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Abstract

Internet of Things brought great interests in recent years for its attractive appli-
cations and intelligent structure. As a part of the "Internet", the implementation
of sensor networks still presents some important challenges such as interference
rejection and energy cost. The multiple-access-interference (MAI) generated by
other nodes in a sensor network exhibits an impulsive nature. Both the MAI
and the thermal noise should then be considered due to the strong impairments
each may cause on the reception quality at destination nodes. We use stable
distributions to model the MAI, due to their heavy-tail property, and employ
Gaussian distribution to model the thermal noise. Employing the conventional
decoder and receiver will generate significant performance degradation. We first
study the performance of turbo codes in the direct link and we propose the p-
norm as a decoding metric to replace the conventional Euclidean distance metric.
Simulation results show that the p-norm allows a considerable error correction
improvement compared with other alternative metrics such as Euclidean dis-
tance or Huber function, and the performance appears to be close to the optimal
decoder. We then investigate cooperative communications. We consider opti-
mal receiver design and develop an importance sampling approach to perform
the estimation of the optimal receiver in the presence of stable and Gaussian
noises. Such an approximation approach to the optimal receiver is computation-
ally expensive. Hence we also develop several suboptimal linear and non-linear
receivers, including an approximation approach based on the Normal Inverse
Gaussian (NIG) distribution. We demonstrate that the NIG receiver provides
a computationally efficient solution close to the optimal receiver. In addition
we show that the p-norm receiver appears to have robust performance no matter
what kind of noise is dominant. At last we combine the channel coding and coop-
erative communication works to establish a distributed channel coding strategy,
with a mixture of distributed turbo and MRC coding techniques. Through some
simulation assessment, an energy saving strategy can be realized by choosing
an appropriate distributed channel coding scheme based on the direct channel
quality and target bit error rate level.
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Résumé

L’Internet des objets a attiré beaucoup d’attention ces dernières années du fait
du nombre de ses applications et de la structure intelligente. Comme une partie
de l’Internet, la mise en œuvre des réseaux de capteurs soulève encore de nom-
breuses difficultés, comme le rejet des interférences et le coût énergétique. Les
interférences d’accès multiple (MAI) générées par les autres nœuds dans un ré-
seau de capteurs présentent un caractère impulsif. Les MAI et le bruit thermique
doivent être considérés simultanément car ils influencent fortement la qualité de
la réception au niveau des nœuds de la destination. Nous utilisons des distribu-
tions stables pour modéliser les MAI du fait de leur queue lourde, et employons
la distribution gaussienne pour modéliser le bruit thermique. L’utilisation du dé-
codeur et du récepteur classique conduit à une dégradation importante des per-
formances. Dans un premier temps, nous étudions les performances des turbo
codes en lien direct, proposant la norme-p comme une métrique de décodage
pour remplacer la distance euclidienne. Les résultats des simulations montrent
que la norme-p permet une amélioration considérable de correction d’erreur par
rapport à d’autres métriques telles que la fonction de Huber, et sa performance
apparaît être proche du décodeur optimal. Ensuite nous étudions les communica-
tions coopératives, considérant la conception du récepteur optimal et nous déve-
loppons une approche d’échantillonnage importance pour effectuer l’estimation
des performances du récepteur optimal en présence des bruits stable et gaussien.
Une telle approche pour mettre en œuvre le récepteur optimal est coûteuse en
calcul. Nous développons donc également plusieurs réalisations sous-optimales
pour les récepteurs linéaires et non linéaires, y compris une approche basée sur
l’approximation de la distribution stable par la distribution gaussienne inverse
normale (NIG). Nous démontrons que le récepteur NIG fournit une solution de
calcul efficace pour approcher le récepteur optimal. Nous montrons également
que la norme-p a des performances robustes, quel que soit le type de bruit domi-
nant. À la fin nous combinons les travaux du codage canal et des communications
coopératives, établissant une stratégie de codage canal distribué. Une stratégie
d’économie d’énergie peut être mise en place en choisissant un schéma appro-
prié du codage canal distribué, basé sur la qualité du canal direct et le niveau du
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taux d’erreur par bit.
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Introduction

"The concept of Internet of things refers to the transparent connection of ap-
paratuses, sensors, objects, buildings, machines, vehicles, etc. via fixed and
wireless networks". It will play in the near future an essential role in the evolu-
tion of telecommunications, from an economic as well as a sociological perspec-
tive. However many challenges remain before making possible an effective and
widespread use of these sensors and their implementation. Energy and cost con-
straints are critical for the development of economically sustainable applications.
Besides, it appears clear that applications with a strong potential will appeal to
active technologies, meaning they will use objects that are able to spontaneously
transmit and give accurately localized information. Hence it is important that
technological solutions can anticipate the environmental evolution. Particularly,
interference between objects will rise sharply due to the high increase of simul-
taneous transmissions and the unavoidable reduction of transmitted power per
object. It will become a fundamental limitation to the future systems. This Ph.D.
thesis aims at bringing innovating solutions, especially at the physical layer, in
digital communications and signal processing, to better address against such in-
terference.

With respect to network interference, the modelling problem has been raised
in many literatures as an interesting and vital issue [58, 75, 47, 20, 77]. The con-
ventional approach is to model the network interference with Gaussian random
variables. This is true if the interference is accumulated by numerous indepen-
dent and identically distributed (i.i.d.) signals, which leads to a justification
with the central limit theorem. However, many circumstances encountered in
real system are determined to be non-Gaussian, like underwater acoustic sig-
nals, low frequency atmospheric noise, and some man-made noise for instance.
Similarly in dense sensor networks, the multiple-access-interference (MAI) is of-
ten the main contribution to the noise; it presents an impulsive behaviour and is
shown to be non-Gaussian. Significant performance degradation will occur when
applying optimized system under the Gaussian assumption in a non-Gaussian en-
vironment. Thus a more accurate statistics model is needed and considered in
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the first time.
Stable distributions are often evaluated and justified in such environment as

an appropriate model for impulsive interference [77, 58, 38, 73, 50]. As the
tails of the density functions decay less rapidly than in the Gaussian case [58],
stable distribution is proved more suitable for describing signals with sharp but
occasional bursts. In addition, stable law is a generalization of the Gaussian
distribution and the Gaussian and Cauchy distributions are both special cases.
Therefore, stable distributions are employed in this thesis as the network inter-
ference model, and their symmetric sub-family is considered and noted as sym-
metric α-stable (SαS) distribution. One difficulty lies in the interference strength
measurement, because the second-order moment of a SαS variable is infinite
[58, p.22, theorem 3] when α < 2. Some solutions exist and we employ the
geometric power framework proposed in [40] as an alternative measurement.

Sensor networks are composed of several nodes which are scattered ran-
domly and effectuate communications in ad hoc mode without a control cen-
tre. If channel knowledge from such an ad hoc network is not available, the
channel coding technique should be a rather effective and efficient method in
dealing with network interference. Among several channel coding types, the
turbo codes are a powerful and excellent candidate, due to their performance
close to the Shannon limit [8, 80].

In a first step, we investigate the sensor network from a direct link, with a
limited knowledge of the network. Thus turbo codes is firstly considered and
evaluated in an impulsive environment where both the Gaussian noise and SαS
interference are present. BCJR maximum a posteriori (BCJR MAP) algorithm [2]
is employed as decoding method for turbo codes. Since the interference model is
changed, the conventional metric used in the decoding algorithm (Euclidean dis-
tance) is no longer optimal. In fact, the Euclidean distance used in the decoding
algorithm cannot deal with the impulsive interference and gives an unacceptable
decoding performance. The distance metric used in the decoder has to take into
account that the large amplitudes may be impulsive interference samples rather
than highly reliable ones.

However, the difficulty of changing the distance metric in the decoding al-
gorithm lies in the absence of explicit probability density function (PDF) of SαS
distributions, which is necessary to decide the log-likelihood ratio (LLR) decision
statistics. Some decoding metrics have been proposed such as Huber function
[24] or 1-norm metric [21] and used as an alternative distance measurement. A
more direct method is based on the numerical inverse Fourier transform of the
characteristic function of SαS distributions [67], in respect that the characteris-
tic function is the Fourier transform of the PDF. For the sake of finding a more
suitable decoding metric corresponding to SαS model, we propose to use the
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p-norm inspired by the fractional lower order moments (FLOMs) and α-stable
norm. Since the distance between two SαS random variables measures the pth-
order moment of the difference of these two random variables [58], the p-norm
should bring a wide adaptation for all kinds of SαS environments, only if the
condition 0 < p < α is fulfilled. The advantage of the p-norm is that is does not
require to estimate all the noise parameters but only to have a rough idea of the
characteristic exponent α in order to choose a p such that 0 < p < α.

The second part of the works concern cooperative communications and ro-
bustness to interference. Receiver design is an arduous task due to some existing
constraints, as communication impairments resulting from wireless propagation
effects, network interference and thermal noise [77]. We consider a slow-fading
channel for the propagation effects. The channel coefficients are constant for
each time slot and change independently from one time to another. We still
adopt SαS models to capture the effects of network interference. Additional to
and independent from this interference is the thermal noise at the destination,
caused by receiver equipment, which is commonly modelled as a Gaussian dis-
tribution. Hence, the combined noise is captured by the convolution between an
independent, symmetric stable distributed network interference and a Gaussian
thermal noise, the result of which is not in general stable distributed.

We improve the robustness against interference by the cooperation of net-
work nodes, referred to as cooperative communications, the helping nodes serv-
ing as relays. We study a two-hop decode-and-forward relaying scheme: a set
of relays is selected among all possibilities. The selected relays are the ones
with the strongest relay-to-destination channel. When considering optimal re-
ceiver in this context, one faces a challenge for an efficient design due to its
inherent intractability, arising from the convolution between network interfer-
ence and thermal noise. Some proposed receivers [50, 13, 73] give feasible
but complex solutions. We provide several ideas for designing either optimal or
suboptimal receivers which are efficient alternatives, and a global comparison
of the proposed approaches. A careful study of the decision strategy is devel-
oped in a cooperative communication in the presence of non-Gaussian network
interference and Gaussian thermal noise; An original strategy by developing a
Normal Inverse Gaussian (NIG) receiver is proposed. We compare it to a novel
adaptation of the p-norm strategy, noting that the p-norm has already been pro-
posed in other contexts, especially with generalized Gaussian distributions [5].
Performance of these two suboptimal strategies is studied as a function of the
noise-to-interference ratio, comparing with the optimal receiver which is compu-
tationally inefficient but studied through importance sampling approach. Other
conventional receiver design strategies such as linear (Gaussian) receiver, max-
imum ratio combiner [59], Cauchy receiver [38], hole puncher and soft limiter
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[58] are compared as well,
The p-norm approach and the NIG approximation method appear to be at-

tractive solutions. The first one does not require any noise parameter estimation
(at most only a rough estimation of α is sufficient). The second one has flexible
and efficient Moment Matching based closed form solutions for its parameter
estimation. They perform both better than the other conventional receiver ap-
proaches.

Since energy consumption issue is very sensitive to sensor networks, the mas-
sive use of relays will demand a lot of energy cost thus a more intelligent strategy
may be welcome. Based on the study of turbo coding in direct link and coop-
erative communications in the whole network, we proposed a mixture of these
achievements by establishing a distributed channel coding strategy, in the sense
of minimising network energy consumption. The intervention of relay gives sup-
port for the transmission if the source-to-destination link is badly impacted by
the network interference.

Compared with repetition algorithms based on amplify-and-forward relaying
protocols [27], distributed channel coding allows a more flexible distribution of
channel symbols between source and relay nodes. We build some distributed
channel coding schemes, taking idea from the distributed turbo codes [14] and
recursive systematic convolutional (RSC) codes. BCJR MAP decoding algorithm
applied for distributed turbo codes and Viterbi algorithm for RSC codes, a flexi-
ble choice can be made among several schemes based on a bit error rate (BER)
target level, since the transmission of data costs much more energy than decod-
ing operations. Hence the energy saving problem with the reduction of decoding
error in a sensor network is possible and feasible, according to some simulation
demonstrations in this thesis.

The rest of this thesis is organised as follows. Chapter 1 introduces the stable
distribution used as a statistics model for MAI in sensor networks. Parameter es-
timation methods and generation process give a first look of stable distributions.
A demonstration of the stable model for MAI is then provided. Geometric power
framework is discussed and is employed in this thesis as an alternative method
for representing SαS interference strength. Then the statistics model is validated
by some illustrations. In order to show how the stable distribution is applied
in communication works, some receiving strategies with simulation results are
finally presented.

Chapter 2 is devoted to the channel coding study in the direct link of sensor
networks. Turbo codes are introduced with their encoder and decoder struc-
tures. The BCJR MAP decoding algorithm is detailed with LLR calculation proce-
dure. When applying turbo codes in MAI environment, some alternative metrics
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adapted to SαS model are presented such as Huber function metric, numerical-
base PDF calculation approach and p-norm metric. Simulations have been car-
ried out for BER performance comparison of discussed decoder methods in both
stable interference only and stable plus Gaussian noise cases.

Chapter 3 focuses on the cooperative communications. We describe the sys-
tem scenario and state a detection problem, based on which the optimal receiver
in the form of LLR is studied. Then we consider some suboptimal solutions
involving both linear and non-linear approaches. The NIG distribution is in-
troduced and the Method of Moments based approximation is provided, with
analytical solutions after restriction to a symmetric sub-family, but no restriction
required for the kurtosis. We finally compare these receiver design approaches
with simulations, introducing an importance sampling (IS) approach for the op-
timal decision statistics calculation.

Chapter 4 addresses the distributed channel coding technique in coopera-
tive communications. In the sense of minimising energy consumption based on
an expected level of BER in sensor networks, some distributed channel coding
schemes are provided, using distributed turbo codes and RSC codes. The energy
consumption amount for each scheme is then assessed, which leads to a scheme
choice study based on some simulation results.

We finish this report by drawing a general conclusion with some perspectives
stimulated by the works of this thesis.





Chapter 1

Multiple-Access-Interference

environment

In this chapter, we will describe the noise environment and its mathematical
model. Traditionally, digital communication problems are studied under the
Gaussian model. Gaussian assumption is reasonable in a lot of circumstances
and can be justified by the Central Limit Theorem: the noise is considered to
be the sum of numerous independent and identically distributed (i.i.d.) random
variables with finite variance [58]. The most attractive fact is that under the
Gaussian model, many problems can have analytically tractable solutions. For
the decoder or receiver design in wireless networks, if the channel is assumed to
be embedded in an Additive White Gaussian Noise (AWGN), optimal solutions
lead directly to linear approaches, which greatly simplifies the implementation
work.

However, some works have been carried out in non Gaussian environment,
like in dense sensor networks where multiple access interference (MAI) is of-
ten the main contribution to the noise. The MAI presents an impulsive be-
haviour [38], which shows totally different characteristics compared to Gaus-
sian noise. We will introduce stable distributions in the following sections as a
network interference model.

1.1 Interference model

Interference from undesired active users in a network will be a strong limita-
tion in future networks performance. The interference model has been stud-
ied widely in information theory [17, 41, 65, 11]. If the exact capacity is not
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known, some close approximations have been derived. The question on how to
deal with interference is however still an open problem. In this regard a lot of
works on multi-user detectors for instance have been proposed [74] but also,
more recently, some new schemes for interference alignment [11] or amplifying
interference [25] have been considered. However, those works aim at avoiding
the interference and generally require some costly channel learning mechanisms
or synchronization techniques.

An alternative perspective is to consider that a certain amount of interference
will be unavoidable. Under such an assumption, a robust interference model can
allow an effective design of receivers and networks to limit the resulting impact
of such interference, be a powerful tool to study outage probability or connectiv-
ity in networks. For instance several works on stochastic geometry are based on
similar interference models as we present in this thesis [37, 48]. If we consider
κR to be a random variable representing the number of active interferers, in a
rather general framework, the total interference is a random variable expressed
according to Y =

∑κR
k=1Akψk where (ψk)k=1,··· ,N are independent, identically dis-

tributed and bounded random variables with even probability density function
that depends on the physical layer design (see [71, 78, 38] for different exam-
ples). The (Ak)k=1,··· ,N are positive, independent, identically distributed random
variables that depend on the channel characteristics and determine the statistical
properties of the total interference Y .

To proceed, the most intuitive statistical approach would be to consider the
asymptotic behaviour of the distribution of the total interference Y ∼ F (y) and
to determine under what conditions such an interference would belong to the
domain of attraction of a Gaussian family of distributions, denoted DG(F ). Such
an approach involves considering an asymptotic regime where the number of in-
terferers grows to infinity while the contribution of each interferer to Y becomes
infinitesimal. In non-impulsive, non-sub exponential distributional settings, this
would typically result in application of a form of the celebrated Central Limit
Theorem: Y converges in law to a Normal distribution, such that F (y) ∈ DG(F ).
However, in the general case in which impulsive noise is present it is well known
that this asymptotic regime is not easily reached (see for example an in-depth
study in [34] for impulse radio ultra wide band signals). Instead, the domain
of attraction of impulsive noise models from the sub-exponential family, which
are convolved to create the total interference Y ∼ F (y) can belong to the do-
main of attraction of a stable family of distributions, denoted DS(F ), for which
DG(F ) ⊂ DS(F ).

A common requirement for convergence of such a sequence of i.i.d. interfer-
ences to converge to the Gaussian domain of attraction, involves a restriction
on the variance of such summands in the sequence. This is not present in im-



1.2. Stable distribution 3

pulsive noise processes. One could argue that this feature may seem natural
since it represents a channel attenuation, which by its very nature must be finite.
However, the interference which is being modelled is actually compared to the
desired link attenuation and can, in comparison, be "very large" and impulsive in
nature. Such large impulsive realizations of the interference happen infrequently
in practice but are sufficient to give an impulsive nature to interference. To cap-
ture these situations, heavy tailed distributions with infinite variance can be well
suited while models with finite second order will fail to adequately capture such
impulsive attributes observed. The generalized central limit theorem has then to
be used (see [58, p. 22] or [64, p. 9]) and states that interference (for large κR)
falls in the domain of attraction of a random variable with a stable distribution,
F (y) ∈ DS(F ).

A general framework is proposed in [61] and application to cognitive radio
with a modified law (truncated α-stable although the term truncated is slightly
misleading) is presented in [63]. Here the truncation refers to a form of soft
“tempering” of the stable distribution tails, as opposed to a hard threshold. To
prove the validity of the α-stable assumption, the usual solution is to write its
log Characteristic Function (CF) as ϕY (ω) = −σ|ω|α. This can be done in many
situations (users’ repartition, channel conditions, physical layer... refer to [78]
for more details). One strong advantage of this model over other proposed solu-
tions is its theoretical foundations which we derive in the context of interference
modelling from first principles for our domain of modelling, based purely on
simple statistical assumptions on the system.

1.2 Stable distribution

1.2.1 Generalities

The α-stable distributions and variables are a direct generalization of Gaussian’s
and share many of its familiar properties. In particular:

• the convolution stability property, which means that the convolution of two
stable distributions is also stable. In other words the sum of two indepen-
dent stable random variables is also a stable one,

• the central limit theorem, which means that every stable random variable
may be expressed as a limit, in distribution, of a normalized sum of inde-
pendent and identically distributed random variables.

