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Abstract

Many problems in the real world have dynamic nature and can be modeled
as dynamic combinatorial optimization problems. However, research on dy-
namic optimization focuses on continuous optimization problems, and rarely
targets combinatorial problems. One of the applications in dynamic combi-
natorial problems that has received a growing interest during the last decades
is the on-line or dynamic transportation systems. A typical problem of this
domain is the Dynamic Vehicle Routing Problems (DVRPs). In this latter,
the dynamism can be attributed to several factors (weather condition, new
customer order, cancellation of old demand, vehicle broken down, etc.). In
such application, information on the problem is not completely known a priori,
but instead is revealed to the decision maker progressively with time. Con-
sequently, solutions for different instances have to be found as time proceeds,
concurrently with managing the incoming information. Such problems call for
a methodology to track their optimal solutions through time.

In this thesis, the dynamic vehicle routing problem is addressed and de-
veloping general methodologies called metaheuristics to tackle this problem
is investigated. Their ability to adapt to the changing environment and their
robustness are discussed.

First, a definition and a description of the problem as well as measures of
algorithm performance are reviewed. Then, mechanisms to improve the abil-
ity of the algorithm to efficiently track optima shifting due to environmental
changes are investigated. These methods include adaptive changing of the
neighborhood in single solution based metaheuristics (S-metaheuristics), an
adaptive memory mechanism for population based metaheuristics (P-metaheu-
ristics), the use of parallel multi-populations approach as an additional means
to control diversity and the incorporation of flexibility into metaheuristics in
order to obtain robust algorithms able to produce good solutions by antici-
pating future changes.

Experimental results demonstrate that the methods are effective on this
problem and hence have a great potential for other dynamic combinatorial
problems.

Key-words: Dynamic vehicle routing problem, single-solution based meta-
heuristics, population-based metaheuristics, multi-population based metaheuri-
stics, flexibility and robustness.
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Résumé

Beaucoup de problemes dans le monde réel ont une nature dynamique et
peuvent étre modélisés comme des problemes dynamiques d’optimisation com-
binatoire. Cependant, les travaux de recherches sur 'optimisation dynamique
se concentrent essetiellement sur les problemes d’optimisation continue, et ils
ciblent rarement les problemes combinatoires.

Une des applications dans le domaine des problemes dynamiques combina-
toires ayant recu un intérét croissant au cours de ces dernieres décennies est
le systeme de transport en ligne ou dynamique. Un probleme typique de ce
domaine est le Probleme Dynamique de Tournées de Véhicules (PDTV). Dans
ce dernier, le dynamisme peut étre attribué selon plusieurs facteurs (condi-
tions météorologiques, nouvelle commande client, annulation d’une commande
précédente, véhicule tombant en panne, etc.). Dans un tel probleme, les in-
formations ne sont pas compléetement connues a priori, mais plutot révélées
au décideur progressivement avec le temps. Par conséquent, les solutions des
différentes instances doivent étre trouvées au fur et a mesure du temps simul-
tanément avec les informations entrantes. Ces problemes font appel a une
méthodologie capable de suivre les solutions optimales au cours du temps.
Dans cette these, le probleme dynamique de tournées de véhicules est étudié
et le développement de méthodologies générales appelées métaheuristiques
pour sa résolution est traité. Leur capacité a s’adapter a l’évolution de
I’environnement et leur robustesse sont discutées.

En premier, une définition et une description du probleme ainsi que les mesures
de performance des algorithmes sont passées en revue.

Ensuite, les mécanismes permetant ’amélioration de la faculté de ’algorithme
pour suivre efficacement le déplacement de l'optimum sont étudiés. Ces
méthodes incluent le changement adaptatif du voisinage dans les métaheuristiques
a base de solution unique (S-métaheuristiques), des mécanismes de mémoire
adaptative pour les métaheuristiques a base de population (P-métaheuristiques),
I'utilisation des approches multi-populations paralleles comme moyen suppl-
mentaire de controle de diversité et enfin 'intégration de la flexibilité dans les
métaheuristiques afin d’obtenir des algorithmes robustes capables de produire
de bonnes solutions en anticipant les changements futurs.

Les résultats des expérimentations montrent que les méthodes sont efficaces
sur ce probléeme et ont donc un grand potentiel pour d’autres problemes com-
binatoires dynamiques.

Mots-clés: probleme dynamique de tournées de véhicules, métaheuristiques
a base de solution unique, métaheuristiques a base de population, métaheuristiques
a base de multi-population, flexibilité et robustesse.
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Introduction

This Ph.D. thesis focuses on solving dynamic combinatorial problems and
particularly logistic and transportation problems. It is the results of three
years held in Dolphir[]] research group of the French National Institute for Re-
search in Computer Science and Control INRIA Lille Nord Europe and Lille’s
Computer Science Laboratory (LIFL, CNRS, Lille-1 University).

Many complex real-world problems are dynamic, and change over time,
whether their objective function, decision variables, or the constraints. This
involves that the optimal solution might change at any time due to changes
in the environment. These problems are grouped into a class known as Dy-
namic Combinatorial Optimization Problems (DCOPs). This dynamism can
be attributed to several factors; natural (weather conditions), human and
material (absence and sickness of workers, machines broken down), or busi-
ness factors (new job opportunity, cancellation of old ones, production and
quality changing, etc.). In such applications, information on the problem is
not completely known a priori, but instead is revealed to the decision maker
progressively with time. Consequently, solutions for different instances of a
typical dynamic problem have to be found as time proceeds, concurrently with
the incoming information. Such problems call for a methodology to track their
optimal solutions through time.

Nowadays, real-time information and communication systems become in-
creasingly available and the processing of real-time data becomes increasingly
affordable, more and more new versions of highly dynamic real-world appli-
cations are created.

In distribution systems (repair services, courier mail services, dial-a-ride
services, etc.) most operations become under strict temporal restrictions. In
addition, recent advances in information and communication technologies, ve-
hicle fleets can now be managed in real-time. When jointly used, devices
like geographic information systems (GIS), global positioning systems (GPS),
traffic flow sensors and cellular telephones are able to provide real-time data,
such as current vehicle locations, new customer requests, and periodic esti-
mates of road travel times. This large amount of data can be used to reduce
the cost and improve the service level of companies, and might provide revised
routes that can be timely generated as soon as new events occur. This fact
has caused an increasing interest in dynamic or on-line transportation models
and systems in which data are considered to be time-dependent.

! Discrete multi-objective Optimization for Large scale Problems with Hybrid dlstributed
techNiques.
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One of the problems that has received a growing interest during the last
years in on-line transportation systems is the Dynamic Vehicle Routing Prob-
lems (DVRPs). The traditional Vehicle Routing Problem (VRP) consists in
constructing minimum cost routes for the fleet of vehicles to serve a set of
customers so that they are visited exactly once.

There are many applications in which the problem can be considered on-
line. To name a few examples; the routing of police cars, taxi services or
ambulances. Furthermore, there are even applications that would tradition-
ally be considered offline, but could be subject to sudden changes, like new
customers appearing that urgently need service, traffic accidents making the
planned routes impossible, changes in the demands of customers, changed
traveling times due to heavy traffic, vehicles breaking down, etc. We consider
here the Dynamic Capacitated Vehicle Routing Problem (DCVRP) where the
customer orders are unknown when the optimization process begins, i.e. their
orders and positions will be known only after the vehicles have left the starting
node. Thus, the initial problem’s specification can change while the vehicles
are serving their previously assigned customers. This involves that the optimal
solution might change at any time due to these new customer demands.

In the literature, many approaches for solving DVRP can be found. Some
of them correspond to simple, yet specialized, constructive/improvement heuris-
tics, while the rest represent sophisticated metaheuristics approaches. During
the last decade, metaheuristics are raising a large interest in dynamic op-
timization problems and particularly on-line transportation domain. They
represent more general approximate algorithms applicable to a large variety
of optimization problems. They provide acceptable solutions in a reasonable
time for solving hard and complex problems in science and engineering. Meta-
heuristics solve instances of problems by exploring large solution search space
of these instances. These algorithms achieve this by reducing the effective
size of the space and by exploring that space efficiently. Mainly, they can be
grouped into two classes of algorithms; single-solution based metaheuristics
and population based metaheuristics.

This thesis is concerned with the use of metaheuristics to tackle the dy-
namic vehicle routing problem with dynamic immediate requests. It provides
a state of the art and latest research on dynamic vehicle routing problems,
and how metaheuristics may be applied to face this kind of problems.

The research presented in this thesis has progressed in three phases. In
the first phase, state-of-the-art that covers a description and specificities of
the problem is given. Dynamic performance measures are presented in order
to quantify the adaptation of the algorithms throughout the optimization pro-
cess. Besides, the dynamic benchmarks of the problem and their development
and generation are reported to guide the future experiments.
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The second, the main phase, covers the development of adaptive algorithms
on DVRP. These algorithms cover the different classes of metaheuristics.

A class of approaches seem to be interesting for this problem is the Single-

solution based metaheuristics (S-metaheuristics). They could be viewed as
search trajectories over the search space of the problem. These trajectories
are performed by iterative procedures that move from the current solution to
another one in the search space.
One of the recent approaches in the filed of S-metaheuristic is Variable Neigh-
borhood Search (VNS). It consists in adaptively changing the neighborhood
in order to get different local optima and to escape from local optima. In
addition, the characteristic of changing the neighborhood structure might of-
fer a powerful mechanism of adaptivity to the environmental changing. Since
different neighborhoods generate different landscapes. Moreover, a solution
that is locally optimal on the search landscape with respect to a neighborhood
is probably not locally optimal with respect to another neighborhood and the
global optima is one of the local optima of a given neighborhood.

For that purpose, we address in this thesis the class of S-metaheuristics
represented by Variable Neighborhood Search for solving Dynamic Vehicle
Routing Problem.

Another class of metaheuristics might adapt to the changing in different
ways. Indeed, a standard approach to deal with dynamism in optimization
problems is to regard each change as the arrival of new problem instance that
has to be solved from scratch. However, this simple idea is often impracti-
cal. On the one hand, it could be too time-consuming. On the other hand,
environmental changes in real life typically do not alter the problem com-
pletely, but affect only some part of the problem at a time. For example, not
all vehicles break down at once, not all pre-made assignments are canceled,
weather changes affect only parts of roads, any other events like sickness of
employees and machine breakdown do not happen all at once. Thus, after
an environmental change, there remains some information from the past that
can be used in the future. The required algorithm should not only be able to
track combinatorial problems, but should also be adaptive to changes in the
environment.

Population-based metaheuristics (P-Metaheuristics) exhibit a number of
potential advantages for such purposes. They start from an initial population
of solutions and iteratively apply the generation of a new population and the
replacement of the current one.

Particle Swarm Optimization (PSO) is one of the most commonly used P-
Metaheuristic for solving dynamic continuous problems as it proved to be
effective solvers for a broad range of these problems. Second, there are several
characteristics inherent and attributed to PSO that encourage their use for
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dynamic problems.

For this purpose, we present in this thesis an Adaptive Particle Swarm
Optimization for solving Dynamic Vehicle Routing Problem. The underlying
principle this approach is based on swarm intelligence, and hence they are
expected to be capable of adaptation to environmental changes. In addition,
PSO has proved to be suitable for dynamic environments due to their ability
to store and exploit previous solutions. One of the most appealing features
for dynamic environments is that, at any given instant, it deals with a popu-
lation of solutions and even if the environment changes, it is likely that some
solutions in the population remain feasible and retain some of their good qual-
ity. These solutions could be useful for tracking the new optimum since the
dynamic change may cause the optima to be in the neighborhood of an old
solution more often.

However, the main problem with P-metaheuristics used for dynamic opti-
mization problems appears to be that they eventually converge to a non-global
optimum and thereby lose their diversity necessary for efficiently exploring
the search space. Consequently, also their ability to adapt to a change in
the environment when such a change occurs. Therefore, approaches should
counterbalance the effect of diversity loss by maintaining diversity throughout
the run. This may be achieved by a Multi-Population based Metaheuristics
(MP-Metaheuristics). In multi-population approach, a part of the popula-
tion clusters around any local optimum it may discover, and remains close
to this optimum for further exploration. The remainder of the population
continues to search for new local optima, and the process is repeated if any
more local optima are found. Furthermore, the subpopulation can cooperate
and exchange information during the search and be more reactive to the next
changing. Besides, parallelizing such a metaheuristics in real-time context is
an important aspect due to the hard requirement on search time especially
when we deal with strong dynamic problems in which changes occur in re-
peated manner and within short intervals.

Thus, we investigate in this thesis whether a multi-population metaheuris-
tic might also be beneficial in dynamic vehicle routing problems. For this
purpose, we elaborate a Multi-Swarm Optimization approach and evaluating
it on parallel architecture.

The third phase aims to demonstrate that developing a potentially effec-
tive algorithms is not enough. One should aim at creating robust solutions
that maintain high solution quality even when the environment changes. This
robustness can be implemented by a flexibility measure that allows the an-
ticipation of changes (future customer orders) and to explicitly search for
solutions that not only have high quality, but that allow the adaptation of a
high quality solutions after the environment has changed. S-Metaheuristics
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seem to be good candidates for implementing this robustness since they tend
to be more effective in terms of intensification than diversification in the search
which can lead to loss their ability to track the shifting optimum.

Therefore, the last objective of this thesis is to integrate the flexibility
measure into a S-metaheuristic such as Variable neighborhood search in order
to build a solution that might anticipate the forthcoming arrival of new or-
ders. In our context, if new requests are expected, rather than just react
to the new demand, one should anticipate a change by trying to maintain
flexibility. As we will show, for the dynamic vehicle routing problem such
flexibility can be maintained by an early assignment of vehicles in the service
area. This allows to increase the availability of vehicles for the new customer
orders leading to decrease the number of vehicle detours or new assignment
of vehicle that can increase the solution cost.

All these aspects are addressed in this thesis, providing a holistic view on
the challenges and opportunities of applying metaheuristics on Dynamic Ve-
hicle Routing Problems (DVRP), and suitable novel approaches are developed
for each aspect.

The structure of this thesis is described in what follows:

e Chapter 1 gives a general overview on Dynamic Vehicle Routing Prob-
lems (DVRPs). Different related approaches from single solution based
metaheuristics to population based metaheuristics are outlined. After-
wards, performance measures defined in the literature for dynamic op-
timization problems are presented. Finally, available benchmark data
sets of the problem are presented as well as our new class of benchmarks
and their generation.

e Chapter 2 deals with solving the dynamic vehicle routing with single
solution based metaheuristics. It begins with the common concepts of
this class of metaheuristics. Then, Variable Neighborhood Search (VNS)
is proposed for solving DVRP. A comparison with respect to the quality
of the solutions and execution time of our approach and state-of-the-art
metaheuristics is done. Lastly, dynamic performances of our approach
are assessed.

e Chapter 3 concerns the design and implementation of population-based
metaheuristics for solving our problem. The common and specific search
concepts of this class of metaheuristics are outlined. An Adaptive Par-
ticle Swarm Optimization (APSO) is proposed. Comparison is carried
out to investigate the merits of adapting solutions to changes by us-
ing adaptive memory mechanism. The adaptivity of our algorithm is
assessed throughout dynamic performance indicators.
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e Chapter 4 explores the possible ways that researchers have to pro-

duce parallel multi-population approaches to solve dynamic vehicle rout-
ing problems by using Multi-Adaptive Particle Swarm Optimization
(MAPSO). A unified cooperative parallel model for multi-population
metaheuristics is analyzed in terms of design. Experimental results are
provided to evaluate the dynamic as well as parallel performances of our
approach.

Chapter 5 addresses the issue of finding solutions that are not only
optimal with respect to the current situation, but also with respect to
the expected changes in the environment. The aim is to find robust solu-
tions and flexible solutions that allow easy and successful adaptation by
anticipating future customer needs. As described previously, a flexibility
strategy is suggested and integrated in a Flexible Variable Neighborhood
Search (FVNS) that, when taken into account during optimization, may
yield significantly better results in a dynamic environment with new or-
ders arriving over the time. This strategy is validated with experiments
on conventional set of benchmarks.

This thesis concludes with a summary of our contributions and an outlook
on future work.
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Dynamic Vehicle Routing
Problems: Overview,
Approaches, and Performance
Measures
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1.1 Introduction

Thanks to recent advances in information and communication technologies,
vehicle fleets can now be managed in real-time. When jointly used, devices
like geographic information systems (GIS), global positioning systems (GPS),
traffic flow sensors and cellular phones are able to provide real-time data, such
as current vehicle locations, new customer requests, and periodic estimates of
road travel times. If suitably processed, this large amount of data can be used
to reduce the cost and improve the service level of a modern company. To
this end, revised routes have to be timely generated as soon as new events
occur [Ghiani 2003].

In this context, Dynamic Vehicle Routing Problems (DVRPs) are getting
increasingly important [Psaraftis 1995, Montemanni 2005b), [Housroum 2006},
Hanshar 2007]. These problems are also known as on-line or real-time Vehicle
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Routing Problems. The VRP |[Dantzig 1959] is a well-known combinatorial
problem which consists in designing routes for a fleet of capacitated vehicles
that are to service a set of geographically dispersed points (customers, stores,
schools, cities, warehouses, etc.) at the least cost (distance, time, or any
other desired factor). It is possible to define several dynamic features which
introduce dynamism in the classical VRP: roads between two customers could
be blocked off, customers could modify their orders, the travel time for some
routes could be increased due to bad weather conditions, etc. This implies
that Dynamic VRPs constitute in fact a set of different problems, which are
of crucial importance in today’s industry, accounting for a significant portion
of many distribution and transportation systems.

The main goal of this chapter is to present the problem of DVRP and
methods from literature for its resolution. The remainder of this chapter is
organized as follows. Section describes the dynamic VRP and its specific
characteristics. A succinct overview on the most proposed solution represen-
tations is given in SectionfI.3] A summary on solving methods from strategies
through heuristics and metaheurtistics is given in Section In order to
measure the dynamic performances of approaches, Section presents some
measures that can be used to this end. The most popular and available bench-
marks are reported in Section and finally, Section presents conclusion
and opens some lines for next chapters.

1.2 Dynamic Vehicle Routing Problem

In this section, we present the problem definition and its formal description
in Section and Section [I.2.2] Then, Section addresses how to
quantify the dynamism into such problem. Besides, Section compare
both static and dynamic versions of the problem in terms of characteristics,
and Section[1.2.5] presents some interests of the problem. Finally, a state-of-the
art on the common variants of the problem is presented in the Section [I.2.6]

1.2.1 Problem Definition

Psaraftis [Psaraftis 1995, [Psaraftis 1988] was among the first to study the Dy-
namic Vehicle Routing Problem (DVRP). He defines the static problem as:
“if the output of a certain formulation is a set of preplanned routes that are not
re-optimized and are computed from inputs that do not evolve in real-time”.
While he refers to a problem as dynamic if ”the output is not a set of routes,
but rather a policy that prescribes how the routes should evolve as a function
of those inputs that evolve in real-time”.
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This definition is elaborated in Larsen et al. [Larsen 2008], in which the prob-
lem is said dynamic when not all information relevant to the planning of the
routes is known by the planner when the routing process begins. Besides, the
information can change after the initial routes have been constructed. On the
counterpart, in the static vehicle routing problem, information is assumed to
be relevant, includes all attributes of the customers such as the geographical
location of the customers, the service time at each customer and all the details
about customer demand. Furthermore, the travel times of the vehicle between
the customers must be known by the planner.

From the above definitions, we can understand that when some inputs to the
problem are revealed during the execution of the algorithm. Thus, it is not
possible to determine in advance a set of optimized routes in a dynamic prob-
lem. Problem solution evolves as inputs are revealed to the algorithm and to
the decision maker.

Obviously, the DVRP is a richer problem compared to the conventional static
VRP. If the problem class of VRP is denoted P(V RP) and the problem class
of DVRP is denoted P(DV RP), then P(VRP) C P(DVRP). Given that
SVRP belongs to the class of NP-hard Problems, the DVRP belongs also to
this class, and it is more complicated than SVRP since a static problem should
be solved each time a new customer demand is received.

1.2.2 Formal Description

The conventional VRP can be mathematically modeled by using an undirected
graph G = (C, E), where C' is a vertex set, and F is an edge set. They are
expressed as C' = {cop, 1, ..., ¢n}, and E = {(¢;, ¢j)|ei, ¢; € C,i < j}. Further-
more, a set of m homogeneous vehicles each with capacity () originate from a
single depot, represented by the vertex ¢y and must service all the customers
represented by the set C'. The quantity of goods ¢; requested by each customer
i (i > 1) is associated with the corresponding vertex. The goal is to find a
feasible set of tours with the minimum total traveled distance. The VRP thus
consists in determining a set of m vehicle routes of minimal total cost, starting
and ending at a depot, such that every vertex in C' is visited exactly once by
one vehicle. The sum of the items associated with the vertexes contained in
it never exceeds the corresponding vehicle capacity (). The capacity means
the quantity of items (goods) that the vehicle could carry during its travel.
Let be Ry, ..., R,, a partition of C representing the routes of the vehicles to
service all the customers. The cost of a given route R; = {co,c1,...,cri1},
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where ¢; € C' and ¢y = ¢4 (denote the depot), is given by:

k
Cost(R;) = Z diit1 (1.1)
i=0

and the cost of the problem solution (.5) is:
Fypp(S) =Y _ Cost(R;) (1.2)
j=1

With a constraint on the vehicle capacity:

k
Z% Xyl < Q (1.3)
i=1

Where:

¢;: the associated quantity of the customer ¢; (items to be delivered/picked

up),

(Q)’: capacity of the vehicle j, and

i = { 1, if ¢; is served by the vehicle j (1.4)

0, otherwise

We will consider a service time d; (time needed to unload/load all goods),
required by a vehicle to load the quantity ¢; at ¢;. It is required that the
total duration of any vehicle route (travel plus service times) may not surpass
a given bound 7', so, a route R; = {cop,c1,...,cpy1} is feasible if the vehicle
stops exactly once in each customer and the travel time of the route does not
exceed a prespecified bound T corresponding to the end of the working day.

k k
Yo di Y &<T (1.5)
1=0 i=1

There may exist some restrictions such as the capacity of each vehicle,
total traveling distance allowed for each vehicle, time windows to visit the
specific customers, and so forth. The basic VRP deals with customers who
are known in advance; all other information such as the driving time between
the customers and the service times at the customers are also usually known
prior to the planning.

The Dynamic Vehicle Routing Problem (DVRP) [Psaraftis 1995] is
strongly related to the static VRP, as it can be described as a routing prob-
lem in which information about the problem can change during the opti-
mization process. Any dynamic combinatorial problem can be expressed as
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O Known request customer (static) — Planned route

@ New request customer (dynamic) —--9 New route segment

Figure 1.1: A dynamic vehicle routing with dynamic requests case.

P(t) = (X(t), f(t)), which is a time dependent formulation of the previous
definition of the static VRP. Thus, in that definition, any components of the
problem can change with time. Whether the objective function, decision vari-
ables, or the constraints. This involves that the optimal solution might change
at any time due to changes in the environment. The problem cannot be solved
in advance because the decision maker does not have a priori knowledge of the
entire problem [Bianchi 2009]. Therefore, the goal of the optimization process
is no longer finding a single optimal solution, but rather, tracking the shifting
optima over the time since the optimal solution for one instance could be a
poor solution or possibly even infeasible for the next environment.
Thus, a discrete-time dynamic problem and can be viewed as a series of
P instances; each instance is a static problem, which starts at time ¢ and
must be solved within a specific deadline /\;. We summarize that as follows
(Figure [1.2)):
P={(P,t;,\y) /] i =0,1,... 0mas} (1.6)

with this information the duration of the instance i is A; = t;11 — t;. The
maximum number of instances i,,,, can be infinite if the problem is open-
ended. A new instance P;.; is generated by the action of the environment
change d;,, on the instance P;. This is expressed by P;,1 = P, ® d,41. So, the
solutions obtained at time t; could not be the feasible solutions for time ¢;,; .

This change in the environment can be due to several factors; for example,
travel times can be time- [Haghani 2005] or traffic-dependent [Wang 2007],
orders may be withdrawn or changed [Sun 2007], some clients may be unknown
when the execution begins [Magalhaes 2006], etc. One standard approach to
deal with this changing is to consider the entire problem as a series of instances.
Each change corresponds to the arrival of new optimization problem that has
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to be solved. The time consecrated for solving each instance depends on the
frequency of changes [Branke 2002].

A static sequence

-

Time

Figure 1.2: Decomposition of a dynamic problem P = (P, P, P3, P;) in a
sequence of static instances.

The goal is to design an optimization algorithm that is capable of con-
tinuously adapting the solution to a changing environment. This approach
is now commonly followed by the community that works on the DVRP do-
main [Kilby 1998 Montemanni 2005bl [Housroum 2006, [Hanshar 2007].

A simple example of a dynamic vehicle routing situation is shown in Fig-
ure [1.2.2] In the example, two un-capacitated vehicles must service both
known and new request customers.

1.2.3 Degree of Dynamism

Designing a real-time routing algorithm depends to a large extent on how
much the problem is dynamic. The dynamic aspect of the problem concerns
the number of dynamic events, their location and the time in when these
events take place. To quantify this concept, Lund et al. [Lund 1996] and
Larsen [Larsen 2000] have defined the degree of dynamism of a problem (dod).
Without loss of generality, we assume that the planning horizon is a given
interval [0, T'], possibly divided into a finite number of time slices. Let ng and
ng be the number of static and dynamic requests, respectively. Moreover, let
t; € [0,T] be the time when the request i appears. Static requests are such
that ¢; = 0 while dynamic ones have t; €]0,7]. Lunda et al. [Lund 1996]
define the degree of dynamism dod as :

Ng

dod =

(1.7)

Ng + Ng

which may vary between 0 and 1. Larsen [Larsen 2000] generalizes the defi-
nition proposed by Lund et al. in order to take into account both dynamic
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request occurrence times and possible time windows. He observed that system
in which dynamic requests are received late of the planning horizon [0, 7] is
more dynamic than others in which the requests occur at the beginning of the
working day. Thus, he introduces a new measure of dynamism :
ns+ngqg
, t;/T
edod = —2121 (t:/T)

1.8
Ng + Ng ( )

The effective degree of dynamism then represents an average of how late the
requests are received compared to the latest possible time the requests could
be received. It can easily be seen that edod ranges between 0 and 1. It is
equal to 0 if all user requests are known in advance while it is equal to 1 if all
user requests occur at time 7' .

Finally, Larsen extends the definition of edod to take into account possible
time windows on user service time. Let [a;,b;] be the interval time of the
client ¢ referred as time window (tw), with a; and b; corresponding to the
earliest time the service begin and the latest possible time that service should
begin, respectively.

> T = (b — )]/ T

edody,, = ==1 " n (1.9)
s d

It is also obvious that edod;, varies between 0 and 1. Moreover, if no time
windows are imposed (i.e., a; = t; and b; = T'), then edody,, = edod.

Thus, the degree of dynamism measure gives rise to different dynamic lev-
els. It is possible to categorize the vast majority of routing systems found in
practice by using three echelons. We can discern between weakly, moderately,
and strongly dynamic systems. For instance, supply and distribution compa-
nies (such as those of distributing heating oil) are known as weakly dynamic.
Couriers and appliance repair service companies exhibit moderate dynamic
behavior. Finally, emergency services and taxicab services are strongly dy-
namic [Larsen 2000].

1.2.4 Dynamic Versus Static

Dynamic problems are typically derived from static ones, by revealing or up-
dating on-line one or more parameters of those which define static instance.
In the following we point out some important differences between static and
dynamic problems [Bianchi 2000].

Time The main feature of dynamic problems, which is not present in static
ones is the dimension of time as integral part of the instance description.
The dispatcher must as a minimum know the position of all vehicles at
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any given moment and particularly when the request for service or other
information is received by the dispatcher.

Future information In a static problem all information is assumed to be

known and of the same quality. In a real-life dynamic routing problem
information about the input instance may be in part given a priori,
and in part dynamically revealed or updated. The future is almost
never known with certainty. It may be either completely unknown or at
least partially known under certain conditions with some probabilistic
assumptions. Bianchi [Bianchi 2000] preconizes that information update
mechanisms have to be integrated into the solution methods.

Objective function One may consider the dynamic problem as a series of

static problems (sub-problems), with the goal of tracking the objective
function optimum as closely as possible throughout the time. How-
ever, if some stochastic information is related to the problem, they
should be considered by the objective function. Depending on the
nature of the system, the objective to be optimized is often a com-
bination of different measures. DVRP inherits the classical objec-
tives defined into the conventional VRP. Moreover, the dynamic na-
ture of problem leads to emerging of new objectives. For instance,
in the weakly dynamic systems the focus is on minimizing routing
cost [Montemanni 2005bl [Hanshar 2007]. However, in strongly dynamic
system such as an emergency services, the interest is to minimize the
expected response time (i.e. the expected time lag between the mo-
ment when the user request occurs and its service time) [Larsen 2002,
Mitrovié-Minié¢ 2004a), [Gendreau 2006]. Furthermore, there are other
objectives such as maximizing the expected number of requests serviced
during a given period of time [Bent 2003| Bent 2004].

Strategy Strategy implies which actions should be taken at each state of the

problem progress. It can concern the way in which the vehicle have to be
positioned in the service area (see Section , as well as, the manner
in which the requests have to be handled. For instance, one can consider
a static new sub-problem each time a new customer request arrives, or
waiting a certain time period for a subset of new customers, or consider
a spatial clustering of customers and so on.

1.2.5 DVRP Interests

There are several important problems that must be solved in real-time. In
[Gendreau 1998, [Larsen 2000, [Ghiani 2003], the authors list a number of real-
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life applications that motivate the research in the domain of dynamic vehicle
routing problems.

o Supply and distribution companies: In seller-managed systems, distri-
bution companies estimate customer inventory level in such a way to
replenish them before stock depletion. Hence, demands are known be-
forehand in principle and all customers are static. However, because
demand is uncertain, some customers might run out their stock and
have to be serviced urgently.

o Courier Services: It refers to the international express mail services that
must respond to customer requests in real-time. The load is collected at
different customer locations and have to be delivered at another location.
The package to be delivered is brought back to a remote terminal for
further processing and shipping. The deliveries form a static routing
problem since recipients are known by the driver. However, most pickup
requests are dynamic because neither the driver nor the planner knows
where the pickups are going to take place.

o Rescue and repair service companies: Repair services usually involve a
utility firm (broken car rescue, electricity, gas, water and sewer, etc.)
that responds to customer requests for maintenance or repair of its fa-
cilities.

e Dial-a-ride systems: Dial-a-ride systems are mostly found in demand-
responsive transportation systems aimed at servicing small communities
or passengers with specific requirements (elderly, disabled). These prob-
lems are of the many-to-many when any node can serve as a source or
destination for any commodity or service.

Customers can book a trip one day in advance (static customers) or
make a request at short notice (dynamic customers).

e Emergency services: They cover the police, firefighting and ambulance
services. By definition, the problem is pure dynamic since all customers
are unknown beforehand and arrive in real-time. In most situations,
routes are not formed because the requests are usually served before a
new request appears. The problem then is to assign the best vehicle (for
instance the nearest) to the new request. Solving methods are based on
location analysis for deciding where to dispatch the emergency vehicles
or to escape the downtown traffic jam.

o Tuazi cab services: Managing taxi cabs is still another example of a real-
life dynamic routing problem. In most taxi cab systems the percentage of
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dynamic customers is very high, i.e., only very few customers are known
by the planner before the taxi cab leaves the central at the beginning of
its working day.

1.2.6 Related Works

In this section, we present a classification and an overview on the state-
of-the-art of dynamic vehicle routing problems. Different surveys have
been proposed on DVRPs [Bianchi 2000, [Ghiani 2003, [Branchini 2009].
Psaraftis [Psaraftis 1988 defines that a vehicle routing problem is dynamic
when some inputs to the problem are revealed during the execution of the
algorithm. Demand information is not known when vehicles are assigned, and
demand information is revealed on-line. Problem solution evolves as inputs
are revealed to the algorithm and to the decision maker. Possible information
attributes might include evolution of information (static/dynamic), quality
of information (known-deterministic/forecast/probabilistic/unknown), avail-
ability of information (local/global), and processing of information (central-
ized /decentralized).

