regions that

have a high potential of generating loads (fruitful regions). Only mutation

47

48
Chapter 1. Dynamic Vehicle Routing Problems: Overview,

Approaches, and Performance Measures

is considered. Two vehicles, possibly the same one, are chosen randomly. In

both vehicles two nodes are selected and are swapped.

48

1.4. Solving Methods 49

T
ab

le
1.

2:
S
ta

te
-o

f-
th

e-
ar

t
m

et
ah

eu
ri

st
ic

s
fo

r
D

V
R

P
an

d
it

s
va

ri
an

ts
.

M
e
ta

h
e
u
r
is

ti
c
s

A
u
th

o
r
s

P
r
o
b
le

m
O

p
e
r
a
to

r
s

S
in

g
le

-S
o
lu

ti
o
n

B
a
se

d
T

a
b

u
S

ea
rc

h

H
a
n

sh
a
r

et
a
l.

[H
a
n

sh
a
r

2
0
0
7
]

D
C

V
R

P
λ

-i
n
te

rc
h

a
n

g
e

a
n

d
in

v
er

si
o
n

G
en

d
re

a
u

1
et

a
l.

[G
en

d
re

a
u

1
9
9
9
]

D
V

R
P

T
W

C
R

O
S

S
ex

ch
a
n

g
e

Ic
h
o
u

a
et

a
l.

[I
ch

o
u

a
2
0
0
0
,

Ic
h

o
u

a
2
0
0
3
]

M
it

ro
v
ić

-M
in

ić
et

a
l.

[M
it

ro
v
ić

-M
in

ić
2
0
0
4
a
]

D
P

D
V

R
P

G
R

A
S

P
M

o
n
te

m
a
n

n
i
et

a
l.

[M
o
n
te

m
a
n

n
i

2
0
0
5
b

]
D

C
V

R
P

G
re

ed
y

in
se

rt
io

n

P
o
p
u
la

ti
o
n

B
a
se

d

M
o
n
te

m
a
n

n
i
et

a
l.

[M
o
n
te

m
a
n

n
i

2
0
0
5
b

]

D
C

V
R

P

G
re

ed
y

h
eu

ri
st

ic
T

ia
n

et
a
l.

[T
ia

n
2
0
0
3
]

2
-o

p
t

h
eu

ri
st

ic
A

n
t

C
o
lo

n
y

C
h

it
ty

[C
h

it
ty

2
0
0
4
]

D
y
n

a
m

ic
p

ro
g
ra

m
m

in
g

O
p

ti
m

iz
a
ti

o
n

R
iz

zo
li

et
a
l.

[R
iz

zo
li

2
0
0
7
]

n
o
n

e
J
u

n
et

a
l.

[J
u

n
2
0
0
8
]

D
V

R
P

T
W

C
o
o
p

er
a
ti

o
n

w
it

h
E

A
O

li
v
ei

ra
et

a
l.

[O
li
v
ei

ra
2
0
0
8
]

n
o
n

e
H

a
n

sh
a
r

et
a
l.

[H
a
n

sh
a
r

2
0
0
7
]

D
C

V
R

P

B
C

R
C

cr
o
ss

o
v
er

M
u

ta
ti

o
n

(i
n
v
er

si
o
n

)
B

ra
n

k
e

et
a
l.

[B
ra

n
k
e

2
0
0
5
b

]
T

w
o
-p

o
in

t
cr

o
ss

o
v
er

M
u

ta
ti

o
n

(r
ep

la
ce

m
en

t)
G

a
rr

id
o
2
0
1
0

et
a
l.

[G
a
rr

id
o

2
0
1
0
]

O
n

e-
p

o
in

t
cr

o
ss

o
v
er

3
m

u
ta

ti
o
n

o
p

er
a
to

rs
(r

ep
la

ce
m

en
t,

in
se

rt
io

n
,d

el
et

io
n

)
V

a
n

H
em

er
ta

n
d

a
n

d
L

a
P

o
u

tr
é

[V
a
n

H
em

er
t

2
0
0
4
]

m
u

ta
ti

o
n

(C
R

O
S

S
ex

ch
a
n

g
e)

H
o
u

sr
o
u

m
et

a
l.

[H
o
u

sr
o
u

m
2
0
0
6
]

D
V

R
P

T
W

P
M

X
cr

o
ss

o
v
er

3
m

u
ta

ti
o
n

s
(O

r-
O

p
t,

1
-O

p
t,

sw
a
p

)
E

v
o
lu

ti
o
n

a
ry

A
lv

a
re

n
g
a

et
a
l.

[A
lv

a
re

n
g
a

2
0
0
5
]

S
p

ec
ifi

c
cr

o
ss

o
v
er

A
lg

o
ri

th
m

s
8

m
u

ta
ti

o
n

s
(i

n
se

rt
io

n
,

ex
ch

a
n

g
e,

..
.)

W
a
n

g
et

a
l.

[W
a
n

g
2
0
0
7
]

T
w

o
-p

o
in

ts
cr

o
ss

o
v
er

M
u

ta
ti

o
n

(I
n

se
rt

io
n

)
J
ih

et
a
l.

[J
ih

1
9
9
9
]

D
P

D
V

R
P

T
W

3
cr

o
ss

o
v
er

s(
O

X
,

U
O

X
M

X
1
,

M
X

2
)

3
m

u
ta

ti
o
n

s
(r

ea
rr

a
n

g
em

en
t,

sw
a
p

,
in

v
er

se
)

B
o
sm

a
n

et
a
l.

[B
o
sm

a
n

2
0
0
6
]

C
ro

ss
o
v
er

(n
o
n

e)
C

R
O

S
S

ex
ch

a
n

g
e

m
u

ta
ti

o
n

Z
h

a
o

et
a
l.

[Z
h

a
o

2
0
0
8
]

D
V

R
P

T
T

P
M

X
cr

o
ss

o
v
er

3
m

u
ta

ti
o
n

s
(O

r-
O

p
t,

1
-O

p
t,

sw
a
p

)

49

50
Chapter 1. Dynamic Vehicle Routing Problems: Overview,

Approaches, and Performance Measures

1.5 Dynamic Performance Measures

The aim of optimization in dynamic environments is not only to find an opti-

mum within a given number of generations, but rather a perpetual adaptation

to the changing environment. Besides the accuracy of an approximation at

time t, the stability of the algorithm is also of interest as well as the recovery

time to reach again a certain approximation quality. We report here some

measures that could be used for evaluating the performance of an algorithm

designed for the DVRP.

Weicker [Weicker 1999, Weicker 2002] proposes measures and considers

that they have to be taken into account when analyzing and comparing algo-

rithms for dynamic problems. Three features have been proposed for Evolu-

tionary Algorithm in order to describe the goodness of a dynamic adaptation

process: accuracy, stability, and ε-reactivity. However these measures could

be applied to any algorithm A used to solve a dynamic problem.

The accuracy should measure the closeness of the current best found solu-

tion to the actual best solution. The accuracy at time t for a fitness function

F and optimization algorithm A is defined as:

accuracy
(t)
F,A =

F (best
(t)
A)−Min

(t)
F

Max
(t)
F −Min

(t)
F

(1.10)

where bestAt is the best solution found by an evolutionary algorithm (EA) in

the population at time t. The maximum and minimum fitness values in the

search space are represented by MaxtF and MintF .

Thus, for the examined algorithm, this ratio quantifies the loss of cost-

efficiency stemming from the lack of full information. The optimization accu-

racy ranges between 0 and 1, where accuracy equal to 1 is the ideal value.

As a second goal, stability is an important issue in optimization. In the

context of dynamic optimization, an adaptive algorithm is called stable if

changes in the environment do not affect the optimization accuracy severely.

Even in the case of drastic changes an algorithm should be able to limit the

respective fitness drop. The stability at time t is defined as

stability
(t)
F,A = max{0, accuracy(t)

F,A − accuracy
(t−1)
F,A } (1.11)

and ranges between 0 and 1. A value closes to 0 implies a high stability.

Finally, another aspect to be considered is the ability of the algorithm to

react quickly to changes. This is measured by the ε-reactivity, which ranges

50

1.5. Dynamic Performance Measures 51

in [1,maxgen] (a smaller value implies a higher reactivity):

reactivity
(t)
F,A,ε =

min

{
t′ − t | t < t′ ≤ maxgen, t ∈ N, accuracy

(t′)
F,A

accuracy
(t)
F,A

≥ (1− ε)
}

∪{(maxgen− t)}
(1.12)

Since it is difficult to know which is the best achievable value in a dynamic

problem, Weicker points out that an average of several generations should be

used instead.

Weicker summarizes different proposals for accuracy in problems where the

global optimum is unknown, offering the following options to be used instead

MaxtF :

CurrentBest
(t)
F,A = max{F (ω)|ω ∈ P (t)

A } (1.13)

CurrentBestOffline
(t)
F,A = max

1≤t′≤t
{CurrentBest(t

′)
F,A} (1.14)

CurrentAverage
(t)
F,A =

1

|P (t)
A |

∑
ω∈P (t)

A

(F (ω)) (1.15)

where P
(t)
A is the population of the algorithm at time t. Another approach

to measure the accuracy without actually knowing the best possible fitness

is based on the assumption that the best fitness value will not change much

within a small number of generations. For that, a window is introduced inside

the time span of the problem and the accuracy window AccF,EA,W is measured

within this window of length W .

windowAcc
(t)
F,EA,W = max

{
F (ω)− windowWorst

windowBest− windowWorst
|ω ∈ P (t)

EA

}
(1.16)

windowBest = max{F (ω)|ω ∈ P (t′)
A , (t−W) ≤ t′ ≤ t} (1.17)

windowWorst = min{F (ω)|ω ∈ P ((t′)
A , (t−W) ≤ t′ ≤ t} (1.18)

Alternatively to the fitness based performance measures, genotype or phe-

notype based measures can also be used to give an approximated value of the

optimization accuracy. Weicker notes that these measures require full global

knowledge of the position of the current optimum and gives two variants. The

first proposal uses the minimal distance of the individuals in the population

to the current optimum ω∗ in the search space and is given as follows:

bestDist
(t)
F,A = max

{
maxdist− d(ω∗, ω)

maxdist
|ω ∈ P (t)

EA

}
(1.19)

51

52
Chapter 1. Dynamic Vehicle Routing Problems: Overview,

Approaches, and Performance Measures

where maxdist is the maximum distance between two solutions in the search

space Ω.

The second proposal has been introduced by Salomon and Eggen-

berger [Salomon 1998] and used the distance of the mass center or centroid

ωcenter of the population to the current optimum ω∗ and is obtained by:

centerDist
(t)
F,EA =

maxdist− d(ω∗, ωcenter)

maxdist
(1.20)

Weicker notes that the first proposal seems to be straightforward to assess

the approximation quality, the second performance measure is more difficult

to interpret. It requires that the population as a whole describes very closely

the region of the optimum.

1.6 Benchmarks

Benchmarks can be defined as standard test problems designed to serve

as bases for algorithm assessment and comparison. The main reason for

testing an algorithm on such problems is to compare the obtained results

with those obtained by other algorithms and hence prove the superiority or

not of the tested algorithm. Instances can be constructed from two types of

data: randomly generated data, and real-life data. On the one side, random

data is easy to obtain and enables to deduce conclusions about the algorithm

performance. On the other side, instance from the second source would be

a particular instance from the real-world. Thus, this kind of instance could

be used to attest that the algorithm has the capability to solve real-world

problems.

Different sets of benchmarks have been proposed in the literature for

DVRP. Most of them are derived from some very popular static VRP

benchmark datasets.

Kilby et al. [Kilby 1998] propose a set of instances, namely

Taillard [Taillard 1993] (13 instances), Christophides and Bea-

sley [Christofides 1984] (7 instances) and Fisher et al. [Fisher 1995] (2

instances). Their size ranges from 50 to 199 customers.These instances were

organized and extended by Montemanni et al. [Montemanni 2005a]. He

organized the instances into two groups, pickup and delivery, and gave to

each instance an available time which signifies when the order was placed

into the system and a duration, which represents the least amount of time a

vehicle waits at a customer.

For the conventional instances of VRP variants, Alvarenga et

al. [Alvarenga 2005] modify Solomon’s instances to get DVRP with

Time Windows (DVRPTW) instances. Gendreau et al. [Gendreau 2006]

52

1.6. Benchmarks 53

propose their own instances for the DVRP with Pickup and Delivery, where,

Attanasio et al. [Attanasio 2004] introduce a benchmark data set for the

Dynamic Dial-a-Ride Problem (DDARP).

Nevertheless, in dynamic optimization, a test problem is characterized

by a particular dynamic scenario, which refers to the sequence of events or

environmental changes in the problem. Moreover, one could be faced with

the difficulty of finding a real life situation which matches the instance that

represents a typical dynamic desired scenario(s). We need a general-purpose

benchmark generator. This generator must use different functions with

tunable parameters to produce wide varieties of scenarios. Thus, the user

can accurately pre-determine particular set of events for the test instances.

Furthermore, generating dynamic instances must take into account mainly

two aspects; data which are related to the structure of the instance(topology

of customer, distribution in the service area,...) and data that is time

dependent (arrival of customer demands, travel time, ...). Test instances

should also be able to cover wide ranges of environmental changes.

Therefore, we propose a DVRP Instance Generator(DVRPGen) available

online1, and that takes into account the features above. It provides dynamic

customized instances named K-series. Our generator provides instances

according to different dynamic scenarios such as dynamic request, dynamic

travel times, vehicle breakdown, etc. We can associate a stochastic process

to each variable of the instances (requests or quantity of demands, travel

times, etc.). Most of VRP variants are represented including time windows,

multi-depot, and pickup and delivery problems. Each user has the possibility

to generate dynamic customized instances according to different spatial

topologies of customers in service area (cluster, uniform, mix), as well as time

distributions (i.e. arrival of customer demands can follow uniform, poisson,

or normal distributions). Furthermore, the generator offers a view of the

instance in 2D dimensional space.

In order to obtain dynamic instances, some characteristics have been

added to the instances:

• Length of the working day [0, T].

• Occurrence time of each request. It contains, for each request, the mo-

ment of the working day, when the order becomes known to the planner.

• Duration service of each request. It represents, for each order, the time

required to serve the corresponding customer.

1http://dolphin.lille.inria.fr/Research/Benchmark, http://neo.lcc.uma.es/dynamic

53

http://dolphin.lille.inria.fr/Research/Benchmark
http://neo.lcc.uma.es/dynamic

54
Chapter 1. Dynamic Vehicle Routing Problems: Overview,

Approaches, and Performance Measures

• Number of vehicles. It contains the dimension in number of vehicles of

the fleet available for serving the customers.

We report in Table 1.3 some set of benchmarks that have been used or pro-

posed in the literature and which are available online2.

2http://www.fernuni-hagen.de/WINF/inhalte/benchmark_data.htm

54

http://www.fernuni-hagen.de/WINF/inhalte/benchmark_data.htm

1.6. Benchmarks 55

T
ab

le
1.

3:
B

en
ch

m
ar

k
d
at

a
se

ts
fo

r
d
y
n
am

ic
ve

h
ic

le
ro

u
ti

n
g

p
ro

b
le

m
s.

A
u
th

o
r
(s

)
P

r
o
b
le

m
s

In
st

a
n
c
e

D
e
sc

r
ip

ti
o
n

P
r
o
b
le

m
si

z
e

M
o
n
te

m
a
n

n
i
et

a
l.

[M
o
n
te

m
a
n

n
i

2
0
0
5
b

]
D

C
V

R
P

–
4
4

in
st

a
n

ce
s

d
er

iv
ed

fr
o
m

p
ro

b
le

m
in

st
a
n

ce
s

o
f

T
a
il
la

rd
,

5
0
-1

9
9

–
C

h
ri

st
o
fi

d
es

,
B

ea
sl

ey
a
n

d
F

is
h

er
.

B
ra

n
k
e

et
a
l.

[B
ra

n
k
e

2
0
0
5
b

]
–

7
In

st
a
n

ce
s

d
er

iv
ed

fr
o
m

th
e

O
R

li
b

ra
ry

o
f

B
ea

sl
y.

u
p

to
1
0
0
0

re
q
u

es
ts

G
en

d
re

a
u

et
a
l.

[G
en

d
re

a
u

2
0
0
6
]

D
P

D
V

R
P

T
W

–
1
5

p
ro

b
le

m
in

st
a
n

ce
s.

u
p

to
2
0
0

–
F

ix
ed

v
eh

ic
le

fl
ee

t
si

ze
(1

0
,

2
0
).

F
a
b

ri
a
n

d
R

ec
h
t.

[F
a
b

ri
2
0
0
6
]

–
D

er
iv

ed
fr

o
m

st
a
ti

c
L

i
&

L
im

P
D

P
T

W
.

u
p

to
5
0
0

re
q
u

es
ts

fo
r

1
0
0
0

n
o
d

es
P

a
n

k
ra

tz
[P

a
n

k
ra

tz
2
0
0
5
]

5
0

re
q
u

es
ts

(1
0
0

n
o
d

es
)

M
it

ro
v
ic

-M
in

ic
et

a
l.

–
9
0

p
ro

b
le

m
in

st
a
n

ce
s

(3
0

in
st

a
n

ce
s

p
er

si
ze

).
1
0
0
-1

0
0
0

[M
it

ro
v
ić

-M
in

ić
2
0
0
4
a
]

A
tt

a
n

a
si

o
et

a
l.

[A
tt

a
n

a
si

o
2
0
0
4
]

D
D

A
R

P
–

U
si

n
g

th
e

p
ro

b
le

m
in

st
a
n

ce
s

o
f

C
o
rd

ea
u

et
a
l.

[C
o
rd

ea
u

2
0
0
3
].

2
4
-1

4
4

–
2
6

p
ro

b
le

m
in

st
a
n

ce
s

(6
o
f

th
em

a
re

re
a
l-

li
fe

ca
se

s)
.

C
h

en
et

a
l.

[C
h

en
2
0
0
6
b

]
D

V
R

P
T

W
T

T
–

5
6

in
st

a
n

ce
s

d
er

iv
ed

fr
o
m

th
e

V
R

P
T

W
S

o
lo

m
o
n

in
st

a
n

ce
s.

1
0
0

re
q
u

es
ts

–
In

cl
u

d
e

th
e

ti
m

e-
d

ep
en

d
en

t
tr

a
v
el

ti
m

e.

K
h

o
u

a
d

ji
a

1

–
In

cl
u

d
es

d
iff

er
en

t
d

y
n

a
m

ic
sc

en
a
ri

o
s

(d
y
n

a
m

ic
cu

st
o
m

er
s,

u
n
b

o
u

n
d

ed

D
C

V
R

P
,

D
V

R
P

T
W

,
v
eh

ic
le

b
ro

k
en

d
o
w

n
,

ro
a
d

s
b

lo
ck

ed
-o

ff
,

et
c.

).
D

P
D

V
R

P
,

D
V

R
P

T
T

,
–

S
ev

er
a
l

v
a
ri

a
n
ts

a
re

re
p

re
se

n
te

d
(t

im
e

w
in

d
o
w

s,
p

ic
k
u

p
&

d
el

iv
er

y,
D

S
V

R
P

,D
S

V
R

P
T

W
,

m
u

lt
i-

d
ep

o
t,

et
c.

).
D

S
P

D
V

R
P

,
D

V
S

V
R

P
T

T
–

C
u

st
o
m

iz
ed

in
st

a
n

ce
s

a
cc

o
rd

in
g

to
th

e
cu

st
o
m

er
d

is
tr

ib
u

ti
o
n

(c
lu

st
er

,
u

n
if

o
rm

,
m

ix
b

et
w

ee
n

b
o
th

).

55

56
Chapter 1. Dynamic Vehicle Routing Problems: Overview,

Approaches, and Performance Measures

1.7 Conclusion

An overview of different aspect of Dynamic Vehicle Routing Problem (DVRP)

has been presented in this chapter. This problem is important both in research

and industrial domains due to its many real world applications.

The state-of-the-art presented in this chapter covers a description of the

problem, its representation as well as the existing solving methods. Dynamic

performance measures are presented in order to quantify the adaptation of

the algorithms throughout the optimization process. The online available

benchmarks are reported and a benchmark generator has been presented. It

provides instances that could be generated according to different dynamic sce-

narios (dynamic requests, vehicle broken down, etc.) as well as different VRP

variants (time window, multi-depot, pickup & delivery, etc.). These instances

will be used to guide the experiment protocol.

From the proposed survey, we can conclude that a well-designed approach

should not be restricted to a given class of methods (strategies, heuristics,

metaheuristics), but has to take into account different features and mecha-

nisms that have been employed on these different techniques. Furthermore,

measuring the adaptability of an algorithm over the optimization process is

a major stake when we face dynamic optimization problems. Robustness of

solutions should be taken into account also during the designing step.

The next chapters will handle these open issues, we will expose in this

thesis our contribution in solving the Dynamic Capacitated Vehicle Routing

Problem (DCVRP). In this variant of the problem some customers are un-

known when the optimization process begin, i.e. their orders and positions

will be known only after the vehicles are already in route. Thus, the goal is to

serve the set of customers and minimize the traveled distance by the vehicle

fleet.

The proposed approaches are designed by taking advantage of the best pro-

posed approaches until day.

56

Chapter 2

Single-Solution Based

Metaheuristics for Solving

Dynamic Vehicle Routing

Problem

Contents
2.1 Introduction . 57

2.2 Single-Solution Based Metaheuristics 59

2.3 S-Metaheuristics for DVRP: Literature Review . . . 62

2.4 Variable Neighborhood Search for Dynamic Vehicle
Routing Problem . 63

2.5 Simulation and Solving Framework 74

2.6 Experimental Results and Discussion 78

2.7 Conclusion . 86

2.1 Introduction

In dynamic optimization, it appears that any self-contained research work has

to deal with three issues: adaptation to environmental changes, benchmark-

ing, and performance measures.

The adaptation of environmental changes refers to the ability of the algo-

rithm to continue the search for new optima if the environment shifts. Hence,

the optimization algorithm has to track a moving optimum through time as

closely as possible, rather than just find a single good solution. Thus, once the

algorithm starts to converge around some optimal or near optimal solution,

it should not lose its ability to continue the search of new optima if environ-

mental change occurs.

A class of approaches that seems to be interesting for the dynamic optimiza-

tion problems is the Single-solution based metaheuristics (S-metaheuristics).

58
Chapter 2. Single-Solution Based Metaheuristics for Solving

Dynamic Vehicle Routing Problem

They could be viewed as walks through neighborhoods or search trajectories

over the search space of the problem at hand. These trajectories are performed

by iterative procedures that move from the current solution to another one in

the search space.

One of the recent approaches in the filed of S-metaheuristic is Variable Neigh-

borhood Search (VNS) [Hansen 1999]. It consists in adaptively changing the

neighborhood in order to get different local optima and to escape from local op-

tima. The process of changing neighborhoods corresponds to a diversification

of the search. In particular, the choice of neighborhoods of increasing cardi-

nality yields a progressive diversification. Moreover, a solution that is locally

optimal on the search landscape with respect to a neighborhood is probably

not locally optimal with respect to another neighborhood. The global optima

will be one of the local optima of a given neighborhood. Different neighbor-

hoods generate different landscapes, which is known as “One Operator, One

Landscape” concept [Jones 1995]. The core idea is that the neighborhood

structure determines the topological properties of the search landscape, i.e.,

each neighborhood defines one landscape. The properties of a landscape are

in general different from those of other landscapes, therefore a search strat-

egy performs differently on them. This specificity provides to VNS a serious

ability and reactivity to track the shifting optimum in dynamic optimization

problems.

In this chapter we propose to face the Dynamic Capacitated Vehicle Routing

Problem (DCVRP) by using Variable Neighborhood based approach. Here,

the objective function consists in minimizing the distance traveled by the ve-

hicles which serve the customers (see equation 1.2). We believe that the char-

acteristic of changing the neighborhood structure offers a powerful mechanism

of adaptivity to the environmental changing. To quantify this adaptability,

we measure several indicators based on Weicker’s dynamic performance mea-

sures [Weicker 2002] on algorithm along the optimization process.

The remainder of this chapter is organized as follows: The fundamental bases

of S-metaheuristics are presented in the Section 2.2. Section 2.4 introduces,

our VNS-DVRP in an incremental manner, with the representation, the def-

inition of the neighborhood structure, the incremental evaluation function,

the determination of the initial solution, and the dedicated algorithm. Sec-

tion 2.5 describes and explains how to simulate and to solve the dynamic

problem. In Section 2.6, we discuss our experimental methodology, and pro-

vide an experimental analysis. Finally, we conclude with a summary of the

main contributions reported in this chapter.

58

2.2. Single-Solution Based Metaheuristics 59

2.2 Single-Solution Based Metaheuristics

Single Solution Based Metaheuristics (S-metaheuristics) iteratively apply the

generation and replacement procedures from the current single solution. In

the generation phase, a set of candidate solutions is generated from the cur-

rent solution s. This set C(s) is generally obtained by local transformations

of the solution. In the replacement phase, a selection is performed from the

candidate solution set C(s) to replace the current solution; that is, a solution

s′ ∈ C(s) is selected to be the new solution. This process iterates until a given

stopping criteria (Figure 2.1). The generation and the replacement phases

may be memory-less. In this case, the two procedures are based only on the

current solution. Otherwise, some history of the search stored in a memory

can be used in the generation of the candidate list of solutions and the selec-

tion of the new solution. Popular examples of such S-metaheuristics are sim-

ulated annealing [Kirkpatrick 1983, Černỳ 1985], tabu search [Glover 1990],

and variable neighborhood search [Hansen 1999]. Algorithm 1 illustrates the

high-level template of S-metaheuristics. The common search concepts for all

S-metaheuristics are the definition of the neighborhood structure and the de-

termination of the initial solution [Talbi 2009].

Figure 2.1: Main principles of single-solution based metaheuristics.

2.2.1 Neighborhood

The definition of the neighborhood is a required common step for the design

of any S-metaheuristic. The neighborhood structure plays a crucial role in

the performance of an S-metaheuristic. If the neighborhood structure is not

adequate to the problem, any S-metaheuristic will fail to solve the problem.

59

60
Chapter 2. Single-Solution Based Metaheuristics for Solving

Dynamic Vehicle Routing Problem

Algorithm 1 High-level template of S-metaheuristics.
Input: Initial solution s0 .
t = 0 ;
repeat

/ Generate candidate solutions (partial or complete neighborhood) from st /
Generate(C(st)) ;
/ Select a solution from C(s) to replace the current solution st /
st+1 = Select(C(st)) ;
t = t + 1;

until Stopping criteria satisfied
Output: Best solution found.

Definition 2.2.1 A neighborhood function N is a mapping N : S → 2S that

assigns to each solution s of S a set of solutions N (s) ⊂ S. A solution s′ in

the neighborhood of s (s′ ∈ N (s)) is called a neighbor of s.

A neighbor is generated by the application of a move operator m that per-

forms a small perturbation to the solution s. The main property that must

characterize a neighborhood is locality. Locality is the effect on the solution

when performing the move (perturbation) in the representation. The neigh-

borhood is said to have a strong locality, if when small changes are made in

the representation, the solution is affected slightly. Hence, a S-metaheuristic

will perform a meaningful search in the landscape of the problem.

Weak locality is characterized by a large effect on the solution when a small

change is made in the representation. In the extreme case of weak locality,

the search will converge toward a random search in the search space. The

structure of the neighborhood depends on the target optimization problem.

It has been first defined in continuous optimization.

Definition 2.2.2 In a discrete optimization problem, the neighborhood N (s)

of a solution s is represented by the set {s′/d(s′, s) ≤ ε}, where d represents

a given distance that is related to the move operator.

The neighborhood definition depends strongly on the representation associ-

ated with the problem at hand. Some usual neighborhoods are associated

with traditional encodings. The natural neighborhood for binary representa-

tions is based on the Hamming distance. In general, a distance equal to 1 is

used. Then, the neighborhood of a solution s consists in flipping one bit of

the solution. For a binary vector of size n, the size of the neighborhood will

be n. The Hamming neighborhood for binary encodings may be extended to

any discrete vector representation using a given alphabet . Indeed, the substi-

tution can be generalized by replacing the discrete value of a vector element

60

2.2. Single-Solution Based Metaheuristics 61

by any other character of the alphabet. If the cardinality of the alphabet is k,

the size of the neighborhood will be (k− 1)×n for a discrete vector of size n.

For permutation-based representations, a usual neighborhood is based on the

swap operator that consists in exchanging (or swapping) the location of two

elements si and sj of the permutation. For a permutation of size n, the size

of this neighborhood is n(n− 1)/2. This operator may also be applied to any

linear representation. Figure 2.3 shows the neighborhood associated with a

combinatorial optimization problem using a permutation encoding. The dis-

tance is based on the swap move operator. Once the concept of neighborhood

has been defined, the local optimality property of a solution may be given.

Figure 2.2: An example of neighborhood for a permutation problem of size

3. For instance, the neighbors of the solution (2, 3, 1) are: (3, 2, 1), (2, 1, 3),

and (1, 3, 2).

Definition 2.2.3 Local optimum. Relatively to a given neighboring func-

tion N , a solution s ∈ S is a local optimum if it has a better quality than all its

neighbors; that is, f(s) ≤ f(s′) for all s′ ∈ N (s). For the same optimization

problem, a local optimum for a neighborhood N1 may not be a local optimum

for a different neighborhood N2.

2.2.2 Initial Solution

Two main strategies are commonly used to generate the initial solution: a ran-

dom and a greedy approach. There is always a trade-off between the use of

random and greedy initial solutions in terms of the quality of solutions and the

computational time. The best answer to this trade-off will depend mainly on

the efficiency and effectiveness of the random and greedy algorithms at hand,

and the S-metaheuristic properties. For instance, the larger is the neighbor-

hood, the less is the sensitivity of the initial solution to the performance of the

S-metaheuristics. Generating a random initial solution is a quick operation,

61

62
Chapter 2. Single-Solution Based Metaheuristics for Solving

Dynamic Vehicle Routing Problem

Figure 2.3: Local optimum and global optimum in a search space. A problem

may have many global optimal solutions.

but the metaheuristic may take much larger number of iterations to converge.

To speed up the search, a greedy heuristic may be used. Indeed, in most

of the cases, greedy algorithms have a reduced polynomial-time complexity.

Using greedy heuristics often leads to better quality local optima. Hence, the

S-metaheuristic will require, in general, less iterations to converge toward a

local optimum. Some approximation greedy algorithms may also be used to

obtain a bound guarantee for the final solution. However, it does not mean

that using better solutions as initial solutions will always lead to better local

optima.

2.3 S-Metaheuristics for DVRP: Literature

Review

Tabu Search metaheuristic is one of the most popular S-metaheuristic in

solving DVRP. Gendreau et al. in [Gendreau 1999] propose a parallel imple-

mentation of Rochat and Taillard approach for solving DVRP [Rochat 1995].

It is based on adaptive memory which stores elite solutions discovered in

previous searches and combines them to produce new initial solutions. The

neighborhood is generated with Cross exchange operator. It is basically a

chain exchange procedure, where two segments of variable length are taken

from different routes and moved from one route to another.

Mitrović -Minić et al. [Mitrović-Minić 2004a] deal with the Dynamic

Pickup and Delivery Problem with Time Windows (DPDVRPTW) and chose

the cheapest insertion heuristic as a constructive method. The cheapest

62

2.4. Variable Neighborhood Search for Dynamic Vehicle Routing
Problem 63

insertion procedure is applied to new requests accumulated over a given time

period and allows to determine the overall best insertions for the locations

of a request before its insertion. Before insertion, these requests are sorted

in increasing order of slack time. The slack time of a request is equal to

the difference between the total time available to serve the request and the

direct travel time between its pickup and delivery locations. The Tabu search

is applied after the constructive procedure with neighborhoods defined by

means of ejection chains.

Hanshar et al. [Hanshar 2007] introduce two operators to generate

the neighborhood structure of their Tabu Search; inversion operator and

λ-exchange operator [Osman 1993], each one was applied according to some

probability.

Besides, Attanasio et al. [Attanasio 2004] present a parallel tabu search for

the Dynamic Dial-a-Ride problem (DDARP). An initial solution is obtained

by randomly assigning requests to routes while satisfying the constraints

related to the problem. The neighborhood of a solution s is generated by the

relocate operator which makes up all solutions reachable from s by simply

moving a customer visit from one route to another.

A Greedy Randomized Adaptive Search Procedure

(GRASP) [Montemanni 2005b] have been also implemented for dealing

with DVRP. Initial tours are generated by iteratively selecting the next

customers to visit at random among the feasible ones. Once a complete

solution is available, it is tentatively improved using a local search procedure.

2.4 Variable Neighborhood Search for Dy-

namic Vehicle Routing Problem

In this section, we present our VNS-DVRP approach. The adaptation of the

different component for DVRP is described and examined.

2.4.1 Variable Neighborhood Search (VNS)

Variable neighborhood search has been recently proposed by P. Hansen and N.

Mladenović [Hansen 1999]. The basic idea of VNS is to successively explore

a set of predefined neighborhoods to provide a better solution. It explores

either at random or systematically a set of neighborhoods to get different

local optima and to escape from local optima. VNS exploits the fact that using

various neighborhoods in local search may generate different local optima and

that the global optima is a local optima for a given neighborhood (Figure 2.4).

Indeed, different neighborhoods generate different landscapes [Jones 1995].

63

64
Chapter 2. Single-Solution Based Metaheuristics for Solving

Dynamic Vehicle Routing Problem

Figure 2.4: Variable neighborhood search using two neighborhoods. The first

local optimum is obtained according to the neighborhood 1. According to

the neighborhood 2, the second local optimum is obtained from the first local

optimum.

VNS is a stochastic algorithm in which, first, a set of neighborhood struc-

tures Nk(k = 1, ..., n) are defined. Then, each iteration of the algorithm is

composed of three steps: shaking, local search and move. At each iteration,

an initial solution is shaken from the current neighborhood Nk. For instance,

a solution s′ is generated randomly in the current neighborhood Nk(s). A

local search procedure is applied to the solution s′ to generate the solution

s′′. The current solution is replaced by the new local optima s′′ if and only if

a better solution has been found (i.e., f(s′′) < f(s)). The same search pro-

cedure is restarted from the solution s′′ in the first neighborhood N1. If no

better solution is found (i.e., f(s′′) ≥ f(s)), the algorithm moves to the next

neighborhood Nk+1, randomly generates a new solution in this neighborhood,

and attempts to improve it. Let us notice that cycling is possible (i.e., s′′ = s)

(Figure 2.5). Algorithm 2 presents the template of the basic VNS algorithm.

The design of the VNS algorithm is mainly related to the selection of

neighborhoods for the shaking phase. Usually, nested neighborhoods are used,

where each neighborhood Nk(x) contains the previous one Nk1(x): A compro-

mise must be found between intensification of the search and its diversification

through the distribution of work between the local search phase and the shak-

ing phase. An increased work in the local search phase will generate better

local optima (more intensification), whereas an increased work in the shak-

ing phase will lead to potentially better regions of the search space (more

diversification).

64

2.4. Variable Neighborhood Search for Dynamic Vehicle Routing
Problem 65

Figure 2.5: The principle of the variable neighborhood algorithm.

Algorithm 2 Template of the basic variable neighborhood search algorithm.
Input: a set of neighborhood structures Nk for k = 1, . . . , kmax for shaking.
s = s0 ; / Generate the initial solution /
repeat

k = 1;
repeat

Shaking: pick a random solution s′ from the kth neighborhood Nk(s) of s ;
s′′ = localsearch(s);
if f(s′′) < f(s) then

s = s′′;
Continue to search with N1 ; k = 1;

else
k = k + 1;

end if
until k = kmax

until Until Stopping criteria
Output: Best found solution.

2.4.2 DVRP Solution’s Representation

The representation design consists in finding a suitable mapping between prob-

lem and algorithmic feasible solution. Since the customers are unknown be-

forehand and arrive through the time, we propose a dedicated encoding of

solution to dynamic vehicle routing problems. The representation is dynamic

in the sense that it has a variable length and extends while customer requests

appear. Our representation allows the insertion of dynamic customers in the

already planned routes. Given that the problem is dynamic and customer

requests arrive along time, it is necessary to have some information about

65

66
Chapter 2. Single-Solution Based Metaheuristics for Solving

Dynamic Vehicle Routing Problem

the state of each customer (visited/ unvisited) and its time of service. Thus,

routes distinguish between strictly fixed assignments and tentative proposals.

We notice that, according to the problem description, uncommitted requests

always correspond to the last part of the route. On the other side, for each

vehicle we need some information as its current position in the service region,

its remaining capacity, its traveled distance, and its status (committed/not

committed). We propose a discrete representation which expresses the route

of m vehicles over the n customers to serve. The solution consists in a set

of partial routes, where there exists pending customers that have been newly

added to the day’s schedule, but not yet assigned to any vehicle and commit-

ted customers that have already been visited by a given vehicle. A solution to

the problem is represented by a set of routes S = {R1...Rp...Rq...Rm}, where

Rk is the set of customers serviced by the vehicle Vk. The representation of

each route Rk is a permutation of n customers as follows:

Rk : (c0, c1, c2, ..., ci, ..., cn, cn+1) (2.1)

For each customer ci, we assign the following information:

• (xi, yi): coordinates of the customer ci.

• si: boolean variable which indicates if the customer ci has been already

served or not.

• ti: processing time of the customer ci (time in which the customer is

served).

Furthermore, for each route Rk served by the vehicle vk, we keep some infor-

mation:

• (xj, yj): coordinates of the vehicle vk.

