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Résumé
Milnor a observé que pour les germes des application réelles, la fibration de Milnor

sur la sphère n’existe pas en général même avec la condition de singularité isolée,

contrairement au cas des fonctions holomorphes. Récemment, Oka a introduit la

terminologie de “fonction mixte” qui est une fonction polynomiale Cn → C en z et z,

donc une application polynomiale réelle R2n → R2. Dans cette thèse, on s’intéresse

aux propriétés des polynômes mixtes en comparaison avec les résultats connus pour

le cas holomorphe. Le travail consiste en quatre parties.

Dans la première partie, on met l’accent sur l’étude des conditions de régularité

à l’infini. On définit une conditon de régularité à l’infini plus générale que cette

introduite par Rabier et par Kurdyka, Orro et Simon. On montre un théorème de fi-

bration globale qui implique que l’ensemble de bifurcation pour un polynôme mixte

est inclus dans un ensemble semi-algébrique fermé de dimension réelle inférieure ou

égale à un.

Dans la deuxième partie, on définit le polyèdre de Newton à l’infini pour un

polynôme mixte. On distingue deux notions de non-dégénérescence à l’infini qui

sont équivalentes dans le cas holomorphe, une est apelée Newton non-dégénéré et

l’autre est apelée Newton fortement non-dégénéré). Il s’avère que la condition de

non-dégénéré est une condition semi-algébrique ouverte, mais que la condition de

fortement non-dégénéré n’est pas dense ni connexe.

Dans la troisième partie, on généralise un théorème de Néméthi et Zaharia pour don-

ner une approximation de l’ensemble de bifurcation dans le cas mixte. On prouve

un théorème de stabilité pour la monodromie dans une famille de polynômes mixtes

fortement non-dégénérés en supposant l’invariance des polyèdres de Newton. On

obtient aussi l’analogue global des théorèmes de Néméthi et Zaharia et d’Oka sur

l’existence de la fibration de Milnor à l’infini. Dans le cas local, on étudie plus en

détail les polynômes mixtes polaires quasi-homogènes avec singularités non-isolées,

par rapport à la condition de Thom.

Dans la dernière partie, on introduit une nouvelle définition de non-dégénéré cette

fois-ci pour une application polynomiale mixte qui est plus générale que la défini-

tion de non dégénéré introduite par Bivià-Ausina dans le cas réel. En exploitant

un résultat de Kurdyka, Orro et Simon, on trouve une extension du théorème de

Bivià-Ausina en rapport avec la conjecture Jacobienne.

Mots Clés: Valeurs de bifurcation, polynôme mixte, polyèdre de Newton, non-

dégénéré, fibration de Milnor, conditions de régularité
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Chapter 1

Introduction

The objective of this thesis is to study the global and local fibrations produced

by a mixed polynomial map. The concept of Milnor fibration was proposed by

John Milnor in his well-known Princeton lecture notes [Mil68], where he studied

the local fibrations of complex holomorphic function germs f : (Cn, 0) → (C, 0).

At the end of this book, Milnor also explained the study to a real analytic map

germ g : (Rn, 0) → (Rp, 0) with isolated singularity and pointed out the difference

with the holomorphic case. This topic has been extended by many authors and

provided some new viewpoints to other domains.

For a complex polynomial function f : Cn → C, it is well known that there

is a locally trivial fibration f| : Cn \ f−1(Λ) → C \ Λ over the complement of

some finite subset Λ ⊂ C, see e.g. [Var72], [Ver76]. The minimal such Λ is

called the set of bifurcation values, or the set of atypical values, and shall be

denoted by B(f). The first approach to investigate this global fibration is due to

Broughton [Bro, Bro88], who proved that under some regularity condition (called

tame condition), the fiber is homotopic equivalent to a bouquet of spheres. This

foundational work opened the way to further studies of regularity condition at

infinity and the topology of Milnor fibration at infinity, see for example [ST95],

[Par95], [HT97], [Tib99], [Tib07], etc. In two variables, Durfee [Dur98] and Tibăr

[Tib99] give several characterizations of atypical values at infinity and show that

all of them are equivalent, since only isolated singularities at infinity can occur in

this setting. As determining the atypical values at infinity of a complex polynomial

in higher dimensions is still an open problem, one looks for some significant

finite set A ⊃ B(f) which bounds B(f) reasonably well. For instance, in case of

non-convenient but still Newton non-degenerate polynomials, Némethi and Zaharia

[NZ90] found an interesting approximation A ⊃ B(f) in terms of certain faces of

the support of f . This provides a large class of polynomials for which we control

rather well the bifurcation locus. This point of view will be adopted in our work.

In contrast to a complex polynomial function germ, the existence of Milnor fibration

on the sphere for a real analytic map germ needs to be discussed with reference to

some explicit classes of maps. Recently, Oka introduced the terminology "mixed

function" f(z, z) : Cn → C of variables z and z which is actually a real analytic

map f : R2n → R2. Under certain non-degeneracy condition with respect to the

local Newton boundary, he proved the existence and equivalence between Milnor

tube fibration and Milnor fibration on the sphere for some classes of mixed function
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germs (see [Oka10a] for more details). It is an interesting question whether we can

get some global results. In the holomorphic case, this idea goes back at least as

far as [NZ92] where Némethi and Zaharia studied the global Milnor fibration for

semitame polynomials.

In this thesis, we investigate some regularity conditions at infinity for mixed

polynomials. The study of regularity condition at infinity for real polynomial

functions started with the work by Tibăr ([Tib99]) and for complex polynomial

maps with the work of Gaffney [Gaf99] who generalized Malgrange Condition

for holomorphic polynomial maps, and is receiving a great deal of attention. In

2000, Kurdyka, Orro and Simon [KOS00] introduced generalized critical values

for semi-algebraic maps and improved Gaffney’s result to a more general setting.

In particular, it was shown in [Tib07] that in the setting of real or complex

analytic functions, various regularity conditions could be compared. For instance,

ρ-regularity condition implies the Malgrange condition. It is natural to try to

interpret the regularity conditions in the setting of mixed polynomials. So we will

characterize ρ-regularity condition and compare it with the regularity condition of

[Rab97] and [KOS00]. This also leads us to a global fibration theorem for mixed

polynomials. We will also focus on establishing certain notions related to Newton

polyhedron at infinity and non-degeneracy conditions in this setting.

This thesis is organized as follows. In Chapter 2 and Chapter 6, we recall

some of the standard facts on local Milnor fibrations and study the Milnor fibra-

tions with non-isolated mixed singular locus. In Chapter 3, we will be concerned

with the regularity at infinity of mixed polynomials. In Chapter 4 and 5, we

proceed with the study of global behavior of non-degenerate mixed polynomials.

In Chapter 7, we treat the case of non-degenerate analytic maps and apply this to

the real Jacobian problem.

In what follows we shall briefly outline our main results.

Local fibrations of germs (Chapter 2, Chapter 6). In Chapter 2, we review

some results for holomorphic polynomial germs and mixed function germs in the

local case. This is the starting point of this thesis and also the preparation for

Chapter 6. We also recall some basic definitions for mixed polynomials, for e.g.

polar weighted homogeneous mixed polynomials and radial weighted homogeneous

mixed polynomials. In Chapter 6, we study the existence of Milnor fibration for

mixed function germs with non-isolated singular locus. After proving a mixed ver-

sion of Łojasiewicz’s inequality, we give an example to show that Thom regularity

does not hold in general like in holomorphic case (see [HL73]). We generalize a

result by Oka [Oka08] and Cisneros-Molina [CM08], which asserts that one has a

local trivial fibration for polar weighted homogeneous mixed polynomials without

the assumption of radial weighted homogeneity (see Theorem 6.3.4).



3

The proof of this result uses two facts which we prove. One is that 0 ∈ C is an

isolated critical value. The other is that in a neighborhood of 0 ∈ Cn, we have a

Milnor’s type transverse condition (see Definition 6.3.1). In [Mas10], Massey proved

a fibration theorem for Ł-analytic map germs. Our Example 6.3.5 is not Ł-analytic

but polar weighted homogeneous. Moreover, our theorem provides a new explicit

class of mixed polynomial germs which have equivalent Milnor fibrations. We also

emphasize that in general, a polar weighted homogeneous mixed polynomial germ

may have non-isolated mixed singular locus.

Regularity at infinity of mixed polynomials (Chapter 3). In various con-

texts, regularity conditions at infinity are taken into account for trivializing the

fibrations at infinity. The importance of studying these regularity conditions lies on

the two following points: on one hand one, can use them to detect more easily the

bifurcation locus; on the other hand, different regularity conditions yield different

intrinsic geometric ingredients.

In Chapter 3, we introduce the non ρ-regular set of a mixed polynomial f : Cn → C

which is the critical locus of the map (f, ρ), where ρ : R2n → R≥0 is the Euclidean

distance function. In order to prove a global fibration theorem like [KOS00, The-

orem 3.1], we introduce the set of asymptotic non ρ-regular values and denote it

by S(f) (see Definition 3.2.4). By an extension of the Curve Selection Lemma at

infinity, it is shown that S(f) and f(Singf) ∪ S(f) are closed semi-algebraic sets.

Our main result is the following:

Theorem 1.0.1 (Theorem 3.1.8).

Let f : Cn → C be a mixed polynomial. Then the restriction:

f| : C
n \ f−1(f(Singf) ∪ S(f)) → C \ f(Singf) ∪ S(f)

is a locally trivial C∞ fibration over each connected component of C \ (f(Singf) ∪
S(f)). In particular B(f) ⊂ f(Singf) ∪ S(f).

In order to prove this theorem, we first take c 6∈ f(Singf) ∪ S(f). Since C \
(f(Singf) ∪ S(f)) is an open set, there is a closed disk D ⊂ C \ f(Singf) ∪ S(f)
centered at c. The second step is to show that out of a sufficiently large sphere B2n

R0
,

there is a trivial fibration over D. Since we do not know whether the restriction of

f on f−1(D) \B2n
R0

is proper, we consider instead the restriction of the map (f, ρ).

Applying Ehresmann’s theorem to this restriction and composing the map (f, ρ)

with the projection π : D × [R0,∞[→ D, we obtain the trivial fibration desired.

In [KOS00], it was shown that B(f) ⊂ f(Singf) ∪K∞(f) where K∞(f) is the set

of asymptotic critical values (see [KOS00, p. 76] for the definition of K∞(f)). To

say that our theorem provides a better approximation than that of [KOS00], we

show that S(f) ⊂ K∞(f). Combining with [KOS00, Theorem 3.1], we get that
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the dimension of S(f) is strictly less than 2. On the other hand, the examples of

Păunescu and Zaharia in [PZ97] assert that this inclusion is strict. Furthermore,

by a modification of these examples in the case of mixed polynomials, we construct

mixed polynomials with S(f) = ∅ and dimK∞(f) = 1.

Non-degeneracy at infinity and Milnor fibrations (Chapter 4, Chapter
5). In Chapter 4, inspired by Oka’s construction for mixed functions, we consider

the radial Newton polyhedron for a mixed polynomial f with respect to the radial

degree for every monomial. This allows us to set up the notion of Newton boundary

at infinity as that for holomorphic polynomials. We denote the Newton polyhedron

of f by Γ0(f) and the Newton boundary at infinity by Γ+(f). Note that in the holo-

morphic case, every vertex of a Newton polyhedron represents a monomial. While

for mixed polynomials, every vertex of a Newton polyhedron represents the family

of monomials which have the same radial degree.

We also define non-degeneracy conditions at infinity called Newton non-degeneracy

and Newton strong non-degeneracy (see Definition 4.2.2). For holomorphic poly-

nomials, strong non-degeneracy is equivalent to non-degeneracy, while it turns out

that these two non-degeneracy conditions are not equivalent for mixed polynomi-

als. Consequently, this gives rise to the notions of bad face and strictly bad face

(see Definition 4.2.3). Moreover, we prove that strong non-degeneracy condition is

neither dense nor connected but still an open condition, while in the holomorphic

setting, it follows from [Kus76, Oka79] that strong non-degeneracy condition is a

"Zariski open" condition.

Along our construction, we obtain a real counterpart of Némethi and Zaharia’s main

result [NZ90, Theorem 2] as follows:

Theorem 1.0.2 (Theorem 4.1.3).

Let f : R2n → R2 be a mixed polynomial which depends effectively on all the variables

and let f(0) = 0. If f is Newton non-degenerate at infinity then:

(a) S(f) ⊂ {0} ∪ ⋃

∆∈B
f∆(Singf∆ ∩ C∗n).

(b) If f is moreover Newton strongly non-degenerate at infinity then f(Singf)

and S(f) are bounded.

where B is the set of bad faces of the support supp(f).

The proof involves some valuations at infinity coming from Curve Selection Lemma.

It is worth pointing out that the second statement yields a global monodromy fibra-

tion at infinity for strongly non-degenerate mixed polynomials. As a consequence

of the above theorem, for a non-degenerate and convenient mixed polynomial f , it

follows that S(f) = ∅. Note that a special case for holomorphic polynomials was
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proved in [Kus76, Bro88]. The section 5 of Chapter 4 is devoted to the study of the

monodromy of mixed polynomials. In [NZ92], the authors proved that two holomor-

phic non-degenerate and convenient polynomials with the same Newton boundary

at infinity have the same monodromy at infinity. Recently, Pham [Pha08] improved

this result by dropping the convenient condition. In order to extend their results

for mixed polynomials, we consider a family of strongly non-degenerate mixed poly-

nomials with the same Newton boundary at infinity and prove that:

Theorem 1.0.3 (Theorem 4.5.2).

Let Fs(z, z) := F (z, z, s) : R2n → R2 be a family of Newton strongly non-degenerate

polynomials depending analytically on a parameter s, where s ∈ [0, 1]. If the Newton

boundary Γ+(Fs) is constant in this family, then the monodromy at infinity is stable.

The proof of this theorem is based on the analogues of [Pha08, Lemmas 3.2–3.5]

and Ehresmann’s theorem. The main application of this theorem is to detect

the topology of generic fiber for a strongly non-degenerate mixed polynomial. A

corollary of this theorem is that if two Newton strongly non-degenerate mixed

polynomials with the same Newton boundary at infinity and their restrictions to

the boundaries at infinity are both holomorphic (or both anti-holomorphic), then

their monodromies at infinity are isotopic. This gives a slight generalization of

[NZ92, Pha08].

For the sake of deriving different global behaviors to holomorphic polynomials,

some relevant counterexamples are indicated at the end of Chapter 4. For instance,

we construct the example 4.6.7 to deduce that [NZ90, Proposition 6] is not adapted

to mixed polynomials.

Chapter 5 is devoted to investigate the existence of Milnor fibration f
|f | at

infinity for some classes of mixed polynomials. If one makes the definition of

semitame mixed polynomial in the same manner as [NZ92], then the example

5.3.3 presents that even if under the condition S(f) = ∅, the Milnor fibration on

the sphere at infinity does not exist in general. Due to Oka’s construction for

non-degenerate mixed functions, it is our hope to treat this problem under certain

non-degeneracy condition. We prove an analogue of Theorem 4.1.3, which gives an

approximation of asymptotic non ρ-regular values of f
|f | . Our main theorem states

that:

Theorem 1.0.4 (Theorem 5.1.4).

If f is a Newton strongly non-degenerate mixed polynomial, then ∃δ0 > 0 and R0 > 0

sufficient large such that for any δ ≥ δ0 and R > R0

f

|f | : S
2n−1
R \ f−1(Dδ) −→ S1
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is a locally trivial fibration for R ≥ R0 and is equivalent to the global fibration

f| : f
−1(S1

δ ) → S1
δ .

The proof is done by developing the technics of Oka for mixed function germs. In

our situation, it is also required to apply Theorem 4.1.3 for constructing a vector

field to which the associated flow gives the above equivalence. In [NZ92], Némethi

and Zaharia also observed a similar type of equivalent fibrations for semitame holo-

morphic polynomials. Since under the assumption of semitameness, the set S(f) is

contained in 0, one can take a small disk centered at the origin and consider the

restriction of f
|f | to a big enough sphere away from the fibers over this small disk.

As a special case of the above theorem, we prove the following corollary which can

be regarded as a global version of [Oka10a, Theorem 29, 33, 36]:

Corollary 1.0.5 (Corollary 5.1.5).

If f is a Newton strongly non-degenerate convenient mixed polynomial, then there

exists R0 > 0 sufficient large such that for all R ≥ R0 the Milnor fibration at infinity

f

|f | |: S
2n−1
R \K −→ S1

exists and is equivalent to the global fibration

f| : f
−1(S1

δ ) → S1
δ

where δ > 0 is sufficient large.

Note that in these two assertions, strong non-degeneracy condition can not be

replaced by non-degeneracy condition.

Generalization of non-degeneracy (Chapter 7). Chapter 7 is based on the

work of Chapter 4 and provides an extension of our results for non-degenerate mixed

polynomials to non-degenerate mixed polynomial maps. We have worked out this

problem together with Renato Dias. He develops in his thesis the notion of non-

degeneracy for real polynomial maps. The Newton non-degeneracy condition for

a polynomial map was first introduced by Khovanskii in [Kho77]. Since we wish

to estimate the bifurcation locus by some significant faces, instead of Khovanskii’s

definition, we make another characterizations of non-degeneracy at infinity for real

and mixed polynomial maps (see Definition 7.2.1 for more details). Our construction

is based on the study of mixed non-degenerate polynomials.

Let F = (f1, . . . , fk) : C
n → Ck be a mixed polynomial map. Recall the notation

K∞(F ) for the set of asymptotic critical values of F . Our main result states that:
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Theorem 1.0.6 (Theorem 7.1.1).

If F is non-degenerate at infinity with F (0) = 0 and depends effectively on all the

variables, then:

K∞(F ) ⊂ Ck \ C∗k ∪ ∪
△∈B(F )

F△(SingF△ ∩ C∗n).

where B(F ) is the set of bad faces of F .

The proof is similar in spirit to that of non-degenerate mixed polynomials. To

avoid dealing with ρ-regularity, we use KOS-regularity which is more convenient.

In particular, we have:

Corollary 1.0.7 (Corollary 7.3.3).

Suppose that F is non-degenerate at infinity and that fi is convenient, for all i =

1, . . . , k. Then K∞(F ) = ∅.

One particular application of this corollary is in the study of the real Jacobian

problem. Using corollary above, we obtain an application to the real Jacobian

problem from the non-degeneracy viewpoint.

Theorem 1.0.8 (Theorem 7.4.8).

Let F : Cn → Cn be a mixed polynomial map such that J(F )(x) 6= 0, for all x ∈ Cn

If F is non-degenerate at infinity (under Definition 7.2.1) and if fi is convenient,

for all i = 1, . . . , n, then F is a homeomorphism.

In [Aus07], Bivià-Ausina made another definition of non-degeneracy at infinity for

real polynomials. Under his definition of non-degeneracy, he found that for a non-

degenerate and convenient real polynomial map F : Rn → Rn if the Jacobian matrix

J(F ) 6= 0, then F is a global diffeomorphism. In the real setting, our definition

of non-degeneracy turns out to be equivalent to Bivià-Ausina’s definition when

F : Rn → Rn and fi is convenient for all i = 1, . . . , n. The interest of the above

theorem lies in the fact that for a convenient mixed polynomial, if one consider it as

a real polynomial map, it might not be convenient. We also observe that in general

our definition of non-degeneracy is weaker than Bivià-Ausina’s definition, namely

our class of non-degenerate polynomials is larger than his (see for instance Example

7.4.11).





Chapter 2

Local fibrations for germs of
functions

Contents
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2 Mixed singularity and homogeneous polynomials . . . . . 11

2.3 Newton boundary and mixed non-degenerate function germs 14

2.1 Introduction

In this chapter, our purpose is to give a brief summary of the singularity theory

for mixed functions. The study of fibrations for germs of functions stems from

Milnor’s classical fibration theorem. Even he considered only isolated singularities,

however his viewpoints sheds some new lights on the study of topological properties

for algebraic singularities. For the convenience, we restate his result without proof.

Consider a holomorphic function germ

f : (Cn, 0) → (C, 0)

with an isolated singular point at 0. Let V = f−1(0) and Kε = V ∩ Sε the link of

singularity at 0, where Sε is the real (2n− 1) sphere centered at 0 with the radial

ε small enough. In the book [Mil68], Milnor’s classical fibration theorem says that

we have two types of locally trivial fibrations and we call these fibrations Milnor

fibrations. The first Milnor fibration is the following:

ϕ :=
f

|f | : S
2n−1
ε \Kε −→ S1 (2.1.1)

and the second Milnor fibration is:

f : f−1(Sδ) ∩ B2n
ε → Sδ (2.1.2)

which is obtained from the restriction of Milnor tube fibration:
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f : f−1(D∗
δ) ∩ B2n

ε → D∗
δ

where B2n
ε is an open ball centered at 0 with the radial ε small enough and D∗

δ is a

punctured disk with the radial δ ≪ ε. In the first fibration (2.1.1), the closure of

the fiber ϕ−1(eiθ) is a compact (2n − 2) real manifold with boundary equal to Kε

and the link Kε is (n − 2)-connected. In the second fibration (2.1.2), the closure

of the fiber f−1(y) ∩ B2n
ε is also a compact (2n − 2) real manifold with boundary

equal to f−1(y) ∩ S2n−1
ε . Moreover, it was shown that these two Milnor fibrations

are equivalent and the boundaries of the fibers are isotopic.

In higher dimensions, Milnor’s fibration theorems were later generalized in

[Ham71] for complete intersections, and also for holomorphic functions defined on

complex varieties with an isolated singularity. More generally, since holomorphic

functions have Thom af -property [HL73, Hir77], Lê showed that:

Theorem 2.1.1 [Lê77] Let (X, 0) be the germ of a complex analytic variety in Cn

and f : (X, 0) → (C, 0) holomorphic. Then for any open ball Bε centered at 0 with

sufficiently small radius ε, there exists 0 < δ ≪ ε such that:

f : f−1(Sδ) ∩ Bε → Sδ

is a locally trivial fibration which does not depend on the choice of ε and δ.

We call this the Milnor-Lê fibration of f .

In the book [Mil68], Milnor also considered the isolated singularities for real

analytic germs. His main result is:

Theorem 2.1.2 [Mil68] Let f : (Rn, 0) → (Rm, 0) a real analytic germ. Suppose f

verifies Milnor condition, namely f is a submersion on a punctured neighborhood

of 0. Then the complement of an open tubular neighborhood of Kε = V ∩ Sn−1
ε is

the total space of a smooth fiber bundle over the sphere Sm−1
δ . Each fiber F is a

smooth compact (n−m)-dimensional manifold bounded by a copy of Kε.

The proof was done by the same method as in the complex setting. However he

gave an example f(x1, x2) = (x1, x
2
1 + x2(x

2
1 + x22)) which shows that under this

hypothesis, the first Milnor fibration (2.1.1) does not exist. It is worth pointing

out that the entire complement Sn−1
ε \ Kε also fibers over Sm−1 and each fiber is

the interior of a compact manifold with boundary equal to Kε. We say that a

real mapping germ f satisfies the strong Milnor fibration if and only if the two

fibrations (2.1.1) and (2.1.2) exist. In [Jac89], considering a real analytic map

f = (g, h), Jacquemard proposed the notion of Jacquemard condition and proved

the strong Milnor fibration for germs which verify this condition. Later, Ruas

and Dos Santos improved the result in [Jac89]. They proved the strong Milnor
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fibration with Bekka’s (c)-regularity and Jacquemard condition is equivalent to

(w)-regularity. For higher dimensions, in [AT10], Tibăr and Dos Santos considered

the open book structure with non isolated singularities and gave a criterion of the

strong Milnor condition under the assumption Singf ∩ f−1(0) ⊂ {0}. Another

approach is using the strong Łojasiewicz inequality introduced by Massey [Mas10].

He proved a fibration theorem for Ł-analytic mappings. Therefore, it is of interest

to know more explicit classes of real mappings germs which have Milnor fibrations

and good topological properties.

The structure of the chapter is as follows. In Section 2, we review some of the

standard facts of mixed functions in the locally setting. Due to Oka’s observation

of mixed singularity, we can compute these singularities explicitly for any mixed

polynomial. In addition, we recall two types of mixed homogeneous polynomials

and the properties of these polynomials. In Section 3, we state the outline of Oka’s

construction for non-degenerate mixed functions, which provides another view to

study the real analytic mapping germs. This is also the starting point of our work.

2.2 Mixed singularity and homogeneous polynomi-

als

In a recent series of papers [Oka08, Oka10a, Oka09, Oka10b, Oka11], Oka has stud-

ied some subclasses of mixed polynomial germs (Cn, 0) → (C, 0). The terminology

“mixed polynomial” was introduced by M.Oka, but the concept also appears in the

work by A’Campo [A’C73]. In [PS08], the authors studied the fibered multilink

and singularities fg which can be also considered as a subclass of mixed polyno-

mial germs. The basic idea of these constructions is using the singularity theory of

holomorphic function germs to study some subclasses of mixed polynomial germs.

Let f := (g, h) : R2n → R2 be a polynomial application, where g(x1, . . . , yn) and

h(x1, . . . , yn) are real polynomials. By writing z = x+ iy ∈ Cn, where zk = xk+ iyk
for k = 1, 2 . . . n, we get a polynomial function f : Cn → C in variables z and

z, namely f(z, z) := g(z+z
2
, z−z

2i
) + ih(z+z

2
, z−z

2i
), and reciprocally for a polynomial

function f : Cn → C in variables z and z, we can consider it as a polynomial

application (Ref, Imf). Then f is called a mixed polynomial. We write f as follows:

f(z, z) =
∑

ν,µ

cv,µz
νzµ (2.2.1)

where cv,µ 6= 0, zν := zv11 · · · zvnn and zµ := zµ1

1 · · · zµn
n for n-tuples v = (v1, . . . , vn),

µ = (µ1, . . . , µn) ∈ Nn. In the sequel, given a mixed polynomial f , we consider f

as in the form of equation (2.2.1).
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For a mixed polynomial f , we use the notation:

df :=

(
∂f

∂z1
, · · · , ∂f

∂zn

)

, df :=

(
∂f

∂z1
, · · · , ∂f

∂zn

)

Definition 2.2.1 We call w a mixed singularity of f : Cn → C, if w is a critical

point of the mapping f := (g, h) : R2n → R2.

From the above definition, if a fiber of f is mixed and non singular, then it has real

codimension 2. Note that a mixed singular point of f is not always a singular point

of its fiber. For example, every point of S2n−1 =
{
|z1|2 + · · ·+ |zn|2 = 1

}
is a mixed

singularity of f : Cn → C where f(z, z) = ‖z‖2. By abuse of notation, we continue

to denote the set of mixed singularities for a mixed polynomial f by Singf .

The next proposition give us a straight way to calculate the locus of mixed

singularity.

Proposition 2.2.2 [Oka08, Proposition 1] Let f : Cn → C be a mixed polynomial.

Then w ∈ Cn is a mixed singularity of f if and only if there exists a complex number

λ with |λ| = 1 such that df = λdf .

In particular, it is easily seen from above proposition that the notion of mixed

singularity coincides with the definition of singularity for a holomorphic function.

Example 2.2.3 Let f : C2 → C, f(z1, z2) = z1+ z2+ z21+ z22. We have df = (1, 1)

and df = (2z1, 2z2). Suppose λ ∈ C with |λ| = 1. The solutions of the equation

df = λdf are {z1 = z2 = λ
2
}. By Proposition 2.2.2, hence f(Singf) = {λ + 1

2λ2}
which is a simple closed curve with three cusps −3

4
+ i3

√
3

4
, −3

4
− i3

√
3

4
and 3

2
. (See

the following picture).

In the mixed setting, there are two definitions of homogeneous polynomials.

