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General Introduction

Context

This Ph.D. work was carried out in Project-team ALIEN (ALgèbre pour Identi�cation et Estimation
Numériques) supported by the INRIA Lille-Nord Europe. The ALIEN project-team was created in
June 2004 and is continued in January 2011 by the present Project-team Non-A (Non-Asymptotic
estimation for online systems).

For engineers, a wide variety of information is not directly accessible to measurement. Some pa-
rameters (constants of a magnetic machine, delay time in communication, etc.) or internal variables
(mechanical torques in a robot, etc.) are unknown. Similarly, more often than not, signals from sensors
are distorted and tainted by measurement noises. To control such processes, and to extract informa-
tion conveyed by the signals, one often has to identify a system and estimate parameters. Among the
unknown variables to be reconstructed are derivatives of a signal. This problem to reconstruct nu-
merical derivatives from noisy observational data arises in several practical applications such as image
processing, identi�cation, state observation and much more. This numerical di�erentiation problem is
well known to be ill-posed in the sense that a small noise in measurement data can induce a huge error
in the approximated derivatives.

The ALIEN project-team has developed an estimation theory, built around di�erential algebra and
operational calculation. It has resulted in relatively simple, rapid algorithms: solutions are provided
by explicit formulae, with straightforward implementation, using standard tools from computational
mathematics. Unlike traditional methods, the majority of which pertain to asymptotic statistics, the
ALIEN estimators are �non-asymptotic�. In many application sectors, the response time parameter is
crucial. Using this approach, computations are performed as the application is running: the �real-time�
computing is targeted, as opposed to processing that occurs after the event.

The identi�cation of linear systems, in the sense of automatic control, is bene�ting from the alge-
braic module theory and from operational calculus. It permits to work in real time, i.e., to simultane-
ously identify and control, a fact which is often indispensable in practice. The nonlinear generalization
is based on a long-standing problem, i.e., the estimation of the derivatives of various order of a noisy
signal, in a way which is easy to implement. Works in progress demonstrate that we are not only able
to identify the poorly known parameters, but also to estimate the state: this renewed perspectives
yield for the �rst time a systematic procedure for obtaining non-linear observers.

In what concerns the signal processing, similar methods yield answers to denoising, to the detection
of abrupt changes, to demodulation, blind equalization and compression, even for transient signals in
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a quite noisy environment. Two patents related to those techniques, which are of utmost industrial
signi�cance, are pending. The extension to image and video signals yields remarkable results for
denoising, compression, edge and motion detection.

Objective of the thesis
The �rst objective of this thesis is to extend the derivative estimators introduced by M. Mboup, M.
Fliess and C. Join in [Mboup 2009b]. We apply the extended estimators to non linear observation. The
second one is to provide some parameter estimators for noisy sinusoidal signals. We also compare the
estimation results obtained by a classical lock-in ampli�er and our estimators. This classical technique
is used by Atomic Force Microscope in tapping mode.

Both of these estimators are obtained by using the algebraic parametric techniques. Hence, they
depend on some parameters. This thesis also aims at the analysis of the in�uence of these parameters
on our estimators so as to minimize the estimation errors by choosing the �optimal� parameters.

Outline of the thesis
Part I is devoted to the theme of numerical di�erentiation in �nite time of noisy signals and the
application to non linear observation.

Chapter 1 gives several classes of di�erentiation estimators, namely Jacobi estimators, without
considering noises. These estimators are based on the ones originally introduced by Mboup, Fliess and
Join [Mboup 2007, Mboup 2009b] by using the algebraic parametric techniques. We generalize them
by taking the truncated Jacobi orthogonal series expansion and by taking the scalar product of Jacobi
polynomials so as to extend the parameters de�ning these estimators from N to R. They can be used
for on-line or o�-line estimations. Since Jacobi estimators depend on a set of parameters, by providing
some error bounds for the associated truncation errors we study the corresponding convergence rate
and the in�uence of parameters on the estimation errors. This gives us a guide of how to choose
parameters for Jacobi estimators. Then, by using the algebraic parametric techniques we show how to
obtain a general form for Jacobi estimators. Finally, we show that by using the algebraic parametric
techniques we can also obtain some estimators for the fractional order derivatives.

In Chapter 2, we study Jacobi estimators obtained in the noisy case. We consider mainly three
di�erent types of noises: integrable noises, non independent stochastic process noises and independent
stochastic process noises. By providing some error bounds, we study the in�uence of parameters on the
noise contribution errors. Finally, by choosing a set of appropriate parameters we give some numerical
examples to show the e�ciency and the stability of Jacobi estimators.

In Chapter 3, we focus on the applications of Jacobi estimators to non linear observation. Firstly,
we recall some results of observability for a nonlinear system within the di�erential geometric framework
and also in the di�erential algebraic framework. Secondly, by taking the ball and beam system we
compare our Jacobi estimators to high gain observers and high order sliding mode di�erentiators.

Part II is devoted to the theme of �nite time numerical parameter estimations for noisy sinusoidal
signals. We compare the on-line results of our estimators with the ones obtained by a lock-in ampli�er
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system which is classically used by an AFM in tapping mode.
Chapter 4 concentrates on the parameters estimation for noisy sinusoidal signals with time-varying

amplitudes. We use the algebraic parametric techniques and the modulating functions method to
obtain some useful equations and linear systems. Then, by solving these equations and linear systems
we estimate the wanted parameters: frequency, amplitude and phase.

Chapter 5 studies the estimation errors of the previous parameter estimators: the numerical error
due to a numerical integration method and the noise error contribution due to an integrable noise or
a stochastic process noise. Since these estimators depend on a set of parameters, we give some error
bounds which permit us to choose the optimal ones.

Chapter 6 begins by showing how to use these error bounds to choose some appropriate parameters
for our estimators. Then, some comparisons between the algebraic parametric techniques and the
modulating functions method are given by taking di�erent signal models.

In Chapter 7, we give some on-line experimental results obtained at the Laboratoire National de
métrologie et d'Essais (LNE) by applying our amplitude estimators. These results are based on the
comparison of our results with respect to a DSP lock-in ampli�er which is usually used as an amplitude
detector for the atomic force microscopy in tapping mode.

Finally, this thesis is completed by some conclusions and perspectives.
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1.1 Introduction
Numerical di�erentiation is concerned with the numerical estimation of derivatives of an unknown
function from its discrete, potentially noisy measurement data. It has attracted a lot of attention from
di�erent points of view:

• observer design in the control literature [Chitour 2002, Ibrir 2004, Levant 2003, Diop 1994, Diop 2000],

• digital �lter in signal processing [Chen 1995, Rader 2006, Tseng 2005],

• Volterra integral equation of the �rst kind [Cheng 2004, Goren�o 1991],

• identi�cation [Hanke 1999, Wang 2008].

The problem of numerical di�erentiation is ill-posed in the sense that a small error in measurement
data can induce a large error in the approximate derivatives. Therefore, various numerical methods
have been developed to obtain stable algorithms more or less sensitive to additive noise. They mainly
fall into eight categories:

• the �nite di�erence methods [Khan 2000, Rahul 2006, Qu 1996, Ramm 2001],

• the Savitzky Golay methods [Savitzky 1964, Gorry 1990, Barak 1995, Diop 1994]

• the wavelet di�erentiation methods [Shao 2003, Nie 2002, Shao 2000, Leung 1998, Diop 2000]

• the Fourier transform methods [Fu 2010, Dou 2010, Y. 2008, Qian 2006a, Qian 2006b, Kauppinen 1981]

• the molli�cation methods [Hào 1995, Murio 1993, Murio 1998],

• the Tikhonov regularization methods [Cullum 1971, Hanke 2001, Nakamura 2008, Wei 2005, Wang 2002],

• the algebraic methods [Mboup 2009b, Mboup 2007, Liu 2011c, Liu 2009, Liu 2011b, Liu 2011a],
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• the di�erentiation by integration methods [Lanczos 1956, Rangarajana 2005, Wang 2010], i.e.
using the Lanczos generalized derivatives.

Recent algebraic parametric estimation techniques for linear systems [Fliess 2003b, Fliess 2007]
have been extended to various problems in signal processing (see, e.g., [Fliess 2003a, Fliess 2004a,
Mboup 2009a, Neves 2006, Neves 2007, Trapero 2007a, Trapero 2007b, Trapero 2008, Liu 2008]). Let
us emphasize that those methods, which are algebraic and non-asymptotic, exhibit good robustness
properties with respect to corrupting noises, without the need of knowing their statistical properties
(see [Fliess 2006, Fliess 2008] for more theoretical details). The robustness properties have already been
con�rmed by numerous computer simulations and several laboratory experiments. It appears that these
techniques can also be used to derive numerical di�erentiation algorithms exhibiting similar properties
(see [Mboup 2009b, Mboup 2007, Liu 2011c, Liu 2009, Liu 2011b, Liu 2011a]). Such techniques are
used in [Fliess 2004c, Fliess 2004b, Barbot 2007] for state estimation.

In this chapter, we aim at constructing high order precise numerical derivative estimators of smooth
functions from an algebraic frame work. For this, we consider three cases. In the two �rst cases, we
use the sampling data given before (resp. after) the point at which the derivative value we want to
estimate. The such obtained estimator is called causal estimator (resp. anti-causal estimator). In
the last case, the point at which the derivative value we want to estimate is the middle point of the
time window used for data. Hence, we get central estimator. We will show in the next chapter the
robustness of these estimators when the used discrete data are corrupted by noises. In the two following
sections, we are going to present the algebraic parametric technique for obtaining anti-causal derivative
estimators.

1.1.1 An introductory example
In the classical numerical di�erentiation methods, an interpolating polynomial (see [Anderssen 1998],
[Brown 1992]) or a least-squares polynomial (see [Gorry 1990], [Savitzky 1964]) is generally used to
approximate a function, the derivatives of which we want to estimate. Then the derivatives of this
polynomial is closely linked to the coe�cients of this polynomial. In the recent papers [Mboup 2007,
Mboup 2009b], a new algebraic parametric di�erentiation method is presented where an elimination
technique such as the one introduced in [Herceg 1986] was used to calculate the useful coe�cients.

Let us start to illustrate this algebraic parametric technique method with a simple example. Let
p1(t) = a0 + a1t be a �rst order polynomial known on R+, where a0 and a1 are unknown. We are
going to calculate the �rst order derivative of p1 which is the coe�cient a1. For this, we apply an
elimination technique in the operational domain. By applying the Laplace transform to tα, α ∈ R
(recalled in Appendix (7.11)), we obtain p̂1 =

a0
s + a1

s2
, where p̂1 is the Laplace transform of p1. Then,

by multiplying both sides by s, we get sp̂1 = a0 +
a1
s . Thus, we can annihilate the coe�cient a0 by

deriving with respect to s the last equation

sp̂
(1)
1 + p̂1 = − 1

s2
a1. (1.1)

Such that it only remains a1 and p̂1 in (1.1). We need to return into the time domain in order to
calculate a1 by using the knowledge of p1. Since the inverse Laplace transform of sp̂(1)1 contains the
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derivative of p1 which is unknown, we multiply both sides of (1.1) by s−2. Then, by applying (7.11)
and (7.13) (given in Appendix) we obtain an integral which only depends on p1:

a1 =
3!

t3

∫ t

0
(2τ − t) p1(τ)dτ, t > 0. (1.2)

In the previous computations, we used the following di�erential operator:

Π0,0 =
1

s2
· d

ds
· s, (1.3)

which permits us to annihilate a0 and to calculate a1 by an integral. Consequently, we call such
annihilator integral annihilator. This method is aptly called a method of di�erentiation by integration.
An advantage of this presented method is that a quite short time window [0, t] is su�cient for obtaining
accurate value of a1.

1.1.2 Annihilator - Estimator
The extension to polynomial functions of higher order is straightforward. For derivatives estimates up
to some �nite order of a given smooth function, we take a suitable truncated Taylor series expansion
around a given time instant, to which we apply some similar computations to the ones in the example of
Subsection 1.1.1. Moreover, using sliding time windows permits to estimate derivatives at any sampled
time instant. Precisely, let x be a real valued analytical function de�ned on a �nite time open interval
I ⊂ R+. Let n ∈ N, we are going to estimate the nth order derivative of x. For any t0 ∈ I, we take the
N th (N ≥ n) order truncated Taylor series expansion of x at t0

xN (t+ t0) =

N∑

i=0

ti

i!
x(i)(t0), (1.4)

where we want to calculate x(n)(t0). Then by applying the Laplace transform to (1.4) and using (7.11)
given in Appendix we get

x̂N (s) =
N∑

i=0

s−(i+1)x(i)(t0),

where x̂N (s) is the Laplace transform of xN (t) with a variable s ∈ C. The next step is to give an
integral annihilator so as to annihilate the terms containing x(i)(t0) with i 6= n and calculate x(n)(t0)

with an integral. A di�erential operator rooted in [Mboup 2007] of the following form

ΠN,n
k,µ =

1

sN+1+µ
· dn+k

dsn+k
· 1
s
· dN−n

dsN−n
· sN+1, with k, µ ∈ N (1.5)

is used. Then, the coe�cient x(n)(t0) in the right side of (1.4) is kept in such a way: being multiplied
by sN+1, x̂N (s) becomes a polynomial of degree N . Then the terms of degree lower than N −n, which
include x(i)(t0), n < i < N , are annihilated by applying N − n times derivations. In order to preserve
the term including x(n)(t0), we multiply the remaining polynomial by 1

s . Then we apply more than n

times derivations with respect to s so as to annihilate the other terms including x(i)(t0) with 0 < i < n.
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Finally, we multiply by 1
sN+1+µ to return into the time domain at instant t0 with a sliding window of

length T (T > 0 such that [t0, t0+T ] ⊂ I) which only depends on function x. Hence, by applying (7.11)
and (7.13), we obtain an integral expression of x(n)(t0). By replacing xN by x, the approximation of
the remainder coe�cient x(n)(t0) is taken as an estimator for x(n)t0

. Since this estimator is determined
by the parameters T , N , k and µ, we denote it by x̃

(n)
t0+

(k, µ, T,N). Consequently, by using a sliding
integration window [t0, t0 + T ] we can estimate the derivative values of x for all point t0 ∈ I verifying
the condition [t0, t0 + T ] ⊂ I. This derivative estimator contains a truncated term error which comes
from the truncation of the Taylor series expansion of x. It is clear that when we estimate the nth order
derivative of x, we can reduce the truncated term error by increasing the truncated order N . If we
take N = n in (1.4) and (1.5), we call the such obtained estimator minimal estimator and we denote
it by x̃

(n)
t0+

(k, µ, T ). It was shown in [Mboup 2007, Mboup 2009b] that the estimator x̃
(n)
t0+

(k, µ, T,N)

obtained by using N with N > n can be written as an a�ne combination of some minimal estimators.
Hence, it corresponds to a point in the Q-a�ne hull of the set

Sk,µ,T,q =
{
x̃
(n)
t0+

(k + q, µ, T ), . . . , x̃
(n)
t0+

(k, µ+ q, T )
}

with q = N − n. (1.6)

In this case, we call it a�ne estimator. Moreover, it was shown in [Mboup 2009b] that this estimator
x̃
(n)
t0+

(k, µ, T,N) (N ≥ n) can be also obtained by taking the qth (q = N − n ≤ n+ k) order truncated
Jacobi orthogonal series expansion of x(n)(t0 + Tξ) at ξ = 0:

x̃
(n)
t0+

(k, µ, T,N) =

q∑

i=0

〈
P

(µ+n,k+n)
i (·), x(n)(t0 + T ·)

〉
µ+n,k+n

‖P (µ+n,k+n)
i ‖2µ+n,k+n

P
(µ+n,k+n)
i (ξ), with ξ = 0. (1.7)

By taking ξ ∈ [0, 1] rather than 0, the Q-a�ne hull Sk,µ,T,q is extended to a R-a�ne hull. Hence, it is
clear that any point in this set represents an estimator for x(n)t0

, in some meaningful sense. Character-
izing these points which minimize a given distance to x(n)(t0) is an important question. A judicious
choice was introduced in [Mboup 2009b] by taking ξ as the smallest root of P (µ+n,k+n)

q+1 . However,
it corresponds to take the (q + 1)th order truncated Jacobi series expansion of x(n)(t0 + Tξ), which
produces a time-drift. In this case, we denote this time-drift estimator by x̃

(n)
t0+

(k, µ, T,N, ξ) and the
estimation error comes from the truncation of the Jacobi orthogonal series expansion.

In order to show the e�ciency of the previous estimators, we give a simple example. Let us consider
the following function

x(ti) = tanh(ti − 1) + exp(− ti
1.2

) sin(6ti + π), (1.8)

where ti ∈ [0, 5]. We estimate the �rst order derivative of x by using the presented minimal and
a�ne estimators. In this example and more generally in this chapter, we assume that x is given in
discrete case with an equidistant sampling period Ts =

1
2000 . Then, we apply the trapezoidal numerical

integration method to approximate the integrals in the estimators x̃(n)t0+
(k, µ, T,N, ξ). In this chapter,

we always set the length of the moving integration window [ti, ti + T ] to be equal to 1
2 , i.e. there are

1001 sampling data in each integration window. Hence, by using the well-known error bound given in
[Ralston 1965] for numerical integration error, we can verify that the numerical error produced by the
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Figure 1.1: Estimations by using minimal and a�ne estimators.

trapezoidal rule is negligible. This numerical integration problem and the analysis of the choice of the
parameters will be addressed in Chapter 2. Consequently, in this chapter, we only consider for each
estimator the truncated error part.

The estimation obtained by using the minimal estimator x̃
(n)
t0+

(k, µ, T ) is given in Figure 1.1(a).
We can see that there is not only a drift error but also an amplitude error for this estimator. The
estimation obtained by the time-drift a�ne estimator x̃(n)t0+

(k, µ, T,N, ξ) with N = 1 is given in Figure
1.1(b), where ξ = min

(
−b+

√
b2−4ac
2a , −b−√

b2−4ac
2a

)
is the smallest root of P (µ+1,k+1)

2 with a = 1
2(k

2 +

µ2 + 2µk + 7µ + 7k + 12), b = −(k2 + µk + 2µ + 5k + 6) and c = 1
2(k

2 + 3k + 2). We can see that
the drift error Tξ and the amplitude error are improved. In Figure 1.1(c), we give the estimation
obtained by using the a�ne estimator x̃(n)t0+

(k, µ, T,N) de�ned by (1.7) with N = 2. In this case ξ = 0
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and there is no drift. Let us compare the amplitude error between these two kind of estimators. In
Figure 1.1(b), we know that the time-drift of the a�ne estimator x̃

(1)
t0+

(k, µ, T, 1, ξ) is equal to Tξ.
Hence, by translating the so obtained estimation we can calculate the amplitude error by subtracting
the exact derivative values. We can see in Figure 1.1(d) the di�erence between this amplitude error
and the truncated term error issued from the drift free a�ne estimator x̃(n)t0+

(k, µ, T,N) with N = 3.
Consequently, it is shown that by admitting a time-drift the a�ne estimator is signi�cantly improved.

The aim of this chapiter is to give some extended estimators by using the algebraic parametric
technique so as to improve the truncated term error and the drift error. In the next subsection, we
introduce the Lanczos generalized derivative estimator which was originally introduced by Cioranescu
[Cioranescu 1938] in 1938 and also developed by Lanczos in 1956. We show that these estimators are
a particular case of (1.7) in the causal or anti-causal case.

1.1.3 Lanczos derivative generalized estimators
The Lanczos generalized derivative estimatorDTx for the central case estimation, de�ned in [Lanczos 1956]
(p. 324) is given by

∀t0 ∈ I, DTx(t0) =
3

2T 3

∫ T

−T
τ x(t0 + τ) dτ =

3

2T

∫ 1

−1
τ x(t0 + Tτ) dτ, (1.9)

where I is an open interval of R and 2T > 0 is the length of the integral window [t0 − T, t0 + T ] ⊂ I.
It generalizes the ordinary derivative in the following two senses: Firstly, if x is assumed to belong to
C3(I), then by using the Taylor series expansion of x at t0 in (1.9) we obtain |DTx(t0)− ẋ(t0)| = O(T 2).
Secondly, if we assume that x has both the right and left derivatives ẋ(t0−) and ẋ(t0+) at t0, then we
have

lim
T→0

DTx(t0) =
ẋ(t0−) + ẋ(t0+)

2
. (1.10)

It is also called a method of di�erentiation by integration. Rangarajana and al. [Rangarajana 2005]
generalized it for higher order derivatives by taking the nth order truncated Taylor expansion of x at
t0

xn(Tτ + t0) =
n∑

i=0

(Tτ)i

i!
x(i)(t0), (1.11)

where τ ∈ [−1, 1] and T > 0 such that [t0 − T, t0 + T ] ⊂ I. Then by taking the scalar product of xn
by a Legendre polynomial Pn of degree n, the terms containing x(j)(t0) with j < n are annihilated by
the following property

∫ 1

−1
Pn(τ) τ

j dτ = 0, for 0 ≤ j < n.

Thus, they introduced the following estimator

∀t0 ∈ I, D
(n)
T x(t0) =

1

Tn

∫ 1

−1
γnPn(τ)x(t0 + Tτ) dτ, n ∈ N, (1.12)
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where the coe�cient γn is equal to 1×3×5×···×(2n+1)
2 . If x is assumed to belong to Cn+2(I), then by using∫ 1

−1 Pn(t) t
n+1 dt = 0, they showed that

∣∣∣D(n)
T x(t0)− x(n)(t0)

∣∣∣ = O(T 2). Recently, by using Richardson
extrapolation [Joyce 1971] Wang and al. [Wang 2010] improved the convergence rate for high order
Lanczos derivative estimators with the following a�ne schemes

∀t0 ∈ I, D
(n)
T,λn

x(t0) =
1

Tn

∫ 1

−1
Pn(τ) (an x(t0 + Tτ) + bn x(t0 + λnTτ)) dτ. (1.13)

If x is assumed to belong to Cn+4(I), then an, bn and λn are chosen such that
∫ 1

−1
(an + bnλ

n+2)Pn(τ) τ
n+2 dτ = 0

in order to obtain
∣∣∣D(n)

T,λn
x(t0)− x(n)(t0)

∣∣∣ = O(T 4). Moreover, if we assume that x ∈ Cn−1(I), x(n)R

and x
(n)
L exist at t0, then

lim
T→0

D
(n)
T,λn

x(t0) =
x
(n)
R (t0) + x

(n)
L (t0)

2
. (1.14)

In order to show the e�ciency of the Lanczos estimator DTx(t0) and the improved Lanczos esti-
mator D(n)

T,λn
x(t0), let us estimate the �rst derivative of the function de�ned by (1.8). Similarly to the

example given in the previous section, we apply the trapezoidal numerical integration method, where
the length of the sliding integration window [ti−T, ti+T ] is equal to 1

2 , i.e. T = 1
4 . Then, we can see in

Figure 1.2(a) the estimations obtained by using DTx(t0) and D
(n)
T,λn

x(t0). Since, these estimators are
central estimators, there are no drift errors but there are amplitude errors. They are given in Figure
1.2(b).

Now, let us consider the function x ≡ | · | de�ned on [−5
2 ,

5
2 ] the �rst derivative of which is

discontinuous at 0. We assume that x is given in discrete case with an equidistant sampling period
Ts =

1
2000 . Then, we can see in Figure 1.3 the estimations obtained by using DTx(t0) and D

(1)
T,λ1

x(t0)

where λ1 =
1
2 and T = 1

4 .
Unlike the previously presented algebraic parametric technique which uses an elimination tech-

nique in the operational domain, the Lanczos di�erentiation by integration method uses directly the
orthogonality of Legendre polynomials de�ned on [−1, 1] to the truncated Taylor series expansion of
x with an integration window [t0 − T, t0 + T ]. Let us recall that the minimal estimator presented in
the previous subsection can be also obtained by using the Jacobi polynomial P (µ+n,κ+n)

n de�ned on
[0, 1] with κ, µ ∈] − 1,∞[. Contrary to [Mboup 2009b] where κ, µ ∈ N we can extend their domain
to ] − 1,∞[. Since the a�ne estimator is an a�ne combination of minimal estimators, the values of
κ and µ can be also extended to ] − 1,∞[. For this, we use the truncated Jacobi orthogonal series.
However, it is di�cult to choose judicious parameters κ and µ, as well as T and N . Similarly to the
Lanczos generalized derivative estimator, the second aim of this chapiter is to analyze the truncated
term error for the a�ne estimators by giving the convergence rate and the corresponding error bounds.
Since these error bounds also depend on parameters κ, µ, T and N , we study the in�uence of these
parameters on the truncated term error. This allows us to reduce this error by choosing judicious
such parameters. The third aim of this chapiter is then to introduce some other estimators by using
truncated Taylor expansion. The e�ect of the smoothness condition for x will be also discussed.
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1.1.4 Organization of the chapter

In this chapiter, we consider the numerical di�erentiation of a smooth function x only known at discrete
time, the nth (n ∈ N) order derivative of which we want to estimate. We assume that x belongs to
Cn(I) where I is an open interval of R and the discrete data are not corrupted by some noises. This
chapiter is organized as follows.

We start by studying the minimal estimator which is previously presented in the anti-causal case,
i.e. it is obtained by using the integration window [t0, t0 + T ]. We show in Section 1.2 that it can
be obtained by three ways in the causal case, i.e. it is obtained by using the integration window

15



[t0 − T, t0], as well as in the anti-causal case. Firstly, in Subsection 1.2.1 we apply the algebraic
parametric technique to the nth truncated Taylor expansion of x(t0 + βt) for any t0 ∈ I with β ∈ R∗

and t > 0 such that t0 + βt ∈ I. For this, we apply the integral annihilator ΠN,n
k,µ de�ned by (1.5) with

N = n. From now on, by using the Riemann-Liouville fractional integral (see (7.10) in Appendix),
we can take the value of µ in ] − 1,+∞[ for Πn,n

k,µ rather than in N. Then, we obtain a family of
causal minimal estimators x̃

(n)
t0−(k, µ, βT ) with β < 0 and a family of anti-causal minimal estimators

x̃
(n)
t0+

(k, µ, βT ) with β > 0. Secondly, similarly to the way for obtaining (1.12), we show in Subsection
1.2.2 that these minimal estimators can be also obtained by applying the classical orthogonal properties
of the Jacobi polynomials de�ned on [0, 1]. In this way, we can extend the value of k to ] − 1,+∞[.
Then, we denote the extended minimal estimators by D

(n)
κ,µ,βTx(t0) with κ, µ ∈]− 1,+∞[. By applying

the recurrence relations of the Jacobi polynomials, a simple recurrence relation between the minimal
estimators for x(n)(t0) and x(n−1)(t0) is given. Thirdly, we show in Subsection 1.2.3 that the extended
minimal estimators D(n)

κ,µ,βTx(t0) are equal to the �rst term in the Jacobi orthogonal series expansion
of x(n). Hence, taking the nth order truncated Taylor expansion of x corresponds to take the 0th order
truncated Jacobi expansion of x(n). Then, by using the Rodrigues formula and the de�nition of the
Jacobi polynomials a recurrence relation between the minimal estimators for x(n)(t0) and x(0)(t0) is
given. In subsection 1.2.4, we analyze the truncated term error for minimal estimators. A precise local
error bound shows that the convergence rate for the minimal estimators is O(T ) as T → 0. By this
way, we show the in�uence of parameters κ, µ and T on the truncated term error.

We investigate in Section 1.3 the extension of the a�ne estimator x̃
(n)
t0+

(k, µ, T,N) presented in
Subsection 1.1.2 which is originally introduced in [Mboup 2007, Mboup 2009b] with k, µ ∈ N. In Sub-
section 1.3.1, by applying the algebraic parametric technique with the integral annihilator ΠN,n

k,µ given
by (1.5) withN ≥ n and µ ∈]−1,+∞[, we obtain a family of anti-causal estimators x̃(n)t0+

(k, µ, T,N) and
a family of causal estimators x̃(n)t0−(k, µ,−T,N). Then, by giving the relation between ΠN,n

k,µ and Πn,n
k,µ

we show that x̃(n)t0±(k, µ, βT,N) can be written as a�ne combination of some minimal estimators with
k ∈ N and µ ∈] − 1,+∞[. Then, by assuming that x ∈ CN+1(I) we give a global error bound for the
truncated term errors for these a�ne estimators which shows that the convergence rate is O(TN−n+1)

as T → 0. In Subsection 1.3.2, we denote D
(n)
κ,µ,βT,qx(βTξ + t0) as the qth (q = N − n ∈ N) order trun-

cated Jacobi orthogonal series expansion of x(n), where ξ ∈ [0, 1]. Then, we extend the a�ne estimators
x̃
(n)
t0±(k, µ, βT,N) by D

(n)
κ,µ,βT,qx(βTξ + t0). Firstly, we recall the main result of [Mboup 2009b]. It was

shown that if q ≤ k + n then we have x̃
(n)
t0±(k, µ, βT,N) = D

(n)
k,µ,βT,qx(βTξ + t0) with ξ = 0, k, µ ∈ N.

Moreover, it was shown that for any ξ ∈ [0, 1], D(n)
k,µ,βT,qx(βTξ+t0) could be written as an a�ne combi-

nation of some minimal estimators x̃(n)t0±(k, µ, βT ), where the associated coordinates are given by solving
a linear system. Secondly, we shown that for any integer q, D(n)

κ,µ,βT,qx(βTξ + t0) can be written as an
a�ne combination of some extended minimal estimators D(n)

κ,µ,βTx(t0) with κ, µ ∈]−1,+∞[, where the
associated coordinates are explicitly given. Hence, we obtain extended a�ne estimators. If we take
q = 0, thenD

(n)
κ,µ,βT,qx(βTξ+t0) becomes minimal estimatorsD(n)

κ,µ,βTx(t0). Hence, D
(n)
κ,µ,βT,qx(βTξ+t0)

give a general presentation for minimal estimators and a�ne estimators. We call them Jacobi estima-
tors. In particular, we show the relation between D

(n)
κ,µ,βT,qx(βTξ + t0) with q = 1 and D

(n)
κ,µ,βTx(t0).
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Thirdly, we show that the Jacobi estimators D(n)
κ,µ,βT,qx(βTξ + t0) for xn(t0) are in fact connected to

the nth order derivative of the Jacobi estimators D
(0)
κ,µ,βT,q+nx(βTξ + t0) for x(t0). Then, a formula

for the Jacobi estimators is given. Hence, the D
(n)
κ,µ,βT,qx(βTξ + t0) are calculated by an integral of x.

Subsection 1.3.3 is devoted to study the truncated term error for the Jacobi estimators. The truncated
term error for the Jacobi estimators can be divided into two parts. The �rst part is considered as bias
term error which produces an error between D

(n)
κ,µ,βT,qx(βTξ+ t0) and x(n)(t0 + βTξ) in the horizontal

direction and the second part is considered as a drift term error which produces an error in the vertical
direction with a value of Tξ. On the one hand, by assuming that x ∈ CN+1(I), we show that the con-
vergence rate for the bias term error is O(T q+1) as T → 0. Moreover, if we take ξmin

q as the smallest
root of the P

(µ+n,k+n)
q+1 , then we get D(n)

κ,µ,βT,qx(βTξ
min
q + t0) = D

(n)
κ,µ,βT,q+1x(βTξ

min
q + t0). Hence, the

convergence rate for the bias term error is improved to O(T q+2) as T → 0. On the other hand, we
show that the minimum value of the time-drift Tξmin

q occurs when κ and µ are negative. This is one
reason why we extend the parameters' domain. Finally, two local error bounds for the truncated term
error of the a�ne estimators D(n)

κ,µ,βT,qx(βTξ + t0) with q = 1 are precisely given.
In Section 1.4, we recall some well-known approximation theories so as to explain our approximation

method. Then we study the truncated term error by assuming that the smooth function x belongs
to the Beppo-Levi space. In Subsection 1.4.3, we consider the case where x ∈ Cn−1(I) and the right
and left hand derivatives for the nth order exist. Then, by using the local Taylor formula with the
Peano remainder term we show that the Jacobi estimators can be considered as generalized derivative
estimators for x(n) which converge to these one-sided derivatives.

In Section 1.5, by applying the orthogonality of the Jacobi polynomials we introduce two new types
of estimators which are based on the minimal Jacobi estimators so as to improve the convergence rate
for the minimal Jacobi estimators. The �rst type estimators are obtained by applying the Richardson
extrapolation technique to an a�ne scheme of minimal estimators, which are the extension of (1.13) in
the causal and anti-causal cases. We call them Richardson estimators. The associated convergence rate
is O(T 2) as T → 0. Moreover, the Richardson estimators can be considered as generalized derivative
estimators for x(n). The second type estimators are based on a modi�ed Taylor expansion introduced
in [Po�ald 1990], which improve the convergence rate to O(T 3).

In the three previous sections, all the estimators are studied in the causal case with the time window
[t0 − T, t0] for all t0 ∈ I or in the anti-causal case with the time window [t0, t0 + T ]. These estimators
produce a time-drift in order to get a small bias term error. In Section 1.6, we introduce some drift-
free estimators by using the integration window [t0 − T, t0 + T ]. We call them central estimators. In
Subsection 1.6.1, we consider the functions X±(t+ t0) =

1
2(x(t+ t0)± x(t0 − t)). Firstly, by applying

the algebraic parametric technique to the N th order truncated Taylor series expansions of X± we give
a family of estimators which are based on a combination of causal and anti-causal Jacobi estimators.
Secondly, we extend these central estimators by taking the qth (N − n) order truncated Jacobi series
expansion of (X±)(n). Thirdly, since X−

N (resp. X+) only contains the values of the odd (reps. even)
order derivatives, we show that the convergence rate for these central estimators is O(T q+2) as T → 0.
In Subsection 1.6.2, we give a family of central estimators by taking the truncated Jacobi orthogonal
series expansion of x(n)(t0−T +2Tξ) with ξ = 1

2 . Since they are modi�ed Jacobi estimators of x(n)(t0),
the convergence rate is O(T q+1) as T → 0. Moreover, if we take κ = µ, then 1

2 is a common root
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of all the odd order Jacobi polynomials. Hence, the convergence rate can be improved to O(T q+2)

as T → 0. Finally, we show that these central estimators can also be given by taking the truncated
Jacobi orthogonal series expansion de�ned on [−1, 1]. Thus, we call them central Jacobi estimators.
In Subsection 1.6.3, we give a family of central Richardson estimators by using central minimal Jacobi
estimators. Then, a family of improved central Richardson estimators is given in the case where
κ = µ, such that the convergence rate can be improved to O(T q+4) as T → 0. These improved central
Richardson estimators are exactly the extension of the ones given in (1.13). In Subsection 1.6.4, we
show that the introduced central estimators can be considered as generalized derivative estimators for
x(n) which converge to the average value of the one-sided derivatives of x ∈ Cn−1.

In Section 1.7, by applying the algebraic parametric technique we give a general form for the
derivative estimators which are a�ne combination of estimators with di�erent integration window
lengths. For this, we give a general di�erential operator parameterized by a set of parameters. Su�cient
and necessary conditions on this set are given to obtain such an integral annihilator and it is shown
that such set of parameters is always exists.

In Section 1.8, we talk about some new non-asymptotic estimators for the derivative with fractional
order. Firstly, we apply the algebraic parametric technique to a truncated fractional order Taylor series.
Secondly, we use the previous Jacobi estimators in the two considered de�nitions of fractional order
derivative where we need to calculate the integer order derivative. At the end, we give a table which
gives the trends of the convergence rate for each cases.

1.2 Minimal estimators

Let x ∈ Cn(I) with n ∈ N be a smooth function de�ned in an open interval I ⊂ R. We investigate in
this section some detailed properties and performances of a class of point-wise derivative estimators
for x(n). In the following subsection, we show that these estimators are derived from recent algebraic
parametric techniques applied to the truncated Taylor series expansion of x.

1.2.1 Algebraic parametric derivative estimations

For any t0 ∈ I, we introduce the set Dt0 := {t ∈ R+; t0 + βt ∈ I} where β > 0. Let us take the Taylor
series expansion of x at t0. Then by using Taylor's formula formulated by Hardy ([Hardy 1952] p.
293), we obtain that

∀t ∈ Dt0 , x(t0 + βt) =
n∑

j=0

(βt)j

j!
x(j)(t0) +O(tn), as t → 0. (1.15)

Then, we consider the following truncated Taylor series expansion of x on R+

∀t ∈ R+, xn(t0 + βt) :=
n∑

j=0

(βt)j

j!
x(j)(t0). (1.16)
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Since xn is a polynomial de�ned on R+ of degree n, we take the Laplace transform of xn. Then, by
applying (7.11) (see Appendix) we get

x̂n(s) =

n∑

j=0

βjs−(j+1)x(j)(t0), (1.17)

where x̂n(s) is the Laplace transform of xn(t0 + βt) and s is the Laplace variable. We consider x̂n as
the nth order truncated Taylor series expansion of x in the operational domain.

In all the sequel, the Laplace transform of a signal u(·) will be denoted by û(s). To simplify the
notation, the argument s will be dropped and we write it as û for short.

From now on, we give the estimates of the nth order derivative of x at point t0. The basic step is to
calculate the coe�cient x(n)(t0) from x̂n. Hence, all the terms βjs−(j+1)x(j)(t0) in (1.17) with j 6= n,
are consequently considered as undesired terms which we proceed to annihilate. For this, it su�ces to
�nd a linear di�erential operator of the form

Π =
∑

�nite

(∏

�nite
%l(s)

dl

dsl

)
, %l(s) ∈ C(s), (1.18)

such that

Π(x̂n) = %(s)x(n)(t0), (1.19)

for some rational function %(s) ∈ C(s). Such a linear di�erential operator is subsequently called an
annihilator for x(n)(t0), originally de�ned in [Mboup 2009b]. When the summation in (1.18) is reduced
to a single term, we give the following annihilator which was introduced in [Mboup 2009b] with µ ∈ N

Πn
k,µ =

1

sn+1+µ
· dn+k

dsn+k
· sn, where − 1 < µ, k ∈ N. (1.20)

Then, we obtain the following proposition for k ∈ N and−1 < µ. This result was given in [Mboup 2009b]
with µ ∈ N and k ∈ N.

Proposition 1.2.1 Let x ∈ Cn(I), then a family of estimators for x(n)(t0) at any point t0 ∈ I is given
by

x̃
(n)
t0±(k, µ, βT ) =

(−1)n

(βT )n
Γ(µ+ k + 2n+ 2)

∫ 1

0

n∑

i=0

dk,µ,n,iwµ+n−i,i+k(τ)x(βTτ + t0)dτ, (1.21)

where wµ+n−i,i+k are de�ned by (7.19) and

dk,µ,n,i =
(−1)i

Γ(µ+ n+ 1− i)(i+ k)!

(
n

i

)
. (1.22)

The anti-causal estimator x̃
(n)
t0

(k, µ, βT ) (β > 0) (resp. causal estimator x̃
(n)
t0

(k, µ, βT ) (β < 0)) is
obtained by using the integral window [t0, t0+βT ] ⊂ I (resp. [t0+βT, t0] ⊂ I ) with k ∈ N, −1 < µ ∈ R,
T ∈ Dt0.
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Proof. We proceed to annihilate the terms including x(i)(t0), i 6= n in the right hand side of equation
(1.17) by applying the annihilator Πn

k,µ, then we obtain

Πn
k,µ (x̂n) =

βn(−1)n+k(n+ k)!

s2+2n+k+µ
x(n)(t0). (1.23)

By applying the inverse of the Laplace transform to (1.23) and by using (7.11) given in Appendix, we
obtain

(−1)n+kβn(n+ k)!
T 1+2n+k+µ

Γ(2 + 2n+ k + µ)
x(n)(t0) = L−1

{
Πn

k,µ (x̂n)
}
(T ),

where T ∈ Dt0 . Since n+ 1 + µ > 0, by applying (7.13) and (7.8) (given in Appendix) we obtain

L−1
{
Πn

k,µ (x̂n)
}
(T ) =

(−1)n+k

Γ(n+ 1 + µ)

∫ T

0
(T − τ)n+µτn+kL−1 {snx̂n} (τ)dτ

=
(−1)n+k

Γ(n+ 1 + µ)

∫ T

0
(T − τ)n+µτn+kβnx(n)n (βτ + t0) dτ.

(1.24)

Thus, we have

x(n)(t0) =
1

T 1+2n+k+µ

Γ(2 + 2n+ k + µ)

(n+ k)!Γ(n+ 1 + µ)

∫ T

0
(T − τ)n+µτn+kx(n)n (βτ + t0) dτ. (1.25)

By applying a change of variable τ → Tτ and n times integrations by parts, we get

x(n)(t0) =
(−1)n

(βT )n
Γ(2 + 2n+ k + µ)

(n+ k)!Γ(n+ 1 + µ)

∫ 1

0

dn

dτn

{
(1− τ)n+µτn+k

}
xn(βTτ + t0) dτ. (1.26)

By substituting xn in (1.26) by x, we obtain two families of estimators for x(n)(t0)

x̃
(n)
t0±(k, µ, βT ) =

(−1)n

(βT )n
Γ(µ+ k + 2n+ 2)

(n+ k)!Γ(µ+ n+ 1)

∫ 1

0

dn

dτn

{
(1− τ)µ+nτk+n

}
x(βTτ + t0)dτ. (1.27)

Finally, this proof can be completed applying the Leibniz formula. 2

In the above proof, we apply the annihilator Πn
k,µ to (1.17). On one hand, being multiplied by sn

the terms in the right side of (1.17), which include x(i)(t0), with i 6= n, are annihilated by applying
n+ k times derivations. On the other hand, the multiplication by 1

sn+1+µ allows us to return into the
time domain and we obtain a Riemann-Liouville fractional integral (see (7.10) in Appendix) in the left
side. Consequently, we obtain two families (causal and anti-causal) of estimators for x(n)(t0), which
are based on integrals of x. In this case, Πn

k,µ is called an integral annihilator. Moreover, Πn
k,µ seems to

be the simplest integral annihilator which can be obtained from the nth order truncated Taylor series
expansion of x. Hence, we give the following de�nition.

De�nition 1 For any t0 ∈ I, the estimators de�ned by (1.21) obtained from the nth order truncated
Taylor series expansion of function x ∈ Cn(I) are called minimal estimators.

From now on, we assume that β = ±1. If β = 1, then we denote the anti-causal minimal estimator
by x̃

(n)
t0+

(k, µ, T ), and x̃
(n)
t0−(k, µ,−T ) as the causal minimal estimator else.
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1.2.2 Derivative estimations by using the Jacobi polynomials
In this subsection, we show that the minimal estimators obtained by using the algebraic parametric
techniques in the previous subsection can be extended by using the Jacobi orthogonal polynomials.

Lemma 1.2.2 Let x ∈ Cn(I), then for any t0 ∈ I the minimal estimators for x(n)(t0) can be expressed
as follows

x̃
(n)
t0±(k, µ, βT ) =

n!

(βT )n
Γ(µ+ k + 2n+ 2)

(n+ k)!Γ(µ+ n+ 1)

∫ 1

0
wµ,k(τ)P

(µ,k)
n (τ)x(βTτ + t0)dτ, (1.28)

where T ∈ Dt0, k ∈ N, −1 < µ, P (µ,k)
n being the nth order Jacobi polynomial (de�ned by (7.15) in

Appendix) and wµ,k being the associated weighted function de�ned by (7.19).

Proof. It is su�cient to apply the Rodrigues formula (given by (7.22) in Appendix) to (1.27). 2

We can observe in Lemma 1.2.2 that the integral in (1.28) is in fact the scalar product of the
Jacobi polynomial P (µ,k)

n and x. Hence, by applying the following classical orthogonal properties of
the Jacobi polynomials (given by (7.23) in Appendix) to the nth order truncated Taylor series expansion

xn(t0 + βTτ) =
n∑

j=0

(βTτ)j

j!
x(j)(t0) with τ ∈ [0, 1], we obtain an exact expression of x(n)(t0). Then,

by substituting xn by x we get the minimal estimators given in (1.28). Thus, the minimal estimators
can also be obtained by using the Jacobi orthogonal polynomials P (µ,k)

n . Since P
(µ,k)
n is de�ned with

µ, k ∈]−1,+∞[, we can extend in Lemma 1.2.2 the value of k for the minimal estimators x̃(n)t0±(k, µ, βT )

to ]− 1,+∞[. In this case, we denote these extended minimal estimators by D
(n)
κ,µ,βTx(t0). We obtain

D
(n)
κ,µ,βTx(t0) = γµ,κ,βT,n

∫ 1

0
wµ,κ(τ)P

(µ,κ)
n (τ)x(βTτ + t0)dτ, (1.29)

where
γµ,κ,βT,n =

n!

(βT )n
1

B(n+ κ+ 1, µ+ n+ 1)
(1.30)

with T ∈ Dt0 , µ, k ∈] − 1,+∞[ and B(·, ·) is the classical Beta function (see [Abramowitz 1965] p.
258).

By a direct adaptation from [Mboup 2009b], we obtain the following proposition by using some
recurrence relations of the Jacobi orthogonal polynomials.

Proposition 1.2.3 [Liu 2011c] Let D(n)
κ,µ,βTx(t0) be the extended minimal estimators de�ned by (1.29)

with n ≥ 1, then we have

D
(n)
κ,µ,βTx(t0) =

2n+ µ+ κ+ 1

βT

(
D

(n−1)
κ+1,µ,βTx(t0)−D

(n−1)
κ,µ+1,βTx(t0)

)
. (1.31)

Proof. Let us recall the recurrence relations given by (7.27) and (7.28) in Appendix. Then, by
subtracting (7.27) from (7.28), we get

P (µ,κ)
n (τ) =

µ− κ

2n
P

(µ,κ)
n−1 (τ) +

2n+ κ+ µ

2n

[
τP

(µ,κ+1)
n−1 (τ)− (1− τ)P

(µ+1,κ)
n−1 (τ)

]
. (1.32)
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By using (1.32), (1.29) becomes

D
(n)
κ,µ,βTx(t0) =

µ− κ

2n
γµ,κ,βT,n

∫ 1

0
wµ,κ(τ)P

(µ,κ)
n−1 (τ)x(βTτ + t0)dτ

+
2n+ κ+ µ

2n
γµ,κ,βT,n

∫ 1

0
wµ,κ+1(τ)P

(µ,κ+1)
n−1 (τ)x(βTτ + t0)dτ

− 2n+ κ+ µ

2n
γµ,κ,βT,n

∫ 1

0
wµ+1,κ(τ)P

(µ+1,κ)
n−1 (τ)x(βTτ + t0)dτ.

Observe that

γµ,κ,βT,n =
n

βT

(µ+ κ+ 2n+ 1)(µ+ κ+ 2n)

(n+ κ) (µ+ n)
γµ,κ,βT,n−1,

γµ,κ,βT,n =
n

βT

µ+ κ+ 2n+ 1

n+ µ
γµ,κ+1,βT,n−1, γµ,κ,βT,n =

n

βT

µ+ κ+ 2n+ 1

n+ κ
γµ+1,κ,βT,n−1.

By using (1.29) with n− 1 in place of n, we get

D
(n)
κ,µ,βTx(t0) = −(A+B)D

(n−1)
κ,µ,βTx(t0) +AD

(n−1)
κ+1,µ,βTx(t0) +BD

(n−1)
κ,µ+1,βTx(t0), (1.33)

where A =
αµ,κ,βT,n

n+µ and B = −αµ,κ,βT,n

n+κ with αµ,κ,βT,n = (µ+κ+2n+1)(µ+κ+2n)
2βT .

By applying the Rodrigues formula to (1.29) and applying n times integrations by parts, we obtain

D
(n)
κ,µ,βTx(t0) =

(−1)n

(βT )n
1

B(n+ κ+ 1, µ+ n+ 1)

∫ 1

0

dn

dτn
{wµ+n,κ+n(τ)} x(βTτ + t0) dτ

=
1

B(n+ κ+ 1, µ+ n+ 1)

∫ 1

0
wµ+n,κ+n(τ)x

(n)(βTτ + t0) dτ.

(1.34)

Hence, D(n−1)
κ,µ,βTx(t0) can be written as

D
(n−1)
κ,µ,βTx(t0) =

1

B(n+ κ, µ+ n)

∫ 1

0
wµ+n−1,κ+n−1(τ)(1− τ + τ)x(n−1)(βTτ + t0) dτ

=
1

B(n+ κ, µ+ n)

∫ 1

0
wµ+n,κ+n−1(τ)x

(n−1)(βTτ + t0) dτ

+
1

B(n+ κ, µ+ n)

∫ 1

0
wµ+n−1,κ+n(τ)x

(n−1)(βTτ + t0) dτ.

Thus, we have

D
(n−1)
κ,µ,βTx(t0) =

n+ µ

2n+ κ+ µ
D

(n−1)
κ,µ+1,βTx(t0) +

n+ κ

2n+ κ+ µ
D

(n−1)
κ+1,µ,βTx(t0). (1.35)

Then, this proof can be completed by using the two following equalities.

A− (A+B)
n+ κ

2n+ κ+ µ
=

2n+ µ+ κ+ 1

βT
,

B − (A+B)
n+ µ

2n+ κ+ µ
= −2n+ µ+ κ+ 1

βT
.

2

22



1.2.3 Derivative estimations by using Jacobi orthogonal series
It is shown, in the previous subsection, that the minimal estimators obtained by the algebraic paramet-
ric techniques can be extended by using the Jacobi polynomials. Now, let us take the Jacobi orthogonal
series expansion of x(n)(βT ·+t0) with β = ±1 and T ∈ Dt0

∀ξ ∈ [0, 1], x(n)(t0 + βTξ) =
∑

i≥0

〈
P

(µ+n,κ+n)
i (·), x(n)(t0 + βT ·)

〉
µ+n,κ+n

‖P (µ+n,κ+n)
i ‖2µ+n,κ+n

P
(µ+n,κ+n)
i (ξ), (1.36)

where the scalar product 〈·, ·〉µ+n,κ+n is de�ned in (7.18) in Appendix with κ, µ ∈]− 1,+∞[.
In the following lemma, we can see that the extended minimal estimators can be also obtained by

taking the �rst term in (1.36).

Lemma 1.2.4 [Mboup 2009b] Let x ∈ Cn(I), then for any t0 ∈ I the extended minimal estimators
D

(n)
κ,µ,βTx(t0±) given by (1.29) can be also written as follows

D
(n)
κ,µ,βTx(t0) =

〈
P

(µ+n,κ+n)
0 (·), x(n)(t0 + βT ·)

〉
µ+n,κ+n

‖P (µ+n,κ+n)
0 ‖2µ+n,κ+n

P
(µ+n,κ+n)
0 (ξ), (1.37)

with ξ ∈ [0, 1]. Moreover, we have

∀t0 ∈ I, D
(n)
κ,µ,βTx(t0) = D

(0)
κ+n,µ+n,βTx

(n)(t0). (1.38)

Proof. By using (1.29), (1.34) and the following formulae given in Appendix

P
(µ+n,κ+n)
0 (τ) ≡ 1 and ‖P (µ+n,κ+n)

0 ‖2µ+n,κ+n = B(n+ µ+ 1, n+ κ+ 1),

we can achieve this proof. 2

This lemma shows that the extended minimal estimators D(n)
κ,µ,βTx(t0) can be obtained by taking

the truncated Jacobi orthogonal series expansion of x(n). If we take the nth order truncated Taylor
series expansion xn (de�ned by (1.16)), then by taking the Jacobi orthogonal series expansion of
x
(n)
n (βTτ + t0) with τ ∈ [0, 1] at point τ = 0, we obtain

x(n)n (t0) =

〈
P

(µ+n,κ+n)
0 (·), x(n)n (t0 + βT ·)

〉
µ+n,κ+n

‖P (µ+n,κ+n)
0 ‖2µ+n,κ+n

P
(µ+n,κ+n)
0 (0). (1.39)

Since x(n)(t0) = x
(n)
n (t0) in (1.16) at t = 0, D(n)

κ,µ,βTx(t0) can also be obtained by substituting x
(n)
n in

(1.39) by x(n).
By using the recurrence relations of the Jacobi polynomials, it is shown in Proposition 1.2.3 the

relation existing between extended minimal estimators of x(n)(t0) and the ones of x(n−1)(t0) with n ≥ 1.
In the following proposition, we give the relation existing between nth order (n ∈ N) extended minimal
estimators and the ones of 0th order.
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Proposition 1.2.5 Let x ∈ Cn(I), then for any t0 ∈ I we have

D
(n)
κ,µ,βTx(t0) =

1

(βT )n
Γ(µ+ κ+ 2n+ 2)

Γ(µ+ κ+ n+ 2)

n∑

j=0

(−1)n+j

(
n

j

)
D

(0)
κj ,µnj ,βT

x(t0), (1.40)

where µnj = µ+ n− j and κj = κ+ j.

In order to prove this proposition, let us give the following lemma.

Lemma 1.2.6 For any i ∈ N, we have

∀t0 ∈ I,

〈
P

(µ,κ)
i (τ), x(βTτ + t0)

〉
µ,κ

‖P (µ,κ)
i ‖2µ,κ

=

i∑

j=0

(−1)i−j

(
i

j

)
2i+ µ+ κ+ 1

i+ µ+ κ+ 1
D

(0)
κj ,µij ,βT

x(t0), (1.41)

where µij = µ+ i− j and κj = κ+ j.

Proof. Observing from the expression of the Jacobi polynomials (de�ned by (7.15) in Appendix) that

P
(µ,κ)
i (τ)wµ,κ(τ) =

i∑

j=0

(
i+ µ

j

)(
i+ κ

i− j

)
(−1)i−jwµij ,κj (τ), (1.42)

we get

〈
P

(µ,κ)
i (τ), x(βTτ + t0)

〉
µ,κ

=
i∑

j=0

(
i+ µ

j

)(
i+ κ

i− j

)
(−1)i−j

∫ 1

0
wµij ,κj (τ)x(βTτ + t0) dτ. (1.43)

Then, by using (1.37) with n = 0, we obtain
〈
P

(µ,κ)
i (τ), x(βTτ + t0)

〉
µ,κ

‖P (µ,κ)
i ‖2µ,κ

=
i∑

j=0

(
i+ µ

j

)(
i+ κ

i− j

)
(−1)i−jB(κj + 1, µij + 1)

‖P (µ,κ)
i ‖2µ,κ

D
(0)
κj ,µij ,βT

x(t0). (1.44)

Consequently, this proof can be given by using the expression of ‖P (µ,κ)
i ‖2µ,κ (given in (7.20) in Ap-

pendix) in (1.44). 2

Proof of Proposition 1.2.5. From (1.29), it is easy to show after some calculations that

D
(n)
κ,µ,βTx(t0) =

1

(βT )n
Γ(µ+ κ+ 2n+ 1)

Γ(µ+ κ+ n+ 1)

〈
P

(µ,κ)
n (τ), x(βTτ + t0)

〉
µ,κ

‖P (µ,κ)
n ‖2µ,κ

. (1.45)

Hence, (1.40) can be given by using Lemma 1.2.6 with i = n in (1.45). 2
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1.2.4 Analysis of the truncated term error
In the previous subsections, we study the minimal estimators, which are obtained by three methods.
However, in each method, the main idea is to use the nth order truncated Taylor series expansion of
x. Hence, the errors for these estimators come from the remainder term in the Taylor series expansion
of x. By writing x(t) = xn(t) +Rn(t) for t ∈ I, we obtain from (1.29)

D
(n)
κ,µ,βTx(t0) = γµ,κ,βT,n

∫ 1

0
wµ,κ(τ)P

(µ,κ)
n (τ) {xn(βTτ + t0) +Rn(βTτ + t0)} dτ

= x(n)(t0) + eβRn
(t0;κ, µ, T ),

(1.46)

where eβRn
(t0;κ, µ, T ) are the corresponding truncated term errors. It is clear that for any function

x ∈ Pn(I) where Pn(I) is the space of all the polynomials de�ned on I of degree below or equal to
n, we have ∀t0 ∈ I, D(n)

κ,µ,βTx(t0) = x(n)(t0) with eβRn
(t0;κ, µ, T ) = 0. For any other function x in

Cn+1(I), we study the errors eβRn
(t0;κ, µ, T ) for D(n)

κ,µ,βTx(t0) in the following proposition.

Proposition 1.2.7 Let x ∈ Cn+1(I) and D
(n)
κ,µ,βTx(t0) be the minimal estimators de�ned by (1.29) for

x(n)(t0), then by assuming that there exists Mn+1 ∈ R∗
+ such that

∥∥x(n+1)
∥∥
∞ ≤ Mn+1, we have

∥∥∥D(n)
κ,µ,βTx(t0±)− x(n)(t0)

∥∥∥
∞

≤ Mn+1Cκ,µ,nT, (1.47)

where Cκ,µ,n = 1
(n+1)B(n+κ+1,µ+n+1)

∫ 1
0

∣∣∣wµ,κ+n+1(τ)P
(µ,κ)
n (τ)

∣∣∣ dτ.

Proof. From (1.46), we have

∀t0 ∈ I, eβRn
(t0;κ, µ, T ) = γµ,κ,βT,n

∫ 1

0
wµ,κ(τ)P

(µ,κ)
n (τ)Rn(βTτ + t0)dτ.

