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Abstract

How living organisms, including us, process information has been one of the
largest mysteries of the whole humankind. For almost all the animals, infor-
mation processing is performed by a group of organs called nervous system,
with neurons as the major information processing units. Neurons are mu-
tually connected and communicate primarily using action potentials. How
the information is actually coded within the nervous system is still unknown.
The implications of a good understanding of the neural code are enormous
and influence several different fields of research: from neural prosthetics, over
artificial intelligence all the way to the research of consciousness. Thousands
of scientific papers have addressed the neural coding problem.

In this thesis we bring together advanced mathematical tools and signal
processing methods to address three very important problems in neuroscience:
neural action potential (spike) detection, neural spike sorting and directly
neural coding.

Starting from extracellular neural recordings, which are the most common
way of acquiring the neural activity, we first address the problem of spike
detection. The spike time occurrences appear (as irregularities) explicitly in
the distributional derivatives of the neural signal. The problem is seen as a
change point detection problem. Using operational calculus, which provides
a convenient framework to handle such distributional derivatives, we charac-
terize the time occurrence of a spike by an explicit formula. We derive from
this characterization a joint change point detection and localization system
implemented using a digital Volterra filter.

After spike detection we address the spike sorting problem. The detected
spikes to be sorted are first processed with some feature extraction technique,
such as PCA, and then represented in a space with reduced dimension by
keeping only a few most important features. The resulting space is next
filtered in order to emphasis the centers of the clusters which are assumed to
be areas of the highest spike density in the feature vector space. Lastly, the
spikes are assigned to a particular cluster using a sort of a greedy algorithm.

Next, we extend this simple sorting algorithm for case when multi-channel
recordings are available. In such context, the performance of ICA is known to
be limited since the number of recording sites is much lower than the number
of the neurons around. The algorithm uses an iterative application of ICA
and a deflation technique in two nested loops. In each iteration of the external
loop, the spiking activity of one neuron is singled out and then deflated from
the recordings. The internal loop implements a sequence of ICA and spike
detection for removing the noise and all the spikes that are not coming from
the targeted neuron.



ii

Validation of the proposed spike detection and sorting algorithms is done
using simulated and real neural recordings. As real recordings, we used si-
multaneous intra- extra-cellular. The detection and sorting is done on the
extracellular recordings and the validation of the results is done using the
intracellular counterparts.

Finally, we discuss on properties of the neural code. Inspired by the nature
in general, where information is commonly present in a discrete form (from
quantum of light and matter to genetic code for example), we investigate
whether the nature of the neural code is discrete or continuous. Moreover,
if it is discrete, whether the elements of the code are drawn from a finite
alphabet. We particulary address pulse-position coding scheme, making a
link between communication theory and neural code. Even though we do not
give an explicit answer to these questions, we suggest a possibility that on
different time scales and in different parts of a nervous system several coding
schemes might coexist and that nature of the neural code might be dual.
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Résumé

Comment les organismes vivants, nous inclus, traitent les informations a tou-
jours été l’un des plus grands mystères de toute l’humanité. Pour presque tous
les animaux, le traitement d’informations est opéré par un groupe d’organes
appelé système nerveux, dont les neurones sont les principales unités de traite-
ment d’information. Les neurones sont reliés entre eux et communiquent
essentiellement par le biais de potentiels d’action. La façon exacte dont
l’information est codée au sein du système nerveux est toujours inconnue. Les
implications d’une bonne compréhension du code neural sont gigantesques et
influencent plusieurs domaines de recherche différents: depuis la prothétique
neurale en passant par l’intelligence artificielle et jusqu’a la recherche de con-
science. Des milliers d’articles scientifiques ont abordé le problème du codage
neural.

Dans cette these, nous utilisons un ensemble d’outils avancés de mathéma-
tiques et de méthodes de traitement du signal pour aborder trois problemes
importants en neuroscience: la détection de potentiels d’action (spikes), leur
tri, et le codage neuronal.

A partir d’enregistrements invasifs de l’activité de neurones, nous avons
d’abord abordé la question de la détection de spikes. Les instants d’occurrence
des spikes apparaissent (comme des irrégularités) de maniere explicite dans les
dérivées distributionnelles du signal neuronal. Le probleme est alors posé en
termes de détection et estimation conjointe de ces instants d’occurrence. En
utilisant le calcul opérationnel, qui fournit un cadre commode pour manipuler
des dirac, nous caractérisons le temps d’occurrence d’un spike par une formule
explicite. Nous déduisons de cette caractérisation un système de détection et
localisation de spikes implémenté par l’utilisation d’un filtre de Volterra.

Après avoir développé l’analyse de potentiels d’action, nous aborderons la
partie qui traite des problèmes de triage des potentiels d’action. Ces potentiels
d’action que l’on veut trier sont d’abord abordés par une technique permet-
tant d’extraire des caractéristiques comme PCA, et de les recueillir dans un
espace réduit tout en conservant seulement les caractéristiques les plus perti-
nentes. L’espace résultant est par la suite filtré. L’attention est alors portée
sur l’augmentation des centres de parutions qui sont programmés pour être
des régions de grande densité de potentiels d’action, dans cet espace où sont
retenues ces caractéristiques spécifiques.

Nous élargissons ensuite ce simple algorithme de triage pour les cas où
les enregistrements multi-canaux sont disponibles en utilisant l’ICA. Dans un
tel contexte, la performance de l’ICA est connue pour être limitée du fait
du nombre de sites d’enregistrements beaucoup plus faible que le nombre de
neurones autour. L’algorithme utilise une application itérative de l’algorithme
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ICA et une technique de déflation dans deux boucles imbriquées. Dans chaque
itération de la boucle externe, l’activité d’un neurone est ciblée, puis isolée
et ensuite élaguée des enregistrements. La boucle interne met en ouvre une
séquence d’applications de ICA et de détection afin de supprimer tout ce qui
ne releve pas du neurone cible.

La validation de détection de potentiels d’action et du tri a été réalisée en
utilisant des enregistrements de neurones simulés et réels. En tenant compte
des enregistrements réels, nous avons utilisé simultanément ceux intra- extra-
cellulaires. La détection et le tri ont été réalisés sur l’enregistrement extra-
cellulaire et la validation des résultats a été faite en utilisant l’équivalent
intracellulaire.

Enfin, nous menons une discussion sur les propriétés du code neuronal.
Inspiré par la nature en général, où l’information est souvent présente sous
une forme discrète, nous examinons l’hypothese d’un code reposant sur un
alphabet fini. Cette hypothese correspond a un schéma de modulation PPM
qui est déja suggéré par le codage temporel et la présence de jitter. Même
si nous ne donnons pas une réponse explicite à ces questions, nous proposons
une possibilité qui est qu’à différentes échelles de temps et dans différentes
parties d’un système nerveux, plusieurs schémas de codage peuvent coexister
et que la nature du code neuronal pourrait être double.
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How living organisms, including us, process information has been one of the
largest mysteries of the whole humankind. Different animals process all kinds
of stimuli in a proficient way, obtaining amazing outputs. Today, we believe
that we generally understand how the information is transmitted within a
nervous system. However, the exact way how it is coded is still unknown, even
though there has been a large number of studies that addressed this question.
Few decades ago, the coding problem seemed to be very well understood, but
recently it has been suggested that the coding process is likely much more
complex than previously assumed. Apart from the scientific curiosity, fully
cracking the neural code would open the doors widely for a great development
of neuroprosthetics applications and artificial intelligence. One important
problem in decoding of the neural code is obtaining reliable recordings from
the nervous system. That problem will be closely analyzed in this dissertation,
together with discussion on what coding schemes might exist in a nervous
system.

This chapter starts with a brief overview on the biological organization
of the system that performs this sophisticated neural information process-
ing, starting from the top with the nervous system and ending by describing
neurons and their activity. The aim is to give to a reader an impression of
complexity and variety of the biological elements and mechanisms that are
the subject of interest of the following chapters. For details on the anatomy
of the complete nervous system the interested reader should see [Netter 2002]
and for description of the principles of neural science we suggest the great
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books [Purves 2008], [Kandel 2000], [Rose 2006] and [Izhikevich 2006] which
have been the main source of information in this overview.

Next, we discuss on problems and challenges towards neural coding. We
analyze currently available recording techniques and discuss on how better
processing of these recordings can lead to a better understanding of the neural
code. Particulary we present problems of neural action potentials detection
and their sorting, which stands as important challenge in neuroscience and
which will be central topic of chapters two, three and four. Finally, in chapter
five, we briefly present different neural coding schemes, particulary discussing
the finite alphabet coding scheme.

1.1 Biological background

This section gives a brief overview of the most interesting biological elements,
from perspective of neural information processing.

1.1.1 Nervous system

For almost all the animals, information processing is performed by a group
of organs called nervous system1. The main processing unit of a nervous
system is a special type of cell, called neuron. Typically, the nervous system
consists of two parts: central and peripheral2. The central nervous system of
vertebrates (such as humans) contains a brain, a spinal cord, and a retina.
The peripheral nervous system consists of sensory neurons, clusters of neurons
called ganglia, and nerves connecting them to each other and to the central
nervous system.

1.1.2 Brain

The most complex and the most advanced part of the nervous system is the
brain. This short overview will give only some brief insight in its complexity.

1.1.2.1 Cell types

The brain is composed of two broad classes of cells: neurons and glial (also
called neuroglial or supporter cells). In humans, the brain contains roughly
100 billion neurons3 and around the same number of glial cells.

1Only sponges and a few other simpler animals have no nervous system.
2Some primitive animals such as jellyfish and starfish have a decentralized nervous sys-

tem.
3The number depends on many factors such as age and gender.
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Glial cells come in several types, which perform a number of critical func-
tions, including structural support, providing of nutrition and energy, main-
taining homeostasis, destroying pathogenes and removing dead neurons.

Until recently neurons have been considered as the only cells directly re-
sponsible for an information processing in the brain. However, some recent
studies have shown that glial cells could also have a role, even though much
smaller than neurons, in processing of information4. The role of the glial cells
is not going be investigated in this thesis; we will concentrate on the role
neurons.

1.1.2.2 Major parts

The brain of a vertebrate can be divided into six main regions: the telen-
cephalon (cerebrum), diencephalon (thalamus and hypothalamus), mesen-
cephalon, cerebellum, pons, and medulla oblongata (figure 1.1). In mam-

Figure 1.1: Regions of human’s and shark’s brain. From Wikipedia.

malian brain, the outer layer of the telencephalon, called cerebral cortex, plays
a key role in memory, attention, perceptual awareness, thought, language, and

4See e.g. [Huxtable 2010] and [Eric 2003] where it is shown how glia can modulate
neuronal activity by releasing transmitters in a process called gliotransmission.
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consciousness. As it is so important the cortex is often in the focus of the stud-
ies about neural information processing. Even though we will investigate some
general principles in this thesis, most of our simulations and discussions will
be based on the data recorded from cortex, either human or other animals.
To illustrate the cortex complexity we give several statistical information we
find fascinating. The human cerebral cortex is 2 − 4mm thick. In a cu-
bic millimeter it contains more than 104 cell bodies and several kilometers
of ’wires’. Overall, it contains more than 10 billion neurons, where each is
usually connected with more than 10000 others. Organization of the cortex
is quite complex. Its laminar structure is usually described through 6 layers
(figure 1.3), however the number of layers, their thickness and organization
are not the same over the whole surface of the cortex. In addition, cortex may

Figure 1.2: Layer organization in different parts of cerebral cortex, given
through three different visualization and coloration techniques: (a) Weigert’s
coloration (shows cell bodies and axons inside and between the layers) (b)
Nissl’s coloration (only reveals cell bodies) (c) Golgi’s coloration shows the
whole cells. From [Nolte 2002].

be classified on the basis of gross topographical conventions into four lobes:
temporal lobe, occipital lobe, parietal lobe and frontal lobe.
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Figure 1.3: The four lobes of cerebral cortex. From Wikipedia.

1.1.3 Neurons

The role of a neuron is to receive, process and transmit information by electri-
cal and chemical signaling. Neurons communicate mutually making the large
networks and systems that have been described before in this chapter.

Neurons are morphologically very complex. The main parts of a typical
neuron are shown on figure 1.4. Most of neurons receive stimuli through
synapses (from outside world or from other neurons). The stimuli provoke
an electrical responses (postsynaptic potential) which then through dendrites
come to the cell membrane.

The membrane is populated by voltage activated ion channels. These
channels help to transmit the signal. The membrane bounds the body of a cell
(called soma) which is the metabolic center with nucleus that stores genetic
information of the cell. When the stimulus is large enough, a signal, called
action potential, is generated in axon hillock (see following subsection for a
detail description of this process). The action potential is carried away from
the body of a neuron by axon which can have length from 0.1mm to more than
a meter. At the end of an axon are axon terminals. They contain synapses,
each synapse conducts signal between two neurons. A signal is emitted from a
presynaptic cell and received by a postsynaptic cell. The cells are usually not
anatomically connected. The small space between the communicating cells is
called synaptic cleft.

Even though the majority of neurons have the parts described above, mor-
phologically and functionally neurons can be very different among each other.
Different classifications divide neurons into even more than 1000 different
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Figure 1.4: Main parts of a neuron. From Wikipedia.

groups. Only to illustrate this diversity, several main criteria used for such
classifications will be described here. Mainly, neuron are classified by the
function they play in a nervous system:

• Sensory (afferent) neurons convey information from tissues and organs
into the central nervous system.

• Motor (efferent) neurons transmit signals from the central nervous sys-
tem to the effector cells, e.g. muscle cells.

• Interneurons connect neurons within specific regions of the central ner-
vous system.

Sensory neurons and interneurons that are close to the sensory neurons will be
particulary interesting for us in this thesis, especially in the, neural coding re-
lated chapter five. Even though we will not conduct any biological experiments
we will often use data recorded from these neurons since we can try to relate
their response with some controlled stimuli. Such experimental paradigm is
a very useful insight in neural information processing, widely performed in
today neuroscience.
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To illustrate better the anatomical diversity of neurons we mention another
important classification, by the number of processes that originate from the
cell body (figure 1.5):

• Unipolar or pseudounipolar : dendrite and axon emerging from same
process.

• Bipolar : axon and single dendrite on opposite ends of the soma.

• Multipolar : more than two dendrites.

1.1.4 Action potentials

An action potential is a short-lasting (around 1ms) event in which the electri-
cal membrane potential of a cell rapidly rises and falls, following a consistent
trajectory. Its purpose is transmission of information from one cell to others.
Action potentials occur in several types of animal cells, called excitable cells,
which include neurons, muscle cells, and endocrine cells, as well as some plant
cells. In this dissertation neural action potentials will be in the focus.

1.1.4.1 Resting potential

To understand the mechanism of generation of action potentials we first have
to consider resting state, when no stimulus comes to a neuron’s membrane.

Four ionic currents are mostly responsible for the electrical activity of a
neuron: sodium (Na+), potassium (K+), chloride (Cl−), and calcium (Ca2+).
The concentrations of these ions are different on the inside and the outside of
a cell. These ionic gradients are the major forces driving neural activity.

The extracellular medium has a high concentration of Na+ and Cl− ions
(it is salty, like seawater), and a relatively high concentration of Ca2+. The
intracellular medium has high concentrations of K+ and different negatively
charged molecules (denote generically A− for anions). Concentrations of these
molecules inside and outside of the cell are illustrated on figure 1.6.

The cell membrane has large protein molecules forming channels through
which ions (but not A−) can flow according to their electrochemical gradients.
The flow of Na+ and Ca2+ ions is not significant, at least at rest, but the flow
of K+ and Cl− ions is. This, however, does not eliminate the concentration
asymmetry for two reasons:

• Passive redistribution: The impermeable anions A− attract more K+

into the cell and repel more Cl− out of the cell, thereby creating con-
centration gradients.
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Figure 1.5: Neurons can be classified as unipolar, bipolar, or multipolar ac-
cording to the number of processes that originate from the cell body. From
[Kandel 2000].

• Active transport : Ions are pumped in and out of the cell via ionic pumps.
For example, the Na+-K+ pump, shown on figure 1.6, pumps out three
Na+ ions for every two K+ ions pumped in, thereby maintaining con-
centration gradients.
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Figure 1.6: Ion concentrations inside and outside of the neuron. From
[Izhikevich 2006] where it is taken and modified from [Johnston 1995].

Thanks to these mechanisms, in resting state, the difference of potentials
between inside and outside of a neuron is quite stable. It can be different
from neuron to neuron, but it is generally around −70mV . Maintaining this
equilibrium, as we will see later in this section, is a very important property
of neurons. Half of the metabolic energy consumed by the human brain is
used for moving of ion pumps.

1.1.4.2 Synaptic activation

For the majority of neurons, excitation happens through synapses. As men-
tioned earlier, each neuron is usually connected with a large number of other
neurons through synapses (one synapse makes a connection between two neu-
rons). The strength of the synaptic transmission can be enhanced or reduced
over time, depending on the history of the cellular activity. This is called
neural plasticity and it is crucial for memory and learning. Depending on ions
that will be released as a consequence of the synaptic transmission, it can
either increase (excitatory) or decrease (inhibitory) the chance of firing the
action potential by the postsynaptic neuron. There are generally two basic
types of synapses:
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• Electrical synapses (figure 1.7 A) where the presynaptic and postsy-
naptic cell membranes are connected by channels that are capable of
passing electrical current, causing voltage changes in the presynaptic
cell to induce voltage changes in the postsynaptic cell. The separation
between two neurons is very small only around 3.5nm. The most inter-
esting property of theses synapses is that the transmission is very fast
- it lasts only around 0.01ms. Thus, such type of synapses is found in
systems where very fast information processing is essential, such as in
escape mechanisms. Another insetting property of electrical synapses is
that they are bidirectional, i.e. they allow signal transmission in either
direction.

• Chemical synapses (figure 1.7 B) are far more numerus than electrical
synapses. The separation between two neurons is here much larger and
ranges between 20nm and 40nm (called synaptic cleft). The transmis-
sion is based on the release of neurotransmitters by a presynaptic neuron.
The neurotransmitters bin to the receptors located in the postsynaptic
cell, inducing generation of ions. The number and type of the ions de-
pend on the strength and type of the synaptic transmission (excitatory
or inhibitory). Chemical synapses take much more time than electrical
to transmit a stimulus, from 0.5 to 40ms

1.1.4.3 Breaking the equilibrium

An action potential is initiated by breaking the equilibrium that keeps the
resting potential. The development of an action potential can be observed
through 6 phases (figure 1.8):

1. Initiation of the action potential typically happens by injection of extra
sodium cations, which is commonly caused be the synaptic activation
and brought to the cell membrane through the dendrites. The initial
membrane permeability to potassium is low, but much higher than that
of other ions, keeping the value of resting potential the same. The
depolarization opens both the sodium and potassium channels in the
membrane, allowing the ions to flow into and out of the axon, respec-
tively.

2. If the depolarization is small (if the stimuli from the dendrites are not big
enough), the outward potassium current overwhelms the inward sodium
current and the membrane repolarizes back to its normal resting poten-
tial. However, if the depolarization is large enough, the inward sodium
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Figure 1.7: Electrical (A) and chemical (B) synapses. From [Purves 2008].

current increases more than the outward potassium current and a posi-
tive feedback results: the more inward current there is, the more sodium
channels open. This positive feedback continues until the sodium chan-
nels are fully open. The critical threshold voltage for this positive feed-
back is usually around −45mV , but it depends on the recent activity of
the axon.

3. The positive feedback of the rising phase slows and comes to a halt as the
sodium ion channels become maximally open. The same raised voltage
that opened the sodium channels initially also slowly shuts them off.
The sodium channels become inactivated. This lowers the membrane’s
permeability to sodium relative to potassium, driving the membrane
voltage back towards the resting value. At the same time, the raised
voltage starts to open voltage-sensitive potassium channels. Since the
potassium channels are much slower to open, the depolarization has time
to be completed. Combined, these changes in sodium and potassium
permeability cause the potential to drop quickly.

4. With the potassium channels open, the membrane begins to repolarize
back toward its rest potential. A membrane that has just fired an action
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potential cannot fire another one immediately, since the ion channels
have not returned to their usual state. The period during which no new
action potential can be fired is called the absolute refractory period. It
includes phases from 1 to 4 and lasts usually around 1ms. The refractory
period ensures that the action potential travels in only one direction
along the axon.

5. The repolarization typically overshoots the resting potential to about
−90mV . In this phase the axon can be stimulated to produce another
action potential, but only with a much stronger depolarization. The
period during which action potentials are unusually difficult to provoke
is called the relative refractory period and lasts about 1 − 2ms. This
phase obviously has a strong importance in information processing and
it will be discussed later in this dissertation.

6. After hyperpolarization, the Na+/K+ pump eventually brings the mem-
brane back to its resting state of −70mV .

Figure 1.8: Generation of action potential through six phases. From
Wikipedia.
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1.2 Challenges in understanding of neural com-
munication

The above overview of the nervous system shows that we have quite an ex-
tensive knowledge about the anatomy of a nervous system. The anatomical
structure is generally well understood on both macroscopic and microscopic
scale. On the macroscopic scale we are able to identify the major parts of
the nervous system and their functions. On the microscopic scale the general
physiology of individual neurons is well understood. Why then we still do not
understand exactly how neurons code the information they transmit?

First, we have to notice that understanding of the neural code is currently
much better for parts of a nervous system that consist of a small number of
neurons. For example, the escape system of a cockroach specie periplaneta
americana consists of only 8 neurons. The escape system detects an approach
of a toad (which is the cockroach’s natural enemy) and codes the direction in
which the cockroach should escape. Current evidences, based on recordings
of the activity of these neurons, suggest that the direction of escape is coded
using combined activity from all 8 neurons. Each neuron is associated with a
particular angle and its activity can be represented as a vector of that angle
and with length proportional to the number of fired action potentials. The
direction is determined by a population vector which is a sum of all the 8
individual vectors.

Contrary to this example, understanding of the neural code is not on such
level in more complex parts of a nervous system. As we said in the previous
section, the cortex, the most interesting part is also the most complicated one.
The reason why the coding problem is still unsolved for the cortex seems to
raise from the incomplete knowledge on the mesoscopic scale. Even though we
are able to divide the cortex in different functional regions and we generally
know the anatomy of individual neurons, we are still not able to understand
the interactions that are happening among the cortical neurons. With an
extremely high density of neurons in a cortex, neural communication is very
hard to precisely analyze and model.

To understand why the high density of the neurons makes the problem of
decoding much more difficult, we have to analyze some side effects of having
such high neural density. Processes of generation of action potentials, the
flow of the action potentials through an axon and the synaptic transmission,
among else, result in the change of electrical potential in the medium which
surrounds neurons - the extracellular fluid. The reason for this interaction
with the extracellular medium is the ion leakage which happens during these
processes. Such change of the potential in the extracellular medium has a
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feedback influence on neurons, affecting their firing patterns. This feedback
can only happen when the density of neurons is very high since the extra-
cellular fluctuations decay with distance. We can say that in the cortex the
interactions between neurons are not happening only by action potentials, but
also by extracellular potentials. This complicates very much the understand-
ing of the neural code, because it is very difficult to understand and model
the exact effect of neurons on the extracellular potential, and vice versa.

When talking about the interactions between neurons through the extra-
cellular potentials, we have to raise a question whether these interactions are
really only a side effect or a way of communication. In other words, are these
extracellular potentials only a stochastic noise, or they exhibit some corre-
lation and actually convey an information? In fact, several recent studies
suggested that the second mentioned is correct. This obviously complicates
the problem of cracking the neural code.

There are several different aspects on how the code cracking problem could
be approached. One approach is by computational modeling of the neural net-
works (developing an internal model). Hypothetically speaking, if the model
is a perfect representation of some biological neural network, observing the
model behavior could help to have a better understanding of the coding pro-
cess. The benefit of using the model is the ability to identify a change of
the electric potential in any point of the model. For comparison, as we will
see later, such extensive ability is currently not possible to obtain from the
biological measurements.

Making the computational models that are the exact replica of the par-
ticular parts of the cortex is an extremely difficult task, due to the enormous
complexity, which does not rise only from the large number of neurons but
from their individual differences.

Let us now discuss a little these individual differences. As we said in
the previous section, some classifications say that there are more than 1000
anatomically different types of neurons. However, even though the neurons
that are considered to be of the same type are in fact not the same. Their
anatomy has similar structure, but there are still some significant mutual dif-
ferences. Some of the differences are direct implication of the natural selection,
but some of them occur as a consequence of so-called transcriptional noise.
The term transcriptional noise refers to the mistakes in interpretation of the
genetic code which lead to variations in the protein structures. Manifestation
of such noise in a nervous system is visible, for instance, in the different num-
ber and distribution of the ion channels among the neurons. So two neurons,
even if they are classified in the same class, will usually have different number
and distribution of the ion channels. This will lead to, for example, different
resting potentials, but more general to the different dynamic properties of the
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neurons.
Since neurons are generally mutually different it is currently impossible

for the artificial neural networks to make an exact replica of some real neural
network. This has a very important implication when we talk about using
the artificial neural networks to crack the neural code. The implication is
that it is not possible to verify if the artificial model is correct or not. For
example, if the artificial neural network is an exact copy of some biological
neural network, by sending the same stimuli on the input of the both networks
and observing the output, it would be possible to say weather the artificial
network is a valid representation of the biological.

Instead of using the computational models to crack the neural code, we
can use a more direct approach and try to deduce the code by observing inputs
and outputs, either of neural networks or individual neurons. If we assume
that we know the input and the output we can test different coding hypothesis
(a black box model).

To have some realistic idea of what kind of signal we are currently able to
record form the nervous system, particulary the cortex, we give in the next
section a brief overview of the common recording techniques.

1.3 Neural recordings

The focus in this section will be on recording techniques that measure directly
the neural electrical activity. Some other techniques based on indirect record-
ing of the neural activity (electroneurogram (ENG)), e.g. certain metabolic
processes also exists. For example, functional magnetic resonance imaging
(fMRI) which measures change in the blood flow. As such recordings have
generally low temporal resolution, they are not very useful in understanding
of the neural code.

The recordings based on direct measurement of the neural electrical activ-
ity in the brain can target on recording the activity of a large neuron assemblies
from brain/skull surface (surface recordings), smaller populations of neurons
(extracellular recordings) or single neurons (usually intracellular recordings).

1.3.1 Surface recordings

Three frequently used devices for such recordings will be described here.

Skull EEG Large neural assemblies are most commonly recorded with elec-
trodes placed on a skull (skull electroencephalography - skull EEG). Since the
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technique is non-invasive it is often performed on humans, in order to diag-
nose or treat (in neurofeedback systems) neurological diseases. Skull EEG
is nowadays recorded with systems that have up to 256 electrodes. Since
the number of neurons in the human brain is around 100 billion, it is clear
that this technique will record some cumulative activity of a very large, syn-
chronously active neural networks. Because the skull has a frequency response
of a low-frequency filter, skull EEG can not register frequencies larger than
about 80Hz.

Cortical EEG In the cortical EEG the electrodes are placed under a skull,
directly on the neural tissue of the cortex. Such procedure is clearly much
more difficult to perform. Usually the cortical EEG is measured on humans
only when the skull has to be opened due to some surgical procedure. The
benefit of the cortical EEG is that the skull filtering is completely eliminated.

Magnetoencephalography - MEG MEG is based on recording of small
magnetic fields produced by electrical currents occurring naturally in the
brain, using arrays of SQUIDs (superconducting quantum interference de-
vices). Magnetic fields are less distorted than electric fields by the skull and
scalp, which results in a better spatial resolution of the MEG than skull EEG.
Thus MEG is typically used to localize large synchronously active neural net-
works. Since magnetic fields are much more difficult to register than electrical,
the MEG devices are much more sophisticated and more expensive than EEG
devices.