Another aspect that makes these distributions suitable for modelling is the
fact that they are parametric. Indeed they are fully described by four parame-
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ters. Since their discovery by Paul Levy in 1925, a great amount of knowledge
has been accumulated about the theoretical properties of these probability dis-
tributions. On the other hand, they have been found to provide useful models
for various application fields, especially phenomena with large fluctuations and
high variability that are not compatible with the Gaussian models.

Except the Gaussian, the Cauchy and the Levy distributions which are special
cases of the stable class, there is no exact expression of the probability density
function of an α−stable distribution. However we can approximate it through
its characteristic function which is given by:

Φ(θ) =







exp{−σα|θ|α(1− iβsign(θ) tan πα
2
) + iµθ} if α 6= 1

exp{−σ|θ|(1 + iβ
2

π
sign(θ) ln |θ|) + iµθ} if α = 1

(1.1)

where

sign(θ) =











1 if θ > 0

0 if θ = 0

−1 if θ < 0

(1.2)

α, σ, β and µ are the four parameters characterizing the stable distribution1.

• α is called the characteristic exponent (0 < α ≤ 2) : it measures the
thickness of the tail of the distribution. Thus larger is the value of α, less
likely it is to observe values which are far from the central location.

• µ is the location parameter (−∞ < µ < ∞) : for instance, in an observed
sample most of the observations are concentrated about its value. It corre-
sponds to the mean for 1 < α ≤ 2 and to the median for 0 < α ≤ 1

• σ is the dispersion parameter (σ > 0) : it is like the standard error in the
case of a Gaussian distribution.

• β is the index of symmetry (−1 ≤ β ≤ 1) which characterizes the dissym-
metry of the density function about its central location. When β = 1 we say
that the distribution is totally skewed to the right; it is symmetric if β = 0.

1There exist several ways to define the characteristic function of a stable distribution. For
instance the definition of parameter σ can be different. We recommend to be careful on the
definition you use, especially when you share programs or use already implemented toolboxes.
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Figure 1.1 presents the density function obtained for different values of the
parameters α and β and illustrates their effect on the behaviour and the form of
an α-stable distribution.
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Figure 1.1: the probability density function of a stable distribution with µ = 0,
σ = 1 and different values of α and β

Figure 1.2 gives one example of symmetric α stable distribution. Stable laws
with heavier tail are better suited for rare events modelling.

1.2.2 Parameter estimation

Due to the lack of analytical expression for most of the densities of α-stables
variables, it is difficult to provide a simple estimator of its parameters. However
in practical situations, it is very important to estimate these parameters from
an observed sample, especially the index α and the scale parameter σ. Several
methods have been proposed in literature, the most known are: Maximum like-
lihood techniques, the quantiles methods and the characteristic function based
method.

• Maximum likelihood method: DuMouchel [29] was the first to obtain a
Maximum Likelihood (ML) estimate of α and σ (assuming µ = 0). Un-
der some additional assumptions on α̂ and the likelihood function which



6 CHAPTER 1. Multiple-Access-Interference environment

Figure 1.2: Comparison of probability density function for symmetric α stable
distribution (α=1.5) and the Gaussian case (α=2)

was approximated by multinomial’s, DuMouchel has shown the obtained
estimates to be consistent and asymptotically normal. Another direct ML
estimation was introduced by Brorsen and Yang [12]. It should be noted
that ML techniques are asymptotically efficient but difficult to compute.

• Quantiles method: Fama and Roll [31] provided estimates for parameters
of symmetric (β = 0, µ = 0) stable laws with 1 < α ≤ 2. Firstly, they
have given an approximation of the parameter σ by using the properties of
sample quantiles of a symmetric α-stable variable. Secondly, the parameter
α is estimated by using the tail property of an α-stable distribution. Fama
and Roll’s method is simple but suffers from a small asymptotic bias in
α̂ and σ̂ and theoretical restrictions on α and β. In order to overcome
this problem, McCulloch [54] generalized and improved this method. He
provided a consistent estimator of all the four parameters, when 0.6 ≤ α ≤
2, while retaining the computational simplicity of Fama and Roll’s method.

• Regression-type method: Koutrouvelis [49] presented a regression-type
method to estimate the four parameters. It is based on the following ob-
servations concerning the characteristic function φ(t) given in (1.1). First,
from (1.1), it is easily seen that:

log(log |φ(t)|2) = log(2σα) + α log(|t|)

This last equation depends only on α and σ. We can then estimate these
parameters by regressing yk = log(log |φ(tk)|2) on wk = log(|tk|) in the
model:

yk = m+ αwk, and k = 1, 2, ..., K
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where tk = πk
25

, m = log(2σα) and K is an appropriate integer chosen
between 9 and 134. On the other hand, from (1.1) we can derive the
following equation:

arctan

(

Im(φ(t))

Re(φ(t))

)

= µ.t+ βσαsign(θ) tan(
πα

2
)|t|α.

Then we can estimate β and µ by regressing zl = arctan
(

Im(φ(ul))
Re(φ(ul))

)

on ul

and sign(ul)|ul|α in the model:

zl = µ.ul + βσα.sign(ul) tan
πα

2
)|ul|α, and l = 1, ..., L

where ul = πl
50

and L is an appropriate integer ranging between 9 and 70.
For further details about these techniques see [49].

Many works have dealt with the performance of these three estimation tech-
niques [76, 9]. It was shown that the regression-type method is a little better
than both quantile methods (Fama-Roll’s and McCulloch’s) when α is close to 2.
This can be explained by the small size of the tail when the population distri-
bution approaches the Gaussian; quantile methods, especially McCulloch’s, are
slightly better for 0.6 ≤ α ≤ 1.0. However it cannot be used to estimate α when
it is below 0.6. Finally, the characteristic function based method is easy to com-
pute and appears to be more accurate if no parameter is a priori known. Besides,
in contrast to the other techniques, it does not suppose any condition on the the-
oretical values of the parameters. However, when α is less than 1, the estimation
looses accuracy.

1.2.3 Generation

Chambers, Mallows and Stuck [19] proposed an accurate and inexpensive al-
gorithm for simulating stable random variables for any α, (0 < α ≤ 2) and β,
(−1 ≤ β ≤ 1). It is based on a non-linear transformation of two independent
uniform random variables into on stable random variable.

Consider that we want to generate a random sample X from the standard
(α, β) stable distribution, with 0 < α ≤ 2 and −1 ≤ β ≤ 1. Define:

βA = β, γA = π/2 (1.3)
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And, if α 6= 1, define:

k(α) = 1− |1− α| (1.4)

βA = 2 ∗ arctan (β/ cot (πα/2)) / (πk (α)) (1.5)

γB = cos (πβAk (α) /2) (1.6)

Φ0 = −0.5πβA (k (α) /α) (1.7)

Furthermore, define:

β ′ =

{

− tan (0.5π (1− α)) tan (αΦ0) α 6= 1

βA α = 1
(1.8)

Then, Y = X/γ
1
α

B has the following characteristic function:

φY (t) =

{

exp
(

− |t|α − jt
(

1− |t|α−1) β ′ tan (0.5απ)
)

α 6= 1

exp
(

− |t|
(

1 + 2
π
jβ ′ log |t| sign (t)

))

α = 1
(1.9)

We can now generate the random variable Y as follows: we first generate
two independent samples Φ and W , where Φ is uniform on (−π

2
, π
2
) and W is

exponentially distributed with unit mean. We then calculate the following quan-
tities:

ǫ = 1− α (1.10)

τ = −ǫ tan (αΦ0) (1.11)

a = tan (0.5Φ) (1.12)

B =
tan (0.5ǫΦ)

0.5ǫΦ
(1.13)

b = tan (0.5ǫΦ) (1.14)

z =
cos (ǫΦ)− tan (αΦ0) sin (ǫΦ)

W cos (Φ)
(1.15)

d =
z
ǫ
α − 1

ǫ
. (1.16)
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Then,

Y =
2 (a− b) (1 + ab)− ΦτB (b (1− a2)− 2a)

((1− a2) (1 + b2))
(1 + ǫd) + τd. (1.17)

1.3 Demonstration of the stable model for MAI

We consider the characteristic function:

φY (ω) = E
[

ejwY
]

, (1.18)

where Y is the interference term, which can be in a very general way written as

Y =

κ
∑

i=1

γiψi. (1.19)

κ is the number of interferers, γi is the channel attenuation and ψi depends
on the system characteristics and can be defined differently to represent several
physical layers. In the following calculations, we consider the simple channel
γi = da but it can be extended to other more complex channels (see for instance
[78]).

We use the demonstration proposed by Sousa [71]. We define a circle C of
radius R and denote by κ the number of interferers present in C. We compute
the characteristic function of Y but we first restrict the sum in (1.19) to the
users included in C. We then make R tends towards infinity. We suppose that
the number of active interferers follow a Poisson field process, which means that
the probability of the number of active interferers in C is given by:

P (κ = k) =
e−λπR

2
(λπR2)

k

k!
(1.20)

λ is the expected number of interferer per unit area which is linked to the density
of the network.
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We can then write:

φY (ω) = E

[

ejω(
∑κ
i=1 γiψi)

]

= lim
R→+∞

+∞
∑

k=0

P (κ = k)E
[

ejωγψ
]k

= lim
R→+∞

+∞
∑

k=0

e−λπR
2
(λπR2)

k

k!
E
[

ejωγψ
]k

= lim
R→+∞

e−λπR
2
+∞
∑

k=0

(

λπR2
E
[

ejωγψ
])k

k!

= lim
R→+∞

e−λπR
2

eλπR
2E[ejωγψ].

(1.21)

We take the logarithm of φY :

ϕY (ω) = ln (φY )

= lim
R→+∞

λπR2
(

E
[

ejωγψ
]

− 1
)

.
(1.22)

The expectation is taken over the two random variables γ and ψ. In a first
step we will calculate the expectation over γ for a given R. The distribution of γ
is derived in appendix A.

E
[

ejωγψ
]

=

∫ +∞

R−
a
2

E
[

ejωγψ |γ = x
]

fγ(x)dx

=

∫ +∞

R−
a
2

φψ (ωx)
4x−

4
a
−1

aR2
dx.

(1.23)

Integrating (1.23) by parts we obtain:

E
[

ejωγψ
]

=

[

− 1

R2
x−

4
aφψ (ωx)

]+∞

R−
a
2

+
1

R2

∫ +∞

R−
a
2

ω
dφψ
dx

(ωx)x−
4
adx

= φψ
(

ωR− a
2

)

+
1

R2

∫ +∞

ωR−
a
2

dφψ
du

(u)
(u

ω

)− 4
a

du.

(1.24)
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We can then use (1.24) in (1.22):

ϕY (ω) = lim
R→+∞

λπR2

(

φψ
(

ωR− a
2

)

+
1

R2

∫ +∞

ωR−
a
2

dφψ
du

(u)
(u

ω

)− 4
a

du− 1

)

= lim
R→+∞

λπR2
(

φψ
(

ωR− a
2

)

− 1
)

+ lim
R→+∞

(

λπω
4
a

∫ +∞

ωR−
a
2

dφψ
du

(u)u−
4
adu

)

= lim
R→+∞

λπR2
(

φψ
(

ωR− a
2

)

− 1
)

+ λπω
4
a

∫ +∞

0

dφψ
du

(u)u−
4
adu.

(1.25)

We show in appendix B that limR→+∞ λπR2
(

φψ
(

ωR− a
2

)

− 1
)

= 0. As a con-
sequence, only the second term remains. We show its existence in appendix C.
If ψ has a spherically symmetric probability density function, we can then write
φψ (ω) as φψ0 (‖ω‖), where ‖.‖ is the Euclidean norm. Finally we can write:

ϕY (ω) = λπ ‖ω‖ 4
a

∫ +∞

0

d.φψ0

du
(u)u−

4
adu (1.26)

In (1.26), the integral does not depend on ω and we can finally write:

ϕY (ω) = −σ ‖ω‖ 4
a . (1.27)

With

σ = −λπ
∫ +∞

0

dφψ0

du
(u)u−

4
adu, (1.28)

equation (1.27) is the log-characteristic function for the spherically symmetric
stable distribution of exponent α = 4

a
. A similar result is obtained in different

channel contexts and for other systems [60, 77, 71].

1.4 Power solution for heavy-tailed process

1.4.1 Strength of stable variables

To evaluate the performance of communication equipment, we usually illustrate
bit error rate (BER) in terms of signal-to-noise ratio (SNR). However, in the case
of stable laws with α < 2, the usual arithmetic power, which is a second order
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moment, is infinite. We then have to find alternative solutions to represent the
interference strength and the ratio between useful signal and noise strengths.

Knowing that in the Gaussian noise model, the inverse of the dispersion (1/γ)
is proportional to the SNR, Souryal [70] used 1/γ to compare the decoding per-
formance. Chitre [21] employed N0 = 4γ2/α in order to indicate the dependence
of α. All these methods are to avoid infinity of second-order power resulting
from the heavy tailed distribution. Two other proposed solutions are based on
the Fractional Lower Order Moments (FLOMs) [58, 68] and the zero-order statis-
tics [40].

Let X be an α-stable random variable (RV) with zero location parameter and
dispersion γ. We want to evaluate the strength of X.

With FLOMs solution

The FLOM of order p (0 < p < α) is given by E [|X|p]. For an α-stable RV, we
have:

E [|Xα|p] = C (p, α) γ(
p
α), (1.29)

where

C (p, α) =
2p+1Γ

(

p+1
2

)

Γ
(

− p
α

)

α
√
πΓ
(

−p
2

) , (1.30)

depends only on α and p, not on Xα. Γ(.) is the gamma function defined as

Γ(x) =

∫ ∞

0

tx−1e−tdt.

With geometric power defined in zero-order statistics

We can define the geometric power as:

S(X) = exp (E [log |X|]) . (1.31)

For an α-stable random process, the geometric power can be expressed as

S(X) =
(Cgγ)

1/α

Cg
, (1.32)
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where Cg ≈ 1.78 is the exponential of the Euler constant. This expression
presents the advantage that it exits for whatever the value of α. It has also
the properties of a scale parameter and can be used as an indicator of the power
strength.

We have the following properties:

• Scale parameter:

1. S(X) ≥ 0

2. S(cX) = |c|S(X)

• Strength indicator:

1. S(c) = |c|,
2. 0 ≤ c1 < |X| < c2 implies c1 < S(X) < c2,

3. S(X) = 0 if and only if P(|X| < ǫ) > 0 for all ǫ > 0.

• Multiplicativity: For any pair of logarithmic-order random variables X and
Y and any real constant c,

1. S(XY ) = S(X)S(Y ),

2. S(X/Y ) = S(X)/S(Y ),

3. S(Xc) = S(X)c.

• Absolute value inequality: For any pair of logarithmic-order random vari-
ables X and Y and any real constant c,

1. S(|X|+ |Y |) ≥ S(X) + S(Y ).

It is rather easy to estimate the geometric power. If x1, x2, . . . , xN is a se-
quence of independent samples generated from a distribution with geometric
power S, by taking into account that S exists and is finite, the estimation of
geometric power results from

Ŝ(X) = exp

(

1

N

N
∑

i=1

log |xi|
)

, (1.33)

which is a consistent estimator of S(X).
One difficulty with the geometric power is however that it is not linear. The

power of a sum is not the sum of powers which makes things a bit unusual. The
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problem of non linearity also exists with FLOMs and we replace the correlation
with the co-variation, which is a classical tool for stable distributions [58].

The geometric signal-to-noise ratio (GSNR) can be defined accordingly in the
stable context as:

GSNR =
1

2Cg

(

A

S(X)

)2

, (1.34)

where A is the signal amplitude. The geometric definitions ensure that in the
Gaussian case (α = 2), the GSNR corresponds to the standard SNR.

1.4.2 Strength illustrations for stable variables

We provide some illustrations for stable RVs strength representation. In Figure
1.3, the signal strength (in dB) of stable RVs are compared between the FLOMs
solution and geometric power framework, as a function of stable dispersion γ.
We notice that the signal strength using FLOMs raises less rapidly than that using
geometric power definition. Some stable signals generated using different α and
γ combinations are shown in Figure 1.3 as well. We can see that the value of α
controls the impulsiveness of the stable signal while γ reflects rather the signal
strength.

As a result, we have the following comparison. We try to generate stable RVs
under the same power each defined in FLOMs and geometric manner respec-
tively, by changing the value of α (the impulsiveness of interference). Hence the
dispersion parameter γ has to be changed according to (1.29) and (1.32). The
results are illustrated in Figure 1.4 and 1.5.
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Figure 1.3: Stable RV strength comparison using FLOMs and geometric power as
a function of stable dispersion γ, and some illustrations of stable RVs for different
α and γ combinations.
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Figure 1.4: Illustration of stable RVs with the same power for 1000 samples
using FLOMs.
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Figure 1.5: Illustration of stable RVs with the same power for 1000 samples

using geometric power.

We observe that the signal are more similar when we use geometric power
than FLOMs (same power for different α). Though this is not our main concern
in this work, we will choose geometric power framework for the representation
of SNR.

1.5 Illustration of the model validity

We consider an IR-UWB system and an ad hoc configuration to illustrate the
validity of stable model. The receiver output Zd is:

Zd =

∫ NSTS

0

N
∑

k=0

(

S(k)(t) ∗ h(k)(t) + n(t)
)

m(t)dt, (1.35)
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where ∗ stands for convolution, h(k) is the channel impulse response and n(t) is
the thermal noise, circularly symmetric white and Gaussian, Ns is the number
of times a bit is repeated to form a symbol, Ts is the frame duration (one pulse
per frame), N is the number of interferences, m(t) is the reference template at
the receiver that forms the correlator. Links are short and line-of-sight (LOS) so
that we consider to receive a strong LOS path. Consequently, we only consider
single path channels. This of course is not very realistic but it allows to check
the validity of the theoretical parameters we derived in [38].

Channel attenuation is based on hypothesis from section 1.1: γi ∝ d−a/2 and
we take NS = 1. A summary of parameters used in simulation is presented in
table 1.1.

Parameter Value
Frame duration Ts 10ns
Pulse duration Tm 0.3ns

PPM delay ǫ 0.3ns
du 1m

Table 1.1: Impulse radio system parameters used in simulation.

Neglecting the near field for reasons explained in section 1.1, we can show
(see section 1.3) that the log-characteristic function can be written as:

ϕZ (ω) =
N̄q

R2
|ω| 4a

∫ +∞

0

dφψ
du

(u)u−
4
adu

=
N̄q

R2
|ω| 4aF, (1.36)

where φψ(ω) is the characteristic function of ψ(ω) (defined in (1.23)). The value
F is independent of ω so that Z is a symmetric α-stable random variable with
parameters α = 4/a and σ = −

(

N̄q/R2
)

F (the two remaining parameters are
zero). Since ψ has finite moments, the integral to calculate F exists when a is
larger than 2, which is the case in most of the situations.