• capk: remaining capacity of the vehicle vk.

• distk: distance traveled by the vehicle vk.

• commitk: boolean variable which indicates if the vehicle vk has been

committed or not.

Therefore, this representation provides more flexibility and abstraction to

several heuristics (see Section 2.4.3) since they can understand partial states

of the problem using this information, no matter how complicated the current

scenario may seem. It offers and contributes in a clear manner to design

dynamic vehicle routing problem solutions.

66

2.4. Variable Neighborhood Search for Dynamic Vehicle Routing
Problem 67

Figure 2.6: The solution’s representation of the partial state of the problem.

The cross-hatched customers represent the visited part, those without hatch-

ing are the unvisited part.

2.4.3 Neighborhood

In order to adapt VNS for a particular problem, it is necessary to define the

set of neighborhood structures and to establish the local search procedure that

will be applied to the solutions. Both our neighborhoods and the local search

are related to move operators specific to the VRP. We propose four different

neighborhoods Nk(s) for our VNS algorithm. The neighborhoods are defined

as follows:

1. N1(s) is the set of solutions which results of exchange operator. It

consists in swapping any two customers in the solution s. The arcs

(i − 1, i), (i, i + 1), (j − 1, j), and (j, j + 1) are replaced by (j − 1, i),

(i, j + 1), (i − 1, j) and (j, i + 1). The size of this neighborhood is

n(n−1)/2 where n represents the number of customers (see Figure 2.7).

2. N2(s) is the set of solutions which results of λ-Interchange [Osman 1993]

operator with λ = 1. The λ-Interchange operator we use is based on

the interchange of all the possible combinations for up to λ customers

between sets of routes. Hence, this method results in customers either

being shifted from one route to another, or being exchanged between

routes. The mechanism can be described as follows. New neighboring

solutions can be obtained by applying λ-Interchange between a pair of

routes Rp and Rq by replacing each subset of customers S1 ⊆ Rp of

size |S1| ≤ λ with any other one S2 ⊆ Rq of size |S2| ≤ λ. This way,

we get two new routes R′p = (Rp − S1) ∪ S2 and R′q = (Rq − S2) ∪ S1,

which are parts of the new solution S ′ = {R1 . . . R
′
p . . . R

′
q . . . Rm}. Then,

λ-Interchange neighborhood selects two subsets of customers (with car-

67

68
Chapter 2. Single-Solution Based Metaheuristics for Solving

Dynamic Vehicle Routing Problem

dinality less than or equal to λ) from two different routes and exchanges

them considering all possible insertion positions of both routes, result-

ing in a neighboorhood size n4λ. If it is the required that the nodes be

inserted in the position of the removed nodes, the size reduces to n2λ

. Since the size of λ-Interchange neighboorhood is relatively large even

for small values of λ, in the literature λ rarely exceeds 2. For λ = 1, it

results in customers either being shifted from one route to another for

the (1, 0) or (0, 1) moves, or being exchanged between both routes for

the (1, 1) move (see Figure 2.8). The insertion of a customer is done

using the cheapest cost insertion (i.e. the position that minimizes the

cost of the insertion) [Funke 2005, Gendreau 2010].

3. N3(s) is the set of solutions which results of applying 2-Opt [Lin 1965]

to any subroute of the solution s. The 2-Opt operator reverses a sub-

route of a given route Rk by selecting two arcs (i1, i2) and (j1, j2) and

substituting them by (i1, j1) and (i2, j2) (see example in Figure 2.9).

The already traveled segment of the tour is left untouched. The heuris-

tic is operated on each route and only for the segments with unserved

customers. The neighborhood for the 2-Opt operator is represented by

all the permutations obtained by removing two edges. The size of the

neighborhood for the 2-opt operator is (n(n1)/2)n; all pairs of edges are

concerned except the adjacent pairs.

4. N4(s) is the set of solutions which results of using 2-Opt* [Potvin 1995]

in any two subroutes of the solution s. The 2-Opt* operator selects

two arcs (i1, i2) ∈ Rα and (j1, j2) ∈ Rβ and constructs two new arcs so

that (i1, j2) and (j1, i2) (see an example in Figure 2.10). The size of the

2-Opt* neighborhood is quadratic.

(a) Before (b) After

Figure 2.7: Example of the exchange operator. Two customers i, j from

different routes are simultaneously placed into the other routes.

68

2.4. Variable Neighborhood Search for Dynamic Vehicle Routing
Problem 69

(a) Before (b) After

Figure 2.8: Example of the λ-interchange operator (λ = 1). In this example,

it plays the role of relocate operator. The edges (i−1, i), (i, i+1) and (j−1, j)

are replaced by (i− 1, i+ 1), (j − 1, i) and (i, j + 1), i.e., customer i from the

origin route is placed into the destination route.

(a) Before (b) After

Figure 2.9: Example of the 2-Opt operator applied to arcs a and b in one

single route.

(a) Before (b) After

Figure 2.10: Example of the 2-Opt* operator applied to arcs a and b belonging

to two different routes.

Given that the constraints are not enforced at this stage; this means that a

solution s′ picked up from the neighborhood does not need to comply with the

capacity and depot working day restrictions. A repair procedure makes this

new solution feasible before its evaluation. This repair procedure is necessary

since the neighborhood operators can generate unfeasible solutions.

69

70
Chapter 2. Single-Solution Based Metaheuristics for Solving

Dynamic Vehicle Routing Problem

For that, some customers are shifted from the unfeasible tour in order to fill

the constraints related to the depot time window and the capacity of the vehi-

cles. The procedure consists in choosing the customer(s) ci which minimizes

the cost of its insertion into another tour comparatively to its extraction.

The cost of the extraction is CE = d(i−1),(i+1) − (d(i−1),i + di,(i+1)), where the

cost of the insertion is CI = (dj,i + di,(j+1)) − dj,(j+1). Then, the customer

ci is inserted into another tour by following the Chepeast Insertion Heuristic

(CIH). This heuristic is illustrated in Figure 2.11 and described in the follow-

ing steps [Kindervater 1989]:

(i) Start with a tour consisting of a given vertex i and a self-loop.

(ii) Find a vertex not on the tour which can be inserted between two neigh-

boring vertices i and j such that the distance dik + dkj − dij is minimal.

(iii) Insert this vertex between two neighboring vertices on the tour. If the

tour still incomplete (some vertices remain) go to the step (ii).

Furthermore, the complexity of the cheapest insertion is O(n3) but with care-

ful programming it can be O(n2log(n)) [Frieze 1982]. In brief, the repairing

procedure is repeated until the tour becomes feasible and all the extracted

customers are inserted into other tours. The procedure follows the steps de-

scribed in the Algorithm 3:

Algorithm 3 Repairing procedure for Vehicle Routing Problem
Input: an unfeasible tour Rk of a solution s.
R′k := Rk;
while R′k is unfeasible due to vehicle capacity or depot time window do

Remove a customer ci from the tour R′k.
Insert the customer ci into another route of s by using the Chepeast Insertion
Heuristic.

end while
Output: a feasible tour Rk

2.4.4 Initial Solution

Constructive or greedy algorithms start from an empty solution and construct

a solution by assigning values to one decision variable at a time, until a com-

plete solution is generated. They gradually build a feasible solution while

keeping an eye on solution cost, but do not contain an improvement phase.

Route construction heuristics select nodes (or arcs) sequentially until a fea-

sible solution has been created. Nodes are chosen based on some cost mini-

mization criterion, often subject to the restriction that the selection does not

create a violation of vehicle capacity or time window constraints. Sequential

methods construct one route at a time, while parallel methods build several

70

2.4. Variable Neighborhood Search for Dynamic Vehicle Routing
Problem 71

Figure 2.11: Cheapest Insertion Heuristic: (a) Initial subtour with potential

insertions.(b) The new subtour after applying the heuristic.

routes simultaneously. The Savings heuristic, originally developed by Clarke

& Wright [Clarke 1964] for the classical VRP, is probably the best-known

route construction heuristic. It is a saving-based method which merges two

routes into a single route by considering the saving distance between the de-

pot and the nodes connected to the depot. It begins with a solution in which

every customer is supplied individually by a separate route. Combining the

two routes serving respectively customers i and j results in a cost savings

of sij = di0 + d0j − dij . It is summarized in selecting the arc (i, j) linking

customers i and j with maximum Sij subject to the requirement that the

combined route is feasible. With this convention, the route combination op-

eration is applied iteratively. In combining routes, one can simultaneously

form partial routes for all vehicles or sequentially add customers to a given

route until the vehicle is fully loaded. The savings heuristic is illustrated in

Figure 2.12. In our work, we use the enhanced savings heuristic proposed by

Yellow [Yellow 1970]. It has a form sij = di0 + d0j − γ dij, where γ is a route

shape parameter, and takes values in [0, 1]. More γ is larger, more the em-

phasis is put on the distance between the vertices to be connected. Golden et

al. [Golden 1977] report that using γ = 0.4 or 1 yields good solutions taking

into account the number of routes and the total length of the solution. The

same heuristic is followed to insert dynamic customers in the solution: a par-

tial solution including only new customers is built using the Savings algorithm

and these routes are added to the current solution.

2.4.5 Evaluation of the Neighborhood

Often, the evaluation of the objective function is the most expensive part of

a local search algorithm and more generally for any metaheuristic. A naive

71

72
Chapter 2. Single-Solution Based Metaheuristics for Solving

Dynamic Vehicle Routing Problem

Figure 2.12: The savings heuristic. In the left part, customers i and j are

served by separate routes; in the right part, the routes are combined by in-

serting customer j after i.

exploration of the neighborhood of a solution s is a complete evaluation of the

objective function for every candidate neighbor s of N (s). A more efficient

way to evaluate the set of candidates is the evaluation4(s,m) of the objective

function when it is possible to compute, where s is the current solution and

m is the applied move. This is an important issue in terms of efficiency and

must be taken into account in the design of an S-metaheuristic. It consists

in evaluating only the transformation (s,m) applied to a solution s rather

than the complete evaluation of the neighbor solution f(s′) = f(s ⊕ m).

The definition of such an incremental evaluation and its complexity depends

on the neighborhood used over the target optimization problem. This is an

important issue in terms of efficiency and must be taken into account in the

design of high-achieving metaheuristics especially in dynamic optimization

context [Talbi 2009].

Let us present an incremental evaluation of the 2-Opt operator applied to a

vehicle tour as it is described in the Figure 2.9. The incremental evaluation

can be stated as follows:

∆f = di1,i2 + dj1,j2 − (di1,j1 + di2,j2) (2.2)

Thus, for an improving neighbor, we have ∆f > 0 which means that (di1,i2 +

dj1,j2) > (di1,j1 + di2,j2).

2.4.6 VNS-DVRP Algorithm

The VNS algorithm as applied to DVRP is given in the Algorithm 4. First,

the VRP instance that corresponds to the set of customers who appear in the

last time slice is given to the algorithm as input data. An initial or partial

solution is built according to the constructive Saving heuristic. Then, the

algorithm proceeds by selecting a solution from the current neighbor, applies

a local search and repair the resulting solution whether it does not fill the

72

2.4. Variable Neighborhood Search for Dynamic Vehicle Routing
Problem 73

feasibility constraints (vehicle capacity, and depot time window). If the local

optimum is better than the incumbent, the algorithm moves there(s := s′′),

and continue the search with N1 (k := 1); otherwise the algorithm switches

to the next neighbor (k := k + 1).

Algorithm 4 VNS for the DVRP.
INPUT: VRP instance which corresponds to the set of customers who are known
at the time step Ts
A set of neighborhood structures Nk for k = 1, . . . , kmax that will be used in the
search.
if Ts = 0 then

/* First instance */
s := buildSavingsInitialSolution()

else
if (Orders are waiting to be scheduled) then

s := getLastTimeSliceSolution()
s′ := buildSavingsPartialSolution(New customer orders)
s := merge(s, s′)

end if
end if
repeat

k := 1
repeat

/* Select one solution from the current neighborhood */
s′:= pickRandom(Nk(s))
/* Apply local search */
s′′ := applyLocalSearch(s′)
s′′ := repair(s′′) /* In case when solution is unfeasible */
/* Update current solution and/or neighborhood*/
if f(s′′) < f(s) then

s := s′′

k := 1
else

k := k + 1
end if

until k = kmax {kmax is the number of neighborhoods}
until Termination conditions not met
Output: Solution of the partial state of the problem.

The local search results of a consecutively combining of four local search

operators: λ-Interchange with (1, 1) moves, λ-Interchange with (1, 0) moves,

2-Opt and 2-Opt*. The motivation here is giving VNS a method which explic-

itly exchanges subroutes instead of merely single customers; besides, 2-Opt*

73

74
Chapter 2. Single-Solution Based Metaheuristics for Solving

Dynamic Vehicle Routing Problem

is a suitable operator for DVRP, since it allows exchanging the remainder of

two routes while not affecting already committed customers. For each heuris-

tic, all possible moves are checked and the best one is performed, i.e. the one

which reduces the solution cost the most.

2.5 Simulation and Solving Framework

The strategy that we propose to simulate and solve the problem is based

on the works of Montemanni et al. [Montemanni 2005b] and Hanshar and

Ombuki-Berman [Hanshar 2007]. Basically, the system performs three main

tasks, detailed as follows:

1. It obtains new requests which appear during the working day T .

2. It solves the instance of the problem.

3. It updates routes and sends vehicles to serve customers.

The architecture of this simulation framework is given in the Figure 2.13.

It consists of two main components to handle the new orders and optimize the

current set of routes. The first component, called Event Manager, carries out

three main tasks: Managing customer requests, assigning orders to specific

vehicles, and creating static VRP-like instances. On the other hand, the

second component corresponds to the optimization algorithm which solves

successive VRP-like instances created by the Event Manager (see Section 2.4

for further details on the optimization algorithm). In the following section,

we describe the Event Manager component in details.

2.5.1 Event Manager

The event manager serves as an interface between the arrival of new orders and

the optimization procedure. Based on the division of the working day into nts
discrete time slices of equal length T/nts, where T is the length of the working

day (as shown in Figure 2.14). The event scheduler creates partial static VRP-

like instances and runs in sequence the solving algorithm on these instances

(Figure 2.14). Furthermore, it considers/assumes the implicit existence of

a centralized dispatcher to communicate next destinations to vehicles, called

commitment phase. We assume that the commitment cannot be retracted, i.e.

once an order is committed to a driver, this assignment cannot be changed.

However, our approach constantly provides a solution covering all the known

orders. Among these orders, the assignment of those not yet committed, can

be retracted (freely reallocated to other routes or positions of the route).

74

2.5. Simulation and Solving Framework 75

The idea of dividing the working day into several discrete time slices has

been proposed by Kilby et al. [Kilby 1998]. The goal is to limit the time given

to each partial static problem, hence providing an orderly way to service new

requests. Another strategy proposes to include each new customer as soon as

its request is received [Gendreau 1999], which may be necessary when urgent

requests must be served. However, Montemanni et al. [Montemanni 2005b]

already showed that restarting the optimizer each time a new request occurs

does not necessarily lead to better results on this problem.

The first partial static problem created for the first time slice (i.e. at the

Figure 2.13: Simulation and solving framework for the Dynamic Vehicle Rout-

ing Problem (DVRP).

beginning of the working day) consists of all orders remaining from the pre-

vious working day. These customers can be considered being left unattended

the day before and are known as static customers. The total number of them

is determined using the degree of dynamism parameter (dod).

The next partial problems will consider all orders received during the pre-

vious time slice as well as those that have not been committed to drivers yet.

In addition to the parameter nts, our approach considers two additional pa-

rameters which can be defined by user: the cut-off time Tco and advanced

commitment time Tac. The cut-off time allows the system to postpone, to

the next day, requests which have been received after Tco. These requests are

considered static for the next day. Furthermore, the idea behind Tco is to

enable the dispatcher and vehicles to finish the service into the depot time

window by avoiding the overload of orders at the end of the working day T .

The advanced commitment Tac time permits the system to communicate with

the vehicles before leaving the last served location. The main idea is to give

75

76
Chapter 2. Single-Solution Based Metaheuristics for Solving

Dynamic Vehicle Routing Problem

the drivers enough reaction time to process orders. In our simulation, each

vehicle starts from the location of the last customer committed to it, with a

starting time corresponding to the end of the servicing time for this customer,

and with a remaining capacity which equals the capacity left after serving all

customers previously committed to it.

At the end of each time slice, the solutions found for the corresponding

partial problem are examined, and customer orders ci with a processing time

ti within the next time slice must be committed to their respective vehicles.

Note that the ti is the moment in which ci should be served according to its

position in the route; it is calculated as the departure time from the previous

customer ci−1 plus the distance between ci−1 and ci. An exception to this

commitment strategy is represented by return journeys to the depot, which

happens only in two circumstances: when all the customers have been served,

or when the vehicle has used all its capacity. In practice, a vehicle will wait at

its last committed customer if neither of the two conditions described above

are satisfied. The event manager is presented in Algorithm 5. We recall that

the working day T is split into nts time slices, each one with Tts = T/nts
duration. The set UnServedOrds initially contains the orders known from the

previous day. The variable Tstep is initialized to 0, while at the beginning of

the working day the location of all the vehicles is set at the depot. A partial

problem (PartialProblem) is created in each loop step and solved with the

procedures that will be described in Section 2.4.

The appropriate commitments (CommOrds) are done accordingly to the

solution of PartialProblem. Customers whose processing times cover the fol-

lowing time windows [Tstep, Tstep+Tts[are associated with vehicles. Then, Un-

ServedOrds regroups pending orders (orders assigned to a preemptive route,

but not committed to a vehicle yet, and those that appeared during the last

time slice).

Starting positions, capacities and travel times of the vehicles are updated.

The algorithm loops until UnServedOrds 6= ∅. When all customers are ser-

viced, the vehicles return to the depot.

2.5.2 Vehicle Schedule and Waiting Strategy

Branke et al. [Branke 2005b] and Bent et al. [Bent 2007] examine the problem

of finding an optimal waiting schedule for the vehicles to maximize the prob-

ability that a new customer can be incorporated into one of the constructed

tours. Branke proves that in the case of several vehicles, waiting may be ben-

eficial because it allows vehicle to remain at strategically favorable locations.

In our approach, the event manager integrates the waiting strategy in the

vehicle scheduling. It is based on the recognition that in some circumstances,

76

2.5. Simulation and Solving Framework 77

Algorithm 5 Event Manager Procedure
Tstep := 0;
The starting position of each vehicle is set at the depot;
UnServedOrds := orders left the previous day generated according to dod (degree
of dynamism);
while UnServedOrds 6= ∅ do

PartialProblem := problem with orders in UnServedOrds;
Run the solving method on PartialProblem;
CommOrds :=orders with processing time ti ∈ [Tstep, Tstep + Tts[;
Commit orders in CommOrd;
Tstep := Tstep + Tts; // Update the simulation time
UnServedOrds := UnServedOrds \ CommOrds;
UnServedOrds := UnServedOrds

⋃
{orders appeared during the last time

slice [Tstep − Tts, Tstep]};
Update vehicle positions, capacities, and travel times;

end while
Send all vehicles back to the depot;

Figure 2.14: Strategy to tackle dynamic instances: A sequence of VRP-like

problems.

it might not be desirable to rush to the first real customer, one should an-

ticipate the change by trying to maintain flexibility. Such flexibility can be

maintained by having the vehicles wait at appropriate locations in their tours.

Instead, if the vehicle waits after servicing a customer at its current position,

new requests will have a chance to appear in the same area and be taken into

consideration.

This strategy improves the probability of being able to serve additional

customers, while reducing the average length of the detour that is necessary

to serve them. It is particularly useful for instances in which the objective is

the minimization of traveling times, and it is relatively easy to serve all the

77

78
Chapter 2. Single-Solution Based Metaheuristics for Solving

Dynamic Vehicle Routing Problem

customers.

2.6 Experimental Results and Discussion

This section is devoted to the experimental evaluation of VNS-DVRP algo-

rithm.

The adopted benchmarks will be described in Section 2.6.1. The results

achieved by the algorithm will be presented and compared with state-of-the-

art metaheuristics 2.6.2 and 2.6.3. A study on varying the degree of dynamism

is given in Section 2.6.4. Section 2.6.5 assesses the dynamic performances of

our algorithm.

2.6.1 Benchmark Description

Our experiments are based on the benchmark data set proposed by

Kilby et al. [Kilby 1998] and described in Section 1.6. They were de-

rived from publicly available VRP benchmark from three separate VRP

sources, namely Taillard [Taillard 1993] (13 instances), Christophides and

Beasley[Christofides 1984] (7 instances) and Fisher et al. [Fisher 1995] (2 in-

stances). The number of customers to serve can be inferred from the name

of the instance. For example, f71 corresponds to Fisher’s instance with 70

customers to serve and one single depot. In our experiments, we deal with

pickup instances. The driver of the vehicle is not concerned with what he

is transporting, but only the quantity that he will pick from the customer.

The data set consists of numerous types of service areas, some with uniformly

distributed customers, others with clustered customers and a few of them

have mixed and irregular distributions. Some properties of these data sets are

shown in Table 2.1.

Data set] Customers Topology and distribution

Christofides 50–199
Customers are either uniformly distributed around the
service area or uniformly spread in clusters

Taillard 75–150
Customers present mixed uniform and clustered
distributions around the service area

Fisher 71–134
Most of the customers are centralized in the surroundings
of the depot. As customers go away this area,
they considerably decrease in an irregular manner

Table 2.1: Data sets: Features and properties.

As described in Section 2.5, the simulation of the instance working day

requires three parameters: the number of time slots nts, cut-off time Tco and

advanced commitment time Tac. In order to compare our algorithm with

78

2.6. Experimental Results and Discussion 79

previous works, we have divided the working day into nts = 25 time slots.

Montemanni et al.[Montemanni 2005b] have tested several values for this pa-

rameter (10, 25, and 50) on different instances, and found that setting nts = 25

leads to the best trade-off between reactivity to dynamic events and accurate

optimization of the static VRP-like problems. Furthermore, we have set the

cut-off time Tco = 0.5 × T , where T is the length of the working day. Thus,

orders which arrive after Tco × T are postponed to the following day, while

those that arrive before this time are considered dynamics. Given that the

customers arrive according to uniform distribution over the working day, with

Tco = 0.5, the half of customers is considered dynamic, while the other part

is static. This corresponds to a dod = 0.5. It is important to note that, in

some cases, the insertion of customers is not necessary, as the system does not

receive events in some time slots. The hardware platform for the experiments

was an Intel Core 2 Quad 2.6 GHz machines with 4 GB of memory.

2.6.2 Comparison with State-of-the-Art Metaheuristics

A comparison of the solution quality in terms of minimizing travel distances

(costs) is done between our VNS-DVRP and other metaheuristics proposed

in literature. The metaheuristics are Montammani et al.’s Ant System (AS)

[Montemanni 2005b], and Hanshar et al.’s [Hanshar 2007] Genetic Algorithm

(GA) and Tabu Search (TS).

In order to obtain significant results and carry out this comparison, our ap-

proach has been executed 30 times for each instance. In this case, we have

simulated the working day T into nts time slots, where nts = 25. VNS-DVRP

algorithm is launched at the beginning of each time slice. The stopping crite-

rion is a fixed number of evaluations. We have fixed the number of evaluations

at 5000 evaluations per time slice. Thus, the entire problem will be solved

into a number of evaluations equals to 125000 (25× 5000 = 125000).

The state-of-the-art approaches use the CPU time as stopping criterion.

Indeed, for each instance, ACS [Montemanni 2005b] was simulated with 1500

seconds (25 minutes) of CPU time (giving a maximum of 60 seconds for each

single optimization) on a Pentium IV 1.4 GHz. For their part, TS and GA

algorithms [Hanshar 2007] were run on a Pentium IV 2.8 GHz with a simula-

tion time of 750 seconds (12.5 minutes) of CPU time, i.e., 30 seconds for the

optimization of each VRP-like instance.

The choice of using a fixed number of evaluations is motivated by the fact

that CPU time is highly dependent on hardware, and not a suitable stan-

dard to compare with existent algorithms. However, with the fixed number

of evaluations, we guarantee that our algorithm runs in less time than the

state-of-the-art algorithms.

79

80
Chapter 2. Single-Solution Based Metaheuristics for Solving

Dynamic Vehicle Routing Problem

Table 2.2 gives the best and average distances of the VNS-DVRP over the

21 Kilby’s instances. The results are compared with AS [Montemanni 2005b],

GA, and TS, both proposed in [Hanshar 2007]. We highlight the best found

solutions into dark shaded cells, and the average results are marked into light

shaded cells.

We can see that VNS is very competitive comparatively to other algo-

rithms. It outperforms the other metaheuristics on 3 instances, and gives new

best-so-far solutions on these instances. The average of the relative error for

the total best results is 1.68%. When we compare the class of S-metaheuristics,

our VNS outperforms Hanshar et al.’s TS [Hanshar 2007] on 8 instances. Fur-

thermore, VNS outperforms the P-metaheuristic AS on 18 instances and GA

on 5 instances.

VNS is able to find high quality solution on Christophides and Beasley in-

stances. These instances are characterized by a uniform distribution of cus-

tomers in the service area, or uniform spread in clusters.

It is also significant to notice that each AS execution lasts 25 minutes on

a Pentium IV 1.5 GHz and each GA and TS execution lasts 12.5 minutes on

a Pentium IV 2.8 GHz, which results in a total execution time of 525 and

262.5 minutes respectively. These execution times can be normalized accord-

ing to the processor used in our case. For that purpose, we use the set of

Geekbench benchmarks [Gee 2010]. Geekbench provides a comprehensive set

of benchmarks engineered to quickly and accurately measure processor and

memory performance. Thereby, when comparing with VNS execution times,

the normalized times are 62.08 minutes in the case of AS and 73.5 minutes

for GA and TS. The execution of VNS is less time-consuming than GA and

comparable with AS, which denotes that our algorithm is reactive and is able

to reach competitive solutions in a short time.

2.6.3 Performance on Large Scale Instances

We propose here a study on the performance of VNS on large scale instances

k-series) generated for dynamic vehicle routing problems and described in

Section 1.6. The aim is to deal with instances larger than the standard Kilby’s

problem set [Kilby 1998] (21 instances, where the number of customers ranges

between 50 and 385, although in the literature only instances up to 199 are

solved).

Three instances have been chosen for this experiment; k100, k250, and k500,

where the number of customers can be inferred from its name. As k-series

has different variants, we choose to indicate if the instance is with a single

1For this instance. the plan of the service area is in a scale 10 times larger than the Fisher’s instance.

80

2.6. Experimental Results and Discussion 81

Table 2.2: Numerical results obtained by our V NS compared to AS, GA, and

TS.

Metaheuristics
Instances V NS AS [Montemanni 2005b] GA [Hanshar 2007] TS [Hanshar 2007]

Best Averg. Time Best Averg. Best Averg. Best Averg.

c50 599.53 653.84 0.75 631.30 681.86 570.89 593.42 603.57 627.90
c75 981.64 1040.00 1.22 1009.36 1042.39 981.57 1013.45 981.51 1013.82
c100 1022.92 1087.18 2.63 973.26 1066.16 961.10 987.59 997.15 1047.60
c100b 866.71 942.81 1.65 944.23 1023.60 881.92 900.94 891.42 932.14
c120 1285.21 1469.24 3.63 1416.45 1525.15 1303.59 1390.58 1331.22 1468.12
c150 1334.73 1441.37 6.22 1345.73 1455.50 1348.88 1386.93 1318.22 1401.06
c199 1679.65 1769.95 10.72 1771.04 1844.82 1654.51 1758.51 1750.09 1783.43
f71 304.32 325.18 1.5 311.18 358.69 301.79 309.94 280.23 306.33
f1341 15680.05 16522.18 1.43 15135.51 16083.56 15528.81 15986.84 15717.90 16582.04
tai75a 1806.81 1954.25 1.0 1843.08 1945.20 1782.91 1856.66 1778.52 1883.47
tai75b 1480.70 1560.71 0.68 1535.43 1704.06 1464.56 1527.77 1461.37 1587.72
tai75c 1621.03 1746.07 0.98 1574.98 1653.58 1440.54 1501.91 1406.27 1527.72
tai75d 1446.50 1541.98 0.87 1472.35 1529.00 1399.83 1422.27 1430.83 1453.56
tai100a 2250.50 2462.50 2.33 2375.92 2428.38 2232.71 2295.61 2208.85 2310.37
tai100b 2169.10 2319.72 2.18 2283.97 2347.90 2147.70 2215.93 2219.28 2330.52
tai100c 1490.58 1557.81 1.67 1562.30 1655.91 1541.28 1622.66 1515.10 1604.18
tai100d 1969.94 2100.38 2.08 2008.13 2060.72 1834.60 1912.43 1881.91 2026.76
tai150a 3479.44 3680.35 6.32 3644.78 3840.18 3328.85 3501.83 3488.02 3598.69
tai150b 2934.86 3089.57 5.23 3166.88 3327.47 2933.40 3115.39 3109.23 3215.32
tai150c 2674.29 2928.77 4.65 2811.48 3016.14 2612.68 2743.55 2666.28 2913.67
tai150d 2954.64 3147.38 4.33 3058.87 3203.75 2950.61 3045.16 2950.83 3111.43

Total 50033.15 53341.24 62.08 50876.23 53794.02 49202.73 51089.37 49987.8 52725.85

or multi-depots. In this work, we deal with single depot instances. Thus,

the instance k100 means that there are 100 customers to serve and one single

depot. Each instance contains the length of the working day, the occurrence

time of each request, the time required to serve these requests, and the number

of the available vehicles.

We use the standard way to measure the degree of dynamism in the system:

we define the dod depending on the proportion of unknown customers, whereas

Montemanni et al. [Montemanni 2005b] propose to split the working day in

two halves of equal length and consider the customer orders that arrive during

the second half as static.

In order to deal with this problem, we split the working day T in nts time

slices and collect the requests at the end of each time slot. These requests

constitute the new VRP-like instance of the problem. We set nts to 25 as

tested by Montammani et al. [Montemanni 2005b]. The degree of dynamism

dod is fixed to 0.5; this means that a half of the customers is considered as

static, while the other half is dynamic. The optimization begins to plan routes

with the known static customers at time t = 0. The stopping criterion is a

fixed number of evaluations. In Table 2.3, we give the number of evaluations

81

82
Chapter 2. Single-Solution Based Metaheuristics for Solving

Dynamic Vehicle Routing Problem

assigned to each instance in dynamic case.

For the static instances, the results are reported after the convergence of

the algorithm. We have performed 30 independent runs of each experiment.

The results are shown in Table 2.4, which includes the best achieved fitness,

the average, the standard deviation, as well as the running time for each

instance and each algorithm measured in minutes.

Table 2.3: Number of evaluations assigned to each instance as stopping crite-

rion with nts = 25.
Instances Single time slice Complete problem

k100 600 25× 600 = 15000

k250 600 25× 600 = 15000

k500 1200 25× 1200 = 30000

Table 2.4: Solutions obtained by V NS on static and dynamic instances.
Instance Solution Static Dynamic Time

k100
Best 1448.18 1874.37
Avrg 1529.49 2084.47 0.74
Std-Dev 36.71 102.14

k250
Best 5869.38 6845.82
Avrg 6187.80 7251.54 13.23
Std-Dev 270.88 249.44

k500
Best 18582.83 24082.73
Avrg 20108.49 24939.88 130.83
Std-Dev 1457.51 520.99

Figure 2.15 shows the main trace of VNS-DVRP over the three instances

k100, k250, k500. The lower bounds have been computed running our al-

gorithms on the static sub-instance which results of each time slice. These

bounds are not attainable by the dynamic algorithms in any case, but we

find them useful as reference values for the behavior of our algorithms. They

will be useful for the dynamic performance assessment (see Section 2.6.5). It

details the track of optima through time by our algorithm. It considers both

changing environments; every 600 evaluations for k100 and k250 instances

and 1200 evaluations for the k500 instance.

The performance of the tracking depends both on the speed and the sever-

ity of environmental changes. Given that the environment is changing, if the

solution handled by VNS is distant from the new optimal solution, we can

observe a sudden deterioration in the performance of our algorithm. This

deterioration depends on the severity of change. Indeed, if new customers

appear in a region which is not covered by the assigned vehicles, or if their

orders need a quantity that cannot be satisfied by the assigned vehicle; vehicle

82

2.6. Experimental Results and Discussion 83

detour routes will be planned or new vehicle assignments from the depot will

take place in order to respond to these new demands. Therefore, this leads to

increase the cost of the solution.

2.6.4 Study on Varying the Degree of Dynamism

We have performed a study on the behavior of our algorithms in relation to

different degrees of dynamism. The dods take their values in range [0.5, 1].

If the dod is 0.5, the problem is semi-dynamic, while with a dod equal to 1,

the problem is completely dynamic. We have done experiments only on the

k-series instances. The aim is to study the dod effect on the quality of the

obtained solutions in term of minimizing the fitness function, and the average

of the served customers during the working day.

For each instance, 30 runs of VNS are considered. Table 2.5 reports the

results obtained by our V NS algorithm with different degrees of dynamism.

It indicates the best found solutions, the average, and the percentage as well

as the range of served customers.

We can see that when we increase the degree of dynamism, the percentage of

served customers starts to decrease. Indeed, since vehicles have to return to

the depot at the end of the working day T , dynamic customers that arrive

late at the end of the day remain unserved.

When dod =0.6, we observe that almost customers are served for the in-

stances k100 and k500, and totally served for the instance k250. However,

the total traveled distance is relatively big comparatively to the case when

all customers are served (dod = 0.5). This can be explained by the fact that

when new customers arrive late, some vehicle detours in the existing routes

are necessary to respond to these new demands, which leads to an increasing

in the total traveled distance.

In the pure dynamic case (dod = 1), less than three-quarters of the total

number of customers is served for the three instances. This case is closely

similar to an emergency scenario, where the priority is to be available for the

demands.

2.6.5 Dynamic Performance Assessment

To assess the dynamic performance measures of our VNS-DVRP, we propose

to evaluate the adaptivity of the algorithm according to Weicker’s indica-

tors [Weicker 2002] seen in Section 1.5. These measures regroup accuracy,

stability and reactivity of the algorithm.

Kilby’s instances: For the classical Kilby’s instances, we have computed

the accuracy at the end of the working day T . Table 2.6 shows the

83

84
Chapter 2. Single-Solution Based Metaheuristics for Solving

Dynamic Vehicle Routing Problem

 1000

 1200

 1400

 1600

 1800

 2000

 2200

 2400

 2600

 0 2000 4000 6000 8000 10000

Fi
tn

es
s

Evaluations

Bound
VNS-DVRP

 900

 1000

 1100

 1200

 1300

 1400

 1500

 400 600 800 1000 1200 1400 1600 1800 2000

Fi
tn

es
s

Evaluations

Bound
VNS-DVRP

(a)k100 instance.

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 10000

 11000

 0 1000 2000 3000 4000 5000 6000 7000 8000 9000

Fi
tn

es
s

Evaluations

Bound
VNS-DVRP

 4500

 5000

 5500

 6000

 6500

 7000

 7500

 8000

 4200 4400 4600 4800 5000 5200 5400

Fi
tn

es
s

Evaluations

Bound
VNS-DVRP

(b)k250 instance.

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 0 2000 4000 6000 8000 10000 12000 14000 16000 18000

Fi
tn

es
s

Evaluations

Bound
VNS-DVRP

 15000

 20000

 25000

 30000

 35000

 12000 12500 13000 13500 14000 14500 15000 15500 16000 16500

Fi
tn

es
s

Evaluations

Bound
VNS-DVRP

(c)k500 instance.

Figure 2.15: Evolution of VNS-DVRP algorithm mean trace for each instance

and the optimum value for each time slice. Each square on the left figure is

enlarged in the right figure.

84

2.6. Experimental Results and Discussion 85

Table 2.5: Solutions obtained by V NS with different degrees of dynamism.
Dods Inst. Best Avrg. Custom. Range

0.5
k100 1874.37 2084.47 100% [100-100]
k250 6845.82 7251.54 100% [250-250]
k500 24082.73 24939.88 100% [500-500]

0.6
k100 2313.35 2571.78 99.9% [99-100]
k250 7361.08 7781.98 100% [250-250]
k500 27354.50 28861.12 99.0% [493-498]

0.7
k100 2436.85 2680.72 95.5% [94-96]
k250 8239.43 9244.82 99.6% [248-250]
k500 26101.17 28209.95 96% [478-482]

0.8
k100 2214.75 2647.02 88.5% [87-91]
k250 8666.36 9365.09 93.8% [232-236]
k500 24327.26 27185.13 90.14% [449-451]

0.9
k100 2348.79 2647.33 79.7% [77-82]
k250 8184.28 9098.23 86.1% [212-218]
k500 23242.42 25640.75 82.41% [410-413]

1
k100 2289.09 2581.81 70.3% [68-74]
k250 7567.24 9010.27 76.5% [188-194]
k500 22147.62 23764.54 73.09% [362-366]

accuracy of our algorithms over the 21 instances. It reports the average

distances and the lower bounds MinTF (i.e. best known solutions) for

each instance by considering the whole set of customers as static. These

solution can be found in literature2. From Table 2.6, we see that our

VNS-DVRP has an accuracy equal to 0.86 that denotes that it is able

to produce good solutions on the conventional dynamic benchmarks.

It gets the best accuracy on 6 instances. Its performance is similar to

tabu search algorithm which is known as one of the most competitive S-

metaheuristics for this problem. However, GA holds the best accuracy

with 0.87, since it is a P-metaheuristics, it has the capability to visit

more solutions during its search which is a significant advantage.