Definition 2.2.4 A mixed polynomial f : Cn → C is called radial weighted homo-

geneous if there exist n integers q1, . . . , qn with gcd(q1, . . . , qn) = 1 and a positive

integer mr such that
∑n

j=1 qj(vj + µj) = mr for every n-tuples ν and µ. We call

(q1, . . . , qn) the radial weight of f and mr the radial degree of f . More precisely, f

is radial weighted homogeneous of type (q1, . . . , qn;mr) if and only if it verifies the

following equation for all t ∈ R∗ = R \ {0}:

f(t ◦ z) = (tq1z1, . . . , t
qnzn, t

q1z1, . . . , t
qnzn) = tmrf(z, z)

From Definition 2.2.4, we see that if f := (g, h) : R2n → R2 is a radially weighted

homogeneous mixed polynomial, then g and h are real weighted homogeneous poly-

nomials with the same weights and degrees as f .
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Figure 2.1: Figure of Critical values

Definition 2.2.5 A mixed polynomial f : Cn → C is called polar weighted homo-

geneous if there exist n integers p1, . . . , pn with gcd(p1, . . . , pn) = 1 and a positive

integer mp such that
∑n

j=1 pj(vj − µj) = mp for every n-tuples ν and µ. We call

(p1, . . . , pn) the polar weight of f and mr the polar degree of f . More precisely, f

is polar weighted homogeneous of type (p1, . . . , pn;mp) if and only if it verifies the

following equation for all λ ∈ S1:

f(λ ◦ z) = f(λp1z1, . . . , λ
pnzn, λ

−p1z1, . . . , λ
−pnzn) = λmpf(z, z)

Example 2.2.6 Let f, g : C2 → C, f(x, y) = |x|2+|y|2 and g(x, y) = x2+x4y2+y2.

We see that f is a radial weighted homogeneous polynomial of radial weight (1, 1)

and degree 2, but f is not polar weighted homogeneous. g is a polar weighted

homogeneous polynomial of polar weight (1, 1) and degree 2, but g is not radial

weighted homogeneous.

Remark 2.2.7 If f is a holomorphic weighted polynomial, then f is radial and

polar weighted homogeneous. Moreover, the radial weight is equal to the polar

weight and the radial degree is equal to the polar degree. Conversely, if f is a radial

and polar weighted homogeneous mixed polynomial with the same weights, then f

is a holomorphic weighted polynomial.

The following theorem implies that f(Singf) ⊂ {0}. Let V (f) = f−1(0) and
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Kε = S2n−1
ε ∩ V (f), where S2n−1

ε is a real (2n− 1) dimensional sphere with radius

ε.

Theorem 2.2.8 [RSV02] If f is a radial and polar weighted homogeneous

mixed polynomial of radial weight type (q1, . . . , qn;mr) and polar weight type of

(p1, . . . , pr;mp), not necessarily mr = mp, then

f : Cn \ V (f) → C \ {0}

is a locally trivial fibration. In particular, the geometric monodromy map h : F → F

is given by h(z) = (z1 exp(
2p1πi
mp

), . . . , zn exp(
2pnπi
mp

)), where F = f−1(1).

From the definitions of radial and polar weighted homogeneous mixed polynomials,

the above theorem can be shown by using R∗ × S1-action. A similar result have

been obtained independently by Oka, see [Oka08, Proposition 2].

Proposition 2.2.9 [CM08, Oka08] Let f be a radial and polar weighted homoge-

neous mixed polynomial. Then the map

ϕ :=
f

|f | : (S
2n−1
ε \Kε) → S1

is a locally trivial fibration for any ε > 0, which is equivalent to the locally trivial

fibration

f : f−1(S1) → S1

In fact, the local triviality of ϕ can be obtained directly by using polar action as

follow (see [Oka10a, subsection 5.4]):

ψ :ϕ−1(θ)×]θ − π, θ + π[→ ϕ−1(]θ − π, θ + π[), (2.2.2)

ψ(z, θ + η) : = (z1 exp(
2p1ηi

mp
), . . . , zn exp(

2pnηi

mp
)).

2.3 Newton boundary and mixed non-degenerate

function germs

In this section, we recall some definitions and results by Oka [Oka10a] in the local

setting. We adopt the conventions that C∗ = C \ {0}, C∗n = (C \ {0})n and

R+n = (R≥0)
n .

Consider a mixed analytic function f : Cn → C, f(z, z) =
∑

ν,µ cv,µz
νzµ with

f(0) = 0. The radial Newton polyhedron Γ0(f) at the origin is defined by the

convex hull of
⋃

cv,µ 6=0

(v+µ)+R+n. Let us mention that each point of the polyhedron

correspond finitely many monomials with the same radial degree. The Newton
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boundary at the origin denoted by Γ+(f), is the union of the compact faces of Γ0(f).

Given a vector P = (p1, . . . , pn) with pi ≥ 0 for all i, there exists a face denoted

by △P such that the linear function lP :=
∑n

i=1 pi(vi + µi) takes its minimal value

dP on Γ+(f). The face function f△P
is defined by f△P

(z, z) =
∑

v+µ∈△P

cv,µz
νzµ. In

fact, f△P
is a radial weighted mixed homogeneous polynomial with radial degree dP

and weights (p1, . . . , pn). We say f is convenient if Γ+(f) intersects each coordinate

axis.

Definition 2.3.1 Let P = (p1, . . . , pn) with pi > 0 for all i, we say f is non-

degenerate for P, if Singf△P
∩ f−1

△P
(0)∩C∗n = ∅. In particular, if Singf△P

∩C∗n =

∅, we say f is strongly non-degenerate for P. A mixed function is called non-

degenerate (resp. strongly non-degenerate) if f is non-degenerate (resp. strongly

non-degenerate) for any strictly positive weight vector P.

Remark 2.3.2 Since Γ+(f) is consist of finitely many faces which coincide with

the set of strictly positive weight vectors, the non-degenerate condition could be

explicitly justified on every face of Γ+(f).

Example 2.3.3 1Let f(z, z) =
∑n

i=1 z
ai+bi
i zbii , ai and bi are positive inte-

gers for i = 1, . . . , n. The Newton polyhedron Γ0(f) is the convex hull of

∪
1≤i≤n

(0, . . . , ai + 2bi
︸ ︷︷ ︸

ith

, . . . , 0) + R+n and the Newton boundary at the origin Γ+(f)

is simply the convex hull of ∪
1≤i≤n

(0, . . . , ai + 2bi
︸ ︷︷ ︸

ith

, . . . , 0). Since ai > 0, by Definition

2.3.1, we see that f is strongly non-degenerate. If we suppose that for some i, we

have ai = 0, then f is non-degenerate but not strongly po non-degenerate.

Oka proved that for a strongly non-degenerate convenient mixed function f , the

origin is an isolated mixed singularity. Moreover, he proved following fibration

theorem:

Theorem 2.3.4 [Oka10a, Theorem 29, 33, 36] Assume that f : (Cn, 0) → (C, 0) is

a strongly non-degenerate convenient mixed function. There exist positive numbers

r0, δ0 and δ ≪ δ0, such that for any r ≤ r0, we have: f : f−1(D∗
δ ) ∩ B2n

r → D∗
δ is

locally trivial fibrations and the topological isomorphism class does not depend on

the choice of r and δ0. Moreover, ϕ := f
|f | : S2n−1

r \ Kr −→ S1 is also a locally

trivial fibration which is equivalent to the fibration f : f−1(Sδ) ∩B2n
r → Sδ.

Let us give a brief sketch of Oka’s proof. At first, it was shown that for any η 6= 0

‖η‖ ≪ δ0, the fiber f−1(η) has no mixed singularities inside the ball B2n
r0 . Therefore,

Milnor tube fibration of f exits. On the other hand, by proving that ϕ has no critical

1terminology used by Oka [Oka08]
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points on S2n−1
r \Kr, he constructed a vector field on S2n−1

r \Kr and showed the local

triviality by the integration. Finally, motivated by Milnor’s technique of inflating

the empty tube f−1(Sδ) ∩ B2n
r to S2n−1

r \Kr, he proved the equivalence of the two

fibrations. However the proof is much more complicated compare with the case of

holomorphic functions. Since in his situation, the two normal vectors of the fibers

are not always perpendicular. He needed a more delicate argument to control the

vector field. We will also use this construction at infinity in chapter 5.

In Section 7 of [Oka10a], Oka introduced another definition of non-degeneracy

to deal with the case for non convenient mixed functions.

In general, if we consider a positive vector P = (p1, . . . , pn), where I(P) =

{i | pi = 0} and J(P) = {j | pj > 0}. The face function f△P
(z, z) is in fact

a mixed polynomial in variables zj for j ∈ J(P) with the other zi constant for

i ∈ I(P). Thus this vector defines a family of mixed polynomial functions in zJ{P}
with coefficient in C{zI(P), zI(P)}. For abbreviation, we write C∗J(p)(wI(P)) instead

of {z ∈ C∗n | zI(P) = wI(P)} ∼= C∗J(P).

Definition 2.3.5 We say f is super strongly non-degenerate if the following con-

dition satisfied:

For any positive vector P,

(a). If dP = 0, then f△P
(z, z) ∈ C{zI(P), zI(P)};

(b). If dP > 0, for any wI(P) ∈ C∗I(P), f△P
: C∗J(p)(wI(P)) → C∗ has no critical

points.

An immediate consequence is that every convenient strongly non-degenerate mixed

function is super strongly non-degenerate. The interest of the above definition

is that it allows one to establish the following fibration theorem for non isolated

singularities.

Theorem 2.3.6 [Oka10a, Theorem 52] Assume that f is a super strongly non-

degenerate mixed function. Then there exists r0 > 0, such that for any r with 0 <

r ≤ r0, and a sufficiently small number δ (compared with r)we have two equivalent

fibrations:

f : f−1(Sδ0) ∩B2n
r → Sδ0 (2.3.1)

ϕ =
f

|f | : S
2n−1
r \Kr −→ S1 (2.3.2)

where Kr = f−1(0) ∩ S2n−1
r .

Example 2.3.7 Let f : C2 → C, f(x, y) = (2x2 + ‖x‖2)y. The Newton boundary

at the origin Γ+(f) is a single point (2, 1) and f is strongly non-degenerate but
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not convenient. Taking any vector P = (p1, 0) with p1 > 0, we have f△P
(x, w) =

(2x2 + ‖x‖2)w for w ∈ C∗ fixed. Then
∂f△P

(x,w)

∂x
= (4x + x)w and

∂f△P
(x,w)

∂x
= xw.

By triangular inequality, we have:

∥
∥
∥
∥

∂f△P
(x, w)

∂x

∥
∥
∥
∥
= ‖(4x+ x)w‖ ≥ 3 ‖wx‖ >

∥
∥
∥
∥

∂f△P
(x, w)

∂x

∥
∥
∥
∥

where (x, w) ∈ C∗2. From Proposition 2.2.2, f△P
(x, w) is strongly non-degenerate.

On the other hand, taking any vector Q = (0, q1) with q1 > 0, we have

f△Q
(w, y) = (2w2 + ‖w‖2)y for w ∈ C∗ fixed. We check once that f△Q

(w, y) is

strongly non-degenerate. By Definition 2.3.5, we conclude that f is super strongly

non-degenerate. Note also that the mixed singular locus is the whole y-axis which

is non isolated. According to the previous theorem for non convenient mixed func-

tions, there exist two equivalent Milnor fibrations.
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3.1 Introduction

In this chapter, we study the regularity conditions at infinity for mixed polynomials.

We begin with some results known for holomorphic polynomials. For a complex

polynomial function f : Cn → C, it is well known that there is a C∞ locally trivial

fibration f| : C
n \f−1(Λ) → C\Λ over the complement of some finite subset Λ ⊂ C,

see e.g. [Var72], [Ver76]. The minimal such Λ is called the set of bifurcation values,

or the set of atypical values, and shall be denoted by B(f). It is not difficult to

see the inclusion f(Singf) ⊂ B(f) can be strict, like the following famous example

given by Broughton cf. [Bro88]:

Example 3.1.1 f : C2 → C, f(x, y) = x2y + x. We have Singf = ∅. For c 6= 0,

the fiber f−1(c) = {y = c−x
x2 }and f−1(0) = {x(xy + 1) = 0}. Therefore f−1(c) is

homeomorphic to C∗ := C \ {0}, whereas f−1(0) is homeomorphic to the disjoint

union C ⊔ C∗. This implies that 0 ∈ B(f) and f(Singf) ⊂ B(f) is strict.

Let us recall certain cases for which f has no atypical values at infinity. We define

gradf(z) =
(

∂f
∂z1

(z), . . . , ∂f
∂zn

(z)
)

. In [Bro88], Broughton considered the following

class of holomorphic polynomials.

Definition 3.1.2 [Bro88, Definition 3.1] A holomorphic polynomial f : Cn → C

is called a “tame polynomial” if there is a compact neighborhood U of the critical

points of F such that ‖gradf(z)‖ is bounded away from 0 on Cm \ U .
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It was shown that holomorphic convenient polynomials with non-degenerate Newton

principal part at infinity are tame and that “tame condition” is an open and dense

condition. Since tame polynomials have only isolated singularities, for any c ∈ C,

let p1, . . . , pk be the critical points of F lying on F−1(c) and set

µc = µc(F ) =
n∑

i=1

µpi(F ), µ = µ(F ) =
∑

c∈C
(F )

where µpi(F ) is the Milnor number of F at pi. We call µc the fibre Milnor number

and µ the total Milnor number. The most important property of tame polynomials

is the following:

Theorem 3.1.3 [Bro88, Theorem 1.2] Let f : Cn → C be a tame polynomial and

µ, µc, c ∈ C be the total and fibre Milnor numbers of F respectively. Then for any

c ∈ C, f−1(c) has the homotopy type of a bouquet of µ− µc sphere of dimension n.

The above theorem provides that the topology of the fiber depends only on the

singularities of F . Later, more general classes without atypical values at infinity

like “M-tame”, “cohomologically tame” were studied in [N8́6], [N8́8] , [NS99], [Sab99].

Another problem in the study of global behavior of holomorphic polynomials is

how to determine the atypical values at infinity.

For n = 2, one has several equivalent characterizations of the atypical values at

infinity, see e.g. [Dur98], [HL84], [Par95], [Tib99]. In higher dimension the problem

is still open, and one can look for some significant set A ⊃ B(f) which bounds B(f)

reasonably well.

For instance in [N8́6] and [N8́8], Némethi proved that B(f) ⊂ Λ(f), where

Λ(f) := {c ∈ C; there exists a sequence {zk}k ⊂ Cn such that

lim
k→∞

gradf(zk) = 0 and lim
k→∞

(f(zk)−
〈
zk, gradf(zk)

〉
= c}.

When Λ(f) is empty, we call f is quasitame.

In [NZ90], the authors defined the Milnor set of f , namely

M(f) := {z ∈ Cn; there exists λ ∈ Cn such that gradf(z) = λz}.

They gave an explicit set S(f) by:

S(f) : = {c ∈ C; there exists a sequence {zk}k ⊂M(f) such that

lim
k→∞

‖ zk ‖= ∞ and lim
k→∞

f(zk) = c}.

They proved that B(f) ⊂ f(Singf)∪ S(f) and showed that f(Singf)∪ S(f) ⊂
Λ(f) is a better approximation for B(f). When S(f) is empty, f is called M-tame,

see e.g. [NZ90, NZ92, NS99].
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The above definition is later generalized by Tibăr cf. [Tib99] called ρ-regularity

which is concerned with the transversality of the fibers and the distance function ρ.

He proved that ρ-regularity condition implies the topological triviality at infinity.

Let us turn to the cases of real polynomial maps. We may also define the

bifurcation locus as follows:

Definition 3.1.4 For a polynomial map F : Rn → Rp, n > p, the bifurcation locus

B(F ) is the minimal set such that F is a C∞ locally trivial fibration over each

connected component of Rp \B(F ).

One has therefore imagined various ways to approximate B(F ), essentially through

the use of regularity conditions at infinity. For holomorphic polynomials one has

the Malgrange regularity condition, mentioned by Pham and used in many papers,

see e.g. [Par95, ST95]. This is known to be more general than “tame” [Bro88] or

“quasi-tame” [N8́8]. It was extended to real maps by Kurdyka, Orro and Simon.

These authors defined in [KOS00] the set of generalized critical values K(F ) =

F (SingF ) ∪K∞(F ) of a differentiable semi-algebraic map F : Rn → Rk, where

K∞(F ) := {c ∈ Rk | ∃{xℓ}l ⊂ Rn, ‖xℓ‖ → ∞
F (xℓ) → c and ‖xℓ‖ν(dF (xℓ)) → 0}

is the set of asymptotic critical values of F . In this definition they use the following

distance function:

ν(A) := inf
‖ϕ‖=1

‖A∗ϕ‖ (3.1.1)

for A ∈ L(Rn,Rk) and A∗ stands for the transpose of A. In particular for a holo-

morphic polynomial, one has ν(df(x)) = ‖ grad f(x)‖. In the sequel, we call their

condition KOS-regularity. The main result of [KOS00] is the following:

Theorem 3.1.5 [KOS00, Theorem 3.1]

Let F : Rn → Rk be a C1 semi-algebraic map. Then K(F ) is a closed semi-algebraic

set of dimension strictly less than k.

Moreover, if F is of class C2, then F : Rn \F−1(K(F )) → Rk \K(F ) is a locally

trivial fibration over each connected component of Rk \K(F ). In particular, the set

B(F ) of bifurcation values of F is included in K(F ). 2

Remark 3.1.6 In the above theorem, the existence of the fibration is based on a

result proved by Rabier [Rab97]. More generally, he introduced the notion of strong

submersion and using the norm of ν, he proved the fibration theorem for Finsler

manifolds.

Remark 3.1.7 In particular, for k = 1, KOS-regularity can be interpreted as a

Malgrange’s condition. When F : Cn → Ck a complex polynomial mapping,
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T.Gaffney [Gaf99] generalized Malgrange’s condition. Even if his definition of ν

is not exactly the same as definition of [KOS00], the two definitions are equivalent.

In the mixed case, we generalize ρ-regularity condition and define the set of asymp-

totic ρ-non-regular values of a mixed polynomial f which is denoted by S(f).(For

Definition of S(f), we refer to 3.2.4.) Since a mixed polynomial F : Cn → C can be

considered as a real polynomial map from R2n to R2 obviously we can deal with the

approximation of B(F ) by KOS-regularity condition. It is to be expected that one

can compare these two regularity conditions. More precisely, the question is what

is the difference between S(f) and K∞(f). This work is intended as an attempt

to motivate not only the study of global behavior of mixed polynomials but also

for real polynomial maps. Using a generalized version of Curve selection lemma,

we make a preliminary observation to the structure of S(f) which is turned out to

be a closed semi-algebraic set. Moreover, f(Singf) ∪ S(f) is also a closed semi-

algebraic set. With an interpretation of the norm used to define KOS-regularity

for mixed polynomials, this enable us to compare the two regularity conditions via

some inequalities. Consequently, it is shown that S(f) ⊂ K∞(f) and there exist the

examples such that this inclusion is strict. (See Remark 3.3.2 and example 3.3.4)

Namely, ρ-regularity condition is strictly stronger than KOS-regularity condition.

Now, we state our main result of this chapter:

Theorem 3.1.8 Fibration Theorem

Let f : Cn → C be a mixed polynomial. Then the restriction:

f| : C
n \ f−1(f(Singf) ∪ S(f)) → C \ f(Singf) ∪ S(f)

is a locally trivial C∞ fibration over each connected component of C \ (f(Singf) ∪
S(f)). In particular B(f) ⊂ f(Singf) ∪ S(f).

Remark 3.1.9 In the setting of mixed functions, our Theorem 3.1.8 extends

[KOS00, Theorem 3.1]. Since we have S(f) ( K∞(f), we get a sharper approxima-

tion of the bifurcation set B(f). While our proof 3.3 does not explicitly bound the

dimension of S(f), it follows from the preceding inclusion and from Theorem 3.1.5

that S(f) has real dimension less than 2.

The structure of the chapter is as follows. In Section 2, we reformulate the definition

of Milnor set according to the terminology in [NZ90] which we call ρ-non-regular set

and introduce asymptotic ρ-non-regular values for mixed polynomials. In Section

3, we compare our regularity condition with KOS-regularity and prove a version of

fibration theorem which gives a better approximation of B(f). In the end of this

chapter, we will construct a mixed join polynomial type of Păunescu and Zaharia’s

example which implies that K∞(f) and S(f) can have different dimensions.
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3.2 Preliminaries

In order to describe ρ-regularity in the mixed setting, the following lemma gives an

explicit formula for the Milnor set.

Lemma 3.2.1 Let f : Cn → C be a mixed polynomial. The intersection of the

fibre f−1(f(z, z)) with the sphere S2n−1
r of radius r = ‖z‖ is not transversal at

z ∈ Cn \ {0} if and only if there exist µ ∈ C∗, λ ∈ R such that:

λz = µdf(z, z) + µdf(z, z).

Proof. Let us write f as the map:

f : Cn = R2n −→ R2, f(z1, . . . , zn) = (Ref, Imf)

where zk = xk + iyk = (xk, yk), for k = 1, . . . , n, and let us denote v :=

(x1, y1, . . . , xn, yn).

If f−1(f(z, z)) does not intersect transversely the sphere S2n−1
r at z, then there

exist α, β, γ ∈ R, |α|+ |β|+ |γ| 6= 0, such that

γv = αdRef(v) + βdImf(v). (3.2.1)

Since Ref = f+f̄
2

, Imf = f−f̄
2i

and ∂f
∂xk

= ∂f
∂zk

+ ∂f
∂zk

, ∂f
∂yk

= i ∂f
∂zk

−i ∂f
∂zk

, k = 1, . . . , n,

we get:

γxk =
α

2
(
∂f

∂zk
+
∂f

∂zk
+
∂f

∂zk
+
∂f

∂zk
) +

β

2i
(
∂f

∂zk
+
∂f

∂zk
− ∂f̄

∂zk
− ∂f̄

∂zk
) (3.2.2)

γyk =
αi

2
(
∂f

∂zk
− ∂f

∂zk
+
∂f

∂zk
− ∂f

∂zk
) +

β

2
(
∂f

∂zk
− ∂f

∂zk
− ∂f̄

∂zk
+
∂f̄

∂zk
). (3.2.3)

Therefore:

γzk = (α + βi)
∂f̄

∂zk
+ (α− βi)

∂f

∂zk
(3.2.4)

for every k ∈ {1, . . . , n}. We get our claim by taking λ = γ and µ = α + βi. �

Remark 3.2.2 The singular locus Singf of a mixed polynomial f is by definition

the set of critical points of f as a real-valued map. From Lemma 3.2.1, by taking

λ = 0 and dividing by µ, we obtain [Oka08, Proposition 1].

Definition 3.2.3 The ρ-non-regular set of a mixed polynomial f is

M(f) =
{
z ∈ Cn | ∃λ ∈ R and µ ∈ C∗, such that λz = µdf(z, z) + µdf(z, z)

}
.
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Lemma 3.2.1 gives the geometric interpretation of M(f) as the critical locus of the

map (f, ρ), where ρ : R2n → R≥0 is the Euclidean distance function. From this

interpretation, M(f) is a real algebraic subset of Cn and this fact will be used in

the following. Like in the holomorphic setting [NZ90], one may define:

Definition 3.2.4 The set of asymptotic ρ-non-regular values of a mixed polynomial

f is

S(f) = {c ∈ C |∃ {zk}k∈N ⊂M(f), lim
k→∞

‖zk‖ = ∞ and lim
k→∞

f (zk , zk) = c}.

A value c 6∈ S(f) will be called an asymptotic ρ-regular value.

In order to investigate the properties of S(f) we need a version of the curve

selection lemma at infinity. Milnor [Mil68, Lemma 3.1] has proved this lemma at

points of the closure of a semi-algebraic set. Némethi and Zaharia [NZ90], [NZ92],

proved how to extend the result at infinity at some fibre of a holomorphic polynomial

function. We give here a more general statement including the case where the value

of |f | tends to infinity. Let us denote +∞ simply by ∞.

Lemma 3.2.5 Curve Selection Lemma at infinity

Let U ⊆ Rn be a semi-analytic set. Let g : Rn −→ R be a polynomial function. If

there is {xk}k∈N ⊂ U such that lim
k→∞

‖xk‖ = ∞ and lim
k→∞

g(xk) = c, where c ∈ R,

c = ∞ or c = −∞, then there exist a real analytic path x(t) ∈ U and x(t) =

x0t
α+x1t

α+1+h.o.t. defined on some small enough interval ]0, ε[, such that x0 6= 0,

α < 0, α ∈ Z, and limt→0 g(x(t)) = c.

Proof. Our proof starts with the following observations.

Let A ⊂ Rm and B ⊂ Rn be semi-algebraic sets, then we have:

(a) If f : A −→ B is a polynomial map, then it is a semi-algebraic map.

(b) If f : A −→ B is a regular rational map, then it is semi-algebraic map.

(c) If f : A −→ R is a semi-algebraic function, then ‖f‖ is semi-algebraic function.

(d) If f : A −→ R is a semi-algebraic function and f ≥ 0 on A, then
√
f is a

semi-algebraic function.

For the proofs of the above observation we refer to [BCR98] for more details. Next,

we proceed to the proof of the lemma. When c is finite, the lemma was proved by

Némethi and Zaharia in [NZ92]. Thus it is sufficient to prove the case for c = ∞.

Considering the embedding of Rn into Rn × R2 given by the following map:

ϕ : x = (x1, . . . , xn) 7→ (
x1

√

1 + ‖x‖2
, . . . ,

xn
√

1 + ‖x‖2
,

1
√

1 + ‖x‖2
, h1(x), h2(x))
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Where h1(x) =
1

1+|f(x)| and h2(x) =
f(x)

1+|f(x)| . By the above observations, it follows

that ϕ is semi-algebraic. In addition, by Tarski-Seidenberg theorem, V = ϕ(U) is

semi-algebraic. Since ( x1√
1+‖x‖2

, . . . , 1√
1+‖x‖2

) ∈ Sn, lim
k→∞

‖xk‖ = ∞ and lim
k→∞

f(xk) =

∞, we can suppose that the sequence {ϕ(xk)}k∈N is sub-convergent to some point

(c0, 0, 1) ∈ Sn × [0, 1] × [0, 1]. Thus we can apply the Curve Selection Lemma

(see [Mil68]) for the point (c0, 0, 1) ∈ V , then we obtain a real analytic path x̂(t)

in V which tends to (c0, 0, 1) ∈ V when t → 0, and x̂(t) ∈ V for t ∈]0, ε[. On

the other hand we have the following analytic isomorphism ψ between Rn and

Sn ∩ {x ∈ Rn+1 | xn+1 > 0}:

ψ : (x1, . . . , xn) 7→ (
x1

√

1 + ‖x‖2
, . . . ,

xn
√

1 + ‖x‖2
,

1
√

1 + ‖x‖2
).

Considering the pre-image of x̂i(t) for all i, where 1 ≤ i ≤ n + 1 and t ∈]0, ε[,
we therefore get a real analytic path x(t) as desired. �

Now we turn to the following structure result of S(f).

Proposition 3.2.6 If f : Cn → C is a mixed polynomial, then S(f) and f(Singf)∪
S(f) are closed semi-algebraic sets.

Proof. S(f) may be presented as the projection of a semi-algebraic set. Indeed,

consider the embedding of Cn into Cn+1 × C given by the semi-algebraic map:

ϕ : (z1, . . . , zn) 7→ (
z1

√

1 + ‖z‖2
, . . . ,

zn
√

1 + ‖z‖2
,

1
√

1 + ‖z‖2
, f(z, z)).

Then U1 := ϕ(M(f))∩{(x1, . . . , xn+1, c) ∈ Cn+1×C | xn+1 = 0} is a semi-algebraic

set and S(f) = π(U1), where π : Cn+1 × C → C is the projection. Therefore S(f)

is semi-algebraic, by the Tarski-Seidenberg theorem.

Let now c ∈ S(f). There exists a sequence {ci}i ⊂ S(f) such that lim
i→∞

ci = c. For

any i, we have by definition a sequence {zi,n}n ⊂ M(f) such that limn ‖zi,n‖ = ∞
and limn→∞ f(zi,n, zi,n) = ci. Take a sequence {ri}i ⊂ R+ such that limi→∞ ri = ∞.

For each i there exists n(i) ∈ N such that zi,n > ri implies |f(zi,n, zi,n)− ci| < 1
ri

,

∀n > n(i). Setting zk := zk,n(k) we get a sequence {zk}k such that lim
k→∞

‖zk‖ = ∞
and lim

k→∞
f(zk, zk) = c, which proves that c ∈ S(f).