From this definition, we propose to classify the DVRPs according to the
degree of knowledge that we have on the input data of the problem and quality
of the available information. A dynamic problem can be either deterministic
or stochastic (see Figure [1.3). DVRP is deterministic if all data related to
the customers are known when the customer demands arrive, otherwise it is
stochastic. Both of these classes can be subject to different factors such as ser-
vice time window, traffic jam, road maintenance, weather changes, breakdown
of vehicles and so on. These factors often change the speed of vehicles and
the travel time of arriving at the depot. Consequently, they lead to another
sub-variants of the problem (see Table [1.1):

1. Deterministic: In deterministic case, all the data related to the inputs
are known. For instance, when new customer demand appears, customer
location and the quantity of his demand are known. Different types of
deterministic DVRP can be found in the literature as:

(a) Dynamic  Capacitated Vehicle Routing Problem
(DCVRP):
An important number of works exist on this vari-
ant [Kilby 1998, |Gendreau 1999, [Montemanni 2005b] which
represents the conventional definition of the problem, and where
the existence of all customers and their localizations are deter-
ministic, but their order can arrive at any time. The objective is
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Dynamic Vehicle
Routing Problems

Deterministic Stochastic
DCVRP DVRPTT DCSVRP DVRPSTT
DVRPTW DPDVRP DSVRPTW DSPDVRP

Figure 1.3: Classification of DVRPs according to deterministic and stochastic
information related to customer requests.

to find a set of routes with the lowest traveled distance, and with
respect to vehicle capacity limit.

The Dynamic Traveling Repairman Problem (DTRP) belongs to
this class of problems. Bertsimas and Van Ryzin introduce this
problem in [Bertsimas 1991, Bertsimas 1993b]. It is described as
a problem in which demands arrive according to Poisson process
in Euclidean service region, and their locations are distributed
throughout the service region. The goal is to minimize the
expected time that the demand spends in the system (i.e. the
average time a customer must wait before its request is completed),
as opposed to the expected distance that the vehicle travels. The
service times of requests are not known to the dispatcher, until
the service at the respective customers is completed.

Where all demands are dynamic in DTRP, i.e. all customers are
immediate request customers. Larsenet al. [Larsen 2002] define the
Partially Dynamic Traveling Repairman Problem (PDTRP) that
is a variant of this problem involving both advance and immediate
request customers.

Furthermore, the problems seek to optimize different objective
functions. The dispatcher is more interested in minimizing the
distance traveled by the repairman than to minimize the overall
system time.
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(b)

Dynamic Vehicle Routing Problem with Time Win-
dows (DVRPTW): It is one of the most well-studied vari-
ant of DVRP [Larsen 2004l [Mitrovié-Mini¢ 2004al, [Alvarenga 2005,
Fabri 2006, [Housroum 2006, [Wang 2007, [Oliveira 2008]. Besides,
the possibility of requiring services in real time, the time window
associated to each customer i follows a specific interval time [a;, b;],
that must be satisfied. Larsenet al. [Larsen 2002] proposed on-
line policies for the Partially Dynamic Traveling Salesman Problem
with Time Windows (PDTSPTW) that could be considered as an
instance of DVRPTW with a single vehicle.

The objective is to minimize the lateness at customer location. A
simple policy consists to require the vehicle to wait at the current
customer location until it can service another customer without
being early. Other policies, may suggest to reposition the vehicle
at a location different from that of the current customer based on
prior information on future requests.

Dynamic Vehicle Routing Problem with time-dependent
Travel Times (DVRPTT): Described in [Haghani 2005], it as-
sumes that the travel times from the customer i to the customer j
is variable through the time. This variation could occur due to the
type of the road, weather and traffic conditions that may strongly
influence the speed of vehicles and hence travel times.

Dynamic Pickup and Delivery Vehicle Routing Problem
(DPDVRP): Based on the conventional Pickup and Delivery Ve-
hicle Routing Problem (PDVRP) [Savelsbergh 1995]. The problem
consists of determining a set of optimal routes for a fleet of vehicles
in order to serve transportation requests [Mitrovié¢-Mini¢ 2004a].
The objective is to minimize total route length, i.e., the sum of
the distances traveled by all the vehicles, under the following con-
straints: all requests must be served, each request must be served
entirely by one vehicle (pairing constraint), and each pickup lo-
cation has to be served before its corresponding delivery location
(precedence constraint). The dynamic version arises when not all
requests are known in advance.

Swihart and Papastavrou [Swihart 1999] have introduced a new
variant of the DTRP where each service request has a pickup and
a delivery location. The objective is to minimize the expected
system time. The authors consider the unit-capacity case where
the vehicle can carry no more than one item, as well as the case
where the vehicle can carry an arbitrarily large number of items.
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Attanasio et al. present in [Attanasio 2004] parallel implementa-
tions of a tabu search method developed previously by Cordeau
and Laporte [Cordeau 2003] for the Dynamic Dial-a-Ride Problem
(DDARP). In this latter the requests are received throughout the
day and the primary objective is to accommodate as many requests
as possible according to the available fleet of vehicles. Furthermore,
the routes are designed under the constraint that customers spec-
ify pick-up and drop-off requests between origins and destinations.
Yang et al. [Yang 2004] introduce a real-time multi-vehicle truck-
load pickup and delivery problem. They propose a mixed-integer
programming formulation for the off-line version of the problem
and propose a new rolling horizon re-optimization strategy for a
dynamic version.

2. Stochastic: In stochastic dynamic problems (also known as probabilis-
tic dynamic problems) uncertain data are related to customer locations,
demands or travel times and are represented by stochastic processes.

(a) Dynamic and Stochastic Capacitated Vehicle Routing
Problem (DSCVRP): It considers customer requests are un-
known and revealed over time. In addition, customer loca-
tions and service times are random variables and are realized
dynamically during plan execution. Bent and Van Hentenryck
[Bent 2003, Bent 2004] considered DVRP with stochastic cus-
tomers. They proposed a multiple scenario approach that contin-
uously generates routing plans for scenarios including known and
immediate requests to maximize the number of serviced customers.
The approach was adapted from Solomon benchmarks with varying
the degree of dynamism. Hvattum et al. [Hvattum 2006] addressed
this variant of the problem. The authors consider both customer lo-
cations and demands may be unknown in advance. They formulate
the problem as a multi-stage stochastic programming problem, and
a heuristic method was developed to generate routes by exploiting
the information gathered on future customer demand.

(b) Dynamic and Stochastic Vehicle Routing Problem with
Time Windows (DSVRPTW): It has been introduced
in [Pavone 2009]. In this problem, each service request is gener-
ated according stochastic process; once a service request appears,
it remains active for a certain deterministic amount of time, and
then expires. The objective is to minimize the number of possible
vehicles and ensure that each demand is visited before its expira-
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tion. Furthermore, this problem has been considered by Bent et al.
in [Bent 2007].

Dynamic Vehicle Routing Problem with Stochastic Travel
Times (DVRPSTT):

It assumes that the problem is subject to a stochastic travel time
which represents a random variable in an interval. The travel times
change from one period to the next. Some works present this ver-
sion of the problem as in [Potvin 2006], where the the travel time
to the next destination is perturbed by adding a value generated
with a normal probability law. This perturbation represents any
unforeseen events that may occur along the current travel journey.
It is known to the dispatching system only when the vehicle arrives
at its planned destination.

Dynamic and Stochastic Pickup and Delivery Vehicle
Routing Problem (DSPDVRP):In this version of the problem
stochastic process concerns the quantity of demand that the vehicle
must pick or delivery to each customer. Thus, we have vagueness in
quantities to pick up or deliver at the customers’ location [Xu 2008].
The demand of each customer is revealed only when the vehicle
reaches the customer. The distribution can be modeled by using
a probabilistic law, such as a normal law for example, or by using
fuzzy logic.
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1.3 Solution Representation

Different works have been achieved for solving the DVRP in the literature.
Nevertheless, few works emphasize the representation used for problem’s so-
lution [Montemanni 2005bl [Housroum 2006, [Hanshar 2007].

The underlying idea is to use a dynamic structure with a variable length.
The dynamic encoding is justified by the fact that demands arrive over
the time and have to be inserted in the existing routes or by creating new
ones. The representation must take into account the routes and information
related to the customers as well as the vehicles. It must distinguish the
pending customers that have newly been added to the day’s schedule, but
not yet assigned to any vehicle and committed customers that have already
been visited by a given vehicle. In [Montemanni 2005b], Montemanni et al.
propose a representation for their Ant Colony System (ACS) algorithm. The
authors consider v dummy depots (one for each vehicle of the fleet) and they
refer to them as dy, ..., d, . Solutions retrieved by ants will be represented as
long, single tours. In this context, nodes contained within two consecutive
dummy depots d, and d, (with d, , d, € {1,...,v}) form the (partial) tour
associated with vehicle a. The partial tour associated with vehicle b will
start from the dummy depot d,, which corresponds to the location of the
last customer committed to vehicle b. The starting time from dj, corresponds
to the end of the serving time for the last customer committed to vehicle b,
while the capacity of b will be equal to the residual capacity of b, i.e. @
minus the quantity ordered by customers already committed to vehicle b.
Another representation is proposed by Hanshar et al.[Hanshar 2007] for a
Genetic Algorithm for DVRP. Their chromosomal representation consists
of two types of nodes: a node with a positive integer number representing
a single customer (who has not yet been assigned to a vehicle) and node
depicted with a negative integer number representing a group of clustered
customers that have already been committed to a given vehicle. Thus,
the chromosome consists of integers, where new customers are directly
represented on a chromosome with their corresponding positive index number
and each committed customer is indirectly represented within one of the
groups representing a given deployed vehicle. When the chromosome is
decoded, new customers could be added to these pre-existing vehicles (i.e.,
groups) if they still have the capacity to accommodate new customer orders.
Always in this connection, Garrido and al. [Garrido 2010] have tackled
the DVRP by an Evolutionary Hyper-Heuristics (EH-DVRP). The authors
propose a chromosome representation for the low-level heuristics composed by
two main data structures; a list of new unassigned customers represented by
their identifier, and a set of routes which represents a set of partial solutions
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or states of the problem, formed by committed and uncommitted requests.

1.4 Solving Methods

In solving Dynamic Vehicle Routing Problems, we have to take into ac-
count two important aspects; the events managing and the resolution pro-
cess. The event managing task is in charge of collecting new demands and
keeps trace of already served customers and of the position of the vehicles.
It uses this information in order to generate a sequence of static VRP sub-
problems which are solved by one of the methods described below. Also,
the event manager plays the role of scheduler which commits the vehicles to
customers according to the solution obtained by the solving method. Differ-
ent event managers have been developed in literature and have similar job
[Montemanni 2005bl, [Housroum 2006, Hanshar 2007]. For the optimization
task, it consists in providing feasible solutions according to the static problem
input. In this section, we present a classification and a brief overview of the
main methods proposed in literature for dynamic vehicle routing problems.
As seen in Figure [1.4] solving methods can be divided into three main cate-
gories: positioning strategies, heuristics, and metaheuristics.

DVRPs
Solving Methods

Strategy-Based Algorithms Metaheuristics
-  Ta
FCFS, SQM, NN, TS, PART, S-Metaheuristics P-Metaheuristics
GEN, SFC, WAIT TS, GRASP ACO, EAs
A
Heuristics

Insertion operator, 2-Opt, Or-Opt,
relocate, exchange, cross, etc.

Figure 1.4: Classification of solving methods proposed in literature for
DVRPs.

1.4.1 Strategy-Based Algorithms

Generally, the strategies are represented as simple policies, which specifie the
actions that the system should bring to handle the current state and the
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properties of the dynamic problem (for example, location of appearance, fre-
quency of events, number of orders known beforehand, length of the working
day, duration of the planning horizon, and so on) [Bianchi 2000} [Ghiani 2003].
In [Bertsimas 1991, Bertsimas 1993al Bertsimas 1993bl, [Papastavrou 1996,
Swihart 1999, [Song 2005|, [Song 2005|, Branke 2005b] strategies have been de-
fined for single or multi vehicles conditions. They consider the spacial and
time distributions of the dynamic requests and enable the system to plan the
service each time the problem changes.

Strategies are applied repeatedly in order to dispatch requests to vehicles
and build routes. We outline some of them :

1. First Come First Served (FCFS): Requests are served in the order
in which they are received by the dispatcher.

2. Stochastic queue median (SQM): Locate the vehicle at the median
position in the service region and serve the customer according to FIFO
strategy. When the service is finished, the vehicle returns to the median.

3. Nearest Neighbor (NN): A greedy strategy in which the vehicle
serves the nearest unserviced request after a service.

4. Traveling Salesman (TS): Requests are collected into a sets of a
given size. Once a set of demands has been batched the TSP is solved.
The demands are serviced by following the optimal tour which start and
end at the depot [Bertsimas 1993bl, [Bertsimas 1993a].

5. Partitioning (PART): The service area is partitioned into sub-regions.
A vehicle visits the sub-regions in a given order and with respect of
passing from one sub-region to an adjacent one. Demands into each
sub-region are serviced in a FIFO order [Bertsimas 1991].

6. Generation (GEN): This strategy combines SQM and TSP strate-
gies. It consists to position the vehicle at the median of the region
service and serve the request when it arrives (generation). At the com-
pletion time, the vehicle returns to the median if there are no requests
in a waiting queue. Otherwise, the TSP is solved on the existing re-
quests and the vehicle is committed according to the optimal tour (next
generation) [Papastavrou 1996].

7. Space Filling Curve (SFC): It services customers as they are encoun-
tered in repeated clockwise sweeps of a circle which guides the routes
construction [Bertsimas 1991), Bertsimas 1993b].
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8. Waiting (WAIT): It aims to find an optimal waiting schedule for the
vehicles to maximize the probability that a new customer can be incor-
porated into one of the tours while reducing the average length of the de-
tour that is necessary to serve this customer. Larsen et al.[Larsen 2004]
proposed strategies to deal with the Partially Dynamic Traveling Sales-
man Problem with Time Windows (PDTSPTW) in which the aim is to
minimize lateness. One strategy requires the vehicle, when idle, to wait
at the current customer location until it can service another customer
without being early. Another strategy, propose to reposition the vehicle
at a location different from that of the current customer based on a priori
information on future requests. Vehicle relocation is also addressed by
Bent and Van Hentenryck [Bent 2007]. Computational results indicate
that these two strategies are very effective in maximizing the number
of served customers, particularly for strong dynamic systems where the
dod is high. Branke et al. [Branke 2005b] as well as Mitrovic-Minic and
Laporte [Mitrovi¢-Mini¢ 2004b], have found that in the case of several
vehicles, waiting allows the vehicles to remain at suitable locations dur-
ing their tours, and improves the probability of being able to serve new
customers.

1.4.2 Heuristics

Usually, simple strategies are related to specific conditions, which leads to
lower empirical performance in other operational conditions. In these con-
ditions, heuristics could be employed to improve the performance of the al-
gorithms [Psaraftis 1988 [Kilby 1998, Mitrovi¢-Minié¢ 2004al, Hvattum 2006),
Branchini 2009]. These heuristics are essentially constructive and improve-
ment procedures. Constructive heuristics create initial solutions, i.e., set of
routes, from scratch. On the contrary, as support mechanisms, improvement
procedures repair previously constructed solutions by performing simple re-
assignment moves. According to the planning horizon, these procedures re-
optimize the vehicle route when new demand customer appears. The cus-
tomers are inserted on the routes following the cheapest insertion (i.e. best
position of the current routes) |[Psaraftis 1988].

Mitrovié-Minié et al. [Mitrovié-Mini¢ 2004al] apply the cheapest insertion
procedure in order to determine the overall best insertions for the locations of
a request before its insertion. The improvement procedure is based on Tabu
Search (TS). It is applied after the reinsertion procedure and it runs while
new requests are being received.

Kilby et al. in [Kilby 199§] use an insertion heuristic which inserts cus-
tomers and is improved by using different heuristics as 2-Opt [Lin 1965], Or-
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Opt [Or 1996, relocate, exchange, and cross [Breedam 1994].

Branchini et al. [Branchini 2009] propose an adaptive granular local search
heuristic for the DVRP. This heuristic has a reduced neighborhood based on
candidate-list strategy. Such neighborhood discards long tour segments which
represent high costs arcs due to the small probability of these being part of
good quality solutions and focuses on promising short tour segments. The
heuristic adaptation assumes adjusting the size of the search space according
to the short time that is available for the optimization method in different
periods of the working day.

1.4.3 Metaheuristics

Metaheuristics design a computational method that optimizes a problem by
iteratively trying to improve a candidate solution with regard to a given mea-
sure of quality. They make few or no assumptions about the problem being
optimized and can search very large spaces of candidate solutions. They pro-
vide acceptable solutions in a reasonable time for solving hard and complex
problems in science and engineering. Their main exploring characteristic is
based on the balance between diversification and intensification. The term
diversification generally refers to the exploration of the search space, whereas
the term intensification refers to the exploitation of the accumulated search
experience. This balance between diversification and intensification is impor-
tant, on one side to quickly identify regions in the search space with high
quality solutions and on the other side not to waste too much time in regions
of the search space which either are already explored or do not provide high
quality solutions.

Metaheuristics can be grouped into two classes of algorithms;
single-solution based metaheuristics and population based metaheuris-
tics [Talbi 2009).

Single-solution based metaheuristics (S-metaheuristics) could be viewed as
search trajectories over the search space of the problem. These trajectories
are performed by iterative procedures that move from the current solution to
another one in the search space. Furthermore, they incorporate techniques
that enable the algorithm to escape from local minima. This class of meta-
heuristic algorithms includes -but is not restricted to- tabu search, simulated
annealing, threshold accepting, variable neighborhood search, iterated local
search, guided local search, GRASP, and so on.

On the other side, the population based metaheuristics (P-metaheuristics)
start from an initial population of solutions and iteratively apply the gen-
eration of a new population and the replacement of the current one. They
regroup algorithms such as evolutionary algorithms (genetic algorithms, evolu-
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tion strategies, genetic programming, evolutionary programming, estimation
of distribution algorithms, differential evolution, and co-evolutionary algo-
rithms), swarm intelligence-based methods (e.g., ant colonies, particle swarm
optimization), scatter search, bee colony, artificial immune systems, and so
on.

We give an overview on the main existing works in literature on both
classes of metaheuristics for dynamic vehicle routing problems in what fol-
lows:

1.4.3.1 Single-Solution Based Metaheuristics

Many works are related to trajectory-based metaheuristics for solving DVRP
(see Table[1.2). Gendreau et al. in [Gendreau 1999] propose a parallel tabu
search heuristic with an adaptive memory mechanism taken from Rochat and
Taillard work [Rochat 1995]. The adaptive memory stores previously found
elite solutions and used them to generate new starting points for the tabu
search. This is achieved by combining routes taken from different solutions
in memory. Any new solution produced by the tabu search is included in
the memory if it is not filled yet. Otherwise, the new solution replaces the
worst solution in memory, if it is better. The parallelization of the procedure
was achieved at two different levels: (1) different tabu search threads run in
parallel, each of them starting from a different initial solution; and (2) within
each search thread, many tabu searches run independently on subproblems
obtained through a decomposition procedure of the whole problem. For the
parallel implementation a masterslave scheme was chosen to implement the
procedure. The master process manages the adaptive memory and creates
initial solutions for the slave processes that run the tabu search.

Gendreau et al. [Gendreau 2006] develop a tabu search heuristic for the
Dynamic Vehicle Routing Problem with Pickup and Delivery (DPDVRP).
The neighborhood structure is based on the ejection chain heuristic in which
a request is taken from one route and moved to another route, thus forcing a
request from that route to move to yet another route, and so on. The chain
may be of any length and may be cyclic or not. The authors reuse the mech-
anism of adaptive memory.

Ichoua et al. in [Ichoua 2000] reuse the same algorithm with some enhanc-
ing related to the strategy for assigning customer requests to vehicles.

Mitrovi¢ -Mini¢ et al. [Mitrovié-Mini¢ 2004a] deal with the Dynamic
Pickup and Delivery Problem with Time Windows (DPDVRPTW) and ap-
plied the cheapest insertion procedure in order to determine the overall best
insertions for the locations of a request before its insertion. The improvement
procedure is based on Tabu Search (TS). It is applied after the reinsertion
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procedure and it runs while new requests are being received.

Hanshar et al. implement a basic tabu search in |[Hanshar 2007]. Two
operators are employed as neighborhood structure procedures; inversion oper-
ator and A-exchange operator [Osman 1993|, each one was applied according
to some probability. Furthermore, Montemanni [Montemanni 2005b] imple-
ment a GRASP (Greedy Randomized Adaptive Search Procedure) for dealing
with DVRP. Basically, initial tours are generated by iteratively selecting the
next customers to visit. The procedure is repeated until a complete solution
is built.

Attanasio et al. present in [Attanasio 2004] use different neighbor for
their parallel tabu search implemented for the Dynamic Dial-a-Ride Prob-
lem (DDARP). A neighbor solution is obtained by applying a simple operator
that removes a customer from a route and reinserted it into another one.

1.4.3.2 Population-Based Metaheuristics

Several population-based metaheuristics have been proposed in the literature
(see Table . An outline on the major works on these approaches is given
in what follows:

1.4.3.3 Ant Colony Optimization

Ant System (AS) has been applied to tackle a large variety of Dynamic Ve-
hicle Routing Problems [Gambardella 2003}, [Tian 2003, Montemanni 2005b),
Rizzoli 2007, [Jun 2008]. In this metaheuristic a colony of artificial ants is
used to construct solutions guided by the pheromone trails and heuristic in-
formation.

Tian et al. [Tian 2003] present a hybrid Ant System to handle the dy-
namism by means of modifying the pheromone matrix in order to take ad-
vantage of the old information gathered during the previous search. They
propose a new pheromone initialization for new demands, which works better
than a re-start optimization. Furthermore, they use a simple strategy that
consists in grouping new requests at every fixed interval-time before their in-
troduction into the system. In addition, they make further improvements on
vehicle routes with the local search 2-Opt heuristic.

Jun et al. [Jun 2008] address a hybrid multi-objective ant colony algo-
rithm for solving DVRPTW. They consider two sub-objectives such as ve-
hicle number and the time cost as an independent objective. In their Ant
Colony Algorithm, an Evolutionary Algorithm (EA) is embedded to increase
the pheromone update. They explain that EA participates to speed up the
convergence of their algorithm.
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Montemanni et al. [Montemanni 2005b] exploit some characteristics of
the Ant Colony System optimization paradigm to smoothly save information
about promising solutions when the optimization problem evolves because of
the arrival of new orders. One of these characteristics is the pheromone con-
servation procedure. It contains information about the characteristics of good
solutions for these problems. In particular, pairs of customers who have been
visited in sequence in good solutions, will have high values in the correspond-
ing entries of the pheromone matrix. In dynamic context, it is used to pass
information about the properties of good solutions from a previously obtained
results for the new changing environment since the two problems are poten-
tially very similar. This operation avoids the restarting of the optimization
at each time from scratch.

Based on the Montemanni’s algorithm, Rizzoli et al. [Rizzoli 2007] discuss
the applications of ACO on a number of real-world problems. They propose
some results obtained by their algorithm on an on-line VRP for fuel distri-
bution in the city of Lugano (Switzerland). Oliveira et al. [Oliveira 2008]
propose an Ant Colony Algorithm for the DVRPTW with two different forms
of attractiveness (time windows and distance) for building the vehicle routes.
According to their experiments, more the degree of dynamism is higher, fewer
customers will be served.

Chitty et al. |Chitty 2004] introduce a hybrid dynamic programming-ant
colony optimization approach to solve bi-criterion Vehicle Routing Problems.
The aim is to find routes that have both shortest overall travel time and the
smallest variance in travel time. The hybrid approach uses the principles of
dynamic programming to first solve simple problems using ACO (routing from
each adjacent node to the end node), and then builds on this to eventually
provide solutions (i.e. Pareto fronts) for routing between each node in the
network and the destination node. However, the hybrid technique updates
the pheromone concentrations only along the first edge visited by each ant.
As a result it is shown to provide the overall solution in quicker time than
an established bi-criterion ACO technique that is concerned only with rout-
ing between the start and destination nodes, allowing re-routing vehicle to
dynamic changes within the road network.

1.4.3.4 Evolutionary Algorithms

Another popular P-metaheuristic is the Genetic Algorithm (GA) in which a
population of individuals is modified by recombination and mutation opera-
tors.

Hanshar and Ombuki-Berman [Hanshar 2007] propose a GA that handles
the optimization of the static VRP like-instances that correspond to the whole
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dynamic problem. The GA is launched at each fixed duration and must run
within an efficient amount of time. The fitness evaluation involves the vehi-
cle routes obtained after the translation of the chromosome representation.
It returns the total travel distance/cost of the routes. The Best-Cost Route
Crossover (BCRC) is used as crossover operator, and the inversion operator
as mutation.

Housroum et al. [Housroum 2006] deal with Dynamic Vehicle Routing
Problem with Time Windows (DVRPTW). The authors propose an approach
based on genetic algorithm. For their algorithm, they suggest PMX crossover,
and different mutation operators such as Or-Opt, 1-Opt, or swap. They val-
idate their approach on modified Solomon’s benchmarks which have been
proposed by Gendreau et al. [Gendreau 1999]. Zhao et al. in [Zhao 2008]
use a similar GA than Housroum’s algorithm [Housroum 2006] for solving
the Dynamic Vehicle Routing Problem with time-dependent Travel Times
(DVRPTT).

Alvarenga et al. propose in [Alvarenga 2005] a hybrid GA with Col-
umn Generation Heuristic for the DVRPTW. The authors propose a specific
crossover, where at the first step, it makes a random choice of routes from
each parent involved. After all feasible routes are inserted in the offspring.
New routes are created if some customers remain after the insertion step. As
mutation operator, a total of eight different operators are used in their work.

Branke et al. [Branke 2005b] propose a GA with different waiting strategy

for vehicles for DCVRP. A two-point crossover is chosen and the mutation is
done by adding to each value a normally distributed random value.
For their Evolutionary Hyper-Heuristics (EH-DVRP) [Garrido 2010], Garrido
et al. propose a high-level algorithm which evolves and combines different
types of low-level heuristics (constructive, perturbation, and noise heuristics)
to solve the problem. Each individual of the population refers to a sequence
of genes that correspond to a constructive and improvement heuristics which
gradually inserts customers and repairs the set of routes created so far. These
dedicated heuristics are applied to construct and improve partial states of
the problem. The hyper-heuristic uses four operators to find new individuals:
One recombination and three mutation-like operators. The recombination
operator performs a one point crossover to generate two new offspring. For
the mutation operators, the first one randomly selects and copies one of the
heuristics to another position in the chromosome which allows to include new
heuristics in a different steps of the algorithm. The second operator selects
and replaces a gene by one single heuristic. The authors’ idea is to give an
alternative heuristic which may perform better in cooperation with existing
ones. The last operator deletes a gene from the chromosome and discards
some heuristics which cannot be useful to improve candidate solutions.
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Wang et al. [Wang 2007] propose an EA for solving the DVRPTW. For
the algorithm’s reproduction phase, the authors use two-points crossover op-
erator and a mutation operator that consists in changing the assignment of
unserved customers to another vehicle. In order to enhance their algorithm,
the authors hybridize their algorithm with a modified Dijkstras algorithm for
finding the real-time shortest paths.

Jih et al. [Jih 1999] address a hybrid genetic algorithm for solving single-
vehicle pickup and delivery problem with time windows and capacity con-
straints (DPDVRPTW). The approach enables dynamic programming to
achieve real-time performance and genetic algorithms to approximate opti-
mal solutions. The initial population is created by the dynamic programming
instead of generating it randomly. The dynamic programming passes the un-
finished routes to genetic algorithms to produce final solutions. The authors
compare the performance of four crossover operators. These operators are:
order crossover (OX), uniform order-based crossover (UOX), merge cross #1
(MX1) and merge cross #2 (MX2) [Blanton 1993]. In addition, they consider
three mutation operators: (i) Two genes are selected randomly, and their
positions are interchanged (swap operator). (ii) Randomly two cut sites are
chosen, and the order of the sub-route specified by the genes is inverted (in-
verse operator). (iii) If the vehicle arrives at the iy, stop and violates the
constraints, it disturbs the order of the genes within the first iy, sub-route
(rearrangement operator).

Haghani et al. [Haghani 2005, deal with the pick-up and delivery vehi-
cle routing problem with soft time windows in which are considered multi-
ple vehicles with different capacities, real-time service requests, and real-time
variations in travel times between demand nodes. This algorithm includes a
vehicle merging operator in addition to the generic genetic operators, namely
the crossover and the mutation operators.

Bosman et al. [Bosman 20006] introduce a probabilistic model to describe
the behavior of the load announcements. This allows the routing to make
informed anticipated moves to customers where loads are expected to arrive
shortly. The approach outperforms the EA which only considers currently
available loads. Only mutation is considered. In the mutation of an individ-
ual, two vehicles are chosen randomly (could be the same), and two customers
from their respective routes are chosen randomly, and are swapped. This op-
erator allows visits to customers to be exchanged between vehicles or to be
re-ordered in the route of a single vehicle directly.

Van Hemertand and La Poutré [Van Hemert 2004] present an evolutionary
algorithm that is able to provide solutions in real-time for the DVRP. The
authors analyze the benefit of anticipatory vehicle moves within regions that
have a high potential of generating loads (fruitful regions). Only mutation
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is considered. Two vehicles, possibly the same one, are chosen randomly. In
both vehicles two nodes are selected and are swapped.
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1.5 Dynamic Performance Measures

The aim of optimization in dynamic environments is not only to find an opti-
mum within a given number of generations, but rather a perpetual adaptation
to the changing environment. Besides the accuracy of an approximation at
time ¢, the stability of the algorithm is also of interest as well as the recovery
time to reach again a certain approximation quality. We report here some
measures that could be used for evaluating the performance of an algorithm

designed for the DVRP.

Weicker [Weicker 1999, Weicker 2002] proposes measures and considers
that they have to be taken into account when analyzing and comparing algo-
rithms for dynamic problems. Three features have been proposed for Evolu-
tionary Algorithm in order to describe the goodness of a dynamic adaptation
process: accuracy, stability, and e-reactivity. However these measures could
be applied to any algorithm A used to solve a dynamic problem.

The accuracy should measure the closeness of the current best found solu-
tion to the actual best solution. The accuracy at time ¢ for a fitness function
F and optimization algorithm A is defined as:

F(bestV) — Min!?
accuracyg’)A = ( é‘)> : (t)F
Mazy’ — Ming

(1.10)

where best?! is the best solution found by an evolutionary algorithm (EA) in
the population at time ¢. The maximum and minimum fitness values in the
search space are represented by Maz®, and Mink..

Thus, for the examined algorithm, this ratio quantifies the loss of cost-
efficiency stemming from the lack of full information. The optimization accu-
racy ranges between 0 and 1, where accuracy equal to 1 is the ideal value.

As a second goal, stability is an important issue in optimization. In the
context of dynamic optimization, an adaptive algorithm is called stable if
changes in the environment do not affect the optimization accuracy severely.
Even in the case of drastic changes an algorithm should be able to limit the
respective fitness drop. The stability at time ¢ is defined as

stability;f’)A = mazA{0, accuracyg)A — accuracyg;xl)} (1.11)
and ranges between 0 and 1. A value closes to 0 implies a high stability.