K-series instances: Table 2.7 shows the accuracy and stability over the

three k-series instances on different time slices, and the average on the

whole working day. These results are plotted in Figure 2.16. As we

introduce the new orders to the system at the beginning of each time

slot, the algorithm stats reacts immediately and starts its search in or-

der to find the new optimum. So, we have excluded ε-reactivity from

this analysis since it provides no significant results (it is always equal to

one).

It is interesting here to pay attention to the different behaviors of our

algorithm on the three instances. From the accuracy results, we can

see that the size of the instance affects differently the performance of

2http://neo.lcc.uma.es/radi-aeb/WebVRP/

85

http://neo.lcc.uma.es/radi-aeb/WebVRP/

86
Chapter 2. Single-Solution Based Metaheuristics for Solving

Dynamic Vehicle Routing Problem

our algorithms. The performance of VNS on the instance k100 is less

effective (0.79) compared to the rest of the instances. Whereas in the

medium and bigger instances, VNS performs well with an accuracy that

ranges [0.83− 0.86].

With respect to stability, the average stability values for VNS ranges

between 0.168 and 0.177 which is quite stable for a metric which ranges

in the interval [0, 1].

Table 2.6: Accuracy of the different metaheuristics on the Kilby’s instances.

Instance MinT
F V NS AS [Montemanni 2005b] GA [Hanshar 2007] TS [Hanshar 2007]

Best Accuracy Best Accuracy Best Accuracy Best Accuracy

c50 521 599.53 0.87 631.3 0.83 570.89 0.91 603.57 0.86
c75 832 981.64 0.85 1009.36 0.82 981.57 0.85 981.51 0.85
c100 817 1022.92 0.80 973.26 0.84 961.1 0.85 997.15 0.82
c100b 820 866.71 0.95 944.23 0.87 881.92 0.93 891.42 0.92
c120 1042.11 1285.21 0.81 1416.45 0.74 1303.59 0.80 1331.22 0.78
c150 1028.42 1334.73 0.77 1345.73 0.76 1348.88 0.76 1318.22 0.78
c199 1291.45 1679.65 0.77 1771.04 0.73 1654.51 0.78 1750.09 0.74
f71 237 304.32 0.78 311.18 0.76 301.79 0.79 280.23 0.85
f134 11620 15680.05 0.74 15135.51 0.77 15528.81 0.75 15717.9 0.74
tai75a 1618.36 1806.81 0.90 1843.08 0.88 1782.91 0.91 1778.52 0.91
tai75b 1344.64 1480.7 0.91 1535.43 0.88 1464.56 0.92 1461.37 0.92
tai75c 1291.01 1621.03 0.80 1574.98 0.82 1440.54 0.90 1406.27 0.92
tai75d 1365.42 1446.5 0.94 1472.35 0.93 1399.83 0.98 1430.83 0.95
tai100a 2041.33 2250.5 0.91 2375.92 0.86 2232.71 0.91 2208.85 0.92
tai100b 1940.61 2169.1 0.89 2283.97 0.85 2147.7 0.90 2219.28 0.87
tai100c 1406.2 1490.58 0.94 1562.3 0.90 1541.28 0.91 1515.1 0.93
tai100d 1581.25 1969.94 0.80 2008.13 0.79 1834.6 0.86 1881.91 0.84
tai150a 3055.23 3479.44 0.88 3644.78 0.84 3328.85 0.92 3488.02 0.88
tai150b 2656.47 2934.86 0.91 3166.88 0.84 2933.40 0.91 3109.23 0.85
tai150c 2341.84 2674.29 0.88 2811.48 0.83 2612.68 0.90 2666.28 0.88
tai150d 2645.39 2954.64 0.90 3058.87 0.86 2950.61 0.90 2950.83 0.90

Average 1976.03 2382.53 0.86 2422.68 0.83 2342.99 0.87 2380.37 0.86

2.7 Conclusion

This chapter presented a VNS based approach for solving Dynamic Vehicle

Routing Problem. The interest of this approach consists in the ability of shift-

ing from a neighborhood to another one throughout the optimization process.

This ability offers an adaptive mechanism for tracking the optimum during

the environmental changes. For this proposal, different neighborhoods have

been integrated to increase the efficiency of the approach.

Our experiments have been validated on a conventional set of benchmarks as

well as a new set of large scale benchmark instances that we have proposed.

86

2.7. Conclusion 87

Table 2.7: Accuracy and stability of VNS on the dynamic k-series instances

over different time slices.
Instance Time slice Accuracy Stability

k100

0 0.972 0.933
5 0.949 0.039
10 0.822 0.092
15 0.681 0.000
20 0.681 0.000
25 0.681 0.000
Avg. 0.797 0.177

k250

0 0.937 0.916
5 0.924 0.036
10 0.875 0.055
15 0.829 0.000
20 0.829 0.000
25 0.829 0.000
Avg. 0.866 0.168

k500

0 0.944 0.885
5 0.928 0.068
10 0.819 0.054
15 0.779 0.000
20 0.779 0.000
25 0.779 0.000

Avg. 0.832 0.168

In order to evaluate the dynamic performance of our approach, several

indicators have been used to this end. Weicker’s measures allow to assess

the accuracy, the stability, and the reactivity of an algorithm throughout the

optimization process. Our approach provides very competitive results compar-

atively to the other state-of-the-art metaheuristics, and Weicker’s indicators

demonstrated the high adaptivity and stability of our algorithm.

Population-based metaheuristics tend to be more effective in terms of di-

versification than single solution based ones. However, in terms of intensifica-

tion search areas, the latter group is known to be more effective. In general,

the degree of success of these methods on a given problem depends largely

on their ability to strike a balance between exploration and exploitation. The

ability of the population-based metaheuristics to sample the search space and

the fact that they simultaneously manipulate a group of solutions increase

their potential for dynamic problems. Techniques which exploit these quali-

ties are reviewed in the next chapter.

87

88
Chapter 2. Single-Solution Based Metaheuristics for Solving

Dynamic Vehicle Routing Problem

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 0 2000 4000 6000 8000 10000

A
cc

ur
ac

y

Evaluations

Bound
VNS-DVRP

(a) Accuracy over 25 time slices for k100.

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0 2000 4000 6000 8000 10000
St

ab
ili

ty

Evaluations

Bound
VNS-DVRP

(b) Stability over 25 time slices for k100.

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 0 1000 2000 3000 4000 5000 6000 7000 8000 9000

A
cc

ur
ac

y

Evaluations

Bound
VNS-DVRP

(c) Accuracy over 25 time slices for k250.

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0 1000 2000 3000 4000 5000 6000 7000 8000 9000

St
ab

ili
ty

Evaluations

Bound
VNS-DVRP

(d) Stability over 25 time slices for k250.

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 0 2000 4000 6000 8000 10000 12000 14000 16000 18000

A
cc

ur
ac

y

Evaluations

Bound
VNS-DVRP

(e) Accuracy over 25 time slices for k500.

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0 2000 4000 6000 8000 10000 12000 14000 16000 18000

St
ab

ili
ty

Evaluations

Bound
VNS-DVRP

(f) Stability over 25 time slices for k500.

Figure 2.16: Evolution of accuracy and stability of VNS-DVRP across time

slices for each instance.

88

Chapter 3

Population Based

Metaheuristics for Solving

Dynamic Vehicle Routing

Problem

Contents
3.1 Introduction . 89

3.2 Common Concepts for Population-Based Meta-
heuristics . 90

3.3 Particle Swarm Optimization 94

3.4 P-Metaheuristics for DVRP: Literature Review . . . 97

3.5 Particle Swarm Optimization for DVRP 99

3.6 Adaptive Particle Swarm Optimization 107

3.7 Experimental Results and Discussion 111

3.8 Conclusion . 120

3.1 Introduction

As mentioned earlier, environmental changes in real life typically do not alter

the problem completely, but affect only some part of the problem at a time.

For example, for the dynamic vehicle routing problem in which customer or-

ders arrive progressively over the working day, not all the customer orders

are canceled in the same time, not all vehicles break down at once, weather

changes affect only parts of road, etc. Thus, after an environmental change,

there remains some information from the past that can be used in the future.

Such problems call for a methodology to track their optimal solutions through

time. The required algorithm should not only be capable of tackling combi-

natorial problems, but should also be adaptive to changes in the environment.

90
Chapter 3. Population Based Metaheuristics for Solving Dynamic

Vehicle Routing Problem

Population based metaheuristics exhibit a number of potential advantages for

such purposes. In recent years, there have been increasing interest in using

Particle Swarm Optimization (PSO) in dealing with dynamic optimization

problems [Eberhart 2001, Carlisle 2002, Li 2006, Blackwell 2007]. There are

several characteristics inherent and attributed to PSO that encourage their use

for dynamic problems. The underlying principle of PSO is based on swarm

intelligence, and hence they are expected to be capable of self-organization

and able to adapt to environmental changes. In addition, PSO has proved to

be suitable for dynamic environments due to their ability to store and exploit

previous solutions. One of the most appealing features for dynamic environ-

ments is that, at any given instant, PSO deals with a population of solutions

rather than a single solution. Hence, even if the environment changes, it is

likely that some solutions in the population remain feasible and retain some

of their good quality. Thus, by using PSO, it is possible to formulate general

techniques to address the dynamic issues of the vehicle routing problem. For

this purpose, we present in this chapter an Adaptive Particle Swarm Opti-

mization for solving Dynamic Vehicle Routing Problem. The underlying idea

is to reuse the best solutions gathered in the past that could be beneficial for

tracking the shifting optimum over the time. This chapter starts with an in-

troduction to the population-based metaheuristics and the common concepts

related to these approaches. In Section 3.3 the standard particle swarm opti-

mization approach is exposed. While the Section 3.4 reports an overview of

some P-metaheuristics applied on DVRP. Section 3.5 presents our Adaptive

Particle Swarm Optimization (APSO) for solving DVRP. It covers particle’s

representation, particle movements, memory mechanism, and hybridization

with heuristics. In Section 3.7 our approach is tested on a conventional set

of benchmarks as well as a new set of large scale instances. In addition, the

dynamic performances of our algorithm are assessed and discussed. Finally,

we conclude this chapter with a summary and introduce the future step of

this thesis.

3.2 Common Concepts for Population-Based

Metaheuristics

Population-based metaheuristics (P-metaheuristics) start from an initial pop-

ulation of solutions. Then, they iteratively apply the generation of a new pop-

ulation and the replacement of the current population (see Figure 3.1). In the

generation phase, a new population of solutions is created. In the replacement

phase, a selection is carried out from the current and the new populations.

This process iterates until a given stopping criteria. The generation and the

90

3.2. Common Concepts for Population-Based Metaheuristics 91

replacement phases may be memoryless. In this case, the two procedures are

based only on the current population. Otherwise, some history of the search

stored in a memory can be used in the generation of the new population

and the replacement of the old population. Most of the P-metaheuristics are

nature-inspired algorithms. Popular examples of P-metaheuristics are evolu-

tionary algorithms, ant colony optimization, scatter search, particle swarm

optimization, bee colony, and artificial immune systems. Algorithm 6 illus-

trates the high-level template of P-metaheuristics [Talbi 2009].

Figure 3.1: Main principles of P-metaheuristics.

Algorithm 6 High-level template of P-metaheuristics.
P := P0; / Generation of the initial population /
t := 0;
repeat

Generate(P ′t); / Generation a new population /
Pt+1 := Select-Population (Pt ∪ (P ′t)); / Select new population /
t := t + 1;

until Stopping criteria satisfied
Output: Best solution(s) found.

P-metaheuristics differ in the way they use the search memory during the

search and in generation and selection procedures.

• Search memory: The memory of a P-metaheuristic represents the set

of information extracted and memorized during the search. The content

of this memory varies from a P-metaheuristic to another one (Table 3.2).

In most of the P-metaheuristics such as evolutionary algorithms and

scatter search, the search memory is limited to the population of solu-

tions. In ant colonies, the pheromone matrix is the main component of

91

92
Chapter 3. Population Based Metaheuristics for Solving Dynamic

Vehicle Routing Problem

the search memory, whereas in estimation distribution algorithms, it is

a probabilistic learning model that composes the search memory.

• Generation: In this step, a new population of solutions is generated.

According to the generation strategy, P-metaheuristics may be classified

into two main categories (Figure 3.2):

– Evolution based: In this category of P-metaheuristics, the solu-

tions composing the population is selected and reproduced using

variation operators (e.g., mutation, recombination) acting directly

on their representations. A new solution is constructed from the

different attributes of solutions belonging to the current population.

Evolutionary algorithms and scatter search represent well-known

examples of this class of P-metaheuristics.

– Blackboard based: Here, the solutions of the population partic-

ipate in the construction of a shared memory. This shared mem-

ory will be the main input in generating the new population of

solutions. The recombination in this class of algorithm between

solutions is indirect through this shared memory. Ant colonies

and estimation distribution algorithms belong to this class of P-

metaheuristics. In the former strategy, the shared memory is rep-

resented by the pheromone matrix, while in the latter strategy, it is

represented by a probabilistic learning model. For instance, in ant

colonies, the generated solutions by ants will affect the generation

of solutions by future ants via the pheromone. Indeed, the previ-

ously generated solutions participate in updating the pheromone.

• Selection: The last step in P-metaheuristics consists in selecting the

new solutions from the union of the current population and the gen-

erated population. The traditional strategy consists in selecting the

generated population as the new population. Other strategies use some

elitism in the selection phase where they provide the best solutions from

the two sets. In blackboard-based P-metaheuristics, there is no explicit

selection. The new population of solutions will update the shared search

memory (e.g., pheromone matrix for ant colonies and probabilistic learn-

ing model for estimation of distribution algorithms), which will affect

the generation of the new population.

As for S-metaheuristics, the search components that allow to define and differ-

entiate P-metaheuristics have been identified. The common search concepts

for P-metaheuristics are the determination of the initial population and the

generation of the new one.

92

3.2. Common Concepts for Population-Based Metaheuristics 93

P-metaheuristic Search Memory

Evolutionary algorithms Population of individuals

Scatter search Population of solutions, reference set

Ant colonies Pheromone matrix

Estimation of distribution algorithms Probabilistic learning model

Particle swarm optimization
Population of particles,
best global and local solutions

Bee colonies Population of bees

Artificial immune systems: Population of antibodies
clonal selection

Table 3.1: Search Memories of Some P-Metaheuristics.

3.2.1 Initial Population

Due to the large diversity of initial populations, P-metaheuristics are natu-

rally more exploration search algorithms whereas S-metaheuristics are more

exploitation search algorithms. The determination of the initial population

is often disregarded in the design of a P-metaheuristic. Nonetheless, this

step plays a crucial role in the effectiveness of the algorithm and its effi-

ciency [Talbi 2009]. In the generation of the initial population, the main

criterion to deal with is diversification. If the initial population is not well

diversified, a premature convergence can occur for any P-metaheuristic. For

instance, this may happen if the initial population is generated using a greedy

heuristic or a S-metaheuristic (e.g., local search, tabu search) for each solution

of the population.

Figure 3.2: Evolution based versus blackboard based strategies in P-

metaheuristics.

In some P-metaheuristics such as scatter search [Cung 1997b,

Cung 1997a], the diversification criterion is explicitly taken into account in

the generation of the initial population. Some diversification criteria are

optimized in the generation of the initial population such as maximizing

the minimum distance between any two solutions of the initial population:

Maxi=1,n(Minj=1,i−1{dij}) where dij represents the distance in the decision

93

94
Chapter 3. Population Based Metaheuristics for Solving Dynamic

Vehicle Routing Problem

space between two solutions i and j and n is the size of the population.

Strategies dealing with the initialization of the population may be classified

into four categories: random generation, sequential diversification, parallel

diversification, and heuristic initialization. They may be analyzed according

to the following criteria: diversity, computational cost, and quality of the

solutions (Table 3.2). Sequential and parallel diversification strategies provide

in general the best diversity followed by the quasi-random strategy. The

heuristic initialization provides in general better solutions in terms of quality,

but with the expense of a higher computational cost and a reduced diversity.

This will depend on the fitness landscape of the tackled optimization problem.

Strategy Diversity Computational Cost Quality of Initial Solutions

Pseudo-random ++ +++ +

Quasi-random +++ +++ +

Sequential diversification ++++ ++ +

Parallel diversification ++++ +++ +

Heuristic + + +++

Table 3.2: Analysis of the different initialization strategies. The evaluation is

better with more sign (+).

3.3 Particle Swarm Optimization

Particle swarm optimization is a stochastic population-based metaheuristic

inspired from swarm intelligence [Kennedy 2001]. It mimics the social behav-

ior of natural organisms such as bird flocking and fish schooling. Indeed, in

those swarms, a coordinated behaviors using local movements emerge without

any central control. Originally, PSO has been successfully designed for con-

tinuous optimization problems. Its first application to optimization problems

has been proposed in [Kennedy 1995]. In the basic model, a swarm consists

of N particles flying around in a D-dimensional search space. Each particle i

is a candidate solution to the problem, and is represented by the vector xi in

the decision space. A particle has its own position and velocity, which means

the flying direction and step of the particle. Optimization takes advantage

of the cooperation between the particles. The success of some particles will

influence the behavior of their peers. Each particle successively adjusts its

position xi toward the global optimum according to the following two factors:

the best position visited by itself (pbesti) denoted as pi = (pi1, pi2, . . . , piD)

and the best position visited by the whole swarm (gbest) (or lbest, the best

position for a given subset of the swarm) denoted as pg = (pg1, pg2, . . . , pgD).

94

3.3. Particle Swarm Optimization 95

The vector (pg − xi) represents the difference between the current position

of the particle i and the best position of its neighborhood. A neighborhood

must be defined for each particle. This neighborhood denotes the social in-

fluence between the particles. There are many possibilities to define such a

neighborhood, traditionally, two methods are used:

• gbest method: In the global best method, the neighborhood is defined

as the whole population of particles (Fig. 3.3).

• lbest method: In the local best method, a given topology is associated

with the swarm. Hence, the neighborhood of a particle is the set of

directly connected particles. The neighborhood may be empty so the

particles are isolated (i.e., ϕ2 = 0). Figure 3.3 shows three different

topologies: complete graph, ring world graph, and small world graph.

This model is similar to social science models based on population mem-

bers mutual imitation, where a stabilized configuration will be composed

of homogeneous subpopulations.

Figure 3.3: Neighborhood associated with particles. (a) gbest Method in

which the neighborhood is the whole population (complete graph). (b)

lbest Method where a non complete graph is used to define the neighbor-

hood structure (e.g., a ring in which each particle has two neighbors).

(c) Intermediate topology using a small world graph.

According to the neighborhood used, a leader (i.e., lbest or gbest) rep-

resents the particle that is used to guide the search of a particle toward

better regions of the decision space. A particle is composed of three

vectors:

– The x -vector records the current position (location) of the particle

in the search space.

95

96
Chapter 3. Population Based Metaheuristics for Solving Dynamic

Vehicle Routing Problem

– The p-vector records the location of the best solution found so far

by the particle.

– The v -vector contains a gradient (direction) for which particle will

travel in if undisturbed.

– Two fitness values: The x-fitness records the fitness of the x-vector,

and the p-fitness records the fitness of the p-vector.

A particle swarm may be viewed as a cellular automata where individual

cell (particles in PSO) updates are done in parallel; each new cell value

depends only on the old value of the cell and its neighborhood, and all

cells are updated using the same rules. At each iteration, each particle

will apply the following operations:

• Update the velocity: The velocity that defines the amount of change

that will be applied to the particle is defined as:

vi(t) = vi(t− 1) +ϕ1× r1(pi− xi(t− 1)) +ϕ2× r2(pg − xi(t− 1)) (3.1)

where r1 and r2 are two random variables in the range [0, 1]. The con-

stants ϕ1 andϕ2 represent the learning factors. They represent the at-

traction that a particle has either toward its own success or toward the

success of its neighbors. The parameter ϕ1 is the cognitive learning

factor that represents the attraction that a particle has toward its own

success. The parameter ϕ2 is the social learning factor that represents

the attraction that a particle has toward the success of its neighbors.

The velocity defines the direction and the distance the particle should go

(see Figure 3.4). This formula reflects a fundamental aspect of human

sociality where the socialpsychological tendency of individuals emulates

the successes of other individuals.

vi(t) = ω×vi(t−1)+ϕ1×r1(pi−xi(t−1))+ϕ2×r2(pg−xi(t−1)) (3.2)

The elements of vi are limited to a maximal value [Vmax,+Vmax] such

as the system will not explode due to the randomness of the system.

If the velocity vi exceeds Vmax (resp. Vmax), it will be reset to Vmax
(resp. Vmax). In the velocity update procedure, an inertia weight ω is

generally added to the previous velocity [Shi 1998]: The inertia weight

w will control the impact of the previous velocity on the current one. For

large values of the inertia weight, the impact of the previous velocities

will be much higher. Thus, the inertia weight represents a trade-off

between global exploration and local exploitation. A large inertia weight

encourages global exploration (i.e., diversify the search in the whole

96

3.4. P-Metaheuristics for DVRP: Literature Review 97

Figure 3.4: Movement of a particle and the velocity update.

search space) while a smaller inertia weight encourages local exploitation

(i.e., intensify the search in the current region).

• Update the position: Each particle will update its coordinates in the

decision space. Then it moves to the new position.

xi(t) = xi(t− 1) + vi(t) (3.3)

• Update the best found particles: Each particle will update (poten-

tially) the best local solution pbesti and the best global solution gbest

of the swarm is updated.

Hence, at each iteration, each particle will change its position accord-

ing to its own experience and that of neighboring particles. As for any

swarm intelligence concept, agents (particles for PSO) are exchanging

information to share experiences about the search carried out. The be-

havior of the whole system emerges from the interaction of those simple

agents. In PSO, the shared information is composed of the best global

solution gbest. Algorithm 7 summarizes the template for the PSO algo-

rithm.

3.4 P-Metaheuristics for DVRP: Literature

Review

Several P-metaheuristic algorithms have been proposed to solve the dynamic

version of the vehicle routing problem. Essentially, Ant Colony System (ACO)

and Evolutionary Algorithms (EAs) constitute the major contributions in this

application filed.

97

98
Chapter 3. Population Based Metaheuristics for Solving Dynamic

Vehicle Routing Problem

Algorithm 7 Template of the particle swarm optimization algorithm.
Random initialization of the whole swarm ;
for all particles i do

Initialize xi and vi;
Evaluate f(xi);
pi := xi;
pg := argmin{f(pi)};

end for
repeat

for all particles i do
/* Update velocities*/
vi(t) := ω × vi(t− 1) + ϕ1 × r1(pi − xi(t− 1)) + ϕ2 × r2(pg − xi(t− 1))
/*Move to the new position:*/
xi(t) := xi(t− 1) + vi(t);
Evaluate (f(xi));
if f(xi) < f(pi) then

pi := xi ;
end if
if f(xi) < f(pg) then

pg := xi;
end if

end for
until Stopping criteria

3.4.1 Ant Colony Optimization (ACO)

For ACO, the approach tends to take advantage of the old information

gathered from the previous search by modifying the pheromone matrix. Tian

et al. [Tian 2003] and Montemanni et al. [Montemanni 2005b] propose a new

pheromone initialization for new requests that is better than re-optimization

process. The aim is to reuse some characteristics of previous good solutions

which have an attractive trail in the pheromone matrix. The updating of

the pheromone matrix consists in the reinforcement of the trails of these

solutions. The initialization of the pheromone matrix is done by solving

the partial problem with a greedy insertion algorithm, which is a nearest

neighbor heuristic.

Tian et al. [Tian 2003] hybridize their algorithm with a 2-Opt heuristic.

The hybridization takes place after the updating of the pheromone matrix.

Montemani et al. [Montemanni 2005b] use a very simple greedy algorithm

to improve their solutions. It consists in iteratively selects a customer and

tries to move it into another position within its tour or within another

tour. Furthermore, Jin et al. [Jun 2008] hybridize ACO with EA for a

98

3.5. Particle Swarm Optimization for DVRP 99

multi-objective DVRPTW. The authors use the EA for initializing the

pheromone matrix as well to optimize it at each iteration.

3.4.2 Evolutionary Algorithms (EAs)

On the Evolutionary algorithms side, for their GA-based system for

the DVRP, Hanshar and Ombuki-Berman [Hanshar 2007] and Wang et

al. [Wang 2007] initialize the population of chromosome randomly. Hanshar

generates a random permutation of size n for each chromosome where n is the

number of customers left over from the day before.

A dynamic programming is applied by Jih et al. [Jih 1999] to generate the

initial population instead of creating it randomly. Furthermore, Branke et

al. [Branke 2005b] propose to seed the population with some heuristics con-

sisting in letting the vehicles wait at suitable locations during their tours, thus

influencing the position of the vehicles at the time when the new customer

arrives. The objective is to maximize the probability that the additional cus-

tomer can be integrated into one of tours without violating time constraints.

Different reproduction operators have been proposed in literature. As

crossovers: Best-Cost Route Crossover (BCRC) [Hanshar 2007], Partially

Mapped Xover (PMX) [Housroum 2006], two-point crossover [Branke 2005b],

order crossover (OX), uniform order-based crossover (UOX), merge cross #1

(MX1) and merge cross #2 (MX2) in [Jih 1999].

For mutation, Housroum et al. [Housroum 2006] suggest Or-Opt, 1-Opt, and

swap. While Hanshar [Hanshar 2007] use the inversion operator. Wang et

al. [Wang 2007] use relocate operator which consists in changing the assign-

ment of unserved customers to another vehicle. Jih et al. [Jih 1999] propose

three operators that are: swap, inversion, and re-arrangement.

3.5 Particle Swarm Optimization for DVRP

In this section, we present our PSO-DVRP approach. The different compo-

nents of our algorithm and their adaptation for DVRP are studied.

3.5.1 Particle Representation

Particle Swarm Optimization is an approach has been used widely in con-

tinuous optimization problem, but its adaptation to discrete combinatorial

problem remains still difficult. How to encode a schedule is one of the key

issues in successfully applying PSO to the DVRP, namely, finding a suitable

mapping from problem solution to PSO particle.

99

100
Chapter 3. Population Based Metaheuristics for Solving Dynamic

Vehicle Routing Problem

3.5.2 Review of Literature

Concerning Vehicle Routing Problems, in the literature, various representa-

tions for the particles were proposed.

In [Chen 2006a], the authors propose a hybrid algorithm for solving the

capacitated VRP. This algorithm uses Discrete Particle Swarm Optimization

(DPSO) combined with simulated annealing (SA). In the encoding process,

a particle is represented as a 2D array (double array). Each vector of this

representation is a vector of n × m dimensions, in which n customers have

to be served by m vehicles. Every particle is composed of m sections and

every section has n discrete points corresponding to the customers. The first

dimension in the 2D array of the particle is an n × m dimension vector in

which each entry corresponds to customer. The second dimension is also an

n × m dimension vectors, where every position takes 0 or 1. If the value is

1, it represents that the corresponding customer is served by the relevant ve-

hicle, otherwise it is not served by this vehicle. The position of each particle

indicates the relevant sequence of the customers served by each vehicle.

Zhu et al. [Zhu 2006], propose a particle swarm optimization for the

VRPTW. The suggested particle coding for this problem is an indirect dis-

crete combinatorial coding. A route for n customers and m vehicles can be

presented as a 2-D vector of n+ k− 1 dimensions. The first array defines the

customer or the center nodes (depots) to visit, while on the second vector each

dimension defines the sequence of the corresponding customers or the depot

into the route. The vehicle routes are retrieved after a decoding the particle

representation.

Furthermore in [Wang 2006], the authors introduce a PSO for the Open

Vehicle Routing Problem (OVRP). The PSO encoding method is based on real

number encoding. For n customers each particle is encoded as a real number

vector with n dimensions. The integer part of each dimension or element in

the vector represents the vehicle. Thus, the same integer part represents the

customer in the same vehicle. The fractional part represents the sequence of

the customer in the vehicle route. When the particle position is decoded, the

customer is assigned to the vehicle corresponding to the closet integer part.

The order of visits is given according to the sorting of the fractional part.

Recently, in [Ai 2009], the authors propose a formulation of the vehicle

routing problem with simultaneous pickup and delivery (VRPSPD) and a

PSO algorithm to solve it. The solution representation for the VRPSPD with

n customers and m vehicles is a n + 2m dimensional particle. Each particle

dimension is encoded as a real number. It consists of two parts: the first part

relates to customers and the second part concerns vehicles. The first part of

the representation consists of n dimensions of particle with each dimension

100

3.5. Particle Swarm Optimization for DVRP 101

assigned to a customer.

It is required to set the priority of customers in order to insert them in the ex-

isting routes. A random key with n elements is applied. The smaller value of

the dimension corresponds to the higher priority of the customer. The second

part of the representation is based on the idea of vehicle route orientation.

Route orientation of a vehicle is defined as a point in the service map that

represents a certain area in which the vehicle is most likely to serve. Conse-

quently, a vehicle route will tend to aggregate around its corresponding route

orientation. The decoding method is done by transforming the particle to a

priority list of customers to enter the route and a priority matrix of vehicles

to serve each customer.

3.5.3 Proposed Representation

We can see that higher dimension is presented in the encoding methods de-

scribed in the above section and in some cases, dimensions should be rounded

to the closest integer number and sorted. It operates with difficulty and con-

sumes much CPU time during the decoding step. Meanwhile, if the position

presents the infeasible solution, a repair procedure is necessary.

In our work, to escape coding and decoding phases we reuse the same rep-

resentation as in VNS approach. It consists in discrete representation which

expresses the routes of m vehicles over the n customers to serve. A solution to

the problem is represented by a set of routes S = {R1...Rp...Rq...Rm}, where

Rk is the set of customers serviced by the vehicle Vk. The representation of

each route Rk is a permutation of n customers as follows:

Rk : (c0, c1, c2, ..., ci, ..., cn, cn+1) (3.4)

For each customer ci, we assign the following information:

• (xi, yi): coordinates of the customer ci.

• si: Boolean variable which indicates if the customer ci has been already

served or not.

• ti: processing time of the customer ci (time in which the customer is

served).

Furthermore, for each route Rk served by the vehicle vk, we keep some

information:

• (xj, yj): coordinates of the vehicle vk.

• capk: remaining capacity of the vehicle vk.

101

102
Chapter 3. Population Based Metaheuristics for Solving Dynamic

Vehicle Routing Problem

• distk: distance traveled by the vehicle vk.

• commitk: Boolean variable which indicates if the vehicle vk has been

committed or not.

With this representation, a simple evaluation of the population is provided

since the evaluation is carried out only on the unvisited segments of routes.

3.5.4 Velocity vector

The velocity vector vi of the particle is a vector of n dimensions. It is initialized

for each new dimension by a random number between [1,m], where m is the

number of the planned routes in the current position of the particle, with the

possibility to create a new route for a customer if the cost of this latter is less

than its insertion into the existing ones. Each dimension i designs the vehicle

route in which the customer ci is assigned (See Figure 3.5). Each element of

vi is bounded on the range [−m,m]. If the velocity vi exceeds −m (resp. m

), it is reset to 1 (resp. m). Thus, it allows to keep a control on excessive

wandering of particles outside the neighborhood of the current position. The

velocity equations are slightly modified to take into account the nature of

the problem. Indeed, in the equation 3.1 the particle positions (pi, pg) are

replaced with their respective routes index.

Figure 3.5: Particle position and its velocity vector for PSO-DVRP.

102

3.5. Particle Swarm Optimization for DVRP 103

3.5.5 Particle Movement

It is very clear after all the existing literature on VRP that local search is al-

most mandatory to achieve results of high quality [Rochat 1995, Prins 2004].

This is why we consider the particle’s movement as local optimization step

for each generation.

Depending on the velocity vector, the particles move after the updating of

their current position. The particle’s movement is summarized in shifting

customers from one route to another according to the new velocity vector.

Each customer is reinserted into another route according to the cheapest

insertion heuristic, i.e., at a location which minimizes the overall cost of the

entire tour (see Figure 2.11). This requires computing the cost of inserting

each customer at each location in the route. When it is cheaper to insert an

uninserted customer on an empty route rather than an existing route, the

customer will be inserted on the new route.

The Figure 3.6 gives an example of the particle position updating. The

movement related to the particles is very similar to the λ-Interchange local

optimization method that is one of the most successful techniques in the past

years [Osman 1993]. This latter is based on the analysis of all the possible

combinations for up to λ customers between sets of routes. Hence, this

method results in customers either being shifted from one route to another,

or being exchanged between routes. The mechanism can be described as

follows:

A solution to the problem is represented by a set of routes

S = {R1, . . . , Rp, . . . , Rq, . . . , Rk}, where Ri is the set of customers served

in route i. Thus, new neighboring solutions can be obtained after ap-

plying λ-Interchange between a pair of routes Rp and Rq ; to do so, it

replaces each subset of customers S1 ⊆ Rp of size |S1| ≤ λ with any

other one S2 ⊆ Rq of size |S2| ≤ λ. This way, we obtain two new routes

R′p = (Rp − S1) ∪ S2 and R′q = (Rq − S2) ∪ S1, which are part of the new

solution S ′ = {R1, . . . , R
′
p, . . . , R

′
q, . . . , Rk}. The constraints which are related

to the vehicle capacity and depot time-window are relaxed when the particle

moves, and a repairing procedure to get feasible position is applied after each

movement. The repairing heuristic follows the Algorithm 3 described in the

Section 2.4.3.

3.5.6 Swarm Initialization

The initial population is obtained by generating a permutation of customers

according to the nearest neighborhood greedy heuristic. The algorithm first

starts a route with a random client and repeatedly visits the nearest client

103

104
Chapter 3. Population Based Metaheuristics for Solving Dynamic

Vehicle Routing Problem

Figure 3.6: Illustration of a particle’s movement: the velocity is updated

followed by the particle’s current position.

until the vehicle constraint (capacity, depot time window) cannot be satisfied.

New routes are built until all clients have been visited. The initial population

is constituted by the set of vehicle routes which serve customers who were left

over from the day before.

3.5.7 Adaptive Memory Mechanism

One could deal with the non-stationarity of VRP by regarding each change as

the arrival of a new optimization problem that has to be solved from scratch.

However, this simple approach needs a lot of computational time when there

is a change. In dynamic environment, the quick response to requests is very

important and the immediate requests should be dealt with in real-time. The

re-optimization strategy is not a good choice.

Furthermore, when dealing with real-world problems it is rarely the case that

the exact same solution will receive the identical fitness at a later stage. How-

ever, the dynamic change may cause the optima to be in the neighborhood

of an old solution more often. Indeed, unless the change in the problem is

extremely strong, probably much effort could be saved and better solution

104

3.5. Particle Swarm Optimization for DVRP 105

quality achieved by using an optimization algorithm that is capable of con-

tinuously adapting the solution to a changing environment, reusing the infor-

mation gained in the past. If the change is relatively small, the new optimal

solution must be related to the old one. If relative great changes have taken

place, the old solution may be a near optimum for the new. Therefore, it is

greatly beneficial to make the best of the old information.

A number of authors have addressed the issue of transferring information from

the old environment to the new environment by enhancing the optimization

algorithm with memory that might allow it to store good (possibly partial)

solutions and reuse them later as necessary.

This memory may be implicit by a redundant genome representation, such

as diploid chromosomes [Goldberg 1987, Lewis 1998] or explicit by storing

and retrieving candidate solutions from a separate memory [Ramsey 1993,

Louis 1996, Branke 1999a].

The following subsection gives a brief review of memory-based approaches for

DOPs:

1. Implicit Memory:

An algorithm that uses representations containing more information

than necessary to define the phenotype (i.e. redundant representations)

basically has some memory where good (partial) solutions may be stored

and reused later as necessary. We call this kind of memory implicit be-

cause it is left to the algorithm to find a way to use it appropriately.

The most prominent approach to redundant representations seems to be

diploidy. Goldberg and Smith [Goldberg 1987] report on experiments

with using diploidy and dominance. Since it is not clear beforehand

which allele value (e.g. 0 or 1) should be dominant at a particular gene

position, Goldberg and Smith favor a triallelic scheme where an allele

can take on one of three values O,recessive I, and dominant 1. Tested on

a time-varying knapsack problem, they report better adaptive qualities

than with a simple GA. Another approach is to use multiploid represen-

tations [Lewis 1998], where the genes determining one trait are added in

order to determine the phenotypic trait. The phenotypic trait becomes

1 a certain threshold is exceeded and 0 otherwise. The results produced

by multiploid representations so far indicate that they are useful in pe-

riodic environments where it is enough to remember a few states and

important to be able to return to previous states quickly.

2. Explicit Memory: The main idea with explicit memory is that re-

membering old solutions can turn out to be an advantage later on in a

dynamic fitness landscape.

105

106
Chapter 3. Population Based Metaheuristics for Solving Dynamic

Vehicle Routing Problem

Different approaches have been reported in the literature using explicit

memory. Louis and Xu [Louis 1996] study scheduling and re-scheduling

by means of restarting the EA with individuals evolved by a related

problem. Whenever a change occurred, the EA is restarted and the

population is initialized with a seed from the old run and the rest ran-

domly. The authors conclude from the experiments that a seed of 5-10

% from the old run produce better and faster results than running the

EA with a totally random initialized population after a change occurred.