To evaluate σ, we need to calculate F in (1.36). It can be analytically ob-
tained when ωp(t) is a rectangular pulse that is why the comparison between
simulations and theory is made with this pulse shape (although it is not a prac-
tical one). The characteristic function of ψ is φψ (ω) =

sin(ω)
ω

. Then F is given by:

F =
2−1− 4

a

√
πΓ
(

−2
a

)

Γ
(

1
2
+ 2

a

) − 2−2− 4
a

√
πΓ
(

−2
a

)

Γ
(

3
2
+ 2

a

) (1.37)
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Finally, in (1.38), Pe is calculated using numerical integration:

Pe =

∫ +∞

−∞
P

(

Z < −x
∣

∣

∣
a
(0)
0 = 0, Zn

)

fX(x)dx (1.38)

Because Z is an α-stable random variable, we do not have an expression of its

probability density function. To solve this difficulty and obtain P

(

Z < −x
∣

∣

∣
a
(0)
0 = 0, Zn

)

,

we simulate the random variable Z and use a non parametric estimate of its prob-
ability density function. In Figure 1.6 we represent several situations (different
values of the attenuation coefficient a, the mean number of users per unit area
λ and the size of the considered zone R). We show a good fit between the semi-
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Figure 1.6: Comparison between semi-analytical and simulated BER in different
situations with a rectangular pulse. The signal to noise ratio is the ratio be-
tween the useful signal power and the thermal noise power at the receiver, not
including the multiple access noise.

analytical BER and the simulated system for the rectangular pulse. However, this
fit is not always perfect and some errors can sometimes be noticed. In such cases
we adjust the dispersion of the distribution and obtain an accurate fit between
the curves. Similar behaviour are obtained with other pulse shapes but the dis-
persion has to be estimated because we do not have an analytical expression for
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F .

For a rectangular shape, the parameters of MAI distribution are analytically
derived and the good fit validates the theoretical study. Similar results are ob-
tained if we increase the number of repetitions. The impact of strong interferers,
which generate a heavy tailed distribution, is well captured by the α-stable dis-
tributions when other distributions with finite second order moments generally
fail to do so. For instance, Generalized Gaussian distributions are well fitted for
time hopping [33] but does not represent as well the ad hoc configuration [39].

The simulated BER with a near field assumption of 10 cm is also depicted
in Figure 1.6 (top-right scheme). This value is much larger than the true near
field area if a 60 GHz transmission is considered but the impact remains very
small although the useful link is only ten times longer. In some cases (bottom
schemes is Figure 1.6) the Monte Carlo simulations and the theoretical curves do
not fit so well but a slight modification of the dispersion parameter can correct
the misadjustment.

1.6 Some receiver strategies

1.6.1 Problem formulation

The mathematical model is the following hypothesis testing problem:

{

H0 : x(k)=s0(k) + ng(k) + nα(k), k = 1, 2, . . . , N

H1 : x(k)=s1(k) + ng(k) + nα(k), k = 1, 2, . . . , N
(1.39)

where si(.), i = 0, 1, is one of the two possible transmitted signals, nα(.) is a re-
alization of a sequence of N i.i.d. zero-mean symmetric α-stable (SαS) random
variables of characteristic exponent α (0 < α ≤ 2) and dispersion γ, and ng(.) is
a realization of a sequence of N i.i.d. zero-mean Gaussian random variables with
variance σ2. Furthermore, the Gaussian and the impulsive noises are indepen-
dent of each other and of the signal. The SαS random variable with zero-mean
is defined through its characteristics function

φnα(ω) = exp(−γ |ω|α) (1.40)

The characteristic function of the total additive noise is:

φX(ω) = exp(−γ |ω|α − σ2

2
ω2) (1.41)
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The density function is given by the inverse-Fourier transform of the charac-
teristic function:

fX(x) =
1

π

∫ +∞

0

φX(ω) cos (xt) dt. (1.42)

A numerical integration can be used to evaluate fX(x).

1.6.2 Optimum receiver

To decide between the two hypothesis H0 andH1, the optimum (in the maximum
likelihood sense) receiver computes the test statistic:

Λ =

N
∑

k=1

log

{

fX(x(k)− s1(k))

fX(x(k)− s0(k))

}

, (1.43)

and compares it to a present threshold η. When Λ ≥ η, the receiver decides that
s1(.) was sent, otherwise that s0(.) was sent.

For large N , from the central limit theorem, the authors in [73, 1] assume
that Λ has a Gaussian distribution and for equiprobable signalling, the probabil-
ity of error is given by:

Pe = erfc

(

µ0
√

2σ2
0

)

, (1.44)

where erfc(.) is the complementary error function, µ0 the mean and σ2
0 the vari-

ance of Λ given that s0 was sent. We have:

µ0 =
N
∑

k=1

∫ +∞

−∞
fX (ξ − s0(k)) log

{

fX (ξ − s1(k))

fX (ξ − s0(k))

}

dξ, (1.45)

σ2
0 =

N
∑

k=1

∫ +∞

−∞
fX (ξ − s0(k)) log

2

{

fX (ξ − s1(k))

fX (ξ − s0(k))

}

dξ − µ2
0

N
, (1.46)

As explained in [73], the expression for the probability of error is only asymp-
totically valid, i.e. they hold true only when the length N of the data sequence is
large enough for the true distribution of the test statistic to be well approximated
by a Gaussian distribution. However, it is not guaranteed that for a high number
N of data samples, the asymptotic expressions for the probability of error will
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always be valid because of sensitivity of the probability of error to the far tails
of the pdf of the test statistic for which the Gaussian pdf provides only a poor
approximation. A better estimate of the probability of error of the receiver can
be obtained by performing extensive Monte Carlo simulations.

It is rather straightforward to draw samples from a stable law [86, 58]. How-
ever, the fact that rare events have a major impact on the performance results,
a large numbers of samples have to be simulated. It is out of the scope of the
thesis but strategies to fasten the procedure would be welcome.

1.6.3 Optimal performance evaluation

To test the normality assumption, we apply the Kolmogorov-Smirnov test at the
5% significance level for 10000 samples drawn from the log-likelihood ratio Λ for
different values of the signal to noise ratio and the repetition parameter N . A
sample of our results for α = 1.5 and γ = 0.3 are shown in Figure 1.7 to 1.10. We
see, as the SNR grows that the number of samples N necessary for the Gaussian
approximation to be accepted gets larger. The same pattern holds for different
values of the parameters α and γ.
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Figure 1.7: Kolmogorov-Smirnov tests for Gaussianity α = 1.5 and γ = 0.3,
SNR=−5 dB.

The Kolmogorov-Smirnov goodness of fit test statistic Dn is drawn in Figure
1.11 and is given by Dn = supx∈ |Fn(x) − F (x)|, where Fn(x) is the empirical
cumulative distribution function of the log-likelihood ratio Λ and F (x) is the
cumulative Gaussian distribution function. Whenever Dn is greater than the
critical value of the test, the Null hypothesis that Λ has a normal distribution is
rejected.

We confirm in Figure 1.11 that the number N necessary for the Gaussian hy-
pothesis to be valid gets larger when the Gaussian noise becomes weaker. At
classical SNR levels (5 to 10 dB), we see that N has to be very large, which
will not necessary be true. However we can further wonder if, although not
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Figure 1.8: Kolmogorov-Smirnov tests for Gaussianity α = 1.5 and γ = 0.3,
SNR=0 dB.
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Figure 1.9: Kolmogorov-Smirnov tests for Gaussianity α = 1.5 and γ = 0.3,
SNR=5 dB.
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Figure 1.10: Kolmogorov-Smirnov tests for Gaussianity α = 1.5 and γ = 0.3,
SNR=10 dB.
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Figure 1.11: Kolmogorov-Smirnov goodness of fit test statistic Dn for α = 1.5
and γ = 0.3.

validated by KS test, the Gaussian approximation will not give a sufficiently ac-
curate result for the error probability estimation. As a consequence we compute
the probability of error of our optimal receiver in two ways, by using the Nor-
mality assumption and by extensive Monte Carlo simulations. The simulations
are done with a number of samples large enough to ensure 1000 errors per data
samples. In the implementation the data are generated from the α-stable gener-
ator proposed by [19]. Next, because of the lack of a closed form expression for
the general SαS density, we use an extensive numerical integration to compute
the density function from the characteristic function based on Fourier transform.
The results confirm in another way that the Normality assumption is far from
being a reasonable approximation of the log-likelihood ratio Λ. We present in
Figure 1.12 to 1.15 the probabilities of error for α = 1.5 and γ = 0.05, 0.3, 0.5.
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Figure 1.12: Error probability for α = 1.5 and γ = 0.05, 5 repetitions.
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Figure 1.13: Error probability for α = 1.5 and γ = 0.3, 5 repetitions.
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Figure 1.14: Error probability for α = 1.5 and γ = 0.5, 5 repetitions.
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Figure 1.15: Error probability for α = 1.5 and γ = 0.5, 10 repetitions.
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1.6.4 Suboptimal strategies

Classical receivers consider that the received signal is mixed with a Gaussian
noise and are not optimal in our situation. In IR-UWB system, Fiorina [33] mod-
els the MAI with a generalized Gaussian distribution to derive the maximum
likelihood matched filter. Beaulieu [4] assumes that the signal is immersed in a
mixture of Laplacian and Gaussian noise. It outperforms the receiver based on
the Gaussian assumption. Considering the impulsive nature of the MAI, Erseghe
[30] has suggested Gaussian mixtures for the interference to derive the optimal
receiver. Performance improves when compared to the Gaussian receiver and the
cost of implementation remains weak. This approach is also found for detection
when the additive noise is α-stable [50]. Tsihrintzis and Nikias in [73] studied
the performance of optimal and suboptimal (including the Cauchy) receivers in
such a noise. Those receivers are non linear solutions and a linear solution is
proposed in [46]. A non parametric rank-based solution is studied in [13] and
suboptimal parametric solutions are presented in [87]. Ambike et al. [1] have
also tested a hole puncher and a soft limiter receivers in a mixture of Gaussian
and α-stable noises. All proposed approaches are compromises between perfor-
mance and complexity and an overview can be found in [6].

We have chosen to test the non linear Cauchy receiver, meaning the receiver
obtained when we consider that a Cauchy noise is added to the information bear-
ing signal. This receiver was found to perform closely to the optimum receiver
for a wide range of characteristic exponent α [73]. It was also shown by Fried-
mann et al. in [36] that the maximum likelihood estimator of a deterministic
signal derived for a Cauchy noise achieves good performance when the noise is
symmetric α-stable, even when α is not equal to one. The definition of the op-
timal receiver is however a difficult task and is not included in the scope of this
thesis. Indeed, the noise is not an α-stable noise but a mixture of three different
noises: the α-stable multiple access interference, the Gaussian thermal noise and
the multipath interference. The resulting noise distribution is then very difficult
to obtain.

Let a(0)0 be the source bit from the desired user. We consider that the corre-
lation function ψ0 in (1.26) is equal to 1 if ∆0 = 0 (meaning a perfect synchro-
nization and a

(0)
0 = 0) and to −1 if ∆0 = ǫ (meaning a perfect synchronization

and a
(0)
0 = 1). For the desired user, the received samples are then, after the

correlation receiver: x(0)0 (j) = d
− a

2
u (−1)a

(0)
0 + nα(j) where index j indicates the

repetitions (j = 1, . . . , NS). Sequence {nα(j)}j=1,...,NS
is a realization of NS inde-

pendent, identically distributed symmetric α-stable random variables. Distance
du is the useful link length. The optimum (in the maximum likelihood sense)
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test statistic Λ is:

Λ =

NS
∑

j=1

log







fα

[

x
(0)
0 (j)− d

− a
2

u

]

fα

[

x
(0)
0 (j) + d

− a
2

u

]







, (1.47)

where fα(u) is the probability density function of nα and the sign of Λ gives
the estimated signal. As already mentioned, the main difficulty is that fα(u)
has not an explicit form for most of α values. Fortunately, fα is known for
α = 2, the Gaussian case, and α = 1 where nα is a Cauchy random variable
(fα(u) = σ/ (π [u2 + σ2])). Our objective is to propose a receiver able to cope with
impulsive noise. The Cauchy receiver, resulting from our analysis on the MAI,
is then the first solution that comes to mind. By Cauchy receiver, we mean the
receiver that employs Λ derived from (1.47) under the assumption that α = 1.
The Gaussian receiver uses the assumption that α = 2.

We have also implemented receivers based on the metric induced by the co-
variation norm ‖.‖α (see for instance [64, p. 95]). From a practical point of view,
this norm is linked to the Lp norm, with p < α, by the equality:

‖X‖α = Cα(p)(E|X|p) 1
p ; (1.48)

the constant Cα(p) depends only on α and p and is given by (see for instance
[58, p. 32]):

Cα(p) =

(

α
√
πΓ(−p

2
)

2p+1Γ(1+p
2
)Γ(− p

α
)

)
1
p

. (1.49)

This suggests an empirical estimation of this metric by:

‖X − Y ‖α = Cα(p)

(

1

NS

NS
∑

j=1

|xj − yj|p
)

1
p

, (1.50)

where p < α. Two ideas lie behind this metric. First, if Euclidean distance is
a logical estimation of standard deviation when Gaussian noise is considered,
the proposed solution is adapted to SαS distributions since it estimates its scale
parameter. Choosing an adapted distance seems then rather logical. The sec-
ond aspect is that we do not want to give too much weight for the decision
to large values because they are mixed with an important noise sample. The
Euclidean distance is poorly adapted in that sense and we prefer using the co-
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variation norm. Beaulieu et al. proposed a similar solution in [5] that is an
optimal solution for generalized Gaussian interference. We however did not use
their estimation procedure for p which is not consistent with our approach. It
is based on second and higher order moments which are not defined for stable
distributions.

Finally, to get an idea of an optimal solution, we have implemented a genie-
aided receiver: in the simulation we extract the exact noise samples and use a
kernel type non parametric estimation of the noise distribution (a Gaussian ker-
nel is considered). We then use this distribution to calculate the log-likelihood
function. This distribution is calculated on each packet that we have taken rather
short (50 source bits repeated 4 times) to avoid too much computation complex-
ity.

1.6.5 Simulation results

We have considered two scenarios. The first one uses a Gaussian channel so that
only Gaussian noise and multiple access interference play a role. The second
one includes an important multipath impact. Figure 1.16 presents the BER as a
function of the mean number of users λ. On the left graph, with no multipath,
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Figure 1.16: BER as a function of the mean number of users for different re-
ceivers and two different scenarios. The SNR per pulse after the correlation
receiver is 10dB. The radius of the area is R = 30m.

we clearly see the improvement brought by the Cauchy receiver, the number of
errors being reduced by a factor 10. The proposed metric is also an attractive
solution when p takes small values. For p = 0.5, the proposed metric gives similar
results to the Cauchy receiver. The genie-aided receiver exhibits of course better
performance. It is not clear how close to this optimal curve we can get.
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We have also simulated an ad hoc network situation but with a multipath
channel. We have chosen the residential model proposed by the IEEE 802.15.4a
[55, 56]. The useful link is in Line Of Sight (LOS) while the interfering links can
be either LOS or non LOS with probability 0.5. The global power attenuation is
d−a and an additional shadowing factor of 0.5 is used for non LOS users. Each
object uses the same transmit power. The improvement due to the Cauchy re-
ceiver is reduced but still significant. The conclusion on the use of the proposed
metric are similar to the previous case. The optimal solution offers a further gain
but the much more difficult transmission conditions make the benefit smaller.

An appropriate solution for an indoor ad hoc networks, eventually at 60 GHz,
would be to use directive antennas and links with a LOS path. The resulting
conditions would then be in between the two considered scenarios, the impor-
tance of multipath depending on the antenna directivity and the environment.
The benefits resulting from the proposed metric or the Cauchy receiver would
then be significant. Taking the impulsive nature of the interference into account
is important and the stable model can certainly bring an accurate general math-
ematical framework [78].

1.7 Conclusion

In this chapter, we investigated multiple-access-interference occurred in sensor
networks. Due to its impulsive behaviour, the conventional Gaussian model is
no longer valid. Stable distributions were introduced and proved as an accu-
rate model to represent impulsive interference like MAI. The parameters of sta-
ble distributions were introduced with estimation approaches, and one of their
generation methods was provided. Then a demonstration was offered to show
how the stable distribution applies for MAI. One difficulty for the stable distri-
bution is the fact that the second-order moments of stable variables are infinite,
thus alternative methods such as FLOMs and geometric power framework were
introduced and compared, in order to estimate the strength of stable random
variables. Then geometric signal-to-noise ratio was proposed accordingly. An
example of an IR-UWB system with an ad hoc configuration was utilised to il-
lustrate the validity of stable model. Another difficulty lies in the non-existence
of probability density function for stable distributions, which brings some novel
challenges in the receiver design. We took some optimal and suboptimal receiver
strategies, for example, to show how to carry out the receiver strategies with the
stable model. More solutions of addressing stable-modelled interference in dif-
ferent communication works can be found in the following chapters.
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Chapter 2

Channel coding study in direct link

We firstly investigate the robustness in sensors networks in the context of point-
to-point communications by the means of channel coding. Turbo codes are em-
ployed for their strong error correcting performance and wide use in the practi-
cal communication systems. As a type of error correcting code, turbo codes were
firstly presented in the International Conference on Communications at Geneva in
Switzerland in 1993, based on the work of Claude Berrou, Alain Glavieux and
Punya Thitimajshima [8, 7]. The error correcting performance of turbo codes
can be close to the theoretical limit predicted by Shannon with acceptable de-
coding complexity. The codes are typically built from two recursive systematic

convolutional (RSC) encoders linked together by an interleaver. Generally, the
same RSC encoder is used to generate two constituent parity codes, and we use
this general model in this thesis.

2.1 Turbo code principle

2.1.1 Turbo encoder

A conventional turbo encoder consists of two RSC encoders, which are connected
with a random interleaver. If necessary, a puncture block is linked at the output
of encoders to increase the code rate. The turbo encoder structure is shown in
Figure 2.1:

Each RSC encoder generates a systematic code and a convolutional code with
code rate Rc = 1/2. As the two encoders export the same systematic code as
the input sequence m, the overall turbo code is composed of one systematic
and two coded sequences as c = (m, c1, c2), giving a code rate Rc = 1/3. In
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Interleaver

Recursive Systematic

Convolutional encoder

Recursive Systematic

Convolutional encoder

Input bits dk
Systematic bits xs

Parity bits x1p

Parity bits x2p

Figure 2.1: Turbo encoder structure

order to improve the code rate, the puncturing technique is sometimes used by
eliminating alternatively parity bit from two encoders, which reduces the code
redundancy but at the price of a loss in Bit Error Rate (BER) performance [15].

2.1.2 Turbo decoder

Turbo decoder involves iterative exchange of information between two constituent
decoders. For this reason, these codes get their name "turbo". The decoder struc-
ture is shown in Figure 2.2. Each decoder accepts in turns signals from the

Interleaver

Deinterleaver

Decoder 1 Decoder 2

Interleaver

ys

y1p

y2p

Le
12 Le

21

Figure 2.2: Turbo decoder structure

channel, which corresponds to the systematic and parity codes, as well as the
extrinsic information from the other constituent decoder, which is regarded as a

priori information about the decoded bit. The a priori information is a kind of
soft output which measures the probability that each decoding bit should be one
predefined bit value. In a bipolar signal processing system, if we use the log-
likelihood ratio (LLR) form to express the output, it is more convenient to have a
soft decision. The sign of the output indicates the decoded bit "0" or "1", and the
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magnitude provides the probability that this bit is a "0" or an "1". The BCJR MAP
algorithm involves this soft output form and we use it as our decoding algorithm.