Let now a ∈ f(Singf) ∪ S(f). Since we have proved that S(f) is closed, we

may assume that a ∈ f(Singf). Then there exists a sequence {zn}j∈N ⊂ Singf ,

such that limj→∞ f(zj, zj) = a. If {zj}j∈N is not bounded, then we may choose

a subsequence {zjk}k∈N such that limk→∞ ‖zjk‖ = ∞ and limk→∞ f(zjk , zjk) = a.

Since Singf ⊂ M(f), it follows that a ∈ S(f), see also Remark 4.4.2. In the other

case, if {zj}j∈N is bounded, then we may choose a subsequence {zjk}k∈N such that
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limk→∞ zjk = z0 and limk→∞ f(zjk , zjk) = a. Since Singf is a closed algebraic set,

this implies z0 ∈ Singf , so a = f(z0, z0) ∈ f(Singf). �

3.3 The fibration theorem

By the next two results we prove that S(f) contains the atypical values due to the

asymptotical behavior and that S(f) is contained in K∞(f).

Proposition 3.3.1 Let f : Cn → C be a mixed polynomial. Then S(f) ⊂ K∞(f).

Proof. Let (g, h) be the corresponding real map of the mixed polynomial f and

denote ν(x) := ν(d(g, h)(x)) where x = (x1, y1, . . . , xn, yn). Let us first claim that:

ν(x) = inf
µ∈S1

1

‖µdf(z, z) + µdf(z, z)‖. (3.3.1)

By the definition (3.1.1) of ν(x), we have ν(x) = inf
(a,b)∈S1

1

‖adg(x)+ bdh(x)‖. But

the proof of Lemma 3.2.1 shows the equality: ‖adg(x) + bdh(x)‖ = ‖µdf(z, z) +
µdf(z, z)‖ for µ = a+ ib ∈ S1

1 . Our claim is proved.

Let then c ∈ S(f). By Definition 3.2.4 and Lemma 3.2.5, there exist real analytic

paths, z(t) in M(f), λ(t) in R and µ(t) in C∗, defined on a small enough interval

]0, ε[, such that limt→0 ‖z(t)‖ = ∞ and limt→0 f(z(t), z(t)) = c and that:

λ(t)z(t) = µ(t)df(z(t), z(t)) + µ(t)df(z(t), z(t)). (3.3.2)

Let us assume that λ(t) 6≡ 0. Dividing (3.3.2) by ‖µ(t)‖ yields:

λ0(t)z(t) = µ0(t)df(z(t), z(t)) + µ0(t)df(z(t), z(t)) (3.3.3)

where λ0(t) :=
λ(t)

‖µ(t)‖ and µ0(t) :=
µ(t)

‖µ(t)‖ ; therefore β := ordt(µ0(t)) = 0.

Since lim
t→0

f(z(t), z(t)) = c, we have α := ordt
d
dt
f(z(t), z(t)) ≥ 0. Then the

following computation:

µ0(t)
d
dt
f(z(t), z(t)) + µ0(t)

d
dt
f(z(t), z(t)) =

〈
µ0(t)df(z(t), z(t)) + µ0(t)df(z(t), z(t)),

d
dt
z(t)

〉

+
〈

d
dt
z(t), µ0(t)df(z(t), z(t)) + µ0(t)df(z(t), z(t))

〉

by(3.3.3)
= λ0(t)(

〈
z(t), d

dt
z(t)

〉
+
〈

d
dt
z(t), z(t)

〉
)

= λ0(t)
d
dt
‖z(t)‖2

implies that ordt(λ0(t)
d
dt
‖z(t)‖2) ≥ α+β ≥ 0. But since ordt(z(t)) < 0, this implies

that limt→0 |λ0(t)| ‖z(t)‖2 = 0. Note that this limit holds true for λ(t) ≡ 0 too.

From the last limit, by using (3.3.3), we get:

lim
t→0

‖z(t)‖‖µ0(t)df(z(t), z(t)) + µ0(t)df(z(t), z(t))‖ = 0 (3.3.4)

which, by (3.3.1), implies lim
t→0

‖x(t)‖‖ν(x(t))‖ = 0, showing that c ∈ K∞(f). �
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Remark 3.3.2 The above inclusion is strict in general. This holds already in

the holomorphic setting; to prove it, we may use the examples constructed by

Păunescu and Zaharia in [PZ97], as follows. Let fn,q : C3 → C, fn,q(x, y, z) :=

x − 3x2n+1y2q + 2x3n+1y3q + yz, where n, q ∈ N \ {0}. These polynomials are ρ-

regular at infinity and therefore we have S(fn.q) = ∅. It was also shown in [PZ97]

that fn,q satisfies Malgrange’s condition for any t ∈ C if and only if n ≤ q. Therefore,

in case n > q, we have ∅ = S(fn.q) ( K∞(fn.q) = 6= ∅.

Next paragraph is devoted to the proof of our main result.

Proof of Fibration theorem 3.1.8 Let c 6∈ f(Singf) ∪ S(f). Then there is a

closed disk D centered at c such that D ⊂ C \ f(Singf) ∪ S(f), since the latter

is an open set by Proposition 3.2.6. Let us first observe that there exists R0 ≫ 0

such that M(f) ∩ f−1(D) \ B2n
R0

= ∅. Indeed, if this were not true, then there

would exist a sequence {zk}k∈N ⊂ f−1(D) ∩M(f) such that lim
k→∞

‖zk‖ = ∞. Since

D is compact, there is a sub-sequence {zki}i∈N ⊂ M(f) and c0 ∈ D such that

lim
i→∞

‖zki‖ = ∞ and lim
i→∞

f(zki) = c0, which contradicts D ⊂ C \ S(f).
We claim that the map:

f| : f
−1(D) \B2n

R0
→ D (3.3.5)

is a trivial fibration on the manifold with boundary (f−1(D)\B2n
R0
, f−1(D)∩S2n−1

R ),

for any R ≥ R0. Indeed, this is a submersion by hypothesis but it is not proper,

so one cannot apply Ehresmann’s theorem directly. Instead, we consider the map

(f, ρ) : f−1(D) \B2n
R0

→ D× [R0,∞[. As a direct consequence of its definition, this

is a proper map. It is moreover a submersion since Sing(f, ρ) ∩ f−1(D) \ B2n
R0

= ∅
by the above remark concerning the set M(f), which is nothing else but Sing(f, ρ).

We then apply to (f, ρ) Ehresmann’s theorem to conclude that it is a locally trivial,

hence a trivial fibration over D×[R0,∞[. Take now the projection π : D×[R0,∞[→
D which is a trivial fibration by definition and observe that our map (3.3.5) is the

composition π ◦ (f, ρ) of two trivial fibrations, hence a trivial fibration too.

Next observe that, since D ∩ f(Singf) = ∅, the restriction:

f| : f
−1(D) ∩ B̄2n

R0
→ D (3.3.6)

is a proper submersion on the manifold with boundary (f−1(D) ∩ B̄2n
R0
, f−1(D) ∩

S2n−1
R0

) and therefore a locally trivial fibration by Ehresmann’s theorem, hence a

trivial fibration over D.

Finally we glue the two trivial fibrations (3.3.6) and (3.3.5) by using an isotopy
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and the trivial fibration from the following commuting diagram, for some R > R0:

(B̄R \B◦
R0
) ∩ f−1(D)

≃
��

(f,ρ)
// D × [R0, R]

pr

��

F̂ ×D × [R0, R]

55
k
k
k
k
k
k
k
k
k
k
k
k
k
k

pr
// D

(3.3.7)

where F̂ denotes the fibre of the trivial fibration f| : SR ∩ f−1(D) → D and does

not depend on the radius R ≥ R0. 2

Example 3.3.3 Let f : C2 → C, f(x, y) = x(1 + xy). We have df = (1 + xy, |x|2)
and df = (xy, 0). By the definition of Singf , there does not exist λ ∈ S1

1 such

that the equation df = λdf has a solution. Hence f(Singf) = ∅. We proceed to

calculate M(f) \ Singf which is the solution of the following system:

x = µ(1 + xy) + µxy

y = µ |x|2

where µ ∈ C∗. We conclude M(f) = {(x, y) ∈ C2 | x(|x|2 − 2 |y|2)− y = 0 and xy 6=
0}.

If we take any sequence {(xk, yk)}k∈N in M(f) with xk → ∞, then we must have

yk → ∞ and therefore, f(xk, yk) → ∞.

Let us assume that yk → ∞. Then we must have xk → 0 and 2xkyk → −1.

This implies that f(xk, yk) → 0. We therefore get S(f) = {0}.
Now, let c ∈ K∞(f) and by KOS-regularity we suppose that there exists a

sequence {(xk, yk)}k∈N such that |(xk, yk)| → ∞ and:

f(xk, yk) → c

|(xk, yk)| (min
µ∈S1

1

∥
∥µdf + µdf

∥
∥) → 0. (3.3.8)

It follows from Equation 3.3.8 that xk → 0, yk → ∞ and |x2kyk| → 0. On the

other hand, since S(f) ⊂ K∞(f), we therefore conclude K∞(f) = S(f) = {0}.
In fact, we also have B(f) = {0}. Since f−1(0) = {(x, y) ∈ C2 | x = 0 or y =

− 1
x
}, the fiber f−1(0) ∼= C ⊔ C∗. For any ε 6= 0, we get f−1(ε) = {(x, y) ∈ C2 |

y = ε−x
|x|2 } which is homeomorphic to C∗. In consequence, there does not exist the

locally trivial fibration over any neghibourhood of value 0 ∈ C. Finally, we get

K∞(f) = S(f) = B(f) = {0}.

Next we consider a mixed polynomial type of Păunescu and Zaharia’s example,

which shows that S(f) = ∅ and dimK∞(f) = 1.
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Example 3.3.4 Let f : C4 → C, f(x, y, z, u) = x − 3x5y2 + 2x7y3 + yz + uu. We

have:

∂f

∂x
= 1− 15x4y2 + 14x6y3

∂f

∂y
= −6x5y + 6x7y2 + z

∂f

∂z
= y

∂f

∂u
= u

∂f

∂u
= u.

The singular locus of f consists of the points which satisfy the equation df = λdf

for some λ ∈ S1
1 . Explicitly, the system is written as follows:

1− 15x4y2 + 14x6y3 = 0

−6x5y + 6x7y2 + z = 0

y = 0

u = λu.

Since the condition y = 0 does not verify the first equation of the above system,

this gives Singf = ∅.
We proceed to show that S(f) = ∅ and K∞(f) = {(a, 0) ∈ R2 | a ≥ 0}.
First, according to the defintion of KOS-regularity, for any point a =

(x, y, z, u) ∈ C4, we have:

ν(a) = min
µ∈S1

1

‖ µdf + µdf ‖

= min
µ∈S1

1

‖ (
∂f

∂x
,
∂f

∂y
,
∂f

∂z
, (µ+ µ)u) ‖ (3.3.9)

From (3.3.9), in order to attain the minimum, it follows that µ = ±i and

therefore ν(a) =
∥
∥
∥(∂f∂x ,

∂f
∂y
, ∂f
∂z
, 0)

∥
∥
∥.

By the computations of [PZ97], it yields that for g(x, y, z) = x−3x5y2+2x7y3+

yz, the sets K∞(g) = {0} and S(g) = ∅.
On one hand, we fix a sequence {xk, yk, zk}k∈N which satisfies KOS-regularity

for g and g(xk, yk, zk) → 0. On the other hand, for any u ∈ C, we choose a sequence

{uk}k∈N such that uk → u. Therefore taking the sequence {ak = (xk, yk, zk, uk)}k∈N,

we conclude {(a, 0) ∈ R2 | a ≥ 0} ⊂ K∞(f).
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Conversely, if c ∈ K∞(f), then there exists a real analytic path a(t) =

(x(t), y(t), z(t), u(t)) such that:

lim
t→0

‖ a(t) ‖= ∞ (3.3.10)

lim
t→0

f(a(t), a(t)) = c (3.3.11)

lim
t→0

‖ a(t) ‖‖ ν(a(t)) ‖= 0. (3.3.12)

From (3.3.12), we have ‖a(t)‖ ‖y(t)‖ → 0 and ‖x2(t)y(t)‖ → b, where b is a root of

the following equation:

14b3 − 15b2 + 1 = 0. (3.3.13)

Hence by (3.3.10), we conclude ord(x(t)) = A < 0, ord(y(t)) = −2A > 0.

If b 6= 1, then from (3.3.12), it follows that ‖−6x3(t)(b+ b2) + z(t)‖ → 0. Con-

sequently, we must have ord(z(t)) = 3A and ord(z(t)) + ord(y(t)) = A < 0 which

contradicts ‖a(t)‖ ‖y(t)‖ → 0.

We may now assume that b = 1. Since the roots of (3.3.13) are 1, τ1 = 1−
√
57

28

and τ2 =
1+

√
57

28
, we may write (3.3.12) as follows:

lim
t→0

‖ a(t) ‖‖ (1− x2(t)y(t))(τ1 − x2(t)y(t))(τ2 − x2(t)y(t)) ‖= 0.

This gives ‖x(t)(1 − x2(t)y(t))‖ → 0. To deal with the limit of f(a(t), a(t)), we

divide this limit in three parts. The first part is: x(t)− 3x5(t)y2(t) + 2x7(t)y3(t) =

x(t)(1− x2(t)y(t))2(x2(t)y(t) + 1
2
). When t→ 0, we have:

lim
t→0

‖ x(t)− 3x5(t)y2(t) + 2x7(t)y3(t) ‖= 0.

The second part is y(t)z(t) and limt→0 y(t)z(t) = 0 which is a consequence of

‖a(t)‖ ‖y(t)‖ → 0. The last part is ‖u(t)‖2 and by (3.3.11), its limit is c. On

accounts of the above arguments, we get K∞(f) = {(a, 0) ∈ R2 | a ≥ 0}.
We now proceed to show S(f) = ∅. Suppose c ∈ S(f). Then there exists a real

analytic path a(t) = (x(t), y(t), z(t), u(t)) ⊂ M(f) such that:

lim
t→0

‖ a(t) ‖= ∞
lim
t→0

f(a(t), a(t)) = c

By (3.3.4) of the proof of our fibration theorem, we conclude that the path a(t)

satisfies (3.3.12). This implies:

lim
t→0

‖ (x(t), y(t), z(t)) ‖ = ∞
lim
t→0

g(x(t), y(t), z(t)) = 0.

Since a(t) ⊂ M(f), by Definition of M(f), we get (x(t), y(t), z(t)) ⊂ M(g). From

the above two limits, we obtain S(g) = {0} which is in contradiction with S(g) = ∅.
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4.1 Introduction

The purpose of this chapter is devoted to give an approximation of the bifurcation

set B(f) for a class of mixed polynomials via the Newton boundary at infinity. In

the holomorphic case, Kushnirenko [Kus76] had first introduced the Newton bound-

ary of holomorphic germs and polynomials. Lately, Némethi and Zaharia studied

the Newton non-degenerate polynomials with respect to the Newton boundary at

infinity. In order to estimate the set of bifurcation values B(f), they introduced

the notion of “bad faces”. In [NZ90], it was proved the following

Theorem 4.1.1 [NZ90, Theorem 2] Suppose that f : Cn → C is a non convenient,

Newton non-degenerate polynomial and f(0) = 0. Then

B(f) ⊂ f(Singf) ∪ {0} ∪ ∪
△∈B

f△(Singf△ ∩ C∗n) (4.1.1)
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where B is the set of “bad faces” of the support supp(f).

In the convenient case, it was shown that B(f) = f(Singf), see [Bro88, Kus76].

When n = 2, the above inclusion turns out to be an equality [NZ90, Proposition 6].

By using some technics of toric resolution, Zaharia showed that

Theorem 4.1.2 [Zah96, Proposition 5.3] Let f : Cn → C be a not convenient,

Newton non-degenerate polynomial. Suppose moreover for all the bad faces △ ∈ B,

we have dim△ = n− 1. Then

f(Singf) ∪ ∪
△∈B

(f△(Singf△ ∩ C∗n) \ {0}) ⊂ B(f).

Therefore it is of interest to know whether we can develop this technic to estimate

the bifurcation set B(f) for some special classes of mixed polynomials. Inspired by

Oka’s work of non-degenerate mixed functions, we consider the Newton boundary

of a mixed polynomial at infinity and define a Newton non-degeneracy condition at

infinity. We get the following effective estimation of S(f) in the mixed case, which

is also a generalization of [NZ90, Theorem 2].

Theorem 4.1.3 Let f : R2n → R2 be a mixed polynomial which depends effectively

on all the variables and let f(0) = 0. If f is Newton non-degenerate at infinity

then:

(a) S(f) ⊂ {0} ∪ ⋃

∆∈B
f∆(Singf∆ ∩ C∗n).

(b) If f is moreover Newton strongly non-degenerate at infinity then f(Singf)

and S(f) are bounded.

where B is the set of bad faces of the support supp(f).

Remark 4.1.4 If f satisfies the conditions of Theorem 4.1.3 except for f(0) = 0,

then we replace f by h = f − f(0) and apply to it Theorem 4.1.3. Since df(z, z) =

dh(z, z) and df(z, z) = dh(z, z), we get M(f) = M(h) and c ∈ S(f) ⇔ c− f(0) ∈
S(h).

Unlike in the holomorphic case for two complex variables, we will construct an

example which shows that the value zero is not contained in B(f). We also

consider a mixed polynomial type of King’s example which demonstrates that

for two complex variables, even if S(f) 6= ∅, we may also have B(f) = ∅. Our

another purpose of this chapter is to discuss the stability of the monodromy at

infinity for some families of mixed polynomials. In [NZ92], it was shown that

for two non-degenerate and convenient polynomials which has the same Newton

boundary at infinity, the monodromy at infinity is equivalent. This result was later
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extended by Pham [Pha08] to non-convenient and non-degenerate polynomial. In

our mixed setting, the technique developed for the proof of Theorem 4.1.3 enables

us to pursue the extension of these results for families of mixed polynomials,

along the pattern of [NZ92] and [Pha08, Lemmas 3.2–3.5]. Let us point out

the difference is that in the holomorphic case the Newton non-degeneracy is a

Zariski open dense and connected condition, hence there exists a family of Newton

non-degenerate polynomials with the same Newton boundary at infinity joining

any two such polynomials. However, in the mixed case, we will show in Remark

4.3.2 that the Newton strong non-degeneracy condition at infinity is neither dense,

nor connected, but it is still an open condition (see §4.3). Therefore, in order to

obtain a stability theorem in the mixed case, one has to work with a given family

of mixed polynomials.

The organization of this chapter is as follows. In Section 2, we first define

some notions concerned with the Newton polyhedron at infinity. Then we intro-

duce Newton non-degeneracy condition at infinity and the stronger one. In Section

3, we prove that non-degeneracy condition is an open condition. The first two

subsections of Section 4 is devoted to the proof of our main Theorem 4.1.3. In the

end of Section 4 we indicate some corollaries which extend the results known in the

holomorphic case. The Section 5 is motivate to our investigation of the stability of

the monodromy for some families of mixed polynomials. As a consequence, we give

a slight generalization of the main result in [Pha08]. In the final section of this

chapter, we illustrate our conclusions with some explicit examples which provide

the detailed expositions of the differences to holomorphic polynomials.

4.2 Newton non-degeneracy at infinity

To introduce our main theorem 4.1.3, we begin with some necessary notions. Let f

be a mixed polynomial:

Definition 4.2.1 We call supp (f) = {ν + µ ∈ Nn | cν,µ 6= 0} the support of f . We

say that f is convenient if the intersection of supp (f) with each coordinate axis is

non-empty. We denote by supp(f) the convex hull of the set supp(f) \ {0}. The

Newton polyhedron of a mixed polynomial f , denoted by Γ0(f), is the convex hull

of the set {0} ∪ supp(f). The Newton boundary at infinity, denoted by Γ+(f), is

the union of the faces of the polyhedron Γ0(f) which do not contain the origin. By

”face” we mean face of any dimension.

Definition 4.2.2 For any face ∆ of supp(f), we denote the restriction of f to

∆ ∩ supp(f) by f∆ :=
∑

ν+µ∈∆∩supp(f) cν,µz
νzµ. The mixed polynomial f is called

Newton non-degenerate at infinity if Singf∆ ∩ f−1
∆ (0) ∩ C∗n = ∅, for any face ∆
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of Γ+(f). Following Oka’s terminology [Oka10a], we say that f is Newton strongly

non-degenerate at infinity if Singf∆ ∩ C∗n = ∅ for any face ∆ of Γ+(f).

The later condition is stronger and in general not equivalent to the former, but

they coincide in the holomorphic setting since f∆ is quasi-homogeneous of non-zero

degree.

Before giving the proof in §4.4, we need to define the ingredients and prove

several preliminary facts. We consider a mixed polynomial f : Cn → C, f 6≡ 0.

Definition 4.2.3 A face ∆ ⊆ supp(f) is called bad whenever:

(i) there exists a hyperplane H ⊂ Rn with equation a1x1 + · · ·+ anxn = 0

(where x1, . . . , xn are the coordinates of Rn) such that:

(a) there exist i and j with ai < 0 and aj > 0,

(b) H ∩ supp(f) = ∆.

Let B denote the set of bad faces of supp(f). A face ∆ ∈ B is called strictly bad if

it satisfies in addition the following condition:

(ii) the affine subspace of the same dimension spanned by ∆ contains the

origin.

Remark 4.2.4 In our Theorem 4.1.3 we use the above definition for “bad faces”.

For holomorphic mappings, the set B of bad faces used in the main formula (4.1.1)

of [NZ90] corresponds to our definition of “strictly bad faces”.

Let us observe that not all bad faces are strictly bad. Nevertheless, our Theorem

4.1.3(a) reduces in case of complex polynomials to precisely the statement (4.1.1)

of [NZ90]. If ∆ is a bad face which is not strictly bad, then it follows from the

definitions that ∆ is a face of Γ+(f). If we assume that f is non-degenerate at

infinity, then f∆ is non-degenerate at infinity. If f∆ is moreover holomorphic, then

it follows that f∆ is strongly non-degenerate at infinity. Indeed, there exists a

hyperplane V not passing through 0 and such that V ∩ supp(f) = ∆, thus f∆ is

also weighted homogeneous of degree 6= 0 and therefore Singf∆ ⊂ {f∆ = 0}. This

shows in particular that in case of holomorphic f , the bad faces which are not

strictly bad do not contribute with nonzero values in the formula of our Theorem

4.1.3(a), hence indeed only the strictly bad faces may play a role.

The following lemma will be used in the proof of our theorem.

Lemma 4.2.5 Let lp(x) =
∑n

i=1 pixi be a linear function such that p = min
1≤i≤n

{pi} <
0. We consider the restriction of lp(x) to supp(f) and denote by ∆p the unique

maximal face of supp(f) (with respect to the inclusion of faces) where lp(x) takes

its minimal value dp. Let dp ≤ 0.
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(a) If dp < 0, then ∆p is a face of Γ+(f).

(b) If dp = 0, then either ∆p is a face of Γ+(f) or ∆p satisfies condition

(ii) of Definition 4.2.3.

Proof. Let us first remark that from Definition 4.2.1 we have Γ0(f) =

cone0(Γ
+(f)), where cone0(A) denotes the compact cone over the set A with vertex

the origin. For each face ∆ of Γ0(f) we have that either ∆ is a face of Γ+(f) or

∆ ∋ 0 and in this case we have ∆ = cone0(∆ ∩ supp(f)) = cone0(∆ ∩ Γ+(f)).

Next, considering the restriction of lp(x) to Γ0(f), we denote by ∆1 the maximal

face of Γ0(f) where lp(x) takes its minimal value d. Note that lp(x) can not attain

its minimal value d at interior points of Γ0(f). Since Γ+(f) ⊂ supp(f) ⊂ Γ0(f), we

have d ≤ dp.

(a). If dp < 0 then it follows by our initial remark that ∆1 is a face of Γ+(f),

since otherwise we have 0 ∈ ∆1 and d = 0. We therefore get ∆p = ∆1 ⊂ Γ+(f) and

d = dp.

(b). If dp = 0 and ∆1 is not a face of Γ+(f), then by the same initial remark we

have ∆1 ∋ 0 and therefore d = 0. Since ∆1 is the maximal face of Γ0(f) where lp(x)

takes its minimal value d, we get ∆p ⊂ ∆1 ⊂ H , where H denotes the hyperplane

{x ∈ Rn | lp(x) = 0}. We then have ∆p = supp(f) ∩ H , ∆1 = Γ0(f) ∩ H , and

therefore ∆p = ∆1 ∩ supp(f). Let us assume that ∆p does not verify condition

(ii) of Definition 4.2.3, namely that we have dim cone0(∆p) > dim∆p. This implies

that ∆p does not contain any interior point of cone0(∆p). By the initial remark,

∆1 = cone0(∆1∩Γ+(f)) = cone0(∆p). Then ∆p is a face of Γ+(f), which contradicts

our assumption. �

Let I ⊂ {1, . . . , n}. We shall use the following notations:

CI = {(z1, . . . , zn) ∈ Cn | zj = 0, j /∈ I}, and similarly RI
≥0, C∗I := CI ∩ C∗n,

f I := f|CI .

From Definition 4.2.1, the faces of f I are among the faces of f , so we have the

following:

Remark 4.2.6 Let f be a mixed Newton (strongly) non-degenerate polynomial. If

I ⊂ {1, 2, . . . , n} is such that f I is not identically zero then:

(a) f I is a mixed Newton (strongly) non-degenerate polynomial.

(b) Γ+(f I) = Γ+(f) ∩ RI
≥0.

We shall use the following fact for the restriction of f to its bad faces.

Remark 4.2.7 If a mixed polynomial f is Newton (strongly) non-degenerate at

infinity then, for any bad face ∆ ⊂ supp(f), f∆ is Newton (strongly) non-degenerate

at infinity. Indeed, any face ∆
′

of Γ+(f∆) is also a subface of ∆, hence a subface of
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Γ+(f). The Newton (strong) non-degeneracy of f implies that the restriction f∆ is

also Newton (strongly) non-degenerate at infinity.

4.3 Newton non-degeneracy is an open condition

For a fixed polyhedron Γ which is the Newton boundary at infinity of some mixed

polynomial, we may define the subset Us
Γ := {[c1, c2, . . . , cm] ∈ Pm−1

C | fc(z, z) =

f(z, z, c) =
∑m

j=1 cjz
µjzνj is a Newton strongly non-degenerate mixed polynomial

and Γ+(fc) = Γ}. Similarly we define the set UΓ ⊃ Us
Γ by just dropping the word

“strongly” in the above definition. Then:

Proposition 4.3.1 The subsets UΓ ⊂ Pm−1 and Us
Γ ⊂ UΓ of Newton non-

degenerate and, respectively, strongly non-degenerate mixed polynomials, with fixed

Newton boundary Γ at infinity, are semi-algebraic open sets.

Proof. Let us show that Us
Γ is open and semi-algebraic. The idea of this proof

took its inspiration from Oka’s alternate proof in the holomorphic setting [Oka79,

Appendix]. For every face ∆ ⊂ Γ we define:

V (∆) := {(z, c) ∈ Cn × Pm−1 | ∃λ ∈ S1
1 , df∆(z, z, c) = λdf∆(z, z, c)},

V (∆)∗ := V (∆) ∩ {(z, c) ∈ Cn × Pm−1 | z1z2 . . . zn 6= 0}.

Note that V (∆) is closed and that V (∆)∗ = V (∆). Let us consider the union

V ∗ = ∪∆⊂ΓV (∆)∗ and the projection π : Cn × Pm−1 → Pm−1. Showing that Us
Γ is

an open set means to prove that its complement W = π(V ∗) is a closed set. One

observes that W is a semi-algebraic set, since it is the projection of a semi-algebraic

set.

Let c0 ∈ W . By Curve Selection Lemma, there exists a face ∆0 of Γ and a real

analytic path (z(t), c(t)) ⊂ V (∆0)
∗ defined on a small enough interval ]0, ε[ such

that limt→0 c(t) = c0 and either limt→0 ‖z(t)‖ = ∞ or limt→0 z(t) = z0 ∈ V (∆0).

