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à ma formation scientifique et égalment M.Luc Dormieux pour son accueil chaleureux au sein
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Mes remerciements s’adressent également à M.Weiya XU pour ses soutiens et ses conseils

depuis mes études en master de recherche à l’Université de Hohai en Chine. Je voudrais
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Ce travail, réalisé principalement au Laboratoire Navier et Laboratoire de Mécanique

de Lille et en collaboration avec l’ANDRA (Agence nationale pour la gestion des déchets

radioactifs), est lié à la problématique du stockage des déchets radioactifs à haute activité

et à vie longue. La couche d’argilite du Callovo-Oxfordien a été choisie comme matériau

constitutif de la barrière géologique vis à vis des radioéléments des colis de déchets.

En tant que roches argileuses dures, l’argilite du Callovo-Oxfordien est un matériau poreux

multi-échelle comprenant des agrégats d’argile structurés, des phases minérales telles que le

quartz, la calcite, etc et des pores. Plus précisément, deux échelles différentes peuvent être

identifiées. A l’échelle dite mésoscopique, l’argilite peut être considérée comme consitituée

une matrice d’argile dans laquelle des inclusions de quartz ou de silice sont noyées. La taille

typique de ces inclusions minérales est de quelques dizaines de µm. A cette échelle, la matrice

d’argile apparâıt comme un matériau homogène. A une échelle fine, dite microscopique, la

phase argileuse peut être décrite comme un matériau poreux avec des pores noyés dans une

phase solide. La taille typique des pores est de quelques dizaines de nm, ce qui légitime une

hypothèse de séparation d’échelles.

Dans l’objectif de formuler un modèle prédictif du comportement d’argilite, diverses

recherches ont été réalisées depuis quelques années sur ces matériaux [Kaarsberg,59],

[Hornby et al.,94], [Hornby,98], [Sayers,94], [Sayers,99], [Chiarelli et al.,03], [Conil et al.,03],

[Ulm et al.,05], [Draege et al.,06], [Bobko08], [Abou-ChakraGuery et al.,08]. Dans une

vision purement macroscopique, [Chiarelli et al.,03], [Conil et al.,03] ont développé une

modélisation qui couple une plasticité cohésive-frottante et endommagement. Les modèles

proposés sont capables de décrire les caractéristiques principales de l’argilite, la sensibilité de

la réponse mécanique à la pression de confinement, la dilatance volumique, la dégradation des

propriétés élastiques et l’anisotropie induite. Ils conduisent à de bonnes prévisions en termes

de la relation macroscopique de contrainte-déformation. Cependant, ils ne sont pas en mesure

de prendre en compte les mécanismes de déformation liés à des hétérogénités variables avec

la profondeur sur le site au sein du matériau et en particulier sa composition minéralogique.

Pour surmonter cette difficulté, [Abou-ChakraGuery et al.,08] ont adopté une formulation

incrémentale pour la modélisation d’un matériau triphasé, constitué d’inclusions minérales

élastiques ou endommageables (grains de quartz, de calcite) plongés dans une matrice plas-

tique d’argile. Une plasticité non-associée et dilatante de type Drucker-Prager a été considérée

pour la matrice d’argile. Plus récemment, à plus petite échelle, l’analyse minéralogique
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[Robinet,08] permis de montrer que la matrice d’argile est elle même constituée de partic-

ules d’argile et de micropores1. Sur la base de travaux de [Abou-ChakraGuery et al.,08]

et afin de prédire de façon plus pertinente le comportement macroscopique de l’argilite

(fortement sensible à la presence de micropores), [Shen et al.,12] ont proposé une procédure

d’homogénéisation en deux étapes: l’homogénéisation de type ’micro-méso’ à laquelle l’argile

est décrite comme une phase solide de type Drucker-Prager contenant des micropores

sphériques; ensuite une homogénéisation de type ’méso-macro’ considérant les effets des in-

clusions minérales. Toutefois, ces recherches ignoront la microstructure de la matrice d’argile

et en particulier des feuillets qui jouent un rôle très important dans l’anisotropie de l’argilite.

La microstructure des particules argileuses sous form de feuillets a été prise en compte dans

modèles élastiques indiquant l’orientation de particules solides [Hornby et al.,94] [Sayers,94]

[Draege et al.,06] ou par des modèles macroscopiques décrivant l’orientation des espaces in-

terstitiels entre des particules [Ulm et al.,05] [Bobko08]. Néanmoins, le comportement élasto-

plastique n’a pas encore été modélisé dans le cadre d’une approche micromécanique.