2.2 The BCJR MAP algorithm for decoding of turbo

codes

2.2.1 The BCJR MAP decoding algorithm

The BCJR MAP algorithm was firstly proposed by Bahl, Cocke, Jelinek and Raviv
[2], for estimating the a posteriori probabilities of the states and transitions of
a Markov source observed in memoryless noise. Despite of its complexity com-
pared with the Viterbi decoding algorithm, the BCJR MAP algorithm shows more
efficient error-correcting performance when it is involved in an iterative decod-
ing scheme [57]. Unlike the Viterbi decoding method, the BCJR MAP algorithm
provides simultaneously the estimated sequence and the probability of decision
for each decoded bit. In the following, the decoding procedure is described in
terms of LLR. The utilization of LLR allows the cancellation of constant terms on
both the numerator and the denominator, thus a simple implementation can be
performed.

Given a received sequence y and the transmitted bit (dk = ±1), the BCJR
MAP algorithm calculates a posteriori probabilities for each time instant k, com-
posing two possible probability products into a ratio form:

L(dk|y) = ln

[

P (dk = +1|y)
P (dk = −1|y)

]

. (2.1)

For equal-probability inputs, (2.1) can be reformed by introducing the Bayes’
rule as shown in appendix D:

L(dk|y) = ln

[

P (dk = +1,y)

P (dk = −1,y)

]

. (2.2)

It is more convenient to transmit the signal in bipolar form in the channel. If
the source symbol is "0" and "1", we can make the correspondence for that −1 in
the channel represents 0 in the source and +1 in the channel represents 1 in the
source. The LLR provides both a hard decision for each decoded bit by its sign
(+ for +1 and − for −1) and a soft "likelihood" by its magnitude, which indicates
the reliability of this decision.
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2.2.2 LLR decoding structure

Generally, the signal estimation for turbo codes is done over the transitions of
trellis with which the input bit is associated. At time instant k, the input dk is
the bit that gave rise to the transition from the previous state Sk−1 = s′ to the
present one Sk = s in the decoding trellis. Then the LLR (2.2) can be expressed
as:

L(dk|y) = ln





∑

(s′,s)⇒

dk=+1
P (Sk−1 = s′, Sk = s,y)

∑

(s′,s)⇒

dk=−1
P (Sk−1 = s′, Sk = s,y)



 . (2.3)

The transition (s′, s) ⇒dk = +1 represents all the transitions which are caused by
the input bit dk = +1, the same correspondence is true for the input bit dk = −1.

We can decompose the probability P (Sk−1 = s′, Sk = s,y) (for brevity pur-
pose, Sk−1 = s′ and Sk = s is represented as s′ and s respectively in the following
description) into the product of three terms:

P (s′, s,y) = P ({yk, s}|s′)P (s′,yj<k)P (yj>k|s). (2.4)

These three terms are denoted as:

γk(s
′, s) = P ({yk, s}|s′), (2.5)

αk−1(s
′) = P (s′,yj<k), (2.6)

βk(s) = P (yj>k|s) (2.7)

where the term γk(s
′, s) = P ({yk, s}|s′) is the branch transition probability, which

indicates the probability that knowing the previous state s′, the received message
is yk at the present state s.

The state decomposition can be illustrated in the decoding trellis as

Once the values of γk(s′, s) are known, the remaining coefficients αk−1(s
′)

and βk(s) can be calculated over the decoding trellis by iteration as a function of
γk(s

′, s), using forward and backward recursions respectively.

For k = 0, 1, 2, . . . , n, the definition of αk−1(s
′) allows to calculate αk(s) as:

αk(s) = P (s,yj<k+1) = P (s,yj<k, yk). (2.8)
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Sk-1 Sk Sk-2Sk-2

s

s'

yk yj>kyj<k
αk-1(s') βk(s)γk(s',s)

Figure 2.3: Turbo decoding trellis with 3 bit constraint length

Then from State 0 to State S − 1 in the instant k, we have

αk(s) =

S−1
∑

s′=0

P (s′, s,yj<k, yk)

=

S−1
∑

s′=0

P (s′,yj<k)P ({s, yk}|{s′,yj<k})

=

S−1
∑

s′=0

P (s′,yj<k)P ({s, yk}|s′)

=

S−1
∑

s′=0

αk−1(s
′)γk(s

′, s).

(2.9)

The initial conditions for k = 0 are defined as α0(0) = 1 and α0(s) = 0, s 6= 0.

In an inverse way for k = 1, 2, . . . , n, the definition of βk(s) allows to calculate
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βk−1(s
′) as:

βk−1(s
′) =

S−1
∑

s=0

P ({s,yj>k−1}|s′)

=

S−1
∑

s=0

P ({s, yk,yj>k}|s′)

=
S−1
∑

s=0

P ({s, yk}|s′)P (yj>k|{s′, s, yk})

=
S−1
∑

s=0

γk(s
′, s)βk(s).

(2.10)

The termination conditions for k = n are defined as

• βn(0) = 1 and βn(s) = 0, s 6= 0, if the trellis is terminated (the trellis starts
and ends in zero state);

• βn(s) = 1, ∀s, if the trellis is not terminated.

For the calculation of γk(s′, s), we sum up over the input alphabet Ax:

γk(s
′, s) =

∑

Ax

P ({X = xk, yk, s}|s′)

=
∑

Ax

P (X = xk|{yk, s′, s})P ({yk, s}|s′)

=
∑

Ax

P (X = xk|{s′, s})P (s|s′)P (yk|{s′, s})

=
∑

Ax

pk(X|{s′, s})qk(s|s′)P (yk|xk).

(2.11)

The detailed calculation of term γk(s
′, s) will be provided in Section 2.2.3.

Finally, the MAP LLR can be obtained by combining these probability terms:

L(dk|y) = ln





∑

(s′,s)⇒

dk=+1
γk(s

′, s)αk−1(s
′)βk(s)

∑

(s′,s)⇒

dk=−1
γk(s′, s)αk−1(s′)βk(s)



 . (2.12)
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2.2.3 LLR calculation

As shown in (2.9) and (2.10), αk−1(s
′) and βk(s) terms are determined as func-

tions of γk(s′, s). Hence the branch transition probability γk(s′, s) = P ({yk, s}|s′)
is the pivotal one and should be calculated first. It can be written using the
Bayes’ rule as shown in appendix D as:

γk(s
′, s) = P ({yk, s}|s′)

= P (yk|{s′, s})P (s′|s)
= P (yk|{s′, s})P (dk).

(2.13)

where dk is the input bit which cause the transition from state s′ to state s, and
P (dk) is the a priori probability of this bit.

The LLR for bit dk is firstly established to help later calculation. It is the
natural logarithm of the quotient between the probabilities that the bit is "+1"
and "-1":

L(dk) = ln

[

P (dk = +1)

P (dk = −1)

]

. (2.14)

As P (dk = +1) = 1− P (dk = −1), then

exp (L(dk)) =
P (dk = +1)

1− P (dk = +1)
. (2.15)

Hence

P (dk = +1) =
exp (L(dk))

1 + exp (L(dk))
=

1

1 + exp (−L(dk))
(2.16)

P (dk = −1) =
exp (−L(dk))

1 + exp (−L(dk))
=

1

1 + exp (L(dk))
. (2.17)

In a summarized form, equations (2.16) and (2.17) become:

P (dk = ±1) =
exp (−L(dk)/2)
1 + exp (−L(dk))

exp (±[L(dk)/2])

=
exp (−L(dk)/2)
1 + exp (−L(dk))

exp (dk[L(dk)/2])

(2.18)
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We notice that the common factor

exp (−L(dk)/2)
1 + exp (−L(dk))

appears at both the numerator and the denominator so that it can be removed
for further calculation.

In order to calculate the probability term P (yk|{s′, s}), the equivalent proba-
bility P (yk|xk) is used, since xk is the transmitted codeword associated with the
transition from the state s′ to s. This term represents thus the probability that
given the transmitted signal xk, the received signal is yk. In a memoryless chan-
nel, the conditional probability P (yk/xk) can be expressed as the product of the
n sub-conditional probabilities:

P (yk|xk) =
n
∏

i=1

P (yki|xki), (2.19)

where n is the length of the code word yk or xk, yki and xki are the ith received
and transmitted bit from yk and xk respectively.

A memoryless Additive White Gaussian Noise (AWGN) channel is taken for
instance to explain the whole turbo decoding procedure, as this kind of channel
is regarded in literature as a general example model. Consequently the probabil-
ity term P (yk|xk) can be written by introducing the Gaussian probability density
as:

P (yk|xk) =
n
∏

i=1

P (yki|xki)

=

n
∏

i=1

1√
2πσ

exp

[

−Eb(yki − xki)
2

2σ2

]

=
1

(
√
2πσ)n

exp

[

− Eb
2σ2

n
∑

i=1

(yki − xki)
2

]

,

(2.20)

where the first factor 1/(
√
2πσ)n is a constant, leaving only the second term

exp

[

− Eb
2σ2

n
∑

i=1

(yki − xki)
2

]
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to be useful in the MAP LLR expression.

Hence the whole branch transition probability can be written in the memory-
less AWGN channel as:

γk(s
′, s) = P (yk|{s′, s})P (dk)

= C exp (dk[L(dk)/2]) exp

[

− Eb
2σ2

n
∑

i=1

(yki − xki)
2

]

,
(2.21)

where C represents all the constants discussed above.

The coefficient L(dk) in (2.21) is obtained from the output of another con-
stituent decoder as extrinsic information, which is calculated in the previous
iteration. The channel reliability information Lc = 2Eb/σ

2 is employed, which
depends only on the signal-to-noise ratio (SNR). If a general 1/n code rate RSC
encoder is considered as the constituent turbo encoder, the first bit of output is
the systematic bit (original input bit) and the others should be the redundant
bits (coded bits). In this case, only one input bit is associated to each trellis tran-
sition. Hence in γk(s′, s) expression the systematic bit and the redundant bits can
be distinguished as

γk(s
′, s) = P (yk|{s′, s})P (dk)

= C exp (dk[L(dk)/2]) exp

[

− Eb
2σ2

n
∑

i=1

(yki − xki)
2

]

= C exp (dk[L(dk)/2]) exp

[

−Lc
4
(yk1 − xk1)

2 − Lc
4

n
∑

i=2

(yki − xki)
2

]

= C exp (dk[L(dk)/2]) exp

[

−Lc
4
(yk1 − dk)

2

]

exp

[

−Lc
4

n
∑

i=2

(yki − xki)
2

]

.

(2.22)

The original input bit xk1 = dk and its received version yk1 locate at the first place
of the received signal for a time instant k. Applying the above expression in the
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whole MAP LLR (2.12):

L(dk|y) = ln





∑

(s′,s)⇒

dk=+1

γk(s
′, s)αk−1(s

′)βk(s)

∑

(s′,s)⇒

dk=−1

γk(s′, s)αk−1(s′)βk(s)





= ln











∑

(s′,s)⇒

dk=+1

exp (+[L(dk)/2]) exp
[

−Lc

4
(yk1 − dk)

2
]

exp
[

−Lc

4

∑

n

i=2
(yki − xki)

2
]

αk−1(s
′)βk(s)

∑

(s′,s)⇒

dk=−1

exp (−[L(dk)/2]) exp
[

−Lc

4
(yk1 − dk)2

]

exp
[

−Lc

4

∑

n

i=2
(yki − xki)2

]

αk−1(s′)βk(s)











= ln











∑

(s′,s)⇒

dk=+1

exp (+[L(dk)/2]) exp
[

−Lc

4
(yk1 − 1)2

]

γext

k
(s′, s)αk−1(s

′)βk(s)

∑

(s′,s)⇒

dk=−1

exp (−[L(dk)/2]) exp
[

−Lc

4
(yk1 + 1)2

]

γext

k
(s′, s)αk−1(s′)βk(s)











= L(dk) +
Lc

4
[(yk1 + 1)2 − (yk1 − 1)2] + Lext(dk),

(2.23)

where

γextk (s′, s) = exp

[

−Lc
4

n
∑

i=2

(yki − xki)
2

]

(2.24)

and

Lext(dk) = ln





∑

(s′,s)⇒

dk=+1
γextk (s′, s)αk−1(s

′)βk(s)

∑

(s′,s)⇒

dk=−1
γextk (s′, s)αk−1(s′)βk(s)



 (2.25)

are extrinsic γk(s′, s) and LLR respectively. Equation (2.25) is the soft output
of each turbo decoder, which is communicated in each decoding iteration from
one constituent decoder to another. The extrinsic LLR contains the information
provided by other bits related to dk that are different for each decoder, due to
the fact that the bit dk was interleaved and encoded in different manners by two
constituent encoders [57].

According to (2.23), the extrinsic LLR is obtained as

Lext(dk) = L(dk|y)− L(dk)−
Lc
4
[(yk1 + 1)2 − (yk1 − 1)2]. (2.26)

Thus all these coefficients can be calculated from the decoding procedure,
which allows the probability term γk(s

′, s) = P (yk|{s′, s})P (dk) to be determined
for all the trellis transitions.

Once γk(s′, s) is known, we can calculate αk(s) for the current state through
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forward recursions over the trellis when the signals are receiving, as αk(s) de-
pends on the value of γk(s′, s) and its previous state version: αk−1(s

′). The term
βk−1(s

′) for the previous state is determined after the whole signal has been re-
ceived, using backward recursions, which depends on the value of γk(s′, s) and
the current state version: βk(s). Then, the MAP LLR L(dk|y) can be calculated
immediately αk−1(s

′), βk(s) and γk(s′, s) are determined.
Finally in each decoding iteration, one decoder provides the result of MAP

LLR, in the mean time, it communicates to another constituent decoder with its
Lext(dk), which is considered in another decoder as L(dk).

To sum up, the BCJR MAP algorithm for the decoding of turbo codes can be
outlined as follows [62]:

1. Set the initial conditions α0(0) = 1 and α0(s) = 0, s 6= 0, and the termina-
tion conditions βn(0) = 1 and βn(s) = 0, s 6= 0 for s = 0, 1, 2, . . . , S − 1;

2. Given priori probabilities of dk (usually assumed equiprobable to be 0 or
1), the channel reliability Lc and the received sequence yk, the decoder
calculates γk(s′, s) with equation (2.11);

3. Calculate αk(s) with equation (2.9) using forward recursion. The deter-
mined values are stored for every time instant k and state s;

4. After receiving the whole sequence y, the decoder computes βk−1(s
′) recur-

sively using (2.10);

5. Once all the βk(s) values are obtained, the product of αk−1(s
′), βk(s) and

γk(s
′, s) terms makes the decoding decision LLR (2.12) accomplished.

2.3 Applying turbo codes in the MAI environment

Now we consider the problem of applying the turbo codes in the non-Gaussian
environment discussed in Chapter 1. The noise environment is composed by the
convolution between an independent SαS distributed network interference and
a Gaussian distributed thermal noise, the result of which is not stable distributed.
There is no explicit pdf for neither a general SαS distribution nor a mixture of
the Gaussian and SαS distributions.

The lack of PDF for the noise distribution causes a problem when calculating
LLR in the decoding algorithm, in which the probability density is needed to
determine γk(s′, s), αk−1(s

′) and βk(s) terms.
One method used in [24] is the Huber metric, first proposed by Huber in

robust statistics for the work on M-estimation [44]. As a hybrid metric which
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combines the L1 norm and the Euclidean distance, Huber function handled well
the task in the soft-decision decoding of convolutional codes [23] and turbo
codes [24], when only the SαS interference is present.

Another method carried out in [67] is the numerical-based SαS pdf compu-
tation for the MAP decoder of turbo codes. In this solution, the pdf of the SαS
is derived using numerical inverse Fourier transformation, limiting the integral
over a finite interval. In spite of the proximity to the real SαS pdf value, the
numerical computation costs too much computer resource and time, and the es-
timation of noise parameters (α, σ, and γ) used in the computation remains a
difficult task.

Our proposal is based on the theory of SαS norm and the definition of SαS
variable distance. Within a general combination of SαS interference and Gaus-
sian noise, the p-norm expression can be easily derived, with its parameter p
according to the SαS interference exponent value α, or a very rough estimation
of noise environment is sufficient.

The methods discussed above will be detailed in the following sections. A
comparison among these solutions will be shown through simulations.

2.3.1 Huber metric in MAP LLR

Huber function

It is noticed that equation (2.20) measures the Euclidean distance between the
received and the transmitted code word. This is obtained when the transmis-
sion is interfered by only the Gaussian thermal noise. This metric is referred
to as an estimator of the least squares (LS) type [24]. In some statistics lit-
eratures [47, 73], it is noted that the performance of the LS estimator will be
seriously degraded in non-Gaussian environment, especially when impulsive but
rare-appeared noise is present in the signal. This is due to the quadratic type
signal processing scheme used in the LS estimator.

In order to still profit the formulated framework under the Gaussian assump-
tion in Section 2.2.3, a hybrid-metric method was investigated which led to a
still good performance with the Gaussian model and meanwhile performed sat-
isfactorily on deviations from the Gaussian assumption [24].

The soft metric in terms of a penalty function ρ is first introduced. Take the
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equation (2.20) for example:

P (yk|xk) =
1

(
√
2πσ)n

exp

[

− Eb
2σ2

n
∑

i=1

(yki − xki)
2

]

=
1

(
√
2πσ)n

exp

[

−Lc
2

n
∑

i=1

ρLS(yki − xki)

]

,

(2.27)

where the LS penalty function ρLS is

ρLS(x) =
1

2
x2. (2.28)

It is noticed that the LS estimator performs a quadratic calculation for all the
entry amplitudes without a selection. The impulsive values will distort heavily
the estimator output with the quadratic process. Thus an alternative form in the
sense of slowing down the quadratic expanding is needed. This means that the
penalty function ρLS should fulfil both the Gaussian-like and impulsive heavy-
tailed noise.

The Huber function is of such a type, proposed firstly by Huber on M-estimation
work [44]. As a robust metric, the Huber function combines the conventional LS
penalty function and L1 norm:

ρH(x) =







1
2
x2, for |x| 6 h

h|x| − 1
2
h2, for |x| > h

(2.29)

where h > 0 is the Huber threshold to divide the conventional LS and L1 norm.
From the Huber function, we notice that the input value smaller than h is treated
as least squares type. In this case, if the input is the received code word mi-
nus transmitted code word, their difference is measured by Euclidean distance,
which is in fact the L2 norm. Then for the input value greater than h, the Huber
function penalises the value with L1 norm.

Huber metric based MAP LLR

Based on the Huber function, a Huber metric base MAP LLR can be stated by
replacing the conventional LS penalty function with the Huber penalty function.

