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(zeneral Introduction

Context

This Ph.D. work was carried out in Project-team ALIEN (ALgébre pour Identification et Estimation
Numériques) supported by the INRIA Lille-Nord Europe. The ALIEN project-team was created in
June 2004 and is continued in January 2011 by the present Project-team Non-A (Non-Asymptotic
estimation for online systems).

For engineers, a wide variety of information is not directly accessible to measurement. Some pa-
rameters (constants of a magnetic machine, delay time in communication, etc.) or internal variables
(mechanical torques in a robot, etc.) are unknown. Similarly, more often than not, signals from sensors
are distorted and tainted by measurement noises. To control such processes, and to extract informa-
tion conveyed by the signals, one often has to identify a system and estimate parameters. Among the
unknown variables to be reconstructed are derivatives of a signal. This problem to reconstruct nu-
merical derivatives from noisy observational data arises in several practical applications such as image
processing, identification, state observation and much more. This numerical differentiation problem is
well known to be ill-posed in the sense that a small noise in measurement data can induce a huge error
in the approximated derivatives.

The ALIEN project-team has developed an estimation theory, built around differential algebra and
operational calculation. It has resulted in relatively simple, rapid algorithms: solutions are provided
by explicit formulae, with straightforward implementation, using standard tools from computational
mathematics. Unlike traditional methods, the majority of which pertain to asymptotic statistics, the
ALIEN estimators are “non-asymptotic”. In many application sectors, the response time parameter is
crucial. Using this approach, computations are performed as the application is running: the “real-time”
computing is targeted, as opposed to processing that occurs after the event.

The identification of linear systems, in the sense of automatic control, is benefiting from the alge-
braic module theory and from operational calculus. It permits to work in real time, i.e., to simultane-
ously identify and control, a fact which is often indispensable in practice. The nonlinear generalization
is based on a long-standing problem, ¢.e., the estimation of the derivatives of various order of a noisy
signal, in a way which is easy to implement. Works in progress demonstrate that we are not only able
to identify the poorly known parameters, but also to estimate the state: this renewed perspectives
yield for the first time a systematic procedure for obtaining non-linear observers.

In what concerns the signal processing, similar methods yield answers to denoising, to the detection
of abrupt changes, to demodulation, blind equalization and compression, even for transient signals in
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a quite noisy environment. Two patents related to those techniques, which are of utmost industrial
significance, are pending. The extension to image and video signals yields remarkable results for
denoising, compression, edge and motion detection.

Objective of the thesis

The first objective of this thesis is to extend the derivative estimators introduced by M. Mboup, M.
Fliess and C. Join in [Mboup 2009b]. We apply the extended estimators to non linear observation. The
second one is to provide some parameter estimators for noisy sinusoidal signals. We also compare the
estimation results obtained by a classical lock-in amplifier and our estimators. This classical technique
is used by Atomic Force Microscope in tapping mode.

Both of these estimators are obtained by using the algebraic parametric techniques. Hence, they
depend on some parameters. This thesis also aims at the analysis of the influence of these parameters
on our estimators so as to minimize the estimation errors by choosing the “optimal” parameters.

Outline of the thesis

Part I is devoted to the theme of numerical differentiation in finite time of noisy signals and the
application to non linear observation.

Chapter 1 gives several classes of differentiation estimators, namely Jacobi estimators, without
considering noises. These estimators are based on the ones originally introduced by Mboup, Fliess and
Join [Mboup 2007, Mboup 2009b| by using the algebraic parametric techniques. We generalize them
by taking the truncated Jacobi orthogonal series expansion and by taking the scalar product of Jacobi
polynomials so as to extend the parameters defining these estimators from N to R. They can be used
for on-line or off-line estimations. Since Jacobi estimators depend on a set of parameters, by providing
some error bounds for the associated truncation errors we study the corresponding convergence rate
and the influence of parameters on the estimation errors. This gives us a guide of how to choose
parameters for Jacobi estimators. Then, by using the algebraic parametric techniques we show how to
obtain a general form for Jacobi estimators. Finally, we show that by using the algebraic parametric
techniques we can also obtain some estimators for the fractional order derivatives.

In Chapter 2, we study Jacobi estimators obtained in the noisy case. We consider mainly three
different types of noises: integrable noises, non independent stochastic process noises and independent
stochastic process noises. By providing some error bounds, we study the influence of parameters on the
noise contribution errors. Finally, by choosing a set of appropriate parameters we give some numerical
examples to show the efficiency and the stability of Jacobi estimators.

In Chapter 3, we focus on the applications of Jacobi estimators to non linear observation. Firstly,
we recall some results of observability for a nonlinear system within the differential geometric framework
and also in the differential algebraic framework. Secondly, by taking the ball and beam system we
compare our Jacobi estimators to high gain observers and high order sliding mode differentiators.

Part II is devoted to the theme of finite time numerical parameter estimations for noisy sinusoidal
signals. We compare the on-line results of our estimators with the ones obtained by a lock-in amplifier
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system which is classically used by an AFM in tapping mode.

Chapter 4 concentrates on the parameters estimation for noisy sinusoidal signals with time-varying
amplitudes. We use the algebraic parametric techniques and the modulating functions method to
obtain some useful equations and linear systems. Then, by solving these equations and linear systems
we estimate the wanted parameters: frequency, amplitude and phase.

Chapter 5 studies the estimation errors of the previous parameter estimators: the numerical error
due to a numerical integration method and the noise error contribution due to an integrable noise or
a stochastic process noise. Since these estimators depend on a set of parameters, we give some error
bounds which permit us to choose the optimal ones.

Chapter 6 begins by showing how to use these error bounds to choose some appropriate parameters
for our estimators. Then, some comparisons between the algebraic parametric techniques and the
modulating functions method are given by taking different signal models.

In Chapter 7, we give some on-line experimental results obtained at the Laboratoire National de
meétrologie et d’Essais (LNE) by applying our amplitude estimators. These results are based on the
comparison of our results with respect to a DSP lock-in amplifier which is usually used as an amplitude
detector for the atomic force microscopy in tapping mode.

Finally, this thesis is completed by some conclusions and perspectives.
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Part 1

Numerical differentiation

ot
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Chapter 1

Numerical point-wise derivative
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1.6.2 Central Jacobi estimators . . . . . . . . ... 62
1.6.3 Richardson extrapolation technique. . . . . . . . . .. ... ... ... 68
1.6.4 Generalized derivative estimators . . . . . . . . . ... Lo oL 69
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1.9 Conclusion . . . . . . . i i i i i i i i i i e e e e e e e e e e e e e e e 85

1.1 Introduction

Numerical differentiation is concerned with the numerical estimation of derivatives of an unknown
function from its discrete, potentially noisy measurement data. It has attracted a lot of attention from
different points of view:

e observer design in the control literature [Chitour 2002, Ibrir 2004, Levant 2003, Diop 1994, Diop 2000],
e digital filter in signal processing [Chen 1995, Rader 2006, Tseng 2005],

e Volterra integral equation of the first kind [Cheng 2004, Gorenflo 1991],

e identification [Hanke 1999, Wang 2008].

The problem of numerical differentiation is ill-posed in the sense that a small error in measurement
data can induce a large error in the approximate derivatives. Therefore, various numerical methods
have been developed to obtain stable algorithms more or less sensitive to additive noise. They mainly
fall into eight categories:

e the finite difference methods [Khan 2000, Rahul 2006, Qu 1996, Ramm 2001,

o the Savitzky Golay methods [Savitzky 1964, Gorry 1990, Barak 1995, Diop 1994]

the wavelet differentiation methods [Shao 2003, Nie 2002, Shao 2000, Leung 1998, Diop 2000]

the Fourier transform methods [Fu 2010, Dou 2010, Y. 2008, Qian 2006a, Qian 2006b, Kauppinen 1981]

the mollification methods [Hao 1995, Murio 1993, Murio 1998],

the Tikhonov regularization methods [Cullum 1971, Hanke 2001, Nakamura 2008, Wei 2005, Wang 2002],

the algebraic methods [Mboup 2009b, Mboup 2007, Liu 2011c, Liu 2009, Liu 2011b, Liu 2011al,
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e the differentiation by integration methods |[Lanczos 1956, Rangarajana 2005, Wang 2010], i.e.
using the Lanczos generalized derivatives.

Recent algebraic parametric estimation techniques for linear systems [Fliess 2003b, Fliess 2007]
have been extended to various problems in signal processing (see, e.g., |Fliess 2003a, Fliess 2004a,
Mboup 2009a, Neves 2006, Neves 2007, Trapero 2007a, Trapero 2007b, Trapero 2008, Liu 2008]). Let
us emphasize that those methods, which are algebraic and non-asymptotic, exhibit good robustness
properties with respect to corrupting noises, without the need of knowing their statistical properties
(see [Fliess 2006, Fliess 2008| for more theoretical details). The robustness properties have already been
confirmed by numerous computer simulations and several laboratory experiments. It appears that these
techniques can also be used to derive numerical differentiation algorithms exhibiting similar properties
(see [Mboup 2009b, Mboup 2007, Liu 2011c, Liu 2009, Liu 2011b, Liu 2011a]). Such techniques are
used in [Fliess 2004c, Fliess 2004b, Barbot 2007] for state estimation.

In this chapter, we aim at constructing high order precise numerical derivative estimators of smooth
functions from an algebraic frame work. For this, we consider three cases. In the two first cases, we
use the sampling data given before (resp. after) the point at which the derivative value we want to
estimate. The such obtained estimator is called causal estimator (resp. anti-causal estimator). In
the last case, the point at which the derivative value we want to estimate is the middle point of the
time window used for data. Hence, we get central estimator. We will show in the next chapter the
robustness of these estimators when the used discrete data are corrupted by noises. In the two following
sections, we are going to present the algebraic parametric technique for obtaining anti-causal derivative
estimators.

1.1.1 An introductory example

In the classical numerical differentiation methods, an interpolating polynomial (see [Anderssen 1998,
[Brown 1992|) or a least-squares polynomial (see [Gorry 1990]|, [Savitzky 1964]) is generally used to
approximate a function, the derivatives of which we want to estimate. Then the derivatives of this
polynomial is closely linked to the coefficients of this polynomial. In the recent papers [Mboup 2007,
Mboup 2009b|, a new algebraic parametric differentiation method is presented where an elimination
technique such as the one introduced in |Herceg 1986 was used to calculate the useful coefficients.

Let us start to illustrate this algebraic parametric technique method with a simple example. Let
p1(t) = ag + ait be a first order polynomial known on R*, where ap and a; are unknown. We are
going to calculate the first order derivative of p; which is the coefficient a;. For this, we apply an
elimination technique in the operational domain. By applying the Laplace transform to t*,a € R
(recalled in Appendix (7.11)), we obtain p; = “2 + ¢}, where p; is the Laplace transform of p;. Then,
by multiplying both sides by s, we get sp1 = ag + %. Thus, we can annihilate the coefficient ag by
deriving with respect to s the last equation

~ ~ 1
spgl) +p1 = —?al. (L.1)

Such that it only remains a; and p; in (1.1). We need to return into the time domain in order to

calculate a1 by using the knowledge of p;. Since the inverse Laplace transform of sﬁgl) contains the
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derivative of p; which is unknown, we multiply both sides of (1.1) by s=2. Then, by applying (7.11)
and (7.13) (given in Appendix) we obtain an integral which only depends on p;:

31 [t

=3 ; (2T —t)p1(7)dr, t>0. (1.2)

ay

In the previous computations, we used the following differential operator:

1 d
Ipo=—: —"s5, 1.3
00="2" 45" ° (13)
which permits us to annihilate ag and to calculate a; by an integral. Consequently, we call such
annihilator integral annihilator. This method is aptly called a method of differentiation by integration.
An advantage of this presented method is that a quite short time window [0, ¢] is sufficient for obtaining

accurate value of a;.

1.1.2 Annihilator - Estimator

The extension to polynomial functions of higher order is straightforward. For derivatives estimates up
to some finite order of a given smooth function, we take a suitable truncated Taylor series expansion
around a given time instant, to which we apply some similar computations to the ones in the example of
Subsection 1.1.1. Moreover, using sliding time windows permits to estimate derivatives at any sampled
time instant. Precisely, let « be a real valued analytical function defined on a finite time open interval
I C R*. Let n € N, we are going to estimate the n” order derivative of 2. For any to € I, we take the
Nt (N > n) order truncated Taylor series expansion of z at to

N i
en(t+to) =Y = (tg), (1.4)
i
where we want to calculate 2™ (ty). Then by applying the Laplace transform to (1.4) and using (7.11)
given in Appendix we get
N . .
E(s) =3 s~ ato),
=0
where Zx(s) is the Laplace transform of zn(t) with a variable s € C. The next step is to give an
integral annihilator so as to annihilate the terms containing (¥ (tg) with i # n and calculate (™ (tg)
with an integral. A differential operator rooted in [Mboup 2007] of the following form
Non 1 drtk 1 gN-n

B N+l .
ki = NTIFR gtk geN—m S withkpeN (1.5)

is used. Then, the coefficient (™ (o) in the right side of (1.4) is kept in such a way: being multiplied

N+1 2N (s) becomes a polynomial of degree N. Then the terms of degree lower than N —n, which

by s
include 2 (tg), n < i < N, are annihilated by applying N — n times derivations. In order to preserve
the term including () (to), we multiply the remaining polynomial by % Then we apply more than n

times derivations with respect to s so as to annihilate the other terms including = (o) with 0 < i < n.

10
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Finally, we multiply by W%ﬂ to return into the time domain at instant ¢y with a sliding window of
length T (T > 0 such that [tg, to+7] C I) which only depends on function z. Hence, by applying (7.11)
and (7.13), we obtain an integral expression of z(™(ty). By replacing zy by z, the approximation of

the remainder coefficient (™) (ty) is taken as an estimator for :Ug:) Since this estimator is determined
(n)
to4
integration window [to,to + 1] we can estimate the derivative values of = for all point ty € I verifying

by the parameters T, N, k and p, we denote it by z, ' (k,u, T, N). Consequently, by using a sliding

the condition [to,to + 1] C I. This derivative estimator contains a truncated term error which comes
from the truncation of the Taylor series expansion of z. It is clear that when we estimate the n® order
derivative of z, we can reduce the truncated term error by increasing the truncated order N. If we
take N =n in (1.4) and (1.5), we call the such obtained estimator minimal estimator and we denote
it by 7§ (k, 11, T). It was shown in [Mboup 2007, Mboup 2009b] that the estimator @y, (k, i, T, N)
obtained by using N with N > n can be written as an affine combination of some minimal estimators.
Hence, it corresponds to a point in the Q-affine hull of the set

to4 to4+

Sk,u,T,q = {i(n) (k + Q7M>T)7 e a'%(n) (k:,,u + Q7T)} with ¢ = N —n. (16)

In this case, we call it affine estimator. Moreover, it was shown in [Mboup 2009b] that this estimator

a?,g:i(k, u, T, N) (N > n) can be also obtained by taking the ¢! (¢ = N —n < n + k) order truncated

Jacobi orthogonal series expansion of (™ (ty + T€) at € = 0:

<Pﬁlt+n,k+n)(.)’ ) (to + T)>

q
~(n) _ ! pn,k+n (p+n,k+n) . .
Lto (k:’ N N) = E P(,LH-TL,R—HL) 5 Pz (5)7 with £ = 0. (17)

By taking £ € [0, 1] rather than 0, the Q-affine hull S, 74 is extended to a R-affine hull. Hence, it is
(n)

clear that any point in this set represents an estimator for z; 7, in some meaningful sense. Character-

izing these points which minimize a given distance to z(™ (to) is an important question. A judicious
choice was introduced in [Mboup 2009b| by taking £ as the smallest root of Pq(fgn’k+n). However,

it corresponds to take the (¢ + 1) order truncated Jacobi series expansion of z() (to + TE), which
produces a time-drift. In this case, we denote this time-drift estimator by i‘ga)r (k,p, T, N,€) and the
estimation error comes from the truncation of the Jacobi orthogonal series expansion.

In order to show the efficiency of the previous estimators, we give a simple example. Let us consider
the following function

x(t;) = tanh(t; — 1) + exp(—%) sin(6t; + ), (1.8)

where t; € [0,5]. We estimate the first order derivative of x by using the presented minimal and
affine estimators. In this example and more generally in this chapter, we assume that x is given in
discrete case with an equidistant sampling period Ts = ﬁ. Then, we apply the trapezoidal numerical

integration method to approximate the integrals in the estimators jgcﬂ(k‘" w, Ty N, ). In this chapter,
we always set the length of the moving integration window [¢;,t; + T to be equal to %, i.e. there are
1001 sampling data in each integration window. Hence, by using the well-known error bound given in

[Ralston 1965] for numerical integration error, we can verify that the numerical error produced by the

11
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x=tanh(t-1)+exp(-t/1.2)sin(6t+m)

the first order derivative of x

x=tanh(t-1)+exp(-t/1.2)sin(6t+1m)
6

6
the first order derivative of x

— - — - time~drift affine estimator with g=1

— - — - minimal estimator

(a) Minimal estimator yzﬁgl (k,p, T) withn =1, k = p =0 (b) Time-drift affine estimator :ifgi (k,p, T, N, &) with n =
Lk=p=0,T=3% N=2(qg=1)and { = 0.2764.

and T' = %
Estimation errors

x=tanh(t-1)+exp(-t/1.2)sin(6t+m)
150
— — — Estimation error for the drift free affine estimator with q=2
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(c) Drift free affine estimator i’ig (k,pu, T,N) with n = 1, (d) Truncated term error for xiol (0,0, %,3) and amplitude

)
+
error for &{}’ (0,0, 3,2,0.2764).

k=p=0T=3% N=3(¢=2).

Figure 1.1: Estimations by using minimal and affine estimators.

trapezoidal rule is negligible. This numerical integration problem and the analysis of the choice of the
parameters will be addressed in Chapter 2. Consequently, in this chapter, we only consider for each

(") (&, u, T) is given in Figure 1.1(a).

estimator the truncated error part.
to4

The estimation obtained by using the minimal estimator &
We can see that there is not only a drift error but also an amplitude error for this estimator. The
estimation obtained by the time-drift affine estimator iggi(kz, w, Ty N,§) with N =1 is given in Figure

1.1(b), where & = min (_b+ V;f_‘l“c, —b=— VZIf_4“C> is the smallest root of P2(
p? 4 2pk 4+ T+ Tk +12), b = —(k? + pk + 2u + 5k + 6) and ¢ = 5(k? + 3k + 2). We can see that

the drift error T¢ and the amplitude error are improved. In Figure 1.1(c), we give the estimation
() (k, u, T, N) defined by (1.7) with N = 2. In this case £ = 0

obtained by using the affine estimator z;

HALEHD ith ¢ = (k2 +

12
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and there is no drift. Let us compare the amplitude error between these two kind of estimators. In
Figure 1.1(b), we know that the time-drift of the affine estimator i’gél(kz,u,T, 1,€) is equal to T€.
Hence, by translating the so obtained estimation we can calculate the amplitude error by subtracting
the exact derivative values. We can see in Figure 1.1(d) the difference between this amplitude error
and the truncated term error issued from the drift free affine estimator ig:}r (k,pu, T, N) with N = 3.
Consequently, it is shown that by admitting a time-drift the affine estimator is significantly improved.

The aim of this chapiter is to give some extended estimators by using the algebraic parametric
technique so as to improve the truncated term error and the drift error. In the next subsection, we
introduce the Lanczos generalized derivative estimator which was originally introduced by Cioranescu
[Cioranescu 1938| in 1938 and also developed by Lanczos in 1956. We show that these estimators are

a particular case of (1.7) in the causal or anti-causal case.

1.1.3 Lanczos derivative generalized estimators

The Lanczos generalized derivative estimator Drx for the central case estimation, defined in [Lanczos 1956]
(p. 324) is given by

3 (" 3 /[
Vito € I, Drx(ty) = 373 /_TTx(tg +7)dr = oT _lTas(to +TT)dr, (1.9)
where I is an open interval of R and 27" > 0 is the length of the integral window [to — T, to + 1] C I.
It generalizes the ordinary derivative in the following two senses: Firstly, if  is assumed to belong to
C3(I), then by using the Taylor series expansion of x at tg in (1.9) we obtain | Drxz(tg) — i (to)| = O(T?).
Secondly, if we assume that x has both the right and left derivatives &(tp_) and &(toy) at to, then we
have

lim Drir(to) = i(to-) ;Li"(to”. (1.10)

It is also called a method of differentiation by integration. Rangarajana and al. [Rangarajana 2005]
generalized it for higher order derivatives by taking the n'” order truncated Taylor expansion of z at
to

2 (TT + to) = zn: (T_T)ia;@ (to), (1.11)

, 7!
=0

where 7 € [—1,1] and T > 0 such that [to — T,to + T] C I. Then by taking the scalar product of z,
by a Legendre polynomial P, of degree n, the terms containing z() (to) with j < m are annihilated by
the following property

1
/ P,(r)mdr =0, for0<j<n.
-1

Thus, they introduced the following estimator

1

n 1
Vio € I, D™ a(to) = Tn/ YuPo(7) 2(to + T7) dr, n € N, (1.12)
1

13
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where the coefficient v, is equal to 1X3X5X“2'X(2n+1) . If z is assumed to belong to C"*2(I), then by using

f_ll P, (t)t"*t1 dt = 0, they showed that ’D;n)x(to) -z (to)’ = O(T?). Recently, by using Richardson
extrapolation [Joyce 1971] Wang and al. [Wang 2010] improved the convergence rate for high order

Lanczos derivative estimators with the following affine schemes

1 1
Vi € I, DY) w(io) = 7 /_1 Po(7) (an (o + T7) + by (o + ATT)) dr. (1.13)
If 2 is assumed to belong to C"*4(I), then a,, b, and ), are chosen such that

1
/ (an + b A" TPy (7) T2 dr = 0
-1

in order to obtain D%/)\nx(to) — x(”)(to)‘ = O(T*). Moreover, if we assume that x € C"~1([), acgl)
and x(Ln) exist at tg, then

(n) (n)
, N zy (to) + 27 (¢

In order to show the efficiency of the Lanczos estimator Drx(ty) and the improved Lanczos esti-
mator D(Tnz\na:(to), let us estimate the first derivative of the function defined by (1.8). Similarly to the
example given in the previous section, we apply the trapezoidal numerical integration method, where

the length of the sliding integration window [t; —T',t;+T) is equal to 3, i.e. T = 1. Then, we can see in

Figure 1.2(a) the estimations obtained by using D7z (to) and D(Tnz\nx(to). Since, these estimators are

central estimators, there are no drift errors but there are amplitude errors. They are given in Figure
1.2(b).

Now, let us consider the function x = |- | defined on [~32,3

T 202
discontinuous at 0. We assume that x is given in discrete case with an equidistant sampling period

| the first derivative of which is

T, = ﬁ. Then, we can see in Figure 1.3 the estimations obtained by using Drz(tg) and D%))\lsc(to)
where A\ = % and T = %.

Unlike the previously presented algebraic parametric technique which uses an elimination tech-
nique in the operational domain, the Lanczos differentiation by integration method uses directly the
orthogonality of Legendre polynomials defined on [—1, 1] to the truncated Taylor series expansion of
x with an integration window [to — T',to + T']. Let us recall that the minimal estimator presented in
the previous subsection can be also obtained by using the Jacobi polynomial P,(L“ TR Jefined on
[0,1] with K, €] — 1,00[. Contrary to [Mboup 2009b] where k,u € N we can extend their domain
to ] — 1,00[. Since the affine estimator is an affine combination of minimal estimators, the values of
k and p can be also extended to | — 1,00[. For this, we use the truncated Jacobi orthogonal series.
However, it is difficult to choose judicious parameters x and p, as well as 7" and N. Similarly to the
Lanczos generalized derivative estimator, the second aim of this chapiter is to analyze the truncated
term error for the affine estimators by giving the convergence rate and the corresponding error bounds.
Since these error bounds also depend on parameters x, p, 7" and N, we study the influence of these
parameters on the truncated term error. This allows us to reduce this error by choosing judicious
such parameters. The third aim of this chapiter is then to introduce some other estimators by using
truncated Taylor expansion. The effect of the smoothness condition for x will be also discussed.

14
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Estimation errors
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(a) Lanczos estimator Drx(to) and Improved Lanczos es- (b) Associated estimation errors.

timator D(Tl’)/\lx(to) with A\1 = % where T = i.

Figure 1.2: Estimations and associated estimation errors of Drx(tg) and D(Tl))\lx(to).
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Figure 1.3: Estimations by using Drx (o) and D(le\lx(to).

1.1.4 Organization of the chapter

In this chapiter, we consider the numerical differentiation of a smooth function = only known at discrete
time, the n'® (n € N) order derivative of which we want to estimate. We assume that = belongs to
C"(I) where I is an open interval of R and the discrete data are not corrupted by some noises. This

chapiter is organized as follows.
We start by studying the minimal estimator which is previously presented in the anti-causal case,

i.e. it is obtained by using the integration window [to,to + T']. We show in Section 1.2 that it can
be obtained by three ways in the causal case, i.e. it is obtained by using the integration window

15
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[to — T,to], as well as in the anti-causal case. Firstly, in Subsection 1.2.1 we apply the algebraic
parametric technique to the nt* truncated Taylor expansion of x(tg + Bt) for any to € I with 3 € R*
and t > 0 such that g+ Bt € I. For this, we apply the integral annihilator Hi\[; defined by (1.5) with
N = n. From now on, by using the Riemann-Liouville fractional integral (see (7.10) in Appendix),

we can take the value of p in | — 1,+o00[ for HZZ rather than in N. Then, we obtain a family of

causal minimal estimators igonz(k, w, BT) with 8 < 0 and a family of anti-causal minimal estimators

(n)
to4
1.2.2 that these minimal estimators can be also obtained by applying the classical orthogonal properties

z; " (k,p, BT) with 8 > 0. Secondly, similarly to the way for obtaining (1.12), we show in Subsection
of the Jacobi polynomials defined on [0, 1]. In this way, we can extend the value of k to | — 1, +o0.
Then, we denote the extended minimal estimators by D,E”li sr®(to) with &, 1 €] — 1, +o0[. By applying
the recurrence relations of the Jacobi polynomials, a simple recurrence relation between the minimal
estimators for (™ (tg) and ("~ (ty) is given. Thirdly, we show in Subsection 1.2.3 that the extended
minimal estimators D:u, ﬁT:I:(to) are equal to the first term in the Jacobi orthogonal series expansion
of (™. Hence, taking the n'" order truncated Taylor expansion of = corresponds to take the 0" order

truncated Jacobi expansion of (™. Then, by using the Rodrigues formula and the definition of the
Jacobi polynomials a recurrence relation between the minimal estimators for (™ (t5) and z((t) is
given. In subsection 1.2.4, we analyze the truncated term error for minimal estimators. A precise local
error bound shows that the convergence rate for the minimal estimators is O(T') as T — 0. By this

way, we show the influence of parameters s, u and T on the truncated term error.

We investigate in Section 1.3 the extension of the affine estimator :i%gi(k,u,T, N) presented in

Subsection 1.1.2 which is originally introduced in [Mboup 2007, Mboup 2009b| with &k, u € N. In Sub-
section 1.3.1, by applying the algebraic parametric technique with the integral annihilator HkN#" given

by (1.5) with N > n and p €]—1, +00], we obtain a family of anti-causal estimators .%Eg_)’_ (k,p, T, N) and

a family of causal estimators 7™ (k,pu, =T, N). Then, by giving the relation between Hfj; and HZZ

to_
we show that :fgfi (k,u, BT, N) can be written as affine combination of some minimal estimators with

k€ Nand p €] — 1, +oo[. Then, by assuming that x € CVN*!(I) we give a global error bound for the
truncated term errors for these affine estimators which shows that the convergence rate is O(TN~"*1)
as T'— 0. In Subsection 1.3.2, we denote DSBLﬁT’qx(ﬁTf +tg) as the ¢! (g = N —n € N) order trun-
cated Jacobi orthogonal series expansion of (™), where ¢ € [0,1]. Then, we extend the affine estimators

5322 (k,p, BT, N) by D,(;Z”BTQLU(BT& + tp). Firstly, we recall the main result of [Mboup 2009b]. It was

shown that if ¢ < k +n then we have &{) (k, s, ST, N) = D{") . x(BT€ + to) with £ = 0, k,u € N.

Moreover, it was shown that for any £ € [0, 1], D,(Cn; BT, q:z:(ﬁT €+1o) could be written as an affine combi-
(n)

tos (k, i, BT), where the associated coordinates are given by solving

nation of some minimal estimators
a linear system. Secondly, we shown that for any integer ¢, Ding BT qcl:(ﬁTf + tp) can be written as an

affine combination of some extended minimal estimators Dgz sr®(to) with K, u €] — 1, 400[, where the

associated coordinates are explicitly given. Hence, we obtain extended affine estimators. If we take
(n)

q =0, then p™ z(BTE+to) becomes minimal estimators D, | 572 (to). Hence, pw x(BTE+1o)

ko, BT5q Koty BTq
give a general presentation for minimal estimators and affine estimators. We call them Jacob: estima-
tors. In particular, we show the relation between DgBL’BT’qa:(BTf + tp) with ¢ = 1 and DZZ’BTQ:(tO).
16
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Thirdly, we show that the Jacobi estimators Dénli BT

x(BTE + to) for x"(tp) are in fact connected to
the n'? order derivative of the Jacobi estimators DKOL sT.q+n®(BTE + to) for z(to). Then, a formula

for the Jacobi estimators is given. Hence, the D,({n; BT, q:r(ﬁTg + tp) are calculated by an integral of z.
Subsection 1.3.3 is devoted to study the truncated term error for the Jacobi estimators. The truncated
term error for the Jacobi estimators can be divided into two parts. The first part is considered as bias
term error which produces an error between DS?L .42 (BTE + o) and 2™ (tg 4 BTE) in the horizontal
direction and the second part is considered as a drift term error which produces an error in the vertical

direction with a value of T¢. On the one hand, by assuming that = € CN*t1(I), we show that the con-

vergence rate for the bias term error is O(T9"1) as T'— 0. Moreover, if we take fg’”” as the smallest
7k . .
root, of the Pq(_’ﬂrn +n), then we get Dg)tﬁT’q:v(Bng"" +to) = D£7;75T7q+1x(6T§2”2” + o). Hence, the

convergence rate for the bias term error is improved to O(T%%2) as T — 0. On the other hand, we
Z]nzn
reason why we extend the parameters’ domain. Finally, two local error bounds for the truncated term

show that the minimum value of the time-drift T¢ occurs when k and p are negative. This is one

error of the affine estimators D™ x(BTE + to) with ¢ = 1 are precisely given.

1,87 g
In Section 1.4, we recall some well-known approximation theories so as to explain our approximation

method. Then we study the truncated term error by assuming that the smooth function x belongs
to the Beppo-Levi space. In Subsection 1.4.3, we consider the case where x € C"1(I) and the right
and left hand derivatives for the n'” order exist. Then, by using the local Taylor formula with the
Peano remainder term we show that the Jacobi estimators can be considered as generalized derivative
estimators for (") which converge to these one-sided derivatives.

In Section 1.5, by applying the orthogonality of the Jacobi polynomials we introduce two new types
of estimators which are based on the minimal Jacobi estimators so as to improve the convergence rate
for the minimal Jacobi estimators. The first type estimators are obtained by applying the Richardson
extrapolation technique to an affine scheme of minimal estimators, which are the extension of (1.13) in
the causal and anti-causal cases. We call them Richardson estimators. The associated convergence rate
is O(T?) as T — 0. Moreover, the Richardson estimators can be considered as generalized derivative
estimators for (™). The second type estimators are based on a modified Taylor expansion introduced
in [Poffald 1990], which improve the convergence rate to O(T?).

In the three previous sections, all the estimators are studied in the causal case with the time window
[to — T, to] for all ¢y € I or in the anti-causal case with the time window [tg,to + T]. These estimators
produce a time-drift in order to get a small bias term error. In Section 1.6, we introduce some drift-
free estimators by using the integration window [tg — T, to + T]. We call them central estimators. In
Subsection 1.6.1, we consider the functions X= (¢ +to) = 2 (x(t + to) £ z(to — t)). Firstly, by applying
the algebraic parametric technique to the N** order truncated Taylor series expansions of X* we give
a family of estimators which are based on a combination of causal and anti-causal Jacobi estimators.
Secondly, we extend these central estimators by taking the ¢** (N — n) order truncated Jacobi series
expansion of (X jE)(n). Thirdly, since X, (resp. X ) only contains the values of the odd (reps. even)
order derivatives, we show that the convergence rate for these central estimators is O(T972) as T — 0.
In Subsection 1.6.2, we give a family of central estimators by taking the truncated Jacobi orthogonal
series expansion of z(™ (tg — T+ 2T¢) with £ = % Since they are modified Jacobi estimators of (™ (ty),
the convergence rate is O(T9!) as T — 0. Moreover, if we take x = u, then % is a common root

17
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of all the odd order Jacobi polynomials. Hence, the convergence rate can be improved to O(T972)
as T" — 0. Finally, we show that these central estimators can also be given by taking the truncated
Jacobi orthogonal series expansion defined on [—1,1]. Thus, we call them central Jacobi estimators.
In Subsection 1.6.3, we give a family of central Richardson estimators by using central minimal Jacobi
estimators. Then, a family of improved central Richardson estimators is given in the case where
k = p1, such that the convergence rate can be improved to O(T%%4) as T — 0. These improved central
Richardson estimators are exactly the extension of the ones given in (1.13). In Subsection 1.6.4, we
show that the introduced central estimators can be considered as generalized derivative estimators for

") which converge to the average value of the one-sided derivatives of = € C"~ 1.

2

In Section 1.7, by applying the algebraic parametric technique we give a general form for the
derivative estimators which are affine combination of estimators with different integration window
lengths. For this, we give a general differential operator parameterized by a set of parameters. Sufficient
and necessary conditions on this set are given to obtain such an integral annihilator and it is shown
that such set of parameters is always exists.

In Section 1.8, we talk about some new non-asymptotic estimators for the derivative with fractional
order. Firstly, we apply the algebraic parametric technique to a truncated fractional order Taylor series.
Secondly, we use the previous Jacobi estimators in the two considered definitions of fractional order
derivative where we need to calculate the integer order derivative. At the end, we give a table which
gives the trends of the convergence rate for each cases.

1.2 Minimal estimators

Let € C™(I) with n € N be a smooth function defined in an open interval I C R. We investigate in
this section some detailed properties and performances of a class of point-wise derivative estimators
for (™. In the following subsection, we show that these estimators are derived from recent algebraic
parametric techniques applied to the truncated Taylor series expansion of x.

1.2.1 Algebraic parametric derivative estimations

For any to € I, we introduce the set Dy, := {t € Ry;to + St € I} where 5 > 0. Let us take the Taylor
series expansion of z at t9. Then by using Taylor’s formula formulated by Hardy ([Hardy 1952] p.
293), we obtain that

- (ﬂt)jx(ﬂ') (to) + O(t™), ast — 0. (1.15)

Vt € Dy, x(to+ Bt) =

|
=0 7

Then, we consider the following truncated Taylor series expansion of x on R4

Vt € Ry, zp(to+Bt) =Y (Bjt')j:r(j)(to). (1.16)
j=0
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Since x, is a polynomial defined on R of degree n, we take the Laplace transform of z,. Then, by
applying (7.11) (see Appendix) we get

ZB” U200 (1), (1.17)

where Z,(s) is the Laplace transform of z,(to + 8t) and s is the Laplace variable. We consider &, as
the n* order truncated Taylor series expansion of z in the operational domain.

In all the sequel, the Laplace transform of a signal u(-) will be denoted by 4(s). To simplify the
notation, the argument s will be dropped and we write it as 4 for short.

From now on, we give the estimates of the n® order derivative of x at point ty. The basic step is to
calculate the coefficient (™ (ty) from #,. Hence, all the terms 375~ UtV z0) (o) in (1.17) with j # n,
are consequently considered as undesired terms which we proceed to annihilate. For this, it suffices to
find a linear differential operator of the form

=2 (ng ds 1> ,als) € Cls), (1.18)

finite \finite

such that
I (i) = o(s) 2™ (to), (1.19)

for some rational function p(s) € C(s). Such a linear differential operator is subsequently called an
annihilator for (™ (ty), originally defined in [Mboup 2009b]. When the summation in (1.18) is reduced
to a single term, we give the following annihilator which was introduced in [Mboup 2009b| with p € N

1 dn—l—k:

Wen = vt " ggnrr & Where —L<p, kel (1.20)

Then, we obtain the following proposition for k € Nand —1 < p. This result was given in [Mboup 2009b]
with 4 € N and k € N.

Proposition 1.2.1 Let z € C*(I), then a family of estimators for (™ (to) at any point ty € I is given
by

iy (s 1, BT) = (et 20 4-2) /O N i Wik (7) 2(BTT + to)dr,  (1.21)
=0

where Wy 4n—i itk are defined by (7.19) and

_ (-1) n
Ghpunsi = r(u+n+1—z‘)(z+k)!<¢>‘ (1.22)

The anti-causal estimator x(n (k,p, BT) (B > 0) (resp. causal estimator w(n (k,u, BT) (B < 0)) is
obtained by using the integral wmdow [to,to+BT] C I (resp. [to+PT,to] C 1) wzth keN, -1<pueR,
T e Dt()'
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Proof. We proceed to annihilate the terms including z(?) (to), @ # m in the right hand side of equation

n

oo then we obtain

(1.17) by applying the annihilator II

no (s BM(=1)"*(n + k)!
Hk,u (‘T”) = g2+2n+k+p

2™ (). (1.23)

By applying the inverse of the Laplace transform to (1.23) and by using (7.11) given in Appendix, we
obtain

Tl+2n+k+p

n+k on
(=18 D e k)

2™ (to) = L7 {IIR, (@) } (T),

where T € Dy,. Since n + 1+ pu > 0, by applying (7.13) and (7.8) (given in Appendix) we obtain

_1)n+k T
coHmy (@) (T _ =D / (T — r)"Hrenth o=l Lsne ) (1)dr
(I, @0} () = 5 |, T (530} ( -
(_1)n+k /T N L )
7Y T — F\ntpntkgn,.(n) to) dr.
oo, (=) a ) (Br + o) dr
Thus, we have
1 r2+2n+k+p) [T
™) (ty) = T — )itk (n) to) dr. 1.2
2" (to) T1+2n+k+p (n+k)!F(n+1+M)/0 ( )T (BT + to) dT (1.25)
By applying a change of variable 7 — T'T and n times integrations by parts, we get
—1)" T(2+4+2n+k+p) /1 d®
) 1) = —— 3 (1 — g)ntnpnth TT +to) dr. 1.2
) = G s T 11 ) @yt (8T 4ty dr (1.26)

By substituting z, in (1.26) by z, we obtain two families of estimators for z(™ (to)

" (k. p, BT) =

()" T(p+k+2n+2) [1d nkin
)/o {@—rynebtnd o(8T7 4 t)dr. (1.27)

(BT (n+ k) T(u+n+1 drm

Finally, this proof can be completed applying the Leibniz formula. O

In the above proof, we apply the annihilator HZ,M to (1.17). On one hand, being multiplied by s"
the terms in the right side of (1.17), which include z()(tg), with i # n, are annihilated by applying
n + k times derivations. On the other hand, the multiplication by W%ﬂ allows us to return into the
time domain and we obtain a Riemann-Liouville fractional integral (see (7.10) in Appendix) in the left
side. Consequently, we obtain two families (causal and anti-causal) of estimators for x(”)(to), which
are based on integrals of x. In this case, IIj 18 called an integral annihilator. Moreover, IIj ., Seems to
be the simplest integral annihilator which can be obtained from the n'® order truncated Taylor series
expansion of x. Hence, we give the following definition.

Definition 1 For any ty € I, the estimators defined by (1.21) obtained from the n'" order truncated
Taylor series expansion of function x € C"(I) are called minimal estimators.

From now on, we assume that 5 = £1. If 8 = 1, then we denote the anti-causal minimal estimator

~(n) (n)

by @y, (k,p,T), and &;” (k, u, —=T') as the causal minimal estimator else.
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1.2.2 Derivative estimations by using the Jacobi polynomials

In this subsection, we show that the minimal estimators obtained by using the algebraic parametric
techniques in the previous subsection can be extended by using the Jacobi orthogonal polynomials.

Lemma 1.2.2 Let x € C"(I), then for any ty € I the minimal estimators for (™ (to) can be expressed

as follows

nom T — nl T'(p+k+2n+2)

1
] /0 Wk (T) PR (7) 2 (BTT + to)dr, (1.28)

where T" € Dy,, k € N, =1 < p, P}f’k) being the n'™ order Jacobi polynomial (defined by (7.15) in
Appendiz) and w1, being the associated weighted function defined by (7.19).

Proof. It is sufficient to apply the Rodrigues formula (given by (7.22) in Appendix) to (1.27). O

We can observe in Lemma 1.2.2 that the integral in (1.28) is in fact the scalar product of the

Pyt

Jacobi polynomial and x. Hence, by applying the following classical orthogonal properties of

the Jacobi polynomials (given by (7.23) in Appendix) to the n'® order truncated Taylor series expansion

" :
Tr) .

xn(to + BT'T) = Z Mmm(to) with 7 € [0,1], we obtain an exact expression of (™ (ty). Then,

; J!

Jj=0

by substituting z;,, by 2 we get the minimal estimators given in (1.28). Thus, the minimal estimators

can also be obtained by using the Jacobi orthogonal polynomials P,(l“ *) Since P7(L” k) is defined with

w, k €]—1, 400, we can extend in Lemma 1.2.2 the value of k for the minimal estimators ig:i (k,u, BT)

to | —1,4o00[. In this case, we denote these extended minimal estimators by Dfﬂ,mﬂf(%) We obtain
() '
n
Dy pr®(t0) = Vw70 /0 Wy (T) P (1) 2(BTT + to)dr, (1.29)
where
n! 1

o 1.
Tk, BT, BT)"Bn+r+1,u+n+1) o

with T € Dy, u,k €] —1,400[ and B(,-) is the classical Beta function (see [Abramowitz 1965] p.
258).

By a direct adaptation from [Mboup 2009b], we obtain the following proposition by using some
recurrence relations of the Jacobi orthogonal polynomials.

Proposition 1.2.3 [Liu 2011c| Let DS?L sr%(to) be the extended minimal estimators defined by (1.29)
with n > 1, then we have

(n) _2ntptrtlmen (n—1)

D) prlto) = == <DHH%BT:B(tO) - DHWﬁTx(tO)) : (1.31)
Proof. Let us recall the recurrence relations given by (7.27) and (7.28) in Appendix. Then, by
subtracting (7.27) from (7.28), we get

2n+ Kk +
L ntRtp

Pp(r) = Fp P ) + =g

- PP () = (1= P ()] (1.32)
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By using (1.32), (1.29) becomes

1
— K
DSBL,BTm(tO) = NW Voo, BT m /0 Wy (1) P (1) 2 (BT + to)dr
n+k+p
+ 2n

n+ K+ p
2n

1
Vs, BTom / Wy (1) PYD (1) 2(BT 7 + to)dr
0

1
Vw Tom / W) PV (2) (BT + to)dr.
0

Observe that
n (p+r+2n+1)(p+ K+ 2n)

Yu,,8T,n = 67T (n T R) (M T n) Yu,k,fT,n—15
n u+r+2n+1 n u+r+2n+1
Yp,s,8Tm = WW Y, k+1,8Tn—1s  Yp,k,8T,n = ﬁn—m Yp+1,,8Tn—1-
By using (1.29) with n — 1 in place of n, we get
D" a(ty) = —(A+B)D" ) ApiY Bp™ 1.33
Kvﬂ75T$( 0) - _( + ) Nv“vBT’l’(tO) + K+17u,ﬂTx(t0) + /{7M+17ﬁT’1"(t0)’ ( . )
where A = L;:ff’” and B = —7%7’;455’" with oy, . g0 = (“+”+2”;51¥“+”+2”).

By applying the Rodrigues formula to (1.29) and applying n times integrations by parts, we obtain

_1)71 1 1 dm
D () = L / - Tr+ty)d
w00 = GRG0 Jy e (e O
1 1 '
= M(BTT + to) dr.
Bnt+r+1lutntl) /0 Wity (7) £ (BTT + to) dr
Hence, D,le;é)TﬂU(to) can be written as
(n-1) 1 : (n-1)
_ ne
D, . sre(to) = Bin T rn ) /0 Wygn—1,m4n—1(T) (L =T+ 7)) (BTT +to) dr
1 1
= _ (=D(BTT + 1) d
B(n+k,pu+n) /0 Watnn—1(T) T (BTT + o) dr
1 1
_ =D(BTT + to) dr.
+B(TL+K/,,LL+TL)/0 Wy+n l,fﬁ-n(T)x (B T+ O) T
Thus, we have
- + (n—1) n+kK (n—1)
DY vty = — M p t)) + =————D to). 1.35
H,[L,BTx< 0) o+ K+ p H,,LH-LBTQ:( 0) + 2n+ K+ p H—l—l,,u,,BTx( 0) ( )
Then, this proof can be completed by using the two following equalities.
2 1
A_(ApB)_nFH  _ntutr+l
I+ Kr+p BT
n4+pu n+pu+r+1
B—-(A+B =— .
(4+ )Zn + R+ u BT
O
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1.2.3 Derivative estimations by using Jacobi orthogonal series

It is shown, in the previous subsection, that the minimal estimators obtained by the algebraic paramet-
ric techniques can be extended by using the Jacobi polynomials. Now, let us take the Jacobi orthogonal
series expansion of (™ (BT - +tg) with 3 = £1 and T € Dy,

(2

(P00, 2 (1 + BT4))

ptn,k+n  (ptn,s+n)
| pUFnAE 2 Fi (&), (1.36)
i pAn K+

Ve € 10, 1], x(n)(to + BTE) = Z

>0

where the scalar product (-, ) 4n,xtn is defined in (7.18) in Appendix with x, p €] — 1, 4-00[.
In the following lemma, we can see that the extended minimal estimators can be also obtained by
taking the first term in (1.36).

Lemma 1.2.4 [Mboup 2009b] Let x € C"(I), then for any to € I the extended minimal estimators

Dg)LﬁTa:(toi) given by (1.29) can be also written as follows

<P(§H+n,n+n)(.)7 x(n) (tO + BT)>

D,S;)L,ﬁT'T(tO) _ (e, pAn,k+n Péu+n,n+n) (5)7 (1.37)
HPO ||;H—n,n+n
with € € [0,1]. Moreover, we have
Vg € I, D) a(te) = D) apa™ (to). (1.38)

Proof. By using (1.29), (1.34) and the following formulae given in Appendix
PP (@) = Land [|B g = Bt it Lnt s+ 1),

we can achieve this proof. O

This lemma shows that the extended minimal estimators D)({n; BTx(to) can be obtained by taking
the truncated Jacobi orthogonal series expansion of ™ If we take the n'" order truncated Taylor
series expansion z, (defined by (1.16)), then by taking the Jacobi orthogonal series expansion of

2 (BTT + to) with 7 € [0,1] at point 7 = 0, we obtain

(B, 2l (1o + BT )
ptnastn . plutmstn) gy (1.39)

+n, K5+ 0
[P -

2 (to) =

Since (™ (ty) = ) (to) in (1.16) at t = 0, D,ST;LBT:B(to) can also be obtained by substituting 2™ in
(1.39) by (™.

By using the recurrence relations of the Jacobi polynomials, it is shown in Proposition 1.2.3 the
relation existing between extended minimal estimators of (™ (ty) and the ones of ("1 (ty) with n > 1.
In the following proposition, we give the relation existing between n'* order (n € N) extended minimal
estimators and the ones of 0" order.
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Proposition 1.2.5 Let © € C"(1I), then for any ty € I we have

1 T(u+r+2n+2) <& (n (0)

D™ a(ty) = —1)™ (") D t 1.40

w7 (10) (BT) T(p+ kK +n+2) ]z;( ) J %unjvﬁT‘T( 0): (1.40)
where pip; =p+mn—j and kj =k +J.

In order to prove this proposition, let us give the following lemma.
Lemma 1.2.6 For any it € N, we have
(P""(7), 2(BT7 + o) ) ; s
’ s 2i+p+r+1 (0
Vi €1, oA —1ZJ<Z,>,D_ ara(to), 1.41
' IB2 jz—(:)( ) i) itp+r+1  roHAT (to),  (141)

where pij = p+i—7j and K; =K+ j.

Proof. Observing from the expression of the Jacobi polynomials (defined by (7.15) in Appendix) that

E#WNﬂumﬁv>=§f(if“><i+K)eavﬁmeva (1.42)

=\ J I\

we get

<p}“7“) (1), 2(BTT + t0)> = Z <Z y “) (2 - “) (—1) /01 Wiy (T) 2(BTT +10) d7. (1.43)

e J =]

Then, by using (1.37) with n = 0, we obtain

<Pi(/1,“)(7'),$(BTT + to)>M :zi: (Z + ﬂ> <z + H) (_1)1'_]']3("63' + L i +1) Ho) 2(to). (144)

’ ] ) — 1 s K 7“175’11
12 A 1P,
Consequently, this proof can be given by using the expression of ||PZ-(“’H)H37,{ (given in (7.20) in Ap-

pendix) in (1.44). O

Proof of Proposition 1.2.5. From (1.29), it is easy to show after some calculations that

) <P£“’”) (r), 2(BTT + t0)>

1 Ip+r+2n+1
DM a(to) = e 1.45
st 00 = (T T n 1) 1P, -
Hence, (1.40) can be given by using Lemma 1.2.6 with i = n in (1.45). O
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1.2.4 Analysis of the truncated term error

In the previous subsections, we study the minimal estimators, which are obtained by three methods.
However, in each method, the main idea is to use the n® order truncated Taylor series expansion of
x. Hence, the errors for these estimators come from the remainder term in the Taylor series expansion
of x. By writing z(t) = z,(t) + R, (t) for t € I, we obtain from (1.29)

1
D 1 1(t0) = Vs | Wain(T)PY (1) {2 (BTT + to) + R (BT + to)} dr
K 0 (1.46)

= :L'(n) (to) + egn (to; K, W, T),
where e%n (to; Ky, T) are the corresponding truncated term errors. It is clear that for any function
x € Pp(I) where P,(I) is the space of all the polynomials defined on I of degree below or equal to
n, we have Vty € I, DSZ,ﬁT$(t0) = 2" (ty) with e’%n (to; Ky, T) = 0. For any other function z in
C"(I), we study the errors egn (to; Ky p, T) for DSZ sr%(to) in the following proposition.

Proposition 1.2.7 Let x € C"(I) and D,EZ)LﬁT:c(to) be the minimal estimators defined by (1.29) for
2 (to), then by assuming that there exists M1 € R% such that Hx(”H)HOO < Mp41, we have

HD(;,LBL,ﬁTx(tOi) —z™ (to)Hoo < Mp1Cy yun T, (1.47)

1 N
where Cy jin = (n+1)B(n+i+L#+n+1) Ik )wu,m+n+l(7)Pr(L# )(7)‘ dr.

Proof. From (1.46), we have

1
Vito € 1, e%n (to; ko, T) = 'Y,u,/i,BT,n/ w%,{(T)P,(Z“’”) (T)R,(BTT + to)dr.
0

Since z € C"1(I), by applying Taylor’s formula (see [Abramowitz 1965] p.14) we get

" (BTT) BT+
elto +87r) = 3 4 i Y et (1) + ((H)l)!x( 8,0, (1.48)
j=0
where 0 , €t to + STT[if B> 0 (resp. 0l , €lto + BT, to[ if 5 < 0).

Then by using (1.48), we get

(5TT)”+1x(n+1)( 5 Nar.

