
Numéro d’ordre:
40583

Université des Sciences et Technologies de Lille
École Doctorale Sciences Pour l’Ingénieur Lille

Nord-de-France

T H E S E
pour obtenir le titre de

Docteur en Sciences
Mention : MATHÉMATIQUES APPLIQUÉES

Présentée pour être soutenue par

Qidi PENG
Inférence statistique pour des
processus multifractionnaires

cachés dans un cadre de modèles à
volatilité stochastique

Thèse dirigée par Antoine AYACHE
Date de soutenance : lundi 21 novembre 2011

Jury :

Président : Stéphane JAFFARD - Université Paris-Est-Créteil Val-de-Marne
Rapporteurs : Arnaud GLOTER - Université Evry Val d’Essonne

Donatas SURGAILIS - Université de Vilnius (Lituanie)
Examinateurs : Jean-Marc BARDET - Université Paris 1

Marc HOFFMANN - ENSAE Malakoff
Viet Chi TRAN - Université Lille 1
Ciprian TUDOR - Université Lille 1

Directeur de thèse : Antoine AYACHE - Université Lille 1





Remerciements

Je souhaite tout d’abord exprimer ma profonde gratitude à Antoine Ayache, mon
directeur de thèse. Il a su me proposer un sujet motivant qui a avivé mon goût pour
la recherche ; ses qualités scientifiques et humaines, son suivi attentif ainsi que le
soutien qu’il m’a toujours apporté, m’ont permis de mener à bien cette thèse.

Je suis très honoré que Donatas Surgailis, qui est l’un des spécialistes interna-
tionaux les plus reconnus de mon domaine de recherche, ait accepté de rapporter
sur ma thèse. Je le remercie vivement.

L’article d’Arnaud Gloter et Marc Hoffmann "stochastic volatility and fractional
Brownian motion" [35] (ainsi que sa version plus longue [36]), a été le point de départ
de ma thèse et m’a apporté de nombreuses idées ; c’est pour moi un grand honneur
qu’ils fassent, tous les deux, partie de mon jury et qu’Arnaud Gloter ait accepté
d’être rapporteur. Je leur adresse, à tous les deux, mes profonds remerciements.

Je suis très honoré que Stéphane Jaffard, malgré son emploi du temps très chargé
et ses nombreuses responsabilités, ait accepté d’être membre de mon jury. L’intérêt
qu’il accorde à ma thèse me touche et je le remercie vivement.

Certains travaux de Jean-Marc Bardet et ses co-auteurs [11, 12, 13, 14] m’ont
considérablement aidé au cours de ma thèse ; c’est pour moi un grand honneur qu’il
soit dans mon jury. Je lui adresse mes profonds remerciements.

Je suis très honoré que Viet Chi Tran et Ciprian Tudor fassent partie de mon
jury. Je suis touché par l’intérêt qu’ils accordent à ma thèse et je les remercie
vivement.

J’exprime toute ma reconnaissance à mes anciens enseignants et plus partic-
ulièrement à Azzouz Dermoune, Youri Davydov, Nikolay Tzvetkov et Marie-Claude
Viano, qui par la qualité de leurs cours, ont considérablement contribué à me donner
envie de faire une thèse. Je suis aussi reconnaissant à Charles Suquet, mon ancien
tuteur de monitorat, pour l’aide qu’il m’a apporté.

J’exprime ma profonde gratitude à Changgui Zhang et Yimin Xiao pour tous les
précieux conseils qu’ils m’ont donnés.

Un grand merci, aux personnes que j’ai connues à l’Université Lille 1 et plus
particulièrement à Yin Chen, David Coupier, Julien Hamonier, Philippe Heinrich,
Radu Stoica et Tianwen Wei.

Enfin, je pense beaucoup à mes parents en Chine, à mes proches et à mes amis,
qui m’ont beaucoup soutenu tout au long de cette thèse.



ii

Inférence statistique pour des processus
multifractionnaires cachés dans un cadre de modèles à

volatilité stochastique

Résumé

L’exemple paradigmatique d’un processus stochastique multifractionnaire est le
mouvement brownien multifractionnaire (mbm). Ce processus gaussien de nature
fractale admet des trajectoires continues nulle part dérivables et étend de façon
naturelle le célèbre mouvement brownien fractionnaire (mbf). Le mbf a été introduit
depuis longtemps par Kolmogorov et il a ensuite été "popularisé" par Mandelbrot ;
dans plusieurs travaux remarquables, ce dernier auteur a notamment insisté sur la
grande importance de ce modèle dans divers domaines applicatifs.

Le mbm, quant à lui, a été introduit, depuis plus de quinze ans, par Benassi,
Jaffard, Lévy Véhel, Peltier et Roux. Grossièrement parlant, il est obtenu en rem-
plaçant le paramètre constant de Hurst du mbf, par une fonction H(t) qui dépend de
façon régulière du temps t. Ainsi, contrairement au mbf, les accroissements du mbm
sont non stationnaires et la rugosité locale de ses trajectoires (mesurée habituelle-
ment par l’exposant de Hölder ponctuel) peut évoluer significativement au cours du
temps ; en fait, à chaque instant t, l’exposant de Hölder ponctuel du mbm vaut
H(t). Notons que cette dernière propriété, rend ce processus plus flexible que le
mbf ; grace à elle, le mbm est maintenant devenu un modèle utile en traitement du
signal et de l’image ainsi que dans d’autres domaines tels que la finance.

Depuis plus d’une décennie, plusieurs auteurs se sont intéressés à des problèmes
d’inférence statistique liés au mbm et à d’autres processus/champs multifraction-
naires ; leurs motivations comportent à la fois des aspects applicatifs et théoriques.
Parmi les plus importants, figure le problème de l’estimation de H(t), l’exposant
de Hölder ponctuel en un instant arbitraire t. Dans ce type de problématique, la
méthode des variations quadratiques généralisées, initialement introduite par Istas
et Lang dans un cadre de processus à accroissements stationnaires, joue souvent
un rôle crucial. Cette méthode permet de construire des estimateurs asymptotique-
ment normaux à partir de moyennes quadratiques d’accroissements généralisés d’un
processus observé sur une grille.

A notre connaissance, dans la littérature statistique qui concerne le mbm, jusqu’à
présent, il a été supposé que, l’observation sur une grille des valeurs exactes de ce
processus est disponible ; cependant une telle hypothèse ne semble pas toujours
réaliste. L’objectif principal de la thèse est d’étudier des problèmes d’inférence
statistique liés au mbm, lorsque seulement une version corrompue de ce dernier est
observable sur une grille régulière. Cette version corrompue est donnée par une
classe de modèles à volatilité stochastique dont la définition s’inspire de certains
travaux antérieurs de Gloter et Hoffmann ; signalons enfin que la formule d’Itô
permet de ramener ce cadre statistique au cadre classique : "signal+bruit".
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Statistical inference for hidden multifractional processes
in a setting of stochastic volatility models

Abstract

The paradigmatic example of a multifractional stochastic process is multifrac-
tional Brownian motion (mBm). This fractal Gaussian process with continuous
nowhere differentiable trajectories is a natural extension of the well-known fraction-
al Brownian motion (fBm). FBm was introduced a long time ago by Kolmogorov
and later it has been made "popular" by Mandelbrot; in several outstanding works,
the latter author has emphasized the fact that this model is of a great importance
in various applied areas.

Regarding mBm, it was introduced, more than fifteen years ago, by Benassi,
Jaffard, Lévy Véhel, Peltier and Roux. Roughly speaking, it is obtained by replacing
the constant Hurst parameter of fBm by a smooth function H(t) which depends on
the time variable t. Therefore, in contrast with fBm, the increments of mBm are
non stationary and the local roughness of its trajectories (usually measured through
the pointwise Hölder exponent) is allowed to significantly evolve over time; in fact,
at each time t, the pointwise Hölder exponent of mBm is equal to H(t). It is
worth noticing that the latter property makes this process more flexible than fBm;
thanks to it, mBm has now become a useful model in the area of signal and image
processing, as well as in other areas such as finance.

Since at least one decade, several authors have been interested in statistical in-
ference problems connected with mBm and other multifractional processes/fields;
their motivations have both applied and theoretical aspects. Among those problems,
an important one is the estimation of H(t), the pointwise Hölder exponent at an
arbitrary time t. In the solutions of such issues, the generalized quadratic variation
method, which was first introduced by Istas and Lang in a setting of stationary
increments processes, usually plays a crucial role. This method allows to construc-
t asymptotically normal estimators starting from quadratic means of generalized
increments of a process observed on a grid.

So far, to our knowledge, in the statistical literature concerning mBm, it has
been assumed that, the observation of the true values of this process on a grid, is
available; yet, such an assumption does not always seem to be realistic. The main
goal of the thesis is to study statistical inference problems related to mBm, when
only a corrupted version of it, can be observed on a regular grid. This corrupted
version is given by a class of stochastic volatility models whose definition is inspired
by some Gloter and Hoffmann’s earlier works; last, notice that thanks to Itô formula
this statistical setting can be viewed as the classical setting: "signal+noise".
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Chapter 1

Introduction en français

Le mouvement brownien multifractionnaire (mbm), ici noté par {X(t)}t∈[0,1], est
l’exemple paradigmatique d’un processus gaussien multifractionnaire ; il a été in-
troduit dans [51, 18]. Le mbm est une extension naturelle du mouvement brownien
fractionnaire (mbf) de paramètre de Hurst α [31, 53], ici noté par {Bα(t)}t∈[0,1] ; en
effet, il est obtenu en remplaçant le paramètre constant α par un paramètre fonc-
tionnel H(·), qui dépend de façon suffisamment régulière de t. Ainsi, contrairement
au mbf, les accroissements du mbm sont non stationnaires et la rugosité locale de
ses trajectoires (mesurée habituellement par l’exposant de Hölder ponctuel) peut
évoluer considérablement au cours du temps ; en fait à chaque instant t, l’exposant
de Hölder ponctuel du mbm vaut H(t). Cette dernière propriété, rend ce processus
plus flexible que le mbf ; grâce à elle le mbm est devenu un modèle d’une utilité
considérable en traitement du signal et dans d’autres domaines tels que la finance
(voir par exemple [2, 19, 20, 21, 41, 45]).

Depuis plus d’une décennie, plusieurs auteurs se sont intéressés à des problèmes
d’inférence statistique liés au mbm ou encore à d’autres processus ou champs mul-
tifractionnaires (voir par exemple [10, 12, 14, 13, 15, 17, 16, 19, 20, 21, 22, 23]1) ;
parmi les plus importants, figure l’estimation de H(t), l’exposant de Hölder ponctuel
en un instant arbitraire t. Dans de tels problèmes, la méthode des variations quadra-
tiques généralisées, qui a d’abord été introduite par Istas et Lang dans un cadre de
processus à accroissements stationnaires [42], joue un rôle crucial.

A notre connaissance, dans la littérature statistique qui concerne le mbm, jusqu’à
présent, il a été supposé que, l’observation des valeurs exactes de {X(t)}t∈[0,1] sur une
grille, est disponible ; cependant, une telle hypothèse ne semble pas toujours réaliste.
L’objectif principal de la thèse est d’étudier des problèmes d’inférence statistique liés
au mbm, lorsque seulement une version corrompue de ce dernier peut être observée
sur une grille régulière. Plus précisément, dans la thèse, on suppose que l’on observe
un échantillon

{
Z(0), Z(1/n), . . . , Z(n/n)

}
du processus {Z(t)}t∈[0,1] défini par,

Z(t) = z0 +

∫ t

0
Φ
(
X(s)

)
dW (s), (∗)

où :

• {W (s)}s∈[0,1] est un mouvement brownien standard indépendant du mbm
{X(s)}s∈[0,1],

• Φ est une fonction déterministe inconnue de classe C2, à croissance lente (au
plus polynômiale) à l’infini ainsi que ses deux dérivées ;

1Cette liste est loin d’être exhaustive.
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en outre, à l’exception du chapitre numéro 4, on suppose toujours que le paramètre
H(·) du mbm caché {X(s)}s∈[0,1], est une fonction deux fois continûment dériv-
able ; cette dernière hypothèse nous permet d’obtenir de "bonnes estimations" des
corrélations entre les accroissements généralisés du mbm.

Nous appelons le processus {Z(t)}t∈[0,1] défini par (∗), modèle à volatilité stochas-
tique multifractionnaire, parce qu’on peut voir ce processus comme la modélisation
du logarithme du prix d’un actif financier qui est une solution de l’équation différen-
tielle stochastique :

dZt = σt dWt,

où la volatilité σt = Φ
(
X(t)

)
est gouvernée par le mbm {X(t)}t∈[0,1]. De tels modèles

à volatilité stochastique possèdent les trois propriétés suivantes, qui leur permettent
de reproduire certaines caractéristiques observées empiriquement dans nombre de
séries financières [19, 20, 21] :

• les accroissements de {Z(t)}t∈[0,1] sont non corrélés, cela résulte de l’hypothèse
d’indépendance des processus {X(s)}s∈[0,1] et {W (s)}s∈[0,1] ;

• en revanche, les carrés des accroissements de {Z(t)}t∈[0,1] sont significative-
ment corrélés, et les intensités de leurs corrélations peuvent changer au cours
du temps permettant ainsi d’avoir des périodes avec de la longue dépendance
qui alternent avec d’autres périodes avec de la faible dépendance ;

• la rugosité locale de la volatilité (autrement dit son exposant de Hölder
ponctuel) peut être calibrée au moyen du paramètre fonctionnel H(·) du mbm
et peut donc évoluer au cours du temps.

Il convient de noter que des modèles à volatilité stochastique fractionnaire de la
forme (∗), où le mbm {X(s)}s∈[0,1] est remplacé par un mbf {Bα(s)}s∈[0,1], ont été
étudiés précédemment par Gloter et Hoffmann [35, 36]. Une idée importante, déjà
utilisée par ces deux auteurs, est que les valeurs moyennes inconnues,

Y i,Nn = Nn

∫ (i+1)/Nn

i/Nn

(
Φ(X(s))

)2
ds i = 0, . . . , Nn − 1,

où Nn = [nβ] (ici [·] désigne la fonction partie entière et β ∈]0, 1[ un paramètre
fixé), peuvent être estimées à partir des observations disponibles, c’est-à-dire de{
Z(0), Z(1/n), . . . , Z(n/n)

}
; cette importante idée qui repose notamment sur la

formule d’Itô, se traduit, de façon plus précise (voir le Lemme 7.4.2), par

Ŷi,Nn,n = Y i,Nn + Ei,Nn,n i = 0, . . . , Nn − 1, (∗∗)

où:

• les Ŷi,Nn,n sont les valeurs approchées des Y i,Nn , ces valeurs approchées sont
obtenus aux moyen de variations quadratiques normalisées de certaines des
observations Z(i/n) ;
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• les Ei,Nn,n désignent les termes d’erreur, il est à noter que ces variables aléa-
toires possèdent des propriétés "sympathiques", entre autres :

(i) conditionnellement à la tribu GX = σ(X(s), 0 ≤ s ≤ 1), leurs lois sont
indépendantes entre elles,

(ii) on dispose d’un contrôle de leur vitesse de convergence vers 0 lorsque
Nn tend vers l’infini, au moyen de leurs moments conditionnels
|E (Ei,Nn,n|GX)|, E (E 2

i,Nn,n
|GX) et E (E 4

i,Nn,n
|GX), plus précisément, il ex-

iste une variable aléatoire C dont les moments de tout ordre sont finis,
telle que, presque sûrement, pour tout n assez grand, l’on a,

|E (Ei,Nn,n|GX)| ≤ CN−(β−1−1)
n ,

E (E 2
i,Nn,n|GX) ≤ CN−(β−1−1)

n

et
E (E 4

i,Nn,n|GX) ≤ CN−2(β−1−1)
n .

Ainsi la formulation (∗∗) permet de se ramener à un cadre statistique classique de
la forme : "signal+bruit".

Il convient aussi de souligner que la formule de Taylor-Lagrange permet de mon-
trer que les accroissements généralisés des Y i,Nn sont intimement liés aux accroisse-
ments généralisés des valeurs moyennes Xi,Nn , i = 0, . . . , Nn−1, du processus mbm
{X(s)}s∈[0,1] lui-même ; ces dernières valeurs sont définies par,

Xi,Nn = Nn

∫ (i+1)/Nn

i/Nn

X(s) ds.

Tout comme Gloter et Hoffmann [35, 36], pour faire de l’inférence statistique dans
le cadre des modèles du type (∗) ou encore (∗∗), on adoptera bien souvent des
méthodes qui consistent essentiellement en les trois étapes suivantes :

• on construit d’abord un estimateur au moyen des Xi,Nn ;

• on se ramène ensuite à un estimateur qui dépend des Y i,Nn ;

• enfin, dans ce dernier estimateur les Y i,Nn sont remplacées par leurs valeurs
approchées Ŷi,Nn,n.

Nous allons maintenant décrire le contenu de chacun des chapitres de la thèse,
nous nous limiterons ici à une description succincte qui permet d’avoir une vue
d’ensemble de la thèse ; signalons au passage, qu’au début de chaque chapitre, une
introduction détaillée présentera plus précisément, les problématiques qui y seront
étudiées.

Rappelons qu’Istas et Lang (voir [42]) ont construit des estimateurs asymp-
totiquement normaux de l’exposant de Hölder uniforme 2 d’un processus à ac-
croissements stationnaires {S(t)}t∈[0,1] appartenant à une large classe ; leurs es-
timateurs sont obtenus par la méthode des variations quadratiques généralisées,

2Cet exposant permet de mesurer la régularité de Hölder globale d’un processus sur un intervalle.
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à partir des valeurs exactes de {S(t)}t∈[0,1] sur une grille régulière, c’est-à-dire
à partir de {S(0), S(1/N), . . . , S(N/N)}. Dans le premier chapitre de la thèse
(chapitre numéro 3), il est essentiellement établi que les principaux résultat-
s d’Istas et Lang restent valables lorsque {S(0), S(1/N), . . . , S(N/N)} est rem-
placé par

{
S0,N , . . . , SN−1,N

}
, c’est-à-dire que l’on observe les valeurs moyennes

de {S(t)}t∈[0,1], sur une grille régulière, au lieu de ses valeurs exactes. Les motiva-
tions sont les suivantes : (a) lorsque le processus {S(t)}t∈[0,1] est erratique (il fluctue
beaucoup au cours du temps), il semble plus réaliste de dire que l’on observe sur
une grille ses valeurs moyennes plutôt que ses valeurs exactes ; (b) comme on l’a
déjà souligné, les valeurs moyennes jouent un rôle important dans le cadre de l’étude
statistique des modèles du type (∗) ou encore (∗∗). Signalons enfin qu’une version
de ce chapitre a déjà été publiée dans le journal "Statistics and Probability Letters".

Avant de se lancer dans une étude statistique des modèles du type (∗), il faudrait
au préalable avoir une représentation intuitive de ces modèles. Pour ce faire, il con-
vient d’étudier la régularité de Hölder, globale et locale, de leurs trajectoires et
il convient également de simuler ces dernières ; tels sont les objectifs du second
chapitre de la thèse (chapitre numéro 4). Il convient de souligner que les principaux
résultats de ce chapitre sont valables, non seulement dans le cas où {X(s)}s∈[0,1]
est le mbm, mais aussi, dans le cadre beaucoup plus général, où {X(s)}s∈[0,1] es-
t un processus gaussien arbitraire dont les trajectoires vérifient une condition de
Hölder uniforme d’ordre arbitraire α > 1/2. Dans ce chapitre, d’abord, l’on mon-
tre qu’avec probabilité 1, les trajectoires de {Z(t)}t∈[0,1] appartiennent à tous les
espaces de Hölder Cγ

(
[0, 1]

)
où γ < 1/2 et que, l’exposant de Hölder ponctuel de

{Z(t)}t∈[0,1] vaut 1/2 en tout point de ]0, 1[, presque sûrement. Ensuite, afin de dis-
poser d’une méthode de simulation efficace de ces trajectoires, une représentation
en série aléatoire de {Z(t)}t∈[0,1], via la base de Haar, est introduite ; la principale
idée qui permet de l’obtenir, consiste, à décomposer, pour tous t ∈ [0, 1] et ω fixés,
la fonction s 7→ Φ

(
X(s, ω)

)
1[0,t](s), dans la base de Haar de l’espace L2

(
[0, 1]

)
, puis

à utiliser la propriété d’isométrie de l’intégrale stochastique dans (∗). Enfin, il est
montré qu’avec probabilité 1, la série est convergente dans tous les espaces Cγ

(
[0, 1]

)
où γ < 1/2, de plus, une fine estimation de sa vitesse de convergence, mesurée au
moyen de la norme ∥ · ∥Cγ([0,1]), est donnée.

Nous avons déjà souligné au début de cette introduction que l’exposant de Hölder
ponctuel du mbm caché {X(s)}s∈[0,1] peut évoluer considérablement au cours du
temps, paradoxalement, l’exposant de Hölder ponctuel de sa version corrompue
{Z(t)}t∈[0,1] reste constant (comme on l’a vu dans le paragraphe précédent) ; cela
signifie qu’il y a une perte considérable d’information lorsque l’on observe les valeurs
de {Z(t)}t∈[0,1] sur une grille, au lieu de celles de {X(s)}s∈[0,1]. L’objectif princi-
pal des deux derniers chapitres de la thèse est de montrer que, malgré cette perte
d’information, il est encore possible de construire des estimateurs consistants de
certains indices pertinents liés à {X(s)}s∈[0,1] et/ou à la fonction inconnue Φ.

Dans le troisième chapitre de la thèse (chapitre numéro 5), on suppose que le
paramètre fonctionnel H(·) du mbm est connu et prend ses valeurs dans l’intervalle
ouvert (1/2, 1), h désigne une fonction arbitraire connue de classe C1 à croissance
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lente à l’infini ainsi que sa dérivée, enfin (µN )N et (νN )N sont deux suites arbitraires
vérifiant pour tout N , 0 ≤ µN < νN ≤ 1 et limN→+∞N(νN − µN ) = +∞. Un
premier résultat de ce chapitre, montre qu’en construisant, au moyen des

{
Xi,N :

i ∈ N et i/N ∈ [µN , νN ]
}
, la variation quadratique généralisée pondérée par la

fonction h, on obtient un estimateur de l’intégrale :

1

νN − µN

∫ νN

µN

h(X(s)) ds.

Un deuxième résultat, qui généralise le premier résultat, montre qu’en construisant,
au moyen des

{
Y i,N : i ∈ N et i/N ∈ [µN , νN ]

}
, V (h;µN , νN ) la variation quadra-

tique généralisée pondérée par la fonction h, on obtient un estimateur de l’intégrale :

1

νN − µN

∫ νN

µN

(
f ′(X(s))

)2
h(Y (s)) ds.

Un troisième résultat montre que lorsque dans V (h;µN , νN ), les Y i,N sont rem-
placés par les Ŷi,Nn,n, quitte à rajouter à V (h;µN , νN ) un terme de correction, on
continue à avoir un estimateur noté par V̂ (h;µNn , νNn) qui converge vers la même
intégrale. Signalons que ces trois estimateurs convergent dans L1(Ω), à la vitesse(
N(νN − µN )

)−1/2. Enfin, un dernier résultat, montre que dans le cas d’un modèle
à volatilité stochastique multifractionnaire linéaire (i.e. Φ(x) = θx pour tout réel
x), sous certaines conditions, un estimateur θ̂2n de θ2, peut être obtenu à partir de
V̂ (1;µNn , νNn) ; de plus θ̂2n converge en probabilité, au moins à la vitesse

n
−
(
4maxs∈[µNn

,νNn
] H(s)+2

)−1

(νNn − µNn)
−1/2.

Signalons qu’une version de ce chapitre a été publiée dans un ouvrage
chez "Springer" (http://www.springer.com/mathematics/probability/book/978-3-
642-22367-9).

Dans le quatrième chapitre de la thèse (chapitre numéro 6), on désigne par
(v(N))N≥3 une suite arbitraire de réels strictement positifs qui tend vers 0 plus vite
que (logN)−1 et moins vite que (logN)2/N , on fixe t0 un point arbitraire de ]0, 1[

et pour tout N assez grand, on pose

νN (t0) =
{
i ∈ N : |t0 − i/N | ≤ v(N)

}
.

Un premier résultat montre que la variation quadratique généralisée construite au
moyen de

{
Xi,N : i ∈ νN (t0)

}
, permet d’obtenir un estimateur de H(t0) qui con-

verge en probabilité ; de plus lorsqu’on impose la condition :

+∞∑
N=3

(
Nv(N)

)−2
<∞, (C)

l’estimateur converge alors presque sûrement ; par ailleurs, lorsqu’on impose la
condition :

v(N) = o
(
N−1/3(logN)−2/3

)
,
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l’estimateur devient alors asymptotiquement normal. Un deuxième résultat mon-
tre que la variation quadratique généralisée construite au moyen de

{
Y i,N : i ∈

νN (t0)
}
, permet d’obtenir un estimateur de H(t0) qui converge en probabilité ; de

plus lorsqu’on impose la condition (C) l’estimateur converge alors presque sûrement ;
par ailleurs, lorsqu’on impose les conditions H(t0) ∈]1/2, 1[ et

v(N) = o
(
N−1/2(logN)η

)
,

où η > 1/2 est arbitraire, l’estimateur devient alors asymptotiquement normal.
Enfin, un troisième résultat montre que pour certaines valeurs du paramètre β, le
deuxième résultat reste vrai lorsque les Y i,N sont remplacées par les Ŷi,Nn,n.



Chapter 2

Introduction

The paradigmatic example of a multifractional Gaussian process is multifraction-
al Brownian motion (mBm), we denote by {X(t)}t∈[0,1]. MBm was introduced in
[51, 18]. It is a natural extension of the well-known fractional Brownian motion
(fBm) [31, 53] of Hurst parameter α, we denote by {Bα(t)}s∈[0,1]; roughly speaking,
it is obtained by replacing the constant parameter α of the latter Gaussian process
by a smooth enough function H(·), depending on the time variable t. Therefore, in
contrast with fBm, the increments of mBm are non stationary and the local rough-
ness of its trajectories (usually measured through the pointwise Hölder exponent)
is allowed to evolve considerably over time, since at each t the pointwise Hölder
exponent of mBm equals H(t). It is worth noticing that the latter property makes
mBm to be a useful model in the area of signal processing and other areas such as
finance (see for example [2, 19, 20, 21, 41, 45]).

Since at least one decade, several authors have been interested in statistical
inference problems connected with mBm and related processes (see for example
[10, 12, 14, 13, 15, 17, 16, 19, 20, 21, 22, 23]1); an important one of them is the
estimation of H(t), the pointwise Hölder exponent of mBm at an arbitrary time
t. In such problems, the generalized quadratic variation method, which was first
introduced by Istas and Lang in a setting of stationary increments processes [42],
plays a key role.

So far, to our knowledge, in the statistical literature concerning mBm, it has been
assumed that the observation, of the true values of {X(t)}t∈[0,1] on a grid, is avail-
able; yet, such an assumption does not always seem to be realistic. The main goal
of the thesis is to study some statistical inference problems related to mBm, when
only a corrupted version of it over a regular grid, can be observed. More precisely,
in the thesis, it is assumed that one observes a sample

{
Z(0), Z(1/n), . . . , Z(n/n)

}
of the process {Z(t)}t∈[0,1] defined as:

Z(t) = z0 +

∫ t

0
Φ
(
X(s)

)
dW (s), (∗)

where:

• {W (s)}s∈[0,1] is a standard Brownian motion independent on the mBm
{X(s)}s∈[0,1];

• Φ is an unknown deterministic C2 function having slow increase (at most
polynomial) at infinity, as well as its two derivatives;

1This list is not exhaustive.
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also, except in the chapter number 4, it is always assumed that the parameter H(·)
of the hidden mBm {X(s)}s∈[0,1], is a two times continuously differentiable function;
actually we need this assumption in order to get "nice estimates" of the correlations
between the generalized increments of mBm.

We call the process {Z(t)}t∈[0,1] defined by (∗) a multifractional stochastic volatil-
ity model, since it can be viewed as a model for the logarithm of the price of a
financial asset which is a solution of the stochastic differential equation:

dZt = σt dWt,

where the volatility σt = Φ
(
X(t)

)
is governed by the mBm {X(t)}t∈[0,1]. Such

stochastic volatility models have the following three properties which allow them to
reproduce some features empirically observed in financial series [19, 20, 21]:

• increments of {Z(t)}t∈[0,1] are uncorrelated, this is a consequence of the inde-
pendence of the processes {X(s)}s∈[0,1] and {W (s)}s∈[0,1];

• on the other hand, the square of increments of {Z(t)}t∈[0,1] are significantly
correlated and intensities of correlations can change over time in such a way
which allows to have some periods with long range dependance and other
periods with short range dependance;

• the volatility local roughness (its pointwise Hölder exponent) can be prescribed
via the functional parameter H(·) of mBm and thus can evolve over time.

It is worth mentioning that fractional stochastic volatility models of the form (∗)
where the mBm {X(s)}s∈[0,1] is replaced by a fBm {Bα(s)}s∈[0,1], have been previ-
ously studied by Gloter and Hoffmann [35, 36]. An important idea, already used by
the latter two authors, is that the unknown local average values,

Y i,Nn = N

∫ (i+1)/Nn

i/Nn

(
Φ(X(s))

)2
ds i = 0, . . . , Nn − 1,

where Nn = [nβ] (here [·] denotes the integer part function and β ∈ (0, 1) a
fixed parameter), can be estimated starting from the available observations, name-
ly
{
Z(0), Z(1/n), . . . , Z(n/n)

}
; this important idea basically relies on Itô formula.

More precisely (see Lemma 7.4.2), this idea can be expressed as,

Ŷi,Nn,n = Y i,Nn + Ei,Nn,n i = 0, . . . , Nn − 1, (∗∗)

where:

• the Ŷi,Nn,n’s are the approximate values of the Y i,Nn ’s, these approximate
values can be obtained through normalized quadratic variations of some of
the observations Z(i/n) ;

• the Ei,Nn,n’s denote the error terms, observe that these random variables have
nice properties:



9

(i) conditional on the σ-algebra GX = σ(X(s), 0 ≤ s ≤ 1), their distributions
are independents,

(ii) their rate of convergence to 0 when Nn goes to infinity, can be controled
through their conditional moments |E (Ei,Nn,n|GX)|, E (E 2

i,Nn,n
|GX) and

E (E 4
i,Nn,n

|GX), more precisely, there is a random variable C of finite mo-
ment of any order, such that one has almost surely, for all n big enough,

|E (Ei,Nn,n|GX)| ≤ CN−(β−1−1)
n ,

E (E 2
i,Nn,n|GX) ≤ CN−(β−1−1)

n

and
E (E 4

i,Nn,n|GX) ≤ CN−2(β−1−1)
n .

Thus the formulation (∗∗) allows to recover a classical statistical framework of the
form: "signal+noise".

Also, it is worth to notice that Taylor-Lagrange formula allows to show that
the generalized increments of the Y i,N ’s are closely connected with the generalized
increments of the local average values Xi,Nn , i = 0, . . . , Nn − 1, of the process
{X(s)}s∈[0,1] itself, defined as,

Xi,Nn = Nn

∫ (i+1)/Nn

i/Nn

X(s) ds.

Similarly to Gloter and Hoffmann [35, 36], in order to make statistical inference
in the setting of models of type (∗) or (∗∗), we will very often use methods which
mainly consist in the following three steps:

• we build an estimator starting from the Xi,Nn ’s;

• then we obtain from it an estimator which depends on the Y i,Nn ’s;

• finally, we replace in the latter estimator the Y i,Nn ’s by their approximate
values Ŷi,Nn,n’s.

Let us know describe the content of each chapter in the thesis. We limit ourselves
here to a brief description that provides an overview of the entire thesis; note in
passing that at the beginning of each chapter, a detailed introduction describes
more explicitly, the issues that will be studied.

Recall that, Istas and Lang (see [42]) have built asymptotically normal estima-
tors of the uniform Hölder exponent2 of a stationary increments Gaussian process
{S(t)}t∈[0,1] belonging to a wide class; their estimators are obtained by the general-
ized quadratic variation method, starting from the observation of the true values of
{S(t)}t∈[0,1] over a regular grid, namely {S(0), S(1/N), . . . , S(N/N)}. In the first
chapter of the thesis (chapter number 3), basically, it is shown that the main results

2This exponent provides a measure of the global Hölder regularity of a process over an interval.
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of Istas and Lang remain valid when {S(0), S(1/N), . . . , S(N/N)} is replaced by{
S0,N , . . . , SN−1,N

}
, that is one observes the local average values of {S(t)}t∈[0,1],

over a regular grid, instead of its true values. The motivations are the following:
(a) when the process {S(t)}t∈[0,1] is erratic (that is it fluctuates a lot over time),
it seems to be more realistic to say that one observes, over a regular grid, its local
average values instead of its true values; (b) as we have mentioned before, local
average values play an important role in the statistical study of models of the type
(∗) or (∗∗). At last, note that a version of this chapter has already been published
in the journal "Statistics and Probability Letters".

Before making a statistical study of models of the type (∗), it seems to be useful
to have an intuitive representation of these models. To this end, the study of the
global and the local Hölder regularity of their trajectories as well as their simulation
can be of some help; here are the main goals of the second chapter of the thesis
(chapter number 4). It is worth noticing that the main results of the chapter,
are valid, not only in the case where {X(s)}s∈[0,1] is mBm, but also in the much
more general setting in which {X(s)}s∈[0,1] is an arbitrary Gaussian process whose
trajectories satisfy a uniform Hölder condition of any arbitrary order α > 1/2. In
this chapter, first, it is shown that, with probability 1, the trajectories of {Z(t)}t∈[0,1]
belong to any Hölder space Cγ

(
[0, 1]

)
with γ < 1/2 and that, the pointwise Hölder

exponent of {Z(t)}t∈[0,1] at any point in (0, 1), equals almost surely to 1/2. Then,
in order to have an efficient simulation method of these trajectories, a random series
representation of {Z(t)}t∈[0,1], via the Haar basis, is introduced; the main idea which
allows to obtain it, consists in expanding for all fixed t ∈ [0, 1] and ω, the function
s 7→ Φ

(
X(s, ω)

)
1[0,t](s) in the Haar basis of the Lebesgue Hilbert space L2

(
[0, 1]

)
and then in using the isometry property of the stochastic integral in (∗). At last, it
is shown that, with probability 1, the series is convergent in all the spaces Cγ

(
[0, 1]

)
with γ < 1/2 and a sharp estimation, of its convergence rate, in the sense of the
norm ∥ · ∥Cγ([0,1]), is given.

We have already mentioned that the pointwise Hölder exponent of the hidden
mBm {X(s)}s∈[0,1] may evolve considerably over time, while that of its corrupted
version {Z(t)}t∈[0,1] remains constant; this means that there is a considerable loss
of information when one observes the values of {Z(t)}t∈[0,1] over a grid, instead of
those of {X(s)}s∈[0,1]. The main goal of the last two chapters of the thesis is to show
that, in spite of this loss of information, it is still possible to construct consistent
estimators of some relevant indices related to {X(s)}s∈[0,1] and/or to the unknown
function Φ.

In the third chapter of the thesis (chapter number 5), one assumes that the
functional parameterH(·) of mBm, is known and takes its values in the open interval
(1/2, 1), h denotes an arbitrary known C1 function having slow increase at infinity as
well as its derivative, at last (µN )N and (νN )N are two arbitrary sequences satisfying
for each N , 0 ≤ µN < νN ≤ 1 and limN→+∞N(νN − µN ) = +∞. A first result of
the chapter shows that, when one constructs starting from

{
Xi,N : i ∈ N and i/N ∈

[µN , νN ]
}
, the generalized quadratic variation weighted by the function h, one gets
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an estimator of the integral:

1

νN − µN

∫ νN

µN

h(X(s)) ds.

A second result, which generalizes the first result, shows that when one constructs
starting from

{
Y i,N : i ∈ N and i/N ∈ [µN , νN ]

}
, V (h;µN , νN ) the generalized

quadratic variation weighted by the function h, one gets an estimator of the integral:

1

νN − µN

∫ νN

µN

(
f ′(X(s))

)2
h(Y (s)) ds.

A third result shows that when in the expression giving V (h;µN , νN ), the Y i,N ’s are
replaced by the Ŷi,Nn,n’s and one adds a correction term, we still have an estimator,
denoted by V̂ (h;µNn , νNn), which converges to the same integral. Notice that these
three estimators converge in L1(Ω) at the rate

(
N(νN −µN )

)−1/2. At last, a fourth
result, shows that in the case of a linear multifractional stochastic volatility model
(i.e. Φ(x) = θx for all real x), under some conditions, an estimator θ̂2n of θ2, can
be obtained starting from V̂ (1;µNn , νNn) ; moreover θ̂2n converges in probability, at
least at the rate,

n
−
(
4maxs∈[µNn

,νNn
] H(s)+2

)−1

(νNn − µNn)
−1/2.

At last notice that a version of this chapiter, has been published in a book edit-
ed by "Springer" (http://www.springer.com/mathematics/probability/book/978-3-
642-22367-9).

In the fourth chapter of the thesis (chapter number 6), we denote by (v(N))N≥3

an arbitrary sequence of strictly positive real numbers, which converges to 0 more
quickly than (logN)−1 and less quickly than (logN)2/N , we fix t0 an arbitrary
point of (0, 1) and for N large enough, we set

νN (t0) =
{
i ∈ N : |t0 − i/N | ≤ v(N)

}
.

A first result shows that the generalized quadratic variation corresponding to{
Xi,N : i ∈ νN (t0)

}
, allows to obtain an estimator of H(t0) which converges in

probability; moreover, under the additional condition:

+∞∑
N=3

(
Nv(N)

)−2
<∞, (C)

the estimator converges almost surely; on the other hand, when one imposes the
condition:

v(N) = o
(
N−1/3(logN)−2/3

)
,

the estimator becomes asymptotically normal. A second result shows that the gen-
eralized quadratic variation corresponding to

{
Y i,N : i ∈ νN (t0)

}
, allows to obtain
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an estimator of H(t0) which converges in probability; moreover, under the addition-
al condition (C) the estimator converges almost surely; on the other hand, when one
imposes the conditions H(t0) ∈ (1/2, 1) and

v(N) = o
(
N−1/2(logN)η

)
,

where η > 1/2 is arbitrary, the estimator becomes asymptotically normal. At last a
third result shows that for some well-chosen values of the parameter β, the second
result remains true when the Y i,N ’s are replaced by the Ŷi,Nn,n’s.
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3.1 Introduction

Since several years, there has been a considerable interest in the statistical estimation
of some indices related to Hölder regularity of sample paths of stochastic processes,
we refer e.g. to [10, 16, 11, 12, 14, 22, 37, 42]; as for instance the uniform Hölder
exponent over a compact interval. Let us recall the definition of the latter exponent.
Denote by {X(t)}t∈R a real-valued stochastic process and by K a fixed compact
interval in R; one says that a sample path X(·, ω) : t 7−→ X(t, ω) belongs to the
Hölder space Cγ(K) where γ ∈ R+ \ Z+, if the following two conditions (i) and (ii)
are satisfied:

(i) X(·, ω) is a [γ]-times continuously differentiable function over K, where [·] de-
notes the integer part function;

(ii) there is a constant c = c(K,ω) > 0 such that for all s1, s2 ∈ K,∣∣X([γ])(s1, ω)−X([γ])(s2, ω)
∣∣ ≤ c|s1 − s2|γ−[γ], (3.1.1)

where the functionX([γ])(·, ω) denotes the derivative of order [γ] of the function
X(·, ω), with the convention that X(0)(·, ω) = X(·, ω).

The uniform Hölder exponent of X(·, ω) over K is defined as,

hX(K,ω) := sup
{
γ ∈ R+ \ Z+ : X(·, ω) ∈ Cγ(K)

}
.
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From now on, we suppose that {X(t)}t∈R is a centered stationary increments Gaus-
sian process satisfying almost surely X(0) = 0; thus the distribution of {X(t)}t∈R
is completely determined by its variogram, namely the even function v defined for
all t ∈ R, as,

v(t) = 2−1E
(
X(t)

)2
; (3.1.2)

moreover it follows from zero-one law that there is a deterministic quantity H =

HX(K) ∈ [0,+∞] such that one has, for almost all ω, hX(K,ω) = HX(K). There
is no restriction to assume that K = [0, 1]. In their seminal article [42], by using the
notion of generalized quadratic variation, Istas and Lang have constructed, under
some assumptions, asymptotically normal estimators of H, starting from the obser-
vation of {X(iδN )}i=0,...,[δN ]−1−1, the true values of X over a regular grid. However,
in the setting of some applications, for example when one has to model a quite
fluctuating signal, it sounds to be more realistic to say that one observes average
values of the process X, namely

{
δ−1
N

∫ (i+1)δN
iδN

X(s) ds
}
i=0,...,[δN ]−1−1

, rather than a
true discretized trajectory of X. The goal of this chapter is to construct a strongly
consistent and asymptotically normal estimator of H starting from such data. From
now on, for the sake of simplicity, we assume that the discretization mesh δN = 1/N

(N being an integer big enough) and we set

{
Xi,N

}
i=0,...,N−1

:=
{
N

∫ (i+1)/N

i/N
X(s) ds

}
i=0,...,N−1

. (3.1.3)

Our results as well as their proofs are inspired by [42], however new difficulties
appear in our setting; they are mainly due to the fact that

Cov
( p∑

k=0

akXi+k,N ,

p∑
k′=0

ak′Xj+k′,N

)
,

is more difficult to estimate, than

Cov
( p∑

k=0

akX
( i+ k

N

)
,

p∑
k′=0

ak′X
(j + k′

N

))
,

here p ≥ 1 is an integer and a = (a0, . . . , ap) denotes a finite sequence of real
numbers satisfying Assumption (3.2.6).

3.2 Statement of the main results

Let us first precisely present the assumptions we need for obtaining our main results.
Note in passing that these assumptions are nearly similar to some fundamental
hypotheses in [42].
(A1) Assumptions on the variogram function v: We assume that there exists
a finite nonnegative integer d such that v is 2d-times continuously differentiable on
[−2, 2] and v is not 2(d + 1)-times continuously differentiable on this interval. We
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denote by v(2d) the derivative of v of order 2d, with the convention that v(0) = v.
Also we assume that there are two real numbers c ̸= 0 and 0 < s0 < 2 such that for
all t ∈ [−2, 2], one has

v(2d)(t) = v(2d)(0) + c|t|s0 + r(t), (3.2.1)

where the remainder r satisfies the following two properties:

• For |t| small enough, one has,

r(t) = o(|t|s0). (3.2.2)

• There are two real numbers c > 0, w > s0 and an integer q > w + 1/2 such
that the remainder r is q-times continuously differentiable on [−2, 2]\{0} and
for all t ∈ [−2, 2] \ {0}, one has

|r(q)(t)| ≤ c|t|w−q. (3.2.3)

2

The integers d and q are supposed to be known; in fact the unknown parameter
we want to estimate, starting from the data (3.1.3), is s0. It is worth noticing that
Assumption (A1) implies (see for instance [40] or [26]) that the uniform Hölder
exponent H satisfies,

H = d+
s0
2
. (3.2.4)

Though, this assumption might seem to be a bit technical, it is satisfied (see [42])
by fractional Brownian motion (i.e. v(t) = c|t|2α where c > 0 is a constant and
α ∈ (0, 1) the Hurst parameter) and other, more or less, classical classes of stationary
increments Gaussian processes (for example when v(t) = 1 − exp(−|t|β), where
β ∈ (0, 2) is a parameter; observe that in this case d = 0 and s0 = β, moreover
standard computation show that one can take q = 3).

For any integer N ≥ p + 1, the generalized increments of the average values
Xi,N , i = 0, . . . , N − 1 of the process X are defined as,

{
∆aXi,N

}
i=0,...,N−p−1

=
{ p∑

k=0

akXi+k,N

}
i=0,...,N−p−1

, (3.2.5)

where a = (a0, . . . , ap) ∈ Rp+1 is an arbitrary finite fixed sequence with M(a) ≥
d+ q/2 vanishing moments, that is:

p∑
k=0

klak = 0, for all l = 0, . . . ,M(a)− 1 and
p∑

k=0

kM(a)ak ̸= 0 (3.2.6)

The integer M(a) is called the order of the generalized increment and one always
has p ≥ M(a). For example, a(1) = (1,−1) is of order 1 and a(2) = (1,−2, 1) is of
order 2.
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Note in passing that (3.2.6) implies that for all l ∈ {0, . . . , 2M(a)− 1},

p∑
k=0

p∑
k′=0

akak′(k − k′)l = 0. (3.2.7)

The important idea of replacing usual 1-order increments by generalized increments
has been initially introduced by Istas and Lang [42]. The main advantage in doing
so, is that the statistical estimator of H, defined through generalized quadratic
variation, is asymptotically normal whatever the value of H might be. Basically,
this asymptotic normality comes from the fact that generalized increments are less
correlated than usual increments.

In fact, we need to impose to the sequence a an additional assumption.
(A2) Assumption related to the generalized increments: For all ν ∈ (0, 2),
one has

R
(
0, 1, 2d, (·)ν

)
̸= 0, (3.2.8)

where R
(
0, 1, 0, (·)ν

)
is defined by (3.4.5) and R

(
0, 1, 2d, (·)ν

)
is defined by (3.4.6)

when d ≥ 1. 2

It is worth noticing that standard computations allow to show that: the sequence
a(2) = (1,−2, 1) has 2 vanishing moments (i.e. M(a(2)) = 2) and satisfies Assump-
tion (A2) when d = 0; the sequence a(3) = (1,−3, 3,−1) has 3 vanishing moments
(i.e. M(a(3)) = 3) and satisfies Assumption (A2) when d ∈ {0, 1}.

Now we are in position to state the two main results of this chapter.

Theorem 3.2.1 Let us denote by

ĤN =
1

2

(
1 + log2

( VN
V2N

))
, (3.2.9)

where VN is the generalized quadratic variation defined as,

VN =

N−p−1∑
i=0

(
∆aXi,N

)2
. (3.2.10)

Then, under Assumptions (A1) and (A2), when N → +∞, ĤN converges almost
surely to H,

Theorem 3.2.2 Under the same assumptions as in Theorem 3.2.1 and the addi-
tional assumption that

r(t) = o(|t|s0+1/2), (3.2.11)

a Central Limit Theorem holds, namely N1/2(ĤN−H) converges in law to a centered
Gaussian random variable.