With any of such recordings we are obviously not able to isolate the individual
action potentials, but only to see their combined activity. Even though they
might not directly help in cracking the neural code, these recordings can give
an interesting insight on how large populations of neurons generally react on
different stimuli. To illustrate this with an example, let us mention a common
experimental paradigm performed during surface recordings, especially the
skull EEG. The paradigm consist of an iterative stimulation with light during
the recording. In each iteration, similarly shaped patterns can be observed
from certain regions of the cortex, particulary from the occipital region where
the center for processing of visual stimuli appears to be. So even though in
this particular case we do not know how the stimuli are actually coded, we do
know what kind of response on a large population level we can expect. This
has already been used in applications such as brain-computer interface (BCI),
where brain recordings are used to enable an examinee to control a computer,
e.g. through a virtual keyboard. From the biological point of view, the general
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concept of BCI is not difficult to explain roughly. A light stimuli, converted
into an electrical current by the retina, is carried through an optical nerve to
the occipital region of the cortex. There, the neurons in charge for processing
the visual stimuli are excited and they start to fire action potentials. This
results by synchronous increase of the activity in the occipital region which is
then visible on the recording. So even though we do not understand the cod-
ing process itself, we know that delivering of stimuli will result in increase of
the firing rate (number of action potentials per a time unit) for some neurons.
So to understand the coding process we have to understand what is the exact
correlation between the particular stimuli and the spike rate and timings. To
do so, we need the recordings and we need to isolate individual neural activity.

1.3.2 Recordings on a single neuron

To obtain recordings of individual neural activity we need to record directly
from the inside of the brain. An example of such recordings are recordings on
a single neuron.

Recordings on a single neuron have generally very good signal to noise
ratio (SNR), the activity of the recorded neuron is usually obvious from such
recordings. In the sequel we first briefly describe the recordings and then
analyze if they can help in understanding of the neural code.

Single neuron recordings are typically performed intracellularly. An intra-
cellular recording involves measuring voltage and/or current across the mem-
brane of a cell. To do an intracellular recording, the tip of a fine (sharp)
microelectrode must be inserted inside the cell, so that the membrane poten-
tial can be measured. Most intracellular electrodes are glass micropipettes,
with a tip diameter lower than 1µm, and a resistance of several MΩ. The
micropipettes are filled with a solution that has a similar ionic composition as
the intracellular fluid of the cell. A chlorided silver wire inserted in the pipet
connects the electrolyte electrically to the amplifier. The voltage measured
by the electrode is compared to the voltage of a reference electrode, usually
a silver chloride wire in contact with the extracellular fluid around the cell.
In general, the smaller the electrode tip, the higher its electrical resistance,
so an intracellular electrode is a compromise between size (small enough to
penetrate a single cell with a minimum damage of the cell) and resistance (low
enough so that small neural signals can be discerned from thermal noise in
the electrode tip).

Another technique called patch clamp is also popular. It is similar to the
one described above, but instead of inserting the microelectrode inside the cell
here it is sealed onto the surface of the cell membrane.

An experimental paradigm that could help in understanding of the neural
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code would be to simultaneously record a large number of neurons, while they
are stimulated with repeated and controlled stimuli. Here we face the main
drawback of intracellular recordings: difficultly of simultaneous performing
such recordings on more than one cell. This technical limitation raises from
the complex recording setup, which makes the intracellular recordings very
difficult to perform, even on a single neuron.

Notice also that intracellular recordings are generally very difficult to per-
form on moving animals, especially for long time. This significantly limits
their applicability in different neural prothesis, which will be discussed later
in this chapter.

1.3.3 Extracellular recordings

Intracellular recordings give a reliable insight in a single neuron activity, thus
they can be useful when neural coding problem is addressed. However, we will
now consider extracellular recordings that could lead to a successful record of
activity of more than one neuron.

Extracellular recordings are performed by placing the electrode in the
medium around the neurons - as close as possible to the bodies of the neurons,
but without touching them. They measure difference of the electric potentials
between the electrode and some reference point which is considered to have a
stable potential. An extracellular electrode can have just one or more record-
ing sites. The distance between the neighboring recording sites is usually
similar as the mutual distance between the recorded neurons. For example, in
[Mathieson 2004] an extracellular recording system with 512 electrodes is de-
scribed. The diameter of each recording site is 5µm, and the distance between
two neighboring sites is 60µm.

With extracellular recordings we obtain, on each recording site, the si-
multaneous activity from a large number of neurons within a small part of
the neural tissue. We can say that each recording site records a mixture
of the projections of the activity from a vast number of the neurons around.
The amplitude and the shape of a projection depend primarily on the distance
between the corresponding neuron and the recording site, but also on the mor-
phology of the neuron and on the electrical properties of the medium between
the neuron and the recording site. Even though subthreshold fluctuations are
part of activity of any neuron (when stimuli are not large enough to initi-
ate an action potential), the most important neural activity is characterized
by action potentials, due to their large amplitude. An example that demon-
strates the change in amplitude and shape of an action potential recorded
at four different places, all very close to the neuron, is shown of figure 1.9.
An action potential recorded with an extracellular electrode is usually called
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spike. Due to the imperfection of the amplifiers and filters, but also due to
the quantization effects, the measurement process introduces a noise.

Figure 1.9: Simultaneous recording of extracellular spike waveforms shows
how amplitude and shape of action potentials varies with distance from the
neuron.

Generally speaking, extracellular and surface recordings both record some
cumulative activity of a large number of neurons. An important advantage of
extracellular recordings is that the electrodes can be placed at an arbitrary
location. This is very important because it makes possible to conduct an
experiment in which we can stimulate a part of a nervous system and during
the stimulation record extracellularly from that region. In such way we can
obtain a much more direct relationship between the stimuli and the response,
which is in this case a sum of the activity of a large number of neurons.

Obtaining the response to stimuli is not enough to understand the neural
code. As we discussed in the previous section, neuroscientists generally agree
that the principal way of transmitting an information within a nervous system
is by action potentials (spikes). Thus to address the neural coding problem on
the lowest level we need some information on the individual neural activity.
Now we come to a very important question which has been the subject of many
neuroscience studies: how from an extracellularly recorded noisy mixture of
neural activity obtain the activity of individual neurons that can be used to
investigate the neural code? This question will be discussed in the next two
sections, but also in the next three chapters.

1.4 Processing of extracellular recordings

Extracellular recordings consist of projection of activity from a large number
of the neurons around the electrode and some additive noise introduced by
the recording process itself. To make such recording useful for understanding
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of the neural code we want to find the activity of the individual neurons.
Activity of a single neuron consists of subthreshold fluctuations and action
potentials. Even though the subthreshold fluctuations could have a role in
the information transmission by influencing the extracellular medium, action
potentials are the main element of the neural communication. Thus, activity
of single neurons is usually simplified, by saying that a neuron is either firing
an action potential or it is in the resting state.

While traveling down the axon all the action potentials have almost the
same shape and amplitude, regardless of neuron which fired them. So we can
say that no information is conveyed either in the shape or in the amplitude,
but only in the time instant when an action potential is fired. This makes the
problem of isolation of individual neural activity much simpler, since all we
need to find, for each neuron which additivity we want to isolate, are the time
instants when the action potentials occur. The process of finding these time
instants is generally called spike detection and it will be widely discussed in
the following chapter of this thesis. After the spikes are detected, in order to
access the individual activity of the neurons that fired the detected spikes we
have to assign each of the spikes to the corresponding neuron (the one that
fired the spike). This process in called spike sorting and it will be the topic
of the third and the fourth chapter of the thesis.

One of the main questions that naturally raises when talking about spike
detection is: from which neurons do we want to detect the spikes? To answer
this question we have to bare in mind that the main purpose of the spike
detection is to obtain spike locations in order to do the spike sorting. As we
will see later, the spike sorting is based on the fact that the amplitude and the
shape of the recorded spikes are different when the spikes come from different
neurons. In extracellular recordings, due to the simultaneous activity of a
large number of neurons and presence of the noise it is hard to differentiate
the spikes fired by the same neurons from the rest of the spikes. Generally,
in spike detection, we are interested only in the detection of the spikes which
shape is relatively well preserved, so it will be possible to sort them. Since
the amplitude of the projection of neuron activity depends dominantly on the
distance between the neuron and the electrode, neurons which activity will
be easiest to find are obviously the one located close to the electrode. The
precise number of these neurons or their maximal distance from the electrode
can not be explicitly given, since they depend on the number and the activity
of the more distant neurons as well as on the noise level. The spike detection
task is thus obviously not defined very precisely.

When only a handful of neurons are very close to the electrode, their
spikes are distinguished very clearly from the firing activities of the distant
neurons, which we consider as a background noise. In such situations, spike
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detection can be performed by simply setting a threshold. Unfortunately,
these situations do not always prevail and a simple threshold is not always a
good solution. In the following chapter, we will address the spike detection
problem in a more realistic setting, when the separation of spike and noise is
not always obvious.

In spike detection we are only interested in finding time instances when
spikes occur: even though a spike lasts about 1ms, we can represent it by only
one time instance. Moreover, we can say that a spike, an abrupt change in its
nature, is an irregularity in otherwise smooth signal. Even though this is not
empirically correct, it in spirit describes well the nature of spikes and makes
the problem of their detection easier. In fact, it makes the spike detection
problem equivalent to a change point detection problem. One popular way
to solve a change point detection problem is by using derivative estimators,
either in explicit or implicit form.

The spike time occurrences appear (as irregularities) explicitly in the dis-
tributional derivatives of the neural signal. The problem is seen as a change
point detection problem. Using operational calculus, which provides a con-
venient framework to handle such distributional derivatives, we characterize
the time occurrence of a spike by an explicit formula. We derive from this
characterization, a joint change point detection and localization system, im-
plemented using a digital Volterra filter. Notice that the proposed approach
is not limited only on detection of neural spikes, but results in general pur-
pose change point detection algorithm. One demonstration of this generality
is shown by successful application of the method on EEG signal in order to
detect artifacts caused by eye-blinks.

Assuming that we have detected the spikes, the next mandatory step in the
analysis of the neural signal is to separate the firing activities of the different
neurons. This is the so-called spike sorting problem. We address this problem
in chapters three and four.

As we mentioned earlier, spike sorting exploits the fact that, when recorded
extracellularly, action potentials from different neurons have different shapes
and amplitudes. After spike detection each spike is usually represented by few
features, e.g. the positive and the negative peak amplitude. This is done to
facilitate further computing by having a reduced-dimension signal, but also
to emphasis some features considered to be discriminative among the spikes
fired by the different neurons. When projected in the feature vector space,
spikes that belong to the same neuron are usually non-uniformly distributed
around the same center. An important problem in spike sorting is that we do
not know a priori how many neurons did fire the spikes that we have detected;
so we do not know how many centers the feature vector space has. However,
assuming that neurons fire with some given minimal firing rate, using simple
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spacial filtering, we emphasis and detect the cluster centers. We determine
the borders between the clusters by finding some minimal spike density in
the feature vector space. This approach generally leads to a good detection
results when spike features are significantly different. If this is not the case,
the clusters can be overlapped and possibly merged. The complete approach
and the implementation are described in chapter three.

Improved results of spike sorting can be obtained when multi-site extracel-
lular recordings are available and when the two following criteria are satisfied:

• The recordings sites are close enough, so the projections of action poten-
tials from a neuron close to one electrode are visible (amplitude higher
than the value represented by the lowest bit of the amplitude resolution)
on the other recording site(s).

• The recordings sites are far enough, so the projections of the action
potentials from a neuron close to one electrode is different (either by
shape, amplitude or the both) on the other recording site(s).

If this is true, we demonstrate in chapter four, that by applying independent
component analysis (ICA; a well known blind source separation technique) on
such a recording we can obtain a signal which is more suitable for spike sorting
techniques (particulary the one proposed in chapter three) than it would be
the original recording.

Notice that since ICA is a technique for separation from a mixture of
mutually independent sources, it is not perfectly suited for neural mixtures as
the neural activity is not mutually independent. However, the neural activity
is generally less dependent than the activity on the recordings sites. Even
though ICA will not lead to the perfect isolation, it will make the signal easier
to separate with the conventional spike sorting techniques.

Another problem with applying ICA in neural recordings is that ICA is
designed to separate independent activity from such mixtures where the num-
ber of the recording sites is greater or equal to the number of sources (neurons
in the mixture). This is obviously not true in neural recordings. The algo-
rithm proposed in chapter four addresses this problem. The algorithm uses
an iterative application of ICA and a deflation technique in two nested loops.
In each iteration of the external loop, the spiking activity of one neuron is
singled out and then deflated from the recordings. The internal loop imple-
ments a sequence of ICA and spike detection for removing the noise and all
the spikes that are not coming from the targeted neuron. We show in chapter
four that with such algorithm we can obtain much better sorting results than
by applying only ICA.
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1.5 Using extracellular recordings for understand-
ing of spike coding

We are nowadays able to record neural activity with multi-site extracellular
electrodes. In this section we will discuss how such recordings could be used
to understand the neural code.

What neuroscientists has already noticed is some relation between the
stimuli strength and the number of emitted spikes by the recorded neurons.
Generally, stronger stimulus results in more generated spike. For a long time
this was considered to be the only coding scheme of a nervous system (called
rate code), but as we will see later, more recent research indicated that some
other coding schemes are likely to be involved in the coding process, together
with the rate code.

Benefits of better understanding of the neural code are enormous in many
different research fields. They are even hard to imagine and often reach in
what is today considered as science fiction. Neuroprosthetics, pharmacology,
artificial intelligence and research of consciousness are just some of the ex-
amples. We will in chapter five particulary discuss possible influence of some
recent findings related with neural code on development of artificial intelli-
gence. However, even this rough knowledge about the proportionality of the
stimuli strength and the number of the spikes has been widely exploited in
several different applications among all the research fields mentioned above.
We will try to illustrate now, on two different application (brain computer
interfaces and deep brain stimulation), how the current knowledge is already
practically exploited, but also how better understanding of the neural code
can be very beneficial.

1.5.1 Brain computer interface - BCI

BCI is a direct communication pathway between the brain and an external
device. BCIs are usually aimed at assisting, augmenting or repairing human
cognitive or sensory-motor functions.

BCI is typically realized non-invasively, using skull EEG or MEG, but
much more accurate results can be obtained with invasive BCI, where an
electrode is implanted in the brain of a patient. The electrode is used for
extracellular neural recording, and contains a large number of recording sites,
e.g. 500. It is usually implanted in the part of the cortex where most of the
motor tasks are processed. Analysis of the number of the spikes per time unit
for each recording site gives some rough estimation of what movement the
patient wants to do. Depending on the application, the electrode is connected
with some artificial mechanic/computer devices. Such BCI can be used for
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example to type and move computer mouse or to control wheelchairs. A
schematic diagram of the standard invasive BCI system is given on figure
1.10.

Figure 1.10: Schematic diagram of BCI system. From [Simeral 2011]

A better understanding of the neural code and generally a more efficient
processing of the recorded signals (more neurons isolated from the mixture)
are the most important challenges for the construction of more accurate BCI
devices.
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1.5.2 Deep brain stimulation - DBS

DBS is a surgical procedure used to treat a variety of disabling neurologi-
cal symptoms such as the debilitating symptoms of Parkinson’s disease, e.g.
tremor, rigidity, stiffness, slowed movement, and walking problems. DBS uses
a surgically implanted, battery-operated medical device called a neurostim-
ulator or brain pacemaker. This device delivers electrical stimulation to the
targeted areas in a brain. A brain areas where DBS is commonly applied are
those that control movement or block the abnormal nerve signals that cause
tremor and Parkinson’s disease symptoms. This electrical stimulation consists
of impulses which duration and frequency are usually tuned experimentally,
observing the individual feedback from the patient. A schematic diagram of
the DBS circuit is given on figure 1.11.

Figure 1.11: Schematic diagram of DBS system. Includes battery, connecting
cable and stimulating electrodes. From Wikipedia.

Before starting with DBS, magnetic resonance imaging, computed tomog-
raphy scanning and extracellular recordings are usually used to identify and
locate the exact target within the brain where electrical nerve signals generate
the undesirable symptoms.

Even though the results of DBS are very promising, the stimulation process
in not very precise. Time structure of the delivered impulses is not estimated
on some knowledge on the neural code, but rather using experience and some
feedback information. Thus, how exactly DBS actually works is completely
unknown. Any progress towards the challenging question of understanding
the neural code would have a significant implications on DBS. For instance,
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it could be performed with a large number of stimulating sites, each of which
could take a role of one or a few neurons.

1.5.3 Coding schemes

The rate coding scheme was considered as the only one until it was observed
that some parts of the nervous system are able to process the stimuli so fast
that only one or two spikes per neuron could be fired. An example is, as
already mentioned, the cockroach escape system. It has been noticed that
the stimuli in that system are coded by simultaneous activity of population
of neurons, what is referred as population code. Later on, a high correlation
is observed between some stimulus property (e.g. intensity) and the time
elapsed from the stimulus onset until the first spike after the stimulus was
fired by the recorded sensory neuron; such way of representing information is
called latency code. Moreover, a correlation between the type of the stimulus
and elapsed time between two spikes, fired either by the same neuron or by
different neurons, is observed as well. This coding scheme is called interspike-
interval code. Each of these coding schemes are described in the fifth chapter;
concrete examples are used to support each coding scheme.

As we mentioned earlier, it is still not clear whether the interactions be-
tween neurons through extracellular medium convey any information. By
analyzing extracellular recordings, when we neglect spikes from nearby neu-
rons, we can notice relatively high energy in low frequency oscillations (mostly
below 100Hz), with some significant spatial coherence, these are called local
field potentials. Phase of these oscillations is sometimes noticed to correlate
with neural spiking activity. Some recent studies suggest that sometimes fir-
ing with respect to phase of the oscillations conveys more information about
some given stimuli than the firing rate.

Inspired by the nature in general, where information is commonly present
in a discrete form (from quantum of light and matter to genetic code for ex-
ample), we investigate whether the nature of the neural code is discrete or
continuous. Moreover, if it is discrete, whether the elements of the code are
drawn from a finite alphabet. We particulary address pulse-position coding
scheme, making a link between communication theory and neural code. Such
coding scheme would permit that, despite the time jitter which is present in
neural responses, an information about the stimulus can be extracted from a
single neuron. Conformation that the neural code is based on finite alpha-
bet would change drastically the current perspective of neural information
processing and would set a completely new pathway in several research fields
related with neural information processing. Even though we do not give an
explicit answer to these questions, we suggest a possibility that on different
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time scales and in different parts of a nervous system several coding schemes
might coexist and that nature of the neural code might be dual. As one
very interesting implication of the case that neural code is discrete and, more
generally, that neural information is not transmitted only by action potential
but as well with local field potentials we discuss influence on projects such as
Blue brain, where the brain activity is modeled regardless of the extracellular
potentials.

The thesis are finally concluded by the chapter six, which brings some final
discussion and conclusion.
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When a neuron receives a sufficiently large stimulus, which exceeds some
threshold level, it emits an electrical discharge called action potential. The
action potential travels through the axon and delivers the stimulus to other
neurons. It is a known fact that neurons use action potentials to communicate
between themselves [Rieke 1997].

One common way of recording action potentials is with extracellular elec-
trodes. Such type of recording can be performed for long time periods on mov-
ing animals, without destroying the cells being recorded. An action potential
recorded extracellularly is typically called spike and a sequence of spikes from
a single neuron is usually named spike train.

Extracellular electrodes record projections of activities from a large num-
ber of neurons. From extracellularly recorded signal it is usually possible to
localize spikes fired only be a few neurons closest to the electrode. Finding
locations of spikes fired by the neurons around the electrode is commonly re-
ferred as spike detection and it is in the focus of this chapter. Spike detection
is obviously not a very precise task, since the number of neurons that can
be sorted is not priori given. The number depends on spatial distribution of
neurons with respect to the electrode, what is different in every recording.
Also, the task is rather difficult due to a commonly large cumulative activity
of distant neurons, which is often hard to distinguish from spiking activity of
neurons that are close to the electrode.

Spike detection is frequently followed by spike sorting, in which detected
spikes are grouped into clusters in such way that spikes fired by the same
neuron belong to the same cluster (see [Delescluse 2005], [Roa 2007] and also
[?] for a review).
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Additionally, the results of spike detection can be used directly for appli-
cations such as brain-computer interface. Here as well the number of neurons
which spikes should be detected is not precisely defined.

The picture1 in figure 2.1 illustrates a spike train extracellular recording
experiment, from the nervous olfactory system of the locust. Each of the two

Figure 2.1: Recording from the locust antennal lobe, from [Pouzat 2005]

shanks of the intracranial probe carry two groups of four recording sites. The
recording sites are the bright spots and the side length of each is 13µm. Each
group of four recording sites is called a tetrode. The probe is next pushed
gently into the antennal lobe in order to record the action potentials of the
surrounding neurons. Figure 2.2 shows 1s data from a single tetrode, sampled
with 15kHz sampling frequency and bandpass filtered between 300Hz and
5kHz. More details on these records are shown in figure 2.3, representing a
zoom on a segment of y1(t) and y4(t), of 40ms duration from the point τ .
A comparison of the data from different sites shows that the amplitudes of the
recorded action potentials vary markedly with the distance of the neuron from
the recording site (compare b1 and b4 in figure 2.3). In general, such attenua-
tions also vary in time. The background additive noise is thus composed es-
sentially of action potentials from remote neurons [Gerstner 2002]. The zoom
in figure 2.3 also exhibits different action potential waveforms, corresponding
to different neurons [Delescluse 2006], [Nenadic 2005] (compare a1–a4, b4 and
d1–d4). Notice that the given is an example of signal with a very good signal

1This picture is reproduced from [Pouzat 2005] which we refer for more details on the
recording setting.
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Figure 2.2: One second signal recorded from the locust antennal lobe, filtered
in [300Hz, 5kHz]
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Figure 2.3: Signal recorded from the locust antennal lobe: zoom on a segment
of 40ms duration

to noise ratio (SNR), since the amplitude of the spikes that obviously come
from neurons close to the electrodes is very large in comparison to the rest of
the signal, which we consider as noise.

For the recordings where the SNR is relatively high, satisfactory results of
spike detection are possible to obtain simply by setting a threshold [Quiroga 2004].
Such example is signal shown on the bottom plot of figure 2.3. For the top
plot, the spike b1 does not have some large amplitude, thus finding an appro-
priate threshold level would be much more difficult in this example. Another
example, even more challenging for spike detection, is given on figure 2.4.
The second plot shows the extracellular recording and the first plot shows the
simultaneous intracellular recording of one of the neurons close to the extra-
cellular electrode [Henze 2000]. Such type of recording is a great insight on
structure of an extracellular signal. The action potentials fired by the neu-
ron recorded intracellularly are visible in the extracellular recording, but it is
obvious that their detection by placing a threshold would not be very conve-
nient, because the noise level is too high. For such recordings, with relatively
low SNR, using only spike amplitude for the detection does not lead to good
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results. Some other properties of spikes should be also exploited in order to
make a clear difference between the spikes fired by the closest neurons and
the noise.

0 0.5 1 1.5 2

Intracellular recording

seconds

0 0.5 1 1.5 2

Extracellular recording

Figure 2.4: Simultaneous intra- extra-cellular recording.

A spike is the result of a sudden polarity inversion of the electrical charges
across the neural membrane. Even though the spike waveforms are different,
they always contain an abrupt change of electric potential. Even better ex-
ample of such abrupt change is given on figure 2.5 where a zoom of the signal
shown on figure 2.4 is given. On figure 2.5 we can see that both, intracellularly
and extracellularly recorded action potentials do contain an abrupt change.
Later in this chapter a physical model of such changes will be analyzed more
precisely. Apart from the amplitude, this abrupt change of potential seems
to be a property which discriminates spikes from the rest of the neural signal.
In this chapter we will use this property to find the spikes within a noisy
environment.

We represent such an abrupt change as an irregularity in the neural current.
And since we do not require to distinguish between the spiking activities
of different neurons (we do not address the spike sorting problem for the
moment), the precise waveform of an action potential is not so relevant: the
irregularities are our only concern. We therefore consider a piecewise regular
model

y(t) =
∑
i>0

H(t− ti) fi(t− ti) +$(t), with t0 = 0, (2.1)

where a change from fi−1 to fi represents the occurrence of a spike at time
ti. $(t) is the background noise, composed mostly of activity from neurons
which are far enough from the electrode so we are not interested in detection.
Each fi(t) is a smooth segment and the unit step (Heaviside) H(·) is used
for causality purpose. Based on the observation y(t), we want to detect the
spikes and estimate their locations ti. This is a change-point detection and
estimation problem. A large amount of literature is devoted to the problem,
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Figure 2.5: Simultaneous intra- extra-cellular recording; zoom of part of figure
2.4

in its general form. The reader is referred to the monograph of M. Basseville
and V. Nikiforov [Basseville 1993] for a nice tutorial presentation and many
application examples. When a statistical model description of the observa-
tion data is available, then it is very common to approach the problem via
hypothesis testing. The classical cumulative sum statistic [Basseville 1993]
(see [Vaswani 2007] for other statistics) is essential in most of the algorithms
devised within this framework. Model selection is another common approach
and therein, the Bayesian theory plays an important role. An example using
penalized contrast may be found in [Lavielle 2005] (see also [Fan 2006]). As
opposed to the test statistic based methods which are sequential, the ones de-
veloped in the model selection framework are rather global: the change-points
are estimated simultaneously. Clearly, this is not suited for online implemen-
tation.

We may also mention the kernel based [Gijbels 1999], [Desobry 2005] and
other more specific spike detection approaches such as those using morpho-
logical filters [Xu 2007] and the method using a nonlinear energy operator
(NEO) [Kim 2000].

Beside the large variety of approaches, we note that wavelet decomposition
is a recurrent tool for detecting irregularities in a signal (see e.g. [Vaswani 2007]).
This is due to its ability to isolate them. The reason of this ability is that
a wavelet transform Wf with n vanishing moments is a differential operator
[Mallat 1999]. More precisely, if f is continuously differentiable up to order
n in the vicinity of t then, the wavelet transform satisfies [Mallat 1999, eq.
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(6.15)]

lim
α→0

Wf(α, t)

αn+1/2
= f (n)(t),

where the superscript (n) denotes order n differentiation.

The spike detection technique that will be presented in this chapter is close
in spirit to this idea. The main advantage of the proposed approach is that
we deal with a change-point (spike) location explicitly, finally obtaining the
explicit solution for the time instants of a spike occurrence (explicit solution
for each ti). The approach is not limited to neural spike detection, but it can
be considered as a general change-point detection and localization framework.

The main arguments of the approach are elaborated in the following sec-
tion. They rely on the original continuous-time nature of the spike train as
with wavelet based approaches, although the available observation data are
in discrete time form. In particular, the problem is casted into a delay es-
timation. Section 2.2 describes the different steps leading to the detection
and estimation algorithm. Given a time interval, a possible spiking instant tr
will be characterized explicitly from the distributional derivative of the signal.
We then take advantage of the algebraic framework of [Fliess 2003] (see also
[Mboup 2009a] and [Fliess 2010]) to handle such expression. This algebraic
framework was adopted in [Rezk 2008] for change point detection in biological
signals (electroencephalogram (EEG) and electrocardiogram (ECG)), but in
the frequency domain and also in [Mboup 2009b] for numerical differentiation
(see also [Liu 2011]). This leads to an estimator of tr from a linear system,
based only on iterated integrals of the spike train in the corresponding in-
terval. However, if no spike occurs in the considered time interval, then the
linear system becomes degenerated. Now a test of whether the linear system
is degenerated or not through sliding intervals provide us with a joint spike de-
tection and localization method. The obtained solution is then implemented
in discrete time, in terms of very classical finite impulse response (FIR) fil-
ters. The decision functions are expressed as outputs of classical Volterra
filters. Results of simulation on real and synthesized recordings are given in
section 2.3. The approach is compared with the wavelet based method of
[Nenadic 2005]. That the proposed method is not limited only on detection
of neural spikes is shown in section 2.4, where it is successfully applied for
detection of the spike shaped eye blink artifacts in EEG signal. Finally, the
results are discussed in section 2.5.
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2.1 Main ideas

We denote x(t) as the unobserved noise-free spike train signal: x(t) = y(t)−
$(t). Let T > 0 be given. To any τ > 0, we associate the interval ITτ =

[τ, τ + T ). The detection of an irregularity in such interval will indicate the
presence of a spike. Although it is possible that two or more neurons which
are located close to the electrode fire an action potential at very close time
instants, we assume that the interval ITτ does not contain more than one
spike. Respecting the duration of a spike (not only the part we model as
a discontinuity), by choosing T small enough we can make sure that if ITτ
contains more than one spike they are overlapped for at least some given time.
As spikes are after detection typically extracted in order to perform some
additional processing e.g. spike sorting, for significantly overlapped spikes it
is sufficient to detect only one spike; since the other will be automatically
extracted as well. Therefore and in order to obtain a simple model we say
that any ITτ can contain either only one irregularity or be smooth.