Let then zi(t) = ait
pi + h.o.t. for 1 ≤ i ≤ n where ai 6= 0, pi ∈ Z and λ(t) =

λ0+λ1t+h.o.t., where λ0 ∈ S1
1 . Let a := (a1, . . . , an) ∈ C∗n, P := (p1, . . . , pn) ∈ Zn

and consider the linear function lP =
∑n

i=1 pixi defined on ∆0. Let ∆1 be the

maximal face of ∆0 where lP takes its minimal value, say this value is dP. We have:

∂f∆1

∂zi
(a, a, c(t))tdp−pi + h.o.t. = λ0

∂f∆1

∂zi
(a, a, c(t))tdp−pi + h.o.t.

By taking the limit c(t) → c0 and focusing on the first terms of the expansions:

df∆1
(a, a, c0) = λ0df∆1

(a, a, c0)

we get (a, c0) ∈ V (∆1)
∗ ⊂ V ∗, since a ∈ C∗n, thus c0 ∈ W , which concludes the

proof that W = W .
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If in the definition of V (∆) we add the supplementary equation f∆ = 0, then

the same proof works for UΓ instead of Us
Γ. �

Remark 4.3.2 In the holomorphic setting one has “Zariski-open” instead of “open”

and such a result was proved by Kushnirenko [Kus76] as a consequence of the

Bertini-Sard theorem and of the fact that “strong non-degeneracy” is equivalent to

“non-degeneracy”. Nevertheless in the real setting this proof does not apply and, in

general, one does not have neither the connectedness, nor the density. For instance,

in following Example 4.3.3 the inequality for strong non-degeneracy condition at in-

finity describes a homogeneous open set in C3 which is not dense and not connected.

Note also that supp(f) is a single point.

Example 4.3.3 Consider the mixed polynomial:

f(z, z) = az2 + bzz + cz2

where a, b, c ∈ C are three parameters.

Then we have the following conclusions:

(a) If (|a|2 − |c|2)2 ≤
∣
∣ab− cb

∣
∣
2
, then f is strongly degenerate. Otherwise, f is

strongly non-degenerate at infinity.

(b) M(f) = C, and S(f) = ∅ if and only if the equation ax2 + bx+ c = 0 has no

solution on S1
1 .

In fact, f is strongly degenerate if and only if the following equation has at least

one solution on C∗:

2a z + bz = λ(2cz + bz), where λ ∈ S1
1 . (4.3.1)

Here note that 0 is always a solution of the above equation, therefore 0 ∈ Singf .

Since Equation 4.3.1 is radial homogeneous, to show the strong degeneracy it is

sufficient to find a solution of (4.3.1) on the unit disc. Therefore assume that

z ∈ S1
1 . Then equation (4.3.1) is equivalent to the following by taking the norm:

(ab− cb)z2 + 2(|a|2 − |c|2) |z|2 + (ab− cb)z2 = 0. (4.3.2)

Let us denote z2 by x. Multiplying by z2 in (4.3.2), we get:

(ab− cb)x2 + 2(|a|2 − |c|2)x+ (ab− cb) = 0. (4.3.3)

Then f is strongly degenerate if and only if (4.3.3) has at least a solution on S1
1 .

We first observe that if ab − cb = 0 and |a| = |c|, then any x ∈ S1
1 is a solution of

(4.3.3), which implies that Singf = C. If b = 0 and |a| 6= |c|, then (4.3.3) has no

solution on S1
1 , which implies that Singf = {0}.

If ab − cb 6= 0, then (4.3.3) is a quadratic equation and the discriminant △ =

4(|a|2 − |c|2)2 − 4
∣
∣ab− cb

∣
∣
2
. We have the following three cases:
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(I) If △ < 0, then the roots x =
|c|2−|a|2±i

√

|ab−cb|2−(|a|2−|c|2)2

ab−cb
are contained in

S1
1 . We conclude that Singf consists of four lines and therefore f is strongly

degenerate.

(II) If △ = 0, then the roots x = |c|2−|a|2
ab−cb

are contained in S1
1 . We conclude that

Singf consists of two lines and therefore f is strongly degenerate.

(III) If △ > 0, then the roots x =
|c|2−|a|2±

√

(|a|2−|c|2)2−|ab−cb|2
ab−cb

are not contained in

S1
1 . We conclude that Singf consists of the origin and therefore f is strongly

non-degenerate at infinity.

For z ∈M(f), by definition, we have:

λz = µ(2a z + bz) + µ(2cz + bz) (4.3.4)

where λ ∈ R, µ ∈ C∗. We observe that z = 0 is a solution of (4.3.4). Let us suppose

z 6= 0 and divide (4.3.4) by z. Then we obtain:

µ(2az + bz) + µ(2cz + bz)

z
=
µ(2az + bz) + µ(2cz + bz)

z
. (4.3.5)

By a simplification, (4.3.4) gives:

µ(az2 − cz2) = µ(az2 − cz2). (4.3.6)

We deduce that for any z ∈ Cn, there always exists some µ ∈ C∗ such that (4.3.6)

holds. Thus M(f) = C. Consider any real analytic path z(t) defined on a small

enough interval ]0, ε[ such that:

z(t) = a1t
p1 + h.o.t., where a1 ∈ C∗, p1 < 0.

We have f(z(t), z(t)) = (aa21 + ba1a1 + ca21)t
2p1 + h.o.t.

If ax2 + bx + c = 0 has no solution on S1
1 , then (aa21 + ba1a1 + ca21) can not be

equal to zero, otherwise a
|a|2 is the root of ax2 + bx + c = 0, which contradicts our

assumption. Therefore ordtf(z(t), z(t)) = 2p1 < 0 and in consequence, S(f) = ∅.
If S(f) = ∅ and ax2 + bx + c = 0 has a solution x0 on S1

1 , then we take a real

analytic path z(t) = x0

t
which gives 0 ∈ S(f). Therefore we get a contradiction

with S(f) = ∅. Combining the above arguments, our second claim is proved.

4.4 Proof of Main theorem and some consequences

4.4.1 Proof of Theorem 4.1.3(a).

Let c ∈ S(f). By the definition of S(f) and Curve selection Lemma 3.2.5, there

exist real analytic paths, z(t) in M(f), λ(t) in R and µ(t) in C∗, defined on a small
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enough interval ]0, ε[, such that limt→0 ‖z(t)‖ = ∞ and limt→0 f(z(t), z(t)) = c and

that:

λ(t)z(t) = µ(t)df(z(t), z(t)) + µ(t)df(z(t), z(t)). (4.4.1)

Consider the expansion of f(z(t), z(t)). We have two situations, either:

f(z(t), z(t)) ≡ c (4.4.2)

or

f(z(t), z(t)) = c+ btδ + h.o.t., where c, b ∈ C, b 6= 0, δ ∈ N∗. (4.4.3)

Let I = {i | zi(t) 66≡ 0}, observe that I 6= ∅ since lim
t→0

‖z(t)‖ = ∞, and write:

zi(t) = ait
pi + h.o.t., where ai 6=0, pi ∈ Z, i ∈ I. (4.4.4)

By eventually transposing the coordinates, we may assume that I = {1, . . . , m} and

that p = p1 ≤ p2 ≤ · · · ≤ pm. Since lim
t→0

‖z(t)‖ = ∞, this implies p = min
j∈I

{pj} < 0.

We denote a = (a1, . . . , am) ∈ C∗I , p = (p1, . . . , pm) ∈ Zm and consider the linear

function lp =
∑m

i=1 pixi defined on supp(f I).

Let us observe that since f(0) = 0, if c 6= 0, then supp(f I) is not empty in both

situations (4.4.2) and (4.4.3). Let then ∆ be the maximal face of supp(f I) where

lp takes its minimal value, say dp. We have:

f(z(t), z(t)) = f I(z(t), z(t)) = f I
∆(a, a)t

dp + h.o.t. (4.4.5)

where dp ≤ ordt(f(z(t), z(t)) = 0.

In the following we keep the assumption1 c 6= 0. For i ∈ I we have the equalities:
∂f
∂zi

(z(t), z(t)) = ∂fI

∂zi
(z(t), z(t)) and ∂f

∂zi
(z(t), z(t)) = ∂fI

∂zi
(z(t), z(t)). Then we may

write:

∂f

∂zi
(z(t), z(t)) =

∂f I
∆

∂zi
(a, a)tdp−pi + h.o.t. (4.4.6)

∂f

∂zi
(z(t), z(t)) =

∂f I
∆

∂zi
(a, a)tdp−pi + h.o.t.

Consider the expansion of λ(t), in case λ(t) 6≡ 0, and that of µ(t):

λ(t) = λ0t
γ + h.o.t., whereλ0 ∈ R∗, γ ∈ Z,

µ(t) = µ0t
l + h.o.t., whereµ0 6= 0, l ∈ Z.

1For the case c = 0, we refer to Remark 4.4.1.
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Using all the expansions we get from (4.4.1), for any i ∈ I:

(µ0
∂f I

∆

∂zi
(a, a) + µ0

∂f I
∆

∂zi
(a, a))tdp−pi+l + h.o.t. = λ0ait

pi+γ + h.o.t.

Since λ0ai 6= 0, comparing the orders of the two sides in the above formula, we

obtain:

µ0
∂f I

∆

∂zi
(a, a) + µ0

∂f I
∆

∂zi
(a, a) =







λ0ai, if dp − pi + l = pi + γ

0, if dp − pi + l < pi + γ

(4.4.7)

Let J = {j ∈ I | dp − pj + l = pj + γ}. If we suppose that J 6= ∅, then J = {j ∈
I | pj = p = min

j∈I
{pj} < 0}.In the situation (4.4.3) we have df(z(t),z(t))

dt
= bδtδ−1+h.o.t

and on the other hand:

df(z(t), z(t))

dt
=

m∑

i=1

(
∂f

∂zi
· ∂zi
∂t

+
∂f

∂zi
· ∂zi
∂t

) =

m∑

i=1

(
∂f I

∂zi
· ∂zi
∂t

+
∂f I

∂zi
· ∂zi
∂t

)

=
[〈

pa, df I
∆(a, a)

〉

+
〈

pa, d̄f I
∆(a, a)

〉]

tdp−1 + h.o.t.

(4.4.8)

where pa = (p1a1, . . . , pmam). Comparing the orders of the two expansions of
df(z(t),z(t))

dt
and using the inequality dp < δ implied by c 6= 0 (see after (4.4.5)), we

find:

〈

pa, df I
∆(a, a)

〉

+
〈

pa, d̄f I
∆(a, a)

〉

= 0. (4.4.9)

Let us observe here that the proof of formula (4.4.9) holds under the more

general condition dp < δ.

Let now consider the situation (4.4.2). In this case the formula (4.4.9) is true

more directly, since df(z(t),z(t))
dt

= 0 and after comparing this to (4.4.8).

Next, multiplying (4.4.9) by µ0 and taking the real part, we get:

Re
〈

pa, µ0df I
∆(a, a)

〉

+ Re
〈

pa, µ0d̄f I
∆(a, a)

〉

= Re
〈

pa, µ0df I
∆(a, a) + µ0d̄f

I
∆(a, a)

〉

= 0.
(4.4.10)

On the other hand, from (4.4.7), we have:

Re
〈

pa, µ0df
I
∆(a, a) + µ0d̄f

I
∆(a, a)

〉

=
∑

i∈J
λ0p‖aj‖2

which is different from zero since λ0 6= 0, p < 0 and aj 6= 0. This contradicts

formula (4.4.10). We have therefore proved that J = ∅.
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From (4.4.7) we obtain:

µ0df I
∆(a, a) + µ0d̄f

I
∆(a, a) = 0. (4.4.11)

Let us observe that in case λ(t) ≡ 0 we have J = ∅ and therefore we get directly

(4.4.11).

What (4.4.11) tells us is that a is a singularity of f I
∆. Set now A =(a, 1, 1, . . . , 1)

with the ith coordinate zi = 1 for i /∈ I. Since ∆ ⊂ supp(f I ), the restriction f∆
does not depend on the variables zm+1, . . . , zn or their conjugates. Thus for any

i ∈ {1, 2, . . . , n}, we have ∂f∆
∂zi

(z(t), z(t)) =
∂fI

∆

∂zi
(z(t), z(t)) and ∂f∆

∂zi
(z(t), z(t)) =

∂fI
∆

∂zi
(z(t), z(t)). By replacing f I

∆ with f∆ in (4.4.11), we get that A ∈ C∗n is a

singularity of f∆.

We may now apply Lemma 4.2.5 to dp and ∆. We have the following two cases:

(I). If dp < 0, then, by Lemma 4.2.5(a), ∆ is a face of Γ+(f I). Since A ∈ C∗n

is a singularity of f∆ and since we have f∆(A,A) = 0 by (4.4.5) for dp < 0,

this contradicts the Newton non-degeneracy of f (Definition 4.2.2) assumed in the

statement of Theorem 4.1.3.

(II). Let dp = 0. Then c = f I
∆(a, a) = f∆(A,A) ∈ f∆(Singf∆ ∩ C∗n). By Lemma

4.2.5(b), ∆ is either a face of Γ+(f I) or satisfies the condition (ii) of Definition 4.2.3.

Note that these two conditions are exclusive, which fact follows immediately from

the definitions. Let us show that ∆ is a bad face of supp(f ).

Let d denote the minimal value of the restriction of lp to supp(f). Since

supp(f I ) = supp(f) ∩ RI
≥0, we have d ≤ dp = 0. Let H be the hyperplane de-

fined by the equation
∑m

i=1 pixi + q
∑n

i=m+1 xi = 0, whereq > −d + 1 > 0. Then,

for any (x1, . . . , xn) ∈ supp(f) \ supp(f I), the value of
∑m

i=1 pixi + q
∑n

i=m+1 xi is

positive. We therefore get ∆ = supp(f I ) ∩H = supp(f) ∩H .

If ∆ does not satisfy condition (i)(a) of Definition 4.2.3, then we have m = n

and pi ≤ 0 for all 1 ≤ i ≤ n. Since by hypothesis f depends effectively on all

variables, in particular on the variable z1, the value dp must be negative, which is

a contradiction to the above original assumption.

This ends our proof. 2

Remark 4.4.1 The equality (4.4.11) is the key of the above proof of Theorem

4.1.3(a). If c = 0, then we have two cases in situation (4.4.3):

(1) If dp = ordt(f(z(t), z(t)), then formula (4.4.11) might be not true.

(2) If dp < ordt(f(z(t), z(t)), then we get the same proof of formula (4.4.11) as

in Proof of (a) (see the remark after formula (4.4.9)).

Remark 4.4.2 Let Σ∞ := {c ∈ C | f−1(c) ∩M(f) is not bounded}. Under the

hypotheses of Theorem 4.1.3, the above proof also shows that if c ∈ Σ∞ and c 6= 0

then c is a critical value of f∆, for some bad face ∆. Indeed, if the path z(t) ⊂
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M(f) ∩ f−1(c) is not bounded, then it must be included in the singular locus

Singf−1(c) since the fibre f−1(c) is an algebraic set. (An alternate argument may

be extracted from the last part of the proof of Proposition 3.3.1). This shows the

inclusion Σ∞ ⊂ S(f) ∩ f(Singf). By Theorem 4.1.3(a) we then have Σ∞ \ {0} ⊂
⋃

∆∈B
f∆(Singf∆).

4.4.2 Proof of Theorem 4.1.3(b).

By absurd, let us suppose f(Singf) is not bounded. Since Singf is a semi-algebraic

set, by Curve Selection Lemma 3.2.5, there exists a real analytic path z(t) ⊂ Singf

defined on a small enough interval ]0, ε[ such that:

lim
t→0

‖z(t)‖ = ∞, and lim
t→0

|f(z(t), z(t))| = ∞

We follow the proof of (a). Since z(t) ⊂ Singf , we have λ(t) ≡ 0 in (4.4.1) and

therefore we obtain (4.4.11) directly, as remarked after it. From lim
t→0

|f(z(t), z(t))| =
∞ it follows that dp ≤ ordt(f(z(t), z(t)) < 0. We are in the situation of (I) from the

proof of Theorem 4.1.3(a) but without being able to insure the equality f∆(A,A) =

0. That is why we need here the Newton strong non-degeneracy in order to get a

contradiction.

To prove that f∆(Singf∆) is bounded, for any bad face ∆ ⊂ supp(f ), we use

Remark 4.2.7 and the above proof for f∆ in place of f .

Since supp(f ) has finitely many faces and since, by Theorem 4.1.3(a), we have

the inclusion S(f) ⊂ {0} ∪ ∪
∆∈B

f∆(Singf∆), it follows that S(f) is bounded. 2

4.4.3 Some consequences

We get some sharper statements for significant particular classes of non-degenerate

mixed polynomials. The following result extends the one for holomorphic polyno-

mials proved in [Kus76, Bro88].

Corollary 4.4.3 If f is a mixed Newton non-degenerate and convenient polyno-

mial, then S(f) = ∅.

Proof. Under the same notations and definitions as in the proof of Theorem

4.1.3(a), since lp(x) =
∑m

i=1 pixi has at least a coefficient pj < 0 for some j and the

intersection of supp (f) with each positive coordinate axis is non-empty, the value

of lp(x) at a point of the intersection of supp (f) with the j-axis is negative. This

implies that the minimal value dp is negative. By Lemma 4.2.5(a), ∆ is a face of

Γ+(f).
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Since we have here dp < ordt(f(z(t), z(t)), by using Remark 4.4.1, we get formula

(4.4.11) and a singularity A ∈ C∗n of f∆ with f∆(A) = 0 as in (I) above. This

contradicts the Newton non-degeneracy of f . �

Corollary 4.4.4 Let f be a mixed polynomial, radial weighted-homogeneous and

Newton strongly non-degenerate at infinity. Then:

(a) Singf ∩ C∗n = ∅,

(b) S(f) ∪ f(Singf) ⊂ {0}.

Proof. Since f is radial weighted-homogeneous, let’s say of degree m, we have

f(0) = 0 and supp(f) is contained in a single hyperplane which does not pass

through the origin. Therefore the Newton boundary Γ+(f) has a single maximal

face and its strong non-degeneracy implies Singf ∩ C∗n = ∅. Since supp(f) has no

bad face and since by Theorem 4.1.3(a) we have S(f) ⊂ {0} ∪ ∪
∆∈B

f∆(Singf∆), it

follows that S(f) ⊂ {0}.
By absurd, let us suppose that c ∈ f(Singf) ∩ C∗. For any z ∈ Singf such

that f(z, z) = c, there exists λ ∈ S1
1 such that df(z, z) = λdf(z, z). Multiplying

by tm−qi the equalities ∂f
∂zi

(z, z) = λ ∂f
∂zi

(z, z) for i = 1, 2 . . . , n, and using that f is

radial weighted-homogeneous, we get df(t ◦ z, t ◦ z) = λdf(t ◦ z, t ◦ z). This implies

that t ◦ z ∈ Singf and tmc ∈ f(Singf), therefore f(Singf) is not bounded, which

contradicts Theorem 4.1.3(b). This proves that f(Singf) ⊂ {0}. �

4.5 Families of mixed polynomials and stability of

the monodromy at infinity

As a consequence of Theorems 3.1.8 and 4.1.3(b), the class of Newton strongly

non-degenerate polynomials f has the property that B(f) is bounded. One has the

following general definition.

Definition 4.5.1 (Monodromy at infinity)
Let f : R2n → R2 be a real polynomial map and assume that the bifurcation set

B(f) is bounded. Let δ0 > 0 such that B(f) is included in the open disk Dδ0 of

radius δ0 centered at 0 ∈ C. We call monodromy (fibration) at infinity the fibration:

f| : f
−1(S1

δ ) → S1
δ .

over some circle S1
δ of radius δ which, by the Fibration Theorem 3.1.8, exists and

is independent of δ ≥ δ0.
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We then prove the following result:

Theorem 4.5.2 Stability of monodromy at infinity

Let Fs(z, z) := F (z, z, s) : R2n → R2 be a family of Newton strongly non-degenerate

polynomials depending analytically on a parameter s, where s ∈ [0, 1]. If the Newton

boundary Γ+(Fs) is constant in this family, then the monodromy at infinity is stable2.

For the proof of the theorem, we need some preliminaries. Let Fs stand for

F (z, z, s), let F (SingF ) := ∪
s∈[0,1]

Fs(SingFs), S(F ) := ∪
s∈[0,1]

S(Fs). We also consider

the restriction Fs,∆ of Fs to some face ∆ of suppFs and write F∆(z, z, s) := Fs,∆.

Proposition 4.5.3 Under the assumption of Theorem 4.5.2, the set F (SingF ) ∪
S(F ) is bounded.

Proof. If F (SingF ) were not bounded then, by Curve Selection Lemma 3.2.5,

there exist analytic paths z(t) ∈ Cn, λ(t) ∈ S1
1 and s(t) ∈ [0, 1] defined on a small

enough interval ]0, ε[ such that

lim
t→0

‖z(t)‖ = ∞, lim
t→0

F (z(t), z(t), s(t)) = ∞, (4.5.1)

lim
t→0

s(t) =s0, dFs(t)(z(t), z(t)) = λ(t)dFs(t)(z(t), z(t)). (4.5.2)

We may then apply the proof of Theorem 4.1.3(b) and find a face ∆ of

supp(F I
s(t)), which by assumption is independent of s, such that F I

s(t),∆ has a sin-

gularity in C∗n. By using Remark 4.2.6, this contradicts the Newton strong non-

degeneracy.

To show that S(F ) is bounded, we proceed as follows. By Theorem 4.1.3(a),

one has the inclusion S(F ) ⊂ ∪s∈[0,1]{Fs(0)}∪s∈[0,1] ∪
∆∈Bs

Fs,∆(SingFs,∆∩C∗n) where

Bs is the set of bad faces of supp(Fs) for s ∈ [0, 1]. We have that ∪s{Fs(0)} is

bounded by the continuity with respect to s, and that {Bs}s∈[0,1] is a finite set since

Γ+(Fs) is independent of s. If S(F ) were not bounded, then we may assume that

F∆0(s)(SingF∆0(s) ∩ C∗n) is not bounded as s → s0, for some bad face ∆0(s) which

is actually independent of s in some small enough interval ]s0 − ε, s0 + ε[. Since

Γ+(Fs) is independent of s and since Γ+(Fs,∆0
) ⊂ Γ+(Fs), we get that Γ+(Fs,∆0

) is

independent of s within a neighborhood of s0. We may then apply the above proof

to F∆0
in place of F . �

Proposition 4.5.4 Under the assumption of Theorem 4.5.2, there exists r0 > 0

such that, for any r ≥ r0, there exists R0(r) ≫ 1 such that one has the transversality

f−1
s (c) ⋔ S2n−1

R , ∀c ∈ S1
r , ∀R ≥ R0(r) and ∀s ∈ [0, 1].

2Here, “stable” means that the monodromy fibrations at infinity are equivalent in this family.
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Proof. The above Proposition 4.5.3 implies that there exists r0 > 0 independent

on s ∈ [0, 1] such that the following inclusion holds:

F (SingF ) ∪s∈[0,1] {Fs(0)} ∪s∈[0,1] ∪
∆∈Bs

Fs,∆(SingFs,∆ ∩ C∗n) ⊂
◦
Dr0. (4.5.3)

If the above assertion were not true, then by Curve Selection Lemma 3.2.5 there

exist analytic paths z(t) ⊂ Cn, λ(t) ⊂ R, µ(t) ⊂ C∗ and s(t) ⊂ [0, 1] such that:

lim
t→0

‖z(t)‖ = ∞, lim
t→0

F (z(t), z(t), s(t)) = c ∈ S1
r . (4.5.4)

lim
t→0

s(t) =s0, λ(t)z(t) = µ(t)dF (z(t), z(t), s(t)) + µ(t)dF (z(t), z(t), s(t)). (4.5.5)

By a similar analysis as in the proof of Theorem 4.1.3(a) one finds a singular

point A ∈ C∗n of F∆ where ∆ is either a face of Γ+(Fs) or a bad face of supp(Fs).

This contradicts (4.5.3). �

4.5.1 Proof of Theorem 4.5.2

By the above two propositions, for r ≥ r0, the global monodromy fibration Fs| :

F−1
s (S1

r ) → S1
r is diffeomorphic to the fibration

Fs| : F
−1(S1

r ) ∩ BR → S1
r (4.5.6)

for all R ≥ R0(r) and all s ∈ [0, 1].

Consider the map F̃ : Cn × I → C× I, (z, s) 7→ (Fs(z, z), s), where I := [0, 1].

The above proposition show that the restriction F̃| : F̃
−1(S1

r × I) ∩ (BR × I) →
S1
r × I is a proper submersion on the couple of manifolds (F̃−1(S1

r × I) ∩ (BR ×
I), F̃−1(S1

r × I) ∩ (∂BR × I)). Then Ehresmann’s theorem tells that the fibrations

(4.5.6) are isotopic for varying s.

2

Theorem 4.5.2 appears to be useful in finding the topology of the non atypi-

cal fibres for Newton strongly non-degenerate mixed polynomial. As another con-

sequence, one may extend the range of applicability of the stability theorems in

[NZ92, Theorem 17] and [Pha08, Theorem 1.1], as follows:

Corollary 4.5.5 If f and g are two Newton strongly non-degenerate mixed poly-

nomials, such that Γ+(f) = Γ+(g) and that their restrictions to the boundaries

at infinity fΓ+ and gΓ+ are both holomorphic (or both anti-holomorphic), then the

monodromies at infinity of f and of g are isotopic.

Proof. In the holomorphic setting, the Newton strong non-degeneracy condition

at infinity is the same as Newton non-degenerate and is a Zariski open and con-

nected condition. This holds for anti-holomorphic instead of holomorphic. This
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fact allows us to connect f to g by a family of Newton strongly non-degenerate

mixed polynomials. For instance, one may do as follows. First, one applies [Pha08,

Theorem 1.1] to the restrictions fΓ+ and gΓ+. Next, we write f = fΓ+ + h and

observe that the family of mixed polynomials Fs := fΓ+ + (1 − s)h satisfies the

hypotheses of our Theorem 4.5.2 and connects f to fΓ+ , hence the monodromy is

stable in this family. A similar construction for g completes the picture and ends

our proof. �

4.6 Some useful examples

Example 4.6.1 Let f : R4 → R2, f = z1z2 + z21z
2
2. This is a Newton strongly

non-degenerate mixed polynomial, where Γ+(f) = (2, 2) and supp(f) consists of

just one face ∆ which is a bad face. The solutions of df(z, z) = λdf(z, z) for

λ ∈ S1
1 are {z1z2 = 1

2λ
} ∪ {z1 = z2 = 0}. Thus we obtain f(Singf∆) = f(Singf) =

{0} ∪ { 1
2λ

+ 1
4λ2 | λ ∈ S1

1}. Taking z1z2 = 1
2λ

with z1 → 0 and z2 → ∞, by

straightforward computations we get f(Singf) \ {0} ⊂ S(f) and {0} 6∈ S(f). On

the other hand, for {zk}k∈N ⊂ M(f) \ Singf such that lim
k→∞

‖zk‖ = ∞, we get
∣
∣f(zk)

∣
∣ → ∞. This shows that S(f) \ f(Sing(f)) = ∅. Moreover, it yields that the

inclusion of Theorem 4.1.3(a) may be strict.

In order to investigate how does the topology of fibers change, let us denote D the

domain bounded by the bifurcation set B(f) = f(Singf) = {0}∪{ 1
2λ
+ 1

4λ2 | λ ∈ S1
1}.