Finally, another aspect to be considered is the ability of the algorithm to
react quickly to changes. This is measured by the e-reactivity, which ranges
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in [1, maxgen] (a smaller value implies a higher reactivity):

/

')
@ min t’—t|t<t'§maxgen,tEN,%2(l—s)
’T’QCLCISZUZtyF’A76 = accuracyp 4

U{(mazxgen —t)}
(1.12)
Since it is difficult to know which is the best achievable value in a dynamic
problem, Weicker points out that an average of several generations should be
used instead.
Weicker summarizes different proposals for accuracy in problems where the
global optimum is unknown, offering the following options to be used instead

Mazt,:
C’urrentBest%?A = max{F(w)|w € Plgt)} (1.13)
CurrentBestOffline;f’)A = lliltz}i(t{CurrentBest(;%} (1.14)
1
C’urrentAvemgeg’)A = —0 Z (F(w)) (1.15)
[Pyl wep)

where Pff) is the population of the algorithm at time ¢. Another approach
to measure the accuracy without actually knowing the best possible fitness
is based on the assumption that the best fitness value will not change much
within a small number of generations. For that, a window is introduced inside
the time span of the problem and the accuracy window Accp ga,w is measured
within this window of length W.

F(w) — windowW orst
window Best — windowW orst

wz’ndowAccgﬁ,)EA’W = max{ lw e P}(;A} (1.16)

windowBest = max{F(w)|w € Pflt/), (t—W) <t <t} (1.17)
windowWorst = min{F(w)|w € P\"), (t = W) < ' <t} (1.18)

Alternatively to the fitness based performance measures, genotype or phe-
notype based measures can also be used to give an approximated value of the
optimization accuracy. Weicker notes that these measures require full global
knowledge of the position of the current optimum and gives two variants. The
first proposal uses the minimal distance of the individuals in the population
to the current optimum w* in the search space and is given as follows:

_ dist — d(w*,w) ¢
bestDist), = e : PY 1.19
estDistp, , = max ——— lw e Pyy (1.19)
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where mazdist is the maximum distance between two solutions in the search
space €.

The second proposal has been introduced by Salomon and Eggen-
berger [Salomon 1998] and used the distance of the mass center or centroid
Weenter Of the population to the current optimum w, and is obtained by:

maxdist — d(w*, Weenter
centerDistg’)EA = (W, fer)

1.20
maxdist ( )

Weicker notes that the first proposal seems to be straightforward to assess
the approximation quality, the second performance measure is more difficult
to interpret. It requires that the population as a whole describes very closely
the region of the optimum.

1.6 Benchmarks

Benchmarks can be defined as standard test problems designed to serve
as bases for algorithm assessment and comparison. The main reason for
testing an algorithm on such problems is to compare the obtained results
with those obtained by other algorithms and hence prove the superiority or
not of the tested algorithm. Instances can be constructed from two types of
data: randomly generated data, and real-life data. On the one side, random
data is easy to obtain and enables to deduce conclusions about the algorithm
performance. On the other side, instance from the second source would be
a particular instance from the real-world. Thus, this kind of instance could
be used to attest that the algorithm has the capability to solve real-world
problems.

Different sets of benchmarks have been proposed in the literature for
DVRP. Most of them are derived from some very popular static VRP
benchmark datasets.

Kilby et al. [Kilby 1998] propose a set of instances, namely
Taillard  [Taillard 1993] (13 instances),  Christophides and Bea-
sley [Christofides 1984] (7 instances) and Fisher et al. [Fisher 1995] (2
instances). Their size ranges from 50 to 199 customers.These instances were
organized and extended by Montemanni et al. [Montemanni 2005a]. He
organized the instances into two groups, pickup and delivery, and gave to
each instance an available time which signifies when the order was placed
into the system and a duration, which represents the least amount of time a
vehicle waits at a customer.

For the conventional instances of VRP variants, Alvarenga et
al. [Alvarenga 2005] modify Solomon’s instances to get DVRP with
Time Windows (DVRPTW) instances. Gendreau et al. [Gendreau 2006]
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propose their own instances for the DVRP with Pickup and Delivery, where,
Attanasio et al. [Attanasio 2004] introduce a benchmark data set for the
Dynamic Dial-a-Ride Problem (DDARP).

Nevertheless, in dynamic optimization, a test problem is characterized
by a particular dynamic scenario, which refers to the sequence of events or
environmental changes in the problem. Moreover, one could be faced with
the difficulty of finding a real life situation which matches the instance that
represents a typical dynamic desired scenario(s). We need a general-purpose
benchmark generator. This generator must use different functions with
tunable parameters to produce wide varieties of scenarios. Thus, the user
can accurately pre-determine particular set of events for the test instances.
Furthermore, generating dynamic instances must take into account mainly
two aspects; data which are related to the structure of the instance(topology
of customer, distribution in the service area,...) and data that is time
dependent (arrival of customer demands, travel time, ...). Test instances
should also be able to cover wide ranges of environmental changes.

Therefore, we propose a DVRP Instance Generator(DVRPGen) available
onlind' and that takes into account the features above. It provides dynamic
customized instances named K-series. Our generator provides instances
according to different dynamic scenarios such as dynamic request, dynamic
travel times, vehicle breakdown, etc. We can associate a stochastic process
to each variable of the instances (requests or quantity of demands, travel
times, etc.). Most of VRP variants are represented including time windows,
multi-depot, and pickup and delivery problems. Each user has the possibility
to generate dynamic customized instances according to different spatial
topologies of customers in service area (cluster, uniform, mix), as well as time
distributions (i.e. arrival of customer demands can follow uniform, poisson,
or normal distributions). Furthermore, the generator offers a view of the
instance in 2D dimensional space.

In order to obtain dynamic instances, some characteristics have been
added to the instances:

e Length of the working day [0, 7.

e Occurrence time of each request. It contains, for each request, the mo-
ment of the working day, when the order becomes known to the planner.

e Duration service of each request. It represents, for each order, the time
required to serve the corresponding customer.

1http ://dolphin.lille.inria.fr/Research/Benchmark}, http://neo.lcc.uma.es/dynamic
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e Number of vehicles. It contains the dimension in number of vehicles of
the fleet available for serving the customers.

We report in Table some set of benchmarks that have been used or pro-
posed in the literature and which are available onlineﬂ

Zhttp://wuw.fernuni-hagen.de/WINF/inhalte/benchmark_data.htm
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1.7 Conclusion

An overview of different aspect of Dynamic Vehicle Routing Problem (DVRP)
has been presented in this chapter. This problem is important both in research
and industrial domains due to its many real world applications.

The state-of-the-art presented in this chapter covers a description of the
problem, its representation as well as the existing solving methods. Dynamic
performance measures are presented in order to quantify the adaptation of
the algorithms throughout the optimization process. The online available
benchmarks are reported and a benchmark generator has been presented. It
provides instances that could be generated according to different dynamic sce-
narios (dynamic requests, vehicle broken down, etc.) as well as different VRP
variants (time window, multi-depot, pickup & delivery, etc.). These instances
will be used to guide the experiment protocol.

From the proposed survey, we can conclude that a well-designed approach
should not be restricted to a given class of methods (strategies, heuristics,
metaheuristics), but has to take into account different features and mecha-
nisms that have been employed on these different techniques. Furthermore,
measuring the adaptability of an algorithm over the optimization process is
a major stake when we face dynamic optimization problems. Robustness of
solutions should be taken into account also during the designing step.

The next chapters will handle these open issues, we will expose in this
thesis our contribution in solving the Dynamic Capacitated Vehicle Routing
Problem (DCVRP). In this variant of the problem some customers are un-
known when the optimization process begin, i.e. their orders and positions
will be known only after the vehicles are already in route. Thus, the goal is to
serve the set of customers and minimize the traveled distance by the vehicle
fleet.

The proposed approaches are designed by taking advantage of the best pro-
posed approaches until day.
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2.1 Introduction

In dynamic optimization, it appears that any self-contained research work has
to deal with three issues: adaptation to environmental changes, benchmark-
ing, and performance measures.

The adaptation of environmental changes refers to the ability of the algo-
rithm to continue the search for new optima if the environment shifts. Hence,
the optimization algorithm has to track a moving optimum through time as
closely as possible, rather than just find a single good solution. Thus, once the
algorithm starts to converge around some optimal or near optimal solution,
it should not lose its ability to continue the search of new optima if environ-
mental change occurs.

A class of approaches that seems to be interesting for the dynamic optimiza-
tion problems is the Single-solution based metaheuristics (S-metaheuristics).
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They could be viewed as walks through neighborhoods or search trajectories
over the search space of the problem at hand. These trajectories are performed
by iterative procedures that move from the current solution to another one in
the search space.

One of the recent approaches in the filed of S-metaheuristic is Variable Neigh-
borhood Search (VNS) [Hansen 1999]. It consists in adaptively changing the
neighborhood in order to get different local optima and to escape from local op-
tima. The process of changing neighborhoods corresponds to a diversification
of the search. In particular, the choice of neighborhoods of increasing cardi-
nality yields a progressive diversification. Moreover, a solution that is locally
optimal on the search landscape with respect to a neighborhood is probably
not locally optimal with respect to another neighborhood. The global optima
will be one of the local optima of a given neighborhood. Different neighbor-
hoods generate different landscapes, which is known as “One Operator, One
Landscape” concept [Jones 1995]. The core idea is that the neighborhood
structure determines the topological properties of the search landscape, i.e.,
each neighborhood defines one landscape. The properties of a landscape are
in general different from those of other landscapes, therefore a search strat-
egy performs differently on them. This specificity provides to VNS a serious
ability and reactivity to track the shifting optimum in dynamic optimization
problems.

In this chapter we propose to face the Dynamic Capacitated Vehicle Routing
Problem (DCVRP) by using Variable Neighborhood based approach. Here,
the objective function consists in minimizing the distance traveled by the ve-
hicles which serve the customers (see equation[1.2). We believe that the char-
acteristic of changing the neighborhood structure offers a powerful mechanism
of adaptivity to the environmental changing. To quantify this adaptability,
we measure several indicators based on Weicker’s dynamic performance mea-
sures [Weicker 2002] on algorithm along the optimization process.

The remainder of this chapter is organized as follows: The fundamental bases
of S-metaheuristics are presented in the Section [2.2] Section introduces,
our VNS-DVRP in an incremental manner, with the representation, the def-
inition of the neighborhood structure, the incremental evaluation function,
the determination of the initial solution, and the dedicated algorithm. Sec-
tion describes and explains how to simulate and to solve the dynamic
problem. In Section we discuss our experimental methodology, and pro-
vide an experimental analysis. Finally, we conclude with a summary of the
main contributions reported in this chapter.
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2.2 Single-Solution Based Metaheuristics

Single Solution Based Metaheuristics (S-metaheuristics) iteratively apply the
generation and replacement procedures from the current single solution. In
the generation phase, a set of candidate solutions is generated from the cur-
rent solution s. This set C(s) is generally obtained by local transformations
of the solution. In the replacement phase, a selection is performed from the
candidate solution set C'(s) to replace the current solution; that is, a solution
s" € C(s) is selected to be the new solution. This process iterates until a given
stopping criteria (Figure . The generation and the replacement phases
may be memory-less. In this case, the two procedures are based only on the
current solution. Otherwise, some history of the search stored in a memory
can be used in the generation of the candidate list of solutions and the selec-
tion of the new solution. Popular examples of such S-metaheuristics are sim-
ulated annealing [Kirkpatrick 1983, (Cerny 1985], tabu search [Glover 1990],
and variable neighborhood search [Hansen 1999]. Algorithm [1] illustrates the
high-level template of S-metaheuristics. The common search concepts for all
S-metaheuristics are the definition of the neighborhood structure and the de-
termination of the initial solution [Talbi 2009].

Generate
candidates
Candidate
solutions
o Memory
Select
solution

Figure 2.1: Main principles of single-solution based metaheuristics.

2.2.1 Neighborhood

The definition of the neighborhood is a required common step for the design
of any S-metaheuristic. The neighborhood structure plays a crucial role in
the performance of an S-metaheuristic. If the neighborhood structure is not
adequate to the problem, any S-metaheuristic will fail to solve the problem.

29
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Algorithm 1 High-level template of S-metaheuristics.

Input: Initial solution sg .
t=0;
repeat
/ Generate candidate solutions (partial or complete neighborhood) from s; /
Generate(C(sy)) ;
/ Select a solution from C(s) to replace the current solution s; /
st+1 = Select(C(sy)) ;
t=t+1;
until Stopping criteria satisfied
Output: Best solution found.

Definition 2.2.1 A neighborhood function N is a mapping N : S — 2° that
assigns to each solution s of S a set of solutions N'(s) C S. A solution s in
the neighborhood of s (s' € N (s)) is called a neighbor of s.

A neighbor is generated by the application of a move operator m that per-
forms a small perturbation to the solution s. The main property that must
characterize a neighborhood is locality. Locality is the effect on the solution
when performing the move (perturbation) in the representation. The neigh-
borhood is said to have a strong locality, if when small changes are made in
the representation, the solution is affected slightly. Hence, a S-metaheuristic
will perform a meaningful search in the landscape of the problem.

Weak locality is characterized by a large effect on the solution when a small
change is made in the representation. In the extreme case of weak locality,
the search will converge toward a random search in the search space. The
structure of the neighborhood depends on the target optimization problem.
It has been first defined in continuous optimization.

Definition 2.2.2 In a discrete optimization problem, the neighborhood N (s)
of a solution s is represented by the set {s'/d(s',s) < €}, where d represents
a given distance that is related to the move operator.

The neighborhood definition depends strongly on the representation associ-
ated with the problem at hand. Some usual neighborhoods are associated
with traditional encodings. The natural neighborhood for binary representa-
tions is based on the Hamming distance. In general, a distance equal to 1 is
used. Then, the neighborhood of a solution s consists in flipping one bit of
the solution. For a binary vector of size n, the size of the neighborhood will
be n. The Hamming neighborhood for binary encodings may be extended to
any discrete vector representation using a given alphabet . Indeed, the substi-
tution can be generalized by replacing the discrete value of a vector element

60

http://doc.univ-lille1.fr



Thése de Mostepha Redouane Khouadijia, Lille 1, 2011

2.2. Single-Solution Based Metaheuristics 61

by any other character of the alphabet. If the cardinality of the alphabet is &,
the size of the neighborhood will be (k — 1) x n for a discrete vector of size n.
For permutation-based representations, a usual neighborhood is based on the
swap operator that consists in exchanging (or swapping) the location of two
elements s; and s; of the permutation. For a permutation of size n, the size
of this neighborhood is n(n — 1)/2. This operator may also be applied to any
linear representation. Figure [2.3| shows the neighborhood associated with a
combinatorial optimization problem using a permutation encoding. The dis-
tance is based on the swap move operator. Once the concept of neighborhood
has been defined, the local optimality property of a solution may be given.

(2,3,1) (3,2,1)

(2,1,3)¢ X » (3,1,2)

(1,2,3) (1,3,2)

Figure 2.2: An example of neighborhood for a permutation problem of size
3. For instance, the neighbors of the solution (2, 3, 1) are: (3, 2, 1), (2, 1, 3),
and (1, 3, 2).

Definition 2.2.3 Local optimum. Relatively to a given neighboring func-
tion N, a solution s € S is a local optimum if it has a better quality than all its
neighbors; that is, f(s) < f(s') for all 8 € N(s). For the same optimization
problem, a local optimum for a neighborhood N1 may not be a local optimum
for a different neighborhood Ns.

2.2.2 Initial Solution

Two main strategies are commonly used to generate the initial solution: a ran-
dom and a greedy approach. There is always a trade-off between the use of
random and greedy initial solutions in terms of the quality of solutions and the
computational time. The best answer to this trade-off will depend mainly on
the efficiency and effectiveness of the random and greedy algorithms at hand,
and the S-metaheuristic properties. For instance, the larger is the neighbor-
hood, the less is the sensitivity of the initial solution to the performance of the
S-metaheuristics. Generating a random initial solution is a quick operation,
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A Objective

Local optima
Local optima

\Local and global optima

A
»

Search space

Figure 2.3: Local optimum and global optimum in a search space. A problem
may have many global optimal solutions.

but the metaheuristic may take much larger number of iterations to converge.
To speed up the search, a greedy heuristic may be used. Indeed, in most
of the cases, greedy algorithms have a reduced polynomial-time complexity.
Using greedy heuristics often leads to better quality local optima. Hence, the
S-metaheuristic will require, in general, less iterations to converge toward a
local optimum. Some approximation greedy algorithms may also be used to
obtain a bound guarantee for the final solution. However, it does not mean
that using better solutions as initial solutions will always lead to better local
optima.

2.3 S-Metaheuristics for DVRP: Literature
Review

Tabu Search metaheuristic is one of the most popular S-metaheuristic in
solving DVRP. Gendreau et al. in [Gendrean 1999] propose a parallel imple-
mentation of Rochat and Taillard approach for solving DVRP [Rochat 1995].
It is based on adaptive memory which stores elite solutions discovered in
previous searches and combines them to produce new initial solutions. The
neighborhood is generated with Cross exchange operator. It is basically a
chain exchange procedure, where two segments of variable length are taken
from different routes and moved from one route to another.

Mitrovi¢ -Mini¢ et al. [Mitrovi¢-Mini¢ 2004a] deal with the Dynamic
Pickup and Delivery Problem with Time Windows (DPDVRPTW) and chose
the cheapest insertion heuristic as a constructive method. The cheapest
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insertion procedure is applied to new requests accumulated over a given time
period and allows to determine the overall best insertions for the locations
of a request before its insertion. Before insertion, these requests are sorted
in increasing order of slack time. The slack time of a request is equal to
the difference between the total time available to serve the request and the
direct travel time between its pickup and delivery locations. The Tabu search
is applied after the constructive procedure with neighborhoods defined by
means of ejection chains.

Hanshar et al. [Hanshar 2007] introduce two operators to generate
the neighborhood structure of their Tabu Search; inversion operator and
A-exchange operator [Osman 1993], each one was applied according to some
probability.

Besides, Attanasio et al. [Attanasio 2004] present a parallel tabu search for
the Dynamic Dial-a-Ride problem (DDARP). An initial solution is obtained
by randomly assigning requests to routes while satisfying the constraints
related to the problem. The neighborhood of a solution s is generated by the
relocate operator which makes up all solutions reachable from s by simply
moving a customer visit from one route to another.

A Greedy Randomized Adaptive Search Procedure
(GRASP) |Montemanni 2005b] have been also implemented for dealing
with DVRP. Initial tours are generated by iteratively selecting the next
customers to visit at random among the feasible ones. Once a complete
solution is available, it is tentatively improved using a local search procedure.

2.4 Variable Neighborhood Search for Dy-
namic Vehicle Routing Problem

In this section, we present our VNS-DVRP approach. The adaptation of the
different component for DVRP is described and examined.

2.4.1 Variable Neighborhood Search (VNS)

Variable neighborhood search has been recently proposed by P. Hansen and N.
Mladenovi¢ [Hansen 1999]. The basic idea of VNS is to successively explore
a set of predefined neighborhoods to provide a better solution. It explores
either at random or systematically a set of neighborhoods to get different
local optima and to escape from local optima. VNS exploits the fact that using
various neighborhoods in local search may generate different local optima and
that the global optima is a local optima for a given neighborhood (Figure .
Indeed, different neighborhoods generate different landscapes [Jones 1995].
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A Objective

Initial solution

Landscape 1 (neighborhood 1)

<€——___ |Landscape 2 (neighborhood 2)
Second local optimum First local optimum
(landscape 2) —>» (landscape 1)

»
Search space

Figure 2.4: Variable neighborhood search using two neighborhoods. The first
local optimum is obtained according to the neighborhood 1. According to
the neighborhood 2, the second local optimum is obtained from the first local
optimum.

VNS is a stochastic algorithm in which, first, a set of neighborhood struc-
tures Niy(k = 1,...,n) are defined. Then, each iteration of the algorithm is
composed of three steps: shaking, local search and move. At each iteration,
an initial solution is shaken from the current neighborhood N,. For instance,
a solution s is generated randomly in the current neighborhood Nj(s). A
local search procedure is applied to the solution s’ to generate the solution
s”. The current solution is replaced by the new local optima s” if and only if
a better solution has been found (i.e., f(s”) < f(s)). The same search pro-
cedure is restarted from the solution s” in the first neighborhood N;. If no
better solution is found (i.e., f(s”) > f(s)), the algorithm moves to the next
neighborhood N1, randomly generates a new solution in this neighborhood,
and attempts to improve it. Let us notice that cycling is possible (i.e., s” = s)
(Figure [2.5)). Algorithm [2] presents the template of the basic VNS algorithm.

The design of the VNS algorithm is mainly related to the selection of
neighborhoods for the shaking phase. Usually, nested neighborhoods are used,
where each neighborhood Ny () contains the previous one Ny (x): A compro-
mise must be found between intensification of the search and its diversification
through the distribution of work between the local search phase and the shak-
ing phase. An increased work in the local search phase will generate better
local optima (more intensification), whereas an increased work in the shak-
ing phase will lead to potentially better regions of the search space (more
diversification).
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Neighborhood N, Neighborhood N5 - Neighborhood N,

- ~e

Neighborhood
N;

X@

» |mproving neighbor

......... » Nonimproving neighbor

Figure 2.5: The principle of the variable neighborhood algorithm.

Algorithm 2 Template of the basic variable neighborhood search algorithm.
Input: a set of neighborhood structures N, for k = 1, . . . , kpnqe for shaking.

s = sp ; / Generate the initial solution /
repeat
k=1,
repeat
Shaking: pick a random solution s’ from the k® neighborhood Nj(s) of s ;
s" = localsearch(s);
if f(s”) < f(s) then
5 — S”;
Continue to search with A7 ; k = 1;
else
k=k+1;
end if
until k& = k;az
until Until Stopping criteria
Output: Best found solution.

2.4.2 DVRP Solution’s Representation

The representation design consists in finding a suitable mapping between prob-
lem and algorithmic feasible solution. Since the customers are unknown be-
forehand and arrive through the time, we propose a dedicated encoding of
solution to dynamic vehicle routing problems. The representation is dynamic
in the sense that it has a variable length and extends while customer requests
appear. Our representation allows the insertion of dynamic customers in the
already planned routes. Given that the problem is dynamic and customer
requests arrive along time, it is necessary to have some information about
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the state of each customer (visited/ unvisited) and its time of service. Thus,
routes distinguish between strictly fixed assignments and tentative proposals.
We notice that, according to the problem description, uncommitted requests
always correspond to the last part of the route. On the other side, for each
vehicle we need some information as its current position in the service region,
its remaining capacity, its traveled distance, and its status (committed/not
committed). We propose a discrete representation which expresses the route
of m vehicles over the n customers to serve. The solution consists in a set
of partial routes, where there exists pending customers that have been newly
added to the day’s schedule, but not yet assigned to any vehicle and commit-
ted customers that have already been visited by a given vehicle. A solution to
the problem is represented by a set of routes S = {R;...R,...R,...R,,}, where
Ry, is the set of customers serviced by the vehicle Vj. The representation of
each route Ry is a permutation of n customers as follows:

Ry = (co,¢1,Cyoeey Ciy vvey Cry Crit1) (2.1)
For each customer ¢;, we assign the following information:
e (z;,y;): coordinates of the customer ¢;.

e s;: boolean variable which indicates if the customer ¢; has been already
served or not.

e {;: processing time of the customer ¢; (time in which the customer is
served).

Furthermore, for each route Ry served by the vehicle vy, we keep some infor-
mation:

e (x;,y;): coordinates of the vehicle vy.
e capy: remaining capacity of the vehicle vy.
e disty: distance traveled by the vehicle vy,.

e commity: boolean variable which indicates if the vehicle v, has been
committed or not.

Therefore, this representation provides more flexibility and abstraction to
several heuristics (see Section since they can understand partial states
of the problem using this information, no matter how complicated the current
scenario may seem. It offers and contributes in a clear manner to design
dynamic vehicle routing problem solutions.

66

http://doc.univ-lille1.fr



© 2012 Tous droits réservés.

Thése de Mostepha Redouane Khouadijia, Lille 1, 2011

2.4. Variable Neighborhood Search for Dynamic Vehicle Routing

Problem 67
C5
O
/‘ \
Routes PR
, . C1l
‘ ‘ n/ \‘ -~
ol
4 co
R [66/67] cs [co /
,
@ Visited customer ///
(O Unvisited customer Cc3 Q¢ ,,,,,,,,,, Cc4
A

Figure 2.6: The solution’s representation of the partial state of the problem.
The cross-hatched customers represent the visited part, those without hatch-
ing are the unvisited part.

2.4.3 Neighborhood

In order to adapt VNS for a particular problem, it is necessary to define the
set of neighborhood structures and to establish the local search procedure that
will be applied to the solutions. Both our neighborhoods and the local search
are related to move operators specific to the VRP. We propose four different
neighborhoods Nj(s) for our VNS algorithm. The neighborhoods are defined
as follows:

1. Ni(s) is the set of solutions which results of exchange operator. It

consists in swapping any two customers in the solution s. The arcs
(¢ —1,4), (i,a+ 1), (j —1,7), and (4,5 + 1) are replaced by (5 — 1,1),
(., + 1), (1 —1,5) and (j,i + 1). The size of this neighborhood is
n(n—1)/2 where n represents the number of customers (see Figure [2.7).

2. Na(s) is the set of solutions which results of A-Interchange [Osman 1993]

operator with A = 1. The A-Interchange operator we use is based on
the interchange of all the possible combinations for up to A customers
between sets of routes. Hence, this method results in customers either
being shifted from one route to another, or being exchanged between
routes. The mechanism can be described as follows. New neighboring
solutions can be obtained by applying A-Interchange between a pair of
routes I?, and R, by replacing each subset of customers S C R, of
size |S1] < A with any other one S2 C R, of size |S2| < A. This way,
we get two new routes R, = (R, — S1) U Sy and R, = (R, — S2) U Sy,
which are parts of the new solution S = {R; ... R, ... R ... R,,}. Then,
A-Interchange neighborhood selects two subsets of customers ( with car-

67

http://doc.univ-lille1.fr



© 2012 Tous droits réservés.

68

Thése de Mostepha Redouane Khouadijia, Lille 1, 2011

Chapter 2. Single-Solution Based Metaheuristics for Solving
Dynamic Vehicle Routing Problem

dinality less than or equal to A ) from two different routes and exchanges
them considering all possible insertion positions of both routes, result-
ing in a neighboorhood size n**. If it is the required that the nodes be
inserted in the position of the removed nodes, the size reduces to n?!
. Since the size of A-Interchange neighboorhood is relatively large even
for small values of A, in the literature A rarely exceeds 2. For A =1, it
results in customers either being shifted from one route to another for
the (1,0) or (0,1) moves, or being exchanged between both routes for
the (1,1) move (see Figure [2.8). The insertion of a customer is done
using the cheapest cost insertion (i.e. the position that minimizes the
cost of the insertion) [Funke 2005, [Gendreau 2010].

3. Nj3(s) is the set of solutions which results of applying 2-Opt [Lin 1965]

to any subroute of the solution s. The 2-Opt operator reverses a sub-
route of a given route Ry by selecting two arcs (i1,12) and (j1,72) and
substituting them by (i1,71) and (i2,j2) (see example in Figure [2.9).
The already traveled segment of the tour is left untouched. The heuris-
tic is operated on each route and only for the segments with unserved
customers. The neighborhood for the 2-Opt operator is represented by
all the permutations obtained by removing two edges. The size of the
neighborhood for the 2-opt operator is (n(nl)/2)n; all pairs of edges are
concerned except the adjacent pairs.

4. Ny(s) is the set of solutions which results of using 2-Opt* [Potvin 1995]

in any two subroutes of the solution s. The 2-Opt* operator selects
two arcs (i1,12) € R, and (j1,j2) € Rp and constructs two new arcs so
that (i1, j2) and (j1,42) (see an example in Figure [2.10). The size of the
2-Opt™* neighborhood is quadratic.

e &

» 4

(a) Before (b) After

Figure 2.7: Example of the exchange operator. Two customers ¢, j from
different routes are simultaneously placed into the other routes.
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T

(a) Before (b) After

Figure 2.8: Example of the A-interchange operator (A = 1). In this example,
it plays the role of relocate operator. The edges (i—1,4), (i,i+1) and (j—1, )
are replaced by (1 — 1,4+ 1), (j — 1,7) and (4,7 + 1), i.e., customer ¢ from the
origin route is placed into the destination route.

j1 j1
(a) Before (b) After

Figure 2.9: Example of the 2-Opt operator applied to arcs a and b in one
single route.

(a) Before

Figure 2.10: Example of the 2-Opt* operator applied to arcs a and b belonging
to two different routes.

Given that the constraints are not enforced at this stage; this means that a
solution s” picked up from the neighborhood does not need to comply with the
capacity and depot working day restrictions. A repair procedure makes this
new solution feasible before its evaluation. This repair procedure is necessary
since the neighborhood operators can generate unfeasible solutions.
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For that, some customers are shifted from the unfeasible tour in order to fill
the constraints related to the depot time window and the capacity of the vehi-
cles. The procedure consists in choosing the customer(s) ¢; which minimizes
the cost of its insertion into another tour comparatively to its extraction.
The cost of the extraction is CE = d;_1),(i+1) — (d(i—1),; + d; i+1)), where the
cost of the insertion is C'I = (d;; + d;(j+1)) — djj+1)- Then, the customer
¢; is inserted into another tour by following the Chepeast Insertion Heuristic
(CIH). This heuristic is illustrated in Figure and described in the follow-
ing steps [Kindervater 1989):

(i) Start with a tour consisting of a given vertex i and a self-loop.

(ii) Find a vertex not on the tour which can be inserted between two neigh-
boring vertices 7 and j such that the distance d;, + di; — d;; is minimal.

(iii) Insert this vertex between two neighboring vertices on the tour. If the
tour still incomplete (some vertices remain) go to the step (ii).

Furthermore, the complexity of the cheapest insertion is O(n?) but with care-
ful programming it can be O(n?log(n)) [Frieze 1982]. In brief, the repairing
procedure is repeated until the tour becomes feasible and all the extracted
customers are inserted into other tours. The procedure follows the steps de-
scribed in the Algorithm [3}

Algorithm 3 Repairing procedure for Vehicle Routing Problem
Input: an unfeasible tour Ry of a solution s.
R}, := Ry;
while R is unfeasible due to vehicle capacity or depot time window do
Remove a customer ¢; from the tour R;C.
Insert the customer ¢; into another route of s by using the Chepeast Insertion

Heuristic.
end while
Output: a feasible tour Ry

2.4.4 Initial Solution

Constructive or greedy algorithms start from an empty solution and construct
a solution by assigning values to one decision variable at a time, until a com-
plete solution is generated. They gradually build a feasible solution while
keeping an eye on solution cost, but do not contain an improvement phase.
Route construction heuristics select nodes (or arcs) sequentially until a fea-
sible solution has been created. Nodes are chosen based on some cost mini-
mization criterion, often subject to the restriction that the selection does not
create a violation of vehicle capacity or time window constraints. Sequential
methods construct one route at a time, while parallel methods build several
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(a) (b)

Figure 2.11: Cheapest Insertion Heuristic: (a) Initial subtour with potential
insertions.(b) The new subtour after applying the heuristic.

routes simultaneously. The Savings heuristic, originally developed by Clarke
& Wright [Clarke 1964] for the classical VRP, is probably the best-known
route construction heuristic. It is a saving-based method which merges two
routes into a single route by considering the saving distance between the de-
pot and the nodes connected to the depot. It begins with a solution in which
every customer is supplied individually by a separate route. Combining the
two routes serving respectively customers ¢ and j results in a cost savings
of s;; = dig + doj — d;j . It is summarized in selecting the arc (¢, j) linking
customers ¢ and j with maximum S;; subject to the requirement that the
combined route is feasible. With this convention, the route combination op-
eration is applied iteratively. In combining routes, one can simultaneously
form partial routes for all vehicles or sequentially add customers to a given
route until the vehicle is fully loaded. The savings heuristic is illustrated in
Figure 2.12] In our work, we use the enhanced savings heuristic proposed by
Yellow [Yellow 1970]. It has a form s;; = d;o + do; — 7y d;ij, where 7 is a route
shape parameter, and takes values in [0, 1]. More ~ is larger, more the em-
phasis is put on the distance between the vertices to be connected. Golden et
al. [Golden 1977] report that using v = 0.4 or 1 yields good solutions taking
into account the number of routes and the total length of the solution. The
same heuristic is followed to insert dynamic customers in the solution: a par-
tial solution including only new customers is built using the Savings algorithm
and these routes are added to the current solution.

