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De l’échantillonnage optimal en grande et petite dimension

Résumé

Pendant ma thèse, j’ai eu la chance d’apprendre et de travailler sous la supervision de mon

directeur de thèse Rémi, et ce dans deux domaines qui me sont particulièrement chers. Je veux

parler de la Théorie des Bandits et du Compressed Sensing. Je les vois comme intimement

liés non par les méthodes mais par leur objectif commun: l’échantillonnage optimal de l’espace.

Tous deux sont centrés sur les manières d’échantillonner l’espace efficacement : la Théorie des

Bandits en petite dimension et le Compressed Sensing en grande dimension.

Dans cette dissertation, je présente la plupart des travaux que mes co-auteurs et moi-même

avons écrit durant les trois années qu’a duré ma thèse.

Mots-clefs

Théorie des bandits, Compressed Sensing, Échantillonnage adaptatif, Monte-Carlo

On optimal Sampling in low and high dimension

Abstract

During my PhD, I had the chance to learn and work under the great supervision of my advisor

Rémi (Munos) in two fields that are of particular interest to me. These domains are Bandit

Theory and Compressed Sensing. While studying these domains I came to the conclusion that

they are connected if one looks at them trough the prism of optimal sampling. Both these fields

are concerned with strategies on how to sample the space in an efficient way: Bandit Theory in

low dimension, and Compressed Sensing in high dimension.

In this Dissertation, I present most of the work my co-authors and I produced during the three

years that my PhD lasted.
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Bandit Theory, Compressed Sensing, Adaptive Sampling, Monte-Carlo

i



Acknowledgements
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informatiques, et autres bandits, mais aussi et surtout pour ton extrème gentillesse,
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1.2.1 Compressed Sensing : L’échantillonnage optimal en grande dimension . . 11

1.2.2 Sparse Recovery with Brownian Sensing . . . . . . . . . . . . . . . . . . . 12

1.2.3 Bandit Theory meets Compressed Sensing for high dimensional linear bandit 13

2 Introduction 15

I Bandit Theory 21

3 The Bandit Setting 23

3.1 The historical Bandit Setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.1.1 The classical bandit setting: cumulative regret . . . . . . . . . . . . . . . 24

3.1.2 Lower and upper bounds . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.1.3 Direct extensions of the classical bandit problem with cumulative regret . 27

3.2 Adaptive allocation with partial feedback . . . . . . . . . . . . . . . . . . . . . . 28

3.2.1 Adaptive allocation with partial feedback . . . . . . . . . . . . . . . . . . 29

3.2.2 Active learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.2.3 Monte-Carlo integration . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

iii



CONTENTS

4 Upper-Confidence-Bound Algorithms for Active Learning in Multi-Armed

Bandits 37

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4.2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.3 Allocation Strategy Based on Chernoff-Hoeffding UCB . . . . . . . . . . . . . . . 41

4.3.1 The CH-AS Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.3.2 Regret Bound and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.4 Allocation Strategy Based on Bernstein UCB . . . . . . . . . . . . . . . . . . . . 44

4.4.1 The B-AS Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.4.2 Regret Bound and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.4.3 Regret for Gaussian Distributions . . . . . . . . . . . . . . . . . . . . . . 46

4.5 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.5.1 CH-AS, B-AS, and GAFS-MAX with Gaussian Arms . . . . . . . . . . . 48

4.5.2 B-AS with Non-Gaussian Arms . . . . . . . . . . . . . . . . . . . . . . . . 48

4.6 Conclusions and Open Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.A Regret Bound for the CH-AS Algorithm . . . . . . . . . . . . . . . . . . . . . . . 52

4.A.1 Basic Tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.A.2 Allocation Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.A.3 Regret Bound . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.A.4 Lower bound for the regret of algorithm CH-AS . . . . . . . . . . . . . . 57

4.B Regret Bounds for the Bernstein Algorithm . . . . . . . . . . . . . . . . . . . . . 58

4.B.1 Basic Tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.B.1.1 A High Probability Bound on the Standard Deviation for sub-

Gaussian Random Variable . . . . . . . . . . . . . . . . . . . . . 58

4.B.1.2 Bound on the regret outside of ξ . . . . . . . . . . . . . . . . . . 61

4.B.1.3 Other Technical Inequalities . . . . . . . . . . . . . . . . . . . . 62

4.B.2 Allocation Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.B.3 Regret Bounds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.C Regret Bound for Gaussian Distributions . . . . . . . . . . . . . . . . . . . . . . 69

5 Minimax strategy for Stratified Sampling for Monte Carlo 75

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

5.2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

5.3 Minimax lower-bound on the pseudo-regret . . . . . . . . . . . . . . . . . . . . . 81

5.4 Allocation based on Monte Carlo Upper Confidence Bound . . . . . . . . . . . . 82

5.4.1 The algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

5.4.2 Pseudo-Regret analysis of MC-UCB . . . . . . . . . . . . . . . . . . . . . 83

5.5 Links between the pseudo-loss and the mean-squared error . . . . . . . . . . . . . 84

5.5.1 A quantity that is almost equal to the pseudo-loss . . . . . . . . . . . . . 85

5.5.2 Bounds on the cross-products . . . . . . . . . . . . . . . . . . . . . . . . . 85

iv



CONTENTS

5.5.3 Bounds on the true regret and asymptotic optimality . . . . . . . . . . . . 87

5.6 Discussion on the results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

5.6.1 Problem dependent and independent bounds for the expectation of the

pseudo-loss . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

5.6.2 Finite-time bounds for the true regret, and asymptotic optimality . . . . 88

5.6.3 MC-UCB and the lower bound . . . . . . . . . . . . . . . . . . . . . . . . 89

5.6.4 The parameters of the algorithm . . . . . . . . . . . . . . . . . . . . . . . 89

5.6.5 Making MC-UCB anytime . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

5.7 Numerical experiment: Pricing of an Asian option . . . . . . . . . . . . . . . . . 89

5.8 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

5.A Proof of Theorem 8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

5.B Main technical tools for the regret and pseudo-regret bounds . . . . . . . . . . . 98

5.B.1 The main tool: a high probability bound on the standard deviations . . . 98

5.B.2 Other important properties . . . . . . . . . . . . . . . . . . . . . . . . . . 100

5.B.3 Technical inequalities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

5.C Proof of Theorem 9 and Proposition 4 . . . . . . . . . . . . . . . . . . . . . . . . 103

5.C.1 Problem dependent bound on the number of pulls . . . . . . . . . . . . . 103

5.C.2 Proof of Theorem 9 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

5.C.3 Proof of Proposition 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

5.D Proof of Theorems 10 and Proposition 5 . . . . . . . . . . . . . . . . . . . . . . . 107

5.D.1 Problem independent Bound on the number of pulls of each arm . . . . . 108

5.D.2 Proof of Theorem 10 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

5.D.3 Proof of Proposition 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

5.E Comments on problem independent bound for GAFS-WL . . . . . . . . . . . . . 113

5.F Proof of Propositions 6, 7 and 8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

5.F.1 Proof of Proposition 6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

5.F.2 Proof of Propositions 7 and 8 . . . . . . . . . . . . . . . . . . . . . . . . . 116

6 Minimax Number of Strata for Online Stratified Sampling given Noisy Sam-

ples 123

6.1 Setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

6.2 The quality of a partition: Analysis of the term Qn,N. . . . . . . . . . . . . . . . 129

6.2.1 General comments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

6.3 Algorithm MC-UCB and a matching lower bound . . . . . . . . . . . . . . . . . . 131

6.3.1 Algorithm MC − UCB . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

6.3.2 Upper bound on the pseudo-regret of algorithm MC-UCB. . . . . . . . . . 132

6.3.3 Lower Bound . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

6.4 Minimax-optimal trade-off between Qn,NK and Rn,NK (AMC−UCB) . . . . . . . . 133

6.4.1 Minimax-optimal trade-off . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

6.4.2 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

v



CONTENTS

6.5 Numerical experiment: influence of the number of strata in the Pricing of an

Asian option . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

6.A Proof of Theorem 16 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

6.A.1 The main tool: a high probability bound on the standard deviations . . . 139

6.A.2 Main Demonstration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

6.B Proof of Proposition 10 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

6.C Proof of Proposition 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

6.D Large deviation inequalities for independent sub-Gaussian random variables . . . 146

7 Adaptive Stratified Sampling for Monte-Carlo integration of Differentiable

functions 151

7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

7.2 Setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

7.3 Discussion on the optimal asymptotic mean squared error . . . . . . . . . . . . . 156

7.3.1 Asymptotic lower bound on the mean squared error, and comparison with

the Uniform stratified Monte-Carlo . . . . . . . . . . . . . . . . . . . . . . 156

7.3.2 An intuition of a good allocation: Piecewise linear functions . . . . . . . . 157

7.4 The LMC-UCB Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

7.4.1 Algorithm LMC-UCB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

7.4.2 High probability lower bound on the number of sub-strata of stratum Ωk 159

7.4.3 Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

7.5 Main results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

7.5.1 Asymptotic convergence of algorithm LMC-UCB . . . . . . . . . . . . . . 160

7.5.2 Under a slightly stronger Assumption . . . . . . . . . . . . . . . . . . . . 160

7.5.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161

7.A Numerical Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163

7.B Poof of Lemma 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164

7.C Proof of Lemmas 19 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167

7.D Proof of Theorem 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170

7.E Proof of Theorems 18 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172

8 Toward Optimal Stratification for Stratified Monte-Carlo Integration 181

8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182

8.2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184

8.2.1 The function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184

8.2.2 Notations for a hierarchical partitioning . . . . . . . . . . . . . . . . . . . 185

8.2.3 Pseudo-performance of an algorithm and optimal static strategies . . . . . 186

8.2.4 Main result for algorithm MC-UCB and point of comparison . . . . . . . 187

8.3 A first algorithm that selects the depth . . . . . . . . . . . . . . . . . . . . . . . 188

8.3.1 The Uniform Sampling Scheme . . . . . . . . . . . . . . . . . . . . . . . . 188

vi



CONTENTS

8.3.2 The Deep-MC-UCB algorithm . . . . . . . . . . . . . . . . . . . . . . . . 189

8.3.3 Main result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190

8.4 A more efficient strategy: algorithm MC-ULCB . . . . . . . . . . . . . . . . . . . 192

8.4.1 The MC-ULCB algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . 192

8.4.2 Main result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194

8.4.3 Discussion and remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194

8.A Proof of Lemma 21 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197

8.B Proof of Theorem 21 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198

8.B.1 An interesting large probability event . . . . . . . . . . . . . . . . . . . . 198

8.B.2 Rate for the algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199

8.B.3 Nodes that are in the final partition . . . . . . . . . . . . . . . . . . . . . 201

8.B.4 Comparison at every scale . . . . . . . . . . . . . . . . . . . . . . . . . . . 204

8.C Proof of Theorem 22 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209

8.C.1 Some preliminary bounds . . . . . . . . . . . . . . . . . . . . . . . . . . . 209

8.C.2 Study of the Exploration Phase . . . . . . . . . . . . . . . . . . . . . . . . 213

8.C.3 Characterization of the ΣNn . . . . . . . . . . . . . . . . . . . . . . . . . . 216

8.C.4 Study of the Exploitation phase . . . . . . . . . . . . . . . . . . . . . . . . 217

8.C.5 Regret of the algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222

8.D Large deviation inequalities for independent sub-Gaussian random variables . . . 223

II Compressed Sensing 227

9 Compressed Sensing 229

9.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229

9.2 Compressed Sensing in a nutshell . . . . . . . . . . . . . . . . . . . . . . . . . . . 230

9.2.1 Setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 230

9.2.2 What is a good sampling scheme? . . . . . . . . . . . . . . . . . . . . . . 232

9.2.3 Transformation of the problem in a convex problem . . . . . . . . . . . . 235

9.2.4 The RIP property: a solution to the noisy setting and efficient ways to

sample . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 237

9.2.5 Matrices that verify the RIP property . . . . . . . . . . . . . . . . . . . . 238

9.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 240

10 Sparse Recovery with Brownian Sensing 241

10.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 242

10.2 Relation to existing results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 244

10.3 The “Brownian sensing” approach . . . . . . . . . . . . . . . . . . . . . . . . . . 245

10.3.1 Properties of the transformed objects . . . . . . . . . . . . . . . . . . . . 246

10.3.2 Main result. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 248

10.4 Discussion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 248

vii



CONTENTS

10.4.1 Comparison with known results . . . . . . . . . . . . . . . . . . . . . . . . 248

10.4.2 The choice of the curve . . . . . . . . . . . . . . . . . . . . . . . . . . . . 250

10.4.3 Examples of curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 250

10.5 Recovery with orthonormal basis and i.i.d. noise when the function f is Lipschitz 251

10.5.0.1 I.i.d. centered Gaussian observation noise . . . . . . . . . . . . . 251

10.5.1 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 252

10.6 Numerical Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 253

10.6.1 Illustration of the performances of of Brownian Sensing . . . . . . . . . . 253

10.6.2 The initial experiment of compressed sensing revisited . . . . . . . . . . . 254

10.A Proofs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 257

11 Bandit Theory meets Compressed Sensing for high dimensional linear bandit267

11.1 Setting and a useful existing result . . . . . . . . . . . . . . . . . . . . . . . . . . 269

11.1.1 Description of the problem . . . . . . . . . . . . . . . . . . . . . . . . . . 269

11.1.2 A useful algorithm for Linear Bandits . . . . . . . . . . . . . . . . . . . . 270

11.2 The SL-UCB algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 271

11.2.1 Presentation of the algorithm . . . . . . . . . . . . . . . . . . . . . . . . . 271

11.2.2 Main Result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 272

11.3 The gradient ascent as a bandit problem . . . . . . . . . . . . . . . . . . . . . . . 273

11.3.1 Formalization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 273

11.4 An alternative algorithm when the noise is sparse . . . . . . . . . . . . . . . . . . 275

11.4.1 Presentation of the algorithm . . . . . . . . . . . . . . . . . . . . . . . . . 275

11.4.2 Main Result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 275

11.4.3 Numerical experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 277

11.A Proofs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 281

References 287

viii



Chapter 1

Résumé en français de cette thèse

Ce travail de thèse se situe à la frontière entre les domaines du machine learning et des statis-

tiques. Pendant ces trois ans, sous la supervision intelligente de Rémi Munos, je me suis plus

spécifiquement attachée à un problème qui réunit élégamment ces deux domaines, c’est à dire

l’échantillonnage adaptatif.

Afin de m’intéresser aux problèmes posés par l’échantillonnage adaptatif, je me suis con-

centrée sur deux thèmes qui résument simplement les deux grands cas de figure qui peuvent

se poser au praticien. Le premier est celui de l’échantillonnage en petite dimension. Afin de

l’étudier, j’ai travaillé sur les techniques de modélisation par des bandits. Le second concerne

les problèmes posés par le passage en dimension plus élevée. Récemment, des méthodes simples

mais efficaces ayant attiré beaucoup d’attention ont été réunies sous l’acronyme compressed

sensing. Je me suis intéressée à mieux comprendre ces récentes avancées. Je me suis plus parti-

culièrement intéressée aux différentes façons d’échantillonner dans ces deux circonstances. Par

l’étude de ces deux littératures, nous avons été, avec mes co-auteurs, capables de contribuer aux

deux domaines par les différents travaux qui composent cette dissertation.

Mon objectif au cours de cette introduction sera d’essayer d’expliquer aussi clairement et

succinctement que possible quelles sont les principales contributions de cette thèse, et surtout

d’expliquer quelle en a été la démarche. Pour ce faire, je rappellerai également, brièvement,

quel est l’état de l’art en bandits aussi bien qu’en compressed sensing, et je suivrais le plan du

document principal. J’essaierai surtout de rester aussi peu technique que possible.

Contents

1.1 Théorie des bandits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.1.1 Les bandits : un outil efficace en petite dimension . . . . . . . . . . . . . . 2

1.1.2 Upper Confidence Bounds Algorithms for Active Learning in Multi-Armed

Bandits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.1.3 Finite time analysis of stratified sampling for Monte Carlo . . . . . . . . . . 6

1.1.4 Minimax Number of Strata for Online Stratified Sampling given Noisy Samples 8

1.1.5 Online Stratified Sampling for Monte-Carlo integration of Differentiable func-

tions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
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Figure 1.1: Domaines abordés pendant mes trois ans de thèse.

1.1.6 Toward optimal stratification for stratified Monte-Carlo integration . . . . . 10

1.2 Compressed Sensing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.2.1 Compressed Sensing : L’échantillonnage optimal en grande dimension . . . 11

1.2.2 Sparse Recovery with Brownian Sensing . . . . . . . . . . . . . . . . . . . . 12

1.2.3 Bandit Theory meets Compressed Sensing for high dimensional linear bandit 13

1.1 Théorie des bandits

1.1.1 Les bandits : un outil efficace en petite dimension

Le domaine principal auquel cette thèse peut être rattachée est tout de même celui des bandits.

Ce thème de recherche existe sous ce nom depuis plus de 50 ans, et a été introduit par Robbins

[1952]. Les bandits posent simplement le problème de choix dans un environnement incertain.

On peut voir chaque problème de bandit comme un jeu répété ou au cours duquel un joueur joue

à un jeu séquentiel contre un environnement, qui peut être aléatoire ou malicieux. A chaque

itération du jeu, le joueur doit prendre une décision (choisir un bras, où bras fait référence au bras

d’un bandit manchot dans un casino). Cette décision influe non seulement sur la récompense

2



Paramètres inconnus du jeux (caractérisation de l’environnement) : Dis-
tributions (bras) (ν1, . . . , νK) des récompenses quand le joueur choisit les différentes
actions
Paramètres connus : Nombre d’actions K et budget n
for t = 1, . . . , n do

Le joueur choisi kt ∈ {1, . . .K}
L’environnement donne au joueur la récompense Yt ∼ νkt qui est indépendante
des autres récompenses

end for
Le joueur renvoie, à la fin du jeu :

∑n
t=1 Yt

Figure 1.2: Le jeu de bandit stochastique à plusieurs bras.

du joueur, mais aussi sur ce que le joueur observe (apprend) de l’environnement. Le schéma 1.2

reprend les grandes lignes du jeu de bandit stochastique à plusieurs bras, comme il a été posé

initialement par Robbins [1952]. Dans ce schéma, il est important de noter que le jeu considéré

est un jeu à horizon fini et connu, c’est à dire que le joueur sait qu’il devra choisir n fois une

action. Dans ce cas, on dit que le joueur dispose d’un budget n. L’objectif pour le joueur est, par

un choix judicieux d’actions, de réussir à maximiser la somme de ses récompenses (
∑n

t=1 Yt si

on reprend les notations de la Figure 1.2). Pour ce faire, il est nécessaire que le joueur réussisse

à bien répartir son budget entre l’exploration de chaque bras afin d’avoir une meilleure idée de

chaque distribution, et l’exploitation des informations obtenues, et ce afin de choisir plus souvent

les meilleurs bras. En effet, les algorithmes intéressants pour résoudre des problèmes de bandits

sont ceux qui essaient de comprendre la forme cachée du problème statistique et de s’y adapter

le mieux possible. Il est important de bien se rappeler que la plupart des résultats actuels en

bandits sont sous formes de bornes à distance finie entre ce qu’un oracle aurait pu faire de mieux

et ce que fait concrètement l’algorithme proposé. C’est pourquoi, à mon sens, les bandits sont si

bien situés à la frontière entre les statistiques et le domaine du machine learning : la confection

des bornes nécessite des outils, parfois pointus de la théorie des statistiques, et comme elles sont

à distance finie, elles sont directement informatives pour l’application concrète de l’algorithme.

De nombreux et intelligents algorithmes ont été proposés pour répondre le mieux possible

à ce dilemme. Le lecteur intéressé peut se reporter au Chapitre 3 de la présente thèse pour

une revue de littérature sur le bandit stochastique et quelque-unes de ses principales variantes.

Pour une description plus complète de la littérature existante, il peut aussi, entre autres, lire les

excellents états de l’art présents dans les thèses de Bubeck [2010] et Maillard [2011].

J’aime à voir cette façon de penser l’échantillonnage (la vision bandit) comme étant partic-

ulièrement pertinente en petite dimension. Par là je ne veux pas dire que le nombre d’actions est

“petit”, premièrement car ce n’est pas précis, et deuxièmement car de nombreuses variantes de

bandits sont utilisées pour modéliser des situations dans lesquelles le nombre d’actions est infini

(bandits linéaires, bandits continus... voir Chapitre 3). Je veux plutôt dire que, d’une certaine

façon, il est pertinent de penser en termes de bandits les problèmes pour lesquels il est possible

d’avoir une idée de l’effet de chaque action en utilisant un budget relativement limité. En effet,
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quand l’ensemble des actions est grand, des hypothèses de régularité sont faites de sorte que

l’inférence est tout de même possible. Prenons par exemple les bandits linéaires. Le nombre

d’actions dans ce cas peut être infini. Par contre, la dimension de l’espace des actions quant

à elle est bien finie, et petite devant le budget. Il est donc possible de parcourir une base de

l’ensemble des actions avec peu de budget, puis d’utiliser l’hypothèse de linéarité pour estimer

l’effet de chaque action. Pour les bandits continus (par exemple pour optimiser des fonctions,

comme décrit dans les articles [Stoltz et al., 2011] et [Munos, 2011]), des hypothèses de régularité

(connues ou inconnues) sont toujours faites pour justifier que le fait de choisir une action n’est

pas très différent du fait de choisir une autre action “proche” en un certain sens. Ainsi, même

si ces problèmes concernent effectivement un très grand espace d’actions, des hypothèses sont

toujours faites pour que, en approximant, il soit possible de diminuer la taille de cet espace.

Grâce à cela, il est non seulement possible de s’adapter au problème, mais du coup salutaire de

le faire.

Je vais maintenant décrire les différentes contributions que mes co-auteurs et moi-même avons

apporté dans ce domaine. Elles sont au nombre de cinq, et toutes concernent des problèmes

légèrement différents du problème de bandit initial exposé préalablement. Toutefois, elles sont

très fortement inspirées des grandes idées développées pour ce problème. Parmi ces contribu-

tions, quatre d’entre elles forment un travail continu et cohérent sur l’intégration adaptative de

fonctions par Monte-Carlo stratifié. Celle que je vais présenter en premier concerne un problème

très proche de ce thème et a été en quelque sorte un travail préliminaire à Monte-Carlo stratifié.

Je présente ici ces travaux dans le même ordre que celui de cette dissertation.

1.1.2 Upper Confidence Bounds Algorithms for Active Learning in Multi-

Armed Bandits

Le premier travail que je présente s’intitule ”Upper Confidence Bounds Algorithms for Active

Learning in Multi-Armed Bandits”. C’est un travail commun avec Alessandro Lazaric, Moham-

mad Ghavamzadeh, Rémi Munos et Peter Auer, et nous avons déjà publié une première version

de cet article pour la conférence “Algorithmic Learning Theory” en 2011 (disponible sous [Car-

pentier et al., 2011a]). Une version plus longue est en en train de se faire évaluer par le journal

“Theoretical Computer Science”.

Dans cet article, nous reprenons le problème, déjà posé par Antos et al. [2010], d’apprendre

avec une même précision les moyennes µk de plusieurs distributions (bras) quand les variances

σ2
k de ces distributions diffèrent entre elles, donc quand le bruit est hétéroscédastique. Les

algorithmes que l’on construit ne connaissent pas les µk et les σ2
k, mais ils peuvent les apprendre

en répartissant séquentiellement un budget de n observations entre les différentes distributions.

L’objectif est de construire un algorithme qui minimise le regret, qui s’exprime comme

max
k≤K

E
[
(µ̂k,n − µk)2

]
−
∑K

k=1 σ
2
k

n
,
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où l’espérance est mesurée sur les échantillons, et µ̂k,n est la moyenne empirique construite

sur les Tk,n échantillons prélevés sur la distribution k. La quantité
∑K
k=1 σ

2
k

n est la plus petite

(sur les allocations) variance maximale (sur les distributions) qu’une stratégie statique ora-

cle qui connâıt les σk peut atteindre, et on la trouve en résolvant le problème d’optimisation

min(Tk)k:
∑
k Tk=n maxk≤K E

[
(µ̂k,n − µk)2

]
. L’objectif est d’obtenir un regret en o(1/n), de sorte

que la stratégie atteignant ce regret est quasiment aussi efficace que la stratégie optimale “oracle”

statique.

Produire des méthodes efficaces pour résoudre ce genre de problème est intéressant en pra-

tique. Par exemple, pour le contrôle de risque industriel. Si les machines utilisées pour la

production sont composés de nombreuses pièces que l’on peut tester séparément et qui ont

des probabilités hétérogènes et inconnues de tomber en panne (voire Figure 1.3, surtout car

l’image est jolie), si le dysfonctionnement d’une seule pièce entrâıne l’arrêt des machines, alors

le problème de garantir le bon fonctionnement de la machine sans utiliser trop de ressources

correspond assez bien à la forme du regret que nous proposons.

Figure 1.3: Machine à cigarettes. Source : James Albert Bonsack (1859 â 1924)

L’article [Antos et al., 2010] présente un algorithme appelé GAFS-MAX qui fonctionne, pour

un budget n fixé, en deux phases successives d’exploration et d’exploitation. Les auteurs prou-

vent une borne sur le regret de cet algorithme, en Õ(n−3/2) (où Õ(.) est un O(.) à poly(log(.).)

prêt). Il faut également noter ici que la borne sur le regret de GAFS-MAX comporte une

dépendance inverse en mink≤K
σ2
k∑K

i=1 σ
2
i

: plus cette quantité est petite, plus le regret est grand.

Notre travail dans l’article “Upper Confidence Bounds Algorithms for Active Learning in

Multi-Armed Bandits” reprend donc le même problème. Notre objectif était d’étudier plus

finement cette dépendance en mink≤K
σ2
k∑K

i=1 σ
2
i

. Nous proposons un premier algorithme, CHAS,

qui s’appuie sur des idées maintenant classiques dans la littérature des bandits, et qui sont

celles de borne de confiance supérieures (voir [Auer et al., 2002]). Une analyse assez simple de

cet algorithme permet de retrouver les mêmes résultats que pour GAFS-MAX. Le deuxième

algorithme que nous proposons, BAS, est proche de CHAS mais est construit avec des bornes
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de confiance plus fines. Grâce à cela, nous somme capables de prouver, quand les distributions

sont gaussiennes, des bornes toujours en Õ(n−3/2), mais ne dépendant pas de mink≤K
σ2
k∑K

i=1 σ
2
i

.

Malheureusement, nous n’avons pas été capable de généraliser ce type de bornes pour une plus

large classe de distributions. Nous nous sommes donc posé la question de l’origine de cette

dépendance, et avons conclu par quelques intuitions que, bizarrement, elle pouvait bien nâıtre

de la forme des distributions. Nous avons donc présenté quelques expériences corroborant cette

intuition. Je parle plus longuement de ce travail au cours du Chapitre 4 qui lui est dédié.

Les quatre articles suivants concernant les contributions en bandit de cette dissertation sont

toutes sur un seul et même sujet, qui est celui de trouver des stratégies adaptatives pour intégrer

des fonctions. La prochaine Sous-section sera notablement plus longue que les trois suivantes,

essentiellement car elle me sert aussi à poser le problème commun à toutes.

1.1.3 Finite time analysis of stratified sampling for Monte Carlo

Le premier travail de cet série s’intitule ”Finite time analysis of stratified sampling for Monte

Carlo”. Nous avons publié avec Rémi Munos une version courte de ce travail dans le rapport

de la conférence Advances in Neural Information Processing Systems en 2011 (voir Carpentier

and Munos [2011a]). Une version longue de ce travail a été effectuée en coopération avec Rémi

Munos et András Antos. Le Chapitre 5 de la présente thèse lui est dédié.

L’objectif de ce travail ainsi que des trois travaux suivants est de trouver des méthodes

efficaces pour intégrer des fonctions, en supposant qu’il est possible de choisir où échantillonner.

Pour ce travail en particulier, nous supposons que le domaine de la fonction à intégrer est découpé

en strates (régions de l’espace), et qu’il est possible non seulement d’échantillonner aléatoirement

dans chacune des strates, mais qu’en plus on a accès à la mesure exacte de chaque strate. Nous

indexons chaque strate par k et nous appelons wk leur mesure respective. Échantillonner des

points aléatoirement dans la strate k résulte en la collection de Tk,n réalisations d’une variable

aléatoire νk, de moyenne µk et de variance σ2
k (nous supposons ici comme dans la suite que ces

moments existent). L’objectif est d’approximer aussi bien que possible l’intégrale de la fonction

par rapport à la mesure d’échantillonnage, c’est à dire µ =
∑K

k=1wkµk, par µ̂n =
∑K

k=1wkµ̂k,n,

où µ̂k,n est la moyenne empirique construite sur les Tk,n échantillons prélevés sur la strate

k. Il est intuitif qu’il est préférable pour ce problème d’allouer plus d’échantillons dans les

strates ayant une plus grande variance. J’illustre trois exemples d’allocation possibles à l’aide du

graphique 1.4. Si on considère la norme
√
E||.||22 comme étant une bonne mesure de performance

d’un estimateur, il est cohérent de considérer le regret d’une stratégie comme étant

E[(µ̂n − µ)2]−
(
∑

k wkσk)
2

n
,

où
(
∑
k wkσk)2

n est la plus petite variance que peut obtenir une stratégie statique oracle (qui a

accès aux σk). L’objectif est de construire une stratégie qui minimise ce regret. Ce contexte

est très classique dans la littérature sur les méthodes de réduction de variance pour Monte-

6



Carlo, et est connu comme “Monte-Carlo stratifié” (voir [Rubinstein and Kroese, 2008] pour

une présentation exhaustive).

Figure 1.4: Gauche : Allocation Monte-Carlo. Milieu : Allocation uniforme pour Monte-Carlo
stratifié. Droite : Allocation optimale pour Monte-Carlo stratifié.

Ce qui est moins standard est de construire des stratégies adaptatives pour ce problème,

qui réussissent à arbitrer efficacement entre exploration des distributions et exploitation de

l’information, donc allouer plus d’échantillons dans les strates où la variance est plus grande.

Il y a toutefois des articles sur ce sujet, notamment dans le domaine de l’ingénierie financière

et de la finance mathématique : être capable d’intégrer rapidement des fonctions est un défi

important de ce domaine. Je vais parler ici de deux articles récents et qui représentaient autant

que je sache l’état de l’art de ce domaine au moment où nous avons publié notre article. Le

premier papier est un travail de Etoré and Jourdain [2010] et propose une stratégie asymptotique,

SSAA, pour résoudre ce problème. Les auteurs démontrent que l’estimateur renvoyé par leur

algorithme converge vers l’intégrale de la fonction, et que de plus la variance de cet estimateur

est asymptotiquement optimale, donc que le regret décrôıt asymptotiquement plus vite que

1/n. Comme ce genre de problème concerne l’efficacité concrète de méthodes, il est également

très important d’avoir des stratégies efficaces en temps fini, ainsi que des garanties théoriques

associées. C’est pour cela que Grover [2009] a repris ce problème en le posant cette fois sous la

forme d’un problème de bandit. Grâce aux idées de ce domaine, il arrive à prouver qu’un proxy

sur le regret est d’ordre Õ(n−3/2), où cet ordre de grandeur cache une dépendance inverse en

mink≤K
wkσk∑K
i=1 wiσi

: plus cette quantité est petite, plus le regret est grand. Toutefois, comme il

ne relie pas son proxy au vrai regret, il n’est pas capable de démontrer l’optimalité asymptotique

de son algorithme comme dans [Etoré and Jourdain, 2010].

Trois questions se posent naturellement, questions auxquelles nous répondons du moins par-

tiellement au cours du Chapitre 5 de cette dissertation. La première concerne la dépendance

en mink≤K
wkσk∑K
i=1 wiσi

du (proxy sur le) regret, la seconde porte sur le lien entre le regret et le

proxy sur le regret défini dans [Grover, 2009], et enfin la dernière est de savoir quelle serait

une borne inférieure sur ce problème (que peut faire de mieux la meilleure stratégie adaptative

qui ne connâıt pas les variances sur les strates), et quel serait du coup un algorithme optimal

en termes de regret cette fois1. Nous proposons un algorithme appelé MC-UCB, et reposant

1Jusque là, nous avons appelé stratégie asymptotiquement optimale une stratégie qui est asymptotiquement

7
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de nouveau sur des idées de bornes de confiance supérieures. Nous prouvons, pour cet algo-

rithme, deux vitesses pour le proxy de Grover [2009] sur le regret, une première en Õ(n−3/2)

comme dans [Grover, 2009], avec une dépendance inverse en mink≤K
wkσk∑K
i=1 wiσi

, et une seconde

en Õ(K
1/3

n4/3 ) sans aucune dépendance en mink≤K
wkσk∑K
i=1 wiσi

cette fois. Par ailleurs, nous exhibons

également une borne inférieure, minimax, pour les algorithmes adaptatif sur ce problème : pour

tout algorithme, il existe un problème tel que le proxy du regret de l’algorithme sur ce problème

soit d’ordre au moins Ω(K
1/3

n4/3 ). Forts de cela, nous savons que notre algorithme MC-UCB est

minimax-optimal. Enfin, nous relions, toujours pour notre algorithme, le proxy sur le regret avec

le vrai regret et sommes donc capables de montrer asymptotiquement aussi bien qu’à distance

finie la décroissance dudit regret vers 0, et plus vite que 1/n.

Il est à noter que jusqu’à présent, aucune mention n’a été faite de comment choisir la strat-

ification. On suppose qu’elle est fournie à l’algorithme. Il est toutefois très important, si l’on

souhaite être vraiment efficace, de se poser ce problème en détail. C’est ce que nous avons

essayé de faire dans les trois articles suivants. Nous ne sommes toutefois pas les premiers à

nous être posé cette question. En effet, ce problème a intéressé, encore une fois, les chercheurs

en statistiques et finance mathématique. Il y a eu des réponses apportées par exemple par les

articles [Arouna, 2004; Etoré et al., 2011; Kawai, 2010]. Dans le plus récent des travaux que

j’ai pu trouver à ce sujet, [Etoré et al., 2011], les auteurs étudient, sous des hypothèses faibles,

le comportement de l’allocation optimale quand le diamètre des strates tend vers 0, et ce sous

deux hypothèses bien distinctes : quand la stratification couvre un sous-espace vectoriel de

l’espace total (cas “bruité) et quand la stratification couvre tout l’espace (cas ”non bruité“).

Ils proposent ensuite un algorithme qui stratifie l’espace intelligemment, mais sans proposer

de garanties théoriques. Par ailleurs, leur algorithme est conçu pour fonctionner dans le cas

asymptotique. Distinguer entre les cas ”bruités“ et ceux ”non bruités“ est très important, car

les ordres de vitesses d’approximation diffèrent beaucoup entre les deux.

Les bornes à distance finies obtenues pour MC-UCB, ainsi que notre connaissance du fait qu’il

est minimax-optimal, nous a permis de nous poser plus en détail la question de la stratification

de l’espace. Dans les trois Sous-parties suivantes nous présentons trois de nos travaux sur ce

sujet, dans les divers cas de figure ”bruités“ et ”non bruités“.

1.1.4 Minimax Number of Strata for Online Stratified Sampling given Noisy

Samples

Le second travail sur Monte-Carlo stratifié s’intitule “Minimax Number of Strata for Online

Stratified Sampling given Noisy Samples et est un travail commun avec Rémi Munos. Nous

avons publié une version courte de ce travail dans le rapport de la conférence Algorithmic

Learning Theory en 2012.

équivalente à la meilleure stratégie. Nous appelons stratégie optimale une stratégie tendant à un objectif plus
ambitieux, c’est à dire à l’objectif de minimiser de façon optimale (aussi bien qu’une potentielle borne inférieure)
à distance finie le regret lui-même.
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L’objectif de ce travail est de déterminer de façon minimax optimale le nombre de strates en

lesquelles il est pertinent de diviser l’espace, étant donné un budget n et la connaissance du fait

que la fonction que l’on veut intégrer est bruitée et α−Hölder. La force de notre approche est de

nous appuyer sur le fait que MC-UCB est minimax optimal dans la classe des algorithmes adap-

tatifs2. En exhibant une vitesse de décroissance, en fonction du nombre de strates, de la variance

“oracle” vers la plus petite variance sur la meilleure partition, nous sommes donc capables de

fournir un algorithme qui est minimax-optimal (parmi les algorithmes adaptatifs) en termes de

pseudo-regret, sur la classe des fonctions Hölder, pour le problème de l’intégration adaptative :

il n’est pas venu à notre connaissance que d’autres travaux fournissaient des résultats similaires.

Nous décrivons plus en détail notre procédure au cours du Chapitre 6.

1.1.5 Online Stratified Sampling for Monte-Carlo integration of Differen-

tiable functions

Le troisième travail sur Monte-Carlo stratifié s’intitule “Online Stratified Sampling for Monte-

Carlo integration of Differentiable functions” et est un travail commun avec Rémi Munos. Nous

avons publié une version courte de ce travail dans le rapport de la conférence Advances in Neural

Information Processing Systems en 2012.

L’objectif de ce travail est de proposer des méthodes efficaces pour intégrer des fonctions

non bruitées et dérivables. Comme expliqué dans l’article [Etoré et al., 2011], les vitesses de

convergence dans le cas bruité et non bruité diffèrent beaucoup. En effet, il est possible, dans

le cas non bruité, de construire facilement un estimateur de l’intégrale d’une fonction dérivable

dont la variance est d’ordre n−1−2/d (et donc plus petite que 1/n) où d est la dimension du

domaine de la fonction. Cela est possible en utilisant des idées de quasi Monte-Carlo (voir

notamment [Niederreiter, 1978]) ou, autrement dit, en divisant l’espace en n strates de diamètre

minimal, contenant chacune un point tiré aléatoirement.

Il ne faut toutefois pas oublier que même dans ce cas, s’adapter à la forme de la fonction

reste important pour optimiser la vitesse d’approximation. Nous nous sommes donc attelés à la

tâche de mélanger deux ingrédients essentiels à la bonne intégration de notre fonction régulière

: quasi Monte-Carlo et adaptation.

Nous avons tout d’abord déterminé, en fonction du gradient de la fonction, quelle est la

meilleure stratification oracle de l’espace en petits hypercubes de taille hétérogène. Si nous

n’imposons pas une forme à notre classe de stratification, alors nous devons nous comparer

aussi à des stratifications suivant les lignes de niveau. A notre sens, le problème de trouver de

bonnes lignes de niveau d’une fonction est nettement plus dur que celui de calculer son intégrale.

Par ailleurs, la classe des stratifications en petits hypercubes arbitraires est déjà vaste. Nous

exhibons une borne inférieure asymptotique sur ce qu’une stratégie oracle peut faire de mieux,

en stratifiant en hypercubes arbitraires, pour ce problème.

2En fait, c’est ce travail qui, le premier, a présenté note borne inférieure minimax sur le problème de Monte-
Carlo stratifié, et donc établi la minimax optimalité de MC-UCB.
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1. RÉSUMÉ EN FRANÇAIS DE CETTE THÈSE

Ensuite, nous avons construit un algorithme, LMC-UCB, qui alloue en un temps fini les

échantillons quasiment aussi efficacement que cette stratégie oracle. Nous présentons ce travail

au Chapitre 7. A notre sens, borne inférieure aussi bien que stratégie quasi-optimale à distance

finie sont de nouveaux résultats. Il est toutefois à noter que nous ne prouvons pas, et ne pensons

d’ailleurs pas, que cette stratégie est minimax-optimale en terme de pseudo-regret, comme celle

présentée à la Subsection précédente.

1.1.6 Toward optimal stratification for stratified Monte-Carlo integration

Au cours de la Subsection 1.1.4, nous avons introduit une méthode pour choisir de façon

minimax-optimale la stratification de l’espace. Nous avons donc démontré qu’il n’était pas

possible de faire mieux de façon simultanée sur toutes les fonctions bruitées α−Hölder. Mais

nous n’avons pas exclu la possibilité d’un algorithme plus performant dans certains cas. Au

cours du quatrième et dernier de nos travaux sur Monte-Carlo, nous nous sommes posé la ques-

tion de la sélection, dans une vaste classe de partitions, de la meilleure partition, ou meilleure

dépend ici de la fonction à intégrer elle-même. En d’autres termes, nous voulons adapter la par-

tition elle-même, aussi bien que l’allocation, à la fonction. Ce travail, intitulé “Toward optimal

stratification for stratified Monte-Carlo integration”, est commun avec Rémi Munos.

Nous avons choisi comme classe de partitions un partitionnement hiérarchique de l’espace.

Nous avons fourni deux algorithmes, Deep-MC-UCB, et MC-ULCB, dont l’objectif est donc de

faire “presque“ (à une constante prêt) aussi bien que MC-UCB sur la meilleure partition pour

la fonction qu’ils essaient d’intégrer. Le premier, Deep-MC-UCB, est relativement simple et

est capable de faire aussi bien que MC-UCB, à une constante prêt sur la meilleure partition

de profondeur homogène. Le second, MC-ULCB, est plus tortueux, mais atteint notre objectif

de, simultanément, sélectionner la meilleure partition, et de réaliser la meilleure allocation des

ressources sur cette partition.

Nous pensons que ce résultat est nouveau en son genre car nous utilisons de façon extensive,

pour le démontrer, des bornes à distance finie : elles sont essentielles pour savoir où raffiner la

partition avec un budget limité.

Pour conclure ce travail sur nos travaux en Monte-Carlo il ne faut pas oublier de mention-

ner que beaucoup de questions restent ouvertes, notamment celle, très intéressante, de bornes

inférieures dépendant de la fonction pour le regret de MC-UCB. Cela nous permettrait de

réfléchir à un algorithme optimal en ce sens, et donc d’aller plus loin dans la compréhension

du partitionnement adaptatif de l’espace.

1.2 Compressed Sensing

Je vais maintenant parler du second domaine auquel je me suis intéressée pendant ma thèse : le

Compressed Sensing (connu sous de multiples autres noms). Ce domaine a connu une explosion

récemment à tous les niveaux, aussi bien en ce qui est des contributions théoriques que du
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côté des applications. Ce qui est particulièrement intéressant avec le Compressed Sensing est

qu’il repose sur des domaines extrêmement variés, et les lie entre eux : le traitement du signal,

l’optimisation, la sélection de modèle, les statistiques et probabilités, la théorie des groupes...

1.2.1 Compressed Sensing : L’échantillonnage optimal en grande dimension

Le cadre dans lequel se situe ce champs de recherche est toutefois assez simple : il s’agit de celui

de la régression linéaire, à cela près que la dimension d de l’espace du régresseur est supposée

être très grande, bien plus grande que le nombre n d’observations. On observe n combinaisons

linéaires bruitées du signal/régresseur, c’est à dire

Y = Xα+ ε,

où Y est le vector n−dimensionnel d’observations, α est le régresseur/signal en dimension d, et

X est la matrice d’observations (qui précise quelles sont les combinaisons linéaires du signal qui

sont observées), et ε est le bruit.

Il n’est du coup plus possible d’utiliser les techniques usuelles, comme les moindres carrés.

Et il est par ailleurs clair qu’en toute généralité, il n’est pas possible de construire un estimateur

ayant une ”bonne“ vitesse de convergence, car quoi qu’il en soit, l’erreur en norme 2 commise

sur l’estimateur est bornée inférieurement, pour au moins un problème, par O(
√

d
n) (et d� n)

car cette vitesse est minimax-optimale sur la classe de tous les problèmes.

Il est nécessaire par conséquent de restreindre l’espace des solutions. Une hypothèse par-

ticulièrement adéquate pour de nombreuses réalités est celle de sparsité : on suppose que le

signal/régresseur α, de dimension d, est en fait nul quasiment partout sauf en S coordonnées.

Cela étant, sous certaines conditions sur la matrice X, le vecteur α est bien identifié (voir [Tao,

2003] par exemple). Toutefois, comme identifié ne signifie pas forcément (et justement pas dans

ce cas là) identifiable en pratique, il est nécessaire de restreindre encore plus la classe des matri-

ces X acceptables afin qu’un bon estimateur de α soit donné en résolvant un problème convexe

et donc facile (voir [Candès et al., 2004]).

Tout cela est expliqué bien plus en détail au cours du Chapitre 9, dédié aux grands résultats

du Compressed Sensing. Pour une étude bien plus complète et précise, le lecteur peut également

se reporter au livre [Fornasier and Rauhut, to appear]. Ce domaine est le pendant ”grande

dimension“ de l’échantillonnage optimal. En effet, en très grande dimension, il faut penser

l’échantillonnage différemment afin de parvenir à des résultats intéressants. L’idée derrière le

Compressed Sensing est radicalement différente de celle qui domine en bandit et qui est l’idée

d’essayer d’apprendre en s’adaptant. Pour réussir en grande dimension, il faut littéralement

capturer l’information en construisant une sorte de ”grille“ (par exemple la base de Fourier)

dans toutes les directions de l’espace : chaque mesure donne de l’informations sur toutes les

coordonnées de α à la fois.

Ce qui m’a donc plus particulièrement intéressé au cours de cette thèse, toujours dans ma

problématique d’échantillonnage optimal, est de comprendre comment construire, dans différents
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1. RÉSUMÉ EN FRANÇAIS DE CETTE THÈSE

cas de figure, cette ”grille”. J’ai à vrai dire davantage appris sur ces thématiques que je n’ai

contribué, mais nous avons, avec mes co-auteurs, publié deux articles concernant le Compressed

Sensing. Le premier décrit une façon originale d’échantillonner l’espace quand on veut recon-

struire une fonction sparse sur une base de fonctions donnée. Le second mélange des idées de

Compressed Sensing et de Bandits, et, en prenant le meilleur des deux, propose une solution au

difficile problème qu’est le bandit linéaire en grande dimension. Il est à noter que résoudre ce

problème permet, entre autres, de rendre efficace la descente de gradient en très grande dimen-

sion quand le gradient est sparse (par exemple quand une fonction d’un très grand nombre de

variables ne dépend en réalité que d’un très petit nombre d’entre elles).

1.2.2 Sparse Recovery with Brownian Sensing

Au cours du Chapitre 10, je présente un travail commun que nous avons effectué avec Odalric

Ambrym Maillard et Rémi Munos, et qui s’intitule “Sparse Recovery with Brownian Sensing”.

Nous l’avons publié lors de la Conférence “Neural Information Processing Systems”, en 2011

(voir Carpentier et al. [2011b]).

Holger Rauhut, dans son livre [Rauhut, 2010], présente des résultats pour le problème

d’échantillonner une fonction sparse sur une base fonctionnelle bornée et orthonormale. Il

démontre que si on échantillonne les points uniformément et aléatoirement dans le domaine de

définition de la fonction, alors avec forte probabilité, en résolvant un problème d’optimisation

convexe, on trouve un estimateur qui est seulement à O( ||ε||2√
n

) du vrai paramètre sparse α.

Toutefois cela ne fonctionne que si la base fonctionnelle est bornée et orthonormale.

Nous nous sommes posé la question de la possibilité d’étendre ce résultat à des bases plus

générales. Pour ce faire, nous avons tout d’abord remarqué que, pour que les échantillons de la

fonction, observés dans une base, soient informatif, il faut que cette base d’observation soit très

incohérente avec la base dans laquelle la fonction est sparse. Ici, incohérent signifie grossièrement

que des vecteurs “pointus” dans une des deux bases seront forcément “plats” dans l’autre, ou

encore que le plus grand produit scalaire entre deux membres de ces deux bases est petit.

L’intuition derrière ce besoin d’incohérence est qu’échantillonner dans une base très incohérente

avec la base pour laquelle le vecteur est sparse est informatif pour toutes les coordonnées de la

base pour laquelle le vecteur est sparse.

Nous avons ensuite remarqué qu’il y a une base dans laquelle toutes les bases sont incohérentes

: la base formée par des trajectoires Browniennes (si, bien sur, les autres bases ne sont pas

corrélées à ces trajectoires). Il est donc intéressant d’observer, au lieu de la fonction elle-même

en un point, la convolée de cette fonction avec des mouvements Browniens. Par ailleurs, il est

possible, étant donné quelques échantillons de la fonction, d’approximer la convolution avec les

trajectoires Browniennes. En faisant cela et en résolvant un problème convexe d’optimisation,

on peut donc estimer le paramêtre sparse α qui détermine le fonction. Le fait que l’on approxime

la convolution avec des trajectoires Browniennes est la raison pour laquelle nous avons choisi le

nom Brownian Sensing.
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Nous proposons également dans cet article une façon de traiter le cas où la fonction est

définie dans un espace de grande dimension : il faut échantillonner uniquement sur une courbe

bien choisie. Nous proposons des exemples concrets de courbe.

Nous proposons des bornes théoriques, pour le cas orthonormal du même ordre que celles

présentées dans [Rauhut, 2010]. Elles sont aussi valables pour des bases arbitrairement non-

orthonormales, mais se dégradent avec la non-orthonormalité de la base. Nous pensons que, du

moins à l’époque de leur publication, ces résultats étaient nouveaux. Le détail de cet article est

fourni au Chapitre 10.

1.2.3 Bandit Theory meets Compressed Sensing for high dimensional linear

bandit

Finalement, dans le Chapitre 11, je présente un article de Rémi Munos et moi-même, intitulé

“Bandit Theory meets Compressed Sensing for high dimensional linear bandit”. Nous l’avons

publié lors de la conférence Artificial Intelligence and Statistics en 2012.

Ce papier était important pour moi car il me permet de lier les deux domaines sur lesquels

j’ai travaillé pendant ma thèse. Je pense toutefois qu’il y a beaucoup de travail à faire dans

ce domaine. L’idée de ce travail est de combiner les idées de Compressed Sensing et de Ban-

dits pour des problèmes en grande dimension. Les idées de Compressed Sensing permettent

d’échantillonner efficacement pour localiser l’information. Une fois cela fait, les Bandits nous

disent comment s’adapter à cette information pour mieux l’exploiter.

Nous prouvons des bornes théoriques pour le bandit linéaire en grande dimension, qui sont,

à un logarithme de la dimension prêt, les mêmes que celles du bandit linéaires qui connâıtrait

le support du vecteur sparse. Nous expliquons ensuite pourquoi ce problème peut être utilisé

pour penser la descente de gradient en grande dimension quand le gradient est sparse.

Conclusion

Ainsi, j’ai réuni pour cette dissertation les contributions que nous avons produites avec mes

co-auteurs pendant les trois ans qu’ont duré ma thèse. Je pense que, vues sous l’éclairage de

l’échantillonnage optimal, elles forment une suite cohérente.

Je n’ai toutefois pas inclus tous les travaux que j’ai fait sous la supervision de Rémi pendant

cette thèse. Nous avons aussi travaillé, avec Johan Fruitet et Maureen Clerc, sur le thème

des interfaces cerveau-machine. L’objectif de ce travail est d’utiliser des techniques de Bandit

pour accélérer les interactions entre humains et ordinateurs. Nous avons rendu publique une

version préliminaire de notre article “Sélection automatique de tache moteur via un algorithme

de bandit pour un bouton contrôlé par le cerveau”3 (voir Fruitet et al. [2011], l’article a été

accepté à NIPS 2012).

3“Automatic motor task selection via a bandit algorithm for a brain-controlled button”en Anglais.
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J’espère que le présent document sera facilement lisible et qu’il intéressera le lecteur autant

que ce sujet m’a moi-même intéressé.
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Chapter 2

Introduction

During my PhD I had the chance to learn and work under the supervision of my advisor Rémi

Munos in two fields that are of particular interest to me: Bandit Theory and Compressed

Sensing. While studying these domains I came to the conclusion that they are connected if

one looks at them from the perspective of optimal sampling. Both fields are concerned with

strategies which aim to sample efficiently.

Figure 2.1: Domains that I worked on during my PhD.

In the following I explain some details of and similarities between my fields of interest.
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2. INTRODUCTION

Adaptive sampling:

Underlying any statistical or machine learning study, there is data. The objective of a prac-

titioner consists in performing operations on the dataset, which will vary depending on his

objectives, in order to output a result. The work of a statistician is to prove that, under cer-

tain conditions on the data structure, the obtained result is interesting, that is to say that it is

relevant and well-behaved. This is what the two fundamental theorems in statistics, the Law of

Large Number and the Central Limit Theorem, are all about.

The data is crucial, but luckily there are many ways to acquire it. The first and most popular

way is to collect it all at once, and receive it as a block. The set of techniques that refer to

Learning on such data are called batch learning. Most works in statistics and machine learning

are concerned with this setting. There are however many problems where it is relevant to consider

other ways to acquire data. In online learning, data comes in a stream to the practitioner,

either naturally or by choice: for instance meteorological data, or very large datasets which it

is unrealistic to expect to arrive in one block.

In an online learning context, it often makes sense to use information from previously gath-

ered data to make better sample choices in the future (depending on the objective). I refer to

the collection of such sampling methods as adaptive sampling. This is the focus of my thesis.

Depending on the practitioner’s objective, on the nature of the feedback, on the topology of the

data domain, etc., there are infinitely many possible variations on this setting, in many of which

freedom to adapt the dataset to the problem could be a true advantage (by freedom to adapt,

what I really mean is the possibility, up to a certain extent, to choose where in the domain to

sample).

Although there are countless possibilities for casting interesting problems in this setting, I

believe that there is a fundamental parameter that determines the type of methodology that

ought to be used for solving a given problem. This parameter is the dimension of the problem.

On the one hand, if the dimension of the domain is not too large, then it is probably a good

idea to adapt the samples to the problem sequentially1. To some extent it is possible to learn

the features of the problem from a small number of samples, as there are far fewer actions than

the actual number of times the domain gets sampled. On the other hand, if the dimension of

the domain is of very large, then it is probably more difficult to adapt to the specific shape of

the problem. It is however crucial to carefully allocate the samples, and to do that in the most

informative way possible. Indeed, as the dimension is high, no sample should be wasted.

The efficient techniques for these two settings are actually very different but complementary.

The focus during my PhD was to understand the possibilities and limitations in these two cases.

My personal preference was to study very simple instances of these two settings. It has given

me a better understanding of what is possible in terms of sampling, what are the efficient ways

to sample, and, finally, what are the fundamental differences and similarities between these two

settings.

1This is true at least when the data collected from the system have a certain form of stationarity.
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Low dimension: Bandit Theory.

I first describe my work on Bandit Theory that corresponds to the low-dimensional aspect

of adaptive sampling. It is detailed in Part I of this dissertation. Bandit problems are simple

settings for formalizing exploration/exploitation dilemmas in low-dimensional adaptive sampling

problems, i.e. where one has to take actions in a random environment to simultaneously learn

a model and meet an objective. I first give, in Chapter 3, a short review of results concerning

Bandit Theory that are particularly relevant and inspirational for the contributions of this

Thesis. This allows me to draw some pointers to the vast and interesting literature of Bandit.

I then present the contributions that my co-authors and I produced during these 3 years of

my PhD, on the topic of Bandits. All the works in this Chapter are organized in chronological

order, as in this case chronological is also the most logical order for presenting this work.

The first work “Upper Confidence Bounds Algorithms for Active Learning in Multi-Armed

Bandits”, presented in Chapter 4, is on adaptive sampling for active learning. It is more easily

understandable when explained in the context of histogram regression, although the formaliza-

tion in Chapter 4 is more general than that. In a nutshell, the objective is to sample the domain

of the function in order to output the best histogram on this partition in an uniform sense given

a partition of the domain. We provide finite-time regret bounds for this problem, and improve

on existing results, that is to say Antos et al. [2010]. In the Gaussian case the improvement is

much more pronounced. We also provide an heuristic on why the bounds for this problem could

depend on the shape of the function in the strata of the partition. This is a joint work with

Alessandro Lazaric, Mohammad Ghavamzadeh, Rémi Munos and Peter Auer. It was published

in the proceedings of Algorithmic Learning Theory in 2011 (see Carpentier et al. [2011a]).

The next four works concern adaptive sampling for stratified Monte-Carlo. It is a coherent

block of work, that treats complementary aspects of the problem.

The first work of this block, “Finite time analysis of stratified sampling for Monte Carlo”

is about performing stratified sampling Monte-Carlo (for integrating a function) using bandit

ideas. It is a joint work with Rémi Munos, and a first version was published in the proceedings

of Advances in Neural Information Processing Systems in 2011 (see Carpentier and Munos

[2011a]). A longer version of this paper, containing many important extensions, is a joint work

with Rémi Munos and András Antos, and is presented in Chapter 5. In this version, we provide

an efficient algorithm for the problem and prove a “fast” problem dependent, and a slower

problem independent regret2 bound, which is a new result for this problem. We also prove for

this problem a minimax lower-bound, which to the best of my knowledge has not been done.

Additionally, as a corollary on the regret bound, our algorithm is asymptotically optimal for

a careful choice of the parameter. Most of the previous work in this setting, like Etoré and

Jourdain [2010], prove asymptotic optimality of algorithms: for this problem, it is however very

important to have finite-time bounds as the problem is mainly motivated by computational

issues. The work of Grover [2009] provides only problem dependent finite-time bound and no

2The regret is a measure on how much we deviate from the optimal “oracle” strategy.
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problem independent bound. The results are not in terms of the mean squared error of the

estimator but in terms of a proxy on this quantity: it is thus not proven that the algorithm

in Grover [2009] is asymptotically optimal.

This work is the foundation on which all the three other works on stratified Monte-Carlo

that I included in this PhD are built. The three other papers on this topic are on how to stratify

the domain of the function in an efficient way. We were inspired by ideas in [Etoré et al., 2011],

in which the authors notably distinguishes different behaviors of the estimate depending on

whether the samples collected from the function are noisy or not3.

The second work on stratified Sampling Monte-Carlo, “Minimax Number of Strata for Online

Stratified Sampling given Noisy Samples”, is a joint work with Rémi Munos and we present it

in Chapter 6. The objective of this work is to determine what is the optimal number of strata

into which it is minimax optimal to divide the domain on the class of noisy α−Holder functions.

It was originally in this version that the minimax lower-bound for the problem of stratified

Monte-Carlo was first presented. We also prove that with this number of strata, the estimate

is almost as efficient up to a negligible term, as the best “oracle” estimate on the best possible

partition. Providing a way to stratify the domain in a minimax optimal way on the class of

α−Hölder continuous functions is a new result to the best of our knowledge.

The third work on optimal sampling strategies for Monte-Carlo, “Adaptive Stratified Sam-

pling for Monte-Carlo integration of Differentiable functions”, is also a joint work with Rémi

Munos and we present it in Chapter 7. This article proposes an innovative way to mix adaptive

sampling and quasi Monte-Carlo techniques for estimating the integral of a differentiable func-

tion. We first provide an asymptotic problem dependent lower bound on what an oracle strategy

can achieve at best on the best partition in small hyper-cubes. We then provide an algorithm

that achieves, by mixing ideas from quasi Monte-Carlo and from bandit theory, a regret with

respect to the asymptotic problem dependent lower bound that is negligible when compared

to n1+2/d where d is the dimension of the domain on which the integration is performed4. We

believe that both the lower bound and the algorithm are new in this field.

Finally, the fourth and last work on this topic, “Toward Optimal Stratification for Stratified

Monte-Carlo Integration”, proposes algorithms whose aim is to fully adapt the partition of the

space, and select the “best” partition of the space. We managed to build an algorithm that

achieves a regret that is of the same order as the regret of MC-UCB launched on the best

partition of a hierarchical partitioning of the space. This is a joint work with Rémi Munos and

we present it in Chapter 8.

3In [Etoré et al., 2011], they in fact do not distinguish on the presence/absence of noise but on whether the
stratification is on the whole domain of the function, or only on a vectorial subspace of this domain. These two
notions are however essentially equivalent.

4And note that n1+2/d is also the rate of the asymptotic problem dependent lower bound for this problem.
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High dimension: Compressed Sensing.

As announced previously, the other aspect of adaptive sampling that has been studied in this

dissertation is sampling in very high dimensional spaces. There were recently some very inter-

esting results concerning the unintuitive, yet real possibility of perfectly sampling and recovering

an object of very high dimension with only a few, well-chosen, measurements. More precisely,

I have been very interested in Compressed Sensing techniques, and above all on how to sample

in Compressed Sensing.

In Chapter 9, I review some results of Compressed Sensing Theory, with an emphasis on

how to sample in very high dimension. I thus focus in particular on the Uniform Uncertainty

Principle, and the quadratic bottleneck for non-prime dimensional spaces. I also review how it

has been proposed to use randomness to overcome this problem.

I then present in Chapter 10 a joint work with Odalric Ambrym Maillard and Rémi Munos,

“Sparse Recovery with Brownian Sensing”. We published it in the proceedings of Neural In-

formation Processing Systems, in 2011 (see Carpentier et al. [2011b]). This paper is about

functional regression in very high dimension and provides an original deterministic sampling

technique for which if the sampled function is sparse on a given basis, one will recover the

function with very few measurements. The aim of this work is to extend the results of Rauhut

[2010], who proves that when the basis is orthonormal and bounded, then sampling randomly

(according to the measure for which the basis is orthonormal) in the domain is an efficient sam-

pling strategy for recovering the function with very few measurements. The idea of our work is

to approximate the convolution of the function with Brownian motions to force the regression

matrix to have a property that is close to RIP. We are able to show some bound on the approx-

imation error of the sparse parameter for arbitrarily non-orthonormal basis, which is new to the

best of my knowledge.

Finally, I present in Chapter 11 the last contribution I include in this dissertation, “Bandit

Theory meets Compressed Sensing for high dimensional linear bandit”. It is a joint work with

Rémi Munos and we published it in the proceedings of Artificial Intelligence and Statistics in

2012 (see [Carpentier and Munos, 2012a]). In this paper, we combine ideas from Compressed

Sensing and Bandit Theory for minimizing a function in very high dimension, when its gradient

is sparse. The initial motivation was to find a first combination of these two very complementary

approaches, and for me to draw some links between these two parts of my PhD.

Last word before starting

I did not have room for including all the work I did under Rémi’s supervision. We did also

some work with Joan Fruitet and Maureen Clerc on the topic of Brain Computer Interface.

Working on this topic has allowed me to stay somewhat close to applications. The objective of

this work is to apply Active Learning techniques to facilitate the interactions between humans

and machines. A preliminary version of our paper “Automatic motor task selection via a bandit
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2. INTRODUCTION

algorithm for a brain-controlled button” Fruitet et al. [2011] is available as a Technical Report.

I hope that I have been able to communicate through this document some of the enthusiasm

I had while learning and thinking on Bandit Theory and Compressed Sensing.
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Bandit Theory
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Chapter 3

The Bandit Setting

Introduction

In this Chapter, we remind quite briefly some elements of Bandit Theory. This PhD is mainly

focused on Bandit Theory, and we believe it is important to be able to clearly situate the context

of the works we are going to present.

What we present in the following of this Chapter is however not a classically “balanced”

exposition of the bandit setting: indeed, we focus on some extensions of this setting rather

than on the historical, classic, cumulative bandit setting. This choice is motivated by the

contributions of this Dissertation. We focus more on how bandits can be used to model the

needs of adaptive sampling, and detail in particular two interesting examples which are active

learning and Monte-Carlo integration.

We however remind in the first Section quickly the historical bandit setting, as it is a very

well understood and deeply studied setting. There are some very nice results and ideas that

have been developed for this setting, and they were quite inspirational for this dissertation.
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3. THE BANDIT SETTING

3.1 The historical Bandit Setting

In this Section, we state the historical cumulative bandit setting: it is a simple setting for

decision making in an uncertain environment.

The very graphical name of Bandit does not refer to the Dalton or other crime geniuses, but

originally to a Casino slot machine. The idea behind this subtle metaphor is the following. In

a Casino, a player faces different slot machines. Some of these machines are “better” than the

others, in the sense that they output more money, and they have also various characteristics.

If the player is normally venal, he will try to win as much money as possible: this is the

historical cumulative bandit setting. But depending on his objectives in life in general and

casino in particular, he can have many other various objectives. In order to do so, he disposes

of an amount of money that depends on his wealthiness, and also on his level of addiction to

gambling. Note that each time he plays on a machine, he only observes what he wins on this

machine (and not what he would have obtained, had he played any other arm), so he only

observes partial feedback.

Very importantly, and this is a specificity of bandit setting in particular and reinforcement

learning in general, his choice of action, i.e. of slot machine, determines his payoff but also the

information he receives.

Assume that the player is not a mechanical genius: unluckily, he has no idea of the underlying

mechanism of the slot machines. He only observes their output, and no additional context as

for instance the fact that all the small red lights are lighten, or that the machine is half broken.

He has no context information, and this is the particularity of bandit setting when compared

to reinforcement learning. This is why the bandit setting is the simplest setting for decision

making in an uncertain environment, or reinforcement learning.

In the course of this Section, we precisely state this setting, and remind some well-known

algorithms and results. We then provide some pointers on important extensions of this setting.

I used a large amount of material to write this overview. It was in particular very helpful to read

the excellent and more complete surveys in the PhD Dissertations [Bubeck, 2010] and [Maillard,

2011].

3.1.1 The classical bandit setting: cumulative regret

The stochastic multi-armed bandit was first introduced in [Robbins, 1952]. More precisely, the

K−armed bandit setting can be formulated as a repeated game as follows. Assume that there

is a set of arms indexed by {1, . . . ,K}. Each of these arms corresponds to a a distribution νk

of mean µk. The player (also noted forecaster, learner,...) chooses at each time t ≥ 1 an action,

i.e. pulls an arm in kt ∈ {1, . . . ,K}. She then observes an independent reward Yt ∼ νkt . It is

very important to note that she does not observe the rewards of the other arms. Assume that

the process is repeated n times (with n either available or unavailable from the beginning of the
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Unknown parameters: parameter (ν1, . . . , νK)
Known parameters: K and n
for t = 1, . . . , n do

The player chooses kt ∈ {1, . . .K}
The environment outputs Yt ∼ νkt independently from the past observations and
actions

end for
Output:

∑n
t=1 Yt

Figure 3.1: The stochastic multi-armed bandit game.

game, in which case the game is called anytime). Then the objective is to maximize the sum

of rewards up to time n, that is to say
∑n

t=1 Yt. The full process of the game is summarized in

Figure 3.1.

We define the cumulative pseudo-regret, as

Rn = E
[
n max
k∈{1,...,K}

µk −
n∑
t=1

Yt

]
,

where the expectation is taken over the random pulls of the rewards. An important remark is

the following. If we denote by (Ft)1≤t≤n the filtration associated to (X1, . . . , Xn) where Xt is

the vector of samples that would be collected from all arms at time t by an oracle player that

has access to all the rewards, then kt is Ft measurable: indeed, the player has no access to the

future rewards.

The objective of the player in this setting is to design a strategy that minimizes Rn. If

the player had access to the distributions (νk)k≤K , she would always play the optimal arm

k∗ = arg maxk≤K µk. But as the distributions are unknown, she has to learn the distributions

(νk)k≤K to have an idea of what the best arm is. In order to do so, she should pull a certain

number of time also sub-optimal arms and perform exploration. An effective strategy should

find a good trade-off between exploration and exploitation.

The historical motivation of this setting comes from [Thompson, 1933], and is about medical

trial. The objective is to select which drug to administrate to a patient in order to cure him.

Since then, there are many motivating examples for this setting. For instance, on could use it to

model strategies for ads placement on a web-page, packets routing, brain computer interface...

3.1.2 Lower and upper bounds

Lower bounds A first interesting question to ask is what can be done at best. Indeed, as the

distributions are unknown, even an optimal algorithm can not achieve a pseudo-regret of 0. We

state the following lower bounds for the pseudo-regret.

Theorem 1 (Lower bounds for cumulative stochastic bandits) We recall the problem de-

pendent and a problem independent lower-bounds.
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3. THE BANDIT SETTING

• Problem dependent lower bound Let us consider a consistent strategy, i.e. such that

for any stochastic bandit, any sub-optimal arm k, any budget n and any α > 0, there is

E(Tn(k)) = o(nα). Then for any stochastic bandit with Bernouilli distribution of parameter

smaller than 1, the following holds true:

lim inf
n→+∞

Rn
log(n)

≥
K∑
k=1

µk∗ − µk
KL(B(µk),B(µk∗))

,

where KL(., .) is the Kullback-Leibler divergence and B(p) is a Bernouilli distribution of

parameter p.

• Minimax lower bound Let sup represent the supremum over all stochastic bandits and

inf the infimum taken over all strategies, then the following problem independent (minimax)

bound holds true:

inf supRn ≥
1

20

√
nK.

The problem dependent lower bound is adapted from [Lai and Robbins, 1985]. A more general

version is to be found in [Burnetas and Katehakis, 1996], and holds for known finite-dimensional

parametric classes of distribution (and not only Bernouilli). The minimax lower bound is ex-

tracted from [Auer et al., 2003].

The problem independent lower bound roughly suggests us that an efficient consistent strat-

egy should sample the sub-optimal arms approximately µk∗−µk
KL(B(µk),B(µk∗ )) log(n) times with prob-

ability higher than 1− 1
n . This way, the expected cumulative pseudo-regret is also logarithmic,

and the closer an arm is to the optimal arm, the more often it is sampled so that it is possible

to distinguish it from the optimal arm. However, when there is 1 arm whose mean is “very

close but not too close” to the optimal arm, then the pseudo-regret is not logarithmic anymore,

but in
√
n, as displayed in the problem independent lower-bound. The idea is that if there is a

sub-optimal arm whose means is of order µk∗ −
√

log(n)
n , it is impossible to distinguish it from

the best arm with probability of order 1− 1
n without sampling it a number of time of order n.

As the gap between the mean of the best arm and the mean of this sub-optimal arms is of order
1√
n

, then the minimax bound on the pseudo-regret holds.

Upper bounds There are many algorithms that have been proposed in order to solve the

stochastic cumulative bandit problem. Without stating precisely neither the algorithms nor the

associated Theorems, we distinguish three main steps in the building of efficient strategies.

• Asymptotically optimal strategies: The first historical algorithms are asymptotically consis-

tent. The paper [Lai and Robbins, 1985] provides an algorithm for Bernouilli distributions

that matches the problem dependent lower-bound in Theorem 1 (which they also stated).

This result has been extended in an algorithm provided in Burnetas and Katehakis [1996]

to a specific class of finite-dimensional parametric distributions. Finally, in the recent
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Known parameters: The distributions are in [0, 1]
Initialization: Play each arm once
for t = K + 1, . . . , n do

Compute for all arm k Bk,t = µ̂k,t +
√

2 log(nK)
Tk,t

Play arm kt = arg maxk Bk,t and observe Yt ∼ νkt
end for
Output:

∑n
t=1 Yt

Figure 3.2: Algorithm UCB.

paper [Honda and Takemura, 2010], the authors extend once again this result to arbitrary

distributions with finite support.

• Finite time strategies: The previous works are asymptotically optimal, but a very inter-

esting direction of research is to design efficient strategies that perform well even with

a finite budget. A very popular class of algorithms for doing that are based on Upper

Confidence Bounds on the mean of the arms. The first instance of those algorithms was

introduced in [Auer et al., 2002]. Although it does not match the lower bounds, its regret

is of same order log(n) when the arms have bouded-support distributions. We provide the

pseudo-code of this algorithm in Figure 3.2. An interesting variant of this algorithm has

been introduced in [Audibert et al., 2009b], and uses the empirical variance of the arms to

refine the Upper Confidence Bound on the means, and thus the regret of the algorithm .

• Finite time, optimal, strategies: A last, important question, concerns the possibility of

building algorithms which are optimal with a finite budget. In the paper [Audibert and

Bubeck, 2009], the author fill a first gap by providing a strategy that matches the minimax

lower-bound in Theorem 1 in finite-time when the arms have finite-support distributions.

And in the papers [Maillard et al., 2011] and [Garivier and Cappé, 2011] (published at the

same time), the authors provide finite-time bounds for algorithms that are asymptotically

optimal for problems with finite-support distributions.

3.1.3 Direct extensions of the classical bandit problem with cumulative regret

There are many popular and very interesting extensions of this setting. We provide a quick

overview of three extensions which are either particularly popular, or of particular interest for

the reading of this document.

Adversarial bandits: A first setting which is particularly popular, and which can be consid-

ered as the “twin” of the stochastic multi-armed bandit, is the adversarial setting. The difference

with the stochastic bandit setting is that the rewards received from the arms are not assumed to

be i.i.d. anymore and can be chosen by an adversary. The regret is assessed with respect to the

best constant strategy, i.e. the arm that has the highest sum of rewards. An efficient algorithm

is called Exp3 and was introduced in [Auer et al., 2003]. It constructs an exponentially weighted
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3. THE BANDIT SETTING

forecaster (introduced in [Littlestone and Warmuth, 1989] in the case of predication with expert

advice in full information) and adapts it to the specific case of bandit information. Unlike the

algorithms designed for stochastic bandits, this algorithm is randomized so that a malicious ad-

versary can not take advantage of it. It is, surprisingly, possible to prove that the pseudo-regret

of this strategy (assessed in terms of the best constant strategy for the rewards actually provided

by the adversary), even against the most malicious adversary, is of order
√
nK log(K) when the

rewards are bounded. This almost matches the minimax lower bound of stochastic multi-armed

bandits.

Linear bandits: Another setting which has been gaining much attention is the cumulative

linear bandit setting. Instead of considering a finite set of actions {1, . . . ,K}, one considers

a set A ⊂ Rd. The regret is measured according to the best action in this set. The problem

was introduced in [Awerbuch and Kleinberg, 2004] in the adversarial setting. The authors

in [Abernethy et al., 2008] and [Bartlett et al., 2008] propose efficient algorithms for solving this

problem in the adversarial setting, and achieve a regret in poly(d)
√
n log(n). In the stochastic

setting, the papers [Dani et al., 2008] and [Abbasi-Yadkori et al., 2011] propose efficient and

computationally tractable algorithms that achieve a regret of order d
√
n log(n). In the special

case of the set of action A being the unit ball, the authors of [Rusmevichientong and Tsitsiklis,

2008] prove that the regret is of order
√
dn log(n). An important specific case of this setting is

Combinatorial bandits (see e.g. [Audibert et al., 2011, 2012; Cesa-Bianchi and Lugosi, 2012]).

Bandits for simple regret (best arm identification): Finally, we think that it is important

to talk about an instance of bandits that does not have as objective the cumulative loss. We

present here stochastic bandits for simple regret minimization. Although it is not the same

setting as cumulative bandits, it is a good transition for the second Section. The objective of

the player in this setting is not to maximize the cumulative sum of rewards, but to, at the end

of the bandit game, output a prediction of recommendation for the best arm. Some ideas for

this setting have been formalized in [Maron and Moore, 1993] under the name of Hoeffding race

and precised in [Even-Dar et al., 2006]. These algorithms are very efficient if they can choose

when to stop, but their performances are limited if the budget is fixed. In the papers [Audibert

et al., 2010; Bubeck et al., 2009], the authors make a breakthrough in this domain by proposing

strategies that are efficient with a fixed budget n. The first of the two algorithms they propose,

namely UCB−A, re-uses the ideas of the upper confidence bound algorithms by adapting them

to the specific case of simple regret.

3.2 Adaptive allocation with partial feedback

There are several problems that can be modeled and better understood by seeing them through

bandit formalism. We consider here a large class of problems where the player wants to allocate

the samples according to proportions depending on the unknown distributions. In the specific
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case of best arm identification, which we rapidly evocate in the last Section, the objective is to

select the best arm. In order to have a good precision on the estimate of the best arm, it is

necessary to sample more often the arms that are close to the optimal arm. It is indeed more

likely to confuse these arms with the optimal one. As a consequence, the algorithm UCB-A

in [Audibert et al., 2010] aims at allocating the pulls to each arm k proportional to 1
(µk∗−µk)2

(as a consequence of Chernoff-Hoeffding bound on the deviations of random variables).

It is however not the only setting where it is interesting to allocate the samples to the arms

proportional to proportions depending on the unknown distributions (νk)k. In this Section, we

first describe this general setting, and then detail two examples of particular interest, namely

active learning and stratified Monte-Carlo integration.

3.2.1 Adaptive allocation with partial feedback

We consider a K-armed stochastic bandit: when a sample is collected at time t from an arm

k ≤ K, the player receives an independent observation Yt ∼ νk.
We first define the loss function as:

Lossn = Loss(X1, . . . , Xn).

For instance, in the case of cumulative bandits, Lossn =
∑n

t=1 Yt.

In many problems, if the number of samples collected from arm k at the end of the n rounds

of the algorithm, noted Tk,n, are deterministic, then the expectation of the loss depends only on

the number of pulls for each arms. We define a pseudo-loss function as:

Ln = L(T1, . . . , TK , (νk)k),

where L is such that when the (Tk,n)k are deterministic, then Ln = E[Lossn]. In the specific

case of cumulative stochastic bandit, if the (Tk,n)k are fixed, then we set Ln =
∑K

k=1 µkTk,n, and

Ln = E[
∑n

t=1 Yt] = E[Lossn]. In the case of cumulative bandit (the (Tk,n)k are not deterministic,

but depend on the samples), it also holds that E[Ln] = E[
∑n

t=1 Yt] = E[Lossn], but this is very

specific and comes from Wald’s identity1.

Assume that L is a strictly convex, continuous function on (T1, . . . , TK) ⊂ [0,+∞[K . The

problem

inf
(T1,...,TK)

L(T1, . . . , TK , (νk)k) (3.1)

s.t.

K∑
k=1

Tk,n = n and ∀k, Tk,n ≥ 0,

admits an unique solution and attains it because of the function is strictly convex on the compact

1As mentioned in Subsection 3.1.1, (kt)t≤n is adapted to the filtration (Ft)t≤n. From that, we deduce the
equality.
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3. THE BANDIT SETTING

simplex of constraints. Let us call (T ∗1 , . . . , T
∗
K) the arg of System 3.1. We refer to this allocation

as optimal allocation in the sequel. Let us also note L∗n the solution of System 3.1. The

expectation of this quantity is the smallest possible pseudo loss under a deterministic allocation

that can depend of the true unknown distribution. It is thus a very efficient allocation, and thus

a good point of comparison.

We can now define the notion of pseudo-regret in this context. As in the cumulative bandit

setting, it is the additional loss that we incur from not knowing the true distributions of the

arms. We note this pseudo-regret

Rn = Ln − L∗n. (3.2)

The objective is to minimize this pseudo-regret by allocating the number of samples to each arm

that is as close as possible to the optimal static allocations (T ∗1 , . . . , T
∗
K).

There are many instances where this very general formulation actually makes sense: for any

type of stochastic bandit earlier described, it holds. We are now going to precise two particular

examples of this setting, as they are very relevant to the sequel of this document.

3.2.2 Active learning

Setting: A problem which is interesting to model as a K−armed bandit is the problem of

active learning of the mean of distributions. Unlike in the cumulative bandit setting, the aim

is to learn with equal precision the mean of all arms of the bandit. We consider here the mean

squared error as the measure of precision.

For each arm k, we define the loss function is thus

Lossn,k =
(
µ̂k,n − µk

)2
,

where µ̂k,n is the classic empirical estimate of the mean of arm k, computed with Tk,n samples,

and outputted by the strategy at the end of the game.

In this case, the pseudo-loss for arm k is defined as

Ln,k =
σ2
k

Tk,n
,

where σ2
k is the variance of distribution νk

2. Note that if the Tk,n are deterministic, we indeed

have Ln,k = E[Lossn,k]. Unfortunately, if the Tk,n are random and depend on the samples, this

does not hold anymore.

We define the pseudo-loss as the maximum over k of each of these losses, that is to say

Ln = max
k

Ln,k,

2We assume throughout this document that it exists, as well as the mean. We often even make stronger
assumptions for the good functioning of the algorithms, e.g. that the νk are sub-Gaussian.
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Input: α
Initialization: Pull each arm twice
for t = 1, . . . do

Let λ̂k,t =
σ̂2
k,t∑K

i=1 σ̂
2
i,t

Let Ut = arg mink Tk,t

Let kt+1 =

{
Ut, if TUt,t < α

√
t+ 1

arg maxk
λ̂k,t
Tk,t

, otherwise

Pull kt+1 and observe the sample
end for
Output: Output (µ̂k,n)k

Figure 3.3: Pseudo code for algorithm GAFS-MAX.

For this pseudo-loss function, the solution of System 3.1 is to allocate the samples propor-

tionally to the (unknown) variances of the distributions of the arms. More precisely, the optimal

static allocation is T ∗k,n =
σ2
k∑K

i=1 σ
2
i

n. The resulting optimal pseudo-loss is L∗n =
∑K
i=1 σ

2
i

n . The

regret is thus defined as

Rn = Ln − L∗n.

The objective is to minimize this regret.

Existing results and algorithms: This problem is an instance of active learning problems

(see [Cohn et al., 1996]), and is very close to experimental design (see [Fedorov, 1972]). It has

first been formalized as a bandit problem in [Antos et al., 2010] (long version of [Antos et al.,

2008]).

The authors of [Antos et al., 2010] propose an algorithm called GAFS-MAX. This algorithm

is anytime, i.e. it does not need to know the time horizon. We describe it in Figure 3.3. In this

Figure, µ̂k,t = 1
Tk,t

∑Tk,t
u=1Xk,u is the empirical mean at time t, and σ̂k,t = 1

Tk,t

∑Tk,t
u=1

(
Xk,u−µ̂k,t

)2

is the empirical variance.

Assume that the horizon n is available to the algorithm. Then GAFS-MAX is equivalent to

an algorithm that pulls each arm α
√
n times, and then pulls the arms according to the empirical

proportions. The authors prove the following results for the algorithm.

Theorem 2 (Convergence rate of GAFS-MAX) Assume that the distributions of all arms

are in [0, 1]. For algorithm GAFS-MAX, the loss is bounded as

Lossn ≤ L∗n + Õ(n−3/2),

where Õ hides a term of order poly(log(n)) and displays an inverse dependency on mink
σ2
k∑
i σ

2
i

.

When reading the analysis of this bound, it appears that the quantity mink
σ2
k∑
i σ

2
i

appears

in the bound and plays a crucial role. The smaller this quantity, the harder the problem, as
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3. THE BANDIT SETTING

the more disparity there is between the arms. This explains why the bound displays an inverse

dependency in λmin = mink
σ2
k∑
i σ

2
i
.

Application to histogram regression: This setting can be used to model histogram regres-

sion for functions on a domain X ∈ Rd. Consider a measure ν over X. Assume that the domain

is partitioned in K strata Xk, and that all these strata are measurable. Assume also that for

any k, it is possible to sample according to νXk , i.e. the measure ν restricted to stratum Xk.