Since x ∈ Cn+1(I), by applying Taylor's formula (see [Abramowitz 1965] p.14) we get

x(t0 + βTτ) =
n∑

j=0

(βTτ)j

j!
x(j)(t0) +

(βTτ)n+1

(n+ 1)!
x(n+1)(θβn,t0), (1.48)

where θβn,t0 ∈]t0, t0 + βTτ [ if β > 0 (resp. θβn,t0 ∈]t0 + βTτ, t0[ if β < 0).
Then by using (1.48), we get

∀t0 ∈ I, eβRn
(t0;κ, µ, T ) = γµ,κ,βT,n

∫ 1

0
wµ,κ(τ)P

(µ,κ)
n (τ)

(βTτ)n+1

(n+ 1)!
x(n+1)(θβn,t0)dτ.

Finally, this proof can be easily completed by taking the norm ‖ · ‖∞ with respect to t0. 2

In the above proposition, we have given a global bound for the truncated term errors eβRn
(t0;κ, µ, T )

for the minimal estimators. In the next proposition, we give local lower and upper error bounds for
eβRn

(t0;κ, µ, T ).
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Proposition 1.2.8 [Liu 2011c] Let x ∈ Cn+1(I) and D
(n)
κ,µ,βTx(t0±) be the minimal estimators de�ned

by (1.29) for x(n)(t0), then the corresponding truncated term errors eβRn
(t0;κ, µ, T ) can be bounded by

Cµ,κ
T m+

l ≤e+Rn
(t0;κ, µ, T ) ≤ Cµ,κ

T m+
u ,

Cµ,κ
−Tm

−
l ≤e−Rn

(t0;κ, µ, T ) ≤ Cµ,κ
−Tm

−
u ,

(1.49)

where Cµ,κ
βT = βT κ+n+1

µ+κ+2n+2 and

m+
l = inf

t0<θ̂+n,t0
<t0+T

x(n+1)(θ̂+n,t0), m+
u = sup

t0<θ̂+n,t0
<t0+T

x(n+1)(θ̂+n,t0),

m−
l = sup

t0−T<θ̂−n,t0
<t0

x(n+1)(θ̂−n,t0), m−
u = inf

t0−T<θ̂−n,t0
<t0

x(n+1)(θ̂−n,t0).
(1.50)

Proof. By using (1.37) and (1.39), we obtain that

eβRn
(t0;κ, µ, T ) =

1

B(n+ κ+ 1, µ+ n+ 1)

∫ 1

0
wµ+n,κ+n(τ)

(
x(n)(βTτ + t0)− x(n)n (βTτ + t0)

)
dτ.

As x ∈ Cn+1(I), x(n)(βTτ + t0) − x
(n)
n (βTτ + t0) represents the remainder terms of the Taylor series

expansion of x(n), we obtain by applying Taylor's formula (see [Abramowitz 1965] p.14) that

x(n)(Tτ + t0)− x(n)n (βTτ + t0) = x(n+1)(θ̂+n,t0)Tτ, with t0 < θ̂+n,t0 < t0 + Tτ, (1.51)
x(n)(−Tτ + t0)− x(n)n (βTτ + t0) = −x(n+1)(θ̂−n,t0)Tτ, with t0 − Tτ < θ̂−n,t0 < t0. (1.52)

Thus, the truncated term errors are given by

eβRn
(t0;κ, µ, T ) =

βT

B(n+ κ+ 1, µ+ n+ 1)

∫ 1

0
wµ+n,κ+n+1(τ)x

(n+1)(θ̂±n,t0)dτ. (1.53)

Then, this proof can be easily completed by taking the Beta function and the extreme values of
x(n+1)(θ̂±n,t0). 2

1.3 A�ne estimators
In the previous section, we study O(T ) minimal estimators which are obtained from the nth order
truncated Taylor series expansion of smooth functions. In this section, we improve these estimators
by taking higher order truncated Taylor series expansion.

1.3.1 Algebraic parametric derivative estimations
In (1.20), we introduce a simple integral annihilator denoted by Πn

k,µ. Let us give the following
di�erential operator

ΠN,n
k,µ =

1

sN+1+µ
· dn+k

dsn+k
· 1
s
· dN−n

dsN−n
· sN+1, where − 1 < µ, k ∈ N. (1.54)

This operator was originally introduced in [Mboup 2009b] with k, µ ∈ N. Moreover, if we set N = n

in (1.54), then we have ΠN,n
k,µ = Πn

k,µ. By using the algebraic parametric techniques with ΠN,n
k,µ , we give

a new family of derivative estimators in the following proposition.
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Proposition 1.3.9 [Liu 2009] Let x ∈ Cn(I), then a family of estimators for x(n)(t0) at any point
t0 ∈ I is given by

x̃
(n)
t0±(k, µ, βT,N) =

1

(βT )n

∫ 1

0
ak,µ,n,N

N−n∑

i=0

bn,N,iKk,µ,n,N,i(τ)x(βTτ + t0)dτ, (1.55)

where

ak,µ,n,N = (−1)n+kΓ(N + n+ k + µ+ 2)

(n+ k)!(N − n)!
, bn,N,i =

(
N − n

i

)
(N + 1)!

(n+ i+ 1)!
,

Kk,µ,n,N,i(τ) =

n+k∑

j=max(0,k−i)

(−1)i+j

Γ(N + 1 + µ+ k − i− j)

(
n+ k

j

)
(n+ i)!

(i+ j − k)!
wN+µ+k−i−j,i+j(τ).

The anti-causal estimator x̃(n)t0
(k, µ, βT,N) (β = 1) (resp. causal estimator x̃(n)t0

(k, µ, βT,N) (β = −1))
is obtained by using the integral window [t0, t0 + T ] ⊂ I (resp. [t0 − T, t0] ⊂ I ), with k ∈ N, −1 < µ,
T ∈ Dt0.

Proof. We apply ΠN,n
k,µ to x̂n which is de�ned by (1.17). Firstly, the terms including x(i)(t0), i 6= n in

the right side of (1.17) are annihilated by ΠN,n
k,µ , we obtain

ΠN,n
k,µ (x̂n) =

1

sν
dn+k

dsn+k

n∑

i=0

βi (N − i)!

(n− i)!
sn−i−1x(i)(t0)

=
βn(N − n)!(−1)n+k(n+ k)!

s1+n+k+ν
x(n)(t0),

(1.56)

where ν = N + 1 + µ. Secondly, in the left side of (1.17), we have

ΠN,n
k,µ (x̂n) =

1

sν
dn+k

dsn+k

N−n∑

i=0

(
N−n

i

)
(N + 1)!

(n+ i+ 1)!
sn+i(x̂n)

(i)

=

N−n∑

i=0

(
N−n

i

)
(N + 1)!

(n+ i+ 1)!

n+k∑

j=max(0,k−i)

(
n+k
j

)
(n+ i)!

(i+ j − k)!

1

sν−i−j+k
(x̂n)

(i+j).

(1.57)

Hence, we get

x(n)(t0)

sν+n+k+1
=

(−1)n+k

βn(n+ k)!(N − n)!

N−n∑

i=0

(
N−n

i

)
(N + 1)!

(n+ i+ 1)!

n+k∑

j=max(0,k−i)

(
n+k
j

)
(n+ i)!

(i+ j − k)!

(x̂n)
(i+j)

sν+k−i−j
. (1.58)

As ν+ k− i− j > 0, we can express (1.58) back into the time domain by using (7.11) and (7.13) given
in Appendix and by denoting by T ∈ Dt0 the length of the estimation time window we obtain

x(n)(t0) =
(−1)n+k

βnT ν+n+k

Γ(ν + n+ k + 1)

(n+ k)!(N − n)!
L−1

{
ΠN,n

k,µ (x̂n)
}

=
(−1)n+k

βnT ν+n+k

Γ(ν + n+ k + 1)

(n+ k)!(N − n)!

N−n∑

i=0

n+k∑

j=max(0,k−i)

(
N−n

i

)
(N + 1)!

(n+ i+ 1)!
Ai,j ,

(1.59)
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where

Ai,j =
(−1)i+j

Γ(ν + k − i− j)

(
n+k
j

)
(n+ i)!

(i+ j − k)!

∫ T

0
(T − τ)ν+k−i−j−1τ i+jxn(βτ + t0)dτ.

By substituting xn in (1.59) by x, a family of estimators is obtained, which is parameterized by k, µ,
T and N . Finally, we can achieve the proof by applying the following change of the variable: τ → Tτ .

2

Consequently, ΠN,n
k,µ is also an integral annihilator. Moreover, if we take N = n in Proposition

1.3.9, then the minimal estimators x̃(n)t0±(k, µ, βT ) given by Proposition 1.2.1 can also be obtained. In
the following lemma similarly to [Mboup 2009b], we show the relation between ΠN,n

k,µ and the integral
annihilator Πn

k,µ de�ned by (1.20).

Lemma 1.3.10 [Mboup 2009b] Let ΠN,n
k,µ be the integral annihilator de�ned by (1.54) and Πn

k,µ be the
integral annihilator de�ned by (1.20), then for any function f de�ned on I with Laplace transform f̂

(existence is assumed), we have

ΠN,n
k,µ (f̂) =

q∑

j=0

j∑

i=m(j)

ai,jΠ
n
kj ,µj

(f̂) (1.60)

where ai,j =
(
q
i

)(
p

j−i

) (q+1)!
(q+1−i)(q−j)! , kj = k + q − j, and µj = µ+ j with q = N − n and p = n+ k. The

index function m(j) is de�ned as follows

m(j) =

{
0, if p ≥ q,

max(0, j − p), else. (1.61)

Proof. Let us denote by ν = N + 1 + µ, q = N − n and p = n + k, and apply ΠN,n
k,µ to f̂ . Then by

using the Leibniz formula, we obtain

sνΠN,n
k,µ (f̂) =

dp

dsp
1

s

dq

dsq

(
sN+1−n(snf̂)

)

=
dp

dsp

(
q∑

i=0

(
q

i

)
(q + 1)!

(q + 1− i)!
sq−i(snf̂)(q−i)

)

=

q∑

i=0

(
q

i

)
(q + 1)!

(q + 1− i)!

dp

dsp
(sq−i(snf̂)(q−i))

=

q∑

i=0

(
q

i

)
(q + 1)!

(q + 1− i)!




min(p,q−i)∑

j=0

(
p

j

)
(q − i)!

(q − i− j)!
sq−i−j(snf̂)(q−i+p−j)


 .

By applying a change of index: j → j − i, we obtain

ΠN,n
k,µ (f̂)=

q∑

i=0

(
q

i

)
(q + 1)!

(q + 1− i)!




min(p,q−i)+i∑

j=i

(
p

j − i

)
(q − i)!

(q − j)!

1

sν+j−q
(snf̂)(q+p−j)




=

q∑

i=0

min(p,q−i)+i∑

j=i

ai,jΠ
n
kj ,µj

(f̂),
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where ai,j =
(
q
i

)(
p

j−i

) (q+1)!
(q+1−i)(q−j)! , kj = k+ q− j, and µj = µ+ j. Finally, by rearranging the terms in

the above summation, this proof can be completed. 2

By using the above lemma, we can see in the following proposition the relation between the mini-
mal estimators x̃(n)t0±(k, µ, βT ) given in Proposition 1.2.1 and the estimators x̃(n)t0±(k, µ, βT,N) given in
Proposition 1.3.9.

Proposition 1.3.11 [Mboup 2009b] Let x ∈ Cn(I), x̃(n)t0±(k, µ, βT ) be the minimal estimators given in
Proposition 1.2.1 and x̃

(n)
t0±(k, µ, βT,N) be the estimators given in Proposition 1.3.9, then we have

x̃
(n)
t0±(k, µ, βT,N) =

q∑

j=0

λj,k x̃
(n)
t0±(kj , µj , βT ), (1.62)

where kj = k+ q− j, µj = µ+ j, and λj,k =

j∑

i=m(j)

(−1)q−j

(
q + 1

i

)(
p

j − i

)(
n+ k + q − j

q − j

)
with m(·)

being the index function de�ned by (1.61). Moreover, we have
q∑

j=0

λj,k = 1. (1.63)

These estimators, obtained as an a�ne combination of minimal estimators, are called a�ne estimators.

Proof. By applying Lemma 1.3.10 to x, we get

ΠN,n
k,µ (x̂) =

q∑

j=0

j∑

i=m(j)

ai,jΠ
n
kj ,µj

(x̂). (1.64)

Then, by applying the inverse Laplace transform to (1.64), we get

L−1
{
ΠN,n

k,µ (x̂)
}
(T ) =

q∑

j=0

j∑

i=m(j)

ai,jL−1
{
Πn

kj ,µj
(x̂)

}
(T ). (1.65)

By substituting x̂n by x̂ in (1.59), we obtain

x̃
(n)
t0±(k, µ, βT,N) =

(−1)n+k

βnT ν+n+k

Γ(ν + n+ k + 1)

(n+ k)!(N − n)!
L−1

{
ΠN,n

k,µ (x̂)
}
(T ). (1.66)

Since x̃(n)t0±(k, µ, βT,N) = x̃
(n)
t0±(k, µ, βT ) when N = n, then by taking N = n and substituting k by kj ,

µ by µj in (1.66), we obtain

x̃
(n)
t0±(kj , µj , βT ) =

(−1)n+kj

βnT 1+2n+kj+µj

Γ(2 + 2n+ kj + µj)

(n+ kj)!
L−1

{
Πn

kj ,µj
(x̂)

}
(T ).

As 1 + 2n+ kj + µj = n+ k + ν, then by using (1.65) we get

x̃
(n)
t0±(k, µ, βT,N) =

q∑

j=0

j∑

i=m(j)

bi,j x̃
(n)
t0±(kj , µj , βT ),
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where bi,j = (−1)q−j
(
q+1
i

)(
p

j−i

)(
n+k+q−j

q−j

)
. Hence, (1.62) is obtained. By applying Lemma 1.3.10 to

xn, we obtain

ΠN,n
k,µ (x̂n) =

q∑

j=0

j∑

i=m(j)

ai,jΠ
n
kj ,µj

(x̂n). (1.67)

By using (1.56) and (1.23) in (1.67), we obtain

βn(N − n)!(−1)n+k(n+ k)!

s1+n+k+ν
x(n)(t0) =

q∑

j=0

j∑

i=m(j)

ai,j
βn(−1)n+kj (n+ kj)!

s2+2n+kj+µj
x(n)(t0).

Then, we have

x(n)(t0) =

q∑

j=0

j∑

i=m(j)

bi,j x
(n)(t0).

Hence, (1.63) is obtained. 2

It is shown in the previous section that the convergence rate for minimal estimators is O(T ) as
T → 0. In the following proposition, we show that the a�ne estimators have an improved convergence
rate O (

TN−n+1
)
.

Proposition 1.3.12 If x ∈ CN+1(I) with N ≥ n and ∀t0 ∈ I, x̃(n)t0±(k, µ, βT,N) are a�ne estimators
for x(n)(t0), then we have

∀t0 ∈ I, x̃
(n)
t0±(k, µ, βT,N) = x(n)(t0) +O (

TN−n+1
)
. (1.68)

Moreover, by assuming that there exists MN+1 ∈ R∗
+ such that

∥∥x(N+1)
∥∥
∞ ≤ MN+1, then we have

∥∥∥x̃(n)t0±(k, µ, βT,N)− x(n)(t0)
∥∥∥
∞

≤ Cκ,µ,n,NMN+1T
N−n+1, (1.69)

where

Cκ,µ,n,N =
1

(N + 1)!

∫ 1

0

∣∣∣∣∣τ
N+1ak,µ,n,N

N−n∑

i=0

bn,N,iKk,µ,n,N,i(τ)

∣∣∣∣∣ dτ, (1.70)

and ak,µ,n,N

N−n∑

i=0

bn,N,iKk,µ,n,N,i(τ) is de�ned by (1.55).

Proof. Let us take the Taylor series expansion of x at t0, then by using Taylor's formula (see
[Abramowitz 1965] p. 14) it yields for any t ∈ Dt0 that there exists θ+N,t0

∈]t0, t0 + t[ with β = 1

(resp. θ−N,t0
∈]t0 − t, t0[ with β = −1) such that

x(t0 + βt) =
N∑

j=0

(βt)j

j!
x(j)(t0) +

(βt)N+1

(N + 1)!
x(N+1)(θβN,t0

). (1.71)
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Let xN (t0 + β·) be the N th order truncated Taylor series expansion of x, then by taking the Laplace
transform of xN we have

x̂N (s) =
N∑

j=0

βjs−(j+1)x(j)(t0). (1.72)

Then, the operator ΠN,n
k,µ applied to (1.72) corresponds to an elimination technic. Being multiplied

by sN+1, x̂N becomes a polynomial of degree N . Then the terms of degree lower than N − n, which
include x(i)(t0), n < i < N , are annihilated by applying N − n times derivations with respect to s.
In order to preserve the term including x(n)(t0), we multiply the remaining polynomial by 1

s . Then
we apply more than n times derivations with respect to s such that the other terms including x(i)(t0),
0 < i < n, are annihilated. Finally, we multiply by 1

sN+1+µ to return into time domain. Consequently,
similarly to (1.59), we obtain

x(n)(t0) =
1

(βT )n

∫ 1

0
ak,µ,n,N

N−n∑

i=0

bn,N,iKk,µ,n,N,i(τ)xN (βTτ + t0)dτ. (1.73)

Thus, by using (1.55) the truncated term error due to the truncated Taylor series expansion can be
given by

x̃
(n)
t0±(k, µ, βT,N)− x(n)(t0) =

1

(βT )n

∫ 1

0
ak,µ,n,N

N−n∑

i=0

bn,N,iKk,µ,n,N,i(τ)
(βT )N+1

(N + 1)!
x(N+1)(θβN,t0

).

Then, this proof is completed by taking the norm ‖ · ‖∞ with respect to t0. 2

We can observe in the previous proof that if x ∈ CN+1(I), then the a�ne estimators are obtained
in fact by applying the annihilator ΠN,n

k,µ to the N th order truncated Taylor series expansion of x. It
explains why the convergence rate can be improved from O(T ) to O(TN−n+1) as T → 0, as soon as∥∥x(N+1)

∥∥
∞ is bounded.

1.3.2 Derivative estimations by using the Jacobi orthogonal series
In the previous section, by using the Jacobi orthogonal series we extend the minimal estimators obtained
by applying the algebraic parametric techniques. In this subsection, we extend the a�ne estimators
given by Proposition 1.3.9 in a similar way.

By taking the q+ 1 (q ∈ N) �rst terms in the Jacobi orthogonal series expansion of x(n) de�ned in
(1.36) and denoting it by D

(n)
κ,µ,βT,qx(βTξ + t0), we have

D
(n)
κ,µ,βT,qx(βTξ + t0) :=

q∑

i=0

〈
P

(µ+n,κ+n)
i (·), x(n)(t0 + βT ·)

〉
µ+n,κ+n

‖P (µ+n,κ+n)
i ‖2µ+n,κ+n

P
(µ+n,κ+n)
i (ξ). (1.74)

If we consider D
(n)
κ,µ,βT,qx(βTξ + t0) as the estimates of x(n)(t0), then Mboup and al. [Mboup 2009b]

have obtained the following Theorem.
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Theorem 1.3.13 [Mboup 2009b] Let D
(n)
k,µ,βT,qx(βTξ + t0) be the estimates de�ned by (1.74) and

x̃
(n)
t0

(k, µ, βT,N) be the a�ne estimators given in Proposition 1.3.9. Assume that k, µ ∈ N and q ≤ k+n

with q = N − n, then for ξ = 0, we have

∀t0 ∈ I, D
(n)
k,µ,βT,qx(t0) = x̃

(n)
t0±(k, µ, βT,N). (1.75)

Moreover, for any ξ ∈ [0, 1], there exists a unique set of real coordinates λl(ξ) ∈ R, for l = 0, . . . , q,
such that

D
(n)
k,µ,βT,qx(βTξ + t0) =

q∑

l=0

λl(ξ) x̃
(n)
t0±(kl, µl, βT ), (1.76)

where x̃
(n)
t0±(kl, µl, βT ) are the minimal estimators de�ned by Proposition 1.2.1 with kl = k + q − l,

µl = µ+ l, and these coordinates satisfy
q∑

l=0

λl(ξ) = 1.

The calculation of λl(ξ) for l = 0, · · · , q is given in [Mboup 2009b] by the following formula

λ(ξ) = Φ−1B−1bq(ξ), (1.77)

where

λ(ξ) =




λ0(ξ)
...

λq(ξ)


 , bq(ξ) =




b0,q(ξ)
...

bq,q(ξ)


 , Φ =




Φ0 0
. . .

0 Φq


 , (1.78)

with Bi,j =
(
q
i

) ∥∥∥P k+2q−(i+j),µ+(i+j)
0

∥∥∥
2 (

q
j

)
, for 0 ≤ i, j ≤ q, bl,q(ξ) =

(
q
l

)
ξq−l(1 − ξ)l, Φl =

γkl,µl,n

(ql)
, and

γkl,µl,n = (µl+kl+2n+1)!
(µl+n)!(kl+n)! .

Hence, it is shown in the previous theorem that for any ξ ∈ [0, 1] D
(n)
k,µ,βT,qx(βTξ + t0) are a�ne

estimators when k, µ ∈ N and q ≤ k+n. We show in the following proposition thatD(n)
κ,µ,βT,qx(βTξ+t0)

can be also written as an a�ne combination of the extended minimal estimators de�ned by (1.29) with
κ, µ ∈] − 1,+∞[. Thus, D(n)

κ,µ,βT,qx(βTξ + t0) can be considered as the extended a�ne estimators for
x(n)(t0).

Proposition 1.3.14 Let x ∈ Cn(I) and for any t0 ∈ I, D
(n)
κ,µ,βT,qx(βTξ + t0) be the estimates of

x(n)(t0) de�ned in (1.74), then we have for any ξ ∈ [0, 1]

D
(n)
κ,µ,βT,qx(βTξ + t0) =

q∑

i=0

P
(µ+n,κ+n)
i (ξ)

2i+ µ+ κ+ 2n+ 1

i+ µ+ κ+ 2n+ 1

i∑

j=0

(−1)i−j

(
i

j

)
D

(n)
κj ,µij ,βT

x(t0), (1.79)

where D(n)
κj ,µij ,βT

x(t0) is de�ned by (1.29) with T ∈ Dt0, µij = µ+i−j, κj = κ+j with κ, µ ∈]−1,+∞[.
Moreover, we have

q∑

i=0

P
(µ+n,κ+n)
i (ξ)

2i+ µ+ κ+ 2n+ 1

i+ µ+ κ+ 2n+ 1

i∑

j=0

(−1)i−j

(
i

j

)
= 1. (1.80)
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If β = −1 (resp. if β = 1), estimators given in (1.79) are called causal (resp. anti-causal) Jacobi
estimators.

Proof. Replacing µ by µ+ n, κ by κ+ n and x(βTτ + t0) by x(n)(βTτ + t0) in Lemma 1.2.6, we get
〈
P

(µ+n,κ+n)
i (τ), x(n)(βTτ + t0)

〉
µ+n,κ+n

‖P (µ+n,κ+n)
i ‖2µ+n,µ+n

=
i∑

j=0

(−1)i−j

(
i

j

)
2i+ µ+ κ+ 2n+ 1

i+ µ+ κ+ 2n+ 1
D

(0)
κj+n,µij+n,βTx

(n)(t0).

Then, (1.79) can be obtained by using (1.38) and (1.74). If q = 0, then as P
(µ+n,κ+n)
0 ≡ 1 relation

(1.80) can be easily given. If q > 0, then by using the Binomial Theorem we get
q∑

i=1

P
(µ+n,κ+n)
i (ξ)

2i+ µ+ κ+ 2n+ 1

i+ µ+ κ+ 2n+ 1

i∑

j=0

(−1)i−j

(
i

j

)
=

q∑

i=1

P
(µ+n,κ+n)
i (ξ)

2i+ µ+ κ+ 2n+ 1

i+ µ+ κ+ 2n+ 1
(1− 1)i

=0.

Hence, this proof can be completed. 2

It is clear that if q = 0, then D
(n)
κ,µ,βT,qx(βTξ + t0) = D

(n)
κ,µ,βTx(t0). Hence, D(n)

κ,µ,βT,qx(βTξ + t0)

gives a general presentation for minimal estimators and a�ne estimators. For q = 1, we can give the
following corollary.

Corollary 1.3.15 Let D(n)
κ,µ,βT,1x(βTξ + t0) be the Jacobi estimators given by (1.74) with q = 1, then

for any t0 ∈ I we have

D
(n)
κ,µ,βT,1x(βTξ + t0) = λκ,µ,n,ξD

(n)
κ,µ+1,βTx(t0) + (1− λκ,µ,n,ξ)D

(n)
κ+1,µ,βTx(t0), (1.81)

where λκ,µ,n,ξ = (κ+ n+ 2)− (2n+ κ+ µ+ 3)ξ.

Proof. Let us take q = 1 in (1.79), then we get

D
(n)
κ,µ,βT,1x(βTξ + t0) =P

(µ+n,κ+n)
0 (ξ)D

(n)
κ,µ,βTx(t0)

+ P
(µ+n,κ+n)
1 (ξ)

µ+ κ+ 2n+ 3

µ+ κ+ 2n+ 2

(
D

(n)
κ+1,µ,βTx(t0)−D

(n)
κ,µ+1,βTx(t0)

)
.

By substituting n− 1 in (1.35) by n, we get

D
(n)
κ,µ,βTx(t0±) =

n+ µ+ 1

2n+ κ+ µ+ 2
D

(n)
κ,µ+1,βTx(t0) +

n+ κ+ 1

2n+ κ+ µ+ 2
D

(n)
κ+1,µ,βTx(t0).

Since P
(µ+n,κ+n)
0 (ξ) = 1 and P

(µ+n,κ+n)
1 (ξ) = (κ+ µ+ 4)ξ − (κ+ 2), we have

n+ µ+ 1

2n+ κ+ µ+ 2
− P

(µ+n,κ+n)
1 (ξ)

µ+ κ+ 2n+ 3

µ+ κ+ 2n+ 2
= λκ,µ,n,ξ,

n+ κ+ 1

2n+ κ+ µ+ 2
+ P

(µ+n,κ+n)
1 (ξ)

µ+ κ+ 2n+ 3

µ+ κ+ 2n+ 2
= 1− λκ,µ,n,ξ.

Then, this proof can be completed. 2
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Remark 1 If we take ξ = κ+n+2
2n+κ+µ+3 , then λκ,µ,n,ξ = 0 and we obtain D

(n)
κ,µ,βT,1x(βTξ + t0) =

D
(n)
κ,µ+1,βT,1x(t0).

It is shown in Proposition 1.2.5 the relation between minimal estimators for x(n)(t0) and the ones for
x(0)(t0) with n ≥ 0. We can see in the following proposition that the Jacobi estimatorsD(n)

κ,µ,βT,qx(βTξ+

t0) are in fact connected to the nth order derivative of D(0)
κ,µ,βT,q+nx(βTξ + t0) which are the (q + n)th

order truncated Jacobi orthogonal series expansion of x

∀ξ ∈ [0, 1], D
(0)
κ,µ,βT,q+nx(βTξ + t0) =

q+n∑

i=0

〈
P

(µ,κ)
i (·), x(βT ·+t0)

〉
µ,κ

‖P (µ,κ)
i ‖2µ,κ

P
(µ,κ)
i (ξ). (1.82)

Proposition 1.3.16 [Liu 2011a] Let x ∈ Cn(I), D(n)
κ,µ,βT,qx(βTξ + t0) and D

(0)
κ,µ,βT,q+nx(βTξ + t0) be

the Jacobi estimators de�ned in (1.74) and (1.82) respectively, then we have

∀ξ ∈ [0, 1], D
(n)
κ,µ,βT,qx(βTξ + t0) =

1

(βT )n
dn

dξn

{
D

(0)
κ,µ,βT,q+nx(βTξ + t0)

}
. (1.83)

Moreover, we have

D
(n)
κ,µ,βT,qx(βTξ + t0) =

1

(βT )n

∫ 1

0
Qκ,µ,n,q,ξ(τ)x(βTτ + t0)dτ, (1.84)

where
Qκ,µ,n,q,ξ(τ) = wµ,κ(τ)

q∑

i=0

Cκ,µ,n,iP
(µ+n,κ+n)
i (ξ)P

(µ,κ)
n+i (τ), (1.85)

with Cκ,µ,n,i =
(µ+κ+2n+2i+1)Γ(κ+µ+2n+i+1)Γ(n+i+1)

Γ(κ+n+i+1)Γ(µ+n+i+1) .

Proof. By applying n times the derivation operator to (1.82), we obtain from the formula (7.25)
(given in Appendix) that

dn

dξn

{
D

(0)
κ,µ,βT,q+nx(βTξ + t0)

}
=

q∑

i=0

〈
P

(µ,κ)
i+n (·), x(βT ·+t0)

〉
µ,κ

‖P (µ,κ)
i+n ‖2µ,κ

dn

dξn

{
P

(µ,κ)
i+n (ξ)

}

=

q∑

i=0

〈
P

(µ,κ)
i+n (·), x(βT ·+t0)

〉
µ,κ

‖P (µ,κ)
i+n ‖2µ,κ

Γ(µ+ κ+ 2n+ i+ 1)

Γ(µ+ κ+ n+ i+ 1)
P

(µ+n,κ+n)
i (ξ).

(1.86)
By applying two times the Rodrigues formula and by taking n integrations by parts, we get

〈
P

(µ+n,κ+n)
i (·), x(n)(t0 + βT ·)

〉
µ+n,κ+n

=

∫ 1

0
wµ+n,κ+n(τ)P

(µ+n,κ+n)
i (τ)x(n)(t0 + βTτ)dτ

=

∫ 1

0

(−1)i

i!
w

(i)
µ+n+i,κ+n+i(τ)x

(n)(t0 + βTτ)dτ

=
1

(βT )n

∫ 1

0

(−1)i+n

i!
w

(n+i)
µ+n+i,κ+n+i(τ)x(t0 + βTτ)dτ

=
1

(βT )n

∫ 1

0

(n+ i)!

i!
wµ,κ(τ)P

(µ,κ)
n+i (τ)x(t0 + βTτ)dτ.
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Then, by using (7.20) given in Appendix we obtain after some calculations
〈
P

(µ+n,κ+n)
i (·), x(n)(t0 + βT ·)

〉
µ+n,κ+n

‖P (µ+n,κ+n)
i ‖2µ+n,κ+n

=

〈
P

(µ,κ)
i+n (·), x(t0 + βT ·)

〉
µ,κ

(βT )n‖P (µ,κ)
n+i ‖2µ,κ

Γ(µ+ κ+ 2n+ i+ 1)

Γ(µ+ κ+ n+ i+ 1)
. (1.87)

Finally, by taking (1.74) and (1.86) we obtain

∀ξ ∈ [0, 1], D
(n)
κ,µ,βT,qx(βTξ + t0) =

1

(βT )n
dn

dξn

{
D

(0)
κ,µ,βT,q+nx(βTξ + t0)

}
. (1.88)

Then, this proof can be completed. 2

When we apply the Jacobi estimators, we need to calculate Qκ,µ,n,q,ξ which is a sum of q+1 terms.
Since the computational complexity of P (µ,κ)

n+i is O(n2), then the one of Qκ,µ,n,q,ξ is also O(n2).
In the next subsection, we are going to analyze the truncated errors for these Jacobi estimators.

1.3.3 Analysis on the truncated term error
LetD(n)

κ,µ,βT,qx(βTξ+t0) be a Jacobi estimator. Then, its associated truncated errors can be decomposed
into two sources of errors as follows

eβRn
(t0;κ, µ, T, ξ, q) =

(
D

(n)
κ,µ,βT,qx(βTξ + t0)− x(n)(t0 + βTξ)

)
+
(
x(n)(t0 + βTξ)− x(n)(t0)

)
. (1.89)

The �rst error part can be considered as a bias term error which produces an amplitude error estimation
and the second error can be considered as a drift error. In the next proposition, we study the bias
term error.

Proposition 1.3.17 [Liu 2011a] If x ∈ CN+1(I) with N ≥ n and ∀t0 ∈ I, D(n)
κ,µ,βT,qx(βTξ + t0) is a

Jacobi estimator of x(n)(t0) de�ned by (1.84), then we have

∀t0 ∈ I, D
(n)
κ,µ,βT,qx(βTξ + t0) = x(n)(t0 + βTξ) +O (

T q+1
)
, (1.90)

with q = N − n. Moreover, by assuming that there exists MN+1 ∈ R∗
+ such that

∥∥x(N+1)
∥∥
∞ ≤ MN+1,

then we have for any ξ ∈ [0, 1]
∥∥∥D(n)

κ,µ,βT,qx(βTξ + t0)− x(n)(t0 + βTξ)
∥∥∥
∞

≤ MN+1Cκ,µ,n,q,ξT
q+1, (1.91)

where Cκ,µ,n,q,ξ =
1

(n+1+q)!

∫ 1
0

∣∣Qκ,µ,n,q,ξ(τ)τ
n+1+q

∣∣ dτ + ξq+1

(q+1)! .

Proof. Let us take the Taylor series expansion of x at t0, which is given by (1.71)

x(t0 + βTξ) = xN (t0 + βTξ) +
(βTξ)N+1

(N + 1)!
x(N+1)(θβN,t0

), (1.92)

where xN (t0 + βTξ) =
N∑

j=0

(βTξ)j

j!
x(j)(t0). Substituting x(βTξ + t0) in (1.74) by xN (βTξ + t0), then

we get

D
(n)
κ,µ,βT,qxN (βTξ + t0) =

q∑

i=0

〈
P

(µ+n,κ+n)
i (·), x(n)N (t0 + βT ·)

〉
µ+n,κ+n

‖P (µ+n,κ+n)
i ‖2µ+n,κ+n

P
(µ+n,κ+n)
i (ξ). (1.93)
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Since x(n)N (βT ·+t0) is a polynomial of degree qth (q = N −n), it can be written using the Jacobi series
expansion given in (1.93). Hence, we get

D
(n)
κ,µ,βT,qxN (βTξ + t0) = x

(n)
N (βTξ + t0). (1.94)

Then by using Proposition 1.3.16 we obtain

x
(n)
N (βTξ + t0) =

1

(βT )n

∫ 1

0
Qκ,µ,n,q,ξ(τ)xN (t0 + βTτ) dτ. (1.95)

Hence, we get
∣∣∣D(n)

κ,µ,βT,qx(βTξ + t0)− x
(n)
N (βTξ + t0)

∣∣∣ ≤ MN+1T
N−n+1

(N + 1)!

∫ 1

0

∣∣Qκ,µ,n,q,ξ(τ)τ
N+1

∣∣ dτ.

Let us take the Taylor series expansion of x(n) at t0, then by using the well known Taylor's formula
it yields for any Tξ ∈ Dt0 with ξ set in [0, 1] that if β > 0 (resp. if β < 0) then there exists
θ̂+N,t0

∈]t0, t0 + βTξ[ (resp. θ̂−N,t0
∈]t0 + βTξ, t0[) such that

x(n)(t0 + βTξ) = x
(n)
N (t0 + βTξ) +

(βTξ)N−n+1

(N − n+ 1)!
x(N+1)(θ̂βN,t0

). (1.96)

Then we get ∣∣∣x(n)(t0 + βTξ)− x
(n)
N (t0 + βTξ)

∣∣∣ ≤ MN+1
(Tξ)N−n+1

(N − n+ 1)!
.

Finally, this proof can be completed by the following inequality
∣∣∣D(n)

κ,µ,βT,qx(βTξ + t0)− x(n)(βTξ + t0)
∣∣∣ ≤

∣∣∣D(n)
κ,µ,βT,qx(βTξ + t0)− x

(n)
N (βTξ + t0)

∣∣∣+
∣∣∣x(n)(t0 + βTξ)− x

(n)
N (t0 + βTξ)

∣∣∣ .

2

Remark 2 According to [Po�ald 1990], we can deduce the asymptotic behavior of the number θ̂βN,t0

when T → 0+

lim
T→0+

|θ̂βN,t0
− t0|

T
=

1

N + 2
. (1.97)

We can see that the term Cκ,µ,n,q,ξ in the obtained error bound depends on parameters κ, µ, T and
ξ. Since we extend the values of κ, µ from N to ]− 1,+∞[, we obtain a higher degree of freedom so as
to minimize the bias term error on our estimators.

It is shown in Subsection 1.3.1 that if x ∈ CN+1(I), by applying the algebraic parametric techniques
with the annihilator ΠN,n

k,µ to the N th order truncated Taylor series expansion of x, the convergence rate
for the a�ne estimators x̃(n)t0±(k, µ, βT,N) is improved to O(TN−n+1) as T → 0. Let us remark that if
we take ξ = 0 in Proposition 1.3.17, then the convergence rate for the Jacobi estimators D(n)

κ,µ,βT,qx(t0)

is also equal to O(T q+1) with q = N − n as T → 0.
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If we take ξ = 0 in the previous proof, then we can deduce that the Jacobi estimators D(n)
κ,µ,βT,qx(t0)

obtained by taking the qth order truncated Jacobi orthogonal series expansion of x(n) can be also
obtained by taking the (n + q)th order truncated Taylor series expansion of x by applying the scalar
product with Jacobi polynomials. Moreover, for any ξ ∈ [0, 1] let xN (t0 + βTξ) = xn(t0 + βTξ) +

rq(t0 + βTξ) with rq(t0 + βTξ) =

n+q∑

j=n+1

(Tτ)j

j!
x(j)(t0) for q ≥ 1 and rq(t0 + βTξ) = 0 for q = 0, then

by using (1.94) and (1.93) with ξ = 0 we get

x
(n)
N (t0) =

q∑

i=0

〈
P

(µ+n,κ+n)
i (·), x(n)n (t0 + βT ·)

〉
µ+n,κ+n

‖P (µ+n,κ+n)
i ‖2µ+n,κ+n

P
(µ+n,κ+n)
i (0) +R,

where R =

q∑

i=0

〈
P

(µ+n,κ+n)
i (·), r(n)q (t0 + βT ·)

〉
µ+n,κ+n

‖P (µ+n,κ+n)
i ‖2µ+n,κ+n

P
(µ+n,κ+n)
i (0).

Since x(n)n (t0+βT ·) is a 0th order polynomial, then by using the orthogonal properties of P (µ+n,κ+n)
i

we get

q∑

i=0

〈
P

(µ+n,κ+n)
i (·), x(n)n (t0 + βT ·)

〉
µ+n,κ+n

‖P (µ+n,κ+n)
i ‖2µ+n,κ+n

P
(µ+n,κ+n)
i (0) =

〈
P

(µ+n,κ+n)
0 (·), x(n)n (t0 + βT ·)

〉
µ+n,κ+n

‖P (µ+n,κ+n)
0 ‖2µ+n,κ+n

P
(µ+n,κ+n)
0 (0) = x(n)n (t0).

By calculating the values of x(n)N and x
(n)
n at t0, we obtain x

(n)
N (t0) = x

(n)
n (t0) = x(n)(t0), and conse-

quently R = 0. Hence, we can deduce that

R =
1

(βT )n

∫ 1

0
Qκ,µ,n,q,0(τ)rq(t0 + βTτ)dτ = 0, (1.98)

where Qκ,µ,n,q,0 is given in (1.85) with ξ = 0.
Consequently, relation (1.98) explains why the convergence rate can be improved from O(T ) to

O(T q+1) when the function x is smoother.
Now, let us remark that when we estimate x(n)(t0) by the Jacobi estimators D(n)

κ,µ,βT,qx(βTξ + t0),
then according to (1.89) the drift error produces a time-drift of value Tξ. If ξq is one root of the Jacobi
polynomial P (µ+n,κ+n)

q+1 , then by using (1.74) we get D(n)
κ,µ,−T,qx(−Tξq + t0) = D

(n)
κ,µ,−T,q+1x(−Tξq + t0).

According to Proposition 1.3.17, if we estimate the derivative value of x(n)(t0−Tξ) byD(n)
κ,µ,−T,qx(−Tξq+

t0), then the corresponding convergence rate is improved from O(T q+1) to O(T q+2) as T → 0.

Corollary 1.3.18 [Liu 2011a] If x ∈ CN+2(I) with N ≥ n and ξq is a root of the Jacobi polynomial
P

(µ+n,κ+n)
q+1 , then we have

∀t0 ∈ I, D
(n)
κ,µ,βT,qx(βTξq + t0) = x(n)(t0 + βTξq) +O (

T q+2
)
, (1.99)

37



with q = N − n. Moreover, if we assume that there exists MN+2 ∈ R∗
+ such that

∥∥x(N+2)
∥∥
∞ ≤ MN+2,

then we have
∥∥∥D(n)

κ,µ,βT,qx(βTξq + t0)− x(n)(t0 + βTξq)
∥∥∥
∞

≤ MN+2Cκ,µ,n,q+1,ξqT
q+2, (1.100)

where Cκ,µ,n,q+1,ξq is given by (1.91).

It is clear that we can choose ξq as the smallest root of the Jacobi polynomial P (µ+n,κ+n)
q+1 so as

to reduce the time-drift. We denote it by ξmin
q . Moreover, it was shown in [Mboup 2009b] that if the

value of T is small enough then the bias term error for D
(n)
κ,µ,−T,qx(t0 − Tξmin

q ) is smaller than the
truncated term error for D(n)

κ,µ,−T,q+1x(t0). These Jacobi estimators are then signi�cantly improved by
admitting a minimal time-drift given by Tξmin

q . Hence, they are called time-drift estimators.
Minimal estimators can be given by D

(n)
κ,µ,βT,qx(βTξ + t0) with q = 0. Since, the root of the Jacobi

polynomial Pµ+n,κ+n
1 is equal to κ+n+1

µ+κ+2n+2 , then the time-drift for the associated minimal estimator is
equal to Cµ,κ

T which is de�ned in (1.49). Consequently, if the variation of the (n+1)th order derivative
of the signal x is small inside the time observation window, then by using Proposition 1.2.8 we deduce
that we can reduce the bias term error by making the time-drift Cµ,κ

T as small as possible.

Corollary 1.3.19 [Liu 2011c] If m+
l ' m+

u and m−
l ' m−

u with m±
l and m±

u being given in 1.50, then
by minimizing the time-drift Cµ,κ

T we can also minimize the bias term error for the minimal estimators.

When κ, µ ∈] − 1,+∞[, the value of κ+n+1
µ+κ+2n+2 increases with respect to κ and it decreases with

respect to µ. The negative values of κ produce smaller bias term errors than the ones produced by
integer values of κ. This is why we extend the values of κ from N to ] − 1,+∞[ in our minimal
estimators. It is clear that one can achieve a given bias term error by increasing µ and reducing T

(even choosing κ, µ as integer). However, we will see in Chapter 2 that this increases the noise error
contribution. When n = 1, we can see the variation of κ+2

κ+µ+4 with respect to (κ, µ) ∈]−1, 1]2 in Figure
1.4.

When we use the a�ne estimators D(n)
κ,µ,βT,qx(βTξq + t0) with q = 1, we take the value of ξmin

1 as
the smaller root of P (µ+n,κ+n)

2 . Since ξmin
1 is a function of κ, µ and n, we denote it by ξ(κ, µ, n). Hence,

we can see the variation of ξ(κ, µ, n) with respect to (κ, µ) ∈] − 1, 1]2 for n = 1, 2, 3, 4 in Figure 1.5.
We can observe that the extended parameters values of κ give smaller values for ξ(κ, µ, n = 1) in the
extended a�ne estimators. Moreover, we give in Figure 1.6 the variation of Cκ,µ,n,2,ξ1 given by (1.91)
with q = 1 so as to study the parameters' in�uence on the associated amplitude error. Consequently, it
is shown that we can increase the value of µ and decrease the value of κ so as to reduce the truncated
error for the a�ne estimator D(n)

κ,µ,βT,qx(βTξq + t0) with q = 1.
Let us take the a�ne estimator D

(n)
κ,µ,βT,qx(t0) with q = 2, which is a drift-free estimator. The

associated truncated error bounded contains the term Cκ,µ,n,2,0 in (1.91). We can see in Figure 1.7 the
variation of Cκ,µ,n,2,0 with q = 1. Hence, we can increase the value of µ and decrease the value of κ
so as to reduce the truncated error. By comparing with Figure 1.6, we can observe that the value of
Cκ,µ,n,2,0 is much larger than the one of Cκ,µ,n,2,ξ1 . Hence, the truncated error bound for D(n)

κ,µ,βT,qx(t0)

with q = 2 is much larger than the one for D
(n)
κ,µ,βT,qx(βTξq + t0) with q = 1. Consequently, the
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Figure 1.4: Variation of κ+2
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truncated error for D(n)
κ,µ,βT,qx(t0) with q = 2 can be larger than the one for D(n)

κ,µ,βT,qx(βTξq + t0) with
q = 1, independently of the value of T .
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(b) Cκ,µ,n,2,ξ(κ,µ,n) with n = 2.
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(c) Cκ,µ,n,2,ξ(κ,µ,n) with n = 3.
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(b) Cκ,µ,n,2,0 with n = 2.
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(c) Cκ,µ,n,2,0 with n = 3.
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Figure 1.7: Variation of Cκ,µ,n,2,0 with respect to κ and µ for n = 1, 2, 3, 4.
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For numerical estimations, we give in Proposition 1.2.8 local lower and upper error bounds for the
truncated term errors. Similarly, we give error bounds in the following proposition for a�ne estimators
D

(n)
κ,µ,βT,qx(βTξ + t0) given in Corollary 1.3.15 with q = 1. To do so, let us denote

∀τ ∈ [0, 1], pκ,µ,n,ξ(τ) = (n+ κ+ 1)λκ,µ,n,ξ + [(n+ µ+ 1)− (2n+ κ+ µ+ 2)λκ,µ,n,ξ]τ, (1.101)

the root of which is τ0 =
−(n+κ+1)λκ,µ,n,ξ

(n+µ+1)−(2n+κ+µ+2)λκ,µ,n,ξ
with λκ,µ,n,ξ = (κ + n + 2) − (2n + κ + µ + 3)ξ,

and Iα =
∫ α
0 pκ,µ,n,ξ(τ)wµ+n,κ+n+1dτ with 0 < α ≤ 1. Moreover, we denote by

m+
α,l = inf

t0<θ̂+n,t0
<t0+Tα

x(n+1)(θ̂+n,t0), m+
α,u = sup

t0<θ̂+n,t0
<t0+Tα

x(n+1)(θ̂+n,t0), (1.102)

m−
α,l = sup

t0−Tα<θ̂−n,t0
<t0

x(n+1)(θ̂−n,t0), m−
α,u = inf

t0−Tα<θ̂−n,t0
<t0

x(n+1)(θ̂−n,t0). (1.103)

Proposition 1.3.20 Let x ∈ Cn+1(I) and eβRn
(t0;κ, µ, T, ξ, 1) be the truncated term errors for the

Jacobi estimators D
(n)
κ,µ,βT,qx(βTξ + t0) with q = 1, then we have

± Γ(2n+ κ+ µ+ 3)

Γ(n+ κ+ 2)Γ(µ+ n+ 2)
TM±

l ≤ eβRn
(t0;κ, µ, T, ξ, 1) ≤ ± Γ(2n+ κ+ µ+ 3)

Γ(n+ κ+ 2)Γ(µ+ n+ 2)
TM±

u ,

(1.104)

where

M±
l =





Iτ0m
±
τ0,l

+ (I1 − Iτ0)m
±
1,u, if 0 ≤ ξ < κ+n+1

κ+µ+2n+3 ,

I1m
±
1,l, if κ+n+1

κ+µ+2n+3 ≤ ξ < κ+n+2
κ+µ+2n+3 ,

Iτ0m
±
τ0,u + (I1 − Iτ0)m

±
1,l, if κ+n+2

κ+µ+2n+3 ≤ ξ ≤ 1,

(1.105)

and

M±
u =





Iτ0m
±
τ0,u + (I1 − Iτ0)m

±
1,l, if 0 ≤ ξ < κ+n+1

κ+µ+2n+3 ,

I1m
±
1,u, if κ+n+1

κ+µ+2n+3 ≤ ξ < κ+n+2
κ+µ+2n+3 ,

Iτ0m
±
τ0,l

+ (I1 − Iτ0)m
±
1,u, if κ+n+2

κ+µ+2n+3 ≤ ξ ≤ 1.

(1.106)

Proof. According to (1.81), the truncated term errors eβRn
(t0;κ, µ, T, ξ, 1) for D(n)

κ,µ,βT,1x(βTξ+ t0) can
be written as

eβRn
(t0;κ, µ, T, ξ, 1) = λκ,µ,n,ξe

β
Rn

(t0;κ, µ+ 1, T ) + (1− λκ,µ,n,ξ)e
β
Rn

(t0;κ+ 1, µ, T ), (1.107)

where eβRn
(t0;κ, µ+ 1, T ) (resp. eβRn

(t0;κ+ 1, µ, T )) are the truncated term errors for D(n)
κ,µ+1,βTx(t0)

(resp. D(n)
κ+1,µ,βTx(t0)). Then, by using (1.53) we get

eβRn
(t0;κ, µ, T, ξ, 1) =

λκ,µ,n,ξβT

B(n+ κ+ 1, µ+ n+ 2)

∫ 1

0
wµ+n+1,κ+n+1(τ)x

(n+1)(θ̂±n,t0)dτ

+
(1− λκ,µ,n,ξ)βT

B(n+ κ+ 2, µ+ n+ 1)

∫ 1

0
wµ+n,κ+n+2(τ)x

(n+1)(θ̂±n,t0)dτ

=
Γ(2n+ κ+ µ+ 3)

Γ(n+ κ+ 2)Γ(µ+ n+ 2)
βT

∫ 1

0
pκ,µ,n,ξ(τ)wµ+n,κ+n+1(τ)x

(n+1)(θ̂±n,t0)dτ,

43



where θ̂+n,t0 ∈]t0, t0 + Tτ [, θ̂−n,t0 ∈]t0 − Tτ, t0[, pκ,µ,n,ξ is de�ned by (1.101).
The �rst derivative of pκ,µ,n,ξ is (n+µ+1)− (2n+κ+µ+2)λκ,µ,n,ξ. Then, we study the variation

of pκ,µ,n,ξ in the following three cases:

1. If λκ,µ,n,ξ = n+µ+1
2n+κ+µ+2 , then (n + µ + 1) − (2n + κ + µ + 2)λκ,µ,n,ξ = 0. Hence, pκ,µ,n,ξ ≡

(n+ κ+ 1)λκ,µ,n,ξ > 0 for any τ ∈ [0, 1].

2. If λκ,µ,n,ξ <
n+µ+1

2n+κ+µ+2 , then (n+ µ+ 1)− (2n+ κ+ µ+ 2)λκ,µ,n,ξ > 0. Hence, pκ,µ,n,ξ increases
on [0, 1]. Let us recall that

τ0 =
−(n+ κ+ 1)λκ,µ,n,ξ

(n+ µ+ 1)− (2n+ κ+ µ+ 2)λκ,µ,n,ξ
.

Hence, if 0 < λκ,µ,n,ξ <
n+µ+1

2n+κ+µ+2 , then τ0 < 0. In this case, pκ,µ,n,ξ is strictly positive on [0, 1].
If λκ,µ,n,ξ ≤ 0, then 0 ≤ τ0 < 1. In this case, pκ,µ,n,ξ(τ) ≥ 0 for any τ ∈ [τ0, 1] and pκ,µ,n,ξ(τ) < 0

for any τ ∈ [0, τ0[.

3. If λκ,µ,n,ξ >
n+µ+1

2n+κ+µ+2 , then (n+ µ+ 1)− (2n+ κ+ µ+ 2)λκ,µ,n,ξ < 0. Hence, pκ,µ,n,ξ decreases
on [0, 1]. If n+µ+1

2n+κ+µ+2 < λκ,µ,n,ξ ≤ 1, then τ0 ≥ 1. In this case, we get pκ,µ,n,ξ(τ) > 0 for any
τ ∈ [0, 1]. If λκ,µ,n,ξ > 1, then 0 < τ0 < 1. In this case, pκ,µ,n,ξ(τ) ≤ 0 for any τ ∈ [τ0, 1] and
pκ,µ,n,ξ(τ) > 0 for any τ ∈ [0, τ0[.

For ξ ∈ [0, 1], λκ,µ,n,ξ = (κ+ n+ 2)− (2n+ κ+ µ+ 3)ξ, then we conclude that

τ : 0 −→ τ0 −→ 1

a) λκ,µ,n,ξ > 1 0 ≤ ξ < κ+n+1
κ+µ+2n+3 + 0 −

b) 0 < λκ,µ,n,ξ ≤ 1 κ+n+1
κ+µ+2n+3 ≤ ξ < κ+n+2

κ+µ+2n+3 +

c) λκ,µ,n,ξ ≤ 0 κ+n+2
κ+µ+2n+3 ≤ ξ ≤ 1 − 0 +

Table 1.1: Variation of pκ,µ,n,ξ in three cases.

Let us consider the case when 0 ≤ ξ < κ+n+1
κ+µ+2n+3 . Then we obtain that for 0 ≤ τ ≤ τ0,

± pκ,µ,n,ξ(τ)wµ+n,κ+n+1(τ)m
±
τ0,l

≤
± pκ,µ,n,ξ(τ)wµ+n,κ+n+1(τ)x

(n+1)(θ̂±n,t0) ≤ ±pκ,µ,n,ξ(τ)wµ+n,κ+n+1(τ)m
±
τ0,u,

(1.108)

and for τ0 < τ ≤ 1,

± pκ,µ,n,ξ(τ)wµ+n,κ+n+1(τ)m
±
1,u ≤

± pκ,µ,n,ξ(τ)wµ+n,κ+n+1(τ)x
(n+1)(θ̂±n,t0) ≤ ±pκ,µ,n,ξ(τ)wµ+n,κ+n+1(τ)m

±
1,l.

(1.109)

By integrating (1.108) on [0, τ0], we obtain

±Iτ0m
±
τ0,l

≤ ±
∫ τ0

0
pκ,µ,n,ξ(τ)wµ+n,κ+n+1(τ)x

(n+1)(θ̂±n,t0)dτ ≤ ±Iτ0m
±
τ0,u,
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and by integrating (1.109) on [τ0, 1], we obtain

±(I1 − Iτ0)m
±
1,u ≤ ±

∫ 1

τ0

pκ,µ,n,ξ(τ)wµ+n,κ+n+1(τ)x
(n+1)(θ̂±n,t0)dτ ≤ ±(I1 − Iτ0)m

±
1,l.

Consequently, when 0 ≤ ξ ≤ k+2
k+µ+5 , we obtain two bounds for the truncated term errors eβRn

(t0;κ, µ, T, ξ, 1):

± Γ(2n+ κ+ µ+ 3)

Γ(n+ κ+ 2)Γ(µ+ n+ 2)
TM±

l ≤ eβRn
(t0;κ, µ, T, ξ, 1) ≤ ± Γ(2n+ κ+ µ+ 3)

Γ(n+ κ+ 2)Γ(µ+ n+ 2)
TM±

u ,

(1.110)

where M±
l = Iτ0m

±
τ0,l

+ (I1 − Iτ0)m
±
1,u and M±

u = Iτ0m
±
τ0,u + (I1 − Iτ0)m

±
1,l.

Then, this proof can be completed by applying a similar analysis for the cases b) and c) (see Table
1.1). 2

1.3.4 Some numerical examples
We �nish this section with some numerical examples. We can observe that when κ is negative then the
integral given in the Jacobi estimator in (1.84) is an improper integral. Hence, there will be a singular
value at τ = 0 when we apply a numerical integration method. In order to avoid this problem, we
apply the following change of variable τ → t

1
1+κ in (1.84). Thus, we get

D
(n)
κ,µ,βT,qx(βTξ + t0) =

1

(βT )n

∫ 1

0
Qκ,µ,n,q,ξ(t

1
1+κ )x(βTt

1
1+κ + t0)dt, (1.111)

where

Qκ,µ,n,q,ξ(t) =
1

1 + κ
(1− t

1
1+κ )µ

q∑

i=0

Cκ,µ,n,iP
(µ+n,κ+n)
i (ξ)P

(µ,κ)
n+i (t

1
1+κ ), (1.112)

with Cκ,µ,n,i =
(µ+κ+2n+2i+1)Γ(κ+µ+2n+i+1)Γ(n+i+1)

Γ(κ+n+i+1)Γ(µ+n+i+1) .
If µ is negative in (1.84), then we apply an another change of variable τ → 1− τ . Hence, we get

D
(n)
κ,µ,βT,qx(βTξ + t0) =

1

(βT )n

∫ 1

0
Qκ,µ,n,q,ξ(1− τ)x(βT (1− τ) + t0)dτ, (1.113)

where

Qκ,µ,n,q,ξ(1− τ) = (1− τ)κτµ
q∑

i=0

Cκ,µ,n,iP
(µ+n,κ+n)
i (ξ)P

(µ,κ)
n+i (1− τ). (1.114)

Then, by substituting τ by t
1

1+κ in (1.113) we avoid the singular value at τ = 0 when we apply a
numerical integration method. In case where both κ and µ are negative, we decompose the integral
given in (1.84) into two parts

D
(n)
κ,µ,βT,qx(βTξ+ t0) =

1

(βT )n

∫ 1
2

0
Qκ,µ,n,q,ξ(τ)x(βTτ + t0)dτ +

1

(βT )n

∫ 1

1
2

Qκ,µ,n,q,ξ(τ)x(βTτ + t0)dτ.