Ramsey and Greffenstette [Ramsey 1993] introduce an EA model that

stored good candidate solutions for a robot controller in a permanent

memory together with information about the robot environment. The

idea is that if the robot environment becomes similar to a stored envi-

ronment instance the corresponding stored controller solution is reacti-

vated. For this, they use a simulator to train good strategies for robot

movement and obstacle avoidance. In the article the authors report

that their technique prevents premature convergence by a higher level

of diversity and yielded significant improvements. The only drawback

of this approach is that it assumes that the similarity of the robot envi-

ronment is measurable. Another approach is introduced by Trojanowski

and Michalewicz [Trojanowski 1997], in which each individual remem-

bers some of its ancestors solutions. After a change in the environment,

the current solution and the memory solutions are re-evaluated and the

best solution becomes the active solution, keeping the other solutions in

memory. The size of the memory is fixed and individuals from the first

generation start with an empty memory buffer. For each of the following

generations the parent solution is stored in memory and if the memory

is already full the oldest memory solution is removed.

Further Eggermont and colleagues [Eggermont 2001] suggest an EA

model, which focuses on a shared memory instead of a local mem-

ory, only available to the individual. They implement the model

for a bit representation based on a real numerical representation by

Branke [Branke 1999a]. In this approach the best individuals from some

of the generations are stored in a shared memory. The memory starts

out empty and is filled throughout the run. The size of the memory is

fixed and different approaches of replacement strategies, when storing

individuals, are tested, such as replacing individuals by their age or their

contribution to diversity and fitness. Branke [Branke 1999a] and Egger-

mont et al. [Eggermont 2001] find significant improvement compared to

approaches without memory on dynamic test problems.

For the Dynamic Vehicle Routing Problem, Y. Rochat and E. Tail-

lard [Rochat 1995] propose a Tabu Search enhanced with adaptive mem-

106

3.6. Adaptive Particle Swarm Optimization 107

ory. This latter stores the routes of the best solutions visited during the

search. New solutions are then created by combining routes taken from

different solutions of this memory. The combination is applied in similar

way than a crossover operator found in Genetic Algorithm. New solu-

tion produced by the tabu search is included in the memory if it is not

filled yet, or the new solution is better than the worst solution stored in

memory, in which case the latter is removed.

3.6 Adaptive Particle Swarm Optimization

We propose here an Adaptive Particle Swarm Optimization (APSO). This

approach is closely related to the strategies presented in the section above.

In PSO, this memory is intrinsic to the algorithm since each particle is

defined by its current position and its best position. Furthermore, particles

are related to their best neighborhood positions. These positions represent

the set of candidate solutions stored by the particles throughout the search.

For the adjustment to the new environment, our algorithm selects the best

positions found so far in the population and re-positioning the particles in

the search space according to these positions. The result of this mechanism

is that the stored candidate solutions will produce outposts at different

locations (see Figure 3.7). If the optima returns to the same proximity in the

search space the memory points can self-adjust to the translocated optima.

After a change in the environment, the current position and the best particle

position are re-evaluated and the best solution becomes the active current

position. The algorithm of the Adaptive Particle Swarm is summarized in

the Algorithm 8.

3.6.1 APSO-DVRP Algorithm

The pseudo-code of the APSO algorithm for solving DVRP is presented in

Algorithm 9. The algorithm has as an input a problem represented by a series

of static instances, since the working day is split into n time slices correspond-

ing to the different sub-problems. The new customer requests are inserted in

the existing routes according to the nearest neighborhood greedy heuristic.

Then, the best visited solutions by particles are used for repositioning the

particles in the search space of this new environment. The algorithm iterates

the main loop of PSO approach by updating the velocity of the particles and

their positions. After a time slot, new orders arrive and must be included in

the scheduling. Therefore, the algorithm resumes with solving a new instance

107

108
Chapter 3. Population Based Metaheuristics for Solving Dynamic

Vehicle Routing Problem

Figure 3.7: Movement of memory points. The curve is an example of a dy-

namic changing optimum. The black circles are the best memory points for

the new environment, the light gray scaled circles are the current positions of

particles and the gray circle is the best position found so far by particles.

of the problem. The termination criterion is the end of the journey and the

way back of vehicles to the depot.

3.6.2 Hybridization with Heuristics

Over the last years, interest in hybrid metaheuristics has risen considerably

among the combinatorial optimization research community, as best results

for academic and industrial problems are usually obtained by hybrid algo-

rithms. Indeed, two competing goals govern the design of a metaheuristic:

exploration and exploitation. Exploration is needed to ensure that every part

of the space is searched enough to provide a reliable estimate of the global

optimum. Exploitation is important since the refinement of the current so-

lution will often produce a better solution. P-metaheuristics such as PSO

are powerful in the exploration of the search space in the sense they try to

(optimize globally) and weak in the exploitation of the solutions found. There-

fore, most efficient P-metaheuristics have been coupled with S-metaheuristics

or advanced heuristics, which are powerful optimization methods in terms of

exploitation (optimize locally). The two classes of algorithms have comple-

mentary strengths and weaknesses. We use a Low-level Teamwork Hybrid

(LTH) for our algorithm. In [Talbi 2009], Talbi describes this class of hybrids

as algorithms in which a given heuristic or S-metaheuristic is embedded into

a P-metaheuristic.

108

3.6. Adaptive Particle Swarm Optimization 109

Algorithm 8 Template of the Adaptive Particle Swarm Optimization Algo-

rithm
INPUT Dynamic problem P that corresponds to a series of n-static problems
(P = (I0, t0, ∆0), (I1, t1, ∆1), . . . , (Ik, tk, ∆k), . . . , (In, tn, ∆n)). Each sub-problem
Ik occurs at time tk and spends a certain duration ∆k.
/* Random initialization of the whole swarm */
for each particles i do

Initialize xi, vi;
Evaluate f(xi);
pi := xi;
pg := argmin{f(pi)};

end for
k := 0 ; /* First sub-problem */
repeat

/* Change in the environment (new static instance (Ik, tk, ∆k)) */
for each particles i do

Evaluate (f(xi), f(pi));
/* Reuse the best solutions found previously by the particles */
xi := AdjustPosition(xi, pi);
/* Update swarm attractor */
pg := argmin{f(pi)};

end for
repeat

for each particles i do
/* Update velocities */
vi(t) := ω × vi(t− 1) + ϕ1 × r1(pi − xi(t− 1)) + ϕ2 × r2(pg − xi(t− 1));
/* Move to the new position */
xi(t) := xi(t− 1) + vi(t);
Evaluate (f(xi));
if f(xi) < f(pi) then

pi := xi;
end if
if f(xi) < f(pg) then

pg := xi;
end if

end for
until new change of the environment
k := k + 1;

until termination criterion reached

We have used the 2-Opt heuristic as a local search for APSO. The heuris-

tic is applied for each particle after its movement. For more details on this

heuristic see the Section 2.4.3.

109

110
Chapter 3. Population Based Metaheuristics for Solving Dynamic

Vehicle Routing Problem

Algorithm 9 Pseudo-Code of APSO for the DVRP
INPUT Dynamic Vehicle Routing Problem P that corresponds to a series of
n-static instances (P = (I0, t0, ∆0), (I1, t1, ∆1), . . . , (Ik, tk, ∆k), . . . , (In, tn, ∆n)).
The working day is split into n time slices. Each sub-problem Ik corresponds to
the customer orders that arrive at the time slice tk and which spends a duration
∆k.
k := 0; /*First instance*/
repeat

for each particle i do
/*(Re)Build swarm according to the new customer orders of the sub-problem
Ik */
xi := GreedyInsertion(xi, New customer orders of Ik);
pi := GreedyInsertion(pi, New customer orders of Ik);
Initialize vi;
Evaluate (f(xi), f(pi));
/*Reuse the best solutions stored into the population memory for the repo-
sitioning of the particles*/
xi := AdjustPosition(xi, pi);
/* Update swarm attractor */
pg := argmin{f(pi)};

end for
repeat

for Each particle i do
/* Update velocity */
vi(t) := vi(t− 1) + ϕ1 × r1(pi − xi(t− 1)) + ϕ2 × r2(pg − xi(t− 1));
/* Move to the new position */
xi(t) := xi(t− 1) + vi(t);
Evaluate (f(xi));
/* Update personal best */
if f(xi) < f(xi) then

pi := xi;
end if
/* Update global best */
if f(xi) < f(pg) then

pg := xi;
end if

end for
until (new change in the problem) /* new time slot is reached */
k := k + 1; /* new instance */

until (the end of the working day T (k == n))

110

3.7. Experimental Results and Discussion 111

3.7 Experimental Results and Discussion

For the experimental validation, we report the performance of APSO on con-

ventional benchmarks and compare our algorithm with state-of-the-art algo-

rithms in Section 3.7.1. A study on varying the degree of dynamism is given

in Section 3.7.3. While, Section 3.7.4 assesses the dynamic performances of

our algorithm with respect to Weicker’s measures.

3.7.1 Comparison with State-of-the-Art Metaheuristics

Similar to VNS’s experimental protocol, the solving strategy consists in divid-

ing the working day in a fixed number of time slots nts = 25. Each slot has a

duration of T/nts, where T is the length of the working day. An event man-

ager collects the orders at each slot and generates a static VRP-like instance.

Then, the instances are solved by the algorithm. Furthermore, the cut-off

time Tco is set to 0.5. Demands which arrive after Tco × T , are postponed

to the following day and are considered statics in the problem, while those

that arrive before this time are considered dynamics. Since the demands ar-

rive uniformly, half of customers arrive before the middle of the working day

which leads to a situation where the degree of dynamism dod is 0.5. More

details on the solving strategy could be found in Section 2.5. The APSO al-

gorithm has been implemented using the ParadisEO1 framework [Talbi 2009].

The experiments are run on Intel Xeon 3 GHz with 2 GB memory.

Our experiments are based on the benchmark data set proposed by Kilby et

al. [Kilby 1998] and extended by Montemanni et al. [Montemanni 2005b]2.

They constitute 21 instances and are derived from the conventional avail-

able VRP benchmark data, namely Taillard [Taillard 1993] (13 instances),

Christophides and Beasley [Christofides 1984] (7 instances) and Fisher et

al. [Fisher 1995] (2 instances). The number of customers ranges in [50, 199]

and the service area may consist of uniformly distributed customers, clustered

customers, or a combination of both (semi-clustered instances). Further de-

tails about area topologies can be found in the Section 2.6.1.

A comparison of the solution quality in terms of minimizing travel dis-

tances/costs is done between our APSO, VNS and other metaheuristics pro-

posed previously in literature. These metaheuristics are Montammani et al.’s

Ant System (AS) [Montemanni 2005b], and Hanshar et al.’s [Hanshar 2007]

Genetic Algorithm (GA) and Tabu Search (TS). As stopping criterion of the

algorithm, we have fixed the number of evaluations to 5000 evaluations per

time slot. Thus, the entire problem will be solved into a number of evalua-

1 http://paradiseo.gforge.inria.fr
2http://www.fernuni-hagen.de/WINF/inhalte/benchmark_data.htm

111

http://paradiseo.gforge.inria.fr
http://www.fernuni-hagen.de/WINF/inhalte/benchmark_data.htm

112
Chapter 3. Population Based Metaheuristics for Solving Dynamic

Vehicle Routing Problem

tions equals to 125000 (25 × 5000 = 125000). For the algorithm parameters,

we have fixed the inertia weight ω to 1, ϕ1 and ϕ2 take their values in the

range [0.5-1].

For each instance, 30 runs of our algorithms have been considered. For the

approaches of literature, the stopping criterion has been fixed to execution

time duration. Indeed, ACS [Montemanni 2005b] allows 60 seconds as an al-

gorithm stopping criterion, which leads to a 1500 seconds to the optimization

process on a Pentium IV 1.4 GHz. On the other side, TS and GA algo-

rithms [Hanshar 2007] dedicate 30 seconds for each slot, which constitute 750

seconds of CPU Time for the algorithm optimization on a Pentium IV 2.8

GHz. Table 3.3 shows and compares the results obtained by the different

metaheuristics. The best, the average distances, and running time in minutes

of our algorithms are reported. We highlight the best found solutions into

dark shaded cells, and the average results are marked in light shaded cells.

From the Table 3.3, we can see that APSO finds five new best solutions

on Kilby’s instances. These solutions concern all the classes of instances and

customer distribution topology: uniform (c75, c120 and c199), cluster (f71)

and mix between uniform and cluster (tai75b). The error relative to the total

best results is 2% comparatively to GA.

VNS gives two best solutions comparatively to other algorithms. While,

GA [Hanshar 2007] outperforms the other metaheuristics over 9 instances.

Finally, AS and TS provide respectively 1 and 4 of the best solutions on

Kilby’s instances.

It is also important to notice that each AS execution lasts 25 minutes in a

Pentium IV 1.5 GHz and each GA and TS execution lasts 12.5 minutes in a

Pentium IV 2.8 GHz, which results in a total execution time of 525 and 262.5

minutes respectively. These execution times can be normalized according to

the processor used in each case. For that purpose, we used a set of bench-

marks [Gee 2010] which allow to quickly and accurately measure and compare

processors and memory performances.

When comparing with APSO (113.07 minutes), AS normalized time is 115.63

minutes, while GA and TS normalized time is 151.73 minutes, both of them

slower than APSO.

112

3.7. Experimental Results and Discussion 113

T
ab

le
3.

3:
N

u
m

er
ic

al
re

su
lt

s
ob

ta
in

ed
b
y
A
P
S
O

an
d
V
N
S

co
m

p
ar

ed
to
A
S

,
G
A

,
an

d
T
S

.

M
et

a
h

eu
ri

st
ic

s
In

st
a
n

ce
s

A
P
S
O

V
N
S

A
S

[M
o
n
te

m
a
n

n
i

2
0
0
5
b

]
G
A

[H
a
n

sh
a
r

2
0
0
7
]

T
S

[H
a
n

sh
a
r

2
0
0
7
]

B
es

t
A

v
er

g
.

T
im

e
B

es
t

A
v
er

g
.

T
im

e
B

es
t

A
v
er

g
.

B
es

t
A

v
er

g
.

B
es

t
A

v
er

g
.

c5
0

5
7
5
.8

9
6
3
2
.3

8
1
.6

5
5
9
9
.5

3
6
5
3
.8

4
0
.7

5
6
3
1
.3

6
8
1
.8

6
5
7
0
.8

9
5
9
3
.4

2
6
0
3
.5

7
6
2
7
.9

0
c7

5
9
7
0
.4

5
1
0
3
1
.7

6
2
.4

9
9
8
1
.6

4
1
0
4
0

1
.2

2
1
0
0
9
.3

6
1
0
4
2
.3

9
9
8
1
.5

7
1
0
1
3
.4

5
9
8
1
.5

1
1
0
1
3
.8

2
c1

0
0

9
8
8
.2

7
1
0
5
1
.5

5
.8

1
1
0
2
2
.9

2
1
0
8
7
.1

8
2
.6

3
9
7
3
.2

6
1
0
6
6
.1

6
9
6
1
.1

0
9
8
7
.5

9
9
9
7
.1

5
1
0
4
7
.6

0
c1

0
0
b

9
2
4
.3

2
9
6
4
.4

7
3
.5

8
8
6
6
.7

1
9
4
2
.8

1
1
.6

5
9
4
4
.2

3
1
0
2
3
.6

8
8
1
.9

2
9
0
0
.9

4
8
9
1
.4

2
9
3
2
.1

4
c1

2
0

1
2
7
6
.8

8
1
4
5
7
.2

2
6
.8

8
1
2
8
5
.2

1
1
4
6
9
.2

4
3
.6

3
1
4
1
6
.4

5
1
5
2
5
.1

5
1
3
0
3
.5

9
1
3
9
0
.5

8
1
3
3
1
.2

2
1
4
6
8
.1

2
c1

5
0

1
3
7
1
.0

8
1
4
7
0
.9

5
1
1
.7

4
1
3
3
4
.7

3
1
4
4
1
.3

7
6
.2

2
1
3
4
5
.7

3
1
4
5
5
.5

1
3
4
8
.8

8
1
3
8
6
.9

3
1
3
1
8
.2

2
1
4
0
1
.0

6
c1

9
9

1
6
4
0
.4

0
1
8
1
8
.5

5
1
7
.9

7
1
6
7
9
.6

5
1
7
6
9
.9

5
1
0
.7

2
1
7
7
1
.0

4
1
8
4
4
.8

2
1
6
5
4
.5

1
1
7
5
8
.5

1
1
7
5
0
.0

9
1
7
8
3
.4

3
f7

1
2
7
9
.5

2
3
1
2
.3

5
3
.4

5
3
0
4
.3

2
3
2
5
.1

8
1
.5

3
1
1
.1

8
3
5
8
.6

9
3
0
1
.7

9
3
0
9
.9

4
2
8
0
.2

3
3
0
6
.3

3
f1

3
4
3

1
5
8
7
5

1
6
6
4
5
.8

9
3
.3

8
1
5
6
8
0
.0

5
1
6
5
2
2
.1

8
1
.4

3
1
5
1
3
5
.5

1
1
6
0
8
3
.5

6
1
5
5
2
8
.8

1
1
5
9
8
6
.8

4
1
5
7
1
7
.9

1
6
5
8
2
.0

4
ta

i7
5
a

1
8
1
6
.0

7
1
9
3
5
.2

8
1
.6

6
1
8
0
6
.8

1
1
9
5
4
.2

5
1

1
8
4
3
.0

8
1
9
4
5
.2

1
7
8
2
.9

1
1
8
5
6
.6

6
1
7
7
8
.5

2
1
8
8
3
.4

7
ta

i7
5
b

1
4
4
7
.3

9
1
4
8
4
.7

3
1
.6

2
1
4
8
0
.7

1
5
6
0
.7

1
0
.6

8
1
5
3
5
.4

3
1
7
0
4
.0

6
1
4
6
4
.5

6
1
5
2
7
.7

7
1
4
6
1
.3

7
1
5
8
7
.7

2
ta

i7
5
c

1
4
8
1
.3

5
1
6
6
4
.4

2
.0

9
1
6
2
1
.0

3
1
7
4
6
.0

7
0
.9

8
1
5
7
4
.9

8
1
6
5
3
.5

8
1
4
4
0
.5

4
1
5
0
1
.9

1
1
4
0
6
.2

7
1
5
2
7
.7

2
ta

i7
5
d

1
4
1
4
.2

8
1
4
9
3
.4

7
2
.1

2
1
4
4
6
.5

1
5
4
1
.9

8
0
.8

7
1
4
7
2
.3

5
1
5
2
9

1
3
9
9
.8

3
1
4
2
2
.2

7
1
4
3
0
.8

3
1
4
5
3
.5

6
ta

i1
0
0
a

2
2
4
9
.8

4
2
3
7
0
.5

8
4
.5

9
2
2
5
0
.5

2
4
6
2
.5

2
.3

3
2
3
7
5
.9

2
2
4
2
8
.3

8
2
2
3
2
.7

1
2
2
9
5
.6

1
2
2
0
8
.8

5
2
3
1
0
.3

7
ta

i1
0
0
b

2
2
3
8
.4

2
2
3
8
5
.5

4
4
.4

3
2
1
6
9
.1

2
3
1
9
.7

2
2
.1

8
2
2
8
3
.9

7
2
3
4
7
.9

2
1
4
7
.7

0
2
2
1
5
.9

3
2
2
1
9
.2

8
2
3
3
0
.5

2
ta

i1
0
0
c

1
5
3
2
.5

6
1
6
2
7
.3

2
3
.0

4
1
4
9
0
.5

8
1
5
5
7
.8

1
1
.6

7
1
5
6
2
.3

1
6
5
5
.9

1
1
5
4
1
.2

8
1
6
2
2
.6

6
1
5
1
5
.1

1
6
0
4
.1

8
ta

i1
0
0
d

1
9
5
5
.0

6
2
1
2
3
.9

4
.4

2
1
9
6
9
.9

4
2
1
0
0
.3

8
2
.0

8
2
0
0
8
.1

3
2
0
6
0
.7

2
1
8
3
4
.6

0
1
9
1
2
.4

3
1
8
8
1
.9

1
2
0
2
6
.7

6
ta

i1
5
0
a

3
4
0
0
.3

3
3
6
1
2
.7

9
9
.1

5
3
4
7
9
.4

4
3
6
8
0
.3

5
6
.3

2
3
6
4
4
.7

8
3
8
4
0
.1

8
3
3
2
8
.8

5
3
5
0
1
.8

3
3
4
8
8
.0

2
3
5
9
8
.6

9
ta

i1
5
0
b

3
0
1
3
.9

9
3
2
3
2
.1

1
9
.1

2
9
3
4
.8

6
3
0
8
9
.5

7
5
.2

3
3
1
6
6
.8

8
3
3
2
7
.4

7
2
9
3
3
.4

0
3
1
1
5
.3

9
3
1
0
9
.2

3
3
2
1
5
.3

2
ta

i1
5
0
c

2
7
1
4
.3

4
2
8
7
5
.9

3
6
.4

6
2
6
7
4
.2

9
2
9
2
8
.7

7
4
.6

5
2
8
1
1
.4

8
3
0
1
6
.1

4
2
6
1
2
.6

8
2
7
4
3
.5

5
2
6
6
6
.2

8
2
9
1
3
.6

7
ta

i1
5
0
d

3
0
2
5
.4

3
3
3
4
7
.6

6
.9

5
2
9
5
4
.6

4
3
1
4
7
.3

8
4
.3

3
3
0
5
8
.8

7
3
2
0
3
.7

5
2
9
5
0
.6

1
3
0
4
5
.1

6
2
9
5
0
.8

3
3
1
1
1
.4

3

T
o
ta

l
5
0
1
9
0
.8

7
5
3
5
3
8
.7

2
1
1
3
.0

7
5
0
0
3
3
.1

5
5
3
3
4
1
.2

4
6
2
.0

8
5
0
8
7
6
.2

3
5
3
7
9
4
.0

2
4
9
2
0
2
.7

3
5
1
0
8
9
.3

7
4
9
9
8
7
.8

5
2
7
2
5
.8

5

113

114
Chapter 3. Population Based Metaheuristics for Solving Dynamic

Vehicle Routing Problem

3.7.2 Large Scale Instances

To extend the analysis of the performance of our algorithm, we have proposed

a set of large scale instances for the dynamic vehicle routing called k-series.

A detailed description about these instances is given in the Section 1.6. These

instances are k100, k250, and k500. We have performed 30 independent runs of

each experiment. The results are shown in Table 3.4, which includes the best

achieved fitness, the average, the standard deviation, as well as the running

time for each instance and each algorithm measured in minutes. Dark shaded

cells correspond to best found solutions, while best average results are in light

shaded cells. In the dynamic case, the stopping criterion per sub-instance

is fixed to 600 × 25 = 15000 evaluations for k100 and k250 instances and

1200× 25 = 30000 evaluations for k500 instance. We recall that we keep the

same solving strategy as in conventional benchmarks consisting in splitting the

working day in 25 times slots and then solving successively each instance of the

whole problem (more details in Section 2.6.3). In order to be able to compare

our results accurately, we have also performed statistical significance tests.

We use a Kolmogorov-Smirnov test to check whether distributions are normal

or not and a Levene test to check the data homocedasticity (homogeneity of

variances); if both tests are positive, ANOVA is used, otherwise we perform a

Kruskal-Wallis test to compare the medians of the algorithms [Cohen 1995].

As a result, all our experiments have a confidence level of 95 % (p-value

≤ 0.05). Table 3.5 is marked with “+” sign if there are statistical differences

between a certain pair of algorithms, and with a “−” sign otherwise.

Table 3.4: Solutions obtained by APSO and V NS on static and dynamic

instances.
Instance Algorithm Solution Static Dynamic Time

k100

APSO
Best 1497.70 1819.01
Avrg 1563.80 1871.25 6.15
Std-Dev 30.13 29.55

V NS
Best 1448.18 1874.37
Avrg 1529.49 2084.47 0.74
Std-Dev 36.71 102.14

k250

APSO
Best 6038.08 7658.27
Avrg 6722.67 8194.08 41.89
Std-Dev 277.08 99.82

V NS
Best 5869.38 6845.82
Avrg 6187.80 7251.54 13.23
Std-Dev 270.88 249.44

k500

APSO
Best 20396.5 26347.8
Avrg 21157.28 27592.34 223.29
Std-Dev 312.16 383.07

V NS
Best 18582.83 24082.73
Avrg 20108.49 24939.88 130.83
Std-Dev 1457.51 520.99

114

3.7. Experimental Results and Discussion 115

Table 3.5: Statistical results of comparing our algorithms with a multiple

comparison test.

State Instance Algorithm
Test result
APSO V NS

Static

k100
APSO − +
V NS + −

k250
APSO − +
V NS + −

k500
APSO − +
V NS + −

Dynamic

k100
APSO − +
V NS + −

k250
APSO − +
V NS + −

k500
APSO − +
V NS + −

First of all, we study the behavior of our algorithms on the static problem,

i.e. considering all the customers in the instance as static (dod = 0). VNS

behaves significantly better than APSO for the three instances, as it finds

the best solution in the three instances. Our statistical study (see Table 3.5)

reflects that there is a statistical difference between APSO and VNS for the

three instances. APSO obtains better results than VNS for k100, while it

is outperformed by VNS in k250 and k500. All these results are statistically

significant, as shown in Table 3.5. Figure 3.8 shows detailed tracking of optima

of APSO and VNS through time. Each deterioration indicates a changing of

the environment caused by the arrival of new customer orders corresponding

to those collected during the last time slice. An interesting issue is the fact

that APSO achieves worse results in the dynamic case as well as in the static

case for k250 and k500. This is due to the fact that APSO has a slow evolution

as shown in the Figure 3.8b and Figure 3.8c, which affects its performance.

However, we should take into account the number of 600 and 1200 evaluations

allowed for each time slot for the instance k250 and k500 respectively as a

constraint of the changing environment.

Regarding the behavior of VNS algorithm, it outperforms APSO in the

case of the two bigger instances (k250 and k500). This can be observed in

Figure 3.8b and Figure 3.8c, where VNS is able to converge much quicker

and reaches better solutions. The situation is the opposite for the instance

k100 (see Figure 3.8a), in which APSO has a good performance from the

beginning until the end of the simulation. It must also be noticed that the

bound fitness values represented in Figure 3.8 have been computed by running

our algorithms on the static instance (all customers are known beforehand)

which results of each time slice. These lower bounds represent reference values

for the tracking behavior of our algorithms. However, they are not attainable

115

116
Chapter 3. Population Based Metaheuristics for Solving Dynamic

Vehicle Routing Problem

by the dynamic algorithms in any case.

 1000

 1200

 1400

 1600

 1800

 2000

 2200

 2400

 2600

 0 2000 4000 6000 8000 10000

Fi
tn

es
s

Evaluations

Bound
VNS

APSO

 900

 1000

 1100

 1200

 1300

 1400

 1500

 400 600 800 1000 1200 1400 1600 1800 2000

Fi
tn

es
s

Evaluations

Bound
VNS

APSO

(a) k100 instance.

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 10000

 11000

 0 1000 2000 3000 4000 5000 6000 7000 8000 9000

Fi
tn

es
s

Evaluations

Bound
VNS

APSO

 4500

 5000

 5500

 6000

 6500

 7000

 7500

 8000

 4200 4400 4600 4800 5000 5200 5400

Fi
tn

es
s

Evaluations

Bound
VNS

APSO

(b) k250 instance.

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 0 2000 4000 6000 8000 10000 12000 14000 16000 18000

Fi
tn

es
s

Evaluations

Bound
VNS

APSO

 15000

 20000

 25000

 30000

 35000

 12000 12500 13000 13500 14000 14500 15000 15500 16000 16500

Fi
tn

es
s

Evaluations

Bound
VNS

APSO

(c) k500 instance.

Figure 3.8: The evolution of each algorithm mean trace for each instance;

each of them shows also the optimum value for each time slice as obtained by

running our algorithms over the static subproblems. Each square on the left

figure is enlarged in the right figure.

116

3.7. Experimental Results and Discussion 117

3.7.3 Study on Varying the Degree of Dynamism

We have performed a study on the behavior of our algorithms in relation to

different degrees of dynamism. The dods take their values in range [0.5, 1].

If the dod is 0.5, the problem is semi-dynamic, while with a dod equal to

1, the problem is completely dynamic. We have done experiments only on

the k-series instances. The aim is to present the dod effect on the quality

of the obtained solutions in term of minimizing the fitness function, and the

average of the served customers during the working day. For each instance, 30

runs of APSO and V NS are considered. We keep the same solving strategy

as described in the Section 3.7.2. Table 3.6 reports the obtained results on

the different degrees of dynamism for the APSO and V NS algorithms. It

indicates the best found solutions, the average, and the percentage as well as

the range of served customers. When we increase the degree of dynamism, it

is easy to see that the percentage of served customers decreases. This is due

to the fact that as the problem is bounded by the length of the working day

T , the vehicles have to go back to the depot before its closing. In general,

customers that arrive at the end of the working day are unserved. For a dod

equal to 0.5, results are analyzed in Section 3.7.2. From a dod upper than

0.6, the percentage of served customers for APSO is better or equal to VNS

percentage in all cases, except in the instance k100 for a dod equal to 1. APSO

algorithm is able to find solutions which cover more served customers. We can

explain this by the diversity of the solutions brought by APSO as a population

based metaheuristic. At the opposite VNS covers less customers leading to a

situation where the traveled distance is lower than that of APSO.

3.7.4 Dynamic Performances Assessment

We have measured the adaptability of our algorithm according to Weicker’s

measures [Weicker 2002]. This adaptability covers different measures as ac-

curacy, stability, and ε-reactivity. For the classical Kilby’s instances, we have

computed the accuracy at the end of the working day T . Table 3.7 shows the

accuracy of our algorithms APSO and V NS, compared to other metaheuris-

tics (Ant System (AS), Genetic Algorithm (GA), and Tabu Search (TS)).

The accuracy has been computed using the best known solutions of the static

instances4 as the bound to compute accuracy (MinTF in Equation 1.10). These

best known solutions consider all customers to be static, and then are not fea-

sible solutions for the DVRP. They can be seen as a bound for our algorithms.

From Table 3.7, we infer that our algorithms have on average the same average

accuracy at the end of the simulation. This accuracy is equal to 0.86 (being

4http://neo.lcc.uma.es/radi-aeb/WebVRP/

117

http://neo.lcc.uma.es/radi-aeb/WebVRP/

118
Chapter 3. Population Based Metaheuristics for Solving Dynamic

Vehicle Routing Problem

Table 3.6: Solutions obtained by APSO and V NS over different degrees of

dynamism.
Dod Inst. Algorithm Best Avrg. Custom. Range

0.5

k100
APSO 1819.01 1871.25 100% [100-100]
V NS 1950.47 2129.68 100% [100-100]

k250
APSO 7658.27 8194.08 100% [250-250]
V NS 6903.29 7221.88 100% [250-250]

k500
APSO 26347.80 27592.34 100% [500-500]
V NS 24082.73 24939.88 100% [500-500]

0.6

k100
APSO 2167.89 2295.47 100% [100-100]
V NS 2313.35 2571.78 99.9% [99-100]

k250
APSO 8145.35 8706.67 100% [250-250]
V NS 7361.08 7781.98 100% [250-250]

k500
APSO 27535.21 28761.64 99.4% [495-498]
V NS 27354.50 28861.12 99.0% [493-498]

0.7

k100
APSO 2267.38 2491.69 96.7% [96-98]
V NS 2436.85 2680.72 95.5% [94-96]

k250
APSO 8856.33 9165.44 99.6% [249- 250]
V NS 8239.43 9244.82 99.6% [248-250]

k500
APSO 27662.10 28477.72 97.07% [483-488]
V NS 26101.17 28209.95 96% [478-482]

0.8

k100
APSO 2141.93 2381.81 89.45% [89-90]
V NS 2214.75 2647.02 88.5% [87-91]

k250
APSO 8221.32 8914.49 94.32% [235-237]
V NS 8666.36 9365.09 93.8% [232-236]

k500
APSO 25618.20 27133.46 91.6% [454-465]
V NS 24327.26 27185.13 90.14% [449-451]

0.9

k100
APSO 2070.50 2283.56 79.32% [79-80]
V NS 2348.79 2647.33 79.7% [77-82]

k250
APSO 7944.94 8459.35 86.5% [215-218]
V NS 8184.28 9098.23 86.1% [212-218]

k500
APSO 24545.60 25442.21 84% [415-424]
V NS 23242.42 25640.75 82.41% [410-413]

1

k100
APSO 2028.51 2191.45 69.29% [68-71]
V NS 2289.09 2581.81 70.3% [68-74]

k250
APSO 7063.96 7727.19 76.96% [191-193]
V NS 7567.24 9010.27 76.5% [188-194]

k500
APSO 21485.20 22546.13 74% [357-376]
V NS 22147.62 23764.54 73.09% [362-366]

1.0 a perfect metric) which denotes that our algorithms are able to produce

good solutions on the conventional dynamic benchmarks.

Table 3.8 shows the accuracy and stability over the three k-series instances

on different time slices, and the average on the whole working day. These re-

sults are graphically represented in Figure 3.9. We have excluded ε-reactivity

from this analysis since it provides no significant results (it is always equal to

one). It is interesting here to pay attention to the different behaviors of our

algorithms on the three instances. The accuracy results confirm numerically

what we already explained in Section 3.7.2, the size of the instance affects

differently the performance of our algorithms. In instance k100, the highest

accuracy levels correspond to APSO; although VNS is better in the first time

118

3.7. Experimental Results and Discussion 119

Table 3.7: Accuracy of the different metaheuristics on the Kilby’s instances.

Instance
Accuracy

APSO V NS AS GA TS
[Montemanni 2005b] [Hanshar 2007] [Hanshar 2007]

c50 0.90 0.87 0.83 0.91 0.86
c75 0.86 0.85 0.82 0.85 0.85
c100 0.83 0.80 0.84 0.85 0.82
c100b 0.89 0.95 0.87 0.93 0.92
c120 0.82 0.81 0.74 0.80 0.78
c150 0.75 0.77 0.76 0.76 0.78
c199 0.79 0.77 0.73 0.78 0.74
f71 0.85 0.78 0.76 0.79 0.85
f134 0.73 0.74 0.77 0.75 0.74
tai75a 0.89 0.90 0.88 0.91 0.91
tai75b 0.93 0.91 0.88 0.92 0.92
tai75c 0.87 0.80 0.82 0.90 0.92
tai75d 0.97 0.94 0.93 0.98 0.95
tai100a 0.91 0.91 0.86 0.91 0.92
tai100b 0.87 0.89 0.85 0.90 0.87
tai100c 0.92 0.94 0.90 0.91 0.93
tai100d 0.81 0.80 0.79 0.86 0.84
tai150a 0.90 0.88 0.84 0.92 0.88
tai150b 0.88 0.91 0.84 0.91 0.85
tai150c 0.86 0.88 0.83 0.90 0.88
tai150d 0.87 0.90 0.86 0.90 0.90

Average 0.86 0.86 0.83 0.87 0.86

slices (0 to 5), APSO has a better adaptation from the 10th time slice until

the end. VNS achieves the best accuracy for all time slices on the instances

k250 and k500, whereas APSO performances are poor due to its slow evo-

lution comparatively to VNS, which adapts faster to the changes. Both the

final fitness and the accuracy point to a better performance of APSO in k100

and VNS in the larger k250 and k500. APSO provides enough diversity to

achieve better solutions on the smaller instance, while VNS profits from the

fast convergence of trajectory based techniques. This is to be considered an

essential issue in dynamic optimization due to the reduced available time in

each time slice. With respect to stability, APSO is more stable than VNS. The

difference between algorithms is noticeable in the three instances: the average

stability values for APSO are always less than 0.1, while for VNS it ranges

between 0.168 and 0.177 (quite stable for a metric which ranges in [0, 1]). This

is caused by APSO being a population-based metaheuristic, which provides

diversity and different types of solutions when a change occurs in the envi-

ronment; this means APSO can choose from a wide range of solutions which

one is more adequate in the next time slice. However, VNS provides a single

solution at the end of each period; thus there is a steeper fitness variation

between the end of a time slice and the beginning of the next one.

119

120
Chapter 3. Population Based Metaheuristics for Solving Dynamic

Vehicle Routing Problem

Table 3.8: Accuracy and stability of APSO and VNS on the dynamic k-series

instances over different time slices.

Instance Time slice
Accuracy Stability

APSO VNS APSO VNS

k100

0 0.876 0.972 0.532 0.933
5 0.885 0.949 0.003 0.039
10 0.865 0.822 0.004 0.092
15 0.765 0.681 0.000 0.000
20 0.765 0.681 0.000 0.000
25 0.765 0.681 0.000 0.000

Avg 0.820 0.797 0.090 0.177

k250

0 0.618 0.937 0.334 0.916
5 0.748 0.924 0.015 0.036
10 0.743 0.875 0.019 0.055
15 0.728 0.829 0.000 0.000
20 0.728 0.829 0.000 0.000
25 0.728 0.829 0.000 0.000

Avg 0.716 0.866 0.061 0.168

k500

0 0.777 0.944 0.277 0.885
5 0.805 0.928 0.021 0.068
10 0.741 0.819 0.019 0.054
15 0.704 0.779 0.021 0.000
20 0.704 0.779 0.000 0.000
25 0.704 0.779 0.000 0.000

Avg 0.739 0.832 0.048 0.168

3.8 Conclusion

A population-based metaheuristic has been proposed for the DVRP in this

chapter. This kind of approaches combine the advantages of manipulating

several solutions simultaneously, robustness, and adaptability.