Firstly, the branch transition probability (2.13) is redefined with the Huber
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metric:

γHk (s
′, s) = PH(yk|xk)PH(dk), (2.30)

where

PH(yk|xk) =
1

(
√
2πσ)n

exp

[

−Lc
2

n
∑

i=1

ρH(yki − xki)

]

, (2.31)

and PH(dk) will be define after.

Hence the Huber metric based term for αk(s) and βk−1(s
′) can be calculated

recursively as a function of the new definition of γk(s′, s):

αHk (s) =
S−1
∑

s′=0

αHk−1(s
′)γHk (s

′, s), (2.32)

βHk−1(s
′) =

S−1
∑

s=0

γHk (s
′, s)βHk (s). (2.33)

Then the Huber metric based MAP LLR expression turns out as

LH(dk|y) = ln





∑

(s′,s)⇒

dk=+1
γHk (s

′, s)αHk−1(s
′)βHk (s)

∑

(s′,s)⇒

dk=−1
γHk (s

′, s)αHk−1(s
′)βHk (s)



 . (2.34)

In order to obtain the Huber metric based a priori probability for the input
bit dk, we have

LH(dk|y) = ln





∑

(s′,s)⇒

dk=+1
γHk (s

′, s)αHk−1(s
′)βHk (s)

∑

(s′,s)⇒

dk=−1
γHk (s

′, s)αHk−1(s
′)βHk (s)





= ln











∑

(s′,s)⇒

dk=+1
exp (+[L(dk)/2]) exp

[

−Lc
2
ρH(yk1 − 1)

]

γext,Hk (s′, s)αHk−1(s
′)βHk (s)

∑

(s′,s)⇒

dk=−1
exp (−[L(dk)/2]) exp

[

−Lc
2
ρH(yk1 + 1)

]

γext,Hk (s′, s)αHk−1(s
′)βHk (s)











= L(dk) +
Lc
2
[ρH(yk1 + 1)− ρH(yk1 − 1)] + Lext,H(dk).

(2.35)
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Thus the extrinsic LLR for dk based on the Huber metric is

Lext,H(dk) = LH(dk|y)− LH(dk)−
Lc
2
[ρH(yk1 + 1)− ρH(yk1 − 1)]. (2.36)

In each decoding iteration of the turbo codes, one constituent decoder communi-
cates to the other constituent decoder the Huber metric based extrinsic LLR of dk.
To the other decoder, this extrinsic LLR Lext,H(dk) is used as L(dk) to produce an-
other Lext,H(dk). Once the communication of Lext,H(dk) between two constituent
decoders starts, the initial L(dk) is updated and noted as LH(dk). Then the Huber
metric based PH(dk) can be obtained as

PH(dk = ±1) =
exp

(

−LH(dk)/2
)

1 + exp (−LH(dk))
exp

(

dk[L
H(dk)/2]

)

(2.37)

With the help of PH(yk|xk) and PH(dk), the calculation of γHk (s
′, s) is accom-

plished, then the MAP LLR based on the Huber metric (2.34) can be resolved.

2.3.2 Numerical-based PDF calculation

It is clear that the main problem for calculating the MAP LLR in decoding proce-
dure is the lack of closed-form PDF expression for either the SαS or the mixture
of the SαS and Gaussian distributions. Based on the fact that the characteristic
functions for both the above distributions are closed, and that the characteristic
function is the Fourier transform of the PDF, a direct solution is given by the
numerical calculation of the inverse Fourier transform.

In our case, the characteristic function of the SαS distribution has its form:

φ(ω) = exp(−γ|ω|α),−∞ < ω <∞. (2.38)

By employing the inverse Fourier transform on the characteristic function, the
general SαS PDF can be evaluated as

fα(x) =
1

2π

∫ ∞

−∞
exp(−γ|ω|α)e−jωxdω, (2.39)

where the subscript α indicates the characteristic exponent in the SαS distribu-
tion.

With some acceptable tolerance, the PDF of the SαS distribution was approx-
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imated in [67] by an integral over a finite interval:

fα(x) ≈
1

2π

∫ πL

−πL
exp(−γ|ω|α)e−jωxdω. (2.40)

The obtained numerical PDF fα(x) can be applied on the term γk(s
′, s) of the

MAP LLR equation. The term P (yk|{s′, s}) in (2.13) needs the probability density
fα(x). In a general α-stable noise environment, (2.13) can be expressed as:

γk(s
′, s) = P (yk|{s′, s})P (dk)

= C ′ exp (dk[L(dk)/2])

n
∏

i=1

fα(yki − xki),
(2.41)

where i denotes the ith bit in a code word at instant k.
For the numerical calculation, the finite interval [−πL, πL] was divided into

N subintervals of length 2πL/N and the partition points were chosen as ωm =
2πmL/N for m = −(N/2),−(N/2− 1), . . . ,−1, 0, 1, . . . , (N/2− 2), (N/2− 1). By
discrete inverse Fourier transform, fα(x) can be calculated as

fα(x) ≈
1

2π

N/2−1
∑

m=−(N/2)

exp

(

−γ
∣

∣

∣

∣

2πmL

N

∣

∣

∣

∣

α)

e−2πjmLx/N

(

2πL

N

)

=
L

N

N/2−1
∑

m=−(N/2)

exp

(

−γ
∣

∣

∣

∣

2πmL

N

∣

∣

∣

∣

α)

e−2πjmLx/N .

(2.42)

If fα(x) is still sampled at intervals of 1/L at sampling points n = 0,±1,±2, . . . ,
equation (2.42) can be written as:

fα

(n

L

)

≈ L

N

N/2−1
∑

m=−(N/2)

exp

(

−γ
∣

∣

∣

∣

2πmL

N

∣

∣

∣

∣

α)

e−2πjmn/N . (2.43)

In [67], the tolerance N > 8L × M was selected, where M is the largest
value of |yki − xki| in (2.41) and L was chosen large enough such that the area
under the characteristic function beyond the range [−πL, πL] is small and can
be neglected. In practical work, the value N turned out to be 256 for the case of
[67]. The fα(x) was calculated in advance for a desired range and the result was
stored in a lookup table in [67].

However, what we considered is the convolution of Gaussian and stable noises,
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the characteristic function of which is φ(ω) = exp(−γ|ω|α− σ2

2
ω2),−∞ < ω <∞.

Besides, we have tested that the value N = 256 is only sufficient for γ = 1. A
period N = 5000 was used in our simulation in order to ensure the accuracy of
the PDF calculation.

2.3.3 p-norm metric

It is seen in the MAP LLR expression (2.12) and the decoding outline for turbo
codes, the term γk(s

′, s) is calculated first, then the remaining terms αk−1(s
′)

and βk(s) can be determined as a function of γk(s′, s). Inside the term γk(s
′, s),

only P (yk|{s′, s}) is unknown without the knowledge of noise probability density
according to the calculation procedure of (2.13). The value of P (yk|{s′, s}) in the
memoryless AWGN channel in the example of section 2.2.3 is finally acquired by
estimating the Euclidean distance between the received and transmitted code
words, as shown in (2.21). Thus a distance measurement corresponding to the
SαS distribution should replace the Euclidean distance.

In spite of the non-existence for the second-order moment of a SαS random
variable with 0 < α < 2, all moments of order less than α exist with the name
fractional lower order moments (FLOMs) [58]. Based on the dispersion γ and
characteristic exponent α of a SαS random variable, the FLOMs can be defined
as:

E(|x|p) = C(α, p)γ
p
α 0 < p < α, (2.44)

where

C(α, p) =
2p+1Γ((p+ 1)/2)Γ(−p/α)

α
√
πΓ(−p/2)

is a constant depending only on α and p, and Γ(.) is the usual gamma function
defined as

Γ(x) =

∫ ∞

0

tx−1e−tdt.

Then, combining (2.44) with the definition of the stable variable norm [58]

||X||α =







γ
1
α 1 6 α 6 2

γ 0 < α < 1,
(2.45)
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the distance between two SαS variables can be then expressed for 0 < p < α as

||X − Y ||α =







[E|X − Y |p/C(α, p)]1/p 1 6 α 6 2

[E|X − Y |p/C(α, p)]α/p 0 < α < 1.
(2.46)

where the equation measures the pth-order moment of the difference between
these two random variables, or we can say the distance measures the difference
between them under the p-norm.

Inspired by such a distance metric for SαS random variables, and the advan-
tage that this measurement does not depend on any estimation of distribution
parameters (at most a rough estimation to fulfil the condition 0 < p < α is suf-
ficient), we shall employ the expression given in (2.47) as a distance metric in
the term P (yk|{s′, s}) for the MAP decoding, choosing p as 0 < p < α:

d̂(yk, xk) =
n
∑

i=1

|yki − xki|p. (2.47)

When p = 2, the p-norm metric becomes the conventional Euclidean distance.

2.4 Simulation results

In this section, performance of different turbo decoder proposals for the MAI
environment are presented. Simulations were carried out under Matlab environ-
ment. The performance are evaluated through the BER versus geometric SNR.

The turbo encoder is configured using two (1, 5/7) RSC codes, in which
the forward generator polynomial is g1 = 1 + D2 and the backward genera-
tor polynomial is g2 = 1 + D + D2. Then given the n-length input sequence
d = {d1, d2, . . . , dn}, the encoded bipolar sequence without puncturing is repre-
sented as x = {x1, x2, . . . , x3n}, thus with a code rate 1/3. A 1024-length random
interleaver is employed between two constituent RSC encoders.

The performance of turbo codes improves by increasing the number of itera-
tions. We show in Figure 2.4 the influence of iteration numbers in the decoding
algorithm. As an example, only SαS modelled network interference is presented
in the channel with α = 1.5. The p-norm is used as the decoding metric with
p = 1.3. As this is a SαS adapted metric, the p-norm decoder can reduce the BER
with increasing of iteration number. As seen in Figure 2.4, the BER decreases
more and more with the increase of iteration number. But the performance
improvement becomes limited after the 4th iteration under our simulation con-
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Figure 2.4: Improvement of performance by increasing the iteration number in
the decoding of turbo codes.
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figuration. Thus we choose the 6th iteration as the maximum iteration in all the
simulations, since the performance of this iteration number distinguishes already
greatly from the 1st iteration, and keeps a reasonable cost of time and computa-
tion. For each figure presented below, only the 1st and the 6th iteration results
are left, in order to make the comparison clear but without loss of validity.

For the decoder metric comparison, the noise environment is divided into two
categories to better investigate each method:

• only SαS modelled impulsive interference is present, thus y = x+ I;

• SαS interference and Gaussian noise are both present, thus y = x+N+ I.

2.4.1 Stable interference only

In this section, the decoding performance of turbo codes is evaluated in the
SαS modelled noise environment. As a replacement of Euclidean distance in
the decoding LLR criterion, the p-norm metric is compared first of all with the
conventional Euclidean distance. In the second time, the decoding performance
of the p-norm metric is compared with the Huber function metric, with many
different noise parameters. At last, the performance is evaluated as a function of
the value p, to investigate the influence of p in the p-norm metric.

Comparison between the p-norm and Euclidean distance

In order to present performance improvement by a SαS adapted metric from
the conventional Euclidean distance metric, the p-norm with several p values is
tested in α = 1.5 and α = 1.0 SαS interference in Figure 2.5 and 2.6. It is shown
in both the impulsive (α = 1.0) and less impulsive environments (α = 1.5) that
the conventional Euclidean distance cannot have an acceptable performance.
The BER obtained by the Euclidean distance (p = 2.0) metric are always above
the level of 10−3 even with a geometric Eb/N0 up to 10 dB in α = 1.5 case. The
performance becomes worse when the noise becomes more impulsive (α = 1.0),
where the BER are greater than the level of 10−2. It proves that the conventional
metric in the decoding structure cannot deal with the impulsive environment.

When using the p-norm metric (p < α), a considerable improvement is ac-
quired compared with the use of the Euclidean distance (p = 2.0). Although the
BER is not small enough for the 1st iteration, it descends quickly with the growth
of iterative number, and the performance gain is obvious at the 6th iteration. For
example, in the case when α = 1.5, a gain of about 3.5 dB is obtained in terms
of geometric Eb/N0 at 10−3 BER by using p = 1.3 for p-norm, compared with
the Euclidean distance. In a more impulsive case, it is seen from Figure 2.6, the
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Figure 2.5: Turbo decoder performance using p-norm and Euclidean distance in
SαS noise (α = 1.5).
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Figure 2.6: Turbo decoder performance using p-norm and Euclidean distance in
SαS noise (α = 1.0).
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p-norm can still obtain a small BER, and may even reach the level of 10−7 at a
high SNR.

Comparison between the p-norm and Huber function

Since the Huber function has been proved useful in dealing with the impulsive
interference for the decoding of convolutional codes [23] or turbo codes [24,
67], we compare this metric with the p-norm in the following simulations. We
have simulated the SαS noise environments with α = {1.6, 1.4, 1.0, 0.8}, four
different situations. The SαS was set to be more and more impulsive and in each
condition, both the p-norm metric and the Huber function metric were tested.
The threshold for the Huber function (2.29) is set as 3γ as proposed and tested
in [23].
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Figure 2.7: Turbo decoder performance using p-norm and Huber function in SαS
noise (α = 1.6).

We can observe from Figure 2.7 to 2.10, that both the p-norm and Huber
function perform well. Their BERs can reach a low level, except in α = 0.8 case,
Huber metric cannot bring down the BER below the level of 10−3. For the less
impulsive cases (α close to 2, thus the cases with α = 1.6 and α = 1.4), the Huber
metric is comparable with the p-norm metric, as their curves are close to each
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Figure 2.8: Turbo decoder performance using p-norm and Huber function in SαS
noise (α = 1.4).
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Figure 2.9: Turbo decoder performance using p-norm and Huber function in SαS
noise (α = 1.0).
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Figure 2.10: Turbo decoder performance using p-norm and Huber function in
SαS noise (α = 0.8).

other. However, when the noise becomes more impulsive (the cases with α = 1.0
and α = 0.8), only the p-norm metric can reach a low BER with the increase of
geometric SNR. The Huber metric can have a descending trend, but not as fast
as the p-norm. Especially in the most impulsive case that we tested (α = 0.8),
the 6th iteration result of the Huber metric performed even worse than the 1st

iteration results of the p-norm.
The comparison showed that the Huber function can be used as a good de-

coding metric in impulsive noise environment, but the impulsiveness should be
limited to a certain level. The p-norm is more robust and can face any impulsive
noise environment, if the condition p < α is fulfilled. Hence the p-norm can be a
good candidate for the decoding metric of turbo codes. It depends only on one
noise parameter α, and a rough estimation of α may be sufficient.

Investigation of p values for the p-norm metric

In order to investigate the influence of the value of p in the p-norm, we launched
another series of tests to compare different p values. We choose a less impulsive
environment with α = 1.5 and a more impulsive one with α = 1.0. The p values
are chosen to be p = {1.0, 1.3, 1.4} for α = 1.5 case and p = {0.4, 0.6, 0.8} for
α = 1.0 case.

From Figure 2.11 to 2.12, we can find that the curves representing different
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Figure 2.11: Turbo decoder performance using p-norm in SαS noise (α = 1.5).
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Figure 2.12: Turbo decoder performance using p-norm in SαS noise (α = 1.0).
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values of p are not far from each other. They turn out to descend very sharply
from a given SNR and then tend to converge to a certain level. One can see that
the greater the value of p, the earlier the curve descends but the higher level the
BER converges to. It is clearer in the case α = 1.0. With increasing of p value by
0.2, a gap about 1 dB is gained in terms of geometric Eb/N0 for the descending
zones. However, a 0.2 smaller value of p allows to reduce the BER by a factor 2
to 3.

The results showed that the value of p is not so sensitive to the whole de-
coding performance, but slightly modifies the BER curves. This leaves some
flexibility in the decoding design but without any loss of robustness.

A further study is necessary to better assess the choice of p. A fixed value can
probably cope with most of the possible situations in a given context. However
our work only relies on simulations and a faster way to obtain the efficiency of a
given p is necessary.

2.4.2 Stable interference plus Gaussian noise

In this section, we evaluate the different turbo decoders in the impulsive noise
environments modelled by SαS interference plus Gaussian noise. The SNR of
Gaussian noise is set to 10 dB for all the following simulations. We vary the
dispersion of SαS interference and represent the error probability as a function
of the geometric energy-to-interference ratio Eb/I (in the environment where
both the Gaussian noise and SαS interference are present, we use letter I to
stand for the SαS noise instead of N in the SNR expression, more details about
the geometric power theory can be found in Chapter 1):

(Eb/I)geo =
Cg
4r

(

A

(Cgγ)
1/α

)2

, (2.48)

where r is the code rate, A is the signal amplitude and Cg ≈ 1.78 is the exponen-
tial of the Euler constant.

As a benchmark, we provide the optimal turbo decoder as well (marked in
figures as "pdf"), in which the probability density in the MAP LLR expression was
calculated through numerical approach, using the discrete Fourier transform of
the characteristic function with 5000 intervals. The metric using the Huber func-
tion was tested in this environment and is presented as well. As a combination
of 1-norm and 2-norm, we chose the threshold 3γ in the Huber function as pro-
posed in [23]. We illustrate in the following figures the decoding BER from the
first and the sixth decoding iteration.
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Figure 2.13: BER versus geometric (Eb/I) in α = 0.8 interference + Gaussian
noise (SNR = 10 dB).

Once again, from Figure 2.13 to 2.16, we notice first of all that the Euclidean
distance (p = 2.0) cannot deal with any decoding task in all these environments.
The error rate given by this conventional metric show to be between 0.1% and
10%, which is unacceptable in communication transmissions. The Huber func-
tion improves the error correction performance if α > 1 and (Eb/I) is high. In
very impulsive environments (small values of α), only the p-norm can reach a
relatively low BER. For example when α = 0.8, the p-norm with p = 0.4 can still
have a BER of 10−5 at 4 dB (Eb/I).

We can also observe that the p-norm gives performance close to the optimal
decoder which is based on the numerically calculated pdf. In our test, the smaller
the value of p we choose, the better BER is obtained, but the later the BER curve
falls. Similarly as observed in Section 2.4.1, the choice of p is shown not to be
very sensitive (we show the difference between p = α − 0.2 and p = α − 0.4) as
long as p < α. This result reveals again some flexibility for the decoding metric
when the estimated value of α is not available (or only a rough estimate of α
exists).
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Figure 2.14: BER versus geometric (Eb/I) in α = 1.0 interference + Gaussian
noise (SNR = 10 dB).
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Figure 2.15: BER versus geometric (Eb/I) in α = 1.2 interference + Gaussian
noise (SNR = 10 dB).
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Figure 2.16: BER versus geometric (Eb/I) in α = 1.5 interference + Gaussian
noise (SNR = 10 dB).
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Figure 2.17: BER versus (Eb/N0) in Gaussian noise (SNR = 10 dB).
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Through another test with only Gaussian noise present, we can see from
Figure 2.17 that the Huber function and the p-norm have similar performance,
and offer almost the equivalent results as the optimal decoder obtained with the
Euclidean distance i.e. p = 2.0. This proves that all the decoders investigated are
suitable for decoding signals embedded in a Gaussian noise.