3.3 Some simulations
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Figure 3.1: Simulation of the convergence of ĤN , for a fBm of Hurst parameter 0.8

Figure 3.2: Histogram of N1/2(ĤN − 0.8)
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3.4 Proof of the main results

First it is convenient to notice that the stationarity of the increments of the process
X, implies that for all N ≥ p+ 1 and i ∈ {0, . . . , N − p− 1}, one has

σ2a,N := Var(∆aX0,N ) = Var(∆aXi,N ). (3.4.1)

The proof of Theorem 3.2.1 mainly relies on the following proposition.

Proposition 3.4.1 Under Assumptions (A1) and (A2), there exist two constants
c1 > 0 and c2 > 0, such that the following two equalities hold for all N ≥ p+ 1:

σ2a,N = c1N
−2H + o(N−2H), (3.4.2)

and

s2N := Var
(N−p−1∑

i=0

(∆aXi,N )2

σ2a,N

)
= c2N + o(N). (3.4.3)

Now, let us focus on the proof of Proposition 3.4.1. In order to show that the
latter proposition holds, we need several preliminary results. The following lemma
(whose proof has been omitted since it is more or less similar to that of Lemma 1

in [35]) gives a nice expression of Cov
(
∆aXi,N ,∆aXj,N

)
, in terms of the variogram

function v.

Lemma 3.4.2 For all integer N ≥ p + 1 and all i, j ∈ {0, . . . , N − p − 1}, the
following equality holds:

E
(
∆aXi,N∆aXj,N

)
= −N2

∑
0≤k,l≤p

akal

(∫ 1
N

0

∫ 1
N

0
v
( |i− j|

N
+ s− s′ +

k − l

N

)
ds′ ds

)
.

(3.4.4)

Next we will use (3.4.4) and (3.2.1) for estimating E
(
∆aXi,N∆aXj,N

)
; to this

end, we need to introduce some notations. Let h and g be two real-valued Borel
functions defined on the real line, let N ≥ p+ 1 and u ≥ 1 be two integers and let
x ∈ R, we set

R(x,N, 0, h) =
∑

0≤k,l≤p

akal

∫ 1
N

0

∫ 1
N

0
h
(
x+ s− s′ +

k − l

N

)
ds′ ds, (3.4.5)

and

R(x,N, u, g) =
∑

0≤k,l≤p

akal(k − l)u
∫ 1

N

0

∫ 1
N

0

∫ 1

0

(1− η)u−1

(u− 1)!

×g
(
x+ s− s′ +

(k − l)η

N

)
dη ds′ ds.

(3.4.6)
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Of course we assume that h, g, N , u and x have been chosen in such a way that all
the integrals in (3.4.5) and (3.4.6) are well-defined and finite. Observe that in view
of Lemma 3.4.2, one has

E
(
∆aXi,N∆aXj,N

)
= −N2R

( |i− j|
N

,N, 0, v
)
. (3.4.7)

In the sequel we set m = |i− j|. Let us now give a nice property of R.

Lemma 3.4.3 Let x ∈ R and u be an integer such that 0 ≤ u ≤ 2M(a). Assume
that h is u-times continuously differentiable on the interval [x − (p + 1)/N, x +

(p + 1)/N ]. Then, for all integer u′, satisfying 0 ≤ u′ ≤ u, R(x,N, u′, h(u′)) is
well-defined and one has

R(x,N, u′, h(u
′)) = N−(u−u′)R(x,N, u, h(u)). (3.4.8)

Proof of Lemma 3.4.3: First observe that, Lemma 3.4.3 clearly holds when u = 0,
so from now on we assume that u ≥ 1. Next observe that for all (s, s′) ∈ [0, 1/N ]2

and all (k, l) ∈ {0, . . . , p}2, h is a Cu function on the compact interval of extremities
x + s − s′ and x + s − s′ + (k − l)/N . By applying Taylor formula to h on this
interval, one has

h
(
x+ s− s′ +

k − l

N

)
=

u−1∑
m=0

h(m)(x+ s− s′)

m!

(k − l

N

)m
+

∫ 1

0

(1− η)u−1

(u− 1)!
h(u)

(
x+ s− s′ +

(k − l)η

N

)
dη ×

(k − l

N

)u
.

Then using (3.4.5), (3.2.7) and (3.4.6), it follows that

R(x,N, 0, h) = N−uR(x,N, u, h(u)). (3.4.9)

By replacing in (3.4.9) u by u′, one also has

R(x,N, 0, h) = N−u′
R(x,N, u′, h(u

′)). (3.4.10)

Finally combining (3.4.9) with (3.4.10) one obtains (3.4.8). 2

The following remark is a consequence of (3.4.8), (3.4.5), (3.4.6), (3.2.1) and
(3.2.7).

Remark 3.4.1 For all integer N ≥ p+ 1 and for all m ∈ {0, . . . , N − p− 1}, one
has

R
(m
N
,N, 0, v

)
= N−2d

(
cR
(m
N
,N, 2d, | · |s0

)
+R

(m
N
,N, 2d, r

))
. (3.4.11)

Now our goal will be to estimate R
(
m/N,N, 2d, | · |s0

)
and R

(
m/N,N, 2d, r

)
.

The following lemma can be obtained by setting in the integrals in (3.4.5) and
(3.4.6), (y, y′) = (Ns,Ns′), and then by using the fact that | · |s0 is a homogeneous
function of degree s0.
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Lemma 3.4.4 For all integers N ≥ p+ 1, m ∈ {0, . . . , N − p− 1} and u ≥ 0, one
has

R
(m
N
,N, u, | · |s0

)
= N−2−s0R

(
m, 1, u, | · |s0

)
. (3.4.12)

Lemma 3.4.5 There is a constant c > 0, only depending on d, q and a, such that
one has for all m ∈ {p+ 2, . . . , N − p− 1},∣∣R(m, 1, 2d, | · |s0)∣∣ ≤ c(m− p− 1)s0−q. (3.4.13)

Proof of Lemma 3.4.5: First notice that for all s, s′ ∈ [0, 1], m ∈ {p+2, . . . , N −
p− 1}, k, l ∈ {0, . . . , p} and η ∈ [0, 1], one has

m+ s− s′ + (k − l)η ≥ m− p− 1 = 1 > 0. (3.4.14)

Then by using the definition of R ((3.4.5) and (3.4.6)) as well as (5.4.1), one gets

R
(
m, 1, 2d, | · |s0

)
= R

(
m, 1, 2d, (·)s0

)
. (3.4.15)

Moreover, denoting by
(
(·)s0

)(q) the derivative of order q of the function z 7→ zs0 , it
follows from Lemma 3.4.3 that

R
(
m, 1, 2d, (·)s0

)
= R

(
m, 1, 2d+ q,

(
(·)s0

)(q))
= c1R

(
m, 1, 2d+ q, (·)s0−q

)
, (3.4.16)

where c1 is a constant only depending on s0 and q. Since 2d+ q ≥ 1, again by using
(3.4.6), one has

R
(
m, 1, 2d+ q, (·)s0−q

)
=
∑

0≤k,l≤p

akal(k − l)2d+q

∫ 1

0

(1− η)2d+q−1

(2d+ q − 1)!

×
∫ 1

0

∫ 1

0

(
m+ s− s′ + (k − l)η

)s0−q
ds′ ds dη.

(3.4.17)

Then, it results from (3.4.17), the triangle inequality, (5.4.1) and the inequality
s0 − q < 0, that ∣∣R(m, 1, u+ q, (·)s0−q

)∣∣ ≤ c2(m− p− 1)s0−q, (3.4.18)

where c2 is a constant only depending on a, d and q. Finally, putting together
(3.4.15), (3.4.16) and (3.4.18) one obtains the lemma.2

Lemma 3.4.6 For all N ≥ p+ 1 and u ∈ Z+, let us set

r∗u,N = max
0≤m≤p+1

∣∣R(m
N
,N, u, r

)∣∣. (3.4.19)

Then one has, when N is big enough

r∗u,N = o(N−s0−2). (3.4.20)
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Proof of Lemma 3.4.6: We will only show that the lemma holds in the case where
u = 0, since it can be proved similarly in the case where u ≥ 1. First observe that,
by using the triangle inequality, one has that, for all integer 0 ≤ m ≤ p + 1, all
s, s′ ∈ [0, 1/N ] and k, l ∈ {0, . . . , p},

∣∣m
N

+ s− s′ +
k − l

N

∣∣ ≤ m

N
+ |s− s′|+ |k − l|

N
≤ 2p+ 2

N
. (3.4.21)

Moreover, the assumption r(x) = o(|x|s0) implies that, there is a sequence
{eN}N≥p+1 of positive real-numbers converging to 0, such that for all real num-
ber x satisfying |x| ≤ (2p+ 2)/N ≤ 2, one has∣∣r(x)∣∣ ≤ eN |x|s0 . (3.4.22)

It follows from (3.4.5), (3.4.21) and (3.4.22) that∣∣R(m
N
,N, 0, r

)∣∣
=
∣∣∣ ∑
0≤k,l≤p

akal

∫ 1
N

0

∫ 1
N

0
r
(m
N

+ s− s′ +
k − l

N

)
dsds′

∣∣∣
≤ eN

∑
0≤k,l≤p

|akal|
∫ 1

N

0

∫ 1
N

0

(m
N

+ |s− s′|+ |k − l|
N

)s0 dsds′
= ceNN

−s0−2, (3.4.23)

where c > 0 is a constant only depending on a. 2

Lemma 3.4.7 For all N ≥ p + 1, there is a constant c > 0, only depending on a,
r and d, such that one has for each m ∈ {p+ 2, . . . , N − p− 1},∣∣R(m

N
,N, 2d, r

)∣∣ ≤ cN−w−2(m− p− 1)w−q. (3.4.24)

Proof of Lemma 3.4.7: First observe that, in view of Assumption (A1), r is
q-times continuously differentiable on the interval [m/N − (p + 1)/N,m/N + (p +

1)/N ] ⊂ [1/N, 1]. Therefore we are allowed to use Lemma 3.4.3 and we obtain that,

R
(m
N
,N, 2d, r

)
= N−qR

(m
N
,N, 2d+ q, r(q)

)
. (3.4.25)

Moreover (3.4.6) implies that,

R
(m
N
,N, 2d+ q, r(q)

)
=

∑
0≤k,l≤p

akal(k − l)2d+q

∫ 1
N

0

∫ 1
N

0

∫ 1

0

(1− η)2d+q−1

(2d+ q − 1)!

×r(q)
(m
N

+ s− s′ +
(k − l)η

N

)
dη ds′ ds.

(3.4.26)
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Then, it follows from (3.4.26), the triangle inequality, (3.2.3) and the inequality
w − q < −1/2 < 0 that∣∣R(m

N
,N, u, r(q)

)∣∣ ≤ c1
∑

0≤k,l≤p

|akal||k − l|2d+q

×
∫ 1

N

0

∫ 1
N

0

∫ 1

0

∣∣m/N + s− s′ + (k − l)η/N
∣∣w−q

(2d+ q − 1)!
dη ds′ ds

≤ c2N
−w+q−2(m− p− 1)w−q, (3.4.27)

where c1 > 0 is the constant c in (3.2.3) and c2 > 0 is a constant only depending
on a, r and d. Finally, putting together (3.4.25), (3.4.26) and (3.4.27) we get the
lemma. 2

Let us now recall a useful result concerning centered, 2-D, Gaussian random
vectors whose proof is given in Appendix (see the proof of Lemma 5.3.4).

Lemma 3.4.8 Let (Z,Z ′) be a centered, 2-D, Gaussian random vector and let us
assume that the variances of Z and Z ′ are equal to ν. Then

E
(
(Z2 − ν)(Z ′2 − ν)

)
= 2
(
Cov(Z,Z ′)

)2
. (3.4.28)

Now we are in position to prove Proposition 3.4.1.
Proof of Proposition 3.4.1: First observe that it follows from (3.4.7) and

(3.4.11) that for all integers N ≥ p+ 1 and i, j ∈ {0, . . . , N − p− 1}, one has

E
(
∆aXi,N∆aXj,N

)
= −N2−2d

(
cR
( |i− j|

N
,N, 2d, | · |s0

)
+R

( |i− j|
N

,N, 2d, r
))
.

(3.4.29)
Taking i = j in (3.4.29) and using (3.4.1), we get

σ2a,N = Var
(
∆aXi,N

)
= −N2−2d

(
cR(0, N, 2d, | · |s0) +R(0, N, 2d, r)

)
. (3.4.30)

Then (3.4.2) results from (3.4.30), Lemma 3.4.4, (3.2.4), (3.2.8) and Lemma 3.4.6.
Let us now prove that Relation (3.4.3) holds. We denote by ρN (|i − j|) the

correlation coefficient between ∆aXi,N and ∆aXj,N , i.e.

ρN (|i− j|) =
E (∆aXi,N∆aXj,N )

σ2a,N
. (3.4.31)

One has,

s2N := Var
(N−p−1∑

i=0

(∆aXi,N )2

σ2a,N

)

= Var
(N−p−1∑

i=0

((∆aXi,N )2

σ2a,N
− 1
))

=

N−p−1∑
i=0

N−p−1∑
j=0

E
(((∆aXi,N )2

σ2a,N
− 1
)((∆aXj,N )2

σ2a,N
− 1
))
.

(3.4.32)
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Then, it follows from (3.4.32), Lemma 3.4.8 and (3.4.31), that

s2N = 2

N−p−1∑
i=0

N−p−1∑
j=0

ρ2N (|i− j|)

= 2
∑

|j|≤N−p−1

(N − p− |j|)ρ2N (|j|). (3.4.33)

From now on we split s2N into two parts according to the values of j:

s2N = FN +GN , (3.4.34)

where
FN = 2

∑
|j|≤p+1

(N − p− |j|)ρ2N (|j|), (3.4.35)

and
GN = 2

∑
p+2≤|j|≤N−p−1

(N − p− |j|)ρ2N (|j|). (3.4.36)

It remains to show that there exist non-vanishing constants c1 and c2, such that

FN = c1N + o(N), (3.4.37)

and
GN = c2N + o(N). (3.4.38)

By using (3.4.29) and Lemma 3.4.4, one gets

ρN (|j|) = cR(|j|, 1, 2d, | · |s0) +N2+s0R(|j|/N,N, 2d, r)
cR(0, 1, 2d, | · |s0) +N2+s0R(0, N, 2d, r)

. (3.4.39)

Thanks to Lemma 3.4.6, the two terms N2+s0R(|j|/N,N, 2d, r) (for |j| ≤ p+1) and
N2+s0R(0, N, 2d, r) converge to 0. This fact together with (3.4.39) implies

lim
N→+∞

max
j∈Z,|j|≤p+1

∣∣ρN (|j|)− C(|j|)
∣∣ = 0, (3.4.40)

where for all 0 ≤ |j| ≤ p+ 1,

C(|j|) = R(|j|, 1, 2d, | · |s0)
R(0, 1, 2d, | · |s0)

.

Then, by using (3.4.35) and (3.4.40), one obtains that

FN − 2
∑

|j|≤p+1(C(|j|))2N
N

=
−2
∑

|j|≤p+1(p+ |j|)C(|j|)2

N

+
2
∑

|j|≤p+1(N − p− |j|)(ρ2N (|j|)− (C(|j|))2)
N

−−−−−→
N→+∞

0,
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which proves that (3.4.37) holds; observe that (3.2.8) implies that

c1 := 2
∑

|j|≤p+1

(C(|j|))2 ̸= 0.

Let us now prove that (3.4.38) is satisfied. For the sake of simplicity, from now
on, for all |j| ∈ {p+ 2, . . . , N − p− 1}, we set

L(|j|) = R(|j|, 1, 2d, (·)s0). (3.4.41)

First, we will show that there is a non-vanishing constant c3 such that∑
p+2≤|j|≤N−p−1

∣∣∣ρ2N (|j|)− c3L
2(|j|)

∣∣∣ −−−−−→
N→+∞

0. (3.4.42)

By using (3.4.31), (3.4.29) and the fact that for |j| ≥ p+ 1, one has,

ρN (|j|) = −N2−2d

σ2a,N

(
cR
( |j|
N
,N, 2d, (·)s0

)
+R

( |j|
N
,N, 2d, r

))
. (3.4.43)

It follows from (3.4.43), (3.2.4), (3.4.12) and (3.4.41) that,

ρN (|j|) = −cL(|j|)N
−2H

σ2a,N
− N2−2d

σ2a,N
R
( |j|
N
,N, 2d, r

)
. (3.4.44)

Let c1 > 0 be the constant introduced in (3.4.2), then by using (3.4.2), the following
relation holds: ( c

c1

)
L(|j|) = cL(|j|)N

−2H

σ2a,N
+ cL(|j|)M(N), (3.4.45)

where

M(N) =
1

c1
− N−2H

σ2a,N
=
σ2a,N − c1N

−2H

c1σ2a,N
= o(1). (3.4.46)

By using the inequality |x2 − y2| = |(x + y)2 − 2(x+ y)y| ≤ (x+ y)2 + 2|(x+ y)y|
for all real numbers x and y, (3.4.44) and (3.4.45), one gets

∣∣ρ2N (|j|)−
( c
c1

)2
L2(j)

∣∣ ≤
∣∣ρN (|j|) +

( c
c1

)
L(j)

∣∣2 + 2
∣∣∣ρN (|j|) +

( c
c1

)
L(|j|)

∣∣∣∣( c
c1

)
L(|j|)

∣∣∣
=

∣∣∣N2−2d

σ2a,N
R
( |j|
N
,N, 2d, r

)
− cL(|j|)M(N)

∣∣∣2
+2
∣∣∣N2−2d

σ2a,N
R
( |j|
N
,N, 2d, r

)
− cL(|j|)M(N)

∣∣∣∣∣∣( c
c1

)
L(|j|)

∣∣∣.
(3.4.47)
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It follows from (3.4.47), (3.4.2), (3.2.4), Lemma 3.4.7 and Lemma 3.4.5 that there
exists a constant c4 > 0, non depending on j and N , such that,∣∣ρ2N (|j|)−

( c
c1

)2
L2(j)

∣∣
≤ c4

((
N s0−w(|j| − p− 1)w−q + |M(N)|(|j| − p− 1)s0−q

)2
+
(
N s0−w(|j| − p− 1)w−q + |M(N)|(|j| − p− 1)s0−q

)
(|j| − p− 1)s0−q

)
≤ 2c4

(
N2(s0−w)(|j| − p− 1)2(w−q) + (M(N))2(|j| − p− 1)2(s0−q)

+
(
N s0−w + |M(N)|

)
(|j| − p− 1)w+s0−2q

)
.

(3.4.48)

Next, setting c3 = c2/c21, it follows from (3.4.48), (3.4.46) and the inequalities s0 −
w < 0, s0 − q < −1/2, w − q < −1/2, that (3.4.42) is satisfied.

Now we are in position to show that (3.4.38) holds. On one hand, (3.4.43) and
(3.4.42) imply ∣∣GN − 2c3

∑
p+2≤|j|≤N−p−1(N − p− |j|)L2(|j|)

∣∣
N

≤ 2
∑

p+2≤|j|≤N−p−1

(N − p− |j|)
N

∣∣ρ2N (|j|)− c3L
2(|j|)

∣∣
≤ 4

∑
p+2≤|j|≤N−p−1

∣∣ρ2N (j)− c3L
2(|j|)

∣∣
−−−−−→
N→+∞

0. (3.4.49)

On the other hand, standard computations allow to show that the sequence(∑
p+2≤|j|≤N−p−1(N − p− |j|)L2(|j|)

N

)
N≥p+1

is increasing and bounded. Therefore this sequence converges to finite positive limit
denoted by c5. Then setting c2 = 2c3c5, (3.4.49) implies that (3.4.38) is satisfied.
Finally, (3.4.3) results from (3.4.34), (3.4.37) and (3.4.38). 2

The previous proposition will play a crucial role in the proof of Theorem 3.2.1;
the proof of this theorem will also make use of the following lemma, which, roughly
speaking, means that, almost surely, the generalized quadratic variation VN behaves
like cN1−2H when N goes to infinity.

Lemma 3.4.9 There exists a constant c > 0 such that

WN :=
VN

cN1−2H
− 1

a.s.−−−−−→
N→+∞

0.

Lemma 3.4.9 is a straightforward consequence of (3.4.2) and the following result.
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Lemma 3.4.10 The generalized quadratic variation VN satisfies

VN
Nσ2a,N

− 1
a.s.−−−−−→

N→+∞
0,

where σa,N has been defined in (3.4.1).

Proof of Lemma 3.4.10: First, notice that, similarly to the end of the proof of
Proposition 2 in [16], we can show that

E
(N−p−1∑

i=0

(∆aXi,N )2 − (N − p)σ2a,N

)4
≤ c1

(
Var
(N−p−1∑

i=0

(∆aXi,N )2
))2

, (3.4.50)

where c1 is constant. On the other hand, it follows from (3.4.3) that,

Var
(N−p−1∑

i=0

(∆aXi,N )2
)
= s2Nσ

4
a,N . (3.4.51)

Then, by using (3.4.50) and (3.4.51), we get

E
(N−p−1∑

i=0

(∆aXi,N )2 − (N − p)σ2a,N

)4
≤ c1s

4
Nσ

8
a,N , (3.4.52)

Next combining Markov inequality with (3.4.52) and (3.4.2), we obtain that, there
exists a constant c2 > 0 such that for all real η > 0 and integer N ≥ p+ 1, one has

P
(∣∣∣∑N−p−1

i=0 (∆aXi,N )2

(N − p)σ2a,N
− 1
∣∣∣ > η

)
≤ ((N − p)σ2a,N )−4η−4E

(N−p−1∑
i=0

(∆aXi,N )2 − (N − p)σ2a,N

)4
≤ cη−4N−2. (3.4.53)

Next, in view of (3.4.53), applying Borel-Cantelli Lemma we get that∑N−p−1
i=0 (∆aXi,N )2

(N − p)σ2a,N

a.s−−−−−→
N→+∞

1. (3.4.54)

Finally (3.2.10) and (3.4.54) imply that the lemma holds. 2

Now, we are in position to prove Theorem 3.2.1.
Proof of Theorem 3.2.1: Let c1 = c and WN be respectively the constant and
the random variable which have been introduced in Lemma 3.4.9. Therefore, one
has

VN = c1N
1−2H(WN + 1).
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Thus, it follows from (3.2.9) that

ĤN =
1

2

(
1 + log2

( VN
V2N

))
=

1

2

(
1 + log2

( c1N
1−2H(WN + 1)

c1(2N)1−2H(W2N + 1)

))
= H +

1

2

(
log2(WN + 1)− log2(W2N + 1)

)
.

Finally applying Lemma 3.4.9 one obtains the theorem.2

From now on, our goal will be to show that Theorem 3.2.2 holds. The proof of
this theorem mainly relies on the following lemma, which, roughly speaking, means
that a Central Limit Theorem holds for the generalized quadratic variation VN .

Lemma 3.4.11 For any N ≥ p+ 1 let us set,

τ2N := Var

(∑N−p−1
i=0 (∆aXi,N )2

(N − p)(σa,N )2

)
=

s2N
(N − p)2

. (3.4.55)

Then, there is a constant c > 0 such that one has

τN = cN−1/2 + o(N−1/2). (3.4.56)

Moreover,
1

τN

(∑N−p−1
i=0 (∆aXi,N )2

(N − p)σ2a,N
− 1
)

d−−−−−→
N→+∞

N (0, 1). (3.4.57)

The proof of Lemma 3.4.11 mainly relies on the following two lemmas.

Lemma 3.4.12 (Csörgo and Révész [27]) Consider the sequence of random
variables {SN}N≥p+1 defined by SN =

∑N−p−1
j=0 λj,N (ε2j,N − 1), where for al-

l N ≥ p + 1, {εj,N}j=0,...,N−p−1 is a finite sequence of i.i.d. standard Gaussian
random variables and {λj,N}j=0,...,N−p−1 a finite sequence of positive real numbers.
Let λN = maxj=0,...,N−p−1 λj,N , if λN = o((Var(SN ))1/2), then

SN
(Var(SN ))1/2

d−−−−−→
N→+∞

N (0, 1).

This lemma is in fact a consequence of Lindeberg-Féller Central Limit Theorem.

Lemma 3.4.13 (Luenberger [46], Ch. 6.2, P. 194) For all integer n ≥ 1, let
C = (Cij)n×n be a symmetric positive definite matrix and let λ be its largest eigen-
value. Then one has,

λ ≤ max
1≤i≤n

n∑
j=1

|Cij |.
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Proof of Lemma 3.4.11: First observe that (3.4.56) easily follows from (3.4.3)
and the second equality in (3.4.55). From now on our goal will be to show that
(3.4.57) holds. Let M = (Mij)(N−p)×(N−p) be the covariance matrix of the centered
Gaussian vector {∆aXi,N}i=0,...,N−p−1, i.e.

Mij = E
(
∆aXi,N∆aXj,N

)
. (3.4.58)

Denote by {λ̃i,N}i=0,...,N−p−1 the finite sequence of the eigenvalues of M . Then, let
P be the orthogonal matrix such that

D := Diag(λ̃i,N ) = P ′MP. (3.4.59)

For every i ∈ {0, . . . , N − p− 1}, we set

εi,N = (λ̃i,N )−1/2
N−p−1∑
k=0

Pki∆aXk,N . (3.4.60)

Observe that the εi,N , i = 0, . . . , N − p − 1, are standard independent Gaussian
random variables. By using the fact that P is an orthogonal matrix, as well as the
fact that Tr(M) =

∑N−p−1
i=0 λ̃i,N , one has,

N−p−1∑
i=0

(∆aXi,N )2 − (N − p)σ2a,N =

N−p−1∑
i=0

λ̃i,N (ε2i,N − 1) (3.4.61)

and, as a consequence,

SN :=

∑N−p−1
i=0 (∆aXi,N )2

(N − p)σ2a,N
− 1 =

N−p−1∑
i=0

λi,N (ε2i,N − 1), (3.4.62)

where

λi,N :=
λ̃i,N

(N − p)σ2a,N
. (3.4.63)

Moreover, it follows from Lemma 3.4.13, (7.1.5) and (3.4.29) that,

λ̃N := max
0≤j≤N−p−1

λ̃j,N ≤ max
0≤i≤N−p−1

N−p−1∑
k=0

|Mik| (3.4.64)

= max
0≤i≤N−p−1

N2−2d
N−p−1∑
k=0

(
c1

∣∣∣R( |i− k|
N

,N, 2d, | · |s0
)∣∣∣+ ∣∣∣R( |i− k|

N
,N, 2d, r

)∣∣∣) ,
where c1 > 0 is a constant non depending on i, k and N . Let us now derive a conve-
nient upper bound for the latter maximum . On one hand, combining Lemma 3.4.4
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with Lemma 3.4.5 and the inequality s0 < w, one gets,

max
0≤i≤N−p−1

N−p−1∑
k=0

∣∣∣R( |i− k|
N

,N, 2d, | · |s0
)∣∣∣ ≤ 2N−s0−2

N−p−1∑
m=0

∣∣∣R(m, 1, 2d, | · |s0)∣∣∣
≤ 2N−s0−2

(
c2 + c3

N−p−1∑
m=p+2

(m− p− 1)s0−q
)

≤ c4N
−s0−2

N−p−1∑
m=p+2

(m− p− 1)w−q,

(3.4.65)

where c2 = (p + 1)max0≤m≤p+1

∣∣R(m, 1, 2d, | · |s0)∣∣ and c3, c4 are two positive
constants non depending on N . On the other hand, Lemma 3.4.6 and Lemma 3.4.7
imply that

max
0≤i≤N−p−1

N−p−1∑
k=0

∣∣∣R( |i− k|
N

,N, 2d, r
)∣∣∣ ≤ 2

N−p−1∑
m=0

∣∣∣R(m
N
,N, 2d, r

)∣∣∣
≤ N−s0−2

(
c5 + c6

N−p−1∑
m=p+2

(m− p− 1)w−q
)

≤ c7N
−s0−2

N−p−1∑
m=p+2

(m− p− 1)w−q,

(3.4.66)

where c5 = (p+ 1) supN≥p+1N
s0+2r∗2d,N <∞ and c6, c7 are two positive constants

non depending on N . Next, putting together (3.4.64), (3.4.65), (3.4.66), (3.2.4) and
the fact that

∑N−p−1
m=p+2(m− p− 1)w−q = O

(
log(N) +N1+w−q

)
one obtains that,

λ̃N = O
(
log(N)N−2H +N1+w−q−2H

)
. (3.4.67)

Next it follows from (3.4.63), (3.4.2), (3.4.67) and the inequality w−q < −1/2, that

λN := max
0≤j≤N−p−1

λj,N = o(N−1/2). (3.4.68)

Thus, combining (3.4.56) with (3.4.68) one obtains that,

λN = o(τN ). (3.4.69)

Finally, in view of (3.4.62), the first equality in (3.4.55) and (3.4.69), we are allowed
to apply Lemma 3.4.12 to the sequence {SN}N≥p+1, and thus we obtain (3.4.57).
2

Lemma 3.4.14 Let VN be the generalized quadratic variation defined in (3.2.10)
and let τN be the quantity defined in (3.4.55). Then, under the additional assumption
(3.2.11), there is c > 0 a constant non depending on N , such that

1

τN

( VN
cN1−2H

− 1
)

d−−−−−→
N→+∞

N (0, 1). (3.4.70)
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The proof of Lemma 3.4.14 mainly relies on Lemma 3.4.11 as well as on the following
classical lemma.

Lemma 3.4.15 Let (ZN ) be a sequence of random variables which converges in
distribution to a standard Gaussian random variable. Let (aN ) and (bN ) be two
arbitrary sequences of real numbers satisfying limN→+∞ aN = 1 and limN→+∞ bN =

0. Then, the sequence of random variables (aNZN + bN ) converges in distribution
to a standard Gaussian random variable.

Proof of Lemma 3.4.14: First observe that a careful inspection of the proof
of Relation (3.4.2) shows that under the additional assumption (3.2.11), there is a
constant c1 > 0, non depending on N , such that one has

σ2a,N = c1N
−2H + o(N−2H−1/2).

Therefore, there exists a constant c > 0, such that one has

(N − p)σ2a,N = cN1−2H + o(N1/2−2H),

and, as a consequence,

aN :=
(N − p)σ2a,N
cN1−2H

= 1 + o(N−1/2). (3.4.71)

Next, let us set,

ZN :=
1

τN

( VN
(N − p)σ2a,N

− 1
)
. (3.4.72)

It follows from (3.4.71) and (3.4.72) that

1

τN

( VN
cN1−2H

− 1
)
= aNZN + bN , (3.4.73)

where
bN = τ−1

N

(
aN − 1

)
. (3.4.74)

Observe that (3.4.56), (3.4.71) and (3.4.74) imply that limN→+∞ bN = 0. Also,
observe that (3.4.71) entails that limN→+∞ aN = 1. Finally, Lemma 3.4.14 results
from (3.2.10), Lemma 3.4.11 and Lemma 3.4.15. 2

At last let us give the proof of Theorem 3.2.2.
Proof of Theorem 3.2.2: This Theorem can be obtained by using Lemma 3.4.14,
the δ-method (see for instance Theorem 3.3.11 in [28]) and Relation (3.4.56). 2
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4.1 Introduction

In this chapter we consider the class of stochastic volatility models in which the
price process {Z(t)}t∈[0,1] is defined for each t ∈ [0, 1], as,

Z(t) =

∫ t

0
Φ(X(s)) dW (s), (4.1.1)

where

• {X(s)}s∈[0,1] is a centered Gaussian process whose trajectories are, with prob-
ability 1, Hölder continuous functions of order α > 1/2 i.e. there is a positive
random variable C such that one has for almost all ω and for all s1, s2 ∈ [0, 1],∣∣X(s1, ω)−X(s2, ω)

∣∣ ≤ C(ω)|s1 − s2|α. (4.1.2)

Observe that (4.1.2) holds when {X(s)}s∈[0,1] is a multifractional Brownian
motion whose functional parameter H(·) is a β-Hölder function with values in
(1/2,min{1, β}) (see [18, 51, 8]). Also, it holds for the stationary increments
processes studied in the previous chapter, when d ≥ 1 or when s0 ∈ (1, 2).

• Φ is a deterministic function belonging to C1
pol(R) (see (5.1.3)), the space of

continuously differentiable functions over the real line with a slow decrease at
infinity as well as their derivatives.
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• {W (s)}s∈[0,1] denotes a standard Brownian motion which is independent on
{X(s)}s∈[0,1].

In section 4.2 we show that there exists a modification of {Z(t)}t∈[0,1], also denoted
by {Z(t)}t∈[0,1], whose trajectories belong, with probability 1, to any Hölder space
Cγ([0, 1]) of order γ < 1/2; on the other hand, under the assumption that Φ vanish-
es only on a Lebesgue negligible set, we show that the pointwise Hölder exponent
of {Z(t)}t∈[0,1], at any point t0 ∈ (0, 1), is almost surely equal to 1/2; observe that
the latter result implies that, with probability 1, the trajectories of {Z(t)}t∈[0,1] fail
to belong to Cγ([0, 1]) when γ > 1/2. In section 4.3, by using the Haar basis, we
introduce a random series representation of {Z(t)}t∈[0,1], for which the convergence
holds, almost surely in Cγ([0, 1]), for all γ < 1/2. Thanks to the latter nice represen-
tation of {Z(t)}t∈[0,1], we give in section 4.4 an algorithm which allows to simulate
this process.

4.2 Hölder regularity of {Z(t)}t∈[0,1]
Let us first recall the definition of a Hölder space of order γ ∈ [0, 1].

Definition 4.2.1 For any γ ∈ [0, 1], the Hölder space Cγ([0, 1]) is defined as the
Banach space of the continuous real valued functions u which satisfy,

sup
0≤t1<t2≤1

|u(t1)− u(t2)|
|t1 − t2|γ

< +∞.

It is equipped with the norm,

∥u∥Cγ([0,1]) = ∥u∥∞ + sup
0≤t1<t2≤1

|u(t1)− u(t2)|
|t1 − t2|γ

, (4.2.1)

where ∥u∥∞ = supt∈[0,1] |u(t)|.

Observe that C0([0, 1]) reduces to C([0, 1]) the usual Banach space of real val-
ued continuous functions over [0, 1]. The main goal of this section is to prove the
following two theorems.

Theorem 4.2.1 Let {Z(t)}t∈[0,1] be the stochastic process defined in (4.1.1), then
there exists a modification of {Z(t)}t∈[0,1], also denoted by {Z(t)}t∈[0,1], such that,
with probability 1, for all γ < 1/2, the trajectories of {Z(t)}t∈[0,1] belong to the
Hölder space Cγ([0, 1]).

Recall that when a trajectory t 7→ Y (t, ω) of an arbitrary stochastic process
{Y (t)}t∈[0,1] is a continuous and non-differentiable at a point t0 ∈ [0, 1], then
ρY (t0, ω), its pointwise Hölder exponent at t0, is defined as,

ρY (t0, ω) = sup

{
ρ ∈ [0, 1] : lim sup

h→0

Y (t0 + h, ω)− Y (t0, ω)

|h|ρ
= 0

}
. (4.2.2)
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Theorem 4.2.2 Let {Z(t)}t∈[0,1] be the modification of the process {Z(t)}t∈[0,1] in-
troduced in Theorem 4.2.1 and let ρZ be the corresponding pointwise Hölder exponent;
then, under the assumption that Φ vanishes only on a Lebesgue negligible set, one
has for all t0 ∈ (0, 1),

P
(
ρZ(t0) = 1/2

)
= 1. (4.2.3)

Observe that a straightforward consequence of Theorem 4.2.1 is that, one has
for all t0 ∈ (0, 1),

P
(
ρZ(t0) ≥ 1/2

)
= 1. (4.2.4)

Therefore, for obtaining Theorem 4.2.2, it is sufficient to prove that Theorem 4.2.1
holds and that one has for all t0 ∈ (0, 1),

P
(
ρZ(t0) ≤ 1/2

)
= 1. (4.2.5)

The proof of Theorem 4.2.1 mainly relies on the following two lemmas.

Lemma 4.2.3 (Kolmogorov, Centsov) (see for instance [43]) Let T > 0 be an
arbitrary and fixed real number and {M(t)}t∈[0,T ] be a stochastic process verifying:
for all s1, s2 ∈ [0, T ],

E|M(s1)−M(s2)|τ ≤ c|s1 − s2|1+β,

where c, τ, β > 0 are constants. Then this process has a modification {M̃(t)}t∈[0,T ]

whose trajectories are with probability 1, γ-Hölderian functions, for any γ ∈ [0, β/τ);
in other words,

P
(

sup
s1,s2∈[0,T ]

|M̃(s1)− M̃(s2)|
|s1 − s2|γ

< +∞
)
= 1.

Lemma 4.2.4 Conditional on GX = σ(X(s), 0 ≤ s ≤ 1), {Z(t)}t∈[0,1] is a centered
Gaussian process and its covariance is given, for all t1, t2 ∈ [0, 1], by,

E (Z(t1)Z(t2)|GX) =

∫ min(t1,t2)

0
|Φ(X(s))|2 ds.

Proof of Lemma 4.2.4: This lemma follows from the fact that {X(s)}s∈[0,1]
is independent on {W (s)}s∈[0,1]as well as from the isometry property of Wiener
integral. �

Now we are in position to prove Theorem 4.2.1.
Proof of Theorem 4.2.1: We can write, for any τ > 0 and for each t1, t2 ∈ (0, 1],

E |Z(t1)− Z(t2)|τ = E
{
E
(
|Z(t1)− Z(t2)|τ |GX

)}
. (4.2.6)

Then, it follows from (4.2.6), Lemma 4.2.4 and the equivalence of Gaussian moments,
that

E |Z(t1)− Z(t2)|τ = c1E
{(

E
(
|Z(t1)− Z(t2)|2|GX

))τ/2}
, (4.2.7)
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where c1 > 0 is a constant depending only on τ . Again by using Lemma 4.2.4, we
get

E
(
|Z(t1)− Z(t2)|2|GX

)
= E

(
|Z(t1)|2|GX

)
+ E

(
|Z(t2)|2|GX

)
− 2E

(
Z(t1)Z(t2)|GX

)
=

∫ t1

0
Φ2(X(s)) ds+

∫ t2

0
Φ2(X(s)) ds− 2

∫ min(t1,t2)

0
Φ2(X(s)) ds

=

∫ max(t1,t2)

min(t1,t2)
|Φ(X(s))|2 ds. (4.2.8)

One sets ∥X∥∞ = supt∈[0,1] |X(t)|; observe that ∥X∥∞ < +∞ almost surely, since
the trajectories of {X(s)}s∈[0,1] are continuous with probability 1. As a consequence
(see [44]), for all real p > 0,

E
(
∥X∥p∞

)
< +∞. (4.2.9)

One clearly has, for any s ∈ [0, 1],

|Φ(X(s))| ≤ C1 := sup
x∈[−∥X∥∞,∥X∥∞]

|Φ(x)|; (4.2.10)

moreover by using the fact that Φ ∈ C1
pol(R) as well as (4.2.9), one can show that

for all real p > 0,
E
(
Cp
1

)
<∞ (4.2.11)

all the moments of the positive random variable C1 are finite. Therefore, (4.2.8)
yields

E
(
|Z(t1)− Z(t2)|2|GX

)
≤ C2

1 |t1 − t2|. (4.2.12)

It results from (4.2.7) and (4.2.12) that

E |Z(t1)− Z(t2)|τ ≤ c1
(
E |C1|τ

)
|t1 − t2|τ/2. (4.2.13)

Finally, in view of (4.2.13), by using Lemma 4.2.3, in which one takes β = τ/2− 1

with τ big enough, we obtain Theorem 4.2.1. �
To prove that Relation (4.2.5) holds we need the following lemma.

Lemma 4.2.5 Denote by (hn)n an arbitrary sequence of non vanishing real numbers
which converges to 0. For all ε > 0 and t0 ∈ (0, 1), conditional on GX , the random
variable

Z(t0 + hn)− Z(t0)

|hn|1/2+ε

has a centered Gaussian distribution whose variance is equal to

|hn|−1−2ε

∫ max(t0,t0+hn)

min(t0,t0+hn)
|Φ(X(s))|2 ds;

moreover the latter variance tends to +∞ when hn → 0.
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Proof of Lemma 4.2.5: First it follows from Lemma 4.2.4 and (4.2.8) that, con-
ditional on GX ,

Z(t0 + hn)− Z(t0)

|hn|1/2+ε
∼ N

(
0, |hn|−1−2ε

∫ max(t0,t0+hn)

min(t0,t0+hn)
|Φ(X(s))|2 ds

)
.

Moreover, the Mean Value Theorem, implies that, that there is s̃n ∈
(
min(t0, t0 +

hn),max(t0, t0 + hn)
)

such that,∫ max(t0,t0+hn)

min(t0,t0+hn)
|Φ(X(s))|2 ds = |hn||Φ(X(s̃n))|2; (4.2.14)

which in turn entails that

|hn|−1

∫ max(t,t+hn)

min(t,t+hn)
|Φ(X(s))|2 ds a.s.−−−−−→

n→+∞
|Φ(X(t0))|2. (4.2.15)

Observe that the fact that X(t) is non degenerate Gaussian random variable and
the assumption that Φ vanishes only on a set of Lebesgue measure zero, imply that,

|Φ(X(t0))|2 > 0, a.s.. (4.2.16)

Finally it follows from (4.2.15) and (4.2.16) that

|hn|−1−2ε

∫ max(t0,t0+hn)

min(t0,t0+hn)
|Φ(X(s))|2 ds a.s.−−−−−→

n→+∞
+∞.

�
Now, we are in position to prove Relation (4.2.5).
Proof of Relation (4.2.5): our proof is inspired from that of Proposition 2.4 in
[9]. It consists in showing that for all ε > 0, there exists a sequence (τk)k∈N of non
vanishing real numbers which converges to 0 and satisfies

|Z(t0 + τk)− Z(t0)|
|τk|1/2+ε

a.s.−−−−→
k→+∞

+∞. (4.2.17)

To this end, it is sufficient to prove that there exists a sequence (hn)n of non van-
ishing real numbers which converges to 0 and satisfies

|hn|1/2+ε

|Z(t0 + hn)− Z(t0)|
P−−−−−→

n→+∞
0. (4.2.18)

Indeed, assuming that (4.2.18) holds, then one can extract from (hn)n a subsequence
denoted by (τk)k∈N such that one has (4.2.17). Let us now prove (4.2.18). Denote
by (hn)n an arbitrary sequence of non vanishing real numbers which converges to 0

and set

σ2(t0+hn, t0) = |hn|−1−2εE
(
|Z(t0+hn)−Z(t0)|2

∣∣∣GX

)
= |hn|−1−2ε

∫ max(t0,t0+hn)

min(t0,t0+hn)
|Φ(X(s))|2 ds.
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Observe that in view of Lemma 4.2.5,

σ2(t0 + hn, t0)
a.s.−−−−→

k→+∞
+∞. (4.2.19)

One has, for all η > 0,

P
( |hn|1/2+ε

|Z(t0 + hn)− Z(t0)|
≤ η

)
= E

(
1( |hn|1/2+ε

|Z(t0+hn)−Z(t0)|
≤η
))

= E
(
E
(
1( |hn|1/2+ε

|Z(t0+hn)−Z(t0)|
≤η
)∣∣∣GX

))
= E

(
E
(
1( |Z(t0+hn)−Z(t0)|

|hn|1/2+ε
≥1/η

)∣∣∣GX

))
(4.2.20)

On the other hand Lemma 4.2.5 entails that, a.s.,

E
(
1( |Z(t0+hn)−Z(t0)|

|hn|1/2+ε
≥1/η

)∣∣∣GX

)
=

√
2

π

∫ +∞

1
ησ(t0+hn,t0)

e−x2/2 dx. (4.2.21)

Combining (4.2.21) with (4.2.19) one obtains that,

E
(
1( |Z(t0+hn)−Z(t0)|

|hn|1/2+ε
≥1/η

)∣∣∣GX

)
a.s.−−−−−→

n→+∞

√
2

π

∫ +∞

0
e−x2/2 dx = 1. (4.2.22)

Next, in view of (4.2.20) and (4.2.22), by using the dominated convergence theorem,
it follows that (4.2.18) holds. �

4.3 Random series representation of {Z(t)}t∈[0,1] via the
Haar basis

In order to state the main result of this section, we need to introduce some notations.

• We denote by L2([0, 1]) the usual Lebesgue Hilbert of the square integrable
real valued deterministic functions over [0, 1].

• The Haar orthonormal basis of L2([0, 1]), is the collection of the functions{
φ0,0, ψj,k : j ∈ N and k ∈ {0, . . . , 2j − 1}

}
, defined as

φ0,0 = 1[0,1) (4.3.1)

and for all j ≥ 0, 0 ≤ k ≤ 2j − 1,

ψj,k = 2j/2(1[ k

2j
, 2k+1

2j+1 )
− 1[ 2k+1

2j+1 ,
k+1

2j
)). (4.3.2)
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• We denote by (Ω,F ,P) the underlying probability space, that is the probability
space on which the processes {X(s)}s∈[0,1], {W (s)}s∈[0,1] and {Z(t)}t∈[0,1] are
defined; moreover, for the sake of simplicity, we assume that this space has
been chosen in such a way that, for all ω ∈ Ω Relation (4.1.2) holds and
Z(·, ω) ∈ Cγ([0, 1]) for all γ ∈ [0, 1/2). Also, we denote by

{
δ0,0, λj,k : j ∈

N and k ∈ {0, . . . , 2j − 1}
}

the sequence of standard independent Gaussian
random variables defined, on this space as,

δ0,0 =

∫ 1

0
φ0,0(s) dW (s) =W (1), (4.3.3)

and for all j ∈ N and all k ∈ {0, . . . , 2j − 1},

λj,k =

∫ 1

0
ψj,k(s) dW (s) = −2j/2

(
W (

k + 1

2j
)− 2W (

2k + 1

2j+1
) +W (

k

2j
)
)
.