Consider a function f : X→ R.

The objective in histogram regression is to approximate the function f uniformly as well

as possible by a constant on each stratum Xk. If we choose to measure precision by the mean

squared error, then the loss defined for the bandit problem is the right quantity to minimize.

If it is possible to observe n samples, such that one can choose in which stratum to sample

uniformly, then the setting of histogram regression is exactly the same as the bandit problem

casted previously.

3.2.3 Monte-Carlo integration

Setting: We consider a K−armed bandit problem. We additionally assume that there is a

weight wk associated to each arm k. These weights are positive and such that
∑K

k=1wk = 1.

We are interested in learning as well as possible the weighted mean of the means of the

K−armed bandit. We consider here the mean squared error as the measure of precision.

The loss function is thus

Lossn = E[
(
µ̂n − µ

)2
],

where µ̂k,n =
∑K

k=1wkµ̂k,n is the weighted empirical estimate of the weighted mean µ =∑K
k=1wkµk.

In this case, the pseudo-loss is defined as

Ln =

K∑
k=1

w2
k

σ2
k

Tk,n
,

where σ2
k is the variance of distribution νk. Note that if the Tk,n are deterministic, we have

Ln = E[Lossn]. Unfortunately, if the Tk,n are random and depend on the samples, we do not

have anymore E[Ln] = E[Lossn], as for the active learning setting.

For this loss function, the solution of System 3.1 is to allocate the samples proportionally to

the (unknown) weighted standard deviations of the distributions of the arms. More precisely,

the optimal static allocation is T ∗k,n = wkσk∑K
i=1 wiσi

n. The resulting optimal pseudo-loss is L∗n =
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(∑K
i=1 wiσi

)2

n . The regret is thus defined as

Rn = Ln − L∗n.

The objective is to minimize this regret.

Relations with stratified Monte-Carlo integration: Consider a function f : X ∈ Rd → R.

Consider a measure ν over X. Assume that the domain is partitioned in K strata Xk, and that

all these strata are measurable. Assume also that for any k, it is possible to sample according to

νXk , i.e. the measure ν restricted to stratum Xk. We write wk = ν(Xk) the measure of stratum

Xk. We write µk = 1
wk

∫
Xk
f(x)dx the (rescaled) integral of the function on stratum Xk and

σ2
k = 1

wk

∫
Xk

(
f(x) − µk

)2
dx the (rescaled) mean squared deviations of the function f around

its mean in stratum Xk.

We dispose of a budget of n potentially noisy accesses to the function Assume that it is

possible to sample sequentially these points and to, at each time, choose in which stratum to

sample.

The objective of Monte-Carlo methods for integration is to estimate as precisely as possible

the integral of a function (see e.g. [Rubinstein and Kroese, 2008]). A classic criterion (when the

estimate is random, the randomness coming from the samples) is the mean squared error of the

variations of the empirical mean around the true mean. It is exactly the loss considered in the

bandit setting.

From this loss, we can immediately prove the superiority of stratified Monte-Carlo over crude

Monte-Carlo. Indeed, the loss of crude Monte-Carlo is

Lossn(cMC) =
K∑
k=1

wk
σ2
k

n
+

K∑
k=1

wk
(µk − µ)2

n
,

while the loss of uniform stratified Monte-Carlo, i.e. when sampling a number of points propor-

tional to the size of each stratum, is

Lossn(uM − C) =

K∑
k=1

wk
σ2
k

n
.

The variability that comes from the variability in the means of each stratum disappears, and

uniform stratified Monte-Carlo is always more or equally efficient that crude Monte-Carlo. Note

that uniform stratified Monte-Carlo can be performed without having any informations on the

function f . The optimal allocation defined in the last paragraph is even more efficient, as it is

the most efficient static allocation. It is intuitive too because it aims at putting more samples

in strata where there is a higher variability, and where it is thus more difficult to estimate the

mean. See [Glasserman, 2004] for more details.
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Figure 3.4: Left: Crude Monte-Carlo. Middle: Uniform stratified Monte-Carlo. Right: Stratified
Monte-Carlo with optimal allocation.

Input: α
Initialization: Pull each arm twice
for t = 1, . . . do

Let λ̂k,t =
wkσ̂k,t∑K
i=1 wiσ̂i,t

Let Ut = arg mink Tk,t

Let kt+1 =

{
Ut, if TUt,t < α

√
t+ 1

arg maxk
λ̂k,t
Tk,t

, otherwise

Pull kt+1 and observe the sample
end for
Output: Output µ̂n

Figure 3.5: Pseudo code for algorithm GAFS-WL.

Existing results and algorithms: This problem is an important challenge in financial engi-

neering, and has already been casted since a long time without the bandit formalism, for instance

in [Glasserman et al., 1999].

There are some very interesting papers on asymptotically optimal algorithms. In [Etoré and

Jourdain, 2010], the authors introduce SSAA, an algorithm which works by phases of exploration

and of exploitation. It samples uniformly in the strata during the exploration phases. Then it

exploits the informations collected during the exploitation phases, and samples in the strata

proportionally to the weighted empirical standard deviations. The authors prove that if the

exploration phase are asymptotically of infinite length, but still of negligible duration when

compared to the exploitation phases, then the algorithm SSAA is asymptotically optimal.

In [Etoré et al., 2011], the authors investigate the asymptotic behavior of the optimal static

estimate when the number of strata goes to infinity. They state two results with different rates,

depending on whether the stratification is operated in every direction of the space, or only in a

vectorial subspace of this space. They also propose an algorithm that stratifies adaptively the

space, but without providing a theoretical analysis for it.

The first finite-time analysis has been provided in [Grover, 2009]. The authors of this pa-

per propose an algorithm called GAFS-WL. This algorithm is similar in spirit to GAFS-MAX

introduced in Figure 3.3. We describe it in Figure 3.5.

Assume that the horizon n is available to the algorithm. Then GAFS-Wl is, as GAFS-MAX,
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equivalent to an algorithm that pulls each arm α
√
n times, and then pulls the arms according

to the empirical proportions. The authors prove the following results for the algorithm.

Theorem 3 (Convergence rate of GAFS-WL) Assume that the distributions of all arms

are in [0, 1]. For algorithm GAFS-WL, the pseudo-loss is bounded as

Ln ≤ L∗n + Õ(n−3/2),

where Õ hides a term of order poly(log(n)) and displays an inverse dependency on mink
wkσk∑
i wiσi

.

A very important fact is that the results provided in [Grover, 2009] provide a bound on the

pseudo-loss and not on the loss. As the author does not provide bridges between the two

quantities, the performance on the pseudo-loss can not be used as the loss, and for instance,

asymptotic optimality can not be established, as it concerns the convergence of the loss.

When reading the analysis of this bound, the quantity mink
wkσk∑
i wiσi

plays also a crucial role.

The smaller this quantity, the harder the problem, as the more disparity there is between the

arms. This explains why the bound displays an inverse dependency in λmin = mink
wkσk∑
i wiσi

.

Conclusion

This Chapter is a rapid overview of the world of bandits with a huge emphasize on the problems

of adaptive sampling. The presentation of the world of bandits is in no ways exhaustive. There

is a huge and highly interesting literature on this field, with many interesting variations on

the exposed settings. We also did not mention the generalization of bandit theory, which is

reinforcement learning. All these areas contain interesting challenges, and various applications.

The choice that we made in the presentation of bandit theory is motivated by the con-

tributions in bandits of this Thesis. We extend in the following chapters of the analysis of

Subsections 3.2.3 and 3.2.2. We propose new algorithms and analyses for both these settings.

In the second part of this PhD, we also provide an algorithm for solving a problem of stochas-

tic linear bandit in very high dimension, and this is why we recalled also the setting of linear

regression. We chose to place this work in the Compressed Sensing part of this dissertation and

not in the Bandit part, because it mixes ideas from Bandit Theory and Compressed Sensing,

and is to our minds more relevant for the field of Compressed Sensing, although it bridges these

two fields.
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Chapter 4

Upper-Confidence-Bound

Algorithms for Active Learning in

Multi-Armed Bandits

This Chapter is the product of a joint work with Alessandro Lazaric, Mohammad Ghavamzadeh,

Rémi Munos and Peter Auer. A short (not including proofs) version of it was published in the

Conference of Algorithmic Theory in 2011 (see [Carpentier et al., 2011a]).

In this work, we study the problem of estimating uniformly well the mean values of several

distributions given a finite budget of samples. If the variance of the distributions were known,

one could design an optimal sampling strategy by collecting a number of independent samples

per distribution that is proportional to their variance. However, in the more realistic case where

the distributions are not known in advance, one needs to design adaptive sampling strategies

in order to select which distribution to sample from according to the previously observed sam-

ples. We describe two strategies based on pulling the distributions a number of times that is

proportional to a high-probability upper-confidence-bound on their variance (built from previ-

ous observed samples) and report a finite-sample performance analysis on the excess estimation

error compared to the optimal allocation. We show that the performance of these allocation

strategies depends not only on the variances but also on the full shape of the distributions.
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4.1 Introduction

Consider a marketing problem where the objective is to estimate the potential impact of several

new products or services. A common approach to this problem is to design active online polling

systems, where at each time a product is presented (e.g., via a web banner on Internet) to

random customers from a population of interest, and feedbacks are collected (e.g., whether the

customer clicks on the ad or not) and used to estimate the average preference of all the products.

It is often the case that some products have a general consensus of opinion (low variance) while

others have a large variability (high variance). While in the former case very few votes would

be enough to have an accurate estimate of the value of the product, in the latter the system

should present the product to more customers in order to achieve the same accuracy. Since the

variability of the opinions for different products is not known in advance, the objective is to

design an active strategy that selects which product to display at each time step in order to

estimate the values of all the products uniformly well.

The problem of online polling can be seen as an online allocation problem with several

options, where the accuracy of the estimation of the quality of each option depends on the

quantity of the resources allocated to it and also on some (initially unknown) intrinsic variability

of the option. This general problem is closely related to the problems of active learning [Castro

et al., 2005; Cohn et al., 1996], sampling and Monte-Carlo methods [Etoré and Jourdain, 2010],

and optimal experimental design [Chaudhuri and Mykland, 1995; Fedorov, 1972]. A particular

instance of this problem is introduced in Antos et al. [2010] as an active learning problem in

the framework of stochastic multi-armed bandits. More precisely, the problem is modeled as a
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repeated game between a learner and a stochastic environment, defined by a set of K unknown

distributions {νk}Kk=1, where at each round t, the learner selects an action (or arm) kt and as

a consequence receives a random sample from νkt (independent of the past samples). Given

a total budget of n samples, the goal is to define an allocation strategy over arms so as to

estimate their expected values uniformly well. Note that if the variances {σ2
k}Kk=1 of the arms

were initially known, the optimal allocation strategy would be to sample the arms proportionally

to their variances, or more accurately, proportionally to λk = σ2
k/
∑

j σ
2
j . However, since the

distributions are initially unknown, the learner should follow an active allocation strategy which

adapts its behavior as samples are collected. The performance of this strategy is measured by its

regret (defined precisely by Equation 4.4) that is the difference between the maximal expected

quadratic estimation error of the algorithm and the maximal expected error of the optimal

allocation.

Antos et al. [2010] presented an algorithm, called GAFS-MAX, that allocates samples pro-

portionally to the empirical variances of the arms, while imposing that each arm should be

pulled at least
√
n times (to guarantee good estimation of the true variances), where n is the to-

tal budget of pulls. They proved that for large enough n, the regret of their algorithm scales with

Õ(n−3/2) and conjectured that this rate is optimal.1 However, the performance displays both

an implicit (in the condition for large enough n) and explicit (in the regret bound) dependency

on the inverse of the smallest optimal allocation proportion, i.e., λmin = mink λk. This suggests

that the algorithm is expected to have a poor performance whenever an arm has a very small

variance compared to the others. Whether this dependency is due to the analysis of GAFS-

MAX, to the specific class of algorithms, or to an intrinsic characteristic of the problem is an

interesting open question. One of the main objectives of this Chapter is to investigate this issue

and identify under which conditions this dependency can be avoided. Our main contributions

and findings are as follows:

• We introduce two new algorithms based on upper-confidence-bounds (UCB) on the vari-

ance.

• The first algorithm, called CH-AS, is based on Chernoff-Hoeffding’s bound, whose regret

has the rate Õ(n−3/2) and inverse dependency on λmin, similar to GAFS-MAX. The main

differences are: the bound for CH-AS holds for any n (and not only for large enough n),

multiplicative constants are made explicit, and finally, the proof is simpler and relies on

very simple tools.

• The second algorithm, called B-AS, uses an empirical Bernstein’s inequality, and has a

better performance (in terms of the number of pulls) in targeting the optimal allocation

strategy without any dependency on λmin. However, moving from the number of pulls to

the regret causes the inverse dependency on λmin to appear in the bound again. We show

1The notation un = Õ(vn) means that there exist C > 0 and α > 0 such that un ≤ C(logn)αvn for sufficiently
large n.
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that this might be due to specific shape of the distributions {νk}Kk=1 and derive a regret

bound independent of λmin for the case of Gaussian arms.

• We show empirically that while the performance of CH-AS depends on λmin in the case of

Gaussian arms, this dependence does not exist for B-AS and GAFS-MAX, as they perform

well in this case. This suggests that 1) it is not possible to remove λmin from the regret

bound of CH-AS, independent of the arms’ distributions, and 2) GAFS-MAX’s analysis

could be improved along the same line as the proof of B-AS for the Gaussian arms. We

also report experiments providing insights on the (somehow unexpected) fact that the

full shapes of the distributions, and not only their variances, impact the regret of these

algorithms.

4.2 Preliminaries

The allocation problem studied in this Chapter is formalized as the standard K-armed stochastic

bandit setting, where each arm k = 1, . . . ,K is characterized by a distribution νk with mean

µk and non–zero variance σ2
k > 0. At each round t ≥ 1, the learner (algorithm A) selects an

arm kt and receives a sample drawn from νkt independently of the past. The objective is to

estimate the mean values of all the arms uniformly well given a total budget of n pulls. An

adaptive algorithm defines its allocation strategy as a function of the samples observed in the

past (i.e., at time t, the selected arm kt is a function of all the observations up to time t − 1).

After n rounds and observing Tk,n =
∑n

t=1 I{k = kt} samples from each arm k, the algorithm

A returns the empirical estimates µ̂k,n =
1

Tk,n

Tk,n∑
t=1

Xk,t, where Xk,t denotes the sample received

when we pull arm k for the t-th time. The accuracy of the estimation of each arm k is measured

according to its expected squared estimation error, or loss

Lk,n = E(νi)i≤K(µk − µ̂k,n)2. (4.1)

The global performance or loss of A is defined as the worst loss of the arms

Ln(A) = max
1≤k≤K

Lk,n . (4.2)

If the variance of the arms were known in advance, one could design an optimal static

allocation (i.e., the number of pulls does not depend on the observed samples) by pulling the

arms proportionally to their variances. In the case of static allocation, if an arm k is pulled a

fixed number of times T ∗k,n, its loss is computed as2

Lk,n =
σ2
k

T ∗k,n
. (4.3)

2This equality does not hold when the number of pulls is random, e.g., in adaptive algorithms where the
strategy depends on the random observed samples.
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By choosing T ∗k,n so as to minimize Ln under the constraint that
∑K

k=1 T
∗
k,n = n, the optimal

static allocation strategy A∗ pulls each arm k (up to rounding effects) T ∗k,n =
σ2
kn∑K
i=1 σ

2
i

times, and

achieves a global performance Ln(A∗) = Σ/n, where Σ =
∑K

i=1 σ
2
i . We denote by λk =

T ∗k,n
n =

σ2
k

Σ , the optimal allocation proportion for arm k, and by λmin = min1≤k≤K λk, the smallest such

proportion.

In our setting where the variances of the arms are not known in advance, the exploration-

exploitation trade-off is inevitable: an adaptive algorithm A should estimate the variances of

the arms (exploration) at the same time as it tries to sample the arms proportionally to these

estimates (exploitation). In order to measure how well the adaptive algorithm A performs, we

compare its performance to that of the optimal allocation algorithm A∗, which requires the

knowledge of the variances of the arms. For this purpose, we define the notion of regret of an

adaptive algorithm A as the difference between its loss Ln(A) and the optimal loss Ln(A∗), i.e.,

Rn(A) = Ln(A)− Ln(A∗). (4.4)

It is important to note that unlike the standard multi-armed bandit problems, we do not consider

the notion of cumulative regret, and instead, use the excess-loss suffered by the algorithm at

the end of the n rounds. This notion of regret is closely related to the pure exploration setting

(e.g., Audibert et al. [2010]; Bubeck et al. [2011]). An interesting feature that is shared between

this setting and the problem of active learning considered in this Chapter is that good strategies

should play all the arms as a linear function of n. This is in contrast with the standard stochastic

bandit setting, at which the sub-optimal arms should be played logarithmically in n.

4.3 Allocation Strategy Based on Chernoff-Hoeffding UCB

The first algorithm, called Chernoff-Hoeffding Allocation Strategy (CH-AS), is based on a Chernoff-

Hoeffding high-probability bound on the difference between the estimated and true variances of

the arms. Each arm is simply pulled proportionally to an upper-confidence-bound (UCB) on its

variance. This algorithm deals with the exploration-exploitation trade-off by pulling more the

arms with higher estimated variances or higher uncertainty in these estimates.

4.3.1 The CH-AS Algorithm

The CH-AS algorithm ACH in Fig. 4.1 takes a confidence parameter δ as input and after n pulls

returns an empirical mean µ̂q,n for each arm q. At each time step t, i.e., after having pulled arm

kt, the algorithm computes the empirical mean µ̂q,t and variance σ̂2
q,t of each arm q as3

µ̂q,t =
1

Tq,t

Tq,t∑
i=1

Xq,i and σ̂2
q,t =

1

Tq,t

Tq,t∑
i=1

X2
q,i − µ̂2

q,t , (4.5)

3Notice that this is a biased estimator of the variance even if the numbers of pulls Tq,t were not random.
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Input: parameter δ
Initialize: Pull each arm twice
for t = 2K + 1, . . . , n do

Compute Bq,t = 1
Tq,t−1

(
σ̂2
q,t−1 + 3

√
log(1/δ)
2Tq,t−1

)
for each arm 1 ≤ q ≤ K

Pull an arm kt ∈ arg max1≤q≤K Bq,t
end for
Output: µ̂q,n for all arms 1 ≤ q ≤ K

Figure 4.1: The pseudo-code of the CH-AS algorithm, with σ̂2
q,t computed as in Equation 4.5.

where Xq,i is the i-th sample of νq and Tq,t is the number of pulls allocated to arm q up to time

t. After pulling each arm twice (rounds t = 1 to 2K), from round t = 2K + 1 on, the algorithm

computes the Bq,t values based on a Chernoff-Hoeffding’s bound on the variances of the arms:

Bq,t =
1

Tq,t−1

(
σ̂2
q,t−1 + 3

√
log(1/δ)

2Tq,t−1

)
,

and then pulls the arm kt with the largest Bq,t. This bound relies on the assumption that the

support of the distributions {νk}Kk=1 are in [0, 1].

4.3.2 Regret Bound and Discussion

Before reporting a regret bound for the CH-AS algorithm, we first analyze its performance in

targeting the optimal allocation strategy in terms of the number of pulls. As it will be discussed

later, the distinction between the performance in terms of the number of pulls and the regret

will allow us to stress the potential dependency of the regret on the distribution of the arms

(see Section 4.4.3).

Lemma 1 Assume that the support of the distributions {νk}Kk=1 are in [0, 1] and let δ > 0.

Define

ξCHK,n(δ) =
⋂

1≤k≤K
1≤t≤n

{∣∣∣(1

t

t∑
i=1

X2
k,i −

(1

t

t∑
i=1

Xk,i

)2)− σ2
k

∣∣∣ ≤ 3

√
log(1/δ)

2t

}
.

The probability of ξCHK,n(δ) is higher or equal than 1− 4nKδ. If n ≥ 4K, the number of pulls by

the CH-AS algorithm launched with parameter δ satisfies on ξCHK,n(δ)

−λk
(12

√
n log(1/δ)

Σλ
3/2
min

+ 4K
)
≤ Tk,n − T ∗k,n ≤

12
√
n log(1/δ)

Σλ
3/2
min

+ 4K, (4.6)

for any arm 1 ≤ k ≤ K.

Proof: The proof is reported in 4.A.2. �

We now show how the bound on the number of pulls translates into a regret bound for the

CH-AS algorithm.
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Theorem 4 Assume that the support of the distributions {νk}Kk=1 are in [0, 1]. If the fixed

budget is such that n ≥ 4K, the regret of ACH , when it runs with the parameter δ = K−1n−5/2,

is bounded as

Rn(ACH) ≤ Σ

n
+

64
√

log(nK)

n3/2λ
5/2
min

+
16.8× 104

n2

(log nK)3/2

λ
11/2
min

max
(

1;
1

Σ2

))
. (4.7)

Proof: The proof is reported in 4.A.3. �

Remark 1 As discussed in Section 4.2, our objective is to design a sampling strategy capable

of estimating the mean values of the arms almost as accurately as the estimations by the optimal

allocation strategy, which assumes that the variances of the arms are known. In fact, Theorem 4

shows that the CH-AS algorithm provides a uniformly accurate estimation of the expected values

of the arms with a regret Rn(ACH) of order Õ(n−3/2). This regret rate is the same as the one

for the GAFS-MAX algorithm in Antos et al. [2010].

Remark 2 The bound displays an inverse dependency on the smallest optimal allocation

proportion λmin. As a result, the bound scales poorly when an arm has a very small variance

relative to the others, i.e., σk � Σ. Note that GAFS-MAX (see Antos et al. [2010]) has also a

similar dependency on the inverse of λmin. Moreover, Theorem 4 holds for a budget n ≥ 4K,

whereas the regret bound of GAFS-MAX in Antos et al. [2010] requires a condition n ≥ n0, in

which n0 is a constant that scales with 1/λmin. Finally, note that this UCB type of algorithm

(CH-AS) enables a much simpler regret analysis than that of GAFS-MAX.

Remark 3 It is clear from Lemma 1 that the inverse dependency on λmin appears in the

bound on the number of pulls and then is propagated to the regret bound. We now show with

a simple example that this dependency is not an artifact of the analysis and is intrinsic in the

performance of the algorithm. Consider a two-arm problem with σ2
1 = 1/4 and σ2

2 = 0. Here

the optimal allocation is T ∗1,n = n − 1, T ∗2,n = 1 (only one sample is enough to estimate the

mean of the second arm), and λmin = 0, which makes the bound in Theorem 4 vacuous. This

does not mean that CH-AS has a linear regret, it indicates that it minimizes the regret with a

poorer rate (see 4.A.4 for a sketch of the proof of a lower bound for the regret of CH-AS). In

fact, the Chernoff-Hoeffding’s bound used in the upper-confidence term forces the algorithm to

pull the arm with zero variance at least Ω(n2/3) times with high probability, which results in

under-pulling the first arm by the same amount, and thus, in worsening its estimate. It can be

shown that the resulting regret has the rate Õ(n−4/3) and no dependency on λmin. So, it still

decreases to zero faster than 1
n (so in o( 1

n)), but with a slower rate than the one in Theorem 4.

Merging these two results, we deduce in the general setting that the regret of CH-AS is in

fact Rn(ACH) = min
{
λ
−5/2
min Õ(n−3/2), Õ(n−4/3)

}
. Note that, for λmin = 0, GAFS-MAX is

more efficient than CH-AS. It over-pulls the arms with zero-variance only by O(n1/2) and has
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Input: parameters c1, c2, δ

Let a =
√

2c1 log(c2/δ) +

√
c1δ(1+c2+log(c2/δ))

(1−δ)
√

2 log(2/δ)
n1/2

Initialize: Pull each arm twice
for t = 2K + 1, . . . , n do

Compute Bq,t = 1
Tq,t−1

(
σ̂2
q,t+4aσ̂q,t−1

√
1

Tq,t−1
+4a2 1

Tq,t−1

)
for each arm 1 ≤ q ≤ K

Pull an arm kt ∈ arg max1≤q≤K Bq,t
end for
Output: µ̂q,t for all the arms 1 ≤ q ≤ K

Figure 4.2: The pseudo-code of the B-AS algorithm. The empirical variances σ̂k,t are computed
according to Equation 4.8.

a regret of order Õ(n−3/2). We will further study how the regret of CH-AS changes with n in

Section 4.5.1.

The reason for the poor performance in Lemma 1 is that Chernoff-Hoeffding’s inequality is

not tight for small-variance random variables. In Section 4.4, we propose an algorithm based on a

tighter inequality for small-variance random variables, and prove that this algorithm under-pulls

all the arms by at most Õ(n1/2), without a dependency on λmin (see Equations 4.10 and 4.11).

4.4 Allocation Strategy Based on Bernstein UCB

In this section, we present another UCB-like algorithm, called Bernstein Allocation Strategy

(B-AS) 4, based on a tighter variance confidence bound that enables us to improve the bound

on |Tk,n − T ∗k,n| by removing the inverse dependency on λmin (compare the bounds in Eqs. 4.10

and 4.11 to the one for CH-AS in Equation 4.6). However this result itself is not sufficient to

derive a better regret bound than CH-AS. This finding is interesting since it shows that even an

adaptive algorithm which implements a strategy close to the optimal allocation strategy may

still incur a regret that poorly scales with the smallest proportion λmin. We further investigate

this issue by showing that the way the bound on the number of pulls translates into a regret

bound depends on the specific distributions of the arms. In fact, when the distributions of the

arms are Gaussian, we can exploit the property that the empirical variance σ̂k,t is independent

of the empirical mean µ̂k,t, and show that the regret of B-AS no longer depends on 1/λmin. The

numerical simulations in Section 4.5 further illustrate how the full shape of the distributions (and

not only their first two moments) plays an important role in the regret of adaptive allocation

algorithms.

4.4.1 The B-AS Algorithm

The algorithm is based on the use of a high-probability bound (empirical Bernstein’s in-

equality), reported in Maurer and Pontil [2009] (a similar bound can be found in Audibert et al.

[2009a]), on the variance of each arm. Like in the previous section, the arm sampling strategy is

4We refer to this algorithm as Bernstein Allocation Strategy because the inequality on the variance is derived
from an empirical Bernstein’s inequality on the empirical mean.
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proportional to those bounds. The B-AS algorithm, AB, is described in Figure 4.2. It requires

three parameters as input (see Remark 4 in Section 4.4.2 for a discussion on how to reduce the

number of parameters from three to one) c1 and c2, which are related to the shape of the dis-

tributions (see Assumption 4.4.2), and δ, which defines the confidence level of the bound. The

amount of exploration of the algorithm can be adapted by properly tuning these parameters.

The algorithm is similar to CH-AS except that the bound for each arm Bq,t is computed as

Bq,t =
1

Tq,t−1

(
σ̂2
q,t−1 + 4aσ̂q,t−1

√
1

Tq,t−1
+ 4a2 1

Tq,t−1

)
,

where a =
√

2c1 log(c2/δ) +

√
c1δ(1+c2+log(c2/δ))

(1−δ)
√

2 log(2/δ)
n1/2, and5

σ̂2
k,t =

1

Tk,t − 1

Tk,t∑
i=1

(Xk,i − µ̂k,t)2, with µ̂k,t =
1

Tk,t

Tk,t∑
i=1

Xk,i . (4.8)

4.4.2 Regret Bound and Discussion

The B-AS algorithm is designed to overcome the limitations of CH-AS, especially in the case

of arms with small variances (Berstein’s bound is tighter than Chernoff-Hoeffding’s bound for

distributions with small variance). Here we consider a more general assumption than in the

previous section, namely that the distributions are sub-Gaussian.

Assumption [Sub-Gaussian distributions] There exist c1, c2 > 0 such that for all 1 ≤ k ≤ K

and any ε > 0,

PX∼νk(|X − µk| ≥ ε) ≤ c2 exp(−ε2/c1) . (4.9)

We first state a bound in Lemma 2 on the difference between the B-AS and optimal allocation

strategies.

Lemma 2 Assume that Assumption 4.4.2 is verified for (c1, c2 ≥ 1) and let δ > 0. Define the

event

ξBK,n(δ) =
⋂

1≤k≤K
2≤t≤n


∣∣∣∣∣
√√√√ 1

t− 1

t∑
i=1

(
Xk,i −

1

t

t∑
j=1

Xk,j

)2
− σk

∣∣∣∣∣ ≤ 2a

√
log(2/δ)

t

 .

The probability of ξBK,n(δ) is higher or equal to 1 − 2nKδ. The B-AS algorithm launched with

parameters c1, c2, and δ, satisfies on ξBK,n(δ)

5We consider the unbiased estimator of the variance here.
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Tp,n ≥ T ∗p,n −Kλp

[
16a
√

log(2/δ)

Σ

(
√

Σ +
2a
√

log(2/δ)

c(δ)

)
n1/2 + 64

√
2Ka2 log(2/δ)

Σ
√
c(δ)

n1/4 + 2

]
,

(4.10)

and

Tp,n ≤ T ∗p,n+K

[
16a
√

log(2/δ)

Σ

(
√

Σ+
2a
√

log(2/δ)

c(δ)

)
n1/2+64

√
2Ka2 log(2/δ)

Σ
√
c(δ)

n1/4+2

]
, (4.11)

for any arm 1 ≤ p ≤ K and for a budhet such that n ≥ 16
9 c(δ)

−2, where c(δ) =
2a
√

log(2/δ)
√
K(
√

Σ+4a
√

log(2/δ))
.

Proof: The proof is reported in 4.B.2. �

Remark 1 Unlike the bounds for CH-AS in Lemma 1, B-AS allocates the pulls on the arms

so that the difference between Tp,n and T ∗p,n grows with the rate Õ(
√
n) without dependency on

λmin. This is an advantage over CH-AS that may over-sample (thus also under-sample) some

arms by Ω(n2/3) whenever λmin is small (see Remark 3 of Section 4.3.2). We further note that

the lower bound in Equation 4.10 is of order λpÕ(
√
n), which implies that the gap between Tp,n

and T ∗p,n decreases as λp becomes smaller. This is not the case in the upper bound, where the

gap is of order Õ(
√
n), but is independent of the value of λp. This explains why in the case of

general distributions, B-AS has a regret bound with an inverse dependency on λmin, similar to

CH-AS, as shown in Theorem 5.

Theorem 5 Assume all the distributions {νk}Kk=1 are sub-Gaussians with parameters c1 and

c2. For any n ≥ max(16
9 c(δ)

−2, 4K), where c(δ) =
2a
√

log(2/δ)
√
K(
√

Σ+4a
√

log(2/δ))
, the regret of AB, when

it runs with parameters c1, c2, and δ = n−7/2 is bounded as

Rn(AB) ≤ 54× 103c1(c2 + 1)K2 log(n)2

λminn3/2
+O

( log(n)6K7

n7/4λmin

)
.

Proof: The proof is reported in 4.B.3. �

Similar to Theorem 4, the bound on the number of pulls translates into a regret bound

through Equation 4.25, found in 4.A.3. Note that in order to remove the dependency on λmin,

a symmetric bound on |Tp,n − T ∗p,n| ≤ λpÕ(
√
n) is needed. While the lower bound in Equa-

tion 4.10 already decreases with λp, the upper bound scales with Õ(
√
n). Whether there exists

an algorithm with a tighter upper bound scaling with λp is still an open question. Nonetheless,

in the next section, we show that an improved loss bound can be achieved in the special case of

Gaussian distributions, which leads to a regret bound without the dependency on λmin.

4.4.3 Regret for Gaussian Distributions

In the case of Gaussian distributions, the loss of Equation 4.25 can be improved using the

following lemma.

46



Lemma 3 Assume that all the distributions {νk}Kk=1 are Gaussian. Then the loss for arm k

satisfies

Lk,n = E
[
(µ̂k,n − µk)2

]
= σ2

kE
[ 1

Tk,n

]
. (4.12)

Proof: The proof is reported in 4.C. �

Remark Note that the loss bound in Equation 4.12 does not require any upper bound on

Tk,n. It is actually similar to the case of deterministic allocation. When T̃k,n is the deterministic

number of pulls, the corresponding loss resulting from pulling arm k, T̃k,n times, is Lk,n =

σ2
k/T̃k,n. In general, when Tk,n is a random variable depending on the empirical variances

{σ̂2
k}Kk=1 (like in our adaptive algorithms CH-AS and B-AS), we have

E
[
(µ̂k,n − µk)2

]
=

n∑
t=1

E
[
(µ̂k,n − µk)2|Tk,n = t

]
P(Tk,n = t),

which might be different than σ2
kE
[

1
Tk,n

]
. In fact, the empirical average µ̂k,n depends on Tk,n

through {σ̂k,n}Kk=1, and E
[
(µ̂k,n − µk)2|Tk,n = t

]
is no longer equal to σ2

k/t. However, Gaussian

distributions have the property that the empirical mean µ̂k,n is independent of the empirical

variance σ̂k,n (and thus also from Tk,n), which allows us to obtain the property reported in

Lemma 3.

We now report a regret bound in the case of Gaussian distributions. Note that in this case

Assumption 4.4.2 holds for c1 = 2Σ and c2 = 1.6

Theorem 6 Assume that all distributions {νk}Kk=1 are Gaussian and that an upper-bound Σ on

Σ is known. If the budget n ≥ max(16
9 c(δ)

−2, 4K), where c(δ) =
2a
√

log(2/δ)
√
K(
√

Σ+4a
√

log(2/δ))
, the B-AS

algorithm launched with parameters c1 = 2Σ, c2 = 1, and δ = n−7/2 has the following regret

bound

Rn(AB) ≤ 12× 103

n3/2
K2(1 + c1(c2 + 1)) log2(n) +

14× 103

n7/4
K2(1 + c1(c2 + 1)) log2(n) . (4.13)

Proof: The proof is reported in 4.C. �

Remark 1 In the case of Gaussian distributions, the regret bound for B-AS has the rate

Õ(n−3/2) without dependency on λmin, which represents a significant improvement over the

regret bounds of the CH-AS and GAFS-MAX algorithms.

Remark 2 In practice, there is no need to tune the three parameters c1, c2, and δ separately.

In fact, it is enough to tune the algorithm for a single parameter a (see Fig. 4.2). Using the

6Note that for a single Gaussian distribution c1 = 2σ2, where σ is the standard deviation of the distribution.
Here we use c1 = 2Σ in order for the assumption to be satisfied for all the K distributions simultaneously.
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proof of Theorem 6 and the optimized value of δ, it is possible to show that the expected regret

is minimized by choosing a = O
(

max{Σ3/2
,Σ

1/2} log n
)
, which only requires an upper bound

on the value of Σ. This is a reasonable assumption whenever a rough estimate of the magnitude

of the variances is available.

4.5 Experimental Results

4.5.1 CH-AS, B-AS, and GAFS-MAX with Gaussian Arms

In this section, we compare the performance of CH-AS, B-AS, and GAFS-MAX on a two-

armed problem with Gaussian distributions ν1 = N(0, σ2
1 = 4) and ν2 = N(0, σ2

2 = 1) (note that

λmin=1/5). Figure 4.3-(left) shows the rescaled regret, n3/2Rn, for the three algorithms averaged

over 50, 000 runs. The results indicate that while the rescaled regret is almost constant with

respect to. n in B-AS and GAFS-MAX, it increases for small (relative to λ−1
min) values of n in

CH-AS.

The robust behavior of B-AS when the distributions of the arms are Gaussian may be easily

explained by the bound of Theorem 6 (Equation 4.13). Note though that this experiment seems

to imply that there is no additional dependency in log(n): it could be just an artifact of the

proof. The initial increase in the CH-AS curve is also consistent with the bound of Theorem 4

(Equation 4.7). As discussed in Remark 3 of Section 4.3.2, the regret bound for CH-AS is of

the form Rn ≤ min
{
λ
−5/2
min Õ(n−3/2), Õ(n−4/3)

}
, and thus, the algorithm behaves as Õ(n−4/3) and

λ
−5/2
min Õ(n−3/2) for small and large (relative to λ−1

min) values of n, respectively. It is important

to note that the behavior of CH-AS is independent of the arms’ distributions and is intrinsic in

the allocation mechanism, as shown in Lemma 1. Finally, the behavior of GAFS-MAX indicates

that although its analysis shows an inverse dependency on λmin and yields a regret bounds

similar to CH-AS, its rescaled regret in fact does not grow with n when the distributions of the

arms are Gaussian. This is why we believe that it would be possible to improve the GAFS-MAX

analysis by bounding the standard deviation using Bernstein’s inequality. This would remove the

inverse dependency on λmin and provide a regret bound similar to B-AS in the case of Gaussian

distributions.

4.5.2 B-AS with Non-Gaussian Arms

In Section 4.4.3, we showed that when the arms have Gaussian distributions, the regret bound of

the B-AS algorithm does not depend on λmin anymore. We also discussed on why we conjecture

that it is not possible to remove this dependency in case of general distributions unless tighter

upper bounds on the number of pulls can be derived. Although we do not yet have a lower

bound on the regret showing the dependency on λmin, in this section we empirically show that

the shape of the distributions directly impacts the regret of the B-AS algorithm.

As discussed in Section 4.4.3, the property of Gaussian distributions that allows us to remove

the λmin dependency in the regret bound of B-AS is that the empirical mean µ̂k,n of each arm

k is independent of its empirical variance σ̂2
k,n conditioned on Tk,n. Although this property
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Figure 4.3: (left) The rescaled regret of CH-AS, B-AS, and GAFS-MAX algorithms on a two-
armed problem, where the distributions of the arms are Gaussian. (right) The rescaled regret
of B-AS for two bandit problems, one with two Gaussian arms and one with a Gaussian and a
Rademacher arms.

might approximately hold for a larger family of distributions, there are distributions, such as

Rademacher, for which these quantities are negatively correlated. In the case of Rademacher

distribution,7 the loss (µ̂k,t − µk)
2 is equal to µ̂2

k,t and we have σ̂2
k,t = 1

Tk,t−1

(∑Tk,t
i=1 X

2
k,i −

Tk,tµ̂
2
k,t

)
=

Tk,t
Tk,t−1

(
1 − µ̂2

k,t

)
, as a result, the larger σ̂2

k,t, the smaller µ̂2
k,t. We know that the

allocation strategies in CH-AS, B-AS, and GAFS-MAX are based on the empirical variance

which is used as a substitute for the true variance. As a result, the larger σ̂2
k,t, the more often

arm k is pulled. In case of Rademacher distributions, this means that an arm is pulled more

than its optimal allocation exactly when its mean is accurately estimated (the loss is small).

This may result in a poorer estimation of the arm, and thus, negatively affect the regret of the

algorithm.

In the experiments of this section, we use B-AS in two different bandit problems: one with

two Gaussian arms ν1 = N(0, σ2
1) (with σ1 ≥ 1) and ν2 = N(0, 1), and one with a Gaussian

ν1 = N(0, σ2
1) and a Rademacher ν2 = R arms. Note that in both cases λmin = λ2 = 1/(1 + σ2

1).

Figure 4.3-(right) shows the rescaled regret (n3/2Rn) of the B-AS algorithm as a function of

λ−1
min for n = 1000. As expected, while the rescaled regret of B-AS is constant in the first

problem, it increases with σ2
1 in the second one. As explained above, this behavior is due to

the poor approximation of the Rademacher arm which is over-pulled whenever its estimated

mean is accurate. This result illustrates the fact that in this active learning problem (where

the goal is to estimate the mean values of the arms), the performance of the algorithms that

rely on the empirical-variances (e.g., CH-AS, B-AS, and GAFS-MAX) crucially depends on

the shape of the distributions, and not only on their variances. This may be surprising since

according to the central limit theorem the distribution of the empirical mean should tend to

a Gaussian. However, it seems that what is important is not the distribution of the empirical

mean or variance, but the correlation of these two quantities: this is why we believe that any

algorithm that is based on empirical standard deviations might be subject to the same problem.

7X is Rademacher if X ∈ {−1, 1} and admits values −1 and 1 with equal probability.
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Then when λmin becomes very small, the rescaled regret stabilizes. This illustrates the fact that

for very large λ−1
min compared to n (e.g. large σ1, which implies a large Σ), the leading term in

the upper confidence bound of the Rademacher arm will be 4a√
T2,t

, as a scales with Σ (and Σ is

not small when compared to n), and as σ̂2,t ≤ 1/2. The Rademacher arm will thus be pulled a

number of time of order Õ(n1/2), and thus not damage the regret of the algorithm.

4.6 Conclusions and Open Questions

In this Chapter, we studied the problem of adaptive allocation for the uniformly good estimation

of the mean values of K independent distributions. This problem first studied by Antos et al.

[2010]. Although the algorithm proposed in Antos et al. [2010] achieves a small regret of order

Õ(n−3/2), it displays an inverse dependency on the smallest proportion λmin. In this Chapter, we

first introduced a novel class of algorithms based on upper-confidence-bounds on the (unknown)

variances of the arms, and analyzed the two such algorithms: Chernoff-Hoeffding allocation strat-

egy (CH-AS) and Bernstein allocation strategy (B-AS). For CH-AS we derived a regret similar

to Antos et al. [2010], scaling as Õ(n−3/2) and with the dependence on λmin. Unlike in Antos

et al. [2010], this result holds for any n and the constants in the bound are made explicit. We

then introduced a more refined algorithm, B-AS, which performs an allocation strategy similar

to the optimal one. Nonetheless, its general regret bound still depends on λmin. We show that

this dependency may be related to the specific distributions of the arms and can be removed for

the case of Gaussian distributions. Finally, we report numerical simulations supporting the idea

that the shape of the distributions has an impact on the performance of the allocation strategies.

This work opens a number of questions.

• Upper bound on the number of pulls. As mentioned in the Remark of Section 4.4.2, an open

question is whether it is possible to devise an allocation algorithm such that |Tp,n−T ∗p,n| is
of order λpÕ(

√
n). Such a symmetric bound on the number of pulls would translate into

a regret bound without any dependency on λmin for any distribution.

• Distribution dependency. Another open question is to which extent the result of B-AS in

the case of Gaussian distributions can be extended to more general families of distributions.

As illustrated in the case of Rademacher, the correlation between the empirical mean

and variance may cause the algorithm to over-pull arms even when their estimation is

accurate, thus incurring a large regret. On the other hand, if the distributions of the

arms are Gaussian, their empirical mean and variance are uncorrelated and the allocation

algorithms such as B-AS achieve a better regret. Further investigation is needed to identify

whether this result can be extended to other distributions.

• Lower bound. The results of Sections 4.4.3 and 4.5.2 suggest that the dependency on the

distributions of the arms could be intrinsic in the allocation problem. If this is the case,
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it should be possible to derive a lower bound for this problem showing such dependency

(a lower-bound with dependency on 1/λmin).
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Appendices for Chapter 4

4.A Regret Bound for the CH-AS Algorithm

4.A.1 Basic Tools

Since the basic tools used in the proof of Theorem 4 are similar to those used in the work

by Antos et al. [2010], we begin this section by restating two results from that paper. Let ξ be

the event

ξ = ξCHK,n(δ) =
⋂

1≤k≤K
1≤t≤n

{∣∣∣(1

t

t∑
i=1

X2
k,i −

(1

t

t∑
i=1

Xk,i

)2)− σ2
k

∣∣∣ ≤ 3

√
log(1/δ)

2t

}
. (4.14)

Note that the first term in the absolute value in Equation 4.14 is the sample variance of arm

k computed as in Equation 4.5 for t samples. It can be shown using an analogy of Hoeffding’s

inequality (see Hoeffding [1963]) that Pr(ξ) ≥ 1 − 4nKδ, and this is shown by directly reusing

the elements of the proof of Lemma 2 in Antos et al. [2010]. The event ξ plays an important

role in the proofs of this section and several statements will be proved on this event. We now

report the following proposition which is analog to Lemma 2 in Antos et al. [2010].

Proposition 1 For any k = 1, . . . ,K and t = 1, . . . , n, let {Xk,i}i=1,...,Tk,t be Tk,t ∈ {1, . . . , t}
i.i.d. random variables bounded in [0, 1] from the distribution νk with variance σ2

k, and σ̂2
k,t be

the sample variance computed as in Equation 4.5. Then the following statement holds on the

event ξ:

|σ̂2
k,t − σ2

k| ≤ 3

√
log(1/δ)

2Tk,t
. (4.15)

We also need to draw a connection between the allocation and stopping time problems. Thus,

we report the following proposition which is a special case of Lemma 10 in Antos et al. [2010].

Proposition 2 Let {Xt}t=1,...,n be i.i.d. random variables with expectation µ and variance σ2,

and let {Ft}t=1,...,n be filtration associated to the process (Xt)t=1,...,n. Let T ≤ n be a stopping

time w.r.t. {Ft} with a finite expected value. If E[X2
1 ] <∞ then

E

[( T∑
i=1

Xi − T µ
)2
]

= E[T ] σ2. (4.16)

4.A.2 Allocation Performance

In this Sub-section, we first provide the proof of Lemma 1 and then use the result in the next

Sub-section to prove Theorem 4.
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Proof: [Proof of Lemma 1] The proof consists of the following three main steps. We assume

that ξ holds until the end of this proof.

Step 1. Mechanism of the algorithm. Recall the definition of the upper bound used in ACH

at a time t+ 1 > 2K:

Bq,t+1 =
1

Tq,t

(
σ̂2
q,t + 3

√
log(1/δ)

2Tq,t

)
, 1 ≤ q ≤ K .

From Proposition 1, we obtain the following upper and lower bounds for Bq,t+1 on the event ξ:

σ2
q

Tq,t
≤ Bq,t+1 ≤

1

Tq,t

(
σ2
q + 6

√
log(1/δ)

2Tq,t

)
. (4.17)

Note that as n ≥ 4K, there is at least one arm k that is pulled after the initialization. Let k be a

given such arm and t+1 > 2K be the time when it is pulled for the last time, i.e., Tk,t = Tk,n−1

and Tk,t+1 = Tk,n. Since ACH chooses to pull arm k at time t+ 1, for any arm p, we have

Bp,t+1 ≤ Bk,t+1 . (4.18)

From Equation 4.17 and the fact that Tk,t = Tk,n − 1, we obtain

Bk,t+1 ≤
1

Tk,t

(
σ2
k + 6

√
log(1/δ)

2Tk,t

)
=

1

Tk,n − 1

(
σ2
k + 6

√
log(1/δ)

2(Tk,n − 1)

)
. (4.19)

Using the lower bound in Equation 4.17 and the fact that Tp,t ≤ Tp,n, we may lower bound Bp,t

as

Bp,t+1 ≥
σ2
p

Tp,t
≥

σ2
p

Tp,n
. (4.20)

Combining Equations 4.18, 4.19, and 4.20, we obtain

σ2
p

Tp,n
≤ 1

Tk,n − 1

(
σ2
k + 6

√
log(1/δ)

2(Tk,n − 1)

)
. (4.21)

Note that at this point there is no dependency on t, and thus, Equation 4.21 holds with proba-

bility at least 1− 4nKδ (this is because Equation 4.21 holds on the event ξ) for any arm k that

is pulled at least once after the initialization, and for any arm p.

Step 2. Lower bound on Tp,n. If an arm q is under-pulled without taking into account the

initialization phase, i.e., Tq,n−2 < λq(n−2K), then from the constraint
∑

k(Tk,n−2) = n−2K,

we deduce that there must be at least one arm k that is over-pulled, i.e., Tk,n− 2 > λk(n− 2K).

Note that for this arm, Tk,n − 2 > λk(n − 2K) ≥ 0, so we know that this specific arm is

pulled at least once after the initialization phase and that it satisfies Equation 4.21. Using the

53



4. UPPER-CONFIDENCE-BOUND ALGORITHMS FOR ACTIVE LEARNING
IN MULTI-ARMED BANDITS

definition of the optimal (up to rounding effects) allocation T ∗k,n = nλk = nσ2
k/Σ and the fact

that Tk,n ≥ λk(n− 2K) + 2, Equation 4.21 may be written as

σ2
p

Tp,n
≤ 1

T ∗k,n

n

n− 2K

(
σ2
k + 6

√
log(1/δ)

2(λk(n− 2K) + 2− 1)

)

≤ Σ

n− 2K
+

12
√

log(1/δ)

(λminn)3/2

≤ Σ

n
+

12
√

log(1/δ)

(λminn)3/2
+

4KΣ

n2
, (4.22)

since λk(n− 2K) + 1 ≥ λk(n/2− 2K + 2K) + 1 ≥ nλk
2 , as n ≥ 4K (thus also 2KΣ

n(n−2K) ≤
4KΣ
n2 ).

By reordering the terms in the previous equation, we obtain the lower bound

Tp,n ≥
σ2
p

Σ
n +

12
√

log(1/δ)

(nλmin)3/2 + 4KΣ
n2

≥ T ∗p,n − λp
12
√
n log(1/δ)

Σλ
3/2
min

− 4λpK, (4.23)

where in the second inequality we used 1/(1 + x) ≥ 1 − x (for x > −1). Note that the lower

bound 4.23 holds on ξ for any arm p.

Step 3. Upper bound on Tp,n. Using Equation 4.23 and the fact that
∑

k Tk,n =
∑

k T
∗
k,n = n,

we obtain the upper bound

Tp,n = n−
∑
k 6=p

Tk,n ≤ T ∗p,n +
12

Σλ
3/2
min

√
n log(1/δ) + 4K . (4.24)

The claim follows by combining the lower and upper bounds in Equations 4.23 and 4.24. �

4.A.3 Regret Bound

We now show how the bound on the allocation over arms translates into a bound on the regret

of the algorithm as stated in Theorem 4.

Proof: [Proof of Theorem 4] The proof consists of the following two main steps.

Step 1. Tk,n is a stopping time. For each arm 1 ≤ k ≤ K, let {Xk,t}t≤n be all the samples

collected from pulling that arm. We write Ω = {Xk′,t}t≤n,k′ 6=k the set of events generated by

any potential realizations of the other arms. Let, for a given event ω ∈ Ω, (Fωt )t≤n be the

filtration with respect to the process {Xk,t}t≤n|Ω = ω. It is a filtration for every event ω ∈ Ω

since {Xk,t}t≤n is independent of {Xk′,t}k′ 6=k,t≤n.
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Let ω ∈ Ω be the event associated to given realizations of the arms k′ 6= k. We first show that

Tk,n is a stopping time with respect to the filtration (Fωt )t≤n. At each time step t, the CH-AS

algorithm decides which arm to pull only according to the current values of the upper-bounds

{Bk′,t}k. Thus for any arm k, Tk,(t+1) depends only on the values {Tk′,t}k′ and {σ̂2
k′,t}k′ . So by

induction, Tk,(t+1) depends only on the sequence {Xk,1, . . . , Xk,Tk,t}, and on the realizations of

the other arms (which are described in the event ω): Tk,t is thus measurable with respect to (Fωt )t,

and is thus a stopping time. Note also that the events in ω are independent of {Xk,1, . . . , Xk,n}:
Lemma 2 thus directly applies for any ω ∈ Ω, and thus also for the expectation over the

realizations of every arms k′ 6= k.

Step 2. Regret bound. Using its definition, we may write Lk,n as follow:

Lk,n = E
[
(µ̂k,n − µk)2

]
= E

[
(µ̂k,n − µk)2I{ξ}

]
+ E

[
(µ̂k,n − µk)2I{ξC}

]
.

Using the definition of µ̂k,n and Proposition 2 (and the last remark in Step 1) we bound the first

term as

E
[
(µ̂k,n − µk)2I{ξ}

]
≤ inf

ξ

( σ2
k

T 2
k,n

)
E
[(
∑Tk,n

t=1 Xk,t − Tk,nµk)2

σ2
k

I{ξ}
]

≤ inf
ξ

( σ2
k

T 2
k,n

)
E
[ 1

σ2
k

(

Tk,n∑
t=1

Xk,t − Tk,nµk)2
]

= inf
ξ

( σ2
k

T 2
k,n

) 1

σ2
k

σ2
kE[Tk,n]

= inf
ξ

( σ2
k

T 2
k,n

)
E(Tk,n) , (4.25)

Since the upper-bound in Lemma 1 is obtained on the event ξ (and thus with high proba-

bility), and as Tk,n ≤ n, we may easily convert it to a bound in expectation as follows:

E[Tk,n] ≤
(
T ∗k,n +

12

Σλ
3/2
min

√
n log(1/δ) + 4K

)
+ n× 4nKδ. (4.26)

Combining Equation 4.25 and 4.26, and using Equation 4.22 for infξ

(
σ2
k/Tk,n

)
, we obtain

E
[
(µ̂k,n − µk)2I{ξ}

]
≤

(
Σ

n
+

12
√

log(1/δ)

(λminn)3/2
+

4KΣ

n2

)2
(
T ∗k,n + 12

Σλ
3/2
min

√
n log(1/δ) + 4K + n× 4nKδ

)
σ2
k

. (4.27)

By setting A =
12
√

log(1/δ)

λ
3/2
min

to simplify the notation, Equation 4.27 may be simplified as
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E
[
(µ̂k,n − µk)2I{ξ}

]
≤

(
Σ

n
+

A

n3/2
+

4KΣ

n2

)2(
n

Σ
+

A

Σσ2
k

√
n+

4K + 4n2Kδ

σ2
k

)

=

(
Σ2

n2
+
A2

n3
+

16K2Σ2

n4
+

2AΣ

n5/2
+

8KΣ2

n3
+

8AKΣ

n7/2

)(
· · ·
)

≤

(
Σ2

n2
+

2AΣ

n5/2
+

1

n3

(
A2 +

16K2Σ2

n
+ 8KΣ2 +

8AKΣ

n1/2

))(
· · ·
)
,

≤

(
Σ2

n2
+

2AΣ

n5/2
+

1

n3

(
A2 + 12KΣ2 + 4A

√
KΣ

))(
· · ·
)
,

where in the last passage we used n ≥ 4K. Let B = A2 +12KΣ2 +4A
√
KΣ, we further simplify

the previous expression as

E
[
(µ̂k,n − µk)2I{ξ}

]
≤ Σ

n
+

1

n3/2

(ΣA

σ2
k

+ 2A
)

+
1

n2

(4KΣ2

σ2
k

+
2A2

σ2
k

+
B

Σ

)
+

1

n5/2

(8ΣAK

σ2
k

+
AB

σ2
kΣ

)
+

4KB

σ2
kn

3

+
(4KΣ2

σ2
k

+
8ΣAK

σ2
kn

1/2
+

4KB

σ2
kn

)
δ.

We now choose δ = n−5/2/K and by using n ≥ 4K we obtain

E
[
(µ̂k,n − µk)2I{ξ}

]
− Σ

n

≤ 1

n3/2

(ΣA

σ2
k

+ 2A
)

+
1

n2

(4KΣ2

σ2
k

+
2A2

σ2
k

+
B

Σ
+

4ΣA
√
K

σ2
k

+
AB

2
√
Kσ2

kΣ
+
B

σ2
k

+
2Σ2

σ2
k

√
K

+
2ΣA

σ2
kK

+
B

2K2/3σ2
k

)
≤ 1

n3/2

(ΣA

σ2
k

+ 2A
)

+
1

λminn2

(
4KΣ +

2A2

Σ
+
B

Σ2
+ 4A

√
K +

AB

2Σ2
√
K

+
B

Σ
+

2Σ√
K

+
2A

K
+

B

2K2/3Σ

)
≤ 1

n3/2

(ΣA

σ2
k

+ 2A
)

+
1

λminn2

(
4KΣ + 4A

√
K +

2A

K
+

2Σ√
K

+
1

Σ

(
2A2 +B +

B

2K2/3

)
+

1

Σ2

(
B +

AB

2
√
K

))
≤ 1

n3/2

(ΣA

σ2
k

+ 2A
)

+
1

λminn2

(
K2 + 4A

√
K +

2A

K
+

√
K

2
+

1

Σ

(
2A2 +B +

B

2K2/3

)
+

1

Σ2

(
B +

AB

2
√
K

))
.

Before proceeding further we upper bound B as follows

B = A2 + 12KΣ2 + 4A
√
KΣ ≤ (A+ 4

√
KΣ)2 ≤ (A+K3/2)2
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where the last passage follows from Σ ≤ K/4. Furthermore, we notice that λmin ≤ 1/K and

thus

K3/2 ≤ 1

λ
3/2
min

=
A

12
√

log 1/δ
≤ A

12
√

17/2 log 2
≤ A

29
,

where the first passage follows from the definition of A and the second from δ = n−5/2/K,

n ≥ 4K, and K ≥ 2. Putting these terms together we obtain B ≤ 2A2. By using the previous

bound, we finally obtain

E
[
(µ̂k,n − µk)2I{ξ}

]
≤Σ

n
+

1

n3/2

(ΣA

σ2
k

+ 2A
)

+
1

λminn2

(
K2 + 4A

√
K +

2A

K
+

√
K

2
+

1

Σ

(
2A2 +B +

B

2K2/3

)
+

1

Σ2

(
B +

AB

2
√
K

))
≤Σ

n
+

1

n3/2

(ΣA

σ2
k

+ 2A
)

+
1

λminn2

(
7A
√
K +

5A2

Σ
+

3A3

Σ2

)
≤Σ

n
+

1

n3/2

3A

λmin
+

7A3

λminn2

(
1 +

1

Σ
+

1

Σ2

)
Since |µ̂k,n− µk| is always smaller than 1, we have E

[
(µ̂k,n− µk)2I{ξC}

]
≤ 4nKδ = 4n−3/2. We

also know that A ≤ 20
√

log(nK)

λ
3/2
min

. Thus the expected loss of arm k is bounded by

Lk,n ≤
Σ

n
+

1

n3/2

3A

λmin
+

7A3

λminn2

(
1 +

1

Σ
+

1

Σ2

)
+ 4nKδ

≤ Σ

n
+

64
√

log(nK)

n3/2λ
5/2
min

+
5.6× 104

n2

(log nK)3/2

λ
11/2
min

(
1 +

1

Σ
+

1

Σ2

))
.

Using the definition of regret Rn(A) = maxk Lk,n − Σ
n , we obtain

Rn(ACH) ≤ Σ

n
+

64
√

log(nK)

n3/2λ
5/2
min

+
16.8× 104

n2

(log nK)3/2

λ
11/2
min

max
(

1;
1

Σ2

))
. (4.28)

�

4.A.4 Lower bound for the regret of algorithm CH-AS

We report a sketch of the proof for the example with λmin = 0 reported in the Remark 3 of

Section 4.3.2. Using the definition of Bk,t+1 and Proposition 1, since σ̂2
2,t = 0, we have that at
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any time t+ 1 > 4, on ξ,

B1,t+1 ≤
1

T1,t

(
1/4 + 6

√
log(1/δ)

2

)
and B2,t+1 =

1

T2,t

(
3

√
log(1/δ)

2T2,t

)
. (4.29)

Let t + 1 ≤ n be the last time that arm 1 was pulled, i.e., T1,t = T1,n − 1 and B1,t+1 ≥ B2,t+1.

From Equation 4.29, we have on ξ

B2,t+1 =
1

T2,t

(
3

√
log(1/δ)

2T2,t

)
≤ B1,t+1 ≤

1

T1,n − 1

(
1/4 + 6

√
log(1/δ)

2

)
. (4.30)

Now consider the two possible cases: 1) T1,n ≤ n/2, in which case obviously T2,n ≥ n/2 and 2)

T1,n > n/2, in this case Equation 4.30 implies that T2,n ≥ T2,t = Ω̃
(
n2/3

)
on ξ. Thus in both

cases, we may write T2,n = Ω̃
(
n2/3

)
, which indicates that arm 2 (resp. arm 1) is over-sampled

(resp. under-sampled) by a number of pulls of order Ω̃(n2/3) on ξ, and thus with high probability.

By following the same arguments as in the proof of Theorem 4, we deduce that the regret in

this case is at least Ω̃(n−4/3). Thus we can conclude that for small λmin the regret of CH-AS is

no longer of order O(n−3/2).

4.B Regret Bounds for the Bernstein Algorithm

4.B.1 Basic Tools

Before proving the bound in Theorem 5 and 6 we need a number of technical tools, in particular

for sub-Gaussian random variables.

4.B.1.1 A High Probability Bound on the Standard Deviation for sub-Gaussian

Random Variable

The upper confidence boundsBk,t used in the B-AS algorithm is motivated by Theorem 10 in [Mau-

rer and Pontil, 2009]. We extend this result to sub-Gaussian random variables. We first recall

Theorem 10 of [Maurer and Pontil, 2009]:

Theorem 7 (Maurer and Pontil [2009]) Let (X1, ..., Xt) be t ≥ 2 i.i.d. random variables of

variance σ2 and mean µ and such that ∀i ≤ t,Xi ∈ [0, b]. Then with probability at least 1− δ:

∣∣∣∣∣
√√√√ 1

t− 1

t∑
i=1

(
Xi −

1

t

t∑
j=1

Xj

)2
− σ

∣∣∣∣∣ ≤ b
√

2
log(2/δ)

t− 1
.

We now state and prove the following Lemma.
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Lemma 4 Let Assumption 4.4.2 hold and n ≥ 2. Define the following event

ξ = ξBK,n(δ) =
⋂

1≤k≤K
2≤t≤n


∣∣∣∣∣
√√√√ 1

t− 1

t∑
i=1

(
Xk,i −

1

t

t∑
j=1

Xk,j

)2
− σk

∣∣∣∣∣ ≤ 2a

√
log(2/δ)

t

 , (4.31)

where a =
√

2c1 log(c2/δ) +

√
c1δ(1+c2+log(c2/δ))

(1−δ)
√

2 log(2/δ)
n1/2. Then Pr(ξ) ≥ 1− 2nKδ.

Note that the first term in the absolute value in Equation 4.31 is the empirical standard

deviation of arm k computed as in Equation 4.8 for t samples. The event ξ plays an important

role in the proofs of this section and a number of statements will be proved on this event.

Proof:

Step 1. Truncating sub-Gaussian variables. We want to characterize the mean and variance

of the variables Xk,t given that |Xk,t − µk| ≤
√
c1 log(c2/δ). For any non-negative random

variable Y and any b ≥ 0, E(Y I{Y > b}) =
∫∞
b P(Y > ε)dε + bP(Y > b). 8 In order to

simplify the notation we introduce the deviation random variable Sk,t = Xk,t − µk. If we take

b = c1 log(c2/δ) and use Assumption 4.4.2, we obtain:

E
[
S2
k,tI{Sk,t > b}

]
=

∫ ∞
b

P
(
S2
k,t > ε

)
dε+ bP(S2

k,t > b)

≤
∫ ∞
b

c2 exp(−ε/c1)dε+ bc2 exp(−b/c1)

≤ c1δ + c1 log(c2/δ)δ

= c1δ(1 + log(c2/δ)).

By definition of Sk,t, we have E
[
S2
k,tI{S2

k,t > b}
]

+ E
[
S2
k,tI{S2

k,t ≤ b}
]

= σ2
k, that can be

written as

E
[
S2
k,tI{S2

k,t > b}
]
− σ2

kP
[
S2
k,t > b

]
P
[
S2
k,t ≤ b

] = σ2
k −

E
[
S2
k,tI{S2

k,t ≤ b}
]

P
[
S2
k,t ≤ b

] , (4.32)

that combined with the previous equation, implies that

∣∣∣E[S2
k,t

∣∣S2
k,t ≤ b

]
− σ2

k

∣∣∣ =

∣∣∣E[(S2
k,t − σ2

k

)
I{S2

k,t > b}
]∣∣∣

P
(
S2
k,t ≤ b

)
≤
c1δ(1 + log(c2/δ)) + δσ2

k

1− δ
. (4.33)

8Let Ỹ = Y I{Y ≥ b}+ bI{Y, b}, then E[Ỹ ] =
∫ b

0
P[Ỹ > ε]dε +

∫∞
b

P[Ỹ > ε]dε = b +
∫∞
b

P[Y > ε]dε. Thus we

can write E[Y I{Y ≥ b}] = E[Ỹ ]− bP[Y < b] =
∫∞
b

P[Y > ε]dε+ bP[Y ≥ b].
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Note also that Cauchy-Schwartz inequality implies∣∣∣E[Sk,tI{S2
k,t > b}

]∣∣∣ ≤√E
[
S2
k,tI{S2

k,t > b}
]

≤
√
c1δ(1 + log(c2/δ)).

We now introduce the mean of Xk,t conditioned on small deviations, that is µ̃k = E
[
Xk,t

∣∣S2
k,t ≤

b
]

=
E[Xk,tI{S2

k,t≤b}]
P(S2

k,t≤b)
. Thus we can combine E

[
Xk,tI{S2

k,t > b}
]

+ E
[
Xk,tI{S2

k,t ≤ b}
]

= µk with

the previous result and obtain

|µ̃k − µk| =

∣∣∣E[Sk,tI{S2
k,t > b}

]∣∣∣
P
(
S2
k,t ≤ b

) ≤
√
c1δ(1 + log(c2/δ))

1− δ
. (4.34)

We also define the variance of the conditional random variable σ̃2
k = V

[
Xk,t|S2

k,t ≤ b
]

=

E
[
S2
k,t|S2

k,t ≤ b
]
− (µk − µ̃k)2. From Equations 4.33 and 4.34, we derive

|σ̃2
k − σ2

k| ≤
∣∣∣E[S2

k,t|S2
k,t ≤ b

]
− σ2

k

∣∣∣+ (µ̃k − µk)2

≤
c1δ(1 + log(c2/δ)) + δσ2

k

1− δ
+
c1δ(1 + log(c2/δ))

(1− δ)2

≤
2c1δ(1 + log(c2/δ)) + δσ2

k

(1− δ)2
.

In order to get the final result, we first bound the variance σ2
k as a function of the constants c1

and c2 using the sub-Gaussian assumption as

σ2
k = E[(Xk,t − µk)2] =

∫ ∞
0

P[Xk,t − µk)2 > ε]dε ≤
∫ ∞

0
c2 exp(−ε/c1)dε = c1c2. (4.35)

Finally, using
√
|a2 − b2| ≥ |a− b| we obtain

|σ̃k − σk| ≤
√

2c1δ(1 + c2 + log(c2/δ))

1− δ
. (4.36)

Step 2. Application of large deviation inequalities.

Let ξ1 = ξ1,K,n(δ) be the event:

ξ1 =
⋂

1≤k≤K, 1≤t≤n

{
|Xk,t − µk| ≤

√
c1 log(c2/δ)

}
.

Under Assumption 4.4.2, using a union bound, we have that the probability of this event is at

least 1− nKδ. On ξ1, the {Xk,i}i, 1 ≤ k ≤ K, 1 ≤ i ≤ t are t i.i.d. bounded random variables

with standard deviation σ̃k.

Let ξ2 = ξ2,K,n(δ) be the event:
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ξ2 =
⋂

1≤k≤K, 1≤t≤n


∣∣∣∣∣
√√√√ 1

t− 1

t∑
i=1

(
Xk,i −

1

t

t∑
j=1

Xk,j

)2
− σ̃k

∣∣∣∣∣ ≤ 2
√
c1 log(c2/δ)

√
log(2/δ)

t− 1

 .

Using Theorem 10 of [Maurer and Pontil, 2009] and a union bound, we deduce that Pr(ξ1 ∩
ξ2) ≥ 1− 2nKδ. Now, from Equation 4.36, we have on ξ1 ∩ ξ2, for all 1 ≤ k ≤ K, 2 ≤ t ≤ n:

∣∣∣∣∣
√√√√ 1

t− 1

t∑
i=1

(
Xk,i −

1

t

t∑
j=1

Xk,j

)2
− σk

∣∣∣∣∣
≤ 2
√
c1 log(c2/δ)

√
log(2/δ)

t− 1
+

√
2c1δ(1 + c2 + log(c2/δ))

1− δ

≤ 2
√

2c1 log(c2/δ)

√
log(2/δ)

t
+

√
2c1δ(1 + c2 + log(c2/δ))

1− δ
,

from which we deduce Lemma 4 (since ξ1 ∩ ξ2 ⊆ ξ and 2 ≤ t ≤ n). �

We deduce the following corollary when the number of samples Tk,t are random.

Corollary 1 For any k = 1, . . . ,K and t = 2K, . . . , n, let {Xk,i}i be n i.i.d. random variables

drawn from νk, satisfying Assumption 4.4.2. Let Tk,t be any random variable taking values in

{2, . . . , n}. Let σ̂2
k,t be the empirical variance computed from Equation 4.8. Then, on the event

ξ, we have:

|σ̂k,t − σk| ≤ 2a

√
log(2/δ)

Tk,t
. (4.37)

4.B.1.2 Bound on the regret outside of ξ

The next lemma provides a bound for the loss whenever the event ξ does not hold.

Lemma 5 Let Assumption 4.4.2 holds. Then for every arm k:

E
[
(µ̂k,n − µk)2I{ξC}

]
≤ 2c1n

2Kδ(1 + log(c2/2nKδ)) .

Proof: Since the arms have sub-Gaussian distribution, for any 1 ≤ k ≤ K and 1 ≤ t ≤ n, we

have

P
[
(Xk,t − µk)2 ≥ ε

]
≤ c2 exp(−ε/c1) ,

and thus by setting ε = c1 log(c2/2nKδ), we obtain9

P
[
(Xk,t − µk)2 ≥ c1 log(c2/2nKδ)

]
≤ 2nKδ .

9Note that we need to choose c2 such that c2 ≥ 2nKδ = 2Kn−5/2 if δ = n−7/2, i.e. c2 ≥ 1.
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We thus know that

max
Ω/P(Ω)=2nKδ

E
[
(Xk,t − µk)2I{Ω}

]
≤
∫ ∞
c1 log(c2/2nKδ)

c2 exp(−ε/c1)dε+ c1 log(c2/2nKδ)P(Ω)

= 2c1nKδ(1 + log(c2/2nKδ)) .

Since the event ξC has a probability at most 2nKδ, for any 1 ≤ k ≤ K and 1 ≤ t ≤ n, we have

E
[
(Xk,t − µk)2I{ξC}

]
≤ max

Ω/P(Ω)=2nKδ
E
[
(Xk,t − µk)2I{Ω}

]
≤ 2c1nKδ(1 + log(c2/2nKδ)) .

The claim follows from the fact that E
[
(µ̂k,n − µk)

2I{ξC}
]
≤
∑n

t=1 E
[
(Xk,n − µk)

2I{ξC}
]
≤

2c1n
2Kδ(1 + log(c2/2nKδ)). �

4.B.1.3 Other Technical Inequalities

Upper and lower bound on a If δ = n−7/2, with n ≥ 4K ≥ 8

a =
√

2c1 log(c2/δ) +

√
c1δ(1 + c2 + log(c2/δ))

(1− δ)
√

2 log(2/δ)
n1/2

≤
√

7c1(c2 + 1) log(n) +
2

n5/4

√
c1(1 + c2)

≤ 2
√

2c1(c2 + 1) log(n).

We also have by just keeping the first term and choosing c2 such that c2 ≥ 1 ≥ en−7/2 = eδ

a =
√

2c1 log(c2/δ) +

√
c1δ(1 + c2 + log(c2/δ))

(1− δ)
√

2 log(2/δ)
n1/2

≥
√

2c1 ≥
√
c1.

Lower bound on c(δ) when δ = n−7/2 See Lemma 2 for the definition of c(δ). Using the

fact that the arms have sub-Gaussian distribution we showed in Equation 4.35 that σ2
k ≤ c1c2,

then we also have Σ ≤ Kc1c2. If δ = n−7/2, we obtain by using the previous lower bound on a

that
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c(δ = n−7/2) =
a
√

3 log(2/δ)
√

3K
(√

Σ/3 + a
√

3 log(2/δ)
)

=
1√
3K

(
1−

√
Σ/3√

Σ/3 + a
√

log 2/δ

)

≥ 1√
3K

(
1−

√
Σ/3√

Σ/3 +
√
c1 log 2/δ

)

≥ 1√
3K

(
1−

√
Σ/3√

Σ/3 +
√
c1

)

≥ 1√
K

(
1

√
Kc2 +

√
3

)

by using Σ ≤ c2c1 for the last step.

Upper bound on the loss outside ξ when δ = n−7/2 We get from Lemma 5 when δ = n−7/2

and when choosing c2 ≥ 1

E
[
(µ̂k,n − µk)2I{ξC}

]
≤ 2c1n

2Kδ
(

1 + log
( c2

2nKδ

))
≤ 2c1Kn

−3/2
(

1 + (c2 + 1) log
(n5/2

2K

))
≤ 2c1Kn

−3/2
(
1 +

5

2
(c2 + 1) log(n)

)
≤ 7c1K(c2 + 1) log(n)n−3/2.

Upper bound on B for δ = n−7/2 See the proof of Lemma 2 for the definition of B.

B = 16Ka
√

log(2/δ)

(
√

Σ +
2a
√

log(2/δ)

c(δ)

)
= 16Ka

√
7/2 log(2n)

(√
Σ + 2

√
K(
√

Σ + 3a
√

7/2 log(2n))
)

≤ 16Ka
√

7/2 log(2n)
(√

Σ + 2
√
KΣ + 12

√
K
√
c1(c2 + 1)7 log(n) log(2n)

)
≤ 16Ka

√
7/2 log(2n)

(
3K
√
c1c2 + 45

√
K
√
c1(c2 + 1) log(n)

)
≤ 32K

√
7c1(c2 + 1) log n log(2n)

(
48K

√
c1(c2 + 1) log(n)

)
≤ 6× 103K2c1(c2 + 1) log2(n).

Upper bound on C for δ = n−7/2 See the proof of Lemma 2 for the definition of C.
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C = 64
√

2K3/2a2 log(2/δ)√
c(δ)

≤ 64
√

2K3/2 a2 log 2/δ
√
a(3 log 2/δ)1/4

K1/4(
√

Σ + 3a
√

log 2/δ)1/2

≤ 64
√

2K3/2a3/2(log 2/δ)3/4 1

31/4
K1/4(

√
Kc1c2 + 6

√
2c1(c2 + 1) log n

√
7 log n)1/2

≤ 64
√

2
1

31/4
K7/4(2

√
2c1(c2 + 1) log n)3/2(7 log n)3/4

√
24K1/4(c1(c2 + 1))1/4

√
log n

≤ 7× 103K2c1(c2 + 1) log2(n).

4.B.2 Allocation Performance

In this section, we first provide the proof of Lemma 2, we then derive the regret bound of The-

orem 5 in the general case, and we prove the Theorem 6 for Gaussians.

Proof: [Proof of Lemma 2] The proof consists of the following five main steps.

Step 1. Lower bound of order O(
√
n). Let k be the index of an arm such that Tk,n ≥ n

K

and t+ 1 ≤ n be the last time that it was pulled, i.e., Tk,t = Tk,n− 1 and Tk,t+1 = Tk,n. 10 From

Equation 4.37 and the fact that Tk,n ≥ n
K ≥ 4, we obtain on ξ

Bk,t+1 ≤
1

Tk,t

(
σk + 4a

√
log(2/δ)

Tk,t

)2

≤ 4K

3n

(√
Σ + 4a

√
log(2/δ)

3

)2

, (4.38)

where we also used Tk,n ≥ 4 to bound Tk,t in the parenthesis and the fact that σk ≤
√

Σ. Since

at time t we assumed that arm k has been chosen then for any other arm q, we have

Bq,t+1 ≤ Bk,t+1. (4.39)

From the definition of Bq,t+1, removing all the terms but the last and using the fact that

Tq,t ≤ Tq,n, we obtain the lower bound

Bq,t+1 ≥ 4a2 log(2/δ)

T 2
q,t

≥ 4a2 log(2/δ)

T 2
q,n

. (4.40)

Combining Equations 4.38–4.40, we obtain

4a2 log(2/δ)

T 2
q,n

≤
4K
(√

Σ + 3a
√

log(2/δ)
)2

3n
.

10Note that such an arm always exists for any possible allocation strategy given the constraint n =
∑
q Tq,n.
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Finally, this implies that for any q

Tq,n ≥
2a
√

log(2/δ)(√
Σ + 3a

√
log(2/δ)

)√ 3n

4K
. (4.41)

In order to simplify the notation, in the following we use

c(δ) =
a
√

3 log(2/δ)
√
K
(√

Σ + 3a
√

log(2/δ)
) ,

thus obtaining Tq,n ≥ c(δ)
√
n on the event ξ for any q.

Step 2. Mechanism of the algorithm. Similar to Step 1 of the proof of Lemma 1, we first

recall the definition of Bq,t+1 used in the B-AS algorithm

Bq,t+1 =
1

Tq,t

(
σ̂q,t + 2a

√
log(2/δ)

Tq,t

)2

.

Using Lemma 1 it follows that on ξ, for any q,

σ2
q

Tq,t
≤ Bq,t+1 ≤

1

Tq,t

(
σq + 4a

√
log(2/δ)

Tq,t

)2

. (4.42)

Let t + 1 > 2K be the time when an arm q is pulled for the last time, that is Tq,t = Tq,n − 1.

Note that there is at least an arm that verifies this as n ≥ 4K. Since at time t+ 1 this arm q is

chosen, then for any other arm p, we have

Bp,t+1 ≤ Bq,t+1 . (4.43)

From Equation 4.42 and Tq,t = Tq,n − 1, we obtain

Bq,t+1 ≤
1

Tq,t

(
σq + 4a

√
log(2/δ)

Tq,t

)2

=
1

Tq,n − 1

(
σq + 4a

√
log(2/δ)

Tq,n − 1

)2

. (4.44)

Furthermore, since Tp,t ≤ Tp,n, then

Bp,t+1 ≥
σ2
p

Tp,t
≥

σ2
p

Tp,n
. (4.45)

Combining Equations 4.43–4.45, we obtain

σ2
p

Tp,n
(Tq,n − 1) ≤

(
σq + 4a

√
log(2/δ)

Tq,n − 1

)2

.
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Summing over all q that are pulled after initialization on both sides, we obtain on ξ for any arm

p

σ2
p

Tp,n
(n− 2K) ≤

∑
q|Tq,n>2

(
σq + 4a

√
log(2/δ)

Tq,n − 1

)2

, (4.46)

because the arms that are not pulled after the initialization are only pulled twice.

Step 3. Intermediate lower bound. It is possible to rewrite Equation 4.46, using the fact

that Tq,n ≥ 2, as

σ2
p

Tp,n
(n− 2K) ≤

∑
q

(
σq + 4a

√
log(2/δ)

Tq,n − 1

)2

≤
∑
q

(
σq + 4a

√
2 log(2/δ)

Tq,n

)2

.

Plugging Equation 4.41 in Equation 4.46, we have on ξ for any arm p

σ2
p

Tp,n
(n− 2K) ≤

∑
q

(
σq + 4a

√
2 log(2/δ)

Tq,n

)2

≤

(
√

Σ + 4
√
Ka

√
2

log(2/δ)

c(δ)
√
n

)2

, (4.47)

because for any sequence (ak)i=1,...,K ≥ 0, and any b ≥ 0,
∑

k(ak + b)2 ≤ (
√∑

k a
2
k +
√
Kb)2 by

Cauchy-Schwartz.

Building on this bound we shall recover the desired bound.

Step 4. Final lower bound. We first develop the square in Equation 4.46 using Tq,n ≥ 2 as

σ2
p

Tp,n
(n− 2K) ≤

∑
q

σ2
q + 8a

√
2 log(2/δ)

∑
q

σq√
Tq,n

+
∑
q

32a2 log(2/δ)

Tq,n
.

We now use the bound in Equation 4.47 in the second term of the RHS and the bound in

Equation 4.41 to bound Tk,n in the last term, thus obtaining

σ2
p

Tp,n
(n− 2K) ≤ Σ + 8a

√
2 log(2/δ)

K√
n− 2K

(
√

Σ + 4
√
Ka

√
2

log(2/δ)

c(δ)
√
n

)
+

32Ka2 log(2/δ)

c(δ)
√
n

.

By using again n ≥ 4K and some algebra, we get

σ2
p

Tp,n
(n− 2K) ≤ Σ + 16Ka

√
Σ log(2/δ)

n
+ 64
√

2K3/2a2 log(2/δ)√
c(δ)

n−3/4 +
32Ka2 log(2/δ)

c(δ)
√
n

= Σ +
16Ka

√
log(2/δ)√
n

(
√

Σ +
2a
√

log(2/δ)

c(δ)

)
+ 64
√

2K3/2a2 log(2/δ)√
c(δ)

n−3/4. (4.48)
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We now invert the bound and obtain the final lower-bound on Tp,n as follows:

Tp,n ≥
σ2
p(n−2K)

Σ

[
1 +

16Ka
√

log(2/δ)

Σ
√
n

(
√

Σ +
2a
√

log(2/δ)

c(δ)

)
+ 64
√

2K3/2a2 log(2/δ)

Σ
√
c(δ)

n−3/4

]−1

≥
σ2
p(n− 2K)

Σ

[
1−

16Ka
√

log(2/δ)

Σ
√
n

(
√

Σ +
2a
√

log(2/δ)

c(δ)

)
− 64

√
2K3/2a2 log(2/δ)

Σ
√
c(δ)

n−3/4

]

≥ T ∗p,n −Kλp

[
16a
√

log(2/δ)

Σ

(
√

Σ +
2a
√

log(2/δ)

c(δ)

)
n1/2 + 64

√
2Ka2 log(2/δ)

Σ
√
c(δ)

n1/4 + 2

]
.

Note that the above lower bound holds with high probability for any arm p.

Step 5. Upper bound. The upper bound on Tp,n follows by using Tp,n = n−
∑

q 6=p Tq,n and

the previous lower bound, that is

Tp,n ≤ n−
∑
q 6=p

T ∗q,n

+
∑
q 6=p

Kλq

[
16a
√

log(2/δ)

Σ

(
√

Σ +
2a
√

log(2/δ)

c(δ)

)
n1/2 + 64

√
2Ka2 log(2/δ)

Σ
√
c(δ)

n1/4 + 2

]

≤ T ∗p,n +K

[
16a
√

log(2/δ)

Σ

(
√

Σ +
2a
√

log(2/δ)

c(δ)

)
n1/2 + 64

√
2Ka2 log(2/δ)

Σ
√
c(δ)

n1/4 + 2

]
.

�

4.B.3 Regret Bounds

With the allocation performance, we now move to the regret bound showing how the number of

pulls translates into the losses Lkn and the global regret as stated in Theorem 5.