Particle Swarm Optimization takes its inspiration from swarm intelligence and

have been successfully applied to most combinatorial problems and have the

potential to be effective dynamic solvers. However, once a APSO converges

or nearly converges around some solution, it may lose the ability to continue

the search after an environment change. A simple remedy is to restart the

algorithm after each change, but this may tend to be both expensive and in-

effective since valuable information about the search history is discarded with

every restart.

A key element in the successful dynamic solver is its ability to maintain di-

versity throughout the search process while retaining useful past information.

This requirement adds another dimension to the traditional issue of balancing

diversification and intensification. To enhance the performance of the stan-

dard APSO in dynamic environments, we adopt techniques that have been

proven as successful methods for dynamic continuous optimization problems.

It consists in reusing the information/solutions gathered previously by the

particles, and reuse them when the change occurs for repositioning the par-

120

3.8. Conclusion 121

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 0 2000 4000 6000 8000 10000

A
cc

ur
ac

y

Evaluations

Bound
APSO

VNS

(a) Accuracy over 25 time slices for k100.

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0 2000 4000 6000 8000 10000

St
ab

ili
ty

Evaluations

Bound
APSO

VNS

(b) Stability over 25 time slices for k100.

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 0 1000 2000 3000 4000 5000 6000 7000 8000 9000

A
cc

ur
ac

y

Evaluations

Bound
APSO

VNS

(c) Accuracy over 25 time slices for k250.

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0 1000 2000 3000 4000 5000 6000 7000 8000 9000

St
ab

ili
ty

Evaluations

Bound
APSO

VNS

(d) Stability over 25 time slices for k250.

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 0 2000 4000 6000 8000 10000 12000 14000 16000 18000

A
cc

ur
ac

y

Evaluations

Bound
APSO

VNS

(e) Accuracy over 25 time slices for k500.

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0 2000 4000 6000 8000 10000 12000 14000 16000 18000

St
ab

ili
ty

Evaluations

Bound
APSO

VNS

(f) Stability over 25 time slices for k500.

Figure 3.9: Evolution of accuracy and stability across time slices for each

instance.

ticles in the search space. This allows a reactive response to the change and

a better track for the shifting optimum since the dynamic change may cause

the new optima to be in the neighborhood of an old one more often (the two

problems are potentially very similar). Thus, storing old solutions can turn

121

122
Chapter 3. Population Based Metaheuristics for Solving Dynamic

Vehicle Routing Problem

out to be an advantage later in a dynamic fitness landscape. The experimen-

tal results showed that our Adaptive Particle Swarm Optimization is able to

reach high quality solutions when compared to state-of-the-art metaheuristics,

and introduce new best solutions for the DVRP. The dynamic performance

measures reinforce these results, when the accuracy of the obtained solutions

demonstrates its competitiveness. Another promising techniques for dynamic

optimization problems are multiple population approaches. Their main role

is to maintain enough diversity in the population. However, these schemes

can be enhanced to respond better to the changing environment. These ap-

proaches are addressed in the next chapter.

122

Chapter 4

Multi-Population Based

Metaheuristics for Solving

Dynamic Vehicle Routing

Problem

Contents
4.1 Introduction . 123

4.2 Multi-population Approaches for Dynamic Opti-
mization Problems . 124

4.3 Parallel Design of MP-Metaheuristics for Dynamic
Optimization Problems 127

4.4 Parallel Multi-Swarm Optimization for DVRP 131

4.5 Parallel Implementation of MP-Metaheuristics . . . 133

4.6 Experimental Results and Discussion 134

4.7 Conclusion . 147

4.1 Introduction

Dynamic optimization methods have the main aim to continuously adapt the

solution to a changing environment. Approaches try to deal with this chang-

ing by introducing a memory that stores the best solutions visited during the

previous searches. These solutions are reevaluated and used to initialize the

population when change happens in the environment.

The main problem with standard population-based metaheuristics used for

dynamic optimization problems appears to be that P-Metaheuristics eventu-

ally converge to an optimum and thereby lose their diversity necessary for effi-

ciently exploring the search space and consequently also their ability to adapt

to a change in the environment when such a change occurs. For instance,

124
Chapter 4. Multi-Population Based Metaheuristics for Solving

Dynamic Vehicle Routing Problem

in Particle Swarm Optimization, if the swarm is converging, the attractors

will be close to the optimum position and the swarm will shrink around the

optimum due to the attractiveness of particles towards this optimum and the

best solutions of the search space in general. When change occurs, if the opti-

mum shifts within the shrinking swarm, then re-optimization will be efficient.

However, if the optimum shift at is significantly far from the swarm, it is diffi-

cult to reactivate the tracking. Therefore, approaches should counterbalance

the effect of diversity loss by maintaining diversity throughout the run. This

may be achieved by a multi-population approach. In the multi-population

approach, a part of the population clusters around any local optimum it may

discover, and remains close to this optimum for further exploration. The re-

mainder of the population continues to search for new local optima, and the

process is repeated if any more local optima are found. To track the optimum

in such an environment, the algorithm has to be able to follow a moving opti-

mum, and to jump to another optima when the change occurs in a way that

makes a previously local optima solution the new optimum. Furthermore,

the subpopulation can exchange information during the search and be more

reactive to the next change.

In this chapter, we investigate whether a multi-population metaheuristic

might also be beneficial in dynamic vehicle routing problems. For this pur-

pose, we elaborate a multiswarm APSO and evaluating the approach on paral-

lel architecture. Parallelizing such a metaheuristics in real-time context is an

important aspect due to the hard requirement on search time especially when

we deal with dynamic problem in which changes occur in repeated manner and

within short intervals. First of all, an overview of the existing multi-population

approaches for dynamic optimization problems is given in Section 4.2. Sec-

tion 4.3 presents the algorithmic design point of view of the parallel model

used for our metaheuristic. Afterwards, the main concepts of the multi-swarm

optimization is presented in Section 4.4, and is detailed for the DVRP. Sec-

tion 4.5 deals with the implementation of our parallel metaheuristic. Finally,

Section 4.6 reports the performance assessment of our multi-population meta-

heuristics on a variety of benchmark instances. The main dynamic as well as

parallel performance indicators are also provided.

4.2 Multi-population Approaches for Dy-

namic Optimization Problems

It has been argued in the literature that continuous adaptation only makes

sense when the landscapes before and after the change are sufficiently

correlated, otherwise it would be at least as efficient to restart the search

124

4.2. Multi-population Approaches for Dynamic Optimization
Problems 125

from scratch [Branke 1999a]. The main problem with standard population-

based metaheuristics used for dynamic optimization problems appears to

be that P-metaheuristics eventually converge to an optimum and thereby

lose their diversity necessary for efficiently exploring the search space and

consequently also their ability to adapt to a change in the environment when

such a change occurs. To counterbalance the effect of diversity loss, we can

attempt to maintain diversity throughout the run. This may be achieved

by a category of metaheuristics which are multi-population approaches.

They have been applied essentially on continuous problems as Moving Peaks

Problem (MPP) [Branke 1999a].

The underlying idea is to divide the search space into several parts, each

explored by one of several subpopulations. A subpopulation continuously

searches for new optima, while a number of other sub-populations try to

exploit previously detected promising areas. Different multi-population

approaches have been proposed for dynamic combinatorial problems. In

the area of Evolutionary Algorithms (EAs), Oppacher and Wineberg

in [Oppacher 1999] propose a Shifting Balance Genetic Algorithm (SBGA)

that consists in dividing the EA population into one main population and a

number of smaller colony subpopulations. The task of the main population is

to exploit the best found optimum, while the colony populations are forced to

explore the different areas of the fitness landscape. A repulsion mechanism is

introduced whenever a colony population gets too close to the core population

thus driving the colonies far from the core population. Periodically, the

colonies update the core population by sending some emigrant solutions.

Another multi-population EA is the Self-Organizing Scouts (SOS)

developed by Branke [Branke 2000]. The goal there is to have a number

of sub-populations (scouts) watching over the best local optima. For that

purpose, a part of the population is split-off when a local optimum is

discovered, and remains close to this optimum for further exploration. The

remainder of the population continues to search for new local optima that

can appear when the environment changes, and the process is repeated if

anymore local optima are found. A third multi-population approach is the

Multinational Genetic Algorithm (MGA) proposed by Ursem [Ursem 2000].

It structures the population into subpopulations or nations using a procedure

called hill-valley detection. For two points in the search space, a random

sample of the line between these two end points is evaluated. The valley is

detected if the fitness of the sample is lower than the fitness of the two end

points.

This method is used to determine if an individual is not located on the

same peak with the remaining of its population, and hence it should migrate

to a different population. The procedure can also lead to the merging of two

125

126
Chapter 4. Multi-Population Based Metaheuristics for Solving

Dynamic Vehicle Routing Problem

populations if it finds that they are situated on the same peak. This detection

algorithm works only on points between known optima, the remainder of the

space remains unsampled unless by mutation. The frequent evaluations in

this approach present its main disadvantage.

Another popular multi-population algorithm is Multi-Swarm Optimization.

Different extensions of PSO which solve the problem of change detection and

response have been suggested in literature.

In Charged Particle Swarm Optimization (CPSO) [Blackwell 2002], the

particles have in analogy with electrostatics charge. Three types of particle

swarm can be defined: neutral, atomic and fully-charged. The neutral swarm

has no charged particles and is identical with the conventional PSO. Typically,

in PSO, there is a progressive collapse of the swarm towards the best position,

with each particle moving with reducing amplitude around the best position.

This ensures good exploitation, but diversity is lost. However, in a swarm

of charged particles, there is an additional collision avoiding acceleration

by incorporating electrostatic repulsion between charged particles. This

repulsion works against complete collapse and maintains population diversity,

enabling the swarm to automatically detect and respond to change. In an

atomic swarm, half of the particles are charged and the other half is neutral.

Animations show that the charged particles orbit a collapsing nucleus of

neutral particles, in a picture reminiscent of an atom. This type of swarm

therefore balances exploration with exploitation. This approach was extended

by the authors in [Blackwell 2004] to Multi-Quantum Swarm (MQS) by

replacing the charged particles by quantum particles whose position is based

on a probability function centered around the swarm attractor.

Besides, multi-swarm approach has been proposed by Parrott and

Li [Parrott 2004]. There, the number and the size of swarms is adjusted

dynamically by a speciation and crowding mechanisms called clearing for

finding several optima in multimodal landscapes. While it splits up the

swarm into several subswarms. This method relies on a speciation radius and

has no further diversity mechanism.

In [Blackwell 2006], Blackwell et al. elaborate a multi-swarm PSO in

which the main idea is to split the population of particles into a set of

interacting swarms. These swarms interact locally by an exclusion parameter

and globally through a new anti-convergence operator. In addition, each

swarm maintains diversity either by using charged or quantum particles.

Exclusion is a local interaction between swarms, aimed at ensuring swarm

diversity: whenever two swarms are getting too close (one swarm’s global

best lies within from the other swarm’s global best), a distance of the two

swarms compete and the one with lower fitness is reinitialized. Besides,

the anti-convergence mechanism reinitializes the worst of all swarms once

126

4.3. Parallel Design of MP-Metaheuristics for Dynamic
Optimization Problems 127

all swarms have converged. The approach has been tested on a variety of

instances of the moving peaks benchmark [Branke 1999b].

4.3 Parallel Design of MP-Metaheuristics for

Dynamic Optimization Problems

4.3.1 Interests

Dynamic optimization problems are often NP-hard and CPU time and/or

memory consuming. Although the use of metaheuristics allows to significantly

reduce the computational complexity of the search process, the latter remains

time consuming for many problems in diverse domains of application, where

the objective function and the constraints associated with the problem are

resource (e.g., CPU, memory) intensive and the size of the search space is

huge.

The fast development of technology in designing processors (e.g., multicore

processors, General-Purpose Processing on Graphics Processing Units, dedi-

cated architectures), networks (e.g., LAN, WAN, and optical networks), and

data storage has made the use of parallel computing more and more popular.

Such architectures represent an effective strategy for the design and implemen-

tation of parallel metaheuristics. Indeed, sequential architectures are reaching

physical limitation (speed of light, thermodynamics). Nowadays, even laptops

and workstations are equipped with multicore processors, which represent a

given class of parallel architecture. Moreover, the cost/performance ratio is

constantly decreasing. The proliferation of powerful workstations and fast

communication networks have shown the emergence of clusters of processors

(COWs), networks of workstations (NOWs), and large-scale network of ma-

chines (GRIDs) as platforms for high-performance computing. Parallel and

distributed computing can be used in the design and implementation of multi-

population metaheuristics (MP-Metaheuristics) for the following reasons:

• Speed up the search: One of the main goals of parallelizing a meta-

heuristic is to reduce the search time. This helps designing on-line and

interactive optimization methods. This is a very important aspect for

dynamic optimization class of problems where there are hard require-

ments on the search time since the problem changes constantly over time.

This requirement is stronger when the degree of dynamism increases.

• Improve the quality of the obtained solutions: Parallel models

for metaheuristics might allow to improve the quality of the search. In-

127

128
Chapter 4. Multi-Population Based Metaheuristics for Solving

Dynamic Vehicle Routing Problem

deed, exchanging information between cooperative metaheuristics will

alter their behavior in terms of searching in the landscape associated

with the problem. The main goal of a parallel cooperation between

metaheuristics is to improve the quality of solutions. Both better con-

vergence and improvement in the quality of solutions may happen.

• Improve the robustness: A parallel metaheuristic may be more ro-

bust in terms of solving in an effective manner different optimization

problems and different instances of a given problem. Robustness may

also be measured in terms of the sensitivity of the metaheuristic to its

parameters.

• Solve large-scale problems: Parallel metaheuristics allow to solve

large-scale instances of complex optimization problems. A challenge

here is to solve very large instances that cannot be solved by a sequential

machine.

4.3.2 Cooperative Parallel Model for MP-

Metaheurisitcs

This section aims to present a structured vision of the parallel models and

parallel implementations of multi-population metaheuristics. In literature

we can find different models for the parallelization of metaheuristics. Talbi

in [Talbi 2009] gives a classification based on the level of the parallelization.

Three parallel models are defined: algorithmic level, iteration level, and solu-

tion level parallel level. The algorithmic and the iteration levels are indepen-

dent to the problem, where the solution level is dependent to the problem.

In this thesis, we focus on the algorithmic level as it seems to be the clos-

est to the multi-population approaches. In this parallel model, independent

or cooperative self-contained metaheuristics are used. If the different meta-

heuristics are independent, the search will be equivalent to the sequential

execution of the metaheuristics in terms of the quality of solutions. Besides,

the cooperative model will alter the behavior of the metaheuristics and enable

the improvement of the quality of solutions.

In the cooperative model for parallel metaheuristics, the different algo-

rithms are exchanging information related to the search with the intent to

compute better and more robust solutions. In designing a parallel coopera-

tive model for any metaheuristics, the same design questions are addressed

(see Figure 4.1.):

1. The exchange decision criterion (when?): The exchange of in-

formation between the metaheuristics can be decided either in a blind

128

4.3. Parallel Design of MP-Metaheuristics for Dynamic
Optimization Problems 129

Figure 4.1: Design issues involved by the parallel algorithmic-level model for

metaheuristics.

(periodic or probabilistic) way or according to an intelligent adaptive cri-

terion. Periodic exchange occurs in each algorithm after a fixed number

of iterations; this type of communication is synchronous. Probabilistic

exchange consists in performing a communication operation after each

iteration with a given probability. Conversely, adaptive exchanges are

guided by some run-time characteristics of the search.

For instance, it may depend on the evolution of the quality of the so-

lutions or the search memory. A classical criterion is related to the

improvement of the best found local solution.

2. The exchange topology (where?): The communication exchange

topology indicates for each metaheuristic its neighbor(s) regarding the

exchange of information that is, the source/destination algorithm(s) of

the information (Figure 4.2). Several works have been dedicated to the

study of the impact of the topology on the quality of the provided re-

sults, and they show that cyclic graphs are better [Alba 2005]. The

ring, mesh, and hypercube regular topologies are often used. The ring

topology may be directional (i.e., directed graph) or bidirectional (i.e.,

undirected graph). In a hypercube of order k, there are 2k nodes, and

each node has k neighbors. A complete graph or a random one can also

be used. In a complete graph, every node is connected to all other nodes,

while in a random graph, a node sends its information to a randomly

selected subset of nodes. Different strategies may be used to determine

random neighbors, for example, each node has exactly one neighbor that

is chosen with equal probability. Whatever the topology, it is important

to have a trade-off between the exploration of the search space (less com-

munication and good diversification) and the exploitation of the global

search information (more communication and good intensification).

129

130
Chapter 4. Multi-Population Based Metaheuristics for Solving

Dynamic Vehicle Routing Problem

3. The exchanged information (what?): This parameter specifies the

information to be exchanged between the metaheuristics. In general, it

may be composed of:

• Solutions: This information deals with a selection of the gener-

ated and stored solutions during the search. In general, it contains

elite solutions that have been found, such as the best solution at the

current iteration, local best solutions, global best solution, neigh-

borhood best solution, best diversified solutions, and randomly se-

lected solutions. The quality of the solutions must also be sent so

that the evaluation of the solutions is not recomputed in the des-

tination metaheuristics. For S-metaheuristics such as local search,

the exchanged information is generally the best found solution. For

P-metaheuristics, the number of solutions to exchange may be an

absolute value or a given percentage of the population. Any selec-

tion mechanism can be used to select the solutions. The most used

selection strategy consists in selecting the best solutions for a given

criteria (e.g., objective function of the problem, diversity, age) or

random ones.

• Search memory: This information deals with any element of the

search memory that is associated with the involved metaheuristic.

For tabu search, the exchanged information may be the short-term

or long-term memories. For ant colonies (resp. estimation distribu-

tion algorithms), the information may be related to the pheromone

trails (resp. the probability model).

4. The integration policy (how?): Similar to the information exchange

policy, the integration policy deals with the usage of the received in-

formation. In general, there is a local copy of the received informa-

tion. The local variables are updated using the received ones. For

instance, the best found solution is simply updated with the global best

between the local best solution and the neighboring best solution. For

P-metaheuristics, any replacement strategy may be applied to the lo-

cal population by the set of received solutions. For example, an elitist

replacement will integrate the received k solutions by replacing the k

worst solutions of the local population. In ant colonies, the local and

the neighboring pheromone matrices may be aggregated in a linear man-

ner.

130

4.4. Parallel Multi-Swarm Optimization for DVRP 131

Figure 4.2: Some classical regular topologies for exchanging information.

4.4 Parallel Multi-Swarm Optimization for

DVRP

Inspired by the multi-swarm approaches, we investigate in this section

whether the parallel multi-swarm approach might also be beneficial in

dynamic vehicle routing environments. Here, we use this general idea to

maintain particles on several optima simultaneously, which should be helpful

in our context. A part of the population clusters around any local optimum

it may discover, and remains close to this optimum for further exploration.

The remainder of the population continues to search for new local optima,

and the process is repeated if any more local optima are found. This

technique is expected to work well for a class of dynamic functions consisting

of several optima, where the dynamism is expressed by small changes to the

optima locations. These have been argued to be representative of real world

problems [Branke 1999a] and therefore our problem. To track the optimum

in such an environment, the algorithm has to be able to follow the shifting

optimum, and to “jump” to another optimum when a change occurs in a way

that makes a previously local optimal the new global optima.

Among the most widely known parallel algorithmic-level models for

particle swarm optimization, we find the island model. In this well-known

model, each node is responsible for the evolution of one sub-swarm. It

executes all the steps of the algorithm from the velocity updating to the

attractors updating of the subpopulation. Each island may use different

parameter values and different strategies for any search component such as

velocity updating, particle updating, and encodings.

131

132
Chapter 4. Multi-Population Based Metaheuristics for Solving

Dynamic Vehicle Routing Problem

After a given number of iterations (synchronous exchange) or when a

condition holds (asynchronous exchange), the migration process is activated.

Then, exchanges of some selected particles between sub-swarms are realized,

and received particles are integrated into the local sub-swarm. The selection

policy of emigrants indicates for each island in a deterministic or stochastic

way the individuals to be migrated. The stochastic or random policy does

not guarantee that the best individuals will be selected, but its associated

computation cost is lower. The deterministic strategy (wheel, rank, tour-

nament, or uniform sampling) allows the selection of the best individuals.

The number of emigrants can be expressed as a fixed or variable number

of particles, or as a percentage of particles from the swarm. The choice of

the value of such parameter is crucial. Indeed, if the number of emigrants

is low, the migration process will be less efficient as the islands will have

the tendency to evolve in an independent way. Conversely, if the number

of emigrants is high, the APSO is likely to converge to the same solutions.

The replacement/integration policy of immigrants indicates in a stochastic

or deterministic way the local individuals to be replaced by the newcomers.

The objective of the model is to delay the global convergence and encourage

diversity (This paradigm is illustrated in Figure 4.3.).

Figure 4.3: Parallel insular model for multi-swarm.

Based on the considerations above, we propose a parallel multiswarm

variant of APSO that we call Multi-Adaptive Particle Swarm Optimization

(MAPSO). The algorithm is presented in Algorithm 10. It starts with the

initialization of the population of particles and then iterates a main loop

with three stages: Test for function change, reusing of solutions that belong

132

4.5. Parallel Implementation of MP-Metaheuristics 133

to the adaptive memory and the updating of the personal and swarm at-

tractors. When a change in the environment is detected, all the particles

are re-positioned according to adaptive memory mechanism and evaluated.

Consequently, the personal attractor is updated. Then, the particles move

through the search space according to the equations 3.2 and 3.3 , and update

their both attractors if necessary at each generation. When the migration

criterion is filled, the exchange of particles is carried out between the swarm

and its neighbor(s) according to the exchange topology.

For the dynamic vehicle routing problem, as previously mentioned, at each

time step, the VRP like-instance that corresponds to the set of customers who

arrived in the last time slot is given to the algorithm as an input data.

An initial population is built according to a greedy neighbor heuristic. Then,

the algorithm proceeds by updating the particles velocity as well as their

positions. The particles move in the search space seeking a better position.

The global attractor which corresponds to the particle with the best position

(in terms of fitness) is updated. When the migration criterion is reached after

a number of iterations, a selection is performed on the population and a set of

the best particles (i.e. those with the best positions) is chosen for migration

toward a neighbor population defined by the topology of the multi-swarm.

In the other part, the immigrant particles coming from another population

are received and integrated into the local population by replacing the worst

particles (i.e. those with the less good positions in terms of fitness).

4.5 Parallel Implementation of MP-

Metaheuristics

Efficient implementation of parallel metaheuristics is a complex task that de-

pends on the type of the parallel architecture used. In order to implement

efficiently our parallel multi-swarm optimizer, we choose ParadisEO software

framework to design and implement the parallel and distributed model for our

metaheuristic. ParadisEO1 is a framework dedicated to the reusable design

of parallel hybrid metaheuristics by providing a broad range of features, in-

cluding EAs, local search methods, parallel and distributed models, different

hybridization mechanisms, etc. The rich content and utility of ParadisEO

increases its usefulness.

ParadisEO is a C++ LGPL white-box open source framework, based on

a clear conceptual separation of the metaheuristics from the problems they

are intended to solve. This separation, and the large variety of implemented

1http://paradiseo.gforge.inria.fr

133

134
Chapter 4. Multi-Population Based Metaheuristics for Solving

Dynamic Vehicle Routing Problem

optimization features, allow a maximum code and design reuse. Changing

existing components and adding new ones can be easily done, without im-

pacting the rest of the application. ParadisEO is one of the rare frameworks

that provide the most common parallel and distributed models, portable on

distributed-memory machines and shared-memory multiprocessors, as they

are implemented using standard libraries such as MPI, PVM and PThreads.

The models can be exploited in a transparent way - one has just to instantiate

its associated ParadisEO components. The user has the possibility of choos-

ing, by a simple instantiation, the MPI or the PVM for the communication

layer. The models have been validated on academic and industrial problems,

and the experimental results demonstrate their efficiency [Talbi 2009].

The architecture of ParadisEO is layered as it is illustrated in Figure 4.4.

From a top-down view, the first level supplies the optimization problems to

be solved using the framework. The second level represents the ParadisEO

framework, including optimization solvers, embedding single and multicrite-

rion P/S metaheuristics (evolutionary algorithms, particle swarm optimiza-

tion, variable neighborhood search, etc.). The third level provides interfaces

for MPICH-G2 based programming. The fourth and lowest level supplies

communication and resource management services. The implementation re-

lies on invariant elements provided by the ParadisEO framework, providing

support for the insular model approach, as well as for distributed and paral-

lel aspects concerning other models as the parallel population evaluation. In

this context, deployment related aspects are transparent, the focus being ori-

ented on the application-specific elements. The main steps to be performed,

in order to configure the environment and to deploy the algorithm, consist

in specifying the individuals encoding, the specific operators and the fitness

function. Furthermore, elements concerning selection mechanisms and re-

placement strategies must be specified, along with configuration parameters

(number of individuals, number of generations, etc.).

4.6 Experimental Results and Discussion

The underlying support for performing the experiments was GRID50002, a

French nation-wide experimental grid, connecting several sites which host

clusters of PCs interconnected by RENATER3 (the French academic net-

work). GRID5000 is promoted by CNRS, INRIA and several universities4.

2GRID5000 web site: https://www.grid5000.fr
3Rseau National de Tlcommunications pour la Technologie, lEnseignement et la

Recherche - http://www.renater.fr
4CNRS - http://www.cnrs.fr/index.html; INRIA - http://www.inria.fr.

134

4.6. Experimental Results and Discussion 135

Figure 4.4: The layered architecture of ParadisEO.

At this time the GRID is gathering more than 2932 processors representing

7468 cores with around 2.5 Tb of cumulated memory and more than 100 Tb of

non-volatile storage capacity. Inter-connections sustain communications of 10

Gbps. The initial target point was to achieve 5000 processors for 2007 in the

platform. It has been reframed at 5000 cores, and was reached during winter

2008-2009, regrouping nine centers at the beginning and eleven since 2011:

Bordeaux, Grenoble, Lille, Lyon, Nancy, Orsay, Rennes, Sophia-Antipolis,

Toulouse, Reims, Luxembourg.

The GRID is designed to allow a per reservation utilization of the resources

- no interferences may occur during the experiments, the allocation of the re-

sources being associated only with the user which requested the reservation.

The demanded resources are completely available during the entire experi-

mentation time, unless in exceptional events occur.

For the experimental validation of our approach, we evaluate the compu-

tational results of MAPSO-DVRP algorithm. Therefore, we report its perfor-

mance comparatively to other metaheuristics on conventional benchmarks in

Section 4.6.1, and with a study on varying the number of subpopulations on

large scale instances in Section 4.6.2. Section 4.6.3 assesses the dynamic per-

formances of MAPSO. In addition, we evaluate in Section 4.6.4 the scalability

of our algorithm by measuring its parallel performances.

4.6.1 Comparison with State-of-the-Art Metaheuristics

We compare the quality of the solutions obtained by MAPSO-DVRP with

the best reported results from the state-of-the-art in dynamic vehicle routing

problems. We use the conventional Kilby’s benchmarks [Kilby 1998] sum-

marized in 21 dynamic instances derived from three well-known data sets as

135

136
Chapter 4. Multi-Population Based Metaheuristics for Solving

Dynamic Vehicle Routing Problem

benchmarks: Christofides and Beasley [Christofides 1984] (7 instances), Tail-

lard [Taillard 1993] (12 instances) and Fisher [Fisher 1995](2 instances). The

data sets consist of numerous types of service areas, some with uniformly

distributed customers, others with clustered customers and a few of them

have mixed and irregular distributions. Further details and properties of the

instances can be reviewed in Table 2.1.

We follow the solving strategy consisting in dividing the working day into

several time slots and by solving the instance corresponding to the set of

customers who appeared the last time slot. Then, vehicles are committed

according to the solution provided by our algorithm. More details concerning

the solving strategy are given in the Section 2.5. MAPSO population has been

divided over 8 subswarms, where the migrations are performed inside a ring

topology, each algorithm having a source island for receiving individuals and a

destination island for sending the emigrant individuals. Another element with

important consequences over the algorithm is the asynchronous migration pa-

rameterization. Frequent migrations may result in a premature convergence

while distant migrations fall in the opposite case (the algorithms having inde-

pendent evolutions). For our case, 5% of the population migrate at each 1000

evaluations, in an asynchronous manner (migrations occur at different times,

depending on the evolution of the algorithm). The choice of asynchronous

communication model is related to the fact that the speedup performance

of this model is expected to be higher than synchronous models. Indeed, in

the synchronous model, the evolution process is often hanging on powerful

machines waiting the less powerful ones to complete their computation. On

the other hand, this model is not fault tolerant as wasting a metaheuristic

implies the blocking of the whole model in a volatile environment. A stochas-

tic tournament selection strategy is being applied for selecting the emigrant

individuals while the immigrant discard the worst individuals in the target

population. The algorithm iterates for 5000 evaluations for each sub-problem.

Then, the stopping criterion for the entire simulation is 25× 5000 = 125000.

We reuse the same parameters of APSO algorithm described in Section 3.7.1.

Table 4.1 summarizes MAPSO parameters used for solving Kilby instances.

Thirty trials of our algorithms have been considered.

Table 4.2 summarizes the average and best results found by MAPSO-

DVRP and both VNS, APSO presented previously in the chapter 2, and

3 respectively. In addition, we report the results obtained by state-of-the-

art metaheuristics; Ant System (AS) [Montemanni 2005b], Genetic Algorithm

(GA) and Tabu Search (TS) [Hanshar 2007]. The best found solutions are

highlighted into dark shaded cells, and the average results are marked in light

shaded cells.

Table 4.2 shows that our algorithm is able to provide high quality solutions.

136

4.6. Experimental Results and Discussion 137

Table 4.1: Algorithm parameters for the multi-swarm metaheuristic.
Parameter type Default value Range

Number of swarms 8 −
Population size 100 −

Migration topology ring −
Migration frequency 1000 evaluations −

Migration size 5% of population size −
ϕ1 – 0.5-1.0

ϕ2 – 0.5-1.0

Stopping criterion 5000 evaluations for each sub-problem
25×5000=125000 evaluations

for the whole problem

It outperforms the other metaheuristics, and gives 15 new best solutions out

of the 21 Kilby’s instances. Our algorithm provides also the shortest average

for the traveled distance on 16 instances. The improvement provided by our

algorithm on average ranges between 3.51% and 9.75% compared to the tested

metaheuristics on these instances. The average of the relative error for the

best results is 1.56%.

137

138
Chapter 4. Multi-Population Based Metaheuristics for Solving

Dynamic Vehicle Routing Problem

Algorithm 10 Cooperative Multi-Adaptive Particle Swarm Optimization

(MAPSO) for Dynamic Optimization Problem

// Initialization
for Each swarm si do

for Each particle j do
Initialize vij , xij = pij ;
Evaluate f(pij);

end for
end for
repeat

repeat
// Test for Change
for Each swarm si do

//Evaluate function at swarm attractor of swarm si
Evaluate f(pig);
if new value is different from last iteration then

for Each particle j of swarm si do
//Evaluate each particle
Evaluate f(xij , p

i
j);

//Reuse the best solutions found previously by the particles (adap-
tive memory)
xij := AdjustPosition(xij , p

i
j);

end for
//Update swarm attractor
pig := argmin{f(pij)};

end if
end for
//Update velocities
vij(t) := ω × vij(t− 1) + ϕ1 × r1(pij − xij(t− 1)) + ϕ2 × r2(pig − xij(t− 1));
//Move to the new position
xij(t) := xij(t− 1) + vij(t);
// Update Attractor
Evaluate f(xij);
if f(xij) < f(pij) then

pij := xij ;
end if
if f(xij) < f(pig) then

pig := xij ;
end if

until migration criterion reached
// Communication Step
Migration of local particles toward the neighbor swarm;
Integration of the received particles in the population;

until certain criterion is reached

138

4.6. Experimental Results and Discussion 139

T
ab

le
4.

2:
N

u
m

er
ic

al
re

su
lt

s
ob

ta
in

ed
b
y

M
A

P
S
0

co
m

p
ar

ed
to

A
P

S
O

,
V

N
S
,

A
S
,

G
A

an
d

T
S
.

M
et

a
h

eu
ri

st
ic

s
In

st
a
n
c
e
s

M
A

P
S

O
A

P
S

O
V

N
S

A
S

[M
o
n
te

m
a
n
n

i
2
0
0
5
b

]
G

A
[H

a
n

sh
a
r

2
0
0
7
]

T
S

[H
a
n

sh
a
r

2
0
0
7
]

B
es

t
A

v
er

g
.

B
es

t
A

v
er

g
.

B
es

t
A

v
er

g
.

B
es

t
A

v
er

g
.

B
e
st

A
v
er

g
.

B
es

t
A

v
er

g
.

c5
0

5
7
1
.3

4
6
1
0
.6

7
5
7
5
.8

9
6
3
2
.3

8
5
9
9
.5

3
6
5
3
.8

4
6
3
1
.3

0
6
8
1
.8

6
5
7
0
.8

9
5
9
3
.4

2
6
0
3
.5

7
6
2
7
.9

0
c7

5
9
3
1
.5

9
9
6
5
.5

3
9
7
0
.4

5
1
0
3
1
.7

6
9
8
1
.6

4
1
0
4
0
.0

0
1
0
0
9
.3

6
1
0
4
2
.3

9
9
8
1
.5

7
1
0
1
3
.4

5
9
8
1
.5

1
1
0
1
3
.8

2
c1

0
0

9
5
3
.7

9
9
7
3
.0

1
9
8
8
.2

7
1
0
5
1
.5

1
0
2
2
.9

2
1
0
8
7
.1

8
9
7
3
.2

6
1
0
6
6
.1

6
9
6
1
.1

0
9
8
7
.5

9
9
9
7
.1

5
1
0
4
7
.6

0
c1

0
0
b

8
6
6
.4

2
8
8
2
.3

9
9
2
4
.3

2
9
6
4
.4

7
8
6
6
.7

1
9
4
2
.8

1
9
4
4
.2

3
1
0
2
3
.6

0
8
8
1
.9

2
9
0
0
.9

4
8
9
1
.4

2
9
3
2
.1

4
c1

2
0

1
2
2
3
.4

9
1
2
9
5
.7

9
1
2
7
6
.8

8
1
4
5
7
.2

2
1
2
8
5
.2

1
1
4
6
9
.2

4
1
4
1
6
.4

5
1
5
2
5
.1

5
1
3
0
3
.5

9
1
3
9
0
.5

8
1
3
3
1
.2

2
1
4
6
8
.1

2
c1

5
0

1
3
0
0
.4

3
1
3
5
7
.7

1
1
3
7
1
.0

8
1
4
7
0
.9

5
1
3
3
4
.7

3
1
4
4
1
.3

7
1
3
4
5
.7

3
1
4
5
5
.5

0
1
3
4
8
.8

8
1
3
8
6
.9

3
1
3
1
8
.2

2
1
4
0
1
.0

6
c1

9
9

1
5
9
5
.9

7
1
6
4
6
.3

7
1
6
4
0
.4

0
1
8
1
8
.5

5
1
6
7
9
.6

5
1
7
6
9
.9

5
1
7
7
1
.0

4
1
8
4
4
.8

2
1
6
5
4
.5

1
1
7
5
8
.5

1
1
7
5
0
.0

9
1
7
8
3
.4

3
f7

1
2
8
7
.5

1
2
9
6
.7

6
2
7
9
.5

2
3
1
2
.3

5
3
0
4
.3

2
3
2
5
.1

8
3
1
1
.1

8
3
5
8
.6

9
3
0
1
.7

9
3
0
9
.9

4
2
8
0
.2

3
3
0
6
.3

3
f1

3
4

1
5
1
5
0
.5

1
6
1
9
3

1
5
8
7
5
.0

0
1
6
6
4
5
.8

9
1
5
6
8
0
.0

5
1
6
5
2
2
.1

8
1
5
1
3
5
.5

1
1
6
0
8
3
.5

6
1
5
5
2
8
.8

1
1
5
9
8
6
.8

4
1
5
7
1
7
.9

0
1
6
5
8
2
.0

4
ta

i7
5
a

1
7
9
4
.3

8
1
8
4
9
.3

7
1
8
1
6
.0

7
1
9
3
5
.2

8
1
8
0
6
.8

1
1
9
5
4
.2

5
1
8
4
3
.0

8
1
9
4
5
.2

0
1
7
8
2
.9

1
1
8
5
6
.6

6
1
7
7
8
.5

2
1
8
8
3
.4

7
ta

i7
5
b

1
3
9
6
.4

2
1
4
2
6
.6

7
1
4
4
7
.3

9
1
4
8
4
.7

3
1
4
8
0
.7

0
1
5
6
0
.7

1
1
5
3
5
.4

3
1
7
0
4
.0

6
1
4
6
4
.5

6
1
5
2
7
.7

7
1
4
6
1
.3

7
1
5
8
7
.7

2
ta

i7
5
c

1
4
8
3
.1

0
1
5
1
8
.6

5
1
4
8
1
.3

5
1
6
6
4
.4

1
6
2
1
.0

3
1
7
4
6
.0

7
1
5
7
4
.9

8
1
6
5
3
.5

8
1
4
4
0
.5

4
1
5
0
1
.9

1
1
4
0
6
.2

7
1
5
2
7
.7

2
ta

i7
5
d

1
3
9
1
.9

9
1
4
1
3
.8

3
1
4
1
4
.2

8
1
4
9
3
.4

7
1
4
4
6
.5

0
1
5
4
1
.9

8
1
4
7
2
.3

5
1
5
2
9
.0

0
1
3
9
9
.8

3
1
4
2
2
.2

7
1
4
3
0
.8

3
1
4
5
3
.5

6
ta

i1
0
0
a

2
1
7
8
.8

6
2
2
1
4
.6

1
2
2
4
9
.8

4
2
3
7
0
.5

8
2
2
5
0
.5

0
2
4
6
2
.5

0
2
3
7
5
.9

2
2
4
2
8
.3

8
2
2
3
2
.7

1
2
2
9
5
.6

1
2
2
0
8
.8

5
2
3
1
0
.3

7
ta

i1
0
0
b

2
1
4
0
.5

7
2
2
1
8
.5

8
2
2
3
8
.4

2
2
3
8
5
.5

4
2
1
6
9
.1

0
2
3
1
9
.7

2
2
2
8
3
.9

7
2
3
4
7
.9

0
2
1
4
7
.7

0
2
2
1
5
.9

3
2
2
1
9
.2

8
2
3
3
0
.5

2
ta

i1
0
0
c

1
4
9
0
.4

1
5
5
0
.6

3
1
5
3
2
.5

6
1
6
2
7
.3

2
1
4
9
0
.5

8
1
5
5
7
.8

1
1
5
6
2
.3

0
1
6
5
5
.9

1
1
5
4
1
.2

8
1
6
2
2
.6

6
1
5
1
5
.1

0
1
6
0
4
.1

8
ta

i1
0
0
d

1
8
3
8
.7

5
1
9
2
8
.6

9
1
9
5
5
.0

6
2
1
2
3
.9

1
9
6
9
.9

4
2
1
0
0
.3

8
2
0
0
8
.1

3
2
0
6
0
.7

2
1
8
3
4
.6

0
1
9
1
2
.4

3
1
8
8
1
.9

1
2
0
2
6
.7

6
ta

i1
5
0
a

3
2
7
3
.2

4
3
3
8
9
.9

7
3
4
0
0
.3

3
3
6
1
2
.7

9
3
4
7
9
.4

4
3
6
8
0
.3

5
3
6
4
4
.7

8
3
8
4
0
.1

8
3
3
2
8
.8

5
3
5
0
1
.8

3
3
4
8
8
.0

2
3
5
9
8
.6

9
ta

i1
5
0
b

2
8
6
1
.9

1
2
9
5
6
.8

4
3
0
1
3
.9

9
3
2
3
2
.1

1
2
9
3
4
.8

6
3
0
8
9
.5

7
3
1
6
6
.8

8
3
3
2
7
.4

7
2
9
3
3
.4

0
3
1
1
5
.3

9
3
1
0
9
.2

3
3
2
1
5
.3

2
ta

i1
5
0
c

2
5
1
2
.0

1
2
6
7
1
.3

5
2
7
1
4
.3

4
2
8
7
5
.9

3
2
6
7
4
.2

9
2
9
2
8
.7

7
2
8
1
1
.4

8
3
0
1
6
.1

4
2
6
1
2
.6

8
2
7
4
3
.5

5
2
6
6
6
.2

8
2
9
1
3
.6

7
ta

i1
5
0
d

2
8
6
1
.4

6
2
9
8
9
.2

4
3
0
2
5
.4

3
3
3
4
7
.6

2
9
5
4
.6

4
3
1
4
7
.3

8
3
0
5
8
.8

7
3
2
0
3
.7

5
2
9
5
0
.6

1
3
0
4
5
.1

6
2
9
5
0
.8

3
3
1
1
1
.4

3

T
o
ta

l
4
8
1
0
4
.1

3
5
0
3
4
9
.6

6
5
0
1
9
0
.8

7
5
3
5
3
8
.7

2
5
0
0
3
3
.1

5
5
3
3
4
1
.2

4
5
0
8
7
6
.2

3
5
3
7
9
4
.0

2
4
9
2
0
2
.7

3
5
1
0
8
9
.3

7
4
9
9
8
7
.8

5
2
7
2
5
.8

5

139

140
Chapter 4. Multi-Population Based Metaheuristics for Solving

Dynamic Vehicle Routing Problem

4.6.2 Study on Varying the Number of Sub-

Populations

We propose here to study the impact of the number of the interacting sup-

populations on the optimization process. For this purpose, from a fixed

number of individuals in the whole population, we vary the number of sub-

populations involved in the search from 2 to 8 sub-populations. Therefore,

three algorithms are proposed; MAPSO2 with two sub-populations, MAPSO4

with four sub-populations, and MAPSO8 with eight sub-populations. In the

same manner as in the previous chapters, our analysis covers a large set of

instances that we have defined for the vehicle routing problems. This set is

called k-series and includes three instances which are k100, k250, and k500.