(4.3.4)
Observe that, similarly to Lemma 2 in [8], one can show that there exist
Ω∗ ⊆ Ω an event of probability 1, and a positive random variable C∗ of finite
moment of any order, such that one has for all ω ∈ Ω∗, all j ∈ N and all
k ∈ {0, . . . , 2j − 1},

|λj,k(ω)| ≤ C∗(ω)
√

1 + j. (4.3.5)

• {K(t, s)}(t,s)∈[0,1]2 is the stochastic field defined for all (t, s, ω) ∈ [0, 1]2×Ω as,

K(t, s, ω) := Φ(X(s, ω))1[0,t](s); (4.3.6)

thus, the process {Z(t)}t∈[0,1] defined in (4.1.1) can be expressed as,

Z(t) =

∫ 1

0
K(t, s) dW (s). (4.3.7)

Observe that (4.2.10), (4.1.2) and the fact Φ ∈ C1
pol(R), imply that for all

ω ∈ Ω,

sup
(t,s)∈[0,1]2

∣∣K(t, s, ω)
∣∣ = sup

s∈[0,1]

∣∣Φ(X(s, ω))
∣∣ ≤ C1(ω) < +∞; (4.3.8)

• We denote by {b0,0(t)}t∈[0,1] the stochastic process defined for all (t, ω) ∈
[0, 1]× Ω, as,

b0,0(t, ω) =

∫ 1

0
K(t, s, ω)φ0,0(s) ds; (4.3.9)

moreover, for all j ∈ N and k ∈ {0, . . . , 2j − 1}, we denote by {aj,k(t)}t∈[0,1]
the stochastic process defined for all (t, ω) ∈ [0, 1]× Ω, as,

aj,k(t, ω) =

∫ 1

0
K(t, s, ω)ψj,k(s) ds. (4.3.10)
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Observe that it follows from (4.3.9), (4.3.10), (4.3.8), (4.3.1) and (4.3.2), that
for all ω ∈ Ω and for all t1, t2 ∈ [0, 1],∣∣b0,0(t1, ω)− b0,0(t2, ω)

∣∣ ≤ C1(ω)|t1 − t2| (4.3.11)

and for all j ∈ N and k ∈ {0, . . . , 2j − 1},∣∣aj,k(t1, ω)− aj,k(t2, ω)
∣∣ ≤ C1(ω)2

j/2|t1 − t2|. (4.3.12)

Now we are in position to state the main result of this section:

Theorem 4.3.1 Let γ ∈ [0, 1/2) be arbitrary and fixed. For all J ∈ N and (t, ω) ∈
[0, 1]× Ω, one sets,

ZJ(t, ω) = b0,0(t, ω)δ0,0(ω) +
J∑

j=0

2j−1∑
k=0

aj,k(t, ω)λj,k(ω). (4.3.13)

In view of (4.3.11) and (4.3.12) the trajectories of the process {ZJ(t)}t∈[0,1] belong
to the Hölder space Cγ([0, 1]) since they are in fact Lipschitz functions; moreover,
there exist Ω∗

2 an event of probability 1 and a positive random variable D of finite
moment of any order, such that one has for all ω ∈ Ω∗

2 and J ∈ N,∥∥Z(·, ω)− ZJ(·, ω)
∥∥
Cγ([0,1])

≤ D(ω)2−J min(1/2−γ,α−1/2)
√
1 + J, (4.3.14)

where ∥ · ∥Cγ([0,1]) is the usual norm on Cγ([0, 1]) (see Definition 4.2.1) and where
α has been introduced in (4.1.2).

In order to prove the latter theorem we need two lemmas. The following lemma is
a weak version of Theorem 4.3.1.

Lemma 4.3.2 We use the same notations as in Theorem 4.3.1. Let t ∈ [0, 1] be
arbitrary and fixed. When J goes to +∞, the random variable ZJ(t) converge to the
random variable Z(t) in the Hilbert space L2(Ω), namely, one has,

lim
J→+∞

E
(
|ZJ(t)− Z(t)|2

)
= 0. (4.3.15)

As a straightforward consequence, there exist Ω∗
1,t ⊆ Ω∗ an event of probability 1 and

a subsequence n 7→ Jn (a priori depending on t) such that for all ω ∈ Ω∗
1,t, one has,

lim
n→+∞

ZJn(t, ω) = Z(t, ω). (4.3.16)

Proof of Lemma 4.3.2: Let K be as in (4.3.6). Observe that in view of (4.3.8),
for all fixed (t, ω) ∈ [0, 1] × Ω, the function K(t, ·, ω) : s 7→ K(t, s, ω) belongs to
L2([0, 1]; ds). By expanding the latter function in the Haar basis, one obtains that,

K(t, ·, ω) = b0,0(t, ω)φ0,0(·) +
+∞∑
j=0

2j−1∑
k=0

aj,k(t, ω)ψj,k(·), (4.3.17)
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where b0,0(t, ω) and aj,k(t, ω) have been defined respectively in (4.3.9) and (4.3.10).
A priori the series in (4.3.17) is convergent in the L2([0, 1]; ds) norm, namely,

lim
J→+∞

∫ 1

0

∣∣∣K(t, s, ω)−b0,0(t, ω)φ0,0(s)−
J∑

j=0

2j−1∑
k=0

aj,k(t, ω)ψj,k(s)
∣∣∣2 ds = 0. (4.3.18)

Let us show that it is also convergent in the L2
(
[0, 1]× Ω; ds⊗ P

)
, that is,

lim
J→+∞

E

∫ 1

0

∣∣∣K(t, s)− b0,0(t)φ0,0(s)−
J∑

j=0

2j−1∑
k=0

aj,k(t)ψj,k(s)
∣∣∣2 ds

 = 0. (4.3.19)

To derive (4.3.19), we will use the dominated convergence theorem. It follows from
Parseval formula and from (4.3.8) that for all J ∈ N,

∫ 1

0

∣∣∣K(t, s)− b0,0(t)φ0,0(s) +
J∑

j=0

2j−1∑
k=0

aj,k(t)ψj,k(s)
∣∣∣2 ds ≤ ∫ 1

0

∣∣K(t, s)
∣∣2 ds ≤ C2

1

(4.3.20)
Next, in view of (4.3.18), (4.3.8) and E (C2

1 ) < +∞ we are allowed to use the
dominated convergence theorem and thus we obtain (4.3.19). Finally, it follows
from the latter relation, the isometry property of the stochastic integral in (4.3.7),
(4.3.3), (4.3.4) and (4.3.13), that (4.3.15) holds. �

The following lemma provides sharp estimates for aj,k(t).

Lemma 4.3.3 There is a positive random variable A of finite moment of any order,
such that for all ω ∈ Ω, t ∈ [0, 1], j ∈ N and k ∈ {0, . . . , 2j − 1},

(i) when t ≥ (k + 1)/2j, one has∣∣aj,k(t, ω)∣∣ ≤ A(ω)2−j(α+1/2), (4.3.21)

where α has been introduced in (4.1.2);

(ii) when k/2j < t < (k + 1)/2j, one has∣∣aj,k(t, ω)∣∣ ≤ A(ω)2j/2
(
t− k/2j

)
; (4.3.22)

(iii) when t ≤ k/2j, one has,
aj,k(t, ω) = 0 (4.3.23)

Proof of Lemma 4.3.3: First observe that (4.3.23) easily results from (4.3.2),
(4.3.6) and (4.3.10). Let us now prove that (4.3.21) holds, so we assume that t ≥
(k + 1)/2j . For all (y, ω) ∈ [0, 1]× Ω, we set

X
(−1)
Φ (y, ω) =

∫ y

0
Φ(X(s, ω)) ds. (4.3.24)
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Then, using (4.3.2), (4.3.6), (4.3.10) and (4.3.24), it follows that aj,k(t, ω) can be
expressed as an increment of order 2 of the function 2j/2X

(−1)
Φ (·, ω): namely, when

t ≥ (k + 1)/2j , one has,

aj,k(t, ω) (4.3.25)

= 2j/2
(
X

(−1)
Φ

(2k + 1

2j+1
, ω
)
−X

(−1)
Φ

( k
2j
, ω
))

− 2j/2
(
X

(−1)
Φ

(k + 1

2j
, ω
)
−X

(−1)
Φ

(2k + 1

2j+1
, ω
))
.

Applying the Mean Value Theorem to the function

y 7→ X
(−1)
Φ

(k + 1

2j
− y, ω

)
−X

(−1)
Φ

(2k + 1

2j+1
− y, ω

)
on the interval [0, 2−j−1], it follows from (4.3.25) and (4.3.24), that there exists
z ∈ (0, 2−j−1) such that

aj,k(t, ω) = 2−j/2−1

(
Φ
(
X
(2k + 1

2j+1
− z, ω

))
− Φ

(
X
(k + 1

2j
− z, ω

)))
. (4.3.26)

Next, applying the Mean Value Theorem to the function x 7→ Φ(x), on the compact
interval whose endpoints are X

(
2k+1
2j+1 − z, ω

)
and X

(
k+1
2j

− z, ω
)
, one obtains, in

view of (4.3.26), that,∣∣aj,k(t, ω)∣∣ ≤ C2(ω)2
−j/2−1

∣∣∣∣X(2k + 1

2j+1
− z, ω

)
−X

(k + 1

2j
− z, ω

)∣∣∣∣ , (4.3.27)

where
C2(ω) := sup

{∣∣Φ′(x)
∣∣ : |x| ≤ ∥X∥∞(ω)

}
.

Observe that (4.2.9) and the fact that Φ ∈ C1
pol(R), imply that the positive random

variable C2 is of finite moment of any order. Next, combining (4.3.27) with (4.1.2),
one gets (4.3.21). Let us now show that (4.3.22) holds. It follows from (4.3.2),
(4.3.6) and (4.3.10) that∣∣aj,k(t, ω)∣∣ ≤ 2j/2

∫ t

k/2j

∣∣Φ(X(s))
∣∣ds ≤ C1(ω)2

j/2
(
t− k/2j

)
,

where the random variable C1 has been defined in (4.2.10); thus we obtain (4.3.22).
�

Lemma 4.3.4 Let δ be an arbitrary fixed strictly positive real number. There is a
constant c > 0, only depending on δ, such that for all x, y ∈ (0, 1], satisfying x ≤ y,
one has

xδ
√

1 + log2(x
−1) ≤ c yδ

√
1 + log2(y

−1)

Proof of Lemma 4.3.4: The derivative over (0, 1] of the (strictly) positive function
s 7→ sδ

√
1 + log2(s

−1) equals to

sδ−1

(
1− log s

log 2

)−1/2(
δ − δ

log s

log s
− 1

2 log 2

)
.
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Therefore there exists sδ ∈ (0, 1] such that the function s 7→ sδ
√

1 + log2(s
−1) is

increasing on (0, sδ] and decreasing on [sδ 1]. Thus, setting

c :=
maxs∈(0,1]

{
sδ
√

1 + log2(s
−1)
}

mins∈[sδ,1]
{
sδ
√

1 + log2(s
−1)
} ,

one obtains the lemma. �
Now we are in position to prove Theorem 4.3.1.

Proof of Theorem 4.3.1: First notice that it is sufficient to show that for all
ω ∈ Ω∗ (recall that Ω∗ is the event of probability 1 on which (4.3.5) is satisfied),
J ∈ N and Q ∈ N one has,∥∥ZJ+Q(·, ω)− ZJ(·, ω)

∥∥
Cγ([0,1])

≤ D(ω)2−J min(1/2−γ,α−1/2)
√
1 + J. (4.3.28)

Indeed, (4.3.28) implies that
(
ZJ(·, ω)

)
J∈N is a Cauchy sequence in the Banach

Cγ([0, 1]) and, as consequence, it converges to some limit denoted by Z̃(·, ω) in this
space. Next let Ω∗

2 be the event of probability 1 defined as

Ω∗
2 =

∩
q∈[0,1]∩Q

Ω∗
1,q,

where Ω∗
1,q is the event Ω∗

1,t introduced in Lemma 4.3.2 when t = q. Thus it follows
from the latter lemma, that for each ω ∈ Ω∗

2, one has Z(·, ω) = Z̃(·, ω). Then,
letting in (4.3.28) Q goes to +∞, one gets (4.3.14).

From now on, our goal will be to show that (4.3.28) holds. To this end, in view
of (4.2.1), it is sufficient to prove that there exist two positive random variables D1

and D2 such that, one has for all ω ∈ Ω∗, J ∈ N and Q ∈ N \ {0},

sup
0≤t1<t2≤1

∣∣ZJ+Q(t1, ω)− ZJ(t1, ω)− ZJ+Q(t2, ω) + ZJ(t2, ω)
∣∣

|t1 − t2|γ

≤ D1(ω)2
−J min(1/2−γ,α−1/2)

√
1 + J

(4.3.29)

and

sup
0≤t≤1

∣∣ZJ+Q(t, ω)− ZJ(t, ω)
∣∣ ≤ D2(ω)2

−J min(1/2−γ,α−1/2)
√
1 + J. (4.3.30)

We will only show that (4.3.29) is satisfied, since (4.3.30) can be obtained in the
same way. Let t1 < t2 be two arbitrary and fixed real numbers belonging to the
interval [0, 1]. Observe that in view of (4.3.13), one has

|ZJ+Q(t1, ω)− ZJ(t1, ω)− ZJ+Q(t2, ω) + ZJ(t2, ω)
∣∣

=
∣∣∣ J+Q∑
j=J+1

2j−1∑
k=0

(
aj,k(t1, ω)− aj,k(t2, ω)

)
λj,k(ω)

∣∣∣
≤

+∞∑
j=J+1

∣∣∣ 2j−1∑
k=0

(
aj,k(t1, ω)− aj,k(t2, ω)

)
λj,k(ω)

∣∣∣. (4.3.31)
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Let us give appropriate bounds for

Uj(t1, t2, ω) :=
∣∣∣ 2j−1∑
k=0

(
aj,k(t1, ω)− aj,k(t2, ω)

)
λj,k(ω)

∣∣∣ (4.3.32)

and derive form them (4.3.29). We denote by j0 ∈ N the unique integer such that

2−j0−1 < |t1 − t2| ≤ 2−j0 . (4.3.33)

Also for all t ∈ [0, 1] and j ∈ N, we denote by k̃(j, t) the unique integer belonging
to {0, . . . , 2j − 1} such that

k̃(j, t)

2j
≤ t <

k̃(j, t) + 1

2j
, (4.3.34)

with the convention that
k̃(j, 1) = 2j − 1. (4.3.35)

Observe that when t ∈ [0, 1),
k̃(j, t) =

[
2jt
]
, (4.3.36)

[·] being the integer part function. Also, observe that (4.3.32), (4.3.23) and (4.3.25)
imply that

Uj(t1, t2, ω) =
∣∣∣ k̃(j,t2)∑
k=k̃(j,t1)

(
aj,k(t1, ω)− aj,k(t2, ω)

)
λj,k(ω)

∣∣∣. (4.3.37)

Let us now study two cases j ≤ j0 and j > j0. First assume that j ≤ j0, then (4.3.33)
implies that 2−j ≥ |t1 − t2| and, as a consequence that k̃(j, t2) ∈

{
k̃(j, t1), k̃(j, t1) +

1
}
. When, k̃(j, t2) = k̃(j, t1), it follows from (4.3.37) and (4.3.5) and (4.3.12) that

Uj(t1, t2, ω) =
∣∣aj,k̃(j,t1)(t1, ω)− aj,k̃(j,t1)(t2, ω)

∣∣∣∣λj,k̃(j,t1)(ω)∣∣
≤ G1(ω)|t1 − t2|2j/2

√
1 + j,

where G1(ω) := C∗(ω)C1(ω). When, k̃(j, t2) = k̃(j, t1)+1, putting together (4.3.37),
(4.3.5), (4.3.12), (4.3.22) and the fact that (k̃(j, t1) + 1)/2j ∈ [t1, t2], one obtains
that,

Uj(t1, t2, ω)

≤
∣∣aj,k̃(j,t1)(t1, ω)− aj,k̃(j,t1)(t2, ω)

∣∣∣∣λj,k̃(j,t1)(ω)∣∣+ ∣∣aj,k̃(j,t1)+1(t2, ω)
∣∣∣∣λj,k̃(j,t1)+1(ω)

∣∣
≤ G1(ω)|t1 − t2|2j/2

√
1 + j +G2(ω)

(
t2 − (k̃(j, t1) + 1)/2j

)
|t1 − t2|2j/2

√
1 + j

≤ G3(ω)|t1 − t2|2j/2
√

1 + j,

where G2(ω) := A(ω)C∗(ω) and G3(ω) := G1(ω) + G2(ω). Thus, we have shown
that there is a positive random variable G4, non depending on γ, j0, t1 and t2, such
that for all j ≤ j0, one has,

Uj(t1, t2, ω)

|t1 − t2|γ
≤ G4(ω)|t1 − t2|1−γ 2j/2

√
1 + j.
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Therefore, in view of (4.3.33), for each integer J satisfying 0 ≤ J < j0, one has,

j0∑
j=J+1

Uj(t1, t2, ω)

|t1 − t2|γ
≤ G4(ω)|t1 − t2|1−γ

j0∑
j=J+1

2j/2
√

1 + j

≤
√
2
(√

2− 1
)−1

G4(ω)|t1 − t2|1−γ 2j0/2
√

1 + j0

≤
√
2
(√

2− 1
)−1

G4(ω)|t1 − t2|1/2−γ
√
1 + log2(|t1 − t2|−1).

(4.3.38)

Next, it follows from (4.3.38), the inequality 2−J > 2−j0 ≥ |t1 − t2| (see (4.3.33))
and Lemma 4.3.4 (in which one takes δ = 1/2− γ, x = |t1 − t2| and y = 2−J), that

j0∑
j=J+1

Uj(t1, t2, ω)

|t1 − t2|γ
≤ G5(ω)2

−J(1/2−γ)
√
1 + J, (4.3.39)

where

G5(ω) := c
√
2
(√

2− 1
)−1

G4(ω),

c being the constant introduced in Lemma 4.3.4. Let us now study the case where
j > j0. Observe that in this case, in view of Relations (4.3.33) and (4.3.34), one
necessarily has k̃(j, t1) < k̃(j, t2) and

2j |t1 − t2| > 1. (4.3.40)

Also observe that, using (4.3.35), (4.3.36) and (4.3.40), one obtain that

k̃(j, t2)− k̃(j, t1) < 2jt2 − 2jt1 + 1 < 2j+1|t1 − t2|. (4.3.41)

It follows from (4.3.32), (4.3.25), (4.3.34), Lemma 4.3.3, (4.3.41), (4.3.5) and
(4.3.12), that

Uj(t1, t2, ω) ≤
∣∣aj,k̃(j,t1)(t1, ω)∣∣∣∣λj,k̃(j,t1)(ω)∣∣+ k̃(j,t2)−1∑

k=k̃(j,t1)

∣∣aj,k(t2, ω)|∣∣λj,k(ω)∣∣
+
∣∣aj,k̃(j,t2)(t2, ω)∣∣∣∣λj,k̃(j,t2)(ω)∣∣

≤ 2G2(ω)
(
2−j/2

√
1 + j + |t1 − t2| 2−j(α−1/2)

√
1 + j

)
.

(4.3.42)

Thus (4.3.42) and (4.3.33) imply that for all j > j0, one has,

Uj(t1, t2, ω)

|t1 − t2|γ
≤ 2G2(ω)

(
2−j(1/2−γ)

√
1 + j + |t1 − t2|1−γ 2−j(α−1/2)

√
1 + j

)
≤ G6(ω)2

−jmin(1/2−γ,α−1/2)
√

1 + j. (4.3.43)
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where G6(ω) := 4G2(ω). Next, observe that one has for J ∈ N,

+∞∑
j=J+1

2−jmin(1/2−γ,α−1/2)
√
1 + j

= 2−J min(1/2−γ,α−1/2)
√
1 + J

+∞∑
j=J+1

2−(j−J)min(1/2−γ,α−1/2)

√
1 + j

1 + J

≤ c12
−J min(1/2−γ,α−1/2)

√
1 + J, (4.3.44)

where the constant c1 :=
∑+∞

l=0 2−lmin(1/2−γ,α−1/2)
√
1 + l < +∞. Thus combining

(4.3.43) with (4.3.44), it follows that for all J ≥ j0, one has,

+∞∑
j=J+1

Uj(t1, t2, ω)

|t1 − t2|γ
≤ G7(ω)2

−J min(1/2−γ,α−1/2)
√
1 + J, (4.3.45)

where G7(ω) := c1G6(ω). Let now set now show that, for all J ∈ N, one has,

+∞∑
j=J+1

Uj(t1, t2, ω)

|t1 − t2|γ
≤ D1(ω)2

−J min(1/2−γ,α−1/2)
√
1 + J, (4.3.46)

where D1(ω) := (1+ c)G7(ω) +G5(ω), c is the constant introduced in Lemma 4.3.4
and G5(ω) has been introduced in (4.3.39). It is clear that (4.3.45) implies that
(4.3.46) holds when J ≥ j0, so from now on, we assume that j0 ≥ 1 and that J is
an arbitrary nonnegative integer satisfying J < j0. It follows from (4.3.45) that

+∞∑
j=j0+1

Uj(t1, t2, ω)

|t1 − t2|γ
≤ G7(ω)2

−j0 min(1/2−γ,α−1/2)
√

1 + j0.

Then using Lemma 4.3.4 (in which one takes δ = min(1/2 − γ, α − 1/2), x = 2−j0

and y = 2−J), one obtains that

+∞∑
j=j0+1

Uj(t1, t2, ω)

|t1 − t2|γ
≤ cG7(ω)2

−J min(1/2−γ,α−1/2)
√
1 + J. (4.3.47)

Next combining (4.3.47) with (4.3.39), it follows that (4.3.46) holds in the case where
J < j0. Finally (4.3.31), (4.3.32) and (4.3.46) imply that (4.3.29) is satisfied. �

4.4 Simulation of {Z(t)}t∈[0,1] when {X(t)}t∈[0,1] is the mB-
m

Our algorithm for simulating {Z(t)}t∈[0,1] mainly relies on Theorem 4.3.1 which
allows to approximate {Z(t)}t∈[0,1], for J large enough, by the process {ZJ(t)}t∈[0,1]
defined in (4.3.13) as a finite of sum. First we will give an expression for the latter
process which makes it rather easy to simulate, to this end, we need to introduce
some notations.
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• For all fixed integers J ≥ 0 and l ∈ {0, . . . , 2J −1}, the function φJ,l is defined
as,

φJ,l = 2J/21[ l

2J
, l+1

2J
). (4.4.1)

• For all fixed integer J ≥ 0, we denote by
{
δJ,l : l ∈ {0, . . . , 2J − 1}

}
the finite

sequence of independent standard Gaussian random variables defined as,

δJ,l :=

∫ 1

0
φJ,l(s) dW (s) = 2J/2

(
W (

l + 1

2J
)−W (

l

2J
)
)
. (4.4.2)

• For all fixed integers J ∈ N and l ∈ {0, . . . , 2J − 1}, the stochastic process
{bJ,l(t)}t∈[0,1] is defined for all (t, ω) ∈ [0, 1]× Ω, as,

bJ,l(t, ω) =

∫ 1

0
K(t, s, ω)φJ,l(s) ds, (4.4.3)

where K(t, s, ω) has been introduced in (4.3.6)

The following proposition provides a nice expression for the process {ZJ(t)}t∈[0,1] in
Theorem 4.3.1.

Proposition 4.4.1 For all fixed integer J ≥ 0, let {ZJ(t)}t∈[0,1] be the stochastic
process introduced in (4.3.13). Then one has for all t ∈ [0, 1], almost surely,

ZJ(t) =
2J−1∑
l=0

bJ,l(t)δJ,l. (4.4.4)

Observe that, Relation (4.4.4), also holds almost surely for all J ∈ N
and t ∈ [0, 1], since the trajectories of the processes {ZJ(t)}t∈[0,1] and{∑2J−1

l=0 bJ,l(t)δJ,l

}
t∈[0,1]

, are with probability 1, continuous functions.

Proof of Proposition 4.4.1: The proof mainly relies on the notion of multireso-
lution analysis (see e.g. [49, 29, 60]). Let VJ be the finite dimensional subspace of
the Hilbert space L2([0, 1]) defined as,

VJ := Span
{
φ0,0, ψj,k : j ∈ {0, . . . , J} and k ∈ {0, . . . , 2j − 1}

}
.

Relation (4.3.17) implies that for every fixed (t, ω) ∈ [0, 1]× Ω, the function

KJ(t, ·, ω) := b0,0(t, ω)φ0,0(·) +
J∑

j=0

2j−1∑
k=0

aj,k(t, ω)ψj,k(·), (4.4.5)

can be viewed as the orthogonal projection of K(t, ·, ω) on the space VJ . On the
other hand, it is known that (see e.g. [49, 29, 60]),{

φJ,l, l ∈ {0, . . . , 2J − 1}
}
,



46
Chapter 4. Hölder regularity and series representation of a stochastic

volatility model {Z(t)}t∈[0,1]

is an orthonormal basis of VJ . Therefore, one has

KJ(t, ·, ω) =
2J−1∑
l=0

bJ,l(t, ω)φJ,l(·). (4.4.6)

Thus, using the definition of the stochastic integral
∫ 1
0 (·) dW , (4.4.5), (4.3.4), (4.4.6)

and (4.4.2), one obtains (4.4.4). �
Now, we are ready to describe the main step of our algorithm for simulating

{Z(t)}t∈[0,1].

Main steps of our algorithm for simulating {Z(t)}t∈[0,1]:

(1) We take J large enough and we simulate the finite sequence{
δJ,l : l ∈ {0, . . . , 2J − 1}

}
of the standard independent Gaussian random variables defined in (4.4.2).

(2) By using the efficient methods described in [15], we simulate{
X(0), X

( 1

22J

)
, . . . , X

(22J − 1

22J

)}
,

where {X(t)}t∈[0,1] denotes a multifractional Brownian motion.

(3) Noticing that, for all l ∈ {0, . . . , 2J − 1}, and m ∈ {l + 1, . . . , 2J}, Relations
(4.4.1), (4.4.3) and (4.3.6) imply that,

bJ,l

(m
2J

)
= 2J/2

∫ l+1

2J

l

2J

ϕ(X(s)) ds,

we approximate the latter integral, by the Riemann sum

b̂J,l

(m
2J

)
:= 2−3J/2

2J−1∑
q=0

ϕ

(
X
( l

2J
+

q

22J

))
. (4.4.7)

On the other hand, observe that (4.4.1), (4.4.3) and (4.3.6) entail that for each
m ∈ {0, . . . , l},

bJ,l

(m
2J

)
= 0

(4) Thus, in view of (4.4.4), for all m ∈ {1, . . . , 2J}, we approximate ZJ

(
m
2J

)
by

ẐJ

(m
2J

)
:=

m−1∑
l=0

b̂J,l

(m
2J

)
δJ,l. (4.4.8)

Then we simulate {
ẐJ

( 1

2J

)
, . . . , ẐJ

(2J − 1

2J

)
, ẐJ(1)

}
,
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by using the fact that

ẐJ

( 1

2J

)
= b̂J,0

( 1

2J

)
δJ,0 (4.4.9)

and the induction relation, for all m ∈ {2, . . . , 2J},

ẐJ

(m
2J

)
= ẐJ

(m− 1

2J

)
+ b̂J,m−1

(m
2J

)
δJ,m−1. (4.4.10)

Observe that (4.4.9) and (4.4.10) easily result from (4.4.7) and (4.4.8).

(5) Finally, by interpolating the 2J + 1 points

(0, 0) ;

(
1

2J
, ẐJ

( 1

2J

))
; . . . ;

(
2J − 1

2J
, ẐJ

(2J − 1

2J

))
;
(
1, ẐJ(1)

)
we obtain a stochastic process

{
ẐJ(t)

}
t∈[0,1] which, in view of Theorem 4.3.1,

satisfies the following property: for all fixed γ ∈ [0, 1/2), there exists a random
variable D′ such that one has, almost surely, for all J ∈ N,∥∥Z − ẐJ

∥∥
Cγ([0,1])

≤ D′2−J min(1/2−γ,H∗−1/2)
√
1 + J,

where ∥ · ∥Cγ([0,1]) is the usual norm on the Hölder space Cγ([0, 1]) and where
H∗ = mins∈[0,1]H(s), recall that H(·) denotes the functional parameter of the
mBm {X(s)}s∈[0,1].

�
To test our algorithm, we have taken H(s) = 0.6 + 0.2s for all s ∈ [0, 1], then

we have simulated the corresponding mBm {X(s)}s∈[0,1] as well as {Z(t)}t∈[0,1] in
the following two cases:

(1) Φ(x) = 0.5 + 0.5x for all real x (see Figure 1 below),

(2) Φ(x) = sin(x) for all real x (see Figure 2 below).

Our simulations tend to confirm the fact that the pointwise Hölder exponent of
{Z(t)}t∈(0,1] does not change from one place to another and is equal to 1/2 (see
Theorem 4.2.2).
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5.1 Introduction

Stochastic volatility models are extensions of the well-known Black and Scholes
model. Hull and White [39] and other authors in mathematical finance (see for
instance [54] and [50]) introduced them in the eighties in order to account the
volatility effects of exogenous arrivals of information. The results of this chapter
are inspired by a work of Gloter and Hoffmann [35, 36] which concerns statistical
inference in a parametric stochastic volatility model driven by a fractional Brownian
motion (fBm for short). Namely, the model considered in [35, 36] can be expressed
as: {

Z(t) = z0 +
∫ t
0 σ(s) dW (s)

σ(s) = σ0 +Φ(θ,Bα(s)),
(5.1.1)

where:

• Z(t) denotes logarithm of the price of the underlying asset, the original price
z0 is supposed to be deterministic and known.

• {W (s)}s∈[0,1] denotes a standard Brownian motion (Bm for short).
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• {σ(s)}s∈[0,1] denotes the volatility process (σ0 is real-valued and known); the
deterministic function x 7→ Φ(θ, x), through which it is defined, is known up
to a real-valued parameter θ. For the sake of convenience, one sets for every
x ∈ R,

f(x) := (σ0 +Φ(θ, x))2 (5.1.2)

and throughout this chapter one assumes that the function f belongs to
C2
pol(R). Observe that for every integer l ≥ 0, C l

pol(R) denotes the vector
space of l-times continuously differentiable functions over the real line, which
slowly increase at infinity as well as their derivative of any order, more for-
mally,

C l
pol(R) :=

{
h ∈ C l(R) : ∃ c,K > 0 , ∀x ∈ R,

l∑
k=0

|h(k)(x)| ≤ c
(
1 + |x|K

)}
.

(5.1.3)

• {Bα(s)}s∈[0,1] denotes a fractional Brownian motion (fBm for short) with
Hurst parameter α (see e.g. [30, 31, 53]), which is assumed to be independent
on the Bm {W (s)}s∈[0,1]; one makes the latter independence assumption for
the stochastic integral

∫ t
0 σ(s) dW (s) to be well-defined. Note that the idea

of replacing the Bm governing the volatility by a fBm is due to Comte and
Renault (see [24, 25]), who have proposed to do so in order to account some
long memory effects.

In order to clearly explain the main goal of this chapter, we need to briefly
present some of the main results obtained in [35, 36]. In the latter articles, it
is assumed that one observes a discretized trajectory of the process {Z(t)}t∈[0,1],
namely the high frequency data Z(j/n), j = 0, . . . , n. Also, it is assumed that
the fBm Bα governing the volatility is hidden; however one knows the value of its
Hurst parameter α, moreover α ∈ (1/2, 1). Though, the hypothesis that the Hurst
parameter is known may seem to be restrictive from a practical point of view, it has
already been made by other authors (see for example [59]), in some settings more
or less related to that of the model (5.1.1). Under additional technical assumptions,
we will not give here for the sake of simplicity, Gloter and Hoffmann [35, 36] have
obtained the following results (i) and (ii):

(i) By using the notion of generalized quadratic variation, one can con-
struct estimators of integrated functional of the volatility of the form:∫ 1
0 f

′(Bα(s))
2h(σ2(s)) ds, where f ′ is the derivative of f and h ∈ C1

pol(R)
is arbitrary and fixed. Note that the problem of the estimation of such quanti-
ties is of some importance in its own right, since more or less similar integrals
appear in some option pricing formulas (see for instance [39]).

(ii) Thanks to the result (i), it is possible to build a minimax optimal estimator of
the unknown parameter θ. Also, it is worth noticing that, it has been shown in
[35, 36] that the minimax rate of convergence for estimating θ, in the setting
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of the model (5.1.1), is not the usual rate n−1/2 but the slower rate n−1/(4α+2),
which deteriorates when the Hurst parameter α increases; basically, the reason
for this unusual phenomenon is that the volatility is hidden and the Brownian
motion W makes the approximation of the volatility more noisy.

Let us now present the main motivation behind the introduction of multifrac-
tional stochastic volatility models. To this end, first we need to introduce the notion
of pointwise Hölder exponent. Let {X(s)}s∈[0,1] be a stochastic process whose tra-
jectories are with probability 1, continuous and nowhere differentiable functions
(this is the case of fBm and of multifractional Brownian motion which will soon be
introduced), ρX(t) the pointwise Hölder exponent of the process {X(s)}s∈[0,1] at an
arbitrary time t, is defined as,

ρX(t) = sup
{
ρ ∈ [0, 1] : lim sup

τ→0

X(t+ τ)−X(t)

|τ |ρ
= 0
}
.

The quantity of ρX(t) provides a measure of {X(s)}s∈[0,1] roughness (i.e. of the
maximum of the fluctuations amplitudes of {X(s)}s∈[0,1]) in a neighborhood of t;
the smaller ρX(t) is the rougher (i.e. the more fluctuating) is {X(s)}s∈[0,1] in t

neighborhood. In [1] numerical evidences have shown that for a better understand-
ing of stock price dynamics, it is important to analyze volatility local roughness.
With this respect, fractional stochastic volatility model has a serious limitation: its
volatility local roughness cannot evolve over time; more precisely, when Φ(θ, ·) is a
continuously differentiable function with a nowhere vanishing derivative, then one
has, almost surely, at any time t, ρσ(t) = α, where α is the constant Hurst pa-
rameter of the fBm {Bα(s)}s∈[0,1] and ρσ(t) the pointwise Hölder exponent at t, of
the volatility process {σ(s)}s∈[0,1] defined in (5.1.1). The latter limitation is due to
the fact that the local roughness of {Bα(s)}s∈[0,1] itself cannot change from time to
time, namely one has almost surely, for all t, ρBα(t) = α (see e.g. [47]). In order
to overcome this drawback, we propose to replace in (5.1.1), the fBm {Bα(s)}s∈[0,1]
by a multifractional Brownian motion (mBm for short), denoted in all the sequel
by {X(s)}s∈[0,1], which is independent on {W (s)}s∈[0,1]. Thus, we obtain a new
stochastic volatility model we call multifractional stochastic volatility model. Its
precise definition is the following:{

Z(t) = z0 +
∫ t
0 σ(s) dW (s)

σ(s) = σ0 +Φ(θ,X(s)),
(5.1.4)

where z0, σ0, θ, Φ(θ, ·) and {W (s)}s∈[0,1] satisfy the same assumptions as be-
fore; note that the stochastic integral

∫ t
0 σ(s) dW (s) is well-defined since the mBm

{X(s)}s∈[0,1] is assumed to be independent on the Bm {W (s)}s∈[0,1]. In order to
clearly explain the reason why multifractional stochastic volatility model allows to
overcome the limitation of fractional volatility model we have already pointed out,
we need to make some brief recalls concerning mBm. The latter non stationary in-
crements centered Gaussian process was introduced independently in [18] and [51],
in order to avoid some drawbacks coming from the fact that the Hurst parameter
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of fBm cannot evolve with time. The mBm {X(s)}s∈[0,1] can be obtained by sub-
stituting to the constant Hurst parameter α in the harmonizable representation of
fBm:

Bα(s) =

∫
R

eisξ − 1

|ξ|α+1/2
dB̂(ξ), (5.1.5)

a function H(·) depending continuously on time and with values in (0, 1). The
process {X(s)}s∈[0,1] can therefore be expressed as,

X(s) :=

∫
R

eisξ − 1

|ξ|H(s)+1/2
dB̂(ξ). (5.1.6)

Throughout this chapter not only we assume that H(·) is continuous but also that
it is a C2-function; actually we need to impose this condition in order to be able
to estimate the correlations between the generalized increments of local averages of
mBm (see Proposition 5.3.6). Moreover, to obtain Lemma 5.3.2, we need to assume
that H(·) is with values in (1/2, 1).

For the sake of clarity, notice that dB̂ is defined as the unique complex-valued
stochastic Wiener measure which satisfies for all f ∈ L2(R),∫

R
f(s) dB(s) =

∫
R
f̂(ξ) dB̂(ξ), (5.1.7)

where {B(s)}s∈R denotes a real-valued Wiener process and f̂ the Fourier transform
of f (with the convention that the Fourier transform of g ∈ L1(R) is defined for real
ξ as ĝ(ξ) =

∫
R e

−isξg(s) ds). Observe that it follows from (5.1.7) that, one has up to
a negligible deterministic smooth real-valued multiplicative function (see [23, 57]),
for all s ∈ [0, 1],∫

R

{
|s+ x|H(s)−1/2 − |x|H(s)−1/2

}
dB(x) =

∫
R

eisξ − 1

|ξ|H(s)+1/2
dB̂(ξ),

which implies that the process {X(s)}s∈[0,1] is real-valued.
Since several years, there is an increasing interest in the study of mBm and

related processes (see for instance [4, 2, 3, 5, 8, 6, 19, 20, 21, 32, 33, 34, 58, 56, 55, 57]).
The usefulness of such processes as models in financial frame has been emphasized
by several authors (see for example [19, 20, 21, 47, 48]). Generally speaking, mBm
offers a larger spectrum of applications than fBm, mainly because its local roughness
can be prescribed via its functional parameter H(·) and thus is allowed to change
with time; more precisely, one has almost surely, for all t, ρX(t) = H(t), where
ρX(t) denotes the pointwise Hölder exponent at t of the mBm {X(s)}s∈[0,1]. It is
worth noticing that the latter result, in turn, implies that in the model (5.1.1) the
volatility local roughness can evolve with time, namely when Φ(θ, ·) is a continuously
differentiable function with a nowhere vanishing derivative, then one has, almost
surely, at any time t, ρσ(t) = H(t), where ρσ(t) is the pointwise Hölder exponent at
t, of the volatility process {σ(s)}s∈[0,1] defined in (5.1.1).
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Having given the main motivation behind multifractional stochastic volatility
models, let us now clearly explain the goal of chapter. Our aim is to study to
which extent it is possible to extend to the setting of these new models Gloter
and Hoffmann results (i) and (ii) stated above. Basically, we use some techniques
which are reminiscent to those in [35, 36]; however new difficulties appear in our
multifractional setting. These new difficulties are essentially due to the fact that
local properties of mBm change from one time to another.

Throughout this chapter we assume that the functional parameter H(·) of the
mBm {X(s)}s∈[0,1] is known. We show that the result (i) can be stated in a more
general form and can be extended to multifractional stochastic volatility models.
The challenging problem of extending the result (ii) to these models remains open;
the major difficulty in it, consists in precisely determining the minimax rate of
convergence for estimating θ. Yet, in the linear case, that is for a model of the form:{

Z(t) = z0 +
∫ t
0 σ(s) dW (s)

σ(s) = σ0 + θX(s),
(5.1.8)

assuming that there exists t0 ∈ (0, 1) such that H(t0) = mint∈[0,1]H(t), we give
a partial solution to this problem; namely, we show that by localizing Gloter and
Hoffmann estimator in a well-chosen neighborhood of t0, it is possible to obtain
an estimator of θ2 whose rate of convergence can be bounded in probability by
n−1/(4H(t0)+2)

(
log n

)1/4.
5.2 Statement of the main results

Let us consider an integrated functional of the volatility of the form:∫ 1

0

(
f ′(X(s))

)2
h(Y (s)) ds, (5.2.1)

where, {X(s)}s∈[0,1] denotes the mBm, {Y (s)}s∈[0,1] is the process defined as

Y (s) := f(X(s)) := σ2(s) :=
(
σ0 +Φ(θ,X(s))

)2
, (5.2.2)

and h an arbitrary function of C1
pol(R). An important difficulty in the problem of

the nonparametric estimation of the integral (5.2.1) comes from the fact that the
process {Y (s)}s∈[0,1] is hidden; as we have mentioned before, we only observe the
sample (Z(0), Z(1/n), . . . , Z(1)), where {Z(t)}t∈[0,1] is the process defined in (5.1.4).
Let us first explain how to overcome this difficulty. Y i,N , i = 0, . . . , N − 1, the local
average values of the process {Y (s)}s∈[0,1] over a grid {0, 1/N, . . . , 1}, N ≥ 1 being
an arbitrary integer, are defined, for all i = 0, . . . , N − 1, as

Y i,N := N

∫ i+1
N

i
N

Y (s) ds. (5.2.3)
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Let us now assume that N is a well chosen integer depending on n (this choice will
be made more precise in the statements of Theorems 5.2.2 and 5.2.3 given below),
such an N is denoted by Nn; moreover, we set

mn := [n/Nn] and for every i = 0, . . . , Nn, ji := [in/Nn], (5.2.4)

with the convention that [·] is the integer part function. The key idea to overcome
the difficulty, we have already pointed out, consists in using the fact that for n big
enough, Y i,Nn can be approximated by

Ŷi,Nn,n := Nn

ji+1−ji−1∑
k=0

(
Z

(
ji + k + 1

n

)
− Z

(
ji + k

n

))2

. (5.2.5)

The rigorous proof of the latter approximation result relies on Itô formula, it is given
in Appendix (see Lemma 7.4.2). This is why we will only give here a short heuristic
proof. Using (5.2.5), (5.1.4), the fact that n is big enough, and (5.2.2), one has

Ŷi,Nn,n = Nn

ji+1−ji−1∑
k=0

(∫ ji+k+1

n

ji+k

n

σ(s) dW (s)

)2

≈ Nn

ji+1−ji−1∑
k=0

(∫ ji+k+1

n

ji+k

n

dW (s)

)2

σ2
(
ji + k

n

)

= Nn

ji+1−ji−1∑
k=0

(
W

(
ji + k + 1

n

)
−W

(
ji + k

n

))2

Y

(
ji + k

n

)

≈ Nn

n−1

ji+1−ji−1∑
k=0

Y

(
ji + k

n

) , (5.2.6)

where the latter approximation follows from the fact that(
W
(
ji+k+1

n

)
−W

(
ji+k
n

))2
, k = 0, . . . , ji+1 − ji − 1 are i.i.d random vari-

ables whose expectation equals n−1. Then noticing that n−1
∑ji+1−ji−1

k=0 Y
(
ji+k
n

)
is a Riemann sum which, in view of (5.2.4), converges to the integral

∫ i+1
Nn
i

Nn

Y (s) ds;

it follows from (5.2.3) and (5.2.6) that

Ŷi,Nn,n ≈ Y i,Nn .

The main goal of Section 5.3 is to construct estimators of the integrated functional
of the volatility

V (h;µN , νN ) :=
1

νN − µN

∫ νN

µN

(
f ′(X(s))

)2
h(Y (s)) ds, (5.2.7)

where (µN )N and (νN )N are two arbitrary sequences satisfying:



5.2. Statement of the main results 55

(i) for every N , 0 ≤ µN < νN ≤ 1,

(ii) limN→+∞N(νN − µN ) = +∞.

Observe that when we take for every N , µN = 0 and νN = 1, then the integral in
(5.2.7) is equal to the integral in (5.2.1).

In order to be able to state the main two results of Section 5.3, one needs
to introduce some additional notations. Throughout this chapter one denotes by
a = (a0, . . . , ap) a finite sequence of p+ 1 arbitrary fixed real numbers whose M(a)

first moments vanish i.e. one has
p∑

k=0

klak = 0, for all l = 0, . . . ,M(a)− 1 and
p∑

k=0

kM(a)ak ̸= 0. (5.2.8)

One always assumes that M(a) ≥ 3 (observe that one has necessarily p > M(a)).
For each integer N ≥ p+1 and any i = 0, . . . , N − p− 1, ∆aY i,N is the generalized
increment of local average values of Y , defined as

∆aY i,N :=

p∑
k=0

akY i+k,N (5.2.9)

and ∆aXi,N is the generalized increment of local average values of mBm X, defined
as

∆aXi,N :=

p∑
k=0

akXi+k,N , (5.2.10)

where

Xi,N := N

∫ i+1
N

i
N

X(s) ds. (5.2.11)

At last, for each integer n big enough and any i = 0, . . . , Nn − p − 1, one denotes
by ∆aŶi,Nn,n the generalized increment defined as

∆aŶi,Nn,n :=

p∑
k=0

akŶi+k,Nn,n. (5.2.12)

One is now in position to state the two main results of Section 5.3. The follow-
ing theorem provides an estimator of the integrated functional of the volatility
V (h;µN , νN ) starting from Y i,N , µN ≤ i/N ≤ νN , the local average values of
the process {Y (s)}s∈[0,1] over the grid {0, 1/N, . . . , 1} ∩ [µN , νN ]. It also provides
an upper bound of the rate of convergence.

Theorem 5.2.1 For every integer N ≥ p + 1 and for every function h ∈ C1
pol(R)

one sets

V (h;µN , νN ) :=
1

N(νN − µN )

∑
i∈J (µN ,νN )

(∆aY i,N )2

C(i/N)N−2H(i/N)
h(Y i,N ), (5.2.13)

where:
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• J (µN , νN ) denotes the set of indices,

J (µN , νN ) =
{
i ∈ {0, . . . , N − p− 1} : µN ≤ i/N ≤ νN

}
; (5.2.14)

• for all s ∈ [0, 1],

C(s) :=

∫
R

|eiη − 1|2|
∑p

k=0 ake
ikη|2

|η|2H(s)+3
dη. (5.2.15)

Then there exists a constant c > 0, such that one has for each integer N ≥ p+ 1,

E
{∣∣V (h;µN , νN )− V (h;µN , νN )

∣∣} ≤ c
(
N(νN − µN )

)−1/2
. (5.2.16)

Recall that the integrated functional of the volatility V (h;µN , νN ) has been defined
in (5.2.7).