In the sequel, we define

xτ (t)
4
= H(t)x(t+ τ), t ∈ [0, T ), (2.2)

for the restriction of the signal x in ITτ and we redefine the possible spiking
instant, say tτ , relatively to ITτ with:tτ = 0 if xτ (t) is smooth

0 < tτ < T otherwise.

The presence of a spike is thus interpreted as a discontinuity of xτ (t), at
an interior point of ITτ : an irregularity at the origin of the current interval,
caused by the multiplication with the Heaviside function, is not considered as
spike.

To illustrate the main ideas behind the proposed approach, let us consider
an interval ITτ which contains a signal with a jump at time t1 (figure 2.6).
Such input signal on ITτ can be described as follow:

xτ (t) = a(t)H(t− t0) + (b(t)− a(t))H(t− t1), (2.3)

where t0 is the origin of ITτ . H(t−t0) is introduced to describe the irregularity
at the origin of ITτ , caused by limiting the signal on that interval. t1 is the
location of the discontinuity that we want to find. Denote β(t) = b(t)− a(t).
The first order derivative of xτ (t) reads as:

ẋτ (t) = ȧ(t)H(t− t0) + a(t)δ(t− t0) + β̇(t)H(t− t1) + β(t)δ(t− t1). (2.4)
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Now we have t1 within delta function, not only within Heaviside function; this
will help us to obtain an explicit solution of t1.

Using the relation α(t)δ(t−λ) = α(λ)δ(t−λ) in equation (2.4) we obtain:

ẋτ (t) = ȧ(t)H(t− t0) + a(t0)δ(t− t0) + β̇(t)H(t− t1) + β(t1)δ(t− t1). (2.5)

Denote [ẋτ ] (t) = ȧ(t)H(t − t0) + β̇(t)H(t − t1), what is the regular part of
ẋτ (t) and insert it in equation (2.5):

ẋτ (t) = [ẋτ ] (t) + a(t0)δ(t− t0) + β(t1)δ(t− t1). (2.6)

So all we have in equation (2.6) is a superposition of derivative of the regular
part and the jumps. It is important to notice that, when we have a jump at
t1, β(t1), which is actually the amplitude of the jump in the signal at location
t1, will be different from zero. If there was no jump at t1, β(t1) would be equal
to zero.

0
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H(t−t
0
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Figure 2.6: Input signal given as a piecewise polynomial on interval ITτ with
jump in t1 (the fat line). The signal expressed in equation (2.3) through
functions a(t), b(t), H(t− t0) and H(t− t1). The fat black line at t1 represents
the jump.

Let us now analyze a bit different situation, where the signal on interval
ITτ contains a jump in its first derivative, but not in the signal itself (figure
2.7). The first derivative of such signal can be again described with equation
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(2.5), but now β(t1) = 0, since there is not jump in the signal. To obtain t1
within the delta function we need to take another derivative:

ẍτ (t) = ä(t)H(t−t0)+2ȧ(t)δ(t−t0)+a(t0)δ̇(t−t0)+β̈(t)H(t−t1)+β̇(t1)δ(t−t1).

(2.7)
By denoting [ẍ]τ (t) = ä(t)H(t− t0) + β̈(t)H(t− t1) we can express equation
(2.7) as a sum of the regular part and the discontinuities.

ẍτ (t) = [ẍ]τ (t) + 2ȧ(t)δ(t− t0) + a(t0)δ̇(t− t0) + β̇(t1)δ(t− t1). (2.8)

Now β̇(t1), the jump in the first order derivative of the signal at location t1
within the interval ITτ is different from zero. Notice also that β̈(t1), which is
a jump in the second order derivative, will be different from zero if β̇(t1) 6= 0;
this analogy is true for any higher order derivatives as well.

0

1

a(t)

b(t)

H(t−t
0
)

H(t−t
1
)

τ=t
0

t
1

τ+T

Figure 2.7: The fat line represents the input signal given as a piecewise poly-
nomial on interval ITτ with jump in the first derivative of the signal at t1.

In the sequel, we will show the general form of the above examples. For
any integer N > 0, the N th order (generalized) derivative [Schwartz 1998] of
xτ (t) satisfies

dNxτ
dtN

= [x(N)
τ ](t) +

N−1∑
k=0

(
µ0
k δ(t)

(N−k−1) + µk δ(t− tτ )(N−k−1)
)
, (2.9)

where the superscript (k) denotes order k differentiation. We have set µk
4
=

x
(k)
τ (tτ+) − x

(k)
τ (tτ−) and µ0

k

4
= x

(k)
τ (0+) − x

(k)
τ (0−) - the jumps in the kth
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order derivative of the signal. The sum
N−1∑
k=0

µk δ(t− tτ )(N−k−1) represents the

irregular part of the derivative inside ITτ , if such irregular part exists (if there
is a spike in that particular interval). The equation (2.9) is the cornerstone of
the approach we are presenting that consists in a joint detection/estimation.
Using the equation (2.9), let us generalize conclusions based on analysis of the
derivatives of the signals from figures 2.6 and 2.7 for a given N .

Let say first that we model the spike as a jump in the signal:

1. No spike occurs during the time interval ITτ if, and only if,

µ0 = · · · = µN−1 = 0.

2. If one (and only one, as assumed above) spike is present in ITτ , then µi 6=
0, i = 0, . . . , N − 1 and one can identify the spiking instant 0 < tτ < T

directly from equation (2.9),

instead, if we model a spike as a jump in the first derivative of the signal then:

1. No spike occurs during the time interval ITτ if, and only if,

µ1 = · · · = µN−1 = 0.

2. If one (and only one, as assumed above) spike is present in ITτ , then µi 6=
0, i = 1, . . . , N − 1 and one can identify the spiking instant 0 < tτ < T

directly from equation (2.9).

This analogy is the same if we model a spike as a jump in any higher order
derivative of the signal. Obtaining a solution for tτ from any of such models
requires very similar calculations, but of course the final expression for tτ will
be different. In the following section we will concentrate on finding an optimal
spike model and then finding an explicit solution for tτ from equation (2.9)
for such model.

2.2 Spike detection and estimation

To express tτ from equation (2.9) we need to select the value of parameter N .
Since N > 0, an infinite number of change-point estimators may be devised.
We will now discuss how the choice of N will affect the obtained results.
Related with this, we will also discuss on the choice of a spike model.

The goal of the proposed approach is to detect spikes in an extracellular
neural recording. By using the proposed piecewise model we idealized the
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situation so the spike instants are now considered as discontinuities. Also, for
the moment, we are taking into account only the noise-free signal (i.e. x(t)

the part of the input observation which contains only the spikes). In such x(t)

we want to find discontinuities. Since our model is idealized, we know that,
especially after adding the noise, the estimated locations of the discontinuities
will be subject to error.

Let us now observe the form of the regular part in order to understand bet-
ter how we can model it and consequently, what value of N should we chose.
The form of a typical action potential (see e.g. [Aksay 2001], [Thomas 2000])
is as depicted on figure 2.8 (left plot). Such form results from the basic

T0 tτ

intracellular AP

Ttτ0

−70mV

+40mV

extracellular AP

Figure 2.8: Intra- and extra-cellular Action potential waveforms

electric and chemical mechanism which gives rise to a neural spike. In ac-
cordance with this mechanism, one would suggest e.g. a model like w(t) =

Ke−αt sin (at2 + bt) (this is actually part of the function plotted on figure
2.8-left). Now a recorded spike, as the extracellular counterpart of an action
potential is well represented (at least in the rising phase) by the first derivative
[Aksay 2001] as on figure 2.8-right. Therefore, one would model the signal as

xτ (t) = H(t− tτ )f(t− tτ ) f(t) =
d

dt
w(t),

when the corresponding interval ITτ contains a spike. But then, the estimation
of the additional parameters K,α, a, b would be necessary in order to obtain
tτ , regardless to the choice of N . Although such an estimation is feasible
within the algebraic framework [Fliess 2003] adopted here, it does not corre-
spond to an adequate solution: it burdens the computations while the precise
values of the parameters are irrelevant. Instead we will prefer idealized but
much simpler models as shown on figure 2.9. Obviously, the location of the
discontinuity does not correspond to that of the signal model on figure 2.8-
right. However, we mention that a spike is meant by the sudden-onset pulse
in the point tr and we idealize this with the jumps in our models. Refereing to
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tτ

(a) (b)

tτ

Figure 2.9: Spike piecewise affine models.

the previous section, such model which contains a jump in the signal (not e.g.
only in its derivative) corresponds with the statement that if spike is present
in ITτ then µi 6= 0, i = 0, . . . , N − 1.

Considering the choice of N , the order of the derivative, it is evident that
for the particular models on figure 2.9 the choice of N > 1 will annihilate the
regular part, as it is composed only from first order polynomials. We could
as well present models similar to the ones on figure 2.8 using higher order
polynomials. By choosing N greater than the highest order of polynomials in
the model, the regular part will always vanish. As we mentioned before, this
will alow us to concentrate on estimation of what we are interested in - the
jumps in the signal, without the need to estimate additional model parameters,
which are irrelevant for us. In section 2.2.3 we will discuss through several
examples on importance of choice of the correct model and we will see that it is
actually not critical; e.g. even if the regular part indeed contains polynomials
of order four, assuming that it contains only polynomials which do not exceed
order one and choosing N = 2 (what would annihilate the assumed regular
part) still leads to good detection results.

To proceed, we henceforth assume for xτ (t) a piecewise model of degree
not exceeding one. Let N = 2 so that the regular component [ẍτ (t)] vanishes
and equation (2.9) becomes:

d2xτ
dt2

= µ0
0 δ(t)

(1) + µ0 δ(t− tτ )(1) + µ0
1 δ(t) + µ1 δ(t− tτ ). (2.10)

Even though tτ can be expressed from equation (2.10) using only the time
domain calculus (see e.g. [Belkoura 2009]), we find that terms like δ(t −
tτ )

(k) are much easier to handle using operational calculus [Mikusiǹski 1987].
To transfer equation (2.10) into the operation domain we use the following
Laplace transform pairs:

δ(t)� 1

Iff(t)� F (s)thenf(t− t0)� F (s)et0s
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f (n)(t)� snF (s)−
n−1∑
m=0

sn−m−1 d
m

dtm
f(0)

and express equation (2.10) in the operational domain as:

s2x̂τ (s)− sxτ (0)− ẋτ (0) = (µ0s+ µ1)e−tτ s. (2.11)

Here sxτ (0) and ẋτ (0) replace other initial conditions given by µ0
0 δ(t)

(1) and
µ0

1 δ(t).
By differential elimination, we will annihilate the unknown and irrelevant

coefficients µi, and initial conditions x(k)
τ (0) in (2.11). This will lead to a

linear estimator for tτ . Once translated back in the time domain, we will get
an explicit expression depending on integral terms as

∫ T
0
p(λ)xτ (λ)dλ. The

next algorithm describes these manipulations which stem from the estimation
theory due to [Fliess 2003] (see also [Mboup 2009a]).

Step 1 - First, we get rid of irrelevant unknowns: µ0, µ1, xτ (0) and ẋτ (0).
To do this we first multiply the equation (2.11) with etτ s:

etτ s[s2x̂τ (s)− sxτ (0)− ẋτ (0)] = µ0s+ µ1. (2.12)

To shorten the equation (2.12) we denote:

û(s)
4
= s2x̂τ − sxτ (0)− ẋτ (0).

Equation 2.12 is now simply:

etτ sû(s) = µ0s+ µ1. (2.13)

We annihilate µ0 and µ1 by applying differential operator di/dsi, i ≥ 2:

t2τe
tτ s

di−2

dsi−2
û(s) + 2tτe

tτ s
di−1

dsi−1
û(s) + etτ s

di

dsi
û(s) = 0. (2.14)

Then we divide by etτ s and return the substitution û(s):

t2τ
di−2

dsi−2

(
s2x̂τ − sxτ (0)− ẋτ (0)

)
+ 2tτ

di−1

dsi−1

(
s2x̂τ − sxτ (0)

)
+

di

dsi
(
s2x̂τ

)
= 0.

(2.15)
To annihilate the remaining initial conditions we apply differential operator
d2/ds2 and obtain:

t2r
di

dsi
(s2x̂τ ) + 2tr

di+1

dsi+1
(s2x̂τ ) +

di+2

dsi+2
(s2x̂τ ) = 0. (2.16)

Step 2 - By the very classical rules of operational calculus, multiplication
by s corresponds to time derivation: sx̂τ� d

dt
xτ (t). Now, numerical differ-

entiation is difficult and ill-conditioned (it will result by amplification of the
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noise, which is the consequence we want to avoid). Thus, we divide the both
members of (2.16) by a sν , for an integer ν > 2 (we will later discuss how
the choice of ν will affect the spike detection results). Only negative powers
of s, and hence integral operators, will intervene in the resulting equation.
We replace the unobserved signal xτ by its noisy observation counterpart yτ .
Gathering the resulting equations for i = κ + 2, κ > 0 and i + 1, we obtain
the linear system[

v̂κ(s, τ) v̂κ+1(s, τ)

v̂κ+1(s, τ) v̂κ+2(s, τ)

]
︸ ︷︷ ︸

P̂κ(s,τ)

[
t̃2τ

2̃tτ

]
︸ ︷︷ ︸

Θ̃τ

= −
[
v̂κ+2(s, τ)

v̂κ+3(s, τ)

]
︸ ︷︷ ︸

Q̂κ(s,τ)

(2.17)

where v̂κ(s, τ) =
1

sν
dκ+2

dsκ+2

(
s2ŷτ

)
. The solution Θ̃τ of (2.17) is an estimator

of Θτ = [t2τ 2tτ ]
T because xτ has been replaced by the noisy observation ŷτ .

Step 3 - The numerical estimates are now obtain by expressing the system
(2.17) back in the time domain. For this, let us first recall that differentiation
with respect to s correspond to multiplication by −t: d

ds
x̂τ� −txτ (t), and

division by sm, m > 0 maps to the mth-iterated time integration:
(m− 1)!s−mx̂�

∫ t
0
(t− α)m−1x(α)dα.

With these rules in mind and using integration by parts, we express the time
domain analog of v̂κ(s, ·) as:

vκ(t, τ) =
(−1)κ

(ν − 1)!

∫ t

0

d2

dλ2

{
λκ+2(t− λ)ν−1

}
yτ (λ)dλ. (2.18)

The analog of (2.17) is thus in the form Pκ(t, τ)Θ̃τ (t) = Qκ(t, τ) so that we
have an estimate Θ̃τ (t) for each estimation time t 6 T . To be consistent with
the signal model in (2.2), we now on fix this estimation time to the width of
ITτ : t = T . We can therefore simplify the notations above by dropping the
argument t, and write vκ(τ) instead of vκ(T, τ).

2.2.1 Joint detection-estimation

Using the equations (2.17) and (2.18) we can easily calculate an explicit so-
lution for t̃τ for any interval ITτ - we do not have any unknown parameter;
we need only the noisy input observation and the free parameters κ ≥ 0 and
ν ≥ 2. However, due to the mismodelling error and the noise such explicit so-
lution will not be robust: the explicit solution of the system of equations that
we have obtained will be very sensitive on any variation of the coefficients and
these depend on the noisy observation. In section 2.2.3 we will demonstrate
this using a concrete examples with a piecewise input signal.
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Instead of calculating the explicit solution for t̃τ , we will concentrate on
testing whether an interval ITτ contains a spike or not. If an action potential
happens at time t?, then it will be detected in all intervals ITτ for which
t? − T 6 τ 6 t?. This observation shows how the detection process also leads
to the estimation of the spiking instants.

Recall that in equation (2.11) we have µ0 = µ1 = 0 when the interval ITτ
is devoid of an action potential. When this is the case, in idealized situation
(no mismodelling error, no noise), vκ(τ) = 0 on ITτ for all κ. In other words,
the estimator Pκ(τ)Θ̃τ = Qκ(τ) degenerates into Pκ(τ) = 0 and Qκ(τ) = 0

(in real situations this is actually up to the output noise level).
Apart from the mathematical, we can observe this as well from the physical

point of view. vκ(τ) involves s2ŷτ which, in the time domain, translates into
2nd order differentiation of the signal. Then for a 1st order polynomial signal
model, this differentiation is zero and hence vk is zero. We consider now an
interval ITτ . If the interval does not contain any discontinuity the signal will
be annihilated: vκ(τ) = 0. If an interval ITτ contains a discontinuity, the
discontinuity will not be annihilated by applying the derivative, what results
in vκ(τ) 6= 0.

We can conclude that we are not limited on explicit calculation of the tτ by
solving the system of equations, but we can deduce the spike location by using
the property that vκ(τ) is a derivative estimation of the input observation.
We can use vκ(τ) for any κ ≥ 0 as a decision function, but since vκ(τ) is zero
only in the idealized case the condition, |vκ(τ)| > 0 should be replaced by
|vκ(τ)| > γJ , where γJ is a threshold value. Instead of using only one vκ(τ)

we can design a more complex decision function that will be more robust with
respect to the noise or which will have some particular desired properties.
For example,

∏L−1
i=0 vκ+i(τ), where L > 0 is one such decision function which

is more selective as greater L we chose. As we will see later, we can affect
the trade-off between falsely detected spikes and missed spikes by selecting
different values of L.

Since we have obtained the system of equations, we will use some properties
of that system to determine a decision function J along with an associated
threshold γJ , and devise a detection system,

J (τ)
H1

≷
H0

γJ (2.19)

to test the degeneration of the system PτΘ̃τ = Qτ (null hypothesis H0),
against the alternative H1: one action potential occurs in ITτ . we consider the
family of functions Jκ, κ > 0,

− detPκ(τ) = Jκ(τ) = [vκ+1(τ)]2 − vκ(τ)vκ+2(τ). (2.20)
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This also coincides with the discriminant of the quadratic equation formed by
the first line of the system Pκ(τ)Θτ = Qκ(τ). The condition Jκ(τ) > 0 is thus
necessary to have real solutions while Jκ(τ) must be different from zero. The
noise and the local mismodelling apart, we then have Jκ(τ) > 0 if, and only
if, an action potential happens in ITτ . Due to the noise presence, the condition
Jκ(τ) > 0 must be replaced by Jκ(τ) > γJ

The results of the simulations, which will be presented later in this chapter,
suggest that using different detection systems leads to similar results.

2.2.2 Discrete nonlinear filter

The proposed solution to the joint detection and estimation problem was
devised based on the continuous-time nature of the spike train. Now, we
give a discrete-time implementation of that solution. Using the very classical
numerical integration machinery, we show how each vκ(τ), κ > 0 in (2.20) can
be implemented as the output of a discrete finite impulse response (FIR) filter,
with the sample observation y as input. As a consequence, the corresponding
decision function Jκ,n, n ∈ N, will read as the output of a discrete quadratic
Volterra filter.

To begin, let us define

hκ(λ) =

{
(−1)κ+1

(ν−1)!
d2

dλ2
{(T − λ)κ+2λν−1} , 0 6 λ 6 T

0 else,

and redefine the intervals ITτ by their causal counterparts: ITτ
4
= [τ − T, τ ].

Accordingly, consider (2.18) for t = T and with the change of variable λ →
T − λ. Then, we may directly rewrite vκ in (2.18) as

vκ(τ) =

∫ T

0

hκ(λ)yτ−T (T − λ)dλ

=

∫ ∞
0

hκ(λ)y(τ − λ)dλ.

(2.21)

We turn now to the discrete-time setting where only time samples of the
observation, ym = y(tm), are available. We assume a uniform sampling, tm =

mTs,m = 0, 1, . . ., with sampling period Ts. Let T = MTs and ν > 2 be
given. Set τ = nTs and compute the finite sequence {hκ,m 4

= hκ(tm)}Mm=0.
Then, by a numerical integration method with abscissas tm and weights Wm,

m = 0, · · · ,M , we obtain the approximation of (2.21):

vκ(τ) ≈ vκ,n =
M∑
m=0

gκ,myn−m,
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where
gκ,m

4
= Wmhκ,m.

In all the sequel, we use the trapezoidal method for which W0 = WM = 0.5,
and Wm = 1,m = 2, · · · ,M − 1. As τ = τn = nTs varies (sliding windows
IMn ), vκ,n reads as the output of the FIR filter, with impulse response sequence
{gκ,m}Mm=0. Accordingly, we obtain for each κ > 0, a discrete approximation
Jκ,n ≈ Jκ(nTs) of (2.20)

Jκ,n = [vκ+1,n]2 − vκ,nvκ+2,n, (2.22)

as the output of the Volterra filter with input yn,

×
+ Jκ,nyn

vκ,n

vκ+2,n

̂2
vκ+1,n

−

{gκ+1,m}

{gκ,m}

{gκ+2,m}

Figure 2.10: Digital Volterra filter representation

In the simulations to follow, a detection will be validated if it meets the
agreement of a given number, K, of elementary decision functions Jκ,n. The
corresponding final decision function is thus given by the combination

Jn =
K−1∏
κ=0

J̃κ,n, n = 0, 1, . . . , (2.23)

where J̃κ,n = max(0,Jκ,n) for each κ and n. This makes the detection more
robust to fake spikes as the decision function is more rigorous.

2.2.3 Examples of change-point detection in piecewise
signals

We will now analyze the performance of different detection systems developed
within the proposed framework. To do so, we create a piecewise, noise-free
signal composed from polynomials of order zero and one, which contains 5
irregularities: 3 jumps in the signal and 2 irregularities corresponding to jumps
in the first derivative of the signal. The input signal is shown on the top plot
on figure 2.11. From the set of free parameters we chose N = 2, ν = 3, κ = 0

and M = 20 (the impulse response of each filter is 20 samples long).
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First, we analyze accuracy of the explicit solution tτ , in order to validate
that our theoretical assumptions and the calculations were correct. Since
N = 2 we obtain 2 solutions for tτ , they are shown on the second and the
third plot on figure 2.11. In the ideal case, both solutions for tτ would be
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1
Piecewise input signal composed of zero and first order polynomials
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−20

0
20

tτ − first solution
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0
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tτ − second solution
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0

1
Jn for K=2

Figure 2.11: Top plot: piecewise, noise-free input signal composed from poly-
nomials of order zero and one. The signal contains 3 jumps in the signal (at
100th to 101st, 250th to 251st and 400th to 401st sample) and two additional
jumps in the first derivative of the signal (at 200th to 201st and 300th to 301st

sample). Second and third plot: the two solutions for tτ with N = 2, ν = 3,
κ = 0 and M = 20. Fourth and fifth plot: two normalized decision functions.

identical, and they would be zero except during the 20 samples before each
jump in the signal, where they would linearly decrease from 20 to zero (as the
jump location becomes closer to the origin of the interval ITτ ). Since we are
using discrete computation of the integrals the obtained explicit solutions for
tτ do not represent the ideal theoretical case. As we can see from the second
and the third plot on figure 2.11, the two solutions are during the most of the
time different, but one of them approximately linearly decays from 20 to zero
as we approach to any of the jump locations. This is better illustrated on
figure 2.12 which is a zoom of a part of the first three plots from figure 2.11.

On figure 2.11 we also show the results obtained when
∏3

i=0 vi(τ) and
Jn for K = 2 were used as the decisions functions (fourth and fifth plot
respectively). As we expected, these two decision functions are equal to zero
(or very small) except when ITτ contains a jump.
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Figure 2.12: Zoom of the first three plots from figure 2.11

Notice that jumps in the first derivative of the signal are generally not
detected. This is particulary the case for the two decision functions shown on
the two bottom plots. To calculate these two we used products of different
vκ,n for different κ. Such products are more selective than single vκ,n since
it is enough that one of vκ,n from the product is close to zero to make the
whole product close to zero. This result was expected, since we model spikes
as jumps in the signal, not as jumps in the signal derivative.

We mentioned before that the explicit solution for tτ will be very sensitive
to the noise. On figure 2.13 we show the analog comparison as on figure 2.11,
only this time with added some noise to the input signal. One of the solutions
for tτ still decays from around 20 to around zero when ITτ contains a jump
(see zoom of figure 2.13 on figure 2.14). However, it is now very difficult to
find an actual jump location since both solutions for tτ often have a value
between 0 and 20 when ITτ does not contain a jump. On the other side, the
two decision functions shown on the fourth and the fifth plot and significantly
different from zero only when jump occurs in ITτ . As we mentioned earlier, the
reason for low robustness of the explicit calculation of tτ lies in a generally very
high sensitivity of the solutions of a square equation on noisy perturbations
in the coefficients. Obtaining results using the knowledge that the derivative
estimators, or their different combinations, are greater than some threshold
only when a jump occurs in ITτ leads to much more accurate detection, but also
localization. Localization is easily obtained by knowing that the derivative
estimators detect the jump firstly when tτ = τ + T .
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Figure 2.13: Top plot: piecewise, noisy input signal composed from polyno-
mials of order zero and one. The signal contains discontinuities that occur at
the same time as in the signal on the top plot of figure 2.11. The four bottom
plots correspond to those from figure 2.11.
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Figure 2.14: Zoom of the first three plots from figure 2.13
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Let us now illustrate how the mismodelling error affects the results. We
perform a similar simulation as on figure 2.11, but only this time with up
to the fourth order polynomials. Since our detection system is devised with
N = 2, the regular part of the signal will not be annihilated. Results of the
simulation on the noise-free input signal are shown on figure 2.15 and on the
noisy input signal on figure 2.16. The figure suggests, that the mismodeling
error does not significantly affect the results. The two decision functions
shown on the fourth and the fifth plot are again quite accurate and robust to
the noise perturbations.
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Figure 2.15: Top plot: piecewise, noise-free input signal composed from up
to fourth order polynomials. The signal contains discontinuities that occur at
the same time as in the signal on the top plot of figure 2.11. The four bottom
plots correspond to those from figure 2.11.

To illustrate how vκ,n changes with change of N we show on figure 2.17
a piecewise signal composed of zero, first and second order polynomials (top
plot) and vκ,n with κ = 0 and ν = 3 for N from 1 to 4 (next four plots). Each
time when the jump in the signal occurs (at 100th, 250th and 400th sample)
vκ,n changes significantly. Notice also that vκ,n for each consecutive N looks
like the derivative for the preceding.
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Figure 2.16: Top plot: piecewise, noisy input signal composed from up to
fourth order polynomials. The signal contains discontinuities that occur at
the same time as in the signal on the top plot of figure 2.11. The four bottom
plots correspond to those from figure 2.11.
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Figure 2.17: Top plot: piecewise, noise-free input signal composed from up to
second order polynomials. The signal contains discontinuities that occur at
the same time as in the signal on the top plot of figure 2.11. The four bottom
plots show vκ,n with κ = 0 and ν = 3 for N from 1 to 4.
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2.2.4 Selection of the free parameters

In this subsection we will give some physical meaning to the selection of the
free parameters: T (which corresponds to the filter impulse length M), κ and
ν. The selection of the parameters should not be independent, e.g. κ and ν
should be chosen depending on the choice of T .

