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RÉSUMÉ

Cette thèse comporte trois parties indépendantes.

La première traite des formes fermées de la factorisation de Wiener-Hopf pour
les processus de Lévy. Nous recensons la demie-douzaine de cas pour lesquels la
factorisation peut être écrite explicitement, et mettons l’accent sur les fonctions
méromorphes ayant des pôles d’ordre deux.

La deuxième partie se focalise sur l’inversion de la transformée de Laplace. Son
but est de présenter une nouvelle méthode approximative, dans un contexte proba-
biliste. Si la transformée de Laplace a un comportement facilement identifiable en
zéro et si la densité associée est bornée, alors cette méthode permet d’obtenir une
borne uniforme pour l’erreur commise sur la fonction de répartition. L’efficacité de
cette méthode est testée sur deux exemples non triviaux.

Enfin, la troisième et dernière partie est dédiée au pricing d’options exotiques
dans le modèle log-stable aux moments finis de Carr et Wu. Dans certains cas, il est
possible d’obtenir des formules fermées sous forme de séries convergentes pour les
prix d’options lookback et barrières. Pour tous les autres cas, nous étudions divers
techniques de simulation pour les trajectoires du processus sous-jacent, dans le but
d’une évaluation par méthode de Monte-Carlo.

MOTS-CLÉS

• Processus de Lévy

• Factorisation de Wiener-Hopf

• Fonctions méromorphes

• Inversion de transformée de Laplace

• Approximation

• Evaluation d’options exotiques

• Modèle Log-Stable aux Moments Finis

• Processus stable spectrallement négatif
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Exotic options, infinitely divisible distributions and Lévy processes:
Theoretical and applied perspectives

SUMMARY

This thesis consists of three independent chapters.

The first one deals with closed forms of the Wiener-hopf factorization for Lévy
processes. We list the known cases for which this factorization can be explicitely
written and provide a detailed account when the underlying functions are meromor-
phic of order two.

The second chapter focuses on the inversion of the Laplace transform. We present
an approximative method in a probabilistic setting. If the behavior of the Laplace
transform near zero is known and if the underlying density is bounded, then this
method yields a uniform bound for the error on the cumulative distribution function.
We test this technique on two non-trivial examples.

The final chapter of the thesis is dedicated to the pricing of exotic options in the
Finite Moment Log-Stable model of Carr and Wu. In some cases, it is possible to
obtain closed forms (converging series) for the prices of lookback and barrier options.
In all other cases, we study several simulation techniques for the trajectories of the
underlying for the purpose of Monte-Carlo valuation.

KEY WORDS

• Lévy processes

• Wiener-Hopf factorization

• Meromorphic functions

• Laplace transform inversion

• Approximation

• Pricing of exotic options

• Finite Moment Log Stable model

• Spectrally negative stable process
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Chapter 1

Notations

− N, Z, Q, R, C: the sets of natural, integer, rational, real and complex numbers,
respectively

− R∗ = R\{0}: real line without zero

− R+ (resp. R−): the positive (resp. negative) real line (including 0)

− B(R): the Borel set of all open intervals within R

− <(z) (resp. =(z)): the real (resp. imaginary) part of the complex number z

− δx(·): the Dirac measure, δx(B) = 1 if x ∈ B and 0 if not, see also

− 1A: the indicator function, which is worth 1 on the set A and 0 elsewhere

− a ∧ b = min(a, b) and a ∨ b = max(a, b)

− X
d
= Y : X and Y have the same distribution

− a.s.: almost surely: an event or a set A is a.s (or P−a.s.) if P [A] = 1

− o(·), O(·): the classical Landau notation

− f (n): nth derivative of f

− Γ(·): the gamma function: Γ(z) =
∫∞

0
tz−1e−tdt

− Γ(·, ·): the upper incomplete gamma function: Γ(z, x) =
∫∞
x
tz−1e−tdt

− ψ(·): the characteristic exponent of a Lévy process: ψ(z) := log(E[eizXt ])/t

− φ(·): the Laplace exponent of a Lévy process, i.e. φ(z) = ψ(−iz)
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Chapter 2

Introduction

Bien qu’elles aient les processus de Lévy pour dénominateur commun, les trois
parties de cette thèse sont largement indépendantes.

L’objectif de la première partie est double. En premier lieu, il s’agit d’introduire
rapidement les outils de base dont nous aurons besoin par la suite, ainsi que les
concepts que nous étudierons. La grande majorité du premier chapitre est ensuite
consacrée à l’étude des processus de Lévy et plus spécifiquement à la factorisation
de Wiener-Hopf, qui est un des résultats centraux dans la théorie des fluctuations
de ces processus (étude de leur minimum et de leur maximum notamment). Cette
factorisation est très populaire en finance de marché, dans le cadre des modèles dits
d’exponentielles de Lévy.

Il y a deux manières d’aborder (et de prouver) cette formule. La première est
probabiliste et repose sur l’étude des temps locaux et des excursions du processus
(voir par exemple les chapitres VI et 6 de [11] et [68]).

La seconde approche de la factorisation de Wiener-Hopf utilise des méthodes
purement analytiques (comme dans [63] ou chez [94], section 45). Afin d’obtenir
des formules fermées, la seconde approche est logiquement la plus appropriée. En
effet, si l’on spécifie une mesure de saut, une partie gaussienne et un drift (et donc
l’exposant de Lévy-Khintchine ψ), une étude approfondie de la fonction q(q−ψ(z))−1

peut déboucher sur la factorisation recherchée.
Le cas où la mesure de saut est une somme finie de densités de lois gamma est

traité dans [77]. Dans ce cas, ψ est une fonction méromorphe et ses singularités
peuvent avoir des ordres quelconques. Si la mesure de Lévy est une somme infinie
de densités de lois exponentielles, alors ψ est également méromorphe, et tous ses
pôles sont d’ordre 1. Ce cas est détaillé dans [61] où l’on découvre que toutes les
solutions de l’équation ψ(z) = q sont réelles. Quand les sauts sont bornés par le
haut, la factorisation est donnée dans [67] et les zéros de ψ(z)− q sont dans le plan
complexe.

Dans tous les cas, la localisation de ces zéros est cruciale et la preuve de la fac-
torisation requiert certaines informations concernant leur répartition asymptotique
dans C. L’enjeu principal du premier chapitre est l’étude de cette répartition dans
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un cas particulier. Si l’on impose à tous les pôles d’être d’ordre deux (la mesure
de Lévy est une somme infinie de densités gamma(2,·)), alors la partie imaginaire
de ces zéros est par exemple forcément plus petite que leur partie réelle. Sous une
condition peu contraignante, il est possible d’être encore plus précis et d’en déduire
la factorisation rechercheée.

Le second chapitre est consacré à l’inversion de la transformée de Laplace (ITL)
dans un cadre probabiliste. La transformée de Laplace a de multiples applications,
que ce soit en physique, en théorie des probabilités ou bien en finance quantitative.
La littérature dédiée à l’ITL est immense et plusieurs centaines d’articles lui ont
déjà été consacrés.

Nous commençons donc par un inventaire succinct des différentes techniques
d’approximation existantes. La plupart d’entre elles souffrent d’un défaut de taille:
il est impossible de connaitre l’erreur induite par l’inversion. Certaines approches
permettent de borner l’erreur commise, mais la borne est rarement uniforme d’une
part, et d’autre part, elle peut devenir assez conséquente lorsque l’on s’éloigne de
l’origine.

Nous présentons ici une méthode qui permet de borner différents types d’erreurs.
La procédure est itérative: la (n + 1)-ième fonction de répartition approchante est
prise en sandwich (sur R+) entre la n-iéme fonction de répartition approchante et
la fonction de répartition inconnue.

Dans tous les cas, il est possible d’obtenir la distance de Kantorovich associée
à l’approximation. Quand la densité sous-jacente est bornée, alors on obtient une
borne supérieure de la distance de Kolmogorov-Smirnoff: l’erreur commise sur les
fonctions de répartition est majorée de manière uniforme sur R+. Notre approche
permet de plus d’obtenir toute la courbe de la fonction approchée d’un seul coup,
alors que beaucoup de méthodes procèdent point par point.

Enfin, le troisième et dernier chapitre s’intéresse au modèle log-stable aux mo-
ments finis (FMLS), introduit dans [24]. Ce modèle est appliqué à l’évaluation de
produits dérivés classiques, les options. Il est très utile car, comme le montrent Carr
et Wu dans leur article [24], les erreurs sur les prix d’options induites par ce modèle
sont comparables à celles d’autres modèles dépendants de 3 à 6 paramètres, alors
que le calibrage du FMLS n’en nécessite que 2 (contre un seul - la volatilité -, pour
le modèle de Black-Scholes).

Les options "vanille", qui dépendent de la valeur finale du sous-jacent, sont la
plupart du temps liquides sur les marchés et leurs prix obéissent à la loi de l’offre
et de la demande. Les formules théoriques d’évaluation servent donc à calibrer les
modèles pour ensuite déterminer le prix de produits plus complexes, typiquement
des options dites "exotiques", lesquelles dépendent de toute la trajectoire du sous-
jacent.

Etonnamment, aucun résultat n’est disponible concernant l’évaluation d’options
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exotiques dans le modèle FMLS. Dans certains cas, et notamment pour les options
dites "lookback" et "barrières", il est pourtant possible d’obtenir des formules fer-
mées.

Pour tous les autres cas, nous étudions exhaustivement les techniques numériques
d’évaluation dont, plus particulièrement, les méthodes de Monte-Carlo. L’erreur
induite par la discrétisation des trajectoires peut parfois être explicitée, comme
dans le cas des options lookback.

Afin d’être complet, nous présentons finalement une procédure qui permet de
calculer numériquement les prix des options vanille ainsi que leurs sensibilités à
différents paramètres.
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Chapter 3

Closed forms of the Wiener-Hopf
factorization for Lévy processes

3.1 Random processes

Stochastic (or random) processes are families of random variables defined on a prob-
ability space (Ω,F , P ) - see definition below. These families are indexed by some set
I which is most of the time used to represent time; it can be discrete (for instance
N or {1, 2, . . . , n}) or continuous (R+ or [0, t]). Stochastic processes may have a
dimension greater than one (random vectors), but we will stick in this thesis to the
one-dimensional continuous case.

These processes are a relevant tool to model the evolution of phenomena which
are, from the perspective of mankind, random. These phenomena can relate to
Physics (behavior of particles during an experiment), to Meteorology (weather fore-
casting), to Biology (genetics), to Finance (stock markets, interest rates), to Eco-
nomics (GDP growth), to Demography . . .

Of course, random processes have been introduced in these fields with a purpose
towards prediction: one observes the past behavior of a phenomenon and one wants
to be able to predict its future (or sometimes one wants to reproduce virtually
sample paths of this phenomenon). Obviously, if Xt is the process chosen to model
this phenomenon, it is impossible to forecast the future value XT with certainty.
Usually, the focus is set on confidence intervals P [XT ∈ (a, b)] or average values

of the type E[f(XT )], E
[
f

(∫ T

0

|Xs|ds
)]

or E
[
f

(
sup

0≤s≤T
Xs

)]
for some positive

function f such that these expectations make sense.

3.1.1 Characterization of stochastic processes

There are many ways to characterize random processes. One very intuitive way to
do so would be to specify the law to the random variable Xt for any fixed time t.
However, this is not enough to uniquely determine this process. Roughly speaking,
this gives an information on where the process is at time t, but not how it got there.
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The trajectory (or sample path) of a process is crucial. For example, if one considers
that Xt has a Gaussian law with mean zero and variance t, than one must specify the
covariance function E[XsXt] (for s, t ≥ 0) as well. This function will determine the
smoothness of the sample paths ofX. For instance, a process known as the fractional
Brownian motion is Gaussian and satisfies E[XsXt] = (s2H + t2H − |t− s|2H)/2 for
H ∈ (0, 1). Its paths are all the more regular than H is close to one, in the sense
that there is c > 0 such that ∀ε ∈ (0, H),

|Xt −Xs| ≤ c|t− s|H−ε, a.s., ∀s, t > 0;

this property being known as the Hölder continuity of the process. Moreover, if
H > 1/2, the increments of X are positively correlated while if H < 1/2, they are
negatively correlated. If H = 1/2, they are independent and X is called a Brownian
motion.

Before we describe two ways to characterize random process we recall basic defi-
nitions related to probability spaces and random variables.

Basic definitions

Given the set Ω, a σ−algebra F on Ω is a subset of the power set of Ω which is
closed under complementation and countable unions. A function will be called F -
measurable (i.e. measurable for the σ-algebra F) if f−1(A) ∈ F for any Borel set
A and where f−1(A) = {ω ∈ Ω|f(ω) ∈ A}. A Borel function is a B(R)-measurable
function.

When F is a σ−algebra on Ω, the couple (Ω,F) is a called measurable space.

Definition 3.1. Given a measurable space (Ω,F), a real-valued random variable X
is a measurable function of (Ω,F) onto (R,B(R)).

The σ−algebra generated by this random variable is the set

σ(X) := {X−1(A), A ∈ B(R)}.

Definition 3.2. Given a measurable space (Ω,F), a probability measure P on (Ω,F)
is an application from F onto [0, 1] such that P [Ω] = 1 and

P

[
∞⋃
n=0

An

]
=
∞∑
n=1

P [An],

where the Ai are mutually disjoint subsets of F .

A measurable space (Ω,F) equipped with a probability measure P is called a
probability space.

Definition 3.3. If X is a real-valued random variable on (Ω,F , P ), then its law is
defined by

P [X ∈ A] = P [{ω ∈ Ω|X(ω) ∈ A}], ∀A ∈ B(R).

10



The function F : x 7→ P [X ≤ x] is called the cumulative distribution function
(c.d.f.) of X. If F is continuous with continuous derivative, then f := F ′ is called
the density of X. In which case,

P [X ∈ [a, b]] =

∫ b

a

f(x)dx =

∫ b

a

P [X ∈ dx]

The average value (mean or expectation) of X is given by

E[X] =

∫
R
xP [X ∈ dx],

and, more generally

E[f(X)] =

∫
R
f(x)P [X ∈ dx],

where these integrals may not converge, in which case, the expected values are
infinite.

We now turn to filtrations. The natural filtration of a process can be thought of
as the information given by the knowledge of the past of this process.

Definition 3.4. Given a probability space (Ω,F , P ), a family (Ft){t≥0} of subsets of
F is called a filtration if it is increasing, that is to say if Fs ⊂ Ft when s < t. Any
given stochastic process engenders its own natural filtration FXt = σ(Xs, s ≤ t).

Note that FXt encompasses all the events of the type {ω,Xt1(ω) = x1, . . . , Xtn(ω) =
xn} for 0 ≤ t1 ≤ · · · ≤ tn = t, x1, . . . , xn ∈ R and n = 1, 2, . . . .

We will also need the following tool:

Definition 3.5. Given a probability space (Ω,F , P ), G ⊂ F , and a random variable
X (with finite mean), there exists a unique random variable which is G-measurable
and such that

E[X1A] = E[Z1A],

for any A ∈ G. Z is called the conditional expectation of X given G and is usually
written Z = E[X|G].

Lastly, we define the Markov property.

Definition 3.6. A random process X = (Xt)t≥0 has the Markov property if, for any
bounded Borel function f ,

E[f(Xt)|FXs ] = E[f(Xt)|Xs], t > s.

A process having the Markov property is quite logically called a Markov process:
all the information of the past of such a process is contained in its present value.
Moreover, its future behavior does not depend on the past but only on its present
position.

11



Transition functions and Markov processes

A natural way to characterize the way X behaves through time is to give the prob-
ability that Xt belongs to a Borel set B, knowing that its value was x at time s < t.
This probability, which we denote Ps,t(x,B) is called a transition function must
satisfy, for an R-valued process and u ≥ t ≥ s ≥ 0,

◦ Ps,t(x, ·) is a probability measure,

◦ Ps,t(·, B) is a B(R)-measurable function,

◦ Ps,s(x,B) = δx(B),

◦
∫
R
Ps,t(x, dy)Pt,u(y,B) = Ps,u(x,B),

the last condition being known as the Chapman-Kolmogorov identity.
A very important result is that any Markov process is entirely characterized by

its transition function plus its distribution at time 0. A transition function (and
thus Markov process) is called temporally homogeneous if

Pt(x,B) = Ps,s+t(x,B), ∀s ≥ 0.

Moreover, if for any Borel set B,

Ps,t(x,B) = Ps,t(0, B − x),

where B − x = {y − x : y ∈ B}, then the process enjoys the spatial homogeneity
property.

Semimartingales

We now turn to another possible characterization of stochastic processes and begin
with a definition.

Definition 3.7. Let (Ω,F ,Ft, P ) be a filtered probability space (that is to say a
probability space equipped with a filtration). A random process X = (Xt)t≥0 is a
martingale if ∀t ≥ 0, E[|Xt|] <∞ and

∀s ≤ t, E[Xt|Fs] = Xs.

One obvious property of martingales is that their mean is constant through time.
The process X is said to be Ft−adapted if Xt is Ft−mesurable for all t ≥ 0. We

call A+ the set of all increasing (Ft−)adapted processes with path that are right-
continuous with left limits and A the set of all processes which are differences of
two processes of A+.

Definition 3.8. A process X = (Xt)t≥0 which can be written Xt = X0 + Mt + At
where X0 is F0-adapted, M is a martingale and A ∈ A, is called a semimartingale.

Remark 3.1.1. In fact, in the general definition of a semimartingale, M can be a
local martingale, a concept which will not be defined here.
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3.1.2 Lévy processes

Definition 3.9. A process X = (Xt)t≥0 defined on a probability space (Ω,Ft, P ) is
a Lévy process if

◦ P [X0 = 0] = 1,

◦ ∀u ≥ t ≥ s ≥ 0, Xu −Xt and Xt −Xs are independent,

◦ ∀ t ≥ s ≥ 0, Xt −Xs has the same distribution as Xt−s,

◦ the sample paths of X are P -almost surely right continuous with left limits,

First of all, by their second and third defining properties, Lévy processes are
time and space homogeneous. This double homogeneity makes it possible to further
characterize their law at any fixed time t: pick n ≥ 1 any strictly positive integer;
by the defining properties of the Lévy process we see that

Xt = (Xt −Xt(1−1/n)) + (Xt(1−1/n) −Xt(1−2/n)) + · · ·+ (Xt/n −X0),

where all the random variables within the brackets have the same distribution and
are independent from one another. This property of the law of Xt is called infinite
divisibility. The most important result on infinitely divisible distribution is the
so-called Lévy-Khintchine formula (here in a Lévy process setting):

Theorem 3.1. For any Lévy process X = (Xt)t≥0, there are real numbers m,σ and
a measure ν concentrated on R∗ and satisfying

∫
R(1 ∧ x2)ν(dx) <∞ such that

E[eizXt ] = exp

(
t

(
imz − σ2z2

2
+

∫
R
(eizx − 1− izx1|x|<1)ν(dx)

))
= etψ(z). (3.1)

Note that measure satisfying
∫
R(1 ∧ x2)ν(dx) < ∞ is very often called a "Lévy

measure". This theorem can be further interpreted in the following way. The char-
acteristic function of Xt can be factorized into three terms. Hence, it seems possible
that Xt be the sum of three independent processes. The formal proof and statement
of this fact, which is called the Lévy Ito decomposition, will not be provided here.
It suffices to point out that X has three independent layers: the first one is a deter-
ministic (non-random) linear drift; the second one is a scaled Brownian motion Bt

and the third one is a pure-jump process:

Xt = mt+ σBt + Jt.

The pure jump process J can itself be decomposed into a martingale plus a process
which belongs to A. Since B is itself a martingale and the drift is also in A, it is
plain that any Lévy process is a semimartingale. If E[Xt] = tE[X1] = 0, then it is a
martingale.

Moreover, by the independence of their increments, all Lévy processes are also
Markov processes and are in fact completely characterized by their law at unit time.

13



3.1.3 Nomenclature for Lévy processes

Depending on the characteristics of the Lévy triplet (m,σ2, ν), some terms have
been coined to describe Lévy processes.

− if m ≥ 0, ν((−∞, 0)) = 0 and
∫∞

0
(1 ∧ x)ν(dx) < ∞, then X is a.s. increasing

and it is called a subordinator.

− if ν((−∞, 0)) = 0 (resp. ν((0,+∞)) = 0), then X is said to be spectrally
positive (resp. spectrally negative): it jumps only upwards (resp. downwards).

− if σ2 = 0, then X is a purely non-gaussian process and if, in addition, m = 0,
it is a pure jump process.

− if ν(R) = ∞, then X is said to have an infinite activity: it jumps infinitely
many times in any finite time interval. In this case, Xt has a continuous density
(this is also true whenever σ2 > 0).

− if we define the variation of the function f over the interval (s, t], by V ((s, t], f) =

sup
∆

n∑
j=1

|f(sj)−f(sj−1)| where ∆ is a partition with n+ 1 points of the interval

(s, t], then the sample paths of X have a.s. finite variation if and only if σ2 = 0

and
∫ 1

−1
|x|ν(dx) <∞.

− a Lévy process with finite variation and such that m = 0 is called a compound
Poisson process.

− if X is a compound Poisson process, then Yt = Xt + mt + σBt is called a
jump-diffusion process.

3.1.4 Financial applications of Lévy processes

Lévy processes have numerous fields of application (population models for instance),
but we focus here on their financial purposes. We underline that he following clas-
sification is not meant to be exhaustive.

◦ Financial applications: they can be divided into two categories:

– the pricing and hedging of derivatives: the price of an underlying (a stock,
an interest rate, an FX rate, a commodity, a future, etc.) is modeled
by the exponential of a Lévy process. It is then possible to compute (or
approximate) the price of a derivative (a vanilla option, an exotic option,
or a swap for instance) written on this underlying using various techniques
(see for instance, chapter 5 of this thesis for a specific example). References
for this category are [30] and [69].

– the study of credit risk: the aim is to model the probability of default of one
(or severa)l asset(s) and the implications in terms of (aggregate) losses for
the holder of this (those) asset(s). Derivatives are also priced and hedged in
this setting: Credit Default Swaps, Collateralized Debt Obligations, Asset
Backed Securities. Two references for this topic are [13] and [21].
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◦ Applications in insurance: they too can be divided into two categories:

– ruin theory: the reserves of an insurance company are modeled by a Lévy
process plus a positive constant and the focus is set on whether these
reserves will become negative or not in some finite or infinite time horizon.
A central reference is [8].

– insurance portfolio: the price of a portfolio can be modeled using a Lévy
process. This allows for various risk analyses. This field is the less devel-
oped in the literature, but one reference is [31].

3.2 The Wiener-Hopf factorization

3.2.1 Statement of the result

One of the most interesting (and challenging) facets of random processes is the study
of their running supremum and infimum. More precisely, if (Xt){t≥0} is a stochastic
process, we are interested in St = sup

0≤s≤t
Xs and It = inf

0≤s≤t
Xs. Explicitly formulating

the law of St or It is practically impossible, except in a very limited number of cases
(the Brownian motion for instance). Usually, Lévy processes are defined by their
Lévy measure or their characteristic function (via the Lévy-Khintchine formula).
However, neither the density or the characteristic function of St or It can be easily
inferred from them. There is, however, a way to characterize, in some sense, the
behavior of the supremum and infimum of a Lévy process.