In view of the previous theorem, in order to construct an estimator of
V (h;µNn , νNn) starting from the observed data Z(j/n), j = 0, . . . , n, a natural
idea consists in replacing in (5.2.13), the Y i,Nn ’s by their approximations Ŷi,Nn,n.
However (this has already been noticed in [35, 36] in the case where X is the fBm,
µNn = 0 and νNn = 1),

1

Nn(νNn − µNn)

∑
i∈J (µNn ,νNn )

(∆aŶi,Nn,n)
2

C(i/Nn)N
−2H(i/Nn)
n

h(Ŷi,Nn,n)− V (h;µNN
, νNn)

does not converge to zero in the L1(Ω) norm; one needs therefore to add the correc-
tion term:

− 1

Nn(νNn − µNn)

∑
i∈J (µNn ,νNn )

2∥a∥22(Ŷi,Nn,n)
2

C(i/Nn)N
−2H(i/Nn)
n mn

h(Ŷi,Nn,n),

where ∥a∥2 =
√∑p

k=0 a
2
k denotes the Euclidian norm of a. More precisely, the

following theorem holds.

Theorem 5.2.2 For every integer n big enough and h ∈ C1
pol(R), one sets

V̂ (h;µNn , νNn)

:=
1

Nn(νNn − µNn)

∑
i∈J (µNn ,νNn )

(
(∆aŶi,Nn,n)

2

C(i/Nn)N
−2H(i/Nn)
n

−
2∥a∥22(Ŷi,Nn,n)

2

C(i/Nn)N
−2H(i/Nn)
n mn

)
h(Ŷi,Nn,n),

(5.2.17)

where mn is as in (5.2.4). Then assuming that

sup
n
m−1

n N
2maxs∈[µNn

,νNn
] H(s)

n < +∞, (5.2.18)

it follows that there exists a constant c > 0, such that one has for all n big enough,

E
{∣∣∣V̂ (h;µNn , νNn)− V (h;µNn , νNn)

∣∣∣} ≤ c
(
Nn(νNn − µNn)

)−1/2
. (5.2.19)
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Remark 5.2.1 When the mBm X is a fBm with Hurst parameter α ∈ (1/2, 1), one
can take in Theorems 5.2.1 and 5.2.2, H(·) = α, µNn = 0 and νNn = 1; then one
recovers Theorem 3 in [36] and Proposition 1 in [35].

Let us now turn to Section 5.4. The goal of this section is to construct an
estimator of θ2 in the setting of a linear stochastic volatility model driven by a
mBm, that is a model of the type (5.1.8); and also to give an evaluation of the rate
of convergence of this estimator in terms of mint∈[0,1]H(t). Notice that, in Section
5.4, we assume that θ ̸= 0 and there exists t0 ∈ (0, 1) such that

H(t0) = min
t∈[0,1]

H(t). (5.2.20)

In order to be able to state the main result of this section, we need to introduce
some additional notations. For n big enough, we set,

E min
Nn

(t0) = t0 −
1√

log(Nn)
, (5.2.21)

E max
Nn

(t0) = t0 +
1√

log(Nn)
(5.2.22)

and

VNn,t0 := J
(
E min
Nn

(t0),E
max
Nn

(t0)
)
=

{
i ∈ {0, . . . , Nn − p− 1} :

∣∣∣t0 − i

Nn

∣∣∣ ≤ 1√
logNn

}
,

(5.2.23)
where J has been introduced in (5.2.14).

Let (an)n and (bn)n be two arbitrary sequences of positive real numbers. The
notation an ≍ bn means there exist two constants 0 < c1 ≤ c2, such that for all n,
one has c1an ≤ bn ≤ c2an.

We are now in position to state the main result of Section 5.4.

Theorem 5.2.3 Consider a linear stochastic volatility model driven by a mBm. For
n big enough, let,

θ̂2n,t0 =
V̂ (1;E min

Nn
(t0),E max

Nn
(t0))

4
(
2(log(Nn))−1/2Nn

)−1∑
i∈VNn,t0

Ŷi,Nn,n

, (5.2.24)

where V̂ has been introduced in (5.2.17). Assume that

Nn ≍ n1/(2H(t0)+1). (5.2.25)

Then the sequence of random variables(
n1/(4H(t0)+2)(log n)−1/4(θ̂2n,t0 − θ2)

)
n
,

is bounded in probability i.e. one has

lim
λ→+∞

lim sup
n→+∞

P
{
n1/(4H(t0)+2)(log n)−1/4|θ̂2n,t0 − θ2| > λ

}
= 0. (5.2.26)
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Remark 5.2.2 Theorem 5.2.3 is an extension of Proposition 2 in [35].

In fact, Theorem 5.2.3 is a straightforward consequence of the following result.

Theorem 5.2.4 Consider a linear stochastic volatility model driven by a mBm. For
n big enough, we set,

θ̂2n(µNn , νNn) =
V̂ (1;µNn , νNn)

4(Nn(νNn − µNn))
−1
∑

i∈J (µNn ,νNn )
Ŷi,Nn,n

. (5.2.27)

Assume that (µNn)n and (νNn)n are two convergent sequences and also that

Nn ≍ n
1/(2maxs∈[µNn

,νNn
] H(s)+1)

. (5.2.28)

Then the sequence of random variables(
n
1/(4maxs∈[µNn

,νNn
] H(s)+2)

(νNn − µNn)
1/2
(
θ̂2n(µNn , νNn)− θ2

))
n
,

is bounded in probability.

5.3 Estimation of integrated functionals of the volatility

5.3.1 Proof of Theorem 5.2.1 when Y is the mBm

The goal of this subsection is to show that Theorem 5.2.1 holds in the particular
case where the process Y (see (5.2.2)) is the mBm X itself i.e. the function f is
equal to the identity. Namely, we will prove the following theorem.

Theorem 5.3.1 For every integer N ≥ p + 1 and every function h ∈ C1
pol(R) one

sets
Q(h;µN , νN ) :=

1

νN − µN

∫ νN

µN

h(X(s)) ds (5.3.1)

and

Q(h;µN , νN ) :=
1

N(νN − µN )

∑
i∈J (µN ,νN )

(∆aXi,N )2

C(i/N)N−2H(i/N)
h(Xi,N ). (5.3.2)

Then there is a constant c > 0, such that one has for each N ≥ p+ 1,

E
{∣∣Q(h;µN , νN )−Q(h;µN , νN )

∣∣} ≤ c
(
N(νN − µN )

)−1/2
. (5.3.3)

Remark 5.3.1 This theorem generalizes Proposition 1 in [36].

Let us explain the main intuitive ideas which lead to the estimator Q(h;µN , νN ).

• First one approximates the integral (νN − µN )−1
∫ νN
µN

h(X(s)) ds by the Rie-
mann sum

1

N(νN − µN )

∑
i∈J (µN ,νN )

h
(
X(

i

N
));
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• then one approximates the latter quantity by

1

N(νN − µN )

∑
i∈J (µN ,νN )

(∆aXi,N )2

Var(∆aXi,N )
h
(
X(

i

N
)
)
;

• finally, one approximates the latter quantity by Q(h;µN , νN ) since X(i/N) ≃
Xi,N and Var(∆aXi,N ) ≃ C(i/N)N−2H(i/N).

Upper bounds of the L1-norms of the successive approximation errors are given in
the following lemma.

Lemma 5.3.2 Let h ∈ C1
pol(R), then there exist four constants c1, c2, c3, c4 > 0,

such that the following inequalities hold for every N ≥ p+ 1.

(i)

E1 := E
{∣∣∣ 1

N(νN − µN )

∑
i∈J (µN ,νN )

h
(
X(

i

N
)
)
− 1

νN − µN

∫ νN

µN

h(X(s)) ds
∣∣∣}

≤ c1
(
N(νN − µN )

)−1/2
; (5.3.4)

(ii)

E2 := E
{∣∣∣ 1

N(νN − µN )

∑
i∈J (µN ,νN )

{ (∆aXi,N )2

Var(∆aXi,N )
− 1
}
h
(
X(

i

N
)
)∣∣∣}

≤ c2(N(νN − µN ))−1/2; (5.3.5)

(iii)

E3 := E
{∣∣∣ 1

N(νN − µN )

∑
i∈J (µN ,νN )

(∆aXi,N )2

Var(∆aXi,N )

(
h(Xi,N )− h

(
X(

i

N
)
))∣∣∣}

≤ c3(N(νN − µN ))−1/2; (5.3.6)

(iv)

E4 := E
{∣∣∣Q(h;µN , νN )− Q̃(h;µN , νN )

∣∣∣} ≤ c4
(
N(νN − µN )

)−1/2
, (5.3.7)

where

Q̃(h;µN , νN ) :=
1

N(νN − µN )

∑
i∈J (µN ,νN )

(∆aXi,N )2

Var(∆aXi,N )
h(Xi,N ). (5.3.8)
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Proof of Theorem 5.3.1: This theorem is a straightforward consequence of Lem-
ma 5.3.2 and the triangle inequality. Indeed, one has that

E
{∣∣∣Q̃(h;µN , νN )−Q(h;µN , νN )

∣∣∣} ≤ E1 + E2 + E3 + E4 ≤ c
(
N(νN − µN )

)−1/2
.

where c = c1 + c2 + c3 + c4 > 0 is a constant. �
Now we are going to explain how to get Lemma 5.3.2. Since the proofs of Parts

(i), (iii) and (iv) of the lemma are less difficult than that of Part (ii), we will first
give them.
Proof of Lemma 5.3.2 (i): Denote by Jmin

N = minJ (µN , νN ) and Jmax
N =

maxJ (µN , νN ), thus, in view of (5.2.14), one has,∫ νN

µN

h(X(s)) ds

=
∑

i∈J (µN ,νN )

∫ (i+1)/N

i/N
h(X(s)) ds+

∫ Jmin
N /N

µN

h(X(s)) ds+

∫ νN

Jmax
N /N

h(X(s)) ds.

(5.3.9)

Next using (5.3.9) and the triangle inequality, one gets,∣∣∣N−1
∑

i∈J (µN ,νN )

h
(
X(

i

N
)
)
−
∫ νN

µN

h(X(s)) ds
∣∣∣

=
∣∣∣ ∑
i∈J (µN ,νN )

∫ (i+1)/N

i/N
h
(
X(

i

N
)
)
ds−

∑
i∈J (µN ,νN )

∫ (i+1)/N

i/N
h(X(s)) ds

−
∫ Jmin

N /N

µN

h(X(s)) ds−
∫ νN

Jmax
N /N

h(X(s)) ds
∣∣∣

≤
∑

i∈J (µN ,νN )

∫ (i+1)/N

i/N

∣∣∣h(X(
i

N
)
)
− h(X(s))

∣∣∣ds
+

∫ Jmin
N /N

µN

|h(X(s))| ds+
∫ νN

Jmax
N /N

|h(X(s))| ds. (5.3.10)

In view of (5.3.10), in order to prove that Lemma 5.3.2 (i) holds, it remains to
show that there are two positive constants c1, c2 such that for all N ≥ p+ 1,

E

{ ∑
i∈J (µN ,νN )

∫ (i+1)/N

i/N

∣∣∣h(X(
i

N
)
)
− h(X(s))

∣∣∣ds} ≤ c1N
−1/2(νN − µN )1/2;

(5.3.11)
and

E

{∫ Jmin
N /N

µN

|h(X(s))| ds+
∫ νN

Jmax
N /N

|h(X(s))| ds
}

≤ c2N
−1/2(νN − µN )1/2.

(5.3.12)
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Let us first prove that (5.3.11) is satisfied. Using the Taylor expansion of h of order
1 around X(i/N) with integral remainder, one has,

h(X(s)) = h
(
X(

i

N
)
)
+
(
X(

i

N
)−X(s)

) ∫ 1

0
h′
(
X(

i

N
) + θ

(
X(s)−X(

i

N
)
))

dθ.

(5.3.13)
We denote by ∥X∥∞ the random variable defined as ∥X∥∞ = sups∈[0,1] |X(s)|.
Since {X(s)}s∈[0,1] is a Gaussian process with continuous trajectories, by applying
Dudley’s Theorem and Borell’s inequality (more precisely, with the same arguments
for the proof of E (eṼ ) < +∞ on Page 1445 − 1446 of [52], see also [44]), one can
show that

E (e∥X∥∞) < +∞. (5.3.14)

Recall that for all fixed nonnegative real l, there is a constant c > 0 such that every
nonnegative real x, one has,

xl ≤ cex. (5.3.15)

It follows from (5.3.14) and (5.3.15) that,

E (∥X∥l∞) ≤ cE (e∥X∥∞) < +∞. (5.3.16)

Next, using (5.3.13) and the fact that h ∈ C1
pol(R), one obtains∣∣∣h(X(s))− h

(
X(

i

N
)
)∣∣∣ ≤

∣∣∣X(
i

N
)−X(s)

∣∣∣ sup
t∈[−∥X∥∞,∥X∥∞]

|h′(t)|

≤ c3

∣∣∣X(
i

N
)−X(s)

∣∣∣(1 + ∥X∥K∞), (5.3.17)

where c3,K are the two constants appearing in (5.1.3). It follows from (5.3.17) and
Cauchy-Schwarz inequality that

E
∣∣∣h(X(s))− h

(
X(

i

N
)
)∣∣∣ ≤ c3

(
E
∣∣∣X(

i

N
)−X(s)

∣∣∣2)1/2(
E(1 + ∥X∥K∞)2

)1/2
= c4

(
E
∣∣∣X(

i

N
)−X(s)

∣∣∣2)1/2

, (5.3.18)

where c4 = c3

(
E(1 + ∥X∥K∞)2

)1/2
< +∞ (thanks to (5.3.16)) is a positive constant

which does not depend on N . Moreover, Lemma 2.12 in [7], the fact that s ∈
[i/N, (i+ 1)/N ] and the assumption that H(·) is with values in (1/2, 1), yield that
there is a constant c5 > 0 such that

E
{∣∣X(

i

N
)−X(s)

∣∣2} ≤ c5
∣∣ i
N

− s
∣∣2H(i/N) ≤ c5N

−2H(i/N) ≤ c5N
−1. (5.3.19)

Thus, combining 5.3.18) with (5.3.19), one gets that,

E
∣∣∣h(X(s))− h

(
X(

i

N
)
)∣∣∣ ≤ c4(c5)

1/2N−1/2 (5.3.20)
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Next, it follows from (5.3.11), Fubini Theorem and (5.3.20) that

E

{ ∑
i∈J (µN ,νN )

∫ (i+1)/N

i/N

∣∣∣h(X(
i

N
))− h(X(s))

∣∣∣ ds}

=
∑

i∈J (µN ,νN )

∫ (i+1)/N

i/N
E

{∣∣∣h(X(
i

N
))− h(X(s))

∣∣∣}ds

≤ c4(c5)
1/2N−3/2Card(J (µN , νN )). (5.3.21)

Moreover, the assumption that limN→+∞N(νN − µN ) = +∞ implies that, one has
for all N big enough,

Card(J (µN , νN )) ≤ [NνN ] + 1− [NµN ] + 1 ≤ 2N(νN − µN ). (5.3.22)

Next, (5.3.21), (5.3.22) and the fact that 0 < νN − µN ≤ 1 lead to

E

{ ∑
i∈J (µN ,νN )

∫ (i+1)/N

i/N

∣∣∣h(X(
i

N
))− h(X(s))

∣∣∣ds}
≤ 2c4(c5)

1/2N−1/2(νN − µN )

≤ c6N
−1/2(νN − µN )1/2, (5.3.23)

where c6 = 2c4(c5)
1/2; which proves that (5.3.11) holds.

Let us now show that (5.3.12) is satisfied. Observe that for all N ≥ p+ 1,

Jmin
N ∈

{
[NµN ], [NµN ] + 1

}
(5.3.24)

and
Jmax
N = min

(
[NνN ], N − p− 1

)
. (5.3.25)

(5.3.24) and (5.3.25) imply that

∣∣∣Jmin
N

N
− µN

∣∣∣ ≤ max
{∣∣∣ [NµN ]

N
− µN

∣∣∣, ∣∣∣ [NµN ] + 1

N
− µN

∣∣∣}
≤ max

{
µN − NµN − 1

N
,
NµN + 1

N
− µN

}
= N−1; (5.3.26)

and when [NνN ] ≤ N − p− 1,∣∣∣Jmax
N

N
− νN

∣∣∣ =
∣∣∣ [NνN ]

N
− νN

∣∣∣
≤ νN − NνN − 1

N
= N−1; (5.3.27)
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when N−p−1 < [NνN ], one has N−p−1 < NνN ≤ N , i.e. 0 < |N−p−1−NνN | ≤
p+ 1, thus ∣∣∣Jmax

N

N
− νN

∣∣∣ =
∣∣∣N − p− 1

N
− νN

∣∣∣
=

|N − p− 1−NνN |
N

≤ (p+ 1)N−1. (5.3.28)

Combining (5.3.27) with (5.3.28), we get∣∣∣Jmax
N

N
− νN

∣∣∣ ≤ (p+ 1)N−1. (5.3.29)

It follows from the fact that h ∈ C1
pol(R), (5.3.26) and (5.3.29) that

E

{∫ Jmin
N /N

µN

|h(X(s))| ds+
∫ νN

Jmax
N /N

|h(X(s))| ds
}

≤ c3

(∣∣∣Jmin
N

N
− µN

∣∣∣+ ∣∣∣Jmax
N

N
− νN

∣∣∣)E (1 + ∥X∥K∞)

≤ c7N
−1. (5.3.30)

where c3 > 0 is the constant in (5.3.17) and c7 = (p + 2)c3E (1 + ∥X∥K∞). Next
observe that the assumption limN→+∞N(νN − µN ) = +∞ implies that N−1 ≤
N−1/2(νN − µN )1/2 for N big enough. Putting together the latter inequality and
(5.3.30), we prove that (5.3.12) holds. Combining (5.3.10), (5.3.11) and (5.3.12), we
get Lemma 5.3.2 (i). �

Let us now show that Lemma 5.3.2 (iii) holds.
Proof of Lemma 5.3.2 (iii): By using the triangle inequality and Cauchy-Schwarz
inequality, one obtains

E

∣∣∣∣ 1

N(νN − µN )

∑
i∈J (µN ,νN )

(∆aXi,N )2

Var(∆aXi,N )

(
h(Xi,N )− h

(
X(

i

N
)
))∣∣∣∣

≤ 1

N(νN − µN )

∑
i∈J (µN ,νN )

(
E
(
(∆aXi,N )4

))1/2
Var(∆aXi,N )

(
E
∣∣∣h(Xi,N )− h

(
X(

i

N
)
)∣∣∣2)1/2

.

(5.3.31)

On one hand, the equivalence of Gaussian moments, implies that there is constant
c1 > 0, non depending on N and i, such that

E
(
(∆aXi,N )4

)
= c1

(
Var(∆aXi,N )

)2
; (5.3.32)

On the other hand, similarly to (5.3.20), one can show that there exists a constant
c2 > 0, non depending on N and i, such that

E
∣∣∣h(Xi,N )− h

(
X(

i

N
)
)∣∣∣2 ≤ c2N

−1. (5.3.33)



64
Chapter 5. Multifractional stochastic volatility models: statistical

inference related to the hidden volatility

Finally, Lemma 5.3.2 (iii) results from (5.3.31), (5.3.32), (5.3.33), (5.3.22) and the
fact that 0 < νN − µN ≤ 1:

E

∣∣∣∣ 1

N(νN − µN )

∑
i∈J (µN ,νN )

(∆aXi,N )2

Var(∆aXi,N )

(
h(Xi,N )− h

(
X(

i

N
)
))∣∣∣∣

≤ (c1c2)
1/2(N(νN − µN ))−1Card(J (µN , νN ))N−1/2

≤ 2(c1c2)
1/2N−1/2

≤ c3(N(νN − µN ))−1/2, (5.3.34)

where c3 = 2(c1c2)
1/2. �

In order to prove Part (iv) of Lemma 5.3.2, we need the following lemma whose
proof is given in Appendix.

Lemma 5.3.3 There is a constant c > 0 such that for every i ∈ {0, . . . , N − p− 1}
one has,∣∣∣Var(∆aXi,N )− C(i/N)N−2H(i/N)

∣∣∣ ≤ c log(N)N−1−2H(i/N). (5.3.35)

Proof of Lemma 5.3.2 (iv): By applying Lemma 5.3.3, it follows that there is a
constant c1 > 0 such that, for all N ≥ p+ 1 and all i ∈ {0, . . . , N − p− 1},

∣∣∣ 1

C(i/N)N−2H(i/N)
− 1

Var(∆aXi,N )

∣∣∣ =
|Var(∆aXi,N )− C(i/N)N−2H(i/N)|
C(i/N)N−2H(i/N)Var(∆aXi,N )

≤ c1 log(N)N−1

C(i/N)Var(∆aXi,N )
.

(5.3.36)

By using (5.3.2), (5.3.8), the triangle inequality, (5.3.36) and Cauchy-Schwarz in-
equality, one has

E
{∣∣∣Q(h;µN , νN )− Q̃(h;µN , νN )

∣∣∣}
≤ 1

N(νN − µN )

∑
i∈J (µN ,νN )

E
(
|Var(∆aXi,N )− C(i/N)N−2H(i/N)|
C(i/N)N−2H(i/N)Var(∆aXi,N )

(∆aXi,N )2h(Xi,N )

)
≤ c1( min

s∈[0,1]
C(s))−1(log(N)N−1)(N(νN − µN ))−1

×
∑

i∈J (µN ,νN )

(
E (∆aXi,N )4(

Var(∆aXi,N )
)2)1/2(

E |h(Xi,N )|2
)1/2

. (5.3.37)

Notice that (5.2.15) implies that 0 < mins∈[0,1]C(s) and consequently that
(mins∈[0,1]C(s))

−1 < +∞. It follows from (5.3.37), (5.3.32), the fact that h ∈
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C1
pol(R) and (5.3.22) that

E
{∣∣∣Q(h;µN , νN )− Q̃(h;µN , νN )

∣∣∣}
≤ c1(c2)

1/2( min
s∈[0,1]

C(s))−1(log(N)N−1)(N(νN − µN ))−1
∑

i∈J (µN ,νN )

(
E |h(Xi,N )|2

)1/2
≤ 2c1(c2c3)

1/2( min
s∈[0,1]

C(s))−1(log(N)N−1)
(
E (1 + ∥X∥K∞)2

)1/2
≤ c4 log(N)N−1, (5.3.38)

where

c4 = 2c1(c2c3)
1/2( min

s∈[0,1]
C(s))−1

(
E (1 + ∥X∥K∞)2

)1/2
,

with c2,K being the two constants introduced in (5.1.3) and c3 being the con-
stant in (5.3.32). Finally Lemma 5.3.2 (iv) results from (5.3.38) and the fact that
log(N)N−1/2 ≤ (νN − µN )−1/2 for all N ≥ p+ 1. �

Let us now focus on the proof of Part (ii) of Lemma 5.3.2; this proof relies on
some technics which are more or less similar to those in [35, 36]. First we need to
give some preliminary results. The following lemma is a more or less classical result
on centered 2-dimensional Gaussian vectors; its proof is given in Appendix.

Lemma 5.3.4 Let (Z,Z ′) be a 2-D centered Gaussian random vector and assume
that the variances of Z and Z ′ are both equal to the same quantity denoted by v.
Then, one has,

E
{
(Z2 − v)(Z ′2 − v)

}
= 2
(
Cov(Z,Z ′)

)2
. (5.3.39)

Lemma 5.3.5 For every N ≥ p + 1, let ρN : [µN , νN ] → R be an arbitrary deter-
ministic bounded function and let ΣN (ρN ) be the quantity defined as,

ΣN (ρN ) =
∑

j∈J (µN ,νN )

{ (∆aXj,N )2

Var(∆aXj,N )
− 1
}
ρN (j/N), (5.3.40)

where J (µN , νN ) is the set introduced in (5.2.14). Then the inequality,

E
{(

ΣN (ρN )
)2} ≤ c∥ρN∥2∞N(νN − µN ),

where ∥ρN∥∞ := supx∈[µN ,νN ] |ρN (x)| and c > 0 is a constant non depending on N ,
holds for every N ≥ p+ 1.

In order to prove Lemma 5.3.5, we need the following proposition which concerns
the estimation of the correlation between the generalized increments ∆aXj,N and
∆aXj′,N of the mBm {X(s)}s∈[0,1]; we refer to Appendix for its proof.
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Proposition 5.3.6 Assume that H(·) ∈ C2([0, 1]) and M(a) ≥ 3 (recall that M(a)

is the number of the vanishing moments of the sequence a). Then there is a constant
c > 0 such that one has for any integer N ≥ p+1 and each j, j′ ∈ {0, . . . , N−p−1},∣∣∣Corr

{
∆aXj,N ,∆aXj′,N

}∣∣∣ ≤ c

(
1

1 + |j − j′|

)
, (5.3.41)

where

Corr
{
∆aXj,N ,∆aXj′,N

}
:= E


∆aXj,N√

Var
{
∆aXj,N

} ∆aXj′,N√
Var

{
∆aXj′,N

}
 .

Proof of Lemma 5.3.5: In view of (5.3.40), one clearly has that

E
{
(ΣN (ρN ))2

}
=

∑
j,j′∈J (µN ,νN )

ρN (j/N)ρN (j′/N)E
{( (∆aXj,N )2

Var(∆aXj,N )
− 1
)( (∆aXj′,N )2

Var(∆aXj′,N )
− 1
)}

.

Next it follows from Lemma 5.3.4, Proposition 5.3.6 and (5.3.22), that

E
{
(ΣN (ρN ))2

}
= 2

∑
j,j′∈J (µN ,νN )

ρN (j/N)ρN (j′/N)
(
Corr(∆aXj,N ,∆aXj′,N )

)2
≤ 2c1∥ρN∥2∞

∑
j,j′∈J (µN ,νN )

( 1

1 + |j − j′|

)2
≤ 4c1∥ρN∥2∞

∑
j∈J (µN ,νN )

∞∑
l=−∞

( 1

1 + |l|

)2
= 4c1∥ρN∥2∞Card(J (µN , νN ))

∞∑
l=−∞

( 1

1 + |l|

)2
≤ c2∥ρN∥2∞N(νN − µN ), (5.3.42)

where c1 is the constant introduced in (5.3.41) and c2 = 8c1
∑∞

l=−∞(1 + |l|)−2 are
two constants which do not depend on N . �

Lemma 5.3.7 For every N ≥ p+1, let ρN : [µN , νN ] → R be an arbitrary bounded
deterministic function that vanishes outside a dyadic interval of the form [k2−j0LN+

µN , k
′2−j0LN + µN ], where LN := νN − µN and where the integers j0, k and k′ are

arbitrary and satisfy j0 ≥ 1 and 0 ≤ k < k′ ≤ 2j0 . Then there exists a constant
c > 0 which does not depend on N , k, k′ and j0, such that for all integers N ≥ p+1,
and j1 satisfying 2j0 ≤ 2j1 ≤ NLN < 2j1+1, one has

E
{
(ΣN (ρN ))2

}
≤ c∥ρN∥2∞(k′ − k)2j1−j0 . (5.3.43)
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Proof of Lemma 5.3.7: Let I(k, k′, j0, N) be the set of indices defined as,

I(k, k′, j0, N) =
{
i ∈ J (µN , νN ) : i ∈

[
(k2−j0LN + µN )N, (k′2−j0LN + µN )N

]}
.

One has,

Card
(
I(k, k′, j0, N)

)
≤ N(k′ − k)2−j0LN + 1 ≤ 4(k′ − k)2j1−j0 , (5.3.44)

where the last inequality follows from the fact that NLN ≤ 2j1+1. Using the method
which allowed us to obtain (5.3.42) and replacing J (µN , νN ) by I(k, k′, j0, N), one
can show that,

E
{
(ΣN (ρN ))2

}
= 2

∑
j,j′∈I(k,k′,j0,N)

ρN (j/N)ρN (j′/N)
(
Corr(∆aXj,N ,∆aXj′,N )

)2
≤ c∥ρN∥2∞(k′ − k)2j1−j0 , (5.3.45)

where c > 0 is a constant which does not depend on k, k′, j0, N .
We are now in position to prove part (ii) of Lemma 5.3.2.

Proof of Part (ii) of Lemma 5.3.2: Let N ≥ p+ 1 be fixed. Observe that, with
probability 1, the function t 7→ h(X(t)) belongs to C

(
[µN , νN ]

)
, the space of the

continuous functions over [µN , νN ]. By expanding it, in the Schauder basis of this
space, one obtains that

h(X(t)) = λ0ϕ0(t) + λ1ϕ1(t) +

∞∑
j=0

2j∑
k=1

λj,kϕj,k(t), (5.3.46)

where λ0 = h(X(µN )), λ1 = h(X(νN )), ϕ0(t) = (νN − t)L−1
N , ϕ1(t) = (t− µN )L−1

N ,
with LN = νN − µN ,

λj,k = 2−
j
2

{
2h
(
X
(2k − 1

2j+1
LN+µN

))
−h
(
X
( 2k

2j+1
LN+µN

))
−h
(
X
(2k − 2

2j+1
LN+µN

))}
,

and

ϕj,k(t)

= 23j/2L−1
N

∫ t

µN

(
1
[
(2k−2)LN

2j+1 +µN ,
(2k−1)LN

2j+1 +µN ]
(s)− 1

[
(2k−1)LN

2j+1 +µN ,
2kLN
2j+1 +µN ]

(s)
)
ds.

(5.3.47)

Observe that the series in (5.3.46) is, with probability 1, uniformly convergent in
[µN , νN ]. Now let us show that there is a constant c > 0 such that

E {λ20 + λ21} ≤ c, (5.3.48)

and
E {λ2j,k} ≤ c2−j(1+2mins∈[µN ,νN ] H(s)), for every j, k. (5.3.49)
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By using the fact that h ∈ C1
pol(R) as well as the fact that all the moments of the

random variable ∥X∥∞ := sups∈[0,1] |X(s)| are finite, one gets,

E |λ0|2 = E
(
h(X(µN ))

)2
≤ E

(
c(1 + ∥X∥∞)K

)2
< +∞. (5.3.50)

Similarly, one can show that
E |λ1|2 < +∞. (5.3.51)

Combining (5.3.50) and (5.3.51), one obtains (5.3.48). Let us now show that (5.3.49)
holds. Using, the expression of λj,k, the inequality (a+b)2 ≤ 2a2+2b2 for all a, b ∈ R
and the triangle inequality one gets,

E |λj,k|2

= E
∣∣∣2−j/2

{
2h
(
X
(2k − 1

2j+1
LN + µN

))
− h
(
X
( 2k

2j+1
LN + µN

))
−h
(
X
(2k − 2

2j+1
LN + µN

))}∣∣∣2
≤ 2−j

{
2E
∣∣∣h(X(2k − 1

2j+1
LN + µN

))
− h
(
X
( 2k

2j+1
LN + µN

))∣∣∣2
+2E

∣∣∣h(X(2k − 1

2j+1
LN + µN

))
− h
(
X
(2k − 2

2j+1
LN + µN

))∣∣∣2}.
(5.3.52)

Thus, in view of (5.3.52), for proving (5.3.49), it suffices to show that there is a
constant c > 0 (which does not depend on N , j and k) such that one has,

E
∣∣∣h(X(2k − 1

2j+1
LN + µN

))
− h
(
X
( 2k

2j+1
LN + µN

))∣∣∣2 ≤ c2−2jmins∈[µN ,νN ] H(s)

(5.3.53)
and

E
∣∣∣h(X(2k − 1

2j+1
LN + µN

))
− h
(
X
(2k − 2

2j+1
LN + µN

))∣∣∣2 ≤ c2−2jmins∈[µN ,νN ] H(s)

(5.3.54)
We will only prove that (5.3.53) holds since (5.3.54) can be obtained in the same way.
By using the fact that h ∈ C1

pol(R), the Mean Value Theorem and Cauchy-Schwarz
inequality, one has

E
∣∣∣h(X(2k − 1

2j+1
LN + µN

))
− h
(
X
( 2k

2j+1
LN + µN

))∣∣∣2
≤ E

((
sup

s∈[−∥X∥∞,∥X∥∞]
|h′(s)|

)∣∣∣X(2k − 1

2j+1
LN + µN

)
−X

( 2k

2j+1
LN + µN

)∣∣∣)2

≤
(
E
(
c(1 + ∥X∥∞)K

)4)1/2(
E
∣∣∣X(2k − 1

2j+1
LN + µN

)
−X

( 2k

2j+1
LN + µN

)∣∣∣4)1/2.
(5.3.55)

On the other hand, standard computations (see e.g. [8]) allow to show that, there
is a constant c > 0 (non depending on N) such that for all t, t′ ∈ [µN , νN ], one has

E |X(t)−X(t′)|2 ≤ c|t− t′|2mins∈[µN ,νN ] H(s).
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Then the latter inequality, the equivalence of the Gaussian moments and (5.3.55)
imply that (5.3.53) holds; recall that (5.3.54) can be obtained in the same way. Next
combining (5.3.52) with (5.3.53) and (5.3.54), one gets (5.3.49).

Now observe that (5.3.46) (5.3.40) entail that

∑
i∈J (µN ,νN )

{ (∆aXi,N )2

Var(∆aXi,N )
− 1
}
h(X(i/N))

= λ0ΣN (ϕ0) + λ1ΣN (ϕ1) +
∞∑
j=0

2j∑
k=1

λj,kΣN (ϕj,k). (5.3.56)

Also observe that by using the triangle inequality, Cauchy-Schwarz inequality, Lem-
ma 5.3.5, (5.3.48) and the fact that ∥ϕ0∥∞ = ∥ϕ1∥∞ = 1, one gets that there is a
constant c > 0 such that for all N ,

E
∣∣λ0ΣN (ϕ0) + λ1ΣN (ϕ1)

∣∣
≤ E

∣∣λ0ΣN (ϕ0)
∣∣+ E

∣∣λ1ΣN (ϕ1)
∣∣

≤
(
E
∣∣λ0∣∣2)1/2(E ∣∣ΣN (ϕ0)

∣∣2)1/2 + (E ∣∣λ1∣∣2)1/2(E ∣∣ΣN (ϕ1)
∣∣2)1/2

≤ c
(
N(νN − µN )

)1/2
. (5.3.57)

Thus in view of (5.3.56) and (5.3.57), in order to finish our proof, it remains to show
that there exists a constant c > 0 such that for all N ≥ p+ 1, one has,

E
∣∣∣ ∞∑
j=0

2j∑
k=1

λj,kΣN (ϕj,k)
∣∣∣ ≤ c(N(νN − µN ))1/2. (5.3.58)

Observe that, in view of the assumption that limN→+∞NLN = +∞, one has for
all N big enough, NLN ≥ 2. Let j1 ≥ 1 be the unique integer such that

2j1 ≤ NLN < 2j1+1.

It follows from the triangle inequality, Cauchy-Schwarz inequality, (5.3.49), the fact
that for all j, k,

suppϕj,k ⊆
[k − 1

2j
LN + µN ,

k

2j
LN + µN

]
, (5.3.59)
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and Lemma 5.3.7 in which one takes j0 = j, that

E
∣∣∣ j1∑
j=0

2j∑
k=1

λj,kΣN (ϕj,k)
∣∣∣

≤
j1∑
j=0

2j∑
k=1

(
E |λj,k|2

)1/2(
E |ΣN (ϕj,k)|2

)1/2
≤ c

j1∑
j=0

2j∑
k=1

2−j(1+2mins∈[µN ,νN ] H(s))/2
(
∥ϕj,k∥2∞(k − (k − 1))2j1−j

)1/2
= c

j1∑
j=0

2j∑
k=1

2−j(1+mins∈[µN ,νN ] H(s))+j1/2∥ϕj,k∥∞,

(5.3.60)

where c > 0 is a constant. Then using (5.3.60), the fact that ∥ϕj,k∥∞ ≤ 2j/2, the
inequalities mins∈[µN ,νN ]H(s) ≥ mins∈[0,1]H(s) > 1/2 and 2j1 ≤ NLN , one gets
that

E
∣∣∣ j1∑
j=0

2j∑
k=1

λj,kΣN (ϕj,k)
∣∣∣

≤ c

j1∑
j=0

2j∑
k=1

2−j(1/2+mins∈[µN ,νN ] H(s))+j1/2

≤ c2j1/2
+∞∑
j=0

2j(1/2−mins∈[µN ,νN ] H(s))

≤ c1(N(νN − µN ))1/2,

(5.3.61)

where c1 = c
∑+∞

j=0 2
j(1/2−mins∈[0,1] H(s)) < +∞. Let us now show that there is a

constant c2 > 0 non depending on j1 and N , such that

E
∣∣∣ ∞∑
j=j1+1

2j∑
k=1

λj,kΣN (ϕj,k)
∣∣∣ ≤ c2(N(νN − µN ))1/2. (5.3.62)

First observe that, for every fixed (j, k), (5.3.59) and the inequalities 2−j ≤ 2−j1−1 <

(NLN )−1 imply that there is at most one index i ∈ J (µN , νN ) such that ϕj,k(i/N) ̸=
0. Therefore one has

E |ΣN (ϕj,k)|2 ≤ ∥ϕj,k∥2∞E
( (∆aXi,N )2

Var(∆aXi,N )
− 1
)2
.

(5.3.63)
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Then noticing that ∥ϕj,k∥∞ ≤ 2j/2 and that E
(

(∆aXi,N )2

Var(∆aXi,N )
− 1
)2

= E
(
Z2 − 1

)2,
where Z is standard Gaussian random variable. It follows (5.3.63), that

E |ΣN (ϕj,k)|2 ≤ c2j , (5.3.64)

where c > 0 is a constant non depending on N, j and k. Now, for every fixed
j ≥ j1 + 1, let us denote by Kj,N the set of indices k ∈ {1, . . . , 2j} defined as

Kj,N =
{
k ∈ {1, . . . , 2j} : ∃ i ∈ J (µN , νN ) such that ϕj,k(i/N) ̸= 0

}
.

Observe that when k /∈ Kj,N then for every i ∈ J (µN , νN ), one has ϕj,k(i/N) = 0

and as a consequence,
ΣN (ϕj,k) = 0. (5.3.65)

On the other hand, by using (5.3.59) and the fact that for all k and k′ satisfying
k ̸= k′, one has(k − 1

2j
LN + µN ,

k

2j
LN + µN

)
∩
(k′ − 1

2j
LN + µN ,

k′

2j
LN + µN

)
= ∅,

it follows that

Card(Kj,N ) ≤ CardJ (µN , νN ) ≤ 2N(νN − µN ). (5.3.66)

Next it follows from, (5.3.65), the triangle inequality, Cauchy-Schwarz inequali-
ty, (5.3.49), (5.3.64), (5.3.66), and the inequalities mins∈[0,1]H(s) > 1/2, 2−j1 <

2(NLN )−1, that

E
∣∣∣ +∞∑
j=j1+1

2j∑
k=1

λj,kΣN (ϕj,k)
∣∣∣

≤
+∞∑

j=j1+1

∑
k∈Kj,N

(
E |λj,k|2

)1/2(
E |ΣN (ϕj,k)|2

)1/2
≤ c

+∞∑
j=j1+1

∑
k∈Kj,N

2−j(1+2mins∈[µN ,νN ] H(s))/22j/2

≤ 2cN(νN − µN )

+∞∑
j=j1

2−jmins∈[0,1] H(s)

= 2cN(νN − µN )
2−j1 mins∈[0,1] H(s)

1− 2−mins∈[0,1] H(s)

≤ c′
(
NLN

)1−mins∈[0,1] H(s)

≤ c′(N(νN − µN ))1/2, (5.3.67)

where the constant c′ = 4c
(
1 − 2−mins∈[0,1] H(s)

)−1 and thus we obtain (5.3.62).
Moreover combining (5.3.62) with (5.3.61) one gets (5.3.58).

Finally, Part (ii) of Lemma 5.3.2 results from (5.3.56), (5.3.57) and (5.3.58).
�
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5.3.2 Proof of Theorem 5.2.1 when Y is arbitrary

We need the following lemmas.

Lemma 5.3.8 For all N ≥ p+ 1 and j ∈ {0, . . . , N − p− 1}, one sets

ej,N = ∆aY j,N − f ′(Xj,N )∆aXj,N and e′j,N = h(Y j,N )− h(f(Xj,N )).

Then for all real l ≥ 1 there exists a constant c = c(l) > 0, such that the inequalities,

E {|ej,N |l} ≤ cN−2H(j/N)l (5.3.68)

and

E {|e′j,N |l} ≤ cN−H(j/N)l, (5.3.69)

hold for every N ≥ p+ 1 and j ∈ {0, . . . , N − p− 1}.

Proof of Lemma 5.3.8: First we prove that (5.3.68) is satisfied. By using (5.2.9),
(5.2.3) and the fact that

∑p
k=0 ak = 0, we get

∆aY j,N =

p∑
k=0

akN

∫ (j+k+1)/N

(j+k)/N

(
f(X(s))− f(Xj,N )

)
ds. (5.3.70)

Moreover, a second order Taylor expansion of f around Xj,N allows to obtain that,

f(X(s))− f(Xj,N ) = (X(s)−Xj,N )f ′(Xj,N )

+(X(s)−Xj,N )2
∫ 1

0
(1− ϑ)f (2)(Xj,N + ϑ(X(s)−Xj,N )) dϑ.(5.3.71)

Next, (5.3.70) and (5.3.71) imply that

ej,N = N

p∑
k=0

ak

∫ (j+k+1)/N

(j+k)/N
(X(s)−Xj,N )2

∫ 1

0
f (2)(Xj,N + ϑ(X(s)−Xj,N )) dϑ ds.

(5.3.72)
Then, using the fact that x 7→ xl is a convex function, Hölder inequality, Fubini
Theorem and Cauchy-Schwarz inequality, it follows from (5.3.72), that for all real
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l ≥ 1,

E |ej,N |l

≤ N l(p+ 1)l−1
p∑

k=0

|ak|lN−l+1

×E
(∫ (j+k+1)/N

(j+k)/N
|X(s)−Xj,N |2l

∣∣∣ ∫ 1

0
f (2)(Xj,N + ϑ(X(s)−Xj,N )) dϑ

∣∣∣l ds)
= N(p+ 1)l−1

p∑
k=0

|ak|l

×
∫ (j+k+1)/N

(j+k)/N
E
(
|X(s)−Xj,N |2l

∣∣∣ ∫ 1

0
f (2)(Xj,N + ϑ(X(s)−Xj,N )) dϑ

∣∣∣l)ds

≤ N(p+ 1)l−1
p∑

k=0

|ak|l
∫ (j+k+1)/N

(j+k)/N

(
E
∣∣∣X(s)−Xj,N

∣∣∣4l)1/2

×
(
E
∣∣∣ ∫ 1

0
f (2)(Xj,N + ϑ(X(s)−Xj,N )) dϑ

∣∣∣2l)1/2

ds. (5.3.73)

Moreover, using (5.2.11), Hölder inequality and Fubini Theorem, one has that,

E
∣∣∣X(s)−Xj,N

∣∣∣4l ≤ E
(
N

∫ (j+1)/N

j/N
|X(s)−X(t)| dt

)4l
≤ N

∫ (j+1)/N

j/N
E |X(s)−X(t)|4l dt. (5.3.74)

Since for any s, t ∈ [0, 1], X(s) − X(t) is a Gaussian random variable, then it
follows from the equivalence of Gaussian moments, there is a constant c1(l) > 0

only depending on l, such that

E |X(s)−X(t)|4l = c1(l)
(
E |X(s)−X(t)|2

)2l
. (5.3.75)

Also, observe that with the similarly to (5.3.19) and by using the fact H is a C2

function, one can show that two constants c1, c2 (non depending j, j, k, s and t)
such that, for all s ∈ [(j + k)/N, (j + k + 1)/N ] and t ∈ [j/N, (j + 1)/N ], one has,

E |X(s)−X(t)|2 ≤ c1N
−2mins∈[j/N,(j+p+1)/N ] H(s) ≤ c2N

−2H(j/N). (5.3.76)

Next putting together (5.3.74), (5.3.75) and (5.3.76), it follows that,

E
∣∣∣X(s)−Xj,N

∣∣∣4l
≤ c1(l)N

∫ (j+1)/N

j/N

∣∣∣E (X(s)−X(t))2
∣∣∣2l dt

≤ c2(l)N
−4lH(j/N), (5.3.77)
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where c2(l) = c1(l)c
2l
2 is a constant only depending on l.

On the other hand, the fact that f ∈ C2
pol(R), the triangle inequality, the in-

equality |X(s)| ≤ ∥X∥∞, and the inequality |Xj,N | ≤ ∥X∥∞, imply that,

E
∣∣∣ ∫ 1

0
f (2)(Xj,N + ϑ(X(s)−Xj,N )) dϑ

∣∣∣2l
≤ E

(
c(1 + 3K∥X∥K∞)

)2l
= c3(l), (5.3.78)

where c,K are the constants introduced in (5.1.3) and c3(l) > 0 is a constant only
depending on l,K. Then (5.3.68) results from (5.3.73), (5.3.77) and (5.3.78). The
inequality (5.3.69) can be proved in a rather similar way. �

Lemma 5.3.9 For all N ≥ p+ 1, one sets

e
(1)
N =

1

N(νN − µN )

∑
j∈J (µN ,νN )

(
e2j,N + 2∆aXj,Nf

′(Xj,N )ej,N
)

C(j/N)N−2H(j/N)
h(Y j,N )

and

e
(2)
N =

1

N(νN − µN )

∑
j∈J (µN ,νN )

(
∆aXj,Nf

′(Xj,N )
)2

C(j/N)N−2H(j/N)
e′j,N .

Then there is a constant c > 0, such that the inequality

E {|e(1)N |}+ E {|e(2)N |} ≤ cN−1/2,

holds for every N ≥ p+ 1.

Proof of Lemma 5.3.9: The lemma can be obtained by using Lemma 5.3.8,
Lemma 7.2.2, the fact that h ∈ C1

pol(R) and the fact that f ∈ C2
pol(R) . �

Lemma 5.3.10 For every function h ∈ C1
pol(R) one has

V (h;µN , νN ) = Q((f ′)2 × h ◦ f ;µN , νN ).

Moreover, for each N ≥ p+ 1 one has

V (h;µN , νN ) = Q((f ′)2 × h ◦ f ;µN , νN ) + e
(1)
N + e

(2)
N .