The whole population size is 100 particles, which is divided according the

number of sup-populations in the proposed approaches. The stopping crite-

rion is fixed to 600 per time slot, thus, 600× 25 = 15000 evaluations for k100

and k250 instances, and 1200× 25 = 30000 evaluations for the k500 instance.

The solving algorithm runs over 25 time slots. Each slot corresponds to a

static VRP-like instance. We have performed 30 independent trials of each

experiment. The results are shown in Table 4.3, which indicates the best

achieved fitness, the average and the standard deviation. Dark shaded cells

correspond to the best found solutions, while best average results are in light

shaded cells. In order to be able to compare our results accurately, we have

also performed statistical significance tests. Kruskal-Wallis test has been ap-

plied to compare the medians of the algorithms [Cohen 1995]. As a result, all

our experiments have a confidence level of 95 % (p-value ≤ 0.05). Table 4.4

is marked with “+” sign if there are statistical differences between a certain

pair of algorithms, and with a “−” sign otherwise.

Table 4.3: Solutions obtained by MAPSO on dynamic k-series instances.

Algorithm Instance Algorithm
Solutions

Best Avreg. Dev

MAPSO

k100

APSO 1819.01 1871.25 29.55
MAPSO2 1786.61 1885.26 51.67
MAPSO4 1762.54 1866.20 53.15
MAPSO8 1755.84 1884.16 52.8

k250

APSO 7658.27 8194.08 99.82
MAPSO2 7126.92 7356.59 125.6
MAPSO4 6855.76 7078.03 63.15
MAPSO8 6756.19 7039.29 115.75

k500

APSO 26347.8 27592.34 383.07
MAPSO2 24200.00 25830.51 926.49
MAPSO4 23377.40 24018.08 343.77
MAPSO8 23189.00 23888.58 465.77

140

4.6. Experimental Results and Discussion 141

Table 4.4: Statistical results of comparing our algorithms with a multi-

comparer test.
Instances Algorithms MASPO2 MASPO4 MASPO8

k100
MASPO2 - - -
MASPO4 - - -
MASPO8 - - -

k250
MASPO2 - + +
MASPO4 + - -
MASPO8 + - -

k500
MASPO2 - + +
MASPO4 + - -
MASPO8 + - -

From the Table 4.3, we can see that the parallel multi-swarm MAPSO

provides better results than the APSO with a single population on the three

treated instances. The improvement on the fitness value for the best obtained

solutions ranges between 3.72 % and 14.35 %.

For the three instances, MAPSO8 provides the best results in terms of min-

imizing the traveled distance of the vehicle fleet. Concerning the average

distance, MASPO4 gives better results on k100 than MAPSO2 and MAPSO8.

Moreover, MASPO8 gives better results on k25O and k500 than the other

algorithms for this metric. We can explain the performance of the multi-

population approach by the fact that it offers more ability for the algorithm

to search in o different regions the same moment. Thereby, when new customer

orders appear leading to the move of the optimum towards a new position in

the search space, with several populations we have more chance to follow its

movements and to reach it after some iterations.

4.6.3 Dynamic Performance Assesment

Conventional Instances. In order to assess the dynamic performance of

our MAPSO, we have computed the accuracy of the solutions obtained by

our algorithm on each instance at the end of the optimization process. Ta-

ble 4.5 shows the accuracy of MAPSO and the algorithms described in the

above section. It reports the best obtained distances and the bounds MinTF
(best known solutions) found by an off-line algorithm which had access to the

entire instance (all customers are static), including dynamic requests before-

hand. Most of them are not feasible solutions for the DVRP, but play a role

of bounds. These solutions can be found in literature5 over the 21 Kilby’s

instances. From Table 4.5, we see that MAPSO has the best accuracy on 18

instances and the best average on the set of treated instances. The accuracy

5http://neo.lcc.uma.es/radi-aeb/WebVRP/

141

http://neo.lcc.uma.es/radi-aeb/WebVRP/

142
Chapter 4. Multi-Population Based Metaheuristics for Solving

Dynamic Vehicle Routing Problem

 1000

 1200

 1400

 1600

 1800

 2000

 2200

 2400

 0 2000 4000 6000 8000 10000 12000

F
itn

es
s

Evaluations

Bound
MAPSO2
MAPSO4
MAPSO8

(a) k100 instance.

 4000

 5000

 6000

 7000

 8000

 0 2000 4000 6000 8000 10000 12000

F
itn

es
s

Evaluations

Bound
MAPSO2
MAPSO4
MAPSO8

(b) k250 instance.

 15000

 20000

 25000

 30000

 35000

 0 5000 10000 15000 20000

F
itn

es
s

Evaluations

Bound
MAPSO2
MAPSO4
MAPSO8

(c) k500 instance.

Figure 4.5: The evolution of each algorithm’s mean trace for each instance;

each of them shows also the optimum value for each time slice as obtained by

running our algorithms over the static subproblems.

reaches for some instances as tai75d a value of 0.98, which is a high achieve-

ment of our algorithm. The accuracy average is equal to 0.89 (being of 1.0

is the ideal) which demonstrates again that our multi-population algorithm

outperforms the state-of-the-art metaheuristics and is able to produce high

quality solutions on the conventional dynamic benchmarks.

142

4.6. Experimental Results and Discussion 143

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 2000 4000 6000 8000 10000 12000

A
cc

ur
ac

y

Evaluations

MAPSO2
MAPSO4
MAPSO8

(a) Accuracy for k100.

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0 2000 4000 6000 8000 10000 12000

S
ta

bi
lit

y
Evaluations

MAPSO2
MAPSO4
MAPSO8

(b) Stability for k100.

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 2000 4000 6000 8000 10000 12000

A
cc

ur
ac

y

Evaluations

MAPSO2
MAPSO4
MAPSO8

(c) Accuracy for k250.

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0 2000 4000 6000 8000 10000 12000

S
ta

bi
lit

y

Evaluations

MAPSO2
MAPSO4
MAPSO8

(d) Stability for k250.

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 5000 10000 15000 20000

A
cc

ur
ac

y

Evaluations

MAPSO2
MAPSO4
MAPSO8

(e) Accuracy for k500.

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0 5000 10000 15000 20000

S
ta

bi
lit

y

Evaluations

MAPSO2
MAPSO4
MAPSO8

(f) Stability for k500.

Figure 4.6: Evolution of accuracy and stability across time slices for each

instance.

143

144
Chapter 4. Multi-Population Based Metaheuristics for Solving

Dynamic Vehicle Routing Problem
T

ab
le

4.
5:

A
cc

u
ra

cy
of

d
iff

er
en

t
m

et
ah

eu
ri

st
ic

s
on

th
e

K
il
b
y
’s

in
st

an
ce

s.

M
et

a
h

eu
ri

st
ic

s
In

st
a
n

ce
M
in

T F
A

P
S

O
M

A
P

S
O

A
S

[M
o
n
te

m
a
n

n
i

2
0
0
5
b

]
G

A
[H

a
n

sh
a
r

2
0
0
7
]

T
S

[H
a
n

sh
a
r

2
0
0
7
]

B
es

t
A

cc
u

.
B

es
t

A
cc

u
.

B
es

t
A

cc
u

.
B

es
t

A
cc

u
.

B
es

t
A

cc
u

.

c5
0

5
2
1

5
7
5
.8

9
0
.9

0
5
7
1
.3

4
0
.9

1
6
3
1
.3

0
.8

3
5
7
0
.8

9
0
.9

1
6
0
3
.5

7
0
.8

6

c7
5

8
3
2

9
7
0
.4

5
0
.8

6
9
3
1
.5

9
0
.8

9
1
0
0
9
.3

6
0
.8

2
9
8
1
.5

7
0
.8

5
9
8
1
.5

1
0
.8

5

c1
0
0

8
1
7

9
8
8
.2

7
0
.8

3
9
5
3
.7

9
0
.8

6
9
7
3
.2

6
0
.8

4
9
6
1
.1

0
.8

5
9
9
7
.1

5
0
.8

2

c1
0
0
b

8
2
0

9
2
4
.3

2
0
.8

9
8
6
6
.4

2
0
.9

5
9
4
4
.2

3
0
.8

7
8
8
1
.9

2
0
.9

3
8
9
1
.4

2
0
.9

2

c1
2
0

1
0
4
2
.1

1
1
2
7
6
.8

8
0
.8

2
1
2
2
3
.4

9
0
.8

5
1
4
1
6
.4

5
0
.7

4
1
3
0
3
.5

9
0
.8

1
3
3
1
.2

2
0
.7

8

c1
5
0

1
0
2
8
.4

2
1
3
7
1
.0

8
0
.7

5
1
3
0
0
.4

3
0
.7

9
1
3
4
5
.7

3
0
.7

6
1
3
4
8
.8

8
0
.7

6
1
3
1
8
.2

2
0
.7

8

c1
9
9

1
2
9
1
.4

5
1
6
4
0
.4

0
.7

9
1
5
9
5
.9

7
0
.8

1
1
7
7
1
.0

4
0
.7

3
1
6
5
4
.5

1
0
.7

8
1
7
5
0
.0

9
0
.7

4

f7
1

2
3
7

2
7
9
.5

2
0
.8

5
2
8
7
.5

1
0
.8

2
3
1
1
.1

8
0
.7

6
3
0
1
.7

9
0
.7

9
2
8
0
.2

3
0
.8

5

f1
3
4

1
1
6
2
0

1
5
8
7
5

0
.7

3
1
5
1
5
0
.5

0
.7

7
1
5
1
3
5
.5

1
0
.7

7
1
5
5
2
8
.8

1
0
.7

5
1
5
7
1
7
.9

0
.7

4

ta
i7

5
a

1
6
1
8
.3

6
1
8
1
6
.0

7
0
.8

9
1
7
9
4
.3

8
0
.9

0
1
8
4
3
.0

8
0
.8

8
1
7
8
2
.9

1
0
.9

1
1
7
7
8
.5

2
0
.9

1

ta
i7

5
b

1
3
4
4
.6

4
1
4
4
7
.3

9
0
.9

3
1
3
9
6
.4

2
0
.9

6
1
5
3
5
.4

3
0
.8

8
1
4
6
4
.5

6
0
.9

2
1
4
6
1
.3

7
0
.9

2

ta
i7

5
c

1
2
9
1
.0

1
1
4
8
1
.3

5
0
.8

7
1
4
8
3
.1

0
.8

7
1
5
7
4
.9

8
0
.8

2
1
4
4
0
.5

4
0
.9

0
1
4
0
6
.2

7
0
.9

2

ta
i7

5
d

1
3
6
5
.4

2
1
4
1
4
.2

8
0
.9

7
1
3
9
1
.9

9
0
.9

8
1
4
7
2
.3

5
0
.9

3
1
3
9
9
.8

3
0
.9

8
1
4
3
0
.8

3
0
.9

5

ta
i1

0
0
a

2
0
4
1
.3

3
2
2
4
9
.8

4
0
.9

1
2
1
7
8
.8

6
0
.9

4
2
3
7
5
.9

2
0
.8

6
2
2
3
2
.7

1
0
.9

1
2
2
0
8
.8

5
0
.9

2

ta
i1

0
0
b

1
9
4
0
.6

1
2
2
3
8
.4

2
0
.8

7
2
1
4
0
.5

7
0
.9

1
2
2
8
3
.9

7
0
.8

5
2
1
4
7
.7

0
.9

0
2
2
1
9
.2

8
0
.8

7

ta
i1

0
0
c

1
4
0
6
.2

1
5
3
2
.5

6
0
.9

2
1
4
9
0
.4

0
.9

4
1
5
6
2
.3

0
.9

1
5
4
1
.2

8
0
.9

1
1
5
1
5
.1

0
.9

3

ta
i1

0
0
d

1
5
8
1
.2

5
1
9
5
5
.0

6
0
.8

1
1
8
3
8
.7

5
0
.8

6
2
0
0
8
.1

3
0
.7

9
1
8
3
4
.6

0
.8

6
1
8
8
1
.9

1
0
.8

4

ta
i1

5
0
a

3
0
5
5
.2

3
3
4
0
0
.3

3
0
.9

0
3
2
7
3
.2

4
0
.9

3
3
6
4
4
.7

8
0
.8

4
3
3
2
8
.8

5
0
.9

2
3
4
8
8
.0

2
0
.8

8

ta
i1

5
0
b

2
6
5
6
.4

7
3
0
1
3
.9

9
0
.8

8
2
8
6
1
.9

1
0
.9

3
3
1
6
6
.8

8
0
.8

4
2
9
3
3
.4

0
.9

1
3
1
0
9
.2

3
0
.8

5

ta
i1

5
0
c

2
3
4
1
.8

4
2
7
1
4
.3

4
0
.8

6
2
5
1
2
.0

1
0
.9

3
2
8
1
1
.4

8
0
.8

3
2
6
1
2
.6

8
0
.9

0
2
6
6
6
.2

8
0
.8

8

ta
i1

5
0
d

2
6
4
5
.3

9
3
0
2
5
.4

3
0
.8

7
2
8
6
1
.4

6
0
.9

2
3
0
5
8
.8

7
0
.8

6
2
9
5
0
.6

1
0
.9

0
2
9
5
0
.8

3
0
.9

0

A
v
er

a
g
e

1
9
7
6
.0

3
2
3
9
0
.0

4
0
.8

6
2
2
9
0
.6

7
0
.8

9
2
4
2
2
.6

8
0
.8

3
2
3
4
2
.9

9
0
.8

7
2
3
8
0
.3

7
0
.8

6

144

4.6. Experimental Results and Discussion 145

Large Scale Instances. In the same way that the conventional instances,

we assess the dynamic performances of MAPSO on k-series instances.

Tables 4.6 and 4.7 show the average of the accuracy and stability of the

algorithms for the three k-series instances on the different time slices of the

working day T . These results are plotted in Figure 4.6. The accuracy re-

sults confirm numerically what we already explained in Section 4.6, the size

of the instance affects differently the performance of our algorithms. In in-

stance k100, at the end of the working day, the accuracy of the algorithms is

quite close to each other. However, when the size of the instance increases, a

gap appears into the performances of the algorithms. Indeed, the MASPO2

has the worst accuracy on the k250 and k500 instances, comparatively to

the MAPSO4 and MAPSO8. The highest accuracy levels over the simula-

tion were obtained by MAPSO8 for the treated instances. With respect to

stability, the algorithms vary between two phases; unstable at the beginning

of the optimization process, and quite stable at the end. At each change in

the environment (arrival of new orders), the algorithms are a bit destabilized.

This is translated by the peaks at the beginning of each time slice as shown

in the Figure 4.6. In terms of number of sub-populations, it may be noted

that more the number of sub-populations increases, more the algorithm is sta-

ble. Table 4.7 shows that MAPSO8 is the most stable algorithm. Given that

MAPSO8 is the most reactive to the changing comparatively to the other vari-

ants (see Section 4.6.2), it is also more robust and stable. The algorithms are

relatively stable during the optimization process for a measure which ranges

between 0 and 1.

4.6.4 Parallel Performance Assessment

In parallel algorithms, the main performance measures are speedup and effi-

ciency. They have been introduced to evaluate the scalability of algorithms.

The scalability of a parallel algorithm measures its ability to achieve per-

formance proportional to the number of processors. The speedup SN is de-

fined as the time T1 it takes to complete a program with one processor di-

vided by the time TN it takes to complete the same program with N proces-

sors [Cung 2002, Alba 2005, Talbi 2009].

SN =
T1

TN
(4.1)

The speedup is defined as the gain achieved by parallelizing a program. The

larger the speedup, the greater is the gain. If SN > N (respectively SN < N),

a superlinear (respectively linear) speedup is obtained. In the case SN < N

the speedup is said sublinear. The sublinear speedup is the most common.

145

146
Chapter 4. Multi-Population Based Metaheuristics for Solving

Dynamic Vehicle Routing Problem

Table 4.6: Accuracy of MAPSO on the dynamic k-series instances over dif-

ferent time steps.

Instance Tstep
Accuracy

APSO MASPO2 MASPO4 MASPO8

k100

0 0.87 0.82 0.85 0.86
5 0.88 0.90 0.92 0.93
10 0.86 0.87 0.87 0.88
15 0.76 0.74 0.74 0.74
20 0.76 0.76 0.76 0.76
25 0.76 0.76 0.76 0.76

Avg 0.81 0.81 0.82 0.82

k250

0 0.61 0.62 0.73 0.75
5 0.75 0.82 0.89 0.9
10 0.75 0.69 0.85 0.86
15 0.72 0.81 0.84 0.85
20 0.72 0.81 0.84 0.85
25 0.72 0.81 0.84 0.85

Avg 0.71 0.77 0.82 0.84

k500

0 0.77 0.72 0.85 0.90
5 0.80 0.86 0.89 0.96
10 0.79 0.85 0.88 0.91
15 0.70 0.75 0.80 0.82
20 0.70 0.75 0.81 0.82
25 0.70 0.75 0.81 0.82

Avg 0.73 0.76 0.82 0.85

This is due to the overhead of communication and synchronization costs. The

efficiency EN using N processors is defined as the speedup SN divided by the

number of processors N .

EN =
SN
N

(4.2)

It defines how well are N processors used when the program is computed in

parallel. An efficiency of one means that all of the processors are being fully

used all the time.

To compute the speedup, we compare the algorithm both in sequential and in

parallel architecture. The speedup and efficiency provide by the paralleliza-

tion of each algorithm are shown in the Table 4.8. The trace of the speedup

for the three instances is shown in the Figure 4.7. It seems that the speedup

performance is quite similar on the three instances. The gain achieved by par-

allelizing these algorithms is high, and it slightly moves away from the linear

speedup as the number of CPUs increases due to the overhead of communi-

cation between nodes.

In addition, the performance on the instance k500 is less than the k100 and

k250 instances. Since the number of evaluations allowed on the instance k500

for each slice is 1200 evaluations which is two times more than the other in-

stances (600 evaluations) (see Table 2.3), this leads to decrease the speedup

performance in consequence of the cost of communication due to the migration

146

4.7. Conclusion 147

Table 4.7: Stability of MAPSO on the dynamic k-series instances over dif-

ferent time steps.

Instance Tstep
Stability

APSO MASPO2 MASPO4 MASPO8

k100

0 0.532 0.43 0.434 0.434
5 0.003 0.02 0.017 0.017
10 0.004 0.01 0.009 0.009
15 0.001 0.01 0.000 0.000
20 0.00 0.01 0.000 0.000
25 0.00 0.000 0.000 0.000

Avg 0.09 0.01 0.004 0.002

k250

0 0.33 0.29 0.292 0.29
5 0.015 0.03 0.022 0.02
10 0.019 0.02 0.022 0.000
15 0.000 0.000 0.000 0.000
20 0.000 0.000 0.000 0.000
25 0.000 0.000 0.000 0.000

Avg 0.061 0.02 0.004 0.002

k500

0 0.277 0.25 0.25 0.248
5 0.021 0.03 0.024 0.023
10 0.019 0.02 0.020 0.019
15 0.021 0.001 0.006 0.003
20 0.000 0.000 0.000 0.000
25 0.00 0.000 0.000 0.000

Avg 0.048 0.004 0.001 0.001

of particles between swarms.

The same performances are replicated for the efficiency measure as it is

shown in the Figure 4.8.

Table 4.8: Speedup and efficiency for MAPSO based algorithms.
Instance Algorithm Speedup Efficiency

k100
MAPSO2 1.98 0.99
MAPSO4 3.89 0.97
MAPSO8 7.27 0.91

k250
MAPSO2 1.74 0.87
MAPSO4 3.43 0.86
MAPSO8 6.53 0.82

k500
MAPSO2 1.59 0.80
MAPSO4 3.04 0.76
MAPSO8 5.62 0.70

4.7 Conclusion

A parallel multi-swarm approach named Multi-Adaptive Particle Swarm

(MAPSO) has been proposed in this chapter. Its principle is to divide the pop-

147

148
Chapter 4. Multi-Population Based Metaheuristics for Solving

Dynamic Vehicle Routing Problem

 1

 2

 3

 4

 5

 6

 7

 8

 9

 1 2 3 4 5 6 7 8

S
pe

ed
up

Processeurs

Linear Speedup
MAPSO

(a) k100 instance.

 1

 2

 3

 4

 5

 6

 7

 8

 9

 1 2 3 4 5 6 7 8

S
pe

ed
up

Processeurs

Linear Speedup
MAPSO

(b) k250 instance.

 1

 2

 3

 4

 5

 6

 7

 8

 9

 1 2 3 4 5 6 7 8

S
pe

ed
up

Processeurs

Linear Speedup
MAPSO

(c) k500 instance.

Figure 4.7: The speedup of the algorithms on each instance.

ulation into several sub-populations that evolve in parallel and which track the

shifting optimum throughout the time. The aim is to position each of those

subswarms on different promising local optima of the search space. However,

simply breaking up the neighborhoods and dividing up the global swarm into

a number of independent swarms is unlikely to be effective since the swarms

would not interact (the dynamics governing the position and velocity updates

of a particle in a particular swarm are specified by parameters belonging to

that swarm only).

Therefore, we suggested to cooperate the swarms by exchanging infor-

mation related to the best positions (local optima) found by their particles.

Indeed, the dynamic change may cause the optima to be in the neighborhood

of an old solution more often. The localization of several swarms on different

optima allows to react quickly to the changing since the swarms are already

located in the neighborhood of the new optima. Hence, we take the advantage

of using the information gathered in the past and introduce more diversifica-

tion in the search towards several cooperative swarms. MAPSO approach

148

4.7. Conclusion 149

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1 2 3 4 5 6 7 8

E
ffi

ci
en

cy

Processeurs

Ideal
MAPSO

(a) k100 instance.

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1 2 3 4 5 6 7 8

E
ffi

ci
en

cy

Processeurs

Ideal
MAPSO

(b) k250 instance.

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1 2 3 4 5 6 7 8

E
ffi

ci
en

cy

Processeurs

Ideal
MAPSO

(c) k500 instance.

Figure 4.8: The efficiency of the algorithms on each instance.

has been implemented on parallel architecture by using ParadisEO software

framework.

For the experimental part, MAPSO gives better solution quality than

metaheuristics taken from literature. A study on varying a number of sub-

populations has been done, and showed that the performances increase with

the number of sub-swarms which maintain population diversity through the

search space. Dynamic and parallel performances were assessed over the dif-

ferent variants of the algorithm.

The next chapter will examine some modifications that can be brought to

metaheuristics and which allow them not only find high quality solutions, but

solutions that are robust and flexible as well.

149

Chapter 5

Flexibility and Robustness in

Dynamic Vehicle Routing

Contents
5.1 Introduction . 151

5.2 Background . 152

5.3 Flexible Solving Strategy 153

5.4 Flexible VNS for DVRP 154

5.5 Experimental Results and Discussion 155

5.6 Conclusion . 163

5.1 Introduction

Recent approaches have mainly focused on maintaining the population diver-

sity as a warrant for the ability of tracking the optimum. However, it could

be also worthwhile to anticipate changes of the environment by explicitly

searching for solutions which maintain their robustness and flexibility. Flex-

ible solutions are those that can be easily adapted to account for changes in

the environment.

As we have seen in previous chapters that adaptation to changes may be nec-

essary, it should be worthwhile to anticipate these changes and to explicitly

search for solutions that, not only have high quality, but that allow the adap-

tation of a high quality solutions after the environment has changed.

Although this is a valid approach to all dynamic optimization problems, it

seems particularly important for optimization problems where the solution

is gradually implemented over time, and thus, some part of the solution is

permanently fixed between changes. In this case, it is not necessarily possible

to switch from one optimal solution to the next optimal solution after the

environment has changed. The set of solutions still available after a change

depends on the previous selected solution.

152
Chapter 5. Flexibility and Robustness in Dynamic Vehicle

Routing

For the example of Dynamic Vehicle Routing Problem, we argue that it is use-

ful to anticipate the forthcoming arrival of new orders. Since we know that

only the front part of the routing (routes) will actually be implemented, while

the remainder will have to be re-routed after the arrival of a new requests in

order to insert them in the existing routes.

Our aim here is to explicitly search for routes that are flexible enough to allow

easy adaptation after a new order has arrived. For that we propose a measure

of flexibility, and show that better solutions can be obtained when the ”plan-

ning horizon” for all subproblems is modified to take the flexibility of solutions

into account. The main idea of guiding the search towards solutions that are

”well-prepared” for changes in the environment is the search for robust solu-

tions, i.e. solutions that show a good average performance under all possible

future scenarios. We suggest here to adjust the planning horizon in order to

build solutions that might anticipate the forthcoming arrival of new orders.

The underlying idea consists in gradually increasing the period covered by a

vehicle routing plan over the day. This leads to allow a large number of com-

mitted vehicle at the beginning of the working day even if the orders do not

require this size of vehicle fleet. The adjustment warrants flexible insertion of

new incoming orders into the existing routes throughout the day. Therefore,

we anticipate the future needs of our customers. The chapter is structured as

follows: In Section 5.2 we report some developing works on robustness and

flexibility. Section 5.3 presents our flexible strategy for solving DVRP, while

Section 5.4 exposes the implementation of this strategy for Flexible Variable

Neighborhood Search (FVNS). Section 5.5 reports experimental results of our

algorithm on a classical set of benchmarks and assesses the dynamic perfor-

mance indicator of our algorithm. Finally, we conclude this chapter with some

highlights that can be the subject of future researches.

5.2 Background

Many works have approached the study of flexibility in optimization problems,

although the point of view on what flexibility means differs greatly between

them. Intuitively, it can be defined as the relative ease with which a solution

can be adapted to the requirements of changing problem data [Sörensen 2003].

In general, flexible solutions are especially desirable in dynamic optimization

problems since the environment is expected to change even in the problem

definition itself. Although flexibility is sometimes used to refer to algorithms

which are able to solve different types of problems [Jans 2007], we stick to

the concept of flexibility as the ability to manage the changes that occur over

the time on a dynamic problem. Most works which approached flexibility

152

5.3. Flexible Solving Strategy 153

in VRP addressed the flexibility of vehicle schedules [Hashimoto 2006] or by

allowing soft time window and soft traveling time constraints [Afsar 2010],

rather than the flexibility of solutions. Robustness and flexibility are often

used as synonyms. A study on robustness and flexibility for the VRP with

Stochastic Demands is provided in [Sörensen 2009]; in this case, a robust-

ness/flexibility evaluation function is used to evaluate a set of scenarios for

each solution. A recourse procedure is introduced when flexible solutions are

needed and penalty functions is introduced to penalize violation of constraints.

Scheffermann et al. [Scheffermann 2009] present and compare algorithms for

creating robust solutions to the vehicle routing problem with time-windows

(VRPTW) in which travel times are uncertain. They referee to feasibility-

robustness of solutions which stay feasible in uncertain environments or be-

come only slightly infeasible by proposing a model which penalize the de-

lays (missing a time-window) for a given service plan for a set of customers.

Flexibility has been thoroughly studied in the Dynamic Scheduling Problem

domain [Branke 2005a, Snoek 2001]. Branke and Mattfeld [Branke 2005a]

worked on anticipation in dynamic scheduling problems. They suggest the in-

corporation of a criterion into the fitness function which focuses on the early

utilization of machine capacity. They showed that flexibility can be gained by

avoiding early idle-times and thereby penalize them.

5.3 Flexible Solving Strategy

Given that the main feature in the DVRP is the dynamic arrival of orders,

we consider that flexibility is largely determined by the maximum length of

routes, which depends ultimately on the time window of the depot. To pre-

serve flexibility, we propose to construct initial solutions being aware about

the potential arrival of new orders; in order to do so, we propose to dynami-

cally adjust the length of the working day, making it smaller at the beginning

of the optimization and letting it increases until the value defined by the

problem instance as the simulation takes place.

In this way, we expect to get solutions with a larger number of shorter

routes at the beginning of the simulation time.

If there are more routes available and they are not built to use the whole

working day length, it will be easier to place new customers in a good position.

We define T ′(t) as the function which modifies the length of the working day:

T ′(t) = α · T + (1− α) · curts · Tts
dod

(5.1)

where T is the length of the working day defined in the problem instance,

curts is the current time slot (period), Tts is the length of a time slot, and dod

153

154
Chapter 5. Flexibility and Robustness in Dynamic Vehicle

Routing

is the degree of dynamism of the problem. The parameter α ranges in [0, 1],

and it is used to determine the initial value of Teffective at the beginning of

the simulation time.

The parameter α controls the variation of the modified working day with

respect to the initial working day. If α is equal to 1, T ′ is equal to the initial

working day, when alpha is equal to 0, T ′ takes its smallest value.

The degree of dynamism is included in order to determine the incremen-

tal increasing in T ′: if the problem is very dynamic (dod is close to 1.0), T ′

increases slowly during the whole simulation; if dod is closer to 0.0 (static

problem), T ′ increases faster in order to reach soon the original T . The ef-

fective working day length Teffective(t) is a modification of the working day T

which is used by the algorithm at each time step t. It takes into account that

T is the maximum allowed length, which means that the routes designed by

the algorithm can never exceed this length in order to be feasible.

Teffective(t) = min (T, T ′(t)) (5.2)

This strategy is independent of the optimization algorithm since it consists

in the relaxation of a problem constraint. This means that it can be adopted

with little effort by any metaheuristics as long as they are able to manage

constraints. An example of how Teffective changes during the simulation is

shown in Figure 5.1.

 340

 360

 380

 400

 420

 440

 460

 480

 500

 520

 0 50 100 150 200 250 300 350 400 450 500

E
ffe

ct
iv

e
T

time

Teffective

Figure 5.1: Teffective changes with α = 0.7, T = 500, Tts = 25, and dod = 0.5.

5.4 Flexible VNS for DVRP

We propose Flexible Variable Neighborhood Search algorithm (FVNS) for

DVRP which follows our flexibility strategy. As presented in the Chapter 2,

VNS is a well-known trajectory-based metaheuristic proposed by Hansen and

154

5.5. Experimental Results and Discussion 155

Mladenović [Hansen 1999]. In order to adapt VNS for a particular problem,

it is necessary to define the set of neighborhood structures and to establish

the local search procedure that is applied to the solutions. Both our neigh-

borhoods and the local search are related to specific operators of the VRP.

We have proposed four different neighborhoods Nk(s):

• N1(s) is the set of solutions which results of swapping any two customers

in s,

• N2(s) is the set which results of inserting a given customer into any

position in s,

• N3(s) results of applying 2-Opt [Lin 1965] to any subroute of s, and

• N4(s) is the result of using 2-Opt* [Potvin 1995] in any two subroutes

of s.

These neighborhoods allow the algorithm to escape from local optima, as

constraints are not enforced at this stage. The local search consists in consec-

utively combining four local search operators: λ-exchange with (1, 1) moves,

λ-exchange with (1, 0) moves, 2-Opt and 2-Opt*. For each local search heuris-

tic, all possible moves are checked and the best one is performed, i.e. the one

which reduces the solution cost the most. Our local search procedures avoid

reevaluating the whole solution. A repair procedure makes any new solu-

tion feasible before its evaluation. This repair procedure is necessary since

the neighborhood operators can generate unfeasible solutions. Initial solu-

tions are generated using the Savings algorithm [Clarke 1964]. In order to

avoid determinism in the construction of initial solutions, we use a parame-

ter γ to calculate the savings as s(i, j) = d(0, i) + d(0, j) − γ d(i, j), where

γ ∼ U(0, 1) [Yellow 1970]. The same strategy is followed to insert dynamic

customers in the solution: a partial solution including only new customers

is built using the Savings algorithm and these new routes are added to the

current solution.

In our Flexible Variable Neighborhood Search (FVNS), the flexibility of

the constraints is used in the construction phase (Savings heuristic), while in

the local search, we consider only the modifications that do not increase the

number of routes according to the constraints.

5.5 Experimental Results and Discussion

This section presents the results obtained by our algorithm. For that purpose,

we use a set of standard benchmarks introduced in the Section 1.6. This set

155

156
Chapter 5. Flexibility and Robustness in Dynamic Vehicle

Routing

has been proposed by Kilby [Kilby 1998] and consists in 21 instances based

on those of Christofides, Fisher, and Taillard, which have been adapted to the

dynamic environment. These instances range in size [50, 199] and have differ-

ent topologies regarding the geographic distribution of customers (clustered,

uniform, and a combination of these two). In the literature, the cutoff time

Tco is set to 0.5 × T . For each instance, 30 independent runs are considered.

Each static subproblem runs for 5000 evaluations and 25 time slices are con-

sidered. The FVNS algorithm runs on Intel Core 2 Quad 2.6 GHz machines

with 4 GB memory.

5.5.1 Study on Sensitivity of the Flexibility Parameter

Here we analyze the influence of the α parameter for values in [0.6, 1.0]. If

α = 1.0, the results correspond to the canonical VNS with standard con-

straints (no modification is applied). We have not studied values smaller than

0.6 as the results for α = 0.6 already point out that such a tight value is not

a convenient strategy. Results obtained over the Kilby’s instances are shown

in Table 5.1 and represented graphically in Figure 5.2. The best obtained so-

lutions are in highlighted into dark shaded cells, and the average results over

30 runs are given in light shaded cells.