On one hand, since f = z1z2 + z21z
2
2 is strongly non-degenerate at infinity and the

polyhedron at infinity Γ+(f) is a single point (2, 2), by Theorem 4.5.2, the fibers

at infinity of f is isotopic to the one of g = z21z
2
2. Hence the fiber out of D can

be calculated via the fiber of g which is homeomorphic to C∗ ⊔ C∗. On the other

hand, for any λ ∈ S1
1 , the topology of the fiber f = 1

2λ
+ 1

4λ2 depends on λ. Let

z1z2 = a + ib and 1
2λ

+ 1
4λ2 = c + id, where a, b, c, d are real numbers. If d = 0,

then c = −1
4

or 3
4
. For f = −1

4
, the solutions are {z1z2 = 1

2
± i}∪{z1z2 = −1

2
}. For

f = 3
4
, the solutions are {z1z2 = 1

2
} ∪ {z1z2 = −3

2
}. If d 6= 0, then we get:

4a4 − (3 + 4c)a2 + a(1 + 4c)− c− d2 = 0

where b = d
1−2a

. The question is reduced to determine how many different real

roots of the above equation, where a is regarded as the variable. From the following

Figure of Solutions, we see that in this case, there are two different real roots. (In

the Figure, we take the argument of λ as the vertical coordinate.) Now, we proceed

to calculate the generic fiber inside of D. For example, taking f = 1
5
, we have

the solutions {z1z2 = −
√
5±3

2
√
5

} ∪ {z1z2 = 1
2
± i

√
11
20
} and therefore the generic fiber

inside of D is homeomorphic to C∗ ⊔ C∗ ⊔ C∗ ⊔ C∗. Finally, the fiber f = 0 is
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{z31z32 = −1} ∪ {z1z2 = 0} which is homeomorphic to

C∗ ⊔ C∗ ⊔ C∗ ⊔ {C2 \ C∗2}.

Figure 4.1: Figure of S(f)

Figure 4.2: Figure of Solution

Our next example will show that in Theorem 4.1.3(a), the set of bad faces can

not be replaced to the set of strictly bad faces.

Example 4.6.2 Let f : R4 → R2, f = |z1|2 (z22 + 2z2z2 + 1), which is Newton

non-degenerate at infinity but not strongly non-degenerate at infinity. There is

only one bad face of f which is not a strictly bad face and the restriction to this

face is f△1
= |z1|2 (z22 + 2z2z2). We shall prove that f(Singf) = {0} ∪ R+, S(f) =

f△1
(Singf△1

∩ C∗2) ∪ {0} and B(f) = f(Singf) ∪ S(f).
We begin by proving the non-degeneracy of f . In fact, there are three faces of
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supp(f) which are contained in Γ+(f). Let us write the restrictions of f to these

three faces: f△1
= |z1|2 (z22 + 2z2z2), f△2

= |z1|2 and f△3
= f . It is easy to see

that {f△i
= 0} ∩ C∗2 = ∅ and therefore f is non-degenerate at infinity. On the

other hand, since f△2
= |z1|2 is not strongly non-degenerate at infinity, the strong

non-degeneracy fails for f .

Next, let us show that f(Singf) = {0} ∪ R+. We have:

∂f

∂z1
= z1(z

2
2 + 2z2z2 + 1)

∂f

∂z2
= 2 |z1|2 (z2 + z2)

∂f

∂z1
= z1(z

2
2 + 2z2z2 + 1)

∂f

∂z2
= 2 |z1|2 z2.

By the definition of mixed singularity, Singf is the solutions of the following system:

z1(z
2
2 + 2z2z2 + 1) = λz1(z

2
2 + 2z2z2 + 1) (4.6.1)

2 |z1|2 (z2 + z2) = λ2 |z1|2 z2 (4.6.2)

where λ ∈ S1
1 . We first conclude {z1 = 0, z2 ∈ C} ∪ {z2 = 0, z1 ∈ C} ⊂ Singf . This

gives {0} ∪ R+ ⊂ f(Singf). Let us suppose z1z2 6= 0. From (4.6.2), we have

λ = 1
2
±

√
3
2
i and z2 + z2 = λz2. Applying these equalities in (4.6.1), we deduce

λ = 1 which is impossible. Thus f(Singf) = {0} ∪ R+ and by taking the analytic

curve contained in {z1 = 0, z2 ∈ C} ⊂ Singf ⊂M(f), it follows that {0} ∈ S(f).

Finally, we shall prove f△1
(Singf△1

∩ C∗2) ⊂ B(f). The singular locus of f△1
is

defined by (4.6.2) and the following equation:

z1(z
2
2 + 2z2z2) = λz1(z

2
2 + 2z2z2).

Suppose z1z2 6= 0, we have:

Singf△1
∩ C∗2 =

{

(z1, z2) ∈ C∗2 | z2 + z2 = λz2, whereλ =
1

2
±

√
3

2
i

}

.

Thus f△1
(Singf△1

∩C∗2) = (3
2
±

√
3
2
i)t, where t > 0. Now fix t = t0 > 0, we consider

a neighborhood U of (3
2
+

√
3
2
i)t0. Assume that a + ib ∈ U \ f△1

(Singf△1
∩ C∗2),

|z1|2 = c 6= 0 and z2 = x+ iy where (a, b) ∈ R∗2 and (x, y) ∈ R2. From f = a + ib,

it follows that:

c(3x2 + y2 + 1) = a

−2cxy = b
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We therefore conclude from above equations that

3bx2 + 2axy + b(y2 + 1) = 0. (4.6.3)

The discriminant of (4.6.3) is △ = 4a2y2 − 12b2(y2 + 1). Since there is no solution

of (4.6.3) if and only if a2 < 3b2, this implies that there exist no neighborhoods of

(3
2
+

√
3
2
i)t0 such that the restriction of f is a locally trivial fibration. When t0 varies,

with the same procedure as above, we observe that there exist no neighborhoods

of (3
2
−

√
3
2
i)t such that the restriction of f is a locally trivial fibration. This gives

f△1
(Singf△1

∩ C∗2) ⊂ B(f). On the other hand by Theorem 4.1.3(a), we have

S(f) ⊂ f△1
(Singf△1

∩ C∗2) ∪ {0}. Consequently, B(f) = f(Singf) ∪ S(f) =

f△1
(Singf△1

∩ C∗2) ∪ {0} ∪ R+.

4.6.1 Family of twisted Brieskorn mixed polynomials

Let us first recall a join theorem proved by Cisneros-Molina:

Theorem 4.6.3 [CM08, Theorem 4.1] Let g : Cn → C and h : Cm → C be radial

and polar weighted homogeneous mixed polynomials. Consider the polynomial on

Cn × Cm defined by

f(z,w) = g(z, z) + h(w,w)

which is also radial and polar weighted homogeneous polynomials. Let

X = f−1(1) ⊆ Cn × Cm

Y = g−1(1) ⊆ Cn

Z = h−1(1) ⊆ Cm

Then there is a homotopy equivalence from X to the join Y ∗ Z which is com-

patible with the monodromy maps and their join.

Example 4.6.4 Consider the mixed Brieskorn polynomial f : Cn → C, f =
∑n

i=1 z
ai+bi
i zbii . Since every monomial zai+bi

i zbii is radial and polar weighted ho-

mogeneous and
∑n

i=1 z
ai+bi
i zbii is also radial and polar weighted homogeneous, then

by the above join theorem, the generic fiber of f is homotopic equivalent to a bou-

quet ∨Sn−1 of spheres of real dimension (n − 1) and the number of spheres in the

wedge is (a1 − 1)(a2 − 1) · · · (an − 1).

Our next example shows that with a small deformation, the monodromy of a

twisted Brieskorn mixed polynomial does not change.

Example 4.6.5 Let us consider a family of twisted Brieskorn mixed polynomials:

Fs(z, z) =
∑n

i=1 z
ai+bi
i zbii + s

∑n
i=1 z

ai+2bi
i , where ai, bi ∈ N+ for 1 ≤ i ≤ n and
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0 ≤ s < min
1≤i≤n

ai
ai+2bi

. Note that the restriction of Fs to every face of the Newton

boundary Γ+(Fs) is a sum of monomials zai+bi
i zbii + szai+2bi

i and:

∂Fs

∂zi
= (ai + bi)z

ai+bi−1
i zbii + s(ai + 2bi)z

ai+2bi−1
i (4.6.4)

∂Fs

∂zi
= biz

ai+bi
i zbi−1

i . (4.6.5)

When zi 6= 0, by 0 ≤ s < min
1≤i≤n

ai
ai+2bi

and triangle inequality, we get:

∣
∣
∣
∣

∂Fs

∂zi

∣
∣
∣
∣
≥ |ai + bi − s(ai + 2bi)| |zi|ai+2bi−1 > bi |zi|ai+2bi−1 =

∣
∣
∣
∣

∂Fs

∂zi

∣
∣
∣
∣
.

It turns out that Fs(z, z) is a family of Newton strongly non-degenerate polynomials.

Thus, by Theorem 4.5.2, the monodromy at infinity of Fs is isotopic to that of

F0(z, z) =
∑n

i=1 z
ai+bi
i zbii . Using join theorem 4.6.3, the monodromy of F0 at infinity

is equivalent to f =
∑n

i=1 z
ai
i .

4.6.2 King’s example in the mixed case

In this subsection, we consider the following mixed version of King’s example

([TZ99]) which shows that for a mixed polynomial with two variables, the inclusion

B(f) ⊂ f(Singf) ∪ S(f) is strict. In the holomorphic case with two variables,

B(f) = f(Singf) ∪ S(f) = f(Singf) ∪K∞(f), see e.g. [Par95, Dur98]

Example 4.6.6 Consider the mixed polynomial f : C2 → C,

f(x, y) = y(2 |x|4 |y|4 − 9 |x|2 |y|2 + 18).

Let us show that Singf = ∅, S(f) = {0} and B(f) = ∅.
We first prove that f is strongly non-degenerate at infinity. There are three faces

contained in Γ+(f) and the restrictions of f to these faces are: f△1
= 18y, f△2

=

2 |x|4 |y|4 y and f△3
= f . Since

∂f△1

∂y
= 18 and

∂f△1

∂y
= 0, we have Singf△1

= ∅.
For f△2

, we have
∂f△2

∂y
= 6 |x|4 |y|4 and

∂f△2

∂y
= 4 |x|4 y3y. When (x, y) ∈ C∗2,

the inequality
∣
∣
∣
∂f△2

∂y

∣
∣
∣ >

∣
∣
∣
∂f△2

∂y

∣
∣
∣ gives Singf△2

∩ C∗2 = ∅. To deduce the strong

non-degeneracy, it remains to prove Singf ∩ C∗2 = ∅. We have:

∂f

∂y
= 6 |x|4 |y|4 − 9 |x|2 |y|2 + 18

∂f

∂y
= 4 |x|4 y3y − 9 |x|2 y2

∂f

∂x
= y(4 |y|4 |x|2 x− 9 |y|2 x)

∂f

∂x
= y(4 |y|4 |x|2 x− 9 |y|2 x).
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By the definition of mixed singularity, Singf consists of the solutions of the following

system:

6 |x|4 |y|4 − 9 |x|2 |y|2 + 18 = λ(4 |x|4 y3y − 9 |x|2 y2) (4.6.6)

y(4 |y|4 |x|2 x− 9 |y|2 x) = λy(4 |y|4 |x|2 x− 9 |y|2 x) (4.6.7)

where λ ∈ S1
1 . From (4.6.6), we see (x, y) ∈ C∗2. Assume that |x| |y| 6= 3

2
, then from

(4.6.7), we get y = λy. Hence (4.6.7) is equivalent to the following:

6 |x|4 |y|4 − 9 |x|2 |y|2 + 18 = 4 |x|4 |y|4 − 9 |x|2 |y|2

We check at once that there is no solution of the above equation.

Now we suppose that |x| |y| = 3
2
. Taking the norm on the two sides of (4.6.6), we

get:

6 |x|4 |y|4 − 9 |x|2 |y|2 + 18 = 0.

Since our assumption |x| |y| = 3
2

does not satisfy this equation, we have Singf = ∅.
Consequently, f is strongly non-degenerate at infinity.

Using Theorem 4.1.3(a), since f does not have any strictly bad face, we get S(f) ⊂
{0}. In order to show S(f) = {0}, we assume that (x, y) ∈ M(f) ∩ R∗2. By the

definition of M(f), we deduce the following equation:

10x4y4 − 27x2y2 + 18 = 8x2y6 − 18y4.

Consider the sequences {xk}k∈N and {yk}k∈N which satisfy the above equation with

xkyk → 3
2

and yk → 0. It follows that f(xk, yk) → 0, and therefore S(f) = {0}.
Let us denote g(x, y) = 2 |x|4 |y|4−9 |x|2 |y|2+18. The map F : C2 → C2, F (x, y) =

(f(x, y), x
g(x,y)

) is a diffeomorphism and F−1 = F . Thus f is a trivial C∞ fibration

and B(f) = ∅.

4.6.3 A counterexample with two variables

The following Example 4.6.7 shows that Némethi and Zaharia’s proposition [NZ90,

Proposition 6] B(f) = f(Singf) ∪ {0} ∪
△∈B

f△(Singf△ ∩ C∗2) for C2 → C does not

hold in the mixed case, and the inclusion of Theorem 4.1.3(a) can be strict.

Example 4.6.7 Let f(z1, z2) = z1(1 + |z2|2 + z1z
4
2).
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Let us first prove that Singf = ∅ and the strong non-degeneracy of f . We have:

∂f

∂z1
= 1 + |z2|2 + 2z1z

4
2

∂f

∂z2
= z1z2 + 4z21z

3
2

∂f

∂z1
= 0

∂f

∂z2
= z1z2

By the definition of mixed singularity, Singf consists of the solutions of the following

system:

1 + |z2|2 + 2z1z
4
2 = 0 (4.6.8)

z1z2 + 4z21z
3
2 = λz1z2 (4.6.9)

where λ ∈ S1
1 . Multiplying by z2 in (4.6.9) and 2z1 in (4.6.8), we have:

z1(−2 − |z2|2) = λz1 |z2|2 .
If z1 = 0, then there is no solution for (4.6.8). If z1 6= 0, then from the above

formula, we get 2+ |z2|2 = |z2|2 which implies Singf = ∅. In fact, Γ+(f) consists of

three faces and the restrictions of f are respectively z1, z1(1 + z1z
4
2) and z21z

4
2 . We

check at once that f is strongly non-degenerate at infinity.

Next, let us show that K∞(f) = S(f) = ∪
△∈B

f△(Singf△ ∩C∗2) =
{
c ∈ C | |c| = 1

4

}
.

There is only one strictly bad face △ of supp(f), and the restriction to this face is

f△ = z1(|z2|2 + z1z
4
2). By the definition of mixed singularity, Singf△ is the set

{
(z1, z2) ∈ C2 | |z2|2 + 2z1z

4
2 = 0, z1z2 + 4z21z

3
2 = λz1z2, where λ ∈ S1

1

}
.

Therefore Singf△ ∩ C∗2 =
{

(z1, z2) ∈ C2 | z1 = z2
2z32
, z1 + λz1 = 0, where λ ∈ S1

1

}

.

In consequence, we have f△(Singf△ ∩ C∗2) =
{
c ∈ C | |c| = 1

4

}
.

In the following, we will show 0 /∈ K∞(f). By absurd, let us assume that 0 ∈ K∞(f).

Using Curve selection lemma and KOS-regularity, suppose that there exist analytic

curves z1(t) and z2(t) defined on a small enough interval ]0, ε[ such that:

lim
t→0

(|z1(t)|2 + |z2(t)|2)
1

2 = ∞ (4.6.10)

lim
t→0

z1(t)(1 + |z2(t)|2 + z1(t)z
4
2(t)) = 0 (4.6.11)

lim
t→0

(|z1(t)|+ |z2(t)|)(1 + |z2(t)|2 + 2z1(t)z
4
2(t)) = 0 (4.6.12)

If z1(t) ≡ 0 or z2(t) ≡ 0, then from (4.6.12) we have lim
t→0

(|z1(t)|2 + |z2(t)|2)
1
2 = 0,

which contradicts (4.6.10). Hence, we suppose that z1(t) = a1t
α+h.o.t. and z2(t) =

b1t
β + h.o.t. where a1b1 6= 0 and min(α, β) < 0. We obtain:
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(1). If α ≤ 0 or β ≤ 0, then we have z1(t)(1 + |z2(t)|2 + z1(t)z
4
2(t)) → ∞, which

gives a contradiction with (4.6.11).

(2). If α < 0 and β > 0, then by (4.6.11), we have α = 2α+ 4β and a1 + a21b
4
1 = 0.

It follows from (4.6.12) that 1 + 2a1b
4
1 = 0. On the other hand, there is no

solution of the equations a1 + a21b
4
1 = 1 + 2a1b

4
1 = 0.

(3). If α > 0 and β < 0, then by (4.6.11), we have α+2β ≥ 0. When α+2β = 0, it

follows from (4.6.11) and (4.6.12) that a1(|b|2+a1b41) = 0 and |b1|2+2a1b
4
1 = 0.

This gives b1 = 0, which contradicts our assumption. When α+2β > 0, we have

2β < α+4β and therefore lim
t→0

(|z1(t)|+ |z2(t)|)(1+ |z2(t)|2+2z1(t)z
4
2(t)) → ∞,

contrary to (4.6.12).

With the above method, we have actually proved K∞(f) ⊂
{
c ∈ C | |c| = 1

4

}
. It

remains to show the inverse inclusion. Choosing c ∈ S 1
4
, we set two analytic paths,

z1(t) and z2(t) such that z1(t) = a1t
2+ t8+h.o.t and z2(t) = b1t

−1+ c1t+ t
8+h.o.t,

where a21b
4
1 = −c, b1c1 = −1 and 2a1b

3
1 + b1 = 0. From this, we conclude c ∈ K∞(f)

and therefore K∞(f) = S(f) =
{
c ∈ C | |c| = 1

4

}
.

Finally, let us show B(f) = K∞(f). By Theorem 4.5.2, for any c ∈ C with ‖c‖ > 1
4
,

the fiber f−1(c) ≃ g−1(c) ≃ ∨
4
S1 where g(z1, z2) = z1(1+z1z

4
2), here the equivalence

“≃” means homotopic equivalence. There is another straight way to see f−1(c) ≃
∨
4
S1. The equation z1(1 + |z2|2 + z1z

4
2) = c has the solutions {(c, 0)} and

z1 =
−(1 + |z2|2)±

√

(1 + |z2|2)2 + 4cz42

2z42
.

where (c, 0) is in the closure of the set z1 =
−(1+|z2|2)+

√
(1+|z2|2)2+4cz42

2z42
. Since

z1 =
−(1 + |z2|2) +

√

(1 + |z2|2)2 + 4cz42

2z42
=

2c

(1 + |z2|2) +
√

(1 + |z2|2)2 + 4cz42

when z2 → 0, we have z1 → c. Now, we proceed to discuss the topological properties

of the fibers.

(1). If |c| > 1
4
, then (1 + |z2|2)2 + 4cz42 = 0 has four distinct solutions. The two

solution sets are glued at these points, which is homotopic to ∨
4
S1.

(2). If |c| ≤ 1
4
, then (1 + |z2|2)2 + 4cz42 = 0 has no solutions. The two solution sets

are disjoint, which is homeomorphic to C ⊔ C∗. In particular, for c = 0, we

have f−1(0) = {z1 = 0} ∪
{

z1 = −1+|z2|2
z42

}

.
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Hence for every c ∈ S 1
4
, there exist no neighborhoodss of c such that the restriction of

f is a locally trivial fibration and, in consequence, B(f) = S(f) =
{
c ∈ C | |c| = 1

4

}
.

Remark 4.6.8 In general, by applying the above method to the family of mixed

polynomials ft(z1, z2) = z1(1 + t |z2|2 + z1z
4
2) for t ∈ [−1, 1], we have the following

observations:

(a) If t = 0, then B(f0) = S(f0) = {0} and f0(Singf0) = ∅.

(b) If 0 < t ≤ 1, then B(ft) = S(ft) =
{

λ ∈ C | ‖λ‖ = t2

4

}

and ft(Singft) = ∅.

(c) If −1 ≤ t < 0, then ft(Singft) = {0}, S(ft) =
{

λ ∈ C | ‖λ‖ = t2

4

}

and

B(ft) = ft(Singft) ∪ S(ft).

Given t ∈ [−1, 0[ and every c 6= 0, the solutions of f−1
t (c) are (c, 0) and:

z1 =
−(1 + t |z2|2)±

√

(1 + t |z2|2)2 + 4cz42

2z42
.

where (c, 0) is in the closure of the set z1 =
−(1+t|z2|2)+

√
(1+t|z2|2)2+4cz42

2z4
2

. Since

z1 =
−(1 + t |z2|2) +

√

(1 + t |z2|2)2 + 4cz42

2z42
=

2c

(1 + t |z2|2) +
√

(1 + t |z2|2)2 + 4cz42

, when z2 → 0, we have z1 → c.

Let us denote the graph of z1 =
−(1+t|z2|2)+

√
(1+t|z2|2)2+4cz42

2z42
(resp.

−(1+t|z2|2)−
√

(1+t|z2|2)2+4cz42
2z42

) by C1 (resp. C2). We see that C1 ≃ C and C2 ≃ C∗.

Next, we will describe the topological properties of the graph.

I. If |c| > t2

4
, then from (1 + t |z2|2)2 + 4cz42 = 0, we have |z2|2 = 1

2
√

|c|−t
and

therefore z42 = − |c|
c(2
√

|c|−t)2
. This gives four distinct solutions of this equation.

Thus the two graphs C1 and C2 are glued at these points, which is homotopic

to ∨
4
S1.

II. If |c| < t2

4
, then from (1+ t |z2|2)2+4cz42 = 0, we have either |z2|2 = 1

2
√

|c|−t
or

|z2|2 = 1

−2
√

|c|−t
. Therefore z42 = − |c|

c(2
√

|c|−t)2
or z42 = − |c|

c(2
√

|c|+t)2
. This gives

eight solutions of the discriminant. Consequently, the two graphs C1 and C2

are glued at these points, which is homotopic to ∨
8
S1.
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Combining with the above arguments, for every c ∈ S t2

4

, we conclude that there is no

neighborhood D of c such that ft is a fibration over D. This shows S t2

4

⊂ B(ft). On

the other hand, with the similar analysis as that of f(z1, z2) = z1(1+|z2|2+z1z42), we

get S(ft) =
{

λ ∈ C | ‖λ‖ = t2

4

}

. Consequently, we have B(ft) = ft(Singft)∪S(ft).
Now we deduce that for a family of strongly non-degenerate mixed polynomial with

the same Newton boundary at infinity, dimB(f), dim f(Singf) and dimS(f) could

be non-constant.
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5.1 Introduction

The aim of this chapter is to investigate some classes of mixed polynomials which

have the Milnor fibration f
|f | at infinity. We first review some of the standard facts on

holomorphic polynomials. In general, for a holomorphic polynomial f , the Milnor

fibration f
|f | at infinity does not always exist. If f is a convenient polynomials with

non degenerate Newton principal part at infinity, then by using Milnor’s proof in

the local case [Mil68], one can prove that there exists a Milnor fibration at infinity

ϕ :=
f

|f | : SR \ f−1(0) → S1

in a sufficiently large sphere, which is equivalent to the Milnor fibration f :

f−1(S1
r ) → S1

r for r sufficiently large. In [NZ92], the authors considered a spe-

cial class of holomorphic polynomials called “semitame”:

Definition 5.1.1 Let f : Cn → C be a holomorphic polynomial, we say f is

semitame if the set of asymptotic ρ-non regular values S(f) ⊂ {0}
They proved that:

Theorem 5.1.2 [NZ92, Theorem 6] If f : Cn → C is a semitame polynomial, then

∃R0 > 0 for R ≥ R0 sufficiently large, the map:

f

|f | : SR \ f−1(0) → S1

is a locally trivial fibration which does not depend on the choice of R. It is called

Milnor fibration at infinity.
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Even if the above fibration could be not equivalent to the usual one f : f−1(S1
r ) → S1

r

for r sufficiently large (see for instance Example 3.1.1), one still have:

Theorem 5.1.3 [NZ92, Theorem 11] Let f be a semitame polynomial. For a small

disk Dδ centered at 0 ∈ C, the restriction map

f

|f | : SR \ f−1(Dδ) → S1

where R sufficiently large with respect to δ is a locally trivial fibration which is

equivalent to the Milnor fibration f : f−1(S1
r ) → S1

r for r sufficiently large.

For mixed polynomials, one can also ask under which condition does the Milnor

fibration f
|f | at infinity exist? At least, the example 5.3.3 shows that the condi-

tion S(f) ⊂ {0} is not sufficient to insure the existence of the Milnor fibration
f
|f | at infinity. Therefore we get another approach of this question by using non-

degeneracy condition at infinity. Consider a mixed polynomial f : Cn → C. We

first define the ρ-regularity for f
|f | . Then we prove an analogue of Theorem 4.1.3,

which gives an approximation of asymptotic ρ-non-regular values of f
|f | . Inspired

by Oka’s construction in the local case, we prove that:

Theorem 5.1.4 If f is a Newton strongly non-degenerate mixed polynomial, then

∃δ0 > 0 and R0 > 0 sufficient large such that for any δ ≥ δ0 and R > R0

f

|f | : S
2n−1
R \ f−1(Dδ) −→ S1

is a locally trivial fibration for R ≥ R0 and is equivalent to the global fibration

f| : f
−1(S1

δ ) → S1
δ .

Note that in this theorem the strong non-degeneracy can not be replaced to non-

degeneracy. (See Remark 5.3.4)

Combining with the approximation established for the atypical values of f
|f | , we get

the following global version of Oka’s Theorem 2.3.4:

Corollary 5.1.5 If f is a Newton strongly non-degenerate convenient mixed poly-

nomial, then there exists R0 > 0 sufficient large such that for all R ≥ R0 the Milnor

fibration at infinity
f

|f | : S
2n−1
R \K −→ S1

exists and is equivalent to the global fibration

f| : f
−1(S1

δ ) → S1
δ

where δ > 0 is sufficient large.
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It is worth pointing out that the advantage of using strong non-degeneracy lies

in the fact that f(Singf) and S(f) are bounded. Hence it is possible to consider

some more general classes of mixed polynomials which have the Milnor fibrations
f
|f | at infinity, but we will not develop this point in this chapter.

The structure of the chapter is as follows. Section 2 is devoted to the study

of asymptotic ρ-non-regular values of f
|f | . We first set up notation and terminology.

Then we proceed to the study of non-degeneracy condition at infinity. Finally

we derive an estimation of bifurcation locus B(ϕ) for strongly non-degenerate

mixed polynomials. In Section 3, we will look more closely at the Milnor fibrations
f
|f | at infinity. We indicate an equivalence of the fibrations at infinity (Theorem

5.1.4) which is similar as that of [NZ92, Theorem 6]. As a consequence, we prove

Corollary 5.1.5 which extends the result of holomorphic case to mixed case. At the

end of this chapter, we give two examples with computations on the critical values

and asymptotic ρ-non-regular values.

5.2 Approximation of atypical values of f
|f |

For a mixed polynomial f : Cn → C, we denote by ϕ the function f
|f | : C

n \V (f) →
S1 where V (f) = f−1(0). To simplify notation, we continue to write dϕ and dϕ

specifically for the partial derivatives of the variables z and z.

Lemma 5.2.1 For z ∈ Cn \ V (f), the fibre ϕ−1(ϕ(z, z)) does not intersect trans-

versely the sphere S2n−1
‖z‖ at z ∈ Cn, if and only if there exists λ ∈ R, such that

λz = if df(z, z)− ifdf(z, z). (5.2.1)

In particular, Singϕ = {z ∈ Cn \ V (f) | f df(z, z) = fdf(z, z)}.

Proof. Observe first ϕ = −Re(i log f). By Lemma 3.2.1, the non-transversality

of the fiber ϕ−1(ϕ(z, z)) and the sphere S2n−1
‖z‖ implies:

γz = µdϕ(z, z) + µ dϕ(z, z), (5.2.2)

for some γ ∈ R and µ ∈ R∗. By definition of dϕ and dϕ, we have:

dϕ(z, z) = −dRe(i log f) = i
df(z, z)

f

dϕ(z, z) = −dRe(i log f) = −idf (z, z)
f

.
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Multipling the two sides of (5.2.2) by |f |2, we conclude (5.2.1), where λ = γ
µ
|f |2 ∈ R.

In particular, taking λ = 0 in (5.2.1), we obtain Singϕ. �

Combining with the above lemma, we are led to define ρ-regularity for ϕ.