We state the result and comment on it. We refer to [68], chapter 6, for technical
details on the subject.

Theorem 3.2. Let eq be an exponential random variable with parameter q and X
an independent Lévy process such that either ν(R) = ∞, σ 6= 0 or m 6= 0. Then,
the following unique factorization holds

E[eizXeq ] =
q

q − ψ(z)
= ψ−q (z)ψ+

q (z) = E[eizIeq ]E[eizSeq ], z ∈ R. (3.2)

where ψ is the characteristic exponent defined in (3.1).

We underline the fact that the Wiener-Hopf factorization is part of a greater (and
much richer) whole which is usually referred to as the fluctuation identities and
involve tools that would take too long to define here, such as, local times, reflected
processes, ladder height processes and excursions.

First note that for any process X, E[eizXeq ] is the Laplace transform of the char-

acteristic function of X with respect to the time parameter:
∫ ∞

0

qe−qtE[eizXt ]dt.

Next, we recall the Frullani integral, which holds for a, b > 0 and <(z) ≤ 0:

1

(1− z/a)b
= exp

(∫ ∞
0

(ezx − 1)bx−1e−axdx

)
.
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Using the fact that <(ψ(z)) = −σ
2z2

2
−
∫
R
(1− cos(zx))ν(dx) ≤ 0, this leads to

q

q − ψ(z)
= exp

(∫ ∞
0

∫
R
(eizx − 1)t−1e−qtP [Xt ∈ dx]dt

)
,

and in fact it is true (though it is not a direct implication from the above equation)
that

ψ±q (z) = exp

(∫ ∞
0

∫
R±

(eizx − 1)t−1e−qtP [Xt ∈ dx]dt

)
, ±=(z) ≥ 0.

The formal proofs of these results are quite lengthy and will not be provided here.
They make use of two families of techniques. The first family is purely analytical,
as in [94] and [63]. The other family of proofs relies on probabilistic arguments (see
[11], chapter VI and [68], chapter 6 for instance).

We will also make use of the following notation

φ+
q (z) := ψ+

q (iz) = E[e−zSeq ], φ−q (z) := ψ−q (−iz) = E[ezIeq ], <(z) > 0,

which are the Laplace transforms of the positive random variables Seq and −Ieq .

3.2.2 Hitting times and the term "Wiener Hopf"

In section 6.6 of his monograph [68], Kyprianou explains why the term "Wiener-Hopf
factorization" was originally coined. We want to show another connection between
fluctuations of compound Poisson processes and integral equations which are usually
solved using the so-called Wiener-Hopf method.

Let (Xt)t≥0 be a compound Poisson process with Laplace exponent (at least defined
on the imaginary axis) given by

φ(z) = λ

∫
R
(ezx − 1)ν(dx),

and infinitesimal generator

L[f ](x) = λ

∫
R
(f(x+ y)− f(x))ν(dy),

defined on the space of real bounded continuous functions. Let Ta = inf{t ≥ 0, Xt ≥
a} be the first passage time of X over the level a and T(0,∞) = inf{t ≥ 0, Xt > 0}
be the first time X takes a strictly positive value. Denote

vq = E[e−qT(0,∞)1T(0,∞)<∞], uq(x) = E[e−qTx1Tx<∞],

then, uq solves Dynkin’s system (see [37]):

(∗)
{
L[uq](x) = quq(x), for x < 0
uq(x) = vq for x ≥ 0
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Given the definition of L in the compound Poisson case, (∗) is in fact a non-
homogeneous Wiener-Hopf equation of the second kind (see [90], section 13.11-4).
The connection with the Wiener-Hopf factorization of Lévy processes stems from
the fact that

uq(x) = P [Seq ≥ x],

where, as usual, eq is an independent exponential variable with parameter q. When
the Wiener-Hopf factors are low order meromorphic functions as in [60], [61], [66]
and (3.8), then P [Seq ≥ x] is easily computed using residues.

Given the supremum S and first passage time T , we end this chapter by providing
other identities, some of which hold for processes other than Lévy processes:

P [Teq ≥ x] =

∫ 1

0

P
[
e−qSx ≥ y

]
dy = E[e−qSx ], q, x > 0.

If eq and eq′ are independent, then

E[e
−qTeq′ ] =

∫ ∞
0

q′e−q
′u

∫ 1

0

P [e−qTu ≥ y]dydu = 1− E[e−q
′Seq ].

If, for q, x > 0, T̂x = inf{t > 0, Xt ≤ −x} and E[e−xIeq ] < ∞, we have another
factorization:

E[e−xXeq ] = P [Tex ≥ eq]P [T̂ex ≥ eq],

where ex is independent of eq and x-exponentially distributed.

It is also possible to introduce other positive random variables. If pm has a Pareto
density of the form fpm(x) = m(1 + x)−m−11{x≥0} for m > 0, then

P [Spm ≥ x] = E[(1 + Tx)
−m], P [Tpm ≥ x] = E[(1 + Sx)

−m], x > 0,

Lastly, if gσ has a density fgσ(x) =
√

2
πσ
e−

x2

2σ1{x≥0}, then,

P [Sgσ ≤ x] = E[erf(Tx/
√

2σ)], P [Tgσ ≤ x] = E[erf(Sx/
√

2σ)], x > 0.

In fact, these results can be extended to any positive random variable Vθ with density
fθ where θ is a set of parameters. Then, if there is hθ, a positive strictly monotonous
function such that h′θ(x) = g(θ)fθ(x), then,

P [±SVθ ≥ ±x] = E[hθ(Tx)]/g(θ),

where the ± depends on whether hθ is increasing or decreasing. hθ should satisfy
hθ(0) = 1 if hθ is decreasing and hθ(0) = 0 if it is increasing.

3.3 A brief history of closed-forms of WH factorization

We collect in this section the various closed forms of ψ±q or φ±q , in their chronolog-
ical order of publication. Like most results with Lévy processes, the Wiener-Hopf
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factorization was first expressed for the Brownian motion. It can be stated in the
following way

E[eizBeq ] =

∫ ∞
0

qe−qxe−xz
2/2dx =

q

q + z2/2
=

√
2q√

2q − iz

√
2q√

2q + iz
= E[eizIeq ]E[eizSeq ].

This purely analytical factorization can be also obtained using fluctuation argu-
ments. If L is the Laplace transform operator (see next chapter): L[f ](t) =

∫∞
0
e−xtf(x)dx,

then if F is the antiderivative of f , L[F ](t) = L[f ](t)/t. Now, recall the well-known
Laplace transform of the first passage time for the Brownian motion Ta = inf{t ≥
0, Bt ≥ a}, for a > 0 : E[e−zTa ] = e−a

√
2z. Then, noticing that in this case,

E[e−qTez ] =

∫ ∞
0

ze−zxe−x
√

2qdx =
z

z +
√

2q
,

and more generally that

E[e−qTez ] =

∫ ∞
0

ze−zxE[e−qTx ]dx =

∫ ∞
0

∫ ∞
0

ze−zxe−qydyP [Tx ≤ y]dx

=

∫ ∞
0

∫ ∞
0

zqe−zxe−qyP [Tx ≤ y]dydx

=

∫ ∞
0

∫ ∞
0

zqe−zxe−qy(1− P [Sy ≤ x])dydx

= 1− E[e−zSeq ],

we get that E[e−zSeq ] =
√

2q√
2q+z

. The symmetry of the Brownian motion also yields

E[ezIeq ] =
√

2q√
2q+z

.
For the drifted Brownian motion (Xt = Bt +mt), the factorization reads

E[eizXeq ] =
q

q + z2/2− imz

=
m+

√
2q +m2

iz +m+
√

2q +m2
× m−

√
2q +m2

iz +m−
√

2q +m2
,

and in fact, Seq is an exponential random variable with parameter
√

2q +m2 −m,
which is a well known fact (see Corollay 2, chapter VII in [11]).

3.3.1 Stable processes

The most general formulations of the Wiener-Hopf factors and fluctuation identities
for stable processes were recently given in [46] and [62], but we focus here on the
first results provided by Doney in [36]. We call X(α) a (strictly) stable process if its
Lévy-Khintchine exponent is given by

ψ(z) = log
[
E
[
eizX

(α)
1

]]
= −c|z|α

(
1− i β sgn(z) tan

(πα
2

))
, (3.3)
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where α ∈ (1, 2) and β ∈ [−1, 1] or α ∈ (0, 1) and β ∈ (−1, 1). Without loss of
generality, we fix c = (1 + β2 tan2(πα/2))−1/2. The cases when X(α) or −X(α) is a
subordinator are trivial and are henceforth excluded.
A stable process enjoys a scaling (or self-similarity) property: for c > 0, the process
Yt := (c−1/αX

(α)
ct )t≥0 has the same finite dimensional margins as X(α). This property

makes it possible to study the Wiener-Hopf factors for q = 1 without any loss of
generality. Moreover, it implies that the probability P

[
X

(α)
t > 0

]
does not depend

on t and is thus constant through time. It was shown by Zolotarev (see [102] for
instance) that

ρ = P
[
X

(α)
1 > 0

]
=

1

2
+

1

πα
tan−1

(
β tan

(πα
2

))
.

When ρ and α satisfy a particular relationship, then it is possible to explicitly write
the Wiener-Hopf factors. More precisely, if, for some integers k ≥ 1 and l ≥ 1,
ρ+ k = l/α, then,

φ+
q (−z) = E[ezSe1 ] =

k−1∏
j=0

(−1)l(−z)α + eiπ(k−1−2j)α

l−1∏
j=0

(−1)k−1z + eiπ(l−1−2j)/α

, <(z) < 0,

φ−q (z) = E[ezIe1 ] =

l−1∏
j=0

(−1)k−1z + eiπ(l−1−2j)/α

k∏
j=0

(−1)lzα + eiπ(k−2j)α

, <(z) > 0.

3.3.2 The result of Lewis and Mordecki

We summarize in this subsection the results of [77]. If the Lévy measure of a Lévy
process has the form

ν(dx) = ν+(dx)1{x>0} + 1{x<0}

J∑
j=1

cj
(−x)mj−1

(mj − 1)!
eρjx,

where ν+ is any Lévy measure on R+, then the characteristic exponent is given by

ψ(z) = −σ
2z2

2
+ imz +

∫ ∞
0

(eizx − 1− izx1{|x|<1})ν
+(dx) +

J∑
j=1

cj
(ρj + iz)mj

− λ,

where λ =
∑J

j=1 cjρ
−mj
j .

In this case, if
∫ 1

0
xν+(dx) <∞ and m > 0, ψ(z) = q has exactly N =

∑J
j=1 mj

zeros ζk (counted according to their multiplicity nk: N =
∑

k nk) in the upper
complex half-plane (for q ≥ 0).
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In any other case, there are N = 1 +
∑J

j=1mj =
∑

k nk zeros ζk in the upper
complex half-plane and in any case, for <(z) > 0,

E[ezIeq ] =
∏
k

(
ζk

ζk + z

)nk
×

J∏
j=1

(
ρj + z

ρj

)mj
, (3.4)

E[e−zSeq ] =
q

q − φ(−z)

∏
k

(
ζk

ζk − z

)−nk
×

J∏
j=1

(
ρj − z
ρj

)−mj
.

If N =
∑J

j=1mj, this implies P [Ieq = 0] =
∏N

n=1 ζn/
∏

j=1 ρ
mj
j ; if not, then the law

of Ieq has no atom at 0.

Of course, (3.4) can be transposed to Seq whenever the positive part of the jump
measure of the underlying Lévy process has a Fourier transform of rational type.

3.3.3 Meromorphic Lévy processes

These processes were introduced in [66], inspired by [60] and [61]. In this case, the
Lévy measure ν is absolutely continuous with respect to the Lebesgue measure and
its density is defined by

π(x) = 1{x>0}

∞∑
n=1

anρne
−ρnx + 1{x<0}

∞∑
n=1

ânρ̂ne
ρ̂nx,

where an, ân, ρn, ρ̂n are positive and ρn and ρ̂n are strictly increasing and going to
infinity. This is of course a generalization of the so-called hypergeometric class, for
which ν has a density of the form

πJ,Ĵ(x) = 1{x>0}

J∑
n=1

anρne
−ρnx + 1{x<0}

Ĵ∑
n=1

ânρ̂ne
ρ̂nx, J, Ĵ <∞,

and for which financial applications have been derived (see [7], [53] and [58] for
instance).

Now, we assume that
∑∞

n=1 anρ
−2
n and

∑∞
n=1 ânρ̂

−2
n are finite so that ν is indeed

a Lévy measure. The Laplace exponent is then given by

φ(z) := ψ(−iz) = mz + z2

[
σ2

2
+
∞∑
n=1

an
ρn(ρn − z)

+
∞∑
n=1

ân
ρ̂n(ρ̂n + z)

]
.

It is obvious that φ is analytic on the whole complex plane, except for the isolated
points z = ρn and z = −ρ̂n, hence the term "meromorphic Lévy processes".

The Wiener-Hopf factorization can in this case quite naturally be stated as follows

q

q − φ(z)
=
∞∏
n=1

1− z
ρn

1− z
ζn

∞∏
n=1

1 + z
ρ̂n

1 + z

ζ̂n

= φ+
q (−z)φ−q (z), |<(z)| < min(ζ1, ζ̂1),
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where the (ζn,−ζ̂n) are the zeros of φ(z) − q and satisfy the following interlacing
property:

0 < ζ1 < ρ1 < ζ2 < ρ2 < ...

0 < ζ̂1 < ρ̂1 < ζ̂2 < ρ̂2 < ...

The factorization can be Laplace-inverted into the density of Seq :

fSeq (x) =
∞∑
n=1

((
1− ζn

ρn

)∏
k 6=n

ζk(ρk − ζn)

ρk(ζk − ζn)

)
ζne
−ζnx, x > 0,

and P [Seq = 0] =
∞∏
n=1

ζn
ρn

. Replacing ρn and ζn by ρ̂n and ζ̂n gives the density of

−Ieq .

3.3.4 Lévy processes with bounded positive jumps

One of the latest papers on the subject, [67], provides the Wiener-Hopf factors for
Lévy processes with Laplace exponent of the form

φ(z) = mz +
σ2z2

2
+

∫ k

−∞
(ezx − 1− zx1{|x|≤1})ν(dx),

where k > 0. In this case, for q > 0, equation φ(z) = q has a unique positive solution
ζ0 and infinitely many solutions in the quadrant Q := {z ∈ C,<(z) > 0,=(z) > 0},
which are denoted by ζn and ordered according to their increasing absolute value.
The following holds,

i) ζ0 has multiplicity one and <(ζn) ≥ ζ0 for all n ≥ 1,

ii) the series
∑
n≥1

<(ζ−1
n ) converges,

iii) all of the numbers {ζn}n≥1 except possibly those of a set of zero density, lie
inside an arbitrary small angle π/2− ε < arg(z) < π/2,

iv) the Wiener-Hopf factors are, for <(z) ≥ 0
φ+
q (z) = ekz/2

(
1 + z

ζ0

)−1∏
n≥1

(
1 +

z

ζn

)−1(
1 +

z

ζ̄n

)−1

,

φ−q (z) =
q

q − φ(z)

1

φ+
q (−z)

.

Using partial fraction decomposition, this leads to the density of Seq , when the law
of the latter does not have an atom at zero:
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d
dx
P [Seq ≤ x] = a0e

−ζ0x + 2
∑
n≥1

<[ane
−ζnx],

where

a0 = ζ0e
−kζ0/2

∏
m≥1

∣∣∣∣1− ζ0

ζm

∣∣∣∣−2

,

and

an =
ζ0|ζn|2e−ζnk/2

2=(ζn)(ζn − ζ0)

∏
m≥1
m 6=n

(
1− ζn

ζm

)−1(
1− ζn

ζ̄m

)−1

.

For example, if X is the standard Poisson process, then φ(z) = ex − 1 and ζ0 =
log(1 + q), ζn = log(1 + q) + 2πni. We then have

E[e−zSeq ] = E[e−zXeq ] =
q

q + 1− e−x

= ez/2
(

1 +
z

log(1 + q)

)−1 ∞∏
n=1

log(1 + q)2 + (2πn)2

(log(1 + q) + z)2 + (2πn)2

= ez/2
sinh(log(1 + q)/2)

sinh((z + log(1 + q))/2)
,

where we have used 1.431-2 from [47] for the last equality.

3.4 The case when φ has poles of order two

This case will be studied in detail, as it is one of the contributions of this thesis.

3.4.1 Notations and main result

Let (Xt)t≥0 be a real-valued Lévy process starting at 0, with Lévy-Khintchine rep-
resentation given by (3.1). The Lévy measure ν we are interested in is absolutely
continuous and its density is given by

π(x) = 1(x>0)

∞∑
n=1

anρ
2
nxe

−ρnx + 1(x<0)

∞∑
n=1

ânρ̂
2
n(−x)eρ̂nx,

where the (an, ân, ρn, ρ̂n) are positive, real numbers satisfying
∞∑
n=1

an
ρn

<∞,
∞∑
n=1

ân
ρ̂n

<∞. (3.5)
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Moreover, the sequences ρn, ρ̂n are increasing and satisfy

∀n ≥ 1, min(ρn, ρ̂n) ≥ cn1+ε, max

(
ρn+1

ρn
,
ρ̂n+1

ρ̂n

)
≤ C, (3.6)

for some strictly positive constants C, c, ε. It is easy to check that under (3.5), ν is

indeed a Lévy measure since
∫
R∗
|x|π(x)dx < ∞. The first condition in (3.6) will

ensure that the functions we are interested in are of order less than one, which is
crucial in our proofs.

In this case, the truncation function is not necessary and we set h := 0, which
gives

ψ(z) = imz − σ2z2

2
+
∞∑
n=1

an

(
ρ2
n

(ρn − iz)2
− 1

)
+
∞∑
n=1

ân

(
ρ̂2
n

(ρ̂n + iz)2
− 1

)
.

In fact, it will be more convenient to work with the Laplace exponent:

φ(z) = log(E[ezX1 ]) = mz +
σ2z2

2
+
∞∑
n=1

an
2ρnz − z2

(ρn − z)2
−
∞∑
n=1

ân
2ρ̂nz + z2

(ρ̂n + z)2
.

(3.7)

This Laplace exponent is well defined on an open set containing zero because c > 0.

Before stating our main result, we introduce a condition which will be discussed
later on, see Section 3.4.3 thereafter.

(∗)



∀j ≥ 1 , ∀b2 > 0,

σ2

2
+

∞∑
n=1

an
ρ2
j − 4ρjρn + 3ρ2

n + b2

((ρn − ρj)2 + b2)2
+
∞∑
n=1

ân
ρ2
j + 4ρj ρ̂n + 3ρ̂2

n + b2

((ρ̂n + ρj)2 + b2)2
> 0

σ2

2
+

∞∑
n=1

an
ρ̂2
j − 4ρ̂jρn + 3ρ2

n + b2

((ρn − ρ̂j)2 + b2)2
+
∞∑
n=1

ân
ρ̂2
j + 4ρ̂j ρ̂n + 3ρ̂2

n + b2

((ρ̂n + ρ̂j)2 + b2)2
> 0

We are now ready to proceed with our main result, which states that the Wiener-
Hopf factorization in this setting has the same form as in [60] and the related liter-
ature. We formulate it in a probabilistic fashion using the Laplace transform of Seq
and Ieq .

Theorem 3.3. For q, z > 0, under (3.5), (3.6) and (∗),

E[e−zSeq ] =
1

1 + z
ζ+0

∞∏
n=1

1 + z
ρn

1 + z
ζ+n

1 + z
ρn

1 + z
ζ−n

, E[ezIeq ] =
1

1− z
ζ−0

∞∏
n=1

1 + z
ρ̂n

1− z

ζ̂+n

1 + z
ρ̂n

1− z

ζ̂−n

, (3.8)

where ζ+
0 , ζ+

n and ζ−n (resp. ζ−0 , ζ̂+
n and ζ̂−n ) are the zeros of φ(z) − q with positive

(resp. negative) real part.
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The notation used for the zeros stems from the fact that they go by pairs since,
as we shall see, each pole of order two ρn and ρ̂n will engender two roots for φ(z)−q.
The proof of the theorem relies heavily on the location of the zeros of φ(z) − q, a
topic discussed in the next section.

3.4.2 The location of the zeros of φ(z)− q
In [60], Kuznetsov addresses the problem of root localization in two steps: first he
finds obvious locations and then proves that they are sufficient (there are no other
zeros) using an asymptotic result. Here, we proceed otherwise: we show that the
function has exactly two zeros in an infinite number of well-defined zones, and none
outside these zones.

More specifically, we defineR0 = {z ∈ C , −ρ̂1 < <(z) < ρ1, |=(z)| ≤ max(ρ1, ρ̂1)}
and the two series of rectangles: ∀n ≥ 1,

Rn = {z ∈ C, ρn < <(z) < ρn+1, |=(z)| ≤ ρn+1},

R̂n = {z ∈ C, −ρ̂n > <(z) > −ρ̂n+1, |=(z)| ≤ |ρ̂n+1|}.

The main result of the section follows.

Proposition 3.1. For any q > 0, under (∗), all the zeros of φ(z)− q are located in
R0 ∪

⋃
n≥1(Rn ∪ R̂n). Moreover, for any n ≥ 1, Rn and R̂n both contain exactly 2

zeros or one double zero and so does R0.

The proof of the proposition will require a few intermediate results. We first
introduce two test functions, defined for qn, q̂n > 0,

Φn(z) =
1

(ρn − z)2
+

1

(ρn+1 − z)2
− qn, Φ̂n(z) =

1

(ρ̂n + z)2
+

1

(ρ̂n+1 + z)2
− q̂n.

Our objective is to apply an extension of Rouché’s theorem (see below) to the
functions φ and Φn. This technique was already used in a similar context for the
proof of the main theorem of [77]. Rouché’s theorem will be applied on some contours
Kn which will be closely related to the Rn. The condition (∗) will ensure the strict
inequality required in the theorem on the vertical parts of the Kn. A geometric
condition will then imply that the zeros cannot lie outside of R0 ∪

⋃
n≥1(Rn ∪ R̂n).

We start by proving that the functions Φn(z) and Φ̂n(z) have the following prop-
erty.

Lemma 3.1. For all n ≥ 1, Φn (resp Φ̂n) has only two zeros in Rn (resp R̂n).
Furthermore, the real part of Φn (resp Φ̂n) is strictly negative on ∂Rn (resp ∂R̂n).

Proof. We will often use the usual complex notation z = a + ib. We will prove the
lemma for Φn since the transposition to Φ̂n will be straightforward. First notice
that Φn has exactly four zeros

z1,±
q =

ρn + ρn+1

2
±

√
qn

(
4 + qn(ρn − ρn+1)2 − 4

√
1 + qn(ρn − ρn+1)2

)
2qn

,
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z2,±
q =

ρn + ρn+1

2
±

√
qn

(
4 + qn(ρn − ρn+1)2 + 4

√
1 + qn(ρn − ρn+1)2

)
2qn

.

