
Université des Sciences et Technologies de Lille – Lille 1

Département de formation doctorale en informatique École doctorale SPI Lille

UFR IEEA

Algorithms for Realistic Wireless

Sensor Networks

THÈSE

présentée et soutenue publiquement le 15. December 2011.

pour l’obtention du

Doctorat de l’Université des Sciences et Technologies de Lille

(spécialité informatique)

par

Jovan Radak

Composition du jury

Président : —

Rapporteurs : Martin Heusse, Prof. Ensimag Grenoble
Pedro Ruiz, Prof. Universidad de Murcia, Spain

Examinateurs : Fabrice Théoleyre, CR CNRS, LSIIT
Claude Chaudet, MdC Telecom Paris Tech
Isabelle Simplot-Ryl, Prof, Univ. Lille 1, DCR Inria Rocquencourt

Directeur de thèse : Nathalie Mitton, INRIA Lille - Nord Europe

Laboratoire d’Informatique Fondamentale de Lille — UMR USTL/CNRS 8022

INRIA Lille - Nord Europe

Numéro d’ordre: 40693

Abstract

Wireless sensor networks can be defined as networks of small spatially dis-
tributed devices, called sensor nodes, which are working cooperatively - ex-
changing messages wirelessly - on the same application. Today these kinds
of networks are widely used in environmental monitoring, industrial and con-
sumer applications and for military purposes.

In this thesis we are tackling different areas of research in wireless sensor
networks: topology control, mobility, neighborhood discovery and large scale
experimentation. We are using relative neighborhood graph reduction along
with power supply data obtained from the sensor node to develop topology
control algorithm. This algorithm maintains connectivity of the network in
critical situations when some of the sensors drain their batteries. Neighbor-
hood discovery parameters are used to deduce relative mobility of the sensor
nodes. Then these parameters are adapted with transmission range to obtain
energy efficient neighborhood discovery algorithm. Large scale experimenta-
tion sites are valuable tool for developing and testing of algorithms for wireless
sensor networks but they also have various deficiencies, the biggest of them
is cost. We present emulation of large scale networks as a solution. It uses
small networks with the specific placement of the sensor nodes which allows
replicating thus emulating behavior of the large scale networks.

Algorithms are tested and evaluated on the WSNet simulator and practi-
cally using the SensLab platform and WSN430 sensor nodes.

Resume

Les réseaux de capteurs sont des réseaux composés de petits objets répartis
dans l’espace, appelés nœuds ou capteurs, qui travaillent en collaboration -
échange de messages radio - sur la même application. Aujourd’hui, ces types
de réseau sont largement utilisés dans le suivi environnemental, industriel et
les applications grand public ainsi qu’à des fins militaires.

Dans ces travaux, nous nous attaquons à différentes primitives dans les
réseaux de capteurs: le contrôle de topologie, la mobilité, la découverte de
voisinage et l’expérimentation à grande échelle. Nous utilisons la réduction
de graphe des plus proches voisins avec les données d’alimentation du nœud
afin de développer notre algorithme de contrôle de topologie. Cet algorithme
conserve une connexité du réseau dans les situations critiques où certains cap-
teurs épuisent leur batterie. Les paramètres de découverte de voisinage sont
utilisés pour déduire la mobilité relative des capteurs. Ensuite, ces paramètres
sont adaptés, ainsi que la puissance d’émission, pour obtenir un algorithme
efficace de découverte de voisinage. Les plates-formes d’expérimentation à
grande échelle sont des outils utiles pour développer et tester des algorithmes
pour ces réseaux de capteurs sans fil, mais ils ont aussi des déficiences diverses,
le plus grand d’entre eux étant le coût. Nous présentons l’émulation de réseaux
à grande échelle. Cela simule de petits réseaux avec un placement précis des
capteurs qui permet la réplication de comportement pour ainsi émuler des
réseaux à grande échelle.

Les algorithmes sont testés et évalués théoriquement et sur le simula-
teur WSNet et en pratique sur la plate-forme SensLab utilisant des capteurs
WSN430.

Acknowledgments

First of all, I thank my Ph.D advisors Nathalie Mitton and Isabelle Simplot-
Ryl for introducing me to wireless sensors networks, for being patient with
me during the first year of my work and helping me find the right direction
in my research work. Isabelle was there for me when I needed guidance and
to find the direction of my research. Nathalie helped me express my ideas,
encouraged my self-initiative and kept me going to the aim.

I would like to thank rapporteurs professors Martin Heusse and Pedro
Ruiz for their valuable suggestions which have led to improved version of this
dissertation.

Thanks to the jury members professors Fabrice Théoleyre and Claude
Chaudet for their opinion on this dissertation and for interesting questions
which gave me ideas how to further improve this work.

I would like to thank professor David Simplot-Ryl for the nice welcoming
to the POPS research group and valuable discussions which gave me ideas
how to proceed with my work.

Thanks to my colleagues Samuel Hym and Arnaud Fontaine for their ad-
vices and help finding the best software tools for resolving my problems.

I would like to thank to the former and current POPS research group mem-
bers, namely Roudy Dagher, Tony Ducrocq, Milan Erdelj, Grégory Guche, En-
rico Natalizio, Tahiry Razafindralambo, Loïc Schmidt, Julien Vandaële and
others, for the disscusions, ideas, advices – both on the work and in private –
and the great time spent in the Summer Schools. Also, I would like to thank
Kate Price for helping me with my English language and my everlasting prob-
lem with articles.

Staying in France and dealing with (sometimes) complicated procedures
would not be that easy if there were not Anne Rejl and Anne-Claire Binetruy,
their help was invaluable.

I am hugely grateful to my family. My mother and father have been a
great support and always stood by decisions that I made in my life. My wife
Tamara and son Djordje whose love, patience and support were giving me
strength to keep on the right track.

Contents

1 Introduction 3
1.1 Problem . 3
1.2 Contributions . 5
1.3 Structure . 6

2 State of the art 9
2.1 Introduction . 9
2.2 Real sensors used in wireless sensor networks 10

2.2.1 Types of sensors and their capabilities 10
2.2.2 Program support for WSN 11
2.2.3 Large scale experimentation 12

2.3 Notations and preliminaries 13
2.3.1 General remarks . 14
2.3.2 Neighborhood discovery 14
2.3.3 Energy consumption 16

2.4 Topology control . 16
2.4.1 Topology control based on graph reduction 18
2.4.2 Energy concerns in topology control 21

2.5 Neighborhood discovery and network mobility 22
2.6 Experiments with scalable networks 24

3 Topology control using sensor hardware 27
3.1 Introduction . 27
3.2 Making the sensors aware of their power supply 29

3.2.1 Using analog-digital converter input of microcontroller 29
3.2.2 Supply voltage supervisor 30

3.3 Topology control Algorithm based on battery level 31
3.3.1 Models and preliminaries 32
3.3.2 Making Connection from Voltage Level to RNG Weight

Function . 32
3.3.3 Algorithm for topology control using power factor . . . 33

3.4 Experimental results . 37
3.4.1 Experimentation Set Up 37
3.4.2 Node degree and connectivity preservation using 3 dif-

ferent RNG algorithms 39
3.5 Conclusion . 43

viii Contents

4 Neighborhood discovery in mobile networks 45
4.1 Introduction . 45
4.2 Theoretical analysis . 47

4.2.1 Probable number of new neighbors to compute the turnover 47
4.2.2 Analysis on minimization of energy cost 56

4.3 Algorithms . 58
4.3.1 Using the turnover . 59
4.3.2 Using the optimal frequency of HELLO messages . . . 60
4.3.3 Minimizing the cost . 60
4.3.4 Minimizing the energy consumption 61

4.4 Experimental results . 61
4.5 Conclusion . 67

5 Emulation of large scale wireless sensor networks 69
5.1 Introduction . 69
5.2 Basic principle . 70

5.2.1 1-hop hexagonal grid 71
5.2.2 Emulation large scale graph 72

5.3 Experimental results . 76
5.3.1 Simulation setup . 76
5.3.2 Emulation setup . 77
5.3.3 Comparison of the results 78

5.4 Conclusion . 78

6 Conclusion 81
6.1 Results . 81
6.2 Future advances . 82

Bibliography 85

List of Figures

1.1 Unit disk graph model . 4

2.1 WSN430 and SensLAB platform. INRIA / Photo N. Fagot . . 11
2.2 Process of topology control . 17
2.3 Example of graph reductions – (a) Relative neighborhood graph

RNG (b) Gabriel graph . 20

3.1 Part of the schematics of the WSN430 sensor node, showing
connection between battery input and A/D converter input of
the microcontroller . 29

3.2 Samples captured at the input 2 of A/D converter of the mi-
crocontroller . 30

3.3 Example for PF computation. Blue nodes have a high battery
level. Red nodes have a low battery level. 33

3.4 Example for RNG computation. Blue nodes have a high battery
level. Red nodes have a low battery level. 35

3.5 Placement of the nodes on which the experiment is run. In
SensLAB, d = 60cm. 38

3.6 Initial topology of graph. 38
3.7 Topology after topology control. 39
3.8 Topology after topology control after nodes have exhausted

their battery. 40
3.9 Node degrees for different RNG algorithms 42
3.10 Number of connected nodes during execution of different RNG

algorithms . 42

4.1 Global view. Circle Cu,Ru is centered at the position of the node
u with radius Ru. In this case, node v, with radius Rv is a new
neighbor if and only if v0 does not lie in the area delimited by
Cu0,Ru and if v1 lies in the area delimited by Cu1,Ru . The blue
dashed circle Cu1,∆d and the red dotted circle Cv1,∆d represent
the possible positions of the u0 and v0. 49

4.2 Calculating dmin . 50
4.3 Calculating αmin . 51
4.4 Zoom view . 53
4.5 Solution of differential equation obtained for optimal energy cost. 58
4.6 Values of R with regards to V when solving Eq. 4.26. 62
4.7 Transmission range as function of speed 63

x List of Figures

4.8 Period of HELLO messages as function of speed 64
4.9 Battery level as function of speed 65
4.10 Turnover as function of speed 65
4.11 Accuracy of the neighborhood table as function of speed . . . 66

5.1 Calculation of the next step in 1-hop environment 70
5.2 Hexagonal grid used for the placement of sensors. 73
5.3 Emulation steps using subset of sensor nodes in hexagonal grid. 74

List of Tables

2.1 Sensor node hardware . 11
2.2 Format of HELLO message . 15
2.3 Neighborhood table . 16

3.1 Values of the SVS register and voltage levels 31

List of Tables 1

Essentially, all models are wrong,
but some are useful.

George E. P. Box

Chapter 1

Introduction

Wireless sensor networks can be defined as networks of small spatially dis-
tributed devices, called sensor nodes, which are working cooperatively - ex-
changing messages wirelessly - on the same application. Today these kinds
of networks are widely used in environmental monitoring, industrial and con-
sumer applications and for military purposes.

To say that wireless sensor networks, and in general wireless communica-
tion, have been under great scientific interest during the past few decades, is
a trigger that immediately reminds us of numerous introductions from many
scientific publications (even we have used it). Some of these publications were
good, giving interesting results and milestones for future works, others were
not so good. This introduction may be a stereotype but it does not have a
great impact on the results that are presented herein. At this point we should
point out that perhaps it is not nice or catchy to start scientific publications
with this phrase but, at the same time it is the truth. It is definitely true that
wireless communications are ubiquitous and that now we can hardly imag-
ine the world without them. Being a necessity in the modern world, wireless
communications give us a good starting point to explore and improve it even
more. But the question is how do we do it?

1.1 Problem

Can we take the problem directly from the real world and try to solve it
with all its little differences and nuances? Throughout the history (of science)
we have witnessed two possibilities: either the solution was strongly profiled
and customized for the small subset of instances (or even only one instance)
which arise from the problem, or the bigger subset of problems was given a
similar approach using a simple model leaving out more subtle differences and
trying to fit in a wide range of problems in one single model (for example the
approach one size fits all). Reasons for this kind of approach can be found in
the complexity of systems which are found in the real world. Thus, to give
access to the wide range of existing mathematical tools one needs to find good
proportion between the entity found in the real world and the model which
should replace it in calculations. This model can be very simple and even

4 Chapter 1. Introduction

v

w

z

u

Figure 1.1: Unit disk graph model

inaccurate but it can still give good results when applied to more complex
systems.

A good example for the aforementioned statement can be taken from the
usage of unit disk graph, a model widely used in the area of wireless commu-
nications. A simple correlation can be made between real networks and unit
disk graph. The first step would be to simplify our notion of network by say-
ing that a network is represented with graph G = (V,E) in which our devices
are nodes of graph V and that their communication links are presented with
the set of edges of graph V . Now, we have already made the first step, our
network is modeled as a graph, one step further would be to add a simple
property to our graph, saying that a link between two nodes of graph u and v
exists if and only if the distance between them is smaller than the given unit
distance R:

E = {(u, v) ∈ V 2 |d(u, v) ≤ R}

where d(u, v) is the Euclidean distance between nodes u and v. As simple
as that, this model states that if we assume that node u (Fig. 1.1) wants to
communicate with other nodes it can do it only if they are within the disk
whose center is in node u. So, nodes v and w can communicate with u because
they are within the unit disk while node z, even though its very close to this
area, cannot communicate with u. What can we say about this model? For
sure it’s not the best approximation of the situations that we can find in the
real world but still, many important results which apply to devices which run,
in this same real world, are obtained using this simple model. And here, we
come to the important question: if the model that we used for our calculations
gives good results when applied to the real devices does this make it realistic?
When it comes to this question it is hard to give a straight answer, it also
depends on the other premises that we impose on our problem.

Then, if it is so hard to define what do we mean by the word realistic and
why do we use this term in the title of this work? For us, the word realistic
means something in connection with devices on which we are planning to use in

1.2. Contributions 5

our solution. Not quite strong a definition but we can bring it under a different
light and say that realistic also means that an important part of the problem
is taken as it is and no further simplifications are applied to this certain aspect
of our problem. For example, when we speak about battery level (in Chapter
3) we do use battery level from the real device and this information is used
directly in calculations and in the application of the algorithm. In this way we
can say that we are trying more to make a customized solution to the problems
that we are addressing than to find one solution that fits a wide variety of
cases. Nevertheless, the solutions that are given can be easily applied to any
device which meets assumptions that we made.

It seems that we insist on the realistic approach and that we want a solution
which is strongly connected to the real world, either through the usage of real
devices or through the mechanisms (techniques) that they are using in the real
world. If we insist so much on real world applications then logical question
would be: did we manage, in our approach, to avoid usage of some general
models used in this area? Well, certainly we did not avoid usage of some
simple models but that does not makes our solution, or the approach, any
less realistic. It just means that there are some general spots, in the problems
that we are addressing, that can be easily, efficiently and at the same time
accurately solved by using well known models and solutions (energy model
used in Chapter 4).

1.2 Contributions

In the sea of possibilities where did we find our place? Looking at the names
of the chapters can give the idea that we are addressing different problems
and different areas of wireless sensor networks. It may be true, but our vision
was always a practical problem and if not directly applied to hardware, then
how it would fit in, and possible problems and enhancements to the current
solution. We are trying to fit our way of thinking into three big areas of
research in wireless sensor networks.

Topology control It is one of the classical problems in the area of wireless
sensor networks, how to make our network better, energy efficient, simple and
yet connected, through the control of the links between the sensor devices.
We base our work on the sensor devices WSN430 [WSN430], we find pos-
sible ways to improve devices response to the critical problem of the loss of
power supply. Using the information obtained from the device, and one of
the graph reduction algorithms we create a simple topology control algorithm
that follows the power supply of the sensor device and reacts in the proper

6 Chapter 1. Introduction

way (reconfiguring the network) in the case when some of the devices reach a
critical power supply level.

Mobility Another well known property of wireless sensor networks. Inher-
ent to some networks, imposed on other networks or used by some networks,
the mobility of devices raises lots of questions and endangers the functioning
of some algorithms and mechanisms created for static networks. We try to
address the problem of neighborhood discovery in mobile networks. Being
a very important mechanism, neighborhood discovery (Chapter 2.3.2) needs
to retain its proper functioning in mobile networks also. Furthermore, since
this protocol includes periodical sending of the messages it also needs to be
efficient both in finding all its neighbors, keeping accurate track of it in the
neighborhood table, and efficient in energy meaning that it might lower the
power of transmission and omit reaching the nodes which are soon going to
be out of range. We give our solution to this problem by addressing some well
known models and results and we prove its efficiency and accuracy.

Scalability in experiments Experimental work with wireless sensor net-
work was for many years the weakest spot. It requires large number of devices,
yet these devices are very limited in their power supply as well as in their fa-
cilities. Meaning that these sensor devices need to be recharged and to be
loaded with proper programs on them. This might not be the problem with a
small number of devices, up to 20 - 30, but to keep experiments more realistic
we usually need more devices which also gives us the problem of the cost be-
side the problem of proper functioning. During the last few years there have
been many attempts to build various testbeds which would allow researchers
to test their algorithms in real environments. Even though they are great
help for development, these testbeds are often constrained in the placement
of sensors, the type of sensors used and sometimes in the gathering and the
interpretation of obtained data. We present emulation, a process which uses
small wireless sensor networks to emulate (estimate in real hardware) the be-
havior of the large scale wireless sensor network. This small network is used
with some tools (graph generation tool) to estimate different kinds of routing
algorithms on real devices and in large scale networks.

1.3 Structure

This manuscript is divided into 6 chapters. The introductory chapter covers
some basic notions and giving the preview and introduction to the following
chapters. Chapter 2 presents preliminaries for the models that we used and

1.3. Structure 7

gives a brief review of the current advances in real devices and experimenta-
tion possibilities with them and a brief review of theoretical advances in the
areas that we are covering. Next, Chapter 3 describes our approach to topol-
ogy control and gives the explanation of our algorithm and its functioning on
the real sensor hardware. Results show that our proposition performs very
well and allows sensors to dynamically prefer high battery level nodes. Chap-
ter 4 presents our approach to the accurate and energy efficient neighborhood
discovery in mobile wireless sensor networks. Results show that we still main-
tain a good neighborhood table accuracy while minimizing the energy spent.
Scalability of the experiments, and our idea for the small testbed which can
be used to obtain the results for large scale networks are given in Chapter 5.
Finally, we give our conclusion in the last chapter, and we also give starting
points for possible advances and future works.