1
Vto € I’ 6%71 (to? Ky [y T) = fY,u,H,BT,n\/U wﬂvﬁ(T)Pvg'u,K) (T) (n + 1)| n,to

Finally, this proof can be easily completed by taking the norm || - || with respect to . O

In the above proposition, we have given a global bound for the truncated term errors e%n (to; Ky, T)
for the minimal estimators. In the next proposition, we give local lower and upper error bounds for
e%n (to; kypt, T').
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Proposition 1.2.8 [Liu 2011¢c] Let x € C"*1(I) and Dgz sr®(tos) be the minimal estimators defined

by (1.29) for () (to), then the corresponding truncated term errors e%n (to; Ky, T) can be bounded by

Cmy” <ep, (tosw, 1, T) < Cpmy,

(1.49)
?K - - . 7“{ -
CﬁTml <eg, (to; K, 1, T) < CMEmy,
Hk K+n+1
where CﬂT = 5T7M+H+2n+2 and
+ _ : n+1) H+ + _ n+1) H+
m; = A+1nf a( )(9n’t0), m, = sup 2 )(97”0),
to<b, ;o <to+T to<ft, <to+T
— (n+1) 1 j— _ ”7‘0 (n+1) (j— (1.50)
m; = sup  x"T(0,,), m, = inf 2"V, ).
t()—T<9;7t0 <to tO_T<9n,t0 <to

Proof. By using (1.37) and (1.39), we obtain that

1
Bn+rk+1,u+n+1

1
€l (o5 5, 1, T) = [ nstan) (a7 4 1) =BT+ 1)

As z € C"PI(I), 2™ (BTT + to) — x%n)(ﬁTT + to) represents the remainder terms of the Taylor series
expansion of (™ we obtain by applying Taylor’s formula (see [Abramowitz 1965] p.14) that

—~

e "(Tr 4+ 1) —
e (=T7 +ty) — x

M(BTT + to) = 2™T(G), )T, with to < 0F, < to+ 1T, (1.51)
M(BTT +to) = —a (0, )T, with to — T < 0, , < to. (1.52)

3 3

Thus, the truncated term errors are given by
BT
Bn+rk+1l,u+n+1

Then, this proof can be easily completed by taking the Beta function and the extreme values of
a6, ). O

(n+1)(ér:i:,to

)dr. (1.53)

1
e%n(tOQ"ﬁN?T): )/0 Wy, wtn+1(T)T

1.3 Affine estimators

In the previous section, we study O(7T) minimal estimators which are obtained from the n'* order
truncated Taylor series expansion of smooth functions. In this section, we improve these estimators
by taking higher order truncated Taylor series expansion.

1.3.1 Algebraic parametric derivative estimations
In (1.20), we introduce a simple integral annihilator denoted by sz' Let us give the following
differential operator

1 dn+k’ 1 den
N where —1 <y, keN. (1.54)

v — : R
ki ™ gN+14+pu  Jentk g JgN-n

This operator was originally introduced in [Mboup 2009b| with k, u € N. Moreover, if we set N = n
in (1.54), then we have Hg; =TI} ,. By using the algebraic parametric techniques with HQ{Z‘, we give
a new family of derivative estimators in the following proposition.
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Proposition 1.3.9 [Liu 2009] Let = € C"(I), then a family of estimators for ™ (to) at any point
to € I is given by

1 N—-n
~(n 1
:Ctoi(k,u,ﬁT, N) :(BT)"/O Ak, pn,N ZZZE bn,N,iKk,u,n,N,i(ﬂ x(ﬁTT + to)dr, (1.55)
where
" _(_1)n+kF(N—|—n+k+u+2) _ (N—-n\ (N+1)
BtttV = (n+ kN —n) "7 i ) mrit 1)
n+k s .
- (—1)"*7 n+k (n+1i)!
Kk,u,n,N,i(T) = Z F(N Fltpth—i— j) j m wN-i—;H—k—z’—jJ-&-j(T)'

j=max(0,k—1)

The anti-causal estimator mgo)(k‘ w, BT, N) (B =1) (resp. causal estzmatorz (k w,BT,N) (B=-1))
is obtained by using the integral window [to,to + 1| C I (resp. [to — T, to] C [), with k € N, =1 < p,
T e DtO'

Proof. We apply HkN;f to &, which is defined by (1.17). Firstly, the terms including () (ty), i # n in
the right side of (1.17) are annihilated by HZ;L", we obtain

n 1 dn—"_k . ’ﬂ i— 1
H;fvu (Zn) = SV dgntk Z ! ()(to)
(1.56)
_ BN - n) ( 1)"““(71 +k)!
sltnthtv 2™(to),
where v = N + 1 + p. Secondly, in the left side of (1.17), we have
1 gtk (NN
Hi\/,n ((i‘n) _ - ( i )( + )Sn+l(i'n)(l)
o s dsnthk < (n+i+1)!
= (1.57)
NZ: J(N +1)! Tg ("4t (&) )
— k) gv—i—jtk T ’
= (n4i+1) el k) (i+7—k) sv=t=J
Hence, we get
n n n+k . L
eMt) (- 1>n+k NZ )Wt s D @)
gvtntk+1 ﬁn( _ n l prd +i+ 1) P (Z +7— k)l gvtk—i—j" .

Asv+k—i—7 >0, we can express (1.58) back into the time domain by using (7.11) and (7.13) given
in Appendix and by denoting by T' € Dy, the length of the estimation time window we obtain

" (=)™t Tw+n+k+1) n

«"(to) = Bk (n £ N — )l - 1 {Hivu (‘””>}
( 1)n+k‘ F(V+n+]{}—|—1 N-—n n+k (Nz_n)(N‘i‘l)‘ N
= BT E (0 1 Bl DR D o S

(1.59)

=0 j=max(0,k—1)
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where ( +k)
(=17 YD)t T vtk—i—j—1_i+j
T h—i=g) Gag—Rl Jy T T AT+ to)dr

By substituting x, in (1.59) by x, a family of estimators is obtained, which is parameterized by k, pu,

T and N. Finally, we can achieve the proof by applying the following change of the variable: 7 — T'r.
O

Consequently, chvun is also an integral annihilator. Moreover, if we take N = n in Proposition
1.3.9, then the minimal estimators i‘ggi(k‘, w, BT) given by Proposition 1.2.1 can also be obtained. In

the following lemma similarly to [Mboup 2009b|, we show the relation between H " ,, and the integral
annihilator II}} = defined by (1.20).

Lemma 1.3.10 [Mboup 2009b] Let H " be the integral annihilator defined by (1.54) and HZ’H be the
integral annihilator defined by (1.20), then for any function f defined on I with Laplace transform f

(existence is assumed), we have

Z Z az,] ]7.“'] (160)

7=04i=m(j)

where a; j = (?)(ﬂg%, ki=k+q—j,and pj=p+j withq=N—nandp=n-+k. The

index function m(j) is defined as follows

m(j) :{ N v p2a (1.61)

max (0,7 — p), else.

Proof. Let us denote by v=N+1+pu, g= N —n and p=n+ k, and apply H]kvun to f Then by
using the Leibniz formula, we obtain

M (f) = L (e )

dsP s dsd

P (0 @+D s
HETEI

=0

_ ! q (qul) v g~ (gn (g—1)
—;()(QH_Z},M( (s )la-)

min(p,q—1) .
o : q (q + 1)' p (q - Z)‘ q—i—j (o0 £\(g—i+p—j)
=2 (g+1—1i)! 2 (q—i— ("5)
i=0 ' j=0 J J):
By applying a change of index: j — j — 4, we obtain

N 3 ! q+1) min(pa i+ p \(g—9)! 1 A ( )
n : n £\(g+p—J
()= Z<>q+1—z> 2 (j—z‘)@—j)!svﬂ—q(s f)

i=0 j=i

q min(p,q—i)+i

—Z Z aj 11 k;J MJ(JE)
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where a; ; = (Z) (j’_’i)%, kj =k+q—j,and p; = p+ 7. Finally, by rearranging the terms in

the above summation, this proof can be completed. O
By using the above lemma, we can see in the following proposition the relation between the mini-

mal estimators ig:i(k, i, BT') given in Proposition 1.2.1 and the estimators :E(ni(k:, w, BT, N) given in

to

Proposition 1.3.9.

Proposition 1.3.11 [Mboup 2009b] Let x € C"(I), 7 (k,p, BT) be the minimal estimators given in

to+
Proposition 1.2.1 and xin) (k,u, BT, N) be the estimators given in Proposition 1.3.9, then we have

q
) (k, ., BT, N) = 3 A Z4e) (kj g, BT), (1.62)
§=0
d (q+1 n+k+q—j
where kj = k+q—j, pj = p+j, and X\ = Z (—1)77/ <q ; > <j ]_) z) < 7 _j j) with m(-)
i=m(j)

being the index function defined by (1.61). Moreover, we have
q
> Nk =1 (1.63)
=0

These estimators, obtained as an affine combination of minimal estimators, are called affine estimators.

Proof. By applying Lemma 1.3.10 to x, we get

Z Z ai g, (2). (1.64)

J=0i=m(y)
Then, by applying the inverse Laplace transform to (1.64), we get
£ {H,w } Z Z ai ;L { "M(ae)} (7). (1.65)
J=0i=m(y

By substituting &, by & in (1.59), we obtain

(—1)ntk F(u+n+k+1)£_1{

~(n)
xtOi(k M, BT N) 5nTV+n+1€ (n + k) ( ’I’L)'

Y (@) (7). (1.66)

Since jggi (k,u,BT,N) = xgg) (k,p, BT) when N = n, then by taking N = n and substituting k by &,
p by g in (1.66), we obtain

() (1 (=D)™h  TR42n+ki+ 1) oy frn s
ﬂCtoj:( J’MJ’BT) IBnT1+2n+k +uj (n + k;j)! L {ij»uj (x)} (T)

As1+2n+kj + pj =n+ k+ v, then by using (1.65) we get

7" (k,u, BT, N) = Z Z big B (kj. g, BT),

J=0i=m(y)
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where b; ; = (—1)7" j(qtl) (] 2 (”+’;fj‘?—j). Hence, (1.62) is obtained. By applying Lemma 1.3.10 to

Ty, We obtain

ZX:XIQ-JM ). (1.67)

J=0i=m(y)

By using (1.56) and (1.23) in (1.67), we obtain

P oy = 3 5, P o

gltntk+v §2+2n+kj+pu;

Then, we have

Hence, (1.63) is obtained. O
It is shown in the previous section that the convergence rate for minimal estimators is O(T) as

T — 0. In the following proposition, we show that the affine estimators have an improved convergence
rate O (TN "+,

Proposition 1.3.12 If x € CNTY(I) with N > n and Vtq € I, ) (k,p, BT, N) are affine estimators

to+
for ™ (to), then we have

Vo € I, &) (k, i, BT, N) = 2 (tg) + O (TN -"+1) | (1.68)
Moreover, by assuming that there exists My1 € R such that Hx(NH)HOO < Mpyy1, then we have
thoi k y Ky 6T7 N) - x(n) (tO)H < CH,u,n,NMN+1TN_n+1, (169)
oo
where
1 1 N N—n
Cﬁyu’mN = (]\/__1_1)'/0 T +1ak,u,n7N ZO bn,N,iKk,u,n,N,i(T) dr, (1.70)
1=
N—n
and agpn, N Z b, Ni Kk pn,N,i(T) is defined by (1.55).
1=0

Proof. Let us take the Taylor series expansion of z at tp, then by using Taylor’s formula (see
[Abramowitz 1965] p. 14) it yields for any ¢ € Dy, that there exists HJJ\Ff,to €lto, to + t[ with g =1
(vesp. Oy, €lto —t,to[ with 3 = —1) such that

=z

z(to + Bt) = ) + (Cohts AR () (1.71)

(N +1)!

j=0 Jt
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Let zn(to + B-) be the N th order truncated Taylor series expansion of z, then by taking the Laplace
transform of =y we have

=2

In(s) = Zﬁjs_(jﬂ)w(j)(to). (1.72)

J=0

Then, the operator Hivun applied to (1.72) corresponds to an elimination technic. Being multiplied

by gV+1

, TN becomes a polynomial of degree N. Then the terms of degree lower than N — n, which
include (o), n < i < N, are annihilated by applying N — n times derivations with respect to s.
In order to preserve the term including z(™) (to), we multiply the remaining polynomial by % Then
we apply more than n times derivations with respect to s such that the other terms including () (to),
0 < i < n, are annihilated. Finally, we multiply by W%w to return into time domain. Consequently,

similarly to (1.59), we obtain

1 1 N—-n
x(n) (to) :7(311)” /O Ok, pn,N Z bn,N,iKk,,u,n,N,i(T) :EN(BTT +t0)dT. (173)
=0

Thus, by using (1.55) the truncated term error due to the truncated Taylor series expansion can be

given by
- - 1! P (BTN N1y 08
~, n
Itoi(knua BT,N) —z" (to) :(/BT)"/ @k, p,n,N Z b, N,i Kk yun, N, (T) mx (HN,to)'
0 =0 '
Then, this proof is completed by taking the norm || - || with respect to tp. O

We can observe in the previous proof that if z € CN*!(I), then the affine estimators are obtained
in fact by applying the annihilator Hivf to the N** order truncated Taylor series expansion of z. It

TN—YH—I)

explains why the convergence rate can be improved from O(T) to O( as T' — 0, as soon as

Hx(NH) HOO is bounded.

1.3.2 Derivative estimations by using the Jacobi orthogonal series

In the previous section, by using the Jacobi orthogonal series we extend the minimal estimators obtained
by applying the algebraic parametric techniques. In this subsection, we extend the affine estimators
given by Proposition 1.3.9 in a similar way.

By taking the ¢ +1 (¢ € N) first terms in the Jacobi orthogonal series expansion of (™ defined in
(1.36) and denoting it by DgzﬁT’qx(ﬁTf + t0), we have
q <P-(H+n"i+n)(-),:r(n) (to + 6T>>

DY) o7 @ (BTE +t0) =
=0

ptn,k+n  H(pt+n,s+n)
P(#+n,ﬂ+n) 2 Pz (f) . (1 ~74)
” % H;H—n,n-‘rn

If we consider DgiﬁT’qa:(ﬁTﬁ + t9) as the estimates of 2(™ (o), then Mboup and al. [Mboup 2009b]

have obtained the following Theorem.
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Theorem 1.3.13 [Mboup 2009b] Let D" x(BTE + to) be the estimates defined by (1.74) and

k.u,8T,q%
ajgo)(k‘ 1 BT N) be the affine estimators given in Proposition 1.3.9. Assume thatk,pu € N and ¢ < k+n
with ¢ = N —n, then for € =0, we have
Vig € I, DY) o w(to) = Fi0) (k, u, BT, N). (1.75)
Moreover, for any & € [0, 1], there exists a unique set of real coordinates N(§) € R, for 1 =0,...,q,
such that
q
DY) g @ (BTE +t0) = S M(€) Fy) (ku, pu, BT, (1.76)
1=0

where ig:i(kl,m,ﬁT) are the minimal estimators defined by Proposition 1.2.1 with k; = k+ q — 1,
q

= u+1, and these coordinates satisfy Z)\l(f) =
=0

The calculation of A\;(§) for [ =0,---, ¢ is given in [Mboup 2009b| by the following formula

A(E) = @71 B710,(€), (1.77)
where
Ao(§) bo,q(&) ® 0
) = : » bg(§) = : , &= " , (1.78)
Aq(€) bg,q(§) 0 o,
with Bm- — HPk+2q (147 4 1+J)H for 0 < ] < q, bl q(g) — (lll)fq—l(l o f)l, (I)l _ 'Ykl(éu)l,n7 and

_ (Mz+kz+2n+1)
Vkvpm = () n)l -

Hence, it is shown in the previous theorem that for any & € [0, 1] D,(:Z 8T qm(BT§ + tp) are affine

estimators when k, 4 € N and ¢ < k4+n. We show in the following proposition that Df{ngﬂT qx(ﬁT{—i—to)
can be also written as an affine combination of the extended minimal estimators defined by (1.29) with

K, it €] — 1, 400[. Thus, Df$ /1 a1, (BTE + to) can be considered as the extended affine estimators for
x(”) (t()).

Proposition 1.3.14 Let = € C™(I) and for any ty € I, D/(i;iﬁTq (BTE + to) be the estimates of
™ (to) defined in (1.74), then we have for any & € [0,1]

(n) (;H—nn—i—n 2i+#+ﬁ+2n+1 : qyiej ) (n)
Dy pr gt (BTE +t0) = ZP T ot ;0( D7) Dy sratto), (179)

where D( )“ sr(to) is defined by (1.29) with T' € Dy, pij = p+i—j, kj = k+j with r, p €]—1, 400].
Moreover we have

q . 7 .

2 2 1 .

E:PZMJrnNJrn 1+ u+K+2n+ E:(_l)z—] Z -1 (1.80)
P z—|—,u—|—/<+2n—|—1 =
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If B = =1 (resp. if B = 1), estimators given in (1.79) are called causal (resp. anti-causal) Jacobi
estimators.

Proof. Replacing u by i+ n, & by &+ n and z(8T7 + to) by " (BT7 + ty) in Lemma 1.2.6, we get

plrtnetn) LM (BTT +t > j N
< i (1) (B 0) prtnptn i:(_l)i_j IN2t+p+r+2n+1 (0 x(")(t )
”P»(“Jrn’HJrn) H;21+n utn j=0 )i+ p+r+2n+1 " fitmap ST 0/
7 5 =l

Then, (1.79) can be obtained by using (1.38) and (1.74). If ¢ = 0, then as PO(“Jrn"H") = 1 relation
(1.80) can be easily given. If ¢ > 0, then by using the Binomial Theorem we get

q . 7 . q .
2+ p+r+2n+1 (1 (utnptn) 20+ K +2n+1 :
P‘(;H-n,fi—&-n) —1)i—d — platn 1—1)¢
l; i (§)¢+u+m+2n+1 JZ:&( ) j ; i (€)i+u+m+2n+1( )
=0.
Hence, this proof can be completed. o
It is clear that if ¢ = 0, then D,Sn; a1, (BTE + to) = Dgﬁ sr®(to). Hence, Din/z 51,42 (BTE + to)

gives a general presentation for minimal estimators and affine estimators. For ¢ = 1, we can give the
following corollary.

(n)

Corollary 1.3.15 Let D, 57,%(BTE + to) be the Jacobi estimators given by (1.74) with ¢ =1, then
for any tog € I we have

D;(427,BT,1$(/8T5 +to) = )‘mu,n,EDSTzH,BTﬂE@O) +(1- )‘mu,n,E)D,(Ql,u,ﬁTfE(tO)’ (1.81)
where g yne = (k+n+2) —2n+r+p+3)E.
Proof. Let us take ¢ = 1 in (1.79), then we get

DY) o w(BTE + to) =P () DY) o(to)

u+n+2n+3< (n)

(p+n,k+n) (n)
P s (D elto) = DUy (i)

By substituting n — 1 in (1.35) by n, we get
n+pu+1 (n) n+rk+1 (n)

(n) _
D, pre(tos) = 5 P ropt 1,672 (t0) + oo R w1 57 (10)-
Since P[J(“Jrn’”Jr") () =1 and Pl(“Jrn"Hn) &) =(k+p+4)¢—(k+2), we have
n+p+1 (ptnstn) M+ R+20+3
2— - Pl (g)— = Hu#ﬂ%g’
n+K+pu+2 w+rK+2n+2
n+r+1 (ptnptn) o b+ KE+20+3
— P ——— =1-A .
2n+ﬁ+u+2+ L (§>M+H+2n+2 T
Then, this proof can be completed. O
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Remark 1 If we take & = %, then A pune = 0 and we obtain D( )BTlx(ﬁTﬁ + tg) =

(n)
Dy es1,67,1%(t0)-
It is shown in Proposition 1.2.5 the relation between minimal estimators for (" (ty) and the ones for

20 (o) with n > 0. We can see in the following proposition that the Jacobi estimators D,({ng 8T qx(BT£—|—

to) are in fact connected to the n'® order derivative of Di L 57,440 (BTE + o) which are the (¢ + n)th

order truncated Jacobi orthogonal series expansion of x

o atn <P§“’ (), (8T - +t0)>
Ve €[0,1], DY) sy gin®(BTE +10) =Y

=0

Ly 3! (1.82)

)

P2,

Proposition 1.3.16 [Liu 2011a] Let x € C"(1), D)({ng s1.4(BTE +to) and D/i(,),t)L,BT,q+nx(BT§ + o) be
the Jacobi estimators defined in (1.74) and (1.82) respectively, then we have

n 1 d
Ve € 10,1, D) o x(BTE + to) = G {foiﬁT’quna:(ﬁTg + to)} . (1.83)
Moreover, we have
n e
DY) o w(BTE + to) = R /0 Qryimqge(T)z(BTT + to)dr, (1.84)
where .
Q/@,u,n,q,{ (1) = wﬂ,f{(T) Z Cﬁ,u,n,iﬂ(u+n7n+n) (é)Péi,f) (1), (1.85)
=0
_ (ptr2n+2i+ D)0 (k+ +2n+z+1)F(n+z+1)
with Ci ST : I‘(H+n+1+1)llf(u+n+z+1)

Proof. By applying n times the derivation operator to (1.82), we obtain from the formula (7.25)
(given in Appendix) that

(1) ¢ :

dr .
den {D ’g?/)hﬁT,q—‘rnx(ﬁTf + to)} =3

i=0 HPzJ/:;z 12,
(k) .
B Zq: <P@-+n (1), z(BT +to)>w D(ptr+ 2040+ 1) Snntn) ©

= 1P 1 Flptm+ntitd) s
(1.86)
By applying two times the Rodrigues formula and by taking n integrations by parts, we get
1
(PRI (), 20 2 + BT)) = / Wi (T) P (1) 2 (1 + BTT)dr

ptn,+n 0

! (_1)Z i n

:/ -' wfl,—)‘rn—‘—l n—l—n—i—z( ) ( )(t0+/BTT)dT
H—n TL-H)
/ pn+n—+i, /1+n+z( ) (to + 5T7)d7—

/ i + ) wﬂ ,{(T)Péi’f)(T) x(to + pTT)dr
34
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Then, by using (7.20) given in Appendix we obtain after some calculations

(utmn.ktn) o (n) . (15) (. ,
<PZ (), @ (ko + BT )>M+n,n+n _ <PZ+” () z(to + AT )>M P(ptr+2ntitl) (qgp
HP (et ’H—n)H,u—l—n K+n ) Hpnif H/%,,H F(M+K+n+l+1)
Finally, by taking (1.74) and (1.86) we obtain
n 1 dr 0
Ve € 10,1, D) o x(BTE + to) = T e {D&LBT’CIM:U(BTg n to)} . (1.88)
Then, this proof can be completed. O

When we apply the Jacobi estimators, we need to calculate Qy i n,q,¢ Which is a sum of ¢+ 1 terms.

Since the computational complexity of Pé’fr’f) is O(n?), then the one of Qy ;nq.¢ is also O(n?).

In the next subsection, we are going to analyze the truncated errors for these Jacobi estimators.

1.3.3 Analysis on the truncated term error

(n)
LetDﬁuﬁTq

into two sources of errors as follows
e (toi 1, T,6,) = (D) o @(BTE + to) — 2 (t + BTE) ) + (2 (ko + BTE) — 2™ (ko) ) . (1.89)

The first error part can be considered as a bias term error which produces an amplitude error estimation

x(BTE+1o) be a Jacobi estimator. Then, its associated truncated errors can be decomposed

and the second error can be considered as a drift error. In the next proposition, we study the bias

term error.

Proposition 1.3.17 [Liu 2011a] If x € CN*Y(I) with N > n and ¥ty € I, Dl(i;)LﬂTq (BTE + o) is a
Jacobi estimator of £ (ty) defined by (1.84), then we have

o € I, D) . (BTE + to) = 2™ (tg + BTE) + O (TTH1), (1.90)

with ¢ = N — n. Moreover, by assuming that there exists My, € R such that Hx(NH)HOO < My,
then we have for any & € [0, 1]

HDQ‘L a1g(BTE + t) — ™ (tg + ﬁTg)( < My41Cy g e TTH, (1.91)

_ 1 1 1 q+1
where C}{,7M7n,q7£ — (n¥itg)! fo ‘Qmu,n,q,&( ) nr +q’ dr + (§+1)

Proof. Let us take the Taylor series expansion of x at to, which is given by (1.71)

T N+1
slto + A7) = o (to+ BT€) + LT e aM (6], ), (192
N
where zn(to + ST€) = (to). Substituting z(BTE + to) in (1.74) by xn(BTE + to), then
7=0
we get,
(ntn,ktn) (n)
¢ (P, (), (b + BT))
(n) . < ptn,k+n  5(pt+n,k+n) 1.93
DﬁpBquN(BTé"i_tO _Z ||P IH‘”"H'”)H Pz (5) ( )

1=0 pn,k+n
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Since x%)(ﬁT - +1p) is a polynomial of degree ¢** (¢ = N —n), it can be written using the Jacobi series
expansion given in (1.93). Hence, we get

DI oo (BTE + t0) = 2l (BT + o). (1.94)

Then by using Proposition 1.3.16 we obtain

1
WTE+ 10 = a5 | Qunac(r)onlto + 877) i (195

Hence, we get

MN+1TN n+1
e Quaelr)r

Let us take the Taylor series expansion of z(™ at to, then by using the well known Taylor’s formula
it yields for any T¢ € D, with & set in [0,1] that if 5 > 0 (resp. if < 0) then there exists
0]—*\—/,150 €lto, to + BTE| (vesp. Oy, €lto + BTE, to[) such that

D/(;:L)L,,BT,qx(BTg +10) — iUN \(8T¢ + to)‘

(BTN vty

2™ (to + BTE) = o\ (to + BTE) + Nont” ( zﬁwo)- (1.96)

Then we get

(Tf)N_n+1

20t + BTE) — a0 + TE)| < My (7

Finally, this proof can be completed by the following inequality

‘Dn 6T, E(BTE + o) — ™ (BT + to)‘ <

D 7, (BTE + to) = ) (BTE + to)| + [t + BTE) — 2 (10 + BTE)| .

O

Remark 2 According to [Poffald 1990], we can deduce the asymptotic behavior of the number é]‘i, to
when T — 0T 5
. |0N,t0 — tol 1
lim = .
T—0+t T N +2

(1.97)

We can see that the term Cy ,, . 4.¢ in the obtained error bound depends on parameters «, p, T and
€. Since we extend the values of x, u from N to | — 1, 400[, we obtain a higher degree of freedom so as
to minimize the bias term error on our estimators.

It is shown in Subsection 1.3.1 that if 2 € CVN*T1(I), by applying the algebraic parametric techniques

with the annihilator H " to the N*" order truncated Taylor series expansion of z, the convergence rate
for the affine estlmators :Ugoi(k, w, BT, N) is improved to O(TN="+1) as T'— 0. Let us remark that if
we take £ = 0 in Proposition 1.3.17, then the convergence rate for the Jacobi estimators D™ x(to)

®:BTyq
is also equal to O(T9*!) with = N —n as T — 0.
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If we take £ = 0 in the prev10us proof, then we can deduce that the Jacobi estimators D( n) 18T g x(to)

obtained by taking the ¢* order truncated Jacobi orthogonal series expansion of ™ can be also
obtained by taking the (n + ¢)'" order truncated Taylor series expansion of = by applying the scalar
product with Jacobi polynomials. Moreover, for any & € [0,1] let zn(to + BTE) = zn(to + BTE) +

. (1Y )
rq(to + BTE) with r4(to + BTE) = Z 7 ¥ (tg) for ¢ > 1 and ry(to + STE) = 0 for ¢ = 0, then
j=n+1 '
by using (1.94) and (1.93) with £ = 0 we get

" q < Pi(u+n,n+n) (), g;gbn) (to + BT-) >u+n )
xN (to) = Z ,u+n n—i—n 2 : Pz 7 (0) + R?
3 ||P || pAn,k+n

(PLm ), (1o + BT))

q
whereR:Z
+n,k+
=0 [P 2

pt+n,k+n Pi(u—l—n,/i—l—n) (0)
n+n,k+n
Since x;" (to+BT-) is a 0" order polynomial, then by using the orthogonal properties of PZ»(“ trmtn)

we get

o (PIH 0,0l o + BT )
Z HP(u—&-n JK+n)

1=0

ptn,k+n P‘(u—&-n,fﬁ-n) (0) _

1

H/,L—l-n K+n

HPW" )12

ptnstn plutnstn) gy — 5 (0) (1)

n+n,k+n
By calculating the values of :BS\T,L) and 2" at o, we obtain x%) (tg) = 2\ (to) = 2™ (tg), and conse-
quently R = 0. Hence, we can deduce that

R =

1
757 | Quunan(Ortta + 8Ty =0 (1.98)
where Q1m0 18 given in (1.85) with £ = 0.

Consequently, relation (1.98) explains why the convergence rate can be improved from O(T) to
O(T9*) when the function x is smoother.

Now, let us remark that when we estimate (™ (ty) by the Jacobi estimators D! /ZBTq (BTE + to),
then according to (1.89) the drift error produces a time-drift of value T¢. If &, is one root of the Jacobi
polynomial Pq(fgn ) , then by using (1.74) we get D,in; 7, (=TE+to) = DE:L,)L _7g12(=TE& + o).
According to Proposition 1.3.17, if we estimate the derivative value of (™) (tg—T€) by Df“i 2 (=T&+
to), then the corresponding convergence rate is improved from O(T91) to O(T9%2) as T — 0.

Corollary 1.3.18 [Liu 2011a] If x € CNT2(I) with N > n and &, is a root of the Jacobi polynomial
pletnntn) , then we have
q+1
Vo € I, D) o (BTE + to) = 2 (to + BTE) + O (TT?) (1.99)
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with ¢ = N —n. Moreover, if we assume that there exists My 2 € R% such that H‘T(NH)HOO < Mpyya,
then we have

| D g (BTE + 1) = 2 b0 + BTE)|_ < MyvsaCrpungine, T, (1.100)

where C jingi16, 15 given by (1.91).
It is clear that we can choose §; as the smallest root of the Jacobi polynomial Pq(flrn ) o as
to reduce the time-drift. We denote it by £"". Moreover, it was shown in [Mboup 2009b] that if the

value of T' is small enough then the bias term error for Df:;ﬁx ,(to — TEM™) is smaller than the
(n)

wopt—Toq +1nr:( 0)- These Jacobi estimators are then significantly improved by

admitting a minimal time-drift given by Tﬁg"". Hence, they are called time-drift estimators.
Minimal estimators can be given by DgBLﬁTgx(ﬁTf +tp) with ¢ = 0. Since, the root of the Jacobi
pmtn #’%, then the time-drift for the associated minimal estimator is

equal to C/*™ which is defined in (1.49). Consequently, if the variation of the (n+ 1) order derivative

truncated term error for D\"

polynomial is equal to
of the signal x is small inside the time observation window, then by using Proposition 1.2.8 we deduce
that we can reduce the bias term error by making the time-drift C4" as small as possible.

Corollary 1.3.19 [Liu 2011c/ If mj" ~m} and m; ~m; with mljE and mE being given in 1.50, then
by minimizing the time-drift C{,ﬁ’” we can also minimaize the bias term error for the minimal estimators.

When k,u €] — 1,400[, the value of #% increases with respect to x and it decreases with
respect to u. The negative values of £ produce smaller bias term errors than the ones produced by
integer values of k. This is why we extend the values of x from N to | — 1,4o00[ in our minimal
estimators. It is clear that one can achieve a given bias term error by increasing p and reducing T’
(even choosing k, i1 as integer). However, we will see in Chapter 2 that this increases the noise error

contribution. When n = 1, we can see the variation of —#t2 with respect to (x,u) €] —1,1]% in Figure

+u+4
1.4.
When we use the affine estimators Diz 8T.q z(BTE, + to) with ¢ = 1, we take the value of £/ as

(s tn) - Gince £min ig a function of x, 1 and n, we denote it by &(k, i1, n). Hence,

the smaller root of P,
we can see the variation of &(k, i, n) with respect to (k,pu) €] —1,1]2 for n = 1,2,3,4 in Figure 1.5.
We can observe that the extended parameters values of x give smaller values for &(k, u,n = 1) in the
extended affine estimators. Moreover, we give in Figure 1.6 the variation of Cy ; n2¢, given by (1.91)
with ¢ = 1 so as to study the parameters’ influence on the associated amplitude error. Consequently, it
is shown that we can increase the value of © and decrease the value of k so as to reduce the truncated

error for the affine estimator DSZ 57,42 (BTE + to) with ¢ = 1.

Let us take the affine estimator Di ; 1,42 (t0) Wwith ¢ = 2, which is a drift-free estimator. The
associated truncated error bounded contains the term Cj , n 2,0 in (1.91). We can see in Figure 1.7 the
variation of Cy ,n 2,0 with ¢ = 1. Hence, we can increase the value of p and decrease the value of x
so as to reduce the truncated error. By comparing with Figure 1.6, we can observe that the value of
Ch.ji,n,2,0 1s much larger than the one of Cy 2., Hence, the truncated error bound for D( n) 1 BT x(to)
with ¢ = 2 is much larger than the one for D£7;76T’qx(6T§q + to) with ¢ = 1. Consequently, the
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Figure 1.5: Variation of &(k, u, n) with respect to x and p for n =1,2,3,4.
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Amplitude error bound Amplitude error bound

(@) Cropn,2,6(5,u,m) With n = 1. () Cripin,2,605,p,m) With n = 2.
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(©) Crun26(rum) With n = 3. (d) Criun26(rm) With n = 4.
Figure 1.6: Variation of Cy ,, ;2 ¢(x,u,n) With respect to x and p for n =1,2,3,4.
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Amplitude error bound
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Figure 1.7: Variation of Cy ;52,0 with respect to x and p for n =1,2,3,4.
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For numerical estimations, we give in Proposition 1.2.8 local lower and upper error bounds for the
truncated term errors. Similarly, we give error bounds in the following proposition for affine estimators
D,in; 8T qx(ﬁTé + to) given in Corollary 1.3.15 with ¢ = 1. To do so, let us denote

V7 €[0,1], Prpune(T) =+ r+DXepne +l(n+p+1)—2n4+r+p+2) e unelr,  (1.101)

Lo —(nHr4 DA pn .
the root of which is 79 = (n+u+1)(i(2';+,3+“’j_’2)’f\w’n,g with A pne = (K +n+2) — (2n + x4+ p + 3)E,
and I, = foo‘ P (T) W wn1d7T with 0 < o < 1. Moreover, we denote by

me, = inf  2TV@GF), mi, = sup  2"TU@F), (1.102)
B t0<9n tO <t()+TOL t0<977 tO <tO+TO[

Mgy = sup 20,0, my, = inf 2™, ). (1.103)
" tp-Ta<b,, <t 0o—Ta<d, , <to

Proposition 1.3.20 Let = € C"TY(I) and egn(to;/ﬂ,u,T,é‘, 1) be the truncated term errors for the
Jacobi estimators D( )5Tq (BTE + to) with ¢ =1, then we have

'2n+k+p+3) r'2n+k+p+3)

TMi<eﬁ to; K, 7T7 ’1 <=+ TM:‘:’
e T i B A e N TR I R AT IR
(1.104)
where
+ + ;
Ly + (= Ly)mi,, i 0<¢< il
L + R +n+1 +n+2
Mt ={ Limiy, L mpmp SC< (1.105)
Immmu—i-([l _ITo)ml’la lf #71;;1,2—}-3 —£< 1
and
Immm wt (= Iy)mi,, if 0<¢6< %’
+ . 1 _ K+n42
=4 i, o EEEme<mii ()
ITOmTo,l + (Il - IT()) mLu’ ILf % — g < 1

Proof. According to (1.81), the truncated term errors egn (to; <y p1, T, €, 1) for Dénlz sr12(BTE+10) can
be written as

egn (to; ko, T,€,1) = )\,i7u7n7§e%n(to; K+ 1,T)+ (1 — Aﬁvuvnvf)e%n (to;k+ 1,1, 7T), (1.107)

(n)

B
H,u-i—l,BTx(tO)

where egn (to; &, pp +1,T) (resp. ep (to;k + 1,u,T)) are the truncated term errors for D
(resp. D,ETQLMﬁTx(tO)). Then, by using (1.53) we get

)\K/uuﬂ'nﬂg/BT
Bn+r+1,u+n+2
(1 B )\KZ,M,TL,S)BT
Bn+k+2,p+n+1
F'2n+k+p+3)

1
T Tl AN G LTI Rl Rt

1
e%n(tO;H>MaT7£71) = )/0 w,u—l—n—i—l,n—l—n—l—l( ) (n +1)(97:i:t0)d7_

1
| / Wt insa (1) (@F, Ydr
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where é;{to €lto, to + T'7, é;to €lto — T, to[, Prpn,e is defined by (1.101).
The first derivative of p. yne is (n4+p+1) = (2n+ K+ p+2)\; yne. Then, we study the variation
of peune in the following three cases:

LI Appme = grpdims, then (n+p+1) = 2n+ £+ 1+ 2)Aepune = 0. Hence, prpne =

(n+ K+ 1A yne > 0 for any 7 € [0,1].

2. If Mg e < %, then (n+p+1) — (2n+ K+ p+2) A une > 0. Hence, py i ne increases

on [0,1]. Let us recall that

—(n+r+ 1)/\'{,#,”,6
(n+p+1)—2n+r+p+2) A pynge

0 =
Hence, if 0 < A\g yne < %, then 79 < 0. In this case, py une is strictly positive on [0,1].
If A pne <0, then 0 < 79 < 1. In this case, py une(7) > 0 for any 7 € [19,1] and py yne(7) <0
for any 7 € [0, 79/

3. If Mg pne > %, then (n+p+1) = 2n+ K+ p+2)Ae yne < 0. Hence, py i ne decreases

n [0,1]. If % < Aipnge <1, then 79 > 1. In this case, we get pi ne(7) > 0 for any
€ [0,1). If A\ipne > 1, then 0 < 79 < 1. In this case, ps une(7) < 0 for any 7 € [79,1] and

pn,u,n,g('r) > 0 for any 7 € [0,7’0[_

For £ € [0,1], Agpne = (k+n+2) — (2n+ Kk + p+ 3)¢, then we conclude that

7:0— 19 —1
a) | Aepung > 1 0<¢< fhg + 0 —
b) | 0 <Auuns <1 | uttors <& < vty +
<) | Aepne <0 2 <€<1 - 0 +

Table 1.1: Variation of py ;¢ in three cases.

Let us consider the case when 0 < ¢ < % Then we obtain that for 0 < 7 < 79,

:t pﬁa/""nyg (T)wlﬁ‘nﬁ"'”‘f'l (T)mif),l S

(n+1) jt + (1.108)
£ Dipynig (T)qurn,ﬁJrnJrl(T)x (67 to) < P pmnng (T)wu+nvﬁ+n+1(7—)mm,u’
and for p < 7 <1,
£ Pre e (T) Wyt st (T)M 1iu <
(nt1 (1.109)

* Propng (T)Wprnprnt1(T)x ) (Hrjz:,to) < EDk g (T)Wptn ktnt1 (T)mfl'

By integrating (1.108) on [0, 79|, we obtain

T0 R
:l:ITom < :l:/ p”vﬂv”f(T)wﬂ-i-nﬁ—i-n-&-l(T)x(n—H)(eit )dT < :l:ITomTo u?
0
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and by integrating (1.109) on [r9, 1], we obtain

1
+(I — Iy)mif, < jE/ Prpn (T Wpn i1 (T)2 TV (O7 Y < +(I — Iy )mi,.

0

Consequently, when 0 < £ < k$+~2%5’ we obtain two bounds for the truncated term errors e%n (to; Ky, T,E,1):

T(2n + K+ p+3)
I(n+x+2)T(n+n+2)

T(2n+ K+ p+3)
F'n+r+2)I'(p+n+2)

TMZ,

TMli < 6}/8%”(250; KvH)Tuga ]-) <=
(1.110)

where M;* = Iymz |+ (I — Iy) my, and M = Iym¥ , + (I — I,) mi,.
Then, this proof can be completed by applying a similar analysis for the cases b) and ¢) (see Table
1.1). O

1.3.4 Some numerical examples

We finish this section with some numerical examples. We can observe that when « is negative then the
integral given in the Jacobi estimator in (1.84) is an improper integral. Hence, there will be a singular
value at 7 = 0 when we apply a numerical irlltegration method. In order to avoid this problem, we
apply the following change of variable 7 — ¢+~ in (1.84). Thus, we get

D o (BT + to) = nae (TR )T(BTETH + to)dt, (1.111)
where
1 1 1 k), L
Qupnac(®) = T (L= 155 3 Gy PUT (O P (175), (L.112)
=0
, _ (A 20 20 DD (kpt2n+i+ D (ntit1)
with C yn,i = = nl"(;—&—n—&-i—fl)#(p:n—ii-i-l) B

If 11 is negative in (1.84), then we apply an another change of variable 7 — 1 — 7. Hence, we get

DY) or.q®(BTE + t0) = —7) (BT (1 - 7) + to)dr, (1.113)
where ,
Qupimae(l =) = (1= 7578 3" Cr i PET () P (1 7). (1.114)

1=0

1
Then, by substituting 7 by ¢7++ in (1.113) we avoid the singular value at 7 = 0 when we apply a
numerical integration method. In case where both x and u are negative, we decompose the integral
given in (1.84) into two parts

1 3
ruf7g L (BTE + o) = BT /0 Qrpiing.(T) 2 )2(BTT + to)dr.

(1.115)
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Then, we respectively apply the previous changes of variable in order to avoid the singular values in
the two integrals given in (1.115).
Let us remark that in practice the function x is usually known at an equidistant sampling period.

1 :
Hence, if we apply a numerical integration method to (1.111), then ¢;** = L for i = 0,...,m where
m + 1 is the number of sampling data in the sliding integration window. Thus, the sampling period
for the numerical integration method becomes h; = (%)Wi — (%)HH fori=0,...,m—1.

By now on, we will show that taking negative values for x improves the quality of Jacobi estimators.
We take the sampling data of function x defined by (1.8) with an sampling period Ty = ﬁ. Then,
we use minimal estimators and affine estimators to estimate the first order derivative of z. We show in
Figure 1.8 the estimations obtained by using causal minimal estimators given in (1.29) with k = —0.8
z(tp) with k = —0.8

x(tg) with kK = 0. The associated absolute truncated term errors

K+2
k+p+4

and 0.125. Hence, by removing these estimations we can calculate the associated amplitude errors in

and x = 0 respectively. We can see that the time-delay (time-drift) for DSL _7
(1)

is smaller than the one for D,W,_T

are shown in Figure 1.9(a). Indeed, the time-delay T for these estimations is equal to 0.094

Figure 1.9(b). Consequently, the estimation obtained with x = —0.8 produces a smaller time-delay

and a smaller truncated term error but a larger amplitude error than the one obtained with x = 0.

The estimations obtained by using the causal affine estimators defined in (1.84) with k = —0.8 and
P(u+1,n+1)
2

k = 0 are given in Figure 1.10. By calculating T¢" where £/ is the smaller root of

the time-delay for these estimations are equal to 0.046 and 0.069 respectively. By observing Figure
1.11(a) and Figure 1.11(b), we can see that the estimation obtained with kK = —0.8 produces a smaller
truncated term error than the one obtained with £ = 0.

Secondly, let us show the improvement of the Jacobi estimators by taking larger value for q. In

Section 1.1 we compare the amplitude error for the time-delay estimator pW x(=TEMM +14) with

N7/*’/7_117(]
k = pu = 0 and ¢ = 1 to the one for the delay-free estimator DSL _7,%(to) with £ = p = 0 and
q = 2. Here, we compare the amplitude error for the time-delay estimator DS}L}_T’ qx(—Tf{”i” + to)
with K = —0.8, 1 = 0 and ¢ = 1 to the ones for the delay-free estimator D/({l,;);,fT,q‘r@O) with k = p =0,

and g = 3,4 respectively. The obtained estimations are given in Figure 1.12(a) and Figure 1.13(a).
The associated amplitude errors are given in Figure 1.12(b) and Figure 1.13(b). Hence, it is shown
that the amplitude error for D(_13.8707_T71x(—T£{”m + tp) is smaller than the one for the time-delay
estimator with ¢ = 3. Nevertheless, it is larger than the one obtained for the time-delay estimator with
q = 4. We will show in Chapter 2 that when ¢ is equal to 3 or 4, the noise error contribution increases.
Consequently, the Jacobi estimator is significantly improved by admitting a time-delay. Finally, let us

recall that the analysis for the choice of parameters will be addressed in Chapter 2.
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x=tanh(t-1)+exp(-t/1.2)sin(6t+11)

the first order derivative of x
_ . _.p® S e—
DK,O,—TX(tO) with k=—-0.8

_ _ _p® ith K=
DK,O,—TX(tO) with k=0

Figure 1.8: Estimations using DSL _px(to) with K = —0.8 and p

1
and T = 1.
Absolute estimation errors
45r
o i mati (1)
. Absolute estimation error for D—o,s‘o,—rx(to)
I - o imati (1)
\ , \\ Absolute estimation error for Do.o,—Tx(lo)
35k 1,
I
P!
3F !
[T
[
o .
o I R
L \‘) "
2 *‘\ | W I,
| | [ y
15)\ | oo
S Crohy \\\
il (I U
1 JU ! ot N
| i f Y
] ! Vol i
N v \ / \ \
05F doo A N
i W 1 L N
)k (\ y Wy ) N7 N / \\\ o .
N B SR R R VAR WA
0.5 1 15 2 25 3 35 4 4.5 5

(a) Associated absolute truncated term errors.

Figure 1.9: Estimation error for D’(:()) 1
T o

© 2011 Tous droits réservés.

z(to)

wpi—72(to) with £ = 0 where 1 =0

Absolute amplitude estimation errors

1-
o I L )
ook Absolute amplitude estimation error for D7048,05TX([O)
\ — — — Absolute amplitude estimation error for Dglz) 7Tx(to)
0.8H
i
|
|
0.7 *\\
\
0.6 \
' /’\\
[
O5ry 1y,
[ i
04ry | v A
(N B T
[Nt
[ : i
03[ | P
! { oy -
il | \ s\
o2r Iy i } LA
\\‘J‘ b \: }’l Y /’\\
o01f t h
\]\ Mr W \\\ / t\ / \\\ 2N
0 “ L (( L \A L Y L \}// L /\ N7 \/\6\ J
0.5 1 15 2 25 3 35 4.5 5

(b) Associated absolute amplitude errors.

with & = —0.8 and D) | 2(to) with x = 0.

5707—5

47

http://doc.univ-lille1.fr



Thése de Dayan Liu, Lille 1, 2011

x=tanh(t-1)+exp(-t/1.2)sin(6t+1m)

K,0,-T,1

the first order derivative of x
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Figure 1.10: Estimations using DH’#’_TﬂQ:(—Tfl + tp) with x = —0.8, & = 0.182 and
(1) min : min 1
Dy g (=T 4+ to) with k=0, {"" = 0.2764 where p =0, T = 5 and ¢ = 1.
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(b) Associated absolute amplitude errors.

Figure 1.12: Comparison between DSL _Tvqx(—Tﬂm'” +to) with k = —0.8, & = (0.182, ¢ = 1 and

P

x=tanh(t-1)+exp(-t/1.2)sin(6t+m)

fi,,u,—T,qx(tO) with k =0,g=3 where u =0, T = %
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(a) Estimations. (b) Associated absolute amplitude errors.

Figure 1.13: Comparison between D,({%L’_Tvqx(—Tﬂ”m +tp) with kK = —0.8, /"™ = 0.182, ¢ = 1 and
p®

H7H7_T’qx(t0) with k =0, g=4 where u =0, T = %

49

© 2011 Tous droits réservés.

http://doc.univ-lille1.fr



Thése de Dayan Liu, Lille 1, 2011

1.4 Approximation theory

In this section, we recall some well-known approximation theories, and then we consider some special
spaces to which the function x may belongs to.

1.4.1 Some contexts

Let us recall some well-known facts. Let us consider the subspace of C([0, 1]), defined by
P,(I) = span {Péﬂ+n,n+n)’ Pl(#-&-n,n—&-n)’ O 7Pq(u+n,n+n)} : (1.116)

where P, (I) is the space of all the polynomials defined on I of degree below or equal to ¢. Equipped

with the inner product (-,-) Py(I) is clearly an Hilbert reproducing kernel space with the

u+n,k+n?
reproducing kernel
4 plutnktn) (T)Pi(#-ﬁ-”ﬁ-ﬁ-”) ©)

Kq(r,€) = Z TG . (1.117)
=0 i p+n,k+n

The reproducing property implies that for any function =™ (tg + BT"-) belonging to C([0, 1]), we have

(Kyl )2ty + ,3T~)>u+nﬁ+n =D . 2(BTE + to), (1.118)
where DSLBT&:U(BT—I—tO) stands for the orthogonal projection of (™ (tg+BT-) on P,(I). Consequently,

it is the best approximation of 2™ (ty + BT) in P,(I).

Hence, Similar to the classical approximation theory, the Jacobi estimator Dfin; 6T7qx(ﬂT - +to)
denotes in fact a polynomial approximation of (™ (to + BT-). Parameters  and u give the coeffi-
cients of these polynomials, ¢ is the order for these polynomials, 57T determines the interval on which
D,ET’Z,BT’qa;(BT-—i—tO) approximate (™ (to+BT-). Parameter £ determines at which point on this interval

we take this estimate. Thus, our method is a point-wise derivative approximation.

1.4.2 Beppo-Levi space

In the previous sections, we study the convergence rate for the Jacobi estimators by considering the
space C"t1%4(I) with n,q € N. In this subsection, we consider the Beppo-Levi space which is defined
as follows

HOTIT(T) = {x € C""(I) such that /]a:(”“ﬂ) (7)dr < oo} , (1.119)
I
with n,q € N. Then, we get the following relation
DY) (BT - +to) € Py(I) € CHH(I) € HIH(I) € C(D). (1.120)

Hence, the convergence rate for D,inli 8T qx(ﬂT - +to) depends on which space the function (™ belongs
to.

Now, we give the following proposition.
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Proposition 1.4.21 If x € H"P'H () with ¢ € N, then the Jacobi estimator of ™ (to) by (1.84)
satisfies:

Vto € I, D) 4 w(BTE + to) = 2™ (to + BTE) + O (T‘H%) . (1.121)
Moreover, we have for any & € [0, 1]

n n W 1
HDL ) o1 @ (BTE + to) — ™ (to + 5T§)Hoo < Mi14qCh g e T3 (1.122)

Nl

1 + +l
(8 1Qunac@ ™ i) v

. n 2
(n+)!(2n+2¢+1)2 ¢!(2q+1)2 and Myii4q = [; |20 (0)] dt.

where Cy yn,q. =

Proof. Since z € H""*+4(I), we have for any to € I

—_ #\ntq
vr €[0,1], z(to + BTT) = Tniq(to + BTT) + / (o + BT7 — 1) 2D (1), (1.123)

Isr (n+q)!

where for 8 =1 Igp = [to,to + T'7] (resp. B = —1, Igr = [to — T'1,t0]), T € Dyy, Tngq(to + BTT) =

+ .
nzf] BT7) o) : th N —
~————1xY/(tg). Then, by using (1.95) with N =n + ¢ we get

1
=0
1 — t)nta

(n) ) _ 1 / / (to + BT — 1) (n+1+q)
D TE+1 to+BTE) = . £)dt dr.

H,M,ﬁT,qx(B 5—'_ 0) €T ( 0+/B é‘) (IBT)TL 0 Q sHy 7Q:£(T) [BT (n+q)| x ( ) T
By using the Cauchy-Schwarz inequality we get

t T —t n+q T n+q+l
/ ( 0 + 6 T ' ) m(n+l+q)<t)dt S ( T) 2 : (7—’ t0)>% 7
Ior (n+q)! (n+q)!(2n+2¢+1)2
where ¢(7,t) = fI/ST |z(nti+e) (t)‘2 dt. Hence, we get
| DL (5T + t0) — 2t (10 + 5T |
Tat3 1 1 1
< £ [ 1Qunae@)] 71 (6(r )} .
(n+q)!(2n+2q+1)2 Jo
Since
., n to+ BTE — )T TE)Its 1
Hx( )<t0 + BTE) — ngqu(tO +ﬁT5)H / (to ‘f ) 2 +1+q)(t)dt < LA (p(&,10))2,
o Igr T o  @'(2g+1)2

this proof can be completed by using the fact that ¢(r,to) < [ |21+ (i&)‘2 dt. O
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1.4.3 Generalized derivative estimators

In this subsection, we consider the case where z € C"1(I) and the right and left hand derivatives for
the n* order exist. Then, we introduce some generalized derivative estimators for (™ which converge
to these one-sided derivatives.

Proposition 1.4.22 Let x € H"(I) such that for any to € I the right derivative ™) (to,) (resp. the
left derivative (™) (to_)) exists. Consequently, the Jacobi estimator DS?L AT qx(to + BTE) defined by

(1.74) satisfies:

lim D( ")

Jim D wlto + 7€) =2 (toy), lim D)y wlto — 7€) =2 (o), (1.124)

where q is an even integer.