Proof: [Proof of Theorem 5]

At first let us call, for the sake of convenience,

B = 16Ka
√

log(2/δ)

(
√

Σ +
2a
√

log(2/δ)

c(δ)

)
and C = 64

√
2K3/2a2 log(2/δ)√

c(δ)
.

Then Equation 4.48 easily becomes

σ2
p

Tp,n
(n− 2K) ≤ Σ +

B√
n

+
C

n3/4
. (4.49)
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We also have the upper bound in Lemma 2 which can be rewritten:

Tp,n ≤ T ∗p,n +
B

Σ

√
n+

C

Σ
n1/4 + 2K.

Note that because this upper bound holds on an event of probability bigger than 1− 4nKδ and

also because of Tp,n is bounded by n anyways, we can convert the former upper bound in a

bound in expectation:

E(Tp,n) ≤ T ∗p,n +
B

Σ

√
n+

C

Σ
n1/4 + 2K + n× 4nKδ. (4.50)

We recall that the loss of any arm k is decomposed in two parts as follows:

Lk,n = E[(µ̂k,n − µ)2I{ξ}] + E[(µ̂k,n − µ)2I{ξC}].

By combining that and Equations 4.49, 4.50, and 4.16 (as done in Equation 4.25), we obtain for

the first part of the loss:

E[(µ̂k,n − µ)2I{ξ}]

≤ 1

σ2
p(n− 2K)2

(
Σ +

B√
n

+
C

n3/4

)2(
T ∗p,n +

B

Σ

√
n+

C

Σ
n1/4 + 2K + 4n2Kδ

)
≤ 1

(n− 2K)2

(
Σ2 + 2Σ(

B√
n

+
C

n3/4
) +

(B + C)2

n

)( n
Σ

+
B

Σ2λk

√
n+

C

Σ2λk
n1/4 +

2K

Σλk
+

4n2Kδ

Σλk

)
≤ 1

(n− 2K)2

(
nΣ +

B

λk

√
n+

C + 2KΣ

λk
n1/4 +

4n2KΣδ

λk
+ 2B

√
n+ 2Cn1/4

+
2(B + C)(BΣ + C

Σ + 2K)

λk
+

8(B + C)n3/2Kδ

λk
+ (B + C)2

( 1

Σ
+

(B + C)

Σ2λk
+

2K

Σλk

)
+ 4nKδ

(B + C)2

Σλk

)

≤ 1

(n− 2K)2

(
nΣ +

3B

λk

√
n+

3C + 2KΣ

λk
n1/4 + 12K

(B + C)3

λk
(

1

Σ2
+ 1)

+
4δn2K

λk

(
Σ + 2(B + C) +

(B + C)2

Σ

))
,

since B + C ≥ 1.

Now note, as δ = n−7/2, that
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E[(µ̂k,n − µ)2I{ξ}]

≤ 1

(n− 2K)2

(
nΣ +

3B

λk

√
n+

3C + 2KΣ

λk
n1/4 + 12K

(B + C)3

λk
(

1

Σ2
+ 1) +

4KΣ

n3/2λk

(
1 +

(B + C)

Σ

)2
)

≤

(
1

n2
+

8K

n3

)(
nΣ +

3B

λk

√
n+

3C + 2KΣ

λk
n1/4 + 12K

(B + C)3

λk
(

1

Σ2
+ 1) +

8KΣ

n3/2λk
(B + C)2(1 +

1

Σ2
)

)

≤ Σ

n
+

8KΣ

n2
+

3

n2

(
3B

λk

√
n+

3C + 2KΣ

λk
n1/4 + 12K

(B + C)3

λk
(

1

Σ2
+ 1) +

8KΣ

n3/2λk
(B + C)2(1 +

1

Σ2
)

)

≤ Σ

n
+

9B

n3/2λk
+

8KΣ

n2
+

3

n7/4λk

(
3C + 2KΣ + 12K(B + C)3(1 + Σ)(

1

Σ2
+ 1)

)

≤ Σ

n
+

9B

n3/2λk
+

8KΣ

n2
+

3

n7/4λk

(
17K(B + C)3(1 + Σ)(

1

Σ2
+ 1)

)

≤ Σ

n
+

9B

n3/2λmin
+ 60K(B + C)3(1 + Σ)(

1

Σ2
+ 1)

1

n7/4λmin

again since B + C ≥ 1.

Finally, combining that with Lemma 5 gives us for the regret:

Rn ≤
9B

n3/2λmin
+ 60K

(B + C)3

n7/4λmin
(

1

Σ2
+ 1)(1 + Σ) + 2c1n

2Kδ(1 + log(c2/2nKδ)).

By recalling the bounds on B and C in 4.B.1.3 and taking δ = n−7/2, we obtain:

Rn ≤
9B

n3/2λmin
+ 60K

(B + C)3

n7/4λmin
(

1

Σ2
+ 1)(1 + Σ) + 7c1(c2 + 1)K log(n)n−3/2

≤ 54× 103c1(c2 + 1)K2 log(n)2

λminn3/2
+O

( log(n)6K7

n7/4λmin

)
.

�

4.C Regret Bound for Gaussian Distributions

Here we report the proof of Lemma 3 which states that when the distributions of the arms

are Gaussian, bounding the regret of the B-AS algorithm does not require upper-bounding the

number of pulls Tk,n (it can be bounded only by using a lower bound on the number of pulls).

Before reporting the proof of Lemma 3, we recall a property of the normal distribution that is

used in this proof (see e.g., Brémaud [1988]).

Proposition 3 Let X1, . . . , Xn be n i.i.d. Gaussian random variables. Then their empirical

mean m̂n = 1
n

∑n
i=1Xi and empirical variance ŝ2

n = 1
n−1

∑n
i=1(Xi − m̂n)2 are independent of

each other.
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Let {Xt}t≥1 be a sequence of i.i.d. random variables drawn from a Gaussian distribution

N(µ, σ2). Write m̂t = 1
t

∑t
i=1Xi and ŝ2

t = 1
t−1

∑t
i=1(Xi− m̂t)

2 the empirical mean and variance

of the t first samples. We first deduce from the last proposition the following Lemma.

Lemma 6 We have

ŝ2
t+1 =

t− 1

t
ŝ2
t +

1

t+ 1
(Xt+1 − m̂t)

2.

We deduce by induction that for any t ≥ 2 there exists a sequence of non-negative real numbers

{a1,t, a2,t, . . . , at,t} such that

ŝ2
t = a1,tŝ

2
2 +

t−1∑
i=2

ai,t(Xi+1 − m̂i)
2.

Proof:

We have

ŝ2
t+1 =

1

t

t+1∑
i=1

(Xi − m̂t+1)2

=
1

t

t∑
i=1

(Xi − m̂t+1 + m̂t − m̂t)
2 +

1

t
(Xt+1 − m̂t+1)2

=
1

t

t∑
i=1

(Xi − m̂t)
2 +

1

t
(Xt+1 − m̂t+1)2 + (m̂t − m̂t+1)2

=
1

t

t∑
i=1

(Xi − m̂t)
2 +

t

(t+ 1)2
(Xt+1 − m̂t)

2 +
1

(t+ 1)2
(Xt+1 − m̂t)

2

=
1

t

t∑
i=1

(Xi − m̂t)
2 +

1

t+ 1
(Xt+1 − m̂t)

2,

which finishes the proof. �

Before proving Lemma 3, we first derive a general result showing that for Gaussian distri-

butions, the empirical mean m̂t built on t i.i.d. samples is independent from the sequence of

standard deviations ŝ2, . . . , ŝt.

Lemma 7 Let Ft be the filtration generated by the sequence of random variables ŝ2, . . . , ŝt. Then

for all t ≥ 2,

m̂t

∣∣Ft ∼ N
(
µ,
σ2

t

)
.

Proof: We prove the statement by induction.

The base of the induction (t = 2) is directly implied by the specific properties of Gaussian

distributions. In fact, m̂2 is distributed as N(µ, σ2/2) and m̂2 and ŝ2 are independent.
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Now we focus on the inductive step. For any t ≥ 2, let Gt be the filtration generated by

the random variables ŝ2
2 and {(Xi+1 − m̂i)

2}2≤i≤t−1. The recursive definition of the empirical

variance in Lemma 6 immediately implies that the knowledge of {ŝ2, . . . , ŝt} is equivalent to the

knowledge of ŝ2
2 and {(Xi+1−m̂i)

2}2≤i≤t−1 and thus Ft = Gt. We assume (inductive hypothesis)

m̂t

∣∣Gt ∼ N
(
µ,
σ2

t

)
, (4.51)

and we now show that (4.51) also holds for t+1. Let U = (Xt+1−m̂t)|Gt and V = (m̂t+1−µ)|Gt.
Note that V can be written as V =

(
t
t+1(m̂t − µ) + 1

t+1(Xt+1 − µ)
)
|Gt. Since samples are i.i.d.,

Xt+1 is independent from (X1, . . . , Xt) and

Xt+1

∣∣Gt ∼ N(µ, σ2)

and thus Xt+1|Gt is also independent of m̂t|Gt. This fact combined with (4.51) implies that U

and V are zero-mean jointly-Gaussian variables. Furthermore, we can show that they are also

uncorrelated since

E
[
UV

]
= E

[(
Xt+1 − m̂t

)( 1

t+ 1
Xt+1 +

t

t+ 1
m̂t − µ

)∣∣∣Gt]
= E

[(
(Xt+1 − µ)− (m̂t − µ)

)( 1

t+ 1
(Xt+1 − µ) +

t

t+ 1
(m̂t − µ)

)∣∣∣Gt]
=

1

t+ 1
σ2 − t

t+ 1

σ2

t
= 0.

As a result, U and V are independent and

(m̂t+1 − µ)
∣∣Gt+1 = (m̂t+1 − µ)

∣∣{Gt, (Xt+1 − m̂t)
2} = (m̂t+1 − µ)

∣∣{Gt, U} = V
∣∣U = V.

Finally, we deduce that

m̂t+1

∣∣Gt+1 ∼ N
(
µ,

σ2

t+ 1

)
,

which concludes the proof since Gt+1 = Ft+1. �

We now study an adaptive algorithm which computes the empirical average m̂t and that at

each time t decides whether to stop collecting samples or not on the basis of the sequence of

empirical standard deviations ŝ2, . . . , σ̂t observed so far. Let T ≥ 2 be a integer-valued random

variable, which is a stopping time with respect to Ft. This means that the decision of whether

to stop at any time before t + 1 (the event {T ≤ t}) only depends on the previous empirical
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standard deviations ŝ2, . . . , ŝt. From an immediate application of Lemma 7 we obtain

E[(m̂T − µ)2] =
∑
t≥2

E[(m̂t − µ)2|T = t]P(T = t)

=
∑
t≥2

E[E[(m̂t − µ)2|Ft, T = t]|T = t]P(T = t)

=
∑
t≥2

E[E[(m̂t − µ)2|Ft]|T = t]P(T = t) =
∑
t≥2

σ2
k

t
P(T = t) = σ2

kE
[ 1

T

]
.

The previous result seamlessly extends to the general multi-armed bandit allocation problem

considered in the Chapter.

Proof: [Proof of Lemma 3]

Let us now consider algorithms CH-AS and B-AS. For any arm k, the event {Tk,n > t}
depends on the filtration Fk,t (generated by the sequence of empirical variances of the samples

of arm k) and also on the “environment” E−k (defined by all the samples of other arms). Since

the samples of arm k are independent from E−k, we deduce that by conditioning on E−k Lemma 7

still applies and

E[(µ̂k,n − µ)2] = EE−k

[
E[(µ̂k,n − µ)2|E−k]

]
= σ2

kEE−k

[
E
[ 1

Tk,n
|E−k

]]
= σ2

kE
[ 1

Tk,n

]
.

�

We now report the proof of Theorem 6.

Proof: [Proof of Theorem 6] Note that Lemma 2 is only based on the assumption that samples are

generated by a sub-Gaussian distribution. Here we strengthen that assumption and require all

the distributions to be Gaussian with parameters µk and σ2
k. We recall Lemma 3 and decompose

the loss in order to obtain

Lk,n = σ2
kE
[ 1

Tk,n

]
= σ2

kE
[ 1

Tk,n
I{ξ}

]
+ σ2

kE
[ 1

Tk,n
I{ξc}

]
.

From the bound in Equation 4.49, we have (since n ≥ 4K)

σ2
kE
[ 1

Tk,n
I{ξ}

]
≤ max

ξ

[ σ2
k

Tk,n

]
≤ Σ

n
+

4KΣ

n2
+

2B

n3/2
+

2C

n7/4

≤ Σ

n
+

4KΣ

n2
+

12× 103

n3/2
K2c1(c2 + 1) log2(n) +

14× 103

n7/4
K2c1(c2 + 1) log2(n)

≤ Σ

n
+

12× 103

n3/2
K2(1 + c1(c2 + 1)) log2(n) +

14× 103

n7/4
K2c1(c2 + 1) log2(n). (4.52)
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where we use the bounds on B and C in 4.B.1.3. As δ = n−7/2, and by Lemma 4 we know that

P(ξc) ≤ 2nKδ and as a result

σ2
kE
[ 1

Tk,n
I{ξc}

]
≤ 2Kσ2

kn
−5/2 ≤ K

2
n−5/2. (4.53)

Finally, combining Equations 4.52 and 4.53, and recalling the definition of regret, we have

Rn ≤
12× 103

n3/2
K2(1 + c1(c2 + 1)) log2(n) +

14× 103

n7/4
K2c1(c2 + 1) log2(n) +

K

2
n−5/2 (4.54)

≤ 12× 103

n3/2
K2(1 + c1(c2 + 1)) log2(n) +

14× 103

n7/4
K2(1 + c1(c2 + 1)) log2(n).

�
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Chapter 5

Minimax strategy for Stratified

Sampling for Monte Carlo

This Chapter is the product of a joint work with Rémi Munos and András Antos. A short (not

including the proofs and some elements) version of it was published (only with Rémi Munos) in

the Conference of Neural Information Processing System in 2011 (see [Carpentier and Munos,

2011a]). It is the first of four works on adaptive stratified Monte-Carlo. In this Chapter, we

consider that a partitioning of the domain (on which the function is defined) is fixed. We discuss

about adaptive procedures for efficiently sampling in each region of the partitioning (stratum).

The three following Chapters discuss, in different settings, strategies for partitioning the domain.

We consider the problem of stratified sampling for Monte-Carlo integration. We model this

problem in a multi-armed bandit setting, where the arms represent the strata, and the goal is to

estimate a weighted average of the mean values of the arms. We propose a strategy that samples

the arms according to an upper bound on their standard deviations and compare its estimation

quality to an ideal allocation that would know the standard deviations of the strata. We provide

two pseudo-regret1 analyses: a distribution-dependent bound of order Õ(n−3/2) that depends on

a measure of the disparity of the strata, and a distribution-free bound Õ(n−4/3) that does not2.

We also provide the first problem independent (minimax) lower bound for this problem and

demonstrate that MC-UCB matches this lower bound both in terms of number of samples n and

in terms of number of strata K. Finally, we link the pseudo-regret with the difference between

the mean squared error on the estimated weighted average of the mean values of the arms,

and the optimal “oracle” strategy: this provides us also a problem dependent and a problem

independent rate for this measure of performance and, as a corollary, asymptotic optimality.

Contents

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

5.2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

1We define this notion in Section 5.2. It is a proxy on the difference between the mean squared error on the
estimated weighted average of the mean values of the arms, and the optimal “oracle” strategy.

2The notation Õ(·) corresponds to O(·) up to logarithmic factors.
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5.1 Introduction

Consider a polling institute that has to estimate as accurately as possible the average income

of a country, given a finite budget for polls. The institute has call centers in every region in

the country, and gives a part of the total sampling budget to each center so that they can

call random people in the area and ask about their income. A naive method would allocate

a budget proportionally to the number of people in each area. However some regions show a

high variability in the income of their inhabitants whereas others are very homogeneous. Now

if the polling institute knows the level of variability within each region, it could adjust the

budget allocated to each region in a more clever way (allocating more polls to regions with high

variability) in order to reduce the final estimation error.

This example is just one of many for which an efficient method of sampling a function with

natural strata (i.e., the regions) is of great interest. Note that even in the case that there are

no natural strata, it is always a good strategy to design arbitrary strata and allocate a budget

to each stratum that is proportional to the size of the stratum, compared to a crude Monte-

Carlo. There are many good surveys on the topic of stratified sampling for Monte-Carlo, such

as [Rubinstein and Kroese, 2008][Subsection 5.5] or [Glasserman, 2004].

The main problem for performing an efficient sampling is that the variances within the strata

(in the previous example, the income variability per region) are unknown. One possibility is

to estimate the variances online while sampling the strata. There is some interesting research

along this direction, such as [Arouna, 2004] and more recently [Etoré and Jourdain, 2010; Kawai,

2010]. The work of Etoré and Jourdain [2010] matches exactly our problem of designing an

efficient adaptive sampling strategy. In this paper they propose to sample according to an

empirical estimate of the variance of the strata, whereas Kawai [2010] addresses a computational

complexity problem which is slightly different from ours. The recent work of Etoré et al. [2011]

describes a strategy that enables to sample asymptotically according to the (unknown) standard

deviations of the strata and at the same time adapts the shape (and number) of the strata

online. This is a very difficult problem, especially in high dimension, that we will not address

here, although we think this is a very interesting and promising direction for further researches.

These works provide asymptotic convergence of the variance of the estimate to the targeted

stratified variance 3 divided by the sample size. They also prove that the number of pulls within

each stratum converges asymptotically to the desired number of pulls i.e. the optimal allocation if

the variances per stratum were known. Like Etoré and Jourdain [2010], we consider a stratified

Monte-Carlo setting with fixed strata. Our contribution is to design a sampling strategy for

which we can derive a finite-time analysis (where ’time’ refers to the number of samples). This

enables us to predict the quality of our estimate for any given budget n.

We model this problem using the setting of multi-armed bandits where our goal is to estimate

a weighted average of the mean values of the arms. Although our goal is different from a usual

3The target is defined in [Subsection 5.5] of [Rubinstein and Kroese, 2008] and later in this Chapter, see
Equation 5.4.
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bandit problem where the objective is to play the best arm as often as possible, this problem

also exhibits an exploration-exploitation trade-off. The arms have to be pulled both in order to

estimate the initially unknown variability of the arms (exploration) and to allocate correctly the

budget according to our current knowledge of the variability (exploitation).

Our setting is close to the one described in [Antos et al., 2010] which aims at estimating

uniformly well the mean values of all the arms. The authors present an algorithm, called

GAFS-MAX, that allocates samples proportionally to the empirical variance of the arms, while

imposing that each arm is pulled at least
√
n times to guarantee a sufficiently good estimation

of the true variances. Another approach for this problem, still with a bandit formalism, can be

found in [Carpentier et al., 2011a], and the analysis is extended.

Note tough that in the Master Thesis [Grover, 2009], the author presents an algorithm

named GAFS-WL which is similar to GAFS-MAX and has an analysis close to the one of

GAFS-MAX. It deals with stratified sampling, i.e. it targets an allocation which is proportional

to the standard deviation (and not to the variance) of the strata time their size4. They define a

proxy on the mean squared error that they write loss, and prove that the difference between the

loss of GAFS-WL and the optimal static loss is of order Õ(n−3/2), where the Õ(.) depends of

the problem. There are however some open questions in this very good Master Thesis. A first

one is on the existence of a problem dependent bound for GAFS-WL. A second important issue

is on the links between the loss they define and the intuitive, related measure of performance,

which is the mean squared error. Without this link, they are not able to prove that GAFS-WL

is asymptotically optimal.

Our objective is similar, and we extend the analysis of this setting. We introduced in

paper [Carpentier and Munos, 2011a] algorithm MC-UCB, a new algorithm based on Upper-

Confidence-Bounds (UCB) on the standard deviations. They are computed from the empirical

standard deviation and a confidence interval derived from Bernstein’s inequalities. The algo-

rithm, called MC-UCB, samples the arms proportionally to an UCB5 on the standard deviation

times the size of the stratum. We provided finite-time, problem dependent and problem inde-

pendent bounds for the loss of this algorithm, filling the gap in [Grover, 2009]. We however, as

in [Grover, 2009], did not link this pseudo-regret to the mean squared-error.

Contributions: In this Chapter we extend the analysis of MC-UCB in [Carpentier and Munos,

2011a]. Our contributions are the following:

• We provide two pseudo-regret analysis: (i) a distribution-dependent bound of order Õ(n−3/2)

that depends on the disparity of the stratas (a measure of the problem complexity), and

which corresponds to a stationary regime where the budget n is large compared to this

complexity. (ii) A distribution-free bound of order Õ(n−4/3) that does not depend on

4This is explained in [Rubinstein and Kroese, 2008] and will be formulated precisely later.
5Note that we consider a sampling strategy based on UCBs on the standard deviations of the arms whereas

the so-called UCB algorithm of Auer et al. [2002], in the usual multi-armed bandit setting, computes UCBs on
the mean rewards of the arms.
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the the disparity of the stratas, and corresponds to a transitory regime where n is small

compared to the complexity. The characterization of those two regimes and the fact that

the corresponding excess error rates differ enlightens the fact that a finite-time analysis is

very relevant for this problem.

• More precisely, we improve the problem independent upper bound in terms of K. This

bound on the expectation of the pseudo-regret is of order Õ(K
1/3

n4/3 ) where K is the number

of strata.

• We also provide a minimax lower bound on the expectation of the pseudo-regret for the

problem of stratified Monte-Carlo of order Ω(K
1/3

n4/3 ). As a matter of fact, the problem

independent lower-bound matches the problem independent upper-bound for MC-UCB,

in terms of n and K. It induces that MC-UCB is minimax optimal in terms of pseudo-

regret.

• Finally, by clarifying the notion of pseudo-regret that we introduce in Section 5.2, we

provide finite-time bound on the mean squared error of the estimate of the integral. As a

corollary, we obtain also asymptotic consistency of our algorithm.

The rest of the Chapter is organized as follows. In Section 5.2 we formalize the problem

and introduce the notations used throughout the Chapter. Section 5.3 states the minimax

lower bound on the pseudo-regret. Section 5.4 introduces the MC-UCB algorithm and reports

performance bounds. Section 5.5 discusses the bridges between the pseudo regret and the mean

squared error. We then discuss in Section 5.6 about the parameters of the algorithm and its

performances. In Section 5.7 we report numerical experiments that illustrate our method to the

problem of pricing Asian options as introduced in [Glasserman et al., 1999]. Finally, Section 5.8

concludes the Chapter and suggests future works.

5.2 Preliminaries

The allocation problem mentioned in the previous section is formalized as a K-armed bandit

problem where each arm (stratum) k = 1, . . . ,K is characterized by a distribution νk with mean

value µk and variance σ2
k. At each round t ≥ 1, an allocation strategy (or algorithm) A selects

an arm kt and receives a sample drawn from νkt independently of the past samples. Note that

a strategy may be adaptive, i.e., the arm selected at round t may depend on past observed

samples. Let {wk}k=1,...,K denote a known set of positive weights which sum to 1. For example

in the setting of stratified sampling for Monte-Carlo, this would be the probability mass in each

stratum. The goal is to define a strategy that estimates as precisely as possible µ =
∑K

k=1wkµk

using a total budget of n samples.

Let us write Tk,t =
∑t

s=1 I{ks = k} the number of times arm k has been pulled up to time

t, and µ̂k,t =
1

Tk,t

Tk,t∑
s=1

Xk,s the empirical estimate of the mean µk at time t, where Xk,s denotes
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the sample received when pulling arm k for the s-th time.

After n rounds, the algorithm A returns the empirical estimate µ̂k,n of all the arms. Note that

in the case of a deterministic strategy, the expected quadratic estimation error of the weighted

mean µ as estimated by the weighted average µ̂n =
∑K

k=1wkµ̂k,n satisfies:

E
[(
µ̂n − µ

)2]
= E

[(∑K
k=1wk(µ̂k,n − µk)

)2]
=
∑K

k=1w
2
k
σ2
k

Tk,n
,

where E
[
.
]

is the expectation integrated over all the samples of all arms.

We thus use the following measure for the performance of any algorithm A:

Ln(A) =
∑K

k=1w
2
k
σ2
k

Tk,n
. (5.1)

We denote this quantity by pseudo-loss, as it is a proxy of the true loss of the algorithm,

which is E
[(
µ̂n − µ

)2]
. This loss is not the same as in [Grover, 2009] and in [Carpentier and

Munos, 2011a]. We give some properties of this pseudo-loss in Section 5.5. We also provide

in Subsection 5.5.1 properties of the loss defined in papers [Grover, 2009] and [Carpentier and

Munos, 2011a].

The goal is to define an allocation strategy that minimizes the global pseudo-loss defined in

Equation 5.1. If the variance of the arms were known in advance, one could design an optimal

static6 allocation strategy A∗ by pulling each arm k proportionally to the quantity wkσk. Indeed,

if arm k is pulled a deterministic number of times T ∗k,n, then 7

Ln(A∗) =
∑K

k=1w
2
k
σ2
k

T ∗k,n
. (5.2)

By choosing T ∗k,n such as to minimize Ln under the constraint that
∑K

k=1 T
∗
k,n = n, the

optimal static allocation (up to rounding effects) of algorithm A∗ is to pull each arm k,

T ∗k,n =
wkσk∑K
i=1wiσi

n , (5.3)

times, and achieves a global pseudo-loss (or loss as the (T ∗k,n)k are deterministic)

Ln(A∗) =
Σ2
w

n
, (5.4)

where Σw =
∑K

i=1wiσi (we assume in the sequel that Σw > O). In the following, we write

λk =
T ∗k,n
n = wkσk

Σw
the optimal allocation proportion for arm k and λmin = min1≤k≤K λk. Note

that a small λmin means a large disparity of the wkσk and, as explained later, provides for the

algorithm we build in Section 5.4 a characterization of the hardness of a problem.

However, in the setting considered here, the σk are unknown, and thus the optimal allocation

6Static means that the number of pulls allocated to each arm does not depend on the received samples.
7As it will be discussed later, this equality does not hold when the number of pulls is random, as it is the case

of adaptive algorithms where the strategy depends on the observed samples.
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is out of reach. A possible allocation is the uniform strategy Au, i.e., such that T uk = wk∑K
i=1 wi

n.

Its pseudo-loss (and loss as the (T uk )k are deterministic) is

Ln(Au) =
∑K

k=1wk
∑K

k=1
wkσ

2
k

n =
Σw,2
n ,

where Σw,2 =
∑K

k=1wkσ
2
k. Note that by Cauchy-Schwartz’s inequality, we have Σ2

w ≤ Σw,2 with

equality if and only if the (σk)k are all equal. Thus A∗ is always at least as good as Au. In

addition, since
∑

iwi = 1, we have Σ2
w − Σw,2 = −

∑
k wk(σk − Σw)2. The difference between

those two quantities is the weighted quadratic variation of the σk around their weighted mean

Σw. In other words, it is the variance of the (σk)1≤k≤K . As a result the gain of A∗ compared to

Au grow with the disparity of the σk.

We would like to do better than the uniform strategy by considering an adaptive strategy

A that would estimate the σk at the same time as it tries to implement an allocation strategy

as close as possible to the optimal allocation algorithm A∗. This introduces a natural trade-off

between the exploration needed to improve the estimates of the variances and the exploitation

of the current estimates to allocate the pulls nearly-optimally.

In order to assess how well A solves this trade-off and manages to sample according to the

true standard deviations without knowing them in advance, we compare its performance to that

of the optimal allocation strategy A∗. For this purpose we define the notion of pseudo-regret of

an adaptive algorithm A as the difference between the pseudo-loss incurred by the algorithm

and the optimal pseudo-loss:

Rn(A) = Ln(A)− Ln(A∗). (5.5)

The pseudo-regret indicates how much we loose in terms of expected quadratic estimation

error by not knowing in advance the standard deviations (σk). Note that since Ln(A∗) = Σ2
w
n , a

consistent strategy i.e., asymptotically equivalent to the optimal strategy, is obtained whenever

its regret is negligible compared to 1/n.

We also defined the true regret as

R̄n(A) = E[(µ̂n − µ)2]− Ln(A∗). (5.6)

This is the difference between the mean-squared error and the optimal mean squared error. The

pseudo-regret is a proxy for the true regret.

5.3 Minimax lower-bound on the pseudo-regret

We now study the minimax rate for the pseudo-regret of any algorithm on a given stratification

in K strata of equal size.

Theorem 8 Let inf be the infimum taken over all online stratified sampling algorithms using
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K strata and sup represent the supremum taken over all environments, then:

inf supERn ≥ C
K1/3

n4/3
,

where C is a numerical constant.

Proof: [Sketch of proof (The full proof is reported in Appendix 5.A)] We consider a stratification

with 2K strata. On the K first strata, the samples are drawn from Bernoulli distributions of

parameter µk where µk ∈ {µ2 , µ, 3
µ
2}, and on the K last strata, the samples are drawn from

a Bernoulli of parameter 1/2. We write σ =
√
µ(1− µ) the standard deviation of a Bernoulli

of parameter µ. We index by ε a set of 2K possible environments, where ε = (ε1, . . . , εK) ∈
{−1,+1}K , and the K first strata are defined by µk = µ+ εk

µ
2 . Write Pσ the probability under

such an environment, also consider Pσ the probability under which all the K first strata are

Bernoulli with mean µ.

We define Ωε the event on which there are less than K
3 arms not pulled correctly for en-

vironment ε (i.e. for which Tk,n is larger than the optimal allocation corresponding to µ when

actually µk = µ
2 , or smaller than the optimal allocation corresponding to µ when µk = 3µ2 ). See

the Appendix 5.A for a precise definition of these events. Then, the idea is that there are so

many such environments that any algorithm will be such that for at least one of them we have

Pσ(Ωε) ≤ exp(−K/72). Then we derive by a variant of Pinsker’s inequality applied to an event

of small probability that Pε(Ωε) ≤ KL(Pσ ,Pε)
K = O(σ

3/2n
K ). Finally, by choosing σ of order (Kn )1/3,

we have that Pε(Ωc
ε) is bigger than a constant, and on Ωc

ε we know that there are more than K
3

arms not pulled correctly. This leads to an expected pseudo-regret in environment ε of order

Ω(K
1/3

n4/3 ). �

This is the first lower-bound for the problem of online stratified sampling for Monte-Carlo.

We sketch the proof in the main text because we believe that the technique of proof for this

bound is original. It follows from the fact that no algorithm can allocate the samples in every

problem according to the unknown best proportions with a better precision than n2/3

K2/3 for a

number of arms non negligible when compared to K, with a probability larger than a non

negligible constant.

5.4 Allocation based on Monte Carlo Upper Confidence Bound

5.4.1 The algorithm

In this section, we introduce our adaptive algorithm for the allocation problem, called Monte

Carlo Upper Confidence Bound (MC-UCB). The algorithm computes a high-probability bound

on the standard deviation of each arm and samples the arms proportionally to their bounds times

the corresponding weights. The MC-UCB algorithm, AMC−UCB, is described in Figure 5.1. It

requires three parameters as inputs: c1 and c2 which are related to the shape of the distributions
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(see Assumption 5.4.2), and δ which defines the confidence level of the bound. In Subsection

5.6.4, we discuss a way to reduce the number of parameters from three to one. The amount of

exploration of the algorithm can be adapted by properly tuning these parameters.

Input: c1, c2, δ. Let a =
√

2 log(2/δ)
√
c1 log(c2/δ) +

√
c1δ(1+log(c2/δ))n1/2

2(1−δ) .
Initialize: Pull each arm twice.
for t = 2K + 1, . . . , n do

Compute Bk,t = wk
Tk,t−1

(
σ̂k,t−1 + 2a

√
1

Tk,t−1

)
for each arm 1 ≤ k ≤ K

Pull an arm kt ∈ arg max1≤k≤K Bk,t
end for
Output: µ̂k,t for each arm 1 ≤ k ≤ K

Figure 5.1: The pseudo-code of the MC-UCB algorithm. The empirical standard deviations
σ̂k,t−1 are computed using Equation 5.7.

The algorithm starts by pulling each arm twice in rounds t = 1 to 2K. From round t = 2K+1

on, it computes an upper confidence bound Bk,t on the standard deviation σk, for each arm k,

and then pulls the one with largest Bk,t. The upper bounds on the standard deviations are

built by using Theorem 10 in [Maurer and Pontil, 2009]8 and based on the empirical standard

deviation σ̂k,t−1 :

σ̂2
k,t−1 =

1

Tk,t−1 − 1

Tk,t−1∑
i=1

(Xk,i − µ̂k,t−1)2, (5.7)

where Xk,i is the i-th sample received when pulling arm k, and Tk,t−1 is the number of pulls

allocated to arm k up to time t− 1. After n rounds, MC-UCB returns the empirical mean µ̂k,n

for each arm 1 ≤ k ≤ K.

5.4.2 Pseudo-Regret analysis of MC-UCB

Before stating the main results of this section, we state the assumption that the distributions

are sub-Gaussian, which includes e.g., Gaussian or bounded distributions. See [Buldygin and

Kozachenko, 1980] for more precisions.

Assumption There exist c1, c2 > 0 such that for all 1 ≤ k ≤ K and any ε > 0,

PX∼νk(|X − µk| ≥ ε) ≤ c2 exp(−ε2/c1) . (5.8)

We provide two analyses, a distribution-dependent and a distribution-free, of MC-UCB, which

are respectively interesting in two regimes, i.e., stationary and transitory regimes, of the algo-

rithm. We will comment on this later in Section 5.6.

8We could also have used the variant reported in [Audibert et al., 2009b].
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A distribution-dependent result: We now report the first bound on the expectation of the

pseudo-regret of MC-UCB algorithm. The proof is reported in Appendix 5.C and relies on

upper- and lower-bounds on Tk,t − T ∗k,t, i.e., the difference in the number of pulls of each arm

compared to the optimal allocation (see Lemma 10).

Theorem 9 Under Assumption 5.4.2 and if we choose c2 such that c2 ≥ 2Kn−5/2, the pseudo-

regret of MC-UCB launched with parameter δ = n−7/2 with n ≥ 4K is bounded in expectation

as

E[Rn] ≤ 336
√

2c1(c2 + 2)(
√
c2 + 1)2/3K1/3Σw

log(n)

n4/3
+

5KΣw,2

n2
.

Note that this result crucially depends on the smallest proportion λmin which is a measure

of the disparity of product of the standard deviations and the weights. For this reason we refer

to it as “distribution-dependent” result. The full proof for this result is in Appendix 5.C.

A distribution-free result: Now we report our second pseudo-regret bound that does not

depend on λmin but whose rate is poorer. The proof is given in Appendix 5.D and relies on

other upper- and lower-bounds on Tk,t − T ∗k,t detailed in Lemma 11.

Theorem 10 Under Assumption 5.4.2 and if we choose c2 such that c2 ≥ 2Kn−5/2, the pseudo-

regret of MC-UCB launched with parameter δ = n−7/2 with n ≥ 4K is bounded in expectation

as

E[Rn] ≤ Σ2
w

n
+ 336

√
2c1(c2 + 2)(

√
c2 + 1)2/3K1/3Σw

log(n)

n4/3
+

5KΣw,2

n2
.

This bound does not depend on 1/λmin, not even in the negligible term, as detailed in

Appendix 5.D9. This is obtained at the price of the slightly worse rate Õ(n−4/3).

5.5 Links between the pseudo-loss and the mean-squared error

As mentioned in Section 5.2, the pseudo-loss is trivially equal to the mean-squared error of the

estimate µ̂n of µ if the number of samples Tk,n in each stratum is independent of the samples.

This is not the case for any reasonable adaptive strategy, as such methods precisely aim at

adapting the number of samples in each stratum to the standard deviation inside the stratum.

It is however important to derive links between those two quantities, in order for the pseudo-loss

and the pseudo-regret to be meaningful. The mean squared error can be decomposed as

E
[
(µ̂n − µ)2

]
=

K∑
k=1

w2
kE
[
(µ̂k,n − µk)2

]
+

n∑
k=1

∑
k′ 6=k

wkwqE
[
(µ̂k,n − µk)(µ̂q,n − µq)

]
.

9Note that the bound is not entirely distribution free since Σw appears. But it can be proved using Assump-
tion 5.4.2 that Σ2

w ≤ c1c2.
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The quantity
∑K

k=1w
2
kE
[
(µ̂k,n−µk)2

]
is equal to the loss defined in [Grover, 2009] and [Carpen-

tier and Munos, 2011a]. If the (Tk,n)k are deterministic, this quantity is equal to the pseudo-loss

and also to the mean squared error E
[
(µ̂n − µ)2

]
. If the (Tk,n)k are deterministic, the cross-

products
∑n

k=1

∑
k′ 6=k wkwqE

[
(µ̂k,n − µk)(µ̂q,n − µq)

]
are equal to 0.

A natural way to proceed is to (i) prove that the expectation of the pseudo-loss is not very

different from
∑K

k=1w
2
kE
[
(µ̂k,n−µk)2

]
(and thus from Σ2

w
n ) and (ii) prove that the cross-products

are close to 0.

5.5.1 A quantity that is almost equal to the pseudo-loss

The technique for bounding
∑K

k=1w
2
kE
[
(µ̂k,n−µk)2

]
is very similar to the one for bounding the

expectation of the pseudo-loss. The only additional technical passage is to use Wald’s identity

to bound
∑K

k=1w
2
kE
[
(µ̂k,n − µk)2

]
with a quantity close to the expectation of the pseudo-loss.

We have in the same way a problem dependent bound and a problem independent bound.

Problem dependent bound.

Proposition 4 Under Assumption 5.4.2 and if we choose c2 such that c2 ≥ 2Kn−5/2, then for

algorithm MC-UCB launched with parameter δ = n−7/2 with n ≥ 4K, we have

K∑
k=1

w2
kE
[
(µ̂k,n − µk)2

]
− Σ2

w

n

≤ log(n)

n3/2λ
3/2
min

(
112Σw

√
c1(c2 + 2) + 6c1(c2 + 2)K

)
+

19

λ3
minn

2

(
KΣ2

w + 720c1(c2 + 1) log(n)2
)
.

The full proof is in Appendix 5.C.

Problem independent bound.

Proposition 5 Under Assumption 5.4.2 and if we choose c2 such that c2 ≥ 2Kn−5/2, then for

algorithm MC-UCB launched with parameter δ = n−7/2 with n ≥ 4K, we have

K∑
k=1

w2
kE
[
(µ̂k,n − µk)2

]
− Σ2

w

n

≤
200
√
c1(c2 + 2)ΣwK

n4/3
log(n) +

365

n3/2

(
129c1(c2 + 2)2K2 log(n)2 +KΣ2

w

)
.

The full proof is in Appendix 5.D.

5.5.2 Bounds on the cross-products

The difficulty in bounding the cross-product comes from the fact that the (Tk,n)k depend on

the samples, and more exactly for algorithm MC-UCB, on the sequence of empirical standard
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deviations (σk,t)t≤n of each arm k. As in general µ̂k,n depends on (σk,t)t≤n, there is no direct

reason why the cross-products should be equal to 0.

We prove three results for bounding these cross-products. The first one corresponds to the

specific case where the distribution of the arms are symmetric. We then provide a problem

dependent and a problem independent bound in the general case.

Equality holds when the distributions of the arms are symmetric. A first result is in

the specific case of symmetric distributions. Intuitively in this setting, the empirical standard

deviations are independent of the signs of (µ̂k,n−µk). This implies that the signs of (µ̂k,n−µk)
and (µ̂q,n − µq) are independent of each other when k 6= q. From that we deduce the following

result.

Proposition 6 Assume that the distributions (νk)k of the arms are symmetric around µk re-

spectively. For algorithm MC-UCB launched with any parameters, we have

n∑
k=1

∑
k′ 6=k

wkwqE
[
(µ̂k,n − µk)(µ̂q,n − µq)

]
= 0.

The proof of this result is to be found in Appendix 5.F.1.

Problem dependent bound in the general case. On an event of high probability, |Tk,n−
T ∗k,n| = Õ(n−1/2) as explained in Lemma 10 in the Appendices10. This means that even though

Tk,n is random, it does not deviate too much from T ∗k,n. From that we deduce the following

problem dependent bound.

Proposition 7 Under Assumption 5.4.2 and if we choose c2 such that c2 ≥ 2Kn−5/2, then for

algorithm MC-UCB launched with parameter δ = n−7/2 with n ≥ 4K, we have

n∑
k=1

∑
k′ 6=k

wkwqE
[
(µ̂k,n − µk)(µ̂q,n − µq)

]
≤ Õ(n−3/2),

where Õ(.) hides an invert dependency in λmin.

The proof of this result is in Appendix 5.F.2

Problem independent bound in the general case. On an event of high probability, |Tk,n−
T ∗k,n| = Õ(n−2/3) as explained in Lemma 11 in the Appendices. From that we deduce in the

same way that for he previous proposition the following problem independent bound.

10Here Õ(·) depends on λ−1
min.
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Proposition 8 Under Assumption 5.4.2 and if we choose c2 such that c2 ≥ 2Kn−5/2, then for

algorithm MC-UCB launched with parameter δ = n−7/2 with n ≥ 4K, we have

n∑
k=1

∑
k′ 6=k

wkwqE
[
(µ̂k,n − µk)(µ̂q,n − µq)

]
≤ Õ(n−7/6),

where Õ(.) does not depend on λmin.

The proof of this result is in Appendix 5.F.2.

5.5.3 Bounds on the true regret and asymptotic optimality

We are finally able to fulfill the objective of this Section, that is to say bound the true regret

R̄n = E[(µ̂n − µ)2] − Σ2
w
n . We have the following Theorem directly by combining the results of

the Propositions in Subsections 5.5.1 and 5.5.2.

Theorem 11 Under Assumption 5.4.2 and if we choose c2 such that c2 ≥ 2Kn−5/2, then for

algorithm MC-UCB launched with parameter δ = n−7/2 with n ≥ 4K, the true regret is bounded

as

R̄n = Õ(n−3/2),

where Õ(.) hides a dependency in λ−1
min, and

R̄n = Õ(n−7/6),

where Õ(.) does not depend on λmin.

An immediate corollary on asymptotic optimality follows, when the parameter δn (for a given

budget n) is chosen wisely.

Corollary 2 Under Assumption 5.4.2 and if we choose c2 such that c2 ≥ 2Kn−5/2, then for

algorithm MC-UCB launched with parameter δ = n−7/2 with n ≥ 4K, the true regret converges

and

lim
n→+∞

R̄n = 0.

Proof: [Proof of Corollary 2] The proof follows directly from Borel-Cantelli, as
∑

n δn < +∞. �

5.6 Discussion on the results

We make several comments on the algorithm MC − UCB in this Section.

5.6.1 Problem dependent and independent bounds for the expectation of the

pseudo-loss

Theorem 9 provides a pseudo-regret bound of order λ̃
−3/2
min O(n−3/2), whereas Theorem 10 provides

a bound of order Õ(n−4/3) independently of λmin. Hence, for a given problem i.e., a given λmin,
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the distribution-free result of Theorem 10 is more informative than the distribution-dependent

result of Theorem 9 in the transitory regime, that is to say when n is small compared to λ−1
min.

The distribution-dependent result of Theorem 9 is better in the stationary regime i.e., for n large.

This distinction reminds us of the difference between distribution-dependent and distribution-

free bounds for the UCB algorithm in usual multi-armed bandits11.

The problem dependent lower bound is similar to the one provided for GAFS-WL in [Grover,

2009]. In their paper, their pseudo-loss measure is
∑K

k=1w
2
kE
[
(µ̂k,n−µk)2

]
so we compare their

bound with the ones in Propositions 4 and 5. We however expect that GAFS-WL has for some

problems a sub-optimal behavior: it is possible to find cases where E
[∑

k w
2
k(µ̂k,n − µk)2

]
−

Σ2
w
n ≥ O(1/n), see Appendix 5.E for more details. It is not the case for MC-UCB, for which

E
[∑

k w
2
k(µ̂k,n − µk)

2
]
− Σ2

w
n ≤ Õ(n−4/3). Note however that when there is an arm with 0

standard deviation, GAFS-WL is likely to perform better than MC-UCB, as it will only sample

this arm O(
√
n) times while MC-UCB samples it Õ(n2/3) times.

5.6.2 Finite-time bounds for the true regret, and asymptotic optimality

We also bound the true regret R̄n = E[(µ̂n − µ)2] − Σ2
w
n in o( 1

n). This means that the mean

squared error of the estimate is very close to the “oracle” smallest mean squared error possible,

obtained with a deterministic strategy that has access to (σk)k.

The first result in Theorem 11 states that for MC-UCB, the true regret is of order Õ(n−3/2),

where the Õ hides a dependency in λmin. This is the equivalent of the problem dependent

bound on the pseudo-loss. This Theorem also states that for MC-UCB, an upper bound on

the true regret is of order Õ(n−7/6), where the Õ does not depend in any way on λmin. This

is the equivalent of the problem independent bound on the pseudo-loss. Unfortunately, we do

not obtain a problem independent bound that is of the same order as the problem independent

bound of the pseudo-regret, i.e. Õ(n−4/3). This comes from the fact that the bound on the

cross-products in Proposition 8 is of order Õ(n−7/6). Whether this bound is tight or not is an

open problem.

These results imply that algorithm MC-UCB is asymptotically optimal (like the algorithms

of Etoré and Jourdain [2010]; Kawai [2010]): the estimate µ̂n =
∑

k wkµ̂k,n is asymptotically

equal to µ and the variance of µ̂n is asymptotically equal to the variance of the optimal allocation

Σ2
w/n for any problem. Note that the asymptotic optimality of GAFS-WL is not provided in

Grover [2009], although we believe it to hold.

Note also that whenever there is some disparity among the arms, i.e., when Σ2
w − Σ2,w < 0,

the MC-UCB is asymptotically strictly more efficient than the uniform strategy.

11The distribution dependent bound is in O(K logn/∆), where ∆ is the difference between the mean value of
the two best arms, and the distribution-free bound is in O(

√
nK logn) as explained in [Audibert and Bubeck,

2009; Auer et al., 2002].
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5.6.3 MC-UCB and the lower bound

We provide in this Chapter a minimax (problem independent) lower-bound for the pseudo-regret

that is in expectation of order Ω(K
1/3

n4/3 ) (see Theorem 8). An important achievement is that the

problem independent upper bound on the pseudo-regret of MC-UCB is in expectation of the

same order up to a logarithmic factor (see Theorem 10). It is thus impossible to improve this

strategy uniformly on every problem, more than by a log factor.

Although we do not have a problem dependent lower bound on the pseudo-regret yet, we

believe that the rate Õ(n−3/2) cannot be improved for general distributions. As explained in the

proof in Appendix 5.C, this rate is a direct consequence of the high probability bounds on the

estimates of the standard deviations of the arms which are in O(1/
√
n), and those bounds are

tight. Because of the minimax lower-bound that is of order O(n−4/3), it is however clear that

there exists no algorithm with a regret of order Õ(n−3/2) without any dependence in λ−1
min (or

another related problem-dependent quantity).

5.6.4 The parameters of the algorithm

Our algorithm takes three parameters as input, namely c1, c2 and δ, but we only use a com-

bination of them in the algorithm, with the introduction of a =
√

2 log(2/δ)
√
c1 log(c2/δ) +√

c1δ(1+log(c2/δ))n1/2

2(1−δ) . For practical use of the method, it is enough to tune the algorithm with a

single parameter a. By the choice of the value assigned to δ in the two theorems, a ≈ c log(n),

where c can be interpreted as a high probability bound on the range of the samples. We thus

simply require a rough estimate of the magnitude of the samples. Note that in the case of

bounded distributions, a can be chosen as a = 2
√

5
2c
√

log(n) where c is a true bound on the

variables. This result is easy to deduce by simplifying Lemma 8 in Appendix 5.B for the case of

bounded variables.

5.6.5 Making MC-UCB anytime

An interesting question is on whether and how it is possible to make algorithm MC-UCB anytime.

Although we will not provide formal proofs of this result in this Chapter, we believe that setting

a δ that evolves with the current time, as δt = t−7/2, is sufficient to make all the regret bounds

of this Chapter hold with slightly modified constants. Some ideas on how to prove this result

can be found in the paper [Grover, 2009], and also [Auer et al., 2002] for something more specific

to UCB algorithms.

5.7 Numerical experiment: Pricing of an Asian option

We consider the pricing problem of an Asian option introduced in [Glasserman et al., 1999] and

later considered in [Etoré and Jourdain, 2010; Kawai, 2010]. This uses a Black-Scholes model

with strike C and maturity T . Let (W (t))0≤t≤1 be a Brownian motion that is discretized at d
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equidistant times {i/d}1≤i≤d, which defines the vector W ∈ Rd with components Wi = W (i/d).

The discounted payoff of the Asian option is defined as a function of W , by:

F (W ) = exp(−rT ) max
[

1
d

∑d
i=1 S0 exp

[
(r − 1

2s
2
0) iTd + s0

√
TWi

]
− C, 0

]
, (5.9)

where S0, r, and s0 are constants, and the price is defined by the expectation p = EWF (W ).

We want to estimate the price p by Monte-Carlo simulations (by sampling onW = (Wi)1≤i≤d).

In order to reduce the variance of the estimated price, we can stratify the space of W . Glasser-

man et al. [1999] suggest to stratify according to a one dimensional projection of W , i.e., by

choosing a projection vector u ∈ Rd and define the strata as the set of W such that u · W
lies in intervals of R. They further argue that the best direction for stratification is to choose

u = (0, · · · , 0, 1), i.e., to stratify according to the last component Wd of W . Thus we sample

Wd and then conditionally sample W1, ...,Wd−1 according to a Brownian Bridge as explained in

[Kawai, 2010]. Note that this choice of stratification is also intuitive since Wd has the biggest ex-

ponent in the payoff (5.9), and thus the highest volatility. Kawai [2010] and Etoré and Jourdain

[2010] also use the same direction of stratification.

Like in [Kawai, 2010] we consider 5 strata of equal weight. Since Wd follows a N(0, 1),

the strata correspond to the 20-percentile of a normal distribution. The left plot of Figure 5.2

represents the cumulative distribution function of Wd and shows the strata in terms of percentiles

of Wd. The right plot represents, in dot line, the curve E[F (W )|Wd = x] versus P(Wd < x)

parameterized by x, and the box plot represents the expectation and standard deviations of

F (W ) conditioned on each stratum. We observe that this stratification produces an important

heterogeneity of the standard deviations per stratum, which indicates that a stratified sampling

would be profitable compared to a crude Monte-Carlo sampling.
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Figure 5.2: Left: Cdf of Wd and the definition of the strata. Right: expectation and standard
deviation of F (W ) conditioned on each stratum for a strike C = 90.

We choose the same numerical values as Kawai [2010]: S0 = 100, r = 0.05, s0 = 0.30, T = 1

and d = 16. Note that the strike C of the option has a direct impact on the variability of the

90



strata. Indeed, the larger C, the more probable F (W ) = 0 for strata with small Wd, and thus,

the smaller λmin.

Our two main competitors are the SSAA algorithm of Etoré and Jourdain [2010] and GAFS-

WL of Grover [2009]. We did not compare to [Kawai, 2010] which aims at minimizing the

computational time and not the loss considered here12. SSAA works in Kr rounds of length Nk

where, at each round, it allocates proportionally to the empirical standard deviations computed

in the previous rounds. Etoré and Jourdain [2010] report the asymptotic consistency of the

algorithm whenever k
Nk

goes to 0 when k goes to infinity. Since their goal is not to obtain a

finite-time performance, they do not mention how to calibrate the length and number of rounds

in practice. We choose the same parameters as in their numerical experiments (Section 3.2.2 of

[Etoré and Jourdain, 2010]) using 3 rounds. In this setting where we know the budget n at the

beginning of the algorithm, GAFS-WL pulls each arm a
√
n times and then pulls at time t + 1

the arm kt+1 that maximizes
wkσ̂k,t
Tk,t

. We set a = 1.

As mentioned in Subsection 5.6.4, an advantage of our algorithm is that it requires a single

parameter to tune. We chose b = 1000 log(n) where 1000 is a high-probability range of the

variables (see right plot of Figure 5.2). Table 5.7 reports the performance of MC-UCB, GAFS-

WL, SSAA, and the uniform strategy, for different values of strike C i.e., for different values of

λ−1
min and Σw,2/Σ

2
w =

∑
wkσ

2
k

(
∑
k wkσk)2 . The total budget is n = 105. The results are averaged on 50000

trials. We notice that MC-UCB outperforms the uniform strategy, SSAA, and GAFS-WL. Note

however that, in the case of GAFS-WL strategy, the small gain could come from the fact that

there are more parameters in MC-UCB, and that we were thus able to adjust them (even if we

kept the same parameters for the three values of C). Note however that for small (but non-zero)

values of λmin, we proved in Appendix 5.E that algorithm GAFS-WL was arbitrarily inefficient.

C 1
λmin

Σw,2/Σ
2
w Uniform SSAA GAFS-WL MC-UCB

60 6.18 1.06 2.52 10−2 5.87 10−3 8.25 10−4 7.29 10−4

90 15.29 1.24 3.32 10−2 6.14 10−3 8.58 10−4 8.07 10−4

120 744.25 3.07 3.56 10−2 6.22 10−3 9.89 10−4 9.28 10−4

Table 5.1: Characteristics of the distributions (λ−1
min and Σw,2/Σ

2
w) and regret of the Uniform,

SSAA, and MC-UCB strategies, for different values of the strike C.

In the left plot of Figure 5.3, we plot the rescaled true regret R̄nn
3/2, averaged over 50000

trials, as a function of n, where n ranges from 50 to 5000. The value of the strike is C = 120.

Again, we notice that MC-UCB performs better than Uniform and SSAA because it adapts faster

to the distributions of the strata. But it performs very similarly to GAFS-WL. In addition, it

seems that the true regret of Uniform and SSAA grows faster than the rate n3/2, whereas

MC-UCB, as well as GAFS-WL, grow with this rate. The right plot focuses on the MC-UCB

algorithm and rescales the y−axis to observe the variations of its rescaled true regret more

12In that paper, the computational costs for each stratum vary, i.e. it is faster to sample in some strata than in
others, and the aim of the paper is to minimize the global computational cost while achieving a given performance.

91



5. MINIMAX STRATEGY FOR STRATIFIED SAMPLING FOR MONTE
CARLO

accurately. The curve grows first and then stabilizes. This could correspond to the two regimes

discussed previously.
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Figure 5.3: Left: Rescaled true regret (R̄nn
3/2) of the Uniform, SSAA, and MC-UCB strategies.

Right: zoom on the rescaled regret for MC-UCB that illustrates the two regimes.

5.8 Conclusions

We provide a finite-time analysis for stratified sampling for Monte-Carlo in the case of fixed

strata. We reported two bound on the expectation of the pseudo-regret: (i) a distribution

dependent bound of order Õ(n−3/2λ
−5/2
min ) which is of interest when n is large compared to a

measure of disparity λ−1
min of the standard deviations (stationary regime), and (ii) a distribution

free bound of order Õ(n−4/3) which is of interest when n is small compared to λ−1
min (transitory

regime). We also link the expectation of the pseudo-loss to the mean-squared error of algorithm

MC-UCB and provide also problem dependent and problem independent bounds. An immediate

consequence is the asymptotic convergence of the variance of our estimate to the optimal variance

that requires the knowledge of the standard deviations per stratum.

We also provide the first problem independent (minimax) lower bound on the expectation of

the pseudo-regret for this problem. Interestingly, the problem independent bound on expectation

of the pseudo-regret of MC-UCB matches this lower-bound, both in terms of number of strata

K and in terms of budget n. This means that algorithm MC-UCB is minimax-optimal in terms

of pseudo-regret.

Possible directions for future work include: (i) making the MC-UCB algorithm anytime

(i.e. not requiring the knowledge of n) and (ii) deriving distribution-dependent lower-bound for

this problem and (iii) proposing efficient ways to stratify the space depending on the regularity

of the function.
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Appendices for Chapter 5

5.A Proof of Theorem 8

Let us write the proof of the lower bound using the terminology of multi-armed bandits. Each

arm k represents a stratum and the distribution associated to this arm is defined as the distri-

bution of the noisy samples of the function collected when sampling uniformly on the strata.

Let us choose µ < 1/2 and α = µ
2 . Consider 2K Bernoulli bandits (i.e., 2K strata where

the samples follow Bernoulli distributions) where the K first bandits have parameter (µk)1≤k≤K

and the K last ones have parameter 1/2. The µk take values in {µ− α, µ, µ+ α}.

Define σ2 = µ(1−µ) the variance of a Bernoulli of parameter µ, and is such that
√

1
2µ ≤ σ ≤√

µ. We wite σ−α and σ+α the two other standard deviations, and notice that 1
2

√
µ ≤ σ−α ≤

√
µ,

and
√

1
2µ ≤ σ+α ≤

√
µ.

We consider the 2K bandit environmentsM(ε) (characterized by ε = (εk)1≤k≤K ∈ {−1,+1}K)

defined by (µk = µ+ εkα)1≤k≤K . We write Pε the probability with respect to the environment

M(ε) at time n. We also write M(σ) the environment defined by all K first arms having a

parameter σ, and write Pσ the associated probability at time n.

The optimal oracle allocation for environmentM(ε) is to play arm k ≤ K, tk(ε) =
σεkα∑K

i=1 σεiα+K/2
n

times and arm k > K, tk(ε) = 1/2∑K
i=1 σεiα+K/2

n times. The corresponding quadratic error of the

resulting estimate is l(ε) =
(
∑K
i=1 σεiα+K/2)2

(2K)2n
. For the environment M(σ), the optimal oracle

allocation is to play arm k ≤ K, t(σ) = σ
Kσ+K/2n times (and arm k > K, t2(σ) = 1/2

Kσ+K/2n

times).

Consider deterministic algorithms first (extension to randomized algorithms will be discussed

later). An algorithm is a set (for all t = 1 to n−1) of mappings from any sequence (r1, . . . , rt) ∈
{0, 1} of t observed samples (where rs ∈ {0, 1} is the sample observed at the s-th round) to the

choice of an arm It+1 ∈ {1, . . . , 2K}. Write Tk(r1, . . . , rn) the (random variable) corresponding

to the number of pulls of arm k up to time n. We thus have n =
∑2K

k=1 Tk.

Now, consider the set of algorithms that know that theK first arms have parameter µk ∈ {µ−
α, µ, µ+α}, and that also know that the K last arms have their parameters in {1/4, 3/4}. Given

this knowledge, an optimal algorithm will not pull any arm k ≤ K more than
(

σ+α

Kσ−α+
√

3K/4

)
n

times. Indeed, the optimal oracle allocation in all such environments allocates less than(
σ+α

Kσ−α+
√

3K/4

)
n samples to each arm k ≤ K. In addition, since the samples of all arms are

independent, a sample collected from arm k does not provide any information about the relative

allocations among the other arms. Thus, once an arm has been pulled as many times as recom-

mended by the optimal oracle strategy, there is no need to allocate more samples to that arm.

Writing A the class of all algorithms that do not know the set of possible environments, Aε the

class of algorithms that know the set of possible environments M(ε) and Aopt the subclass of Aε
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that pull all arms k ≤ K less than
(

σ+α

Kσ−α+
√

3K/4

)
n times, we have

inf
A

sup
M(ε)

ERn ≥ inf
Aε

sup
M(ε)

ERn = inf
Aopt

sup
M(ε)

ERn,

where the first inequality comes from the fact that algorithms in Aε possess more information

than those in A, which they can use or not. Thus A ⊂ Aε.

Now for any ε = (ε1, . . . , εK), define the events

Ωε = {ω : ∀U ⊂ {1, . . . ,K} : |U| ≤ K

3
and ∀k ∈ Uc, εkTk ≥ εkt(σ)}.

Note that by definition

Ωε =

K
3⋃

p=1

⋃
U⊂{1,...,K}:|U|=p

{{ ⋂
k∈U
{εkTk < εkt(σ)}

}⋂{ ⋂
k∈UC

{εkTk ≥ εkt(σ)}
}}

.

By the sub-additivity of the probabilities, we have

Pσ(Ωε) ≤

K
3∑

p=1

∑
U⊂{1,...,K}:|U|=p

P

[{{ ⋂
k∈U
{εkTk < εkt(σ)}

}⋂{ ⋂
k∈UC

{εkTk ≥ εkt(σ)}
}}]

.

The events

{{⋂
k∈U{εkTk < εkt(σ)}

}⋂{⋂
k∈UC{εkTk ≥ εt(σ)}

}}
are disjoint for different

ε, and form a partition of the space, thus
∑

ε Pσ

[{{⋂
k∈U{εkTk < εkt(σ)}

}⋂{⋂
k∈UC{εTk ≥

εkt(σ)}
}}]

= 1.

We deduce that

∑
ε

Pσ(Ωε) ≤
∑
ε

K
3∑

p=1

∑
U⊂{1,...,K}:|U|=p

Pσ

[{{ ⋂
k∈U
{εTk < εkt(σ)}

}⋂{ ⋂
k∈UC

{εkTk ≥ εkt(σ)}
}}]

=

K
3∑

p=1

∑
U⊂{1,...,K}:|U|=p

∑
ε

[{{ ⋂
k∈U
{εkTk < εkt(σ)}

}⋂{ ⋂
k∈UC

{εTk ≥ εkt(σ)}
}}]

=

K
3∑

p=1

∑
U⊂{1,...,K}:|U|=p

1

=

K
3∑

p=1

(
K

p

)
.
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Since there are 2K environments ε, we have

min
ε

Pσ(Ωε) ≤
1

2K

∑
ε

Pσ(Ωε) ≤
1

2K

K
3∑

p=1

(
K

p

)
.

Note that 1
2K

∑K
3
p=1

(
K

p

)
= P(

∑K
k=1Xk ≤ K

3 ) where (X1, . . . , XK) are K independent

Bernoulli random variables of parameter 1/2. By Chernoff-Hoeffding’s inequality, we have

P(
∑K

k=1Xk ≤ K
3 ) = P( 1

K

∑K
k=1Xk − 1

2 ≤
K
6 ) ≤ exp(−K/72). Thus there exists εmin such

that Pσ(Ωεmin) ≤ exp(−K/72).

Let us write p = Pεmin(Ωεmin) and pσ = Pσ(Ωεmin). Let kl(a, b) = a log(ab ) + (1− a) log(1−a
1−b )

denote the KL for Bernoulli distributions with parameters a and b. Note that because ∀Ω,

KL(Pεmin(.|Ω),Pσ(.|Ω)) ≥ 0, we have

kl(p, pσ) ≤ KL(Pεmin ,Pσ).

From that we deduce that p(log(p)−log(pσ))+(1−p)(log(1−p)−log(1−pσ)) ≤ KL(Pεmin ,Pσ),

which leads to

p ≤ max(
36

K

(
KL(Pεmin ,Pσ)

)
, exp(−K/72)). (5.10)

Let us now consider any environment (ε). Let Rt = (r1, . . . , rt) be the sequence of observa-

tions, and let Ptε be the law of Rt for environment M(ε). Note first that Pε = Pnε . Adapting the

chain rule for Kullback-Leibler divergence, we get

KL(Pnε ,Pnσ)

= KL(P1
ε,P1

σ) +

n∑
t=2

∑
Rt−1

Pt−1
ε (Rt−1)KL(Ptε(.|Rt−1),Ptσ(.|Rt))

= KL(P1
σ,P1

ε) +
n∑
t=2

[ ∑
Rt−1|εIt=+1

Pt−1
σ (Rt−1)kl(µ+ α, µ) +

∑
Rt−1|εIt=−1

Pt−1
σ (Rt−1)kl(µ− α, µ)

]
= kl(µ− α, µ)Eε[

∑
k:εk=−1

Tk] + kl(µ+ α, µ)Eε[
∑

k:εk=+1

Tk].
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We thus have, using the property that kl(a, b) ≤ (a−b)2

b(1−b) ,

KL(Pε,Pσ) = kl(µ− α, µ)Eε[
∑

k:εk=−1

Tk] + kl(µ+ α, µ)Eε[
∑

k:εk=+1

Tk]

≤ Eσ[
∑
k≤K

Tk]
α2

µ(1− µ)

= Eσ[
∑
k≤K

Tk]
α2

σ2
.

Note that for an algorithm in Aopt, we have
∑K

k=1 Tk ≤ Tk ≤ K
(

σ+α

Kσ−α+
√

3K/4

)
n. Since

α = µ
2 and 0 < µ ≤ 1

2 we have

KL(Pε,Pσ) ≤
(
K

σ+α

Kσ−α +
√

3K/4

)α2

σ2
n

≤ 4σ+α
α2

σ2
n ≤ 8

α2

σ
n,

We thus deduce using Equation 5.10

Pεmin(Ωεmin) = p ≤ max(
18

K

(
KL(Pεmin ,Pσ)

)
, exp(−K/72))

≤ 144

K

α2

σ
n.

Now choose σ ≤ 1
7(Kn )1/3 (as α = µ

2 = σ2

2 ). Note that this implies that Pεmin(Ωεmin) ≤ 1
2 .

Let ω ∈ Ωc
εmin

. We know that for ω, there are at least K
3 arms among the K first which are

not pulled correctly: either K
6 arms among the arms with parameter µ− α or among the arms

with parameter µ+ α are not pulled correctly. Assume that for this fixed ω, there are K
6 arms

among the arms with parameter µ− α which are not pulled correctly. Let U(ω) be this subset

of arms.

We write ∆T =
∑

k∈U Tk −
K
6 t(σ−α) the number of times those arms are over pulled. Note

that on ω we have ∆T ≥ K
6 t(σ)− t(σ−α). We have

∆T =
K

6
t(σ)− K

6
t(σ−α) =

1

6

Kσ

Kσ +K/2
n− 1

6

Kσ−α∑K
i=1 σεiα +K/2

n

≥ 1

6

Kσ

Kσ +K/2
n− 1

6

Kσ/
√

2√
3Kσ/

√
2 +K/2

n

≥ 1

6

1

Kσ +K/2

1√
3Kσ/

√
2 +K/2

(
K2σ/2−K2σ/2

√
2
)
n

≥ 1

2
(1− 1/

√
2)σn

≥ 1

35
K1/3n2/3
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Thus on ω, the regret is such that

Rn,εmin(ω)

≥
3K∑
k=1

w2
kσ

2
k

Tk(ω)
− 1

(2K)2

(
∑K

i=1 σεiα +K/2
)2

n

≥
∑

k∈U(ω)

w2
kσ

2
k

Tk(ω)
+

∑
k∈U(ω)C

w2
kσ

2
k

Tk(ω)
− 1

(2K)2

(
∑K

i=1 σεiα +K/2
)2

n

≥ 1

K2

K

6

σ2
−α

tk(σ−α) + 6∆T/K
+

(∑K
i=1 σεiα −Kσ−α/6 +K/2

)2
(2K −K/6)2(n−∆T )

− 1

(2K)2

(
∑K

i=1 σεiα +K/2
)2

n

≥ 1

(2K)2

(∑K
i=1 σεiα +K/2

)2
n

1 +
((∑K

i=1 σεiα+K/2
)

∆T(
Kσ−α/6

)
n

−
(∑K

i=1 σεiα+K/2
)

∆T(∑K
i=1 σεiα−Kσ−α/6+K/2

)
n

)
(

1 +
6∆T

(∑K
i=1 σεiα+K/2

)
Kσ−αn

)(
1−

(∑K
i=1 σεiα+K/2

)
∆T(∑K

i=1 σεiα−Kσ−α/6+K/2
)
n

)
− 1

(2K)2

(
∑K

i=1 σεiα +K/2
)2

n

≥ 1

(2K)2

(
∑K

i=1 σεiα +K/2
)2

n

( (∑K
i=1 σεiα+K/2

)
∆T(∑K

i=1 σεiα−Kσ−α/6+K/2
)
n

)((∑K
i=1 σεiα+K/2

)
∆T(

Kσ−α/6
)
n

)
(

1 +
6∆T

(∑K
i=1 σεiα+K/2

)
Kσ−αn

)(
1−

(∑K
i=1 σεiα+K/2

)
∆T(∑K

i=1 σεiα−Kσ−α/6+K/2
)
n

)
≥ C (∆T )2

n3σ
≥ CK

1/3

n4/3
,

where C is a numerical constant. Note that for events ω where there are K
6 arms among the

arms with parameter µ+ α which are not pulled correctly, the same result holds.

Note finally that P(Ωc
εmin

) ≥ 1/2. We thus have that the regret is bigger than

ERn,εmin ≥
∑

ω∈Ωcεmin

Rn,εmin(ω)Pεmin(ω)

≥
∑

ω∈Ωcεmin

C
K1/3

n4/3
Pεmin(ω) ≥ 1

2
C
K1/3

n4/3
,

which proves the lower bound for deterministic algorithms. Now the extension to randomized

algorithms is straightforward: any randomized algorithm can be seen as a static (i.e., does not

depend on samples) mixture of deterministic algorithms (which can be defined before the game

starts). Each deterministic algorithm satisfies the lower bound above in expectation, thus any

static mixture does so too.

97



5. MINIMAX STRATEGY FOR STRATIFIED SAMPLING FOR MONTE
CARLO

5.B Main technical tools for the regret and pseudo-regret bounds

5.B.1 The main tool: a high probability bound on the standard deviations

Upper bound on the standard deviation: The upper confidence bounds Bk,t used in the

MC-UCB algorithm is motivated by Theorem 10 in [Maurer and Pontil, 2009] (a variant of this

result is also reported in [Audibert et al., 2009b]). We extend this result to sub-Gaussian random

variables.

Lemma 8 Let Assumption 5.4.2 hold and n ≥ 2. Define the following event

ξ = ξK,n(δ) =
⋂

1≤k≤K, 2≤t≤n


∣∣∣∣∣
√√√√ 1

t− 1

t∑
i=1

(
Xk,i −

1

t

t∑
j=1

Xk,j

)2
− σk

∣∣∣∣∣ ≤ 2a

√
log(2/δ)

t

 ,

(5.11)

where a =
√

2c1 log(c2/δ) +

√
c1δ(1+c2+log(c2/δ))

(1−δ)
√

2 log(2/δ)
n1/2. Then Pr(ξ) ≥ 1− 2nKδ.

Note that the first term in the absolute value in Equation 5.11 is the empirical standard

deviation of arm k computed as in Equation 5.7 for t samples. The event ξ plays an important

role in the proofs of this section and a number of statements will be proved on this event.

Proof:

Step 1. Truncating sub-Gaussian variables. We want to characterize the mean and variance

of the variables Xk,t given that |Xk,t − µk| ≤
√
c1 log(c2/δ). For any positive random variable

Y and any b ≥ 0, E(Y I{Y > b}) =
∫∞
b P(Y > ε)dε+ bP(Y > b). If we take b = c1 log(c2/δ) and

use Assumption 5.4.2, we obtain:

E
[
|Xk,t − µk|2I{|Xk,t − µk|2 > b}

]
=

∫ +∞

b
P
(
|Xk,t − µk|2 > ε

)
dε+ bP(|Xk,t − µk|2 > b)

≤
∫ +∞

b
c2 exp(−ε/c1)dε+ bc2 exp(−b/c1)

≤ c1δ + c1 log(c2/δ)δ

≤ c1δ(1 + log(c2/δ)).

We have E
[
|Xk,t−µk|2I{|Xk,t−µk|2 > b}

]
+E

[
|Xk,t−µk|2I{|Xk,t−µk|2 ≤ b}

]
= σ2

k, which,

combined with the previous equation, implies that

∣∣∣E[|Xk,t − µk|2 | |Xk,t − µk|2 ≤ b
]
− σ2

k

∣∣∣ =

∣∣∣E[((Xk,t − µk)2 − σ2
k

)
I{|Xk,t − µk|2 > b}

]∣∣∣
P
(
|Xk,t − µk|2 ≤ b

)
≤
c1δ(1 + log(c2/δ)) + δσ2

k

1− δ
. (5.12)
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Note also that Cauchy-Schwartz inequality implies

∣∣∣E[(Xk,t − µk
)
I{|Xk,t − µk|2 > b}

]∣∣∣ ≤√E
[
(Xk,t − µk)2I{|Xk,t − µk|2 > b}

]
≤
√
c1δ(1 + log(c2/δ)).

Now, notice that E
[
Xk,tI{|Xk,t − µk|2 > b}

]
+ E

[
Xk,tI{|Xk,t − µk|2 ≤ b}

]
= µk, which,

combined with the previous result and using n ≥ K ≥ 2, implies that

|µ̃k − µk| =

∣∣∣E[(Xk,t − µk
)
I{|Xk,t − µk|2 > b}

]∣∣∣
P
(
|Xk,t − µk|2 ≤ b

) ≤
√
c1δ(1 + log(c2/δ))

1− δ
, (5.13)

where µ̃k
def
= E

[
Xk,t | |Xk,t − µk|2 ≤ b

]
=

E
[
Xk,tI{|Xk,t−µk|2≤b}

]
P
(
|Xk,t−µk|2≤b

) .

We note σ̃2
k

def
= V

[
Xk,t | |Xk,t−µk|2 ≤ b

]
= E

[
|Xk,t−µk|2 | |Xk,t−µk|2 ≤ b

]
− (µk − µ̃k)2.

From Equations 5.12 and 5.13, we derive

|σ̃2
k − σ2

k| ≤
∣∣∣E[|Xk,t − µk|2 | |Xk,t − µk|2 ≤ b

]
− σ2

k

∣∣∣+ |µ̃k − µk|2

≤
c1δ(1 + log(c2/δ)) + δσ2

k

1− δ
+
c1δ(1 + log(c2/δ))

(1− δ)2

≤
2c1δ(1 + log(c2/δ)) + δσ2

k

(1− δ)2
,

from which we deduce, because σ2
k ≤ c1c2

|σ̃k − σk| ≤
√

2c1δ(1 + c2 + log(c2/δ))

1− δ
. (5.14)

Step 2. Application of large deviation inequalities.

Let ξ1 = ξ1,K,n(δ) be the event:

ξ1 =
⋂

1≤k≤K, 1≤t≤n

{
|Xk,t − µk| ≤

√
c1 log(c2/δ)

}
.

Under Assumption 5.4.2, using a union bound, we have that the probability of this event is at

least 1− nKδ.

We now recall Theorem 10 of [Maurer and Pontil, 2009]:

Theorem 12 (Maurer and Pontil [2009]) Let (X1, ..., Xt) be t ≥ 2 i.i.d. random variables

of variance σ2 and mean µ and such that ∀i ≤ t,Xi ∈ [a, a + c]. Then with probability at least

1− δ:
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∣∣∣∣∣
√√√√ 1

t− 1

t∑
i=1

(
Xi −

1

t

t∑
j=1

Xj

)2
− σ

∣∣∣∣∣ ≤ 2c

√
log(2/δ)

t− 1
.

On ξ1, the {Xk,i}i, 1 ≤ k ≤ K, 1 ≤ i ≤ t are t i.i.d. bounded random variables with standard

deviation σ̃k.

Let ξ2 = ξ2,K,n(δ) be the event:

ξ2 =
⋂

1≤k≤K, 1≤t≤n


∣∣∣∣∣
√√√√ 1

t− 1

t∑
i=1

(
Xk,i −

1

t

t∑
j=1

Xk,j

)2
− σ̃k

∣∣∣∣∣ ≤ 2
√
c1 log(c2/δ)

√
log(2/δ)

t− 1

 .

Using Theorem 10 of [Maurer and Pontil, 2009] and a union bound, we deduce that Pr(ξ1 ∩
ξ2) ≥ 1− 2nKδ.

Now, from Equation 5.14, we have on ξ1 ∩ ξ2, for all 1 ≤ k ≤ K, 2 ≤ t ≤ n:

∣∣∣∣∣
√√√√ 1

t− 1

t∑
i=1

(
Xk,i −

1

t

t∑
j=1

Xk,j

)2
− σk

∣∣∣∣∣ ≤ 2
√
c1 log(c2/δ)

√
log(2/δ)

t− 1

+

√
2c1δ(1 + c2 + log(c2/δ))

1− δ

≤ 2
√

2c1 log(c2/δ)

√
log(2/δ)

t

+

√
2c1δ(1 + c2 + log(c2/δ))

1− δ
,

from which we deduce Lemma 8 (since ξ1 ∩ ξ2 ⊆ ξ and 2 ≤ t ≤ n). �

We deduce the following corollary when the number of samples Tk,t are random.

Corollary 3 For any k = 1, . . . ,K and t = 2K, . . . , n, let {Xk,i}i be n i.i.d. random variables

drawn from νk, satisfying Assumption 5.4.2. Let Tk,t be any random variable taking values in

{2, . . . , n}. Let σ̂2
k,t be the empirical variance computed from Equation 5.7. Then, on the event

ξ, we have:

|σ̂k,t − σk| ≤ 2a

√
log(2/δ)

Tk,t
. (5.15)

5.B.2 Other important properties

A stopping time problem: We now draw a connection between the adaptive sampling and

stopping time problems. We report the following proposition which is a type of Wald’s Theorem

for variance (see e.g. Resnick [1999]).
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Proposition 9 Let {Ft} be a filtration and Xt a Ft-adapted sequence of i.i.d. random variables

with variance σ2. Assume that Ft and the σ-algebra generated by {Xi : i ≥ t+1} are independent

and T is a stopping time w.r.t. Ft with a finite expected value. If E[X2
1 ] <∞ then

E

[( T∑
i=1

Xi − T µ
)2
]

= E[T ] σ2. (5.16)

Bound on E
[
|µ̂k,n−µk|2I{ξC}

]
. The next lemma provides a bound for the loss whenever the

event ξ does not hold.

Lemma 9 Let Assumption 5.4.2 holds. Then for every arm k:

E
[
|µ̂k,n − µk|2I{ξC}

]
≤ 2c1n

2Kδ(1 + log(c2/2nKδ)) .

Proof: Since the arms have sub-Gaussian distribution, for any 1 ≤ k ≤ K and 1 ≤ t ≤ n, we

have

P
(
|Xk,t − µk|2 ≥ ε

)
≤ c2 exp(−ε/c1) ,

and thus by setting ε = c1 log(c2/2nKδ)
13, we obtain

P
(
|Xk,t − µk|2 ≥ c1 log(c2/2nKδ)

)
≤ 2nKδ .

We thus know that

max
Ω/P(Ω)=2nKδ

E
[
|Xk,t − µk|2I{Ω}

]
≤
∫ ∞
c1 log(c2/2nKδ)

c2 exp(−ε/c1)dε+ c1 log(c2/2nKδ)P
(

Ω
)

= 2c1nKδ(1 + log(c2/2nKδ)) .

Since the event ξC has a probability at most 2nKδ, for any 1 ≤ k ≤ K and 1 ≤ t ≤ n, we have

E
[
|Xk,t − µk|2I{ξC}

]
≤ max

Ω/P(Ω)=2nKδ
E
[
|Xk,t − µk|2I{Ω}

]
≤ 2c1nKδ(1 + log(c2/2nKδ)) .

The claim follows from the fact that E
[
|µ̂k,n − µk|2I{ξC}

]
≤
∑n

t=1 E
[
|Xk,n − µk|2I{ξC}

]
≤

2c1n
2Kδ(1 + log(c2/2nKδ)). �

5.B.3 Technical inequalities

Upper and lower bound on a: If δ = n−7/2, with n ≥ 4K ≥ 8

13Note that we need to choose c2 such that c2 ≥ 2nKδ = 2Kn−5/2 if δ = n−7/2.
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a =
√

2c1 log(c2/δ) +

√
c1δ(1 + c2 + log(c2/δ))

(1− δ)
√

2 log(2/δ)
n1/2

≤
√

7c1(c2 + 1) log(n) +
1

n3/2

√
c1(2 + c2)

≤ 2
√

2c1(c2 + 2) log(n).

We also have by just keeping the first term and choosing c2 such that c2 ≥ eδ = en−7/2

a =
√

2c1 log(c2/δ) +

√
c1δ(1 + c2 + log(c2/δ))

(1− δ)
√

2 log(2/δ)
n1/2

≥
√

2c1 ≥
√
c1.

Lower bound on c(δ) when δ = n−7/2: Since the arms have sub-Gaussian distribution, for

any 1 ≤ k ≤ K and 1 ≤ t ≤ n, we have

P
(
|Xk,t − µk|2 ≥ ε

)
≤ c2 exp(−ε/c1) ,

We then have

E
[
|Xk,t − µk|2

]
≤
∫ ∞

0
c2 exp(−ε/c1)dε = c2c1

We then have Σw ≤
√
c2c1.

If δ = n−7/2, we obtain by using the lower bound on a that

c(δ = n−7/2) =
( 2a

√
log(2/δ)

Σw + 4a
√

log(2/δ)

)2/3

=
(1

2
− 1

2

Σw

Σw + 4a
√

log(2/δ)

)2/3

≥
(1

2
− 1

2

Σw

Σw + 4
√
c1 log(n)

)2/3

≥
(1

2

)2/3( √
c1

Σw +
√
c1

)2/3
≥
( 1

2K

)2/3( 1
√
c2 + 1

)2/3
,

by using Σw ≤
√
c2c1 for the last step.

Upper bound on E
[
|µ̂k,n − µk|2I{ξC}

]
when δ = n−7/2: We get from Lemma 9 when

δ = n−7/2 and when choosing c2 such that c2 ≥ 2nKδ = 2Kn−5/2
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E
[
|µ̂k,n − µk|2I{ξC}

]
≤ 2c1n

2Kδ(1 + log(c2/2nKδ))

≤ 2c1K
(
1 +

5

2
(c2 + 1) log(n)

)
n−3/2

≤ 6c1K(c2 + 1) log(n)n−3/2.

5.C Proof of Theorem 9 and Proposition 4

In this section, we first provide the proof for an important Lemma on the number of pulls of the

arms, and then use the result to prove Theorem 9 and Proposition 4.

5.C.1 Problem dependent bound on the number of pulls

Lemma 10 Let Assumption 5.4.2 hold. Let 0 < δ ≤ 1 be arbitrary and and n ≥ 4K. The

difference between the allocation Tp,n implemented by the MC-UCB algorithm described in Fig-

ure 5.1 and the optimal allocation rule T ∗p,n has the following upper and lower bounds, on ξ (and

thus with probability at least 1− 2nKδ), for any arm 1 ≤ p ≤ K:

−12aλp

√
log(2/δ)

Σwλ
3/2
min

√
n− 4Kλp ≤ Tp,n − T ∗p,n ≤ 12a

√
log(2/δ)

Σwλ
3/2
min

√
n+ 4K . (5.17)

where a =
√

2c1 log(c2/δ) +

√
c1δ(1+c2+log(c2/δ))

(1−δ)
√

2 log(2/δ)
n1/2.