(1.115)
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Then, we respectively apply the previous changes of variable in order to avoid the singular values in
the two integrals given in (1.115).

Let us remark that in practice the function x is usually known at an equidistant sampling period.
Hence, if we apply a numerical integration method to (1.111), then t

1
1+κ

i = i
m for i = 0, . . . ,m where

m + 1 is the number of sampling data in the sliding integration window. Thus, the sampling period
for the numerical integration method becomes hi =

(
i+1
m

)1+κ − (
i
m

)1+κ for i = 0, . . . ,m− 1.
By now on, we will show that taking negative values for κ improves the quality of Jacobi estimators.

We take the sampling data of function x de�ned by (1.8) with an sampling period Ts = 1
2000 . Then,

we use minimal estimators and a�ne estimators to estimate the �rst order derivative of x. We show in
Figure 1.8 the estimations obtained by using causal minimal estimators given in (1.29) with κ = −0.8

and κ = 0 respectively. We can see that the time-delay (time-drift) for D
(1)
κ,µ,−Tx(t0) with κ = −0.8

is smaller than the one for D
(1)
κ,µ,−Tx(t0) with κ = 0. The associated absolute truncated term errors

are shown in Figure 1.9(a). Indeed, the time-delay T κ+2
κ+µ+4 for these estimations is equal to 0.094

and 0.125. Hence, by removing these estimations we can calculate the associated amplitude errors in
Figure 1.9(b). Consequently, the estimation obtained with κ = −0.8 produces a smaller time-delay
and a smaller truncated term error but a larger amplitude error than the one obtained with κ = 0.
The estimations obtained by using the causal a�ne estimators de�ned in (1.84) with κ = −0.8 and
κ = 0 are given in Figure 1.10. By calculating Tξmin

1 where ξmin
1 is the smaller root of P (µ+1,κ+1)

2 ,
the time-delay for these estimations are equal to 0.046 and 0.069 respectively. By observing Figure
1.11(a) and Figure 1.11(b), we can see that the estimation obtained with κ = −0.8 produces a smaller
truncated term error than the one obtained with κ = 0.

Secondly, let us show the improvement of the Jacobi estimators by taking larger value for q. In
Section 1.1 we compare the amplitude error for the time-delay estimator D(1)

κ,µ,−T,qx(−Tξmin
1 + t0) with

κ = µ = 0 and q = 1 to the one for the delay-free estimator D
(1)
κ,µ,−T,qx(t0) with κ = µ = 0 and

q = 2. Here, we compare the amplitude error for the time-delay estimator D
(1)
κ,µ,−T,qx(−Tξmin

1 + t0)

with κ = −0.8, µ = 0 and q = 1 to the ones for the delay-free estimator D(1)
κ,µ,−T,qx(t0) with κ = µ = 0,

and q = 3, 4 respectively. The obtained estimations are given in Figure 1.12(a) and Figure 1.13(a).
The associated amplitude errors are given in Figure 1.12(b) and Figure 1.13(b). Hence, it is shown
that the amplitude error for D

(1)
−0.8,0,−T,1x(−Tξmin

1 + t0) is smaller than the one for the time-delay
estimator with q = 3. Nevertheless, it is larger than the one obtained for the time-delay estimator with
q = 4. We will show in Chapter 2 that when q is equal to 3 or 4, the noise error contribution increases.
Consequently, the Jacobi estimator is signi�cantly improved by admitting a time-delay. Finally, let us
recall that the analysis for the choice of parameters will be addressed in Chapter 2.
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1.4 Approximation theory
In this section, we recall some well-known approximation theories, and then we consider some special
spaces to which the function x may belongs to.

1.4.1 Some contexts
Let us recall some well-known facts. Let us consider the subspace of C([0, 1]), de�ned by

Pq(I) = span
{
P

(µ+n,κ+n)
0 , P

(µ+n,κ+n)
1 , · · · , P (µ+n,κ+n)

q

}
, (1.116)

where Pq(I) is the space of all the polynomials de�ned on I of degree below or equal to q. Equipped
with the inner product 〈·, ·〉µ+n,κ+n, Pq(I) is clearly an Hilbert reproducing kernel space with the
reproducing kernel

Kq(τ, ξ) =

q∑

i=0

P
(µ+n,κ+n)
i (τ)P

(µ+n,κ+n)
i (ξ)

‖P (µ+n,κ+n)
i ‖2µ+n,κ+n

. (1.117)

The reproducing property implies that for any function x(n)(t0 + βT ·) belonging to C([0, 1]), we have
〈
Kq(·, ξ), x(n)(t0 + βT ·)

〉
µ+n,κ+n

= D
(n)
κ,µ,βT,qx(βTξ + t0), (1.118)

whereD(n)
κ,µ,βT,qx(βT ·+t0) stands for the orthogonal projection of x(n)(t0+βT ·) on Pq(I). Consequently,

it is the best approximation of x(n)(t0 + βT ·) in Pq(I).
Hence, Similar to the classical approximation theory, the Jacobi estimator D

(n)
κ,µ,βT,qx(βT · +t0)

denotes in fact a polynomial approximation of x(n)(t0 + βT ·). Parameters κ and µ give the coe�-
cients of these polynomials, q is the order for these polynomials, βT determines the interval on which
D

(n)
κ,µ,βT,qx(βT ·+t0) approximate x(n)(t0+βT ·). Parameter ξ determines at which point on this interval

we take this estimate. Thus, our method is a point-wise derivative approximation.

1.4.2 Beppo-Levi space
In the previous sections, we study the convergence rate for the Jacobi estimators by considering the
space Cn+1+q(I) with n, q ∈ N. In this subsection, we consider the Beppo-Levi space which is de�ned
as follows

Hn+1+q(I) :=

{
x ∈ Cn+q(I) such that

∫

I
|x(n+1+q)(τ)|2dτ < ∞

}
, (1.119)

with n, q ∈ N. Then, we get the following relation

D
(n)
κ,µ,βT,qx(βT ·+t0) ∈ Pq(I) ⊂ C1+q(I) ⊂ H1+q(I) ⊂ C(I). (1.120)

Hence, the convergence rate for D(n)
κ,µ,βT,qx(βT ·+t0) depends on which space the function x(n) belongs

to.
Now, we give the following proposition.
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Proposition 1.4.21 If x ∈ Hn+1+q(I) with q ∈ N, then the Jacobi estimator of x(n)(t0) by (1.84)
satis�es:

∀t0 ∈ I, D
(n)
κ,µ,βT,qx(βTξ + t0) = x(n)(t0 + βTξ) +O

(
T q+ 1

2

)
. (1.121)

Moreover, we have for any ξ ∈ [0, 1]

∥∥∥D(n)
κ,µ,βT,qx(βTξ + t0)− x(n)(t0 + βTξ)

∥∥∥
∞

≤ M̌n+1+qČκ,µ,n,q,ξT
q+ 1

2 , (1.122)

where Čκ,µ,n,q,ξ =

(∫ 1
0 |Qκ,µ,n,q,ξ(τ) τ

n+q+1
2 |dτ

) 1
2

(n+q)!(2n+2q+1)
1
2

+ ξq+
1
2

q!(2q+1)
1
2
and M̌n+1+q =

∫
I

∣∣x(n+1+q)(t)
∣∣2 dt.

Proof. Since x ∈ Hn+1+q(I), we have for any t0 ∈ I

∀τ ∈ [0, 1], x(t0 + βTτ) = xn+q(t0 + βTτ) +

∫

IβT

(t0 + βTτ − t)n+q

(n+ q)!
x(n+1+q)(t)dt, (1.123)

where for β = 1 IβT = [t0, t0 + Tτ ] (resp. β = −1, IβT = [t0 − Tτ, t0]), T ∈ Dt0 , xn+q(t0 + βTτ) =
n+q∑

j=0

(βTτ)j

j!
x(j)(t0). Then, by using (1.95) with N = n+ q we get

D
(n)
κ,µ,βT,qx(βTξ+t0)−x(n)(t0+βTξ) =

1

(βT )n

∫ 1

0
Qκ,µ,n,q,ξ(τ)

∫

IβT

(t0 + βTτ − t)n+q

(n+ q)!
x(n+1+q)(t)dt dτ.

By using the Cauchy-Schwarz inequality we get
∣∣∣∣∣
∫

IβT

(t0 + βTτ − t)n+q

(n+ q)!
x(n+1+q)(t)dt

∣∣∣∣∣ ≤
(Tτ)n+q+ 1

2

(n+ q)!(2n+ 2q + 1)
1
2

(φ(τ, t0))
1
2 ,

where φ(τ, t0) =
∫
IβT

∣∣x(n+1+q)(t)
∣∣2 dt. Hence, we get

∥∥∥D(n)
κ,µ,βT,qx(βTξ + t0)− x

(n)
n+q(t0 + βTξ)

∥∥∥
∞

≤ T q+ 1
2

(n+ q)!(2n+ 2q + 1)
1
2

∫ 1

0
|Qκ,µ,n,q,ξ(τ)| τn+q+ 1

2 (φ(τ, t0))
1
2 dτ.

Since

∥∥∥x(n)(t0 + βTξ)− x
(n)
n+q(t0 + βTξ)

∥∥∥
∞

=

∥∥∥∥∥
∫

IβT

(t0 + βTξ − t)q

q!
x(n+1+q)(t)dt

∥∥∥∥∥
∞

≤ (Tξ)q+
1
2

q!(2q + 1)
1
2

(φ(ξ, t0))
1
2 ,

this proof can be completed by using the fact that φ(τ, t0) ≤
∫
I

∣∣x(n+1+q)(t)
∣∣2 dt. 2
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1.4.3 Generalized derivative estimators

In this subsection, we consider the case where x ∈ Cn−1(I) and the right and left hand derivatives for
the nth order exist. Then, we introduce some generalized derivative estimators for x(n) which converge
to these one-sided derivatives.

Proposition 1.4.22 Let x ∈ Hn(I) such that for any t0 ∈ I the right derivative x(n)(t0+) (resp. the
left derivative x(n)(t0−)) exists. Consequently, the Jacobi estimator D

(n)
κ,µ,βT,qx(t0 + βTξ) de�ned by

(1.74) satis�es:

lim
T→0+

D
(n)
κ,µ,T,qx(t0 + Tξ) = x(n)(t0+), lim

T→0+
D

(n)
κ,µ,−T,qx(t0 − Tξ) = x(n)(t0−), (1.124)

where q is an even integer.

Proof. Let us recall the local Taylor formula with the Peano remainder term (see [Zorich 2004] p.
219-232). For any given ε′ > 0, there exists δ > 0 such that for 0 < Tτ < δ we have

∣∣∣∣∣x(t0 − Tτ)− xn−1(t0 − Tτ)− x(n)(t0−)
n!

(−Tτ)n

∣∣∣∣∣ < ε′(Tτ)n, (1.125)

and ∣∣∣∣∣x(t0 + Tτ)− xn−1(t0 + Tτ)− x(n)(t0+)

n!
(Tτ)n

∣∣∣∣∣ < ε′(Tτ)n, (1.126)

where xn−1(t0 + Tτ) is the (n− 1)th order truncated Taylor series expansion of x(t0 + Tτ).
Let us consider the function g(t) = tn the nth order derivative of which is equal to (n!). As g is an

nth order polynomial, then by substituting xN by g in (1.95) and taking t0 = 0 we get

1

(βT )n

∫ 1

0
Qκ,µ,n,q,ξ(τ) g(βTτ) dτ = (n!). (1.127)

Hence, we have
1

(−T )n

∫ 1

0
Qκ,µ,n,q,ξ(τ)

x(n)(t0−)
n!

(−Tτ)n dτ = x(n)(t0−), (1.128)

and
1

Tn

∫ 1

0
Qκ,µ,n,q,ξ(τ)

x(n)(t0+)

n!
(Tτ)n dτ = x(n)(t0+). (1.129)

Since xn−1 is an (n− 1)th order polynomial, it is easy to obtain that

∀t0 ∈ I,
1

(βT )n

∫ 1

0
Qκ,µ,n,q,ξ(τ)xn−1(t0 + βTτ) dτ = 0. (1.130)
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Hence, by using (1.128), (1.129) and (1.130) we obtain
∣∣∣D(n)

κ,µ,−T,qx(t0 − Tξ)− x(n)(t0−)
∣∣∣

≤ 1

Tn

∫ 1

0

∣∣∣∣∣Qκ,µ,n,q,ξ(τ)

(
x(t0 − Tτ)− xn−1(t0 − Tτ)− x(n)(t0−)

n!
(−Tτ)n

)∣∣∣∣∣ dτ,
∣∣∣D(n)

κ,µ,T,qx(t0 + Tξ)− x(n)(t0+)
∣∣∣

≤ 1

Tn

∫ 1

0

∣∣∣∣∣Qκ,µ,n,q,ξ(τ)

(
x(t0 + Tτ)− xn−1(t0 + Tτ)− x(n)(t0+)

n!
(Tτ)n

)∣∣∣∣∣ dτ,

(1.131)

By using the expression of Qκ,µ,n,q,ξ given in (1.85), we get
∫ 1

0
|Qκ,µ,n,q,ξ(τ)τ

n| dτ ≤
∫ 1

0

q∑

i=0

Cκ,µ,n,iP
(µ+n,κ+n)
i (ξ)

∣∣∣wµ,κ(τ)P
(µ,κ)
n+i (τ)τn

∣∣∣ dτ < ∞. (1.132)

Consequently, for any ε > 0, by using (1.131), (1.125) and (1.126) with ε = ε′
∫ 1
0 |Qκ,µ,n,q,ξ(τ)τ

n| dτ ,
there exists δ such that 0 < T < δ and

∣∣∣D(n)
κ,µ,−T,qx(t0 − Tξ)− x(n)(t0−)

∣∣∣ < ε,
∣∣∣D(n)

κ,µ,T,qx(t0 + Tξ)− x(n)(t0+)
∣∣∣ < ε.

Then, this proof can be completed. 2

1.5 Some modi�ed estimators
In Section 1.2, we introduce the minimal estimators D

(n)
κ,µ,βTx(t0), the convergence rate of which is

equal to O(T ). In Section 1.3, by taking higher order truncated Taylor series expansion we improve
this convergence rate by giving a�ne estimators D

(n)
κ,µ,βT,qx

δ(βTξ + t0) where q > 0. In this section,
by studying on Taylor series expansion we give two new families of estimators which improve also the
convergence rate of the minimal estimators.

1.5.1 Richardson extrapolation technique
We show in Subsection 1.2.2 that the minimal estimators D

(n)
κ,µ,βTx(t0) given by (1.29) are obtained

by applying the orthogonal properties of the Jacobi polynomials to the Taylor series expansion of
x. In [Wang 2010], a family of derivative estimators were introduced by using Legendre orthogonal
polynomials and by applying Richardson extrapolation technique. The Richardson extrapolation was
proposed in 1927 and its historical background can be found in [Joyce 1971]. Similarly, we propose in
the following proposition a new a�ne scheme by applying Richardson extrapolation technique.

Proposition 1.5.23 Let x ∈ Cn(I), then a family of estimators for the derivative value x(n)(t0) at
any point t0 ∈ I is given by

D
(n)
κ,µ,βT,λx(t0) = aλD

(n)
κ,µ,βTx(t0) + bλD

(n)
κ,µ,βλTx(t0), (1.133)
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where aλ = −λ
1−λ , bλ = 1

1−λ with λ ∈ R+/{1}, D(n)
κ,µ,βTx(t0) are the minimal estimators de�ned by (1.29)

with T ∈ Dt0 and µ, κ ∈]− 1,+∞[. If we assume that x ∈ Cn+2(I), then we have

∀t0 ∈ I, D
(n)
κ,µ,βT,λx(t0) = x(n)(t0) +O (

T 2
)
. (1.134)

Moreover, if there exists Mn+2 ∈ R∗
+ such that

∥∥x(n+2)
∥∥
∞ ≤ Mn+2, then we have

∥∥∥D(n)
κ,µ,βT,λx(t0)− x(n)(t0)

∥∥∥
∞

≤ Mn+2Cκ,µ,n,λT
2, (1.135)

where Cκ,µ,n,λ = |aλ|+|bλ|λ2

(n+1)(n+2)B(n+κ+1,n+µ+1)

∫ 1
0

∣∣∣wµ,κ(τ)P
(µ,κ)
n (τ)τn+2

∣∣∣ dτ . If β = −1, we call D(n)
κ,µ,βT,λx(t0)

causal Richardson-Jacobi estimators (resp. anti-causal Richardson-Jacobi estimators if β = 1).

Proof. Assume that x ∈ Cn+2(I), then we take the Taylor series expansion of x at t0 ∈ I. By using
the well known Taylor's formula we have for any T ∈ Dt0 there exists θβn+1,t0

∈]t0, t0 + T [ if β = 1

(resp. θβn+1,t0
∈]t0 − T, t0[ if β = −1) such that

∀τ ∈ [0, 1], x(t0 + βTτ) =

n+1∑

j=0

(βTτ)j

j!
x(j)(t0) +

(βTτ)n+2

(n+ 2)!
x(n+2)(θβn+1,t0

). (1.136)

Then, by using (1.29), we get

D
(n)
κ,µ,βT,λx(t0) = γµ,κ,βT,n

∫ 1

0
wµ,κ(τ)P

(µ,κ)
n (τ)

(
aλx(βTτ + t0) +

bλ
λn

x(βλTτ + t0)

)
dτ, (1.137)

where γµ,κ,βT,n = n!
(βT )n

1
B(n+κ+1,µ+n+1) . Substituting (1.136) into (1.137) and using the orthogonal

properties of the Jacobi polynomial, we get

γµ,κ,βT,n

∫ 1

0
wµ,κ(τ)P

(µ,κ)
n (τ)

(
aλ

(βTτ)j

j!
+

bλ
λn

(βλTτ)j

j!

)
dτ = 0, ∀j < n.

Since aλ + bλ = 1 and aλ + bλλ = 0, then we obtain

γµ,κ,βT,n

∫ 1

0
wµ,κ(τ)P

(µ,κ)
n (τ)

(
aλ

(βTτ)n

n!
+ bλ

(βTτ)n

n!

)
dτ = 1,

γµ,κ,βT,n

∫ 1

0
wµ,κ(τ)P

(µ,κ)
n (τ)

(
aλ

(βTτ)n+1

(n+ 1)!
+ bλλ

(βTτ)n+1

(n+ 1)!

)
dτ = 0.

Thus, we get

D
(n)
κ,µ,βT,λx(t0)− x(n)(t0)

=γµ,κ,βT,n

∫ 1

0
wµ,κ(τ)P

(µ,κ)
n (τ)

(
aλ

(βTτ)n+2

(n+ 2)!
x(n+2)(θβn+1,t0

) + bλλ
2 (βTτ)

n+2

(n+ 2)!
x(n+2)(θ̄βn+1,t0

)

)
dτ,

where θ̄βn+1,t0
∈]t0, t0+λT [ if β = 1 (resp. θ̄βn+1,t0

∈]t0−λT, t0[ if β = −1). Consequently, D(n)
κ,µ,βT,λx(t0)

can be considered as a family of estimators for x(n)(t0). Moreover, we have
∥∥∥D(n)

κ,µ,βT,λx(t0±)− x(n)(t0)
∥∥∥
∞

≤ Mn+2

(|aλ|+ |bλ|λ2
) Tn+2

(n+ 2)!
γµ,κ,βT,n

∫ 1

0

∣∣∣wµ,κ(τ)P
(µ,κ)
n (τ)τn+2

∣∣∣ dτ.
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Thus, this proof is completed. 2

Since the Richardson-Jacobi estimators D(n)
κ,µ,βT,λx(t0) are an a�ne combination of minimal Jacobi

estimators with aλ + bλ = 1. Then, by applying Proposition 1.4.22, we get the following corollary.

Corollary 1.5.24 Let x ∈ Cn−1(I), then the Richardson-Jacobi estimator D
(n)
κ,µ,βT,λx(t0) de�ned by

(1.133) in Proposition 1.5.23 with T ∈ Dt0, κ, µ ∈] − 1,+∞[ is a generalized derivative estimator for
x(n). Moreover, if x(n)(t0+) and x(n)(t0−) exist at any point t0 ∈ I, then we have

lim
T→0+

D
(n)
κ,µ,T,λx(t0) = x(n)(t0+), and lim

T→0+
D

(n)
κ,µ,−T,λx(t0) = x(n)(t0−), (1.138)

where x(n)(t0+) (resp. x(n)(t0−)) denotes the right (resp. left) hand-side derivative for the nth order.

Now, let us take the sampling data of function x de�ned by (1.8) with a sampling period Ts =
1

2000 .
Then, we use causal a�ne Jacobi estimators with q = 1, 2 respectively and causal Richardson-Jacobi
estimator to estimate the �rst order derivative of x. We can see the obtained estimations in Figure
1.14(a) and Figure 1.15(a). The associated estimation errors are given in Figure 1.14(b) and Figure
1.15(b). We can observe that when λ = 0.8 the estimation error for the Richardson-Jacobi estimator
is larger than the one for the a�ne Jacobi estimator with q = 1. When λ = 0.08, the estimation error
for the Richardson-Jacobi estimator is smaller than the one for the a�ne Jacobi estimator with q = 2.
Consequently, the Richardson-Jacobi estimator can be improved by reducing the value of λ. However,
we will see in Chapter 2, this can increase the noise error contribution.
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Figure 1.14: A�ne Jacobi estimator D
(1)
κ,µ,−T,qx(t0) with q = 1 and Richardson-Jacobi estimator

D
(n)
κ,µ,−T,λx(t0) with λ = 0.8, where κ = µ = 0 and T = 1

2 .
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Figure 1.15: A�ne Jacobi estimator D
(1)
κ,µ,−T,qx(t0) with q = 2 and Richardson-Jacobi estimator

D
(n)
κ,µ,−T,λx(t0) with λ = 0.08, where κ = µ = 0 and T = 1

2 .

1.5.2 A new Remainder in Taylor's Formula
We introduce in the following proposition a family of modi�ed minimal estimators which are given by
using the following new Remainder in Taylor's Formula [Po�ald 1990]:

x(βTτ + t0) = xn(βTτ + t0) +
(βTτ)n+1

(n+ 1)!
x(n+1)

(
t0 +

βTτ

n+ 2

)
+

n+ 1

2(n+ 2)

(βTτ)n+3

(n+ 3)!
x(n+3)(θβn+3,t0

),

(1.139)

where xn(βTτ + t0) =
n∑

i=0

(βTτ)i

i!
x(i)(t0) with τ ∈ [0, 1], T ∈ Dt0 , and θβn+3,t0

∈]t0 − Tτ, t0[ if β = −1

(resp. θβn+3,t0
∈]t0, T τ + t0[ if β = −1).

Proposition 1.5.25 Let x ∈ Cn(I), then a family of estimators for the derivative value x(n)(t0) at
any point t0 ∈ I is given by

E
(n)
κ,µ,βTx(t0) = D

(n)
κ,µ,βTx(t0) + Eκ,µ,βT,nx(t0), (1.140)

where D(n)
κ,µ,βTx(t0) are the minimal estimators de�ned by (1.29) with T ∈ Dt0, n < µ ∈ R, −1 < κ ∈ R.

Consequently,

Eκ,µ,βT,nx(t0) = γµ,κ,βT,n
(n+ 2)n+1

(n+ 1)!

∫ 1

0

n∑

j=0

n+1∑

l=0

Cκ,µ,n+1,j,lwµ+n−j−l,κ+j+l(τ)x

(
t0 +

βTτ

n+ 2

)
dτ,

where γµ,κ,βT,n is de�ned by (1.30), and Cκ,µ,n+1,j,l = (−1)n−j+l
(
n+µ
j

)(
n+κ
n−j

)Γ(µ+n−j+1)
(l!)2

Γ(κ+n+j+2)
((n+1−l)!)2

. If
we assume that x ∈ Cn+3(I), then we have

∀t0 ∈ I, E
(n)
κ,µ,βTx(t0) = x(n)(t0) +O (

T 3
)
. (1.141)
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Moreover, if there exists Mn+3 ∈ R∗
+ such that

∥∥x(n+3)
∥∥
∞ ≤ Mn+3, then we have

∥∥∥E(n)
κ,µ,βTx(t0)− x(n)(t0)

∥∥∥
∞

≤ Mn+3Cκ,µ,nT
3, (1.142)

where Cµ,κ,n = 1
2(n+2)2(n+3)B(n+κ+1,µ+n+1)

∫ 1
0

∣∣∣wµ,κ(τ)P
(µ,κ)
n (τ)τn+3

∣∣∣ dτ .

Proof. Assume that x ∈ Cn+3(I), then by substituting (1.139) into (1.29) and using the orthogonal
properties of the Jacobi polynomial, we get

D
(n)
κ,µ,βTx(t0)− x(n)(t0) + Eκ,µ,βT,nx(t0)

=γµ,κ,βT,n
n+ 1

2(n+ 2)

(βT )n+3

(n+ 3)!

∫ 1

0
wµ,κ(τ)P

(µ,κ)
n (τ)τn+3x(n+3)(θβn+3,t0

)dτ,
(1.143)

where

Eκ,µ,βT,nx(t0) = γµ,κ,βT,n
(βT )n+1

(n+ 1)!

∫ 1

0
wµ,κ(τ)P

(µ,κ)
n (τ)τn+1x(n+1)

(
t0 +

βTτ

n+ 2

)
dτ. (1.144)

Then, we apply n + 1 times integrations by parts in (1.144) so as to get x(·) in the integral of
Eκ,µ,βT,nx(t0). Let us calculate the ith order derivative of wµ,κ(τ)P

(µ,κ)
n (τ)τn+1 for i = 0, · · · , n + 1,

then by using (1.42), we obtain

di

dτ i

{
wµ,κ(τ)P

(µ,κ)
n (τ)τn+1

}

=
di

dτ i





n∑

j=0

(
n+ µ

j

)(
n+ κ

n− j

)
(−1)n−jwµ+n−j,κ+j+n+1(τ)





=
n∑

j=0

(
n+ µ

j

)(
n+ κ

n− j

)
(−1)n−j di

dτ i
{wµ+n−j,κ+j+n+1(τ)} .

By assuming that n < µ ∈ R, we get

di

dτ i

{
wµ,κ(τ)P

(µ,κ)
n (τ)τn+1

}
=

n∑

j=0

i∑

l=0

Cκ,µ,i,j,l(1− τ)µ+n−j−lτκ+n+1+j+l−i, (1.145)

where Cκ,µ,i,j,l = (−1)n−j+l
(
n+µ
j

)(
n+κ
n−j

)(
i
l

)Γ(µ+n−j+1)
l!

Γ(κ+n+j+2)
(i−l)! .

Let us apply n+ 1 times integrations by parts in (1.144). Since n < µ ∈ R, µ+ n− j − l > 0 and
κ+ n+ 1+ j + l− i > 0 for i = 0, · · · , n, such that all the boundary values are equal to zeros. Hence,
we obtain

Eκ,µ,βT,nx(t0) = γµ,κ,βT,n
(n+ 2)n+1

(n+ 1)!

∫ 1

0

n∑

j=0

n+1∑

l=0

Cκ,µ,n+1,j,lwµ+n−j−l,κ+j+l(τ)x

(
t0 +

βTτ

n+ 2

)
dτ.

Since Eκ,µ,βT,nx(t0) is an integral of x(·), we de�ne E(n)
κ,µ,βTx(t0) = D

(n)
κ,µ,βTx(t0)+Eκ,µ,βT,nx(t0) as the

estimators for x(n)(t0), the truncated term error for which is given by (1.143). Then, this proof can be
easily completed.

2
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1.6 Central estimators
In the previous sections, by applying algebraic parametric techniques to truncated Taylor series, we
introduce causal Jacobi estimators (resp. anti-causal Jacobi estimators) which are based on the integra-
tion window [t0−T, t0] (resp. [t0, t0+T ]) for any t0 ∈ I and T ∈ Dt0 . They are extended by taking trun-
cated Jacobi orthogonal series expansion. Let us recall that the Jacobi estimators produce a time-drift
so as to get a small bias term error. The aim of this section is to introduce some drift-free estimators by
using the integration window [t0−T, t0+T ] for any t0 ∈ I and T ∈ D̂t0 = {t ∈ R+; [t0− t, t0+ t] ∈ I}.

1.6.1 Combination of causal and anti-causal estimators
It is shown in Subsection 1.3.3 that we estimate x(n)(t0) by the causal Jacobi estimatorsD(n)

κ,µ,−T,qx(−Tξ+

t0) (resp. anti-causal Jacobi estimators D(n)
κ,µ,T,qx(Tξ+ t0)), the drift term errors produce a time-delay

(resp. time-advance) of value Tξ. In this subsection, we give a family of estimators which are based
on a combination of causal and anti-causal Jacobi estimators so as to reduce the bias term errors by
avoiding a time-drift.

Let x ∈ CN+1(I), where n ≤ N ∈ N. For any t0 ∈ I, we consider the two following functions

∀t ∈ D̂t0 , X−(t+ t0) =
1

2
(x(t+ t0)− x(t0 − t)) and X+(t+ t0) =

1

2
(x(t+ t0) + x(t0 − t)). (1.146)

By taking the N th order truncated Taylor series expansion of x, we obtain

X−
N (t+ t0) =

1

2
(xN (t+ t0)− xN (−t+ t0)) and X+

N (t+ t0) =
1

2
(xN (t+ t0) + xN (−t+ t0)) ,

where xN (t0 ± t) =
N∑

j=0

(±t)j

j!
x(j)(t0). Hence, if N is odd, then we have

X−
N (t+ t0) =

N−1
2∑

i=0

t2i+1

(2i+ 1)!
x(2i+1)(t0) and X+

N (t+ t0) =

N−1
2∑

i=0

t2i

(2i)!
x(2i)(t0), (1.147)

and if N is even, then we have

X−
N (t+ t0) =

N
2
−1∑

i=0

t2i+1

(2i+ 1)!
x(2i+1)(t0) and X+

N (t+ t0) =

N
2∑

i=0

t2i

(2i)!
x(2i)(t0). (1.148)

Thus, X−
N only contains the values of the odd order derivatives at t0 and X+

N only contains the values
of the even order derivatives at t0. Hence, similarly to Proposition 1.3.9, by applying the algebraic
parametric techniques we can give a family of estimators as follows.

Proposition 1.6.26 Let x ∈ CN+1(I), where n ≤ N ∈ N, then a family of estimators x̃(n)t0
(k, µ, T,N)

for the derivative value of x(n) at any point t0 ∈ I is given by
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n \N even
even 1

2

(
x̃
(n)
t0+

(k, µ, T,N) + x̃
(n)
t0−(k, µ,−T,N)

)

odd 1
2

(
x̃
(n)
t0+

(k − 1, µ, T,N − 1) + x̃
(n)
t0−(k − 1, µ,−T,N − 1)

)

n \N odd
even 1

2

(
x̃
(n)
t0+

(k, µ, T,N − 1) + x̃
(n)
t0−(k, µ,−T,N − 1)

)

odd 1
2

(
x̃
(n)
t0+

(k − 1, µ, T,N) + x̃
(n)
t0−(k − 1, µ,−T,N)

)

where x̃
(n)
t0±(k, µ, βT,N) are the a�ne estimators de�ned by Proposition 1.3.9 with T ∈ D̂t0, k ∈ N

and −1 < µ ∈ R.

Proof. Let us consider the case where n is odd and N is even. Thus, the Laplace transform of X−
N is

given by
X̂−

N (s) = s−2x(1)(t0) + s−4x(3)(t0) + · · ·+ s−Nx(N−1)(t0). (1.149)
We proceed to annihilate in (1.149) the terms containing x(i)(t0) with j 6= n and preserve the term
containing x(n)(t0). Since n and N have not the same parity, X−

N which does not contain the term
x(N)(t0) is equal to an (N − 1)th order truncated Taylor series expansion of x. Thus, if we multiply
X̂−

N by sN , X̂−
N becomes a polynomial of degree N −2. Then the terms of degree lower than N −n−1,

which include x(i)(t0) with n < i < N , are annihilated by applying N − 1 − n times derivations. In
order to preserve the term including x(n)(t0), we multiply the remaining polynomial by 1

s . Then we
apply more than n− 1 times derivations with respect to s such that the other terms including x(i)(t0)

with 0 < i < n − 1, are annihilated. Finally, we multiply by 1
sN+µ to return into the time domain

where −1 < µ ∈ R. For this, we apply the following annihilator

ΠN−1,n
k−1,µ =

1

sN+µ
· d(n−1)+k

ds(n−1)+k
· 1
s
· d(N−1)−n

ds(N−1)−n
· sN . (1.150)

Similar to the proof of Proposition 1.3.9, we can obtain

x̃
(n)
t0

(k, µ, T,N) =
1

Tn

∫ 1

0
ak−1,µ,n,N−1

N−1−n∑

i=0

bn,N−1,iKk−1,µ,n,N−1,i(τ)
1

2
(x(Tτ + t0)− x(−Tτ + t0)) dτ,

where ak−1,µ,n,N−1, bn,N−1,i and Kk−1,µ,n,N−1,i are de�ned in Proposition 1.3.9. By using (1.55), we
get

x̃
(n)
t0

(k, µ, T,N) =
1

2

(
x̃
(n)
t0+

(k − 1, µ, T,N − 1)− (−1)nx̃
(n)
t0−(k − 1, µ,−T,N − 1)

)

=
1

2

(
x̃
(n)
t0+

(k − 1, µ, T,N − 1) + x̃
(n)
t0−(k − 1, µ,−T,N − 1)

)
, since n is odd.

The calculations in the other cases are similar with the following annihilators: ΠN,n
k−1,µ (if n and N are

odd), ΠN−1,n
k,µ (if n is even and N is odd), ΠN,n

k,µ (if n and N are even). 2

Remark 3 When k = 0, since n ≥ 1, we can observe that x̃
(n)
t0±(−1, µ,±T,N) are well de�ned in

(1.55).
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The estimators x̃(n)t0
(k, µ, T,N) are calculated on the interval [t0 − T, t0 + T ] with T ∈ D̂t0 . Hence

they are central estimators.
Let us take the same parity for n and N in x̃

(n)
t0

(k, µ, T,N) de�ned in Proposition 1.6.26, then we
have

x̃
(n)
t0

(k, µ, T,N) =





1
2

(
x̃
(n)
t0+

(k, µ, T,N) + x̃
(n)
t0−(k, µ,−T,N)

)
, if n and N are even,

1
2

(
x̃
(n)
t0+

(k − 1, µ, T,N) + x̃
(n)
t0−(k − 1, µ,−T,N)

)
, if n and N are odd.

(1.151)
If we take n = N in (1.151), then by denoting x̃

(n)
t0

(k, µ, T,N) by x̃
(n)
t0

(k, µ, T ) we get

x̃
(n)
t0

(k, µ, T ) =
1

2

(
x̃
(n)
t0+

(kn, µ, T ) + x̃
(n)
t0−(kn, µ,−T )

)
, (1.152)

where kn = k − 1
2(1 − (−1)n) and x̃

(n)
t0±(kn, µ,±T ) are the minimal estimators de�ned in Proposition

1.3.9 by taking N = n as follows

x̃
(n)
t0±(kn, µ, βT ) =

1

(βT )n

∫ 1

0
akn,µ,nKkn,µ,n(τ)x(βTτ + t0)dτ, (1.153)

where akn,µ,n = (−1)n+kn Γ(2n+µ+kn+2)
(n+kn)!

,

Kkn,µ,n(τ) =

n+kn∑

j=max(0,kn)

(−1)j

Γ(µ+ kn + n+ 1− j)

(
n+ kn

j

)
n!

(j − kn)!
wµ+kn+n−j,j(τ), (1.154)

with k ∈ N, −1 < µ ∈ R and T ∈ D̂t0 . Let us remark that if n is even, then by applying a change
of index in (1.154): j → j + k, we can obtain the same formula for the minimal estimators given by
Proposition 1.2.1. If n is odd, then the estimators x̃(n)t0±(−1, µ, βT ) are well de�ned by (1.153), which
are not de�ned by Proposition 1.2.1. Then, by using Proposition 1.3.11 we get the following corollary.

Corollary 1.6.27 Let x ∈ CN+1(I) with n ≤ N ∈ N and (−1)n+N = 1, x̃(n)t0
(k, µ, T,N) be the central

estimators given in Proposition 1.6.26 and x̃
(n)
t0

(k, µ, T ) be the estimators given in (1.152), then we
have

x̃
(n)
t0

(k, µ, T,N) =

q∑

j=0

λj,kn x̃
(n)
t0

(kj , µj , T ), (1.155)

where kj = k + q − j, µj = µ+ j, and λj,kn de�ned in Proposition 1.3.11.

Consequently, x̃(n)t0
(k, µ, T,N) can be considered as a�ne central estimators which can be written

as an a�ne combination of some minimal central estimators x̃
(n)
t0

(k, µ, T ). Let us recall that the
a�ne estimators x̃(n)t0±(k, µ, βT,N) obtained by using the algebraic parametric techniques are extended
in Subsection 1.3.2 by D

(n)
κ,µ,βT,qx(βTξ + t0) obtained by taking truncated Jacobi series expansion.

Similarly, we extend x̃
(n)
t0

(kn, µ, T,N) by taking the following truncated Jacobi series expansions
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D
(n)
κ,µ,T,q,ξx(t0) :=





q∑

i=0

〈
P

(µ+n,κ+n)
i (·), (X−)(n) (T ·+t0)

〉
µ+n,κ+n

‖P (µ+n,κ+n)
i ‖2µ+n,κ+n

P
(µ+n,κ+n)
i (ξ), if n is odd,

q∑

i=0

〈
P

(µ+n,κ+n)
i (·), (X+)

(n)
(T ·+t0)

〉
µ+n,κ+n

‖P (µ+n,κ+n)
i ‖2µ+n,κ+n

P
(µ+n,κ+n)
i (ξ), if n is even,

(1.156)
Then, we give the following proposition.

Proposition 1.6.28 Let x ∈ Cn(I) and D
(n)
κ,µ,βT,qx(βTξ+t0) be the Jacobi estimators de�ned by (1.74),

then a family of central estimators are given by

D
(n)
κ,µ,T,q,ξx(t0) =

1

2

(
D

(n)
κ,µ,T,qx(Tξ + t0) +D

(n)
κ,µ,−T,qx(−Tξ + t0)

)
, (1.157)

where T ∈ D̂t0, µ, κ ∈]− 1,+∞[ and ξ ∈ [0, 1].

Proof. If n is an odd integer, then by using (1.156) and (1.146) we get

D
(n)
κ,µ,T,q,ξx(t0) =

q∑

i=0

〈
P

(µ+n,κ+n)
i (·), 12

(
x(n)(t0 + T ·)− (−1)nx(n)(t0 − T ·))

〉
µ+n,κ+n

‖P (µ+n,κ+n)
i ‖2µ+n,κ+n

P
(µ+n,κ+n)
i (ξ)

=
1

2

q∑

i=0

〈
P

(µ+n,κ+n)
i (·), x(n)(t0 + T ·)

〉
µ+n,κ+n

‖P (µ+n,κ+n)
i ‖2µ+n,κ+n

P
(µ+n,κ+n)
i (ξ)

+
(−1)n+1

2

q∑

i=0

〈
P

(µ+n,κ+n)
i (·), x(n)(t0 − T ·)

〉
µ+n,κ+n

‖P (µ+n,κ+n)
i ‖2µ+n,κ+n

P
(µ+n,κ+n)
i (ξ)

=
1

2

(
D

(n)
κ,µ,T,qx(Tξ + t0) +D

(n)
κ,µ,−T,qx(−Tξ + t0)

)
.

Hence, this proof can be completed by similar calculations for the case where n is an even integer. 2
Consequently, D(n)

κ,µ,T,q,ξx(t0) is the extension of x̃(n)t0
(k, µ, T,N) in the case where n and N are even

integers, it is the extension of x̃(n)t0
(k + 1, µ, T,N) in the case where n and N are odd integers. Then,

by applying Proposition 1.3.16 we get the expression of D(n)
κ,µ,T,q,ξx(t0) in the following corollary.

Corollary 1.6.29 Let D(n)
κ,µ,T,q,ξx(t0) be the estimators for x(n)(t0) given by (1.157), then for any t0 ∈ I

we have

D
(n)
κ,µ,T,q,ξx(t0) =

1

2Tn

∫ 1

0
Qκ,µ,n,q,ξ(τ) (x(t0 + Tτ) + (−1)nx(t0 − Tτ)) dτ, (1.158)

where T ∈ D̂t0, κ, µ ∈]− 1,+∞[, q ∈ N, ξ ∈ [0, 1] and Qκ,µ,n,q,ξ(τ) is de�ned by (1.85).
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According to Proposition 1.3.17, the convergence rate of the Jacobi estimators D
(n)
κ,µ,βT,qx(t0) for

x(n) at t = t0 is O (
T q+1

)
. Since the Taylor series expansion of X− (resp. X+) contains only the

odd (resp. even ) order derivative values, similarly to Proposition 1.3.17 we can show in the following
proposition that the convergence rate for the central estimator D(n)

κ,µ,T,q,ξx(t0) is O
(
T q+2

)
.

Corollary 1.6.30 Let D(n)
κ,µ,T,q,0x(t0) be the Jacobi estimators for x(n)(t0) given by (1.156) with ξ = 0.

If x ∈ CN+2(I) with N ≥ n and (−1)n+N = 1, then we have

∀t0 ∈ I, D
(n)
κ,µ,T,q,0x(t0) = x(n)(t0) +O (

T q+2
)
, (1.159)

with q = N − n. Moreover, by assuming that there exists MN+2 ∈ R∗
+ such that

∥∥x(N+2)
∥∥
∞ ≤ MN+2,

then we have ∥∥∥D(n)
κ,µ,T,q,0x(t0)− x(n)(t0)

∥∥∥
∞

≤ MN+2Cκ,µ,n,qT
q+2, (1.160)

where Cκ,µ,n,q =
1

(n+2+q)!

∫ 1
0

∣∣Qκ,µ,n,q,0(τ)τ
n+2+q

∣∣ dτ and Qκ,µ,n,q,0 is de�ned by (1.85) with ξ = 0.

Proof. This proof is similar to the one of Proposition 1.3.17. If n is an odd integer, then let us take
the Taylor series expansion of X− at t0. By using the well known Taylor's formula, we get

∀ξ ∈ [0, 1], X−(t0 + Tξ) = X−
N (t0 + Tξ) +

(Tξ)N+2

(N + 2)!
x(N+2)(θ+N+1,t0

), (1.161)

where T ∈ D̂t0 , X−
N (t0+Tξ) =

N−1
2∑

i=0

(Tξ)2i+1

(2i+ 1)!
x(2i+1)(t0), θ+N+1,t0

∈]t0, t0+Tξ[ and N is an odd integer.

Similarly to (1.95) we can get

(
X−

N

)(n)
(t0) =

1

Tn

∫ 1

0
Qκ,µ,n,q,0(τ)X

−
N (t0 + Tτ) dτ. (1.162)

By using (1.158) with ξ = 0 and (1.146), we get

D
(n)
κ,µ,T,q,0x(t0) =

1

Tn

∫ 1

0
Qκ,µ,n,q,0(τ)X

−(t0 + Tτ)dτ. (1.163)

Since
(
X−

N

)(n)
(t0) = x(n)(t0), then this proof can be completed by using (1.161), (1.162) and (1.163).

The case where n is an even integer can be proven similarly. 2

Similarly, it is easy to verify that the convergence rate of the central estimator x̃(n)t0
(0, µ, T,N) =

1
2

(
x̃
(n)
t0+

(−1, µ, T,N) + x̃
(n)
t0−(−1, µ,−T,N)

)
with n and N being odd integers is also O (

TN−n+2
)
as

T → 0.

1.6.2 Central Jacobi estimators
In this subsection, we give a family of estimators which are easily obtained from the modi�ed Jacobi
estimators so as to eliminate the time-drift in the Jacobi estimators. These estimators can be also
obtained by using the Jacobi polynomials de�ned on [−1, 1], which extend the derivative estimations
introduced in [Lanczos 1956] and [Rangarajana 2005], where the Legendre polynomials were used.
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Let us assume that x ∈ Cn(I), then for any t0 ∈ I the Jacobi orthogonal series expansion of
x(n)(t0 − T + 2T ·) with T ∈ D̂t0 is given as follows

∀ξ ∈ [0, 1], x(n)(t0 − T + 2Tξ) =
∑

i≥0

〈
P

(µ+n,κ+n)
i (·), x(n)(t0 − T + 2T ·)

〉
µ+n,κ+n

‖P (µ+n,κ+n)
i ‖2µ+n,κ+n

P
(µ+n,κ+n)
i (ξ).

(1.164)
By taking the q + 1 (q ∈ N) �rst terms in (1.164) with ξ = 1

2 and denoting it by D̂
(n)
κ,µ,βT,qx(t0), we

have

D̂
(n)
κ,µ,T,qx(t0) :=

q∑

i=0

〈
P

(µ+n,κ+n)
i (·), x(n)(t0 − T + 2T ·)

〉
µ+n,κ+n

‖P (µ+n,κ+n)
i ‖2µ+n,κ+n

P
(µ+n,κ+n)
i (

1

2
). (1.165)

Hence, D̂(n)
κ,µ,T,qx(t0) is an estimator of x(n) with a found time-shift T . Thus, D̂(n)

κ,µ,T,qx(t0) is a drift-
free estimator for x(t0), which is based on the integration window [t0 − T, t0 + T ]. Then, we give the
following de�nition.

De�nition 2 (Central Jacobi estimator) Let us assume that x ∈ Cn(I), then for any t0 ∈ I the
central estimator D̂

(n)
κ,µ,T,qx(t0) de�ned in (1.165) is called central Jacobi estimator for x(n)(t0).

Similarly to Proposition 1.3.16 we get

∀t0 ∈ I, D̂
(n)
κ,µ,T,qx(t0) =

1

(2T )n

∫ 1

0
Qκ,µ,n,q, 1

2
(τ)x(t0 − T + 2Tτ) dτ, (1.166)

where T ∈ D̂t0 and Qκ,µ,n,q, 1
2
is de�ned in (1.85) with q ∈ N, κ, µ ∈]− 1,+∞[.

Let us apply a change of variable in (1.166): τ → τ+1
2 , then we get

∀t0 ∈ I, D̂
(n)
κ,µ,T,qx(t0) =

1

2n+1Tn

∫ 1

−1
Qκ,µ,n,q, 1

2
(
τ + 1

2
)x(t0 + Tτ) dτ, (1.167)

where
Qκ,µ,n,q, 1

2
(
τ + 1

2
) = wµ,κ(

τ + 1

2
)

q∑

i=0

Cκ,µ,n,iP
(µ+n,κ+n)
i (

1

2
)P

(µ,κ)
n+i (

τ + 1

2
), (1.168)

with Cκ,µ,n,i =
(µ+κ+2n+2i+1)Γ(κ+µ+2n+i+1)Γ(n+i+1)

Γ(κ+n+i+1)Γ(µ+n+i+1) .

Since P
(µ,κ)
n ( τ+1

2 ) = P̂
(µ,κ)
n (τ) and wµ,κ(

τ+1
2 ) = 1

2µ+κ ŵµ,κ(τ) where P̂
(µ,κ)
n is the nth order Jacobi

polynomial de�ned on [−1, 1] (de�ned by (7.14) in Appendix) with the weight function ŵµ,κ, (1.167)
can be written as follows

∀t0 ∈ I, D̂
(n)
κ,µ,T,qx(t0) =

1

Tn

∫ 1

−1
Q̂κ,µ,n,q(τ)x(t0 + Tτ) dτ, (1.169)

where
Q̂κ,µ,n,q(τ) =

1

2µ+κ+n+1
ŵµ,κ(τ)

q∑

i=0

Cκ,µ,n,iP̂
(µ+n,κ+n)
i (0)P̂

(µ,κ)
n+i (τ). (1.170)
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Let us recall that if we take κ = µ in the Jacobi polynomials, then the Jacobi polynomials become
ultraspherical polynomials (see [Szegö 1967] p. 80). In particular, if we take κ = µ in (1.169) and q to
be an even integer, then according to (7.26) P̂ (κ+n,κ+n)

i (0) = 0 for any odd integer i. Hence, we get

∀t0 ∈ I, D̂
(n)
κ,T,qx(t0) :=

1

Tn

∫ 1

−1
Q̂κ,n,q(τ)x(t0 + Tτ) dτ, (1.171)

where

Q̂κ,n,q(τ) =
1

22κ+n+1
ŵκ,κ(τ)

q
2∑

i=0

Cκ,κ,n,2iP̂
(κ+n,κ+n)
2i (0)P̂

(κ,κ)
n+2i (τ). (1.172)

Moreover, it is easy to verify that if we take the following Jacobi orthogonal series expansion de�ned
on [−1, 1] of xn

∀ξ̂ ∈ [−1, 1], x(n)(T ξ̂ + t0) =
∑

i≥0

〈
P̂

(µ+n,κ+n)
i (·), x(n)(t0 + T ·)

〉
µ+n,κ+n

‖P̂ (µ+n,κ+n)
i ‖2µ+n,κ+n

P̂
(µ+n,κ+n)
i (ξ̂), (1.173)

where the scalar product 〈·, ·〉µ+n,κ+n is de�ned by (7.16) in Appendix, then similarly to the calculations
done in Subsection 1.3.2, the estimator D̂

(n)
κ,µ,T,qx(t0) can be obtained by taking the (q + 1)th order

truncation of (1.173) with ξ̂ = 0:

∀ξ̂ ∈ [−1, 1], D̂
(n)
κ,µ,T,qx(t0) =

q∑

i=0

〈
P̂

(µ+n,κ+n)
i (·), x(n)(t0 + T ·)

〉
µ+n,κ+n

‖P̂ (µ+n,κ+n)
i ‖2µ+n,κ+n

P̂
(µ+n,κ+n)
i (0), (1.174)

where the expression of ‖P̂ (µ+n,κ+n)
i ‖2µ+n,κ+n is given in (7.17) in Appendix.

If q = 0 in (1.169), then we get a family of minimal central Jacobi estimators

∀t0 ∈ I, D̂
(n)
κ,µ,Tx(t0) :=

1

Tn

∫ 1

−1
ρ̂n,µ,κ(τ)x(t0 + Tτ) dτ, (1.175)

where T ∈ D̂t0 and ρ̂n,µ,κ(τ) = 2−n−1−µ−κn!
B(n+κ+1,n+µ+1,) P̂

(µ,κ)
n (τ) ŵµ,κ(τ) with µ, κ ∈] − 1,+∞[. Hence, by

observing the expression of D̂(n)
κ,µ,Tx(t0) it is easy to verify that similarly to Subsection 1.2.2 these

estimators can be also obtained by applying the orthogonal properties of Jacobi polynomial de�ned on
[−1, 1] to the Taylor series expansion of x. Hence, the minimal central Jacobi estimator with κ = µ = 0

is in fact the Lanczos generalized derivative estimator de�ned in (1.12).
These central Jacobi estimators are drift-free estimators. Similarly to Proposition 1.3.17 the bias

term error bounds are given in the following proposition.

Proposition 1.6.31 [Liu 2011b] Let D̂(n)
κ,µ,T,qx(t0) be the central Jacobi estimator of x(n)(t0) de�ned

by (1.166). If we assuming that x ∈ Cq+n+1(I) with q ∈ N, then we have

∀t0 ∈ I, D̂
(n)
κ,µ,T,qx(t0) = x(n)(t0) +O (

T q+1
)
. (1.176)

Moreover, if there exists Mq+n+1 ∈ R∗
+ such that

∥∥x(q+n+1)
∥∥
∞ ≤ Mq+n+1, then we have

∥∥∥D̂(n)
κ,µ,βT,qx(t0)− x(n)(t0)

∥∥∥
∞

≤ Mq+n+1Ĉκ,µ,n,qT
q+1, (1.177)

where Ĉκ,µ,n,q =
1

(n+1+q)!

∫ 1
−1

∣∣∣Q̂κ,µ,n,q(τ)τ
n+1+q

∣∣∣ dτ .
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It is shown in Corollary 1.3.18 that if we take the value of ξ as the smallest root of the Jacobi poly-
nomial P (µ+n,κ+n)

q+1 in the Jacobi estimators, then the corresponding convergence rate can be improved
from O(T q+1) to O(T q+2) as T → 0. Similarly, since P̂

(κ+n,κ+n)
i (0) = 0 for any odd integer i, we have

D̂
(n)
κ,T,qx(t0) = D̂

(n)
κ,T,q+1x(t0) with q being an even integer. Hence, we improve the convergence rate for

the central Jacobi estimators in the following corollary.

Corollary 1.6.32 [Liu 2011b] Let x ∈ Cq+n+2(I) where q is an even integer and D̂
(n)
κ,T,qx(t0) be the

central jacobi estimator de�ned by (1.171), then we have

∀t0 ∈ I, D̂
(n)
κ,T,qx(t0) = x(n)(t0) +O (

T q+2
)
. (1.178)

Moreover, by assuming that there exists Mq+n+2 ∈ R∗
+ such that

∥∥x(q+n+2)
∥∥
∞ ≤ Mq+n+2, then we have

∥∥∥D̂(n)
κ,T,qx(t0)− x(n)(t0)

∥∥∥
∞

≤ Mq+n+2Ĉκ,n,qT
q+2, (1.179)

where Ĉκ,n,q =
1

(n+2+q)!

∫ 1
−1

∣∣∣Q̂κ,n,q(τ)τ
n+2+q

∣∣∣ dτ .

In Figure 1.16-1.19 we give the variations of Ĉκ,µ,n,q=0 de�ned in Proposition 1.6.31 with respect
to κ and µ for n = 1 and q = 0, 1, 2, 3. We can see that Ĉκ,µ,n,q is decreasing with respect to κ and µ.
Hence, we can increase the value of κ and µ so as to reduce the truncated error for the central Jacobi
estimator.
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Figure 1.16: Variation of Ĉκ,µ,n,q=0 with respect to κ and µ for n = 1.
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Figure 1.17: Variation of Ĉκ,µ,n,q=1 with respect to κ and µ for n = 1.
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Figure 1.18: Variation of Ĉκ,µ,n,q=2 with respect to κ and µ for n = 1.
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Figure 1.19: Variation of Ĉκ,µ,n,q=3 with respect to κ and µ for n = 1.
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1.6.3 Richardson extrapolation technique
It is shown in Subsection 1.5.1 that the convergence rate for the minimal estimators D

(n)
κ,µ,βT can be

improved by applying the Richardson extrapolation technique. Two families of Richardson-Jacobi
estimators are obtained in the causal and anti-causal cases respectively. In this subsection, we propose
a family of central Richardson-Jacobi estimators which are exactly the extension for the one introduced
by using Legendre polynomial in [Wang 2010].

Let us consider the minimal central Jacobi estimator D̂(n)
κ,µ,Tx(t0) de�ned in (1.175), then similarly

to Proposition 1.5.23 we give the following proposition.

Proposition 1.6.33 Let x ∈ Cn(I), then a family of central Richardson-Jacobi estimators for x(n)(t0)
at any point t0 ∈ I is given by

D̂
(n)
κ,µ,T,λx(t0) = aλD̂

(n)
κ,µ,Tx(t0) + bλD̂

(n)
κ,µ,λTx(t0), (1.180)

where aλ = −λ
1−λ , bλ = 1

1−λ with λ ∈ R+/{1}, D̂(n)
κ,µ,Tx(t0) is minimal central Jacobi estimator de�ned

in (1.175) with T ∈ D̂t0 and µ, κ ∈]− 1,+∞[. If we assume that x ∈ Cn+2(I), then we have

∀t0 ∈ I, D̂
(n)
κ,µ,T,λx(t0) = x(n)(t0) +O (

T 2
)
. (1.181)

Moreover, if there exists Mn+2 ∈ R∗
+ such that

∥∥x(n+2)
∥∥
∞ ≤ Mn+2, then we have

∥∥∥D̂(n)
κ,µ,T,λx(t0)− x(n)(t0)

∥∥∥
∞

≤ Mn+2Ĉκ,µ,n,λT
2, (1.182)

where Ĉκ,µ,n,λ = |aλ|+|bλ|λ2

(n+2)!

∫ 1
−1

∣∣ρn,κ,µ(τ)τn+2
∣∣ dτ.

It is shown in the previous subsection that if we take κ = β and q to be an even integer in the
central Jacobi estimators, then we can improve the convergence rate. Similarly, let us take κ = β

in the central minimal Jacobi estimators. Consequently, we can give a family of improved central
Richardson-Jacobi estimators.