Chapter 2

State of the art

Contents
2.1 Introduction . 9

2.2 Real sensors used in wireless sensor networks 10

2.3 Notations and preliminaries 13

2.4 Topology control . 16

2.5 Neighborhood discovery and network mobility 22

2.6 Experiments with scalable networks 24

2.1 Introduction

This work involves several different areas of research in wireless sensor net-
works connected to a similar idea incarnated to the word realistic in the title
of this thesis. Usage of the realistic wireless sensor networks assumes the us-
age of the real sensor hardware to obtain the results, to validate the solution
already proven in theory or the results collected by the simulation. Thus, we
first present sensor nodes, their general characteristics and tools provided for
the development. Large scale testbeds are one of the tools that we are using to
retrieve results in our work but also to try to present alternatives (emulation)
to these large testbeds, one which is less costly and still producing accurate
results. We present large testbeds in general emphasizing three testbed sites
in Europe.

The second part of this chapter involves more details about the background
of our work and places our work in an appropriate context. First, we present
our general notations and define the notions which will be used in other sec-
tions. In this preliminary part, we explain detailed notions of neighbors and
the neighborhood discovery and a simple model for calculating energy cost
when transmitting packets from the sensor nodes. Then we move to the core
of this chapter, which is divided into three smaller sections. We have the same
motivation when investigating realistic wireless sensor networks but we chose

10 Chapter 2. State of the art

to make the distinction between smaller areas that we are confronting in this
work. First we give more details about topology control, and one type of it
which is based on the graph reduction algorithms. A few different types of
graph reduction algorithms are presented emphasizing the one that we are
using in our work: relative neighborhood graph. Neighborhood discovery in
mobile wireless sensor networks is presented in the next section. We high-
light the problem of accurate and energy efficient neighborhood discovery and
present intuition behind the solution that we are proposing. The last section
deals with the problem of scalable experimentation in wireless sensor net-
works. A few different approaches to emulation are presented finishing with
our vision of the emulation.

2.2 Real sensors used in wireless sensor net-
works

2.2.1 Types of sensors and their capabilities

The research area of wireless sensor networks, along with ad-hoc networks, be-
gan to develop much before the actual hardware and the devices for it became
widely accessible. Nowadays, there are lots of different types of sensor nodes,
but there are some parts which are characteristic to all of them. First of all it
has to contain a processing unit, in almost all cases this is a microcontroller, it
is usually one of the low power solutions of the leading manufacturers (Texas
Instruments MSP430 series or Atmel ATmega). Rarely can we see devices as
it is case with IMote 2.0 (Table 2.1) that have ARM processor or some more
powerful processing unit. Radio chip is the part which enables these devices to
communicate wirelessly thus making them wireless sensor nodes, more often
we can find radio chip CC2420 which operates at 2.4GHz and is compliant
with IEEE 802.15.4 standard and less often CC1100 series of radio chip which
operates at lower frequencies, 315, 433, 868 and 915 MHz. The third im-
portant point involves sensors, being a wireless sensor node means that it is
supposed to have sensor, usually it is some kind of sensor that follows envi-
ronment data like temperature, humidity, noise, etc. The sensor part of the
node is usually extensible via daughterboard cards which contain additional
sensors or communication interfaces. All these parts are usually supplied with
Lithium Ion batteries included in the package of a sensor. Figure 2.1(a) shows
sensor node WSN430 which is based on the TI MSP430 microcontroller, and
comes in two varieties with CC2420 or CC1100 radio chip, onboard it contains
temperature and light sensors (photodiodes). It is extensible with additional
daughterboard cards which may contain a digital compass, accelerometer,

2.2. Real sensors used in wireless sensor networks 11

Sensor node Microcontroller Radio Chip
IMote 2.0 ARM11 XScale CC2420
MicaZ ATmega128 CC2420
TelosB TI MSP430 CC2420
WSN430 TI MSP430 CC2420 and CC1100

Table 2.1: Sensor node hardware

GPS device...

2.2.2 Program support for WSN

Different platforms exist upon which we can develop and implement programs
for wireless sensors. We are going to briefly present three operating systems
for wireless sensor devices.

TinyOS Presents a real-time operating system dedicated to wireless sensors.
It is presented in 2000 and supports a wide range of existing sensor nodes,
but there are also unofficial ports for the devices not officially supported.
Applications for TinyOS are written in NesC (Network Embedded System
C). It uses event-based programming of the devices meaning that the system
waits for events to happen and then responds according to the handling of the
event. There are two types of entities that are accessible in TinyOS: events
and tasks. Scheduling of the tasks is done preemptively. Communication
between the layers of the program are possible via interfaces.

(a) WSN430 (b) SensLAB platform

Figure 2.1: WSN430 and SensLAB platform. INRIA / Photo N. Fagot

12 Chapter 2. State of the art

Contiki It is another open source multitask operating system that also sup-
ports event-based programming. Apart from the operating system core this
operating system also contains processes which can become services or ap-
plications. It supports multithreading and preemptive scheduling. Contiki
programs are written in C programming language. Contiki also provides IP
stack both for IPv4 and IPv6 with complete support for 6lowPAN.

FreeRTOS This is also real-time operating system [FreeRTOS] for the em-
bedded devices. It is a highly configurable operating system made to be small
and simple. The kernel of this operating system consists of only four C files.
Scheduler can be configured in both preemptive and cooperative modes. Be-
ing small and simple makes it a good choice for beginners but nevertheless it
can be used to write serious applications.

Apart from the presented operating systems there exists also a full pro-
tocol stack for embedded wireless devices (6lowpan), and the systems which
can handle database on a memory constrained device [Tsiftes 2011]. These
solutions are out of the scope of this thesis so we will not give any further
details about them.

2.2.3 Large scale experimentation

Large testbeds are also one of the possibilities to conduct the experiment and
to observe behavior of the designed algorithm in a real environment. Being
very interesting subject for the future development, wireless sensor networks
are gaining lots of resources for the experiments. The idea is to have large
sites with lots of sensor nodes, possibly heterogeneous, and to observe how
different algorithms and services perform in the presence of other wireless
sensors and with possible interferences from the real environment but also
from other wireless devices which may be using the same part of spectrum for
their functioning. In here we will mention only three large experimentation
sites deployed in Europe just to have an idea of the structure of these kinds
of testbeds and their advantages and shortcomings.

Wisebed

Wisebed is a joint project of 9 different academic institutions all over Eu-
rope. Large scale experimentation sites consist of 750 sensor nodes. This
experimentation site is heterogeneous having different types of sensors like
Isense, TelosB, Tnode. It is organized in federation architecture providing
multilevel structure of interconnected testbeds. Large numbers of sensors on
these experimentation sites are static but they also contain 40 mobile sensors.

2.3. Notations and preliminaries 13

Different kinds of measurement are supported including the power measure-
ment on some sensor nodes. It also supports virtualization of the topology
and possibility of co-simulation with part of the testbed.

SmartSantander

SmartSantander is a city-scale facility for research and experimentation of In-
ternet of things technologies and services. It contains 4 large experimentation
sites: (i) Santander (Spain) with sensor nodes placed across the city, mainly
outdoor deployment (ii) Guilford (UK) with sensors placed in a university
campus, mix of outdoor and indoor deployment (iii) Lubeck (Germany) mix
of university campus and city deployment (iv) Belgrade (Serbia) mostly city
deployment also containing mobile sensors placed on buses facilitating vehic-
ular network experiments. Up till now 2000 sensor nodes have been deployed
with a plan to deploy a total number of 20000 by august 2013. This experi-
mentation testbed is mostly developed for the experimentations with Internet
of things services but it can also be used for experiments with protocols for
wireless sensor networks.

Senslab

SensLAB is a large scale experimentation testbed 2.1(b) deployed in 4 cities
in France (Grenoble, Lille, Rennes and Strasbourg). It contains total number
of 1024 sensor nodes based on the SensLAB node which consists of 2 WSN430
[WSN430] nodes, with 2 possibilities for the radio chip CC2420 or CC1100,
and the gateway board connecting them. This kind of implementation of sen-
sor node, though not too small, allows users to access the information in the
sensor node which is already running the program that it was developed for.
Users can follow energy consumption and also to communicate with sensors.
Sensor nodes are deployed both outdoor and indoor and the testbeds also
contain the mobile nodes. Containing only one type of sensors makes this
testbed specially suitable for the experiments with protocols and applications
for wireless sensor networks. Besides the testbed itself, SensLAB also offers a
wide range of tools developed for it, WSnet and WSim – simulators and pre-
developed ports for different kinds of real time operating systems (FreeRTOS,
TinyOS, Contiki)

2.3 Notations and preliminaries

In this work we are addressing the problems of topology control, neighborhood
discovery in mobile networks and scalable experimentation - we are using the

14 Chapter 2. State of the art

term emulation – testbed built upon small wireless sensor networks which
can be used to emulate large scale networks. In this section we will give the
preliminaries and definitions of some basic models that are being used in our
work and which are common for all chapters. More specific details are given
in the following chapters explaining in detail the main points that we are
addressing and our contribution.

2.3.1 General remarks

Graph G is defined as G = (V,E), a pair of set of nodes V and set of edges
E. For a node u we say that it is in graph G when u ∈ V . In text we
usually address to the nodes of the graph G using u, v and w, if not otherwise
emphasized these nodes are considered to be the part of the graph G (u, v, w ∈
V).

When talking about transmission of the single package we refer to the
source node as the sender of the package and destination node is the receiver
of the package. Other preliminary definitions are given in following 2 separate
sections.

2.3.2 Neighborhood discovery

Neighborhood discovery is the process in which each node finds its neighboring
nodes. In order to define neighborhood, we first have to define notion of
neighbors. For two nodes u and v in graph G we say that they are neighbors
if they can receive the message from each other. More formal, this is given as:

E = {(u, v) ∈ V 2 | v receives messages from u}

In similar way, 1-hop neighborhood of the node u, N(u) is defined as:

N(u) = {v ∈ V | (u, v) ∈ E}

usually this is applied vice versa, meaning that the link is symmetrical and
that if node u can communicate with node v then also node v can communicate
with node u. Certain algorithms require knowledge of 2-hop neighbors of the
nodes, this means that each node needs to know neighbors of its neighbors.
2-hop neighborhood N2(u) of node u is defined as:

N2(u) = {v ∈ V | N(N(u)) \N(u) ∪ {u}}

In our work (Chapter 4) we are defining the notion of bilateral and uni-
lateral neighbors in order to have more precise view of the nodes that can be

2.3. Notations and preliminaries 15

ID source address neighborhood table (ID, distance)

Table 2.2: Format of HELLO message

discovered by the single node. Bilateral neighbors present the pair of neigh-
bors u and v which can communicate between themselves – meaning u can
receive messages from v and vice versa, formally given:

Ebil = {(u, v) ∈ V 2 | uv ∈ E ∧ vu ∈ E}

For node u we say that it is unilateral neighbor of v if it can receive message
from v and at the same time v cannot receive message from u, more formally:

Euni = {(u, v) ∈ V 2 | uv ∈ E ∧ vu /∈ E}

The process of the neighborhood discovery consists of sending of HELLO
messages – simple messages which allow the node which has received them to
find source of the message and some additional information. In the example
(Table 2.2) HELLO message contains also data about the neighbors of the
node which is sending this HELLO message. These data can be saved by the
node which receives message and then further on used (for routing or topology
control).

The second part of the neighborhood discovery consists in gathering data
from all received HELLO messages – this is being done by all nodes inde-
pendently – and forming the neighborhood table. HELLO message can be
short and containing as little as ID of the message, so that the node which
receives message knows that its a HELLO message, and address’ of the source
of HELLO message, which can be some unique identifier (in practical solu-
tions it is usually MAC address). In some more complex algorithms, which
would require more data, HELLO message can contain more data. Table 2.3
shows neighborhood table of N entries in which each entry contains data of
the source node, distance to it and state of the battery of the source node,
this organization is somewhat similar to the neighborhood table that we are
using in our work in Chapter 3.

Knowing the process of neighborhood discovery, now we can easily define
process for retrieving 2-hop neighborhood. Knowledge of 2-hop neighborhood
is practically obtained by putting the neighborhood table, or just list of 1-hop
neighbors, in the HELLO message. In this way each time when one of the
nodes receive HELLO message it can also know which are the neighboring
nodes of the node which sent HELLO message and create the table for 2-hop
neighborhood.

16 Chapter 2. State of the art

source1 distance1 battery1

source2 distance2 battery2

...
...

...
sourceN distanceN batteryN

Table 2.3: Neighborhood table

2.3.3 Energy consumption

Energy consumption of the single node is modeled as:

E = rα + C (2.1)

where E represents energy consumption of the single node when it is used
for sending single message, with the transmission range r and C which is
the constant used to model global losses, additional computation before the
sending of the message, handling the message on the MAC layer, idle state,
etc. In the literature [Fleury 2009] as the most common values are mentioned
α = 4 and C = 108.

2.4 Topology control

Topology control can be defined informally as the art of coordinat-
ing nodes’ decisions regarding their transmitting ranges, in order
to generate a network with the desired properties while reducing
node energy consumption and/or increasing network capacity.

Paolo Santi [Santi 2005].

This definition, although being informal, explains main aims of this mecha-
nism in wireless sensor networks. Considering that these kinds of networks
consist of big number of constrained devices which are communicating be-
tween each other it is obvious that there is a need for some kind of organiza-
tion which will enhance desired properties (connectivity, throughput) and at
the same time diminish undesired behavior (energy consumption, collisions,
interferences). Following the definition we can say that the main aim of the
topology control is to virtually simplify the network (by removing some un-
wanted parts) and in this way optimize communication in the network. Sim-
plification of the network also helps the nodes to use less memory requiring
from them to know only the subset of obtained information thus saving the
memory for other critical operations.

2.4. Topology control 17

Topology

 control

Initial phase

Topology

maintenance

Figure 2.2: Process of topology control

In his book [Santi 2005] author places topology control in the wireless sen-
sor network protocol stack, between MAC layer and routing layer, with the
routing layer as upper and MAC layer as lower layer to topology control.
Placed in the protocol stack in this way, topology control is facilitating more
efficient routing with updates of the list of neighboring nodes which are avail-
able for routing and at the same time it can set appropriate power level for
transmission communicating with the MAC layer. Recently, there have been
more debates on the placement of the topology control in the protocol stack,
some authors agree with the placement previously explained while the others
are placing topology control as the lower network layer part which should be
called according to the needs of the upper layers [Fleury 2009].

In [Wightman 2008] authors make the clear distinction between the topol-
ogy construction and topology maintenance as the parts of topology control.
Further on [Labrador 2009] they give more detailed description dividing topol-
ogy control in three subprocesses: (i) initial phase – in which the nodes are
discovering their neighborhood and build initial topology; (ii) topology con-
struction – second phase in which the nodes are building new topology accord-
ing to some algorithm, and when the new algorithm is established they move
to (iii) topology maintenance – the phase in which the new algorithm moni-
tors the status of the reduced network and in if needed triggers the topology
construction (Figure 2.2).

There are many considerations which should be taken into account when
designing topology control algorithm, it should have some properties specific
to the wireless sensor networks: localized – allowing it to run independently
of other nodes and using only information from its immediate neighborhood
thus saving the memory and lowering energy requirements; simple – allowing
it to be run multiple times without impact (or with small impact) on the per-
formance of the network, having in mind that wireless sensor network mostly
consist of constrained devices this also means that we are not wasting pro-
cessing resources; energy-efficient – it is usually run on constrained devices

18 Chapter 2. State of the art

with limited power supply (battery) so it needs to help the nodes to reduce
overall energy consumption; preservation of connectivity – it is critical
for the reduced network that it remains connected in order to preserve end to
end communication in the network. Out of many possible techniques for the
topology control we have chosen graph reduction based techniques which can
be easily implemented, can be constructed localized, preserves connectivity
and augments energy efficiency.

2.4.1 Topology control based on graph reduction

This kind of topology control algorithm requires knowledge of neighborhood
for each node thus the first step in this kind of algorithms is neighborhood
discovery. Each node finds his neighbors exchanging the HELLO messages and
by creating the neighborhood table as explained in Section 2.3.2. For these
kinds of algorithms, to run, either 1-hop neighborhood and nodes positions or
2-hop neighborhood is needed, in case when we cannot accurately know the
position information.

Alternatively, there is a possibility of using some of the link quality pa-
rameters which can be either calculated or extracted from the physical layer
of the protocol stack which can be used as a notion of distance between two
sensors. Examples for these link quality parameters are expected transmission
count (ETX) and received signal strength indicator (RSSI). ETX of the link
l is calculated as [Javaid 2009]:

ETXl =
1

plsf · plsr
=

1

reliability(l)
(2.2)

where plsf and plsr are the probabilities that the packet is going to be suc-
cessfully delivered in forward (f in the plsf) and in reverse direction (r in
plsr). Probabilities can be easily calculated empirically counting the number
of messages that are successfully received per time unit. RSSI is the link qual-
ity factor which can be directly extracted from the hardware that sensor uses
for communication. It is usually part of the message that is being received.
RSSI gives valuable information of quality of communication [Srinivasan 2006]
but it cannot be used directly as a notion of distance to get accurate informa-
tion of the node location, it should be rather used with appropriate statistical
method to obtain accurate parameters for localization [Figuera 2009].

Graph G = (V,E) with its nodes V , equipped with neighborhood tables,
and links between them E is a starting point to perform one of the algorithms
based on a graph reduction. In general, these algorithms aim to remove com-
munication links which do not meet the imposed constraints, either they have
low quality or they are redundant by some criteria. Applying this kind of

2.4. Topology control 19

algorithm on the initial graph G gives us reduced graph Gr = (V,Er) which
has the same set of nodes V as the starting graph but contains only subset of
the edges (communication links) Er ⊆ E. In this class of algorithms we are
differentiating two types of algorithms: (i) centralized – which need to collect
the global data of whole network in order to run it properly; (ii) localized
– algorithm which can be implemented and run independently on each node
using only its neighborhood table.