Definition 5.2.2 We call ρ-non-regular locus of ϕ the semi-algebraic set:

M(ϕ) =
{
z ∈ Cn \ V (f) | ∃λ ∈ R, such that λz = if̄df(z, z)− ifdf(z, z)

}
.

and we call asymptotic ρ-non-regular values of f
|f | the set:

S(ϕ) = {c ∈ S1|∃ {zk}k∈N ⊂M(ϕ), lim
k→∞

‖zk‖ = ∞ and lim
k→∞

ϕ(zk , zk) = c}

.

The above definition enables us to obtain the following structure result of S(ϕ).

Lemma 5.2.3 S(ϕ) is semi-algebraic and M(ϕ) ⊂M(f) \ V (f).

Proof. The inclusion of M(ϕ) ⊂ M(f) \ V (f) follows from the definitions 3.2.3

and 5.2.2. Since M(ϕ) is a semi-algebraic set, we now proceed analogously to the

proof of Proposition 3.2.6 and we see that S(ϕ) is semi-algebraic. �

Our next proposition shows that under some homogeneous condition, Singϕ could

be equal to M(ϕ).

Proposition 5.2.4 If f is a mixed radial weighted homogeneous polynomial and

not constant, then Singϕ = Singf \ V (f) =M(ϕ).

Proof. Let us denote the radial weights of f by q1, · · · , qn and the radial degree

of f by mr, where q1, · · · , qn ∈ Z and mr 6= 0. By definition, we have Singϕ ⊂
Singf \ V (f) and Singϕ ⊂ M(ϕ). To prove the equality, let a ∈ Singf and

f(a, a) 6= 0. Therefore ∃λ ∈ S1 such that for 1 ≤ i ≤ n:

∂f

∂zi
(a, a) = λ

∂f

∂zi
(a, a). (5.2.3)

Since f is radial weighted homogeneous, by Euler’s lemma, we have:

n∑

i=1

qiai
∂f

∂zi
(a, a) +

n∑

i=1

qiai
∂f

∂zi
(a, a) = mrf(a, a). (5.2.4)

Let A =
∑n

i=1 qiai
∂f
∂zi

(a, a) and B =
∑n

i=1 qiai
∂f
∂zi

(a, a). Multiplying (5.2.3) by qiai,

we obtain:

A = λB (5.2.5)
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which implies AA = BB since λ ∈ S1. From (5.2.4), (5.2.5) and f(a, a) 6= 0, we

therefore get AB 6= 0. Consequently,

f(a, a)

f(a, a)
=
A+B

A+B
=
BA+BB

B(A+B)
=
BA+ AA

B(A +B)
= λ (5.2.6)

which proves that a ∈ Singϕ from 5.2.3. Thus, we have Singϕ = Singf \ V (f).

Using Euler vector field as in the proof of [ACT12, Proposition 3.1], we haveM(ϕ) ⊂
Singf \ V (f). This finishes the proof. �

For simplicity of notation, we write ϕ△ :=
f△

|f△| for the restriction of f
|f | , where △ is

a face of supp(f).

Theorem 5.2.5 If f is Newton strongly non-degenerate at infinity for any face of

supp(f), then M(ϕ) is bounded and S(ϕ) = ∅.

Proof. Assume that M(ϕ) is not bounded, then by Lemma 3.2.5, there exists

z(t) of M(ϕ) a real analytic path defined on a small enough interval ]0, ε[ such that

lim
t→0

‖z(t)‖ = ∞.

Since z(t) ⊂ M(ϕ), there exists a real analytic curve λ(t), such that for t ∈ ]0, ε[

we have:

λ(t)z(t) = if̄ df(z(t), z(t))− ifdf(z(t), z(t)). (5.2.7)

Suppose here λ(t) 6≡ 0 and let I = {i | zi(t) 66≡ 0}. Then I 6= ∅ since lim
t→0

‖z(t)‖ = ∞.

Assuming that I = {1, . . . , m}, we write the expansions of f(z(t), z(t)), z(t) and

λ(t) explicitly as follows:

zi(t) = ait
pi + h.o.t., where ai 6=0, pi ∈ Z, 1 ≤ i ≤ m. (5.2.8)

f(z(t), z(t)) =







btδ + h.o.t., where b ∈ C∗, δ 6= 0, if lim
t→0

f(z(t), z(t)) = 0 or∞.

c+ btδ + h.o.t. where c, b ∈ C∗, δ 6= 0, if lim
t→0

f(z(t), z(t)) = c.

(5.2.9)

λ(t) = λ0t
γ + h.o.t., whereλ0 ∈ R∗, γ ∈ Z, λ(t) ∈ R. (5.2.10)

Set a = (a1, . . . , am) ∈ C∗I , P = (p1, . . . , pm) ∈ Rm and consider the linear function

lP =
∑m

i=1 pixi defined on supp(f I). Let △ be the maximal face of supp(f I) where

lP takes its minimal value, say this value is dP. We have:

f(z(t), z(t)) = f I
△(a, a)t

dP + h.o.t. (5.2.11)

Let us discuss the following two cases:
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(I). If lim
t→0

f(z(t), z(t)) = 0 or ∞, we get dP ≤ δ. Since lim
t→0

‖z(t)‖ = ∞, this

implies p := min
j∈I

{pj} < 0. Now using (5.2.8)-(5.2.11) in (5.2.7), we get:

ib
∂f I

△
∂zi

(a, a)− ib
∂f I

△
∂zi

(a, a) =







λ0ai, if dP − pi + δ = pi + γ.

0, if dP − pi + δ < pi + γ.

(5.2.12)

Let J = {j | dP − pj + δ = pj + γ}. We suppose J 6= ∅ which gives J = {j | pj =
p = min

1≤j≤m
{pj} < 0}. Consider the derivative of f(z(t), z(t)) with respect to t. On

one hand, we have:
df(z(t), z(t))

dt
= bδtδ−1 + h.o.t. (5.2.13)

On the other hand, we have:

df(z(t), z(t))

dt
=

m∑

i=1

(
∂f

∂zi
· ∂zi
∂t

+
∂f

∂zi
· ∂zi
∂t

) (5.2.14)

=
[〈

Pa, df I
△(a, a)

〉

+
〈

Pa, d̄f I
△(a, a)

〉]

tdP−1 + h.o.t.

where Pa = (p1a1, . . . , pmam). From (5.2.12), we obtain:

Re
〈

Pa, ibd̄f I
△(a, a)− ibdf I

△(a, a)
〉

=
∑

i∈J
λ0p‖aj‖2 6= 0. (5.2.15)

If dP < δ, then comparing the orders of the expansions (5.2.13) and (5.2.14)

with respect to t, we have
〈

Pa, df I
△(a, a)

〉

+
〈

Pa, d̄f I
△(a, a)

〉

= 0 and f I
△(a, a) = 0.

Multiplying (5.2.14) by ib and comparing the real parts of the equality, we obtain

a contradiction with (5.2.15).

If dP = δ, then by (5.2.13), we have Re
〈

Pa, ibd̄f I
△(a, a)− ibdf I

△(a, a)
〉

=

Re(i |b|2 δ) = 0, which contradicts (5.2.15). It follows that J = ∅. Hence a ∈ C∗I

is a singularity of f I
△ and f I

△(a, a) = b. By Remark 4.2.6, this is contrary to the

strong non-degeneracy of f I .

(II). If lim
t→0

f(z(t), z(t)) = c ∈ C∗, comparing the orders of the expansions (5.2.10)

and (5.2.12) with respect to t, we have dP < δ. Now using (5.2.9)-(5.2.12) in (5.2.8),

we get:

ic
∂f I

△
∂zi

(a, a)− ic
∂f I

△
∂zi

(a, a) =







λ0ai, if dP − pi = pi + γ.

0, if dP − pi < pi + γ.

(5.2.16)
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Let J = {j | dP − pj = pj + γ}. We suppose J 6= ∅ which implies J = {j | pj =

p = min
1≤j≤m

{pj} < 0}. We derive f(z(t), z(t)) with respect to t. On one hand, we get

(5.2.13). On the other hand, we have (5.2.14). From (5.2.16), we obtain:

Re
〈

Pa, icd̄f I
△(a, a)− icdf I

△(a, a)
〉

=
∑

i∈J
λ0p‖aj‖2 6= 0. (5.2.17)

Since dP < δ, comparing the orders of the expansions (5.2.13) and (5.2.14), we have
〈

Pa, df I
△(a, a)

〉

+
〈

Pa, d̄f I
△(a, a)

〉

= 0. Multiplying (5.2.14) by ic and comparing

the real parts, we obtain a contradiction with (5.2.17). It follows that J = ∅. Hence

a ∈ C∗I is a singularity of f I
△ and f I

△(a, a) = 0. By Remark 4.2.6 this is contrary

to the non-degeneracy of f I .

In general, if we do not assume the strong non-degeneracy of f and let

A = (a, 1, 1, . . . , 1) with the ith coordinate zi = 1 for i /∈ I, then we have the

following conclusion:

(a). if dP < δ, then A is a singularity of V (f△).

(b). if dP = δ, then A ∈ Singϕ = Singf△ \ V (f△) by Proposition 5.2.4.

When λ(t) ≡ 0, by comparing the orders with respect to t in (5.2.7), we have:






ib
∂fI

△

∂zi
(a, a)− ib

∂fI
△

∂zi
(a, a) = 0, if lim

t→0
f(z(t), z(t)) = 0 or∞.

ic
∂fI

△

∂zi
(a, a)− ic

∂fI
△

∂zi
(a, a) = 0, if lim

t→0
f(z(t), z(t)) = c ∈ C∗.

(5.2.18)

It follows that a ∈ C∗I is a singularity of f I
△. By Remark 4.2.6 this is contrary to

the non-degeneracy of f I .

Hence M(ϕ) is bounded and S(ϕ) = ∅. �

We now proceed to formulate the analogue of Theorem 4.1.3. Recall the notation

SB the union of strictly bad faces of supp(f).

Theorem 5.2.6 Let f : Cn → C be a mixed polynomial. Suppose that f is Newton

strongly non-degenerate polynomial which depends effectively on all the variables.

Let f(0) = 0 and 0 /∈ S(f). Then:

S(ϕ) ⊂
⋃

△∈SB

ϕ△(Singϕ△
⋂

C∗n).

Proof. We use the same notations as in the proof of Theorem 5.2.5. For any

c ∈ S(ϕ), by Lemma 3.2.5, there exists z(t) of M(ϕ) a real analytic path defined

on a small enough interval ]0, ε[ such that

lim
t→0

‖z(t)‖ = ∞, and lim
t→0

ϕ(z(t), z(t)) = c0
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where either f(z(t), z(t)) = btδ+h.o.t. and dP ≤ δ < 0, c0 =
b
|b| , or f(z(t), z(t)) = c+

btδ+h.o.t. and dP ≤ 0, c ∈ C∗, c0 =
c
|c| . Consider λ(t) 6≡ 0, if ordt(f(z(t), z(t))) < 0,

we are in case (I) as in the proof of Theorem 5.2.5, then we get that a ∈ C∗I is a

singularity of f I
△. If ordt(f(z(t), z(t))) = 0, we are in case (II) as in the proof of

Theorem 5.2.5, then a ∈ C∗I is a singularity of f I
△.

Set A = (a, 1, 1, . . . , 1) with the ith coordinate zi = 1 for i /∈ I. By recalling

the definition of Newton boundary at infinity for mixed polynomial, we have the

following two cases:

(I). If dP < 0, then, by Lemma 4.2.5, we conclude that △ is a face of Γ+(f I).

On the other hand since a is a singularity of f I
△, by Remark 4.2.6 this contradicts

the Newton strong non degeneracy of f I .

(II). If dP = δ = 0, then, from Lemma 4.2.5, it follows that either △ is a

face of Γ+(f I) or △ satisfies condition (ii) of Definition 4.2.3. Assume first △ is a

face of Γ+(f I), then we get the same contradiction as that in (I). Thus △ verifies

condition (ii) of Definition 4.2.3. We proceed to show that △ is strictly bad face of

supp(f ). Let us denote by d the minimal value of the restriction of lP to supp(f).

Since supp(f I ) = supp(f) ∩ RI
+, we have d ≤ dP = 0. Let H be the hyperplane

of the equation
∑m

i=1 pixi + q
∑n

i=m+1 xi = 0, where q > −d + 1 > 0. Hence for

any x = (x1, . . . , xn) ∈ supp(f) \ supp(f I), the value of
∑m

i=1 pixi + q
∑n

i=m+1 xi is

positive. We therefore get △ = supp(f I ) ∩H = supp(f) ∩H . On the other hand,

note that p1 = p = min
1≤i≤m

{pi} < 0 and q > 0. If △ does not satisfy condition (i)(a)

of Definition 4.2.3, then we have m = n and pi ≤ 0 for all 1 ≤ i ≤ n. It follows

that f can not depend on z1 otherwise dP will be negative. This contradicts the

effectiveness of f . Hence we conclude that △ is a strictly bad face of supp(f ). Since

dP = 0, we obtain c = f I
△(a, a) = f△(A,A) 6= 0. By A ∈ Singϕ△ and Proposition

5.2.4, we get c0 ∈ ϕ△(Singϕ△).

When λ(t) ≡ 0, it follows that a ∈ C∗I is a singularity of f I
△ from (5.2.18). In

the same manner as above reasoning, we get the desired conclusion. �

Remark 5.2.7 In particular, if a mixed polynomial f is Newton strongly non-

degenerate at infinity and convenient, then by Corollary 4.4.3, we have S(f) = ∅.
Combining this conclusion with the above theorem, we get S(ϕ) = ∅ since SB = ∅.

5.3 Fibration at infinity

Recall that for a strongly non-degenerate polynomial f , we have the monodromy

fibration:

f| : f
−1(S1

δ ) → S1
δ .
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over some circle S1
δ of radius δ which is sufficiently large. We define two vectors on

Cn \ V (f):

v1(z, z) = d log f(z, z) + d log f(z, z)

v2(z, z) = i(d log f(z, z)− d log f(z, z)).

which have the following geometrical meanings: v1(z, z) is the normal vector of

log |f | and v2(z, z) is the normal vector of −i log f
|f | . In order to prove the main

theorem, we shall first prove the following proposition.

Proposition 5.3.1 Under the same assumption as in Theorem 5.1.4, there exists

δ2 > 0 sufficient large, such that for any z of {z ∈ Cn | |f(z, z)| ≥ δ2} the there

vectors

z, v1(z, z), v2(z, z)

are either linearly independent over R or they are linearly dependent over R with

the following relation

z = av1(z, z) + bv2(z, z)

where a > 0.

Proof. Since f is strongly non-degenerate at infinity, by Theorem 4.1.3, f(Singf)∪
S(f) is bounded. Let us suppose that f(Singf)∪S(f) ⊂ Dδ1 . For |f(z, z)| sufficient

large we shall prove either z, v1(z, z), v2(z, z) are linearly independent over R or

z = av1(z, z) + bv2(z, z) where ab 6= 0. Assume that z and v2(z, z) are linearly

dependent over R. By Lemma 3.2.5, there exist two analytic paths z(t) ⊂ Cn and

λ(t) ⊂ R defined on a small enough interval ]0, ε[ such that

lim
t→0

‖z(t)‖ = ∞, lim
t→0

f(z(t), z(t)) = ∞. (5.3.1)

i(d log f − d log f)(z(t), z(t)) = λ(t)z(t). (5.3.2)

By Lemma 5.2.3, we have z(t) ⊂M(f). Thus lim
t→0

f(z(t), z(t)) = ∞ contradicts our

condition f(Singf) ∪ S(f) ⊂ Dδ1 . For |f(z, z)| sufficiently large, we have actually

proved that z and v2(z, z) are linearly independent over R. Since d log f +d log f =
1

|f |2 (fdf + fdf), a slightly change in the proof of the above linearly independence

shows that for |f(z, z)| sufficient large, z and v1(z, z) are also linearly independent

over R. If v1(z, z), v2(z, z) are linearly dependent over R, we have z ∈ Singf \V (f).
Hence f(z(t), z(t)) ⊂ f(Singf). This contradicts the boundness of f(Singf). It

follows that v1(z, z), v2(z, z) are linearly independent over R for |f(z, z)| sufficient

large. We are reduce to proving the proposition for a > 0. In the remainder of the

proof, we assume a < 0. By Lemma 3.2.5, there exist the analytic curves z(t) ∈ Cn,
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a(t) < 0 and b(t) ∈ R defined on a small enough interval ]0, ε[ such that

lim
t→0

‖z(t)‖ = ∞, lim
t→0

f(z(t), z(t)) = ∞. (5.3.3)

z(t) = a(t)v1(z, z)(t) + b(t)v2(z, z)(t). (5.3.4)

Let I = {i | zi(t) 66≡ 0}. Without loss of generality we can assume I = {1, . . . , m},
then we have:

zi(t) = ait
pi + h.o.t., where aj 6=0, pi ∈ Z, i ∈ I.

f(z(t), z(t)) = btq + h.o.t., where b ∈ C∗, q ∈ Z, q < 0

a(t) = λ0t
v0 + h.o.t., where λ0 ∈ R, v0 ∈ Z

b(t) = β0t
v0 + h.o.t., where β0 ∈ R, v0 ∈ Z

where |λ0|+ |β0| 6= 0. If λ0 ∈ R∗, then, by our assumption a(t) < 0, we have λ0 < 0.

To shorten notation, we write a = (a1, . . . , am) ∈ C∗I , P = (p1, . . . , pm) ∈ Rm

and consider the linear function lP =
∑m

i=1 pixi defined on supp(f I). Let △ be the

maximal face of supp(f I ) where lP takes its minimal value, say this value is dP. We

have dP ≤ ordt(f(z(t), z(t)) = q < 0. By the above expansions, we get from (5.3.4):

λ0(

∂fI
△

∂zi
(a, a)

b
+

∂fI
△

∂zi
(a, a)

b
) + iβ0(

∂fI
△

∂zi
(a, a)

b
−

∂fI
△

∂zi
(a, a)

b
) =

{

ai, if dP − pi − q + v0 = pi.

0, if dP − pi − q + v0 < pi.

(5.3.5)

Let J = {j ∈ I | dP − pj − q + v0 = pj}. We observe J = {j ∈ I | pj = p =

min
j∈I

{pj} < 0}. If J = ∅, then from (5.3.5), we have a ∈ Singf I
△. Since dP < 0, by

Lemma 4.2.5, we conclude that △ is a face of Γ+(f I). This contradicts the Newton

strongly non degeneracy of f I . Hence J 6= ∅. To deduce the contradiction, consider

the following expansion:

λ0 + iβ0

b

df(z(t), z(t))

dt
+
λ0 − iβ0

b

df(z(t), z(t))

dt

= 2λ0qt
q−1 + h.o.t.

We also have:

df(z(t), z(t))

dt
=

[〈

Pa, df I
△(a, a)

〉

+
〈

Pa, d̄f I
△(a, a)

〉]

tdP−1 + h.o.t.

By (5.3.5), we obtain:

λ0 + iβ0

b

df(z(t), z(t))

dt
+
λ0 − iβ0

b

df(z(t), z(t))

dt

= (2
∑

j∈J
p‖aj‖2)tdP−1 + h.o.t.
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Since dP ≤ q, comparing the two expansions of λ0+iβ0

b

df(z(t),z(t))
dt

+ λ0−iβ0

b
df(z(t),z(t))

dt
,

It follows that dP = q and λ0 =
∑

j∈J p‖aj‖2
q

> 0 from p < 0 and q < 0. This

contradicts λ0 < 0. �

Remark 5.3.2 In the holomorphic setting, the parallel results of this proposition

are [Mil68, Lemma 4.4] and [NZ90, Lemma 4 and Lemma 5].

Proof of Theorem 5.1.4 The proof is done as in the case of a holomorphic

polynomial. The strong non-degeneracy of f yields a global fibration:

f| : f
−1(S1

δ ) → S1
δ

where δ > 0 is sufficiently large. Since S1
δ is compact and f(Singf) ∪ S(f) is

bounded, there exists R0 > 0 sufficiently large such that all the fibers intersect SR

transversely for any R ≥ R0. We therefore get the restriction

f| : f
−1(S1

δ ) ∩ BR → S1
δ

which is equivalent to the global fibration. By Proposition 5.3.1, there exists a

non-zero vector field ω on N = {z ∈ BR | |f(z, z)| ≥ δ} such that







Re 〈w(z), v2(z, z)〉 = 0

Re 〈w(z), v1(z, z)〉 > 0

Re 〈w(z), z〉 > 0.

Along the integral curve γ(t, z0) of w with γ(0, z0) = z0 ∈ N , the argument of

f(γ(t, z0), γ(t, z0)) is constant and
∣
∣
∣f(γ(t, z0), γ(t, z0))

∣
∣
∣, ‖γ(t, z0)‖ are monotone

increasing. Thus for every z0 ∈ N , there exists a unique h(z0) ∈ S2n−1
R \ f−1(Dδ)

and t0 ∈ R+ such that ‖γ(t0, h(z0))‖ = R. Consequently, there is an isomorphism

φ : f−1(S1
δ )∩BR → S2n−1

R \f−1(Dδ). We therefore get f
|f | : S

2n−1
R \f−1(Dδ) −→ S1 a

locally trivial fibration which is equivalent to the fibration f| : f
−1(S1

δ )∩BR → S1
δ .

So f
|f | : S

2n−1
R \ f−1(Dδ) −→ S1 is also equivalent to the global one. This completes

our proof. 2

We next turn to prove the analogue of Oka’s Theorem 2.3.4 in the global setting

Proof of Corollary 5.1.5 From Remark 5.2.7, it follows that S(ϕ) = ∅ and

M(ϕ) is bounded. Thus we have f
|f | : S

2n−1
R \K −→ S1 is a locally trivial fibration.

Note that the proof of Theorem 5.1.4 yields that this fibration is equivalent to the

global fibration:

f| : f
−1(S1

δ ) → S1
δ



68 Chapter 5. Milnor fibration f
|f | at infinity

where δ > 0 is sufficient large. 2

We now proceed to show some examples to illustrate our theorem.

Example 5.3.3 [Oka10a, Example 5 IV] Consider a mixed polynomial

f(z, z) =
1

4
z21 −

1

4
z21 + z1z1 − (1 + i)(z1 + z2)(z1 + z2).

Then we have:

(a) f is not Newton strongly non-degenerate at infinity and S(f) = ∅.

(b) Singf = {z ∈ C2 | z1 = 0, z2 ∈ C}∪{z ∈ C2 | z1+ z2 = 0, z1− iz1 = 0}∪{z ∈
C2 | z1 + z2 = 0, z1 + iz1 = 0}

(c) M(ϕ) is not bounded and S(ϕ) = {−1+i√
2
, 2±i√

5
}.

To see that f is not Newton strongly non-degenerate at infinity, it is sufficient to

observe that the restriction f△ = −(1 + i)z2z2 does not satisfy the strong non-

degeneracy. Since in this example, the faces of the Newton boundary at infinity

are the same as the compact faces of the Newton boundary at the origin, by Oka’s

argument, we conclude that f is Newton non-degenerate at infinity.

For any real analytic path z(t) defined on a small enough interval ]0, ε[ such

that:

lim
t→0

‖z(t)‖ = ∞.

Our next claim is that lim
t→0

f(z(t), z(t)) = ∞, which implies S(f) = ∅.
Let zi(t) = ait

pi +h.o.t., where ai ∈ C∗, pi ∈ Z for i = 1, 2 and min{p1, p2} < 0.

We divide the question into three cases:

(I). If p2 < p1, then by the expansion of zi(t), we get:

f(z(t), z(t)) = −(1 + i) |a2|2 t2p2 + h.o.t.

where p2 < 0 and −(1+ i) |a2|2 6= 0. When t→ 0, it follows that f(z(t), z(t)) →
∞.

(II). If p2 = p1, then by the expansion of zi(t), we get:

f(z(t), z(t)) = (
1

4
a21 −

1

4
a21 + |a1|2 − (1 + i) |a1 + a2|2)t2p1 + h.o.t.

where p1 < 0 and 1
4
a21 − 1

4
a21 + |a1|2 − (1 + i) |a1 + a2|2 6= 0. When t → 0, it

follows that f(z(t), z(t)) → ∞.

(III). If p1 < p2, then by the expansion of zi(t), we get:

f(z(t), z(t)) = (
1

4
a21 −

1

4
a21 + i |a1|2)t2p1 + h.o.t.
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where p1 < 0 and 1
4
a21 − 1

4
a21 + i |a1|2 6= 0. When t → 0, it follows that

f(z(t), z(t)) → ∞.

On account of the above discussion, our claim is proved. The task is now to show

the observations (b) and (c). By Proposition 2.2.2, the singular locus of f is the

solutions of the following system:

1

2
z1 + z1 − (1− i)(z1 + z2) = λ(−1

2
z1 + z1 − (1 + i)(z1 + z2)

(i− 1)(z1 + z2) = −λ(1 + i)(z1 + z2)

where λ ∈ S1
1 . By an easy computation, we conclude the singular locus of f is:

{z ∈ C2 | z1 = 0, z2 ∈ C∗}, {z ∈ C2 | z1 + z2 = 0, z1 − iz1 = 0} and {z ∈ C2 |
z1 + z2 = 0, z1 + iz1 = 0}. Since f is radial weighted homogeneous, by Proposition

5.2.4 we have Singϕ = Singf \ V (f) = M(ϕ). It is easily seen that Singf \ V (f)

is not bounded. Choosing a real analytic path z(t) ⊂ Singϕ defined on a small

enough interval ]0, ε[, we have S(ϕ) = {−1+i√
2
, 2±i√

5
}. This finishes the proof.

Remark 5.3.4 The above example is due to Oka. In the holomorphic case, Néme-

thi and Zaharia proved the existence of the Milnor fibration at infinity for semitame

polynomials in [NZ90]. The definition of semitame is S(f) ⊂ {0}. But this example

shows that in the mixed case, the condition S(f) ⊂ {0} fails to insure the existence

of the Milnor fibration f
|f | at infinity. We also observe that the Newton strong non-

degeneracy condition at infinity of Theorem 5.1.4 can not be replaced by Newton

non-degeneracy condition at infinity.

Example 5.3.5 consider the following mixed Brieskorn polynomial:

f(z, z) =
n∑

i=1

zaii z
bi
i ,

where ai and bi are positive integers for any i. We have:

(a) If bi = ai for every i, then f is not strongly non-degenerate at infinity. Singf =

Cn, f(Singf) = R+∪{0}, S(f) = ∅, Singϕ =M(ϕ) = Cn \0 and S(ϕ) = {1}.

(b) If bi 6= ai for every i, then f is strongly non-degenerate at infinity and con-

venient. Singf = {0}, f(Singf) = {0}, S(f) = ∅, Singϕ = M(ϕ) = ∅ and

S(ϕ) = ∅.

(c) If there exists some i such that ai = bi, then f is not strongly non-degenerate

at infinity. We denote I = {i | ai = bi}. Then Singf = CI × {0}, f(Singf) =
R+ ∪ {0}, S(f) = ∅, Singϕ =M(ϕ) = CI × {0} \ 0 and S(ϕ) = {1}.



70 Chapter 5. Milnor fibration f
|f | at infinity

For the first case, f(z, z) = ‖z1‖2a1 + · · · + ‖zn‖2an . Consider the restrictions of

f to the faces which represent the monomial. We check at once the strong non-

degeneracy fails for these faces while f is non-degenerate at infinity. Since df = df

for any z ∈ Cn, by Proposition 2.2.2, we conclude that Singf = Cn and f(Singf) =

R+∪{0}. If ‖z‖ → ∞, then by Cauchy inequality, it is easily seen that f(z, z) → ∞.

Thus S(f) = ∅. Since f = ‖f‖ which is radial weighted homogeneous and df = df

for any z ∈ Cn, by Definition of Singϕ andM(ϕ), we deduce M(ϕ) = Singϕ = Cn\0
and therefore S(ϕ) = {1}.