Corollary 1.6.34 Let x ∈ Cn(I), then a family of improved central Richardson-Jacobi estimators for
x(n)(t0) at any point t0 ∈ I is given by

D̂
(n)
κ,T,λx(t0) = cλD̂

(n)
κ,Tx(t0) + dλD̂

(n)
κ,λTx(t0), (1.183)

where cλ = −λ2

1−λ2 , dλ = 1
1−λ2 with λ ∈ R+/{1}, D̂

(n)
κ,Tx(t0) is the minimal central Jacobi estimator

de�ned in (1.175) with T ∈ D̂t0 and −1 < µ = κ ∈ R. Moreover, if we assume that x ∈ Cn+4(I) and
there exists Mn+4 ∈ R∗

+ such that
∥∥x(n+4)

∥∥
∞ ≤ Mn+4, then we have

∥∥∥D̂(n)
κ,T,λx(t0)− x(n)(t0)

∥∥∥
∞

≤ Mn+4Ĉκ,n,λT
4, (1.184)

where Ĉκ,n,λ =
|cλ|+ |dλ|λ4

(n+ 4)!

∫ 1

−1

∣∣ρn,κ,µ(τ)τn+4
∣∣ dτ.
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Let us give the following lemma so as to proof the previous corollary.

Lemma 1.6.35 [Liu 2011b] Let P̂ (κ,κ)
n be the nth order ultraspherical polynomial with the weight func-

tion ŵκ,κ, then we have ∫ 1

−1
P̂ (κ,κ)
n (τ)ŵκ,κ(τ) τ

n+l dτ = 0, (1.185)

where l is an odd integer.

Proof. By using the Rodrigues formula (given in (7.21) in Appendix) in (1.185) and applying n times
integrations by parts, we get

∫ 1

−1
P̂ (κ,κ)
n (τ)ŵκ,κ(τ) τ

n+l dτ =
(n+ l)!

2n(n!)2

∫ 1

−1
ŵκ+n,κ+n(τ) τ

l dt. (1.186)

If l is an odd number then wκ+n,κ+n(τ) τ
l is an odd function. Hence, this proof is completed. 2

Proof. This proof is similar to the one of Proposition 1.5.23. Here, we take the Taylor series expansion
of x at t0 ∈ I,

∀τ ∈ [−1, 1], x(t0 + Tτ) =
n+3∑

j=0

(Tτ)j

j!
x(j)(t0) +

(Tτ)n+4

(n+ 4)!
x(n+4)(θn+3,t0), (1.187)

where T ∈ D̂t0 and θn+3,t0 ∈]t0 − T, t0 + T [. By applying the orthogonal properties of the Jacobi
polynomial obtained in D̂

(n)
κ,Tx(t0), the terms containing x(j)(t0) with 0 ≤ j ≤ n − 1 are annihilated.

By using Lemma 1.6.35, the terms containing x(n+1)(t0) and x(n+3)(t0) are annihilated. The relation
cλ + dλλ

2 = 0 is used to annihilate the terms containing x(n+2)(t0), and the relation cλ + dλ = 1 is
used to calculate x(n)(t0). Then, this proof can be easily completed. 2

1.6.4 Generalized derivative estimators
In this subsection, we assume that x ∈ Cn−1(I) and the right and left hand derivatives for the nth

order exist. Then, we introduce some generalized derivative estimators for x(n) which converge to the
average value of these one-sided derivatives.

In Subsection 1.4.3, we de�ne two families of generalized derivative estimators by the Jacobi esti-
mators. Since the central estimator D(n)

κ,µ,T,q,ξx(t0) is the average of the causal and anti-causal Jacobi
estimators, then by using Proposition 1.4.22 we get easily the following corollary.

Corollary 1.6.36 [Liu 2011b] Let x ∈ Hn(I) such that for any t0 ∈ I the right derivative x(n)(t0+)

(resp. the left derivative x(n)(t0−)) exists. Then we de�ne the central estimator D
(n)
κ,µ,T,q,ξx(t0) given

by (1.156) as a generalized derivative estimator for x(n), where T ∈ D̂t0, κ, µ ∈]− 1,+∞[. Moreover,
we have

lim
T→0+

D
(n)
κ,µ,T,q,ξx(t0) =

1

2

(
x(n)(t0+) + x(n)(t0−)

)
, (1.188)

where x(n)(t0+) (resp. x(n)(t0−)) denotes the right (resp. left) hand derivative for the nth order.

For the family of central Jacobi estimators D̂(n)
κ,T,qx(t0), we give the following proposition.
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Proposition 1.6.37 [Liu 2011b] Let x ∈ Hn(I) such that for any t0 ∈ I the right derivative x(n)(t0+)

(resp. the left derivative x(n)(t0−)) exists. Then we de�ne the central Jacobi estimator D̂
(n)
κ,T,qx(t0)

given by (1.171) as a generalized derivative estimator for x(n), where T ∈ D̂t0, −1 < κ ∈ R and q is
an even integer. Moreover, we have

lim
T→0+

D̂
(n)
κ,T,qx(t0) =

1

2

(
x(n)(t0+) + x(n)(t0−)

)
. (1.189)

Proof. Let us recall the local Taylor formula with the Peano remainder term (see [Zorich 2004] p.
219-232). For any given ε′ > 0, there exists δ > 0 such that

∣∣∣∣∣x(t0 + Tτ)− xn−1(t0 + Tτ)− x(n)(t0−)
n!

(Tτ)n

∣∣∣∣∣ < ε′|Tτ |n, for δ < Tτ < 0, (1.190)

and ∣∣∣∣∣x(t0 + Tτ)− xn−1(t0 + Tτ)− x(n)(t0+)

n!
(Tτ)n

∣∣∣∣∣ < ε′(Tτ)n, for 0 < Tτ < δ, (1.191)

where xn−1(t0 + Tτ) is the (n− 1)th order truncated Taylor series expansion of x(t0 + Tτ).
Let us consider the function g(t) = tn the nth order derivative of which is equal to (n!). Thus, by

using (1.174) we have
∀t0 ∈ I, D̂

(n)
κ,T,qg(t0) = (n!).

Then, by applying (1.171) we get

∀t0 ∈ I, D̂
(n)
κ,T,qg(t0) =

1

Tn

∫ 1

−1
Q̂κ,n,q(τ) g(t0 + Tτ) dτ = (n!).

In particular, by taking t0 = 0 we get 1
Tn

∫ 1
−1 Q̂κ,n,q(τ) (Tτ)

n dτ = (n!). By using (7.26) in (1.172), it
is easy to obtain that Q̂κ,n,q(−τ) = (−1)nQ̂κ,n,q(τ) for any τ ∈ [−1, 1], which leads that τnQ̂κ,n,q(τ) is
an even function. Hence, we get

1

Tn

∫ 0

−1
Q̂κ,n,q(τ) (Tτ)

n dτ =
1

Tn

∫ 1

0
Q̂κ,n,q(τ) (Tτ)

n dτ =
n!

2
. (1.192)

Then,
1

Tn

∫ 0

−1
Q̂κ,n,q(τ)

x(n)(t0−)
n!

(Tτ)n dτ =
1

2
x(n)(t0−), (1.193)

and
1

Tn

∫ 1

0
Q̂κ,n,q(τ)

x(n)(t0+)

n!
(Tτ)n dτ =

1

2
x(n)(t0+). (1.194)

By using (1.174) and (1.171), we get

∀t0 ∈ I, D̂
(n)
κ,T,qxn−1(t0) =

1

Tn

∫ 1

−1
Q̂κ,n,q(τ)xn−1(t0 + Tτ) dτ = 0. (1.195)
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Hence, by using (1.193), (1.194) and (1.195) we obtain
∣∣∣∣D̂

(n)
κ,T,qx(t0)−

1

2

(
x(n)(t0−) + x(n)(t0+)

)∣∣∣∣

≤ 1

Tn

∫ 0

−1

∣∣∣∣∣Q̂κ,n,q(τ)

(
x(t0 + Tτ)− xn−1(t0 + Tτ)− x(n)(t0−)

n!
(Tτ)n

)∣∣∣∣∣ dτ

+
1

Tn

∫ 1

0

∣∣∣∣∣Q̂κ,n,q(τ)

(
x(t0 + Tτ)− xn−1(t0 + Tτ)− x(n)(t0+)

n!
(Tτ)n

)∣∣∣∣∣ dτ.

(1.196)

By using (1.172), we get

∫ 1

0

∣∣∣Q̂κ,n,q(τ)τ
n
∣∣∣ dτ ≤ 1

22κ+n+1

q
2∑

i=0

Cκ,κ,n,2iP̂
(κ+n,κ+n)
2i (0)

∫ 1

0

∣∣∣ŵκ,κ(τ)P̂
(κ,κ)
n+2i (τ)τ

n
∣∣∣ dτ < ∞. (1.197)

Since Q̂κ,n,q(τ) τ
n is an even function, we get

∫ 0

−1

∣∣∣Q̂κ,n,q(τ)τ
n
∣∣∣ dτ =

∫ 1

0

∣∣∣Q̂κ,n,q(τ)τ
n
∣∣∣ dτ < ∞

Consequently, for any ε > 0, by using (1.196), (1.190) and (1.191) with ε = 2ε′
∫ 1
0

∣∣∣Q̂κ,n,q(τ) τ
n
∣∣∣ dτ ,

there exists δ such that 0 < T < δ and
∣∣∣∣D̂

(n)
κ,T,qx(t0)−

1

2

(
x(n)(t0+) + x(n)(t0−)

)∣∣∣∣ < ε.

Then, this proof can be completed. 2

Since the central Richardson-Jacobi estimator D̂(n)
κ,T,λx(t0) de�ned by Corollary 1.6.34 is an a�ne

combination of minimal central Jacobi estimators with cλ + dλ = 1. Then, by applying the previous
proposition, we get the following corollary.

Corollary 1.6.38 Let x ∈ Hn(I) such that for any t0 ∈ I the right derivative x(n)(t0+) (resp. the
left derivative x(n)(t0−)) exists. Then we de�ne the central Richardson-Jacobi estimator D̂

(n)
κ,T,λx(t0)

de�ned by Corollary 1.6.34 as a generalized derivative estimator for x(n), where T ∈ D̂t0, −1 < κ ∈ R.
Moreover, we have

lim
T→0+

D̂
(n)
κ,T,λx(t0) =

1

2

(
x(n)(t0+) + x(n)(t0−)

)
. (1.198)

1.6.5 Some numerical examples
We give in this section some numerical examples. Let us take the sampling data of function x de�ned
by (1.8) with a sampling period Ts = 1

2000 . Then, we use the central estimator to estimate the �rst
order derivative of x. For each estimator, we set κ = µ = 0 and T = 1

4 . According to Corollary
1.6.30 and Corollary 1.6.32, we take q as an even integer. The analysis for the choice of parameters
κ, µ and T will be addressed in Chapter 2. The estimations obtained by using the central estimator
x̃
(1)
t0

(κ, µ, T, n+ q) given by (1.151) and central Jacobi estimator D̂(1)
κ,T,qx(t0) given by (1.171) are given
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in Figure 1.20(a) and Figure 1.21(a) with q = 0 and q = 2 respectively. The associated absolute errors
are given in Figure 1.20(b) and Figure 1.21(b). We can see that there is no time-drift for the central
estimators and the amplitude error can be improved by increasing the truncation order q. Then, we
take the central Richardson-Jacobi estimator de�ned in (1.183) with di�erent value of λ. The obtained
absolute errors are given in Figure 1.22(a) and Figure 1.22(b). In order to compare the estimations,
we also give the absolute estimation errors for the central Jacobi estimator with q = 2. Hence, the
central Richardson-Jacobi estimator can be improved by reducing the value of λ.
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Figure 1.20: Central estimator x̃
(1)
t0

(κ, µ, T, n + q) and central Jacobi estimator D̂
(1)
κ,T,qx(t0), where

κ = µ = 0, T = 1
4 and q = 0.
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Figure 1.21: Central estimator x̃
(1)
t0

(κ, µ, T, n + q) and central Jacobi estimator D̂
(1)
κ,T,qx(t0), where

κ = µ = 0, T = 1
4 and q = 2.
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Figure 1.22: Absolute estimation errors for central Jacobi estimator D̂(1)
κ,T,qx(t0) with q = 2 and central

Richardson-Jacobi estimator D̂
(1)
κ,T,λx(t0) with λ = 0.8 and λ = 0.08 respectively, where κ = 0 and

T = 1
4 .

1.7 General estimator
In Subsection 1.5.1, we give two families of Richardson-Jacobi estimators which are the combination of
minimal Jacobi estimators with di�erent lengths for integration windows. In Subsection 1.6.1, by taking
the combination of causal and anti-causal Jacobi estimators we introduce a family of central estimators.
In this section, by applying the algebraic parametric technique we give a general form of the derivative
estimators which are an a�ne combination of estimators with di�erent lengths for integration windows.
For this, we give a general di�erential operator parameterized by a set of parameters. Su�cient and
necessary conditions on this set are given to obtain such an integral annihilator. It is proven that such
set of parameters is non empty.

1.7.1 Operational domain
Let us assume that x ∈ CN (I) with n ≤ N ∈ N. Then, for any t0 ∈ I, we introduce the following
function

X(t) =
L∑

i=0

ai x(t0 + βit), (1.199)

where L ∈ N, ai ∈ R∗, βi ∈ R∗, β0 < β1 < · · · < βL, t ∈ D := {t ∈ R+; ∀i ∈ {1, ..., L}, t0 + βit ∈ I} and
L∑

i=0

aiβ
n
i 6= 0. This function X will be used to perform the estimation of x(n) in a general framework.

Actually, if all the βi < 0 (resp. βi > 0), then we can obtain causal estimators (resp. anti-causal
estimators). In the other cases, we can obtain "�nite di�erence" type estimators. Let us consider the
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N th order truncated Taylor series expansion of X on R+

∀t ∈ R+, XN (t) =
L∑

i=0

ai

N∑

j=0

(βit)
j

j!
x(j)(t0) =

N∑

j=0

(
L∑

i=0

aiβ
j
i

)
tj

j!
x(j)(t0). (1.200)

Since XN is an N th order polynomial de�ned on R+, we can apply the Laplace transform to (1.200)

(s being the Laplace variable)

X̂N =
N∑

j=0

cjs
−(j+1)x(j)(t0), (1.201)

where X̂N is the Laplace transform of XN (t), cj =
L∑

i=0

aiβ
j
i with cn 6= 0.

1.7.2 Annihilators
Let us recall that the basic step for the algebraic parametric technique towards the estimation of x(n)
is to estimate the coe�cient x(n)(t0) from X̂N by using a linear di�erential operator. A general form
for this operator is given in (1.18). When the sum in (1.18) is reduced to a single term, we obtain
a particular case where the linear di�erential operator is a �nite product of length Θ ∈ N. If for all
indexes l, the rational function %l is of the following form %l(s) = 1

sml , then the linear di�erential
operator de�ned by (1.18) can be parameterized by a set E = {(nl,ml)}Θl=1:

ΠE =
Θ∏

l=1

1

sml

dnl

dsnl
=

1

sm1

dn1

dsn1
· · · 1

smΘ

dnΘ

dsnΘ
. (1.202)

Note that ml ∈ Z∗ for l = 2, . . . ,Θ, except for m1 ∈ R∗, and nl ∈ N∗ for l = 1, . . . ,Θ − 1, except for
nΘ ∈ N. In the following proposition, we give conditions on the integers ml and nl so as to calculate
the value of ΠE

(
X̂N

)
where ΠE preserves only the term containing x(n)(t0).

Proposition 1.7.39 Let X̂N be de�ned by (1.201) and ΠE be the linear di�erential operator de�ned
by (1.202). If E satis�es the following conditions

(C1): ∀l ∈ {1, . . . ,Θ− 1}: either n+ 1 + rl > 0 or n+ 1 + rl ≤ −nl is true,

(C2): for each j ∈ J = {k; k ∈ {0, . . . , n − 1, n + 1, . . . , N}, ckx(k)(t0) 6= 0}, there exists a lj ∈
{1, ...,Θ− 1}, such that 0 ≤ −(j + 1)− rlj < nlj ,

with rl =
Θ∑

i=l+1

ni +mi for l = 0, . . . ,Θ− 1 and rΘ = 0. Then, ΠE is an annihilator and

ΠE

(
X̂N

)
= cnx

(n)(t0)
ĉ

sn+1+r0
, (1.203)
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where cn =

L∑

i=0

aiβ
n
i 6= 0, ĉ =

Θ∏
l=1

ĉl, with

ĉl =

{
(−1)nl (nl+n+rl)!

(n+rl)!
, if n+ 1 + rl > 0,

(|n+1+rl|)!
(|n+1+rl|−nl)!

, if n+ 1 + rl ≤ −nl.
(1.204)

Moreover, if cnx(n)(t0) 6= 0, then the conditions (C1) and (C2) are also necessary.

Proof. By applying the linear di�erential operator de�ned by (1.202) to the right hand side of (1.201),
one obtains

ΠE




N∑

j=0

cjs
−(j+1)x(j)(t0)


 =

N∑

j=0

cjx
(j)(t0) ΠE(s

−(j+1)).

• Su�ciency: the computation is divided into two parts: one concerning the term ΠE(s
−(j+1)) with

j = n, and one concerning the others with j 6= n. Recall �rstly the following formulae: for k ∈ N and
m ∈ Z∗, dk(sm)

dsk
is given by

m!

(m− k)!
sm−k if 0 ≤ k < m, (1.205a)

0 if 0 ≤ m < k, (1.205b)
(−1)k(k −m− 1)!

(−m− 1)!
sm−k if m < 0 ≤ k. (1.205c)

Computation of ΠE(s
−(n+1)): by induction, we want to prove that

Θ∏

l=J

1

sml

dnl

dsnl
s−(n+1) =

1

sn+1+rJ−1

Θ∏

l=J

ĉl (1.206)

holds for any J ∈ {1, . . . ,Θ}, where ĉl =
(−1)nl (nl+n+rl)!

(n+rl)!
, if n + 1 + rl > 0, and ĉl =

(|n+1+rl|)!
(|n+1+rl|−nl)!

, if
n+ 1 + rl ≤ −nl.
Initial step: when J = Θ, using (1.205c) one obtains

1

smΘ

dnΘ

dsnΘ
s−(n+1) =

ĉΘ
sn+1+rΘ−1

, with ĉΘ =
(−1)nΘ(nΘ + n)!

n!
. (1.207)

Assume now that (1.206) holds for 1 < J ≤ Θ, this leads to
Θ∏

l=J−1

1

sml

dnl

dsnl
s−(n+1) =

1

smJ−1

dnJ−1

dsnJ−1
· 1

sn+1+rJ−1

Θ∏

l=J

ĉl.

We distinguish the two following cases in the condition (C1):

1. If n+ 1 + rJ−1 > 0, then by using (1.205c) we get
Θ∏

l=J−1

1

sml

dnl

dsnl
s−(n+1) =

1

sn+1+rJ−2

Θ∏

l=J−1

ĉl, with ĉJ−1 =
(−1)nJ−1(nJ−1 + n+ rJ−1)!

(n+ rJ−1)!
.
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2. If n+ 1 + rJ−1 ≤ −nJ−1, then by using (1.205a) we get

Θ∏

l=J−1

1

sml

dnl

dsnl
s−(n+1) =

1

sn+1+rJ−2

Θ∏

l=J−1

ĉl, with ĉJ−1 =
(|n+ 1 + rJ−1|)!

(|n+ 1 + rJ−1| − nJ−1)!
.

Hence, (1.206) is true for J − 1. Consequently, we conclude by induction that (1.206) is true for
any J ∈ {1, . . . ,Θ}.
Computation of ΠE(s

−(j+1)) with j ∈ J:
For any lj ∈ {1, ...,Θ− 1}, we have

Θ∏

l=lj+1

1

sml

dnl

dsnl
s−(j+1) =

c̃lj

s
j+1+rlj

, with c̃lj ∈ Q.

From the condition (C2), we know that 0 ≤ −(j + 1)− rlj < nlj , then we obtain

ΠE

(
s−(j+1)

)
=

d
nlj

ds
nlj




Θ∏

l=lj+1

1

sml

dnl

dsnl
s−(j+1)


 = 0. (1.208)

Hence, we conclude that

ΠE




N∑

j=0

cjs
−(j+1)x(j)(t0)


 = cnx

(n)(t0)ΠE(s
−(n+1)) = cnx

(n)(t0)
ĉ

sn+1+r0
.

Consequently, we shown that the conditions (C1) and (C2) are su�cient conditions for (1.203) to hold.

• Necessity: we are going to prove that the conditions (C1) and (C2) are also necessary as soon as
cnx

(n)(t0) 6= 0. In order to do this, we assume that (1.203) is true, then we have

N∑

j=0

cjx
(j)(t0)ΠE

(
s−(j+1)

)
= cnx

(n)(t0)
ĉ

sn+1+r0
. (1.209)

By doing similar calculations leading to (1.206), we obtain (without using the conditions (C1) and
(C2)): for 0 ≤ j ≤ N , ΠE

(
s−(j+1)

)
=

c̄j
sj+1+r0

, with c̄j ∈ Q. Thus, (1.209) becomes

∀s ∈ C with <(s) > 0,
∑

j∈J
cjx

(j)(t0)
c̄j

sj+1+r0
+ cnx

(n)(t0)
ĉ− c̄n
sn+1+r0

= 0. (1.210)

Therefore, we obtain that cnx(n)(t0)(ĉ− c̄n) = 0 and cjx
(j)(t0)c̄j = 0 for all j ∈ J. As cjx(j)(t0) 6= 0

for all j ∈ J ∪ {n}, we have ĉ = c̄n and c̄j = 0 for all j ∈ J. Hence, ΠE

(
s−(n+1)

)
= ĉ

sn+1+r0

and ΠE

(
s−(j+1)

)
= 0 for all j ∈ J. Since ΠE

(
s−(n+1)

) 6= 0, s−(n+1) is not annihilated after each
derivation, we conclude that ∀l ∈ {1, . . . ,Θ− 1}, either n+ 1+ rl > 0 or n+ 1+ rl ≤ −nl is true. On
the other hand, s−(j+1) is annihilated for all j ∈ J. Hence, there exists a lj ∈ {1, ...,Θ− 1}, such that
0 < −(j + 1)− rlj < nlj . 2
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We can see in the previous proof that the condition (C2) is used to annihilate all the undesired
terms: cjs

−(j+1)x(j)(t0) in (1.201) for all j ∈ J, and the condition (C1) is used to keep the term
cns

−(n+1)x(n)(t0). In the following proposition, we give a new conditions on the set E such that the
annihilator ΠE is an integral annihilator: the estimator of x(n)(t0) only depends on a unique integral
of the measured signal in the time domain. Before doing so, we propose the following lemma.

Lemma 1.7.40 Let f̂ be the Laplace transform of a function f de�ned by R+, the Laplace transform of
a function of which exists, and ΠE be an operator de�ned by (1.202). We split each ml into two terms:
ml = m̂l + m̄l with m̂l ∈ Z∗ and m̄l ∈ Z for l = 1, · · · ,Θ, except for m̂1 ∈ R∗. Let j = (j1, ..., jΘ) be
a multi-index of length Θ and Ēj = {(nl − jl, m̄l)}Θl=1 be a subset of N× Z, then ΠE can be written as
follow

ΠE

(
f̂
)
=

IΘ∑

jΘ=0

· · ·
I1∑

j1=0

C1
1

sγ1
ΠĒj

(
f̂
)
, (1.211)

where γl =

Θ∑

i=l

m̂i + ji and Cl =
Θ∏
i=l

eji for l = 1, · · · ,Θ, with the values

ejl =





(
nl
jl

) (−1)jl (jl+γl+1−1)!
(γl+1−1)! , if γl+1 > 0,(

nl
jl

) |γl+1|!
(|γl+1|−jl)!

, else,
and Il =

{
nl, if γl+1 > 0,

min(nl, |γl+1|), else,

for l = 1, · · · ,Θ− 1. For l = Θ we have IΘ = 0, ejΘ = 1.

Proof. We prove the following relation by induction: for J = 1, · · · ,Θ,

Θ∏

l=J

1

sml

dnl

dsnl

(
f̂(s)

)
=

IΘ∑

jΘ=0

· · ·
IJ∑

jJ=0

CJ
1

sγJ

Θ∏

l=J

1

sm̄l

dnl−jl

dsnl−jl

(
f̂(s)

)
. (1.212)

Initial step: For J = Θ, we have

1

smΘ

dnΘ

dsnΘ

(
f̂(s)

)
=

1

sm̂Θ

1

sm̄Θ

dnΘ

dsnΘ

(
f̂(s)

)
.

Hence, the relation (1.212) is true for J = Θ with IΘ = 0, CΘ = ejΘ = 1 and γΘ = m̂Θ.
Now assume that the relation (1.212) is true for 1 < J ≤ Θ, this leads to

Θ∏

l=J−1

1

sml

dnl

dsnl

(
f̂(s)

)
=

1

smJ−1

dnJ−1

dsnJ−1
·



IΘ∑

jΘ=0

· · ·
IJ∑

jJ=0

CJ
1

sγJ

Θ∏

l=J

1

sm̄l

dnl−jl

dsnl−jl

(
f̂(s)

)



=

IΘ∑

jΘ=0

· · ·
IJ∑

jJ=0

CJ
1

smJ−1

dnJ−1

dsnJ−1
·
(

1

sγJ

Θ∏

l=J

1

sm̄l

dnl−jl

dsnl−jl

(
f̂(s)

))

=

IΘ∑

jΘ=0

· · ·
IJ∑

jJ=0

CJ
1

smJ−1

nJ−1∑

jJ−1=0

(
nJ−1

jJ−1

)
djJ−1

dsjJ−1

(
1

sγJ

)
dnJ−1−jJ−1

dsnJ−1−jJ−1

(
Θ∏

l=J

1

sm̄l

(
f̂(s)

))
.
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If γJ > 0, we obtain
Θ∏

l=J−1

1

sml

dnl

dsnl

(
f̂(s)

)

=

IΘ∑

jΘ=0

· · ·
IJ∑

jJ=0

CJ

nJ−1∑

jJ−1=0

(
nJ−1

jJ−1

)
(−1)jJ−1(jJ−1 + γJ − 1)!

(γJ − 1)!smJ−1+γJ+jJ−1

dnJ−1−jJ−1

dsnJ−1−jJ−1

(
Θ∏

l=J

1

sm̄l

dnl−jl

dsnl−jl

(
f̂(s)

))

=

IΘ∑

jΘ=0

· · ·
IJ−1∑

jJ−1=0

CJ−1
1

sγJ−1

Θ∏

l=J−1

1

sm̄l

dnl−jl

dsnl−jl

(
f̂(s)

)
,

where IJ−1 = nJ−1, CJ−1 = CJ · ejJ−1 , ejJ−1 =
(nJ−1
jJ−1

) (−1)jJ−1 (jJ−1+γJ−1)!
(γJ−1)! and γJ−1 = γJ + m̂J−1 +

jJ−1 =
Θ∑

i=J−1

m̂i + ji.

If γJ ≤ 0, we obtain
Θ∏

l=J−1

1

sml

dnl

dsnl

(
f̂(s)

)

=

IΘ∑

jΘ=0

· · ·
IJ∑

jJ=0

CJ

min(nJ−1,|γJ |)∑

jJ−1=0

(
nJ−1

jJ−1

) |γJ |!s−(mJ−1+γJ+jJ−1)

(|γJ | − jJ−1)!

dnJ−1−jJ−1

dsnJ−1−jJ−1

(
Θ∏

l=J

1

sm̄l

dnl−jl

dsnl−jl

(
f̂(s)

))

=

IΘ∑

jΘ=0

· · ·
IJ−1∑

jJ−1=0

CJ−1
1

sγJ−1

Θ∏

l=J−1

1

sm̄l

dnl−jl

dsnl−jl

(
f̂(s)

)
,

where IJ−1 = min(nJ−1, |γJ |), CJ−1 = CJ · ejJ−1 , ejJ−1 =
(nJ−1
jJ−1

) γJ !
(γJ−jJ−1)!

and γJ−1 = γJ + m̂J−1 +

jJ−1 =
Θ∑

i=J−1

m̂i + ji.

Hence, the relation (1.212) is true for J − 1. Consequently, we conclude by induction that (1.212)
is true for any J ∈ {1, . . . ,Θ}. Finally, (1.211) holds with J = 1. 2

Remark 4 Here ΠĒj
is an operator that can or not be also an annihilator. The criterion is that

ΠĒj

(
X̂N

)
= %(s)x(n)(t0), holds for some ρ(s).

Proposition 1.7.41 Let X̂N be de�ned in (1.201) and ΠE be the annihilator de�ned in (1.202), where

the ml satis�es the following condition (C3):
Θ∑

l=1

ml > 0. Then, we have

L−1
{
ΠE

(
X̂N

)}
(t) =

∫ t

0
pt,Θ(τ)XN (τ)dτ, (1.213)

where t ∈ D, pt,Θ(τ) =
IΘ∑

jΘ=0

· · ·
I1∑

j1=0

C1
(−1)NΘ

Γ(γ1)
(t−τ)γ1−1 τNΘ with NΘ =

Θ∑

l=1

nl−jl, Il for l = 1, · · · ,Θ,

C1 and γ1 is de�ned in Lemma 1.7.40.
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Proof. We apply Lemma 1.7.40 by taking m̄l = 0 for l = 1, · · · ,Θ and f = XN . As ml = m̂l for
l = 1, · · · ,Θ, we get

ΠE

(
X̂N

)
=

IΘ∑

jΘ=0

· · ·
I1∑

j1=0

C1
1

sγ1
dNΘ

dsNΘ

(
X̂N (s)

)
. (1.214)

Since γ1 =
Θ∑

l=1

ml + jl, the condition (C3) implies that γ1 ≥
Θ∑

l=1

ml > 0. Then, by applying (7.13), we

get

L−1
{
ΠE

(
X̂N

)}
(t) =

IΘ∑

jΘ=0

· · ·
I1∑

j1=0

C1L−1

{
1

sγ1
dNΘ

dsNΘ

(
X̂N (s)

)}
(t)

=

IΘ∑

jΘ=0

· · ·
I1∑

j1=0

C1
(−1)NΘ

(γ1 − 1)!

∫ t

0
(t− τ)γ1−1 τNΘXN (τ)dτ.

2

Now, we can give the following corollary.

Corollary 1.7.42 Let x ∈ CN (I) and ΠE be the integral annihilator de�ned by (1.202) where the set
E satis�es conditions (C1) and (C2) of Proposition 1.7.39 and condition (C3) of Proposition 1.7.41.
Then, a family of estimators for x(n) is given by

∀t0 ∈ I, x̃(n)(t0) =
Γ(r0 + n+ 1)

cn ĉ T r0+n

L∑

i=0

ai

∫ T

0
pT,Θ(τ)x(t0 + βiτ)dτ, (1.215)

where T ∈ D, ĉ is de�ned by (1.204), r0 =
Θ∑

l=1

ml+nl and the polynomial pT,Θ is de�ned in Proposition

1.7.41.

Proof. We start by applying the annihilator ΠE to the relation (1.201) and then to go back into the
time domain. Firstly, by applying Proposition 1.7.41 we get

L−1
{
ΠE

(
X̂N (s)

)}
(t) =

∫ t

0
pt,Θ(τ)XN (τ)dτ. (1.216)

Secondly, by Proposition 1.7.39, we obtain

ΠE




N∑

j=0

cjs
−(j+1)x(j)(t0)


 = cnx

(n)(t0)
ĉ

sn+1+r0
.

As r0 =
Θ∑

l=1

nl +ml ≥
Θ∑

l=1

ml > 0 (condition (C3)), by applying (7.11) we get

L−1



ΠE




N∑

j=0

cjs
−(j+1)x(j)(t0)





 (t) = cn ĉ x

(n)(t0)
tr0+n

Γ(r0 + n+ 1)
. (1.217)
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Finally, since cn 6= 0, we have

x(n)(t0) =
Γ(r0 + n+ 1)

cn ĉ tr0+n

∫ t

0
pt,Θ(τ)XN (τ)dτ, with t ∈ D. (1.218)

Recall that XN (τ) =
L∑

i=0

aixN (t0 + βiτ), then by substituting xN by x in (1.218) we get

x̃(n)(t0) =
Γ(r0 + n+ 1)

cn ĉ tr0+n

L∑

i=0

ai

∫ t

0
pt,Θ(τ)x(t0 + βiτ)dτ. (1.219)

Here, the variable t is the length of the estimation time interval. The equation (1.219) has therefore
to be considered for �xed t, say t = T ∈ D. 2

Remark 5 We can consider a general family of linear di�erential operators de�ned by (1.18), where

Π =
W∑

j=1

ρj ΠEj , with W ∈ N∗, ρj ∈ R∗ and ΠEj being de�ned by (1.202). Moreover, we assume that

the set Ej satis�es the conditions (C1), (C2) and (C3). Such a�ne annihilators help us to estimate
x(n)(t0), which have the following integral form

x̃(n)(t0) =
W∑

j=1

Γ(r0 + n+ 1)

cn ĈW T r0+n

L∑

i=0

ai

∫ T

0
pT,Θ,j(τ)y(t0 + βiτ)dτ, (1.220)

where ĈW =
W∑

j=1

ρj ĉ(j), ĉ(j) and each polynomial pT,Θ,j de�ned by (1.215) is associated to ΠEj .

Three conditions on E are given such that the linear di�erential operator de�ned by (1.202) can
be an integral annihilator. We show in the following proposition that we can build some sets E such
that the conditions (C1), (C2) and (C3) are satis�ed.

Proposition 1.7.43 There exists the sets E = {(nl,ml)}Θl=1 for Θ ≥ 3,Θ ∈ N that meet the conditions
(C1) and (C2) given in Proposition 1.7.39 and the condition (C3) given in Proposition 1.7.41.

Proof. We prove �rstly that there exists the sets E which meet the conditions (C1) and (C2) given in
Proposition 1.7.39. Each of these sets give us an annihilator by annihilating all the undesired terms:
cjs

−(j+1)x(j)(t0) in (1.201) with j 6= n and keeping the term cns
−(n+1)x(n)(t0) at the same time. The

construction of these sets depends on the way of annihilating the undesired terms, but in any case they
can be found. We are going to give such a set.

In order to annihilate the undesired terms, it is necessary to let the degree of s be positive. Hence,
by taking in particular nΘ = 0 and mΘ = −n, we get

1

smΘ

dnΘ

dsnΘ




N∑

j=0

cjs
−(j+1)x(j)(t0)




=c0s
n−1x(t0) + · · ·+ cn−1x

(n−1)(t0) + cns
−1x(n)(t0) + · · ·+ cNs−N−1+nx(N)(t0).

(1.221)
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By taking nΘ−1 = n+k with k ∈ N, we can annihilate the terms cjs−(j+1)x(j)(t0) for j = 0, · · · , n− 1.
We get 0 ≤ −(j + 1)− (nΘ +mΘ) ≤ nΘ−1 for j = 0, · · · , n− 1 and

dnΘ−1

dsnΘ−1

1

smΘ

dnΘ

dsnΘ




N∑

j=0

cjs
−(j+1)x(j)(t0)


 =

N∑

j=n

cj
(−1)n+k(j + k)!

(j − n)!
s−1−j−kx(j)(t0). (1.222)

Then, with the same reason we can annihilate the terms cjs−(j+1)x(j)(t0) for j = n+1, · · · , N by taking
mΘ−1 = −(N +1+ k) and nΘ−2 = N − n. We get 0 ≤ −(j +1)− (nΘ +mΘ + nΘ−1 +mΘ−1) ≤ nΘ−2

for j = n+ 1, · · · , N and

dnΘ−2

dsnΘ−2

Θ∏

i=Θ−1

1

smΘ

dnΘ

dsnΘ




N∑

j=0

cjs
−(j+1)x(j)(t0)


 = cn(−1)n+k(N − n)!(k + n)!x(n)(t0). (1.223)

Utile here we give an annihilator meeting the conditions (C1) and (C2). In order to meet the
condition (C3), we can choose mΘ−2 = |mΘ|+ |mΘ−1|+ µ+ 1 = N + n+ k+ µ+ 2 with −1 < µ ∈ R.
Finally, we construct the set {(nl,ml)}Θl=Θ−2 which meets the conditions (C1), (C2) and (C3). The
associated annihilator is

1

sN+n+k+µ+2

dN−n

dsN−n
sN+1+k dn+k

dsn+k
sn. (1.224)

For 1 ≤ l ≤ Θ− 3, let us take nl = ml = 1, then the conditions (C1), (C2) and (C3) hold and we have

ΠE




N∑

j=0

cjs
−(j+1)x(j)(t0)


 =

cn(−1)n+k+Θ−3(N − n)!(k + n)!x(n)(t0)

sN+n+k+µ+2Θ−4

Θ−3∏

i=1

(N + n+ k + µ+ 2i).

(1.225)
2

If we take Θ = 3 in the previous proof, then the conditions (C1), (C2) and (C3) are satis�ed. For
example, the integral annihilator ΠN,n

k,µ de�ned in (1.54) is parameterized by the set E = {(nl,ml)}3l=1

where m1 = ν, n1 = n + k, m2 = 1, n2 = N − n, m3 = −(N + 1), n3 = 0. It is easy to verify that
This set meets also the conditions (C1), (C2) and (C3).

It is shown in Lemma 1.3.10 that the annihilator ΠN,n
k,µ can be written as an a�ne combination

of di�erent annihilators Πn
kj ,µj

de�ned in (1.20). Inspired by this, let us consider the relation given
in (1.211) where ΠE is an annihilator if E meets conditions (C1), (C2) and (C3). We wonder if the
ΠĒj

are also annihilators similar to the annihilators Πn
kj ,µj

. By assumption, the operators Ēj meet the

conditions (C1) and (C2). Moreover, from (C1) and (C2), as γ1 +
Θ∑

l=1

m̄l ≥
Θ∑

l=1

ml, then the condition

(C3) holds automatically. Consequently, the annihilator ΠE applied to (1.201) with N > n will be an
a�ne annihilator of annihilators ΠĒj

applied to (1.201) with N = n.

1.8 Fractional derivative estimators
In this section, we discuss some estimators for the derivative with fractional order. Firstly, we apply
the algebraic parametric technique to a truncated fractional order Taylor series. Secondly, we apply

81



the Jacobi estimators in the de�nitions of fractional order derivative where we need to calculate the
integer order derivative.

1.8.1 Fractional order Taylor's Formula
It was previously shown that by applying the algebraic parametric technique to the truncated Taylor
series expansion we can give some families of derivative estimators, where the order of the estimated
derivative is an integer. In the subsection, we show that by applying the algebraic parametric technique
to a truncated fractional order Taylor series we can estimate fractional order derivatives.

A generalized Taylor series expansion of fractional order is given in [Jumarie 2006] as follows: let
x ∈ Cn(I) and n < α ≤ n+ 1 with n ∈ N∗, then we have

∀t0 ∈ I, t ∈ Dt0 , x(t0 + t) =

n∑

j=0

tj

j!
x(j)(t0) +

+∞∑

j=1

t(jγ+n)

Γ(jγ + n+ 1)
x(jγ+n)(t0), (1.226)

where γ = α− n.
Then, by using this fractional order Taylor series expansion we can give the following proposition.

Proposition 1.8.44 Let x ∈ Cn(I) and n < α ≤ n + 1 with n ∈ N∗, then a family of anti-causal
estimators for the αth order derivative of x is given by

∀t0 ∈ I, x̃
(α)
t0+

(k, µ, T ) =
(n+ 1)!

Tα

Γ(α− n)

B(α+ 1 + k, n+ µ+ 2)

∫ 1

0
wµ,k(τ)P

(µ,k)
n+1 (τ)x(t0 + Tτ) dτ, (1.227)

where T ∈ Dt0, k ∈ N and −1 < µ ∈ R.

Proof. By taking the truncation of the fractional Taylor series expansion given in (1.226) on R+, we
get

∀t0 ∈ I, t ∈ R+, xα(t0 + t) =

n∑

j=0

tj

j!
x(j)(t0) +

tα

Γ(α+ 1)
x(α)(t0). (1.228)

Applying the Laplace transform to (1.228), we get

x̂α =
n∑

j=0

s−(j+1)x(j)(t0) + s−(α+1)x(α)(t0). (1.229)

Then, by apply the annihilator Πn+1
k,µ de�ned in (1.20) to (1.229) we get

Πn+1
k,µ (x̂α) =

1

sn+µ+2

dn+1+k

dsn+1+k

1

sα−n
x(α)(t0)

= (−1)n+1+kΓ(α+ 1 + k)

Γ(α− n)

1

sn+α+3+k+µ
x(α)(t0),

(1.230)

where k ∈ N and −1 < µ ∈ R. Then by returning to the time domain, we get

(−1)n+1+kΓ(α+ 1 + k)

Γ(α− n)

Tn+α+2+k+µ

Γ(n+ α+ k + µ+ 3)
x(α)(t0)

=
(−1)n+1+k

Γ(n+ µ+ 2)

∫ T

0
(T − τ)n+µ+1τn+k+1x(n+1)

α (t0 + τ)dτ.

(1.231)
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By applying a change of variable τ → Tτ and n+ 1 times integrations by parts, we get

x(α)(t0) =
(−1)(n+1)

Tα

Γ(α− n)

B(α+ 1 + k, n+ µ+ 2)

∫ 1

0

dn+1

dτn+1

{
(1− τ)n+µ+1τn+k+1

}
xα(t0 + Tτ) dτ.

(1.232)

Finally, this proof can be completed by substituting xα in (1.232) by x and applying the Rodrigues
formula to (1.232). 2

Remark 6 If we take α = n+ 1 in (1.227), then it is easy to obtain that

x̃
(α)
t0+

(k, µ, T ) = x̃
(n+1)
t0+

(k, µ, T ), (1.233)

where x̃(n+1)
t0+

(k, µ, T ) are the minimal Jacobi estimators for x(n+1)(t0) given in Proposition 1.2.1. More-
over, if we take the annihilator ΠN+1,n+1

k,µ de�ned in (1.54) with n ≤ N ∈ N, then two families of a�ne
estimators for x̃(α)(t0) can be also given similarly.

1.8.2 Application of Jacobi estimators
In this subsection, we give a family of causal estimators for the fractional order derivative.

Let x ∈ Cn(I) with n ∈ N∗, then the αth (n − 1 < α < n) order derivative of x can be de�ned as
follows

• First method:

∀t0 ∈ I, D
(α)
L x(t0) :=

dn

dtn0

{
1

Γ(n− α)

∫ t0

t0−T

x(s)

(t0 − s)α+1−n
ds

}
, (1.234)

• Second method:
∀t0 ∈ I, D

(α)
R x(t0) :=

1

Γ(n− α)

∫ t0

t0−T

x(n)(s)

(t0 − s)α+1−n
ds, (1.235)

where T ∈ Dt0 .
Denote F (t0) :=

1
Γ(n−α)

∫ t0
t0−T

x(s)
(t0−s)α+1−nds. Hence, we need the nth order derivative values of F

(resp. x) to calculate the αth order derivative of x by using (1.234) (resp. (1.235)). For this, we use
the causal Jacobi estimators. Thus, by using (1.84) we give the following estimators

∀t0 ∈ I, D̃
(α)
L x(t0) : =

1

(−T )n

∫ 1

0
Qκ,µ,n,q,ξ(τ)F (t0 − Tτ)dτ,

=
1

(−T )nΓ(n− α)

∫ 1

0
Qκ,µ,n,q,ξ(τ)

∫ t0−Tτ

t0−Tτ−T

x(s)

(t0 − Tτ − s)α+1−n
ds dτ,

(1.236)

and

∀t0 ∈ I, D̃
(α)
R x(t0) :=

1

Γ(n− α)

∫ t0

t0−T

1

(t0 − s)α+1−n
D

(n)
κ,µ,βT,qx(s− Tξ) ds,

=
1

(−T )nΓ(n− α)

∫ t0

t0−T

1

(t0 − s)α+1−n

∫ 1

0
Qκ,µ,n,q,ξ(τ)x(−Tτ + s)dτ ds,

(1.237)
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where Qκ,µ,n,q,ξ is given by (1.85) with κ, µ ∈]− 1,+∞[, q ∈ N and ξ ∈ [0, 1].
By applying a change of variable in (1.236): s → s− Tτ , we get

∀t0 ∈ I, D̃
(α)
L x(t0) : =

1

(−T )nΓ(n− α)

∫ 1

0
Qκ,µ,n,q,ξ(τ)

∫ t0

t0−T

x(s− Tτ)

(t0 − s)α+1−n
ds dτ. (1.238)

Hence, if κ, µ ∈ N, then Qκ,µ,n,q,ξ is a polynomial. By applying the Fubini's theorem it is easy to get
that D̃

(α)
L x(t0) = D̃

(α)
R x(t0). Let us denote D

(α)
κ,µ,T,qx(t0) := D̃

(α)
L x(t0) = D̃

(α)
R x(t0), then we give the

following proposition.

Proposition 1.8.45 Let x ∈ Cn(I) and n − 1 < α ≤ n with n ∈ N∗, then a family of estimators for
the αth order derivative of x is given by

∀t0 ∈ I, D
(α)
κ,µ,T,qx(t0) =

(−1)n

TαΓ(n− α)

∫ 1

−1
pκ,µ,n,q,ξ(u)x(Tu+ t0 − T )du, (1.239)

where

pκ,µ,n,q,ξ(u) =

q∑

i=0

Cκ,µ,n,iP
(µ+n,κ+n)
i (ξ)

n+i∑

j=0

(
n+ i+ µ

j

)(
n+ i+ κ

n+ i− j

)
(−1)n+i−jIκ,µ,i,j(u), (1.240)

with Iκ,µ,i,j(u) =

µ+n+i−j∑

l=0

κ+j∑

k=0

(
µ+ n+ i− j

l

)(
κ+ j

k

)
B(µ+2n+ i− j− l−α−1, κ+ j−k)(−1)kul+k,

T ∈ Dt0, κ, µ ∈ N, q ∈ N and ξ ∈ [0, 1].

Lemma 1.8.46 Let κ̂, µ̂ ∈ N, then we have the following integral value
∫ 1

0

wµ̂,κ̂(v − u)

(1− v)α+1−n
dv =

µ̂∑

i=0

κ̂∑

j=0

(
µ̂

i

)(
κ̂

j

)
B(µ̂− i+ n− α, κ̂− j + 1)(−1)j ui+j . (1.241)

Proof. By using the Binomial theorem, we get

wµ̂,κ̂(v − u)

(1− v)α+1−n
= (1− v + u)µ̂(v − u)κ̂(1− v)n−α−1

=

(
µ̂∑

i=0

(
µ̂

i

)
(1− v)µ̂−i+n−α−1ui

)


κ̂∑

j=0

(
κ̂

j

)
vκ̂−j(−u)j




=

µ̂∑

i=0

κ̂∑

j=0

(
µ̂

i

)(
κ̂

j

)
(1− v)µ̂−i+n−α−1vκ̂−j(−1)jui+j .

(1.242)

Then, this proof can be completed by using the classical beta function. 2

Proof of Proposition 1.8.45. By applying a change of variable in (1.238): s → sT + (t0 − T ), we
get

∀t0 ∈ I, D̃α
Lx(t0) =

(−1)n

TαΓ(n− α)

∫ 1

0
Qκ,µ,n,q,ξ(τ)

(∫ 1

0

x(sT + (t0 − Tτ − T ))

(1− s)α+1−n
ds

)
dτ. (1.243)
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By apply the following change of variables: (τ, s) = (v − u, v) = Φ(u, v) in (1.243), we get

∀t0 ∈ I, D̃α
Lx(t0) =

(−1)n

TαΓ(n− α)

∫ 1

−1
Qκ,µ,n,q,ξ(v − u)

(∫ 1

0

x(Tu+ t0 − T )

(1− v)α+1−n
|det(JΦ)| dv

)
du

=
(−1)n

TαΓ(n− α)

∫ 1

−1
x(Tu+ t0 − T )

(∫ 1

0

Qκ,µ,n,q,ξ(v − u)

(1− v)α+1−n
dv

)
du.

(1.244)

Using (1.42) in (1.85) we get

Qκ,µ,n,q,ξ(τ) =

q∑

i=0

Cκ,µ,n,iP
(µ+n,κ+n)
i (ξ)

n+i∑

j=0

(
n+ i+ µ

j

)(
n+ i+ κ

n+ i− j

)
(−1)n+i−jwµij ,κj (τ), (1.245)

where µij = µ+ n+ i− j and κj = κ+ j. Then, this proof can be completed by using Lemma 1.8.46.
2

1.9 Conclusion
In this chapter, by taking truncated Taylor series expansion and truncated Jacobi orthogonal series
expansion we have given some di�erent derivative estimators. The associated truncated term errors
have been studied by giving some corresponding error bounds which showed the parameters' in�uence
on truncated term errors. Let us recall these derivative estimators in Table 1.9, where κ, µ ∈]−1,+∞[,
T ∈ Dt0 , q ∈ N, ξ ∈ [0, 1], λ ∈ R+/{1} and ξq is one root of the Jacobi polynomial P (µ+n,κ+n)

q+1 . In
the following chapter, we will study our derivative estimators in the case where the smooth function
is corrupted by a noise.
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Chapter 2

Error analysis for the Jacobi estimators
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2.1 Introduction

2.1.1 Context

In practical identi�cation, an observed signal is usually obtained from a sensor, which is quantitized
and discretized. If the sensor is not ideal, a random noise can be observed, the amplitude of which
can be assumed to be �nite. Hence, we consider in this chapter the numerical di�erentiation for noisy
signals.
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2.1.2 Noise error contribution
We assume that xδ = x+$ is a noisy function on I, where x ∈ Cn(I) and $ is an additive corrupting
noise which is usually a rapid oscillation. From now on, we consider the noisy function xδ in the Jacobi
estimators. Then, it is su�cient to replace x(t0 + βT ·) in (1.84) by xδ(t0 + βT ·) so as to estimate
x(n)(t0). Then, we have the following de�nition.

De�nition 3 Let xδ is a noisy function on I, then, for any t0 ∈ I a family of Jacobi estimators for
x(n)(t0) is de�ned as follows

D
(n)
κ,µ,βT,qx

δ(βTξ + t0) =
1

(βT )n

∫ 1

0
Qκ,µ,n,q,ξ(τ)x

δ(t0 + βTτ) dτ, (2.1)

where T ∈ Dt0, β = ±1, Qκ,µ,n,q,ξ is de�ned by (1.85) with κ, µ ∈] − 1,+∞[, q ∈ N and ξ is a �xed
value on [0, 1].

Hence, the associated estimation errors are given as follows

D
(n)
κ,µ,βT,qx

δ(βTξ + t0)− x(n)(t0)

=
(
D

(n)
κ,µ,βT,qx

δ(βTξ + t0)−D
(n)
κ,µ,βT,qx(βTξ + t0)

)
+

(
D

(n)
κ,µ,βT,qx(βTξ + t0)− x(n)(t0))

)

=eβ$(t0;n, κ, µ, T, ξ, q) + eβRn
(t0;κ, µ, T, ξ, q).

(2.2)

Hence, the Jacobi estimators D(n)
κ,µ,βT,qx

δ(βTξ + t0) are corrupted by two sources of errors:

• the truncated term error eβRn
(t0;κ, µ, T, ξ, q),

• the noise error contribution eβ$(t0;n, κ, µ, T, ξ, q).

Now, we assume that the noisy function x is given in discrete case. Let xδ(ti) = x(ti) +$(ti) be a
noisy measurement of x with an equidistant sampling period Ts.

Since xδ is a discrete measurement, we need to use a numerical integration method to approximate
the integral value in (1.84) for Jacobi estimators. Let ti = i

m and wi > 0 for i = 0, . . . ,m with
m = T

Ts
∈ N (except for w0 ≥ 0 and wm ≥ 0) be respectively the abscissas and the weights for a given

numerical integration method. Weight w0 (resp. wm) is set to zero in order to avoid the in�nite values
when κ (resp. µ) is negative. Then, we have

D
(n)
κ,µ,βT,qx

δ(βTξ + t0) ≈ 1

(βT )n

m∑

i=0

wi

m
Qκ,µ,n,q,ξ(ti)x

δ(t0 + βTti). (2.3)

The noise error contribution eβ$(t0;κ, µ, T, ξ, q) can be written in discrete cases as follows

eβ$,m(t0;n, κ, µ, T, ξ, q) :=
1

(βT )n

m∑

i=0

wi

m
Qκ,µ,n,q,ξ(ti)$(t0 + βTti). (2.4)

This numerical integration method also implies a numerical error. Hence, the Jacobi estimators lead
to

D
(n)
κ,µ,βT,qx

δ(βTξ + t0) = x(n)(t0) + em(t0) + eβRn,m
(t0;κ, µ, T, ξ, q) + eβ$,m(t0;n, κ, µ, T, ξ, q), (2.5)
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where eβRn,m
(t0;κ, µ, T, ξ, q) is the bias term error in discrete case and em(t0) is the numerical integration

error.
The truncated term error was studied in the previous chapter, we study in this chapter the noise

error contribution only for the causal and anti-causal Jacobi estimators. The ones for the central
Jacobi estimators and the Richardson-Jacobi estimators (central or not) can be similarly studied. In
Section 2.2, we recall the result of nonstandard analysis of noise given in [Fliess 2006]. In Section
2.3, the noise $ is a bounded and integrable function such as biased sinusoidal functions with high
frequency. In Section 2.4, the noise $ is a non-independent stochastic process such as the Brownian
process and the Poisson process, which is bounded with certain probability and integrable in the sense
of convergence in mean square. In Section 2.4, the noise $ is an independent stochastic process such
as the White Gaussian noise and the Poisson noise. In Section 2.6, we give some numerical simulations
to demonstrate the e�ciency and the stability of Jacobi estimators.

2.2 Nonstandard analysis of noise
Thanks to the nonstandard formalization of fast oscillating functions, due to P. Cartier and Y. Perrin
[Cartier 1995], M. Fliess proposed in [Fliess 2006, Fliess 2008] an appropriate mathematical framework
for the algebraic parametric techniques methods, which exhibit good robustness properties with re-
spect to corrupting noises, without the need of knowing their statistical properties. In other words,
to assume that the noise is Gaussian, or that its statistics are known, is not required at all. This
assumption is common in other well-known methods like maximum likelihood, minimum least squares
or Kalman �ltering approach to parameter estimation. More precisely, according to the nonstandard
theory of noise in [Fliess 2006], the noise $ is a S-integrable fast oscillating. In this case, xδ is S-
integrable, i.e. the sum of the Lebesgue integrable function x and $. According to Proposition 3.2 in
[Fliess 2006], by choosing an appreciable length T for integration window, the noise error contribution
eβ$(t0;n, κ, µ, T, ξ, q) can be very small even for an unbounded noise. Nevertheless, when compared
to classical approaches in communication engineering (see, e.g., [Proakis 2001]), a weakness of these
methods was a lack of any precise error analysis, when they are implemented in practice. To carry out
such analysis and comparison, we only consider here often bounded noises which are in practice the
most frequent situation we encounter. However, as mentioned after we can deal with noises �polynomial
in time�.

2.3 Integrable noises
In this section, we assume that the noise $ is a bounded and integrable function, which is written as
follows

∀ t ∈ I, $(t) = %(t) +$0(t), (2.6)

where %(t) =
n−1∑
j=0

νj t
j and $0 is a bounded noise with a noise level δ i.e. δ = sup

t∈I
|$0(t)|. Then,

according to [Fliess 2003a, Fliess 2004a] the polynomial % of degree n−1 is an (n−1)th order structured
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perturbation which, like a polynomial perturbation of unknown amplitude, is solutions of a given
homogeneous linear di�erential equation, and $0 is an unstructured noise, which is understood as high
frequency perturbations.

We show in the following lemma that the (n−1)th order structured perturbation can be annihilated
in the estimation for nth order derivatives by Jacobi estimators.

Lemma 2.3.47 Let eβ% (t0;n, κ, µ, T, ξ, q) be the noise error contribution due to an (n − 1)th order
structured perturbation for the Jacobi estimator D

(n)
κ,µ,βT,qx

δ(βTξ + t0) de�ned in (2.1), then we have

eβ% (t0;n, κ, µ, T, ξ, q) :=
1

(βT )n

∫ 1

0
Qκ,µ,n,q,ξ(τ) %(t0 + βTτ) dτ = 0. (2.7)

Proof. By using the orthogonality of the Jacobi polynomials with the expression of Qκ,µ,n,q,ξ given in
(1.85), we obtain that

∫ 1

0
τ j Qκ,µ,n,q,ξ(τ) dτ = 0, for any j ∈ {0, . . . , n− 1}. (2.8)

Then, this proof can be easily completed. 2

We study in the previous chapter the convergence rate for the Jacobi estimators, which is studied
in the following proposition in the noise case.
Proposition 2.3.48 [Liu 2011a] Let xδ be a noisy function where x ∈ Cn+1+q(I) (q ∈ N) and noise
$ is given in (2.6). Assume that there exists Mn+1+q ∈ R∗

+ such that
∥∥x(N+1)

∥∥
∞ ≤ Mn+1+q, then we

have ∥∥∥D(n)
κ,µ,βT,qx

δ(βTξ + t0)− x(n)(t0 + βTξ)
∥∥∥
∞

≤ MN+1Cκ,µ,n,q,ξT
q+1 +Eκ,µ,n,q,ξ

δ

Tn
, (2.9)

where Cκ,µ,n,q,ξ is given in (1.91) and Eκ,µ,n,q,ξ =
∫ 1
0 |Qκ,µ,n,q,ξ(τ)| dτ. Moreover, if we choose T =[

nEκ,µ,n,q,ξ

(q+1)MN+1Cκ,µ,n,q,ξ
δ
] 1

n+q+1 , then we have
∥∥∥D(n)

κ,µ,βT,qx
δ(βTξ + t0)− x(n)(t0 + βTξ)

∥∥∥
∞

= O(δ
q+1

n+1+q ). (2.10)

Proof. By applying Lemma 2.3.47, the noise error contributions for D(n)
κ,µ,βT,qx

δ(βTξ+t0) are bounded
by ∥∥∥D(n)

κ,µ,βT,qx
δ(βTξ + t0)−D

(n)
κ,µ,βT,qx(βTξ + t0)

∥∥∥
∞

=
∥∥∥D(n)

κ,µ,βT,q

[
xδ(βTξ + t0)− x(βTξ + t0)

]∥∥∥
∞

≤ δ

Tn

∫ 1

0
|Qκ,µ,n,q,ξ(τ)| dτ.