Minimum spanning tree

Minimum spanning tree (MST) – is the subgraph of the starting graph, which
is a tree with a property that its weight is less than or equal to the weight
of every other spanning tree. In [Prim 1957] is presented one of the oldest
algorithms that addresses this problem. The main problem with this algorithm
is that for this kind of structure there is no localized algorithm. However, using
the structure called localized minimum spanning tree we can use localized
algorithm [Li 2003]. Each node is computing its own localized MST over the
informations gathered locally and exchange its results with its neighbors. A
link is kept in reduced graph iff it belongs to both trees. This algorithm has
nice properties of preserving connectivity of starting graph and bounding the
node degree to 6 but it contains unidirectional links which can be eliminated
without affecting the graph connectivity.

Gabriel graph

Gabriel graph [Gabriel 1969] of the graphG = (V,E) is reduced graphGG(G) =

(V,EGG) in which two nodes u and v are neighbors if and only if there is no
node in circle with diameter uv more formally:

EGG = {(u, v) ∈ E if @w ∈ E | w ∈ D(u, v)}

This graph has a nice property: if the G is unit disk graph then GG(G) is
planar subgraph of G. This property of the Gabriel graph is used to construct
connected planar subgraph as the first phase in face and greedy-face-greedy
(GFG) routing algorithms [Bose 1999]. Though this is good property it limits
us only to geometric graphs.

Relative neighborhood graph (RNG)

Relative neighborhood graph is the first time mentioned in the work of Tous-
saint [Toussaint 1980] connecting it to the MST and Delaunay triangulation,
and showing that the RNG over the set of nodes is superset for MST and subset
of the graph obtained by Delaunay triangulation. In his work [Supowit 1983]

20 Chapter 2. State of the art

uu v v

D(u, v)

(a) (b)

Figure 2.3: Example of graph reductions – (a) Relative neighborhood graph
RNG (b) Gabriel graph

Supowit presented the algorithm which can compute RNG in O(n log n) time.
RNG(G) = (V,ERNG) is subgraph of the graph with the property:

ERNG = {(u, v) ∈ E | ∀w max(d(u,w), d(v, w)) > d(u, v)}

Defined in this way, RNG, MST, LMST and GG of the unit disk graph G =

(V,E), which uses Euclidean metric as a weight function, have a following
property: MST (G) ⊆ LMST (G) ⊆ RNG(G) ⊆ GG(G) [Fleury 2009]. One
of the nice properties of RNG is that it can be computed locally. Each node
u equipped either with data of the position its neighbors or with knowledge
of its 2-hop neighborhood can compute its set of RNG links NRNG(u) locally:

NRNG(u) = {v, w ∈ N(u) ∧ v ∈ N(w) | d(u, v) < d(v, w) ∧ d(u,w) < d(v, w)}

In this way node u can calculate set of its RNG neighbors NRNG(u) visiting
every triangle which it is part of and eliminating the links with to the nodes
which does not satisfy given condition. Less formally defined, in every triangle
which contains node u the link with the highest weight is eliminated.

Another nice and useful property of RNG is the possibility to choose the
metric that we want to use i.e. weight function can be defined using the value
or the property which is of our interest, for example it can be the strength of
signal, quality of link, probability of receiving the message, the only constraint
is that weight function needs to be symmetric: d(u, v) = d(v, u).

Because of its good properties RNG can be found in many different ap-
plications. XTC algorithm [Wattenhofer 2004], X topology control - where X
means exotic, exceptional, extraterrestrial, is also using RNG algorithm (as
proven in [Santi 2005]). Another example of modification of RNG algorithm
is found in [Khadar 2009] where the authors use RNG algorithm with received

2.4. Topology control 21

signal strength indicator RSSI as a weight function. Since RSSI can be differ-
ent on in each of the nodes they are choosing one value (smaller) to serve as
the weight function. The algorithm is slightly modified in the sense that the
authors before the application of RNG reduction apply primary filter remov-
ing all the links which have weight function (RSSI) smaller than given filter
value. In this way they are relaxing computation of RNG for each node but
with the risk of loosing the connectivity in case of using strict filter – if the
filter value is too high the graph will be disconnected before the application
of RNG.

2.4.2 Energy concerns in topology control

Energy efficiency is one of the major concerns in topology control, and in
wireless sensor networks in general, taking into account limited power supply
[Ephremides 2002]. There are many papers claiming energy efficiency in the
algorithms that they are presenting. However our goal is not energy efficiency
itself but to focus on the problem of the limited power supply (battery) and
when we reach the critical state, near the end of functioning of the battery,
to react properly. To the best of our knowledge there are not many scientific
papers that treat this problem in the same way.

In [L.Sichitiu 2005] authors are investigating the behavior of wireless sensor
networks when using batteries with different levels and how can they improve
overall performance of the network assigning different battery levels to differ-
ent nodes. Similar problem is examined in [Long 2009] where the authors are
presenting algorithm for battery allocation for optimization of the lifetime of
the network with given cost constraints. Result is assignment of the different
set of battery packs (with different capacities) to the different sets of nodes
with significantly extended network lifetime.

Our idea differs from the ideas in these papers in the sense that we are
trying to work with the sensor nodes the way they are, without trying re-
allocate batteries or to assign them different levels. Using the same idea as
[Ravindranath 2010], in which authors are proposing usage of the sensors, like
accelerometer, magnetic compasses, and gyroscopes, on the wireless devices -
smart phones and tablets - to retrieve so called sensor hints which help them
to improve network protocols. Our idea is to detect possibilities of the sensor
nodes which can then help us formulate our algorithm and apply appropriate.
Using the battery level which can be detected on the sensor nodes, that we
are using, we are able to define RNG based topology control algorithm.

22 Chapter 2. State of the art

2.5 Neighborhood discovery and network mo-
bility

Mobility is one of the important properties of wireless sensor networks. Sensor
nodes in wireless sensor networks can have the mobility as one of the inherent
properties, as it is case with sensor nodes attached to the animals with the
purpose to track animals’ habits and their natural habitat [WASP]. In this
case mobility pattern is very often hard to estimate and protocols built upon
this problem must take into account possible losses of connectivity or delays in
the transmission of messages. Other possibility would include mobile agents
(robots) which may have given mobile pattern to follow or even used (con-
trolled) to improve some of the parameters in the WSN [Loscrì 2010]. In this
case overall energy efficiency of transmission can be significantly augmented
using controlled mobility and smart placement of nodes related to the routing
path.

Due to the specific nature of mobile networks some of the characteristic
mechanisms used in static wireless sensor networks need to be redefined and
adapted to the specific types of the mobility of the nodes. We are specially
interested in the functioning of the neighborhood discovery under the assump-
tion that nodes are mobile.

Neighborhood discovery or HELLO protocol as explained in [Moy 1994]
functions in similar way as given in Section 2.3.2. Neighborhood discovery, as
described in [Moy 1994], assumes fixed rate for the frequency of the HELLO
messages. While this can be true for the static networks in case of the mobile
networks this assumption is not adequate since it is more natural to assume
that the nodes which are moving faster are also changing their neighbors faster
thus they need to update their neighborhood table more often and since they
are gaining and loosing their neighbors more often it is logical to assume that
they need to send HELLO messages at a higher rate. In this case when we
speak about mobility, we think about relative mobility i.e. mobility of the
sensor node referring to the other sensor nodes. For example if we have a fleet
of the nodes which are moving together at some fixed speed then they are in
relative sense static because each node always "sees" the same nodes in its
neighborhood.

In [Troel 2004] assuming that there is a knowledge of relative speed be-
tween nodes V and threshold distance in communication area aR such that
a < 1 is given the optimal value for the frequency of HELLO messages:

fopt =
2V

aR

Connection between mobility and neighborhood discovery is made through

2.5. Neighborhood discovery and network mobility 23

the adaptation of the rate of sending of HELLOmessages [Li 2011, Ingelrest 2007].
In [Ingelrest 2007] authors are proposing turnover based adaptive HELLO pro-
tocol (TAP). The main problem is to find appropriate frequency for HELLO
messages in the mobile network. Starting from the same intuition explained
in previous paragraph, the authors define turnover which presents differ-
ence in the neighborhood table in two successive transmits of HELLO mes-
sages. Using result of the existence of optimal frequency of HELLO messages
[Troel 2004] they numerically calculate optimal turnover. This optimal value
for the turnover is then used to adapt the current frequency of HELLO mes-
sages. In this way each node responds to its mobility, visioned through the
change of neighborhood table (turnover), with appropriate change of frequency
of HELLO messages. Using the same premises authors are defining auto re-
gressive hello protocol (ARH) [Li 2011] in which each node predicts its own
position using auto regression based mobility model. Following the network
dynamics ARH is evolving and adapts itself to the optimal state using infor-
mation gathered locally. ARH is compared to the TAP and authors show that
it has the same performance in neighborhood discovery at a reduced rate of
HELLO messages but with the cost of additional awareness of the location.

For a good performance of TAP algorithm accuracy of neighborhood table
is important factor meaning that each node needs to remove entries in neigh-
borhood table which are not valid. Neighborhood lifetime algorithm (NLA)
[Ahmad Kassem 2010] performs alongside with TAP and it adapts refreshing
rate of neighborhood table entries thus improving the accuracy of neighbor-
hood table and the performance of TAP algorithm.

In [McGlynn 2001] authors are considering static network and aim at min-
imization of overall energy consumption. In their analysis they are using
birthday paradox (probability that two persons with the same birthday are in
the same place) to determine specific time slots in which they are going to put
node in one of the three different states: transmit, listen or idle with chosen
probability. After this step probabilistic round-robin is applied maximizing
the number of discovered links.

In [Cohen 2011] the distinction is made between initial and continuous
neighborhood discovery. Initial neighborhood discovery is applied when the
sensor is unaware of its immediate environment, while the continuous neigh-
borhood discovery is performed when the node is already aware of the neigh-
borhood. Initial neighborhood discovery needs to be done by each sensor
separately while continuous discovery can be applied as joint task of the seg-
ment of the neighborhood, and not each sensor. This joint task allows single
node to spend more time in sleep mode and relies to the part of its neigh-
borhood which is currently in active state. In this way they can lower energy
consumption with high probability that new node is going to be properly dis-

24 Chapter 2. State of the art

covered. The algorithm guarantees that new node is going to be discovered
in given time slot with requested probability,

2.6 Experiments with scalable networks

Large scale testbeds, previously mentioned (Section 2.6), are very good tool
for practical implementation of the protocols for the wireless sensor network.
However, these testbeds can not be used instantly and the user usually de-
pends on the technology used to build this kind of testbed (sensor nodes) and
topology of the testbed, which is usually fixed not allowing to many param-
eters to change. Another approach is specific type of the experiment called
emulation which tries to combine the best of the simulation and experimen-
tation with the real hardware.

Emulation of large scale networks has been studied in a variety of contexts
[Canonico 2007], [Maier 2007], [Grau 2009]. In the area of emulation of large
scale wireless sensor networks few different types of approaches are proposed.
Main aim in all approaches is to overcome deficiencies of simple simulation
either with environment emulation - in which the characteristics of the real
nodes are built-in and executed in simulator - or using network emulation
- in which each node communicates with real node in order to obtain more
accurate results.

Object-oriented representation of sensors, communication channels and
physical media (mobility model, power model, etc) has been used in J-Sim
[Sobeih 2006]. In this approach, application specific models are developed in
object-oriented fashion using subclasses within simulation framework. Usage
of FPGA based DSP engine with almost any wireless device (RF node), is
presented in [Judd 2005]. It provides good results on the higher level perfor-
mance in real networks but it lacks precision on the hardware (lower) level.
It is proven that using this kind of emulator good results can be obtained in
development and evaluation of wireless protocols.

In their work [Ke 2000] authors are using combination of the simulation
and the real sensors. They have added three modules (real time scheduler,
network objects and tap agents) to ns-2 simulator to achieve better cohesion
with the hardware and to better simulate hardware on the ns-2 simulator.
Two real machines are attached to the endpoints of the network producing
real network traffic and running the algorithms. The traffic from the real
machines are then transfered to the ns-2 server using added modules to the
nodes which are being emulated in ns-2. Using this system good results are
obtained for the emulation of 10 - 120 mobile nodes with the problem that it
cannot follow the experiments in the real time.

2.6. Experiments with scalable networks 25

When using word emulation we have in mind completely different concept.
The idea that we propose is the usage of small wireless sensor network, of up
to 50 sensor nodes, which is used iteratively thus emulating behavior of the
real sensor network. Other big difference in our setup is that we choose the
source node and its neighborhood while the destination is virtual and routing
algorithm, for example, is executed in iterative steps each time recalculating
new position of the destination (more about it in Chapter 5).

Chapter 3

Topology control using sensor
hardware

Contents
3.1 Introduction . 27

3.2 Making the sensors aware of their power supply . . . 29

3.3 Topology control Algorithm based on battery level . 31

3.4 Experimental results 37

3.5 Conclusion . 43

The work presented in this chapter shares the same idea as the work pre-
sented in [Ravindranath 2011, Ravindranath 2010] but has the novelty to ap-
ply it to topology control in wireless sensor networks. In these papers the
authors present the usage of the sensors (gyroscopes, magnetic sensors, ac-
celerometers) on the wireless devices, smart phones and tablet devices, in or-
der to get some additional data, called external sensor hints, which can then
further help them to improve wireless network protocols that run on these de-
vices. In our work we have fixed our platform to WSN430 sensor nodes and,
having the same idea, used sensor specific data to improve topology control
algorithm for wireless sensor networks.

3.1 Introduction

As defined in Section 2.4, topology control is a mechanism that allows logically
removing ’bad’ links to favor some other ones regarding some parameters. We
chose to use hardware characteristics to provide a topology control in which
nodes with low battery level do not hold an important role in the network
connectivity.

Hardware which used for building wireless sensor networks (WSN) usually
consists of few different sensors, depending on the usage of WSN – as an ex-
ample this can be temperature or humidity sensors which can detect different
types of units connected with environmental parameters, microphones – for

28 Chapter 3. Topology control using sensor hardware

the detection of level of noise, different types of proximity sensors or some
types of seismic sensors in special of wireless sensor networks for structural
health monitoring or when gathering characteristics of the ground. Second
important part is processing unit, which is usually microcontroller with good
performance/energy ratio such as Texas Instruments MSP430 series or Atmel’s
Crossbow series. Third part is communication unit which allows sensors to
communicate between themselves, most usual radio circuits used are CC1100
series which are low power radio transceivers working under the frequency of
1GHz and CC2420 which are 2.4GHz radio transceivers compliant with IEEE
802.15.4 (ZigBee ready).

These kinds of systems are designed with the intent to be deployed on
places which are hardly accessible, so the main idea is to deploy sensors once
and then to use them for a long period of time, and to leave them to recon-
figure themselves and gather the data. Such devices, in the absence of the
uninterruptible power supply, are usually powered with batteries. This makes
them even more challenging to work with, because all the algorithms designed
for this kind of hardware also must take into account energy as one of the
primary goals in optimizations of designed algorithms in order to allow longer
functioning of these devices and networks built on them.

Usage of batteries can input also another types of errors which cannot
be noticed in wired networks with uninterruptible power supply. Peaks in
the usage of microcontrollers or sensor units may cause malfunctioning of
the whole unit which can then cause different types of unwanted behaviors
such as sudden restarts of the units or problems with the access to specific
part of the units (radio communication circuitry or some of the sensors).
Our experiments with WSN430 sensor nodes, which are the building part of
the SensLAB platform [Senslab] and which are extensively used for practical
experiments with wireless sensor networks, have shown that discharge of the
battery supply of these units can cause two types of errors. The first one,
less problematic, is in case when battery is close to the discharge and sensor
stops communication with the others still allowing the usage of processing
unit (microcontroller) until battery completely depletes. The second type of
error is more malignant, on certain levels of battery it was noticed that sensor
starts to jam the rest of the network using radio communication unit more
extensively and sending data packages even when it is not supposed to thus
causing jams in the network.

These issues led us to the direction in which we wanted to create topol-
ogy of the network which will be less prone to this kind of errors.
It means not just specific topology of the sensors but also certain level of the
smartness which each sensor needed to have in order to apply certain type of
topology control which will then in conjunction with the smartness of sensors

3.2. Making the sensors aware of their power supply 29

eliminate or at least diminish this kind of problem. The problem was two
layered (i) make the sensors smarter and allow them to know the state of
their power supply and (ii) use these smarter sensors with specially designed
topology control to have effects of battery depletion minimized i.e. to remove
from the network the sensors which can cause malfunctioning and at the same
time to maintain connectivity in the network or to localize the part of the
network which needs to be reconfigured due to the loss of connectivity.

3.2 Making the sensors aware of their power
supply

In our work we use WSN430 platform [WSN430] which allows us to use
hardware specific parts in order to make the sensors smarter.

3.2.1 Using analog-digital converter input of microcon-
troller

Circuitry of the WSN430 is conceded in such a way that positive connector of
the Lithium Ion (Li Ion) battery used as power supply is connected through
the diode to the ADC2 input of the MSP430 microcontroller used (as shown
on Figure 3.1). This kind of architecture allows us to easily use analog input
of the microcontroller and digitalizing it get the value of the current state of
the power supply.

Figure 3.1: Part of the schematics of the WSN430 sensor node, showing con-
nection between battery input and A/D converter input of the microcontroller

As an idea this approach was promising but the real issue was to get
precise and accurate results. This was due to the usage of the battery –

30 Chapter 3. Topology control using sensor hardware

the same one which we are trying to evaluate – to get reference voltages for
A/D conversion. In this way we were getting highly inaccurate and imprecise
results which we could not use further to build sensor smartness based on this
kind of values. Figure 3.2 shows fluctuations of the voltages obtained from
the A/D converter pin of the MSP430 microcontroller. On the x-axis is the
number of the samples which were taken periodically each 500 ms, and on
the y-axis is the value captured which presents battery voltage diminished
for the drop of the voltage on the diode D7 (Figure 3.2). From these two
Figures (3.2(a) and 3.2(b)) we can see the difference in the reading of ADC2
pin (Figure 3.1) in two cases, with no external power supply attached when
battery is discharging (Figure 3.2(a)) and with power supply attached when
battery is charging (Figure 3.2(b)).