Le point de départ de cette thèse est une tentative de formuler une description des pro-

priétés élasto-plastiques et isotropes transverses de la matrice argileuse qui est sythetisée

comme un medium granulaire comprenant des sphères composites (grains sphériques feuil-

letés entourés par des interfaces) et des pores. Plus concrètement, au chapitre 1 nous

nous sommes concentrés sur la modélisation de la matrice d’argile en s’appuyant sur un

changement d’échelle ’micro-méso’ (Voir Fig.1.1 du niveau I au niveau II) tenant compte des

mécanismes de glissement plastique intragranulaire et de glissement d’interface intergran-

ulaire. Le problème d’homogénéisation de la matrice d’argile et de phases d’inclusion du

niveau supérieur (du niveau II au niveau macro) peut alors être résolu suivant la démarche

developée par [Abou-ChakraGuery et al.,08] puis [Shen,11]. Cet aspect ne sera pas discuté

dans mémoire de thèse.

Pour l’étude du chapitre 1, nous avons eu recours à un critère de plasticité proposée de type

Tresca, Le comportement d’interface est apparu important pour améliorer la modélisation.

Un certain nombre de questions scientifiques liées au probleme d’interface se sont ainsi poées.

Comment rendre compte d’une dilatance volumique dans le comportement de la matrice

argileuse, alors que le modèle ne prévoit que de la contractance volumique? Puisque la matrice

d’argile a une microstructure granulaire, comment établir un modèle pour matériau granulaire

1On notera que ces micropores constituent le volume principal de pores de l’argilite [Andra,05].
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tenant compte d’une interface cohésive-frottante. Les chapitre 2 et chapitre 3 traitent de ces

questions.

La matrice de l’argilite étant constituée de grains en interaction le long de leurs interfaces,

les propriétés mécaniques effectives sont fortement affectées par ces interfaces. Compte tenu

de l’insuffisance du critère de Tresca pour expliquer le comportement des géomateriaux, on se

propose d’établir un modèle de matériaux granulaires tenant compte d’une interface cohésive-

frottante. A cette fin, on propose tout d’abord au chapitre 2 un modèle poro-élastique pour

les matériaux granulaires fluide-saturés avec effets d’interface imparfaite. Ce modèle est

dérivé de la solution d’un problème d’Eshelby généralisé incorporant deux caractéristiques

spécifiques: couches minces molles entourantes les grains rigides et la pression interstitielle

dans l’espace des pores. En s’appuyant sur des résultats issus du modèle poro-élastique,

on construit au chapitre 3 dans le cadre des methodes d’homogénéisation non-linéaire, un

critère de résistance macroscopique d’un milieu granulaire avec interfaces imparfaites entre

des grains rigides. L’interface cohésive-frottante est caractérisée par un critère de rupture de

Mohr-Coulomb et une règle d’écoulement associée.

Pour la transition ’micro-macro’ complète en vue de l’application à l’argilite du Callovo-

Oxfordien, au chapitre 4, nous proposons un modèle de prédiction de la résistance de

l’argilite du Callovo-Oxfordien sous l’hypothèse que la phase solide de l’argile est un matériau

de Drucker-Prager parfaitement plastique. Comme mentionné précédemment, l’argilite du

Callovo-Oxfordien [Andra,05] est un matériau poreux multi-échelle (Porosité à l’échelle mi-

croscopique, inclusion à l’échelle mésoscopique). En conséquence, l’homogénéisation ’micro-

macro’ peut être réalisée en deux étapes. La première étape est le passage ’micro-méso’

dans lequel la matrice argileuse décrite comme un matériau poreux, doit être homogénéisée.

La deuxième étape traite la transition ’méso-macro’ où la matrice d’argile apparâıt comme

un matériau homogène et les inclusions solides peuvent être considérées rigides par rap-

port à l’argile. On notera que pour la premier̀e étape, nous avons eu recours à des

résultats d’homogénéisation non linéaire sous la forme d’un critère analytique elliptique

([Barthelemy et al.,03] [Maghous et al.,09]). Nous nous concentrons donc sur la deuxième

étape. Cette question a été abordée récemment dans le cadre de l’homogénéisation non

linéaire à l’aide de la méthode sécante modifiée [Shen et al.,12]. Le présent chapitre explore

une approche alternative qui peut être considérée comme une extension du modèle de Gur-

son original. Au lieu d’une cavité sphérique entourée d’une matrice, on adopte le modèle de
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cellule sphère avec noyau rigide composé d’un noyau rigide sphérique entouré par la matrice

homogénéisée déterminée à partir de la première étape (voir Fig. 4.2). Ainsi, au lieu d’un

matériau de von Mises, la coquille est une phase compressible (voir aussi [Shen,11]). Le critère

de rupture est issu de ce modèle dans le cadre de la méthode cinématique de l’analyse limite.