Then, by using (1.91) we get∥∥∥D(n)
κ,µ,βT,qx

δ(βTξ + t0)− x(n)(t0 + βTξ)
∥∥∥
∞

≤
∥∥∥D(n)

κ,µ,βT,qx
δ(βTξ + t0)−D

(n)
κ,µ,βT,qx(βTξ + t0)

∥∥∥
∞

+
∥∥∥D(n)

κ,µ,βT,qx(βTξ + t0)− x(n)(t0 + βTξ)
∥∥∥
∞

≤ MN+1Cκ,µ,n,q,ξT
q+1 + Eκ,µ,n,q,ξ

δ

Tn
,
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where Eκ,µ,n,q,ξ =
∫ 1
0 |Qκ,µ,n,q,ξ(τ)| dτ.

Let us denote the error bound by ψ(T ) = MN+1Cκ,µ,n,q,ξT
q+1+Eκ,µ,n,q,ξ

δ
Tn . Consequently, we can

calculate its minimum value. It is obtained for T ∗ =
[

nEκ,µ,n,q,ξ

(q+1)Cκ,µ,n,q,ξ
δ
] 1

n+q+1 and

ψ(T ∗) =
n+ 1 + q

q + 1

(
q + 1

n

) n
n+1+q

C
n

n+1+q

κ,µ,n,q,ξE
q+1

n+1+q

κ,µ,n,q,ξδ
q+1

n+1+q . (2.11)

Then, the proof is completed. 2

Let us remark that the error bound Eκ,µ,n,q,ξ
δ
Tn obtained in the previous proof depends on the

parameters κ, µ, T and ξ which can help us in minimizing the noise error contributions. From the
previous chapter, we extend the values of κ, µ from N to ]− 1,+∞[. Hence, we obtain a higher degree
of freedom so as to minimize the noise e�ects on our estimators, as well as the minimum value ψ(T ∗)
obtained in (2.11).

It is clear that we can increase the value of T to decrease the the value of Eκ,µ,n,q,ξ
δ
Tn so as to

decrease the noise error contributions for Jacobi estimators. Consequently, according to the expression
of Richardson-Jacobi estimators we can increase the value of λ so as to decrease the associated noise
error contributions.

If we take q = 0 in the previous proposition, then the convergence rate for the minimal estimators
D

(n)
κ,µ,βTx

δ(t0) is equal to O(δ
1

n+1 ) as T → 0. If we take ξ = 0 in the previous proposition, then the
convergence rate for the estimators D

(n)
κ,µ,βT,qx

δ(t0) is equal to O(δ
q+1

n+1+q ) as T → 0. In Proposition
1.3.17, we improve the convergence rate from O(T ) to O(T q+1) (q ∈ N) for the exact function x

by taking an a�ne combination of minimal estimators of x(n). Here, the convergence rate is also
improved for noisy functions. It passes from O(δ

1
n+1 ) to O(δ

q+1
n+1+q ) if we choose T = c δ

1
n+1+q , where

c is a constant.
Similarly, we can calculate the convergence rate for noisy functions in the other cases, where the

value of ξ is equal to the smallest root of the Jacobi polynomial P (µ+n,κ+n)
q+1 by using Corollary 1.3.18,

the function x belongs to the Beppo-Levi space by using Proposition 1.4.21.
Since there is a numerical error in the discrete case, we always set the value of T larger than the

optimal one calculated in the previous proof.

2.4 Non-independent stochastic process noises
2.4.1 Integrability of stochastic process
In this section, we assume that the noise$ is a continuous parameter stochastic process (see [Parzen 1962]).
Before analyzing the noise error contribution of such noises, let us study the existence of these integrals
in the expressions of Jacobi estimators. As the function xδ is the sum of x and the noise $, the Jacobi
estimators are well de�ned if and only if the noise $ is integrable. Indeed, according to (1.85), if $
is integrable then integrability of wµ,κ(·)$(t0 + βT ·) holds for µ, κ ∈] − 1,+∞[ and T ∈ Dt0 with
β = ±1. Thus, in that case, the integrals in the Jacobi estimators exist. The next result (Lemma
2.4.49) proves the existence of these integrals and thus justi�es (1.84), as soon as the integral are un-
derstood in the sense of convergence in mean square (see Proposition 2.4.50). For this, the stochastic
process {$(τ), τ ≥ 0} should satisfy the following condition
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(C1) : {$(τ), τ ≥ 0} is a continuous parameter stochastic process with �nite second moments, whose
mean value function and covariance kernel are continuous functions.

Lemma 2.4.49 [Liu 2011c] Let {$(τ), τ ≥ 0} be a stochastic process satisfying condition (C1). Then
for any t0 ∈ I and T ∈ Dt0, the integral

∫ 1
0 wµ,κ(τ)$(t0+Tτ)dτ (with µ, κ ∈]−1,+∞[) is well de�ned

as a limit in mean square of the usual approximating sum of the following form
∫ 1

0
Y (τ)dτ = lim

m→∞

m∑

l=1

(τl − τl−1)Yl, (2.12)

where Y (τ) = wµ,κ(τ)$(t0 + Tτ), Yl = Y (ξl) for any ξl ∈]τl−1, τl[ and 0 = τ0 < τ1 < · · · < τm = 1 is
a subdivision of the interval ]0, 1[, such that max

l=1,··· ,m
(τl − τl−1) tends to 0 when m tends to in�nite.

Proof. For any �xed t0 ∈ D, it was shown in [Loève 1963] (p. 472) that if {Y (τ), 0 < τ < 1}, where
Y (τ) = wµ,κ(τ)$(t0 + Tτ), is a continuous parameter stochastic process with �nite second moments,
then a necessary and su�cient condition such that the family of approximating sums on the right-
hand side of (2.12) has a limit in the sense of convergence in mean square is that the double integral∫ 1
0

∫ 1
0 E[Y (s)Y (τ)] ds dτ exists.
Since for any τ ∈]0, 1[, (1 − τ)α τβ < ∞, and {$(τ), τ ≥ 0} is a continuous parameter stochastic

process with �nite second moments, so does {Y (τ), 0 < τ < 1} for any t0 ∈ I. Moreover, since the mean
value function and covariance kernel of$(τ) are continuous functions, so does E[$(t0+Tτ)$(t0+Ts)]

for all τ, s ∈ [0, 1]. Hence, E[$(t0 + Tτ)$(t0 + Ts)] is bounded for all τ, s ∈ [0, 1].
Consequently,

∫ 1
0

∫ 1
0 wµ,κ(τ)wµ,κ(s)E[$(t0 + Tτ)$(t0 + Ts)] ds dτ exists when κ, µ ∈] − 1,+∞[,

which implies that (2.12) holds. 2

If we take xδ instead of $ in the previous lemma, then we can obtain the following proposition.

Proposition 2.4.50 [Liu 2011c] If x ∈ Cn(I), and the noise $ satis�es condition (C1), then for any
t0 ∈ I, the integrals in the Jacobi estimators exist in the sense of convergence in mean square.

2.4.2 Error bounds for noise error contribution
From now on, we can investigate the noise error contribution for the Jacobi estimator. To simplify our
notations, we denote eβ$(t0;n, κ, µ, T, ξ, q) by eβT$ (t0). However, $ satisfying condition (C1) is usually
not bounded. In order to study the convergence rate as it is done in Proposition 2.3.48, we use the
Bienaymé-Chebyshev inequality to give an error bounds for this noise error. Then, we have for any
real number γ > 0

Pr

(∣∣∣eβT$ (t0)− E[eβT$ (t0)]
∣∣∣ < γ

√
V ar[eβT$ (t0)]

)
> 1− 1

γ2
, (2.13)

i.e. the probability for eβT$ (t0) to be within the interval ]Ml ,Mh[ is higher than 1 − 1
γ2 , where

Ml = E[eβT$ (t0)]− γ

√
V ar[eβT$ (t0)] and Mh = E[eβT$ (t0)] + γ

√
V ar[eβT$ (t0)]. Then, we give two error

bounds as follows
Ml

pr
< eβT$ (t0)

pr
< Mh, (2.14)
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where a
pr
< b means that the probability for a real number b to be larger than an other real number a

is equal to pr with pr > 1− 1
r2
. Thus, we have

∣∣∣eβT$ (t0)
∣∣∣ pr
< Mmax, (2.15)

where Mmax = max(|Ml|, |Mh|). Consequently, we can use Mmax in Proposition 2.3.48 as the error
bound for the noise error part so as to study the convergence rate for the Jacobi estimators.

In order to obtain these bounds we need to compute the mean and variance of eβT$ (t0). To simplify
our notations, we denote the function Qκ,µ,n,q,ξ associated to the Jacobi estimator by Q. Then by
applying Theorem 3A in [Parzen 1962] (p. 79) the means, variances and covariances of the noise error
contributions for the Jacobi estimator are given as follows

E
[
eβT$ (t0)

]
=

1

(βT )n

∫ 1

0
Q(τ) E [$(t0 + βTτ)] dτ, (2.16)

Cov
[
eβT1
$ (t0), e

βT2
$ (t0)

]
=

1

Tn
1 T

n
2

∫ 1

0

∫ 1

0
Q(s)Q(τ)Cov [$(t0 + βT1s), $(t0 + βT2τ)] ds dτ, (2.17)

V ar
[
eβT$ (t0)

]
= Cov

[
eβT$ (t0), e

βT
$ (t0)

]
, (2.18)

where T, T1, T2 ∈ Dt0 .
By using Lemma 2.3.47, we show in the following theorem that the Jacobi estimator can deal with a

large class of noises for which the mean and covariance are polynomials in time satisfying the following
conditions

(C2) : ∀(t0 + τ) ∈ I, the following holds

E[$(t0 + τ)] =
n−1∑

i=0

νi t
k1(i)
0 τ i +E[$(τ)], (2.19)

Cov[$(t0 + s), $(t0 + τ)] =

n1∑

i=0

ηi t
k2(i)
0 τ i

n2∑

i=0

η′i t
k3(i)
0 si + Cov[$(s), $(τ)], (2.20)

where k1(i) ∈ N, k2(i) ∈ N, k3(i) ∈ N, νi ∈ R, ηi ∈ R, η′i ∈ R and n1 ∈ N, n2 ∈ N such that
min(n1, n2) ≤ n− 1.

(C3) : ∀τ ∈ I, the following holds

E[$(τ)] =

n−1∑

i=0

ν̄i τ
i, (2.21)

Cov[$(s), $(τ)] =

n1∑

i=0

η̄i τ
i

n2∑

i=0

η̄′i s
i, (2.22)

where ν̄i ∈ R, η̄i, η̄′i ∈ R and min(n1, n2) ≤ n− 1

Theorem 2.4.51 [Liu 2011c] Let eβT$ (t0) be the noise error contribution for the Jacobi estimator
D

(n)
κ,µ,βT,qx

δ(βTξ+t0) where the noise {$(τ), τ ≥ 0} satis�es conditions (C1) and (C2). If n ∈ N∗, then
the mean, variance and covariance of eβT$ (t0) do not depend on t0. If in addition the noise {$(τ), τ ≥ 0}
satis�es conditions (C3) then E[eβT$ (t0)] = 0, Cov[eβT1

$ (t0), e
βT2
$ (t0)] = 0 and V ar[eβT$ (t0)] = 0.
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Proof. Then by applying (2.8), (2.16) and (2.17) with the conditions given in (2.19) and (2.20) we
obtain

E
[
eβT$ (t0)

]
=

1

(βT )n

∫ 1

0
Q(τ)E [$(βTτ)] dτ, (2.23)

Cov
[
eβT1
$ (t0), e

βT2
$ (t0)

]
=

1

Tn
1 T

n
2

∫ 1

0

∫ 1

0
Q(τ)Q(s)Cov [$(βT1τ), $(βT2s)] ds dτ. (2.24)

Consequently the mean and covariance of eβT$ (t0) do not depend on t0. If we take T1 = T2 in (2.24), then

the variance of eβT$ (t0) do not depend on t0. Moreover, if E[$(τ)] =
n−1∑

i=0

ν̄i τ
i, then by applying (2.8)

to (2.23), we obtain E[eβT$ (t0)] = 0. If Cov[$(s), $(τ)] =

n1∑

i=0

η̄i τ
i

n2∑

i=0

η̄′i s
i with min(n1, n2) ≤ n − 1

then by applying (2.8) to (2.24), we obtain Cov[eβT1
$ (t0), e

βT2
$ (t0)] = 0. Then if we take T1 = T2 in

(2.24), we get V ar[eβT$ (t0)] = 0. 2

From which the following important theorem is obtained.

Theorem 2.4.52 [Liu 2011c] Let eβT$ (t0) be the noise error contribution for the Jacobi estimator
D

(n)
κ,µ,βT,qx

δ(βTξ + t0) where the noise {$(τ), τ ≥ 0} satis�es conditions (C1) to (C3), then

eβT$ (t0) = 0 almost surely. (2.25)

Proof. If the noise {$(τ), τ ≥ 0} satis�es conditions (C1) to (C3), then we have E[eβT$ (t0)] = 0 and
V ar[eβT$ (t0)] = 0. Since

E

[(
eβT$ (t0)

)2
]
= V ar

[
eβT$ (t0)

]
+

(
E
[
eβT$ (t0)

])2
,

we get E
[(

eβT$ (t0)
)2

]
= 0. Consequently, we have eβT$ (t0) = 0 almost surely.

2

Two stochastic processes, the Wiener process (also known as the Brownian motion) and the Poisson
process (cf [Parzen 1962]), play a central role in the theory of stochastic processes. These processes
are valuable, not only as models of many important phenomena, but also as building blocks to model
other complex stochastic processes. They are characterized by:

• let {W (t), t ≥ 0} be the Wiener process with parameter σ2, then

E [W (t)] = 0, Cov [W (t),W (s)] = σ2min(t, s); (2.26)

• let {N(t), t ≥ 0} be the Poisson process with intensity ν ∈ R+, then

E [N(t)] = νt, Cov [N(t), N(s)] = νmin(t, s). (2.27)

Thus, these processes satisfy conditions (C1) and (C2). Hence, we can characterize the noise error
contributions due to these two stochastic processes for the Jacobi estimators, and calculate the corre-
sponding means and variances. If the noise is a Wiener process, then it is clear that E[eβT$ (t0)] = 0. If
the noise is a Poisson process, then we have
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Proposition 2.4.53 [Liu 2011c] The mean of the noise error contribution due to a Poisson process
for the Jacobi estimator is given by





E
[
eβT$ (t0)

]
= 0, if n ≥ 2,

E
[
eβT$ (t0)

]
= ν, if n = 1.

(2.28)

Proof. For n ≥ 2, this can be simply proven by using Theorem 2.4.51. Thus we only need to compute
the mean of the noise error contribution for the estimates of ẋ. Let n = 1 in (1.29), then the minimal
estimators are given by

D
(1)
κ,µ,βTx

δ(t0) =
1

βT

∫ 1

0
Q(τ) xδ(βTτ + t0) dτ, (2.29)

where Q(τ) = 1
B(κ+2,µ+2) ((µ+ κ+ 2)τ − (κ+ 1)) (1− τ)µτκ. Then, according to (2.23) we obtain

E
[
eβT$ (t0)

]
= ν

∫ 1

0
τ Q(τ) dτ.

By using integration by parts and the classical Beta function, we obtain E
[
eβT$ (t0)

]
= ν.

According to Proposition 1.3.14, we can deduce that the noise error contribution for the a�ne
Jacobi estimator is an a�ne combination of the ones for the minimal Jacobi estimators. Thus, by
using (1.80) this proof can be completed. 2

Now, we calculate the variance. Since the covariance kernels of the Wiener process and the Poisson
process are determined by the same function min(·, ·), the variance of the noise error contributions
due to a Wiener process or a Poisson process for the Jacobi estimators is given by (Using (2.24) with
T = T1 = T2)

V ar
[
eβT$ (t0)

]
=

η

T 2n

∫ 1

0

∫ 1

0
Q(τ)Q(s) min(βTs, βTτ) ds dτ.

Using the symmetry property of function min(·, ·) and the fact that
∫ 1
τ Q(s) ds = − ∫ τ

0 Q(s) ds, we
obtain

V ar
[
eβT$ (t0)

]
=

2η

T 2n−1

∫ 1

0
Q(τ) τ

∫ 1

τ
Q(s) ds dτ. (2.30)

Let us denote by eβ$(t0;n, κ, µ) as the noise error contribution in the minimal Jacobi estimators
given by (1.29). Then, we have

V ar
[
eβ$(t0;n, κ, µ)

]
=

2η

T 2n−1

∫ 1

0
Qn(τ) τ

∫ 1

τ
Qn(s) ds dτ, (2.31)

where Qn(τ) =
n!

(βT )n
wµ,κ(τ)P

(µ,κ)
n (τ)

B(n+κ+1,µ+n+1) with T ∈ Dt0 , µ, k ∈]− 1,+∞[.
By applying the Rodrigues formula, we get

∫ 1

0
wµ,κ+1(τ)P

(µ,κ)
n (τ)

∫ 1

τ
wµ,κ(s)P

(µ,κ)
n (s)ds dτ

=
(−1)n

n!

∫ 1

0
wµ,κ+1(τ)P

(µ,κ)
n (τ)

∫ 1

τ
w

(n)
µ+n,κ+n(s)ds dτ

=
1

n

∫ 1

0
w2µ+1,2κ+2(τ)P

µ,κ
n (τ)Pµ+1,κ+1

n−1 (τ) dτ.
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Then, we obtain

V ar
[
eβ$(t0;n, κ, µ)

]
=

2η n!(n− 1)!

T 2n−1B2(κ+ n+ 1, µ+ n+ 1)
I(µ, κ, n). (2.32)

with
I(µ, κ, n) =

∫ 1

0
w2µ+1,2κ+2(τ)P

µ,κ
n (τ)Pµ+1,κ+1

n−1 (τ) dτ. (2.33)

Let us stress that V ar
[
eβ$(t0;n, κ, µ)

]
∼ 1

T 2n−1 .
Let us denote by eβ$(t0;n, κ, µ, q) as the noise error contribution in the a�ne Jacobi estimators

D
(n)
κ,µ,βT,qx

δ(βTξ + t0) given by Corollary 1.3.15 with q = 1. For n = 1, we have the following results:

Proposition 2.4.54 [Liu 2011c] The variances of the noise error contributions for the Jacobi estima-
tors of the �rst order derivative of x are given by

V ar
[
eβ$(t0; 1, κ, µ)

]
=

2η

T

µ+ 1

2µ+ 2κ+ 5

B(2µ+ 2, 2κ+ 3)

B2(κ+ 2, µ+ 2)
, (2.34)

for minimal estimators and by

V ar
[
eβ$(t0; 1, κ, µ, 1)

]
=

λ2
κ,µ,n,ξ

2η

T

µ+ 2

2µ+ 2κ+ 7

B(2µ+ 4, 2κ+ 3)

B2(κ+ 2, µ+ 3)

+ λ̂2
κ,µ,n,ξ

2η

T

µ+ 1

2µ+ 2κ+ 7

B(2µ+ 2, 2κ+ 5)

B2(κ+ 3, µ+ 2)

+ λκ,µ,n,ξλ̂κ,µ,n,ξ
2η

T

B(2µ+ 4, 2κ+ 4)

B(κ+ 2, µ+ 3)B(κ+ 3, µ+ 2)

(2.35)

for a�ne estimators D(n)
κ,µ,βT,qx

δ(βTξ+ t0) with q = 1, where λκ,µ,n,ξ = (κ+n+2)− (2n+κ+µ+3)ξ

and λ̂κ,µ,n,ξ = 1− λκ,µ,n,ξ. The value η is equal to σ2, if the noise is a Wiener process, and η is equal
to ν, if the noise is a Poisson process.

Proof. By using (2.32) with

I(µ, κ, n = 1) =
(µ+ 1)B(2µ+ 2, 2κ+ 3)

2µ+ 2κ+ 5
,

we get the desired result (2.34). Similarly, we can obtain V ar
[
eβ$(t0; 1, κ, µ, 1)

]
by using

eβ$(t0; 1, κ, µ, 1) = λκ,µ,n,ξe
β
$(t0; 1, κ, µ+ 1) + λ̂κ,µ,n,ξe

β
$(t0; 1, κ+ 1, µ).

2

As a consequence, since E[eβ$(t0; 1, κ, µ)] = E[eβ$(t0; 1, κ, µ, 1)] = ν for a Wiener process (ν = 0)
or Poisson process (ν 6= 0, where ν is the intensity parameter of the Poison Process), by using the
Bienaymé-Chebyshev (2.13) we obtain the error bounds for the noise error contributions for the Jacobi
estimators of the �rst order derivative of x.
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Theorem 2.4.55 [Liu 2011c] [First order derivative estimation] Let n = 1. Let the noise be a Wiener
process or Poisson process, then for any real number γ > 0,

Pr

(∣∣∣eβ$(t0; 1, κ, µ)− ν
∣∣∣ < γ

√
V ar[eβ$(t0; 1, κ, µ)]

)
> 1− 1

γ2
, (2.36)

Pr

(∣∣∣eβ$(t0; 1, κ, µ, 1)− ν
∣∣∣ < γ

√
V ar[eβ$(t0; 1, κ, µ, 1)]

)
> 1− 1

γ2
, (2.37)

where ν = 0 for a Wiener process; ν 6= 0 for a Poisson process and V ar[eβ$(t0; 1, κ, µ)], V ar[eβ$(t0; 1, κ, µ, 1)]

are given respectively by (2.34) and (2.35).

For the case n = 1, the bounds given by Theorem 2.4.55 characterize the noise error contribution
eβ$(t0; 1, κ, µ) (respectively eβ$(t0; 1, κ, µ, 1)) for the minimal Jacobi estimator D

(n)
κ,µ,βTx

δ(t0) (respec-
tively the a�ne Jacobi estimatorD(n)

κ,µ,βT,qx
δ(βTξ+t0) with q = 1). They depend on V ar

[
eβ$(t0; 1, κ, µ)

]

given by (2.34) (respectively V ar
[
eβ$(t0; 1, κ, µ)

]
given by (2.35)). Similar results can be obtained for

n = 2 since

2I(µ, κ, n = 2) =− (κ+ 2)2(κ+ 1)B(2µ+ 5, 2κ+ 3)

+ (κ+ 2)(µ+ 2)(3κ+ 5)B(2µ+ 4, 2κ+ 4)

− (κ+ 2)(µ+ 2)(3µ+ 5)B(2µ+ 3, 2κ+ 5)

+ (µ+ 2)2(µ+ 1)B(2µ+ 2, 2κ+ 6).

and of course for higher values of n. Remember that, for �xed T , we have V ar
[
eβ$(t0;n, κ, µ)

]
∼ 1

T 2n−1 .
Since all these variance functions decrease with respect to T independently of κ and µ, it is su�cient to
observe the in�uence of κ and µ. In the minimal Jacobi estimator case one can get a direct computation
(result is reported in Figure 2.1 by taking η = T = 1) whereas in the a�ne case it is not di�cult to
obtain a 3-D plot as in Figure 2.2 and where η = T = 1, ξ = ξ(κ, µ) is the smaller root of Pµ+1,κ+1

2 .
From this analysis, we should take negative values for κ and µ so as to minimize the noise error
contribution. Moreover, we can observe that the variance of eβ$(t0; 1, κ, µ, 1) is larger than the one of
eβ$(t0; 1, κ, µ) if we take same value for κ and µ, hence we should take the value of T for a�ne estimator
D

(n)
κ,µ,βT,1x

δ(βTξ + t0) larger than the one for D(n)
κ,µ,βTx

δ(t0) so as to obtain the same noise e�ect.
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Figure 2.1: Variances of the noise errors for the minimal estimators.
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Figure 2.2: Variances of the noise errors for the a�ne estimators.
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Usually, the observation function xδ is only known on discrete values. To simplify our notations,
we denote the noise error contribution eβ$,m(t0;κ, µ, T, ξ, q) de�ned in (2.4) by eβT$,m(t0). By applying
the properties of the mean, variance and covariance, we have

E
[
eβT$,m(t0)

]
=

1

(βT )n
1

m

m∑

i=0

wiQ(ti)E [$(t0 + βTti)] , (2.38)

V ar
[
eβT$ (t0)

]
=

1

T 2n

1

m2

m∑

i=0

w2
i (Q(ti))

2 V ar [$(t0 + βTti)]

+
1

T 2n

2

m2

m−1∑

i=0

m∑

j=i+1

wiwj Q(ti)Q(tj)Cov [$(t0 + βTti), $(t0 + βTtj)] .

(2.39)

Moreover, for any T1 > 0 and T2 > 0

Cov
[
eβT1
$ (t0), e

βT2
$ (t0)

]
=

1

Tn
1 T

n
2

1

m2

m∑

i=0

m∑

j=0

wiwj Q(ti)Q(tj)Cov [$(t0 + βT1ti), $(t0 + βT2tj)] .

(2.40)

Then, by using Bienaymé-Chebyshev (2.13) and the previous formulae, we can derive similar results
than the ones obtained in the continuous subsection and which coincide if m → ∞. However this is
true with some few additional assumptions as detailed below.

In order to show the bridge with the continuous case, we can use the following properties, where
T , T1 and T2 are given (�nite), and Ts tends to 0, i.e. m tends to in�nite.

lim
m→∞E

[
eβT$,m(t0)

]
= E

[
eβT$ (t0)

]
, (2.41)

lim
m→∞V ar

[
eβT$,m(t0)

]
= V ar

[
eβT$ (t0)

]
, (2.42)

lim
m→∞Cov

[
eβT1
$,m(t0), e

βT2
$,m(t0)

]
= Cov

[
eβT1
$ (t0), e

βT2
$ (t0)

]
. (2.43)

Hence, by using Theorem 2.4.51 and the fact that E
[
(Ym − c)2

]
= V ar [Ym] + (E [Ym]− c)2 for

any sequence of random variables Ym, we can get the following theorem.

Theorem 2.4.56 Let {$(τ), τ ≥ 0} be a continuous parameter stochastic process satisfying conditions
(C1) to (C3), $(ti) be a sequence of {$(τ), τ ≥ 0} with an equidistant sampling period Ts. Then,
eβT$,m(t0) converges in mean square to 0 when Ts → 0.

2.5 Independent stochastic process noises
In the section, let us consider a family of noises which are continuous parameter stochastic processes
satisfying the following conditions

(C4) : for any s, t ≥ 0, s 6= t, $(s) and $(t) are independent;
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(C5) : the mean value function of {$(τ), τ ∈ Ω} belongs to L(I);

(C6) : the variance function of {$(τ), τ ∈ Ω} is bounded on I.

Note that white Gaussian noise and Poisson noise satisfy these conditions. Then, we can give the
following theorem.

Lemma 2.5.57 Let {$(τ), τ ≥ 0} be a continuous parameter stochastic process satisfying conditions
(C4) to (C6). Let $(ti) be a sequence of {$(τ), τ ≥ 0} with an equidistant sampling period Ts. If
Q ∈ L2(I), then we have

lim
m→∞E

[
eβT$,m(t0)

]
=

1

(βT )n

∫ 1

0
Q(τ)E[$(t0 + βTτ)] dτ, (2.44)

lim
m→∞V ar

[
eβT$,m(t0)

]
= 0, (2.45)

where eβT$,m(t0) is the associated noise error contribution for the Jacobi estimators.

Proof. Since $(ti) is a sequence of independent random variables, by using (2.39) and (2.38) we have

E
[
eβT$,m(t0)

]
=

1

(βT )n
1

m

m∑

i=0

wiQ(ti)E [$(t0 + βTti)] , (2.46)

V ar
[
eβT$,m(t0)

]
=

1

T 2n

1

m2

m∑

i=0

w2
i (Q(ti))

2 V ar [$(t0 + βTti)] . (2.47)

According to condition (C6) the variance function of $ is bounded. Hence, we have

0 ≤ 1

m2

m∑

i=0

w2
i (Q(ti))

2 |V ar [$(t0 + βTti)]| ≤ U
w(m)

m

m∑

i=0

wi

m
(Q(ti))

2, (2.48)

where w(m) = max
0≤i≤m

wi and U = sup
0≤t≤1

|V ar [$(t0 + βTt)]| < ∞. Moreover,

lim
m→∞E

[
eβT$,m(t0)

]
=

1

(βT )n

∫ 1

0
Q(τ)E[$(t0 + βTτ)] dτ, (2.49)

lim
m→∞

m∑

i=0

wi

m
(Q(ti))

2 =

∫ 1

0
(Q(t))2 dt. (2.50)

Since all wi are bounded and Q ∈ L2(I), we have

lim
m→∞U

w(m)

m

m∑

i=0

wi

m
(pβT (ti))

2 = 0.

Thus this proof is completed. 2

By using the previous lemma, the Bienaymé-Chebyshev inequality implies that if the value of T is
set then eβT$,m(t0) converges in probability to 1

(βT )n

∫ 1
0 Q(τ)E[$(t0+βTτ)] dτ when Ts → 0. Moreover,

similarly to Theorem 2.4.56, we can get the convergence in mean square.
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Theorem 2.5.58 [Liu 2011c] Let {$(τ), τ ≥ 0} be a continuous parameter stochastic process sat-
isfying conditions (C4) to (C6), $(ti) be a sequence of {$(τ), τ ≥ 0} with an equidistant sampling
period Ts. If κ, µ > −1

2 and the value of T is set, then eβT$,m(t0) converges in mean square to
1

(βT )n

∫ 1
0 Q(τ)E[$(t0 + βTτ)] dτ when Ts → 0, where Q is de�ned in (1.85). Moreover, if E[$(τ)] =

n−1∑

i=0

ν̄i τ
i with ν̄i ∈ R, then eβT$,m(t0) converges in mean square to 0 when Ts → 0.

Proof. If E[$(τ)] =
n−1∑

i=0

ν̄i τ
i with ν̄i ∈ R, then similarly to Theorem 2.4.51 we can obtain

1

(βT )n

∫ 1

0
Q(τ)E[$(t0 + βTτ)] dτ = 0.

Hence, this proof is completed. 2

When the sampling period and the value of T are set, the noise error contribution dose not converge
to zero. In this case, similarly to (2.14) we can use the Bienaymé-Chebyshev inequality to give two error
bounds for this noise error. Then, we can study the associated convergence rate by using Proposition
2.3.48. In particular, if $ is a white Gaussian noise, then according to the tree-sigma rule, we have

Ml

pr≤ eβT$,m

pr≤ Mh, (2.51)

where p1 = 68.26%, p2 = 95.44% and p3 = 99.73%.
Now, we are going to study the in�uence of parameters κ, µ, q and n on the variance V ar

[
eβT$,m(t0)

]

given by (2.47). This study is done in the case where κ and µ are positif. The case where κ and µ are
negative will be considered later. Let us denote V ar

[
eβT$,m(t0)

]
by V (κ, µ, q, n, ξ). Then, we assume

that T = 1, m = 100, and the variance of $ is a constant which is equal to 1. We take trapezoidal rue
as the used numerical integration method.

We can see in Figure 2.3 the variations of V (κ, µ, q, 1, ξ) corresponding to the noise error contri-
butions for the Jacobi estimators D

(1)
κ,µ,βT,qx

δ(t0) with q = 0, 2, 3 and the time-drift Jacobi estimator
D

(1)
κ,µ,βT,q=1x

δ(βTξ + t0) with ξ = ξmin
1 . It is clear that V (κ, µ, q, n, ξ) is increasing with respect to q

and increasing with respect to κ and µ when q = 0, 1. Hence, we can decrease the value of κ and µ

so as to reduce the noise error contribution. Moreover, the noise error contribution for D(1)
κ,µ,βT,2x

δ(t0)

can be much larger than the one for D(1)
κ,µ,βT,1x

δ(βTξmin
1 + t0). We can obtain similar results in case

where n 6= 1.
According to (1.166), we can use V (κ, µ, q, n, ξ) with ξ = 1

2 to study the parameters' in�uence on
the noise error contribution for the central Jacobi estimators. The variations of V (κ, µ, q, n, 12) are
given in Figure 2.4 with q = 0, . . . , 5. We can see that V (κ, µ, q, n, 12) is increasing with respect to κ,
µ and q. Hence, we can decrease the value of κ, µ and q so as to reduce the noise error contribution.
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Figure 2.3: Variation of V (κ, µ, q, n, ξ) with respect to κ and µ for n = 1 and q = 0, 1, 2, 3.
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Figure 2.4: Variation of V (κ, µ, q, n, 12) with respect to κ and µ for n = 1 and q = 0, 1, 2, 3, 4, 5.
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We can also consider the other numerical integration methods so as to calculate the variance. It
is clear that if κ > 0 and µ > 0 then we have Q(0) = Q(1) = 0. Hence, by applying trapezoidal rue,
right rectangle rule and left rectangle rule we obtain the same value for V (κ, µ, q, n, ξ). Then, we take
Simpson's rule and midpoint rule. We can see in Figure 2.5 the variation of V (κ, κ, 1, 1, ξ) with ξ = 0.5

and ξ = ξmin
1 respectively. Consequently, trapezoidal rule is the optimal numerical integration method

to reduce the noise error contribution for Jacobi estimators (central or not). We can obtain similar
results for other values of q and n.
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(b) V (κ, µ, q, 1, ξ) with ξ = ξmin
q and 0 ≤ κ = µ ≤ 6.

Figure 2.5: Variation of V (κ, µ, q, n, ξ) obtained by di�erent numerical integration methods with q =

n = 1 and 0 ≤ κ = µ ≤ 6.

Finally, let us consider the case where κ < 0 and µ < 0. We take the formulae given in (1.111),
(1.113) and (1.115) to calculate the variance V (κ, µ, q, n, ξ). Then, we can see in Figure 2.6 the variation
of V (κ, µ, 0, 1, 0) for −1 < κ ≤ 0 and −1 < µ ≤ 1. Hence, V (κ, µ, 0, 1, 0) is decreasing with respect
to κ and µ when κ < 0 and µ < 0. Consequently, the negative values of κ produce larger noise error
contributions for the Jacobi estimators given by (1.111), (1.113) and (1.115).

Let us recall that the formulae (1.111), (1.113) and (1.115) are given to avoid singular values in
Jacobi estimators in discrete case. However, these formulae produce larger noise error contributions
when κ or µ is negative. We give a new way to avoid the singular values. If κ < 0 (resp. µ < 0), then
we set the weight w0 (wm) equal to 0. Hence, there is not singular values at τ = 0 and τ = 1 when
κ < 0 and µ < 0. We can see the variation of so obtained V (κ, µ, 0, 1, 0) and V (κ, µ, 1, 1, ξmin

q ) in
Figure 2.7. Then, we can observe that V (κ, µ, 0, 1, 0) and V (κ, µ, 1, 1, ξmin

q ) are increasing with respect
to κ and µ. Consequently, the negative values of κ and µ can reduce the noise error contributions for
Jacobi estimators. However, this choice of the weight w0 can produce a numerical error. We can see in
the next section that if the function the �rst order derivative of which we want to estimate satis�es a
di�erential equation then this numerical error can reduce the truncated term error for minimal Jacobi
estimators.
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Figure 2.6: Variation of V (κ, µ, q, n, ξ) with respect to κ and µ for n = 1 and q = ξ = 0.
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2.6 Numerical simulations
In order to demonstrate the e�ciency and the stability of Jacobi estimators, we present some numerical
results in this section. The in�uence of parameters for these estimators is studied in Subsection 1.3.3,
Subsection 1.6.2, Subsection 2.4 and Subsection 2.5. We recall the results in the two following tables,
where the notations a ↑, b ↗ and c ↘ mean that if we increase the value for the parameter a then the
error b increases and the error c decreases.

D
(n)
κ,µ,βT,qx(βTξq + t0) Amplitude error Time-drift Noise error contribution

κ ↑ ↗ ↗ ↗
µ ↑ ↘ ↘ ↗
q ↑ ↘ ↘ ↗
T ↑ ↗ ↗ ↘

Table 2.1: In�uence of parameters for causal and anti-causal estimators D(n)
κ,µ,βT,qx(βTξq + t0).

D̂
(n)
κ,µ,T,qx(t0) Truncated term error Noise error contribution

κ ↑ ↘ ↗
µ ↑ ↘ ↗
q ↑ ↘ ↗
T ↑ ↗ ↘

Table 2.2: In�uence of parameters for central estimators D̂(n)
κ,µ,T,qx(t0).

2.6.1 Numerical tests for central Jacobi estimators
Let xδ(ti) = x(ti) + c$(ti) be a generated noise data with an equidistant sampling period Ts = 10−3

where c > 0. The noise c$(xi) is simulated from a zero-mean white Gaussian iid sequence. By
using the well-known three-sigma rule, we can assume that the noise level δ for c$ is equal to 3c.
In this subsection, we use central Jacobi estimator given by (1.169) to estimate the derivatives of x.
According to Corollary 1.6.32, we set κ = µ and choose the truncation order q to be an even integer.
Moreover, according to Table 2.2 the associated truncated term error is decreasing with respect to κ

and q, the associated noise error contribution is increasing with respect to κ and q. In order to reduce
the truncated term error and to avoid a large noise error contribution, we set q = 4 and κ = 5. The
noise error decreases with respect to T and the truncated term error increases with respect to T . In
the following examples, we are going to choose an appropriate value for T by using the knowledge of
function x.

We use the trapezoidal rule to approximate the integral in central estimators with 2m+ 1 values.
The estimated derivatives of x at the point ti ∈ I = [−2, 2] are calculated from the noise data xδ(tj)

with tj ∈ [−ti−T, ti+T ], where T = mTs and 2m+1 is the number of sampling data used to calculate
our estimation inside the sliding integration windows. When all the parameters are chosen, the values
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of Q̂κ,n,q can be calculated explicitly by o�-line work with the O(n2) complexity. Hence, the central
Jacobi estimators can be written like a discrete convolution product of these pre-calculated coe�cients.
Thus, we only need 2m+ 1 multiplications and 2m additions to calculate each estimation.

The numerical integration method has an approximation error. Thus, the total error for our
estimators can be bounded by

∣∣∣Ixδ,m

Q̂κ,n,q
− x(n)(ti)

∣∣∣ ≤
∣∣∣Ixδ,m

Q̂κ,n,q
− Ix,m

Q̂κ,n,q

∣∣∣+
∣∣∣Ix,m

Q̂κ,n,q
− D̂

(n)
κ,T,qx(ti)

∣∣∣+
∣∣∣D̂(n)

κ,T,qx(ti)− x(n)(ti)
∣∣∣

≤ Bnoise +Bnum +Bbias = Btotal,

where Ix,m
Q̂κ,n,q

(resp. Ix
δ,m

Q̂κ,n,q
) is the numerical approximation of D̂(n)

κ,T,qx(ti) (resp. D̂
(n)
κ,T,qx

δ(ti)) with
the trapezoidal rule and Bnum is the well-known error bound for the numerical integration error
[Ralston 1965]:

∣∣∣D̂(n)
κ,T,qx(ti)− Ix,m

Q̂κ,n,q

∣∣∣ ≤ 23

12(2m)2
sup

τ∈[−1,1]

∣∣∣Q̂κ,n,q(τ)x(ti + Tτ)
∣∣∣
2
= Bnum. (2.52)

According to Proposition 2.3.48 and (1.166), we take Bnoise = Eκ,κ,n,q,ξ
δ
Tn with ξ = 1

2 . According to
Corollary 1.6.32, we take Bbais = Mq+n+2Ĉκ,n,qT

q+2. We are going to set the value of m such that
Btotal reaches its minimum and consequently the total errors in the following two examples can be
minimized. For this, we need to calculate some values of x(j) with j = 0, · · · , n + q + 2. According
to Remark 2, we calculate the value of Mn+2+q in the interval [−2 − T

n+q+3 , 2 +
T

n+q+3 ]. However, in
practice, the function x is unknown.

Example 1. We choose x1(t) = sin(2πt)e−t2 as the exact function. The numerical results are shown
in Figure 6.2, where the noise level δ is equal to 0.15. The solid lines represent the exact derivative
values of x(n)1 for n = 1, 2, 3, 4 and the dash-dotted lines represent the estimated derivative values
D̂

(n)
κ,T,qx

δ
1(ti). Moreover, we give in Table 2.3 the total error values max

ti∈[2,2]

∣∣∣D̂(n)
κ,T,qx

δ
1(ti)− x

(n)
1 (ti)

∣∣∣ for
the following noise levels: δ = 0.15 and δ = 0.015. We can see also the total error values produced
with a larger sampling period T ′

s = 10Ts = 10−2.

Table 2.3: max
ti∈[2,2]

∣∣∣D̂(n)
5,T,4x

δ
1(ti)− x

(n)
1 (ti)

∣∣∣.

δ n = 1 (m) n = 2 (m) n = 3 (m) n = 4 (m)

0.15 9.45e− 002 (591) 1.1 (698) 1.258e+ 001 (777) 1.278e+ 002 (850)

0.015 1.85e− 002 (425) 2.951e− 001 (523) 3.888 (601) 4.588e+ 001 (675)

0.015 (T ′
s = 0.01) 4.06e− 002 (47) 5.645e− 001 (55) 7.359 (62) 9.686e+ 001 (69)
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Figure 2.8: The exact values of x(n)1 (ti) and the estimated values D̂(n)
κ,T,qx

δ
1(ti) for δ = 0.15.
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Example 2. When x2(t) = et
2 , we give our numerical results in Figure 6.1 with the noise level

δ = 0.15, where the corresponding errors are given in Figure 2.10. In Table 2.4, we also give the total
error values max

ti∈[2,2]

∣∣∣D̂(n)
κ,T,qx

δ
2(ti)− x

(n)
2 (ti)

∣∣∣ for δ = 0.15 and δ = 0.015, where the total error values are

produced with Ts and a larger sampling period T ′
s = 10−2.

Table 2.4: max
xi∈[2,2]

∣∣∣D̂(n)
5,T,4x

δ
2(ti)− x

(n)
2 (ti)

∣∣∣.

δ n = 1 (m) n = 2 (m) n = 3 (m) n = 4 (m)

0.15 1.42e− 001 (442) 2.152 (549) 2.982e+ 001 (643) 3.756e+ 002 (733)

0.015 2.22e− 002 (346) 4.435e− 001 (428) 5.973 (510) 8.769e+ 001 (595)

0.015 (T ′
s = 0.01) 3.404e− 001 (54) 3.425 (61) 3.638e+ 001 (68) 5.235e+ 002 (79)

We can see in Figure 2.10 that the maximum of the total error for each estimation (solid line) is
produced nearby the extremities where the truncated term error plus the numerical error (dash line)
are much larger than the noise error. The noise error (dash-dotted line) is much larger elsewhere. This
is due to the fact that the total error bound Btotal is calculated globally in the interval [−T − 2, 2+T ].
The value of m with which Btotal reaches its minimum is used for all the estimations D̂(n)

κ,T,qx
δ
2(ti) with

ti ∈ [−2, 2]. This value is only appropriate for the estimations nearby the extremities, but not for the
others. In fact, when the truncated term error and the numerical integration error decrease, we should
increase the value of m so as to reduce the noise errors.

In order to improve our estimations, we can locally choose the value of m = mi, i.e. we search the
value mi which minimizes Btotal on [−Ti + ti, ti + Ti] where Ti = miTs. We can see in Figure 2.11 the
errors for these improved estimations D̂(n)

κ,Ti,q
xδ2(ti). The di�erent values of mi are also given in Figure

2.11. The corresponding error bounds are given in Figure 2.12. We can observe that the proposed
error bounds are correct but not optimal. However, the parameters' in�uence to these error bounds
can help us to know the tendency of errors so as to choose parameters for our estimations. On the one
hand, the chosen parameters may not be optimal, but as we have seen in our examples, they give good
estimations. On the other hand, the optimal parameters qop, κop and mop with which the total error
bound reaches its minimum may not give the best estimation. That is why we only use these error
bounds to choose the value of m.
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(a) n = 1, κ = 5, q = 4 and T = 442Ts.
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(c) n = 3, κ = 5, q = 4 and T = 643Ts.
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(d) n = 4, κ = 5, q = 4 and T = 733Ts.

Figure 2.9: The exact values of x(n)2 (ti) and the estimated values D̂(n)
κ,T,qx

δ
2(ti) for δ = 0.15.
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Figure 2.10: The estimation errors for the estimated values D̂(n)
κ,T,qx

δ
2(ti) for δ = 0.15.
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Figure 2.12: The estimation errors and their corresponding error bounds for D̂(n)
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(b) δ = 0.015, n = 1, κ = 5, q = 4 and T = 1200Ts.
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(c) δ = 0.15, n = 2, κ = 5, q = 4 and T = 1700Ts.
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(d) δ = 0.015, n = 2, κ = 5, q = 4 and T = 1200Ts.

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−1.5

−1

−0.5

0

0.5

1

1.5

t

 

 

x
3
(3)(t

i
)

D
2,T,2
(3) xδ(t

i
)

(e) δ = 0.15, n = 3, κ = 2, q = 2 and T = 1700Ts.

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−1.5

−1

−0.5

0

0.5

1

1.5

t

 

 

x
3
(3)(t

i
)

D
2,T,2
(3) xδ(t

i
)

(f) δ = 0.015, n = 3, κ = 2, q = 2 and T = 1500Ts.

Figure 2.13: The exact values of x(n)3 (ti) and the estimated values D̂(n)
κ,T,qx

δ
3(ti).
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Example 3. Let us consider the following function

x3(t) =

{
−1

6 t
3 + 2t, if t ≤ 0,

1
6 t

3 + 2t, if t > 0,

which is C2 on I = [−2, 2]. The second derivative of x3 is equal to | · |. Consequently, x(3)3 does not exist
at t = 0. If n ≥ 1, then this function does not satisfy the condition x ∈ Cn+2+q(I) of Corollary 1.6.32.
The numerical results are shown in Figure 2.13, where the sampling period is Ts = 10−3 and the noise
level δ is equal to 0.15 and 0.015 respectively. The solid lines represent the exact derivative values of
x
(n)
3 for n = 1, 2, 3 and the dash-dotted lines represent the estimated derivative values D̂

(n)
κ,T,qx

δ
3(ti).

For the estimations of x(1) and x(2), we set κ = 5 and q = 4. When we estimate x(3), the noise error
increases. Hence, we need to reduce the values of κ and q to κ = 2 and q = 2. In Table 2.5, we give
also the total error values max

ti∈[2,2]

∣∣∣D̂(n)
κ,T,qx

δ
3(ti)− x

(n)
3 (ti)

∣∣∣ for n = 1, 2 and δ = 0.015, 0.15.

Table 2.5: max
ti∈[2,2]

∣∣∣D̂(n)
5,T,4x

δ
3(ti)− x

(n)
3 (ti)

∣∣∣.

δ n = 1 (m) n = 2 (m)

0.15 9.7e− 003 (1700) 9.65e− 002 (1700)

0.015 4.7e− 003 (1200) 7.23e− 002 (1200)

2.6.2 Numerical tests for causal Jacobi estimators
In this subsection, we give some numerical results for the causal minimal Jacobi estimatorD(n)

κ,µ,−Tx(t0)

given in (1.29). Let n = 1 in (1.29), then we have

D
(1)
κ,µ,−Tx

δ(t0) =

∫ 1

0
pκ,µ,T (τ) x

δ(t0 − Tτ) dτ, (2.53)

where
pκ,µ,T (τ) = − 1

TB(κ+ 2, µ+ 2)
((µ+ κ+ 2)τ − (κ+ 1)) (1− τ)µτκ (2.54)

with κ, µ ∈]− 1,+∞[ and T ∈ Dt0 . Observing that

ẇµ+1,κ+1(τ) = − ((µ+ κ+ 2)τ − (κ+ 1)) (1− τ)µτκ, (2.55)

then by applying integration by parts, we obtain

D
(1)
κ,µ,−Tx(t0) =

1

TB(κ+ 2, µ+ 2)

∫ 1

0
ẇµ+1,κ+1(τ) x(t0 − Tτ) dτ,

=
1

B(κ+ 2, µ+ 2)

∫ 1

0
wµ+1,κ+1(τ) ẋ(t0 − Tτ) dτ.

(2.56)

By using the well known Taylor's formula, we have for any T ∈ Dt0 there exist θ̂τ,t0 ∈]t0 − Tτ, t0[ such
that

∀τ ∈ [0, 1], ẋ(t0 − Tτ) = ẋ(t0)− Tτx(2)(t0) +
(−Tτi)

2

2
x(3)(θ̂τ,t0). (2.57)
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Then, by using (2.57) in (2.56) we get

D
(1)
κ,µ,−Tx(t0) =

1

B(κ+ 2, µ+ 2)

∫ 1

0
wµ+1,κ+1(τ)

(
ẋ(t0)− Tτx(2)(t0) +

(−Tτ)2

2
x(3)(θ̂τ,t0)

)
dτ

=ẋ(t0)− T
κ+ 2

κ+ µ+ 4
x(2)(t0) +

T 2

2B(κ+ 2, µ+ 2)

∫ 1

0
wµ+1,κ+1(τ)τ

2x(3)(θ̂τ,t0) dτ.

(2.58)

Hence, the truncated term error for D(1)
κ,µ,−Tx(t0) is given as follows

D
(1)
κ,µ,−Tx(t0)− ẋ(t0) =− T

κ+ 2

κ+ µ+ 4
x(2)(t0) +

T 2

2B(κ+ 2, µ+ 2)

∫ 1

0
wµ+1,κ+1(τ)τ

2x(3)(θ̂τ,t0) dτ.

(2.59)

From now on, let us take the trapezoidal rule to approximate the integral given in (2.53)

Ix
δ,m

pκ,µ,T
:=

1

m

m∑

i=0

wi pκ,µ,T (τi) x
δ(t0 − Tτi), (2.60)

where w0 = wm = 1
2 , wi = 1 for i = 1, · · · ,m − 1, and τi =

i
m for i = 0, · · · ,m. If the value of κ

(resp. µ) is negative, then we set w0 = 0 (resp. wm = 0) so as to avoid the singular value at τ0 = 0

(resp. τm = 1). We denote by Iτ
j ,m

pκ,µ,T :=
m∑

i=0

wi

m

(−Tτi)
j

j!
pκ,µ,T (τi) for j = 0, 1, 2. Then, we can give the

following proposition.

Proposition 2.6.59 Let Ix
δ,m

pκ,µ,T be the minimal Jacobi estimator given by (2.60) in discrete case. If
we have the following conditions:

(E1) : x is a solution of the following equation

∀t ∈ I, ẍ(t) + c x(t) = ε(t), (2.61)

where c ∈ R∗, and there exists Mε ∈ R+ such that sup
t∈I

|ε(t)| ≤ Mε,

(E2) : c = − Iτ
2,m

pκ,µ,T

I1,mpκ,µ,T

with I1,mpκ,µ,T being not negligible,

(E3) : Iτ,mpκ,µ,T ≈ 1,

then the estimation error for Ix
δ,m

pκ,µ,T is given by

Ix
δ,m

pκ,µ,T
− ẋ(t0) ≈ ε(t0)I

τ2,m
pκ,µ,T

+ eR2,m + e$,m, (2.62)

where e$,m :=
m∑

i=0

wi

m
pκ,µ,T (τi)$(t0 − Tτi) and eR2,m :=

m∑

i=0

wi

m

(−Tτi)
3

6
pκ,µ,T (τi)x

(3)(θτi,t0) with

θτi,t0 ∈]t0 − Tτi, t0[.
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Proof. By using the well known Taylor's formula, we have for any T ∈ Dt0 there exist θτi,t0 ∈
]t0 − Tτi, t0[ such that

∀τi ∈ [0, 1], x(t0 − Tτi) =

2∑

j=0

(−Tτi)
j

j!
x(j)(t0) +

(−Tτi)
3

3!
x(3)(θτi,t0). (2.63)

Then, by taking (2.63) in (2.60) we get

Ix
δ,m

pκ,µ,T
=x(t0)I

1,m
pκ,µ,T

+ ẋ(t0)I
τ,m
pκ,µ,T

+ x(2)(t0)I
τ2,m
pκ,µ,T

+ eR2,m + e$,m, (2.64)

where x(2)(t0)Iτ
2,m

pκ,µ,T +eR2,m corresponds to the truncated error forD(1)
κ,µ,−Tx(t0) in discrete case. Hence,

the estimation error can be given by

Ix
δ,m

pκ,µ,T
− ẋ(t0) =x(t0)I

1,m
pκ,µ,T

+ ẋ(t0)
(
Iτ,mpκ,µ,T

− 1
)
+ x(2)(t0)I

τ2,m
pκ,µ,T

+ eR2,m + e$,m. (2.65)

Finally, by considering the conditions (E1)− (E3) this proof can be completed. 2

Recall that Iτ
j ,m

pκ,µ,T for j = 0, 1, 2 is the numerical approximated value for the integral value∫ 1
0 pκ,µ,T (τ)

(−Tτ)j

j! dτ which is given in the following lemma.

Lemma 2.6.60 Let pκ,µ,T be the function de�ned by (2.54) and i ∈ N, then we have
∫ 1

0
pκ,µ,T (τ)

(−Tτ)1+i

(1 + i)!
dτ =

(−T )i

i!

Γ(2 + i+ κ)

Γ(2 + κ)

Γ(4 + µ+ κ)

Γ(4 + µ+ κ+ i)
. (2.66)

Proof. By using (2.55) we obtain
∫ 1

0
pκ,µ,T (τ)

(−Tτ)1+i

(1 + i)!
dτ =

T i

B(κ+ 2, µ+ 2)

∫ 1

0
ẇµ+1,κ+1(τ)

(−τ)1+i

(1 + i)!
dτ. (2.67)

By applying integration by parts and using the classical Beta function, we get
∫ 1

0
pκ,µ,T (τ)

(−Tτ)1+i

(1 + i)!
dτ =

T i

B(κ+ 2, µ+ 2)

∫ 1

0
wµ+1,κ+1(τ)

(−τ)i

i!
dτ

=
B(κ+ 2 + i, µ+ 2)

B(κ+ 2, µ+ 2)

(−T )i

i!

=
Γ(2 + i+ κ)Γ(4 + µ+ κ)

Γ(2 + κ)Γ(4 + µ+ κ+ i)

(−T )i

i!
.

(2.68)

2

In particular, by using (2.66) with i = 0 and 1, we get
∫ 1

0
−Tτpκ,µ,T (τ)dτ = 1 and

∫ 1

0
pκ,µ,T (τ)

(−Tτ)2

2
dτ = −T

κ+ 2

µ+ κ+ 4
.

Moreover, it is easy to get that
∫ 1
0 pκ,µ,T (τ)dτ = 0. Consequently, the condition (E2) corresponds that

the numerical error for I1,mpκ,µ,T is not negligible, and the condition (E3) corresponds that the numerical
error for Iτ,mpκ,µ,T is negligible. If we assume that the numerical errors for Iτ

2,m
pκ,µ,T and eR2,m are negligible,

then we can give the following corollary.
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Corollary 2.6.61 Let us take the same assumptions given in Proposition 2.6.59. Moreover, we assume
that

(E4) : there exists M3 ∈ R∗
+ such that

∥∥x(3)∥∥∞ ≤ M3

(E5) : Iτ
2,m

pκ,µ,T ≈ −T κ+2
µ+κ+4 ,

(E6) : eR2,m ≈ ∫ 1
0

(−Tτ)3

6 pκ,µ,T (τ)x
(3)(θτ,t0) dτ where θτ,t0 ∈]t0 − Tτ, t0[.

Then the estimation error for Ix
δ,m

pκ,µ,T is bounded by
∥∥∥Ixδ,m

pκ,µ,T
− ẋ(t0)

∥∥∥
∞

≤ Tξ0Mε +
T 2ξ0
2

κ+ 3

κ+ µ+ 5
M3 +M$, (2.69)

where ξ0 =
κ+2

µ+κ+4 , M$ is an error bound for the noise error contribution e$,m.