Proof of Lemma 5.3.10: The lemma can be obtained just by using the definitions
of V (h;µN , νN ), Q((f ′)2×h◦f ;µN , νN ), V (h;µN , νN ), Q((f ′)2×h◦f ;µN , νN ) and
standard computations. �

We are now in position to prove Theorem 5.2.1.
Proof of Theorem 5.2.1: We use Lemmas 5.3.8, 5.3.9 and 5.3.10 as well as
Theorem 5.3.1 and we follow the same lines as in the proof of Theorem 3 in [36]. �
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5.3.3 Proof of Theorem 5.2.2

Theorem 5.2.2 is a straightforward consequence of Theorem 5.2.1 and the following
proposition which allows to control the L1(Ω) norm of the error one makes when
one replaces the estimator V (h;µNn , νNn) by the estimator V̂ (h;µNn , νNn).

Proposition 5.3.11 For any n big enough one sets

v(Nn,mn) = (N−1/2
n +m−1/2

n )(1 +m−1
n N

2maxs∈[µNn
,νNn

] H(s)
n ).

Recall that mn has been defined in (5.2.4). Let us assume that Nn is chosen such

that m−1
n N

2maxs∈[µN ,νN ] H(s)
n remains bounded when n goes to infinity. Then, for all

h ∈ C1
pol(R), there exists a constant c > 0 such that for any n big enough, one has

E
{∣∣∣V̂ (h;µNn , νNn)− V (h;µNn , νNn)

∣∣∣} ≤ cv(Nn,mn) = O(N−1/2
n ) (5.3.79)

The proof of this proposition is given in Appendix.�

5.4 Estimation of the unknown parameter in the linear
case

Lemma 5.4.1 Assume that (µNn)n and (νNn)n are two convergent sequences.
Then, when n goes to infinity, the random variable,

TNn := (νNn − µNn)
−1

∫ νNn

µNn

Y (s) ds,

almost surely converges to an almost surely strictly positive random variable T .

Lemma 5.4.2 Assume that (5.2.18) holds. Then the sequence( 1

Nn(νNn − µNn)

∑
i∈J (µNn ,νNn )

Ŷi,Nn,n − 1

νNn − µNn

∫ νNn

µNn

Y (s) ds
)
n

converges to 0 in L1(Ω,F ,P) with the rate (Nn(νNn − µNn))
−1/2 when n goes to

infinity. Note that in this lemma we do not necessarily suppose that Φ is of the form
Φ(x, θ) = θx.

Proof of Lemma 5.4.2: It follows from (5.2.3) that for any n big enough one has

E
∣∣∣(Nn(νNn − µNn))

−1
∑

i∈J (µNn ,νNn )

Ŷi,Nn,n − (νNn − µNn)
−1

∫ νNn

µNn

Y (s) ds
∣∣∣

≤Mn +O
(
(Nn(νNn − µNn))

−1
)
, (5.4.1)

where
Mn :=

1

Nn(νNn − µNn)

∑
i∈J (µNn ,νNn )

E
∣∣∣Ŷi,Nn,n − Y i,Nn

∣∣∣. (5.4.2)
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Next Cauchy-Schwarz inequality, Part (ii) of Lemma 7.4.2, (5.2.18), the inequalities
0 ≤ νNn − µNn ≤ 1 and the fact that H(·) is with values in (1/2, 1), imply that for
all n big enough,

Mn ≤ 1

Nn(νNn − µNn)

∑
i∈J (µNn ,νNn )

√
E (|Ŷi,Nn,n − Y i,Nn |2) (5.4.3)

= O(m−1/2
n ) = O

(
N

−maxs∈[µN ,νN ] H(s)
n

)
= O

(
(Nn(νNn − µNn))

−1/2
)
.

Finally putting together (5.4.1), (5.4.2) and (5.4.3) one obtains the lemma. �
We are now in position to prove Theorem 5.2.4.

Proof of Theorem 5.2.4: Let us set

TNn = (νNn − µNn)
−1

∫ νNn

µNn

Y (s) ds, (5.4.4)

Tn = (Nn(νNn − µNn))
−1

∑
i∈J (µNn ,νNn )

Ŷi,Nn,n, (5.4.5)

un = V̂ (1;µNn , νNn)− V (1;µNn , νNn), (5.4.6)

and
vn = Tn − TNn . (5.4.7)

Moreover, observe that (5.1.2), (5.2.7), the fact that Φ(x, θ) = θx, and (5.4.4) imply
that

V̂ (1;µNn , νNn) = 4θ2(νNn − µNn)
−1

∫ νNn

µNn

Y (s) ds = 4θ2TNn . (5.4.8)

Then it follows from (5.2.27), (5.4.4), (5.4.5), (5.4.6), (5.4.7) and (5.4.8) that

θ̂2n(µNn , νNn)− θ2 =
un − 4θ2vn
4TNn + 4vn

. (5.4.9)

Therefore, one has for any real λ > 1 and any integer n big enough

P
(
(Nn(νNn − µNn))

1/2|θ̂2n(µNn , νNn))− θ| > λ
)

≤ P

({(Nn(νNn − µNn))
1/2|un − 4θ2vn|

4TNn + 4vn
> λ

}
∩
{
TNn ≥ λ−1/2

}
∩
{
|vn| ≤ 4−1λ−1/2

})
+P
(
TNn < λ−1/2

)
+ P

(
|vn| > 4−1λ−1/2

)
≤ P

(
(Nn(νNn − µNn))

1/2|un − 4θ2vn| > 3λ3/2
)

+P
(
TNn < λ−1/2

)
+ P

(
|vn| > 4−1λ−1/2

)
.

Next the latter inequality, (5.4.4), (5.4.5), (5.4.6), (5.4.7), Theorem 5.2.2, Lemma
5.4.2 and Markov inequality, imply that there is a constant c > 0 such that for all
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real λ > 1, one has

lim sup
n→+∞

P
(
(Nn(νNn − µNn))

1/2
∣∣∣θ̂2n(µNn , νNn))− θ2

∣∣∣ > λ
)

≤ 3−1cλ−3/2 + P
(
T < λ−1/2

)
, (5.4.10)

where T := limn→+∞ TNn . Thus, it follows from (5.2.28), (5.4.10), (5.4.4) and
Lemma 5.4.1, that Theorem 5.2.4 holds. �

5.5 Histograms of the estimated values

We have tested our estimator of θ2 on simulated data and our numerical results are
summarized in the following two histograms.

To obtain the first histogram, we have proceeded as follows: we assume that
θ = 10 and H(s) = (s − 0.5)2 + 0.6 for all s ∈ [0, 1], then we simulate 1000
discretized trajectories of the process {Z(t)}t∈[0,1], finally we apply our estimator to
each trajectory which gives us 1000 estimations of θ2. The second histogram has
been obtained by using a similar method; H(·) is defined in the same way, yet in
this case we assume that θ = 0.1.
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6.1 Introduction

In this chapter we consider the class of multifractional stochastic volatility models.
We are interested in constructing an estimator of the pointwise Hölder exponent of
the hidden volatility starting from an observation of the discretized trajectory of the
model. Notice that, the local Hölder regularity of a continuous nowhere differentiable
process at each point can be measured by its pointwise Hölder exponent. Let us recall
the definition of this exponent; denote byX = {X(t)}t∈[0,1] a stochastic process with
continuous and nowhere differentiable trajectories; the pointwise Hölder exponent
of X, is the stochastic process denoted by {ρX(t)}t∈[0,1] and defined as

ρX(t) := sup
{
ρ : lim sup

h→0

|X(t+ h)−X(t)|
|h|ρ

= 0
}
.

It measures the local smoothness of X: the larger is ρX(t), the more regular is
the process X in a neighborhood of the point t. Since several years, a number of
authors have been interested in the statistical problem of the estimation of ρX(t)

starting from the observation of a discretized trajectory of the process X (see for
example [10, 17, 13, 22, 19, 21]). However, it does not always seem to be realistic
to assume that such an observation is available, but only a corrupted version of it;
therefore a natural question one can address is that whether it is still possible to
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estimate ρX(t). To our knowledge, only a few number of articles in the literature
deal with this problem and it has been studied only in a setting which basically
remains to be that of Gaussian stationary increments processes; typically when the
hidden process X is a fractional Brownian motion (fBm for short) [37, 52]. In such
a setting the hidden pointwise Hölder exponent of X has a rather simple structure
since it cannot evolve with time; recall that for a fBm {Bα(t)}t∈[0,1] with Hurst
parameter α ∈ (0, 1), one has with probability 1, for each t ∈ [0, 1], ρBα(t) = α.
The goal of this chapter, is to study the statistical problem of the estimation of
a hidden pointwise Hölder exponent in a new setting where this exponent has a
rather complex structure since it is allowed to evolve over time. More precisely
we assume that the corresponding hidden process X is a multifractional Brownian
motion (mBm for short). As we have already pointed out in the previous chapter,
mBm {X(t)}t∈[0,1] with functional parameter H(·) is an extension of fBm. It is
more flexible than fBm since its local Hölder regularity can change from one time
to another. More precisely, under the assumption that H(·) is a β-Hölder function
on [0, 1] with values in (0, β), it has been shown in [51, 18, 6] that almost surely for
all t ∈ [0, 1],

ρX(t) = H(t).

Let us now describe our statistical setting. Similarly to the previous chapter, we
consider the multifractional stochastic volatility model {Z(t)}t∈[0,1], defined for each
t ∈ [0, 1], as:

Z(t) = z0 +

∫ t

0
Φ(X(s)) dW (s), (6.1.1)

where:

• in practice, {Z(t)}t∈[0,1] denotes the logarithm of the price of the underlying
asset (z0 ∈ R is deterministic and known);

• {W (s)}s∈[0,1] is a standard Brownian motion;

• Φ : R → R is an unknown deterministic function. For all x ∈ R, we set

f(x) = (Φ(x))2. (6.1.2)

We assume that f ∈ C2
pol(R) (see (5.1.3)). This means that f is two times

continuously differentiable on the real line and there exist two constants c,K >

0 (which a priori depend on f) such that for all x ∈ R,

2∑
k=0

|f (k)(x)| ≤ c
(
1 + |x|K

)
.

Moreover, We assume that f ′, the first derivative of f , vanishes only on a
Lebesgue negligible set, that is L

(
{x ∈ R : f ′(x) = 0}

)
= 0, L being the

Lebesgue measure on R.
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• {X(s)}s∈[0,1] denotes a multifractional Brownian motion (mBm) of functional
parameter H(·). We assume that {X(s)}s∈[0,1] is independent on the Brow-
nian motion {W (s)}s∈[0,1]. We assume furthermore that H(·) is two times
continuously differentiable on [0, 1] i.e. H(·) ∈ C2([0, 1]). Let us also point
out that, unless we mention the contrary, the function H(·) is allowed to take
its values on the whole open interval (0, 1).

It is worth noticing that, there is a considerable loss of information when one ob-
serves {Z(t)}t∈[0,1] instead of {X(t)}t∈[0,1]: indeed, when H(·) is with values in
(1/2, 1), contrarily to X, the pointwise Hölder exponent of Z remains constant since
it is, at each time, almost surely equal to 1/2 (see Theorem 4.2.2). Yet we will show
that, in spite of this considerable loss of information, it is still possible, starting from
the observation of a discretized trajectory of Z, to estimate H(t0), the pointwise
Hölder exponent of X, at each time t0 ∈ (0, 1) 1.

Before ending this introduction, let us recall that stochastic volatility models
of the type (6.1.1), have been already considered by Gloter and Hoffmann [36,
35] in the case where X is fBm, and also by Rosenbaum [52] in a more general
case where X can nicely be expressed in terms of a Gaussian stationary increment
process. In [36, 35], Gloter and Hoffmann were not interested in the problem of
the estimation of pointwise Hölder exponents, which they suppose to be known. In
[52], Rosenbaum was interested in the same problem as us; he constructed wavelet
estimators of hidden pointwise Hölder exponents which converge in probability at the
optimal minimax rate. Here, we have preferred to adopt a rather different estimation
strategy from him, in order to be able to construct, under some conditions, a strongly
consistent and asymptotically normal estimator.

6.2 Statement of the main results

We suppose to have observed the sample,{
Z(0), Z

( 1

2n

)
, Z
( 2

2n

)
, . . . , Z

(2n− 1

2n

)
, Z(1)

}
,

where n denotes an integer large enough and where Z is defined by (6.1.1). Our goal
is to propose a method allowing to estimate, starting from the latter observation,
the pointwise Hölder exponent H(t0) of the hidden mBm {X(s)}s∈[0,1] at an arbi-
trary fixed point t0 ∈ (0, 1). To this end, we use a localized generalized quadratic
variations method which is reminiscent to that of the previous chapter. Before s-
tating our main results, we need to briefly fix some notations which will extensively
be used in all the sequel.

• As usual, a = (a0, . . . , ap) is an arbitrary finite fixed sequence of Rp+1 with

1Observe that, we restrict to the open interval (0, 1), in order to avoid the border effect.
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M(a) vanishing moments, that is,

p∑
k=0

klak = 0, for all l = 0, . . . ,M(a)− 1 and
p∑

k=0

kM(a)ak ̸= 0. (6.2.1)

As a consequence, one has for any l ∈ {0, . . . , 2M(a)− 1},

p∑
k=0

p∑
k′=0

akak′(k − k′)l = 0. (6.2.2)

Observe that one always has p ≥M(a). Throughout this chapter, we assume
that M(a) ≥ 2.

• For all integer N ≥ p+ 1, we denote by νN (t0) the set of indices defined as,

νN (t0) =
{
i ∈ {0, . . . , N − p− 1} : |i/N − t0| ≤ v(N)

}
, (6.2.3)

where v(·) is an arbitrary fixed function defined on [3,+∞), with val-
ues in (0, 1] which satisfies for each integer N ≥ 3, v(N) ≥ N−1 and
limN∈N,N→+∞Nv(N) = +∞.

• For all integer N ≥ p+ 1 we set

Nt0 = card(νN (t0)); (6.2.4)

observe that
Nt0 ∈

{
[2Nv(N)], [2Nv(N)] + 1}, (6.2.5)

where [·] is the integer part function.

• We denote by {Y (s)}s∈[0,1] the process defined for each s ∈ [0, 1], as,

Y (s) = f(X(s)); (6.2.6)

recall that {X(s)}s∈[0,1] is the hidden mBm and the deterministic function f

has been introduced in (6.1.2).

• For all integer N ≥ p+1 and i ∈ {0, . . . , N−p−1} the generalized increments
∆aY i,N and ∆aXi,N are defined as,

∆aY i,N :=

p∑
k=0

akY i+k,N (6.2.7)

and

∆aXi,N :=

p∑
k=0

akXi+k,N . (6.2.8)
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Recall that Y i+k,N and Xi+k,N are respectively the average values of the
processes Y and X, on the interval [(i+ k)/N, (i+ k + 1)/N ], that is,

Y i+k,N := N

∫ (i+k+1)/N

(i+k)/N
Y (s) ds (6.2.9)

and

Xi+k,N := N

∫ (i+k+1)/N

(i+k)/N
X(s) ds. (6.2.10)

• The Y i,N ’s are hidden; yet, in view of Lemma 7.4.2 (see also the previous
chapter), when N is of the form,

Nn = [nβ], (6.2.11)

β ∈ (0, 1) being a fixed parameter, Y i,Nn can be approximated by Ŷi,n defined
as,

Ŷi,n := Nn

ji+1−ji−1∑
k=0

(
Z
(
(ji + k + 1)/n

)
− Z

(
(ji + k)/n

))2
,

where ji := [in/Nn].

• At last, for all n big enough and all i ∈ {0, . . . , Nn − p − 1} the generalized
increment ∆aŶi,n is defined as,

∆aŶi,n =

p∑
k=0

akŶi+k,n.

The main results of this chapter are the following three theorems.

Theorem 6.2.1 Assume that v satisfies the following 3 conditions:

(i)
∑

N∈N, N≥3

(
v(N)N

)−2
< +∞;

(ii) for all integer N big enough, one has,

v(N) = o
((

logN
)−1
)
,

which means that log(N)v(N) −−−−−→
N→+∞

0;

(iii) there exists β ∈ (0, 1/6] and c > 0 such that limn→+∞
v(N2n)
v(Nn)

= c, recall that
Nn has been defined in (6.2.11).

For all integer n large enough, one sets,

Vn(t0) =
∑

i∈νNn (t0)

(
∆aŶi,n

)2
, (6.2.12)
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and
Ĥn,t0,β =

1

2

(
1 + β−1 log2(c) + β−1 log2

( Vn(t0)
V2n(t0)

))
, (6.2.13)

Then, one has,
Ĥn,t0,β

a.s.−−−−−→
n→+∞

H(t0).

Theorem 6.2.2 Assume that v satisfies condition (ii), as well as condition (iii)

for some β ∈ (0, 1/3). Also assume that Ĥn,t0,β is as in (6.2.13). Then, one has,

Ĥn,t0,β
P−−−−−→

n→+∞
H(t0),

where the sumbol P−→ means that the convergence holds in probability.

Theorem 6.2.3 Assume that H(t0) ∈ (1/2, 1); also assume that v satisfies condi-
tion (iii) for some β ∈ (0, 1/4), and the following condition:

(iv) one has
logN = o

((
Nv(N)

)1/2)
,

morever there exists η ≥ 0, such that,

v(N) = O
(
N−1/2

(
log(N)

)η)
;

the notation v(N) = O
(
N−1/2

(
log(N)

)η) means that there is a constant c >
0, such that for all integer N ≥ 3, one has v(N) ≤ cN−1/2

(
log(N)

)η.
Let Ĥn,t0,β be as in (6.2.13). Then,(

v(Nn)Nn

)1/2 (
Ĥn,t0,β −H(t0)

)
,

converges in distribution to a centered Gaussian variable, when n goes to infinity.

Before ending this section, observe that for all fixed parameter α > 1, the function
x 7→ (log(x))−α is a natural example of a function v satisfying conditions (i), (ii) and
(iii) (for any β ∈ (0, 1)). Another natural example is given by the function x 7→ x−γ ,
where γ ∈ (0, 1/2) is a fixed parameter; also notice that the latter function satisfies
(ii), (iii) (for any β ∈ (0, 1)) and (iv), when γ ∈ [1/2, 1). Last but not least, let us
point out that, for all fixed parameter η > 1/2, the function x 7→ x−1/2

(
log(x)

)η,
satisfies (i), (ii), (iii) (for any β ∈ (0, 1)) and (iv).

6.3 Estimation when the Y i,N ’s are known

The main goal of this section is to construct, starting from the Y i,N ’s (see (6.2.9)),
a consistent estimator of H(t0), the pointwise Hölder exponent of the mBm
{X(s)}s∈[0,1] at an arbitrary point t0 ∈ (0, 1). The main results of this section
are the following two theorems.
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Theorem 6.3.1 Assume that v satisfies conditions (i) and (ii) in Theorem 6.2.1,
and also that there is c > 0 such that limN∈N, N→+∞

v(2N)
v(N) = c. Set

VN,1(t0) =
∑

i∈νN (t0)

(
∆aY i,N

)2
, (6.3.1)

and
Ĥ

(1)
N,t0

=
1

2

(
1 + log2(c) + log2

( VN,1(t0)

V2N,1(t0)

))
. (6.3.2)

Then
Ĥ

(1)
N,t0

a.s.−−−−−→
N→+∞

H(t0).

Theorem 6.3.2 Assume that v satisfies condition (ii) in Theorem 6.2.1, and also
that there is c > 0 such that limN∈N, N→+∞

v(2N)
v(N) = c. Let Ĥ(1)

N,t0
be as in (6.3.2).

Then
Ĥ

(1)
N,t0

P−−−−−→
N→+∞

H(t0).

The proof of Theorem 6.3.1 mainly relies on the following proposition.

Proposition 6.3.3 Let C̃a : (0, 1) → (0,+∞) be the function defined for all α ∈
(0, 1) as,

C̃a(α) = 2

∫
R

(1− cos η)
∣∣∑p

k=0 ake
ikη
∣∣2

|η|2α+3
dη. (6.3.3)

Then, assuming that v satisfies conditions (i) and (ii) in Theorem 6.2.1, one has,∑
i∈νN (t0)

(
∆aXi,N

)2
2C̃a(H(t0))v(N)N1−2H(t0)

a.s.−−−−−→
N→+∞

1.

Observe that, in view of (5.2.15) and (6.3.3), one has, for all s ∈ [0, 1],

C̃a(H(s)) = C(s).

The proof of Theorem 6.3.2 mainly relies on the following proposition.

Proposition 6.3.4 Let C̃a be as in (6.3.3). Then, assuming that v satisfies condi-
tion (ii) in Theorem 6.2.1, one has,∑

i∈νN (t0)

(
∆aXi,N

)2
2C̃a(H(t0))v(N)N1−2H(t0)

P−−−−−→
N→+∞

1.

In order to prove Propositions 6.3.3 and 6.3.4, we need several preliminary results.

Lemma 6.3.5 There is a constant c > 0 such that for all integer N ≥ p + 1, one
has

E
( ∑

i∈νN (t0)

(∆aXi,N )2 −
∑

i∈νN (t0)

Var(∆aXi,N )
)4

≤ c

(
Var

( ∑
i∈νN (t0)

(∆aXi,N )2
))2

.

(6.3.4)
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Proof of Lemma 6.3.5. Let M = (Mij)Nt0×Nt0
denote the covariance matrix of

the centered Gaussian vector {∆aXi,N}i∈νN (t0), i.e.

Mij = E
(
∆aXi,N∆aXj,N

)
. (6.3.5)

The sequence of the eigenvalues of M is denoted by {λ̃i,N}i∈νN (t0); observe that they
are strictly positive real numbers. Let P be the orthogonal matrix such that

D := Diag(λ̃i,N ) = P ′MP. (6.3.6)

For all i ∈ νN (t0), we set,

εi,N = (λ̃i,N )−1/2
∑

k∈νN (t0)

Pki∆aXk,N . (6.3.7)

Then {εi,N}i∈νN (t0) is a sequence of independent standard Gaussian variables; indeed
on has,

E (εi,N ) = (λ̃i,N )−1/2
∑

k∈νN (t0)

PkiE
(
∆aXk,N

)
= 0, (6.3.8)

Var(εi,N ) = (λ̃i,N )−1
∑

k,k′∈νN (t0)

PkiPk′iE
(
∆aXk,N∆aXk′,N

)
= 0

= (λ̃i,N )−1
∑

k,k′∈νN (t0)

PkiPk′iMkk′

= (λ̃i,N )−1Dii

= 1, (6.3.9)

and for any i ̸= j,

E (εi,Nεj,N ) = (λ̃i,N λ̃j,N )−1/2
∑

k,k′∈νN (t0)

PkiPk′jMkk′

= (λ̃i,N λ̃j,N )−1/2Dij

= 0. (6.3.10)

It follows from (6.3.6) and (6.3.7) that,∑
i∈νN (t0)

(∆aXi,N )2 −
∑

i∈νN (t0)

Var(∆aXi,N ) =
∑

i∈νN (t0)

λ̃i,N (ε2i,N − 1). (6.3.11)

Let us denote by ε an arbitrary standard Gaussian random variable. Using (6.3.11)
as well as the fact that {εi,N}i∈νN (t0) is a sequence of independent standard Gaussian
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variables, one obtains that

E
( ∑

i∈νN (t0)

(∆aXi,N )2 −
∑

i∈νN (t0)

Var(∆aXi,N )
)4

= E
( ∑

i∈νN (t0)

λi,N (ε2i,N − 1)
)4

=
∑

i1,i2,i3,i4∈νN (t0)

λi1,Nλi2,Nλi3,Nλi4,NE
(
(ε2i1,N − 1)(ε2i2,N − 1)(ε2i3,N − 1)(ε2i4,N − 1)

)
=

∑
i∈νN (t0)

λ4i,NE (ε2i,N − 1)4 +
∑

i,j∈νN (t0),i ̸=j

λ2i,Nλ
2
j,NE

(
(ε2i,N − 1)2(ε2j,N − 1)2

)
=

∑
i∈νN (t0)

λ4i,NE (ε2 − 1)4 +
∑

i,j∈νN (t0),i ̸=j

λ2i,Nλ
2
j,N

(
E (ε2i,N − 1)2E (ε2j,N − 1)2

)
=

E (ε2 − 1)4(
E (ε2 − 1)2

)2 ∑
i∈νN (t0)

λ4i,N

(
E (ε2i,N − 1)2

)2
+

∑
i,j∈νN (t0),i ̸=j

λ2i,Nλ
2
j,N

(
E (ε2i,N − 1)2E (ε2j,N − 1)2

)
≤ c
( ∑

i∈νN (t0)

λ2i,NE (ε2i,N − 1)2
)2

= c

(
Var
( ∑

i∈νN (t0)

(∆aXi,N )2
))2

,

where

c =
E (ε2 − 1)4(
E (ε2 − 1)2

)2 + 1.

Thus we obtain (6.3.4). Observe that to derive the previous inequality, we have used
the fact that for any i1, i2, i3, i4 ∈ νN (t0), if i1 = i2 = i3 = i4,

E
(
(ε2i1,N − 1)(ε2i2,N − 1)(ε2i3,N − 1)(ε2i4,N − 1)

)
= E (ε2i1,N − 1)4;

if there are k, k′ ∈ {1, 2, 3, 4}, k ̸= k′ such that two indices of i1, i2, i3, i4 ∈ νN (t0)

equal to ik and the two others equal to ik′ ,

E
(
(ε2i1,N − 1)(ε2i2,N − 1)(ε2i3,N − 1)(ε2i4,N − 1)

)
= E

(
(ε2ik,N − 1)2(ε2i′k,N

− 1)2
)
;

if else,
E
(
(ε2i1,N − 1)(ε2i2,N − 1)(ε2i3,N − 1)(ε2i4,N − 1)

)
= 0.

�
The following lemma is a more or less classical result whose proof is given in

Appendix (see in Appendix the proof of Lemma 5.3.4).
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Lemma 6.3.6 Let (Z1, Z2) be an arbitrary centered 2-D Gaussian vector such that
V ar(Z1) = V ar(Z2) = τ . Then one has,

E
(
(Z1Z2)

2 − τ2
)
= 2(Cov(Z1, Z2))

2.

A careful inspection of the proof of Proposition 5.3.6 (see Appendix), shows that
the following lemma holds even in the case where M(a) = 2.

Lemma 6.3.7 Assume that v satisfies condition (ii) in Theorem 6.2.1 and M(a) ≥
2, then there is a constant c > 0 such that for all N ≥ p+1 and for all i, j ∈ νN (t0),
one has, ∣∣Cov(∆aXi,N ,∆aXj,N )

∣∣ ≤ c
(N−H(i/N)−H(j/N)

1 + |i− j|

)
.

Lemma 6.3.8 Assume that v satisfies conditions (i) and (ii) in Theorem 6.2.1.
Then, we have ∑

i∈νN (t0)
(∆aXi,N )2∑

i∈νN (t0)
Var(∆aXi,N )

a.s.−−−−−→
N→+∞

1.

Proof of Lemma 6.3.8. First observe that by using the fact that

Var
( ∑

i∈νN (t0)

(∆aXi,N )2
)
=

∑
i,j∈νN (t0)

Cov
(
(∆aXi,N )2, (∆aXj,N )2

)

and by using Lemma 6.3.6 (in which we take Z1 =
∆aXi,N√
∆aXi,N

, Z2 =
∆aXj,N√
∆aXj,N

and

τ = 1), we get

Var
( ∑

i∈νN (t0)

(∆aXi,N )2
)

=
∑

i,j∈νN (t0)

(
E
(
∆aXi,N∆aXj,N

)2
− E (∆aXi,N )2E (∆aXj,N )2

)

=
∑

i,j∈νN (t0)

Var(∆aXi,N )Var(∆aXj,N )

(
E
( ∆aXi,N∆aXj,N√

Var(∆aXi,N )Var(∆aXj,N )

)2
− 1

)

= 2
∑

i,j∈νN (t0)

Var(∆aXi,N )Var(∆aXj,N )

(
Cov

( ∆aXi,N√
∆aXi,N

,
∆aXj,N√
∆aXj,N

))2

= 2
∑

i,j∈νN (t0)

(
Cov(∆aXi,N ,∆aXj,N )

)2
, (6.3.12)

Then it follows from (6.3.12) and Lemma 6.3.7 that there is a constant c1 > 0 such
that for all N ≥ p+ 1,

Var
( ∑

i∈νN (t0)

(∆aXi,N )2
)
≤ c1

∑
i,j∈νN (t0)

N−2(H(i/N)+H(j/N))(
1 + |i− j|)2

. (6.3.13)
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On the other hand, since H ∈ C2([0, 1]), there is a constant c2 > 0 such that for
any s, s′ ∈ [0, 1],

|H(s)−H(s′)| ≤ c2|s− s′|. (6.3.14)

Thus, it follows from (6.2.3) that for all N ≥ p+ 1 and i ∈ νN (t0),

NH(t0)−H(i/N) ≤ N |H(t0)−H(i/N)| ≤ N c2|t0−i/N | ≤ N c2v(N) ≤ c3, (6.3.15)

where c3 = supN∈N, N≥3 e
c2v(N) logN is finite thanks to condition (ii) (see Theo-

rem 6.2.1). Also (6.3.14) and (6.2.3) imply that

NH(t0)−H(i/N) ≥ N−|H(t0)−H(i/N)| ≥ N−c2v(N) ≥ c′3, (6.3.16)

where c′3 = infN∈N, N≥3 e
−c2v(N) logN is strictly positive thanks to condition (ii)

(see Theorem 6.2.1). It follows from (6.3.13), (6.3.15), (6.2.4), (6.2.5) that for all
N ≥ p+ 1,

Var
( ∑

i∈νN (t0)

(∆aXi,N )2
)

≤ c4N
−4H(t0)

∑
i,j∈νN (t0)

(
1 + |i− j|

)−2

≤ c5N
−4H(t0)Nt0

≤ c6N
1−4H(t0)v(N), (6.3.17)

where the constants c4, c5 = 2c4
∑+∞

l=1 l
−2 and c6 do not depend on N . Thus using

Markov’s inequality, (6.3.4) and (6.3.17), one obtains that, for any η > 0,

P
(∣∣∣ ∑i∈νN (t0)

∆a(Xi,N )2∑
i∈νN (t0)

Var(∆aXi,N )
− 1
∣∣∣ > η

)
≤
( ∑

i∈νN (t0)

Var(∆aXi,N )
)−4

η−4E
( ∑

i∈νN (t0)

(∆aXi,N )2 −
∑

i∈νN (t0)

Var(∆aXi,N )
)4

≤ c′6

( ∑
i∈νN (t0)

Var(∆aXi,N )
)−4

η−4(v(N))2N2−8H(t0). (6.3.18)

On the other hand, in view of Lemma 7.2.2 in Appendix, there is constant c7 > 0

such that one has for all N ≥ p+ 1 and all i ∈ {0, . . . , N − p− 1},

Var(∆aXi,N ) ≥ c7N
−2H(i/N). (6.3.19)

Thus, combining (6.3.19) with (6.3.16), it follows that there exists a constant c8 > 0

such that one has for all N big enough at i ∈ νN (t0),

Var(∆aXi,N ) ≥ c8N
−2H(t0). (6.3.20)

Relations (6.3.18) and (6.3.20) imply that, for all N big enough,

P
(∣∣∣ ∑i∈νN (t0)

(∆aXi,N )2∑
i∈νN (t0)

Var(∆aXi,N )
− 1
∣∣∣ > η

)
≤ c2c6(c8)

−4η−4(v(N))−2N−2. (6.3.21)



90
Chapter 6. Multifractional stochastic volatility models: estimation of

hidden pointwise Hölder exponents

Then using condition (i) (see Theorem 6.2.1), one obtains that

+∞∑
N=p+1

P
(∣∣∣ ∑i∈νN (t0)

(∆aXi,N )2∑
i∈νN (t0)

Var(∆aXi,N )
− 1
∣∣∣ > η

)
< +∞.

Therefore by Borel-Cantelli’s Lemma, we get∑
i∈νN (t0)

(∆aXi,N )2∑
i∈νN (t0)

Var(∆aXi,N )

a.s.−−−−−→
N→+∞

1.

Lemma 6.3.8 has been proved. �

Lemma 6.3.9 Assume that v satisfies condition (ii) in Theorem 6.2.1. Then, we
have ∑

i∈νN (t0)
(∆aXi,N )2∑

i∈νN (t0)
Var(∆aXi,N )

P−−−−−→
N→+∞

1.

Proof of Lemma 6.3.9. The lemma follows from (6.3.21) and the assumption that
limN→+∞Nv(N) = +∞. �

Lemma 6.3.10 Let {BH(t0)(s)}s∈[0,1] be the fBm with Hurst parameter H(t0). For
any integer N ≥ p+1 and any j ∈ {0, . . . , N−p−1}, define the following generalized
increment:

∆aB
H(t0)
j,N =

p∑
k=0

akB
H(t0)
j+k,N = N

p∑
k=0

ak

∫ (j+k+1)/N

(j+k)/N
BH(t0)(s) ds. (6.3.22)

Then one has,
Var(∆aB

H(t0)
j,N ) = C̃a(H(t0))N

−2H(t0), (6.3.23)

where C̃a is the function introduced in (6.3.3).

Proof of Lemma 6.3.10. It follows from (6.3.22) and Fubini Theorem, that

Var(∆aB
H(t0)
j,N ) (6.3.24)

= N2

∫ 1/N

0

∫ 1/N

0
E

{( p∑
k=0

akBH(t0)

(j + k

N
+ s
))( p∑

k′=0

akBH(t0)

(j + k′

N
+ s′

))}
dsds′.

Recall that, for each s ∈ [0, 1],

BH(t0)(s) =

∫
R

eisξ − 1

|ξ|H(t0)+1/2
dB̂(ξ), (6.3.25)

where dB̂ is the Fourier transformation of the white noise dW . Relations (6.3.24),
(6.3.25), (6.2.1), the isometry property of the integral

∫
R(·) dB̂ and Fubini Theorem,

imply that

Var(∆aB
H(t0)
j,N ) = N2

∫
R

∣∣∑p
k=0 ake

ikξ/N
∣∣2

|ξ|2H(t0)+1

∣∣∣ ∫ 1/N

0
eisξ ds

∣∣∣2 dξ. (6.3.26)
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Moreover, for all ξ ∈ R \ {0},∣∣∣ ∫ 1/N

0
eisξ ds

∣∣∣2 = ∣∣∣eiξ/N − 1

iξ

∣∣∣2 = 4
sin2(ξ/2N)

|ξ|2
= 2

(
1− cos(ξ/N)

)
|ξ|2

. (6.3.27)

Finally setting in (6.3.26) η = ξ/N and using (6.3.27), one obtains the lemma. �

Lemma 6.3.11 Assume that v satisfies condition (ii) in Theorem 6.2.1. Then,
there exists a constant c > 0 such that for all N big enough, one has,

max
j∈νN (t0)

{
E
∣∣∣∆aXj,N −∆aB

H(t0)
j,N

∣∣∣2} ≤ c
(
v(N) log(N)

)2
N−2H(t0). (6.3.28)

Proof of Lemma 6.3.11. Using, triangle inequality, one has,

∥∆aXj,N−∆aB
H(t0)
j,N ∥L2 ≤ ∥∆aXj,N−∆aB

H(j/N)
j,N ∥L2+∥∆aB

H(j/N)
j,N −∆aB

H(t0)
j,N ∥L2 ,

(6.3.29)
where

∆aB
H(j/N)
j,N =

p∑
k=0

akB
H(j/N)
j+k,N = N

p∑
k=0

ak

∫ (j+k+1)/N

(j+k)/N
BH(j/N)(s) ds. (6.3.30)

First, let us bound ∥∆aXj,N −∆aB
H(j/N)
j,N ∥2L2 = E

∣∣∣∆aXj,N −∆aB
H(j/N)
j,N

∣∣∣2. Recall
that, one has for each s ∈ [0, 1],

X(s) =

∫
R

eisξ − 1

|ξ|H(s)+1/2
dB̂(ξ) (6.3.31)

and

BH(j/N)(s) =

∫
R

eisξ − 1

|ξ|H(j/N)+1/2
dB̂(ξ), (6.3.32)

where dB̂ is the Fourier transformation of the white noise dW . Relations (6.3.31)
and (6.3.32) imply that,∣∣∣∆aXj,N −∆aB

H(j/N)
j,N

∣∣∣
=
∣∣∣N ∫ 1/N

0

p∑
k=0

ak

(
X(s+

j + k

N
)−BH(j/N)(s+

j + k

N
)
)
ds
∣∣∣

= N
∣∣∣ ∫ 1/N

0

p∑
k=0

ak

∫
R

( ei(s+(j+k)/N)ξ − 1

|ξ|H(s+(j+k)/N)+1/2
− ei(s+(j+k)/N)ξ − 1

|ξ|H(j/N)+1/2

)
dB̂(ξ) ds

∣∣∣
= N

∣∣∣ ∫ 1/N

0

∫
R

( p∑
k=0

ak(e
i(s+(j+k)/N)ξ − 1)|ξ|−1/2

(
g(s+ (j + k)/N, ξ)− g(j/N, ξ)

))
dB̂(ξ) ds

∣∣∣,
(6.3.33)

where g is the function defined for each x ∈ [0, 1] and ξ ∈ R\{0}, as,

g(x, ξ) = |ξ|−H(x). (6.3.34)
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Observe that

∂xg(x, ξ) = −H ′(x)|ξ|−H(x) log |ξ| = −H ′(x)g(x, ξ) log |ξ| (6.3.35)

and
∂2xg(x, ξ) =

((
H ′(x)

)2
log |ξ| −H ′′(x)

)
g(x, ξ) log |ξ|. (6.3.36)

It is worth noticing that (6.3.34), (6.3.35), (6.3.36) and the fact that

sup
x∈[0,1]

(
|H ′(x)|+ |H ′′(x)|

)
<∞, (6.3.37)

imply that there exists a constant c11 > 0 such that for all m ∈ {0, 1, 2}, x ∈ [0, 1]

and ξ ∈ R \ {0}, one has,∣∣∂mx g(x, ξ)∣∣ ≤ c11
(
|ξ|−H∗ + |ξ|−H∗)(

1 +
∣∣ log |ξ|∣∣m). (6.3.38)

where H∗ = mins∈[0,1]H(s) and H∗ = maxs∈[0,1]H(s). It follows from (6.3.33),
Cauchy-Schwarz inequality and the isometry property of the integral

∫
R(·) dB̂ that,

E
∣∣∣∆aXj,N −∆aB

H(j/N)
j,N

∣∣∣2 (6.3.39)

≤ N

∫ 1/N

0

∫
R

∣∣∣ p∑
k=0

ak(e
i(s+(j+k)/N)ξ − 1)|ξ|−1/2

(
g(s+ (j + k)/N, ξ)− g(j/N, ξ)

)∣∣∣2 dξ ds.
Moreover, using for each fixed ξ ∈ R \ {0}, a Taylor expansion of order 2 of g(·, ξ)
at j/N , one has, for all x ∈ [0, 1],

g(x, ξ) = g(j/N, ξ) + (x− j/N)∂xg(j/N, ξ) (6.3.40)

+(x− j/N)2
∫ 1

0
(1− θ)∂2xg(j/N + θ(x− j/N), ξ) dθ.

Combining (6.3.39) with (6.3.40) one gets that

E
∣∣∣∆aXj,N −∆aB

H(j/N)
j,N

∣∣∣2 ≤ 2Uj,N + 2Vj,N , (6.3.41)

where

Uj,N = N

∫ 1/N

0

∫
R

∣∣∣ p∑
k=0

ak(e
i(s+(j+k)/N)ξ − 1)|ξ|−1/2(s+ k/N)∂xg(j/N, ξ)

∣∣∣2 dξ ds
(6.3.42)

and

Vj,N = N

∫ 1/N

0

∫
R

∣∣∣ p∑
k=0

ak(e
i(s+(j+k)/N)ξ − 1)|ξ|−1/2(s+ k/N)2

×
∫ 1

0
(1− θ)∂2xg(j/N + θ(x− j/N), ξ) dθ

∣∣∣2 dξ ds.
(6.3.43)
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Let us now give a suitable bound for Uj,N . Relations (6.3.42), (6.2.1) and (6.3.35)
entail that

Uj,N ≤ 2N

∫ 1/N

0
s2
∫
R

∣∣A(ξ/N)
∣∣2(H ′(j/N)

)2(
log |ξ|

)2
|ξ|2H(j/N)+1

dξ ds

+2N−1

∫ 1/N

0

∫
R

∣∣A′(ξ/N)
∣∣2(H ′(j/N)

)2(
log |ξ|

)2
|ξ|2H(j/N)+1

dξ ds

≤ 2N−2

∫
R

(∣∣A(ξ/N)
∣∣2 + ∣∣A′(ξ/N)

∣∣2)(H ′(j/N)
)2(

log |ξ|
)2

|ξ|2H(j/N)+1
dξ,

(6.3.44)

where A is the trigonometric polynomial defined for η ∈ R as,

A(η) =

p∑
k=0

ake
ikη (6.3.45)

and A′ is its derivative. Observe that all the integrals in (6.3.44) are finite since∣∣A(η)∣∣ = 0
(
min{1, |η|}

)
and

∣∣A′(η)
∣∣ = 0

(
min{1, |η|}

)
; (6.3.46)

relation (6.3.46) is in fact a consequence of (6.2.1). Setting in (6.3.44) η = ξ/N and
using (6.3.34), (6.3.35), (6.3.37), (6.3.38) and (6.3.15), it follows that, for all N big
enough and j ∈ νN (t0),

Uj,N ≤ 4
(
H ′(j/N)

)2
N−2−2H(j/N)

(
logN

)2 ∫
R

(∣∣A(η)∣∣2 + ∣∣A′(η)
∣∣2)(g(j/N, η))2 dη

+4N−2−2H(j/N)

∫
R

(∣∣A(η)∣∣2 + ∣∣A′(η)
∣∣2)(∂xg(j/N, η))2 dη

≤ c12N
−2−2H(t0)

(
logN

)2
, (6.3.47)

where c12 > 0 is a constant non depending on N and j. Let us now give a
suitable bound for Vj,N . Relation (6.3.43), the triangle inequality, the inequality(∑p

k=0 bk
)2 ≤ (p+1)

∑p
k=0 b

2
k for all are reals b0, . . . , bp and Relation (6.3.38) imply

that,

Vj,N ≤ (p+ 1)N

p∑
k=0

|ak|2
∫ 1/N

0
(s+ k/N)4

∫
R

∣∣ei(s+(j+k)/N)ξ − 1
∣∣2|ξ|−1

×
∣∣∣ ∫ 1

0
(1− θ)∂2xg(j/N + θ(x− j/N), ξ) dθ

∣∣∣2 dξ ds
≤ c211(p+ 1)5N−3

p∑
k=0

|ak|2
∫ 1/N

0

∫
R

∣∣ei(s+(j+k)/N)ξ − 1
∣∣2|ξ|−1 (6.3.48)

×
(
|ξ|−H∗ + |ξ|−H∗)2(

1 +
∣∣ log |ξ|∣∣2)2 dξ ds;

moreover, one has,

c13 = sup
x∈[0,1]

∫
R

∣∣eixξ − 1
∣∣2|ξ|−1

(
|ξ|−H∗ + |ξ|−H∗)2(

1 +
∣∣ log |ξ|∣∣2)2 dξ <∞, (6.3.49)
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since
x 7→

∫
R

∣∣eixξ − 1
∣∣2|ξ|−1

(
|ξ|−H∗ + |ξ|−H∗)2(

1 +
∣∣ log |ξ|∣∣2)2 dξ,

is a continuous function on the compact interval [0, 1]. Next, combining (6.3.48)
with (6.3.49), one obtains that for all N big enough and j ∈ νN (t0),

Vj,N ≤ c14N
−4, (6.3.50)

where c14 > 0 is a constant non depending on N and j. Next, it follows from
(6.3.41), (6.3.47) and (6.3.50) that, for all N big enough and j ∈ νN (t0),

E
∣∣∣∆aXj,N −∆aB

H(j/N)
j,N

∣∣∣2 ≤ c15N
−2−2H(t0)

(
logN

)2
, (6.3.51)

where c15 > 0 is a constant non depending on N and j. Now let us bound

∥∆aB
H(j/N)
j,N −∆aB

H(t0)
j,N ∥2L2 = E

∣∣∣∆aB
H(j/N)
j,N −∆aB

H(t0)
j,N

∣∣∣2. Relations (6.3.32) and
(6.3.25) imply that for all N big enough and j ∈ νN (t0), one has,∣∣∣∆aB

H(j/N)
j,N −∆aB

H(t0)
j,N

∣∣∣ (6.3.52)

= N
∣∣∣ ∫ 1/N

0

∫
R

( p∑
k=0

ak(e
i(s+(j+k)/N)ξ − 1)

)
|ξ|−1/2

(
g(j/N, ξ)− g(t0, ξ)

)
dB̂(ξ) ds

∣∣∣,
where g is the function introduced in (6.3.34). It follows from (6.3.52), Cauchy-
Schwarz inequality , the isometry property of the stochastic integral

∫
R(·) dB̂, (6.2.1)

and (6.3.45) that,

E
∣∣∣∆aB

H(j/N)
j,N −∆aB

H(t0)
j,N

∣∣∣2 (6.3.53)

≤ N

∫ 1/N

0

∫
R

∣∣A(ξ/N)
∣∣2|ξ|−1

∣∣g(j/N, ξ)− g(t0, ξ)
∣∣2 dξ ds

= N

∫ 1/N

0

∫
R

∣∣A(η)∣∣2|η|−1
∣∣g(j/N,Nη)− g(t0, Nη)

∣∣2 dξ ds,

where the last equality results from the change of variable η = ξ/N . Next, using,
for each fixed N and η ∈ R \ {0}, a Taylor expansion of g(·, Nη) of order 1 on t0, it
follows that,

∣∣g(j/N,Nη)− g(t0, Nξ)
∣∣ = |j/N − t0|

∣∣∣ ∫ 1

0
∂xg(t0 + θ(j/N − t0), Nη) dθ

∣∣∣
≤ v(N)

∣∣∣ ∫ 1

0
∂xg(t0 + θ(j/N − t0), Nη) dθ

∣∣∣,
(6.3.54)

where the last inequality results from (6.2.3). Now let us bound∣∣∣ ∫ 1

0
∂xg(t0 + θ(j/N − t0), Nη) dθ

∣∣∣.
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First, observe that (6.3.35) and (6.3.34) imply that,∫ 1

0
∂xg(t0 + θ(j/N − t0), Nη) dθ

=

∫ 1

0
(log |Nη|)(|Nη|−H(t0+θ(j/N−t0)))(−H ′(t0 + θ(j/N − t0))) dθ

=

∫ 1

0
(log(N) + log(|η|))N−H(t0+θ(j/N−t0))|η|−H(t0+θ(j/N−t0))(−H ′(t0 + θ(j/N − t0))) dθ

=

∫ 1

0
N−H(t0+θ(j/N−t0))

(
log(N)(−H ′(t0 + θ(j/N − t0)))g(t0 + θ(j/N − t0), η)

+∂xg(t0 + θ(j/N − t0), η)
)
dθ. (6.3.55)

Next observe that, similarly to (6.3.15), one can show that there is a constant
c16 > 0, non depending on N , j and t0, such that

N−H(t0+θ(j/N−t0)) = N−H(t0)NH(t0)−H(t0+θ(j/N−t0))

≤ c16N
−H(t0). (6.3.56)

It follows from (6.3.55), (6.3.56), (6.3.37) and (6.3.38), that for all N ≥ p+ 1,∣∣∣ ∫ 1

0
∂xg(t0 + θ(j/N − t0), Nη) dθ

∣∣∣
≤ c17 log(N)N−H(t0)

(
|η|−H∗ + |η|−H∗)(

1 +
∣∣ log |η|∣∣), (6.3.57)

where c17 > 0 is a constant non depending on N , j and t0. Thus, (6.3.53), (6.3.54)
and (6.3.57) imply that, for all N big enough, j ∈ νN (t0), x ∈ [(j + k)/N, (j + k +

1)/N ] and η ∈ R \ {0},

E
∣∣∣∆aB

H(j/N)
j,N −∆aB

H(t0)
j,N

∣∣∣2 ≤ c18
(
v(N) log(N)

)2
N−2H(t0), (6.3.58)

where the finite constant

c18 = c217

∫
R

∣∣A(η)∣∣2|η|−1
(
|η|−H∗ + |η|−H∗)2(

1 +
∣∣ log |η|∣∣)2 dη.