In Equation 5.17, the difference Tp,n − T ∗p,n is bounded with Õ(
√
n). This is directly linked

to the parametric rate of convergence of the estimation of σk, which is of order 1/
√
n. Note that

Equation 5.17 also shows the inverse dependency on the smallest proportion λmin.

Proof: [Lemma 10] The proof consists of the following three main steps.

Step 1. Properties of the algorithm. Recall the definition of the upper bound used in

MC-UCB when t > 2K:

Bq,t+1 =
wq
Tq,t

(
σ̂q,t + 2a

√
log(2/δ)

Tq,t

)
, 1 ≤ q ≤ K .

From Corollary 3, we obtain the following upper and lower bounds for Bq,t+1 on ξ:

wqσq
Tq,t

≤ Bq,t+1 ≤
wq
Tq,t

(
σq + 4a

√
log(2/δ)

Tq,t

)
. (5.18)

Let t+1 > 2K be the time at which a given arm k is pulled for the last time, i.e., Tk,t = Tk,n−1

and Tk,(t+1) = Tk,n. Note that as n ≥ 4K, there is at least one arm k such that this happens,
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i.e. such that it is pulled after the initialization phase. Since AMC−UCB chooses to pull arm k

at time t+ 1, we have for any arm p

Bp,t+1 ≤ Bk,t+1 . (5.19)

From Equation 5.18 and the fact that Tk,t = Tk,n − 1, we obtain

Bk,t+1 ≤
wk
Tk,t

(
σk + 4a

√
log(2/δ)

Tk,t

)
=

wk
Tk,n − 1

(
σk + 4a

√
log(2/δ)

Tk,n − 1

)
. (5.20)

Using the lower bound in Equation 5.18 and the fact that Tp,t ≤ Tp,n, we may lower bound

Bp,t+1 as

Bp,t+1 ≥
wpσp
Tp,t

≥ wpσp
Tp,n

. (5.21)

Combining Equations 5.19, 5.20, and 5.21, we obtain

wpσp
Tp,n

≤ wk
Tk,n − 1

(
σk + 4a

√
log(2/δ)

Tk,n − 1

)
. (5.22)

Note that at this point there is no dependency on t, and thus, the probability that Equa-

tion 5.22 holds for any p and for any k such that arm k is pulled after the initialization phase,

i.e., such that Tk,n > 2, is at least 1− 2nKδ (probability of event ξ).

Step 2. Lower bound on Tp,n. If an arm p is under-pulled compared to its optimal allocation

without taking into account the initialization phase,i.e., Tp,n − 2 < λp(n − 2K), then from the

constraint
∑

k(Tk,n − 2) = n− 2K and the definition of the optimal allocation, we deduce that

there exists at least another arm k that is over-pulled compared to its optimal allocation without

taking into account the initialization phase, i.e., Tk,n − 2 > λk(n− 2K). Note that for this arm,

Tk,n − 2 > λk(n − 2K) ≥ 0, so we know that this specific arm is pulled at least once after

the initialization phase and that it satisfies Equation 5.22. Using the definition of the optimal

allocation T ∗k,n = nwkσk/Σw, and the fact that Tk,n ≥ λk(n − 2K) + 2, Equation 5.22 may be

written as for any arm p

wpσp
Tp,n

≤ wk
T ∗k,n

n

(n− 2K)

(
σk + 4a

√
log(2/δ)

λk(n− 2K) + 1

)

≤ Σw

n
+

4KΣw

n2
+ 8
√

2a

√
log(2/δ)

n3/2λ
3/2
k

,

because n ≥ 4K. The previous Equation, combined with the fact that λk ≥ λmin, may be

written as

wpσp
Tp,n

≤ Σw

n
+ 12a

√
log(2/δ)

n3/2λ
3/2
min

+
4KΣw

n2
. (5.23)
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By rearranging Equation 5.23, we obtain the lower bound on Tp,n:

Tp,n ≥
wpσp

Σw
n + 12a

√
log(2/δ)

n3/2λ
3/2
min

+ 4KΣw
n2

≥ T ∗p,n − 12aλp

√
log(2/δ)

Σwλ
3/2
min

√
n− 4Kλp , (5.24)

where in the second inequality we use 1/(1 + x) ≥ 1 − x (for x > −1). Note that the lower

bound holds on ξ for any arm p.

Step 3. Upper bound on Tp,n. Using Equation 5.24 and the fact that
∑

k Tk,n = n, we obtain

Tp,n = n−
∑
k 6=p

Tk,n ≤
(
n−

∑
k 6=p

T ∗k,n

)
+
∑
k 6=p

(
12aλp

√
log(2/δ)

Σwλ
3/2
min

√
n+ 4Kλp

)
.

And we deduce because
∑

k 6=p λk ≤ 1

Tp,n ≤ T ∗p,n + 12a

√
log(2/δ)

Σwλ
3/2
min

√
n+ 4K . (5.25)

The lemma follows by combining the lower and upper bounds in Equations 5.24 and 5.25. �

5.C.2 Proof of Theorem 9

We are now ready to prove Theorem 9.

Proof: [Theorem 9] By definition, the pseudo-loss of the algorithm is

E[Ln] =
K∑
k=1

w2
kE
[ σ2

k

Tk,n

]
=

K∑
k=1

w2
kE
[ σ2

k

Tk,n
I{ξ}

]
+

K∑
k=1

w2
kE
[ σ2

k

Tk,n
I{ξC}

]
≤

K∑
k=1

w2
k

σ2
k

T k,n
+

K∑
k=1

w2
k

σ2
k

2
P(ξc).

where T k,n is the lower bound on Tk,n on the event ξ, and also because Tk,n ≥ 2 by definition of

algorithm MC-UCB.

Using Equation 5.23 for wkσk/T k,n (result of Lemma 10, which is equivalent to using a lower

bound on Tk,n on the event ξ), we obtain

K∑
k=1

w2
k

σ2
k

T k,n
≤

K∑
k=1

wkσk

(Σw

n
+ 12a

√
log(2/δ)

n3/2λ
3/2
min

+
4KΣw

n2

)
≤ Σ2

w

n
+ 12aΣw

√
log(2/δ)

n3/2λ
3/2
min

+
4KΣ2

w

n2
.
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Finally we have, because of Lemma 8 tells us that P(ξc) ≤ 2nKδ, that

E[Ln] ≤ Σ2
w

n
+ 12aΣw

√
log(2/δ)

n3/2λ
3/2
min

+
4KΣ2

w

n2
+ Σw,2nKδ

≤ Σ2
w

n
+ 168

√
2c1(c2 + 2) log(n)Σw

√
log(n)

n3/2λ
3/2
min

+
4KΣ2

w

n2
+

Σw,2

n5/2
K

≤ Σ2
w

n
+ 168

√
2c1(c2 + 2)Σw

log(n)

n3/2λ
3/2
min

+
5KΣw,2

n2
.

where we use a ≤ 2
√

2c1(c2 + 2) log(n) and δ = n−7/2. Those bounds are made explicit in

Appendix 5.B.3.

This concludes the proof.

�

5.C.3 Proof of Proposition 4

We are also ready to prove Proposition 4

Proof: [Proposition 4] The proof consists of the following two steps.

Step 1. Tk,n is a stopping time. Consider an arm k. At each time step t + 1, the MC-

UCB algorithm decides which arm to pull according to the current values of the upper-bounds

{Bk,t+1}k. Thus for any arm k, Tk,(t+1) depends only on the values {Tk,t}k and {σ̂k,t}k. So by

induction, Tk,(t+1) depends on the sequence {Xk,1, . . . , Xk,Tk,t}, and on the samples of the other

arms (which are independent of the samples of arm k). We deduce that Tk,n is a stopping time

adapted to the process (Xk,t)t≤n.

Step 2. Bound on
∑K

k=1w
2
kE
[
(µ̂k,n − µk)2

]
. By definition, we have

K∑
k=1

w2
kE
[
(µ̂k,n − µk)2

]
=

K∑
k=1

w2
kE
[
(µ̂k,n − µk)2I{ξ}

]
+

K∑
k=1

w2
kE
[
(µ̂k,n − µk)2I{ξC}

]
.

Using the definition of µ̂k,n and Proposition 9 we bound the first term as

K∑
k=1

w2
kE
[
(µ̂k,n − µk)2I{ξ}

]
≤

K∑
k=1

w2
k

σ2
kE[Tk,n]

T 2
k,n

, (5.26)

where T k,n is the lower bound on Tk,n on the event ξ.

Note that as
∑

k Tk,n = n, we also have
∑

k E[Tk,n] = n.

Using Equation 5.26 and Equation 5.23 for wkσk/T k,n (which is equivalent to using a lower
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bound on Tk,n on the event ξ), we obtain

K∑
k=1

w2
k

σ2
kE[Tk,n]

T 2
k,n

≤
K∑
k=1

(Σw

n
+ 12a

√
log(2/δ)

n3/2λ
3/2
min

+
4KΣw

n2

)2
E[Tk,n]. (5.27)

Equation 5.27 may be bounded using the fact that
∑

k E[Tk,n] = n as

K∑
k=1

w2
k

σ2
kE[Tk,n]

T 2
k,n

≤
(Σw

n
+ 12a

√
log(2/δ)

n3/2λ
3/2
min

+
4KΣw

n2

)2
n

≤
(

(
Σw

n
)2 + 24aΣw

√
log(2/δ)

n5/2λ
3/2
min

+
8KΣ2

w

n3
+ 288a2 log(2/δ)

n3λ3
min

+
8K2Σ2

w

n4

)
n

=
Σ2
w

n
+ 24aΣw

√
log(2/δ)

n3/2λ
3/2
min

+
8KΣ2

w

n2
+ 288a2 log(2/δ)

n2λ3
min

+
8K2Σ2

w

n3

≤ Σ2
w

n
+ 24aΣw

√
log(2/δ)

n3/2λ
3/2
min

+
16

λ3
minn

2

(
KΣ2

w + 18a2 log(2/δ)
)
.

From Lemma 9, we have E
[
(µ̂k,n − µk)2I{ξC}

]
≤ 2c1n

2Kδ(1 + log(c2/2nKδ)). Thus using

the previous equation, we deduce

K∑
k=1

w2
kE
[
(µ̂k,n − µk)2

]
≤Σ2

w

n
+ 24aΣw

√
log(2/δ)

n3/2λ
3/2
min

+
16

λ3
minn

2

(
KΣ2

w + 18a2 log(2/δ)
)

+ 2c1n
2Kδ(1 + log(c2/2nKδ))

≤Σ2
w

n
+ 54aΣw

√
log(n)

n3/2λ
3/2
min

+
16

λ3
minn

2

(
KΣ2

w + 90a2 log(n)
)

+ 6c1K(c2 + 1) log(n)n−3/2

≤Σ2
w

n
+

log(n)

n3/2λ
3/2
min

(
112Σw

√
c1(c2 + 2) + 6c1(c2 + 2)K

)
+

19

λ3
minn

2

(
KΣ2

w + 720c1(c2 + 1) log(n)2
)
.

where we use a ≤ 2
√

2c1(c2 + 2) log(n) and E
[
|µ̂k,n − µk|2I{ξC}

]
≤ 6c1K(c2 + 1) log(n)n−3/2.

Those bounds are made explicit in 5.B.3.

The Theorem follows by expressing the regret.

�

5.D Proof of Theorems 10 and Proposition 5

Again, we first state and prove the following Lemma and then use this result to prove Theorem 10

and Proposition 5.
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5.D.1 Problem independent Bound on the number of pulls of each arm

Lemma 11 Let Assumption 5.4.2 hold. For any 0 < δ ≤ 1 and for n ≥ 4K, the algorithm

MC-UCB satisfies on ξ, and thus with probability at least 1− 2nKδ, for any arm p,

Tp,n ≥ T ∗p,n −
(

24aK1/3 1

Σw
λq

√
log(2/δ)

c(δ)
n2/3 + 12Kλq

)
, (5.28)

and

Tp,n ≤ T ∗p,n +
(

24aK1/3 1

Σw

√
log(2/δ)

c(δ)
n2/3 + 12KΣw

)
, (5.29)

where c(δ) =
(

2a
√

log(2/δ)

Σw+4a
√

log(2/δ)

1
K

)2/3
and a =

√
2c1 log(c2/δ) +

√
c1δ(1+c2+log(c2/δ))

(1−δ)
√

2 log(2/δ)
n1/2.

Unlike the bounds proved in Lemma 10, the difference between Tp,n and T ∗p,n is bounded by

Õ(n2/3) without any inverse dependency on λmin.

Proof: [Proof of Lemma 11]

Step 1. Lower bound of order Õ(n2/3). Let k be the index of an arm that is such that

Tk,n − 2 ≥ wk(n − 2K) (this implies Tk,n ≥ 3 as n ≥ 4K, and arm k is thus pulled after the

initialization)14. Let t+ 1 ≤ n be the last time at which it was pulled, i.e., Tk,t = Tk,n − 1 and

Tk,t+1 = Tk,n. From Equation 5.15 and the fact that Tk,n ≥ wkn, we obtain on ξ

Bk,t ≤
wk
Tk,t

(
σk + 4a

√
log(2/δ)

Tk,t

)
≤

(
maxp σp + 4a

√
log(2/δ)

)
n

, (5.30)

where the second inequality follows from the facts that Tk,t ≥ 1, wkσk ≤ Σw, and wk ≤
∑

k wk =

1. Since at time t+ 1 the arm k has been pulled, then for any arm q, we have

Bq,t ≤ Bk,t. (5.31)

From the definition of Bq,t, and also using the fact that Tq,t ≤ Tq,n, we deduce on ξ that

Bq,t ≥ 2awq

√
log(2/δ)

T
3/2
q,t

≥ 2awq

√
log(2/δ)

T
3/2
q,n

. (5.32)

Combining Equations 5.30–5.32, we obtain on ξ

2awq

√
log(2/δ)

T
3/2
q,n

≤
maxp σp + 4a

√
log(2/δ)

n
.

14Note that such an arm always exists for any possible allocation strategy, as n−2K =
∑
q(Tq,n−2), 1 =

∑
q wq,

and ∀q, wq > 0.
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Finally, this implies on ξ that for any q,

Tq,n ≥
( 2awq

√
log(2/δ)

Σw + 4a
√

log(2/δ)
n
)2/3

. (5.33)

In order to simplify the notation, in the following we define

c(δ) =
( 2a

√
log(2/δ)

Σw + 4a
√

log(2/δ)

)2/3
,

thus the lower bound on Tq,n on ξ writes Tq,n ≥ w2/3
q c(δ)n2/3.

Step 2. Properties of the algorithm. We follow a similar analysis to Step 1 of the proof of

Lemma 10. We first recall the definition of Bq,t+1 used in the MC-UCB algorithm

Bq,t+1 =
wq
Tq,t

(
σ̂q,t + 2a

√
log(2/δ)

Tq,t

)
.

Using Corollary 3 it follows that, on ξ

wqσq
Tq,t

≤ Bq,t+1 ≤
wq
Tq,t

(
σq + 4a

√
log(2/δ)

Tq,t

)
. (5.34)

Let t+1 ≥ 2K+1 be the time at which an arm q is pulled for the last time, that is Tq,t = Tq,n−1.

Note that there is at least one arm such that this happens as n ≥ 4K. Since at t + 1 arm q is

chosen, then for any other arm p, we have

Bp,t+1 ≤ Bq,t+1 . (5.35)

From Equation 5.34 and Tq,t = Tq,n − 1, we obtain on ξ

Bq,t+1 ≤
wq
Tq,t

(
σq + 4a

√
log(2/δ)

Tq,t

)
=

wq
Tq,n − 1

(
σq + 4a

√
log(2/δ)

Tq,n − 1

)
. (5.36)

Furthermore, since Tp,t ≤ Tp,n, then on ξ

Bp,t+1 ≥
wpσp
Tp,t

≥ wpσp
Tp,n

. (5.37)

Combining Equations 5.35–5.37, we obtain on ξ

wpσp
Tp,n

(Tq,n − 1) ≤ wq

(
σq + 4a

√
log(2/δ)

Tq,n − 1

)
.
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Summing over all q such that the previous Equation is verified, i.e. such that Tq,n ≥ 3, on both

sides, we obtain on ξ

wpσp
Tp,n

∑
q|Tq,n≥3

(Tq,n − 1) ≤
∑

q|Tq,n≥3

wq

(
σq + 4a

√
log(2/δ)

Tq,n − 1

)
.

This implies

wpσp
Tp,n

(n− 2K) ≤
K∑
q=1

wq

(
σq + 4a

√
log(2/δ)

Tq,n − 1

)
. (5.38)

Step 3. Lower bound. Plugging Equation 5.33 in Equation 5.38,

wpσp
Tp,n

(n− 2K) ≤
∑
q

wq

(
σq + 4a

√
log(2/δ)

Tq,n − 1

)

≤
∑
q

wq

(
σq + 4a

√
2 log(2/δ)

w
2/3
q c(δ)n2/3

)

≤ Σw +
∑
q

4aw2/3
q

√
2

log(2/δ)

c(δ)n2/3
≤ Σw + 6aK1/3

√
log(2/δ)

c(δ)n2/3
,

on ξ, since
∑

q w
2/3
q ≤ K1/3 by Jensen inequality and because Tq,n − 1 ≥ Tq,n

2 (as Tq,n ≥ 2).

Finally as n ≥ 4K, we obtain on ξ the following bound

wpσp
Tp,n

≤ Σw

n
+ 24aK1/3

√
log(2/δ)

c(δ)
n−4/3 +

12KΣw

n2
. (5.39)

We now invert the bound and obtain on ξ the final lower-bound on Tp,n as follows:

Tp,n ≥
wpσp

Σw
n + 24aK1/3

√
log(2/δ)
c(δ) n−4/3 + 12KΣw

n2

≥ T ∗p,n − 24aK1/3 1

Σw
λp

√
log(2/δ)

c(δ)
n2/3 − 12Kλp,

as 1
1+x ≥ 1− x. Note that the above lower bound holds with high probability for any arm p.

Step 4. Upper bound. An upper bound on Tp,n on ξ follows by using Tp,n = n −
∑

q 6=p Tq,n

and the previous lower bound, that is

Tp,n ≤ n−
∑
q 6=p

T ∗q,n +
∑
q 6=p

(
12Kλq + 24aK1/3 1

Σw
λq

√
log(2/δ)

c(δ)
n2/3

)

≤ T ∗p,n +
(

24aK1/3 1

Σw

√
log(2/δ)

c(δ)
n2/3 + 12K

)
,
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because
∑

q 6=p λq ≤ 1. �

5.D.2 Proof of Theorem 10

We are now ready to prove Theorem 10.

Proof: [Theorem 10]

By definition, the pseudo-loss of the algorithm is

E[Ln] =
K∑
k=1

w2
kE
[ σ2

k

Tk,n

]
=

K∑
k=1

w2
kE
[ σ2

k

Tk,n
I{ξ}

]
+

K∑
k=1

w2
kE
[ σ2

k

Tk,n
I{ξC}

]
≤

K∑
k=1

w2
k

σ2
k

T k,n
+

K∑
k=1

w2
k

σ2
k

2
P(ξc).

where T k,n is the lower bound on Tk,n on the event ξ, and also because Tk,n ≥ 2 by definition of

algorithm MC-UCB.

Using Equation 5.39 for wkσk/T k,n (result of Lemma 11, which is equivalent to using a lower

bound on Tk,n on the event ξ), we obtain

K∑
k=1

w2
k

σ2
k

T k,n
≤

K∑
k=1

wkσk

(Σw

n
+ 24aK1/3

√
log(2/δ)

c(δ)
n−4/3 +

12KΣw

n2

)

≤ Σ2
w

n
+ 24aK1/3Σw

√
log(2/δ)

c(δ)
n−4/3 +

12KΣ2
w

n2
. (5.40)

Finally we have, as by Lemma 8, we know that P(ξc) ≤ 2nKδ, that

E[Ln] ≤ Σ2
w

n
+ 24aK1/3Σw

√
log(2/δ)

c(δ)
n−4/3 +

12KΣ2
w

n2
+ Σw,2nKδ

≤ Σ2
w

n
+ 336

√
2c1(c2 + 2)(

√
c2 + 1)2/3K1/3Σw

log(n)

n4/3
+

5KΣw,2

n2
,

where we use a ≤ 2
√

2c1(c2 + 2) log(n), c(δ) ≥
(

1√
c2+1

)2/3
and δ = n−7/2. These bounds are

made explicit in Appendix 5.B.3.

This concludes the proof.

�

5.D.3 Proof of Proposition 5

We are also ready to prove Proposition 5.

Proof: [Proposition 5]
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We decompose
∑K

k=1w
2
kE
[
(µ̂k,n − µk)2

]
on ξ and its complement:

K∑
k=1

w2
kE
[
(µ̂k,n − µk)2

]
=

K∑
k=1

w2
kE
[
(µ̂k,n − µk)2I{ξ}

]
+

K∑
k=1

w2
kE
[
(µ̂k,n − µk)2I{ξC}

]
.

Using the definition of µ̂k,n and Proposition 9 we bound the first term as

K∑
k=1

w2
kE
[
(µ̂k,n − µk)2I{ξ}

]
≤

K∑
k=1

w2
k

σ2
kE[Tk,n]

T 2
k,n

, (5.41)

where T k,n is the lower bound on Tk,n on ξ.

Note also that as
∑

k Tk,n = n, we also have
∑

k E[Tk,n] = n. Using Equation 5.41 and

Equation 5.39 which provides an upper bound on ξ on wkσk
Tk,n

(and thus a lower bound on ξ on

Tk,n), we deduce

K∑
k=1

w2
kE
[
(µ̂k,n − µk)2I{ξ}

]
≤

K∑
k=1

(Σw

n
+ 24aK2/3

√
log(2/δ)

c(δ)
n−4/3 +

12KΣw

n2

)2
E[Tk,n]. (5.42)

Using the fact that
∑

k E[Tk,n] = n, Equation 5.42 may be rewritten as

K∑
k=1

w2
kE
[
(µ̂k,n − µk)2I{ξ}

]
≤
(Σw

n
+ 24aK2/3

√
log(2/δ)

c(δ)
n−4/3 +

12KΣw

n2

)2
n

≤
(

(
Σw

n
)2 +

48ΣwaK
2/3

n7/3

√
log(2/δ)

c(δ)

+
12KΣ2

w

n3
+

1152a2K4/3

n8/3

log(2/δ)

c(δ)
+

288K2Σ2
w

n4

)
n

=
Σ2
w

n
+

48ΣwaK
2/3

n4/3

√
log(2/δ)

c(δ)

+
12KΣ2

w

n2
+

1152a2K4/3

n5/3

log(2/δ)

c(δ)
+

288K2Σ2
w

n3

≤Σ2
w

n
+

48ΣwaK
2/3

n4/3

√
log(2/δ)

c(δ)
+

300

n2

(
4a2K4/3 log(2/δ)

c(δ)
+KΣ2

w

)
.

From Lemma 9, we have E
[
(µ̂k,n − µk)2I{ξC}

]
≤ 2c1n

2Kδ(1 + log(c2/2nKδ)). Thus using
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the last equation and the fact that δ = n−7/2, the loss is bounded as

K∑
k=1

w2
kE
[
(µ̂k,n − µk)2

]

≤Σ2
w

n
+

48ΣwaK
2/3

n4/3

√
log(2/δ)

c(δ)
+

300

n2

(
4a2K4/3 log(2/δ)

c(δ)
+KΣ2

w

)
+ 2c1n

2Kδ(1 + log(c2/2nKδ))

≤Σ2
w

n
+

96ΣwaK

n4/3

√
log(n)

(√
c2 + 1

)1/3
+

300

n2

(
16a2K2 log(n)

(√
c2 + 1

)2/3
+KΣ2

w

)
+ 6c1K(c2 + 1) log(n)n−3/2

≤Σ2
w

n
+

200
√
c1(c2 + 2)ΣwK

n4/3
log(n)

(√
c2 + 1

)1/3
+

365

n3/2

(
16a2K2 log(n)

(√
c2 + 1

)2/3
+KΣ2

w + c1(c2 + 2)K log(n)

≤Σ2
w

n
+

200
√
c1(c2 + 2)ΣwK

n4/3
log(n) +

365

n3/2

(
129c1(c2 + 2)2K2 log(n)2 +KΣ2

w

)
.

where we use a ≤ 2
√

2c1(c2 + 2) log(n), c(δ) ≥
(

1√
c2+1

)2/3
and E

[
|µ̂k,n−µk|2I{ξC}

]
≤ 6c1K(c2+

1) log(n)n−3/2. Those bound are made explicit in 5.B.3.

�

5.E Comments on problem independent bound for GAFS-WL

Let n ≥ 4 be the budget. We face a two-arms bandit problem with w1 = w2 = 1
2 and such

that (i) the distribution of the first arm is a Bernoulli of parameter p = 1
n1/2+ε with ε such that

1/6 > ε > 0 and that (ii) the distribution of the second arm is such that σ2 = 1 and bounded

by c.

Note that

1

2n1/4+ε/2
≤ σ1 ≤

1

n1/4+ε/2
and σ2 = 1,

because σ1 =
√
p(1− p) and that thus

L∗n ≤
(1 + n−1/4−ε/2)2

4n
≤ 1 + 3n−1/4−ε/2

4n
≤ 1

4n
+

1

n5/4+ε/2
.

We run algorithm GAFS-WL on that problem. Note that algorithm GAFS-WL pull each

arm ba
√
nc times and then pull the arms according to

wkσ̂k,t
Tk,t

.

We call {Xp,u}p=1,2;u=1,...,n the samples of the arms.
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Note that:

P
(
X1,1 = 0, . . . , X1,ba

√
nc = 0

)
≥ (1− 1

n1/2+ε
)a
√
n

≥ (1− an−ε

a
√
n

)a
√
n

≥ (1− an−ε) exp(−an−ε) ≥ (1− an−ε)2.

Note on the other hand, that P(|σ̂2,a
√
n − 1| ≥ 2

√
log(2/δ)√
an1/4 ) ≤ δ. This means that with

probability at least 1− 2 exp(−a
√
n/4), we have σ̂2,a

√
n > 0.

The probability that σ̂1,a
√
n = 0 goes to 1 when n goes to +∞. The probability that

σ̂2,a
√
n > 0 goes to 1 when n goes to +∞. This means that the probability that GAFS-WL

stops pulling arm 1 after a
√
n pulls goes to 1 when n goes to +∞, and arm 1 is under-pulled if

ε < 1/2 (it should be pulled n3/4−ε/2).

Note that on the event such that
(
X1,1 = 0, . . . , X1,ba

√
nc = 0

)
, we know that µ̂1,a

√
n = 0.

Note also that we know that as arm 2 is gaussian, we have E(µ̂2,n−µ2)2 ≤ 1
4n . The performance

of GAFS-WL then verifies

E
[∑

k

w2
k(µ̂k,n − µk)2

]
≥ 1

4n
+ P(σ̂1,a

√
n = 0)P(σ̂2,a

√
n > 0)

(
n−1/2−ε

)2

≥ 1

4n
+ (1− 2 exp(−a

√
n/4))(1− an−ε)2

(
n−1−2ε

)
≥ 1

4n
+ (1− 8

a
√
n

)(1− 2
a

nε
)

1

n1+2ε

≥ 1

4n
+

1

n1+2ε
− 8

an3/2+2ε
− 2a

n1+3ε

≥ 1

4n
+

1

n1+2ε
− 10 max(a, 1/a)

n1+3ε
,

where the last line is obtained using the fact that ε < 1/6. Note that we used the proxy defined

in paper Grover [2009] to measure performance, so that we can compare with their bound.

We thus have

E
[∑

k

w2
k(µ̂k,n − µk)2

]
− Σ2

w

n
≥ 1

n1+2ε
− 10 max(a, 1/a)

n1+3ε
− 1

n5/4+ε/2

≥ 1

n1+2ε
− 11 max(a, 1/a)

n1+3ε
,

again because ε < 1/6. This implies that for n such that n ≥ (11 max(a,1/a)
2 )1/ε, we have

E
[∑

k

w2
k(µ̂k,n − µk)2

]
− Σ2

w

n
≥ 1

2n1+2ε
,

with ε arbitrarily close to 0.
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5.F Proof of Propositions 6, 7 and 8

5.F.1 Proof of Proposition 6

We first prove that the bounds of Theorems 4 and 5 can be directly expressed as bounds on the

mean squared error E[(µ̂n − µ)2] when the distributions of the arms are symmetric.

Proof: [Proof of Proposition 6]

Step 1: Expression of E[
(
µ̂k,n − µk

)(
µ̂q,n − µq

)
|Tk,n = T1, Tq,n = T2]. At each time step

t+1 > 2K, the MC-UCB algorithm decides which arm to pull according to the current values of

the upper-bounds {Bp,t+1}p. Thus for any arm k, Tk,(t+1) depends only of the values {Tp,t}p and

{σ̂p,t}p. So by induction, Tk,n depends of the samples of the arms only trough the K sequences

{σ̂p,t′}p,t′≤n.

Let us consider another arm q 6= k. The samples of arm k and arm q depend of each other

only trough (Tk,t)t≤n and (Tq,t)t≤n, and thus by induction only trough the sequence {σ̂p,t′}p,t′≤n.

The samples are thus independent conditionally to the {σ̂p,t′}p,t′≤n.

This leads to:

E[
(
µ̂k,n − µk

)(
µ̂q,n − µq

)
|Tk,n = T1, Tq,n = T2]

= E
[( 1

T1

T1∑
u=1

Xk,u − µk
)( 1

T2

T2∑
u=1

Xq,u − µq
)
|Tk,n = T1, Tq,n = T2

]
= E

[
E
[( 1

T1

T1∑
u=1

Xk,u − µk
)( 1

T2

T2∑
u=1

Xq,u − µq
)
|{σ̂p,t′}p,t′≤n

]
× P

(
{σ̂p,t′}p,t′≤n|Tk,n = T1, Tq,n = T2

)
|Tk,n = T1, Tq,n = T2

]
= E

[
E
[( 1

T1

T1∑
u=1

Xk,u − µk
)
|{σ̂p,t′}p,t′≤n

]
P
(
{σ̂p,t′}p,t′≤n|Tk,n = T1, Tq,n = T2

)
|Tk,n = T1, Tq,n = T2

]
× E

[
E
[( 1

T2

T2∑
u=1

Xq,u − µq
)
|{σ̂p,t′}p,t′≤n

]
P
(
{σ̂p,t′}p,t′≤n|Tk,n = T1, Tq,n = T2

)
|Tk,n = T1, Tq,n = T2

]
,

(5.43)

where the Xp,u are the u-th samples pulled from arm p.

Step 2: The distribution of
∑T

u=1Xk,u − µk conditioned on {σ̂p,t′}p,t′≤n is symmetric.

Consider an arm k, and a time T . As the distributions νk is symmetric, 1
T

∑T
u=1Xk,u − µk

conditioned on {σ̂k,t′}t′≤n is symmetric.

As 1
T

∑T
u=1Xk,u−µk depends on {σ̂p,t′}p 6=k,t′≤n only trough {σ̂k,t′}t′≤n, the 1

T

∑T
u=1Xk,u−µk

conditioned on {σ̂k,t′}t′≤n is independent of {σ̂p,t′}p6=k,t′≤n. The distribution of 1
T

∑T
u=1Xk,u−µk

conditioned on {σ̂p,t′}p,t′≤n is thus symmetric around 0, as νk is symmetric around µk.
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This leads to

E
[( 1

T

T∑
u=1

Xk,u − µk
)
|{σ̂p,t′}p,t′≤n

]
= 0. (5.44)

Step 4: The cross products E[
(
µ̂k,n − µk

)(
µ̂q,n − µq

)
] are null. We combine Equations

5.43 and 5.44 to get

E[
(
µ̂k,n − µk

)(
µ̂q,n − µq

)
|Tk,n = T1, Tq,n = T2]

= E
[
0|Tk,n = T1, Tq,n = T2

]
E
[
0|Tk,n = T1, Tq,n = T2

]
= 0,

Now note that

E
[(
µ̂k,n − µk

)(
µ̂q,n − µq

)]
=

n∑
T1=2

n∑
T2=2

E
[(
µ̂k,n − µk

)(
µ̂q,n − µq

)
|Tk,n = T1, Tq,n = T2

]
P
(
Tk,n = T1, Tq,n = T2

)
= 0,

where we use the previous Equation at the end.

Finally, we conclude the proof with

E
[
(µ̂n − µ)2

]
= E

[( K∑
k=1

wk(µ̂k,n − µk)
)2]

=

K∑
k=1

w2
kE
[
(µ̂k,n − µk)2

]
+ 2

∑
k 6=q

wkwqE
[
(µ̂k,n − µk)(µ̂q,n − µq)

]
= Ln(AMC−UCB).

�

5.F.2 Proof of Propositions 7 and 8

We also relate the bounds in Propositions 4 and 5 to a bound on E[(µ̂n − µ)2] in the general

case. The proof Propositions 7 and 8 are very similar up to the end, where we use for the

problem dependent Proposition 7 the results of Lemma 10, and for the problem independent

Proposition 8 the results of Lemma 11.

Proof:

Step 0: A useful Lemma.

Lemma 12 Let X be a random variables such that E(X) = 0. Let (Ωu)u=1,...,p be a partition of

the space of random events. Let (au)u=1,...,p be a positive decreasing sequence of random numbers.
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We have

|E(X

p∑
u=1

auI{X ∈ Ωu})| ≤ (a1 − ap)
√
E(X2).

Proof:

First note that as the sequence of au is positive decreasing, the following equation holds

X

p∑
u=1

auI{X ∈ Ωu} ≤ Xa1I{X ≥ 0}+XapI{X < 0}.

This implies

E
[
X

p∑
u=1

auI{X ∈ Ωu}
]
≤ E

[
Xa1I{X ≥ 0}+XapI{X < 0}

]
≤ E

[
(a1 − ap)XI{X ≥ 0}+ apX(I{X < 0}+ I{X ≥ 0})

]
≤ (a1 − ap)E

[
XI{X ≥ 0}

]
≤ (a1 − ap)

√
E
[
X2I{X ≥ 0}

]
≤ (a1 − ap)

√
E
[
X2
]
,

where the fourth line follows by Cauchy-Schwartz.

By remarking that

X

p∑
u=1

auI{X ∈ Ωu} ≥ Xa1I{X ≤ 0}+XapI{X > 0},

we prove in the same way that

E
[
X

p∑
u=1

auI{X ∈ Ωu}
]
≥ −(a1 − ap)

√
E
[
X2
]
.

Those two inequalities lead to the desired result.

�

Note first that

E[(µ̂n − µ)2] =
∑
k 6=q

w2
kE
[(
µ̂k,n − µk

)2]
+ 2

∑
k 6=q

wkwqE
[(
µ̂k,n − µk

)(
µ̂q,n − µq

)]
.

As problem dependent and problem independent bounds on
∑

k 6=q w
2
kE
[(
µ̂k,n − µk

)2]
are avail-

able in Propositions 4 and 5, it is sufficient to bound the cross-products.
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Step 1: E
[(∑Tk,n

t=1 (Xk,t − µk)
)(∑Tq,n

t=1 (Xq,t − µq)
)]

= 0. Let us denote by tk,t the moment

where the algorithm pulls arm k the t−th time.

E
[( Tk,n∑

t=1

(Xk,t − µk)
)( Tq,n∑

t=1

(Xq,t − µq)
)]

= E
[( n∑

t=1

(Xk,t − µk)I{Tk,n ≥ t}
)( n∑

t=1

(Xq,t − µq)I{Tq,n ≥ t}
)]

=
n∑
t=1

n∑
t′=1

E
[(
Xk,t − µk

)(
Xq,t′ − µq

)
I{Tq,n ≥ t′}I{Tk,n ≥ t}

]
=

n∑
t=1

n∑
t′=1

E
[(
Xk,t − µk

)(
Xq,t′ − µq

)
I{Tq,n ≥ t′}I{Tk,n ≥ t}I{tk,t < tq,t′}

]
+

n∑
t=1

n∑
t′=1

E
[(
Xk,t − µk

)(
Xq,t′ − µq

)
I{Tq,n ≥ t′}I{Tk,n ≥ t}I{tk,t > tq,t′}

]
.

Let us call Ft1,...,tK = σ
(
X1,1, . . . , X1,t1 , . . . , XK,1, . . . , XK,tK

)
the multidimensional filtration

generated, for all k, by the tk first instance of the k−th arm. Note that the algorithm MC-UCB

disposes at time t of the informations from a certain Ft1,...,tK where
∑

k tk = t and picks an arm

(i.e. a dimension of the filtration) according only to information in Ft1,...,tK . If the algorithm

picks arm k, the information at the disposal of MC-UCB is, after pulling arm k, in Ft1,...,tk+1,...,tK .

Now let us consider consider two arms k and q. Note that the collection of events τ =

σ(Xq,t′) ∩ {Tq,n ≥ t′} ∩ {Tk,n ≥ t} ∩ {tk,t > tq,t′} is in Fn,...,t−1,...,n
15: indeed, no information of

Xk,u with u greater than t − 1 is needed in addition Fn,...,t−1,...,n to know if we are in an event

of τ and in which one. This means that Xk,t is independent of all events in τ . Finally, we have

E
[(
Xk,t − µk

)(
Xq,t′ − µq

)
I{Tq,n ≥ t′}I{Tk,n ≥ t}I{tk,t > tq,t′}

]
= E

[(
Xq,t′ − µq

)
I{Tq,n ≥ t′}I{Tk,n ≥ t}I{tk,t ≤ tq,t′}E

[(
Xk,t − µk

)
|Fn,...,t−1,...,n

]]
= E

[(
Xq,t′ − µq

)
I{Tq,n ≥ t′}I{Tk,n ≥ t}I{tk,t > tq,t′}0

]
= 0.

By summing and doing the same reasoning for arm q, we obtain that

E
[( Tk,n∑

t=1

(Xk,t − µk)
)( Tq,n∑

t=1

(Xq,t − µq)
)]

= 0. (5.45)

Note that we have by doing a similar reasoning, that

E
[( min(Tk,n,T̄k)∑

t=max(Tk,n,Tk)

(Xk,t − µk)
)( min(Tq,n,T̄q)∑

t′=max(Tq,n,T q)

(Xq,t′ − µq)
)]

= 0, (5.46)

15Here there are n at all positions except at the k − 1 where there is a t.
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where T k, T q, T̄k and T̄q are any constants.

Step 2: Definition of an event τ of high probability. We remind that on ξ, by combining

Lemmas 10 and 11, we have for all p,

Tp,n ≥ T p,n = max
(
T ∗p,n −B

√
n, T ∗p,n −Aλpn2/3, En2/3

)
,

and

Tp,n ≤ T̄p,n = min
(
T ∗p,n +D

√
n, T ∗p,n + Cn2/3

)
,

where B and D are as in Lemma 10, A and C are as in Lemma 11, and E is as in the proof of

Lemma 11 (Equation 5.33). Note that B and D display an invert dependency in λmin, but that

A, C, and E do not. The probability of ξ is more than 1− 2nKδ.

Now let us define the event τ such that for all p,

Tp,n ≥ T p,n = max
(
T ∗p,n −B

√
n, T ∗p,n −Aλpn2/3, En2/3

)
,

and

Tp,n ≤ T̄p,n = min
(
T ∗p,n +D

√
n, T ∗p,n + Cn2/3

)
.

Note that ξ ⊂ τ because of Lemmas 10 and 11. We have, because of ξ ⊂ τ ,

|E[(µ̂q,n − µq)(µk,n − µk)I{τ c}]| (5.47)

≤
√

E[(µ̂q,n − µq)2I{τ c}]
√

E[(µ̂k,n − µk)2I{τ c}]

≤
√
E[(µ̂q,n − µq)2I{ξc}]

√
E[(µ̂k,n − µk)2I{ξc}]

≤ 2c1n
2Kδ(1 + log(c2/2nKδ))

≤ 2c1K(1 + log(c2n
5/2/2K))n−3/2

≤ Cτn−3/2, (5.48)

as in Appendix 5.B and because δ = n−7/2. Here Cτ = 2c1K(1 + log(c2n
5/2/2K)).

Step 3: Bounding the cross-products. Using step 1 and 2 together, we get

E
[( Tk,n∑

t=1

(Xk,t − µk)
)( Tq,n∑

t=1

(Xq,t − µq)
)
I{τ}

]

= E
[( min(Tk,n,T̄k,n)∑

t=max(Tk,n,Tk,n)

(Xk,t − µk)
)( min(Tq,n,T̄q,n)∑

t′=max(Tq,n,T q,n)

(Xq,t′ − µq)
)]

= 0.

Let us call Z =
(∑min(Tk,n,T̄k,n)

t=max(Tk,n,Tk,n)(Xk,t − µk)
)(∑min(Tq,n,T̄q,n)

t′=max(Tq,n,T q,n)(Xq,t′ − µq)
)
. Note that
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E[Z] = 0. We thus have by Lemma 12∣∣∣E[(µ̂k,n − µk)(µ̂q,n − µq)I{τ}]∣∣∣
=
∣∣∣E[( 1

Tk,n

min(Tk,n,T̄k,n)∑
t=max(Tk,n,Tk,n)

(Xk,t − µk)
)( 1

Tq,n

min(Tq,n,T̄q,n)∑
t′=max(Tq,n,T q,n)

(Xq,t′ − µq)
)]∣∣∣

=
∣∣∣E[ 1

Tk,n

1

Tq,n
Z
]∣∣∣

=
∣∣∣ T̄k,n∑
t=Tk,n

T̄q,n∑
t′=T q,n

Z
1

t

1

t′
I{Tk,n = t, Tq,n = t′}

∣∣∣
≤ E[Z2]

( 1

T k,n

1

T q,n
− 1

T̄k,n

1

T̄q,n

)
.

Note now that

E[Z2] =
∣∣∣E[( min(Tk,n,T̄k,n)∑

t=max(Tk,n,Tk,n)

(Xk,t − µk)
)( min(Tq,n,T̄q,n)∑

t′=max(Tq,n,T q,n)

(Xq,t′ − µq)
)]∣∣∣

≤

√√√√√E
[( min(Tk,n,T̄k,n)∑

t=max(Tk,n,Tk,n)

(Xk,t − µk)
)2]E[( min(Tq,n,T̄q,n)∑

t′=max(Tq,n,T q,n)

(Xq,t′ − µq)
)2]

≤ σk
√
T̄k,nσq

√
T̄q,n.

From that, one gets

wkwq

∣∣∣E[(µ̂k,n − µk)(µ̂q,n − µq)I{τ}]∣∣∣ ≤ wkσk√T̄k,nwqσq√T̄q,n( 1

T k,n

1

T q,n
− 1

T̄k,n

1

T̄q,n

)

≤ 4A2 Σ2

n2

√
T̄k,nT̄q,n

T̄k,nT̄q,n

(
T̄k,nT̄q,n − T k,nT q,n

)
(5.49)

≤ 4A2 Σ2

n2

1√
T̄k,nT̄q,n

(
T̄k,nT̄q,n − T k,nT q,n

)
. (5.50)

where the second inequality comes from the fact that ∀p, T p,n ≥ T ∗p,n − Aλpn2/3, which implies

that
wpσp
T p,n

≤ Σw
(n−A2/3)

≤ 2AΣw
n .
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Step 4: problem dependent upper bound We deduce from Equation 5.50 that

wkwq

∣∣∣E[(µ̂k,n − µk)(µ̂q,n − µq)I{τ}]∣∣∣
≤4A2 Σ2

w

n2

1√
T̄k,nT̄q,n

(
T̄k,nT̄q,n − T k,nT q,n

)

≤4A2 Σ2
w

n2

((
λkn+D

√
n
)(
λqn+D

√
n
)
−
(
λkn−B

√
n
)(
λqn−B

√
n
))√(

λkn+D
√
n
)(
λqn+D

√
n
)

=4A2 Σ2
w

n2

(
(D +B)(λp + λq)n

√
n+ (D2 −B2)n

)
√(

λkλqn2 + (D +B)(λp + λq)n
√
n+D2n

)
≤4A2 Σ2

w

n2

(D +B +D2)n
√
n

n
√

(λkλq)

≤4A2 (D +B +D2)√
(λkλq)

Σ2
w

n3/2
.

Finally, we have

wkwq

∣∣∣E[(µ̂k,n − µk)(µ̂q,n − µq)I{τ}]∣∣∣ ≤ C1n
−3/2, (5.51)

where C1 = 4A2 (D+B+D2)(λp+λq)√
(λkλq)

Σ2
w.

Finally, using Equation 5.48, we have

wkwqE
[(
µ̂k,n − µk

)(
µ̂q,n − µq

)]
= E

[(
µ̂k,n − µk

)(
µ̂q,n − µq

)
I{ξ}

]
+ E

[(
µ̂k,n − µk

)(
µ̂q,n − µq

)
I{ξc}

]
≤ C1n

−3/2 + Cτn
−3/2,

≤
(
C1 + Cτ

)
n−3/2,

where C2 and Cτ depend only polynomially on log(n), on Σw, on K, on (c1, c2), and on 1
λmin

.

This concludes the proof for the problem dependent bound.
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Step 4bis: problem independent upper bound From Equation 5.50, we deduce that

wkwq

∣∣∣E[(µ̂k,n − µk)(µ̂q,n − µq)I{τ}]∣∣∣
≤16A2 Σ2

w

n2

1√
T̄k,nT̄q,n

(
T̄k,nT̄q,n − T k,nT q,n

)

≤16A2 Σ2
w

n2

((
λkn+ Cn2/3

)(
λqn+ Cn2/3

)
−
(
λkn−An2/3

)(
λqn−An2/3

))√(
λkn+ Cn2/3

)(
λqn+ Cn2/3

)
=16A2 Σ2

w

n2

(
(A+ C)(λp + λq)nn

2/3 + (C2 −A2)n4/3
)

√(
λkλqn2 + (A+ C)(λp + λq)nn2/3 + C2n4/3

)
≤16A2 Σ2

w

n2

[
(A+ C)(λp + λq)nn

2/3√
(A+ C)(λp + λq)nn2/3

+
(C2 −A2)n4/3

√
C2n4/3

]

≤16A2 Σ2
w

n2

[√
(A+ C)(λp + λq)n

5/6 + Cn2/3

]

≤16A2

[√
(A+ C)(λp + λq) + C

]
Σ2
w

n7/6
.

Finally, we have

wkwq

∣∣∣E[(µ̂k,n − µk)(µ̂q,n − µq)I{τ}]∣∣∣ ≤ C2n
−7/6, (5.52)

where C2 = 16A2

[√
(A+ C) + C

]
Σ2
w.

Finally, using Equation 5.48, we have

wkwqE
[(
µ̂k,n − µk

)(
µ̂q,n − µq

)]
= E

[(
µ̂k,n − µk

)(
µ̂q,n − µq

)
I{ξ}

]
+ E

[(
µ̂k,n − µk

)(
µ̂q,n − µq

)
I{ξc}

]
≤ C2n

−7/6 + Cτn
−3/2,

≤
(
C2 + Cτ

)
n−7/6,

where C2 and Cτ depend only polynomially on log(n), on Σw, on K and on (c1, c2).

This concludes the proof for the problem dependent bound.

�
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Chapter 6

Minimax Number of Strata for

Online Stratified Sampling given

Noisy Samples

This Chapter is a joint work with Rémi Munos, and is extracted from the Technical Report [Car-

pentier and Munos, 2012b]. In it, and in the next two others as well, we consider different

scenarios of the setting of functional integration, and try to answer the question of efficiently

stratifying the space. We assume in this Chapter that the function we want to integrate is noisy,

and we are concerned about building a minimax-optimal stratification of the domain for a given

smoothness assumption on the function.

More precisely, we consider the problem of online stratified sampling for Monte Carlo inte-

gration of a function given a finite budget of n noisy evaluations to the function, and we focus

on the problem of choosing the number of strata K as a function of the budget n. We pro-

vide asymptotic and finite-time results on how an oracle that has access to the function would

choose the number of strata optimally. In addition we prove a lower bound on the learning rate

for the problem of stratified Monte-Carlo. As a result, we are able to state, by improving the

bound on its performance, that algorithm MC-UCB, defined in [Carpentier and Munos, 2011a],

is minimax optimal both in terms of the number of samples n and the number of strata K, up

to a
√

log(nK). This enables to deduce a minimax optimal bound on the difference between

the performance of the estimate outputted by MC-UCB, and the performance of the estimate

outputted by the best oracle static strategy, on the class of Hölder continuous functions, and up

to a
√

log(n).
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Introduction

The objective of this Chapter is to provide an efficient strategy for Monte-Carlo integration of a

function f over a domain [0, 1]d. We assume that we can query the function n times. Querying

the function at a time t and at a point xt ∈ [0, 1]d provides a noisy sample

f(xt) + s(xt)εt, (6.1)

where εt is an independent noise drawn from νxt and s ≥ 0 is a function on [0, 1]d. Here νx is a

distribution with mean 0, variance 1 and whose shape may depend on x1. This model is actually

very general (see Section 6.1).

Stratified sampling is a well-known strategy to reduce the variance of the estimate of the

integral of f , when compared to the variance of the estimate provided by crude Monte-Carlo. The

principle is to partition the domain in K subsets called strata and then to sample in each stratum

(see Rubinstein and Kroese [2008][Subsection 5.5] or Glasserman [2004]). If the variances of the

samples in the strata are known, there exists an optimal static allocation strategy which allocates

the number of samples in each stratum proportionally to the measure of the stratum times the

variance in the stratum (see Equation 6.3 in this Chapter for a reminder). We refer to this

allocation as optimal oracle strategy for a given partition. In the case that the variations of f

and the standard deviation of the noise s are unknown, it is not possible to adopt this strategy.

1It is the usual model for functions in heterocedastic noise. We isolate the standard deviation on a point x,
s(x), in the expression of the noise, since this quantity is very relevant.
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Consider first that the partition of the space is fixed. A way around this problem is to

estimate the variations of the function and the amount of noise on the function in the strata

online (exploration) while allocating the samples according to the estimated optimal oracle

strategy (exploitation). This setting is considered in Carpentier and Munos [2011a]; Etoré and

Jourdain [2010]; Grover [2009]. In the long version Carpentier and Munos [2011b] of the last

paper, the authors describe the MC-UCB algorithm which is based on Upper-Confidence-Bounds

(UCB) on the standard deviation. They provide upper bounds for the difference between the

mean-squared error(w.r.t. the integral of f) of the estimate provided by MC-UCB and the mean-

squared error of the estimate provided by the optimal oracle strategy (optimal oracle variance).

The algorithm performs almost as well as the optimal oracle strategy. However, the authors

of Carpentier and Munos [2011b] do not infirm nor assess the optimality of their algorithm with

a lower bound as benchmark. As a matter of fact, no lower bound on the rate of convergence

(to the oracle optimal strategy) for the problem of stratified Monte-Carlo exists, to the best of

our knowledge. Still in the same paper Carpentier and Munos [2011b], the authors do not at

all discuss on how to stratify the space. In particular, they do not pose the problem of what an

optimal partition of the space is, and do not try to answer on whether it is possible or not to

attain it.

The next step is thus to efficiently design the partition. There are some interesting papers

on that topic such that Etoré et al. [2011]; Glasserman et al. [1999]; Kawai [2010]. The recent,

state of the art, work of Etoré et al. [2011] describes a strategy that samples asymptotically

almost as efficiently as the optimal oracle strategy, and at the same time adapts the direction

and number of the strata online. This is a very difficult problem. The authors do not provide

proofs of convergence of their algorithm. However for static allocation of the samples, they

present some properties of the stratified estimate when the number of strata goes to infinity and

provide convergence results under the optimal oracle strategy. As a corollary, they prove that

the more strata there are, the smallest the optimal oracle variance.

Contributions: The more strata there are, the smaller the variance of the estimate computed

when following the optimal oracle strategy. However, the more strata there are, the more diffi-

cult it is to estimate the variance within each of these strata, and thus the more difficult it is

to perform almost as well as the optimal oracle strategy. Choosing the number of strata is thus

crucial and this is the problem we address in this Chapter. This defines a trade-off similar to the

one in model selection (and in all its variants, e.g. density estimation, regression...): The wider

the class of models considered, i.e. the larger the number of strata, the smaller the distance

between the true model and the best model of the class, i.e. the approximation error. But the

larger the estimation error.

Paper Etoré et al. [2011], although proposing no finite time bounds, develops very interesting

ideas for bounding the first term, i.e. the approximation error. As pointed out in paper e.g. Car-

pentier and Munos [2011a], it is possible to build algorithms that have a small estimation error.

By constructing tight and finite-time bounds for the approximation error, it is thus possible
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to propose a number of strata that minimizes an upper bound on the performance. It is how-

ever not clear how consistent this choice is. The essential ingredients for choosing efficiently a

partition are thus lower bounds on the estimation error, and on the approximation error.

The objective of this Chapter is to propose a method for choosing the minimax-optimal

number of strata. Our contributions are the following.

• We first present results on what we call the quality Qn,N of a given partition in K strata N

(i.e., using the previous analogy to model selection, this would represent the approximation

error). Using very mild assumptions we compute a lower bound on the variance of the

estimate given by the optimal oracle strategy on the optimal oracle partition. Then if

the function and the standard deviation of the noise are α−Hölder, and also if the strata

satisfy some assumptions, we prove that Qn,N = O(K
α/d

n ). This bound is also minimax

optimal on the class of α−Hölder functions.

• Even though we presented these results during the last Chapter, it was originally in the

Technical Report from which this Chapter is extracted (Technical Report [Carpentier and

Munos, 2012b]) that we provided the lower bound for the problem of adaptive stratified

Monte-Carlo (that is of order Ω(K1/3n−4/3)) and also that we tightened the problem

independent regret bound for algorithm MC-UCB in terms of K (and proved that it is of

order Õ(Kn−4/3)). We remind that this implies that MC-UCB is minimax-optimal up to

a
√

log(nK) both in terms of number of samples and in terms of number of strata.

• Finally, we combine the results on the quality and on the pseudo-regret of MC-UCB to

provide a value on the number of strata leading to a minimax-optimal trade-off (up to a√
log(n)) on the class of α−Hölder functions.

The rest of the Chapter is organized as follows. In Section 6.1 we formalize the problem

and introduce the notations used throughout the Chapter. Section 6.2 states the results on

the quality of a partition. Section 6.3 improves the analysis of the MC-UCB algorithm, and

establishes the lower bound on the pseudo-regret. Section 6.4 reports the best trade-off to

choose the number of strata. And in Section 6.5, we illustrate how important it is to choose

carefully the number of strata. We finally conclude the Chapter and suggest future works. The

proofs of the results are in the Appendices of the Chapter.

6.1 Setting

We consider the problem of numerical integration of a function f : [0, 1]d → R with respect to

the uniform (Lebesgue) measure. We dispose of a budget of n queries (samples) to the function,

and we can allocate this budget sequentially. When querying the function at a time t and at a

point xt, we receive a noisy sample X(t) of the form described in Equation 6.1.

We now assume that the space is stratified in K Lebesgue measurable strata that form a

partition N. We index these strata, called Ωk, with indexes k ∈ {1, . . . ,K}, and write wk their
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measure, according to the Lebesgue measure. We write µk = 1
wk

∫
Ωk

Eε∼νx [f(x) + s(x)ε]dx =
1
wk

∫
Ωk
f(x)dx their mean and σ2

k = 1
wk

∫
Ωk

Eε∼νx [(f(x) + s(x)ε− µk)2]dx their variance. These

mean and variance correspond to the mean and variance of the random variable X(t) when the

coordinate x at which the noisy evaluation of f is observed is chosen uniformly at random on

the stratum Ωk.

We denote by A an algorithm that allocates online the budget by selecting at each time

step 1 ≤ t ≤ n the index kt ∈ {1, . . . ,K} of a stratum and then samples uniformly in the

corresponding stratum Ωkt . The objective is to return the best possible estimate µ̂n of the

integral of the function f . We write Tk,n =
∑

t≤n I{kt = k} the number of samples in stratum

Ωk up to time n. We denote by
(
Xk,t

)
1≤k≤K,1≤t≤Tk,n

the samples in stratum Ωk, and we define

µ̂k,n = 1
Tk,n

∑Tk,n
t=1 Xk,t (the empirical means in the strata). We estimate the integral of f by

µ̂n =
∑K

k=1wkµ̂k,n.

If we allocate a deterministic number of samples Tk to each stratum Ωk and if the samples

are independent and chosen uniformly on each stratum Ωk, we have

E(µ̂n) =
∑
k≤K

wkµk =
∑
k≤K

∫
Ωk

f(u)du =

∫
[0,1]d

f(u)du = µ,

and also

V(µ̂n) =
∑
k≤K

w2
kσ

2
k

Tk
,

where the expectation and the variance are computed according to all the samples that the

algorithm collected.

For a given algorithm A allocating Tk,n samples drawn uniformly within stratum Ωk, we

denote by pseudo-risk the quantity

Ln,N(A) =
∑
k≤K

w2
kσ

2
k

Tk,n
. (6.2)

Note that if an algorithm A∗ has access the variances σ2
k of the strata, it can choose to allocate

the budget in order to minimize the pseudo-risk, i.e., sample each stratum T ∗k = wkσk∑
i≤K wiσi

n times

(this is the so-called oracle allocation). These optimal numbers of samples can be non-integer

values, in which case the proposed optimal allocation is not realizable. But we still use it as a

benchmark. The pseudo-risk for this algorithm (which is also the variance of the estimate here

since the sampling strategy is deterministic) is then

Ln,N(A∗) =

(∑
k≤K wkσk

)2

n
=

Σ2
N

n
, (6.3)

where ΣN =
∑

k≤K wkσk. We also refer in the sequel as optimal proportion to λk = wkσk∑
i≤K wiσi

,

and to optimal oracle strategy to this allocation strategy. Although, as already mentioned, the
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optimal allocations (and thus the optimal pseudo-risk) might not be realizable, it is still very

useful in providing a lower-bound. No static (even oracle) algorithm has a pseudo-regret lower

than Ln,N(A∗) on partition N.

It is straightforward to see that the more refined the partition N the smaller Ln,N(A∗) (see

e.g. Glasserman et al. [1999]). We thus define the quality of a partition Qn,N as the difference

between the variance Ln,N(A∗) of the estimate provided by the optimal oracle strategy on parti-

tion N, and the infimum of the variance of the optimal oracle strategy on any partition (optimal

oracle partition) (with an arbitrary number of strata):

Qn,N = Ln,N(A∗)− inf
N′measurable

Ln,N′(A
∗). (6.4)

We also define the pseudo-regret of an algorithm A on a given partition N, as the difference

between its pseudo-risk and the variance of the optimal oracle strategy:

Rn,N(A) = Ln,N(A)− Ln,N(A∗). (6.5)

We will assess the performance of an algorithm A by comparing its pseudo risk to the

minimum possible variance of an optimal oracle strategy on the optimal oracle partition:

Ln,N(A)− inf
N′measurable

Ln,N′(A
∗) = Rn,N(A) +Qn,N. (6.6)

Using the analogy of model selection mentioned in the Introduction, the quality Qn,N is

similar to the approximation error and the pseudo-risk Rn,N(A) to the estimation error.

Motivation for the model f(x) + s(x)εt. Assume that a learner can, at each time t, choose

a point x and collect an observation F (x,Wt), where Wt is an independent noise, that can

however depend on x. It is the general model for representing evaluations of a noisy func-

tion. There are many settings where one needs to integrate accurately a noisy function without

wasting too much budget, like for instance pollution survey. Set f(x) = EWt [F (x,Wt)], and

s(x)εt = F (x,Wt) − f(x). Since by definition εt is of mean 0 and variance 1, we have in fact

s(x) =
√
Eνx [(F (x,Wt)− f(x))2] and εt = F (x,Wt)−f(x)

s(x) . Observing F (x,Wt) is thus equivalent

to observing f(x) + s(x)εt, and this implies that the model that we choose is also very general.

There is also an important setting where this model is relevant, and this is for the inte-

gration of a function F in high dimension d∗. Stratifying in dimension d∗ seems hopeless,

since the budget n has to be exponential with d∗ if one wants to stratify in every direction

of the domain: this is the curse of dimensionality. It is necessary to reduce the dimension

by choosing a small amount of directions (1, . . . , d) that are particularly relevant, and con-

trol/stratify only in these d directions2. Then the control/stratification is only on the first

d coordinates, so when sampling at at a time t, one chooses x = (x1, . . . , xd), and the other

d∗ − d coordinates U(t) = (Ud+1(t), . . . , Ud∗(t)) are uniform random variables on [0, 1]d
∗−d

2This is actually a very common technique for computing the price of options, see Glasserman [2004].
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(without any control). When sampling in x at a time t, we observe F (x, U(t)). By writing

f(x) = EU(t)∼U([0,1]d∗−d)[F (x, U(t))], and s(x)εt = F (x, U(t)) − f(x), we obtain that the model

we propose is also valid in this case.

6.2 The quality of a partition: Analysis of the term Qn,N.

In this Section, we focus on the quality of a partition defined in Section 6.1.

Convergence under very mild assumptions As mentioned out in Section 6.1, the more

refined the partition N of the space, the smaller Ln,N(A∗), and thus ΣN. Through this monotony

property, we know that infN ΣN is also the limit of the (ΣNp)p of a sequence of partitions (Np)p

such that the diameter of each stratum goes to 0. We state in the following Proposition that for

any such sequence, limp→+∞ΣNp =
∫

[0,1]d s(x)dx. Consequently infN ΣN =
∫

[0,1]d s(x)dx.

Proposition 10 Let (Np)p = (Ωk,p)k∈{1,...,Kp},p∈{1,...,+∞} be a sequence of measurable partitions

(where Kp is the number of strata of partition Np) such that

• AS1: 0 < wk,p ≤ υp, for some sequence (υp)p, where υp → 0 for p→ +∞.

• AS2: The diameters according to the ||.||2 norm on Rd of the strata are such that maxkDiam(Ωk,p) ≤
D(wk,p), for some real valued function D(·), such that D(w)→ 0 for w → 0.

If the functions m and s are in L2([0, 1]d), then

lim
p→+∞

ΣNp = inf
Nmeasurable

ΣN =

∫
[0,1]d

s(x)dx,

which implies that n×Qn,Np → 0 for p→ +∞.

The full proof of this Proposition is available in the Appendix 6.B.

In Proposition 10, even though the optimal oracle allocation might not be realizable (in

particular if the number of strata is larger than the budget), we can still compute the quality of

a partition, as defined in 6.4. It does not correspond to any reachable pseudo-risk, but rather

to a lower bound on any (even oracle) static allocation.

When f and s are in L2([0, 1]d), for any appropriate sequence of partitions (Np)p, ΣNp

(which is the principal ingredient of the variance of the optimal oracle allocation) converges to

the smallest possible ΣN for given f and s. Note however that this condition is not sufficient to

obtain a rate.

Finite-Time analysis under Hölder assumption: We make the following assumption on

the functions f and s.
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Assumption The functions f and s are (M,α)−Hölder continuous, i.e., for g ∈ {m, s}, for

any x and y ∈ [0, 1]d, |g(x)− g(y)| ≤M ||x− y||α2 .

The Hölder assumption enables us to consider arbitrarily non-smooth functions (for small

α, the function can vary arbitrarily fast), and is thus a fairly general assumption.

We also consider the following partitions in K squared strata.

Assumption We write NK the partition of [0, 1]d in K hyper-cubic strata of measure wk =

w = 1
K and side length ( 1

K )1/d: we assume for simplicity that there exists an integer l such that

K = ld.

The following Proposition holds.

Proposition 11 Under Assumption 6.2 we have for any partition NK as defined in Defini-

tion 6.2 that

ΣNK −
∫

[0,1]d
s(x)dx ≤

√
2dM(

1

K
)α/d, (6.7)

which implies

Qn,NK ≤
2
√

2dMΣN1

n
(

1

K
)α/d,

where N1 stands for the “partition” with one stratum.

The full proof of this Proposition is available in the Appendix 6.C.

6.2.1 General comments

The impact of α and d: The quantity Qn,NK increases with the dimension d, because the

Hölder assumption becomes less constraining when d increases. This can easily be seen since a

squared strata of measure w has a diameter of order w1/d. Qn,NK decreases with the smoothness

α of the function, which is a logic effect of the Hölder assumption. Note also that when defining

the partitions NK in Definition 6.2, we made the crucial assumption that K1/d is an integer.

This fact is of little importance in small dimension, but will matter in high dimension, as we

will enlighten in the last remark of Section 6.4.

Minimax optimality of this rate: The rate n−1K−α/d is minimax optimal on the class of

α−Hölder functions since for any n and K one can easily build a function with Hölder exponent

α such that the corresponding ΣNK is at least
∫

[0,1]d s(x)dx+ cK−α/d for some constant c.

Discussion on the shape of the strata: Whatever the shape of the strata, as long as their

diameter goes to 03, ΣNK converges to
∫

[0,1]d s(x)dx. The shape of the strata have an influence

only on the negligible term, i.e. the speed of convergence to this quantity. This result was

already made explicit, in a different setting and under different assumptions, in Etoré et al.

3And note that in this noisy setting, if the diameter of the strata does not go to 0 on non homogeneous part
of m and s, then the standard deviation corresponding to the allocation is larger than

∫
[0,1]d

s(u)du.
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[2011]. Choosing small strata of same shape and size is also minimax optimal on the class

of Hölder functions. Working on the shape of the strata could, however, improve the speed

of convergence in some specific cases, e.g. when the noise is very localized. It could also be

interesting to consider strata of varying size, and make this size depend on the specific problem.

The decomposition of the variance: The variance σ2
k within each stratum Ωk comes from

two sources. First, σ2
k comes from the noise, that contributes to it by 1

wk

∫
Ωk
s(x)2dx. Second, the

mean f is not a constant function, thus its contribution to σ2
k is 1

wk

∫
Ωk

(
f(x)− 1

wk

∫
Ωk
f(u)du

)2
dx.

Note that when the size of Ωk goes to 0, this later contribution vanishes, and the optimal

allocation is thus proportional to
√
wk
∫

Ωk
s(x)2dx+ o(1) =

∫
Ωk
s(x)dx+ o(1). This means that

for small strata, the variation in the mean are negligible when compared to the variation due to

the noise.

6.3 Algorithm MC-UCB and a matching lower bound

6.3.1 Algorithm MC − UCB

In this Subsection, we describe a slight modification of the algorithm MC − UCB introduced

in Carpentier and Munos [2011a]. The only difference is that we change the form of the high-

probability upper confidence bound on the standard deviations, in order to improve the elegance

of the proofs, and we refine their analysis. The algorithm takes as input two parameters b and

fmax which are linked to the distribution of the arms, δ which is a (small) probability, and the

partition NK . We remind in Figure 6.1 the algorithm MC − UCB.

Input: b, fmax, δ, NK , set A = 2
√

(1 + 3b+ 4f2
max) log(2nK/δ)

Initialize: Sample 2 states in each strata.
for t = 2K + 1, . . . , n do

Compute Bk,t = wk
Tk,t−1

(
σ̂k,t−1 +A

√
1

Tk,t−1

)
for each stratum k ≤ K

Sample a point in stratum kt ∈ arg max1≤k≤K Bk,t
end for
Output: µ̂n =

∑K
k=1wkµ̂k,n

Figure 6.1: The pseudo-code of the MC-UCB algorithm. The empirical standard deviations and
means σ̂2

k,t and µ̂k,t are computed using Equation 6.8.

The estimates of σ̂2
k,t−1 and µ̂k,t−1 are computed according to

σ̂2
k,t−1 =

1

Tk,t−1

Tk,t−1∑
i=1

(Xk,i − µ̂k,t−1)2, and µ̂k,t−1 =
1

Tk,t−1

Tk,t−1∑
i=1

Xk,i . (6.8)
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6.3.2 Upper bound on the pseudo-regret of algorithm MC-UCB.

We first state the following Assumption on the noise εt:

Assumption There exist b > 0 such that ∀x ∈ [0, 1]d, ∀t, and ∀λ < 1
b ,

Eνx
[

exp(λεt)
]
≤ exp

( λ2

2(1− λb)

)
, and Eνx

[
exp(λε2

t − λ)
]
≤ exp

( λ2

2(1− λb)

)
.

This is a kind of sub-Gaussian assumption, satisfied for e.g., Gaussian as well as bounded

distributions. We also state an assumption on f and s.

Assumption The functions f and s are bounded by fmax.

Note that since the functions f and s are defined on [0, 1]d, if Assumption 6.2 is satisfied,

then Assumption 6.3.2 holds with fmax = max(f(0), s(0)) +
√

2dM . We now prove the following

bound on the pseudo-regret. Note that we state it on partitions NK , but that it in fact holds

for any partition in K strata.

Proposition 12 FixedStrata.prop:m-regret

Under Assumptions 6.3.2 and 6.3.2, on partition NK , when n ≥ 4K, we have

E[Rn,NK (AMC−UCB)] ≤ CK
1/3

n4/3

√
log(nK) +

14KΣ2
NK

n2
,

where C = 24
√

2ΣNK

√
(1 + 3b+ 4f2

max)
(
fmax+4

4

)1/3
.

The proof of this Proposition is close to the one of MC-UCB in Carpentier and Munos

[2011a]. But an improved analysis leads to a better dependency in terms of number of strata

K. We remind that in paper Carpentier and Munos [2011a], the bound is of order Õ(Kn−4/3).

This improvement is crucial here since the larger K is, the closer ΣNK is from
∫

[0,1]d s(x)dx. This

result is however substantially similar to Theorem 10 in Chapter 5. We make the small changes

explicit in the Appendices of this chapter, i.e. Appendix 6.A. The next Subsection states that

the rate K1/3Õ(n−4/3) of MC-UCB is optimal both in terms of K and n.

6.3.3 Lower Bound

We now study the minimax rate for the pseudo-regret of any algorithm on a given partition NK .

Note that we state it for partitions NK , but that it holds for any partition in K strata of equal

measure.

132



Theorem 13 Let K ∈ N. Let inf be the infimum taken over all online stratified sampling

algorithms on NK and sup represent the supremum taken over all environments, then:

inf supE[Rn,NK ] ≥ CK
1/3

n4/3
,

where C is a numerical constant.

This lower bound, that we already presented in Chapter 5 (Theorem 8), was originally

introduced in Carpentier and Munos [2012b], i.e. this work. We believe that the proof is original

and interesting: this is the main contribution of this work. Note that this bound is of same order

as the upper bound for the pseudo-regret of algorithm MC-UCB. It means that this algorithm

is, up to
√

log(nK), minimax optimal, both in terms of the number of samples and in terms of

the number of strata. It however holds only on the partitions NK (we conjecture that a similar

result holds for any measurable partition N, but with a bound of order Ω
(∑

x∈N
w

2/3
x

n4/3

)
).

6.4 Minimax-optimal trade-off between Qn,NK and Rn,NK(AMC−UCB)

6.4.1 Minimax-optimal trade-off

We consider in this Section the hyper-cubic partitions NK as defined in Definition 6.2, and we

want to find the minimax-optimal number of strata Kn as a function of n. Using the results

in Section 6.2 and Subsection 6.3.1, it is possible to deduce an optimal number of strata K to

give as parameter to algorithm MC − UCB. Note that since the performance of the algorithm

is defined as the sum of the quality of partition NK , i.e. Qn,NK and of the pseudo-regret of the

MC-UCB algorithm, namely Rn,NK (AMC−UCB), one wants to (i) on the one hand take many

strata so that Qn,NK is small but (ii) on the other hand, pay attention to the impact this number

of strata has on the pseudo-regret Rn,NK (AMC−UCB). A good way to do that is to choose Kn

in function of n such that Qn,NKn and Rn,NKn (AMC−UCB) are of the same order.

Theorem 14 Under Assumptions 6.2 and 6.3.2 (since on [0, 1]d, Assumption 6.2 implies As-

sumption 6.3.2, by setting fmax = X(1) +
√

2dM), choosing Kn =
(
b(n

d
d+3α )1/dc

)d
(≤ n

d
d+3α ≤

n), we have

E[Ln(AMC−UCB)]− 1

n

(∫
[0,1]d

s(x)dx
)2
≤ Cd

2α
3d

+ 1
2

√
log(n)n−

d+4α
d+3α (1 + dαn−

α
d+3α ),

where c = 70(1 +M)ΣNK

√
(1 + 3b+ 4(f(0) + s(0) +M)2)

(
(f(0)+s(0)+M)+4

4

)1/3
.

If d� n, then E[Ln(AMC−UCB)]− 1
n

( ∫
[0,1]d s(x)dx

)2
= Õ(n−

d+4α
d+3α ).

We can also prove a matching (up to
√

log(n)) minimax lower bound using the results in

Theorem 13.
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Theorem 15 Let sup represent the supremum taken over all α−Hölder functions and inf be

the infimum taken over all algorithms that partition the space in convex strata of same shape,

then the following holds true:

inf supELn(A)− 1

n

(∫
[0,1]d

s(x)dx
)2

= Ω(n−
d+4α
d+3α ).

6.4.2 Discussion

Optimal pseudo-risk. The dominant term in the pseudo-risk of MC-UCB with the proper

number of strata is (infN ΣN)2

n = 1
n

( ∫
[0,1]d s(x)dx

)2
(the other term is negligible). This means

that algorithm MC-UCB is almost as efficient as the optimal oracle strategy on the optimal

oracle partition. In comparison, the variance of the estimate given by crude Monte-Carlo is∫
[0,1]d

(
f(x)−

∫
[0,1]d f(u)du

)2
dx+

∫
[0,1]d s(x)2dx. Thus MC-UCB enables to have the term coming

from the variations in the mean vanish, and the noise term decreases (since by Cauchy-Schwarz,( ∫
[0,1]d s(x)dx

)2 ≤ ∫[0,1]d s(x)2dx).

Minimax-optimal trade-off for algorithm MC-UCB. The optimal trade-off on the num-

ber of strata Kn of order n
d

d+3α depends on the dimension and the smoothness of the function.

The higher the dimension, the more strata are needed in order to have a decent speed of con-

vergence for ΣNK . The smoother the function, the less strata are needed.

It is yet important to remark that this trade-off is not exact. We provide an almost minimax-

optimal order of magnitude for Kn, in terms of n, so that the rate of convergence of the algorithm

is minimax-optimal up to a
√

log(n).

Link between risk and pseudo-risk. It is important to compare the pseudo-risk Ln(A) =∑K
k=1

w2
kσ

2
k

Tk,n
and the true risk E[(µ̂n − µ)2]. Note that these quantities are in general not equal

for an algorithm A that allocates the samples in a dynamic way: indeed, the quantities Tk,n

are in that case stopping times and the variance of estimate µ̂n is not equal to the pseudo-risk.

However, in the paper Carpentier and Munos [2011b], the authors highlighted for MC − UCB
some links between the risk and the pseudo-risk. More precisely, they established links between

Ln(A) and
∑K

k=1w
2
kE[(µ̂k,n − µk)2]. This step is possible since E[(µ̂k,n − µk)2] ≤ w2

kσ
2
k

T 2
k,n

E[Tk,n],

where T k,n is a lower-bound on the number of pulls Tk,n on a high probability event. Then they

bounded the cross products E[(µ̂k,n−µk)(µ̂p,n−µp)] and provided some upper bounds on these

terms. A tight analysis of these terms as a function of the number of strata K remains to be

investigated.

Knowledge of the Hölder exponent. In order to be able to choose properly the number

of strata to achieve the rate in Theorem 14, it is needed to possess a proper lower bound on

the Hölder exponent of the function: indeed, the rougher the function is, the more strata are

required. On the other hand, such a knowledge on the function is not always available and an

interesting question is whether it is possible to estimate this exponent fast enough. There are
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interesting papers on that subject like Hoffmann and Lepski [2002] where the authors tackle the

problem of regression and prove that it is possible to adapt to the unknown smoothness of the

function. The authors in Giné and Nickl [2010] add to that (in the case of density estimation)

and prove that it is even possible under the assumption that the function attain its Hölder

exponent to have a proper estimation of this exponent and thus adaptive confidence bands. An

idea would be to try to adapt these results in the case of finite sample.

MC-UCB On a noiseless function. Consider the case where s = 0 almost surely, i.e. the

samples collected are noiseless. Proposition 10 ensures that infN ΣN = 0: it is thus possible

in this case to achieve a pseudo-risk that has a faster rate than O( 1
n). If the function m is

smooth, e.g. Hölder with a not too low exponent α, it is efficient to use low discrepancy methods

to integrate the functions. An idea is to stratify the domain in n hyper-rectangular strata of

minimal diameter, and to pick at random one sample per stratum. The variance of the resulting

estimate is of order O( 1
n1+2α/d ). Algorithm MC-UCB is not as efficient as a low discrepancy

scheme: it needs a number of strata K < n in order to be able to estimate the variance within

each stratum. Its pseudo-risk is then of order O( 1
nK2α/d ).

This however only holds when the samples are noiseless. Otherwise, the variance of the estimate

is of order 1/n, no matter what strategy the learner chooses.

In high dimension. The first bound in Theorem 14 expresses precisely how the performance

of the estimate outputted by MC-UCB depends on d. The first bound states that the quantity

Ln(A) − 1
n

( ∫
[0,1]d s(x)dx

)2
is negligible when compared to 1/n when n is exponential in d.

This is not surprising since our technique aims at stratifying equally in every direction. It is

not possible to stratify in every directions of the domain if the function lies in a very high

dimensional domain.

This is however not a reason for not using our algorithm in high dimension. Indeed, stratifying

even in a small number of strata already reduces the variance, and in high dimension, any

variance reduction techniques are welcome. As mentioned in the end of Section 6.1, the model

that we propose for the function is suitable for modeling d∗ dimensional functions that we only

stratify in d < d∗ directions (and d� n). A reasonable trade-off for d can also be inferred from

the bound, but we believe that what a good choice of d is depends a lot of the problem. We then

believe that it is a good idea to select the number of strata in the minimax way that we propose.

Again, having a very high dimensional function that one stratifies in only a few directions is a

very common technique in financial mathematics, for pricing options (practitioners stratify an

infinite dimensional process in only 1 to 5 carefully chosen dimensions). We illustrate this in

the next Section.
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6.5 Numerical experiment: influence of the number of strata in

the Pricing of an Asian option

We consider the pricing problem of an Asian option introduced in Glasserman et al. [1999] and

later considered in Etoré and Jourdain [2010]; Kawai [2010]. This uses a Black-Scholes model

with strike C and maturity T . Let (W (t))0≤t≤T be a Brownian motion. The discounted payoff

of the Asian option is defined as a function of W , by:

F ((W )0≤t≤T ) = exp(−rT ) max
[ ∫ T

0 S0 exp
(

(r − 1
2s

2
0)t+ s0Wt

)
dt− C, 0

]
,

where S0, r, and s0 are constants.

We want to estimate the price p = EW [F (W )] by Monte-Carlo simulations (by sampling on

W ). In order to reduce the variance of the estimated price, we can stratify the space of W .

Glasserman et al. [1999] suggest to stratify according to a one dimensional projection of W , i.e.,

by choosing a time t and stratifying according to the quantiles of Wt (and simulating the rest

of the Brownian according to a Brownian Bridge, see Kawai [2010]). They further argue that

the best direction for stratification is to choose t = T , i.e., to stratify according to the last time

of T . This choice of stratification is also intuitive since WT has the highest variance, the largest

exponent in the payoff and thus the highest volatility. We stratify according to the quantiles

of WT , that is to say the quantiles of a normal distribution N(0, T ). When stratifying in K

strata, we stratify according to the 1/K-th quantiles (so that the strata are hyper-cubes of same

measure).

We choose the same numerical values as Kawai [2010]: S0 = 100, r = 0.05, s0 = 0.30, T = 1

and d = 16. We discretize also, as in Kawai [2010], the Brownian motion in 16 equidistant times,

so that we are able to simulate it. We choose C = 120.

In this Chapter, we only do experiments for MC-UCB, and exhibit the influence of the

number of strata. For a comparison between MC-UCB and other algorithms, see Carpentier

and Munos [2011a]. By studying the range of the F (W ), we set the parameter of the MC-UCB

algorithm to A = 150 log(n).

For n = 200 and n = 2000, we observe the influence of the number of strata in Figure 6.2

(the number of strata varying from 2 to 100). We plot results for MC-UCB, uniform stratified

Monte-Carlo (that allocates a number of samples in each stratum proportional to the measure

of the stratum), and also for crude, unstratified, Monte-Carlo. We observe the trade-off that we

mentioned between pseudo-regret and quality, in the sense that the mean squared error of the

estimate outputted by MC-UCB (when compared to the true integral of f) first decreases with

K and then increases. Note that, without surprise, for a large n the minimum of mean squared

error is reached with more strata. Finally, note that our technique is never outperformed by

uniform stratified Monte-Carlo: it is a good idea to try to adapt.
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Figure 6.2: Mean squared error for crude Monte-Carlo, uniform stratified sampling and MC-
UCB, for different number of strata, for (Left:) n=200 and (Right:) n=2000.

Conclusion

In this Chapter we studied the problem of online stratified sampling for the numerical integration

of a function given noisy evaluations, and more precisely we discussed the problem of choosing

the minimax-optimal number of strata.

We explained why, to our minds, this is a crucial problem when one wants to design an

efficient algorithm. We enlightened the fact that there is a trade-off between having many

strata (and a good approximation error, i.e. quality of a partition), and not too many, in order

to perform almost as well as the optimal oracle allocation on a given partition (small estimation

error, i.e. pseudo-regret).

When the function is noisy, the noise is the dominant quantity in the optimal oracle variance

on the optimal oracle partition. Indeed, decreasing the size of the strata does not diminish the

(local) variance of the noise. In this case, the pseudo-risk of algorithm MC-UCB is equal, up

to negligible terms, to the mean squared error of the estimate outputted by the optimal oracle

strategy on the best (oracle) partition, at a rate of O(n−
d+4α
d+3α ) where α is the Hölder exponent

of s and m. This rate is minimax optimal on the class of α-Hölder functions: it is not possible,

to do better on simultaneously all α-Hölder functions.

There are (at least) three very interesting remaining open questions:

• The first one is to investigate whether it is possible to estimate online the Hölder exponent

fast enough. Indeed, one needs it in order to compute the proper number of strata for

MC-UCB, and the lower bound on the Hölder exponent appears in the bound. It is thus
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a crucial parameter.