Proof. By observing (2.59) and (2.64), we can obtain that
∫ 1

0

(−Tτ)3

6
pκ,µ,T (τ)x

(3)(θτ,t0) dτ =
T 2

2B(κ+ 2, µ+ 2)

∫ 1

0
wµ+1,κ+1(τ)τ

2x(3)(θ̂τ,t0) dτ, (2.70)

where the truncated term error
∫ 1
0

(−Tτ)3

6 pκ,µ,T (τ)x
(3)(θτ,t0) dτ is approximated by eR2,m in (2.64).

Then, this proof can be easily completed by using Proposition 2.6.59. 2

We are going to give some numerical examples where we take a class of functions satisfying the
conditions (E1) and (E4). We set κ < 0 and µ ≥ 0 such that the conditions (E2), (E3), (E5) and (E6)

meet.
Let xδ(ti) = x(ti)+c$(ti) be a noisy generated data with an equidistant sampling period Ts =

1
2000 .

The noise c$(xi) is simulated from a zero-mean white Gaussian iid sequence. In the following examples,
the constant c is set such that the signal-to-noise ratios ([Haykin 2002]) SNR = 10 log10

(∑ |xδ(ti)|2∑ |c$(ti)|2
)
is

equal to 30dB. By comparing with the minimal estimatorD(1)
κ,µ,−Tx

δ(t0) given by (1.29) with κ = µ = 0,
we show the improvement of D(1)

κ,µ,−Tx
δ(t0) with µ = 0 and κ < 0.

The error bounds of the truncated term error and the noise error contribution forD(1)
κ=0,µ=0,−Tx

δ(t0)

are given by (1.49) and (2.51) respectively. Similarly to (2.52), an error bound of the numerical error
for D

(1)
κ=0,µ=0,−Tx

δ(t0) can be given. Hence, the value of the parameter m (T = mTs) is chosen such
that the total error bound arrives its minimum.

The values of κ and T for D(1)
κ<0,µ=0,−Tx

δ(t0) are set by considering the two following criterions

• the noise error bound for D(1)
κ<0,µ=0,−Tx

δ(t0) is equal to the one for D(1)
κ=0,µ=0,−Tx

δ(t0),

• condition (E2) meets.

Hence, we compare D(1)
κ=0,µ=0,−Tx

δ(t0) and D
(1)
κ<0,µ=0,−Tx

δ(t0) by giving the same noise error contribu-
tions.

In the following examples, the dotted lines refer to the estimations of D(1)
κ=0,µ=0,−Tx

δ(t0) and the
dash-dotted lines refer to the estimations of D(1)

κ<0,µ=0,−Tx
δ(t0).

118



Example 1. We choose xδ1(ti) = sin(ti) + c$(ti) with I = 4π. Hence, x1 satis�es conditions (E1),
(E4) and c is equal to 0.0225. By some calculations, we obtain T2 = 707Te for D(1)

κ=0,µ=0,−T2
xδ1(t0) and

T1 = 820Te, κ = −0.458 for D
(1)
κ<0,µ=0,−T1

xδ1(t0). With these parameters' values, we can verify that
conditions (E3), (E5) and (E6) meet. Hence, we can apply Corollary 2.6.61 to obtain error bounds for
D

(1)
κ<0,µ=0,−T1

xδ1(t0). The obtained estimations and corresponding error bounds are shown in Figure
2.14. We can see that with the same level of noise error contributions, the estimatorD(1)

κ<0,µ=0,−T1
xδ1(t0)

produces a smaller truncated term error than D
(1)
κ=0,µ=0,−T1

xδ1(t0). Consequently, we obtain a delay-free
estimation.

Example 2. We choose xδ2(ti) = ti sin(ti) + c$(ti) with I = 14 and c = 0.18. Hence, x2 satis�es
conditions (E1) and (E4) with x

(2)
2 (ti)+x2(ti) = 2 cos(ti). By some calculations, we obtain T2 = 639Te

for D
(1)
κ=0,µ=0,−T2

xδ2(t0) and T1 = 705Te, κ = −0.4 for D
(1)
κ<0,µ=0,−T1

xδ2(t0). The obtained estimations
and corresponding error bounds are shown in Figure 2.15.

Example 3. We choose xδ3(ti) = exp(−t
1.2) sin(6ti + π) + c$(ti) with I = 5 and c = 0.0075. Hence, x3

satis�es conditions (E1) and (E4) with

x
(2)
3 (ti) +

1271

36
x3(ti) = −10 exp(

−ti
1.2

) cos(6ti + π), (2.71)

x
(3)
3 (ti) =

19315

216
exp(

−ti
1.2

) sin(6ti + π)− 203.5 exp(
−ti
1.2

) cos(6ti + π). (2.72)

By some calculations, we obtain T2 = 194Te for D(1)
κ=0,µ=0,−T2

xδ3(t0) and T1 = 210Te, κ = −0.4771 for
D

(1)
κ<0,µ=0,−T1

xδ3(t0). The obtained estimations and corresponding error bounds are shown in Figure
2.16. We can see in Figure 2.16(c) that the truncated term error for D(1)

κ<0,µ=0,−T1
xδ3(t0) is much smaller

than the corresponding error bounds obtained by Corollary 2.6.61. This is because the truncated error
part ε(ti)Iτ

2,m
pκ,µ,T given by (2.62) with ε(ti) = −10 exp(−ti

1.2 ) cos(6ti+π) reduces the truncated error part
eR2,m obtained by x

(3)
3 . Consequently, we obtain a delay-free estimation.
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Figure 2.14: Comparison between the minimal estimator D(1)
0,0,−T2

xδ1(t0) and D
(1)
κ,0,−T1

xδ1(t0) with T2 =

707Te, T1 = 820Te and κ = −0.458.
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Figure 2.15: Comparison between the minimal estimator D(1)
0,0,−T2

xδ2(t0) and D
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xδ2(t0) with T2 =

639Te, T1 = 705Te and κ = −0.4.
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2.7 Conclusion
In this chapter, we have studied the noise error contribution for Jacobi estimators. We have respectively
given some error bounds for the noise error contributions due to a bounded integrable noise, a non-
independent stochastic process and an independent stochastic process. These error bounds gave us
a guide for choosing parameters so as to reduce noise error contribution. We recall in Table 2.6 the
results obtained of the parameters' in�uence on the variance of the noise error contributions. In the
numerical simulations, we have shown how to choose parameters for central Jacobi estimators. If the
smooth function x satis�ed a di�erential equation, then by taking negative value for κ in minimal
causal Jacobi estimators we obtained some �delay-free� estimations in discrete case. Let us remark
that by using a�ne Jacobi estimators we can also obtain some delay-free estimations without taking
negative value for κ. However, we should take much more points in each sliding integration window so
as to reduce the associated noise error contributions.

Estimator Type of noise Figure
causal (anti-causal) minimal estimators Wiener or Poisson process Figure 2.1

causal (anti-causal) a�ne estimators with q = 1 Wiener or Poisson process Figure 2.2
causal (anti-causal) estimators with κ, µ ≥ 0 iid random variables Figure 2.3

central estimators with κ, µ ≥ 0 iid random variables Figure 2.4
causal (anti-causal) minimal estimators with κ, µ < 0 iid random variables Figure 2.6
causal (anti-causal) a�ne estimators with κ, µ < 0 iid random variables Figure 2.7

Table 2.6: Parameters' in�uence on the noise error contributions
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Chapter 3

Application to non linear observation
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3.1 Introduction
3.1.1 Context and motivations
Physical processes are often represented by the models described in the following form (explicit state
representation):

{
ẋ = f(x(t), u(t))

y = h(x(t))
(3.1)

where
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• x ∈ X denotes the state vector with X being a di�erentiable manifold open subset of Rn,

• u ∈ U denotes the vector of known inputs with U ⊂ Rm being a set of admissible input,

• y ∈ Y denotes the vector of measured outputs with Y being an open set of Rp.

Functions f and h are in general assumed to be C∞, and inputs functions u(·) to be locally essentially
bounded and measurable (in sense of Lebesgue).

In general, it is clear that one can not use as many sensors as signals of interest required to
characterize the behavior of the system (for cost reasons, technological constraints, etc. . . ), and the
size of vector output is lower than the one of state vector. Most of the time this implies that for a given
time t, the state x(t) can not be algebraically deduced from the measured output y (observed at the
time t). However, the need for information on the state is motivated by various purposes: modeling
(identi�cation), monitoring (fault detection), or driving (control) the system (Cf. Figure 3.1). For
this, we can see [Besançon 2007]. Consequently, the problem of reconstruction of state or observer is
one of the most essential part of a general control problem.

Figure 3.1: Observer: the essential part of control system.

3.1.2 Observer problem
An observer can be achieved if the system is observable. This means that it is possible to reconstruct
the initial state from the information on its inputs u and output y during a �nite time interval [ti, tf ].

The purpose of an observer is precisely to provide an estimate of the current value of the state as
a function of the input and output of system.

The observer design is often based on the idea of �feedback�. More precisely, on the one hand, if
the initial value x(0) is known, then the estimated value x(t) can be simply obtained by integrating
the system (3.1) from x(0). On the other hand, if the initial value x̃(0) is unknown, then we can
try to correct on-line the integration of x̃(t) from some erroneous initial value x̃(0), depending on the
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measurable error h(x̃(t)) − y(t). That is to say we look for an estimate x̃ of x as the solution of a
system:

˙̃x = f(x̃(t), u(t)) + k(t, h(x̃(t))− y(t)) with k(t, 0) = 0. (3.2)

In most cases, the auxiliary system (3.2) is de�ned as an observer for the system (3.1).

3.2 Observability in a non linear context
The purpose of this section is to discuss some conditions required on the system for possible solutions
to the above mentioned observer problem. Such conditions correspond to what are usually called
observability conditions. For this, we recall some results of observability for a nonlinear system within
a di�erential geometric framework mainly due to Hermann and Krener [Hermann 1977] (see also Isidori
[Isidori 1989], Nijmeijer and van der Schaft [Nijmeijer 1990]) and a di�erential algebraic framework due
to Diop and Fliess [Diop 1991a, Diop 1991b] (see also [Barbot 2007]), respectively.

3.2.1 Review of observability within a geometric framework
In order to design an observer, one must be able to recover the information on the state x via the output
measured y from the initial time, and more particularly to recover the corresponding initial value of
the state. This means that observability is characterized by the fact that from an output measurement,
one must be able to distinguish between various initial states. The observability is indeed de�ned from
the notion of indiscernibility which is given in the following de�nition.

De�nition 4 Indiscernibility [Besançon 2007] A sate x(0) is indistinguishable from another sate x′(0)
for the system (3.1) if

∀u ∈ U , ∀t ≥ 0, y(t, 0, x(0), u) = y(t, 0, x′(0), u), (3.3)

where y(t, 0, x(0), u) = h(x(t, 0, x(0), u)) (resp. y(t, 0, x′(0), u) = h(x(t, 0, x′(0), u))) is the output of
(3.1) for the input u and the initial state x(0) (resp. x′(0)).

This notion of indiscernibility of two initial states permits us to give the de�nition of observability.

De�nition 5 (Observability) [Besançon 2007] The system (3.1) is called observable at x if there is no
indistinguishable state from x in X . The system (3.1) is observable if it is observable for all x ∈ X .

The previous de�nition is too general for practical use, since one might be mainly interested in
distinguishing states from their neighbors. Let us consider for instance the case of the following
system:

{
ẋ = u

y = cos(x).

Clearly, y cannot help to distinguish between x0 and x0 + 2kπ, and thus the system is not observable.
However, it is yet clear that y allows to distinguish states of ]− π

2 ,
π
2 [. This brings to consider a weaker

notion of observability.
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De�nition 6 (Local observability) The system (3.1) is locally observable at x if there exists a neigh-
borhood V(x) of x such that there is no indistinguishable state from x in V(x). The system (3.1) is
locally observable if it is locally observable for all x ∈ X .

Notice that two states may be indistinguishable for some input whereas they can be distinguished
for other inputs. Let us consider for instance the case of the following system:





ẋ1 = x2u

ẋ2 = 0

y = x1.

It is clear that for the null input u one cannot distinguish the two states x and x′ such that x1 = x′1
and x2 6= x′2. However, this system is observable for any u 6= 0. For example, if u ≡ 1, then we obtain
an observable linear system. Hence, in order to prevent this situation, we give the following de�nition
of observability.

De�nition 7 (Weak observability) The system (3.1) is weakly observable at x if there exists a neigh-
borhood V(x) of x such that Iu(x) ∩ V(x) = x, where Iu(x) denotes the set of states indistinguishable
from x0 with the input u. The system (3.1) is weakly observable if it is weakly observable for all x ∈ X .

If the system (3.1) is locally observable and weakly observable, then it is locally weakly observ-
able. This notion is of more interest in practice, and also presents the advantage of admitting some
`rank condition' characterization. Such a condition relies on the notion of observation space roughly
corresponding to the space of all observable states.

De�nition 8 (Observation space) [Besançon 2007] The observation space for the system (3.1) is de-
�ned as the smallest real vector space (denoted by O(h)) of C∞ functions containing the components of
h and closed under Lie derivation along fu := f(., u) for any constant u ∈ Rm (namely such that for
any φ ∈ O(h), Lfuφ ∈ O(h), where Lfuφ = ∂φ

∂xf(x, u)).

De�nition 9 (Observability rank condition) [Besançon 2007] The system (3.1) is said to satisfy the
observability rank condition if:

∀x ∈ X , dim dO(h)|x = n, (3.4)
where dO(h)|x = span{dφ(x);φ ∈ O(h)} is called the codistribution of observability.

Then, we give the following theorem.

Theorem 3.2.62 [Hermann 1977] The system (3.1) satisfying the observability rank condition is lo-
cally weakly observable. Conversely, a system (3.1) locally weakly observable satis�es the observability
rank condition in an open dense subset of X .

Examples: Let us consider the following non linear system




ẋ1 = x2 + x1x2
ẋ2 = −x1x2 + u

y = x1.

(3.5)
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In this system, we have h(x) = x1 and f(x) = (x2+x1x2,−x1x2+u)T . Then, we get Lfh = x2+x1x2,
dh = dx1 and dLfh = dx2+x1dx2+dx1x2. Hence, we have dO(h) = span{dx1, dx2} with dim dO(h) =

2. This system is locally weakly observable.

3.2.2 Review of observability within an algebraic framework
Diop and Fliess introduced in [Diop 1991a, Diop 1991b] a new approach of nonlinear observability
based on di�erential algebra. With respect to the di�erential geometric theory presented in Subsection
3.2.1, it has among other features the possibility of de�ning observability for systems represented by
an arbitrary set of algebra-di�erential equations.

Let us recall some useful notations.

De�nition 10 (Di�erential ring and di�erential �eld) [Diop 1991a] A di�erential ring R is a com-
mutative ring with 1, which is equipped with a derivation, i.e., a mapping d

dt = ˙ : R −→ R such
that

∀a, b ∈ R,
d

dt
(a+ b) = ȧ+ ḃ, (3.6)

∀a, b ∈ R,
d

dt
(ab) = ȧb+ aḃ. (3.7)

A di�erential �eld is a di�erential ring which is a �eld.

De�nition 11 (Di�erential �eld extension) [Diop 1991a] A di�erential �eld extension L/K is a �eld
extension L/K such that the derivation of K is the restriction to K of the derivation of L.

We denote the di�erential �eld generated by K and a subset S of L by K〈S〉.

De�nition 12 (Di�erentially K-algebraic) [Diop 1991a] An element z ∈ L is said to be di�erentially
algebraic over K, or di�erentially K-algebraic if, and only if, it satis�es an algebraic di�erential equation
over K.

This de�nition means that there exists a non-zero polynomial p over K in v + 1 indeterminates such
that p(z, ż, . . . , z(v)) = 0.

De�nition 13 (Deferentially K-algebraically dependent) [Diop 1991a] A set ξ = {ξi; i ∈ I} of element
in L is said to be deferentially K-algebraically dependent if, and only if, there exists ξi0 6= 0 which is
di�erentially algebraic over K〈ξ̄〉 with ξ̄ = {ξi; i ∈ I, i 6= i0}.

Let k be a given di�erential ground �eld. Denote by k〈u〉 the di�erential �eld generated by k and a
�nite set u = (u1, . . . , um) of di�erential quantities. The set u plays the role of control variables or
input, which may be assumed to be independent. This means that u is di�erentially k-algebraically
independent.

De�nition 14 (Dynamic) [Fliess 1989] A dynamic is a �nitely generated di�erential algebraic exten-
sion D/k〈u〉.
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This means that any element of D satis�es an algebraic di�erential equation with coe�cients which
are rational functions over k in the components of u and a �nite number of their derivatives. As
output variables can be viewed as sensors on the dynamics, we formally de�ne an output as a �nite set
y = (yl, . . . , yp) ∈ D.

Theorem 3.2.63 [Diop 1991b] Choose a subset z = {zi; i ∈ I} of D in a dynamics D/k〈u〉. An
element ξ in D is said to be observable with respect to z if it is algebraic over k〈z〉.

This result intuitively means that ξ can be expressed as an algebraic function of the components of z
and a �nite number of their derivatives. A subset S of D is said to be observable with respect to z if,
and only if, any element of S is so.

In the usual de�nition of observability, one takes for z the set {u, y} of input and output variables
and for S the set X of state variables. A state x is said to be observable if, and only if, it is observable
with respect to {u, y}. Indeed, a nonlinear system is observable if, and only if, any state variable is
a di�erential function of the control and output variables, i.e., a function of those variables and their
derivatives up to some �nite order.

Remark 7 This algebraic approach of nonlinear observability can be used for systems represented by
an arbitrary set of algebra-di�erential equations. While the geometric approach can be only used for
the systems de�ned in (3.1). It is shown that the system de�ned in (3.5) is observable by using the
geometric approach. Since x1 = y and x2 =

ẋ1
1+x1

, this system is also observable by using the algebraic
approach. Moreover, let us consider the ball and beam system which is described by (3.8). Since (3.8)
is not given in the form of (3.1), we are going to show that this system is observable by using the
algebraic approach.

3.3 Case study: comparison between some observers and our numer-
ical di�erentiation techniques

3.3.1 The Ball and Beam system
The ball and beam system is one of the most enduring popular and important laboratory models
for teaching control systems engineering. This system is widely used because it is very simple to
understand. It has a very important property: it is open loop unstable.

The system can be shown in Figure 3.2. A steel ball rolling on the top of a long beam which can
be tilted about its center axis by applying a control. The position of the ball on the beam and the
angle of the beam can be measured by using sensors.

The dynamics of the ball rolling on the beam can be described as follows:
{

(mr2 + J)θ̈ + 2mrṙθ̇ +mgr cos(θ) = u

mr̈ +mg sin(θ)−mrθ̇2 = 0,
(3.8)

where m is the mass of the ball, J is the length of the beam, g is the gravitational constant, r is the
position of the ball on the beam, θ is the beam angle and u is a control.
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Figure 3.2: Ball and beam system.

The state vector of the ball and beam system is (r, ṙ, θ, θ̇)T . Assume that the output vector is
(y1, y2)

T = (r, θ)T , then we get




r = y1
ṙ = − 1

2my1ẏ2

(
(my21 + J)ÿ2 +mgy1 cos(y2)− u

)

θ = y2

θ̇ =
(
ÿ1+g sin(y2)

y1

) 1
2
.

(3.9)

Hence, this system is observable by using the algebraic approach.
From now on, by taking u = (mr2 + J)v + 2mrṙθ̇ + mgr cos(θ), the ball and beam system is

simpli�ed as follows:
{

θ̈ = v

r̈ + g sin(θ)− rθ̇2 = 0,
(3.10)

where v ∈ R.
Linearization of this equation about the beam angle, θ = 0, gives us the following linear approxi-

mation of the system:
{

θ̈ = v

r̈ = −gθ.
(3.11)

In order to stabilize the system, we take v = k3
g r

(3) + k2
g r

(2) + k1
g ṙ +

k0
g r where





k0 = w2
n1
w2
n2

k1 = 2ξ(wn1w
2
n2

+ wn2w
2
n1
)

k2 = w2
n1

+ w2
n2

+ 4ξ2wn1wn2

k3 = 2ξ(wn1 + wn2),

with ξ = 0.7, wn1 = 1/ξ and wn2 = 3wn1 .
By denoting the state vector (r, ṙ, θ, θ̇)T by z = (z1, z2, z3, z4)

T and considering the output vector,
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the system in (3.11) can be written as follows:




ż1 = z2
ż2 = v

ż3 = z4
ż4 = −g sin(z1)− z2z

2
3

y1 = z1
y2 = z3.

(3.12)

Hence, (3.12) is in the form of (3.1) with h(z) = (z1, z3)
T . Then, we get dh(z) = (dz1, dz3)

T , Lfh =

(z2, z4)
T and dLfh = (dz2, dz4)

T . Hence, we have dO(h) = span{dz1, dz2, dz3, dz4} with dim dO(h) =

4. This system is locally weakly observable.
Since the measurements of r and θ are noisy and their �rst order derivatives ṙ and θ̇ are unknown,

we use in the following subsections the high-gain observer, the high-order sliding modes di�erentiation
and our Jacobi estimators to estimate r, θ, ṙ and θ̇.

3.3.2 High-gain observer
During the past few years, high-gain observers played an important role in the design of nonlinear
output feedback control of nonlinear systems. They are mainly used to estimate the derivatives of the
output. In this subsection, we use the high-gain observer to estimate r, θ, ṙ and θ̇.

By using (3.12), we get
{

Ṙ = AR+Bv

y1 = r,
(3.13)

and
{

Θ̇ = AΘ+Φ(Θ, R)

y2 = θ,
(3.14)

where R =

(
r

ṙ

)
, Θ =

(
θ

θ̇

)
, A =

(
0 1

0 0

)
, B =

(
0

1

)
and Φ(Θ, R) =

(
0

−g sin(θ)− rθ̇2

)
.

Hence, by using high-gain observer we get
{

˙̂
R = AR̂−Kr(ŷ1 − y1) +Bv

ŷ1 = rest,
(3.15)

and
{

˙̂
Θ = AΘ̂−Kθ(ŷ2 − y2) + Φ(Θ̂, R̂)

ŷ2 = θest,
(3.16)

where R̂ =

(
rest
ṙest

)
, Θ̂ =

(
θest
θ̇est

)
, Kr =

(
kr1
kr2

)
and Kθ =

(
kθ1
kθ2

)
.
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The high-gains are given by Kr = S−1∞ (αr)C and Kθ = S−1∞ (αθ)C, where S−1∞ (α) is the unique
solution of the matrix equation:

{
αS∞(α) +ATS∞(α) + S∞(α)A = CCT

S∞(α) = ST∞(α),
(3.17)

where C =

(
1

0

)
. Consequently, we get Kr =

(
2αr

α2
r

)
and Kθ =

(
2αθ

α2
θ

)
with αr ∈ R and

αθ ∈ R.

3.3.3 High-order sliding modes di�erentiator
The high-order sliding modes di�erentiator described in [Levant 2003] can be expressed in a dynamic
form as follows:





α̇0 = −λnM
1

n+1 |α0 − x| n
n+1 sign(α0 − x) + α1

α̇1 = −λn−1M
1
n |α1 − α̇0|

n−1
n sign(α1 − α̇0) + α2

...
α̇n−1 = −λ1M

1
2 |αn−1 − α̇n−2| 12 sign(αn−1 − α̇n−2) + αn

α̇n = −λ0M sign(αn − α̇n−1),

(3.18)

where x ∈ Cn+1 with n ∈ N, the derivatives of which we want to estimate. Then, it was shown in
[Levant 2003] that, if the gains of λi are chosen properly, then the di�erentiator converges in a �nite
time T , i.e., αi(t) = x(i)(t), for all t ≥ T and i = 0, 1, . . . , n. M is a constant such that ‖x(n+1)‖∞ ≤ M .
For the case when n = 5, the gains could be chosen as λ0 = 1.1, λ1 = 1.5, λ2 = 3, λ3 = 5, λ4 = 8 and
λ5 = 12.

In order to estimate r and ṙ (resp. θ and θ̇), we apply the high-order sliding modes di�erentiator
to (3.15) (resp. (3.16)) with n = 2 and x = y1 (resp. x = y2).

3.3.4 Numerical comparisons
In the subsection, by observing the state vector of the ball and beam system we give some comparisons
among high-gain observer, sliding modes di�erentiator and Jacobi estimators. When we use high-gain
observer, we have two parameters to set: αr and αθ. If we set these parameters to be large, then the
estimation errors in noise-free case are small. However, large values for these parameters can produce
large noise errors in noisy case. In the following estimations, we take αr = 10 and αθ = 30 so as
to produce small estimation errors in noise-free case. By simulating the ball and beam system we
obtain that r(2) ≤ 2 and θ(2) ≤ 6.7. These values are used for sliding modes di�erentiators. However,
these values are usually unknown. Finally, we apply the causal Jacobi estimator D(n)

κ,µ,−T,1x(−Tξ+ t0)

given in Corollary 1.3.15 and the central Jacobi estimator D̂
(n)
κ,µ,T,qx(t0) given in (1.166). According

to the previous study of the parameters' in�uence on the estimation errors for the Jacobi estimators,
we take κ = µ = 0, q = 2 and ξ as the smaller root of the Jacobi polynomial P (n,n)

2 in each following
estimations. Hence, the only parameter to be set is the length of each sliding window. However, we
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need di�erent value of T to estimate each state, i.e., we have four di�erent values of T to set. When
we estimate each state, we take the same value of T for causal and central Jacobi estimators.

Firstly, we compare high-gain observer to sliding modes di�erentiator without considering noises.
Then, we obtain that the sliding modes di�erentiator is not robust to �large� sampling period, especially
when they are used to estimate the speed of ball and the �rst order derivative of beam angle. We can
see this result in Figure 3.3 and Figure 3.4. When the sampling period is set to 0.01s, there are large
estimation errors for the sliding modes di�erentiator, which can be reduced by decreasing the sampling
period to 0.0001s.

Secondly, we compare these two observers in noisy case. We add a white gaussian noise to the
measurements of ball position and beam angle. The obtained SNR are equal to 24.5dB and 23.6dB
respectively (see Figure 3.5). Then, we can see in Figure 3.6-3.9 the obtained estimations and asso-
ciated absolute estimation errors. Especially, it is shown in Figure 3.6 that there is a time-delay for
the estimation obtained by sliding modes modes di�erentiator. This time-delay is due to the noise.
Moreover, we can observe in Figure 3.8 and Figure 3.9 that the time of convergence for high-gain ob-
server is smaller than the one for sliding modes modes di�erentiator. Hence, it is shown that high-gain
observer is more appreciate than sliding modes modes di�erentiator for the ball and beam system.

Thirdly, we compare high-gain observer to Jacobi estimators by taking the same noisy measurements
given in Figure 3.5. The obtained estimations and associated absolute estimation errors are given in
Figure 3.10-3.13. The time-delay values for causal Jacobi estimators can be calculated. Hence, by
shifting these causal Jacobi estimators we get smaller estimation errors than the ones for high-gain
observer. Moreover, it is shown that central Jacobi estimators are better than high-gain observer for
o�-line estimations.
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Figure 3.3: Estimations for the ball speed obtained by high-gain observer with αr = 10 and sliding
modes with M = 2.
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Figure 3.4: Estimations for the �rst order derivative of beam angle obtained by high-gain observer
with αθ = 30 and sliding modes with M = 6.7.
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Figure 3.5: Noisy observations obtained with a sampling period Ts = 0.0001s.
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Figure 3.6: Estimations for the ball position obtained by high-gain observer with αr = 10 and sliding
modes with M = 2 where the sampling period is Ts = 0.0001s.
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Figure 3.7: Estimations for the ball speed obtained by high-gain observer with αr = 10 and sliding
modes with M = 2 where the sampling period is Ts = 0.0001s.
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Figure 3.8: Estimations for the beam angle by high-gain observer with αθ = 30 and sliding modes with
M = 6.7 where the sampling period is Ts = 0.0001s.
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Figure 3.9: Estimations for the �rst order derivative of beam angle by high-gain observer with αθ = 30

and sliding modes M = 6.7 where the sampling period is Ts = 0.0001s.
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Figure 3.10: Estimations for the ball position obtained by high-gain observer with αr = 10 and Jacobi
estimators with T = 5000Ts where the sampling period is Ts = 0.0001s.
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Figure 3.11: Estimations for the ball speed obtained by high-gain observer with αr = 10 and Jacobi
estimators with T = 8000Ts where the sampling period is Ts = 0.0001s.
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Figure 3.12: Estimations for the beam angle by high-gain observer with αθ = 30 and Jacobi estimators
with T = 2000Ts where the sampling period is Ts = 0.0001s.
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Figure 3.13: Estimations for the �rst order derivative of beam angle by high-gain observer with αθ = 30

and Jacobi estimators with T = 4000Ts where the sampling period is Ts = 0.0001s.
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3.4 Conclusion
In this chapter, we recall some results of observability for a nonlinear system within a di�erential
geometric framework and a di�erential algebraic framework. By taking the ball and beam system,
we compare Jacobi estimators to high-gain observer and high order sliding modes di�erentiator. By
calculating the estimation errors, we have obtained that high-gain observer is more appreciate than
sliding modes observer for the ball and beam system, and Jacobi estimators are better than high-gain
observer for o�-line estimations and for on-line estimations by admitting a time-delay. According to
the previous simulations, we get in the Table 3.1 and Table 3.2 their comparison by considering other
di�erent criterions.

Observer Convergence time Number of parameters to be set
Jacobi estimators the length of sliding integration window 4 (one for each state estimation)
High-gain observer unknown 2

Sliding modes di�erentiator unknown 2

Table 3.1: Comparison by considering di�erent criterions

Observer Time-delay Robustness to noise and sampling period
Jacobi estimators known good
High-gain observer unknown (small) good

Sliding modes di�erentiator unknown bad

Table 3.2: Comparison by considering di�erent criterions
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Part II

Sinusoidal parameters estimation
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Chapter 4

Frequency, amplitude and phase
estimations
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4.1 Introduction
The problem of reliably estimating the de�ning parameters in a sinusoidal signal, namely: the am-
plitude, the frequency and the phase, from noisy measurements, has drawn considerable attention in
the last decade among signal processing researchers and applied mathematicians. Several interesting
applications of this problem are described in science and engineering, such as

• control theory [Fedele 2009a], [Becedas 2009], [Pereira 2009],

• intelligent instrumentation of power systems [Yang 2001], [Karimi 2004], [Wu 2005],

• signal processing [Liu 2001], [Klapuri 2003], [So 2006],

• biomedical engineering [Östlund 2004],

• global position systems [Hackman 2006].
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Because of its importance, many schemes and many solutions which o�er di�erent approaches to
the problem have been suggested in the literature (see [Stoica 1993], [Roy 1989], [Bittanti 2000],
[Mojiri 2004], [Cheng 2006],[Zhang 2006],[Fu 2007],[Li 2009]).

The key problem is to �nd a method that improves speed of convergence, accuracy, noise rejection,
etc. In [Trapero 2007a, Trapero 2007b, Sira-Ramírez 2006, Trapero 2008], recent algebraic parametric
techniques are devoted to estimate the frequency, amplitude and phase of time-invariant amplitude
noisy biased sinusoidal signals. It is an on-line, robust, continuous time identi�cation method capable
of estimating the unknown parameters. The obtained estimators are given by exact formulae in terms
of iterated integrals of the noisy observation signals. The calculations of the unknown parameters are
performed in a fraction of the sinusoid signal period, independently of all initial conditions. Very re-
cently, it is shown in [Coluccio 2008, Fedele 2009b, Fedele 2010] that the unknown frequency can be also
estimated by using modulating functions method [Shinbrot 1957, Rao 1976, Rao 1983, Pearson 1985,
Jordan 1986, Jordan 1990, Preising 1993, Co 1997, Ungarala 2000] which has similar advantages to the
algebraic parametric techniques especially concerning the robustness of the estimation to corrupting
noises.

The aim of this chapter is to use the algebraic parametric techniques and the modulating functions
method to give some estimators for the frequency, amplitude and phase of noisy sinusoidal signals the
amplitude of which are time-invariant or not. This chapter is organized as follows. In Section 4.2, we
give the estimators for the unknown parameters by using the algebraic parametric techniques via some
di�erential operators in the operational domain. In Section 4.3, by providing an extended frequency
estimator we show the link between the algebraic parametric techniques and modulating functions
method. Then, we estimate the amplitudes and phases by using modulating functions method.

4.2 Algebraic parametric techniques
Let y = x+$ be a noisy observation on a �nite time interval I ⊂ R+ of a real valued signal x, where
$ is an additive corrupting noise and

∀t ∈ I, x(t) = (A0 +A1t) sin(ωt+ φ) (4.1)

with A0 ∈ R∗
+, A1 ∈ R, ω ∈ R∗

+ and −1
2π < φ < 1

2π. In this section, by using algebraic parametric
techniques we estimate the parameters ω, A0 and φ from the noisy observation y. The estimations
are given in two cases where the amplitude of x is time-invariant (A1 = 0) and time-varying (A1 6= 0)
respectively.

Let us denote by DT := {T ;T ∈ R∗
+, [0, T ] ⊂ I}, cµ,κ = (−1)κ

Γ(µ+1) , Wµ,κ(t) = (T − t)µtκ for any
t ∈ [0, T ] with µ, κ ∈]− 1,+∞[, T ∈ DT , and recall the expression of w(n)

µ,κ given by (7.22) in Appendix
with n ∈ N. Hence, wµ,κ is the normalized form of Wµ,κ.

4.2.1 Time-invariant amplitude case
In this subsection, we assume that A1 = 0. Then, x is a sinusoidal signal with time-invariant amplitude,
which is a solution of the harmonic oscillator equation

∀ t ∈ I, ẍ(t) + ω2x(t) = 0. (4.2)
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We are going to estimate ω by applying the algebraic parametric techniques to the previous equation.
Let us give the following lemma.

Lemma 4.2.64 [Liu 2011d] Let f be a Cn-continuous function (n ∈ N) de�ned on I and Πn
k,µ be the

integral annihilator de�ned by (1.20). Then, the inverse of the Laplace transform of Πn
k,µf̂ , where f̂ is

the laplace transform of f with the Laplace variable s, is given by

L−1
{
Πn

k,µf̂(s)
}
(T ) = Tn+1+µ+kcµ+n,k

∫ 1

0
w

(n)
µ+n,k+n(τ) f(Tτ)dτ, (4.3)

where T ∈ DT .

Proof. By substituting x̂n by f̂ and x
(n)
n (βτ + t0) by f(τ) in (1.24), we get

L−1
{
Πn

k,µ

(
f̂
)}

(T ) =
(−1)n+k

Γ(n+ 1 + µ)

∫ T

0
(T − τ)n+µτn+kf (n)(τ) dτ. (4.4)

Then, this proof can be completed by applying a change of variable τ → Tτ and n times integrations
by parts in (4.4). 2

Proposition 4.2.65 [Liu 2008] Let k ∈ N, −1 < µ ∈ R and T ∈ DT such that
∫ 1
0 wµ+2,k+2(τ)x(Tτ)dτ 6=

0, then the parameter ω is estimated from the noisy observation y by

ω̃ =
1

T

(
−
∫ 1
0 ẅµ+2,k+2(τ) y(Tτ) dτ∫ 1
0 wµ+2,k+2(τ) y(Tτ) dτ

) 1
2

. (4.5)

Proof. By applying the Laplace transform to (4.2), we get

s2x̂(s)− sx0 − ẋ0 + ω2x̂(s) = 0, (4.6)

where s is the Laplace variable. Let us take k + 2 (k ∈ N) times derivations to both sides of (4.6)
with respect to s so as to annihilate the initial conditions x0 and ẋ0. Then, we multiply the resulting
equation by s−3−µ so as to apply (7.13) given in the Appendix to obtain Riemann-Liouville integrals
when returning back into the time domain. Thus, by applying these operations to (4.6) we get

Π2
k,µx̂(s) + ω2Π0

k+2,µ+2x̂(s) = 0. (4.7)

Let us apply the inverse Laplace transform to (4.7). Then by using Lemma 4.2.64, we obtain

T k+µ+3cµ+2,k+2

∫ 1

0

(
ẅµ+2,k+2(τ) + ω2T 2wµ+2,k+2(τ)

)
x(Tτ)dτ = 0. (4.8)

Assume that
∫ 1
0 wµ+2,k+2(τ)x(Tτ)dτ 6= 0, then the frequency ω is calculated by

ω =
1

T

(
−
∫ 1
0 ẅµ+2,k+2(τ)x(Tτ) dτ∫ 1
0 wµ+2,k+2(τ)x(Tτ) dτ

) 1
2

. (4.9)
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Finally, an estimator for ω can be obtained by substituting x by y in (4.9). 2

Let us recall that the parameter k de�ned in the integral annihilator Πn
k,µ is extended in Subsection

1.2.2 with k ∈] − 1,+∞[ for minimal Jacobi estimators. We can also extend the parameter k to
] − 1,+∞[ for the frequency estimator given in Proposition 4.2.65. Moreover, the formula of the
frequency estimator still has a sense with this extension.

By observing that x0 = x(0) = A0 sinφ and ẋ0 = ẋ(0) = A0ω cosφ, if −π
2 < φ < π

2 , then we have

A0 =

(
x20 +

ẋ20
ω2

) 1
2

, φ = arctan

(
ω
x0
ẋ0

)
. (4.10)

Hence, we should estimate ẋ0 and x0 in order to obtain estimators for A0 and φ.

Proposition 4.2.66 [Liu 2008] Let −1 < µ ∈ R and T ∈ DT , then the parameters A0 and φ are
estimated from the noisy observation y and the estimated value ω̃ de�ned by (4.5) as follows

Ã0 =

(
x̃20 +

˜̇x20
ω̃2

) 1
2

,

φ̃ = arctan

(
ω̃
x̃0
˜̇x0

)
,

(4.11)

where x̃0 =
∫ 1
0 P ω̃

0 (τ) y(Tτ) dτ and ˜̇x0 =
1
T

∫ 1
0 P ω̃

1 (τ) y(Tτ) dτ with

P ω̃
0 (τ) = 2(µ+ 2)wµ+1,0(τ)− (µ+ 1)(µ+ 2)wµ,1(τ)− (ω̃T )2wµ+2,1(τ),

P ω̃
1 (τ) = (µ+ 1)(µ+ 2)(µ+ 3)wµ,1(τ)− (µ+ 2)(µ+ 3)wµ+1,0(τ) + (ω̃T )2(µ+ 3)wµ+2,1(τ) + (ω̃T )2wµ+3,0(τ).

Proof. In order to calculate x0, we take the derivative of both sides of (4.6) with respect to s

s2x̂′(s) + 2sx̂(s)− x0 + ω2x̂′(s) = 0. (4.12)

Then, by multiplying both sides of (4.12) by s−µ−3 with −1 < µ ∈ R, we get

1

sµ+1
x̂′(s) +

2

sµ+2
x̂(s)− 1

sµ+3
x0 +

ω2

sµ+3
x̂′(s) = 0. (4.13)

Let us express (4.13) in the time domain and denote by T as the length of the window used for
estimation. Since −1 < µ ∈ R, by applying (7.11) and (7.13) given in the Appendix we get the
following Riemann-Liouville integral

Tµ+2

Γ(µ+ 3)
x0 =

∫ T

0

(
cµ,1Wµ,1(τ) + 2cµ+1,0Wµ+1,0(τ) + ω2cµ+2,1Wµ+2,1(τ)

)
x(τ) dτ.

Hence, by substituting τ by Tτ , x by y and taking the estimation of ω given in Proposition 4.2.65 we
obtain an estimate for x0

x̃0 =

∫ 1

0
P ω̃
0 (τ) y(Tτ) dτ. (4.14)

In order to estimate ẋ0, we multiply both sides of (4.6) by s−1

sx̂(s)− x0 − 1

s
ẋ0 +

ω2

s
x̂(s) = 0. (4.15)
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By taking the derivative of both sides of (4.15) with respect to s, we can annihilate the term x0

sx̂′(s) + x̂(s) +
1

s2
ẋ0 +

ω2

s
x̂′(s)− ω2

s2
x̂(s) = 0. (4.16)

Then, by multiplying by s−µ−2 with −1 < µ ∈ R we get

1

sµ+1
x̂′(s) +

1

sµ+2
x̂(s) +

1

s4+µ
ẋ0 +

ω2

s3+µ
x̂′(s)− ω2

s4+µ
x̂(s) = 0. (4.17)

By applying (7.11) and (7.13) given in the Appendix to the last equation and denoting by T as the
length of the window used for estimation, we get in the time domain

− Tµ+3

Γ(µ+ 4)
ẋ0 =

∫ T

0

(
cµ,1Wµ,1(τ) + cµ+1,0Wµ+1,0(τ) + ω2cµ+2,1Wµ+2,1(τ)− ω2cµ+3,0Wµ+3,0(τ)

)
x(τ) dτ.

By applying a change of variable, substituting x by y and taking the estimation for ω, we can estimate
ẋ0 by

˜̇x0 =
1

T

∫ 1

0
P ω̃
1 (τ) y(Tτ) dτ.

Finally, we get estimations for A0 and φ from the relations (4.10) and by using the estimations of x0,
ẋ0 and ω. 2

Let us remark that in the previous proof, we have applied the two following di�erential operators
1

sµ+3 · d
ds and 1

sµ+2 · d
ds · 1

s with −1 < µ ∈ R.

4.2.2 Time-varying amplitude case

In this subsection, we assume that A1 ∈ R∗. Then x is a sinusoidal signal with time-varying amplitude,
which is a solution of the harmonic oscillator equation

∀ t ∈ I, x(4)(t) + 2ω2ẍ(t) + ω4x(t) = 0. (4.18)

Similarly to Proposition 4.2.65, we are going to estimate ω by using the above equation.

Proposition 4.2.67 [Liu 2011d] Let k ∈ N, −1 < µ ∈ R and T ∈ DT such that
∫ 1
0 wµ+4,k+4(τ)x(Tτ)dτ 6=

0, then the parameter ω is estimated from the noisy observation y by

ω̃ =





(
−By−

√
B2

y−AyCy

Ay

) 1
2

, if ∆ ≥ 0,

(
−By+

√
B2

y−AyCy

Ay

) 1
2

, else,
(4.19)

where ∆ = A1

∫ 1
0 ẇµ+4,k+4(τ) sin(ωTτ + φ)dτ , Ay = T 4

∫ 1
0 wµ+4,k+4(τ) y(Tτ)dτ ,

By = T 2
∫ 1
0 ẅµ+4,k+4(τ) y(Tτ)dτ , Cy =

∫ 1
0 w

(4)
µ+4,k+4(τ) y(Tτ)dτ .
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Proof. By applying the Laplace transform to (4.18), we get

s4x̂(s) + 2ω2s2x̂(s) + ω4x̂(s) = s3x0 + s2ẋ0 + (2ω2x0 + ẍ0)s+ (2ω2ẋ0 + x
(3)
0 ). (4.20)

Let us apply k+4 (k ∈ N) times derivations to both sides of (4.20) with respect to s and by multiplying
the resulting equation by s−5−µ with −1 < µ ∈ R, we get

Π4
k,µx̂(s) + 2ω2Π2

k+2,µ+2x̂(s) + ω4Π0
k+4,µ+4x̂(s) = 0. (4.21)

Let us apply the inverse Laplace transform to (4.21). Then by using Lemma 4.2.64, we obtain
∫ 1

0
w

(4)
µ+4,k+4(τ)x(Tτ) + 2(ωT )2ẅµ+4,k+4(τ)x(Tτ) dτ + (ωT )4

∫ 1

0
wµ+4,k+4(τ)x(Tτ)dτ = 0. (4.22)

According to (7.22) given in the Appendix, we have w
(i)
µ+4,k+4(0) = w

(i)
µ+4,k+4(1) for i = 0, . . . , 3. Then

by applying integration by parts, we get
∫ 1

0

(
ω4x(Tτ) + 2ω2x(2)(Tτ) dτ + x(4)(Tτ)

)
wµ+4,k+4(τ)dτ = 0. (4.23)

Assume that
∫ 1
0 wµ+4,k+4(τ)x(Tτ)dτ 6= 0, then ω2 is obtained by

ω2 =
−B̂x ±

√
B̂2

x − ÂxĈx

Âx

, (4.24)

where Âx =
∫ 1
0 wµ+4,k+4(τ)x(Tτ)dτ , B̂x =

∫ 1
0 wµ+4,k+4(τ)x

(2)(Tτ) dτ, Ĉx =
∫ 1
0 wµ+4,k+4(τ)x

(4)(Tτ)dτ .
Since x(4)(Tτ) + 2ω2x(2)(Tτ) + ω4x(Tτ) = 0 for any τ ∈ [0, 1], we get

B̂2
x − ÂxĈx =

(∫ 1

0
wµ+4,k+4(τ)x

(2)(Tτ) dτ +

∫ 1

0
ω2wµ+4,k+4(τ)x(Tτ) dτ

)2

.

Observe that x(2)(Tτ)+(ωT )2x(Tτ) = 2ωA1T
2 cos(ωTτ+φ) for any τ ∈ [0, 1], and ωA1

∫ 1
0 wµ+4,k+4(τ) cos(ωTt+

φ)dτ = −A1
T

∫ 1
0 ẇµ+4,k+4(τ) sin(ωTτ + φ)dτ . Hence, we obtain that

ω =





(
−Bx−

√
B2

x−AxCx

Ax

) 1
2

, if ∆ ≥ 0,

(
−Bx+

√
B2

x−AxCx

Ax

) 1
2

, else,
(4.25)

where ∆ = A1

∫ 1
0 ẇµ+4,k+4(τ) sin(ωTτ + φ)dτ . Finally, this proof can be completed by applying

integration by parts and substituting x by y in the last equation. 2

Observe that




x0 = x(0) = A0 sinφ,

ẋ0 = ẋ(0) = ωA0 cosφ+A1 sinφ,

x
(2)
0 = x(2)(0) = −ω2A0 sinφ+ 2ωA1 cosφ,

x
(3)
0 = x(3)(0) = −ω3A0 cosφ− 3ω2A1 sinφ,

(4.26)
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then we have the fowling linear system



1 0 0 0

0 ω 1 0

−ω2 0 0 2ω

0 −ω3 −3ω2 0







A0 sinφ

A0 cosφ

A1 sinφ

A1 cosφ


 =




x0
ẋ0

x
(2)
0

x
(3)
0


 . (4.27)

By solving the previous linear system, we obtain




A0 sinφ = x0,

A0 cosφ = 1
2ω3

(
x
(3)
0 + 3ω2ẋ0

)
,

A1 sinφ = − 1
2ω2

(
x
(3)
0 + ω2ẋ0

)
,

A1 cosφ = 1
2ω

(
ω2x0 + x

(2)
0

)
.

(4.28)

If −π
2 < φ < π

2 , then we have

A0 =


x20 +

(
x
(3)
0 + 3ω2ẋ0

)2

4ω6




1
2

,

A1 =




(
x
(3)
0 + ω2ẋ0

)2

4ω4
+

(
ω2x0 + x

(2)
0

)2

4ω2




1
2

,

φ = arctan

(
2ω3x0

x
(3)
0 + 3ω2ẋ0

)
.

(4.29)

Hence, similarly to Proposition 4.2.66 we are going to estimate x0, ẋ0, x(2)0 and x
(3)
0 so as to obtain

estimations of parameters A0, A1 and φ.

Proposition 4.2.68 Let −1 < µ ∈ R and T ∈ DT , then the parameters A0, A1 and φ are estimated
from the noisy observation y and the estimated value ω̃ de�ned by (4.19) as follows

Ã0 =


x̃20 +

(
x̃
(3)
0 + 3ω̃2 ˜̇x0

)2

4ω̃6




1
2

,

Ã1 =




(
x̃
(3)
0 + ω̃2 ˜̇x0

)2

4ω̃4
+

(
ω̃2x̃0 + x̃

(2)
0

)2

4ω̃2




1
2

,

φ̃ = arctan

(
2ω̃3x0

x̃
(3)
0 + 3ω̃2 ˜̇x0

)
,

(4.30)
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where

x̃0 =

∫ 1

0
P ω̃
2 (τ) y(Tτ) dτ, x̃

(2)
0 =

1

T 3

∫ 1

0
P ω̃
4 (τ) y(Tτ) dτ − 2ω̃2x̃0,

˜̇x0 =
1

T

∫ 1

0
P ω̃
3 (τ) y(Tτ) dτ, x̃

(3)
0 =

1

T 3

∫ 1

0
P ω̃
5 (τ) y(Tτ) dτ − 2ω̃2 ˜̇x0

with

P ω̃
2 (τ) =

Γ(µ+ 5)

6

3∑

i=0

(
3

i

)
4! cµ+i,3−i

(4− i)!
wµ+i,3−i(τ)

+
2(ω̃T )2Γ(µ+ 5)

3

2∑

i=0

(
3

i

)
cµ+i+2,3−i

(2− i)!
wµ+i+2,3−i(τ) + (ω̃T )4cµ+4,3wµ+4,3(τ),

P ω̃
3 (τ) =− Γ(µ+ 6)

2
(cµ,3wµ,3(τ) + 11cµ+1,2wµ+1,2(τ) + 28cµ+2,1wµ+2,1(τ) + 12cµ+3,0wµ+3,0(τ))

− Γ(µ+ 6)(ω̃T )2 (cµ+2,3wµ+2,3(τ) + 5cµ+3,2wµ+3,2(τ) + 2cµ+4,1wµ+4,1(τ)− 2cµ+5,0wµ+5,0(τ))

− Γ(µ+ 6)(ω̃T )4

2
(cµ+4,3wµ+4,3(τ)− cµ+5,2wµ+5,2(τ)) ,

P ω̃
4 (τ) =

Γ(µ+ 7)

2
(cµ,3wµ,3(τ) + 10cµ+1,2wµ+1,2(τ) + 22cµ+2,1wµ+2,1(τ) + 8cµ+3,0wµ+3,0(τ))

+ Γ(µ+ 7)(ω̃T )2 (cµ+2,3wµ+2,3(τ) + 3cµ+3,2wµ+3,2(τ))

+
Γ(µ+ 7)(ω̃T )4

2
(cµ+4,3wµ+4,3(τ)− 2cµ+5,2wµ+5,2(τ) + 2cµ+6,1wµ+6,1(τ)) ,

P ω̃
5 (τ) =− Γ(µ+ 8)

6

(
3∑

i=0

(
3

i

)
3! cµ+i,3−i

(3− i)!
wµ+i,3−i(τ) + 2(ω̃T )2

1∑

i=0

(
3

i

)
cµ+i+2,3−iwµ+i+2,3−i(τ)

)

− Γ(µ+ 8)

6
(ω̃T )4

3∑

i=0

(
3

i

)
(−1)ii!cµ+4+i,3−iwµ+4+i,3−i(τ).

Proof. In order to estimate x0, we apply the following operator Π1 =
1

sµ+5
· d3

ds3
to (4.20) with

−1 < µ ∈ R, which annihilates each terms containing x
(i)
0 for i = 1, 2, 3. Then, by using the Leibniz

formula, we get
3∑

i=0

(
3

i

)
4!

(4− i)!

1

sµ+1+i
x̂(3−i)(s)+2ω2

2∑

i=0

(
3

i

)
2!

(2− i)!

1

sµ+3+i
x̂(3−i)(s)+

ω4

sµ+5
x̂(3)(s) =

6

sµ+5
x0. (4.31)

Let us apply (7.11) and (7.13) given in the Appendix so as to express (4.31) in the time domain and
denote by T the length of the window used for estimation

x0 =
Γ(µ+ 5)

6Tµ+4

∫ T

0

3∑

i=0

(
3

i

)
4! cµ+i,3−i

(4− i)!
Wµ+i,3−i(τ)x(τ) dτ

+
2ω2Γ(µ+ 5)

3Tµ+4

∫ T

0

2∑

i=0

(
3

i

)
cµ+i+2,3−i

(2− i)!
Wµ+i+2,3−i(τ)x(τ) + ω4cµ+4,3Wµ+4,3(τ)x(τ) dτ.
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Hence, by substituting τ by Tτ , x by y and taking the estimation of ω given in Proposition 4.2.67 we
obtain an estimate for x0.

In order to compute an estimate for ẋ0, we apply the following operator Π2 =
1

sµ+4
· d

ds
· 1
s
· d2

ds2
to (4.20). Then we get

Π2

{
s4x̂(s)

}
=

1

sµ+1
x̂(3)(s) +

11

sµ+2
x̂(2)(s) +

28

sµ+3
x̂′(s) +

12

sµ+4
x̂(s),

Π2

{
2ω2s2x̂(s)

}
=

2ω2

sµ+3
x̂(3)(s) +

10ω2

sµ+4
x̂(2)(s) +

4ω2

sµ+5
x̂′(s)− 4ω2

sµ+6
x̂(s),

Π2

{
ω4x̂(s)

}
=

ω4

sµ+5
x̂(3)(s)− ω4

sµ+6
x̂(2)(s),

Π2

{
s2ẋ0

}
= − 2

sµ+6
ẋ0.

(4.32)

By applying (7.13) given in the Appendix to (4.32), we get

L−1
{
Π2s

4x̂(s)
}
(T )

=

∫ T

0
(cµ,3Wµ,3(τ) + 11cµ+1,2Wµ+1,2(τ) + 28cµ+2,1Wµ+2,1(τ) + 12cµ+3,0Wµ+3,0(τ))x(τ) dτ,

L−1
{
Π22ω

2s2x̂(s)
}
(T )

=2ω2

∫ T

0
(cµ+2,3Wµ+2,3(τ) + 5cµ+3,2Wµ+3,2(τ) + 2cµ+4,1Wµ+4,1(τ)− 2cµ+5,0Wµ+5,0(τ))x(τ) dτ,

L−1
{
Π2ω

4x̂(s)
}
(T ) = ω4

∫ T

0
(cµ+4,3Wµ+4,3(τ)− cµ+5,2Wµ+5,2(τ))x(τ) dτ,

L−1
{
Π2s

2ẋ0
}
(T ) = − 2Tµ+5

Γ(µ+ 6)
ẋ0.

Thus, by applying a change of variable, substituting x by y and using the estimation of ω, we get an
estimate of ẋ0.

In order to estimate x
(2)
0 , we apply the following operator Π3 =

1

sµ+4
· d2

ds2
· 1
s
· d

ds
to (4.20) with

−1 < µ ∈ R. Then we get

Π3

{
s4x̂(s)

}
=

1

sµ+1
x̂(3)(s) +

10

sµ+2
x̂(2)(s) +

22

sµ+3
x̂′(s) +

8

sµ+4
x̂(s),

Π3

{
2ω2s2x̂(s)

}
=

2ω2

sµ+3
x̂(3)(s) +

6ω2

sµ+4
x̂(2)(s),

Π3

{
ω4x̂(s)

}
=

ω4

sµ+5
x̂(3)(s)− 2ω4

sµ+6
x̂(2)(s) +

2ω4

sµ+7
x̂′(s),

Π3

{
(2ω2x0 + x

(2)
0 )s

}
=

2

sµ+7
(2ω2x0 + x

(2)
0 ).

(4.33)
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By applying (7.13) given in the Appendix to (4.33), we get
L−1

{
Π3s

4x̂(s)
}
(T )

=

∫ T

0
(cµ,3Wµ,3(τ) + 10cµ+1,2Wµ+1,2(τ) + 22cµ+2,1Wµ+2,1(τ) + 8cµ+3,0Wµ+3,0(τ))x(τ) dτ,

L−1
{
Π32ω

2s2x̂(s)
}
(T ) = 2ω2

∫ T

0
(cµ+2,3Wµ+2,3(τ) + 3cµ+3,2Wµ+3,2(τ))x(τ) dτ,

L−1
{
Π3ω

4x̂(s)
}
(T ) = ω4

∫ T

0
(cµ+4,3Wµ+4,3(τ)− 2cµ+5,2Wµ+5,2(τ) + 2cµ+6,1Wµ+6,1(τ))x(τ) dτ,

L−1
{
Π3(2ω

2x0 + x
(2)
0 )s

}
(T ) =

2Tµ+6

Γ(µ+ 7)
(2ω2x0 + x

(2)
0 ).

Thus, by applying a change of variable, substituting x by y and using the estimation of ω, we get an
estimate of x(2)0 .

In order to estimate x
(3)
0 , we apply the following operator Π4 =

1

sµ+4
· d3

ds3
· 1
s

to (4.20) with
−1 < µ ∈ R. Then, by using the Leibniz formula, we get

− 6

sµ+8
(2ω2ẋ0 + x

(3)
0 )

=
3∑

i=0

(
3

i

)
3!

(3− i)!

1

sµ+1+i
x̂(3−i)(s) + 2ω2

1∑

i=0

(
3

i

)
1

sµ+3+i
x̂(3−i)(s) + ω4

3∑

i=0

(
3

i

)
(−1)ii!

sµ+5+i
x̂(3−i)(s).