For the second case, on one hand since bi 6= ai for every i, for every monomial

zaii z
bi
i , the strong non-degeneracy is verified; on the other hand, every face of the

Newton boundary at infinity is a mixed join type polynomial consisted of these

monomials. We conclude that f(z, z) is strongly non degenerate. By Proposition

2.2.2, we have Singf = {0} and f(Singf) = {0}. According to Corollary 4.4.3 and

Remark 5.2.7, it follows that S(f) = ∅ and S(ϕ) = ∅. In order to compute Singϕ

and M(ϕ), we first observe that in this case, f is radial weighted homogeneous and

the radial degree of f is not equal to zero. By Proposition 5.2.4, we therefore get

Singϕ =M(ϕ) = Singf \ V (f) = ∅.
For the third case, since there exists some i such that ai = bi, the restriction

f△ = ‖zi‖2ai does not verify the strong non-degeneracy condition at infinity, where

△ is a face of Γ+(f). Therefore f is not strongly non-degenerate at infinity. Suppose

S(f) 6= ∅. Let c ∈ S(f), by Curve Selection Lemma and the equality (3.3.3) in the

proof of Proposition 3.3.1, there exist two real analytic paths z(t) ∈ M(f) and

µ(t) ∈ S1
1 defined on a small enough interval ]0, ε[, such that:

lim
t→0

‖z(t)‖ = ∞, and lim
t→0

f(z(t), z(t)) = c,

lim
t→0

‖z(t)‖
∥
∥µ(t)df(z(t), z(t)) + µ(t)df(z(t), z(t))

∥
∥ = 0. (5.3.6)

We write explicitly the expansions:

zi(t) = αit
pi + h.o.t., where ai 6=0, pi ∈ Z

µ(t) = µ0 + h.o.t., where µ0 ∈S1.

If ‖zj(t)‖ → ∞ for some j, then we have pj < 0. It follows from (5.3.6) that:

lim
t→0

‖zj(t)‖
∥
∥µ(t)df(z(t), z(t)) + µ(t)df(z(t), z(t))

∥
∥ = 0.

By the expansions of zj(t) and µ(t), we get:

(µ0ajα
aj−1
j α

bj
j + µ0bjα

aj
j α

bj−1
j )tajpj+bjpj + h.o.t.→ 0,
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where t→ 0. Since (aj + bj)pj < 0, we have:

µ0ajα
aj−1
j α

bj
j = −µ0bjα

aj
j α

bj−1
j .

Taking the modules in the above equality, we get aj = bj . Let I = {i | ai = bi}.
On account of the above arguments, we see that if ‖zj(t)‖ → ∞, then j ∈ I. We

write f(z, z) =
∑

i/∈I z
ai
i z

bi
i +

∑

i∈I ‖zi‖
2ai and conclude that f(z(t), z(t)) → ∞ since

I 6= ∅. This is contrary to f(z(t), z(t)) → c. Thus S(f) = ∅.
By Proposition 2.2.2, we get Singf = CI × {0} and f(Singf) = R+ ∪ {0}.
Since f is radial weighted homogeneous, using Proposition 5.2.4, we have

M(ϕ) = Singϕ = Singf \ V (f) = CI × {0} \ 0. Therefore the restriction of f

to M(ϕ) is ‖f‖. Consequently, S(ϕ) = {1}.
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6.1 Introduction

In this chapter, we focus on the local fibration for mixed polynomials. In [HL73],

Hamm and Lê, by using the complex analytic Łojasiewicz inequality, showed the

existence of Thom stratification for holomorphic function germs. However, Lê no-

ticed that the analogous result for complete intersections with non isolated sin-

gularities could not hold. Consider the map germ F : (C3, 0) → (C2, 0) with

F (x, y, z) = (y, z2−xy2) which has the fiber over 0, a double line lx = {y = z = 0}.
For the pair (C3 − lx, lx), Thom property fails at all points along lx. It turns out

that for a real map germ, one needs more hypothesis to guarantee the existence of

Thom property. In the following, we recall some definitions and results in [Mas10].

Let U denote an open set in Rn and p denote a point in U . For a real analytic

application f := (g, h) : U → R2, Massey introduced the following Łojasiewicz

inequality.

Definition 6.1.1 We say that f satisfies the strong Łojasiewicz inequality at p or f

is Ł-analytic at p if there exists an open neighborhood Up of p in U , and ∃C, θp ∈ R+

with 0 < θp < 1, for all x ∈ Up, we have:

‖f(x)− f(p)‖θp ≤ c min
|(a,b)|=1

‖a∇g(x) + b∇h(x)‖ (6.1.1)

where ∇g(x) and ∇h(x) are the gradients of g and h.
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Remark 6.1.2 Note that in the holomorphic case, the above inequality turns out

to be the classical Łojasiewicz inequality. More generally, if we consider this equality

in the mixed setting, by using equation 3.3.1, the rightside of the inequality 6.1.1

can be written in the form: inf
µ∈S1

‖µdf(z, z) + µdf(z, z)‖ .

For Ł-analytic maps, Massey showed that:

Lemma 6.1.3 Suppose that f is Ł-analytic at 0 and f(0) = 0. Then there exists

an open neighborhood U ⊂ Rn of 0 and a Whitney stratification W of U ∩ V (f)

such that, for all Wα ∈ W , the pair (U \ V (f),Wα) satisfies Thom af -property.

Let us recall here the definition of Thom af -property.

Definition 6.1.4 The pair (U \ V (f),Wα) satisfies Thom af -property, if we have

that for any sequence {pj} ∈ U \ V (f) such that pj → p ∈ Wα and the sequence

of tangent spaces Tpj(f
−1(f(pj)) ∩ (U \ V (f))) has a limit T , then T contains the

tangent space of Wα at p.

As a consequence of the above lemma, one has:

Theorem 6.1.5 [Mas10, Main result] Suppose f(0) = 0 and f is not locally con-

stant near the origin. If f is Ł-analytic at 0, then there exists ε0 > 0, for all

0 < δ ≪ ε ≤ ε0, we have:

f : f−1(Sδ) ∩Bn
ε → Sδ

is a proper, stratified submersion. So f : f−1(Sδ)∩Bn
ε → Sδ and f : f−1(Sδ)∩Bn

ε →
Sδ are locally trivial fibration. Moreover, the the topological isomorphism class does

not depend on the choice of ε and δ small enough.

In general, for a mixed polynomial germ f : (Cn, 0) → (C, 0) with isolated critical

value at the origin, we see from Example 6.3.6 that f does not have Thom property

at the origin. The main diffculty of investigating the existence of the Milnor-Lê

fibration inside an open ball, is that on one hand, the germ can have non-isolated

singularities; on the other hand, in a small enough neighborhood of 0, we don’t

know if the map is locally surjective. As we have seen the proposition 2.2.9 in the

Chapter 2, the local trivialization can be directly constructed from polar and radial

actions. Note that from Equation (2.2.2) of Chapter 2, by simply using the polar

action, there always exsits a local trivial fibration on the sphere for mixed polar

weighted homogeneous polynomials (the fibration f
|f | : (S

2n−1
ε \ Kε) → S1

1 , where

Kε is the link on the sphere with the radius ε sufficiently small). One may ask

for a polar weighted homogeneous polynomial whether there exists the Milnor-Lê

fibration inside an open ball without assuming the radial homogeneity property.

Our Theorem 6.3.4 gives a positive answer to this question which is an extension

of Proposition 2.2.9 in the local case. It is also shown in the example 6.3.5 that
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the Ł-analyticity fails at 0, but our Theorem 6.3.4 provides the local fibrations.

It would be desirable to know in this case whether we have Thom property for

polar weighted homogeneous polynomial germ, but we have not been able to do this.

This chapter is organized as follows. In Section 2, we generalize a type of

Parusiński’s inequality [Par99] which holds for all the mixed polynomials. In

Section 3, we will look more closely at polar weighted homogeneous polynomials

and give the proof of Theorem 6.3.4. Moreover, we consider two examples. One

is used to illustrate Theorem 6.3.4. The other shows that in the case of mixed

function germs with non-isolated singular locus, the Thom property does not hold

in general.

6.2 Łojasiewicz inequalities for mixed functions

Theorem 6.2.1 Let f : (Cn, 0) → (C, 0), g : (Cn, 0) → (C, 0) be two germs of

mixed analytic functions. Then there exists a real constant M such that for p ∈
g−1(0), and sufficiently close to the origin,

|f(p)| ≤M |p| inf
µ∈C

(|µdg + df |+
∣
∣µdg + df

∣
∣) (6.2.1)

Proof. By absurd, we suppose that this is not the case. Then, by the curve

selection lemma, there exists real analytic curves z(t) and µ(t) defined on a small

enough interval [0, ε[, such that z(0) = 0, g(z(t), z(t)) ≡ 0 and

ordt |f(z(t), z(t))| < ordt(|µdg + df |+
∣
∣µdg + df

∣
∣)

where we consider the order of the expansions at t = 0. Since z(0) = 0 and

f((z(0), z(0)) = 0, we have:

ordt |z(t)| = ordt

∣
∣
∣
∣

dz(t)

dt

∣
∣
∣
∣
+ 1

ordtf(z(t), z(t)) = ordt
df(z(t), z(t))

dt
+ 1.

On the other hand,

df(z(t), z(t))

dt
= 〈df, dz〉+

〈
df, dz

〉

= 〈µdg + df, dz〉+
〈
µdg + df, dz

〉
.

By the cauchy inequality, we get:

df(z(t), z(t))

dt
≤

∣
∣
∣
∣

dz(t)

dt

∣
∣
∣
∣
(|µdg + df |+

∣
∣µdg + df

∣
∣).
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Then from the above equalities of orders, it follows that:

ordt |f(z(t), z(t))| ≥ ordt(|µdg + df |+
∣
∣µdg + df

∣
∣).

This gives a contradiction �

Remark 6.2.2 In particular, let g ≡ 0. From the above theorem 6.2.1, there exists

a constant 0 < θ < 1 and a constant M > 0 such that:

|f |θ ≤M(|df |+
∣
∣df

∣
∣) (6.2.2)

which can be understood as a version of Łojasiewicz inequality for the mixed case.

6.3 Fibration for non-isolated singular germs

By Definition 3.2.3, we consider a submersion condition defined as follows.

Definition 6.3.1 Let f : (Rn, 0) → (Rp, 0), n > p, be an analytic mapping germ.

We say that f satisfies condition (∗) at 0, if and only if:

M(f) \ V (f) ∩ V (f) = {0}. (6.3.1)

Remark 6.3.2 The important point to note here is that if a real analytic mapping

germ f satisfies Thom af stratification for V (f), then f has the condition (∗) (see

for instance [Lê77], [Mas10, Theorem 5.7]). In [Mas10], Massey calls it “Milnor

condition (b)”.

To show our Theorem 6.3.4, we begin by proving the following proposition.

Proposition 6.3.3 If f : (Cn, 0) → (C, 0) is a mixed polar weighted homogeneous

polynomial germ not locally constant and the polar degree is not equal to zero, then:

(a) f has isolated critical value 0.

(b) f satisfies condition (∗).

Proof. Throughout the proof, we use the notation as in Definition 2.2.5. Let us

first show conclusion (a) of the proposition. To obtain a contradiction, we suppose

that 0 is not an isolated critical value. Then there exists a curve f(t) ⊂ f(Singf)

such that f(0) = 0 and t ∈ [0, 1]. Therefore the image |f(t)| is an interval [a, b]

for t ∈ [0, 1], since f is not locally constant. Let c ∈ f(t) and f(z0, z0) = c for

z0 ∈ Singf . Then we have:

∂f

∂zi
(z0, z0) = η

∂f

∂zi
(z0, z0) (6.3.2)
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where η ∈ S1 and i = 1, 2 . . . , n. By assumption that the polar degree is not

zero, for any d with |d| = |c|, there is a λ ∈ S1 such that d = λmpc. We set

(w0,w0) = (λ ◦ z0) = (λp1z1, . . . λ
pnzn, λ

−p1z1, . . . , λ
−pnzn) for w = (w1, . . . , wn).

Since f is polar weighted homogeneous, we get f(w0,w0) = d and

∂f

∂wi

(w0,w0) = λpi−mp
∂f

∂zi
(z0, z0) (6.3.3)

∂f

∂wi

(w0,w0) = λmp+pi
∂f

∂zi
(z0, z0) (6.3.4)

for i = 1, 2 . . . n. From (6.3.2), (6.3.3) and (6.3.4), we thus get:

∂f

∂wi
(w0,w0) = ηλ−2mp

∂f

∂wi
(w0,w0)

which implies that w0 ∈ Singf by Proposition 2.2.2. It follows that S|c| ⊂ f(Singf)

for every c ∈ [a, b]. We thus get a contradiction with Sard theorem.

To show that f satisfies condition (∗), we shall first prove that the image of f

contains a small disk at 0 ∈ C. Since f is not locally constant and f(0) = 0,

by the Curve selection lemma, the image contains a curve l which intersects the

circles Sη for any sufficiently small radius η. Let a ∈ l ∩ Sη and z ∈ f−1(a). Since

f(λ ◦ z) = λmpf(z, z), we have λmpa is also contained in the image of f for any

λ ∈ S1. Therefore the image of f contains a small disk Dδ for some small enough

δ > 0. Take now the restriction of f to some small enough sphere Sn−1
ε . Its

image must contain a non-constant curve germ at 0. On one hand the polar action

preserves the sphere; on the other hand, taking z ∈ {M(f) \ V (f)}∩Sn−1
ε , we have:

γzi = µ
∂f

∂zi
(z, z) + µ

∂f

∂zi
(z, z) (6.3.5)

where γ ∈ R and µ ∈ C. For any c with |c| = |f(z, z)|, let λ ∈ S1 be the number

uniquely determined by the equality c = λmpf(z, z).

We set (w,w) = (λ ◦ z) = (λp1z1, . . . λ
pnzn, λ

−p1z1, . . . , λ
−pnzn) and conclude that:

γwi = µ0
∂f

∂wi
(w,w) + µ0

∂f

∂wi
(w,w) (6.3.6)

where µ0 = λ−mpµ. Therefore the fiber f−1(c) does not intersect transversally with

Sn−1
ε . Reciprocally, if α is a regular value of the restriction, then λmpα is also

regular, for any λ ∈ S1. by the same argument as in proof of conclusion (a), the

image of the restriction must contain a small disk Dδ0 . Since the regular values of

f|Sn−1
ε

are a dense semi-analytic set, we conclude that all the values of Dδ0 \ {0} are

regular. Hence f satisfies condition (∗). �

Due to above proposition, we get the following fibration theorem without the as-

sumption of radial homogeneity.
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Theorem 6.3.4 [ACT12, Theorem 1.4] Let f : (Cn, 0) → (C, 0) be a polar weighted

homogeneous mixed polynomial germ not locally constant. Assume that the polar

degree is not equal to zero, then there exists ε0 > 0, for all 0 < δ ≪ ε ≤ ε0, such

that:

f : f−1(Sδ) ∩ B2n
ε → Sδ

is a locally trivial fibration which is equivalent to

ϕ :=
f

|f | : (S
2n−1
ε \Kε) → S1

1 ,

the fibration on the sphere.

Proof. From the above proposition 6.3.3 and [Mas10, Theorem 4.4], there exists

ε0 > 0, for all 0 < δ ≪ ε ≤ ε0, such that:

f : f−1(Sδ) ∩ B2n
ε → Sδ

is a locally trivial fibration. On the other hand, recall Definition 5.2.2 for M(ϕ). In

order to prove that M(ϕ)∩B2n
ε0 = ∅, we apply to the mapping ϕ the same reasoning

used in the proof of condition (∗) for Proposition 6.3.3, since the polar action yields

ϕ(λ ◦ z) = λmpϕ(z, z) and preserves the spheres centred at the origin. Now, by

[ACT12, Theorem 1.3], we conclude that the fibration

ϕ :=
f

|f | : (S
2n−1
ε \Kε) → S1

1

is equivalent to the previous Milnor-Lê fibration inside the open ball. �

Next, we consider an example which is not Ł-analytic at the origin, but satisfies

our theorem 6.3.4.

Example 6.3.5 Let f : C3 → C, f = xy2 + xz2 which is a radial homogeneous

and polar weighted homogeneous mixed polynomial. We first claim that f is not

Ł-analytic at zero. We set µ = 1 and the curve (x(t), y(t), z(t)) = (itα, tβ, itβ) where

α, β ∈ N, t ∈ R. On one hand, since v(f) = min
‖µ‖=1

∥
∥µdf + µdf

∥
∥, we have

v(f) ≤
∥
∥df + df

∥
∥ = 2

√
2 |t|α+β

On the other hand, if f is Ł-analytic at 0, then there exist C > 0 and 0 < θ < 1

such that:

2θ |t|θ(α+2β) = |f |θ ≤ Cv(f) ≤ 2
√
2C |t|α+β

When t → 0, it follows that θ(α + 2β) ≥ α + β, for all α, β ∈ N. Suppose that

α = n and β = 1. We therefore get θ ≥ n+1
n+2

. This inequality is true for all n ∈ N.

Thus we conclude θ = 1 which is impossible. This completes the proof of our claim.

Since f is a polar weighted homogeneous mixed polynomial, the conclusion of our

theorem holds.
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For a mixed polynomial germ with isolated critical value at the origin, our next ex-

ample demonstrates that in Remark 6.2.2, the Łojasiewicz inequality (6.2.2) cannot

insure the Thom property.

Example 6.3.6 Consider the mixed polynomial germ f : (C2, 0) → (C, 0),

f(z1, z2) = |z1|2 + |z2|2 + 2z1z2.

Let us show that f(Singf) = {0} but f does not have Thom af -property at 0.

At first, if (z1, z2) ∈ Singf , then there exists λ ∈ S1 such that:

z1 + 2z2 = λz1 (6.3.7)

z2 + 2z1 = λz2 (6.3.8)

Suppose that (z1, z2) 6= (0, 0). From (6.3.7) and (6.3.8), we get |λ− 1| = 2 and

therefore λ = −1.

Thus the solutions of (6.3.7) and (6.3.8) are {(z1, z2) ∈ C2 | z1 = −z2}. There-

fore f has non isolated singularities and dim(Singf) = 2. Since V (f) = f−1(0) =

{(z1, z2) ∈ C2 | z1 = −z2}, we have Singf = V (f) which implies that 0 is an isolated

critical value of f .

By Definition of M(f), if (z1, z2) ∈M(f) \Singf , then there exists µ ∈ C∗ such

that:

z1 = µ(z1 + 2z2) + µz1 (6.3.9)

z2 = µ(z2 + 2z1) + µz2 (6.3.10)

From (6.3.9) and (6.3.10), we get |z1| = |z2|. Thus V (f) is contained in

M(f) \ V (f) ∩ V (f), namely that there is ε0 > 0 sufficiently small and for any

0 < ε ≤ ε0 there exists zε ∈ Sε such that the fiber f−1(f(zε)) and Sε do not in-

tersect transversally. This yields that f does not have Thom af -property at 0, by

Remark 6.3.2.

Let us give a direct computation to show that Thom af -property fails at 0.

Consider z1 = x + iy , z2 = u + iv and f = (Ref, Imf), f : (R4, 0) → (R2, 0). We

take a sequence (xk, yk, uk, vk) ⊂M(f)∩ (Sρ×Sρ)\V (f) with 0 < ρ≪ 1 fixed. Let

us write the sequence in form of polar coordinate (ρ cos θk, ρ sin θk, ρ cos βk, ρ sin βk)

and θk + βk 6= π, 3π. Without loss of generality, we suppose that (xk, yk, uk, vk)

converges to p0 ∈ Sρ × Sρ ∩ V (f) with θk → θ0 ∈ [0, π] and βk → π − θ0. In

addition, we assume that p0 is belong to a two dimensional stratum W of V (f).

Consider the two normal vectors N1
k = (xk + uk, yk − vk, xk + uk, vk − yk) and

N2
k = (vk, uk, yk, xk) of the fiber f−1(f(zε)). Let bk = 2

π−θk−βk
and ak ∈ R such that

‖akN1
k + bkN

2
k‖

2
= 1. We therefore have:

4a2kρ
2(1 + cos(θk + βk)) + 4akbkρ

2 sin(θk + βk) + 2b2kρ
2 − 1 = 0 (6.3.11)
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The discriminant of (6.3.11) is:

△ = 16ρ2(1 + cos(θk + βk))(1− 2b2kρ
2 cos2

θk + βk
2

)

On one hand, when (π − θk − βk) is sufficiently small, we have
∣
∣
∣sin 1

bk

∣
∣
∣ ≤ 1

bk
. On

the other hand, we have 2b2kρ
2 cos2 θk+βk

2
≤ 2ρ2 and 1 + cos(θk + βk) > 0. It follows

that △ > 0 from 0 < ρ≪ 1 which shows the existence of ak.

If f has Thom af -property at 0, then the limit of the sequence {akN1
k + bkN

2
k}

should be orthogonal to tangent space Tp0W . Recall that V (f) is the hyperplan

(x, y, z, u) ∈ R4 | x+ u = 0, y − u = 0. Therefore taking two basis T1 = (1, 0,−1, 0)

and T2 = (0, 1, 0, 1) of Tp0V , we have:

lim
k→∞

〈
akN

1
k + bkN

2
k , T1

〉
= lim

k→∞
bk(sin βk − sin θk) = 2 cos θ0 (6.3.12)

lim
k→∞

〈
akN

1
k + bkN

2
k , T2

〉
= lim

k→∞
bk(cos βk + cos θk) = 2 sin θ0 (6.3.13)

From the above equalities, we conclude that at least one of the above limits is not

equal to 0. Since W is a 2-dimensional stratum of V (f) and also a submanifold of

V (f), this forces Tp0W = Tp0V . Note that we have actually proved the limit of the

sequence {akN1
k + bkN

2
k} cannot be orthogonal to the tangent space Tp0W . This

completes the proof.

Remark 6.3.7 In the above example, f is not locally surjective since Ref ≥ 0.

From the conclusion of [Mas10, Corollary 4.7] and Remark 6.3.2, we observe that

if f is not locally constant with Singf ⊆ V (f) and f has Thom af -property at 0,

then f must be locally surjective.
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7.1 Introduction

The purpose of this chapter is to investigate Newton non-degeneracy condition

in the global setting for a polynomial map. Due to Khovanskii’s non-degeneracy

definition in [Kho77], the study of Newton polyhedron involves many branches in

the algebraic geometry, especially in the singularity theory. However plenty of

the results are related to the local case, when we look at polynomial maps. The

work of reference on Newton polyhedron in the singularity theory can be found

in [Oka97]. In this chapter, we will define a Newton non-degeneracy condition at

infinity for a mixed polynomial map. The particular interest we have in mind lies

in the estimation of the set of global bifurcation values.

Let F = (f1, . . . , fk) : C
n → Ck be a mixed polynomial map for n ≥ k. Recall

the notation K∞(F ) for the set of asymptotic critical values of F . From now on we

adopt the non-degeneracy notion of ours until further notice (see Definition 7.2.1).

Our main result states that:

Theorem 7.1.1 If F is non-degenerate at infinity with F (0) = 0 and depends

effectively on all the variables, then:

K∞(F ) ⊂ Ck \ C∗k ∪ ∪
△∈B(F )

F△(SingF△ ∩ C∗n).

where B(F ) is the set of bad faces of F .
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Remark 7.1.2 For the notion of bad faces of a polynomial map, we refer to Def-

inition 7.2.5. In Section 2 of this chapter, we will see that when k = 1, our non-

degeneracy definition agrees with Definition 4.2.2. By Proposition 3.3.1, we have

S(f) ⊂ K∞(f) for a mixed polynomial f . Consequently, our Theorem 4.1.3(a) is a

special case of Theorem 7.1.1.

The proof of the above theorem is similar in spirit to that we used in Section 4.4.

One can see that it is more convenient to work with K∞(F ) than S(F ), since we

don’t need to deal with ρ-regularity in this general setting.

In a recent work [Aus07], Bivià-Ausina made a different definition of non-degeneracy

condition at infinity of a real polynomial map. He was only concerned with setting

up an estimation of Łojasiewicz exponent at infinity via the Newton polyhedron.

According to his construction, he proved:

Theorem 7.1.3 [Aus07, Corollary 3.10] Let F : Rn → Rn be a polynomial map

such that the determinant of the Jacobian matrix J(F ) 6= 0, for all x ∈ Rn. Suppose

that F is non-degenerate at infinity and that Fi is convenient, for all i = 1, 2, . . . , n.

Then F is bijective.

The key argument he used to prove the above corollary is that the positiveness of

Łojasiewicz exponent at infinity implies that F is proper. By an explicit calculation,

he concluded that Pinchuk’s example [Pin94] is "degenerate at infinity" by his

definition. In this chapter, we will give another approach to this problem in the

mixed setting. One can see the advantage of using our definition lies in the fact

that our result is based on a necessary and sufficient condition for the properness

of a polynomial map. The chapter is organized as follows. In Section 2, we define

non-degeneracy condition for mixed polynomial maps. Then we deduce several

properties on the non-degeneracy for the restrictions to the faces. In Section 3,

we begin with the proof of Theorem 7.1.1, and then we conclude some sharpened

results under other assumptions. In Section 4, we briefly introduce Bivià-Ausina’s

non-degeneracy condition and compare his definition with ours. We will indicate

under some hypothesis our definition is weaker than his.

The following notation will be used throughout this chapter:

CL = {z = (z1, . . . , zn) ∈ Cn | zi = 0, for all i /∈ L}.
C∗L = {z = (z1, . . . , zn) ∈ Cn | xi = 0 ⇐⇒ i /∈ L}.
FL := F|CL the restriction of F on CL. In particular, fL

i is the restriction of fi on

CL.

dF : the Jacobian matrix of F and ∂F
∂xi

:=
(

∂f1
∂xi
, . . . , ∂fk

∂xi

)

, for i = 1, 2, . . . , n. For

a mixed polynomial map F = (f1, . . . , fm) : Cn → Cm, we denote the Jacobian

matrix of the variable (z1, . . . , zn) by dF :=
(

∂fi
∂zj

)

.

SingF : the set of singularities of F .
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7.2 Newton polyhedron and non-degeneracy condi-

tion at infinity

In this section, we follow the notations and definitions used in Section 4.2. Consider

a mixed polynomial map F = (f1, . . . , fk) : Cn → Ck for n ≥ k. For a vector

P = (p1, . . . , pn) ∈ Zn, let p = min
1≤i≤n

pi, J = {j | pj = p} and suppose that p < 0.

Define the restriction of the linear function lp(x) =
∑n

i=1 pixi on supp(fi), let

us denote by △i
p the unique maximal face of supp(fi) (Here "maximal face" is

considered with respect to the inclusion of faces) where lp(x) takes its minimal value

dip, for 1 ≤ i ≤ k. Taking any index set I ⊂ {1, 2 . . . , k}, we set F△I
P
= (f△i

P
)i∈I ,

where every component is the restriction of fi to the face △i
p for all i ∈ I. If

I = {1, 2 . . . , k}, we will write F△P
for (f△1

P
, . . . , f△k

P
) when no confusion can arise.

Recall the notation Γ+ for the Newton boundary at infinity. We define:

NP := {j ∈ {1, . . . , k} | △j
P is a face of Γ+(fj) and d

j
p < 0}. (7.2.1)

We can now formulate our non-degeneracy notion as follows:

Definition 7.2.1 (Newton non-degeneracy for maps) We say that a mixed

polynomial map F : Cn → Ck is Newton non-degenerate at infinity resp. Newton

strongly non-degenerate at infinity if for any vector P ∈ Zn \ {0} such that NP 6= ∅,
the following condition is satisfied:

(∗) SingF△P
∩ {x ∈ Cn | f△j

P
(x) = 0, ∀j ∈ NP} ∩ (C∗)n = ∅.

respectively

(∗∗) SingF△P
∩ (C∗)n = ∅.

From now on, we call Newton non-degeneracy or Newton strong non-degeneracy

simply non-degeneracy or strong non-degeneracy. Let us mention three remarks

after the above definition.

Remark 7.2.2 If k = 1, then Condition (∗) agrees with Definition 4.2.2. Therefore

Definition 7.2.1 extends Definition 4.2.2 to k ≥ 1 in the mixed setting.

Remark 7.2.3 Let F = (f1, . . . , fk) : C
n → Ck be a mixed polynomial map. We

observe that in Definitions 7.2.1, fixed a vector P ∈ Zn, the non-degeneracy and the

strong non-degeneracy conditions depend only of the map F△P
= (f△1

P
, . . . , f△k

P
).