Proof. Let us recall the local Taylor formula with the Peano remainder term (see [Zorich 2004] p.
219-232). For any given &’ > 0, there exists § > 0 such that for 0 < T'7 < § we have

(n)
2(to — T7) — xn_1(to — T7) — W(—Tr)" e (Tr)", (1.125)
and
‘T(n) (tO—i-) n / n
x(to +T71) — xp_1(to +T7) — T(TT) (T, (1.126)

where z,,_1(to + T'7) is the (n — 1) order truncated Taylor series expansion of x(tg + T'T).
Let us consider the function g(t) = t" the n'" order derivative of which is equal to (n!). As g is an
h order polynomial, then by substituting zx by g in (1.95) and taking to = 0 we get

na(T) g(BTT) dr = (n). (1.127)
Hence, we have
g€ (T (to )( Tr)"dr = 2" (ty_), (1.128)
and
(t0+) nog_ o (n)
Q/<;,u,nq§~ ( T) dr =x (t0+)- (1129)

Since x,,_1 is an (n — 1) order polynomial, it is easy to obtain that

1 1
Vto S I, W/ Qn,u,n,q,ﬁ(T) $n_]_(t0 + BTT) dr = 0. (1130)
0
92
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Hence, by using (1.128), (1.129) and (1.130) we obtain

(DI glto = T€) — 2 (to. )|

1 ! 2 (g i
Sﬁ 0 Qrunig,e(T) (x(tO —T7) —xp1(to —T7) — T(L!)<_TT) dr,
(n) (1.131)
(D) golto + T = ko)
L £ (104) o o
Sﬁ . Qr.pu.n.g.6(T) (35(’50 +T7) = zn-1(to+17) - T+(TT) dr,
By using the expression of Qy ynq.¢ given in (1.85), we get
1 1.4 I "
/ ’Qn,u,n,q,g(T)T”| dr < / Z C&u,n,ipiu ) (f) ‘wu7H(T)Pn’ii (T)Tn dr < co. (1.132)
0 0 =0

Consequently, for any € > 0, by using (1.131), (1.125) and (1.126) with ¢ = £ fol |Qrpingc(T)T™] dT,
there exists ¢ such that 0 <T < ¢ and

) =10 =0 < [t 70 - <

Then, this proof can be completed. |

1.5 Some modified estimators

In Section 1.2, we introduce the minimal estimators D,(;L; ﬁTw(to), the convergence rate of which is
equal to O(T). In Section 1.3, by taking higher order truncated Taylor series expansion we improve
this convergence rate by giving affine estimators Df{ng BT, qx5(6T§ + to) where ¢ > 0. In this section,
by studying on Taylor series expansion we give two new families of estimators which improve also the

convergence rate of the minimal estimators.

1.5.1 Richardson extrapolation technique

We show in Subsection 1.2.2 that the minimal estimators DgzﬁTx(to) given by (1.29) are obtained
by applying the orthogonal properties of the Jacobi polynomials to the Taylor series expansion of
z. In [Wang 2010], a family of derivative estimators were introduced by using Legendre orthogonal
polynomials and by applying Richardson extrapolation technique. The Richardson extrapolation was
proposed in 1927 and its historical background can be found in [Joyce 1971]. Similarly, we propose in
the following proposition a new affine scheme by applying Richardson extrapolation technique.

Proposition 1.5.23 Let 2 € C*(I), then a family of estimators for the derivative value =™ (to) at
any point to € I is given by
DY) ra(to) = axD) ra(te) + 6D o pa(to), (1.133)

7
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where ay = %, by = 15 with A € Ry /{1}, Dinz s7%(to) are the minimal estimators defined by (1.29)
with T € Dy, and p, K €] — 1, +o0o[. If we assume that x € C"2(I), then we have

Vg € I, D) o a(to) = 2 (to) + O (T?). (1.134)

Moreover, if there exists My, 2 € R’ such that H:U<n+2)||oo < My42, then we have

|PE) srtio) = 2@ o) < MasaCrpna?. (1.135)
a by A2 1 K n n
where Cy, yn.\ = (RH)(”JJQ)*QJ(ZLQLH’HJF#H) fo ‘wM7K(T)P,(L“ )(T)T +2) dr. If B = —1, we call D,g,;,/BT’A:U(tO)

causal Richardson-Jacobi estimators (resp. anti-causal Richardson-Jacobi estimators if f =1).

Proof. Assume that x € C"*2(I), then we take the Taylor series expansion of  at to € I. By using
the well known Taylor’s formula we have for any T' € Dy, there exists GEJFMO Elto,to +T[if B =1

(resp. 05+17t0 €lto — T, to[ if B = —1) such that

n+l j ) n+2
V€ (0,1, z(to+ BTT) = (ﬁ?;—)]x(ﬁ(to) + %xW“)(eﬁLto). (1.136)
j=0

Then, by using (1.29), we get

n ! b
D;(a,;i,BT,/\x(tO) = 'yu,,.@,/@T7n/0 wH,R(T)PfL“”")(T) <a>\m(BTT + o) + /\%‘Lx(ﬁ)\TT + to)> dr,  (1.137)

where v, .87 = (5%” B(n—&-f{-l—i,u-i—n-i—l)' Substituting (1.136) into (1.137) and using the orthogonal
properties of the Jacobi polynomial, we get

! T7) by (BATT)!
T CY T <aA S +;<ﬁj,7>> dr =0, ¥ <.
0 . .

Since ay + by = 1 and a) + byA = 0, then we obtain

1
. BTr" (BT

'Yu,n,ﬁT,n/o wuw(T)Péu’ /(1) (a,\( nl ) + b)\( n ) ) dr =1,

1 Tr)ntt (BT 7)™t

Psr) L A A— =0.
’Y,u,mﬁT,n/O wu,n(T) n (T) (a/\ (n+1)! + 0 (n_|_1)! dr =0
Thus, we get
D/(:liﬁT,/\x(to) — 2™ (to)
! LK (ﬁjﬁjn+2 n (ﬁ]ﬁjn+2 n )
:’YmnﬁT,n/O wu,n(T)qu” )(T) (awa( +2)(9§+1¢0) + bA/\Qmﬂﬁ( +2)(95+1,t0)> dr,

where §5+17t0 €lto, to+AT[if B =1 (resp. éﬁﬂ’to €lto— AT, to[ if 5 = —1). Consequently, Din; srAZ(to)
can be considered as a family of estimators for (™ (ty). Moreover, we have
n+2

1
! %ﬁ,BTv”/ ‘wuw(T)Pé#’H) (T)Tn+2‘ dr.
: 0

n n T
“Di,;,ﬁT,)\m(tOi) — al )(to)HOO < Mo (lax] + [ba]A?) m+2)
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Thus, this proof is completed. g

Since the Richardson-Jacobi estimators D( ") BT, \Z(to) are an affine combination of minimal Jacobi

estimators with ay 4+ by = 1. Then, by applymg Proposition 1.4.22, we get, the following corollary.

Corollary 1.5.24 Let x € C" (1), then the Richardson-Jacobi estimator D( )BT \Z(to) defined by

(1.133) in Proposition 1.5.23 with T € Dy, k,p €] — 1,+00] is a generalized derivative estimator for
=™ . Moreover, if z (to) and ™) (to_) exist at any point to € I, then we have

TlgrOlJr D(’;’TAa:(tg) M (to,), and hm D(#)L _pax(to) =2 (o), (1.138)

where ™ (to) (resp. ™ (to_)) denotes the right (resp. left) hand-side derwative for the n'* order.

Now, let us take the sampling data of function = defined by (1.8) with a sampling period Ts = ﬁ
Then, we use causal affine Jacobi estimators with ¢ = 1,2 respectively and causal Richardson-Jacobi

estimator to estimate the first order derivative of . We can see the obtained estimations in Figure

1.14(a) and Figure 1.15(a). The associated estimation errors are given in Figure 1.14(b) and Figure

1.15(b). We can observe that when A = 0.8 the estimation error for the Richardson-Jacobi estimator
is larger than the one for the affine Jacobi estimator with ¢ = 1. When A = 0.08, the estimation error
for the Richardson-Jacobi estimator is smaller than the one for the affine Jacobi estimator with ¢ = 2.
Consequently, the Richardson-Jacobi estimator can be improved by reducing the value of A. However
we will see in Chapter 2, this can increase the noise error contribution.

x=tanh(t-1)+exp(-t/1.2)sin(6t+m)

Absolute estimation errors
8r ~ 4r \
i the first order derivative of x ! — - — - Absolute estimation error affine Jacobi estmator
\\‘) — - — - Affine Jacobi estmator a5 7}’ \| =~ — — Absolute estimation error for Richardson-Jacobi estimator
6 \\ — — — Richardson-Jacobi estimators :

(a) Estimations.

(b) Associated absolute estimation errors.

Figure 1.14: Affine Jacobi estimator pW x(tp) with ¢ = 1 and Richardson-Jacobi estimator

) 77T7
) A — e
D, 7 x(to) with A =0.8, where k = p=0and T = 3
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x=tanh(t-1)+exp(-t/1.2)sin(6t+m) Absolute estimation errors
6 1.4
\\ the first order derivative of x — - — Absolute estimation error affine Jacobi estmator
\\ — - — - Affine Jacobi estmator — — — Absolute estimation error for Richardson—Jacobi estimator
4l \ — — — Richardson-Jacobi estimators 1.2+

o8p !
Lo
b N
0.6*‘ J \ [
f
P! |
Foy
| 1 ,
0-4f\r . Foa \
" ! [
‘) \, /
\ e | \ N
0.2 1l /wh 3! A N
/ ’
\ v
i AN \‘\ AT T N
[ \J\/‘ i / \/\/\\ P BN

(a) Estimations. (b) Associated absolute estimation errors.
Figure 1.15: Affine Jacobi estimator D,EL _7,42(to) with ¢ = 2 and Richardson-Jacobi estimator
D£737,T7A$(t0) with A = 0.08, where k = p=0and T =

1.5.2 A new Remainder in Taylor’s Formula

We introduce in the following proposition a family of modified minimal estimators which are given by
using the following new Remainder in Taylor’s Formula [Poffald 1990]:

(/BT’T)TH_I ( +1) ﬁTT n + 1 (BTT)” ( +3)
T = 2, (BT T n
x(BTT + to) = (BT T + to) + (n+1)!x t0+n+2 +2(n+2) (n+3)l (0n+3t0)
(1.139)
h T = § (BT o h TeD 0’ T to| if B =
where x, (BTT + tog) = ] (to) with 7 € [0,1], T € Dy, and 0,3, €Jto — T, to[ if B=—1

=0
(resp. 0§+37t0 Elto, TT +to[ if B =—1).

Proposition 1.5.25 Let x € C"(I), then a family of estimators for the derivative value z™ (ty) at
any point ty € I is given by

E( ,L)LBTx(t()) DIS:Z,,BTx<tO) + EN,M,,@T,nx<t0)7 (1-140)

where DgzﬁTx(to) are the minimal estimators defined by (1.29) withT € Dyy, n < p € R, =1 <k € R.
Consequently,

n+2n+1 1 n ntl 5T7’
En,u,BT,nﬂf(tO) = 'YM,F»,BTn / jz_;) zz—% Cf-c,u,nJr1,j,lwu+n—j—l7f<+j+l(T)x to + n-+2 ar,

where Y, 5 570 15 defined by (1.30), and Cy pypi1,50 = (—1)" I+ (n}m) (Zt?) F(“—F(Z)_zjﬂ) 12%21?2;3? If

we assume that x € C"3(I), then we have

Vg € I, B ralto) = 2 (to) + O (T°). (1.141)

o6
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Moreover, if there exists My 3 € R’ such that H:z: (n+3) H < M43, then we have
HE,'(@T,L;i,,BTx(tO) - x(n)(tO)Hoo < Mn+30n,u,nT37 (1.142)

whe’re C}L,N,n = ' ‘wM,H(T)P’I’(L’LL’H) (T)Tn+3‘ dT

1
2(n+2)?(n+3)B(n+kr+1,u+n+1) fO

Proof. Assume that € C""3(I), then by substituting (1.139) into (1.29) and using the orthogonal
properties of the Jacobi polynomial, we get

D,(f,i,ng(to) — 2 (t0) + B 107 (t0)

n+1 (BT)™3 [ o (1.143)
~ BTy 1 2) (n + 3)! /0 W () PY (1) 2D 0
where
(st ot 1 1 BTt
EK,M,BTJL'T(tO) = 'Yu,n,ﬁTVnm 0 ’UJM’K(T)PT(L'M’H) (T)Tn+ QZ(TH_ ) to + nt2 dr. (1144)
Then, we apply n + 1 times integrations by parts in (1.144) so as to get x(-) in the integral of
B, .51n%(to). Let us calculate the i" order derivative of ’LUH,,@(T)P#L’R)(T)T"JJ fori =0,---,n+1,
then by using (1.42), we obtain
d' (Hs8) () L
s {wu,n(T)Pn“’” (r)r" }
dt " /n+ w\ (n+kK .
T dri Z < > <7”L —J (=" Wptn—jrtjtnt1(7)
7=0
n+p\ (n+k o d
Z < ) ( j> (=1)" 5 {wutn—jstjn+1(T)}
=0
By assuming that n < p € R, we get
W {wH’R(T)Pr(LM,n) (T)Tn-H} — Cn,u,i,j,l(l _ T)u+n—]—l7_f$+n+l+]+l—z, (1.145)
-
j=0 1=0

where Cy ;51 = (—1)n—it (nju) (:L:f;) (;) F(uﬂ;!fjﬂ) F(NJ(riTiJlr){+2)-

Let us apply n + 1 times integrations by parts in (1.144). Sincen < p € R, p+n—j—1> 0 and

kK+n+14+j54+1—7>0fori=0,---,n, such that all the boundary values are equal to zeros. Hence,
we obtain
TL + 2 n+1 1 n ntl ,BT
E”v“vaTv”x(to) = VYuw,BT ™7 N1 / Z% IE; Crwhn-i-l,j,lwu-‘rn—j—l,n-i-j-&-l( ) <t0 + 74_ 2) dr.
J: =

Since Ej ,, a7 n(to) is an integral of x(-), we define E,gZLBTx(to) = Dgl,)t,ﬂTCC(tO) + Ey 1 87n%(lo) as the
estimators for (™ (ty), the truncated term error for which is given by (1.143). Then, this proof can be
easily completed.

O
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1.6 Central estimators

In the previous sections, by applying algebraic parametric techniques to truncated Taylor series, we
introduce causal Jacobi estimators (resp. anti-causal Jacobi estimators) which are based on the integra-
tion window [to—T', to] (resp. [to,to+T]) for any tg € I and T € Dy,. They are extended by taking trun-
cated Jacobi orthogonal series expansion. Let us recall that the Jacobi estimators produce a time-drift
so as to get a small bias term error. The aim of this section is to introduce some drift-free estimators by
using the integration window [to — T, to+T) for any to € I and T € Dy, = {t € Ry; [to—t,to+1t] € I}.

1.6.1 Combination of causal and anti-causal estimators

It is shown in Subsection 1.3.3 that we estimate (") (ty) by the causal Jacobi estimators DEZZ (=T
5:2 7.42(T€ +10)), the drift term errors produce a time-delay

(resp. time-advance) of value T¢. In this subsection, we give a family of estimators which are based

to) (resp. anti-causal Jacobi estimators D

on a combination of causal and anti-causal Jacobi estimators so as to reduce the bias term errors by
avoiding a time-drift.
Let 2 € CN*(I), where n < N € N. For any to € I, we consider the two following functions

Wt € Dig, X~ (¢ +1t0) = %(x(mto) —a(to—1)) and XH(t+to) = %(a:(t—kto) +a(to—1). (1.146)

By taking the N*" order truncated Taylor series expansion of x, we obtain

Xyt +to) = %(xN(t +t) —an(—t+1t9)) and X (t+ty) = % (xn(t+to) + on(—t+to)),

N .
+t)7 .
where zn(tg £1) = Z ( ,') 29 (to). Hence, if N is odd, then we have
- J]:
7=0
N-1 N—1
— =T oy + =~ P o
i=0 i=0
and if N is even, then we have
N4 . A -
2 tQZ—‘rl 91 2 tQ’L iy
Xyt +to) = ﬁx( HD(tg) and X(t+to) = 5 ) (t). (1.148)
i=0 (2i + 1)t i:O( !

Thus, X only contains the values of the odd order derivatives at tp and X;\; only contains the values
of the even order derivatives at tg. Hence, similarly to Proposition 1.3.9, by applying the algebraic
parametric techniques we can give a family of estimators as follows.

Proposition 1.6.26 Let 2 € CN1I(I), where n < N € N, then a family of estimators igg)(kz,u,T, N)
for the derivative value of ™ gt any pownt tg € I is given by

o8
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n\ N even

even 3 (3 e TN) + 30 (k1 =T, N) )

odd | § (&) (k= 1,1, TN = 1)+ @) (k= 1,1, ~T,N 1))
n\ N odd

even 1 (@g}g(k, TN = 1)+ & (k, p, T, N — 1))
odd L (i-ggi(k — 1,1, T, N) + & (k — 1, p, T, N))

(n)

where &y
and —1 < p € R.

(k,u, BT, N) are the affine estimators defined by Proposition 1.3.9 with T € [)to; keN

Proof. Let us consider the case where n is odd and N is even. Thus, the Laplace transform of Xy is

given by

Xn(s) = s 22W(tg) + s 42® (tg) + - + s VW=D ().

(1.149)

We proceed to annihilate in (1.149) the terms containing (9 (ty) with j # n and preserve the term

containing (™ (to). Since n and N have not the same parity, X, which does not contain the term

M (ty) is equal to an (N — 1) order truncated Taylor series expansion of z. Thus, if we multiply

X;, by s¥, XK, becomes a polynomial of degree N —2. Then the terms of degree lower than N —n—1,

which include () (to) with n < i < N, are annihilated by applying N — 1 — n times derivations. In

order to preserve the term including z(™ (to), we multiply the remaining polynomial by % Then we

apply more than n — 1 times derivations with respect to s such that the other terms including z( (to)

with 0 < 7 < n — 1, are annihilated. Finally, we multiply by SN%N to return into the time domain

where —1 < o € R. For this, we apply the following annihilator

HN—Ln 1

dn—1)+k

1

d(N—l)—n

k_lnu‘

T gNtr ggn—D)+k g gs(N-1)—n

Similar to the proof of Proposition 1.3.9, we can obtain

N—-1-n
~(n)

Ty,

(k,pu,T,N)

1 /1
™ Jo i=0

- S

(1.150)

1
Uh—1 N1 D b, N1, k1,0, N-1,i(T) 5 (@(T'T + to) — 2(=T'T + 1)) dr,

where ag_1 n,N-1, bn,N—1,; and Kj_1 ,, N—1,; are defined in Proposition 1.3.9. By using (1.55), we

get
1

-(n)
2 (76
L (~(n)

9 (wto+

2

aégg)(k,u,T,N): (k—1,u,T,N — 1) —

(k_17M7T7N_1)+

(—1)"z

~(n)

xto,

The calculations in the other cases are similar with the following annihilators:

N-1,
odd), I, "

Remark 3 When k = 0, since n > 1, we can observe that %

(1.55).
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(if n is even and N is odd), HkN; (if n and N are even).

(n)

tot

HN,n

(k— 1,1 ~T,N — 1))

(k—1,pu,—-T,N — 1)) , since n is odd.

(if n and N are
O

k—1,u

(=1, pu,£T,N) are well defined in
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The estimators igg)(k, 1, T, N) are calculated on the interval [to — T, to + T] with T € Dy,. Hence
they are central estimators.
Let us take the same parity for n and N in x(n)(k w, T, N) defined in Proposition 1.6.26, then we

have
x( )(k,UzTN) %( E(H),(kl ,LL,T N)—I_J:EO)(]{} II,L’ T,N))7 ifnandNare eVen,
’ | % <j§0i(k o 1”LL’T7 N) + ‘,El(foz (k - 17:“’ 7Ta N)) ; if n and N are odd.
(1.151)

If we take n = N in (1.151), then by denoting iﬁgg)(k,,u,T, N) by i“gg)(k:,,u,T) we get
~\N 1 ~(n ~(n
:Eg )(k, wu,T) = 5 (xgol (kn,p, T) + xgoz (kn, —T)) , (1.152)

where k, = k — 3(1 — (—1)") and :);’I(t:l(k:n, p, £T) are the minimal estimators defined in Proposition
1.3.9 by taking N = n as follows

~(n 1 1
l’goi< s My ﬂT) (BT) / kn,ﬂ,nKkn,,U‘,n (T) x(ﬁTT + 1‘:())d7'7 (1153)
where ay, = (—1)hn L2t s2)
n+kn )
(_1)] n+ kn n!
Ky (T) = Z C(p4kn+n+1—5)\ § )G—kn)! Wyt ke +n—3j (T), (1.154)

j=max(0,kn)

with ke N, -1 <peRand T € ﬁto. Let us remark that if n is even, then by applying a change
of index in (1.154): j — j + k, we can obtain the same formula for the minimal estimators given by
Proposition 1.2.1. If n is odd, then the estimators .fc(nj)[(—l, w, BT) are well defined by (1.153), which

to

are not defined by Proposition 1.2.1. Then, by using Proposition 1.3.11 we get the following corollary.

Corollary 1.6.27 Let x € CNTY(I) withn < N € N and (-1)"*N =1, :Z“,Eg)(k‘,u,T, N) be the central
~(n)(

estimators given in Proposition 1.6.26 and k,pu,T) be the estimators given in (1.152), then we

have

&y (k, 1, T, N) Z)‘J b T4 (Kjy 1, T, (1.155)

where kj =k +q—j, pj = p+ 7, and \j i, defined in Proposition 1.3.11.
(n)

Consequently, Ty, (k,p, T, N) can be considered as affine central estimators which can be written

(n)

as an affine combination of some minimal central estimators Z; ’(k,u,T). Let us recall that the
affine estimators ;iﬁ”) (k,u, BT, N') obtained by using the algebraic parametric techniques are extended
in Subsection 1.3.2 by D/(i/.iﬁTq (BTE + to) obtained by taking truncated Jacobi series expansion.

Similarly, we extend a:,go)(k:n, wu, T, N) by taking the following truncated Jacobi series expansions
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© 2011 Tous droits réservés. http://doc.univ-lille1 fr



Thése de Dayan Liu, Lille 1, 2011

(PRI (), (X)) (T - +0))

prnstn prtmatn) ey it s odd,

q
2 [P Z
D(n) . x(to) _ i=0 p+n,k+n
w1, T4, . <Pi(u+n,m+n)(,)7(X+)( (T +t0)>
Z ptn,Etn Pi(ll+n,n+n) (&), if nis even,
: P (p+n,5x+n) 12 ||
i—0 H p+n,k+n

(1.156)
Then, we give the following proposition.

Proposition 1.6.28 Letz € C"(I) and Di ; 1,42 (BTE+10) be the Jacobi estimators defined by (1.74),
then a family of central estimators are given by

" 1
D) rger(t) = 5 (DU 1 @(TE +t0) + DI g 2(=T€ +10)) (1.157)
where T € Dy, ju, % €] — 1, +00| and € € [0,1],

Proof. If n is an odd integer, then by using (1.156) and (1.146) we get

(ntnmtn)y 1 (,.(n) N — (=1 "™ (0 — T
. (P LM+ T 1z (tg — T
D(” Z < i ( ) 2 ( ( 0 ) ( ) ( 0 ))>“+n,n+n P‘(u—‘rn,n-‘rn) (f)
ko, Toq,67 P (ptn,k+n) 2 ¢
=0 || ||u+n K+n
" <Pi(#+n7ﬁ+n)(.),$(n) (to + T-)>
_1 Z p+n,k+n P'(/H%L,Iﬁ*n) (5)
2 =0 HP () H;H—n K+n '
(pnsn) N my i
. P ), 2™ (tg — T
(—1)nt+ & < ; () z\™ (g )>M+nﬁ+n -

=0 ,u—l—n K+n

1 n n
= 5 (DI 1.2(TE +t0) + Dg; @ (-TE+ 1))

Hence, this proof can be completed by similar calculations for the case where n is an even integer. O

Consequently, D;(JLBL 7,465 (to) is the extension of :%,E:)(k:, w, T, N) in the case where n and N are even

integers, it is the extension of xgn)(k + 1,u,T,N) in the case where n and N are odd integers. Then,

by applying Proposition 1.3.16 we get the expression of pW x(tp) in the following corollary.

Kl 1,058
Corollary 1.6.29 Let D,g /1 7,462 (t0) be the estimators for ™ (to) given by (1.157), then for any to € T
we have
D(,;,Tqé / Qi g (1) (@(to +T7) 4+ (=1)"z(to — T7)) dr, (1.158)

where T € Dy, ki, pp €] — 1,+00[, ¢ €N, € € [0,1] and Qpu yin.qe(7) is defined by (1.85).
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According to Proposition 1.3.17, the convergence rate of the Jacobi estimators Din/i 8T qx(to) for
™ at t =ty is O (Tq+1). Since the Taylor series expansion of X~ (resp. XT) contains only the
odd (resp. even ) order derivative values, similarly to Proposition 1.3.17 we can show in the following

proposition that the convergence rate for the central estimator Df:ﬁ T.q fx(to) is O (Tq+2).

Corollary 1.6.30 Let D,(in;Tq oZ(to) be the Jacobi estimators for 2™ (to) given by (1.156) with & = 0.
If x € CN*2(I) with N > n and (—1)"™N =1, then we have

Wg € I, D) 4 gx(to) = 2 (to) + O (T7?), (1.159)

with ¢ = N — n. Moreover, by assuming that there exists My 2 € R such that Ha:(N+2)HOO < My,
then we have
[P 1 gtt0) = 2 0)]|_ < My T2, (1.160)

oo

where Cy yng = m fo ‘th’n7q70(r)7"+2+q} dr and Q. pnqo is defined by (1.85) with £ = 0.

Proof. This proof is similar to the one of Proposition 1.3.17. If n is an odd integer, then let us take
the Taylor series expansion of X~ at ty. By using the well known Taylor’s formula, we get

_ _ TE
¥ € 01 X (to+TE) = Xiy(to + 7€) + (0o o 5O ) (1.161)
N-1
L ~ ~ (T¢)**! 2D (1) gt ; ;
where T' € Dy, Xy (to+TE) = Z @i+ 1) (to); Ony14, Elto,to+TE¢[ and N is an odd integer.
1=0
Similarly to (1.95) we can get
(n) e
(X3)™ (t0) = 72 /0 Quyomao(7) Xy (to + T) dr. (1.162)

By using (1.158) with £ = 0 and (1.146), we get
(m) e
DY) 1 gotlto) = 7o /0 Qrpmao ()X (to + Tr)dr. (1.163)

Since (X](,)(n) (to) = 2™ (t), then this proof can be completed by using (1.161), (1.162) and (1.163).
The case where n is an even integer can be proven similarly.

O

(n)

Similarly, it is easy to verify that the convergence rate of the central estimator Z;,” (0, 4, T, N) =
: (:Eg:i(—l,u,T, N)+ ;Eg?j(—l,u, T, N)) with n and N being odd integers is also O (TV~""2) as
T — 0.

1.6.2 Central Jacobi estimators

In this subsection, we give a family of estimators which are easily obtained from the modified Jacobi
estimators so as to eliminate the time-drift in the Jacobi estimators. These estimators can be also
obtained by using the Jacobi polynomials defined on [—1, 1], which extend the derivative estimations
introduced in [Lanczos 1956] and [Rangarajana 2005|, where the Legendre polynomials were used.
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Let us assume that © € C"(I), then for any to € I the Jacobi orthogonal series expansion of
2™ (tg — T 4 2T-) with T € Dy, is given as follows

(2

<PA(H+n,/{+n)(‘)7 2(n) (to—T + 2T-)>

Ve e [0,1], 2™ (to - T +27¢) =) TG pintn plutnstn) ey

>0 p+n,k+n
(1.164)
By taking the ¢ +1 (¢ € N) first terms in (1.164) with £ = 3 and denoting it by ﬁgzﬁnql’(to), we
have

. q <f)i(/i+n,n+n)(.)7 2 (to — T + 2T.)> ( .

Hin L pAn,k+n ptnstn) L
DK:/—L:Tvqw(tO) T Z P'(u-i-nmj—i-n) 2 'PZ (2) (1165)

1=0 H % H,u—&—n,n—&—n

Hence, ﬁ,&niqu(tg) is an estimator of (™ with a found time-shift 7. Thus, ﬁgiqu(to) is a drift-
free estimator for x(ty), which is based on the integration window [ty — T, to + T']. Then, we give the

following definition.

Definition 2 (Central Jacobi estimator) Let us assume that x € C"(I), then for any to € I the

central estimator D,&%T’qx(to) defined in (1.165) is called central Jacobi estimator for (™ (tg).

Similarly to Proposition 1.3.16 we get

. 1 1
Vg € I, D) 1 a(to) = T /0 Qpyumg, (T) (to = T +2T7) dr, (1.166)
where T' € Dy, and Qo pung s 1s defined in (1.85) with ¢ € N, £, p €] — 1, 400].
b K 71y
Let us apply a change of variable in (1.166): 7 — T, then we get
- 1 ! T+1
Wty € I, DY) 7 a(to) = S /_ Qupnay () alto+ Tr)dr, (1.167)
where .
T+ 1 T+ 1 +n,k+ 1 , T+ 1
Qe s ) = s ) Y Couni P QP (), (L.168)
=0
: o (pAR2n42i+ DD (k+p42n+i41)0(nti+1)
with Cn,u,n,z = = nl“(f;-i-n-&-ifl)#(u:n-ii-i-l) E :
Since PVE“’”)(TTH) = plwr) (1) and wy, . (Z) = #QI}MM{(T) where P*) is the n'h order Jacobi

polynomial defined on [—1,1] (defined by (7.14) in Appendix) with the weight function W, ., (1.167)

can be written as follows

A (n 1 [t
Vg€ I, D) ;. a(to) = = /  Quna(r)alto +Tr) dr. (1.169)
where .
N 1 N A (u+n,k+n A,k
QH,H,”:Q(T) = Qutrtn+1 U)M,{(T) Z Oﬁ,,u,n,if)i(u )(O)Péljrz )(7') (1170)
i=0
63
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Let us recall that if we take x = p in the Jacobi polynomials, then the Jacobi polynomials become
ultraspherical polynomials (see [Szegt 1967| p. 80). In particular, if we take k = p in (1.169) and ¢ to
be an even integer, then according to (7.26) P('Hn HJF")( 0) = 0 for any odd integer 7. Hence, we get

1
Wt € I, D) x(to) = = /_  Qung(7)alto +Tr) dr, (1.171)
where
an,q( ) 22/~c+n+1 Wy, H Z CH KM, 22P<H+n ) (0)]375’1”2{2 (T) (1172)

Moreover, it is easy to verify that if we take the following Jacobi orthogonal series expansion defined
n [—1,1] of 2"

(PImS (), 20 (1 + 7))

| Bt

Vé e [1,1), 2(Té + 1) =Y prmtn pletmetn) (@) (1.173)

>0 ptn,k+n
where the scalar product (-, ) y4n x+n is defined by (7.16) in Appendix, then similarly to the calculations
done in Subsection 1.3.2, the estimator D™ x(tg) can be obtained by taking the (¢ + 1) order

Ky, Tq
truncation of (1.173) with & = 0:

<]Si(u+n,n+n)(_), (M) (to + T)> )
ptmastn . pUtmstn) gy - (1.174)

+n,k+ g
HPM e H;H—nn—i—n

q
VE e [-11], DY) g alt) = Y
1=0
) ||2

where the expression of || P, (pnostn itnkn 18 given in (7.17) in Appendix.

If g=01n (1.169), then we get a family of minimal central Jacobi estimators

n) 1

1
Wt € I, D) pa(to) = = / Propn(T) 2(to + T7) dr, (1.175)

where T € Dy, and pyp.(7) = " ]ADT(L“’K)(T) Wy, . (T) with p,k €] — 1,4+00[. Hence, by

B(n+k+1,n+pu+1,)
observing the expression of D,g ;Tac(to) it is easy to verify that similarly to Subsection 1.2.2 these

estimators can be also obtained by applying the orthogonal properties of Jacobi polynomial defined on
[—1,1] to the Taylor series expansion of z. Hence, the minimal central Jacobi estimator with Kk = =0
is in fact the Lanczos generalized derivative estimator defined in (1.12).

These central Jacobi estimators are drift-free estimators. Similarly to Proposition 1.3.17 the bias
term error bounds are given in the following proposition.

Proposition 1.6.31 [Liu 2011b] Let D™ x(to) be the central Jacobi estimator of £ (ty) defined

Kot T'sq
by (1.166). If we assuming that x € C7™"T1(I) with q € N, then we have
Vo € 1, D) 1 a(to) = 2™ (tg) + O (T*1) . (1.176)

Moreover, if there exists My, ny1 € R such that ”x(q+n+1)‘}oo < Myynt1, then we have

HD()

koo BT, q L x(to) — m( (o) H < Mq+n+1cn,u,n,qTq+l, (1.177)

where C g = (T)T”JFHQ‘ dr.

iz -
(n+144q)! J-1 s
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It is shown in Corollary 1.3.18 that if we take the value of £ as the smallest root of the Jacobi poly-
nomial Pq(ﬂrn’mrn) in the Jacobi estimators, then the corresponding convergence rate can be improved
from O(T9*1) to O(T9%2) as T — 0. Similarly, since 151-(”+n’”+n) (0) = 0 for any odd integer i, we have
ﬁf{n% (o) = ﬁ,in% 4+1%(to) with ¢ being an even integer. Hence, we improve the convergence rate for
the central Jacobi estimators in the following corollary.

Corollary 1.6.32 [Liu 2011b] Let x € CI™"2(I) where q is an even integer and 15,&7%7q:v(t0) be the
central jacobi estimator defined by (1.171), then we have
Wig € I, D) x(to) = 2™ (ko) + O (T7+?). (1.178)

Moreover, by assuming that there exists My, 12 € R such that Ha:(q*'”w) HOO < My ini2, then we have

Hbg?%,qx(to) —z™ (to)HOO < Myyni2Chn 72, (1.179)

. L 1A
where Crng = Grrarqn J-1 |@rna(T)T ”+2+q‘ dr.

In Figure 1.16-1.19 we give the variations of C’H,H,n,qzo defined in Proposition 1.6.31 with respect
to x and p for n =1 and ¢ = 0,1,2,3. We can see that Cy 4 is decreasing with respect to x and p.

Hence, we can increase the value of k and p so as to reduce the truncated error for the central Jacobi
estimator.
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(a) Crypu1,g with =0, -1 <k <0and —1 < p <0. (b) Cr,py1,q with ¢g=0,0<rk <6 and 0 < pu < 6.

Figure 1.16: Variation of C’H,#,n,q:o with respect to x and p for n = 1.
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Figure 1.17: Variation of éﬁ,uyn,qzl with respect to k and p for n = 1.
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Truncated error bound
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(b) Crop1,q with g=2,0< k<6 and 0 < p <6.

Figure 1.18: Variation of ému7n,q=2 with respect to k and p for n = 1.
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(b) Cr,p1,q with g=3,0< k<6 and 0 < pu <6.

Figure 1.19: Variation of C’N7M7n7q:3 with respect to £ and p for n = 1.
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1.6.3 Richardson extrapolation technique

It is shown in Subsection 1.5.1 that the convergence rate for the minimal estimators Df:i sr can be

improved by applying the Richardson extrapolation technique. Two families of Richardson-Jacobi
estimators are obtained in the causal and anti-causal cases respectively. In this subsection, we propose
a family of central Richardson-Jacobi estimators which are exactly the extension for the one introduced
by using Legendre polynomial in [Wang 2010].

Let us consider the minimal central Jacobi estimator IAJSLI)L’Tx(tO) defined in (1.175), then similarly
to Proposition 1.5.23 we give the following proposition.

Proposition 1.6.33 Let x € C™(I), then a family of central Richardson-Jacobi estimators for 2™ (to)
at any point ty € I is given by

DY) 1 \alto) = axD) pa(to) + baD") pa(to), (1.180)
where a) = %, by = =5 with A € Ry /{1}, IA)SLI)L’T:E(tO) is minimal central Jacobi estimator defined

in (1.175) with T € Dy, and p, k €] — 1, +o00[. If we assume that x € C"2(I), then we have

W € I, DU 1 a(to) = 2 (to) + O (T?). (1.181)

R,

Moreover, if there exists My o € R’ such that H:U("+2)||OO < Mpy2, then we have
Hﬁfﬁ,nw(to) —z (to)Hoo < Mpy2Cl pnnT7, (1.182)

A balA? 1
where Cy ynx = % 2 }Pn,n,#(T)TnJFQ‘ dr.

It is shown in the previous subsection that if we take k = 8 and ¢ to be an even integer in the
central Jacobi estimators, then we can improve the convergence rate. Similarly, let us take Kk = 8
in the central minimal Jacobi estimators. Consequently, we can give a family of improved central
Richardson-Jacobi estimators.

Corollary 1.6.34 Let x € C"(I), then a family of improved central Richardson-Jacobi estimators for
=™ (to) at any point to € I is given by

D). \x(to) = exDY0a(to) + daD{) (ko) (1.183)
where ¢\ = %, dy = ﬁ with A € Ry /{1}, ﬁé?%ac(to) is the minimal central Jacobi estimator

defined in (1.175) with T € Dy, and —1 < u = k € R. Moreover, if we assume that x € C"4(I) and
there exists My 4 € R’ such that HJ:<n+4)||OO < Mp+4, then we have

HDS?F,)\J:(tO) — 2™ (tO)H < Mn+4éﬁ,n,)\T4a (1.184)
A leal + [da]A* /1 4
rNA — T n.K n dr.
where Ci n 2 (n+ )] ) ‘p o (T)T ‘ T

68

© 2011 Tous droits réservés. http://doc.univ-lille1 fr



Thése de Dayan Liu, Lille 1, 2011

Let us give the following lemma so as to proof the previous corollary.

Lemma 1.6.35 [Liu 2011b] Let ]5,(1'{"{) be the n' order ultraspherical polynomial with the weight func-
tion W x, then we have

n

1
/ PR ()i o (7) 7 dr = 0, (1.185)
—1

where | is an odd integer.

Proof. By using the Rodrigues formula (given in (7.21) in Appendix) in (1.185) and applying n times
integrations by parts, we get

1 1ol
/ quﬁ’ﬁ) (T) s,k (T) T Hdr = <7ZL +|l)2 / Wyt (T) 7 dt. (1.186)
1 2 (n) —1

l

If [ is an odd number then wy 4y x+n(7) 7" is an odd function. Hence, this proof is completed. O

Proof. This proof is similar to the one of Proposition 1.5.23. Here, we take the Taylor series expansion

of x at tp € I,
n+3 ;
Tr)? . Tr)ntd
Vre[-1,1), az(to+T1) =Y ( ]_') 29 (to) + Mx<n+4>(en+3,to), (1.187)
! !

where T € ﬁto and 0,434, €lto — T,to + T[. By applying the orthogonal properties of the Jacobi
polynomial obtained in Dg%:n(to), the terms containing U (tg) with 0 < j < n — 1 are annihilated.
By using Lemma 1.6.35, the terms containing 2"V (¢9) and z("+3)(t) are annihilated. The relation
cx + dyA? = 0 is used to annihilate the terms containing z(t2) (to), and the relation cy + dy = 1 is

used to calculate z("™ (to). Then, this proof can be easily completed. O

1.6.4 Generalized derivative estimators

In this subsection, we assume that z € C"~!(I) and the right and left hand derivatives for the n'?
order exist. Then, we introduce some generalized derivative estimators for (™) which converge to the
average value of these one-sided derivatives.

In Subsection 1.4.3, we define two families of generalized derivative estimators by the Jacobi esti-
(n)

H7“7T7q7§
estimators, then by using Proposition 1.4.22 we get easily the following corollary.

mators. Since the central estimator D x(to) is the average of the causal and anti-causal Jacobi

Corollary 1.6.36 [Liu 2011b] Let x € H™(I) such that for any to € I the right derivative ™ (to.)
(n)

A ol T,q,8
by (1.156) as a generalized derivative estimator for x| where T € Dy, k,p €] — 1, +o00[. Moreover,

(resp. the left derivative 2™ (tg_)) exists. Then we define the central estimator D x(to) given

we have

i p™ _ Lo (n)
Jim DI a(to) = 5 (m (toy) + (to_)), (1.188)

where (™ (to) (resp. ™ (to_)) denotes the right (resp. left) hand derivative for the n'* order.

For the family of central Jacobi estimators Din% qsc(to), we give the following proposition.
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Proposition 1.6.37 [Liu 2011b] Let = € H"(I) such that for any to € I the right derative =™ (to..)
(resp. the left derivative ™ (to_)) exists. Then we define the central Jacobi estimator ﬁ£7%7qx(to)

given by (1.171) as a generalized derivative estimator for ™) where T € ﬁto, —1<kelRandq is
an even integer. Moreover, we have

lim D). x(to) = % (2 (t04) + 2 (1)) . (1.189)

T—0+

Proof. Let us recall the local Taylor formula with the Peano remainder term (see [Zorich 2004] p.
219-232). For any given & > 0, there exists 6 > 0 such that

(n) (¢
x(to+T7) — xp_1(to+T7) — xT(L'O_)(TT)" <& |Tr|", for § <TT <0, (1.190)
and
x(n)(tOJr) n / n
x(to+T7) — xp_1(to+T7) — T(TT) <(TT)", for 0 <TT <6, (1.191)

where 2,,_1(to + T'7) is the (n — 1) order truncated Taylor series expansion of z(tg + T'T).
Let us consider the function g(t) = ¢" the n'? order derivative of which is equal to (n!). Thus, by
using (1.174) we have

Wtg € I, D) glto) = (nl).

Then, by applying (1.171) we get
Vig € 1, D( T”/ anq g(to+T1)dr = (n!).
In particular, by taking to = 0 we get 7= fil Qrmg(T) (TT)™dr = (n!). By using (7.26) in (1.172), it

is easy to obtain that Q nq(—7) = (=1)"Qpnq(T) for any 7 € [—1,1], which leads that 7"Qy . 4(7) is
an even function. Hence, we get

/an,q ) (Tr)" /qu (Tr)"dr (1.192)
Then,
1 [0 . (™ (to_) TV gy — L () ; L 103
i [ Quna =Py = a0, (1.193)
and
/ Qrng(T S“)( T)”dT*%:r( ) (to)- (1.194)

By using (1.174) and (1.171), we get
(n) LM
Vo € 1, Danxn 1(to) = T”/ Qrng(T) Zp—1(to +T'7)dr = 0. (1.195)
-1
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Hence, by using (1.193), (1.194) and (1.195) we obtain

\D;?% o(to) — 5 (+™)(to- )+33(n)(750+))‘

1 (0. 2 (£, i
A @rna(T) <x(t0 +T7) —xp_1(to+T7) — T(LI)(TT) dr (1.196)
1 o (n) (¢
T Qrng(T) (a:(to +T7) —2n_1(to +T7) — xé,OJF)(TT)”> dr.
By using (1.172), we get
1 K+n,k+n ! R ~ (i n
/ ‘dT = Samtntl ZCMWZ Pyt )(0)/0 e (T) P35 (7)7 (1.197)

Since Qumn,q(T) 7" is an even function, we get

NG

’dT_/ ‘Q,{nq )dT<OO

Consequently, for any € > 0, by using (1.196), (1.190) and (1.191) with ¢ = 2¢' fo ‘QH nq(T) T dT,
there exists d such that 0 < T < § and
H® L.m (n)
O galto) = 5 (27 (t04) + 2™ (k)| < e
Then, this proof can be completed. o

Since the central Richardson-Jacobi estimator ﬁén% \Z(to) defined by Corollary 1.6.34 is an affine

combination of minimal central Jacobi estimators with ¢y + dy = 1. Then, by applying the previous
proposition, we get the following corollary.

Corollary 1.6.38 Let x € H"(I) such that for any to € I the right derivative ™ (to,) (resp. the
left derwative ™ (tg_)) exists. Then we define the central Richardson-Jacobi estimator Dév%v/\x(to)
defined by Corollary 1.6.34 as a generalized derivative estimator for ™, where T € ﬁto, -1 <keR.
Moreover, we have

(n) ) (n)
Jim D3 \a(to) = 2(m (tos) + (to,)). (1.198)

1.6.5 Some numerical examples

We give in this section some numerical examples. Let us take the sampling data of function = defined

by (1.8) with a sampling period Ty = WIOO' Then, we use the central estimator to estimate the first

order derivative of x. For each estimator, we set Kk = 4 = 0 and T = i. According to Corollary
1.6.30 and Corollary 1.6.32, we take ¢ as an even integer. The analysis for the choice of parameters
K, v and T will be addressed in Chapter 2. The estimations obtained by using the central estimator

wg)(/ﬁ, w, T,n+q) given by (1.151) and central Jacobi estimator ﬁg)ﬂqx(to) given by (1.171) are given
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in Figure 1.20(a) and Figure 1.21(a) with ¢ = 0 and ¢ = 2 respectively. The associated absolute errors
are given in Figure 1.20(b) and Figure 1.21(b). We can see that there is no time-drift for the central
estimators and the amplitude error can be improved by increasing the truncation order q. Then, we
take the central Richardson-Jacobi estimator defined in (1.183) with different value of A\. The obtained
absolute errors are given in Figure 1.22(a) and Figure 1.22(b). In order to compare the estimations,
we also give the absolute estimation errors for the central Jacobi estimator with ¢ = 2. Hence, the
central Richardson-Jacobi estimator can be improved by reducing the value of A.

x=tanh(t-1)+exp(-t/1.2)sin(6t+1m)

Absolute estimation errors with g=0
61 - — osr / ——
the first order derivative of x (‘ — - — - Absolute error for central Jacobi estimator
— — Central Jacobi estimator 08 | ‘\ _ _ _ Absolute error for estimatorxf")(k,u,T,n*rq)
4t _ _ _ Estimator x{")(k.u,T,n+q) i~ 0
0 o7t
yf
1
|
06 |y
oo
0.5F | \‘ )
4 Y
\
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03fF [ TN
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!/ L Y
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01r [ U B T 2 NN
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(a) Estimations. (b) Associated absolute errors.

Figure 1.20: Central estimator ig;)(/@,u,T,n + ¢) and central Jacobi estimator IADS)T_qx(tO), where
H:u:O,T:;llandq:Q

x=tanh(t-1)+exp(-t/1.2)sin(6t+m)

Absolute estimation errors with q=2
6 0.045
the first order derivative of x N — - — - Absolute error for central Jacobi estimator
— — Central Jacobi estimator 004+ _ _ _ Absolute error for estimator xsn)(k,u,T,mq)
a4t _ _ _ Estimator x{")(k,p,T,mq) ’/\\ 0
0 003sF !
[
[
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( )\ 4
0025+ , ' /!
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yoomy
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(a) Estimations. (b) Associated absolute errors.

Figure 1.21: Central estimator i‘g;)(/@,,u,T,n + ¢q) and central Jacobi estimator b x(to),

k. T.q where
nzuzO,T:}landq:Z
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Absolute estimation errors

Absolute estimation errors
0.05- 0.045
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(a) Associated absolute estimation errors. (b) Associated absolute estimation errors.

Figure 1.22: Absolute estimation errors for central Jacobi estimator ZADS)T qx(to) with ¢ = 2 and central

Richardson-Jacobi estimator f)g% \Z(to) with A = 0.8 and A = 0.08 respectively, where x = 0 and
T=1.
4

1.7 General estimator

In Subsection 1.5.1, we give two families of Richardson-Jacobi estimators which are the combination of
minimal Jacobi estimators with different lengths for integration windows. In Subsection 1.6.1, by taking
the combination of causal and anti-causal Jacobi estimators we introduce a family of central estimators.
In this section, by applying the algebraic parametric technique we give a general form of the derivative
estimators which are an affine combination of estimators with different lengths for integration windows.
For this, we give a general differential operator parameterized by a set of parameters. Sufficient and

necessary conditions on this set are given to obtain such an integral annihilator. It is proven that such
set of parameters is non empty.

1.7.1 Operational domain

Let us assume that # € CV(I) with n < N € N. Then, for any tg € I, we introduce the following
function

L

X(t) =Y aix(to + Bit), (1.199)

1=0

where L € Nya; e R*, 3, e R*, o< 1 < --- < B, t €D = {tERJr;Vi e{l,..,L} to+ Bit € I} and
L

Z a;;" # 0. This function X will be used to perform the estimation of ™ in a general framework.
i=0

Actually, if all the 5; < 0 (resp. B; > 0), then we can obtain causal estimators (resp. anti-causal
estimators). In the other cases, we can obtain "finite difference" type estimators. Let us consider the
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Nt order truncated Taylor series expansion of X on Rt

L N Bty N (L N\ o
VEeRT, Xn(t) =) a; = alP(tg) =) < aﬁf) ﬁm(”(to). (1.200)
- !

|
i=0  j=0 J: j=0 \i=

Since X is an N** order polynomial defined on RT, we can apply the Laplace transform to (1.200)
(s being the Laplace variable)

N
Xy = s U0 (1), (1.201)
j=0

L
where Xy is the Laplace transform of Xn(t), ¢; = Z a; 3] with ¢, # 0.
i=0

1.7.2 Annihilators

Let us recall that the basic step for the algebraic parametric technique towards the estimation of )
is to estimate the coefficient (™ (to) from Xy by using a linear differential operator. A general form
for this operator is given in (1.18). When the sum in (1.18) is reduced to a single term, we obtain
a particular case where the linear differential operator is a finite product of length ® € N. If for all
indexes [, the rational function g; is of the following form g;(s) = S%l, then the linear differential
operator defined by (1.18) can be parameterized by a set E = {(n;,m;)}2,:

1 dm 1 dm 1 dre
g =[] o1 odn d (1.202)

s dsm gmidsni gme dgne

Note that m; € Z* for [ = 2,...,0, except for m; € R*, and n; e N* for [ =1,...,0 — 1, except for
ne € N. In the following proposition, we give conditions on the integers m; and n; so as to calculate
the value of Ilg (XN where IIg preserves only the term containing 2 (to)-

Proposition 1.7.39 Let Xn be defined by (1.201) and Iy be the linear differential operator defined
by (1.202). If E satisfies the following conditions

(Cy): Yle{l,...,©0 = 1}: eithern+1+r >0 0orn+1+1r < —ny is true,

(Cy): for each j € J = {k;k € {0,...,n — Ln+1,..., N}, cpz®(ty) # 0}, there emists a l; €
{1,...,0 =1}, such that 0 < —(j + 1) — 7, <ny,

©
with rp = Z n;+m; forl=0,...,0 —1 and ro = 0. Then, Ilg is an annihilator and
i=l+1

Mg (K ) = cpa™ (t0) e (1.203)
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L e
where ¢, = Zazﬂf #0, ¢ =[] &, with
=0 =1

(n+rp)!

14ry))! .
%’ ifn+1+r < -—mn.

(1.204)

S
Il

{ (_l)nl(nl+n+rl)!a ifn+1+mr >0,

Moreover, if c,z\™ (tg) # 0, then the conditions (Cy) and (Ca) are also necessary.

Proof. By applying the linear differential operator defined by (1.202) to the right hand side of (1.201),
one obtains

N N
IIg Z:cjsf(j+1 Zc]:zj) (to) Ug(s (jH)).
=0 =0

e Sufficiency: the computation is divided into two parts: one concerning the term Iz (s~U+D) with
j = n, and one concerning the others with j # n. Recall firstly the following formulae: for £ € N and

k(.m
m e Z*, dd(jk ) i given by

m! ek
mé’ k if 0 S k < m, (1205&)
0 if 0 <m <k, (1.205D)
—1)F(k —m —1)!
( )(_(m _”11), P gmk ifm <0< k. (1.205¢)

Computation of Ig(s~™*Y): by induction, we want to prove that

ol dn 19
n+1) __ ~

115 gan® = s 1@ (1.206)

=J =J
holds for any J € {1,...,0}, where ¢, = W, ifn+1+r >0, and ¢ = %, if
n+1l+4+r < —ny.
Initial step: when J = O, using (1.205¢) one obtains

1 de _ ¢ _ (=)™ (ne +n)!
R (8 I A boy — ©
o dane = ilireTy with ¢g = o . (1.207)
Assume now that (1.206) holds for 1 < J < ©, this leads to
&1 A gy 1 dne 1 o
H S dsnl T gMu—1 dghi—1  gntltry_g Hcl'
l=J-1 =J
We distinguish the two following cases in the condition (Ch):
1. fn+1+r;-1 >0, then by using (1.205¢) we get
ﬁ L d" ) ! ﬁ ¢y, with ¢ (D)™t (ng_1 +n+ry)!
— s = — ¢, with éy_1 = .
:J_lsml ds™ gntl+ry_2 Bt W J=1 (n + T‘J_l)!
75
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2. fn+1+4+7ry;_1 < —ny_1, then by using (1.205a) we get

S S
1 d™ 1 1 1!
H s = H ¢, with éy_1 = (p+1+rs) )
l—J—1sml ds™ shiitrs-z A (In+1+rsa] —ny1)!