LLR comparison of different decoders

In order to further investigate the effect of the different proposed metrics and try
to understand why they so significantly improve performance, the LLR of the p-
norm and the Huber function are established, comparing with the LLR obtained
from the numerically computed probability density for the mixture of the SαS
interference and Gaussian noise. We assume that one bit xkl from the code word
xk is either +1 or −1. Then the LLR is defined as:

L(ykl|xkl) = ln
P (ykl|xkl = +1)

P (ykl|xkl = −1)
= ln

f(ykl − 1)

f(ykl + 1)
, (2.49)

f(.) stands for the PDF. The sign of L(ykl|xkl) implies the transmitted bit xkl sign
(+1 or −1) and the magnitude indicates how likely the sign is. The utilization
of only one bit of the code word is to simplify the calculation and be able to
represent the LLR curves.

For the p-norm, the corresponding LLR is derived through the similar proce-
dure of (2.20), but with a replacement of Euclidean distance with the p-norm
metric. If the channel reliability Lc is known and is employed again, the LLR for
the p-norm becomes:

Lp(ykl|xkl) = ln
exp

(

−Lc
4
|ykl − 1|p

)

exp
(

−Lc
4
|ykl + 1|p

)

=
Lc
4

[|ykl + 1|p − |ykl − 1|p] .
(2.50)

For the Huber metric, we have also the similar procedure as (2.31) to deduce
the LLR:

LH(ykl|xkl) = ln
exp

(

−Lc
2
ρH(ykl − 1)

)

exp
(

−Lc
2
ρH(ykl + 1)

)

=
Lc
2

[ρH(ykl + 1)− ρH(ykl − 1)] .

(2.51)

For the LLR obtained from numerical computation, PDF values for SαS plus
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Gaussian distributions are directly used as:

L(ykl|xkl) = ln
fs+g(ykl − 1)

fs+g(ykl + 1)
, (2.52)

where fs+g(.) stands for the PDF of SαS plus Gaussian distributions. The PDF
calculation was realized from discrete inverse Fourier transform (DIFT), using a
similar approach as section 2.3.2. The integration period for the DIFT was set to
N = 5000 to ensure the accuracy of the calculation.

We compare these decoding metrics or methods through a simulation with
α = 0.8 SαS interference plus 10 dB SNR Gaussian noise. The bound of received
bit ykl was chosen between −12 and +12 with 0.01 step. Each value of ykl yields
a corresponding LLR result. The result is shown in Figure 2.18. As a benchmark,
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Figure 2.18: LLR of (yk|xk) for different decoders.

the solid line represents the LLR from the numerical PDF calculation method,
which results in optimal BER curve. The curve which matches the most the
numerical LLR should be a good choice for the decoding metric.

It is obvious that the p-norm curves agree well with the numerical LLR. The
choice of p only concerns essentially the tail behaviour but will not significantly
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change the shape which is similar to the optimal curve. The Huber function
touches the numerical LLR for only a small range of ykl (when the absolute value
of ykl is small), but leaves a large part as a limiter. This explains why the Huber
metric cannot deal with the very impulsive situations when the received signal
takes large amplitudes more often.

2.5 Conclusion

In this chapter, we studied the decoding metric of turbo codes when both the SαS
modelled network interference and Gaussian modelled thermal noise are present
in the channel. In order to adapt to this model, we proposed the p-norm as a
distance metric based on the definition of FLOMs and stable norm. We tested
decoding performance of turbo codes in direct link using this new metric and
compared it with the Euclidean distance, the Huber function and the optimal
decoder. The results showed that the classical metric cannot cope with the im-
pulsive environment and the Huber function has difficulties in dealing with very
impulsive cases (especially when α ≤ 1). The LLR comparison of these decoding
metrics explained their difference with anther point of view. We conclude that
the use of the p-norm can allow to significantly improve performance and ap-
proach the optimal decoder, whatever the value of α, and with a limited impact
of the parameter estimation.



Chapter 3

Robustness in cooperative

communications

In this chapter, we will develop our work in a wireless network with sufficient
channel knowledge. Due to random variations in space, time and frequency in
wireless network context, communications will be influenced by wireless propa-
gation effects, including path loss, shadowing and multi-path fading, as well as
the network interference and equipment thermal noise [78].

In practical system, multiple-input multiple-output (MIMO) antenna deploy-
ment strategy [79, 35, 22] has proved successful in improving spatial diversity
gains. In some context like sensor networks, it is however impractical to in-
stall multiple antennas on each communication device due to the size and cost
issues [42]. Such technical bottleneck has brought a distributed antenna strat-
egy, realized by the cooperation of network nodes, referred to as cooperative
communications, with the helping nodes served as relays.

As described in [42], most cooperative communications involve two phases
of transmission: a coordination phase (i.e., Phase I) and a cooperation phase
(i/e., Phase II). In Phase I, the source broadcasts its data to both the relay and
the destination, and in Phase II, the relay forwards the source’s information.
Depending on the relative transmitter location or channel conditions, different
cooperative relaying strategies exist such as decode-and-forward (DF), amplify-
and-forward (AF) and compress-and-forward (CF) etc.

We will employ a conventional DF scheme supposing that the relay decodes
correctly the information in Phase I and forwards the same source message to
the destination.
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3.1 System scenario

For simplification purpose and without loss of generality, we propose the network
scenario in a two-hop decode-and-forward (DF) relaying communication. The
two-hop network is firstly investigated consisting of one source,N possible relays
and one destination.

For the signal detection problem in a cooperative communication with the
help of relays, we take into account the wireless propagation effects, network
interference and thermal noise, according to [78]. We suppose

• a slow-fading channel, for which the channel coefficients h are constant for
each time slot and change independently from one time to another;

• a symmetric α-stable (SαS) distributions to model the network interfer-
ence, which is the accumulation of undesired signals from other nodes;

• a Gaussian distribution to model the thermal noise caused by network
equipments, which is additional to and independent from the network in-
terference.

A set of K relays is selected among N possibilities and these select relays are
the ones with the strongest relay-to-destination channel coefficient hrd. Further-
more, we assume that the received signal at relays are decoded without error
before forwarding to the destination. The relay-to-destination transmissions are
made on orthogonal channels, and the synchronization is perfect with corrected
phase.

Source Destination

Relay

Figure 3.1: K relays are selected among N possible ones
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Thus the received signal at the destination from the relays and directly from
the source at time t can be given by

y(l),t = h(l)x+ i(l) + n(l), (3.1)

where l ∈ {0, 1, ..., K}, index 0 donates the direct link from the source to the
destination and index 1 to K represent K selected relays. The received signal
y(l),t is composed of the transmitted binary symbol x through the channel h(l),
and two independent additive noise components, where

• h(l) follows the Rayleigh distribution with the power expectation E[|h(l)|2] =
1,

• i(l) ∼ S(µs, γ) represents the SαS network interference,

• n(l) ∼ N (µn, σ
2) denotes the Gaussian thermal noise.

Moreover, we suppose that the noise parameters don’t vary within each relay
during one transmission, and these parameters have been estimated a priori.

3.2 Detection problem

Knowing the received signal y and the channel realization h, the Maximum a

posteriori (MAP) receiver can be established in the sense of finding a decoded
version of signal x, which has the maximum likelihood probability at each time
slot t:

x̂MAP,t = argmaxPr(xt|yt,h). (3.2)

This is reasonable and practical in communications receiver design, as the
probability reflects the statistic situation of the possible transmitted signals lead-
ing to such a reception, when only the received signals are available at the des-
tination terminal.

We can have the following transformation using the Bayes rule:

Pr(xt|yt,h) =
Pr(yt|xt,h) Pr(xt)

Pr(yt)
. (3.3)

If the signal is sent and received with equal probability, and the signal xt has, for
example, two possible choice x ∈ {s0, s1}, the Bayes receiver can be employed
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which involves the likelihood ratio as its decision criteria:

Λ =
Pr(yt|s1,h)
Pr(yt|s0,h)

=

K
∏

l=1

p(y(l),t|s1,h)
p(y(l),t|s0,h)

s1
≷
s0

0, (3.4)

where the probability terms in both the numerator and denominator require the
corresponding noise probability densities, which are intractable for convolved
SαS interference plus Gaussian noise distributions.

3.3 Receiver strategies

3.3.1 Optimal receiver

Optimal receiver criterion

The detection problem for a binary source (i.e. x ∈ {s0, s1}) in the presence
of stable network interference plus independent Gaussian thermal noise can be
formally specified through a statement of a hypothesis test as







H0 : y = hs0 + i+ n

H1 : y = hs1 + i+ n.
(3.5)

Given the transmitted binary symbols s1 and s0 and the observed received signal
y, we define Pi+n(y|s1) and Pi+n(y|s0), where Pi+n(.) represents the intractable
probability distribution function obtained from the convolution between the sta-
ble network interference plus independent Gaussian thermal noise.

We want to define an optimal receiver model is the sense of minimizing the
bit error rate (BER). The error happens when the signal of s1 is sent, the received
signal y drops into the observation space of s0 or the s0 is sent, y drops into the
space of s1. As these events are equiprobable, the average error probability of
the receiver can be calculated as

Pe = P (s1)×
∫

s0

fi+n(y|s1)dy + P (s0)×
∫

s1

fi+n(y|s0)dy, (3.6)

where P (s1) and P (s0) are the a priori probabilities of the source signal, fi+n(.)
is the probability density function (PDF) of the stable network interference plus
Gaussian thermal noise.
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If the transmitted signal from the source is assumed to be s1, we have

∫

s0

fi+n(y|s1)du =

∫

s

fi+n(y|s1)du−
∫

s1

fi+n(y|s1)du = 1−
∫

s1

fi+n(y|s1)du. (3.7)

By substituting (3.7) for (3.6), Pe becomes

Pe = P (s1) +

∫

s1

[P (s0)fi+n(y|s0)− P (s1)fi+n(y|s1)]dy. (3.8)

In order to minimize Pe, we should have

P (s0)fi+n(y|s0)− P (s1)fi+n(y|s1) < 0, (3.9)

thus

P (s0)fi+n(y|s0) < P (s1)fi+n(y|s1)

or

fi+n(y|s1)
fi+n(y|s0)

>
P (s0)

P (s1)
. (3.10)

This is the Bayes criterion in the case the decision is made for s1.

Accordingly, we can have the Bayes optimal receiver in the form of the log-
likelihood ratio (LLR) as

Λ = log
Pi+n(y|s1)
Pi+n(y|s0)

= log

∏

k

fi+n(yk|s1)
∏

k

fi+n(yk|s0)

=
∑

k

log
fi+n(yk|s1)
fi+n(yk|s0)

H1

≷
H0

η.

(3.11)

The decision between two hypothesis is made by comparing the LLR to a thresh-
old η.

In our proposed scenario, if the binary symbols sent from the source are with
equal probability (η = 0), and the transmitted signals and channel coefficients
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are known, we have the a priori decision statistic as

Λ =
K
∑

k=1

log
fi+n(yk|hks1)
fi+n(yk|hks0)

H1

≷
H0

0, (3.12)

where k indicates the kth relay-to-destination channel.
It is noted in [73] that for a very large K, the asymptotic distribution for the

statistic Λ is Gaussian with finite mean and variance. However, as described in
1.6.3, the error included by this assumption can be quite large when K is not
big enough. We then prefer to implement the optimum receiver even if it is not
practically reasonable.

The Bayes detector demanded above requires the exact knowledge of the
noise density. As previously mentioned, there is no explicit PDF expressions for
α-stable distributions, yet no closed-form for the convolved network interference
plus Gaussian thermal noise.

The first idea could be the numerical integration, since the PDF is the inverse
Fourier transform of the characteristic function:

fi+n(x) =
1

π

∫ +∞

0

φi+n(t) cos(xt)dt, (3.13)

where φi+n(t) = exp(−γ|t|α−σ2t2/2) is the characteristic function for the convo-
lution of network interference plus Gaussian thermal noise.

However, the difficulty lies in fixing the discrete integral step and truncation,
which highly depend on the interference and noise parameters (α, γ and δ).
What’s more, a heavy computation cost is inevitable for each channel realiza-
tion in our case. The Monte-Carlo simulation could be another method. Since
the network interference is a strong but rare event, a large number of samples
are needed for the simulation. We use the idea from the importance sampling
method to implement the Monte-Carlo simulation.

Introduction of Importance Sampling method

The importance sampling (IS) method was introduced in [10] as an efficient
technique in the reduction of variance in random sampling, in respect that the
method concentrates on the sample points where the value of the function is
large. We can take advantage of IS for the simulation of rare random events, and
for the generation of samples under a distribution which is difficult to generate
directly [26].
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In order to show the difference between the IS and the conventional MC
method, an example model is presented below. If the probability to estimate is

p = P (X(t) ≤ C)

and let

S = {t : X(t) ≤ C}

be the sampling space, we can estimate p as

p =

∫

S

I(t)f(t)dt = E[I(t ∈ S)], (3.14)

where I(t) is the indicator function in which I(t) = 1 if t ∈ S, otherwise I(t) = 0,
and f(t) is the PDF of X.

For a conventional MC simulation, the procedure is to generate K i.i.d. ran-
dom samples under the PDF f(.) and estimate the integral by

p̂ =
1

K

K
∑

k=1

I(tk). (3.15)

While in IS method, the idea is to change f(.) so as to allow a more frequent
occurring for the estimation event, thus the number of testing samples can be
less for a given estimator variance. We choose another PDF g(.), referred to as a
biasing density, under which the sampling is made. We get p by

p =

∫

S

I(t)
f(t)

g(t)
g(t)dt = E

[

I(t ∈ S)
f(t ∈ S)

g(t ∈ S)

]

, (3.16)

where f(.)/g(.) ≡W (.) is the weighting function.

In the simulation, the value p̂ can be acquired in the same way from the
average of K trials. The i.i.d. samples are weighted by W (.), which allows the
PDF g(.) to generate the sample instead of f(.):

p̂ =
1

K

K
∑

k=1

I(tk)W (tk). (3.17)

Hence the IS estimator is said to be unbiased thanks to the weighting function.
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Implementation of IS on optimal receiver

The decision of the optimal receiver is made on the criterion function (3.12), in
which the calculation for each fi+n(.) is directly intractable. We can make use
of IS method to calculate each fi+n(.), choosing a biasing probability function
under which the sampling is much easier.

We noticed that the generation of α-stable random variables is trivial, hence
we can sample the network interference component ik for each received signal
yk = hkx + ik + nk. That is, for every channel realization, yk can be considered
as under a normal distribution with the mean hkx + ik and with the variance of
nk (σ2), which can be calculated as:

fi+n(yk|hkx) =
∫

I

I(t)fn(t)fi(t)dt, (3.18)

where I represents the network interference sampling space, fn(.) is the normal
distribution PDF.

In the simulation, if a number of N i.i.d. network interference samples ik are
generated under fi(.), and the weighting function is defined as N (hkx + ik, σ

2),
we have

f̂i+n(yk|hkx) =
1

N

N
∑

n=1

IknN (hkx+ ikn, σ
2). (3.19)

Once the probability term fi+n(.) is calculated, the decision of the optimal re-
ceiver can be made.

Determination of sampling number

In order to reduce the computation cost but without losing the reliability of
probability density calculation by the IS method, we made some tests in hopes
of finding an appropriate sampling number for the network interference term.
Based on the same cooperative network scheme as introduced in 3.1, we chose
the two strongest relay-to-destination channels among 5 for instance. A 1000-
bit-length signal is generated as source information. We use the optimal receiver
described in 3.3.1 for detection. According to the error number counted in terms
of amount of samples used, we have the following result:

In Figure 3.2, we observe a convergence of the number of errors when the
number of interference samples increases. We picked in all our following sim-
ulations the sampling number as 106 with which the probability calculation is
sufficiently accurate to our context.
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3.4 Suboptimal receiver

3.4.1 Linear receiver

The linear receiver is realized by assuming that the PDF used in the decision
statistic (3.12) is the Gaussian one (stable PDF when α = 2). The linear receiver
is also known as the Gaussian receiver. It is optimal when the interference is
Gaussian distributed. The corresponding decision statistic is

Λlinear =

K
∑

k=1

log
f2(yk|hks1)
f2(yk|hks0)

=
K
∑

k=1

log
exp[−(yk − s1)

2/2σ2]

exp[−(yk − s0)2/2σ2]

=
1

σ2

K
∑

k=1

yk(s1 − s0)
H1

≷
H0

0,

(3.20)

where σ is the standard deviation of the Gaussian distribution. We will test such
a receiver in the environment of stable (α < 2) interference plus Gaussian noise.
We primarily consider this choice for its simple implementation structure, though
we predict that it will perform poorly when α ≪ 2.

3.4.2 Linear combiner

An alternative linear solution is developed by considering the maximal ratio com-
biner (MRC), which is also simple to implement as a suboptimal receiver. The
MRC has its original output form given by

ΛMRC =

K
∑

k=1

wkyk = ŝ+ n̂, (3.21)

where w = {wk}Kk=1 ∈ RK are the combiner weights, ŝ and n̂ are the weighted
signal components and noise components.

The conventional MRC is optimal for independent Gaussian channels, which
obtains the optimal weights when wk = h∗k, where * represent the complex con-
jugate.

However, for detection in a stable interference plus Gaussian noise environ-
ment, the combiner has to take into account the interference parameters [32].
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An adapted optimal MRC is proposed in [46, 59], which provides the corre-
sponding weights when only the SαS interference is present:







w∗
k = sign(sk)|sk|1/(α−1), 1 < α ≤ 2

w∗
j = sign(sj), w∗

k = 0 ∀k 6= j, 0 < α ≤ 1
(3.22)

for an arbitrary j in i = arg{|si| = max{|s1|, . . . , |sK |}}.

3.4.3 Non-linear receiver

Cauchy receiver

As one special case of SαS distribution, Cauchy distributions (α = 1) have their
PDF with dispersion γ and median δ:

f1(x) =
γ

π[γ2 + (x− δ)2]
. (3.23)

Cauchy receiver arose originally from the assumption that the tail index α = 1
and is optimal for the signal detection under pure Cauchy noise. By replacing
fi+n(.) with f1(.) in (3.11), we have the corresponding decision statistic:

ΛCauchy =

K
∑

k=1

log
f1(yk|hks1)
f1(yk|hks0)

=
K
∑

k=1

log
γ2 + (yk − hks0)

2

γ2 + (yk − hks1)2

H1

≷
H0

0.

(3.24)

Hole-puncher and Soft-limiter receivers

The implementation of the Cauchy receiver appears to be difficult: we need to
determine the parameter γ and the evaluation of (3.24) is complex. A first idea
is to add some non-linearity to the Gaussian receiver to limit the impact of large
interference samples. As proposed for instance in [58, 1], the hole-puncher and
soft-limiter are commonly used non-linear functions. We use in our test these
two functions with their forms as:

ghp(x) =







x, |x| < κ

0, otherwise
(3.25)
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and

gsl(x) =



















−κ, x < −κ
x, |x| < κ

κ, x > κ

, (3.26)

where ghp(.) and gsl(.) replace fi+n(.) in (3.11).

p-norm receiver

It is noted that in the decision statistic for the linear receiver (3.20), the metric
used in the second step is the Euclidean distance between the received signal
and the possible transmitted symbols. The distance between two SαS random
variables is defined in [58], which measures the difference between them under
the p-norm for 0 < p < α:

||X − Y ||α =







[E|X − Y |p/C(α, p)]1/p, 1 ≤ α ≤ 2

[E|X − Y |p/C(α, p)]α/p, 0 < α < 1,
(3.27)

where C(α, p) = 2p+1Γ((p+1)/2)Γ(−p/α)
α
√
πΓ(−p/2) , and Γ(.) is the gamma function.