 1550

 1600

 1650

 1700

 1750

 1800

 1850

 1900

 0 1000 2000 3000 4000 5000 6000 7000 8000 9000

Battery discharging

(a) Discharging of the battery

 1300

 1400

 1500

 1600

 1700

 1800

 1900

 2000

 0 1000 2000 3000 4000 5000 6000 7000 8000

Charging Battery

(b) Charging of the battery

Figure 3.2: Samples captured at the input 2 of A/D converter of the micro-
controller

3.2.2 Supply voltage supervisor

Microcontrollers in the MSP430x series are equipped with circuitry called
Supply Voltage Supervisor – SVS. This part of microcontroller follows voltage
level of the power supply of the microcontroller and gives user information
when power supply drops under fixed voltage level. SVS can detect 16 discreet
voltage levels ranging from 3.7V to 1.9V (See Table 3.1).

In this way we can set certain voltage level to be tracked in our program.
When battery drops bellow this voltage SVS will raise the bit in its register
and we will have the information that battery has dropped bellow the voltage
level that we have set up. There few ways in which SVS can react, it can
trigger power-on reset or just set pin SVS to one. The second solution is more
appropriate to the problem that we are trying to address, so we just set up

3.3. Topology control Algorithm based on battery level 31

VLDx bits Voltage level
0000 SVS is off
0001 1.9V
0010 2.1V
0011 2.2V
0100 2.3V
0101 2.4V
0110 2.5V
0111 2.65V
1000 2.8V
1001 2.9V
1010 3.05V
1011 3.2V
1100 3.35V
1101 3.5V
1110 3.7V
1111 Voltage compared to 1.2V

Table 3.1: Values of the SVS register and voltage levels

simple function which periodically, with period of few seconds, track SVS pin
and in case that it is raised sends this information further on to be used in
topology control algorithm.

3.3 Topology control Algorithm based on bat-
tery level

The main idea is that nodes that are running out of energy should be given
less importance and appear as leaves in the resulting graph. In this way, when
their battery is exhausted, the network will not be disconnected and we avoid
costly graph re-computing.

Nevertheless, the battery level can not be used directly by the algorithm
since battery level is related to a node and RNG graph uses metrics related
to links. Value assigned to link uv between nodes u and v should be the same
from the point of view of u and from the point of view of v to avoid links to be
removed improperly and network disconnections. Therefore, we first assign a
value to edges based on node battery levels.

32 Chapter 3. Topology control using sensor hardware

3.3.1 Models and preliminaries

The network is modeled as a graph G = (V,E) where V is the set of sensors
and E is the set of edges. uv ∈ E if and only if there exists a radio link
between sensors u and v, i.e. they are in communication range of each other.
We denote by N(u) the set of physical neighbors of node u, i.e. the set of
nodes v such that uv ∈ E. Let δ(u) = |N(u)| be the cardinality of N(u),
also called the degree of node u. We also define NRNG(u) ⊂ N(u) the set of
RNG neighbors of node u. Every node is aware of its battery level, denoted
as BL(u) for node u. We consider that every node u has a unique identifier.
We denote the identifier of node u as ID(u).

We assume that a node u is aware of every edge within its neighborhood,
i.e. node u knows every edge vw such that v 6= w and such that v ∈ {u ∪
N(u)} ∧ {w ∈ N(u)}. This can be achieved by two ways: either nodes are
aware of their positions and of the one of their neighbors (nodes broadcast
their position in HELLO messages) or nodes are aware of their 2-neighborhood
(nodes broadcast their neighbor list in HELLO messages). If nodes are aware
of their positions, they can easily compute the edge length. If they are not, we
assume that node u can estimate the distance between itself and its neighbor
v by the using some of the link quality estimators such as RSSI. RSSI is
not always inversely proportional to the distance – which should be its main
advantage – but it gives an indication on the link quality. Thus if the link is
short and it has a low RSSI, that means that the quality is poor and equivalent
to a very distant node.

3.3.2 Making Connection from Voltage Level to RNG
Weight Function

In order to make a connection between battery level of two sensor nodes on
each link, we introduce a value called power factor. Power factor of link uv,
noted PF (u, v) is determined using the voltage level of the two nodes on the
link and is such that PF ∈ {0, 1, 2}. We consider a battery level threshold
τ . If the battery level of a sensor node is lower than this threshold, the node
is considered as a critical node. Power Factor value is assigned to every edge
by using Algorithm 1 that takes as an input value battery level threshold τ

and battery level for all nodes. According to these values, Algorithm 1 divides
sensor nodes into two sets: (i) normal battery state nodes, with battery level
higher than τ , and (ii) critical battery state nodes, with battery level lower
than τ . Then depending on the battery state of each sensor node on the link,
the power factor is assigned to each link as follows:

• power factor 0 – if both nodes are in normal battery state,

3.3. Topology control Algorithm based on battery level 33

(1, 45, 1, 13)

(1, 57, 3, 7)

(0, 47, 1, 3)

(0, 54, 2, 15)

(1, 27, 1, 19)

(1, 57, 1,17)

(0, 46, 1, 11)

(1, 39, 1, 3)

(0, 63, 1, 9)

(1, 38, 2, 8)

(1, 45, 2, 12)

(2, 73, 4,10)

(2, 40, 1, 5)

(0, 69, 2, 10)

(1, 91, 4, 8)

(2, 39, 1,15)

(1, 64, 2, 16)

(1, 48, 2, 6)

b

���
���
���

���
���
��� ��

��
��
��

��
��
��

��
��
��

����
����
����
����

����
����
����
����

�����
�����
�����

�����
�����
�����

��
��
��

��
��
��

�����
�����
�����
�����

����
����
����

����
����
����

c

a

d

f

i j

h
g

e

���
���
���
���

Figure 3.3: Example for PF computation. Blue nodes have a high battery
level. Red nodes have a low battery level.

• power factor 1 – if exactly one of the nodes is in critical battery state,

• power factor 2 – if both nodes are in critical battery state.

Algorithm 1 is run on node u. It assumes that node u is aware of the
battery level of each of its neighbors and knows whether there exist a link
between the two of them. This information can be achieved through the use
of Hello messages in which every node piggybacks its battery level and its
position if available otherwise its neighborhood table. Based on this, node
u is able to identify any triangle within its neighborhood and then to assign
power factor value on every of these links.

To illustrate the Power Factor computation, let us consider Figure 3.3.
Nodes that appear in blue are nodes which battery level is higher than τ

while red nodes are the ones which battery level is lower than τ . On this
figure, link ad gets a Power Factor equal to 0 since both nodes a and b have
a high battery level. Link gh gets a Power Factor of 2 since it connects two
nodes with a low battery level. Link be connects two nodes with different
battery levels and thus gets the Power Factor value 1.

3.3.3 Algorithm for topology control using power factor

Once Power Factor is computed on every link, RNG computation can be
performed. Nevertheless, since Power Factor only returns 3 different values,
in a triangle, several edges could hold the same Power Factor value. Thus
we need to use a second metric that allows nodes to choose between the

34 Chapter 3. Topology control using sensor hardware

Algorithm 1 Calculate Power Factor
1: for all v ∈ N(u) | u 6= v do
2: if (BL(u) > τ) ∧ (BL(v) > τ) then
3: PF (u, v)← 0

4: else if (BL(u) > τ)∧ (BL(v) 6 τ)∨ (BL(u) 6 τ)∧ (BL(v) > τ) then
5: PF (u, v)← 1

6: else
7: PF (u, v)← 2

8: for all w ∈ N(u) ∩N(v) | u 6= v 6= w do
9: if (BL(w) > τ) ∧ (BL(v) > τ) then
10: PF (w, v)← 0

11: else if (BL(w) > τ)∧(BL(v) 6 τ)∨(BL(w) 6 τ)∧(BL(v) > τ) then
12: PF (w, v)← 1

13: else
14: PF (w, v)← 2

nodes in such a way that every node of the triangle take the same decision
regarding edge removal to avoid network disconnections. To do so, we apply
the traditional RNG metrics, i.e. Euclidean distance between nodes and then,
to break any potential additional ties, the node identifiers. To ensure that
every node computes the same value for a link, we first compute the difference
between the identifiers of the two end nodes. Nevertheless, if node with ID 2

is connected to nodes with ID 1 and 3, the two differences of ID remains the
same. So, in such a case, we consider afterwards the addition of IDs. Using
both difference and addition of the nodes IDs, we provide that every node
computes the same values for a link and that two links in a triangle can not
have the same values since nodes IDs are unique and we can not have at the
same result for both addition and difference for two different links in a same
triangle. Figure 3.3 shows the different values considered for every link. Every
link holds a set of values (PF, d, ID−, ID+) where PF is the Power Factor,
d is the Euclidean length of edge, ID− is the difference between ID of end
nodes and ID+ is the addition of ID of end nodes. As ID we have considered
the rank of the letter in the alphabet. For instance, ID(a) = 1, ID(b) = 2,
etc. . . .

We define ≺ as a binary total order such that uv ≺ uw if and only if

• PF (uv) < PF (uw) or

• PF (uv) = PF (uw) ∧ d(u, v) < d(u,w) or

• PF (uv) = PF (uw) ∧ d(u, v) = d(u,w) ∧ |ID(u) − ID(v)| < |ID(u) −
ID(w)|.

3.3. Topology control Algorithm based on battery level 35

• PF (uv) = PF (uw) ∧ d(u, v) = d(u,w) ∧ |ID(u) − ID(v)| = |ID(u) −
ID(w)| ∧ |ID(u) + ID(v)| < |ID(u) + ID(w)|.

(0, 47, 1, 3)

(0, 54, 2, 15)

(1, 27, 1, 19)

(1, 57, 1,17)

(2, 39, 1, 15)

(1, 39, 1, 3)

(1, 38, 2, 8)

(1, 45, 2, 12)

(1, 45, 1, 13)

(2, 40, 1, 5)

b

���
���
���

���
���
��� ��

��
��
��

��
��
��

��
��
��

����
����
����
����

����
����
����
����

�����
�����
�����

�����
�����
�����

��
��
��

��
��
��

�����
�����
�����
�����

����
����
����

����
����
����

a

d

f

i j

h
g

e

c

���
���
���
���

(a) Distance based RNG

(0, 63, 1, 9)

(1, 39, 1, 3)

(0, 46, 1, 11)

(1, 57, 1,17)

(1, 27, 1, 19)

(0, 54, 2, 15)

(0, 47, 1, 3)
(1, 48, 1, 13)

(1, 57, 3, 7)

(1, 38, 2, 8)

c�����
�����
�����
�����

��
��
��

��
��
��

�����
�����
�����

�����
�����
�����

����
����
����
����

����
����
����
����

��
��
��

��
��
��

��
��
��
��

���
���
���

���
���
���

���
���
���
���

b

e
g

h

ji

f

d

a

����
����
����

����
����
����

(b) Battery level based RNG

Figure 3.4: Example for RNG computation. Blue nodes have a high battery
level. Red nodes have a low battery level.

Yet, the edge removal runs as described by Algorithm 2. We assume that
node u is aware of the length of every edge within its neighborhood, either
because nodes are aware of their positions and broadcasts it in Hello messages
to their neighbors, or because they are able to estimate it based on RSSI for
instance. Every node considers every triangle within its neighborhood (like
triangles fig, igh or efg on Fig. 3.4(b)) and determines what edge to logically
remove in the RNG. To do so, it first compares the PF values of nodes. If

36 Chapter 3. Topology control using sensor hardware

one of edges has a lower PF value than other ones, it is removed (e.g. link gh
is removed in triangle igh on Figure 3.4(b)).

If two edges have the same lower PF value or than every edge has the
same PF value, the longer one is removed. For instance, in triangle fig on
Figure 3.4(b), the longer edge is fi and should be removed in a traditional
RNG algorithm. But f has a PF value of 0 and thus it is kept. Instead, we
remove edge ig which has the same PF value than edge fg but is longer.

If edges hold the same PF value and are of the same length, ties are broken
by considering the difference between identifiers of two nodes on the end of
each edge. The edge with the largest ID difference is removed. This is for
instance the case in triangle efg on Figure 3.4(b) where edges eg and fg hold
the same PF value and have the same length. Their ID is used to differentiate
them. Since |(ID(f)− ID(g)| < |(ID(e)− ID(g)|, link eg is removed.

Algorithm 2 Calculate RNG
1: NRNG(u)← N(u)

2: CalculatePowerFactor(u)

3: {Node u computes PF factor of every link within its neighborhood.}
4: for all v, w ∈ N(u) do
5: if uv ≺ vw ≺ uw or vw ≺ uv ≺ uw then
6: NRNG ← NRNG(u) \ {w} {Link uw is removed from the RNG.}
7: else
8: if uw ≺ vw ≺ uv or vw ≺ uw ≺ uv then
9: NRNG ← NRNG(u) \ {v}
10: {Link uv is removed from the RNG.}
11: else
12: {Link vw will be removed from the RNG.}
13: Return NRNG(u)

Execution of this algorithm is distributed in the sense that each node
is calculating its own set of RNG neighbors, according to given condition
and knowing its neighborhood. As a result, we obtain a connected graph
in which weaker edges have been removed and where disappearance of weak
nodes has a minimal impact of the graph connectivity. Figure 3.4 compares
the graph obtained after topology control when applying distance-based RNG
(Fig. 3.4(a)) and our battery level based RNG (Fig. 3.4(b)). As we can see,
in our approach, critical nodes appear either as leaves in the graph (nodes
c, g, h, j) or in a redundant path (node c). Yet, if one of these nodes fail, the
network is not impacted. At contrary, in the traditional RNG, there is no
battery level concern and critical nodes belong to principal paths. If node b,
c or g fails, the network is disconnected.

3.4. Experimental results 37

3.4 Experimental results

3.4.1 Experimentation Set Up

Experiments were run on the Lille SensLAB platform. We selected a 5 × 6-
node grid via the SensLAB interface spread as depicted by Figure 3.5. In the
SensLAB Lille platform nodes are placed in grid on the distance of d = 60cm

between each other. We chose a subset of nodes on the grid leaving out some
of the nodes such that we can see what happens with physically longer links
and how the algorithm is applied to them.

We use critical voltage level, τ = 3.7V , which corresponds to value 1110 in
the SVS register, i.e. we consider that a node has reached a low battery level
as soon as the microcontroller sends an information that the critical voltage
is reached. Experiments are run 12 hour long, during this time all sensors are
loaded with same program which runs RNG algorithm 2, calculating RNG
neighbors in distributed way, and recording statistics – neighbor candidates,
RNG neighbors and the parameters for each link (power factor, RSSI value,
IDs). For the implementation of our algorithm we use CSMA/CA MAC layer
implementation provided by the SensTools project1 and FreeRTOS port for
MSP430 microcontrolers.

Our solution is compared to [Khadar 2009] from the literature. As detailed
in Section 2.4, in [Khadar 2009], a RNG is built based on the RSSI on links
after a first filter on neighborhood. Our algorithm also uses the RSSI as a
metric to estimate at the same time distance and link quality as claimed in
Section 2.4 but only as a secondary weight. We use the Power Factor metric as
primary one. We do not apply the filter used in [Khadar 2009] since we assume
that these bad links will be automatically removed in the RNG computation
except if the removal of these links disconnects the network.

Figure 3.6 shows the edges connecting node 46 to its neighbors after . For
the sake of visibility, we have represented only these links.

Figure 3.7 shows communication links after a topology control performed
with our solution (Fig. 3.7(a)) and with RSSI-based RNG with filters (Fig. 3.7(b))
like in [Khadar 2009]. At these pictures black edges are RNG edges of the node
46, and yellow edges are RNG edges of the rest of the nodes, ensuring the con-
nectivity between node 46 and the rest of the nodes in its neighborhood. At
this step, all nodes have a high battery level and thus both graphs are equiv-
alent. We are running test program on the nodes making them exhaust the
battery, this program is just made for the nodes to exchange messages and
faster discharge batteries thus to speed up the experiment.

Figure 3.8 shows the final topology control after some time, when some of
1http://senstools.gforge.inria.fr/

38 Chapter 3. Topology control using sensor hardware

85 84 83 82 81

66676970

6162636465

5657585960

48

50 49 48 47 46

95

94 93 92 91

d d d d

2d

d

d

3d

2d

Figure 3.5: Placement of the nodes on which the experiment is run. In
SensLAB, d = 60cm.

85 84 83 82 81

66676970

6162636465

5657585960

68

50 49 48 47 46

-72

-75

-91

-74 -69

-81

-79

-79

-68

-70

-68

95 94 93 92 91

-86

Figure 3.6: Initial topology of graph.

3.4. Experimental results 39

85 84 83 82 81

66676970

6162636465

5657585960

68

50 49 48 47 46

-72

-69
-68

-68

95 94 93 92 91

(a) Battery-level based RNG

85 84 83 82 81

66676970

6162636465

5657585960

68

50 49 48 47 46

-72

-69
-68

-68

95 94 93 92 91

(b) RSSI-based RNG + filters

Figure 3.7: Topology after topology control.

the nodes exhausted their batteries and brought them to the critical state. We
can see that with our solution (Fig. 3.8(a)), the network is still connected and
that weak nodes appear as leaves in the reduced graph. We can also see that
the network dynamically reorganized itself: link 46 − 47 − 48, which allows
node 46 to reach node 48, has been changed for link 46− 59− 49− 48 when
the battery of node 48 has dropped under critical level. Furthermore, if we
consider complete discharge of the battery of the node 48 in this case if we
are using RSSI-based RNG then we will lose of connectivity between nodes
46 and 49 while battery-level based RNG is preserving connectivity between
those two nodes.

3.4.2 Node degree and connectivity preservation using 3
different RNG algorithms

In this section we compare results obtained by our battery driven RNG algo-
rithm with two RNG algorithms presented in [Khadar 2009]. On the figures
results marked with BatRNG presents results using battery driven RNG al-
gorithm, RSSI-RNG presents algorithm which is based solely on RSSI as the
weight function and F-RSSI-RNG present algorithm which as a first step uses
primary filter which filters "bad nodes", i.e. nodes which have received mes-

40 Chapter 3. Topology control using sensor hardware

85 84 83 82 81

66676970

6162636465

5657585960

68

50 49 48 47 46

-72

-69
-68

-68

95 94 93 92 91

(a) Battery-level based RNG

85 84 83 82 81

66676970

6162636465

5657585960

68

50 49 48 47 46

-72

-69
-68

-68

95 94 93 92 91

(b) RSSI-based RNG + filters

Figure 3.8: Topology after topology control after nodes have exhausted their
battery.