Hence, (1.206) is true for J — 1. Consequently, we conclude by induction that (1.206) is true for
any J € {1,...,0}.
Computation of Hg(s~U*Y) with j € J:

For any [; € {1,...,© — 1}, we have

S}

1 d" &
=% U T ith 6
| | S e s = JFitn, with ¢; € Q.
I=lj+1 §

From the condition (C2), we know that 0 < —(j + 1) — r;, < ny;, then we obtain

—G+)) _ 4 LA G|
Mg (sU*) _ z—ll_[HSml s 0. (1.208)
¥

Hence, we conclude that

~

¢
g Zc sTUTD 20 (1) | = epa™ (t) M p(s~ ) = cnw(”)(to)m.

Consequently, we shown that the conditions (C7) and (C2) are sufficient conditions for (1.203) to hold.

e Necessity: we are going to prove that the conditions (C7) and (C2) are also necessary as soon as
L2 (tg) # 0. In order to do this, we assume that (1.203) is true, then we have

A~

. ¢

By doing similar calculations leading to (1.206), we obtain (without using the conditions (C1) and
(Ca)): for 0 < j < N, Il (s~ UFD) = ijfﬂrm, with ¢; € Q. Thus, (1.209) becomes

, 4 ¢ é—c
Vs € C with R(s) >0, > :cjx(j)(to)m + ™ (to)an;fO =0. (1.210)
jeJ

Therefore, we obtain that ¢,z )(to)(c—cn) =0and ¢;z0)(tg)¢; = 0 for all j € J. As cj2V)(tg) 75 0
for all j € JU {n}, we have ¢ = &, and ¢; = 0 for all j € J. Hence, Ilg (s~ (”H)) ¥
and HE( (]H)) = 0 for all j € J. Since HE( (n+1) ) # 0, s~ ig not annihilated after each
derivation, we conclude that VI € {1,...,0 — 1}, either n+1+r; > 0or n+ 1+ < —n; is true. On
the other hand, s~U+1) is annihilated for all j € J. Hence, there exists a I; € {1,...,© — 1}, such that
O<—(j+1)—7’lj<nlj. O
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We can see in the previous proof that the condition (C3) is used to annihilate all the undesired
terms: cjs~ Ut z0)(tg) in (1.201) for all 5 € J, and the condition (Cy) is used to keep the term
cns~ Dz (¢9). In the following proposition, we give a new conditions on the set E such that the
annihilator Il is an integral annihilator: the estimator of z(™(ty) only depends on a unique integral
of the measured signal in the time domain. Before doing so, we propose the following lemma.

Lemma 1.7.40 Letf be the Laplace transform of a function f defined by R™, the Laplace transform of
a function of which exists, and Il be an operator defined by (1.202). We split each my into two terms:

my = my + my with my € Z* and my € Z for 1 =1,---,0, except for my € R*. Let j = (j1,...,Jo) be
a multi-index of length © and Ej = {(n; — ji, )}, be a subset of N x Z, then Ilg can be written as
follow

Io

~h>

s (7) = 35 3 0 o

Jjo=0  71=0

) (1.211)

© e
where y; = Zmz +ji and Cp = [l ej, forl=1,---,0, with the values
i=l =l

—1)7 (5, + —1)! . .
(’?l)( )( u —wf)'1 ) s 4 M1 >0, ny, if Y1 >0,
ej, = Ji 71-0'-1 and Il — k
(m) Il else min(ny, [yi41]),  else,
(Ivgal=a)?” ’

forl=1,---,0 —1. Forl =0 we have Ig =0, ¢jo = 1.
Proof. We prove the following relation by induction: for J =1,--- ,0,

o _— oimit )
[ o gy (7)) = Yo WHQLQMM- (1212

= Jjo=0  j ;=0 =

Initial step: For J = ©, we have

1 d»e /. 1 1 d»e /.
sme dsne (f(s)) ~ se gme dsne (f(s)) '
Hence, the relation (1.212) is true for J = © with Ie¢ =0, Ce = ¢j, = 1 and vg = Me.
Now assume that the relation (1.212) is true for 1 < J < ©, this leads to

o1 Ay, 1 dv 1 g g,
1;I s ds™ (f )) ECEY e Z Z Ts1s H s dsm (f(s))

1 Jjo=0  j;=0

1
I,

Ieo 1 dni-1 1 e 1 dnl*jl ~
= ZO' e ZOCJSmJ_l ds™i—1 ’ <871 H ﬁdsm—jl <f(8))>
Jo= Ji=
Io Iy 1 nj-1 ni dii-1 1 dri-1—Ji-1 © 1 A
=3 > G Y (f] 1>dsj“ (7) PR T (Qm(f“)))'
. =

; : . -1
Jjo=0 Jj =0 Jjs—1=0 J7

7
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If v;7 > 0, we obtain
©
1 dv g,
I 5w (F9)
I=J-1
_f: ic ni—:l ny_1 (71)j.zf1(jJ71+7J71)! dni-1—Ji-1 19[1 dm—a (f(g))
_j@:() = JjJ ~ jI-1 (/yJ_l)!SmJ71+“/J+]’J71 ds™i-1—JJ—-1 ; Jsml ds™—J
Iy S} ;
1 du—J /.
Sy > i T s (F9),
1

Jjo=0 Jjs—-1=0 =J-

n.171) (=171 (Gy_1+ys—1)!

where I; 1 =mny-1, Cj1 =Cy-ej, 4, €, , = (]-J_l O =1 -and yj-1 =y +my-1 +

e
Jroa= Y i i
i=J-1

If v; <0, we obtain

O 1 a4,
[T g (1)
=J-1
B lo Ly o min(ns—1,17s1) ny_1\ |y|ls~(mi-1trrtis-1) gro-i—is- © 1 gu-i .
- Z Z J Z Jr—1 (V] = gs—1)! dsni—1—JJ-1 H ST g (f(S))
Jjo=0 Jjs=0 Jjr—-1=0 I=J
Iy €] ;
1 du—a ;.
B Z Z Cr- 15'YJ 1 H s dsm—ii (f(s)>’
Jjo=0  j;j—1=0 I=J-1
where I;_1 = min(nj_1,|vs]), Cij—1 =Cy-€5, ,, €, , = (?j:ll)m—wgi];,l)' and vj_1 =v5+mj_1 +

e
Ji-1= Z m; + Ji-

i=J—1
Hence, the relation (1.212) is true for J — 1. Consequently, we conclude by induction that (1.212)
is true for any J € {1,...,0}. Finally, (1.211) holds with J = 1. O

Remark 4 Here Ilg, is an operator that can or not be also an annihilator. The criterion is that
- (Xn) = (n)
g, (XN> = o(s) '™ (tg), holds for some p(s).
Proposition 1.7.41 Let Xy be defined in (1.201) and Ilg be the annihilator defined in (1.202), where
S}

the my satisfies the following condition (Cs): Zml > 0. Then, we have

=1
t
o g (XN)} (t) = / pro(r) Xy (r)dr, (1.213)
0
Io S)
wheret € D, pyo(T) Z ZCI (t—r)n—1 rNe wzthN@onl gi, Iy forl =1,---,0,
je=0  5j1=0 =1
C1 and vy is defined in Lemma 1.7.40.
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Proof. We apply Lemma 1.7.40 by taking m; = 0 for I = 1,--- ;0 and f = Xy. As my = my for
l=1,---,0, we get

A Io I 1 dNe R
Iy (XN) D IRED PP (XN(S)) . (1.214)
Jjoe=0  j1=0
(C] ©
Since 71 = Z my + ji, the condition (C3) implies that v; > Z my > 0. Then, by applying (7.13), we
=1 =1

get

-1 {HE (XN)} (t) = i i ci Lt {;;;Z (XN(5)>} (t)

le ! Y t
—1)Ne
= E E Cl((’yl—)l)'/o(t_T)%1TN@XN(T)dT'
Jjo=0 Jj1=0 )

Now, we can give the following corollary.

Corollary 1.7.42 Let x € CN(I) and Ilg be the integral annihilator defined by (1.202) where the set
E satisfies conditions (C1) and (C3) of Proposition 1.7.89 and condition (C3) of Proposition 1.7.41.
Then, a family of estimators for (™ is given by

. Firo+n+1
Vio € I, 2™ (to) = AT Zaz/ pr.o(T)z(to + BiT)dr (1.215)
©
where T € D, ¢ is defined by (1.204), ro = Z my+n; and the polynomial pr e is defined in Proposition
=1

1.7.41.

Proof. We start by applying the annihilator IIg to the relation (1.201) and then to go back into the
time domain. Firstly, by applying Proposition 1.7.41 we get

-1 {HE <XN(5)>} (t) = /Otptje(T)XN(T)dT. (1.216)

Secondly, by Proposition 1.7.39, we obtain

A~

N
e . n C
My chs D20 (#0) | = enal )(t())W'

© (S
As rg = an +my > Zml > 0 (condition (C3)), by applying (7.11) we get
=1 1=1
11 (G+1) 5, (9) (n) groT 1.217
- t ) =cpéx™(ty) o . .
o (L 0a00) | b = cnta O P (1.217)

J=0
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Finally, since ¢, # 0, we have

r 1) [t
2 (t9) = % /0 pro(r)Xn(r)dr, with ¢ € D. (1.218)
Recall that Xy (7 Z a;xN(to + BiT), then by substituting xx by z in (1.218) we get
1=0
- 7‘0 +n+ 1
7™ (to) = T et Zal/ pro(T)x(to + BiT)dr (1.219)

Here, the variable ¢ is the length of the estimation time interval. The equation (1.219) has therefore
to be considered for fixed t, say t =T € D. O

Remark 5 We can consider a general family of linear differential operators defined by (1.18), where

I = ij Hg;, with W € N*, p; € R* and I, being defined by (1.202). Moreover, we assume that
j=1

the set E; satisfies the conditions (C1), (C2) and (C3). Such affine annihilators help us to estimate

™ (o), which have the following integral form

~(n) . v L(ro+n+1)
Mg => ——— Z pT@J y(to + BiT)dr (1.220)
j:

Cn CW Trotn
where Cyy = ij , ¢(4) and each polynomial pr.e ; defined by (1.215) is associated to g, .

Three conditions on E are given such that the linear differential operator defined by (1.202) can
be an integral annihilator. We show in the following proposition that we can build some sets E such
that the conditions (C4), (C2) and (C3) are satisfied.

Proposition 1.7.43 There exists the sets E = {(n;,m;)}2_, for © > 3,0 € N that meet the conditions
(C1) and (C2) given in Proposition 1.7.39 and the condition (C3) given in Proposition 1.7.41.

Proof. We prove firstly that there exists the sets E which meet the conditions (C1) and (C2) given in
Proposition 1.7.39. Each of these sets give us an annihilator by annihilating all the undesired terms:
;5”020 (t9) in (1.201) with j # n and keeping the term c¢,s~ "Dz (t5) at the same time. The
construction of these sets depends on the way of annihilating the undesired terms, but in any case they
can be found. We are going to give such a set.

In order to annihilate the undesired terms, it is necessary to let the degree of s be positive. Hence,

by taking in particular ng = 0 and mg = —n, we get
N
1 dre ; ;
o~ (1) ()
E cjs Y (tp)
sme dsne = (1.221)

—cos" z(to) + - + 12V (to) + s 2™ (ko) + - - 4 ens N T (1),
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By taking ng_1 = n+k with k € N, we can annihilate the terms cjs_(j+1)a:(j)(t0) forj=0,---,n—1.
Weget 0 < —(j+1)— (ne+me) <ng_q for j=0,---,n—1and

drom 1 dve "+k< + k)!

—(+D J g—1=i—k ()
ds™"e-1 gMme dgne ZC s~ ZC] . — n)| —= (to) (1222)
Then, with the same reason we can annihilate the terms ¢;s~ 020 (ty) for j = n+1,--- | N by taking

mo-1=—(N+1+k)and ng_o =N —n. Weget 0 < —(j+1)—(ne +me +ne—1+me-1) <ne—2
forj=n-+1,---,N and

dre—2

dsne-2 )
7

sme dsno

O 1 gre
11 ch G20 (t0) | = en(=1)" RN = n)l(k +n)lz™ (to).  (1.223)
=0-1

Utile here we give an annihilator meeting the conditions (C7) and (C3). In order to meet the
condition (C3), we can choose mg_o = |me| + |me-1|+pu+1=N+n+k+p+2with -1 < peR.
Finally, we construct the set {(n;,m;)}2.o_, which meets the conditions (C1), (Cs) and (C3). The

associated annihilator is
1 dN—n dn+k
N+1+k
sN+n+k+p+2 JoN—n dsntk

For 1 <1< O — 3, let us take n; = m; = 1, then the conditions (C4), (C3) and (C3) hold and we have

s (1.224)

N _
o ) Cn -1 n+k+60-3 N k+n |x(n) tO
g | Y s 0taUtg) | = (=) SN+<n+k+u+)2é - Sl || (N +n+k+ p+2i).
=0 paley

(1.225)
O

If we take © = 3 in the previous proof then the conditions (C7), (C2) and (C3) are satisfied. For
example, the integral annihilator H deﬁned in (1.54) is parameterized by the set E = {(n;,m;)}}_,
where m; = v, n1 =n+k, mg = 1 ng =N —n, m3 =—(N+1), ng =0. It is easy to verify that
This set meets also the conditions (C1), (C3) and (Cs).

It is shown in Lemma 1.3.10 that the annihilator H,ivlf can be written as an affine combination
of different annihilators ITy; =~ defined in (1.20). Inspired by this, let us consider the relation given
n (1.211) where IIg is an annihilator if E meets conditions (C1), (Cq) and (C3). We wonder if the
11 & are also annihilators similar to the annihilators HZ,], e By assumption, the operators Ej meet the

(C] ©
conditions (C1) and (C3). Moreover, from (C7) and (Cs), as 1 + Zml > Zml, then the condition

1=1 =1
(C3) holds automatically. Consequently, the annihilator IIg applied to (1.201) with N > n will be an

affine annihilator of annihilators Il applied to (1.201) with N = n.

1.8 Fractional derivative estimators

In this section, we discuss some estimators for the derivative with fractional order. Firstly, we apply
the algebraic parametric technique to a truncated fractional order Taylor series. Secondly, we apply
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the Jacobi estimators in the definitions of fractional order derivative where we need to calculate the

integer order derivative.

1.8.1 Fractional order Taylor’s Formula

It was previously shown that by applying the algebraic parametric technique to the truncated Taylor
series expansion we can give some families of derivative estimators, where the order of the estimated
derivative is an integer. In the subsection, we show that by applying the algebraic parametric technique
to a truncated fractional order Taylor series we can estimate fractional order derivatives.

A generalized Taylor series expansion of fractional order is given in [Jumarie 2006] as follows: let
x €C"(I) and n < « <n+ 1 with n € N*, then we have

I.teD X = n —tj m(j) t(j’y " 117(j'y ) 1.226
Vip € 1,1 to+1t) = E to) + E ™Mt .
0 ) to>s ( 0 ) pard ]' ( 0) o F(]’y n 1) ( 0)7 ( )

where v = a — n.
Then, by using this fractional order Taylor series expansion we can give the following proposition.

Proposition 1.8.44 Let x € C"(I) and n < a < n+ 1 with n € N*, then a family of anti-causal
estimators for the o' order derivative of x is given by

o +1)! I'a—n) 1 (k)
Vige I, i (k, u, T :(n / P\ to+TT7)d 1.227
0€d, xt0+( y Ky ) To B(a +14+ k,n +u+ 2) 0 w#,k(7_> n+1 (T) .’E( o+ 7') T, ( )

where T' € Dy,, k € N and -1 < p € R.

Proof. By taking the truncation of the fractional Taylor series expansion given in (1.226) on RT, we

get
n
. te
Vig € I,t € RT, ao(to +1) = > —2U(tg) + ————2(@(ty). 1.22
Applying the Laplace transform to (1.228), we get
n
o Z 570D 20 (49) 4+ s~ @FDg(@) (). (1.229)
5=0
Then, by apply the annihilator HZ;l defined in (1.20) to (1.229) we get
1 dn+1+k 1
+1a
HZ,M ($a) - gntu+2 d8n+1+k Sa—nx(a) (to) (1 230)

n+1+kr(a+1+k) 1 :Ua (t )
T(a —n) snrotsthin 0/

—(-1)

where k € N and —1 < g € R. Then by returning to the time domain, we get

( 1)n+1+kr(a+1+k> Tn+a+2+k+,u
I'Na—n) T'h+a+k+p+3)

(—pntiek ! +utl _n+k+1, (n+1)
- 7 _ n-rp n n
NEEEsIA (T —1) T xy " (to + T)dT.

=@ (tg)
(1.231)
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By applying a change of variable 7 — T'T and n + 1 times integrations by parts, we get

(—1)(+D) I'(a—n) Logntt
T  Bla+1l+kn+p+2) )y drmtl

2 (ty) = {0 = gymertenthtd g (1 + Tr) dr.

(1.232)

Finally, this proof can be completed by substituting z, in (1.232) by x and applying the Rodrigues
formula to (1.232). O

Remark 6 If we take oo =n +1 in (1.227), then it is easy to obtain that

o) (b, T) = 240 T (b, 0, ), (1.233)

to4

= (n+

where Ty, )(k‘ 1, T) are the minimal Jacobi estimators for x"Y (to) given in Proposition 1.2.1. More-
over, if we take the annihilator fo:l’nﬂ defined in (1.54) with n < N € N, then two families of affine

estimators for 2 (ty) can be also given similarly.

1.8.2 Application of Jacobi estimators

In this subsection, we give a family of causal estimators for the fractional order derivative.
Let x € C*(I) with n € N*, then the o' (n — 1 < a < n) order derivative of x can be defined as
follows

e First method:

() d" 1 / 0 z(s)
vio € . Dt b B — 1.234
0 € 1, Dy ato) = dt”{ T(n—a) Sy (o — s)orn ) .
e Second method: t (n)
() 1 T _ =)
ViceI. D £ e d 1.2
0 €1, R .’E( 0) F(TL . a) /to—T (tO _ S)(X+1—n S, ( 35)

where T' € Dy,.
Denote F(tg) := f to 2 —-ds. Hence, we need the n’ h order derivative values of F
(n— a) (to— s) +

(resp. ) to calculate the af order derivative of x by using (1.234) (resp. (1.235)). For this, we use
the causal Jacobi estimators. Thus, by using (1.84) we give the following estimators

Vto S I D(L )Sli(to / Qn,un,qﬁ (tO - TT)dT,
g (1.236)
_ / Qo () /t ' 2(s) ds dr
(—T)"F(n —a) Jo TP to—Tr—1 (to — T'T — s)oti=n ’
and
to
7 (@) 1 1 ()
t I, D tg) := D —-TE)d
Vto € 1, R CL‘( 0) F(n _ a) /to—T (t() _ S)aJrlfn N,MwBTﬂx(s 5) o
X n X , (1.237)
= Kylbym -T drd )
TG0 fyr T =7 J, Qranaclr ol T+ )i
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where Q. in.q¢ 1S given by (1.85) with k,pu €] — 1,400[, ¢ € N and £ € [0, 1].
By applying a change of variable in (1.236): s — s — T'T, we get

1 to
= (a) o 1 x(s —1T)
v I, D D= Q —_ . 1.2
to €I, D} x(to) (=T)"T(n 3)/0 oo, (T) /to— (to S)oc-l—l—ndeT (1.238)

Hence, if x, 1 € N, then Qy ;n,q,¢ is a polynomial. By applying the Fubini’s theorem it is easy to get
that D(La)x(to) = bg)x(to) Let us denote D! ;Tq (to) == b(La)x(to) = Dg)x(to), then we give the
following proposition.

Proposition 1.8.45 Let x € C"(I) and n — 1 < a < n with n € N*, then a family of estimators for
the o order derivative of = is given by

n 1
(o) (-1)
vt[) S _[ DIi/LTq (t()) m pn’uqu,g(u)l’(Tu + t[) - T)du, (1239)
where
a (tnmin) o om (M4 i+ p (n+i+ 5 -
Prgmae() =Y Cropni P () ( . >< . ,>(1)“+Z—J1K,M7i,j(u), (1.240)
= =0 i n+1v—)
prnti—j Ktj
with T i 4( l}; Z(“M‘H J)( ZJ>B(/H—2n+i—j—l—a—1,/£—|—j—k)(—1)kul+k,

T € Dy, w1 €N, qENa_ndfe[O 1.
Lemma 1.8.46 Let <, 1 € N, then we have the following integral value
1
w“ H _ . + .
/0 T +1nd ZZ()() fi—i+n—ak—j+1)(=1) ut. (1.241)
1=0 j=0
Proof. By using the Binomial theorem, we get

wp z(v — u)

(1—v)atln — (1= v+ u)(v—u)*(1 — )"~

O ()

1=0 7=0
ik ~ o
_ Z ( ) < >(1 o U);l—i-‘rn—oz—lvfi—j(_l)jui—I—j.
i=0 j=
Then, this proof can be completed by using the classical beta function. O

Proof of Proposition 1.8.45. By applying a change of variable in (1.238): s — sT + (to — 1), we
get

-1H" 1 La(s —1T—
Vtg € I, Dfa(ty) = T“é(?”lL)—a)/O Qrnyg,e(T) </0 ( T(_; Et(;)ai_n T))ds> dr. (1.243)
84

© 2011 Tous droits réservés. http://doc.univ-lille1 fr



Thése de Dayan Liu, Lille 1, 2011

By apply the following change of variables: (7,s) = (v — u,v) = ®(u,v) in (1.243), we get

- —1)n ! La(T -7
o € I, Dielto) = gapos [ Quunacto— o) ([ ZEE T det(a) o) o

(=1)" /1 z(Tu+ty—T) < | Qupnae (v — v) dv) du.

T TT(n—a) ), o (L—y)oatin

(1.244)

Using (1.42) in (1.85) we get

ket U n+it+p\/n+i+k i
Qpnige(?) = 3 Crpon  PLT(6) S ( . ) ( )(—1)"“%%,5_,-(7), (1.245)

q
s = 7 n+1t—7

where p;; = p+mn+1— 7 and k; = k + j. Then, this proof can be completed by using Lemma 1.8.46.
O

1.9 Conclusion

In this chapter, by taking truncated Taylor series expansion and truncated Jacobi orthogonal series
expansion we have given some different derivative estimators. The associated truncated term errors
have been studied by giving some corresponding error bounds which showed the parameters’ influence
on truncated term errors. Let us recall these derivative estimators in Table 1.9, where k, u €] — 1, +00],
T € Dy, qeN, £€[0,1], A € Ry/{1} and &; is one root of the Jacobi polynomial Pq(ﬂrn’HJrn). In
the following chapter, we will study our derivative estimators in the case where the smooth function

is corrupted by a noise.
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Chapter 2

Error analysis for the Jacobi estimators

Contents
2.1 Introduction . . . . . . . . @ @ @ i i i i i it e e e e e e e e e e e e e e e e e 87
2.1.1 Context . . . . . . . 87
2.1.2 Noise error contribution . . . . . . . ... L L L L 88
2.2 Nonstandard analysis of noise . . . . . . . . . . 0 v i i i i et e 89
2.3 Integrable moiSes . . . .+ v v v v v v v v vttt e e e e e e e e e e e e e 89
2.4 Non-independent stochastic processnoises . . . . ... ... ... .. ... 91
2.4.1 Integrability of stochastic process . . . . . . . . . . ... L. 91
2.4.2  Error bounds for noise error contribution . . . . ... ..o 0oL 92
2.5 Independent stochastic process noises . . . . . . v v v v v v v v v v o o 0o 0o 100
2.6 Numerical simulations . . ... ... ... ... .. 0o, 107
2.6.1 Numerical tests for central Jacobi estimators . . . ... ... ... .. ..... 107
2.6.2 Numerical tests for causal Jacobi estimators . . . . . .. ... ... .. ... .. 115
2.7 Conclusion . . . . . . . . @ @ @ @ i i e e e e e e e e e e e e e e e e e e 123

2.1 Introduction

2.1.1 Context

In practical identification, an observed signal is usually obtained from a sensor, which is quantitized
and discretized. If the sensor is not ideal, a random noise can be observed, the amplitude of which
can be assumed to be finite. Hence, we consider in this chapter the numerical differentiation for noisy
signals.
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2.1.2 Noise error contribution

We assume that 2° = x + @ is a noisy function on I, where x € C*(I) and w is an additive corrupting
noise which is usually a rapid oscillation. From now on, we consider the noisy function 2 in the Jacobi
estimators. Then, it is sufficient to replace z(tp + ST-) in (1.84) by 2%(to + BT") so as to estimate
(™ (ty). Then, we have the following definition.

Definition 3 Let 2° is a noisy function on I, then, for any to € I a family of Jacobi estimators for
=M (to) is defined as follows

n 1 !
D gt (BTE + o) = BT /0 Qu g (1) 2’ (to + BTT) dr, (2.1)

where T € Dy, B = %1, Quun,qe is defined by (1.85) with k,pu €] —1,400[, ¢ € N and & is a fived
value on [0, 1].

Hence, the associated estimation errors are given as follows
D,ﬁ,m,qﬂcé(ﬁTf +t0) — 2™ (to)
- (ij;, s1g 2 (BTE +t0) — D) o w(BTE + to)) + (D(& 1.2 (BTE + tg) — 2™ (to))> (2.2)
= (tosn, i, 1, T, €, q) + €y, (tos 5, 1, T, 6, ).

(n)

wopi BT, qa:‘s(BTg + tp) are corrupted by two sources of errors:

Hence, the Jacobi estimators D

e the truncated term error e%n (to; ko, T,€,q),

e the noise error contribution eﬁw(to; n,k, 1, T, €, q).

Now, we assume that the noisy function z is given in discrete case. Let 29(t;) = z(t;) + w(t;) be a
noisy measurement of x with an equidistant sampling period 7.

9 is a discrete measurement, we need to use a numerical integration method to approximate

Since x
the integral value in (1.84) for Jacobi estimators. Let ¢; = £ and w; > 0 for i = 0,...,m with
m = T% € N (except for wg > 0 and w,, > 0) be respectively the abscissas and the weights for a given
numerical integration method. Weight wg (resp. wy,) is set to zero in order to avoid the infinite values

when £ (resp. p) is negative. Then, we have

1 il w;
Dy (BTE+10) % gz D 4 Qumag () 2o + BTh). (2.3
i=0
The noise error contribution eﬁw(to; K, i, T, €, q) can be written in discrete cases as follows
6w7m(t0; n, Kk, W, Tu 57 Q) = (BT)" Z E Qn,u,n,q,ﬁ(ti) w(t() + 5Ttl) (24)
i=0

This numerical integration method also implies a numerical error. Hence, the Jacobi estimators lead
to

DY) o 2 (BTE + to) = 2 (to) + em(to) + ey (tos ko i T.€,q) + €2, (toin, w1, T,€.q), (2.5)
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where e%mm(to; K, 1, T €, q) is the bias term error in discrete case and e, (to) is the numerical integration
error.

The truncated term error was studied in the previous chapter, we study in this chapter the noise
error contribution only for the causal and anti-causal Jacobi estimators. The ones for the central
Jacobi estimators and the Richardson-Jacobi estimators (central or not) can be similarly studied. In
Section 2.2, we recall the result of nonstandard analysis of noise given in |Fliess 2006]. In Section
2.3, the noise w is a bounded and integrable function such as biased sinusoidal functions with high
frequency. In Section 2.4, the noise w is a non-independent stochastic process such as the Brownian
process and the Poisson process, which is bounded with certain probability and integrable in the sense
of convergence in mean square. In Section 2.4, the noise w is an independent stochastic process such
as the White Gaussian noise and the Poisson noise. In Section 2.6, we give some numerical simulations
to demonstrate the efficiency and the stability of Jacobi estimators.

2.2 Nonstandard analysis of noise

Thanks to the nonstandard formalization of fast oscillating functions, due to P. Cartier and Y. Perrin
[Cartier 1995], M. Fliess proposed in [Fliess 2006, Fliess 2008] an appropriate mathematical framework
for the algebraic parametric techniques methods, which exhibit good robustness properties with re-
spect to corrupting noises, without the need of knowing their statistical properties. In other words,
to assume that the noise is Gaussian, or that its statistics are known, is not required at all. This
assumption is common in other well-known methods like maximum likelihood, minimum least squares
or Kalman filtering approach to parameter estimation. More precisely, according to the nonstandard
theory of noise in [Fliess 2006], the noise w is a S-integrable fast oscillating. In this case, z° is S-
integrable, i.e. the sum of the Lebesgue integrable function z and w. According to Proposition 3.2 in
|Fliess 2006], by choosing an appreciable length T for integration window, the noise error contribution
eﬁw(to;n, Ky i, T, €, q) can be very small even for an unbounded noise. Nevertheless, when compared
to classical approaches in communication engineering (see, e.g., [Proakis 2001]), a weakness of these
methods was a lack of any precise error analysis, when they are implemented in practice. To carry out
such analysis and comparison, we only consider here often bounded noises which are in practice the
most frequent situation we encounter. However, as mentioned after we can deal with noises “polynomial
in time”.

2.3 Integrable noises

In this section, we assume that the noise @ is a bounded and integrable function, which is written as

follows
Vtel, w(t)=o(t)+ wo(t), (2.6)
n—1 .
where o(t) = > v;t/ and wp is a bounded noise with a noise level 0 i.e. 6 = sup |wg(t)|. Then,
j=0 tel

according to [Fliess 2003a, Fliess 2004a] the polynomial ¢ of degree n—1is an (n—1)%" order structured
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perturbation which, like a polynomial perturbation of unknown amplitude, is solutions of a given
homogeneous linear differential equation, and wq is an unstructured noise, which is understood as high
frequency perturbations.

We show in the following lemma, that the (n— 1) order structured perturbation can be annihilated
in the estimation for n'” order derivatives by Jacobi estimators.

Lemma 2.3.47 Let €§(t0;n,H,M,T,§,q> be the noise error contribution due to an (n — 1) order
structured perturbation for the Jacobi estimator Df@n; 8T qx‘s(ﬂT{ + to) defined in (2.1), then we have

1 1
65@0; n, K, W, Tv éa Q) = W /0 Qn,,u,mq,{(T) Q(tO + /BTT) dr = 0. (27)

Proof. By using the orthogonality of the Jacobi polynomials with the expression of Qy in ¢ given in
(1.85), we obtain that

1
/ T Qupn,ge(T)dr =0, for any j € {0,...,n—1}. (2.8)
0

Then, this proof can be easily completed. g
We study in the previous chapter the convergence rate for the Jacobi estimators, which is studied
in the following proposition in the noise case.

Proposition 2.3.48 [Liu 2011a] Let x° be a noisy function where x € C"T49(I) (¢ € N) and noise

w is given in (2.6). Assume that there exists My 149 € RY such that Hx(NH)HOO < Myi144q, then we
have 5
| D g (BTE + ta) = 2t + BTE) | < MyrCopuna T + B (29

where Cy ¢ i given in (1.91) and Ey ynqge = fol |Qr.pinq,c(T)| dT. Moreover, if we choose T =

1
TLEN’ n,q, n+q-+1

|:(q+1)MN:ICi,i,n,q,§ 5} , then we have

D™ w8 (BTE + to) — 2™ (tg + ATE)|| = O(67FT) (2.10)
K’7IJ‘76T7(1 O O o0 - ' :

Proof. By applying Lemma 2.3.47, the noise error contributions for pw 20(BTE+1p) are bounded

k,1,8T,q
by

| P s (BT +10) = DI 7 28T +10) |

0 w57 10 -7 )

5 1
< [ 1Qusnacll o

Then, by using (1.91) we get

| D) g (BTE + 10) = 20 + 8T8 _

< || i g (BTE + t0) = DY) oy 2 (BTE + 10)|

D BT+ 10) = 2t + 5T

1)
@éﬁ»

I

< MNHCmmn,qéTqH + Emu,n
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1
where By ynqe = Jo |@rpungs(T)] dr.
Let us denote the error bound by ¢(T) = My41C jin.qeT? +E,{,“,n’q7§%. Consequently, we can
1

. . . . FE , +q+1
calculate its minimum value. It is obtained for T* = | —owupna.t  §1 "7 404
(a+1)Cl i q,6

o Ml (g l\wE o e g
oy ="t ()T el 2.11)

Then, the proof is completed. g

Let us remark that the error bound Em,u,n,q,&fin obtained in the previous proof depends on the
parameters w, p, T and £ which can help us in minimizing the noise error contributions. From the
previous chapter, we extend the values of k, u from N to | — 1, +00[. Hence, we obtain a higher degree
of freedom so as to minimize the noise effects on our estimators, as well as the minimum value ¢(7%)
obtained in (2.11).

It is clear that we can increase the value of T to decrease the the value of En,u,n,q,é% S0 as to
decrease the noise error contributions for Jacobi estimators. Consequently, according to the expression
of Richardson-Jacobi estimators we can increase the value of A so as to decrease the associated noise
error contributions.

If we take ¢ = 0 in the previous proposition, then the convergence rate for the minimal estimators
D£7375Tm5(t0) is equal to (9(5”%1) as T — 0. If we take £ = 0 in the previous proposition, then the

_g+1
) orq@ (to) is equal to O(§7+147) as T — 0. In Proposition

1.3.17, we improve the convergence rate from O(T) to O(T9*!) (¢ € N) for the exact function z

convergence rate for the estimators D

by taking an affine combination of minimal estimators of (™. Here, the convergence rate is also
improved for noisy functions. It passes from (9(5"%1) to 0(5%11%1) if we choose T' = cém, where
c is a constant.

Similarly, we can calculate the convergence rate for noisy functions in the other cases, where the
value of € is equal to the smallest root of the Jacobi polynomial Pq(flrn’HJrn) by using Corollary 1.3.18,
the function = belongs to the Beppo-Levi space by using Proposition 1.4.21.

Since there is a numerical error in the discrete case, we always set the value of T' larger than the

optimal one calculated in the previous proof.

2.4 Non-independent stochastic process noises

2.4.1 Integrability of stochastic process

In this section, we assume that the noise w is a continuous parameter stochastic process (see [Parzen 1962]).
Before analyzing the noise error contribution of such noises, let us study the existence of these integrals

in the expressions of Jacobi estimators. As the function z° is the sum of x and the noise w, the Jacobi
estimators are well defined if and only if the noise w is integrable. Indeed, according to (1.85), if w

is integrable then integrability of wy .(-)@(to + BT-) holds for u,k €] — 1,400[ and T € Dy, with

B = £1. Thus, in that case, the integrals in the Jacobi estimators exist. The next result (Lemma
2.4.49) proves the existence of these integrals and thus justifies (1.84), as soon as the integral are un-
derstood in the sense of convergence in mean square (see Proposition 2.4.50). For this, the stochastic
process {w(7), T > 0} should satisfy the following condition
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(C1) : {w(7),7 > 0} is a continuous parameter stochastic process with finite second moments, whose
mean value function and covariance kernel are continuous functions.

Lemma 2.4.49 [Liu 2011c] Let {w(7),T > 0} be a stochastic process satisfying condition (C1). Then
for any to € I and T € Dy,, the integral fol Wy x(T)w(to+T7)dr (with p, k €] —1,400]) is well defined
as a limit in mean square of the usual approximating sum of the following form

m

1
/ Y(r)dr = lim Y (n-m)Y, (2.12)
0 Bt

where Y (1) = wy . (T)w(to +T7), Y1 =Y (&) for any & €|n—1,m[ and 0 =19 <71 < -+ < Ty =1 is
a subdivision of the interval |0, 1], such that l:ql.a'u'xm(n —1—1) tends to 0 when m tends to infinite.
Proof. For any fixed ¢ty € D, it was shown in [Loeve 1963] (p. 472) that if {Y'(7),0 < 7 < 1}, where
Y(7) = wyk(T)w(to + T'7), is a continuous parameter stochastic process with finite second moments,
then a necessary and sufficient condition such that the family of approximating sums on the right-
hand side of (2.12) has a limit in the sense of convergence in mean square is that the double integral
fol fol E[Y (s)Y ()] ds dr exists.

Since for any 7 €]0,1[, (1 — 7)* 7% < 00, and {w(7), T > 0} is a continuous parameter stochastic
process with finite second moments, so does {Y(7),0 < 7 < 1} for any ty € I. Moreover, since the mean
value function and covariance kernel of w(7) are continuous functions, so does Efw(to+71'7) w(to+71's)]
for all 7,s € [0,1]. Hence, E[w(to + 1'7) w(to + T's)] is bounded for all 7,s € [0, 1].

Consequently, fol f01 Wy k(T Wk (8) Elww(to + TT) w(to + T's)] ds dr exists when k, pu €] — 1, 00|,
which implies that (2.12) holds. O

If we take 2 instead of w in the previous lemma, then we can obtain the following proposition.

Proposition 2.4.50 [Liu 2011c] If x € C™(I), and the noise w satisfies condition (C1), then for any
to € I, the integrals in the Jacobi estimators exist in the sense of convergence in mean square.
2.4.2 Error bounds for noise error contribution

From now on, we can investigate the noise error contribution for the Jacobi estimator. To simplify our
notations, we denote eﬁw(to; n,k, i1, T,&, q) by eﬁwT(to). However, w satisfying condition (C7) is usually
not bounded. In order to study the convergence rate as it is done in Proposition 2.3.48, we use the
Bienaymé-Chebyshev inequality to give an error bounds for this noise error. Then, we have for any

1
Pr (]egT(tO) - E[egT(to)]‘ < 'y\/Var[eﬁwT(to)O >1- (2.13)
i.e. the probability for €2 (t5) to be within the interval |M;, M| is higher than 1 — '%2’ where

0
M, = E[e2F (to)] — vy/Var|el! (to)] and M, = E[e2 (to)] + v\/ Var[eZ (ty)]. Then, we give two error

bounds as follows

real number v > 0

M % BT (1) Z My, (2.14)
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Pr
where a < b means that the probability for a real number b to be larger than an other real number a
is equal to p, with p, > 1 — %2 Thus, we have

€27 (1)

where M,q, = max(|M;|,|Mp|). Consequently, we can use M, in Proposition 2.3.48 as the error

% Myas, (2.15)

bound for the noise error part so as to study the convergence rate for the Jacobi estimators.

In order to obtain these bounds we need to compute the mean and variance of eﬁwT(to). To simplify
our notations, we denote the function Qy ,nq¢ associated to the Jacobi estimator by . Then by
applying Theorem 3A in [Parzen 1962] (p. 79) the means, variances and covariances of the noise error
contributions for the Jacobi estimator are given as follows

E [egT(to) w(to + BTT)] dr, (2.16)
Cov [ BTy (to), e BTz (to)_ T"T” / / Qs 7)Cov [w(ty + BT1s), w(to + BTa7)] dsdr, (2.17)
Var [egT(to)_ = Cov [egT(to),egT(to)} , (2.18)

where T,T1,T5 € Dto-

By using Lemma 2.3.47, we show in the following theorem that the Jacobi estimator can deal with a
large class of noises for which the mean and covariance are polynomials in time satisfying the following
conditions

(Cy) : Y(to + 1) € I, the following holds

Elw(to + 7)] sz D7+ Elo(r)], (2.19)

Cov[w(ty + s), w(to + 7 an to an Dgi 4 Cov[w(s), w(T)], (2.20)

where k1(7) € N, ko(i) € N, k3(i) € N, v; € R, n; € R, nf € R and ny € N, ng € N such that
min(ny,ng) <n — 1.

(C3) : V7 € I, the following holds
n—1 ‘
)] = Zai 7, (2.21)
n9 '
Cov|[w( Zn, Zﬁ; s’ (2.22)
i=0

where 7; € R, 7;,7; € R and min(ni,ng) <n —1

Theorem 2.4.51 [Liu 2011c] Let 2T (to) be the noise error contribution for the Jacobi estimator
D,inli BT qx5(6T5+to) where the noise {w(7), ™ > 0} satisfies conditions (C1) and (C2). Ifn € N*, then
the mean, variance and covariance of €2 (t) do not depend on to. If in addition the noise {w(r),7 > 0}

satisfies conditions (C3) then E[e2 (to)] = 0, Covlea! (to), €22 (to)] = 0 and Varled! (to)] = 0.
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Proof. Then by applying (2.8), (2.16) and (2.17) with the conditions given in (2.19) and (2.20) we

obtain
E [eﬁwT @(BTT)] dr, (2.23)
Cov [ BT (1g), €512 (tg) _T"T”/ / Q(7) Q(s) Cov [w(BT17), w(BT2s)] dsdr. (2.24)

Consequently the mean and covariance of ew (to) do not depend on ty. If we take 77 = T5 in (2.24), then

n—1
the variance of 2 T(ty) do not depend on tg. Moreover, if E[w( z 7; ¢, then by applying (2.8)
1 0
0 (2.23), we obtain E[eﬁ (to)] = 0. If Cov[w( Zm st with min(ni,ng) <n—1
1=0
then by applying (2.8) to (2.24), we obtain Cov|ez 2k (to), 'BWTQ( to)] = 0. Then if we take T3 = T in
(2.24), we get Var[eﬂwT(to)] =0. O

From which the following important theorem is obtained.

Theorem 2.4.52 [Liu 2011c] Let 2T (o) be the noise error contribution for the Jacobi estimator
Dinlz 5T qx‘s(ﬁTﬁ + to) where the noise {w(7), ™ > 0} satisfies conditions (C1) to (Cs), then

e (to) = 0 almost surely. .

2 (to) =0 al Iy (2.25)
Proof. If the noise {w(7), 7 > 0} satisfies conditions (C1) to (Cs), then we have E[e2 (to)] = 0 and
VarleZ! (to)] = 0. Since

E [(eg@o))j Var [ )] + (£ [ (t)] )

we get E [( (t0)>2} = 0. Consequently, we have eﬁwT(to) = 0 almost surely.
O
Two stochastic processes, the Wiener process (also known as the Brownian motion) and the Poisson
process (cf [Parzen 1962|), play a central role in the theory of stochastic processes. These processes
are valuable, not only as models of many important phenomena, but also as building blocks to model
other complex stochastic processes. They are characterized by:

e let {W(t),t > 0} be the Wiener process with parameter o2, then
E[W(t)] =0, Cov[W(t),W(s)] = 0® min(t, s); (2.26)
e let {N(t),t > 0} be the Poisson process with intensity v € R™, then

E[N(t)] =vt, Cov[N(t),N(s)] = vmin(t, s). (2.27)

Thus, these processes satisfy conditions (C7) and (C2). Hence, we can characterize the noise error
contributions due to these two stochastic processes for the Jacobi estimators, and calculate the corre-
sponding means and variances. If the noise is a Wiener process, then it is clear that E[e2 (to)] = 0. If
the noise is a Poisson process, then we have
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Proposition 2.4.53 [Liu 2011c] The mean of the noise error contribution due to a Poisson process

for the Jacobi estimator is given by

E |2l (to)| =0, ifn>2,
T (2.28)
E (to)| =v, ifn=1.

Proof. For n > 2, this can be simply proven by using Theorem 2.4.51. Thus we only need to compute
the mean of the noise error contribution for the estimates of . Let n =1 in (1.29), then the minimal
estimators are given by

DY), oy’ (to) BTZ/ Q(r) 2 (BTT + to) dr, (2.29)
where Q(7) = m (p+r+2)T—(k+1)) (1 —7)"7". Then, according to (2.23) we obtain

EFg@@y:KAUQﬁ)m

By using integration by parts and the classical Beta function, we obtain E [eﬁwT(to)} = .

According to Proposition 1.3.14, we can deduce that the noise error contribution for the affine
Jacobi estimator is an affine combination of the ones for the minimal Jacobi estimators. Thus, by
using (1.80) this proof can be completed. O

Now, we calculate the variance. Since the covariance kernels of the Wiener process and the Poisson
process are determined by the same function min(-,-), the variance of the noise error contributions
due to a Wiener process or a Poisson process for the Jacobi estimators is given by (Using (2.24) with

T=T =1)
Var [ BT ( to T2"/ / Q(7) Q(s) min(BT's, BT'T)dsdr.
Using the symmetry property of function min(-,-) and the fact that le Q(s)ds = — [; Q(s)ds, we
obtain .
Var [eBwT(to = T2n : / Q(r /T Q(s)dsdr. (2.30)

Let us denote by eﬁw(to; n,k, i) as the noise error contribution in the minimal Jacobi estimators

given by (1.29). Then, we have

Var[ (to,nﬁu = Tn= 1/ Qn (T /Qn )dsdr, (2.31)

(sk)
where Qn(7) = (BT')" ué;jfgf’;wnﬂ) with T' € Dy, p, k €] — 1, +00].

By applying the Rodrigues formula, we get

1 1
| s @PEIG) [y P (s s
0

T

=" [t ) () [ oy
= ; Wy o1 (T) P "(T) | W,y o (8)ds dT

n!

1

1
o | s aerar) P P )
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Then, we obtain

2n nl(n —1)!
T 1B2(k+n+1l,u+n+1

Var [eﬁw(to,n K ,u)} )I(u,n,n). (2.32)

with )
I(p, Kkym) /w2#+125+2 )Pﬁ’“(T)PTffjll’ﬁJrl(T)dT. (2.33)
0

Let us stress that Var [ew to;n, K u)} ~ Tt

Let us denote by ew(to,n, K, 14, q) as the noise error contribution in the affine Jacobi estimators
DI(Z)L a7 qx‘s(ﬁTﬁ + ) given by Corollary 1.3.15 with ¢ = 1. For n = 1, we have the following results:

Proposition 2.4.54 [Liu 2011c] The variances of the noise error contributions for the Jacobi estima-
tors of the first order derivative of T are given by

2 p+1 B2u+2,26+3)

1% [5t;1,, }: , 9.34
ar [es(tos Lm0 | = g S BAn £ 2. 11 9) (2:34)
for minimal estimators and by
Var {eﬁw(to;l,ﬁ,,u,l)} =
2 2n  p+2  B(2u+4,25+3)
RIS T 94 2K + 7 B2(k + 2,1+ 3)
L pHl B2a+2,2645) (2.35)
RS T 9y + 2k + 7 B2(k + 3, + 2)
o 2 B(2 4,2 4
4 n (21 + 4,26+ 4)

>\ N
AL SR B 12 4 3)B(k + 3, 1+ 2)

for affine estimators Dl(in,t)t 8T qx5(5T§ +to) with ¢ =1, where Mg ypne = (K+n+2)— (2n+r+p+3)¢E
and /A\,{%né =1—Aspune. The value n is equal to o2, if the noise is a Wiener process, and 1 is equal
to v, if the noise is a Poisson process.

Proof. By using (2.32) with

(u+1)B(2u + 2,2k + 3)
2u+2k+5 ’

I(p, kym=1) =

we get the desired result (2.34). Similarly, we can obtain Var e (to; 1, K, 1, 1)| by using

€g(to; Lk, p,1) = Aﬁunée (to; Lk, p+ 1) + A ,,u,n,&eﬁw(to; Lk +1, ).

O

As a consequence, since E[eﬂw(to; 1Lk, )] = E[eﬁw(to; 1,k, u,1)] = v for a Wiener process (v = 0)

or Poisson process (v # 0, where v is the intensity parameter of the Poison Process), by using the

Bienaymé-Chebyshev (2.13) we obtain the error bounds for the noise error contributions for the Jacobi
estimators of the first order derivative of x.
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Theorem 2.4.55 [Liu 2011c] [First order derivative estimation] Let n = 1. Let the noise be a Wiener
process or Poisson process, then for any real number v > 0,

1
r (‘eﬁw(to; 1, K, 1) — V‘ < ’y\/Var[eﬂw(tg; 1, K, ,u)]) >1-— o2 (2.36)

1
r (’eﬁw(tg; 1,k,p,1) — V’ < fy\/Var[eﬁw(tg; 1, K,y 1)]) >1-— 2 (2.37)

where v = 0 for a Wiener process; v # 0 for a Poisson process and Var[eﬁw (to; 1, K, )], Var[eﬁw (to; 1, K, p, 1)]
are given respectively by (2.34) and (2.35).

For the case n = 1, the bounds given by Theorem 2.4.55 characterize the noise error contribution
€2 (to; 1, K, 1) (vespectively e (to: 1, k, u,1)) for the minimal Jacobi estimator Dénli ﬂT:E(s(to) (respec-
tively the affine Jacobi estimator Df{nl)t 8T qx5(5T§+to) with ¢ = 1). They depend on Var [eﬂw(to; 1, kK, 1)

given by (2.34) (respectively Var [eﬁw(to; 1,k, )| given by (2.35)). Similar results can be obtained for

n = 2 since
20 (i, ky,n = 2) = — (k + 2)%(k + 1)B(2u + 5,2k + 3)
+(k+2)(p+2)(3x+5)B(2u + 4,2k + 4)
— (k+2) (1 +2)(3u + 5)B(2u + 3,2k + 5)
+(n+2)%(n+1)B(2u + 2,26+ 6).

and of course for higher values of n. Remember that, for fixed T, we have Var [eﬂw(to; n, K, u)} ~ #
Since all these variance functions decrease with respect to T" independently of k and p, it is sufficient to
observe the influence of x and . In the minimal Jacobi estimator case one can get a direct computation
(result is reported in Figure 2.1 by taking n = T' = 1) whereas in the affine case it is not difficult to
obtain a 3-D plot as in Figure 2.2 and where n = T = 1, £ = £(k, j1) is the smaller root of P4 Fl

From this analysis, we should take negative values for x and p so as to minimize the noise error
contribution. Moreover, we can observe that the variance of eﬁw(to; 1, K, pu, 1) is larger than the one of
eﬁw(to; 1, k, p) if we take same value for k and p, hence we should take the value of T for affine estimator

D,inli 8T 1x5(ﬁT£ + to) larger than the one for DSLBL BTmé(to) 80 as to obtain the same noise effect.
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Figure 2.1: Variances of the noise errors for the minimal estimators.
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5

Usually, the observation function x° is only known on discrete values. To simplify our notations,

we denote the noise error contribution eﬁw,m(to; Ky i, T, €, q) defined in (2.4) by eﬁwT,m(to). By applying

the properties of the mean, variance and covariance, we have

B [eZh(t0)] = e 2w Q) Bl (to -+ 6T1). (239)
=0
Var { T (o) } T2” 3 Z w; 2Var [w(to + BTt;)]
(2.39)

+ %% Z Z w;w; Q(t:) Q(t;) Cov [w(to + BTt;), w(to + BTt;)] .

i=0 j=i+1

Moreover, for any 77 > 0 and 15 > 0

Cov |11 (tg), €572 (to)] = TnTn — Z Z wi w; Q(t:) Q(t) Cov [w(to + BTit:), w(to + BTat;)] .
=0 j=0
(2.40)

Then, by using Bienaymé-Chebyshev (2.13) and the previous formulae, we can derive similar results
than the ones obtained in the continuous subsection and which coincide if m — oco. However this is
true with some few additional assumptions as detailed below.

In order to show the bridge with the continuous case, we can use the following properties, where
T, T1 and T are given (finite), and T tends to 0, i.e. m tends to infinite.

Tim B [, (t0)| = E [ (t0)] (2.41)
n}gnoo Var [ AT (to) =Var {GBWT(tU)} , (2.42)
mlgnoo Cov { BT (1), e 'BwT%l(to)_ = Cov [e’ngl (to),eﬁwTQ(to)} . (2.43)

Hence, by using Theorem 2.4.51 and the fact that E [(Ym - 0)2} = Var Y] + (E Y] — ¢)? for
any sequence of random variables Y,,,, we can get the following theorem.