Next, putting together (6.3.29), (6.3.51), (6.3.58) and the inequality v(N) ≥ N−1,
one gets (6.3.28). �

The following remark is a straightforward consequence of Lemma 6.3.10, Lem-
ma 6.3.11 and condition (ii) in Theorem 6.2.1.

Remark 6.3.1 Assume that v satisfies condition (ii) in Theorem 6.2.1, then there
exist two constants 0 < c′ ≤ c such that for all N big enough and all j ∈ νN (t0),
one has,

c′N−2H(t0) ≤ Var(∆aXj,N ) ≤ cN−2H(t0). (6.3.59)
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Lemma 6.3.12 Assume that v satisfies condition (ii) in Theorem 6.2.1. Then,
there is a constant c > 0, such that for all N big enough, one has,

max
j∈νN (t0)

∣∣∣ Var(∆aXj,N )

Var(∆aB
H(t0)
j,N )

− 1
∣∣∣ ≤ c log(N)v(N). (6.3.60)

Proof of Lemma 6.3.12. One has,∣∣∣∣∣∣ Var(∆aXj,N )

Var(∆aB
H(t0)
j,N )

− 1

∣∣∣∣∣∣ =
∣∣∣∣∣∣ ∥∆aXj,N∥2L2

∥∆aB
H(t0)
j,N ∥2

L2

− 1

∣∣∣∣∣∣
=

∣∣∣∣∣∣∥∆aXj,N∥2L2 − ∥∆aB
H(t0)
j,N ∥2L2

∥∆aB
H(t0)
j,N ∥2

L2

∣∣∣∣∣∣
=

∣∣∥∆aXj,N∥L2 − ∥∆aB
H(t0)
j,N ∥L2

∣∣(∥∆aXj,N∥L2 + ∥∆aB
H(t0)
j,N ∥L2

)
∥∆aB

H(t0)
j,N ∥2

L2

≤
∥∆aXj,N −∆aB

H(t0)
i,N ∥L2

(
∥∆aXj,N∥L2 + ∥∆aB

H(t0)
j,N ∥L2

)
∥∆aB

H(t0)
j,N ∥2

L2

.

Then the lemma follows from Lemma 6.3.10, Lemma 6.3.11 and Remark 6.3.1. �

Lemma 6.3.13 Assume that v satisfies condition (ii) in Theorem 6.2.1 and let c
be the constant introduced in Lemma 6.3.12. Then, for all N big enough, one has,

∣∣∣ ∑j∈νN (t0)
Var(∆aXj,N )∑

j∈νN (t0)
Var(∆aB

H(t0)
j,N )

− 1
∣∣∣ ≤ c log(N)v(N). (6.3.61)

Proof of Lemma 6.3.13. Using the triangle inequality and (6.3.60) one has,

∣∣∣ ∑j∈νN (t0)
Var(∆aXj,N )∑

j∈νN (t0)
Var(∆aB

H(t0)
j,N )

− 1
∣∣∣

=
∣∣∣∑j∈νN (t0)

Var(∆aXj,N )−
∑

j∈νN (t0)
Var(∆aB

H(t0)
j,N )∑

j∈νN (t0)
Var(∆aB

H(t0)
j,N )

∣∣∣
≤
( ∑

j∈νN (t0)

Var(∆aB
H(t0)
j,N )

)−1 ∑
j∈νN (t0)

∣∣Var(∆aXj,N )− Var(∆aB
H(t0)
j,N )

∣∣
=
( ∑

j∈νN (t0)

Var(∆aB
H(t0)
j,N )

)−1 ∑
j∈νN (t0)

Var(∆aB
H(t0)
j,N )

∣∣∣ Var(∆aXj,N )

Var(∆aB
H(t0)
j,N )

− 1
∣∣∣

≤ c log(N)v(N).

�
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Now we are in position to show that Propositions 6.3.3 and 6.3.4 hold; we will
only give the proof of Proposition 6.3.3, since that of Proposition 6.3.4 is quite
similar.
Proof of Proposition 6.3.3. One has,∑

i∈νN (t0)
(∆aXi,N )2

v(N)N1−2H(t0)
= (6.3.62)

( ∑
i∈νN (t0)

(∆aXi,N )2∑
i∈νN (t0)

Var(∆aXi,N )

)( ∑
i∈νN (t0)

Var(∆aXi,N )∑
i∈νN (t0)

Var(∆aB
H(t0)
i,N )

)(∑
i∈νN (t0)

Var(∆aB
H(t0)
i,N )

v(N)N1−2H(t0)

)
.

Moreover, Lemma 6.3.10 and (6.2.4) imply that,∑
i∈νN (t0)

Var(∆aB
H(t0)
i,N ) = Nt0C̃a(H(t0))N

−2H(t0), (6.3.63)

and (6.2.5) entails that,

lim
N→+∞

Nt0

2Nv(N)
= 1, (6.3.64)

Thus, combining (6.3.63) with (6.3.64), one gets,∑
i∈νN (t0)

Var(∆aB
H(t0)
i,N )

v(N)N1−2H(t0)
−−−−−→
N→+∞

2C̃a(H(t0)), (6.3.65)

Finally, Proposition 6.3.3 results from (6.3.62), Lemma 6.3.8, Lemma 6.3.13 and
(6.3.65).�

The following remark easily results from Proposition 6.3.4 and from Lem-
ma 6.3.14 below.

Remark 6.3.2 Let C̃a be as in (6.3.3). Then, assuming that v satisfies condition
(ii) in Theorem 6.2.1, one has,

2C̃a(H(t0))v(N)N1−2H(t0)∑
i∈νN (t0)

(
∆aXi,N

)2 P−−−−−→
N→+∞

1.

Lemma 6.3.14 Let (Bl)l be a sequence of random variables with values in (0,+∞)

which converges in probability to a deterministic quantity b ∈ (0,+∞). Let g be
a deterministic real-valued function defined on (0,+∞) which is continuous at b.
Then, the sequence of random variables

(
g(Bl)

)
l
converges in probability to g(b).

Lemma 6.3.14 is a well-known result whose proof is straightforward, this is why
it has been omitted.

Lemma 6.3.15 For any integer N ≥ p+ 1, one set

VN,2(t0) =
(
f ′(X(t0))

)2 ∑
i∈νN (t0)

(∆aXi,N )2 (6.3.66)
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and

VN,3(t0) =
∑

i∈νN (t0)

(
f ′(X(i/N))

)2
(∆aXi,N )2. (6.3.67)

Then, for all arbitrarily small ε > 0, there is an almost surely finite and strictly
positive random variable C > 0, such that one has, almost surely, for all N ≥ p+1,∣∣∣VN,3(t0)

VN,2(t0)
− 1
∣∣∣ ≤ C

(
v(N)

)H(t0)−ε
. (6.3.68)

Proof of Lemma 6.3.15. It is clear that

VN,3(t0) = VN,2(t0) +
∑

i∈νN (t0)

((
f ′(X(i/N))

)2
−
(
f ′(X(t0))

)2)
(∆aXi,N )2.

(6.3.69)

Since f ∈ C2
pol(R), there exist c1,K > 0 such that, for all x ∈ R,

2∑
l=0

|f (l)(x)| ≤ c1(1 + |x|K). (6.3.70)

Using the Mean Value Theorem and the latter inequality, one obtains, almost surely,
that,∣∣∣(f ′(X(i/N))

)2 − (f ′(X(t0))
)2∣∣∣ = |f ′(X(i/N)) + f ′(X(t0))||f ′(X(i/N))− f ′(X(t0))|

≤ C2 sup
u∈[−∥X∥∞,∥X∥∞]

|f (2)(u)||X(i/N)−X(t0)|

≤ C3|X(i/N)−X(t0)|, (6.3.71)

where C2 = 2c1(1 + ∥X∥K∞), C3 = 2c21(1 + ∥X∥K∞)2 and ∥X∥∞ = maxs∈[0,1] |X(s)|;
observe that the positive random variables C2 and C3 are of finite moment of any
order. Let us now state an important result 2 concerning the path behavior of the
mBm {X(s)}s∈[0,1]; namely, for all fixed arbitrarily small ε > 0, there is a positive
random C4 of finite moment of any order, only depending on ε, H∗ = mins∈[0,1]H(s)

and H∗ = maxs∈[0,1]H(s), such that one has almost surely, for all s, s′ ∈ [0, 1],

|X(s)−X(s′)| ≤ C4|s− s′|max{H(s),H(s′)}−ε. (6.3.72)

It follows from (6.3.71), (6.3.72) and the inequalities |i/N − t0| ≤ v(N) ≤ 1 that,
almost surely,

|
(
f ′(X(i/N))

)2 − (f ′(X(t0))
)2| ≤ C5(v(N))H(t0)−ε, (6.3.73)

2This result can be derived from [6], its precise proof is given in [38].
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where C5 = C3C4. Finally, (6.3.66), (6.3.67), (6.3.69) and (6.3.73), imply that

∣∣∣VN,3(t0)

VN,2(t0)
− 1
∣∣∣ =

∣∣∣∣∣∣∣
∑

i∈νN (t0)

(
f ′(X(i/N))

)2
(∆aXi,N )2(

f ′(X(t0))
)2∑

i∈νN (t0)
(∆aXi,N )2

− 1

∣∣∣∣∣∣∣
≤

∑
i∈νN (t0)

∣∣∣∣(f ′(X(i/N))
)2

−
(
f ′(X(t0))

)2∣∣∣∣(∆aXi,N )2(
f ′(X(t0))

)2∑
i∈νN (t0)

(∆aXi,N )2

≤
C(v(N))H(t0)−ε

∑
i∈νN (t0)

(∆aXi,N )2∑
i∈νN (t0)

(∆aXi,N )2

= C
(
v(N)

)H(t0)−ε
,

where C = C5(f
′(X(t0))

)−2 is an almost surely finite and strictly positive random
variable, since, C5 is almost surely finite and strictly positive, f ′ does not vanish
except on a Lebesgue negligible set and X(t0) is a non degenerate Gaussian random
variable. �

Lemma 6.3.16 Assume that v satisfies conditions (i) and (ii) in Theorem 6.2.1.
Then, for all arbitrarily small ε > 0, there is an almost surely finite and strictly
positive random variable C, such that, one has almost surely for all N ≥ p+ 1,

∣∣∣VN,1(t0)

VN,3(t0)
− 1
∣∣∣ ≤ CN−(H(t0)−ε). (6.3.74)

Recall that VN,1(t0) has been introduced in (6.3.1) and VN,3(t0) in (6.3.67).

Proof of Lemma 6.3.16. In view of (6.3.1), (6.2.7), (6.2.9) and (6.2.6), VN,1(t0)

can be expressed as,

VN,1(t0) =
∑

i∈νN (t0)

(
N

p∑
k=0

ak

∫ (i+k+1)/N

(i+k)/N
f(X(s)) ds

)2
. (6.3.75)

A second order Taylor expansion of f(x) on X(i/N) with integral remainder gives

f(X(s)) = f(X(i/N)) + f ′(X(i/N))(X(s)−X(i/N))

+ (X(s)−X(i/N))2
∫ 1

0
(1− η)f (2)(X(i/N + η(X(s)−X(i/N)))) dη.

(6.3.76)
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It follows from (6.3.75), (6.3.76) and (6.2.1), that

VN,1(t0) = N2
∑

i∈νN (t0)

(
p∑

k=0

ak

∫ (i+k+1)/N

(i+k)/N

(
f(X(i/N)) + f ′(X(i/N))(X(s)−X(i/N))

+(X(s)−X(i/N))2
∫ 1

0
(1− η)f (2)(X(i/N + η(X(s)−X(i/N)))) dη

)
ds

)2

=
∑

i∈νN (t0)

(
f ′(X(i/N))∆aXi,N +N

p∑
k=0

ak

∫ (i+k+1)/N

(i+k)/N
(X(s)−X(i/N))2

×
∫ 1

0
(1− η)f (2)(X(i/N + η(X(s)−X(i/N)))) dη ds

)2
= VN,3(t0) + 2

∑
i∈νN (t0)

f ′(X(i/N))(∆aXi,N )ei,N +
∑

i∈νN (t0)

e2i,N , (6.3.77)

where

ei,N = N

p∑
k=0

ak

∫ (i+k+1)/N

(i+k)/N
(X(s)−X(i/N))2

∫ 1

0
(1−η)f (2)(X(i/N+η(X(s)−X(i/N)))) dη ds.

(6.3.78)
Next observe that (6.3.72) and (6.3.15) imply that, for all fixed arbitrarily small
ε > 0, there is a positive random variable C1 of finite moment of any order such that
one has, almost surely, for each i ∈ νN (t0) and for each s ∈ [(i+k)/N, (i+k+1)/N ],

|X(i/N)−X(s)| ≤ C1N
−(H(t0)−ε). (6.3.79)

Moreover (6.3.70) and the fact that the random variable supx∈[0,1] |X(x)| is with
finite moment of each order, entail that,∫ 1

0
(1− η)

∣∣f (2)(X(i/N + η(X(s)−X(i/N))))
∣∣dη ≤ C2, (6.3.80)

where C2 is a positive random variable of finite moment of any order, non depending
on N , i and s. Next putting together, (6.3.78), (6.3.79) and (6.3.80), it follows that,
there exists a positive random variable C3 of finite moment of each order, such that
almost surely, for all N ≥ p+ 1 and i ∈ νN (t0),

|ei,N | ≤ C3N
−2(H(t0)−ε), (6.3.81)

On the other hand, Cauchy-Schwarz inequality and (6.3.67) imply that∣∣∣ ∑
i∈νN (t0)

f ′(X(i/N))∆aXi,Nei,N

∣∣∣
≤
( ∑

i∈νN (t0)

(f ′(X(i/N))∆aXi,N )2
)1/2( ∑

i∈νN (t0)

e2i,N

)1/2
=
(
VN,3(t0)

)1/2( ∑
i∈νN (t0)

e2i,N

)1/2
. (6.3.82)
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Putting together (6.3.77), (6.3.82), (6.3.81), (6.3.66), the fact that (f ′(X(t0)))
−2

is an almost surely finite random variable, (6.2.4), (6.2.5), Proposition 6.3.3 and
Lemma 6.3.15, one obtains that, almost surely for all N ≥ p+ 1,

|VN,1(t0)− VN,3(t0)|
VN,3(t0)

≤ 2

(∑
i∈νN (t0)

e2i,N
)1/2(

VN,3(t0)
)1/2 +

∑
i∈νN (t0)

e2i,N

VN,3(t0)

=
2
(∑

i∈νN (t0)
e2i,N

)1/2(
(f ′(X(t0)))2v(N)N1−2H(t0)

)1/2 ×
(
(f ′(X(t0)))

2v(N)N1−2H(t0)
)1/2(

VN,2(t0)
)1/2 ×

(VN,2(t0)

VN,3(t0)

)1/2
+

(∑
i∈νN e

2
i,N

)
(f ′(X(t0)))2v(N)N1−2H(t0)

× (f ′(X(t0)))
2v(N)N1−2H(t0)

VN,2(t0)
×
VN,2(t0)

VN,3(t0)

≤ CN−(H(t0)−4ε), (6.3.83)

where C is a positive and almost surely finite random variable non depending on
N . �

In order to be able to give a weaker version of Lemma 6.3.16 which will be useful
in the proof of Theorem 6.3.2, one needs to make some recalls on the notion of
boundedness in probability.

Definition 6.3.1 (a) One says that a sequence (Un)n of real-valued random vari-
ables is bounded in probability if and only if one has,

lim
η∈R+, η→+∞

lim sup
n∈N,n→+∞

P
(
|Un| > η

)
= 0. (6.3.84)

(b) Let (xn)n be a sequence of strictly positive reals and let (Vn)n be a sequence of
positive random variables. The notation:

Vn = OP(xn),

means that the sequence
(
x−1
n Vn

)
n

is bounded in probability.

Remark 6.3.3 (a) Let (Un)n be a sequence of real-valued random variables which
converges in probability to some real-valued random variable U , then the se-
quence (Un)n is bounded in probability.

(b) Let (Kn)n and (Ln)n be two sequences of real-valued random variables which
are bounded in probability, then the sequence (KnLn)n is bounded in probability.

(c) Let (Kn)n and (Ln)n be two sequences of real-valued random variables. Assume
(Kn)n converges in probability to 0 and that (Ln)n is bounded in probability,
then the sequence of random variables (KnLn)n converges in probability to 0.

(d) Let (Un)n be a sequence of real-valued random variables which is bounded in
probability, let V be a real-valued random variable; then the sequence of random
variables

(
V Un

)
n

is bounded in probability.
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(e) Let (Un)n be a sequence of real-valued random variables which converges in
probability to some real valued random variable U , let V be a real-valued ran-
dom variable; then the sequence of random variables

(
V Un

)
n

converges in
probability to the random V U .

Remark 6.3.3 will play a crucial role in the sequel; the results in it are known,
yet we will give their proofs for the sake of completness.
Proof of Remark 6.3.3. Let us first show that Part (a) holds. One has for all
strictly positive real η > 0 and all n,

P
(
|Un| > η

)
≤ P

(
|Un − U | > η/2

)
+ P

(
|U | > η/2

)
.

Therefore
lim sup
n→+∞

P
(
|Un| > η

)
≤ P

(
|U | > η/2

)
,

then, using the fact that limη→+∞ P
(
|U | > η/2

)
= 0, it follows that

lim
η→+∞

lim sup
n→+∞

P
(
|Un| > η

)
= 0.

Part (b) easily follows from the inequality, for all real η > 0 and integer n,

P
(
|Kn||Ln| > η

)
≤ P

(
|Kn| > η1/2

)
+ P

(
|Ln| > η1/2

)
.

Let us now prove that Part (c) holds. As previously, η denotes an arbitrary strictly
positive real number. One has for all n,

P
(
|Kn||Ln| > η

)
≤ P

({
|Kn||Ln| > η

}
∩
{
|Kn| ≤ η2

})
+ P

(
|Kn| > η2

)
≤ P

(
|Ln| > η−1

)
+ P

(
|Kn| > η2

)
. (6.3.85)

On the other hand, in view of (6.3.84), for all fixed arbitrarily ε > 0, there exists
η0 ∈ (0, 1) such that for η ∈ (0, η0], one has,

lim sup
n→+∞

P
(
|Ln| > η−1

)
≤ ε. (6.3.86)

Next, Putting together, (6.3.85), (6.3.86) and the fact that

lim
n→+∞

P
(
|Kn| > η2

)
= 0,

one obtains that for all η ∈ (0, η0],

lim sup
n→+∞

P
(
|Kn||Ln| > η

)
≤ ε. (6.3.87)

Notice that (6.3.87) remains valid in the case where η > η0, since one has in this
case P

(
|Kn||Ln| > η

)
≤ P

(
|Kn||Ln| > η0

)
for all n; therefore (6.3.87) implies that

for all real η > 0,
lim

n→+∞
P
(
|Kn||Ln| > η

)
= 0,

which proves that Part (c) holds. Finally, observe that Part (d) easily follows from
(b), and that Part (e) easily results from Part (c). �

Now we are in position to give the weaker version of Lemma 6.3.16.
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Lemma 6.3.17 Assume that v satisfies conditions (ii) in Theorem 6.2.1. Then,
one has, for all arbitrarily small ε > 0,∣∣∣VN,1(t0)

VN,3(t0)
− 1
∣∣∣ = OP

(
N−(H(t0)−ε)). (6.3.88)

Recall that VN,1(t0) has been introduced in (6.3.1) and VN,3(t0) in (6.3.67).

Proof of Lemma 6.3.17. The proof is quite similar to that of Lemma 6.3.16
except that in the arguments leading to (6.3.83),

(f ′(X(t0)))
2v(N)N1−2H(t0)

VN,2(t0)
= Oa.s.(1),

has to be replaced by

(f ′(X(t0)))
2v(N)N1−2H(t0)

VN,2(t0)
= OP(1); (6.3.89)

thus we obtain the following weaker version of Relation (6.3.83):∣∣∣VN,1(t0)

VN,3(t0)
− 1
∣∣∣ = OP

(
N−(H(t0)−4ε)).

Before ending our proof, let us notice (6.3.89) is straightforward consequence of
Remark 6.3.2 and of (6.3.66). �

The following remark is a straightforward consequence of Proposition 6.3.3, Lem-
ma 6.3.15 and Lemma 6.3.16

Remark 6.3.4 Assume that v satisfies conditions (i) and (ii) in Theorem 6.2.1,
then one has,

VN,1(t0)

2C̃a(H(t0))(f ′(X(t0)))2v(N)N1−2H(t0)

a.s.−−−−−→
N→+∞

1. (6.3.90)

The following remark is a straightforward consequence of Proposition 6.3.4, Lem-
ma 6.3.15 and Lemma 6.3.17

Remark 6.3.5 Assume that v satisfies condition (ii) in Theorem 6.2.1, then one
has,

VN,1(t0)

2C̃a(H(t0))(f ′(X(t0)))2v(N)N1−2H(t0)

P−−−−−→
N→+∞

1. (6.3.91)

Now we are in position to prove Theorem 6.3.1 and Theorem 6.3.2.
Proof of Theorem 6.3.1. Let g : (0,+∞) → R, be the continuous function defined
for all x ∈ (0,+∞), as:

g(x) =
1

2

(
1 + log2(c) + log2(x)

)
, (6.3.92)
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where c > 0 is such that,

c = lim
N∈N,N→+∞

v(2N)

v(N)
. (6.3.93)

Observe that, in view of (6.3.2), one has for all N ≥ p+ 1,

Ĥ
(1)
N,t0

= g

(
VN,1(t0)

V2N,1(t0)

)
. (6.3.94)

On the other hand (6.3.90) and (6.3.93) imply that,

VN,1(t0)

V2N,1(t0)

a.s.−−−−−→
N→+∞

c−122H(t0)−1. (6.3.95)

Thus combining (6.3.94) with (6.3.95), one obtains that,

Ĥ
(1)
N,t0

a.s.−−−−−→
N→+∞

g
(
c−122H(t0)−1

)
= H(t0).

�
Proof of Theorem 6.3.2. Observe that (6.3.91) and (6.3.93) imply that,

VN,1(t0)

V2N,1(t0)

P−−−−−→
N→+∞

c−122H(t0)−1. (6.3.96)

Thus, combining (6.3.94) with (6.3.96), one obtains in view of Lemma 6.3.14,

Ĥ
(1)
N,t0

P−−−−−→
N→+∞

g
(
c−122H(t0)−1

)
= H(t0).

�

6.4 Estimation when the Y i,N ’s are unknown

The main goal of this section is to show that Theorem 6.2.1 and Theorem 6.2.2 hold.
The proofs respectively rely on Proposition 6.4.1 and Proposition 6.4.2 below.

Proposition 6.4.1 For all integer n, let Nn be the integer (depending on a pa-
rameter β ∈ (0, 1)) which was defined in (6.2.11). Then, assuming that v satisfies
conditions (i) and (ii) in Theorem 6.2.1, for all β < 1

4H(t0)+2 , one has,

Vn(t0)

2C̃a(H(t0))
(
f ′(X(t0))

)2
v(Nn)N

1−2H(t0)
n

a.s.−−−−−→
n→+∞

1. (6.4.1)

where Vn(t0) was introduced in (6.2.12).

Proof of Proposition 6.4.1. First notice that VNn,1(t0) is defined by (6.3.1) in
which N is replaced by Nn. Let η > 0 be arbitrary and fixed, it follows from the
Markov’s inequality that, for all n big enough,

P
((
v(Nn)N

1−2H(t0)
n

)−1/2∣∣|Vn(t0)|1/2 − |VNn,1(t0)
∣∣1/2| > η

)
≤ η−4

(
v(Nn)

)−2
N−2+4H(t0)

n E
∣∣|Vn(t0)|1/2 − |VNn,1(t0)|1/2

∣∣4;
(6.4.2)
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moreover, by using (6.2.12), (6.3.1), the triangle inequality, the inequality(∑q
k=0 bk

)2 ≤ (q + 1)
∑q

k=0 b
2
k for all integer q ≥ 0 and all reals b0, . . . , bq, (6.2.4)

and (6.2.5), we get,

∣∣|Vn(t0)|1/2 − |VNn,1(t0)|1/2
∣∣4 ≤ ( ∑

i∈νNn (t0)

( p∑
k=0

akEi+k,n

)2)2

≤ (p+ 1)2
( ∑

i∈νNn (t0)

( p∑
k=0

a2kE
2
i+k,n

))2
≤ 4(p+ 1)2Nnv(Nn)

∑
i∈νNn (t0)

( p∑
k=0

a2kE
2
i+k,n

)2
≤ 4(p+ 1)3Nnv(Nn)

∑
i∈νNn (t0)

p∑
k=0

a4kE
4
i+k,n, (6.4.3)

where we have set Ei+k,n = Ŷi+k,n − Y i+k,Nn . Next, (6.2.11) and Part (ii) of Lem-
ma 7.4.2 (notice that mn = [n/Nn]) imply that there are two constants c1 > 0 and
c2 > 0 such that, for all n big enough and all i ∈ {0, . . . , Nn}, one has,

E (E 4
i,n) ≤ c1

(
[n/Nn])

−2 ≤ c2n
−2(1−β), (6.4.4)

where [·] denotes the integer part function. Next, it follows from (6.4.2), (6.4.3),
(6.4.4), (6.2.4), (6.2.5) and (6.2.11) that, there is a constant c3 > 0, non depending
on n and η, such that one has for each n big enough,

P
((
v(Nn)N

1−2H(t0)
n

)−1/2∣∣|Vn(t0)|1/2 − |VNn,1(t0)|1/2
∣∣ > η

)
≤ 4η−4(p+ 1)3(v(Nn))

−1N−1+4H(t0)
n

∑
i∈νNn (t0)

p∑
k=0

a4kE (E 4
i+k,n)

≤ c3η
−4N4H(t0)

n n−2(1−β) ≤ c3η
−4n(4H(t0)+2)β−2. (6.4.5)

Next, using the assumption that (4H(t0) + 2)β < 1, it follows from (6.4.5) that,

∑
n

P
((
v(Nn)N

1−2H(t0)
n

)−1/2∣∣|Vn(t0)|1/2 − |VNn,1(t0)|1/2
∣∣ > η

)
<∞;

therefore, Borel-Cantelli’s Lemma entails that

(
v(Nn)N

1−2H(t0)
n

)−1/2∣∣|Vn(t0)|1/2 − |VNn,1(t0)|1/2
∣∣ a.s.−−−−−→

n→+∞
0. (6.4.6)
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On the other hand, one has,∣∣∣ |Vn(t0)|1/2

|VNn,1(t0)|1/2
− 1
∣∣∣ = ∣∣|Vn(t0)|1/2 − |VNn,1(t0)|1/2

∣∣
|VNn,1(t0)|1/2

=

∣∣|Vn(t0)|1/2 − |VNn,1(t0)
∣∣1/2|(

2C̃a(H(t0))
)1/2∣∣f ′(X(t0))

∣∣(v(Nn)
)1/2

N
1/2−H(t0)
n

×
(
2C̃a(H(t0))

)1/2∣∣f ′(X(t0))
∣∣(v(Nn)

)1/2
N

1/2−H(t0)
n

|VNn,1(t0)|1/2
.

(6.4.7)

Finally, putting together, (6.4.7), (6.4.6) and (6.3.90), one obtains

Vn(t0)

VNn,1(t0)

a.s.−−−−−→
n→+∞

1;

then using Remark 6.3.4 and Lemma 6.4.1, one gets the lemma. �

Proposition 6.4.2 For all integer n, let Nn be the integer (depending on a param-
eter β ∈ (0, 1)) which was defined in (6.2.11). Assume that v satisfies condition (ii)

in Theorem 6.2.1, then for all 0 < β ≤ 1
2H(t0)+1 , the sequence(

Vn(t0)

2C̃a(H(t0))
(
f ′(X(t0))

)2
v(Nn)N

1−2H(t0)
n

)
n

,

is bounded in probability. Moreover, when 0 < β < 1
2H(t0)+1 , then one has,

Vn(t0)

2C̃a(H(t0))
(
f ′(X(t0))

)2
v(Nn)N

1−2H(t0)
n

P−−−−−→
n→+∞

1. (6.4.8)

where the symbol " P−→ 1" means that the convergence to 1 holds in probability.

Proof of Proposition 6.4.2: Relation (6.4.5) implies that the sequence of
random variables((

v(Nn)N
1−2H(t0)
n

)−1/2∣∣|Vn(t0)|1/2 − |VNn,1(t0)|1/2
∣∣)

n
,

is bounded in probability when β ≤ 1
2H(t0)+1 and that it converges in probability to

0 when β < 1
2H(t0)+1 . Next, it follows Parts (d) and (e) of Remark 6.3.3, in which

one takes

Un =
(
v(Nn)N

1−2H(t0)
n

)−1/2∣∣|Vn(t0)|1/2 − |VNn,1(t0)|1/2
∣∣,

and
V =

(
2C̃a(H(t0))

)1/2∣∣f ′(X(t0))
∣∣)−1

,
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that the sequence of random variables( ∣∣|Vn(t0)|1/2 − |VNn,1(t0)
∣∣1/2|(

2C̃a(H(t0))
)1/2∣∣f ′(X(t0))

∣∣(v(Nn)
)1/2

N
1/2−H(t0)
n

)
n

is bounded in probability when β ≤ 1
2H(t0)+1 and that it converges in probability to

0 when β < 1
2H(t0)+1 . On the other hand observe that (6.3.91) and Lemma 6.3.14

(in which one takes g(x) = x−1), imply that the sequence of random variables,((
2C̃a(H(t0))

)1/2∣∣f ′(X(t0))
∣∣(v(Nn)

)1/2
N

1/2−H(t0)
n

|VNn,1(t0)|1/2

)
n

is bounded in probability. Combining the latter two facts with (6.4.7) and Parts (b)
and (c) of Remark 6.3.3, it follows that the sequence of random variables,(∣∣∣ |Vn(t0)|1/2

|VNn,1(t0)|1/2
− 1
∣∣∣)

n

,

is bounded in probability when β ≤ 1
2H(t0)+1 and that it converges in probability to

0 when β < 1
2H(t0)+1 . This implies that the sequence of random variables,(∣∣∣ |Vn(t0)|1/2

|VNn,1(t0)|1/2
+ 1
∣∣∣)

n

,

is bounded in probability when β ≤ 1
2H(t0)+1 . Next combining the latter two facts

with the equality:∣∣∣ Vn(t0)

VNn,1(t0)
− 1
∣∣∣ = ∣∣∣ |Vn(t0)|1/2

|VNn,1(t0)|1/2
− 1
∣∣∣× ∣∣∣ |Vn(t0)|1/2

|VNn,1(t0)|1/2
+ 1
∣∣∣,

and with Parts (b) and (c) of Remark 6.3.3, it follows that the sequence of random
variables, (

Vn(t0)

VNn,1(t0)
− 1

)
n

,

is bounded in probability when β ≤ 1
2H(t0)+1 and that it converges in probability to

0 when β < 1
2H(t0)+1 . Finally, putting together the latter fact, the equality

Vn(t0)

2C̃a(H(t0))
(
f ′(X(t0))

)2
v(Nn)N

1−2H(t0)
n

− 1

=

(
Vn(t0)

VNn,1(t0)
− 1

)
×

VNn,1(t0)

2C̃a(H(t0))
(
f ′(X(t0))

)2
v(Nn)N

1−2H(t0)
n

+
VNn,1(t0)

2C̃a(H(t0))
(
f ′(X(t0))

)2
v(Nn)N

1−2H(t0)
n

− 1,
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Relation (6.3.91), and Parts (b) and (c) of Remark 6.3.3, one obtains the proposition.
�

Now, we are in position to show that Theorem 6.2.1 and Theorem 6.2.2 hold.
Proof of Theorem 6.2.1. First observe that, in view of (6.2.11), one has,

lim
n∈N,n→+∞

N
1−2H(t0)
n

N
1−2H(t0)
2n

= 2(2H(t0)−1)β. (6.4.9)

Let c > 0 be such that,

c = lim
n∈N,n→+∞

v(N2n)

V (Nn)
. (6.4.10)

Observe that the fact that H(t0) ∈ (0, 1) and β ∈ (0, 1/6], imply that β < 1
4H(t0)+2 .

Therefore, we are allowed to use Proposition 6.4.1. Putting together, the latter
proposition, (6.4.9) and (6.4.10), one gets

Vn(t0)

V2n(t0)

a.s.−−−−−→
n→+∞

c−12(2H(t0)−1)β.

The rest of the proof follows the same lines as that of Theorem 6.3.1. �
Proof of Theorem 6.2.2. The proof relies on Proposition 6.4.2 and Lemma 6.3.14;
it is similar to that of Theorem 6.2.1. �

6.5 Asymptotic normality of the estimators

The main goal of this section is to show that Theorem 6.2.3 holds, to this end we
need several preliminary results. The following proposition provides a Central Limit
Theorem for the generalized quadratic variation of mBm,

∑
i∈νN (t0)

(∆aXi,N )2.

Proposition 6.5.1 Assume that v satisfies the following condition:

(ii”) for all integer N big enough, one has,

v(N) = o
(
(logN)−2

)
and logN = o

((
v(N)N

)1/2)
.

Then, there is a constant c > 0, such that,

c
(
Nv(N)

)1/2( ∑
i∈νN (t0)

(∆aXi,N )2∑
i∈νN (t0)

E (∆aXi,N )2
− 1
)

d−−−−−→
n→+∞

N (0, 1),

where the symbol d−→ N (0, 1) means: converge in distribution to a standard Gaussian
random variable.

The proof of Proposition 6.5.1 relies on the following three lemmas as well as the
following remark.
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Lemma 6.5.2 (see [27]) Consider the sequence of random variables (SN )N defined
by

SN =
∑

j∈νN (t0)

λj,N (ε2j,N − 1), (6.5.1)

where {εj,N}j∈νN (t0) are i.i.d. centred standard Gaussian random variables and
{λj,N}j∈νN (t0) is a sequence of positive reals. Let λN = maxj∈νN (t0) λj,N , if
λN = o

(
(Var(SN ))1/2

)
, then

SN(
Var(SN )

)1/2 d−−−−−→
n→+∞

N (0, 1).

Lemma 6.5.3 (see [46]) For all integer q ≥ 1, let C = (Cij)q×q be a positively
defined symmetric matrix and λ its largest eigenvalue, then

λ ≤ max
1≤i≤q

q∑
j=1

|Cij |.

The following remark is a classical result, this is why we will not give its proof.

Remark 6.5.1 Let (Xn)n be a sequence of real-valued random variable such that
Xn

d−−−−−→
n→+∞

N (0, 1). Let (Yn)n be a sequence of real-valued random variable satisfy-

ing Yn
P−−−−−→

n→+∞
0. Let (cn)n be a sequence of real numbers such that, cn −−−−−→

n→+∞
1.

Then, one has, cnXn + Yn
d−−−−−→

n→+∞
N (0, 1).

Lemma 6.5.4 For all integer N ≥ p+ 1, let us set

σ2N = Var

( ∑
i∈νN (t0)

(∆aXi,N )2∑
i∈νN (t0)

E (∆aXi,N )2
− 1

)
=

Var
(∑

i∈νN (t0)
(∆aXi,N )2

)
(∑

i∈νN (t0)
E (∆aXi,N )2

)2 . (6.5.2)

Then, assuming that, v satisfies condition (ii′′) in Proposition 6.5.1, it follows that,

Nv(N)σ2N −−−−−→
n→+∞

d2, (6.5.3)

where d is a strictly positive real number.
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Proof of Lemma 6.5.4. First, observe that using (6.5.2), one has,

σ2N =
Var
(∑

i∈νN (t0)
(∆aXi,N )2

)
(∑

i∈νN (t0)
E (∆aXi,N )2

)2
=

Var
(∑

i∈νN (t0)
(∆aB

H(t0)
i,N )2

)
(∑

i∈νN (t0)
E (∆aB

H(t0)
i,N )2

)2
+

Var
(∑

i∈νN (t0)
(∆aXi,N )2

)
− Var

(∑
i∈νN (t0)

(∆aB
H(t0)
i,N )2

)
(∑

i∈νN (t0)
E (∆aB

H(t0)
i,N )2

)2


×


(∑

i∈νN (t0)
E (∆aB

H(t0)
i,N )2

)2
(∑

i∈νN (t0)
E (∆aXi,N )2

)2
 .

(6.5.4)

Also observe that, similarly to (3.4.3), one can show that there is a constant c1 > 0

such that
Var
(∑

i∈νN (t0)
(∆aB

H(t0)
i,N )2

)
(
Nv(N)

)−1
(∑

i∈νN (t0)
E (∆aB

H(t0)
i,N )2

)2 −−−−−→
n→+∞

c1. (6.5.5)

Moreover (6.3.28) and (6.3.23) imply that,(∑
i∈νN (t0)

E (∆aB
H(t0)
i,N )2

)2
(∑

i∈νN (t0)
E (∆aXi,N )2

)2 −−−−−→
n→+∞

1. (6.5.6)

Thus, in view of (6.5.4), (6.5.5) and (6.5.6), in order to show that (6.5.2) holds, it
is sufficient to prove that,

Var
(∑

i∈νN (t0)
(∆aXi,N )2

)
− Var

(∑
i∈νN (t0)

(∆aB
H(t0)
i,N )2

)
(Nv(N))−1

(∑
i∈νN (t0)

E (∆aB
H(t0)
i,N )2

)2 −−−−−→
N→+∞

0. (6.5.7)

Similarly to (6.3.12), one has that,

Var
( ∑

i∈νN (t0)

(∆aB
H(t0)
i,N )2

)
= 2

∑
i,j∈νN (t0)

(
Cov(∆aB

H(t0)
i,N ,∆aB

H(t0)
j,N )

)2
. (6.5.8)

Using (6.3.12), (6.5.8) and the triangle inequality, it follows that,∣∣∣Var
( ∑

i∈νN (t0)

(∆aXi,N )2
)
− Var

( ∑
i∈νN (t0)

(∆aB
H(t0)
i,N )2

)∣∣∣ (6.5.9)

≤ 2
∑

i,j∈νN (t0)

∣∣∣Cov
(
∆aXi,N ,∆aXj,N

)
− Cov

(
∆aB

H(t0)
i,N ,∆aB

H(t0)
j,N

)∣∣∣
×
(∣∣∣Cov

(
∆aXi,N ,∆aXj,N

) ∣∣∣+ ∣∣∣Cov
(
∆aB

H(t0)
i,N ,∆aB

H(t0)
j,N

)∣∣∣) .
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Next, observe that, the triangle inequality, Cauchy-Schwarz inequality, (6.3.28),
(6.3.59) and (6.3.23), imply that, for all N ≥ p+ 1, and i, j ∈ νN (t0), one has,∣∣∣Cov

(
∆aXi,N ,∆aXj,N

)
− Cov

(
∆aB

H(t0)
i,N ,∆aB

H(t0)
j,N

)∣∣∣
≤
∣∣∣Cov

(
∆aXi,N −∆aB

H(t0)
i,N ,∆aXj,N

)∣∣∣+ ∣∣∣Cov
(
∆aB

H(t0)
i,N ,∆aXj,N −∆aB

H(t0)
j,N

)∣∣∣
≤
∥∥∆aXi,N −∆aB

H(t0)
i,N

∥∥
L2

∥∥∆aXj,N

∥∥
L2 +

∥∥∆aB
H(t0)
i,N

∥∥
L2

∥∥∆aXj,N −∆aB
H(t0)
j,N

∥∥
L2

≤ c2
(
v(N) logN

)
N−2H(t0), (6.5.10)

where c2 is a constant non depending onN , i and j. On the other hand, Lemma 6.3.7
and (6.3.15) entail that for all N ≥ p+ 1 and all fixed i ∈ νN (t0), one has∑

j∈νN (t0)

∣∣Cov
(
∆aXi,N ,∆aXj,N

)∣∣ ≤ c3N
−2H(t0)

∑
j∈νN (t0)

(
1 + |i− j|

)−1

≤ 2c3N
−2H(t0)

N−p∑
l=1

l−1

≤ c4N
−2H(t0)

(
logN

)
, (6.5.11)

where c3 and c4 are two constants non depending on N and i. Moreover, similarly
to (6.5.11), one can show that, for all N ≥ p+ 1 and all fixed i ∈ νN (t0), one has∑

j∈νN (t0)

∣∣∣Cov
(
∆aB

H(t0)
i,N ,∆aB

H(t0)
j,N

)∣∣∣ ≤ c4N
−2H(t0)

(
logN

)
, (6.5.12)

where c5 is a constant non depending on N and i. Next putting together, (6.2.4),
(6.2.5) and (6.5.9) to (6.5.12), one obtains that, for all N ≥ p+ 1,∣∣∣Var

( ∑
i∈νN (t0)

(∆aXi,N )2
)
−Var

( ∑
i∈νN (t0)

(∆aB
H(t0)
i,N )2

)∣∣∣ ≤ c6
(
v(N) logN

)2
N1−4H(t0),

(6.5.13)
where c6 is a constant non depending N . On the other hand, (6.2.4), (6.2.5) and
(6.3.23) imply that, for all N ≥ p+ 1,

(Nv(N))−1
( ∑

i∈νN (t0)

E (∆aB
H(t0)
i,N )2

)2
≥ c7v(N)N1−4H(t0), (6.5.14)

where c7 > 0 is a constant non depending on N . Finally, putting together, (6.5.13),
(6.5.14) and condition (ii′′) in Proposition 6.5.1, one gets (6.5.7). �

Now we are in position to prove Proposition 6.5.1.
Proof of Proposition 6.5.1. First observe that, in view of (6.3.11),

SN :=

∑
i∈νN (t0)

(∆aXi,N )2∑
i∈νN (t0)

E (∆aXi,N )2
− 1, (6.5.15)
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can be expressed in the from (6.5.1), where, for all j,

λj,N =
λ̃j,N∑

i∈νN (t0)
E (∆aXi,N )2

, (6.5.16)

the λ̃j,N ’s being the eigenvalues of the covariance matrix M of the centered Gaussian
vector

(
∆aXi,N

)
i∈νN (t0)

. We denote by λ̃N the biggest eigenvalue, then it follows
from Lemma 6.5.3 and (6.5.11), that,

λ̃N ≤ max
i∈νN (t0)

∑
k∈νN (t0)

∣∣Cov(∆aXi,N ,∆aXi,N )
∣∣ = O

(
N−2H(t0) logN

)
. (6.5.17)

Thus, denoting λN the biggest of the λN,j ’s, one has, in view of (6.5.16), (6.5.17)
and (6.3.59),

λN = O
(
(Nv(N))−1 logN

)
. (6.5.18)

On the other hand, Lemma 6.5.4 and (6.5.15) imply that

N−1/2(v(N))−1/2 = O
(
(Var(SN ))1/2

)
. (6.5.19)

Relations (6.5.18) and (6.5.19) imply that,

λN = O
(
(Var(SN ))1/2(Nv(N))−1/2 logN

)
. (6.5.20)

Finally, putting together (6.5.20) and condition (ii′′) in Proposition 6.5.1, it follows
that

λN = o
(
Var(SN ))1/2

)
;

therefore Lemma 6.5.2, Lemma 6.5.4 and Remark 6.5.1 entail that the proposition
holds. �

Let us now give two important consequences of Proposition 6.5.1.

Proposition 6.5.5 Assume that v satisfies the following condition:

(ii” ’) for all integer N big enough, one has,

v(N) = o
(
N−1/3(logN)−2/3

)
and logN = o

((
v(N)N

)1/2)
.

Then, there is a constant c > 0, such that,

c
(
Nv(N)

)1/2( ∑
i∈νN (t0)

(∆aXi,N )2

2C̃a(H(t0))v(N)N1−2H(t0)
− 1
)

d−−−−−→
n→+∞

N (0, 1),

Proof of Proposition 6.5.5. For all N ≥ p+ 1, let us set,

XN = c
(
Nv(N)

)1/2( ∑
i∈νN (t0)

(∆aXi,N )2∑
i∈νN (t0)

E (∆aXi,N )2
− 1
)
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and

YN = c
(
Nv(N)

)1/2( ∑
i∈νN (t0)

E (∆aXi,N )2

2C̃a(H(t0))v(N)N1−2H(t0)
− 1
) ∑

i∈νN (t0)
(∆aXi,N )2∑

i∈νN (t0)
E (∆aXi,N )2

,

where c is the constant introduced in Proposition 6.5.1. Then, one has,

c
(
Nv(N)

)1/2( ∑
i∈νN (t0)

(∆aXi,N )2

2C̃a(H(t0))v(N)N1−2H(t0)
− 1
)
= XN + YN ;

Observe that, Proposition 6.5.1 implies that,

XN
d−−−−−→

n→+∞
N (0, 1).