• The second direction is to build a more efficient algorithm in the noiseless case. We

remarked that MC-UCB is not as efficient in this case as a simple non-adaptive method.

The problem comes from the fact that in the case of a noiseless function, it is important

to sample the space in a way that ensures that the points are as spread as possible.

• Another question is the relevance of fixing the strata in advance. Although it is minimax-

optimal on the class of α−Hölder functions to have hyper-cubic strata of same measure, it

might in some cases be more interesting to focus and stratify more finely at places where

the function is rough.
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Appendices for Chapter 6

6.A Proof of Theorem 16

6.A.1 The main tool: a high probability bound on the standard deviations

Upper bound on the standard deviation:

Lemma 13 Let Assumption 6.3.2 hold and n ≥ 2. Define the following event

ξ = ξK,n(δ) =
⋂

1≤k≤K, 2≤t≤n


∣∣∣∣∣
√√√√ 1

t− 1

t∑
i=1

(
Xk,i −

1

t

t∑
j=1

Xk,j

)2
− σk

∣∣∣∣∣ ≤ A
√

1

t

 , (6.9)

where A = 2
√

(1 + 3b+ 4V̄ ) log(2nK/δ). Then Pr(ξ) ≥ 1− δ.

Note that the first term in the absolute value in Equation 6.9 is the empirical standard deviation

of arm k computed as in Equation 6.8 for t samples. The event ξ plays an important role in the

proofs of this section and a number of statements will be proved on this event.

Proof: Under Assumption 6.3.2 we have for f2
max ≥ maxk σ

2
k with probability 1− δ because of

the results of Lemma 16∣∣∣∣∣
√√√√ 1

t− 1

t∑
i=1

(
Xk,i −

1

t

t∑
j=1

Xk,j

)2
− σk

∣∣∣∣∣ ≤ 2

√
(1 + 3b+ 4f2

max) log(2/δ)

t
. (6.10)

Then by doing a simple union bound on (k, t), we obtain the result.

� We deduce the following corollary when the number of samples Tk,t are random.

Corollary 4 For any k = 1, . . . ,K and t = 2K, . . . , n, let {Xk,i}i be n i.i.d. random variables

drawn from νk, satisfying Assumption 6.3.2. Let Tk,t be any random variable taking values in

{2, . . . , n}. Let σ̂2
k,t be the empirical variance computed from Equation 6.8. Then, on the event

ξ, we have:

|σ̂k,t − σk| ≤ A

√
1

Tk,t
, (6.11)

where A = 2
√

(1 + 3b+ 4V̄ ) log(2nK/δ).

6.A.2 Main Demonstration

We first state and prove the following Lemma and then use this result to prove Theorem 16.
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Theorem 16 Let Assumption 6.3.2 hold. For any 0 < δ ≤ 1 and for n ≥ 4K, the MC-UCB

algorithm launched on a partition NK satisfies

ELn ≤
Σ2
NK

n
+ 24
√

2ΣNK

√
(1 + 3b+ 4f2

max)
(fmax + 4

4

)1/3K1/3

n4/3

√
log(nK) +

14KΣ2
NK

n2
.

Proof:

Step 1. Lower bound of order Õ(n2/3). Let k be the index of an arm such that Tk,n ≥ n
K

(this implies Tk,n ≥ 3 as n ≥ 4K, and arm k is thus pulled after the initialization) and let

t+ 1 ≤ n be the last time at which it was pulled 4, i.e., Tk,t = Tk,n − 1 and Tk,t+1 = Tk,n. From

Equation 6.11 and the fact that Tk,n ≥ n
K , we obtain on ξ

Bk,t ≤
wk
Tk,t

(
σk + 2A

√
1

Tk,t

)
≤
Kwk

(
σk + 2A

)
n

, (6.12)

where the second inequality follows from the facts that Tk,t ≥ 1, wkσk ≤ ΣNK , and wk ≤∑
k wk = 1. Since at time t+ 1 the arm k has been pulled, then for any arm q, we have

Bq,t ≤ Bk,t. (6.13)

From the definition of Bq,t, and also using the fact that Tq,t ≤ Tq,n, we deduce on ξ that

Bq,t ≥
2Awq

T
3/2
q,t

≥ 2Awq

T
3/2
q,n

. (6.14)

Combining Equations 6.12–6.14, we obtain on ξ

2Awq

T
3/2
q,n

≤
Kwk

(
σk + 2A

)
n

.

Finally, this implies on ξ that for any q because wk = wq,

Tq,n ≥
( 2A

σk + 2A

n

K

)2/3
. (6.15)

This implies that ∀q, Tq,n ≥ C
(
n
K

)2/3
where C =

(
2A

maxk σk+2A

)2/3
.

Step 2. Properties of the algorithm. We first remind the definition of Bq,t+1 used in the

MC-UCB algorithm

Bq,t+1 =
wq
Tq,t

(
σ̂q,t +A

√
1

Tq,t

)
.

4Note that such an arm always exists for any possible allocation strategy given the constraint n =
∑
q Tq,n.
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Using Corollary 4 it follows that, on ξ

wqσq
Tq,t

≤ Bq,t+1 ≤
wq
Tq,t

(
σq + 2A

√
1

Tq,t

)
. (6.16)

Let t+1 ≥ 2K+1 be the time at which an arm q is pulled for the last time, that is Tq,t = Tq,n−1.

Note that there is at least one arm such that this happens as n ≥ 4K. Since at t + 1 arm q is

chosen, then for any other arm p, we have

Bp,t+1 ≤ Bq,t+1 . (6.17)

From Equation 6.16 and Tq,t = Tq,n − 1, we obtain on ξ

Bq,t+1 ≤
wq
Tq,t

(
σq + 2A

√
1

Tq,t

)
=

wq
Tq,n − 1

(
σq + 2A

√
1

Tq,n − 1

)
. (6.18)

Furthermore, since Tp,t ≤ Tp,n, then on ξ

Bp,t+1 ≥
wpσp
Tp,t

≥ wpσp
Tp,n

. (6.19)

Combining Equations 6.17–6.19, we obtain on ξ

wpσp
Tp,n

(Tq,n − 1) ≤ wq

(
σq + 2A

√
1

Tq,n − 1

)
.

Summing over all q such that the previous Equation is verified, i.e. such that Tq,n ≥ 3, on both

sides, we obtain on ξ

wpσp
Tp,n

∑
q|Tq,n≥3

(Tq,n − 1) ≤
∑

q|Tq,n≥3

wq

(
σq + 2A

√
1

Tq,n − 1

)
.

This implies

wpσp
Tp,n

(n− 3K) ≤
K∑
q=1

wq

(
σq + 2A

√
1

Tq,n − 1

)
. (6.20)
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Step 3. Lower bound. Plugging Equation 6.15 in Equation 6.20,

wpσp
Tp,n

(n− 3K) ≤
∑
q

wq

(
σq + 2A

√
1

Tq,n − 1

)

≤
∑
q

wq

(
σq + 2A

√
2K2/3

Cn2/3

)

≤ ΣNK +
2
√

2A√
C

K1/3

n1/3
,

on ξ, since Tq,n− 1 ≥ Tq,n
2 (as Tq,n ≥ 2). Finally as n ≥ 4K, we obtain on ξ the following bound

wpσp
Tp,n

≤ ΣNK

n
+

4
√

2A√
C

K1/3

n4/3
+

12KΣNK

n2
. (6.21)

Step 4. Regret. By summing and using Equation 6.21 which holds for all p, we obtain on ξ

(with probability 1− δ)

Ln =
∑
p

w2
pσ

2
p

Tp,n
≤

Σ2
NK

n
+

4ΣNK

√
2A√

C

K1/3

n4/3
+

12KΣ2
NK

n2
.

This implies since ELn = E[LnI{ξ}] + E[LnI{ξc}] and since δ = n−2

ELn ≤
Σ2
NK

n
+

4ΣNK

√
2A√

C

K1/3

n4/3
+

12KΣ2
NK

n2
+ (
∑
p

w2
pσ

2
p)n
−2

≤
Σ2
NK

n
+

4ΣNK

√
2A√

C

K1/3

n4/3
+

14KΣ2
NK

n2
.

Since δ = n−2, we have A ≤ 6
√

(1 + 3b+ 4V̄ ) log(nK) and C ≥
(

4
fmax+4

)2/3
, this leads to

ELn ≤
Σ2
NK

n
+ 24

√
2ΣNK

√
(1 + 3b+ 4f2

max)
(fmax + 4

4

)1/3K1/3

n4/3

√
log(nKn) +

14KΣ2
NK

n2
.

�

6.B Proof of Proposition 10

Step 1: Expression of the variance of the stratified estimate. Note that the samples

f(x) + s(x)εt where εt ∼ νx and Eνx [εt] = 0, Vνx [εt] = 1 the εt are independent.
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We have

σ2
k =

1

wk

∫
Ωk

Eνx [(Xx(t)− µk)2]dx

=
1

wk

∫
Ωk

Eνx
[
(f(x) + s(x)εt −

1

wk

∫
Ωk

f(u)du)2
]
dx

=
1

wk

∫
Ωk

Eνx
[
(f(x)− 1

wk

∫
Ωk

f(u)du)2
]
dx+

1

wk

∫
Ωk

Eνx
[
s(x)2ε2

t

]
dx

=
1

wk

∫
Ωk

(
f(x)− 1

wk

∫
Ωk

f(u)du
)2
dx+

1

wk

∫
Ωk

s(x)2dx

Step 2: Proof for the uniformly continuous functions. We first prove the result for a

subset of L2([0, 1]d), namely the set of functions m and s that are uniformly continuous.

Proposition 13 If the functions f and s are uniformly continuous and if the strata satisfy the

Assumptions of Proposition 10, we have

∑
k

wk,nσk,n −
∫

[0,1]d
s(x)dx→ 0

Proof:

Let υ > 0. As s and f are uniformly continuous, we know that ∀x, ∃η such that |s(x+ u)−
s(x)| ≤ υ and |f(x+ u)− f(x)| ≤ υ where u ∈ B2,d(η)5.

By Assumption AS1, we know that wk,n ≤ υn. Note that the diameter of strata Ωk,n is smaller

than D(wk,n) ≤ D(υn). Let us choose n big enough, i.e. such that D(υn) ≤ η and υn ≤ υ.

We have

σ2
k,n − (

1

wk,n

∫
Ωk,n

s)2 =
1

wk,n

∫
Ωk,n

s2 −
( 1

wk,n

∫
Ωk,n

s
)2

+
1

wk,n

∫
Ωk,n

(
f − 1

wk,n

∫
Ωk,n

f
)2

=
1

wk,n

∫
Ωk,n

(
s− 1

wk,n

∫
Ωk,n

s
)2

+
1

wk,n

∫
Ωk,n

(
f − 1

wk,n

∫
Ωk,n

f
)2

≤ υ2 + υ2 ≤ 2υ2.

Because of concavity of the square-root function, we get

σk,n − (
1

wk,n

∫
Ωk,n

s) ≤
√

2υ.

By summing we get ∑
k

wk,nσk,n −
∫

[0,1]d
s ≤
√

2υ.

�

5We denote by B2,d(η) the ball of center 0 and radius η according to the ||.||2 norm.
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Step 3: Density of uniformly continuous functions in L2([0, 1]d). We first remind a

property of the functions in L2([0, 1]d).

Proposition 14 The uniformly continuous functions according to the ||.||2 norm are dense in

L2([0, 1]d).

Proof: The result follows directly from the facts that

• The continuous functions are dense in L2(Ω) (Stone-Weierstrass Theorem).

• The uniformly continuous functions on a compact space Ω according to the ||.||2 norm are

dense in the space of continuous functions.

• [0, 1]d is a compact.

� This means that we can approximate with arbitrary precision according to the ||.||2

measure on L2([0, 1]d) any function in L2([0, 1]d) by an uniformly continuous function.

Using this proposition, we can prove the following Lemma.

Lemma 14 For a given n and a given υ, there exist two uniformly continuous function mυ and

sυ such that:

∣∣∣ Kn∑
k=1

wk,nσk,n −
Kn∑
k=1

√
wk,n

√∫
Ωk,n

(
fυ(x) +

∫
Ωk,n

fυ(u)du
)2
dx− 1

wk,n

∫
Ωk,n

s2
υ(x)dx

∣∣∣ ≤ υ.
Proof: Let us fix n and υ.

Let mυ be an uniformly continuous function such that∫
Ω

(f(x)− fυ(x))2dx ≤ min
k

(wk,n)
υ

2
,

and sυ be an uniformly continuous function such that∫
Ω

(s(x)− sυ(x))2dx ≤ min
k

(wk,n)
υ

2
.

It is possible because of wk,n > 0 and because the uniformly continuous functions are dense in

L2([0, 1]d) by Proposition 14.

Note that we thus have
1

wk,n

∫
Ωk,n

(f(x)− fυ(x))2dx ≤ υ

2
,

and
1

wk,n

∫
Ωk,n

(s(x)− sυ(x))2dx ≤ υ

2
.
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Note also that 1
wk,n

∫
Ωk,n

(s(x)− sυ(x))2dx ≥
∣∣∣ 1
wk,n

∫
Ωk,n

s(x)2dx− 1
wk,n

∫
Ωk,n

sυ(x)2dx
∣∣∣.

Simple triangle inequality leads to∣∣∣ 1

wk,n

∫
Ωk,n

(f(x)− 1

wk,n

∫
Ωk,n

f(u)du)2dx− 1

wk,n

∫
Ωk,n

(fυ(x)− 1

wk,n

∫
Ωk,n

fυ(u)du)2dx
∣∣∣ ≤ υ

2
.

Now note that as σ2
k,n = 1

wk,n

∫
Ωk,n

(f(x) − 1
wk,n

∫
Ωk,n

f(u)du)2dx + 1
wk,n

∫
Ωk,n

s(x)2dx, we know

that the variance of the function on strata Ωk,n is arbitrarily close to the variance of its approx-

imation.

By convexity, one gets

∣∣∣σk,n −√ 1

wk,n

∫
Ωk,n

(
fυ(x)− 1

wk,n

∫
Ωk,n

fυ(u)du
)2
dx+

1

wk,n

∫
Ωk,n

s2
υ(x)dx

∣∣∣ ≤ υ.
And finally, by summing

∣∣∣ Kn∑
k=1

wk,nσk,n −
Kn∑
k=1

√
wk,n

√∫
Ωk,n

(
fυ(x) +

∫
Ωk,n

fυ(u)du
)2
dx− 1

wk,n

∫
Ωk,n

s2
υ(x)dx

∣∣∣ ≤ υ.
�

Step 4: Combination of all the preliminary results to finish the proof. Finally, we

finish the demonstration of Proposition 10.

Let υ > 0 and fυ and sυ be as in Lemma 14.

We know that

∣∣∣ Kn∑
k=1

wk,nσk,n −
Kn∑
k=1

√
wk,n

√∫
Ωk,n

(
fυ(x) +

∫
Ωk,n

fυ(u)du
)2
dx− 1

wk,n

∫
Ωk,n

s2
υ(x)dx

∣∣∣ ≤ υ,
and also that ∫

Ω
(s(x)− sυ(x))2dx ≤ min

k
(wk,n)

υ

2
≤ υ

2
.

Note that by Cauchy-Schwartz:

∫
Ω
|s(x)− sυ(x)|dx ≤

√∫
Ω

(s(x)− sυ(x))2dx ≤
√
υ

2
.

Note also that Proposition 13 tells us that ∃n such that

Kn∑
k=1

√
wk,n

√∫
Ωk,n

(
fυ(x)− 1

wk,n

∫
Ωk,n

fυ(u)du
)2
dx+

∫
Ωk,n

s2
υ(x)dx−

∫
[0,1]d

sυ(x)dx ≤ υ.

When combining all those results, one gets the desired result.

Note finally that if we choose the strata as being small boxes of size 1
K and side ( 1

K )1/d, then
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the assumptions of Proposition 10 is verified.

6.C Proof of Proposition 11

Note first that

σ2
k =

1

wk

∫
Ωk

(
f(x)− 1

wk

∫
Ωk

f(u)du
)2
dx+

1

wk

∫
Ωk

s2(x)dx.

The term in f As the function f is (α,M)− Hölder, we know that ∀(x, y) ∈ Ω, |f(x)−f(y)| ≤
M ||x− y||α2 .

Using that we get

1

wk

∫
Ωk

(
f(x)− 1

wk

∫
Ωk

f(u)du
)2
dx ≤M2D(Ωk)

2α

≤M2d(
1

K
)2α/d.

The term in s As the function s is (α,M)− Hölder, we know that ∀(x, y) ∈ Ω, |s(x)−s(y)| ≤
M ||x− y||α2 .

1

wk

∫
Ωk

s2(x)dx−
( 1

wk

∫
Ωk

s(u)du
)2

=
1

wk

∫
Ωk

(
s(x)− 1

wk

∫
Ωk

s(u)du
)2
dx ≤M2D(Ωk)

2α

≤M2d(
1

K
)2α/d.

Finally... By combining those two results

wkσk −
∫

Ωk

s(x)dx ≤ wk

√
σ2
k −

( 1

wk

∫
Ωk

s(x)dx
)2

≤ wk

√
M2d(

1

K
)2α/d +M2d(

1

K
)2α/d.

By summing over all the strata, one obtains

ΣNK −
∫

[0,1]d
s(x)dx ≤

√
2dM(

1

K
)α/d.

6.D Large deviation inequalities for independent sub-Gaussian

random variables

We first state Bernstein inequality for large deviations of independent random variables around

their mean.
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Lemma 15 Let (X1, . . . , Xn) be n independent random variables of mean (µ1, . . . , µn) and of

variance (σ2
1, . . . , σ

2
n). Assume that there exists b > 0 such that for any λ < 1

b , for any i ≤ n, it

holds that E
[

exp(λ(Xi − µi))
]
≤ exp

(
λ2σ2

i
2(1−λb)

)
. Then with probability 1− δ

| 1
n

n∑
i=1

Xi −
1

n

n∑
i=1

µi| ≤

√
2( 1
n

∑n
i=1 σ

2
i ) log(2/δ)

n
+
b log(2/δ)

n
.

Proof: If the assumptions of Lemma 15 are verified, then

P
( n∑
i=1

Xi −
n∑
i=1

µi ≥ nυ
)

= P

[
exp

(
λ(
∑n

i=1Xi −
∑n

i=1 µi)
)
≥ exp(nλυ)

]

≤ E

[
exp

(
λ(

∑n
i=1 Xi−

∑n
i=1 µi)

)
exp(nλυ)

]

≤
∏n
i=1 E

[
exp

(
λ(Xi−µi)

)
exp(λυ)

]
≤ exp(λ

2

2

∑n
i=1

σ2
i

2(1−λb) − nλυ).

By setting λ = nυ∑n
i=1 σ

2
i+bnυ

we obtain

P
( n∑
i=1

Xi −
n∑
i=1

µi ≥ nυ
)
≤ exp(− n2υ2

2(
∑n

i=1 σ
2
i + bnυ)

).

By an union bound we obtain

P
(
|
n∑
i=1

Xi −
n∑
i=1

µi| ≥ nυ
)
≤ 2 exp(− n2υ2

2(
∑n

i=1 σ
2
i + bnυ)

).

This means that with probability 1− δ,

| 1
n

n∑
i=1

Xi −
1

n

n∑
i=1

µi| ≤

√
2( 1
n

∑n
i=1 σ

2
i ) log(2/δ)

n
+
b log(2/δ)

n
.

�

We also state the following Lemma on large deviations for the variance of independent

random variables.

Lemma 16 Let (X1, . . . , Xn) be n independent random variables of mean (µ1, . . . , µn) and of

variance (σ2
1, . . . , σ

2
n). Assume that there exists b > 0 such that for any λ < 1

b , for any i ≤
n, it holds that E

[
exp(λ(Xi − µi))

]
≤ exp

(
λ2σ2

i
2(1−λb)

)
and also E

[
exp(λ(Xi − µi)2 − λσ2

i )
]
≤

exp
(

λ2σ2
i

2(1−λb)

)
.
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Let V = 1
n

∑
i(µi −

1
n

∑
i µi)

2 + 1
n

∑
n σ

2
i be the variance of a sample chosen uniformly

at random among the n distributions, and V̂ = 1
n

∑n
i=1

(
Xi − 1

n

∑n
j=1Xj

)2
the corresponding

empirical variance. Then with probability 1− δ,

|
√
V̂ −

√
V | ≤ 2

√
(1 + 3b+ 4V ) log(2/δ)

n
.

Proof: By decomposing the estimate of the empirical variance in bias and variance, we obtain

with probability 1− δ

V̂ =
1

n

∑
i

(Xi −
1

n

∑
j

µj)
2 − (

1

n

∑
i

Xi −
1

n

∑
i

µi)
2

=
1

n

∑
i

(Xi − µi)2 + 2
1

n

∑
i

(Xi − µi)
1

n

∑
i

(µi −
1

n

∑
j

µj)

+
1

n

∑
i

(µi −
1

n

∑
j

µj)
2 − (

1

n

∑
i

Xi −
1

n

∑
i

µi)
2

=
1

n

∑
i

(Xi − µi)2 +
1

n

∑
i

(µi −
1

n

∑
j

µj)
2 − (

1

n

∑
i

Xi −
1

n

∑
i

µi)
2.

We then have by the definition of V that with probability 1− δ

V̂ − V =
1

n

n∑
i=1

(Xi − µi)2 − 1

n

n∑
i=1

σ2
i − (

1

n

∑
i

Xi −
1

n

∑
i

µi)
2. (6.22)

If the assumptions of Lemma 16 are verified, we have with probability 1− δ

P
( n∑
i=1

(Xi − µi)2 −
n∑
i=1

σ2
i ≥ nυ

)
= P

[
exp

(
λ(

n∑
i=1

|Xi − µi|2 −
n∑
i=1

σ2
i )
)
≥ exp(nλυ)

]

≤ E

[
exp

(
λ(
∑n

i=1 |Xi − µi|2 −
∑n

i=1 σ
2
i )
)

exp(nλυ)

]

≤
n∏
i=1

E

[
exp

(
λ(|Xi − µi|2 − σ2

i )
)

exp(λυ)

]

≤ 2 exp(
λ2

2

n∑
i=1

σ2
i

2(1− λb)
− nλυ).

If we take λ = nυ∑n
i=1 σ

2
i+nbυ

we obtain with probability 1− δ

P
( n∑
i=1

(Xi − µi)2 −
n∑
i=1

σ2
i ≥ nυ2

)
≤ exp(− n2υ2

2(
∑n

i=1 σ
2
i + bnυ)

). (6.23)
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By a union bound we get with probability 1− δ that

P
(
|
n∑
i=1

(Xi − µi)2 −
n∑
i=1

σ2
i | ≥ nυ

)
≤ 2 exp(− n2υ2

2(
∑n

i=1 σ
2
i + bnυ)

).

This means that with probability 1− δ,

| 1
n

n∑
i=1

(Xi − µi)2 − 1

n

n∑
i=1

σ2
i | ≤

√
2( 1
n

∑n
i=1 σ

2
i ) log(2/δ)

n
+
b log(2/δ)

n
. (6.24)

Finally, by combining Equations 6.22 and 6.24 with Lemma 15, we obtain with probability

1− δ

|V̂ − V | ≤
4( 1
n

∑n
i=1 σ

2
i ) log(2/δ)

n
+

2b2 log(2/δ)2

n2
+

√
2( 1
n

∑n
i=1 σ

2
i ) log(2/δ)

n
+
b log(2/δ)

n

≤

√
2( 1
n

∑n
i=1 σ

2
i ) log(2/δ)

n
+

(3b+ 4 1
n

∑n
i=1 σ

2
i ) log(2/δ)

n

≤
√

2V log(2/δ)

n
+

(3b+ 4V ) log(2/δ)

n
,

when n ≥ b log(2/δ) and because V ≥ 1
n

∑n
i=1 σ

2
i .

This implies with probability 1− δ that

V −
√

2V log(2/δ)

n
+

log(2/δ)

2n
≤ V̂ +

(3b+ 4V ) log(2/δ)

n
+

log(2/δ)

2n

⇔
√
V −

√
log(2/δ)

2n
≤
√
V̂ +

(1 + 3b+ 4V ) log(2/δ)

n

⇒
√
V −

√
log(2/δ)

2n
≤
√
V̂ +

√
(1 + 3b+ 4V ) log(2/δ)

n

⇒
√
V ≤

√
V̂ + 2

√
(1 + 3b+ 4V ) log(2/δ)

n
.

On the other hand, we have also with probability 1− δ

V̂ ≤ V +

√
2V log(2/δ)

n
+

(3b+ 4V ) log(2/δ)

n

⇒
√
V̂ ≤

√
V + 2

√
(1 + 3b+ 4V ) log(2/δ)

n
.

Finally, we have with probability 1− δ

|
√
V̂ −

√
V | ≤ 2

√
(1 + 3b+ 4V ) log(2/δ)

n
. (6.25)
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Chapter 7

Adaptive Stratified Sampling for

Monte-Carlo integration of

Differentiable functions

This Chapter is a joint work with Rémi Munos. It is, like the two previous Chapters, about

stratified Monte-Carlo integration. Like the last Chapter, it is concerned with stratification

strategies, but whereas the aim of the previous Chapter was the integration of a noisy function,

we aim in this Chapter at integrating a non-noisy and smooth function. The partitioning and

sampling strategies need to be changed in order to be efficient in this setting.

More precisely, we consider the problem of adaptive stratified sampling for Monte Carlo

integration of a differentiable function given a finite number of evaluations to the function. We

construct a sampling scheme that samples more often in regions where the function oscillates

more, while allocating the samples such that they are well spread on the domain (this notion

shares similitude with low discrepancy). We prove that the estimate returned by the algorithm

is almost similarly accurate as the estimate that an optimal oracle strategy (that would know

the variations of the function everywhere) would return, and provide a finite-sample analysis.
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7.1 Introduction

In this Chapter we consider the problem of numerical integration of a differentiable function

f : [0, 1]d → R given a finite budget n of evaluations to the function that can be allocated

sequentially.

A usual technique for reducing the mean squared error (w.r.t. the integral of f) of a Monte-

Carlo estimate is the so-called stratified Monte Carlo sampling, which considers sampling into a

set of strata, or regions of the domain, that form a partition, i.e. a stratification, of the domain

(see Rubinstein and Kroese [2008][Subsection 5.5] or Glasserman [2004]). It is efficient (up to

rounding issues) to stratify the domain, since when allocating to each stratum a number of

samples proportional to its measure, the mean squared error of the resulting estimate is always

smaller or equal to the one of the crude Monte-Carlo estimate (that samples uniformly the

domain).

Since the considered functions are differentiable, if the domain is stratified in K hyper-cubic

strata of same measure and if one assigns uniformly at random n/K samples per stratum, the

mean squared error of the resulting stratified estimate is in O(n−1K−2/d). We deduce that if

the stratification is built independently of the samples (before collecting the samples), and if

n is known from the beginning (which is assumed here), the minimax-optimal choice for the

stratification is to build n strata of same measure and minimal diameter, and to assign only

one sample per stratum uniformly at random. We refer to this sampling technique as Uniform

stratified Monte-Carlo. The resulting estimate has a mean squared error of order O(n−(1+2/d)).

The arguments that advocate for stratifying in strata of same measure and minimal diameter

are closely linked to the reasons why quasi Monte-Carlo methods, or low discrepancy sampling

schemes are efficient techniques for integrating smooth functions. See Niederreiter [1978] for a

survey on these techniques.

It is minimax-optimal to stratify the domain in n strata and sample one point per stratum,

but it would also be interesting to adapt the stratification of the space with respect to the

function f . For example, if the function has larger variations in a region of the domain, we would

like to discretize the domain in smaller strata in this region, so that more samples are assigned to
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this region. Since f is initially unknown, it is not possible to design a good stratification before

sampling. However an efficient algorithm should allocate the samples in order to estimate online

the variations of the function in each region of the domain while, at the same time, allocating

more samples in regions where f has larger local variations.

The papers Carpentier and Munos [2011a]; Etoré and Jourdain [2010]; Grover [2009] provide

algorithms for solving a similar trade-off when the stratification is fixed: these algorithms allocate

more samples to strata in which the function has larger variations. It is, however, clear that the

larger the number of strata, the more difficult it is to allocate the samples almost optimally in

the strata.

Contributions: We propose a new algorithm, Lipschitz Monte-Carlo Upper Confidence

Bound (LMC-UCB), for tackling this problem. It is a two-layered algorithm. It first stratifies

the domain in K � n strata, and then allocates uniformly to each stratum an initial small

amount of samples in order to estimate roughly the variations of the function per stratum. Then

our algorithm sub-stratifies each of the K strata according to the estimated local variations, so

that there are in total approximately n sub-strata, and allocates one point per sub-stratum. In

that way, our algorithm discretizes the domain into more refined strata in regions where the

function has higher variations. It cumulates the advantages of quasi Monte-Carlo and adaptive

strategies.

More precisely, our contributions are the following:

• We prove an asymptotic lower bound on the mean squared error of the estimate returned

by an optimal oracle strategy that has access to the variations of the function f every-

where and would use the best stratification of the domain with hyper-cubes (possibly of

heterogeneous sizes). This quantity, since this is a lower-bound on any oracle strategies, is

smaller than the mean squared error of the estimate provided by Uniform stratified Monte-

Carlo (which is the non-adaptive minimax-optimal strategy on the class of differentiable

functions), and also smaller than crude Monte-Carlo.

• We introduce the LMC-UCB algorithm, that sub-stratifies the K strata in hyper-cubic sub-

strata, and samples one point per sub-stratum. The number of sub-strata per stratum is

linked to the variations of the function in the stratum. We prove that algorithm LMC-UCB

is asymptotically as efficient as the optimal oracle strategy. We also provide finite-time

results when f admits a Taylor expansion of order 2 in every point. By tuning the number

of strata K wisely, it is possible to build an algorithm that is almost as efficient as the

optimal oracle strategy.

The Chapter is organized as follows. Section 7.2 defines the notations used throughout the

Chapter. Section 7.3 states the asymptotic lower bound on the mean squared error of the optimal

oracle strategy. In this Section, we also provide an intuition on how the number of samples into

each stratum should be linked to the variation of the function in the stratum in order for the

mean squared error of the estimate to be small. Section 7.4 presents the LMC-UCB algorithm

153



7. ADAPTIVE STRATIFIED SAMPLING FOR MONTE-CARLO
INTEGRATION OF DIFFERENTIABLE FUNCTIONS

and the first Lemma on how many sub-strata are built in the initial strata. Section 7.5 finally

states that the LMC-UCB algorithm is almost as efficient as the optimal oracle strategy. We

finally conclude the Chapter. Due to the lack of space, we also provide experiments and proofs.

7.2 Setting

We consider a function f : [0, 1]d → R. We want to estimate as accurately as possible its

integral according to the Lebesgue measure, i.e.
∫

[0,1]d f(x)dx. In order to do that, we consider

algorithms that stratify the domain in two layers of strata, one more refined than the other. The

strata of the refined layer are referred to as sub-strata, and we sample in the sub-strata. We will

compare the performances of the algorithms we construct, with the performances of the optimal

oracle algorithm that has access to the variations ||∇f(x)||2 of the function f everywhere in the

domain, and is allowed to sample the domain where it wishes.

The first step is to partition the domain [0, 1]d in K measurable strata. In this Chapter, we

assume that K1/d is an integer1. This enables us to partition, in a natural way, the domain in

K hyper-cubic strata (Ωk)k≤K of same measure wk = 1
K . Each of these strata is a region of the

domain [0, 1]d, and the K strata form a partition of the domain. We write µk = 1
wk

∫
Ωk
f(x)dx

the mean and σ2
k = 1

wk

∫
Ωk

(
f(x) − µk

)2
dx the variance of a sample of the function f when

sampling f at a point chosen at random according to the Lebesgue measure conditioned to

stratum Ωk.

We possess a budget of n samples (which is assumed to be known in advance), which means

that we can sample n times the function at any point of [0, 1]d. We denote by A an algorithm

that sequentially allocates the budget by sampling at round t in the stratum indexed by kt ∈
{1, . . . ,K}, and returns after all n samples have been used an estimate µ̂n of the integral of the

function f .

We consider strategies that sub-partition each stratum Ωk in hyper-cubes of same measure

in Ωk, but of heterogeneous measure among the Ωk. In this way, the number of sub-strata in

each stratum Ωk can adapt to the variations f within Ωk. The algorithms that we consider

return a sub-partition of each stratum Ωk in Sk sub-strata. We call Nk = (Ωk,i)i≤Sk the sub-

partition of stratum Ωk. In each of these sub-strata, the algorithm allocates at least one point2.

We write Xk,i the first point sampled uniformly at random in sub-stratum Ωk,i. We write

wk,i the measure of the sub-stratum Ωk,i. Let us write µk,i = 1
wk,i

∫
Ωk,i

f(x)dx the mean and

σ2
k,i = 1

wk,i

∫
Ωk,i

(
f(x) − µk,i

)2
dx the variance of a sample of f in sub-stratum Ωk,i (e.g. of

Xk,i = f(Uk,i) where Uk,i ∼ UΩk,i).

This class of 2−layered sampling strategies is rather large. In fact it contains strategies that

are similar to low discrepancy strategies, and also to any stratified Monte-Carlo strategy. For

example, consider that all K strata are hyper-cubes of same measure 1
K and that each stratum

Ωk is partitioned into Sk hyper-rectangles Ωk,i of minimal diameter and same measure 1
KSk

. If

1This is not restrictive in small dimension, but it may become more constraining for large d.
2This implies that

∑
k Sk ≤ n.
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the algorithm allocates one point per sub-stratum, its sampling scheme shares similarities with

quasi Monte-Carlo sampling schemes, since the points at which the function is sampled are well

spread.

Let us now consider an algorithm that first chooses the sub-partition (Nk)k and then allocates

deterministically 1 sample uniformly at random in each sub-stratum Ωk,i. We consider the

stratified estimate µ̂n =
∑K

k=1

∑Sk
i=1

wk,i
Sk
Xk,i of µ. We have

E(µ̂n) =

K∑
k=1

Sk∑
i=1

wk,i
Sk

µk,i =
∑
k≤K

Sk∑
i=1

∫
Ωk,i

f(x)dx =

∫
[0,1]d

f(x)dx = µ,

and also
V(µ̂n) =

∑
k≤K

Sk∑
i=1

(
wk,i
Sk

)2E(Xk,i − µk,i)2 =
∑
k≤K

Sk∑
i=1

w2
k,i

S2
k

σ2
k,i.

For a given algorithm A that builds for each stratum k a sub-partition Nk = (Ωk,i)i≤Sk , we

call pseudo-risk the quantity

Ln(A) =
∑
k≤K

Sk∑
i=1

w2
k,i

S2
k

σ2
k,i. (7.1)

Some further insight on this quantity is provided in the paper Carpentier and Munos [2011b].

Consider now the uniform strategy, i.e. a strategy that divides the domain in K = n hyper-

cubic strata. This strategy is a fairly natural, minimax-optimal static strategy, on the class of

differentiable function defined on [0, 1]d, when no information on f is available. We will prove

in the next Section that its asymptotic mean squared error is equal to

1

12

(∫
[0,1]d

||∇f(x)||22dx
) 1

n1+ 2
d

.

This quantity is of order n−1−2/d, which is smaller, as expected, than 1/n: this strategy is more

efficient than crude Monte-Carlo.

We will also prove in the next Section that the minimum asymptotic mean squared error

of an optimal oracle strategy (we call it “oracle” because it builds the stratification using the

information about the variations ||∇f(x)||2 of f in every point x), is larger than

1

12

(∫
[0,1]d

(||∇f(x)||2)
d
d+1dx

)2
(d+1)
d 1

n1+ 2
d

This quantity is always smaller than the asymptotic mean squared error of the Uniform stratified

Monte-Carlo strategy, which makes sense since this strategy assumes the knowledge of the

variations of f everywhere, and can thus adapt accordingly the number of samples in each

region. We define

Σ =
1

12

(∫
[0,1]d

(||∇f(x)||2)
d
d+1dx

)2
(d+1)
d
. (7.2)

Given this minimum asymptotic mean squared error of an optimal oracle strategy, we define
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the pseudo-regret of an algorithm A as

Rn(A) = Ln(A)− Σ
1

n1+ 2
d

. (7.3)

This pseudo-regret is the difference between the pseudo-risk of the estimate provided by algo-

rithm A, and the lower-bound on the optimal oracle mean squared error. In other words, this

pseudo-regret is the price an adaptive strategy pays for not knowing in advance the function

f , and thus not having access to its variations. An efficient adaptive strategy should aim at

minimizing this gap coming from the lack of informations.

7.3 Discussion on the optimal asymptotic mean squared error

7.3.1 Asymptotic lower bound on the mean squared error, and comparison

with the Uniform stratified Monte-Carlo

A first part of the analysis of the exposed problem consists in finding a good point of comparison

for the pseudo-risk. The following Lemma states an asymptotic lower bound on the mean squared

error of the optimal oracle sampling strategy.

Lemma 17 Assume that f is such that ∇f is continuous and
∫
||∇f(x)||22dx < ∞. Let(

(Ωn
k)k≤n

)
n

be an arbitrary sequence of partitions of [0, 1]d in n strata such that all the strata

are hyper-cubes, and such that the maximum diameter of each stratum goes to 0 as n → +∞
(but the strata are allowed to have heterogeneous measures).Let µ̂n be the stratified estimate of

the function for the partition (Ωn
k)k≤n when there is one point pulled at random per stratum.

Then

lim inf
n→∞

n1+2/dV(µ̂n) ≥ Σ.

The full proof of this Lemma is in Appendix 7.B.

We have also the following equality for the asymptotic mean squared error of the uniform

strategy.

Lemma 18 Assume that f is such that ∇f is continuous and
∫
||∇f(x)||22dx < ∞. For any

n = ld such that l is an integer (and thus such that it is possible to partition the domain in n

hyper-cubic strata of same measure), define
(
(Ωn

k)k≤n
)
n

as the sequence of partitions in hyper-

cubic strata of same measure 1/n. Let µ̂n be the stratified estimate of the function for the

partition (Ωn
k)k≤n when there is one point pulled at random per stratum. Then

lim inf
n→∞

n1+2/dV(µ̂n) =
1

12

(∫
[0,1]d

||∇f(x)||22dx
)
.

The proof of this Lemma is substantially similar to the proof of Lemma 17 in Appendix 7.B.

The only difference is that the measure of each stratum Ωn
k is 1/n and that in Step 2, instead

of Fatou’s Lemma, the Theorem of dominated convergence is required.
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The optimal rate for the mean squared error, which is also the rate of the Uniform stratified

Monte-Carlo in Lemma 18, is n−1−2/d and is attained with ideas of low discrepancy sampling.

The constant can however be improved (with respect to the constant in Lemma 18), by adapting

to the specific shape of each function. In Lemma 17, we exhibit a lower bound for this constant

(and without surprises, 1
12

( ∫
[0,1]d ||∇f(x)||22dx

)
≥ Σ). Our aim is to build an adaptive sampling

scheme, also sharing ideas with low discrepancy sampling, that attains this lower-bound.

There is one main restriction in both Lemma: we impose that the sequence of partitions(
(Ωn

k)k≤n
)
n

is composed only with strata that have the shape of an hyper-cube. This assumption

is in fact reasonable: indeed, if the shape of the strata could be arbitrary, one could take the

level sets (or approximate level sets as the number of strata is limited by n) as strata, and this

would lead to limn→∞ infΩ n
1+2/dV(µ̂n,Ω) = 0. But this is not a fair competition, as the function

is unknown, and determining these level sets is actually a much harder problem than integrating

the function.

The fact that the strata are hyper-cubes appears, in fact, in the bound. If we had chosen other

shapes, e.g. l2 balls, the constant 1
12 in front of the bounds in both Lemma would change3. It

is however not possible to make a finite partition in l2 balls of [0, 1]d, and we chose hyper-cubes

since it is quite easy to stratify [0, 1]d in hyper-cubic strata.

The proof of Lemma 17 makes the quantity s∗(x) = (||∇f(x)||2)
d
d+1∫

[0,1]d
(||∇f(u)||2)

d
d+1 du

appear. This

quantity is proposed as “asymptotic optimal allocation”, i.e. the asymptotically optimal number

of sub-strata one would ideally create in any small sub-stratum centered in x. This is however

not very useful for building an algorithm. The next Subsection provides an intuition on this

matter.

7.3.2 An intuition of a good allocation: Piecewise linear functions

In this Subsection, we (i) provide an example where the asymptotic optimal mean squared error

is also the optimal mean squared error at finite distance and (ii) provide explicitly what is, in

that case, a good allocation. We do that in order to give an intuition for the algorithm that we

introduce in the next Section.

We consider a partition in K hyper-cubic strata Ωk. Let us assume that the function f is

affine on all strata Ωk, i.e. on stratum Ωk, we have f(x) =
(
〈θk, x〉+ρk

)
I{x ∈ Ωk}. In that case

µk = f(ak) where ak is the center of the stratum Ωk. We then have:

σ2
k =

1

wk

∫
Ωk

(f(x)− f(ak))
2dx =

1

wk

∫
Ωk

(
〈θk, (x− ak)〉

)2
dx =

1

wk

( ||θk||22
12

w
1+2/d
k

)
=
||θk||22

12
w

2/d
k .

We consider also a sub-partition of Ωk in Sk hyper-cubes of same size (we assume that S
1/d
k is

an integer), and we assume that in each sub-stratum Ωk,i, we sample one point. We also have

σ2
k,i =

||θk||22
12

(
wk
Sk

)2/d
for sub-stratum Ωk,i.

For a given k and a given Sk, all the σk,i are equals. The pseudo-risk of an algorithm A that

3The 1
12

comes from computing the variance of an uniform random variable on [0, 1].
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divides each stratum Ωk in Sk sub-strata is thus

Ln(A) =
∑
k≤K

∑
i≤Sk

w2
k

S2
k

||θk||22
12

(wk
Sk

)2/d
=
∑
k≤K

w
2+2/d
k

S
1+2/d
k

||θk||22
12

=
∑
k≤K

w2
k

S
1+2/d
k

σ2
k.

If an unadaptive algorithm A∗ has access to the variances σ2
k in the strata, it can choose to

allocate the budget in order to minimize the pseudo-risk. After solving the simple optimization

problem of minimizing Ln(A) with respect to (Sk)k, we deduce that an optimal oracle strategy

on this stratification would divide each stratum k in S∗k = (wkσk)
d
d+1∑

i≤K(wiσi)
d
d+1

n sub-strata4. The

pseudo-risk for this strategy is then

Ln,K(A∗) =

(∑
k≤K(wkσk)

d
d+1

)2
(d+1)
d

n1+2/d
=

Σ
2

(d+1)
d

K

n1+2/d
, (7.4)

where we write ΣK =
∑

i≤K(wiσi)
d
d+1 . We will call in the Chapter optimal proportions the

quantities

λK,k =
(wkσk)

d
d+1∑

i≤K(wiσi)
d
d+1

. (7.5)

In the specific case of functions that are piecewise linear, we have ΣK =
∑

k≤K(wkσk)
d
d+1 =∑

k≤K(wk
||θk||2
2
√

3
w

1/d
k )

d
d+1 =

∫
[0,1]d

(||∇f(x)||2)
d
d+1

12
d

2(d+1)

dx. We thus have

Ln,K(A∗) = Σ
1

n1+ 2
d

. (7.6)

This optimal oracle strategy attains the lower bound in Lemma 17. We will thus construct,

in the next Section, an algorithm that learns and adapts to the optimal proportions defined in

Equation 7.5.

7.4 The LMC-UCB Algorithm

7.4.1 Algorithm LMC-UCB

We present the Lipschitz Monte Carlo Upper Confidence Bound (LMC − UCB) algorithm. It

takes as parameter a partition (Ωk)k≤K in K ≤ n hyper-cubic strata of same measure 1/K (it

is possible since we assume that ∃l ∈ N/ld = K). It also takes as parameter an uniform upper

bound L on ||∇f(x)||22, and δ, a (small) probability. The aim of algorithm LMC − UCB is to

sub-stratify each stratum Ωk in λK,k = (wkσk)
d
d+1∑K

i=1(wiσi)
d
d+1

n hyper-cubic sub-strata of same measure

4We deliberately forget about rounding issues in this Subsection. The allocation we provide might not be
realizable (e.g. if S∗k is not an integer), but plugging it in the bound provides a lower bound on any realizable
performance.
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and sample one point per sub-stratum. An intuition on why this target is relevant was provided

in Section 7.3.

Algorithm LMC-UCB starts by sub-stratifying each stratum Ωk in S̄ =

⌊((
n
K

) d
d+1

)1/d
⌋d

hyper-

cubic strata of same measure. It is possible to do that since by definition, S̄1/d is an integer.

We write this first sub-stratification N′k = (Ω′k,i)i≤S̄ . It then pulls one sample per sub-stratum

in N′k for each Ωk.

It then sub-stratifies again each stratum Ωk using the informations collected. It sub-stratifies

each stratum Ωk in

Sk = max

{⌊[ w
d
d+1

k

(
σ̂k,KS̄ +A(wk

S̄
)1/d

√
1
S̄

) d
d+1

∑K
i=1w

d
d+1

i

(
σ̂i,KS̄ +A(wi

S̄
)1/d

√
1
S̄

) d
d+1

(n−KS̄)
]1/d

⌋d
, S̄

}
(7.7)

hyper-cubic strata of same measure (see Figure 7.1 for a definition of A). It is possible to

do that because by definition, S
1/d
k is an integer. We call this sub-stratification of stratum

Ωk stratification Nk = (Ωk,i)i≤Sk . In the last Equation, we compute the empirical standard

deviation in stratum Ωk at time KS̄ as

σ̂k,KS̄ =

√√√√ 1

S̄ − 1

S̄∑
i=1

(
Xk,i −

1

S̄

S̄∑
j=1

Xk,j

)2
. (7.8)

Algorithm LMC-UCB then samples in each sub-stratum Ωk,i one point. It is possible to do

that since, by definition of Sk,
∑

k Sk +KS̄ ≤ n
The algorithm outputs an estimate µ̂n of the integral of f , computed with the first point in each

sub-stratum of partition Nk. We present in Figure 7.1 the pseudo-code of algorithm LMC-UCB.

Input: Partition (Ωk)k≤K , L, δ, set A = 2L
√
d
√

log(2K/δ)
Initialize: ∀k ≤ K, sample 1 point in each stratum of partition N′k
Main algorithm:
Compute Sk for each k ≤ K
Create partition Nk for each k ≤ K
Sample a point in Ωk,i ∈ Nk for i ≤ Sk
Output: Return the estimate µ̂n computed when taking the first point Xk,i in each

sub-stratum Ωk,i of Nk, that is to say µ̂n =
∑K

k=1wk
∑Sk

i=1
Xk,i
Sk

Figure 7.1: Pseudo-code of LMC-UCB. The definition of N′k, S̄, Nk, Ωk,i and Sk are in the main
text.

7.4.2 High probability lower bound on the number of sub-strata of stratum

Ωk

We first state an assumption on the function f .

Assumption The function f is such that ∇f exists and ∀x ∈ [0, 1]d, ||∇f(x)||22 ≤ L. The
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next Lemma states that with high probability, the number Sk of sub-strata of stratum Ωk, in

which there is at least one point, adjusts “almost” to the unknown optimal proportions.

Lemma 19 Let Assumption 7.4.2 be satisfied and (Ωk)k≤K be a partition in K hyper-cubic

strata of same measure. If n ≥ 4K, then with probability at least 1 − δ, ∀k, the number of

sub-strata satisfies

Sk ≥ max

[
λK,k

[
n− 7(L+ 1)d3/2

√
log(K/δ)(1 +

1

ΣK
)K

1
d+1n

d
d+1

]
, S̄

]
.

The proof of this result is in Appendix 7.C.

7.4.3 Remarks

A sampling scheme that shares ideas with quasi Monte-Carlo methods: Algorithm

LMC − UCB almost manages to divide each stratum Ωk in λK,kn hyper-cubic strata of same

measure, each one of them containing at least one sample. It is thus possible to build a learning

procedure that, at the same time, estimates the empirical proportions λK,k, and allocates the

samples proportionally to them.

The error terms: There are two reasons why we are not able to divide exactly each stratum

Ωk in λK,kn hyper-cubic strata of same measure. The first reason is that the true proportions

λK,k are unknown, and that it is thus necessary to estimate them. The second reason is that

we want to build strata that are hyper-cubes of same measure. The number of strata Sk needs

thus to be such that S
1/d
k is an integer. We thus also loose efficiency because of rounding issues.

7.5 Main results

7.5.1 Asymptotic convergence of algorithm LMC-UCB

By just combining the result of Lemma 17 with the result of Lemma 19, it is possible to show

that algorithm LMC-UCB is asymptotically (when K goes to +∞ and n ≥ K) as efficient as

the optimal oracle strategy of Lemma 17.

Theorem 17 Assume that ∇f is continuous, and that Assumption 7.4.2 is satisfied. Let

(Ωn
k)n,k≤Kn be an arbitrary sequence of partitions such that all the strata are hyper-cubes, such

that 4Kn ≤ n, such that the diameter of each strata goes to 0, and such that

limn→+∞
1
n

(
Kn

(
log(Knn

2)
) d+1

2

)
= 0. The regret of LMC-UCB with parameter δn = 1

n2 on this

sequence of partition, where for sequence (Ωn
k)n,k≤Kn it disposes of n points, is such that

lim
n→∞

n1+2/dRn(ALMC−UCB) = 0.

The proof of this result is in Appendix 7.D.

7.5.2 Under a slightly stronger Assumption

We introduce the following Assumption, that is to say that f admits a Taylor expansion of order

2.
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Assumption f admits a Taylor expansion at the second order in any point a ∈ [0, 1]d and this

expansion is such that ∀x, |f(x) − f(a) − 〈∇f, (x − a)〉| ≤ M ||x − a||22 where M is a constant.

This is a slightly stronger assumption than Assumption 7.4.2, since it imposes, additional to
Assumption 7.4.2, that the variations of ∇f(x) are uniformly bounded for any x ∈ [0, 1]d.

Assumption 7.5.2 implies Assumption 7.4.2 since
∣∣||∇f(x)||2 − ||∇f(0)||2

∣∣ ≤M ||x− 0||2, which

implies that ||∇f(x)||2 ≤ ||∇f(0)||2 + M
√
d. This implies in particular that we can consider

L = ||∇f(0)||2 +M
√
d. We however do not need M to tune the LMC-UCB algorithm, as long

as we have access to L (although M appears in the bound of next Theorem).

We can now prove a bound on the pseudo-regret.

Theorem 18 Under Assumptions 7.4.2 and 7.5.2, if n ≥ 4K, the estimate returned by algo-

rithm LMC − UCB is such that, with probability 1− δ, we have

Rn(ALMC−UCB) ≤ 1

n
d+2
d

[
M(L+ 1)4

(
1 +

3Md

Σ

)4(
650d3/2

√
log(K/δ)K

1
d+1n−

1
d+1 + 25d

( 1

K

) 1
d+1

)]
.

A proof of this result is in Appendix 7.E.

Now we can choose optimally the number of strata so that we minimize the regret.

Theorem 19 Under Assumptions 7.4.2 and 7.5.2, the algorithm LMC − UCB launched on

Kn =
⌊
(
√
n)1/d

⌋d
hyper-cubic strata is such that, with probability 1− δ, we have

Rn(ALMC−UCB) ≤ 1

n
1+ 2

d
+ 1

2(d+1)

[
700M(L+ 1)4d3/2

(
1 +

3Md

Σ

)4√
log(n/δ)

]
.

7.5.3 Discussion

Convergence of the LMC-UCB algorithm to the optimal oracle strategy: When

the number of strata Kn grows to infinity, but such that limn→+∞
1
n

(
Kn

(
log(Knn

2)
) d+1

2

)
=

0, the pseudo-regret of algorithm LMC-UCB converges to 0. It means that this strategy is

asymptotically as efficient as (the lower bound on) the optimal oracle strategy. When f admits

a Taylor expansion at the first order in every point, it is also possible to obtain a finite-time

bound on the pseudo-regret.

A new sampling scheme: The algorithm LMC−UCB samples the points in a way that takes

advantage of both stratified sampling and quasi Monte-Carlo. Indeed, LMC-UCB is designed

to cumulate (i) the advantages of quasi Monte-Carlo by spreading the samples in the domain

and (ii) the advantages of stratified, adaptive sampling by allocating more samples where the

function has larger variations. For these reasons, this technique is very efficient on differentiable

functions. We illustrate this assertion by numerical experiments in Appendix 7.A.

In high dimension: The bound on the pseudo-regret in Theorem 19 is of order n−1− 2
d ×

poly(d)n
− 1

2(d+1) . In order for the pseudo-regret to be negligible when compared to the opti-

mal oracle mean squared error of the estimate (which is of order n−1− 2
d ) it is necessary that

poly(d)n
− 1

2(d+1) is negligible compared to 1. In particular, this says that n should scale ex-

ponentially with the dimension d. This is unavoidable, since stratified sampling shrinks the
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approximation error to the asymptotic oracle only if the diameter of each stratum is small, i.e. if

the space is stratified in every direction (and thus if n is exponential with d). However Uniform

stratified Monte-Carlo, also for the same reasons, shares this problem5.

We emphasize however the fact that a (slightly modified) version of our algorithm is more ef-

ficient than crude Monte-Carlo, up to a negligible term that depends only of poly(log(d)). The

bound in Lemma 19 depends of poly(d) only because of rounding issues, coming from the fact

that we aim at dividing each stratum Ωk in hyper-cubic sub-strata. The whole budget is thus

not completely used, and only
∑

k Sk + KS̄ samples are collected. By modifying LMC-UCB

so that it allocates the remaining budget uniformly at random on the domain, it is possible to

prove that the (modified) algorithm is always at least as efficient as crude Monte-Carlo.

Conclusion
The aim of this work was to provide an adaptive method for estimating the integral of a differ-

entiable function f .

We first proposed a benchmark for measuring the efficiency of our method: we proved that the

asymptotic mean squared error of the estimate outputted by the optimal oracle strategy is lower

bounded by Σ 1
n1+2/d .

We then proposed an algorithm called LMC-UCB, which manages to learn the amplitude of

the variations of f , to sample more points where theses variations are larger, and to spread

these points in a way that is related to quasi Monte-Carlo sampling schemes. We proved that

algorithm LMC-UCB is asymptotically as efficient as the optimal, oracle strategy. Under the as-

sumption that f admits a Taylor expansion in each point, we provide also a finite time bound for

the pseudo-regret of algorithm LMC-UCB. We summarize in Table 7.1 the rates and finite-time

bounds for crude Monte-Carlo, Uniform stratified Monte-Carlo and LMC-UCB. We believe that

Pseudo-Risk:
Sampling schemes Rate Asymptotic constant + Finite-time bound

Crude MC 1
n

∫
[0,1]d

(
f(x)−

∫
[0,1]d f(u)du

)2
dx +0

Uniform stratified MC 1

n1+ 2
d

1
12

( ∫
[0,1]d ||∇f(x)||22dx

)
+O( d

n1+ 2
d

+ 1
2d

)

LMC-UCB 1

n1+ 2
d

1
12

( ∫
[0,1]d(||∇f(x)||2)

d
d+1dx

)2
(d+1)
d

+O( d
11
2

n
1+ 2

d
+ 1

2(d+1)

)

Table 7.1: Rate of convergence plus finite time bounds for Crude Monte-Carlo, Uniform stratified
Monte Carlo (see Lemma 18) and LMC-UCB (see Theorems 17 and 19).

an interesting extension of this work would be to adapt it to α−Hölder functions that admit a

Riemann-Liouville derivative of order α. We believe that similar results could be obtained, with

an optimal constant and a rate of order n1+2α/d.

5When d is very large and n is not exponential in d, then second order terms, depending on the dimension,
take over the bound in Lemma 18 (which is an asymptotic bound) and poly(d) appears in these negligible terms.
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Appendices for Chapter 7

7.A Numerical Experiments

We provide some experiments illustrating how LMC-UCB works, and compare its efficiency to

that of crude Monte-Carlo and Uniform stratified Monte-Carlo.

We first illustrate on an example, in Figure 7.2, the sampling scheme. We have launched

LMC-UCB on the function displayed in Figure 7.2 (i.e. f(x) = sin(1/(x + 0.1)) + I{x >

0.9} sin(1/(x − 0.7))). We chose this function since its variations are quite heterogeneous in

the domain [0, 1]. We considered a budget of n = 100, and took as parameter A = 10. Kn and

S̄ are defined as in Figure 7.1.

Figure 7.2: Position of the samples collected by LMC-UCB.

We observe that, as expected, the algorithm allocates more points in parts of the domain where

the function has larger variations and, additional to that, it spreads the points on the domain

so that every region is covered (in a similar spirit to what low-discrepancy schemes would do).

We also compare, for this function, the mean squared error of crude Monte-Carlo, uniform

stratified Monte-Carlo and LMC-UCB, for different values of n. We average the mean squared

error of the estimate returned by each method on 10000 runs. We have the following perfor-

mances for each method (displayed in Figures 7.3 and 7.4).

As expected, the mean square error decreases faster than 1/n for uniform stratified Monte-

Carlo and LMC-UCB. These methods are also more efficient than crude Monte-Carlo (up to 100

times more efficient on this function), which makes sense since the function that we integrate is

differentiable (and then the rate for LMC-UCB and Uniform stratified Monte-Carlo is of order

O(n−1−2/d)). The gain in efficiency when compared to crude Monte-Carlo however decreases

with the dimension, as explained in Subsection 7.5.3. We observe that LMC-UCB is more

efficient than uniform stratified Monte-Carlo, which is a minimax-optimal strategy in the class

of non-adaptive strategies.
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Figure 7.3: Mean squared error w.r.t. the
integral of f of crude Monte-Carlo, uni-
form stratified Monte-Carlo and LMC-
UCB, in function of the budget n. Since
crude Monte-Carlo is approximately 100
times less efficient than the two other
strategies, their curves are shrinked and
not very visible.

Figure 7.4: Zoom on the mean squared
error w.r.t. the integral of f of uniform
stratified Monte-Carlo and LMC-UCB, in
function of the budget n.

7.B Poof of Lemma 17

Step 0: Decomposition of the variance Let Ω = (Ωn
k)0<n<+∞,k≤n be a sequence of par-

titions of [0, 1]d in n hyper-cubic strata such that the maximum diameter of the strata in the

partitions converges to 0 when n goes to infinity. In each of those strata, there is a point.

Let n be the number of points, and k ≤ n be an index. Let an,k be a point of the stratum Ωn
k .

Let us assume that f is differentiable, that it’s derivative∇f is continuous, and let us also assume

that ||∇f(u)||22 =
∑d

i=1

(∂f(u)
∂xi

)2
is such that

∫
||∇f(x)||22dx is bounded. In that case, ∀x ∈ Ωn

k ,

there exists un,k,x ∈ Ωn
k such that we have f(x) − f(ak) = 〈∇f(un,k,x), x − an,k〉 (intermediate

values theorem). Note also that we have in that case µn,k = f(an,k) + 1
wn,k

∫
Ωnk
〈∇f(un,k,x), x−
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an,k〉dx where an,k is the center of the stratum Ωn
k . We thus have:

σ2
n,k =

1

wn,k

∫
Ωnk

(f(x)− f(an,k))
2dx

=
1

wn,k

∫
Ωnk

(
〈∇f(un,k,x), x− an,k〉 −

1

wn,k

∫
Ωnk

〈∇f(un,k,y), y − an,k〉dy
)2
dx

=
1

wn,k

∫
Ωnk

(
〈∇f(un,k,x), x− an,k〉

)2
dx−

( 1

wn,k

∫
Ωnk

〈∇f(un,k,y), y − an,k〉dy
)2

=
1

wn,k

∫
[0,1]d

(
〈∇f(un,k,x)I{Ωk}, (x− an,k)I{Ωn

k}〉
)2
dx

−
( 1

wn,k

∫
[0,1]d
〈∇f(un,k,y)I{Ωn

k}, (y − an,k)I{Ωn
k}〉dy

)2
.

Step 1: Convergence of σk when the size of the strata goes to 0 Let x ∈ [0, 1]d. Note

that as as (Ωn
k)k≤n is a partition, there is a kn,x such that x ∈ Ωn

kn,x
.

Note first that ∇f is continuous. This means that ∀ε, ∃η/∀y ∈ B2(x, η), ||∇f(y)−∇f(x)||2 ≤
ε. Let ε > 0 and n sufficiently large (any n larger than some given horizon n′), the maximum

diameter of Ωn
kn,x

is smaller than η. Let y ∈ Ωn
kn,x

. As un,kn,x,y ∈ Ωn
kn,x

, we know that ||un,kn,x,y−
x|| ≤ η and that we thus have ||∇f(un,kn,x,y) − ∇f(x)||2 ≤ ε. This means that ∇f(un,kn,x,y)

converges point-wise to ∇f(x).

Note also that we have by Cauchy-Schwartz that

1

w
2/d
n,kn,x

(
〈∇f(un,kn,x,y), (y − an,kn,x)〉

)2
I{Ωn

kn,x} ≤
1

w
2/d
n,kn,x

||∇f(un′,kn′,x,y)||
2
2||y − an,kn,x ||22I{Ωn

kn,x}

≤ d||∇f(un,kn,x,y)||22 ≤ dL2.

As ∇f(un,kn,x,y) converges point-wise with n to ∇f(x), and as 1

w
2/d
n,kn,x

(
〈∇f(un,kn,x,y), (y −

an,kn,x)〉
)2
≤ dL2, we have by the Theorem of Dominated convergence, that

lim
n→+∞

1

w
1+2/d
n,kn,x

∫
[0,1]d

(
〈∇f(un,kn,x,y), (y − an,kn,x)〉

)2
I{Ωn

kn,x}dy

lim
n→+∞

1

w
1+2/d
n,kn,x

∫
[0,1]d

(
〈 lim
n→+∞

∇f(un,kn,x,y), (y − an,kn,x)〉
)2

I{Ωn
kn,x}dy

lim
n→+∞

1

w
1+2/d
n,kn,x

∫
[0,1]d

(
〈∇f(x), (y − an,kn,x)〉

)2
I{Ωn

kn,x}dy

= lim
n→+∞

1

w
1+2/d
n,kn,x

||∇f(x)||22w
1+2/d
n,kn,x

12

=
||∇f(x)||22

12
.
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In the same way, we have that

lim
n→+∞

1

w
1+2/d
n,kn,x

(∫
[0,1]d

(
〈∇f(un,kn,x,y), (y − an,kn,x)〉I{Ωn

kn,x}dy
)2

lim
n→+∞

1

w
1+2/d
n,kn,x

(∫
[0,1]d
〈 lim
n→+∞

∇f(un,kn,x,y), (y − an,kn,x)〉I{Ωn
kn,x}dy

)2

lim
n→+∞

1

w
1+2/d
n,kn,x

(∫
[0,1]d
〈∇f(x), (y − an,kn,x)〉I{Ωn

kn,x}dy
)2

= lim
n→+∞

1

w
1+2/d
n,kn,x

w
1+2/d
n,kn,x

(
an,kn,x − an,kn,x

)
= 0.

Let us call gn,Ω(x) =
∑n

k=1

σ2
n,k

w
1/2d
n,k

I{Ωn
k}(x) =

σ2
n,kn,x

w
1/2d
n,kn,x

. The last two inequalities prove, ∀x,

point-wise convergence of gn,Ω(x) to
||∇f(x)||22

12 :

Step 2: Optimal allocation and minimum for the asymptotic variance There is one

point pulled at random per stratum. The variance of the estimate given by such an allocation is

n∑
k=1

w2
n,kσ

2
n,k =

n∑
k=1

wn,k × w
1+2/d
n,k ×

σ2
n,k

w
2/d
n,k

.

Define sn,Ω(x) =
∑n

k=1
1

nwn,k
I{Ωn

k}(x). Note first that

1 =
1

n

n∑
k=1

1 =

∫
[0,1]d

sn,Ω(x)dx,

and that

sn,Ω(x) > 0.

One has also for the variance of the estimate that

n∑
k=1

w2
n,kσ

2
n,k =

1

n1+2/d

∫
[0,1]d

gn,Ω(x)
1

sn,Ω(x)1+2/d
dx.

By using the result of the previous step, one has (for every sequence Ω where the diameter of

the strata converge uniformly to 0), point-wise convergence of gn,Ω(x) to
||∇f(x)||22

12 when n goes

to infinity.
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This leads to, by using Fatou’s Lemma

lim inf
n→+∞

∫
[0,1]d

gn,Ω(x)
1

sn,Ω(x)1+2/d
dx

≥
∫

[0,1]d
lim inf

n→+∞

(
gn,Ω(x)

1

sn,Ω(x)1+2/d

)
dx

≥
∫

[0,1]d
inf

s:s≥0,
∫
s=1

||∇f(x)||22
12

1

s(x)1+2/d
dx.

One thus wants then to find the function s(x) that minimizes this limit. One thus wants to

solve in each point x the program infs
||∇f(x)||22

12
1

s(x)1+2/d such that s ≥ 0 and
∫

[0,1]d s(x)dx = 1.

The solution (by just writing Lagragian) is

s∗(x) =
(||∇f(x)||2)

d
d+1∫

[0,1]d(||∇f(u)||2)
d
d+1du

.

By plugging it in the bound, one obtains

lim inf
n→+∞

∫
[0,1]d

gn,Ω(x)
1

sn,Ω(x)1+2/d
dx

≥

( ∫
[0,1]d(||∇f(x)||2)

d
d+1dx

)2
(d+1)
d

12
.

Note that the previous result holds for any sequence of partitions (Ωn)n where the diameter

of each stratum converges uniformly to 0. One finally has, using that, that the minimum possible

asymptotic variance is bounded by

lim
n→+∞

inf
Ω
n1+2/d

n∑
k=1

w2
n,kσ

2
n,k ≥

( ∫
[0,1]d(||∇f(x)||2)

d
d+1dx

)2
(d+1)
d

12
,

and we thus obtain the desired result.

7.C Proof of Lemmas 19

Upper bound on the standard deviation: The upper confidence bounds Bk,t used in

the MC-UCB algorithm is an elaboration in the specific case of Lipschitz function on Theo-

rem 10 in Maurer and Pontil [2009] (a variant of this result is also reported in Audibert et al.

[2009b]). We state here a main Lemma.

Lemma 20 Assume that the function f from which the data is collected is differentiable, and
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that ||∇f(x)||2 is bounded by L, and n ≥ 2. Define the following event

ξ = ξK,n(δ) =
⋂

1≤k≤K,


∣∣∣∣∣
√√√√ 1

S̄ − 1

S̄∑
i=1

(
Xk,i −

1

S̄

S̄∑
j=1

Xk,j

)2
− σk

∣∣∣∣∣ ≤ 2L
√
d(
wk
S̄

)1/d

√
log(2K/δ)

S̄

 .

(7.9)

The probability of ξ is bounded by 1− δ.

Note that the first term in the absolute value in Equation 7.9 is the empirical standard

deviation of arm k computed as in Equation 7.8 for t samples. The event ξ plays an important

role in the proofs of this section and a number of statements will be proved on this event.

We now provide the proof of Lemma 20.

Let us assume that f is such that ||∇f ||2 ≤ L. Let us consider a small box Ωw of size w and

such that Ωw =
∏d
i=1[ai− w1/d

2 , ai+
w1/d

2 ]. As ||∇f ||2 ≤ L, we know that |f(x)− 1
w

∫
Ωw

f(u)du| ≤
L
√
dw1/d.

If U is a random variable on Ωw and X = f(U), then

|X − µ| ≤ L
√
dw1/d,

where µ = 1
w

∫
Ωw

f(u)du.

Note first that for algorithm LMC-UCB, the S̄ first samples are each sampled in an hypercube

of measure wk
S̄

, and all of those hypercubes form a partition of the domain.

Using a large deviation bound on the variance, e.g. the one in Maurer and Pontil [2009], we can

deduce that with probability 1− 2δ

|

√√√√ 1

S̄ − 1

S̄∑
i=1

(
Xk,i −

1

S̄

S̄∑
j=1

Xk,j

)2
− σk| ≤ b

√
2 log(1/δ)

S̄ − 1
,

where b is a bound on the random variables Xi−µi. One gets because |Xk,i−µk,i| ≤
√
dL(wkt )1/d

(where µk,i is the mean of the function on the hypercube where point Xk,i is sampled and because

t ≥ 2

|

√√√√ 1

S̄ − 1

S̄∑
i=1

(
Xk,i −

1

S̄

S̄∑
j=1

Xk,j

)2
− σk| ≤ 2L

√
d(
wk
S̄

)1/d

√
log(1/δ)

S̄
.

Then by doing a simple union bound on (k, t), we obtain the result.

The following Corollary holds.

Corollary 5 On the event ξ, ∀k ≤ K,

|σ̂k,KS̄ − σk| ≤ 2L
√
d
√

log(2K/δ)
w

1/d
k

S̄
d+2
2d
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By concavity, we also have the following Corollary.

Corollary 6 On the event ξ, there is ∀k ≤ K that

|σ̂
d
d+1

k,KS̄
− σ

d
d+1

k | ≤ A
w

1
d+1

k

S̄
d+2

2(d+1)

,

where A = (2L
√
d
√

log(2K/δ))
d
d+1 .

The number of sub-strata Let k be an index. Let us call Ck =
w

d
d+1
k

(
σ̂k,KS̄+A(

wk
S̄

)1/d
√

1
S̄

) d
d+1

∑K
i=1 w

d
d+1
i

(
σ̂i,KS̄+A(

wi
S̄

)1/d
√

1
S̄

) d
d+1

(n−

KS̄).

Stratum Ωk is subdivided in Sk = max
[
S̄, bC1/d

k c
d
]

substrata, composing the sub-partition

Nk.

Note first that
∑K

k=1 Sk ≤ n as
∑K

k=1Ck = n −KS̄. As the samples are always picked in

sub-strata that have the less points, it ensures that there is at least one point per sub-stratum.

On ξ, we have because of Corollary 6 that

Ck ≥
w

d
d+1

k σ
d
d+1

k∑K
i=1w

d
d+1

i

(
σ

d
d+1

i + 2A
w

1
d+1
i

S̄
d+2

2(d+1)

)(n−KS̄)

≥
w

d
d+1

k σ
d
d+1

k

ΣK + 2A 1

S̄
d+2

2(d+1)

(n−KS̄)

≥ λK,k(n−KS̄)
(

1− 2A

ΣK S̄
d+2

2(d+1)

)
≥ λK,k

(
n−KS̄ − 2An

ΣK S̄
d+2

2(d+1)

)
.

Using the fact that
(
n
K

) d
d+1 ≥ S̄ ≥

((
n
K

) 1
d+1 −1

)d
≥
(
n
K

) d
d+1 −d

(
n
K

) d−1
d+1 in the last Equation,

Ck ≥ λK,k
(
n−K

( n
K

) d
d+1 − 2An

ΣK

(K
n

) d
d+1
× d+2

2(d+1)
(
1 + d(

K

n
)

1
d+1
) d+2

2(d+1)

)
≥ λK,k

(
n−K

1
d+1n

d
d+1 − 2An

1
2

+ 1
(d+1)2

ΣK
K

d(d+2)

2(d+1)2
(
1 + [d(

K

n
)

1
d+1 ]

d+2
2(d+1)

))
≥ λK,k

(
n− (1 + 2

A

ΣK
+ d(

K

n
)

d+2

2(d+1)2 )K
1
d+1n

d
d+1

)
, (7.10)

where the last line comes from the fact that n ≥ K.
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We also have

Ck − bC
1/d
k c

d ≤ Ck − (C
1/d
k − 1)d = Ck

(
1− (1− 1

C
1/d
k

)d
)
≤ dC

d−1
d

k .

From the last Equation, the definition of Sk and Equation 7.10 we deduce that (rounding

issues)

Sk ≥ max
[
S̄, Ck

(
1− d

C
1/d
k

)]
≥ max

[
S̄, Ck

(
1− d

(S̄)1/d

)]
≥ max

[
S̄, λK,k

(
n− (1 + 2

A

ΣK
+ d(

K

n
)

d+2

2(d+1)2 )K
1
d+1n

d
d+1

)(
1− d

(K
n

) 1
d+1

)]
≥ max

[
S̄, λK,k

(
n− (2 + 2

A

ΣK
+ d)K

1
d+1n

d
d+1

)]
.

We call N = n − (2 + 2 A
ΣK

+ d)K
1
d+1n

d
d+1 in the sequel. Note that ∀k, we have Sk ≥

max[S̄, λK,kN ].

Note also that for δ ≤ 1, we have

A = (2L
√
d
√

log(2K/δ))
d
d+1

≤ 4(L+ 1)
√
d
√

log(K/δ).

We thus have that

n ≥ N ≥ n− 7(L+ 1)d3/2
√

log(K/δ)(1 +
1

ΣK
)K

1
d+1n

d
d+1 . (7.11)

7.D Proof of Theorem 17

Step 1: Notations Let
(
(Ωn

k)k≤Kn
)
n

be a sequence of partitions in hyper-cubic strata of

same measure. Let us also assume that the number of strata Kn in partition (Ωn
k)k is such that

limn→+∞Kn = +∞ and limn→∞
Kd+2
n log(n)d+3

nd+1 = 0. On each of those partitions, MC −UCB is

launched with respectively n samples and parameter δn = 1
n2 .

The number of hyper-cubic sub-strata built by the algorithm in stratum Ωn
k is Sn,k. Let us

write
((

(Ωn
k,s)s≤Sn,k

)
k≤Kn

)
n

the partition in hyper-cubic strata formed with those sub-strata.

By construction of the algorithm, there is at least one point per sub-stratum. The estimate of

the mean of the function is built with the first point in each of those sub-strata.

Let us write g
(1)
n (x) =

∑Kn
k=1

∑Sn,k
s=1

σ2
n,k,s

w
1/2d
n,k,s

I{Ωn
k,s}(x) =

∑Kn
k=1

∑Sn,k
s=1 σ

2
n,k,s

S
1/2d
n,k

w
1/2d
n,k

I{Ωn
k,s}(x).

From step 1 of the proof of Lemma 17, it converges with n (because Kn → +∞ when n → ∞
and thus the diameter of each stratum goes to 0) point-wise to

||∇f(x)||22
12 .
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Let us write g
(2)
n (x) =

∑Kn
k=1

σ2
n,k

w
1/2d
n,k

I{Ωn
k}(x). From step 1 of the proof of Lemma 17, it

converges with n point-wise to
||∇f(x)||22

12 . This convergence implies, as ||∇f ||22 is bounded and

thus as
∫
||∇f ||

d
d+1

2 is bounded, by the Theorem of Dominated convergence that limn→+∞ΣKn =

limn→+∞
∫

[0,1]d(g
(2)
n (x))

d
2(d+1)dx =

∫
[0,1]d(

||∇f(x)||2
12 )

d
(d+1)dx > 0.

Define λn(x) =
∑Kn

k=1
λKn,k
wn,k

I{Ωn
k} =

∑Kn
k=1

(wn,kσn,k)
d
d+1

wn,kΣKn
I{Ωn

k} = (gn(x))
d

2(d+1)

ΣKn
. We thus know,

as the limit of (ΣKn)n exists and is bigger than 0, that λn(x) converges pointwise to s(x) =

||∇f(x)||
d
d+1
2∫

[0,1]d
||∇f(x)||

d
(d+1)
2 dx

.

Let us also define sn(x) =
∑Kn

k=1
Sn,k
nwn,k

I{Ωn
k}(x).

-

Step 1: Majoration of of 1
sn

. Let us consider only functions f that are not everywhere

constant on the domain, as otherwise the bound on the pseudo-risk is trivial6. Then ∃X ∈ [0, 1]d

such that X is measurable and such that
∫
X

1 > 0, and such that ∀x ∈ X, ||∇f(x)||2 > 0. Then∫
[0,1]d(

||∇f(x)||2
12 )

d
(d+1)dx > 0.

Let Nn be defined as in the proof of Lemma 19, i.e. Nn as in Equation 7.11. As limn→+∞ΣKn =∫
[0,1]d(

||∇f(x)||2
12 )

d
(d+1)dx, we know that for any n sufficiently large, limn ΣKn ≥ 1

2

∫
[0,1]d(

||∇f(x)||2
12 )

d
(d+1)dx.

We thus have

n ≥ Nn ≥ n− 7(L+ 1)d3/2
√

log(Kn/δn)(1 +
1

ΣKn

)K
1
d+1n

d
d+1

≥ n− C
√

log(Knn2)K
1
d+1
n n

d
d+1 ,

with C < +∞ as
∫

[0,1]d(
||∇f(x)||2

12 )
d

(d+1)dx > 0. As by definition of the sequence of partitions,

limn→+∞
√

log(Knn2)
(
Kn
n

) 1
d+1 = 0, we know that limn→+∞

Nn
n = 1.

By Lemma 19, with probability 1− δn, ∀k, Sn,k ≥ λKn,kNn. We thus have

P
(

1

sn(x)
− 1

λn(x)
≥ 1

λn(x)
(
n

Nn
− 1)

)
≤ δn,

which leads to

P
(

1

sn(x)
≥ 1

λn(x)

n

Nn

)
≤ δn.

Let X+ = {x ∈ [0, 1]d : ||∇f ||2 > 0}. By the last Equation, ∀ε > 0, ∀x ∈ X+, for n sufficiently

large (∃n′ such that ∀n ≥ n′), P( 1
sn(x) −

1
λn(x) ≥ ε) ≤ δn. Note that

∑+∞
n=1 δn =

∑+∞
n=1

1
n2 ≤ +∞.

We can thus use Borel-Cantelli’s Theorem and this gives us that on X+, lim supn
1

sn(x)−
1

λn(x) ≤ 0

6If the function is everywhere constant, the samples are always equal to the integral, and the pseudo-risk of
the estimate is zero.
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a.s..

We thus deduce (i) by the definition of λn and the fact that it converges almost surely to

s and (ii) by the fact that limn
Nn
n = 1, that lim supn

1
λn(x) ≤

1
s(x) a.s. (since, by definition,

sn(x) ≥ S̄
nwn,K

> 0).

From that we deduce that ∀x ∈ X+, lim supn
1

sn(x) ≤
1
s(x) a.s.. As on [0, 1]d − X+, s(x) = 0,

we have ∀x ∈ [0, 1]d, that lim supn
1

sn(x) ≤
1
s(x) a.s..

Step 2: Convergence rate of the pseudo-risk. The pseudo-risk of the estimate µ̂n is

Kn∑
k=1

Sn,k∑
s=1

(wn,k
Sn,k

)2
σ2
n,k,s = n1+2/d

∫
[0,1]d

g(1)
n (x)

1

sn(x)1+2/d
dx.

On [0, 1]d, g
(1)
n converges pointwise to

||∇f ||22
12 , and lim supn→+∞

1
sn(x)1+2/d ≤ 1

s(x)1+2/d a.s. We

finally have by Fatou’s Lemma that∫
[0,1]d

g(1)
n (x)

1

sn(x)1+2/d
dx ≤

∫
[0,1]d

lim sup
n

(
g(1)
n (x)

1

sn(x)1+2/d

)
dx

≤
∫

[0,1]d
lim sup

n
g(1)
n (x) lim sup

n

1

sn(x)1+2/d
dx

≤
∫

[0,1]d

||∇f ||22
12

1

s(x)1+2/d
dx.

By plugging in the last Equation the Definition of s, we conclude the proof.

7.E Proof of Theorems 18

Step 0: Some inequalities when the second derivative of f is bounded Let a be a

point in Ω.

f admits a Taylor expansion in any point. For any x ∈ Ω have |f(x)−f(a)+∇f(a).(x−a)| ≤
M ||x− a||22 with 2M a bound of the second derivative of f .

Note also that ||∇f(x)−∇f(a)||2 ≤M ||x− a||2.

Note also that∣∣∣||∇f(x)||22 − ||∇f(a)||22
∣∣∣ ≤ ∣∣∣(||∇f(x)||2

)2 − ||∇f(a)||22
∣∣∣

≤
∣∣∣(||∇f(a)||2 +M ||x− a||2

)2 − ||∇f(a)||22
∣∣∣

≤
∣∣∣||∇f(a)||22 + 2M ||∇f(a)||2||x− a||2 +M2||x− a||22 − ||∇f(a)||22

∣∣∣
≤ 2M ||∇f(a)||2||x− a||2 +M2||x− a||22.
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This means that ∣∣∣||∇f(x)||2 − ||∇f(a)||2
∣∣∣ ≤M ||x− a||2. (7.12)

Step 1: Variance on a small box Let us place us on one small box of size w and such that

the corresponding domain is Ωw =
∏

[ai − w1/d

2 , ai + w1/d

2 ]. We can do a Taylor expansion in a

and have

|f(x)− f(a) +∇f(a)(x− a)| ≤M ||x− a||22,

with 2M a bound of the second derivative of f .

Note that because of the previous equation

| 1
w

∫
Ωw

(
f(u)− f(a) +∇f(a)(u− a)

)
du| ≤ 1

w

∫
Ωw

|f(u)− f(a) +∇f(a)(u− a)|du

≤M ||x− a||22. (7.13)

This implies because ai =
∫ ai+w1/d

2

ai−w
1/d

2

udu that

| 1
w

∫
Ωw

f(u)du− f(a)| ≤M ||x− a||22. (7.14)

Finally, by combining Equations 7.13 and 7.14, we get

|f(x)− 1

w

∫
Ωw

f(u)du+∇f(a)(x− a)| ≤ 2M ||x− a||22.