Theorem 2.4.56 Let {ww(7), T > 0} be a continuous parameter stochastic process satisfying conditions

(C1) to (C3), w(t;) be a sequence of {w(7), T > 0} with an equidistant sampling period Ts. Then,
8T -
ew.m(to) converges in mean square to 0 when Ts — 0.

2.5 Independent stochastic process noises

In the section, let us consider a family of noises which are continuous parameter stochastic processes
satisfying the following conditions

(Cy) : for any s,t >0, s # t, w(s) and w(t) are independent;
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(C5) : the mean value function of {w(7), T € Q} belongs to L(I);
(Cg) : the variance function of {w(7), T € 2} is bounded on I.

Note that white Gaussian noise and Poisson noise satisfy these conditions. Then, we can give the
following theorem.

Lemma 2.5.57 Let {ww(7),7 > 0} be a continuous parameter stochastic process satisfying conditions
(Cy) to (Cs). Let w(t;) be a sequence of {w(7), T > 0} with an equidistant sampling period Ts. If
Q € L2(I), then we have

i B [ef, (10) / Q(r) Elw(to + BT7) dr (2.44)
Tim Var [ o7 (to)] - o, (2.45)

where ef—fm(to) is the associated noise error contribution for the Jacobi estimators.

Proof. Since w(t;) is a sequence of independent random variables, by using (2.39) and (2.38) we have

m

BB (t0)] = e }j [w(to + ATH)], (2:46)
=0
Var[ " (to) } - T2" — Zw 2 Var [w(to + 8Tt)] . (2.47)

According to condition (Cg) the variance function of @ is bounded. Hence, we have

w(m - wz
where w(m) = Jnax wi and U = sup |Var[w(ty + ST't)]| < co. Moreover,
<i<m 0<t<1
i B e, ()] = BT / Q(r) Efw(to + BT7) dr (2.49)
li —(Q(t:))* = t))? dt. 2.50
Jim D Q(0) Aw» (2.50)
Since all w; are bounded and Q € L£2(I), we have
w(m) o= w
1 — (Pt :
A UZ D S @) =0
Thus this proof is completed. O

By using the previous lemma, the Bienaymé-Chebyshev inequality implies that if the value of T is
set then €22, (to) converges in probability to @ fol Q(7) Elw(to+ T )] dr when Ts — 0. Moreover,
similarly to Theorem 2.4.56, we can get the convergence in mean square.
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Theorem 2.5.58 [Liu 2011c] Let {w(7), 7 > 0} be a continuous parameter stochastic process sat-
isfying conditions (C4) to (Cg), w(t;) be a sequence of {w(7), 7 > 0} with an equidistant sampling
period Ts. If k,p > —% and the value of T is set, then e’Bme(to) converges in mean square to
W fol Q(7) Elw(to + BT 1) dr when Ts — 0, where Q is defined in (1.85). Moreover, if Elw(T)] =
n—1

Z U 0 with 7; € R, then egm(to) converges in mean square to 0 when Ty — 0.

i=0

n—1
Proof. If E[w(1)] = Z 7; 7" with 7; € R, then similarly to Theorem 2.4.51 we can obtain
=0

1
(6"

Hence, this proof is completed. g

1
/0 Q) Elw(to + BT7)] dr = 0.

When the sampling period and the value of T are set, the noise error contribution dose not converge
to zero. In this case, similarly to (2.14) we can use the Bienaymé-Chebyshev inequality to give two error
bounds for this noise error. Then, we can study the associated convergence rate by using Proposition
2.3.48. In particular, if w is a white Gaussian noise, then according to the tree-sigma rule, we have

Pr pr
2% T % 2.51)

where p; = 68.26%, p2 = 95.44% and p3 = 99.73%.

Now, we are going to study the influence of parameters x, i, ¢ and n on the variance Var [eﬁqgm(to)}
given by (2.47). This study is done in the case where k and p are positif. The case where k and p are
negative will be considered later. Let us denote Var [e’g‘,ﬁm(to)} by V(k, 1, q,n,§). Then, we assume
that T'= 1, m = 100, and the variance of w is a constant which is equal to 1. We take trapezoidal rue
as the used numerical integration method.

We can see in Figure 2.3 the variations of V(k, u,q,1,£) corresponding to the noise error contri-
butions for the Jacobi estimators DSL BT, qx‘s(to) with ¢ = 0,2,3 and the time-drift Jacobi estimator

DSZL a7 qzlxé(ﬁTﬁ +tp) with & = &, It is clear that V(k, u,q,n,€) is increasing with respect to ¢

and increasing with respect to x and g when ¢ = 0,1. Hence, we can decrease the value of x and p
so as to reduce the noise error contribution. Moreover, the noise error contribution for DSL 6T’2x5 (to)
can be much larger than the one for DSL 6T71x5(6T§{”m + tg). We can obtain similar results in case
where n # 1.

According to (1.166), we can use V(k, u,q,n,§) with £ = % to study the parameters’ influence on
the noise error contribution for the central Jacobi estimators. The variations of V(k, i, q, n, %) are
given in Figure 2.4 with ¢ = 0,...,5. We can see that V(k, u, q,n, %) is increasing with respect to x,

w and q. Hence, we can decrease the value of x, it and g so as to reduce the noise error contribution.
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(a) V(k,t,q,1,€) withq =€ =0,0<x <6and 0 < < 6. (b

(¢) V(k,p,q,1,6) with ¢ =2, £ =0,0< s <6and 0 < (d) V(k,u,q,1,&) with ¢ =
w < 6.
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Figure 2.3: Variation of V (., i, q,n, &) with respect to x and p for n =1 and ¢ =0, 1,2, 3.
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Figure 2.4: Variation of V(k, i, q,n, %) with respect to k and p forn=1and ¢ =0,1,2,3,4,5.
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We can also consider the other numerical integration methods so as to calculate the variance. It
is clear that if kK > 0 and g > 0 then we have Q(0) = Q(1) = 0. Hence, by applying trapezoidal rue,
right rectangle rule and left rectangle rule we obtain the same value for V' (k, u, q,n,&). Then, we take
Simpson’s rule and midpoint rule. We can see in Figure 2.5 the variation of V(k, k,1,1,§) with £ = 0.5
and & = £ respectively. Consequently, trapezoidal rule is the optimal numerical integration method
to reduce the noise error contribution for Jacobi estimators (central or not). We can obtain similar
results for other values of ¢ and n.

variance values variance values
6 16
-
- : - P
Trapezoidal rule , / Trapezoidal rule P
— —  Simpson rule s 141 — - —  Simpson rule e
Srol--- Midpoint rule s — — — Midpoint rule e
4 L
- 12 . s
4 e
4 B s P
P 10+ L
4 e
4 e
- e
3 - 8 -
7 e
- -
- -
- 6k _
- -
2 - -
e - _ -
P 4p _ -
~
1~

(a) V(k, 1, 1,1,€) with € = 0.5 and 0 < k = p < 6. (b) V(k,p,q,1,€) with € = {é”i’" and 0 < k= pu <6.

Figure 2.5: Variation of V(k, i, q,n,&) obtained by different numerical integration methods with ¢ =
n=1and 0<k=pu<6.

Finally, let us consider the case where k < 0 and p < 0. We take the formulae given in (1.111),
(1.113) and (1.115) to calculate the variance V (k, i, ¢, n,€). Then, we can see in Figure 2.6 the variation
of V(k,11,0,1,0) for —1 < k < 0 and —1 < pu < 1. Hence, V(k, 1,0,1,0) is decreasing with respect
to k and p when k < 0 and p < 0. Consequently, the negative values of k produce larger noise error
contributions for the Jacobi estimators given by (1.111), (1.113) and (1.115).

Let us recall that the formulae (1.111), (1.113) and (1.115) are given to avoid singular values in
Jacobi estimators in discrete case. However, these formulae produce larger noise error contributions
when £ or p is negative. We give a new way to avoid the singular values. If K < 0 (resp. p < 0), then
we set the weight wg (wy,) equal to 0. Hence, there is not singular values at 7 = 0 and 7 = 1 when
k < 0 and g < 0. We can see the variation of so obtained V(k,u,0,1,0) and V(k, i, 1,1,™") in

Figure 2.7. Then, we can observe that V' (k, 1,0,1,0) and V (s, i, 1,1, Eg”m) are increasing with iespect
to k and p. Consequently, the negative values of k and p can reduce the noise error contributions for
Jacobi estimators. However, this choice of the weight wg can produce a numerical error. We can see in
the next section that if the function the first order derivative of which we want to estimate satisfies a
differential equation then this numerical error can reduce the truncated term error for minimal Jacobi

estimators.
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variance values

(b) V(k,p,0,1,0) with =1 < x <0 and 0 < pu < 1.

Figure 2.6: Variation of V (k, i, q,n, &) with respect to x and p forn =1 and ¢ = £ = 0.
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2.6 Numerical simulations

In order to demonstrate the efficiency and the stability of Jacobi estimators, we present some numerical
results in this section. The influence of parameters for these estimators is studied in Subsection 1.3.3,
Subsection 1.6.2, Subsection 2.4 and Subsection 2.5. We recall the results in the two following tables,
where the notations a T, b " and ¢ \, mean that if we increase the value for the parameter a then the
error b increases and the error ¢ decreases.

D,(:i 51.4%(BTE + to) | Amplitude error | Time-drift | Noise error contribution
kT /! /" /
p N\ N\ /
qT N\ Y /"
T / / hY

Table 2.1: Influence of parameters for causal and anti-causal estimators Ding 57,42 (BT + to).

lA?SZT qx(to) Truncated term error | Noise error contribution
KT Y /
o N /
g1 Y /"
T / Y

Table 2.2: Influence of parameters for central estimators ﬁfﬁ; 7.4 (t0)-

2.6.1 Numerical tests for central Jacobi estimators

Let 29(t;) = x(t;) + cw(t;) be a generated noise data with an equidistant sampling period Ty = 1073
where ¢ > 0. The noise cw(z;) is simulated from a zero-mean white Gaussian iid sequence. By
using the well-known three-sigma rule, we can assume that the noise level § for cw is equal to 3c.
In this subsection, we use central Jacobi estimator given by (1.169) to estimate the derivatives of .
According to Corollary 1.6.32, we set k = p and choose the truncation order g to be an even integer.
Moreover, according to Table 2.2 the associated truncated term error is decreasing with respect to x
and ¢, the associated noise error contribution is increasing with respect to x and ¢. In order to reduce
the truncated term error and to avoid a large noise error contribution, we set ¢ = 4 and Kk = 5. The
noise error decreases with respect to T' and the truncated term error increases with respect to T. In
the following examples, we are going to choose an appropriate value for T' by using the knowledge of
function =z.

We use the trapezoidal rule to approximate the integral in central estimators with 2m + 1 values.
The estimated derivatives of = at the point t; € I = [~2,2] are calculated from the noise data x°(t;)
with t; € [=t; —T,t;+T], where ' = mT and 2m+1 is the number of sampling data used to calculate
our estimation inside the sliding integration windows. When all the parameters are chosen, the values
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of an,q can be calculated explicitly by off-line work with the O(n?) complexity. Hence, the central
Jacobi estimators can be written like a discrete convolution product of these pre-calculated coeflicients.
Thus, we only need 2m + 1 multiplications and 2m additions to calculate each estimation.

The numerical integration method has an approximation error. Thus, the total error for our
estimators can be bounded by

1)
R,

<|zm e || - D )

QK n,q QK n,q Qﬁ,n,q
< Bnoise + Bnum + Bbias = Btotala

+ D glt) — o (1)

") is the numerical approximation of ™ x(t;) (resp. ™ 2%(t;)) with

where IQ’ (resp. I r,T,q T w,T,q%

Qm
the trapezmdal rule and Bnum is the well-known error bound for the numerical integration error

[Ralston 1965]:

3 2
(n) zm 2 o _
DH T q ( ) IQAmn,q S 12(2m)2 Tes[ljltl),l] Qﬂ’n,q (T) x(tl + TT) B Bn“m (252)

According to Proposition 2.3.48 and (1.166), we take Bpoise = Emi,n7q,§% with & = % According to

q+2

Corollary 1.6.32, we take Bpgs = q+n+gé&n7qT . We are going to set the value of m such that

Biotar Teaches its minimum and consequently the total errors in the following two examples can be
minimized. For this, we need to calculate some values of () with j = 0 -,n+q+ 2. According

to Remark 2, we calculate the value of M, 244 in the interval [—2 24 However, in

- n+q+3’ n+q+3]

practice, the function x is unknown.

Example 1. We choose () = sin(2rt)e ™" as the exact function. The numerical results are shown
in Figure 6.2, where the noise level ¢ is equal to 0.15. The solid lines represent the exact derivative

(n)

values of =7’ for n = 1,2,3,4 and the dash-dotted lines represent the estimated derivative values

ZA?I(JL% qx‘f(ti). Moreover, we give in Table 2.3 the total error values maX ’DKqu‘{(t ) — xgn) (t;)| for

i€

the following noise levels: 6 = 0.15 and = 0.015. We can see also the total error values produced
with a larger sampling period T = 10T = 1072,

Table 2.3: max éT) 24 (t;) — wgn)(ti) .

t:€[2,2]
0 n=1(m) n=2(m) n =3 (m) n=4(m)
0.15 9.45¢ — 002 (591) 1.1 (698) 1.258¢ + 001 (777) | 1.278¢ + 002 (850)
0.015 1.85e — 002 (425) | 2.951e — 001 (523) 3.888 (601) 4.588¢e + 001 (675)
0.015 (I7 = 0.01) | 4.06¢ — 002 (47) | 5.645¢ — 001 (55) 7.359 (62) 9.686¢ + 001 (69)
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(c)n=3,k=5,g=4and T = 777T%. (d)n=4,k=05,¢q=4and T = 85075.

Figure 2.8: The exact values of zgn) (t;) and the estimated values Dg?%’qa;‘{ (t;) for 6 = 0.15.
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Example 2. When z3(t) = et2, we give our numerical results in Figure 6.1 with the noise level
6 = 0.15, where the corresponding errors are given in Figure 2.10. In Table 2.4, we also give the total
for 6 = 0.15 and § = 0.015, where the total error values are

error values m[z;x] ‘Dé%qxg(t ) — xg”) (t;)

produced with Ty and a larger sampling period T/ = 1072.

Table 2.4: max ‘DY’T A xg”) (t:)].

2;€[2,2]
0 n=1(m) n=2(m) n =3 (m) n=4(m)
0.15 1.42¢ — 001 (442) 2.152 (549) 2.982¢ + 001 (643) | 3.756¢ + 002 (733)
0.015 2.22¢ — 002 (346) | 4.435¢ — 001 (428) 5.973 (510) 8.769¢ + 001 (595)
0.015 (77 = 0.01) | 3.404e — 001 (54) 3.425 (61) 3.638¢ + 001 (68) | 5.235¢ + 002 (79)

We can see in Figure 2.10 that the maximum of the total error for each estimation (solid line) is
produced nearby the extremities where the truncated term error plus the numerical error (dash line)
are much larger than the noise error. The noise error (dash-dotted line) is much larger elsewhere. This
is due to the fact that the total error bound By, is calculated globally in the interval [-T — 2,2+ T].
The value of m with which By reaches its minimum is used for all the estimations ﬁin% qa:g (t;) with

€ [—2,2]. This value is only appropriate for the estimations nearby the extremities, but not for the
others. In fact, when the truncated term error and the numerical integration error decrease, we should
increase the value of m so as to reduce the noise errors.

In order to improve our estimations, we can locally choose the value of m = m;, i.e. we search the
value m; which minimizes Bioq; on [—T1; + t;,t; + T;] where T; = m;Ts. We can see in Figure 2.11 the
errors for these improved estimations ng% q x5(t;). The different values of m; are also given in Figure
2.11. The corresponding error bounds are given in Figure 2.12. We can observe that the proposed
error bounds are correct but not optimal. However, the parameters’ influence to these error bounds
can help us to know the tendency of errors so as to choose parameters for our estimations. On the one
hand, the chosen parameters may not be optimal, but as we have seen in our examples, they give good
estimations. On the other hand, the optimal parameters qop, Kop and mg, with which the total error
bound reaches its minimum may not give the best estimation. That is why we only use these error
bounds to choose the value of m.
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Example 3. Let us consider the following function

{ 1B yop ift <0,
r3(t) = s .

gt°+2t, ift>0,
which is C? on I = [~2,2]. The second derivative of z3 is equal to |-|. Consequently, acé?’) does not exist
at t = 0. If n > 1, then this function does not satisfy the condition x € C™"*2+4(I) of Corollary 1.6.32.
The numerical results are shown in Figure 2.13, where the sampling period is 75 = 10~2 and the noise
level ¢ is equal to 0.15 and 0.015 respectively. The solid lines represent the exact derivative values of
xén) for n = 1,2,3 and the dash-dotted lines represent the estimated derivative values Din% qxg(ti).
For the estimations of (1) and 2@, we set Kk = 5 and ¢ = 4. When we estimate 2(®), the noise error
increases. Hence, we need to reduce the values of £ and ¢ to K = 2 and ¢ = 2. In Table 2.5, we give

also the total error values max ‘ﬁ(n) i (t;) — xén) (t;)| for n =1,2 and § = 0.015,0.15.

tie[2i2] 1 T

Table 2.5: max
tie[272]

4] n=1(m) n=2(m)
0.15 | 9.7¢ — 003 (1700) | 9.65¢ — 002 (1700)
0.015 | 4.7¢ — 003 (1200) | 7.23¢ — 002 (1200)

DY)l (t:) — 25 (1)].

2.6.2 Numerical tests for causal Jacobi estimators

In this subsection, we give some numerical results for the causal minimal Jacobi estimator D,S?BL,—T‘T(tO)
given in (1.29). Let n =1 in (1.29), then we have

1
DISI,BL,—Txd(tO) = / Prpr(T) 2°(to — TT) dr, (2.53)
0

h
where )
TB(k+2,1+2)

with Kk, €] — 1,400 and T' € Dy,. Observing that

Prp1(T) = = (h+r+2)7—(k+1)) (1 —7)F7" (2.54)

11 (T) = — (4 K+ 2)7 = (54 1)) (L= 77, (2.55)

then by applying integration by parts, we obtain

1
1 1 .
D£7L7_Tx(t0) = TBo 12079 /0 Wyt1,w41(7) x(to — T'T) dr,
1’ ! (2.56)
= m \/0‘ wu+1’,€+1(7_> x(t() — TT) dr.
By using the well known Taylor’s formula, we have for any T' € Dy, there exist 6,4, €]to — T'7, to[ such
that )
B .
vr e [0,1], @(to — T7) = i(to) — TrzP (ty) + (;)m<3>(97,t0). (2.57)
115
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Then, by using (2.57) in (2.56) we get

1 2
(1) B 1 : 2 (=T7)" (3)4
Dﬁ,u,fo@O) —EWMA ’LU'U,_A,_LHJ,_l(T) <.%'(t0> — TT.T( )(t()) + 9 I'( )(97—7750) dr -
bto) — T—2 2@ () + ° /1 ()72 (0r4,) d o
=3 - T—x Wyt g1 (T)T72 - T.
0 rtptd 0 Br+2,0+2) Jy 1,541 o
Hence, the truncated term error for DSEL’_Tx(to) is given as follows
p® gy — T2 (@) T ' 2,8)(6., Vd
w1 (t0) — &(to) = — P (to) + B+ 2.0+2) /s Wy 1,541 (T)T72 (074 ) AT
(2.59)
From now on, let us take the trapezoidal rule to approximate the integral given in (2.53)
s 1 &
Do = > wip (i) @t — Ti), (2.60)
i=0
where wg = w,, = %, w;, =1fori=1,--- m—1,and 7, = # for i = 0,--- ,m. If the value of k
(resp. ) is negative, then we set wg = 0 (resp. wy,, = 0) so as to avoid the singular value at 790 = 0
m A
; (—T7)
(resp. T, = 1). We denote by I;i’:?T = Z % (j!n)p;{,u,T(Ti) for j =0,1,2. Then, we can give the
i=0

following proposition.

&
Proposition 2.6.59 Let Iﬁﬂy’:} be the minimal Jacobi estimator given by (2.60) in discrete case. If
we have the following conditions:

(E1) : x is a solution of the following equation

Vt eI, i(t) + cx(t) = e(t), (2.61)
where ¢ € R*, and there exists M, € Ry such that Stlel? le(t)] < M,
+2,m
(Ey): c=— E:T,Z: with I;;?T being not negligible,
(Es) : Ip., =~ 1,

8
then the estimation error for I, ’FT s given by

s . 2
IS&’ITT — Jf(to) ~ €(t0)I;K7’lTT + eRrym + €wym, (2.62)
m m
w; wi (=T'7: 3 ‘
where €gm = Z% mzp,i%T(n)w(to —T7) and erym = z%ﬂ; (GZ)p&mT(Ti)x(?’)(On,to) with
1= 1=
97i7t0 E]to — TTZ', to[.
116
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Proof. By using the well known Taylor’s formula, we have for any T" € Dy, there exist 0., €
Jto — T'7;, to[ such that

2 .
v € [0,1], w(to—Tm) =) (j,Z)x@(to) + (3,@)@«(3) (0r,.40)- (2.63)
= ! !
Then, by taking (2.63) in (2.60) we get
J . T. T
I;’En,’;TT :x(tO)I;;TMT + :Jc(to)lp;’:‘w + 232 (tO)Ip:,’;TT + €Rym T €om, (2.64)

(1)

w7 %(t0) in discrete case. Hence,

2
where z(?) (to)Ip, )" +€Ry,m corresponds to the truncated error for D
the estimation error can be given by

J . . T 72
I‘;m:::LT — i(to) :Jj(to)[z%;fzy + 2 (to) (IP:@TL,T - 1) + 2@ (tO)Ip,g:ZLT + €Ry,m T+ €wmm- (2.65)
Finally, by considering the conditions (1) — (£3) this proof can be completed. O
Recall that IT;’:?T for j = 0,1,2 is the numerical approximated value for the integral value

fol Prep1(T) (]T.!T)j dr which is given in the following lemma.

Lemma 2.6.60 Let p, , 1 be the function defined by (2.54) and i € N, then we have

1 144 i :
=TT -TYT(24+i+k) TUA+p+k
/ pn,u,T(T)Q o ( : ) I( ) (4+p ) _ (2.66)
(1+49)! i! '2+k) T@A+p+r+1)
Proof. By using (2.55) we obtain
1 (_TT)I—H' Tz‘ 1 (_7_)1+i
dr = [ K ———dr. 2.67
/0 Pt () T T = Bl v 2+ 2) /0 Bt () oy 47 (2.67)
By applying integration by parts and using the classical Beta function, we get
1 (—TT)H'" Ti 1 (—T)i
dr = —d
/0 Pt () G T = Bl 2 5 2) /0 W41 (T) = AT
: Y
:B(ﬁ+2+z,u+2)( T) (2.68)
B(k+2,u+2) i!
CT@2+i+r)I@+p+k) (-T)
TR+ R)I@+p+r+i) il
O

In particular, by using (2.66) with ¢ = 0 and 1, we get

1 ! (=T7) K2
/0 _TTpmu,T(T)dT = land /0 pK’M’T(T) 2 dr = _Tm.

Moreover, it is easy to get that fol Prpu,7(T)dT = 0. Consequently, the condition (F2) corresponds that
the numerical error for I;!Z’T is not negligible, and the condition (Es3) corresponds that the numerical

2
error for Iy . is negligible. If we assume that the numerical errors for I, *". and e, ,, are negligible,
then we can give the following corollary.
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Corollary 2.6.61 Let us take the same assumptions given in Proposition 2.6.59. Moreover, we assume
that

(Ey) : there exists M3 € R such that Hw(?’)HOO < Mj

2
(E5) Ipm _Tui:iAL )

3

(Es) : erym = fo ) e Prpu(T)X (3)(971,50) dr where 0,4, €]ty — T'T,to].

Then the estimation error for Ixm,,;TT s bounded by

M is an error bound for the noise error contribution e .

T?¢ k+3
2 K+p+5d

M3 + M, (2.69)

Pr,u,T

m j:(to)H < T&M. +

K42
p+r+47

Proof. By observing (2.59) and (2.64), we can obtain that

where g =

/ L) P (1)2®) (074,) dT = r / o () 722®) (0r4,) dr (2.70)
o 6 Ko, T T,to QB(K + 2, o+ 2) 0 p+1,x+1 T,to ) -
where the truncated term error fo T)g 7(1)23)(0,4,) dr is approximated by eg,, in (2.64).

Then, this proof can be easily completed by usmg Proposition 2.6.59. O
We are going to give some numerical examples where we take a class of functions satisfying the
conditions (F1) and (E4). We set k < 0 and g > 0 such that the conditions (Es), (E3), (E5) and (Eg)
meet.
Let 2°(t;) = (t;)+cw(t;) be a noisy generated data with an equidistant sampling period Ty = 20100

The noise cw(x;) is simulated from a zero-mean white Gaussian iid sequence. In the following examples,

the constant c is set such that the signal-to-noise ratios (|[Haykin 2002]) SNR = 10log;, <%|‘Cw(( ))‘|Z> is

equal to 30dB. By comparing with the minimal estimator DS,BL,—Txé(tO) given by (1.29) with k = =0,

we show the improvement of D(l) 2% (to) with =0 and & < 0.

The error bounds of the truncated term error and the noise error contribution for D( ) Z0,4=0,—T% %(to)
are given by (1.49) and (2.51) respectively. Similarly to (2.52), an error bound of the numerical error
for D;:)O?#:O’_Tx‘s(to) can be given. Hence, the value of the parameter m (T' = mT5) is chosen such
that the total error bound arrives its minimum.

The values of k and T for DS<)0 #:0’_Tx6(t0) are set by considering the two following criterions

e the noise error bound for DS<)0 =077 %(tp) is equal to the one for DS:)O =0 _2%(to),

e condition (E2) meets.

Hence, we compare DS:)U 4i=0 2 (o) and D,(K)0 4=0—TT %(tp) by giving the same noise error contribu-

tions.
In the following examples, the dotted lines refer to the estimations of D,(glz)o,#:o,me(s(tO) and the

dash-dotted lines refer to the estimations of D£1<)0’#:077Tx5(t0).
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Example 1. We choose 29(t;) = sin(t;) + cw(t;) with I = 4n. Hence, 1 satisfies conditions (E),
(E4) and c is equal to 0.0225. By some calculations, we obtain Ty = 7077 for DS:)O’#:O,_T2$({(750) and

K

T, = 82071, k = —0.458 for D(lgo’uzo,lex‘f(to). With these parameters’ values, we can verify that
conditions (Fj3), (Fs5) and (Fg) meet. Hence, we can apply Corollary 2.6.61 to obtain error bounds for

Df,b1<)07 HZO’_Tla:‘ls(to). The obtained estimations and corresponding error bounds are shown in Figure
2.14. We can see that with the same level of noise error contributions, the estimator DI(€1<)0,M:077T1 a:‘ls(to)

produces a smaller truncated term error than DS:)O 4=0,—T1 x‘f(to). Consequently, we obtain a delay-free

estimation.

Example 2. We choose z3(t;) = t;sin(t;) + cw(t;) with I = 14 and ¢ = 0.18. Hence, xy satisfies
conditions (E7) and (E4) with azg) (t;) +x2(t;) = 2cos(t;). By some calculations, we obtain Ty = 6397
for DS:)O’#:O’_TQ:Ug(tO) and Th = 7057, k = —0.4 for D,EQO’“:()’_Tl:Eg(tO). The obtained estimations
and corresponding error bounds are shown in Figure 2.15.

Example 3. We choose z§(t;) = exp(T%)sin(6t; + ) + cw(t;) with I = 5 and ¢ = 0.0075. Hence, z3
satisfies conditions (F1) and (Ey) with

) 1271 —t;

zsy (t;) + 36 z3(t;) = —10 exp(ﬁ) cos(6t; + ), (2.71)
)y = 19315 iy 6k ) — 9 —ti .
xs (t;) = 16 exp( 9 ) sin(6t; + 7) — 203.5 exp( 5 ) cos(6t; + 7). (2.72)

By some calculations, we obtain Ty = 1947, for DS:)O =0 _TQZL‘g(to) and T7 = 2107, kK = —0.4771 for

D,(:<)O’ H:o,—Tlxg(tO)- The obtained estimations and corresponding error bounds are shown in Figure

2.16. We can see in Figure 2.16(c) that the truncated term error for ‘D/(£1<)0,p:0,—T1‘Tg(t0) is much smaller
than the corresponding error bounds obtained by Corollary 2.6.61. This is because the truncated error

2
part e(t;)Ip,

K

" given by (2.62) with e(t;) = —10exp( —11) cos(6t; + ) reduces the truncated error part

€Rr, m Obtained by x§3). Consequently, we obtain a delay-free estimation.
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Figure 2.14: Comparison between the minimal estimator D((J?(%,—Tg 29 (tp) and DS’()]’?TI 29 (to) with Ty =
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120

© 2011 Tous droits réservés.

http://doc.univ-lille1.fr



X=t sin(t)

151

@

X(ty)

o)
- D*OJ‘I.O‘*T1

10

(1)
- - Do‘o,—sz(to)

(a) Estimations.

Truncated term errors and the associated error bounds

Thése de Dayan Liu, Lille 1, 2011

Total estimation errors and the associated error bounds

25¢

(b) Associated estimation errors and corresponding error

bounds.
Noise errors and the associated error bounds

bounds.

(c) Associated truncated term errors and corresponding er- (d) Associated noise errors and corresponding error

ror bounds.

Figure 2.15: Comparison between the minimal estimator D

6391, Th = 7057, and K = —0.4.

© 2011 Tous droits réservés.

1
((),3,7T237§(t0)

121

and D) ;. 23 (to) with Ty =

http://doc.univ-lille1.fr



Thése de Dayan Liu, Lille 1, 2011

x=exp(-t/1.2) sin(6t+m) Total estimation errors and the associated error bounds

6 2r
x®
@ R it e
ab A - D—.4771,0,—zj(to) 15
,/\ ___p® _xt) L
[\ 0o-T, 0 i A
Il \ Y
2r \ ’v |
| ! AN 0.5F , \
| f \ / \ S
! | A \ 7N . \ ’ \\ /}.,.;«\ .
or | i A N ) N g - or W“"‘M/ N-,l\w,w,,w"’/'f"W'ﬂwwmMM;W‘*MMmWW&WMWWAWW
I \ g o
( ) /l N4 , \ ; ol
) v -05F ! N
-2F | W4 ! W
I ‘ !
! -1+ !
’ ekl kiR R R R R R ki KRR T SR TR R
-4r ! \\ //
fi -15¢ " _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ ___._.___.
'
6 . . . . ) = . . . . )
0 1 2 3 4 5 0 1 2 3 4 5
t t
(a) Estimations. (b) Associated estimation errors and corresponding error
bounds.
Truncated term errors and the associated error bounds Noise errors and the associated error bounds
21 01r
15k - — - - ________. 0.08 I
b 0.06
/A
[ 0.04
0.5 / \
\ ’ \\
/ \ SN - 0.02
- N\ N P ~
0’//7 \\\\ -7 \ﬂ////l“\i LT T T =T T
J \ / e 0
/
-05r ! N
! ~ -0.02
L
T i -0.04
Vo
\/
] e -0.06
2 . . . . ) ~0.08 . . . . )
0 1 2 3 4 5 0 1 2 3 4 5
t

(c¢) Associated truncated term errors and corresponding er- (d) Associated mnoise errors and corresponding error

ror bounds. bounds.

Figure 2.16: Comparison between the minimal estimator D((fg’lexg (to) and DIS()]’?Tng (to) with T =

194, T = 210 and K = —0.4771.

122

http://doc.univ-lille1.fr

© 2011 Tous droits réservés.



Thése de Dayan Liu, Lille 1, 2011

2.7 Conclusion

In this chapter, we have studied the noise error contribution for Jacobi estimators. We have respectively
given some error bounds for the noise error contributions due to a bounded integrable noise, a non-
independent stochastic process and an independent stochastic process. These error bounds gave us
a guide for choosing parameters so as to reduce noise error contribution. We recall in Table 2.6 the
results obtained of the parameters’ influence on the variance of the noise error contributions. In the
numerical simulations, we have shown how to choose parameters for central Jacobi estimators. If the
smooth function x satisfied a differential equation, then by taking negative value for s in minimal
causal Jacobi estimators we obtained some “delay-free” estimations in discrete case. Let us remark
that by using affine Jacobi estimators we can also obtain some delay-free estimations without taking
negative value for k. However, we should take much more points in each sliding integration window so
as to reduce the associated noise error contributions.

Estimator Type of noise Figure
causal (anti-causal) minimal estimators Wiener or Poisson process | Figure 2.1
causal (anti-causal) affine estimators with ¢ =1 Wiener or Poisson process | Figure 2.2
causal (anti-causal) estimators with s,y > 0 iid random variables Figure 2.3
central estimators with x,u >0 11d random variables Figure 2.4
causal (anti-causal) minimal estimators with s, u < 0 iid random variables Figure 2.6
causal (anti-causal) affine estimators with &, < 0 1id random variables Figure 2.7

Table 2.6: Parameters’ influence on the noise error contributions
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3.1 Introduction

3.1.1 Context and motivations
Physical processes are often represented by the models described in the following form (explicit state
representation ):
&= f(z(t), u(t))
y = h(z(t))
where
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e x € X denotes the state vector with X being a differentiable manifold open subset of R™,
e u € U denotes the vector of known inputs with &/ C R™ being a set of admissible input,
e y € Y denotes the vector of measured outputs with Y being an open set of RP.

Functions f and h are in general assumed to be C*°, and inputs functions u(-) to be locally essentially
bounded and measurable (in sense of Lebesgue).

In general, it is clear that one can not use as many sensors as signals of interest required to
characterize the behavior of the system (for cost reasons, technological constraints, etc...), and the
size of vector output is lower than the one of state vector. Most of the time this implies that for a given
time ¢, the state x(t) can not be algebraically deduced from the measured output y (observed at the
time t). However, the need for information on the state is motivated by various purposes: modeling
(identification), monitoring (fault detection), or driving (control) the system (Cf. Figure 3.1). For
this, we can see [Besancon 2007|. Consequently, the problem of reconstruction of state or observer is
one of the most essential part of a general control problem.

System

Actions Known inputs / Model Measured outputs
State x
— e — ) >
Parameter p
Disturbance/fault d
Identification | OBSERVER | Monitoring
p d

l

Control
x

Figure 3.1: Observer: the essential part of control systemi.

3.1.2 Observer problem

An observer can be achieved if the system is observable. This means that it is possible to reconstruct
the initial state from the information on its inputs « and output y during a finite time interval [t;,t¢].

The purpose of an observer is precisely to provide an estimate of the current value of the state as
a function of the input and output of system.

The observer design is often based on the idea of “feedback”. More precisely, on the one hand, if
the initial value z(0) is known, then the estimated value z(t) can be simply obtained by integrating
the system (3.1) from 2(0). On the other hand, if the initial value Z(0) is unknown, then we can
try to correct on-line the integration of Z(¢) from some erroneous initial value Z(0), depending on the
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measurable error h(Z(t)) — y(t). That is to say we look for an estimate Z of x as the solution of a
system:

= f(@(t),u(t)) + k(t, h(Z(t)) — y(t)) with k(t,0) = 0. (3.2)

In most cases, the auxiliary system (3.2) is defined as an observer for the system (3.1).

3.2 Observability in a non linear context

The purpose of this section is to discuss some conditions required on the system for possible solutions
to the above mentioned observer problem. Such conditions correspond to what are usually called
observability conditions. For this, we recall some results of observability for a nonlinear system within
a differential geometric framework mainly due to Hermann and Krener [Hermann 1977| (see also Isidori
[Isidori 1989], Nijmeijer and van der Schaft [Nijmeijer 1990]) and a differential algebraic framework due
to Diop and Fliess [Diop 1991a, Diop 1991b] (see also [Barbot 2007]), respectively.

3.2.1 Review of observability within a geometric framework

In order to design an observer, one must be able to recover the information on the state = via the output
measured y from the initial time, and more particularly to recover the corresponding initial value of
the state. This means that observability is characterized by the fact that from an output measurement,
one must be able to distinguish between various initial states. The observability is indeed defined from
the notion of indiscernibility which is given in the following definition.

Definition 4 Indiscernibility [Besangon 2007] A sate x(0) is indistinguishable from another sate z'(0)
for the system (3.1) if
Yu € UVt >0, y(t,0,2(0),u) = y(t,0,2'(0),u), (3.3)

where y(t,0,2(0),u) = h(z(t,0,2(0),u)) (resp. y(t,0,2'(0),u) = h(xz(t,0,2'(0),u))) is the output of
(3.1) for the input u and the initial state £(0) (resp. z'(0)).

This notion of indiscernibility of two initial states permits us to give the definition of observability.

Definition 5 (Observability) [Besangon 2007] The system (3.1) is called observable at x if there is no
indistinguishable state from x in X. The system (3.1) is observable if it is observable for all x € X.

The previous definition is too general for practical use, since one might be mainly interested in
distinguishing states from their neighbors. Let us consider for instance the case of the following

{ y = cos(x).

Clearly, y cannot help to distinguish between x¢ and z¢ + 2km, and thus the system is not observable.

system:

However, it is yet clear that y allows to distinguish states of | — 7, §[. This brings to consider a weaker

notion of observability.
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Definition 6 (Local observability) The system (3.1) is locally observable at x if there exists a neigh-
borhood V(x) of x such that there is no indistinguishable state from x in V(x). The system (3.1) is
locally observable if it is locally observable for oll x € X.

Notice that two states may be indistinguishable for some input whereas they can be distinguished
for other inputs. Let us consider for instance the case of the following system:

x'lzxgu
T2 =0
Yy =a.

It is clear that for the null input u one cannot distinguish the two states  and 2’ such that x; =
and xo # xf,. However, this system is observable for any u # 0. For example, if « = 1, then we obtain
an observable linear system. Hence, in order to prevent this situation, we give the following definition
of observability.

Definition 7 (Weak observability) The system (3.1) is weakly observable at x if there exists a neigh-
borhood V(z) of x such that Z,(x) N V(x) = x, where T, (x) denotes the set of states indistinguishable
from xo with the input u. The system (3.1) is weakly observable if it is weakly observable for all x € X.

If the system (3.1) is locally observable and weakly observable, then it is locally weakly observ-
able. This notion is of more interest in practice, and also presents the advantage of admitting some
‘rank condition’ characterization. Such a condition relies on the notion of observation space roughly
corresponding to the space of all observable states.

Definition 8 (Observation space) [Besangon 2007] The observation space for the system (3.1) is de-
fined as the smallest real vector space (denoted by O(h)) of C*° functions containing the components of
h and closed under Lie derivation along fy := f(.,u) for any constant u € R™ (namely such that for
any ¢ € O(h), Ly, ¢ € O(h), where Ly, ¢ = %f(:z:,u)).

Definition 9 (Observability rank condition) [Besangon 2007] The system (3.1) is said to satisfy the
observability rank condition if:

Ve e X, dimdO(h)|, =n, (3.4)
where dO(h)|, = span{dp(z); ¢ € O(h)} is called the codistribution of observability.
Then, we give the following theorem.

Theorem 3.2.62 [Hermann 1977] The system (3.1) satisfying the observability rank condition is lo-
cally weakly observable. Conversely, a system (3.1) locally weakly observable satisfies the observability
rank condition in an open dense subset of X.

Examples: Let us consider the following non linear system

T1 = T+ T1T2
To = —T1To+u (35)
y = I.
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In this system, we have h(z) = x1 and f(x) = (22 + 2172, —7122+u)?. Then, we get Lih = x9+x129,
dh = dxy and dLsh = dxg+x1dxo+dr122. Hence, we have dO(h) = span{dxy, dxs} with dim dO(h) =
2. This system is locally weakly observable.

3.2.2 Review of observability within an algebraic framework

Diop and Fliess introduced in [Diop 1991a, Diop 1991b| a new approach of nonlinear observability
based on differential algebra. With respect to the differential geometric theory presented in Subsection
3.2.1, it has among other features the possibility of defining observability for systems represented by
an arbitrary set of algebra-differential equations.

Let us recall some useful notations.

Definition 10 (Differential ring and differential field) [Diop 1991a] A differential ring R is a com-

mutative ring with 1, which is equipped with o derivation, i.e., a mapping % = ": R — R such
that
d .
Ya,b € R, %(a—i—b):a—i-b, (3.6)
d .
Va,b € R, %(ab) = ab + ab. (3.7)

A differential field is a differential ring which is a field.

Definition 11 (Differential field extension) [Diop 1991a] A differential field extension L/K is a field
extension L/K such that the derivation of K is the restriction to K of the derivation of L.

We denote the differential field generated by K and a subset S of L by K(S).

Definition 12 (Differentially K-algebraic) [Diop 1991a] An element z € L is said to be differentially
algebraic over K, or differentially K-algebraic if, and only if, it satisfies an algebraic differential equation
over K.

This definition means that there exists a non-zero polynomial p over K in v 4+ 1 indeterminates such
that p(z, 2,...,2") = 0.

Definition 13 (Deferentially K-algebraically dependent) [Diop 1991a] A set & = {&;;1 € 1} of element
in L is said to be deferentially K-algebraically dependent if, and only if, there exists &, # 0 which is
differentially algebraic over K(€) with & = {&;1 € 1,0 # ig}.

Let k be a given differential ground field. Denote by k(u) the differential field generated by k and a
finite set u = (uy,...,u,) of differential quantities. The set u plays the role of control variables or
input, which may be assumed to be independent. This means that u is differentially k-algebraically
independent.

Definition 14 (Dynamic) [Fliess 1989] A dynamic is a finitely generated differential algebraic exten-
sion D/k(u).
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This means that any element of D satisfies an algebraic differential equation with coefficients which
are rational functions over k in the components of u and a finite number of their derivatives. As
output variables can be viewed as sensors on the dynamics, we formally define an output as a finite set

y=(y,...,yp) €D.

Theorem 3.2.63 [Diop 1991b] Choose a subset z = {z;;i € 1} of D in a dynamics D/k(u). An
element & in D is said to be observable with respect to z if it is algebraic over k(z).

This result intuitively means that £ can be expressed as an algebraic function of the components of 2z
and a finite number of their derivatives. A subset S of D is said to be observable with respect to z if,
and only if, any element of S is so.

In the usual definition of observability, one takes for z the set {u,y} of input and output variables
and for S the set X of state variables. A state z is said to be observable if, and only if, it is observable
with respect to {u,y}. Indeed, a nonlinear system is observable if, and only if, any state variable is
a differential function of the control and output variables, i.e., a function of those variables and their
derivatives up to some finite order.

Remark 7 This algebraic approach of nonlinear observability can be used for systems represented by
an arbitrary set of algebra-differential equations. While the geometric approach can be only used for
the systems defined in (3.1). It is shown that the system defined in (3.5) is observable by using the

geometric approach. Since r1 =y and x9 = this system is also observable by using the algebraic

Z1
14z’
approach. Moreover, let us consider the ball and beam system which is described by (3.8). Since (3.8)
is not given in the form of (3.1), we are going to show that this system is observable by using the

algebraic approach.

3.3 Case study: comparison between some observers and our numer-
ical differentiation techniques

3.3.1 The Ball and Beam system

The ball and beam system is one of the most enduring popular and important laboratory models
for teaching control systems engineering. This system is widely used because it is very simple to
understand. It has a very important property: it is open loop unstable.

The system can be shown in Figure 3.2. A steel ball rolling on the top of a long beam which can
be tilted about its center axis by applying a control. The position of the ball on the beam and the
angle of the beam can be measured by using sensors.

The dynamics of the ball rolling on the beam can be described as follows:

{ (mr? + J)0 4 2mrif + mgrcos() = u (3.8)

mit + mgsin(0) — mr? = 0,

where m is the mass of the ball, J is the length of the beam, g is the gravitational constant, r is the
position of the ball on the beam, 6 is the beam angle and u is a control.
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Figure 3.2: Ball and beam system.

The state vector of the ball and beam system is (7’,7’“,9,9)? Assume that the output vector is
(y1,92)T = (r,0)T, then we get

- Y1
= _2m;1y2 ((my3 + J)52 + mgyi cos(yz) — u)
= Y2

_ (y‘l+g sin(yz))

(3.9)

> D 33

N

Y1

Hence, this system is observable by using the algebraic approach.
From now on, by taking v = (mr? + J)v + 2mri@ + mgr cos(d), the ball and beam system is
simplified as follows:

0 = v
. 1
{ i+ gsin(f) —r6? = 0, (310)

where v € R.
Linearization of this equation about the beam angle, § = 0, gives us the following linear approxi-
mation of the system:

{0 - (3.11)

7= —gb.
In order to stabilize the system, we take v = %7’(3) + %7’(2) + %7'" + %Or where
ko = w%lw,%Q
kl - 2£(wnlw’r2lg + w”2w7211)
ko = wgl + w?u + 4€2wp, W,

k3 = 2£(wn1 + wn2)7

with £ = 0.7, wy,, = 1/€ and wy, = 3wy, .
By denoting the state vector (r, 7,0, H)T by z = (21,22, 23, 24)" and considering the output vector,
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the system in (3.11) can be written as follows:

21 = Z9
Z9 = U
Z3 = 24

3.12
Zy = —gsin(z) — zzzg ( )
n = 2
Yy2 = Zz3.

Hence, (3.12) is in the form of (3.1) with h(z) = (21,23)7. Then, we get dh(z) = (dz1,dz3)T, Lyh =
(22,24)T and dLh = (dzg,dz4)T. Hence, we have dO(h) = span{dz1, dz2, dz3,dz4} with dim dO(h) =
4. This system is locally weakly observable.

Since the measurements of r and 6 are noisy and their first order derivatives 7 and 0 are unknown,
we use in the following subsections the high-gain observer, the high-order sliding modes differentiation
and our Jacobi estimators to estimate r, 6, 7 and 0.

3.3.2 High-gain observer

During the past few years, high-gain observers played an important role in the design of nonlinear
output feedback control of nonlinear systems. They are mainly used to estimate the derivatives of the
output. In this subsection, we use the high-gain observer to estimate r, 6, 7 and 6.

By using (3.12), we get

R = AR+ Bv (3.13)
Yy = T, .
and
© = A0+ ®(O,R) (3.14)
Ya = 97 '

T 0 01 0 0
WhereR:<7,ﬂ>,@:<é),A:<0 0>’B:<1>and@(G’R):(—gsin(@)—réz)

Hence, by using high-gain observer we get

R = AR-K.(j1 —w)+ Bv (3.15)
@1 = Test,
and
6 = A6 - Ky(f2—12) + (6. R) (3.16)
@\2 = eesta
where R= [ "' | & = Ot , Ko = o and Kq = 0 '
Test Hest kr? k92
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The high-gains are given by K, = S '(a,)C and Ky = S (ap)C, where Si!(a) is the unique
solution of the matrix equation:

aSoo(a) + ATS () + Su(@)A = CCT (3.17)
Swo(a) = Si(a), '
1 200, 209 .
where C' = ( 0 ) Consequently, we get K, = ( 9 ) and Ky = < 9 ) with o, € R and
o o
ag € R.

3.3.3 High-order sliding modes differentiator

The high-order sliding modes differentiator described in [Levant 2003| can be expressed in a dynamic
form as follows:

1 n

dp = AN MriT|ag — x|+ sign(ag — x) + oy

. 1 .on=l .

aq = —A_1Mn |041 — a0| n Slgn(Oq — O[O) + g

(3.18)

: 1 . 1. .
Gn1 = —MM2|ap_1 — dn_2|? sign(an_1 — dn_2) +an

Gn = —MoM sign(ay, — dp-1),

where € C"! with n € N, the derivatives of which we want to estimate. Then, it was shown in
|Levant 2003| that, if the gains of \; are chosen properly, then the differentiator converges in a finite
time T, i.e., o (t) = 2 (t), forallt > T and i = 0,1,...,n. M is a constant such that ||z("*tD| . < M.
For the case when n = 5, the gains could be chosen as A\g = 1.1, Ay = 1.5, Ao =3, A3 =5, Ay = 8 and
A5 = 12.

In order to estimate r and 7 (resp. 6 and 9), we apply the high-order sliding modes differentiator
to (3.15) (resp. (3.16)) with n =2 and = = y; (resp. = = y2).

3.3.4 Numerical comparisons

In the subsection, by observing the state vector of the ball and beam system we give some comparisons
among high-gain observer, sliding modes differentiator and Jacobi estimators. When we use high-gain
observer, we have two parameters to set: o, and ay. If we set these parameters to be large, then the
estimation errors in noise-free case are small. However, large values for these parameters can produce
large noise errors in noisy case. In the following estimations, we take o, = 10 and ay = 30 so as
to produce small estimation errors in noise-free case. By simulating the ball and beam system we
obtain that r® < 2 and 62 < 6.7. These values are used for sliding modes differentiators. However,
these values are usually unknown. Finally, we apply the causal Jacobi estimator D£72L77T71x(—T§ +to)

given in Corollary 1.3.15 and the central Jacobi estimator D x(tp) given in (1.166). According

Kot Toq
to the previous study of the parameters’ influence on the estimation errors for the Jacobi estimators,
we take Kk = u =0, ¢ = 2 and £ as the smaller root of the Jacobi polynomial Pén’n) in each following

estimations. Hence, the only parameter to be set is the length of each sliding window. However, we
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need different value of T to estimate each state, i.e., we have four different values of T' to set. When
we estimate each state, we take the same value of T for causal and central Jacobi estimators.

Firstly, we compare high-gain observer to sliding modes differentiator without considering noises.
Then, we obtain that the sliding modes differentiator is not robust to “large” sampling period, especially
when they are used to estimate the speed of ball and the first order derivative of beam angle. We can
see this result in Figure 3.3 and Figure 3.4. When the sampling period is set to 0.01s, there are large
estimation errors for the sliding modes differentiator, which can be reduced by decreasing the sampling
period to 0.0001s.

Secondly, we compare these two observers in noisy case. We add a white gaussian noise to the
measurements of ball position and beam angle. The obtained SNR are equal to 24.5dB and 23.6dB
respectively (see Figure 3.5). Then, we can see in Figure 3.6-3.9 the obtained estimations and asso-
ciated absolute estimation errors. Especially, it is shown in Figure 3.6 that there is a time-delay for
the estimation obtained by sliding modes modes differentiator. This time-delay is due to the noise.
Moreover, we can observe in Figure 3.8 and Figure 3.9 that the time of convergence for high-gain ob-
server is smaller than the one for sliding modes modes differentiator. Hence, it is shown that high-gain
observer is more appreciate than sliding modes modes differentiator for the ball and beam system.

Thirdly, we compare high-gain observer to Jacobi estimators by taking the same noisy measurements
given in Figure 3.5. The obtained estimations and associated absolute estimation errors are given in
Figure 3.10-3.13. The time-delay values for causal Jacobi estimators can be calculated. Hence, by
shifting these causal Jacobi estimators we get smaller estimation errors than the ones for high-gain
observer. Moreover, it is shown that central Jacobi estimators are better than high-gain observer for
off-line estimations.

Estimations for the speed of ball Estimations for the speed of ball

07 06
o)

@

061 phy — — — Sliding modes 05F — — — Sliding modes
— - — - High—gain observer — - — - High—gain observer

(a) Comparison of estimations with 75 = 0.01. (b) Comparison of estimations with 7% = 0.0001.

Figure 3.3: Estimations for the ball speed obtained by high-gain observer with a, = 10 and sliding
modes with M = 2.
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Estimations for the first derivative of beam angle

o@D
— — — Sliding modes
— - — High—gain observer|

(a) Comparison of estimations with T = 0.01. (b) Comparison of estimations with Ts = 0.0001.

Figure 3.4: Estimations for the first order derivative of beam angle obtained by high-gain observer

with ag = 30 and sliding modes with M = 6.7.

Ball position

0.6

Noisy observation

Beam angle

Noisy observation

- -9

— T
0.1

-0.15

-0.2

-0.25 -
0 1 2 3 4 5 6

(a) Noisy observation of the ball position with SNR = (b) Noisy observation of the beam angle with SNR =
24.5dB. 23.6dB.

Figure 3.5: Noisy observations obtained with a sampling period Ts = 0.0001s.
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Estimations for the ball position Estimation errors for the ball position
0.4 R 001
\ r [ — — — Sliding modes
035} — — — Sliding modes 0.009 | — - — - High—gain observer
— - — - High—gain observer I
l
i

0.008

0.007

0.006

0.005

0.004

0.003

0.002

0.001

(a) Comparison of estimations. (b) Comparison of absolute estimation errors.