The zeros z2,±
q are both real and outside Rn and since |4 + x − 4

√
1 + x| ≤ x for

x ≥ 0, it is obvious that

|4 + qn(ρn − ρn+1)2 − 4
√

1 + qn(ρn − ρn+1)2| ≤ qn(ρn − ρn+1)2,

hence, the z1,±
q belong to Rn and are either both real or both complex with |=(z1,±

q )|
smaller than (ρn+1 − ρn)/2.

Moreover,

<(Φn(a+ ib)) = −qn +
(ρn − a)2 − b2

((ρn − a)2 + b2)2
+

(ρn+1 − a)2 − b2

((ρn+1 − a)2 + b2)2
,

so that for a = ρn and denoting ρ = (ρn − ρn+1)2,

<(Φn(ρn + ib)) = −qn +
−1

b2
+

ρ− b2

(ρ+ b2)2
= −qn +

−ρ2 − b2ρ− 2b4

b2(ρ+ b2)2
< 0, ∀b ∈ R.

The proof is the same for a = ρn+1. Lastly, for b = ±ρn+1,

<(Φn(a± iρn+1)) = −qn +
(ρn − a)2 − ρ2

n+1

((ρn − a)2 + ρ2
n+1)2

+
(ρn+1 − a)2 − ρ2

n+1

((ρn+1 − a)2 + ρ2
n+1)2

,

and both numerators are strictly negative for a ∈ (ρn, ρn+1).

The proof of Proposition 3.1 will rely on the following reinforcement, due to
Estermann (see [38] p. 156), of Rouché’s theorem.

Theorem 3.4 (Estermann-Rouché’s Theorem). Let f and g be two holomorphic
functions inside and on some simple contour ∂K. If |f(z)− g(z)| < |f(z)| + |g(z)|
on ∂K, then f and g have the same number of zeros (counting multiplicities) inside
K.

We must choose proper contours Kn to proceed with the application of this
theorem. To this purpose, we introduce two series of disks: given their radiuses
εn,q, ε̂n,q > 0, they are defined for all n ≥ 1 by

Dn,q = {z ∈ C, |z − ρn| ≤ εn,q}, D̂n,q = {z ∈ C, |z − ρ̂n| ≤ ε̂n,q}.

We will need the following result related to these disks.

Lemma 3.2. For any n ≥ 1 and q > 0, there exist εn,q, ε̂n,q > 0 such that
i) ∀z ∈ Dn,q, |φ(z)− q − Φn(z)| < |φ(z)− q|+ |Φn(z)|,
i’) ∀z ∈ D̂n,q, |φ(z)− q − Φ̂n(z)| < |φ(z)− q|+ |Φ̂n(z)|,
ii) there are no zeros of φ(z)− q inside Dn,q,
ii’) there are no zeros of φ(z)− q inside D̂n,q.
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Proof. The proof of both i) and ii) relies on the fact that as εn,q decreases, both φ
and Φn behave like t(z) = (ρn−z)−2 inside Dn,q. Indeed, φ(z)−anρ2

nt(z) is bounded
inside Dn,q and so is Φ(z)− t(z).

We divide Dn,q into eight radial subsets of equal size (and angle), as shown in
Figure 3.4.1. The function t has the following properties

◦ in areas Im+, =(t) can take arbitrarily large values for εn,q small enough,

◦ in areas Im-, −=(t) can take arbitrarily large values for εn,q small enough,

◦ in areas Re+, <(t) can take arbitrarily large values for εn,q small enough,

◦ in areas Re-, −<(t) can take arbitrarily large values for εn,q small enough.

First, this means that for εn,q small enough, |φ(z)−q| > 1, yielding ii). Moreover, for
εn,q small enough, there is either =(φ(z))=(Φn(z)) > 0 or <(φ(z)− q)<(Φn(z)) > 0
for any z ∈ Dn,q. This implies i) since |x− y| = |x|+ |y| if and only if 0 belongs to
the segment [x, y] in the complex plane (both imaginary and real parts must have
opposite signs).

We prove i′) and ii′) likewise.

ρ
n

−π/8−7π/8

π/8

3π/85π/8

7π/8

−3π/8−5π/8

Re-

Re-

Re+Re+

Im-

Im- Im+

Im+

Figure 3.4.1: The subdivisions of Dn,q

Lastly, to cover the whole complex plane, we need to show the following lemma.

Lemma 3.3. For q > 0, let z∗ = a + ib be a non-real zero of φ(z) − q, then
|a| ≥

√
3|b|.
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Proof. First, we have the following identities

2ρ(a+ bi)− (a+ bi)2

(ρ− a− bi)2
=
−a4 + 4a3ρ− 5a2ρ2 − 2a2b2 + 2aρ3 − 3b2ρ2 + 4ab2ρ− b4

((ρ− a)2 + b2)2

+ i
2bρ2(ρ− a)

((ρ− a)2 + b2)2
, (3.9)

2ρ(a+ bi) + (a+ bi)2

(ρ+ a+ bi)2
=

a4 + 4a3ρ+ 5a2ρ2 + 2a2b2 + 2aρ3 + 3b2ρ2 + 4ab2ρ+ b4

((ρ− a)2 + b2)2

+ i
2bρ2(ρ+ a)

((ρ+ a)2 + b2)2
, (3.10)

which leads to

<(φ(z∗)− q) = −q +
∞∑
n=1

an
−a4 + 4a3ρn − 5a2ρ2

n − 2a2b2 + 2aρ3
n − 3b2ρ2

n + 4ab2ρn − b4

((ρn − a)2 + b2)2

+
σ2

2
(a2 − b2) + am (3.11)

−
∞∑
n=1

ân
a4 + 4a3ρ̂n + 5a2ρ̂2

n + 2a2b2 + 2aρ̂3
n + 3b2ρ̂2

n + 4ab2ρ̂n + b4

((ρ̂n − a)2 + b2)2
,

and

=(φ(z∗)) = σ2ab+ bm+
∞∑
n=1

an
2bρ2

n(ρn − a)

((ρn − a)2 + b2)2
−
∞∑
n=1

ân
2bρ̂2

n(ρ̂n + a)

((ρ̂n + a)2 + b2)2
, (3.12)

so that as b 6= 0 and =(φ(z∗)) = <((φ(z∗)− q) = 0, after simplifications,

0 = <(φ(z∗)− q)− a

b
=(φ(z∗)) (3.13)

= −q − (a2 + b2)

(
σ2

2
+
∞∑
n=1

an
a2 − 4aρn + 3ρ2

n + b2

((ρn − a)2 + b2)2
+
∞∑
n=1

ân
a2 + 4aρ̂n + 3ρ̂2

n + b2

((ρ̂n + a)2 + b2)2

)
.

If a > 0 and |a| <
√

3|b|, then ∀n ≥ 1,

a2 − 4aρn + 3ρ2
n + b2 >

4

3
(a− 3ρn/2)2 ≥ 0,

and a2 + 4aρ̂n + 3ρ̂2
n + b2 > 0 so that z∗ cannot be a zero of φ(z) − q. If a < 0

and |a| <
√

3|b|, then the contradiction is the same. Hence, for a 6= 0, the zero
z∗ = a+ ib must satisfy |a| ≥

√
3|b|.

Lastly, for a = 0,

<(φ(z∗)− q) = −q − σ2b2

2
−
∞∑
n=1

an
3b2ρ2

n + b4

(ρ2
n + b2)2

−
∞∑
n=1

ân
3b2ρ̂2

n + b4

(ρ̂2
n + b2)2

,

which is strictly negative for any real b, hence there are no purely imaginary zeros
of φ(z)− q.
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The lemma tells us that there are no zeros of φ(z)−q in the angles (π/6, 5π/6) and
(−5π/6,−π/6) of the complex plane. We are now ready to prove the proposition.

Proof of Proposition 3.1. We begin with Rn and R̂n. The aim of the proof is to show
that there are εn,q, εn+1,q > 0 (resp ε̂n,q, ε̂n+1,q > 0) such that on the boundary of
Kn = Rn\{Dn,q ∪ Dn+1,q} (see Figure 3.4.2) (resp K̂n = R̂n\{D̂n,q ∪ D̂n+1,q}), the
condition of Rouché’s theorem applies, that is,

(∗∗) |φ(z)− q − Φn(z)| < |φ(z)− q|+ |Φn(z)|

(resp |φ(z) − q − Φ̂n(z)| < |φ(z) − q| + |Φ̂n(z)|). To prove this, we will rely on the
following equivalence, for x, y ∈ C

|x− y| = |x|+ |y| ⇐⇒

 <(x)=(y) = =(x)<(y)
=(x)=(y) ≤ 0
<(x)<(y) ≤ 0

(3.14)

nρ n+ρ
1

n+1ρ

n+1ρ

Dn,q Dn+1,q

Figure 3.4.2: the contour Kn with Sn in hard (red) line

We are first interested in the horizontal and vertical segments of ∂Kn, a set which
we denote by Sn (see Figure 2). Recall the expression of <(φ(a+ ib))− a

b
=(φ(a+ ib))

given by (3.13). Because of (∗) (vertical segments), and Lemma 3.3 (horizontal
segments), we have, for z = a + ib ∈ Sn, <(φ(a + ib))− a

b
=(φ(a + ib)) < 0. Hence,

near the zeros of =(φ), <(φ) is negative. More precisely, there are two cases involving
εn := inf{|=(φ(z))|, z ∈ Sn}:

◦ either εn > 0 and =(φ) has no zero on Sn,

◦ or εn = 0 and there exists ε > 0 such that

Vn,q,ε = {z ∈ Sn, |=(φ(z))| < ε,<(φ(z)− q) < 0} 6= ∅.

28



In either case, on Sn\Vn,q,ε, |=(φ)| is bounded from below by some ε > 0.
We want to prove (∗∗) on the following three sets: Vn,q,ε, Sn\Vn,q,ε and ∂Kn\Sn

(this last set consisting in the two semi-circles).

◦ by Lemma 3.1, <(Φn) < 0 on Sn thus (3.14) ensures that (∗∗) holds on Vn,q,ε if
it is not empty.

◦ on Sn\Vn,q,ε, |=(φ)| ≥ ε > 0 and both =(Φn) and <(φ) are bounded, it is
therefore possible to find a qn (in the definition of Φn) such that

|<(φ(z)− q)=(Φn(z))| < |=(φ(z))<(Φn(z))|, z ∈ Sn\Vn,q,

hence, by (3.14), (∗∗) holds on Sn\Vn,q.

◦ for the two semi-circles of ∂Kn, we invoke Lemma 3.2. The radiuses must be
chosen small enough for the zeros of Φn to be in Kn.

Therefore, by Rouché’s theorem, for any q > 0, under (∗), the function φ(z)− q
has exactly 2 zeros (or a double zero) in Rn.
The proof is identical for the sets R̂n. For R0, it is easy to see that the properties
of Φn and Φ̂n described in Lemma 3.1 also hold for

Φ0 =
1

(ρ̂1 + z)2
+

1

(ρ1 − z)2
− q0,

on ∂R0 and hence the same reasoning applies (with the proper K0, S0 and V0,q,ε).
Lastly, the 3 sets were constructed so that with Lemma 3.3, the whole complex

plane is covered. This is shown in the following representation of the complex plane
(figure 3.4.3).

We denote by ζ+
n and ζ−n the two roots in Rn. If they are complex then =(ζ+

n ) >

=(ζ−n ), if not, then <(ζ+
n ) ≥ <(ζ−n ). The equivalent notations hold for R0 and R̂n.

3.4.3 Proof and discussion of the theorem

This section is divided into three parts. First, we prove Theorem 3.3, using Proposi-
tion 3.1 and Kuznetsov’s paper [63]. Then we discuss a possible generalization when
the poles of φ are allowed to have any finite order. Lastly, we introduce a simple
condition which implies (∗).

Proof of Theorem 3.3

The proof will rely on the following lemma. We denote by log the principal branch
of the complex logarithm defined on C\R−.
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1

ρ
2
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5

ρ
6
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3
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6
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5

ρ
2

ρ
1

ρ
4

ρ
3

Im

Re
π/6

Figure 3.4.3: The zeros lie within the dark grey area

Lemma 3.4. Define

A±(z) =

∣∣∣∣∣1z log

(
∞∏
n=1

ζ±n (ρn − z)

ρn(ζ±n − z)

)∣∣∣∣∣ , Â±(z) =

∣∣∣∣∣1z log

(
∞∏
n=1

ζ̂±n (ρ̂n + z)

ρ̂n(ζ̂±n − z)

)∣∣∣∣∣ ,
Then,

A±(z) (resp Â±(z))→ 0, as |z| → ∞, <(z) ≤ 0 (resp <(z) ≥ 0).

Proof. First note that by Proposition 3.1 and (3.6),∣∣∣∣ζ±n (ρn − z)

ρn(ζ±n − z)
− 1

∣∣∣∣ =

∣∣∣∣z ρn − ζ+
n

ρn(ζ+
n − z)

∣∣∣∣ = O(n−1−ε), n→∞,

so that the infinite product is well defined. Again by Proposition 3.1 and (3.6),

|ζ+
n /ρn| > 1. Moreover,

∣∣∣∣ ρn − zζ+
n − z

∣∣∣∣ → 1 as |z| → ∞, <(z) ≤ 0. The function

z 7→
∣∣∣∣ζ+
n (ρn − z)

ρn(ζ+
n − z)

∣∣∣∣ is thus bounded from below for <(z) ≤ 0 and there is therefore
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C > 0 such that for <(z) ≤ 0 and n ≥ 1,∣∣∣∣log

(
ζ+
n (ρn − z)

ρn(ζ+
n − z)

)∣∣∣∣ ≤ C

∣∣∣∣ζ+
n (ρn − z)

ρn(ζ+
n − z)

− 1

∣∣∣∣ .
Hence,

A+(z) ≤

∣∣∣∣∣
∞∑
n=1

ρn − ζ+
n

ρn(ζ+
n − z)

∣∣∣∣∣ = O

(
∞∑
n=1

1

|ζ+
n − z|

)
.

Proposition 3.1 and (3.6) ensure that the infinite sum is finite for any z with negative
real part and by dominated convergence, A+(z)→ 0 as |z| → ∞.

The proof for A−, Â± is achieved in a similar fashion.

Proof of Theorem 3.3. First note that due to condition (3.6) and Proposition 3.1,
∞∑
n=1

1

|ζ±n |
is finite, so that the order of the entire function

z 7→ (q − φ(z))
∞∏
n=1

(
1− z

ρn

)2 ∞∏
n=1

(
1 +

z

ρ̂n

)2

is less than one (see [76], lecture 5, for instance). Hence, the only possible Hadamard/Weierstrass
representation ([76] page 26) for q

q−φ(z)
is

q

q − φ(z)
= ekz

1

1− z
ζ+0

1

1− z
ζ−0

∞∏
n=1

1− z
ρn

1− z
ζ+n

1− z
ρn

1− z
ζ−n

∞∏
n=1

1 + z
ρ̂n

1− z

ζ̂+n

1 + z
ρ̂n

1− z

ζ̂−n

, (3.15)

for some k ∈ C after arrangement.
We rely on Lemma 3.4 to prove that k = 0 (in the same way as in the end of the

proof of Theorem 5 in [60], using the fact that φ(iz) = O(z2) for z → ∞, z ∈ R).
Lastly, all the conditions of Theorem 1 (f) from [63] are fulfilled, which completes
the proof.

Towards a generalization

It is natural to ask what might happen if the density of the Lévy measure had the
more general form

π(x) = 1(x>0)

∞∑
n=1

an
ρmnn

(mn − 1)!
xmn−1e−ρnx + 1(x<0)

∞∑
n=1

ân
ρ̂m̂nn

(m̂n − 1)!
(−x)m̂n−1eρ̂nx,

where (an, ân, ρn, ρ̂n) satisfy the usual conditions and (mn, m̂n) ∈ {1, ...,M}, (M <
∞), which would give

φ(z) = mz+
σ2z2

2
+
∞∑
n=1

an

(
ρmnn

(ρn − z)mn
− 1− zmn

ρn

)
+
∞∑
n=1

ân

(
ρ̂m̂nn

(ρ̂n + z)m̂n
− 1 +

zm̂n

ρ̂n

)
.
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The case M = 2 can be treated using the ideas of the present paper (with a slightly
different condition (∗) and four pairs of test functions). The central problem remains
to get precise results on the location of the zeros of φ(z)− q.

In the general case, finding a multiple zero is not easy and we cannot apply The-
orem 3.3. However, heuristically, if we consider q →∞, we see that, asymptotically,
the (ρn,−ρ̂n) become zeros of order mn and m̂n. Hence, when q decreases, the zeros
should be located in the vicinity, in some sense, of the ρn and −ρ̂n. Empirically,
many computations show that, in fact, each ρn engenders mn zeros, all of which are
located inside circles with center ρn, radius ρn and all the more close to ρn than q is
large. However, this fact (which requires formal proof) does not suffice to show the
convergence A(z)→ 0 in the proof of the theorem.

In this spirit, we would like expose a set of conditions under which the theorem
remains valid. Namely,

Theorem 3.5. If there is an ordering of the zeros and poles, repeated according to
multiplicity, such that

i) φ(z)−q is meromorphic with real poles ρn,−ρ̂n and zeros ζn, ζ̂n with <(ζn) > 0,
<(ζ̂n) < 0,

ii) the series with terms
1

ρn
,

1

ρ̂n
,

1

ζn
,

1

ζ̂n
are absolutely convergent,

iii) ∀n > 0, |ζn − ρn| < C|ρn|, |ζ̂n − ρ̂n| < Ĉ|ρ̂n| for some C, Ĉ > 0,

then (3.8) holds.

Proof. Condition ii) ensures that q/(φ(z)− q) is the ratio of two entire functions of
order less than one and has thus a similar form as (3.15), namely

q

q − φ(z)
= ecz

h+(z)

g+(z)

h−(z)

g−(z)
,

where h±, g± are holomorphic in C, with zeros in C± = {z ∈ C,±<(z) > 0} nor-
malized so that h±(0) = g±(0) = 1. Then, as in the proof of Theorem 3.3, condition
iii) will ensure that z−1 log

(
h±(z)
g±(z)

)
→ 0 as z → ∓∞, so that the factorization is

indeed of Wiener-Hopf type (and c = 0).

Remark 3.4.1. We wish to show the connexion between the papers on meromorphic
Lévy-Khintchine exponents and the ideas in [40]. For simplicity, we will consider
q ∈ Q := {q > 0, φ(z) − q has only simple zeros}. Once the zeros are located,
Theorem 1 in [61] is a special case of Theorem 4.1 in [40]. It is however possible
to consider complex zeros, as long as the proof of Lemma 3.1 in [40] remains valid.
This can only happen if the arguments of the zeros stay away from π/2 and −π/2.
Condition iii) in Theorem 3.5 implies this and it is verified in [60], [61] and [66], as
long as the (ρn, ρ̂n) in those papers have at most an exponential growth. It is thus
possible to very briefly prove Theorem 3.5 using the fact that under i), ii) and iii),
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the series
∞∑
n=1

h+(ζn)

g′+(ζn)
e−xζn ,

∞∑
n=1

h−(ζ̂n)

g′−(ζ̂n)
e−xζ̂n

are convergent for x > 0 and can then be proven to be the densities of Seq and Ieq
using dominated convergence, as in [40], Theorem 4.1 (using Lemma 3.2 of the same
article).

Conditions ii) and iii) in the theorem depend directly on the location of the ζn, ζ̂n.
In the next section, we provide an example for which their position is asymptotically
determined. But before we can proceed, we must find conditions which are easily
verified and under which (∗) holds.

Some remarks on (∗)
It is easy to find examples for which (∗) fails. However, for many cases when an, ân
and ρn, ρ̂n are expressed using basic functions (exponential, power), (∗) will in fact
hold. We provide an example below.

We split (∗) into its two inequalities: the upper (∗1) and the lower (∗2), and
we will only comment on (∗1) because the transposition to (∗2) will be immediate.

We are in fact only interested in the term T (ρj, b) =
∞∑
n=1

an
(ρj − 3ρn)(ρj − ρn) + b2

((ρn − ρj)2 + b2)2
,

since it is the only one which can be negative. Furthermore, if we consider l(j) =
sup{k ≥ 1, 3ρj−k ≥ ρj} (with l(j) = 0 if 3ρj−1 ≤ ρj), we have

T (ρj, b) >

l(j)∑
k=1

[
aj

b2l(j)
+ aj+k

(ρj+k − ρj)(3ρj+k − ρj) + b2

((ρj+k − ρj)2 + b2)2
(3.16)

+ aj−k
(ρj−k − ρj)(3ρj−k − ρj) + b2

((ρj−k − ρj)2 + b2)2

]

:=

l(j)∑
k=1

tk(ρj, b).

Now, tk(ρj, b) can only be negative if 3ρj−k − ρj > 0. This seldom happens if ρn
increases quickly. For instance, if ρn = cn for c > 1, then 3ρj−k − ρj > 0 ⇐⇒ k <
ln(3)
ln(c)

. In this case, if (an)n≥1 is smooth enough (increasing, for instance), it is not
hard to show that (∗1) holds since for any j ≥ 1, there are only a fixed number of
negative terms. However, if ρn increases at a slower rate (typically of power type),
then the number of negative terms increases with j. To show that (∗1) holds then
requires some additional conditions, a set of which is detailed below.

Proposition 3.2. If the following conditions are fulfilled,

i) (an)n≥1 is increasing,

ii) ∀n ≥ 2, ρn+1 − ρn ≥ (ρn − ρn−1),
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iii) ∀j > k ≥ 1,

3ρj−k − ρj ≥ 0 =⇒ 2 (ρj − ρj−k)3 ≥ (3ρj−k − ρj)(ρj+k − ρj)(ρj+k − 2ρj + ρj−k),

then (∗1) holds.

Proof. We want to study tk(ρj, b) as a function of b. The idea is to show that any
possible negative term indexed by j− k in (3.16) is absolutely smaller than its j+ k
counterpart. It is obvious that, by i), it is sufficient to prove this for a constant
sequence (an)n≥1; hence we set aj := 1 for all j ≥ 1. For notational convenience, we
denote

A1 = ρj+k − ρj, A2 = 3ρj+k − ρj, B1 = ρj − ρj−k, B2 = 3ρj−k − ρj,

which are all positive (the case B2 < 0 is irrelevant) and satisfy A2 = 3A1+3B1+B2.
Omitting the constant term in (3.16),

tk(ρj, b) ≥
A1A2 + b2

(A2
1 + b2)2

− B1B2 − b2

(B2
1 + b2)2

=
A1(3A1 + 3B1 +B2) + b2

(A2
1 + b2)2

− B1B2 − b2

(B2
1 + b2)2

≥ c0 + c2b
2 + c4b

4 + 2b6

(A1
1 + b2)2(B2

1 + b2)2
,

where

c0 = −A4
1B1B2 + A1B

4
1B2 + 3A2

1B
4
1 + 3A1B

5
1 ,

c2 = −2A2
1B1B2 + 2A1B

2
1B2 + 6A2

1B
2
1 + 6A1B

3
1 + A4

1 +B4
1 ,

c4 = −B1B2 + A1B2 + 5A2
1 + 3A1B1 + 2B2

1 ,

Note that by ii), A1 ≥ B1, hence c4 > 0. Condition iii) : 2B3
1 ≥ A1B2(A1 − B1)

implies

c0 ≥ −2B6
1 + A2

1B
4
1 + A1B

5
1 c2 ≥ −4B4

1 + 6A2
1B

2
1 + 6A1B

3
1 + A4

1 +B4
1 ,

which are both positive, by ii). This leads to tk(ρj, b) ≥ 0; the sum in (3.16) is
therefore positive and (∗1) holds.