De plus, il est important de souligner que le mécanisme de rupture retenu est susceptible

d’inclure une concentration de déformation à l’interface de noyau-matrice. Il peut-être décrit

mathématiquement à l’aide d’une discontinuité de vitesse.
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Rappels du contenu

L’argilite est un milieu poreux complexe dont la matrice est composée d’une phase argileuse

et de pores. Il comprend également des matières solides minérales, tels que le quartz et la

calcite principalement. Le présent chapitre se limite à la formulation d’un modèle du com-

portement mécanique de la matrice argileuse poreuse. Plus précisément, il s’agit d’établir un

modèle ’micro-macro’ permettant d’écrire la réponse élasto-plastique et isotrope transverse

en s’appuyant sur l’approche incrémentale de [Hill,65] pour l’homogénéisation non linéaire.

Il convient de souligner que le modèle tient compte de la structure feuilletée des partic-

ules, de la distribution des orientations des grains, et bien entendu des interfaces au sein de

l’assemblés conformément à données microstructurales disponibles micrographie en micro-

scope électronique à balayage [Hornby et al,94] [Hornby,98] [sammartino,01] [Ulm et al.,05]

(see Fig.1.2).

En effet, sur la base de ces observations de la microstructure de la matrice argileuse et

l’expérience de la nanoindentation [Bobko et al.,08], un modèle morphologique est proposé

qui considère que la matrice argileuse est un milieu granulaire en deux phases comprenant des

sphères composites (grains sphériques feuilletés entourés par des interfaces) et des pores. Avec

l’objectif de proposer une modélisation polycristalline poreuse avec des effets d’interfaces,

en s’appuiyant sur des travaux de [Dormieux et al.,07] [Fritsch et al.,07] [Maalej et al.,09]

[Dormieux et al.,10], on se propose d’étudier dans ce chapitre la réponse élasto-plastique en

considérant simultanément deux mécanismes de plasticité: les déformations plastiques des

cristaux et les glissements le long des interfaces intercristallines.

A cette fin, le critère d’activation des cristaux est décrit par une loi de comportement de

type Schmid. Un critére de type Tresca est utilisé pour décrire la résistance de l’interface.

Dans le cadre de l’approche incrémentale, un premier modèle anisotrope est proposé en

appliquant le schéma auto-cohérent classique; ce modèle ne tient pas compte de l’effet de

l’interface. Ensuite, le problème d’inclusion généralisé d’Eshelby est revisité afin d’y intégrer

les interfaces. Dans ce cadre, une solution originale numérique du problème d’une sphère

feuilletée entourée d’une interface imparfaite est développée. Sur la base de cette solution,

un deuxième modèle auto-cohérent qui considère l’évolution simultanée des deux mécanismes

locaux de plasticité est développé. Enfin, des prédictions numériques de ces deux modèles

sont comparées et permettent de démontrer la validité du modèle auto-cohérent proposé avec

prise en compte des effects d’interface.
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Les simulations numériques des essais de compression uniaxiale suggèrent que la rup-

ture macroscopique ne peut pas être expliquée uniquement à l’aide du seul mécanisme de

glissement intracristallin (feuillet sur feuillet). Néanmoins, le comportement macroscopique

élasto-plastique et la rupture peuvent être prédits avec succès en les interprétant comme la

conséquence d’une destruction successive des cristaux d’argile et des interface.
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1.1 Introduction

Shales are complex porous media composed of pores and the plate- or sheet like structured

clay mineral phases. Shales also include lots of mineral solids, such as quartz, calcite, feldspar

and pyrite. To formulate a predictive constitutive model of shale to understand how shales

behave mechanically, various researches have been realized in the past for this kind of materi-

als [Kaarsberg,59], [Hornby et al,94], [Sayers,94], [Hornby,98], [Sayers,99], [Chiarelli et al.,03],

[Conil et al,03], [Ulm et al.,05], [Draege et al,06], [Abou-Chakra et al.,08], [Bobko et al.,08].

Macroscopically, [Chiarelli et al.,03], [Conil et al,03] developed a modeling approach which

couples typical cohesive-frictional plasticity model and damage model. The proposed model

is able to describe the main features of the shale such as non associated plastic flow, dilatancy,

degradation of elastic properties and induced anisotropy, and to provide good predictions in

terms of macroscopic stress-strain relations for the Callovo-Oxfordian argillites. But these

models are not able to take into account deformation mechanisms related to material hetero-

geneities (mineralogical compositions).