Also observe that, one has in view of Lemma 6.3.9, (6.3.61), (6.3.23), (6.2.4), (6.2.5)
and condition (ii′′′) in Proposition 6.5.5, that,

YN
P−−−−−→

n→+∞
0.

Therefore Proposition 6.5.5 results from Remark 6.5.1. �

Proposition 6.5.6 Assume that H(t0) ∈ (1/2, 1) and that v satisfies condition (iv)

in Theorem 6.2.3. Then there is a constant c > 0, such that,

c
(
Nv(N)

)1/2( VN,1(t0)

2C̃a(H(t0))|f ′(X(t0))|2v(N)N1−2H(t0)
− 1
)

d−−−−−→
n→+∞

N (0, 1);

recall that VN,1(t0) has been introduced in (6.3.1).

Proof of Proposition 6.5.6. Let c be the constant introduced in Proposi-
tion 6.5.5. Observe that one has,

c
(
Nv(N)

)1/2( VN,1(t0)

2C̃a(H(t0))|f ′(X(t0))|2v(N)N1−2H(t0)
− 1
)

= c
(
Nv(N)

)1/2( ∑
i∈νN (t0)

(∆aXi,N )2

2C̃a(H(t0))v(N)N1−2H(t0)
− 1
)

+cN−(1−4H(t0))/2v(N)−1/2

(
VN,3(t0)− VN,2(t0)

)
2C̃a(H(t0))|f ′(X(t0))|2

+cN−(1−4H(t0))/2v(N)−1/2

(
VN,1(t0)− VN,3(t0)

)
2C̃a(H(t0))|f ′(X(t0))|2

(6.5.21)

Recall that VN,2(t0) and VN,3(t0) have respectively been introduced in (6.3.66) and
(6.3.67). In view of (6.5.21), Proposition 6.5.5 and Remark 6.5.1, in order to prove
that Proposition 6.5.5 holds, it is sufficient to show that,

N−(1−4H(t0))/2v(N)−1/2
∣∣VN,2(t0)− VN,3(t0)

∣∣ P−−−−−→
n→+∞

0 (6.5.22)
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and
N−(1−4H(t0))/2v(N)−1/2

∣∣VN,3(t0)− VN,1(t0)
∣∣ P−−−−−→

n→+∞
0. (6.5.23)

In the sequel ε denotes a fixed strictly positive real number such that,

H(t0)− ε > 1/2; (6.5.24)

observe that such an ε exists since the function H(t0) ∈ (1/2, 1). Let us now prove
that (6.5.22) is satisfied. By using (6.3.68), (6.3.66) and Proposition 6.3.4, we get,

N−(1−4H(t0))/2v(N)−1/2
∣∣VN,2(t0)− VN,3(t0)

∣∣
= N−(1−4H(t0))/2v(N)−1/2

∣∣∣∣VN,3(t0)

VN,2(t0)
− 1

∣∣∣∣ ∣∣VN,2(t0)
∣∣

= OP

(
N (−1+4H(t0))/2v(N)−1/2v(N)H(t0)−εv(N)N1−2H(t0)

)
= OP

(
N1/2v(N)H(t0)+1/2−ε

)
(6.5.25)

Next combining (6.5.25) with (6.5.24) and condition (iv) in Theorem 6.2.3, one
obtains (6.5.22).

Let us now prove that (6.5.23) is satisfied. It follows from the triangle inequality,
(6.5.25), (6.3.88), (6.3.68), (6.3.66), and Proposition 6.3.4, that

N−(1−4H(t0))/2v(N)−1/2
∣∣VN,3(t0)− VN,1(t0)

∣∣
= N−(1−4H(t0))/2v(N)−1/2

∣∣VN,3(t0)
∣∣ ∣∣∣∣VN,1(t0)

VN,3(t0)
− 1

∣∣∣∣
≤ N−(1−4H(t0))/2v(N)−1/2

(∣∣VN,3(t0)− VN,2(t0)
∣∣ ∣∣∣∣VN,1(t0)

VN,3(t0)
− 1

∣∣∣∣
+
∣∣VN,2(t0)

∣∣ ∣∣∣∣VN,1(t0)

VN,3(t0)
− 1

∣∣∣∣)
= OP

(
N1/2v(N)H(t0)+1/2−εN−H(t0)+ε

+N−(1−4H(t0))/2v(N)−1/2v(N)N1−2H(t0)N−H(t0)+ε
)

= OP

(
N1/2−H(t0)+εv(N)1/2

)
. (6.5.26)

Finally (6.5.23) results from (6.5.24) and (6.5.26). �

Lemma 6.5.7 Assume that v satisfies condition (ii) in Theorem 6.2.1. Also, as-
sume that for every integer n, the integer Nn is of the form (6.2.11), where the
parameter β is such that,

0 < β ≤ 1

4
. (6.5.27)

Then, one has,(
Nnv(Nn)

)1/2( ∣∣Vn(t0)− VNn,1(t0)
∣∣

2C̃a(H(t0))|f ′(X(t0))|2v(Nn)N
1−2H(t0)
n

)
= OP

((
v(Nn)

)1/2)
,

(6.5.28)
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Notice that Vn(t0) has been introduced in (6.2.12) and VNn,1(t0) is defined by the
formula (6.3.1), in which N has been replaced by Nn.

Proof of Lemma 6.5.7. First observe that similarly to (6.4.5), there is a constant
c1 > 0, non depending on n and η, such that one has for all real η > 0 and for each
integer n big enough,

P
(
n1/8

(
v(Nn)N

1−2H(t0)
n

)−1/2∣∣|Vn(t0)|1/2 − |VNn,1(t0)|1/2
∣∣ > η

)
≤ c1η

−4n(4H(t0)+2)β−3/2. (6.5.29)

Next, (6.2.11), (6.5.29) and (6.5.27) imply that,

(
Nnv(Nn)

)1/2( ∣∣∣(Vn(t0))1/2 − (VNn,1(t0)
)1/2∣∣∣

2C̃a(H(t0))|f ′(X(t0))|2v(Nn)N
1−2H(t0)
n

)
= OP

(
N

H(t0)− 1
8β

n

)
. (6.5.30)

On the other hand, Proposition 6.4.2 implies that,(
Vn(t0)

)1/2
= OP

((
v(Nn)

)1/2
N1/2−H(t0)

n

)
, (6.5.31)

and Remark 6.3.5 entails that,(
VNn,1(t0)

)1/2
= OP

((
v(Nn)

)1/2
N1/2−H(t0)

n

)
. (6.5.32)

Finally, putting together (6.5.30), (6.5.31), (6.5.32), and the equality∣∣Vn(t0)− VNn,1(t0)
∣∣ = ∣∣∣(Vn(t0))1/2 − (VNn,1(t0)

)1/2∣∣∣ ∣∣∣(Vn(t0))1/2 + (VNn,1(t0)
)1/2∣∣∣ ,

one obtains (6.5.28). �

Proposition 6.5.8 Assume H(t0) ∈ (1/2, 1) and that v satisfies condition (iv) in
Theorem 6.2.3. Also, assume that for every integer n, the integer Nn is of the form
(6.2.11), where the parameter β is such that, 0 < β ≤ 1

4 . Then there is a constant
c > 0, such that,

c
(
Nnv(Nn)

)1/2( Vn(t0)

2C̃a(H(t0))|f ′(X(t0))|2v(Nn)N
1−2H(t0)
n

− 1
)

d−−−−−→
n→+∞

N (0, 1).

Notice that Vn(t0) has been introduced in (6.2.12)

Proof of Proposition 6.5.8. The proposition easily follows from Proposition 6.5.6,
Remark 6.5.1 and Lemma 6.5.7. �

Now, we are in position to prove Theorem 6.2.3.
Proof of Theorem 6.2.3. By using Proposition 6.5.8 and the δ-method one can
get the theorem. �
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Appendix

7.1 Proof of Lemma 5.3.4

Lemma 7.1.1 Let (Z,Z ′) be a 2-D centered Gaussian random vector and assume
that the variances of Z and Z ′ are both equal to the same quantity denoted by v.
Then, one has,

E
{
(Z2 − v)(Z ′2 − v)

}
= 2
(
Cov(Z,Z ′)

)2
. (7.1.1)

Proof: For the sake of simplicity we denote by u = Corr(Z,Z ′), then M the corre-

lation of the centered random vector (Z,Z ′) can be expressed as, M =

(
1 u

u 1

)
.

Let us study the following two cases: det(M) = 0 and det(M) ̸= 0.

Case 1: det(M) = 0 i.e Z and Z ′ are colinear. Observe that in this case one has
u = ±1. Then the latter equality and the fact that Var(Z) = Var(Z ′) = v,
imply that,

Z2 = Z ′2. (7.1.2)

It follows from (7.1.2) and the equality E (Z/
√
v)4 = 3 that

E
{
(Z2 − v)(Z ′2 − v)

}
= E

{
(Z2 − v)2

}
= E{Z4 − 2Z2v + v2}
= E{Z4} − 2E{Z2}v + v2

= 3v2 − 2v2 + v2

= 2v2. (7.1.3)

On the other hand (7.1.2), implies,

2
(
E{ZZ ′}

)2
= 2
(
E{Z2}

)2
= 2v2. (7.1.4)

Thus combining (7.1.3) with (7.1.4), one can show that the lemma holds in
this case.

Case 2: det(M) ̸= 0. Standard computations show that

M = P

(
1 + u 0

0 1− u

)
P, (7.1.5)

where P = 1√
2

(
1 1

1 −1

)
. We set

A = P

( √
1 + u 0

0
√
1− u

)
. (7.1.6)
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Let ε and ε′ be two independent standard Gaussian variables, then the centered
Gaussian random vector

A

(
ε

ε′

)
=

1√
2

(
(1 + u)1/2ε+ (1− u)1/2ε′

(1 + u)1/2ε− (1− u)1/2ε′

)

has the same distribution as centered Gaussian random vector
(

Z√
v
, Z′
√
v

)
.

Therefore,

E
{
(ZZ ′)2

}
=
v2

4
E

{(
(1 + u)1/2ε+ (1− u)1/2ε′

)2(
(1 + u)1/2ε− (1− u)1/2ε′

)2}
=
v2

4
E

{(
(1 + u)ε2 − (1− u)ε′

2
)2}

=
v2

4
E
{
(1 + u)2ε4 − 2(1− u2)ε2ε′

2
+ (1− u)2ε′

4}
=
v2

4

(
(1 + u)2E{ε4} − 2(1− u2)E{ε2ε′2}+ (1− u)2E{ε′4}

)
= (2u2 + 1)v2 (7.1.7)

and

2
(
E
{
(ZZ ′)

})2
= 2 · v

2

4

(
E

{(
(1 + u)1/2ε+ (1− u)1/2ε′

)(
(1 + u)1/2ε− (1− u)1/2ε′

)})2

=
v2

2

(
E
{
(1 + u)ε2 − (1− u)ε′2

})2
=
v2

2

(
(1 + u)E{ε2} − (1− u)E{ε′2}

)2
=
v2

2

(
(1 + u)− (1− u)

)2
= 2u2v2 (7.1.8)

Observe that (7.1.7) entails that,

E
{
(Z2 − v)(Z ′2 − v)

}
= E

{
(ZZ ′)2 − Z2v − Z ′2v + v2

}
= 2u2v2. (7.1.9)

It follows from (7.1.9) and (7.1.8) that

E
{
(Z2 − v)(Z ′2 − v)

}
= 2
(
E{ZZ ′}

)2
,

which proves that the lemma also holds in this case. �
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7.2 Proof of Proposition 5.3.6

Proposition 7.2.1 Assume that H(·) ∈ C2([0, 1]) and M(a) ≥ 3 (recall that M(a)

is the number of the vanishing moments of the sequence a). Then there is a constant
c > 0 such that one has for any integer N ≥ p+1 and each j, j′ ∈ {0, . . . , N−p−1},∣∣∣Corr

{
∆aXj,N ,∆aXj′,N

}∣∣∣ ≤ c

(
1

1 + |j − j′|

)
,

where

Corr
{
∆aXj,N ,∆aXj′,N

}
:= E


∆aXj,N√

Var
{
∆aXj,N

} ∆aXj′,N√
Var

{
∆aXj′,N

}
 .

This proposition is a straightforward consequence of Lemmas 7.2.2 and 7.2.3, given
below.

Lemma 7.2.2 There are two constants 0 < c1 ≤ c2 such that one has for any
integer N ≥ p+ 1 and j ∈ {0, . . . , N − p− 1},

c1N
−2H(j/N) ≤ Var

{
∆aXj,N

}
≤ c2N

−2H(j/N). (7.2.1)

Proof of Lemma 7.2.2 : The lemma can be obtained by using Lemma 7.3.1 given
in the next section. Indeed, Lemma 7.3.1 can be equivalently expressed as follows:
there exists a constant c > 0 such that for all N ≥ p+1 and all j ∈ {0, . . . , N−p−1},
one has

Var
{
∆aXj,N

} ≥ −c log(N)N−2H(j/N)−1 + C(j/N)N−2H(j/N)

≤ c log(N)N−2H(j/N)−1 + C(j/N)N−2H(j/N).

By using the fact that for all s ∈ [0, 1],

C(s) =

∫
R

|eiη − 1|2|
∑p

k=0 ake
ikη|2

|η|2H(s)+3
dη,

we get for any real s ∈ [0, 1],

C(s) ≥ c1 =

∫
|η|≤1

|eiη − 1||
∑p

k=0 ake
ikη|

|η|2mins∈[0,1] H(s)+3
dη +

∫
|η|>1

|eiη − 1||
∑p

k=0 ake
ikη|

|η|2maxs∈[0,1] H(s)+3
dη > 0,

and

C(s) ≤ c2 =

∫
|η|≤1

|eiη − 1||
∑p

k=0 ake
ikη|

|η|2maxs∈[0,1] H(s)+3
dη +

∫
|η|>1

|eiη − 1||
∑p

k=0 ake
ikη|

|η|2mins∈[0,1] H(s)+3
dη > 0.

it yields

(c1 − c log(N)/N)N−2H(j/N) ≤ Var
{
∆aXj,N

}
≤ (c2 + c log(N)/N)N−2H(j/N).

Finally (7.2.1), easily follows from the latter two inequalities since
limN→+∞ log(N)/N = 0. �
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Lemma 7.2.3 Under the same conditions as in Proposition 7.2.1, there is a con-
stant c > 0 such that one has for any integer N ≥ p + 1 and each j, j′ ∈
{0, . . . , N − p− 1},

∣∣∣E{∆aXj,N∆aXj′,N

}∣∣∣ ≤ cN−H(j/N)−H(j′/N)

1 + |j − j′|
. (7.2.2)

Proof of Lemma 7.2.3 : In order to conveniently express the quantity
E
{
∆aXj,N∆aXj′,N

}
let us introduce the function g defined for all reals ξ ̸= 0

and x ∈ [0, 1] as
g(x, ξ) := |ξ|−H(x)−1/2. (7.2.3)

Recall that for all j ∈ {0, . . . , N − p− 1},

∆aXj,N = N

p∑
k=0

ak

∫ (j+1)/N

j/N
X(s+ k/N) ds,

and for any s, s′ ∈ [0, 1], the covariance between X(s) and X(s′) can be expressed
as

E (X(s)X(s′)) =

∫
R

(eisξ − 1)(e−is′ξ − 1)

|ξ|H(s)+H(s′)+1
dξ.

Then it follows from Fubini Theorem that

E
{
∆aXj,N∆aXj′,N

}
= E

{
N2

p∑
k=0

p∑
k′=0

akak′

∫ j+1
N

j
N

∫ j′+1
N

j′
N

X(s+ k/N)X(s′ + k′/N) ds′ ds

}

= N2

∫ j+1
N

j
N

∫ j′+1
N

j′
N

E
{( p∑

k=0

akX(s+ k/N)
)( p∑

k′=0

ak′X(s′ + k′/N)
)
ds′ ds

}

= N2

∫ j+1
N

j
N

∫ j′+1
N

j′
N

∫
R

( p∑
k=0

ak(e
i(s+k/N)ξ − 1)g(s+ k/N, ξ)

)
×
( p∑

k′=0

ak′(e
−i(s′+k′/N)ξ − 1)g(s′ + k′/N, ξ)

)
dξ ds′ ds. (7.2.4)

Now let us fix ξ ∈ R\{0} and s ∈
[
j+k
N , j+k+1

N

]
. By applying the Taylor formula

of order 2 with integral remainder to the function x 7→ g(x, ξ) around j/N , one gets
that

g(s, ξ) = A0 + (s− j/N)A1 + (s− j/N)2A2 (7.2.5)

where
A0 := A0(j/N, ξ) = g(j/N, ξ) = |ξ|−H(j/N)−1/2, (7.2.6)

A1 := A1(j/N, ξ) = ∂xg(j/N, ξ) = −H ′(j/N)|ξ|−H(j/N)−1/2 log |ξ| (7.2.7)
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and

A2 := A2(j/N, s, ξ) =

∫ 1

0
(1− θ)∂2xg(j/N + θ(s− j/N), ξ) dθ. (7.2.8)

Using the same argument as before, one has for any fixed ξ ∈ R \ {0} and s′ ∈[
j′+k′

N , j
′+k′+1

N

]
,

g(s′, ξ) = A′
0 + (s′ − j′/N)A′

1 + (s′ − j′/N)2A′
2 (7.2.9)

where A′
0, A′

1 and A′
2 are defined similarly to A0, A1 and A2 but by replacing j/N

by j′/N and s by s′. It follows from (7.2.4), (7.2.5) and (7.2.9) that

E
{
∆aXj,N∆aXj′,N

}
=

∑
0≤l′,l≤2

Il,l′(j, j′, N) (7.2.10)

where for any l, l′ ∈ {0, 1, 2},

Il,l′(j, j′, N) = N2

∫ j+1
N

j
N

∫ j′+1
N

j′
N

∫
R

( p∑
k=0

ak(e
i(s+k/N)ξ − 1)(s+ k/N − j/N)lAl

)
×
( p∑

k′=0

ak′(e
−i(s′+k′/N)ξ − 1)(s′ + k′/N − j′/N)l

′
A′

l′

)
dξ ds′ ds.

(7.2.11)

Then Lemma 7.2.3 can easily be obtained by using (7.2.10) and Lemma 7.2.4 below,
which allows to conveniently bound the Il,l′ ’s. �

Lemma 7.2.4 There exist four constants c1, c2, c3, c4 > 0, such that for any N ≥
p+ 1, any j, j′ ∈ {0, . . . , N − p− 1}, one has:

•
|I0,0(j, j′, N)| ≤ c1N

−H(j/N)−H(j′/N)

1 + |j − j′|
; (7.2.12)

• for all l, l′ ∈ {0, 1} satisfying l + l′ = 1,

|Il,l′(j, j′, N)| ≤ c2(logN)N−H(j/N)−H(j′/N)−1

1 + |j − j′|
; (7.2.13)

• for all l, l′ ∈ {0, 1, 2} satisfying l + l′ = 2,

|Il,l(j, j′, N)| ≤ c3(logN)2N−H(j/N)−H(j′/N)−2; (7.2.14)

• for all l, l′ ∈ {1, 2} satisfying 3 ≤ l + l′ ≤ 4,

|Il,l′(j, j′, N)| ≤ c4N
−3. (7.2.15)
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Let us stress that the main tool for proving Lemma 7.2.4 is integration by parts.
Let us first state some technical lemmas which will play key rôles in the proof.

Lemma 7.2.5 For any real x ∈ R, one has |eix − 1| ≤ 2min(1, |x|).

Proof of Lemma 7.2.5: Observe that, for all x ∈ R,

|eix − 1| = |eix/2 − e−ix/2| = 2| sin(x/2)|.

Then combining the latter equality with the inequality: for all x ∈ R,

| sin(x)| ≤ min(1, |x|), (7.2.16)

we get Lemma 7.2.5. �

Lemma 7.2.6 There exists a constant c > 0, such that for any x ∈ R, any integer
N ≥ p+ 1, any j, j′ ∈ {0, . . . , N − p− 1} and m ∈ {0, 1}, one has

|r(m)
j,j′ (x)| ≤ cmin

(
1, |x|2−m

)
, (7.2.17)

where rj,j′(x) = e−iδ(j,j′)x|eix−1|2 = 4e−iδ(j,j′)x| sin(x/2)|2 and r(m)
j,j′ is the derivative

of order m of rj,j′ ; we assume that δ(j, j′) = 1 if j ≥ j′ and δ(j, j′) = −1 else.

Proof of Lemma 7.2.6: When m = 0, (7.2.17) is a straightforward consequence
of Lemma 7.2.5. When m = 1, by using the triangle inequality and the fact that
for all integers j, j′ ∈ {0, . . . , N − p− 1} one has |δ(j, j′)| = 1, it follows that for all
x ∈ R and all integers N ≥ p+ 1, j, j′ ∈ {0, . . . , N − p− 1},

|r(1)j,j′(x)| =
∣∣∣− 4iδ(j, j′)e−iδ(j,j′)x| sin(x/2)|2 + 4e−iδ(j,j′)x sin(x/2) cos(x/2)

∣∣∣
=

∣∣∣− 4iδ(j, j′)e−iδ(j,j′)x| sin(x/2)|2 + 2e−iδ(j,j′)x sin(x)
∣∣∣

≤ 4| sin(x/2)|2 + 2| sin(x)|. (7.2.18)

Finally combining (7.2.18) with (7.2.16), one gets (7.2.17). �

Lemma 7.2.7 Let h be the trigonometric polynomial defined for every real x as
h(x) =

∑p
k=0 ake

ikx. Then there is a constant c > 0 such that for all m ∈
{0, . . . ,M(a)} and real x, one has

|h(m)(x)| ≤ cmin
(
1, |x|M(a)−m

)
. (7.2.19)

Proof of Lemma 7.2.7: Let us set c =
∑p

k=0(1 + |k|)M(a)|ak|. First observe that
for all m ∈ N and all x ∈ R, one has

h(m)(x) = im
p∑

k=0

kmake
ikx, (7.2.20)
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which entails that for all m ∈ {0, . . . ,M(a)} and all x ∈ R, one has

|h(m)(x)| ≤ c. (7.2.21)

This proves that (7.2.19) is satisfied when m = M(a). On the hand (5.2.8) and
(7.2.20) imply that h(0) = h(1)(0) = . . . h(M(a)−1)(0) = 0. Thus, for all fixed
m ∈ {0, . . . ,M(a) − 1}, applying the Taylor formula of order M(a) − m with an
integral remainder to the function h(m) on the interval of endpoints 0 and x, one
gets that

h(m)(x) =
xM(a)−m

(M(a)−m− 1)!

∫ 1

0
(1− θ)M(a)−m−1h(M(a))(θx) dθ,

which implies that

|h(m)(x)| ≤ c|x|M(a)−m. (7.2.22)

Finally combining (7.2.21) with (7.2.22) one obtains the lemma. �
The proof of the following lemma has been omitted since it is given in [5] (see

the proof of Lemma 2.1 in this article):

Lemma 7.2.8 The function g introduced in (7.2.3) satisfies the following two prop-
erties.

(i) There is a constant c1 > 0 such that for all m ∈ {0, 1}, x ∈ [0, 1] and ξ ∈
R \ {0}, one has

|∂mξ g(x, ξ)| ≤ c1max
(
|ξ|−maxs∈[0,1] H(s)−m−1/2, |ξ|−mins∈[0,1]H(s) −m−1/2

)
.

(7.2.23)

(ii) For any arbitrarily small real ε > 0, there exists a constant c2 > 0 such that
for all n ∈ {0, 1, 2}, m ∈ {0, 1, 2}, x ∈ [0, 1] and ξ ∈ R \ {0}, one has

|∂nx∂mξ g(x, ξ)| ≤ c2max
(
|ξ|−maxs∈[0,1] H(s)−ε−m−1/2, |ξ|−mins∈[0,1] H(s)+ε−m−1/2

)
.

(7.2.24)

We are now ready to prove Lemma 7.2.4.
Proof of Lemma 7.2.4: Let us first prove that (7.2.12) holds. Fix N ≥ p + 1

and j, j′ ∈ {0, . . . , N − p− 1}, by using (7.2.11), the fact that
∑p

k=0 ak = 0, Fubini
Theorem and the equality: for all ξ ∈ R \ {0},

∫ j+1
N

j
N

∫ j′+1
N

j′
N

ei(s−s′)ξ ds′ ds = ξ−2ei((j−j′)/N)ξ|eiξ/N − 1|2,
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we obtain

I0,0(j, j′, N)

= N2

∫ j+1
N

j
N

∫ j′+1
N

j′
N

∫
R
ei(s−s′)ξ

∣∣∣ p∑
k=0

ake
i(k/N)ξ

∣∣∣2A0(j/N, ξ)A0(j
′/N, ξ) dξ ds′ ds

= N2

∫
R

(∫ j+1
N

j
N

∫ j′+1
N

j′
N

ei(s−s′)ξ ds′ ds

)∣∣∣ p∑
k=0

ake
i(k/N)ξ

∣∣∣2A0(j/N, ξ)A0(j
′/N, ξ) dξ

= N2

∫
R
e(i(j−j′)/N)ξ |eiξ/N − 1|2|

∑p
k=0 ake

i(k/N)ξ|2

ξ2
A0(j/N, ξ)A0(j

′/N, ξ) dξ.

(7.2.25)

Next by setting η = ξ/N in the last integral and by using (7.2.6), we get

I0,0(j, j′, N) = N−H(j/N)−H(j′/N)

∫
R
ei(δ(j,j

′)+(j−j′))ηLj,j′,N (η) dη,

with

Lj,j′,N (η) :=

{
η−2rj,j′(η)|h(η)|2A0(j/N, η)A0(j

′/N, η) when η ̸= 0,

0 else,
(7.2.26)

where we use the same notations as in Lemmas 7.2.6 and 7.2.7. Next, using the
triangle inequality as well as Lemmas 7.2.5, 7.2.7 and 7.2.8 (Part (i)), one obtains
that there is a constant c1 > 0 such that for all η ∈ R \ {0},

|Lj,j′,N (η)| ≤

{
c1|η|2M(a)−2maxs∈[0,1] H(s)−1 if 0 < |η| < 1

c1|η|−2mins∈[0,1] H(s)−3 if |η| ≥ 1,
(7.2.27)

Let us now bound bound L′
j,j′,N (η), to this end it is convenient to set

wj,j′(η) :=

{
η−2rj,j′(η)|h(η)|2 when η ̸= 0,

0 else,
(7.2.28)

It follows from Lemmas 7.2.6 and 7.2.7, that there exists a constant c2 > 0, non
depending on j, j′ and η, such that for all η ∈ R \ {0}, one has,

|wj,j′(η)| ≤ c2|η|−2min
(
1, |η|2(M(a)+1)

)
. (7.2.29)

Observe that, in view of (7.2.26) and (7.2.28), one has, for all η ∈ R \ {0},

Lj,j′,N (η) = wj,j′(η)A0(j/N, η)A0(j
′/N, η)

and, as a consequence,

L′
j,j′,N (η) = w′

j,j′(η)A0(j/N, η)A0(j
′/N, η) + wj,j′(η)∂ηA0(j/N, η)A0(j

′/N, η)

+wj,j′(η)A0(j/N, η)(∂ηA0)(j
′/N, η). (7.2.30)
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It follows from (7.2.28) that for each η ∈ R \ {0},

w′
j,j′(η) =

(
− 2

rj,j′(η)

η
+ r′j,j′(η)

) |h(η)|2
η2

+
rj,j′(η)

η2
(
h′(η)h(−η)− h(η)h′(−η)

)
(7.2.31)

Then (7.2.31), the triangle inequality, Lemma 7.2.6 and Lemma 7.2.7 imply that
there is a constant c3 > 0, non depending on j, j′ and η, such that, for each
η ∈ R \ {0},

|w′
j,j′(η)| ≤ c3|η|−2min

(
1, |η|2M(a)+1

)
. (7.2.32)

Also, observe that by using (7.2.30) and the triangle inequality, one has,

|L′
j,j′,N (η)|

≤ |w′
j,j′(η)||A0(j/N, η)||A0(j

′/N, η)|+ |wj,j′(η)||∂ηA0(j/N, η)||A0(j
′/N, η)|

+|wj,j′(η)||A0(j/N, η)||∂ηA0(j
′/N, η)|.

(7.2.33)

Next (7.2.33), (7.2.29), (7.2.32), (7.2.6) and (7.2.23) allow to prove that,

|L′
j,j′,N (η)| ≤

{
c4|η|2M(a)−2maxs∈[0,1] H(s)−2 if 0 < |η| < 1

c4|η|−2mins∈[0,1] H(s)−3 if |η| ≥ 1,
(7.2.34)

where c4 > 0 is a constant not depending on N , j, j′ and η. It is clear Lj,j′,N is a
C1-function over R \ {0} and this is also the case over R since (7.2.27), (7.2.34) and
the fact that M(a) ≥ 3, imply that limη→0 Lj,j′,N (η) = limη→0 L

′
j,j′,N (η) = 0. Next

integrating by parts we obtain that

I0,0(j, j′, N) = N−H(j/N)−H(j′/N)

([ ei(δ(j,j
′)+(j−j′))η

i(δ(j, j′) + (j − j′))
Lj,j′,N (η)

]+∞

−∞

)
− 1

i(δ(j, j′) + (j − j′))

∫
R
ei(δ(j,j

′)+(j−j′))ηL′
j,j′,N (η) dη

=
i

(δ(j, j′) + (j − j′))

∫
R
ei(δ(j,j

′)+(j−j′))ηL′
j,j′,N (η) dη.

(7.2.35)

Observe that (7.2.27) implies that
[
ei(δ(j,j

′)+(j−j′))η

i(δ(j,j′)+(j−j′))Lj,j′,N (η)
]+∞

−∞
= 0 and (7.2.34)

that
∫
R |L′

j,j′,N (η)| dη <∞, which means that the integral in the right hand side of
(7.2.35) exists. Finally, it follows from (7.2.35) that (7.2.12) holds.

Before pursuing our proof, observe that for all l, l′, j and j′, one has

Il,l′(j, j′, N) = Il′,l(j′, j,N);

so we can assume in all the sequel that l ≤ l′. Now our goal will be to prove that
(7.2.13) holds. It suffices to show that this inequality is satisfied when l = 0 and
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l′ = 1. By setting in (7.2.11) l = 0, l′ = 1, ξ = Nη and by using the equalities∑p
k=0 ak = 0 and

∑p
k=0 kak = 0, one obtains that

I0,1(j, j′, N)

= N3

∫ j+1
N

j
N

∫ j′+1
N

j′
N

∫
R

( p∑
k=0

ake
i(k+sN)η

)( p∑
k′=0

ak′e
−i(k′+s′N)η(s′ + k′/N − j′/N)

)
×A0(j/N,Nη)A1(j

′/N,Nη) dη ds′ ds

= N3

∫ j+1
N

j
N

∫ j′+1
N

j′
N

∫
R
ei(s−s′)Nη

( p∑
k=0

ake
ikη
)( p∑

k′=0

ak′e
−ik′η(s′ + k′/N − j′/N)

)
×A0(j/N,Nη)A1(j

′/N,Nη) dη ds′ ds

= B1(j, j
′, N) +B2(j, j

′, N), (7.2.36)

where

B1(j, j
′, N) = N3

∫ j+1
N

j
N

∫ j′+1
N

j′
N

∫
R
ei(s−s′)Nη(s′ − j′/N)

∣∣∣ p∑
k=0

ake
ikη
∣∣∣2

×A0(j/N,Nη)A1(j
′/N,Nη) dη ds′ ds, (7.2.37)

and

B2(j, j
′, N) = N2

∫ j+1
N

j
N

∫ j′+1
N

j′
N

∫
R
ei(s−s′)Nη

( p∑
k=0

p∑
k′=0

k′akak′e
i(k−k′)η

)
×A0(j/N,Nη)A1(j

′/N,Nη) dη ds′ ds. (7.2.38)

Now we are going to show that there are two constants c5, c6 > 0, non depending
on N , j and j′, such that

|B1(j, j
′, N)| ≤ c5(logN)N−H(j/N)−H(j′/N)−1

1 + |j − j′|
, (7.2.39)

and

|B2(j, j
′, N)| ≤ c6(logN)N−H(j/N)−H(j′/N)−1

1 + |j − j′|
. (7.2.40)

Let us first prove that (7.2.39) holds. By using Fubini Theorem and the following
equality: for all η ∈ R \ {0},

∫ j+1
N

j
N

∫ j′+1
N

j′
N

ei(s−s′)Nη(s′ − j′/N) ds′ ds =
ei(j−j′)η

N2η2

(1− e−iη

N
+

|eiη − 1|2

iNη

)
,
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we can write

B1(j, j
′, N) = N3

∫
R

(∫ j+1
N

j
N

∫ j′+1
N

j′
N

ei(s−s′)Nη(s′ − j′/N) ds′ ds

)∣∣∣ p∑
k=0

ake
ikη
∣∣∣2

×A0(j/N,Nη)A1(j
′/N,Nη) dη

= N3

∫
R

ei(j−j′)η

N2η2

(1− e−iη

N
+

|eiη − 1|2

iNη

)
×
∣∣∣ p∑
k=0

ake
ikη
∣∣∣2A0(j/N,Nη)A1(j

′/N,Nη) dη

=

∫
R
ei(j−j′)η

(1− e−iη

η2
+

|eiη − 1|2

iη3

)
×
∣∣∣ p∑
k=0

ake
ikη
∣∣∣2A0(j/N,Nη)A1(j

′/N,Nη) dη.

(7.2.41)

Observe that (7.2.7) implies that

A1(j
′/N,Nη) = −H ′(j′/N)A0(j

′/N,Nη)(logN + log |η|). (7.2.42)

Then the latter equality and (7.2.41) entail that B1(j, j
′, N) can be expressed as:

B1(j, j
′, N) = −H ′(j′/N)

∫
R
ei(j−j′)η

(1− e−iη

η2
+

|eiη − 1|2

iη3

)
×
∣∣∣ p∑
k=0

ake
ikη
∣∣∣2(logN + log |η|)A0(j/N,Nη)A0(j

′/N,Nη) dη

= B1,1(j, j
′, N) +B1,2(j, j

′, N), (7.2.43)

where

B1,1(j, j
′, N) = −H ′(j′/N) logN

∫
R
ei(j−j′)η

(1− e−iη

η2
+

|eiη − 1|2

iη3

)
×
∣∣∣ p∑
k=0

ake
ikη
∣∣∣2A0(j/N,Nη)A0(j

′/N,Nη) dη (7.2.44)

and

B1,2(j, j
′, N) = −H ′(j′/N)

∫
R
ei(j−j′)η

(1− e−iη

η2
+

|eiη − 1|2

iη3

)
×
∣∣∣ p∑
k=0

ake
ikη
∣∣∣2 log |η|A0(j/N,Nη)A0(j

′/N,Nη) dη. (7.2.45)

Next using (7.2.6), (7.2.44) and (7.2.45), it follows that

B1,1(j, j
′, N) (7.2.46)

= −H ′(j′/N)(logN)N−H(j/N)−H(j′/N)−1

∫
R
ei(δ(j,j

′)+(j−j′))ηKj,j′,N (η) dη,
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with

Kj,j′,N (η)

:=

{
e−iδ(j,j′)η

(
1−e−iη

η2
+ |eiη−1|2

iη3

)∣∣∣∑p
k=0 ake

ikη
∣∣∣2A0(j/N, η)A0(j

′/N, η) when η ̸= 0,

0 else,

and

B1,2(j, j
′, N) (7.2.47)

= −H ′(j′/N)N−H(j/N)−H(j′/N)−1

∫
R
ei(δ(j,j

′)+(j−j′))ηMj,j′,N (η) dη,

with

Mj,j′,N (η) :=

{
(log |η|)Kj,j′,N (η) when η ̸= 0,

0 else,
(7.2.48)

Observe that by using the fact that the function φ defined as φ(0) := 2−1 and for
all η ∈ R \ {0}, as,

φ(η) :=
1− e−iη

η2
+

|eiη − 1|2

iη3
, (7.2.49)

is an entire function, one has that,

sup
|η|≤1

(
|φ(η)|+ |φ′(η)|

)
<∞; (7.2.50)

moreover standard computations allow to show that, for all η such that |η| > 1, one
has,

|φ(η)|+ |φ′(η)| = O
(
|η|−2

)
. (7.2.51)

Then, using (7.2.49), (7.2.50), (7.2.51) and a method similar to that which allowed
to obtain (7.2.27) and (7.2.34), we can show that there are two constants c7, c8 > 0

such that

|Kj,j′,N (η)| ≤

{
c7|η|2M(a)−2maxs∈[0,1] H(s)−1 if 0 < |η| < 1,
c7|η|−2mins∈[0,1] H(s)−3 if |η| ≥ 1,

(7.2.52)

and

|K ′
j,j′,N (η)| ≤

{
c8|η|2M(a)−2maxs∈[0,1] H(s)−2 if 0 < |η| < 1,
c8|η|−2mins∈[0,1] H(s)−3 if |η| ≥ 1.

(7.2.53)

Moreover, in view of (7.2.48), Relations (7.2.52) and (7.2.53) entail that there are
two constants c9, c10 > 0 such that

|Mj,j′,N (η)| ≤

{
c9(log |η|)|η|2M(a)−2maxs∈[0,1] H(s)−1 if 0 < |η| < 1,
c9(log |η|)|η|−2mins∈[0,1] H(s)−3 if |η| ≥ 1;

(7.2.54)
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and

|M ′
j,j′,N (η)| ≤

{
c10(log |η|)|η|2M(a)−2maxs∈[0,1] H(s)−2 if 0 < |η| < 1,
c10(log |η|)|η|−2mins∈[0,1] H(s)−3 if |η| ≥ 1;

(7.2.55)

Il follows from (7.2.52), (7.2.53), (7.2.54), (7.2.55) and the inequality M(a) ≥ 3,
that

lim
η→0

Kj,j′,N (η) = lim
η→0

K ′
j,j′,N (η) = lim

η→0
Mj,j′,N (η) = lim

η→0
M ′

j,j′,N (η) = 0.

Thus, in view of (7.2.47) and (7.2.48), Kj,j′,N and Mj,j′,N are C1 functions over R.
Then, similarly to (7.2.35), integrating by parts in (7.2.46) and (7.2.47) and using
Relations (7.2.52) to (7.2.55) as well as the fact H ′ is bounded, allow to show that
there are two constants c11, c12 > 0 such that

|B1,1(j, j
′, N)| ≤ c11(logN)N−H(j/N)−H(j′/N)−1

1 + |j − j′|
(7.2.56)

and

|B1,2(j, j
′, N)| ≤ c12N

−H(j/N)−H(j′/N)−1

1 + |j − j′|
. (7.2.57)

Next putting together (7.2.43), (7.2.56) and (7.2.57), one obtains (7.2.39).
Now let us show that (7.2.40) holds. In view of (7.2.38), and by using Fubini

Theorem, B2(j, j
′, N) can be expressed as follows:

B2(j, j
′, N) = N2

∫
R

(∫ j+1
N

j
N

∫ j′+1
N

j′
N

ei(s−s′)Nη ds′ ds

)( p∑
k=0

p∑
k′=0

k′akak′e
i(k−k′)η

)
×A0(j/N,Nη)A1(j

′/N,Nη) dη

= N2

∫
R

ei(j−j′)η

N2η2

(
|eiη − 1|2

)
×
( p∑

k=0

p∑
k′=0

k′akak′e
i(k−k′)η

)
A0(j/N,Nη)A1(j

′/N,Nη) dη

=

∫
R
ei(j−j′)η

( |eiη − 1|2

|η|2
)

×
( p∑

k=0

p∑
k′=0

k′akak′e
i(k−k′)η

)
A0(j/N,Nη)A1(j

′/N,Nη) dη.

Then putting together, the latter equality, (7.2.42) and (7.2.6), it follows that,

B2(j, j
′, N) = B2,1(j, j

′, N) +B2,2(j, j
′, N), (7.2.58)
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where

B2,1(j, j
′, N) = −H ′(j′/N)(logN)

×
∫
R
ei(j−j′)η

( |eiη − 1|2

|η|2
)( p∑

k=0

p∑
k′=0

k′akak′e
i(k−k′)η

)
A0(j/N,Nη)A0(j

′/N,Nη) dη

= −H ′(j′/N)(logN)N−H(j/N)−H(j′/N)−1

∫
R
ei(δ(j,j

′)+(j−j′))ηSj,j′,N (η) dη,

(7.2.59)

with

Sj,j′,N (η) (7.2.60)

:=

{
e−iδ(j,j′)η

(
|eiη−1|2

|η|2

)(∑p
k=0

∑p
k′=0 k

′akak′e
i(k−k′)η

)
A0(j/N, η)A0(j

′/N, η) if η ̸= 0,

0 else,

and

B2,2(j, j
′, N) = −H ′(j′/N)

×
∫
R
ei(j−j′)η

( |eiη − 1|2

|η|2
)( p∑

k=0

p∑
k′=0

k′akak′e
i(k−k′)η

)
(log |η|)A0(j/N,Nη)A0(j

′/N,Nη) dη

= −H ′(j′/N)N−H(j/N)−H(j′/N)−1

∫
R
ei(δ(j,j

′)+(j−j′))ηTj,j′,N (η) dη,

(7.2.61)

with

Tj,j′,N (η) :=

{
(log |η|)Sj,j′,N (η) when η ̸= 0,

0 else.
(7.2.62)

Then noticing that
p∑

k′=0

k′akak′e
i(k−k′)η = −ih(η)h′(−η),

where h is the trigonometric polynomial introduced in Lemma 7.2.7, and using a
method similar to that which allowed to obtain (7.2.27) and (7.2.34), one can show
that there are two constants c13, c14 > 0 such that

|Sj,j′,N (η)| ≤ c13
|eiη − 1|2

η2
min

(
1, |η|2M(a)−1

)
×max

(
|η|−2maxs∈[0,1] H(s)−1, |η|−2mins∈[0,1] H(s)−1

)
≤

{
c13|η|2M(a)−2maxs∈[0,1] H(s)−2 if 0 < |η| < 1,
c13|η|−2mins∈[0,1] H(s)−3 if |η| ≥ 1,

(7.2.63)

and

|S′
j,j′,N (η)| ≤

{
c14|η|2M(a)−2maxs∈[0,1] H(s)−3 if 0 < |η| < 1,
c14|η|−2mins∈[0,1] H(s)−3 if |η| ≥ 1.

(7.2.64)
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Moreover in view of (7.2.62), Relations (7.2.63) and (7.2.64), entail that there are
two constants c15, c16 > 0 such that,

|Tj,j′,N (η)| ≤

{
c15(log |η|)|η|2M(a)−2maxs∈[0,1] H(s)−2 if 0 < |η| < 1,
c16(log |η|)|η|−2mins∈[0,1] H(s)−3 if |η| ≥ 1,

(7.2.65)

and

|T ′
j,j′,N (η)| ≤

{
c16(log |η|)|η|2M(a)−2maxs∈[0,1] H(s)−3 if 0 < |η| < 1,
c16(log |η|)|η|−2mins∈[0,1] H(s)−3 if |η| ≥ 1.

(7.2.66)

Next putting together (7.2.63), (7.2.64), (7.2.65), (7.2.66), the inequality M(a) ≥ 3

and the fact that H ′ is bounded, it follows that,

lim
η→0

Sj,j′,N (η) = lim
η→0

S′
j,j′,N (η) = lim

η→0
Tj,j′,N (η) = lim

η→0
T ′
j,j′,N (η) = 0,

which, in view of (7.2.60) and (7.2.62), implies that Sj,j′,N and Tj,j′,N are C1 func-
tions over R. Then, similarly to (7.2.35), integrating by parts in (7.2.59) and (7.2.61)
and using Relations (7.2.63) to (7.2.66) as well as the fact that H ′ is bounded, allow
to show that there are two constants c17, c18 > 0 such that

|B2,1(j, j
′, N)| ≤ c17(logN)N−H(j/N)−H(j′/N)−1

1 + |j − j′|
(7.2.67)

and

|B2,2(j, j
′, N)| ≤ c18N

−H(j/N)−H(j′/N)−1

1 + |j − j′|
. (7.2.68)

Thus (7.2.40) results from (7.2.58), (7.2.67) and (7.2.68). Finally (7.2.13) follows
from (7.2.36), (7.2.39) and (7.2.40).

Now let us prove that (7.2.14) is satisfied. By setting in (7.2.11) l = l′ = 1,
ξ = Nη and by using the fact that

∑p
k=0 ak =

∑p
k=0 kak = 0 one obtains that

I1,1(j, j′, N) = N3

∫ j+1
N

j
N

∫ j′+1
N

j′
N

∫
R

( p∑
k=0

ake
i(sN+k)η(s+ k/N − j/N)

)
×
( p∑

k′=0

ak′e
−i(s′N+k′)η(s′ + k′/N − j′/N)

)
×A1(j/N,Nη)A1(j

′/N,Nη) dη ds′ ds. (7.2.69)

Observe that by using (7.2.7) and Part (ii)) Lemma 7.2.8, one can show that for
every arbitrarily small ε > 0, there is a constant c19 > 0 such that for all N ≥ p+1,
j ∈ {0, . . . N − p− 1} and η ∈ R \ {0},

|A1(j/N,Nη)|

≤ c19(log(N))N−H(j/N)−1/2max
(
|η|−maxs∈[0,1] H(s)−ε−1/2, |η|−mins∈[0,1] H(s)+ε−1/2

)
.