This result calls for a few comments. First of all, many positive terms have been
left out in the proof, thus (∗1) holds under much weaker conditions. Furthermore,
for any explicit formulation of an and ρn, i) is usually easily verified, and so is the
convexity condition ii) which is in fact not too restrictive, given (3.6). However, iii)
is much harder to prove. If we consider ρn = nα for α > 1, then we are interested
in

2(jα − (j − k)α)3 − (3(j − k)α − jα)((j + k)α − jα)((j + k)α − 2jα + (j − k)α),

and denoting k as a proportion of j: k = cj, this becomes
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[2(1− (1− c)α)3 − (3(1− c)α − 1)((1 + c)α − 1)((1 + c)α − 2 + (1− c)α)]j3α,

Using numerical softwares, it is possible to show that this function of the variable
c is increasing and positive on (0, 1) for 1 < α < 15 (and in fact positive for
1 < α ≤ 15.87). Note that 3ρj−k − ρj ≥ 0 ⇐⇒ k ≤ 31/α−1

31/α
j, hence the positivity

criterion should only be checked for c ∈
(

0, 31/α−1
31/α

)
.

Other techniques can be used to show that (∗1) also holds for α > 15.87 when
an is increasing. They rely on the fact that, as in the exponential case, there are,
proportionally, very few negative terms in T (ρj, b).

3.4.4 An example

Our goal in this section is to be able to locate precisely the zeros of φ for one
exponent involving explicit functions. We will show that even in this very simple
case, this is not so easy to achieve. We set ρn = ρ̂n = n2 and unit an and ân, which
leads to the the following Lévy measure,

π(x) = 1{x>0}

∞∑
n=1

xn4e−n
2x + 1{x<0}

∞∑
n=1

(−x)n4en
2x.

First note that in this case, given the remarks of the preceding section, (∗) holds.
Moreover, it is easy to show (see Proposition 4 in [61]) that as x → 0±, π(x) =
O(|x|−3/2), which confirms that we can take a zero cut-off function (h := 0) and the
following simplified representation (see (3.7)) for φ:

φ(z) = mz +
σ2z2

2
+
∞∑
n=1

2zn2 − z2

(n2 − z)2
−
∞∑
n=1

2zn2 + z2

(n2 + z)2
.

This particular choice of φ was made to exhibit known functions. Using the fact
that

2zn2 − z2

(n2 − z)2
=

1

4

(
−6z

z − n2
+ 2

z2 + zn2

(z − n2)2

)
,

and relations 1.421-3, 1.422-4 (second equality) in [47], we get
∞∑
n=1

2n2z − z2

(n2 − z)2
=

1

4

(
2− 3π

√
z cot(π

√
z) + π2z csc(π

√
z)2
)
,

and substituting i
√
z for

√
z,

−
∞∑
n=1

2n2z + z2

(n2 + z)2
=

1

4

(
2− i3π

√
z cot(iπ

√
z)− π2z csc(iπ

√
z)2
)
,

where cot and csc are the usual cotangent and cosecant functions. Recalling

csc(z)2 = sin(z)−2 =
cos(z)2 + sin(z)2

sin(z)2
= 1 + cot(z)2, (3.17)
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φ can in this case be expressed solely in terms of the cotangent function

φ(z) = mz + σ2

2
z2 + 1

+
1

4

[
π
√
z cot(π

√
z)(−3 + π

√
z cot(π

√
z)) + iπ

√
z cot(iπ

√
z)(−3 + iπ

√
z cot(iπ

√
z))
]

:= mz + σ2z2

2
+ 1 +

1

4
(c+(z) + c−(z)).

We refer to section 4.3 of [2] for the behavior of the cotangent function in the complex
plane. One of its useful properties is that if z has a large imaginary part, then both
the real and imaginary parts of cot(z) can be accurately estimated. More precisely,
by Euler’s formula and equation 4.3.58 from [2], for any an > 0 and for any bn > 0
large enough,

cot(an ± ibn) = cot(−an ± ibn)

= 2 sin(2a)e−2bn + i(∓1 + 2 cos(2a)e−2bn) + o(e−2bn)(1 + i). (3.18)

Lastly, recall that the zeros ζ±n = an ± ibn of φ(z) − q are ordered so that the
series (an){n≥1} is increasing.

Lemma 3.5. There are, asymptotically, no real zeros of φ(z) − q, except if σ = 0

and m ≥ π2/4 (resp m ≤ −π2/4), in which case, ζ̂±n (resp ζ±n ) are real.

Proof. The proof lies in the fact that, by (3.18), for z real large enough, c−(z) =
c+(−z) ∼ (−3π

√
z+π2z)/4. Moreover, both c+ and c− are U -shaped between their

poles with a negative local minimum which is close to −0.5. The local minima of φ
thus go to +∞ (yielding only complex zeros) or to −∞ (yielding only real zeros).

We will now focus on ζ±n , as the transposition to ζ̂±n is immediate. Note that ζ±n
verifies

σ2

2
(ζ±n )2 +mζ±n + 1− q +

1

4

[
−3iπ

√
ζ±n cot

(
iπ
√
ζ±n

)
− π2ζ±n cot

(
iπ
√
ζ±n

)2
]
(3.19)

= −1

4

[
−3π

√
ζ±n cot

(
π
√
ζ±n

)
+ π2ζ±n cot

(
π
√
ζ±n

)2
]
.

For ζ±n away from the zeros of <(cot(π
√
z)), dividing (3.19) by ζ±n yields

=

(
3π

4

cot
(
π
√
ζ±n
)√

ζ±n
− π2

4
cot
(
π
√
ζ±n

)2
)

= ±σ
2

2
bn +O(=((ζ±n )−1)), n→ +∞,

(3.20)
and

<
(
−π

2

4
cot
(
π
√
ζ±n

)2
)

=
σ2

2
an +m+

π2

4
+R(n) + o(R(n)), n→ +∞, (3.21)

where R(n) = −3π
4
<
(
(ζ±n )−1/2

[
cot
(
π
√
ζ±n
)

+ i cot
(
iπ
√
ζ±n
)])

.
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We are now able to accurately locate the ζ±n , asymptotically, in all possible cases.

Proposition 3.3. As n→ +∞,

◦ if σ > 0, ζ±n = n2 ± i
√

2/σ2 +O(n−2)(1 + i),

◦ if σ = 0 andm > 0, then ζ±n = n2+c+O(n−1)±in
π

(
cosh−1

(
1 +

π2

2m

)
+O(n−1)

)
,

◦ if σ = 0 and m ∈ (−π2/4, 0), then

ζ±n = n2 + n+ c+O(n−1) +±in
π

(
cosh−1

(
−1− π2

2m

)
+O(n−1)

)
,

◦ if σ = 0 and m = 0, <(
√
ζ±n ) = n+ 3/8 +O(log(n)n−2) and

2π=(
√
ζ+
n )

log( 4π
3
√

2
n)
→ 1,

◦ if σ = 0 andm ≤ −π2/4, then ζ−n = n2+
n

π

(
cos−1

(
1 +

π2

2m

)
+ cn−1 + o(n−1)

)
and ζ+

n = (n+ 1)2 − n

π

(
cos−1

(
1 +

π2

2m

)
+ cn−1 + o(n−1)

)
,

for some irrelevant constants c, and where cos−1 and cosh−1 are defined on [−1, 1]
and [1,+∞) respectively.

Proof. The proof being quite lengthy, some minor steps and details will be omitted.
Since the zeros will be located in the vicinity, in some sense, of the poles of φ, we
will keep the following notation throughout the proof

√
ζ±n = n+dn± i bn

2(n+dn)
. The

periodicity of the cotangent function in the real variable yields

cot
(
π
√
ζ±n

)
= cot

(
πdn ± i

πbn
2(n+ dn)

)
= cot

(
π(2d2

n + 2ndn ± ibn)
1

2(n+ dn)

)
. (3.22)

If σ > 0, then by (3.21), bn/n → 0 and dn → 0 (if not the real part on the l.h.s.
would be bounded).

Using the following series expansions for z → 0, (4.3.70 in [2])

cot(π(a+ ib)z)2 = (πz(a+ ib))−2 − 2/3 +O(((a+ ib)z)2),

we have the following asymptotics as n→ +∞,
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− π2

4
cot
(
π
√
ζ±n

)2

= − (n+ dn)2

(2d2
n + 2ndn ± ibn)2

+ π2/6 + o(1)(1 + i)

= −(n+ dn)2

(
4(d2

n + ndn)2 − b2
n

(4(ndn + d2
n)2 + b2

n)2
∓ i 4(ndn + d2

n)bn
(4(ndn + d2

n)2 + b2
n)2

)
+π2/6 + o(1)(1 + i)

= n2 b2
n − 4n2d2

n

(4n2d2
n + b2

n)2
+
π2

6
± in2 4ndnbn

(4n2d2
n + b2

n)2
+ o(1)(1 + i),(3.23)

From (3.21) and (3.20), it follows that

n2 b2
n − 4n2d2

n

(4n2d2
n + b2

n)2
=

σ2

2
n2 + o(n2), n→ +∞, (3.24)

± n2 4ndnbn
(4(ndn)2 + b2

n)2
= ±σ

2

2
bn + o(1), n→ +∞. (3.25)

Because σ > 0, (3.24) imposes that both bn and ndn do not diverge. Therefore,
the l.h.s. of (3.25) implies that either bn or ndn goes to 0 and because the r.h.s. in
(3.24) is positive, then it must be ndn → 0, which gives bn →

√
2/σ2. With (3.25),

this yields dn = O(n−3). All these facts imply that the o(n2) in (3.24) (which stems
from (3.21)) is in fact a O(1), which completes the proof.

If σ = 0 and m 6= 0, then using the eulerian representation of the cotangent function
(see 4.3.58 in [2] for instance), (3.20) and (3.21) are rewritten into

sinh
(

πbn
n+dn

)2

− sin(2πdn)2(
cosh

(
πbn
n+dn

)
− cos(2πdn)

)2 = 1 +
4m

π2
+

4

π2
R(n) + o(R(n)), n→∞, (3.26)

±
2π sinh

(
πbn
n+dn

)
sin(2πdn)(

cosh
(

πbn
n+dn

)
− cos(2πdn)

)2 −
3
(

bn
2(n+dn)

sin(2πdn)± (n+ dn) sinh
(

πbn
(n+dn)

))
((n+ dn)2 + b2n

4(n+dn)2
)(cosh

(
πbn
n+dn

)
− cos(2πdn))

= O(=((ζ±n )−1)), n→∞, (3.27)

where both R(n) and O(=((ζ±n )−1)) converge to 0.

Notice that for bn/n → +∞, the l.h.s. of (3.26) converges to 1, thus bn/n must
be bounded (since m 6= 0). Hence, because 0 is a pole for =(cot(z)), (3.27) imposes
that either sin(2πdn) or bn/n goes to 0. In fact, because of the positivity of (3.26),
sin(2πdn) → 0 while bn = O(n). Note that this gives =((ζ±n )−1) = O(n−3) and
R(n) = O(n−1). Equation (3.26) then imposes dn → 0 if m > 0 and dn → 1/2 if
m < 0. For m > 0, it can then be rewritten into
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cosh
(

πbn
n+dn

)2

− 1(
cosh

(
πbn
n+dn

)
− 1
)2 =

cosh
(

πbn
n+dn

)
+ 1

cosh
(

πbn
n+dn

)
− 1

= 1 +
4m

π2
+O(n−1), n→∞,

thereby yielding the constant in the imaginary part. Using the Taylor expansion of
the sinus function at 0, (3.27) implies dn = (d+ δn)/n and is simplified into

n−1

± 4π2(d+ δn)

cosh
(

πbn
n+dn

)
− 1
∓ 3 +O(n−2)

 = O(n−3), n→∞,

from which d and δn = O(n−2) can be inferred. Writing bn = (b+ βn)n for βn → 0,
and recalling the expansion

sinh(π(bn + βn)) = sinh(πbn) + πβn cosh(πbn) + o(βn),

implies that βn = O(n−1), by (3.26). Note that in this case, the constant c in the
proposition depends on d and b. The case m ∈ (−π2/4, 0) is treated similarly.

The case σ = 0 and m = 0 is very special as, by (3.26), it is in fact necessary
that bn/n→ +∞. More precisely, (3.27) yields πbn

n log(δn)
→ 1 for some constant δ > 0

which verifies

4π sin(2πdn)

δn
− 3

(
log(δn) sin(2πdn)

δn3
+

1

n

)
= O(log(n)n−3), n→∞,

From the Taylor expansion of the sinus function at 0 and the fact that sin(a +
b) = sin(a) cos(b) + cos(a) sin(b), we can deduce that dn = d + O(log(n)n−2) with
4π sin(2πd) = 3δ. Because bn/n → +∞, |=((ζ±n )1/2)| → +∞ and hence, by (3.18),

R(n) = −3π/4n−1 + o(n−1). As sinh
(

πbn
n+dn

)2

∼ cosh
(

πbn
n+dn

)2

∼ δn/2, n→ +∞, it
can be deduced from (3.26) that

4 cos(2πdn)

δn
+O(n−2) = − 3

πn
+ o(n−1), n→∞,

from which we infer d = 3/8 and δ = 4π
3

sin(3π/4).

Lastly, if σ = 0 and m < π2/4, writing
√
ζ−n = n+ dn and again using the eulerian

form of the cotangent function and (3.21),

− sin(2πdn)2

(cos(2πdn)− 1)2
=

cos(2πdn) + 1

cos(2πdn)− 1
= 1+

4m

π2
+

3

π

[
1 +

sin(2πdn)

cos(2πdn)− 1

]
n−1+o(n−1),

which gives dn → d = cos−1
(

1 + π2

2m

)
/2π. Recalling cos(a + b) = cos(a) cos(b) −

sin(a) sin(b) yields dn = d + cn−1 + o(n−1). The same method holds for
√
ζ+
n−1 =

n− dn.
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This result enables us to compute interesting fluctuations quantities, such as the
Laplace transform of the first passage time of X: Tx = inf{t ≥ 0, Xt ≥ x}. Indeed,
since P [St ≥ x] = P [Tx ≤ t] it is easy to show that

P [Seq ≥ x] =

∫ 1

0

P [e−qTx ≥ y]dy = E[e−qTx ] := hq(x).

We aim at providing a graph of hq for some fixed values of q, m and σ2. Using
residues, it is possible to perform a Laplace transform inversion on the Wiener-Hopf
factors to get a series representation of the law of Seq (see Theorem 1 in [61] for
instance):

d
dx
P [Seq ≤ x] =

∞∑
n=1

[
c+
n ζ

+
n e
−ζ+n x + c−n ζ

−
n e
−ζ−n x

]
+ c0ζ

+
0 e
−ζ+0 x, x > 0 (3.28)

where c±n =
1− ζ±n

n2

1− ζ±n
ζ+0

∏
k≥1
k 6=n

1− ζ±n
k2

1− ζ±n
ζ±k

∏
k≥1

1− ζ±n
k2

1− ζ±n
ζ∓k

, c0 =
∏
k≥1

1− ζ+0
k2

1− ζ+0
ζ+k

1− ζ+0
k2

1− ζ+0
ζ−k

,

and P [Seq = 0] = ζ+
0

∏
k≥1

ζ+
k

k2

ζ−k
(k + 1)2

= E[e−qT0+ ],

where T0+ = inf{t ≥ 0, Xt > 0}. The Laplace transform of this latter random
variable is not equal to 1 whenever 0 is not regular for (0,∞) (see chapter 6 in [68]
for further details). Note that the cumulative distribution functions of Seq and Ieq
can be used for simulation purposes (see subsection 5.4.3).

We start by providing a sample of the the locations of the roots with positive
real and imaginary parts for the following parametrization: σ2/2 ∈ {0, 1}, m = 0
and q = 1:

Case σ2/2 = 1 Case σ2 = 0
n ζ+

n

0 0.4431 0.4596
1 1.5284+0.4173i 1.800+0.273i
2 4.2785+0.9257i 5.4705+1.2401i
3 9.1176+0.9813i 11.1627+2.2600i
4 16.0638+0.9884i 18.866+3.3642i
5 25.0403+0.9914i 28.5772+4.5378i
6 36.0278+0.9933i 40.2934+5.7690i
7 49.0204+0.9947i 54.0134+7.0492i
8 64.0156+0.9957i 69.7364+8.3720i
9 81.0123+0.9964i 87.4620+9.7321i
10 100.0100+0.9971i 107.1894+11.1263i
...

...
...

50 2500.0004+0.9998i 2536.771+80.085i
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The last line of the table is coherent with the asymptotic results of Proposition
3.3. Integrating (3.28) and taking x ↓ 0 yields

c+
0 +

∑
n≥1

(c+
n + c−n ) = 1− P [Seq = 0] ≤ 1,

from which we infer that the cn are bounded (in fact, their moduli decrease very
rapidly). Hence, it is possible to compute hq using a finite number of terms, even
for x close to zero. We provide below the graphs for the cases σ2/2 ∈ {0, 1} and
q ∈ {1, 2, 3}, where we have truncated the series above n = 50.
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Figure 3.4.4: Plot of the function hq for σ2 = 2
and m = 0
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Figure 3.4.5: Plot of the function hq for σ2 = 0
and m = 0
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Chapter 4

Approximations of probabilistic
Laplace transforms and their inverses

4.1 Introduction

4.1.1 Laplace transforms

The Laplace transform is a linear operator which transforms a positive function f
into another positive function L, namely,

L[f(x)](t) = L(t) :=

∫ ∞
0

e−txf(x)dx.

Of course, depending on f , this integral may diverge, and we will therefore only
consider the functions f which are integrable near the origin and bounded at infinity.

A striking property of the Laplace transform is that it converts derivatives into
polynomial/power functions and vice-versa. More precisely, if f (n) denotes the nth
derivative of f , then

L[f (n)(x)](t) = tnL(t)− tn−1f(0)− tn−2f ′(0)− · · · − f (n−1)(0),

and
L[xnf(x)](t) = (−1)nL(n)(t).

In fact, similar relationships hold for integrals:

L
[∫ x

0

f(y)dy

]
(t) = L(t)/t,

and
L[f(x)/x](t) =

∫ ∞
t

L(s)ds.

Because of these properties, Laplace transforms are very useful to handle differential
equations: applying the Laplace transform on a simple ordinary differential equation
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gives a polynomial expression which usually easier to solve. In many disciplines,
some results can only be obtained via Laplace transforms; in the financial field, for
instance, it is a widespread approach, see: [27], [53] and [70]. However, in order to
get the sought result, one must resort to Laplace transform inversion.

The topic of Laplace transform inversion is the purpose of this chapter and will be
addressed in the subsequent sections. We continue, in this introductory paragraph,
a presentation of the various applications of the Laplace transform. Even though
it is massively used in Physics and various mathematical fields, we will only focus
here on its links with Probability Theory.

Given a positive random variable X, the function L(t) = E[e−tX ] will be called
the Laplace transform of X. When X has a density f , this is quite straightforward,
as L is the Laplace transform of f . It is known that the characteristic function of
a distribution uniquely determines this distribution; however, as they are complex-
valued (for non-symmetric distributions), they are not as easy to manipulate as real-
valued function. This is why, for positive random variables, the Laplace transform
is used instead. Indeed,

Theorem 4.1. Two distinct positive probability distributions have distinct Laplace
transforms

Two proofs of this result are given in [39], section XIII.1. In fact, another re-
sult exists, which state that if f is continuous, then no other function has Laplace
transform L. For details on this, see section 2.1 in [29].

A nice property of Laplace transforms is that if X and Y are independent, then

E[e−t(X+Y )] = E[e−tX ]E[e−tY ].

Moreover, the Laplace transform of X can be used to compute the moments of X:

E[Xn] = (−1)nL(n)(0),

with obvious conventions in case of divergence.

Laplace transforms in probability have many other properties (see for instance
chapter XIII in [39]), but we would like to emphasize their connection with Lévy
processes.

An important class of Lévy processes are those with almost surely increasing
sample paths, also known as subordinators. These processes are obviously always
positive (since X0 = 0 a.s.) and are thus defined by their Laplace transform, which
reads:

E[e−zXt ] = exp

(
t

(
−zd+

∫ ∞
0

(e−zx − 1)ν(dx)

))
:= exp(tφ(z)),

where d is a positive number and ν a measure on R+ satisfying
∫
R+

(1∧x)ν(dx) <∞.
Subordinators (and their Laplace transforms) are an essential tool in the fluc-

tuation theory of Lévy processes (local times, ladder heights . . . see for instance,
chapters IV and VI in [11]).
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Another class of Lévy processes of interest are those with no positive jumps. In
this case again, it is possible to compute their Laplace transform (formally, their
moment generating function):

E[ezXt ] = exp

(
t

(
dz +

σ2z2

2
+

∫ 0

−∞
(ezx − 1− zx1|x|≤1)ν(dx)

))
:= exp(tφ(z)).

In this case, φ is strictly convex and goes to infinity when z →∞, hence φ is strictly
increasing and positive on some half-line. On this half-line, it is thus possible to
define the inverse φ−1 on this half-line. In this case, the process

Tx = inf{t ≥ 0, Xt ≥ x}, x ≥ 0,

is a subordinator and its Laplace exponent is φ−1.
In fact, a similar result is available for one-dimensional diffusion processes: the

Laplace transform of their first passage time is characterized by a differential equa-
tion related to the infinitesimal generator of the process. We refer to [51], chapters
3 and 4 for more details.

Lastly, we would like to recall that the Wiener-Hopf factors (studied in the pre-
vious chapter) are simply a double Laplace transform of the law of the supremum
and infimum of a Lévy process with respect to the time and space variables:

φ+
q (z) = q

∫ ∞
0

∫ ∞
0

e−qt−zxP [St ∈ dx]dt, φ−q (z) = q

∫ ∞
0

∫ ∞
0

e−qt+zxP [It ∈ dx]dt.

4.1.2 Laplace transform inversion

The topic of Laplace transform inversion is an old problem which relates to physics,
probability theory, analysis and numerical methods. The number of publications
dedicated to it is so large that it is possible to write surveys of surveys on the
subject (chapter 9 of [29]). Roughly speaking, there are two major approaches to
numerical inversion of Laplace transforms. If f is a function with sub-exponential
growth, and

L[f(x)](t) = L(t) =

∫ ∞
0

e−txf(x)ds

its Laplace transform, the first family of methods uses results with closed forms to
compute the original function f :

L−1[L(t)](x) = f(x) =
1

2πi

∫ c+i∞

c−i∞
extL(t)dt (Bromwich integral, see 2.2 in [29]),

(4.1)

f(x) = lim
n→+∞

(−1)n

n!