2.4.5 Evaluation of the Neighborhood

Often, the evaluation of the objective function is the most expensive part of
a local search algorithm and more generally for any metaheuristic. A naive
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Figure 2.12: The savings heuristic. In the left part, customers ¢ and j are
served by separate routes; in the right part, the routes are combined by in-
serting customer j after 7.

exploration of the neighborhood of a solution s is a complete evaluation of the
objective function for every candidate neighbor s of A(s). A more efficient
way to evaluate the set of candidates is the evaluation A(s, m) of the objective
function when it is possible to compute, where s is the current solution and
m is the applied move. This is an important issue in terms of efficiency and
must be taken into account in the design of an S-metaheuristic. It consists
in evaluating only the transformation (s,m) applied to a solution s rather
than the complete evaluation of the neighbor solution f(s') = f(s & m).
The definition of such an incremental evaluation and its complexity depends
on the neighborhood used over the target optimization problem. This is an
important issue in terms of efficiency and must be taken into account in the
design of high-achieving metaheuristics especially in dynamic optimization
context [Talbi 2009).

Let us present an incremental evaluation of the 2-Opt operator applied to a
vehicle tour as it is described in the Figure The incremental evaluation
can be stated as follows:

Af =diy iy +djy gy — (diy gy + diy jy) (2.2)

Thus, for an improving neighbor, we have Af > 0 which means that (d;, ;, +
dj17j2) > (di17j1 + di27j2)'

2.4.6 VNS-DVRP Algorithm

The VNS algorithm as applied to DVRP is given in the Algorithm (4 First,
the VRP instance that corresponds to the set of customers who appear in the
last time slice is given to the algorithm as input data. An initial or partial
solution is built according to the constructive Saving heuristic. Then, the
algorithm proceeds by selecting a solution from the current neighbor, applies
a local search and repair the resulting solution whether it does not fill the
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feasibility constraints (vehicle capacity, and depot time window). If the local
optimum is better than the incumbent, the algorithm moves there(s := s”),
and continue the search with N; (k := 1); otherwise the algorithm switches
to the next neighbor (k:=k + 1).

Algorithm 4 VNS for the DVRP.

INPUT: VRP instance which corresponds to the set of customers who are known
at the time step T
A set of neighborhood structures Ny, for k = 1,..., kjae that will be used in the
search.
if T, =0 then
/* First instance */
s := buildSavingsInitialSolution()
else
if (Orders are waiting to be scheduled) then
s := getLastTimeSliceSolution()
s’ := buildSavingsPartialSolution(New customer orders)
s := merge(s, s')
end if
end if
repeat
k=1
repeat
/* Select one solution from the current neighborhood */
s':= pickRandom(N(s))
/* Apply local search */

"

s := applyLocalSearch(s’)
s := repair(s”) /* In case when solution is unfeasible */
/* Update current solution and/or neighborhood*/

if f(s") < f(s) then

s:=g"

k=1
else

k=k+1
end if

until k& = kpaz {kmae is the number of neighborhoods}
until Termination conditions not met
Output: Solution of the partial state of the problem.

The local search results of a consecutively combining of four local search
operators: A-Interchange with (1,1) moves, A-Interchange with (1,0) moves,
2-Opt and 2-Opt*. The motivation here is giving VNS a method which explic-
itly exchanges subroutes instead of merely single customers; besides, 2-Opt*
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is a suitable operator for DVRP, since it allows exchanging the remainder of
two routes while not affecting already committed customers. For each heuris-
tic, all possible moves are checked and the best one is performed, i.e. the one
which reduces the solution cost the most.

2.5 Simulation and Solving Framework

The strategy that we propose to simulate and solve the problem is based
on the works of Montemanni et al. [Montemanni 2005b] and Hanshar and
Ombuki-Berman [Hanshar 2007]. Basically, the system performs three main
tasks, detailed as follows:

1. It obtains new requests which appear during the working day 7.
2. It solves the instance of the problem.
3. It updates routes and sends vehicles to serve customers.

The architecture of this simulation framework is given in the Figure [2.13]
It consists of two main components to handle the new orders and optimize the
current set of routes. The first component, called Fvent Manager, carries out
three main tasks: Managing customer requests, assigning orders to specific
vehicles, and creating static VRP-like instances. On the other hand, the
second component corresponds to the optimization algorithm which solves
successive VRP-like instances created by the Event Manager (see Section
for further details on the optimization algorithm). In the following section,
we describe the Event Manager component in details.

2.5.1 Event Manager

The event manager serves as an interface between the arrival of new orders and
the optimization procedure. Based on the division of the working day into n
discrete time slices of equal length T'/n;s, where T is the length of the working
day (as shown in Figure . The event scheduler creates partial static VRP-
like instances and runs in sequence the solving algorithm on these instances
(Figure 2.14). Furthermore, it considers/assumes the implicit existence of
a centralized dispatcher to communicate next destinations to vehicles, called
commitment phase. We assume that the commitment cannot be retracted, i.e.
once an order is committed to a driver, this assignment cannot be changed.
However, our approach constantly provides a solution covering all the known
orders. Among these orders, the assignment of those not yet committed, can
be retracted (freely reallocated to other routes or positions of the route).
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The idea of dividing the working day into several discrete time slices has
been proposed by Kilby et al. [Kilby 1998]. The goal is to limit the time given
to each partial static problem, hence providing an orderly way to service new
requests. Another strategy proposes to include each new customer as soon as
its request is received |Gendreau 1999|, which may be necessary when urgent
requests must be served. However, Montemanni et al. [Montemanni 2005b]
already showed that restarting the optimizer each time a new request occurs
does not necessarily lead to better results on this problem.

The first partial static problem created for the first time slice (i.e. at the

Customers Vehicles

Orders Commitments

Event scheduler
—

Generate at time ti
T
Partial instance Feasible solution
- @@ at time ti
Input

)

Solving method
R

Figure 2.13: Simulation and solving framework for the Dynamic Vehicle Rout-
ing Problem (DVRP).

beginning of the working day) consists of all orders remaining from the pre-
vious working day. These customers can be considered being left unattended
the day before and are known as static customers. The total number of them
is determined using the degree of dynamism parameter (dod).

The next partial problems will consider all orders received during the pre-
vious time slice as well as those that have not been committed to drivers yet.
In addition to the parameter n;, our approach considers two additional pa-
rameters which can be defined by user: the cut-off time T,., and advanced
commitment time T,.. The cut-off time allows the system to postpone, to
the next day, requests which have been received after T,,. These requests are
considered static for the next day. Furthermore, the idea behind T, is to
enable the dispatcher and vehicles to finish the service into the depot time
window by avoiding the overload of orders at the end of the working day 7.
The advanced commitment 7. time permits the system to communicate with
the vehicles before leaving the last served location. The main idea is to give
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the drivers enough reaction time to process orders. In our simulation, each
vehicle starts from the location of the last customer committed to it, with a
starting time corresponding to the end of the servicing time for this customer,
and with a remaining capacity which equals the capacity left after serving all
customers previously committed to it.

At the end of each time slice, the solutions found for the corresponding
partial problem are examined, and customer orders ¢; with a processing time
t; within the next time slice must be committed to their respective vehicles.
Note that the t; is the moment in which ¢; should be served according to its
position in the route; it is calculated as the departure time from the previous
customer ¢;_; plus the distance between ¢;_; and ¢;. An exception to this
commitment strategy is represented by return journeys to the depot, which
happens only in two circumstances: when all the customers have been served,
or when the vehicle has used all its capacity. In practice, a vehicle will wait at
its last committed customer if neither of the two conditions described above
are satisfied. The event manager is presented in Algorithm [5] We recall that
the working day T is split into ny time slices, each one with Ty = T'/nys
duration. The set UnServedOrds initially contains the orders known from the
previous day. The variable Ty, is initialized to 0, while at the beginning of
the working day the location of all the vehicles is set at the depot. A partial
problem (PartialProblem) is created in each loop step and solved with the
procedures that will be described in Section [2.4]

The appropriate commitments (CommOrds) are done accordingly to the
solution of PartialProblem. Customers whose processing times cover the fol-
lowing time windows [Tstep, Tstep+Tts[ are associated with vehicles. Then, Un-
ServedOrds regroups pending orders (orders assigned to a preemptive route,
but not committed to a vehicle yet, and those that appeared during the last
time slice).

Starting positions, capacities and travel times of the vehicles are updated.
The algorithm loops until UnServedOrds # (). When all customers are ser-
viced, the vehicles return to the depot.

2.5.2 Vehicle Schedule and Waiting Strategy

Branke et al. [Branke 2005b] and Bent et al. [Bent. 2007] examine the problem
of finding an optimal waiting schedule for the vehicles to maximize the prob-
ability that a new customer can be incorporated into one of the constructed
tours. Branke proves that in the case of several vehicles, waiting may be ben-
eficial because it allows vehicle to remain at strategically favorable locations.

In our approach, the event manager integrates the waiting strategy in the
vehicle scheduling. It is based on the recognition that in some circumstances,
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Algorithm 5 Event Manager Procedure

Tstep = 0;
The starting position of each vehicle is set at the depot;
UnServedOrds := orders left the previous day generated according to dod (degree
of dynamism);
while UnServedOrds # () do
Partial Problem := problem with orders in UnServedOrds;
Run the solving method on Partial Problem;
CommOrds :=orders with processing time t; € [Tstep, Tstep + Tis;
Commit orders in CommOrd;
Tstep = Tstep + Tis; // Update the simulation time
UnServedOrds := UnServedOrds \ CommOrds;
UnServedOrds := UnServedOrds|J{orders appeared during the last time
slice [Tstep — Tis, Tstep]};
Update vehicle positions, capacities, and travel times;
end while
Send all vehicles back to the depot;

. Working Day .
PO PL P2 P3 .. Pi . Pnts
A AA AA AAA AA AA
m A AA

A : Dynamic Request
B : Static Previous-day Request

Figure 2.14: Strategy to tackle dynamic instances: A sequence of VRP-like
problems.

it might not be desirable to rush to the first real customer, one should an-
ticipate the change by trying to maintain flexibility. Such flexibility can be
maintained by having the vehicles wait at appropriate locations in their tours.
Instead, if the vehicle waits after servicing a customer at its current position,
new requests will have a chance to appear in the same area and be taken into
consideration.

This strategy improves the probability of being able to serve additional
customers, while reducing the average length of the detour that is necessary
to serve them. It is particularly useful for instances in which the objective is
the minimization of traveling times, and it is relatively easy to serve all the
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customers.

2.6 Experimental Results and Discussion

This section is devoted to the experimental evaluation of VNS-DVRP algo-
rithm.

The adopted benchmarks will be described in Section [2.6.1] The results
achieved by the algorithm will be presented and compared with state-of-the-
art metaheuristics[2.6.2land [2.6.3] A study on varying the degree of dynamism
is given in Section Section [2.6.9] assesses the dynamic performances of
our algorithm.

2.6.1 Benchmark Description

Our experiments are based on the benchmark data set proposed by
Kilby et al. [Kilby 1998] and described in Section [I.6] They were de-
rived from publicly available VRP benchmark from three separate VRP
sources, namely Taillard [Taillard 1993] (13 instances), Christophides and
Beasley|Christofides 1984] (7 instances) and Fisher et al. [Fisher 1995] (2 in-
stances). The number of customers to serve can be inferred from the name
of the instance. For example, {71 corresponds to Fisher’s instance with 70
customers to serve and one single depot. In our experiments, we deal with
pickup instances. The driver of the vehicle is not concerned with what he
is transporting, but only the quantity that he will pick from the customer.
The data set consists of numerous types of service areas, some with uniformly
distributed customers, others with clustered customers and a few of them
have mixed and irregular distributions. Some properties of these data sets are
shown in Table 211

Data set f Customers | Topology and distribution
Customers are either uniformly distributed around the
service area or uniformly spread in clusters

Christofides | 50-199

Customers present mixed uniform and clustered
distributions around the service area

Most of the customers are centralized in the surroundings
of the depot. As customers go away this area,

they considerably decrease in an irregular manner

Taillard 75-150

Fisher 71-134

Table 2.1: Data sets: Features and properties.

As described in Section [2.5] the simulation of the instance working day
requires three parameters: the number of time slots n,, cut-off time 7T,, and
advanced commitment time 7,.. In order to compare our algorithm with
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previous works, we have divided the working day into n; = 25 time slots.
Montemanni et al.[Montemanni 2005b] have tested several values for this pa-
rameter (10, 25, and 50) on different instances, and found that setting n,s = 25
leads to the best trade-off between reactivity to dynamic events and accurate
optimization of the static VRP-like problems. Furthermore, we have set the
cut-off time T, = 0.5 x T', where T' is the length of the working day. Thus,
orders which arrive after T, x T" are postponed to the following day, while
those that arrive before this time are considered dynamics. Given that the
customers arrive according to uniform distribution over the working day, with
T., = 0.5, the half of customers is considered dynamic, while the other part
is static. This corresponds to a dod = 0.5. It is important to note that, in
some cases, the insertion of customers is not necessary, as the system does not
receive events in some time slots. The hardware platform for the experiments
was an Intel Core 2 Quad 2.6 GHz machines with 4 GB of memory.

2.6.2 Comparison with State-of-the-Art Metaheuristics

A comparison of the solution quality in terms of minimizing travel distances
(costs) is done between our VNS-DVRP and other metaheuristics proposed
in literature. The metaheuristics are Montammani et al.’s Ant System (AS)
[Montemanni 2005b], and Hanshar et al.’s [Hanshar 2007] Genetic Algorithm
(GA) and Tabu Search (TS).

In order to obtain significant results and carry out this comparison, our ap-
proach has been executed 30 times for each instance. In this case, we have
simulated the working day T into n time slots, where n;, = 25. VNS-DVRP
algorithm is launched at the beginning of each time slice. The stopping crite-
rion is a fixed number of evaluations. We have fixed the number of evaluations
at 5000 evaluations per time slice. Thus, the entire problem will be solved
into a number of evaluations equals to 125000 (25 x 5000 = 125000).

The state-of-the-art approaches use the CPU time as stopping criterion.

Indeed, for each instance, ACS [Montemanni 2005b] was simulated with 1500
seconds (25 minutes) of CPU time (giving a maximum of 60 seconds for each
single optimization) on a Pentium IV 1.4 GHz. For their part, TS and GA
algorithms [Hanshar 2007] were run on a Pentium IV 2.8 GHz with a simula-
tion time of 750 seconds (12.5 minutes) of CPU time, i.e., 30 seconds for the
optimization of each VRP-like instance.
The choice of using a fixed number of evaluations is motivated by the fact
that CPU time is highly dependent on hardware, and not a suitable stan-
dard to compare with existent algorithms. However, with the fixed number
of evaluations, we guarantee that our algorithm runs in less time than the
state-of-the-art algorithms.
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Table [2.2] gives the best and average distances of the VNS-DVRP over the
21 Kilby’s instances. The results are compared with AS [Montemanni 2005b],
GA, and TS, both proposed in [Hanshar 2007]. We highlight the best found
solutions into dark shaded cells, and the average results are marked into light
shaded cells.

We can see that VNS is very competitive comparatively to other algo-
rithms. It outperforms the other metaheuristics on 3 instances, and gives new
best-so-far solutions on these instances. The average of the relative error for
the total best results is 1.68%. When we compare the class of S-metaheuristics,
our VNS outperforms Hanshar et al.’s T'S [Hanshar 2007] on 8 instances. Fur-
thermore, VNS outperforms the P-metaheuristic AS on 18 instances and GA
on 5 instances.

VNS is able to find high quality solution on Christophides and Beasley in-
stances. These instances are characterized by a uniform distribution of cus-
tomers in the service area, or uniform spread in clusters.

It is also significant to notice that each AS execution lasts 25 minutes on
a Pentium IV 1.5 GHz and each GA and TS execution lasts 12.5 minutes on
a Pentium IV 2.8 GHz, which results in a total execution time of 525 and
262.5 minutes respectively. These execution times can be normalized accord-
ing to the processor used in our case. For that purpose, we use the set of
Geekbench benchmarks [Gee 2010]. Geekbench provides a comprehensive set
of benchmarks engineered to quickly and accurately measure processor and
memory performance. Thereby, when comparing with VNS execution times,
the normalized times are 62.08 minutes in the case of AS and 73.5 minutes
for GA and TS. The execution of VNS is less time-consuming than GA and
comparable with AS, which denotes that our algorithm is reactive and is able
to reach competitive solutions in a short time.

2.6.3 Performance on Large Scale Instances

We propose here a study on the performance of VNS on large scale instances
k-series) generated for dynamic vehicle routing problems and described in
Section[I.6] The aim is to deal with instances larger than the standard Kilby’s
problem set [Kilby 1998] (21 instances, where the number of customers ranges
between 50 and 385, although in the literature only instances up to 199 are
solved).

Three instances have been chosen for this experiment; k100, k250, and k500,
where the number of customers can be inferred from its name. As k-series
has different variants, we choose to indicate if the instance is with a single

LFor this instance. the plan of the service area is in a scale 10 times larger than the Fisher’s instance.
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Table 2.2: Numerical results obtained by our VNS compared to AS, GA, and

TS.
Metaheuristics

Instances VNS AS |[Montemanni 2005b] | GA [Hanshar 2007] | T'S' [Hanshar 2007]

Best [ Averg. [ Time Best [ Averg. Best [ Averg. Best [ Averg.
c50 599.53 653.84| 0.75 631.30 681.86 593.42 603.57 627.90
c75 981.64 | 1040.00| 1.22| 1009.36 1042.39 981.57 | 1013.45 1013.82
c100 1022.92 | 1087.18 | 2.63 973.26 1066.16 987.59 997.15| 1047.60
c100b 942.81| 1.65 944.23 1023.60 881.92 900.94 891.42 932.14
c120 1469.24 | 3.63| 1416.45 1525.15 | 1303.59 | 1390.58 | 1331.22| 1468.12
c150 1334.73 | 1441.37| 6.22| 1345.73 1455.50 | 1348.88 | 1386.93 1401.06
c199 1679.65 | 1769.95|10.72| 1771.04 1844.82 1758.51 | 1750.09 | 1783.43
71 304.32 325.18 1.5 311.18 358.69 301.79 309.94 306.33
f134E| 15680.05 | 16522.18 | 1.43 16083.56 | 15528.81 | 15986.84 | 15717.90 | 16582.04
tai7ba 1806.81 | 1954.25 1.0| 1843.08 1945.20 | 1782.91 | 1856.66 1883.47
tai75b 1480.70 | 1560.71| 0.68| 1535.43 1704.06 | 1464.56 | 1527.77 1587.72
tai75c 1621.03 | 1746.07 | 0.98 | 1574.98 1653.58 | 1440.54 | 1501.91 1527.72
tai7bd 1446.50 | 1541.98 | 0.87| 1472.35 1529.00 1422.27 | 1430.83 | 1453.56
tail00a 2250.50 | 2462.50 | 2.33| 2375.92 2428.38 | 2232.71| 2295.61 2310.37
tail00b 2169.10| 2319.72| 2.18| 2283.97 2347.90 2215.93 | 2219.28 | 2330.52
tail00c 1557.81| 1.67| 1562.30 1655.91 | 1541.28 | 1622.66 | 1515.10 | 1604.18
tail00d 1969.94 | 2100.38 | 2.08 | 2008.13 2060.72 1912.43 | 1881.91| 2026.76
tailb0a 3479.44 | 3680.35| 6.32| 3644.78 3840.18 3501.83 | 3488.02| 3598.69
tail50b 2934.86 | 3089.57 | 5.23 | 3166.88 3327.47 3115.39 | 3109.23| 3215.32
tail50c 2674.29 | 2928.77| 4.65| 2811.48 3016.14 2743.55 | 2666.28 | 2913.67
tail50d 2954.64 | 3147.38 | 4.33| 3058.87 3203.75 3045.16 | 2950.83 | 3111.43
Total 50033.15 | 53341.24 | 62.08 | 50876.23 53794.02 51089.37 | 49987.8 | 52725.85

or multi-depots. In this work, we deal with single depot instances. Thus,
the instance k100 means that there are 100 customers to serve and one single
depot. Each instance contains the length of the working day, the occurrence
time of each request, the time required to serve these requests, and the number
of the available vehicles.
We use the standard way to measure the degree of dynamism in the system:
we define the dod depending on the proportion of unknown customers, whereas
Montemanni et al. [Montemanni 2005b| propose to split the working day in
two halves of equal length and consider the customer orders that arrive during
the second half as static.

In order to deal with this problem, we split the working day 7" in n;s time
slices and collect the requests at the end of each time slot. These requests
constitute the new VRP-like instance of the problem. We set n; to 25 as
tested by Montammani et al. [Montemanni 2005b|. The degree of dynamism
dod is fixed to 0.5; this means that a half of the customers is considered as
static, while the other half is dynamic. The optimization begins to plan routes
with the known static customers at time ¢ = 0. The stopping criterion is a
fixed number of evaluations. In Table we give the number of evaluations
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assigned to each instance in dynamic case.

For the static instances, the results are reported after the convergence of
the algorithm. We have performed 30 independent runs of each experiment.
The results are shown in Table [2.4] which includes the best achieved fitness,
the average, the standard deviation, as well as the running time for each
instance and each algorithm measured in minutes.

Table 2.3: Number of evaluations assigned to each instance as stopping crite-
rion with n;s = 25.

Instances | Single time slice | Complete problem
k100 600 25 x 600 = 15000
k250 600 25 x 600 = 15000
k500 1200 25 x 1200 = 30000

Table 2.4: Solutions obtained by VNS on static and dynamic instances.

Instance | Solution Static | Dynamic| Time
Best 1448.18 | 1874.37

k100 Avrg 1529.49 2084.47 0.74
Std-Dev 36.71 102.14
Best 5869.38 | 6845.82

k250 Avrg 6187.80 7251.54 | 13.23
Std-Dev 270.88 249.44
Best 18582.83 | 24082.73

k500 Avrg 20108.49 | 24939.88 | 130.83
Std-Dev 1457.51 520.99

Figure shows the main trace of VNS-DVRP over the three instances
k100, k250, k500. The lower bounds have been computed running our al-
gorithms on the static sub-instance which results of each time slice. These
bounds are not attainable by the dynamic algorithms in any case, but we
find them useful as reference values for the behavior of our algorithms. They
will be useful for the dynamic performance assessment (see Section [2.6.5]). It
details the track of optima through time by our algorithm. It considers both
changing environments; every 600 evaluations for k100 and k250 instances
and 1200 evaluations for the k500 instance.

The performance of the tracking depends both on the speed and the sever-
ity of environmental changes. Given that the environment is changing, if the
solution handled by VNS is distant from the new optimal solution, we can
observe a sudden deterioration in the performance of our algorithm. This
deterioration depends on the severity of change. Indeed, if new customers
appear in a region which is not covered by the assigned vehicles, or if their
orders need a quantity that cannot be satisfied by the assigned vehicle; vehicle
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detour routes will be planned or new vehicle assignments from the depot will
take place in order to respond to these new demands. Therefore, this leads to
increase the cost of the solution.

2.6.4 Study on Varying the Degree of Dynamism

We have performed a study on the behavior of our algorithms in relation to
different degrees of dynamism. The dods take their values in range [0.5, 1].
If the dod is 0.5, the problem is semi-dynamic, while with a dod equal to 1,
the problem is completely dynamic. We have done experiments only on the
k-series instances. The aim is to study the dod effect on the quality of the
obtained solutions in term of minimizing the fitness function, and the average
of the served customers during the working day.

For each instance, 30 runs of VNS are considered. Table reports the

results obtained by our VNS algorithm with different degrees of dynamism.
It indicates the best found solutions, the average, and the percentage as well
as the range of served customers.
We can see that when we increase the degree of dynamism, the percentage of
served customers starts to decrease. Indeed, since vehicles have to return to
the depot at the end of the working day 7', dynamic customers that arrive
late at the end of the day remain unserved.

When dod =0.6, we observe that almost customers are served for the in-
stances k100 and k500, and totally served for the instance k250. However,
the total traveled distance is relatively big comparatively to the case when
all customers are served (dod = 0.5). This can be explained by the fact that
when new customers arrive late, some vehicle detours in the existing routes
are necessary to respond to these new demands, which leads to an increasing
in the total traveled distance.

In the pure dynamic case (dod = 1), less than three-quarters of the total
number of customers is served for the three instances. This case is closely
similar to an emergency scenario, where the priority is to be available for the
demands.

2.6.5 Dynamic Performance Assessment

To assess the dynamic performance measures of our VNS-DVRP, we propose
to evaluate the adaptivity of the algorithm according to Weicker’s indica-
tors [Weicker 2002] seen in Section . These measures regroup accuracy,
stability and reactivity of the algorithm.

Kilby’s instances: For the classical Kilby’s instances, we have computed
the accuracy at the end of the working day 7. Table shows the
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Figure 2.15: Evolution of VNS-DVRP algorithm mean trace for each instance
and the optimum value for each time slice. Each square on the left figure is
enlarged in the right figure.
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Table 2.5: Solutions obtained by V N.S with different degrees of dynamism.

Dods| Inst. Best Avrg. | Custom. Range
k100 | 1874.37| 2084.47| 100% |[100-100]
0.5 | k250 | 6845.82| 7251.54| 100%|[250-250
k500 24082.73|24939.88| 100% |[500-500
k100 | 2313.35| 2571.78 99.9%| [99-100]
0.6 | k250 | 7361.08| 7781.98| 100% |[250-250
k500 |27354.50(28861.12| 99.0% | [493-498
k100 | 2436.85| 2680.72 95.5% [94-96]
0.7 | k250 | 8239.43| 9244.82| 99.6%| [248-250]
k500 |26101.17|28209.95 96% | [478-482
k100 | 2214.75| 2647.02| 88.5% [87-91
0.8 | k250 | 8666.36| 9365.09| 93.8%| [232-236
k500 [24327.26(27185.13| 90.14% | [449-451
k100 | 2348.79| 2647.33| 79.7% [77-82
0.9 | k250 | 8184.28| 9098.23| 86.1%| [212-218
k500 23242.42(25640.75| 82.41%| [410-413
k100 | 2289.09| 2581.81| 70.3% (68-74
1 k250 | 7567.24| 9010.27 76.5% | [188-194
k500 |22147.62(23764.54| 73.09% | [362-366

accuracy of our algorithms over the 21 instances. It reports the average
distances and the lower bounds Min% (i.e. best known solutions) for
each instance by considering the whole set of customers as static. These
solution can be found in literaturd? From Table 2.6 we see that our
VNS-DVRP has an accuracy equal to 0.86 that denotes that it is able
to produce good solutions on the conventional dynamic benchmarks.
It gets the best accuracy on 6 instances. Its performance is similar to
tabu search algorithm which is known as one of the most competitive S-
metaheuristics for this problem. However, GA holds the best accuracy
with 0.87, since it is a P-metaheuristics, it has the capability to visit
more solutions during its search which is a significant advantage.

K-series instances: Table shows the accuracy and stability over the
three k-series instances on different time slices, and the average on the
whole working day. These results are plotted in Figure 2.16] As we
introduce the new orders to the system at the beginning of each time
slot, the algorithm stats reacts immediately and starts its search in or-
der to find the new optimum. So, we have excluded e-reactivity from
this analysis since it provides no significant results (it is always equal to
one).

It is interesting here to pay attention to the different behaviors of our
algorithm on the three instances. From the accuracy results, we can
see that the size of the instance affects differently the performance of

2http ://neo.lcc.uma.es/radi-aeb/WebVRP/
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our algorithms. The performance of VNS on the instance k100 is less
effective (0.79) compared to the rest of the instances. Whereas in the
medium and bigger instances, VNS performs well with an accuracy that
ranges [0.83 — 0.86].
With respect to stability, the average stability values for VNS ranges
between 0.168 and 0.177 which is quite stable for a metric which ranges
in the interval [0, 1].

Table 2.6: Accuracy of the different metaheuristics on the Kilby’s instances.

Instance| MinZ VNS AS [Montemanni 2005b] | GA [Hanshar 2007] | T'S [Hanshar 2007]

Best | Accuracy Best Accuracy Best | Accuracy Best | Accuracy
c50 521 599.53 0.87 631.3 0.83| 570.89 0.91 603.57 0.86
c75 832 981.64 0.85 1009.36 0.82 981.57 0.85| 981.51 0.85
c100 817 | 1022.92 0.80 973.26 0.84 961.1 0.85 997.15 0.82
c100b 820 | 866.71 0.95 944.23 0.87| 881.92 0.93 891.42 0.92
c120 1042.11 | 1285.21 0.81 1416.45 0.74 | 1303.59 0.80 | 1331.22 0.78
c150 1028.42 1334.73 0.77 1345.73 0.76 | 1348.88 0.76 | 1318.22 0.78
c199 1291.45| 1679.65 0.77 1771.04 0.73 | 1654.51 0.78 | 1750.09 0.74
71 237 304.32 0.78 311.18 0.76 301.79 0.79| 280.23 0.85
134 11620 | 15680.05 0.74115135.51 0.77 | 15528.81 0.75| 15717.9 0.74
tai7ba [1618.36| 1806.81 0.90 1843.08 0.88 | 1782.91 0.91 | 1778.52 0.91
tai75b 1344.64 1480.7 0.91 1535.43 0.88 | 1464.56 0.92 | 1461.37 0.92
tai75¢ 1291.01 | 1621.03 0.80 1574.98 0.82| 1440.54 0.90 | 1406.27 0.92
tai7hd 1365.42 1446.5 0.94 1472.35 0.93 | 1399.83 0.98 | 1430.83 0.95
tailO0a | 2041.33 2250.5 0.91 2375.92 0.86 | 2232.71 0.91 | 2208.85 0.92
tail00b [1940.61 2169.1 0.89 2283.97 0.85| 2147.7 0.90 | 2219.28 0.87
tail00c 1406.2 | 1490.58 0.94 1562.3 0.90| 1541.28 0.91 1515.1 0.93
tail00d [1581.25| 1969.94 0.80 2008.13 0.79| 1834.6 0.86 | 1881.91 0.84
tail50a | 3055.23 3479.44 0.88 3644.78 0.84 | 3328.85 0.92 | 3488.02 0.88
tail50b [2656.47| 2934.86 0.91 3166.88 0.84 | 2933.40 0.91 | 3109.23 0.85
tail50c [2341.84| 2674.29 0.88 2811.48 0.83]2612.68 0.90 | 2666.28 0.88
tail50d [2645.39| 2954.64 0.90 3058.87 0.86 | 2950.61 0.90 | 2950.83 0.90
Average [1976.03 | 2382.53 0.86 2422.68 0.83 1 2342.99 0.87 | 2380.37 0.86

2.7 Conclusion

This chapter presented a VNS based approach for solving Dynamic Vehicle
Routing Problem. The interest of this approach consists in the ability of shift-
ing from a neighborhood to another one throughout the optimization process.

This ability offers an adaptive mechanism for tracking the optimum during

the environmental changes. For this proposal, different neighborhoods have

been integrated to increase the efficiency of the approach.

Our experiments have been validated on a conventional set of benchmarks as
well as a new set of large scale benchmark instances that we have proposed.
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Table 2.7: Accuracy and stability of VNS on the dynamic k-series instances
over different time slices.

Instance | Time slice | Accuracy | Stability
0 0.972 0.933
5 0.949 0.039
10 0.822 0.092
k100 15 0.681 0.000
20 0.681 0.000
25 0.681 0.000
Avg. 0.797 0.177
0 0.937 0.916
5 0.924 0.036
10 0.875 0.055
k250 15 0.829 0.000
20 0.829 0.000
25 0.829 0.000
Avg. 0.866 0.168
0 0.944 0.885
5 0.928 0.068
10 0.819 0.054
k500 15 0.779 0.000
20 0.779 0.000
25 0.779 0.000
Avg. 0.832 0.168

In order to evaluate the dynamic performance of our approach, several
indicators have been used to this end. Weicker’s measures allow to assess
the accuracy, the stability, and the reactivity of an algorithm throughout the
optimization process. Our approach provides very competitive results compar-
atively to the other state-of-the-art metaheuristics, and Weicker’s indicators
demonstrated the high adaptivity and stability of our algorithm.