To emphasis the spike shaped waveforms it is preferable that the effective
duration of the filters (defined by the samples of the impulse response that
are significantly different from 0) is similar to the spike duration. In this
way we are sure that during the filtering, for some n, each spike will be fully
overlapped with the filters. Figure 2.18 shows the impulse response and figure
2.19 the frequency response of the four filters (K = 4) with the impulse
length duration M = 60 and ν that varies from 4 to 10 in steps of 2 (we have
mentioned earlier that ν > 2). If the spike length is e.g. 30 samples, a good
choice would be ν = 6 and κ = 1 or ν = 10 and κ = 1, 2 and 3, since these
choices would lead to approximate filter length of 30 samples.

Generally, choosing smaller ν makes the effective impulse length larger
and of course the filter passes a narrower frequency band. On the other side,
increasing κ will introduce filters that will have wider pass-band.

Larger ν or larger κ shifts the frequency characteristics to the right - the
central frequency is increasing. Good choice for the central frequency can be
calculated knowing the spike duration and assuming that e.g. the positive
half-period of the spike on the right plot of figure 2.8 is actually a half-period
of a sin function. Let say that the positive half-period of a spike is 0.5ms

long, than it corresponds to 1kHz sin wave. Using figure 2.19, any choice
seems to be good except ν = 6 and κ = 4, since for that one the frequencies
around 1kHz appear to be attenuated. Such computations are, of course, not
exact, however they might help to chose the free parameters which will lead
to efficient spike detection.

In the following simulations we will show that the proposed method is
quite robust to the parameters choice. However, we do not provide an explicit
way to compute the free parameters. Exact values of the parameters are best
to be chosen experimentally, as their optimal values depend on the given data
and on the desired detection selectivity.

2.3 Simulations and results

We first demonstrate the performance of our joint estimation and detection
method on the simultaneous intra- extra-cellular recordings. Later, we com-
pare it with one of the most successful spike detection methods: the wavelet
detection method (WDM) presented in [Nenadic 2005].
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Figure 2.18: Impulse responses of the filters for different values of κ and ν.

2.3.1 Simulation on the real signal

Comparison of spike detection methods using a real signal is very difficult,
since we are not able to validate the obtained results. To do the validation
we should know all the spike locations, which is not possible for real record-
ings. The problem of the validation can be only partially solved by using
simultaneous intra- extra-cellular recordings. If the extracellular and the in-
tracellular electrode are close enough, the spikes fired by the neuron recorded
intracellularly are visible in the extracellular recording as well. A drawback
of such validation is that, due to a very difficult experimental setup, currently
no more than one neuron can be recorded intracellularly at the same time.
This is not enough for comparison of spike detection methods, since we do
not know whether parts of the signal when the intracellularly recorded neu-
ron was inactive contain spikes or not. We use such recording just to visually
demonstrate results of the proposed method.

Figure 2.20 shows an example of simultaneous intra- extra-cellular record-
ing (first and second plot) from rat hippocampal area CA1, described in
[Henze 2000]. It is evident that in the particular example action potentials
recorded intracellularly are visible in the extracellular recording. The third
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Figure 2.19: Frequency responses of the filters for different values of κ and ν.

and the fourth plot on the figure 2.20 show Jn which is the result of applying
the proposed approach on the extracellular signal, for K = 2 and K = 3.
Parameter ν is set to 7 and T = 2.4ms. The value of Jn obviously gets high
when the intracellularly recorded neuron fires, which is what we wanted to
obtain. Jn gets high at some other time instants as well, what indicates firing
of other neurons close to the electrode. Since this is a real recording we are
not able to verify this assumption. However, it is evident that the proposed
method makes the detection of the spikes fired by the intracellularly recorded
neuron much easier than it would be if it was done directly from the extra-
cellular recording. This is particulary apparent on figure 2.21 which gives a
zoom of a part of figure 2.20. We can notice also that the choice of bigger
K leads to more conservative results. This is expected, since K determines
the number of products of J̃κ,n that we are taking. Unfortunately, similar
plot can not be shown for the WDM, since for that method the results are
obtained as a binary combination of all the scales.
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Figure 2.20: Simultaneous intra- extra-cellular recording and the results of
the proposed spike detection method for K = 2 and K = 3.

2.3.2 Simulation on the artificial signal

Real recordings obviously can not be used to quantify the detection perfor-
mance, thus we have to use artificially synthesized neural recordings. To make
the simulation as realistic as possible we synthesize the data by using spike
templates and noise extracted from the real neural recording with high SNR.
By scaling the amplitudes of the spikes we are able to control the SNR of the
simulated signal. The data we are using for the simulation are recorded using
extracellular tetrode from locust antennal lobe, they are shown on figure 2.2.

2.3.2.1 Spike templates

An average of 256 spikes have been extracted from the channels and aligned
into 5 clusters using Lloyd’s algorithm [Lloyd 1982]. The centroids Si of the
clusters are then used as spike templates. They all have the same duration of
3.33ms and are normalized: ‖Si‖∞ = 1.
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Figure 2.21: Zoom a of part of figure 2.20

2.3.2.2 Noise template

Once all the spikes have been extracted from the experimental data, the re-
maining background noise is used as a neural noise template. We form a
single long (285000 samples) observation by concatenating the data from the
four recording sites. As we already discussed, a significant part of the noise is
composed of remote spikes.

2.3.2.3 Noisy spike train simulation

Each run is based on a signal segment of 2/3 s (10000 samples). For each run,
the spike locations are drawn from the successes of 10000 samples Bernoulli
trials with a parameter p corresponding to a given mean firing rate FR. The
number of simulated spikes thus varies from one run to another. Next, the
noise-free spike train is generated by assigning randomly the spike templates
to the locations. The polarity of each spike template also is chosen ran-
domly. Finally, a randomly selected segment of the neural noise template is
added. The noise variance σ2 is set according to the desired SNR defined as
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in [Nenadic 2005]:

SNR =
‖Si‖∞
σ

=
1

σ
. (2.24)

Figure 2.22 displays 0.5s of such a simulated signal. The spike locations are
indicated by the vertical bars on the bottom.
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Figure 2.22: Noisy spike train simulation: SNR = 3.5, FR = 15Hz (blue);
Spike locations (red)

2.3.2.4 Comparison for different choice of the free parameters

In subsection 2.2.4 a physical meaning to the selection of the free parameters
was given. In this subsection the results of the spike detection for different
choices of these parameters are compared.

The results are presented by the receiver operating characteristics (ROC)
curves: probability of correct detection (Pcd) against probability of false alarm
(Pfa). Such type of validation of detection algorithms is very classical. To
obtain the ROC curves we first generate 500 noisy spike trains as described
above. Then for each spike train we apply the spike detection algorithm and
calculate the decision function. Two different decision functions were used in
the comparison:

• The first decision function was calculated as the absolute value of the
product of the three filters: |vκ(τ)vκ+1(τ)vκ+2(τ)| (figure 2.23).

• The second decision function was Jn given in equation (2.23) (figure
2.24).

Given a spike, correct detection is meant when the distance between the exact
location and the estimated one is less than half the spike duration, i.e. 1.66ms.
On each decision function through 12 iterations we set 12 different threshold
levels. These thresholds were chosen in such way that for the minimal of the
12 values all or almost all the spikes were detected, while for the maximum
none or almost none false spike was detected.
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For ith simulation the probability P (i)
cd of correct detection is estimated by

P̂
(i)
cd which is given by:

P̂
(i)
cd =

N
(i)
cd

N
(i)
t

,

where N (i)
cd is the number of correct detections in ith simulation and N (i)

t is the
number of generated spikes in ith simulation. Notice that N (i)

t is not constant
over trials. Thus the estimation of Pcd, P̂cd, reads as:

P̂cd =
n∑
k=0

P̂cd|kP (Nt = k).

P̂cd|k is the estimate of Pcd given that the number of total spikes is equal to k;
P̂cd|k can be expressed as follows:

P̂cd|k =

{
N̄cd|k
k
, k ∈ N

0 k = 0

where N̄cd|k is the average number of correct detections given that the number
of detected spikes is k with n different realizations.

We compute the estimation of P (i)
fa - probability of false alarm in ith sim-

ulation, in analog way:

P̂
(i)
fa =

N
(i)
fa

N
(i)
d

Here N (i)
fa and N (i)

d are the number of false alarms and the number of detected
spikes (no matter correct or false), respectively. Notice that Nd is not constant
across the simulations. The calculation of Pfa is estimated by P̂fa which given
by:

P̂fa =
n∑
k=0

P̂fa|kP (Nd = k)

where P̂fa|k is the estimate of Pfa given that the number of detected spikes is
equal to k; P̂fa|k can be expressed as follows:

P̂fa|k =

{
N̄fa|k
k
, k ∈ N

0 k = 0

where N̄fa|k is the average number of false alarms given that the number of
detected spikes is k with n different realizations.

The values of the parameter ν were varied from 5 to 20, with steps of 5,
while the values of the parameter κ were 2, 3 and 4. For ν = 5 and ν = 20
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the results are, for most of situations, significantly worse than for ν = 10

and ν = 15. The parameter κ was varied in relatively small interval so its
change does not affect the results significantly. This was generally the case
for all the SNR and the FR and it suggests that the method will have a
stable performance for relatively large range of values of the free parameters,
independently on SNR and FR. Choosing the free parameters out of this range
will very significantly decrease the performance of the proposed algorithm (e.g.
selecting too small or too large ν as in this example).

Figure 2.23: ROC curves: Comparison of the result obtained with the decision
function |vκ(τ)vκ+1(τ)vκ+2(τ)| for different choice of K and ν. Probability of
the false alarm is given on the horizontal axis and the probability of correct
detection on the vertical axis. The legend is given below.
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Figure 2.24: ROC curves: Comparison of the result obtained with the decision
function Jn for different choice of K and ν. Probability of the false alarm is
given on the horizontal axis and the probability of correct detection on the
vertical axis. The legend is the same as for figure 2.23

.
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2.3.2.5 Other approaches

The WDM, which main ideas are briefly described in the introduction to
this chapter, compares favorably with currently commonly used approaches
for the spike detection in neuroscience [Nenadic 2005]. In [Nenadic 2005] the
wavelet method has been compared with a method based on signal power
[Harris 2000], [Bankman 1993], Nonlinear energy operator (NEO) based method
[Kim 2000] and a classical amplitude thresholding (single and double thresh-
old), see e.g. [Quiroga 2004] .

The power based method computes the root-mean-square power of the
filtered signal using a sliding window. The mean and standard deviation of
the power are also computed, and a spike is detected when the power exceeded
the threshold derived from the standard deviation from the baseline mean.

The output of the NEO is proportional to the product of the instantaneous
amplitude and frequency of the input signal, thus, highlighting the action
potential peak. NEO is known to perform generally well in lower SNR (see
[Kim 2000]).

An amplitude thresholding is the simplest approach, which can be imple-
mented by setting a threshold only for positive or negative polarity (single),
or for both (double). This approach is suitable only for recordings with high
SNR.

For the simulation setup in [Nenadic 2005], which is very similar to the
one used here, the results presented through the receiver operating charac-
teristic (ROC) curves (obtained in analog way as the one here) show that
the WDM significantly outperforms all the other mentioned approaches. The
method shows especially great performance for low SNR, where good results
of the spike detection methods are especially important. Thus, a detail com-
parison with the WDM is given, using the code provided from authors of
[Nenadic 2005].

2.3.2.6 Comparison with WDM

The free parameters for the both methods are chosen so as to have the best
performance. For the proposed method we set ν = 7, K = 3 and T = 4ms

for the estimation time. For WDM we set the number of scales to 6, used
biorthogonal mother wavelet function and set the minimum spike width to
1ms and the maximum to 3.33ms (see [Nenadic 2005] for details on practical
meaning of these parameters).

Figure 2.25 below displays the ROC curves. These are again computed by
averaging results over 500 runs, for each pair (FR, SNR). The ROC curves of
the proposed method are almost always higher than that of the WDM for all
pairs (FR, SNR). This is more apparent at high noise level (SNR = 3, first
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column on figure 2.25) for Pcd > 0.5. The proposed method thus shows good
robustness to noise perturbations. Moreover, it is simple: for a firing rate of
FR = 45Hz, the average time per run was 0.48s against 1.52s for the WDM,
i.e. more than three times.

Figure 2.25: ROC curves: Comparison of the proposed method (H mark) with
WDM (• mark). Probability of the false alarm is given on the horizontal axis
and the probability of correct detection on the vertical axis

Next, on the top graph of figure 2.26, we fix the thresholds and plot Pcd
against Pfa for SNR = 3.5, 3.6, · · · , 4 and FR = 15, 30 and 45Hz. Although
the two methods show quite different behaviors, it is possible to compare their
performance via the ratio Pfa/Pcd as a function of the SNR. This is displayed
in the bottom graph, for FR = 15, 30 and 45Hz. Not only this ratio is always
smaller for our method but also, it decreases faster when the SNR increases.
The implications of these results will be discussed in section 2.5.
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Figure 2.26: Comparison of the proposed method (Hmark) vs WDM (•mark).
The top graph shows Pcd against Pfa for SNR = 3.5, 3.6, · · · , 4 and FR =

15, 30 and 45Hz. The bottom graph show Pfa/Pcd as a function of the SNR
for the same FR as the top graph.

2.4 Case study: eye blink artifacts detection in
EEG

We proposed the approach for spike detection, but this is not the only possi-
ble application of the devised computational framework. Actually, it can be
applied in general change point detection problems. As an example, in this
section the algorithm will be applied on EEG recordings (see chapter 1 for
more information of EEG recordings in general). The practical purpose of
the particular application is to detect what segments of an EEG recording are
affected by artifacts caused by eye blinking. This case study has also been
described in [Tiganj 2010].

2.4.1 Problem description

In EEG recordings the electrical activity of the levator muscle (which controls
the upper eyelid and is responsible for eye blinks), projects on vectors pitched
by the EEG electrodes causing artifacts. The eye blink artifacts affect more
then 10% of the average human EEG (human in average blinks once in 5s,
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and the duration of an artifact is more then 0.5s), thus these artifacts are a
very important problem in the EEG signal processing.

The amplitude of the artifacts depends on the amplitude of the levator
muscle activity and on the brain region where the EEG is recorded. Typi-
cally, the amplitude has the same order of magnitude as the recorded brain
activity. Thus, during the eye blink EEG recording is useless for most of
applications. On the other hand, the artifacts can not be detected only by
setting a threshold.

Common approach for eye blinks detection is placing extra electrodes close
to an eye. Signal from these electrodes is amplified with differential amplifiers,
then setting an appropriate threshold is enough for the artifacts detection.
Moreover, if several EEG channels are recorded, blind source separation is
often used, not only to detect the artifacts, but also to reject them from the
EEG data [Iriarte 2003].

However, placing extra electrodes close to the eye or using EEG with
several channels is not suitable in some applications. Upcoming consumer
application based on EEG such as brain-computer interface [Dornhege 2007]
[Thulasidas 2004] or biofeedback devices [Monderer 2002] and [Othmer 2000]
are mostly intended for non-clinical, everyday home use. Simplicity of use
and a low price are essential for those devices. Therefore, use of singe-channel
EEG systems is very common in such applications [James 2003]. Some clinical
applications such as recording on babies [Walls-Esquivel 2007] or Alzheimer’s
disease recognition [Cho 2003] are often based on single channel EEG systems
as well. In this case study the problem of the eye blink artifacts detection in
single channel systems is addressed.

2.4.2 Results

The proposed algorithm has been validated in the eye blink artifacts detection
using 7.5 minutes of 32-channel EEG recording, at the sampling frequency of
1kHz. The electrodes were placed according to the international 10-20 system
(figure 2.27, reproduced from [Malmivuo 1995]). The recording was unipolar
with the reference calculated as the averaged sum of all 32 electrodes. The
ground electrode was placed on the forehead. All electrode impedances were
less then 5kΩ. In order to have the referent information on when the examinee
actually blinks, apart from the EEG, two additional electrodes were used.
One was placed above and the other below the examinee’s right eye. In 7.5
minutes of the recording we detected 65 eye blinks. On figure 2.28 100 seconds
of the recording (all 32 channels, together with the eye activity recording i.e.
electrooculogram (EOG)) are shown. The eye activity is clearly visible on the
most of the recording channels. The projection is the largest on the channels
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FP1 and FP2, which are closest to the eyes. On the other side, the projection
is hardly visible on FC1, FC2, FC5 and FC6.

Figure 2.27: The international 10-20 system seen from (A) left and (B) above
the head. From [Malmivuo 1995].

The described spike detection algorithm, with the decision function
|vκ(τ)vκ+1(τ)vκ+2(τ)|, is applied on this recording. The free parameters were
chosen as follows: Parameter T is set to 0.5s, what is a typical duration of
the eye blink artifacts; Parameters ν and κ were varied in order to find which
combination leads to the best results; Finally they are set to ν = 4 and κ = 2.

Since we address the problem of the eye blink detection and localization
in single channel EEG, the algorithm is applied on each of the 32 channels
separately. Because the recorded signals are from different brain regions, we
are able to evaluate how different electrode positions affect the results.

The results of the spike detection with the proposed algorithm on the
recording from figure 2.28 are given on figure 2.29. The original EOG plot
is again given on the top as the reference information. For most of the EEG
channels, we can say that the parts of the signal that correspond to the eye
activity (spikes) are emphasized with respect to the rest of the signal. Only
for the channels FC1 and FC2 the proposed algorithm did not significantly
help in the spike detection and localization.

In order to asses the efficiency of the proposed algebraic approach we
compare it with three other approaches:

• The basic threshold approach, where it is assumed that the eye blink
artifacts have the largest amplitudes in the recorded signal and only a
threshold is applied to detect them.
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Figure 2.28: 100 seconds of EOG and EEG (32-channel) recordings.
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Figure 2.29: Results of the proposed spike detection algorithm on 100 seconds
of 32-channel recording given on fig 2.28. EOG signal on the top is plotted as
a reference.
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• The approach that combines median filtering, matched filtering and
NEO (see [Land 2002]).

• WDM, already mentioned and described in [Nenadic 2005].

For the second and third approach all the free parameters were varied in order
to find which combination leads to the most accurate results; this combination
was used in the simulation. The final results for each of the four approaches
are presented with 32 ROC curves (figure 2.30), one for each channel. Every
curve is made from 50 points that are calculated for different threshold levels.
The detection is taken as correct if the eye blink occurred in 1s window around
the point that is found to be above the threshold level. For each of the 50
points, the probability of correct detection is defined as the ratio between
the number of correct detections for a given threshold and the total number
of spikes. The probability of false alarm is defined as the ratio between the
number of false alarms and the maximal possible number of false alarms for
a given threshold. From the results shown on figure 2.30 we conclude the
following:

• Since electrodes FP1 and FP2 are located very close to the eyes all
four approaches have almost perfect detection rates (all eye blinks are
detected with almost no false alarms).

• Poor detection results for channels FC5, FC1, FC2 and FC6 suggest
that the projection of the eye muscle activity is very low in this region,
what leads to conclusion that eye blink detection is not necessary in
some cases.

• Advantages of using either algebraic approach, wavelet approach or com-
bination of median filter, matched filter and NEO are the greatest when
the algorithms are applied on signals from the electrodes that are placed
further from the eyes (from TP9 to PO10 on figure 2.30). Here we notice
the property of the algorithms to emphasis the spike shaped waveforms
in the noisy environment (since threshold approach gives poor results
the recorded signal is obviously very noisy in these brain regions). For
the electrodes F7, F3, FZ, F4 and F8, where the projection of the eye
activity is larger (since they are located closer to the eyes), threshold
approach performs similar to the other three approaches.

2.5 Discussion

In this chapter we launched a discussion on spike detection and developed a
computational framework which leads to a simple detection and estimation
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Figure 2.30: ROC curves: Comparison of the proposed method with WDM, a
method based on combination of matched filtering, median filtering and NEO
and simple threshold approach. Probability of the false alarm is given on the
horizontal axis and the probability of correct detection on the vertical axis.

method. The approach is based on modeling polarity change within a spike
as a jump in the signal. By taking derivatives of the noise-free part of the
signal, using the algebraic framework, we obtain an explicit solution for each
spiking instant. Large number of the free parameters enables us to adjust the
detection system to our particular needs (e.g. trade-off between false alarms
and correct detections). Our explicit solution is given through a linear system
of equations which coefficients are in some sense derivative estimators of the
signal. Even though many different detections systems are feasible we base
ours on observing when the system will be degenerated, what indicates that
there is no jump in the observed interval of the signal. Such detection system
is implemented as a discrete Volterra filter. We found that it shows good
robustness to the noise perturbations. We compared it with one of the most
successful neural spike detection method, based on wavelet transformation,
described in [Nenadic 2005]. The method compares favorably, especially for
low SNR, with WDM which stands as one of the most successful neural spike
detection methods.
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Visualization of the detection results is given using simultaneous intra-
extra-cellular recording. On such recordings it is not possible to quantify the
detection accuracy, since we do not know all the spike locations. However,
the obtained results give quite a good insight on applicability of the proposed
method on real signals.

We continued the simulations with the synthesized recordings. For the
synthesized recordings the spikes are given as spike templates, created by
averaging spikes from the real recording. The noise is extracted from the real
recording as well. It is very likely that the noise does not contain any spikes
from the neurons close to the electrode, since we removed those from the
recording by setting a very low threshold. The difference between the spikes
and the noise is thus very clear. Of course, using synthesized recordings we
know precisely which spike is fired by which neuron, so the results of spike
detection can be quantified.

By changing the SNR the problem of spike detection can be made more or
less difficult, but the actual spike locations are still always known. Drawback
of this way of comparison lies in a possibility that by decreasing the SNR some
spikes from distant neurons, that are considered as the noise, will become as
large as the spikes from the neurons considered to be close to the electrode.

One interesting result of the performed simulations is that the proposed
method has approximately the same PCD for different noise levels, while the
PFA is changing (opposite to the WDM where PFA is stable). Such property is
preferable for some of spike sorting techniques (which use the results of spike
detection as their input). This is because the cluster that contains the spikes
with the lowest average amplitude is often neglected in spike sorting, since it
is likely that it has a large number of falsely clustered spikes. Such philosophy
will be used in the next two chapters where we will address the spike sorting
problem. On the other side, if spike sorting technique does not neglect the
cluster with the smallest spikes, the properties of the WDM approach would
be preferable.

From ROC curves given on figures 2.23 and 2.24 we can see that the
performance of the proposed algorithm remaind stable, even for very different
SNR. It is important to emphasis that for each of the two ROC simulations
the same set of the free parameters for the proposed method has been used.
This suggests that the method is rather robust. However, we do not provide
an explicit way to compute the free parameters, but only give their physical
interpretation on the intuitive level. Exact values of the parameters should
be chosen experimentally, since their optimal values depend on the given data
and on the desired detection selectivity.

Regarding the simulation setup, using higher or lower SNR would not
contribute much to usefulness of the results with respect to any practical
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application. For lower SNR even if more spikes would be detected it would
be very difficult to sort them, since their shape would be almost entirely
destroyed. For higher SNR the comparison is also not necessary because all
the algorithms, even simply setting a threshold, would perform with almost
perfect accuracy.

Finally, we can say that even though the calculus behind the proposed
method seams complex, the implementation of the method is rather simple as
a discrete Volterra filter. The method is general purpose, thus no particular
model is required, only an approximate spike duration should be known. The
detection selectivity can be tuned with free parameters T , κ and ν. Overall,
the performance of the algorithm is fast and the obtained results suggest
relatively high accuracy, especially for low SNR. Since we have proposed the
whole framework in this chapter, there are lot of possibilities for different
variations, maybe development of more accurate detection systems.
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In the previous chapter we addressed the problem of spike detection. Now
having the spikes detected we usually want to sort them: The sorting amounts
find which neuron fired which spikes. This problem will be addressed in this
and the following chapter. In this chapter we will concentrate on spike sorting
from single-site recordings. In the next chapter we will investigate the problem
of spike sorting when multi-site recordings are available.

Even though the basic form of an action potential is the same for all
neurons, the spikes recorded with an extracellular electrode have different
shapes and amplitudes if they are coming from different neurons [Henze 2000].
This property, which is due to the propagation and the velocity effects, is
on the basis of spike sorting methods (for review, see: [Lewicki 1998] and
[Gibson 2008]). Therefore, it is argued that the information transmitted by a
given neuron is carried by the time occurrences of the action potentials and
not by their amplitude or shape. This makes the problem of spike sorting
easier, because it is not necessary to recover the original waveforms of the
action potentials, but only to find the firing instants of the sorted neurons.

As we said, in this chapter we consider to have only a single-channel record-
ings, but the spike sorting algorithms that are commonly applied on single
channel recordings are applicable on multi-channel recordings as well, usually
as a combination with some Source Separation methods (for examples see
[Takahashi 2003a] and [Mamlouk 2005]) - we will see this closely in the next
chapter. Say we have a single-channel extracellular neural recording that con-
sists of N samples and let each spike has a duration of M samples. A generic
spike sorting algorithm consists of several steps:
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1. Spike detection: In context of spike sorting, the goal of spike detection
is to extract from the recorded signal all the spikes fired by the neurons
close to the electrode. Assume that K spikes are detected in this step.

2. Feature extraction: Principal Component Analysis (PCA)
[Adamos 2008], wavelet decomposition [Quiroga 2004], [Hulata 2002] or
some other technique (e.g. [Ghanbari 2009], [Chah 2011] and [Rogers 2007])
are commonly used to reduce dimensionality of the M × K-matrix by
extracting the most important features of the detected spikes. The re-
sult is a new matrix of reduced dimension, L×K, where L < M is the
number of extracted features per spike.

3. Finding the number of clusters (the number of neurons close to
the electrode) i.e. model selection: K detected spikes could
be fired by one or more neurons. This step is very often done man-
ually, where user after observing the L × K matrix (often, L is equal
to 1, 2 or 3 so the matrix can be visualized) chooses the number of
clusters. But some general purpose parametric model selection algo-
rithms [Lavielle 2005] based on penalization such as Bayesian Informa-
tion Criterion (BIC) are also proposed as more efficient (see examples in
[Novak 2009], [Fraley 1998] and [Pouzat 2002]). The result of this step
is the estimated number of different neurons, call it P , that fired the K
detected spikes.

4. Sorting: Finally, the K detected spikes are sorted into P clusters.
Again general purpose techniques, such as K-means [Takahashi 2003a]
or Expectation maximization (EM) [Wood 2004], are usually applied
[Lewicki 1998].

Some other, very different approaches, also exist, (e.g. [Delescluse 2006]), but
they are mostly applicable only in special cases when some specific prior knowl-
edge (e.g. interspike interval histogram) is available. Because such knowledge
is available only for some special types of neurons and particular tissues, we
will not analyze those methods here, since we tend to address the spike sorting
problem in its general form.

Due to a typically unbalanced structure of the clusters, finding their num-
ber and sorting the spikes into the clusters (steps 3 and 4) are usually very
ill-conditioned. The unbalanced structure is mainly caused by two reasons: 1)
The firing rates of different neurons are usually very different (up to hundred
times) 2) The distances between the centers of the clusters can also be very
different.

To illustrate better the difficulty of model selection in neural recordings
let us discuss on implementation of BIC. Consider that sorting is done with
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EM, k-means or any other clustering algorithm. To do the model selection
with BIC the clustering algorithm is run several times, once for each realis-
tic number of clusters. For each run the corresponding maximized expected
likelihood is calculated. Since increasing the number of clusters naturally
increases the maximized expected likelihood, it is necessary to penalize the
increase of the number of clusters. Finding an optimal penalization is par-
ticularly ill-conditioned since it is usually chosen only once for one type of
recordings while the morphology of the feature space can vary significantly
from recording to recording.

On the other side accuracy of manual determination of the number of
clusters is also not satisfying [Harris 2000]. Moreover manual approach is
very expensive and hard to perform on large sets of data.