Figure 3.6: Estimations for the ball position obtained by high-gain observer with o, = 10 and sliding
modes with M = 2 where the sampling period is Ts = 0.0001s.

Estimations for the speed of ball Estimation errors for the speed of ball
0.6 ~ 0.14 M
AR @ o — — — Sliding modes
osf [ — — - Sliding modes R — — - High-gain observer,
\ — - — - High-gain observer 0.12f, l / M
| \‘ 4 V‘v\
01| !f !
|
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|
oo 11l
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0.06F 11 | \\
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‘qL \
1 \
[Rat
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t t

(a) Comparison of estimations. (b) Comparison of absolute estimation errors.

Figure 3.7: Estimations for the ball speed obtained by high-gain observer with «, = 10 and sliding
modes with M = 2 where the sampling period is Ts = 0.0001s.
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Estimations for the beam angle x10° Estimation errors for the beam angle
0151 3rn
[) [ — — — Sliding modes
— — — Sliding modes |\‘ ! — - — - High—gain observer|
0.1f ! " |
— - — - High—-gain observer|

(a) Comparison of estimations. (b) Comparison of absolute estimation errors.

Figure 3.8: Estimations for the beam angle by high-gain observer with ap = 30 and sliding modes with
M = 6.7 where the sampling period is Ts = 0.0001s.

Estimations for the first derivative of beam angle Estimation errors for the first derivative of beam angle

o® i — — — Sliding modes
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(a) Comparison of estimations. (b) Comparison of absolute estimation errors.

Figure 3.9: Estimations for the first order derivative of beam angle by high-gain observer with ayg = 30
and sliding modes M = 6.7 where the sampling period is Ts = 0.0001s.
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Estimations for the ball position
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(a) Comparison of estimations.
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x107° Absolute estimation errors for the ball position

— - — - High—gain observer
— — — shifted Jacobi estimators
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(b) Comparison of absolute estimation errors.

Figure 3.10: Estimations for the ball position obtained by high-gain observer with a,, = 10 and Jacobi
estimators with T' = 50007's where the sampling period is Ts = 0.0001s.

Estimations for the speed of ball
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(a) Comparison of estimations.

Absolute estimation errors for the speed of ball
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(b) Comparison of absolute estimation errors.

Figure 3.11: Estimations for the ball speed obtained by high-gain observer with c, = 10 and Jacobi
estimators with 7' = 80007's where the sampling period is Ts = 0.0001s.
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Estimations for the beam angle x10° Absolute estimation errors for the beam angle
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(a) Comparison of estimations. (b) Comparison of absolute estimation errors.

Figure 3.12: Estimations for the beam angle by high-gain observer with cy = 30 and Jacobi estimators
with T' = 20007"s where the sampling period is Ts = 0.0001s.

Estimations for the first derivative of beam angle Absolute estimation errors for the first order derivative of beam angle
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(a) Comparison of estimations. (b) Comparison of absolute estimation errors.

Figure 3.13: Estimations for the first order derivative of beam angle by high-gain observer with ag = 30
and Jacobi estimators with 7" = 40007's where the sampling period is Ts = 0.0001s.
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3.4 Conclusion

In this chapter, we recall some results of observability for a nonlinear system within a differential
geometric framework and a differential algebraic framework. By taking the ball and beam system,
we compare Jacobi estimators to high-gain observer and high order sliding modes differentiator. By
calculating the estimation errors, we have obtained that high-gain observer is more appreciate than
sliding modes observer for the ball and beam system, and Jacobi estimators are better than high-gain
observer for off-line estimations and for on-line estimations by admitting a time-delay. According to
the previous simulations, we get in the Table 3.1 and Table 3.2 their comparison by considering other
different criterions.

Observer Convergence time Number of parameters to be set

Jacobi estimators the length of sliding integration window | 4 (one for each state estimation)
High-gain observer unknown 2
Sliding modes differentiator unknown 2

Table 3.1: Comparison by considering different criterions

Observer Time-delay Robustness to noise and sampling period
Jacobi estimators known good
High-gain observer unknown (small) good
Sliding modes differentiator unknown bad

Table 3.2: Comparison by considering different criterions
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Part 11

Sinusoidal parameters estimation
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Chapter 4

Frequency, amplitude and phase
estimations
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4.1 Introduction

The problem of reliably estimating the defining parameters in a sinusoidal signal, namely: the am-

plitude, the frequency and the phase, from noisy measurements, has drawn considerable attention in

the last decade among signal processing researchers and applied mathematicians. Several interesting

applications of this problem are described in science and engineering, such as

e control theory |Fedele 2009a|, [Becedas 2009], |Pereira 2009],

signal processing [Liu 2001], [Klapuri 2003], [So 2006,

biomedical engineering [Ostlund 2004],

global position systems [Hackman 2006].
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Because of its importance, many schemes and many solutions which offer different approaches to
the problem have been suggested in the literature (see [Stoica 1993|, [Roy 1989|, [Bittanti 2000,
[Mojiri 2004], [Cheng 2006],|Zhang 2006],[Fu 2007],[Li 2009]).

The key problem is to find a method that improves speed of convergence, accuracy, noise rejection,
etc. In |Trapero 2007a, Trapero 2007b, Sira-Ramirez 2006, Trapero 2008|, recent algebraic parametric
techniques are devoted to estimate the frequency, amplitude and phase of time-invariant amplitude
noisy biased sinusoidal signals. It is an on-line, robust, continuous time identification method capable
of estimating the unknown parameters. The obtained estimators are given by exact formulae in terms
of iterated integrals of the noisy observation signals. The calculations of the unknown parameters are
performed in a fraction of the sinusoid signal period, independently of all initial conditions. Very re-
cently, it is shown in [Coluccio 2008, Fedele 2009b, Fedele 2010] that the unknown frequency can be also
estimated by using modulating functions method [Shinbrot 1957, Rao 1976, Rao 1983, Pearson 1985,
Jordan 1986, Jordan 1990, Preising 1993, Co 1997, Ungarala 2000] which has similar advantages to the
algebraic parametric techniques especially concerning the robustness of the estimation to corrupting
noises.

The aim of this chapter is to use the algebraic parametric techniques and the modulating functions
method to give some estimators for the frequency, amplitude and phase of noisy sinusoidal signals the
amplitude of which are time-invariant or not. This chapter is organized as follows. In Section 4.2, we
give the estimators for the unknown parameters by using the algebraic parametric techniques via some
differential operators in the operational domain. In Section 4.3, by providing an extended frequency
estimator we show the link between the algebraic parametric techniques and modulating functions
method. Then, we estimate the amplitudes and phases by using modulating functions method.

4.2 Algebraic parametric techniques

Let y = x + @ be a noisy observation on a finite time interval I C R of a real valued signal x, where
w is an additive corrupting noise and

Vi eI, x(t) = (Ag + Axt) sin(wt + @) (4.1)

with Ag € R}, A; € R, w € R} and —%7‘(’ <9< %71'. In this section, by using algebraic parametric
techniques we estimate the parameters w, Ag and ¢ from the noisy observation y. The estimations
are given in two cases where the amplitude of z is time-invariant (4; = 0) and time-varying (A4; # 0)
respectively.

Let us denote by D7 := {T;T € R%,[0,T] C I}, cyp = %, Wyk(t) = (T — t)*t" for any
(n)

t € [0,T) with p, k €] —1,400[, T' € D, and recall the expression of wy . given by (7.22) in Appendix
with n € N. Hence, wy, x is the normalized form of W, .

4.2.1 Time-invariant amplitude case

In this subsection, we assume that A; = 0. Then, z is a sinusoidal signal with time-invariant amplitude,
which is a solution of the harmonic oscillator equation

Vte I, #(t)+wx(t) =0, (4.2)
144
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We are going to estimate w by applying the algebraic parametric techniques to the previous equation.
Let us give the following lemma.

Lemma 4.2.64 [Liu 2011d] Let f be a C"-continuous function (n € N) defined on I and II}; , be the

integral annihilator defined by (1.20). Then, the inverse of the Laplace transform of HZ’H]E, where f 18
the laplace transform of f with the Laplace variable s, is given by

1
£~ { ot (s)} (T) =T 44, i /O w () F(Tr)dr, (4.3)
where T' € Dp.

Proof. By substituting &, by f and :L’SZ”(BT +to) by f(7) in (1.24), we get

e, ()} = gy [, O (40

Then, this proof can be completed by applying a change of variable 7 — T'7 and n times integrations
by parts in (4.4). O

Proposition 4.2.65 [Liu 2008/ Letk € N, =1 < p € R and T € Dt such that fol Wyo k2 (T) x(T'T)dT #
0, then the parameter w is estimated from the noisy observation y by

W= 1 (_ fol Wyg2,k42(7) y(I'T) dT) 3 |

(4.5)
T fol wyy2 kr2(7) y(I'7) dr
Proof. By applying the Laplace transform to (4.2), we get
§%4(s) — swo — @0 + w?i(s) = 0, (4.6)

where s is the Laplace variable. Let us take k + 2 (k € N) times derivations to both sides of (4.6)
with respect to s so as to annihilate the initial conditions xg and #g. Then, we multiply the resulting
equation by s737# so as to apply (7.13) given in the Appendix to obtain Riemann-Liouville integrals
when returning back into the time domain. Thus, by applying these operations to (4.6) we get

Hi’ui(s) + W?TIY v urad(s) = 0. (4.7)

Let us apply the inverse Laplace transform to (4.7). Then by using Lemma 4.2.64, we obtain
f 1
Tk+u+dcu+27k+2/ (11}“+27k+2(7) + w2T2wu+27k+2 (T)) fL'(TT)dT = 0 (48)
0

Assume that fol Wyt2 k+2(7) (T'T)dT # 0, then the frequency w is calculated by

1
1 (_ fol Wyt2,k+2 (1) z(TT) dT) :
T .

w P g—
S wpsapra(r) z(Tr) dr
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Finally, an estimator for w can be obtained by substituting x by y in (4.9). O
Let us recall that the parameter k defined in the integral annihilator 10 18 extended in Subsection
1.2.2 with k& €] — 1, +oo[ for minimal Jacobi estimators. We can also extend the parameter k to
] = 1,400 for the frequency estimator given in Proposition 4.2.65. Moreover, the formula of the
frequency estimator still has a sense with this extension.
By observing that zo = 2(0) = Agsin¢ and ¢ = #(0) = Agwcos ¢, if —F < ¢ < T, then we have

o

1
22\ 3
z x
Ay = <x3 + g) , ¢ = arctan <w_0> . (4.10)
w
Hence, we should estimate ¢ and xg in order to obtain estimators for Ag and ¢.

Proposition 4.2.66 [Liu 2008] Let —1 < p € R and T € Dy, then the parameters Ay and ¢ are
estimated from the noisy observation y and the estimated value & defined by (4.5) as follows

F2\ 2
~ - X
AQ = <$% + (:)(2]> 5

~ T
¢ = arctan <d)~0> ,
o

where To = fol PS (1) y(TT)dr and 9 = x fol PE (1) y(TT) dr with

(4.11)

P3(m) = 2(p + 2)wpsro(r) = (p+ 1) (1 + 2w (1) = (@T)*wpg2,1(7),
PP(r) = (n+ 1) (1 +2)(p+ 3)wa (1) = (1 + 2) (1 + 3)wpi1,0(7) + (@T)? (1 + 3)wpur2,1 (1) + (@T) *wpiss0(7).

Proof. In order to calculate zo, we take the derivative of both sides of (4.6) with respect to s
s%1(s) + 2si(s) — xo + w?i'(s) = 0. (4.12)
Then, by multiplying both sides of (4.12) by s7#73 with —1 < u € R, we get
1 2 1 w2,

A~

Suﬂfc’(s) + 3u+2x(8) =L s £ (s) = 0. (4.13)

Let us express (4.13) in the time domain and denote by T' as the length of the window used for
estimation. Since —1 < p € R, by applying (7.11) and (7.13) given in the Appendix we get the
following Riemann-Liouville integral

TH+2

T
— 3y = AW, +2¢,41.0W + w? W, dr.
Tl +3)% /0 (cua W (7) + 2¢u11,0Wpi1,0(7) + @y 1 Wiy 1 (1)) (1) dr

Hence, by substituting 7 by 7', by y and taking the estimation of w given in Proposition 4.2.65 we
obtain an estimate for xg

1
Zo :/ Py (m)y(TT)dr. (4.14)
0
In order to estimate #o, we multiply both sides of (4.6) by s~*
1 2
s#(s) — 2o — ~0 + i (s) = 0. (4.15)
s s
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By taking the derivative of both sides of (4.15) with respect to s, we can annihilate the term zg
1 w? w?
N A . N N o
sZ'(s) + 2(s) + 270 + & (s) — ?m(s) = 0. (4.16)

Then, by multiplying by s 7#~2 with —1 < p € R we get

1 1 I w? w?

By applying (7.11) and (7.13) given in the Appendix to the last equation and denoting by 7" as the
length of the window used for estimation, we get in the time domain

TH+3 . T
ETE / (Wit (1) + €t 1,0Wis1,0(7) + W2t 1 Wigo1 (1) = weuts, oWy o(7)) (1) dr.
0

F(p+4
By applying a change of variable, substituting = by y and taking the estimation for w, we can estimate
&o by

- 1 /b
;'U():T/ PP (r)y(TT)dr.
0

Finally, we get estimations for Ay and ¢ from the relations (4.10) and by using the estimations of xg,
T and w. O
Let us remark that in the previous proof, we have applied the two following differential operators

1 d 1 d 1 _.:
W'EandSM+2'E'§W1th—1<M€R.

4.2.2 Time-varying amplitude case

In this subsection, we assume that A; € R*. Then x is a sinusoidal signal with time-varying amplitude,
which is a solution of the harmonic oscillator equation

vtel, W)+ 2w%i(t) + wiz(t) = 0. (4.18)
Similarly to Proposition 4.2.65, we are going to estimate w by using the above equation.

Proposition 4.2.67 [Liu 2011d] Letk € N, —1 < p € R and T € Dr such that fol Wyt d k4 (T) 2(TT)dT #
0, then the parameter w is estimated from the noisy observation y by

Ay

1
—By++/B2—-A,Cy \ 2
( Y Ayy Y ”) , else,

where A = Ay fol Wyta p4(T) sin(wT'T + @)dr, Ay =T* fol Wytaa(T) y(T'7)dT,

. 4
By =T? [} iy apia(r) y(Tr)dr, Cy = [ wll), (1) y(Tr)dr.

1
(‘By_ v Bi_AyC”) Coifa>o,
_ (4.19)

w
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Proof. By applying the Laplace transform to (4.18), we get
s43(s) + 2w2s22(s) + wii(s) = $Pmo + 5200 + (2wag + do)s + (2wig + 2)). (4.20)

Let us apply k+4 (k € N) times derivations to both sides of (4.20) with respect to s and by multiplying
the resulting equation by s> with —1 < u € R, we get

Hg,@(s) + 2T v prad(s) + WY vapad(s) = 0. (4.21)

Let us apply the inverse Laplace transform to (4.21). Then by using Lemma 4.2.64, we obtain

1 1
/ Wl 4 es(D)2(TT) + 20T s a(T)2(Tr) dr + (WT)* / Wy apra(r) 2(Tr)dr = 0. (4.22)
0 0

According to (7.22) given in the Appendix, we have wfj}r47k+4(0) = w£i3r4,k+4(1) fori=0,...,3. Then

by applying integration by parts, we get
1
/ (w4x(TT) +2w2®(T7) dr + 2 (TT)) Wyyd kra(T)dT = 0. (4.23)
0

Assume that fol Wyta k+4(T) 2(TT)dT # 0, then w? is obtained by

w? = , : (4.24)

where A, = fol Wyt a k4 (T) 2(T'T)dT, B, = fol Wy ya pra(T)e(TT) dr, C, = fol Wy 4 pra(T)e W (TT)dr.
Since ) (T'7) 4 2022 (T'7) 4+ wa(T7) = 0 for any 7 € [0, 1], we get

1 1 2
B — A,Cp = (/ Wyt akra(T)a?(TT) dr +/ Wyt apra(r)2(TT) dT) :
0 0

Observe that =2 (T'7)+(wT)2z(T7) = 2wA T? cos(wT'T+¢) for any 7 € [0,1], and wA; fol Wytd k44 (T) cos(WT't+
p)dr = —% fol Wytd k44 (T) sin(wT'T + ¢)dr. Hence, we obtain that

1
2
(‘B’““Vﬁ?"“x@> LA >0,

1
—By+y/B2—A,Cy \ ?
Ay ’

(4.25)

else,

where A = A fol Wyta,k+4(7) sin(wT'T + ¢)dr. Finally, this proof can be completed by applying
integration by parts and substituting x by y in the last equation. O
Observe that

xo=x(0) = Apsing,
o = 2(0) = wAgcos ¢+ Ajsin ¢,
@ _ @ o (4.26)
xzy’ = 2'9(0) = —w Apsin¢g + 2wA; cos ¢,
5583) =20)(0) = —w3Agcos ¢ — 3w A, sin ¢,
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then we have the fowling linear system

1 0 0 0 Agsin ¢ T
0 w 1 0 Ag cos ¢ x0
= . 4.27
—w? 0 0 2w Aqsin¢ :1:(()2) ( )
0 —w?® —3w? 0 A cos ¢ gc(()g)

By solving the previous linear system, we obtain

Apsin ¢

0
Agcosgp = 2# ( (())—I-?w 0
4.2
Al singb = %2 ( + w g;O) ( 8)
Ajcos¢ :%( 0+$0).
If -5 < ¢ < 3, then we have
1
oy 1
9 (x((]g) + 3w2:b0) ’
2 2\ 3
(xég) + w2x'0> (w2x0 + xl(]Z)) (4.29)
A =
! 4t * 402 ’

2 3
¢ = arctan (3)0.)7350 .
zy + 3w
2) 3)

Hence, similarly to Proposition 4.2.66 we are going to estimate xg, %o, T, and z;’ so as to obtain
estimations of parameters Ag, A1 and ¢.

Proposition 4.2.68 Let —1 < p € R and T € Dy, then the parameters Ag, A1 and ¢ are estimated
from the noisy observation y and the estimated value & defined by (4.19) as follows

(5:((]3) + 3@2560) ’

A ~2
Ao =1 % + 4056 )
1
2 2\ 2
B ( QN xo) (JJ Zo + :1:((]2)) (4.30)
A =
! 40 * 462 ’
- 203
¢ = arctan % 3
7y + 302y
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where

1 1
Fo= | PP(r)y(Trydr, i) =—. / P2(7) y(T7) dr — 2%,
0

1
/0 P(1)y(T7) dr — 2%

3
) F(M + 5) 3\ 4!c i,3—1%
P(r)=—"%—" > <> Li_wu—ki,i%—i(ﬂ
)

2(@T)*T (1 +5) 22: <3)Cﬂ+2+232 (r) +

i) 2 =) Wp+i+2,3—i

+ (@T) Cpraswyras(t),

PéD(T) = = (CM73wN73 (7’) + 1lcu+172wu+1,2(7) + 28cu+2,1wu+271(7') + 12CM+3707VUM+3,0(7’))

— (1 + 6)(@T)? (cuta,3wur2,3(T) + 5¢ur32wus32(T) + 2641wt 4,1 (T) — 2645,0Wu45,0(T))

L(p+ 6)(@T)*
-5 (Cu+473wu+4,3(7) — Cu+5,2Wp452 (7)),

Py(r) AR (cu3wp,3(T) + 10¢u4+1 2wp41,2(7) + 22¢p421Wpt2,1(T) + 8¢put3,0Wpu+3,0(7))

L(p+ 1)(@T)? (cpr2,3wut2,3(T) + 33 2Wps3,2(7))

_l’_
I'(p+ 7)(@T)*
+ (,u2)() (Cpta3wuta3(T) = 26445 2Wp152(T) + 2¢u161Wput6,1(T))

3 1
o T'(u+8 3\ 3le i,3—i - 3
Pi(r) = - D) (E i () T a7+ 2@T) Y () cu+z-+2,3z-wu+i+z,3i<7>>

1=0

T(u+8),. 3 i;
PGS (0) 1 itgusaria a0
=0
1

S S

Proof. In order to estimate xg, we apply the following operator II; =
—1 < p € R, which annihilates each terms containing x(()i) for + = 1,2,3. Then, by using the Leibniz
formula, we get

4

Z 7 ﬁslﬂrpm +2w Z 5u+3+2$ (S)+5H+5x (3) = W.To. (4.31)

1=0

Let us apply (7.11) and (7.13) given in the Appendix so as to express (4.31) in the time domain and
denote by 7' the length of the window used for estimation

+5) Aleytisz—i
= 6/7{/”‘4 / < )mwu+i73i(7)x(7) dr

2w?T (1 + 5) ¢
+ 3T5+4 / Z( ) H+Z+2.3 Wirirasi(7) 2(r) + whepyasWyras(r) 2(r) dr.
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Hence, by substituting 7 by T'7, = by y and taking the estimation of w given in Proposition 4.2.67 we
obtain an estimate for xzg.

1 d 1 d2

In order to compute an estimate for %, we apply the following operator Iy = —— - —
p 0, pply g Op 2 S“+4 ds s d82

to (4.20). Then we get

R 1 . 11 28 12
I, {84$(8)} = x(g)(s) + (2)(8) + o "(s) + sﬂ+4$( )s
. 2?2 10w? | 40? 4u?
I, {2w2s2x(s)} =5 (3)( ) et (2)(5) e /(s) e (s), 139
4 Wt @) W' ) -
Iy {W $(8)} = gH+5 (8) - gh+6 (8)7
. 2
H2 {821‘0} = —Wl'o.

By applying (7.13) given in the Appendix to (4.32), we get

L7 {83 (s) } (T)

T
:/ (CM73WM73(T) + 1lcﬂ+172WM+172(7—) + 286N+271WM+271(7—) + 12cﬂ+370WM+370(T)) x(T) dr,
0
£t {H22w282§3(s)} (T)

T
:2w2 / (CM+273WM+2,3(T) + 5CM+372WM+372 (T) + 20M+471WN+471(7—) — 2CN+570WM+570(7—)) JZ(T) dr,
0

T
L7 w3 (s) } (T) = w4/0 (cura,3Wpra3(T) = cuts 2Wys 2(7)) (7) dr,

2Tu+5

ﬁ_l {H282i'0} (T) = —mi}o.

Thus, by applying a change of variable, substituting = by y and using the estimation of w, we get an
estimate of Z.
In order to estimate x(()2) we apply the following operator Il = S d—Q 1 4 to (4.20) with
’ shtd ds? s ds
—1 < p € R. Then we get

(4.33)
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By applying (7.13) given in the Appendix to (4.33), we get
£ {H354§:(8)} (T)

T
—/ (cu3Wi3(T) +10cu412Wii1,2(7) 4+ 22¢u 42,1 Wi21(7) + 8cuy30Wiys0(7)) z(7) dr,
0
T
£t {H32w232:@(3)} (T) = 2w2/ (cur2,3Wyra3(T) + 3¢ut32Wyis (1)) (1) dr,
0

T
,C_l {H3w4ii‘(8)} (T) = w4 / (CH+473WIH‘473(T) - 2CM+5»2WN+572(T) + 2Cu+6,1Wu+6,1(7—)) x(T) dT,
0

2T,u+6
L(p+7)

Thus, by applying a change of variable, substituting = by y and using the estimation of w, we get an

Vom {H3(2w o+ z$))s }(T) - 2wz + 21Y).

estimate of x02 .
3
(3) 1 d

. 3 . - A
In order to estimate x;’, we apply the following operator II; = g il B to (4.20) with

—1 < p € R. Then, by using the Leibniz formula, we get

. 3
~ s (2w?dq + xé ))

1 2 ~(3— 4 3—
Z() 3—1) IS,U-H—H #0(s) + 20 Z( >3M+3+z ( ) +w Z( >Su+5+z 379 (s).

Then, by applying (7.11) and (7.13) given in the Appendix we get

2. @ _  T(p+8) 3 Cputi3—i
2w Ty + 1y = — eI / ( >WWM+i,3i(7) x(7)dr

I'(p+8)
T / ( >Cu+z+2 3-iWytiva3—i(T) (1) dr

I'(p+8)
T gTnrT Y / ( ) )Z'Cu+4+13 iWptarig—i(T) z(T) dr.

Hence, by applying a change of variable 7 — TT, substituting « by y and using the obtained estimations
of w and o we obtain an estimate for 37(()3).
Finally, we get estimations for Ag and ¢ from the relations (4.29) and the estimations of xg, @,
1362), x[()g) and w. O
We can observe that all the obtained estimators using the algebraic parametric techniques are
expressed as iterated time integrals of the noisy observation y. Note that the noisy function y may not

be integrable in these integrals. Hence, the expressions of our estimators are only formal.

4.3 Modulating functions method

The identification procedure, based on modulating functions, was pioneered by Shinbrot [Shinbrot 1957]
in the 1957. Essentially, the use of modulating functions allows to transform a differential expres-
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sion, involving input-output signals on a specified time interval, into a sequence of algebraic equa-
tions. Moreover, the modulating functions method annihilates the effects of initial conditions and
allows the direct use of noisy data signals [Co 1997|. These features make the modulating functions
method desirable for use in several real processes. In more recent years, many authors have focused
on the choice of modulating functions type including Walsh functions [Rao 1983|, Hermite functions
[Jordan 1986, Jordan 1990], Fourier modulating functions [Pearson 1985, Co 1997, Ungarala 2000]| and
spline-type functions [Coluccio 2008, Fedele 2009b, Fedele 2010, Rao 1976].

The modulating functions method can be used to estimate parameters directly from any differential
equation possessing the following structure:

> ay@(t) = buld(t), n>m, (4.35)
=0 =0

where y and u are the output and input signals respectively, and {a;,b;} are the unknown system
parameters. Without loss of generality, let us assume that ag = 1. A function gx € C¥, defined on a
finite time interval [0, 7], which satisfies the following terminal conditions

g2(0) = gW(T) =0, Vi=0,1,..., K — 1, (4.36)
is called a modulating function [Preising 1993]. A function f € £!([0,T]) is modulated by taking the

inner product with a modulating function g

T
(f. 9x) = /0 F(O)gr(t)dt. (4.37)

The terminal constraints of (4.36) essentially make the boundary conditions of the function f irrelevant
after modulations. Moreover, they make possible the transfer of the differentiation operation from the
function f on to the modulating function gx (as when dealing with distribution and test functions):

<f(i)7gK> — (~1) <f,g§?> i=0,1,... K —1. (4.38)

Hence, we do not need to approximate time derivatives from noisy measurement data. The modulating
function procedure starts by multiplying (4.35) with the modulating function and integrating over the
interval [0, 7
n T m T
Zai/ gr (MY (P)dr = Zbl/ g (T)u? (7)dr. (4.39)
i=0 70 i= 70

By integrating by parts and using property (4.38), (4.39) becomes

n—ia- T(i)T TT_m— b, T(i)TUTT
;< 1) /0 gK<>y<>d—;< 1)@/0 o (ryu(r)dr. (4.40)

In order to determine all parameters {a;, b;}, at least the same number of linearly independent algebraic
equations similar to (4.40) must be generated. The proposed approach gains advantages from the low-
pass filtering property of modulating functions integrals and gives explicit formulae for the parameters.
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Let us recall that the frequency estimator given in Proposition 4.2.65 is obtained by applying
algebraic parametric techniques with the following annihilator

1 dn+k

Z# = gnt+1+p ' dsntk ) Sn’ (4'41)

where £ € N and —1 < p € R. The differentiation operation % is used to annihilate initial
conditions, and the multiplication SH%W is used to obtain an integral. In fact, we can generalize this
annihilator by taking modulating functions so as to obtain an extended frequency estimator.

Lemma 4.3.69 Let f be a C"-continuous function (n € N) defined on I and 11y be defined as follows
Iy = g(s) - s", (4.42)

where § is the Laplace transform of a C"-continuous function g satisfying g (T) = ¢)(0) = 0 for
1 =0,---,n—1 with T € Dr. Then, the inverse Laplace transform of Hgf, where f is the laplace

transformation of f, is given by
R T
£ {Hg f} (T) = /0 9T = 1) f(r)dr. (4.43)

Proof. By applying (7.9) given in the Appendix, we get

T
r M) () F(T — d}:A NI RO
{[ s - nyary = o) ")
Since g9 (0) =0 for i = 0,--- ,n — 1, by applying (7.8) given in the Appendix, we obtain
F()-£{g™ )} = 5"3(5) - f(s) = T3 f(s).

Then, this proof can be completed by applying the inverse Laplace transform and a change of variable

T—=>T—T. O
The conditions g (T) = 0 for i = 0,--- ,n — 1 are used to annihilate the initial conditions.
Recall the following equation given in (4.6)

s2%4(s) — sxg — do + wii(s) = 0. (4.44)

Then, by multiplying the Laplace transform of a modulating function g € C? satisfying ¢(0) = ¢(T) =
9(0) = g(T) = 0, we get

s2G(s)(s) — sg(s)mo — §(s)do + §(s)wi(s) = 0. (4.45)

By applying the inverse Laplace transform, we get £~ {s§(s)zo} (T) = 20g(T) = 0 and L~ {§(s)io} =
t0g9(T) = 0. Hence, by applying Lemma 4.3.69, we get

(@ =\ )
Jo 9T —7)a(r)ydr ) '

Consequently, the frequency estimator given in Proposition 4.2.65 can also be obtained by using

modulating functions. The frequency estimator given in Proposition 4.2.67 can be obtained similarly.
In this section, by using modulating functions method we are going to estimate the parameters w, Ag
and ¢ in the time-invariant amplitude case and in the time-varying amplitude case.
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4.3.1 Time-invariant amplitude case

In this subsection, we assume A; = 0. Then, z satisfies the equation given by (4.2). Thus, we can give
the following proposition.

Proposition 4.3.70 Let g be a function belonging to C%(]0,1]) which satisfies the following condition
g9(0) = g(1) = g(0) = g(1) = 0. Assume that there exists T € Dy such that fol g(T)x(TT)dr # 0.
Then, the frequency w is estimated by

(::):

1 (_ JLa(r) y(Tr)dT> a

T\ Jy9()y(Tr)dr

Proof. By substituting ¢ by 7' in (4.2) with 7 € [0,1] and T € Dy, we get &(T'7) + w? z(T't) = 0 for
any 7 € [0,1]. Since g is integrable on [0, 1], we get

1
/0 g(7) (g'u'(TT) + w? x(TT)) dr = 0.

As fol g(7) x(TT)dr # 0, we have
1 .
L2 _fol g(T)&(TT) dT. (4.47)
fo g(1)z(TT)dr

By applying two times integrations by parts and using g(0) = g(1) = ¢(0) = ¢(1) = 0, we obtain

9 ifol g(r)x(TT)dr

w = — . 4.48

T2 fol g(1)x(TT)dr 448)

Then, an estimation of w is obtained by substituting « by y in (4.48). O
Let us take an expansion of x

x(TT) = Agcos psinwT'T + Agsin ¢ coswT'T, (4.49)

where 7 € [0,1], T € Dp. Then, by using the modulating functions method used in the previous
proposition, we can calculate Ag and ¢ from (4.49). Hence, we give the following proposition.

Proposition 4.3.71 [Liu 2008] Let g; for i = 1,2 be two continuous functions defined on [0,1]. Then,
for any ¢ €] — 5, 5[, the parameters Ag and ¢ are estimated by

@ @ 2 @ @ 2y 1/2
A _ G4 Igl B GQ Igz Gl 132 B G3 131
0 — L- + L- ’

$ = arctan be L, — ng I,
G‘zf Igl - GLQU 132 7

(4.50)
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where T € Dr, @ 1is the estimate of w given by Proposition 4.3.70, and

1 1
I = /0 o (r)y(Trydr, I = /0 ga(7) y(Tr) dr,

~ 1 » 1
Glf — / g1 (T) Sil’l((:}TT)dT, G‘é} == / g1 (7—) COS((‘DTT) dT?
0 0

1 1
Gg] = / 92(7') Sil’l((,:}TT) dT, Gi) == / 92(7_) COS(JJTT) dr.
0 0

Moreover, we assume that L, = GYG} — G5GY # 0 and GF Ij, — G I, # 0.

Proof. By multiplying both sides of (4.49) by the continuous function g; (resp. g2) and integrating
between 0 and 1, we obtain

Iy, = Agcos ¢ GY + Agsing GY
I, = Agcos ¢ G5 + Apsing GY.

GY GY Apgcoso \ [ g
GY GY Agsing |\ 1% )"

Assume that L, = GYGY{ — G5GY # 0, then by solving the system we get

It yields a linear system

Apcos ¢ = GZJI;L_ 515 :
) GYIg, dr — GSI7,
Agsing = I .
Then, by assuming that Gf I — G% I7, # 0 the parameters Ag and ¢ are given by (4.50) by using
trigonometric relations. The proof can be completed by substituting x by y and w by @ respectively.

O

Let us remark that the calculation of GY is obtained by the following way: once the function g

is given, the integral GY can be formally calculated where w is an unknown parameter. Then, we

substitute w by @ in the obtained integral value. The calculations of G¥ for i = 2,3,4 can be given
similarly.

4.3.2 Time-varying amplitude case

In this subsection, we assume that A; € R*. Then, z satisfies the equation given by (4.18). Thus, sim-
ilarly to Proposition 4.2.67 we can estimate the frequency by using the modulating functions method.

Proposition 4.3.72 [Liu 2011d] Let f be a function belonging to C*([0, 1]) which satisfies the following
conditions fP(0) = fO(1) for i =0,...,3. Assume that fol f(r)x(TT)dr # 0 with T € Dy, then the
parameter w is estimated from the noisy observation y by

1
(By\/m>2, 'LfAEO,

A?/
1
—By++/B2—A,Cy \ 2
< Y Ayy Y y> , else,
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where A = A1 f01 Wysapra(T) sm(WTT + ¢)dr, A, = T* [ f(r)y(Tr)dr, B, = T% [} f(7)y(Tr)dr,
Cy = fo Yy(TT)dr.

Proof. Recall that ™) (T7) + 20223 (T7) + w*a(TT) = 0 for any 7 € [0,1]. As f is continuous on
[0, 1], the we have

/f T7d7'+2w/f 2)T7d7-+w/f T7)dr = 0.

Then, this proof can be completed similarly to the one of Proposition 4.2.67. O
Let us take an expansion of x

x(TT) = Agcos ¢ sin(wT'T)+ Agsin ¢ cos(wT'T)+ Ay cos ¢ T'7sin(wT'7)+ Ay sin ¢ T'r cos(wT'T), (4.53)

where 7 € [0,1], T € Dp. Then, similarly to Proposition 4.3.71 we can estimate Ag and ¢ by using
the modulating functions method in the following proposition.

Proposition 4.3.73 [Liu 2011d] Let f; fori=1,...,4 be four continuous functions defined on [0, 1].

Assume that there exists T € Dp such that the determinant of the matriz M, = (M;jj)lgi,jgzl 1s

different to zero, where fort=1,...,4
1 1
M) = / fi(1) sin(wT'T)dr, M = / fi(T) cos(wT'T)dr,
0 0
1 1
Mi“fg) = / fi(T) T't sin(wT'T)drT, i“f4 = / fi(T) T'T cos(wT'T)dr.
0 0

Then, for any ¢ €] — 5, 5[ the parameters Ao, A1 and ¢ are estimated by

To= ((deeamg)+ (Arme)) "

qz~5 = arctan is\li(b ,
Ag cos ¢
where the estimates of Ajcos¢ and A;sing for i = 0,1 are obtained by solving the following linear
system
Aocoso i
Ag si V5
My | Aesing | Lo (4.55)
Ajcos¢ I,
Ajsing 1?4

where Iy fo filtn)y(Tr)dr fori=1,...,4, and © is the estimate of w given by Proposition 4.5.72.

Proof. By multiplying both sides of (4.53) by the continuous function f; for ¢ = 1,...,4 and by
integrating between 0 and 1, we obtain

If = Agcos M + Agsin oM + Aq cos M’ + Ay sin oM7) (4.56)
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Then, it yields the following linear system

Agcos ¢ i
A si I%
M, o sin ¢ _ ];2
Ajcos¢ I,
Aqsin ¢ I3,

Since det(M,,) # 0, by solving the previous system, we obtain A; cos ¢ and A;sin ¢. Finally, the proof
can be completed by substituting = by y in the obtained formulae of A; cos ¢ and A; sin ¢ for ¢ =0, 1.
O

Remark 8 The estimations given by Proposition 4.3.71 and Proposition 4.3.73 are obtained by solving
a system linear which depends on modulating functions. Hence, in order to obtain stable estimations
we should choose the modulating functions which make the system to be equalized.

(n)

ptn,k+n
tions. Then, the principle of such estimators is connected with that of orthogonal projection. An

If we choose function w with n € N, p,k €] — 1,+00[ as the previous modulating func-

interpretation in terms of least squares follows from [Mboup 2009a].

4.4 Conclusion

In this chapter, by using the algebraic parametric techniques and the modulating functions method
we have given some estimators for the frequency, amplitude and phase of noisy sinusoidal signals the
amplitude of which are time-invariant or not. Moreover, we have shown the connection between these
two methods.

Let us remark that whatever the algebraic identification techniques and the modulating functions
method the obtained amplitude and phase estimators were given by solving a linear system. Similarly,
by providing some necessary equations these two methods can also be used to estimate the unknown
amplitudes and phases of noisy multi-sinusoidal signal with known frequency.

In the following chapter, we give some noise error bounds to study the choice of parameters s, pu,
n and the length of integration window 7" for our estimators.
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Error analysis for estimators of sinusoidal

signal
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5.1 Introduction

Let us recall that the algebraic parametric techniques exhibit good robustness properties with respect

to corrupting noises, without the need of knowing their statistical properties. A weakness of these

methods is a lack of any precise error analysis, when they are implemented in practice. In this chapter,

such error analysis is performed for the estimators given in Chapter 4.

Let us denote by ¢ the involved functions in the integrals of our estimators in Chapter 4. Then,

we denote by

1
Iy ::/0 q(T)y(TT)dr.
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Since y = z + w, we get
V=1 +17, (5.2)

where ;7 is the noise error (@ being the noise)

1
I7 ::/0 q(7)w(TT)dr. (5.3)

Thus the integral I is only corrupted by the noise error contributions I, ¢ that will be denoted by e’
in the following.

From now on, assume that y(t;) = z(t;) + w(t;) (t; € I) is a noisy measurement of x in discrete
case with an equidistant sampling period T, then we need to use a numerical integration method to
approximate the integrals used in the previous estimators. Let 7, = % and a; > 0 for i =0,...,m
with m = Tls € N* (except for ag > 0 and a,, > 0) be respectively the abscissas and the weights for a
given numerical integration method. Weight ag (resp. a,,) is set to zero in order to avoid the infinite
values at 7 = 0 when —1 < k < 0 (resp. 7 = 1 when —1 < pu < 0) [Lyness 1994]. Hence, I} can be

approximated by

m
a
= ZéQ(Ti)y(TTi)- (5.4)
i=0
By writing y(t;) = z(t;) + w(t;), we get
m =1I," 4 eg ™, (5.5)
where
o< 7
eg "= Z p- q(1;) w(T'r;). (5.6)
i=0
Thus the integral
I =177 4+ (I — I7™) + e ™ (5.7)

is corrupted in the discrete case by two sources of errors:
e the numerical error I — I;"™,
e the noise error contributions eg ™.

Consequently, the estimation error for each previously obtained estimator is due to these two
sources of errors. Hence, by reducing the errors for the integral I we can reduce the total error for
our estimators. To do so, we give some noise error bounds. Let us recall that these estimators depend
on the parameters x, p, n and T. These error bounds permit us to know precisely the influence of
these parameters on our estimators. Hence, we can choose the optimal parameters so as to get “good”
estimations.

This chapter is organized as follows. In Section 5.2, we roughly show the parameters’ influence on
the numerical error. In Section 5.3, we consider bounded and integral noise. In particular, we roughly
study the parameters’ influence on the noise error which is due to a biased sinusoidal perturbation.
In Section 5.4, we consider two classes of stochastic processes noise. Firstly, we provide some noise
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error bounds for the corresponding noise error contributions. Secondly, we show the influence of the
sampling period onto these noise error contributions. In Section 5.5, by using the error bounds for noise
error contributions obtained in the previous subsection, we give some error bounds for the estimators
obtained in the time-invariant amplitude case.

5.2 Analysis for the numerical error

We apply the trapezoidal rule as the numerical integration method in (5.4). Let h(7) := ¢q(7)z(T'T) for
7 € [0,1] be a function which is at least 20 + 2 (I € N) times continuously differentiable on [0, 1], then
by using the Euler-Maclaurin formula [Atkinson 1989 (p. 285) we have

!
- B
;= =D (1) — pZ-D()) = 242 p(2+2)
~hT = Z (27) 'm27< ) - R (O)> (21+2)!m21+2h ©, (5.8)

for some £ € [0,1]. The coefficients B; are the Bernoulli numbers [Abramowitz 1965] (p. 804) which
are equal to the value of the Bernoulli polynomial B, (t) at t = 0. Let us recall that the Bernoulli
polynomials are defined as follows

1. Vt€R, By(t) =1
2. Vn €N, Bn+1( ) = (n+1)By(t),
3. Vn e N*, [} B,(t)dt = 1.

It is clear that if the value of T is set then by decreasing the sampling period T we can increase
the value of m. Hence, the numerical error Ij — I;™ given in (5.8) can be reduced. Then, we roughly
show the other parameters’ influence on this numerical error.

On the one hand, we denote the ceil function by [-]. Then, we assume that ¢ = w/(Hr)n i (such
that ¢ (0) = ¢®(1) =0fori=0,1,---, [min(x, )] — 1) for the modulating functions method, where
Kk, €] — 1,400[ and n € N such that ¢ € C**+2([0,1]). If [min(x, )] = 2I, then by applying the
Rodrigues formula (given in (7.22)) in (5.8) we obtain that A(2=1 (1) = A(21=1)(0). It yields

x T,m __ B2l+2 (214-2)
= I = gy ), (5.9)

where

20+2 = (2 +2 n+i : (n—i,k—i) 2+2—i, (2+2—i
120 = Y (22 0+ s P TP a0 7).
=0

Denoting by M; = ||z()]|, We obtain

2042
|12 — 12| < B2 _(21 +2
q q —

D My i(mTe)™ 2
=0

(n—1i,k—1)
(21 + 2)Im2i+2 — > ‘wufi,nfi(g)Pnii ©1]. (5.10)

?

Since the value of | depends on the minimum value between s and g and large values of x and p

plrin=i) (€) (vesp. for £(*2-0(T¢)), a natural idea is to increase

(resp. of [) can get a large value for P,";
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appropriately the values of x and p such that the numerical error can be negligible even for a small
value of m (large value of Ts). The value of PT(LiZZ 1) (£) can increase with respect to the value of n,
hence we set n = 0 by default.

On the other hand, the estimators for Ag and ¢ given by the algebraic parametric technique in
Proposition 4.2.66 and Proposition 4.2.68 depend only on the parameter p for a given value T'. The
integrals in these estimators contain the function w40 with j € N*. Then, by taking { = 0 in (5.8),
we obtain

2 i .
By~ (mTs)* ™" o L(p+1+7) i
Iz _JEm 2 E Yms) QR 1 gypti—i )
Wytj0 W0 m2 &~ j e ( é:)F(wrljtj—z‘)( 3 (5.11)

Thus, if the value of j is large and the value of m is not large enough (7 is not small enough), then
the numerical error can not be negligible. Moreover, if the value of p increases, then according to
(5.11) the numerical error can be increased also. Hence, the estimators obtained by the algebraic
parametric techniques in Proposition 4.2.68 can produce larger numerical errors than the ones given in
Proposition 4.2.66. Moreover, the estimators obtained by using the modulating functions method can
produce smaller numerical errors than the ones obtained by using the algebraic parametric techniques.
Finally, we recall in Table 5.1 the influence of parameters on the numerical error. a | and b 7 (resp.
b \,) refer that by increasing (resp. decreasing) the value of b, we can reduce the value of a.

Method Numerical error Ts (m) p n
Modulation functions method i} N () (T being set) | min(k, p) 7 | N\
Algebraic parametric technique 1 N () (T being set) N

Table 5.1: The influence of parameters on the numerical error.

5.3 Analysis for an integrable noises

In this section, we assume that the noise w is a bounded with a noise level 6 and integrable function
on I, which is given (2.6). Then, the associated noise error contribution eq """ given in (5.6) is bounded
by

e ™| < My, (5.12)
where Mg := 62 \q i) -

In the followmg subsectlon we study the noise error due to a biased sinusoidal perturbation.

5.3.1 Analysis for a sinusoidal perturbation

There are many applications where the sinusoidal signal is corrupted by another sinusoidal perturbation
of higher frequency. Let us assume in the subsection that w(t;) = A sin(wgt;) for t; € I with A, € Ry
and wy € Ry, If wy, > w, then according to [Fliess 2006] w is a noise understood as a high frequency
perturbations. If there exists a small integer k such that wp = kw, we consider w as a low frequency
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sinusotdal perturbation. We study the parameters’ influence on such sinusoidal perturbation error

contribution.
On the one hand, we assume that ¢ = wl(ﬁgn,,ﬁn with K, p €] —1, +o00[ and n € N for the modulating
functions method. If [+ 1 = [min(k, )|, then by taking the Rodrigues formula, we get wLﬁJj’L+n(O) =
LZZZ),HH(U =0fori=0,...,l. Hence, by applying integration by parts, we obtain

1 +1 1
. -1 (n+1)! Lkl .
/ wl(ﬁznﬁ+n(7') sin(wge1'7)dr = (=1 ; ) / w#—lﬁ—l(T)quil o )(7') Sln(l)(waT) dr. (5.13)
0 (weT) 0
Hence, by increasing the value of T' we can reduce this sinusoidal perturbation error. Moreover, if
we > w and the numerical error for /77 is negligible, then this high frequency sinusoidal noise error
can be negligible. Otherwise, by increasing the values of x and u, the power of %% becomes larger

and larger. Recall that by increasing appropriately the values for £ and p, the numerical error for 177
1

can become negligible. Thus, if =7

< 1, then the low frequency sinusoidal perturbation error can be
also negligible.

On the other hand, as is shown in the previous section, the integrals in the estimators for Ag and
¢ obtained by the algebraic parametric techniques contain the functions w40 with j € N*. Then, by

taking integration by parts we obtain

1 ' Aw . Aw 1
Aw/o Wyt5,0(7) sin(weT'T) dr = ——F ( —|—])wT/O Wyt j—1,0(T) cos(wxT'T) dr. (5.14)

Hence, similarly to the modulating functions method, the sinusoidal perturbation error can be reduced
by increasing the value of T or by taking a high frequency wy. However, if the frequency wg is not
high enough, then this sinusoidal perturbation error can not be negligible. Moreover, if the value of u
increases, then according to (5.14) this error can be increased also. We recall in Table 5.2 the influence
of parameters on the sinusoidal perturbation error. a | and b 7 (resp. b ) refer that by increasing
(resp. decreasing) the value of b, we can reduce the value of a.

Method Sinusoidal perturbation T (m) 1 n
Modulation functions method i (T being set) | min(k, u) 7 | N\
Algebraic parametric technique { ' (T being set) Ny

Table 5.2: The influence of parameters on the sinusoidal perturbation error.

Finally, we assume that the sinusoidal perturbation w is corrupted by a structured perturbation
n—1 .
where o(t;) = Y vjt]. Then, according to Lemma 2.3.47, the estimators obtained by using the
j=0
(n)

ZW{ 1, can annihilate this structured perturbation.

modulating functions method with ¢ = w,

5.4 Analysis for a stochastic processes noise error

In this section, we study the noise in the framework of stochastic process. By using the Bienaymé-
Chebyshev inequality, we give some appropriate error bounds for the noise error contributions. Then,
we show the influence of the sampling period on these noise errors.
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5.4.1 Non-independent cases

In this subsection, we assume that the noise w satisfies the condition (C}) defined in Subsection 2.4.1.
Then, by applying Lemma 2.4.49 we obtain that the noise error ey defined in (5.6) converges in
mean square to eg’.

Similarly to (2.15), by calculating the mean value and variance of the noise error contribution eg ™™

we obtain an error bound for eg”"™":
mepT max
e ™| < Mg, (5.15)

where M™% = max(|M]|, |M}]) with M = E[eq"™]—v\/Var[eg"™] and M} = Eleg""|4+v+/Varleg ™.
In particular, similarly to Subsection 2.4.2, we can give error bounds when the noise is a Wiener process
or a Poisson process.

Now, we assume that the noise {w(7), 7 > 0} is a continuous parameter stochastic process satisfying
/(ﬁk)n,n+n withn € N, u, Kk €
]—1, +o00[ as the modulating functions used in Section 4.3. Then, similarly to Theorem 2.4.51 the mean

conditions (C}) to (C3) defined in Section 2.4. Let us choose function w

value and variance of the noise error eg” for the estimators obtained by using modulating functions
methods are equal to 0. Hence, similarly to Theorem 2.4.56, we can obtain that eq”"" converges in
mean square to 0 when T — 0.

5.4.2 Independent cases

In this subsection, we assume that the noise w satisfies the condition (Cy) — (Cs) defined in Subsection
2.5. Then, similarly to the previous subsection, by calculating the mean value and variance of the
noise error contribution eg”™, we can give error bound M;"** for ;"

In particular, if @ is a white Gaussian noise, then according to the three-sigma rule, we have
ML emm S gt (5.16)
qg="% =g :

where Mé = Eleg"| — v/Varleg”™]| and M;’ = Eleg""| + v/ Varleg™] with p; = 68.26%, ps =
95.44% and p3 = 99.73%. In this case, we have

|e=m| < Mmos, (5.17)

where M = max(\Mé|, ]M(?])
Now, let us assume that ¢ € £2(I). Then, similarly to Theorem 2.5.58, we obtain that eg ™

n—1
converges in mean square to fol q(7) E[w(T'T)] dr when Ty — 0. Moreover, if E[w(7)] = Z 7; " with
=0

(n)
pt+n,k+n

obtained by using modulating functions methods converges in mean square to 0 when Tg — 0.

v; € R, then by taking ¢ = w withn € N, y, k €] — %, +0o0[, the noise error ef” for the estimators

Remark 9 According to the proof of Theorem 2.5.58, the variance of the noise error contribution eq ™"

m m
a; a;
is bounded by the term U% %Z ¢2(7i) which tends to zero when m — +o00. As E %1 ¢*(7i) tends
=0 =0
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m

to the integral value fol q?(7) dr when m — +oo, the convergence rate of the term Uag;n) Z —¢*(m)
m

=0
depends on the value of fol ¢*(1) dr. Thus, we can choose the function q which minimizes the integral
value fol ¢*(1) dr so as to minimize the variance Varleg""]. If ¢ = wyx, then we have fol (1) dr =
B(2u + 1,2k + 1) where B(-,-) is the classical beta function. Since B(2u + 1,2k + 1) increases with
m
]

respect to p and k, we can reduce Var[eg"] by decreasing the values of u and r. Consequently, we

can reduce the noise errors contributions for our estimators by decreasing the values of p and k.

5.5 Some error bounds for estimators

In this section, by using the noise error bound M;"** obtained in the previous sections we give some
error bounds for the estimators obtained in the time-invariant amplitude case. These error bounds
permit us to know precisely the influence of these parameters on our estimators.

5.5.1 Some error bounds in the unknown w case

We obtain in Proposition 4.3.70 an estimator for the frequency w in the time-invariant amplitude case,
which is more general to the one obtained in Proposition 4.2.65. We give an error bound for this
estimation in the following proposition.