The figure on the left shows the sum of the best fitness obtained for each

one of the 21 instances in the benchmark, while the figure on the right repre-

sents the sum of the average fitness obtained on each instance.

From both Table 5.1 and Figure 5.2, we can see that the value α = 0.7 is

the more competitive one, followed closely by α = 0.8 and 0.9. The results

of α = 1.0 are bad, while α = 0.6 is too restrictive and not beneficial for the

algorithm. With the variant α = 0.7, the algorithm outperforms the other

variants on 12 instances and got the best average on the whole set. As we

can see in Figure 5.2, there is a correlation between the best and the average

total fitness; in both cases, the best performance is achieved with α = 0.7.

156

5.5. Experimental Results and Discussion 157

T
ab

le
5.

1:
N

u
m

er
ic

al
re

su
lt

s
ob

ta
in

ed
b
y

F
V

N
S

w
it

h
d
iff

er
en

t
va

lu
es

of
α

.

α
v
a
lu

e
In

st
a
n

ce
s

0
.6

0
.7

0
.8

0
.9

1
.0

B
es

t
A

v
g

B
es

t
A

v
g

B
es

t
A

v
g

B
es

t
A

v
g

B
es

t
A

v
g

c5
0

5
9
6
.9

7
6
4
7
.3

3
5
9
1
.6

9
6
2
9
.6

1
5
9
8
.1

0
6
3
1
.0

1
6
1
0
.5

4
6
3
7
.8

0
5
9
9
.5

3
6
5
3
.8

4
c7

5
9
5
9
.1

6
1
0
1
0
.3

7
9
6
9
.4

5
1
0
2
4
.6

9
9
4
9
.0

1
1
0
0
9
.9

1
9
8
3
.2

0
1
0
1
5
.6

0
9
8
1
.6

4
1
0
4
0
.0

0
c1

0
0

9
6
5
.7

7
1
0
1
5
.5

6
9
4
3
.9

2
1
0
0
8
.8

8
9
6
4
.9

3
1
0
0
5
.1

6
9
6
4
.5

0
1
0
0
0
.9

9
1
0
2
2
.9

2
1
0
8
7
.1

8
c1

0
0
b

8
8
5
.5

4
9
3
1
.0

3
8
8
0
.8

4
9
1
5
.5

2
8
7
8
.1

1
9
1
4
.5

9
8
7
9
.8

5
9
1
8
.1

8
8
6
6
.7

1
9
4
2
.8

1
c1

2
0

1
2
1
4
.0

7
1
4
0
5
.0

8
1
2
0
7
.5

1
1
3
8
5
.5

6
1
2
5
1
.8

9
1
3
8
6
.1

9
1
2
8
6
.4

7
1
4
1
1
.9

2
1
2
8
5
.2

1
1
4
6
9
.2

4
c1

5
0

1
2
8
7
.2

3
1
3
5
4
.1

7
1
2
7
5
.5

4
1
3
4
9
.7

1
1
3
0
4
.0

4
1
3
5
3
.8

1
1
2
8
7
.8

9
1
3
5
6
.7

5
1
3
3
4
.7

3
1
4
4
1
.3

7
c1

9
9

1
5
7
9
.9

5
1
6
3
5
.9

1
1
5
5
6
.4

3
1
6
3
9
.5

9
1
5
7
9
.3

1
1
6
3
3
.9

6
1
5
6
7
.6

3
1
6
3
6
.0

9
1
6
7
9
.6

5
1
7
6
9
.9

5
f7

1
2
7
7
.7

5
3
0
5
.1

2
2
7
2
.6

5
2
9
2
.6

8
2
8
5
.1

9
2
9
6
.2

5
2
7
6
.4

2
2
9
7
.2

6
3
0
4
.3

2
3
2
5
.1

8
f1

3
4

1
5
2
6
1
.6

2
1
6
0
6
3
.0

6
1
5
1
0
4
.5

1
1
6
0
3
8
.2

5
1
5
2
6
1
.6

2
1
6
0
8
0
.6

2
1
5
3
6
4
.4

7
1
6
0
8
1
.8

1
1
5
6
8
0
.0

5
1
6
5
2
2
.1

8
ta

i7
5
a

1
7
9
6
.6

3
1
8
8
2
.9

5
1
7
7
6
.6

0
1
8
7
9
.1

2
1
7
9
1
.6

9
1
9
1
4
.4

1
1
7
8
4
.0

9
1
9
0
2
.9

6
1
8
0
6
.8

1
1
9
5
4
.2

5
ta

i7
5
b

1
4
5
8
.0

6
1
4
9
2
.6

9
1
4
5
5
.1

3
1
5
0
0
.1

5
1
4
5
5
.1

3
1
5
2
4
.3

4
1
4
6
7
.8

0
1
5
2
4
.9

6
1
4
8
0
.7

0
1
5
6
0
.7

1
ta

i7
5
c

1
5
3
9
.6

4
1
7
0
4
.2

6
1
5
2
0
.9

3
1
6
9
4
.9

0
1
4
9
1
.6

3
1
7
0
5
.8

2
1
5
4
7
.9

5
1
6
7
6
.0

3
1
6
2
1
.0

3
1
7
4
6
.0

7
ta

i7
5
d

1
4
4
3
.2

1
1
5
1
7
.6

9
1
4
4
5
.4

2
1
5
1
7
.4

0
1
4
4
1
.9

7
1
5
2
2
.5

2
1
4
4
4
.6

3
1
5
1
1
.8

1
1
4
4
6
.5

0
1
5
4
1
.9

8
ta

i1
0
0
a

2
2
3
5
.9

2
2
3
1
8
.5

1
2
1
9
6
.2

7
2
2
9
9
.5

5
2
1
5
4
.9

6
2
2
7
2
.2

6
2
1
8
1
.7

0
2
3
2
8
.3

9
2
2
5
0
.5

0
2
4
6
2
.5

0
ta

i1
0
0
b

2
1
4
2
.1

7
2
2
9
0
.7

9
2
1
5
8
.0

9
2
2
3
9
.0

6
2
1
3
3
.0

7
2
2
3
8
.0

2
2
1
2
5
.5

2
2
2
5
6
.5

8
2
1
6
9
.1

0
2
3
1
9
.7

2
ta

i1
0
0
c

1
4
8
4
.2

7
1
5
6
4
.3

9
1
4
9
8
.0

6
1
5
4
5
.5

3
1
4
9
1
.3

9
1
5
3
0
.8

3
1
4
5
7
.6

8
1
5
3
0
.8

1
1
4
9
0
.5

8
1
5
5
7
.8

1
ta

i1
0
0
d

1
8
1
9
.4

1
2
0
4
2
.5

8
1
8
7
5
.6

4
2
0
5
0
.7

8
1
8
5
6
.7

0
2
0
1
5
.2

1
1
8
4
7
.1

4
2
0
1
1
.4

4
1
9
6
9
.9

4
2
1
0
0
.3

8
ta

i1
5
0
a

3
4
7
0
.6

9
3
5
8
3
.2

7
3
2
8
2
.5

4
3
5
7
3
.5

9
3
3
1
0
.1

4
3
5
7
4
.2

9
3
3
6
1
.6

9
3
5
6
0
.6

4
3
4
7
9
.4

4
3
6
8
0
.3

5
ta

i1
5
0
b

2
8
8
6
.0

0
3
0
2
3
.8

2
2
8
7
0
.7

7
3
0
0
4
.3

2
2
8
9
9
.3

8
3
0
0
2
.4

1
2
9
2
4
.5

0
3
0
2
8
.7

7
2
9
3
4
.8

6
3
0
8
9
.5

7
ta

i1
5
0
c

2
6
1
7
.8

6
2
7
5
8
.5

7
2
5
8
2
.9

3
2
7
0
1
.6

0
2
5
4
9
.1

1
2
7
3
6
.7

8
2
5
3
9
.0

6
2
7
3
4
.3

5
2
6
7
4
.2

9
2
9
2
8
.7

7
ta

i1
5
0
d

2
9
4
9
.3

6
3
0
9
8
.0

1
2
9
0
7
.2

7
3
0
7
0
.9

4
2
9
3
3
.0

5
3
0
7
7
.9

2
2
9
7
7
.9

0
3
0
8
1
.6

3
2
9
5
4
.6

4
3
1
4
7
.3

8

T
o
ta

l
4
8
8
7
1
.2

8
5
1
6
4
5
.1

6
4
8
3
7
2
.1

9
5
1
3
6
1
.4

3
4
8
5
8
0
.4

2
5
1
4
2
6
.3

1
4
8
8
8
0
.6

3
5
1
5
0
4
.7

7
5
0
1
9
0
.8

7
5
3
5
3
8
.7

2

157

158
Chapter 5. Flexibility and Robustness in Dynamic Vehicle

Routing

 48200

 48400

 48600

 48800

 49000

 49200

 49400

 49600

 49800

 50000

 50200

 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

T
ot

al
 b

es
t f

itn
es

s
su

m

 Alpha value

(a) Total best fitness

 51000

 51500

 52000

 52500

 53000

 53500

 54000

 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

T
ot

al
 a

ve
ra

ge
 fi

tn
es

s
su

m

 Alpha value

(b) Total average fitness

Figure 5.2: Influence of the α parameter on quality solutions.

5.5.2 Comparison with State-of-the-Art Metaheurisitcs

Table 5.2 compares our FVNS (α = 0.7) with other algorithms of the liter-

ature: Ant System (AS) [Montemanni 2005b], Genetic Algorithm (GA), and

Tabu Search (TS), both proposed in [Hanshar 2007]. We highlight the best

found solutions in shaded cells and best average results in light shaded cells.

FVNS obtains 16 best solutions out of 21 instances, while GA obtained four

and TS one best solution. AS obtains no best solution in this case. Concern-

ing the average fitness, GA obtains the best average on 13 instances, while

FVNS obtains best averages in 8 (AS and TS obtain none).

FVNS is also the algorithm which achieves the best total best fitness and GA

obtains the best total average one (see last row in Table 5.2). This can be

due to a higher standard deviation in the solutions provided by FVNS, which

could be expected from a single-solution metaheuristic. The strength of the

approach is found when solving the large scale instances, which points a good

scalability of our algorithm.

Concerning the execution time, by normalizing this time according to the per-

formance of machine testbed [Gee 2010] as shown in Table 5.3, FVNS spends

less time than the AG, TS and it is comparable in time with AS.

5.5.3 Flexibility vs Multi-Populations

In this section, we compare our flexibility enhanced metaheuristic with the

Multi-Swarm Adaptive PSO (MAPSO) approach that we have presented in

the previous chapter, and which has shown to be a cutting-edge strategy for

this problem (see Table 5.4). MAPSO improves the results of AS, GA, and

TS on 15 out of 21 instances by using a parallel algorithm with 8 islands,

158

5.5. Experimental Results and Discussion 159

Table 5.2: Numerical results obtained by FVNS compared to AS, GA, and

TS.

Metaheuristics
Instances FVNS AS [Montemanni 2005b] GA [Hanshar 2007] TS [Hanshar 2007]

Best Avg Best Avg Best Avg Best Avg

c50 591.69 629.61 631.30 681.86 570.89 593.42 603.57 627.90
c75 969.45 1024.69 1009.36 1042.39 981.57 1013.45 981.51 1013.82
c100 943.92 1008.88 973.26 1066.16 961.10 987.59 997.15 1047.60
c100b 880.84 915.52 944.23 1023.60 881.92 900.94 891.42 932.14
c120 1207.51 1385.56 1416.45 1525.15 1303.59 1390.58 1331.22 1468.12
c150 1275.54 1349.71 1345.73 1455.50 1348.88 1386.93 1318.22 1401.06
c199 1556.43 1639.59 1771.04 1844.82 1654.51 1758.51 1750.09 1783.43
f71 272.65 292.68 311.18 358.69 301.79 309.94 280.23 306.33
f134 15104.51 16038.25 15135.51 16083.56 15528.81 15986.84 15717.90 16582.04
tai75a 1776.60 1879.12 1843.08 1945.20 1782.91 1856.66 1778.52 1883.47
tai75b 1455.13 1500.15 1535.43 1704.06 1464.56 1527.77 1461.37 1587.72
tai75c 1520.93 1694.90 1574.98 1653.58 1440.54 1501.91 1406.27 1527.72
tai75d 1445.42 1517.40 1472.35 1529.00 1399.83 1422.27 1430.83 1453.56
tai100a 2196.27 2299.55 2375.92 2428.38 2232.71 2295.61 2208.85 2310.37
tai100b 2158.09 2239.06 2283.97 2347.90 2147.70 2215.93 2219.28 2330.52
tai100c 1498.06 1545.53 1562.30 1655.91 1541.28 1622.66 1515.10 1604.18
tai100d 1875.64 2050.78 2008.13 2060.72 1834.60 1912.43 1881.91 2026.76
tai150a 3282.54 3573.59 3644.78 3840.18 3328.85 3501.83 3488.02 3598.69
tai150b 2870.77 3004.32 3166.88 3327.47 2933.40 3115.39 3109.23 3215.32
tai150c 2582.93 2701.60 2811.48 3016.14 2612.68 2743.55 2666.28 2913.67
tai150d 2907.27 3070.94 3058.87 3203.75 2950.61 3045.16 2950.83 3111.43

Total 48372.19 51361.43 50876.23 53794.02 49202.73 51089.37 49987.8 52725.85

which assigns 5000 evaluations to each sub-problem (see Table 4.2). FVNS

uses the same criterion for each time slice. The best and average results are

provided. In total, FVNS obtains 7 best solutions, while MAPSO got 14

out of 21 instances. FVNS is particularly suitable for Christofides’ bigger

instances (c100 to c199) as well as Fisher’s instances, while MAPSO per-

forms better in smaller Christofides’ instances and most Taillard’s instances.

According to these results and the topology of customer localization in the

different instances, FVNS is confirmed to be especially suitable for problem

instances where customers are located following a uniform or clustered distri-

bution, while MAPSO is better for those with clustered and semi-clustered

customers. We can explain this by the fact that having a large number of

routes early in the planning horizon with our flexible strategy promotes the

insertion of future customer requests especially in instances where customers

are distributed uniformly in the service region. Thus, it ensures that a vehicle

will always be available to process a new order in a sub-region throughout the

day. Less detours are made for servicing customers what reduces the related

cost.

159

160
Chapter 5. Flexibility and Robustness in Dynamic Vehicle

Routing

Table 5.3: Execution time in minutes of FVNS compared to AS, GA and TS.

Metaheuristics
Instance FVNS AS [Montemanni 2005b] GA [Hanshar 2007] TS [Hanshar 2007]
c50 0.71
c75 1.26
c100 2.91
c100b 1.76
c120 4.49
c150 7.65
c199 11.68
f71 1.65
f134 1.65
tai75a 1.88
tai75b 0.98 (25) (12.5) (12.5)
tai75c 1.3 1’per slot 30”per slot 30”per slot
tai75d 1.11 0.5 * 25 0.5 * 25
tai100a 2.55
tai100b 2.29
tai100c 1.91
tai100d 2.8
tai150a 7.71
tai150b 6.48
tai150c 5.33
tai150d 5.09

Total time 72.77 525 262.5 262.5

Normalized time 72.77 62.08 73.5 73.5

5.5.4 Dynamic Performance Assessment

In this section we assess our FVNS in terms of accuracy of the obtained

solutions described in Section 5.5.3. The accuracy indicates the approximation

between the solutions obtained by an algorithm and optimal solutions in cases

where we consider a static environment (all customer orders are known before

than the optimization takes place). The accuracy ranges in the interval [0-

1]. An algorithm with accuracy being close to 1 is the ideal in terms of

performance. Table 5.5 shows the accuracy of FVNS and our MAPSO with

other metaheuristics proposed for DVRP in literature. We can see that the

accuracy of FVNS ranges between [0.77−0.94] and with an average of 0.86, and

is very competitive comparing with the remain metaheuristics on 10 instances.

The multi-population approach MAPSO has the best average with 0.89 and

outperforms the other metaheuristics on 14 instances.

160

5.5. Experimental Results and Discussion 161

Table 5.4: Comparison between FVNS and MAPSO.

Metaheuristics
Instances FVNS MAPSO

Best Average Best Average

c50 591.69 629.61 571.34 610.67
c75 969.45 1024.69 931.59 965.53
c100 943.92 1008.88 953.79 973.01
c100b 880.84 915.52 866.42 882.39
c120 1207.51 1385.56 1223.49 1295.79
c150 1275.54 1349.71 1300.43 1357.71
c199 1556.43 1639.59 1595.97 1646.37
f71 272.65 292.68 287.51 296.76
f134 15104.51 16038.25 15150.5 16193.00
tai75a 1776.60 1879.12 1794.38 1849.37
tai75b 1455.13 1500.15 1396.42 1426.67
tai75c 1520.93 1694.90 1483.10 1518.65
tai75d 1445.42 1517.40 1391.99 1413.83
tai100 2196.27 2299.55 2178.86 2214.61
tai100 2158.09 2239.06 2140.57 2218.58
tai100 1498.06 1545.53 1490.40 1550.63
tai100 1875.64 2050.78 1838.75 1928.69
tai150 3282.54 3573.59 3273.24 3389.97
tai150 2870.77 3004.32 2861.91 2956.84
tai150 2582.93 2701.60 2512.01 2671.35
tai150 2907.27 3070.94 2861.46 2989.24

Total 48372.19 51361.43 48104.13 50349.66

161

162
Chapter 5. Flexibility and Robustness in Dynamic Vehicle

Routing
T

ab
le

5.
5:

A
cc

u
ra

cy
of

F
V

N
S

co
m

p
ar

ed
w

it
h

ot
h
er

m
et

ah
eu

ri
st

ic
s

on
K

il
b
y
’s

in
st

an
ce

s.

M
et

a
h

eu
ri

st
ic

s
In

st
a
n

ce
M
in

T F
F

V
N

S
M

A
P

S
O

A
S

[M
o
n
te

m
a
n

n
i

2
0
0
5
b

]
G

A
[H

a
n

sh
a
r

2
0
0
7
]

T
S

[H
a
n

sh
a
r

2
0
0
7
]

B
es

t
A

cc
u

.
B

es
t

A
cc

u
.

B
es

t
A

cc
u

.
B

es
t

A
cc

u
.

B
es

t
A

cc
u

.

c5
0

5
2
1

5
9
1
.6

9
0
.8

8
5
7
1
.3

4
0
.9

1
6
3
1
.3

0
.8

3
5
7
0
.8

9
0
.9

1
6
0
3
.5

7
0
.8

6

c7
5

8
3
2

9
6
9
.4

5
0
.8

6
9
3
1
.5

9
0
.8

9
1
0
0
9
.3

6
0
.8

2
9
8
1
.5

7
0
.8

5
9
8
1
.5

1
0
.8

5

c1
0
0

8
1
7

9
4
3
.9

2
0
.8

7
9
5
3
.7

9
0
.8

6
9
7
3
.2

6
0
.8

4
9
6
1
.1

0
.8

5
9
9
7
.1

5
0
.8

2

c1
0
0
b

8
2
0

8
8
0
.8

4
0
.9

3
8
6
6
.4

2
0
.9

5
9
4
4
.2

3
0
.8

7
8
8
1
.9

2
0
.9

3
8
9
1
.4

2
0
.9

2

c1
2
0

1
0
4
2
.1

1
1
2
0
7
.5

1
0
.8

6
1
2
2
3
.4

9
0
.8

5
1
4
1
6
.4

5
0
.7

4
1
3
0
3
.5

9
0
.8

0
1
3
3
1
.2

2
0
.7

8

c1
5
0

1
0
2
8
.4

2
1
2
7
5
.5

4
0
.8

1
1
3
0
0
.4

3
0
.7

9
1
3
4
5
.7

3
0
.7

6
1
3
4
8
.8

8
0
.7

6
1
3
1
8
.2

2
0
.7

8

c1
9
9

1
2
9
1
.4

5
1
5
5
6
.4

3
0
.8

3
1
5
9
5
.9

7
0
.8

1
1
7
7
1
.0

4
0
.7

3
1
6
5
4
.5

1
0
.7

8
1
7
5
0
.0

9
0
.7

4

f7
1

2
3
7

2
7
2
.6

5
0
.8

7
2
8
7
.5

1
0
.8

2
3
1
1
.1

8
0
.7

6
3
0
1
.7

9
0
.7

9
2
8
0
.2

3
0
.8

5

f1
3
4

1
1
6
2
0

1
5
1
0
4
.5

1
0
.7

7
1
5
1
5
0
.5

0
.7

7
1
5
1
3
5
.5

1
0
.7

7
1
5
5
2
8
.8

1
0
.7

5
1
5
7
1
7
.9

0
.7

4

ta
i7

5
a

1
6
1
8
.3

6
1
7
7
6
.6

0
.9

1
1
7
9
4
.3

8
0
.9

0
1
8
4
3
.0

8
0
.8

8
1
7
8
2
.9

1
0
.9

1
1
7
7
8
.5

2
0
.9

1

ta
i7

5
b

1
3
4
4
.6

4
1
4
5
5
.1

3
0
.9

2
1
3
9
6
.4

2
0
.9

6
1
5
3
5
.4

3
0
.8

8
1
4
6
4
.5

6
0
.9

2
1
4
6
1
.3

7
0
.9

2

ta
i7

5
c

1
2
9
1
.0

1
1
5
2
0
.9

3
0
.8

5
1
4
8
3
.1

0
.8

7
1
5
7
4
.9

8
0
.8

2
1
4
4
0
.5

4
0
.9

0
1
4
0
6
.2

7
0
.9

2

ta
i7

5
d

1
3
6
5
.4

2
1
4
4
5
.4

2
0
.9

4
1
3
9
1
.9

9
0
.9

8
1
4
7
2
.3

5
0
.9

3
1
3
9
9
.8

3
0
.9

8
1
4
3
0
.8

3
0
.9

5

ta
i1

0
0
a

2
0
4
1
.3

3
2
1
9
6
.2

7
0
.9

3
2
1
7
8
.8

6
0
.9

4
2
3
7
5
.9

2
0
.8

6
2
2
3
2
.7

1
0
.9

1
2
2
0
8
.8

5
0
.9

2

ta
i1

0
0
b

1
9
4
0
.6

1
2
1
5
8
.0

9
0
.9

0
2
1
4
0
.5

7
0
.9

1
2
2
8
3
.9

7
0
.8

5
2
1
4
7
.7

0
.9

0
2
2
1
9
.2

8
0
.8

7

ta
i1

0
0
c

1
4
0
6
.2

1
4
9
8
.0

6
0
.9

4
1
4
9
0
.4

0
.9

4
1
5
6
2
.3

0
.9

1
5
4
1
.2

8
0
.9

1
1
5
1
5
.1

0
.9

3

ta
i1

0
0
d

1
5
8
1
.2

5
1
8
7
5
.6

4
0
.8

4
1
8
3
8
.7

5
0
.8

6
2
0
0
8
.1

3
0
.7

9
1
8
3
4
.6

0
.8

6
1
8
8
1
.9

1
0
.8

4

ta
i1

5
0
a

3
0
5
5
.2

3
3
2
8
2
.5

4
0
.9

3
3
2
7
3
.2

4
0
.9

3
3
6
4
4
.7

8
0
.8

4
3
3
2
8
.8

5
0
.9

2
3
4
8
8
.0

2
0
.8

8

ta
i1

5
0
b

2
6
5
6
.4

7
2
8
7
0
.7

7
0
.9

3
2
8
6
1
.9

1
0
.9

3
3
1
6
6
.8

8
0
.8

4
2
9
3
3
.4

0
.9

1
3
1
0
9
.2

3
0
.8

5

ta
i1

5
0
c

2
3
4
1
.8

4
2
5
8
2
.9

3
0
.9

1
2
5
1
2
.0

1
0
.9

3
2
8
1
1
.4

8
0
.8

3
2
6
1
2
.6

8
0
.9

0
2
6
6
6
.2

8
0
.8

8

ta
i1

5
0
d

2
6
4
5
.3

9
2
9
0
7
.2

7
0
.9

1
2
8
6
1
.4

6
0
.9

2
3
0
5
8
.8

7
0
.8

6
2
9
5
0
.6

1
0
.9

0
2
9
5
0
.8

3
0
.9

A
v
er

a
g
e

1
9
7
6
.0

3
2
3
0
3
.4

4
0
.8

6
2
2
9
0
.6

7
0
.8

9
2
4
2
2
.6

8
0
.8

3
2
3
4
2
.9

9
0
.8

7
2
3
8
0
.3

7
0
.8

6

162

5.6. Conclusion 163

5.6 Conclusion

In this chapter, we have stressed the role of anticipation for optimization in

Dynamic Vehicle Routing Problem and have shown that it is important to

search explicitly for solutions that are flexible enough to be easily adapted to

changes in the environment.

We suggest a measure of flexibility and show that better solutions can be

obtained when this measure is incorporated into the solving strategy of our

Flexible Variable Neighborhood Search (FVNS).

Our approach consists in the relaxation of the standard constraints of the

problem, in order to make early decisions that provide flexible solutions which

could be easily adapted when changes happen in the environment (arrival of

new requests).

Our empirical tests yielded excellent results and clearly demonstrated the

effectiveness of our approach comparatively to the canonical version of the

algorithm.

Note that the general idea of anticipation is not restricted to vehicle routing

problems, although it is particularly useful for problems where a part of the

solution is fixed because the decision cannot be revised later.

There remain numerous avenues for future research. The degree of antici-

pation could be extended, e.g. by incorporating prediction on the arrival time

of customer orders. The problem becomes similar to a problem under uncer-

tainty and the developed algorithms must be adapted to take into a count

this issue.

163

Conclusions and Future Work

This thesis has focused on the application of metaheuristics to Dynamic Ca-

pacitated Vehicle Routing Problem (DCVRP). The vast amount of research

on metaheuristics indicates that they have established themselves as an effec-

tive optimization tool to deal with this kind of dynamic problems.

Tackling dynamic problems entails addressing several issues related to algo-

rithm design, performance measures, benchmarking. All this dynamism re-

lated issues have been addressed in this work.

In this thesis, different classes of metaheuristics are developed. Results of

experimentation on DVRP demonstrate than the methods are effective and

have a great potential for other dynamic COPs as well.

The contributions that stem from this PhD thesis are:

• A state-of-the-art on dynamic vehicle routing problem. It cov-

ers the description of the problem and its variants, the recent solving

methods and the available benchmark data sets.

• A framework for benchmark generation for dynamic VRPs. It

allows the generation of dynamic large scale instances according to dif-

ferent dynamic scenarios as broken down vehicles, variable travel times,

etc. In terms of variants, it can generate instances with time windows,

multi-depot, and pickup and delivery problems. These instances could

be customized according to different spatial topologies of customers in

the service area (cluster, uniform, mix), as well as time distributions

(i.e. the arrival of customer demands can follow uniform, Poisson, or

normal distributions).

• An analysis and a detailed description of the performance measures

that should be used with DCOPs. These measures have been used to as-

sess the different proposed metaheuristics in terms of accuracy, stability

and reaction time when solving DVRP.

• Efficient single-solution based metaheuristic for DVRP. This class

is represented by Variable Neighborhood Search (VNS). The in-

terest of this approach consists in the ability of shifting from a neighbor-

hood to another one throughout the optimization process. This ability

offers an adaptive mechanism for tracking the optimum during the en-

vironmental changes. For this proposal, dedicated neighborhoods have

Conclusions and Future Work

been integrated to increase the efficiency of the approach. The experi-

ments demonstrate that VNS is able to reach high quality solutions in

few generations and is very competitive compared to other metaheuris-

tics of literature.

• Enhance the performance of the standard population based meta-

heuristics such Particle Swarm Optimization (PSO) by adding

an adaptive memory mechanism. This memory brings a new dimension

to the traditional issue of balancing diversification and intensification.

It consists in reusing the solutions gathered previously by the particles,

and reuse them when the change occurs for repositioning the particles

in the search space. For this purpose an Adaptive Particle Swarm Opti-

mization (APSO) has been developed. The experimental results showed

the benefits of the proposed adaptation in enhancing the overall perfor-

mance of our algorithm.

• Counterbalance the effect of diversity loss of P-metaheuristics by main-

taining diversity throughout the run. This was achieved by the

multi-population approach called Multi-Adaptive Particle Swarm

(MAPSO). Its principle is to divide the population into several sub-

populations that evolve in parallel and which track the shifting optimum

throughout the time. The aim is to position each of those subswarms

on different, promising local optima of the search space. In addition, we

suggested to cooperate the swarms by exchanging information related

to the best visited solutions (local optima) found by their respective

particles. Since simply breaking up the neighborhoods and dividing up

the global swarm into a number of independent swarms could lead to

a situation where swarms would not interact and may find themselves

isolated. Hence, we take the advantage of using the information gath-

ered in the past and introduce more diversification in the search towards

several cooperative swarms. For the experimental part, MAPSO intro-

duces the best solutions so far on several classes of instances that belong

to conventional set of benchmark for DVRP. The dynamic performance

measures reinforce these results, while the accuracy of the obtained so-

lutions demonstrates its competitiveness. Study on varying the number

of sub-populations has been done, and showed that the performances

increase with the number of sub-swarms which maintain population di-

versity through the search space.

• Demonstrate the role of parallel approaches in dynamic environ-

ments. Parallelizing metaheuristics in real-time context is an important

issue due to the hard requirement on search time especially when we

166

Conclusions and Future Work

deal with strong dynamic problems in which changes occur frequently

and within short time slots. Furthermore, Parallel metaheuristics

allow to solve large-scale instances of complex optimization problems.

MAPSO approach has been implemented on parallel architecture by

using ParadisEO software framework and experiments were carried out

on GRID’5000. It showed its efficiency with new large-scale instances

generated for DVRP.

• Flexible strategy for dynamic vehicle routing problem by searching

solutions that account for possible future changes by allowing easy and

successful adaptation after a change of the environment. We proposed to

dynamically adjust the length of the planning horizon in order to make

decisions which ensure that a vehicle will always be available to process

new customer orders in a sub-region throughout the day. Therefore, it

will be easier to place these customers in the existing routes and less

detours are made for servicing customers what reduces the related cost.

The flexible strategy was integrated into our Flexible Variable Neigh-

borhood Search (FVNS). The obtained robust solutions perform well

over a wide range of customer topology distribution and empirical eval-

uation confirms that impressive improvement can be archived by this

strategy.

Perspectives

While working on this Ph.D. thesis, some areas to improve further have

arisen. They form the basis for future works:

– The generalized framework of benchmarking can be extended to

other COPs. It is hoped that in the future other interesting dy-

namic COPs (scheduling, planning, assignment, etc.) are con-

structed under this framework by taking into account their cor-

responding properties and different dynamic scenarios.

– Some algorithms suggested in this work have some potential for

improvement. MAPSO, for example, could be enhanced by con-

sidering the proximity between swarms and favoring swarms in de-

serted areas of the search space in order to provide a more even

converge. The distance between swarms has to be defined. For

instance, it could be done by measuring the phenotypic diversity

167

Conclusions and Future Work

based on difference in solution fitness between the centroids of each

swam (global best) .

Furthermore, VNS could be extended by a Cooperative Parallel

Muti-Start paradigm in which different local search algorithms are

launched using diverse initial solutions, and cooperate by exchang-

ing information related to their searches at different steps of opti-

mization progress.

– The application and the adaptation of the proposed approaches on

dynamic multi-objective variants of the problem should be exam-

ined. The aim is to track a new Pareto-optimal front, as soon as

there is a change in the problem. In handling such problems, not

many algorithms exist, and certainly, there is a lack of test prob-

lems to adequately test a dynamic population based metaheuristics

on multi-objective optimization problems.

– The effectiveness of the developed methods on the DVRP encour-

ages their application to other dynamic problems, such as intelli-

gent transportation systems, engine parameter control, scheduling

of airline maintenance, and dynamic network routing. With these

problems, however, several important applications dependent as-

pects may have to be investigated. Examples, the flexibility mea-

sure and neighborhood definition of a solution for each problem.

– Further benefits might arise from considering simultaneously the

different aspects that cover this thesis. For instance, searching for

robust solution will reduce the need to adapt solution, reducing

the change cost. Thus, coupling the different metaheuristics such

as MAPSO and VNS by their hybridization as well as the strategy

of flexibility can lead to high competitive paradigms.

– There are other aspects related to the optimization in dynamic en-

vironment that have an increasing interests like for example the

incorporation of learning. Indeed, real world models allow to add

some prediction on forthcoming events. In our case, we could pre-

dict the future customer demands by following probabilistic models

obtained by analyzing the customer demands (arrival time, loca-

tion, quantity, etc.) over a certain period. Thus, our problem will

converge towards a Stochastic Dynamic Vehicle Routing Problem

(SDVRP), a wide class of combinatorial optimization problems un-

der uncertainty, where part of the information about the problem

data is unknown at the planning stage, but some knowledge about

its probability distribution is assumed. Here, the aim is to extend

and adapt our algorithms to deal with this class of problems.

168

Conclusions and Future Work

– Dynamic optimization problems are more and more complex and

their resource requirements increase. For instance, strongly dy-

namic systems are characterized by the fast pace of changes in the

data and the urgency of almost all requests received. Emergency

services, such as police, fire and ambulance departments exhibit

strong dynamic behavior. Another example is taxi cab services in

which only a negligible number of the customers have ordered their

ride in advance.

The importance of these problems motivates the analysis of their

associated costs and quality of the obtained solutions. In particu-

lar, ways to decrease response times. Recently, the use of graphics

processors has been extended to general application domains such

as computational science. Indeed, GPUs are very efficient at ma-

nipulating computer graphics, and their parallel structure makes

them more efficient than general-purpose CPUs for a range of com-

plex algorithms. This is why it would be very interesting to exploit

this huge capacity of computing to implement parallel metaheuris-

tics for dynamic optimization problems.

The increasing dynamism in real-world problems and competition among vari-

ous enterprises are likely to bring about newer optimization problems in which

adaptation is absolutely essential. The proposed approaches are very promis-

ing, and the prospect of obtaining a powerful and widely metaheuristics for

other dynamic problems is so tempting. We believe that the applications

examined in this thesis show how difficult it is to build general and generic

algorithms for solving DCOPs and particularly DVRPs and that conventional

methods need to be adapted to the problems by adding different mechanisms

in order to track the shifting optimum efficiently throughout the time.

169

Publications

Publications

The results of the research work presented in this PhD thesis have been pub-

lished. In what follows these publications are listed, grouped by type of pub-

lication and sorted chronologically within each group:

Journals

1. M.R. Khouadjia, B. Sarasola, E. Alba, L. Jourdan, and E-G. Talbi. A

comparative study between dynamic adapted PSO and VNS for the vehicle

routing problem with dynamic requests. Applied Soft Computing Journal (to

appear), Elsevier, 2011.

Chapters

2. M.R. Khouadjia, B. Sarasola, E. Alba, , E-G. Talbi, and L. Jourdan.

Metaheuristics for dynamic vehicle routing problems. In Metaheuristics for

Dynamic Optimization Problems (to appear), Springer, 2011.

3. M.R. Khouadjia, L. Jourdan, and E-G. Talbi. Livre communicant

CISIT (in press), chapter Résolution du problème dynamique de tournées

de véhicules par essaim de particules. Hermes Science, 2010.

International Conferences

4. M.R. Khouadjia, B. Sarasola, E. Alba, L. Jourdan, and E-G. Talbi.

Multi-environmental cooperative parallel metaheuristics for solving dynamic

optimization problems. In proceedings of the 25th IEEE International

Parallel & Distributed Processing Symposium(IPDPS’11), Workshop on

Nature Inspired Distributed Computing (NIDISC’11), pages 395–403, 2011.

5. B. Sarasola, M.R. Khouadjia, E. Alba, L. Jourdan, and E-G. Talbi. Flexi-

ble variable neighborhood search in dynamic vehicle routing. In proceedings

of the 8th European event on Evolutionary Algorithms in Stochastic and

Dynamic Environments (EvoSTOC’11), pages 344–353, 2011.

6. M.R. Khouadjia, E. Alba, L. Jourdan, and E-G. Talbi. Parallel particle

swarm optimization for solving the dynamic vehicle routing problem. In

The 3rd International Conference on Metaheuristics and Nature Inspired

Computing (META10), 2010.

7. M.R Khouadjia, E. Alba, L. Jourdan, and E-G. Talbi. Multi-swarm

optimization for dynamic combinatorial problems: a case study on dynamic

vehicle routing problem. In proceedings of the 7th International Conference

on Swarm Intelligence, (ANTS’10), pages 227–238, 2010.

170

Publications

8. M.R. Khouadjia, L. Jourdan, and E. Talbi. Adaptive particle swarm for

solving the dynamic vehicle routing problem. In IEEE/ACS International

Conference on Computer Systems and Applications (AICCSA’2010), pages

1–8, 2010.

9. M.R. Khouadjia, L. Jourdan, and E-G. Talbi. A particle swarm for

the resolution of the dynamic vehicle routing problem. In International

Conference on Metaheuristics and Nature Inspired Computing, META’08,

2008.

Submitted Papers

10. M.R. Khouadjia, B. Sarasola, E. Alba, L. Jourdan, and E-G. Talbi.

Parallel metaheuristics for solving dynamic vehicle routing problem. The

Journal of Supercomputing, Springer, 2011.

11. M.R. Khouadjia, B. Sarasola, E. Alba, L. Jourdan, and E-G. Talbi.

Dynamic Vehicle Routing Problems: Overview, Approaches, and Performance

Measures. Computers and Operations Research (COR), Elsevier, 2011.