(4.34)
Then, by applying (7.11) and (7.13) given in the Appendix we get

2ω2ẋ0 + x
(3)
0 =− Γ(µ+ 8)

6Tµ+7

∫ T

0

3∑

i=0

(
3

i

)
3! cµ+i,3−i

(3− i)!
Wµ+i,3−i(τ)x(τ) dτ

− Γ(µ+ 8)

3Tµ+7
ω2

∫ T

0

1∑

i=0

(
3

i

)
cµ+i+2,3−iWµ+i+2,3−i(τ)x(τ) dτ

− Γ(µ+ 8)

6Tµ+7
ω4

∫ T

0

3∑

i=0

(
3

i

)
(−1)ii!cµ+4+i,3−iWµ+4+i,3−i(τ)x(τ) dτ.

Hence, by applying a change of variable τ → Tτ , substituting x by y and using the obtained estimations
of ω and ẋ0 we obtain an estimate for x(3)0 .

Finally, we get estimations for A0 and φ from the relations (4.29) and the estimations of x0, ẋ0,
x
(2)
0 , x(3)0 and ω. 2

We can observe that all the obtained estimators using the algebraic parametric techniques are
expressed as iterated time integrals of the noisy observation y. Note that the noisy function y may not
be integrable in these integrals. Hence, the expressions of our estimators are only formal.

4.3 Modulating functions method
The identi�cation procedure, based on modulating functions, was pioneered by Shinbrot [Shinbrot 1957]
in the 1957. Essentially, the use of modulating functions allows to transform a di�erential expres-
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sion, involving input-output signals on a speci�ed time interval, into a sequence of algebraic equa-
tions. Moreover, the modulating functions method annihilates the e�ects of initial conditions and
allows the direct use of noisy data signals [Co 1997]. These features make the modulating functions
method desirable for use in several real processes. In more recent years, many authors have focused
on the choice of modulating functions type including Walsh functions [Rao 1983], Hermite functions
[Jordan 1986, Jordan 1990], Fourier modulating functions [Pearson 1985, Co 1997, Ungarala 2000] and
spline-type functions [Coluccio 2008, Fedele 2009b, Fedele 2010, Rao 1976].

The modulating functions method can be used to estimate parameters directly from any di�erential
equation possessing the following structure:

n∑

i=0

aiy
(i)(t) =

m∑

i=0

biu
(i)(t), n ≥ m, (4.35)

where y and u are the output and input signals respectively, and {ai, bi} are the unknown system
parameters. Without loss of generality, let us assume that a0 = 1. A function gK ∈ CK , de�ned on a
�nite time interval [0, T ], which satis�es the following terminal conditions

g
(i)
K (0) = g

(i)
K (T ) = 0, ∀i = 0, 1, . . . ,K − 1, (4.36)

is called a modulating function [Preising 1993]. A function f ∈ L1([0, T ]) is modulated by taking the
inner product with a modulating function gK

〈f, gK〉 =
∫ T

0
f(t)gK(t)dt. (4.37)

The terminal constraints of (4.36) essentially make the boundary conditions of the function f irrelevant
after modulations. Moreover, they make possible the transfer of the di�erentiation operation from the
function f on to the modulating function gK (as when dealing with distribution and test functions):

〈
f (i), gK

〉
= (−1)i

〈
f, g

(i)
K

〉
, i = 0, 1, . . . ,K − 1. (4.38)

Hence, we do not need to approximate time derivatives from noisy measurement data. The modulating
function procedure starts by multiplying (4.35) with the modulating function and integrating over the
interval [0, T ]:

n∑

i=0

ai

∫ T

0
gK(τ)y(i)(τ)dτ =

m∑

i=0

bi

∫ T

0
gK(τ)u(i)(τ)dτ. (4.39)

By integrating by parts and using property (4.38), (4.39) becomes
n∑

i=0

(−1)iai

∫ T

0
g
(i)
K (τ)y(τ)dτ =

m∑

i=0

(−1)ibi

∫ T

0
g
(i)
K (τ)u(τ)dτ. (4.40)

In order to determine all parameters {ai, bi}, at least the same number of linearly independent algebraic
equations similar to (4.40) must be generated. The proposed approach gains advantages from the low-
pass �ltering property of modulating functions integrals and gives explicit formulae for the parameters.
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Let us recall that the frequency estimator given in Proposition 4.2.65 is obtained by applying
algebraic parametric techniques with the following annihilator

Πn
k,µ =

1

sn+1+µ
· dn+k

dsn+k
· sn, (4.41)

where k ∈ N and −1 < µ ∈ R. The di�erentiation operation dn+k

dsn+k is used to annihilate initial
conditions, and the multiplication 1

sn+1+µ is used to obtain an integral. In fact, we can generalize this
annihilator by taking modulating functions so as to obtain an extended frequency estimator.

Lemma 4.3.69 Let f be a Cn-continuous function (n ∈ N) de�ned on I and Πn
g be de�ned as follows

Πn
g = ĝ(s) · sn, (4.42)

where ĝ is the Laplace transform of a Cn-continuous function g satisfying g(i)(T ) = g(i)(0) = 0 for
i = 0, · · · , n − 1 with T ∈ DT . Then, the inverse Laplace transform of Πn

g f̂ , where f̂ is the laplace
transformation of f , is given by

L−1
{
Πn

g f̂
}
(T ) =

∫ T

0
g(n)(T − τ) f(τ)dτ. (4.43)

Proof. By applying (7.9) given in the Appendix, we get

L
{∫ T

0
g(n)(τ) f(T − τ)dτ

}
= f̂(s) · L

{
g(n)(τ)

}
.

Since g(i)(0) = 0 for i = 0, · · · , n− 1, by applying (7.8) given in the Appendix, we obtain

f̂(s) · L
{
g(n)(τ)

}
= snĝ(s) · f̂(s) = Πn

g f̂(s).

Then, this proof can be completed by applying the inverse Laplace transform and a change of variable
τ → T − τ . 2

The conditions g(i)(T ) = 0 for i = 0, · · · , n− 1 are used to annihilate the initial conditions.
Recall the following equation given in (4.6)

s2x̂(s)− sx0 − ẋ0 + ω2x̂(s) = 0. (4.44)

Then, by multiplying the Laplace transform of a modulating function g ∈ C2 satisfying g(0) = g(T ) =

ġ(0) = ġ(T ) = 0, we get

s2ĝ(s)x̂(s)− sĝ(s)x0 − ĝ(s)ẋ0 + ĝ(s)ω2x̂(s) = 0. (4.45)

By applying the inverse Laplace transform, we get L−1 {sĝ(s)x0} (T ) = x0ġ(T ) = 0 and L−1 {ĝ(s)ẋ0} =

ẋ0g(T ) = 0. Hence, by applying Lemma 4.3.69, we get

ω =

(
−
∫ T
0 g(2)(T − τ)x(τ)dτ∫ T
0 g(T − τ)x(τ)dτ

) 1
2

. (4.46)

Consequently, the frequency estimator given in Proposition 4.2.65 can also be obtained by using
modulating functions. The frequency estimator given in Proposition 4.2.67 can be obtained similarly.
In this section, by using modulating functions method we are going to estimate the parameters ω, A0

and φ in the time-invariant amplitude case and in the time-varying amplitude case.
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4.3.1 Time-invariant amplitude case

In this subsection, we assume A1 = 0. Then, x satis�es the equation given by (4.2). Thus, we can give
the following proposition.

Proposition 4.3.70 Let g be a function belonging to C2([0, 1]) which satis�es the following condition
g(0) = g(1) = ġ(0) = ġ(1) = 0. Assume that there exists T ∈ DT such that

∫ 1
0 g(τ)x(Tτ) dτ 6= 0.

Then, the frequency ω is estimated by

ω̃ =
1

T

(
−
∫ 1
0 g̈(τ) y(Tτ)dτ∫ 1
0 g(τ) y(Tτ)dτ

) 1
2

.

Proof. By substituting t by Tτ in (4.2) with τ ∈ [0, 1] and T ∈ DT , we get ẍ(Tτ) + ω2 x(Tτ) = 0 for
any τ ∈ [0, 1]. Since g is integrable on [0, 1], we get

∫ 1

0
g(τ)

(
ẍ(Tτ) + ω2 x(Tτ)

)
dτ = 0.

As
∫ 1
0 g(τ)x(Tτ) dτ 6= 0, we have

ω2 = −
∫ 1
0 g(τ) ẍ(Tτ) dτ∫ 1
0 g(τ)x(Tτ) dτ

. (4.47)

By applying two times integrations by parts and using g(0) = g(1) = ġ(0) = ġ(1) = 0, we obtain

ω2 = − 1

T 2

∫ 1
0 g̈(τ)x(Tτ) dτ∫ 1
0 g(τ)x(Tτ) dτ

. (4.48)

Then, an estimation of ω is obtained by substituting x by y in (4.48). 2

Let us take an expansion of x

x(Tτ) = A0 cosφ sinωTτ +A0 sinφ cosωTτ, (4.49)

where τ ∈ [0, 1], T ∈ DT . Then, by using the modulating functions method used in the previous
proposition, we can calculate A0 and φ from (4.49). Hence, we give the following proposition.

Proposition 4.3.71 [Liu 2008] Let gi for i = 1, 2 be two continuous functions de�ned on [0, 1]. Then,
for any φ ∈]− π

2 ,
π
2 [, the parameters A0 and φ are estimated by

Ã0 =

{(
Gω̃

4 Iyg1 −Gω̃
2 Iyg2

Lω̃

)2

+

(
Gω̃

1 Iyg2 −Gω̃
3 Iyg1

Lω̃

)2
}1/2

,

φ̃ = arctan

(
Gω̃

1 Iyg2 −Gω̃
3 Iyg1

Gω̃
4 Iyg1 −Gω̃

2 Iyg2

)
,

(4.50)
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where T ∈ DT , ω̃ is the estimate of ω given by Proposition 4.3.70, and

Iyg1 =

∫ 1

0
g1(τ) y(Tτ) dτ, Iyg2 =

∫ 1

0
g2(τ) y(Tτ) dτ,

Gω̃
1 =

∫ 1

0
g1(τ) sin(ω̃T τ)dτ, Gω̃

2 =

∫ 1

0
g1(τ) cos(ω̃T τ) dτ,

Gω̃
3 =

∫ 1

0
g2(τ) sin(ω̃T τ) dτ, Gω̃

4 =

∫ 1

0
g2(τ) cos(ω̃T τ) dτ.

Moreover, we assume that Lω = Gω
1G

ω
4 −Gω

2G
ω
3 6= 0 and Gω

4 Ixg1 −Gω
2 Ixg2 6= 0.

Proof. By multiplying both sides of (4.49) by the continuous function g1 (resp. g2) and integrating
between 0 and 1, we obtain

Ixg1 = A0 cosφ Gω
1 +A0 sinφ Gω

2

Ixg2 = A0 cosφ Gω
3 +A0 sinφ Gω

4 .

It yields a linear system (
Gω

1 Gω
2

Gω
3 Gω

4

)(
A0 cosφ

A0 sinφ

)
=

(
Ixg1
Ixg2

)
.

Assume that Lω = Gω
1G

ω
4 −Gω

2G
ω
3 6= 0, then by solving the system we get

A0 cosφ =
Gω

4 I
x
g1 −Gω

2 I
x
g2

Lω
,

A0 sinφ =
Gω

1 I
x
g2 dτ −Gω

3 I
x
g1

Lω
.

(4.51)

Then, by assuming that Gω
4 Ixg1 −Gω

2 Ixg2 6= 0 the parameters A0 and φ are given by (4.50) by using
trigonometric relations. The proof can be completed by substituting x by y and ω by ω̃ respectively.

2

Let us remark that the calculation of Gω̃
1 is obtained by the following way: once the function g1

is given, the integral Gω
1 can be formally calculated where ω is an unknown parameter. Then, we

substitute ω by ω̃ in the obtained integral value. The calculations of Gω̃
i for i = 2, 3, 4 can be given

similarly.

4.3.2 Time-varying amplitude case
In this subsection, we assume that A1 ∈ R∗. Then, x satis�es the equation given by (4.18). Thus, sim-
ilarly to Proposition 4.2.67 we can estimate the frequency by using the modulating functions method.

Proposition 4.3.72 [Liu 2011d] Let f be a function belonging to C4([0, 1]) which satis�es the following
conditions f (i)(0) = f (i)(1) for i = 0, . . . , 3. Assume that

∫ 1
0 f(τ)x(Tτ)dτ 6= 0 with T ∈ DT , then the

parameter ω is estimated from the noisy observation y by

ω̃ =





(
−By−

√
B2

y−AyCy

Ay

) 1
2

, if ∆ ≥ 0,

(
−By+

√
B2

y−AyCy

Ay

) 1
2

, else,
(4.52)
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where ∆ = A1

∫ 1
0 ẇµ+4,k+4(τ) sin(ωTτ + φ)dτ , Ay = T 4

∫ 1
0 f(τ) y(Tτ)dτ , By = T 2

∫ 1
0 f̈(τ) y(Tτ)dτ ,

Cy =
∫ 1
0 f (4)(τ) y(Tτ)dτ .

Proof. Recall that x(4)(Tτ) + 2ω2x(2)(Tτ) + ω4x(Tτ) = 0 for any τ ∈ [0, 1]. As f is continuous on
[0, 1], the we have

∫ 1

0
f(τ)x(4)(Tτ)dτ + 2ω2

∫ 1

0
f(τ)x(2)(Tτ)dτ + ω4

∫ 1

0
f(τ)x(Tτ)dτ = 0.

Then, this proof can be completed similarly to the one of Proposition 4.2.67. 2

Let us take an expansion of x

x(Tτ) = A0 cosφ sin(ωTτ)+A0 sinφ cos(ωTτ)+A1 cosφTτ sin(ωTτ)+A1 sinφTτ cos(ωTτ), (4.53)

where τ ∈ [0, 1], T ∈ DT . Then, similarly to Proposition 4.3.71 we can estimate A0 and φ by using
the modulating functions method in the following proposition.

Proposition 4.3.73 [Liu 2011d] Let fi for i = 1, . . . , 4 be four continuous functions de�ned on [0, 1].
Assume that there exists T ∈ DT such that the determinant of the matrix Mω = (Mω

i,j)1≤i,j≤4 is
di�erent to zero, where for i = 1, . . . , 4

Mω
i,1 =

∫ 1

0
fi(τ) sin(ωTτ)dτ, Mω

i,2 =

∫ 1

0
fi(τ) cos(ωTτ)dτ,

Mω
i,3 =

∫ 1

0
fi(τ)Tτ sin(ωTτ)dτ, Mω

i,4 =

∫ 1

0
fi(τ)Tτ cos(ωTτ)dτ.

Then, for any φ ∈]− π
2 ,

π
2 [ the parameters A0, A1 and φ are estimated by

Ãi =

((
Ãi cosφ

)2
+

(
Ãi sinφ

)2
)1/2

,

φ̃ = arctan

(
Ã0 sinφ

Ã0 cosφ

)
,

(4.54)

where the estimates of Ai cosφ and Ai sinφ for i = 0, 1 are obtained by solving the following linear
system

Mω̃




Ã0 cosφ

Ã0 sinφ

Ã1 cosφ

Ã1 sinφ




=




Iyf1
Iyf2
Iyf3
Iyf4


 , (4.55)

where Iyfi =
∫ 1
0 fi(τ) y(Tτ)dτ for i = 1, . . . , 4, and ω̃ is the estimate of ω given by Proposition 4.3.72.

Proof. By multiplying both sides of (4.53) by the continuous function fi for i = 1, . . . , 4 and by
integrating between 0 and 1, we obtain

Ixfi = A0 cosφM
ω
i,1 +A0 sinφM

ω
i,2 +A1 cosφM

ω
i,3 +A1 sinφM

ω
i,4. (4.56)
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Then, it yields the following linear system

Mω




A0 cosφ

A0 sinφ

A1 cosφ

A1 sinφ


 =




Ixf1
Ixf2
Ixf3
Ixf4


 .

Since det(Mω) 6= 0, by solving the previous system, we obtain Ai cosφ and Ai sinφ. Finally, the proof
can be completed by substituting x by y in the obtained formulae of Ai cosφ and Ai sinφ for i = 0, 1.

2

Remark 8 The estimations given by Proposition 4.3.71 and Proposition 4.3.73 are obtained by solving
a system linear which depends on modulating functions. Hence, in order to obtain stable estimations
we should choose the modulating functions which make the system to be equalized.

If we choose function w
(n)
µ+n,κ+n with n ∈ N, µ, κ ∈] − 1,+∞[ as the previous modulating func-

tions. Then, the principle of such estimators is connected with that of orthogonal projection. An
interpretation in terms of least squares follows from [Mboup 2009a].

4.4 Conclusion
In this chapter, by using the algebraic parametric techniques and the modulating functions method
we have given some estimators for the frequency, amplitude and phase of noisy sinusoidal signals the
amplitude of which are time-invariant or not. Moreover, we have shown the connection between these
two methods.

Let us remark that whatever the algebraic identi�cation techniques and the modulating functions
method the obtained amplitude and phase estimators were given by solving a linear system. Similarly,
by providing some necessary equations these two methods can also be used to estimate the unknown
amplitudes and phases of noisy multi-sinusoidal signal with known frequency.

In the following chapter, we give some noise error bounds to study the choice of parameters κ, µ,
n and the length of integration window T for our estimators.
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Chapter 5

Error analysis for estimators of sinusoidal
signal
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5.1 Introduction
Let us recall that the algebraic parametric techniques exhibit good robustness properties with respect
to corrupting noises, without the need of knowing their statistical properties. A weakness of these
methods is a lack of any precise error analysis, when they are implemented in practice. In this chapter,
such error analysis is performed for the estimators given in Chapter 4.

Let us denote by q the involved functions in the integrals of our estimators in Chapter 4. Then,
we denote by

Iyq :=

∫ 1

0
q(τ) y(Tτ)dτ. (5.1)
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Since y = x+$, we get
Iyq = Ixq + I$q , (5.2)

where I$q is the noise error ($ being the noise)

I$q :=

∫ 1

0
q(τ)$(Tτ)dτ. (5.3)

Thus the integral Iyq is only corrupted by the noise error contributions I$q that will be denoted by e$q
in the following.

From now on, assume that y(ti) = x(ti) + $(ti) (ti ∈ I) is a noisy measurement of x in discrete
case with an equidistant sampling period Ts, then we need to use a numerical integration method to
approximate the integrals used in the previous estimators. Let τi =

i
m and ai > 0 for i = 0, . . . ,m

with m = T
Ts

∈ N∗ (except for a0 ≥ 0 and am ≥ 0) be respectively the abscissas and the weights for a
given numerical integration method. Weight a0 (resp. am) is set to zero in order to avoid the in�nite
values at τ = 0 when −1 < κ < 0 (resp. τ = 1 when −1 < µ < 0) [Lyness 1994]. Hence, Iyq can be
approximated by

Iy,mq :=

m∑

i=0

ai
m

q(τi) y(Tτi). (5.4)

By writing y(ti) = x(ti) +$(ti), we get

Iy,mq = Ix,mq + e$,m
q , (5.5)

where
e$,m
q :=

m∑

i=0

ai
m

q(τi)$(Tτi). (5.6)

Thus the integral
Iyq = Ix,mq + (Ixq − Ix,mq ) + e$,m

q (5.7)

is corrupted in the discrete case by two sources of errors:

• the numerical error Ixq − Ix,mq ,

• the noise error contributions e$,m
q .

Consequently, the estimation error for each previously obtained estimator is due to these two
sources of errors. Hence, by reducing the errors for the integral Iyq we can reduce the total error for
our estimators. To do so, we give some noise error bounds. Let us recall that these estimators depend
on the parameters κ, µ, n and T . These error bounds permit us to know precisely the in�uence of
these parameters on our estimators. Hence, we can choose the optimal parameters so as to get �good�
estimations.

This chapter is organized as follows. In Section 5.2, we roughly show the parameters' in�uence on
the numerical error. In Section 5.3, we consider bounded and integral noise. In particular, we roughly
study the parameters' in�uence on the noise error which is due to a biased sinusoidal perturbation.
In Section 5.4, we consider two classes of stochastic processes noise. Firstly, we provide some noise
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error bounds for the corresponding noise error contributions. Secondly, we show the in�uence of the
sampling period onto these noise error contributions. In Section 5.5, by using the error bounds for noise
error contributions obtained in the previous subsection, we give some error bounds for the estimators
obtained in the time-invariant amplitude case.

5.2 Analysis for the numerical error
We apply the trapezoidal rule as the numerical integration method in (5.4). Let h(τ) := q(τ)x(Tτ) for
τ ∈ [0, 1] be a function which is at least 2l + 2 (l ∈ N) times continuously di�erentiable on [0, 1], then
by using the Euler-Maclaurin formula [Atkinson 1989] (p. 285) we have

Ixq − Ix,mq = −
l∑

j=1

B2j

(2j)!m2j

(
h(2j−1)(1)− h(2j−1)(0)

)
− B2l+2

(2l + 2)!m2l+2
h(2l+2)(ξ), (5.8)

for some ξ ∈ [0, 1]. The coe�cients Bj are the Bernoulli numbers [Abramowitz 1965] (p. 804) which
are equal to the value of the Bernoulli polynomial Bn(t) at t = 0. Let us recall that the Bernoulli
polynomials are de�ned as follows

1. ∀t ∈ R, B0(t) = 1,

2. ∀n ∈ N, B′
n+1(t) = (n+ 1)Bn(t),

3. ∀n ∈ N∗,
∫ 1
0 Bn(t)dt = 1.

It is clear that if the value of T is set then by decreasing the sampling period Ts we can increase
the value of m. Hence, the numerical error Ixq − Ix,mq given in (5.8) can be reduced. Then, we roughly
show the other parameters' in�uence on this numerical error.

On the one hand, we denote the ceil function by d·e. Then, we assume that q ≡ w
(n)
µ+n,κ+n (such

that q(i)(0) = q(i)(1) = 0 for i = 0, 1, · · · , dmin(κ, µ)e−1) for the modulating functions method, where
κ, µ ∈] − 1,+∞[ and n ∈ N such that q ∈ C2l+2([0, 1]). If dmin(κ, µ)e = 2l, then by applying the
Rodrigues formula (given in (7.22)) in (5.8) we obtain that h(2j−1)(1) = h(2j−1)(0). It yields

Ixq − Ix,mq = − B2l+2

(2l + 2)!m2l+2
h(2l+2)(ξ), (5.9)

where

h(2l+2)(ξ) =
2l+2∑

i=0

(
2l + 2

i

)
(−1)n+i(n+ i)!wµ−i,κ−i(ξ)P

(µ−i,κ−i)
n+i (ξ)(mTs)

2l+2−ix(2l+2−i)(Tξ).

Denoting by Mi = ‖x(i)‖∞, we obtain

∣∣Ixq − Ix,mq

∣∣ ≤ B2l+2

(2l + 2)!m2l+2

2l+2∑

i=0

M2l+2−i(mTs)
2l+2−i

(
2l + 2

i

) ∣∣∣wµ−i,κ−i(ξ)P
(µ−i,κ−i)
n+i (ξ)

∣∣∣ . (5.10)

Since the value of l depends on the minimum value between κ and µ and large values of κ and µ

(resp. of l) can get a large value for P (µ−i,κ−i)
n+i (ξ) (resp. for x(2l+2−i)(Tξ)), a natural idea is to increase
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appropriately the values of κ and µ such that the numerical error can be negligible even for a small
value of m (large value of Ts). The value of P (µ−i,κ−i)

n+i (ξ) can increase with respect to the value of n,
hence we set n = 0 by default.

On the other hand, the estimators for A0 and φ given by the algebraic parametric technique in
Proposition 4.2.66 and Proposition 4.2.68 depend only on the parameter µ for a given value T . The
integrals in these estimators contain the function wµ+j,0 with j ∈ N∗. Then, by taking l = 0 in (5.8),
we obtain

Ixwµ+j,0
− Ix,mwµ+j,0

= −B2

m2

2∑

i=0

(mTs)
2−i

i!(2− i)!
x(2−i)(Tξ)

Γ(µ+ 1 + j)

Γ(µ+ 1 + j − i)
(1− ξ)µ+j−i. (5.11)

Thus, if the value of j is large and the value of m is not large enough (Ts is not small enough), then
the numerical error can not be negligible. Moreover, if the value of µ increases, then according to
(5.11) the numerical error can be increased also. Hence, the estimators obtained by the algebraic
parametric techniques in Proposition 4.2.68 can produce larger numerical errors than the ones given in
Proposition 4.2.66. Moreover, the estimators obtained by using the modulating functions method can
produce smaller numerical errors than the ones obtained by using the algebraic parametric techniques.
Finally, we recall in Table 5.1 the in�uence of parameters on the numerical error. a ↓ and b ↗ (resp.
b ↘) refer that by increasing (resp. decreasing) the value of b, we can reduce the value of a.

Method Numerical error Ts (m) µ n

Modulation functions method ↓ ↘ (↗) (T being set) min(κ, µ) ↗ ↘
Algebraic parametric technique ↓ ↘ (↗) (T being set) ↘

Table 5.1: The in�uence of parameters on the numerical error.

5.3 Analysis for an integrable noises
In this section, we assume that the noise $ is a bounded with a noise level δ̂ and integrable function
on I, which is given (2.6). Then, the associated noise error contribution e$,m

q given in (5.6) is bounded
by ∣∣e$,m

q

∣∣ ≤ Mmax
q , (5.12)

where Mmax
q := δ̂

m∑

i=0

ai
m

|q(τi)| .
In the following subsection, we study the noise error due to a biased sinusoidal perturbation.

5.3.1 Analysis for a sinusoidal perturbation
There are many applications where the sinusoidal signal is corrupted by another sinusoidal perturbation
of higher frequency. Let us assume in the subsection that$(ti) = A$ sin(ω$ti) for ti ∈ I with A$ ∈ R+

and ω$ ∈ R+. If ω$ À ω, then according to [Fliess 2006] $ is a noise understood as a high frequency
perturbations. If there exists a small integer k such that ω$ = kω, we consider $ as a low frequency
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sinusoidal perturbation. We study the parameters' in�uence on such sinusoidal perturbation error
contribution.

On the one hand, we assume that q ≡ w
(n)
µ+n,κ+n with κ, µ ∈]−1,+∞[ and n ∈ N for the modulating

functions method. If l+1 = dmin(κ, µ)e, then by taking the Rodrigues formula, we get w(n+i)
µ+n,κ+n(0) =

w
(n+i)
µ+n,κ+n(1) = 0 for i = 0, . . . , l. Hence, by applying integration by parts, we obtain
∫ 1

0
w

(n)
µ+n,κ+n(τ) sin(ω$Tτ) dτ =

(−1)n+l(n+ l)!

(ω$T )
l

∫ 1

0
wµ−l,κ−l(τ)P

(µ−l,κ−l)
n+l (τ) sin(l)(ω$Tτ) dτ. (5.13)

Hence, by increasing the value of T we can reduce this sinusoidal perturbation error. Moreover, if
ω$ À ω and the numerical error for I$q is negligible, then this high frequency sinusoidal noise error
can be negligible. Otherwise, by increasing the values of κ and µ, the power of 1

ω$T becomes larger
and larger. Recall that by increasing appropriately the values for κ and µ, the numerical error for I$0

q

can become negligible. Thus, if 1
ω$T < 1, then the low frequency sinusoidal perturbation error can be

also negligible.
On the other hand, as is shown in the previous section, the integrals in the estimators for A0 and

φ obtained by the algebraic parametric techniques contain the functions wµ+j,0 with j ∈ N∗. Then, by
taking integration by parts we obtain

A$

∫ 1

0
wµ+j,0(τ) sin(ω$Tτ) dτ = − A$

ω$T
− (µ+ j)

A$

ω$T

∫ 1

0
wµ+j−1,0(τ) cos(ω$Tτ) dτ. (5.14)

Hence, similarly to the modulating functions method, the sinusoidal perturbation error can be reduced
by increasing the value of T or by taking a high frequency ω$. However, if the frequency ω$ is not
high enough, then this sinusoidal perturbation error can not be negligible. Moreover, if the value of µ
increases, then according to (5.14) this error can be increased also. We recall in Table 5.2 the in�uence
of parameters on the sinusoidal perturbation error. a ↓ and b ↗ (resp. b ↘) refer that by increasing
(resp. decreasing) the value of b, we can reduce the value of a.

Method Sinusoidal perturbation T (m) µ n

Modulation functions method ↓ ↗ (Ts being set) min(κ, µ) ↗ ↘
Algebraic parametric technique ↓ ↗ (Ts being set) ↘

Table 5.2: The in�uence of parameters on the sinusoidal perturbation error.

Finally, we assume that the sinusoidal perturbation $ is corrupted by a structured perturbation
where %(ti) =

n−1∑
j=0

νj t
j
i . Then, according to Lemma 2.3.47, the estimators obtained by using the

modulating functions method with q ≡ w
(n)
µ+n,κ+n can annihilate this structured perturbation.

5.4 Analysis for a stochastic processes noise error
In this section, we study the noise in the framework of stochastic process. By using the Bienaymé-
Chebyshev inequality, we give some appropriate error bounds for the noise error contributions. Then,
we show the in�uence of the sampling period on these noise errors.
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5.4.1 Non-independent cases
In this subsection, we assume that the noise $ satis�es the condition (C1) de�ned in Subsection 2.4.1.
Then, by applying Lemma 2.4.49 we obtain that the noise error e$,m

q de�ned in (5.6) converges in
mean square to e$q .

Similarly to (2.15), by calculating the mean value and variance of the noise error contribution e$,m
q

we obtain an error bound for e$,m
q : ∣∣e$,m

q

∣∣ pr
< Mmax

q , (5.15)

whereMmax
q = max(|M l

q|, |Mh
q |) withM l

q = E[e$,m
q ]−γ

√
V ar[e$,m

q ] andMh
q = E[e$,m

q ]+γ
√

V ar[e$,m
q ].

In particular, similarly to Subsection 2.4.2, we can give error bounds when the noise is a Wiener process
or a Poisson process.

Now, we assume that the noise {$(τ), τ ≥ 0} is a continuous parameter stochastic process satisfying
conditions (C1) to (C3) de�ned in Section 2.4. Let us choose function w

(n)
µ+n,κ+n with n ∈ N, µ, κ ∈

]−1,+∞[ as the modulating functions used in Section 4.3. Then, similarly to Theorem 2.4.51 the mean
value and variance of the noise error e$q for the estimators obtained by using modulating functions
methods are equal to 0. Hence, similarly to Theorem 2.4.56, we can obtain that e$,m

q converges in
mean square to 0 when Ts → 0.

5.4.2 Independent cases
In this subsection, we assume that the noise $ satis�es the condition (C4)− (C6) de�ned in Subsection
2.5. Then, similarly to the previous subsection, by calculating the mean value and variance of the
noise error contribution e$,m

q , we can give error bound Mmax
q for e$,m

q .
In particular, if $ is a white Gaussian noise, then according to the three-sigma rule, we have

M l
q

pr≤ e$,m
q

pr≤ Mh
q , (5.16)

where M l
q = E[e$,m

q ] − γ
√

V ar[e$,m
q ] and Mh

q = E[e$,m
q ] + γ

√
V ar[e$,m

q ] with p1 = 68.26%, p2 =

95.44% and p3 = 99.73%. In this case, we have
∣∣e$,m

q

∣∣ pr≤ Mmax
q , (5.17)

where Mmax
q = max(|M l

q|, |Mh
q |).

Now, let us assume that q ∈ L2(I). Then, similarly to Theorem 2.5.58, we obtain that e$,m
q

converges in mean square to
∫ 1
0 q(τ)E[$(Tτ)] dτ when Ts → 0. Moreover, if E[$(τ)] =

n−1∑

i=0

ν̄i τ
i with

ν̄i ∈ R, then by taking q ≡ w
(n)
µ+n,κ+n with n ∈ N, µ, κ ∈]− 1

2 ,+∞[, the noise error e$q for the estimators
obtained by using modulating functions methods converges in mean square to 0 when Ts → 0.

Remark 9 According to the proof of Theorem 2.5.58, the variance of the noise error contribution e$,m
q

is bounded by the term U a(m)
m

m∑

i=0

ai
m

q2(τi) which tends to zero when m → +∞. As
m∑

i=0

ai
m

q2(τi) tends
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to the integral value
∫ 1
0 q2(τ) dτ when m → +∞, the convergence rate of the term U a(m)

m

m∑

i=0

ai
m

q2(τi)

depends on the value of
∫ 1
0 q2(τ) dτ . Thus, we can choose the function q which minimizes the integral

value
∫ 1
0 q2(τ) dτ so as to minimize the variance V ar[e$,m

q ]. If q ≡ wµ,κ, then we have
∫ 1
0 q2(τ) dτ =

B(2µ + 1, 2κ + 1) where B(·, ·) is the classical beta function. Since B(2µ + 1, 2κ + 1) increases with
respect to µ and κ, we can reduce V ar[e$,m

q ] by decreasing the values of µ and κ. Consequently, we
can reduce the noise errors contributions for our estimators by decreasing the values of µ and κ.

5.5 Some error bounds for estimators

In this section, by using the noise error bound Mmax
q obtained in the previous sections we give some

error bounds for the estimators obtained in the time-invariant amplitude case. These error bounds
permit us to know precisely the in�uence of these parameters on our estimators.

5.5.1 Some error bounds in the unknown ω case

We obtain in Proposition 4.3.70 an estimator for the frequency ω in the time-invariant amplitude case,
which is more general to the one obtained in Proposition 4.2.65. We give an error bound for this
estimation in the following proposition.

Proposition 5.5.74 Let ω̃ be the estimation given in Proposition 4.3.70 for ω. Then the total error
for ω̃2 is bounded as follows

∣∣ω̃2 − ω2
∣∣ ≤ Mg̈,g,

where

Mg̈,g =
∣∣ω2

m − ω2
∣∣+ 1

T 2

Mmax
gx∣∣|Ix,mg | −Mmax
g

∣∣ |Ix,mg | ,

ω2
m =

1

T 2

Ix,mg̈

Ix,mg
,

gx = g̈Ix,mg − gIx,mg̈ ,

Ix,mg̈ and Ix,mg are given by (5.4) with y = x, q = g̈ and q = g respectively, Mmax
gx and Mmax

g are given
with q = gx and q = g respectively. Moreover, if ω2 > Mg̈,g, then the total error for ω̃ is bounded as
follows

|ω̃ − ω| ≤ Bg̈,g =
Mg̈,g

2 (ω2 −Mg̈,g)
1
2

. (5.18)
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Proof. We have

∣∣ω̃2 − ω2
m

∣∣ = 1

T 2

∣∣∣∣∣
Ix,mg̈ + e$,m

g̈

Ix,mg + e$,m
g

− Ix,mg̈

Ix,mg

∣∣∣∣∣

=
1

T 2

∣∣∣∣∣
e$,m
g̈ Ix,mg − e$,m

g Ix,mg̈

(Ix,mg + e$,m
g )Ix,mg

∣∣∣∣∣

≤ 1

T 2

∣∣∣e$,m
g̈ Ix,mg − e$,m

g Ix,mg̈

∣∣∣
||Ix,mg | − |e$,m

g || |Ix,mg | .

Denote the noise error e$,m
g̈ Ix,mg − e$,m

g Ix,mg̈ by e$,m
gx with gx = g̈Ix,mg − gIx,mg̈ . Then, by using noise

error bound Mmax
gx (resp. Mmax

g ) for e$,m
gx (resp. e$,m

g ) we get
∣∣ω̃2 − ω2

∣∣ ≤ ∣∣ω̃2 − ω2
m

∣∣+ ∣∣ω2 − ω2
m

∣∣

≤ 1

T 2

Mmax
gx∣∣|Ix,mg | −Mmax
g

∣∣ |Ix,mg | +
∣∣ω2 − ω2

m

∣∣ = Mg̈,g.
(5.19)

Then, by applying the mean value theorem, we get

|ω̃ − ω| ≤ 1

2

∣∣ω̃2 − ω2
∣∣ sup
ξ∈[min(ω̃2,ω2),max(ω̃2,ω2)]

ξ
−1
2

Observe that ω2−Mg̈,g ≤ ω2− ∣∣ω̃2 − ω2
∣∣ ≤ min(ω̃2, ω2) ≤ max(ω̃2, ω2) ≤ ω2+

∣∣ω̃2 − ω2
∣∣ ≤ ω2+Mg̈,g,

hence if ω2 > Mg̈,g then this proof can be easily completed. 2

We use the estimations of x0 and ẋ0 in Proposition 4.2.66 to estimateA0 and φ. In these estimations,
we need an estimation value for the frequency ω. Hence, we can give error bounds for these estimations
by using the error bound given in the previous proposition. Such that by studying these error bounds
we can choose the optimal parameters for x0 and ẋ0 so as to estimate A0 and φ.

Proposition 5.5.75 Let x̃0 be the estimation given in Proposition 4.2.66 for x0. Then the total error
for x̃0 is bounded as follows

|x̃0 − x0| ≤ MPω,x
0

, (5.20)

where

MPω,x
0

= |x0m − x0|+Mg̈,gT
2Ix,mwµ+2,1

+Mmax
Pω,x
0

,

x0m = Ix,mPω
0
,

Pω,x
0 (τ) = |p0(τ)|+ (ω2 +Mg̈,g)T

2wµ+2,1(τ),

p0(τ) = 2(µ+ 2)wµ+1,0(τ)− (µ+ 1)(µ+ 2)wµ,1(τ), (5.21)

Pω
0 is given in Proposition 4.2.66, Ix,mPω

0
and Ix,mwµ+2,1 are given by (5.4) with y = x,q = Pω

0 and q = wµ+2,1

respectively, Mmax
Pω,x
0

is given with q = Pω,x
0 , Mg̈,g is given by (5.19).
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Proof. Let Denote P ω̃
0 (τ) = p0(τ)− (ω̃T )2wµ+2,1(τ) with p0(τ) being given by (5.21). Then, we get

x̃0 − x0m = (ω2 − ω̃2)T 2Ix,mwµ+2,1
+ e$,m

P ω̃
0

. (5.22)

Observe that
∣∣P ω̃

0 (τ)
∣∣ ≤ |p0(τ)|+ (ω̃T )2wµ+2,1(τ)

≤ |p0(τ)|+ (ω2 +Mg̈,g)T
2wµ+2,1(τ).

Denote |p0(τ)|+ (ω2 +Mg̈,g)T
2wµ+2,1(τ) by Pω,x

0 (τ), then by using (5.22) we get

|x̃0 − x0m| ≤ Mg̈,gT
2Ix,mwµ+2,1

+Mmax
Pω,x
0

.

Then this proof can be easily completed. 2

Similarly, we give the following proposition.

Proposition 5.5.76 Let ˜̇x0 be the estimation given in Proposition 4.2.66 for ẋ0. Then the total error
for ˜̇x0 is bounded as follows ∣∣˜̇x0 − ẋ0

∣∣ ≤ MPω,x
1

, (5.23)

where

MPω,x
1

= |ẋ0m − ẋ0|+ 1

T

(
Mg̈,gT

2Ix,mwµ +Mmax
Pω,x
1

)
,

wµ(τ) = (µ+ 3)wµ+2,1(τ) + wµ+3,0(τ),

ẋ0m =
1

T
Ix,mPω

1
,

Pω,x
1 = |p1(τ)|+ (ω2 +Mg̈,g)T

2((µ+ 3)wµ+2,1(τ) + wµ+3,0(τ)),

p1(τ) = (µ+ 1)(µ+ 2)(µ+ 3)wµ,1(τ)− (µ+ 2)(µ+ 3)wµ+1,0(τ),

Ix,mPω
1

and Ix,mwµ are given by (5.4) with y = x, q = Pω
1 and q = wµ respectively, Mmax

Pω,x
1

is given with
q = Pω,x

1 , Mg̈,g is given by (5.19).

By observing the estimators obtained in Proposition 4.3.71 by the modulating functions method,
we can �nd out that these estimators are not linear with respect to ω̃2. Hence, it is better to know the
value of ω so as to give error bounds for these estimators.

5.5.2 Some error bounds in the known ω case
In this subsection, we assume that the frequency ω is known. With this assumption, we can give directly
some error bounds for the estimators of A0 and φ obtained in Proposition 4.2.66 and in Proposition
4.3.71.

Proposition 5.5.77 Let Ã0 and φ̃ be the estimations obtained in Proposition 4.2.66 for A0 and φ

respectively. Then the total error for Ã2
0 is bounded as follows
∣∣∣Ã2

0 −A2
0

∣∣∣ ≤ MPω,x
2

,
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where

MPω,x
2

=
∣∣A2

0m −A2
0

∣∣+Mmax
Pω,x
2

+
(
Mmax

Pω
0

)2
+

1

(Tω)2

(
Mmax

Pω
1

)2
,

A2
0m = x20m +

ẋ0
2
m

ω2
,

Pω,x
2 = 2Ix,mPω

0
Pω
0 +

2

(Tω)2
Ix,mPω

1
Pω
1 ,

Pω
i for i = 0, 1 is given by Proposition 4.2.66, x0m and ẋ0m are given by Proposition 5.5.75 and

Proposition 5.5.76 respectively, Mmax
Pω,x
i

is given with q = Pω,x
i for i = 2, 3. Moreover, if A2

0 > MPω,x
2

,
then the total error for Ã0 is bounded as follows

∣∣∣Ã0 −A0

∣∣∣ ≤ BPω,x
2

=
MPω,x

2

2
(
A2

0 −MPω,x
2

) 1
2

.

The total error for t̃an(φ) is bounded as follows
∣∣∣t̃an(φ)− tan(φ)

∣∣∣ ≤ MPω,x
3

, (5.24)

where

MPω,x
3

= |tan(φm)− tan(φ)|+
ωTMmax

Pω,x
3

|Ix,mPω
1
|
∣∣∣|Ix,mPω

1
| −Mmax

Pω
1

∣∣∣
,

tan(φm) = ω
x0m
ẋ0m

,

Pω,x
3 = Ix,mPω

1
Pω
0 − Ix,mPω

0
Pω
1 .

Moreover, if tan(φ) > MPω,x
3

, then the total error for φ̃ is bounded as follows
∣∣∣φ̃− φ

∣∣∣ ≤ BPω,x
3

=
MPω,x

3

1 +
(
tan(φ)−MPω,x

3

)2 . (5.25)

Proof. Observe that

Ã2
0 −A2

0m = x̃20 +
˜̇x20
ω2

− x20m − ẋ0
2
m

ω2

= 2Ix,mPω
0
e$,m
Pω
0

+
2

(Tω)2
Ix,mPω

1
e$,m
Pω
1

+
(
e$,m
Pω
0

)2
+

1

(Tω)2

(
e$,m
Pω
1

)2
.

(5.26)

Denote 2Ix,mPω
0
e$,m
Pω
0

+ 2
(Tω)2

Ix,mPω
1
e$,m
Pω
1

by e$,m
Pω,x
2

with Pω,x
2 = 2Ix,mPω

0
Pω
0 + 2

(Tω)2
Ix,mPω

1
Pω
1 . Then we obtain

∣∣∣Ã0
2 −A2

0m

∣∣∣ ≤ Mmax
Pω,x
2

+
(
Mmax

Pω
0

)2
+

1

(Tω)2

(
Mmax

Pω
1

)2
. (5.27)

Then by applying the mean value theorem the error bound for Ã0 is easily obtained. Similarly to
Proposition 5.5.74, the total error for φ̃ can be easily bounded. Then this proof is completed. 2

Similarly, we give in the following proposition two error bounds for the estimators obtained by the
modulating functions method.
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Proposition 5.5.78 Let Ã0 and φ̃ be the estimations obtained in Proposition 4.3.71 for A0 and φ

respectively. Then, the total error for Ã2
0 is bounded as follows
∣∣∣Ã2

0 −A2
0

∣∣∣ ≤ Mgω ,

where

Mgω =
∣∣A2

0m −A2
0

∣∣+ 1

L2
ω

(
Mmax

g$ +
(
Mmax

go

)2
+
(
Mmax

ge

)2)
,

A2
0m =

(Ix,mge )
2

L2
ω

+
(Ix,mgo )

2

L2
ω

,

ge = Gω
4 g1 −Gω

2 g2,

go = Gω
1 g2 −Gω

3 g1,

g$ = 2Ix,mge ge + 2Ix,mgo go,

Ix,mgi is given by (5.4) with y = x and q = gi for i = 1, 2, e, o, Mmax
g$ and Mmax

gj are given with q = g$

and q = gj for j = e, o,$ respectively. Moreover, if A2
0 > Mgω , then the total error for Ã0 is bounded

as follows
∣∣∣Ã0 −A0

∣∣∣ ≤ Bgω =
Mgω

2
(
A2

0 −Mgω
) 1

2

.

The total error for t̃an(φ) is bounded as follows
∣∣∣t̃an(φ)− tan(φ)

∣∣∣ ≤ Mgω , (5.28)

where

Mgω = |tan(φm)− tan(φ)|+ Mmax
gω

|Ix,mge | ∣∣|Ix,mge | −Mmax
ge

∣∣ ,

tan(φm) =
Ix,mgo

Ix,mge
,

gω = Ix,mge go − Ix,mgo ge.

Moreover, if tan(φ) > Mgω , then, the total error for φ̃ is bounded as follows
∣∣∣φ̃− φ

∣∣∣ ≤ Bgω =
Mgω

1 + (tan(φ)−Mgω)
2 . (5.29)

Proof. Denote ge = Gω
4 g1 −Gω

2 g2 and go = Gω
1 g2 −Gω

3 g1, then we get
(
Ã2

0 −A2
0m

)
L2
ω =2Ix,mge e$,m

ge +
(
e$,m
ge

)2
+ 2Ix,mgo e$,m

go +
(
e$,m
go

)2
. (5.30)

Denote 2Ix,mge e$,m
ge + 2Ix,mgo e$,m

go by e$,m
g$ with g$ = 2Ix,mge ge + 2Ix,mgo go, then we get

∣∣∣Ã2
0 −A2

0m

∣∣∣ ≤ 1

L2
ω

(
Mmax

g$ +
(
Mmax

go

)2
+

(
Mmax

ge

)2)
. (5.31)

169



Then the total error for Ã0 is easily bounded. Similarly to Proposition 5.5.74, the total error for φ̃ can
be easily bounded. Then this proof is completed. 2

In particular, if $ is a zero-mean white Gaussian noise satisfying the condition (C4) de�ned in
Subsection 2.5, then the noise error e$,m

Pω
0

obtained in (5.26) is also a white Gaussian noise. Hence,

we get that the random variable
(e$,m

Pω
0

)2

V ar

[
e$,m
Pω
0

] follows the χ2 distribution with the probability density

function f(t) =
√
2

2Γ( 1
2
)
t−

1
2 e−

t
2 . Consequently, we can get a more precise error bound for (e$,m

Pω
0

)2 than
(Mmax

Pω
0

)2. For example, we can obtain

(e$,m
Pω
0

)2
95.6%≤ 3V ar

[
e$,m
Pω
0

]
. (5.32)

Similarly, we can get such error bounds for e$,m
Pω
1

obtained in (5.26) and (e$,m
gj )2 for j = o, e obtained

in (5.30).

5.6 Conclusion
In this chapter, our estimators were given in discrete case. We have roughly shown the parameters'
in�uence on the numerical error and on the noise error due to a biased sinusoidal perturbation. Then,
we have considered the two classes of stochastic processes noise which have been studied in Chapter
2 for our Jacobi derivative estimators. Hence, we could give some error bounds for the estimators
obtained in the time-invariant amplitude case so as to study precisely the parameters' in�uence. In
future work, the analysis for colored noises will be done.

Let us mention that some similar error bounds can also be given for the obtained estimators in the
time-varying amplitude case. However, the disadvantage of these error bounds is that the signal x is
assumed to be known. The error bounds obtained in this section are only used to let us know better the
parameters' in�uence on our estimators. Hence, instead of giving error bounds, we use the knowledge
of the parameters' in�uence studied previously to choose parameters for the estimators obtained in the
time-varying amplitude. We are going to show it in numerical implementations.

Finally, we recall all the obtained error bounds in Table 5.3. In the following chapter, before giving
some numerical examples we will apply these error bounds to choose the parameters for our estimators.
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Proposition Estimator Error bound Needed condition
5.5.74 ω̃2 Mg̈,g

5.5.74 ω̃ Bg̈,g ω2 > Mg̈,g

5.5.75 x̃0 MPω,x
0

5.5.76 ˜̇x0 MPω,x
1

5.5.77 Ã2
0 MPω,x

2
ω is known

5.5.77 Ã0 BPω,x
2

ω is known and A2
0 > MPω,x

2

5.5.77 t̃an(φ) MPω,x
3

ω is known
5.5.77 φ̃ BPω,x

3
ω is known and tan(φ) > MPω,x

3

5.5.78 Ã2
0 Mgω ω is known

5.5.78 Ã0 Bgω ω is known and A2
0 > Mgω

5.5.78 t̃an(φ) Mgω ω is known
5.5.78 φ̃ Bgω ω is known and tan(φ) > Mgω

Table 5.3: Error bounds
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Chapter 6

Numerical implementation of estimators
for sinusoidal signal
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6.1 Introduction
In this chapter, we are going to show the e�ciency and stability of ours estimators. We choose function
w

(n)
µ+n,κ+n with n ∈ N, µ, κ ∈] − 1,+∞[ as the modulating functions. In Section 6.2, Section 6.3 and

Section 6.4 we respectively explain how to apply the frequency, amplitude and phase estimators by
using a sliding integration window in our identi�cation procedure. In Section 6.5, we consider a time-
invariant amplitude sinusoidal signal corrupted by a zero-mean white gaussian noise. Then, we use
the error bounds given by (5.17) and (5.32) in the error bounds obtained in Proposition 5.5.77 and
Proposition 5.5.78 to study the choice of parameters for our estimators. This helps us to globally select
parameters for our estimators. In Section 6.6, some numerical examples are given in the time-invariant
amplitude and time-varying amplitude cases, where the noises are white gaussian noises with zero-mean
or not and low frequency sinusoidal perturbations respectively. We give also two examples where the
sampling period is large so as to compare the estimators obtained by using the algebraic parametric
techniques to the ones obtained by using the modulating functions method.
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6.2 Recursive algorithms for the frequency estimators
In our identi�cation procedure, we use a sliding integration window. Hence, there can be a singular
value in the frequency estimators. Inspired by [Coluccio 2008, Fedele 2009b, Fedele 2010], we are
going to use the weighted least square criterion to improve our estimators. Moreover, similarly to
[Coluccio 2008, Fedele 2009b, Fedele 2010], two recursive algorithms for these frequency estimators are
given.

6.2.1 Time-invariant amplitude case
Let us recall that the estimation of ω at the instant ti is obtained by applying Proposition 4.3.70 as
follows

∀ti ∈ I, ω̃(ti) =
1

T

(
−
∫ 1
0 g̈(τ) y(Tτ + ti)dτ∫ 1
0 g(τ) y(Tτ + ti)dτ

) 1
2

, i = 0, 1, . . . . (6.1)

Then, in the discrete case we have

∀ti ∈ I, ω̃(ti) =
1

T

(
−I

yti ,m

g̈

I
yti ,m
g

) 1
2

, i = 0, 1, . . . , (6.2)

where yti ≡ y(T · +ti). Note that if Iyti ,mg = 0, then there is a singular value in (6.2). If we denote
by θi = T 2ω̃2(ti), then we can apply the following weighted least square criterion so as to improve the
estimation of ω

min
θi∈R

J(θi) =
1

2

i∑

j=0

νi+1−j
(
I
ytj ,m

g̈ + I
ytj ,m
g θi

)2
, i = 0, 1, . . . , (6.3)

where the parameter ν is within the interval (0, 1] and represents a forgetting factor to exponentially
discard the �old� data in the recursive schema.

The value of θi, which minimizes the criterion (6.3), is obtained by seeking the value which cancels
∂J(θi)
∂θi

. Hence, we get

θi = −

i∑

j=0

νi+1−jI
ytj ,m

g̈ I
ytj ,m
g

i∑

j=0

νi+1−j
(
I
ytj ,m
g

)2
. (6.4)

Then, similarly to [Coluccio 2008, Fedele 2009b, Fedele 2010], we obtain the following recursive algo-
rithm for (6.4)

θi+1 =
ν

αi+1
(αiθi − βi+1) , i = 0, 1, . . . , (6.5)

where αi =

i∑

j=0

νi+1−j
(
I
ytj ,m
g

)2
and βi = I

yti ,m

g̈ I
yti ,m
g . Moreover, αi+1 can be recursively calculated

as follows
αi+1 = ν

(
αi +

(
I
yti+1 ,m
g

)2
)
. (6.6)
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6.2.2 Time-varying amplitude case
The estimation of ω at ti in the time-varying amplitude case was obtained in Proposition 4.3.72. In
the discrete case it becomes

∀ti ∈ I, ω̃2(ti) = − Byti

2Ayti

+
∆yti

2Ayti

, i = 0, 1, . . . , (6.7)

where Ayti
= T 4I

yti ,m

f , Byti
= 2T 2I

yti ,m

f̈
, Cyti

= I
yti ,m

f (4) with yti ≡ y(T ·+ti) and

∆yti
=





−
√

B2
yti

− 4Ayti
Cyti

, if A1

∫ 1
0 ẇµ+4,k+4(τ) sin(ωTτ + ti + φ)dτ ≥ 0,√

B2
yti

− 4Ayti
Cyti

, else.
(6.8)

Similarly to the previous subsection, we apply the criterion (6.3) to Byti
2Ayti

and ∆yti
2Ayti

so as to improve

the estimation. Denote θ(Dyti
) =

Dyti
2Ayti

where Dyti
= Byti

or Dyti
= ∆yti

, then similarly to (6.5) we
get the following recursive algorithm

θ(Dyti+1
) =

ν

α(Ayti+1
)

(
α(Ayti

)θ(Dyti
) + 2Ayti+1

Dyti+1

)
, i = 0, 1, . . . , (6.9)

where α(Ayti
) = 4

i∑

j=0

νi+1−j(Ayti
)2.

6.3 Causal formulae for the amplitude estimators
Let us remark that the formula given in (6.2) is in fact an anti-causal formula, where we use integration
window [ti, ti + T ] to estimate the frequency value at ti. In the identi�cation procedure, the estimate
value is given at instant ti + T . This induces a time-delay of value greater than T . If the frequency is
time-invariant, then this is not a problem. However, it is not the case for the time-varying amplitude
estimators.

Let Iyti ,mq =
m∑

j=0

aj
m

q(τj) y(Tτj+ti) be the approximated integral value in the amplitude estimators

in the identi�cation procedure, where yti ≡ y(T · +ti). In order to avoid a time-delay, we use the
following causal formula to estimate the amplitude value at ti

Iy,mq (ti) =
m∑

j=0

aj
m

q(τj) y(ti − Tτj). (6.10)

6.4 Algorithms for the phase estimators
Since we use a sliding integration window [ti, ti + T ] in the identi�cation procedure of phase, the
estimated phase value at ti is equal to φ̃(ti) = ωti + φ̃, where φ̃ is the estimate for the initial phase
value at t0. Hence, we get φ̃ = φ̃(ti)− ωti. Moreover, since we use the function arctan(·) in the phase
estimators, we have φ̃ ∈]− π

2 ,
π
2 [. Hence, we take φ̃0 ≡ φ̃( mod π) as the estimate of the initial phase

value.
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6.5 Analysis of parameters' choice for the estimators of A0 and φ

In this section, let us assume that y(ti) = x(ti) + c$(ti) is a generated noise data of x in the interval
[0, 2π] where x(ti) = A0 sin(ωti+φ) with A0 = 1, ω = 1, φ = 0.25 and noise c$(xi) is simulated from a
zero-mean white Gaussian iid sequence with c = 0.05 ∈ R+. The sampling period is set to Ts =

2π
100ω ,

i.e. there are 100 data per period.
We are going to do some analysis for the choice of parameters in the estimators of A0 given by

Proposition 4.2.66 (resp. Proposition 4.3.71) by using the error bounds obtained in Proposition 5.5.77
(resp. Proposition 5.5.78). For the estimations of A0 at each time ti, we use the moving integration
window [ti, ti+T ] with T = Tsm. Hence, these estimations depend on the instant ti. We denote them
by Ã0(ti).

Firstly, we consider the estimator of A0 given in Proposition 4.2.66. Thus, the error bound BP2ω,x

obtained in Proposition 5.5.77 depends on the estimation parameters µ, m and the instant ti. We
denote it by BP2ω,x(t0;µ,m). Then, we can see the variation of BP2ω,x(t0;µ,m) in Fig. 6.1 for
µ = 0, 0.2, . . . , 10 and m = 30, 21, . . . , 130 at t0, where the minimum of BP2ω,x(t0; ·, ·) is equal to 0.0211

at µ = 1 and m = 46. Thus, the optimal parameters for the estimation of A0 at t0 are µ = 1 and
m = 46. Similarly, we can �nd the optimal parameters for the estimations of A0 at the other instants
ti (i 6= 0). The minimal value of BP2ω,x(ti; ·, ·) at each ti and the corresponding optimal parameters'
values mop, µop are shown in Fig. 6.2. We can observe that the minimal values of BP2ω,x(ti; ·, ·) are
near to 0.02, and the corresponding optimal values for µop are between 0 and 1. However, the change
of the corresponding optimal values for mop is large (from 37 to 105). In order to choose appropriate
parameters' values for the estimations of A0 at each ti, we set the value of µ to 0 and 1 respectively,
and vary the values of ti and m. As the curves in Fig. 6.2 are π-periodic, the values of BP2ω,x(ti;µ,m)

are shown in Fig. 6.3 with ti = 0, Ts, . . . , π − Ts and m = 30, . . . , 100. Hence, if µ = 0 (resp. µ = 1)
then we can choose m = 48 (resp. m = 65) so as to get minimal values for BP2ω,x(ti;µ, ·).