Population-based metaheuristics tend to be more effective in terms of di-
versification than single solution based ones. However, in terms of intensifica-
tion search areas, the latter group is known to be more effective. In general,
the degree of success of these methods on a given problem depends largely
on their ability to strike a balance between exploration and exploitation. The
ability of the population-based metaheuristics to sample the search space and
the fact that they simultaneously manipulate a group of solutions increase
their potential for dynamic problems. Techniques which exploit these quali-
ties are reviewed in the next chapter.
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Figure 2.16: Evolution of accuracy and stability of VNS-DVRP across time
slices for each instance.
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3.1 Introduction

As mentioned earlier, environmental changes in real life typically do not alter
the problem completely, but affect only some part of the problem at a time.
For example, for the dynamic vehicle routing problem in which customer or-
ders arrive progressively over the working day, not all the customer orders
are canceled in the same time, not all vehicles break down at once, weather
changes affect only parts of road, etc. Thus, after an environmental change,
there remains some information from the past that can be used in the future.
Such problems call for a methodology to track their optimal solutions through
time. The required algorithm should not only be capable of tackling combi-
natorial problems, but should also be adaptive to changes in the environment.
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Population based metaheuristics exhibit a number of potential advantages for
such purposes. In recent years, there have been increasing interest in using
Particle Swarm Optimization (PSO) in dealing with dynamic optimization
problems [Eberhart 2001, [Carlisle 2002, [Li 2006, Blackwell 2007]. There are
several characteristics inherent and attributed to PSO that encourage their use
for dynamic problems. The underlying principle of PSO is based on swarm
intelligence, and hence they are expected to be capable of self-organization
and able to adapt to environmental changes. In addition, PSO has proved to
be suitable for dynamic environments due to their ability to store and exploit
previous solutions. One of the most appealing features for dynamic environ-
ments is that, at any given instant, PSO deals with a population of solutions
rather than a single solution. Hence, even if the environment changes, it is
likely that some solutions in the population remain feasible and retain some
of their good quality. Thus, by using PSO, it is possible to formulate general
techniques to address the dynamic issues of the vehicle routing problem. For
this purpose, we present in this chapter an Adaptive Particle Swarm Opti-
mization for solving Dynamic Vehicle Routing Problem. The underlying idea
is to reuse the best solutions gathered in the past that could be beneficial for
tracking the shifting optimum over the time. This chapter starts with an in-
troduction to the population-based metaheuristics and the common concepts
related to these approaches. In Section the standard particle swarm opti-
mization approach is exposed. While the Section reports an overview of
some P-metaheuristics applied on DVRP. Section presents our Adaptive
Particle Swarm Optimization (APSO) for solving DVRP. It covers particle’s
representation, particle movements, memory mechanism, and hybridization
with heuristics. In Section our approach is tested on a conventional set
of benchmarks as well as a new set of large scale instances. In addition, the
dynamic performances of our algorithm are assessed and discussed. Finally,
we conclude this chapter with a summary and introduce the future step of
this thesis.

3.2 Common Concepts for Population-Based
Metaheuristics

Population-based metaheuristics (P-metaheuristics) start from an initial pop-
ulation of solutions. Then, they iteratively apply the generation of a new pop-
ulation and the replacement of the current population (see Figure . In the
generation phase, a new population of solutions is created. In the replacement
phase, a selection is carried out from the current and the new populations.
This process iterates until a given stopping criteria. The generation and the
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replacement phases may be memoryless. In this case, the two procedures are
based only on the current population. Otherwise, some history of the search
stored in a memory can be used in the generation of the new population
and the replacement of the old population. Most of the P-metaheuristics are
nature-inspired algorithms. Popular examples of P-metaheuristics are evolu-
tionary algorithms, ant colony optimization, scatter search, particle swarm
optimization, bee colony, and artificial immune systems. Algorithm [6] illus-
trates the high-level template of P-metaheuristics [Talbi 2009].

Generate population

Memory

Replace population

Figure 3.1: Main principles of P-metaheuristics.

Algorithm 6 High-level template of P-metaheuristics.
P := Py; / Generation of the initial population /
t:=0;
repeat

Generate(P] ); / Generation a new population /
P,11 := Select-Population (P; U (F/)); / Select new population /
t:=t+1;

until Stopping criteria satisfied

Output: Best solution(s) found.

P-metaheuristics differ in the way they use the search memory during the
search and in generation and selection procedures.

e Search memory: The memory of a P-metaheuristic represents the set
of information extracted and memorized during the search. The content
of this memory varies from a P-metaheuristic to another one (Table[3.2).
In most of the P-metaheuristics such as evolutionary algorithms and
scatter search, the search memory is limited to the population of solu-
tions. In ant colonies, the pheromone matrix is the main component of
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the search memory, whereas in estimation distribution algorithms, it is
a probabilistic learning model that composes the search memory.

e Generation: In this step, a new population of solutions is generated.
According to the generation strategy, P-metaheuristics may be classified
into two main categories (Figure [3.2)):

— Evolution based: In this category of P-metaheuristics, the solu-

tions composing the population is selected and reproduced using
variation operators (e.g., mutation, recombination) acting directly
on their representations. A new solution is constructed from the
different attributes of solutions belonging to the current population.
Evolutionary algorithms and scatter search represent well-known
examples of this class of P-metaheuristics.

Blackboard based: Here, the solutions of the population partic-
ipate in the construction of a shared memory. This shared mem-
ory will be the main input in generating the new population of
solutions. The recombination in this class of algorithm between
solutions is indirect through this shared memory. Ant colonies
and estimation distribution algorithms belong to this class of P-
metaheuristics. In the former strategy, the shared memory is rep-
resented by the pheromone matrix, while in the latter strategy, it is
represented by a probabilistic learning model. For instance, in ant
colonies, the generated solutions by ants will affect the generation
of solutions by future ants via the pheromone. Indeed, the previ-
ously generated solutions participate in updating the pheromone.

e Selection: The last step in P-metaheuristics consists in selecting the
new solutions from the union of the current population and the gen-
erated population. The traditional strategy consists in selecting the
generated population as the new population. Other strategies use some
elitism in the selection phase where they provide the best solutions from
the two sets. In blackboard-based P-metaheuristics, there is no explicit
selection. The new population of solutions will update the shared search
memory (e.g., pheromone matrix for ant colonies and probabilistic learn-
ing model for estimation of distribution algorithms), which will affect
the generation of the new population.

As for S-metaheuristics, the search components that allow to define and differ-
entiate P-metaheuristics have been identified. The common search concepts
for P-metaheuristics are the determination of the initial population and the
generation of the new one.
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[ P-metaheuristic

Search Memory ]

Evolutionary algorithms Population of individuals
Scatter search Population of solutions, reference set
Ant colonies Pheromone matrix

Estimation of distribution algorithms | Probabilistic learning model

Population of particles,

best global and local solutions
Bee colonies Population of bees

Artificial immune systems: Population of antibodies
clonal selection

Particle swarm optimization

Table 3.1: Search Memories of Some P-Metaheuristics.

3.2.1 Initial Population

Due to the large diversity of initial populations, P-metaheuristics are natu-
rally more exploration search algorithms whereas S-metaheuristics are more
exploitation search algorithms. The determination of the initial population
is often disregarded in the design of a P-metaheuristic. Nonetheless, this
step plays a crucial role in the effectiveness of the algorithm and its effi-
ciency [Talbi 2009]. In the generation of the initial population, the main
criterion to deal with is diversification. If the initial population is not well
diversified, a premature convergence can occur for any P-metaheuristic. For
instance, this may happen if the initial population is generated using a greedy
heuristic or a S-metaheuristic (e.g., local search, tabu search) for each solution
of the population.

- Mutaton @

. ) @ Shared memory
Crossover .

@ - Pheromone matrix @

@ - Probabilistic model
n-ary recombination @

Figure 3.2: Evolution based versus blackboard based strategies in P-
metaheuristics.

In some P-metaheuristics such as scatter search [Cung 1997b)
Cung 1997a], the diversification criterion is explicitly taken into account in
the generation of the initial population. Some diversification criteria are
optimized in the generation of the initial population such as maximizing
the minimum distance between any two solutions of the initial population:
Max;—y ,(Min;—1,-1{d;;}) where d;; represents the distance in the decision
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space between two solutions ¢ and j and n is the size of the population.
Strategies dealing with the initialization of the population may be classified
into four categories: random generation, sequential diversification, parallel
diversification, and heuristic initialization. They may be analyzed according
to the following criteria: diversity, computational cost, and quality of the
solutions (Table . Sequential and parallel diversification strategies provide
in general the best diversity followed by the quasi-random strategy. The
heuristic initialization provides in general better solutions in terms of quality,
but with the expense of a higher computational cost and a reduced diversity.
This will depend on the fitness landscape of the tackled optimization problem.

Strategy Diversity | Computational | Cost Quality of Initial Solutions
Pseudo-random ++ 4+ ¥

Quasi-random +++ T+ ¥

Sequential diversification | ++++ ++ ¥

Parallel diversification ++++ +4++ i

Heuristic + + 1+

Table 3.2: Analysis of the different initialization strategies. The evaluation is
better with more sign (+).

3.3 Particle Swarm Optimization

Particle swarm optimization is a stochastic population-based metaheuristic
inspired from swarm intelligence [Kennedy 2001]. It mimics the social behav-
ior of natural organisms such as bird flocking and fish schooling. Indeed, in
those swarms, a coordinated behaviors using local movements emerge without
any central control. Originally, PSO has been successfully designed for con-
tinuous optimization problems. Its first application to optimization problems
has been proposed in [Kennedy 1995]. In the basic model, a swarm consists
of N particles flying around in a D-dimensional search space. Each particle ¢
is a candidate solution to the problem, and is represented by the vector x; in
the decision space. A particle has its own position and velocity, which means
the flying direction and step of the particle. Optimization takes advantage
of the cooperation between the particles. The success of some particles will
influence the behavior of their peers. Each particle successively adjusts its
position x; toward the global optimum according to the following two factors:
the best position visited by itself (pbest; ) denoted as p; = (pi, Pi2, - - -, PiD)
and the best position visited by the whole swarm (gbest) (or lbest, the best
position for a given subset of the swarm) denoted as p, = (pg1, Pg2, - - - s DgD)-
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The vector (p, — z;) represents the difference between the current position
of the particle 7 and the best position of its neighborhood. A neighborhood
must be defined for each particle. This neighborhood denotes the social in-
fluence between the particles. There are many possibilities to define such a

neighborhood, traditionally, two methods are used:

e gbest method: In the global best method, the neighborhood is defined

as the whole population of particles (Fig. [3.3)).

Ibest method: In the local best method, a given topology is associated
with the swarm. Hence, the neighborhood of a particle is the set of
directly connected particles. The neighborhood may be empty so the
particles are isolated (i.e., o = 0). Figure shows three different
topologies: complete graph, ring world graph, and small world graph.
This model is similar to social science models based on population mem-
bers mutual imitation, where a stabilized configuration will be composed

of homogeneous subpopulations.

00—

(b) Local structure: a ring

(a) Complete graph

() “Small world graph”

Figure 3.3: Neighborhood associated with particles. (a) gbest Method in
which the neighborhood is the whole population (complete graph). (b)
Ibest Method where a non complete graph is used to define the neighbor-
hood structure (e.g., a ring in which each particle has two neighbors).
(c) Intermediate topology using a small world graph.

According to the neighborhood used, a leader (i.e., lbest or gbest) rep-
resents the particle that is used to guide the search of a particle toward
better regions of the decision space. A particle is composed of three
vectors:

— The z-vector records the current position (location) of the particle
in the search space.
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— The p-vector records the location of the best solution found so far
by the particle.

— The v-vector contains a gradient (direction) for which particle will
travel in if undisturbed.

— Two fitness values: The x-fitness records the fitness of the x-vector,
and the p-fitness records the fitness of the p-vector.

A particle swarm may be viewed as a cellular automata where individual
cell (particles in PSO) updates are done in parallel; each new cell value
depends only on the old value of the cell and its neighborhood, and all
cells are updated using the same rules. At each iteration, each particle
will apply the following operations:

Update the velocity: The velocity that defines the amount of change
that will be applied to the particle is defined as:

vi(t) =vi(t— 1)+ @1 X r(pi —xi(t — 1)) + @2 X 12(py —x:(t — 1)) (3.1)

where 7 and ry are two random variables in the range [0, 1]. The con-
stants 1 andpy represent the learning factors. They represent the at-
traction that a particle has either toward its own success or toward the
success of its neighbors. The parameter ; is the cognitive learning
factor that represents the attraction that a particle has toward its own
success. The parameter s is the social learning factor that represents
the attraction that a particle has toward the success of its neighbors.
The velocity defines the direction and the distance the particle should go
(see Figure [3.4). This formula reflects a fundamental aspect of human
sociality where the socialpsychological tendency of individuals emulates
the successes of other individuals.

vi(t) = wxvi(t—1)+ 1 xri(pi—zi(t—1))+ 2 X ro(pg—x:i(t—1)) (3.2)

The elements of v; are limited to a maximal value [Vj,az, +Vinae] such
as the system will not explode due to the randomness of the system.
If the velocity v; exceeds Vmax (resp. Viaz ), it will be reset to V.
(resp. Vinae )- In the velocity update procedure, an inertia weight w is
generally added to the previous velocity [Shi 1998]: The inertia weight
w will control the impact of the previous velocity on the current one. For
large values of the inertia weight, the impact of the previous velocities
will be much higher. Thus, the inertia weight represents a trade-off
between global exploration and local exploitation. A large inertia weight
encourages global exploration (i.e., diversify the search in the whole
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p;: My best performance

pext)y Y

X0: QR e pg: Best performance
Current position Pg-X(t) - -}O g

of my neighbors

X(t+1): New position

v(t)

Figure 3.4: Movement of a particle and the velocity update.

search space) while a smaller inertia weight encourages local exploitation
(i.e., intensify the search in the current region).

Update the position: Each particle will update its coordinates in the
decision space. Then it moves to the new position.

zi(t) = mi(t — 1) + vi(t) (3.3)

Update the best found particles: Each particle will update (poten-
tially) the best local solution pbest; and the best global solution gbest
of the swarm is updated.

Hence, at each iteration, each particle will change its position accord-
ing to its own experience and that of neighboring particles. As for any
swarm intelligence concept, agents (particles for PSO) are exchanging
information to share experiences about the search carried out. The be-
havior of the whole system emerges from the interaction of those simple
agents. In PSO, the shared information is composed of the best global
solution gbest. Algorithm [7] summarizes the template for the PSO algo-
rithm.

3.4 P-Metaheuristics for DVRP: Literature

Review

Several P-metaheuristic algorithms have been proposed to solve the dynamic
version of the vehicle routing problem. Essentially, Ant Colony System (ACO)
and Evolutionary Algorithms (EAs) constitute the major contributions in this

application filed.
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Algorithm 7 Template of the particle swarm optimization algorithm.

Random initialization of the whole swarm ;
for all particles i do
Initialize z; and v;;
Evaluate f(x;);
Pi = Tg;
Py 1= argmin{ f(p)};
end for
repeat
for all particles i do
/* Update velocities™/
vi(t) =w x vt —1)+ 1 xri(pi — xi(t — 1)) + p2 X r2(pg — xi(t — 1))
/*Move to the new position:*/
mz(t) = xi(t — 1) + Ui(t);
Evaluate (f(x;));
if f(z;) < f(pi) then
Pi ==X
end if
if f(x:) < f(p,) then
Py = Ti;
end if
end for
until Stopping criteria

3.4.1 Ant Colony Optimization (ACO)

For ACO, the approach tends to take advantage of the old information
gathered from the previous search by modifying the pheromone matrix. Tian
et al. [Tian 2003] and Montemanni et al. [Montemanni 2005b] propose a new
pheromone initialization for new requests that is better than re-optimization
process. The aim is to reuse some characteristics of previous good solutions
which have an attractive trail in the pheromone matrix. The updating of
the pheromone matrix consists in the reinforcement of the trails of these
solutions. The initialization of the pheromone matrix is done by solving
the partial problem with a greedy insertion algorithm, which is a nearest
neighbor heuristic.

Tian et al. [Tian 2003] hybridize their algorithm with a 2-Opt heuristic.
The hybridization takes place after the updating of the pheromone matrix.
Montemani et al. [Montemanni 2005b] use a very simple greedy algorithm
to improve their solutions. It consists in iteratively selects a customer and
tries to move it into another position within its tour or within another
tour. Furthermore, Jin et al. [Jun 2008] hybridize ACO with EA for a
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multi-objective DVRPTW. The authors use the EA for initializing the
pheromone matrix as well to optimize it at each iteration.

3.4.2 Evolutionary Algorithms (EAs)

On the Evolutionary algorithms side, for their GA-based system for
the DVRP, Hanshar and Ombuki-Berman [Hanshar 2007] and Wang et
al. [Wang 2007] initialize the population of chromosome randomly. Hanshar
generates a random permutation of size n for each chromosome where n is the
number of customers left over from the day before.

A dynamic programming is applied by Jih et al. [Jih 1999] to generate the
initial population instead of creating it randomly. Furthermore, Branke et
al. [Branke 2005b] propose to seed the population with some heuristics con-
sisting in letting the vehicles wait at suitable locations during their tours, thus
influencing the position of the vehicles at the time when the new customer
arrives. The objective is to maximize the probability that the additional cus-
tomer can be integrated into one of tours without violating time constraints.
Different reproduction operators have been proposed in literature. As
crossovers: Best-Cost Route Crossover (BCRC) [Hanshar 2007, Partially
Mapped Xover (PMX) [Housroum 2006], two-point crossover |[Branke 2005b],
order crossover (OX), uniform order-based crossover (UOX), merge cross #1
(MX1) and merge cross #2 (MX2) in [Jih 1999].

For mutation, Housroum et al. [Housroum 2006] suggest Or-Opt, 1-Opt, and
swap. While Hanshar [Hanshar 2007] use the inversion operator. Wang et
al. [Wang 2007] use relocate operator which consists in changing the assign-
ment of unserved customers to another vehicle. Jih et al. [Jih 1999] propose
three operators that are: swap, inversion, and re-arrangement.

3.5 Particle Swarm Optimization for DVRP

In this section, we present our PSO-DVRP approach. The different compo-
nents of our algorithm and their adaptation for DVRP are studied.

3.5.1 Particle Representation

Particle Swarm Optimization is an approach has been used widely in con-
tinuous optimization problem, but its adaptation to discrete combinatorial
problem remains still difficult. How to encode a schedule is one of the key
issues in successfully applying PSO to the DVRP, namely, finding a suitable
mapping from problem solution to PSO particle.
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3.5.2 Review of Literature

Concerning Vehicle Routing Problems, in the literature, various representa-
tions for the particles were proposed.

In [Chen 2006a], the authors propose a hybrid algorithm for solving the
capacitated VRP. This algorithm uses Discrete Particle Swarm Optimization
(DPSO) combined with simulated annealing (SA). In the encoding process,
a particle is represented as a 2D array (double array). Each vector of this
representation is a vector of n x m dimensions, in which n customers have
to be served by m vehicles. Every particle is composed of m sections and
every section has n discrete points corresponding to the customers. The first
dimension in the 2D array of the particle is an n x m dimension vector in
which each entry corresponds to customer. The second dimension is also an
n X m dimension vectors, where every position takes 0 or 1. If the value is
1, it represents that the corresponding customer is served by the relevant ve-
hicle, otherwise it is not served by this vehicle. The position of each particle
indicates the relevant sequence of the customers served by each vehicle.

Zhu et al. [Zhu 2006], propose a particle swarm optimization for the
VRPTW. The suggested particle coding for this problem is an indirect dis-
crete combinatorial coding. A route for n customers and m vehicles can be
presented as a 2-D vector of n + k — 1 dimensions. The first array defines the
customer or the center nodes (depots) to visit, while on the second vector each
dimension defines the sequence of the corresponding customers or the depot
into the route. The vehicle routes are retrieved after a decoding the particle
representation.

Furthermore in [Wang 2006], the authors introduce a PSO for the Open
Vehicle Routing Problem (OVRP). The PSO encoding method is based on real
number encoding. For n customers each particle is encoded as a real number
vector with n dimensions. The integer part of each dimension or element in
the vector represents the vehicle. Thus, the same integer part represents the
customer in the same vehicle. The fractional part represents the sequence of
the customer in the vehicle route. When the particle position is decoded, the
customer is assigned to the vehicle corresponding to the closet integer part.
The order of visits is given according to the sorting of the fractional part.

Recently, in [Ai2009], the authors propose a formulation of the vehicle
routing problem with simultaneous pickup and delivery (VRPSPD) and a
PSO algorithm to solve it. The solution representation for the VRPSPD with
n customers and m vehicles is a n + 2m dimensional particle. Each particle
dimension is encoded as a real number. It consists of two parts: the first part
relates to customers and the second part concerns vehicles. The first part of
the representation consists of n dimensions of particle with each dimension
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assigned to a customer.

It is required to set the priority of customers in order to insert them in the ex-
isting routes. A random key with n elements is applied. The smaller value of
the dimension corresponds to the higher priority of the customer. The second
part of the representation is based on the idea of vehicle route orientation.
Route orientation of a vehicle is defined as a point in the service map that
represents a certain area in which the vehicle is most likely to serve. Conse-
quently, a vehicle route will tend to aggregate around its corresponding route
orientation. The decoding method is done by transforming the particle to a
priority list of customers to enter the route and a priority matrix of vehicles
to serve each customer.

3.5.3 Proposed Representation

We can see that higher dimension is presented in the encoding methods de-
scribed in the above section and in some cases, dimensions should be rounded
to the closest integer number and sorted. It operates with difficulty and con-
sumes much CPU time during the decoding step. Meanwhile, if the position
presents the infeasible solution, a repair procedure is necessary.

In our work, to escape coding and decoding phases we reuse the same rep-
resentation as in VNS approach. It consists in discrete representation which
expresses the routes of m vehicles over the n customers to serve. A solution to
the problem is represented by a set of routes S = {R;...R,...R,...R,, }, where
R, is the set of customers serviced by the vehicle V. The representation of
each route Ry, is a permutation of n customers as follows:

Ry = (co,€1,€yeeey Ciy vvey Cry Crte1) (3.4)
For each customer ¢;, we assign the following information:
e (z;,y;): coordinates of the customer ¢;.

e s;: Boolean variable which indicates if the customer ¢; has been already
served or not.

e {;: processing time of the customer ¢; (time in which the customer is
served).

Furthermore, for each route Rj served by the vehicle v, we keep some
information:

e (z;,y;): coordinates of the vehicle vy.

e capy: remaining capacity of the vehicle vy.
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e disty: distance traveled by the vehicle vy.

o commity: Boolean variable which indicates if the vehicle v, has been
committed or not.

With this representation, a simple evaluation of the population is provided
since the evaluation is carried out only on the unvisited segments of routes.

3.5.4 Velocity vector

The velocity vector v; of the particle is a vector of n dimensions. It is initialized
for each new dimension by a random number between [1,m|, where m is the
number of the planned routes in the current position of the particle, with the
possibility to create a new route for a customer if the cost of this latter is less
than its insertion into the existing ones. Each dimension ¢ designs the vehicle
route in which the customer ¢; is assigned (See Figure . Each element of
v; is bounded on the range [—m,m]. If the velocity v; exceeds —m (resp. m
), it is reset to 1 (resp. m ). Thus, it allows to keep a control on excessive
wandering of particles outside the neighborhood of the current position. The
velocity equations are slightly modified to take into account the nature of
the problem. Indeed, in the equation the particle positions (p;, p,) are
replaced with their respective routes index.

C5
@)
/4 \
Particle Position: Xi PR o1
-
R1: C3|CO | S N I
Cc2
4 Co
R2: C5 |CO /
- (@
@ Visited customer ///
(O Unvisited customer 30 - c4

Velocity Vector: Vi

Customers: | C1 | C2 | C3 | C4|C5 |
Routelndex:) 2 | 1 | 2 | 2 | 1 |

Figure 3.5: Particle position and its velocity vector for PSO-DVRP.
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3.5.5 Particle Movement

It is very clear after all the existing literature on VRP that local search is al-
most mandatory to achieve results of high quality [Rochat 1995| [Prins 2004].
This is why we consider the particle’s movement as local optimization step
for each generation.

Depending on the velocity vector, the particles move after the updating of
their current position. The particle’s movement is summarized in shifting
customers from one route to another according to the new velocity vector.
Each customer is reinserted into another route according to the cheapest
insertion heuristic, i.e., at a location which minimizes the overall cost of the
entire tour (see Figure [2.11]). This requires computing the cost of inserting
each customer at each location in the route. When it is cheaper to insert an
uninserted customer on an empty route rather than an existing route, the
customer will be inserted on the new route.

The Figure gives an example of the particle position updating. The
movement related to the particles is very similar to the A-Interchange local
optimization method that is one of the most successful techniques in the past
years [Osman 1993]. This latter is based on the analysis of all the possible
combinations for up to A customers between sets of routes. Hence, this
method results in customers either being shifted from one route to another,
or being exchanged between routes. The mechanism can be described as
follows:

A solution to the problem is represented by a set of routes
S={Ry,...,Ry,...,Ry,..., Ry}, where R; is the set of customers served
in route 7. Thus, new neighboring solutions can be obtained after ap-
plying A-Interchange between a pair of routes R, and R, ; to do so, it
replaces each subset of customers S C R, of size |S;] < A with any
other one Sy C R, of size |S3| < A. This way, we obtain two new routes
R, = (R, — S1) U Sy and R, = (R, — So) U Sy, which are part of the new
solution 8" = {Ry,..., R,,..., R,..., Ry}. The constraints which are related
to the vehicle capacity and depot time-window are relaxed when the particle
moves, and a repairing procedure to get feasible position is applied after each
movement. The repairing heuristic follows the Algorithm |3| described in the
Section 2.4.3

3.5.6 Swarm Initialization

The initial population is obtained by generating a permutation of customers
according to the nearest neighborhood greedy heuristic. The algorithm first
starts a route with a random client and repeatedly visits the nearest client
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Figure 3.6: Ilustration of a particle’s movement: the velocity is updated
followed by the particle’s current position.

until the vehicle constraint (capacity, depot time window) cannot be satisfied.
New routes are built until all clients have been visited. The initial population
is constituted by the set of vehicle routes which serve customers who were left
over from the day before.

3.5.7 Adaptive Memory Mechanism

One could deal with the non-stationarity of VRP by regarding each change as
the arrival of a new optimization problem that has to be solved from scratch.
However, this simple approach needs a lot of computational time when there
is a change. In dynamic environment, the quick response to requests is very
important and the immediate requests should be dealt with in real-time. The
re-optimization strategy is not a good choice.

Furthermore, when dealing with real-world problems it is rarely the case that
the exact same solution will receive the identical fitness at a later stage. How-
ever, the dynamic change may cause the optima to be in the neighborhood
of an old solution more often. Indeed, unless the change in the problem is
extremely strong, probably much effort could be saved and better solution
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quality achieved by using an optimization algorithm that is capable of con-
tinuously adapting the solution to a changing environment, reusing the infor-
mation gained in the past. If the change is relatively small, the new optimal
solution must be related to the old one. If relative great changes have taken
place, the old solution may be a near optimum for the new. Therefore, it is
greatly beneficial to make the best of the old information.

A number of authors have addressed the issue of transferring information from
the old environment to the new environment by enhancing the optimization
algorithm with memory that might allow it to store good (possibly partial)
solutions and reuse them later as necessary.

This memory may be implicit by a redundant genome representation, such
as diploid chromosomes [Goldberg 1987 [Lewis 1998] or explicit by storing
and retrieving candidate solutions from a separate memory [Ramsey 1993|
Louis 1996, Branke 1999al.

The following subsection gives a brief review of memory-based approaches for

DOPs:

1. Implicit Memory:

An algorithm that uses representations containing more information
than necessary to define the phenotype (i.e. redundant representations)
basically has some memory where good (partial) solutions may be stored
and reused later as necessary. We call this kind of memory implicit be-
cause it is left to the algorithm to find a way to use it appropriately.
The most prominent approach to redundant representations seems to be
diploidy. Goldberg and Smith |Goldberg 1987 report on experiments
with using diploidy and dominance. Since it is not clear beforehand
which allele value (e.g. 0 or 1) should be dominant at a particular gene
position, Goldberg and Smith favor a triallelic scheme where an allele
can take on one of three values O,recessive I, and dominant 1. Tested on
a time-varying knapsack problem, they report better adaptive qualities
than with a simple GA. Another approach is to use multiploid represen-
tations [Lewis 1998], where the genes determining one trait are added in
order to determine the phenotypic trait. The phenotypic trait becomes
1 a certain threshold is exceeded and 0 otherwise. The results produced
by multiploid representations so far indicate that they are useful in pe-
riodic environments where it is enough to remember a few states and
important to be able to return to previous states quickly.

2. Explicit Memory: The main idea with explicit memory is that re-
membering old solutions can turn out to be an advantage later on in a
dynamic fitness landscape.
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Different approaches have been reported in the literature using explicit
memory. Louis and Xu [Louis 1996] study scheduling and re-scheduling
by means of restarting the EA with individuals evolved by a related
problem. Whenever a change occurred, the EA is restarted and the
population is initialized with a seed from the old run and the rest ran-
domly. The authors conclude from the experiments that a seed of 5-10
% from the old run produce better and faster results than running the
EA with a totally random initialized population after a change occurred.
Ramsey and Greffenstette [Ramsey 1993] introduce an EA model that
stored good candidate solutions for a robot controller in a permanent
memory together with information about the robot environment. The
idea is that if the robot environment becomes similar to a stored envi-
ronment instance the corresponding stored controller solution is reacti-
vated. For this, they use a simulator to train good strategies for robot
movement and obstacle avoidance. In the article the authors report
that their technique prevents premature convergence by a higher level
of diversity and yielded significant improvements. The only drawback
of this approach is that it assumes that the similarity of the robot envi-
ronment is measurable. Another approach is introduced by Trojanowski
and Michalewicz [Trojanowski 1997], in which each individual remem-
bers some of its ancestors solutions. After a change in the environment,
the current solution and the memory solutions are re-evaluated and the
best solution becomes the active solution, keeping the other solutions in
memory. The size of the memory is fixed and individuals from the first
generation start with an empty memory buffer. For each of the following
generations the parent solution is stored in memory and if the memory
is already full the oldest memory solution is removed.

Further Eggermont and colleagues [Eggermont 2001] suggest an EA
model, which focuses on a shared memory instead of a local mem-
ory, only available to the individual. They implement the model
for a bit representation based on a real numerical representation by
Branke [Branke 1999a]. In this approach the best individuals from some
of the generations are stored in a shared memory. The memory starts
out empty and is filled throughout the run. The size of the memory is
fixed and different approaches of replacement strategies, when storing
individuals, are tested, such as replacing individuals by their age or their
contribution to diversity and fitness. Branke |[Branke 1999a] and Egger-
mont et al. [Eggermont 2001] find significant improvement compared to
approaches without memory on dynamic test problems.

For the Dynamic Vehicle Routing Problem, Y. Rochat and E. Tail-
lard [Rochat 1995] propose a Tabu Search enhanced with adaptive mem-
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ory. This latter stores the routes of the best solutions visited during the
search. New solutions are then created by combining routes taken from
different solutions of this memory. The combination is applied in similar
way than a crossover operator found in Genetic Algorithm. New solu-
tion produced by the tabu search is included in the memory if it is not
filled yet, or the new solution is better than the worst solution stored in
memory, in which case the latter is removed.