(7.2.70)
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On the other hand, by using (7.2.19), one can show that there is a constant c20 > 0,
such that for all N ≥ p+ 1, j ∈ {0, . . . , p+ 1}, s ∈ [ jN ,

j+1
N ] and η ∈ R, one has

∣∣∣ p∑
k=0

ake
i(sN+k)η(s+ k/N − j/N)

∣∣∣ ≤ c20N
−1min

(
1, |η|M(a)−1

)
. (7.2.71)

Next (7.2.69), (7.2.71) and (7.2.70), imply that that

|I1,1(j, j′, N)| ≤ c21N
−H(j/N)−H(j′/N)−2(logN)2,

where the constant

c21 = (c19c20)
2

∫
R
min

(
1, |η|2M(a)−2

)
max

(
|η|−2maxs∈[0,1] H(s)−2ε−1, |η|−2mins∈[0,1] H(s)+2ε−1

)
dη,

is finite since M(a) ≥ 3. Thus we have proved that (7.2.14) holds when l = l′ = 1.
Let us now prove that (7.2.14) is satisfied when l = 0 and l′ = 2. By setting in

(7.2.11), l = 0, l′ = 2 and η = ξ/N , one obtains

I0,2(j, j′, N) = N3

∫ j+1
N

j
N

∫ j′+1
N

j′
N

∫
R
eisN

( p∑
k=0

ake
ikη
)
A0(j/N,Nη)

×
( p∑

k′=0

ak′(e
−i(s′N+k′)η − 1)(s′ + k′/N − j′/N)2

×A2(j
′/N, s′ + k′/N,Nη)

)
dη ds′ ds. (7.2.72)

Standard computations allow to obtain that for all N ≥ p+1, j ∈ {0, . . . , N−p−1},
s ∈ [ jN ,

j+1
N ], θ ∈ [0, 1], η ∈ R \ {0},

∂2xg(j/N + θ(s− j/N), Nη)

= N−H(j/N+θ(s−j/N))−1/2
(
(H ′(j/N + θ(s− j/N)))2(logN)2A0(j/N + θ(s− j/N), η)

+2(−H ′(j/N + θ(s− j/N)))(logN)A1(j/N + θ(s− j/N), η) + ∂2xg(j/N + θ(s− j/N), η)

−(H(2)(j/N + θ(s− j/N)))(logN)A0(j/N + θ(s− j/N), η)
)
.

(7.2.73)

Next, by using (7.2.8), (7.2.3), the triangle inequality, (7.2.73), the fact that for any
m ∈ {0, 1, 2} the function H(m)(·) is bounded, (7.2.6), (7.2.7), Lemma 7.2.8 and the
inequalities N−H(j/N+θ(s−j/N)) ≤ e∥H

′∥∞N−H(j/N) and logN ≥ log 3 ≥ 1, one can
show that for every arbitrarily small ε > 0, there is a constant c22 > 0 such that for
all N ≥ p + 1, j′ ∈ {0, . . . , N − p − 1}, k′ ∈ {0, . . . , p}, s′ ∈ [ j

′

N ,
j′+1
N ], η ∈ R \ {0},

one has,

|A2(j
′/N, s′ + k′/N,Nη)|

≤ c22(logN)2N−H(j′/N)−1/2max
(
|η|−maxs∈[0,1] H(s)−ε−1/2, |η|−mins∈[0,1] H(s)+ε−1/2

)
.

(7.2.74)
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Next it follows from (7.2.72), (7.2.74), the inequality (s′ + k′/N − j′/N)2 ≤
(p+ 1)2/N2, Lemma 7.2.5, (7.2.6), (7.2.23) and (7.2.19) that

|I0,2(j, j′, N)| ≤ c23N
−H(j/N)−H(j′/N)−2(logN)2,

where the constant

c23 = c24c22

∫
R
min

(
1, |η|M(a)

)
max

(
|η|−2maxs∈[0,1] H(s)−2ε−1, |η|−2mins∈[0,1] H(s)+2ε−1

)
dη

< +∞,

with c24 being the product of 2
(
(p+1)2

∑p
k′=0 |ak′ |

)
and the constants in the right

hand side of (7.2.19) and (7.2.23). Thus we have shown that (7.2.14) holds when
l = 0 and l′ = 2.

Now our goal will be to prove that (7.2.15) holds. First we will prove that this
inequality is satisfied when l = 1 and l′ = 2. Setting in (7.2.11), l = 1 and l′ = 2,
one obtains that

I1,2(j, j′, N) = N2

∫ j+1
N

j
N

∫ j′+1
N

j′
N

∫
R

( p∑
k=0

ak(e
i(s+k/N)ξ − 1)(s+ k/N − j/N)A1(j/N, ξ)

)
×
( p∑

k′=0

ak′(e
−i(s′+k′/N)ξ − 1)(s′ + k′/N − j′/N)2

×A2(j
′/N, s′ + k′/N, ξ)

)
dξ ds′ ds. (7.2.75)

Observe that it follows from (7.2.7) and (7.2.24) that for all arbitrarily small ε > 0,
there exists a constant c25 > 0 such that for all N ≥ p+ 1, j ∈ {0, . . . , N − p− 1}
and ξ ∈ R \ {0}, one has

|A1(j/N, ξ)| ≤ c25max
(
|ξ|−maxs∈[0,1] H(s)−ε−1/2, |ξ|−mins∈[0,1] H(s)+ε−1/2

)
. (7.2.76)

Also note that (7.2.8) and (7.2.24) imply that for all arbitrarily small ε > 0, there is
a constant c26 > 0 such that for all N ≥ p+1, j′ ∈ {0, . . . , N−p−1}, k′ ∈ {0, . . . , p},
s′ ∈ [ j

′

N ,
j′+1
N ] and ξ ∈ R \ {0} one has

|A2(j
′/N, s′+k′/N, ξ)| ≤ c26max

(
|ξ|−maxs∈[0,1] H(s)−ε−1/2, |ξ|−mins∈[0,1] H(s)+ε−1/2

)
.

(7.2.77)
It follows from (7.2.75), Lemma 7.2.5, (7.2.76), (7.2.77), and the inequalities |s +
k/N | ≤ 1, |s′ + k′/N | ≤ 1, |s+ k/N − j/N | ≤ (p+ 1)/N and |s′ + k′/N − j′/N |2 ≤
(p+ 1)2/N2 that

|I1,2(j, j′, N)| ≤ c27N
−3,

where the constant

c27 = c26c25

(
2(p+ 1)3/2

p∑
k=0

|ak|
)2

×
∫
R
min

(
1, |ξ|2

)
max

(
|ξ|−2maxs∈[0,1] H(s)−2ε−1, |ξ|−2mins∈[0,1] H(s)+2ε−1

)
dξ

< +∞.
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Finally let us prove that the inequality (7.2.15) is satisfied when l = l′ = 2. Setting
in (7.2.11) l = l′ = 2 one obtains that

I2,2(j, j′, N)

= N2

∫ j+1
N

j
N

∫ j′+1
N

j′
N

∫
R

( p∑
k=0

ak(e
i(s+k/N)ξ − 1)(s+ k/N − j/N)2A2(j/N, s+ k/N, ξ)

)
×
( p∑

k′=0

ak′(e
i(s′+k′/N)ξ − 1)(s′ + k′/N − j′/N)2A2(j

′/N, s′ + k′/N, ξ)
)
dξ ds′ ds

(7.2.78)

Then it follows from (7.2.78), Lemma 7.2.5, (7.2.77) and the inequalities |s+k/N | ≤
1, |s′ + k′/N | ≤ 1, (s + k/N − j/N)2 ≤ (p + 1)2/N2 and (s′ + k′/N − j′/N)2 ≤
(p+ 1)2/N2 that

|I2,2(j, j′, N)| ≤ c28N
−4,

where the constant

c28 =
(
2c26(p+ 1)2

p∑
k=0

|ak|
)2

×
∫
R
min

(
1, |ξ|2

)
max

(
|ξ|−2maxs∈[0,1] H(s)−2ε−1, |ξ|−2mins∈[0,1] H(s)+2ε−1

)
dξ

< +∞.

Finally Lemma 7.2.4 holds. �

7.3 Proof of Lemma 5.3.3

Lemma 7.3.1 There is a constant c > 0 such that for every i ∈ {0, . . . , N − p− 1}
one has, ∣∣∣Var(∆aXi,N )− C(i/N)N−2H(i/N)

∣∣∣ ≤ c log(N)N−1−2H(i/N).

Recall that

C(s) :=

∫
R

|eiη − 1||
∑p

k=0 ake
ikη|

|η|2H(s)+3
dη.

Proof of Lemma 7.3.1: Observe that (7.2.25), (5.2.15), (7.2.6) and the change of
variables η = ξ/N show that for all j ∈ {0, . . . , N − p− 1},

I0,0(j, j,N) = N2

∫
R

|eiξ/N − 1|2|
∑p

k=0 ake
i(k/N)ξ|2

ξ2
(
A0(j/N, ξ)

)2
dξ

= N2

∫
R

|eiξ/N − 1|2|
∑p

k=0 ake
i(k/N)ξ|2

|ξ|2H(j/N)+3
dξ

= N−2H(j/N)

∫
R

|eiη − 1|2|
∑p

k=0 ake
ikη|2

|η|2H(j/N)+3
dη

= C(j/N)N−2H(j/N). (7.3.1)
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Then it follows from (7.3.1), (7.2.10), the triangle inequality, Relations (7.2.13) to
(7.2.15), and the inequality maxs∈[0,1]H(s) < 1, that there exists a constant c > 0

such that for all N ≥ p+ 1 and j ∈ {0, . . . , N − p− 1},∣∣∣Var(∆aXj,N )− C(j/N)N−2H(j/N)
∣∣∣ =

∣∣∣Var(∆aXj,N )− I0,0(j, j,N)
∣∣∣

=
∣∣∣ ∑
0≤l,l′≤2,(l,l′ )̸=(0,0)

Il,l′(j, j,N)
∣∣∣

≤
∑

0≤l,l′≤2,(l,l′) ̸=(0,0)

∣∣∣Il,l′(j, j,N)
∣∣∣

≤ c log(N)N−2H(j/N)−1.

Thus Lemma 5.3.3 has been proved. �

7.4 Proof of Proposition 5.3.11

Proposition 7.4.1 For any n big enough one sets

v(Nn,mn) =
(
N−1/2

n +m−1/2
n

)(
1 +m−1

n N
2maxs∈[µNn

,νNn
] H(s)

n

)
. (7.4.1)

Recall that mn has been defined in (5.2.4). Let us assume that Nn is chosen such

that m−1
n N

2maxs∈[µNn
,νNn

] H(s)
n remains bounded when n goes to infinity. Then for

all h ∈ C1
pol(R), there exists a constant c > 0 such that for any n big enough one

has

E
{∣∣∣V̂ (h;µNn , νNn)− V (h;µNn , νNn)

∣∣∣} ≤ cv(Nn,mn) = O(N−1/2
n ) (7.4.2)

In order to prove of Proposition 7.4.1, we need the following quite useful lemma
which is a natural extension of Lemma 7 in ([35]) (see also ([36])).

Lemma 7.4.2 For all i = 0, . . . , Nn − 1, we set

Ei,Nn,n = Ŷi,Nn,n − Y i,Nn . (7.4.3)

Moreover, we denote by GX the σ-field generated by {X(s)}s∈[0,1], that is,

GX = σ(X(s), 0 ≤ s ≤ 1).

Then:

(i) Conditional on GX , the random variables {Ei,Nn,n}i∈{0,...,Nn−1} are independent.
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(ii) There exist a positive random variable C > 0 of finite moment of any order, and
a positive constant c, such that, for all n big enough and i ∈ {0, . . . , Nn − 1},
one has,

|E (Ei,Nn,n|GX)| ≤ Cm−1
n , |E (Ei,Nn,n)| ≤ cm−1

n , (7.4.4)

E (E 2
i,Nn,n|GX) ≤ Cm−1

n , E (E 2
i,Nn,n) ≤ cm−1

n , (7.4.5)

E (E 4
i,Nn,n|GX) ≤ Cm−2

n , E (E 4
i,Nn,n) ≤ cm−2

n . (7.4.6)

(iii) Conditional on GX , the second moment of Ei,Nn,n has the expansion,

E (E 2
i,Nn,n|GX) = 2m−1

n (Yi/Nn
)2 + αi,Nn,n, (7.4.7)

where for all real l ≥ 1, there exists a constant c(l) only depending on l, such
that,

E {|αi,Nn,n|l} ≤ c(l){m−l
n N

−lH(i/Nn)
n +m−2l

n }. (7.4.8)

(iv) For all real l ≥ 1, there exists a constant c(l) only depending on l, such that,

E {|Ŷi,Nn,n|l} ≤ c(l).

Proof of Lemma 7.4.2: In order to show that Part (i) holds, we will prove that,
almost surely for all i ∈ {0, . . . , Nn − 1},

Ei,Nn,n = Ẽi,Nn,n +Nn

∫ i/Nn

ji/n
Y (s) ds−Nn

∫ ji+1/n

(i+1)/Nn

Y (s) ds, (7.4.9)

where

Ẽi,Nn,n := 2Nn

ji+1−ji−1∑
k=0

∫ (ji+k+1)/n

(ji+k)/n
(Z(s)− Z((ji + k)/n))σ(s) dW (s). (7.4.10)

Observe that, assuming that (7.4.9) and (7.4.10) are satisfied are satisfied then on
can easily obtain Part (i) of the lemma. Indeed, on one hand, conditional on GX ,
{Ẽi,Nn,n}i∈{0,...,Nn−1} is a sequence of independent random variables because the
intervals [ji/n, ji+1/n), i ∈ {0, . . . , Nn − 1} are disjoint; on the other hand,{

Nn

∫ i/Nn

ji/n
Y (s) ds−Nn

∫ (i+1)/Nn

ji+1/n
Y (s) ds

}
i∈{0,...,Nn−1}

are GX -measurable.
Relation (7.4.9) will result from Itô formula, we are now going to recall. Let

{Pt}t∈[0,1] be an arbitrary centered real-valued process defined for all t ∈ [0, 1], as,

Pt = P0 +

∫ t

0
Js dW (s),

where:
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• P0 is a bounded random variable;

• {Js}s∈[0,1] is a (Lebesgue) mesurable stochastic process, which is (stochasti-
cally) independent on the Brownian motion {W (s)}s∈[0,1], and which satisfies,

E
(∫ 1

0
J2
s ds

)
< +∞.

Then the following Itô formula: a.s.

F (Pt) = F (P0) +

∫ t

0
F ′(Ps)Js dW (s) +

1

2

∫ t

0
F (2)(Ps)J

2
s ds, (7.4.11)

holds, for all real-valued function F which is two times continuously on the real line,
almost surely.

Now we set, in (7.4.11), P0 = 0, for each real x, F (x) = x2, for all i ∈
{0, . . . , Nn − 1}, k ∈ {0, . . . , ji+1 − ji − 1} and t ∈ [0, 1],

Pt = Zi,k
t :=

∫ t

0
σ(s)1[(ji+k)/n,+∞)(s) dW (s),

Thus, we obtain that,

(
Zi,k
t

)2
= 2

∫ t

0
Zi,k
s σ(s)1[(ji+k)/n,+∞)(s) dW (s) +

∫ t

0
(σ(s))21[(ji+k)/n,+∞)(s) ds.

(7.4.12)
Then, observing that

Z((ji + k + 1)/n)− Z((ji + k)/n) = Zi,k
(ji+k+1)/n, (7.4.13)

it follows from (7.4.12) and the fact that Y (s) = (σ(s))2, that,(
Z((ji + k + 1)/n)− Z((ji + k)/n)

)2
=
(
Zi,k
(ji+k+1)/n

)2
= 2

∫ (ji+k+1)/n

(ji+k)/n

(
Z(s)− Z((ji + k)/n)

)
σ(s) dW (s) +

∫ (ji+k+1)/n

(ji+k)/n
Y (s) ds.

(7.4.14)

Then, (5.2.5) and (7.4.14) entail that

Ŷi,Nn,n = Ẽi,Nn,n +Nn

∫ ji+1/n

ji/n
Y (s) ds, (7.4.15)

where the error term Ẽi,Nn,n has been defined in (7.4.10). Relation (7.4.15) implies
that Ei,Nn,n := Ŷi,Nn,n − Y i,Nn can be expressed as:

Ei,Nn,n = Ẽi,Nn,n +
(
Nn

∫ ji+1/n

ji/n
Y (s) ds−Nn

∫ (i+1)/Nn

i/Nn

Y (s) ds
)
, (7.4.16)
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which means that (7.4.9) is satisfied.

Let us now show that Part (ii) of the lemma holds. By using, (7.4.15), (5.2.5),
the fact that {Y (s)}s∈[0,1] is GX measurable, (5.1.4), and the equality Y (s) = (σ(s))2

(see (5.2.2)), we get

E (Ẽi,Nn,n|GX) = E (Ŷi,Nn,n|GX)−Nn

∫ ji+1/n

ji/n
Y (s) ds

= Nn

ji+1−ji−1∑
k=0

E

(∣∣∣ ∫ (ji+k+1)/n

(ji+k)/n
σ(s) dW (s)

∣∣∣2 ∣∣∣GX

)

= Nn

ji+1−ji−1∑
k=0

∫ (ji+k+1)/n

(ji+k)/n
Y (s) ds−Nn

∫ ji+1/n

ji/n
Y (s) ds

= 0 (7.4.17)

and

E
(
Nn

∫ i/Nn

ji/n
Y (s) ds−Nn

∫ (i+1)/Nn

ji+1/n
Y (s) ds

∣∣∣GX

)
= Nn

∫ i/Nn

ji/n
Y (s) ds−Nn

∫ (i+1)/Nn

ji+1/n
Y (s) ds.

(7.4.18)
Then, it follows from (7.4.9), (7.4.17), (7.4.18), the triangle inequality, that,∣∣∣E (Ei,Nn,n|GX)

∣∣∣
=

∣∣∣∣E (Ẽi,Nn,n|GX) + E
(
Nn

∫ i/Nn

ji/n
Y (s) ds−Nn

∫ (i+1)/Nn

ji+1/n
Y (s) ds

∣∣∣GX

)∣∣∣∣
=

∣∣∣∣Nn

∫ i/Nn

ji/n
Y (s) ds−Nn

∫ (i+1)/Nn

ji+1/n
Y (s) ds

∣∣∣∣
≤ Nn

∫ i/Nn

ji/n
|Y (s)|ds+Nn

∫ (i+1)/Nn

ji+1/n
|Y (s)| ds. (7.4.19)

Moreover, in view of the Y (s) = f(X(s)) where f ∈ C2
pol(R), one has,

sup
s∈[0,1]

|Y (s)| ≤ c1(1 + ∥X∥K∞), (7.4.20)

where ∥X∥∞ = sups∈[0,1] |X(s)| and c1,K > 0 are two constants only depending
on f . Then, (7.4.19), (7.4.20) and the fact that the random variable ∥X∥∞ is GX

mesurable, imply that,∣∣∣E (Ei,Nn,n|GX)
∣∣∣

≤ c1(1 + ∥X∥K∞)Nn

(
(
i

Nn
− ji
n
) + (

i+ 1

Nn
− ji+1

n
)
)
. (7.4.21)
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Observe that for each i ∈ {0, . . . , Nn − p− 1},

Nn(
i

Nn
− ji
n
) = Nn(

i

Nn
− [in/Nn]

n
)

≤ Nn(
i

Nn
− in/Nn − 1

n
)

=
Nn

n
≤ m−1

n . (7.4.22)

It follows from (7.4.21) and (7.4.22) that∣∣∣E (Ei,Nn,n|GX)
∣∣∣ ≤ C1m

−1
n , (7.4.23)

where C1 = 2c1(1 + ∥X∥K∞) is a positive random variable of finite moment of any
order. Moreover, (7.4.23) implies∣∣∣E (Ei,Nn,n)

∣∣∣ = ∣∣∣E(E (Ei,Nn,n|GX)
)∣∣∣ ≤ E

(∣∣∣E (Ei,Nn,n|GX)
∣∣∣) ≤ c1m

−1
n , (7.4.24)

where c1 = E (C1). Thus (7.4.4) has been proved.
Now, we are going to prove that (7.4.5) holds. First observe that, by using (7.4.19),
(7.4.21) and (7.4.22), we have for all real l > 0,∣∣∣∣Nn

∫ i/Nn

ji/n
Y (s) ds−Nn

∫ (i+1)/Nn

ji+1/n
Y (s) ds

∣∣∣∣l ≤ C l
1m

−l
n . (7.4.25)

Now we need to show the following inequality:

E (Ẽ 2
i,Nn,n|GX) ≤ 4c21

(
1 + ∥X∥K∞

)2
m−1

n . (7.4.26)

In order to prove (7.4.26), recall that for all t ∈ [0, 1],

Z(t) = z0 +

∫ t

0
σ(s) dW (s).

Putting the above definition of Z and (7.4.10) together, it yields

Ẽi,Nn,n = 2Nn

ji+1−ji−1∑
k=0

∫ (ji+k+1)/n

(ji+k)/n

(∫ t

(ji+k)/n
σ(s) dW (s)

)
σ(t) dW (t). (7.4.27)

Then conditional on GX , we have

E (Ẽ 2
i,Nn,n|GX) = 4N2

n

ji+1−ji−1∑
k=0

∫ (ji+k+1)/n

(ji+k)/n

(∫ t

(ji+k)/n
σ2(s) ds

)
σ2(t) dt

+8N2
nE
( ∑

0≤k<k′≤ji+1−ji−1

((∫ (ji+k+1)/n

(ji+k)/n

(∫ t

(ji+k)/n
σ(s) dW (s)

)
σ(t) dW (t)

)
×
(∫ (ji+k′+1)/n

(ji+k′)/n

(∫ t

(ji+k′)/n
σ(s) dW (s)

)
σ(t) dW (t)

)∣∣∣∣GX

)
.

(7.4.28)
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Observe that, the second term in the right side of equality (7.4.28) is almost surely
equal to 0, since, conditional on GX , the random variables{∫ (ji+k+1)/n

(ji+k)/n

(∫ t

(ji+k)/n
σ(s) dW (s)

)
σ(t) dW (t)

}
k=0,...,ji+1−ji−1

are centered and independent. Therefore, we get

E (Ẽ 2
i,Nn,n|GX) = 4N2

n

ji+1−ji−1∑
k=0

∫ (ji+k+1)/n

(ji+k)/n

(∫ t

(ji+k)/n
σ2(s) ds

)
σ2(t) dt

= 4N2
n

ji+1−ji−1∑
k=0

∫ (ji+k+1)/n

(ji+k)/n

(∫ t

(ji+k)/n
Y (s) ds

)
Y (t) dt.

(7.4.29)

It follows from (7.4.29) and (7.4.20) that

E (Ẽ 2
i,Nn,n|GX) ≤ 4c21

(
1 + ∥X∥K∞

)2
N2

n

ji+1−ji−1∑
k=0

∫ (ji+k+1)/n

(ji+k)/n

(∫ t

(ji+k)/n
1 ds

)
dt

= 2c21
(
1 + ∥X∥K∞

)2
N2

nn
−2(ji+1 − ji). (7.4.30)

Next combining (7.4.30) with the inequalities ji+1 − ji ≤ mn + 1 ≤ 2mn and
Nnn

−1 ≤ m−1
n , one gets, (7.4.26). Next, setting,

Ai,Nn,n = Nn

∫ ji+1/n

ji/n
Y (s) ds−Nn

∫ (i+1)/Nn

i/Nn

Y (s) ds, (7.4.31)

and using (7.4.9), the inequality for any reals x, y ∈ R, (x+y)2 ≤ 2x2+2y2, (7.4.26)
and (7.4.25), it follows that,

E (E 2
i,Nn,n|GX) = E

(
(Ẽi,Nn,n +Ai,Nn,n)

2
∣∣∣GX

)
≤ 2E (Ẽ 2

i,Nn,n|GX) + 2E (A2
i,Nn,n|GX)

≤ 8c21(1 + ∥X∥K∞)2m−1
n + 2c21(1 + ∥X∥K∞)2m−2

n

≤ C2m
−1
n , (7.4.32)

where C2 = 10c21(1 + ∥X∥K∞)2 is a positive random variable of finite moment of any
order. Moreover, (7.4.32) implies that

E (E 2
i,Nn,n) = E (E (E 2

i,Nn,n|GX)) ≤ c2m
−1
n , (7.4.33)

where c2 = E (C2). Thus, we have shown that (7.4.5) is satisfied.
Let us now show that (7.4.6) holds. The classical Wiener’s calculus (see for

example, [49], P. 202) shows that, there exists a constant c3 > 0 such that for all n
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big enough, i ∈ J (µNn , νNn) and k ∈ {0, . . . , ji+1 − ji − 1}, one has,

E
((∫ (ji+k+1)/n

(ji+k)/n

(∫ t

(ji+k)/n
σ(s) dW (s)

)
σ(t) dW (t)

)4∣∣∣GX

)
(7.4.34)

≤ c3

(
E
((∫ (ji+k+1)/n

(ji+k)/n

(∫ t

(ji+k)/n
σ(s) dW (s)

)
σ(t) dW (t)

)2∣∣∣GX

))2

= c3

(∫ (ji+k+1)/n

(ji+k)/n

∫ t

(ji+k)/n
Y (s)Y (t) dsdt

)2

.

(7.4.35)

Next, it follows from (7.4.29) and (7.4.20), (7.4.34) that,

E
((∫ (ji+k+1)/n

(ji+k)/n

(∫ t

(ji+k)/n
σ(s) dW (s)

)
σ(t) dW (t)

)4∣∣∣GX

)
≤ 4−1c3c

4
1(1+∥X∥K∞)4n−4.

(7.4.36)
Next (7.4.27), the equality that for all independent centered real-valued random
variables X1, . . . , Xn,

E
(( n∑

k=1

Xk

)4)
=

n∑
k=1

E (X4
k) +

n∑
k=1

n∑
k′=1

E (X2
k)E (X2

k′),

(7.4.36), (7.4.29) and (7.4.30), imply that,

E (Ẽ 4
i,Nn,n|GX)

= 16N4
n

ji+1−ji−1∑
k=0

E
((∫ (ji+k+1)/n

(ji+k)/n

(∫ t

(ji+k)/n
σ2(s) dW (s)

)
σ2(t) dW (t)

)4∣∣∣GX

)

+16N4
n

ji+1−ji−1∑
k=0

ji+1−ji−1∑
k′=0

E
((∫ (ji+k+1)/n

(ji+k)/n

(∫ t

(ji+k)/n
σ2(s) dW (s)

)
σ2(t) dW (t)

)2∣∣∣GX

)

×E
((∫ (ji+k′+1)/n

(ji+k′)/n

(∫ t

(ji+k′)/n
σ2(s) dW (s)

)
σ2(t) dW (t)

)2∣∣∣GX

)
≤ 4c3c

4
1

(
1 + ∥X∥K∞

)4
n−4N4

n(ji+1 − ji) + 4c3c
4
1(1 + ∥X∥K∞)4n−4N4

n(ji+1 − ji)
2

≤ 8c3c
4
1

(
1 + ∥X∥K∞

)4
m−2

n . (7.4.37)

Next, using (7.4.9), (7.4.31), the inequality for any reals x, y ∈ R, (x + y)4 ≤
8x4 + 8y4, (7.4.37) and (7.4.25), one can show that,

E (E 4
i,Nn,n|GX) = E

(
(Ẽi,Nn,n +Ai,Nn,n)

4
∣∣∣GX

)
≤ 8E (Ẽ 4

i,Nn,n|GX) + 8E (A4
i,Nn,n|GX)

≤ 8c3c
4
1(1 + ∥X∥K∞)4m−2

n + 8c41(1 + ∥X∥K∞)4m−4
n

≤ C3m
−2
n , (7.4.38)
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where C3 = 8(c3 + 1)c41(1 + ∥X∥K∞)4 is a random variable of finite moment of any
order. Moreover, (7.4.38) entails that,

E (E 4
i,Nn,n) = E

(
E (E 4

i,Nn,n|GX)
)
≤ c3m

−2
n , (7.4.39)

where c3 = E (C3). Thus, we have shown that (7.4.6) is satisfied.
Let us now prove that Part (iii) of the lemma holds. By using (7.4.29), we

obtain

E (Ẽ 2
i,Nn,n|GX) = 4N2

n

ji+1−ji−1∑
k=0

∫ (ji+k+1)/n

(ji+k)/n

(∫ t

(ji+k)/n
Y (s) ds

)
Y (t) dt

= 4N2
n

ji+1−ji−1∑
k=0

∫ (ji+k+1)/n

(ji+k)/n

∫ t

(ji+k)/n

(
Y (

i

Nn
)
)2

dsdt+ α̃i,Nn,n

= 2N2
nn

−2(ji+1 − ji)
(
Y (

i

Nn
)
)2

+ α̃i,Nn,n, (7.4.40)

where

α̃i,Nn,n = 4N2
n

ji+1−ji−1∑
k=0

∫ (ji+k+1)/n

(ji+k)/n

∫ t

(ji+k)/n

(
Y (s)Y (t)−

(
Y (

i

Nn
)
)2)

dsdt.

(7.4.41)
Thus we can write

E (Ẽ 2
i,Nn,n|GX) = 2m−1

n

(
Y (

i

Nn
)
)2

+ αi,Nn,n, (7.4.42)

where
αi,Nn,n = α̃i,Nn,n +Bi,Nn,n, (7.4.43)

with
Bi,Nn,n = 2

(
N2

nn
−2(ji+1 − ji)−m−1

n

)(
Y (

i

Nn
)
)2
. (7.4.44)

Thus, in order to obtain Part (iii) of the lemma, it is sufficient to show that for all
real l ≥ 1, there is a constant c(l) > 0 only depending on l such that,

E |Bi,Nn,n|l ≤ c(l)m−2l
n , (7.4.45)

and
E |α̃i,Nn,n|l ≤ c(l)m−l

n N
−lH(i/Nn)
n . (7.4.46)

Let us first prove that (7.4.45) holds. The facts that n/Nn ∈ (mn,mn + 1) and
ji+1 − ji ∈ {mn,mn + 1} imply

N2
nn

−2(ji+1−ji)−m−1
n ∈

[ mn

(mn + 1)2
−m−1

n ,
mn + 1

m2
n

−m−1
n

]
=
[ −2(mn + 1)

mn(mn + 1)2
,m−2

n

]
.

Thus there exists a constant c4 > 0 such that

|N2
nn

−2(ji+1 − ji)−m−1
n | ≤ c4m

−2
n . (7.4.47)
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Putting together (7.4.44), (7.4.47) and (7.4.20), we get

E |Bi,Nn,n|l ≤ c1,lm
−2l
n , (7.4.48)

where c1,l = 2lcl4c
2l
1 E

(
(1 + ∥X∥K∞)2l

)
is a finite constant only depending on l; thus

we have shown that (7.4.45) is satisfied.
Let us now prove that (7.4.46) holds. By using (7.4.41), the fact that that x 7→ xl

is a convex function, Hölder inequality, and the inequality |ji+1 − ji| ≤ mn + 1, we
obtain

|α̃i,Nn,n|l ≤
∣∣∣∣4N2

n

ji+1−ji−1∑
k=0

∫ (ji+k+1)/n

(ji+k)/n

∫ t

(ji+k)/n

(
Y (s)Y (t)− (Y (

i

Nn
))2
)
dsdt

∣∣∣∣l

≤ 4lN2l
n |ji+1 − ji|l−1

ji+1−ji−1∑
k=0

n−(l−1)

∫ (ji+k+1)/n

(ji+k)/n

∣∣∣t− ji + k

n

∣∣∣l−1

×
∫ t

(ji+k)/n

∣∣∣Y (s)Y (t)− (Y (i/Nn))
2
∣∣∣l dsdt

≤ 4lN2l
n (mn + 1)l−1n−2(l−1)

×
ji+1−ji−1∑

k=0

∫ (ji+k+1)/n

(ji+k)/n

∫ t

(ji+k)/n

∣∣∣Y (s)Y (t)− (Y (i/Nn))
2
∣∣∣l dsdt.

(7.4.49)

Next it follows from (7.4.49) and Fubini Theorem that,

E |α̃i,Nn,n|l ≤ 4lN2l
n (mn+1)l−1n−2(l−1)

ji+1−ji−1∑
k=0

∫ (ji+k+1)/n

(ji+k)/n

∫ t

(ji+k)/n
E
∣∣∣Y (s)Y (t)−(Y (i/Nn))

2
∣∣∣l dsdt.

(7.4.50)
Let us now prove that there is a constant c3,l > 0, only depending only on l, such
that,

E
∣∣∣Y (s)Y (t)− (Y (i/Nn))

2
∣∣∣l ≤ c3,lN

−lH(i/Nn)
n . (7.4.51)

Using equality: for all reals x, y, z, one has,

xy − z2 = z(x− z) + z(y − z) + (x− z)(y − z),

one gets∣∣∣Y (s)Y (t)− (Y (i/Nn))
2
∣∣∣

=
∣∣∣Y (i/Nn)

(
(Y (s)− Y (i/Nn)) + (Y (t)− Y (i/Nn))

)
+ (Y (s)− Y (i/Nn))(Y (t)− Y (i/Nn))

∣∣∣.
(7.4.52)
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It follows from (7.4.52), the triangle inequality, the equality Y (u) = f(X(u)) for all
real u (see (5.2.2), the Mean Value Theorem and the fact that f ∈ C2

pol(R), that∣∣∣Y (s)Y (t)− (Y (i/Nn))
2
∣∣∣

≤
∣∣∣Y (i/Nn)(Y (s)− Y (i/Nn))

∣∣∣+ ∣∣∣Y (i/Nn)(Y (t)− Y (i/Nn))
∣∣∣

+
∣∣(Y (s)− Y (i/Nn))(Y (t)− Y (i/Nn))

∣∣∣
≤ |Y (i/Nn)| sup

u∈[−∥X∥∞,∥X∥∞]
|f ′(u)|

(∣∣∣X(s)−X(i/Nn)
∣∣∣+ ∣∣∣X(t)−X(i/Nn)

∣∣∣)
+
(

sup
u∈[−∥X∥∞,∥X∥∞]

|f ′(u)|
)2∣∣∣X(s)−X(i/Nn)

∣∣∣∣∣∣X(t)−X(i/Nn)
∣∣∣

≤ c21(1 + ∥X∥K∞)2
(∣∣∣X(s)−X(i/Nn)

∣∣∣+ ∣∣∣X(t)−X(i/Nn)
∣∣∣

+
∣∣∣X(s)−X(i/Nn)

∣∣∣∣∣∣X(t)−X(i/Nn)
∣∣∣)

≤ c21
(
1 + ∥X∥K∞

)2(∣∣∣X(s)−X(i/Nn)
∣∣∣+ ∣∣∣X(t)−X(i/Nn)

∣∣∣)2
≤ 2c21

(
1 + ∥X∥K∞

)2(∣∣∣X(s)−X(i/Nn)
∣∣∣2 + ∣∣∣X(t)−X(i/Nn)

∣∣∣2)
= C4

(∣∣∣X(s)−X(i/Nn)
∣∣∣2 + ∣∣∣X(t)−X(i/Nn)

∣∣∣2), (7.4.53)

where C4 = 2c21
(
1 + ∥X∥K∞

)2 is a random variable of finite moment of any order.
Next, Observe that∣∣∣ji

n
− i

Nn

∣∣∣ = i

Nn
− [in/Nn]

n
≤ i

Nn
− in/Nn − 1

n
=

1

n
≤ 1

Nn

and ∣∣∣ji+1

n
− i

Nn

∣∣∣ = [(i+ 1)n/Nn]

n
− i

Nn
≤ (i+ 1)n/Nn − 1

n
− i

Nn
=

1

Nn
.

Then, Lemma 2.12 in [7] and the equivalence of Gaussian moments, imply that there
exists a constant c4,l > 0, only depending on l, such that for all n, i and s ∈ [ jin ,

ji+1

n ],
one has,

E
∣∣∣X(s)−X(i/Nn)

∣∣∣2l ≤ c4,l|s− i/Nn|2lH(i/Nn) ≤ c4,lN
−2lH(i/Nn)
n . (7.4.54)

It follows from (7.4.53), the fact that x 7→ xl is a convex function, Cauchy-Schwarz
inequality and (7.4.54), that

E
∣∣∣Y (s)Y (t)− (Y (i/Nn))

2
∣∣∣l

≤ 2l−1
(
E(C l

4)
)((

E
∣∣∣X(s)−X(i/Nn)

∣∣∣2l)1/2 + (E ∣∣∣X(t)−X(i/Nn)
∣∣∣2l)1/2)

≤ c3,lN
−lH(i/Nn)
n , (7.4.55)
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Thus we have shown that (7.4.51) holds. Next, it results from (7.4.50) and (7.4.51)
that, for all n big enough,

E |α̃i,Nn,n|l

≤ 4lN2l
n (mn + 1)l−1n−2(l−1)(ji+1 − ji)n

−2E
∣∣∣Y (s)Y (t)− (Y (i/Nn))

2
∣∣∣l

≤ 4lc3,lN
2l
n n

−2l(mn + 1)lN−lH(i/Nn)
n

≤ c5,lm
−l
n N

−lH(i/Nn)
n , (7.4.56)

where c5,l = 8lc3,l. This shows that (7.4.46) is satisfied.
Next, using (7.4.43), the fact that x 7→ xl is a convex function, (7.4.45) and

(7.4.46), we get

E |αi,Nn,n|l ≤ 2l−1E |α̃i,Nn,n|l + 2l−1E |Bi,Nn,n|l

≤ c(l)
(
m−l

n N
−lH(i/Nn)
n +m−2l

n

)
, (7.4.57)

which proves that Part (iii) of the lemma is satisfied.
Let us now show that Part (iv) of the lemma holds. First, recall that (see

(7.4.15), one has,

Ŷi,Nn,n = Ẽi,Nn,n +Nn

∫ ji+1/n

ji/n
Y (s) ds. (7.4.58)

Observe that using a method, similar to that which allowed to show (7.4.6) holds,
one can prove that for all real l ≥ 1, for all n big enough,

E (|Ẽi,Nn,n|l) ≤ c6,lm
−l/2
n ≤ c6,l, (7.4.59)

where c6,l > 0 is a constant only depending on l. On the other hand, Relation
(7.4.20) and the fact that Nnn

−1(ji+1 − ji) can be bounded independently on i and
n, imply that,

E
∣∣∣Nn

∫ ji+1/n

ji/n
Y (s)

∣∣∣l ≤ c7,l, (7.4.60)

where c6,7 > 0 is a constant only depending on l. Finally Part (iv) of the lemma
results from (7.4.58), the fact that x 7→ xl is a convex function, (7.4.59) and (7.4.60).
�

Now we are in position to show that Proposition 5.2.2 holds. Our proof is
inspired by that of Proposition 1 in [35] (see also [36]).

Proof of Proposition 5.2.2: For all i = 0, . . . , Nn − p− 1, one sets,

∆aEi,Nn,n :=

p∑
k=0

akEi+k,Nn,n. (7.4.61)

Thus, in view of (5.2.9), (5.2.12) and (7.4.3), one has,

∆aEi,Nn,n = ∆aŶi,Nn,n −∆aY i,Nn (7.4.62)
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Next oberve that, (5.2.17), (5.2.13) and (7.4.61) imply that,

V̂ (h;µNn , νNn)− V N (h;µN , νN ) =
4∑

r=1

Bn,r(h), (7.4.63)

where

Bn,1(h) = N−1
n

∑
i∈J (µNn ,νNn )

(C(i/Nn))
−1N2H(i/Nn)

n

×
{(

∆aEi,Nn,n

)2 − 2∥a∥22m−1
n

(
Yi/Nn

)2}
h(Y i,Nn) (7.4.64)

Bn,2(h) = N−1
n

∑
i∈J (µNn ,νNn )

(C(i/Nn))
−1N2H(i/Nn)

n

×
{(

∆aŶi,Nn,n

)2 − 2∥a∥22m−1
n

(
Ŷi,Nn,n

)2}{
h(Ŷi,Nn,n)− h(Y i,Nn)

}
(7.4.65)

Bn,3(h) = N−1
n

∑
∈J (µNn ,νNn )

(C(i/Nn))
−1N2H(i/Nn)

n

×2∥a∥22m−1
n

{(
Yi/Nn

)2 − (Ŷi,Nn,n

)2}
h(Y i,Nn) (7.4.66)

Bn,4(h) = N−1
n

∑
i∈J (µNn ,νNn )

(C(i/Nn))
−1N2H(i/Nn)

n

×2(∆aEi,Nn,n)
(
∆aY i,Nn)h(Y i,Nn

)
(7.4.67)

Thus, in order to prove the proposition, it is sufficient to show that, for r = 1, 2, 3, 4,
one has

E {|Bn,r(h)|} ≤ cv(Nn,mn). (7.4.68)

We will only prove that (7.4.68) is satisfied in the case where r = 1 since the other
cases can be treated in a rather similar way. We set,

bi =
{(

∆aEi,Nn,n

)2 − 2∥a∥22m−1
n

(
Yi/Nn

)2}
h(Y i,Nn) (7.4.69)

Observe that in view of Part (i) of Lemma 7.4.2, conditional on GX , the random
variables bi and bj are independent when |i − j| ≥ p + 1. Using the latter fact as
well as (7.4.64),

E
(
(Bn,1(h))

2|GX

)
= N−2

n

∑
i,j∈J (µNn ,νNn ),|i−j|≤p

(
C(i/Nn)C(j/Nn)

)−1
N2(H(i/Nn)+H(j/Nn))

n E (bibj |GX)

+N−2
n

∑
i,j∈J (µNn ,νNn ),|i−j|≥p+1

(
C(i/Nn)C(j/Nn)

)−1
N2(H(i/Nn)+H(j/Nn))

n E (bi|GX)E (bj |GX).

(7.4.70)

Next, using (7.4.20), the fact h ∈ C1
pol(R), Cauchy-Schwarz inequality and Part (ii)

of Lemma 7.4.2, it follows that there is a constant c1 > 0, non depending on n, i
and j, such that,

E
{
|bibj |

}
≤ c1m

−2
n . (7.4.71)
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On the other hand, observe that (5.2.15) implies that

c2 := sup
s∈[0,1]

(C(s))−1 <∞. (7.4.72)

Next combining (7.4.71) with (7.4.72), it follows that, there exists a constant c3 > 0,
such that, for all n big enough,

E

 ∑
i,j∈J (µNn ,νNn )1,|i−j|≤p

(
C(i/Nn)C(j/Nn)

)−1
N2(H(i/Nn)+H(j/Nn))

n E (bibj |GX)


≤ c3N

4maxs∈[µNn
,νNn

] H(s)+1
n m−2

n

≤ c3N
2
n

(
v(Nn,mn)

)2
, (7.4.73)

where the last inequality results from (7.4.1). Let us now study the second term in
the right hand side of (7.4.70). To this end, first we need to show that, that there
is a constant c4 > 0 such that for all n big enough and all i, one has,

E
{(

E (bi|GX)
)2} ≤ c4

(
m−2

n N−2H(i/Nn)
n +m−4

n

)
(7.4.74)

Using (7.4.69), the fact the process {Y (s)}s∈[0,1] is GX) measurable and Part (iii)

of Lemma 7.4.2, one has that,

E (bi|GX)

=
{
E
((

∆aEi,Nn,n

)2|GX

)
− 2∥a∥22m−1

n

(
Yi/Nn

)2}
h(Y i,Nn)

=
{
2

p∑
k=0

a2km
−1
n

(
Y(i+k)/Nn

)2 − 2∥a∥22m−1
n

(
Yi/Nn

)2
+

p∑
k=0

a2kαi+k,Nn,n + βi,Nn,n

}
h(Y i,Nn)

(7.4.75)

where
βi,Nn,n = 2

∑
0≤k<l≤p

akalE
(
Ei+k,Nn,nEi+l,Nn,n|GX

)
. (7.4.76)

Next observe that, using the fact that conditional on GX , the random variables
Ei+k,Nn,n and Ei+l,Nn,n in (7.4.76) are independent (this results from Part (i) of
Lemma 7.4.2)) as well as the first inequality in Relation (7.4.4), it follows (7.4.76)
that, almost surely,

|βi,Nn,n| ≤ 2
∑

0≤k<l≤p

|akal|
∣∣E (Ei+k,Nn,nEi+l,Nn,n|GX

)∣∣
≤ 2

∑
0≤k<l≤p

|akal|,
∣∣E (Ei+k,Nn,nGX

)∣∣ ∣∣E (Ej+l,Nn,nGX

)∣∣
≤ C5m

−2
n , (7.4.77)

where C5 is a random variable of finite moment of any order, which does not depend
on n and i. Also, observe that similarly to (7.4.51), one can show that for all real
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l ≥ 1, there is a constant c6,l > 0, only depending on l, such that, for all n big
enough, i ∈ {0, . . . , Nn − p− 1} and k ∈ {0, . . . , p}, one has,

E
∣∣∣(Y(i+k)/Nn

)2 − (Yi/Nn

)2∣∣∣l ≤ c6,lN
−lH(i/Nn),

which in turn implies that

E
∣∣∣2 p∑

k=0

a2km
−1
n

(
Y(i+k)/Nn

)2 − 2∥a∥22m−1
n

(
Yi/Nn

)2∣∣∣l ≤ c7,lm
−1
n N−lH(i/Nn), (7.4.78)

where c7,l is a constant only depending on l. Next by using (7.4.75), (7.4.78), (7.4.8),
(7.4.77), Cauchy-Schwarz inequality, the fact h ∈ C1

pol(R) and (7.4.20), one obtains
(7.4.74). Next, it follows from (7.4.72), (7.4.74) and Cauchy-Schwarz inequality, the
assumption that

sup
n
m−1

n N
2maxs∈[µNn

,νNn
] H(s)

n <∞,

the fact that H is with values in (1/2, 1), that

E

∣∣∣ ∑
i,j∈J (µNn ,νNn ),|i−j|≥p+1

(
C(i/Nn)C(j/Nn)

)−1
N2(H(i/Nn)+H(j/Nn))

n E (bi|GX)E (bj |GX)
∣∣∣


≤ c8N
4maxs∈[µNn

,νNn
] H(s)+2

n

(
m−2

n N
−2mins∈[µNn

,νNn
] H(s)

n +m−4
n

)
≤ c9N

2
n

(
N

−2mins∈[µNn
,νNn

] H(s)
n +m−2

n

)
≤ c9N

2
n

(
N−1

n +m−2
n

)
≤ c9N

2
n

(
v(Nn,mn)

)2
, (7.4.79)

where c8, c9 are two constants non depending on n and where the last inequality
results from (7.4.1). Next using (7.4.70), (7.4.73), (7.4.79) and Cauchy-Schwarz
inequality, it follows that, (7.4.68) is satisfied when r = 1.

�
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