Triangle inequality on the last Equation leads to

|f(x)− 1

w

∫
Ωw

f(u)du| ≤ |∇f(a)(x− a)|+ 2M ||x− a||22.
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This means by integrating that∫
Ωw

(
f(x)− 1

w

∫
Ωw

f(u)du
)2
dx ≤

∫
Ωw

(
|∇f(a)(x− a)|+ 2M ||x− a||22

)2
dx

≤
∫

Ωw

(
∇f(a)(x− a)

)2
dx (7.15)

+ 2M

∫
Ωw

(
∇f(a)(x− a)|

)
||x− a||22dx (7.16)

+ 4M2

∫
Ωw

||x− a||42dx. (7.17)

Note first that because ai =
∫ ai+w1/d

2

ai−w
1/d

2

udu, we have for the term in Equation 7.15

∫
Ωw

(
∇f(a)(x− a)

)2
dx =

∫
Ωw

( d∑
i=1

∇f(a)i(xi − ai)
)2
dx

= w1−1/d
d∑
i=1

∫ ai+
w1/d

2

ai−w
1/d

2

∇f(a)2
i (xi − ai)2dxi

=
d∑
i=1

∇f(a)2
i

w1+2/d

12

=
w1+2/d

12
||∇f(a)||22. (7.18)

Now note that for the term in Equation 7.17

∫
Ωw

||x− a||42dx =

∫
Ωw

( d∑
i=1

(xi − ai)2
)2
dx

≤ d2w1+4/d. (7.19)

Now note that because of Cauchy-Schwartz and by using Equations 7.18 and 7.19, we have

for the term in Equation 7.16

∫
Ωw

(
∇f(a)(x− a)|

)
||x− a||22dx ≤

√∫
Ωw

(
∇f(a)(x− a)|

)2
dx

√∫
Ωw

||x− a||42dx

≤ ||∇f(a)||2w1/2+1/d
√
d2w1+4/d

≤ d||∇f(a)||2w1+3/d. (7.20)

We thus have by combining Equations 7.15, 7.16, 7.17, 7.18, 7.20 and 7.19∫
Ωw

(
f(x)− 1

w

∫
Ωw

f(u)du
)2
dx ≤ ||∇f(a)||22

12
w1+2/d + 2Md||∇f(a)||2w1+3/d + 4M2d2w1+4/d.
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This leads to using Step 0 in Proof 7.B

w2σ2 ≤ ||∇f(a)||22
12

w2+2/d + 2Md||∇f(a)||2w2+3/d + 4M2d2w2+4/d

= w2+2/d
( ||∇f(a)||2

2
√

3
+ 2Mdw1/d

)2
. (7.21)

In the same way, one can prove

w2σ2 ≥ w2+2/d
( ||∇f(a)||2

2
√

3
− 2Mdw1/d

)2
. (7.22)

Step 2: Majoration on the strata Lemma 19 tells us that with probability 1 − δ (i.e. on

the event ξ), each stratum Ωk is partitioned in Sk ≥ max

[
λp,KN, S̄

]
hyper-cubic substrata Ωk,i

of same measure, and that that there is at least one sample per stratum.The measure of those

sub-strata is thus wk,i = wk
Sk

.

We have for stratum Ωk,i by using Equation 7.21

w2
k,iσ

2
k,i ≤ w

2+2/d
k,i

( ||∇f(ak,i)||2
2
√

3
+ 2Mdw

1/d
k,i

)2
,

where ak,i is the center of stratum Ωk,i.

Let ck,i be a point in Ωk,i such that ck,i = arg minc∈Ωk,i ||∇f(c)||2. By using that and

Equation 7.12, we get that the variance on strata k that is bounded by

Sk∑
i=1

w2
k,iσ

2
k,i ≤

Sk∑
i=1

w
2+2/d
k,i

( ||∇f(ak,i)||2
2
√

3
+ 2Mdw

1/d
k,i

)2
≤

Sk∑
i=1

w
2+2/d
k,i

( ||∇f(ck,i)||2
2
√

3
+ 3Mdw

1/d
k,i

)2
≤wk
Sk

Sk∑
i=1

w
d+2
d

k,i

( ||∇f(ck,i)||2
2
√

3
+ 3Mdw

1/d
k,i

)2
.

Let us call g(x) = ||∇f(x)||2
2
√

3
+ 3Mdw

1/d
k . As wk ≥ wk,i, and ||∇f ||2 is positive, we have

Sk∑
i=1

w2
k,iσ

2
k,i ≤

wk
Sk

Sk∑
i=1

w
d+2
d

k,i g(ck,i)
2. (7.23)

Step 3: Minoration of the number of sub-strata in each stratum By setting Equa-

tion 7.21 to the power d
2(d+1) , we get on stratum Ωk that

(wkσk)
d
d+1 ≤ wk

( ||∇f(ak)||2
2
√

3
+ 2Mdw

1/d
k

) d
d+1 .
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Let cmk be a point in Ωk such that cmk = arg minc∈Ωk ||∇f(c)||2. Note that this implies that∑K
k=1wk

( ||∇f(cmk )||2
2
√

3
+ 3Mdw

1/d
k

) d
d+1 ≤

∫
[0,1]d

( ||∇f(u)||2
2
√

3
+ 3Mdw

1/d
k

) d
d+1du. By using that and

Equation 7.12, we get that ΣK =
∑

k(wkσk)
d
d+1 is bounded as

ΣK ≤
K∑
k=1

wk
( ||∇f(ak)||2

2
√

3
+ 2Mdw

1/d
k

) d
d+1

≤
K∑
k=1

wk
( ||∇f(cmk )||2

2
√

3
+ 3Mdw

1/d
k

) d
d+1

≤
∫

[0,1]d

( ||∇f(u)||2
2
√

3
+ 3Mdw

1/d
k

) d
d+1du

≤
∫

[0,1]d
g(u)

d
d+1du. (7.24)

In the same way, we can deduce

ΣK ≥
∫

[0,1]d

( ||∇f(u)||2
2
√

3
− 3Mdw

1/d
k

) d
d+1du. (7.25)

Let cMk be a point in Ωk such that cMk = arg maxc∈Ωk ||∇f(c)||2. For a stratum k, by using

Equations 7.22 and 7.12

(wkσk)
d+2
d+1 ≥ w

d+2
d

k

( ||∇f(ak)||2
2
√

3
− 2Mdw

1/d
k

) d+2
d+1

≥ w
d+2
d

k

( ||∇f(cMk )||2
2
√

3
− 3Mdw

1/d
k

) d+2
d+1 .

As for any u > 0 and α > 0 one has (1− u)−α ≥ 1 + αu, the last Equation leads to

1

(wkσk)
d+2
d+1

≤ 1

w
d+2
d

k

( ||∇f(cMk )||2
2
√

3
+ 3Mdw

1/d
k − 3Md(w

1/d
k + w

1/d
k )
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d+1

≤ 1

w
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d

k

(
g(cMk )− 6Mdw

1/d
k

) d+2
d+1

≤ 1

w
d+2
d

k g(cMk )
d
d+1
(
1− 6Mdw

1/d
k

g(cMk )

) d+2
d+1

≤ 1

w
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d
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(
g(cMk )
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(
1 + (

d+ 2

d+ 1
)
6Mdw
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)
≤ 1
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( 1(
g(cMk )

) d+2
d+1

+
9Mdw
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(g(cMk ))
2d+3
d+1

)
.
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As wk,i = wk
Sk

this leads with the last Equation and Equation 7.24

(wk,i)
d+2
d ≤

(∫
[0,1]d

(
g(u)

) d
d+1du

N

) d+2
d ( 1(

g(cMk )
) d+2
d+1

+
9Mdw

1/d
k

(g(cMk ))
2d+3
d+1

)
. (7.26)

Step 4: Bound on the pseudo-risk As cMk = maxc∈Ωk ||∇f(c)||2 and ck,i = minc∈Ωk,i ||∇f(c)||2,

and as g(x) = ||∇f(x)||2
2
√

3
+ 3Mdw

1/d
k , we have for any (a, b) ≥ 0 that

g(ck,i)
a

g(cMk )b
≤ minc∈Ωk,i g(c)a−b.

By using that and Equations 7.23 and 7.26

Sk∑
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k,iσ
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Sk
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(
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)
.

Note also that by definition, g(x) ≥ 3Mdw
1/d
k . From that and the previous Equation, we

deduce

Sk∑
i=1

w2
k,iσ

2
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)
.

Finally, by summing over all strata and because all strata have same measure wk = 1
K
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Sk∑
i=1

w2
k,iσ

2
k,i ≤

(∫
[0,1]d

(
g(u)

) d
d+1du

N

) d+2
d

K∑
k=1

( ∫
Ωk

g(u)
d
d+1du+ wk × 9Mdw

1
d+1

k

)
≤
(∫

[0,1]d

(
g(u)

) d
d+1du

N

) d+2
d ( ∫

[0,1]d
g(u)

d
d+1du+ 9Md

( 1

K

) 1
d+1
)

≤ 1

N
d+2
d

(( ∫
[0,1]d

g(u)
d
d+1du

) 2(d+1)
d + 9Md

( ∫
[0,1]d

g(u)
d
d+1du

) d+2
d
( 1

K

) 1
d+1

)
.

(7.27)
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Step 5: Bound on
∫

[0,1]d g(u)
d
d+1du Note that because d

d+1 ≤ 1, we have

g(u)
d
d+1 =

( ||∇f(u)||2
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√

3
+ 3Mdw

1/d
k

) d
d+1

≤
( ||∇f(u)||2

2
√

3

) d
d+1 + 3Mdw

1
d+1

k

We thus have ∫
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( ||∇f(u)||2
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k . (7.28)

Note also that for x ≥ 0, and as 2(d+1)
d ≤ 4, we have

(1 + x)
2(d+1)
d ≤(1 + x)4 ≤ 1 + 24 max(x, x2, x3, x4).

Let us call Σ =
∫

[0,1]d

( ||∇f(u)||2
2
√

3

) d
d+1du. Then by applying the previous result to Equation 7.28,

we get
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Note also that by Equation 7.12, we know that ||∇f(u)||2 ≤ ||∇f(0)||2 + M
√
d. From that

we deduce that ∫
[0,1]d

g(u)
d
d+1du ≤ Σ + 3Mdw

1
d+1

k

≤ Σ + 3Md. (7.30)
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Step 6: Final bound on the pseudo-risk From Equations 7.27, 7.29 and 7.30, we deduce
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ΣK

+ d)K
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From plugging that in the last Equation, we get
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where we use for passing from the second to the third line of the Equation that (1−u)−α ≤ 1+αu.

By it’s definition, C ≥ Σ
2(d+1)
d and this leads to
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. (7.31)

Note first that by Equation 7.25 and because ||∇f ||2 ≤ L we have

ΣK ≥
∫
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From that we deduce that

B ≤ 2 + 2
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By plugging in Equation 7.31 the definition of C and the bound on B computed above, we

obtain
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This concludes the proof.
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Chapter 8

Toward Optimal Stratification for

Stratified Monte-Carlo Integration

This Chapter is a joint work with Rémi Munos. Whereas the two precedent Chapters were

concerned on the number of strata into which it is relevant to partition the space in order to

perform efficiently stratified Monte-Carlo integration of a function, the approach of this Chapter

is more direct. The objective is to provide an adaptive way to refine partitioning of the space in

interesting regions of the domain. It is the last Chapter of this PhD on Monte-Carlo integration.

We consider the problem of adaptive stratified sampling for Monte Carlo integration of a

function, given a finite budget n of noisy evaluations to the function. We tackle in this Chapter

the problem of stratifying the domain in an efficient way. More precisely, it is interesting to refine

the partition of the domain in area where the noise on the function, or where the variations of the

function, are very heterogeneous. On the other hand, having a (too) refined stratification is not

optimal, since the more refined the stratification, the more difficult it is to estimate the variance

of the noise and the variations of the function, in each stratum. We provide in this Chapter two

algorithms that are almost as efficient (up to a constant) as the MC-UCB algorithm (introduced

in Carpentier and Munos [2011a]) run on the best partition of a large class of partitions.
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8.1 Introduction

The objective of this Chapter is to provide an efficient strategy for integrating a noisy function

F : X× Ω → R. The learner can sample n times the function. If he samples the function, at a

time t, in a point xt ∈ X of the domain, he obtains the noisy sample

F (xt, εt), (8.1)

where εt ∈ Ω is drawn independently at random from some distribution Lxt , where Lx is a

probability distribution that depends on x.

If the variations of the function F are known to the learner, an efficient strategy is to sample

more points in parts of the domain X where the variations of F are larger. This intuition is

explained more formally in the setting of Stratified Sampling (see e.g. Rubinstein and Kroese

[2008]).

More precisely, assume that the domain X is divided in KN regions (according to the usual

terminology of stratified sampling, we refer to these regions as strata) that form a partition N

of X. It is optimal (for an oracle) to allocate a number of points in each stratum proportional to

the measure of the stratum times a quantity depending of the variations of F in the stratum (see

[Subsection 5.5] of Rubinstein and Kroese [2008]). We refer to this strategy as optimal oracle

strategy for partition N. We write
Σ2

N

n the mean squared error (with respect to the integral
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of F ) of the estimate outputted by the optimal oracle strategy (see again [Subsection 5.5] of

Rubinstein and Kroese [2008] for a definition of ΣN).

The problem is that the variations of the function F in each stratum of N are unknown to the

learner. In the papers Carpentier and Munos [2011a]; Etoré and Jourdain [2010]; Grover [2009],

the authors expose the problem of, at the same time, estimating the variations of F in each

stratum, and allocating the samples optimally among the strata according to these estimates.

More precisely, in Carpentier and Munos [2011b]1, the authors provide an asymptotically con-

sistent algorithm whose pseudo-risk2 is bounded by
Σ2

N

n +CminΣN
K

1/3
N

n4/3 , where Cmin is a constant.

This bound implies that the learner is able to, at the same time, learn about the variations of the

function and allocate optimally the samples in the strata, up to a negligible term. If the domain

is wisely stratified, according to F , and in many strata, then
Σ2

N

n is small (see again [Subsection

5.5] of Rubinstein and Kroese [2008]). Note however that the term
K

1/3
N

n4/3 in the bound depends

also of the partition of the space and increases with the number of strata. The intuition behind

this fact is that the learner has to learn the variations of the function inside each stratum, and

the more strata there are, the harder the task.

It is thus important to adapt also the partition to the function, and refine more the strata

where variations of the function F are larger, while at the same time not considering too many

strata. As a matter of fact, a good partition of the domain is such that, inside each stratum,

the values taken by F are as homogeneous as possible (see [Subsection 5.5] of Rubinstein and

Kroese [2008]), while at the same time the number of strata is not too large.

There are very interesting and deep studies on how to stratify efficiently the space, e.g. Etoré

et al. [2011]; Glasserman et al. [1999]; Kawai [2010]. More specifically, in the recent, state of

the art, paper Etoré et al. [2011], the authors propose an algorithm for performing this task

online and efficiently. They do not provide proofs of convergence of their algorithm, but they

give some properties of optimal stratified estimate when the number of strata goes to infinity,

notably convergence results under the optimal allocation. They also give some intuitions on

how to split efficiently the strata. Having an asymptotic vision of this problem prevents them

however from giving clear directions on how exactly to adapt the strata, as well as from providing

theoretical guarantees.

Contributions: We consider in this Chapter the problem of designing efficiently the partition

of the space. More precisely, our aim is to build an algorithm that performs almost as well as

MC-UCB (introduced in Carpentier and Munos [2011a]) on the best possible partition (adaptive

to the function F ) in a large class of partitions. We consider in this Chapter the class of partition

to be the set of partitions defined by a hierarchical partitioning of the domain.

• We first provide an algorithm, Deep-MC-UCB, that is based on MC-UCB but incorporates

1This is the detailed version of Carpentier and Munos [2011a], where the bounds are enhanced.
2We define precisely later in the Chapter the notion of pseudo-risk. It is a proxy for the mean squared error

of the estimate of the integral.
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a test. We prove that the pseudo-risk of this algorithm is with high probability, up to a

multiplicative constant, lower than the pseudo-risk of MC-UCB on any partition NH of the

hierarchical partitioning such that every stratum is of depth H. We however do not prove

that this intuitive algorithm performs almost as good than MC-UCB on any partition of

the hierarchical partitioning (including thus the partitions of heterogeneous depth).

• We provide a second, more involved, algorithm, called MC-ULCB, that fills this gap. Its

pseudo-risk is smaller, up to a constant, than the pseudo-risk of MC-UCB on any partition

of the hierarchical partitioning.

The rest of the Chapter is organized as follows. In Section 8.2 we formalize the problem and

introduce the notations used throughout the Chapter. We also remind the problem independent

bound for algorithm MC-UCB, introduced in Carpentier and Munos [2011a]. In Section 8.3, we

first introduce what we call Uniform Sampling Scheme (USS). It is a simple sampling scheme

for allocating samples in a random yet low discrepancy way on a domain. We then introduce

algorithm Deep-MC-UCB and prove a bound on its pseudo-risk. Section 8.4 presents algorithm

MC-ULCB, and its bound on the pseudo-risk. We also discuss the results. We finally conclude

the Chapter.

8.2 Preliminaries

8.2.1 The function

We want to integrate the noisy function F according to a finite measure ν corresponding to a

σ−algebra whose sets belong to X. Without risk of generality, we assume that ν(X) = 1 (ν is

a probability measure). The learner can sample sequentially the function n times, and observe

noisy samples. When sampling the function at time t in xt, it observes a noisy sample F (xt, εt).

The noise εt ∼ Lxt is independent of the previous samples, but its distribution depends of xt.

We first state an assumption on the expectation of F (with respect to the noise) and on the

local variance of F (again, w.r.t. the noise), in any point x ∈ X.

Assumption Define g(x) = Eε∼Lx [F (x, ε)] and s(x) =

√
Eε∼Lx

[(
F (x, ε)− g(x)

)2]
. We as-

sume that they both are bounded in absolute value by the constant fmax. This assumption

means that mean function, and that the variance of the noise εt, are bounded at any point of

the domain X.

We also state an assumption on the noise to the function.

Assumption Let υ(x, ε) = F (x,ε)−g(x)
s(x) (if s(x) = 0, set υ(x, ε) = 0). We assume that ∃b such

that ∀λ < 1
b ,

Eε∼Lx
[

exp(λυ(x, ε))
]
≤ exp

(
λ2

2(1−λb)

)
, and Eε∼Lx

[
exp(λυ(x, ε)2 − λ)

]
≤ exp

(
λ2

2(1−λb)

)
.
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This assumption implies that the variations induced by the noise are sub-Gaussian3.

Assumptions 8.2.1 and 8.2.1 mean that the variations coming from the noise in F , although

potentially unbounded, are not too large. We believe that these assumptions are quite general.

In particular, they are satisfied if F is bounded, and are also satisfied e.g. for a bounded function

perturbed by an additive, heterocedastic, (sub-)Gaussian noise.

8.2.2 Notations for a hierarchical partitioning

Define a dyadic hierarchical partitioning T of the domain X. More precisely, we consider a set

of partitions of X at every depth h ≥ 0: for any integer h, X is partitioned into a set of 2h strata

X[h,i], where 0 ≤ i ≤ 2h − 1. This partitioning can be represented by a dyadic tree structure,

where each stratum X[h,i] corresponds to a node [h, i] of the tree (indexed by its depth h and

index i). Each node [h, i] has 2 children nodes [h + 1, 2i] and [h + 1, 2i + 1]. In addition, the

strata of the children form a sub-partition of the parents stratum X[h,i] . The root of the tree

corresponds to the whole domain X.

We first make the assumption of measurability of every partition of the hierarchical parti-

tioning.

Assumption ∀[h, i] ∈ T, the stratum X[h,i] is measurable according to the σ−algebra on which

the probability measure ν is defined.

We write w[h,i] the measure of stratum X[h,i], i.e. w[h,i] = ν(X[h,i]). We also assume that

the hierarchical partitioning is such that all the strata of a given depth have same measure,

i.e. w[h,i] = wh.

Assumption ∀[h, i] ∈ T, the children strata of [h, i] are such that wh+1 = ν(X[h+1,2i]) =

ν(X[h+1,2i+1]) =
ν(X[h,i])

2 = wh
2 . If for example X = [0, 1], a hierarchical partitioning that

satisfies the previous assumptions with the Lebesgue measure is illustrated in Figure 8.1.

[0,0]

[1,0] [1,1]

[2,0] [2,1] [2,2] [2,3]

[0,0]

[1,1][1,0]

[2,0] [2,1] [2,2] [2,3]

[0,0]

[1,1][1,0]

[0,0]

[3,0]
[3,1]

[3,2]
[3,3]

[3,4]
[3,5]

[3,6]
[3,7]

Figure 8.1: Example of hierarchical partitioning in dimension 1.

3This assumption is actually slightly stronger than the usual sub-Gaussian assumption. Nevertheless,
e.g. bounded random variables and Gaussian random variables satisfy it.
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We write B[h,i],N, where N is a cut of a dyadic tree, the sub-partition given by the leafs of the

tree issued from [h, i] and with leaves N (we branch partition N on leaves [h, i]). We also call

by a slight abuse of notations B[h,i],m the sub-partition of all nodes of depth h+m issued from

node [h, i]. We illustrate this in Figure 8.2.

[h,i]

B [h,i], m

m

[h,i]

N
B [h,i],N

Figure 8.2: Illustration of B[h,i],N and B[h,i],m

We write mean and variance of stratum X[h,i] the mean and variance of a sample of the

function F , collected in the point X, where X is drawn at random according to ν conditioned

to stratum X[h,i]. We write µ[h,i] = EX∼νX[h,i]

[
Eε∼LX [F (X, ε)]

]
= 1

wh

∫
X[h,i]

g(x)dν(x) the mean

and σ2
[h,i] = 1

wh

∫
X[h,i]

(
g(x)−µ[h,i]

)2
dν(x) + 1

wh

∫
X[h,i]

s2(x)dν(x) the variance (we remind that g

and s are defined in Assumption 8.2.1).

8.2.3 Pseudo-performance of an algorithm and optimal static strategies

We denote by A an algorithm that allocates the budget n and returns a partition Nn =(
X[h,i]

)
[h,i]∈Nn

included in the hierarchical partitioning T of the domain. In each node [h, i] of

Nn, algorithm A allocates uniformly T[h,i],n random samples. We write
(
X[h,i],t

)
[h,i]∈Nn,t≤T[h,i],n

these samples, and we write µ̂[h,i],n = 1
T[h,i],n

∑T[h,i],n

t=1 X[h,i],t the empirical mean built with these

samples. We estimate the integral of F on X by µ̂n =
∑

[h,i]∈Nn whµ̂[h,i],n.

If Nn is fixed as well as the number T[h,i],n of samples in each stratum, and if the T[h,i],n

samples are independent and chosen uniformly according to the Lebesgue measure restricted on

each stratum X[h,i], we have

E(µ̂n) =
∑

[h,i]∈Nn

whµ[h,i] =
∑

[h,i]∈Nn

∫
X[h,i]

g(u)dν(u) =

∫
X

g(u)dν(u) = µ,

and also

V(µ̂n) =
∑

[h,i]∈Nn

w2
hE(µ̂[h,i],n − µ[h,i])

2 =
∑

[h,i]∈Nn

w2
hσ

2
[h,i]

T[h,i],n
,

where the expectation is computed on the samples collected in the strata.
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For a given algorithm A, we denote by pseudo-risk the quantity

Ln(A) =
∑

[h,i]∈Nn

w2
hσ

2
[h,i]

T[h,i],n
. (8.2)

This measure of performance is discussed more in depths in the paper Carpentier and Munos

[2011b].

Note that if, for a given partition N, an unadaptive algorithm A∗N would know the variances

σ2
[h,i] of the nodes in N, it could allocate the budget in order to minimize the pseudo-risk, by

choosing to pull in each stratum X[h,i] (up to rounding issues) T ∗[h,i] =
whσ[h,i]n∑
x∈N wxσx

samples. The

pseudo risk for this oracle strategy is thus

Ln(A∗N) =

(∑
[h,i]∈N whσ[h,i]

)2

n
=

Σ2
N

n
, (8.3)

where we write ΣN =
∑

x∈N wxσx. We also refer, in the sequel, as optimal allocation (for a

partition N), to λ[h,i],N =
whσ[h,i]

ΣNn
. Even when the optimal allocation is not realizable because of

rounding issues, it can still be used as a benchmark since the quantity Ln(A∗N) is a lower bound

on the variance of the estimate outputted by any oracle strategy.

We define the pseudo-risk on partition N in the case when the samples within each stratum

X[h,i] are chosen uniformly at random in the stratum according to the measure νX[h,i]
. In this

Chapter, we however do not sample uniformly at random in each stratum of partition N, but

according to a sampling scheme, called USS, that we introduce in the following Section. We

prove that the variance of the empirical mean of the samples collected with this sampling scheme

is smaller than the variance when sampling uniformly at random in stratum X[h,i], which justifies

the use of this scheme.

8.2.4 Main result for algorithm MC-UCB and point of comparison

Let us consider a fixed partition N of the domain. We first remind (and slightly adapt) one of

the main results of paper Carpentier and Munos [2011b]. It provides results on the pseudo-risk

of an algorithm called MC-UCB. This algorithm takes some parameters linked to upper bounds

on the variability of the function4, a small probability δ, and the partition N. Its pseudo-risk is

bounded in high probability by
Σ2

N

n + ΣNO(
K

1/3
N

n4/3 ). This theorem holds also in our setting. The

fact that the measure ν is finite together with Assumptions 8.2.2, 8.2.1 and 8.2.1 imply that the

distribution of the samples obtained by sampling in the strata are sub-Gaussian (as a bounded

mixture of sub-Gaussian random variables). We remind and slightly improve this theorem.

Theorem 20 Under Assumptions 8.2.2, 8.2.1 and 8.2.1, the pseudo-risk of MC-UCB5 launched

4It is needed that the function is bounded and that the noise to the function is sub-Gaussian.
5In order to fit with the assumptions of this Chapter, we redefine ∀x ∈ N and ∀t ≤ n the upper confidence

bound in paper Carpentier and Munos [2011b] as Bx,t = 1
Tx,t−1

wx
(
σ̂x,t + A√

Tx,t

)
.
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on partition N with parameters fmax, b and δ is bounded, if n ≥ 4K, with probability 1− δ as

Ln,N(AMC−UCB) ≤
Σ2
N

n
+ CminΣN

∑
x∈N

w
2/3
x

n4/3
,

where Cmin = (4
√

2
√
A+ 3fmaxA) and A = 2

√
2(1 + 3b+ 4fmax) log(4n2(3fmax)3/δ).

The bound in this Theorem is slightly sharper than the one in Theorem 2 in Carpentier and

Munos [2011b]. The proof is in Appendix 8.B.2.

We will use in the sequel the bound in this Theorem as a benchmark for the efficiency of an

algorithm that adapts the partition. The aim is to construct a strategy whose pseudo-regret is

almost as small as the minimum of this bound over a large class of partitions (e.g. the partitions

defined by the hierarchical partitioning).

The bound in this Theorem depends on two terms. The first,
Σ2

N

n , which is the oracle

optimal variance of the estimate on partition N, decreases with the number of strata, and more

specifically if the strata are “well-shaped”. On the other hand, the second term,
∑

x∈N
w

2/3
x

n4/3 ,

increases when the partition is more refined. There are however two extremal situations for this

term, leading to two very different behaviors with the number of strata. If the strata have all

the same measure 1
KN

where KN is the number of strata in partition N, then
∑

x∈N
w

2/3
x

n4/3 =
K

1/3
N

n4/3

(and this is the bound reported in Carpentier and Munos [2011b]). Now if the partition is very

localized (i.e. exponential decrease of the measure of the strata), then whatever the number of

strata,
∑

x∈N
w

2/3
x

n4/3 is of order O( 1
n4/3 ), and the number of strata KN has no more influence than

a constant. This bound is thus more refined than the one in Carpentier and Munos [2011b], and

is thus more suitable to really adapt to the trade-off in terms of shape and number of strata, for

building the optimal partition of the domain.

8.3 A first algorithm that selects the depth

8.3.1 The Uniform Sampling Scheme

We first describe what we call Uniform Sampling Scheme (USS). We will use it for the two

algorithms that we describe in this Chapter.

We design this sampling scheme because the algorithms we propose need to be able to divide

at any time each stratum. A desirable property is then that, at the moment of the division,

the number of points in each sub-stratum is proportional to the size of the sub-stratum. This

means that we need to sample uniformly on the domain, almost in a low-discrepancy way.

The proposed methodology is the following recursive procedure. Consider a stratum X[h,i],

indexed by node [h, i] and that has already been pulled according to the USS t times. It has

two children in the hierarchical partitioning, namely [h+ 1, 2i] and [h+ 1, 2i+ 1]. If the number

of points in each of these nodes is not equal, e.g. T[h+1,2i] < T[h+1,2i+1], we choose the child that

contains the smaller number of points, e.g. [h + 1, 2i + 1], and apply USS to this child. If the
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number of points in each of these nodes is equal, i.e. T[h+1,2i] = T[h+1,2i+1], choose uniformly at

random one of these two children, and apply USS to this child. Then iterate the procedure in

this node, until for some depth h + l and node j, one has T[h+l,j] = 0. Then when T[h+l,j] = 0,

sample randomly a point in stratum X[h+l,j], according to νX[h+l,j]
. This provides the (t + 1)th

sample.

We provide in Figure 8.3 the pseudo-code of this recursive procedure.

X =USS([p, j])
if T[p+1,2j] 6= T[p+1,2j+1] then

return USS
(

arg min(T[p+1,2j], T[p+1,2j+1])
)

else if T[p+1,2j] = T[p+1,2j+1] > 0 then
return USS

(
[p+ 1, 2j + B(1/2)

)
else

return X ∼ νX[p,j]

endif

Figure 8.3: Recursive USS procedure. B(1/2) is a sample of the Bernouilli distribution of
parameter 1/2 (i.e. we sample at random among the two children strata).

An immediate property of this sampling scheme is as follows. If stratum [h, i] is sampled t times

according to the USS, any child strata [p, j] of [h, i] is such that T[p,j] ≥ b
wp
wh
tc ≥ wp

wh
t− 1.

We also provide the following Lemma providing properties of an estimate of the empirical

mean when sampling with the USS.

Lemma 21 Let X[h,i] be a stratum where one samples t times according to the USS. Then the

empirical mean µ̂[h,i] of the samples is such that

E[µ̂[h,i]] = µ[h,i], and V[µ̂[h,i]] ≤
σ2

[h,i]

t
.

The proof of this Lemma is in the supplementary material (Appendix 8.A)

Note also that this Lemma also holds for the children nodes of [h, i] (for a child [p, j], it holds

with bwptwh
c points, since the procedure is recursive).

This sampling scheme is thus efficient. It is meaningful to write the pseudo-risk on a partition

where the samples in each node are collected according to the USS, since the variance of the

estimate of the mean constructed with this sampling scheme is smaller than or equal to crude

Monte-Carlo on the stratum.

8.3.2 The Deep-MC-UCB algorithm

We propose a first algorithm called Deep-MC-UCB. The aim of this algorithm is to, at the same

time, construct a good partition of the domain and allocate properly the points in it.
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At each time t, algorithm Deep-MC-UCB updates a partition Nt of the hierarchical par-

titioning. It performs a test for each node [h, i] ∈ Nt and for any l > 0 (if such an l exists)

such that T[h,i],t = bA wh

w
1/3
h+l

n2/3c, i.e. at any depth h + l such that all nodes in B[h,i],l contain

bAw2/3
h+ln

2/3c points (A is defined in Figure 8.4). The purpose of the test is to decide whether

the bound on the regret of algorithm MC-UCB would be smaller for partition Nt, or for some

more refined partition Nt \ [h, i]
⋃
B[h,i],l.

At the same time, the samples are allocated among the strata in Nt. This is performed

by using similar ideas than for algorithm MC-UCB in paper Carpentier and Munos [2011a],

i.e. allocating the samples using ideas of upper confidence bounds. In each stratum of Nt, the

algorithm samples according to the USS.

The upper bounds B[h,i],t on the standard deviations for stratum [h, i] ∈ Nt, defined in

Figure 8.4, are based on the empirical standard deviation σ̂[h,i]. The standard deviations are

computed using the first th = bAw2/3
h n2/3c samples only:

σ̂[h,i] =

√√√√ 1

th

th∑
j=1

(X[h,i],j −
1

th

th∑
k=1

X[h,i],k)2, (8.4)

where X[h,i],j is the j-th sample in leaf [h, i].

After n rounds, Deep-MC-UCB returns the empirical mean µ̂n =
∑

[h,i]∈Nn whµ̂[h,i],n, where

µ̂[h,i],n =
1

T[h,i],n

T[p,j],n∑
k=1

X[h,i],k (8.5)

is computed with all samples collected in stratum [h, i], at the end of the algorithm.

This algorithm takes as input three parameters, namely b and fmax which are linked to the

function F , δ which is a small probability, and the hierarchical partitioning of the space T.

8.3.3 Main result

We have the following result for the pseudo-risk of algorithm Deep-MC-UCB.

Theorem 21 Let NH∗ = B[0,0],H be the partition containing all nodes of depth H∗. Under

Assumption 8.2.2 and 8.2.2 for the strata, and 8.2.1 and 8.2.1 for the function F , one has that

the risk of algorithm Deep-MC-UCB is such that with probability 1− δ

Ln ≤
Σ2

Nn

n
+ CminΣNn

∑
x∈Nn

w
2/3
x

n4/3
≤ min
H∗<+∞

[
Σ2

NH∗

n
+ 4CmaxΣNH∗

K
1/3

NH∗

n4/3
+ 4C2

max

(K1/3

NH∗

n4/3

)2
]
,

where Cmax =
(
Cmin + 6

√
A
)

, Cmin =
(

4
√

2
√
A+ 3fmaxA

)
and A defined in Figure 8.4.

The proof of this result is in Appendix 8.B. This result states that, up to a multiplicative

constant, algorithm Deep-MC-UCB performs almost as well as algorithm MC-UCB run on the
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Input: T, b, fmax, and δ.

Initialize: A = 2
√

2(1 + 3b+ 4fmax) log(4n2(3fmax)3/δ), H = b log((3fmax)3n
log(2) c + 1

and Cmin =
(

4
√

2
√
A + 3fmaxA

)
. Pick bAn2/3c points in [0, 0] according to

USS([0, 0]). NbAn2/3c = [0, 0].

for t = bAn2/3c+ 1, . . . , n do
Compute for every [h, i] ∈ Nt, and for l such that h+ l ≤ H, T[h,i],t ≥ 2 wh

wh+l
and

T[h,i],t = b Awh
w

1/3
h+l

n2/3c the quantity C[h,i],l = whσ̂[h,i] −
∑

[h+l,i′]∈B[h,i],l
wh+lσ̂[h+l,i′].

if ∃l, [h, i] ∈ Nt such that C[h,i],l ≥
(
Cmin + 3

√
A
)∑

[h+l,i′]∈B[h,i],l

w
2/3
h+l

n1/3 then

Nt+1 = Nt
⋃
B[h,i],l \ [h, i]

else
Nt+1 = Nt

end if
Compute B[h,i],t+1 = wh

T[h,i],t

(
σ̂[h,i] +

√
A

w
1/3
h n1/3

)
for each leaf [h, i] ∈ Nt+1

Choose a leaf [h, i] such that [h, i]t+1 = arg max[h,j]B[h,j],t+1

Pick a point according to USS([h, i]t+1)
end for
Output: µ̂n =

∑
[h,i]∈Nn whµ̂[h,i],n

Figure 8.4: The pseudo-code of the Deep-MC-UCB algorithm. The empirical standard devia-
tions and means σ̂[h,i] and µ̂[h,i],n are computed using Equation 8.4 and 8.5. The USS algorithm
is described in Figure 8.3.

best uniform partition (see Theorem 20, and note also that for any H∗, since each stratum in

NH∗ has depth H∗, we have
∑

x∈NH∗ w
2/3
x = K

1/3

NH
∗ ). The ideal H∗ depends on the function and

will be large (so that
Σ2

NH
∗

n is small), but not “too” large (so that
K

1/3

NH
∗

n4/3 is not too large).

The test in Deep-MC-UCB: Algorithm Deep-MC-UCB updates at each time t the partition

Nt by performing a test on each stratum. The test for node [h, i] ∈ Nt consists in checking if

the upper-bound for the pseudo-regret of MC-UCB is smaller on Nt or on Nt
⋃
B[h,i],l \ [h, i].

The depth l at which we test increases with T[h,i],t. It is chosen small enough so that there are

enough points in the nodes of B[h,i],l (in order for the test to be accurate enough). It is also

chosen large enough so that the strata in B[h,i],l do not contain more points than what algorithm

MC-UCB run on Nt
⋃
B[h,i],l \ [h, i] would pull in them. In this way, we guarantee the results

of Theorem 21, i.e. that Deep-MC-UCB is up to a constant as efficient as MC-UCB run on the

best uniform partition. Note however that the partition Nn returned by the algorithm is not

uniform.

Comparison only with uniform partitions: We believe however that algorithm Deep-MC-

UCB is not as good as algorithm MC-UCB run on the best partition of the domain (possibly

of heterogeneous depth). Indeed, Deep-MC-UCB considers for opening only sub-partitions of
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an open node that have uniform depth. This could be changed by considering for any N the

sub-partition B[h,i],N instead of testing only for B[h,i],l. However, the moment when one decides

to test whether it is, or not, opportune to split a node depends on the depth of the node. It

implies that it is efficient to test simultaneously nodes of same depth, e.g. nodes of the form

B[h,i],l. It is however more complicated for nodes of heterogeneous depths, e.g. B[h,i],N.

The main issue is that Deep-MC-UCB explores uniformly in each stratum [h, i] ∈ Nt, whereas

it is possible that the sub-strata of stratum [h, i] have heterogeneous variances. The reason why

this is a problem is the following. It is possible that there is a stratum [h, i] such that its standard

deviation is almost the same as the sum of the standard deviations of its two children-strata,

but also such that the two standard deviation of the children-strata are very different from each

other.

Set for example h = 0, µ[1,0] = µ[1,1] = 0, and σ[1,0] = 1 − n−1/6 and σ[1,1] = 1 + n−1/6, in that

case |σ[0,0] −
(

1
2σ[1,0] + 1

2σ[1,1]

)
| = 1

n1/3 and |12σ[1,0] − 1
2σ[1,1]| = 2

n1/6 . In that case, stratum [h, i]

should not be divided at depth 1. But maybe stratum [1, 1] should be divided at a higher depth.

In that case, it is necessary that there are not too many points in stratum [1, 0].

In the next Section, we describe another algorithm that takes into account these two issues.

8.4 A more efficient strategy: algorithm MC-ULCB

We pointed out in the comments on the results of the last Section that algorithm Deep-MC-

UCB’s main weakness is the following: if two children nodes have very heterogeneous variances,

it allocates the same budget to their exploration unless it decides to open them. It is important

to overcome this problem.

8.4.1 The MC-ULCB algorithm

We describe now the Monte-Carlo Upper-Lower Confidence Bound algorithm. It is decomposed

in two main phases, a first Exploration Phase, and then an Exploitation Phase.

The Exploration Phase uses Upper and Lower Confidence bounds for allocating correctly

the samples. During this phase, we update an Exploration partition, that we write Ne
t , and that

is included in the hierarchical partitioning. When, in a stratum [h, i] ∈ Ne
t , there are more than

bAw2/3
h n2/3c samples, we update Ne

t by setting Ne
t+1 = Ne

t

⋃
[h+ 1, 2i]

⋃
[h+ 1, 2i+ 1] \ [h, i]: we

divide [h, i] in its two children nodes. To each node [h, i] ∈ Ne
t corresponds a value r[h,i]. When

[h, i] is divided in ([h + 1, 2i], [h + 1, 2i + 1]), we associate the value r[h+1,j] for j ∈ {2i, 2i + 1}
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(and j− the other) defined as

r[h+1,j] =
(wh+1σ̂[h+1,j] + c

√
A
w

2/3
h+1

n1/3

whσ̃[h,i]

)
r[h,i]I{wh+1σ̂[h+1,j−] − wh+1σ̂[h+1,j] ≥ 2c

√
A
w

2/3
h+1

n1/3
}

+
(wh+1σ̂[h+1,j] − c

√
A
w

2/3
h+1

n1/3

whσ̃[h,i]

)
r[h,i]I{wh+1σ̂[h+1,j−] − wh+1σ̂[h+1,j] ≤ −2c

√
A
w

2/3
h+1

n1/3
}

+ min
(wh+1 min

(
σ̂[h+1,j], σ̂[h+1,j−]

)
+ c
√
A
w

2/3
h+1

n1/3

whσ̃[h,i]
,
1

2

)
r[h,i]

× I{|wh+1σ̂[h+1,j−] − wh+1σ̂[h+1,j]| ≤ 2c
√
A
w

2/3
h+1

n1/3
}, (8.6)

where j− is the complementary of j in {2i, 2i + 1}, c = (8Σ̃ + 1)
√
A, Σ̃ = σ̂[0,0] + C′max

n1/3 , A =

2
√

2(1 + 3b+ 4fmax) log(4n2(3fmax)3/δ), H = b log
(

(3fmax)3n
)

log(2) c + 1, B = 38
√

2Ac(1 + 1
Σ̃

) and

C ′max = max(B, 14Hc
√
A) + 2

√
A. We initialize the r by r[0,0] = σ̂[0,0] − c

√
A

n1/3 . The standard

deviations σ̂[h+1,j] is computed as in Equation 8.4. We also introduce another estimate for

the standard deviation in this Equation, namely σ̃[h,i], which is computed with the first 2th =

2bAw2/3
h n2/3c points (and not with the first th points as σ̂[h,i]):

σ̃[h,i] =

√√√√ 1

2th

2th∑
k=1

(X[h,i],k −
1

2tp

2th∑
r=1

X[h,i],r)2. (8.7)

We use this estimate for technical purposes only.

This value of r[h,i] is either a (proportional) upper, or a (proportional) lower confidence bound

on w[h+1,j]σ[h+1,j]. It is a (proportional) upper confidence bound for the stratum [h, j] that has

the smallest empirical standard deviation, and a (proportional) lower confidence bound for the

other. If the quantities w[h+1,j]σ̂[h+1,2i] and w[h+1,j]σ̂[h+1,2i+1] are too close, we set the same

value to both sub-strata. The points are then allocated in the strata according to
r[h,i]
T[h,i],t

A point is allocated in stratum [h, i] ∈ Ne
t if

r[h,i]
T[h,i],t

≥ 4Σ̃
n . All the points are allocated inside each

stratum [h, i] ∈ Ne
t according to the USS procedure.

The Exploration Phase stops at time T , when every node [h, i] ∈ Ne
T is such that

r[h,i]
T[h,i],T+1 ≤

4Σ̃
n .

We write TeT the tree that is composed of all the nodes in Ne
T and of their ancestors. The

algorithm selects in this tree a partition, that we write Nn, and that is an empirical minimizer

(over all partitions in TeT ) of the upper bound on the regret of algorithm MC-UCB.

Finally, we perform the Exploitation Phase which is very similar to launching algorithm

MC-UCB on Nn. We pull the samples in the strata according to the USS-A sampling scheme

(described in Figure 8.6). The idea of this scheme is that it is crucial, if two children of a node

have obviously very different variances, to allocate more samples in the node that has higher

variance (in order to explore this node enough). But it is also necessary to be careful and have
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an allocation that is better than uniform allocation, as it is not sure that it is a good idea to

split the parent-node. In order to do that, we construct a scheme that uses upper confidence

bounds for the less variating node, and lower confidence bounds for the most variating node: we

use the r[h,i] that were defined for this purpose. We illustrate this concept in Figure 8.5.

Number of samples

stratum 1 stratum 2

optimal number of samples

optimal number of samples

uniform number of samples

uniform number of samples

Strategies in              are
less efficient than the 
optimal allocation, but  
more than the uniform 

Figure 8.5: With high probability, the children
of each node in Nn are sampled a number of time
that is in the gray zone by MC-ULCB.

X =USS-A([p, j])
if {[p + 1, 2j], [p + 1, 2j + 1]} ∈ TeT
then

return
USS

(
arg min(

r[p+1,2j]

T[p+1,2j]
,
r[p+1,2j+1]

T[p+1,2j+1]
)
)

else
return X = USS([p, j])

endif

Figure 8.6: Recursive USS-A procedure.

We now provide the pseudo-code of algorithm MC-ULCB in Figure 8.7

8.4.2 Main result

We are now going to provide the main result for the risk of algorithm MC-ULCB.

Theorem 22 Under Assumption 8.2.2 and 8.2.2 for the strata and 8.2.1 and 8.2.1 for the

function F , the pseudo-risk of algorithm MC-ULCB is bounded with probability 1− δ as

Ln(AMC−ULCB) ≤
∑
x∈Nen

(wxσx)2

Tx,n
≤ min

N

[
Σ2
N

n
+ C ′maxΣN

∑
y∈N

w
2/3
y

n1/3
+ C ′2max

(∑
y∈N

w
2/3
y

n1/3

)2
]
,

where min means minimum over all partitions of the hierarchical partitioning, and C ′max ≤
320
√

(1 + 3b+ 4fmax) log(4n2(3fmax)3/δ)(1/σ[0,0] + 1)(8σ[0,0] + 1) log
(
(3fmax)3n

)
.

The proof of this result is in Appendix 8.C.

8.4.3 Discussion and remarks

Algorithm MC-ULCB does almost as well as MC-UCB on the best partition: The

result in Theorem 22 states that algorithm MC-ULCB selects adaptively a partition that is

almost a minimizer of the upper bound on the pseudo-risk of algorithm MC-UCB. It then

allocates almost optimally the samples in this partition. Its upper bound on the regret is thus

smaller, up to additional multiplicative term contained in C ′max, than the upper bound on the

regret of algorithm MC-UCB run on the best partition of the hierarchical partitioning. The
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Input: fmax, b and δ.

Initialization: Pull bAn2/3c − 1 by USS([0, 0]). Compute Σ̃ = σ̂[0,0] + C′max

n1/3 . Ne
t =

{[0, 0]}.
Set c = (8Σ̃ + 1)

√
A, A = 2

√
2(1 + 3b+ 4fmax) log(4n2(3fmax)3/δ), H =

b log
(

(3fmax)3n
)

log(2) c+ 1, C ′max = max(B, 14Hc
√
A) + 2

√
A, and B = 38

√
2Ac(1 + 1

Σ̃
).

Exploration Phase:

while ∃[h, i] ∈ Ne
t |
r[h,i]
T[h,i,t

> 4Σ̃
n do

Take a sample in USS([h, i]).

if ∃[h, i] ∈ Ne
t |
{
T[h,i],t = 2bAw2/3

h+1n
2/3c, whσ̂[h,i],t ≥ 6Hc

√
A
w

2/3
h

n1/3 , h < H
}

then

Ne
t+1 = Ne

t

⋃
[h+ 1, 2i]

⋃
[h+ 1, 2i+ 1] \ [h, i]

Compute r[h+1,2i] and r[h+1,2i+1].
end if

end while

Select Nn such that Σ̂Nn = arg minN∈Ten

(
Σ̂N + (C ′max −

√
A)
∑

y∈N
w

2/3
y

n1/3

)
.

T = t
Exploitation Phase:
for t = T + 1, . . . , n do

Compute σ̂[h,i] for any [h, i] ∈ Nn

Compute B[h,i],t = wh
T[ht,i],t−1

(
σ̂[h,i] +

√
A
n1/3

)
for any [h, i] ∈ Nn

Choose a leaf [h, i]t such that [h, i]t = arg max[p,j]∈Nn B[p,j],t

Pick a point according to USS-A([h, i]t).
end for
Output: µ̂n =

∑
[h,i]∈Nn whµ̂[h,i],n

Figure 8.7: The pseudo-code of the MC-ULCB algorithm. The empirical standard deviations
and means σ̂[h,i] and µ̂[h,i],n and σ̃[h,i] are computed using Equation 8.4, 8.5 and 8.7. The value
of r[h,i] is computed using Equation 8.6. The USS algorithm is described in Figure 8.3 and the
USS-A algorithm is described in Figure 8.6.

issue is that C ′max is bigger than the constant Cmin for MC-UCB. More precisely, we have

C ′max = Cmin×C log
(
(3fmax)3n

)
, where C is a constant depending of fmax and b (see bound on

C ′max in Theorem 22). This additional dependency in log(n) is not an artifact of the proof and

appears since we perform some model selection for selecting the partition Nn. We do not know

whether it is possible or not to get rid of it.

The final partition Nn: Algorithms Deep-MC-UCB and MC-ULCB refine more the parti-

tion Nn that they build in parts of the domain where splitting a stratum [h, i] in a sub-partition

B[h,i],N is such that w[h,i]σ[h,i] −
∑

x∈B[h,i],N
wxσx is large. Note that this corresponds, by defini-

tion of the σ[h,i], to areas of the functions where g and s have large variations. We do not refine

the partition in area where it is not the case, since it is more efficient to have also as few strata

as possible.

Results with the sum of weight or with the number of strata? We express the

bound on the pseudo-risk in Theorems 20, 21 and 22 in terms of
∑

x∈Nn w
2/3
x . This quantity is
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bounded by K
1/3
n where Kn is the number of strata in Nn. Note also that K

1/3
n =

∑
x∈Nn w

2/3
x

when all the strata have the same measure. But when the measures of the strata are heteroge-

neous, these two quantities can be very different. Consider a “flat” function with a very localized

noise,e.g. consider g(x) = 0 and s(x) = aI{[0, (1
2)h]}(x) and assume that the hierarchical parti-

tioning is the intuitive dyadic tree as illustrated in Figure 8.1. Then the optimal partition is such

that
∑

y w
2/3
y =

∑h
p=1((1

2)p)2/3 =
1−( 1

2
)

2
3 (h+1)

1−( 1
2

)
2
3
≤ 1

1−( 1
2

)
2
3

, and Kn = h which can be arbitrarily

large. The link between the performances of the algorithm and the number of strata is thus not

direct.

The sampling schemes: The key-points in this Chapter are the sampling schemes. Indeed,

we construct and use a sampling technique, the USS, that is such that the samples are collected

with low discrepancy6 on the domain, and provide an estimate such that its variance is smaller

than the one of crude Monte-Carlo. This scheme is sufficient for algorithm Deep-MC-UCB as

the strata are refined at uniform depths. But is not sufficient for building algorithm MC-ULCB,

and we therefore build a new sampling scheme, USS-A. This sampling scheme ensures that,

with high probability, if two child-nodes have very different variances, then the one with higher

variance is more pulled. At the same time, it ensures that if finally the decision of splitting the

node is not taken, then the allocation is still better than or as efficient as uniform.

Conclusion

In this Chapter, we presented two algorithms that aim at integrating a function in an efficient

way.

Deep-MC-UCB builds an estimate for the integral whose pseudo-risk is smaller up to a con-

stant than the pseudo-risk of MC-UCB run on the best uniform partition. MC-ULCB improves

the performances of Deep-MC-UCB and returns an estimate whose pseudo-risk is smaller, up to

a constant, than the minimal pseudo-risk of MC-UCB run on any partition of the hierarchical

partitioning. The algorithm adapts the partition to the function and noise on it, i.e. it refines

more the domain where m and s have large variations. We believe that this result is interesting

since the class of hierarchical partitioning is very rich and can approximate many partition.

6Although the samples are chosen randomly, the sampling scheme is such that we know in a deterministic and
exact way the number of samples in each not too small part of the domain.
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Appendices for Chapter 8

8.A Proof of Lemma 21

Assume that stratum X[h,i] has been sampled t times according to the USS. Let (A0, . . . , Al) ∈
{0, 1}l be the (uniquely defined) decomposition in basis 2 of t, i.e.

∑l
p=0Ap2

r = t and Al = 1.

This implies by Assumption 8.2.2 and by definition of (Ar)r, that
∑l

p=0Ap
wh
wp

= t. We denote

by Dl = (X1, . . . , Xt) the set of the t samples in stratum X[h,i].

By construction of the USS, there are at most two and at least one element of Dl in each

stratum of B[h,i],l. For all j ≤ 2h+l − 1, we write Xl,j the first sample in stratum [h + l, j].

Conditionally to the number t of samples, each of these samples is pulled randomly in stratum

[h+ l, j] according to νX[h+l,j]
.

Let us now consider the largest p < l such that Ap = 1. Let us consider Dp = Dl \
{(Xl,j)[h+l,j]∈B[h,i],l

}. By construction of the USS, conditionally to the knowledge that there is

a re-numeration of the samples such that ∀0 ≤ j < 2l, Xl,j ∼ νX[h+l,j]
(and thus conditionally

only to the number t of samples since the fact that there is a re-numeration such that ∀0 ≤ j <
2l, Xl,j ∼ ν[h+l,j] follows deterministically from the budget t), there are at most two and at least

one element of Dp in each stratum of B[h,i],p. We note Xp,j the first sample. By construction of

the USS and conditionally to the number t of samples, each of these samples is pulled randomly

in stratum [h+ p, j] according to νX[h+p,j]
.

We can continue this induction for every p such that Ap = 1. We have, at the end of the

induction, relabeled (trough the relabeling that we presented) every sample (in Dl) by Xp,j .

We know that conditional to the number t of samples, ∀p/Ap = 1, and ∀0 ≤ j ≤ 2h+p − 1,

Xp,j ∼ νX[p,j]
and also that these relabeled samples are all independent of each other (although

the relabeling of each sample is random and is not independent of the other samples).

The empirical mean µ̂[h,i] on stratum [h, i] thus satisfies

µ̂[h,i] =
1

t

t∑
s=1

Xs =

l∑
p=0

wh
wpt

∑
[h+p,j]∈B[h,i],p

wp
wh

Xp,jAp.

Since by construction
∑l

p=0
Apwh
wp

= t, the empirical estimate of the mean thus satisfies

E[µ̂[h,i]] =

l∑
p=0

wh
wpt

∑
[h+p,j]∈B[h,i],p

wp
wh

µ[h+p,j]Ap =

l∑
p=0

wh
wpt

µ[h,i]Ap = µ[h,i].

Note now that the variance of this estimate is such that

V[µ̂[h,i]] =

l∑
p=0

w2
h

w2
pt

2

∑
[h+p,j]∈B[h,i],p

(
wp
wh

)2σ2
[h+p,j]Ap ≤

l∑
p=0

wp
wht2

σ2
[h,i]Ap ≤

σ2
[h,i]

t
.
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8.B Proof of Theorem 21

8.B.1 An interesting large probability event

Lemma 22 For a stratum X[h,i] of the hierarchical partition, write
(
X[h,i],0, . . . , X[h,i],n

)
the

samples collected by USS in stratum X[h,i] (or by USS in a stratum of smaller depth). Consider

the event

ξ =
⋂

[h,i]:h≤H

n⋂
t=2

{∣∣∣
√√√√ 1

2blog(t)c

2blog(t)c−1∑
a=0

(
X[h,i],a −

1

2blog(t)c

2blog(t)c∑
a′=0

X[h,i],a′

)2
− σ[h,i]

∣∣∣ ≤ A√1

t

}
,

(8.8)

where A = 2
√

2(1 + 3b+ 4fmax) log(4n2(3fmax)3/δ) and H = b log
(

(3fmax)3n
)

log(2) c+ 1. Then P(ξ) ≥
1− δ.

Note also that for h ≥ H,∀i ≤ 2h − 1, we have

w[h,i]σ[h,i] ≤
w

2/3
[h,i]

n1/3
.

Proof: Probability of the event ξ

Let [h, i] be a stratum of the hierarchical partitioning such that h ≤ H and t ≥ 2. Let

l = blog(t)c. By definition of the USS, we know that for s ≤ 2l, sample X[h,i],s, conditionally to

the 2l − 1 other samples, is sampled uniformly in the stratum X[h+l,k] where the other samples

are not, and independent of the other samples.

Using the results from Lemma 39, we know that with probability 1− δ, the estimate of the

standard deviation computed with the 2l first samples satisfies

∣∣∣
√√√√ 1

2l

2l−1∑
a=0

(
X[h,i],a −

1

2l

2l−1∑
b=0

X[h,i],b

)2
− σ[h,i]

∣∣∣ ≤ 2

√
(1 + 3b+ 4V̄ ) log(2/δ)

2l

≤ 2

√
2(1 + 3b+ 4V̄ ) log(2/δ)

t

≤ 2

√
2(1 + 3b+ 4fmax) log(2/δ)

t
.

By the definition of H, we know that there are less than 2 × 2H strata in the hierarchical

partitioning of depth smaller than H. Because of the definition of A, we have P(ξ) ≥ 1− δ.

Characterization of the strata of depth bigger than H

Consider a node [h, i] of depth h ≥ H. As both m and s are bounded by fmax (see Assump-
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tion 8.2.1), then

w[h,i]σ[h,i] =
√
wh,i

√∫
X[h,i]

s2(x)dx+
√
wh,i

√∫
X[h,i]

(g(x)− µ[h,i])2dx

≤√w[h,i]

√∫
X[h,i]

f2
maxdx+

√
w[h,i]

√∫
X[h,i]

4f2
maxdx

≤ 3w[h,i]fmax.

As h ≥ H, we have w[h,i] ≤
(

1
2

)H ≤ ( 1
3fmax

)3 1
n . From that we deduce that for h ≥ H,

w[h,i]σ[h,i] ≤
w

2/3
[h,i]

n1/3
.

�

8.B.2 Rate for the algorithm

We first prove the following result.

Proposition 15 Let Assumption 8.2.2, 8.2.2, 8.2.1, and 8.2.1 hold. For any 0 < δ ≤ 1, the

Deep-MC-UCB algorithm outputs a partition Nn and satisfies on ξ, and thus with probability at

least 1− δ,

wpσp
Tp,n

≤ ΣNn

n
+
(
4
√

2A+ ΣNnA
)∑q∈Nn w

2/3
q

n4/3
≤ ΣNn

n
+ Cmin

∑
q∈Nn w

2/3
q

n4/3
,

where Cmin =
(
4
√

2A+ ΣNnA
)

and

Tp,n ≥ λp,ΣNn

(
n−B

( ∑
q∈Nn

w1/3
q

)
n2/3

)
,

where B =

(
4
√

2A+ΣNnA
)

ΣNn
.

Proof:

Assume that n ≥ 2B
∑

q∈Nn w
2/3
q n2/3 (with B =

(
4
√

2A+ΣNnA
)

ΣNn
).

Step 1. Properties of the algorithm. For a node q ∈ Nt+1, we first remind the definition of

Bq,t+1 used in the MC-UCB algorithm

Bq,t+1 =
wq
Tq,t

(
σ̂q +

√
A

1

w
1/3
q n1/3

)
.
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Using the definition of ξ and the fact that if node q is in Nt+1, then Tq,t+1 ≥ bAw2/3
q n2/3c,

it follows that, on ξ

wqσq
Tq,t

≤ Bq,t+1 ≤
wq
Tq,t

(
σq + 2

√
A

1

w
1/3
q n1/3

)
. (8.9)

Let t+1 ≥ 2K+1 be the time at which an arm q is pulled for the last time, that is Tq,t = Tq,n−1.

Note that there is at least one arm such that this happens as n ≥ 4K. Since at t + 1 arm q is

chosen, then for any other arm p, we have

Bp,t+1 ≤ Bq,t+1 . (8.10)

From Equation 8.40 and Tq,t = Tq,n−1, and also since by construction of the algorithm Tq,n ≥ 2,

we obtain on ξ

Bq,t+1 ≤
wq
Tq,t

(
σq + 2

√
2A

1

w
1/3
q n1/3

)
. (8.11)

Furthermore, since Tp,t ≤ Tp,n, then on ξ

Bp,t+1 ≥
wpσp
Tp,t

≥ wpσp
Tp,n

. (8.12)

Combining Equations 8.41–8.12, we obtain on ξ

wpσp
Tp,n

(Tq,n − 1) ≤ wq

(
σq + 2

√
2A

1

w
1/3
q n1/3

)
.

Summing over all q such that the previous Equation is satisfied, i.e. such that Tq,n > bw2/3
q n2/3c,

on both sides, we obtain on ξ

wpσp
Tp,n

∑
q|Tq,n>bAw2/3

q n2/3c

(Tq,n − 1) ≤
∑

q|Tq,n>bw2/3
q n2/3c

wq

(
σq + 2

√
2A

1

w
1/3
q n1/3

)
.

This implies

wpσp
Tp,n

(n−
∑
q

Aw2/3
q n2/3) ≤

K∑
q=1

wq

(
σq + 2

√
2A

1

w
1/3
q n1/3

)
. (8.13)

Step 2. Lower bound. Equation 8.13 implies

wpσp
Tp,n

(n−A
∑
q

w2/3
q n2/3) ≤ ΣNn +

2
√

2A
∑

q w
2/3
q

n1/3
,
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on ξ, since Tq,n − 1 ≥ Tq,n
2 (as Tq,n ≥ 2). Finally, if n ≥ 2A

∑
q w

2/3
q n2/3, we obtain on ξ the

following bound

wpσp
Tp,n

≤ ΣNn

n
+
(
4
√

2A+ ΣNnA
)∑q∈Nn w

2/3
q

n4/3
. (8.14)

Step 2bis. Lower bound on the number of pulls. By using Equation 8.14 and the fact

that 1
1+x ≥ 1− x one gets

Tp,n ≥ λp,ΣNn

(
n−

(
4
√

2A+ ΣNnA
)

ΣNn

( ∑
q∈Nn

w2/3
q

)
n2/3

)
≥ λp,ΣNn

(
n−B

( ∑
q∈Nn

w1/3
q

)
n2/3

)
,

where B =

(
4
√

2A+ΣNnA
)

ΣNn
.

Step 3. Proof that n ≥ 2B
∑

q∈Nn w
2/3
q n2/3 (with B =

(
4
√

2A+ΣNnA
)

ΣNn
≥ A).

Note first that nodes are incorporated to partition Nn only if (because of the form of the

test) a node [h, i] is opened up to depth m,

whσ[h,i] −
∑

x∈B[h,i],m

wxσx ≥ (Cmin − 2
√
A)

∑
x∈B[h,i],m

w
2/3
x

n1/3
,

which implies (by taking into account all opened nodes and going back to the root)

w0σ[0,0] −
∑
x∈Nn

wxσx ≥ (Cmin − 2
√
A)
∑
x∈Nn

w
2/3
x

n1/3
,

which itself implies by multiplying by n
ΣNn

n− n

ΣNn

∑
x∈Nn

wxσx ≥
(Cmin − 2

√
A)

ΣNn

∑
x∈Nn

w2/3
x n2/3,

since ΣNn ≤ w0σ[0,0]. This implies, as
∑

x∈Nn wxσx ≥ 0, to

n ≥ (Cmin − 2
√
A)

ΣNn

∑
x∈Nn

w2/3
x n2/3 ≥ B

∑
x∈Nn

w2/3
x n2/3,

by definition of B. This concludes the proof. �

8.B.3 Nodes that are in the final partition

Condition for the test on a node [h, i] to be made at depth m

Lemma 23 Let t > 0, m ≥ 1 and [h, i] ∈ Nt. Assume that h+m ≤ H (H defined in Lemma 22).

Assume also that w[h,i]σ[h,i] ≥ 2AΣNt

∑
x∈B[h,i],m

w
2/3
x

1
n1/3 .
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On the event ξ, either node [h, i] is not in the final partition, either all the tests on C[h,i] are

performed on the child-nodes of [h, i] up to depth h+m, i.e. ∀x ∈ B[h,i],m, Tx,n ≥ Aw
2/3
x n2/3.

Proof: Assume that [h, i] is also in the final partition Nn. Then on ξ, Proposition 15 together

with the fact that n ≥ 2B
(∑

x∈Nn w
1/3
x

)
n2/3 tells us that

T[h,i],n ≥ λ[h,i],Nn

(
n−B

( ∑
x∈Nn

w1/3
x

)
n2/3

)
≥
w[h,i]σ[h,i]

2ΣNn

n

≥ A
∑

x∈B[h,i],m

w2/3
x n2/3,

where the property that w[h,i]σ[h,i] ≥ 2AΣNt

∑
x∈B[h,i],m

w
2/3
x

1
n1/3 and the fact that ΣNt ≥ ΣNn

allows to pass from the first to the second line. Because of the definition of the USS, this implies

that for x ∈ B[h,i],m, there is on ξ Tx,n ≥ Aw2/3
x n2/3. This implies that on ξ, either node [h, i] is

open, either the est is made up to depth h+m. �

Bounds on C[h,i],m,t

Lemma 24 Let t > 0, m ≥ 1, and [h, i] ∈ Nt. Assume that the test on C[h,i],m,t is performed

at time t, i.e. ∀x ∈ B[h,i],m, Tx,n = bAw2/3
x n2/3c. Assume also that h + m ≤ H (H defined in

Lemma 22). Then on ξ∣∣∣∣∣C[h,i],m −
(
w[h,i]σ[h,i] −

∑
x∈B[h,i],m

wxσx

)∣∣∣∣∣ ≤ 3
∑

x∈B[h,i],m

w
2/3
x

√
A

n1/3
,

Proof:

Let x ∈ B[h,i],m. As Tx,t ≥ Aw
2/3
x n2/3

2 (since there is at least two point in each stratum by

definition of the algorithm) and h+m ≤ H, we know by Lemma 22 that

|wxσ̂x − wxσx| ≤
wxA
√

2√
Aw

2/3
x n2/3

≤
√

2Aw
2/3
x

n1/3
.

By summing over all nodes in B[h,i],m, one gets

|
∑

x∈B[h,i],m

wxσ̂x −
∑

x∈B[h,i],m

wxσx| ≤
∑

x∈B[h,i],m

w
2/3
x

√
2A

n1/3
.

Note also that T[h,i],n =
∑

x∈B[h,i],m
Tx,n ≥ bAw2/3

[h,i]n
2/3c. We thus have in the same way that

|w[h,i]σ̂[h,i] − w[h,i]σ[h,i]| ≤

√
Aw

2/3
[h,i]

n1/3
.
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By combining these two results, we obtain

|w[h,i]σ̂[h,i] −
∑

x∈B[h,i],m

wxσ̂x −
(
w[h,i]σ[h,i] −

∑
x∈B[h,i],m−l

wxσx
)
| ≤ 3

∑
x∈B[h,i],m

w
2/3
x

√
A

n1/3
.

As C[h,i],m = w[h,i]σ̂[h,i] −
∑

x∈B[h,i],m
wxσ̂x, we obtain the desired result. �

Nodes that are not in the final partition at the end.

Lemma 25 Let [h, i] be a stratum and m ≥ 1 such that h+m ≤ H. Assume that

w[h,i]σ[h,i] −
∑

x∈B[h,i],m

wxσx ≥
(

4
√

2
√
A+ 6

√
A+ 3fmaxA

) ∑
x∈B[h,i],m

w
2/3
x

n1/3
. (8.15)

Then on ξ, [h, i] is not in the final partition Nn.

Proof: Note first that if there is no time t ≤ n such that [h, i] ∈ Nt, then [h, i] does not belong

to Nn.

Let t > 0. Let [h, i] ∈ Nt such that Equation 8.15 is satisfied.

Note first that as 3fmaxA ≥ 2ΣNnA, this directly implies that w[h,i]σ[h,i] ≥ 2ΣNnA
∑

x∈B[h,i],m

w
2/3
x

n1/3 .

This leads by Lemma 23 to the fact that on ξ, either node [h, i] is not in Nn, either the test on

C[h,i] is done at least up to depth h+m on children nodes of [h, i].

Assume that the test is performed up to depth h+m. Then Lemma 24 implies that on ξ

C[h,i],m ≥ w[h,i]σ[h,i] −
∑

x∈B[h,i],m

wxσx − 3
∑

x∈B[h,i],m

w
2/3
x

√
A

n1/3

≥
(

4
√

2
√
A+ 3fmaxA+ 3

√
A
) ∑
x∈B[h,i],m

w
2/3
x

n1/3
.

This means that in that case, [h, i] is open up to depth m on ξ.

In all cases, on ξ, [h, i] is not in Nn.

�

Corollary 7 Assume that on ξ, [h, i] ∈ Nn. Then for m ≥ 1 such that h+m ≤ H, we have on

ξ

w[h,i]σ[h,i] −
∑

x∈B[h,i],m

wxσx ≤
(

4
√

2
√
A+ 6

√
A+ 3fmaxA

) ∑
x∈B[h,i],m

w
2/3
x

n1/3
.

Nodes that are not open at the end.
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Lemma 26 Let [h, i] be a node such that ∀m ≥ 1

w[h,i]σ[h,i] −
∑

x∈B[h,i],m

wxσx ≤
(

4
√

2
√
A+ 3fmaxA

) ∑
x∈B[h,i],m

w
2/3
x

n1/3
. (8.16)

Then on ξ, if node [h, i] is reached at time t, then it is in the final partition Nn.

Proof:

Let m be such that h+m ≤ H. Let t be the time (if it exists) when the test on C[h,i],m,t is

performed. Then by Lemma 24, we know that on ξ

C[h,i],m ≤ w[h,i]σ[h,i] −
∑

x∈B[h,i],m

wxσx + 3
∑

x∈B[h,i],m

w
2/3
x

√
A

n1/3

≤
(

4
√

2
√
A+ 3fmaxA+ 3

√
A
) ∑
x∈B[h,i],m

w
2/3
x

n1/3
.

This means that if ∃t such that [h, i] ∈ Nt, then on ξ [h, i] belongs also to Nn. �

Corollary 8 Assume that on ξ, ∃t ≤ n such that [h, i] ∈ Nt, but [h, i] is not in Nn. Then on ξ

w[h,i]σ[h,i] −
∑

x∈B[h,i],m

wxσx ≥
(

4
√

2
√
A+ 3fmaxA

) ∑
x∈B[h,i],m

w
2/3
x

n1/3
.

8.B.4 Comparison at every scale

Let Nn with ΣNn be the final partition.

More refined scales

Lemma 27 Let [h, i] ∈ Nn be a stratum in the final partition. Then for any h∗ such that

H ≥ h∗ > h, we have on xi

w[h,i]σ[h,i] ≤
∑

x∈B[h,i],h∗−h

wxσx + Cmax

∑
x∈B[h,i],h∗−h

w
2/3
x

n1/3
.

where Cmax =
(

4
√

2
√
A+ 6

√
A+ 3fmaxA

)
.

Proof:
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As [h, i] ∈ Nn then by Corollary 7, on ξ, we have w[h,i]σ[h,i]−
∑

x∈B[h,i],m
wxσx ≤

(
4
√

2
√
A+

6
√
A+ 3fmaxA

)∑
x∈B[h,i],m

w
2/3
x

n1/3 . This implies that

w[h,i]σ[h,i] ≤
∑

x∈B[h,i],m

wxσx +
(

4
√

2
√
A+ 6

√
A+ 3fmaxA

) ∑
x∈B[h,i],m

w
2/3
x

n1/3

≤
∑

x∈B[h,i],m

wxσx + Cmax

∑
x∈B[h,i],m

w
2/3
x

n1/3
.

where Cmax =
(

4
√

2
√
A+ 6

√
A+ 3fmaxA

)
. �

Less refined scales

Lemma 28 Let [h, i] ∈ Nn be a stratum in the final partition. Then for any h∗ such that h∗ < h,

there exists h′ ≤ h∗ and k such that [h′, k] is an ancestor of [h, i] and such that all nodes from

Nn issued from [h′, k] have higher depth than h∗. This node [h′, k] is also such that, on ξ,

+∞∑
m=0

∑
y∈B[h′,k],m

⋂
Nn

wyσy + (Cmax − 6
√
A)

+∞∑
m=1

∑
y∈B[h′,k],m

⋂
Nn

w
2/3
y

n1/3

≤
∑

x∈B[h′,k],h∗−h′

wxσx + Cmax

∑
x∈B[h′,k],h∗−h′

w
2/3
x

n1/3
,

where Cmin = 4
√

2
√
A+ ΣNnA (as Cmax − 6

√
A ≥ Cmin).

Proof: Let [h, i] ∈ Nn be such that h > h∗.

Let [h∗, j] be its ancestor at depth h∗. As it is opened (as [h, i] ∈ Nn), it means that there

exists a node [h′, k] such that h′ ≤ h∗ and which is an ancestor of [h, i], and that was open at a

time t up to depth h′ + L where h′ + L > h∗ (and h′ + L ≤ h). As node [h′, k] has been opened

at time t up to depth h′ + l, it means by Corollary 8 that on ξ,

w[h′,k]σ[h′,k] −
∑

x∈B[h′,k],L

wxσx ≥
(

4
√

2
√
A+ 3fmaxA

) ∑
x∈B[h′,k],L

w
2/3
x

n1/3
(8.17)

≥ (Cmax − 6
√
A)

∑
x∈B[h′,k],L

w
2/3
x

n1/3
. (8.18)

Also by definition of the algorithm, every node of B[h′,k],L is either in Nn or opened by the

algorithm, so all nodes issued from [h′, k] have higher depth than h∗.

205



8. TOWARD OPTIMAL STRATIFICATION FOR STRATIFIED
MONTE-CARLO INTEGRATION

Let now x ∈ B[h′,k],L. Let mx be the depth at which it is opened by the algorithm (if it is

not opened anymore, mx = 0). Again by Corollary 8, on ξ,

wxσx −
∑

y∈Bx,mx

wyσy ≥ (Cmax − 6
√
A)

∑
y∈Bx,mx

w
2/3
y

n1/3
.

By adding this Equation, for every x ∈ B[h′,k],L, to Equation 8.17, we obtain on ξ

w[h′,k]σ[h′,k] −
∑

x∈B[h′,k],L

∑
y∈Bx,mx

wyσy

≥(Cmax − 6
√
A)

∑
x∈B[h′,k],L

w
2/3
x

n1/3
+ (Cmax − 6

√
A)

∑
x∈B[h′,k],L

∑
y∈Bx,mx

w
2/3
y

n1/3

≥(Cmax − 6
√
A)

∑
x∈B[h′,k],L

∑
y∈Bx,mx

w
2/3
y

n1/3
.

By iterating this process in the same way until we reach the leafs of Nn, we obtain (by

induction) on ξ

w[h′,k]σ[h′,k] −
+∞∑
m=0

∑
y∈B[h′,k],m

⋂
Nn

wyσy

≥(Cmax − 6
√
A)

+∞∑
m=1

∑
y∈B[h′,k],m

⋂
Nn

w
2/3
y

n1/3
. (8.19)

Assume that h′ < h∗. As node [h′, k] is not opened before depth h′ + L > h∗, we have by

Lemma 27, on ξ,

w[h′,k]σ[h′,k] −
∑

x∈B[h′,k],h∗−h′

wxσx < Cmax

∑
x∈B[h′,k],h∗−h′

w
2/3
x

n1/3
. (8.20)

By putting together the results of Equations 8.20 and 8.19, we obtain on ξ

+∞∑
m=0

∑
y∈B[h′,k],m

⋂
Nn

wyσy + (Cmax − 6
√
A)

+∞∑
m=1

∑
y∈B[h′,k],m

⋂
Nn

w
2/3
y

n1/3

≤
∑

x∈B[h′,k],h∗−h′

wxσx + Cmax

∑
x∈B[h′,k],h∗−h′

w
2/3
x

n1/3
,

and note that all nodes in Nn issued from [h′, k] have higher depth than h∗.

�
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Bound on ΣNn up to depth H Let us consider a depth h∗ ≤ H and the partition at depth

h∗ that we denote by Nh∗ .

Let us consider first a stratum [h, i] ∈ Nn such that h > h∗. For each node [h, i] ∈ Nn with

h > h∗, let [h′, k][h,i] be defined as in Lemma 28. Let N+ be the set of non overlapping node of

minimal depth made by all nodes [h′, k][h,i], i.e. N+ =
{

[h′, k][h,i] : [h, i] ∈ Nn, h > h∗,∀[p, j] ∈

Nn, p > h∗, [h′, k][p,j] is not strictly parent of [h′, k][h,i]

}
. Note that by Lemma 28 and also by

construction of N+, every node [h, i] issued from a node in N+ and that belongs to Nn is also such

that h > h∗. This implies that the strata in N+ cover the same space as {[h, i] ∈ Nn/h > h∗}
and do not overlap.

From that and Lemma 28, we obtain on ξ

∑
[h,i]∈Nn/h>h∗

wxσx + Cmin

∑
[h,i]∈Nn/h>h∗

w
2/3
x

n1/3

≤
∑

[h′,k]∈N+

∑
x∈B[h′,k],h∗−h′

wxσx +
∑

[h′,k]∈N+

Cmax

∑
x∈B[h′,k],h∗−h′

w
2/3
x

n1/3
. (8.21)

Let us now consider a node [h, i] such that h < h∗. We have for this node by Lemma 27 that

on ξ

w[h,i]σ[h,i] <
∑

x∈B[h,i],h∗−h

wxσx + Cmax

∑
x∈B[h,i],h∗−h

w
2/3
x

n1/3
,

and by just adding Cmin
w

2/3
[h,i]

n1/3 , we have on ξ

w[h,i]σ[h,i] + Cmin

w
2/3
[h,i]

n1/3
<

∑
x∈B[h,i],h∗−h

wxσx + Cmax

∑
x∈B[h,i],h∗−h

w
2/3
x

n1/3
+ Cmin

w
2/3
[h,i]

n1/3

≤
∑

x∈B[h,i],h∗−h

wxσx + 2Cmax

∑
x∈B[h,i],h∗−h

w
2/3
x

n1/3
.

We thus have by summing on all strata in Nn of depth smaller than h∗ that on ξ

∑
[h,i]∈Nn/h<H

w[h,i]σ[h,i] +
∑

[h,i]∈Nn/h<H

Cmin

w
2/3
[h,i]

n1/3

<
∑

[h,i]∈Nn/h<H

∑
x∈B[h,i],H−h

wxσx + 2
∑

[h,i]∈Nn/h<H

Cmax

∑
x∈B[h,i],H−h

w
2/3
x

n1/3
. (8.22)
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Finally, note that on the nodes [h, i] ∈ Nn such that h = h∗, we have on ξ

∑
[h,i]∈Nn/h=h∗

w[h,i]σ[h,i] +
∑

[h,i]∈Nn/h=h∗

Cmin

w
2/3
[h,i]

n1/3

≤
∑

[h,i]∈Nn/h=h∗

w[h,i]σ[h,i] +
∑

[h,i]∈Nn/h=h∗

Cmax

w
2/3
[h,i]

n1/3
. (8.23)

Now note that (i)

Nn =
{

[h, i] ∈ Nn/h > h∗
}⋃{

[h, i] ∈ Nn/h < h∗
}⋃{

[h, i] ∈ Nn/h = h∗
}

is a partition and that (ii)

Nh∗ =
( ⋃

[h′,k]∈N+

{x ∈ B[h′,k],h∗−h′}
)⋃( ⋃

[h,i]∈Nn/h<h∗
{x ∈ B[h,i],h∗−h}

)⋃{
[h, i] ∈ Nn/h = h∗

}

is also a partition as N+ is a non overlapping set of nodes that cover the same space as {[h, i] ∈
Nn/h > h∗}. We thus have by using the results of Equations 8.21, 8.22 and 8.23 that on ξ, for

h∗ ≤ H

∑
[h,i]∈Nn

wxσx + Cmin

∑
[h,i]∈Nn

w
2/3
x

n1/3
≤
∑
x∈Nh∗

wxσx + 2Cmax

∑
x∈Nh∗

w
2/3
x

n1/3
. (8.24)

Global bound on ΣNn Let us consider a depth h∗ ≥ H. Let X[h∗,i] be a stratum of Nh∗ and

[H, k] be its ancestor at depth H.

Note first that by Lemma 22, we have w[H,k]σ[H,k] ≤
w

2/3
[H,k]

n1/3 ≤ 2Cmax
∑

x∈B[H,k],h∗−H
w

2/3
x

n1/3 −

Cmin
w

2/3
[H,k]

n1/3 , as
∑

x∈B[H,k],h∗−H
w

2/3
x

n1/3 ≥
w

2/3
[H,k]

n1/3 , and 1 < Cmin < Cmax. Since
∑

x∈B[H,k],h∗−H
wxσx ≥ 0

this directly implies

w[H,k]σ[H,k] + Cmin

w
2/3
[H,k]

n1/3
≤

∑
x∈B[H,k],h∗−H

wxσx + 2Cmax

∑
x∈B[H,k],h∗−H

w
2/3
x

n1/3
.

By summing on all strata of NH , we get

∑
x∈NH

w[H,k]σ[H,k] + Cmin

∑
x∈NH

w
2/3
[H,k]

n1/3

≤
∑
x∈NH

∑
x∈B[H,k],h∗−H

wxσx + 2Cmax

∑
x∈NH

∑
x∈B[H,k],h∗−H

w
2/3
x

n1/3
.
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Finally, using Equation 8.24 and the previous result, we have

ΣNn + Cmin

∑
[h,i]∈Nn

w
2/3
x

n1/3
≤ min

h∗≤H

[ ∑
x∈Nh∗

wxσx + 2Cmax

∑
x∈Nh∗

w
2/3
x

n1/3

]

≤ min
h∗<+∞

[
ΣNh

∗ + 2Cmax

∑
x∈Nh∗

w
2/3
x

n1/3

]

= min
h∗<+∞

[
ΣNh

∗ + 2Cmax

K
1/3

Nh
∗

n1/3

]
, (8.25)

as every stratum in Nh∗ have same measure 1
2h∗

.

Final regret bound We have because of Equation 8.47 on ξ for any node [p, j] ∈ Nn that on

ξ

wpσp
Tp,n

≤ ΣNn

n
+
(
4
√

2A+ ΣNnA
)∑x∈Nn w

2/3
x

n4/3
≤ ΣNn

n
+ Cmin

∑
x∈Nn

w
2/3
x

n4/3
.

This leads because of Equation 8.25 to, on ξ

wpσp
Tp,n

≤ ΣNn

n
+ Cmin

∑
x∈Nn

w
2/3
x

n4/3
≤ min

h∗<+∞

[
ΣNh

∗

n
+ 2Cmax

K
1/3

Nh
∗

n4/3

]
.

By summing over p and using once again Equation 8.25, one obtains for the pseudo-risk of

the algorithm on ξ

Ln =
∑
x∈Nn

wxσx
Tx,n

≤
Σ2
Nn

n
+ CminΣNn

∑
x∈Nn

w
2/3
x

n4/3
≤ min
h∗<+∞

[
ΣNh

∗

n
+ 2Cmax

K
1/3

Nh
∗

n4/3

]
ΣNn

≤

(
min

h∗<+∞

[ΣNh
∗

n
+ 2Cmax

K
1/3

Nh
∗

n4/3

])2

≤ min
h∗<+∞

[
Σ2
Nh
∗

n
+ 4CmaxΣNh

∗
K

1/3

Nh
∗

n4/3

+ 4C2
max

(K1/3

Nh
∗

n4/3

)2
]
.

8.C Proof of Theorem 22

8.C.1 Some preliminary bounds

Let c = (8Σ̃ + 1)
√
A. Note that c ≥ 1.

Let [h, i] be a stratum that is explored during the Exploration Phase, and split in its to

children.