Secondly, we consider the estimator of A0 given in Proposition 4.3.71 where the modulating func-
tions are set to gi ≡ w

(ni)
κi+ni,µi+ni

for i = 1, 2. According to Remark 8, in order to obtain stable
estimations we set n = n1 = n2, κ2 = µ1 = µ and µ2 = κ1 = κ. Moreover, we set µ = κ + 1. Thus,
the error bound Bgω obtained in Proposition 5.5.78 depends on the estimation parameters κ, m, n and
the instant ti. We denote it by Bgω(ti;κ,m, n). By calculating the variation of Bgω(ti;κ,m, n), we can
observe that for di�erent instant ti the minimum of Bgω(ti;κ,m, n) holds with di�erent values of κ
and m. Moreover, the in�uence of n on Bgω(ti;κ,m, n) is more important than the one of κ. We can
see in Fig. 6.5 the di�erent values of Bgω(ti;κ = 1,m, n) for ti = 0, Ts, . . . , π − Ts and n = 0, 1, 2, 3.
Consequently, we can conclude that by increasing the value of n, we can get smaller and smaller values
of Bgω(ti;κ = 1,m, n). These values are smaller than the minimal value of BP2ω,x(ti;µ, ·) obtained
previously. However, we need larger and larger value of m.

Finally, we consider the error bound BP3ω,x (resp. Bgω) obtained in Proposition 5.5.77 (resp.
Proposition 5.5.78) for the estimator of φ obtained in Proposition 4.2.66 (resp. Proposition 4.3.71).
Since we use a moving integration window, the estimations of φ depend on the instant ti. We have
φ̃(ti) = ωti+φ̃ at ti. Let us denote the error bounds by BP3ω,x(ti;µ,m) and Bgω(ti;κ,m, n) respectively.
Similarly to the previous analysis, we show the variations of BP3ω,x(ti;µ,m) and Bgω(ti;κ,m, n). The
values of BP2ω,x(ti;µ,m) are shown in Fig. 6.4 with ti = 0, Ts, . . . , 19Ts and m = 30, . . . , 100 such that
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we can ensure the condition tan(φ(ti)) > MPω,x
3

. Hence, if µ = 0 (resp. µ = 1) then we can choose
m = 48 (resp. m = 65) so as to get minimal values for BP3ω,x(ti;µ, ·). Moreover, we can see in Fig.
6.6 the di�erent values of Bgω(ti;κ = 1,m, n) for ti = 0, Ts, . . . , 19Ts and n = 0, 1, 2, 3. We give in
Table 6.1 and Table 6.2 the obtained parameters for amplitude and phase parameters.
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Figure 6.3: Di�erent values of BP2ω,x(ti;µ,m) for ti = 0, Ts, . . . , π − Ts and m = 30, . . . , 100 with
µ = 0, 1.
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Figure 6.6: Di�erent values of Bgω(ti;κ = 1,m, n) for ti = 0, Ts, . . . , 19Ts and n = 0, 1, 2, 3.
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Method Error bound µ n m Minimum
Algebraic parametric BP2ω,x(ti;µ,m) 0 48 0.022− 0.024

BP2ω,x(ti;µ,m) 1 65 0.022− 0.024

Modulating functions Bgω(ti;κ,m, n) µ1 = κ2 = 2, µ2 = κ1 = 1 0 58 0.021

Bgω(ti;κ,m, n) µ1 = κ2 = 2, µ2 = κ1 = 1 1 105 0.0148− 0.0152

Bgω(ti;κ,m, n) µ1 = κ2 = 2, µ2 = κ1 = 1 2 146 0.0128− 0.0132

Bgω(ti;κ,m, n) µ1 = κ2 = 2, µ2 = κ1 = 1 3 184 0.0118− 0.0119

Table 6.1: Parameters for amplitude estimators.

Method Error bound µ n m

Algebraic parametric BP2ω,x(ti;µ,m) 0 48

BP2ω,x(ti;µ,m) 1 65

Modulating functions Bgω(ti;κ,m, n) µ1 = κ2 = 2, µ2 = κ1 = 1 0 58

Bgω(ti;κ,m, n) µ1 = κ2 = 2, µ2 = κ1 = 1 1 105

Bgω(ti;κ,m, n) µ1 = κ2 = 2, µ2 = κ1 = 1 2 146

Bgω(ti;κ,m, n) µ1 = κ2 = 2, µ2 = κ1 = 1 3 184

Table 6.2: Parameters for phase estimators.

6.6 Numerical examples
Example 1

In this example, let us assume that y(ti) = x(ti) + c$(ti) is a generated noise data of x with a
sampling period Ts =

π
50 in the interval [0, 30π] (see Fig. 6.7) where

x(ti) =





sin(ti +
1
4), if 0 ≤ ti ≤ 10π,

1
2 sin(ti +

1
4), if 10π < ti ≤ 20π,

2 sin(ti +
1
4), if 20π < ti ≤ 30π,

(6.11)

and noise c$(xi) is simulated from a zero-mean white Gaussian iid sequence with c = 0.05. Hence,
the signal-to-noise ratios ([Haykin 2002]) SNR = 10 log10

( ∑ |y(ti)|2∑ |c$(ti)|2
)

in each interval are equal to
23.5dB, 17.7dB and 26.3dB respectively.

In order to estimate the frequency, the amplitude and the phase, we use the estimators given in
Proposition 4.3.70, Proposition 4.2.66 and Proposition 4.3.71 which are obtained in time-invariant
amplitude case and the one given in Proposition 4.3.72, Proposition 4.2.68 and Proposition 4.3.73
which are obtained in time-varying amplitude case. We apply the recursive algorithms proposed in
Section 6.2 with ν = 1 so as to estimate the frequency. The relating estimation errors are shown in Fig.
6.7 where κ = µ = n = 0, ν = 1 and m = 40. We can observe that these errors are very small. Since
we need frequency estimated values in the estimators of amplitude and phase, we use the frequency
estimator given in Proposition 4.3.70. As is studied in the previous subsection, we set µ = 0, m = 48
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for the estimators for the amplitude and the phase obtained by the algebraic parametric techniques
in Proposition 4.2.66, and κ = 1, n = 0, m = 58 for the ones obtained by the modulating functions
method in Proposition 4.3.71. The so obtained estimations are shown in Fig. 6.8 and Fig. 6.10 with
the corresponding relating estimation errors. We can see that the estimations of the amplitude are
very good. When 0 ≤ ti ≤ 10π, according to Fig 6.3 (resp. Fig 6.5) the relating estimation error for
the estimation obtained by using the algebraic parametric techniques (resp. the modulating functions
method) is smaller than 0.023 (resp. 0.021) with a probability of 95.6%. However, when the amplitude
of the signal changes, there are large errors in the estimations of the phase.

According to Section 5.2 and Remark 9, the estimators obtained by the algebraic parametric tech-
niques in Proposition 4.2.68 can produce larger estimation errors than the ones given in Proposition
4.2.66. Hence, we set a lager value for m as so to reduce estimation errors. Thus, we set µ = 0 and
m = 80. Finally, according to Remark 8 and Remark 9, we set f1 ≡ w1,0, f2 ≡ w0,1, f3 ≡ w2,1 and
f4 ≡ w1,2 for the estimators for the amplitude and the phase obtained by the modulating functions
method in Proposition 4.3.73. According to Section 5.2, they can produce larger numerical errors than
the ones given in Proposition 4.3.71 with g1 ≡ w1,2, g2 ≡ w2,1. Hence, we set a lager value for m

(m = 80). The so obtained estimations are shown in Fig. 6.9 and Fig. 6.11 with the corresponding
relating estimation errors. We can see that when the amplitude of the signal changes, there are large
errors in the estimations. Consequently, if the amplitude of a noisy sinusoidal signal changes quickly,
we shall use the estimators given by the algebraic parametric techniques in Proposition 4.2.66 and the
ones given by the modulating function method in Proposition 4.3.71 to estimate its amplitude and
phase. Moreover, according to the analysis in the previous subsection, if we increase the value of n for
the estimators given in Proposition 4.3.71 then the obtained estimation error can be smaller than the
ones for the estimations given in Proposition 4.2.66. We recall in Table 6.3 all the parameters used in
this example.
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Figure 6.8: The amplitude estimation obtained in Proposition 4.2.66 with µ = 0, m = 48 and the one
obtained in Proposition 4.3.71 with g1 ≡ w1,2, g2 ≡ w2,1 and m = 58.
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Figure 6.9: The amplitude estimation obtained in Proposition 4.2.68 with µ = 0, m = 80 and the one
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Figure 6.10: The phase estimation obtained in Proposition 4.2.66 with µ = 0, m = 48 and the one
obtained in Proposition 4.3.71 with g1 ≡ w1,2, g2 ≡ w2,1 and m = 58.
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Figure 6.11: The phase estimation obtained in Proposition 4.2.68 with µ = 0, m = 80 and the one
obtained in Proposition 4.3.73 with f1 ≡ w1,0, f2 ≡ w0,1, f3 ≡ w2,1 and f4 ≡ w1,2 and m = 80.
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Proposition m (Ts =
π
50) µ κ ν n

4.3.70 40 0 0 1 0

4.3.72 40 0 0 1 0

4.2.66 48 0

4.2.68 80 0

4.3.71 58 µ1 = 1, µ2 = 2 κ1 = 2, κ2 = 1 0

4.3.73 80 µ1 = 1, µ2 = 0, µ3 = 2, µ4 = 1 κ1 = 0, κ2 = 1, κ3 = 1, κ4 = 2 0

Table 6.3: Parameters used in Example 1.

Example 2
In this example, we change the amplitude of the signal de�ned in the previous example by taking

x(ti) =





sin(ti +
1
4), if 0 ≤ ti ≤ 10π,

ti
10 sin(ti +

1
4), if 10π < ti ≤ 20π,

2 sin(ti +
1
4), if 20π < ti ≤ 30π,

(6.12)

The signal-to-noise ratios of this signal (see Fig. 6.12) in each interval become equal to 23.5dB, 27.2dB
and 28dB respectively. We use the same estimators with the same parameters to the ones used in the
previous example to estimate the frequency, the amplitude and the phase. The relating estimation
errors are shown in Fig. 6.12. Then, we use the frequency estimator obtained in Proposition 4.3.72 in
the estimators of amplitude and phase. The estimations obtained by using the estimators obtained in
the time-invariant amplitude case are shown in Fig. 6.13 and Fig. 6.15 with the corresponding relating
estimation errors. We can see that when the amplitude of the signal changes slowly, the estimation
errors become larger. The estimations obtained by using the estimators given in the time-varying
amplitude case are shown in Fig. 6.14 and Fig. 6.16 with the corresponding relating estimation errors.
We can see that when the amplitude of the signal changes slowly, the estimations of the amplitude
are better than the ones obtained in Fig. 6.13. The noise errors for the estimations of the phase
are important such that these estimations of the phase are not better than the ones obtained in Fig.
6.15. However, by decreasing the sampling period, we can reduce these noise error contributions.
Consequently, if the amplitude of a noisy sinusoidal signal changes slowly, we shall use the estimators
given in Proposition 4.2.68 and Proposition 4.3.73 to estimate its amplitude and phase. We recall in
Table 6.4 all the parameters used in this example.
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Figure 6.12: Signals and relating estimation errors of ω obtained with κ = µ = n = 0, ν = 1 and
m = 40.
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(b) Relating estimation errors of amplitude

Figure 6.13: The amplitude estimation obtained in Proposition 4.2.66 with µ = 0, m = 48 and the one
obtained in Proposition 4.3.71 with g1 ≡ w1,2, g2 ≡ w2,1 and m = 58.
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Figure 6.14: The amplitude estimation obtained in Proposition 4.2.68 with µ = 0, m = 80 and the one
obtained in Proposition 4.3.73 with f1 ≡ w1,0, f2 ≡ w0,1, f3 ≡ w2,1 and f4 ≡ w1,2 and m = 80.
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(b) Relating estimation errors of phase

Figure 6.15: The phase estimation obtained in Proposition 4.2.66 with µ = 0, m = 48 and the one
obtained in Proposition 4.3.71 with g1 ≡ w1,2, g2 ≡ w2,1 and m = 58.
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Figure 6.16: The phase estimation obtained in Proposition 4.2.68 with µ = 0, m = 80 and the one
obtained in Proposition 4.3.73 with f1 ≡ w1,0, f2 ≡ w0,1, f3 ≡ w2,1 and f4 ≡ w1,2 and m = 80.

Proposition m (Ts =
π
50) µ κ ν n

4.3.70 40 0 0 1 0

4.3.72 40 0 0 1 0

4.2.66 48 0

4.2.68 80 0

4.3.71 58 µ1 = 1, µ2 = 2 κ1 = 2, κ2 = 1 0

4.3.73 80 µ1 = 1, µ2 = 0, µ3 = 2, µ4 = 1 κ1 = 0, κ2 = 1, κ3 = 1, κ4 = 2 0

Table 6.4: Parameters used in Example 2.

Example 3
In this example, we increase the sampling period of the signal de�ned in Example 1 to Ts = π

5 .
Moreover, we add a bias term perturbation ξ = 0.25 in the interval [20π, 30π]. The signal-to-noise
ratios of this signal (see Fig. 6.17) in each interval become equal to 23.3dB, 19.4dB and 15.5dB
respectively. In order to estimate the frequency, we use the same estimators used in the previous two
examples. The relating estimation error are shown in Fig. 6.17 where we take κ = µ = 0, m = 10

and n = ν = 1. The value of n is set to 1 so as to annihilate the bias term perturbation. Then,
we use the frequency estimation obtained by Proposition 4.3.72 in the estimators of amplitude and
phase. By doing similar analysis to the one done in Section 6.5, we can get the �optimal� parameters
for the estimators given in Proposition 4.2.66 are µ = 0, m = 7. Since the sampling period become
larger than the one in the previous examples, according to Section 5.2 we shall increase the value of
κ and µ for the estimators given in Proposition 4.3.71 so as to reduce the numerical error. Then,
when n = 1 we �nd the �optimal� values are κ = 2 and m = 12. The so obtained estimations for
the amplitude and the phase are shown in Fig. 6.18 and Fig. 6.20 with the corresponding relating
estimation errors. Then, we take µ = 0 and m = 15 for the estimators for the amplitude and the
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phase given in Proposition 4.2.68 and f1 ≡ w
(1)
3,2, f2 ≡ w

(1)
2,3, f3 ≡ w

(1)
3,4, f4 ≡ w

(1)
4,3 with m = 15 for the

ones given in Proposition 4.3.73. The obtained estimations are shown in Fig. 6.19 and Fig. 6.21 with
the corresponding relating estimation errors. We can observe that the modulating functions method
is more robust to the sampling period and to the non zero-mean noise than the algebraic parametric
techniques. We recall in Table 6.5 all the parameters used in this example.
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Figure 6.17: Signals and relating estimation errors of ω obtained with κ = µ = 0, n = ν = 1 and
m = 10.

0 20 40 60 80 100
0

0.5

1

1.5

2

2.5

3

Estimators of A
0
 for time−invariant amplitude signal

t
i

 

 

A
0

Modulating functions method
Algebraic parametric techniques

(a) Estimations of amplitude

0 20 40 60 80 100
0

0.1

0.2

0.3

0.4

0.5

0.6

Relating estimation errors for the estimators of A
0

t
i

 

 

Modulating functions method
Algebraic parametric techniques
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Figure 6.18: The amplitude estimation obtained in Proposition 4.2.66 with µ = 0, m = 7 and the one
obtained in Proposition 4.3.71 with g1 ≡ w

(1)
2,3, g2 ≡ w

(1)
3,2 and m = 12.
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(b) Relating estimation errors of amplitude

Figure 6.19: The amplitude estimation obtained in Proposition 4.2.68 with µ = 0, m = 15 and the one
obtained in Proposition 4.3.73 with f1 ≡ w
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4,3 and m = 15.

0 20 40 60 80 100
0

0.5

1

1.5

2

2.5

3

3.5
Estimators of φ for time−invariant amplitude signal

t
i

 

 

φ
Modulating functions method
Algebraic parametric techniques

(a) Estimations of phase

0 20 40 60 80 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Relating estimation errors for the estimators of φ

t
i

 

 

Modulating functions method
Algebraic parametric techniques

(b) Relating estimation errors of phase

Figure 6.20: The phase estimation obtained in Proposition 4.2.66 with µ = 0, m = 7 and the one
obtained in Proposition 4.3.71 with g1 ≡ w
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3,2 and m = 12.
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(b) Relating estimation errors of phase

Figure 6.21: The phase estimation obtained in Proposition 4.2.68 with µ = 0, m = 15 and the one
obtained in Proposition 4.3.73 with f1 ≡ w

(1)
3,2, f2 ≡ w

(1)
2,3, f3 ≡ w

(1)
3,4, f4 ≡ w

(1)
4,3 and m = 15.

Proposition m (Ts =
π
5 ) µ κ ν n

4.3.70 10 0 0 1 1

4.3.72 10 0 0 1 1

4.2.66 7 0

4.2.68 15 0

4.3.71 12 µ1 = 2, µ2 = 3 κ1 = 3, κ2 = 2 1

4.3.73 15 µ1 = 3, µ2 = 2, µ3 = 3, µ4 = 4 κ1 = 2, κ2 = 3, κ3 = 4, κ4 = 3 1

Table 6.5: Parameters used in Example 3.

Example 4
In this example, we increase the sampling period of the signal de�ned in Example 2 to Ts = π

5 ,
and add a bias term perturbation ξ = 0.25 in the interval [20π, 30π]. The signal-to-noise ratios of
this signal (see Fig. 6.22) in each interval become equal to 23.3dB, 29dB and 17.2dB respectively.
We use the same estimators with the same parameters to the ones used in Example 3 to estimate
the frequency, the amplitude and the phase. The relating estimation errors are shown in Fig. 6.22.
Then, we can see the estimations of the amplitude and the phase with the corresponding relating
estimation errors in Fig.6.23-Fig.6.26 where we use the frequency estimator obtained in Proposition
4.3.72. Consequently, we can observe that the estimator of amplitude given in Proposition 4.3.73 and
the estimator of phase given in Proposition 4.3.71 are most appropriate for this signal. We recall in
Table 6.6 all the parameters used in this example.
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Figure 6.22: Signals and relating estimation errors of ω obtained with κ = µ = 0, n = ν = 1 and
m = 10.
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Figure 6.23: The amplitude estimation obtained in Proposition 4.2.66 with µ = 0, m = 7 and the one
obtained in Proposition 4.3.71 with g1 ≡ w

(1)
2,3, g2 ≡ w

(1)
3,2 and m = 12.
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(b) Relating estimation errors of amplitude

Figure 6.24: The amplitude estimation obtained in Proposition 4.2.68 with µ = 0, m = 15 and the one
obtained in Proposition 4.3.73 with f1 ≡ w
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(b) Relating estimation errors of phase

Figure 6.25: The phase estimation obtained in Proposition 4.2.66 with µ = 0, m = 7 and the one
obtained in Proposition 4.3.71 with g1 ≡ w
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3,2 and m = 12.
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(b) Relating estimation errors of phase

Figure 6.26: The phase estimation obtained in Proposition 4.2.68 with µ = 0, m = 15 and the one
obtained in Proposition 4.3.73 with f1 ≡ w

(1)
3,2, f2 ≡ w

(1)
2,3, f3 ≡ w

(1)
3,4, f4 ≡ w

(1)
4,3 and m = 15.

Proposition m (Ts =
π
5 ) µ κ ν n

4.3.70 10 0 0 1 1

4.3.72 10 0 0 1 1

4.2.66 7 0

4.2.68 15 0

4.3.71 12 µ1 = 2, µ2 = 3 κ1 = 3, κ2 = 2 1

4.3.73 15 µ1 = 3, µ2 = 2, µ3 = 3, µ4 = 4 κ1 = 2, κ2 = 3, κ3 = 4, κ4 = 3 1

Table 6.6: Parameters used in Example 4.

Example 5
In this example, we change the noise of the signal de�ned in Example 1 by a sinusoidal perpetration

$ = 0.25 sin(4ti). The frequency of this sinusoidal perpetration is four times to the one of x. Hence,
it can be considered as a low frequency sinusoidal perpetration. The signal-to-noise ratios of this
signal (see Fig. 6.27) in each interval become equal to 12.3dB, 7dB and 15.4dB respectively. In order
to estimate the frequency, we use the same estimators used in the previous examples. The relating
estimation errors are shown in Fig. 6.27 where we take κ = µ = n = 0, m = 60 and ν = 1. According
to Subsection 5.3.1, we can take large values for κ and µ in the estimators given by the modulating
functions method so as to reduce this sinusoidal perpetration. Thus, we take κ = 3 and n = 0 for the
estimators given in Proposition 4.3.71, and take f1 ≡ w4,5, f2 ≡ w5,4, f3 ≡ w5,6, f4 ≡ w6,5 for the
estimators given in Proposition 4.3.73. Then, we take m = 80 in the estimators obtained in the time-
invariant amplitude case and take m = 120 in the estimators obtained in the time-varying amplitude
case. Moreover, we take µ = 0 for the estimators obtained by the algebraic parametric techniques.
Then, we can see the estimations of the amplitude and the phase with the corresponding relating
estimation errors in Fig.6.28-Fig.6.31 where we use the frequency estimator obtained by Proposition
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4.3.72. We can observe that the modulating functions method is more robust to the low frequency
sinusoidal perpetration than the algebraic parametric techniques. Moreover, the estimators given in
Proposition 4.3.71 are most appropriate for this signal. We recall in Table 6.7 all the parameters used
in this example.
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Figure 6.27: Signals and relating estimation errors of ω obtained with κ = µ = n = 0, ν = 1 and
m = 60.
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(b) Relating estimation errors of amplitude

Figure 6.28: The amplitude estimation obtained in Proposition 4.2.66 with µ = 0, m = 80 and the one
obtained in Proposition 4.3.71 with g1 ≡ w3,4, g2 ≡ w4,3 and m = 80.
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(b) Relating estimation errors of amplitude

Figure 6.29: The amplitude estimation obtained in Proposition 4.2.68 with µ = 0, m = 120 and the
one obtained in Proposition 4.3.73 with f1 ≡ w4,5, f2 ≡ w5,4, f3 ≡ w5,6, f4 ≡ w6,5 and m = 120.
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(b) Relating estimation errors of phase

Figure 6.30: The phase estimation obtained in Proposition 4.2.66 with µ = 0, m = 80 and the one
obtained in Proposition 4.3.71 with g1 ≡ w3,4, g2 ≡ w4,3 and m = 80.
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(b) Relating estimation errors of phase

Figure 6.31: The phase estimation obtained in Proposition 4.2.68 with µ = 0, m = 120 and the one
obtained in Proposition 4.3.73 with f1 ≡ w4,5, f2 ≡ w5,4, f3 ≡ w5,6, f4 ≡ w6,5 and m = 120.

Proposition m (Ts =
π
50) µ κ ν n

4.3.70 60 0 0 1 0

4.3.72 60 0 0 1 0

4.2.66 80 0

4.2.68 120 0

4.3.71 80 µ1 = 3, µ2 = 4 κ1 = 4, κ2 = 3 0

4.3.73 120 µ1 = 4, µ2 = 5, µ3 = 5, µ4 = 6 κ1 = 5, κ2 = 4, κ3 = 6, κ4 = 5 0

Table 6.7: Parameters used in Example 5.

Example 6
In this example, we change the noise of the signal de�ned in Example 2 by the same low frequency

sinusoidal perpetration de�ned in Example 5. The signal-to-noise ratios of this signal (see Fig. 6.32)
in each interval become equal to 12.3dB, 15.8dB and 17.1dB respectively. We use the same estimators
with the same parameters to the ones used in Example 5 to estimate the frequency, the amplitude and
the phase. The relating estimation errors are shown in Fig. 6.32. We can see the estimations of the
amplitude and the phase with the corresponding relating estimation errors in Fig.6.33-Fig.6.36 where
we use the frequency estimator obtained by Proposition 4.3.72. We can observe that the estimators
given in Proposition 4.3.73 are most appropriate for this signal. We recall in Table 6.8 all the parameters
used in this example.

Let us remark that if the frequency ω is known, then the period of the function A0 sin(ω · +φ)

is equal to 2π
ω . Then, we set Ts = 2π

ωN , where N ∈ N∗ is the number of sampling data per period.
By observing the estimators of A0 and φ given by Proposition 4.2.66, Proposition 4.2.68, Proposition
4.3.71 and Proposition 4.3.73, we can �nd out that they do not depend only on ω but on Tω. Hence,
by taking Tω = 2πm

N with T = mTs we can conclude that these estimators do not depend on the value
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of ω but on m
N . Consequently, if we change the value of ω in the previous examples, then by taking the

same estimators with the same parameters used previously we can obtain similar estimation results to
the ones shown in the the previous examples.
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Figure 6.32: Signals and relating estimation errors of ω obtained with κ = µ = n = 0, ν = 1 and
m = 60.
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Figure 6.33: The amplitude estimation obtained in Proposition 4.2.66 with µ = 0, m = 80 and the one
obtained in Proposition 4.3.71 with g1 ≡ w3,4, g2 ≡ w4,3 and m = 80.

199



0 20 40 60 80 100
0.8

1

1.2

1.4

1.6

1.8

2

2.2

Estimators of A
0
 for time−varying amplitude signal

t
i

 

 
A

0

Modulating functions method
Algebraic parametric techniques

(a) Estimations of amplitude

0 20 40 60 80 100
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

Relating estimation errors for the estimators of A
0

t
i

 

 
Modulating functions method
Algebraic parametric techniques

(b) Relating estimation errors of amplitude

Figure 6.34: The amplitude estimation obtained in Proposition 4.2.68 with µ = 0, m = 120 and the
one obtained in Proposition 4.3.73 with f1 ≡ w4,5, f2 ≡ w5,4, f3 ≡ w5,6, f4 ≡ w6,5 and m = 120.
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(a) Estimations of phase
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(b) Relating estimation errors of phase

Figure 6.35: The phase estimation obtained in Proposition 4.2.66 with µ = 0, m = 80 and the one
obtained in Proposition 4.3.71 with g1 ≡ w3,4, g2 ≡ w4,3 and m = 80.
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Figure 6.36: The phase estimation obtained in Proposition 4.2.68 with µ = 0, m = 120 and the one
obtained in Proposition 4.3.73 with f1 ≡ w4,5, f2 ≡ w5,4, f3 ≡ w5,6, f4 ≡ w6,5 and m = 120.

Proposition m (Ts =
π
50) µ κ ν n

4.3.70 60 0 0 1 0

4.3.72 60 0 0 1 0

4.2.66 80 0

4.2.68 120 0

4.3.71 80 µ1 = 3, µ2 = 4 κ1 = 4, κ2 = 3 0

4.3.73 120 µ1 = 4, µ2 = 5, µ3 = 5, µ4 = 6 κ1 = 5, κ2 = 4, κ3 = 6, κ4 = 5 0

Table 6.8: Parameters used in Example 6.

6.7 Conclusion
In this chapter, �rstly we respectively explained how to apply the frequency, amplitude and phase
estimators obtained in Chapter 4 in our identi�cation procedure. Secondly, by taking a time-invariant
amplitude sinusoidal signal corrupted by a zero-mean white gaussian noise we applied the error bounds
obtained in Chapter 4 to select parameters for our estimators. Thirdly, some numerical examples have
been given in the time-invariant amplitude and time-varying amplitude cases to show the e�ciency
and stability and to compare di�erent estimators. It is shown that the estimators obtained by using
the modulating functions method are more robust to a large sampling period, a biased noise and a
sinusoidal perturbation than the ones obtained by using the algebraic parametric techniques. In the
following chapter, we give some experimental results by applying the amplitude estimator obtained by
using the modulating functions method.
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Chapter 7

Applications to the AFM in tapping mode
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7.1 Introduction
In this chapter, we give some experimental results obtained at LNE (Laboratoire National de métrologie
et d'Essais) by applying our amplitude estimators previously presented. These results are based on
the comparison of our results with respect to a DSP lock-in ampli�er. Such device is usually used as
an amplitude detector for the atomic force microscopy in tapping mode up to date industrial solution.
This chapter is organized as follows. In Subsection 7.1.1, we present the atomic force microscopy in
tapping mode. In Subsection 7.1.2, we give the basic principles of a lock-in ampli�er. In Subsection
7.2.1, we recall the materials used in our experimental tests. Finally, we give our experimental results
in Subsection 7.2.2.

7.1.1 Atomic force microscopy in tapping mode
Atomic force microscopy (AFM) is a very high resolution type of scanning probe microscopy, with
demonstrated resolution on the order of fractions of a nanometer, more than 1000 times better than
the optical di�raction limit. The precursor to the AFM, the scanning tunneling microscope (STM),
was developed by Gerd Binnig and Heinrich Rohrer in the early 1980s, a development that earned
them the Nobel Prize for Physics in 1986. Binnig, Quate and Gerber invented the �rst AFM in 1986.
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The AFM was developed to overcome a basic drawback with STM which can only image conducting
or semiconducting surfaces. The AFM, however, has the advantage of imaging almost any type of
surface, including polymers, ceramics, composites, glass, and biological samples.

The original AFM consisted in a diamond shard attached to a strip of gold foil. The diamond
tip contacted the surface directly, with the interatomic van der Waals forces providing the interaction
mechanism. Detection of the cantilever's vertical movement was done with a second tip - a STM placed
above the cantilever. Today, most AFMs use a laser beam de�ection system, introduced by Meyer and
Amer, where a laser is re�ected from the back of the re�ective AFM lever and onto a position-sensitive
detector. To avoid that the tip crushes into the sample surface and damages the sample and/or the
delicate tip a fast feedback electronic is used to maintain a constant force between the tip and the
sample and therefore a resultant constant bending of the cantilever (see Figure 7.1). AFM tips and
cantilevers are microfabricated from Si or Si3N4. Typical tip radius ranges from 1 to 100nm.

Figure 7.1: Schematic assembly of an AFM.

Because the AFM relies on the forces between the tip and sample, knowing these forces is important
for proper imaging. The force is not measured directly, but calculated by measuring the de�ection of
the cantilever, and knowing its sti�ness. Hook's law gives F = −kz, where F is the force, k is the
sti�ness of the cantilever, and z is the distance between the tip of cantilever and the sample (see Figure
7.2).

Since there are many types of tip-surface interactions, di�erent types of interaction maps may
be obtained. Furthermore, di�erent types of maps require slightly di�erent tip-surface positioning:
sometimes the tip is scanned in contact with the surface, sometimes it is scanned in non-contact, and
sometimes it is run in occasional contact (so-called tapping mode), which is considered here.

Tapping mode is a key advance in AFM. This powerful technique allows high resolution topographic
imaging of sample surfaces that are easily damaged, loosely hold to their substrate, or di�cult to image
by other AFM techniques. Tapping mode overcomes problems associated with friction, adhesion,
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Figure 7.2: Probe Distance from Sample (z distance).

electrostatic forces, and other di�culties that an conventional AFM scanning methods by alternately
placing the tip in contact with the surface to provide high resolution and then lifting the tip from the
surface to avoid dragging the tip across the surface.

Tapping mode imaging is implemented in ambient air by oscillating the cantilever assembly at
or near the cantilever's resonant frequency using a piezoelectric crystal. The piezo motion causes
the cantilever to oscillate with a high amplitude (typically greater than 20nm) when the tip is not
in contact with the surface. The oscillating tip is then moved toward the surface until it begins to
lightly touch, or tap the surface. During scanning, the vertically oscillating tip alternately contacts the
surface and lifts o�, generally at a frequency of 50, 000 to 500, 000 cycles per second. As the oscillating
cantilever begins to intermittently contact the surface, the cantilever oscillation is necessarily reduced
due to energy loss caused by the tip contacting the surface. The reduction in oscillation amplitude is
used to identify and measure surface features.

During tapping mode operation, the cantilever oscillation amplitude is maintained constant by a
feedback loop. Selection of the optimal oscillation frequency is software-assisted and the force on the
sample is automatically set and maintained at the lowest possible level. When the tip passes over a
bump in the surface, the cantilever has less room to oscillate and the amplitude of oscillation decreases.
Conversely, when the tip passes over a depression, the cantilever has more room to oscillate and the
amplitude increases (approaching the maximum free air amplitude). The oscillation amplitude of the
tip is measured by a photodiode detector and it is used as an input for a controller. The digital
feedback loop then adjusts the tip-sample separation to maintain a constant amplitude and force on
the sample.

In the next subsection, we present lock-in ampli�er which is an amplitude detector usually used by
AFM.

7.1.2 Lock-in Ampli�ers

Lock-in ampli�ers are used to detect and measure very small Alternating Current (AC) signals. Accu-
rate measurements may be obtained when the signal to be observed has an amplitude to ten thousands
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times smaller than the one of the noise measurement. All lock-in ampli�ers, whether analogue or dig-
ital, use a technique known as phase sensitive detection to single out the component of the signal at a
speci�c reference frequency and phase. Noise signals, at frequencies other than the reference frequency,
are rejected and do not a�ect the measurement.

Now, we follow the ampli�er with a phase sensitive detector (PSD). Lock-in measurements require
a frequency reference. Typically, an experiment is excited at a �xed frequency (from an oscillator
or function generator), and the lock-in detects the response from the experiment at the reference
frequency. In Figure 7.3, the reference signal is a square wave at frequency ωr. This might be the sync
output from a function generator. If the sine output from the function generator is used to excite the
experiment, the response might be the signal waveform shown below. The signal is Asig sin(ωrt+ θsig)

where Asig is the signal amplitude, ωr is the signal frequency, and θsig is the signal's phase.

Figure 7.3: Phase Sensitive Detection.

Lock-in ampli�ers generate their own internal reference signal usually by a phase-locked-loop locked
to the external reference. In Figure 7.3, the external reference, the lock-in's reference, and the signal
are all shown. The internal reference is AL sin(ωLt+ θref ). The lock-in ampli�es the signal and then
multiplies it by the lock-in reference using a phase sensitive detector or multiplier. The output of the
PSD is simply the product of two sine waves:

Apsd = AsigAL sin(ωrt+ θsig) sin(ωLt+ θref )

=
1

2
AsigAL cos ((ωr − ωL)t+ θsig − θref ) +

1

2
AsigAL cos ((ωr + ωL)t+ θsig + θref ) .

(7.1)

The PSD output is two AC signals, one at the di�erence frequency (ωr−ωL) and the other at the sum
frequency (ωr + ωL).

If the PSD output is passed through a low pass �lter, the AC signals are removed. What will be
left? In the general case, nothing. However, if ωr equals ωL, the di�erence frequency component will
be a DC signal. In this case, the �ltered PSD output will be:

Âpsd =
1

2
AsigAL cos (θsig − θref ) . (7.2)
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This is a very nice signal. It is a DC signal proportional to the signal amplitude.
It is important to consider the physical nature of this multiplication and �ltering process in di�erent

types of lock-ins. In traditional analog lock-ins, the signal and reference are analog voltage signals. The
signal and reference are multiplied in an analog multiplier, and the result is �ltered with one or more
stages of Resistor-Capacitor (RC) �lters. In a digital lock-in, such as the SR830 or SR850, the signal
and reference are represented by sequences of numbers. Multiplication and �ltering are performed
mathematically by a digital signal processing (DSP) chip.

The PSD output is proportional to Asig cos θ, where θ = (θsig − θref ). θ is the phase di�erence
between the signal and the lock-in reference oscillator. By adjusting θref we can make θ equal to zero.
In which case we can measure Asig (cos θ = 1). Conversely, if θ is π

2 , there will be no output at all.
A lock-in with a single PSD is called a single-phase lock-in and its output is Asig cos θ. This phase
dependency can be eliminated by adding a second PSD. If the second PSD multiplies the signal with
the reference oscillator shifted by π

2 , i.e. AL sin(ωLt+ θref + π
2 ), its low pass �ltered output will be:

Âpsd2 =
1

2
AsigAL sin (θsig − θref ) . (7.3)

Now we have two outputs: one proportional to cos θ and the other proportional to sin θ. If we call
the �rst output X and the second Y , X = Asig cos θ, Y = Asig sin θ, these two quantities represent the
signal as a vector relative to the lock-in reference oscillator. X is called the �in-phase� component and
Y the �quadrature� component. This is because when θ = 0, X measures the signal while Y is zero.
By computing the amplitude (Asig) of the signal vector, the phase dependency is removed:

Asig = (X2 + Y 2)
1
2 . (7.4)

Asig does not depend upon the phase between the signal and lock-in reference. A dual-phase lock-in
has two PSDs with reference oscillators π

2 apart, and can measure X, Y and Asig directly. In addition,
the phase (θ) between the signal and lock-in is de�ned as:

θ = arctan

(
Y

X

)
. (7.5)

However, the main disadvantage of the lock-in ampli�er is the limited speed at which we detect the
amplitude. We consider in this chapter the model 7280 DSP Lock-in Ampli�er which is an exceptionally
versatile instrument with outstanding performance. With direct digital demodulation over an operating
frequency extending up to 2.0MHz, output �lter time constants down to 1µs and a main Analog-to-
Digital Converter (ADC) sampling rate of 7.5MHz it is ideal for recovering fast changing signals. But
unlike some other high frequency lock-ins, it also works in the traditional audio frequency band.

7.2 Comparison of modulating function method and DSP lock-in am-
pli�er

7.2.1 The experiment materials
We have obtained some experimental results at LNE. These experimental results are realized by using
the following materials:
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• Signal generator;

• PC with ADbasic;

• Real time target (Adwin gold) (see Figure 7.4);

• Signal Recovery 7280 DSP Lock-in Ampli�er (see Figure 7.5);

• Oscilloscope (see Figure 7.6).

Figure 7.4: Adwin gold.

Figure 7.5: Signal Recovery 7280 DSP Lock-in Ampli�er.

We use a signal generator to generate a sinusoidal signal, the amplitude of which we want to
estimate. The code of our estimator is written with ADbasic on PC. ADbasic is the solution for �exible
and simple programming of fast data acquisition, open-loop and closed-loop control procedures. The
ADbasic programs are executed on the real-time CPU of the ADwin hardware after the occurrence of
the generated signal. The ADwin CPU reacts to a new event within microsecond range. The processing
of the event such as the calculation of a correction value is done with high-speed so that precise process
response times (reaction times) of a few microseconds can be guaranteed. The obtained estimate is
shown by an oscilloscope. Simultaneously, the generated signal is also sent to a DSP lock-in ampli�er.
DSP lock-in ampli�er calculates the amplitude of the signal, which is also shown by the oscilloscope.
Hence, we can compare the obtained estimates.
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Figure 7.6: Oscilloscope.

7.2.2 Experiment results
We give in this subsection some numerical experimental tests where we estimate the amplitude of a
sinusoidal signal during a fast change of the oscillation conditions. This signal is generated with a
frequency of 53Hz, a �xed sampling period and an amplitude varying from 1.2 to 0.2.

We use the amplitude estimator obtained in Proposition 4.3.71 to estimate the time-varying ampli-
tude where the two continuous functions are exp(·) and exp(2·). We apply the trapezes rule in order
to approximate the integrals in this estimator with 17 points. The codes are implemented on Real
time target (Adwin gold). Moreover, we compare our estimations with the ones given by the Signal
Recovery 7280 DSP lock-in ampli�er.

We can see the comparisons of estimations in Figure 7.7 where the sampling period is set to
375µs. Hence the integration window length for our estimator is 6.4ms. The calculation times for
lock-in ampli�er are varying from 100ms to 2ms so as to arrive the same rising time as the one of
our estimator. In Figure 7.8, the sampling period is set to 100µs. The integration window length for
our estimator is 1.7ms (17 points) and the calculation time for lock-in ampli�er is 50ms. We can see
the last estimations in Figure 7.9 where the signal is noisy with a which gaussian noise and the the
sampling period is set to 750µs. The integration window length for our estimator is 12.8ms (17 points)
and the calculation time for lock-in ampli�er is 50ms. We show in Table 7.1 the calculations time used
for our estimator and DSP lock-in ampli�er in the three previous cases. Hence, we can see that when
we estimate the amplitude of a time-varying amplitude sinusoidal signal the rise time for our estimator
is much smaller than the one for a DSP lock-in ampli�er.

Fig. 7.7 Fig. 7.8 Fig. 7.9
Our estimator 6.4ms (17 points) 1.7ms (17 points) 12.8ms (17 points)

Lock-in ampli�er 50ms (3.75× 104 points) 50ms (3.75× 104 points) 50ms (3.75× 104 points)

Table 7.1: Comparison of calculations time.
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(a) Calculation time for lock-in: 100ms.
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(b) Calculation time for lock-in: 50ms.
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(c) Calculation time for lock-in: 20ms.
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(d) Calculation time for lock-in: 10ms.
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(e) Calculation time for lock-in: 5ms.
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(f) Calculation time for lock-in: 2ms.

Figure 7.7: Integration window length for RT system is 6.4ms.
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Figure 7.8: Integration window length for RT system is 1.7ms and calculation time for lock-in ampli�er
is 50ms.
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Figure 7.9: Integration window length for RT system is 12.8ms and calculation time for lock-in ampli�er
is 50ms.
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7.3 Conclusion
In this chapter, we have given some experimental results by comparing our amplitude estimator to
a DSP lock-in ampli�er which is usually used for the AFM in tapping mode. We have shown that
when we estimated the amplitude of a time-varying amplitude sinusoidal signal the rise time for our
estimator was much smaller than the one for a DSP lock-in ampli�er.

In the future, �rstly we will consider sinusoidal signals with higher frequency which corresponds
to the oscillating tip of an AFM in tapping mode. Secondly, we will use the modulating functions
used in Chapter 6 to estimate the amplitude of a noisy signal with smaller estimation error. Thirdly,
the frequency value is assumed to be known in our experimental tests, which will be estimated by our
frequency estimator.
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Conclusions and perspective

Conclusions
This PhD thesis is devoted to extend the derivative estimators and some parameter estimators recently
obtained by the algebraic parametric techniques from noisy signals and to analyze the corresponding
estimation errors. The whole document is structured around two themes:

• Numerical di�erentiation in �nite time of noisy signals and the application to non linear obser-
vation.

• Numerical parameter estimations in �nite time for noisy sinusoidal signals and the applications
to the atomic force microscope in tapping mode.

Seven main contributions can be noted:

• The derivative estimators introduced by M. Mboup, M. Fliess and C. Join in [Mboup 2009b] were
obtained by using the algebraic parametric techniques to the truncated Taylor series expansion.
The estimation errors are only due to the truncated terms in continuous noise-free case. These
estimators were improved in [Mboup 2009b] by taking the truncated Jacobi orthogonal expansion
and by allowing a small time-drift in the derivative estimations. These Jacobi estimators depend
on a set of parameters among which the parameters κ and µ come from the Jacobi polynomial's
expression. We extend these estimators by letting these two parameters belong to ]− 1,∞[. It is
shown that with this extension we can have smaller values for the truncated term errors, especially
for the time-drift. Moreover, we show in some numerical examples that if the function x satis�es
the following di�erential equation x(2)+ cx = ε where c ∈ R and ε is a continuous function, then
the numerical error due to a negative value for κ allows us to compensate the reduced time-drift
for minimal estimators. Di�erently from [Mboup 2009b], extended a�ne Jacobi estimations are
given, where there is no constraint to the truncated order of the Jacobi orthogonal series expansion
and the associated coordinates are given without solving a linear system. Moreover, we show
that the Jacobi estimators for the nth order derivative of a smooth function can be obtained by
taking n derivations to the zero-order estimators of this function. The corresponding convergence
rate for these estimators and the in�uence of the parameters on the truncated term errors are
studied. These corresponding results were published [Liu 2011c, Liu 2011a].

• The Lanczos generalized derivative estimator [Lanczos 1956] is called a method of di�erentiation
by integration. We extend this method by introducing central Jacobi estimators. These central
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estimators are de�ned like causal Jacobi estimators. They can be only used for o�-line estima-
tions. However, their convergence rate is better than the one of causal Jacobi estimators. These
corresponding results were published in [Liu 2011b].

• The study of the convergence rate of the Jacobi estimators is given by considering the Beppo-Levi
space. Moreover, the nth order Jacobi estimators are generalized by considering the Beppo-Levi
space Hn(I). Three classes of Richardson-Jacobi estimators are introduced which improve the
convergence rate of central minimal Jacobi estimators. Finally, by using the algebraic parametric
techniques with a general annihilator we provide a general form of our obtained estimators.

• Non-asymptotic estimators for fractional order derivative estimations are originally introduced
by using the algebraic parametric techniques.

• A weakness of the algebraic parametric techniques methods was a lack of any precise error
analysis. By considering integrable noises and a large class of stochastic process noises, we provide
appreciate error bounds for the Jacobi derivative estimators. These error bounds help us to choose
the �optimal� parameters for our estimators. Hence, it is shown that the variance of the noise
error can be smaller in the case of negative real parameters κ and µ than it was in [Mboup 2009b]
for integer values. When the noise is a stochastic process, the existence of integrals obtained in
our estimators are studied in the sense of convergence in mean square. The in�uence of the
sampling period on such noise error is also studied in discrete case. Moreover, it is shown that
the Jacobi derivative estimators can cope with a class of noises for which the mean and covariance
are polynomials in time (with degree smaller than the order of derivative to be estimated). These
results can also be applied to other estimators obtained by the algebraic parametric techniques.
These corresponding results were published [Liu 2009, Liu 2011c, Liu 2011a].

• The estimators for the parameters of noisy sinusoidal signals are given by using the algebraic
parametric techniques. They can cope with both the cases when there is a step or a sweep in
the amplitude. The experimental results show that when we estimate the amplitude of noisy
sinusoidal signals the rise time for our estimators is much smaller than the one for the DSP
lock-in ampli�er. These corresponding results were published [Liu 2008, Liu 2011d].

• The modulating function methods are considered to estimate the parameters of noisy sinusoidal
signals with simple calculations. These methods have the similar advantages to the algebraic
parametric techniques. Especially, by choosing appreciate modulating functions, the obtained
estimators can also cope with a class of noises for which the mean and covariance are polyno-
mials in time. Moreover, it is shown that they are more robust to �large� sampling period and
to sinusoidal perturbations with �low� frequency. These corresponding results were published
[Liu 2008, Liu 2011d].

Perspectives
Based on the results given by this thesis, several perspectives should be considered:
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• The obtained �delay-free� minimal estimator for the �rst order derivative, the numerical error
for which compensates the time-drift, should be improved by introducing some �delay-free� a�ne
Jacobi estimators which produce small noise error contributions. Similar �delay-free� estimators
should be obtained for higher order derivative.

• We show how to choose parameters for our estimators. The length of sliding window is chosen
by assuming to know the noise level and the smooth signal. Hence, it should give some criterions
to choose the length of sliding window. Moreover, the analysis for colored noises will be done.

• The obtained non-asymptotic estimators for the fractional order derivatives will be developed
and veri�ed by numerical simulations.

• The applications to non linear observation of Jacobi estimators are given in numerical simulations
by comparing to high gain observer and sliding modes di�erentiator. Applicability of Jacobi
estimators in a practical scenario will be veri�ed by comparing to other existing methods.

• In [Trapero 2008], the algebraic parametric techniques are used to estimate the parameters of
two sinusoidal signals from their noisy sum. The modulating functions method will be used to
estimate these parameters. Furthermore, we will estimate the parameters of a �nite number of
sinusoidal signals from their noisy sum.

• We estimate the parameters of the noisy sinusoidal signals with time-varying amplitude, where
the frequency is assumed to be constant. The obtained estimators do not adapted to the noisy
sinusoidal signals with time-varying frequency, especially when there is a frequency sweep. For
this problem, we will consider the following signal: x(t) = A sin((ω0 + ωt)t + φ) where A ∈ R∗,
ω0 ∈ R∗

+, ω1 ∈ R and φ ∈]− π
2 ,

π
2 [. By �nding out a di�erential equation of x, the frequency ω0

can be estimated by the algebraic parametric techniques and the modulating functions method.
Then, the amplitude and phase can be estimated by the estimators given in this thesis.

• The experimental results are only given by using the amplitude estimators. More experimental
tests will be done to compare other parameter estimators to the DSP lock-in ampli�er.
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Appendix

Laplace transform and Riemann-Liouville integral
In this section, let us recall some useful formulae on the Laplace transform and Riemann-Liouville
integral.

Laplace transform (see [Abramowitz 1965] p. 1020) Let f be a function de�ned on R+. If it
exists β ∈ R such that e−βf(·) ∈ L1(R+), then the Laplace transform of f is de�ned by

f̂(s) = L{f}(s) :=
∫ +∞

0
e−stf(t) dt, (7.6)

where s ∈ C et Re(s) ≥ β.

Derivation formulae (see [Abramowitz 1965] p. 1020) By applying derivations and integration
by parts, we can get the following formulae

L{tnf(t)} (s) = (−1)n
dn

dsn

{
f̂(s)

}
, (7.7)

L{f (n)(t)}(s) = snf̂(s)− sn−1f(0)− · · · − f (n−1)(0). (7.8)

Convolution theorem (see [Abramowitz 1965] p. 1020) Let f1 and f2 two functions, the Laplace
transform of which exist. Then, we have

L
{∫ t

0
f1(τ) f2(t− τ)dτ

}
= f̂1(s) · f̂2(s). (7.9)

Riemann-Liouville integral (see [Loverro 2004]) The α ∈ R+ order Riemann-Liouville integral
of a real function f : R→ R is de�ned by

Jαf(t) :=
1

Γ(α)

∫ t

0
(t− τ)α−1f(τ) dτ. (7.10)

Properties (see [Loverro 2004]) We have for any α ∈ R+,

L{
tα−1

}
(s) =

Γ(α)

sα
, (7.11)

L{Jαf(t)} (s) = 1

sα
f̂(s). (7.12)
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Important formula By applying (7.7) and (7.12), we get

L−1

{
1

sα
dnf̂(s)

dsn

}
(t) =

(−1)n

Γ(α)

∫ t

0
(t− τ)α−1τnf(τ) dτ. (7.13)

Jacobi orthogonal polynomial
We recall in this section some useful formulae on the Jacobi orthogonal polynomials.

De�nitions ([Abramowitz 1965] p. 775) The nth (n ≥ 0) order Jacobi polynomials on [−1, 1] are
de�ned as follows

P̂ (µ,κ)
n (t) =

n∑

j=0

(
n+ µ

j

)(
n+ κ

n− j

)(
t− 1

2

)n−j ( t+ 1

2

)j

, (7.14)

where µ, κ ∈] − 1,+∞[. Let us substituting t by −1 + 2τ in (7.14), then the nth order Jacobi
polynomials on [0, 1] are de�ned as follows

P (µ,κ)
n (τ) =

n∑

j=0

(
n+ µ

j

)(
n+ κ

n− j

)
(τ − 1)n−j τ j . (7.15)

Scalar product ([Abramowitz 1965] p. 774) Let us denote ∀ĝ1, ĝ2 ∈ C([−1, 1]),

〈ĝ1, ĝ2〉µ,κ =

∫ 1

−1
ŵµ,κ(t)ĝ1(t)ĝ2(t)dt, (7.16)

where ŵµ,κ(t) = (1− t)µ(1+ t)κ is the weight function. We denote its associated norm by ‖ · ‖µ,κ
and we have ∥∥∥P̂ (µ,κ)

n

∥∥∥
2

µ,κ
=

2µ+κ+1

2n+ µ+ κ+ 1

Γ(µ+ n+ 1)Γ(κ+ n+ 1)

Γ(µ+ κ+ n+ 1)Γ(n+ 1)
. (7.17)

Let us denote ∀g1, g2 ∈ C([0, 1]),

〈g1, g2〉µ,κ =

∫ 1

0
wµ,κ(τ)g1(τ)g2(τ)dτ, (7.18)

where
wµ,κ(τ) = (1− τ)µτκ (7.19)

is the associated weight function de�ned on [0, 1], then we have
∥∥∥P (µ,κ)

n

∥∥∥
2

µ,κ
=

1

2n+ µ+ κ+ 1

Γ(µ+ n+ 1)Γ(κ+ n+ 1)

Γ(µ+ κ+ n+ 1)Γ(n+ 1)
. (7.20)

Rodrigues formulae (see [Szegö 1967] p. 67)

∀t ∈ [−1, 1],
dn

dtn
{ŵµ+n,κ+n(t)} = (−1)n2nn! P̂ (µ,κ)

n (t)ŵµ,κ(t), (7.21)

∀τ ∈ [0, 1],
dn

dτn
{wµ+n,κ+n(τ)} = (−1)nn!P (µ,κ)

n (τ)wµ,κ(τ). (7.22)
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Orthogonality By applying (7.22) and integration by parts, we get
∫ 1

0
wµ,κ(τ)P

(µ,κ)
n (τ) τm dτ = 0, 0 ≤ m < n, (7.23)

∫ 1

0
wµ,κ(τ)P

(µ,κ)
n (τ) τn dτ = B(µ+ n+ 1, κ+ n+ 1), (7.24)

where B(·, ·) is the classical Beta function (see [Abramowitz 1965] p. 258).

Derivation relation (see [Szegö 1967] p. 63)

∀τ ∈ [0, 1],
d

dτ
{P (µ,κ)

n (τ)} = (n+ µ+ κ+ 1)P
(µ+1,κ+1)
n−1 (τ). (7.25)

Parity (see [Szegö 1967] p. 80) Let us set κ = µ for the Jacobi estimators de�ned on [−1, 1], then
we have

∀t ∈ [−1, 1], P̂ (κ,κ)
n (−t) = (−1)nP̂ (κ,κ)

n (t). (7.26)

Recurrence relations (see [Abramowitz 1965] p. 782) ∀τ ∈ [0, 1],

(2n+ 2 + µ+ κ) (1− τ)P (µ+1,κ)
n (τ) = (1 + n+ µ)P (µ,κ)

n (τ)− (n+ 1)P
(µ,κ)
n+1 (τ), (7.27)

(2n+ 2 + µ+ κ) τ P (µ,κ+1)
n (τ) = (1 + n+ κ)P (µ,κ)

n (τ) + (n+ 1)P
(µ,κ)
n+1 (τ). (7.28)
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Résumé étendu en français

Ce mémoire concerne la construction et l'analyse d'estimateurs robustes pour le calcul numérique
des dérivés de signaux bruités et des paramètres de signaux sinusoïdaux bruités. Ces estimateurs,
originalement introduits par Fliess, Mboup et Sira Ramírez, sont actuellement étudiés au sein de
l'équipe projet NON-A de l'INRIA Lille Nord Europe. Pour une classe d'entres eux, nous les obtenons à
partir de la réécriture dans le domaine opérationnel de Laplace des équations di�érentielles linéaires des
signaux analysés. Par des manipulations algébriques simples dans l'anneau R (s)

[
d
ds

]
des polynômes

di�érentiels en d
ds à coe�cients rationnels en la variable opérationnelle s, nous montrons que ces

estimateurs sont non-asymptotiques et que les estimations numériques obtenues, même en présence de
bruits, sont robustes pour un faible nombre d'échantillons des signaux. Nous montrons, de plus, que
ces propriétés sont véri�ées pour une large classe de type de bruits. Ces estimateurs exprimés dans
le domaine temporel s'écrivent en général via des fractions d'intégrales itérées des signaux analysés.
Dans la première partie du mémoire, nous étudions des familles d'estimateurs de dérivées obtenus
par ces méthodes algébriques. Nous montrons que pour une classe d'entre eux, il est possible de les
formuler directement en tronquant une série orthogonale de polynômes de Jacobi. Cette considération
nous permet alors d'étendre à R le domaine de dé�nition des paramètres de ces estimateurs. Nous
analysons ensuite l'in�uence de ces paramètres étendus sur l'erreur de troncature, qui produit un
retard d'estimation dans le cas causal, puis sur l'erreur due aux bruits, considérés comme des processus
stochastiques, et en�n sur l'erreur numérique de discrétisation des intégrales. Ainsi, nous montrons
comment réduire le retard d'estimation et l'e�et du aux bruits. Une validation de cette approche est
réalisée par la construction d'un observateur non asymptotique de variables d'état d'un système non
linéaire. Dans la deuxième partie de ce mémoire, nous construisons par cette approche algébrique
des estimateurs des paramètres d'un signal sinusoïdal bruité dont l'amplitude varie avec le temps.
Nous montrons que les méthodes classiques de fonctions modulatrices sont un cas particulier de cette
approche. Nous étudions ensuite l'in�uence des paramètres algébriques sur l'erreur d'estimation due
au bruit et l'erreur numérique d'intégration. Des majorations de ces erreurs sont données pour une
classe d'estimateurs. Finalement, une comparaison entre ces estimateurs et la méthode classique de
détection synchrone est réalisée pour démontrer l'e�cacité de notre approche sur ce type de signaux.
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