3.6 Adaptive Particle Swarm Optimization

We propose here an Adaptive Particle Swarm Optimization (APSO). This
approach is closely related to the strategies presented in the section above.
In PSO, this memory is intrinsic to the algorithm since each particle is
defined by its current position and its best position. Furthermore, particles
are related to their best neighborhood positions. These positions represent
the set of candidate solutions stored by the particles throughout the search.
For the adjustment to the new environment, our algorithm selects the best
positions found so far in the population and re-positioning the particles in
the search space according to these positions. The result of this mechanism
is that the stored candidate solutions will produce outposts at different
locations (see Figure [3.7). If the optima returns to the same proximity in the
search space the memory points can self-adjust to the translocated optima.
After a change in the environment, the current position and the best particle
position are re-evaluated and the best solution becomes the active current
position. The algorithm of the Adaptive Particle Swarm is summarized in

the Algorithm [§]

3.6.1 APSO-DVRP Algorithm

The pseudo-code of the APSO algorithm for solving DVRP is presented in
Algorithm [0} The algorithm has as an input a problem represented by a series
of static instances, since the working day is split into n time slices correspond-
ing to the different sub-problems. The new customer requests are inserted in
the existing routes according to the nearest neighborhood greedy heuristic.
Then, the best visited solutions by particles are used for repositioning the
particles in the search space of this new environment. The algorithm iterates
the main loop of PSO approach by updating the velocity of the particles and
their positions. After a time slot, new orders arrive and must be included in
the scheduling. Therefore, the algorithm resumes with solving a new instance
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Current particle positions . .
Particle best positions

Best positions
for the new
O environment

Search space

Figure 3.7: Movement of memory points. The curve is an example of a dy-
namic changing optimum. The black circles are the best memory points for
the new environment, the light gray scaled circles are the current positions of
particles and the gray circle is the best position found so far by particles.

of the problem. The termination criterion is the end of the journey and the
way back of vehicles to the depot.

3.6.2 Hybridization with Heuristics

Over the last years, interest in hybrid metaheuristics has risen considerably
among the combinatorial optimization research community, as best results
for academic and industrial problems are usually obtained by hybrid algo-
rithms. Indeed, two competing goals govern the design of a metaheuristic:
exploration and exploitation. Exploration is needed to ensure that every part
of the space is searched enough to provide a reliable estimate of the global
optimum. Exploitation is important since the refinement of the current so-
lution will often produce a better solution. P-metaheuristics such as PSO
are powerful in the exploration of the search space in the sense they try to
(optimize globally) and weak in the exploitation of the solutions found. There-
fore, most efficient P-metaheuristics have been coupled with S-metaheuristics
or advanced heuristics, which are powerful optimization methods in terms of
exploitation (optimize locally). The two classes of algorithms have comple-
mentary strengths and weaknesses. We use a Low-level Teamwork Hybrid
(LTH) for our algorithm. In [Talbi 2009], Talbi describes this class of hybrids
as algorithms in which a given heuristic or S-metaheuristic is embedded into
a P-metaheuristic.
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Algorithm 8 Template of the Adaptive Particle Swarm Optimization Algo-

rithm
INPUT Dynamic problem P that corresponds to a series of n-static problems

(P = (Io, t[), AO), (Il, tl, Al), N (Ik, tk, Ak), N (In, tn, An)) Each sub—problem
I, occurs at time t; and spends a certain duration Ay.

/* Random initialization of the whole swarm */
for each particles i do
Initialize xz;, v;;
Evaluate f(z;);
Di = Tg;
pg := argmin{ f(pi)};
end for
k :=0; /* First sub-problem */
repeat
/* Change in the environment ( new static instance (Ig,tx, Ag)) */
for each particles i do
Evaluate (f(z;), f(pi));
/* Reuse the best solutions found previously by the particles */
x; := AdjustPosition(z;, p;);
/* Update swarm attractor */
pg := argmin{ f(pi)};
end for
repeat
for each particles i do
/* Update velocities */
vi(t) == w x vt — 1) + 1 x ri(ps — xi(t — 1)) + @2 X 12(pg — x45(t — 1));
/* Move to the new position */
$Z(t) = xi(t — 1) + Ui(t);
Evaluate (f(z;));
if f(z;) < f(pi) then
bi = T3
end if
if f(2) < f(p,) then
by = T4
end if
end for
until new change of the environment
k:=k+1;
until termination criterion reached

We have used the 2-Opt heuristic as a local search for APSO. The heuris-
tic is applied for each particle after its movement. For more details on this
heuristic see the Section 2.4.3
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Algorithm 9 Pseudo-Code of APSO for the DVRP
INPUT Dynamic Vehicle Routing Problem P that corresponds to a series of
n-static instances (P = (Io,to, Ao), (11,61, A1), ooy (T, tiey Ak )y oo oy (Tny tny Ap)).
The working day is split into n time slices. Each sub-problem [j, corresponds to

the customer orders that arrive at the time slice ¢, and which spends a duration

Ag.
k := 0; /*First instance*/
repeat

for each particle ¢ do
/*(Re)Build swarm according to the new customer orders of the sub-problem
I */
x; := Greedylnsertion(z;, New customer orders of Iy);
p; := Greedylnsertion(p;, New customer orders of I);
Initialize v;;
Bvaluate (£(2:), f(p1)):
/*Reuse the best solutions stored into the population memory for the repo-
sitioning of the particles*/
x; = AdjustPosition(z;, p;);
/* Update swarm attractor */
py = argmin{ f(pi)};
end for
repeat
for Each particle ¢ do
/* Update velocity */
vi(t) == vi(t — 1) + o1 X ri(p; — zi(t — 1)) + w2 X ra(pg — zi(t — 1));
/* Move to the new position */
xi(t) ==z (t — 1) + v;(t);
Evaluate (f(z;));
/* Update personal best */
if f(z;) < f(x;) then
Di ‘= Ti;
end if
/* Update global best */
if f(x;) < f(py) then
by = T4
end if
end for
until (new change in the problem) /* new time slot is reached */
k:=k+ 1; /* new instance */
until (the end of the working day T' (k == n))
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3.7 Experimental Results and Discussion

For the experimental validation, we report the performance of APSO on con-
ventional benchmarks and compare our algorithm with state-of-the-art algo-
rithms in Section [3.7.1] A study on varying the degree of dynamism is given
in Section [3.7.3] While, Section [3.7.4] assesses the dynamic performances of
our algorithm with respect to Weicker’s measures.

3.7.1 Comparison with State-of-the-Art Metaheuristics

Similar to VNS’s experimental protocol, the solving strategy consists in divid-
ing the working day in a fixed number of time slots n,; = 25. Each slot has a
duration of T'/n;s, where T is the length of the working day. An event man-
ager collects the orders at each slot and generates a static VRP-like instance.
Then, the instances are solved by the algorithm. Furthermore, the cut-off
time T, is set to 0.5. Demands which arrive after T,., x T', are postponed
to the following day and are considered statics in the problem, while those
that arrive before this time are considered dynamics. Since the demands ar-
rive uniformly, half of customers arrive before the middle of the working day
which leads to a situation where the degree of dynamism dod is 0.5. More
details on the solving strategy could be found in Section 2.5l The APSO al-
gorithm has been implemented using the ParadisEOE] framework [Talbi 2009].
The experiments are run on Intel Xeon 3 GHz with 2 GB memory.

Our experiments are based on the benchmark data set proposed by Kilby et
al. [Kilby 1998] and extended by Montemanni et al. [Montemanni 20055}
They constitute 21 instances and are derived from the conventional avail-
able VRP benchmark data, namely Taillard [Taillard 1993] (13 instances),
Christophides and Beasley [Christofides 1984] (7 instances) and Fisher et
al. [Fisher 1995 (2 instances). The number of customers ranges in [50, 199]
and the service area may consist of uniformly distributed customers, clustered
customers, or a combination of both (semi-clustered instances). Further de-
tails about area topologies can be found in the Section [2.6.1]

A comparison of the solution quality in terms of minimizing travel dis-
tances/costs is done between our APSO, VNS and other metaheuristics pro-
posed previously in literature. These metaheuristics are Montammani et al.’s
Ant System (AS) [Montemanni 2005b], and Hanshar et al.’s [Hanshar 2007]
Genetic Algorithm (GA) and Tabu Search (TS). As stopping criterion of the
algorithm, we have fixed the number of evaluations to 5000 evaluations per
time slot. Thus, the entire problem will be solved into a number of evalua-

1 http://paradiseo.gforge.inria.fr
2http ://www.fernuni-hagen.de/WINF/inhalte/benchmark_data.htm
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tions equals to 125000 (25 x 5000 = 125000). For the algorithm parameters,
we have fixed the inertia weight w to 1, ¢ and @y take their values in the
range [0.5-1].
For each instance, 30 runs of our algorithms have been considered. For the
approaches of literature, the stopping criterion has been fixed to execution
time duration. Indeed, ACS [Montemanni 2005b] allows 60 seconds as an al-
gorithm stopping criterion, which leads to a 1500 seconds to the optimization
process on a Pentium IV 1.4 GHz. On the other side, TS and GA algo-
rithms [Hanshar 2007] dedicate 30 seconds for each slot, which constitute 750
seconds of CPU Time for the algorithm optimization on a Pentium IV 2.8
GHz. Table [3.3| shows and compares the results obtained by the different
metaheuristics. The best, the average distances, and running time in minutes
of our algorithms are reported. We highlight the best found solutions into
dark shaded cells, and the average results are marked in light shaded cells.
From the Table [3.3] we can see that APSO finds five new best solutions
on Kilby’s instances. These solutions concern all the classes of instances and
customer distribution topology: uniform (c75, ¢120 and c199), cluster (f71)
and mix between uniform and cluster (tai75b). The error relative to the total
best results is 2% comparatively to GA.
VNS gives two best solutions comparatively to other algorithms. While,
GA [Hanshar 2007] outperforms the other metaheuristics over 9 instances.
Finally, AS and TS provide respectively 1 and 4 of the best solutions on
Kilby’s instances.
It is also important to notice that each AS execution lasts 25 minutes in a
Pentium IV 1.5 GHz and each GA and TS execution lasts 12.5 minutes in a
Pentium IV 2.8 GHz, which results in a total execution time of 525 and 262.5
minutes respectively. These execution times can be normalized according to
the processor used in each case. For that purpose, we used a set of bench-
marks [Gee 2010] which allow to quickly and accurately measure and compare
processors and memory performances.
When comparing with APSO (113.07 minutes), AS normalized time is 115.63
minutes, while GA and TS normalized time is 151.73 minutes, both of them
slower than APSO.
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3.7.2 Large Scale Instances

To extend the analysis of the performance of our algorithm, we have proposed
a set of large scale instances for the dynamic vehicle routing called k-series.
A detailed description about these instances is given in the Section These
instances are k100, k250, and k500. We have performed 30 independent runs of
each experiment. The results are shown in Table 3.4 which includes the best
achieved fitness, the average, the standard deviation, as well as the running
time for each instance and each algorithm measured in minutes. Dark shaded
cells correspond to best found solutions, while best average results are in light
shaded cells. In the dynamic case, the stopping criterion per sub-instance
is fixed to 600 x 25 = 15000 evaluations for k100 and k250 instances and
1200 x 25 = 30000 evaluations for £500 instance. We recall that we keep the
same solving strategy as in conventional benchmarks consisting in splitting the
working day in 25 times slots and then solving successively each instance of the
whole problem (more details in Section . In order to be able to compare
our results accurately, we have also performed statistical significance tests.
We use a Kolmogorov-Smirnov test to check whether distributions are normal
or not and a Levene test to check the data homocedasticity (homogeneity of
variances); if both tests are positive, ANOVA is used, otherwise we perform a
Kruskal-Wallis test to compare the medians of the algorithms [Cohen 1995].
As a result, all our experiments have a confidence level of 95 % (p-value
< 0.05). Table is marked with “+” sign if there are statistical differences

14 7

between a certain pair of algorithms, and with a “—” sign otherwise.

Table 3.4: Solutions obtained by APSO and VNS on static and dynamic
instances.

Instance | Algorithm | Solution Static | Dynamic| Time
Best 1497.70 | 1819.01

APSO | Avrg 1563.80 1871.25 6.15
6100 Std-Dev 30.13 29.55
Best 1448.18 1874.37

VNS Avrg 1529.49 2084.47 0.74
Std-Dev 36.71 102.14
Best 6038.08 7658.27

APSO |Avrg 6722.67 8194.08 | 41.89
6250 Std-Dev 277.08 99.82
Best 5869.38 | 6845.82

VNS Avrg 6187.80 7251.54 | 13.23
Std-Dev 270.88 249.44
Best 20396.5 26347.8

APSO |Avrg 21157.28 | 27592.34 | 223.29
6500 Std-Dev 312.16 383.07
Best 18582.83 | 24082.73

VNS Avrg 20108.49 | 24939.88 | 130.83
Std-Dev 1457.51 520.99
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Table 3.5: Statistical results of comparing our algorithms with a multiple
comparison test.

State Instance|Algorithm Test result
APSO|VNS
k100 APSO — +
VNS =+ _
Static  |k2so | *75€ - [+
VNS + _
k500  [A75C - |+
VNS + | =
k100 APSO — +
VNS + | =
: APSO — +
Dynamic|k250 VNS N N
k500 |T5C - |+
VNS + _

First of all, we study the behavior of our algorithms on the static problem,
i.e. considering all the customers in the instance as static (dod = 0). VNS
behaves significantly better than APSO for the three instances, as it finds
the best solution in the three instances. Our statistical study (see Table
reflects that there is a statistical difference between APSO and VNS for the
three instances. APSO obtains better results than VNS for k100, while it
is outperformed by VNS in k250 and k500. All these results are statistically
significant, as shown in Table[3.5] Figure[3.§shows detailed tracking of optima
of APSO and VNS through time. Each deterioration indicates a changing of
the environment caused by the arrival of new customer orders corresponding
to those collected during the last time slice. An interesting issue is the fact
that APSO achieves worse results in the dynamic case as well as in the static
case for k250 and k500. This is due to the fact that APSO has a slow evolution
as shown in the Figure [3.8D] and Figure [3.8c, which affects its performance.
However, we should take into account the number of 600 and 1200 evaluations
allowed for each time slot for the instance k250 and k500 respectively as a
constraint of the changing environment.

Regarding the behavior of VNS algorithm, it outperforms APSO in the
case of the two bigger instances (k250 and k500). This can be observed in
Figure [3.8b] and Figure [3.8¢, where VNS is able to converge much quicker
and reaches better solutions. The situation is the opposite for the instance
k100 (see Figure [3.8a)), in which APSO has a good performance from the
beginning until the end of the simulation. It must also be noticed that the
bound fitness values represented in Figure|3.8| have been computed by running
our algorithms on the static instance (all customers are known beforehand)
which results of each time slice. These lower bounds represent reference values
for the tracking behavior of our algorithms. However, they are not attainable
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by the dynamic algorithms in any case.
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Figure 3.8: The evolution of each algorithm mean trace for each instance;
each of them shows also the optimum value for each time slice as obtained by
running our algorithms over the static subproblems. Each square on the left

figure is enlarged in the right figure.
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3.7.3 Study on Varying the Degree of Dynamism

We have performed a study on the behavior of our algorithms in relation to
different degrees of dynamism. The dods take their values in range [0.5,1].
If the dod is 0.5, the problem is semi-dynamic, while with a dod equal to
1, the problem is completely dynamic. We have done experiments only on
the k-series instances. The aim is to present the dod effect on the quality
of the obtained solutions in term of minimizing the fitness function, and the
average of the served customers during the working day. For each instance, 30
runs of APSO and VNS are considered. We keep the same solving strategy
as described in the Section [3.7.2] Table reports the obtained results on
the different degrees of dynamism for the APSO and VNS algorithms. It
indicates the best found solutions, the average, and the percentage as well as
the range of served customers. When we increase the degree of dynamism, it
is easy to see that the percentage of served customers decreases. This is due
to the fact that as the problem is bounded by the length of the working day
T, the vehicles have to go back to the depot before its closing. In general,
customers that arrive at the end of the working day are unserved. For a dod
equal to 0.5, results are analyzed in Section [3.7.2] From a dod upper than
0.6, the percentage of served customers for APSO is better or equal to VNS
percentage in all cases, except in the instance k100 for a dod equal to 1. APSO
algorithm is able to find solutions which cover more served customers. We can
explain this by the diversity of the solutions brought by APSO as a population
based metaheuristic. At the opposite VNS covers less customers leading to a
situation where the traveled distance is lower than that of APSO.

3.7.4 Dynamic Performances Assessment

We have measured the adaptability of our algorithm according to Weicker’s
measures [Weicker 2002]. This adaptability covers different measures as ac-
curacy, stability, and e-reactivity. For the classical Kilby’s instances, we have
computed the accuracy at the end of the working day T". Table shows the
accuracy of our algorithms APSO and VNS, compared to other metaheuris-
tics (Ant System (AS), Genetic Algorithm (GA), and Tabu Search (7°S)).
The accuracy has been computed using the best known solutions of the static
instance as the bound to compute accuracy (Mink in Equation . These
best known solutions consider all customers to be static, and then are not fea-
sible solutions for the DVRP. They can be seen as a bound for our algorithms.
From Table (3.7, we infer that our algorithms have on average the same average
accuracy at the end of the simulation. This accuracy is equal to 0.86 (being

4http ://neo.lcc.uma.es/radi-aeb/WebVRP/
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Table 3.6: Solutions obtained by APSO and VNS over different degrees of
dynamism.

Dod | Inst. | Algorithm Best Avrg. | Custom. Range
%100 APSO 1819.01| 1871.25| 100%/| [100-100]
VNS 1950.47 2129.68| 100% | [100-100]

05 |k250 APSO 7658.27 8194.08| 100%| [250-250]
’ VNS 6903.29| 7221.88| 100%| [250-250
k500 APSO 26347.80| 27592.34| 100%| [500-500
VNS 24082.73| 24939.88| 100% | [500-500

%100 APSO 2167.89| 2295.47| 100%| [100-100
VNS 2313.35 2571.78 99.9% [99-100]

06 |k250 APSO 8145.35 8706.67| 100%| [250-250]
' VNS 7361.08| 7781.98| 100%| [250-250
£500 APSO 27535.21| 28761.64| 99.4%| [495-498
VNS 27354.50| 28861.12| 99.0%| [493-498

%100 APSO 2267.38| 2491.69| 96.7% [96-98
VNS 2436.85 2680.72 95.5% [94-96]

07 |r2s0 APSO 8856.33| 9165.44| 99.6% |[249- 250]
' VNS 8239.43 9244.82| 99.6% | [248-250]
6500 APSO 27662.10| 28477.72|97.07% | [483-488]
VNS 26101.17| 28209.95 96% | [478-482]

5100 APSO 2141.93| 2381.81|89.45% [89-90]
VNS 2214.75 2647.02| 88.5% [87-91]

08 |k250 APSO 8221.32| 8914.49|94.32% | [235-237]
’ VNS 8666.36 9365.09 93.8% [232-236]
6500 APSO 25618.20| 27133.46| 91.6% | [454-465]
VNS 24327.26| 27185.13| 90.14%| [449-451]

+100 | APSO 2070.50| 2283.56| 79.32% [79-80]
VNS 2348.79 2647.33| 79.7% [77-82]

09 |k250 APSO 7944.94| 8459.35| 86.5%| [215-218]
’ VNS 8184.28 9098.23 86.1% [212-218]
£500 APSO 24545.60| 25442.21 84%| [415-424]
VNS 23242.42| 25640.75| 82.41%| [410-413]

v100 | APSO 2028.51| 2191.45| 69.29% [68-71]
VNS 2289.09 2581.81| 70.3% [68-74]

1 %250 APSO 7063.96| 7727.19|76.96% | [191-193]
VNS 7567.24 9010.27| 76.5%| [188-194]

5500 APSO 21485.20| 22546.13 74% | [357-376]
VNS 22147.62| 23764.54| 73.09%| [362-366]

1.0 a perfect metric) which denotes that our algorithms are able to produce
good solutions on the conventional dynamic benchmarks.

Table|3.8[shows the accuracy and stability over the three k-series instances
on different time slices, and the average on the whole working day. These re-
sults are graphically represented in Figure [3.9, We have excluded e-reactivity
from this analysis since it provides no significant results (it is always equal to
one). It is interesting here to pay attention to the different behaviors of our
algorithms on the three instances. The accuracy results confirm numerically
what we already explained in Section [3.7.2] the size of the instance affects
differently the performance of our algorithms. In instance k100, the highest
accuracy levels correspond to APSO; although VNS is better in the first time
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Table 3.7: Accuracy of the different metaheuristics on the Kilby’s instances.

Accuracy

Instance | APSO | VNS AS
[Montemanni 2005b]
0.83

c50

c75
c100
c100b
c120
c150
c199
71
f134
tai7ba
tai75b
tai7bc
tai75d
tail00a
tail00b
tail00c
tail00d
tail50a
tail50b
tail50c
tail50d
Average

slices (0 to 5), APSO has a better adaptation from the 10th time slice until
the end. VNS achieves the best accuracy for all time slices on the instances
k250 and k500, whereas APSO performances are poor due to its slow evo-
lution comparatively to VNS, which adapts faster to the changes. Both the
final fitness and the accuracy point to a better performance of APSO in k100
and VNS in the larger k250 and k500. APSO provides enough diversity to
achieve better solutions on the smaller instance, while VNS profits from the
fast convergence of trajectory based techniques. This is to be considered an
essential issue in dynamic optimization due to the reduced available time in
each time slice. With respect to stability, APSO is more stable than VNS. The
difference between algorithms is noticeable in the three instances: the average
stability values for APSO are always less than 0.1, while for VNS it ranges
between 0.168 and 0.177 (quite stable for a metric which ranges in [0, 1]). This
is caused by APSO being a population-based metaheuristic, which provides
diversity and different types of solutions when a change occurs in the envi-
ronment; this means APSO can choose from a wide range of solutions which
one is more adequate in the next time slice. However, VNS provides a single
solution at the end of each period; thus there is a steeper fitness variation
between the end of a time slice and the beginning of the next one.
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Table 3.8: Accuracy and stability of APSO and VNS on the dynamic k-series
instances over different time slices.

. . Accuracy Stability
Instance | Time slice APSO VNS APSO VNS
0 0.876 0.972 0.532 0.933
5 0.885 0.949 | 0.003 0.039
10 0.865 0.822 0.004 0.092
k100 15 0.765 0.681 0.000 | 0.000
20 0.765 0.681 0.000 | 0.000
25 0.765 0.681 0.000 | 0.000
Avg 0.820 0.797 0.090 0.177
0 0.618 0.937 | 0.334 0.916
5 0.748 0.924 | 0.015 0.036
10 0.743 0.875 | 0.019 0.055
k250 15 0.728 0.829 | 0.000 | 0.000
20 0.728 0.829 | 0.000 | 0.000
25 0.728 0.829 | 0.000 | 0.000
Avg 0.716 0.866 | 0.061 0.168
0 0.777 0.944 | 0.277 0.885
5 0.805 0.928 | 0.021 0.068
10 0.741 0.819 | 0.019 0.054
k500 15 0.704 0.779 0.021 0.000
20 0.704 0.779 | 0.000 | 0.000
25 0.704 0.779 | 0.000 | 0.000
Avg 0.739 0.832 | 0.048 0.168

3.8 Conclusion

A population-based metaheuristic has been proposed for the DVRP in this
chapter. This kind of approaches combine the advantages of manipulating
several solutions simultaneously, robustness, and adaptability.

Particle Swarm Optimization takes its inspiration from swarm intelligence and
have been successfully applied to most combinatorial problems and have the
potential to be effective dynamic solvers. However, once a APSO converges
or nearly converges around some solution, it may lose the ability to continue
the search after an environment change. A simple remedy is to restart the
algorithm after each change, but this may tend to be both expensive and in-
effective since valuable information about the search history is discarded with
every restart.

A key element in the successful dynamic solver is its ability to maintain di-
versity throughout the search process while retaining useful past information.
This requirement adds another dimension to the traditional issue of balancing
diversification and intensification. To enhance the performance of the stan-
dard APSO in dynamic environments, we adopt techniques that have been
proven as successful methods for dynamic continuous optimization problems.
It consists in reusing the information/solutions gathered previously by the
particles, and reuse them when the change occurs for repositioning the par-
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Figure 3.9: Evolution of accuracy and stability across time slices for each

instance.

ticles in the search space. This allows a reactive response to the change and
a better track for the shifting optimum since the dynamic change may cause
the new optima to be in the neighborhood of an old one more often (the two
problems are potentially very similar). Thus, storing old solutions can turn
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out to be an advantage later in a dynamic fitness landscape. The experimen-
tal results showed that our Adaptive Particle Swarm Optimization is able to
reach high quality solutions when compared to state-of-the-art metaheuristics,
and introduce new best solutions for the DVRP. The dynamic performance
measures reinforce these results, when the accuracy of the obtained solutions
demonstrates its competitiveness. Another promising techniques for dynamic
optimization problems are multiple population approaches. Their main role
is to maintain enough diversity in the population. However, these schemes
can be enhanced to respond better to the changing environment. These ap-
proaches are addressed in the next chapter.
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4.1 Introduction

Dynamic optimization methods have the main aim to continuously adapt the
solution to a changing environment. Approaches try to deal with this chang-
ing by introducing a memory that stores the best solutions visited during the
previous searches. These solutions are reevaluated and used to initialize the
population when change happens in the environment.

The main problem with standard population-based metaheuristics used for
dynamic optimization problems appears to be that P-Metaheuristics eventu-
ally converge to an optimum and thereby lose their diversity necessary for effi-
ciently exploring the search space and consequently also their ability to adapt
to a change in the environment when such a change occurs. For instance,
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in Particle Swarm Optimization, if the swarm is converging, the attractors
will be close to the optimum position and the swarm will shrink around the
optimum due to the attractiveness of particles towards this optimum and the
best solutions of the search space in general. When change occurs, if the opti-
mum shifts within the shrinking swarm, then re-optimization will be efficient.
However, if the optimum shift at is significantly far from the swarm, it is diffi-
cult to reactivate the tracking. Therefore, approaches should counterbalance
the effect of diversity loss by maintaining diversity throughout the run. This
may be achieved by a multi-population approach. In the multi-population
approach, a part of the population clusters around any local optimum it may
discover, and remains close to this optimum for further exploration. The re-
mainder of the population continues to search for new local optima, and the
process is repeated if any more local optima are found. To track the optimum
in such an environment, the algorithm has to be able to follow a moving opti-
mum, and to jump to another optima when the change occurs in a way that
makes a previously local optima solution the new optimum. Furthermore,
the subpopulation can exchange information during the search and be more
reactive to the next change.

In this chapter, we investigate whether a multi-population metaheuristic
might also be beneficial in dynamic vehicle routing problems. For this pur-
pose, we elaborate a multiswarm APSO and evaluating the approach on paral-
lel architecture. Parallelizing such a metaheuristics in real-time context is an
important aspect due to the hard requirement on search time especially when
we deal with dynamic problem in which changes occur in repeated manner and
within short intervals. First of all, an overview of the existing multi-population
approaches for dynamic optimization problems is given in Section [4.2] Sec-
tion presents the algorithmic design point of view of the parallel model
used for our metaheuristic. Afterwards, the main concepts of the multi-swarm
optimization is presented in Section [4.4] and is detailed for the DVRP. Sec-
tion deals with the implementation of our parallel metaheuristic. Finally,
Section reports the performance assessment of our multi-population meta-
heuristics on a variety of benchmark instances. The main dynamic as well as
parallel performance indicators are also provided.

4.2 Multi-population Approaches for Dy-
namic Optimization Problems

It has been argued in the literature that continuous adaptation only makes
sense when the landscapes before and after the change are sufficiently
correlated, otherwise it would be at least as efficient to restart the search
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from scratch [Branke 1999a]. The main problem with standard population-
based metaheuristics used for dynamic optimization problems appears to
be that P-metaheuristics eventually converge to an optimum and thereby
lose their diversity necessary for efficiently exploring the search space and
consequently also their ability to adapt to a change in the environment when
such a change occurs. To counterbalance the effect of diversity loss, we can
attempt to maintain diversity throughout the run. This may be achieved
by a category of metaheuristics which are multi-population approaches.
They have been applied essentially on continuous problems as Moving Peaks
Problem (MPP) [Branke 1999a].

The underlying idea is to divide the search space into several parts, each
explored by one of several subpopulations. A subpopulation continuously
searches for new optima, while a number of other sub-populations try to
exploit previously detected promising areas. Different multi-population
approaches have been proposed for dynamic combinatorial problems. In
the area of Evolutionary Algorithms (EAs), Oppacher and Wineberg
in [Oppacher 1999] propose a Shifting Balance Genetic Algorithm (SBGA)
that consists in dividing the EA population into one main population and a
number of smaller colony subpopulations. The task of the main population is
to exploit the best found optimum, while the colony populations are forced to
explore the different areas of the fitness landscape. A repulsion mechanism is
introduced whenever a colony population gets too close to the core population
thus driving the colonies far from the core population. Periodically, the
colonies update the core population by sending some emigrant solutions.

Another multi-population EA is the Self-Organizing Scouts (SOS)
developed by Branke [Branke 2000]. The goal there is to have a number
of sub-populations (scouts) watching over the best local optima. For that
purpose, a part of the population is split-off when a local optimum is
discovered, and remains close to this optimum for further exploration. The
remainder of the population continues to search for new local optima that
can appear when the environment changes, and the process is repeated if
anymore local optima are found. A third multi-population approach is the
Multinational Genetic Algorithm (MGA) proposed by Ursem [Ursem 2000].
It structures the population into subpopulations or nations using a procedure
called hill-valley detection. For two points in the search space, a random
sample of the line between these two end points is evaluated. The valley is
detected if the fitness of the sample is lower than the fitness of the two end
points.

This method is used to determine if an individual is not located on the
same peak with the remaining of its population, and hence it should migrate
to a different population. The procedure can also lead to the merging of two
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populations if it finds that they are situated on the same peak. This detection
algorithm works only on points between known optima, the remainder of the
space remains unsampled unless by mutation. The frequent evaluations in
this approach present its main disadvantage.

Another popular multi-population algorithm is Multi-Swarm Optimization.
Different extensions of PSO which solve the problem of change detection and
response have been suggested in literature.

In Charged Particle Swarm Optimization (CPSO) [Blackwell 2002], the
particles have in analogy with electrostatics charge. Three types of particle
swarm can be defined: neutral, atomic and fully-charged. The neutral swarm
has no charged particles and is identical with the conventional PSO. Typically,
in PSO, there is a progressive collapse of the swarm towards the best position,
with each particle moving with reducing amplitude around the best position.
This ensures good exploitation, but diversity is lost. However, in a swarm
of charged particles, there is an additional collision avoiding acceleration
by incorporating electrostatic repulsion between charged particles. This
repulsion works against complete collapse and maintains population diversity,
enabling the swarm to automatically detect and respond to change. In an
atomic swarm, half of the particles are charged and the other half is neutral.
Animations show that the charged particles orbit a collapsing nucleus of
neutral particles, in a picture reminiscent of an atom. This type of swarm
therefore balances exploration with exploitation. This approach was extended
by the authors in [Blackwell 2004] to Multi-Quantum Swarm (MQS) by
replacing the charged particles by quantum particles whose position is based
on a probability function centered around the swarm attractor.

Besides, multi-swarm approach has been proposed by Parrott and
Li [Parrott 2004]. There, the number and the size of swarms is adjusted
dynamically by a speciation and crowding mechanisms called clearing for
finding several optima in multimodal landscapes. While it splits up the
swarm into several subswarms. This method relies on a speciation radius and
has no further diversity mechanism.

In [Blackwell 2006], Blackwell et al. elaborate a multi-swarm PSO in
which the main idea is to split the population of particles into a set of
interacting swarms. These swarms interact locally by an exclusion parameter
and globally through a new anti-convergence operator. In addition, each
swarm maintains diversity either by using charged or quantum particles.
Exclusion is a local interaction between swarms, aimed at ensuring swarm
diversity: whenever two swarms are getting too close (one swarm’s global
best lies within from the other swarm’s global best), a distance of the two
swarms compete and the one with lower fitness is reinitialized. Besides,
the anti-convergence mechanism reinitializes the worst of all swarms once
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all swarms have converged. The approach has been tested on a variety of
instances of the moving peaks benchmark |[Branke 1999b].