An example of bad results when general purpose clustering methods are
applied is shown on figure 1. We used artificial neural data to be able to
verify the clustering results. The dimensionality of the spikes is reduced to
2, using PCA. The first plot on the figure 3.1 displays the original clusters,
corresponding to three different neurons (spikes coming from the same neuron
are marked with the same shape and color). For model selection we used
BIC, as described above, which is known to often overestimate the number of
clusters, and obtained result that the data contains 6 clusters. The results of
clustering in 6 clusters with k-means is shown on the second plot on figure 3.1
and with EM on the last, third plot.
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Figure 3.1: Sorting example on simulated neural data with combination of
BIC with k-means and EM.

Even if the number of clusters is determined correctly, sorting the spikes
into the corresponding clusters is another very difficult problem for neural
data. The principal reason for this is that neural data can not be accurately
clustered based only on the distance to the center of a cluster, now this is the
most important parameter among the parametric clustering methods. This
is illustrated on figure 3.2 where the same data sample consisting of only
three clusters was used. The correct number of clusters was given to both
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k-means and EM methods, but still the sorting results are not as desired.
We must mention that here and in the later simulations in this chapter k-
means and EM are run only once, with random positions of the initial centers.
Running the algorithms several times with different positions of the initial
centers and choosing the result with the largest likelihood would lead to better
performance of these algorithms.
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Figure 3.2: Sorting example on simulated neural data with using k-means and
EM with the number of clusters priori fixed to 3.

In this chapter we propose a new method for finding the number of neurons
that fired the detected spikes and for associating each of the spikes with a
corresponding neuron (steps 3 and 4 above). The method is also described in
[Tiganj 2011b]. We do not address questions of e.g. spike detection or feature
extraction, but to demonstrate our results we will use techniques commonly
applied for these problems. The proposed method is non-parametric. It is
designed particularly for the neural recordings, with the aim of high robustness
with respect to mis-classification.

The method is based on two assumptions on the recorded signal:
a) A lower bound on the number of spikes fired by a single neuron during the
recording time is known. This is a very realistic assumption since neurons
(especially those whose activity we actually want to detect) fire usually at
least once per second.
b) The recorded signal has a unimodal distribution. This is easy to verify ex-
perimentally, but it can also be shown theoretically upon invoking the central
limit theorem.

The basic idea behind the proposed method is that most of the spikes
fired by the same neuron, after projection on feature extraction vectors, will
be concentrated around the center of the corresponding cluster. As we go to
the edges of each cluster the density of spikes decreases. Smoothing the vector
space that contains the K detected spikes (represented in L-dimensions) with
moving average filter allows one to emphasis the differences between clusters
and leads to easy automatic detection of the centers of the clusters. To assign
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spikes to a corresponding cluster we use a simple greedy algorithm: each
cluster is initialized by its singleton center and the clustering is performed by
classifying one spike at a time, in such a way that if an element belongs to a
cluster then so is its nearest neighbor. This procedure leads to a very robust
solution, which is not sensitive to unbalanced sizes of clusters.

The property of unimodal distribution of neural data is exploited in several
neural spike sorting algorithms. In [Vargas-Irwin 2007] it has been used to find
spike templates which are then correlated with all the detected spikes in order
to emphasis the differences between clusters. Such template matching can be
used as a preprocessing step of the method proposed in this chapter, since
template matching can generally improve the results obtain by feature ex-
traction methods. Different peak-valley search algorithms, such as histogram
peak count, are also based on distributional properties of neural data (see
e.g. [Sebald 2007] or the implementation in a commercial system described in
[Bla 2009]). Typically, these algorithms sort all the spikes at once by estimat-
ing the morphology of the area with lower spike density, giving the borders
between clusters explicitly. The implementation can thus be very complex,
especially in higher dimensional space. Also, when more than two clusters
exist, the vector space becomes very difficult to analyze with such methods.
By clustering one spike at a time, where the borders are given implicitly, with
only the filter length and height to set, the proposed method gives a simple
and yet robust alternative.

A detailed description of the method is given in the following section. We
apply the method on extracellular recordings and use the simultaneous intra-
cellular recordings to verify the results of the sorting for the neuron recorded
intracellularly. Such way of validation represents another contribution of this
chapter, since spike sorting methods are typically validated only on the simu-
lated signal. In section 3.2 we describe the signal that we use for the validation,
which is available online [Henze 2000]), give all the simulation parameters and
results of the comparison with the state-of-the-art approaches. Conclusions
and some future perspectives for development of this method are given in
section 4.5.

3.1 Methodology

In this section we will describe our method step-by-step. For the demonstra-
tion we use a simulated signal for which the actual activity of each neuron
is known. We can therefore display the results of the proposed method. As
we said in the previous section, we assume to have an N -samples long single-
channel extracellular neural recording. Our goal is to find the firing patterns
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of as many individual neurons as possible (for single-channel recordings this
usually means activities of two to three neurons closest to the electrode).
Example of simulated extracellular recording is displayed on figure 3.3. We
labeled the spikes that come from different neurons with different symbols.
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Figure 3.3: Simulated extracellular neural recording with marked spike loca-
tions from three neurons closest to the virtual electrode.

3.1.1 Preprocessing: Spike detection and feature extrac-
tion

The first preprocessing step is the spike detection. Depending on the SNR,
setting a threshold directly on the extracellular recording or applying some
more advanced spike detection technique can be considered. We will use the
method described in the previous chapter.

Assume that we detectedK spikes that come from a total of P neurons (for
us P is unknown). To each detected segment xk, k = 1, · · · , K, we associate
one neuron, say neuron #jk, 1 6 jk 6 P . This is, among all neurons which
are active during that segment, the closest one to the electrode. We can then
write each segment as: xk = wjk +nk, where wjk is the spike waveform coming
from the associated neuron and nk is the contribution of all remaining neurons
that were active during the detected segment xk. Figure 3.4 shows the first
5 segments xk extracted from the signal on figure 3.3 and displays them as a
sum of wjk and nk.

Since each extracted segment has the same length of M samples, all the
segments can be given in M ×K matrix. So now we have each detected spike
described by M samples (M is usually between 50 and 100, depending on the
spike duration and the sampling period). But each spike can be described
by e.g. its amplitude, or its minimal and maximal value. Using only these
information it can be easier to find which spikes are fired by the same neuron
than by observing all the M samples. Generally speaking, we can try to
extract some features that give a compact description of the spikes. There
are many techniques for feature extraction that try to extract one or more



3.1. Methodology 77

+ =

+ =

+ =

+ =

+ =

PCA

PCA

PCA

PCA

PCA

wjk nk xk PC1 vs PC2

k = 5

k = 1
j1 = 1

k = 2
j2 = 3

k = 3
j3 = 3

k = 4
j4 = 2

j5 = 1

Figure 3.4: First 5 spikes from figure 3.3 shown as a sum of original spike
waveforms and noise. Each spike is then projected on the first two principle
components. The last column shows the values of these projections in PC1 vs
PC2 basis.

of the most important features. In this chapter we will use PCA, which
seems to be the most popular one, but also some other techniques could be
used (good results are reported e.g. when wavelet decomposition is used
[Quiroga 2004] and new techniques for feature extraction in neural recordings
are under constant development see e.g. [Ghanbari 2010]). The algorithm
we propose in this chapter is compatible with all of these feature extraction
methods. PCA takes the variability in the data as the most interesting feature
and projects the data in such a way that the first basis vector (principle
component) has the variance as high as possible. Each succeeding principle
component in turn has the highest variance under the constraint that it is
orthogonal to the preceding components. We project our M × K matrix
on L principal components. This projection results in new L × K matrix.
For the simplicity of this description, we will assume the choice of L = 2

(only two features are extracted from each detected segment) and call the
corresponding matrix D2×K . An example is shown on figure 3.4 where the
last column gives the projection of xk on the first two principle components.
Notice that the projections are similar for spikes coming from a same neuron.
All the extracted spikes projected on the first two principal components (all
the elements of matrix D2×K) are shown on the left plot on figure 3.5. Same
as for figure 3.1, the projections of the spikes that belong to different neurons
are marked with different symbols and colors.
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Figure 3.5: The left-side plot shows the initial data set (same as for figure
3.1). The right-side plot shows sorting results with the proposed method.
The elements of each found cluster are labeled with symbols of the same
shape/color.

3.1.2 Unimodal distribution

Now having D2×K , we need to find out how many neurons fired the spikes we
detected and to associate each spike to one of the neurons.

To find the centers of the clusters we will first filter the 2D vector space.
One key point of the method is to assume that the maxima of the filter’s output
correspond to the centers of the clusters. Such assumption obviously implies
that each cluster has a unimodal shape (in L dimensional space) and also that
the centers are far enough so that the unimodal shape is not destroyed by an
overlapping of clusters. If this is not the case we would find multiple centers
in a single cluster. We will now discuss whether these properties are realistic
for neural data.

The application of PCA on each detected segment xk can be written as
a scalar product between xk and, in our case, only the first two principal
components (PC1 and PC2):

〈xk, PCi〉 = 〈wjk , PCi〉+ 〈nk, PCi〉 = αjk,i + βk,i, i = 1, 2.

Each spike waveform wjk , for the same neuron j, will be transformed with PCA
into exactly the same point in the 2D vector space (αjk,i). As we have men-
tioned earlier, we consider that these points will be mutually distant enough
so that the dispersive effect of the noise cannot induce any overlapping be-
tween clusters. So the success in finding the centers of the clusters depends
on the difference between the spikes from the neurons we want to sort and the
noise level. When performing a recording it is generally possible to influence
on both of these parameters by adjusting the electrode position.

Considering the noise part, nk is actually a weighted sum of activities from
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a very large number of neurons. Even though the distribution of the activity of
each individual neuron is obviously not unimodal, the distribution of the sum
of a large number of these activities tends to be unimodal. This stems from
the central limit theorem, assuming that the spiking activity of each neuron is
independent to the others. Recall that the many spike sorting algorithms that
we have mentioned in the introduction also assume the unimodal property.
Moreover, this property is simple to verify experimentally by observing the
cumulative distribution function (CDF) of a neural recording. We plot the
empirical CDF of a neural recording and a Gaussian CDF as a reference on
figure 3.6. The neural recording has unimodal distribution which is in fact
close to Gaussian (notice that a proximity to the Gaussian distribution is not
required by the proposed algorithm).
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Figure 3.6: Gaussian CDF and empirical CDF of a neural recording.

Since PCA is a linear transformation βk,1 and βk,2 are just linear combina-
tions of the elements of nk, so the distribution of βk,1 and βk,2 is of the same
type as that of nk.

Finally, depending on the conditions mentioned above, we can expect that
the density of (〈xk, PC1〉, 〈xk, PC2〉) will have a single maximum for a single
cluster. Such morphology suggests the idea of sorting all the spikes into their
corresponding clusters using a simple greedy algorithm which grabs the nearest
neighbors: since the density of spikes decreases as we go further from the
maximum, gathering spikes to the same cluster using the criteria of their
proximity to nearest neighbor seems to be a simple solution. This conclusion
is on the basis of the proposed spike sorting algorithm.
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3.1.3 Finding the centers of the clusters

In this subsection we will describe the algorithm for finding the centers of the
clusters. According to the previous subsection this amounts to find the areas
of the highest density of the points (〈xk, PC1〉, 〈xk, PC2〉).

For this, we first assume that each active neuron fires at least, say, G spikes
during the observation window. Most of the neurons fire at least once per
second, so depending on the duration of the recording we can easily calculate
G. Now knowing G, we construct a moving average filter that will smooth the
obtained 2D K-elements space without merging different clusters. We assume
that the 2D space is normalized so that we can consider a square domain for
the filter’s support. The filter should emphasis the differences between the
centers and the border of each cluster. Its length (height), call it R, should
be adjusted in a way that the filter window does not contain more than e.g.
G/2 elements. In subsection 3.2.3 we will show that in practical situations
R can be taken from a large range of values without affecting the clustering
results. The result of filtering the data from figure 3.5 is shown on figure 3.7.
Call the resulting matrix Dfilt

2×K . The centers of the clusters in the data matrix
Dfilt

2×K are easily found: any local maximum 1) which is centered in a domain
at least larger than the filter window and 2) which is global in that domain,
is a center of a cluster. In such way we are again sure that two clusters will
not be merged into one. The centers found in this way are labeled with black
dots on figure 3.7. The figure demonstrates that one center is found for each
of the three big clusters. Several centers are found in the area distant from
the biggest clusters, these actually represent the activities of neurons whose
spikes are only partially detected. As we will see in the next subsection, since
only a small number of spikes will be assigned to these clusters (less than G)
they will be neglected and the spikes assigned to them left unsorted.

3.1.4 Associating each spike with the corresponding cen-
ter

After finding the centers of the clusters, we have to associate each of the spikes
with one of the centers.

To cluster the data we propose a greedy algorithm close in spirit to the
agglomerative hierarchical clustering [Hastie 2003]. In spike sorting the ag-
glomerative hierarchical clustering has already been considered in [Fee 1996]
where single spikes are first sorted into an overly large number of clusters and
after the clusters are progressively aggregated into a minimal set of clusters.
Our approach is close in spirit, but yet significantly different from hierarchical
clustering since we sort spikes one by one, instead of merging clusters. Thus
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Figure 3.7: Filtered vector space from figure 3.5. Black dots denote clusters
maxima.

we avoid the difficulty of devising a merging criterion for the clusters. Hence,
the proposed approach is simpler and it can be implemented in an unsuper-
vised way. We will exploit the fact that we know the centers of the clusters
and that they are actually points of the highest density. Our basic statement
is that if an element belongs to a given cluster, then its nearest neighbor also
belongs to the same cluster. Throughout, we use the Euclidian distance.

Let x̃k be the projection of xk on the L feature extraction vectors: x̃k =

(〈xk, PC1〉, 〈xk, PC2〉) and call D the set of all x̃k. Let ci, i = 1, . . . , P de-
note the centers of the clusters, in an L dimensional space. The pseudocode
1 describes the algorithm for the construction of the cluster Ci that corre-
sponds with the center ci. Therein, we use the notation dist for dist(x,C) =

miny∈C ‖x− y‖2. For the initialization, we set Ci = {ci} for all clusters.

Algorithm 1 Proposed method for associating spikes with corresponding
centers
while D not empty do
for i = 1 to P do
x̃mini = arg min

x̃∈D
dist(x̃,Ci) For each cluster Ci, find the closest element

x̃mini of D
j = arg min

16i6P
dist(x̃mini ,Ci) Find which cluster Ci to update

Cj ← Cj
⋃
x̃minj Add the spike to the corresponding cluster

D← D\x̃minj Remove the sorted spike from the set D

The right-hand side plot on figure 3.5 was obtained by applying this algo-
rithm, using the centers obtained in the previous step. Comparing with the
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left-hand side plot on figure 3.5, we can conclude that the proposed algorithm
resulted in a quite good reconstruction of the three clusters. Several elements
are misplaced but the result is quite satisfactory, especially in comparison
with the one presented on figures 3.1 and 3.2. The spikes labeled as "Others"
are broken into few clusters any of which is not large enough to exceed G, so
they are all left unsorted. We consider this as a correct solution, since we do
not want results that would contain only partially detected activity of some
neurons.

In cases where we found only one cluster large enough to be kept, we
can go back to the spike detection step and lower down the threshold value
aiming to detect more spikes. If detecting much more spikes (extremely low
threshold) does not result in detection of more than one large cluster, then it
is a good indication that the recorded data are too noisy for such processing.
This iterative approach can be used to find an optimal threshold in a given
context for the proposed algorithm. In general, we can say that the cluster
which contains most of the spikes with lowest amplitudes should be neglected,
especially when high reliability of the results is needed.

3.1.5 Possible situations

Depending on the measurement conditions, we can have in practice three
possible situations:

1) Spikes fired by two given neurons are significantly different. Conse-
quently the extracted features are significantly different too (example is the
first plot on figure 3.8). It is evident that the proposed approach will ac-
curately find the centers and then sort the spikes into their corresponding
cluster.

2) Spikes fired by the two neurons do not differ significantly (the second
plot on figure 3.8). In this case the clusters are (slightly) overlapped: some
spikes will be wrongly sorted, but we can expect that the majority will be
sorted correctly. Since the density of the projected spikes is higher in the
cluster’s center than in the areas between the clusters, the proposed method
will accurately find the centers of the clusters.

3) Spikes fired by the two neurons are very similar (the third plot on figure
3.8). Now finding the centers of the clusters is not possible with the proposed
method. Even if the centers were known, an accurate sorting would still not be
possible with the proposed greedy algorithm. This situation is typical for very
noisy recordings. In such data, the proposed algorithm will usually detect only
one cluster. As we have mentioned before, this can be used as an indicator
that the recording is too noisy. A potential solution could be to project the
data on a different number of principle components, reduce the noise sources,
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do reposition of the electrode or use multi-channel measurement system.
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Figure 3.8: Three generally possible situations considering mutual distance
between clusters of the neural data projected on the first two principle com-
ponents.

It is important to mention that the results of the proposed method will
be relatively conservative. This conclusion comes from the way of finding
the centers of the clusters. Since, due to the small value of R, two clusters
can hardly be merged into one, the number of spikes wrongly associated to a
particular cluster (false spikes) will be relatively small. Since false spikes can
be very confusing and misleading for different algorithms that aim to decode
the communication between neurons, in the trade-off between the number of
missed spikes and the number of false spikes it is highly preferable to have
more missed spikes. See [Ilan 2008] for detailed argumentation and proof of
this statement.

3.2 Simulation and results

To analyze the performance of the proposed method we apply it on real extra-
cellular neural recordings. We validate the results using intracellular record-
ings made simultaneously with the extracellular ones. These results are com-
pared with the results of the state-of-the-art approaches.

3.2.1 Use of simultaneous intra- extra-cellular record-
ings for the validation and comparison

As in the previous chapter, we use simultaneous intra- extra-cellular record-
ings from rat hippocampal area CA1 done by Henze et al., described in
[Henze 2000]. These data are particularly interesting because they consist
of simultaneous intra- extra-cellular recordings.
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Figure 3.9: Simultaneous intra- extra-cellular recordings. The two electrodes
are very close so the action potentials recorded with the intracellular electrode
are clearly visible in the extracellular recording.

Single-channel extracellular spike sorting techniques usually result in sort-
ing activity of two to three neurons. When the extracellular and the intracel-
lular electrode are close enough, one of the neurons which activity is sorted is
probably the one recorded intracellularly. Figure 4.1 shows such simultaneous
recording. The top plot shows the extracellular recording and the bottom plot
shows the corresponding intracellular recording. The action potentials fired
by the neuron recorded intracellularly are clearly visible on the extracellular
recording. This indicates that the electrodes are located very close to each
other.

On the plot of the extracellular recording we can also see the activity
of other neurons around the extracellular electrode.Notice that many of these
spikes have similar amplitudes as the extracellularly recorded spikes that come
from the neuron recorded intracellularly. Thus, the task of spike sorting is
obviously not trivial in this case.

Finally, we see that once we apply the spike sorting techniques on the
signal recorded extracellularly we can validate the sorting results for one of
the sorted neurons, the one which is recorded intracellularly.

From the available database we selected 8 recordings that satisfy the con-
dition that the action potentials from the neuron recorded intracellularly are
clearly visible on the extracellular recording. Another criteria for the selec-
tion was that visual inspection of the feature vector space, after projection of
the first two principle components, suggests that the sorting problem is not
trivial (clusters far from each other) or too challenging (clusters completely
overlapped). Even though the recordings were done with multi-site electrodes
(4, 6 and 8 channels) since the algorithm proposed in this chapter is designed
for single-site spike sorting we picked only one channel from each recording.
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Table 3.1: Variances of the data projected on the first three principle compo-
nents.

Recording Variance of PC1 Variance of PC2 Variance of PC3
d533101 1 1.37 0.73 0.42
d533101 2 1.70 0.62 0.35
d533101 3 1.63 0.59 0.34
d533101 4 1.94 0.60 0.38

d12821001 3 5.51 1.88 1.34
d12821001 4 6.15 2.15 1.62
d1122109 4 0.99 0.30 0.24
d1122109 4 1.54 0.43 0.28

Of course the same algorithm can be applied on the signal from each record-
ing site separately. However, in the next chapter we will combine independent
component analysis with the algorithm proposed here to exploit the data re-
dundancy in multi-site recordings. The recordings we used here have from
around 2.5 millions to around 10 millions of samples with 287 to 1197 spikes
from the intracellularly recorded neuron and from to 1409 to 4788 detected
spikes in total. They are recorded with different types of electrodes and sam-
pling frequency either 10kHz or 20kHz, what gives an important diversity of
the data.

3.2.2 Preprocessing of the extracellular recordings

First we detect the spikes from the extracellular recordings. To emphasis the
spikes coming from neurons located close to the electrode we apply a spike
detection technique described in the previous chapter (see also [Tiganj 2009]
and [Mboup 2008]). For each of the detected spikes we extract a corresponding
50 samples long data vector.

As the second step, we apply PCA for feature extraction. Figure 3.10 shows
8 plots, each corresponding with one of the signals (we kept the original signal
names as in [Henze 2000]). The plots show the projections on the first three
principal components. The spikes that are recognized as coming from the
neuron recorded intracellularly are marked with red stars. The rotation angle
is adjusted for each plot to make the differences between the clusters more
obvious. We can see that the projections on the third principle component do
not contribute significantly to the separation of the spikes fired by the neuron
recorded intracellularly from the rest of the spikes. On the other side, the
projections on the first two principle components are much more informative
and enable us to see differences between clusters. This is also elaborated with
table 3.1 which gives variances of the first three principle components for each
of the 8 signals. Thus, in the following, we keep only the projections on the
first two principle components, that is we set L = 2.
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Figure 3.10: All the spikes from all 8 recordings projected on the first three
principle components. Each plot is rotated in order to show differences be-
tween spikes from the intracellularly recorded neuron and all other spikes.

3.2.3 Clustering: applying the proposed algorithm

To ease the comparisons, we scale PC1 and PC2 in the range [0, 100].
We assume a minimal firing rate of 1 spike per second and use a 2D filter

with size (window width and length) corresponding to R = 8. For all the
recordings this value of R and this minimal firing rate meet the requirement
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of not merging two different clusters.
The centers of the clusters are found as the maxima of the filtered data,

with a condition that two maxima are far enough from each other, as it is
defined in subsection 3.1.3. All the spikes are finally clustered using the algo-
rithm 1.

3.2.4 Results

We compared the proposed non-parametric approach with a combination of
BIC with k-mean and EM algorithms and also with super-paramagnetic clus-
tering [Quiroga 2004] which is e.g. used in spike sorting software called Wave-
clus. These stand as the state-of-the-art approaches and are the most widely
used among all the spike sorting algorithms.

Figure 3.11 gives comparison of performance of the four algorithms on each
of the 8 recordings. The spikes from the neuron which is recorded intracellu-
larly are again represented with red stars in the first column. To quantify the
clustering performance we observe how well the different algorithms managed
to isolate that cluster. Since we do not have any knowledge on the activities
of the other neurons we can compare the algorithms only in their ability to
sort the spikes fired by the neurons recorded intracellularly (one neuron for
each recording).

By observing closely the fist column on figure 3.11 we see that, after PCA,
several spikes from the neuron recorded intracellularly are located far from
the area that obviously contains most of the spikes from that neuron. This
is especially the case for recordings d533101 1, d533101 2, d533101 3 and
d533101 4. We can also notice that several spikes that do not come from
the neuron recorded intracellularly are in the middle of the area that contains
most of its spikes. The best example is recording d1122109 4. Thus, we can
not expect from any sorting algorithm to sort these spikes correctly, since they
are obviously misplaced by the feature extraction technique. The results from
figure 3.11 are also presented in table 3.2.

K-mean and EM based approach separate well spikes from the intracellu-
larly recorded neuron for recordings d533101 1, d533101 3 and d12821001
3. EM based approach performs solid also on recordings d533101 2 and
d12821001 4. For all the other recordings these approaches tend to split
a single cluster into two or more clusters (e.g. results for recording d1122109
4). Using k-means and EM, isolated elements located far from the cluster
are often wrongly associated with that cluster, e.g. for k-means recording
d12821001 3 and for EM d533101 2. Notice that we could actually obtain
better results if we just fixed the number of clusters to two. However, those
results would still be worse than the one of the proposed algorithm since there
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Figure 3.11: Comparison of performance of the four sorting algorithms on 8
recordings. Rows on the figure show results on different recordings. The first
column displays projection of each of the recordings on the first two principle
components. Red stars represent spikes that come from the neuron recorded
intracellularly while cyan dots represent all other spikes (from unknown num-
ber of neurons). The other columns give the sorting results of four different
algorithms. Different clusters are marked with different symbols/color. For
the proposed algorithm (second column) the black dots mark centers of the
detected clusters.

would be many falsely clustered spikes: all the spikes which seem to naturally
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Table 3.2: Comparison of spike sorting methods on 8 different recordings. C
is the largest number of spikes from the neuron recorded intracellularly that
are sorted into the same cluster (correct detections). F is the number of spikes
from other neurons that are wrongly placed into the same cluster for which
C is calculated (false spikes). T is the total number of spikes fired by an
intracellularly recorded neuron. Sorting accuracy (SA = 100 ∗ C/(F + C))
is given in percentage (see e.g. [Chah 2011] for details). We also give the
percentage of missed spikes as SM = 100 ∗ (T − C)/T

recording proposed k-means EM superparamag.
C F SA SM C F SA SM C F SA SM C F SA SM T

% % % % % % % %
d533101 1 240 64 80 16 237 61 80 17 234 62 79 18 287 1358 17 0 287
d533101 2 356 39 90 12 235 43 85 42 356 57 86 12 339 27 93 16 403
d533101 3 333 61 85 13 335 74 82 12 333 69 83 13 304 36 89 20 381
d533101 4 392 76 84 10 239 66 78 45 151 27 85 65 368 55 87 16 437

d12821001 3 714 69 91 5 724 97 88 4 600 43 93 20 599 28 96 20 753
d12821001 4 438 65 87 4 232 18 93 49 420 57 88 8 134 3 98 71 456
d1122109 4 1065 182 85 0 305 35 90 71 476 60 89 56 157 7 96 85 1070
d1122109 5 795 141 85 34 480 36 93 60 497 33 94 58 1197 3401 35 0 1197

fall out of both clusters would be necessarily clustered in one of the two clus-
ters. Results on figure 3.11 suggest that increasing the number of clusters
seems to rather lead to split of the clusters through the area of the high spike
density, than grouping the spikes which are far from the areas of the high
density into separate cluster.

Results of super-paramagnetic clustering are significantly different from
the one of k-means or EM based approaches. They are sometimes very good
(d533101 2, d533101 3, d533101 4) so for example isolated spikes far from
the cluster are left outside the cluster. For recording d12821001 3 the results
are still satisfactory, but for recordings d533101 1, d12821001 4, d1122109
4 and d1122109 5 they are very bad, since almost all the detected spikes are
sorted into same clusters.

The proposed approach performed generally very well. Even though in few
situations several spikes that are located a bit far from the cluster are wrongly
placed into the cluster (e.g. d533101 3 and d1122109 5), the bulk of the
spikes that corresponds with the intracellularly recorded neurons are always
recognized. Most of the isolated spikes are assigned to their own clusters
(notice the black dots that show the locations of the centers of the clusters),
which are after neglected since they contain less than G spikes.

Finally, we can say that the proposed approach compares favorably to
all the three approaches. On these data the proposed approach always gave
reasonably good results, without big oscillations.