(n
x

)n+1

L(n)(n/x) (Post-Widder formula, see [39], VII.6),

(4.2)
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for some c chosen so that the path of integration makes sense for L.
For instance, the papers [26] and [4] make use of these formulae to obtain nu-

merical approximations. Other examples of such methods can be found in chapters
6 and 7 of [29]. A recent survey on the efficiency of some of these procedures was
carried out by Masol and Teugels in [81].

Simply put, the target function (L) in these methods is exact, but the inversion
is approximative: discretization of the integral in (4.1) and choice of a large, but
finite, n in (4.2).

The second family of numerical inversions proceeds otherwise: the inversion is
exact, but it is applied to an approximation of the initial Laplace transform. Both
the original function and the Laplace transform are usually approximated by sums
(truncated series for instance) of functions. The case when these functions are of
rational type was studied in [75] in the scope of least square optimization. Orthog-
onal polynomials (Legendre, Chebyschev and Laguerre polynomials) have also been
investigated (see section 3.2 in [29]). In any case, the approximations take the form

f(x) ≈
N∑
k=1

fk(x) ⇔ L(t) ≈
N∑
k=1

Lk(t). (4.3)

The core idea of our method is to take advantage of the specificities of Laplace
transforms in probability to choose the Lk (and thus fk) wisely, depending on some
properties of f . More precisely, the technique is adapted to fit the asymptotics of f
near zero and infinity. In many cases, our technique will provide satisfying results
for N = 2 or N = 3 in (4.3).

Such a procedure can be used, for instance, to approximate the law of a subor-
dinator (an increasing Lévy process), which is usually characterized by its Laplace
transform.

We proceed in three steps. First, we make a quick review of the different families
of methods of Laplace transform inversion. Second, we propose a naive method to
construct an approximate in (4.3) which will have a pedagogical role. While any
approximation method has its flaws, our naive method seems to cumulate most of
the drawbacks of the methods in the literature, which we also review. Our second
method was precisely designed to avoid theses flaws and will be presented afterwards.

4.2 A short review of classical methods

We summarize the various families of procedures which can be found in the literature.
This subsection is inspired by [29].
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4.2.1 Series expansion

If L possesses a series expansion of the form

L(t) =
∞∑
n=1

an
tνn
,

then, since L−1[t−ν ](x) = xν−1/Γ(ν),

f(x) =
∞∑
n=1

anx
νn−1

Γ(νn)
.

In most cases, one must truncate this series. Depending on the an and the value x
at which we choose to approximate f , the accuracy of this method varies. Of course,
any series expansion

L(t) =
∞∑
n=1

anLn(t),

where the Ln have a known Laplace inverse works as well. The following functions
can be approximated and inverted this way (see [29], section 3.1): 1/(1+t), 1/(t2+1),
e−a/t/

√
t, log(t)/(1 + t), 1/(t1/2 + t1/3).

This method can be further extended. If L can be decomposed into

L(t) =
∞∑
n=1

anPn(p(t)),

where the Pn are orthogonal polynomials and p is a simple function such that p(t)n
is easily Laplace-inverted, then

f(x) =
∞∑
n=1

anL−1[Pn(p(t))](x),

and again, a truncation of the series provides an approximation.

4.2.2 Around the Bromwich integral

The methods which aim at approximating (4.1) often rely on the computation of
Fourier integrals. We present here only two of them (see [1] and [97]) and refer to
[29], chapters 4 and 6, for an exhaustive account of these methods.

We start by considering the original function f , defined on R+. We set, for some
c > 0, such that there are no singularities of L to the right of c (so that (4.1) holds),

h(x) =

{
e−cxf(x) if x ≥ 0

0 if x < 0
,

and, for T > 0 and n even,

gn(x) =

 h(nT + x) if x ∈ [0, T ]
h(nT − x) if x ∈ [−T, 0]

0 otherwise
,

47



while if n is odd,

gn(x) =

 h((n+ 1)T − x) if x ∈ [0, T ]
h((n+ 1)T + x) if x ∈ [−T, 0]

0 otherwise
.

The gn were built so that their Fourier cosine representation is

gn(x) =
1

2
An,0 +

∑
k=1

An,k cos

(
kπx

T

)
,

where

An,k =
2

T

∫ (n+1)T

nT

h(y) cos

(
kπy

T

)
dy.

This leads to
∞∑
n=0

gn(x) =
2

T

[
B0

2
+
∞∑
k=1

Bk cos

(
kπx

T

)]
,

where
Bk =

∫ ∞
0

h(y) cos

(
kπy

T

)
dy.

From this it is possible to recognize the real parts of the complex-valued Laplace
transform of f with t = c+ i(kπ)/T :

∞∑
n=0

ecxgn(x) =
2ecx

T

[
L(c)

2
+
∞∑
k=1

<
(
L

(
c+ i

kπ

T

))
cos

(
kπx

T

)]
, (4.4)

but, moreover, by the definition of the gn and for x ∈ (0, T ),
∞∑
n=0

ecxgn(x) = f(x) +
∞∑
k=1

ecxh(2nT + x) +
∞∑
n=1

ecxh(2nT − x)

= f(x) +
∞∑
k=1

e−2cTn[f(2nT + x) + e2cxf(2nT − x)].

Abate and Dubner ([1]) show that for x ∈ (0, T/2), the second term can be made
arbitrarily small and hence that L(t) can be approximated by (4.4). However, given
the exponential term in this equation, the performance of this method decreases
when x increases. Some enhancements of this procedure can be found in section 4.4
in [29].

The second method we present is based on another type of approximation. We
denote by γ the smallest real part of z ∈ C for which L(z) is convergent. The aim
is to replace the line of integration (c − i∞, c + i∞) by a contour C starting and
ending in the left half-plane, with infinite negative real part. If
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i) C encloses all singularities of L,

ii) |L(z)| → 0 uniformly in <(z) ≤ γ as |z| → ∞,

then (4.1) can be rewritten into

f(x) =
λeσx

2πi

∫
C
eλxtL(λt+ σ)dt, x > 0,

where λ and σ are chosen so that i) holds. It is possible to further specify the
contour: if M is the interval (−π, π) and S is an analytic function such that

a) it has simple poles at ±π and residues there with imaginary parts respectively
positive and negative,

b) it has no singularities in the strip |<(z)| < 2π,

c) it maps M into a valid contour C,

d) it maps the half-strip {z ∈ C,=(z) > 0, |<(z)| < 2π} into the exterior of C,

then
f(x) =

λeσx

2πi

∫
M

eλS(z)xL(λS(z) + σ)S ′(z)dz.

Possible parametrizations for S include

S(z) = z cot(z) + iνz, S(z) = 1 +
2z2

z2 − π2
+ iνz,

where the second stems from the first (the original Talbot contour, see figure 4.2.1)
via truncated partial fraction expansion.

Then, f can be approximated using the trapezoidal rule:

f(x) ≈ fN(x) =
1

2Ni

N−1∑
k=−N

ex(σ+λS(zk)L(σ + λS(zk))S
′(zk)

=
1

N
=

(
N−1∑
k=0

ex(σ+λS(zk)L(σ + λS(zk))S
′(zk)

)
,

where zk = π(2k + 1)/2N .

One pleasant feature of this method is that, as is shown in [29], section 6.2, it is
possible to obtain bounds on the error |f(x)− fN(x)|, which is, however, exponen-
tially increasing in x. An interesting subject is also the optimization of the contour
of integration, an issue discussed in [100] in a multidimensional setting.
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Figure 4.2.1: The original Talbot contour with σ = 0, λ = 2, ν = 0.5 ([100])

4.2.3 Rational approximation

When the Laplace transform is a rational function, then, by partial fraction expan-
sion, it has the form

L(t) =
n∑
k=1

ck
(t− rk)νk

,

and thus,

f(x) =
n∑
k=1

ckx
νkerkx

Γ(νk)
.

Of course, this approach is quite restrictive. If f can be approximated by a function g
depending on a finite number of parameters, for instance, for n ∈ N∗ and parameters
(Ak, αk)k∈{1,...,n},

g(x) =
n∑
k=1

Ake
−αkx, x > 0,

then Longman, in [75] proposed the following procedure. The idea is to minimize
the following quantity

S := S(w, (Ak, αk)k∈{1,...,n}) =

∫ ∞
0

e−wx[f(x)− g(x)]2dx, (4.5)
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where e−wx is some weight function required to ensure convergence. A necessary
condition for S to be a minimum is

∂S

∂Ak
= 0,

∂S

∂αk
= 0, ∀k ∈ [1, n],

which yields, after calculations,

(♦) ∀k ∈ [1, n]


n∑
i=1

Ai
w + αk + αi

= L(w + αk)

n∑
i=1

Ai
(w + αk + αi)2

= −L(w + αk)

,

and further numerical methods are required to solve this system.

However, because of the rapidly decreasing weight function e−wx, the approxi-
mation is often only good near the origin, hence Sidi, in [96], introduced the weight
function xne−wx.

Other approaches in the field of rational approximations are possible using Padé
approximates and their extensions (see section 5.3 in [29]).

4.2.4 Around the Post-Widder formula

Inversion techniques based on (4.2) have a complicated implementation because they
require the computation of high order derivatives. We do not provide any explicit
method here, but we refer to chapter 7 in [29], as well as [4], [42], [98] and [99] (for
convergence results).

4.3 A first naive approximation method

4.3.1 The procedure

Our goal is to approximate the unknown function f via an approximation of L. We
are seeking proxies of L of the form

L(t) ≈
N∑
k=1

ckLk(t) := L(N, t), ∀t ≥ 0. (4.6)

One obvious choice for the determination of the ck would be the minimizing of
(4.5) with any possible relevant weight function. However, this is not possible,
since Longman’s method was tailored for exponential functions, which are the only
functions that can lead to a system of equations of the type (♦). When other
functions are considered, this method is not tractable.

Once the choice of the Lk is made, a naive way to proceed is simply to make sure
that both L and L(N, ·) behave alike in some critical zones.
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The choice of the Lk will be discussed in the next section and in the examples.
When f(0+) > 0, for a given set of points ti with i ∈ {1, , N − 1}, the ck are then
chosen such that

L(N, ti) =
N∑
k=1

ckLk(ti) = L(ti), ∀i ∈ {1, , N − 1}

lim
t→∞

t

N∑
k=1

ckLk(t) = f(0+)

, (4.7)

which amounts to solve a simple N ×N linear system. When the evaluation points
ti are well chosen (a topic discussed in the next subsection), this system is easily
solved by any quantitative software.

If f(0+) = 0, then the Lk can be chosen such that Lk(t) = o(t−1) (t → ∞) for
any k ≥ 1. In this case, the limit part of (4.7) vanishes and the calibration can be
performed on N points instead of N − 1.

Of course, the Lk will be chosen so that they are easily inverted into fk, in order
to yield a simple density approximation

f(x) ≈
N∑
k=1

ckfk(x) := f(N, x). (4.8)

4.3.2 Choosing the points and the parameters

We start by discussing the choice of the ti. There are two major conditions that must
be fulfilled to ensure a good performance of the procedure. First, as the Tauberian
theorems show (as we shall see in the next section), L(N, ·) must behave like L both
near the origin and far from it, hence it should hold that t1 = 0, t2, t3 < 1 and
tN−1, tN > 10. The second condition is that there should be a minimal distance
between the ti (especially for small i) in order to avoid quasi colinear vectors in the
resolution of the linear system.

One a priori fairly logic way to proceed is to consider L as a survival function
and to choose the ti according to quantiles. However, when −L′(0) =∞, this does
not work well because the ti are too close to each other and to 0. A rule that works
in all the cases presented below is to keep at least one third of the ti in (0, 1) and
one third in (5,+∞).

It is also very important that the ck in (4.6) do not increase too much, when
N > 10.

4.3.3 Numerical examples

We test the approximations against known densities. We provide two examples: one
with heavy tail (Lévy distribution) and one with a light tail (one-sided Gaussian).
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For the Gaussian law, we chose Lk(t) = e−akt (and hence Longman’s method would
have worked, but here the algorithm is faster) and for the Lévy distribution,

Lk(t) =
3

4akt
(1− eakt(akt)b(akt+ 3/2)Γ(−3/2, akt)) ⇔ fk(x) =

3
√
akx

4(ak + x)5/2
.

This latter choice was made because it enables a density approximation which is 0
near the origin and behaves like x−3/2 near infinity.

The approximation points belonged to the interval (0, 15) in the Gaussian case
and (0, 7) in the Lévy case. In both cases, the ak ∈ (0, 11/2). The errors of the
approximations are plotted below (Figures 4.3.1 and 4.3.2).
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Figure 4.3.1: Error on the Laplace transform and density for the approximation of a Half-
Gaussian(1) distribution. The caption indicates the corresponding L1 errors

4.3.4 The drawbacks

This simplistic inversion procedure has many flaws, which we now list.

1. f(N, ·) in (4.8) is rarely a density: it can have negative values and most of the

time
∫ ∞

0

f(N, x)dx 6= 1, hence f(N, ·) requires a normalizing factor;

2. it is impossible to know what the error with respect to f is and there is no
obvious way to reduce it. Intuitively, increasing N seems a good idea, but,

53



0 2 4 6 8 10

−
0.

10
−

0.
06

−
0.

02
0.

02

t

La
p(

t)
 −

 L
ap

te
st

1(
t)

Error−Laplace

...

...

...

N=5 / Error= 0.89008
N=8 / Error= 0.89921
N=11 / Error= 0.89208

0 2 4 6 8 10

−
0.

05
0.

00
0.

05
0.

10
x

D
en

s(
x)

 −
 D

en
st

es
t1

(x
)

Error−Densities

...

...

...

N=5 / Error= 0.57530
N=8 / Error= 1.82720
N=11 / Error= 0.25093

Figure 4.3.2: Error on the Laplace transform and density for the approximation of a Lévy(1)
distribution. The caption indicates the corresponding L1 errors

3. as N increases, the ck in (4.6) increase at a power rate, which makes it possible
for f(N, ·) to oscillate from large positive values to large negative values for x
small;

4. the computation of the ck is highly sensitive to the parameters of the Lk and
to the calibration points ti. A small variation in any of those can lead to
completely different proxies.

The methods described in subsections 4.2.1 to 4.2.4 also have their shortcomings.

The Bromwich integral and Talbot methods for instance are pointwise formulae.
They provide an approximation at point x only, and to get f(y) for y 6= x, one must
perform the whole procedure again. This is usually time consuming, especially when
computing integrals.

The rational approximation has at least two flaws: the error on the density is
unknown and it can occur that the target Laplace transform has a positive pole
(after solving the system of equations), in which case the density proxy goes to
infinity as x→ +∞.
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Lastly, it is well-known that the Post-Widder formula converges very slowly. Some
enhancements of the formula (see subsection 4.2.4) perform better (under some con-
ditions, in log(n)/n in [99]), but they still remain pointwise methods.

We are now ready to present a method which was designed to get rid of all of the
weaknesses mentioned above.

4.4 Laplace transform inversion with completely monotone
functions

4.4.1 Some properties of the density

The aim of this subsection is to recall a few classical results which show that many
properties of f can be derived from a thorough study of L.

We begin with some notations. Until the end of the chapter, we will consider two
positive and absolutely continuous random variablesX and Y with densities f and g,
cumulative distribution functions (c.d.f.s) F and G and Laplace transforms L andM
respectively. We also denote by F̄ (x) = 1−F (x) and Ḡ(x) = 1−G(x) their survival
functions. L will be the original Laplace transform and M its approximation.

For a function f = f (0), f (n) will denote its n-th derivative while f (−n) will denote
its n-th antiderivative:

f (−n)(x) =

∫ ∞
x

f (−n+1)(y)dy,

whenever this integral makes sense.

In some asymptotic settings, we will also write f(x) ∼ g(x) for f(x)/g(x)→ 1.

Support

The first basic information that is required to characterize a distribution is its sup-
port.

Theorem 4.2. Let A denote the left point of the support of the positive random
variable X. Then if B is the set of real numbers b such that ebtL(t) = O(1) as
t→∞, we have

A = sup
b∈B

b.

Proof. If A = 0, then, for any x < 0, extL(t)→ 0 (t→ +∞). For x > 0,

extL(t) ≥
∫ x

0

estf(x− s)ds ≥ ηeδtLeb{s ∈ [δ, x], f(x− s) ≥ η} → ∞, t→ +∞,

where Leb is the Lebesgue measure and δ, η > 0 were chosen such that Leb{s ∈
[δ, x], f(x− s) ≥ η} > 0, which is possible, since A = 0. The case A > 0 follows by
direct translation.
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Another way to compute the lower bound of the support of X is in fact to
compute the limit of −L′(t)/L(t) when t → ∞. Indeed, by Hölder’s inequality,
LogL is convex, hence L′/L is increasing. Since it is bounded by zero, it converges
to some negative limit. A simple analysis shows that this limit at infinity is in fact
−A.

In order to find the upper bound of the support of X, we propose a test, based
on the following proposition. Note that it is easy to compute E[X] with the sole
knowledge of L, since E[X] = L′(0).

Proposition 4.1. If the positive random variable X is almost surely bounded by C,
then for any A > 0 and γ ≥ 1,

L(t) ≤ 1− E[Xγ]
1− e−A

Aγ
tγ, ∀t ∈ [0, A/C].

Proof. The proof relies on the inequality

yγ − xγ ≥ e−xyγ − e−yxγ, γ ≥ 1, 0 < x < y.

Then setting x = tX, y = A and applying the expectation operator yields the
result.

Hence, if in the vicinity of 0, L(t) ≥ 1− tE[X](1−e−A)/A, then X is unbounded.
The test usually performs better for A� 1.

In the same spirit, note that Theorem 7(b) in [48] makes it possible to build
another test based on E[Xγ] for γ < 1. Since they depend on the interval [0, A/C],
these results make it even possible to derive bounds for C.

We will henceforth consider distributions which are supported over the whole
positive half-line.

Tail behaviours

This subsection recalls classical Tauberian theorems in probability (see for instance
section XIII.5 in [39]). These results show the strong link that exists between the
behaviour of f near zero and that of L near infinity and vice-versa. The general
form of the de Bruijn exponential Tauberian theorem can be found in [14], Theorem
4.12.9, but we recall below a more peculiar form, derived from Corollary 4.12.6 of
the same monograph.

Theorem 4.3. Let 0 < γ < 1, δ ∈ R, C > 0 and X a positive random variable.
Then,

logE[e−tX ] ∼ −Ctγ(log(t))δ, t→∞,
if and only if

logP [X ≤ x] ∼ −[Cγγ(1− γ)1−γ−δx−γ(− log x)δ]1/(1−γ), x ↓ 0.
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In a series of papers, Nakagawa provides conditions on L to determine whether
a distribution has a heavy or a light tail. We state one of his results below (see [86]
and the references therein). For a complex number z = a+ ib, if L(z) converges for
a > a0 and diverges for a < a0, then a0 is said to be the abscissa of convergence of
L(z).

Theorem 4.4. If a0 is the abscissa of L such that −∞ < a0 < 0 and a0 is a pole
of L, then

lim
x→∞

1

x
logP [X > x] = a0.

When the asymptotic behaviors are not exponential but of power form, we must
resort to Corollary 8.1.7 in [14] and Theorem 2, section XIII.5 in [39], which we
recall below (with l(x) = C log(x)β).

Proposition 4.2. For 0 ≤ α < 1, β ≥ 0 and C > 0, the following are equivalent

1− L(t) ∼ −Ctα log(t)β, t ↓ 0,

1− F (x) ∼ C
log(x)β

xαΓ(1− α)
, x→∞.

Proposition 4.3. For α, β ≥ 0 and C > 0, the following are equivalent

L(t) ∼ C
log(t)β

tα
, t→∞,

F (x) ∼ −C log(x)xα

Γ(1 + α)
, x ↓ 0.

Proposition 4.2 allows to accurately determine the tail of a distribution when it
is very heavy. For other power tail behaviours (when α > 1), we refer to Theorem
8.1.6 in [14].

Lastly, we recall the initial value theorem:

f(0+) = lim
t→∞

tL(t).

Boundedness

It can be very convenient to know whether a distribution has a bounded density. In
order to do so, it is possible to build tests based on the following corollary of the
Post-Widder formula.

Lemma 4.1. A function L, defined on R+ is the Laplace transform of a probability
density bounded by c if and only if L(0) = 1 and

0 ≤ (−1)nL(n)(t) ≤ cn!

tn+1
,

for all n = 0, 1, . . . and t > 0.
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Unimodality

For the sake of completeness, we recall a characterization of unimodal densities, due
to Khinchine [57]. We recall that a positive random variable is said to be unimodal
at point x if its cumulative distribution function is convex on (0, x) and concave on
(x,+∞).

Theorem 4.5. A positive random variable is unimodal at point 0 if and only if its
Laplace transform is representable in the form

L(t) =
1

t

∫ t

0

v(s)ds,

where v is the Laplace transform of a positive random variable.

4.4.2 The approximation method

Introductory remarks

We shall henceforth consider a given positive function L defined on R+, satisfying
L(0) = 1 and

(−1)nL(n)(t) ≥ 0, ∀t > 0, ∀n ≥ 0. (4.9)

Any function for which (4.9) holds is called a complete monotone function. Such
functions have the following well-known property (Theorem 7.11 in [101] for in-
stance)

Theorem 4.6. A function h is completely monotone on R+ if and only if it is the
Laplace transform of a nonnegative finite Borel measure ν, i.e., if and only if

h(x) =

∫ ∞
0

e−xtν(dt).

Therefore, (4.9) and L(0) = 1 are necessary and sufficient conditions for L to be
a probabilistic Laplace transform.

Our approach is essentially error driven: a classical problem which arises after
an approximation is that of the sign of the error induced by the approximation. In
many cases, this sign is not constant, which makes some computations complicated,
if not impossible. Indeed, if one is interested in the L1 error for instance, then∫ ∞

0

|F (x) − G(x)|dx cannot be retrieved from
∣∣∣∣∫ ∞

0

(F (x)−G(x))dx

∣∣∣∣, unless the

sign of F − G does not change. Notice that the choice of cumulative distribution
functions is critical since it can occur that G is dominated by F on R+ while this is
impossible for two densities.

The aim of our method is thus to find G as close to F as possible, satisfying
G(x) ≥ F (x) (or G(x) ≤ F (x)) for all x ≥ 0.
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This property is connected to a notion called stochastic ordering. We will say
that the positive random variable X is less than Y i.u.s.o. (in the usual stochastic
order) if

1− F (x) = P [X ≥ x] ≤ P [Y ≥ x] = 1−G(x), ∀x ≥ 0.