To overcome this shortcoming, [Abou-Chakra et al.,08] adopt an incremental formulation

for the modeling of a three-phase material which is constituted of elastic or damaged mineral

inclusions (quartz and calcite grains) and a plastic clay matrix. A non-associated and dila-

tant Drucker-Prager plasticity is considered for the clay matrix. More recently, at smaller

scale, the mineralogical analysis [Robinet,08] shows that the clay matrix is constituted of

clay particles and micro-pores, and in fact these micro-pores constitutes the main pores vol-

ume of the argillite [Andra,05]. On the basis of [Abou-Chakra et al.,08], in order to predict

the macroscopic behavior of argillite which is sensitive to such micro-pores, [Shen et al.,12]

proposed a two-step homogenization procedure, from microscopic scale to mesoscopic scale

considering a Drucker-Prager plastic solid phase containing spherical micropores, then from

mesoscopic scale to macroscopic scale considering the effects of mineral inclusions. However,

these multiscale researches ignored the impacts of the plate- or sheet like microstructure of

clay matrix which play a very important role in the anisotropic property of shales. The plate-

or sheet like structure commonly attributed to clay has been captured by models describing

the orientation of these solid particles [Hornby et al,94], [Sayers,94], [Draege et al,06] or by

models describing the orientation of the pore spaces between particles [Ulm et al.,05]. But

anisotropic elastoplastic behaviors have been rarely modeled in the framework of a microme-

chanical approach.
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In order to formulate an effective model describing the transversely istropic elastoplas-

tic behavior of clay-like material, we focused on modeling the clay matrix at the micro

to mesoscopic scale (See Fig.1.1 level I to level II), without consideration of the inclusion

phases. The higher level (level II to level Macro) homogenization problem of clay matrix

and inclusion phases may be solved in the way of [Abou-Chakra et al.,08] which will not

be discussed in this paper. We consider clay matrix is composed of two-phase composite

including pores and composite sphere (laminated spherical grains surrounded by interfaces).

More concretely, the methodology in this paper consists in considering the pure clay matrix

as a porous polycrystal. The sheet-like structured solid particles are regarded as crystals

with a fixed slip plan for each. In addition, an important improvement is to capture the

influence of the mechanical interaction between crystals through the interfaces. Readers

are referred to the rencent litteratures concerning the predictions of effective strength of

granular material taking acount of interface effects [Dormieux et al.,07], [Fritsch et al.,07],

[Maalej et al.,09], [Dormieux et al.,10]. These studies are realized by using a self-consistent

scheme approach including pores and composite spheres (elastic isotropic solid sphere sur-

rounded by an elastic interface); then the effective strength criterion is predicted then by

the modified secant method for which the nonlinear local behavior of each phase is de-

scribed by considering a secant stiffness corresponding to an appropriate effective deformation

[Berveiller et al.,79],[Tandon et al.,88],[Ponte Castaneda et al.,98].

In this research, we propose a new model to describe the macroscopic elastoplastic stress-

strain behavior of clay matrix in the principle of incremental approach [Hill,65], with simul-

taneous evolution of two mechanisms of plasticity: intragranular slips between the sheets

and intergranular slips along the interfaces. To begin with, based on the microstructures

and mechanisms identified in literatures, a morphological model is synthesized in section 1.2.

Then the principles of incremental approach with a self-consistent scheme to simulate the

elastoplastic behavior for polycrystal without considerations of interface effects in section

1.3. Then, in this incremental approach framework, to deal with the nonlinear homogeniza-

tion of polycrystalline solid with imperfect interfaces, a revisit of the generalized Eshelby

problem is provided in section 1.4. Subsequently, a new Eshebly problem of laminated solid

grain surrounded by imperfect interface is solved numerically. By comparing two different

models which are proposed respectively in section 1.3 and 1.4, a validation of the two models

is performed in section 1.5.1. Finally, the macroscopic elastoplastic stress-strain behavior is
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Figure 1.1: Multiscale model for shale, adapted from [Ulm et al.,05]
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predicted by considering two deformation mechanisms of grain and interface which are taking

place simultaneously at the microscopic scale (see section 1.5.2).

Notations: J and K the spherical and deviatoric operators, respectively. J = 1/3(1⊗1) and

K = I− J. The terms 1 and I denote the second and fourth order symmetric identity tensor,

respectively.