171

Bibliography

[Afsar 2010] H. M. Afsar. A Branch-and-Price Algorithm for Capacitated Arc

Routing Problem with Flexible Time Windows. Electronic Notes in

Discrete Mathematics, vol. 36, pages 319 – 326, 2010. ISCO 2010 -

International Symposium on Combinatorial Optimization. 153

[Ai 2009] T.J. Ai and V. Kachitvichyanukul. A particle swarm optimization

for the vehicle routing problem with simultaneous pickup and delivery.

Computers & Operations Research, vol. 36, pages 1693–1702, 2009.

100

[Alba 2005] E. Alba. Parallel metaheuristics: a New Class of Algorithms.

Wiley-Interscience, 2005. 129, 145

[Alvarenga 2005] G.B. Alvarenga, R.M.A. Silva and G.R. Mateus. A Hybrid

Approach for the Dynamic Vehicle Routing Problem with Time Win-

dows. In Proceedings of the Fifth International Conference on Hybrid

Intelligent Systems, pages 61–67. IEEE Computer Society Washington,

DC, USA, 2005. 34, 37, 46, 49, 52

[Angelelli 2004] E. Angelelli, R.Mansini and M. G. Speranza. A Real-time

Vehicle Routing Model for a Courier Service Problem. In Bernhard

Fleischmann and Andreas Klose, editeurs, Distribution Logistics, vol-

ume 544 of Lecture Notes in Economics and Mathematical Systems,

pages 87–103. Springer Berlin Heidelberg, 2004. 37

[Attanasio 2004] A. Attanasio, J-F. Cordeau, G. Ghiani and G. Laporte. Par-

allel Tabu search heuristics for the dynamic multi-vehicle dial-a-ride

problem. Parallel Computing, vol. 30, no. 3, pages 377 – 387, 2004. 35,

44, 53, 55, 63

[Bent 2003] R. Bent and P. Van Hentenryck. Dynamic vehicle routing with

stochastic requests. In Proceedings of the 18th international joint con-

ference on Artificial intelligence, pages 1362–1363, San Francisco, CA,

USA, 2003. Morgan Kaufmann Publishers Inc. 30, 35, 37

[Bent 2004] R. Bent and P.Van Hentenryck. Scenario-Based Planning for

Partially Dynamic Vehicle Routing with Stochastic Customers. Oper-

ations Research, vol. 52, page 2004, 2004. 30, 35, 37

Bibliography

[Bent 2007] R. Bent and P. Van Hentenryck. Waiting and relocation strategies

in online stochastic vehicle routing. In Proceedings of the 20th interna-

tional joint conference on Artifical intelligence, pages 1816–1821, San

Francisco, CA, USA, 2007. Morgan Kaufmann Publishers Inc. 36, 37,

41, 76

[Bertsimas 1991] D.J. Bertsimas and G. van Ryzin. A Stochastic and Dynamic

Vehicle Routing Problem in the Euclidean Plane. Operations Research,

vol. 39, no. 4, pages 601–615, 1991. 33, 37, 40

[Bertsimas 1993a] D. Bertsimas and G.J. van Ryzin. Stochastic and dynamic

vehicle routing problem in the Euclidean plane with multiple capacitated

vehicles. Operations Research, vol. 41, pages 60–76, 1993. 40

[Bertsimas 1993b] D. Bertsimas and G.J. van Ryzin. Stochastic and dynamic

vehicle routing with general demand and interarrival time distributions.

Advanced Applied Probability, vol. 25, pages 947–978, 1993. 33, 37,

40

[Bianchi 2000] L. Bianchi. Notes on dynamic vehicle routing -the state of the

art-. Rapport technique, Istituto Dalle Molle Di Studi Sull Intelligenza

Artificiale, 2000. 29, 30, 32, 40

[Bianchi 2009] L. Bianchi, M. Dorigo, L. Gambardella and W. Gutjahr. A sur-

vey on metaheuristics for stochastic combinatorial optimization. Nat-

ural Computing, vol. 8, pages 239–287, 2009. 27

[Blackwell 2002] T. Blackwell and P.J. Bentley. Dynamic search with charged

swarms. In Proceedings of the Genetic and Evolutionary Computation

Conference, pages 19–26, 2002. 126

[Blackwell 2004] T. Blackwell and J. Branke. Multi-swarm Optimization in

Dynamic Environments. In Applications of Evolutionary Computing,

volume 3005, pages 489–500. Springer, 2004. 126

[Blackwell 2006] T. Blackwell and J. Branke. Multiswarms, exclusion, and

anti-convergence in dynamic environments. IEEE transactions on evo-

lutionary computation, vol. 10, no. 4, pages 459–472, 2006. 126

[Blackwell 2007] T. Blackwell. Particle swarm optimization in dynamic en-

vironments. In Evolutionary Computation in Dynamic and Uncertain

Environments, volume 51, pages 29–49. Springer, 2007. 90

174

Bibliography

[Blanton 1993] J.L. Blanton and R.L. Wainwright. Multiple Vehicle Routing

with Time and Capacity Constraints Using Genetic Algorithms. In Pro-

ceedings of the 5th International Conference on Genetic Algorithms,

pages 452–459, San Francisco, CA, USA, 1993. Morgan Kaufmann

Publishers Inc. 47

[Bosman 2006] P. Bosman and H. La Poutré. Computationally Intelligent

Online Dynamic Vehicle Routing by Explicit Load Prediction in an

Evolutionary Algorithm. In Parallel Problem Solving from Nature -

PPSN IX, volume 4193 of Lecture Notes in Computer Science, pages

312–321. Springer Berlin / Heidelberg, 2006. 47, 49

[Branchini 2009] R.M. Branchini, A.V. Armentano and A. Løkketangen.

Adaptive granular local search heuristic for a dynamic vehicle rout-

ing problem. Computers & Operations Research, vol. 36, no. 11, pages

2955–2968, 2009. 32, 37, 41, 42

[Branke 1999a] J. Branke. Memory enhanced evolutionary algorithms for

changing optimization problems. Evolutionary Computation, 1999.

CEC 99. Proceedings of the 1999 Congress on, vol. 3, pages –1882

Vol. 3, 1999. 105, 106, 125, 131

[Branke 1999b] J. Branke. The moving peaks benchmark website. [Online].

Available: http://www.aifb.uni-karlsruhe.de/ jbr/movpeaks, 1999.

127

[Branke 2000] J. Branke, T. Kaußler, C. Schmidt and H. Schmeck. A multi-

population approach to dynamic optimization problems. Adaptive com-

puting in design and manufacturing, vol. 2000, 2000. 125

[Branke 2002] J. Branke. Evolutionary optimization in dynamic environ-

ments. Kluwer Academic Publishers, 2002. 28

[Branke 2005a] J. Branke and D. C. Mattfeld. Anticipation and flexibility

in dynamic scheduling. International Journal of Production Research,

vol. 43, no. 15, pages 3103–3129, August 2005. 153

[Branke 2005b] J. Branke, M. Middendorf, G. Noeth and M. Dessouky. Wait-

ing Strategies for Dynamic Vehicle Routing. Transportation Science,

vol. 39, no. 3, pages 298–312, 2005. 40, 41, 46, 49, 55, 76, 99

[Breedam 1994] A. Van Breedam. An analysis of the behavior of heuristics

for the vehicle routing problem for a selection of problems with vehicle-

related, customer-related, and time-related constraints. PhD thesis,

University of Antwerp, Belgium, 1994. 42

175

Bibliography

[Carlisle 2002] A. Carlisle and G. Dozler. Tracking changing extrema with

adaptive particle swarm optimizer. Automation Congress, 2002 Pro-

ceedings of the 5th Biannual World, vol. 13, pages 265–270, 2002. 90

[Černỳ 1985] V. Černỳ. Thermodynamical approach to the traveling salesman

problem: An efficient simulation algorithm. Journal of optimization

theory and applications, vol. 45, no. 1, pages 41–51, 1985. 59

[Chen 2006a] A. Chen, G. Yang and Z. Wu. Hybrid discrete particle swarm

optimization algorithm for capacitated vehicle routing problem. Journal

of Zhejiang University-Science A, vol. 7, no. 4, pages 607–614, 2006.

100

[Chen 2006b] H-K. Chen, C-F. Hsueh and M-S. Chang. The real-time time-

dependent vehicle routing problem. Transportation Research Part E:

Logistics and Transportation Review, vol. 42, no. 5, pages 383 – 408,

2006. 55

[Chitty 2004] D. M. Chitty and M.L. Hernandez. A Hybrid Ant Colony Op-

timisation Technique for Dynamic Vehicle Routing. In Genetic and

Evolutionary Computation – GECCO 2004, volume 3102 of Lecture

Notes in Computer Science, pages 48–59. Springer Berlin / Heidel-

berg, 2004. 45, 49

[Christofides 1984] N. Christofides and J. Beasley. The period routing problem.

Networks, vol. 14, page 237256, 1984. 52, 78, 111, 136

[Clarke 1964] G. Clarke and J. W. Wright. Scheduling of Vehicles from a

Central Depot to a Number of Delivery Points. Operations Research,

vol. 12, no. 4, pages 568–581, July 1964. 71, 155

[Cohen 1995] P.R. Cohen and R. Kohavi. Empirical methods for artificial

intelligence. MIT press Cambridge, Mass, 1995. 114, 140

[Cordeau 2003] J-F. Cordeau and G. Laporte. A tabu search heuristic for the

static multi-vehicle dial-a-ride problem. Transportation Research Part

B: Methodological, vol. 37, no. 6, pages 579 – 594, 2003. 35, 55

[Cung 1997a] Van-Dat Cung, T. Mautor, P. Michelon and A. Tavares. A

scatter search based approach for the quadratic assignment problem. In

Evolutionary Computation, 1997., IEEE International Conference on,

pages 165 –169, 1997. 93

176

Bibliography

[Cung 1997b] V.D. Cung, T. Mautor, P. Michelon and A. Tavares. Improving

the efficiency of Scatter Search. In 2nd Metaheuristics International

Conference (MIC’97), 1997. 93

[Cung 2002] V.D. Cung, S.L. Martins, C.C. Ribeiro and C. Roucairol. Strate-

gies for the parallel implementation of metaheuristics. Essays and sur-

veys in metaheuristics, vol. 15, 2002. 145

[Dantzig 1959] G.B. Dantzig and J.H. Ramser. The truck dispatching problem.

Operations Research, Management Sciences, vol. 6(1), pages 80–91,

1959. 24

[Djadane 2006] M. Djadane, G. Goncalves, T. Hsu and R. Dupas. Dynamic

Vehicle Routing Problems under Flexible Time Windows and Fuzzy

Travel Times. Service Systems and Service Management, 2006 Inter-

national Conference on, vol. 2, pages 1519–1524, 2006. 37

[Eberhart 2001] R.C. Eberhart and Y. Shi. Tracking and optimizing dynamic

systems with particle swarms. In Evolutionary Computation, 2001.

Proceedings of the 2001 Congress on, volume 1, pages 94–100. IEEE,

2001. 90

[Eggermont 2001] J. Eggermont, T. Lenaerts, S. Poyhonen and A. Termier.

Raising the Dead: Extending Evolutionary Algorithms with a Case-

Based Memory. In Genetic Programming, volume 2038 of Lecture

Notes in Computer Science, pages 280–290. Springer Berlin / Heidel-

berg, 2001. 106

[Fabri 2006] A. Fabri and P. Recht. On dynamic pickup and delivery vehicle

routing with several time windows and waiting times. Transportation

Research Part B: Methodological, vol. 40, no. 4, pages 335–350, May

2006. 34, 55

[Fisher 1995] M. Fisher. Vehicle routing. In C.L. Monma M.O. Ball T.L. Mag-

nanti and G.L. Nemhauser, editeurs, Network Routing, volume 8 of

Handbooks in Operations Research and Management Science, pages 1

– 33. Elsevier, 1995. 52, 78, 111, 136

[Frieze 1982] A.M. Frieze, G. Galbiati and F. Maffioli. On the worst-case

performance of some algorithms for the asymmetric traveling salesman

problem. Networks, vol. 12, no. 1, pages 23–39, 1982. 70

[Funke 2005] B. Funke, T. Grünert and S. Irnich. Local search for vehicle

routing and scheduling problems: Review and conceptual integration.

Journal of heuristics, vol. 11, no. 4, pages 267–306, 2005. 68

177

Bibliography

[Gambardella 2003] LM. Gambardella, AE Rizzoli, F. Oliverio,

N. Casagrande, AV Donati, R. Montemanni and E. Lucibello.

Ant Colony Optimization for vehicle routing in advanced logistics

systems. In MAS2003-The International Workshop on Modeling &

Applied Simulation, pages 3–9, 2003. 44

[Garrido 2010] P. Garrido and M.C. Riff. DVRP: a hard dynamic combina-

torial optimisation problem tackled by an evolutionary hyper-heuristic.

Journal of Heuristics, vol. 16, pages 795–834, December 2010. 38, 46,

49

[Gee 2010] Geekbench benchmark. http://www.primatelabs.ca/

geekbench/, 2010. 80, 112, 158

[Gendreau 1998] M. Gendreau and J-Y. Potvin. Dynamic Vehicle Routing

and Dispatching. In Teodor G. Crainic and Gilbert Laporte, editeurs,

Fleet management and logistics, chapitre 5, pages 115–126. Kluwer,

Boston, 1998. 30

[Gendreau 1999] M. Gendreau, F. Guertin, J-Y. Potvin and E. Taillard. Par-

allel Tabu Search for Real-Time Vehicle Routing and Dispatching.

Transportation Science, vol. 33, no. 4, pages 381–390, 1999. 32, 37, 43,

46, 49, 62, 75

[Gendreau 2006] M. Gendreau, F. Guertin, J-Y. Potvin and R. Séguin. Neigh-

borhood search heuristics for a dynamic vehicle dispatching problem

with pick-ups and deliveries. Transportation Research Part C: Emerg-

ing Technologies, vol. 14, no. 3, pages 157 – 174, 2006. 30, 37, 43, 52,

55

[Gendreau 2010] M. Gendreau and C.D. Tarantilis. Solving large-scale vehi-

cle routing problems with time windows: The state-of-the-art. Rap-

port technique, Centre interuniversitaire de recherche sur les réseaux

d’entreprise, la logistique et le transport, 2010. 68

[Ghiani 2003] G. Ghiani, F. Guerriero, G. Laporte and R. Musmanno. Real-

time vehicle routing: Solution concepts, algorithms and parallel com-

puting strategies. European Journal of Operational Research, vol. 151,

pages 1–11, 2003. 23, 30, 32, 40

[Glover 1990] F. Glover. Tabu search, Part I. ORSA Journal on computing,

vol. 2, no. 1, pages 4–32, 1990. 59

178

http://www.primatelabs.ca/geekbench/
http://www.primatelabs.ca/geekbench/

Bibliography

[Goldberg 1987] D.E. Goldberg and R.E. Smith. Nonstationary Function Op-

timization Using Genetic Algorithms with Dominance and Diploidy.

In John J. Grefenstette, editeur, Proc. of the 2nd International Con-

ference on Genetic Algorithms and Their Applications, pages 59–68.

Lawrence Erlbaum Associates, 1987. 105

[Golden 1977] B. L. Golden, T. L. Magnanti and H. Q. Nguyen. Implementing

vehicle routing algorithms. Networks, vol. 7, no. 2, pages 113–148, 1977.

71

[Haghani 2005] A. Haghani and S. Jung. A dynamic vehicle routing problem

with time-dependent travel times. Computers & Operations Research,

vol. 32, no. 11, pages 2959 – 2986, 2005. 27, 34, 37, 47

[Hansen 1999] P. Hansen and N. Mladenović. An introduction to variable

neighborhood search. In S. Vo, S. Martello, I. Osman and C. Rou-

cairol, editeurs, Metaheuristics: Advances and trends in local search

paradigms for optimization, chapitre 30, pages 433–458. Kluwer Aca-

demic Publishers, 1999. 58, 59, 63, 155

[Hanshar 2007] F.T. Hanshar and B.M. Ombuki-Berman. Dynamic vehicle

routing using genetic algorithms. Applied Intelligence, vol. 27, pages

89–99, 2007. 23, 28, 30, 37, 38, 39, 44, 45, 49, 63, 74, 79, 80, 81, 86,

99, 111, 112, 113, 119, 136, 139, 144, 158, 159, 160, 162

[Hashimoto 2006] H. Hashimoto, T. Ibaraki, S. Imahori and M. Yagiura. The

VRP with flexible time windows and traveling times. Discrete Appl.

Math., vol. 154, pages 2271–2290, 2006. 153

[Housroum 2006] H. Housroum, T. Hsu, R. Dupas and G. Goncalves. A hy-

brid GA approach for solving the Dynamic Vehicle Routing Problem

with Time Windows. In 2nd International Conference on Information

& Communication Technologies: Workshop ICT in Intelligent Trans-

portation Systems, ICTTA’06, volume 1, pages 787–792, 2006. 23, 28,

34, 37, 38, 39, 46, 49, 99

[Hvattum 2006] L.M. Hvattum, A. Løkketangen and G. Laporte. Solving a

Dynamic and Stochastic Vehicle Routing Problem with a Sample Sce-

nario Hedging Heuristic. Transportation Science, vol. 40, pages 421–

438, 2006. 35, 37, 41

[Ichoua 2000] S. Ichoua, M. Gendreau and J-Y. Potvin. Diversion Issues in

Real-Time Vehicle Dispatching. Transportation Science, vol. 34, pages

426–438, 2000. 43, 49

179

Bibliography

[Ichoua 2003] S. Ichoua, M. Gendreau and J-Y. Potvin. Vehicle dispatching

with time-dependent travel times. European Journal of Operational

Research, vol. 144, pages 379–396, 2003. 49

[Jans 2007] R. Jans and Z. Degraeve. Meta-heuristics for dynamic lot sizing:

A review and comparison of solution approaches. European Journal of

Operational Research, vol. 177, no. 3, pages 1855 – 1875, 2007. 152

[Jih 1999] W-R. Jih and J. Yung-Jen Hsu. Dynamic vehicle routing using hy-

brid genetic algorithms. In IEEE International Conference on Robotics

and Automation, volume 1, pages 453 –458 vol.1, 1999. 47, 49, 99

[Jones 1995] T. Jones. Evolutionary Algorithms, Fitness Landscapes and

Search. PhD thesis, Univ. of New Mexico, Albuquerque, NM,, 1995.

58, 63

[Jun 2008] Q. Jun, J. Wang and B-J. Zheng. A Hybrid Multi-objective Algo-

rithm for Dynamic Vehicle Routing Problems. In Proceedings of the

8th international conference on Computational Science, Part III, ICCS

’08, pages 674–681, Berlin, Heidelberg, 2008. Springer-Verlag. 44, 49,

98

[Kennedy 1995] J. Kennedy and R. Eberhart. Particle swarm optimization. In

IEEE International Conference on Neural Networks, 1995., volume 4,

pages 1942–1948., 1995. 94

[Kennedy 2001] J. Kennedy, R. Eberhart and Y. Shi. Swarm intelligence.

Morgan Kaufmann Publishers, 2001. 94

[Kilby 1998] P. Kilby, P. Prosser and P. Shaw. Dynamic VRPs: A study of

scenarios. APES-06-1998, University of Strathclyde, U.K., 1998. 28,

32, 37, 41, 52, 75, 78, 80, 111, 135, 156

[Kindervater 1989] G.A.P. Kindervater, J.K. Lenstra and D.B. Shmoys. The

parallel complexity of TSP heuristics. Journal of Algorithms, vol. 10,

no. 2, pages 249–270, 1989. 70

[Kirkpatrick 1983] S. Kirkpatrick, C.D. Gelatt and M.P. Vecchi. Optimization

by simulated annealing. science, vol. 220, no. 4598, page 671, 1983. 59

[Larsen 2000] A. Larsen. The Dynamic Vehicle Routing Problem. PhD thesis,

Technical University of Denmark, 2000. 28, 29, 30

180

Bibliography

[Larsen 2002] A. Larsen, O.B.G. Madsen and M.M. Solomon. Partially dy-

namic vehicle routing-models and algorithms. The Journal of the Op-

erational Research Society, vol. 53, no. 6, pages 637–646, 2002. 30, 33,

34

[Larsen 2004] A. Larsen, O.B.G. Madsen and M.M. Solomon. The a priori dy-

namic traveling salesman problem with time windows. Transportation

Science, vol. 38, no. 4, pages 459–472, 2004. 34, 37, 41

[Larsen 2008] A. Larsen, O.B.G. Madsen and M.M. Solomon. Recent De-

velopments in Dynamic Vehicle Routing Systems. In Bruce Golden,

S. Raghavan and Edward Wasil, editeurs, The Vehicle Routing Prob-

lem: Latest Advances and New Challenges, volume 43 of Operations

Research/Computer Science Interfaces Series, pages 199–218. Springer

US, 2008. 25

[Lewis 1998] J. Lewis, E. Hart and G. Ritchie. A Comparison of Dominance

Mechanisms and Simple Mutation on Non-stationary Problems. In

Proceedings of the 5th International Conference on Parallel Problem

Solving from Nature, PPSN V, pages 139–148, London, UK, 1998.

Springer-Verlag. 105

[Li 2006] X. Li, J. Branke and T. Blackwell. Particle swarm with speciation

and adaptation in a dynamic environment. In GECCO’06: Proceedings

of the 8th annual conference on Genetic and evolutionary computation,

pages 51–58, New York, NY, USA, 2006. ACM. 90

[Lin 1965] S. Lin. Computer solutions of the traveling salesman problem. Bell

System Computer Journal, vol. 44, pages 2245–2269, 1965. 41, 68, 155

[Louis 1996] S.J. Louis and Z. Xu. Genetic algorithms for Open Shop Schedul-

ing and Re-Scheduling. In M. E. Cohen and D. L. Hudson, editeurs,

11th Int. Conf. on Computers and their Applications (ISCA), pages

99–102, 1996. 105, 106

[Lund 1996] K. Lund, O.B.G. Madsen and J.M. Rygaard. Vehicle Routing

Problems with Varying Degrees of Dynamism. Rapport technique,

IMM, The Department of Mathematical Modelling, Technical Univer-

sity of Denmark, 1996. 28

[Magalhães 2006] J.M. De Magalhães and J. Pinho De Sousa. Dynamic VRP

in pharmaceutical distribution -a case study. Central European Journal

of Operations Research, vol. 14, no. 2, pages 177–192, 2006. 27

181

Bibliography

[Mitrović-Minić 2004a] S. Mitrović-Minić, R. Krishnamurti and G. Laporte.

Double-horizon based heuristics for the dynamic pickup and delivery

problem with time windows. Transportation Research Part B: Method-

ological, vol. 38, no. 8, pages 669 – 685, 2004. 30, 34, 37, 41, 43, 49,

55, 62

[Mitrović-Minić 2004b] S. Mitrović-Minić and G. Laporte. Waiting strate-

gies for the dynamic pickup and delivery problem with time windows.

Transportation Research Part B: Methodological, vol. 38, no. 7, pages

635 – 655, 2004. 41

[Montemanni 2005a] R. Montemanni, L.M. Gambardella, A.E. Rizzoli and

A.V. Donati. Ant Colony System for a Dynamic Vehicle Routing Prob-

lem. Journal of Combinatorial Optimization, vol. 10, pages 327–343,

2005. 52

[Montemanni 2005b] R. Montemanni, L.M. Gambardella, A.E. Rizzoli and

A.V. Donati. A new algorithm for a dynamic vehicle routing problem

based on Ant colony system. Journal of Combinatorial Optimization,

vol. 10, pages 327–343, 2005. 23, 28, 30, 32, 37, 38, 39, 44, 45, 49, 55,

63, 74, 75, 79, 80, 81, 86, 98, 111, 112, 113, 119, 136, 139, 144, 158,

159, 160, 162

[Oliveira 2008] S. Oliveira, S.R. De Souza and M.A.L. Silva. A Solution of

Dynamic Vehicle Routing Problem with Time Window via Ant Colony

System Metaheuristic. In Neural Networks, 2008. SBRN ’08. 10th

Brazilian Symposium on, pages 21 –26, 2008. 34, 37, 45, 49

[Oppacher 1999] F. Oppacher and M. Wineberg. The shifting balance genetic

algorithm: Improving the GA in a dynamic environment. In Proceed-

ings of the Genetic and Evolutionary Computation Conference, vol-

ume 1, pages 504–510, 1999. 125

[Or 1996] I. Or. Traveling salesman-type combinatorial optimization problems

and their relation to the logistics of regional blood banking. PhD thesis,

Northwestern University, Evanston, Illinois, 1996. 42

[Osman 1993] I.H. Osman. Metastrategy simulated annealing and tabu search

algorithms for the vehicle routing problem. Annals of Operations Re-

search, vol. 41, no. 4, pages 421–451, 1993. 44, 63, 67, 103

[Pankratz 2005] G. Pankratz. Dynamic vehicle routing by means of a genetic

algorithm. International Journal of Physical Distribution & Logistics

Management, vol. 35, no. 5, pages 362–383, 2005. 55

182

Bibliography

[Papastavrou 1996] J.D. Papastavrou. A stochastic and dynamic routing pol-

icy using branching processes with state dependent immigration. Euro-

pean Journal of Operational Research, vol. 95, no. 1, pages 167–177,

1996. 40

[Parrott 2004] D. Parrott and X. Li. A particle swarm model for tracking

multiple peaks in a dynamic environment using speciation. In Evolu-

tionary Computation, 2004. CEC2004. Congress on, volume 1, 2004.

126

[Pavone 2009] M. Pavone, N. Bisnik, E. Frazzoli and V. Isler. A Stochastic and

Dynamic Vehicle Routing Problem with Time Windows and Customer

Impatience. Mobile Networks and Applications, vol. 14, pages 350–364,

2009. 35, 37

[Potvin 1995] J-Y. Potvin and J-M. Rousseau. An exchange heuristic for rout-

ing problems with time windows. Journal of the Operational Research

Society, vol. 46, pages 1433–1446, 1995. 68, 155

[Potvin 2006] J-Y. Potvin, Y. Xu and I. Benyahia. Vehicle routing and

scheduling with dynamic travel times. Comput. Oper. Res., vol. 33,

pages 1129–1137, April 2006. 36, 37

[Prins 2004] C. Prins. A simple and effective evolutionary algorithm for the

vehicle routing problem. Computers & Operations Research, vol. 31,

no. 12, pages 1985–2002, October 2004. 103

[Psaraftis 1988] H.N. Psaraftis. Dynamic vehicle routing problems. Vehicle

routing: Methods and studies, vol. 16, pages 223–248, 1988. 24, 32,

37, 41

[Psaraftis 1995] H.N. Psaraftis. Dynamic vehicle routing: status and

prospects. Annals of Opertations Reasearch, vol. 61, pages 143–164,

1995. 23, 24, 26

[Ramsey 1993] C.L. Ramsey and J.J. Grefenstette. Case-based initialization

of genetic algorithms. In Proceedings of the Fifth International Con-

ference on Genetic Algorithms, pages 84–91. Citeseer, 1993. 105, 106

[Rizzoli 2007] A. Rizzoli, R. Montemanni, E. Lucibello and L. Gambardella.

Ant colony optimization for real-world vehicle routing problems. Swarm

Intelligence, vol. 1, pages 135–151, 2007. 44, 45, 49

183

Bibliography

[Rochat 1995] Y. Rochat and É.D. Taillard. Probabilistic diversification and

intensification in local search for vehicle routing. Journal of heuristics,

vol. 1, no. 1, pages 147–167, 1995. 43, 62, 103, 106

[Salomon 1998] R. Salomon and P. Eggenberger. Adaptation on the evolu-

tionary time scale: A working hypothesis and basic experiments. In

Artificial Evolution, volume 1363 of Lecture Notes in Computer Sci-

ence, pages 251–262. Springer Berlin / Heidelberg, 1998. 52

[Savelsbergh 1995] M. W. P. Savelsbergh and M. Sol. The General Pickup

and Delivery Problem. Transportation Science, vol. 29, no. 1, pages

17–29, 1995. 34

[Scheffermann 2009] R. Scheffermann, M. Bender and A. Cardeneo. Robust

solutions for vehicle routing problems via evolutionary multiobjective

optimization. In Proceedings of the 11th Congress on Evolutionary

Computation, pages 1605–1612, 2009. 153

[Shi 1998] Y. Shi and R. Eberhart. A modified particle swarm optimizer. In

Evolutionary Computation Proceedings, 1998. IEEE World Congress

on Computational Intelligence., The 1998 IEEE International Confer-

ence on, pages 69–73, 1998. 96

[Snoek 2001] M. Snoek. Anticipation Optimization in Dynamic Job Shops.

In Proceedings of the 2001 Genetic and Evolutionary Computation

Conference, 2001. 153

[Song 2005] J. Song, J. Hu, Y. Tian and Y. Xu. Re-optimization in dynamic

vehicle routing problem based on Wasp-like agent strategy. In Intel-

ligent Transportation Systems, 2005. Proceedings. 2005 IEEE, pages

231 – 236, 2005. 40

[Sörensen 2003] K. Sörensen. A framework for robust and flexible optimization

using meta-heuristics with applications in supply chain design. PhD

thesis, Antwerp, 2003. 152

[Sörensen 2009] K. Sörensen and M. Sevaux. A Practical Approach for Robust

and Flexible Vehicle Routing Using Metaheuristics and Monte Carlo

Sampling. Journal of Mathematical Modelling and Algorithms, vol. 8,

pages 387–407, 2009. 153

[Sun 2007] L. Sun, X. Hu, Z. Wang and M. Huang. A Knowledge-Based

Model Representation and On-Line Solution Method for Dynamic Ve-

hicle Routing Problem. In ICCS ’07: Proceedings of the 7th interna-

184

Bibliography

tional conference on Computational Science, Part IV, pages 218–226,

Berlin, Heidelberg, 2007. Springer. 27

[Swihart 1999] M.R. Swihart and J.D. Papastavrou. A stochastic and dynamic

model for the single-vehicle pick-up and delivery problem. European

Journal of Operational Research, vol. 114, pages 447–464, 1999. 34,

37, 40

[Taillard 1993] É. Taillard. Parallel iterative search methods for vehicle rout-

ing problems. Networks, vol. 23, no. 8, pages 661–673, 1993. 52, 78,

111, 136

[Talbi 2009] E-G. Talbi. Metaheuristics: from design to implementation.

Wiley-Blackwell, 2009. 42, 59, 72, 91, 93, 108, 111, 128, 134, 145

[Tian 2003] Y. Tian, J. Song, D. Yao and J. Hu. Dynamic vehicle routing

problem using hybrid ant system. In IEEE Conference on Intelligent

Transportation Systems, volume 2, pages 970 – 974 vol.2, 2003. 44,

49, 98

[Trojanowski 1997] K. Trojanowski, Z. Michalewicz and J. Xiao. Adding

memory to the Evolutionary Planner/Navigator. In Evolutionary Com-

putation, 1997, IEEE International Conference on, pages 483 –487, apr

1997. 106

[Ursem 2000] R.K. Ursem. Multinational GAs: Multimodal Optimization

Techniques in Dynamic Environments. In Proceedings of the Second

Genetic and Evolutionary Computation Conference. Morgan Kauf-

mann, 2000. 125

[Van Hemert 2004] J. Van Hemert and J. La Poutré. Dynamic Routing Prob-

lems with Fruitful Regions: Models and Evolutionary Computation. In

Parallel Problem Solving from Nature - PPSN VIII, volume 3242 of

Lecture Notes in Computer Science, pages 692–701. Springer Berlin /

Heidelberg, 2004. 47, 49

[Wang 2006] W. Wang, B. Wu, Y. Zhao and D. Feng. Particle Swarm Opti-

mization for Open Vehicle Routing Problem. In Computational Intel-

ligence, volume 4114, pages 999–1007. Springer, 2006. 100

[Wang 2007] J-Q. Wang, X.-N. Tong and Z.-M. Li. An Improved Evolution-

ary Algorithm for Dynamic Vehicle Routing Problem with Time Win-

dows. In ICCS’07: Proceedings of the 7th international conference on

Computational Science, Part IV, pages 1147–1154, Berlin, Heidelberg,

2007. Springer. 27, 34, 47, 49, 99

185

Bibliography

[Weicker 1999] K. Weicker and N. Weicker. On Evolution Strategy Optimiza-

tion in Dynamic Environments. In 1999 Congress on Evolutionary

Computation, pages 2039–2046. IEEE Press, 1999. 50

[Weicker 2002] K. Weicker. Performance measures for dynamic environments.

In Parallel Problem Solving from Nature PPSN VII, pages 64–76.

Springer, 2002. 50, 58, 83, 117

[Xu 2008] J. Xu, G. Goncalves and H. Tinte. Genetic algorithm for the vehicle

routing problem with time windows and fuzzy demand. In Evolutionary

Computation, 2008. CEC 2008. (IEEE World Congress on Computa-

tional Intelligence). IEEE Congress on, pages 4125 –4129, 2008. 36,

37

[Yang 2004] J. Yang, P. Jaillet and H. Mahmassani. Real-Time Multivehi-

cle Truckload Pickup and Delivery Problems. Transportation Science,

vol. 38, pages 135–148, 2004. 35, 37

[Yellow 1970] P. C. Yellow. A Computational Modification to the Savings

Method of Vehicle Scheduling. Operational Research Quarterly, vol. 21,

no. 2, pages 281–283, 1970. 71, 155

[Zhao 2008] X. Zhao, G. Goncalves and R. Dupas. A genetic approach to

solving the vehicle routing problem with time-dependent travel times.

In 16th Mediterranean Conference on Control and Automation, pages

413 –418, 2008. 46, 49

[Zhu 2006] Q. Zhu, L. Qian, Y. Li and S. Zhu. An Improved Particle Swarm

Optimization Algorithm for Vehicle Routing Problem with Time Win-

dows. In Evolutionary Computation, 2006. CEC 2006. IEEE Congress

on, pages 1386–1390, 2006. 100

186

	Title
	Abstract
	Résumé
	Contents
	List of Figures
	List of Tables
	Introduction
	Chapter 1 : Dynamic Vehicle Routing Problems: Overview, Approaches, and Performance Measures
	Introduction
	Dynamic Vehicle Routing Problem
	Problem Definition
	Formal Description
	Degree of Dynamism
	Dynamic Versus Static
	DVRP Interests
	Related Works

	Solution Representation
	Solving Methods
	Strategy-Based Algorithms
	Heuristics
	Metaheuristics

	Dynamic Performance Measures
	Benchmarks
	Conclusion

	Chapter 2 : Single-Solution Based Metaheuristics for Solving Dynamic Vehicle Routing Problem
	Introduction
	Single-Solution Based Metaheuristics
	Neighborhood
	Initial Solution

	S-Metaheuristics for DVRP: Literature Review
	Variable Neighborhood Search for Dynamic Vehicle Routing Problem
	Variable Neighborhood Search (VNS)
	DVRP Solution's Representation
	Neighborhood
	Initial Solution
	Evaluation of the Neighborhood
	VNS-DVRP Algorithm

	Simulation and Solving Framework
	Event Manager
	Vehicle Schedule and Waiting Strategy

	Experimental Results and Discussion
	Benchmark Description
	Comparison with State-of-the-Art Metaheuristics
	Performance on Large Scale Instances
	Study on Varying the Degree of Dynamism
	Dynamic Performance Assessment

	Conclusion

	Chapter 3 : Population Based Metaheuristics for Solving Dynamic Vehicle Routing Problem
	Introduction
	Common Concepts for Population-Based Metaheuristics
	 Initial Population

	Particle Swarm Optimization
	P-Metaheuristics for DVRP: Literature Review
	Ant Colony Optimization (ACO)
	Evolutionary Algorithms (EAs)

	Particle Swarm Optimization for DVRP
	Particle Representation
	Review of Literature
	Proposed Representation
	Velocity vector
	Particle Movement
	Swarm Initialization
	Adaptive Memory Mechanism

	Adaptive Particle Swarm Optimization
	APSO-DVRP Algorithm
	Hybridization with Heuristics

	Experimental Results and Discussion
	Comparison with State-of-the-Art Metaheuristics
	Large Scale Instances
	Study on Varying the Degree of Dynamism
	Dynamic Performances Assessment

	Conclusion

	Chapter 4 : Multi-Population Based Metaheuristics for Solving Dynamic Vehicle Routing Problem
	Introduction
	Multi-population Approaches for Dynamic Optimization Problems
	Parallel Design of MP-Metaheuristics for Dynamic Optimization Problems
	Interests
	 Cooperative Parallel Model for MP-Metaheurisitcs

	Parallel Multi-Swarm Optimization for DVRP
	Parallel Implementation of MP-Metaheuristics
	Experimental Results and Discussion
	Comparison with State-of-the-Art Metaheuristics
	Study on Varying the Number of Sub-Populations
	Dynamic Performance Assesment
	Parallel Performance Assessment

	Conclusion

	Chapter 5 : Flexibility and Robustness in Dynamic Vehicle Routing
	Introduction
	Background
	Flexible Solving Strategy
	Flexible VNS for DVRP
	Experimental Results and Discussion
	Study on Sensitivity of the Flexibility Parameter
	Comparison with State-of-the-Art Metaheurisitcs
	Flexibility vs Multi-Populations
	Dynamic Performance Assessment

	Conclusion

	Conclusions and Future Work
	Publications
	Bibliography

	source: Thèse de Mostepha Redouane Khouadjia, Lille 1, 2011
	d: © 2012 Tous droits réservés.
	lien: http://doc.univ-lille1.fr