Of course, to obtain a single-channel data where such separation is gener-
ally possible, the SNR has to be satisfactory and good performance of feature
extraction technique is necessary. These are requirements of all the four ap-
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Table 3.3: Analysis of robustness of the proposed approach. Columns min
R and max R show the results obtained with the minimal and the maximal
filter width and height respectively, such that the results are still considered
as satisfactory (relatively well clustered activity of the intracellularly recorded
neuron). G is the number of the elements that contained the largest filter win-
dow for the given R and, as before, C is the number of the correct detections,
F the number of false alarms and T the total number of the spikes fired by the
intracellularly recorded neuron. Sorting accuracy (SA) and sorting mistake
(SM) are given in percentage.

recording min R max R
R G C F SA SM R G C F SA SM T

% % % %
d533101 1 4 158 237 43 85 17 14 959 240 61 80 16 287
d533101 2 4 132 351 37 90 13 22 1196 357 60 86 11 403
d533101 3 3 96 311 46 87 18 19 1143 334 80 81 12 381
d533101 4 6 211 390 74 84 11 23 1141 396 92 81 9 437

d12821001 3 7 132 714 49 91 5 22 668 714 100 88 5 753
d12821001 4 5 93 438 64 87 4 19 622 438 65 87 4 456
d1122109 4 5 77 1055 161 87 1 22 781 1065 182 85 0 1070
d1122109 5 5 373 790 111 88 34 8 808 795 141 85 34 1197

proaches.
To analyze the robustness of the proposed approach we change R, the

filter width and height, to see what are the limits for which the algorithm
will still give satisfying results. The comparisons are given on figure 3.12 and
in table 3.3. Small R leads to much more conservative results, since most of
the individual spikes, located a bit further from the area of highest density,
are detected as clusters. These clusters contain less then G spikes so they are
neglected. For large R, usually only the most important clusters are detected.
Therefore, the results are likely to contain more false alarms (lower SA). Table
3.3 indicates that satisfying results can be obtained for a large range of G.
On vector space scaled on values from 0 to 100, choices of R = 7 and R = 8

lead to good results in all examples even though the clusters have different
morphologies. Choosing too large value of R will usually result in detection of
only one cluster what, as we said in subsection 3.1.4 should indicate that the
data are too noisy for the clustering. This significantly increases reliability
of the algorithm, since it is usually preferable to characterize the data as too
noisy than to obtain results that merge several clusters into one.

3.3 Discussion

In neural recordings the differences between some clusters may be very small.
Meanwhile, as the firing rate can vary significantly from one neuron to another,
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Figure 3.12: Analysis of robustness of the proposed approach. The first col-
umn is the same as on figure 3.11. The second column gives the sorting results
for minimal R and third column for maximal R which still led to satisfying
results.

the sizes of the clusters are usually strongly unbalanced. Also, in the spike
detection phase, the firing activities of most of the remote neurons are very
partially captured. Each of those neurons is thus represented by so few spikes
that they can not be considered as separate clusters; they rather should be
left unsorted. However, the classical solutions for the spike sorting problem
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are mostly based on the application of a general purpose model selection
and sorting algorithms. Now, it is very unlikely that such a general purpose
algorithm could comply with all the above mentioned specificities of neural
recordings.

Deviating from these solutions, we proposed a non-parametric method that
exploits some common properties of the neural signal and thus is particularly
adapted for neural spike sorting. We assume that some minimal number of
spikes per neuron is given as a prior information (minimal firing rate). This
is not a strong requirement since generally we are not interested in isolating
the activity of a neuron that fired only few spikes. We also assume that
the recorded signal projected on some principle components has a unimodal
distribution.

The method we devised has the common preprocessing part as most of
spike sorting methods (spike detection and feature extraction). Afterwards,
we start with the non-parametric approach by applying a moving average fil-
ter in the space projected by the feature extraction vectors (in our simulations
principle components). This enhances the centers of the clusters which are
then easy to find. We associate all the spikes with their corresponding centers
using a greedy sorting algorithm close in spirit to the agglomerative hierar-
chical clustering and developed particularly for this application. The method
can perform with no supervision, using the values of the parameters as given
in this chapter. However, to increase the accuracy, the user can optimize
the filter width and height to the structure of the actual vector space. This
optimization can be done for each recording or for a set of recordings when
similar properties of the feature vector spaces are expected. Moreover, the
filter width and height can be adjusted to obtain more or less conservative
results.

We tested the proposed method on a specific type of neural recordings:
simultaneous intra- extra-cellular recordings. We applied the method on the
extracellular data and validated the results using the intracellular data. Com-
paring with the state-of-the-art approaches our method leads to significantly
better results and shows very reliable performance.

The complexity of the proposed algorithm highly depends on the number
of extracted features per spike, since this number defines the dimensionality of
the filter. For feature extraction with PCA a good choice was to keep only the
projections on the first two principle components which means that we needed
to apply a 2D spacial filter. When other feature extraction techniques are used
this number of features could be insufficient, so to keep the processing fast
an alternative to filtering that would still enhance the centers of the clusters
should be implemented. The complexity also highly depends on the scale of
the feature extraction space e.g. in the presented simulations we scaled the
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space to values from 0 to 100. If we denote lower and upper bound of nth scaled
feature extraction dimension as yminn and ymaxn then the number of operations
NOfilt needed for the filtering can be expressed as NOfilt =

∏L
n=1(ymaxn −yminn ).

The same number of operations is needed for finding the maxima as we need
to analyze each element in the vector space. So the total number of operations
is given by NOtotal = 2

∏L
n=1(ymaxn − yminn ).

In its current form, the proposed method is obviously not implementable
online. However, we may point out some possible modifications that would
allow an online implementation. These concern essentially two points: 1) an
initialization period, that provides all the centers of the clusters; 2) an online
feature extraction method.

In this chapter we addressed a question of spike sorting from single-channel
recordings. In the following chapter we will present an algorithm based on it-
erative application of independent component analysis for sorting from multi-
channel recordings, which uses the proposed method to separate the activity of
one neuron in each iteration. As we will see in the next chapter, the algorithm
presented here will help us to obtain more reliable sorting results, especially
in low SNR conditions. There the property of automatic clustering will be
particularly important, since in an iterative algorithm any manual verification
of the results within each iteration is not practical. Even though the algo-
rithms compared with the proposed one could obtain similar results with help
of manual parameter adjustment within some feedback process, they would
not be suitable for many applications, among else for such iterative algorithm.
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The ultimate goal of spike detection and sorting is to provide data from
which it is possible to better understand the neural information. Since the
neural networks, particulary in the cortex, are extremely complex (see chapter
one) we need an individual activity of as many neurons as possible in order to
try to understand the neural code. More precisely we need the simultaneous
activity of neurons that are close to each other. To obtain recordings of
such activity extracellular neural recordings are commonly used. The main
advantages of extracellular recordings is that they give access to individual
neural activity (after successful spike sorting) and they can be performed using
multiple recording units.

Currently one common way to obtain recordings of such activity is to use a
tetrode, an extracellular electrode which consists of 4 recording sites. However
the electrodes with much greater number of channels are penetrating more
and more to the market (see e.g. [Simeral 2011] where 100-channels recording
system, described in [Bla 2009], has been used). Each recording site of the
tetrode, or any multi-electrode, will record mixture of activity from a vast
number of neurons around the electrode. The recordings sites are usually
located close enough so that the activity of the neurons around the electrode
is projected on all the recording sites. However, spikes that are fired by
different neurons are, due to propagation and velocity effects, projected on
each site with different shape and amplitude.
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Since all the recording sites record the activity from the same neurons,
the information redundancy in very large. Developing a sorting algorithm
that will use this redundancy to increase the SNR is on the basis of spike
sorting methods adopted for multi-site recordings. This is actually a Blind
Source Separation (BSS) problem. A well known BSS technique, called Inde-
pendent Component Analysis (ICA), is often used to find a new basis for the
data that will minimize the mutual information between the recording sites
[Shiraishi 2009], [Brown 2001]. ICA is generally known to be a very efficient
technique, but it is necessary to satisfy several conditions for its successful
application. Some of these conditions are only partly or not at all fulfilled
in neural recordings. The most problematic condition is that the number of
the recording sites (channels) should not be lover than the number of sources
(neurons). This is clearly not true for a vast majority of neural recording
where the number of neurons largely exceeds the number of the recording
sites (so-called overcomplete problem) [Brown 2001]. The condition that the
recording should be a linear mixture of the activity of the sources, is also
not true as well, due to a nonhomogeneous medium between the neurons and
the electrode and also generally complicated spatial form of neurons. An-
other very important assumption for the ICA algorithm is that sources are
independent, which is not true in neural recordings, since the output of one
neuron clearly depends on the outputs of the others (neural networks). Even
though, by using ICA it is possible to obtain very interesting results in spike
sorting, the number of neurons that can be extracted in this way is usually
very limited and the accuracy highly depends on the spatial distributions of
the neurons with respect to the electrodes.

More recent techniques naturally combine feature extraction and ICA ap-
proaches, obtaining more accurate spike sorting e.g. [Takahashi 2003a] and
[Takahashi 2003b]. The algorithm we will present in this chapter is in spirit
similar to such approaches, but we will explore some particular properties of
the neural signal in order to obtain much more robust and generally more
accurate results.

One common difficulty in spike sorting is that often, the activities of differ-
ent neurons are merged into the same cluster. The sorting accuracy depends
mainly on a spatial distribution of the neurons around the electrode, what
gives a set of physical parameters which we can not control. Merging the
activities of several neurons in a spike sorting may lead to serious misinterpre-
tation, especially when the sorting result is used for understanding the neural
code.

Generally analyzing the problem of usefulness of spike sorting, we can
say that missing some spikes (spikes that are not detected or that are left
unsorted) is much less important mistake than the sorting into a wrong cluster
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(spikes assigned to the neuron which did not fire them). Thus, in the trade-
off between the number of missed spikes and the number of false spikes it
is highly preferable to have more missed spikes. See [Ilan 2008] for detailed
argumentation of this statement.

In this chapter we present a new algorithm for spike sorting in multi-
channel extracellular recordings. We use a deflation technique to improve the
performance of ICA: after we isolate the firing instants of a single neuron, we
remove them from the original recording and repeat the procedure until the
algorithm becomes unable to isolate any more neurons or until a prescribed
number of neurons is obtained. Moreover, within each iteration we implement,
in an internal loop, another iterative algorithm for removing the noise and all
the spikes that are not coming from the neuron that appears as the closest to
the electrode. Within each iteration of the internal loop we apply the sorting
algorithm described in the previous chapter. At the end of the algorithm, we
sort the overlapped spikes. To do this we take all the possible pairs of the
isolated neurons and apply ICA only on the segments of the signal while one
of the neurons in the pair was active. This algorithm has been presented in
the shorter form in [Tiganj 2011a].

To elaborate use of the algorithm presented in the previous chapter as a
module for the multi-channel sorting algorithm presented here, we point out
that automatic and stable performance are the essential properties we want
to obtain. Moreover, the method described in the previous chapter gives a
good measure of a distance between clusters. Since each element belongs to
the same cluster as its nearest neighbor, a distance between two clusters is
well given as a distance between the two closest elements that belong to two
different clusters.

Each step of the algorithm is analyzed in section 4.3. Before, in the fol-
lowing section we discuss on general possibility of applying ICA in neural
recordings and in section 4.2 we describe real and artificial neural recordings
we are going to use to present the algorithm. We present the results in section
4.4 and give some final discussion in section 4.5.

4.1 ICA in neural recordings

In this section we will analyze possibility of applying ICA for spike sorting.
ICA relies on a statement that, having a linear mixture of S > 1 mutually
independent non-Gaussian sources (in our case neurons) recorded with L ≥ S

recording sites (channels), the individual activity of all the sources can be
reconstructed by minimizing the mutual information between the recording
sites. For a great tutorial on ICA see [Hyvärinen 2000].
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If the activity of the sources is given with a vector s = [s1, s2, ..., sS]T and
the recorded activity is l = [l1, l2, ..., lL]T then their linear mixture can be
expressed as l = As, where AL×S is called the mixing matrix. We want to
findWS×L, such that s = Wl. Since we do not know either A or s the problem
is called BSS problem.

Development of ICA algorithms is based on the central limit theorem which
says that the distribution of a sum of independent, non-Gaussian distributed
variables tends to be more Gaussian than the distribution of each variable
separately. So the distribution of the signal from any of the recording sites
will be more Gaussian than the distribution of any of the sources. ICA finds
such transformation, W̃ (estimate of W ), that makes the distribution of the
resulting signal as different as possible from the Gaussian distribution. As a
measure of Gaussianity, kurtosis or negentropy are commonly used. Ideally,
sources reconstructed using W̃ , s̃ = W̃ l, will be as independent as possible.

Mixtures of neural activity do not have the properties generally assumed
by ICA algorithms. However, ICA can still be applied on such mixtures,
but the separation will have a limited accuracy. We will discuss below the
influence of some properties of neural mixtures on this accuracy.

4.1.1 Linearity

An action potential is generated in the body of a neuron and travels through
the axon carrying an information to other neurons. The medium between a
neuron and an electrode is not isotropic, since it is filled by other neurons.
Thus, we can say that the recorded neural signal is not a linear mixture of
individual neural activity. However, for the neurons that are close to the
electrode, which are the subject of our interest, this nonlinearity is generally
not very large.

Since ICA is a linear transformation it can not separate the sources from a
nonlinear mixture. Perfect reconstruction of the activity of individual neurons
is therefore not possible by the application of ICA. However, W̃ is still a
transformation matrix that transforms the data in such way that a mutual
information between the recording sites is minimized. So even though the
estimation is not perfect it still leads to a signal from which the separation of
individual neurons will be easier than it would be from the original recording.
We remind here that we are not interested in reconstruction of the exact
waveforms of neural activity, but only in separation of the firing instants.
The result that we are interested in is binary - e.g. 1 for the signal sample
when a neuron fires an action potential and 0 for all the other samples. Thus,
any transformation that makes the separation of activities of different neurons
easier can be very useful.
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Moreover, recent research in the field of BSS addresses development of
nonlinear ICA, see [Comon 2010], [Jutten 2004] and their references for more
details. In the future these approaches could be used instead of the classical
ICA to improve the sorting results.

4.1.2 Independency

Clearly, the activity of one neuron is not fully independent from that of other
neurons. In neural tissues, each neuron is directly connected through synapses
with thousands of other neurons. So the relation between two single neurons,
even though it definitely exists, is not that strong and for most of situations
we can say that the activities of two single neurons are almost independent.
Moreover, individual neural activities are generally more independent than the
mixtures recorded with extracellular recording sites placed next to each other.
Thus applying of ICA should result with the signal in which the activities of
individual neurons are easier to identify than from the original recording.

4.1.3 More sources than sensors

There are only a few specific situations in neural recordings where the number
of neurons (sources) is similar to the number of recording sites (channels,
sensors). The cockroach escape system [Levi 2000] is one example of such
situation. In a vast majority of cases the number of neurons is thousands
of times larger than the number of recording sites. This is obviously a very
difficult problem for ICA.

Luckily, neurons which distance from the electrode is much larger than the
mutual distance between the recording sites appear in the recording almost as
a single equivalent source. This is because the amplitudes of the spikes from
distant neurons are very low and practically the same on all the recording
sites. The noise that is introduced by the recording process itself also appears
as almost the same on all the recording sites. Thus, majority of the neurons,
together with the noise, will be considered all together as only one source.
Due to its high energy this source usually appears as a separated source in
the output of ICA.

However, around the electrodes there are still many neurons left (much
more than the recording sites) and we want to find individual activity of as
many of them as possible. Performance of ICA on such data is highly depen-
dent on the spatial distribution of the neurons with respect to the recording
sites. For example, when a single neuron is much closer to the electrode than
all the other neurons, most of its activity will be projected on a single in-
dependent component (IC). If there are many neurons on similar distances
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from the electrode then spike sorting is likely to be difficult, however still less
difficult than it would be without applying ICA (if the spike sorting was done
directly on the recorded signal).

4.2 Description of the neural recordings that
will be used in the simulations

In this section we will describe the simulated and the real signal that we will
use for the demonstration of the proposed algorithm in section 4.3 and for
quantifying the results in section 4.4. With the simulated recordings we can
validate the sorting accuracy for all the separated neurons, while with the
real recordings we can validate the accuracy only for a single neuron - the one
which was simultaneously recorded with the intracellular electrode.

4.2.1 Simulated neural recordings

To describe the proposed algorithm in an illustrative way we will use the sim-
ulated extracellular neural recording, in order to have the precise knowledge
on which neuron fired which spikes. In this way we are able to clearly demon-
strate the performance of the proposed algorithm. Also, using such signal,
we are able to precisely measure the sorting accuracy and the sorting mistake
and thus compare the proposed approach with the other approaches.

To create the recording we first generate spatial positions for 1000 artificial
neurons. We distribute the neurons randomly in a 3D space, respecting some
constrains about their minimal and maximal mutual distances. We place
four virtual recordings sites on four different locations around the middle
of the space. Distance between two neighboring sites is set to be equal to
an average distance between two neighboring neurons. The activity of each
neuron is obtained using 32 spike templates which are created from the real
extracellular recordings (for the description of the real extracellular recordings
see the following subsection). We use the intracellular recordings to localize
the spikes fired by the same neuron. Then we extract those spikes and average
them. Each template is created by averaging at least 100 spikes. The length
of each template is 60 samples what corresponds to 4ms when reported to
the sampling frequency of the real data. We randomly associate each of the
1000 neurons with one of the 32 templates (we assume that a single neuron
will fire action potentials of the same shape during the whole recording time).
For each neuron we generate a Poisson distributed firing times (time instants
when action potentials are fired by a particular neuron) with the randomly
generated probability of firing, between 0.0004 and 0.001.
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To make the simulated signal more realistic, we have to simulate the sam-
pling effects. In neural recordings continuous time signal is sampled with a
sampling period Ts. Thus extracted spikes will be mutually shifted from 0

to Ts seconds. To illustrate better this effect, we can imagine that a neural
recording consists only of the activity of a single neuron, which always fires the
spikes of the same shape. When recorded these spikes will actually look mu-
tually different, because they will be sampled at different time instances with
respect to the beginning of each spike. We simulated this effect by upsampling
the spike templates for 100 times. Then we associate the spike templates with
the corresponding time locations in the signal. Finally we downsample the
signal for 100 times to have similar sampling effect as in the real recordings.

We set that the amplitude of the recorded spikes decays linearly with the
euclidian distance between a neuron and an electrode. First column of figure
4.2 shows an example of the simulated recording obtained in this way.

4.2.2 Real neural recording

A drawback of the validation using the simulated signal lays in the complexity
of a real neural mixture, which is very hard to reproduce artificially. Real
recordings, depending on the tissue in which the recording is taken, consist
of superposed activity of up to millions of neurons. The neurons interact
through the large number of dendrites and axons, what makes the spatial
configuration extremely complex. Thus, the simulated signal is often not a
truthful counterpart of the real signal.

Apart from the simulated signal we examen the proposed algorithm us-
ing the real neural recordings. We use the simultaneous intra- extra-cellular
recordings from a rat hippocampal area CA1 done by Henze et al., described in
[Henze 2000], that have been used in the last two chapters as well. When the
extracellular electrode is close to the intracellular, the activity of the neuron
recorded intracellularly will be also visible in the extracellular recording. Of
course, with the extracellular electrode we pick the activities of a vast number
of neurons, so to separate the activity of individual neurons we have to do
spike sorting. Figure 4.1 shows a part of such simultaneous recording. The
four top plots show the extracellular recording with tetrode and the bottom
plot shows the corresponding intracellular recording. The action potentials
fired by the neuron recorded intracellularly are clearly visible on all four ex-
tracellularly recorded channels. This indicates that the recording sites are
located very close to each other.

On the plots of the extracellular channels we can also see the activity of
other neurons that are around the extracellular electrode. Notice that many
spikes from the other neurons have amplitudes similar to those of the spikes
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Figure 4.1: Simultaneous intra- extra-cellular recording. The four recording
sites are very close, so the action potentials recorded with the intracellular
electrode are clearly visible on all four extracellularly recorded channels

that come from the neuron recorded intracellularly. Thus, the task of spike
sorting is obviously not trivial in this case.

4.3 The algorithm description

In this section we describe the proposed algorithm for multi-channel spike
sorting. The algorithm iteratively removes the activities of distant neurons
from the original recording as well as the activities of neurons close to the elec-
trode, once they are separated from the mixture. By doing so we reduce the
number of sources, which brings the application of ICA in a more comfortable
setting.

Apart from the recorded signal, to use the algorithm we only need to
provide a lower bound for the firing rate, call it G, and the spike detection
threshold level. Minimal firing rate is usually easy to obtain since, generally,
we are not interested in separating the activities of neurons that fired only a
few spikes. The choice of the threshold level, on the other side, is not very
critical, since we will simply neglect all the spikes that belong to the cluster
which has the lowest average peak-to-peak amplitude of the spikes. This will
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make the algorithm more reliable, since the spikes with the lowest amplitudes
usually come from many different neurons, which activity is only partially
detected.

We assume that a four-channel recording is given, but the algorithm is
the same for any number of channels. The four recorded signals are labeled
as E1, E2, E3 and E4. An example of a part of the simulated four-channel
recording is shown on figure 4.2 and of the four-channel real recording on
figure 4.3 (spikes from the neuron recorded intracellularly are marked with
the red starts).

Figure 4.2: 50000 samples from the simulated four-channel extracellular
recording (first column). 2D feature vector space with the extracted spikes -
positive peak amplitude vs negative peak amplitude (second column). Results
of sorting algorithm from the previous chapter are given in the third column
(only one cluster was detected for each channel).
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Figure 4.3: 50000 samples from the real four-channel extracellular recording
(first column). 2D feature vector space with the extracted spikes - positive
peak amplitude vs negative peak amplitude (second column). Spikes that
come from the neuron recorded intracellularly are labeled with the red stars,
while the rest of the spikes are labeled with the blue dots. Results of sorting
algorithm from the previous chapter are given in the third column, where the
black dots marks are the detected centers of the clusters.

Only to demonstrate that spike sorting is very difficult for such recording
we apply directly the method we described in the previous chapter. First, we
detect the spikes using the spike detection method presented in the chapter
two. We project the spikes in a 2D vector space by keeping only two features
per spike: the positive and the negative peak amplitudes. Note that one
could also use e.g. the two first principal components. In the particular
case, better (generally more reliable) results were obtained when the positive
and the negative peak amplitude were used as the features, instead of the
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commonly applied PCA. The plots of the features are shown next to the
corresponding signals, in the second column on figures 4.2 and 4.3. In the
third columns on figures 4.2 and 4.3 we give the outputs of the algorithm
from the previous chapter. The spikes that are left unsorted by the algorithm
are automatically eliminated and not plotted. Note that the colors/symbols
chosen for the representation of the clusters for the plots in the second column
are not related to the one in the third column. It is evident that from such
feature vector space it is not possible to do an accurate spike sorting.

We will now demonstrate the performance of the proposed algorithm using
step-by-step description. The flowchart that describes the proposed algorithm
is shown on figure 4.4.
• Step 1: ICA. We process the input signal with the classical fast-ICA

algorithm [Hyvärinen 1999] and obtain IC1, IC2, IC3 and IC4 as the outputs
(figures 4.5 and 4.6). The second and the third column on the both figures
are again shown only to give an illustration of what the results would be if the
feature extraction based sorting method was directly applied on the outputs
of the ICA algorithm. The difference between the clusters is more obvious
than on figures 4.2 and 4.3.
• Step 2: Remove everything but spikes from E1, E2, E3 and E4.

Set: k=false. Before detecting the spikes we first want to identify which
of the ICs is the most likely to contain the activity of the neurons closest to
the electrode. The criteria we set to determine this IC is spike dynamics. As
a measure of the spike dynamics we use the average difference between the
positive and the negative peak. Since spikes naturally contain a large peak,
such difference should be a good measure of the dynamics. We first find all
the spikes from all four ICs using the method described in the second chapter.
Then, we calculate the corresponding spike dynamics and consider as actual
spikes only those detected from the IC with the largest spike dynamics. Next,
from all the 4 input recordings we remove (set to zero) all but the actual
spikes. We assume that the removed parts of the signal correspond only to
the noise and the cumulative activity of the neurons that are distant from the
electrode. The outputs are called E1∗, E2∗, E3∗ and E4∗.
• Step 3: ICA. We apply ICA on E1∗, E2∗, E3∗ and E4∗. The resulting

ICs, called IC1∗, IC2∗, IC3∗ and IC4∗, are shown on figure 4.7 for the
simulated signal and on figure 4.8 for the real signal. To demonstrate the
results as before, we plot the spikes in the greedy (second column) and output
of the feature extraction based sorting algorithm (third column). As the
number of the sources is now lower, the ICA algorithm performed a little better
and a little bigger difference between the clusters is visible, in comparison with
the results from figures 4.5 and 4.6.
• Step 4: Find which IC is the most suitable for the further
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Yes
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Figure 4.4: Flowchart of the proposed multi-channel spike sorting algorithm.

processing. In the further steps we will need only one IC. Thus in this step
we want to chose the one which contains well preserved spike waveforms. It is
likely that a good choice would be the one for which the detected spikes have
the largest dynamics. We calculate the spike dynamics in the same way as in
the step 2. For the further processing we chose the IC which has the largest
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Figure 4.5: Result of applying ICA on the recording shown of figure 4.2. The
four ICs are shown in the first column (50000 samples). 2D feature vector
space with the spikes extracted from the ICs are in the second column. The
plots in the third column display the results of applying the algorithm from
the previous chapter on the vector space from the second column. The red
rectangle marks the IC that contains the spikes of the largest dynamics.

value of the dynamics and call it IC∗.
• Condition 1: The IC∗ contains at least two clusters?
• If Condition 1 is true: Remove spikes from the cluster which

is the furthest from the cluster that contains the spikes with the
largest amplitudes; TrackOneNeuron=true. In this step we have to
apply the algorithm proposed in the previous chapter, this time it is not only
for demonstration, but to find which spikes we can remove from the signal. For
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Figure 4.6: Result of applying ICA on the recording shown of figure 4.3. The
four ICs are shown in the first column (50000 samples). 2D feature vector
space with the spikes extracted from the ICs are in the second column. The
plots in the third column display the results of applying the algorithm from
the previous chapter on the vector space from the second column. The red
rectangle marks the IC that contains the spikes of the largest dynamics.

each cluster we compute the average of peak-to-peak amplitudes from the first
G spikes. The spikes that have been classified in the cluster furthest from the
one with the largest average peak-to-peak amplitude are now removed from
E1∗, E2∗, E3∗ and E4∗. Next, the algorithm goes back to the step 3. We
show on figures 4.9 and 4.10 the outputs after applying ICA on the new E1∗,
E2∗, E3∗ and E4∗ for the simulated and the real recording respectively. From
the simulated recording (figure 4.9) we have detected only one cluster on each
of four IC. We use the same criterion as before to chose which IC we should
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Figure 4.7: Result of applying ICA on the simulated recording after all but
spikes was removed from the signal (set to zero) - 50000 samples are displayed.
The four ICs are shown in the first column. 2D feature vector spaces with the
spikes extracted from the ICs are in the second column. The plots in the third
column display the results of applying the algorithm from the previous chapter
on the vector space from the second column. IC that has been chosen for the
further processing is marked with a red rectangle. The black triangle, with
the tip pointing up, marks the center of the cluster that contains the spikes
with the largest average peak-to-peak amplitude. Opposite, the black triangle
with the tip pointing down marks the center of the cluster that contains the
spikes with the smallest average peak-to-peak amplitude.

keep. Since the condition 1 is now false so the algorithm will continue to
the condition 2. Notice that almost all the remaining spikes are fired by the
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Figure 4.8: Result of applying ICA on the real recording after all but spikes
was removed from the signal (set to zero) - 50000 samples are displayed. The
four ICs are shown in the first column. 2D feature vector spaces with the
spikes extracted from the ICs are in the second column. The plots in the
third column display the results of applying the algorithm from the previous
chapter on the vector space from the second column. All the labels are the
same as for figure 4.7

same neuron. From the real recording (figure 4.10) we have detected more
than one cluster on IC1∗ and IC2∗; we keep IC1∗. The cluster that will be
removed is the one labeled with a black triangle whose tip is pointing down.
After that cluster is removed, spikes from the neuron recorded intracellularly
will be almost the only one remaining in the signal. Only a few spikes from
the intracellularly recorded neuron were removed. We set in this step the flag
TrackOneNeuron, in order to track if the algorithm converged just after a
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new neuron is separated, what would indicate generally that no more neurons
can be separated from the given recording.