1.2 Morphological Model

1.2.1 Morphology of clay matrix

The scanning electron microscope (SEM) microphotography imaging [Hornby et al,94],

[Hornby,98],[sammartino,01],[Ulm et al.,05] shows that solid phase of clay matrix is composed

by many aleatoricly distributed clay particles with disordered orientation of contact surfaces

between the clay particles (see Fig.1.2). Especially based on the nanoindentation results of

shale provided by [Bobko et al.,08] summarized as follows:

by defining a so-called ’clay packing density’ η = 1 − f
1−finc

, where f is the porosity

and finc is the non-clay volume fraction of shale, a percolation threshold of η0 = 0.5 is

observed in the indentation results.

a so-called ’nano-mechanical elementary building block’ of shales is founded transversely

isotropic in stiffness, and isotropic and frictionless in strength.

a model of the porous clay morphology has been synthesized which leads to a sphere-like

mechanical morphology for visibly plate- or sheet-like clay particles. Moreover, in order to

take account of mechanical effects of the contact surfaces between the clay particles, it’s

assumed that the composite spheres of clay matrix are organized in the form of laminated

spherical grains surrounded by interfaces (discontinuity of displacement) with an isotropic

distribution orientation. The morphological model of clay matrix is sketched in Fig.1.3.

1.2.2 Rotated Configuration

The laminated spherical clay particles are considered as crystals. Any single crystal (or any

crystal coordinate system) is related to the global coordinate system (e1, e2, e3), in which the

sheets’ normal orientation is defined as er by using the Euler angles θ and φ (see Fig.1.4).
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Figure 1.2: a SEM image showing the microstructure of Callovo-Oxfordian shale

[sammartino,01]

Figure 1.3: Morphological model of pure clay matrix

Figure 1.4: Orientation of composite sphere, defined by the direction of its axis of symmetry

by means of the two Euler angles θ and φ (ψ is equal to zero) in the Cartesian system

Oe1, e2, e3
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Therefore, the orientation vectors er and eθ can be expressed as:

er = sin θ cosφe1 + sin θ sinφe2 + cos θe3

eθ = cos θ cosφe1 + cos θ sinφe2 − sin θe3

(1.1)

A crystal orientation matrix Q(θ, φ, ψ) in the form of Voigt is introduced here to define the

crystal (local) coordinate system with respect to the material co-rotational coordinate system

(see Appendix A, [Zamiri et al.,07],[Bunge,82],[Kocks et al.,00]). According to the definitions

of axes shown in Fig.1.4, the orientation matrix Q(θ, φ, ψ) and the matrix components li, mi,

ni (i=1...3) can be expressed as follows:
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(1.2)

Q(θ, φ, ψ) =
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(1.3)

With the components li, mi, ni (i = 1...3) of Q(θ, φ, ψ), another useful orientation matrix

T (θ, φ, ψ), in the form of Voigt, is defined as:

T (θ, φ, ψ) =





























l21 m2
1 n21 2m1n1 2l1n1 2l1m1

l22 m2
2 n22 2m2n2 2l2n2 2l2m2

l23 m2
3 n23 2m3n3 2l3n3 2l3m3

l2l3 m2m3 n2n3 m2n3 +m3n2 l2n3 + l3n2 l2m3 + l3m2

l1l3 m1m3 n1n3 m1n3 +m3n1 l1n3 + l3n1 l1m3 + l3m1

l1l2 m1m2 n1n2 m1n2 +m2n1 l1n2 + l2n1 l1m2 + l2m1





























(1.4)

Thus, a second order tensor (stress or strain tensor) in the crystal (local) coordinate sys-

tem can be transformed into the corresponding tensor in the material co-rotational (global)

coordinate system by the following relation,

ε(θ, φ, ψ)(e1,e2,e3) = QTε(er,eθ,eφ)Q (1.5)

So does the fourth order tensors, for example:

C(θ, φ, ψ)(e1,e2,e3) = T−1
C(er,eθ,eφ)

T (1.6)
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1.3 Plastic behavior of the polycrystal with perfect interfaces

To begin with, perfect interfaces between the single crystals constituting the polycrystal

model of the clay are assumed. The plasticity mechanism is assumed to take place in the

single crystals according to a Schmid-type model described hereafter.

1.3.1 Single crystal plasticity

Considering that a typically advanced mechanism to interpret the plastic behavior of clay

particles is a slip between sheets at the microscopic scale, a Schmid failure criterion of single

crystals is adopted. It relates the local shear stress expressed in the global coordinate system

(e1, e2, e3) to a critical stress: a slip system becomes activated once the effective shear stress

reaches a critical given value on the slip system,

f (α) =
∣

∣

∣
τ (α) − χ(α)

∣

∣

∣
− τ (α)cr (1.7)

where τ (α) and χ(α) represent the shear stress and back stress on αth slip system, and τ
(α)
cr is

the critical shear stress. To simplify our model, it’s assumed that each crystal has a unique

slip system; moreover, the strain hardening of the crystal is not considered. Then, the local

criterion can be expressed in a generic form:

f = |τ | − τcr ≤ 0 (1.8)

τ = σ : p (1.9)

with

p =
1

2
(n⊗ t+ t⊗ n) =

1

2
(er ⊗ eθ + eθ ⊗ er) (1.10)

the orientation tensor, the normal direction to the slip plane being er = t, and the orientation

vector of the slip line eθ = n.