3.4. Experimental results 41

sage with signal strength lower than some fixed value, in this way number of
possible RNG neighbors for each node is additionally limited. In our experi-
ments two limits for RSSI value, 70dBm and 80 dBM are used.

Figure 3.9 shows average node degree using different types of RNG algo-
rithms in three distinct time moments, i in the beginning of experiment when
all nodes approximately same battery level, ii at the moment when some of the
nodes (7 - 12 nodes) have exhausted their battery and reached τ = 3.7V and
iii at the moment when the most of the nodes have exhausted their battery
(more than 20 nodes). The lowest node degree is obtained by the algorithm
F-RSSI-RNG, which can be explained with the usage of additional filter be-
fore applying of the RNG algorithm. It has to be noted that the average value
includes nodes which have 0 neighbor after application of the primary filter
and which are basically disconnected from the rest of the network, producing
disconnected network. If the value for the primary filter is too high number
of disconnected grows, leaving the graph disconnected before application of
RNG algorithm. BatRNG and RSSI-RNG at the time moments 1 and 3 have
almost the same values for node degree which can be explained with almost
same battery level for the majority of the nodes in these time moments. In
this case the algorithm which we propose, BatRNG, uses as the second metric
RSSI value which in this case dominates leading to the similar results to RSSI-
RNG algorithm. Time moment 2 is specific since the change can be noticed
only in the BatRNG algorithm, in this moment the graph reconfigures itself
according to our weight function and RNG algorithm leaving the nodes with
higher battery with more neighbors and nodes with lower battery level with
only one or just two neighbors (only in the case when node with low battery
level can not reach the one with high battery level – in this case it chooses
the neighbor with low battery level and the best RSSI value).

Figure 3.10 shows average number of connected nodes during our experi-
ments. The first thing that we can notice is that number of connected nodes
is always lower than number used in experiments this is due to the hardware
problems of the SensLAB platform that we used. Some of the nodes which
have been used we unaccessible and we could not use them in the experiment
thus we have reduced number of connected nodes. Second thing to notice is
significantly lower number of connected nodes when using F-RSSI-RNG al-
gorithm, this can be explained with the average value which we obtained in
the experiments with both strict RSSI limit (70 dBm) and less strict RSSI
limit (80 dBm). In this figure we have 10 distinct time moments, first five
of them are with all nodes alive and we can see that there is practically no
change in the number of connected nodes. From the time moments 6 to 10 we
were looking what is happening when nodes are starting to lose their battery
power and to switch of from the network. We can see that the fastest drop in

42 Chapter 3. Topology control using sensor hardware

 0

 1

 2

 3

 4

 5

 6

1 2 3

N
o

d
e

 d
e

g
re

e

Events

Node degree in different RNG algorithms

BatRNG
RSSI-RNG

F-RSSI-RNG

Figure 3.9: Node degrees for different RNG algorithms

the number of connected nodes have F-RSSI-RNG algorithm which again can
be explained with primary filter which removes possible neighbors more strict
leaving more nodes without neighbors. We can also notice that BatRNG eval-
uates better than RSSI-RNG algorithm which can be explained with previous
reconfiguration of the graph due to the critical change in battery level.

 0

 5

 10

 15

 20

 25

 30

1 2 3 4 5 6 7 8 9 10

N
o

d
e

s

Time

Number of connected nodes using different RNG algorithms

BatRNG
RSSI-RNG

F-RSSI-RNG

Figure 3.10: Number of connected nodes during execution of different RNG
algorithms

3.5. Conclusion 43

3.5 Conclusion

In this chapter we proposed a topology control algorithm of wireless sensor
network based on RNG reduction aware of dynamic battery level of nodes.
As weight function we have introduced level of the battery through the power
factor which is calculated for each link of the starting graph. Our algorithm
favors the links in which at least one of the nodes have high battery level. In
this way the nodes which have low battery level appear in graph more often as
leafs or with more links but always with the nodes with higher battery level.
Reconfiguring the network in such a way helps in pertaining connectivity in
critical cases when node depletes its battery. For future works, it will be
interesting to study the behavior of algorithms in presence of traffic.

Possible advances and future work could take into account multiple bat-
tery levels reconfiguring the network on more levels. Also secondary weight
function (distance) used in this case is retrieved using the RSSI which used
together with power factor does not insure planarity of obtained structure, so
the future work could include additional conditions which would, along with
used weight function, guarantee planarity of the graph.

Chapter 4

Neighborhood discovery in mobile
wireless sensor networks

Contents
4.1 Introduction . 45

4.2 Theoretical analysis . 47

4.3 Algorithms . 58

4.4 Experimental results 61

4.5 Conclusion . 67

4.1 Introduction

Mobility is one of the important properties of wireless sensor networks. It
is not immanent to all wireless sensor networks but often it is seen as the
issue which has to be taken into account when designing specific solutions for
wireless sensor networks. There are many different approaches to the mobility
issue, some of them are trying to adapt networks to various mobility patterns,
some of them treat mobility as an inherent property to which everything has
to be adjusted and the others are trying to use mobility to improve other
properties of network (connectivity, routing) [Wang 2009, Loscrì 2010].

Nodes can loose some of their neighbors after a period of time for nu-
merous reasons: mobility, interferences, loss of power supply, duty cycling.
As shown in Section 2.3.2, neighborhood discovery depends on the mobility
of the nodes i.e. if nodes are mobile there is a probability [Ingelrest 2007]
that after a given period of time a node will discover certain neighbors and
at the same time it will loose some of the previous ones. To have accu-
rate and up to date neighborhood table, a node must check validity of the
elements periodically[Ahmad Kassem 2010] and adapt its HELLO Messages
frequency in order to give accurate information to its potential neighbors
[Ingelrest 2007]. The efficiency of table-driven protocols (e.g. routing, clus-
tering, activity scheduling) obviously relies on the accuracy of these tables.

46 Chapter 4. Neighborhood discovery in mobile networks

In a mobile environment, neighborhood tables are subject to changes, and in
this case, the accuracy depends on the frequency of HELLO messages. If this
frequency is too low, nodes may not be detected by their neighbors, leading
deprecated neighborhood tables, and protocol failures are likely to occur. On
the other hand, if the frequency is too high, neighborhood tables are up to
date, but then energy and bandwidth are wasted to the detriment of data
traffic.

Periodic sending of HELLO messages comes with a certain cost in en-
ergy. Although there exists an optimal frequency of HELLO messages for
a given speed of the nodes [Troel 2004] and good results [Ingelrest 2007] in
adaptation of frequency of HELLO messages in accordance with the number
of new neighbors that each node discovers during given period of time, there
is no result which would take into account all three values: speed, number
of new neighboring nodes and energy consumed. In this chapter we present
algorithms that are based both on the adaptation of frequency of HELLO
messages and on the minimization of the energy cost by range adjustment.
When we talk about the energy, we are not taking into account energy needed
for the nodes to move, we rather assume that mobility is inherent to the nodes.
We minimize overall energy consumption balancing the appropriate level of
transmission power and value of frequency of HELLO messages.

In this chapter, we introduce two algorithms that adapt both the HELLO
frequency and the range of nodes to provide them accurate neighborhood ta-
bles while minimizing the cost of the neighbor discovery. First algorithm is
based on the TAP algorithm from the literature [Ingelrest 2007]. It thus com-
putes a turnover based on the observation of changes in its neighborhood and
then proposes two variants to adapt the frequency and the range of nodes.
First variant adapts the HELLO frequency in a TAP-fashion. Second vari-
ant adapts the HELLO frequency through the computing of minimum cost.
Both variants then set the range accordingly based on optimal HELLO fre-
quency [Troel 2004]. Second algorithm tries to set at the same time HELLO
frequency and range based on theoretical analysis.

To summarize, main aim of this chapter is to present energy efficient
neighborhood discovery using mutual adaptation of transmission range and
frequency of HELLO messages. This goal is retrieved using the results of op-
timal HELLO frequency, turnover based approach and theoretical analysis on
the turnover and energy cost of sending of HELLO messages.

This chapter is organized as follows. First section (Section 4.2) presents a
theoretical analysis which allows to estimate the optimum turnover and the
optimal cost. This analysis is further used by algorithms. Then Section 4.3
details the different algorithms. Finally, simulation results are displayed in
Section 4.4.

4.2. Theoretical analysis 47

4.2 Theoretical analysis

4.2.1 Probable number of new neighbors to compute the
turnover

This analysis is used to find probable number of new neighbors in a given pe-
riod of time ∆t with certain assumptions imposed on the type of deployment
and the mobility of sensors. Even though it is constrained to a specific case,
with just one type of probability of placement of the sensors and the type of
mobility it serves us to roughly evaluate possible values as well as to get prob-
able outcome of algorithm and possible points for its further improvement.It
is inspired from [Ingelrest 2007] but extended to the case where nodes do not
have the same transmission range.

Preliminaries and notations

We suppose that nodes are randomly deployed using a Poisson Point Process
[Mališić 1989], with node positions which are independent and λ > 0, where
λ represents the mean number of nodes per surface unit. Each node u has
transmission range Ru such that 0 < Ru 6 Rmax where Rmax is the maximal
transmission range.

We differentiate two types of neighbors:

• bilateral neighbors – u and v are such that |uv| < min(Ru, Rv), in short
if node u is neighbor of v then v is also neighbor of u,

• unilateral neighbors – u is unilateral neighbor of v iff Rv < |uv| < Ru,
node v is neighbor of u but node u is not neighbor of v.

Every node moves at a constant speed V in a random direction. Position
of node u at moment t0 is given as u0 (respectively node v at moment t0
has position v0) and at moment t1 position is u1 (respectively v1). Distance
covered by a node during the time ∆t is given as ∆d = V ×∆t.

In our analysis, we are interested in the mean number of new neighbors
that node u meets during time interval ∆t. We focus on a typical node u. Let
Nbi(u)∆t be the number of new bilateral neighbors of node u and Nuni(u)∆t the
number of new unilateral neighbors of node u detected during the period ∆t.
Let v be a node at the distance d (d < Rmax) from node u at time t1 = t0 +∆t.
We note:

• P bi – the probability that node v is a new bilateral neighbor of node u

• P uni – the probability that node v is a new unilateral neighbor of node
u

48 Chapter 4. Neighborhood discovery in mobile networks

From this we can determine the average values of Nbi(u)∆t and Nuni(u)∆t:

E[Nbi] =

Rmax∫
Ru=0

Rmax∫
Rv=0

Ru∫
d=0

P (Ru)P (Rv)λπd× P bi(d,Ru, Rv)dddRudRv (4.1)

E[Nuni] =

Rmax∫
Ru=0

Rmax∫
Rv=0

Ru∫
d=0

P (Ru)P (Rv)λπd× P uni(d,Ru, Rv)dddRudRv (4.2)

where P (Ru) is probability that u has radius Ru and P (Rv) is probability that
v has radius Rv

Figure 4.1 illustrates our model in case when Ru < Rv. Circle Cu,Ru is
centered at the position of the node u with radius Ru. In this case, node v,
with radius Rv is a new neighbor if and only if v0 does not lie in the area
delimited by Cu0,Ru and if v1 lies in the area delimited by Cu1,Ru . The blue
dashed circle Cu1,∆d and the red dotted circle Cv1,∆d represent the possible
positions of the u0 and v0. Angles α and β are given as ∠−−−→u1, v1,

−−−→u1, u0 and
∠−−−→u1, v1,

−−−→v1, v0 respectively, and they represent the directions from which nodes
u and v come. In the worst case, that we consider, node direction is random
and thus α and β are uniformly distributed in [−π, π].

Computing the number of new bilateral neighbors E[Nbi]

We are interested in the probability that at time t0, u and v were either not
neighbors (|u0v0| > max(Ru, Rv)) or only unilateral neighbors (max(Ru, Rv) >

|u0v0| > min(Ru, Rv)). This means that we are interested in probability
P bi that given Ru, Rv and d, |u0v0| > min(Ru, Rv) knowing that |u1v1| ≤
min(Ru, Rv).
We make the distinction between two cases:

Case 1: Ru ≤ Rv We note P bi
Ru≤Rv the probability that v is a new bilateral

neighbor of u if Ru ≤ Rv; for this case P (Rv) = 1
Rmax

and P (Ru | Ru <

Rv) = Rv
Rmax

,

Case 2: Ru > Rv We note P bi
Ru>Rv

the probability that v is a new bilateral
neighbor of u if Ru > Rv; for this case P (Rv) = 1

Rmax
and P (Ru | Ru ≤

Rv) = Rmax−Rv
Rmax

.

4.2. Theoretical analysis 49

Cv1,∆d
Cu1,∆d

Cu1,Ru

u0

k

du1
v1

v0

Cu0,Rv

α

β

Figure 4.1: Global view. Circle Cu,Ru is centered at the position of the node
u with radius Ru. In this case, node v, with radius Rv is a new neighbor if
and only if v0 does not lie in the area delimited by Cu0,Ru and if v1 lies in the
area delimited by Cu1,Ru . The blue dashed circle Cu1,∆d and the red dotted
circle Cv1,∆d represent the possible positions of the u0 and v0.

50 Chapter 4. Neighborhood discovery in mobile networks

∆d ∆d

u1 v1d

l = d+ 2∆d

Cu1,∆d Cv1,∆d

Figure 4.2: Calculating dmin

From these two cases we have:

E[Nbi] =

Rmax∫
Ru=0

Rmax∫
Rv=0

Ru∫
d=0

P (Ru)P (Rv)λπd× P bi(d,Ru, Rv)dddRudRv

=

Rmax∫
Rv=0

Rv∫
Ru=0

Ru∫
d=0

Rv

Rmax

× 1

Rmax

× λπd× P bi
Ru≤Rv(d,Ru, Rv)dd(dRu)dRv

+

Rmax∫
Rv=0

Rmax∫
Ru=Rv

Ru∫
d=0

Rmax −Rv

Rmax

× 1

Rmax

× λπd× P bi
Ru>Rv(d,Ru, Rv)dd(dRu)dRv

(4.3)

Case 1: Ru ≤ Rv First, we note that if d ≥ Ru, P bi
Ru≤Rv(d) = 0 since v

is not a neighbor of u at a time t1. Next, we find that there exists a value
dmin < R such that, if d < dmin, nodes u and v were already neighbors at time
t0 regardless of α and β i.e. v cannot be a new neighbor of u. As illustrated
by Fig. 4.2, the longest distance l between u0 and v0 at time t0 is when both
node directions are opposite (for example when α = 0 and β = π). We have
l = 2∆d+ d, where ∆d = ∆t× V . For v to be a new neighbor of node u, we
need l > min(Ru, Rv), which leads to:

4.2. Theoretical analysis 51

u1

k

d

Cv1,∆d

∆d α

u0 v1

R

R

Figure 4.3: Calculating αmin

2∆d+ d > min(Ru, Rv)

⇔ dmin = 2∆d−min(Ru, Rv) (4.4)

Since, depending on the node speed, we may have 2∆d < min(Ru, Rv), we
finally get:

dmin = max(0, 2∆d−min(Ru, Rv)) (4.5)

Since we have Ru ≤ Rv,

dmin = max(0, 2∆d−Ru)

Using Eq.4.5 we have:

Pbi(d,Ru, Rv) =

π∫
−π
P bi
Ru≤Rv(d,Ru, α)dα if dmin < d < Ru

0 otherwise
(4.6)

where P bi
Ru≤Rv(d,Ru, α) is the probability that node v with radius Rv ≥ Ru at

distance d from u is a new bilateral neighbor of node u with radius Ru coming
from direction α, assuming that dmin < d < Ru.
Now, we can compute P bi

Ru≤Rv(d,Ru, α). For this purpose, we notice that, for
a given value of d such that dmin < d < Ru, there exists a value αmin such

52 Chapter 4. Neighborhood discovery in mobile networks

that, for α < αmin, node v was a bilateral neighbor of the node u at time
t0 regardless of its direction β, thus it cannot be a new neighbor. This is
illustrated on Figure 4.3. Indeed, for α < αmin, the whole circle Cv1,∆d lies
inside circle Cu0,Ru thus, for any direction that node v may had it was already
in the bilateral neighborhood of node u. As a result we have:

P bi
Ru≤Rv(d,Ru, α) = 0 if α < αmin

αmin is computed using Figure 4.3 knowing that with given d > dmin and
α < αmin then for any β (no matter the value which it takes) v was neighbor
of u at time t0.

For it, we introduce k such that k = |u0v1|, like illustrated on Figure 4.3.
According to Pythagore’s theorem, we can compute the value of k:

∆d2 − (∆d cos(π − α))2 = k2 − (d+ ∆d cos(π − α))

⇔ k2 = ∆d2 + d2 − 2d∆d cosα

⇔ k =
√

∆d2 + d2 − 2d∆d cosα (4.7)

For v to be a new bilateral neighbor of node u we need that |u0v0| >
min(Ru, Rv) for any β i.e. that the disks delimited by Cv1,∆d and Cu0,min(Ru,Rv)

overlap:

k −∆d > min(Ru, Rv)

⇔ k2 > (min(Ru, Rv))
2 + ∆d2 + 2∆d ·min(Ru, Rv)

⇔ d2 − 2d∆d cosα > (min(Ru, Rv))
2 + 2∆d ·min(Ru, Rv)

⇔ cosα <
d2 − (min(Ru, Rv))

2 − 2∆d ·min(Ru, Rv)

2d∆d

⇔ α > arccos(
d2 − (min(Ru, Rv))

2 − 2∆d ·min(Ru, Rv)

2d∆d
)

⇔ αmin = arccos(
d2 − (min(Ru, Rv))

2 − 2∆d ·min(Ru, Rv)

2d∆d
)

(4.8)

For any α, such that α > αmin, computing the probability P bi
Ru≤Rv(d,Ru, α)

amounts to computing the probability that node v is coming from the dotted
blue angular sector on Figure 4.4. Node v is a new neighbor of node u if and
only if β is such that |u0v1| > Ru i.e. such that v0 is outside of the circle
Cu0,Ru . In this case node v is a neighbor of u if and only if β− < β < β+,
where β− and β+ are the angles of the intersection points between Cu0,Ru and
Cv1,∆d, as illustrated on Figure 4.4. As a result we have:

P bi
Ru≤Rv(d,Ru, α) =

β+∫
β−

dβ

2π
=
β+ − β−

2π
(4.9)

4.2. Theoretical analysis 53

u1

k
β+

β−

Cu0,R

d
β+ − β−

Cv1,∆d

min(ru, rv)

min(ru, rv)

∆d α

u0 v1

â

Figure 4.4: Zoom view

Computation of β− − β+ are given with notations from Figure 4.4. We can
notice that:

2π = (β+ − β−) + 2â (4.10)

Since we consider bilateral neighbors we have:

â = arccos(
∆d2 + k2 −min(Ru, Rv)

2k∆d
)

⇔ (β+ − β−) = 2 arccos(
min(Ru, Rv)−∆d2 − k2

2k∆d
)

Since we have Ru ≤ Rv,

⇔ (β+ − β−) = 2 arccos(
Ru −∆d2 − k2

2k∆d
) (4.11)

Thus, when d > dmin:

P bi
Ru≤Rv(d,Ru, α) =

{
1
π

arccos(R
2
u−∆d2−k2

2d∆d
)dα if α > αmin

0 otherwise
(4.12)

From Eq.4.6, we derive:

P bi
Ru≤Rv(d,Ru, Rv) =

 2
π2

π∫
αmin

arccos(R
2
u−∆d2−k2

2d∆d
)dα if dmin ≤ d ≤ Ru

0 otherwise

(4.13)

54 Chapter 4. Neighborhood discovery in mobile networks

with αmin = arccos(d
2−2Ru∆d−R2

u

2d∆d
) and dmin = max(0, Ru − 2∆d).