Note that if X is less than Y i.u.s.o., then an integration by parts yields L(t) ≥M(t)
for all t ≥ 0. Sadly, the converse is not always true. A counter-example is given by
the densities f(x) = (1(0,1)(x) + 1(2,3)(x))/2 and g(x) = 1(1,2)(x). In this case, the
c.d.f.s are not ordered, while

L(t) =
1− e−t + e−2t − e−3t

2t
≥ e−t − e−2t

t
= M(t).

In order to make sure thatG(x) ≥ F (x) for all x ≥ 0, we will require an additional
tool: completely monotone functions.

Given L, our aim is thus to find (or build) another Laplace transformM , as close

as possible (in some sense) to L and such that t 7→ L[G(x)−F (x)](t) =
M(t)− L(t)

t
is a completely monotone function. Under these conditions, the error made on the
cumulative distribution functions will have a constant sign.

Practical implementation

We proceed in two steps.

Step 1. The first step is to find M , a rough proxy of L. Inspired by the results of
subsection 4.4.1, we propose families of approximants depending on tail behaviours.

If X is light-tailed, then a relevant tool to work with is the gamma distribu-
tion. Indeed, its tail is light and it allows for any power behaviour near the origin,
including f(0+) > 0. M and G then have the form

M(t) =
ab

(a+ t)b
, G(x) = γ(b, ax)/Γ(b), g(x) =

abxb−1e−ax

Γ(b)
, a, b > 0,

where γ(·, ·) is the lower gamma function.

If X has heavy tails, then the choice of the Pareto distribution seems quite
straightforward when f(0+) > 0. That is,

M(t) = babeattbΓ(−b, at), G(x) = 1− ab

(a+ x)b
, g(x) =

bab

(a+ x)b+1
, a, b > 0,

where Γ(·, ·) is the upper gamma function. In this case, M(t) ∼ ba−1/t, t→∞.

If f(0+) = 0 (and X is heavy-tailed), we propose the following two choices
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◦ if f goes slowly to 0 (x ↓ 0),

M(t) =
b(b− 1)

at
(1−eat(at)b(at+b)Γ(−b, at)), G(x) = 1−ab−1 a+ bx

(a+ x)b
, a > 0, b > 1,

with corresponding density g(x) =
b(b− 1)ab−1x

(a+ x)b+1
, and

◦ if f goes rapidly to 0,

M(t) =
2

Γ(b)
(at)b/2Kb(2

√
at), G(x) =

Γ(b, a/x)

Γ(b)
, g(x) =

abe−a/x

Γ(b)xb+1
, a, b > 0,

where Kν(x) is the modified Bessel function of the second kind with index ν
(see 3.471-9 in [47] for the computation of the Laplace transform). This is a
generalization of both the Lévy and the inverse Chi-square laws, often referred
to as the inverse gamma distribution.

These choices forM were made because they require well-known special functions
and are thus easily computed by any software. Other choices are of course possible.

The purpose of the rough proxy is to mimic as well as possible the behaviour of
L at 0 and/or infinity while satisfying ∓(M−L) is a completely monotonic function.

Step 2. The error made with the rough proxy N(t) = M(t)−L(t) is usually not
satisfactory and requires improvement. The trick is to find a close minorant µ of N
such that (N(t)−µ(t))/t is again a completely monotone function. The implication
is that M − µ is a better approximation of L than M taken alone. The aim of step
2 is to reduce the error of a prior approximation, hence it can be carried out several
times. However, in our examples, we will show that only one iteration of step 2 may
be sufficient to obtain a reasonably small error.

Good candidates for µ are differences of Laplace transforms of stochastically
ordered distributions. Taking, for instance, gamma or 1/2-stable laws yields the
following forms

µ(t) = c

(
aν

(a+ t)ν
− bν

(b+ t)ν

)
, c, ν > 0, a > b > 0, (4.10)

or

µ(t) = c
(
e−
√
at − e−

√
bt
)
, c > 0, b > a > 0. (4.11)

We underline that the choice of a proper µ is crucial as it will enhance the approx-
imation in a very peculiar way. For instance, choosing (4.10) will have a considerable
impact on the tail of the Laplace approximation and thus on the behavior of the
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new c.d.f. near 0; however, on the contrary, µ defined in (4.11) is negligible near
infinity, but it will induce a significant modification of the tail of the approximating
distribution.

Once µ is chosen (this task usually requires a fitting tool from a quantitative
software), the critical point is to check that h(t)/t := (N(t) − µ(t))/t is indeed a
completely monotone function. We recall that for any Cn function h,

(
h(·)
·

)(n)

(t) =
1

tn+1

n∑
i=0

(−1)in!

(n− i)!
tn−ih(n−i)(t) =

h(n)(t)− n
(
h(·)
·

)(n−1)

(t)

t
, (4.12)

which can be proven iteratively.

The function h(t) − th′(t) requires a particular focus since it is associated with
the first derivative (and also with the leading term n! in (4.12)). If the functions
tnh(n)(t) are smooth then some patterns can be identified for n small. If h(·)/· is
indeed completely monotone, then there is a good chance that, in (4.12), the relative
weight of h(n) compared to that of n(h(·)/·)(n−1) will decrease as n increases. The
idea, based on empirical results, is to test whether

dn(t) := −t (h(·)/·)(n)(t)

(h(·)/·)(n−1)(t)
= n− h(n)(t)(

h(·)
·

)(n−1)

(t)

≈ n, ∀t ≥ 0. (4.13)

We provide examples below to illustrate this matter (Figures 4.4.1 and 4.4.2).
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Figure 4.4.1: Graph of dn for various n in two cases (related to the first example below)

Among these four graphs, the two on the right fail the test (not only do the dn
drift away from n, but they exhibit a sign change at some point). The wave shape
in three of the graphs is due to the fact that the function h(t) − th′(t) has a local
minimum away from zero. In this case, the successive derivatives may progressively
(as n increases) hit zero in the vicinity of this local minimum. When there is no
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Figure 4.4.2: Graph of dn for various n in two cases (related to the second example below)

local minimum, our tests have shown that the dn are close to a constant or a slightly
increasing affine function (like on the left graph of Figure 4.4.2).

Error results

We define N = M − L, H = G − F and recall that L[H(x)](t) = N(t)/t is the
Laplace transform of the error on the c.d.f.s. The following proposition provides the
Mellin transform of H, given N , and the Kantorovich distance between X and Y ,
which we define in the following way

K(X, Y ) = sup

{∫ ∞
0

f(x)(F (dx)−G(dx)); f ∈ Lip
}
,

where Lip is the set of 1-Lipschitz functions. Dall’ Aglio proved in [32] that in fact,

K(X, Y ) =

∫ 1

0

|F−1(x)−G−1(x)|dx =

∫ ∞
0

|F (x)−G(x)|dx,

because the support of X and Y is R+.
We recall that in our setting, the functions N and H are either nonnegative or

nonpositive. For simplicity, and without any loss of generality, we consider hence-
forth assume that they are nonnegative.

Proposition 4.4. For 0 < b < 1, whenever these integrals make sense,∫ ∞
0

N(t)

t1+b
dt = Γ(1− b)

∫ ∞
0

xb−1H(x)dx =
Γ(1− b)

b

∫ ∞
0

H
(
x1/b

)
dx.

Moreover,

lim
t↓0

N(t)/t =

∫ ∞
0

H(x)dx = K(X, Y ). (4.14)
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Proof. The first equality is simply Fubini’s theorem combined with the identity∫ ∞
0

e−xtt−bdt = Γ(1− b)xb−1 and a standard change of variable; the second equality

is obvious.

In some cases, it is possible to obtain an upper bound for the Lp quasi-norm of
H for p ∈ (0, 1), using Jensen’s (reversed) inequality.

Lastly, we would like to recall the link between the Kantorovich distance and
the Kolmogorov (uniform) distance sup

x≥0
|F (x) − G(x)|. Intercalating the Lévy and

Prohorov metrics, (using the results from [49] pp. 35-36 and [88] p43), we get

sup
x≥0
|F (x)−G(x)| ≤

(
(1 + c)

∫ ∞
0

|F (x)−G(x)|dx
)1/2

=
√

(1 + c)K(X, Y ),

where c is the maximum value (over R+) of f = F ′, the density of X, if it exists.

4.4.3 Examples

We test our method on two distributions for which a rather simple closed form for
f or F is available. The driving criterion for our approximations will be to get a
finite Kantorovich distance.

A generalized Mittag-Leffler distribution

We follow the notations of [54]. Generalized Mittag-Leffler distributions are a two
parameter family of laws with Laplace transforms

L(t) = (1 + tα)−β, β > 0, 0 < α ≤ 1,

and cumulative distribution function

F (x) =
∞∑
k=0

(−1)kΓ(β + k)xα(β+k)

k!Γ(β)Γ(1 + α(β + k))
.

We will focus on the simple case α = 1/2, and β = 2. First notice that since
Γ(2k+2)

Γ(k+2)(2k)!
= 1

k!
(2− 1/(k + 1)),

∞∑
k=0

Γ(2 + 2k)x(2+2k)/2

(2k)!Γ(1 + (2 + 2k)/2)
= ex(2x− 1) + 1.

Next, the odd integers are dealt with using the infinite series representation of the
error function (8.253-1 in [47])

exerf(
√
x) =

2√
π

∞∑
k=0

2kxk+1/2

(2k + 1)!!
,
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where (2k + 1)!! = 1 · 3 · 5 . . . 2k + 1, and the identity

Γ(2k + 3)

(2k + 1)!Γ(k + 5/2)
= (2k + 2)

2k+2

√
π(2k + 3)!!

,

which yields in the end

F (x) = ex(2x− 1)erfc(
√
x)− 2

√
x/π + 1.

From L(t) = (1 +
√
t)−2, we know that f(0+) = 1 and that f has a heavy tail. We

thus choose the Pareto family with a = n in order to have the proper asymptotic
behaviour for L (t→∞). In fact, the domination condition imposes a, n ≥ 1/2 and
a few tests show that a = n = 1/2 is a relevant choice, yielding

M(t) =

√
tet/2Γ(−1/2, t/2)

2
√

2
, t ≥ 0.

As expected, the approximation is not satisfactory and we must resort to a proper
µ.

We wish to stress the importance of the choice of µ and we will test the perfor-
mance of two functions, namely µ1 and µ2. The first naive choice was to take µ
of the form µ1(t) = c

(
a3/2

(a+t)3/2
− b3/2

(b+t)3/2

)
and an admissible set of parameters was

a = 3, b = 0.05 and c = 0.135. This triple was the result of a fitting algorithm from
a quantitative software.

Nevertheless, this approximation does not allow to compute the Kantorovich error
because it is not good enough near 0. In order to be able to compute (4.14), we
recall the expansion of L at zero (derived from that of (1 + t)−2):

(1 +
√
t)−2 = 1− 2

√
t+ 3t− 4t3/2 +O(t2), t ↓ 0.

Therefore, a strong improvement of the approximation should satisfyM(t)−µ2(t) ∼
1− 2

√
t+O(t), t ↓ 0. By 45:5:2 in[87] combined with 6.5.17 and 7.1.5 in [2],

√
tet/2Γ(−1/2, t/2)

2
√

2
= 1−

√
πtet

2

(
1− erf

(√
t/2
))

= 1−
√
πt/2+t+O(t3/2), t ↓ 0.

Moreover,
e−
√
at = 1−

√
at+

at

2
+O(t3/2), t ↓ 0,

hence we propose µ2(t) = c(e−
√
at − e−

√
bt) with a, b, c satisfying c(

√
a −
√
b) =

−2 +
√
π/2. The triple a = 0.777, b = 20 and c = 0.206 yields promising results

with a Kantorovich distance of approximately 0.02. This figure was computed using
two techniques:
◦ formula (4.14) as well as the series representation of the involved functions near
t ↓ 0 (the expansion of N(t) has one term in t remaining as well as terms with
higher orders). For instance, in our case, the limit in (4.14) is computed using
the term in t in the expansions of L, M and e−

√
a· at zero; the figure is thus

3− 1− 0.206 ∗ (20/2− 0.777/2) ≈ 0.02.

64



◦ numerical integration of the difference of the cumulative distribution functions
on the interval (0, 100).

Of course, in both cases, we have checked (using our dn−based test (4.13)) that
the error h was such that h(t)/t was a completely monotone function.

We provide the graphical results below (Figures 4.4.3 and 4.4.4). M is the Laplace
transform of the Pareto distribution with a = n = 1/2, M1(t) = M(t) − µ1(t) and
M2(t) = M(t)−µ2t). Their c.d.f. counterparts are G, G1 and G2. It is plain on the
graphs that M1 and M2 are quite close, except near zero; this explains why only G2

is a good fit for F for x large (as expected).
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Figure 4.4.3: Graph of L and its proxies for t ∈ (0, 0.02) and t ∈ [0.02, 30]
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Figure 4.4.4: Graph of F and its proxies for x ∈ (0, 2) and x ∈ (2, 100)

A positive stable distribution

Our second example is the one parameter one-sided stable laws with Laplace trans-
form

L(t) = e−t
α

, α ∈ (0, 1).

It is the Laplace transform of an α−stable subordinator taken at time t = 1. The
case α = 1/2 is sometimes referred to as the Lévy distribution, which is connected
with the first passage time of the Brownian motion over fixed levels. The case
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α = 1/3 also has a closed-form density, which is given by (see B.25 in ([79]) for
instance):

f(x) =
K1/3

(√
4/(27x)

)
3πx3/2

, x ≥ 0.

We will thus aim at approximating L(t) = e−t
1/3 . In this case, f(0+) = 0 and f has

a fat tail. Moreover,

L(t) = 1− t1/3 +
t2/3

2
− t/6 +O(t4/3), t ↓ 0. (4.15)

The choice of the inverse gamma family with n = 1/3 seems relevant, as it satisfies
(see 51:6:1 in [87])

M(t) =
2

Γ(1/3)
(at)1/6K1/3(2

√
at) = 1 +

a1/3Γ(−1/3)

Γ(1/3)
t1/3 + 3at/2 +O(t4/3), t ↓ 0.

Hence, for a = −Γ(1/3)3/Γ(−1/3)3, the t1/3 term in the error will vanish (by
(4.15)), but the t2/3 term will remain. This leads to the following choice of µ:

µ(t) = 2c

(
(bt)1/3K2/3(2

√
bt)

Γ(2/3)
−

(dt)1/3K2/3(2
√
dt)

Γ(2/3)

)

= c
Γ(−2/3)

Γ(2/3)

(
b2/3 − d2/3

)
t2/3 + 3c(b− d)t+O(t5/3), t ↓ 0.

Notice that this time, the ordering is in the opposite way: L(t) ≥M(t) for all t ≥ 0.
An admissible set of of parameters is c = 6, b = 0.4 and d = 0.43 which yields a
Kantorovich distance of less than 0.07 (see Figures 4.4.5 and 4.4.6).
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Figure 4.4.5: Graph of L and its proxies for t ∈ (0, 0.02) and t ∈ [0.02, 30]

Of course, in both examples, it is possible to further reduce the error by repeating
step 2 at least one time (using a minorant µ∗ of L−M − µ for instance).
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Figure 4.4.6: Graph of F and its proxies for x ∈ (0, 2) and x ∈ (2, 100)

Remark 4.4.1. We did not study distributions with lighter tails in the examples
because when 1 − F (x) ≤ cx−α, with c > 0 and α > 1 for any large x, then it is
much easier to obtain a finite Kantorovich error, as the original survival function is
already integrable.

Using the exact same procedure as in the second example, it would thus take n−2
iterations of step 2 to obtain an approximation with finite Kantorovich error for the
stable law with Laplace transform equal to e−t1/n . The same holds for generalized
Mittag-Leffler distributions defined by L(t) = (1+ t1/n)−p, for any real p ≥ n. These
assertions are a consequence of the Taylor expansion of L at 0. In the stable case,
when α ∈ (1/2, 1), it is possible to obtain a finite Kantorovich measure by taking
M(t) = e−

√
t and µ such that µ(t) ∼ tα −

√
t when t ↓ 0.

Furthermore, we would like to underline that even though we have assumed (for
simplicity) that the law of X was absolutely continuous, our method remains valid
for most positive laws. It is indeed possible to make do without densities throughout
the whole process. However, it is not clear whether this method can perform well for
some rather unusual distributions, such as those which possess an infinite number
of atoms.

Lastly, the results we provided in subsection 4.4.1 were sufficient to treat both of
our examples; however, many Laplace transforms require more complicated functions
and in such cases, more elaborate proxies should be used, along with the most general
formulations of the Tauberian theorems in [14], section 4.12.
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Chapter 5

Pricing exotic options in the Finite
Moment Log-Stable model

5.1 Introduction

During the XXth century, the financial markets have invented many products which
were very often used for two very different purposes: speculating and hedging risks.
One very large family of such products are called derivatives. They were named
this way because their value depends essentially on that of an underlying asset or
financial rate, e.g. a stock, a currency rate, or an interest rate. Popular families of
derivatives are options. A European Call option enables its holder to buy a specific
stock1 at a future (maturity) date T at some pre-determined price K, the strike of
the option. The (European2) Put option enables its holder to sell the stock at time
T at a pre-determined price of K. Hence, at maturity, because the security gives
the right, but not the obligation to buy or sell, the payoffs of these two options are

pCall = (ST −K)+, pPut = (K − ST )+, (5.1)

where ST is the value of the stock at time T and (x)+ = max(0, x). When the
random part of the payoff of an option depends solely on the terminal value of S,
then this option is said to be "vanilla". If it depends on the whole trajectory of
S up to T (maximum value or average value for instance), the option is said to be
"exotic".

Now, 1d today is not equal to 1d at time T . This is because some institutions
(countries, banks, people . . . ) lend money to other institutions with very limited
default risk. Because of the interests, lending 1d today will generate almost surely
a little more than 1d in the future. We therefore introduce a risk-free rate, which
we will assume constant and equal to r and such that e−rTd today will be worth 1d
at time T .

1Even though the results of this chapter will apply to any type of underlying, we will, for simplicity, consider the
case of derivatives written on stocks

2We will deal only with European options in this chapter and we will henceforth omit this precision in our
notations
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Therefore, when a Call or a Put is issued, its present value is equal to

Call0 = Call = e−rTEP [(ST −K)+] or Put0 = Put = e−rTEP [(K−ST )+], (5.2)

where P is a relevant probability measure. Any option can be bought or sold on a
secondary market and we write Callt and Putt for their value at time t. Buying at
time t ∈ [0, T ) a Call and selling the corresponding Put with strike K and maturity
T yields an almost sure payoff of ST −K at time T . Therefore,

Callt − Putt = St − e−rTK, ∀t ∈ [0, T ],

a formula is which known as the Put-Call parity.
In order to provide a closed-form for the values of the Call and the Put, we need

to provide a particular dynamic for S under P .

The first person who tried to do this was Louis Bachelier, in his 1900 thesis,
Théorie de la spéculation. He assumed independent Gaussian increments for St,
but this could lead to negative prices. A tractable solution was provided more than
seven decades afterwards by Black and Scholes [15] and Merton [83] (the BS-M
model), following the earlier work of Samuelson [93], among others. In order to
introduce this model, we focus on one of the most important concept in Finance:
returns. If St is the value of any underlying at time t, then the relative increase
(or decrease) of S between t and t+ ∆t is (St+∆t − St)/St. This value is called the
return of S between t and t+ ∆t. When working with time-continuous model, it is
preferable to consider log-returns, which are defined by

rt,t+∆t = log(St+∆t/St),

and which are very close to (St+∆t−St)/St when ∆t is small, because of the Taylor
expansion of log(1 + x) at x = 0.

In the BS-M model, the log-returns are assumed to be i.i.d. Gaussian variables.
Consequently, we can write

St = S0e
µt+σBt , (5.3)

where B is a standard Brownian motion. The parameter σ, which is the standard
error of the log-returns of S is called the volatility. The estimation of µ, the average
of the log-returns is a very complicated task. Fortunately, in the option pricing
setting, an elegant and abstract solution consists in the introduction of the risk-
neutral probability P . We do not provide details here, but under mild technical
assumptions (including the absence of arbitrage opportunities), then, under P , µ =
r − σ2/2 for all stocks3. The process Lt = e−rtSt is an Ft-martingale, where Ft is
the natural filtration of the process log(St/S0). The prices of the standard options

3Prices are observed under the historical probability, but, in order to satisfy the condition of no arbitrage
opportunities, an absolutely continuous change of measure is required, which leads to µ = r−σ2/2. See [52], section
2.3.1 for details on the subject
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are then easily computed:

Callt = StN(d1)−Ke−r(T−t)N(d2), (5.4)
Putt = Ke−r(T−t)N(−d2)− StN(−d1), (5.5)

where

d1 =
log(St/K) + (r + σ2/2)(T − t)

σ
√
T − t

, d2 = d1 − σ
√
T − t,

and N is the Gaussian cumulative distribution function.

For the sake of completeness, we provide another hint for the proof of this result.
The dynamics of the underlying can be rewritten in a differential fashion:

dSt
St

= µdt+ σdBt, t > 0.

Using Ito’s lemma, we can show that it is possible to construct a risk-free portfolio
consisting of -1 Callt and ∂Callt/∂St shares of the underlying. If there are no
arbitrage opportunity, then the return of this portfolio must be r. From this, we can
infer the following partial differential equation, due to Black, Scholes and Merton:

∂Callt
∂t

+ rSt
∂Callt
∂St

+
σ2S2

t

2

∂Callt
∂S2

t

= rCallt.

This equation, with the boundary condition

CallT = (ST −K)+

yield the price of the call. We refer to [28], sections 2.2 and 2.3 for the formal proofs.

One feature of the formulae (5.4) and (5.5) is that they have only one free param-
eter: σ. All of the other parameters are either given in the definition of the option
(St, K, T − t), or by the market (r). It can further be shown (see subsection 5.5)
that

∂Call

∂σ
=
∂Put

∂σ
> 0,

for any choice of positive S0, K, T and r. If we denote by CallM(K,T ) the observed
price, on the market, for a call with strike K and maturity T , then there is a unique
value σ∗ of σ such that the price in the BS-M model coincides with the market
price. The value σ∗ is called the implied volatility. According to the BS-M model,
σ∗ should not depend on K. However, it has empirically been shown that σ∗ taken
as a function of K (i.e. observed for several values of CallM(K,T )) exhibits various
shapes, often referred to as "smiles", "smirks" or "skews". More generally, the
mapping (K,T ) 7→ σ∗(K,T ) is called the volatility surface. The fact that it is, in
practice, not completely flat points out one of the limitations of the BS-M model.
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In fact, many empirical observations have shown that this model is too restrictive
(see section 1.1 in [18] for instance) and alternatives have blossomed even before the
seventies. For instance, in the early sixties, Mandelbrot ([80]) had already raised the
question of whether or not stock returns could be modeled by stable distributions.
Scholars and practitioners have published contradicting results on this topic for over
four decades (a non-exhaustive sample is: [41], [3], [72], [55]).