On the other hand, since each fi is a polynomial function, the faces of supp(fi)

are finite and the cardinality of the set {F△P
| P ∈ Zn \ 0} is finite. Therefore

the non-degeneracy of F or the strong non-degeneracy of F is provided by a finite

family of conditions.
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Remark 7.2.4 Since for every i, the faces of fL
i are among the faces of fi, if

F is non-degenerate at infinity (resp. strongly non-degenerate at infinity) and

FL 66≡ 0 , then FL is also non-degenerate at infinity (resp. strongly non-degenerate

at infinity).

Recall the definition of bad faces in Section 4.2. Our new definition of bad faces

for a polynomial map is:

Definition 7.2.5 (Bad face) Let F = (f1, . . . , fk) : C
n → Ck be a mixed polyno-

mial map and let P ∈ Zn \ 0. If △i
P is a bad (resp. strictly bad) face of fi for all i

by Definition 4.2.3, we say that △P = △1
P ×△2

P × · · · ×△k
P is a bad (resp. strictly

bad) face of F . We denote by B(F ) the set of the bad faces of F and by SB(F )

the set of the strictly bad faces of F .

In the above definition, we still use the word “bad face” for a polynomial map.

Actually the vector P plays a role in the definition, since there is no polyhedron at

infinity attached to the map F .

As every face of Γ+(f△i
P
) is also a subface of Γ+(fi), we have:

Remark 7.2.6 If F is non-degenerate at infinity (resp. strongly non-degenerate

at infinity) and △P is a bad face of F , then F△P
is also non-degenerate at infinity

(resp. strongly non-degenerate at infinity).

In the statement of Theorem 4.1.3, we suppose that the mixed polynomial f depends

effectively on all the variables. For a polynomial map F , we make the following

definition:

Definition 7.2.7 (Effectiveness for maps) We say that F depends effectively

on all the variables, if for every variable zi there exists some j(i) such that fj(i)
depends effectively on zi.

7.3 Proof of Theorem 7.1.1 and some consequences

In this section, we will prove Theorem 7.1.1 and show some consequences of this

theorem. By recalling the formula (3.1.1) used to define the distance function for

KOS-regularity, we first remark here:

Remark 7.3.1 Let F = (f1, . . . , fk) : Cn → Ck be a mixed polynomial map.

Assume that zj = xj + iyj, fl = gl + ihl and µj = aj + ibj for all 1 ≤ j ≤ n and

1 ≤ l ≤ k. We regard F as a polynomial map F : R2n → R2k. By Proof of Lemma

3.2.1, we have:

(aj + ibj)
∂f̄l
∂zj

+ (aj − ibj)
∂fl
∂zj

= aj
∂gl
∂xj

+ bj
∂hl
∂xj

+ i(aj
∂gl
∂yj

+ bj
∂hl
∂yj

).
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By the definition of distance function for KOS-regularity, we therefore get:

ν(dF (z)) = inf ‖
k∑

i=1

(µidf i(z, z) + µidfi(z, z)) ‖

where µi ∈ C and
∑k

i=1 |µi|2 = 1. In particular, the singular locus of F consists of

the points such that ν(dF (z)) = 0. (see also Proof of proposition 3.3.1)

7.3.1 Proof of Theorem 7.1.1

Let c = (c1, . . . , ck) ∈ K∞(F ) ∩ C∗k. By Curve selection lemma, there exists an

analytic path z(t) = (z1(t), . . . , zn(t)) defined on a small enough interval ]0, ε[, such

that limt→0 ‖z(t)‖ = ∞ , limt→0 F (z(t), z(t)) = c. By definition of KOS-regularity,

we have:

lim
t→0

‖z(t)‖‖ν(dF (z(t)))‖ = 0 (7.3.1)

From above remark for all 1 ≤ i ≤ n, we get:

lim
t→0

‖zi(t)‖‖µ1(t)
∂f1
∂zi

(z(t), z(t))+µ1(t)
∂f1
∂zi

(z(t), z(t)) · · ·+µk(t)
∂fk
∂zi

(z(t), z(t))‖ = 0

(7.3.2)

where µj(t) ∈ C and
∑k

j=1 |µj(t)|2 = 1. Note that the left side of (7.3.2) is less

than ‖z(t)‖‖ν(dF (z(t)))‖. Let L = {l ∈ {1, . . . , n} | zl(t) 66≡ 0}. Observe that L 6= ∅
since lim

t→0
‖z(t)‖ = ∞, and write:

zl(t) = zlt
pl + h.o.t., where zl ∈ C∗, pl ∈ Z, ∀l ∈ L. (7.3.3)

Consider the expansion of F (z(t), z(t)) for all i = 1, . . . , k, we have either:

fi(z(t), z(t)) ≡ ci

or

fi(z(t), z(t)) = ci + h.o.t., where ci ∈ C∗. (7.3.4)

By eventually transposing the coordinates, we may assume that L = {1, . . . , m}
and that p = p1 ≤ p2 ≤ · · · ≤ pm. Since lim

t→0
‖z(t)‖ = ∞, this implies p =

min
i∈L

{pi} < 0. We denote J = {j ∈ L | pj = p}, z0 = (z1, . . . , zm) ∈ C∗L, p =

(p1, . . . , pm, g, . . . , g) ∈ Zn with g > 0 big enough and consider the linear function

lp =
∑m

l=1 plxl +
∑n

l=m+1 gxl defined on supp(fi). Since g > 0 big enough, the

minimal values of lp are attained on the faces of supp(fL
i ). Let △i

p be the maximal

face of supp(fL
i ) where lp takes its minimal value, say dip. Therefore fL

△i
p
= f△i

p

and we have:

fi(z(t), z(t)) = fL
i (z(t), z(t)) = fL

△i
p
(z0, z0)t

dip + h.o.t. (7.3.5)
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where dip ≤ 0 for all i = 1, . . . , k, since limt→0 F (z(t), z(t)) = c ∈ C∗k. We write:

µi(t) = µit
qi + h.o.t., where µi ∈ C∗ and qi ≥ 0. (7.3.6)

If µi ≡ 0, we put qi = ∞ in (7.3.6). Let I =
{

i ∈ {1, . . . , k} | qi + dip = min
1≤i≤k

(qi + dip)

}

. As
∑k

i=1 ‖ µi(t) ‖2= 1, we have

min
1≤i≤k

qi = 0. Hence I 6= ∅ and µi(t) 66≡ 0 for i ∈ I. We conclude therefore qi+d
i
p ≤ 0,

∀i ∈ I. Then for any l ∈ L, from (7.3.2), we have:

∑

i∈I
(µizl

∂fL
△i

p

∂zl
(z0, z0) + µizl

∂fL
△i

p

∂zl
)(z0, z0)t

qi+dip + h.o.t.→ 0.

Comparing the orders of the two sides in the above formula, since ∀l ∈ L, zl 6= 0,

we obtain:

∑

i∈I
(µi

∂fL
△i

p

∂zl
(z0, z0) + µi

∂fL
△i

p

∂zl
(z0, z0)) = 0 (7.3.7)

Let z1 = (z0, 1, . . . , 1), here we use the construction like in the proof of Theorem

4.1.3(a). It follows from (7.3.7) and Remark 7.3.1 that z1 ∈ Sing(F△P
(z, z)) ∩C∗n.

Recall the index sets defined in (7.2.1). For every j ∈ {1, . . . , k} such that djp < 0,

it is shown by Lemma 4.2.5 that the face △j
p is a face of Γ+(fj) and hence j ∈ NP.

On the other hand, from (7.3.4) and (7.3.5), we must have f△j
p
(z1, z1) = 0 since

djp < 0. Therefore z1 ∈ SingF△P
∩{z ∈ Cn | f△j

P
(z, z) = 0, ∀j ∈ NP}∩ (C∗)n which

contradicts the non degeneracy of F by Condition (∗) of Definition 7.2.1.

Otherwise, we may assume that dip = 0 for all i = 1, 2, . . . , k. We will denote the

minimal value of the restriction of lp to supp(fi) simply by di when no confusion can

arise. Since supp(f Li ) = supp(fi)∩RL
≥0, we have di ≤ dip = 0. Choose the hyperplane

defined by the equation
∑m

i=1 pivi+ g
∑n

i=m+1 vi = 0, where g > max
1≤i≤k

(−di+1) > 0.

Thus for any (v1, . . . , vn) ∈ supp(fi)\supp(f Li ), the value of
∑m

i=1 vipi+g
∑n

i=m+1 vi

is positive. In consequence, we deduce that △i
p = supp(f Li ) ∩ H = supp(fi) ∩ H

for all i = 1, 2 . . . , k. On the contrary, suppose that △1
p does not satisfy condition

(i)(a) of Definition 4.2.3. Consequently, m = n and pl ≤ 0 for all l = 1, 2 . . . , n.

By our hypothesis of effectiveness for F , there exists some j, such that fj depends

effectively on the variable z1, which implies that djp < 0 since p1 = p < 0 and

there exist some (v1, . . . , vn) ∈ supp(fj) such that v1 > 0. This contradicts our

assumption djp = 0. From Definition 7.2.5, we conclude that △P is a bad face of

F . On the other hand since dip = 0 for all i = 1, . . . , k, we have c = F△P
(z0, z0) ∈

F△P
(Sing(F△P

(z, z)) ∩ C∗n). This completes the proof. 2
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7.3.2 Some consequences

Let us prove two important consequences of Theorem 7.1.1.

Proposition 7.3.2 If F is strongly non-degenerate at infinity, then F (SingF )∩C∗k

and K∞(F ) ∩ C∗k are bounded.

Proof. By Theorem 7.1.1, we have K∞(F ) ⊂ Ck \C∗k∪ ∪
△∈B(F )

F△(SingF△∩C∗n),

where B(F ) is the set of bad faces of F . By Remark 7.2.6, it follows that F△ is

strongly non-degenerate at infinity for every face △ ∈ B(F ). If we have proved that

F (SingF ) ∩ C∗k is bounded, then so is F△(SingF△) ∩ C∗k. Since the cardinality

of the bad faces is finite for a mixed polynomial map, it is sufficient to show that

F (SingF ) ∩ C∗k is bounded. Suppose that F (SingF ) is not bounded. By Curve

selection lemma, there exists a real analytic path z(t) ⊂ SingF defined on a small

enough interval ]0, ε[ such that:

lim
t→0

‖z(t)‖ = ∞, and lim
t→0

‖F (z(t), z(t))‖ = ∞

We apply the same notations and arguments as in Proof of Theorem 7.1.1. Accord-

ing to our assumption lim
t→0

‖F (z(t), z(t))‖ = ∞, there exists some i such that dip < 0.

It is shown by Lemma 4.2.5 that △i
p is a face of Γ+(fi). Therefore NP 6= ∅. On the

other hand Since z(t) ⊂ SingF , by comparing the orders of the expansion of the

equation for SingF , we get directly (7.3.7) and z1 ∈ Sing(F△P
(z, z)) ∩ C∗n. This

contradicts the strong non-degeneracy of F by Condition (∗∗) of Definition 7.2.1.

Therefore F (SingF ) ∩ C∗k and K∞(F ) ∩ C∗k are bounded. �

Recall the definition of convenient polynomials. Our next result is an extension of

Corollary 4.4.3.

Corollary 7.3.3 Suppose that F is non-degenerate at infinity and that fi is con-

venient, for all i = 1, . . . , k. Then K∞(F ) = ∅.
Proof. We apply the same notations and arguments as in the proof of Theorem

7.1.1. The only difference is that we may assume that ci is not necessarily equal to

0, for every i. Since fi is convenient, we have diP < 0 ≤ ordt(fi(x(t)) for every i.

By Lemma 4.2.5, every face △i
p is a face of Γ+(fi). Therefore NP = {1, 2 . . . , k}.

On the other hand, by same reasoning applied in the proof of Theorem 7.1.1, we

get z1 ∈ Sing(F△P
) ∩ C∗n. In order to obtain a contradiction with Condition (∗),

it remains to show that f△i
p
(z1, z1) = 0 for all i. This is due to the fact that diP <

ordt(fi(z(t), z(t)). Thus z1 ∈ SingF△P
∩ {z ∈ Cn | f△j

P
(z, z) = 0, ∀j ∈ NP} ∩ (C∗)n

which contradicts the non degeneracy of F by Condition (∗) of Definition 7.2.1.

This ends our proof. �

Next, let us consider an example of strongly non-degenerate mixed polynomial map.
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Example 7.3.4 Let F : C3 → C2, F (z1, z2, z3) = (z1 + z22 , z1z3). We begin with

the computation of SingF and F (SingF ). The Jacobian matrix of F are:

dF (z1, z2, z3) =

(
1 2z2 0

0 0 z1

)

dF (z1, z2, z3) =

(
0 0 0

z3 0 0

)

.

By Remark7.3.1, the singular locus SingF consists of the points such that:

µ1 + µ2z3 = 0 (7.3.8)

2µ1z2 = 0 (7.3.9)

µ2z1 = 0 (7.3.10)

where µ1, µ2 ∈ C and |µ1|+ |µ2| 6= 0. From (7.3.8) and (7.3.10), we get z1 = 0.

If µ1 = 0 and µ2 6= 0, then the solutions of the equations are:

{
(z1, z2, z3) ∈ C3 | z1 = z3 = 0

}
.

If µ1µ2 6= 0, then the solutions of the above equations are:

{
(z1, z2, z3) ∈ C3 | z1 = z2 = 0

}
.

Therefore SingF = {(z1, z2, z3) ∈ C3 | z1 = z2 = 0} ∪
{(z1, z2, z3) ∈ C3 | z1 = z3 = 0} and F (SingF ) = {(a, b) ∈ C2 | b = 0}.
On the other hand, let us show that F is strongly non-degenerate at infinity. The

possible restrictions of F to the faces are F△1
= (z1, z1z3), F△2

= (z22 , z1z3) and

F△3
= F . From the above computation, we see that SingF△3

∩ C∗3 = ∅.
For the restriction F△1

= (z1, z1z3), the Jacobian matrix are:

dF△1
(z1, z2, z3) =

(
1 0 0

0 0 z1

)

dF△1
(z1, z2, z3) =

(
0 0 0

z3 0 0

)

.

By an easy computation, we have SingF△1
= {(z1, z2, z3) ∈ C3 | z1 = 0}. Conse-

quently, SingF△3
∩ C∗3 = ∅.

For the restriction F△2
= (z22 , z1z3), the Jacobian matrix are:

dF△2
(z1, z2, z3) =

(
0 2z2 0

0 0 z1

)

dF△2
(z1, z2, z3) =

(
0 0 0

z3 0 0

)

.
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By an easy computation, we have SingF△2
= {(z1, z2, z3) ∈ C3 | z1 = z3 = 0} ∪

{(z1, z2, z3) ∈ C3 | z2 = 0}. Consequently, SingF△2
∩ C∗3 = ∅.

On account of the above arguments, we conclude that F is strongly non-

degenerate at infinity. In order to calculate K∞(F ), by Remark 7.3.1, we have:

ν(dF ) = min ‖(µ1 + µ2z3, 2µ1z2, µ2z1‖ (7.3.11)

where (µ1, µ2) ∈ C2 and |µ1|2 + |µ2|2 = 1.

Let (a, b) ∈ K∞(F ). Then by Curve selection lemma, there exist the curves

z(t) = (z1(t), z2(t), z3(t)) and (µ1(t), µ2(t)) ∈ S3
1 such that:

lim
t→0

‖(z1(t), z2(t), z3(t))‖ = ∞ (7.3.12)

lim
t→0

F (z1(t), z2(t), z3(t)) = (a, b) (7.3.13)

lim
t→0

‖z(t)‖ ν(dF )(t) = 0. (7.3.14)

If ordt(µ1(t)) = ordt(µ2(t)) = 0, then from (7.3.11) and (7.3.14), we must have

limt→0 z1(t) = limt→0 z2(t) = 0. This implies that limt→0 z3(t) = ∞ by (7.3.14)

which contradicts limt→0 |µ1 + µ2z3| = 0.

If ordt(µ1(t)) > 0 and µ2(t) → 1, then from (7.3.11) and (7.3.14), we must have

limt→0 z1(t) = 0. Using (7.3.12) and (7.3.13), we conclude that limt→0 z3(t) = ∞
which contradicts limt→0 |µ1 + µ2z3| = 0.

If ordt(µ2(t)) > 0 and µ1(t) → 1, then from (7.3.11) and (7.3.14), we must have

limt→0 z2(t) = 0. Using (7.3.12) and (7.3.13), we conclude that limt→0 z3(t) = ∞
and limt→0 z1(t) = 0.

Therefore K∞(F ) ⊂ {0} × C. Now, let us show that K∞(F ) = {0} × C.

In fact for any point (0, c) ∈ {0} × C, we choose the curves z(t) = (ct, 0, 1
t
)

and (µ1(t), µ2(t)) = (− 1√
t2+1

, t√
t2+1

) where t ∈ R is sufficiently small. Then we

get µ1(t) + µ2(t)z3(t) ≡ 0 and µ2(t)z1(t) = ct2√
t2+1

. Since ordt ‖z(t)‖ = −1 and

ordt ‖(µ1 + µ2z3, 2µ1z2, µ2z1)‖ = 2, we have therefore limt→0 ‖z(t)‖ ν(dF )(t) = 0.

On the other hand, limt→0 F (z1(t), z2(t), z3(t)) = limt→0(ct, c) = (0, c). Hence

(0, c) ∈ K∞(F ) which gives {0} × C ⊂ K∞(F ). Therefore K∞(F ) = {0} × C.

7.4 Non-degeneracy and global diffeomorphism

In this section, we first expose some basic definitions and facts concerning Ło-

jasiewicz exponents at infinity which is used to prove Theorem 7.1.3.

Definition 7.4.1 [Aus07, Definition 2.1] Let F = (f1, . . . , fk) : Rn → Rk be a

polynomial map. Define the set E∞(F ) formed by those α ∈ R satisfying the

following inequalities with positive constants C and r

‖x‖α ≤ C sup
i

|fi(x)| ,
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where x ∈ Rn such that ‖x‖ ≥ B. If E∞(F ) 6= emptyset, we denote by L∞(F ) the

supremum of E∞(F ) 6= ∅ and call it the Łojasiewicz exponent at infinity of F .

Remark 7.4.2 When E∞(F ) = ∅, we set L∞(F ) = −∞. It was shown that the

set E∞(F ) is upper bounded when it is non-empty by [Aus07, Proposition 2.4].

Remark 7.4.3 Note that F is proper if and only if

lim
‖x‖→+∞

‖F (x)‖ = +∞. (7.4.1)

It follows immediately by Definition 7.4.1 that the positiveness of L∞(F ) implies

the properness of F .

Now, let us turn to the definition of non-degeneracy at infinity for real polynomial

maps. With the similar construction like mixed polynomial maps (see Definition

7.2.1), one can still use Condition (∗) to define the non-degeneracy condition at

infinty for real polynomial maps and obtain the parallel results for the real case

(see [Dia]). In the sequel, it will cause no confusion if we say a real polynomial

map is non-degenerate under Definition 7.2.1. In the following, we first state Bivià-

Ausina’s non-degeneracy condition:

Definition 7.4.4 [Aus07, Definition 3.5] Let P = (p1, . . . , pn) ∈ Zn such that

p = min
1≤i≤n

pi < 0. We say that F is non-degenerate at infinity if the following

condition is satisfied for any P

{

x ∈ (R∗)n | f△j
P
(x) = 0, for all j = 1, . . . , k

}

= ∅. (7.4.2)

Remark 7.4.5 In our construction, we used the minimal value of the linear func-

tion lp(x) =
∑n

i=1 pixi defined on supp(fi), since by curve selection lemma, we

consider the analytic curves for t→ 0; While in [Aus07], the author used the max-

imal value of the linear function lp(x) =
∑n

i=1 pixi defined on supp(fi) where the

vector P = (p1, . . . , pn) ∈ Zn such that p = max
1≤i≤n

pi > 0 since he considered the

analytic curves for t→ ∞. Therefore the above definition 7.4.4 is indeed equivalent

to Bivià-Ausina’s non-degeneracy condition.

Consider a real polynomial map F : Rn → Rn. We denote by JF the set of points

at which F is not proper (see [Jel99] for more details). Obviously, by the definition

of K∞(F ), we have the inclusion K∞(F ) ⊂ JF . The next two theorem will lead us

to formulate our main result in this section. The first theorem is due to Hadamard,

which implies the sufficient and necessary condition on the global homeomorphism

for a C1 map.
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Theorem 7.4.6 [Ess00, Theorem 8, p.240] Let F : Rn → Rn be a C1 map. Then

F is a homeomorphism if and only if F is a local homeomorphism and F is proper.

The interest of the next theorem is that it allows us to study the properness of a

polynomial map under KOS-regularity condition.

Theorem 7.4.7 [KOS00, Proposition 3.1 and Theorem 3.4] Let F : Rn → Rk,

k ≤ n be a C1 semialgebraic map. Assume that the set of regular points of F is

dense and that F−1(y) is compact for any y ∈ Rk\F (SingF ), then K∞(F ) = JF . In

particular, if k = n, the assumption for density of the regular points is automatically

verified, and K∞(F ) = JF .

Let us denote by J(F )(z) the determinant of the Jacobian matrix of F at point z,

where F : Cn → Cn is a mixed polynomial map. Note that here the Jacobian matrix

of F is the one that we regard F as a polynomial map R2n → R2n. According to

above two theorems, we have the following formulation of Jacobian problem:

Theorem 7.4.8 Let F : Cn → Cn be a mixed polynomial map such that J(F )(z) 6=
0, for all z ∈ Cn. If F is non-degenerate at infinity under Definition 7.2.1 and if

fi is convenient for all i = 1, . . . , n, then F is a homeomorphism.

Proof. Since F is non-degenerate at infinity and fi is convenient for all i =

1, . . . , k, by Corollary 7.3.3, we have K∞(F ) = ∅. Therefore we get the conclusion

from Theorem 7.4.6 and 7.4.7. �

Let us compare the definitions 7.2.1 and 7.4.4 of non-degeneracy condition in the

real setting.

Proposition 7.4.9 Suppose that F : Rn → Rk, k ≤ n is a polynomial map and

that fi is convenient, for all i = 1, . . . , k. If F is non-degenerate at infinity under

Definition 7.4.4, then it is also non-degenerate infinity under Definition 7.2.1.

Proof. We apply the notations as in Section 7.2. Let us fix a vector P =

(p1, . . . , pn) ∈ Zn and assume that p = min
1≤i≤n

pi < 0. Since fi is convenient for all

i = 1, . . . , k, the minimal value dip of lp(x) must be strictly negative on supp(fi).

(This argument was also used in the proof of Corollary 7.3.3) Therefore by Lemma

4.2.5, the face △i
P is contained in Γ+(fi) for all i = 1, . . . , k. As dip < 0 we have

NP = {1, 2 . . . , k}. If F is non-degenerate at infinity under Definition 7.4.4, then F

is non-degenerate at infinity under Definition 7.2.1, by Condition (∗). �

Remark 7.4.10 When k = n and fi is a real convenient polynomial function for all

i = 1, . . . , n, the two definitions are equivalent. In fact, assume that F is degenerate

at infinity under Definition 7.4.4 but non-degenerate under Definition 7.2.1. Then
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there exists x ∈ (R∗)n and a vector P = (p1, . . . , pn) ∈ Zn with min
1≤i≤n

pi < 0 such

that f△i
P
(x) = 0, for every i. Using the same argument as that of the above proof,

we conclude that △i
P is a face of Γ+(fi) for all i = 1, . . . , k. On the other hand,

by Euler’s identity, we have the inner product 〈df△i
P
,Px〉 = dipf△i

P
= 0, where

Px = (p1x1, . . . , pnxn) 6= 0. It follows from 〈dF,Px〉 = 0, that x ∈ Sing(F△P
),

which implies x ∈ Sing(F△P
) ∩

{

x ∈ Rn | f△j
P
(x) = 0, ∀j ∈ NP

}

∩ (R∗)n. This

contradicts our non-degeneracy assumption of F by Definition 7.2.1. Then from

proposition 7.4.9, we observe that our definition 7.2.1 is equivalent to Definition

7.4.4. We also note that Bivià-Ausina was only concerned with the real case of

Theorem 7.4.8 in [Aus07], so our Theorem 7.4.8 is still more general. We also

refer to the next example 7.4.11 which shows that our non-degeneracy condition is

strictly weaker than Bivià-Ausina’s definition.

Our next example is a real non-degenerate polynomial map which is degenerate at

infinity under Definition 7.4.4

Example 7.4.11 Consider F : R3 → R2, F (x, y, z) = (x+y, y2−z2). The Jacobian

matrix of F at the point (x, y, z) is:

dF (x, y, z) =

(
1 1 0

0 2y −2z

)

.

Therefore we get SingF = {(x, y, z) ∈ R3 | y = z = 0} and F (SingF ) =

{(c, 0) | c ∈ R}. Let us show that F is non-degenerate at infinity in the sense of

Definition 7.2.1. Let P = (p1, p2, p3) ∈ Z3 such that p = min
1≤i≤3

pi < 0. Then we get

following situations:

(a) If p = p3 < p2, the possible restrictions of F to the faces are F△1
= (x,−z2),

F△2
= (y,−z2) and F△3

= (x + y,−z2). Since for every restriction F△i
, the

rank of the Jacobian matrix dF△i
is not full if and only if z = 0, where i =

1, 2, 3. Therefore the strong non-degeneracy condition at infinity is satisfied

in this case.

(b) If p = p2 < p3, the possible restrictions of F to the faces are F△4
= (y, y2),

and F△5
= (x + y, y2). For the restriction F△5

, the singular locus is

{(x, y, z) | y = 0} which implies that SingF△5
∩ R∗3 = ∅. For the restriction

F△4
, we have SingF△4

= R3 but SingF△4
∩ (F△4

= 0) ∩ R∗3 = ∅. Therefore

in this case, F is non-degenerate at infinity but not strongly non-degenerate

at infinity.

(c) If p = p2 = p3, the possible restrictions of F to the faces are F△6
= (x+y, y2−

z2), and F△7
= (y, y2 − z2). Since F△6

= F , from the above computation, we
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see that SingF△6
∩ R∗3 = ∅. For the restriction F△7

, the Jacobian matrix at

the point (x, y, z) is:

dF△7
(x, y, z) =

(
0 1 0

0 2y −2z

)

which implies that SingF△7
= {(x, y, z) | z = 0}. Hence SingF△7

∩ R∗3 = ∅.
In this case, F is strongly non-degenerate at infinity.

On the other hand, when F△7
= 0, we get x = −y = z or x = −y = −z. Therefore

F does not satisfy the non-degeneracy condition in the sense of Definition 7.4.4.

Now, we proceed to calculate K∞(F ). By the definition of the norm used to define

KOS-regularity, we have:

ν(dF ) = min ‖(a, a+ 2by,−2bz)‖

where (a, b) ∈ R2 and a2 + b2 = 1. Let (c1, c2) ∈ K∞(F ). Then by Curve selection

lemma, there exist the curves ϕ(t) = (x(t), y(t), z(t)) and (a(t), b(t)) such that:

lim
t→0

‖(x(t), y(t), z(t))‖ = ∞ (7.4.3)

lim
t→0

F (x(t), y(t), z(t)) = (c1, c2) (7.4.4)

lim
t→0

‖ϕ(t)‖ ‖ν(dF )‖ = 0 (7.4.5)

where a2(t) + b2(t) = 1. Since ν(dF ) → 0, we must have limt→0 a(t) = 0,

limt→0 y(t) = 0 and limt→0 z(t) = 0. It follows that limt→0 ‖x(t)‖ = ∞ from (7.4.3).

This is in contradiction with (7.4.4), since c1 is finite. Hence K∞(F ) = ∅.
For any critical value (c, 0), we have:

F−1((c, 0)) =
{
(x, y, z) ∈ R3 | x = c− y, z = y

}
∪
{
(x, y, z) ∈ R3 | x = c− y, z = −y

}

which is the union of two lines and these two lines intersect at the point (c, 0, 0).

If we fix ε < 0 sufficiently small, then regular fiber is

F−1((c, ε)) =
{

(x, y, z) ∈ R3 | x = c− y, z = ±
√

y2 − ε
}

.

Therefore the regular fiber is a hyperbolic curve and moreover, the asymptotes of

this hyperbolic curve are F−1((c, 0)).
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