209



8. TOWARD OPTIMAL STRATIFICATION FOR STRATIFIED
MONTE-CARLO INTEGRATION

This implies that whσ̂[h,i] ≥ 6Hc
√
A
w

2/3
h

n1/3 . By definition, for j ∈ {2i, 2i+ 1}

r[h+1,j] =
(wh+1σ̂[h+1,j] + c

√
A
w

2/3
h+1

n1/3

whσ̃[h,i]

)
r[h,i]I{wh+1σ̂[h+1,j−] − wh+1σ̂[h+1,j] ≥ 2c

√
A
w

2/3
h+1

n1/3
}

+
(wh+1σ̂[h+1,j] − c

√
A
w

2/3
h+1

n1/3

whσ̃[h,i]

)
r[h,i]I{wh+1σ̂[h+1,j−] − wh+1σ̂[h+1,j] ≤ −2c

√
A
w

2/3
h+1

n1/3
}

+ min
(wh+1 min

(
σ̂[h+1,j], σ̂[h+1,j−]

)
+ c
√
A
w

2/3
h+1

n1/3

whσ̃[h,i]
,
1

2

)
r[h,i]

× I{|wh+1σ̂[h+1,j−] − wh+1σ̂[h+1,j]| ≤ 2c
√
A
w

2/3
h+1

n1/3
},

where j− is the complementary of j in {2i, 2i + 1}. Note that the three indicators used in the

definition of r form a partition of the domain.

Lemma 29 If on ξ a node [h, i] has two children [h + 1, 2i] and [h + 1, 2i + 1] that have been

explored by the algorithm, then r[h+1,2i] + r[h+1,2i+1] ≤ r[h,i].

Proof: This is straightforward from the definition of r as for j ∈ {2i, 2i+1},
(wh+1σ̂[h+1,j]+c

√
A
w

2/3
h+1

n1/3

whσ̃[h,i]

)
r[h,i]+(wh+1σ̂[h+1,j−]−c

√
A
w

2/3
h+1

n1/3

whσ̃[h,i],t

)
≤ 1. �

Lemma 30 For any stratum X[h,i], if r[h,i] of depth smaller than H is defined then on ξ

(2H − h)

2H

(
w[h,i]σ̂[h,i] − c

√
A
w

2/3
[h,i]

n1/3

)
≤ r[h,i] ≤

(H + 2h)

H

(
w[h,i]σ̂[h,i] + c

√
A
w

2/3
[h,i]

n1/3

)
.

Proof: The proof is done by induction. Note first that r[0,0] = w[0,0]σ̂[0,0] + c
√
A
w

2/3
[0,0]

n1/3 . The

result is thus satisfied for node [0, 0].

Assume that the property of Lemma 30 is satisfied for a given [h, i] on ξ.

Assume that the children of this node are opened. This implies that whσ̂[h,i] ≥ 6Hc
√
A
w

2/3
h

n1/3 ,

i.e.

1

2H
≥ 3c

√
A
w

2/3
h

n1/3

whσ̂[h,i]
. (8.26)

Let j ∈ {2i, 2i+ 1}. Note first that wh+1σ̂[h+1,j−] + wh+1σ̂[h+1,j] ≤ whσ̃[h,i] (by definition of

σ̂ and σ̃, and also because of the properties of the empirical variance), and that on ξ, |whσ̃[h,i]−

whσ̂[h,i]| ≤ 2
√
A
w

2/3
[h,i]

n1/3 as a node is open only if there are enough samples in it, i.e. if there are
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more than bAw2/3
[h,i]n

2/3c samples. This together with Equation 8.26 implies that

w[h,i]σ̂[h,i] − c
√
A
w

2/3
[h,i]

n1/3

w[h,i]σ̃[h,i]
≥
w[h,i]σ̃[h,i],t − 3c

√
A
w

2/3
[h,i]

n1/3

w[h,i]σ̃[h,i]
≥ 1− 1

2H
., (8.27)

as c ≥ 1. In the same way

w[h,i]σ̂[h,i] + c
√
A
w

2/3
[h,i]

n1/3

w[h,i]σ̃[h,i]
≤ 1 +

1

2H
. (8.28)

By Equation 8.27

(wh+1σ̂[h+1,j] − c
√
A
w

2/3
h+1

n1/3

whσ̃[h,i]

)
r[h,i] ≥

(
wh+1σ̂[h+1,j] − c

√
A
w

2/3
h+1

n1/3

)(2H − h
2H

)(
1− 1

2H

)
≥
(
wh+1σ̂[h+1,j] − c

√
A
w

2/3
h+1

n1/3

)(2H − (h+ 1)

2H

)
. (8.29)

In the same way, by Equation 8.28

(wh+1σ̂[h+1,j] + c
√
A
w

2/3
h+1

n1/3

whσ̃[h,i]

)
r[h,i] ≤

(
wh+1σ̂[h+1,j] + c

√
A
w

2/3
h+1

n1/3

)(H + 2h

H

)(
1 +

1

2H

)
≤
(
wh+1σ̂[h+1,j] + c

√
A
w

2/3
h+1

n1/3

)(
1 +

2h

H
+

1

2H
+

h

H2

)
≤
(
wh+1σ̂[h+1,j] + c

√
A
w

2/3
h+1

n1/3

)(
1 +

2h

H
+

3

2H

)
≤
(
wh+1σ̂[h+1,j] + c

√
A
w

2/3
h+1

n1/3

)(H + 2(h+ 1)

H

)
, (8.30)

as h ≤ H.

Assume that |wh+1σ̂[h+1,j]−wh+1σ̂[h+1,j−]| ≤ 2c
√
A
w

2/3
h+1

n1/3 . Then
wh+1σ̂[h+1,j]−c

√
A
w

2/3
h+1

n1/3

wh+1σ̃[h,i]
≤ 1

2 . It

implies that, by Equation 8.29

r[h,i]

2
≥
(wh+1σ̂[h+1,j] − c

√
A
w

2/3
h+1

n1/3

whσ̃[h,i]

)
r[h,i]

≥
(
wh+1σ̂[h+1,j] − c

√
A
w

2/3
h+1

n1/3

)(2H − (h+ 1)

2H

)
. (8.31)

Assume that |wh+1σ̂[h+1,j] − wh+1σ̂[h+1,j−]| ≥ −2c
√
A
w

2/3
h+1

n1/3 . Then
wh+1σ̂[h+1,j]+c

√
A
w

2/3
h+1

n1/3

wh+1σ̃[h,i]
≥ 1

2 .

211



8. TOWARD OPTIMAL STRATIFICATION FOR STRATIFIED
MONTE-CARLO INTEGRATION

It implies that, by by Equation 8.30

r[h,i]

2
≤
(wh+1σ̂[h+1,j] + c

√
A
w

2/3
h+1

n1/3

whσ̃[h,i]

)
r[h,i]

≤
(
wh+1σ̂[h+1,j] + c

√
A
w

2/3
h+1

n1/3

)(H + 2(h+ 1)

H

)
. (8.32)

From Equations 8.29 and 8.31, from the definition of r, and from the fact that
(wh+1σ̂[h+1,j]−c

√
A
w

2/3
h+1

n1/3

whσ̃[h,i]

)
r[h,i] ≤(wh+1σ̂[h+1,j]+c

√
A
w

2/3
h+1

n1/3

whσ̃[h,i]

)
r[h,i], we deduce that

r[h+1,j] ≥
(
wh+1σ̂[h+1,j] − c

√
A
w

2/3
h+1

n1/3

)(2H − (h+ 1)

2H

)
,

and finish the induction for the left-hand-side on ξ.

In the same way, by combining Equations 8.30 and 8.32, we finish the induction for the

right-hand-side on ξ.

�

Corollary 9 For any stratum X[h,i], if r[h,i] is defined then on ξ

(2H − h)

2H

(
w[h,i]σ[h,i] − 2c

√
A
w

2/3
[h,i]

n1/3

)
≤ r[h,i] ≤

(H + 2h)

H

(
w[h,i]σ[h,i] + 2c

√
A
w

2/3
[h,i]

n1/3

)
,

where t[h,i] is the time where node [h, i] is first explored.

Proof: This is straightforward from Lemma 30, by the definition of ξ and as c ≥ 1. �

Lemma 31 For any stratum X[h,i], if r[h,i] is defined then on ξ

r[h,i] ×
( n

4Σ̃

)
> Aw

2/3
h n2/3

where t[h,i] is the time where node [h, i] is first explored.

Proof:

Let [h, i] be a node.

Assume that the children of this node are explored at time t. This implies that whσ̂[h,i] ≥
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6Hc
√
A
w

2/3
h

n1/3 , and then by Lemma 30, on ξ, (as 2H−h
2H ≥ 1

2).

r[h,i] ≥
1

2

(
whσ̂[h,i] − c

√
A
w

2/3
h

n1/3

)
≥ 1

2

(
6Hc
√
A
w

2/3
h

n1/3
− c
√
A
w

2/3
h

n1/3

)
≥ 5

2
c
√
A
w

2/3
h

n1/3
,

as H ≥ 2. This implies as c > 8Σ̃
√
A that

r[h,i]

2

( n

4Σ̃

)
> Aw

2/3
h+1n

2/3. (8.33)

By Equation 8.27 (as 2H−h
2H ≥ 1

2)

(wh+1σ̂[h+1,j] + c
√
A
w

2/3
h+1

n1/3

whσ̃[h,i]

)
r[h,i] ≥

1

2

(
wh+1σ̂[h+1,j] + c

√
A
w

2/3
h+1

n1/3

)
≥ 1

2
c
√
A
w

2/3
h+1

n1/3
.

This implies as c > 8Σ̃
√
A that

(wh+1σ̂[h+1,j] + c
√
A
w

2/3
h+1

n1/3

whσ̃[h,i]

)
r[h,i]

( n

4Σ̃

)
> Aw

2/3
h+1n

2/3 (8.34)

Let j∗ = arg minj r[h+1,j]. For j = {2i, 2i + 1}, we know that from the definition of r,

r[h+1,j] ≥ min
[(wh+1σ̂[h+1,j∗]+c

√
A
w

2/3
h+1

n1/3

whσ̃[h,i]

)
r[h,i],

r[h,i]
2

]
. From that and Equations 8.33 and 8.34 we

deduce the Lemma.

�

8.C.2 Study of the Exploration Phase

Lemma 32 On ξ, the Exploration phase ends at T < n and all the nodes x of partition Ne
n are

such that rx
Tx,T+1 ≤

4Σ̃
n and rx

Tx,T
> 4Σ̃

n .

Proof: Let T be the time at which the exploration phase ends (if it does not end, write T = n).

One needs to pull a node in Ne
n at a time t′ < T if and only if

rx
Tx,t′ + 1

>
4Σ̃

n
.

We thus know that the last time stratum Xx is sampled during the Exploration Phase (and thus
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at the end of the Exploration Phase)

rx
Tx,T

≥ 4Σ̃

n
.

If stratum Xx is not sampled during the Exploration Phase after having been opened, then

Tx,T = bAw2/3
x n2/3c.

Note that by Lemma 31, on ξ rx
n

4Σ̃
> Aw

2/3
x n2/3. From that we deduce that

rx
Tx,T

>
4Σ̃

n
,

and from that together with the fact that we only sample a node at time t < T if rx
Tx,t

> 4Σ̃
n , we

deduce the second part of the Lemma, i.e. that on ξ, ∀x ∈ Ne
n,

rx
Tx,T

> 4Σ̃
n .

Note now that
∑

x∈Nen rx ≤ r[0,0] = Σ̃: it is straightforward by Lemma 29. This directly

leads to:

Σ̃ ≥
∑
x∈Nen

rx ≥
4Σ̃

n

∑
x∈Nen

Tx,T .

This directly implies that
∑

x∈Nen Tx,T ≤
n
4 < n, which leads to the desired result, i.e. that

the Exploration Phase ends before all the budget has been used. This implies that on ξ, ∀x ∈
Ne
n,

rx
Tx,T+1 ≤

4Σ̃
n .

�

Lemma 33 Let x be a node such that wxσx ≥ 14Hc
√
Aw

2/3
x

n1/3 and also such that, for all its

parents, wyσy ≥ 14Hc
√
A
w

2/3
y

n1/3 .

Then on ξ, at the end T of the Exploration phase phase, node x is open, i.e. x ∈ Ten, which

also implies Tx,T ≥ Aw2/3
x n2/3(≥ 2).

Proof: The result is proven by induction. Assume that there is a node x that satisfies the

Assumptions of Lemma 33. Then w[0,0]σ[0,0] ≥ 14Hc
√
A
w

2/3
[0,0]

n1/3 . Note first that after the Initial-

ization, i.e. at the time t = bAn2/3c when T[0,0],t = bAn2/3c, i.e. when the decision of opening or
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not the node is made, we have on ξ that

w[0,0]σ̂[0,0] ≥ w[0,0]σ[0,0] − 2
√
A
w

2/3
[0,0]

n1/3

≥ 12Hc
√
A
w

2/3
[0,0]

n1/3

≥ 6Hc
√
A
w

2/3
[0,0]

n1/3
.

The node [0, 0] is thus opened on ξ .

Assume now that an ancestor [h, i] of node x is open. By Lemma 9, we now that on ξ

r[h,i] ≥
(2H − h)

2H

(
w[h,i]σ[h,i],t[h,i] − 2c

√
A
w

2/3
[h,i]

n1/3

)
≥ 1

2

(
14Hc

√
A
w

2/3
x

n1/3
− 2c
√
A
w

2/3
[h,i]

n1/3

)
≥ 6Hc

√
A
w

2/3
[h,i]

n1/3
.

By Lemma 33, we know that at the end T of the Exploration Phase, with T < n on ξ, we have
r[h,i]

T[h,i],T+1 ≤
4Σ̃
n . As c > 8Σ̃

√
A, we have by using the previous result that T[h,i],T ≥ 6HAw

2/3
[h,i]n

2/3.

By the definition of A and the fact that h ≤ H, we know also that Aw
2/3
[h,i]n

2/3 ≥ 2, which implies

that T[h,i],T ≥ 2. This, together with the fact that w[h,i]σ̂[h,i],T ≥ 12HAw
2/3
[h,i]n

2/3 on ξ, implies

that node [h, i] is open and split in its too children.

We have thus proved the result of the Lemma by induction. �

Lemma 34 Let T be the end of the Exploration Phase, and let x ∈ Ten. Then on ξ,

Tx,T ≤ max
(5wxσxn

6Σ̃
, 15c
√
A
w

2/3
x n2/3

Σ̃

)
.

Proof: Let T be the end of the exploration phase.

Let x ∈ Ten. Let N be the subset of the partition Ne
n that covers x. Let y ∈ N. By Lemma 32

we have on ξ

ry
Ty,T

> 4
Σ̃

n
,

which leads directly to

Ty,T <
ryn

4Σ̃
.
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Note that by Lemma 29 one has
∑

y∈N ry ≤ rx. One thus has

Tx,T =
∑
y∈N

Ty,T ≤
∑
y∈N

ryn

4Σ̃
≤ rxn

4Σ̃
. (8.35)

Note now that by Corollary 9, we have on ξ rx ≤ 3
(
wxσx + 2c

√
Aw

2/3
x

n1/3

)
. From that and

Equation 8.35, we deduce that on ξ

Tx,T ≤ 3
(
wxσx + 2c

√
A
w

2/3
x

n1/3

) n

4Σ̃

≤ max
(5wxσxn

6Σ̃
, 15c
√
A
w

2/3
x n2/3

Σ̃

)
.

This concludes the proof.

�

8.C.3 Characterization of the ΣNn

The algorithm selects a partition Nn such that

Nn ∈ arg min
N∈Ten

(
Σ̂N + (C ′max −

√
A)
∑
y∈N

w
2/3
y

n1/3

)
,

with C ′max = max(B, 14Hc
√
A) + 2

√
A and B = 16

√
2Ac(1 + 1

Σ̃
).

Note that for every partition N ∈ Ten, as all the nodes of Ten are such that Tx,n ≥ Aw2/3
x n2/3 ≥

2 by the structure of the algorithm. One thus has on ξ, for any N partition included in Ten, that

|Σ̂N − ΣN| ≤
√
A
∑
y∈N

w
2/3
y

n1/3
,

because by construction every node of Ten has depth smaller than H.

We thus have for the selected partition Nn that, on ξ,

ΣNn + (C ′max − 2
√
A)
∑
y∈Nn

w
2/3
y

n1/3
≤ min

N∈Ten

[
ΣN + C ′max

∑
y∈N

w
2/3
y

n1/3

]
. (8.36)

Let S be the set of all nodes x such that all their ancestors y are such that wyσy ≥
14Hc

√
Aw

2/3
x

n1/3 . This implies because σy is positive, and because C ′max ≥ 14Hc
√
A that

min
N∈S

[
ΣN + C ′max

∑
y∈N

w
2/3
y

n1/3

]
= min

N

[
ΣN + C ′max

∑
y∈N

w
2/3
y

n1/3

]
, (8.37)

where minN is the minimum over all the partitions in the entire hierarchical partitioning.
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Lemma 33 states that on ξ, S ⊂ Ten. This implies that

min
N∈Ten

[
ΣN + C ′max

∑
y∈N

w
2/3
y

n1/3

]
≤ min

N∈S

[
ΣN + C ′max

∑
y∈N

w
2/3
y

n1/3

]
. (8.38)

By combining Equations 8.36, 8.37 and 8.38, we obtain on ξ

ΣNn +B
∑
y∈Nn

w
2/3
y

n1/3
≤ min

N

[
ΣN + C ′max

∑
y∈N

w
2/3
y

n1/3

]
. (8.39)

since C ′max − 2
√
A ≥ B.

8.C.4 Study of the Exploitation phase

Lemma 35 At the end of the Exploitation phase (end of the algorithm) one has ∀x ∈ Nn

wxσx
Tx,n

≤ ΣNn

n
+B

∑
y∈Nn

w
2/3
y

n1/3
,

where B = 16
√

2Ac(1 + 1
Σ̃

).

Proof:

Step 1. Lower Bound in each node Let us first note that by Lemma 32, we know that

on ξ, at the end T < n of the Exploration Phase, we have
∑

x∈Nex Tx,T < n
4 . There is still a

budget of at least 3n
4 pulls left for the Exploitation phase.Note first that as a node x is opened

only when there are bAw2/3
x n2/3c points in it, so ∀x ∈ Nn, Tx,T >

A
2w

2/3
x n2/3.

Step 2. Properties of the algorithm. We first remind the definition of Bq,t+1 used in

the MC-UCB algorithm for a node q ∈ Nn

Bq,t+1 =
wq
Tq,t

(
σ̂q +

√
A

1

w
1/3
q n1/3

)
.

Using the definition of ξ together with the fact that, by construction, at a time t of the

Exploration Phase, Tq,t ≥ bAw2/3
q n2/3c, it follows that, on ξ

wqσq
Tq,t

≤ Bq,t+1 ≤
wq
Tq,t

(
σq + 2

√
A

1

w
1/3
q n1/3

)
. (8.40)

Let t+1 ≥ T +1 be the time at which an arm q is pulled for the last time, that is Tq,t = Tq,n−1.

Note that there is at least one arm such that this happens as n > T by Lemma 32. Since at

t+ 1 arm q is chosen, then for any other arm p, we have

Bp,t+1 ≤ Bq,t+1 . (8.41)
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From Equation 8.40 and Tq,t = Tq,n − 1, we obtain on ξ

Bq,t+1 ≤
wq
Tq,t

(
σq + 2

√
A

1

w
1/3
q n1/3

)
=

wq
Tq,n − 1

(
σq + 2

√
2A

1

w
1/3
q n1/3

)
. (8.42)

Furthermore, since Tp,t ≤ Tp,n, then on ξ

Bp,t+1 ≥
wpσp
Tp,t

≥ wpσp
Tp,n

. (8.43)

Combining Equations 8.41–8.43, we obtain on ξ that if at least one sample is collected from

stratum q after the Exploration Phase, then

wpσp
Tp,n

(Tq,n − 1) ≤ wq

(
σq + 2

√
2A

1

w
1/3
q n1/3

)
. (8.44)

Step 3: The Exploration Phase has not deteriorate the performances of the

algorithm.

If Ty,n > Ty,T , then samples are pulled from y after the Exploration Phase. By summing

over these nodes on Equation 8.44, we obtain that, on ξ, for any x,

wxσx
Tx,n

∑
y|Ty,n>Ty,T

(Ty,n − 1) ≤
∑

y|Ty,n>Ty,T

wy

(
σy + 2

√
2A

1

w
1/3
y n1/3

)

≤ Σ− +
2
√

2A
∑

y|Ty,n>Ty,T w
2/3
y

n1/3

≤ Σ− +
2
√

2A
∑

y∈Nn w
2/3
y

n1/3
. (8.45)

where Σ− =
∑

y|Ty,n>Ty,T wyσy. The passage from line 2 to line 3 come from the fact that

Ty,n ≥ Ty,T ≥ A
2
w

2/3
y

n1/3 .

Lemma 34 states that on ξ, for all x ∈ Nn ⊂ Ten

Tx,T ≤ max
(3

4
λx,Nnn, 15c

√
A
w

2/3
x n2/3

Σ̃

)
.

Note also that by Step 1, on ξ, 3n
4 ≤

∑
y|Ty,n>Ty,T Ty,n. We thus have from these two results
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that on ξ, for any x ∈ Nn,

wxσx
Tx,n

∑
y|Ty,n>Ty,T

(Ty,n − 1) ≥ wxσx
Tx,n

max
[(
n−

∑
y|Ty,n=Ty,T

3

4
λx,Nnn−

∑
y

15c
√
A
w

2/3
y n2/3

Σ̃

)
,
3n

4

]

=
wxσx
Tx,n

max
[(
n

Σ−

ΣNn

+ n
(ΣNn − Σ−)

4ΣNn

−
∑
y

15c
√
A
w

2/3
y n2/3

Σ̃

)
,
3n

4

]
.

(8.46)

By combining Equations 8.45 and Equation 8.46, we obtain for every x ∈ Nn that on ξ

wxσx
Tx,n

≤ 1

max
[(
n Σ−

ΣNn
+ n

(ΣNn−Σ−)
4ΣNn

−
∑

y 15c
√
A
w

2/3
y n2/3

Σ̃

)
, 3n

4

]
[

Σ− +
2
√

2A
∑

y∈Nn w
2/3
y

n1/3

]

≤ΣNn

n
+

8
√

2A
∑

y∈Nn w
2/3
y

n4/3
+ 30

∑
y

c
√
A
w

2/3
y

n4/3Σ̃

≤ΣNn

n
+

38
√

2Ac
∑

y∈Nn w
2/3
y

n4/3
(1 +

1

Σ̃
),

where we use the fact that n Σ−

ΣNn
+ n

(ΣNn−Σ−)
4ΣNn

≥ n
4 and 1

1−x ≤ 1 + x for x < 1 for passing from

line 1 to line 2. We finally have

wxσx
Tx,n

≤ ΣNn

n
+B

∑
y∈Nn

w
2/3
y

n4/3
, (8.47)

where B = 38
√

2Ac(1 + 1
Σ̃

).

Step 4. Lower bound on the number of pulls. By using Equation 8.47 and the fact that
1

1+x ≥ 1− x one gets

Tp,n ≥ λp,ΣNn

(
n− B

ΣNn

( ∑
q∈Nn

w2/3
q

)
n2/3

)
.

�

Lemma 36 Let x ∈ Nn. Let y be an open grand-child of x, and y1 and y2 be its two children.

Then

ryi
Tyi,n

≤ ry1 + ry2

Ty,n − 1
,

where i ∈ {1, 2}.

Proof:
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We consider x ∈ Nn such that wxσ̂x ≥ 6Hc
√
Aw

2/3
x

n1/3 : otherwise it has no grand-children.

By Lemma 34, we know that for any y grand-child of x, we have
ryn

4Σ̃
≤ Aw2/3

y n2/3. Note that

at the moment of a node’s opening, the number of points in the node is smaller than Aw
2/3
y n2/3.

As the Exploration stops sampling in a stratum x when
ry

Ty,n+1 ≤ 4 Σ̃
n , we know that at the end

T of the Exploration Phase, we have
ry
Ty,T
≥ 4 Σ̃

n .

We prove by induction that
ry
Ty,n
≤ 4 Σ̃

n for any grand-child of x, and that for its two children

y1 and y2, we have
ryi
Tyi,n

≤ ry1+ry2
Ty,n−1 .

By Lemma 30, we know that as wxσ̂x ≥ 6Hc
√
Aw

2/3
x

n1/3 , we have on ξ

rx ≤ 3
(
wxσx + c

√
A
w

2/3
[h,i]

n1/3

)
≤ 3
(7

6
wxσx

)
≤ 7

2
wxσx.

By combining this result with Lemma 35 and also with the definition of ΣNn , we have on ξ

rx
Tx,n

≤ 7wxσx
2Tx,n

≤ 7

2

(ΣNn

n
+B

∑
y∈Nn

w
2/3
y

n4/3

)
≤ 7

2

(w[0,0]σ[0,0]

n
+
C ′max

n4/3

)
≤ 7

2

Σ̃

n
,

because by definition, ΣNn +B
∑

y∈Nn
w

2/3
y

n1/3 ≤ σ[0,0] + C′max

n1/3 , and also because Σ̃ ≤ σ[0,0] + C′max

n1/3 .

Let x1 and x2 be the two children of x. Note first that at the end T of the Exploration

Phase, by Lemma 32, we have
rxi
Txi,T

≥ 4 Σ̃
n , where i ∈ {1, 2}. By Lemma 29, we know that

rx ≥ rx1 + rx2 ≥ Tx,T 4 Σ̃
n . This means that as 7

2 < 4, then then a sample will be pulled again in

one of the two nodes {x1, x2} after the Exploration Phase. Assume without risk of generality

that it is node x1 that is pulled.

rx2

Tx2,n
≤ rx1

Tx1,n − 1
.

Note also that
rx2
Tx2,n

≤ rx2
Tx2,n

. By summing, we get that

rx2

Tx2,n
(Tx1,n + Tx2,n − 1) ≤ rx1 + rx2 .

We thus have

rx2

Tx2,n
≤ rx1 + rx2

(Tx1,n + Tx2,n − 1)
≤ rx1 + rx2

Tx,n − 1
.

If a sample is also collected from stratum x2, then the same result applies also for x1. Otherwise,

it means that
rx2
Tx2,n

=
rx2
Tx2,T

≥ 4 Σ̃
n , and as one sample is collected in x1, we have

rx1
Tx1,n

≤ 4 Σ̃
n , so

we have in any case

rx1

Tx1,n
≤ rx1 + rx2

Tx,n − 1
.
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The recursion continues in the same way for any child y of x such that wyσ̂y ≥ 6Hc
√
A
w

2/3
y

n1/3

(otherwise it has no children). Indeed, the budget in the terminal nodes of the Exploration

partition Ne
n does satisfy this property.

�

Lemma 37 Let x be a node of Nn. Let Nx be the sub-partition of nodes in Ne
n that cover the

domain of x. One has on ξ:

∑
y∈Nx

(wyσy)
2

Ty,n
≤ (wxσx)2

Tx,n
.

Proof: The result of the Lemma follows by induction.

Let us consider a node x ∈ Nn, and let Nx be the sub-partition of nodes in Ne
n that cover

the domain of x.

Let y1 and y2 be two nodes of Nx that have the same father-node y. Assume without risk of

generality that ry1 ≤ ry2 .

Lemma 36 states that

Ty1,n ≥
ry1

ry1 + ry2

(Ty,n − 1).

As Ty1,n + Ty2,n = Ty,n, we have by the previous Equation

Ty2,n ≤
ry2

ry1 + ry2

(Ty,n + 1).

In the same way, we obtain

ry1

ry1 + ry2

(Ty,n − 1) ≤ Ty1,n ≤
ry1

ry1 + ry2

(Ty,n + 1). (8.48)

and

ry2

ry1 + ry2

(Ty,n − 1) ≤ Ty2,n ≤
ry2

ry1 + ry2

(Ty,n + 1). (8.49)

From that we deduce that if ry1 < ry2 , then Ty1,n ≤ Ty2,n.

If ry1 = ry2 , this implies that |Ty2,n − Ty2,n| ≤ 1, and the last sample is pulled at random

between the two strata. From that we deduce that
(wy1σy1 )2

Ty1,n
+

(wy2σy2 )2

Ty2,n
≤ (wyσy)2

Ty,n
, in the same

way that in Lemma 21.

Assume now that ry1 < ry2 . Note now that on ξ, because of the definition of r, we have on ξ

ry1

ry1 + ry2

≥ wy1σy1

wy1σy1 + wy2σy2

.
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By combining that with Equation 8.48, we get on ξ

wy1σy1

wy1σy1 + wy2σy2

(Ty,n + 1) ≤ Ty1,n,

which leads to

wy1σy1

Ty1,n
≤ wy1σy1 + wy2σy2

(Ty,n + 1)
. (8.50)

In the same way, as on ξ

ry2

ry1 + ry2

≤ wy2σy2

wy1σy1 + wy2σy2

,

we have

wy2σy2

Ty2,n
≥ wy1σy1 + wy2σy2

(Ty,n − 1)
. (8.51)

We deduce from Equations 8.50 and 8.51 that on ξ

wy1σy1

Ty1,n
≤ wy2σy2

Ty2,n
.

From that, together with the fact that ry1 < ry2 and Ty1,n ≤ Ty2,n, we deduce because of variance

properties that

(wy1σy1)2

Ty1,n
+

(wy1σy2)2

Ty2,n
≤ 2

(wy1σy1)2

Ty,n
+ 2

(wy1σy2)2

Ty,n
≤ (wyσy)

2

Ty,n
,

and note that as y1 and y2 are terminal nodes of Ten, then
(wy1σy1 )2

Ty1,n
+

(wy1σy2 )2

Ty2,n
correspond to

the variance of the stratified estimate on these nodes.

In the same way, by induction, for any child y of x that is in Ten, we also have

(wyσy)
2

Ty,n
≥ (wy1σy1)2

Ty1,n
+

(wy1σy2)2

Ty2,n
≥
∑
z∈Nx

(wxσx)2

Tx,n
,

which is the desired result in the specific case where y = x.

�

8.C.5 Regret of the algorithm

All the nodes in Ne
n are sampled in a homogeneous way, so it is coherent to define the risk as

Ln =
∑
x∈Nen

(wxσx)2

Tx,n
.
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By Lemma 37, we have on ξ

Ln =
∑
x∈Nen

(wxσx)2

Tx,n
≤
∑
x∈Nn

(wxσx)2

Tx,n
.

Now by Lemma 35, we have

Ln ≤
∑
x∈Nn

(wxσx)2

Tx,n
≤

Σ2
Nn

n
+BΣNn

∑
y∈Nn

w
2/3
y

n1/3
.

Finally, because of Equation 8.39

Ln ≤
Σ2
Nn

n
+BΣNn

∑
y∈Nn

w
2/3
y

n1/3
≤ min

N

[
Σ2
N

n
+ C ′maxΣNn

∑
y∈N

w
2/3
y

n1/3

]
.

Then by using again that Nn is the empiric minimizer of the bound, i.e. Equation 8.39, and also

by upper bounding C ′max, we obtain the final result.

8.D Large deviation inequalities for independent sub-Gaussian

random variables

We first state Bernstein inequality for large deviations of independent random variables around

their mean.

Lemma 38 Let (X1, . . . , Xn) be n independent random variables of mean (µ1, . . . , µn) and of

variance (σ2
1, . . . , σ

2
n). Assume that there exists b > 0 such that for any λ < 1

b , for any i ≤ n, it

holds that E
[

exp(λ(Xi − µi))
]
≤ exp

(
λ2σ2

i
2(1−λb)

)
. Then with probability 1− δ

| 1
n

n∑
i=1

Xi −
1

n

n∑
i=1

µi| ≤

√
2( 1
n

∑n
i=1 σ

2
i ) log(2/δ)

n
+
b log(2/δ)

n
.

Proof: If the assumptions of Lemma 38 are satisfied, then

P
( n∑
i=1

Xi −
n∑
i=1

µi ≥ nε
)

= P

[
exp

(
λ(
∑n

i=1Xi −
∑n

i=1 µi)
)
≥ exp(nλε)

]

≤ E

[
exp

(
λ(

∑n
i=1 Xi−

∑n
i=1 µi)

)
exp(nλε)

]

≤
∏n
i=1 E

[
exp

(
λ(Xi−µi)

)
exp(λε)

]
≤ exp(λ

2

2

∑n
i=1

σ2
i

2(1−λb) − nλε).
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By setting λ = nε∑n
i=1 σ

2
i+bnε

we obtain

P
( n∑
i=1

Xi −
n∑
i=1

µi ≥ nε
)
≤ exp(− n2ε2

2(
∑n

i=1 σ
2
i + bnε)

).

By an union bound we obtain

P
(
|
n∑
i=1

Xi −
n∑
i=1

µi| ≥ nε
)
≤ 2 exp(− n2ε2

2(
∑n

i=1 σ
2
i + bnε)

).

This means that with probability 1− δ,

| 1
n

n∑
i=1

Xi −
1

n

n∑
i=1

µi| ≤

√
2( 1
n

∑n
i=1 σ

2
i ) log(2/δ)

n
+
b log(2/δ)

n
.

�

We also state the following Lemma on large deviations for the variance of independent

random variables.

Lemma 39 Let (X1, . . . , Xn) be n independent random variables of mean (µ1, . . . , µn) and of

variance (σ2
1, . . . , σ

2
n). Assume that there exists b > 0 such that for any λ < 1

b , for any i ≤
n, it holds that E

[
exp(λ(Xi − µi))

]
≤ exp

(
λ2σ2

i
2(1−λb)

)
and also E

[
exp(λ(Xi − µi)2 − λσ2

i )
]
≤

exp
(

λ2σ2
i

2(1−λb)

)
.

Let V = 1
n

∑
i(µi −

1
n

∑
i µi)

2 + 1
n

∑
n σ

2
i be the variance of a sample chosen uniformly

at random among the n distributions, and V̂ = 1
n

∑n
i=1

(
Xi − 1

n

∑n
j=1Xj

)2
the corresponding

empirical variance. Then with probability 1− δ,

|
√
V̂ −

√
V | ≤ 2

√
(1 + 3b+ 4V ) log(2/δ)

n
. (8.52)

Proof: By decomposing the estimate of the empirical variance in bias and variance, we obtain

with probability 1− δ

V̂ =
1

n

∑
i

(Xi −
1

n

∑
j

µj)
2 − (

1

n

∑
i

Xi −
1

n

∑
i

µi)
2

=
1

n

∑
i

(Xi − µi)2 + 2
1

n

∑
i

(Xi − µi)
1

n

∑
i

(µi −
1

n

∑
j

µj)

+
1

n

∑
i

(µi −
1

n

∑
j

µj)
2 − (

1

n

∑
i

Xi −
1

n

∑
i

µi)
2

=
1

n

∑
i

(Xi − µi)2 +
1

n

∑
i

(µi −
1

n

∑
j

µj)
2 − (

1

n

∑
i

Xi −
1

n

∑
i

µi)
2.
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We then have by the definition of V that with probability 1− δ

V̂ − V =
1

n

n∑
i=1

(Xi − µi)2 − 1

n

n∑
i=1

σ2
i − (

1

n

∑
i

Xi −
1

n

∑
i

µi)
2. (8.53)

If the assumptions of Lemma 39 are satisfied, we have with probability 1− δ

P
( n∑
i=1

(Xi − µi)2 −
n∑
i=1

σ2
i ≥ nε

)
= P

[
exp

(
λ(

n∑
i=1

|Xi − µi|2 −
n∑
i=1

σ2
i )
)
≥ exp(nλε)

]

≤ E

[
exp

(
λ(
∑n

i=1 |Xi − µi|2 −
∑n

i=1 σ
2
i )
)

exp(nλε)

]

≤
n∏
i=1

E

[
exp

(
λ(|Xi − µi|2 − σ2

i )
)

exp(λε)

]

≤ 2 exp(
λ2

2

n∑
i=1

σ2
i

2(1− λb)
− nλε).

If we take λ = nε∑n
i=1 σ

2
i+nbε

we obtain with probability 1− δ

P
( n∑
i=1

(Xi − µi)2 −
n∑
i=1

σ2
i ≥ nε2

)
≤ exp(− n2ε2

2(
∑n

i=1 σ
2
i + bnε)

). (8.54)

By a union bound we get with probability 1− δ that

P
(
|
n∑
i=1

(Xi − µi)2 −
n∑
i=1

σ2
i | ≥ nε

)
≤ 2 exp(− n2ε2

2(
∑n

i=1 σ
2
i + bnε)

).

This means that with probability 1− δ,

| 1
n

n∑
i=1

(Xi − µi)2 − 1

n

n∑
i=1

σ2
i | ≤

√
2( 1
n

∑n
i=1 σ

2
i ) log(2/δ)

n
+
b log(2/δ)

n
. (8.55)

Finally, by combining Equations 8.53 and 8.55 with Lemma 38, we obtain with probability

1− δ

|V̂ − V | ≤
4( 1
n

∑n
i=1 σ

2
i ) log(2/δ)

n
+

2b2 log(2/δ)2

n2
+

√
2( 1
n

∑n
i=1 σ

2
i ) log(2/δ)

n
+
b log(2/δ)

n

≤

√
2( 1
n

∑n
i=1 σ

2
i ) log(2/δ)

n
+

(3b+ 4 1
n

∑n
i=1 σ

2
i ) log(2/δ)

n

≤
√

2V log(2/δ)

n
+

(3b+ 4V ) log(2/δ)

n
,

when n ≥ b log(2/δ) and because V ≥ 1
n

∑n
i=1 σ

2
i .
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This implies with probability 1− δ that

V −
√

2V log(2/δ)

n
+

log(2/δ)

2n
≤ V̂ +

(3b+ 4V ) log(2/δ)

n
+

log(2/δ)

2n

⇔
√
V −

√
log(2/δ)

2n
≤
√
V̂ +

(1 + 3b+ 4V ) log(2/δ)

n

⇒
√
V −

√
log(2/δ)

2n
≤
√
V̂ +

√
(1 + 3b+ 4V ) log(2/δ)

n

⇒
√
V ≤

√
V̂ + 2

√
(1 + 3b+ 4V ) log(2/δ)

n
.

On the other hand, we have also with probability 1− δ

V̂ ≤ V +

√
2V log(2/δ)

n
+

(3b+ 4V ) log(2/δ)

n

⇒
√
V̂ ≤

√
V + 2

√
(1 + 3b+ 4V ) log(2/δ)

n
.

Finally, we have with probability 1− δ

|
√
V̂ −

√
V | ≤ 2

√
(1 + 3b+ 4V ) log(2/δ)

n
. (8.56)
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Chapter 9

Compressed Sensing

9.1 Introduction

Compressed Sensing is a fascinating field that has been attracting much attention in the past

years. As a part of this PhD is on this domain, we believe that it is very relevant to give an

overview of this field.

As Compressed Sensing is a domain which is already huge, multidisciplinary and which grows

very fast, it is out of scope as well as out of reach for us to make a complete overview of it. We

thus decided to remain as little technical as possible and to attack Compressed Sensing by an

angle which is of particular interest for us: that is to say from the angle of sampling techniques.

We presented in the first part of this Dissertation some of our works in bandits. They were

characterized by a small dimension (number of arms). Because of that, it was clever to try to

adapt to the problem. In Compressed Sensing, efficient sampling schemes are radically different.

As the dimension is huge, even when compared to the number of samples, it is unlikely that

there is much to gain by adapting to the problems. But there are indeed some very efficient

sampling schemes which we are going to present in this chapter. In order to write this Chapter,

I used a large number of sources which I try to quote, but I more specifically relied on the

excellent book [Fornasier and Rauhut, to appear] which is very accurate and informative.
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9. COMPRESSED SENSING

9.2 Compressed Sensing in a nutshell

9.2.1 Setting

Linear regression in very high dimension The setting of Compressed Sensing is the same

as the setting of linear regression, but in very high dimension d � n. The learner observes n

measurements of a linear function with an unknown parameter α. Its objective is to reconstruct

α with these measurements.

More precisely, the samples, or position of the measurements are concealed in a measurement

matrix X ∈ Rd×n where d is the dimension of the parameter α. The learner then observes

measurements Y ∈ Rn, where

Y = Xα+ ε,

where α ∈ Rd is the d−dimensional unknown parameter, and ε ∈ Rn is a noise on the measure-

ments.

The objective of the learner is to output an estimate α̂ of α that is as precise as possible.

Assume that the observations cover all the directions, i.e. if it is possible to extract from X

a basis of Rd (this is equivalent to asking that XTX is invertible). Then if the noise ε is an

i.i.d. white noise, we have α = arg mina Ey
[
||y −XTa||22

]
. It is thus reasonable to search for an

estimate α̂ that minimizes Ey
[
||y−XTa||22

]
. A usual way to compute an estimate that minimizes

this loss is to output the estimate that minimizes the empirical loss, that is to say to define the

estimate α̂ as

α̂ = arg min
a
||Y −Xa||22. (9.1)

This estimate is very popular and is called least squares estimator. It has a nice analytic

expression, that is to say α̂ = (XTX)−1XTY . It has also the nice property to be unbiased

and asymptotically minimax. In an important case, that is to say when the noise is i.i.d. and

Gaussian, it corresponds also the maximum likelihood.

If there is no noise (ε = 0) and d ≤ n, then α̂ = α. If ε is an i.i.d. noise of variance-covariance

matrix Σ = EεεT ε, then the mean squared error of the least squares estimator on the parameter

is Eε
[
||α̂ − α||22

]
= (XTX)−1XTΣX(XTX)−1 = O( dn). It is also proven that this rate of O( dn)

is minimax optimal on all vector α of Rd. For complete informations on linear regression, least

square estimator, and its minimax optimality, see the survey [Rao and Toutenburg, 1999].

However, this theory is useless unless (XTX)−1 is invertible, i.e. unless it is possible to

extract from the measurement matrix a basis of Rd. In particular, this implies that d ≥ n.

Compressed Sensing is about cases where d � n. In these case, the least square estimate can

not be used.

We assume throughout this chapter that d� n.
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Notion of sparsity We mentioned in the last paragraph that the mean-squared error on the

parameter α is of order O( dn). Even if it was possible to compute an alternative estimate of α

when d� n that has this same rate, it is not interesting as it is linear in d. We also mentioned

in the last paragraph that this rate is minimax optimal on the class of all vectors α of Rd. It

is thus not realistic to hope for an estimate that has an “interesting”1 rate of convergence on

simultaneously all vector of Rd.

It is thus necessary to restrict the class of model, i.e. the domain of α. The assumption that

is made in compressed sensing is that α is S−sparse. The set of S−sparse vectors SS is defined

as

SS
def
= {x : ||x||0 ≤ S} ,

where ||.||0 is the usual semi-norm defined as ||x||0 = card (i : xi 6= 0) (where card denotes the

cardinality).

This assumption actually makes sense in practice. Indeed, many signals are naturally sparse

in their basis of storage. Usual instances are images and sounds. In fact, many lossy compression

techniques such as JPEG, MPEG or MP3 rely on the empirical observation that audio signals

and digital images have a sparse representation in terms of a suitable basis. Roughly speaking

one compresses the signal by simply keeping only the largest coefficients. A sketchy example of

a exactly sparse signal are cartoons. A famous image is the Logan-Shepp Phantom, introduced

in [Shepp and Logan, 1974], that we display in inverted color in Figure 9.1. The sparse signal

is the derivative of this image: for a cartoon, there are large uniform color spots, and there are

only few color changes.

Figure 9.1: The Logan-Shepp Phantom.

Assume now that the learner has access to the full support of the vector α, i.e. it knows

exactly which coordinates are non-zero. The minimax bound on the mean-squared error on the

parameter α is then of order O(Sn ). It is thus not possible to have a lower minimax bound on

SS .

1That does not depend, or depend very mildly on d.
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Possible solution We now assume that α ∈ SS .

A reasonable idea is to adapt the estimate defined in Equation 9.1 in the case where the

space of solutions is constrained to sparse vectors. The equivalent of the estimate defined in

Equation 9.1 is

min
α̂∈SS

||Xα̂− y||22. (9.2)

Note that the constraints are a finite union of convex spaces (the union of spaces where vectors

have a fixed S−sparse support), and that the ||.||2 norm is convex, with a minimum in the null

vector. There is thus always at least one solution to this system.

Although there always exists at least one solution for this problem, the main question now

is whether the solutions that we obtain are accurate.

Assume that there is no noise, ε = 0. Then it is clear that α is always one of the solutions of

System 9.2, as in this case ||Xα − y||22 = 0. In the noiseless case, it follows that if the solution

of System 9.2 is unique, then α̂ = α. In order for this procedure to be accurate in the noiseless

case on every S−sparse vector, it is necessary and sufficient that the solution of System 9.2 is

unique for every S−sparse vector. This is equivalent to some conditions on the measurement

matrix X: for instance, if we were in the setting that n ≥ d, it would be sufficient that XTX is

invertible. As in our setting n� d, this is clearly not the case, and it is necessary to find other

conditions.

In the next two Subsections, we consider the noiseless case. We then switch back to the

noisy case in the third Subsection of this Section.

9.2.2 What is a good sampling scheme?

In this Subsection, we restrict ourselves to the noiseless case (ε = 0). As mentioned in the

previous Subsection, in order for System 9.2 to be efficient (return α̂ = α) for every S−sparse

vector, it is necessary to find some clever conditions on the matrix X. We are interested in

conditions on the matrixX such that for any S−sparse α, if the learner is given the measurements

y = Xα, then the solution of system 9.2 is unique and equal to α.

A first remark is that there is a necessary condition on the number of measurement. If there

are less than S measurements, it is strictly impossible to recover any S−sparse vector, even if

the position of the non-zero entries of the vectors are provided to the learner.

A second remark is on the form of the measurement. Assume that the learner measures the

value of α at n coordinates of the basis where α is sparse. Then it is again strictly impossible

to recover every α ∈ SS with these measurements. Indeed, assume that a certain vector a ∈ SS
is non-zero in a coordinate k that we do not measure (as n� d, k always exists). Then there is

no way that the learner will be able to reconstruct ak from that kind of measurements. The set

of measurement matrices X that ensures good recovery properties with n� d is thus restricted.

A theoretical condition A necessary and sufficient condition on X to ensure uniform recov-

ery by solving System 9.2 is the following.
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Assumption [No 2S−sparse vectors in Kernel] There are no 2S sparse vectors in the kernel

of X, i.e. S2S
⋂
Ker(X) = 0.

It is straightforward when remarking that if the existence of 2S−sparse vectors in the kernel

of X, is equivalent to the existence of at least two S−sparse vectors a1 and a2 have the same

image by X.

This assumption is thus equivalent to uniform, perfect recovery in the noiseless case by

solving System 9.2. Note however that this property does not imply any guarantees in the noisy

case.

This condition is also non informative: it does not provide any informations on the minimal

number n of measurements needed, nor on the concrete form of the measurements.

Intuition of what “good” measurements are Consider the set of 1−sparse vector, i.e. S1.

A very simple yet efficient deterministic sampling scheme that enable uniform, perfect recovery

on every 1−sparse vector is the dichotomic search. The idea is to always divide in two the space

so that the possible support of the 1−sparse vector is at each time divided by two. We illustrate

that in Figure 9.2 in the case of d = 8. What is remarkable with this sampling scheme is that

only log(d) measurements are necessary instead of d.

0
x
0
0
0
0
0
0


 1 1 1 1 0 0 0 0

1 1 0 0 1 1 0 0
1 0 1 0 1 0 1 0

 =

 x
x
0


Figure 9.2: Sparsity 1 in dimension 8: only 3 measurements are necessary.

There is thus hope that, using similar ideas, it is possible to design a sampling scheme, i.e. a

measurement matrix X with n ≈ S(log(d)), and that it will ensure perfect recovery by solving

System 9.2.

The uniform uncertainty principle A very important result at the border between group

theory and signal processing is the uniform uncertainty principle. This result has a long story

that goes back to the early times of quantum mechanics. A primary version of it has been stated

by Pr. Chebotarëv in 1923 (see [Stevenhagen and Lenstra, 1996] for a modern version of this).

A consequent breakthrough has been operated in paper [Donoho and Stark, 1989] by Pr.

Donoho and Pr. Stark in 1989. The content of their main theorem is approximately as follows.

They state that if f : l2(Z/dZ) :→ C is a function defined on the cyclic group Z/dZ, then its
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support2 and the support of its Fourier transform can not be very localized at the same time.

This result is directly linked with the finding of good measurement matrices for compressed

sensing if one imagines that f = α and that the n entries of matrix X correspond to coordinates

of the Fourier basis. Then the observations y are the Fourier coefficients at the frequencies cor-

responding to the coordinates. This implies that if the vector α is sparse, then the observations

y are very likely to be non-zero. As the Fourier basis is a basis, this implies, if n is big enough,

perfect recovery.

However, the main Theorem in [Donoho and Stark, 1989] implies that at least S2 arbitrary

measurements of Fourier coefficients are necessary to find at least S non-zero Fourier coefficient

for any α ∈ S, and then have perfect recovery: the support of the Fourier transform of f is

widespread, but not enough so that S arbitrary measurements are enough. This is the quadratic

bottleneck of Compressed Sensing (see e.g. [Rauhut, 2010]). For the purposes of Compressed

Sensing, this result is thus not informative enough even though it is tight. There is however an

easy way to overcome this problem, and we will start talking about it before the end of this

paragraph, and also in the last Subsection.

In 2003, Pr. Tao proved a specific and beautiful extension of the result in [Donoho and

Stark, 1989] for the specific case when d is prime. In this case, the results of paper [Donoho and

Stark, 1989] can be significantly improved. Its formulation is also surprisingly simple. We state

it almost as it is in paper [Tao, 2003].

Theorem 23 (Uniform Uncertainty principle for cyclic group of prime order) Assume

that d is prime and that f : l2(Z/dZ) :→ C. Write S the support of f , and by abusing the nota-

tions, F(S) the support of the Fourier transform of f . Then

card(S) + card(F(S)) ≥ d+ 1,

where card(.) denotes the number of elements in a set.

This Theorem implies the following corollary. It comes easily from the fact that if two

S−sparse signal are different, then their Fourier transform cannot coincide in more than 2S

points without contradicting Theorem 23.

Corollary 10 Assume d is prime. Then every S−sparse vector α ∈ Rd is uniquely determined

by the values of its Fourier transform at any 2S points.

This corollary provides us an answer to what is the sufficient number of different Fourier

measurements of a S−sparse signal to ensure perfect recovery: it says that any 2S different

measurements are sufficient! This implies that if d is prime, it is a clever idea to consider X

being the 2S × d matrix with e.g. the first 2S frequencies of the Fourier basis of dimension d

(any set of 2S measurements that differ from each other will work). This can not be much

ameliorated, as S measurements are anyway needed.

2We define the support of this function as the set of non-zero atom in Z/dZ.
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If d is not prime, however, this Theorem does not hold, and the main Theorem [Donoho and

Stark, 1989] is tight: as explained, the quadratic bottleneck occurs and S2 arbitrary measure-

ments are needed. It is not anymore possible to select any 2S measurements so that Corollary 10

holds. It is however possible to select 2S well-chosen measurements: it ensures uniform, per-

fect recovery to choose 2S distinct generators of the multiplicative ring
(
Z/dZ

)∗
3 (see [DeVore,

2007]). It is however computationally extensive to design such a matrix: as many problems

involving the finding of prime numbers, it is NP-hard.

It is anyway theoretically possible to construct a matrix X containing only 2S measurements

(e.g. well chosen Fourier measurements), and such that uniform recovery holds for any S−sparse

vector by solving System 9.2 (Assumption 9.2.2 is verified). There is however still two big issues.

Although the solution of System 9.2 theoretically exists and is unique under the condition we

recalled, it is computationally infeasible to find it. Indeed, solving this system implies solving

a minimization problem in every sub-spaces of Rd of dimension S and with only S non-zero

coordinates. There are

(
d

S

)
such subspaces, and that kind of problem are called NP−hard.

We recall a solution to this problem in the following Subsection. The other issue is on designing

in practice the matrix X, i.e. choosing carefully the Fourier coefficient to measure. Indeed,

we saw that choosing them in a good way is NP-hard. We deal with this problem in the last

Subsection.

9.2.3 Transformation of the problem in a convex problem

As mentioned in the last Subsection, System 9.2 is in practice impossible to solve. A clever and

natural way to make this problem feasible is to transform the constraints in convex constraints.

Convexification of the ||.||0 norm A natural idea is to transform System 9.2 in the following

system:

min
||α̂||1≤CS

||Xα̂− y||22, (9.3)

where CS is a constant depending on the sparsity and on the level of noise. It is exactly equivalent

to solving System 9.2 in the convex envelop of the constraints. As the problem is convex, the

solution is easy to compute.

This idea was first introduced in the PhD Dissertation of Pr. Logan [Logan, 1965]. There

were many works on this idea since then. This kind of approach was largely popularized by

Pr. Tibshirani (see [Tibshirani, 1996]) under the name of lasso where one aims at solving the

Lagrangian of System 9.3, that is to say minα̂ ||Xα̂− y||22 + λ||α̂||1.

It is now necessary to provide some conditions under which System 9.3 is equivalent to

System 9.2. Figure 9.3 provides an illustration in dimension 2 where this is the case for the dual

of System 9.3 and System 9.2.

3That is to say, 2S distinct number which are prime with d.
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Xa = y

c

l1 ball

cSolution to l0 and l1
minimization

l0 ball

Figure 9.3: A situation where the solutions of the dual of System 9.2 and System 9.3 coincide.

Conditions on the measurement matrix X A necessary and sufficient condition for Sys-

tem 9.3 to have a unique solution equal to α in the noiseless case is just a rewriting of Assump-

tion 9.2.2. It is a classic condition that has been introduced in [Cohen et al., 2009] under the

name Null Space Property (NSP), but that was already implicitly used in more ancient works

such as [Elad and Bruckstein, 2002]. It is recalled in Assumption 9.2.3.

Assumption [NSP of order 2S:] If x ∈ Ker(X), then ∀S ∈ S2S , we have ||xS||1 ≤ ||xSC ||1.

Here xS is x restricted to the support S.

It is very similar to Assumption 9.2.2, as it is equivalent to having no picky vector in the ||.||1
sense, while Assumption 9.2.2 says exactly the same but in the ||.||0 sense. Very importantly, the

fact that the matrix X satisfies the NSP of order 2S, is equivalent to perfect, uniform recovery

in the noiseless case (see [Cohen et al., 2009]). Interestingly, Fourier matrices constructed as

described in the paragraph on the uniform uncertainty principle satisfy also the NSP (see [Cohen

et al., 2009]). For such measurement matrices, only 2S measures are needed to guarantee perfect

recovery of any S−sparse vector when there is no noise, and that by solving the convex, and

thus easy System 9.3.

Although this property ensures perfect recovery in the noiseless case, it however does not

give good guarantees in the noisy case. We present in the next Subsection properties that allow

efficient reconstruction when there is noise.
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9.2.4 The RIP property: a solution to the noisy setting and efficient ways to

sample

We provided in the last two Subsections two necessary and sufficient properties, Assumption 9.2.2

and 9.2.3, which ensure perfect reconstruction in the noiseless case when solving respectively

System 9.2 and 9.3. It is however not informative on what happens when there is noise. We

also did not yet provide ways in how to construct X, outside of Fourier measurements.

RIP property A first remark that we can do is on basic linear regression. In this setting, if

the noise is homocedastic, the minimax error is minimized when X is an isotropic, matrix. This

is intuitive because isotropic means that all directions are measured with equal precision. Note

that in the case when n� d, isotropic implies orthonormal. Intuitively, in the noisy case, good

measurement matrices are thus matrices that verify the NSP, and that are orthonormal. The

well-known restricted isometry property (RIP) is almost stating that.

The RIP property was first introduced in [Candès et al., 2004]. It is anterior to the NSP,

but it is also more restrictive: it is not necessary for perfect, uniform recovery. It is however a

very useful and popular property. We state it in Assumption 9.2.4.

Assumption [(δ, S)−RIP property] A matrix X is (δ, S)−RIP with δ ∈ (0, 1) if ∀x ∈ SS ,

(1− δ)||x||2 ≤ ||Xx||2 ≤ (1 + δ)||x||2.

This also means that the ||.||2 norm of any S−sparse vector is approximately conserved.

Norm conservation is not necessary, as witnessed, in the noiseless case and with the NSP prop-

erty. It becomes however crucial in the noisy case, so that the noise over ratio signal is conserved.

There are however variations on the RIP, like for instance the condition in [Foucart and Lai,

2009], which is an extension of the RIP. The (1− δ) and (1 + δ) are replaced by cmin and cmax,

which correspond respectively to the minimum and maximum eigenvalues in any of the matrices

XT
S XS (for any S). If the ration cmin

cmax
is too small, there are some S−sparse vectors for which

the signal to noise ratio will be very small.

It is clear that the (δ < 1, 2S)−RIP implies Assumption 9.2.2, and thus implies uniform,

perfect recovery in the noiseless case by solving System 9.2. In [Candès et al., 2004], the authors

also prove that the (δ < 1
3 , 2S)−RIP implies the 2S−NSP and thus noiseless uniform recovery

by solving System 9.34.

Noisy recovery We have now every element to state a popular Theorem on noisy uniform

recovery, that holds when the noise (ηt)t is bounded in ||.||2 norm over t, i.e. ||η||2 ≤ σ. It is

extracted from [Candès et al., 2006].

4In fact, as the NSP was not stated at that time, they proved that the (δ < 1
3
, 2S)−RIP implies perfect,

uniform recovery, which is equivalent.

237



9. COMPRESSED SENSING

Theorem 24 [Noisy recovery] Let
√
nX be such that δ3S + δ4S < 2 (δp is the RIP constant of

X for the p−sparse vectors). Then for any signal α ∈ SS and any perturbation η with ||η||2 ≤ σ,

we have

||α̂− α||22 ≤
10Sσ2

n
,

where α̂ is solution to the dual of System 9.3.

Note that the error is only of order O(Sn ), which is the minimax rate when the support is

available! The only issue that remains, and on which we will dissert in the next Subsection is

on how to construct RIP matrices, and with how many measurements.

There are in fact many other instances of Theorems for noisy and noiseless recovery, un-

der somewhat weaker conditions, with different algorithms, or with different shapes of noises.

Although many of these techniques are fundamental breakthrough, we won’t make a listing

of them, as the purpose of this introduction on Compressed Sensing is focused on sampling

schemes, and does not aim at being exhaustive. We will just briefly mention, as an important

development, the Dantzig selector, introduced in [Candes and Tao, 2007]. It deals with the case

of i.i.d. Gaussian noise (extended to more general i.i.d. like noise in [Koltchinskii, 2009]). It gives

results that are in essence similar to the ones in Theorem 24, but where σ2 is now the variance

of the noise.

Finally, we want to mention very briefly best S−term approximation. Indeed, there are many

interesting natural examples where the signal is not completely sparse, but almost, i.e. it can be

well approximated by an S−sparse signal. The main Theorem in [Candès et al., 2006] is already

stated in this setting and they prove that the additional error generated by this approximation

is of order
||α−αS||22
n
√
S

, where αS is the best S−sparse approximation of α in the ||.||2 sense. See

also [Cohen et al., 2009] for a full study of this setting.

9.2.5 Matrices that verify the RIP property

The main remaining problem is on building with few measurements and at low computational

cost RIP-matrices (and that thus verify the NSP). It is also important that these matrices verify

these properties with only few measurement, i.e. with a number of measurements of order S.

Fourier matrices: As a matter of fact, carefully built Fourier matrices, as introduced in the

paragraph on Uniform Uncertainty Principle, verify it with only 2S−measurements. It thus

provides a cheap way to create RIP matrices when d is prime. However when d is not, although

it is in theory possible to select carefully the frequencies at which one ought to sample, it is

computationally very extensive to do so : it is as equivalent to finding 2S distinct generators of

Z/dZ, which is a NP-hard problem (we already pointed that out in the paragraph on Uniform

Uncertainty Principle).

A very simple yet clever way to overcome this problem is, as in many combinatorial problems, to
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sample randomly, uniformly, the frequencies. Because of the properties of density and repartition

of the prime numbers in Z, there is a high probability, when sampling uniformly at random, to

sample distinct generators of Z/dZ. This result is made explicit in [Shepp and Logan, 1974],

and is also discussed in depth in [Candès et al., 2004]: randomization helps to overcome the

quadratic bottleneck. This idea of using randomization to solve difficult combinatorial problems

is not a specificity of Compressed Sensing, and it is actually a quite popular approach.

This idea of randomizing the sampling scheme has given birth to many other ways of building

RIP matrices.

Sub-Gaussian matrices: A very popular is to construct X with i.i.d. Gaussian entries. We

display this result in Theorem 25. It can also easily be generalized to any sub-Gaussian matrix

with i.i.d. entry (see [Baraniuk et al., 2008] for a beautiful proof of this result).

Theorem 25 [Gaussian matrices are RIP] Assume that ∀i ≤ K and ∀t ≤ n, Xi,t ∼ N(0, 1)

and are i.i.d.. Let (e, δ) ∈ (0, 1)2. If n ≥ Cδ−2S(log(d/S) − log(ε)) for an universal constant

C > 0, then with probability 1− e, the matrix X is (δ, S)−RIP. Then if n ≥ CS log(d/δ), with

probability 1− δ, the matrix X is δ−RIP.

This implies that only a multiple of S measurements is necessary to ensure the perfect

uniform recovery with high probability by solving a convex problem.

Orthonormal bounded systems: We also recall here a last result, as it is of particular

interest from a sampling perspective. It is the case of bounded orthonormal system. Assume

that a function is sparse on a functional basis which is bounded and orthonormal. A very

common example for that is functions that are sparse on the Fourier basis (again!).

It is interesting to be able to design sampling schemes that ensure recovery of the function.

In [Rauhut, 2010], the author seems to be the first to have posed and solved this problem

from a sampling point of view. Write ϕk the k−th function of the orthonormal basis, and xt

the t−th measurement. In [Rauhut, 2010], the author proves that when sampling the points

(xt)t uniformly at random on the domain of the function, then System 9.3 ensures that the

measurement matrix
(
ϕk(xt)

)
k,t

is RIP with approximately only CS log(d) measurements where

C is a numerical absolute constant. This ensures that Theorem 24 holds (up to some constants

which differ).

There are many other classes of random matrices that verify the RIP in high probability,

like some types of circulant matrices (see [Rauhut, 2010]). But interestingly, except in some

specific cases, e.g. when d is prime, there are no available results on computationally feasible,

deterministic ways to build RIP matrices.
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9.3 Conclusion

Because of the recent advances in the field of Compressed Sensing, some astonishing results have

been obtained, like for instance in terms of transmission devices in satellites.

Although every aspect of this field are both interesting and beautiful, we focused mainly on

sampling techniques in very high dimension. We are indeed going in the two following Chapters

to present some of our work, that mainly rely on these aspects, if not directly on the results, at

least on the intuitions..
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Chapter 10

Sparse Recovery with Brownian

Sensing

This Chapter is the fruit of a collaboration with Odalric Ambrym Maillard and Rémi Munos.

It was published in the proceedings of the conference Neural Information Processing Systems,

in 2011 (see [Carpentier et al., 2011b]).

We consider the problem of recovering the parameter α ∈ RK of a sparse function f (i.e. the

number of non-zero entries of α is small compared to the number K of features) given noisy eval-

uations of f at a set of well-chosen sampling points. We introduce an additional randomization

process, called Brownian sensing, based on the computation of stochastic integrals, which pro-

duces a Gaussian sensing matrix, for which good recovery properties are proven, independently

on the number of sampling points N , even when the features are arbitrarily non-orthogonal.

Under the assumption that f is Hölder continuous with exponent at least 1/2, we provide an

estimate α̂ of the parameter such that ‖α−α̂‖2 = O(‖η‖2/
√
N), where η is the observation noise.

The method uses a set of sampling points uniformly distributed along a one-dimensional curve

selected according to the features. We report numerical experiments illustrating our method.
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10.1 Introduction

We consider the problem of sensing an unknown function f : X → R (where X ⊂ Rd), where f

belongs to span of a large set of (known) features {ϕk}1≤k≤K of L2(X):

f(x) =
K∑
k=1

αkϕk(x),

where α ∈ RK is the unknown parameter, and is assumed to be S-sparse, i.e. ‖α‖0
def
= |{i : αk 6=

0}| ≤ S. Our goal is to recover α as accurately as possible.

In the setting considered here we are allowed to select the points {xn}1≤n≤N ∈ X where the

function f is evaluated, which results in the noisy observations

yn = f(xn) + ηn, (10.1)

where ηn is an observation noise term. We assume that the noise is bounded, i.e., ‖η‖22
def
=

N∑
n=1

η2
n ≤ σ2.

We write DN = ({xn, yn}1≤n≤N ) the set of observations and we are interested in situations where

N � K, i.e., the number of observations is much smaller than the number of features ϕk.

The question we wish to address is: how well can we recover α based on a set of N noisy

measurements? Note that whenever the noise is non-zero, the recovery cannot be perfect, so we

wish to express the estimation error ‖α− α̂‖2 in terms of N , where α̂ is our estimate.

The proposed method. We address the problem of sparse recovery by combining the two

ideas:

• Sparse recovery theorems (see Section 10.2) essentially say that in order to recover a

vector with a small number of measurements, one needs incoherence. The measurement

basis, corresponding to the pointwise evaluations f(xn), should to be incoherent with the

representation basis, corresponding to the one on which the vector α is sparse. Interpreting

these basis in terms of linear operators, pointwise evaluation of f is equivalent to measuring

f using Dirac masses δxn(f)
def
= f(xn). Since in general the representation basis {ϕk}1≤k≤K

is not incoherent with the measurement basis induced by Dirac operators, we would like

to consider another measurement basis, possibly randomized, in order that it becomes

incoherent with any representation basis.

242



• Since we are interested in reconstructing α, and since we assumed that f is linear in α, we

can apply any set of M linear operators {Tm}1≤m≤M to f =
∑

k αkϕk, and consider the

problem transformed by the operators; the parameter α is thus also the solution to the

transformed problem Tm(f) =
∑

k αkTm(ϕk).

Thus, instead of considering the N ×K sensing matrix Φ = (δxn(ϕk))k,n, we consider a new

M ×K sensing matrix A = (Tm(ϕk))k,m, where the operators {Tm}1≤m≤M enforce incoherence

between bases. Provided that we can estimate Tm(f) with the data set DN , we will be able

to recover α. The Brownian sensing approach followed here uses stochastic integral operators

{Tm}1≤m≤M , which makes the measurement basis incoherent with any representation basis, and

generates a sensing matrix A which is Gaussian (with i.i.d. rows).

The proposed algorithm (detailed in Section 10.3) recovers α by solving the system Aα ≈ b̂
by l1 minimization1, where b̂ ∈ RM is an estimate, based on the noisy observations yn, of the

vector b ∈ RM whose components are bm = Tmf .

Contribution: Our contribution is a sparse recovery result for arbitrary non-orthonormal

functional basis {ϕk}k≤K of a Hölder continuous function f . Theorem 29 states that our estimate

α̂ satisfies ‖α − α̂‖2 = O(‖η‖2/
√
N) with high probability whatever N , under the assumption

that the noise η is globally bounded, such as in Candès and Romberg [2007]; Rauhut [2010].

This result is obtained by combining two contributions:

• We show that when the sensing matrix A is Gaussian, i.e. when each row of the matrix is

drawn i.i.d. from a Gaussian distribution, orthonormality is not required for sparse recov-

ery. This result, stated in Proposition 16 (and used in Step 1 of the proof of Theorem 29),

is a consequence of Theorem 3.1 of Foucart and Lai [2009].

• The sensing matrix A is made Gaussian by choosing the operators Tm to be stochastic

integrals: Tmf
def
= 1√

M

∫
C
fdBm, where Bm are Brownian motions, and C is a 1-dimensional

curve of X appropriately chosen according to the functions {ϕk}k≤K (see the discussion in

Section 10.4). We call A the Brownian sensing matrix.

We have the property that the recovery property using the Brownian sensing matrix A only

depends on the number of Brownian motions M used in the stochastic integrals and not on the

number of sampled points N . Note that M can be chosen arbitrarily large as it is not linked

with the limited amount of data, but M affects the overall computational complexity of the

method. The number of sample N appears in the quality of estimation of b only, and this is

where the assumption that f is Hölder continuous comes into the picture.

Outline: In Section 10.2, we survey the large body of existing results about sparse recovery

and relate our contribution to this literature. In Section 10.3, we explain in detail the Brownian

sensing recovery method sketched above and state our main result in Theorem 29.

1where the approximation sign ≈ refers to a minimization problem under a constraint coming from the obser-
vation noise.
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10. SPARSE RECOVERY WITH BROWNIAN SENSING

In Section 10.4, we first discuss our result and compare it with existing work. Then we

comment on the choice and influence of the sampling domain C on the recovery performance.

Finally in Section 10.6, we report numerical experiments illustrating the recovery properties

of the Brownian sensing method, and the benefit of the latter compared to a straightforward

application of compressed sensing when there is noise and very few sampling points.

10.2 Relation to existing results

A standard approach in order to recover α is to consider the N ×K matrix Φ = (ϕk(xn))k,n,

and solve the system Φα̂ ≈ y where y is the vector with components yn. Since N � K this is an

ill-posed problem. Under the sparsity assumption, a successful idea is first to replace the initial

problem with the well-defined problem of minimizing the `0 norm of α under the constraint

that Φα̂ ≈ y, and then, since this problem is NP-hard, use convex relaxation of the `0 norm

by replacing it with the `1 norm. We then need to ensure that the relaxation provides the

same solution as the initial problem making use of the `0 norm. The literature on this problem

is huge (see Candès and Romberg [2007]; Candes and Tao [2007]; Donoho [2006]; Donoho and

Stark [1989]; Koltchinskii [2009]; Tibshirani [1996]; Zhao and Yu [2006] for examples of papers

that initiated this field of research).

Generally, we can decompose the reconstruction problem into two distinct sub-problems.

The first sub-problem (a) is to state conditions on the matrix Φ ensuring that the recovery is

possible and derive results for the estimation error under such conditions:

The first important condition is the Restricted Isometry Property (RIP), introduced in

Candès et al. [2004], from which we can derive the following recovery result stated in Candès

et al. [2006]:

Theorem 26 (Candés & al, 2006) Let δS be the restricted isometry constant of Φ√
N

, defined

as δS = sup{|
‖ Φ√

N
a‖2

‖a‖2 − 1|; ‖a‖0 ≤ S}. Then if δ3S + δ4S < 2, for every S-sparse vector α ∈ RK ,

the solution α̂ to the `1-minimization problem min{‖a‖1; a satisfies ‖Φa− y‖22 ≤ σ2} satisfies

‖α̂− α‖22 ≤
CSσ

2

N
,

where CS depends only on δ4S.

Apart from the historical RIP, many other conditions emerged from works reporting the

practical difficulty to have the RIP satisfied, and thus weaker conditions ensuring reconstruction

were derived. See van de Geer and Buhlmann [2009] for a precise survey of such conditions. A

weaker condition for recovery is the compatibility condition which leads to the following result

from van de Geer [2007]:

Theorem 27 (Van de Geer & Buhlmann, 2009) Assuming that the compatibility condi-

tion is satisfied, i.e. for a set S of indices of cardinality S and a constant L,

C(L, S) = min
{S‖ Φ√

N
α‖22

‖αS‖21
, α satisfies ‖αSc‖1 ≤ L‖αS‖1

}
> 0,
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then for every S-sparse vector α ∈ RK , the solution α̂ to the `1-minimization problem

min{‖α‖1;α satisfies ‖αSc‖1 ≤ L‖αS‖1} satisfies for C a numerical constant:

‖α̂− α‖22 ≤
C

C(L, S)2

σ2 log(K)

N
.

The second sub-problem (b) of the global reconstruction problem is to provide the user with

a simple way to efficiently sample the space in order to build a matrix Φ such that the conditions

for recovery are fulfilled, at least with high probability. This can be difficult in practice since it

involves understanding the geometry of high dimensional objects. For instance, to the best of

our knowledge, there is no result explaining how to sample the space so that the corresponding

sensing matrix Φ satisfies the nice recovery properties needed by the previous theorems, for a

general family of features {ϕk}k≤K .

However, it is proven in Rauhut [2010] that under some hypotheses on the functional basis,

we are able to recover the strong RIP property for the matrix Φ with high probability. This

result, combined with a recovery result, is stated as follows:

Theorem 28 (Rauhut, 2010) Assume that {ϕk}k≤K is an orthonormal basis of functions un-

der a measure ν, bounded by a constant Cϕ, and that we build DN by sampling f at random ac-

cording to ν. Assume also that the noise is bounded ‖η‖2 ≤ σ. If N
log(N) ≥ c0C

2
ϕS log(S)2 log(K)

and N ≥ c1C
2
ϕS log(p−1), then with probability at least 1− p, for every S-sparse vector α ∈ RK ,

the solution α̂ to the `1-minimization problem min{‖a‖1; a satisfies ‖Aa− y‖22 ≤ σ2} satisfies

‖α̂− α‖22 ≤
c2σ

2

N
,

where c0, c1 and c2 are some numerical constants.

In order to prove this theorem, the author of Rauhut [2010] showed that by sampling the

points i.i.d. from ν, then with with high probability the resulting matrix Φ is RIP. The strong

point of this Theorem is that we do not need to check conditions on the matrix Φ to guarantee

that it is RIP, which is in practice infeasible. But the weakness of the result is that the initial

basis has to be orthonormal and bounded under the given measure ν in order to get the RIP

satisfied: the two conditions ensure incoherence with Dirac observation basis. The specific case

of an unbounded basis i.e., Legendre Polynomial basis, has been considered in Rauhut and Ward

[2010], but to the best of our knowledge, the problem of designing a general sampling strategy

such that the resulting sensing matrix possesses nice recovery properties in the case of non-

orthonormal basis remains unaddressed. Our contribution considers this case and is described

in the following section.

10.3 The “Brownian sensing” approach

A need for incoherence. When the representation and observation basis are not incoherent,

the sensing matrix Φ does not possess a nice recovery property. A natural idea is to change the
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10. SPARSE RECOVERY WITH BROWNIAN SENSING

observation basis by introducing a set of M linear operators {Tm}m≤M acting on the functions

{ϕk}k≤K . We have Tm(f) =
K∑
k=1

αkTm(ϕk) for all 1 ≤ m ≤ M and our goal is to define the op-

erators {Tm}m≤M in order that the sensing matrix (Tm(ϕk))m,k enjoys a nice recovery property,

whatever the representation basis {ϕk}k≤K .

The Brownian sensing operators. We now consider linear operators defined by stochastic

integrals on a 1-dimensional curve C of X. First, we need to select a curve C ⊂ X of length l, such

that the covariance matrix VC, defined by its elements (VC)i,j =
∫
C
ϕiϕj (for 1 ≤ i, j ≤ K), is

invertible. We will discuss the existence of a such a curve later in Section 10.4. Then, we define

the linear operators {Tm}1≤m≤M as stochastic integrals over the curve C: Tm(g)
def
= 1√

M

∫
C
gdBm,

where {Bm}m≤M are M independent Brownian motions defined on C.

Note that up to an appropriate speed-preserving parametrization g : [0, l]→ X of C, we can

work with the corresponding induced family {ψk}k≤K , where ψk = ϕk ◦ g, instead of the family

{ϕk}k≤K .

The sensing method. With the choice of the linear operators {Tm}m≤M defined above,

the parameter α ∈ RK now satisfies the following equation

Aα = b , (10.2)

where b ∈ RM is defined by its components bm
def
= Tm(f) = 1√

M

∫
C
f(x)dBm(x) and the so-called

Brownian sensing matrix A (of size M × K) has elements Am,k
def
= Tm(ϕk). Note that we do

not require sampling f in order to compute the elements of A. Thus, the samples only serve for

estimating b and for this purpose, we sample f at points {xn}1≤n≤N regularly chosen along the

curve C.

In general, for a curve C parametrized with speed-preserving parametrization g : [0, l] → X

of C, we have xn = g( nN l) and the resulting estimate b̂ ∈ RM of b is defined with components:

b̂m =
1√
M

N−1∑
n=0

yn(Bm(xn+1)−Bm(xn)) . (10.3)

Note that in the special case when X = C = [0, 1], we simply have xn = n
N .

The final step of the proposed method is to apply standard recovery techniques (e.g., l1

minimization or Lasso) to compute α̂ for the system (10.2) where b is perturbed by the so-called

sensing noise ε
def
= b− b̂ (estimation error of the stochastic integrals).

10.3.1 Properties of the transformed objects

We now give two properties of the Brownian sensing matrix A and the sensing noise ε = b− b̂ .
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Brownian sensing matrix. By definition of the stochastic integral operators {Tm}m≤M ,

the sensing matrix A = (Tm(ϕk))m,k is a centered Gaussian matrix, with

Cov(Am,k, Am,k′) =
1

M

∫
C

ϕk(x)ϕk′(x)dx .

Moreover by independence of the Brownian motions, each row Am,· is i.i.d. from a centered

Gaussian distribution N(0, 1
M VC), where VC is the K×K covariance matrix of the basis, defined

by its elements Vk,k′ =
∫
C
ϕk(x)ϕk′(x)dx. Thanks to this nice structure, we can prove that A

possesses a property similar to RIP (in the sense of Foucart and Lai [2009]) whenever M is large

enough:

Proposition 16 For p > 0 and any integer t > 0, when M > C′

4 (t log(K/t) + log 1/p)), with C ′

being a universal constant (defined in Baraniuk et al. [2008]; Rudelson and Vershynin [2008]),

then with probability at least 1− p, for all t−sparse vectors x ∈ RK ,

1

2
νmin,C‖x‖2 ≤ ‖Ax‖2 ≤

3

2
νmax,C‖x‖2,

where νmax,C and νmin,C are respectively the largest and smallest eigenvalues of V
1/2
C .

Sensing noise. In order to state our main result, we need a bound on ‖ε‖22. We consider

the simplest deterministic sensing design where we choose the sensing points to be uniformly

distributed along the curve C2.

Proposition 17 Assume that ‖η‖22 ≤ σ2 and that f is (L, β)-Hölder, i.e.

∀(x, y) ∈ X2, |f(x)− f(y)| ≤ L|x− y|β ,

then for any p ∈ (0, 1], with probability at least 1−p, we have the following bound on the sensing

noise ε = b− b̂:

‖ε‖22 ≤
σ̃2(N,M, p)

N
,

where

σ̃2(N,M, p)
def
= 2

( L2l2β

N2β−1
+ σ2

)(
1 + 2

log(1/p)

M
+ 4

√
log(1/p)

M

)
.

Remark 1 The bound on the sensing noise ‖ε‖22 contains two contributions: an approximation

error term which comes from the approximation of a stochastic integral with N points and that

scales with L2l2β/N2β, and the observation noise term of order σ2/N . The observation noise

term (when σ2 > 0) dominates the approximation error term whenever β ≥ 1/2.

2Note that other deterministic, random, or low-discrepancy sequence could be used here.
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10. SPARSE RECOVERY WITH BROWNIAN SENSING

10.3.2 Main result.

In this section, we state our main recovery result for the Brownian sensing method, described

in Figure 10.1, using a uniform sampling method along a one-dimensional curve C ⊂ X ⊂ Rd.
The proof of the following theorem can be found in the supplementary material.

Input: a curve C of length l such that VC is invertible. Parameters N and M .

• Select N uniform samples {xn}1≤n≤N along the curve C,

• Generate M Brownian motions {Bm}1≤m≤M along C.

• Compute the Brownian sensing matrix A ∈ RM×K (i.e. Am,k =
1√
M

∫
C
ϕk(x)dBm(x)).

• Compute the estimate b̂ ∈ RM (i.e. b̂m = 1√
M

∑N−1
n=0 yn(Bm(xn+1)−Bm(xn))).

• Find α̂, solution to

min
a

{
‖a‖1 such that ‖Aa− b̂‖22 ≤

σ̃2(N,M, p)

N

}
.

Figure 10.1: The Brownian sensing approach using a uniform sampling along the curve C.

Theorem 29 (Main result) Assume that f is (L, β)-Hölder on X and that VC is invertible.

Let us write the condition number κC = νmax,C/νmin,C, where νmax,C and νmin,C are respectively

the largest and smallest eigenvalues of V
1/2
C . Write r =

[
(3κC− 1)( 1

4
√

2−1
)
]2

. For any p ∈ (0, 1],

let M ≥ 4c(4Sr log( K
4Sr ) + log 1/p) (where c is a universal constant defined in Baraniuk et al.

[2008]; Rudelson and Vershynin [2008]). Then, with probability at least 1 − 3p, the solution α̂

obtained by the Brownian sensing approach described in Figure 10.1, satisfies

‖α̂− α‖22 ≤ C
( κ4

C

maxk
∫
C
ϕ2
k

) σ̃2(N,M, p)

N
,

where C is a numerical constant and σ̃(N,M, p) is defined in Proposition 17.

10.4 Discussion.

In this section we discuss the differences with previous results, especially with the work Rauhut

[2010] recalled in Theorem 28. We then comment on the choice of the curve C and illustrate

examples of such curves for different bases.

10.4.1 Comparison with known results

The order of the bound. Concerning the scaling of the estimation error in terms of the

number of sensing points N , Theorem 28 of Rauhut [2010] (reminded in Section 10.2) states
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that when N is large enough (i.e., N = Ω(S log(K))), we can build an estimate α̂ such that

‖α̂ − α‖22 = O(σ
2

N ). In comparison, our bound shows that ‖α̂ − α‖22 = O(L
2l2β

N2β + σ2

N ) for any

values of N . Thus, provided that the function f has a Hölder exponent β ≥ 1/2, we obtain the

same rate as in Theorem 28.

A weak assumption about the basis. Note that our recovery performance scales with

the condition number κC of VC as well as the length l of the curve C. However, concerning the

hypothesis on the functions {ϕk}k≤K , we only assume that the covariance matrix VC is invertible

on the curve C, which enables to handle arbitrarily non-orthonormal bases. This means that

the orthogonality condition on the basis functions is not a crucial requirement to deduce sparse

recovery properties. To the best of our knowledge, this is an improvement over previously known

results (such as the work of Rauhut [2010]). Note however that if κC or l are too high, then

the bound becomes loose. Also the computational complexity of the Brownian sensing increases

when κC is large, since it is necessary to take a large M , i.e. to simulate more Brownian motions

in that case.

A result that holds without any conditions on the number of sampling points.