Case 2: Ru > Rv Computing of P bi
Ru>Rv

(d,Ru, Rv) is similar to the com-
puting of the P bi

Ru≤Rv(d,Ru, Rv). The differences mainly are in the values of
dmin, (β+ − β−) and αmin as shown in previous section. As a final result we
get:

P bi
Ru>Rv(d,Ru, Rv) =

2
π2

π∫
αmin

arccos(R
2
v−∆d2−k2

2k∆d
)dα

if dmin ≤ d ≤ Ru and(Rv − 2∆d) < Ru

0 otherwise
(4.14)

with αmin = arccos(d
2−2Rv∆d−R2

v

2d∆d
) and dmin = max(0, Rv − 2∆d).

Computing the number of new unilateral neighbors E[Nuni]

Value that is interesting for our analysis the probability P uni that at time
t0, when u and v were not neighbors given Ru, Rv and d. Once again, we
distinguish two cases:

• Case 1: Ru ≤ Rv We note P uni
Ru≤Rv the probability that v is a new

unilateral neighbor of u if Ru ≤ Rv; for this case P (Rv) = 1
Rmax

and
P (Ru | Ru < Rv) = Rv

Rmax
,

• Case 2: Ru > Rv We note P uni
Ru>Rv

the probability that v is a new
unilateral neighbor of u if Ru > Rv; for this case P (Rv) = 1

Rmax
and

P (Ru | Ru ≤ Rv) = Rmax−Rv
Rmax

From these two cases we have:

E[Nuni] =

Rmax∫
Ru=0

Rmax∫
Rv=0

Ru∫
d=0

P (Ru)P (Rv)λπd× P uni(d,Ru, Rv)dddRudRv

=

Rv∫
Ru=0

Rmax∫
Rv=0

Ru∫
d=0

Rv

Rmax

× 1

Rmax

× λπd× P uni
Ru>Rv(d,Ru, Rv)dddRudRv

+

Rmax∫
Ru=Rv

Rmax∫
Rv=0

Ru∫
d=0

Rmax −Rv

Rmax

× 1

Rmax

× λπd× P uni
Ru>Rv(d,Ru, Rv)dddRudRv

(4.15)

4.2. Theoretical analysis 55

Case 1: Ru ≤ Rv In such a case, probability for the node v to be a new
unilateral neighbor of the node u is null. Indeed, since Ru ≤ Rv, this is indeed
u which is bilateral neighbor of the node v and not the opposite, thus we have:

P uni
Ru>Rv(d,Ru, Rv) = 0 (4.16)

Case 2: Ru > Rv We compute the probability P uni
Ru>Rv

for the node v to
be a new unilateral neighbor of node u knowing Ru, Rv and d. This study
is similar to the one given for the bilateral neighbors with the differences in
values for dmin, β+, β− and αmin as it is given in the following paragraphs.

P uni
Ru>Rv(d,Ru, Rv) =

 2
π2

π∫
αmin

arccos(R
2
u−∆d2−k2

2k∆d
) ifdmin ≤ d ≤ Ru

0 otherwise

(4.17)

with αmin = arccos(d
2−2Ru∆d−R2

u

2d∆d
) and dmin = max(Rv, Ru − 2∆d).

Calculating dmin, (β+ − β−) and αmin for new unilateral neighbors
To calculate dmin we start from the definition of a new unilateral neighbor v
of node u, if d is such that d > Rv. Then, similarly to the case for the bilateral
neighbors, dmin is such that if d > dmin, nodes u and v were already neighbors
at the time t0, whatever the values α and β. Since, depending on the node
speed, we may have 2∆d < min(Ru, Rv), we finally get:

dmin = max(Rv, 2∆d−min(Ru, Rv)) (4.18)

Value β+ − β− is obtained using the variables from Figure 4.4. In the case of
the unilateral neighbors we consider

â = arccos(
∆d2 + k2 −max(Ru, Rv)

2k∆d
) = arccos(

∆d2 + k2 −Ru

2k∆d
)

deducing that:

(β+ − β−) = 2 arccos(
Ru −∆d2 − k2

2k∆d
) (4.19)

For αmin, we, again, start from the definition of the new unilateral neighbor
v of the node u in which we need |u0v0| > max(Ru, Rv) for any β i.e. that

56 Chapter 4. Neighborhood discovery in mobile networks

the disks delimited by Cv1,∆d and Cu0,max(Ru,Rv) overlap:

k −∆d > max(Ru, Rv)

⇔ k −∆d > Ru

⇔ k2 > R2
u + ∆d2 + 2∆d ·Ru

⇔ d2 − 2d∆d cosα > R2
u + 2∆d ·Ru

⇔ cosα <
d2 −R2

u − 2∆d ·Ru

2d∆d

⇔ α < arccos(
d2 −R2

u − 2∆d ·Ru

2d∆d
)

⇔ αmin = arccos(
d2 −R2

u − 2∆d ·Ru

2d∆d
) (4.20)

Computing the turnover

Similarly to TAP [Ingelrest 2007], we use this analysis to determine the opti-
mum turnover on which nodes dynamically adapt their frequency. Since in our
work all nodes do not have the same transmission range, we need to adapt the
turnover to unilateral neighbors. The number of new neighbors during period
∆t and depends on the speed of nodes (through parameter ∆d = V × ∆t)
and the Hello Frequency. The optimal turnover can be achieved when the
Hello frequency is optimal. Since the optimal Hello frequency depends on
the speed, the speed parameter is canceled in the optimal turnover formula
which does not depend anymore of the speed. Every result presented above is
unfortunately non closed formula. Nevertheless, some numerical results can
be found with regards with different values of Rmax.

4.2.2 Analysis on minimization of energy cost

In this chapter, we analyze the frequency and transmission range with regards
to the optimum energy consumption. The energy spent in period ∆t of time
by a node u can be expressed as the number of messages sent by u in ∆t

multiplied by the cost of a message. The number of messages sent by u during
∆t is ∆t · fu(Ru, t) where fu(Ru, t) is the Hello frequency of node u and Ru is
the range of node u at time t. The cost of a message follows energetic model
introduced in Section 2.3.3 and is as follows: E(Ru) = Ru(t)

α+C. We assume
that ∆t is such that u does not change its range nor its frequency during this
period of time, so Ru(t) = Ru. Thus, energy spent by node with transmission
range R during ∆t is:

cost∆t(R) = ∆t · f(R)× (Rα + C) (4.21)

4.2. Theoretical analysis 57

Note that the Hello frequency also depends of transmission range. The
higher transmission range, the lower Hello frequency. Also note that in the
following analysis we have omitted units for the values that we are using in
the analysis. Our main aim in this analysis is to make connection between
consumption, which is given in Joules [J], frequency of Hello messages, given
in Herz [Hz = 1

s
], and transmission range, given in meters [m], while the rest

of values and constants are expressed in such units so that they comply with
rest of values in equations. For example, in equation 4.21 units for cost∆t and
C are given in [J] and also it should be noted that Rα should be multiplied
by constant 1 with units [J/mα] to comply with other values.

In order to find appropriate transmission range we need to find R that
gives the minimum of the given function.

∂cost(R)

∂R
=

∂

∂R
(∆t · f(R)× (Rα + C)) (4.22)

Partial derivative given is applied in order to get the minimum of the cost
function:

∂cost(R)

∂R
= ∆tαf(R)×Rα−1 + ∆t

∂f(R)

∂R
× (Rα + C) (4.23)

minimum of this function is obtained when

∂cost

∂R
= 0 (4.24)

which gives us
∂f(R)

∂R
= −αf(R)

Rα−1

Rα + C
(4.25)

This differential equation gives as a solution:

f (R) =
C1

Rα + C
(4.26)

where C1 is a constant defined by initial conditions. For parameters used later
on in our simulations, e.g. α = 4, C = 108 given in [Fleury 2009] and initial
condition such that C1 = 2× 108, it becomes:

f (R) =
200000000

R4 + 100000000
(4.27)

Optimum function f(R) for energy consumption is depicted on Figure 4.5.
Note that, as expected, the Hello frequency decreases when the range in-
creases.

58 Chapter 4. Neighborhood discovery in mobile networks

Figure 4.5: Solution of differential equation obtained for optimal energy cost.

4.3 Algorithms

In this section we present our contribution and the algorithms used to adapt
both frequency of HELLO messages and transmission range. The first algo-
rithm is based on [Ingelrest 2007] which relies on the calculation of turnover.
The turnover of [Ingelrest 2007] has been redefined to capture both unilat-
eral and bilateral neighbors (that appear because of different transmission
ranges) along with optimal frequency of HELLO messages [Troel 2004]. This
turnover helps in determining the Hello frequency. Algorithm is then declined
in two variants to define the transmission range. Second algorithm is combin-
ing results for optimal frequency and dependency between f and transmission
range to adapt both frequency and transmission range without knowledge of
turnover.

Both algorithms are based on the existence of an optimal frequency of
HELLO messages [Troel 2004]. Optimal frequency of HELLO messages is
function of the relative speed of the nodes V , and their transmission range R
multiplied by corrective factor a:

fopt =
2V

aR
(4.28)

4.3. Algorithms 59

4.3.1 Using the turnover

In order to define this algorithm first step is to calculate turnover, r, in a
real scenario. Number of new neighbors (theoretically calculated in Section
4.2.1) is translated into the calculation of number of new neighbors with given
weights.

• unilateral neighbors – the situation when the node finds new unilateral
neighbor; it is quantified with θuni multiplied by the total number of
new unilateral neighbors in given period of time,

• bilateral neighbors – the situation in which the node finds new bilateral
neighbor; factor θbi is used to quantify new bilateral neighbor which is
found and it is multiplied by total number of new bilateral nodes y found
in given period of time.

Current turnover, r, is calculated by each node independently according to
their own track of the changes between the types of the links, using equation:

r =
θuni · x+ θbi · y

xt + yt
· THELLO

∆t
(4.29)

where θuni = 1, θbi = 2, ∆t is the time passed between updates of two tables
that we are comparing, THELLO is the period of HELLO messages, xt + yt
presents total number of neighbors in neighborhood table and it is the sum of
all unilateral and bilateral neighbors. These specific values for the θ param-
eters are used with the respect of the type of neighbor. For new unilateral
neighbors we use smaller value of θ because we consider those links weaker
and we want to give them less importance in calculation of turnover. Bilateral
neighbors are considered stronger and they are multiplied by bigger θ.

First solution is detailed in Algorithm 3 Turnover based Power Transmis-
sion Adjustment. Algorithm 3 is executed by each node independently only
based in the observation of is neighborhood. Algorithm 3 is TAP-fashion algo-
rithm which adapt the hello frequency dynamically based on changes on node
neighborhood. It aims to reach an optimal turnover previously computed
thanks to computing of new neighbors provided in Section 4.2.1. Starting
point for the algorithms are neighborhood table and history table, and all
other values are calculated using these values, including the turnover. Neigh-
borhood table is the standard neighborhood table, as explained in Section
2.3.2. History table is table in which we are preserving the values which we
have obtained for a given time moment, number of new bilateral and unilateral
neighbors and the changes between the type of the neighbors which allows us
to calculate the turnover at that moment.

60 Chapter 4. Neighborhood discovery in mobile networks

Adjustment of f is calculated through the period between two HELLO
messages dHELLO, where f = 1

dHELLO
:

dHELLO =

{
dHELLO + dHELLO

4
· g(r) if r ≤ ropt

dHELLO − dHELLO
4
· g(r) otherwise

(4.30)

Function g(r) is retrieved using turnover:

g(r) =

{
(r−ropt
ropt

)2 if r < 2 · ropt,
1 otherwise

(4.31)

Algorithm 3 Turnover based Power Transmission Adjustment
1: while 1 do
2: CalculateCurrentTurnover r = θuni·x+θbi·y

xt+yt
· THELLO

∆t

3: if r ≤ ropt then
4: Lower f with Eq. 4.30
5: else if r > ropt then
6: Augment f with Eq. 4.30
7: Adapt Power of Transmission

Two variants differ in the call to Adapt Power of Transmission function in
Line 7 of Algorithm 3. First variant uses Eq. 4.28 while second variant uses
the analysis of Section 4.2.2.

4.3.2 Using the optimal frequency of HELLO messages

The first variant assumes f obtained at Line 6 of Algo. 3 as fopt (Eq. 4.28 and
from this gives the information for the new value of power of transmission. It
runs Algorithm 4 as Adapt Power of Transmission function.

Algorithm 4 Power Transmission Adjustment - Variant 1

1: Return R = 2V
af

4.3.3 Minimizing the cost

The second variant adjusts the transmission range based on minimum energy
consumption as defined by Eq. 4.26. It runs Algorithm 5 as Adapt Power of
Transmission function.

4.4. Experimental results 61

Algorithm 5 Power Transmission Adjustment - Variant 2

1: Return R = α

√
C1

f
− C

4.3.4 Minimizing the energy consumption

We now describe our second algorithm which is detailed in Section 6. It
combines the results of optimal frequency and minimized energy cost and
calculates R and f solely upon these two values based on Equations 4.26
and 4.28.

Algorithm 6 Cost Based Transmission Power Adjustment
1: To get R, solve Rα − aR

2V C1
+ C = 0 based on α values.

2: f = 2V
aR

3: Return (f,R)

Note that there exists no real solution for α = 2. The formula is not closed
but we could solve it with numerical results. For parameters used later on
in our simulations, e.g. α = 4, C = 108 given in [Fleury 2009] and initial
condition such that C1 = 2 × 108, a = 0.3, solving Rα − aRC1

2V
+ C = 0 gives

several solutions among which only one or two are real and only one is real
and lower than the maximum transmission range Rmax = 150 of our nodes.
Figure 4.6 plots this value of R with regards to the node speed. We can note
the interesting behavior of R which is linear with regards to V . The faster
the nodes, the bigger transmission range.

4.4 Experimental results

In this section we are going to present simulation results obtained using the
models presented in previous sections and WSnet simulator [WSNet]. We
use a model in which the range of transmission can be adapted according
to the given values. In our simulations we use speed of the nodes, running
the simulations for different scenarios with different speeds of nodes. Values
for the range of transmission, period of HELLO messages, state of the nodes
batteries, observed turnover and accuracy of obtained results are given as the
functions of the nodes’ speed. In these graphs we refer to the algorithms in
the following way: Algorithm 6 is called NoTAP since it does not use turnover
in calculations, Algorithm 4 is called Fopt, TAP algorithm [Ingelrest 2007] is
referred as TAP and Algorithm 5 is called Cost

Simulation setup is made less realistic using ideal MAC layer in order to

62 Chapter 4. Neighborhood discovery in mobile networks

Figure 4.6: Values of R with regards to V when solving Eq. 4.26.

4.4. Experimental results 63

better observe and validate behavior of our algorithms. Simulation is run on
the square area of 1000× 1000m using 100 sensor nodes.

We will present results retrieved from the simulations with the comment on
the performance of the TAP, Fopt and NoTAP algorithm. Separate discussion
will be given on the obtained results with the Algorithm 5 for adaptation of
the range using minimized energy consumption because results obtained using
this algorithm are unrealistic (too good) and deserve additional explanation.

Transmission range as function of nodes’ speed Figure 4.7 shows range
adaptation as the function of speed of the nodes. We can notice that trans-
mission range for the TAP algorithm is held on the same level, using the same
approach (unit disk graph) as in [Ingelrest 2007]. In the case for Fopt and
NoTAP algorithm ranges are increasing as the speed is increasing with the
difference that NoTAP algorithm increases range linearly, in accordance with
Figure 4.6. This behavior of these two algorithms is expected because when
nodes are moving faster then they are also changing their neighbors faster so
in order to maintain the number of new neighbors the algorithms are increas-
ing the range. We have to note also that Fopt increases the range more than
NoTAP since its range is not bounded to single value for a given speed as it
is the case for NoTAP.

Period of HELLO messages as function of nodes’ speed Figure 4.8
shows how the period of HELLO messages (and fHELLO) is adapted for the

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 2 4 6 8 10 12 14 16

R
a
n
g

e
 [

m
]

Speed [m/s]

Transmission range

TAP
Fopt

NoTAP
Cost

Figure 4.7: Transmission range as function of speed

64 Chapter 4. Neighborhood discovery in mobile networks

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 2 4 6 8 10 12 14 16

Pe
ri

o
d

 [
s]

Speed [m/s]

Period of HELLO messages

TAP
Fopt

NoTAP
Cost

Figure 4.8: Period of HELLO messages as function of speed

different speed of the nodes. For the NoTAP algorithm period of HELLO mes-
sages is increasing following the results of the equation given in Algorithm 6
and Eq.4.28, TAP is decreasing HELLO period with the increase of speed be-
cause its range is fixed and the only way to adapt its behavior when nodes are
moving faster is to lower the period (hence increase the frequency of HELLO
messages). Fopt is keeping the period on almost constant value because the
adaptation to the higher speed is done with an increase of the range.