This expression is of interest as it does not depend on any estimation of dis-
tribution parameters and a rough knowledge of α can be sufficient. We employ
the p-norm metric in our decision statistic as

Λp-norm =
K
∑

k=1

(|yk − hks0|p − |yk − hks1|p)
H1

≷
H0

0. (3.28)

3.4.4 NIG approximation

From the hyper-geometric family of flexible skew-kurtosis models, the Normal
Inverse Gaussian (NIG) distributions have analytical expressions for the prob-
ability density and first four moments in terms of the model parameters. This
family of statistical models includes the Gaussian and Cauchy distributions as
special limiting cases [3]. It is therefore of great interest to use this distribution
to approximate our intractable PDF in the decision statistic.

The NIG model takes its name from the fact that it represents a Normal
variance-mean mixture that occurs as the marginal distribution for a random
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variable Y when considering a pair of random variable (Y, Z) when Z is dis-
tributed as an inverse Gaussian Z ∼ IG(δ,

√

α2 − β2), and Y conditional on Z is
(Y |Z = z) ∼ N (µ + βz, z). The resulting density function for the NIG model is
given by:

fNIG(y;α, β, µ, δ) =
αδ

π

exp[g(y)]

h(y)
K1[αh(y)], (3.29)

where g(y) = δ
√

α2 − β2 + β(y − µ) and h(y) = [(y − µ)2 + δ2]1/2, K1(.) is a
modified second kind Bessel function with index 1.

The parameters have the constraints µ ∈ R, δ > 0, 0 ≤ |β| ≤ α. The pa-
rameter α is inversely related to the heaviness of the tails, where a small α
corresponds to heavy tails that can accommodate outlying observations. The
skewness is directly controlled by the parameter β, and β = 0 is the symmetric
model. The location of the distribution is given by the parameter µ and the scale
of the distribution is measured by the parameter δ.

We consider in our case a symmetric NIG model, which implies β = 0. We
note the closed-form expressions for the mean, variance, skewness, and kurtosis
of the NIG model as:

E[yk] = µ = hkx; Var[yk] = δ
α
;

Skew[yk] = 0; Kurt[yk] = 3
δα
.

In this way, the probability density for each link can be approximated by the
estimated closed-form expressions from the observed values.

3.5 Strategy comparison

We present in our simulation three different noise-to-interference ratios (σ2/2γ)
to investigate the described receivers. This ratio reflects different noise dominat-
ing environments, and we generated 500 noise samples for illustration in Figure
3.3.

We chose K = 2 strongest relay-to-destination channels among N = 5 possi-
ble ones. The optimal receiver is realized by IS approach as a benchmark, with
106 interference samples. The threshold for the hole-puncher receiver is set as
κ = 4 and for the soft-limiter as κ = 1. An empirical approach based on sim-
ulations was used to make choice for those parameters. We set p = 0.8 as an
example value for all the simulations. Performance is measured by BER in terms
of the inverse value of dispersion of SαS interference in logarithm, since the
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Figure 3.3: Comparison of different noise dominating environments

increasing of the inverse dispersion implies the decreasing of the interference
strength.

In Figure 3.4, σ2/2γ is set to 10 dB which indicates that the dominant noise
is Gaussian. We observe that the Cauchy receiver gives the worst BER, since it is
only optimal under Cauchy noise (α = 1). The linear receiver and MRC have the
same trend and the latter one is better because of its adapted parameters. The
NIG approximation shows similar performance as the linear approaches. Dur-
ing the estimation of NIG parameters, the rare SαS interference parts have little
influence on the dominant Gaussian noise, hence the obtained NIG density is
close to the limiting Gaussian case of this family. The p-norm, hole-puncher and
soft-limiter receivers have almost the same performance, which approaches the
optimal receiver. In case when the Gaussian noise and the SαS interference are
comparable (σ2/2γ = 0 dB), we can see in Figure 3.5 that the linear receiver
and MRC appear less capable to deal with the interference than the others. The
Cauchy receiver exhibits a good performance in this condition, even surpass-
ing the hole-puncher and soft-limiter. The p-norm receiver keeps close to the
optimal one, and the NIG approximation shows similar ability as the p-norm ap-
proach. In Figure 3.6, when the SαS interference dominates the whole noise,
the Cauchy receiver provides the best performance, which is very close to the
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Figure 3.6: Comparison of receivers in stable-interference-dominant environ-
ment

optimal receiver. The p-norm and NIG receivers remain close as well, while the
other receivers perform poorly.

From the above results, we can draw some conclusions:

• The linear receiver and MRC will have good performance only if the Gaus-
sian noise is dominant.

• The Cauchy receiver performs well except when the Gaussian noise domi-
nates.

• The hole-puncher and soft-limiter are good choices if the thresholds are
well configured, but they are still far from optimality when impulsiveness
is strong.

• The NIG approximation and the p-norm receiver have very good perfor-
mance in all environment and approach very closely the optimal receiver
when impulsiveness increases. It is noted that the p-norm has the best
behaviour when Gaussian noise is dominant and is a non-parametric ap-
proach (at most a rough estimation of α is sufficient).
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3.6 Conclusion

In this chapter, we have evaluated the performance of several receivers in coop-
erative communications where both the network interference and the thermal
noise are present. The SαS and Gaussian distributions were used to model the
network interference and the thermal noise respectively. The chosen relays are
the ones having the minimum relay-to-destination channel loss among a set of
candidates. We employed an importance sampling approach for the calcula-
tion of the optimal decision statistic and listed several suboptimal receiver ap-
proaches, in which the p-norm receiver and NIG approximation method were
proposed as efficient solutions. The simulation results showed that some para-
metric designs like the hole-puncher and soft-limiter can have good performance
if their thresholds are well configured. The NIG approximation proved to be a
very efficient approach. The p-norm exhibited robust performance, no matter
which noise was dominant. This approach provides us a simple and feasible re-
ceiver strategy, which does not necessitate any noise parameter estimation, and
also confirms the study that we made about turbo codes in direct link.
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Chapter 4

Distributed channel coding in

cooperative communications

In this chapter, we investigate the distributed channel coding technique with the
help of relays in the network, establishing cooperative communications to make
the signal transmission more reliable and less impacted by interference. Besides,
the scheme provided here offers some flexibility, hence making the control of
energy consumption possible based on certain error correction level.

In relay networks, the cooperation between the source and relays actually
forms a virtual antenna array, therefore intuitively the conventional channel cod-
ing schemes can be extended to the relay networks in order to explore the co-
operative diversity and coding gain [27]. In addition to the coding advantage,
distributed channel coding is based on incremental redundancy and thus allows
a more flexible distribution of channel symbols between source and relay nodes,
compared to repetition algorithms based on amplify-and-forward relaying pro-
tocols [27, 81]. Several kinds of distributed channel coding technologies have
been developed, such as distributed space time block coding [28], distributed
space time trellis coding [72, 16, 83, 82], distributed space time frequency cod-
ing [84, 66]. In order to still improve the decoding performance and meanwhile
approach the channel capacity, distributed LDPC coding [18, 43] and distributed
turbo coding (DTC) [14, 45, 85, 51, 52] schemes have been proposed and stud-
ied in cooperative communication circumstance.

From the idea of channel coding and cooperative communications in this
thesis, we built an effective distributed channel coding scheme. Based on a cer-
tain level of BER, the energy consumption can be minimized if an appropriate
space-time coding topology is chosen. In the following section, we propose a
distributed channel coding strategy with the corresponding communication sce-
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nario.

4.1 Distributed channel coding strategy

4.1.1 Communication topology and scenario

We assume in the first time a simple relay network topology. This network is
composed of one source, one destination and one relay as shown in Figure 4.1.
The relay cooperates with the source to send information to the destination but
with an interleaved version. We do not consider any synchronization problems
in this thesis.

Source Destination

Relay

Figure 4.1: Relay network for distributed channel coding

For the network impairments, we consider the wireless propagation effects,
network interference and thermal noise. The modelling of the network impair-
ment components are as follows:

• the communications suffer from a slow-fading channel, for which the chan-
nel coefficients h are constant for each time slot and change independently
from one time to another;

• the network interference is modelled as a SαS distribution, which is the
accumulation of undesired signals from other nodes;

• the network-equipment-caused thermal noise is modelled as a Gaussian
distribution, which is additional to and independent from the network in-
terference.

First of all, the source sends the code-word x based on the binary symbols
s0 and s1 to the relay and destination, and let E[x2] = 1. The corresponding
received signals at time t at the destination and relay with convolved additive
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network interference and thermal noise parts are represented as

ySD,t = hSD,t
√

Psxt + iSD,t + nSD,t, (4.1a)

ySR,t = hSR,t
√

Psxt + iSR,t + nSR,t, (4.1b)

where hSR,t and hSD,t are the channel coefficients between the source-and-relay
(SR) and between the source-and-destination (SD) respectively, which are mod-
elled as Rayleigh random variables. The terms i are channel interference mod-
elled as symmetric α-stable random variables. The thermal noise terms n are
modelled as Gaussian random variables (nk ∼ CN (0, σ2

k)). We suppose, for
simplification purpose, that the source has unit transmission power (Ps = 1).

At the relay, if the signal estimated and forwarded to the destination is marked
as x̂, the relay-to-destination version of received signal at the destination can be
expressed as

yRD,t = hRD,t
√

Prx̂t + iRD,t + nRD,t, (4.2)

where hRD,t is the channel coefficient between the relay-and-destination (RD).
We assume that the relay transmission power Pr = 1 in the following investiga-
tion.

In order to simplify the evaluation of performance, the received signal at the
relay is supposed to be decoded correctly before forwarding to the destination.
Hence the decoded signal at the relay is perfectly recovered as x̂t = xt.

4.1.2 Distributed channel coding scheme

The distributed channel coding works by splitting each code word into two parts,
one transmitted by the source and the other by the relay node. The source
encodes the information to a RSC code then modulates and broadcasts it omni-
directionally to the network. The relay and destination will receive the signal
from the source in some time instant. The destination first demodulates and
decodes the received signal.

Depending on the decoding BER, the destination will determine if it still
needs redundant information from the relay. If it does, the relay will decode
the signal from the source and interleave it before entering to the same RSC de-
coder as the source. After that the needed information is sent to the destination
to ensure the decoding BER at the destination to achieve a certain level.

The system diagram is shown as Figure 4.2. We employ the Viterbi decoder to
decode the RSC codes, as Viterbi algorithm [62, 21] is a light weighted method
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Figure 4.2: Distributed channel coding diagram

compared with BCJR MAP algorithm, and it doesn’t need iteration process, hence
certain energy consumption can be saved in the implemented system. The turbo
codes are still decoded by BCJR MAP algorithm to ensure the performance.

We represent the signal in each communication blocks as in Table 4.1: The
systematic and parity bit are respectively denoted using s and p in signal sub-
scripts. The subscript 1p indicates the original RSC encoded bit while 2p indicates
the interleaved version of RSC encoder output. For the distinguish purpose, sig-
nals sent from the relay, which are then received at the destination are with a
prime ′ superscript.

signal transmission signal representation
from source to relay {xs, x1p}
from source to destination {xs, x1p, x2p}
from relay to destination {x′s, x′2p}
received at destination from source {ys, y1p, y2p}
received at destination from relay {y′s, y′2p}

Table 4.1: Signal representation in distributed channel coding network.

Based on the cooperative behaviour of the relay and source, we divide the
distributed channel coding scheme into 5 options:

• Option 1: The source firstly broadcasts a RSC code {xs, x1p} to the destina-
tion and the relay. The destination decodes the RSC codes {ys, y1p} using
Viterbi decoding algorithm. The diagram is shown in Figure 4.3.
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Source Destination

Relay

xs, x1p ys, y1p

Figure 4.3: Option 1: RSC codes from the source.

• Option 2: The source firstly broadcasts a RSC code {xs, x1p} to the destina-
tion and the relay. Then the source sends the interleaved and encoded sig-
nal {x2p} to the destination. The destination combines the signal {ys, y1p}
from the first time and the parity signal y2p from the second time to con-
struct a turbo code {ys, y1p, y2p}. Then the BCJR MAP algorithm is em-
ployed to decode the turbo code. The diagram is shown in Figure 4.4.

Source Destination

Relay

{xs, x1p} + x2p ys, y1p, y2p

Figure 4.4: Option 2: turbo codes from the source.

• Option 3: The source firstly broadcasts a RSC code {xs, x1p} to the desti-
nation and the relay. We assume that the relay decodes the received signal
without error for simplification purpose. Then the relay sends the inter-
leaved and re-encoded signal {x′s, x′2p} to the destination. The destination
decodes the signal sent from the relay {y′s, y′2p} using Viterbi algorithm, but
a deinterleaver is needed after the decoding to recover the real informa-
tion. The diagram is shown in Figure 4.5.
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Source Destination

Relay

xs, x1p x's, x'2p

y's, y'2p

Figure 4.5: Option 3: RSC codes from the relay.

• Option 4: The source firstly broadcasts a RSC code {xs, x1p} to the desti-
nation and the relay. We assume that the relay decodes the received signal
without error for simplification purpose. Then the relay sends the inter-
leaved and re-encoded signal {x′2p} to the destination. The destination
combines the signal from the source {ys, y1p} and the parity signal from
the relay y′2p to construct a turbo code {ys, y1p, y′2p}. Then the BCJR MAP
algorithm is employed to decode the "distributed" turbo code. The diagram
is shown in Figure 4.6.

Source Destination

Relay

xs, x1p

xs, x1p x'2p

ys, y1p, y'2p

Figure 4.6: Option 4: distributed turbo codes

• Option 5: The source firstly broadcasts a RSC code {xs, x1p} to the desti-
nation and the relay. We assume that the relay decodes the received signal
without error for simplification purpose. Then the relay sends the inter-
leaved and re-encoded signal {x′s, x′2p} to the destination. The destination
combines the signal from the relay {y′s, y′2p} and the parity part signal from
the source y1p to construct a turbo code {y′s, y′1p, y2p}. Then the BCJR MAP
algorithm is employed to decode the "distributed" turbo code, but a dein-
terleaver is needed after the decoding to recover the real information. The
diagram is shown in Figure 4.7.



4.2. Energy consumption study 87

Source Destination

Relay

(xs), x1p

xs, x1p x's, x'2p

y's, y1p, y'2p

Figure 4.7: Option 5: distributed turbo codes

Now the problem is when to employ one of these options to ensure a target
BER but also to minimize the energy cost. We discuss firstly for each option the
energy cost problem, then a simulation based investigation indicates when to
employ an appropriate option to ensure the BER with least energy cost.

4.2 Energy consumption study

Since energy consumption is one of the most important parameters in the sen-
sor network [69], the energy saving issue shall be an interesting topic. A good
choice of the above options should be a least energy consuming strategy but
fulfilling the decoding performance demand. It’s difficult to study deeply and
roundly the energy consumption here for every option. But some experimental
measurements show that, the data transmission consumes generally the most en-
ergy. The necessary energy cost for transmitting one bit data, for instance, equals
approximatively millions of calculation operations [53]. Which means that the
information transmission in each option will consume much more energy than
signal processing operation like encoding and decoding. Hence, we will account
the number of bits transmitted in each whole scheme in order to compare their
energy consumption performance.

If the original signal sent from the source xs is composed of n bits, it is easy
to establish a table to compare the number of bits transmitted for each options:

From Table 4.2, it is clear that the direct link transmits the least bits, between
which the option 1 using only RSC codes consume the least energy. With the help
of relay, the transmitted bits are augmented to 4n except for the option 4, which
utilize only the parity part of the RSC code x′2p to forward to the destination, thus
only 3n bit transmission is needed. If the direct link suffers more propagation
impairments, is it worth employing the relay to cooperate? We will investigate
the BER performance through a simulation in the next section.
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Option from source from relay transmitted number
1 (RSC) 2n 0 2n
2 (turbo) 3n 0 3n
3 (RSC) 2n 2n 4n
4 (turbo) 2n 1n 3n
5 (turbo) 2n 2n 4n

Table 4.2: Number of bits transmitted for each option in distributed channel
coding scheme.

4.3 Scheme choice investigation

We have stated in section 4.1 that the signal received at relay and destination
has been influenced by the slow fading, Gaussian thermal noise and SαS mod-
elled network interference as shown in equations (4.1) and (4.2). We investigate
therefore the system by configuring parameters of these communication impair-
ments.

As it is supposed in section 4.1 that the relay can decode the signal from the
source without error, thus we don’t consider the channel parameter between the
source and relay. The channel coefficients are set to be hRD,t = hSD,t = 1 for
a slow fading character. An α = 1.5 characteristic exponent is set for the SαS
network interference. In a practical situation, the channel between the source
and destination (SD) is more likely to suffer distortions than the channel between
the source and relay (RD) if the relay is the one who plays the cooperative role,
we assume that the strength of the interference for relay-to-destination channel
is 0.8 less than that of the source-to-destination channel. In respect that the
dispersion of the SαS model proportionally implies the strength of the network
interference, we can interpret our assumption as γRD = 0.8γSD, where γ is the
dispersion of the network interference. This way of interference modelling is
equivalent to considering a better relay-to-destination channel than the direct
link. This is however necessary if we want that the relay helps in saving energy.

The configuration can be illustrated in Figure 4.8.
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Source Destination

Relay

γSR γRD = 0.8γSD

γSD

Figure 4.8: Distributed channel coding network model, γRD = 0.8γSD.

We let the communications take place in a very impulsive environment, the
ratio of the noise-to-interference strength is defined as σ2/2γ = −10 dB, where
σ is the standard deviation of thermal Gaussian noise. Thus the network inter-
ference dominates the noise environment.

We evaluate the performance by measuring the BER in terms of the inverse
value of γ, since the increasing of the inverse dispersion indicates the decreas-
ing of the interference strength. Then according to the noise-to-interference
strength ratio, the Gaussian noise strength can be determined as well. For RSC
code, Viterbi algorithm is used and for turbo code, BCJR MAP algorithm is em-
ployed and the result is collected from the 6th iteration. The p-norm replaces the
Euclidean distance in all decoders.

A global illustration is exhibited in Figure 4.9, we set a threshold of BER to
10−3 for comparison. We notice that the options which take advantage of turbo
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Figure 4.9: BER performance for distributed channel coding scheme.

codes (options 2, 4 and 5) perform much better than the one that utilize RSC
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code (options 1 and 3). This is due to the existence of interleaver in turbo codes
and its excellent concatenated structure.