Figure 4.9: Result of applying ICA on the simulated recording, after removing
(setting to zero) of the low amplitude spikes (see figure 4.7) from E1∗, E2∗,
E3∗ and E4∗ (50000 samples). The four ICs are shown in the first column.
2D feature vector spaces with the spikes extracted from the ICs are in the
second column. The plots in the third column display the results of applying
the algorithm from the previous chapter on the vector spaces from the second
column. All the labels are the same as for figure 4.7.

• If Condition 1 is false: Condition 2: TrackOneNeuron =
true?
• If Condition 2 is true: Neuron(i)=IC∗; Remove the spikes

fired by the ith neuron; Set: i + +. If TrackOneNeuron is true that
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Figure 4.10: Result of applying ICA on the real recording, after removing
(setting to zero) of the low amplitude spikes (see figure 4.8) from E1∗, E2∗,
E3∗ and E4∗ (50000 samples). The four ICs are shown in the first column.
2D feature vector spaces with the spikes extracted from the ICs are in the
second column. The plots in the third column display the results of applying
the algorithm from the previous chapter on the vector spaces from the second
column. All the labels are the same as for figure 4.7.

means that we have detected more than one cluster in the previous iteration
so now, since only one cluster is left (the condition 1 was false), we can
conclude that the remaining spikes are coming from the same neuron. This
is the ith separated neuron. To continue our iterative algorithm we set to
zero all the samples from the recording (from E1, E2, E3 and E4) when any
of the already detected neurons (Neuron(1), Neuron(2),...,Neuron(i)) was
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active and go back to step 1. By doing this we removed an important high
amplitude sources.
• If Condition 2 is false: Find the overlapped spikes and up-

date Neuron. This is the last step of the proposed algorithm. We address
now a very important problem in spike sorting: simultaneous firing. The pro-
posed deflation based algorithm is obviously not able to detect simultaneous
firing, since once a spike has been sorted it is removed from the signal for the
following iterations. Thus, if two or more neurons fired at approximately the
same time, the spike will be assigned only to one of these neurons. To find
the simultaneously fired spikes we analyze the activity of the sorted neurons
two by two, for all possible pairs of the detected neurons. When analyzing the
activity of each pair, we keep in the recording only the segments when one of
the neurons in the pair fired a spike. Each such recording, call it s̃i,j, where
i = 1, ..., S − 1 and j = i+ 1, ..., S can be expressed1 as:

s̃i,j = si + sj + sgn(|si|+ |sj|)
S∑

k=1,k 6=i,j

sk,

where S is the number of sorted neurons. It is obvious that most of the
energy in any s̃i,j comes from si and sj. Thus, applying ICA on s̃i,j leads
to the separation of si and sj: one IC will represent mostly si, another one
sj and the remaining ICs will represent sgn(|si| + |sj|)

∑S
k=1,k 6=i,j sk. Since

the activity of si and sj will be separated, any spikes fired simultaneously by
these two neurons should be visible on both of the ICs that represent the
activity of these neurons. We demonstrate this by an example given on figure
4.11. In the first two rows of the both figures we plot part of the activity of
two simulated neurons that fired three spikes simultaneously. The next four
plots show four channels of the simulated recording. The activity of the two
neurons is visible, but hard to recognize, especially to differentiate. We remove
from the four channels everything but segments when any of the two neurons
was active and apply ICA on such sparse signal. The result of ICA is shown
on four bottom plots on the same figure. Since this is the last step of the
proposed algorithm, we already have the estimation of the activity of all the
isolated neurons. Thus, it is easy to find, from the result of ICA, that in this
example IC3 represents the activity of Neuron 1 and that IC1 represents the
activity of Neuron 2. All the overlapped spikes are visible on both IC3 and
IC1. They are now very easy to extract and to update the detected activity
of the isolated neurons.

1For notational simplicity, we drop the time argument and write sk instead of sk(t) for
the recorded activity of neuron #k. Note that sk(t) is a sparse signal: We have sk(t) = 0

except for intervals [τ, τ + T ] when an action potential is emitted from time τ . The length
T of the interval corresponds to the duration of an action potential.
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Figure 4.11: The first two plots show part of the activity of the two simulated
neurons. The following four plots show the part of the four-channel simulated
recording. The four plots at the bottom show the results of applying ICA on
the four channels. Before applying ICA the recording was modified by setting
to zero all but the segments where one of the two neurons was active. It
appears that the activity of Neuron 1 is represented by IC3 and the activity of
Neuron 2 is represented by IC1. The three arrows on the top of the figure point
out the overlapped spikes from the two neurons. All of the three overlapped
spikes are successfully sorted.



4.4. Results 115

4.4 Results

We apply the algorithm described in the previous section on 5 real record-
ings and on 10 simulated recordings. The results are given in tables 4.1 and
4.2. There are four key-operations in the proposed algorithm: 1) removing of
the noise (Noise rem.); 2) removing of the spikes from the clusters furthest
from the one that contains the spikes with highest amplitudes (Clus. rem.);
3) removing of the spikes from already separated neurons (Sorted rem); 4)
detection of the overlapped spikes (Over. det.). We analyze contribution of
each of these steps by simply comparing the proposed algorithm to algorithms
which perform none, only one or more of these steps. Namely, we compare
the proposed algorithm with the following:

1. Only the spike sorting algorithm, without performing ICA (Spike sor.).

2. ICA and spike sorting

3. ICA, spike sorting and removal of the spikes from already separated
neurons.

4. As 3, but with removal of everything but spikes (step 2 of the algo-
rithm).

5. As 4, but with removal of clusters that generally contain spikes small in
the amplitude (clusters which are furthest from the one that contains
the spikes which show the largest average peak-to-peak amplitude ).

The proposed algorithm is actually an extension of the algorithm number 5,
with a sequence for the detection of the overlapped spikes.

We express the results in terms of sorting accuracy (SA(%)) - the percent-
age of accurately sorted spikes and sorting mistake (SM(%)) - the percentage
of missed spikes.

4.4.1 Results of the spike sorting on the real signal

For the real recordings we can quantify the results only for one neuron per
recording, the one which was simultaneously recorded intracellularly. Thus
SA and SM are very simple to calculate: SA(%) = 100 ∗ C/(F + C) and
SM(%) = 100 ∗ (T − C)/T . Here C is the largest number of the spikes from
the neuron recorded intracellularly, which are sorted into the same cluster
(correct detections). F is the number of spikes from other neurons which are
wrongly placed into the same cluster for which C is calculated (false spikes).
T is the total number of spikes fired by the intracellularly recorded neuron.
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In table 4.1 and on figure 4.12 we give SA and SM for each of the real
recordings. Names of the recordings are kept from [Henze 2000]. Durations
of the recordings were from 60 to 120 seconds with the sampling frequency
of 10kHz for some recordings and 20kHz for others. The total number of the
detected spikes per recording was from 800 to 2000, while the number of spikes
fired by the intracellularly recorded neuron was from 200 to 500.

The results suggest that the proposed approach improves significantly the
sorting results in comparison with the basic spike sorting algorithm and the
ICA algorithm. As it is expected, the proposed algorithm generally decreases
the number of falsely sorted spikes and increases the number of spikes that are
left unsorted (missed spikes). As we said in the introduction to this chapter,
in the trade-off between the number of missed spikes and the number of false
spikes it is generally highly preferable to have more missed spikes.

When the intracellularly recorded neuron is sorted first (recordings d561102,
d533101 and d533102) there is no benefits from the removal of the spikes from
already sorted neurons (results in the third and the fourth column of table
4.1 are the same in such cases). Also, for those recordings contribution from
detection of the overlapped spikes is very small, since most of the overlapped
spikes were initially correctly assigned to the intracellularly recorded neuron
(results in the last two columns of table 4.1 are the same/similar in such
cases).

4.4.2 Results of the spike sorting on the simulated signal

On the other side, using simulated recordings we can quantify the results for
more than one neuron and also we can easily perform several simulations and
average their results. For each simulated recording we set the maximum num-
ber of clusters (sorted neurons) to 6. However, in some situations (especially
for simpler methods like the basic spike sorting and combination of the basic
spike sorting and ICA) less than 6 neurons have been found.

Here we do a computation of SA and SM in a bit different way than for
the real signal. We compute the average S̄A and the average ¯SM over 10
simulations for each jth sorted neuron, where j goes from 1 to 6, which is the
maximum number of the sorted neurons:

S̄Aj =

∑Nj
i=1 SAi,j
Nj

, ¯SM j =

∑Nj
i=1 SMi,j

Nj

where Nj is the number of iterations in which at least j neurons were detected.
We give also a standard deviation (sd) of S̄A and ¯SM in order to quantify
the robustness of each algorithm.
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Table 4.1: Comparison of different spike sorting algorithms, in terms of Sorting
Accuracy (SA) and Sorting Mistake (SM), on the real recordings. We start
with the basic feature extraction algorithm (Feat. extr.) described in the
previous chapter, its results are given in the first column; In the second column
we show results for the combination of Feat. extr. and ICA; In the third
column are the results of combination of Feat. extr., ICA and removal of the
spikes from already isolated neurons (Sorted rem.); The results in the forth
column are obtained by expanding the algorithm from the third column in
such way that after the applying ICA, everything but the detected spikes are
removed from the recordings (Noise rem.); For the results in the fifth column,
the algorithm from the fourth column is expanded by removal of clusters
that generally contain spikes that are small in the amplitude (Clus. rem.);
Finally the results in the sixth column are obtained by adding a sequence
for detection of the overlapped spikes (Over. det.). The column Recording
contains the labels of each recording.

Feat. extr. Feat. extr. Feat. extr. Feat. extr. Feat. extr. Feat. extr.
ICA ICA ICA ICA ICA

Sorted rem. Sorted rem. Sorted rem. Sorted rem.
Noise rem. Noise rem. Noise rem.

Clus. rem. Clus. rem.
Recording Over. det.

SA SM SA SM SA SM SA SM SA SM SA SM

% % % % % % % % % % % %
d561102 79 46 83 7 83 7 90 8 93 8 93 8
d561103 32 3 48 5 52 15 83 17 89 20 89 14
d561104 21 2 33 4 49 12 75 13 83 16 84 11
d533101 73 67 64 26 64 26 78 28 80 27 80 27
d533102 64 52 80 13 80 13 88 15 92 18 92 17
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Figure 4.12: Comparison of different spike sorting algorithms for 5 real record-
ings, in terms of Sorting Accuracy (SA) and Sorting Mistake (SM).

The results are given in table 4.2 and on figure 4.13. Even though the
results significantly vary from neuron to neuron (spikes from the neurons
close to the electrode are, of course, sorted much more accurately that from
the more distant ones), we can say again that overall each step of the proposed
algorithm leads to significant improvement of the final results.

An important property of the proposed algorithm that increasing of SA is
paid by increasing of SM as well, is now even more evident than on the figure
4.12. However, the last step (detection of overlapped spikes) decreases the
SM , especially as j increases, since for the larger j (more distant neurons)
many spikes were not detected because they were overlapped by the spikes
from the closest neurons (which correspond to the lower j).

The standard deviation is larger for the neurons further from the electrode
and tends to decrease as a more complex algorithm is used. The standard
deviation illustrates the stability of the results, e.g. sometimes the sorting
results are good even for the distant neurons, but sometimes they are quite
bad for the distant neurons, this leads to larger standard deviation. On the
other side the results for the neurons very close to the electrode are always
relatively good, thus the standard deviation of the results is lower.
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Table 4.2: Comparison of different spike sorting algorithms in terms of aver-
age sorting accuracy (S̄A), average sorting mistake ( ¯SM) and their standard
deviations (sd) for first 6 sorted clusters. Labels Feat. extr., ICA, Sorted rem.,
Noise rem., Clus. rem., Over. det. stands for the same algorithms as in table
4.1. Label j stands for the cluster index. N is the number of trials, out of 10,
in which at least j clusters were detected.

Feat. extr. Feat. extr. Feat. extr. Feat. extr. Feat. extr. Feat. extr.
ICA ICA ICA ICA ICA

Sorted rem. Sorted rem. Sorted rem. Sorted rem.
Noise rem. Noise rem. Noise rem.

Clus. rem. Clus. rem.
j Over. det.
S̄Asd ¯SMsd N S̄Asd ¯SMsd N S̄Asd ¯SMsd N S̄Asd ¯SMsd N S̄Asd ¯SMsd N S̄Asd ¯SMsd N

% % % % % % % % % % % %
1 18 15 3 5 10 68 12 7 9 10 76 10 9 7 10 85 8 10 7 10 88 6 13 6 10 88 6 12 6 10
2 45 7 20 7 2 62 13 10 10 10 74 11 14 8 10 84 8 16 7 10 86 7 19 6 10 86 7 16 6 10
3 0 0 0 0 0 54 14 15 18 5 69 13 21 11 10 78 9 22 10 10 81 7 25 8 10 82 7 20 8 10
4 0 0 0 0 0 44 16 18 12 2 60 15 23 12 10 72 11 24 12 10 78 9 28 11 10 79 9 24 10 10
5 0 0 0 0 0 0 0 0 0 0 54 16 26 16 9 68 14 28 15 10 74 11 29 11 10 75 11 26 11 10
6 0 0 0 0 0 0 0 0 0 0 39 17 30 18 7 65 15 33 17 9 72 11 34 12 9 73 11 30 12 9

4.5 Discussion

In this chapter we proposed a new algorithm for spike sorting from multi-
channel recordings. We use iterative application of ICA and deflation to sort
the spikes. Activity on the recording sites is mutually highly dependant, while
the activity of single neurons is mutually much less dependant. This naturally
invokes application of ICA to separate the neural mixture.

A condition that the number of sensors should be equal or greater than
the number of sources appears as the mayor problem and limitation to ap-
plication of ICA on neural recordings. The proposed algorithm uses deflation
to eliminate (or at least to reduce the contribution of) some sources from
the recording. In particular, we remove: 1) everything but spikes, 2) spikes
which have already been sorted and 3) spikes which belong to the clusters far
from the one which contains the spikes of the largest average peak-to-peak
amplitude.

Such deflation results by inability of the algorithm to detect spikes fired
by different neurons at the approximately same time - simultaneous firing.
Only one spike per each simultaneous firing can be detected. The solution to
this problem is implemented as the last step of the proposed algorithm. We
take two of the separated neurons and keep in the recording only the segments
while one of these two neurons was active. Then we apply ICA on such signal.
Since we have only two high-energy sources in the signal, ICA will, in most
of situation, separate very well the activity of the two neurons, including the
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Figure 4.13: Comparison of different spike sorting algorithms in terms of
average sorting accuracy (S̄A) and average sorting mistake ( ¯SM) for the first
6 sorted neurons. The length of the perpendicular lines corresponds with
the standard deviation of S̄A or ¯SM for the particular algorithm and the
particular neuron. The neurons are labeled with respect to their minimum
distance to the electrodes.

simultaneously fired spikes. We repeat this procedure for all the possible pairs
of the separated neurons.

The results given in tables 4.1 and 4.2 suggest that each of the performed
steps of the algorithm improves the final sorting results. Overall, the algorithm
significantly increases the number of correctly sorted spikes and increases the
number of missed spikes for a relatively small amount. ICA alone was not suf-
ficient to obtain reliable results. Using the proposed algorithm led to generally
solid and stable results. However, if a recording is very noisy the proposed
algorithm will not be able to detect any cluster.

As spike features we used simply positive and negative peak amplitude.
The proposed algorithm is compatible with practically any feature extraction
method. Methods that can make the difference between the spikes fired by
different neurons more evident will of course lead to better performance of the
proposed algorithm, in terms of the number of sorted neurons and the sorting
accuracy. Nevertheless, no matter how good the chosen feature extraction
technique is, the proposed algorithm should always improve the final sorting
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results when they are compared to the results obtained with the basic ICA
algorithm. Finally we can say that the obtained results suggest that the
proposed algorithm gives better sorting results as compared to ICA.
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The concern of this chapter is how information is coded in a nervous sys-
tem. Even though we know that action potentials play a crucial role in the
information transmission, it is still unclear which other biological mechanisms
participate in this process and which code is used. Evidence suggest that the
neural code is very extensive and includes several coding schemes. In this
chapter several of these schemes are analyzed, the state-of-the-art is given. In
particular a discrete nature of the neural code is closely discussed.

The neural code can be characterized through space and time dimensions.
Space dimension relies on the fact that information is processed simultane-
ously by a vast number of neurons, the main information processing units.
It has been indicated that a single stimulus parameter is usually not coded
by a single neuron, but however by a large number (population) of neurons.
This dimension makes the nervous system very robust and generally stable.
Knowing that deaths of individual neurons are very common, lowering the
importance of a single neuron by the space dimension seems to be extremely
important. On the other side, time dimension, through temporal precision on
different scales, makes the information processing more efficient. Later in this
chapter we will analyze different coding schemes and we will see that they
usually rely more on one of these two dimensions.
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We first present the so-called rate code (section 5.1) where the informa-
tion is conveyed by the number of action potentials per some time window,
regardless of the precise timing within the window. Second, population code
(section 5.2) where several neurons are coding the same information together.
Then, latency code (section 5.3), where the information is conveyed in the
latency of the first spike after the stimulus. Interspike-interval code (section
5.4) conveys the information in duration of the interval between two spikes.
In section 5.5 a phase code is described. In this code the information is con-
veyed using the phase of the local field potentials. Finally, in section 5.6,
we discussed whether the nature of the neural code could be discrete, more
precisely whether the code could consist of symbols that come from a finite
alphabet. We particulary analyzed pulse-position modulation in the context
of neural coding.

The reader should notice that this chapter is not a debate on which coding
scheme is actually used by neurons, but more an attempt to point out the
possibility that several coding schemes might coexist, especially respecting
the large variety among neurons and among different parts of the nervous
system.

5.1 Rate code

Rate code refers to a type of code where the information is conveyed by a
number of action potentials per some time window, regardless of the precise
timing within the window. Several decades ago it has been indicated that a
number of spikes fired by a neuron depends on stimuli intensity [Adrian 1954].

A classical example is the stretch receptor in a muscle spindle. The number
of spikes emitted by the postsynaptic neuron increases with the force applied
to the muscle [Adrian 1954]. Another example is the touch receptor of a
leech. The stronger the touch stimulus is, the more spikes occur during the
stimulation period of 500ms [Kandel 2000]. It is generally observed that, when
the same stimulus is applied, sensory neurons have trial-to-trial variability in
spike timing and number. It is assumed that temporal summation reduces
this variability [Shadlen 1998].

When the rate code was first observed, the problem of coding seemed to be
solved. However, very fast stimuli processing by particular parts of nervous
system indicated that the whole information can not be coded only by the
number of spikes.
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5.2 Population coding

Knowing that a nervous system is able to obtain very fast responses to stimuli
led to an idea that simultaneous activity of populations of neurons (spatial
dimension) can also code an information - this is known as population code.

In tissues like cortex, it is generally very difficult to explicitly analyze
possibility of population coding, since each neuron is connected with a large
number of others. Explicit analysis is usually done on smaller elements of a
nervous system, particulary parts that have short stimulus reaction time. It
is assumed that in such parts population code will be much more important
than the rate code. A typical examples of such, fast processing systems, are
escape mechanisms.

An escape mechanism of a cockroach specie periplaneta americana has
been particulary well studied. These cockroaches respond to approach of their
natural enemy, toad bufo marinus, by turning and then running away. They
detect the predator’s approach by sensing wind gust caused by predator’s
movement. Wind-receptive hairs on a pair of abdominal antenna-like organs,
called cerci, are displaced by the wind, thereby activating the underlying sen-
sory cells. These sensory cells excite the interneurons in the last abdominal
ganglion. The interneurons are subdivided into a ventral and a dorsal group.
The ventral group contains 4 bilateral pairs of cells. At least three of these
are known to be involved in specifying the direction of the initial escape turn
[Comer 1993]. In contrast, the dorsal neurons are not specifically known to
be involved in this process. Axons of the ventral neurons excite thoracic in-
terneurons that, in turn, excite leg motor neurons responsible for the escape
behavior. It has been shown that the numbers of spikes from the left vs the
number of spikes from the right ventral neurons is a dominant cue determin-
ing whether the animal turns to the left or to the right [Liebenthal 1994],
[Levi 2000].

Very similar results are obtained when a monkey’s arm movement was
studied by recording neurons from the motor region of the cortex
[Georgopoulos 1986]. Each neuron in charge of an arm movement coding
"attracts" the movement of the arm, from any other direction, toward its own
preferred direction.

Apart from these explicit observations of population code, there is an an-
other perspective on a population based coding. This perspective is implicit,
and raises from a fact that responses on repeated stimuli of a single neuron
typically exhibit time uncertainty (jitter). This raises a hypothesis that such
responses are made more precise by averaging on the population level. How-
ever, such hypothesis is hard to validate due to a large number of neurons
which would be involved in coding of simple information.
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Population code thus shows a great ability of generating a response to a
stimulus rapidly, however it requires finely tuned mechanism that includes a
large number of simultaneously active neurons.

5.3 Latency code

Several different experiments indicated that in some situations the tempo-
ral structure of a spike train carries additional information that can not be
obtained from the spike count. This is generally called temporal coding.

Probably the simplest way of proofing that temporal structure carries in-
formation is by showing that different stimuli can result with the same number
of spikes, but with different temporal structure (see [Rieke 1997] for a large
number of examples).

One type of temporal encoding is the latency code, in which information
is carried by the latency of the first spike with respect to the time of stimulus
occurrence.

Existence of such type of code in rat’s cortex was for example discussed in
[Panzeri 2001], where spike trains which code location of an external stimulus
were investigated. It was found that major part of the information about the
stimuli was given by the latency of the first spike.

It is generally noticed that stronger stimulus provokes shorter spike latency
[Reich 2001], [Richmond 1997].

Another example that shows correlation of stimulus properties with la-
tency of the first spike is given in [Gollisch 2008]. Spike trains were recorded
simultaneously from many ganglion cells in the isolated salamander retina.
The stimuli were a uniform gray field followed by appearance of a square-
wave grating. Eight different shifted versions of the grating were used in a
pseudo-random sequence. Each response was characterized by two numbers:
the latency of the first spike after stimulus onset and the total spike count in
the response. The results obtained in that study are shown on figure 5.1. They
strongly suggest that, for some types of cells, most of information is coded
by the first spike latency. Although this code is simple and metabolically
efficient, in order to decode it, it is necessary to have a precise information
on stimulus onset time - an external reference. If the new retinal image was
initiated by an eye movement, then the brain does know the onset time, but
it is unclear whether this motor information gets distributed to visual centers.
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Figure 5.1: Ganglion cell responses to flashed gratings with different spatial
phases. (A) Raster plots of spike responses from four types of ganglion cells
(Fast OFF, biphasic OFF, Slow OFF, Fast ON ) to several 150ms presentations
of each of eight gratings. Time is measured from stimulus onset. (Left)
Schematic drawings of the eight stimuli with different spatial phases. The
circles show 1-SD contour lines of the spatial receptive fields of the four cells,
correspondingly from left to right, in relation to the stimuli. (B) Tuning
curves of the elicited spike count. The error bars show the standard deviation
across trials with the same stimulus. (C) Tuning curves of the first-spike
latency. Fast OFF and biphasic OFF cells typically showed strong tuning in
the latency and only mild tuning in spike count. Slow OFF and ON cells, on
the other hand, displayed good tuning in the spike count and often did not
respond with spikes to all stimuli. From [Gollisch 2008].
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5.4 Interspike-interval code

Instead of relying on an external reference, the neural code could rely on an
internal one. Such internal reference could be defined, for example, by dura-
tion of time intervals between two spikes, either from the same from different
neurons. This type of code is commonly refereed as interspike-interval code.

An interesting example that might indicate the existence of such code
can be (as well as for the latency code) found in [Gollisch 2008]. For many
pairs of ganglion cells, the difference between first spike times was strongly
tuned by the presented stimuli. Each cell’s latency underwent some trial-to-
trial variation, but these fluctuations were often positively correlated in cells
recorded simultaneously; when cell 1 fired earlier than usual, cell 2 tended to
do the same. As a result, the latency difference fluctuated less than expected
from observing the individual cell’s latencies. This is demonstrated on figure
5.2. The stimuli are well represented by latencies, but also by differences
between the two latencies.

A B C

Figure 5.2: Contrast-invariant encoding by pairs of ganglion cells. (A) Latency
tuning curves for a fast OFF cell whose responses were recorded for flashed
gratings at different contrast levels. (B) Latency tuning curves of a second,
simultaneously recorded fast OFF cell. (C) Tuning curves of the latency
difference for the two neurons. From [Gollisch 2008].

5.5 Phase code

The phase code is another example of a code that relies on internal references.
For the phase code these references are extracellular voltage oscillations.

5.5.1 Local field potentials

In chapters two, three and four we were talking about spike detection and
sorting from extracellular neural recordings. We were concentrated on fre-
quency band from 300Hz to 5kHz, since most of the energy from spikes fired
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by the neurons close to the electrode appears to be in this band. Now we will
analyze part of the spectrum below 500Hz, where some interesting time and
spatial coherence can be found. When recording from e.g. cortex (where den-
sity of neurons is very high), approximately sinusoidal shaped, oscillations in
the band from 0.05Hz to 500Hz are found. The oscillations in the band from
1Hz to 300Hz usually have the largest amplitude [Buzsáki 2004]. These oscil-
lations are called local field potentials (LFP). The LFP spectrum is standardly
divided into sub-bands:

• <1.5Hz: Slow

• 1.5-4Hz: Delta

• 4-10Hz: Theta

• 10-30Hz: Beta

• 30-80Hz: Gamma

• 80-200Hz: Fast

• >200Hz: Ultra fast

It is interesting to point out that what EEG records is actually a projection
of these oscillations on EEG electrodes, filtered by the skull.

To discuss the origin of LFP we remark that the extracellular space is
non-homogenous, but generally a well conductive medium. Neural activity
significantly affects this extracellular medium; we can generally identify three
processes which are part of activity of any neuron and which induce change
of potential outside the cell that decays with the distance from the current
source:

• receiving spikes through synaptic inputs,

• spike integration and

• generation of spikes as response to stimuli.

This change of potential varies in time and thanks to the feedback effect, which
will be discussed later in this section, it causes relatively stable oscillations in
the extracellular medium.

The spatial coherence of these oscillations varies depending on the part
of the cortex where the oscillations are recorded and the oscillations’ fre-
quency. It is generally observed that the oscillations of lower frequencies
sometimes cover larger spatial area than the higher frequency oscillations
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[Montemurro 2008]. This is explained by the non-homogenous structure of
the extracellular medium which has frequency characteristics of a low pass
filter [Brette 2011].

It is important to mention that, since a large number of neurons is neces-
sary to create these oscillations, LFP can occur only in a large neural assem-
blies, such as cortex. In many other parts of a nervous system, for example
escape mechanisms [Levi 2000], LFP do not appear, since such systems consist
of only a few neurons.

5.5.2 Phase-locked firing

An important question regarding LFP is whether they actually influence the
neural activity or whether they are only its consequence. In the sequel we will
discuss this question.

First, let us mention a theoretical study, described in [Anastassiou 2010],
where influence of LFP on neurons has been investigated. The study concludes
that the oscillations have very significant effect on spike timings. This makes
the phenomena of LFP very interesting from the perspective of neural coding.

Several experimental studies reported high correlation between phase of
the ongoing oscillations and the spike timings. Two recent studies [Kayser 2009]
and [Montemurro 2008] will be described here in order to illustrate properties
of the phase code.

In [Kayser 2009] an extracellular activity in auditory cortex of alert mon-
keys was recorded. The acoustic stimuli were presented during the recordings.
Figure 5.3 shows the results that examine particulary LFP in 8− 12Hz band.
Each cycle of LFP is divided into four parts, marked with different colors so
the correlation between the phase and spike timings could be easily tracked.
Several interesting conclusions can be drawn from these results:

• LFP phase remains relatively stable and constant with respect to the
stimulus occurrence, over all 30 trials (figure 5.3B).