Change of battery level as the function of speed In this case we have
to point out that we used linear discharge model for the battery, decreasing
certain amount energy from the battery multiplied by range of transmission
each time when we transmit packet, constant value for each received packet
and loss of energy in idle mode represented by constant value multiplied by
the time spent in idle mode (the time between receptions or between reception
and transmit and vice versa). This representation of battery is not the best
one since it overstates the impact of transmission range which is in real case
smaller and is given with the increase of power of transmission.

From Figure 4.9 we can see that all algorithms better balance energy than
TAP which keeps transmission range on the same and due to this fact has
worse results than others. We can also observe that energy loss is bigger as
the speed of the nodes increases this is due to the adaptation of algorithms and
their attempt to balance the values of turnover, frequency and range which
compensates in higher energy loss.

4.4. Experimental results 65

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 2 4 6 8 10 12 14 16

B
a
tt

e
ry

Speed [m/s]

Depletion of battery at different speeds

TAP
NoTAP

Fopt
Cost

Figure 4.9: Battery level as function of speed

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0 2 4 6 8 10 12 14 16

Tu
rn

o
v
e
r

Speed [m/s]

Turnover as a function of the nodes speed

TAP
NoTAP

Fopt
Cost

Figure 4.10: Turnover as function of speed

Turnover as a function of speed The results for these values, shown in
Figure 4.10, are more straightforward, we can see that for the algorithms that
take turnover (Fopt and TAP) into account there is an increase of turnover
with the increase of speed while NoTAP is having changes of turnover not
depending on the speed. Fopt has slightly bigger change of turnover as a
result of adaptation both frequency and range.

66 Chapter 4. Neighborhood discovery in mobile networks

Accuracy of the neighborhood table One of the important values to
follow is the accuracy of the neighborhood tables, shown on the Figure 4.11.
Accuracy is calculated checking the state of neighborhood table periodically
and checking if all the nodes listed as the neighbors are still in the neighbor-
hood of the node that is being checked. All algorithms are showing tendency
of increasing accuracy with decrease of the speed which is logical since the
faster nodes spend less time in physical neighborhood of their neighboring
node.

Comment on the Cost algorithm Cost algorithm shows almost perfect
results when taking into account state of the battery and accuracy of the
neighborhood table, but looking into dependency of the turnover and range
gave us the clue what is the reason for this. This algorithm tries to minimize
the energy, and its doing it well, but at the cost of keeping the range of trans-
mission on the lowest value thus gaining new neighbors occasionally and with
big accuracy. Also since the transmission range is minimal it also preserves
battery in the best way. What can we conclude from this is that the model
that we imposed for this algorithm is too ideal and does not take into account
the nuances this adaptation might have.

 50

 60

 70

 80

 90

 100

 0 2 4 6 8 10 12 14 16

A
cc

u
ra

cy
 [

%
]

Speed [m/s]

Accuracy of the neighborhood table

TAP
NoTAP

Fopt
Cost

Figure 4.11: Accuracy of the neighborhood table as function of speed

4.5. Conclusion 67

4.5 Conclusion

To conclude this chapter, we can say that we have presented one approach
to find energy efficient neighborhood discovery in the mobile wireless sensor
networks. To the best of our knowledge this is the first attempt to apply
this kind of approach which combines adaptation of frequency of HELLO
messages and the range (power) of transmission. We present three intuitive
algorithms which are balancing energy consumption of sent messages and the
range at which they are sent. They all prove to be good solution for the
given constraints except Cost algorithm for which these assumptions were not
realistic thus it gave us results improbable in real situation.

Future work would include testing of these algorithms in more realistic
environment with better given function between the range and power of trans-
mission and energy cost. Also it would be nice to test these algorithms in real
environment using mobile agents or sensors placed on the moving objects.

Chapter 5

Emulation of large scale wireless
sensor networks

Contents
5.1 Introduction . 69

5.2 Basic principle . 70

5.3 Experimental results 76

5.4 Conclusion . 78

5.1 Introduction

Experimenting in a wireless environment is mandatory to validate some al-
gorithms. Indeed, the behavior of real hardware and of the wireless medium
might be so unexpected that plain simulation can not highlight these features.
Nevertheless, experimentation in wireless sensor networks has always been the
biggest issue. Problems with the experimentation in wireless sensor networks
reflect through: (i) the cost of sensor units multiplied by the number of used
sensor nodes – which has to be big in order to get accurate results comparable
with the simulation; (ii) the cost in time needed to setup the whole network,
and to facilitate – charge the sensors the sensors and update the program that
they are running each time when we have changes in our code; (iii) collecting
the results from the sensor network – this is usually being done in the place
of experiment.

Existence of large scale experimentation testbeds like SensLAB [Senslab],
Wisebed [WISEBED] or GreenOrbs [GreenOrbs] has simplified the way of
obtaining the results in real environment using real sensor devices. Still these
testbeds, although they are good tool for retrieving experimental results, have
some limitations: usually they have fixed topologies, specific types of sen-
sors are used in these sites so the user needs to get accustom himself to the
limitations of the hardware that is being used and finally there is a cost of
maintenance for these testbeds.

70 Chapter 5. Emulation of large scale wireless sensor networks

We propose usage of small wireless sensor networks, of up to 50 sensor
nodes, which would be used to obtain the results and emulate the behavior
of the large scale wireless sensor network. This small network is accompanied
with appropriate graph generation tool which can generate different topologies
and different emulation scenarios. In this way we can obtain scalable solution
for experimentation, using small number of sensors easily allows us to follow
the execution of our algorithms in large scale network.

5.2 Basic principle

Emulation is a process in which we use 1-hop environment to approximately
calculate behavior of a large scale network instead of constructing large scale
network itself. 1-hop environment is constructed in such a way that we have
one source node S, currently holding the packet to be transmitted, located
in the center of the coordinate system (0, 0) with all other nodes, located in
the circle of the radius R, within reach of central node S like depicted by
Figure 5.1. Node D is a virtual destination node, assumed static, located on
the distance potentially much bigger than the transmission range of S and
thus requires multi-hop communications.

S

B

A

D

D′D′

Figure 5.1: Calculation of the next step in 1-hop environment

Node S runs its routing algorithm to reach node D. Let us assume that
node B is selected as next forwarder. In a complete experimentation, once
B has received the packet sent by S, it runs the algorithm again to reach D.
Since we have only a small set of sensors in 1-hop communication of S, B
has no neighbor in forwarding direction of D and thus, it could not perform
correctly its task. So, emulation we propose performs as follows. At each step,
node S acts as the sending node. S takes the role of B. Since B has been

5.2. Basic principle 71

’moved’ to S, destination D also needs to be ’moved’ accordingly at each step.
D is ’moved’ through vector

−→
SB to position D′ (see Figure 5.1).

This process of calculating new destination is repeated as long as the vir-
tual destination is out of reach for source node S or that routing fails.

5.2.1 1-hop hexagonal grid

Sensors in our 1-hop environment are placed in a particular way to ensure
that common neighborhood of nodes S and B is kept at the following step.
Indeed, on Figure 5.1, node A is neighbor of both S and B. Once B is virtually
relocated at node S position, node A should still exist in its neighborhood to
better fit experimentation settings. To ensure such an imperative, nodes are
placed over an hexagonal grid like shown on Figure 5.2.1, within the circle
with radius R.

Placement of the nodes in the hexagonal grid ensures that in successive
steps each node which is in the intersection of two successive 1-hop neigh-
borhoods translates to one of the nodes of our grid (due to central and axial
symmetry property of the hexagonal grid structure). For instance, on Fig-
ure 5.3, node 37 is chosen. Nodes 38, 13, 6 and 29 are common neighbors of
S and 37 and thus should still be in the neighborhood of 37 at the following
step. Thanks to central and axial symmetry property of the hexagonal grid
structure, nodes 39, 15, 25 and 26 respectively can take their role at the next
step.

This hexagonal grid consists of

• 6 nodes at distance a (nodes A to F on Figure 5.2.1),

• 6 nodes at distance 2a (nodes G to L on Figure 5.2.1) forming two
regular hexagons,

• 6 nodes in the middle of each edge of the larger hexagon (distance a
√

3

from the source node) and

• 24 nodes in the center of each equilateral triangle which is formed by
the 18 nodes already placed, among them

• 6 nodes are at distance a
√

3
3

from S, forming regular hexagon rotated for
30◦ counterclockwise comparing to the hexagon A− F

• 6 nodes are at distance 2a
√

3
3

from S, which are in the centers of the
equilateral triangles which are formed from two endpoints from hexagon
A−F and one endpoint from the middle of each edge of G−L hexagon

72 Chapter 5. Emulation of large scale wireless sensor networks

• 12 nodes are at distancea
√

21
3

from S, formed with two endpoints from
hexagon G − L and nodes in the middle of its edges and one endpoint
from the smaller hexagon A− F .

Nodes in this 1-hop neighborhood are numbered in an increasing order with
the respect of the distance of the nodes from the source and the angle that
they form with source and x-axis (for example: the closest neighbors are the
nodes at distance a

√
3

3
with angles 30, 90, 150, 210, 270 and 330 degrees and

they are numbered from 1 to 6 respectively with the increasing order of angle.
In this approach, if all nodes are used, obtained results would not fully

correspond to realistic situations because every source node at every step
sees the same neighborhood. In order to avoid this issue, only a subset of
nodes are used, different at every step. More precisely, nodes in intersection
of two successive steps (nodes that are in intersection of circles encircled in
source node S and chosen neighbor with radius of 1-hop environment) and a
random number of the rest of the nodes are used. In this way, a more realistic
emulation is provided and the density of large scale network can be controlled.

Example of emulation process using only small subset of nodes in the
hexagonal grid is shown on Figure 5.3. Let us assume that the message to be
transmitted is currently held by source sensor S and that routing algorithm
gives as a next destination node 37 (Figure 5.3(a)). Node S has only 7 neigh-
bors among the 42 nodes of the grid. Next destination 37 is translated to
node S position together with all the common neighbors between S and 37.
At the next step, node 37 becomes S so in order to keep placement of all of the
nodes in the common area, they are translated along vector -

−−→
SD′, virtually

moving the circle of radius R to 37. Due to the properties of symmetry of
the hexagonal grid structure each node will be exactly mapped to one of the
existing nodes (Figure 5.3(c)), in our example: 37 7→ S, 13 7→ 15, 6 7→ 25,
29 7→ 26, 38 7→ 39 and S 7→ 40. Now we have the nodes common with the
previous hop and out of the rest we can choose (using appropriate algorithm)
subset for of the nodes for the next step.

5.2.2 Emulation large scale graph

In order to unify our representation of the graph and to facilitate easier usage
we have chosen specific representation of the graph that we are using in sim-
ulation, emulation and in the experiments. This kind of representation allows
us to run routing algorithm both within 1-hop neighborhood but also not on
a general graph. Graph is represented as an array of unique entries in the
following form:

5.2. Basic principle 73

S

B

F

C

E

H

A

L

I

D

K

GJ

(a) Placement of the sensors

S

1

2

3

4

5

6

7

89

10

11 12

13

14

15

16

17

18

19

20

2122

23

24

25

26

27 28

29

30

31

32

33

34

35

36

37

3839

40

41 42

(b) Enumeration of the sensors

Figure 5.2: Hexagonal grid used for the placement of sensors.

74 Chapter 5. Emulation of large scale wireless sensor networks

S
6

10

13

29

37

3839

(a) Choosing next destination

S
6

10

1315

25

26 29

B

3839

40

(b) Translation of existing nodes

S

15

25

26

39

40

(c) Mapping of the nodes from current step to
the next step

Figure 5.3: Emulation steps using subset of sensor nodes in hexagonal grid.

5.2. Basic principle 75

nodeabsID(xabsID, yabsID)

neighborrelativeID1(nodeabsID)

neighborrelativeID2(nodeabsID)

...

neighborrelativeIDn(nodeabsID)

where n 6 42.
In this representation each unique entry describes one node in the graph

with its unique identification number (absID), its absolute position (xabsID, yabsID),
followed by the list of neighbors (maximum number of 42) with corresponding
relative identification number in the 1-hop neighborhood and their absolute
ID. Graph has its proprietary format that we called graph description file
(*.gdf) which has one unique entry for each generated node. Generated GDF
file allows using the same graph during both simulation and emulation. This
will be described in the following example.

In order to simulate generated topology, we just need a part of the informa-
tion provided i.e. node absolute ID and x and y absolute position (geograph-
ical coordinates). List of the neighbors could be created by one successful
HELLO message exchange. On the other side emulation takes use of the
whole GDF file. Let us say that we want to emulate routing from node A
to node B. Initially, source node (always the same central node in the case
of emulation) should be provided with information about node’s A (initial
source) and node’s B (destination) geographical positions and list of neigh-
boring nodes (subset of maximal 42) that will be used in this step. Source
node will find the next forwarder (one of the 1-hop neighbors) according to
selected routing algorithm. After decision has been made, source node will
search the GDF for the unique entry with same absolute ID as the selected
forwarder. Once entry has been found, it is used as current central node in the
following step, providing the new subset of neighboring nodes. This process
will repeat until destination is reached or algorithm fails.

For both emulation and simulation we are using the graph which is built
upon presented grid, and represented in graph description format, using the
MIN-DPA algorithm [Onat 2008] which tends to distribute node degree more
uniformly maintaining the connectivity. To make it suitable for our placement
of the nodes we needed to adapt algorithm to the new hexagonal grid layout.
Certain small changes had to be introduced: instead of randomly placing
new nodes around node with smallest number of neighbors, its position is
randomly chosen among one of the 42 predefined position in hexagonal grid

76 Chapter 5. Emulation of large scale wireless sensor networks

(cf. Figure 5.2.1). Other steps in MIN-DPA algorithm were kept the same.
To control the generated graph density algorithm takes as input number of
nodes that are to be generated and the surfaces of the area.

Why did we choose this type of graph for our simulations and emulation?
Authors are claiming [Onat 2008] that graph has properties same to the ones
we can find in real graphs, moreover it preserves so it was suitable for the
range of routing algorithms that we were planing to test (mostly greedy-like
algorithms). Here we can point out that basically each graph or the tool for
graph generation can be used, the only thing which is important is to follow
the hex-grid when generating graph. In this way it is ensured that we have
graph which is suitable for our platform.

We also have to emphasize the fact that in this way we can generate
different kinds of scenarios for the including the emulation of obstacles in
network. In this case everything depends on the way we generate the graph,
as long as it follows described representation it can be used in emulation and
further on it all depends on the algorithm used for routing and if it can manage
all the problems imposed to it.

5.3 Experimental results

In this section, we compare simulation and emulation results. More detailed,
being in progress, we first decided to check our approaches on the simulator.
Using the same generated graph we are running simple simulation without
taking care of 1-hop neighborhood and simulation of emulation which is run-
ning with the constraint of 1-hop neighborhood.

5.3.1 Simulation setup

Simulations are run over the WSNet [WSNet] simulator, an event-driven sim-
ulator for large scale wireless networks. All simulated network topologies were
generated as explained in previous section using MIN-DPA algorithm. They
consist of roughly 1000 nodes deployed in the area of dimension 1000x1000 m.

Similarly to [Lukic 2009], each node performs an initialization phase where
it broadcasts 1024 message, separated in 8 rounds, in order to evaluate link
quality i.e. to measure ETX link metric. Since this phase directly impacts
routing decision, we have compared in our simulations the influence of the
choice of the underlying radio propagation model on the routing decision. For
each of the simulated topologies we have run the initialization phase with 3

different propagation models: unit disk model, free space and Rayleigh fading.
Results underline the importance of good choice of the underlying propagation

5.3. Experimental results 77

model on the simulation results of tested routing protocol based on link quality
and the superiority of emulation as the most realistic one since is uses real
nodes.

For each of the simulated topologies we run 4 routing algorithms - XTC,
GARE, COP_GARE, as in our previous work [Lukic 2009], and LearnG.
For each run we have 4 source nodes, situated in the 4 different corners of
the network. The routing is performed across the diagonals to reach the
destination situated in the opposite corner.

Apart from whole network simulation we perform the simulation of the
emulation approach (step by step using GDF file as described before). Same
simulation setup is used in this case.

5.3.2 Emulation setup

As mentioned earlier 1-hop neighborhood consists of 43 sensors, one central
source node, placed in (0, 0) and 42 neighbors placed in presented hexagonal
grid. Source node holds the information about the large scale network that
we want to emulate (GDF file) and possible starting points and destinations
for routing algorithm (4 different corners of the large scale network). In our
emulation, nodes of first hexagon (nodes A to F on Figure 5.2.1) are placed
at distance a = 2.5m from S.

Emulation of wireless sensor networks is executed in two steps. Since
we aim for the realistic results and influence of realistic environment we are
first running initialization phase in which each node is sending 8 rounds of 128

packets (altogether 1024 packets, like in simulations) and each of its neighbors
is counting the total number of received messages. Each node in our 1-hop
neighborhood is passing this phase while all the others are gathering statistics
for currently active link (between the node that is sending messages currently
and itself). In the end of this process source node S, placed in (0, 0) gathers
statistics for all 1-hop neighbors. At this point we have probability of reception
for each pair of nodes, and we can use this data in latter experiments (since
this data is held in FLASH memory of the source sensor).

1-hop neighborhood is now ready to run different routing algorithms in
order to prove them or to test their reliability. In our setup we are running
routing algorithms that use probability of the reception as one of the variables
in weight function. Same algorithms, GARE, COP_GARE, XTC and LearnG
are evaluated in this environment in order to compare results obtained from
the simulation. Important parameters that we are following are: total number
of hops needed to reach destination and total number of sent messages with
retransmissions.

78 Chapter 5. Emulation of large scale wireless sensor networks

5.3.3 Comparison of the results

Algorithm that we used for generation of the graph generates connected graph
with another constraint that we imposed on it, and that is that each node
need to have at least two edges. Graph generated in this way favors greedy-
like algorithms and they pass in whole 4 directions for all 4 corners of the
generated network. Success rate for all algorithms was 100% but with different
numbers of hops and retransmissions.