A more evident prove can be found in Figure 4.10. In the same link (source-
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Figure 4.10: BER performance for distributed channel coding options, compari-
son between RSC and turbo codes.

to-destination direct link), turbo codes gain almost 8 units of 1/γ at level 10−3

compared with RSC codes. If the relay cooperates with the source to supply
redundant information but using RSC codes as well, the performance does not
improve so much as the turbo codes, as illustrated in Figure 4.11. It is obvious
that only if turbo codes are employed, the performance can be greatly improved.
Then with the help of relay, more improvements can be achieved, as shown in
Figure 4.12. Comparing the option 4 with option 2, the relay helped option
gained only 0.1 unit of 1/γ. Even by changing one part of turbo code component
output (from xs to x′s), the improvement from option 4 to option 5 is still 0.1
unit of 1/γ.

For a quantitative comparison, Table 4.3 illustrates the maximum SαS inter-
ference dispersion γ with which the option can achieve a 10−3 BER. From Table
4.3, it is seen that option 5 has a largest tolerance for interference dispersion γ
or SNR. The tolerance order for options is then 5 → 4 → 2 → 3 → 1. Hence the
turbo code decoding methods allow more tolerance than that of RSC codes.

Base on the BER demand and Table 4.3, we have a scheme selection strategy
as shown in Table 4.4. The order established shows a selection strategy de-
pending on the value of interference dispersion. If the interference dispersion is
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Option 1/γ γ
1 (RSC) 5.45 0.183
2 (turbo) 1.75 0.571
3 (RSC) 4.55 0.220
4 (turbo) 1.63 0.613
5 (turbo) 1.52 0.658

Table 4.3: Comparison of maximum interference dispersion γ to achieve 10−3

BER.

estimated after receiving the signal, an approximate choice of option can ensure
a certain level of BER.

range of γ option chosen
γ < 0.183 1
γ < 0.220 3
γ < 0.571 2
γ < 0.613 4
γ < 0.658 5
γ > 0.658 impossible for decoding

Table 4.4: Distributed channel coding scheme selection depending on the value
of interference dispersion γ.

As the energy consumption depends very much on the data transmission, the
first choice is obviously the best one, if the direct source-to-destination link has
a less interfered channel that fulfils the BER performance. Then by considering
Table 4.2 and 4.4, the option 4 should be a second choice when the direct link is
disturbed heavily. This option allows to have a good performance by employing
distributed turbo codes but raising a low energy consumption. However, option
3 does not seems to be interesting due to its poor performance compared with
others except option 1 and due to its still high consumption of energy with the
help of relay. If we consider that the consumption of energy is proportional to
the amount of transmitted data, the use of the relay is only interesting when γ is
larger than 0.571 (option 4 or option 5) to offer the best possible performance.
The difference of the quality in the links involved in the communications (relayed
or direct) will importantly impact on the preferred option and further studies are
needed to draw general conclusions.
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4.4 Conclusion

In this chapter, we have introduced distributed channel coding technique in the
sense of minimising network energy consumption. With the help of relay, co-
operative communications were established thus one part of encoding and de-
coding operations can be shared by relay. A distributed channel coding topology
was proposed, with a Viterbi decoder, an interleaver and another RSC encoder
at relay, and a RSC encoder at source. Depending on the different proposed
distributed channel coding options, either RSC codes or turbo codes would be
composed at destination, leading to different performance and energy consump-
tion. Through a simple but illustrative simulation, the decoding and energy
saving performance were studied for all the proposed options. Simulation re-
sults showed that the RSC coding for the direct source-to-destination link should
be the best choice if the direct link channel was not badly interfered, accord-
ing to the demanded BER performance level. Then the distributed turbo coding
which benefits from the help of relay should be a best backup candidate. These
proposed options and their performance comparison imply that, with a good
configuration of cooperative network resources and an appropriate distributed
channel coding strategy, a considerable energy saving and decoding performance
improvement can be made, which leads to a flexible and "green" network.





General conclusion

In this thesis, a perspective on Internet of Things and sensor networks is in-
vestigated. The multiple-access-interference (MAI) encountered especially in
dense sensor networks presents an impulsive behaviour. Conventional decod-
ing or receiving approaches developed under the Gaussian assumption cannot
deal with such an interference environment and will cause a significant perfor-
mance degradation. Stable laws have proved to be accurate models for impulsive
interference and its symmetric sub-family, noted as symmetric α-stable (SαS) dis-
tribution, was employed in this thesis, due to its heavy-tail property. While the
second-order moments of a SαS variable is infinite when α < 2, the geometric
power framework was utilised as an alternative interference strength measure-
ment, the geometric signal-to-noise ratio (SNR) was then defined accordingly.

The direct link was studied in the first time, by applying turbo codes as for
their powerful decoding performance. The BCJR MAP decoding algorithm was
chosen but the decoding metric should be replaced to adapt to the interference
model and the explicit PDF expressions of general SαS random variables are
lacking. The p-norm metric was proposed based on the fractional lower order
moments (FLOMs) and α-stable norm, as an adapted decoding metric. Sim-
ulations were carried out for a comparison between the novel metric and the
conventional Euclidean distance, the other proposed approaches such as Huber
function and numerical inverse Fourier transform were compared as well. Re-
sults of simulations showed that the classical metric using the Euclidean distance
in decoders exhibited a very poor bit error rate (BER) performance in either MAI
only or MAI plus Gaussian thermal noise environment. The Huber function can-
not deal with very impulsive cases, especially when α 6 1. The utilisation of
p-norm brought a considerable BER performance improvement even when the
environment is very impulsive. Its performance approached also the optimal
decoder realised by numerical method, whatever the value of α is taken. The
p-norm is additionally a flexible metric because no interference parameter is
needed or only a rough estimate of α is sufficient for 0 < p < α.

The whole network topology was considered in the second time, and cooper-
ative communications were adopted to improve the interference rejection perfor-
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mance. With the help of relays, several receiver designs can be carried out. We
studied a two-hop decode-and-forward relaying communication where a set of
relays was selected among all possibilities. The chosen relays are the ones having
the minimum relay-to-destination channel loss among a set of candidates. We
proposed an importance sampling approach for the calculation of the optimal de-
cision statistics and several suboptimal receiver designs. Particularly, an original
approximating strategy based on the Normal Inverse Gaussian (NIG) distribution
was proposed. The simulation results showed that some parametric designs like
the hole-puncher and soft-limiter receivers can have good BER performance if
their thresholds are appropriately configured. The NIG approximation proved to
be a very efficient approach. The p-norm receiver exhibited robust performance.
Both the NIG and p-norm approaches perform close to the optimal receiver no
matter which noise is dominant.

When considering energy consumption issue in sensors networks, a distributed
channel coding strategy was proposed with the help of relay. Cooperative com-
munications were established in the sense that one part of the encoding and
decoding operations can be shared by relay. The relay was equipped with a
Viterbi decoder, an interleaver and another RSC encoder. Either RSC or turbo
codes would be composed at destination depending on the different proposed
distributed decoding schemes. The decoding and energy saving performance
were studied through an illustrative simulation. The results showed that im-
plementing RSC codes on direct source-to-destination link should be the best
choice if the channel is of good quality, meaning that the BER performance can
achieve a target level. Otherwise, a distributed turbo codes with cooperation
of relay should be the most effective scheme in minimising both the error rate
and energy consumption. Hence from the demonstration of network resources
allocation, a good BER performance with low energy consumption strategy can
be realised through a distributed channel coding scheme.

The work of this thesis proposed solutions to deal with an impulsive inter-
ference environment for both direct link and network topologies. However, we
need further studies especially in the distributed coding schemes, in order that
general conclusions can be drawn. It is already difficult for the interference and
the cooperative channels. The impulsive nature of the network interference and
the fact that stable distributions are good models do not facilitate things. For
our study, it is in fact that a general framework is needed but many aspects are
difficult to handle with stable interference. We can for instance mention that the
dependency in time and space has important impacts when dealing with mobility
and multiple antennas.



Appendix A

Power distribution

A.1 Assumptions

We consider a disc of radius R where N users are randomly placed following a
uniform distribution.

Figure A.1: Objects uniformly distributed in a circle. The object under study is
in the centre of the environment.

Any of the object in the environment can be an interferer. The number κ of
interferers depends on the users’ density, the maximum range for a signal to be
received and the activity in the network (number of simultaneous active users).
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We can consider a Poisson distribution for this variable.

We ignore the near field transmission properties and consider that the re-
ceived power is given by:

Pr ∝ Ped
−a (A.1)

a is the attenuation coefficient which can take values between two and six. We
can from (A.1) consider that the channel is given by:

γ = d−ai (A.2)

A.2 Users’ distribution

Let R be the radius of the considered area. If no condition is placed on the pos-
sible position of interferers, let Fd be the cumulative distribution of the distance
from the considered receiver and one interferer:

Fd(x) = P(d ≤ x) =
πx2

πR2
=
x2

R2
(A.3)

Equation (A.3) is valid for 0 ≤ x ≤ R. Of course Fd(x) = 0 if x < 0 and
Fd(x) = 1 if x > RM .

The probability density function is then the derivative of Fd(x):

fd(x) =
dF

dx
(x) =

2

R2
x (A.4)

Equation (A.4) is valid for 0 ≤ x ≤ R. Of course fd(x) = 0 if x < 0 and
x > RM .

A.3 Interfering power distribution

We now consider the scenario from equation (A.2). We determine the distribu-
tions for distances d such as 0 ≤ d ≤ R. Because γ = d−

a
2 , this means that

R− a
2 ≤ γ < +∞.
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The cumulative distribution for one interfering power is then:

Fγ(x) = P(γ ≤ x)

= P(d
− a

2
i ≤ x)

= P(d
a
2
i ≥ x−1)

= P(di ≥ x−
2
a )

= 1− Fd(x
− 2
a )

= 1− x−
4
a

R2
(A.5)

For x < R− a
2 , Fγ(x) = 0.

The probability density function is then:

fγ(x) =
4x−

4
a
−1

aR2
(A.6)

For x < R− a
2 , fγ(x) = 0.

A.4 Further remark

Let us now calculate the mean of γ in the case a 6= 4 which should be considered
separately.:

E [γ] =

∫ +∞

R−
a
2

xfγ(x)dx

=

∫ +∞

R−
a
2

x
4x−

4
a
−1

aR2
dx

=

∫ +∞

R−
a
2

4x−
4
a

aR2
dx

=
4

aR2

[

x1−
4
a

1− 4
a

]+∞

R−
a
2

(A.7)

If a > 4, E [γ] will tend towards infinity. If a = 4, we would obtain a similar

conclusion. Finally, if a < 4, m = E [γ] = 4R−
a
2

4−a .
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We now have a look on the variance of γ.

E
[

γ2
]

=

∫ +∞

R−
a
2

x2fγ(x)dx

=

∫ +∞

R−
a
2

x2
4x−

4
a
−1

aR2
dx

=

∫ +∞

R−
a
2

4x−
4
a
+1

aR2
dx

=
4

aR2

[

x2−
4
a

2− 4
a

]+∞

R−
a
2

(A.8)

When a > 2, the variance of γ is infinite. In that case the central limit theorem
does not apply and we should use the generalized central limit theorem [64,
Definition 1.1.5 page 5], [58, Theorem 2 page 22]. We can then expect that
the multiple access interference from 1.19 falls into the attraction domain of an
α-stable distribution. This is essentially the consequence of neglecting the near
field but it happens that this approximation is acceptable in many applications.



Appendix B

First limit calculation

In this appendix we want to determine the limit of the first term in (1.25).

lim
R→+∞

λπR2
(

φψ
(

ωR− a
2

)

− 1
)

(B.1)

Since ψ is a random variable with mean 0 and a finite variance σ2
psi, we can

give the Taylor expansion of φψ(x), for x near 0, to get the approximations:

φψ(x) = 1−
σ2
ψ

2
x2 + o(x2). (B.2)

Using (B.2), we can approximate φψ
(

ωR− a
2

)

when R → +∞ and obtain:

λπR2
(

φψ
(

ωR− a
2

)

− 1
)

= λπR2

(

1−
σ2
φψ

2

(

ωR− a
2

)2
+ o

(

ω2R−a
)

− 1

)

= λπ

(

σ2
φψ

2
ω2R2−a + ω2o

(

R2−a
)

)

(B.3)

When a > 2, R2−a tends towards 0, so:

lim
R→+∞

λπR2
(

φψ
(

ωR− a
2

)

− 1
)

= 0 (B.4)
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Appendix C

Second limit existence

In this appendix we want to determine the existence of the second term in (1.25):

lim
R→+∞

(

λπω
4
a

∫ +∞

ωR−
a
2

dφψ
du

(u)u−
4
adu

)

(C.1)

Similarly as in annex B, using the fact that ψ is a random variable with mean
0 and a finite variance σ2

psi, we can give the Taylor expansion of φψ(x) in (B.2),
for x near 0, to get this second approximation:

dφψ
dx

(x) = −σ2
psix+ o(x). (C.2)

We use (C.2) to approximate dφψ
du

(u) when R → +∞ and obtain:

dφψ
du

(u)u−
4
adu =

(

σ2
φψ
u+ o (u)

)

u−
4
adu (C.3)

We can the write the primitive of the product of u−
4
a by u. If it exists in zero,

the limit will exist:

∫

u−
4
audu =

∫

u1−
4
adu =

u2−
4
a

2− 4
a

(C.4)

If a > 2, 2− 4
a
> 0, the primitive in (C.4) exists when R tends towards infinity

(u→ 0) (and is equal to 0).
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Appendix D

Bayes’ rule and its useful expansions

For any two random variables X and Y , the joint probability of X and Y ,
P (X, Y ), can be expressed as a function of the conditional probability of X and
Y , P (X/Y ), as

P (X, Y ) = P (X/Y )P (Y ). (D.1)

For the joint random variables U = {X, Y }, V = {Y, Z}, the Bayes’ rule and
equation (D.1) lead to the following expression:

P ({X, Y }/Z) = P (U/Z) =
P (U,Z)

P (Z)
=
P (X, Y, Z)

P (Z)
=
P (X, V )

P (Z)
=
P (X/V )P (V )

P (Z)

=
P (X/{Y, Z})P (Y, Z)

P (Z)
= P (X/{Y, Z})P (Y/Z).

(D.2)
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Abstract

Internet of Things brought great interests in recent years for its attractive applications and in-
telligent structure. However, the implementation of sensor networks still presents important
challenges such as the generation of Multiple-Access-Interference (MAI) with impulsive nature
and the relatively high energy consumption. Both the MAI and the thermal noise should be
considered due to their strong impairments each may cause on the communication quality. We
employ the stable and Gaussian distributions to model the MAI and the thermal noise respec-
tively. Firstly we study the performance of turbo codes in the direct link and we propose the
p-norm as a decoding metric. This metric allows a considerable error correction performance
improvement which is close to the optimal decoder. Then we investigate cooperative communi-
cations. The probability densities in the decision statistic of the optimal receiver are estimated
using importance sampling approach when both the stable and Gaussian noises are present.
Such a method is computationally expensive. Hence we develop an approximation approach
based on the Normal Inverse Gaussian (NIG) distribution. This solution is efficient for calcula-
tion and is proximate to the optimal receiver. In addition we show that the p-norm receiver has
robust performance no matter what kind of noise is dominant. At last we combine the channel
coding and cooperative communication works to establish a distributed channel coding strategy.
Through some simulation assessments, the energy saving strategy can be realized by choosing
an appropriate distributed channel coding scheme based on the direct link quality and target bit
error rate.

Keywords: Sensor networks, Multiple-Access-Interference, stable distribution, turbo codes,
cooperative communications, distributed channel coding

Résumé

L’Internet des objets, plus particulièrement les réseaux de capteurs, a attiré beaucoup d’attention
ces dernières années. Sa mise en œuvre soulève de nombreuses difficultés, comme la généra-
tion d’interférences d’accès multiple (MAI) à caractère impulsif et la consommation d’énergie
relativement forte. Les MAI et le bruit thermique doivent être considérés simultanément car ils
perturbent fortement les communications. Nous modélisons les MAI et le bruit thermique respec-
tivement par la distribution stable et gaussienne. Nous étudions tout d’abord l’effet des turbo
codes sur le lien direct en utilisant la norme-p comme métrique de décodage. Cette métrique
permet une performance de correction d’erreur proche du décodeur optimal. Ensuite nous nous
penchons sur les communications coopératives. A l’aide de l’échantillonnage préférentiel, nous
estimons les densités de probabilité de la décision statistique du récepteur optimal en présence
des bruits stable et gaussien. Cette approche est coûteuse en calcul. Nous proposons donc
d’approximer ces densités de probabilité par la distribution gaussienne inverse normale (NIG).
Cette solution de calcul est efficace pour approcher le récepteur optimal. Nous montrons égale-
ment que le récepteur utilisant la norme-p a des performances robustes, quel que soit le type
de bruit dominant. A la fin nous combinons les travaux du codage canal et des communications
coopératives pour établir une stratégie de codage canal distribué. Basé sur la qualité du lien
direct et le niveau de taux d’erreur binaire envisagé, la stratégie d’économie d’énergie peut être
mise en place via le choix d’un schéma de codage canal distribué.

Mots clés: réseaux de capteurs, interférences d’accès multiple, distribution stable, turbo-codes,
communications coopératives, codage canal distribué


	Title
	Abstract
	Résumé
	Contents
	List of Tables
	List of Figures
	Introduction
	Chapter 1 : Multiple-Access-Interference environment
	1.1 Interference model
	1.2 Stable distribution
	Generalities
	Parameter estimation
	Generation

	1.3 Demonstration of the stable model for MAI
	1.4 Power solution for heavy-tailed process
	Strength of stable variables
	Strength illustrations for stable variables

	1.5 Illustration of the model validity
	1.6 Some receiver strategies
	Problem formulation
	Optimum receiver
	Optimal performance evaluation
	Suboptimal strategies
	Simulation results

	1.7 Conclusion

	Chapter 2 : Channel coding study in direct link
	2.1 Turbo code principle
	Turbo encoder
	Turbo decoder

	2.2 The BCJR MAP algorithm for decoding of turbo codes
	The BCJR MAP decoding algorithm
	LLR decoding structure
	LLR calculation

	2.3 Applying turbo codes in the MAI environment
	Huber metric in MAP LLR
	Numerical-based PDF calculation
	p-norm metric

	2.4 Simulation results
	Stable interference only
	Stable interference plus Gaussian noise

	2.5 Conclusion

	Chapter 3 : Robustness in cooperative communications
	3.1 System scenario
	3.2 Detection problem
	3.3 Receiver strategies
	Optimal receiver

	3.4 Suboptimal receiver
	Linear receiver
	Linear combiner
	Non-linear receiver
	NIG approximation

	3.5 Strategy comparison
	3.6 Conclusion

	Chapter 4 : Distributed channel coding in cooperative communications
	4.1 Distributed channel coding strategy
	Communication topology and scenario
	Distributed channel coding scheme

	4.2 Energy consumption study
	4.3 Scheme choice investigation
	4.4 Conclusion

	General conclusion
	Appendix A : Power distribution
	Assumptions
	Users' distribution
	Interfering power distribution
	Further remark

	Appendix B : First limit calculation
	Appendix C : Second limit existence
	Appendix D : Bayes' rule and its useful expansions
	Bibliography
	Publications
	Résumé - Abstract

	source: Thèse de Wei Gu, Lille 1, 2012
	d: © 2014 Tous droits réservés.
	lien: doc.univ-lille1.fr