The rate form of the constitutive equations, obtained through time derivation of the stress

tensor σ, takes then the following form:

σ̇ = L : ε̇ = L : (ε̇− ε̇p) (1.11)

where L denotes the fourth-order local tangent stiffness operator. The plastic strain ε̇p is

determined by the normality rule:

ε̇p = λ̇

(

∂f

∂σ

)

(1.12)
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This is completed by the standard consistency condition:

ḟ =
∂f

∂σ
: σ̇ = 0 (1.13)

The tangent modulus L readily reads then:

L =











Cel if f(σ) < 0 or f = 0 and ḟ < 0

Cel − (Cel: ∂f
∂σ )⊗(Cel: ∂f

∂σ )
( ∂f
∂σ

:Cel: ∂f
∂σ )

if f(σ) = 0 and ḟ = 0
(1.14)

the tensor ∂f
∂σ = 1

2 (er ⊗ eθ + eθ ⊗ er) which defines the direction of plastic flow contains the

orientation information of each crystal grain.

According to the expression (1.14), one can note that the components of the tangent stiffness

tensor L is identical to Cel, except that the component Lrθrθ is equal to 0 when the Schmid

criterion is attained. In other words, the shear stiffness disappears only in the intragranular

laminated directions for (er, eθ) once the crystal is plastified.

1.3.2 Polycrystalline plasticity of the clay

The elastoplastic response of the clay matrix is induced by two types of crystal properties:

an anisotropy once when plasticity occurs (see Fig.1.3), and isotropic grains keeping their

initial isotropy. Once the strength criterion is reached, the intrinsic anisotropic property of

the crystal is activated. For elastic grains, the slip system is inactivated, and the crystal

keeps its isotropic property.

Since we aim at applying the modeling to an uniaxial compressive loading, to describe

the distribution of crystal orientations which are symmetric to the axis of revolution e3, it is

necessary to introduce a critical orientation θc in the local plan of (er,U). The crystals with

this orientation is thus at boundary of activation (see Fig.1.5(a)). It can be concluded from

(1.1),(1.9),(1.10) that in uniaxial compression test, the first critical crystal (first activated

crystal) is oriented at the direction θ = 45o. With the increasing load, the orientations of

plastified crystals will generate a cone with a symmetric axis θ = 45o. The area inside this

cone represents orientations of plastified crystals with anisotropic properties, namely Cone

of plastified crystals, while the area outside the cone represents the non-activated crystals

having their elastic isotropic properties (Cone of elastic crystals on Fig.1.5(b)). The cone of

activated crystals will become larger with an increasing load, until 90o which corresponds to

a complete plastification of the crystals. It must be emphasized that each plastified crystal

has a different property according to its respective orientation (θ, φ, ψ).
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(a) Denomination of different axis

(b) Denomination of different areas

Figure 1.5: Orientation Distribution of activated and inactivated crystals

With progressively increasing number of activated crystal, the orientations of the plastified

crystals vary, and the distribution of the orientations is not isotropic any more. In particular,

it is important to note that the overall behavior of the homogenized medium composed by

the above two types of grains becomes transversely isotropic.

1.3.3 Principle of incremental method with self-consistent scheme

In this section, the Hill’s incremental formulation [Hill,65] is briefly reviewed and applied by

corresponding self-consistent scheme.

1.3.3.1 Incremental method

Let us consider the representative volume element (RVE), defined by a geometrical domain

Ω, this RVE is subjected on its boundary surface ∂Ω to a uniform strain rate field:

ξ̇(z) = Ė · z, z ∈ ∂Ω (1.15)

where z is the position vector defining the location in the RVE, and the tensor Ė is the

macroscopic strain rate. The RVE of heterogeneous material is composed of r (r = 1, N)
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phases of solid. Here Ωr and ϕr are the volume and the volume fraction of the phase r,

respectively. The notations a and ar will be used to denote the average of a field a(z) in the

entire RVE Ω and that in each phase Ωr.

a = 〈a〉 =
N
∑

r=1

ϕrar ; ar = 〈a〉r =
1

Ωr

∫

Ωr

a (z) dz (1.16)

As in (1.11), at the microscopic scale, the local nonlinear constitutive models are expressed

in the following incremental form.