Theorem 29 requires a constraint on the number of Brownian motions M (i.e., that M =

Ω(S logK)) and not on the number of sampling points N (as in Rauhut [2010], see Theorem

28). This is interesting in practical situations when we do not know the value of S, as we do not

have to assume a lower-bound on N to deduce the estimation error result. This is due to the

fact that the Brownian sensing matrix A only depends on the computation of the M stochastic

integrals of the K functions ϕk, and does not depend on the samples. The bound shows that

we should take M as large as possible. However, M impacts the numerical cost of the method.

This implies in practice a trade-off between a large M for a good estimation of α and a low M

for low numerical cost.

Intuition of the method. Now, we give more intuition about the method. In other works,

either with deterministic or random design (i.e. when the function is evaluated at a set of points

chosen in a deterministic or stochastic way), the samples (xn)1≤n≤N are used both to observe

the function f and to construct the sensing matrix Φ. It is computationally infeasible to check

the if the recovery property on the sensing matrix is verified. In the method proposed here, we

separate the sparse regression problem in two distinct problems. First we build independently

from the samples a Brownian sensing matrix A, which only depends on the choice of the Brownian

motions. This matrix is Gaussian and verifies a property similar to RIP with high probability

(and the RIP-constant decreases with the number of Brownian motions). Second we estimate

the right hand side term b =
∫
fdB using the samples. Thus the only requirement about the

samples is that they enable us to accurately estimate those stochastic integrals.
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10.4.2 The choice of the curve

Why sampling along a 1-dimensional curve C instead of sampling over the whole

space X? In a bounded space X of dimension 1, both approaches are identical. But in dimen-

sion d > 1, following the Brownian sensing approach while sampling over the whole space would

require generating M Brownian sheets (extension of Brownian motions to d > 1 dimensions) over

X, and then building theM×K matrixA with elementsAm,k =
∫
X
ϕk(t1, ...td)dB

m
1 (t1)...dBm

d (td).

Assuming that the covariance matrix VX is invertible, this Brownian sensing matrix is also

Gaussian and enjoys the same recovery properties as in the one-dimensional case. However, in

this case, estimating the stochastic integrals bm =
∫
X
fdBm using sensing points along a (d-

dimensional) grid would provide an estimation error ε = b− b̂ that scales poorly with d since we

integrate over a d dimensional space. This explains our choice of selecting a 1-dimensional curve

C instead of the whole space X and sampling N points along the curve. This choice provides

indeed a better estimation of b which is defined by a 1-dimensional stochastic integrals over C.

Note that the only requirement for the choice of the curve C is that the covariance matrix VC

defined along this curve should be invertible.

In addition, in some specific applications the sampling process can be very constrained by

physical systems and sampling uniformly in all the domain is typically costly. For example in

some medical experiments, e.g., scanner or I.R.M., it is only possible to sample along straight

lines.

What the parameters of the curve tell us on a basis. In the result of Theorem 29,

the length l of the curve C as well as the condition number κC = νmax,C/νmin,C are essential

characteristics of the efficiency of the method. It is important to note that those two variables

are actually related. Indeed, it may not be possible to find a short curve C such that κC is small.

For instance in the case where the basis functions have compact support, if the curve C does not

pass through the support of all functions, VC will not be invertible. Any function whose support

does not intersect with the curve would indeed be an eigenvector of VC with a 0 eigenvalue.

This indicates that the method will not work well in the case of a very localized basis {ϕk}k≤K
(e.g. wavelets with compact support), since the curve would have to cover the whole domain

and thus l will be very large. On the other hand, the situation may be much nicer when the

basis is not localized, as in the case of a Fourier basis. We show in the next subsection that in

a d-dimensional Fourier basis, it is possible to find a curve C (actually a segment) such that the

basis is orthonormal along the chosen line (i.e. κC = 1).

10.4.3 Examples of curves

For illustration, we exhibit three cases for which one can easily derive a curve C such that VC is

invertible. The method described in the previous section will work with the following examples.
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X is a segment of R: In this case, we simply take C = X, and the sparse recovery is possible

whenever the functions {ϕk}k≤K are linearly independent in L2.

Coordinate functions: Consider the case when the basis are the coordinate functions ϕk(t1, ...td) =

tk. Then we can define the parametrization of the curve C by g(t) = α(t)(t, t2, . . . , td), where

α(t) is the solution to a differential equation such that ‖g′(t)‖2 = 1 (which implies that for

any function h,
∫
h ◦ g =

∫
C
h). The corresponding functions ψk(t) = α(t)tk are linearly inde-

pendent, since the only functions α(t) such that the {ψk}k≤K are not linearly independent are

functions that are 0 almost everywhere, which would contradict the definition of α(t). Thus VC

is invertible.

Fourier basis: Let us now consider the Fourier basis in Rd with frequency T :

ϕn1,...,nd(t1, .., td) =
∏
j

exp
(
− 2iπnjtj

T

)
,

where nj ∈ {0, ..., T − 1} and tj ∈ [0, 1]. Note that this basis is orthonormal under the uniform

distribution on [0, 1]d. In this case we define g by g(t) = λ(t 1
T d−1 , t

T
T d−1 , ..., t

T d−1

T d−1 ) with λ =√
1−T−2

1−T−2d (so that ‖g′(t)‖2 = 1), thus we deduce that:

ψn1,...,nd(t) = exp
(
−

2iπtλ
∑

j njT
j−1

T d
)
.

Since nk ∈ {0, ..., T − 1}, the mapping that associates
∑

j njT
j−1 to (n1, . . . , nd) is a bijection

from {0, . . . , T − 1}d to {0, . . . , T d− 1}. Thus we can identify the family (ψn1,...,nd) with the one

dimensional Fourier basis with frequency T d

λ , which means that the condition number ρ = 1 for

this curve. Therefore, for a d-dimensional function f , sparse in the Fourier basis, it is sufficient

to sample along the curve induced by g to ensure that VC is invertible.

10.5 Recovery with orthonormal basis and i.i.d. noise when the

function f is Lipschitz

We assume in this Section that the function f is L−Lipschitz.

10.5.0.1 I.i.d. centered Gaussian observation noise

Let us now assume that the noise is i.i.d. from a centered Gaussian distribution, i.e. ηn ∼ N(0, v).

We will also make the standard assumption (see Rauhut [2010]) that the basis functions ϕk are

upper-bounded by ϕ̄, i.e. ||ϕk||∞ ≤ ϕ̄.

Here, we use the Dantzig selector and thus suppose that the basis (ϕk)1≤k≤K is orthonormal

(in practice, orthogonal is sufficient if we know the norm of each feature, see the proof in Candes

and Tao [2007]).
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We first state a result similar to the orthogonality condition of Candes and Tao [2007] showing

that any row of the matrix A is weakly correlated to the approximation error ε = b− b̂, which

will be useful in order to control the estimation error of a naive estimate of the parameter (here

AT b̂).

Proposition 18 Assume that M ≥ N2, then with probability 1− 2e:

sup
k
〈Ak,., ε〉 ≤ κc′(e/(2KN))

(√v log 2K/e

2N
+

1

N

)
(10.4)

with κ
def
= max(1, ϕ̄2, L2, Lϕ̄), and c′(e)

def
= 1 + 2

√
log(2/e) + log(2/e).

Now we consider the solution given by the Dantzig selector (see Candes and Tao [2007]) and

deduce Theorem 30 from Candes and Tao [2007]. The estimate is given by

min ||a||1 under the constraint ||AT (Aa− b̂)||∞ ≤ c′(e/(2KN))
(√v log 2K/e

2N
+

1

N

)
.

Theorem 30 ∀e > 0, M ≥ max(N2, 25C ′(3S log(K/3S) + log 1/e)), with probability 1− 3e,

||α̂− α||2 ≤
3

25

√
Sκc′(e/(2KN))

(√v log 2K/e

2N
+

1

N

)
.

This result says that without assumption on a minimal number of samples N , we can get a

recovery error ||α̂− α||2 = O
(√

S
(√

v/N + 1/N
)

log(KN)
)

.

10.5.1 Discussion

The condition in Proposition 18. The Assumption that M > N2 is useful only to have

this distinction between the the approximation noise (due to approximation error) and the i.i.d.

observation noise (approximation noise small in front of i.i.d. noise). This requirement is not

restrictive (in terms of samples N) since we can choose as many Brownian motions M as we

wish. The only cost is computational. We could also release this constraint and derive in a very

similar way, that supk〈Ak,., ε〉 = O( 1√
min(M,N)

).

Lasso and Dantzig Selector are equivalent. We know from Asif and Romberg [2010];

Bickel et al. [2009]; James et al. [2009] that LASSO and Dantzig selector are equivalent in the

case of i.i.d. Gaussian noise. Here the estimation error ε = b− b̂ of our transformed problem is

not i.i.d. Gaussian anymore but still satisfy the orthogonality condition (10.4) which is similar

to the one defined in Candes and Tao [2007] for which Dantzig selector can apply.

A remark on non-orthonormal bases. Let us finally mention that considering non-orthonormal

bases for the case of i.i.d. noise is also possible if we can compute the matrix V (covariance ma-

trix of the features) and are ready to invert it. Indeed, we could just consider the transformed
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problem

min ||a||1 under the constraint ||V −1AT (Aa− b̂)||∞ ≤ C,

and all results obtained for the orthonormal case would hold.

The recovery rate. For i.i.d. noise the existing results such as Bickel et al. [2009]; Bunea

et al. [2007]; Zhang [2009] impose conditions on the sensing matrix, as a function of the samples,

which are hard to check in practice. The condition for Brownian Sensing is that the samples

enable to estimate correctly the stochastic integral of f . This condition is easy to check if the

regularity of f is known.

10.6 Numerical Experiments

10.6.1 Illustration of the performances of of Brownian Sensing

In this subsection, we illustrate the method of Brownian sensing in dimension one. We consider

a non-orthonormal family {ϕk}k≤K of K = 100 functions of L2([0, 2π]) defined by ϕk(t) =
cos(tk)+cos(t(k+1))√

2π
. In the experiments, we use a function f whose decomposition is 3-sparse and

which is (10, 1)-Hölder, and we consider a bounded observation noise η, with different noise

levels, where the noise level is defined by σ2 =
∑N

n=1 η
2
n.
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Figure 10.2: Mean squared estimation error using Brownian sensing (plain curve) and a direct
l1-minimization solving Φα ≈ y (dashed line), for different noise level (σ2 = 0, σ2 = 0.5, σ2 = 1),
plotted as a function of the number of sample points N .

In Figure 10.2, the plain curve represents the recovery performance, i.e., mean squared error,

of Brownian sensing i.e., minimizing ‖a‖1 under constraint that ‖Aa− b̂‖2 ≤ 1.95
√

2(100/N + 2)

using M = 100 Brownian motions and a regular grid of N points, as a function of N3. The

dashed curve represents the mean squared error of a regular l1 minimization of ‖a‖1 under the

constraint that ‖Φa − y‖22 ≤ σ2 (as described e.g. in Rauhut [2010]), where the N samples are

drawn uniformly randomly over the domain. The three different graphics correspond to different

values of the noise level σ2 (from left to right 0, 0.5 and 1). Note that the results are averaged

over 5000 trials.

3We assume that we know a loose bound on the noise level, here σ2 ≤ 2, and we take p = 0.01.
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10. SPARSE RECOVERY WITH BROWNIAN SENSING

Figure 10.2 illustrates that, as expected, Brownian sensing outperforms the method described

in Rauhut [2010] for noisy measurements4. Note also that the method described in Rauhut [2010]

recovers the sparse vector when there is no noise, and that Brownian sensing in this case has a

smoother dependency w.r.t. N . Note that this improvement comes from the fact that we use

the Hölder regularity of the function: Compressed sensing may outperform Brownian sensing

for arbitrarily non regular functions.

10.6.2 The initial experiment of compressed sensing revisited

Intuition The idea developed in Subsection 10.4.3 is a good tool to understand the initial

experiment of Compressed sensing: that is to say the Logan-Shepp Phantom, introduced in

Candès et al. [2004].

The Logan-Shepp Phantom is a cartoon, i.e. an image whose derivative is sparse. The idea

is then to sample a few Fourier coefficients of the derivative of the cartoon and then reconstruct

it using a l1-minimization algorithm. It has been observed that it was enough to sample on some

linear curves (22 radial lines in Candès et al. [2004]), which is surprising for usual compressed

sensing theory. What is even odder is that it is enough to sample only on one line in the upper

part of the cartoon.

Let f(x, y) denotes the derivative of the cartoon F , where x and y are integers in {1, ...,K}.
Since the basis on which f is sparse is the Dirac basis (ek1,k2)k1,k2≤K where ek1,k2(x, y) =

δx,k1δy,k2 , we have f(x, y) =
∑

k1,k2
αk1,k2ek1,k2(x, y), with αk1,k2 the sparse parameter.

Thus F(f), the Fourier transform of f , satisfies:

F(f)(ω1, ω2) =
∑
k1,k2

αk1,k2ϕk1,k2(ω1, ω2)

where ϕk1,k2(ω1, ω2) = exp(−2iπω1k1
K ) exp(−2iπω2k2

K ) is the Fourier basis of frequency K.

Thus, to recover α, we can sample the Fourier transform F(f) on some randomly chosen

points over the Fourier domain, or better only on the linear curve C along which the Fourier basis

is orthogonal, like for instance the curve parametrized by t given by: g(t) = {ω1 = 1
K t, ω2 = t}.

Then, we get the sampling points (g(tn))n for parameter points tn ∈ R and recover f with this

sample, which will be the solution of total variation norm minimization problem (see Rudelson

and Vershynin [2008] for recovery with Fourier random matrix, Rauhut [2010] for recovery with

orthonormal base).

Note eventually that the 22 radial lines used to sample were not at all parametrized by g.

But for most linear curves the Fourier basis is still orthogonal along this curve, thus, it is no

wonder that observing on these radial lines is enough to recover exactly the image.

4Note however that there is no theoretical guarantee that the method described in Rauhut [2010] works here
since the functions are not orthonormal.
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Compressed sampling the Logan-Shepp along one line We applies the idea of sampling

the Fourier coefficients only on one well-chosen curve C to the Logan Shepp Phantom, where

we choose for C the line parameterized by the function g defined in the previous section. We

consider two experiments showing that sampling on this line enables similar recovery properties

as sampling on the all domain.

Figure 10.3: The Logan Shepp Phantom (left), the sample line in the Fourier space (black line,
middle), the image recovered with no error (right).

The phantom image of a head known as the Logan-Shepp phantom is an image of size 64×64,

thus with 4096 pixels and the sparsity of the image derivative is 502 (Note that the sparsity is

here is due the fact we have an image with low resolution).

We applied total variation minimization algorithm (l1− magic) after sampling 800 Fourier

coefficients of the image on only one well-chosen segment of the image. Figure 10.3 shows the

target image, the sampling line, and the reconstructed image (with no error) and all in inversed

colors.

The second experiment illustrated by Figure 10.4 directly compares Compressed sensing for

points that are randomly chosen in the domain and for points chosen on the segment.

Figure 10.4: Recovery error of Compressed sensing when sampling over the segment C and when
sampling randomly over the entire domain, as a function of the number of sampling points.

Those numerical experiments show that there is no additional approximation error when

255



10. SPARSE RECOVERY WITH BROWNIAN SENSING

sampling along a single segment compared to sampling uniformly randomly over the whole

space.

Conclusion

In this Chapter, we have introduced a so-called Brownian sensing approach, as a way to sample

an unknown function which has a sparse representation on a given non-orthonormal basis. Our

approach differs from previous attempts to apply compressed sensing in the fact that we build a

“Brownian sensing” matrix A based on a set of Brownian motions, which is independent of the

function f . This enables us to guarantee nice recovery properties of A. The function evaluations

are used to estimate the right hand side term b (stochastic integrals). In dimension d we proposed

to sample the function along a well-chosen curve, i.e. such that the corresponding covariance

matrix is invertible. We provided competitive reconstruction error rates of order O(‖η‖2/
√
N)

when the observation noise η is bounded and f is assumed to be Hölder continuous with exponent

at least 1/2. We believe that the Hölder assumption is not strictly required (the smoothness of

f is assumed to derive nice estimations of the stochastic integrals only), and future works will

consider weakening this assumption, possibly by considering randomized sampling designs.
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Appendices for Chapter 10

10.A Proofs

Proof of Proposition 16

First, we prove a very short Lemma describing some properties of the matrix A.

Lemma 40 Let us consider M independent Brownian motions (B1, ..., BM ) on X, and define

the M ×K matrix A with elements

Am,k =
1√
M

(∫
C

ϕk(x)dBm(x)
)
.

Then A is a centered Gaussian matrix where each row Am,· is i.i.d. from N(0, 1
M VC), where VC

is the K ×K covariance matrix of the basis, defined by its elements Vk,k′ =
∫
C
ϕk(x)ϕk′(x)dx.

Proof: Indeed, from the definition of stochastic integrals, each Am,k ∼ N(0, 1
M

∫
C
ϕ2
k(x)dx), and

Cov(Am,k, Am,k′) = 1
M

∫
C
ϕk(x)ϕk′(x)dx. Thus each row Am,· ∼ N(0, 1

M VC) and are independent

by independence of the Brownian motions. Additionally, we have

E[(ATA)k,k′ ] = E
[ 1

M

M∑
m=1

Am,kAm,k′
]

= Vk,k′,C.

�

Now let us define B = AV
−1/2
C . Since each row of A is an independent draw of N(0, VC), then

each row of B is an independent draw of N(0, I). Thus B is a matrix with elements i.i.d. from

N(0, 1). We thus can use the following result (as stated in Fornasier and Rauhut [to appear],

see also Baraniuk et al. [2008]; Rudelson and Vershynin [2008]):

Theorem 31 For p′ > 0 and any integer t > 0, when M > C ′δ−2(t log(K/t) + log 1/p′)), with

C ′ being a universal constant, see Baraniuk et al. [2008]; Rudelson and Vershynin [2008], then

with probability at least 1 − p′, there exists δt ≤ δ (δt is the RIP constant of B for t-sparse

vectors) such that for all t−sparse vectors x ∈ RK ,

(1− δt)‖x‖2 ≤ ‖Bx‖2 ≤ (1 + δt)‖x‖2.

Since VC is symmetric, it is possible to write VC = UDUT with U an orthogonal matrix

and D a diagonal matrix with the eigenvalues of V as diagonal elements (SVD decomposition).

Thus, V 1/2 = UD1/2UT where D1/2 is the diagonal matrix with the square roots of the diagonal

elements of D (i.e., the eigenvalues of V
1/2
C ).

Note that if U is an orthogonal matrix, BU is also RIP with the same constant as B (see

Donoho [2006] for the preservation of the RIP property to a change of orthonormal basis).
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10. SPARSE RECOVERY WITH BROWNIAN SENSING

Applying this and Theorem 31 with δ = 1/2 for 2t-sparse vectors, we have that whenever

M > 4C ′(2t log(K/2t) + log 1/p′), the RIP constant δ2t ≤ 1/2, i.e. for all 2t−sparse vectors x,

1

2
‖x‖2 ≤ ‖BUx‖2 ≤

3

2
‖x‖2.

Now if we consider a 2t−sparse vector x, then D1/2x is also 2t−sparse with same support

as x, and we also have that νmin,C‖x‖2 ≤ ‖D1/2x‖2 ≤ νmax,C‖x‖2. Thus the matrix BUD1/2

satisfies
νmin,C

2
‖x‖2 ≤ ‖BUD1/2x‖2 ≤

3νmax,C
2
‖x‖2.

As mentioned before, the preservation of the RIP property to a change of orthonormal base

(see Donoho [2006]) can be applied with U and thus as A = BV 1/2 = BUD1/2UT to obtain:

1

2
νmin,C‖x‖2 ≤ ‖Ax‖2 ≤

3

2
νmax,C‖x‖2.

Proof of Proposition 17

We prove here without loss of generality (because of we can always parametrize the curve)

the result for X = [0, l]. Let us recall that f is (L, β)-Hölder and that we write σ = ‖η‖2.

The estimation error εm = bm − b̂m, given the samples (xn, yn)n, follows a centered Gaussian

distribution (w.r.t. the choice of the Brownian Bm) with variance

V(εm) = V

(
1√
M

(∫ l

0
f(x)dBm(x)−

N−1∑
n=0

yn(Bm
xn+1

−Bm
xn)
))

=
1

M
V

(∫ l

0

(
f(x)−

∑
n

(f(l
(n+ 1)

N
) + ηn)I

x∈[l n
N

;l
(n+1)
N

]

)
dBm(x)

)

=
1

M

∫ l

0

(
f(x)−

∑
n

(f(l
n

N
) + ηn)I

x∈[l n
N

;l
(n+1)
N

]

)2
dx

=
1

M

∑
n

∫ l
(n+1)
N

l n
N

(f(x)− f(l
n

N
)− ηn)2dx

≤ 1

MN

∑
n

(
Llβ

Nβ
+ |ηn|)2dx

=
2

MN

( L2l2β

N2β−1
+
∑
n

|ηn|2
)

≤ 2

MN

( L2l2β

N2β−1
+ σ2

)
.

We now wish to apply Bernstein’s inequality in order to bound ‖ε‖2 in high probability. We

recall the following result (see e.g. Bennett [1962]):
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Theorem 32 (Bernstein’s inequality) Let (X1, ....XM ) be independent real valued random

variables and assume that there exist two positive numbers v and d such that:
∑M

m=1 E(X2
m) ≤ v

and for all integers r ≥ 3,
M∑
m=1

E[(Xm)r+] ≤ r!

2
vdr−2.

Let S =
∑M

m=1(Xm − E(Xm)), then for any x ≥ 0, we have P(S ≥
√

2vx+ dx) ≤ exp(−x).

Let us check that the assumptions for applying Bernstein’s inequality hold with the choice

v = 8M(V(εm))2 and d = 2V(εm). Indeed, since the εm are i.i.d. centered Gaussian, by writing

Xm = ε2
m, we have Xm ≥ 0 and for any integer r ≥ 2, E(Xr

m) = (V(εm))r (2r)!
2rr! . This gives∑M

m=1 E[X2
m] = 3M(V(εm))2 ≤ v, and for r ≥ 3,

M∑
m=1

E[Xr
m] = M(V(εm))r

(2r)!

2rr!
≤M(V(εm))r × 2rr! ≤ r!

2
vdr−2.

We thus apply Bernstein’s inequality (and recall that V(εm) ≤ 2
MN

(
L2l2β

N2β−1 + σ2
)

) to obtain

that with probability at least 1− p,

‖ε‖22 ≤ 2
(L2l2β

N2β
+
σ2

N

)(
1 + 4

√
log(1/p)

M
+ 2

log(1/p)

M

)
.

Proof of Theorem 29

Following Foucart and Lai [2009], we define αt > 0 (respectively βt > 0) as the maximal (resp.

minimal) values such that for all x ∈ RK which are t−sparse,

αt‖x‖2 ≤ ‖Ax‖2 ≤ βt‖x‖2. (10.5)

We now define γt = βt
αt

and use Theorem 3.1 of Foucart and Lai [2009] applied to sparse

vectors, in the case of `1 minimization, reminded below:

Theorem 33 (Foucart, Lai) For any integer S > 0, for t ≥ S, whenever γ2t − 1 ≤ 4(
√

2 −
1)
√

t
S , the solution α̂ to the `1-minimization problem

min ‖a‖1, under the constraint ‖Aa− b‖22 ≤ ‖ε‖22,

satisfies ‖α − α̂‖2 ≤ D2‖ε‖2
β2S

, where D2 is a constant which depends on γ2t, S and t defined in

Foucart and Lai [2009].

In order to apply this results, we now provide conditions such that (10.5) holds, as well as

an upper bound on the noise ‖ε2‖, and a lower bound on β2S .

Step 1. Recovery Condition: We recall the results of Proposition 16 and have that

(10.5) holds with α2t ≥ 1
2νmin,C and β2t ≤ 3

2νmax,C with probability 1 − p′ as long as M >
C′

4 (t log(K/t) + log 1/p′)). Thus γ2t ≤ 3
νmax,C

νmin,C
= 3κC.
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10. SPARSE RECOVERY WITH BROWNIAN SENSING

A sufficient condition for (33) is that 3κC − 1 ≤ 4(
√

2− 1)
√

t
S .

By defining r =
[
(3κC − 1)( 1

4
√

2−1
)
]2

(note that r only depends on VC), condition (33) holds

whenever t > Sr, thus with probability 1− p′, whenever

M > 4C ′
(
2dSre log

K

2Sr
+ log 1/p′

)
. (10.6)

Note that this condition holds when the number of Brownian motions M (which can be

chosen arbitrarily) is large enough (and does not depend on the number of observations N).

Step 2. Upper bound on ‖ε2‖: This is the result of Proposition 17.

Step 3. Lower bound on β2S In order to apply Theorem 33, we now provide a lower

bound on β2S .

Lemma 41 If

M > C ′ log 1/u, (10.7)

then with probability 1− u we have: β2S ≥ 1
2

√
maxk

∫
C
ϕ2
k.

Proof: Let us define i = arg maxk
∫
C
ϕ2
k(x)dx. Let us now consider the 1−sparse vector a such

that ai = 1 and ak = 0 otherwise. We have: (Aa)m =
∫
C
ϕi(x)dBm(x). So each (Aa)m is a

sample drawn independently from N(0,
∫
C
ϕ2
i (x)dx).

By applying Theorem 31, with S = K = 1 and δ = 1/2, when M > C ′ log 1/u, then with

probability 1− u,

1

2

√∫
C

ϕ2
i (x)dx‖a‖2 ≤ ‖Aa‖2 ≤

3

2

√∫
C

ϕ2
i (x)dx‖a‖2.

And since β2S is the minimal constant such that for every 2S−sparse vector x (in particular

for a) we have ‖Ax‖2 ≤ β2S‖x‖2, we deduce that

β2S ≥
1

2

√∫
C

ϕ2
i (x)dx =

1

2

√
max
k

∫
C

ϕ2
k(x)dx.

�

We now apply Theorem 33 and deduce that when M satisfies (10.6) (which implies that

(10.7) also holds) using Lemma 41, with probability 1− p′ − u,

‖α̂− α‖2 ≤
2D2σ̃(N,M, p)
√
N
√

maxk
∫
C
ϕ2
k

(10.8)

Thus from Proposition 17, with probability 1− p− p′ − u,

‖α̂− α‖22 ≤
8D2

2

(
L2

N2β−1 l
2β + σ2

)
(1 + c(p,M))

N(maxk
∫
C
ϕ2
k)

,
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and from Foucart and Lai [2009], we deduce that if we are able to recover 4S−sparse vectors,

i.e., if M > 4C ′
(
4Sr log K

4Sr + log 1/p′
)

then D2 ≤ Cκ2
C where C can be loosely bounded by 90,

see Foucart and Lai [2009] (note that this numerical constant can be greatly improved). The

result follows with the choice p = p′ = u.

Proof of Proposition 18

Step 1: decomposition of the orthogonality condition: We write the noise εm = bm− b̂m
as:

εm =
1√
M

(

∫ 1

0
f(x)dBm(x)−

N−1∑
n=0

yn(Bm
xn+1

−Bm
xn))

=
1√
M

(∫ 1

0

(
f(x)−

∑
n

(f(n/N) + ηn)Ix∈[n/N ;(n+1)/N ]

)
dBm(x)

)

=
1√
M

(∑
n

∫ (n+1)/N

n/N
[f(x)− f(n/N)]dBm(x)−

∑
n

ηn(Bm
xn+1

−Bm
xn)

)

=
1√
M

(∑
n

Fm,n −
∑
n

ηnBm,n

)
.

where Bm,n = (Bm
n+1
N

−Bm
n
N

) and Fm,n =
∫ (n+1)/N
n/N [f(x)− f(n/N)]dBm(x).

The inner product between the k-th row of A and ε is bounded as

〈Ak,., ε〉 =
1√
M

M∑
m=1

Ak,m

N−1∑
n=0

(Fm,n − ηnBm,n)

=
N−1∑
n=0

(fk,n − ηnck,n), (10.9)

where ck,n = 1√
M

∑M
m=1Ak,mBm,n and fk,n = 1√

M

∑M
m=1Ak,mFm,n.

We now want to find an upper bound on maxk ||ck,.||22 and maxk ||fk,.||1, which will be

obtained by applying Bernstein’s inequality (in Step 4). We first provide preliminary results in

Steps 2 and 3 in order to apply Bernstein’s inequality.

Step 2: Preliminary results on Ak,m, Bm,n, and Fm,n: We now characterize the laws and

correlation structures of Ak,m, Bm,n, and Fm,n:

• Ak,m = 1√
M

∫ 1
0 ϕjdB

m ∼ N(0, a), where we write a
def
= 1

M

∫
ϕ2
kdx,

• Bm,n = Bm
n+1
N

−Bm
n
N

=
∫ n+1

N
n
N

1dBm ∼ N(0, b) where we write b
def
= 1/N ,

• Fm,n =
∫ (n+1)/N
n/N [f(x) − f(n/N)]dBm(x) ∼ N(0, β) where we write β

def
=
∫ (n+1)/N
n/N [f(x) −

f(n/N)]2dx),
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• The products (Ak,mBm,n)1≤m≤M are i.i.d.

• The products (Ak,mFm,n)1≤m≤M are i.i.d.

• E(Ak,mBm,n) = 1√
M

∫ n+1
N

n
N

ϕk(x)dx
def
= c

• E(Ak,mFm,n) = 1√
M

∫ n+1
N

n
N

ϕk(x)[f(x)− f(n/N)]dx
def
= ς

Step 3: Bounding the moments of (Ak,mBm,n) and (Ak,mFm,n): Let us first remind

Isserli’s Theorem:

Theorem 34 (Isserli’s Theorem) If (X1, X2, . . . , X2p) is a zero-mean multivariate Gaussian

random vector, then:

E(X1X2 . . . X2p) =
∑∏

E(XiXj)

where the notation
∑∏

means summing over all distinct ways of partitioning (X1, ..., X2p)

into pairs. Additionally, E(X1X2...X2p−1) = 0

An immediate consequence of this Theorem and the preliminary results of Step 2 is the next

Lemma.

Lemma 42 We have:

E[(Ak,mBm,n)2] = 2c2 + ab < 2(a+ b+ |c|)2

E[(Ak,mFm,n)2] = 2ς2 + aβ < 2(a+ β + |ς|)2

Proof: From Step 2 and Theorem 34, we have

E[(Ak,mBm,n)2] = 2
(
E[Ak,mBm,n]

)2
+ E(A2

k,m)E(B2
m,n) = 2c2 + ab < 2(a+ b+ |c|)2.

The second line is derived similarly. �

We now need to bound moments of order p, which is proved by induction.

Lemma 43 We have for all integer p > 2:

|E[(Ak,mBm,n)p]| <
p!

2
(a+ b+ |c|)p−2(2(a+ b+ |c|)2)

|E[(Ak,mFm,n)p]| <
p!

2
(a+ β + |ς|)p−2(2(a+ β + |ς|)2)

Proof:

We will prove the first inequality and the second one can be proven exactly the same way.
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Again we use Isserli’s Theorem:

E((Ak,mBm,n)p) = pE(Ak,mBm,n)E((Ak,mBm,n)p−1) + (p− 1)E(A2
k,m)E(Ap−2

k,mB
p
m,n)

E(Ap−2
k,mB

p
m,n) = (p− 1)E(B2

m,n)E((Ak,mBm,n)p−2) + (p− 2)E(Ak,mBm,n)E(Ap−3
k,mB

p−1
m,n)

By defining up
def
= E((Ak,mBm,n)p) and vp

def
= E(Ap−2

k,mB
p
m,n), those equations rewrite

up = pcup−1 + (p− 1)avp, and vp = (p− 1)bup−2 + (p− 2)cvp−1. (10.10)

The initial conditions are u1 = c, v2 = b. Let us define a new sequence (wp)p≥1 defined by

w1 = (a+ b+ |c|) and for p > 1,

wp = p(a+ b+ |c|)wp−1.

We have immediately from their definition that |u1| < w1 and |v2| < w1.

Now let us assume that for a given p:

|up−1| < wp−1, and |vp| < wp−1.

We then have from (10.10):

|up| < p|c|wp−1 + (p− 1)awp−1 < p(a+ b+ |c|)wp−1 = wp

|vp+1| < pbwp−1 + (p− 1)|c|wp−1 < p(a+ b+ |c|)wp−1 = wp

Thus, by induction ∀p ≥ 1: |up| < wp and |vp+1| < wp.

We deduce that:

|E[(Ak,mBm,n)p]| = |up| < wp = p!(a+ b+ |c|)p =
p!

2
(a+ b+ |c|)p−2(2(a+ b+ |c|)2)

�

Step 4: Bounding maxk ||ck,.||22 and maxk ||fk,.||1 in high probability:

Lemma 44 If we take M > N2, the following inequalities hold with probability 1− e:

max
k
||ck,.||22 ≤ κ2

N
c′(e/(2KN))2

max
k
||fk,.||1 ≤ κ

N
c′(e/(2KN)),

with c′(e)
def
= 1 + 2

√
log(2/e) + log(2/e)) and κ

def
= max(1, ϕ̄2, L2, Lϕ̄).

Proof:
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We first prove the statement corresponding to |ck,n|, and then derive a bound the same way

for |fk,n|.

Notice that

E(ck,n) =
1√
M

∑
m

E(Ak,mBm,n) =
1

M

∑
m

∫ n+1
N

n
N

ϕk(x)dx =

∫ n+1
N

n
N

ϕk(x)dx.

We now derive a concentration result for ck,n around its mean using Bernstein’s inequality (see

Theorem 32) which applies thanks to Lemmas 42 and 43. This gives

P
(
|ck,n − E(ck,n)| ≥ 1√

M

[√
4M(a+ b+ |c|)2x+ (a+ b+ |c|)x

])
≤ 2 exp(−x).

Finally since (ϕk)k are bounded by ϕ̄, we have with probability 1− e

|ck,n| ≤
∣∣∣ ∫ n+1

N

n
N

ϕk(x)dx
∣∣∣+ 2(a+ b+ |c|)

√
log(2/e) + (a+ b+ |c|) log(2/e)

≤ ϕ̄

N
+ (

ϕ̄2

M
+

1

N
+

ϕ̄√
MN

)(2
√

log(2/e) + log(2/e))

We deduce similarly (and additionally using that f is Lipschitz) that with probability 1− e:

|fk,n| ≤
∣∣∣ ∫ n+1

N

n
N

ϕk(x)[f(x)− f(n/N)]dx
∣∣∣+ 2(a+ β + |ς|)

√
log(2/e) + (a+ β + |ς|) log(2/e)

≤ L

N

∫ n+1
N

n
N

|ϕk|+ (a+ β + |ς|)(2
√

log(2/e) + log(2/e))

≤ Lϕ̄

N2
+ (

ϕ̄2

M
+
L2

N2
+

Lϕ̄√
MN2

)(2
√

log(2/e) + log(2/e))

From our definitions of κ and c′(e), when M > N2 we have that for each n, k, with probability

1− e, |ck,n| ≤ κ
N c
′(e), and with probability 1− e, |fk,n| ≤ κ

N2 c
′(e).

By an application of a union bound we have that with probability 1− e, for all k = 1 . . .K

and n = 1 . . . N , simultaneously

|ck,n| ≤
κ

N
c′(e/(2KN))

|fk,n| ≤
κ

N2
c′(e/(2KN)),

from which we deduce the result. �
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Step 5: Bound on the inner products From (10.9),

sup
k
〈Ak,., ε〉 ≤ sup

k
||fk,.||1 + sup

k

∣∣N−1∑
n=0

ηnck,n
∣∣.

Given ck,n, the quantity
∑N−1

n=0 ck,nηn is a Gaussian random variable (w.r.t. the observation

noise) N(0, v||ck,.||22). The supremum of those K Gaussian variables (union bound) is bounded,

with probability 1− e′, as

sup
k

∣∣∣N−1∑
n=0

ck,nηn

∣∣∣ ≤√1

2
log(2K/e′)v sup

k
||ck,.||2. (10.11)

Now, we use Lemma 44 to deduce that with probability 1− e′ − e

sup
k
〈Ak,., ε〉 ≤ κc′(e/(2KN))

(√v log 2K/e′

2N
+

1

N

)
We take e = e′ to deduce the result.

Proof of Theorem 30

Here we take the following convention for the RIP property: for every vector x S−sparse,

(1− δS)||x||2 ≤ ||Ax||2 ≤ (1 + δS)||x||2. Note that here we use this convention which differs from

the one used in Candes and Tao [2007] (that is to say (1− δS)||x||22 ≤ ||Ax||22 ≤ (1 + δS)||x||22))

and that there will thus be differences in the citations of theorems. We will use the fact that the

RIP constant according to Candes and Tao [2007] (second definition) is bounded by δ2
S + 2δS

(with δS RIP constant as in the first definition).

Let us define as in Candes and Tao [2007] θS1,S2 the number such that for any c S1−sparse

and c′ S2−sparse vectors of disjoint support, 〈Ac,Ac′〉 ≤ θS1,S2 ||c||2||c′||2. Finally, consider

noisy observations y = Aα+ ε One can get from Candes and Tao [2007], the following Theorem:

Theorem 35 Let α ∈ RK be a S−sparse vector and A be a RIP (2S, δ2S)-matrix

Assume that with probability 1 − e′, supk〈Ak,., ε〉 < λK,ε,e′ (actually, in Candes and Tao

[2007], they show this is the case for i.i.d. noise).

Then if the matrix A is such that

(δ2
2S + 2δ2S) + θS,2S < 1, (10.12)

then the Dantzig selector given by:

min ||α̂||1 under the constraint ||AT (Aα̂− y)||∞ ≤ λK,ε,e′
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satisfies the following recovery property, with probability (1−e′), where C1 = 1
1−(δ2

2S+2δ2S)−θS,2S
:

||α̂− α||2 ≤ C1

√
SλK,ε,e′

In Candes and Tao [2007] The authors also prove that for any matrix A that is RIP (S1 +

S2, δS1+S2), then we have θS1,S2 ≤ δ2
S1+S2

+ 2δS1+S2 .

Here since we assume the basis to be orthonormal, the matrix A is Gaussian with N(0, 1)

i.i.d. entries.

Applying Theorem 31 to A for 3S-sparse vectors, we deduce that provided that M >

25C ′(3S log(K/3S) + log 1/e′)), then with probability 1− e′, δ2
3S + 2δ3S < 11

25 .

Now since δ2
2S + 2δ2S ≤ δ2

3S + 2δ3S and also θS,2S ≤ δ2
3S + 2δ3S, we deduce that for such a

M , condition (10.12) holds and that C1 = 1
1−(δ2

2S+2δ2S)−θS,2S
≤ 3/25.

This bound together with Proposition 18 allows us to use Theorem 35 and finally we deduce

that for M > max(N2, 25C ′(3S log(K/3S) + log 1/e′)) we have with probability (1− 2e)(1− e′):

||α̂− α||2 ≤ C1

√
Sκc(e/(2KN))

(√v log 2K/e′

2N
+

1

N

)
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Chapter 11

Bandit Theory meets Compressed

Sensing for high dimensional linear

bandit

This Chapter is the product of a collaboration with Rémi Munos, and is extracted from a paper

that was published in the proceedings of the conference on Artificial Intelligence and Statistics

in 2012 (see [Carpentier and Munos, 2012a]).

We consider a linear stochastic bandit problem where the dimension K of the unknown

parameter θ is larger than the sampling budget n. Since usual linear bandit algorithms have

a regret of order O(K
√
n), it is in general impossible to obtain a sub-linear regret without

further assumption. In this Chapter we make the assumption that θ is S−sparse, i.e. has at

most S−non-zero components, and that the set of arms is the unit ball for the ||.||2 norm.

We combine ideas from Compressed Sensing and Bandit Theory to derive an algorithm with a

regret bound in O(S
√
n). We detail an application to the problem of optimizing a function that

depends on many variables but among which only a small number of them (initially unknown)

are relevant.
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Introduction

We consider a linear stochastic bandit problem in high dimension K. At each round t, from 1 to

n, the player chooses an arm xt in a fixed set of arms and receives a reward rt = 〈xt, θ+ηt〉, where

θ ∈ RK is an unknown parameter and ηt is a noise term. Note that rt is a (noisy) projection of

θ on xt. The goal of the learner is to maximize the sum of rewards.

We are interested in cases where the number of rounds is much smaller than the dimension of

the parameter, i.e. n� K. This is new in bandit literature but useful in practice, as illustrated

by the problem of gradient ascent for a high-dimensional function, described later.

In this setting it is in general impossible to estimate θ in an accurate way (since there is not

even one sample per dimension). It is thus necessary to restrict the setting, and the assumption

we consider here is that θ is S-sparse (i.e., at most S components of θ are non-zero). We assume

also that the set of arms to which xt belongs is the unit ball with respect to the ||.||2 norm,

induced by the inner product.

Bandit Theory meets Compressed Sensing This problem poses the fundamental question

at the heart of bandit theory, namely the exploration1 versus exploitation2 dilemma. Usually,

when the dimension K of the space is smaller than the budget n, it is possible to project the

parameter θ at least once on each directions of a basis (e.g. the canonical basis) which enables

to explore efficiently. However, in our setting where K � n, this is not possible anymore, and

we use the sparsity assumption on θ to build a clever exploration strategy.

Compressed Sensing (see e.g. [Blumensath and Davies, 2009; Candes and Tao, 2007; Chen

et al., 1999]) provides us with a exploration technique that enables to estimate θ, or more

simply its support, provided that θ is sparse, with few measurements. The idea is to project θ on

random (isotropic) directions xt such that each reward sample provides equal information about

all coordinates of θ. This is the reason why we choose the set of arm to be the unit ball. Then,

using a regularization method (Hard Thresholding, Lasso, Dantzig selector...), one can recover

the support of the parameter. Note that although Compressed Sensing enables to build a good

estimate of θ, it is not designed for the purpose of maximizing the sum of rewards. Indeed, this

exploration strategy is uniform and non-adaptive (i.e., the sampling direction xt at time t does

not depend on the previously observed rewards r1, . . . , rt−1).

On the contrary, Linear Bandit Theory (see e.g. Dani et al. [2008]; Filippi et al. [2010];

Rusmevichientong and Tsitsiklis [2008] and the recent work by Abbasi-Yadkori et al. [2011]) ad-

1Exploring all directions enables to build a good estimate of all the components of θ in order to deduce which
arms are the best.

2Pulling the empirical best arms in order to maximize the sum of rewards.
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dresses this issue of maximizing the sum of rewards by efficiently balancing between exploration

and exploitation. The main idea of our algorithm is to use Compressed Sensing to estimate

the (small) support of θ, and combine this with a linear bandit algorithm with a set of arms

restricted to the estimated support of θ.

Our contributions are the following:

• We provide an algorithm, called SL-UCB (for Sparse Linear Upper Confidence Bound)

that mixes ideas of Compressed Sensing and Bandit Theory and provide a regret bound3

of order O(S
√
n).

• We detailed an application of this setting to the problem of gradient ascent of a high-

dimensional function that depends on a small number of relevant variables only (i.e., its

gradient is sparse). We explain why the setting of gradient ascent can be seen as a bandit

problem and report numerical experiments showing the efficiency of SL-UCB for this high-

dimensional optimization problem.

The topic of sparse linear bandits is also considered in the paper [Abbasi-yadkori et al.,

2012] published simultaneously. Their regret bound scales as O(
√
KSn) (whereas ours do not

show any dependence on K) but they do not make the assumption that the set of arms is the

Euclidean ball and their noise model is different from ours.

In Section 11.1 we describe our setting and recall a result on linear bandits. Then in Sec-

tion 11.2 we describe the SL-UCB algorithm and provide the main result. In Section 11.3 we

detail the application to gradient ascent and provide numerical experiments.

11.1 Setting and a useful existing result

11.1.1 Description of the problem

We consider a linear bandit problem in dimension K. An algorithm (or strategy) Alg is given

a budget of n pulls. At each round 1 ≤ t ≤ n it selects an arm xt in the set of arms DK , which

is the unit ball for the ||.||2-norm induced by the inner product. It then receives a reward

rt = 〈xt, θ + ηt〉,

where ηt ∈ RK is an i.i.d. white noise4 that is independent from the past actions, i.e. from{
(xt′)t′≤t

}
, and θ ∈ RK is an unknown parameter.

We define the performance of algorithm Alg as

Ln(Alg) =
n∑
t=1

〈θ, xt〉. (11.1)

Note that Ln(Alg) differs from the sum of rewards
∑n

t=1 rt but is close (up to a O(
√
n)

term) in high probability. Indeed,
∑n

t=1〈ηt, xt〉 is a Martingale, thus if we assume that the

3We define the notion of regret in Section 11.1.
4This means that Eηt(ηk,t) = 0 for every (k, t), that the (ηk,t)k are independent and that the (ηk,t)t are i.i.d..

269



11. BANDIT THEORY MEETS COMPRESSED SENSING FOR HIGH
DIMENSIONAL LINEAR BANDIT

noise ηk,t is bounded by 1
2σk (note that this can be extended to sub-Gaussian noise), Azuma’s

inequality implies that with probability 1 − δ, we have
∑n

t=1 rt = Ln(Alg) +
∑n

t=1〈ηt, xt〉 ≤
Ln(Alg) +

√
2 log(1/δ)||σ||2

√
n.

If the parameter θ were known, the best strategy Alg∗ would always pick x∗ = arg maxx∈DK 〈θ, x〉 =
θ
||θ||2 and obtain the performance:

Ln(Alg∗) = n||θ||2. (11.2)

We define the regret of an algorithm Alg with respect to this optimal strategy as

Rn(Alg) = Ln(Alg∗)− Ln(Alg). (11.3)

We consider the class of algorithms that do not know the parameter θ. Our objective is to

find an adaptive strategy Alg (i.e. that makes use of the history {(x1, r1), . . . , (xt−1, rt−1)} at

time t to choose the next state xt) with smallest possible regret.

For a given t, we write Xt = (x1; . . . ;xt) the matrix in RK×t of all chosen arms, and Rt =

(r1, . . . , rt)
T the vector in Rt of all rewards, up to time t.

In this Chapter, we consider the case where the dimension K is much larger than the budget,

i.e., n � K. As already mentioned, in general it is impossible to estimate accurately the

parameter and thus achieve a sub-linear regret. This is the reason why we make the assumption

that θ is S−sparse with S < n.

11.1.2 A useful algorithm for Linear Bandits

Input: Dd, δ
Initialization:
A1 = Id, θ̂1 = 0, βt = 128d(log(n2/δ))2.
for t = 1, . . . , n do

Define Bt = {ν : ||ν − θ̂t||2,At ≤
√
βt}

Play xt = arg maxx∈Dd maxν∈Bt〈ν, x〉.
Observe rt = 〈xt, θ + ηt〉.
Set At+1 = At + xtx

′
t, θ̂t+1 = A−1

t+1XtRt.
end for

Figure 11.1: Algorithm ConfidenceBall2 (CB2) adapted for an action set of the form Dd (Left),
and illustration of the maximization problem that defines xt (Right).

We now recall the algorithm ConfidenceBall2 (abbreviate by CB2) introduced in Dani

et al. [2008] and mention the corresponding regret bound. CB2 will be later used in the SL-

UCB algorithm described in the next Section to the subspace restricted to the estimated support

of the parameter.
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This algorithm is designed for stochastic linear bandit in dimension d (i.e. the parameter θ

is in Rd) where d is smaller than the budget n.

The pseudo-code of the algorithm is presented in Figure 11.1. The idea is to build an ellipsoid

of confidence for the parameter θ, namely Bt = {ν : ||ν − θ̂t||2,At ≤
√
βt} where ||u||2,A = uTAu

and θ̂t = A−1
t Xt−1Rt−1, and to pull the arm with largest inner product with a vector in Bt,

i.e. the arm xt = arg maxx∈Dd maxν∈Bt〈ν, x〉.
Note that this algorithm is intended for general shapes of the set of arms. We can thus apply

it in the particular case where the set of arms is the unit ball Dd for the ||.||2 norm in Rd. This

specific set of arms is simpler for two reasons. First, it is easy to define a span of the set of arms

since we can simply choose the canonical basis of Rd. Then the choice of xt is simply the point

of the confidence ellipsoid Bt with largest norm. Note also that we present here a simplified

variant where the temporal horizon n is known: the original version of the algorithm is anytime.

We now recall Theorem 2 of [Dani et al., 2008].

Theorem 36 (ConfidenceBall2) Assume that (ηt) is an i.i.d. white noise, independent of the

(xt′)t′≤t and that for all k = {1, . . . , d}, ∃σk such that for all t, |ηt,k| ≤ 1
2σk. For large enough

n, we have with probability 1− δ the following bound for the regret of ConfidenceBall2(Dd, δ):

Rn(AlgCB2) ≤ 64d
(
||θ||2 + ||σ||2

)
(log(n2/δ))2√n.

11.2 The SL-UCB algorithm

Now we come back to our setting where n � K. We present here an algorithm, called Sparse

Linear Upper Confidence Bound (SL-UCB).

11.2.1 Presentation of the algorithm

SL-UCB is divided in two main parts, (i) a first non-adaptive phase, that uses an idea from

Compressed Sensing, which is referred to as support exploration phase where we project θ on

isotropic random vectors in order to select the arms that belong to what we call the active

set A, and (ii) a second phase that we call restricted linear bandit phase where we apply a

linear bandit algorithm to the active set A in order to balance exploration and exploitation and

further minimize the regret. Note that the length of the support exploration phase is problem

dependent.

This algorithm takes as parameters: σ̄2 and θ̄2 which are upper bounds respectively on ||σ||2
and ||θ||2, and δ which is a (small) probability.

First, we define an exploring set as

Exploring =
1√
K
{−1,+1}K . (11.4)

Note that Exploring ⊂ DK . We sample this set uniformly during the support exploration
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phase. This gives us some insight about the directions on which the parameter θ is sparse,

using very simple concentration tools5: at the end of this phase, the algorithm selects a set

of coordinates A, named active set, which are the directions where θ is likely to be non-zero.

The algorithm automatically adapts the length of this phase and that no knowledge of ||θ||2 is

required. The Support Exploration Phase ends at the first time t such that (i) maxk |θ̂k,t|− 2b√
t
≥ 0

for a well-defined constant b and (ii) t ≥
√
n

maxk |θ̂k,t|− b√
t

.

We then exploit the information collected in the first phase, i.e. the active set A, by playing a

linear bandit algorithm on the intersection of the unit ball BK and the vector subspace spanned

by the active set A, i.e. V ec(A). Here we choose to use the algorithm CB2 described in [Dani

et al., 2008]. See Subsection 11.1.2 for an adaptation of this algorithm to our specific case: the

set of arms is indeed the unit ball for the ||.||2 norm in the vector subspace V ec(A).

The algorithm is described in Figure 11.2.

Input: parameters σ̄2, θ̄2,δ.
Initialize: Set b = (θ̄2 + σ̄2)

√
2 log(2K/δ).

Pull randomly an arm x1 in Exploring (defined in Equation 11.4) and observe r1

Support Exploration Phase:

while (i) maxk |θ̂k,t| − 2b√
t
< 0 or (ii) t <

√
n

maxk |θ̂k,t|− b√
t

do

Pull randomly an arm xt in Exploring (defined in Equation 11.4) and observe rt
Compute θ̂t using Equation 11.5
Set t← t+ 1

end while
Call T the length of the Support Exploration Phase

Set A =
{
k : θ̂k,T ≥ 2b√

T

}
Restricted Linear Bandit Phase:
For t = T + 1, . . . , n, apply CB2(DK ∩ V ec(A), δ) and collect the rewards rt.

Figure 11.2: The pseudo-code of the SL-UCB algorithm.

Note that the algorithm computes θ̂k,t using

θ̂k,t =
K

t

( t∑
i=1

xk,iri

)
=
(K
t
XtRt

)
k
. (11.5)

11.2.2 Main Result

We first state an assumption on the noise.

Assumption (ηk,t)k,t is an i.i.d. white noise and ∃σk s.t. |ηk,t| ≤ 1
2σk.

Note that this assumption is made for simplicity and that it could easily be generalized to,

for instance, sub-Gaussian noise. Under this assumption, we have the following bound on the

regret.

5Note that this idea is very similar to the one of Compressed Sensing.
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Theorem 37 Under Assumption 11.2.2, if we choose σ̄2 ≥ ||σ||2, and θ̄2 ≥ ||θ||2, the regret of

SL-UCB is bounded with probability at least 1− 5δ, as

Rn(AlgSL−UCB) ≤ 118(θ̄2 + σ̄2)2 log(2K/δ)S
√
n.

The proof of this result is reported in Section 11.A.

The algorithm SL-UCB first uses an idea of Compressed Sensing: it explores by performing

random projections and builds an estimate of θ. It then selects the support as soon as the

uncertainty is small enough, and applies CB2 to the selected support. The particularity of this

algorithm is that the length of the support exploration phase adjusts to the difficulty of finding

the support: the length of this phase is of order O(
√
n

||θ||2 ). More precisely, the smaller ||θ||2, the

more difficult the problem (since it is difficult to find the largest components of the support),

and the longer the support exploration phase. But note that the regret does not deteriorate for

small values of ||θ||2 since in such case the loss at each step is small too.

An interesting feature of SL-UCB is that it does not require the knowledge of the sparsity

S of the parameter.

11.3 The gradient ascent as a bandit problem

The aim of this section is to propose a gradient optimization technique to maximize a function

f : RK → R when the dimension K is large compared to the number of gradient steps n,

i.e. n� K. We assume that the function f depends on a small number of relevant variables: it

corresponds to the assumption that the gradient of f is sparse.

We consider a stochastic gradient ascent (see for instance the book of Bertsekas [1999] for

an exhaustive survey on gradient methods), where one estimates the gradient of f at a sequence

of points and moves in the direction of the gradient estimate during n iterations.

11.3.1 Formalization

The objective is to apply gradient ascent to a differentiable function f assuming that we are

allowed to query this function n times only. We write ut the t−th point where we sample f ,

and choose it such that ||ut+1 − ut||2 = ε, where ε is the gradient step.

Note that by the Theorem of intermediate values

f(un)− f(u0) =

n∑
t=1

f(ut)− f(ut−1)

=
n∑
t=1

〈(ut − ut−1),∇f(wt)〉,

where wt is an appropriate barycenter of ut and ut−1.

We can thus model the problem of gradient ascent by a linear bandit problem where the
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reward is what we gain/loose by moving from point ut−1 to point ut, i.e. f(ut) − f(ut−1).

More precisely, rewriting this problem with previous notations, we have θ + ηt = ∇f(wt)
6, and

xt = ut − ut−1. We illustrate this model in Figure 11.3.

Figure 11.3: The gradient ascent: the left picture illustrates the problem written as a linear
bandit problem with rewards and the right picture illustrates the regret.

If we assume that the function f is (locally) linear and that there are some i.i.d. measurement

errors, we are exactly in the setting of Section 11.1. The objective of minimizing the regret, i.e.,

Rn(Alg) = max
x∈B2(u0,nε)

f(x)− f(un),

thus corresponds to the problem of maximizing f(un), the n-th evaluation of f . Thus the regret

corresponds to the evaluation of f at the n-th step compared to an ideal gradient ascent (that

assumes that the true gradient is known and followed for n steps). Applying SL-UCB algorithm

implies that the regret is in O(Sε
√
n).

Remark on the noise: Assumption 11.2.2, which states that the noise added to the function

is of the form 〈ut − ut−1, ηt〉 is specially suitable for gradient ascent because it corresponds to

the cases where the noise is an approximation error and depends on the gradient step.

Remark on the linearity assumption: Matching the stochastic bandit model in Section

11.1 to the problem of gradient ascent corresponds to assuming that the function is (locally)

linear in a neighborhood of u0, and that we have in this neighborhood f(ut+1) − f(ut) =

〈ut+1 − ut,∇f(u0) + ηt+1〉, where the noise ηt+1 is i.i.d. This setting is somehow restrictive:

6Note that in order for the model in Section 11.1 to hold, we need to relax the assumption that η is i.i.d..
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we made it in order to offer a first, simple solution for the problem. When the function is not

linear, one should also consider the additional approximation error.

11.4 An alternative algorithm when the noise is sparse

Now, we make a stronger assumption on the noise, namely that it is sparse. Under this assump-

tion, we can build an alternative algorithm such that the regret is in O(S
√
n).

We call the corresponding algorithm Sparse Square Linear Upper Confidence Bound (S2L-

UCB).

11.4.1 Presentation of the algorithm

Again, the S2L-UCB algorithm is divided in two parts, the support exploration phase where

we sample the function in order to choose which arms belong to the active set A(t) and the

Restricted Linear Bandit Phase where we apply a linear bandit algorithm to the active set A(t).

Note that the active set A(t) evolves in time for S2L-UCB.

This algorithm takes as parameters: S, an upper bound on the sparsity of θ, and δ which is

a (small) probability.

The design of the support exploration phase for this algorithm is very different from the one

for SL-UCB. Here, the length of the support exploration phase is fixed, but the way we explore

the support evolves in time. It is divided in n1 = blog(K/2S)(S + 1)c+ 1 phases. Some indexes

are removed from the active set A(t) at the end of each of those n1 phases7. During each of those

phases, the algorithm chooses randomly n2 = blog(1/δ) exp(1)c+ 1 arms x drawn from L(A(t)),

where L(A(t)) is a probability distribution defined later in this Subsection. And the algorithm

pulls n3 = blog(1/δ)
√
nc + 1 times each of those chosen arm x. If for a given x, the observed

reward samples are always zero, all the indexes k such that xk 6= 0 are removed from the active

set. Note that the length of the support exploration phase is n1n2n3 = O(S log(K/2S)
√
n).

We define the probability distribution L(A) for any A ⊂ {1, . . . ,K}. x ∼ L(A) is generated

from x = u
||u||2 where u ∈ RK is generated according to:

• For every k ∈ A, we set uk = 0 with probability 2S
2S+1 and uk ∼ N(0, 1) with probability

1
2S+1 .

• For k ∈ Ac, where Ac is the complementary of A, i.e. {1, . . . ,K} \A, we set uk = 0.

We then exploit the information collected in the first phase, i.e. the active set at time n1n2n3,

by applying the linear bandit algorithm CB2 on the small selected subset. The pseudo-code of

the algorithm is described in Figure 11.4.

11.4.2 Main Result

We make a more restrictive assumption on the noise

7Note that A(1) = {1, . . . ,K}.
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Input: parameters S, δ.
Initialize: Set n1 = blog(K/2S)(S + 1)c+ 1, n2 = blog(1/δ) exp(1)c+ 1 and n3 =
blog(1/δ)

√
nc+ 1

Initialize: Set t = 1, A(t) = {1, . . . ,K}
Support exploration phase:
for i = 0, . . . , n1 − 1 do
v = 0
for j = 0, . . . , n2 − 1 do

Pull randomly an arm x ∼ L(A(t))
for k = 0, . . . , n3 do

Collect rt with xt = x
Set A(t+ 1) = A(t)
if rt = 0 then
v = xt

end if
t = t+ 1

end for
end for
if v 6= 0 then

A(t+ 1) = A(t) \ {k : vk 6= 0}
end if

end for
Restricted Linear Bandit Phase:
For t = n1n2n3, . . . , n, run CB2(DK ∩ V ec(A(n1n2n3)), δ) and collect the rt

Figure 11.4: The pseudo-code of the S2L-UCB algorithm.

Assumption The vector σ such that |ηk,t| ≤ 1
2σk is a S−sparse vector.

We provide here the expression of the regret for algorithm S2L-UCB. Again, the proof of

this result can be found in the Section 11.A.

Theorem 38 Under Assumption 11.4.2, and if S is an upper bound on the sparsity of θ, the

regret of S2L-UCB is bounded with probability at least 1− δ as

Rn(AlgS2L−UCB)

≤ 298S log(16KSn2/δ2)4(||θ||2 + ||σ||2)
√
n. (11.6)

When the noise is sparse, it is possible to retrieve the support of θ with a number of samples

of order O(S
√
n) even when the noise is arbitrarily big and θ is arbitrarily small. The idea is

to detect the coordinates of the space for which the projection of the vector θ + ηt is non-zero:

note that there are at most 2S indexes such that the vector is non-zero. To detect the non-zero

coordinates, we project on vectors x that contain a certain proportion of non-zero coordinates

whereas the other coordinates of the vector are 0. With a non-zero probability, all the non-zero

coordinates of θ+ ηt will be at the same position as the zeros in x and we observe in those cases
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rt = 〈θ+ηt, x〉 = 0. In this case, we can remove all the non-zero coordinates of x from the active

set8. As we observe rt = 0 with non-zero probability, we know that if we sample a large enough

number of different i.i.d. x, we will receive rt = 0 several times with high probability and thus

remove from the active set many coordinates: at the end of the process, the size of the active

set A(t) is smaller than a constant times S.

We are thus able to find the support with just O(S
√
n) pulls. We illustrate briefly the

technique in Figure 11.5. 

a
0
0
0
b
0
0
0
c
0
0




1 0 0 0 0 1 1 0 0 1 1
...

0 1 1 0 0 1 0 0 0 1 0
0

⊗ ⊗
0 1

⊗
0 0 1

⊗
1

...
0

⊗ ⊗
1 0

⊗
0 1 0

⊗
1⊙ ⊗ ⊗ ⊗ ⊙ ⊗ ⊙ ⊗ ⊙ ⊗ ⊗


=



a
...
0

b+ c
...
0⊙


Figure 11.5: Idea of the support exploration phase: each time we observe rt = 0, we know
that the non-zeros coordinates of x are not active. The first matrix contains the vectors xt, the
second is θ and the last one is rt.

11.4.3 Numerical experiment

In order to illustrate the mechanism of our algorithm, we apply SL-UCB to a quadratic function

in dimension 100 where only two dimensions are informative. Figure 11.6 shows with grey levels

the projection of the function onto these two informative directions and a trajectory followed by

n = 50 steps of gradient ascent. The beginning of the trajectory shows an erratic behavior (see

the zoom) due to the initial support exploration phase (the projection of the gradient steps onto

the relevant directions are small and random). However, the algorithm quickly selects the righ

support of the gradient and the restricted linear bandit phase enables to follow very efficiently

the gradient along the two relevant directions.

We now want to illustrate the performances of SL-UCB on more complex problems. We fix

8Note however that in order to remove coordinates from the active set, we need to project many times on a
given x: this is necessary in order to be sure that we do not remove by accident a coordinate where θk = −ηk,t 6= 0.
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Figure 11.6: Illustration of the trajectory of algorithm SL-UCB with a budget n = 50, with a
zoom at the beginning of the trajectory to illustrate the support exploration phase. The levels
of gray correspond to the contours of the function.
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the number of pulls to n = 100, and we try different values of K, in order to produce results for

different values of the ratio K
n . The larger this ratio, the more difficult the problem. We choose

a quadratic function that is not constant in S = 10 directions9.

We compare our algorithm SL-UCB to two strategies: the “oracle” gradient strategy (OGS),

i.e. a gradient algorithm with access to the full gradient of the function10, and the random

best direction (BRD) strategy (i.e., at a given point, chooses a random direction, observes the

value of the function a step further in this direction, and moves to that point if the value of

the function at this point is larger than its value at the previous point). In Figure 11.7, we

report the difference between the value at the final point of the algorithm and the value at the

beginning.

K/n OGS SL-UCB BRD

2 1.875 105 1.723 105 2.934 104

10 1.875 105 1.657 105 1.335 104

100 1.875 105 1.552 105 5.675 103

Figure 11.7: We report, for different values of K
n and different strategies, the value of f(un) −

f(u0).

The performances of SL-UCB is (slightly) worse than the optimal “oracle” gradient strategy.

This is due to the fact that SL-UCB is only given a partial information on the gradient. However

it performs much better than the random best direction. Note that the larger K
n , the more

important the improvements of SL-UCB over the random best direction strategy. This can

be explained by the fact that the larger K
n , the less probable it is that the random direction

strategy picks a direction of interest, whereas our algorithm is designed for efficiently selecting

the relevant directions.

Conclusion

In this Chapter we introduced the SL-UCB algorithm for sparse linear bandits in high dimension.

It has been designed using ideas from Compressed Sensing and Bandit Theory. Compressed

Sensing is used in the support exploration phase, in order to select the support of the parameter.

A linear bandit algorithm is then applied to the small dimensional subspace defined in the first

phase. We derived a regret bound of order O(S
√
n). Note that the bound scales with the

sparsity S of the unknown parameter θ instead of the dimension K of the parameter (as is

usually the case in linear bandits). We then provided an example of application for this setting,

the optimization of a function in high dimension. Possible further research directions include:

• The case when the support of θ changes with time, for which it would be important to

define assumptions under which sub-linear regret is achievable. One idea would be to use

techniques developed for adversarial bandits (see [Abernethy et al., 2008; Audibert et al.,

9We keep the same function for different values of K. It is the quadratic function f(x) =
∑10
k=1−20(xk−25)2.

10Each of the 100 pulls corresponds to an access to the full gradient of the function at a chosen point.
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2011; Bartlett et al., 2008; Cesa-Bianchi and Lugosi, 2012; Koolen et al., 2010], but also

[Flaxman et al., 2005] for a more gradient-specific modeling) or also from restless/switching

bandits (see e.g. [Garivier and Moulines, 2011; Nino-Mora, 2001; Slivkins and Upfal, 2008;

Whittle, 1988] and many others). This would be particularly interesting to model gradient

ascent for e.g. convex function where the support of the gradient is not constant.

• Designing an improved analysis (or algorithm) in order to achieve a regret of orderO(
√
Sn),

which is the lower bound for the problem of linear bandits in a space of dimension S. Note

that when an upper bound S′ on the sparsity is available, it seems possible to obtain such

a regret by replacing condition (ii) in the algorithm by t <
√
n

||
(
θ̂t,kI{θ̂t,k≥ b√

t
}
)
k
||2−

√
S′b√
t

, and

using for the Exploitation phase the algorithm in [Rusmevichientong and Tsitsiklis, 2008].

The regret of such an algorithm would be in O(
√
S′n). But it is not clear whether it is

possible to obtain such a result when no upper bound on S is available (as is the case for

SL-UCB).
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Appendices for Chapter 11

11.A Proofs

Proof of Theorem 37

Definition of a high-probability event ξ Step 0: Bound on the variations of θ̂t around its

mean during the Support Exploration Phase

Note that since xk,t = 1√
K

or xk,t = − 1√
K

during the Support Exploration Phase, the

estimate θ̂t of θ during this phase is such that, for any t0 ≤ T and any k

θ̂k,t0 =
K

t0

( t0∑
t=1

xk,trt

)
=

K

t0

( t0∑
t=1

xk,t

K∑
k′=1

xk′,t(θk′ + ηk′,t)
)

=
K

t0

t0∑
t=1

x2
k,tθk +

K

t0

t0∑
t=1

xk,t
∑
k′ 6=k

xk′,tθk′ +
K

t0

t0∑
t=1

xk,t

K∑
k′=1

xk′,tηk′,t

= θk +
1

t0

t0∑
t=1

∑
k′ 6=k

bk,k′,tθk′ +
1

t0

t0∑
t=1

K∑
k′=1

bk,k′,tηk′,t, (11.7)

where bk,k′,t = Kxk,txk′,t.

Note that since the xk,t are i.i.d. random variables such that xk,t = 1√
K

with probability 1/2

and xk,t = − 1√
K

with probability 1/2, the (bk,k′,t)k′ 6=k,t are i.i.d. Rademacher random variables,

and bk,k,t = 1.

Step 1: Study of the first term. Let us first study 1
t0

∑t0
t=1

∑
k′ 6=k bk,k′,tθk′ .

Note that the bk,k′,tθk′ are (K − 1)T zero-mean independent random variables and that

among them, ∀k′ ∈ {1, ...,K}, t0 of them are bounded by θk′ , i.e. the (bk,k′,tθk′)t. By Hoeffding’s

inequality, we thus have with probability 1 − δ that | 1
t0

∑t0
t=1

∑K
k′ 6=k bk,k′,tθk′ | ≤

||θ||2
√

2 log(2/δ)√
t0

.

Now by using an union bound on all the k = {1, . . . ,K}, we have w.p. 1− δ, ∀k,

| 1
t0

t0∑
t=1

∑
k′ 6=k

bk,k′,tθk′ | ≤
||θ||2

√
2 log(2K/δ)√
t0

. (11.8)

Step 2: Study of the second term. Let us now study 1
t0

∑t0
t=1

∑K
k′=1 bk,k′,tηk′,t.

Note that the (bk,k′,tηk′,t)k′,t are Kt0 independent zero-mean random variables, and that

among these variables, ∀k ∈ {1, ...,K}, t0 of them are bounded by 1
2σk. By Hoeffding’s inequality,

we thus have with probability 1 − δ, | 1
t0

∑t0
t=1

∑K
k′=1 bk,k′,tηk′,t| ≤

||σ||2
√

2 log(2/δ)√
t0

. Thus by an

union bound, with probability 1− δ, ∀k,
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| 1
T

t0∑
t=1

K∑
k′=1

bk,k′,tηk′,t| ≤
||σ||2

√
2 log(2K/δ)√
t0

. (11.9)

Step 3: Final bound. Finally for a given t0, with probability 1−2δ, we have by Equations 11.7,

11.8 and 11.9

||θ̂T − θ||∞ ≤
(||θ||2 + ||σ||2)

√
2 log(2K/δ)√

T
. (11.10)

Step 4: Definition of the event of interest.

Now we consider the event ξ such that

ξ =
⋂

t=1,...,n

{
ω ∈ Ω/||θ − K

t
XtRt||∞ ≤

b√
t

}
, (11.11)

where b = (θ̄2 + σ̄2)
√

2 log(2K/δ).

From Equation 11.10 and an union bound over time, we deduce that P(ξ) ≥ 1− 2nδ.

Length of the Support Exploration Phase The Support Exploration Phase ends at the

first time t such that (i) maxk |θ̂k,t| − 2b√
t
> 0 and (ii) t ≥

√
n

maxk |θ̂k,t|− b√
t

.

Step 1: A result on the empirical best arm

On the event ξ, we know that for any t and any k, |θk|− b√
t
≤ |θ̂k,t| ≤ |θk|+ b√

t
. In particular

for k∗ = arg maxk |θk| we have

|θk∗ | −
b√
t
≤ max

k
|θ̂k,t| ≤ |θk∗ |+

b√
t
. (11.12)

Step 2: Maximum length of the Support Exploration Phase.

If |θk∗ |− 3b√
t
> 0 then by Equation 11.12, the first (i) criterion is verified on ξ. If t ≥ 1

θk∗− 3b√
t

√
n

then by Equation 11.12, the second (ii) criterion is verified on ξ.

Note that both those conditions are thus verified if t ≥ max
(

9b2

|θk∗ |2
, 4
√
n

3|θk∗ |
)
. The Support

Exploration Phase stops thus before this moment. Note that as the budget of the algorithm is

n, we have on ξ that T ≤ max
(

9b2

|θk∗ |2
, 4
√
n

3|θk∗ |
, n
)
≤ 9

√
Sb2

||θ||2
√
n. We write Tmax = 9

√
Sb2

||θ||2
√
n.

Step 3: Minimum length of the Support Exploration Phase.

If the first (i) criterion is verified then on ξ by Equation 11.12 |θk∗ | − b√
t
> 0. If the second

(ii) criterion is verified then on ξ by Equation 11.12 we have t ≥
√
n

|θk∗ |
.

Combining those two results, we have on the event ξ that T ≥ max
(
b2

θ2
k∗
,
√
n

|θk∗ |
)
≥ b2

||θ||2
√
n.

We write Tmin = b2

||θ||2
√
n.

Description of the set A The set A is defined as A =
{
k : |θ̂k,T | ≥ 2b√

T

}
.
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Step 1: Arms that are in A

Let us consider an arm k such that |θk| ≥
3b
√
||θ||2

n1/4 . Note that T ≥ Tmin = b2

||θ||2
√
n on ξ. We

thus know that on ξ

|θ̂k,T | ≥ |θk| −
b√
T
≥

3b
√
||θ||2

n1/4
−
b
√
||θ||2
n1/4

≥ 2b√
T
.

This means that k ∈ A on ξ. We thus know that |θk| ≥
3b
√
||θ||2

n1/4 implies on ξ that k ∈ A.

Step 2: Arms that are not in A

Now let us consider an arm k such that |θk| < b
2
√
n

. Then on ξ, we know that

|θ̂k,T | < |θk|+
b√
T
<

b

2
√
n

+
b√
T
<

3b

2
√
T
<

2b√
T
.

This means that k ∈ Ac on ξ. This implies that on ξ, if |θk| = 0, then k ∈ Ac.

Step 3: Summary.

Finally, we know that A is composed of all the |θk| ≥
3b
√
||θ||2

n1/4 , and that it contains only

the strictly positive components θk, i.e. at most S elements since θ is S−sparse. We write

Amin = {k : |θk| ≥
3b
√
||θ||2

n1/4 }.

Comparison of the best element on A and on DK . Now let us compare maxxt∈V ec(A)∩DK 〈θ, xt〉
and maxxt∈DK 〈θ, xt〉.

At first, note that maxxt∈DK 〈θ, xt〉 = ||θ||2 and that maxxt∈V ec(A)∩DK 〈θ, xt〉 = ||θA||2 =√∑K
k=1 θ

2
kI{k ∈ A}, where θA,k = θk if k ∈ A and θA,k = 0 otherwise. This means that

max
xt∈DK

〈θ, xt〉 − max
xt∈V ec(A)∩DK

〈θ, xt〉

= ||θ||2 − ||θI{k ∈ A}||2 =
||θ||22 − ||θI{k ∈ A}||22
||θ||2 + ||θI{k ∈ A}||2

≤
∑

k∈Ac θ
2
k

||θ||2
≤
∑

k∈Acmin
θ2
k

||θ||2
≤ 9Sb2√

n
. (11.13)

Expression of the regret of the algorithm Assume that we run the algorithm CB2(V ec(A)∩
DK , δ, T ) at time T where A ⊂ Supp(θ) with a budget of n1 = n−T samples. In the paper [Dani

et al., 2008], they prove that on an event ξ2(V ec(A)∩DK , δ, T ) of probability 1− δ the regret of

algorithm CB2 is bounded by Rn(AlgCB2(V ec(A)∩DK ,δ,T )) ≤ 64|A|
(
||θ||2+||σ||2

)
(log(n2/δ))2√n1.

Note that since A ⊂ Supp(θ), we have ξ2(V ec(A)∩DK , δ, T ) ⊂ ξ2(V ec(Supp(θ))∩DK , δ, T )

(see the paper [Dani et al., 2008] for more details on the event ξ2). We thus now that,

conditionally to T , with probability 1 − δ, the regret is bounded for any A ⊂ Supp(θ) as

Rn(AlgCB2(V ec(A)∩DK ,δ,T )) ≤ 64S
(
||θ||2 + ||σ||2

)
(log(n2/δ))2√n1.

By an union bound on all possible values for T (i.e. from 1 to n), we obtain that on

an event ξ2 whose probability is larger than 1 − δ, Rn(AlgCB2(V ec(A)∩DK ,δ,T )) ≤ 64S
(
||θ||2 +
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||σ||2
)

(log(n3/δ))2√n.

We thus have on ξ
⋃
ξ2, i.e. on an event with probability larger than 1− 2δ, that

Rn(AlgSL−UCB, δ) ≤ 2Tmax||θ||2
+ max

t
Rn(AlgCB2(V ec(A)∩DK ,δ,t))

+ n
(

max
x∈DK

〈x, θ〉 − max
x∈DK∩V ect(Amin)

〈x, θ〉
)
.

By using this Equation, the maximal length of the support exploration phase Tmax deduced

in Step 2 of Subsection 11.A, and Equation 11.13, we obtain on ξ that

Rn ≤ 64S
(
||θ||2 + ||σ||2

)
(log(n2/δ))2√n+ 18Sb2

√
n+ 9Sb2

√
n

≤ 118(θ̄2 + σ̄2)2 log(2K/δ)S
√
n.

by using b = (θ̄2 + σ̄2)
√

2 log(2K/δ) for the third step.

Proof of Theorem 38

Some additional notations Let us denote by Supp(θ) = {k : θk 6= 0} ∪ {k : σk 6= 0}. Note

that |Supp(θ)| ≤ 2S.

Let us now call p = mink∈Supp(θ) Pηk,t(θk + ηk,t 6= 0).

Let us write Supp(x) = {k : xk 6= 0}

Probability of observing rt = 0 when Supp(θ) ∩ Supp(x) 6= ∅ Let us assume that we are

at time t and in the support exploration phase (t ≤ n1n2n3).

Let us assume that we pulled an arm x from Exploring(t). Note that the algorithm will pull

this arm n3 times.

At first, note that as the (xk)k∈Supp(x) are |Supp(x)| i.i.d. gaussians and as the other xk are

equal to 0, we have

P(rt = 0) = P(
K∑
k=1

xk(θk + ηk,t) = 0)

= P(
∑

k∈Supp(x)

xk(θk + ηk,t) = 0) = 0, (11.14)

if the all the components (θk, ηk,t)k∈Supp(x) are not 0.

Let us assume that Supp(θ) ∩ Supp(x) 6= ∅. It means that there is (at least) a k such that

θk 6= 0 or σk 6= 0, and xk 6= 0.

Let us now assume that rt = 0. It means because of Equation 11.14 that ηk,t + θk = 0. We thus

have

P(rt = 0) ≤ P(ηk + θk = 0) ≤ 1− p.
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Now note that the algorithm pulls arm k exactly n3 = log(1/δ)
p times. The probability P1 of

observing rt = 0 all those n3 times is thus

P1 ≤ (1− p)n3 ≤ (1− p)
log(1/δ)

p ≤ δ, (11.15)

because (1 + x
n)n ≤ exp(x).

This means by just doing a union bound over the n1n2 times where a different x is chosen

that with probability at most n1n2δ, if for a chosen x we have maxk∈Supp(x) |θk|+σk 6= 0, we do

not observe for this x only rt = 0.

Probability of choosing a x such that Supp(x)∩ Supp(θ) = ∅. Let us assume that we are

at time t and in the support exploration phase (t ≤ n1n2n3).

Let us assume that |A(t)| = k. This means that the probability of choosing x such that Supp(x)∩
Supp(θ) = ∅ is ( s

s+1)s ≥ s+1
s exp(−1)(1− 1

2(s+1)) ≥ e−1, because (1 + x
n)n ≥ exp(x)(1− x2

2n).

Note that we pick n2 different vectors in Exploring(t). The probability P2 that none of those

n2 vectors are such that Supp(x) ∩ Supp(θ) = ∅ is such as

P2 ≤ (1− exp(−1))n2 ≤ δ. (11.16)

because (1+ x
n)n ≤ exp(x). This means by just doing a union bound over the n1 times where

the support is updated that with probability at least 1 − n1δ, we will pull an arm x at each

phase such that Supp(x) ∩ Supp(θ) = ∅.

Probability of picking the good support at the end. Equation 11.A tells us that with

probability at least 1 − n1n2δ if Supp(x) ∩ Supp(θ) 6= ∅, then we observe at least a rt 6= 0 for

this x. Equation 11.A tells us that with probability 1− n1δ, we will pull a x ∈ Exploring(t) such

that Supp(x) ∩ Supp(θ) = ∅.
Combining those two results allows us to state that with probability at least 1−n1δ−n1n2δ ≥

1 − 2n1n2δ, we will pull randomly (at least) one vector x among the n2 different vector that

were picked before changing set A(t), such that Supp(x) ∩ Supp(θ) = ∅.
Let us assume that at time t, A(t) = m. Now note that because of the law of x we have with

probability 1 − δ that Supp(x)c ∩ Supp(θ)c ≤ m S
S+1 + 1

2

√
log(2/δ). This means that when we

choose a x ∈ Exploring(t) such that Supp(x) ∩ Supp(θ) = ∅, then with probability 1− δ, we will

diminish the set At from a size m to a size m S
S+1 + 1

2

√
log(2/δ). If we combine this with the

previous result, we know that with probability 1− 3n1n2δ, we diminish the active set n1 times

(at every step).

This means that at the end, with probability 1−3n1n2δ, the active set is such that Supp(θ) ⊂
An1n2n3 and that |An1n2n3 | ≤ K( S

S+1)n1 + n1
1
2

√
log(2/δ) ≤ 1 + log(K)(S + 1)1

2

√
log(2/δ) ≤

log(K)(S + 1)
√

log(2/δ).
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11. BANDIT THEORY MEETS COMPRESSED SENSING FOR HIGH
DIMENSIONAL LINEAR BANDIT

Regret Let us suppose that p ≤ 1√
n

. We pose here S′ = log(K)(S + 1)
√

log(2/δ) the upper

bound with probability 1 − 3n1n2δ on the size of the active set at the end of the support

exploration phase. As p ≤ 1√
n

, we know that all the non-null coordinates of θ are in A(n1n2n3)

with probability at least 1− 3n1n2δ.

We have with probability 1− 3n1n2δ − δ

Rn ≤ n1n2n3(2||θ||2) + 64S′
(
||θ||2 + ||σ||2

)
(log(n2/δ))2√n.

Now note that if we take a parameter bigger than 1√
n

as a lower bound on p and if p is

smaller, then the set A(n1n2n3) might only contain the k such that P(θk + ηk, t = 0) ≥ 1√
n

.

Note however that for the k that do not verify this, we have θk = E(θk + ηk,t) ≤ |θk|+σk√
n

.

Rn ≤ n
S(|maxk θk|+ σk)

2

n||θ||2
+ 3n1n2δn+ n1n2n3 +O(4S′

√
n)

≤ S(|maxk θk|+ σk)
2

||θ||2
+ 3n1n2 + n1n2 log(n)

√
n+O(4S′

√
n).

Note also trivially that

Rn ≤ n||θ||2 + 3n1n2δn+ n1n2n3 +O(4S
√
n)

≤ n||θ||2 + 3n1n2 + n1n2 log(n)
√
n+O(4S

√
n).

Finally, we have

Rn ≤ min
(
n||θ||2 + 2n1n2 + n1n2 log(n)

√
n+O(4S

√
n),

S(|maxk θk|+ σk)
2

||θ||2
+ 2n1n2 + n1n2 log(n)

√
n+O(4S

√
n)
)

≤
√
S(|max

k
θk|+ σk)

√
n+ 2n1n2 + n1n2 log(n)

√
n+O(4S

√
n).
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