Proposition 5.5.74 Let & be the estimation given in Proposition 4.3.70 for w. Then the total error

for &2 is bounded as follows

where
1 Mm(lﬂf
M- — (.()2 _ wQ N gz ,
o = W= g g e
T,m

N — i Ii/'

m T,

1% 1
9z = gIZ7m_gI§’m>

Ig’m and Ig"™ are given by (5.4) withy = x, ¢ = § and q = g respectively, Mg and Mg** are given

with ¢ = g, and q = g respectively. Moreover, if w? > M 4, then the total error for W is bounded as

follows

Mévg

@ —wl < Byg= —— =0
2 (W2 - Mé,g)

(5.18)

N
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Proof. We have

1 Ix,m + w@,m I:r,m
2w = — |8 g 7§
m| 2 x,m w,m x,m
T2 |15 + eg I
w,m yx,m w,m yx,m
1 e Ig7" —eg ' I;
— 72 T, m w,m\ 7&,m
T (Ig™" +eg™) g
w,m yT,m _ _wo,m yT,m
- 1 €5 I g Ig- ‘
) xT,m w,m T,m *
T2 |13 = leg || g™
Denote the noise error ez ™ Ig"™ — eg ™ I;™ by eg?™ with g, = §lg™ — gI"™. Then, by using noise

error bound M (resp. M** ) for eg,"™ (resp. eg’™) we get

‘@2 —w2‘ < ‘&12 —wZ@\ + }w2 - w,%l‘
1 Mex (5.19)
< 9z 2 _ 2] = M .
= T = aage Tl = M
Then, by applying the mean value theorem, we get
~ 1 ~92 2 =1
|w—w|§§‘w - w?| sup £

£€min(w?,w?),max(w?,w?)]

Observe that w? — M4 < w?— ‘@2 — wQ‘ < min(&?, w?) < max(@?,w?) < w? + ‘@2 — wz‘ < w? +Mj.4,
hence if w? > M 4 then this proof can be easily completed. a

We use the estimations of x¢ and & in Proposition 4.2.66 to estimate Ap and ¢. In these estimations,
we need an estimation value for the frequency w. Hence, we can give error bounds for these estimations
by using the error bound given in the previous proposition. Such that by studying these error bounds
we can choose the optimal parameters for zg and 2 so as to estimate Ag and ¢.

Proposition 5.5.75 Let T be the estimation given in Proposition 4.2.66 for xo. Then the total error

for xg is bounded as follows

’5?0 - xo‘ < MPO“””'"v (520)
where
Mpss = [zom — xo| + My T?I5™M, | + P,
T, m
TOom = Ip6v )
Py (T) = |po(T)| + (w® + M§79)T2wu+271(7'),
po(7) = 2(p + 2)wyt1,0(7) — (L + 1) (p + 2)wp,1 (1), (5.21)

Py is given in Proposition 4.2.66, Ix%fn and Iﬁﬁm are gwen by (5.4) withy = x,q = P§ and ¢ = wy42,1
respectively, MS% is given with g = Py"", My 4 is given by (5.19).

W, T
PO
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Proof. Let Denote P (1) = po(7) — (0T)*wy42,1 () with po(7) being given by (5.21). Then, we get

w,m

Fo — Tom = (W? — @2)T2[§ﬂ271 + Cpis - (5.22)

Observe that
|25 (7)| < lpo(7)] + (@T)*wyg2,1(7)
< |po(7)] + (W* + My o) T?wpug2,1 (7).
Denote |po(7)| + (w? + My ¢)T?wy42.1(7) by Py ""(7), then by using (5.22) we get

~ 2 rx,m mazx
’a}() — .%'()m’ < MQ‘VQT Iwu+2,1 + P(;/J,I.

Then this proof can be easily completed. o
Similarly, we give the following proposition.

Proposition 5.5.76 Let &g be the estimation given in Proposition 4.2.66 for ig. Then the total error
for &g is bounded as follows

|#0 — do| < Mpe.s, (5.23)
where
) . 1
Mper = |diom — ol + (Mg-,gT?Ifgﬁ” + gﬂx) ,
w'(t) = (p+3)wure1(7T) + wurso(r),
. 1

Tom — fljggna

PP = pi(7)] 4 (w4 M) T? (1 + 3)wps2,1(T) + wuss (7)),
pi(r) = (p+D)(+2)(p+3)w1(r) — (p+2)(p + 3)wyut1,0(7),

Iﬁ%ﬁn and T are given by (5.4) withy = z, ¢ = P and ¢ = w" respectively, MPESS s given with
1
q=P"", My, is given by (5.19).

By observing the estimators obtained in Proposition 4.3.71 by the modulating functions method,
we can find out that these estimators are not linear with respect to @2. Hence, it is better to know the
value of w so as to give error bounds for these estimators.

5.5.2 Some error bounds in the known w case

In this subsection, we assume that the frequency w is known. With this assumption, we can give directly
some error bounds for the estimators of Ag and ¢ obtained in Proposition 4.2.66 and in Proposition
4.3.71.

Proposition 5.5.77 Let Ay and ¢ be the estimations obtained in Proposition 4.2.66 for Ag and ¢
respectively. Then the total error for 1213 is bounded as follows

‘A% - A%‘ < Mpsor,
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where
M _ A2 A2 max Mmax 2 1 Mma:c 2
PQW’Z - ‘ Om — 0|+ P""T+ + (TU)) 3
;2
2 Lo
AOm = x0m+ w?’
2
PP = 2R Y
w

PP for i = 0,1 us given by Proposition 4.2.60, xo,, and Zo,, are giwen by Proposition 5.5.75 and
Proposition 5.5.76 respectively, MpSs is given with q¢ = P for i = 2,3. Moreover, if A2 > MP;’@,

then the total error for Ay is bounded as follows

MP;,I

.
2
2 (A3~ Mgy )

‘AO —Ao‘ < BP;,ac =

—~—

The total error for tan(¢) is bounded as follows

‘tan(qﬁ) - tan(gzﬁ)’ < Mps.r, (5.24)
where
wTMPmﬂ%
Mpsr = [tan(ém) — tan(9)| + ,
3 ‘I%m’ ‘|I$’m| — Mmaz
Py Py Py

tan(¢m) = w@i’

TOm
PO = IEPY - I

Moreover, if tan(¢p) > MP;,I, then the total error for ¢~> is bounded as follows

MP;’I
< Bpys = : (5.25)

1+ (tan(<b) — MP;,:::)2

Proof. Observe that
52 2

By, e g, b
_QIPw epe + (Tw)? IPW epuw + (epo’w ) +W (epw ) .
Denote 2 ﬁye?wm + (TQ) Ipeps™ by e;ffl with Py" = QIﬁ?PSJ (T @z lpe Py Then we obtain
i — | < e+ (st L (o)’ -
" (Tw)?

Then by applying the mean value theorem the error bound for Ay is easily obtained. Similarly to
Proposition 5.5.74, the total error for ¢ can be easily bounded. Then this proof is completed. a

Similarly, we give in the following proposition two error bounds for the estimators obtained by the
modulating functions method.
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Proposition 5.5.78 Let Ay and gz; be the estimations obtained in Proposition 4.3.71 for Ay and ¢
respectively. Then, the total error for A% is bounded as follows

where

My

A2

Om

Ge
Yo

w

g

1
2 2
‘AOm - Ao} + 73 (
a2 a2
I )
L2 L2

G791 — G35 ga,
GLfQQ - G?}ugh
QIgém ge + QIggm Yo,

M

‘A%—A%‘ < My,

(M) 4 (M),

I™ is given by (5.4) with y =z and ¢ = g; for i =1,2,¢,0, Mg=* and M;’].m“" are given with ¢ = g%

and q = g; for j = e,0,w respectively. Moreover, if A% > Mgy, then the total error for Ay is bounded

as follows

—_——

‘AO - AO‘ S ng =

The total error for tan(¢) is bounded as follows

where

M,

tan(¢ym, )

Jw

2 (Ag - Mgw)

Mg

SIS

‘tan(qﬁ) — tan(d>)‘ < My,

max
Mg

= [tan(¢,,) — tan(®)| + &

zm

Jdo

7z

ge

_ T,m
- Ige

Yo

_7T,m
Igo

Ge-

15" |1 15| = M|’

Moreover, if tan(¢) > My, , then, the total error Jor & is bounded as follows

69| < B,

My,

"1+ (tan(é) — M, )%

Proof. Denote g. = G791 — G%g2 and g, = G{g2 — G% g1, then we get

(43 - 43,,) 12 =21z e + (e

r.m _wo,m r.m _wo,m
Denote 215, " eq, + 214" ey,

o

,m

)220 e (e,

do

by egz" with g% = 215" ge + 215, g,, then we get

32— a8, < o (Mg o+ () + (v’
w
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Then the total error for Ay is easily bounded. Similarly to Proposition 5.5.74, the total error for qs can
be easily bounded. Then this proof is completed. a

In particular, if w is a zero-mean white Gaussian noise satisfying the condition (C4) defined in
Subsection 2.5, then the noise error e}f(%m obtained in (5.26) is also a white Gaussian noise. Hence,

w , M2
we get that the random variable — 0~ follows the x? distribution with the probability density
Var [e?&f”}
0
function f(t) = 21_\‘/(51)15_%6_%. Consequently, we can get a more precise error bound for (elfé,m)2 than
2

(M79%)2, For example, we can obtain
Py ,

w,m\ 2 95.6% w,m
(epgj )° < 3Var [ePgJ ] (5.32)

Similarly, we can get such error bounds for e}flubm obtained in (5.26) and (egwj’m)2 for j = o, e obtained
in (5.30).

5.6 Conclusion

In this chapter, our estimators were given in discrete case. We have roughly shown the parameters’
influence on the numerical error and on the noise error due to a biased sinusoidal perturbation. Then,
we have considered the two classes of stochastic processes noise which have been studied in Chapter
2 for our Jacobi derivative estimators. Hence, we could give some error bounds for the estimators
obtained in the time-invariant amplitude case so as to study precisely the parameters’ influence. In
future work, the analysis for colored noises will be done.

Let us mention that some similar error bounds can also be given for the obtained estimators in the
time-varying amplitude case. However, the disadvantage of these error bounds is that the signal z is
assumed to be known. The error bounds obtained in this section are only used to let us know better the
parameters’ influence on our estimators. Hence, instead of giving error bounds, we use the knowledge
of the parameters’ influence studied previously to choose parameters for the estimators obtained in the
time-varying amplitude. We are going to show it in numerical implementations.

Finally, we recall all the obtained error bounds in Table 5.3. In the following chapter, before giving
some numerical examples we will apply these error bounds to choose the parameters for our estimators.
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Proposition | Estimator | Error bound Needed condition
5.5.74 w? Mg
5.5.74 @ Bj g w? > My,
5.5.75 Zo Mpw.
5.5.76 Zo Mpw.
5.5.77 A3 Mpy.s w is known
5.5.77 Ay Bpg= w is known and A3 > Mpg.
5.5.77 tan(¢) Mpe. w is known
5.5.77 ® Bpea w is known and tan(¢) > Mpw.
5.5.78 AR Mo w is known
5.5.78 Ag By w is known and AZ > Mye
5.5.78 tan (o) M,, w is known
5.5.78 b By, w is known and tan(¢) > M,

Table 5.3: Error bounds
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Chapter 6

Numerical implementation of estimators
for sinusoidal signal
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6.1 Introduction

In this chapter, we are going to show the efficiency and stability of ours estimators. We choose function

(n)
ptn,k+n

Section 6.4 we respectively explain how to apply the frequency, amplitude and phase estimators by

w with n € N, u,k €] — 1, +00[ as the modulating functions. In Section 6.2, Section 6.3 and
using a sliding integration window in our identification procedure. In Section 6.5, we consider a time-
invariant amplitude sinusoidal signal corrupted by a zero-mean white gaussian noise. Then, we use
the error bounds given by (5.17) and (5.32) in the error bounds obtained in Proposition 5.5.77 and
Proposition 5.5.78 to study the choice of parameters for our estimators. This helps us to globally select
parameters for our estimators. In Section 6.6, some numerical examples are given in the time-invariant
amplitude and time-varying amplitude cases, where the noises are white gaussian noises with zero-mean
or not and low frequency sinusoidal perturbations respectively. We give also two examples where the
sampling period is large so as to compare the estimators obtained by using the algebraic parametric
techniques to the ones obtained by using the modulating functions method.
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6.2 Recursive algorithms for the frequency estimators

In our identification procedure, we use a sliding integration window. Hence, there can be a singular
value in the frequency estimators. Inspired by [Coluccio 2008, Fedele 2009b, Fedele 2010], we are
going to use the weighted least square criterion to improve our estimators. Moreover, similarly to
[Coluccio 2008, Fedele 2009b, Fedele 2010], two recursive algorithms for these frequency estimators are
given.

6.2.1 Time-invariant amplitude case

Let us recall that the estimation of w at the instant ¢; is obtained by applying Proposition 4.3.70 as

fo T)y(T'T + t;)dr : o1 6.1)
fo )y(Tr +t)dr | R .

follows

Vti < I, (I)(tz)

N \

Then, in the discrete case we have

1 Iytlv
Vi, eI, w(t;) = 7 <—I-"ytm> ,1=0,1,..., (6.2)
g

where y;, = y(T - +t;). Note that if I;""" = 0, then there is a singular value in (6.2). If we denote

by 0; = T?@&?(t;), then we can apply the following weighted least square criterion so as to improve the
y ) pp g g

estimation of w '
1 ‘ it1—j Yt ,m Yt ,m 2
3 D\ — —J J J . N
min J(6;) = 5 > v (I VI 91) Li=0,1,..., (6.3)
7=0
where the parameter v is within the interval (0, 1] and represents a forgetting factor to exponentially
discard the “old” data in the recursive schema.

The value of 6;, which minimizes the criterion (6.3), is obtained by seeking the value which cancels

8;;(9?) Hence, we get

ZVZH g
6, — | (6.4)

S ()

Then, similarly to [Coluccio 2008, Fedele 2009b, Fedele 2010], we obtain the following recursive algo-
rithm for (6.4)

Oit1 = (il = Bit1), i=0,1,..., (6.5)

i1

1 [ Ytm Yty M Yt M :
where o; = g yiti=i (I I ) and B; = 1 i I,;". Moreover, a1 can be recursively calculated

Qi1 = v <az + (13““””)2) . (6.6)

174
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6.2.2 Time-varying amplitude case

The estimation of w at ¢; in the time-varying amplitude case was obtained in Proposition 4.3.72. In
the discrete case it becomes

By, Ay,
vit; €1, w2(ti):—2£’; +2Ay;;, i=0,1,..., (6.7)
where Ay, =TI, B, = 2T21]€.”’m, Cy,, = Ij{fg;m with g, = y(T - +t;) and
N —\/Bf,ti — 44y, Cy,., if Ay [} iy pra(7) sin(WI'T + t; + ¢)dr > 0, .
Yt, — N
\/ B;ti — 44y, Cy, , else.
B A
Similarly to the previous subsection, we apply the criterion (6.3) to 5 Ayyt‘ and 5 Ay;" S0 as to improve
1 t; Yt;

Dy, -
the estimation. Denote 0(D,, ) = QAy;Z where Dy, = By, or D,, = A, , then similarly to (6.5) we
i Yt, i i i i

get the following recursive algorithm
v

M) = G
tit1

(a(Ayti)e(Dyti) + 2Ayti+1Dytm) L i=0,1,..., (6.9)

where (A, ) = 42 v (A4,,)?

‘T

j=0
6.3 Causal formulae for the amplitude estimators

Let us remark that the formula given in (6.2) is in fact an anti-causal formula, where we use integration
window [t;,¢; + T to estimate the frequency value at t;. In the identification procedure, the estimate
value is given at instant ¢; + 7. This induces a time-delay of value greater than T'. If the frequency is
time-invariant, then this is not a problem. However, it is not the case for the time-varying amplitude

estimators.

. aj
Let 1" = Z — q(1;) y(T'Tj +1;) be the approximated integral value in the amplitude estimators
m
j=0
in the identification procedure, where y;;, = y(T - +t;). In order to avoid a time-delay, we use the
following causal formula to estimate the amplitude value at ¢;
m

17 (t) = > L) y(t — Ty, (6.10)

6.4 Algorithms for the phase estimators

Since we use a sliding integration window [t;,t; + T in the identification procedure of phase, the
estimated phase value at ¢; is equal to ¢(t;) = wt; + ¢, where ¢ is the estimate for the initial phase

value at to. Hence, we get ¢ = ¢(t;) — wt;. Moreover, since we use the function arctan(-) in the phase

estimators, we have ¢ €] — 5, 5[ Hence, we take $o = ¢( mod 7) as the estimate of the initial phase

value.
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6.5 Analysis of parameters’ choice for the estimators of Ay, and ¢

In this section, let us assume that y(¢;) = x(t;) + cw(t;) is a generated noise data of x in the interval
[0, 27] where (t;) = Ap sin(wt; +¢) with Ag =1, w =1, ¢ = 0.25 and noise cw(z;) is simulated from a
zero-mean white Gaussian i¢d sequence with ¢ = 0.05 € R;.. The sampling period is set to Ts = 13%,
i.e. there are 100 data per period.

We are going to do some analysis for the choice of parameters in the estimators of Ay given by
Proposition 4.2.66 (resp. Proposition 4.3.71) by using the error bounds obtained in Proposition 5.5.77
(resp. Proposition 5.5.78). For the estimations of Ay at each time ¢;, we use the moving integration
window [t;,t; +T'] with T'= Tym. Hence, these estimations depend on the instant ¢;. We denote them
by Ag(t;).

Firstly, we consider the estimator of Ay given in Proposition 4.2.66. Thus, the error bound Bp,, ;
obtained in Proposition 5.5.77 depends on the estimation parameters p, m and the instant ¢;. We
denote it by Bp,wa(to; 1, m). Then, we can see the variation of Bp,, »(to; ¢, m) in Fig. 6.1 for
p=0,0.2,...,10 and m = 30,21,...,130 at tg, where the minimum of Bp,, »(to;, ) is equal to 0.0211
at u = 1 and m = 46. Thus, the optimal parameters for the estimation of Ay at tgp are p = 1 and
m = 46. Similarly, we can find the optimal parameters for the estimations of Ag at the other instants
ti (i # 0). The minimal value of Bp,w (ti;-,-) at each t; and the corresponding optimal parameters’
values mep, flop are shown in Fig. 6.2. We can observe that the minimal values of Bp,, »(ti;-,-) are
near to 0.02, and the corresponding optimal values for p,, are between 0 and 1. However, the change
of the corresponding optimal values for my, is large (from 37 to 105). In order to choose appropriate
parameters’ values for the estimations of Ay at each t;, we set the value of u to 0 and 1 respectively,
and vary the values of ¢; and m. As the curves in Fig. 6.2 are m-periodic, the values of Bp,, o (ti; 1, m)
are shown in Fig. 6.3 with t; = 0,7,...,m — Ts and m = 30,...,100. Hence, if = 0 (resp. p = 1)
then we can choose m = 48 (resp. m = 65) so as to get minimal values for Bp,y, »(ti; 14, -)-

Secondly, we consider the estimator of Ag given in Proposition 4.3.71 where the modulating func-

(ni)
Ki+ng, 04

estimations we set n = n; = ng, kKo = 1 = p and po = K1 = k. Moreover, we set © = k + 1. Thus,

tions are set to ¢; = w 4n,; for 2 = 1,2, According to Remark 8, in order to obtain stable
the error bound By obtained in Proposition 5.5.78 depends on the estimation parameters x, m, n and
the instant t;. We denote it by Bge (t;; £, m,n). By calculating the variation of By (t;; k,m,n), we can
observe that for different instant ¢; the minimum of By« (t;; £, m,n) holds with different values of x
and m. Moreover, the influence of n on By (t;; £, m,n) is more important than the one of k. We can
see in Fig. 6.5 the different values of Byo(t;;x = 1,m,n) for t; = 0,T,...,m — Ty and n = 0,1, 2, 3.
Consequently, we can conclude that by increasing the value of n, we can get smaller and smaller values
of By (ti;k = 1,m,n). These values are smaller than the minimal value of Bp,, . (i; 1, ) obtained
previously. However, we need larger and larger value of m.

Finally, we consider the error bound Bp,, . (resp. Bg,) obtained in Proposition 5.5.77 (resp.
Proposition 5.5.78) for the estimator of ¢ obtained in Proposition 4.2.66 (resp. Proposition 4.3.71).
Since we use a moving integration window, the estimations of ¢ depend on the instant ¢;. We have
¢(t;) = wti+d at t;. Let us denote the error bounds by Bpy,, . (ti; 1, m) and By, (t;; &, m, n) respectively.
Similarly to the previous analysis, we show the variations of Bpy, o (ti; 1, m) and By, (t;; k,m,n). The
values of Bp,, »(ti; 1, m) are shown in Fig. 6.4 with ¢; = 0,T%,...,197s and m = 30,...,100 such that
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we can ensure the condition tan(¢(t;)) > Mpwe. Hence, if p = 0 (resp. p = 1) then we can choose
m = 48 (resp. m = 65) so as to get minimal values for Bp,, 5(ti; it,-). Moreover, we can see in Fig.
6.6 the different values of By, (t;;x = 1,m,n) for t; = 0,T,...,197; and n = 0,1,2,3. We give in
Table 6.1 and Table 6.2 the obtained parameters for amplitude and phase parameters.

100 110 120 130

Figure 6.1: Bpyy, «(to; , m) with ©=0,0.2,...,10 and m = 30,31, ..., 130.
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(a) Optimal values of Bp,uw,z(ti;-,*). (b) Corresponding optimal parameter’ values mop.
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(c¢) Corresponding optimal parameter’ values fiop.

Figure 6.2: Optimal values of error bound and corresponding optimal parameter’ values
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(t; u=1,m)

BP WX
2

2
00 ;e

(a) Different values of Bp,w(ti;0 = 0,m) for t; = (b) Different values of Bp,w(ti;p = 1,m) for t; =
0,Ts,...,m—Ts and m = 30, ..., 100. 0,Ts,...,m —Ts and m = 30, ..., 100.

Figure 6.3: Different values of Bp,y 2 (ti; u, m) for t; = 0,Ts,...,m — Ty and m = 30,...,100 with
uw=0,1
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(a) Different values of Bpywo(ti;p = 0,m) for t; = (b) Different values of Bpyu(ti;u = 1,m) for t; =
0,Ts,...,197, and m = 30, ..., 100. 0,Ts,...,197, and m = 30, ..., 100.

Figure 6.4: Different values of Bpy, »(ti; u,m) for t; = 0,7T,...,19Ty and m = 30,...,100 with
w=0,1.
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Bgm(ti; k=1, m, n=0) Bgm(ti: k=1, m, n=1)
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(a) Different values of Byw(t;;x = 1,m,n = 0) for ¢; = (b) Different values of Byw(t;;x = 1,m,n = 1) for t; =
0,7s,...,m—Ts and m = 40,...,90. 0,7s,...,m—Ts and m = 80,...,130.
Bgm(ti; k=1, m, n=2) Bgm(ti; k=1, m, n=3)

(c¢) Different values of Bgw(ti;6 = 1,m,n = 2)
0,Ts,...,m —Ts and m = 120, .. ., 170.

Figure 6.5: Different values of Bye(t;;6 = 1,m,n) for t; =0,Ts,...,7 — Ty and n =0,1,2,3.
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Bgm(tl; k=1, m, n=0) Bgm(tl; k=1, m, n=1)

L 300
1.4F 0.0

- : /
N Y - - / \
12} 8,/_02 4
S

~0.027

0.8

0.6

0.0286

98200

0.4r

0.027—
——0.0161

|
&3
<
041 =
|
o |
.

-
o
S
P
B
o
P
N}
o
=
@
S

40 90 80 90

(a) Different values of By, (ti;x = 1,m,n = 0) for t; = (b) Different values of By (t;;x = 1,m,n = 1) for t; =
0,Ts,...,197, and m = 40, ..., 90. 0,T%,...,197, and m = 80, ..., 130.
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(c) Different values of By, (ti;x = 1,m,n = 2) for t;, = (d) Different values of By (t;;x = 1,m,n = 3) for t; =
0,Ts, ..., 19T, and m = 120, ..., 170. 0,Ts, ..., 19T, and m = 160, ..., 210.

Figure 6.6: Different values of By (t;;x =1,m,n) for t; =0,T%,...,19Tg and n =0, 1,2, 3.
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Method Error bound W n| m Minimum
Algebraic parametric | Bpyy, o (ti; g, m 0 48 0.022 — 0.024
Bpy o (tis 1, m 65 0.022 — 0.024
Modulating functions | By (ti;k,m,n) | p1 = ky =2, g = k1 = 1 58 0.021

105 | 0.0148 — 0.0152
146 | 0.0128 — 0.0132
184 | 0.0118 — 0.0119

p1 =Ko =2, g =K1 =1
1 =kKe =2, g =K1 =1

m)
m)
)
z‘“/@mn) 1 =k =2, io = k1 = 1
,n)
,n)

Wi = o

Table 6.1: Parameters for amplitude estimators.

Method Error bound “ n| m
Algebraic parametric | Bpy, o (ti; 1, m) 0 48
Bpyw »(ti; 1, m) 1 65

Modulating functions | By (ti;k,m,n) | 1 =Ke =2, pp=k1 =1 0| 58
g (tisk,m,n) | pn =k =2, pp=r1=11]1] 105

w(tz,ﬁ;mn) U1 =kKo=2 puo=r1 =112 | 146

o (tisk,m,n) | 1 =ko =2, pp=r1 =13 | 184

Table 6.2: Parameters for phase estimators.

6.6 Numerical examples

Example 1
In this example, let us assume that y(t;) = x(t;) + cw(t;) is a generated noise data of x with a
sampling period Ts = Z; in the interval [0, 307] (see Fig. 6.7) where

sin(t; + 1), if 0 <t; <10m,
x(t) =< 2sin(t;+ 1), if 10w <t; < 20m, (6.11)
2sin(t; + 1), if 20w < t; < 30m,

and noise cw(z;) is simulated from a zero-mean white Gaussian iid sequence with ¢ = 0.05. Hence,
the signal-to-noise ratios ([Haykin 2002]) SNR = 10log,, (%) in each interval are equal to
23.5dB, 17.7dB and 26.3dB respectively.

In order to estimate the frequency, the amplitude and the phase, we use the estimators given in
Proposition 4.3.70, Proposition 4.2.66 and Proposition 4.3.71 which are obtained in time-invariant
amplitude case and the one given in Proposition 4.3.72, Proposition 4.2.68 and Proposition 4.3.73
which are obtained in time-varying amplitude case. We apply the recursive algorithms proposed in
Section 6.2 with v = 1 so as to estimate the frequency. The relating estimation errors are shown in Fig.
6.7 where Kk = p =n =0, v =1 and m = 40. We can observe that these errors are very small. Since
we need frequency estimated values in the estimators of amplitude and phase, we use the frequency
estimator given in Proposition 4.3.70. As is studied in the previous subsection, we set p = 0, m = 48
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for the estimators for the amplitude and the phase obtained by the algebraic parametric techniques
in Proposition 4.2.66, and k = 1, n = 0, m = 58 for the ones obtained by the modulating functions
method in Proposition 4.3.71. The so obtained estimations are shown in Fig. 6.8 and Fig. 6.10 with
the corresponding relating estimation errors. We can see that the estimations of the amplitude are
very good. When 0 < t; < 107, according to Fig 6.3 (resp. Fig 6.5) the relating estimation error for
the estimation obtained by using the algebraic parametric techniques (resp. the modulating functions
method) is smaller than 0.023 (resp. 0.021) with a probability of 95.6%. However, when the amplitude
of the signal changes, there are large errors in the estimations of the phase.

According to Section 5.2 and Remark 9, the estimators obtained by the algebraic parametric tech-
niques in Proposition 4.2.68 can produce larger estimation errors than the ones given in Proposition
4.2.66. Hence, we set a lager value for m as so to reduce estimation errors. Thus, we set u = 0 and
m = 80. Finally, according to Remark 8 and Remark 9, we set f1 = w1, f2 = wo,1, f3 = w21 and
fa = w2 for the estimators for the amplitude and the phase obtained by the modulating functions
method in Proposition 4.3.73. According to Section 5.2, they can produce larger numerical errors than
the ones given in Proposition 4.3.71 with g1 = w12, g2 = wo2,1. Hence, we set a lager value for m
(m = 80). The so obtained estimations are shown in Fig. 6.9 and Fig. 6.11 with the corresponding
relating estimation errors. We can see that when the amplitude of the signal changes, there are large
errors in the estimations. Consequently, if the amplitude of a noisy sinusoidal signal changes quickly,
we shall use the estimators given by the algebraic parametric techniques in Proposition 4.2.66 and the
ones given by the modulating function method in Proposition 4.3.71 to estimate its amplitude and
phase. Moreover, according to the analysis in the previous subsection, if we increase the value of n for
the estimators given in Proposition 4.3.71 then the obtained estimation error can be smaller than the
ones for the estimations given in Proposition 4.2.66. We recall in Table 6.3 all the parameters used in
this example.

Noisy observation y and Signal x Relating estimation errors of w
25 0.031

Noisy observation Estimator for time-varying amplitude signal
2r R Y Y | — — — Estimator for time—invariant amplitude signal
— — — Signal x / f\ f f f\

0.025 ‘

\ 0.015F
\

\
\‘ | 0.01F vy

|
) ‘ L ! |,
-15F \ ‘\ \ J | | “vlﬂ\u«\ ‘“‘\H e
I w ‘} 0.005 : i ’ \/ LU\ L
o i { MU v\\‘ A A\w - A
| | | \ \ BRI TS e s AN
o 20 40 60 80 100 0 20 40 60 80 100
t t
(a) Noisy observation y and the signal x (b) Relating estimation errors of w

Figure 6.7: Signals and relating estimation errors of w obtained with K = p =n =0, v = 1 and
m = 40.
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Estimators of A0 for time—-invariant amplitude signal Relating estimation errors for the estimators of A0
24r 0.141 L1
A —— Modulating functions method
2.2 0 X X ! — - — - Algebraic parametric techniques
— Modulating functions method 0.12F |

2L | — — Algebraic parametric techniques| |
181 0.1F ‘
16 | |

: 0.08 - |
141

0.06 -
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(a) Estimations of amplitude (b) Relating estimation errors of amplitude

Figure 6.8: The amplitude estimation obtained in Proposition 4.2.66 with © = 0, m = 48 and the one
obtained in Proposition 4.3.71 with g1 = w12, go = w21 and m = 58.

Estimators of A0 for time—-varying amplitude signal Relating estimation errors for the estimators of A0
3r 0.2r il
Modulating functions method
- Ao 0.18+ — - — - Algebraic parametric techniques
251 Modulating functions method
— - — - Algebraic parametric techniques 0.16-
0.14r
2L
0.12F
15F 0.1f
0.08
1k
0.06 -
0.04F-
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1
O L L L L J 0 ! J
0 20 40 60 80 100 0 80 100
t
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(a) Estimations of amplitude (b) Relating estimation errors of amplitude

Figure 6.9: The amplitude estimation obtained in Proposition 4.2.68 with © = 0, m = 80 and the one
obtained in Proposition 4.3.73 with fi = w1, fo = wo,1, f3 = w21 and fi = wi 2 and m = 80.

184

© 2011 Tous droits réservés. http://doc.univ-lille1 fr



Thése de Dayan Liu, Lille 1, 2011

Estimators of ¢ for time-invariant amplitude signal Relating estimation errors for the estimators of @
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(a) Estimations of phase (b) Relating estimation errors of phase

Figure 6.10: The phase estimation obtained in Proposition 4.2.66 with © = 0, m = 48 and the one
obtained in Proposition 4.3.71 with g1 = w12, g2 = w21 and m = 58.
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(a) Estimations of phase (b) Relating estimation errors of phase

Figure 6.11: The phase estimation obtained in Proposition 4.2.68 with ¢ = 0, m = 80 and the one
obtained in Proposition 4.3.73 with fi = w10, fo = wo,1, f3 = w21 and fi4 = wi 2 and m = 80.
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Proposition | m (Ts = &) L K vin
4.3.70 40 0 0 0
4.3.72 40 0 0 110
4.2.66 48 0
4.2.68 80 0
4.3.71 58 M1 = 17 Mo = 2 K1 = 2, K9 = 1 0
4.3.73 80 pr=1 10=0,u3=2, u1=1| k1 =0, ke =1, k3=1, kg =2 0

Table 6.3: Parameters used in Example 1.

Example 2
In this example, we change the amplitude of the signal defined in the previous example by taking

sin(t; + 1), if 0 <t; <10m,
z(t;) = sin(t; +3), if 10m < t; < 20m, (6.12)
2sin(t; + 1), if 20m < ¢; < 30,

The signal-to-noise ratios of this signal (see Fig. 6.12) in each interval become equal to 23.5dB, 27.2dB
and 28dB respectively. We use the same estimators with the same parameters to the ones used in the
previous example to estimate the frequency, the amplitude and the phase. The relating estimation
errors are shown in Fig. 6.12. Then, we use the frequency estimator obtained in Proposition 4.3.72 in
the estimators of amplitude and phase. The estimations obtained by using the estimators obtained in
the time-invariant amplitude case are shown in Fig. 6.13 and Fig. 6.15 with the corresponding relating
estimation errors. We can see that when the amplitude of the signal changes slowly, the estimation
errors become larger. The estimations obtained by using the estimators given in the time-varying
amplitude case are shown in Fig. 6.14 and Fig. 6.16 with the corresponding relating estimation errors.
We can see that when the amplitude of the signal changes slowly, the estimations of the amplitude
are better than the ones obtained in Fig. 6.13. The noise errors for the estimations of the phase
are important such that these estimations of the phase are not better than the ones obtained in Fig.
6.15. However, by decreasing the sampling period, we can reduce these noise error contributions.
Consequently, if the amplitude of a noisy sinusoidal signal changes slowly, we shall use the estimators
given in Proposition 4.2.68 and Proposition 4.3.73 to estimate its amplitude and phase. We recall in
Table 6.4 all the parameters used in this example.
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Noisy observation y and Signal x Relating estimation errors of w
251 0.011

Noisy observation y

Estimator for time-varying amplitude signal

|
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(a) Noisy observation y and the signal (b) Relating estimation errors of w

Figure 6.12: Signals and relating estimation errors of w obtained with Kk = p =n =0, v = 1 and

m = 40.
Estimators of AO for time-invariant amplitude signal Relating estimation errors for the estimators of A0
221 0.06
A Modulating functions method
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(a) Estimations of amplitude (b) Relating estimation errors of amplitude

Figure 6.13: The amplitude estimation obtained in Proposition 4.2.66 with ¢ = 0, m = 48 and the one
obtained in Proposition 4.3.71 with g1 = w12, go = w21 and m = 58.
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Relating estimation errors for the estimators of AD
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Figure 6.14: The amplitude estimation obtained in Proposition 4.2.68 with p = 0, m = 80 and the one

obtained in Proposition 4.3.73 with f;
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Relating estimation errors for the estimators of ¢

Modulating functions method
— - — - Algebraic parametric techniques

(b) Relating estimation errors of phase

Figure 6.15: The phase estimation obtained in Proposition 4.2.66 with @ = 0, m = 48 and the one
obtained in Proposition 4.3.71 with g1 = w12, g2 = w21 and m = 58.
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Estimators of ¢ for time—varying amplitude signal Relating estimation errors for the estimators of ¢
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(a) Estimations of phase (b) Relating estimation errors of phase

Figure 6.16: The phase estimation obtained in Proposition 4.2.68 with ¢ = 0, m = 80 and the one
obtained in Proposition 4.3.73 with fi = w10, fo = wo,1, f3 = w21 and fi4 = wi 2 and m = 80.

Proposition | m (Ts = £;) 1 K vi|mn
4.3.70 40 0 0 110
4.3.72 40 0 0 0
4.2.66 48 0
4.2.68 80 0
4.3.71 58 wr =1, pg =2 K1 =2, ky=1 0
4.3.73 80 p1 =1 =0, u3=2,u1=1| k1 =0,ke=1k3=1, Ky =2 0

Table 6.4: Parameters used in Example 2.
Example 3

In this example, we increase the sampling period of the signal defined in Example 1 to Ts = %.
Moreover, we add a bias term perturbation £ = 0.25 in the interval [207,307]. The signal-to-noise
ratios of this signal (see Fig. 6.17) in each interval become equal to 23.3dB, 19.4dB and 15.5dB
respectively. In order to estimate the frequency, we use the same estimators used in the previous two
examples. The relating estimation error are shown in Fig. 6.17 where we take K = u =0, m = 10
and n = v = 1. The value of n is set to 1 so as to annihilate the bias term perturbation. Then,
we use the frequency estimation obtained by Proposition 4.3.72 in the estimators of amplitude and
phase. By doing similar analysis to the one done in Section 6.5, we can get the “optimal” parameters
for the estimators given in Proposition 4.2.66 are 4 = 0, m = 7. Since the sampling period become
larger than the one in the previous examples, according to Section 5.2 we shall increase the value of
x and p for the estimators given in Proposition 4.3.71 so as to reduce the numerical error. Then,
when n = 1 we find the “optimal” values are x = 2 and m = 12. The so obtained estimations for
the amplitude and the phase are shown in Fig. 6.18 and Fig. 6.20 with the corresponding relating
estimation errors. Then, we take 4 = 0 and m = 15 for the estimators for the amplitude and the
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phase given in Proposition 4.2.68 and f; = wgg, fo = wég, f3 = wgi, fa = wfﬁg with m = 15 for the
ones given in Proposition 4.3.73. The obtained estimations are shown in Fig. 6.19 and Fig. 6.21 with
the corresponding relating estimation errors. We can observe that the modulating functions method
is more robust to the sampling period and to the non zero-mean noise than the algebraic parametric
techniques. We recall in Table 6.5 all the parameters used in this example.

Noisy observation y and Signal x Relating estimation errors of w
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(a) Noisy observation y and the signal x (b) Relating estimation errors of w

Figure 6.17: Signals and relating estimation errors of w obtained with Kk = p =0, n = v = 1 and

m = 10.
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Figure 6.18: The amplitude estimation obtained in Proposition 4.2.66 with = 0, m = 7 and the one
obtained in Proposition 4.3.71 with g; = wgg, go = wélg and m = 12.
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Estimators of A0 for time-varying amplitude signal Relating estimation errors for the estimators of A0
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Figure 6.19: The amplitude estimation obtained in Proposition 4.2.68 with p = 0, m = 15 and the one

obtained in Proposition 4.3.73 with f; = wég, fo = wég, f3 = wg’li, fa = wfﬁg and m = 15.
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Figure 6.20: The phase estimation obtained in Proposition 4.2.66 with 4 = 0, m = 7 and the one

obtained in Proposition 4.3.71 with g; = wgg, go = wég and m = 12.
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Estimators of ¢ for time-varying amplitude signal Relating estimation errors for the estimators of @
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Figure 6.21: The phase estimation obtained in Proposition 4.2.68 with @ = 0, m = 15 and the one

obtained in Proposition 4.3.73 with fi = w§), fo = i3, f3 = wi), fo = w() and m = 15.

Proposition | m (T = %) 1 K vin
4.3.70 10 0 0 1
4.3.72 10 0 0
4.2.66 7 0
4.2.68 15 0
4.3.71 12 w1 =2, uo =3 K1 =3, kg =2
4.3.73 15 M1:3,u2:2,u3:3,u4:4 /<c1:2,/<52:3,/<53:4,/£4:3

Table 6.5: Parameters used in Example 3.
Example 4

In this example, we increase the sampling period of the signal defined in Example 2 to Ts = Z,
and add a bias term perturbation & = 0.25 in the interval [207,307]. The signal-to-noise ratios of
this signal (see Fig. 6.22) in each interval become equal to 23.3dB, 29dB and 17.2dB respectively.
We use the same estimators with the same parameters to the ones used in Example 3 to estimate
the frequency, the amplitude and the phase. The relating estimation errors are shown in Fig. 6.22.
Then, we can see the estimations of the amplitude and the phase with the corresponding relating
estimation errors in Fig.6.23-Fig.6.26 where we use the frequency estimator obtained in Proposition
4.3.72. Consequently, we can observe that the estimator of amplitude given in Proposition 4.3.73 and

the estimator of phase given in Proposition 4.3.71 are most appropriate for this signal. We recall in
Table 6.6 all the parameters used in this example.
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Noisy observation y and Signal x Relating estimation errors of w
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Figure 6.22: Signals and relating estimation errors of w obtained with Kk = ¢4 =0, n = v = 1 and

m = 10.
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Figure 6.23: The amplitude estimation obtained in Proposition 4.2.66 with © = 0, m = 7 and the one
obtained in Proposition 4.3.71 with g; = wgg, go = ég and m = 12.
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Estimators of A0 for time-varying amplitude signal Relating estimation errors for the estimators of A0
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Figure 6.24: The amplitude estimation obtained in Proposition 4.2.68 with = 0, m = 15 and the one

obtained in Proposition 4.3.73 with f; = wég, fo = wég, f3= wéh, fa= wgg and m = 15.
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Figure 6.25: The phase estimation obtained in Proposition 4.2.66 with ¢ = 0, m = 7 and the one

obtained in Proposition 4.3.71 with g; = wgg, go = w§12) and m = 12.
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Estimators of ¢ for time—varying amplitude signal Relating estimation errors for the estimators of ¢
357 2r I (TN
" 18} alll b
3l Modulating functions method Lo | Modulating functions method (| L !
— - —  Algebraic parametric techniques H} J\ [ 16k — - — - Algebraic parametric techniques oy ||‘ !
(. | T I |
I I (I [ \[ ne o
L N |
25 i ! % ot 1.4 il (I I !
il “\,"11 Lol ! e ;
2t ! Lo L2r i LR
[ RS i N
I 1t
[ [ o [
15}F ! NEEERE Ak cppoty
: | AR 08l |‘ | ,\ A \‘
| \,‘I‘I‘\ i i \' (.
[ L I |
ir I i ! \J\‘ tl 06 ! ! ":v I “ “ ’ b | ;
! Yoo t 0.4+ i Lo \‘ “ by “\1 ‘W ‘ b
it T U : M Ly 'W‘ ! 1 ! I‘W ‘ v | |
0.5 . Sl o P e “h‘ s “‘\M J‘u 1l Mm’u“y‘“} “ ‘
/ ’ > I 0.2F oy "(w \\ AT
~ M= L A/ v kA | 4 h, » | 1 i | (™
WWWJW ASEA R \j\LMJ 0 Muw iy ot MM
0 AR ‘ o ‘ 0 JMV{T*L UL RV AN R e a e VAN
0 20 40 60 80 100 0 20 40 60 80 100
t| t|
i i S i sti i <
a) Estimations of phase b) Relating estimation errors of phase

Figure 6.26: The phase estimation obtained in Proposition 4.2. 68 with 4 = 0, m = 15 and the one
obtained in Proposition 4.3.73 with f; = wég, fo=w 2 3, f3 = 54, Ja= w(l) and m = 15.

Proposition | m (Ts = %) 1 K vin
4.3.70 10 0 0 1] 1
4.3.72 10 0 0 111
4.2.66 7 0
4.2.68 15 0
4.3.71 12 H1 =2, 2 =3 K1 =3, kg =2 1
4.3.73 15 /“:37,“2:27,“3:37,“4:4 /11:2,/i2:3,/€3:4,/€4:3 1

Table 6.6: Parameters used in Example 4.
Example 5

In this example, we change the noise of the signal defined in Example 1 by a sinusoidal perpetration
w = 0.25sin(4¢;). The frequency of this sinusoidal perpetration is four times to the one of z. Hence,
it can be considered as a low frequency sinusoidal perpetration. The signal-to-noise ratios of this
signal (see Fig. 6.27) in each interval become equal to 12.3dB, 7dB and 15.4dB respectively. In order
to estimate the frequency, we use the same estimators used in the previous examples. The relating
estimation errors are shown in Fig. 6.27 where we take k = p =n =0, m = 60 and v = 1. According
to Subsection 5.3.1, we can take large values for £ and g in the estimators given by the modulating
functions method so as to reduce this sinusoidal perpetration. Thus, we take k = 3 and n = 0 for the
estimators given in Proposition 4.3.71, and take f1 = was, fo = ws4, f3 = wse, f4 = wes for the
estimators given in Proposition 4.3.73. Then, we take m = 80 in the estimators obtained in the time-
invariant amplitude case and take m = 120 in the estimators obtained in the time-varying amplitude
case. Moreover, we take pu = 0 for the estimators obtained by the algebraic parametric techniques.
Then, we can see the estimations of the amplitude and the phase with the corresponding relating
estimation errors in Fig.6.28-Fig.6.31 where we use the frequency estimator obtained by Proposition
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4.3.72. We can observe that the modulating functions method is more robust to the low frequency

sinusoidal perpetration than the algebraic parametric techniques.

Moreover, the estimators given in

Proposition 4.3.71 are most appropriate for this signal. We recall in Table 6.7 all the parameters used

in this example.
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Figure 6.27: Signals and relating estimation errors of w obtained with Kk = p =n =0, v = 1 and

m = 60.
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Figure 6.28: The amplitude estimation obtained in Proposition 4.2.66 with g = 0, m = 80 and the one
obtained in Proposition 4.3.71 with g1 = w34, g2 = w43 and m = 80.
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Estimators of A0 for time-varying amplitude signal Relating estimation errors for the estimators of A0
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Figure 6.29: The amplitude estimation obtained in Proposition 4.2.68 with © = 0, m = 120 and the
one obtained in Proposition 4.3.73 with fi = waps, fo = ws4, f3 = wse, f1 = wes and m = 120.
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Figure 6.30: The phase estimation obtained in Proposition 4.2.66 with ¢ = 0, m = 80 and the one
obtained in Proposition 4.3.71 with g1 = w34, g2 = w43 and m = 80.
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Estimators of ¢ for time-varying amplitude signal Relating estimation errors for the estimators of @
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Figure 6.31: The phase estimation obtained in Proposition 4.2.68 with ¢ = 0, m = 120 and the one
obtained in Proposition 4.3.73 with f1 = wa5, fo = w54, f3 = wse, f2 = wes and m = 120.

Proposition | m (T = Z5) L K vin
4.3.70 60 0 0 110
4.3.72 60 0 0 0
4.2.66 80 0
4.2.68 120 0
4.3.71 80 1 =3, uo =4 k1 =4, ke =3 0
4.3.73 120 ,U1:4, /L2:5, /L3:5, /L4:6 /61:5./ I€2:4, /€3:6, Ky =25 0

Table 6.7: Parameters used in Example 5.
Example 6

In this example, we change the noise of the signal defined in Example 2 by the same low frequency
sinusoidal perpetration defined in Example 5. The signal-to-noise ratios of this signal (see Fig. 6.32)
in each interval become equal to 12.3dB, 15.8dB and 17.1dB respectively. We use the same estimators
with the same parameters to the ones used in Example 5 to estimate the frequency, the amplitude and
the phase. The relating estimation errors are shown in Fig. 6.32. We can see the estimations of the
amplitude and the phase with the corresponding relating estimation errors in Fig.6.33-Fig.6.36 where
we use the frequency estimator obtained by Proposition 4.3.72. We can observe that the estimators
given in Proposition 4.3.73 are most appropriate for this signal. We recall in Table 6.8 all the parameters
used in this example.

Let us remark that if the frequency w is known, then the period of the function Agsin(w - +¢)
is equal to %” Then, we set Ty = j—}{,, where N € N* is the number of sampling data per period.
By observing the estimators of Ag and ¢ given by Proposition 4.2.66, Proposition 4.2.68, Proposition
4.3.71 and Proposition 4.3.73, we can find out that they do not depend only on w but on Tw. Hence,

by taking Tw = 27]er with T'= mTs we can conclude that these estimators do not depend on the value
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of w but on %7. Consequently, if we change the value of w in the previous examples, then by taking the
same estimators with the same parameters used previously we can obtain similar estimation results to
the ones shown in the the previous examples.
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Figure 6.32: Signals and relating estimation errors of w obtained with K = p =n =0, v = 1 and

m = 60.
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Figure 6.33: The amplitude estimation obtained in Proposition 4.2.66 with p = 0, m = 80 and the one

obtained in Proposition 4.3.71 with g1 = w34, g2 = w4 3 and m = 80.
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Figure 6.34: The amplitude estimation obtained in Proposition 4.2.68 with © = 0, m = 120 and the
one obtained in Proposition 4.3.73 with f;
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Figure 6.35: The phase estimation obtained in Proposition 4.2.66 with @ = 0, m = 80 and the one
obtained in Proposition 4.3.71 with g1 = w34, g2 = w43 and m = 80.
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Figure 6.36: The phase estimation obtained in Proposition 4.2.68 with @ = 0, m = 120 and the one
obtained in PI‘OpOSitiOD 4.3.73 with f1 = W4,5, f2 = W54, f3 = W56, f4 = We,5 and m = 120.

Proposition | m (Ts = £; 1 K vin
4.3.70 60 0 0 110
4.3.72 60 0 0 0
4.2.66 80 0
4.2.68 120 0
4.3.71 80 1 =3,z =4 k1 =4, ky =3 0
4.3.73 120 ,u1:4,,u2:5,u3:5,,u4:6 K1:5,/€2:4,/€3:6,H4:5 0

6.7 Conclusion

Table 6.8: Parameters used in Example 6.

In this chapter, firstly we respectively explained how to apply the frequency, amplitude and phase

estimators obtained in Chapter 4 in our identification procedure. Secondly, by taking a time-invariant

amplitude sinusoidal signal corrupted by a zero-mean white gaussian noise we applied the error bounds

obtained in Chapter 4 to select parameters for our estimators. Thirdly, some numerical examples have

been given in the time-invariant amplitude and time-varying amplitude cases to show the efficiency

and stability and to compare different estimators. It is shown that the estimators obtained by using

the modulating functions method are more robust to a large sampling period, a biased noise and a

sinusoidal perturbation than the ones obtained by using the algebraic parametric techniques. In the

following chapter, we give some experimental results by applying the amplitude estimator obtained by

using the modulating functions method.
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Chapter 7

Applications to the AFM in tapping mode
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7.1 Introduction

In this chapter, we give some experimental results obtained at LNE (Laboratoire National de métrologie
et d’Essais) by applying our amplitude estimators previously presented. These results are based on
the comparison of our results with respect to a DSP lock-in amplifier. Such device is usually used as
an amplitude detector for the atomic force microscopy in tapping mode up to date industrial solution.
This chapter is organized as follows. In Subsection 7.1.1, we present the atomic force microscopy in
tapping mode. In Subsection 7.1.2, we give the basic principles of a lock-in amplifier. In Subsection
7.2.1, we recall the materials used in our experimental tests. Finally, we give our experimental results
in Subsection 7.2.2.

7.1.1 Atomic force microscopy in tapping mode

Atomic force microscopy (AFM) is a very high resolution type of scanning probe microscopy, with
demonstrated resolution on the order of fractions of a nanometer, more than 1000 times better than
the optical diffraction limit. The precursor to the AFM, the scanning tunneling microscope (STM),
was developed by Gerd Binnig and Heinrich Rohrer in the early 1980s, a development that earned
them the Nobel Prize for Physics in 1986. Binnig, Quate and Gerber invented the first AFM in 1986.
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The AFM was developed to overcome a basic drawback with STM which can only image conducting
or semiconducting surfaces. The AFM, however, has the advantage of imaging almost any type of
surface, including polymers, ceramics, composites, glass, and biological samples.

The original AFM consisted in a diamond shard attached to a strip of gold foil. The diamond
tip contacted the surface directly, with the interatomic van der Waals forces providing the interaction
mechanism. Detection of the cantilever’s vertical movement was done with a second tip - a STM placed
above the cantilever. Today, most AFMs use a laser beam deflection system, introduced by Meyer and
Amer, where a laser is reflected from the back of the reflective AFM lever and onto a position-sensitive
detector. To avoid that the tip crushes into the sample surface and damages the sample and/or the
delicate tip a fast feedback electronic is used to maintain a constant force between the tip and the
sample and therefore a resultant constant bending of the cantilever (see Figure 7.1). AFM tips and
cantilevers are microfabricated from Si or SigNy. Typical tip radius ranges from 1 to 100nm.

Detector and

Feedback
Electronics
Photodiode
Laser
k"
N
\\ 7
\\\ f//
\‘. 1/J
%\_\‘?\_7 i T

Sample Surface = —

. PZT Scanner

Figure 7.1: Schematic assembly of an AFM.

—__/ Cantilever & Ti

Because the AFM relies on the forces between the tip and sample, knowing these forces is important
for proper imaging. The force is not measured directly, but calculated by measuring the deflection of
the cantilever, and knowing its stiffness. Hook’s law gives F' = —kz, where F' is the force, k is the
stiffness of the cantilever, and z is the distance between the tip of cantilever and the sample (see Figure
7.2).

Since there are many types of tip-surface interactions, different types of interaction maps may
be obtained. Furthermore, different types of maps require slightly different tip-surface positioning:
sometimes the tip is scanned in contact with the surface, sometimes it is scanned in non-contact, and
sometimes it is run in occasional contact (so-called tapping mode), which is considered here.