σ̇ (z) = L (z) : ε̇ (z) (1.17)

Having in mind the classical Eshelby-based homogenization procedures [Eshelby,57] can

be reused for the resolution of the nonlinear problem associated to (1.17), a tangent strain

localization tensor A is introduced:

ε̇ (z) = A (z) : Ė (1.18)

The macroscopic stress rate is derived from the local stress average rule:

σ̇ = σ̇ (z) (1.19)

and reads:

σ̇ = L
hom : Ė = L (z) : ε̇ (z) (1.20)

where the macroscopic tangent operator Lhom is determined as:

L
hom = L (z) : A (z) (1.21)

From the formula (1.21), the determination of macroscopic tangent operator is related

to the local tangent localization tensor and local tangent stiffness at each point inside the

RVE. Due to the nonlinearity, and the resulting strain heterogeneity, the tangent stiffness is

approximated in each phase r by assuming that each phase has a uniform modulus, related

to the average value of local strain field in phase r.

∀z ∈ (r), σ̇ (z) = Lr : ε̇ (z) (1.22)

With this hypothesis, the relation between microscopic and macroscopic strain rates for each

phase and the tangent operator Lhom takes the form:

ε̇r = Ar : Ė (1.23)
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L
hom = Lr : Ar (1.24)

where Ar represents the tangent strain localization tensor for each phase r with the averaged

strain state.

1.3.3.2 Self-consistent scheme with laminated spheres

According to the morphology of clay matrix, a self-consistent approach is considered.

Each particle of a given phase r reacts as if it is embedded in the equivalent ho-

mogeneous medium which is looked for. For this approach allowing to study mate-

rials with polycrystal-like granular morphology, the reader may refer for instance to

[Kroner,78],[Suquet et al.,97],[Zaoui,02],[Dormieux et al.,06]. The tangent strain localization

tensor reads in this case as:

Ar =
(

I+ P
0
I :
(

Lr − L
hom
))−1

:

[

N
∑

s=0

ϕs

(

I+ P
0
I :
(

Ls (θ, φ)− L
hom
))−1

]−1

(1.25)

The self-consistent has been modified due to the anisotropic characteristic of the laminated

spherical particles which varies with orientations defined by (θ, φ) in the coordinate system

(see section 1.2.2). Therefore, we assumed that the average strain rate in the domain of

laminated sphere is obtained through the angular average. Here, the laminated particles

being assumed isotropically distributed, one has:

ε̇r =

∫ 2π

φ=0

∫ π

θ=0
ε̇r (θ, φ)

sin θ

4π
dθdφ (1.26)

With this hypothesis, the tangent strain localization tensor of self-consistent scheme can be

rewritten as:

Ar =

∫ 2π

φ=0

∫ π

θ=0

(

I+ P
0
I :
(

Lr (θ, φ)− L
hom
))−1 sin θ

4π
dθdφ

:

[

N
∑

s=0

ϕs

∫ 2π

φ=0

∫ π

θ=0

(

I+ P
0
I :
(

Ls (θ, φ)− L
hom
))−1 sin θ

4π
dθdφ

]

(1.27)

where the tangent modulus Lr(θ, φ) of phase r depends on the orientation defined by (θ, φ).

Introducing the (1.27) in (1.24) gives expression of the tangent operator:

L
hom =

N
∑

r=1

ϕrLr : Ar (1.28)

If distribution of the laminated spheres is not isotropic, the tangent strain localization tensor

and the tangent operator is thus obtained by appropriately integrating the angle θ on the
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ranges of cones of plastified crystals and cones of elastic crystals (defined in Fig.1.5). It

is important to note that for materials with inclusions of a same form and an isotropic

orientation distribution of inclusions, one has:

N
∑

s=0

ϕs

∫ 2π

φ=0

∫ π

θ=0

(

I+ P
0
I :
(

Ls (θ, φ)− L
hom
))−1 sin θ

4π
dθdφ = I (1.29)

However, this condition (1.29) is not satisfied in each self-consistent step until the end of the

iterations.

P0
I in (1.25) is the so-called Hill tensor which depends on both the geometry of the

inclusions r (be considered here as spheres) and on the tangent operator of the matrix.

Alternatively, the Hill tensor can be replaced by the equivalent Eshelby’s tensor.

S
esh (L) = P

0
I : L (1.30)

As mentioned in section 1.3.2, the macroscopic behavior of the clay matrix becomes trans-

versely isotropic once the grains begin to be plastified. So, a Hill polarization tensor problem

for a spherical inclusion in a transversely isotropic medium is needed to be solved.