If returns can indeed be modeled by stable laws, then the next logical step is
the pricing of options written on stocks driven by such distributions (i.e. providing
closed-forms for (5.2)). In order to do so, the classical framework is to use exponen-
tials of Lévy processes (hence postulating that returns are i.i.d., regardless of their
time scale). This is quite problematic since the heavy tails of the stable laws imply
infinite prices for standard Call options under these assumptions4. Empirically, one
way to circumvent this inconvenience is to consider options with very short maturity
(see [82]). Unfortunately, this is not satisfactory because in practice, many options
are long-lived (warrants, for instance). A tractable solution was provided by the
Finite Moment Log-Stable (FMLS) model, due to Carr and Lu in [24] (even though
a hint towards this direction was already in [82]).

Their idea is to resort to completely asymmetric stable distributions. In this
case, the left tail remains heavy, but the right tail becomes sub-exponential, thereby
yielding finite option prices. Another way to ensure finite prices is to force the
damping of the tails of the distribution. The result is a wide class of distribution,
known as the tempered-stable (also referred to as CGMY or KoBoL) laws, which
has been extensively studied in Finance ([12], [17], [22], [69] (chapter 12), [89], [92]).

The remainder of chapter 5 is structured as follows. In section 2, we introduce the
model while in section 3 we present our results on exact prices. Section 4 is devoted
to approximative methods (Monte-Carlo mainly), and section 5 is dedicated to the
pricing of vanilla options and to the computation of their sensitivities with respect
to some parameters (greeks).

5.2 Presentation of the model

We start by postulating that the stock value under consideration can be modeled,
under the risk-neutral measure P , as follows

St = S0e
(r−d−σα)t+σX

(α)
t , t ≥ 0, (5.6)

where r and d are the continuous risk-free rate and dividend rate respectively, σ a
strictly positive constant and X(α) a spectrally negative α-stable Lévy process with

4The prices of Put options are finite in any model, since their payoffs are bounded by K. Obviously, when Call
prices are infinite, the Put-Call parity does not hold.
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α ∈ (1, 2) and such that

EP
[
eσX

(α)
t

]
= etσ

α

, t ≥ 0, (5.7)

that is to say, X(α) verifies (3.3) with β = −1 and c = cos(π(α − 2)/2). The
model therefore has two free parameters, α and σ, while the BS-M only has one (the
volatility). For notational convenience, we will henceforth omit the dependence in
P in our notations, since all of our results will hold under the risk-neutral measure.
Compared to [24], we have introduced a scaling factor which further simplifies the
calculations. It is easy to see with (5.7) that E[Snt ] is finite for any n > 0, which
justifies the denomination of the model.

We denote by Ft the natural filtration of the process X(α). Equation (5.7) ensures
that the process Lt = e−(r−d)tSt is an Ft-martingale under P . An important feature
of X(α) is that it has only negative jumps, hence the distribution of the asset’s log-
returns rt,T = log(ST/St) (for T > t) is strongly negatively skewed: its density has
a power decaying tail on the left and an exponentially decaying tail on the right.
Empirically, this can be justified by the fact that stocks usually increase slowly, with
daily positive returns rarely above 5% or 10%, while they can experience massive
daily losses due either to macro-economic shocks or to the publication of unfavorable
stock-specific news or reports.

In their paper [24], Carr and Wu show that the representation (5.6) for the stock
value is able to generate any type of slope for the implied volatility skews observed
in the S&P 500 option market. In order to compute vanilla price options in their
model, they use the method developed by Carr and Madan in [23]. With the help
of this technique, they show that the post-calibration pricing error implied by (5.6)
is never worse (in fact often better) than that of other popular models with 3 to
6 free parameters (for instance, the Merton Jump Diffusion process with stochastic
volatility).

Nowadays, the option market for most stocks with large market capitalization is
very liquid. Hence, the model calibration can be used to price more complicated
options. We will focus on two types of such products. We begin with the lookback
options which have the following payoffs at maturity t = T :

pLC = ST − IT for a Lookback Call, pLP = MT − ST for a Lookback Put, (5.8)

where
IT = inf

0≤t≤T
St, MT = sup

0≤t≤T
St,

which guarantees that the payoffs are almost surely positive. The prices at t = 0 for
these derivatives under the risk-neutral measure are

LC = LC0 = e−rTE[ST − IT ] and LP = LP0 = e−rTE[MT − ST ]. (5.9)

The second family of options is much wider. Barrier options are classical puts and
calls which are activated or killed if a barrier has been hit before the maturity of the
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option. The option is called "In" (resp. ”Out”) if it is activated (resp. killed) upon
hitting the barrier. If the barrier is to be reached from below (resp. above), then
the option is "Up" (resp. ”Down”). For instance, we define the payoff at maturity
of these options in two cases

pUIP = (K − ST )+1{MT>B} for an Up and In Put,

pDOC = (ST −K)+1{IT>B} for a Down and Out Call,

where K is the strike of the option and B its barrier.
The corresponding prices are

UIP = e−rTE[(K − ST )+1{MT>B}], DOC = e−rTE[(ST −K)+1{IT>B}]. (5.10)

It is possible to provide exact formulae for (5.9) and (5.10) in some cases. It is
the purpose of the next section.

5.3 Exact valuation

5.3.1 Pricing lookback options at t = 0 - case r − d = σα

We first deal with the lookback options and start by a simplified case, i.e. when S
is modeled by the exponential of a Lévy process without drift. In this case, some
results are available, both for the running maximum and the running minimum of
the driving Lévy process. The first valuation of Lookback options, in the Black-
Scholes setting, is due to Goldman, Sosin and Gatto in [45]; another reference is
[43]. In the FMLS model, the following holds.

Proposition 5.1. If r − d = σα, then, for T=1,

LP = S0e
−r (E1/α(σ)− eσα

)
, (5.11)

and

LC = S0e
−r
(
eσ

α − α

Γ(1/α)
eσ

α

∫ ∞
σ

e−z
α

dz

)
, (5.12)

where Eα(·) is the Mittag-Leffler function:

Eα(z) =
∞∑
k=0

zk

Γ(1 + αk)
, α > 0. (5.13)

Remark 5.3.1. For α = 2, E1/2(z) = ez
2
(erfc(−z)) (see section 45:14 in [87]). By the

Désiré-André identity, the density of the supremum MB of the Brownian motion Bt

is given by

fMB
t

=
2√
2πt

e−x
2/(2t)1{x≥0}, t > 0,
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and the change of variable z =
√

(x− σt)2/(2t) then leads to∫ ∞
0

2eσx√
2πt

e−x
2/(2t)dx = eσ

2t/2

∫ ∞
0

2√
2πt

e−(x−σt)2/(2t) = eσ
2t/2erfc(−

√
tσ2/2),

hence the results are consistent with the Brownian case, for St = S0e
σ
√

2Bt .

We provide graphs of both prices as functions of α and σ (with S0 = 1, r = σα

and d = 0). The values were computed using Mathematica (NIntegrate function for
the integral and a truncated (above k = 400) version of (5.13).

Figure 5.3.1: Graph of LP for α ∈ (1, 2) and
σ ∈ (0.1, 1)

Figure 5.3.2: Graph of LC for α ∈ (1, 2) and
σ ∈ (0.1, 1)

Notice that for the Lookback Put, the price is increasing, both in α and σ, but
for the Lookback Call, it is almost constant in α. Qualitatively, this difference stems
from the negative jumps which imply that a variation in α has more impact on the
running minimum of S than on its running maximum.

Before proving Proposition 5.1, we recall some basic facts. X(α) is a Lévy process
with absolutely continuous jump measure

ν(dx) =
1{x<0}

Γ(−α)(−x)1+α
dx, (5.14)

so that its Lévy-Khintchine representation is indeed given by

log
(
E
[
eσX

(α)
1

])
=

∫ 0

−∞
(eσx − 1− σx)ν(dx) = σα.

Because its jumps are fully compensated, X(α) is a martingale. The prices (5.9)
require the knowledge of the law of the supremum and infimum of Xα

t , or more
generally of Xα,µ

t = X
(α)
t + µt. Some results in this direction are given in [85], but

they are not exactly what we seek here. We further recall the positivity parameter
of X(α):
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ρ = P
[
X

(α)
t ≥ 0

]
= (1 + (2− α)/α)/2 =

1

α
.

Lastly, we recall some notations: It, Mt are the infimum and supremum of the price
process St while IXt and MX

t are the infimum and supremum of the underlying
Lévy process. X can be X(α), Xα,µ, X̃(α) or X̃α,µ. The two latter processes are
independent copies of X(α), Xα,µ which will be used later on. In our proofs, we will
use the series representation of stable densities extensively. Our main source is [94],
and proofs can be found in [102].

Proof of Proposition 5.1. Because r−d = σα, we only need to considerX(α) (without
any drift). Note that by the self-similarity property of the process, it is sufficient to
work with T = 1. Moreover, the same property yields

P
[
MX(α)

1 ≤ x
]

= P [Tx ≥ 1] = P [(T1)−1/α ≤ x],

henceMX(α)

1 and (T1)−1/α have the same distribution, where Ta = inf
{
t > 0, X

(α)
t > a

}
is the first passage time of X(α) over a fixed level a > 0.

Because X(α) has no positive jumps, then we can apply Theorem 1, section VII
from [11] to get that Ta is a subordinator with characteristic exponent log(E[e−zTa ]) =
−az1/α, thus is an 1/α-subordinator. Equation (5.11) then stems from exercise 29.18
in [94] (see also exercise 6.6 in [68]).

Equation (5.12) is a much deeper result, which is the combination of (2.55) in
[10] and the fact that for any process X, inf

0≤t≤T
Xt = − sup

0≤t≤T
−Xt.

5.3.2 Pricing lookback options for t ∈ (0, T ) - case r − d = σα

The valuation of these products on the secondary market for t ∈ (0, T ) is a more
complicated task. We need to consider an updated model:

St+s = Ste
(r−d−σα)s+σX̃

(α)
s , s ≥ 0, (5.15)

where X̃(α) is an independent α-stable spectrally negative Lévy process (that is, an
independent copy of X(α)). The payoff of the lookback options are given by

pLCt = ST −min(It, It,T ), pLPt = max(Mt,Mt,T )− ST ,

where
It,T = inf

t≤s≤T
St, Mt,T = sup

t≤s≤T
St.

Therefore, under (5.15) and r − d = σα, the prices, at time t, of lookback options
issued at time zero are detailed in the following formulae.
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Theorem 5.1. At time t ∈ (0, T ), when St+s = Ste
σX̃

(α)
s , the lookback prices are

given by,

LCt = Ste
(T−t)(σα−r) − e−r(T−t)

∞∑
n=1

It(log(St/It)/σ)αn−1

Γ(αn− 1)Γ(1− n+ 1/α)(αn− 1)(T − t)n−1/α

+Ste
(T−t)(σα−r)


∞∑
n=1

∫ log(St/It)/σ

0

e−σxxαn−2dx

Γ(αn− 1)Γ(1− n+ 1/α)(T − t)n−1/α
− α

Γ(1/α)

∫ ∞
σ(T−t)1/α

e−z
α

dz

 ,

LPt = e−r(T−t)
αMt

π

∞∑
n=1

(−1)n−1 Γ(n/α + 1) sin(πn/α)(log(Mt/St)/σ)n

n!n(T − t)−n/α
−Ste(T−t)(σα−r)

+e−r(T−t)St

E1/α[σ(T − t)1/α]− α

π

∞∑
n=1

Γ(n/α + 1) sin(πn/α)

∫ log(Mt/St)/σ

0

eσxxn−1dx

n!(T − t)−n/α

 .

Proof. We start by recalling the densities of −IX(α) and MX(α) : for t > 0, x > 0,

P
[
−IX(α)

t ∈ dx
]

dx
=
∞∑
n=1

1

Γ(αn− 1)Γ(1− n+ 1/α)

xαn−2

tn−1/α
, (5.16)

P
[
MX(α)

t ∈ dx
]

dx
=
α

π

∞∑
n=1

(−1)n−1 Γ(n/α + 1)

n!
sin(πn/α)xn−1tn/α. (5.17)

The first identity is simply (2.54) in [10]. For t = 1, the second identity stems from
the first term of (5.11) and equation (2.10.9) from [102]. The self-similarity property
gives the formula for any t > 0.

Then, for the Lookback Call, when (s > t),

E
[
min

(
It, e

σIX̃
(α)

s

)]
=

∫ ∞
0

min(It, Ste
−σx)f−IX̃αs (x)dx

= It

∫ − log(It/St)/σ

0

f−IX̃αs (x)dx+ St

∫ ∞
− log(It/St)/σ

e−σxf−IX̃αs (x)dx,

the first term is computed by integrating term by term (5.16). For the second one,
we use the decomposition∫ ∞
− log(It/St)/σ

e−σxf−IX̃αs (x)dx =

∫ ∞
0

e−σxf−IX̃αs (x)dx−
∫ − log(It/St)/σ

0

e−σxf−IX̃αs (x)dx,
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and, as in Proposition 5.1,∫ ∞
0

e−σxf−IX̃αs (x)dx =
αesσ

α

Γ(1/α)

∫ ∞
σs1/α

e−z
α

dz,

the second integral can be expressed in terms of the upper incomplete gamma func-
tion, but we have chosen to leave it unchanged in the formula.

The formula for the Lookback Put can be obtained using the exact same steps
and the density (5.17).

We underline that when St = It or St = Mt, these results are coherent with the
pricing formulae for t = 0.

5.3.3 Pricing of an Up and In Put - case r = d

Because the computation of the expectations (5.10) requires the knowledge of the
distribution of the couples (ST ,MT ) and (ST , IT ), we are able to provide an exact
result only in a particular case.

We follow Bowie and Carr [16]. They show that under the assumption r = d,
barrier options can be hedged using linear combinations of vanilla options and barrier
Bonds, that is, options with terminal payoffs 1{MT>B}, 1{MT<B}, 1{IT>B} or 1{IT<B}.
Unfortunately, one of their results requires a symmetry formula which is not available
for stable process with α < 2. Moreover, their second family of results depends on
the Put-Call parity upon touching the barrier, therefore, the negative jumps in the
FMLS model make it impossible to value "Down" type options using their methods.
In fact, the only case we can consider is the Up and In Put with K > B. If r = d,
it is shown in [16] that the replicating portfolio consisting of one standard call with
strike K and K − B Up and In Bonds is exactly equivalent to the UIP. If the
barrier is never hit, both their values are zero but if the barrier is hit (continuously,
i.e. without jumps), then, by the classical (vanilla) Put-Call parity, the portfolio is
exactly worth the price of the vanilla put. The payoff of the digital barrier option
is 1{MT>B}, which leads to the following valuation.

Proposition 5.2. If r = d and K > B, the price, at t = 0, of and Up and Im Put
is given by

UIP = e−rT (K −B)P [MT > B] + C(K,T )

= e−rT (K −B)P
[
MXα,µ

T > log(B/S0)/σ
]

+ C(K,T ),
(5.18)

where µ = −σα is the drift of log(ST/S0) and MXα,µ

T = sup
0≤t≤T

{Xα
t + µt}. C(K,T )

is the price (at t = 0) of a vanilla call of strike K and maturity T .
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Of course, under the event (Mt < B), the price at time t < T is easily derived:

UIPt = e−r(T−t)(K −B)

∫ ∞
B

fM̃T−t
(x)dx+ Ct(K,T − t)

= e−r(T−t)(K −B)P
[
M X̃α,µ

T−t > log(B/St)/σ
]

+ Ct(K,T − t), (5.19)

where Ct(K,T−t) is the price, at time t, of a vanilla call with strike K and maturity
T − t. The following Proposition provides a closed form for the probability in the
above formulae. We define Tα,µx = inf{t > 0, Xα

t + µt ≥ x}.

Theorem 5.2. If α is not a rational number, then for any finite t > 0, x > 0, and
µ 6= 0,

P
[
MXα,µ

t ≤ x
]

=
α

π

∞∑
k=1

(−1)k−1 Γ(k/α + 1)

k! k
sin(πk/α) 2F1

(
1− k,−k

α
; 1− k

α
;
µt

x

)
t−k/αxk,

where 2F1 is the hypergeometric function:

2F1(a, b; c; z) =
∞∑
k=0

(a)k(b)k
(c)k

zk

k!
, c /∈ Z\N ∪ {0},

with the Pochhammer symbol (x)k defined by

(x)k =

{
1 if k = 0

x(x+ 1) . . . (x+ n− 1) if k > 0
.

Proof. We keep the same notations as above, withX(α) replaced byXα,µ
t = X

(α)
t +µt.

Because P [MXα,µ

t ≤ x] = P [Tx ≥ t], we will work with the first hitting time Tx of
Xα,µ. Since Xα,µ has no positive jumps, we can use Corollary 3, section VII from
[11]:

P [Tx ∈ dt]
dt

=
x

t

P [Xα,µ
t ∈ dx]

dx
,

and the series representation of the density of Xα,µ which is given by 14.28 and 14.30
in [94], yielding

P [Tx ∈ dt]
dt

=
x

π

∞∑
n=1

(−1)n−1 Γ(n/α + 1)

n!
sin(πn/α)t−n/α−1(x− µt)n−1.

The integration of this function on a finite interval should be handled carefully. The
classical argument, which invokes the normal convergence of the series, does not
hold here (the series is not normally convergent). Instead, we consider the partial
sum

Sk(t) =
k∑

n=1

(−1)n−1x

π

Γ(n/α + 1)

n!
sin(πn/α)t−n/α−1(x− µt)n−1, t > 0,
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which makes sense since the Stirling formula implies that the term Γ(n/α+1)/Γ(n+
1) mitigates any power term cn at infinity (the term of the series is in fact o(n−γ) for
any γ > 1, as n→∞). For 0 < a < b <∞, not only does Sk(t)→ S∞(t) = P [Tx ∈
dt]/dt for any t ∈ [a, b] but |Sk(t)| is also bounded for any k ≥ 1 and t ∈ [a, b].
It is thus possible to apply the Arzela-Osgood theorem (see [78] and the references
therein) in order to integrate Sk(t) term by term and let k →∞.

It can then be shown (using 3.194 in [47], or the properties from subsection 2.1.2
in [9]) that the application

Fn := Fn,α,x,µ : t 7→ αxn−1t−n/α 2F1

(
1− n,−n

α
; 1− n

α
;
µt

x

)
, t > 0,

is one anti-derivative of t 7→ t−n/α−1(x− µt)n−1, which yields

P [Tx ∈ [t, u]] =
x

π

∞∑
n=1

(−1)n−1 Γ(n/α + 1)

n!
sin(πn/α)(Fn(t)− Fn(u)) (5.20)

= Gx(t)−Gx(u), (5.21)

with

Gx : u 7→ x

π

∞∑
n=1

(−1)n−1 Γ(n/α + 1)

n!
sin(πn/α)Fn(u), x, u > 0,

where the series is absolutely convergent for any x, u > 0 because of the asymp-
totics of the Hypergeometric function (see equation (9) from subsection 2.3.2 in [9]).
Equation (5.21) implies that Gx(·) is both bounded (in [0, 1]) and decreasing. We
thus have

lim
u→∞

Gx(u) = P [Tx = +∞] ∈ [0, 1),

which is strictly positive if µ < 0 (Xt → −∞ a.s. when t→∞) and equal to zero if
µ ≥ 0. This can easily be shown when µ > 0 using Wald’s identity on XTx (implying
E[Tx] < ∞ in this case). If µ = 0, then X oscillates (see Th.12, section VI in [11])
and thus touches x at some point in time. Therefore, P [Tx ≥ t] = Gx(t).

Remark 5.3.2. Numerically, the maturity will always be normalized so that T = 1.
The series in the theorem will be truncated beyond k = 200 in which case they
remain valid for x ∈ (0, 6 + αµ) when α =

√
π and for x ∈ (0, 1.5 + αµ) when

α =
√

5/2.

Lastly, for the sake of completeness, we wish to point out that a result exists for
the supremum of a drifted spectrally positive stable process (see [84]). It can be
used to compute P [Iα,µt ≤ x] for x < 0. However, because of the negative jumps,
Xα,µ

T̂−x
6= −x (T̂−x = inf{t > 0, Xt ≤ −x}) and the above reasoning does not apply

for Down and In Calls. Nevertheless, these formulae can be used to (numerically)
compute the prices of the lookback options in the general case.
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5.4 Approximative pricing

5.4.1 Classical Monte-Carlo, first method

Whenever the jump measure of a Lévy process is known, it is possible to simulate
approximative sample paths of this process and hence to generate sample payoffs of
exotic options. Repeating this procedure many times and invoking the law of large
numbers gives a close proxy to the average value of the payoff. This technique is
usually called Monte-Carlo pricing. If the payoffs have a finite variance (which is the
case for all classical exotic options in the FMLS model), the speed of convergence
of this method is σ̂N/

√
N where N is the number of simulations and σ̂N is the

empirical standard error of the N generated random payoffs. The central limit
theorem provides confidence intervals for the average value of the proxy.

The critical issue in the FMLS model is that the underlying Lévy process has
infinite activity: it has an infinite number of very small jumps within any time
interval. For stable processes, the best simulation technique to date was developed
by Asmussen and Rosinski in [6]. If we are aiming at simulating Xα,µ

t = X
(α)
t + µt,

then we should consider the following jump-diffusion process

Xε
t = µεt+ vεBt +

∑
0≤s≤t

∆Xs1|∆Xs|>ε, t > 0, ε ∈ (0, 1), (5.22)

where Bt is a standard Brownian motion. In this representation, the small jumps
have been omitted and the values µε and vε account for the mean and standard error
of this truncation. In our case, because the jumps are fully compensated µε = µ,
and

vε =

(∫ 0

−ε
x2ν(dx)

)1/2

=

(∫ 0

−ε

x2

Γ(−α)(−x)1+α
dx

)1/2

=
ε1−α/2√

Γ(−α)(2− α)
.

Rosinski and Asmussen have shown in the general case that whenever

lim
ε↓0

vε
ε

= lim
ε↓0

(∫ ε

−ε
x2ν(dx)

)1/2

ε
=∞,

then

vε

(∑
0≤s≤t

∆Xs1|∆Xs|≤ε

)
t∈[0,1]

D→ (Wt)t∈[0,1],

where D→ is the convergence in probability in the space of càdlàg functions on [0, 1]
- see [6], section 2 for more details. Note that the latter condition is verified in the
case of stable processes. Hence the truncated jumps can indeed be replaced by a
Brownian component when ε is sufficiently small.

The process defined in (5.22) is decomposed into a drift, a Brownian component
and a compound Poisson process. We measure the maximum of the process at
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the simulation points of the (drifted) Brownian motion and after the jumps of the
compound Poisson process.

In his PhD thesis, Dia, [33], proved the following error bounds, which we have
adapted to our setting. The prices LC, LP and DOP are given by (5.9) and
(5.10) while LCε, LP ε, DOP ε are their approximated counterparts, using the process
defined by (5.22).

Proposition 5.3. For ε ∈ (0, 1/2) and T = 1, the pricing errors satisfy the following
bounds

|LP − LP ε| ≤ S0C max

(
ε2−α, ε1−α/3

√
log(ε−α/3)

)
,

|LC − LCε| ≤ S0C max

(
ε2−α, ε1−3α/8

√
log(ε−α/4)

)
,

|DOP −DOP ε| ≤ S0Cε
1/2−α/6

√
log(ε−α/6),

where C is a generic constant. The last rate, remains valid for any barrier put
option.