The results that we have obtained are similar to the ones presented in
[Lukic 2009] both for the simulation on the graph and the simulation of the em-
ulation. XTC algorithm is shown that has biggest number of hops per routing,
in the range 680− 710 and the smallest number of retransmissions per route.
The smallest number of hops had LearnG algorithm around 330− 350 which
used the longest links, smaller differences are noticed in the performance of
this algorithm. Since it favors longest links it also needed the biggest number
of retransmissions but also in case of simple simulation we had slightly smaller
number of hops per route which can be explained by the fact that in this case
algorithm was not constrained to 1-hop neighborhood but it could also used
the ones outside 1-hop neighborhood. Performance of the COP_GARE algo-
rithm is in between LearnG and GARE algorithm again with higher number
of retransmission. GARE performs using the medium edges (not the shortest
like XTC and not longest like LearnG) giving around 440 hops per route.

We must also emphasize that real emulation using real sensor nodes was
not performed in this scale due to the problems with constrained nature of
sensor node. Memory space of the sensor node has shown as the biggest
problem since the graph represented as an array with 1000 nodes with all
additional data would take all the memory on the sensor node. We were
not satisfied with possible size of graph of 150 nodes which can be put on
the sensor node at maximum since it would give us the network which can
be reached from end to end in few hops. Currently we are working on the
solution that would include PC together with source node, we would use PC
only to collect data from sensor node and to feed the sensor node with data
for the routing, namely, whole graph structure would be placed in PC and the
part needed for the computation of the next hop would be given to the source
node when needed.

5.4 Conclusion

In this chapter we have presented our idea on building the scalable testbed
containing small number of sensors to capture behavior of the large scale
network. We have shown the consistency of this kind of structure running

5.4. Conclusion 79

the simulations with this structure and with regular simulation using the
same graph we generated using MIN-DPA algorithm and representation of
the graph that we proposed in previous sections. Running these simulations
for greedy-like algorithms has shown that the structure we proposed can give
us accurate results.

Next step will be the implementation of the given structure in hardware,
using WSN430 sensor nodes. The first steps on the practical implementation
have been already taken, implementation was done using 43 WSN430 sensor
nodes but due to the limited resources on the sensor nodes we could not run
the full size emulation experiment on it.

Future work would include both practical implementation of this structure
as well as giving the new possibilities to it. At the moment we only used it for
the emulation of routing greedy-like algorithms on one type of the graph. But
it also can be used for the experimentation of other parts of protocol stack
of wireless sensor network and also for different graphs. Then, we intend to
dress a whole comparison between real experimentation and emulation results
in order to show how close to experimentation the emulation is.

Chapter 6

Conclusion

Contents
6.1 Results . 81

6.2 Future advances . 82

In the beginning of this manuscript we gave a small discussion about mod-
els in general and we tried to explain our meaning of the word realistic and our
approach to the problems in wireless sensor networks. Word realistic, and the
approach as we defined it, was common point for the work which was spread
over three big research areas in wireless sensor networks. What is missing the
most in this work is this common point, but from the upper layer, and that
would be the future work that we would like to see the most. Further on we
will give brief overview of achieved results and possible advances.

6.1 Results

In our work, we addressed three different problems in wireless sensor networks:
topology control, neighborhood discovery and emulation of large scale wireless
sensor networks.

We presented topology control algorithm based on the relative neighbor-
hood graph reduction which uses information gathered from the sensor hard-
ware and reconfigure sensor network when some of its parts reaches the critical
state characterized by low voltage level on their batteries. Compared to more
typical RNG based solutions, this algorithm performs better maintaining con-
nectivity in the network. This part of the work was practical using WSN430
nodes to retrieve information from its hardware and then the algorithm is
tested and validated on the SensLAB platform.

Our contribution to the neighborhood discovery in mobile wireless sensor
networks can be seen through the algorithms which we designed starting from
the theoretical analysis of discovery of new neighbors and energy cost of the
transmission. We have designed algorithms which take into account both
energy and the rate of transmission and perform better than the algorithms

82 Chapter 6. Conclusion

that do not handle both values. This part of the work was mostly done in the
simulator.

Emulation of the large scale wireless sensor networks was a mix of two
approaches. We have shown (in simulator) that the idea of using small wireless
sensor networks to obtain behavior of large scale network is feasible. We have
chosen specific layout and parameters for wireless sensor network nodes to
assure reproducibility and accuracy of the results and easier handling more
complex scenarios for the experimentation.

6.2 Future advances

With the presented ideas and the results there is a lot of possible directions
for the future work. Our algorithm for the topology control can be extended
in several ways. Just to give a few ideas of the possible improvements:

• additional weight function, or additional pass in the algorithm, which
would ensure planarity of reduced graph,

• possible application of this algorithm, or this approach in general, to the
mobile wireless sensor networks

• pairing this algorithm with appropriate algorithm for power transmission
adaptation – this would ensure longer lifetime of a network,

• pairing this algorithm with some routing algorithm to evaluate this al-
gorithm with real traffic.

Our neighborhood discovery algorithms with the adaptation of power of
transmission could be improved taking into account more realistic model and
different kind of adaptation functions. It would be interesting to see how
these algorithms work in real hardware. Also, interesting idea would be to
use approach of the sensor hints (used in our topology control algorithm)
using the sensors which can give us information about the mobility of the
sensor node, like GPS or accelerometer, to improve neighborhood discovery
and adaptation of transmission range.

Emulation gives the most possibilities for the future work. It could be
used as a tool for testing of different network protocols. Capabilities of such
tool could be increased with:

• facilitating the experiments with different densities of the networks,

• emulation of interferences and obstacles in the network,

• 3D emulation,

6.2. Future advances 83

• emulation of different parts of protocol stack other than routing.

Since we were talking a lot about common things for this work it would
be interesting to see some of the ideas presented in this work functioning
together on the same sensor device. It is obvious that emulation is a bit
different because it is conceived with the idea to use it for testing but energy
efficient neighborhood discovery working together with the topology control
algorithm is a bit more realistic.

Bibliography

[Ahmad Kassem 2010] Ahmad Ahmad Kassem and Nathalie Mitton. Adapt-
ing dynamically neighbourhood table entry lifetime in wireless sensor
networks. In Proc. 10th International Conference on Wireless Commu-
nications and Signal Processing, page 000, China, October 2010. 23,
45

[Bose 1999] Prosenjit Bose, Pat Morin, Ivan Stojmenovic and Jorge Urrutia.
Routing with guaranteed delivery in ad hoc wireless networks. In DIAL-
M, pages 48–55, 1999. 19

[Canonico 2007] Roberto Canonico, Pasquale Di Gennaro, Vittorio Manetti
and Giorgio Ventre. Virtualization Techniques in Network Emulation
Systems. In Euro-Par Workshops, pages 144–153, 2007. 24

[Cohen 2011] Reuven Cohen and B. Kapchits. Continuous Neighbor Discovery
in Asynchronous Sensor Networks. Networking, IEEE/ACM Transac-
tions on, vol. 19, no. 1, pages 69 –79, feb. 2011. 23

[Ephremides 2002] A. Ephremides. Energy concerns in wireless networks.
Wireless Communications, IEEE, vol. 9, no. 4, pages 48 – 59, august
2002. 21

[Figuera 2009] C. Figuera, I. Mora-Jimenez, A. Guerrero-Curieses, J.L. Rojo-
Alvarez, E. Everss, M. Wilby and J. Ramos-Lopez. Nonparametric
Model Comparison and Uncertainty Evaluation for Signal Strength In-
door Location. Mobile Computing, IEEE Transactions on, vol. 8, no. 9,
pages 1250 –1264, sept. 2009. 18

[Fleury 2009] Eric Fleury and David Simplot-Ryl, editeurs. Réseaux de cap-
teurs. Hermes Science - Lavoisier, 2009. 16, 17, 20, 57, 61

[FreeRTOS] FreeRTOS. A Free RTOS for Embedded Systems.
http://www.freertos.org. 12

[Gabriel 1969] Ruben K. Gabriel and Robert R. Sokal. A New Statistical Ap-
proach to Geographic Variation Analysis. Systematic Zoology, vol. 18,
no. 3, pages 259–278, September 1969. 19

[Grau 2009] Andreas Grau, Klaus Herrmann and Kurt Rothermel. Efficient
and Scalable Network Emulation Using Adaptive Virtual Time. In-
ternational Conference on Computer Communications and Networks,
vol. 0, pages 1–6, 2009. 24

86 Bibliography

[GreenOrbs] GreenOrbs. A Long-Term Kilo-Scale Wireless Sensor Network
System in the Forest. 69

[Ingelrest 2007] François Ingelrest, Nathalie Mitton and David Simplot-Ryl.
A Turnover based Adaptive HELLO Protocol for Mobile Ad Hoc and
Sensor Networks. In MASCOTS, pages 9–14, Istanbul, Turkey, Octo-
ber 2007. IEEE Computer Society. 23, 45, 46, 47, 56, 58, 61, 63

[Javaid 2009] N. Javaid, A. Javaid, I. A. Khan and K. Djouani. Performance
study of ETX based wireless routing metrics. In Proc. 2nd Int. Conf.
Computer, Control and Communication IC4 2009, pages 1–7, 2009. 18

[Judd 2005] Glenn Judd and Peter Steenkiste. Using Emulation to Under-
stand and Improve Wireless Networks and Applications. In NSDI, 2005.
24

[Ke 2000] Qifa Ke, David A. Maltz and David B. Johnson. Emulation of
Multi-Hop Wireless Ad Hoc Networks. In Proceedings of the Seventh
International Workshop on Mobile Multimedia Communications (MO-
MUC 2000), IEEE Communications Society, October 2000. 24

[Khadar 2009] F. Khadar and D. Simplot-Ryl. From theory to practice: topol-
ogy control in wireless sensor networks. In MobiHoc’09, pages 347–348,
2009. 20, 37, 39

[Labrador 2009] Miguel A. Labrador and Pedro M. Wightman. Topology con-
trol in wireless sensor networks: with a companion simulation tool for
teaching and research. Springer, 2009. 17

[Li 2003] Ning Li, Jennifer C. Hou and Lui Sha. Design and Analysis of an
MST-Based Topology Control Algorithm. In INFOCOM, 2003. 19

[Li 2011] Xu Li, Nathalie Mitton and David Simplot-Ryl. Mobility Predic-
tion Based Neighborhood Discovery in Mobile Ad Hoc Networks. In
Networking (1), pages 241–253, 2011. 23

[Long 2009] Hengyu Long, Yongpan Liu, Yiqun Wang, Robert P. Dick and
Huazhong Yang. Battery allocation for wireless sensor network lifetime
maximization under cost constraints. In Proceedings of the 2009 In-
ternational Conference on Computer-Aided Design, ICCAD ’09, pages
705–712, New York, NY, USA, 2009. ACM. 21

[Loscrì 2010] Valeria Loscrì, Enrico Natalizio and Carmelo Costanzo. Sim-
ulations of the Impact of Controlled Mobility for Routing Protocols.
EURASIP J. Wireless Comm. and Networking, 2010. 22, 45

Bibliography 87

[L.Sichitiu 2005] Mihail L.Sichitiu and Rudra Dutta. Benefits of Multiple
Battery Levels for the Lifetime of Large Wireless Sensor Networks. In
Raouf Boutaba, Kevin Almeroth, Ramon Puigjaner, Sherman Shen
and James P. Black, editeurs, NETWORKING 2005, volume 3462 of
Lecture Notes in Computer Science, pages 403–408. Springer Berlin /
Heidelberg, 2005. 21

[Lukic 2009] Milan Lukic, Bogdan Pavkovic, Nathalie Mitton and Ivan Stoj-
menovic. Greedy Geographic Routing Algorithms in Real Environment.
In MSN, pages 86–93, 2009. 76, 77, 78

[Maier 2007] Steffen Maier, Daniel Herrscher and Kurt Rothermel. Experi-
ences with node virtualization for scalable network emulation. Com-
puter Communications, vol. 30, no. 5, pages 943 – 956, 2007. Advances
in Computer Communications Networks. 24

[Mališić 1989] Jovan Mališić. Slučajni procesi: teorija i primene. Gradjevinska
knjiga, 1989. in serbian. 47

[McGlynn 2001] Michael J. McGlynn and Steven A. Borbash. Birthday pro-
tocols for low energy deployment and flexible neighbor discovery in ad
hoc wireless networks. In Proceedings of the 2nd ACM international
symposium on Mobile ad hoc networking & computing, MobiHoc ’01,
pages 137–145, New York, NY, USA, 2001. ACM. 23

[Moy 1994] J. Moy. OSPF - Open Shortest Path First, March 1994. 22

[Onat 2008] Furuzan Atay Onat, Ivan Stojmenovic and Halim
Yanikomeroglu. Generating random graphs for the simulation of
wireless ad hoc, actuator, sensor, and internet networks. Pervasive
and Mobile Computing, vol. 4, no. 5, pages 597–615, 2008. 75, 76

[Prim 1957] R. C. Prim. Shortest connection networks and some generaliza-
tions. Bell System Technology Journal, vol. 36, pages 1389–1401, 1957.
19

[Ravindranath 2010] Lenin S. Ravindranath, Calvin Newport, Hari Balakr-
ishnan and Samuel Madden. "Extra-Sensory Perception" for Wireless
Networks . In HotNets-IX, Monterey, CA, October 2010. 21, 27

[Ravindranath 2011] Lenin S. Ravindranath, Calvin Newport, Hari Balakr-
ishnan and Samuel Madden. Improving Wireless Network Performance
Using Sensor Hints . In 8th USENIX Symp. on Networked Systems
Design and Implementation (NSDI), Boston, MA, March 2011. 27

88 Bibliography

[Santi 2005] Paolo Santi. Topology control in wireless ad hoc and sensor
networks. Wiley, 2005. 16, 17, 20

[Senslab] Senslab. Very large scale open wireless sensor network testbed.
http://www.senslab.info/. 28, 69

[Sobeih 2006] Ahmed Sobeih, Jennifer C. Hou, Lu-Chuan Kung, Ning Li,
Honghai Zhang, Wei-Peng Chen, Hung-Ying Tyan and Hyuk Lim.
J-Sim: a simulation and emulation environment for wireless sensor
networks. Wireless Communications, IEEE, vol. 13, no. 4, pages 104
–119, aug. 2006. 24

[Srinivasan 2006] Kannan Srinivasan and Philip Levis. RSSI is Under Ap-
preciated. In In Proceedings of the Third Workshop on Embedded
Networked Sensors (EmNets, 2006. 18

[Supowit 1983] Kenneth J. Supowit. The Relative Neighborhood Graph, with
an Application to Minimum Spanning Trees. J. ACM, vol. 30, no. 3,
pages 428–448, 1983. 19

[Toussaint 1980] Godfried T. Toussaint. The relative neighbourhood graph of
a finite planar set. Pattern Recognition, vol. 12, no. 4, pages 261–268,
1980. 19

[Troel 2004] Arnaud Troel. Prise en compte de la mobilité dans les interac-
tions de proximité entre terminaux à profils hétèrogènes. PhD thesis,
Universite de Rennes, France, 2004. In French. 22, 23, 46, 58

[Tsiftes 2011] Nicolas Tsiftes and Adam Dunkels. A database in every sen-
sor. In Proceedings of the ACM Conference on Networked Embedded
Sensor Systems, ACM SenSys, Seattle, USA, 2011. 12

[Wang 2009] Qingsi Wang, Xinbing Wang and Xiaojun Lin. Mobility increases
the connectivity of K-hop clustered wireless networks. In MOBICOM,
pages 121–132, 2009. 45

[WASP] WASP. Wirelessly Accessible Sensor Populations. http://wasp-
project.org/. 22

[Wattenhofer 2004] R. Wattenhofer and A. Zollinger. XTC: a Practical Topol-
ogy Control Algorithm for Ad hoc Networks. In Proc. 4th International
Workshop on Algorithms for Wireless, Mobile, Ad Hoc and Sensor Net-
works (WMAN), Santa Fe, MN, USA, 2004. 20

Bibliography 89

[Wightman 2008] P. M. Wightman and M. A. Labrador. A3: A Topology
Construction Algorithm for Wireless Sensor Networks. In Proc. IEEE
Global Telecommunications Conf. IEEE GLOBECOM 2008, pages 1–
6, 2008. 17

[WISEBED] WISEBED. Wireless Sensor Network Testbeds.
http://www.wisebed.eu/. 69

[WSN430] WSN430. Kit Developer’s Guide. http://perso.ens-
lyon.fr/eric.fleury/Upload/wsn430-docbook/. 5, 13, 29

[WSNet] WSNet. An Event-driven Simulator for Large Scale Wireless Net-
works. http://wsnet.gforge.inria.fr/. 61, 76

	Title
	Abstract
	Résumé
	Contents
	List of Figures
	List of Tables
	Chapter 1 : Introduction
	Problem
	Contributions
	Structure

	Chapter 2 : State of the art
	Introduction
	Real sensors used in wireless sensor networks
	Types of sensors and their capabilities
	Program support for WSN
	Large scale experimentation

	Notations and preliminaries
	General remarks
	Neighborhood discovery
	Energy consumption

	Topology control
	Topology control based on graph reduction
	Energy concerns in topology control

	Neighborhood discovery and network mobility
	Experiments with scalable networks

	Chapter 3 : Topology control using sensor hardware
	Introduction
	Making the sensors aware of their power supply
	Using analog-digital converter input of microcontroller
	Supply voltage supervisor

	Topology control Algorithm based on battery level
	Models and preliminaries
	Making Connection from Voltage Level to RNG Weight Function
	Algorithm for topology control using power factor

	Experimental results
	Experimentation Set Up
	Node degree and connectivity preservation using 3 different RNG algorithms

	Conclusion

	Chapter 4 : Neighborhood discovery in mobile networks
	Introduction
	Theoretical analysis
	Probable number of new neighbors to compute the turnover
	Analysis on minimization of energy cost

	Algorithms
	Using the turnover
	Using the optimal frequency of HELLO messages
	Minimizing the cost
	Minimizing the energy consumption

	Experimental results
	Conclusion

	Chapter 5 : Emulation of large scale wireless sensor networks
	Introduction
	Basic principle
	1-hop hexagonal grid
	Emulation large scale graph

	Experimental results
	Simulation setup
	Emulation setup
	Comparison of the results

	Conclusion

	Chapter 6 : Conclusion
	Results
	Future advances

	Bibliography

	source: Thèse de Jovan Radak, Lille 1, 2011
	d: © 2012 Tous droits réservés.
	lien: http://doc.univ-lille1.fr