4.3 Parallel Design of MP-Metaheuristics for
Dynamic Optimization Problems

4.3.1 Interests

Dynamic optimization problems are often NP-hard and CPU time and/or
memory consuming. Although the use of metaheuristics allows to significantly
reduce the computational complexity of the search process, the latter remains
time consuming for many problems in diverse domains of application, where
the objective function and the constraints associated with the problem are
resource (e.g., CPU, memory) intensive and the size of the search space is
huge.

The fast development of technology in designing processors (e.g., multicore
processors, General-Purpose Processing on Graphics Processing Units, dedi-
cated architectures), networks (e.g., LAN, WAN, and optical networks), and
data storage has made the use of parallel computing more and more popular.
Such architectures represent an effective strategy for the design and implemen-
tation of parallel metaheuristics. Indeed, sequential architectures are reaching
physical limitation (speed of light, thermodynamics). Nowadays, even laptops
and workstations are equipped with multicore processors, which represent a
given class of parallel architecture. Moreover, the cost/performance ratio is
constantly decreasing. The proliferation of powerful workstations and fast
communication networks have shown the emergence of clusters of processors
(COWSs), networks of workstations (NOWs), and large-scale network of ma-
chines (GRIDs) as platforms for high-performance computing. Parallel and
distributed computing can be used in the design and implementation of multi-
population metaheuristics (MP-Metaheuristics) for the following reasons:

e Speed up the search: One of the main goals of parallelizing a meta-
heuristic is to reduce the search time. This helps designing on-line and
interactive optimization methods. This is a very important aspect for
dynamic optimization class of problems where there are hard require-
ments on the search time since the problem changes constantly over time.
This requirement is stronger when the degree of dynamism increases.

e Improve the quality of the obtained solutions: Parallel models
for metaheuristics might allow to improve the quality of the search. In-
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deed, exchanging information between cooperative metaheuristics will
alter their behavior in terms of searching in the landscape associated
with the problem. The main goal of a parallel cooperation between
metaheuristics is to improve the quality of solutions. Both better con-
vergence and improvement in the quality of solutions may happen.

e Improve the robustness: A parallel metaheuristic may be more ro-
bust in terms of solving in an effective manner different optimization
problems and different instances of a given problem. Robustness may
also be measured in terms of the sensitivity of the metaheuristic to its
parameters.

e Solve large-scale problems: Parallel metaheuristics allow to solve
large-scale instances of complex optimization problems. A challenge
here is to solve very large instances that cannot be solved by a sequential
machine.

4.3.2 Cooperative Parallel Model for MP-
Metaheurisitcs

This section aims to present a structured vision of the parallel models and
parallel implementations of multi-population metaheuristics. In literature
we can find different models for the parallelization of metaheuristics. Talbi
in [Talbi 2009] gives a classification based on the level of the parallelization.
Three parallel models are defined: algorithmic level, iteration level, and solu-
tion level parallel level. The algorithmic and the iteration levels are indepen-
dent to the problem, where the solution level is dependent to the problem.

In this thesis, we focus on the algorithmic level as it seems to be the clos-
est to the multi-population approaches. In this parallel model, independent
or cooperative self-contained metaheuristics are used. If the different meta-
heuristics are independent, the search will be equivalent to the sequential
execution of the metaheuristics in terms of the quality of solutions. Besides,
the cooperative model will alter the behavior of the metaheuristics and enable
the improvement of the quality of solutions.

In the cooperative model for parallel metaheuristics, the different algo-
rithms are exchanging information related to the search with the intent to
compute better and more robust solutions. In designing a parallel coopera-
tive model for any metaheuristics, the same design questions are addressed

(see Figure [£.1]):

1. The exchange decision criterion (when?): The exchange of in-
formation between the metaheuristics can be decided either in a blind
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Metaheuristic

2
How? What? Where?

—— | Search memory >

When?

Figure 4.1: Design issues involved by the parallel algorithmic-level model for
metaheuristics.

(periodic or probabilistic) way or according to an intelligent adaptive cri-
terion. Periodic exchange occurs in each algorithm after a fixed number
of iterations; this type of communication is synchronous. Probabilistic
exchange consists in performing a communication operation after each
iteration with a given probability. Conversely, adaptive exchanges are
guided by some run-time characteristics of the search.

For instance, it may depend on the evolution of the quality of the so-
lutions or the search memory. A classical criterion is related to the
improvement of the best found local solution.

2. The exchange topology (where?): The communication exchange
topology indicates for each metaheuristic its neighbor(s) regarding the
exchange of information that is, the source/destination algorithm(s) of
the information (Figure [4.2)). Several works have been dedicated to the
study of the impact of the topology on the quality of the provided re-
sults, and they show that cyclic graphs are better [Alba 2005]. The
ring, mesh, and hypercube regular topologies are often used. The ring
topology may be directional (i.e., directed graph) or bidirectional (i.e.,
undirected graph). In a hypercube of order k, there are 2k nodes, and
each node has k neighbors. A complete graph or a random one can also
be used. In a complete graph, every node is connected to all other nodes,
while in a random graph, a node sends its information to a randomly
selected subset of nodes. Different strategies may be used to determine
random neighbors, for example, each node has exactly one neighbor that
is chosen with equal probability. Whatever the topology, it is important
to have a trade-off between the exploration of the search space (less com-
munication and good diversification) and the exploitation of the global
search information (more communication and good intensification).
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3. The exchanged information (what?): This parameter specifies the

information to be exchanged between the metaheuristics. In general, it
may be composed of:

e Solutions: This information deals with a selection of the gener-
ated and stored solutions during the search. In general, it contains
elite solutions that have been found, such as the best solution at the
current iteration, local best solutions, global best solution, neigh-
borhood best solution, best diversified solutions, and randomly se-
lected solutions. The quality of the solutions must also be sent so
that the evaluation of the solutions is not recomputed in the des-
tination metaheuristics. For S-metaheuristics such as local search,
the exchanged information is generally the best found solution. For
P-metaheuristics, the number of solutions to exchange may be an
absolute value or a given percentage of the population. Any selec-
tion mechanism can be used to select the solutions. The most used
selection strategy consists in selecting the best solutions for a given
criteria (e.g., objective function of the problem, diversity, age) or
random ones.

e Search memory: This information deals with any element of the
search memory that is associated with the involved metaheuristic.
For tabu search, the exchanged information may be the short-term
or long-term memories. For ant colonies (resp. estimation distribu-
tion algorithms), the information may be related to the pheromone
trails (resp. the probability model).

4. The integration policy (how?): Similar to the information exchange

policy, the integration policy deals with the usage of the received in-
formation. In general, there is a local copy of the received informa-
tion. The local variables are updated using the received ones. For
instance, the best found solution is simply updated with the global best
between the local best solution and the neighboring best solution. For
P-metaheuristics, any replacement strategy may be applied to the lo-
cal population by the set of received solutions. For example, an elitist
replacement will integrate the received k solutions by replacing the &
worst solutions of the local population. In ant colonies, the local and
the neighboring pheromone matrices may be aggregated in a linear man-
ner.
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L

(a) Ring
(b) 2D mesh
(c) Hypercube of order 3 (d) Complete graph

Figure 4.2: Some classical regular topologies for exchanging information.

4.4 Parallel Multi-Swarm Optimization for
DVRP

Inspired by the multi-swarm approaches, we investigate in this section
whether the parallel multi-swarm approach might also be beneficial in
dynamic vehicle routing environments. Here, we use this general idea to
maintain particles on several optima simultaneously, which should be helpful
in our context. A part of the population clusters around any local optimum
it may discover, and remains close to this optimum for further exploration.
The remainder of the population continues to search for new local optima,
and the process is repeated if any more local optima are found. This
technique is expected to work well for a class of dynamic functions consisting
of several optima, where the dynamism is expressed by small changes to the
optima locations. These have been argued to be representative of real world
problems [Branke 1999a] and therefore our problem. To track the optimum
in such an environment, the algorithm has to be able to follow the shifting
optimum, and to “jump” to another optimum when a change occurs in a way
that makes a previously local optimal the new global optima.

Among the most widely known parallel algorithmic-level models for
particle swarm optimization, we find the island model. In this well-known
model, each node is responsible for the evolution of one sub-swarm. It
executes all the steps of the algorithm from the velocity updating to the
attractors updating of the subpopulation. Each island may use different
parameter values and different strategies for any search component such as
velocity updating, particle updating, and encodings.
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After a given number of iterations (synchronous exchange) or when a
condition holds (asynchronous exchange), the migration process is activated.
Then, exchanges of some selected particles between sub-swarms are realized,
and received particles are integrated into the local sub-swarm. The selection
policy of emigrants indicates for each island in a deterministic or stochastic
way the individuals to be migrated. The stochastic or random policy does
not guarantee that the best individuals will be selected, but its associated
computation cost is lower. The deterministic strategy (wheel, rank, tour-
nament, or uniform sampling) allows the selection of the best individuals.
The number of emigrants can be expressed as a fixed or variable number
of particles, or as a percentage of particles from the swarm. The choice of
the value of such parameter is crucial. Indeed, if the number of emigrants
is low, the migration process will be less efficient as the islands will have
the tendency to evolve in an independent way. Conversely, if the number
of emigrants is high, the APSO is likely to converge to the same solutions.
The replacement /integration policy of immigrants indicates in a stochastic
or deterministic way the local individuals to be replaced by the newcomers.
The objective of the model is to delay the global convergence and encourage
diversity (This paradigm is illustrated in Figure )

Swarm

Figure 4.3: Parallel insular model for multi-swarm.

Based on the considerations above, we propose a parallel multiswarm
variant of APSO that we call Multi-Adaptive Particle Swarm Optimization
(MAPSO). The algorithm is presented in Algorithm [I0] It starts with the
initialization of the population of particles and then iterates a main loop
with three stages: Test for function change, reusing of solutions that belong
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to the adaptive memory and the updating of the personal and swarm at-
tractors. When a change in the environment is detected, all the particles
are re-positioned according to adaptive memory mechanism and evaluated.
Consequently, the personal attractor is updated. Then, the particles move
through the search space according to the equations and , and update
their both attractors if necessary at each generation. When the migration
criterion is filled, the exchange of particles is carried out between the swarm
and its neighbor(s) according to the exchange topology.

For the dynamic vehicle routing problem, as previously mentioned, at each

time step, the VRP like-instance that corresponds to the set of customers who
arrived in the last time slot is given to the algorithm as an input data.
An initial population is built according to a greedy neighbor heuristic. Then,
the algorithm proceeds by updating the particles velocity as well as their
positions. The particles move in the search space seeking a better position.
The global attractor which corresponds to the particle with the best position
(in terms of fitness) is updated. When the migration criterion is reached after
a number of iterations, a selection is performed on the population and a set of
the best particles (i.e. those with the best positions) is chosen for migration
toward a neighbor population defined by the topology of the multi-swarm.
In the other part, the immigrant particles coming from another population
are received and integrated into the local population by replacing the worst
particles (i.e. those with the less good positions in terms of fitness).

4.5 Parallel Implementation of MP-
Metaheuristics

Efficient implementation of parallel metaheuristics is a complex task that de-
pends on the type of the parallel architecture used. In order to implement
efficiently our parallel multi-swarm optimizer, we choose ParadisEO software
framework to design and implement the parallel and distributed model for our
metaheuristic. ParadisEQ[] is a framework dedicated to the reusable design
of parallel hybrid metaheuristics by providing a broad range of features, in-
cluding EAs, local search methods, parallel and distributed models, different
hybridization mechanisms, etc. The rich content and utility of ParadisEO
increases its usefulness.

ParadiskEO is a C++ LGPL white-box open source framework, based on
a clear conceptual separation of the metaheuristics from the problems they
are intended to solve. This separation, and the large variety of implemented

Thttp://paradiseo.gforge.inria.fr
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optimization features, allow a maximum code and design reuse. Changing
existing components and adding new ones can be easily done, without im-
pacting the rest of the application. ParadisEO is one of the rare frameworks
that provide the most common parallel and distributed models, portable on
distributed-memory machines and shared-memory multiprocessors, as they
are implemented using standard libraries such as MPI, PVM and PThreads.
The models can be exploited in a transparent way - one has just to instantiate
its associated ParadisEO components. The user has the possibility of choos-
ing, by a simple instantiation, the MPI or the PVM for the communication
layer. The models have been validated on academic and industrial problems,
and the experimental results demonstrate their efficiency [Talbi 2009].

The architecture of ParadisEO is layered as it is illustrated in Figure [4.4]
From a top-down view, the first level supplies the optimization problems to
be solved using the framework. The second level represents the ParadisEO
framework, including optimization solvers, embedding single and multicrite-
rion P/S metaheuristics (evolutionary algorithms, particle swarm optimiza-
tion, variable neighborhood search, etc.). The third level provides interfaces
for MPICH-G2 based programming. The fourth and lowest level supplies
communication and resource management services. The implementation re-
lies on invariant elements provided by the ParadisEO framework, providing
support for the insular model approach, as well as for distributed and paral-
lel aspects concerning other models as the parallel population evaluation. In
this context, deployment related aspects are transparent, the focus being ori-
ented on the application-specific elements. The main steps to be performed,
in order to configure the environment and to deploy the algorithm, consist
in specifying the individuals encoding, the specific operators and the fitness
function. Furthermore, elements concerning selection mechanisms and re-
placement strategies must be specified, along with configuration parameters
(number of individuals, number of generations, etc.).

4.6 Experimental Results and Discussion

The underlying support for performing the experiments was GRID50007 a
French nation-wide experimental grid, connecting several sites which host
clusters of PCs interconnected by RENATERH (the French academic net-
work). GRID5000 is promoted by CNRS, INRIA and several universitief].

2GRID5000 web site: https://www.grid5000.fr

3Rseau National de Tlcommunications pour la Technologie, 1Enseignement et la
Recherche - http://www.renater.fr

4CNRS - http://www.cnrs.fr/index.html; INRIA - http://www.inria.fr.
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Distributed-memory architectures: Networks of workstations
Desktop grids

Clusters, and so on .
* U
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SMP, multicores,and so on  High-performance grids

Figure 4.4: The layered architecture of ParadisEO.

At this time the GRID is gathering more than 2932 processors representing
7468 cores with around 2.5 Tb of cumulated memory and more than 100 Th of
non-volatile storage capacity. Inter-connections sustain communications of 10
Gbps. The initial target point was to achieve 5000 processors for 2007 in the
platform. It has been reframed at 5000 cores, and was reached during winter
2008-2009, regrouping nine centers at the beginning and eleven since 2011:
Bordeaux, Grenoble, Lille, Lyon, Nancy, Orsay, Rennes, Sophia-Antipolis,
Toulouse, Reims, Luxembourg.

The GRID is designed to allow a per reservation utilization of the resources
- no interferences may occur during the experiments, the allocation of the re-
sources being associated only with the user which requested the reservation.
The demanded resources are completely available during the entire experi-
mentation time, unless in exceptional events occur.

For the experimental validation of our approach, we evaluate the compu-
tational results of MAPSO-DVRP algorithm. Therefore, we report its perfor-
mance comparatively to other metaheuristics on conventional benchmarks in
Section [4.6.1] and with a study on varying the number of subpopulations on
large scale instances in Section [1.6.2] Section [4.6.3] assesses the dynamic per-
formances of MAPSO. In addition, we evaluate in Section the scalability

of our algorithm by measuring its parallel performances.

4.6.1 Comparison with State-of-the-Art Metaheuristics

We compare the quality of the solutions obtained by MAPSO-DVRP with
the best reported results from the state-of-the-art in dynamic vehicle routing
problems. We use the conventional Kilby’s benchmarks [Kilby 1998] sum-
marized in 21 dynamic instances derived from three well-known data sets as
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benchmarks: Christofides and Beasley [Christofides 1984] (7 instances), Tail-
lard [Taillard 1993] (12 instances) and Fisher [Fisher 1995](2 instances). The
data sets consist of numerous types of service areas, some with uniformly
distributed customers, others with clustered customers and a few of them
have mixed and irregular distributions. Further details and properties of the
instances can be reviewed in Table 2.11

We follow the solving strategy consisting in dividing the working day into
several time slots and by solving the instance corresponding to the set of
customers who appeared the last time slot. Then, vehicles are committed
according to the solution provided by our algorithm. More details concerning
the solving strategy are given in the Section[2.5] MAPSO population has been
divided over 8 subswarms, where the migrations are performed inside a ring
topology, each algorithm having a source island for receiving individuals and a
destination island for sending the emigrant individuals. Another element with
important consequences over the algorithm is the asynchronous migration pa-
rameterization. Frequent migrations may result in a premature convergence
while distant migrations fall in the opposite case (the algorithms having inde-
pendent evolutions). For our case, 5% of the population migrate at each 1000
evaluations, in an asynchronous manner (migrations occur at different times,
depending on the evolution of the algorithm). The choice of asynchronous
communication model is related to the fact that the speedup performance
of this model is expected to be higher than synchronous models. Indeed, in
the synchronous model, the evolution process is often hanging on powerful
machines waiting the less powerful ones to complete their computation. On
the other hand, this model is not fault tolerant as wasting a metaheuristic
implies the blocking of the whole model in a volatile environment. A stochas-
tic tournament selection strategy is being applied for selecting the emigrant
individuals while the immigrant discard the worst individuals in the target
population. The algorithm iterates for 5000 evaluations for each sub-problem.
Then, the stopping criterion for the entire simulation is 25 x 5000 = 125000.
We reuse the same parameters of APSO algorithm described in Section [3.7.1]
Table 4.1 summarizes MAPSO parameters used for solving Kilby instances.
Thirty trials of our algorithms have been considered.

Table summarizes the average and best results found by MAPSO-
DVRP and both VNS, APSO presented previously in the chapter 2, and
3 respectively. In addition, we report the results obtained by state-of-the-
art metaheuristics; Ant System (AS) [Montemanni 2005b], Genetic Algorithm
(GA) and Tabu Search (TS) [Hanshar 2007]. The best found solutions are
highlighted into dark shaded cells, and the average results are marked in light
shaded cells.

Tabled.2[shows that our algorithm is able to provide high quality solutions.
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Table 4.1: Algorithm parameters for the multi-swarm metaheuristic.

Parameter type Default value Range
Number of swarms 8 —
Population size 100 —
Migration topology ring —
Migration frequency 1000 evaluations —
Migration size 5% of population size —

»1 - 0.5-1.0

P2 - 0.5-1.0

Stopping criterion 5000 evaluations for each sub-problem 2 Xfigot%jl‘zig?f sxg;z:ons

It outperforms the other metaheuristics, and gives 15 new best solutions out
of the 21 Kilby’s instances. Our algorithm provides also the shortest average
for the traveled distance on 16 instances. The improvement provided by our
algorithm on average ranges between 3.51% and 9.75% compared to the tested
metaheuristics on these instances. The average of the relative error for the
best results is 1.56%.
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Algorithm 10 Cooperative Multi-Adaptive Particle Swarm Optimization
(MAPSO) for Dynamic Optimization Problem
// Initialization
for Each swarm s; do
for Each particle j do

Initialize 1)} , L5 = D
Evaluate f(pj);
end for
end for
repeat
repeat
// Test for Change
for Each swarm s; do
//Evaluate function at swarm attractor of swarm s;
Evaluate f(pj);
if new value is different from last iteration then
for Each particle j of swarm s; do
//Evaluate each particle
Evaluate f($§~,p§-);
//Reuse the best solutions found previously by the particles (adap-
tive memory)
:1:; = AdjustPosition(a:}pé-);
end for
//Update swarm attractor
Py = argmin{f(p})};
end if
end for
//Update velocities
v;-(t) = w X vg(t — 1)+ ¢1 x rl(p;'- — $;(t — 1)) + @2 X r2(p — x;(t —1));
//Move to the new position
ah(t) == ah(t — 1) + vl(t);
// Update Attractor
Evaluate f (93;),
if f(zi) < f(pi) then
Py =
end if
if f(ai) < f(p}) then
Py = T
end if
until migration criterion reached
// Communication Step
Migration of local particles toward the neighbor swarm;
Integration of the received particles in the population;
until certain criterion is reached
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4.6.2 Study on Varying the Number of Sub-
Populations

We propose here to study the impact of the number of the interacting sup-
populations on the optimization process. For this purpose, from a fixed
number of individuals in the whole population, we vary the number of sub-
populations involved in the search from 2 to 8 sub-populations. Therefore,
three algorithms are proposed; MAPSO, with two sub-populations, MAPSO,
with four sub-populations, and MAPSOg with eight sub-populations. In the
same manner as in the previous chapters, our analysis covers a large set of
instances that we have defined for the vehicle routing problems. This set is
called k-series and includes three instances which are k100, k250, and k500.
The whole population size is 100 particles, which is divided according the
number of sup-populations in the proposed approaches. The stopping crite-
rion is fixed to 600 per time slot, thus, 600 x 25 = 15000 evaluations for £100
and k250 instances, and 1200 x 25 = 30000 evaluations for the k500 instance.
The solving algorithm runs over 25 time slots. Each slot corresponds to a
static VRP-like instance. We have performed 30 independent trials of each
experiment. The results are shown in Table 4.3 which indicates the best
achieved fitness, the average and the standard deviation. Dark shaded cells
correspond to the best found solutions, while best average results are in light
shaded cells. In order to be able to compare our results accurately, we have
also performed statistical significance tests. Kruskal-Wallis test has been ap-
plied to compare the medians of the algorithms [Cohen 1995]. As a result, all
our experiments have a confidence level of 95 % (p-value < 0.05). Table
is marked with “47 sign if there are statistical differences between a certain
pair of algorithms, and with a “—” sign otherwise.

Table 4.3: Solutions obtained by MAPSO on dynamic k-series instances.

. . Solutions
Algorithm | Instance | Algorithm Bost Avreg. Dov
APSO 1819.01 1871.25 | 29.55

MAPSO2 1786.61 1885.26 51.67
MAPSO4 1762.54 1866.20 | 53.15
MAPSOg 1755.84 1884.16 52.8

APSO 7658.27 8194.08 99.82
MAPSO2 7126.92 7356.59 125.6
MAPSO4 6855.76 7078.03 63.15
MAPSOg 6756.19 7039.29 |115.75
APSO 26347.8 27592.34 | 383.07
MAPSO» 24200.00 25830.51 |926.49
MAPSO4 23377.40 24018.08 | 343.77
MAPSOg 23189.00 | 23888.58 | 465.77

k100

MAPSO | k250

k500
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Table 4.4: Statistical results of comparing our algorithms with a multi-
comparer test.

Instances | Algorithms | MASPO2 | MASPO4 | MASPOsg
MASPO- - - -

k100 MASPO4 - -
MASPOg - -
MASPO2 - + +

k250 MASPO4 + - -
MASPOsg + - -
MASPO2 - + +

k500 MASPO4 + - -
MASPOsg + -

From the Table 4.3] we can see that the parallel multi-swarm MAPSO

provides better results than the APSO with a single population on the three
treated instances. The improvement on the fitness value for the best obtained
solutions ranges between 3.72 % and 14.35 %.
For the three instances, MAPSOg provides the best results in terms of min-
imizing the traveled distance of the vehicle fleet. Concerning the average
distance, MASPQy gives better results on k100 than MAPSO, and MAPSOg.
Moreover, MASPOg gives better results on k250 and k500 than the other
algorithms for this metric. We can explain the performance of the multi-
population approach by the fact that it offers more ability for the algorithm
to search in o different regions the same moment. Thereby, when new customer
orders appear leading to the move of the optimum towards a new position in
the search space, with several populations we have more chance to follow its
movements and to reach it after some iterations.

4.6.3 Dynamic Performance Assesment

Conventional Instances. In order to assess the dynamic performance of
our MAPSO, we have computed the accuracy of the solutions obtained by
our algorithm on each instance at the end of the optimization process. Ta-
ble shows the accuracy of MAPSO and the algorithms described in the
above section. It reports the best obtained distances and the bounds Mink
(best known solutions) found by an off-line algorithm which had access to the
entire instance (all customers are static), including dynamic requests before-
hand. Most of them are not feasible solutions for the DVRP, but play a role
of bounds. These solutions can be found in literaturd’] over the 21 Kilby’s
instances. From Table [4.5] we see that MAPSO has the best accuracy on 18
instances and the best average on the set of treated instances. The accuracy

5http ://neo.lcc.uma.es/radi-aeb/WebVRP/
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Figure 4.5: The evolution of each algorithm’s mean trace for each instance;
each of them shows also the optimum value for each time slice as obtained by
running our algorithms over the static subproblems.

reaches for some instances as tai75d a value of 0.98, which is a high achieve-
ment of our algorithm. The accuracy average is equal to 0.89 (being of 1.0
is the ideal) which demonstrates again that our multi-population algorithm
outperforms the state-of-the-art metaheuristics and is able to produce high
quality solutions on the conventional dynamic benchmarks.
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Large Scale Instances. In the same way that the conventional instances,
we assess the dynamic performances of MAPSO on k-series instances.

Tables and show the average of the accuracy and stability of the
algorithms for the three k-series instances on the different time slices of the
working day 7. These results are plotted in Figure [£.6] The accuracy re-
sults confirm numerically what we already explained in Section [4.6] the size
of the instance affects differently the performance of our algorithms. In in-
stance k100, at the end of the working day, the accuracy of the algorithms is
quite close to each other. However, when the size of the instance increases, a
gap appears into the performances of the algorithms. Indeed, the MASPO,
has the worst accuracy on the k250 and k500 instances, comparatively to
the MAPSO, and MAPSOg. The highest accuracy levels over the simula-
tion were obtained by MAPSOg for the treated instances. With respect to
stability, the algorithms vary between two phases; unstable at the beginning
of the optimization process, and quite stable at the end. At each change in
the environment (arrival of new orders), the algorithms are a bit destabilized.
This is translated by the peaks at the beginning of each time slice as shown
in the Figure [4.60l In terms of number of sub-populations, it may be noted
that more the number of sub-populations increases, more the algorithm is sta-
ble. Table shows that MAPSOg is the most stable algorithm. Given that
MAPSOyg is the most reactive to the changing comparatively to the other vari-
ants (see Section [4.6.2)), it is also more robust and stable. The algorithms are
relatively stable during the optimization process for a measure which ranges
between 0 and 1.

4.6.4 Parallel Performance Assessment

In parallel algorithms, the main performance measures are speedup and effi-
ciency. They have been introduced to evaluate the scalability of algorithms.
The scalability of a parallel algorithm measures its ability to achieve per-
formance proportional to the number of processors. The speedup Sy is de-
fined as the time T it takes to complete a program with one processor di-
vided by the time Ty it takes to complete the same program with N proces-
sors [Cung 2002, [Alba 2005 [Talbi 2009].

T

Sy =+
N Ty

(4.1)

The speedup is defined as the gain achieved by parallelizing a program. The
larger the speedup, the greater is the gain. If Sy > N (respectively Sy < N),
a superlinear (respectively linear) speedup is obtained. In the case Sy < N
the speedup is said sublinear. The sublinear speedup is the most common.

145

© 2012 Tous droits réservés. http://doc.univ-lille1 fr



© 2012 Tous droits réservés.

Thése de Mostepha Redouane Khouadijia, Lille 1, 2011

Chapter 4. Multi-Population Based Metaheuristics for Solving
146 Dynamic Vehicle Routing Problem

Table 4.6: Accuracy of MAPSO on the dynamic k-series instances over dif-
ferent time steps.

Instance | Tste Accuracy
P |"APSO [ MASPO> | MASPO4 | MASPOs
0 0.87 0.82 0.85 0.86
5 0.88 0.90 0.92 0.93
10 0.86 0.87 0.87 0.88
k100 15 0.76 0.74 0.74 0.74
20 0.76 0.76 0.76 0.76
25 0.76 0.76 0.76 0.76
Avg 0.81 0.81 0.82 0.82
0 0.61 0.62 0.73 0.75
5 0.75 0.82 0.89 0.9
10 0.75 0.69 0.85 0.86
k250 15 0.72 0.81 0.84 0.85
20 0.72 0.81 0.84 0.85
25 0.72 0.81 0.84 0.85
Avg 0.71 0.77 0.82 0.84
0 0.77 0.72 0.85 0.90
5 0.80 0.86 0.89 0.96
10 0.79 0.85 0.88 0.91
k500 15 0.70 0.75 0.80 0.82
20 0.70 0.75 0.81 0.82
25 0.70 0.75 0.81 0.82
Avg 0.73 0.76 0.82 0.85

This is due to the overhead of communication and synchronization costs. The
efficiency En using N processors is defined as the speedup Sy divided by the
number of processors N.

- N
It defines how well are N processors used when the program is computed in
parallel. An efficiency of one means that all of the processors are being fully
used all the time.

To compute the speedup, we compare the algorithm both in sequential and in
parallel architecture. The speedup and efficiency provide by the paralleliza-
tion of each algorithm are shown in the Table 1.8 The trace of the speedup
for the three instances is shown in the Figure [£.7] It seems that the speedup
performance is quite similar on the three instances. The gain achieved by par-
allelizing these algorithms is high, and it slightly moves away from the linear
speedup as the number of CPUs increases due to the overhead of communi-
cation between nodes.

Ex (4.2)

In addition, the performance on the instance k500 is less than the k100 and
k250 instances. Since the number of evaluations allowed on the instance k500
for each slice is 1200 evaluations which is two times more than the other in-
stances (600 evaluations) (see Table [2.3)), this leads to decrease the speedup
performance in consequence of the cost of communication due to the migration
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Table 4.7: Stability of MAPSO on the dynamic k-series instances over dif-

ferent time steps.

Instance | Tste Stability
P |"APSO [ MASPO> | MASPO, | MASPOs
0 0.532 0.43 0.434 0.434
5 0.003 0.02 0.017 0.017
%100 10 0.004 0.01 0.009 0.009
15 0.001 0.01 0.000 0.000
20 0.00 0.01 0.000 0.000
25 0.00 0.000 0.000 0.000
Avg 0.09 0.01 0.004 0.002
0 0.33 0.29 0.292 0.29
5 0.015 0.03 0.022 0.02
5250 10 0.019 0.02 0.022 0.000
15 0.000 0.000 0.000 0.000
20 0.000 0.000 0.000 0.000
25 0.000 0.000 0.000 0.000
Avg 0.061 0.02 0.004 0.002
0 0.277 0.25 0.25 0.248
5 0.021 0.03 0.024 0.023
K500 10 0.019 0.02 0.020 0.019
15 0.021 0.001 0.006 0.003
20 0.000 0.000 0.000 0.000
25 0.00 0.000 0.000 0.000
Avg 0.048 0.004 0.001 0.001

of particles between swarms.

The same performances are replicated for the efficiency measure as it is
shown in the Figure

Table 4.8: Speedup and efficiency for MAPSO based algorithms.

[ Instance [ Algorithm [ Speedup [ Efficiency ]

MAPSO2 1.98 0.99
k100 MAPSO4 3.89 0.97
MAPSOg 7.27 0.91
MAPSO2 1.74 0.87
k250 MAPSO4 3.43 0.86
MAPSOg 6.53 0.82
MAPSO2 1.59 0.80
k500 MAPSO4 3.04 0.76
MAPSOg 5.62 0.70

4.7 Conclusion

A parallel multi-swarm approach named Multi-Adaptive Particle Swarm
(MAPSO) has been proposed in this chapter. Its principle is to divide the pop-
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Linear Speedup Linear Speedup
MAPSO MAPSO

Speedup

Speedup
N\

(a) k100 instance. (b) k250 instance.

Linear Speedup ———
MAPSO

8 ~

7

Speedup

(¢) k500 instance.

Figure 4.7: The speedup of the algorithms on each instance.

ulation into several sub-populations that evolve in parallel and which track the
shifting optimum throughout the time. The aim is to position each of those
subswarms on different promising local optima of the search space. However,
simply breaking up the neighborhoods and dividing up the global swarm into
a number of independent swarms is unlikely to be effective since the swarms
would not interact (the dynamics governing the position and velocity updates
of a particle in a particular swarm are specified by parameters belonging to
that swarm only).