• Activity of neuron given on figure 5.3C is noticeably phase-locked.

• In some situations (three of them are pointed out on figure 5.3D) the
phase code conveys an information unavailable by rate code.

The authors in [Kayser 2009] concluded that the low frequency LFP (< 30Hz,
what includes delta, theta and beta bands) can be combined with spiking
activity to form a highly informative code. The frequencies higher than 40Hz
did not add new information to the one already contained in the firing rates.
A question whether more information is coded by energy or by phase of LFP
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Figure 5.3: (A) Low-frequency (8 − 12Hz) LFP during a single trial. The
phase angle is color coded. (B) Binned LFP phase during 30 subsequent
trials. (C) Spike raster plot for one unit recorded during the same trials as
in (B). Individual spikes are color coded according to the LFP phase at the
time of spike. (D) Mean firing rate at this site. The colored bars indicate the
typical phase at each peak. Pairs of peaks with similar height but different
phase angle are marked by colored lines. The two instances in each pair (e.g.,
a1, a2) can be distinguished based on LFP phase but not based on the firing
rate. From [Kayser 2009].

was also investigated in [Kayser 2009]. Their results, shown on figure 5.4,
suggest that the phase code is much more informative. Measuring response
when a noise is added to the stimuli led the authors to conclusion that the
phase code is more robust than the rate code.

A recent study, presented in [Montemurro 2008], addresses similar ques-
tions as [Kayser 2009]. It is based on extracellular recordings from the primary
visual cortex of anaesthetized macaques while binocularly presenting a color
movie. The obtained results (figure 5.5) lead to the quite similar conclusions
as in [Kayser 2009]. The authors of [Montemurro 2008] found that the phase
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Figure 5.4: Examples of low-frequency (4−8Hz) LFP phase and energy for 30
subsequent trials. Both signals are binned into four bins. From [Kayser 2009].

code conveyed 54% additional information beyond that conveyed by rate code.
Using circular variance they concluded that high-frequency LFP (> 50Hz) are
very unreliable and can not efficiently code information about the stimuli. On
the other side, LFP with frequencies below 12Hz were very reliable. Also, the
firing rates were highly correlated with the LFP reliability. Generally, higher
firing rates meant more reliable LFP.

5.6 Finite alphabet code

For the finite alphabet code we consider that the firing activity can be repre-
sented by a text written using symbols (characters) which are drawn from a
finite alphabet. In this section we will first observe one common realization
of such code in communication systems: pulse-position modulation (PPM).
Later, we will try to investigate whether it is possible that finite alphabet
code, particulary the PPM, exists in neural communication.

PPM is well known as a robust digital modulation. The information is
coded in the position of a pulse fired by the transmitter, with respect to
some time reference (clock). The clock is available to both transmitter and
receiver. The transmitter can fire only at time instants nTs, where Ts > 0
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Figure 5.5: Illustration of the time course of the LFP phase and of the spikes.
(A) LFP traces from five presentations of a 12s long movie segment. Traces
were displaced on the vertical axis so that they could be distinguishable. (B)
Time courses of the 1−4Hz (delta band) band-passed LFP to five presentations
of the same 12s long movie extract as in (A). Traces were again displaced on
the vertical axis. The color of the line at each time denotes to which of the
four phase quadrants the instantaneous LFP phase belongs to. (C) Time
course of the phases of the 1 − 4Hz LFP over 30 repetitions of the movie
extract. Phase values are again color coded into quadrants (D) Raster plot
of spike times (indicated by dots) resulting from 30 repeated presentations
of the selected 12s movie extract. (E) Raster plot of the same spike times
as in (D) but with the dots representing the spikes color coded according to
the 1− 4Hz LFP phase quadrant at which they were emitted. These colored
spike times illustrate the phase code, whereas the colorless spike times in
(D) illustrate the rate code. (F) Spike rate, averaged over all 30 trials and
computed in 4ms long sliding time bins, during the 12s movie extract. The
green star and the blue circle indicate movie points that elicit similar spike
rate responses but different and reliable phase values. These two movie points
can be much better discriminated from each other by consideration of the
phase at which spikes were emitted rather than just the counting of spikes.
From [Montemurro 2008].
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is given by the particular code protocol available to the transmitter and the
receiver and n is integer, such that n < N , with N also given by the code
protocol. NTs in fact defines duration of one symbol. A sample pulse train
is shown on figure 5.6, where three different symbols, called "A", "B" and
"C" are represented with different pulse timings. Because of the time jitter

n 1 2 3 4 1 2 3 4 1 2 3 4

symbol A symbol B symbol C

bin

τ
0

Border line between two bins

Possible firing instant

Pulse

Figure 5.6: A principle of a pulse-position modulation exhibited through
demonstration of coding of three different symbols.

caused by the noise in the communication channel, a pulse sent at nTs will
be received at nTs + τ, τ ∈ R. The code is arranged in such way that if
|τ | < τ0 the transmission is successful, otherwise the received information will
not be the same as the one that was sent; here τ0 ∈ R+ is given by the code
protocol. On figure 5.7 a possible response to the pulse train shown on the top
plot is given. Despite presence of the jitter, symbols "A", "B" and "C" are
correctly transmitted since |τ | < τ0 for each pulse. In PPM, τ usually has zero
mean, bell shaped distribution. The standard deviation of that distribution
should be used to make optimal choice of τ0. τ0 is typically chosen such that
probability of having |τ | > τ0 is very low; knowing that the distribution is bell
shaped, this implies that around the border of two bins the PDF is very close
to zero. Since time window that corresponds to a symbol is divided into bins,
it is obvious that the number of different symbols is finite i.e. it belongs to a
finite alphabet.

5.6.1 Neural communication and finite alphabet code

Motivation for considering possibility of such type of coding scheme in neu-
ral communication raises from a common experimental observation: several
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n 1 2 3 4 1 2 3 4 1 2 3 4

symbol A symbol B symbol C

Figure 5.7: A message from figure 5.6 perturbed by the jitter caused by the
communication channel. Received pulse times are not the same as the one on
figure 5.6, but the reconstruction of all the symbols is still correct, since the
jitter, in the particular example, was below of the half of the bin width.

studies have shown that neural responses are time locked to some level; also
a jitter is widely present in those responses.

To elaborate existence of such time-locked responses we will first mention
a typical results of an experimental paradigm that includes repeated stimu-
lation. We refer to the study described in [Montemurro 2007] where a single
neuron response to repeated stimulation of rat’s vibrissa was recorded. The
results of the study, shown on figure 5.8, clearly demonstrate the time-locking.
For example, plot B on figure 5.8 shows activity of a single neuron across 100
trials: the neuron frequently fires at the same time. Similar time-locking is
visible on plot C as well. The authors also calculated trial-to-trial variability
in spike timing (jitter) for single neurons. First, they divided the 15s time
course of the stimulus in 15000 1ms time bins and averaged across trials to
compute the firing rate in each bin. Firing episodes corresponded to local
peaks in the firing rate. For each such peak, greater than some threshold
they extracted all spikes fired within 2ms of the time of the peak and com-
puted spike times relative to that. The results for two neurons, a bell shaped
curves, similar to Gaussian distribution are shown on figure 5.9. Low standard
deviation (0.35ms and 0.36ms for the two results) indicates very high time
precision.

Knowing this, let us now discuss the possible nature of the neural code -
whether it is continuous or discrete. Say that when triggered with a stimu-
lus, call it A, an observed neuron fires a spike train described with spiking
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Figure 5.8: Responses of neurons to white noise vibrissa stimulation. A:
vibrissa position as a function of time in units of stimulus SD (1SD = 70µm).
B: spikes fired by neuron 1 in response to 100 repetitions of the stimulus shown
in A. C: response of neuron 2 to the same stimulus. From [Montemurro 2007].

instants t1, t2, ..., tN , where N is the number of spikes fired as a response to the
stimulus. Let us assume that the spike train codes some property of the stim-
ulus. We raise a question whether the neural code is such that the spike train
t1 − δ, t2, ..., tN , where t1 > δ (for causality purpose) and δ 6= 0, necessary
carries different information than the spike train t1, t2, ..., tN .

If the answer to this question is yes, then, taking into account the observed
jitter in the neural response to the repeated stimuli, we can say that it is not
possible to deduce the original message (the stimulus property that is coded
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Figure 5.9: A: probability density of trial-to-trial differences in spike time
together with the fit to a Gaussian distribution. B: corresponding results for
unit 2. In both panels σ is the standard deviation of the fitted distribution.
From [Montemurro 2007].

by that neuron) from the observed, single neuron, response. For the further
discussion, we denote such case as continuous time coding.

In the opposite case, if it is possible that two different spike trains: t1, t2, ..., tN
and t1 − δ, t2, ..., tN carry the same information, then, despite the jitter, the
message can be decoded even when only a single neuron is observed. We
denote such general scheme as discrete neural code.

Let us first discuss a bit further the continuous time coding. Even though
such coding makes it impossible to recover the original message from a single
neuron, if the same stimulus property is coded by a large number of neurons
it can be possible to understand the message. To elaborate this let us say that
population of M neurons codes the same message and that each of the neurons
responds with the N spikes that can be described with the spike trains: tj−δi,j,
where i = 1, 2, ...M , j = 1, 2...N and tj > δi,j∀i, such that for any j, δi,j is zero
mean. Then for any j a histogram created from the time occurrences tj−δi,j of
all jth spikes from all M neurons will have a peak at tj when limN→∞. This is
true if δi,j is uncorrelated over allM neurons for any j (i.e. {δi}, i = 1, 2, ... is
an uncorrelated sequence). Whether this is the case is still an open question.
Even though it seems that the large complexity of neural circuits will results
that jitter δi is uncorrelated, some studies suggest that in some parts of the
nervous system the jitter could be correlated. For instance, in the study
described in [Gollisch 2008], that we have already mentioned in description of
latency and interspike interval code, it is observed that trial-to-trial variations
of the spike latencies were positively correlated among different neurons. On
the other side, in [Michael 2002] a binary coding scheme was demonstrated in
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a rat auditory cortex. The authors concluded that in the particular case each
neuron responds to a stimulus with only one spike and that the time jitter
was eliminated on the population level.

We discuss now more closely about the continuous time coding on a level
of a single neuron. We concluded that, due to a jitter and under assumption
of continuous time coding, two different messages can not be distinguished on
a single neuron level. However, depending on the nature of the message that is
being coded, we can possibly talk about the coding error. For example, if the
message has the form of a number (especially real number) which represents
some stimulus property (e.g. sound frequency) then it is possible that two
similar spike trains, in terms of spike times tj, encode similar frequency. In
such case a smaller jitter would lead to a smaller mistake in the coding of the
message and a single neuron activity itself could code a message with some
limited accuracy.

In discrete time code, when t1, t2, ..., tN and t1 − δ, t2, ..., tN can carry the
same information, we assume that response to a stimulus is divided into some
non-overlapped bins, such that spike occurrence anywhere within the bin car-
ries the same information. This brings us to the finite alphabet PPM coding
scheme.

In order for the finite alphabet code to exist within a nervous system it
is necessary to have some clock that defines the bins. To make the decoding
process possible such clock should have some spatial coherence i.e. it should
be available to both, the neuron that codes the message and the neuron that
has to decode it. Also, an another clock that defines symbol length should
also exist.

5.6.2 Finite alphabet code based on LFP

An interesting candidate for such clock are the LFP. Just to give some general
idea how such a clock could separate symbols and bins we show on figure 5.10
a possible relation between clock cycles and symbols and bins durations.

An important question, that naturally raises when potential role of LFP
is discussed, is how fine the phase resolution is in a nervous systems, e.g. if
one postsynaptic stimulus is received by a neuron at phase ϕ1 and another at
phase ϕ2 of the same cycle of local oscillations, what is the minimal value of
|ϕ1 − ϕ2| the neuron can detect? In other words, what is the phase precision
of the nervous system?

This question has been addressed in [Montemurro 2008] and it was found
that to extract information from the phase of firing, it is necessary to measure
phases with a precision of approximately π/2. The exact precision depends
on several factors that influence LFP reliability such as, as mentioned in the
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Clock which determines bin length

Figure 5.10: A possible relation between clock cycles and symbols and bins
durations. τref stand for the refractory period; the bin width should be at
least τref .

previous section, firing rate and LFP frequency.
Another very interesting study, described in [Jensen 2000], has also ad-

dressed this question. The principal goal of the study was to investigate a
possibility of the phase coding in a rat hippocampal place cells (cells that
exhibit a high firing rate whenever an animal is in a specific location in an
environment that corresponds to the cell’s place field). The data from the first
half of the recordings was used to find correlations between the rat’s position
and the firing phase of individual cells. For the second half, these correla-
tions were used to reconstruct position from the observed spikes. The average
distance between the reconstructed position and the actual position was used
as a quantitative measure of the efficacy of different decoding schemes. As
in the studies described in the previous section, it was shown that the phase
code conveys more information than the rate code. The authors particulary
investigated the number of bins in which one oscillation cycle is divided (phase
precision). They found that dividing into 6 or 7 phase bins leads to signifi-
cantly better reconstruction results (reconstruction of position of the rat was
more accurate) than when 1, 2, 3 or 9 bins were used.

The conclusions from [Jensen 2000] were exploited by one of the authors
of that study to propose the finite alphabet coding scheme [Lisman 2005].
Such scheme is based on the assumption that the observed discrete cycles
are actually modulated by higher frequency oscillations (gamma band). The
studies discussed in the previous section did not show high coherence of gamma
oscillations in visual [Montemurro 2008] and auditory [Kayser 2009] cortex.
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However, some contrary results are reported for dentate region of hippocampus
- coherence of gamma oscillations were very high over long distances. If these
results are correct, in some parts of the cortex gamma oscillations might be
one of the clocks; the other, lower frequency clock could come from theta band
oscillations, which seems to have a generally good spatial coherence. Figure
5.11 shows gamma-modulated firing of rat pyramidal cells during different
states. The author used the results to propose a discrete coding scheme for
long-term memory of the place cells (figure 5.12).

Figure 5.11: Gamma-modulated firing of rat pyramidal cell during different
states (wt, waking theta; wi, waking immobility; ss, slow wave sleep; rs, REM
Sleep). Dashed line is gamma LFP waveform. The "waking" data are taken
at a time when the theta phase precession was occurring, thus demonstrating
that both theta and gamma oscillations influence the timing of firing. From
[Lisman 2008] where it is modified from [Senior 2008].

If the neural code resembles pulse-position modulation scheme used in
communication systems then firing of more than one spike within the same
bin should be impossible. This would imply that the width of the bins in neural
communication should be lower or equal to the refractory period. Since the
duration of a spike and the corresponding absolute refractory period is about
1 − 2ms, a clock of 500 − 1000Hz should exist to define such bins. However,
up to now neuroscientist have not found a coherent clock of such frequency.

Considering pulse-position modulation, if Ts is fixed then it is relatively
easy to check whether such modulation has been used. Even if we do not
a priori know Ts (which is the case in neural coding problem), we can test
different values for Ts and observe whether we will find a single which is a
multiple of all the firing instants. Of course, to find such Ts, if it exists, it
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Figure 5.12: Scheme of Theta-Gamma Discrete Phase Code. Two theta cycles
are shown, each of which contains 7 gamma cycles. Different items (A-G) are
represented by activity in different gamma cycles. The ovals above show the
network activity that represents memory A during the first gamma cycle; note
that a spatial code of active cells (black) is used to encode the memory. During
the next gamma cycle, different cells in the same network are active, thereby
encoding memory B. This entire pattern can repeat on the next theta cycle.
Note that in this schematic, the theta modulation of gamma amplitude is not
shown. From [Lisman 2008].

is necessary to have access directly to the transmitter. In neural recordings,
this means to record directly from a single neuron. This is feasible using e.g.
a technique called patch clamp. Results obtained with such recordings do not
suggest existence of fixed Ts. However, the pulse-position modulation is still
possible if Ts varies in some way known to both, transmitter and receiver.

At the end of this section we can not draw any conclusion whether pulse-
position modulation, used in communication systems, is used in neural net-
works as well. Moreover, we can not say whether the neural code is continuous
or discrete. Even though we know a lot about neural coding, these elementary
properties of the code are still mysteries. It seems likely that these questions
will not be fully answered soon. Even finding a substantial amount of evi-
dences for one coding scheme in one brain region does not mean that in some
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other regions neural coding does not rely on a completely different scheme:
the difference might be that large so continuous and discrete coding scheme
could even coexist, e.g. one for sensory processing and the other for memory.

5.7 Discussion

Knowing that synaptic transmission, a necessary part of neural communica-
tion, is very noisy, and yet the neural systems perform extremely efficient,
gives an important perspective on neural code. Regardless how the informa-
tion is coded, the code is for sure a very robust one.

The main observation that can be made after the analysis in this chap-
ter is that different neurons in different parts of the nervous system seem to
rely on different coding schemes. The proposed schemes, in most of cases,
do not exclude each other. For example, it is possible that some neuron
codes majority of information by LFP phase-locked timing instants, but still
some part of information can be given by the number of spikes. This same-
neuron-different-codes scheme is demonstrated e.g. in [Knutsen 2008] and
[Richmond 1997]. It seems that multiple neural codes might operate simul-
taneously at different temporal scales, where each carries complementary in-
formation [Panzeri 2010]. We even state that it is possible that the nature of
the neural code can be both, continuous and discrete, depending on the brain
region but also on the time scale. For example, pulse-position modulation can
carry information in both, precise position of a spike in discretized time and
in number of spikes per some time unit (rate code).

To analyze different coding schemes, responses of sensory neurons are usu-
ally observed. When recording from sensory neurons it is possible to conduct
an experiment where the stimuli properties can be controlled, e.g. precise
timing and amplitude. Thus, a correlation between some particular parame-
ters of the spike train and the stimuli can be analyzed (e.g. delay of the first
spike, inter-spike intervals histogram). In this way it is possible to see which
of the parameters represent the stimuli in the most accurate and informative
way. However, this raises a question whether some cortex regions or particular
types of neurons might be discriminated in such type of research.

Existence of LFP and correlation of their phase with spike timings gives a
new perspective on neural coding. It might be possible that LFP play a role
of a clock in neural communication. Such clock might tick on several different
frequencies at the same time, giving different possibilities of time multiplexed
code. Having a clock opens a possibility of existence of discrete time cod-
ing schemes, such as pulse-position modulation. Motivation for considering
discrete code also lies in the time-locked neural responses. These responses
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exhibit a jitter (even though the jitter is usually relatively small), thus discrete
time code might exist to increase the robustness of such code.

Advances in the research of neural coding generally have a large influence
in many different areas of science. From philosophical point of view, where
better understanding of neural coding is important for better understanding
of the consciousness and what we actually are to more practical aspects such
as neural prothesis and brain stimulation which were discussed in the intro-
duction of the thesis.

Let us now discuss one research field, strongly related with the neural
coding problem: artificial intelligence (AI). We particulary address so called
strong AI which stands for AI that matches or exceeds human intelligence.
Often considered as futuristic, but still widely debated, this field is particulary
interesting in the context of this chapter, because some hypothesis discussed
here could have a strong implications in that field. Let us first describe briefly
some basic ideas in Strong AI field and then we will relate them with discus-
sions given in this chapter. Strong AI is based on idea of emulating neural
communication using computers. It is often assumed that by simulating more
neurons than there is in the human brain it would be possible to exceed
human intelligence. Some discussions went so far that they try to guess (us-
ing so called Moore’s law 1) when this will be possible; the time when such
intelligence will be developed, if ever, is usually refereed as technical singu-
larity. As an example of research towards strong AI direction, we mention
The blue brain project, which started in 2005, and attempts to create a syn-
thetic brain by reverse-engineering the mammalian brain. In 2007 the end of
the first phase: Modeling and simulation of the first rat cortical column has
been reported. Modeling of a brain, or a part of a brain usually means com-
putational modeling of neural networks: neurons and connections between
them. For example in the first phase of The blue brain project approximately
10000 neurons had been modeled according to their real biological structure in
rat neocortical columns [Markram 2006]. Even in its developing phase, such
project is extremely beneficial for understanding of cortical dynamics. How-
ever, to make such a model that is a precise functional replica of the brain
(or some of its part) it might be necessary to address the influence of the
extracellular medium on neural communication. As we saw in this chapter,
several studies suggest that changes of electrical potential in the extracellular
medium (mostly caused by the neural communication itself) can affect the
communication and in some situations seem to be a part of the code (e.g.
firing with respect to the phase of the LFP cycle). If it is true that neurons

1A trend that the number of the transistors that can be placed inexpensively on an
integrated circuit doubles approximately every two years.
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convey information through both, action potentials and extracellular poten-
tials then neglecting the extracellular potentials obviously leads to a limited
representation of the real neural networks. In that case, regarding the strong
AI, modeling of a large neural networks with a number of neurons similar to
the one in human brain will not necessarily lead to similar performance in
terms of e.g. intelligence. To make artificial neural networks which are real
replica of the biological ones it might be necessary to model the extracellular
environment as well. This drastically complicates the modeling process, since
neurons are usually modeled using relatively simple adequate models (see e.g.
[Carnevale 2006] for a description of a commonly used software NEURON
which is based on the famous HodgkinHuxley neural model). To model the
extracellular environment with some precision which is enough for making
functional replicas, some different approaches might be needed. For exam-
ple using finite element methods where the biological tissue would be divided
into very small portions and for each portion the change of potential along
discrete time could be calculated. A different example would be using some
adequate schematic for extracellular space. Finding an optimal way to re-
alistically simulate biological neural networks, in case that the neural code
depends on extracellular potentials, remains a subject for future research. A
very important step in that research would be a better understanding of the
neural code, what would help to realize what kind of a model could be a
satisfactory representation of the extracellular dynamics.

Among the one that has been analyzed here, there are some other ongo-
ing debates and generally new perspectives on problem of neural coding and
modeling of the neural activity. In [Cessac 2008] the authors discuss how fine
time resolution is necessary to adequately model neural behavior. Commonly
neural recordings use sampling frequency of 10kHz which is considered to be
enough to represent the spectral properties of spikes. Using continuous time
calculations the authors in [Cessac 2008] analyze effects of time discretization
on neural models. The main issue was not how fine the resolution should be,
but what are the effects of discretization that are not taken into account in
discrete neural models. They identify situations where small disturbances in
spike times may critically change the circuit dynamics.

We conclude this chapter by observing that complete neural coding scheme
is still unknown even though some of its principles seem to be understood.
However, in the last few years more questions than answers has been raised.
Complexity and variety of the neural language continue to astonish us, espe-
cially since we know that all these principles are integrated in such a profound
performance, as the one the nervous system exhibits.



Chapter 6

Conclusion

Several important and challenging problems in neural signal processing and
computational neuroscience are discussed and tackled in this thesis. Despite a
large amount of scientific effort, particulary during this and the last century, a
nervous system still holds many mysteries. An elementary motivation behind
the research done within this thesis was a better understanding of how a ner-
vous system conveys and process the information. The goal of the thesis was
to give a small, but recognizable contribution, by proposing some algorithms
that could help in processing of neural signals and by raising some questions
about the nature of the neural code.

From the anatomical point of view, our knowledge about the nervous sys-
tem is quite advanced. Still, due to the extreme complexity of the most
interesting part of the nervous system - the brain, we are still not able to
understand how the sensory information is being processed and how it leads
to such proficient outputs. What is generally noticed by observing the ner-
vous system is that whatever code is used to represent the information it must
be very robust, since occasional dying of individual neurons as well as noisy
inputs do not perturb significantly the information transmission.

To summarize our anatomical knowledge about the nervous system into
just a very few words, we can say that we know that the principal information
processing units are neurons (in human brain around 100 billion of them) that
are mutually connected (in the human cortex each neuron is usually connected
with about 10000 others) and exchange information. Neurons are not unique,
contrary they can have significantly different anatomical structure. Majority
of information is transmitted by using action potentials (spikes). Connections
between neurons are called synapses and they have an ability to transfer the
ion current from one neuron to another. Moreover, the synapses multiply
their inputs with a certain weight coefficient. These weight coefficients are
functions of the past responses of the system on a more global level. Such
way of changing the weight coefficient between the synapses is what permits
the neural networks to learn.

To understand the communication between neurons it is important to ana-
lyze the individual neural activity. Among many recording techniques, in this
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thesis we mostly addressed extracellular neural recordings. These are partic-
ulary interesting since they can be obtained with multi-site electrodes and on
moving animals.

We observe the problem of understanding an information transmitted
within a nervous system as a three step problem. As the first step we consider
spike detection, the second step spike sorting and the third decoding. This
three step approach describes well the structure of the thesis.

After the introduction in chapter one, in chapter two, we attacked the
spike detection problem. The problem is seen as a change point detection
problem. The spike time occurrences appear (as irregularities) explicitly in
the distributional derivatives of the neural signal. Using operational calculus,
which provides a convenient framework to handle such distributional deriva-
tives, we characterize the time occurrence of a spike by an explicit formula.
Such method brings a new perspective on spike detection problem since in-
troducing explicit derivatives gives a whole new mathematical framework to
deal with spikes. For a large class of different spike models we can obtain
an explicit characterization of spike locations, but due to the noise such ex-
plicit characterization leads to errors. We thus implement several decision
functions which lead to more robust results. Since the obtained mathemati-
cal results can be seen as a whole framework, depending on particular change
point detection problem (e.g. desired trade-of between the number of the false
alarms and the correct detections - detection sensitivity), one can try to real-
ize the most suitable detector. Very simple implementation of the proposed
algorithm, through classical FIR filters, makes its application in online spike
detection systems very easy, suggesting possible commercial implementation
in neural prosthetics or some applications that will be developed in the future.

Following the spike detection, we address the spike sorting problem; first,
in chapter three, by proposing an algorithm for spike sorting from a single-site
recordings and after, in chapter four, an algorithm for spike sorting from a
multi-site recordings, that uses the algorithm from the chapter three. The
proposed algorithm for spike sorting from single-site recordings is based on
properties of distribution of the extracted features from the detected spikes.
The algorithm is simple and yet adequate when difference between spikes from
different neurons is relatively large. The proposed multi-site sorting algorithm
uses an iterative ICA and deflation of what we consider as undesirable parts of
the signal. The proposed algorithm obtained much better results than when
only ICA was applied. In general our results suggested that ICA has a great
potential for neural spike sorting, even though all formally required conditions
on the signal for successful ICA application were not fulfilled.

There are some other open questions in field of spike sorting that we did
not address here. For instance, techniques for spike feature extraction are
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under constant development. These play a very important role in the process
of spike sorting. Also we did not particularly address problem of electrode
drifts, we assumed that the electrode setup was stable.

Spike sorting algorithms, including the ones proposed here (especially the
iterative ICA based algorithm), generally can not perform in real time. This
is the major problem from perspective of clinical applications, which generally
require online processing. On the other side, research applications are usually
compatible with the offline processing.

Finally in chapter five, we discussed the neural coding problem itself. We
raised a question on the nature of the neural code, whether it is continuous
or discrete. The case that it is discrete was particulary investigated. The
finite alphabet coding scheme was presented and related with some existing
examples from the literature. Such coding scheme is linked with a well known
pulse-position modulation. Notice that we do not give an answer whether the
neural code is either continuous or discrete, but state that it is an open ques-
tion and simply discuss the discrete case by analyzing its potential structure
and the implications of such coding scheme. It seems that the nervous sys-
tem is using several different coding schemes. The nature of the neural code
could be continuous in some parts (e.g. sensory processing) and discrete in
some other (e.g. memory). Moreover, continuous and discrete coding schemes
might coexists in the same parts of the nervous system i.e. the nature of the
neural code might be dual.

Overall, we can say that the thesis bring together some advanced mathe-
matical tools, signal processing techniques and communication theory in order
to attack several different problems in neuroscience.
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