We added S0 in the formulae to recall that the error increases linearly with this
variable.

Proof. In the FMLS model, the functions defined by Dia [33] are equal to σ0(ε) =
ε1−α/2, β(ε) = Cεα where C is a generic constant which does not depend on ε.
The error on E[S1] is given by Proposition 4.18 (and the remark subsequent to
Proposition 4.4) and it is equal to Cε2−α. It must be compared with the error on
E[I1] which is smaller than Cε1−α/3

√
log(ε−α/3) (Theorem 4.22 with f(x) = e−x).

Lastly, the error on E[M1] is bounded by Cε1−3α/8
√

log(ε−α/4), see Proposition 4.28
(with p = 2 and θ = 1/2).

The result for barrier options stems from Proposition 5.50 in [33], with ρ = θ =

1/2 and β̃ defined in Proposition 4.29.

These error bounds are quite problematic when α is not close to 1. For instance,
if α = 1.5, and we want to price a Lookback Put, then in order to obtain a 10−2

precision for S0 = C = 1, we must choose ε = 2.10−5, which is very small. This
corresponds to a jump intensity of 3.106, which means that we have to simulate, on
average three million jumps per unit interval.

Thanks to the exact results (5.11) and (5.12), it is possible to test these bounds.
We have performed Monte-Carlo simulations for various values of ε and α, with σ =
0.5 and S0 = 1. In order to be precise, we chose N = 106 so that σ̂N/

√
N ≤ 10−3.

The absolute errors on the prices are provided in the table below. The NA:="Not
Available" cells were not computed, since, for α = 1.5 and ε = 10−4, the simulations
lasted twenty hours. The case α = 1.9 and ε = 10−4 would have required several
days.

There are two main conclusions to be drawn from this table. First, the error
bounds in Proposition 5.3 are not optimal. The convergence is in fact faster. The

82



ε = 10−1 ε = 10−2 ε = 10−3 ε = 10−4 exact value
Lookback Call (α = 1.1) <0.001 -0.002 -0.002 -0.002 0.419

(α = 1.5) +0.001 -0.007 <0.001 +0.02 0.483
(α = 1.9) +0.008 -0.002 +0.002 NA 0.515

Lookback Put (α = 1.1) +0.002 <0.001 +0.001 +0.001 0.066
(α = 1.5) +0.012 +0.010 +0.001 +0.002 0.296
(α = 1.9) +0.033 +0.023 +0.011 NA 0.481

Table 5.1: Absolute errors on lookback prices for various values of ε and α (∆t=0.005, σ = 0.5)

second conclusion is more technical. In order to be able to simulate the sample
paths of the Brownian motion, we chose a time discretization of ∆t=0.005 for the
piecewise constant Euler scheme, that is to say, for i ∈ [1, (∆t)−1] and ti = i∆t,

Bt ≈ B̃ti =
√

∆t
i∑

k=1

Nk, ∀t ∈ [ti, ti+1),

where the Nk are independent normal laws. ∆t = 0.005 represents 200 points per
unit interval. In comparison, the case α = 1.1 and ε = 0.1 implies on average 1.4
jumps per unit interval while the case α = 1.5 and ε = 0.0001 requires on average
more than 280,000 jumps per unit time. Hence, the choice of the time discretization
∆t introduces a bias and should be made in accordance with ε. This is what may
explain why, as ε decreases, the prices of the Lookback Call do not gain accuracy,
except when α = 1.9.

It seems appealing to think that taking vε = 0 would probably have given better
results in some cases. We have thus run the same computations, but without the
Brownian part and the outcome is summarized in the table below.

ε = 10−1 ε = 10−2 ε = 10−3 ε = 10−4

Lookback Call (α = 1.1) -0.006 -0.017 -0.004 -0.001
(α = 1.5) +0.028 +0.003 +0.005 +0.015
(α = 1.9) +0.287 +0.216 +0.173 NA

Lookback Put (α = 1.1) +0.007 +0.006 +0.001 <0.001
(α = 1.5) +0.075 +0.029 +0.005 +0.003
(α = 1.9) +0.321 +0.238 +0.179 NA

Table 5.2: Absolute error on lookback prices for various values of ε and α (σ = 0.5, no Brownian
component)

For α = 1.1, the errors are comparable to the simulations embedding a Brownian
component. However, in the other cases, the error is quite sizable, especially for
α = 1.9. This can be explained by the fact that vε = 0.015 is negligible when
ε = 0.001 and α = 1.1, while vε = 0.95 when α = 1.9. Consequently, it seems
reasonable to keep the Brownian part whenever α ≥ 3/2 and ε ∈ (10−4, 10−1).

83



5.4.2 Classical Monte-Carlo, second method

The second method of Monte Carlo simulation relies on the closeness of stable distri-
bution under convolution. Indeed, if X has an α−stable distribution and X1, . . . , Xn

are n independent copies of it, then

X1 + · · ·+Xn

n1/α

d
= X + dn, (5.23)

for some real number dn.

If we consider the process X(α), then ∀t ≥ 0, E[X
(α)
t ] = 0 and dn = 0 (the

random variable is in fact strictly stable, see [94], Definition 13.1 and Theorem 14.7
(vi)) Because of the independence of its increments, is therefore possible to simulate
Xα,µ using a discrete uniform skeleton ti = i∆t = i/n for i = 0, . . . n with t0 = 0
and tn = T . The approximation X̃α,µ is a piecewise constant process such that
X̃α,µ

0 = Y0 = 0 and{
Yi = Yi−1 + Zα

i /n
1/α, i ∈ [1, n]

X̃α,µ
t = Yi + iµT/n, ∀t ∈ [ti, ti+1), i ∈ [0, n]

, (5.24)

where the Zi are independent and have a completely asymmetric α−distribution
(that is, they have the same law as Xα

1 ).

We use the method of Chambers, Mallows and Stuck [25] to simulate the stable
random variables, that is

Zα =
sin
(
α
(
U + π(2−α)

2α

))
cos(U)1/α

cos
(
U − α

(
U + π(2−α)

2α

))
E

(1−α)/α

, (5.25)

is α−asymmetrically distributed if U is a uniform random variable on [−π/2, π/2]
and E is an independent 1−exponentially distributed variable.

This simulation method has two advantages over the previous one: first, there
is no interference between the simulation of the pure-jump part and that of the
Brownian part; second, the number of simulation points is deterministic.

We provide below some results on the valuation of two barrier options. The first
one is an Up and In Put with S0 = 40, B = 45, K = 50 and T = 1, while the second
one is a Down and Out Call with S0 = 50 and K = 40. In order to compare our
results to those of subsection 5.3.3, we consider the case r = d. The parameters are
σ = 1/2, α = 3/2, and we set r = d = 0. We first put the stress on the effect of n
on the convergence of the price of the barrier from a discretely monitored process
to a quasi-continuously observed process. The number of simulations is N=200,000
in all of the cases.
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Up and In Put (α = 1.5) n = 50 n = 150 n = 500 n = 2000
Average 8.389 8.851 9.145 9.298

Std Error (σ̂N ) 12.795 13.047 13.223 13.154
CPU time (sec.) 5 14 44 174

Down and Out Call (α = 1.5) n = 50 n = 150 n = 500 n = 2000
Average 10.909 10.535 10.345 9.986

Std Error (σ̂N ) 21.953 21.799 21.864 21.453
CPU time (sec.) 5 14 44 174

Table 5.3: MC results on barrier option prices for various values of n

Let us focus on the UIP. Because the simulation is stepwise constant, the actual
behavior of Xα,µ inside the interval (ti, ti+1) is unknown and the supremum of the
process inside this time interval is very likely to be greater thanXα,µ

ti orXα,µ
ti+1

. This is
why, once i = n and the discretization is over, both ST and −IT are underestimated
by such a procedure. As n increases, the range of this underestimation decreases
and the event {S̃T > B} (embedded in the payoff) becomes slightly more likely.
This explains why the price of the UIP increases as n increases. The opposite effect
is of course logical in the case of the DOC.

We wish to underline that formula (5.18) combined to Theorem 5.2 yields a value
of 9.38 for the UIP (with α =

√
2+0.086 ≈ 3/2). This is 0.08 above our mean value

for n = 2000 (we recall that σ̂N/
√
N ≈ 0.03), hence the convergence to a continuous

observation is quite slow.

For α =
√

15/4 ≈ 1.93, the approximative value for the UIP is 11.286 (with the same
parameters and n = 2000), for a theoretical value of 11.892. For α =

√
5/4 ≈ 1.118,

the values are 3.304 versus 3.283. The convergence (as n increases) is thus faster as
α ↓ 1.

In the Lookback put case, a theoretical result is available to characterize this
error induced by the discrete scheme. If we define, for t > 0 and n > 1,

MX(α),n
t = sup

k∈{1,...,n}
X

(α)
kt/n,

then we have the following proposition.

Proposition 5.4. For any ε > 0, as n→∞,

E
[
eM

X(α)

t

]
= E

[
eM

X(α),n
t

]
+O(n−1/α+ε).

Proof. The proof is based on the following result which can be found in the proof of
Proposition 3.9 in [33]:

E
[
MX(α)

t −MX(α),n
t

]
= −t

1/αζ(1− 1/α)E[(X1)+]

n1/α
+ o(n−1/α),
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where ζ is the usual Riemann Zeta function.
The remainder of the proof is simply an application of Lemma 6.3 in [34] with a

large enough β.

We provide empirical evidence of this result. We have computed the absolute

errors E
[
eM

X(α)

t

]
− E

[
eM

X(α),n
t

]
in the following table for σ = 1 and N = 2.106 so

that the error related to the Monte-Carlo simulations is close to 10−3:

n α = 1.2 α = 1.8
100 0.024 0.259
200 0.016 0.176
500 0.008 0.105
1000 0.005 0.078
2000 0.002 0.060

Table 5.4: Absolute errors induced by the discretization scheme

A similar result holds for the Lookback call. However, there are no available
results for barrier options. When the underlying is a drifted Brownian motion, the
continuity correction was obtained in [20] for the drifted Brownian motion and it
was recently found for general jump-diffusion processes in [35]. Note that with the
Euler scheme in the FMLS model, we are able to exactly simulate the increments
of X(α) and hence there is no error due to the discretization on the term E[eσX

(α)
T ].

This is not often the case for general Lévy processes.

Lastly, for the sake of completeness, we recall that the weak error rate for vanilla
options (i.e. which depend only on the terminal value ST ) is given in [91]. The
results in this article in fact encompass stochastic differential equations driven by
Lévy processes, which generalize simple Lévy processes. They aim at providing an
upper bound for

|E[g(XT ]− E[g(Xn
T )]|,

where g is some function such that these integrals make sense and Xn is a discrete
version of X obtained through a Euler scheme.

5.4.3 Wiener-Hopf Monte-Carlo

A recent method, described in [65], also makes it possible to avoid the technical
arbitrage between ∆t and ε of the first method. The idea is to concatenate small
samples of independent trajectories of Xα,µ stopped at an independent exponential
time and to use the Wiener-Hopf factorization (see Chapter 3 for details ). More
precisely, if we consider Ieq and Seq the running infimum and supremum of Xα,µ

stopped at time eq, an independent q−exponentially distributed time, then Xα,µ
eq

d
=

IX
α,µ

eq + MXα,µ

eq . If we define t(q, n) =
n∑
k=1

e(i)
q where the e(i)

q are independent copies
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of eq, then it is formally proved in [65] that(
Xα,µ
t(q,n), S

α,µ
t(q,n)

)
d
= (V (q, n), J(q, n)), (5.26)

where V and J are defined iteratively for n ≥ 1 by

V (q, n) = V (q, n− 1) + I
(n)
eq +M

(n)
eq ,

J(q, n) = max
(
J(q, n− 1), V (q, n− 1) +M

(n)
eq

)
,

where V (q, 0) = J(q, 0) = 0 and M (n)
eq (resp. I(n)

eq ) are independent copies of MXα,µ

eq

(resp. IXα,µ

eq ). This construction is in fact fairly natural as it corresponds to a simple
concatenation of independent trajectories of X.

Invoking the law of large numbers, we then have, for k large enough

E
[
F
(
Xα,µ
t ,MXα,µ

t

)]
≈ 1

k

k∑
m=1

F (V (m)(q, n), J (m)(q, n)),

where V (m)(q, n) and J (m)(q, n) are independent copies of V (q, n) and J(q, n) under
the obvious condition E[t(q, n)] = n/q = t.

Theoretically, this technique seems very appealing. In practice, however, things
are more complicated. This algorithm is only efficient when it is possible to simulate
I

(n)
eq and M

(n)
eq very quickly, which is not the case for stable processes. M

(n)
eq is of

course not the problem, since, by Corollary 2, Chapter VII in [11], it is an exponential
variable with a parameter which is easy to compute. There is, nonetheless, no simple
way to simulate I(n)

eq . One can proceed

◦ either with the acceptance-rejection method; but it requires a companion dis-
tribution with a density that behaves like that of I(n)

eq . This is problematic since
not only does fIXα,µt

go to infinity when x ↓ 0 - this could have been handled
with a gamma distribution -, but the tail of IXα,µ

t is also of polynomial type
(see (5.16) in the Appendix and (2.62 in [10]). There is, to our knowledge, no
easy-to-simulate random variable with such characteristics.

◦ or with the c.d.f. inversion technique, once eq has been drawn. In this case, a
truncation of the series is required and even with an enhanced Newton-Raphson
algorithm, this method is quite lengthy (at least one hundred loops to compute
P [IX

α,µ

t ≤ x] for a single value x. . . ).

◦ in both cases, only the density and c.d.f. of IXα,µ

t is known and only in the
driftless case (µ = 0). The random variable eq must be drawn first. The major
issue is that since we can only work with truncated series, the computation of
(5.16) may explode if just one sample value of t d

= eq is too small.

Even though the Wiener-Hopf Monte Carlo method can prove to be very efficient
when the stopped supremum and infimum are easily simulated, it seems that it is
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in fact less tractable than classical Monte-Carlo techniques in the case of stable
processes.

5.4.4 A word on Quasi Monte-Carlo

In order to increase the speed of convergence of the simulation methods described
above, a popular solution is Quasi-Monte Carlo (QMC) and the use of sequences
with low discrepancy. We refer to chapter 5 in [44] for technical details.

The pricing of exotic options using QMC was investigated in [71] (section 5)
and [50]. Before we discuss our numerical results, we wish to comment on these
references. Once the parameters of the process are fixed, two choices remain: the
number of simulations N and the number of points in the simulation grid (n in
(5.24), τ in [71] and d in [50]). The maximum value for N is 80,000 in [71] and
around 120,000 in [50]. An intuitive property, which is observed in both articles
(see tables 2 in [71] and 5.3 in [50]), is that the competitiveness of QMC methods
decrease as n increases.

In practice, exotic options are discretely monitored. The monitoring can be
monthly, weekly, daily, etc. Therefore, the less frequent the monitoring is, the more
relevant the QMC methods become. We underline that QMC methods require a
priori the knowledge of the number of random variables to be simulated, this is why
it is not suited to techniques relying on jump diffusions or on the rejection method.

Using (5.24) and (5.25), we have computed the price of an Up and In Put with
S0 = 40, B = 45 and K = 50 and of a Down and Out Call with S0 = 50, B = 45
and K = 40. In both cases, we fixed α = 3/2 and σ = 1/2 in order to compare with
the results of the classical Monte-Carlo procedure in Table 5.3. The pseudo random
numbers were generated by a 2n dimension Sobol sequence: the first n numbers
being used for the uniform variable and the last n numbers for the exponential
variable.

We compare MC and QMC methods in the graphs below (figures 5.4.1 and 5.4.2).
For vanilla payoffs, it is well known (see [44], chapter 5) that the convergence

of QMC methods is O(log(N)n/N) while it is O(N−1/2) for MC methods. Figures
5 and 6 in [71] illustrate this feature. However, for path-dependent payoffs, the
competitiveness of QMC versus MC is (much) less obvious. As a rule of thumb, it
seems that the prices are close to stable for N > 50, 000 in the Sobol case, and when
N > 100, 000 for the classical Monte-Carlo method. QMC thus appears slightly
more effective than MC, but requires a few extra seconds of computation.

5.4.5 PIDE methods

Another family of methods for computing barrier option prices in exponential
Lévy models consists in solving Partial Integro-Differential Equations (PIDE). A
short review of these techniques is given in the introduction of [59]. When the small
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Random, n=500
Random, n=150
Random, n=50
Random, n=12
Sobol, n=500
Sobol, n=150
Sobol, n=50
Sobol, n=12

Figure 5.4.1: Graph of the UIP price for n ∈ {12, 50, 150, 500} and N ∈ (5 000, 200 000)
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Random, n=500
Random, n=150
Random, n=50
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Sobol, n=500
Sobol, n=150
Sobol, n=50
Sobol, n=12

Figure 5.4.2: Graph of the DOC price for n ∈ {12, 50, 150, 500} and N ∈ (5 000, 200 000)

jumps are replaced by the Brownian component, Kudryavstev and Levendorskii
show that the error can be quite sizable. In the case of infinite activity, they strongly
recommend not to truncate the small jumps but rather to resort to the Wiener-Hopf
factorization of the underlying Lévy process.

However, these methods do not apply for stable processes, for two reasons:

◦ the Wiener-Hopf factorization for stable processes is very complicated in the
general case (see [62] for instance) and only available in the driftless case. In
the spectrally negative case, the Wiener-Hopf factors are given by Theorem 4,
section VII in [11], but the inverse Lévy-Khintchine exponent Φ is only known
in a completely closed-form for a very limited number of α.

◦ stable processes do not belong to the class of "regular Lévy processes of ex-
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ponential type" (see section 2.3 in [59]) and are therefore not suited to these
techniques.

5.5 Numerical computation of greeks and vanilla prices

We end this chapter with numerical recipes for the computation of the basic tools
of a market operator: the vanilla prices and the greeks.

In [24], Carr and Wu use the method described in [23] to compute vanilla option
prices. It is however possible to make do without the Fast Fourier transform and
simply to use the series representation of the densities instead. Of course, in practice,
one needs to truncate the series and hence, the formulae are only valid for an interval
around zero. Without any loss of generality (by (14.28) in [94], or simply by self-
similarity), we set T = 1. Since the discounting factor and the dividend rate are
not an issue in our model, we further assume r = d = 0. If we define, according to
(14.34), (14.30) and (14.35) from [94],

f(x) =



n∗∑
n=1

(−1)n−1 Γ(nα + 1)

πn!

sin(πn(α− 1))

(−x)αn+1
if x ≤ x∗ < −1

N∗∑
n=1

(−1)n−1 Γ(n/α + 1)

πn!
sin(πn/α)xn−1 if x ∈ (x∗, x

∗)

C1

(x
α

) 2−α
2(α−1)

e−(α−1)( xα)
α/(α−1)

[
1 + C2

(α
x

)α/(α−1)
]

if x ≥ x∗ > 1

,

(5.27)
where

C1 =

√
α− 1

2πα
, C2 =

2α + 1 + 2/α

12(α− 1)
,

then the error on the target stable density is O((−x∗)−α(n∗+1)−1) at point x = x∗

(and any point to the left of x∗) while it is O
(

(x∗)
6−5α
2(α−1) e−(α−1)(x∗/α)α/(α−1)

)
at point

x = x∗ (and any point to the right of x∗). For instance, if N∗ = 400 and n∗ = 8,
then appropriate choices for the couple (x∗, x

∗) are (−7.5, 6.5) if α = 1.8, (−5, 4) if
α = 1.5 and (−2.5, 2.5) if α = 1.2. These values ensure that the discontinuity of f
at points x∗ and x∗ is negligible. If T 6= 1, then one can use (14.28) in [94] and the
couples (x∗, x

∗) are completely different.
The price of vanilla options readily follows. For a Call issued at time t = 0, for

instance,

E[(S1 −K)+] =

∫
R
(S0e

σx−σα −K)+f(x)dx

= S0

∫ ∞
(log(K/S0)+σα)/σ

eσx−σ
α

f(x)dx−K
∫ ∞

(log(K/S0)+σα)/σ

f(x)dx,
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which can be computed very accurately using (5.27). The delta can be derived upon
differentiating this formula:

∂

∂S0

E[(S1 −K)+] =

∫ ∞
(log(K/S0)+σα)/σ

eσx−σ
α

f(x)dx. (5.28)

The gamma follows immediately

∂2

∂S 2
0

E[(S1 −K)+] =
K

σS2
0

f

(
log(K/S0) + σα

σ

)
=

∂2

∂S 2
0

E[(K − S1)+]. (5.29)

The vega is usually the sensitivity with respect to the volatility. In our case, σ is
not a volatility proxy per se, but it is a scaling factor for the stock returns, thus it
makes sense to provide the sensitivity with respect to this parameter. We use the
classical rule for interchanging differentiation and expectation (see chapter 8 in [19]
for instance):

∂

∂σ
E[(S1 −K)+] = S0

∫ ∞
(log(K/S0)+σα)/σ

eσx−σ
α

(x− ασα−1)f(x)dx.

We provide graphs for the delta, gamma and vega of a vanilla Call option, as a
function of S0 for various values of α, namely: α = 1.4, α = 1.7 and α = 2. The
integrals were computed using Mathematica. Under the risk-neutral measure, the
underlying has the following representation{

St = eσX
(α)
t −σαt if α ∈ (1, 2)

St = e
√

2σBt−σ2t if α = 2
.

The parameters are set to σ = 1/2, K = 50, T = 1 and r = 0 (the processes are
martingales). We recall that in the BS-M model (α = 2), the sensitivities (derived
from (5.4)) are

∂

∂S0

E[(ST −K)+] = N

(
log(S0/K) + (r + σ2)T

σ
√

2T

)
= 1 +

∂

∂S0

E[(K − ST )+],

∂2

∂S 2
0

E[(ST −K)+] =
∂2

∂S 2
0

E[(K − ST )+] =

exp

(
−1

2

(
log(S0/K)+(r+σ2)T

σ
√

2T

)2
)

σS0

√
4πT

,

∂

∂σ
E[(ST−K)+] =

∂

∂σ
E[(K−ST )+] = S0

√
T/2π exp

(
−1

2

(
log(S0/K) + (r + σ2)T

σ
√

2T

)2
)
,

where N is the cumulative distribution function of the Gaussian distribution.

The outcome is hard to comment for the vega. For the gamma, a maximum is
reached close to the value K/α and this maximum increases as α decreases. When
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Figure 5.5.1: Graph of the Delta of a vanilla
Call option
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Figure 5.5.2: Graph of the Gamma of a vanilla
Call (or Put) option
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Figure 5.5.3: Graph of the Vega of a vanilla Call option

the underlying is within the interval (20, 60), the delta hedging requires frequent
adjustments when α is small. For S0 ≥ 60, the index α has little impact on both
the delta and the gamma.

Lastly, we wish to underline that another reference for this topic is [56], where
the setting is slightly more general, but the results less explicit.
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