Therefore, we suggested to cooperate the swarms by exchanging infor-
mation related to the best positions (local optima) found by their particles.
Indeed, the dynamic change may cause the optima to be in the neighborhood
of an old solution more often. The localization of several swarms on different
optima allows to react quickly to the changing since the swarms are already
located in the neighborhood of the new optima. Hence, we take the advantage
of using the information gathered in the past and introduce more diversifica-
tion in the search towards several cooperative swarms. MAPSO approach
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Figure 4.8: The efficiency of the algorithms on each instance.

has been implemented on parallel architecture by using ParadisEO software
framework.
For the experimental part, MAPSO gives better solution quality than
metaheuristics taken from literature. A study on varying a number of sub-

populations has been done, and showed that the performances increase with

the number of sub-swarms which maintain population diversity through the
search space. Dynamic and parallel performances were assessed over the dif-
ferent variants of the algorithm.
The next chapter will examine some modifications that can be brought to
metaheuristics and which allow them not only find high quality solutions, but

solutions that are robust and flexible as well.
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CHAPTER 5
Flexibility and Robustness in
Dynamic Vehicle Routing
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5.1 Introduction

Recent approaches have mainly focused on maintaining the population diver-
sity as a warrant for the ability of tracking the optimum. However, it could
be also worthwhile to anticipate changes of the environment by explicitly
searching for solutions which maintain their robustness and flexibility. Flex-
ible solutions are those that can be easily adapted to account for changes in
the environment.

As we have seen in previous chapters that adaptation to changes may be nec-
essary, it should be worthwhile to anticipate these changes and to explicitly
search for solutions that, not only have high quality, but that allow the adap-
tation of a high quality solutions after the environment has changed.
Although this is a valid approach to all dynamic optimization problems, it
seems particularly important for optimization problems where the solution
is gradually implemented over time, and thus, some part of the solution is
permanently fixed between changes. In this case, it is not necessarily possible
to switch from one optimal solution to the next optimal solution after the
environment has changed. The set of solutions still available after a change
depends on the previous selected solution.
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For the example of Dynamic Vehicle Routing Problem, we argue that it is use-
ful to anticipate the forthcoming arrival of new orders. Since we know that
only the front part of the routing (routes) will actually be implemented, while
the remainder will have to be re-routed after the arrival of a new requests in
order to insert them in the existing routes.

Our aim here is to explicitly search for routes that are flexible enough to allow
easy adaptation after a new order has arrived. For that we propose a measure
of flexibility, and show that better solutions can be obtained when the ”plan-
ning horizon” for all subproblems is modified to take the flexibility of solutions
into account. The main idea of guiding the search towards solutions that are
"well-prepared” for changes in the environment is the search for robust solu-
tions, i.e. solutions that show a good average performance under all possible
future scenarios. We suggest here to adjust the planning horizon in order to
build solutions that might anticipate the forthcoming arrival of new orders.
The underlying idea consists in gradually increasing the period covered by a
vehicle routing plan over the day. This leads to allow a large number of com-
mitted vehicle at the beginning of the working day even if the orders do not
require this size of vehicle fleet. The adjustment warrants flexible insertion of
new incoming orders into the existing routes throughout the day. Therefore,
we anticipate the future needs of our customers. The chapter is structured as
follows: In Section we report some developing works on robustness and
flexibility. Section presents our flexible strategy for solving DVRP, while
Section exposes the implementation of this strategy for Flexible Variable
Neighborhood Search (FVNS). Section [5.5|reports experimental results of our
algorithm on a classical set of benchmarks and assesses the dynamic perfor-
mance indicator of our algorithm. Finally, we conclude this chapter with some
highlights that can be the subject of future researches.

5.2 Background

Many works have approached the study of flexibility in optimization problems,
although the point of view on what flexibility means differs greatly between
them. Intuitively, it can be defined as the relative ease with which a solution
can be adapted to the requirements of changing problem data [Sérensen 2003].
In general, flexible solutions are especially desirable in dynamic optimization
problems since the environment is expected to change even in the problem
definition itself. Although flexibility is sometimes used to refer to algorithms
which are able to solve different types of problems [Jans 2007], we stick to
the concept of flexibility as the ability to manage the changes that occur over
the time on a dynamic problem. Most works which approached flexibility
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in VRP addressed the flexibility of vehicle schedules [Hashimoto 2006] or by
allowing soft time window and soft traveling time constraints [Afsar 2010,
rather than the flexibility of solutions. Robustness and flexibility are often
used as synonyms. A study on robustness and flexibility for the VRP with
Stochastic Demands is provided in [Sorensen 2009]; in this case, a robust-
ness/flexibility evaluation function is used to evaluate a set of scenarios for
each solution. A recourse procedure is introduced when flexible solutions are
needed and penalty functions is introduced to penalize violation of constraints.
Scheffermann et al. [Scheffermann 2009] present and compare algorithms for
creating robust solutions to the vehicle routing problem with time-windows
(VRPTW) in which travel times are uncertain. They referee to feasibility-
robustness of solutions which stay feasible in uncertain environments or be-
come only slightly infeasible by proposing a model which penalize the de-
lays (missing a time-window) for a given service plan for a set of customers.
Flexibility has been thoroughly studied in the Dynamic Scheduling Problem
domain [Branke 2005al [Snoek 2001]. Branke and Mattfeld [Branke 2005al
worked on anticipation in dynamic scheduling problems. They suggest the in-
corporation of a criterion into the fitness function which focuses on the early
utilization of machine capacity. They showed that flexibility can be gained by
avoiding early idle-times and thereby penalize them.

5.3 Flexible Solving Strategy

Given that the main feature in the DVRP is the dynamic arrival of orders,
we consider that flexibility is largely determined by the maximum length of
routes, which depends ultimately on the time window of the depot. To pre-
serve flexibility, we propose to construct initial solutions being aware about
the potential arrival of new orders; in order to do so, we propose to dynami-
cally adjust the length of the working day, making it smaller at the beginning
of the optimization and letting it increases until the value defined by the
problem instance as the simulation takes place.

In this way, we expect to get solutions with a larger number of shorter
routes at the beginning of the simulation time.

If there are more routes available and they are not built to use the whole
working day length, it will be easier to place new customers in a good position.
We define T"(t) as the function which modifies the length of the working day:

curys - Ths
dod
where T is the length of the working day defined in the problem instance,

curs is the current time slot (period), Ty is the length of a time slot, and dod

'ty=a-TH+(1-a)- (5.1)
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is the degree of dynamism of the problem. The parameter « ranges in [0, 1],
and it is used to determine the initial value of 7¢ffcqive at the beginning of
the simulation time.

The parameter a controls the variation of the modified working day with
respect to the initial working day. If « is equal to 1, T” is equal to the initial
working day, when alpha is equal to 0, T” takes its smallest value.

The degree of dynamism is included in order to determine the incremen-
tal increasing in 7”: if the problem is very dynamic (dod is close to 1.0), 17"
increases slowly during the whole simulation; if dod is closer to 0.0 (static
problem), T" increases faster in order to reach soon the original 7". The ef-
fective working day length T recrive (t) is a modification of the working day T
which is used by the algorithm at each time step t. It takes into account that
T is the maximum allowed length, which means that the routes designed by
the algorithm can never exceed this length in order to be feasible.

Teffective(t) = min (Tv T,(t» (52)

This strategy is independent of the optimization algorithm since it consists
in the relaxation of a problem constraint. This means that it can be adopted
with little effort by any metaheuristics as long as they are able to manage

constraints. An example of how T¢ffective changes during the simulation is
shown in Figure

520 T T T T T T T 1
500
480
460
440
420
400
380
360 Teftectve —— -

340 I T TR NN TR T SR |
0 50 100 150 200 250 300 350 400 450 500

time

Effective T

Figure 5.1: T ¢ fective changes with a = 0.7, T' = 500, T}; = 25, and dod = 0.5.

5.4 Flexible VNS for DVRP

We propose Flexible Variable Neighborhood Search algorithm (FVNS) for
DVRP which follows our flexibility strategy. As presented in the Chapter 2,
VNS is a well-known trajectory-based metaheuristic proposed by Hansen and
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Mladenovi¢ [Hansen 1999]. In order to adapt VNS for a particular problem,
it is necessary to define the set of neighborhood structures and to establish
the local search procedure that is applied to the solutions. Both our neigh-
borhoods and the local search are related to specific operators of the VRP.
We have proposed four different neighborhoods N (s):

e Ni(s) is the set of solutions which results of swapping any two customers
in s,

e N3(s) is the set which results of inserting a given customer into any
position in s,

e Nj3(s) results of applying 2-Opt [Lin 1965] to any subroute of s, and

e Ni(s) is the result of using 2-Opt* [Potvin 1995] in any two subroutes
of s.

These neighborhoods allow the algorithm to escape from local optima, as
constraints are not enforced at this stage. The local search consists in consec-
utively combining four local search operators: A-exchange with (1,1) moves,
A-exchange with (1,0) moves, 2-Opt and 2-Opt*. For each local search heuris-
tic, all possible moves are checked and the best one is performed, i.e. the one
which reduces the solution cost the most. Our local search procedures avoid
reevaluating the whole solution. A repair procedure makes any new solu-
tion feasible before its evaluation. This repair procedure is necessary since
the neighborhood operators can generate unfeasible solutions. Initial solu-
tions are generated using the Savings algorithm [Clarke 1964]. In order to
avoid determinism in the construction of initial solutions, we use a parame-
ter v to calculate the savings as s(i,j) = d(0,i) + d(0,7) — ~vd(i, ), where
v ~ U(0,1) [Yellow 1970]. The same strategy is followed to insert dynamic
customers in the solution: a partial solution including only new customers
is built using the Savings algorithm and these new routes are added to the
current solution.

In our Flexible Variable Neighborhood Search (FVNS), the flexibility of
the constraints is used in the construction phase (Savings heuristic), while in
the local search, we consider only the modifications that do not increase the
number of routes according to the constraints.

5.5 Experimental Results and Discussion

This section presents the results obtained by our algorithm. For that purpose,
we use a set of standard benchmarks introduced in the Section [L6l This set
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has been proposed by Kilby [Kilby 1998] and consists in 21 instances based
on those of Christofides, Fisher, and Taillard, which have been adapted to the
dynamic environment. These instances range in size [50,199] and have differ-
ent topologies regarding the geographic distribution of customers (clustered,
uniform, and a combination of these two). In the literature, the cutoff time
T., is set to 0.5 x T'. For each instance, 30 independent runs are considered.
Each static subproblem runs for 5000 evaluations and 25 time slices are con-
sidered. The FVNS algorithm runs on Intel Core 2 Quad 2.6 GHz machines
with 4 GB memory.

5.5.1 Study on Sensitivity of the Flexibility Parameter

Here we analyze the influence of the o parameter for values in [0.6,1.0]. If
a = 1.0, the results correspond to the canonical VNS with standard con-
straints (no modification is applied). We have not studied values smaller than
0.6 as the results for a = 0.6 already point out that such a tight value is not
a convenient strategy. Results obtained over the Kilby’s instances are shown
in Table [5.1] and represented graphically in Figure The best obtained so-
lutions are in highlighted into dark shaded cells, and the average results over
30 runs are given in light shaded cells.

The figure on the left shows the sum of the best fitness obtained for each
one of the 21 instances in the benchmark, while the figure on the right repre-
sents the sum of the average fitness obtained on each instance.

From both Table |5.1] and Figure |5.2] we can see that the value o = 0.7 is
the more competitive one, followed closely by a = 0.8 and 0.9. The results
of a = 1.0 are bad, while e = 0.6 is too restrictive and not beneficial for the
algorithm. With the variant o = 0.7, the algorithm outperforms the other
variants on 12 instances and got the best average on the whole set. As we
can see in Figure [5.2] there is a correlation between the best and the average
total fitness; in both cases, the best performance is achieved with o« = 0.7.
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Figure 5.2: Influence of the a parameter on quality solutions.

5.5.2 Comparison with State-of-the-Art Metaheurisitcs

Table compares our FVNS (a = 0.7) with other algorithms of the liter-
ature: Ant System (AS) [Montemanni 2005b], Genetic Algorithm (GA), and
Tabu Search (TS), both proposed in [Hanshar 2007]. We highlight the best
found solutions in shaded cells and best average results in light shaded cells.
FVNS obtains 16 best solutions out of 21 instances, while GA obtained four
and TS one best solution. AS obtains no best solution in this case. Concern-
ing the average fitness, GA obtains the best average on 13 instances, while
FVNS obtains best averages in 8 (AS and TS obtain none).

FVNS is also the algorithm which achieves the best total best fitness and GA
obtains the best total average one (see last row in Table [5.2). This can be
due to a higher standard deviation in the solutions provided by FVNS, which
could be expected from a single-solution metaheuristic. The strength of the
approach is found when solving the large scale instances, which points a good
scalability of our algorithm.

Concerning the execution time, by normalizing this time according to the per-
formance of machine testbed [Gee 2010] as shown in Table FVNS spends
less time than the AG, TS and it is comparable in time with AS.

5.5.3 Flexibility vs Multi-Populations

In this section, we compare our flexibility enhanced metaheuristic with the
Multi-Swarm Adaptive PSO (MAPSO) approach that we have presented in
the previous chapter, and which has shown to be a cutting-edge strategy for

this problem (see Table p.4). MAPSO improves the results of AS, GA, and
TS on 15 out of 21 instances by using a parallel algorithm with 8 islands,

158

http://doc.univ-lille1.fr



Thése de Mostepha Redouane Khouadijia, Lille 1, 2011

5.5. Experimental Results and Discussion 159

Table 5.2: Numerical results obtained by FVNS compared to AS, GA, and

TS.
Metaheuristics

Instances FVNS AS |Montemanni 2005b| | GA |Hanshar 2007] | T'S [Hanshar 2007]

Best [ Avg Best [ Avg Best [ Avg Best [ Avg
c50 591.69| 629.61] 631.30 681.86 [BM089] 593.42 | 603.57] 627.90
75 1024.69 | 1009.36 1042.39 | 981.57 | 1013.45| 981.51| 1013.82
c100 1008.88 | 973.26 1066.16 | 961.10 | 987.59 | 997.15 | 1047.60
c100b 915.52| 944.23 1023.60 | 881.92| 900.94| 891.42| 932.14
c120 1385.56 | 1416.45 1525.15| 1303.59 | 1390.58 | 1331.22 | 1468.12
c150 1349.71 | 1345.73 1455.50 | 1348.88 | 1386.93| 1318.22| 1401.06
c199 1639.59 | 1771.04 1844.82 | 1654.51| 1758.51| 1750.09 | 1783.43
f71 292.68 | 311.18 358.69 | 301.79 |  309.94| 280.23| 306.33
£134 16038.25 | 15135.51 16083.56 | 15528.81 | 15986.84 | 15717.90 | 16582.04
tai75a 1879.12| 1843.08 1945.20 | 1782.91| 1856.66 | 1778.52 | 1883.47
tai75b 1500.15 | 1535.43 1704.06 | 1464.56 | 1527.77 | 1461.37 | 1587.72
tai75c 1520.93 | 1694.90 | 1574.98 1653.58 | 1440.54 | 1501.91 1527.72
tai75d 1445.42| 1517.40 | 1472.35 1529.00 1422.27| 1430.83 | 1453.56
tail00a 2299.55 | 2375.92 2428.38 | 2232.71| 2295.61 | 2208.85| 2310.37
tai100b 2239.06 | 2283.97 2347.90 2215.93 | 2219.28 | 2330.52
tail00c 1545.53 | 1562.30 1655.91 | 1541.28 | 1622.66 | 1515.10 | 1604.18
t2i100d 2050.78 | 2008.13 2060.72 1912.43 | 1881.91| 2026.76
tail50a 3573.59 | 3644.78 3840.18 | 3328.85| 8501.83 | 3488.02| 3598.69
tail50b 3004.32 | 3166.88 3327.47 | 2933.40| 3115.39 | 3109.23| 3215.32
tail50c 2701.60 | 2811.48 3016.14 | 2612.68 | 2743.55| 2666.28 | 2913.67
tail50d 3070.94 | 3058.87 3203.75 | 2950.61 | 8045.16 | 2950.83| 3111.43
Total 51361.43 | 50876.23 53794.02 | 49202.73 | 51089.37 | 49987.8 [ 52725.85

which assigns 5000 evaluations to each sub-problem (see Table [4.2). FVNS
uses the same criterion for each time slice. The best and average results are
provided. In total, FVNS obtains 7 best solutions, while MAPSO got 14
out of 21 instances. FVNS is particularly suitable for Christofides” bigger
instances (c100 to c¢199) as well as Fisher’s instances, while MAPSO per-
forms better in smaller Christofides’ instances and most Taillard’s instances.
According to these results and the topology of customer localization in the
different instances, FF'VNS is confirmed to be especially suitable for problem
instances where customers are located following a uniform or clustered distri-
bution, while MAPSO is better for those with clustered and semi-clustered
customers. We can explain this by the fact that having a large number of
routes early in the planning horizon with our flexible strategy promotes the
insertion of future customer requests especially in instances where customers
are distributed uniformly in the service region. Thus, it ensures that a vehicle
will always be available to process a new order in a sub-region throughout the
day. Less detours are made for servicing customers what reduces the related
cost.
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Table 5.3: Execution time in minutes of FVNS compared to AS, GA and TS.

Metaheuristics
Instance FVNS | AS [Montemanni 2005b] | GA [Hanshar 2007] | TS |[Hanshar 2007]
c50 0.71
c75 1.26
c100 2.91
c100b 1.76
cl120 4.49
c150 7.65
c199 11.68
f71 1.65
134 1.65
tai75a 1.88
tai75b 0.98 (25) (12.5) (12.5)
tai75c 1.3 1’per slot 30" per slot 30” per slot
tai75d 1.11 0.5 * 25 0.5 * 25
tail00a 2.55
tail00b 2.29
tail00c 1.91
tail00d 2.8
tail50a 7.71
tail50b 6.48
tail50c 5.33
tail50d 5.09
Total time 72.77 525 262.5 262.5
Normalized time 72.77 62.08 73.5 73.5

5.5.4 Dynamic Performance Assessment

In this section we assess our F'VNS in terms of accuracy of the obtained
solutions described in Section[5.5.3] The accuracy indicates the approximation
between the solutions obtained by an algorithm and optimal solutions in cases
where we consider a static environment (all customer orders are known before
than the optimization takes place). The accuracy ranges in the interval [0-
1].  An algorithm with accuracy being close to 1 is the ideal in terms of
performance. Table [5.5 shows the accuracy of FVNS and our MAPSO with
other metaheuristics proposed for DVRP in literature. We can see that the
accuracy of FVNS ranges between [0.77—0.94] and with an average of 0.86, and
is very competitive comparing with the remain metaheuristics on 10 instances.
The multi-population approach MAPSO has the best average with 0.89 and
outperforms the other metaheuristics on 14 instances.
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Table 5.4: Comparison between FVNS and MAPSO.

Metaheuristics
Instances FVNS MAPSO
Best Average Best
c50 591.69 629.61 610.67
c75 969.45 1024.69 965.53
c100 1008.88 973.01
c100b 880.84 915.52 882.39
cl120 1385.56 1223.49 1295.79
c150 1349.71 1300.43 1357.71
c199 1639.59 1595.97 1646.37
71 292.68 287.51 296.76
134 16038.25 15150.5 16193.00
tai7ba 1879.12 1794.38 1849.37
tai75b 1455.13 1500.15 1426.67
tai7bc 1520.93 1694.90 1518.65
tai75d 1445.42 1517.40 1413.83
tail00 2196.27 2299.55 2214.61
tail00 2158.09 2239.06 2218.58
tail00 1498.06 1545.53 1550.63
tail00 1875.64 2050.78 1928.69
tailb0 3282.54 3573.59 3389.97
tailb0 2870.77 3004.32 2956.84
tailb0 2582.93 2701.60 2671.35
tailb0 2907.27 3070.94 2989.24
Total 48372.19 51361.43 50349.66
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5.6 Conclusion

In this chapter, we have stressed the role of anticipation for optimization in
Dynamic Vehicle Routing Problem and have shown that it is important to
search explicitly for solutions that are flexible enough to be easily adapted to
changes in the environment.

We suggest a measure of flexibility and show that better solutions can be
obtained when this measure is incorporated into the solving strategy of our
Flexible Variable Neighborhood Search (FVNS).

Our approach consists in the relaxation of the standard constraints of the
problem, in order to make early decisions that provide flexible solutions which
could be easily adapted when changes happen in the environment (arrival of
new requests).

Our empirical tests yielded excellent results and clearly demonstrated the
effectiveness of our approach comparatively to the canonical version of the
algorithm.

Note that the general idea of anticipation is not restricted to vehicle routing
problems, although it is particularly useful for problems where a part of the
solution is fixed because the decision cannot be revised later.

There remain numerous avenues for future research. The degree of antici-
pation could be extended, e.g. by incorporating prediction on the arrival time
of customer orders. The problem becomes similar to a problem under uncer-
tainty and the developed algorithms must be adapted to take into a count
this issue.

163

© 2012 Tous droits réservés. http://doc.univ-lille1 fr



Thése de Mostepha Redouane Khouadijia, Lille 1, 2011

© 2012 Tous droits réservés. http://doc.univ-lille1 fr



Thése de Mostepha Redouane Khouadijia, Lille 1, 2011

Conclusions and Future Work

This thesis has focused on the application of metaheuristics to Dynamic Ca-
pacitated Vehicle Routing Problem (DCVRP). The vast amount of research
on metaheuristics indicates that they have established themselves as an effec-
tive optimization tool to deal with this kind of dynamic problems.

Tackling dynamic problems entails addressing several issues related to algo-
rithm design, performance measures, benchmarking. All this dynamism re-
lated issues have been addressed in this work.

In this thesis, different classes of metaheuristics are developed. Results of
experimentation on DVRP demonstrate than the methods are effective and
have a great potential for other dynamic COPs as well.

The contributions that stem from this PhD thesis are:

e A state-of-the-art on dynamic vehicle routing problem. It cov-
ers the description of the problem and its variants, the recent solving
methods and the available benchmark data sets.

e A framework for benchmark generation for dynamic VRPs. It
allows the generation of dynamic large scale instances according to dif-
ferent dynamic scenarios as broken down vehicles, variable travel times,
etc. In terms of variants, it can generate instances with time windows,
multi-depot, and pickup and delivery problems. These instances could
be customized according to different spatial topologies of customers in
the service area (cluster, uniform, mix), as well as time distributions
(i.e. the arrival of customer demands can follow uniform, Poisson, or
normal distributions).

e An analysis and a detailed description of the performance measures
that should be used with DCOPs. These measures have been used to as-
sess the different proposed metaheuristics in terms of accuracy, stability
and reaction time when solving DVRP.

o Efficient single-solution based metaheuristic for DVRP. This class
is represented by Variable Neighborhood Search (VINS). The in-
terest of this approach consists in the ability of shifting from a neighbor-
hood to another one throughout the optimization process. This ability
offers an adaptive mechanism for tracking the optimum during the en-
vironmental changes. For this proposal, dedicated neighborhoods have
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been integrated to increase the efficiency of the approach. The experi-
ments demonstrate that VNS is able to reach high quality solutions in
few generations and is very competitive compared to other metaheuris-
tics of literature.

Enhance the performance of the standard population based meta-
heuristics such Particle Swarm Optimization (PSO) by adding
an adaptive memory mechanism. This memory brings a new dimension
to the traditional issue of balancing diversification and intensification.
It consists in reusing the solutions gathered previously by the particles,
and reuse them when the change occurs for repositioning the particles
in the search space. For this purpose an Adaptive Particle Swarm Opti-
mization (APSO) has been developed. The experimental results showed
the benefits of the proposed adaptation in enhancing the overall perfor-
mance of our algorithm.

Counterbalance the effect of diversity loss of P-metaheuristics by main-
taining diversity throughout the run. This was achieved by the
multi-population approach called Multi-Adaptive Particle Swarm
(MAPSO). Its principle is to divide the population into several sub-
populations that evolve in parallel and which track the shifting optimum
throughout the time. The aim is to position each of those subswarms
on different, promising local optima of the search space. In addition, we
suggested to cooperate the swarms by exchanging information related
to the best visited solutions (local optima) found by their respective
particles. Since simply breaking up the neighborhoods and dividing up
the global swarm into a number of independent swarms could lead to
a situation where swarms would not interact and may find themselves
isolated. Hence, we take the advantage of using the information gath-
ered in the past and introduce more diversification in the search towards
several cooperative swarms. For the experimental part, MAPSO intro-
duces the best solutions so far on several classes of instances that belong
to conventional set of benchmark for DVRP. The dynamic performance
measures reinforce these results, while the accuracy of the obtained so-
lutions demonstrates its competitiveness. Study on varying the number
of sub-populations has been done, and showed that the performances
increase with the number of sub-swarms which maintain population di-
versity through the search space.

Demonstrate the role of parallel approaches in dynamic environ-
ments. Parallelizing metaheuristics in real-time context is an important
issue due to the hard requirement on search time especially when we
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deal with strong dynamic problems in which changes occur frequently
and within short time slots. Furthermore, Parallel metaheuristics
allow to solve large-scale instances of complex optimization problems.
MAPSO approach has been implemented on parallel architecture by
using ParadisEO software framework and experiments were carried out
on GRID’5000. It showed its efficiency with new large-scale instances
generated for DVRP.

e Flexible strategy for dynamic vehicle routing problem by searching
solutions that account for possible future changes by allowing easy and
successful adaptation after a change of the environment. We proposed to
dynamically adjust the length of the planning horizon in order to make
decisions which ensure that a vehicle will always be available to process
new customer orders in a sub-region throughout the day. Therefore, it
will be easier to place these customers in the existing routes and less
detours are made for servicing customers what reduces the related cost.
The flexible strategy was integrated into our Flexible Variable Neigh-
borhood Search (FVNS). The obtained robust solutions perform well
over a wide range of customer topology distribution and empirical eval-
uation confirms that impressive improvement can be archived by this
strategy.

Perspectives

While working on this Ph.D. thesis, some areas to improve further have
arisen. They form the basis for future works:

— The generalized framework of benchmarking can be extended to
other COPs. It is hoped that in the future other interesting dy-
namic COPs (scheduling, planning, assignment, etc.) are con-
structed under this framework by taking into account their cor-
responding properties and different dynamic scenarios.

— Some algorithms suggested in this work have some potential for
improvement. MAPSO, for example, could be enhanced by con-
sidering the proximity between swarms and favoring swarms in de-
serted areas of the search space in order to provide a more even
converge. The distance between swarms has to be defined. For
instance, it could be done by measuring the phenotypic diversity
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based on difference in solution fitness between the centroids of each
swam (global best) .

Furthermore, VNS could be extended by a Cooperative Parallel
Muti-Start paradigm in which different local search algorithms are
launched using diverse initial solutions, and cooperate by exchang-
ing information related to their searches at different steps of opti-
mization progress.

The application and the adaptation of the proposed approaches on
dynamic multi-objective variants of the problem should be exam-
ined. The aim is to track a new Pareto-optimal front, as soon as
there is a change in the problem. In handling such problems, not
many algorithms exist, and certainly, there is a lack of test prob-
lems to adequately test a dynamic population based metaheuristics
on multi-objective optimization problems.

The effectiveness of the developed methods on the DVRP encour-
ages their application to other dynamic problems, such as intelli-
gent transportation systems, engine parameter control, scheduling
of airline maintenance, and dynamic network routing. With these
problems, however, several important applications dependent as-
pects may have to be investigated. Examples, the flexibility mea-
sure and neighborhood definition of a solution for each problem.

Further benefits might arise from considering simultaneously the
different aspects that cover this thesis. For instance, searching for
robust solution will reduce the need to adapt solution, reducing
the change cost. Thus, coupling the different metaheuristics such
as MAPSO and VNS by their hybridization as well as the strategy
of flexibility can lead to high competitive paradigms.

There are other aspects related to the optimization in dynamic en-
vironment that have an increasing interests like for example the
incorporation of learning. Indeed, real world models allow to add
some prediction on forthcoming events. In our case, we could pre-
dict the future customer demands by following probabilistic models
obtained by analyzing the customer demands (arrival time, loca-
tion, quantity, etc.) over a certain period. Thus, our problem will
converge towards a Stochastic Dynamic Vehicle Routing Problem
(SDVRP), a wide class of combinatorial optimization problems un-
der uncertainty, where part of the information about the problem
data is unknown at the planning stage, but some knowledge about
its probability distribution is assumed. Here, the aim is to extend
and adapt our algorithms to deal with this class of problems.
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— Dynamic optimization problems are more and more complex and
their resource requirements increase. For instance, strongly dy-
namic systems are characterized by the fast pace of changes in the
data and the urgency of almost all requests received. Emergency
services, such as police, fire and ambulance departments exhibit
strong dynamic behavior. Another example is taxi cab services in
which only a negligible number of the customers have ordered their
ride in advance.

The importance of these problems motivates the analysis of their
associated costs and quality of the obtained solutions. In particu-
lar, ways to decrease response times. Recently, the use of graphics
processors has been extended to general application domains such
as computational science. Indeed, GPUs are very efficient at ma-
nipulating computer graphics, and their parallel structure makes
them more efficient than general-purpose CPUs for a range of com-
plex algorithms. This is why it would be very interesting to exploit
this huge capacity of computing to implement parallel metaheuris-
tics for dynamic optimization problems.

The increasing dynamism in real-world problems and competition among vari-
ous enterprises are likely to bring about newer optimization problems in which
adaptation is absolutely essential. The proposed approaches are very promis-
ing, and the prospect of obtaining a powerful and widely metaheuristics for
other dynamic problems is so tempting. We believe that the applications
examined in this thesis show how difficult it is to build general and generic
algorithms for solving DCOPs and particularly DVRPs and that conventional
methods need to be adapted to the problems by adding different mechanisms
in order to track the shifting optimum efficiently throughout the time.
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The results of the research work presented in this PhD thesis have been pub-
lished. In what follows these publications are listed, grouped by type of pub-
lication and sorted chronologically within each group:

Journals

1. M.R. Khouadjia, B. Sarasola, E. Alba, L. Jourdan, and E-G. Talbi. A
comparative study between dynamic adapted PSO and VNS for the vehicle
routing problem with dynamic requests. Applied Soft Computing Journal (to
appear), Elsevier, 2011.

Chapters

2. M.R. Khouadjia, B. Sarasola, E. Alba, , E-G. Talbi, and L. Jourdan.
Metaheuristics for dynamic vehicle routing problems. In Metaheuristics for
Dynamic Optimization Problems (to appear), Springer, 2011.
3. M.R. Khouadjia, L. Jourdan, and E-G. Talbi. Livre communicant
CISIT (in press), chapter Résolution du probleme dynamique de tournées
de véhicules par essaim de particules. Hermes Science, 2010.

International Conferences

4. M.R. Khouadjia, B. Sarasola, E. Alba, L. Jourdan, and E-G. Talbi.
Multi-environmental cooperative parallel metaheuristics for solving dynamic
optimization problems. In proceedings of the 25th IEEE International
Parallel & Distributed Processing Symposium(IPDPS’11), Workshop on
Nature Inspired Distributed Computing (NIDISC’11), pages 395-403, 2011.
5. B. Sarasola, M.R. Khouadjia, E. Alba, L. Jourdan, and E-G. Talbi. Flexi-
ble variable neighborhood search in dynamic vehicle routing. In proceedings
of the 8th European event on Evolutionary Algorithms in Stochastic and
Dynamic Environments (EvoSTOC’11), pages 344-353, 2011.

6. M.R. Khouadjia, E. Alba, L. Jourdan, and E-G. Talbi. Parallel particle
swarm optimization for solving the dynamic vehicle routing problem. In
The 3rd International Conference on Metaheuristics and Nature Inspired
Computing (META10), 2010.

7. M.R Khouadjia, E. Alba, L. Jourdan, and E-G. Talbi. Multi-swarm
optimization for dynamic combinatorial problems: a case study on dynamic
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