Tapping mode is a key advance in AFM. This powerful technique allows high resolution topographic
imaging of sample surfaces that are easily damaged, loosely hold to their substrate, or difficult to image
by other AFM techniques. Tapping mode overcomes problems associated with friction, adhesion,
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Tip is in hard contact
with the surface;
repulsive regime

Tip is far from the
surface; no deflection

'“‘«.\ Tip is pulled toward the
surface - attractive regime

Figure 7.2: Probe Distance from Sample (z distance).

electrostatic forces, and other difficulties that an conventional AFM scanning methods by alternately
placing the tip in contact with the surface to provide high resolution and then lifting the tip from the
surface to avoid dragging the tip across the surface.

Tapping mode imaging is implemented in ambient air by oscillating the cantilever assembly at
or near the cantilever’s resonant frequency using a piezoelectric crystal. The piezo motion causes
the cantilever to oscillate with a high amplitude (typically greater than 20nm) when the tip is not
in contact with the surface. The oscillating tip is then moved toward the surface until it begins to
lightly touch, or tap the surface. During scanning, the vertically oscillating tip alternately contacts the
surface and lifts off, generally at a frequency of 50,000 to 500, 000 cycles per second. As the oscillating
cantilever begins to intermittently contact the surface, the cantilever oscillation is necessarily reduced
due to energy loss caused by the tip contacting the surface. The reduction in oscillation amplitude is
used to identify and measure surface features.

During tapping mode operation, the cantilever oscillation amplitude is maintained constant by a
feedback loop. Selection of the optimal oscillation frequency is software-assisted and the force on the
sample is automatically set and maintained at the lowest possible level. When the tip passes over a
bump in the surface, the cantilever has less room to oscillate and the amplitude of oscillation decreases.
Conversely, when the tip passes over a depression, the cantilever has more room to oscillate and the
amplitude increases (approaching the maximum free air amplitude). The oscillation amplitude of the
tip is measured by a photodiode detector and it is used as an input for a controller. The digital
feedback loop then adjusts the tip-sample separation to maintain a constant amplitude and force on
the sample.

In the next subsection, we present lock-in amplifier which is an amplitude detector usually used by
AFM.

7.1.2 Lock-in Amplifiers

Lock-in amplifiers are used to detect and measure very small Alternating Current (AC) signals. Accu-
rate measurements may be obtained when the signal to be observed has an amplitude to ten thousands
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times smaller than the one of the noise measurement. All lock-in amplifiers, whether analogue or dig-
ital, use a technique known as phase sensitive detection to single out the component of the signal at a
specific reference frequency and phase. Noise signals, at frequencies other than the reference frequency,
are rejected and do not affect the measurement.

Now, we follow the amplifier with a phase sensitive detector (PSD). Lock-in measurements require
a frequency reference. Typically, an experiment is excited at a fixed frequency (from an oscillator
or function generator), and the lock-in detects the response from the experiment at the reference
frequency. In Figure 7.3, the reference signal is a square wave at frequency w,. This might be the sync
output from a function generator. If the sine output from the function generator is used to excite the
experiment, the response might be the signal waveform shown below. The signal is Ag;g sin(w,t + 0s;g)
where A4 is the signal amplitude, w, is the signal frequency, and 0, is the signal’s phase.

sig J

aVAVAVAN

@ref

Reference

0

Lock-in

Figure 7.3: Phase Sensitive Detection.

Lock-in amplifiers generate their own internal reference signal usually by a phase-locked-loop locked
to the external reference. In Figure 7.3, the external reference, the lock-in’s reference, and the signal
are all shown. The internal reference is Ar sin(wrt + 0,¢f). The lock-in amplifies the signal and then
multiplies it by the lock-in reference using a phase sensitive detector or multiplier. The output of the
PSD is simply the product of two sine waves:

Apsd = AsigAL sin(wrt + 951'9) sin(th + 9ref)

1

1 (7.1)
= §ASZ’9AL CcoS ((wr — wL)t + Gsig — aref) + §A3igAL CcoSs ((UJT + wL)t + Qsig + 9ref) .

The PSD output is two AC signals, one at the difference frequency (w, —wr) and the other at the sum
frequency (wr + wr,).

If the PSD output is passed through a low pass filter, the AC signals are removed. What will be
left? In the general case, nothing. However, if w, equals wy, the difference frequency component will
be a DC signal. In this case, the filtered PSD output will be:

A 1
Apsd = §AsigAL COs (esz’g - Href) . (72)
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This is a very nice signal. It is a DC signal proportional to the signal amplitude.

It is important to consider the physical nature of this multiplication and filtering process in different
types of lock-ins. In traditional analog lock-ins, the signal and reference are analog voltage signals. The
signal and reference are multiplied in an analog multiplier, and the result is filtered with one or more
stages of Resistor-Capacitor (RC) filters. In a digital lock-in, such as the SR830 or SR850, the signal
and reference are represented by sequences of numbers. Multiplication and filtering are performed
mathematically by a digital signal processing (DSP) chip.

The PSD output is proportional to Agigcosf, where § = (05 — 0rer). 0 is the phase difference
between the signal and the lock-in reference oscillator. By adjusting 6,.; we can make 6 equal to zero.
In which case we can measure Ay (cos = 1). Conversely, if 0 is 5, there will be no output at all.
A lock-in with a single PSD is called a single-phase lock-in and its output is Ag;ycos@. This phase
dependency can be eliminated by adding a second PSD. If the second PSD multiplies the signal with
the reference oscillator shifted by 7, i.e. Apsin(wpt + Orey + 5), its low pass filtered output will be:

A 1 .
Apsd? = §AsigAL sin (esig - 9ref> . (73)

Now we have two outputs: one proportional to cos 6 and the other proportional to sinf. If we call
the first output X and the second Y, X = Ag4cos0, Y = Ag;ysin6, these two quantities represent the
signal as a vector relative to the lock-in reference oscillator. X is called the “in-phase” component and
Y the “quadrature” component. This is because when 6 = 0, X measures the signal while Y is zero.
By computing the amplitude (Agiq) of the signal vector, the phase dependency is removed:

Ay = (X2 +Y?)2. (7.4)

Agig does not depend upon the phase between the signal and lock-in reference. A dual-phase lock-in
has two PSDs with reference oscillators § apart, and can measure X, Y and A, directly. In addition,
the phase (0) between the signal and lock-in is defined as:

6 — arctan <§> . (7.5)

However, the main disadvantage of the lock-in amplifier is the limited speed at which we detect the
amplitude. We consider in this chapter the model 7280 DSP Lock-in Amplifier which is an exceptionally
versatile instrument with outstanding performance. With direct digital demodulation over an operating
frequency extending up to 2.0M H z, output filter time constants down to 1us and a main Analog-to-
Digital Converter (ADC) sampling rate of 7.5M H z it is ideal for recovering fast changing signals. But
unlike some other high frequency lock-ins, it also works in the traditional audio frequency band.

7.2 Comparison of modulating function method and DSP lock-in am-
plifier

7.2.1 The experiment materials

We have obtained some experimental results at LNE. These experimental results are realized by using
the following materials:
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Signal generator;

PC with ADbasic;

Real time target (Adwin gold) (see Figure 7.4);

Signal Recovery 7280 DSP Lock-in Amplifier (see Figure 7.5);

Oscilloscope (see Figure 7.6).

N

Perkin mer

Figure 7.5: Signal Recovery 7280 DSP Lock-in Amplifier.

We use a signal generator to generate a sinusoidal signal, the amplitude of which we want to
estimate. The code of our estimator is written with ADbasic on PC. ADbasic is the solution for flexible
and simple programming of fast data acquisition, open-loop and closed-loop control procedures. The
ADbasic programs are executed on the real-time CPU of the ADwin hardware after the occurrence of
the generated signal. The ADwin CPU reacts to a new event within microsecond range. The processing
of the event such as the calculation of a correction value is done with high-speed so that precise process
response times (reaction times) of a few microseconds can be guaranteed. The obtained estimate is
shown by an oscilloscope. Simultaneously, the generated signal is also sent to a DSP lock-in amplifier.
DSP lock-in amplifier calculates the amplitude of the signal, which is also shown by the oscilloscope.
Hence, we can compare the obtained estimates.
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12 (o

Figure 7.6: Oscilloscope.

7.2.2 Experiment results

We give in this subsection some numerical experimental tests where we estimate the amplitude of a
sinusoidal signal during a fast change of the oscillation conditions. This signal is generated with a
frequency of 53H z, a fixed sampling period and an amplitude varying from 1.2 to 0.2.

We use the amplitude estimator obtained in Proposition 4.3.71 to estimate the time-varying ampli-
tude where the two continuous functions are exp(-) and exp(2-). We apply the trapezes rule in order
to approximate the integrals in this estimator with 17 points. The codes are implemented on Real
time target (Adwin gold). Moreover, we compare our estimations with the ones given by the Signal
Recovery 7280 DSP lock-in amplifier.

We can see the comparisons of estimations in Figure 7.7 where the sampling period is set to
375us. Hence the integration window length for our estimator is 6.4ms. The calculation times for
lock-in amplifier are varying from 100ms to 2ms so as to arrive the same rising time as the one of
our estimator. In Figure 7.8, the sampling period is set to 100us. The integration window length for
our estimator is 1.7ms (17 points) and the calculation time for lock-in amplifier is 50ms. We can see
the last estimations in Figure 7.9 where the signal is noisy with a which gaussian noise and the the
sampling period is set to 750us. The integration window length for our estimator is 12.8ms (17 points)
and the calculation time for lock-in amplifier is 50ms. We show in Table 7.1 the calculations time used
for our estimator and DSP lock-in amplifier in the three previous cases. Hence, we can see that when
we estimate the amplitude of a time-varying amplitude sinusoidal signal the rise time for our estimator
is much smaller than the one for a DSP lock-in amplifier.

Fig. 7.7 Fig. 7.8 Fig. 7.9
Our estimator 6.4ms (17 points) 1.7ms (17 points) 12.8ms (17 points)
Lock-in amplifier | 50ms (3.75 x 10* points) | 50ms (3.75 x 10* points) | 50ms (3.75 x 10* points)

Table 7.1: Comparison of calculations time.
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Figure 7.7: Integration window length for RT system is 6.4ms.
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sampling period: 375U s
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Figure 7.8: Integration window length for RT system is 1.7ms and calculation time for lock-in amplifier
is 50ms.
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Figure 7.9: Integration window length for RT system is 12.8ms and calculation time for lock-in amplifier
is 50ms.
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7.3 Conclusion

In this chapter, we have given some experimental results by comparing our amplitude estimator to
a DSP lock-in amplifier which is usually used for the AFM in tapping mode. We have shown that
when we estimated the amplitude of a time-varying amplitude sinusoidal signal the rise time for our
estimator was much smaller than the one for a DSP lock-in amplifier.

In the future, firstly we will consider sinusoidal signals with higher frequency which corresponds
to the oscillating tip of an AFM in tapping mode. Secondly, we will use the modulating functions
used in Chapter 6 to estimate the amplitude of a noisy signal with smaller estimation error. Thirdly,
the frequency value is assumed to be known in our experimental tests, which will be estimated by our

frequency estimator.
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Conclusions and perspective

Conclusions

This PhD thesis is devoted to extend the derivative estimators and some parameter estimators recently
obtained by the algebraic parametric techniques from noisy signals and to analyze the corresponding
estimation errors. The whole document is structured around two themes:

e Numerical differentiation in finite time of noisy signals and the application to non linear obser-

vation.

e Numerical parameter estimations in finite time for noisy sinusoidal signals and the applications
to the atomic force microscope in tapping mode.

Seven main contributions can be noted:

e The derivative estimators introduced by M. Mboup, M. Fliess and C. Join in [Mboup 2009b| were
obtained by using the algebraic parametric techniques to the truncated Taylor series expansion.
The estimation errors are only due to the truncated terms in continuous noise-free case. These
estimators were improved in [Mboup 2009b] by taking the truncated Jacobi orthogonal expansion
and by allowing a small time-drift in the derivative estimations. These Jacobi estimators depend
on a set of parameters among which the parameters x and p come from the Jacobi polynomial’s
expression. We extend these estimators by letting these two parameters belong to | — 1, 00[. It is
shown that with this extension we can have smaller values for the truncated term errors, especially
for the time-drift. Moreover, we show in some numerical examples that if the function = satisfies
the following differential equation @ + cx = ¢ where ¢ € R and ¢ is a continuous function, then
the numerical error due to a negative value for x allows us to compensate the reduced time-drift
for minimal estimators. Differently from [Mboup 2009b], extended affine Jacobi estimations are
given, where there is no constraint to the truncated order of the Jacobi orthogonal series expansion
and the associated coordinates are given without solving a linear system. Moreover, we show
that the Jacobi estimators for the n'"* order derivative of a smooth function can be obtained by
taking n derivations to the zero-order estimators of this function. The corresponding convergence
rate for these estimators and the influence of the parameters on the truncated term errors are
studied. These corresponding results were published [Liu 2011c, Liu 2011a).

e The Lanczos generalized derivative estimator [Lanczos 1956] is called a method of differentiation
by integration. We extend this method by introducing central Jacobi estimators. These central
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estimators are defined like causal Jacobi estimators. They can be only used for off-line estima-
tions. However, their convergence rate is better than the one of causal Jacobi estimators. These
corresponding results were published in [Liu 2011b].

e The study of the convergence rate of the Jacobi estimators is given by considering the Beppo-Levi
space. Moreover, the n'? order Jacobi estimators are generalized by considering the Beppo-Levi
space H"(I). Three classes of Richardson-Jacobi estimators are introduced which improve the
convergence rate of central minimal Jacobi estimators. Finally, by using the algebraic parametric
techniques with a general annihilator we provide a general form of our obtained estimators.

e Non-asymptotic estimators for fractional order derivative estimations are originally introduced
by using the algebraic parametric techniques.

e A weakness of the algebraic parametric techniques methods was a lack of any precise error
analysis. By considering integrable noises and a large class of stochastic process noises, we provide
appreciate error bounds for the Jacobi derivative estimators. These error bounds help us to choose
the “optimal” parameters for our estimators. Hence, it is shown that the variance of the noise
error can be smaller in the case of negative real parameters x and p than it was in [Mboup 2009b]
for integer values. When the noise is a stochastic process, the existence of integrals obtained in
our estimators are studied in the sense of convergence in mean square. The influence of the
sampling period on such noise error is also studied in discrete case. Moreover, it is shown that
the Jacobi derivative estimators can cope with a class of noises for which the mean and covariance
are polynomials in time (with degree smaller than the order of derivative to be estimated). These
results can also be applied to other estimators obtained by the algebraic parametric techniques.
These corresponding results were published [Liu 2009, Liu 2011¢, Liu 2011a].

e The estimators for the parameters of noisy sinusoidal signals are given by using the algebraic
parametric techniques. They can cope with both the cases when there is a step or a sweep in
the amplitude. The experimental results show that when we estimate the amplitude of noisy
sinusoidal signals the rise time for our estimators is much smaller than the one for the DSP
lock-in amplifier. These corresponding results were published [Liu 2008, Liu 2011d|.

e The modulating function methods are considered to estimate the parameters of noisy sinusoidal
signals with simple calculations. These methods have the similar advantages to the algebraic
parametric techniques. Especially, by choosing appreciate modulating functions, the obtained
estimators can also cope with a class of noises for which the mean and covariance are polyno-
mials in time. Moreover, it is shown that they are more robust to “large” sampling period and
to sinusoidal perturbations with “low” frequency. These corresponding results were published
[Liu 2008, Liu 2011d].

Perspectives

Based on the results given by this thesis, several perspectives should be considered:
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e The obtained “delay-free” minimal estimator for the first order derivative, the numerical error
for which compensates the time-drift, should be improved by introducing some “delay-free” affine
Jacobi estimators which produce small noise error contributions. Similar “delay-free” estimators
should be obtained for higher order derivative.

e We show how to choose parameters for our estimators. The length of sliding window is chosen
by assuming to know the noise level and the smooth signal. Hence, it should give some criterions
to choose the length of sliding window. Moreover, the analysis for colored noises will be done.

e The obtained non-asymptotic estimators for the fractional order derivatives will be developed
and verified by numerical simulations.

e The applications to non linear observation of Jacobi estimators are given in numerical simulations
by comparing to high gain observer and sliding modes differentiator. Applicability of Jacobi
estimators in a practical scenario will be verified by comparing to other existing methods.

e In [Trapero 2008], the algebraic parametric techniques are used to estimate the parameters of
two sinusoidal signals from their noisy sum. The modulating functions method will be used to
estimate these parameters. Furthermore, we will estimate the parameters of a finite number of
sinusoidal signals from their noisy sum.

o We estimate the parameters of the noisy sinusoidal signals with time-varying amplitude, where
the frequency is assumed to be constant. The obtained estimators do not adapted to the noisy
sinusoidal signals with time-varying frequency, especially when there is a frequency sweep. For
this problem, we will consider the following signal: () = Asin((wo + wt)t + ¢) where A € R*,
wo € RY, w1 € Rand ¢ €] — §, 5[, By finding out a differential equation of z, the frequency wo
can be estimated by the algebraic parametric techniques and the modulating functions method.
Then, the amplitude and phase can be estimated by the estimators given in this thesis.

e The experimental results are only given by using the amplitude estimators. More experimental
tests will be done to compare other parameter estimators to the DSP lock-in amplifier.
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Appendix

Laplace transform and Riemann-Liouville integral

In this section, let us recall some useful formulae on the Laplace transform and Riemann-Liouville
integral.

Laplace transform (see [Abramowitz 1965] p. 1020) Let f be a function defined on Ry. If it
exists 8 € R such that e f(-) € L(R,), then the Laplace transform of f is defined by

. +oo
F(s) = L{fY(s) = /0 e~ f(t) dt, (7.6)
where s € C et Re(s) > (.

Derivation formulae (see [Abramowitz 1965] p. 1020) By applying derivations and integration
by parts, we can get the following formulae

L{ O} () = (1" {F()} (7.7)
L (1)} (s) = 5" f(5) = 5" LF(0) = - = F D 0). (7.8)

Convolution theorem (see [Abramowitz 1965] p. 1020) Let f; and f2 two functions, the Laplace
transform of which exist. Then, we have

c{[ R ol ndr} = ) 1) (79)

Riemann-Liouville integral (see |[Loverro 2004]) The o € Ry order Riemann-Liouville integral
of a real function f : R — R is defined by

JOF(E) = F(la) /0 (=)o () dr (7.10)

Properties (see [Loverro 2004]) We have for any a € R,
L{t* '} (s) = FS), (7.11)
LT} (5) = - f(5) (712
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Important formula By applying (7.7) and (7.12), we get

-1 idnf(s) _ (_1)71 ! _ T a—lTn ) dr
c { }(t)— o / (t — 7)o Lrm f(r) dr. (7.13)

s dsn

Jacobi orthogonal polynomial
We recall in this section some useful formulae on the Jacobi orthogonal polynomials.

Definitions ([Abramowitz 1965] p. 775) The n'* (n > 0) order Jacobi polynomials on [—1, 1] are

defined as follows
- ndp\ (n+r\ (t—1\"" (t+1)]
Plsr) () = " - — .
ero= (G () () 14

=0

where y,x €] — 1,+00[. Let us substituting ¢ by —1 + 27 in (7.14), then the n'® order Jacobi
polynomials on [0, 1] are defined as follows

P (r) = f: <” " ’”‘) (Zf ’;) (r—1)" 7. (7.15)

=0~/

Scalar product ([Abramowitz 1965] p. 774) Let us denote Vg1, g2 € C([—1,1]),

1
(0102} = [ 0RO (7.16)

where W, () = (1 —t)*(141t)" is the weight function. We denote its associated norm by || - ||«

and we have
2 ptRtL P(u+n+1)(k+n+1)

BRI = . 7.17
‘ " wre  2n+pu+r+10p+r+n+1D)I(n+1) (7.17)
Let us denote Vg1, g2 € C([0,1]),
1
(91,92) e = /0 Wy, (T)91(7)g2(7)dT, (7.18)
where
Wy k(1) = (1 —7)P7" (7.19)
is the associated weight function defined on [0, 1], then we have
‘ Pl 2 _ 1 Dp+n+1)IN(k+n+ 1). (7.20)
pe  2n+pu+r+10p+r+n+1DI(n+1)
Rodrigues formulae (see [Szegd 1967] p. 67)
dr .
V€ [=11), S (B} = (=1)"2"nL PY) (£)i(1), (7.21)
dn
¥r € 01), O e en(7)} = (1)L PY (D7), (7.22)
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Orthogonality By applying (7.22) and integration by parts, we get
1
/ Wy (T) PV (1) 7™ dT = 0, 0 <m < m, (7.23)
0
1
/ wu,,{(T)R(L“’”) (N7m"dr=B(p+n+1,k+n+1), (7.24)
0

where B(-, ) is the classical Beta function (see [Abramowitz 1965] p. 258).

Derivation relation (see [Szegd 1967]| p. 63)
d K
vr e 0,1, SR} = (0t pt m+ DRI (), (7.25)

Parity (see [Szeg6 1967] p. 80) Let us set x = p for the Jacobi estimators defined on [—1, 1], then
we have

Vt e [-1,1], PUR)(—t) = (=1)" PR (¢). (7.26)

Recurrence relations (see [Abramowitz 1965] p. 782) V7 € [0, 1],

20+ 2+ p+ k) (1= 7) PYHY9(1) = (1 n+ @) PY) (r) — (n+ DBEED(r), (127
(20424 p+ &) 7 PSHD(0) = (1414 ) PP (1) + (n+ 1) P (1), (7.28)
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Résumé étendu en francais

Ce mémoire concerne la construction et ’analyse d’estimateurs robustes pour le calcul numérique
des dérivés de signaux bruités et des parameétres de signaux sinusoidaux bruités. Ces estimateurs,
originalement introduits par Fliess, Mboup et Sira Ramirez, sont actuellement étudiés au sein de
I’équipe projet NON-A de 'INRIA Lille Nord Europe. Pour une classe d’entres eux, nous les obtenons a
partir de la réécriture dans le domaine opérationnel de Laplace des équations différentielles linéaires des
signaux analysés. Par des manipulations algébriques simples dans ’anneau R (s) [%} des polynémes
différentiels en d% & coefficients rationnels en la variable opérationnelle s, nous montrons que ces
estimateurs sont non-asymptotiques et que les estimations numériques obtenues, méme en présence de
bruits, sont robustes pour un faible nombre d’échantillons des signaux. Nous montrons, de plus, que
ces propriétés sont vérifiées pour une large classe de type de bruits. Ces estimateurs exprimés dans
le domaine temporel s’écrivent en général via des fractions d’intégrales itérées des signaux analysés.
Dans la premiére partie du mémoire, nous étudions des familles d’estimateurs de dérivées obtenus
par ces méthodes algébriques. Nous montrons que pour une classe d’entre eux, il est possible de les
formuler directement en tronquant une série orthogonale de polynomes de Jacobi. Cette considération
nous permet alors d’étendre & R le domaine de définition des paramétres de ces estimateurs. Nous
analysons ensuite 'influence de ces paramétres étendus sur erreur de troncature, qui produit un
retard d’estimation dans le cas causal, puis sur ’erreur due aux bruits, considérés comme des processus
stochastiques, et enfin sur lerreur numérique de discrétisation des intégrales. Ainsi, nous montrons
comment réduire le retard d’estimation et ’effet du aux bruits. Une validation de cette approche est
réalisée par la construction d’un observateur non asymptotique de variables d’état d’un systéme non
linéaire. Dans la deuxiéme partie de ce mémoire, nous construisons par cette approche algébrique
des estimateurs des parameétres d’un signal sinusoidal bruité dont 'amplitude varie avec le temps.
Nous montrons que les méthodes classiques de fonctions modulatrices sont un cas particulier de cette
approche. Nous étudions ensuite I'influence des paramétres algébriques sur I'erreur d’estimation due
au bruit et l'erreur numérique d’intégration. Des majorations de ces erreurs sont données pour une
classe d’estimateurs. Finalement, une comparaison entre ces estimateurs et la méthode classique de
détection synchrone est réalisée pour démontrer 'efficacité de notre approche sur ce type de signaux.

221

© 2011 Tous droits réservés. http://doc.univ-lille1 fr



Thése de Dayan Liu, Lille 1, 2011

222

© 2011 Tous droits réservés. http://doc.univ-lille1 fr



Thése de Dayan Liu, Lille 1, 2011

Bibliography

[Abramowitz 1965] M. Abramowitz and I.A. Stegun, editeurs. Handbook of mathematical functions.
GPO, 1965.

[Anderssen 1998] R.S. Anderssen, F. De Hoog and M. Hegland. A stable finite difference Ansatz for
higher order differentiation of non-exact data. Bull. Austral. Math. Soc., vol. 58, pages 223-232,
1998.

[Atkinson 1989] K.E. Atkinson. An introduction to numerical analysis. Wiley, New York, second
edition, 1989.

[Barak 1995| P. Barak. Smoothing and Differentiation by an Adaptive-Degree Polynomial Filter. Anal.
Chem., vol. 67, pages 2758-2762, 1995.

[Barbot 2007] J.P. Barbot, M. Fliess and T. Floquet. An algebraic framework for the design of non-
linear observers with unknown inputs. In 46th IEEE Conference on Decision and Control,
New-Orleans, USA, 2007.

[Becedas 2009] J. Becedas, J.R. Trapero, V. Feliu and H. Sira-Ramirez. Adaptive controller for single-
link flexible manipulators based on algebraic identification and generalized proportional integral
control. IEEE Trans. Syst. Man. Cybern., vol. 39, no. 3, pages 735-751, 2009.

[Besancon 2007| G. Besancon. Nonlinear observers and applications. Lecture Notes in Control and
Information Scinences, vol. 363, 2007.

1ttanti . Bittanti and 5. bavaresi. On the parameterization and design of an extended Kalman
Bi i 2000] S. Bi iand S. S i. On th zati d desi ded Kal
filter frequency tracker. IEEE Trans. Automat. Control, vol. 45, pages 1718-1724, 2000.

[Brown 1992|] R.H. Brown, S.C. Schneider and M.G. Mulligan. Analysis of algorithms for wvelocity
estimation from discrete position versus time data. IEEE Trans. on industrial electronics, vol. 39,
no. 1, pages 11-19, 1992.

[Cartier 1995] P. Cartier and Y. Perrin. Nonstandard analysis in practice, chapitre Integration over
finite sets, pages 195-204. Springer, Berlin, 1995.

[Chen 1995] C.K. Chen and J.H. Lee. Design of high-order digital differentiators using L1 error crite-
ria. IEEE Trans. Circuits Syst. II, vol. 42, no. 4, pages 287-291, Avril 1995.

223

© 2011 Tous droits réservés. http://doc.univ-lille1 fr



Thése de Dayan Liu, Lille 1, 2011

[Cheng 2004] J. Cheng, Y.C. Hon and Y.B. Wang. A numerical method for the discontinuous solutions
of Abel integral equations. Inverse Problems and Spectral Theory, vol. 348, pages 233-243, 2004.

[Cheng 2006] M.H. Cheng and J.L. Tsai. A new IIR adaptive notch filter. Signal Process., vol. 86,
no. 7, pages 1648-1655, 2006.

[Chitour 2002] Y. Chitour. Time-varying high-gain observers for numerical differentiation. IEEE
Trans. Automat. Control, vol. 47, pages 1565-1569, 2002.

[Cioranescu 1938 N. Cioranescu. La généralisation de la premiére formule de la moyenne. Enseign.
Math., vol. 37, pages 292-302, 1938.

[Co 1997] T.B. Co and S. Ungarala. Batch scheme recursive parameter estimation of continuous-time
system using the modulating functions method. Automatica, vol. 33, no. 6, pages 1185-1191,
1997.

[Coluccio 2008] L. Coluccio, A. Eisinberg, G. Fedele, C. Picardi and Sgro D. Modulating functions
method plus SOGI scheme for signal tracking. In in Proc. IEEE ISIE, pages 854-859, 2008.

[Cullum 1971] J. Cullum. Numerical differentiation and regularization. SIAM J. Numer. Anal., vol. 8,
pages 254-265, 1971.

[Diop 1991a] S. Diop and M. Fliess. Nonlinear observability, identifiability and persistent trajectories.
In 36th IEEE Conf. Decision Control, Brighton, England, 1991.

[Diop 1991b| S. Diop and M. Fliess. On nonlinear observability. In Proceedings of the First European
Control Conference, Grenoble, 1991.

[Diop 1994] S. Diop, J.W. Grizzle, P.E. Moraal and A. Stefanopoulou. Interpolation and Numerical
Differentiation for Observer Design. In Proc. Amer. Control Conf., pages 1329-1333, Baltimore,
1994.

[Diop 2000] S. Diop, J.W. Grizzle and F. Chaplais. On numerical differentiation algorithms for non-
linear estimation. In Proc. 39th TEEE Conf. Decision Control, Sidney, 2000.

[Dou 2010] F.F. Dou, C.L. Fu and Y.J. Ma. A wavelet-Galerkin method for high order numerical
differentiation. Appl. Math. Comput., vol. 215, pages 3702-3712, 2010.

[Fedele 2009a| G. Fedele, A. Ferrise and D. Frascino. Multi-sinusoidal signal estimation by an adaptive
sogi-filters bank. In 15th IFAC Symp. on Sys. Ident., 2009.

[Fedele 2009b] G. Fedele, C. Picardi and D. Sgro. A Power FElectrical Signal Tracking Strategy Based
on the Modulating Functions Method. TEEE Trans. on industrial electronics, vol. 56, pages
4079-4087, 2009.

[Fedele 2010] G. Fedele and L. Coluccio. A recursive scheme for frequency estimation using the mod-
ulating functions method. Appl. Math. Comput., vol. 216, pages 1393-1400, 2010.

224

© 2011 Tous droits réservés. http://doc.univ-lille1 fr



Thése de Dayan Liu, Lille 1, 2011

[Fliess 1989] M. Fliess. Generalized controller canonical forms for linear and nonlinear dynamics. IEEE
Trans. Automat. Control, vol. 35, pages 994-1001, 1989.

[Fliess 2003a|] M. Fliess, M. Mboup, H. Mounier and H. Sira-Ramirez. Questioning some paradigms
of signal processing via concrete examples. In G. Silva-Navarro H. Sira-Ramirez, editeur, in
Algebraic Methods in Flatness, Signal Processing and State Estimation, pages 1-21. Editiorial
Lagares, 2003.

[Fliess 2003b] M. Fliess and H. Sira-Ramirez. An algebraic framework for linear identification. ESATM
Control Optim. Calc. Variat., vol. 9, pages 151-168, 2003.

[Fliess 2004a] M. Fliess, C. Join, M. Mboup and H. Sira-Ramirez. Compression différentielle de tran-
sitoires bruités. C.R. Acad. Sci. Paris Ser. I, vol. 339, pages 821-826, 2004.

[Fliess 2004b| M. Fliess and H. Sira-Ramirez. Control via state estimations of some nonlinear systems.
In Proc. Symp. Nonlinear Control Systems (NOLCOS 2004), Stuttgart, 2004.

[Fliess 2004c|] M. Fliess and H. Sira-Ramirez. Reconstructeurs d’état. C.R. Acad. Sci. Paris Ser. I,
vol. 338, pages 91-96, 2004.

[Fliess 2006] M. Fliess. Analyse non standard du bruit. C.R. Acad. Sci. Paris Ser. I, vol. 342, pages
797-802, 2006.

[Fliess 2007] M. Fliess and H. Sira-Ramirez. Closed-loop parametric identification for continuous-time
linear systems via new algebraic techniques. In H. Garnier & L. Wang, editeur, Identification
of Continuous-time Models from Sampled Data, pages 363-391. Springer, Berlin, 2007.

[Fliess 2008] M. Fliess. Critique du rapport signal a bruit en communications numériques - Questioning
the signal to noise ratio in digital communications. in: International Conference in Honor of
Claude Lobry, Revue africaine d’informatique et de Mathématiques appliquées, vol. 9, pages
419-429, 2008.

[Fu 2007] H. Fu and P.Y. Kam. MAP/ML Estimation of the Frequency and Phase of a Single Sinusoid
in Noise. IEEE Trans. Signal Process., vol. 55, no. 3, pages 834-845, 2007.

[Fu 2010| C.L. Fu, X.L. Feng and Z. Qian. Wawvelets and high order numerical differentiation. Appl.
Math. Model., vol. 34, pages 3008-3021, 2010.

[Gorenflo 1991] R. Gorenflo and S. Vessella. Abel integral equations: Analysis and applications. Lecture
Notes in Mathematics, vol. 1461, pages 233-243, 1991.

[Gorry 1990] P.A. Gorry. General least-squares smoothing and differentiation by the convolution
(Savitzky-Golay) method. Anal. Chem., vol. 62, pages 570-573, 1990.

[Hackman 2006] C. Hackman, C. Levine, J. Parker, T.E. Piester, D. Becker and J. Becker. A straight-
forward frequency-estimation technique for GPS carrier-phase time transfer. IEEE Trans. on

Ultrasonics, Ferroelectrics and Frequency Control, vol. 53, no. 9, pages 1570-1583, 2006.

225

© 2011 Tous droits réservés. http://doc.univ-lille1 fr



Thése de Dayan Liu, Lille 1, 2011

[Hanke 1999] M. Hanke and O. Scherzer. Error analysis of an equation error method for the identifi-
cation of of the diffusion coefficient in a quasi-linear parabolic differentical equation. STAM J.
Appl. Math., vol. 59, no. 3, pages 1012-1027, 1999.

[Hanke 2001] M. Hanke and O. Scherzer. Inverse problems light: numerical differentiation. Am. Math.
Monthly, vol. 108, pages 512-521, 2001.

[Hao 1995] D.N. Hao, A. Schneider and H.J. Reinhardt. Regularization of a non-characteristic Cauchy
problem for a parabolic equation. Inverse Probl., vol. 11, no. 6, pages 1247-1264, 1995.

[Hardy 1952] G.H. Hardy. A course of pure mathematics. Cambridge University Press, tenth édition,
1952.

[Haykin 2002| S. Haykin and B. Van Veen. Signals and systems. John Wiley & Sons, second édition,
2002.

[Herceg 1986] D. Herceg and L. Cvetkovi¢. On a numercial differentiation. SITAM J. NUMER. ANAL.,
vol. 23, no. 3, June 1986.

[Hermann 1977] R. Hermann and A.J. Krener. Nonlinear controllability and observability. IEEE Trans.
Automat. Control, vol. 22, no. 5, pages 728-740, 1977.

[Tbrir 2004] S. Ibrir. Linear time-derivatives trackers. Automatica, vol. 40, pages 397-405, 2004.
[Isidori 1989| A. Isidori. Nonlinear control systems. Springer-Verlag, Berlin, second édition, 1989.

[Jordan 1986] J.R. Jordan and N.E. Paterson. A modulating-function method for on-line fault detec-
tion. Journal of Physics E: Scientific Instruments, vol. 19, pages 681-685, 1986.

[Jordan 1990] J.R. Jordan, S.A. Jalali-Naini and R.D.L. Mackie. System identification with Hermite
modulating functions. IEE Proceedings D: Control Theory and Applications, vol. 137, no. 2,
pages 87-92, 1990.

[Joyce 1971] D.C. Joyce. Survey of extrapolation processes in numerical analysis. SIAM Review,
vol. 13, pages 435-490, 1971.

[Jumarie 2006] G. Jumarie. Modified Riemann-Liouville derivative and fractional Taylor series of
nondifferentiable functions further results. Comput. Math. Appl., vol. 51, pages 1367-1376,
2006.

[Karimi 2004] H. Karimi, M. Karimi-Ghartemani and M.R. Iravani. Estimation of frequency and its
rate of change for applications in power systems. IEEE Trans. on Power Delivery, vol. 19, no. 2,
pages 472-480, 2004.

[Kauppinen 1981] J.K. Kauppinen, D.J. Moffatt, H.H. Mantsch and D.G. Cameron. Fourier transforms
i the computation of self-deconvoluted and first-order derivative spectra of overlapped band
contours. Anal. Chem., vol. 53, pages 1454-1457, 1981.

226

© 2011 Tous droits réservés. http://doc.univ-lille1 fr



Thése de Dayan Liu, Lille 1, 2011

[Khan 2000] I.R. Khan and R. Ohba. New finite difference formulas for numerical differentiation. J.
Comput. Appl. Math., vol. 126, pages 269-276, 2000.

[Klapuri 2003] A.P. Klapuri. Multiple fundamental frequency estimation based on harmonicity and
spectral smoothness. IEEE Trans. on Speech and Audio Processing, vol. 11, no. 6, pages 804—
816, 2003.

|Lanczos 1956] C. Lanczos. Applied analysis. Prentice-Hall, Englewood Cliffs; NJ, 1956.

[Leung 1998] A.K.M. Leung, F.T. Chau and J.B. Gao. Wawvelet Transform: A Method for Derivative
Calculation in Analytical Chemistry. Anal. Chem., vol. 70, pages 5222-5229, 1998.

[Levant 2003] A. Levant. Higher-order sliding modes, differentiation and output-feedback control. Int.
J. Control, vol. 76, pages 924-941, 2003.

[Li 2009] T.H. Li and K.S. Song. Estimation of the Parameters of Sinusoidal Signals in Non-Gaussian
Noise. IEEE Trans. Signal Process., vol. 57, no. 1, pages 62-72, 2009.

[Liu 2001] D.J. Liu and C.T. Lin. Fundamental frequency estimation based on the joint time-frequency
analysis of harmonic spectral structure. IEEE Trans. on Speech and Audio Processing, vol. 9,
no. 6, pages 609-621, 2001.

[Liu 2008] D.Y. Liu, O. Gibaru, W. Perruquetti, M. Fliess and M. Mboup. An error analysis in the
algebraic estimation of a noisy sinusoidal signal. In 16th Mediterranean Conf. on Control and
Automation (MED’08), Ajaccio, France, 2008.

[Liu 2009] D.Y. Liu, O. Gibaru and W. Perruquetti. Error analysis for a class of numerical differen-
tiator: application to state observation. In 48th IEEE Conf. on Decision and Control, Shanghai,
China, 2009.

[Liu 2011a| D.Y. Liu, O. Gibaru and W. Perruquetti. Convergence Rate of the Causal Jacobi Derivative
Estimator. Lecture Notes in Computer Science, 2011.

[Liu 2011b] D.Y. Liu, O. Gibaru and W. Perruquetti. Differentiation by integration with Jacobi poly-
nomials. J. Comput. Appl. Math., vol. 235, pages 3015-3032, 2011.

[Liu 2011c| D.Y. Liu, O. Gibaru and W. Perruquetti. Error analysis of Jacobi derivative estimators
for noisy signals. Numerical Algorithms, 2011.

[Liu 2011d] D.Y. Liu, O. Gibaru and W. Perruquetti. Parameters estimation of a noisy sinusoidal
signal with time-varying amplitude. In 19th Mediterranean Conf. on Control and Automation
(MED’11), Corfu, Greece, 2011.

[Loeve 1963] M. Loéve. Probability theory. D. van Nostrand Co., London, third édition, 1963.

[Loverro 2004| A. Loverro. Fractional calculus, history, definitions and applications for the engineer.
Rapport technique, Univeristy of Notre Dame: Department of Aerospace and Mechanical En-
gineering, May 2004.

227

© 2011 Tous droits réservés. http://doc.univ-lille1 fr



Thése de Dayan Liu, Lille 1, 2011

[Lyness 1994| J.N. Lyness. Approximation and computation, chapitre Finite-part integrals and the
Fuler-Maclaurin expansion, pages 397-407. Birkh&user Verlag, Berlin, 1994.

[Mboup 2007] M. Mboup, C. Join and M. Fliess. A revised look at numerical differentiation with
an application to nonlinear feedback control. In 15th Mediterranean Conf. on Control and
Automation (MED’07), Athenes, Greece, 2007.

[Mboup 2009a] M. Mboup. Parameter estimation for signals described by differential equations. Appl.
Anal., vol. 88, pages 29-52, 20009.

[Mboup 2009b|] M. Mboup, C. Join and M. Fliess. Numerical differentiation with annihilators in noisy
environment. Numerical Algorithms, vol. 50, no. 4, pages 439467, 2009.

0jir1 . Mojir1 an .R. Bakhsahi. An adaptive notc ter for frequency estimation of a
Mojiri 2004] M. Mojiri and A.R. Bakhsahi. An adapti h fil ) ]
periodic signal. IEEE Trans. Automat. Control, vol. 49, pages 314-318, 2004.

[Murio 1993] D.A. Murio. The mollification method and the numerical solution of ill-posed problems.
John Wiley & Sons Inc., 1993.

[Murio 1998] D.A. Murio, C.E. Mejia and S. Zhan. Discrete mollification and automatic numerical
differentiation. Comput. Math. Appl., vol. 35, pages 1-16, 1998.

[Nakamura 2008] G. Nakamura, S. Wang and Y. Wang. Numerical differentiation for the second order
derivatives of functions of two variables. J. Comput. Appl. Math., vol. 212, pages 341-358,
2008.

[Neves 2006] A. Neves, M. Mboup and M. Fliess. An Algebraic Receiver for Full Response CPM
Demodulation. In VI International telecommunications symposium (ITS2006), Fortaleza, Ceara,
Brazil, 2006.

[Neves 2007] A. Neves, M.D. Miranda and M. Mboup. Algebraic parameter estimation of damped
exponentials. In Proc. 15th Europ. Signal Processing Conf. - EUSIPCO 2007, Poznari, 2007.

[Nie 2002| L. Nie, S.G. Wu, X.Q. Lin, L.Z. Zheng and L. Rui. Approzimate derivative calculated by
using continuous wavelet transform. J. Chem. Inf. Comput. Sci., vol. 42, pages 274-283, 2002.

[Nijmeijer 1990] H. Nijmeijer and A.J. van der Schaft. Nonlinear dvnamical control systems. Springer-
Verlag, Berlin, 1990.

[Ostlund 2004] N. Ostlund, J. Yu and J.S. Karlsson. Improved mazimum frequency estimation with
application to instantaneous mean frequency estimation of surface electromyography. IEEE
Trans. on Biomedical Engineering, vol. 51, no. 9, pages 1541-1546, 2004.

[Parzen 1962] E. Parzen. Stochastic processes. Holden-Day, San Francisco, 1962.

[Pearson 1985] A.E. Pearson and F.C. Lee. On the identification of polynomial input-output differential
systems. IEEE Trans. Automat. Control, vol. 30, no. 8, pages 778-782, 1985.

228

© 2011 Tous droits réservés. http://doc.univ-lille1 fr



Thése de Dayan Liu, Lille 1, 2011

[Pereira 2009| E. Pereira, J.R. Trapero, I. Munéz and V. Feliu. Adaptive input shaping for maneuvering
flexible structures using an algebraic identification technique. Automatica, vol. 45, pages 1046—
1051, 2009.

[Poffald 1990] E.I. Poffald. The Remainder in Taylor’s Formula. Amer. Math. Monthly, vol. 97, no. 3,
pages 205-213, 1990.

[Preising 1993] H.A. Preising and D.W.T. Rippin. Theory and application of the modulating function
method. I: Review and theory of the method and theory of the splinetype modulating functions.
Computers and Chemical Engineering, vol. 17, pages 1-16, 1993.

[Proakis 2001] J.G. Proakis. Digital communications. McGraw-Hill, fourth édition, 2001.

[Qian 2006a] Z. Qian, C.L. Fu and X.L. Feng. A modified method for high order numerical derivatives.
Appl. Math. Comput., vol. 182, pages 1191-1200, 2006.

[Qian 2006b] Z. Qian, C.L. Fu, X.T. Xiong and T. Wei. Fourier truncation method for high order
numerical derivatives. Appl. Math. Comput., vol. 181, pages 940-948, 2006.

[Qu 1996] R. Qu. A new approach to numerical differentiation and integration. Math. Comput., vol. 24,
no. 10, pages 55—68, 1996.

[Rader 2006] C.M. Rader and L.B. Jackson. Approzimating noncausal 1IR digital filters having arbi-
trary poles, including new Hilbert transformer designs, via forward/backward block recursion.
IEEE Trans. Circuits Syst. I, vol. 53, no. 12, pages 2779-2787, December 2006.

[Rahul 2006] K. Rahul and S.N. Bhattacharyya. One-sided finite-difference approxzimations suitable
for use with Richardson extrapolation. J. Comput. Phys., vol. 219, pages 13-20, 2006.

[Ralston 1965] A. Ralston. A first course in numerical analysis. McGraw-Hill, New York, 1965.

[Ramm 2001] A.G. Ramm and A.B. Smirnova. On stable numerical differentiation. Math. Comput.,
vol. 70, pages 1131-1153, July 2001.

|[Rangarajana 2005] S.K. Rangarajana and S.P. Purushothaman. Lanczos’ generalized derivative for
higher orders. J. Comput. Appl. Math., vol. 177, pages 461-465, 2005.

[Rao 1976] G.P. Rao and L. Sivakumar. Identification of deterministic time-lag systems. IEEE Trans.
Automat. Control, vol. 21, pages 527-529, 1976.

[Rao 1983| G.P. Rao and K.R. Palanisamy. Improved algorithms for parameter identification in con-
tinuous systems via Walsh functions. IEE Proceedings D: Control Theory and Applications,
vol. 130(1), pages 9-16, 1983.

[Roy 1989] R. Roy and T. Kailath. ESPRIT-estimation of signal parameters via rotational invariance
techniques. IEEE Trans. Signal Process., vol. 37, pages 984-995, 1989.

[Savitzky 1964| A. Savitzky and M.J.E. Golay. Smoothing and Differentiation of Data by Simplified
Least Squares Procedures. Anal. Chem., vol. 36, pages 1627-1638, 1964.

229

© 2011 Tous droits réservés. http://doc.univ-lille1 fr



Thése de Dayan Liu, Lille 1, 2011

[Shao 2000] X.G. Shao, C.Y. Pang and Q.D. Su. A novel method to calculate the approzimate derivative
photoacoustic spectrum using continuous wavelet transform. Fresenius’ J. Anal. Chem., vol. 367,
pages 525-529, 2000.

[Shao 2003] X.G. Shao and C.X. Ma. A general approach to derivative calculation using waveletnext
term transform. Chemometrics and Intelligent Laboratory Systems, vol. 69, pages 157-165,
2003.

[Shinbrot 1957] M. Shinbrot. On the analysis of linear and nonlinear systems. Transactions on ASME,
vol. 79, pages 547-552, 1957.

[Sira-Ramirez 2006] H. Sira-Ramirez, J.R. Trapero and V.F. Battle. Frequency identification in the
noisy sum of two sinusoidals signals. In The 17th International Symposium on Mathematical
Theory of Networks and Systems, Kyoto, 2006.

[So 2006] H.C. So and F.K.W. Chang. A generalized weighted linear predictor frequency estimation
approach for a complex sinusoid. TEEFE Trans. on Signal Processing, vol. 54, no. 4, pages
1304-1315, 2006.

[Stoica 1993| P. Stoica. List of references on spectral line analysis. Signal Process., vol. 31, pages
329-340, 1993.

[Szegd 1967] G. Szegd. Orthogonal polynomials, volume 23. AMS, Providence, RI, the United States
of America, third édition, 1967.

[Trapero 2007a] J.R. Trapero, H. Sira-Ramirez and V.F. Battle. An algebraic frequency estimator for
a biased and noisy sinusoidal signal. Signal Processing, vol. 87, pages 1188-1201, 2007.

[Trapero 2007b] J.R. Trapero, H. Sira-Ramirez and V.F. Battle. A fast on-line frequency estimator
of lightly damped vibrations in flexible structures. J. Sound Vibration, vol. 307, pages 365-378,
2007.

[Trapero 2008| J.R. Trapero, H. Sira-Ramirez and V.F. Battle. On the algebraic identification of the
frequencies, amplitudes and phases of two sinusoidal signals from their noisy sums. Int. J.
Control, vol. 81, pages 505-516, 2008.

[Tseng 2005] C.C. Tseng. Digital Differentiator Design Using Fractional Delay Filter and Limit Com-
putation. IEEE Trans. Circuits Syst. I, vol. 52, no. 10, pages 2248-2259, October 2005.

[Ungarala 2000] S. Ungarala and T.B. Co. Time-varying system identification using modulating func-
tions and spline models with application to bio-processes. Computers and Chemical Engineering,

vol. 24, pages 2739-2753, 2000.

[Wang 2002] Y. Wang, X. Jia and J. Cheng. A numerical differentiation method and its application to
reconstruction of discontinuity. Inverse Probl., vol. 18, pages 1461-1476, 2002.

[Wang 2008] Z. Wang and J. Liu. Identification of the pollution source from one-dimensional parabolic
equation models. Appl. Math. Comput., 2008.

230

© 2011 Tous droits réservés. http://doc.univ-lille1 fr



Thése de Dayan Liu, Lille 1, 2011

[Wang 2010] Z. Wang and R. Wen. Numerical differentiation for high orders by an integration method.
J. Comput. Appl. Math., vol. 234, pages 941-948, 2010.

[Wei 2005] T. Wei, Y.C. Hon and Y. Wang. Reconstruction of numerical derivatives from scattered
noisy data. Inverse Probl., vol. 21, pages 657672, 2005.

[Wu 2005] J. Wu, J. Long and J. Wang. High-accuracy, wide-range frequency estimation methods for
power system signals under non-sinusoidal conditions. IEEE Trans. on Power Delivery, vol. 20,
no. 1, pages 366-374, 2005.

[Y. 2008] Lu'Y. A perturbation method for numerical differentiation. Appl. Math. Comput., vol. 199,
pages 368-374, 2008.

[Yang 2001| J.Z. Yang and C.W. Liu. A precise calculation of power system frequency. IEEE Trans.
on Power Delivery, vol. 16, no. 3, pages 361-366, 2001.

[Zhang 2006] Q. Zhang and L.J. Brown. Noise Analysis of an Algorithm for Uncertain Frequency
Identification. IEEE Trans. Automat. Control, vol. 51, no. 1, pages 16481655, 2006.

[Zorich 2004| Vladimir A. Zorich. Mathematical analysis, volume 1. Springer-Verlag, Berlin, 2004.

231

© 2011 Tous droits réservés. http://doc.univ-lille1 fr



	Titre

	Contents
	General Introduction
	Part I : Numerical differentiation
	Chapter 1 : Numerical point-wise derivative estimations
	1.1 Introduction
	1.2 Minimal estimators
	1.3 Affine estimators
	1.4 Approximation theory
	1.5 Some modi˝ed estimators
	1.6 Central estimators
	1.7 General estimator
	1.8 Fractional derivative estimators
	1.9 Conclusion

	Chapter 2 : Error analysis for the Jacobi estimators
	2.1 Introduction
	2.2 Nonstandard analysis of noise
	2.3 Integrable noises
	2.4 Non-independent stochastic process noises
	2.5 Independent stochastic process noises
	2.6 Numerical simulations
	2.7 Conclusion

	Chapter 3 : Application to non linear observation
	3.1 Introduction
	3.2 Observability in a non linear context
	3.3 Case study: comparison between some observers and our numerical differentiation techniques
	3.4 Conclusion


	Part II : Sinusoidal parameters estimation
	Chapter 4 : Frequency, amplitude and phase estimations
	4.1 Introduction
	4.2 Algebraic parametric techniques
	4.3 Modulating functions method

	Chapter 5 : Error analysis for estimators of sinusoidal signal
	5.1 Introduction
	5.2 Analysis for the numerical error
	5.3 Analysis for an integrable noises
	5.4 Analysis for a stochastic processes noise error
	5.5 Some error bounds for estimators
	5.6 Conclusion

	Chapter 6 : Numerical implementation of estimators for sinusoidal signal
	6.1 Introduction
	6.2 Recursive algorithms for the frequency estimators
	6.3 Causal formulae for the amplitude estimators
	6.4 Algorithms for the phase estimators
	6.5 Analysis of parameters' choice for the estimators of A0 and Á
	6.6 Numerical examples
	6.7 Conclusion

	Chapter 7 : Applications to the AFM in tapping mode
	7.1 Introduction
	7.2 Comparison of modulating function method and DSP lock-in amplifer
	7.3 Conclusion


	Conclusions and perspective
	Appendix
	Résumé étendu en français
	Bibliography

	source: Thèse de Dayan Liu, Lille 1, 2011
	d: © 2011 Tous droits réservés.
	lien: http://doc.univ-lille1.fr