To this end, [Ghahremani,77],[Gavazzi and Lagoudas,90] have generated the numerical

evaluation of Hill’s tensor and Eshelby’s tensor for ellipsoidal inclusions in anisotropic media.

For transversely isotropic matrix containing spherical voids, closed-form expression of P-

tensor (or equivalently available Eshelby tensor) can be found in [Withers,89].

1.3.4 Numerical simulations

This section is devoted to assess the performance of this first level modelling for mesoscopic

features of the elastoplastic behavior of clay matrix-like materials whose morphological model

has been analyzed in the section 1.2. The mechanical behavior of the grains with perfect

interfaces are predicted and analyzed according to different porosities.

The above model is applied to simulate uniaxial compression tests under strain rate-

controlled condition. The model contains four parameters: two elastic constants for initial

state of grains: Es, υs, the critical value of the shear stress for grains τcr, and the porosity

ϕ. The parameter values used for numerical simulations are: Es = 3000MPa, νs = 0.3,

τcr = 1.5MPa, ϕ = 0.2, 0.3, 0.4, 0.45 respectively. The predicted stress-strain curves for clay

matrix are provided in Fig.1.6 for different porosities.

As commonly observed, the curves appear as bilinear, thus stress-strain curve can be

divided into two phases. In the first phase, the material has an elastic behavior. We note
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that the elastic stiffness and the yield stress become much stronger when porosity is lower.

The same phenomenon is also observed in the second plastic phase, where the tangent stiffness

increases as the porosity is lower.
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Figure 1.6: Axial and lateral strains versus deviatoric stress curves in numerical uniaxial

compression tests with four different porosities ϕ = 0.2, 0.3, 0.4, 0.45

Despite its simplicity, the micromechanical model without consideration of interface leads

to the conclusion that porosity has an important role in the interpretation of the failure

mechanism of clays matrix. More specifically, only in the case of a high porosity about

0.45, the macroscopic rupture of laminated porous materials can be explained by the single

local plastic mechanism which is the intra-particle slip between sheets. However, based on

experimental data reported in [Alberto Ortega et al.,07] (for dozen samples of several differ-

ent shales collected from open literatures [Dewhurst and siggins,06], [Domnesteanu et al.,02],

[Jakobsen and Johansen.,00], [Jones and Wang,94], [Hornby,98]), it can be concluded that the

clay matrix porosities ϕ are about from 0.12 to 0.37 which are much less than 0.45. That is

why a second model which can take account of the second deformation mechanism of interface

is due.

1.4 Plastic behavior of the polycrystal with imperfect inter-

faces

The classical based self-consistent scheme has been described above, and needs to be com-

pleted by consideration of the interfacial mechanical effects. In this section, a nonlinear
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homogenization problem will be solved by the following incremental method, for the problem

of laminated spherical inclusion surrounded by imperfect interfaces (see section 1.4.3).

In order to capture the mechanical interactions at the contact surface between the crushing

crystals during the deformation process, a displacement rate jump taking place at the contact

surface Iij between the solid grains Gi and Gj is introduced.

Jξ̇K = ξ̇
j
− ξ̇

i
(1.31)

Then, the overall interface surface in the RVE is defined as Γ = ∪Iij , noting that 2|Γ| =
∑

i |∂Gs
i | where ∂Gs

i is the solid-to-solid contact boundary of constituent Gi. Moreover, in

order to implement the interface effects in homogenization methods, the idea is to represent

the heterogeneous solid phase by a composite sphere G ∪ Γ. The composite sphere is made

up of a homogeneous solid (isotropic or laminated) grain surrounded by an interface with

normal tangential stiffness coefficients Kn and Kt. where a displacement rate jump of this

kind of interface taking place at the boundary ∂Gi of the grain Gi reads:

[

ξ̇
]

i
= ξ̇

(

R+
)

i
− ξ̇

(

R−)
i

(1.32)

ξ̇(R+)i (resp. ξ̇(R
−)i) denotes the displacement rate of the external (resp. internal) boundary

∂G+
i (resp. ∂G−

i ). Recalling (1.31) and considering identical composite spheres, we have:

Jξ̇K =
[

ξ̇
]

i
−
[

ξ̇
]

j
= 2

[

ξ̇
]

(1.33)

The nonlinear relation between the stress vector rate Ṫ and the displacement rate jump
[

ξ̇
]

can be expressed as:

Ṫ = Ktan ·
[

ξ̇
]

(1.34)

Ktan = Ktan
n n⊗ n+Ktan

t (1− n⊗ n) (1.35)

where n is the outwards unit normal to the boundary of composite sphere, Ktan
n and Ktan

t are

the normal and the tangential tangent stiffness of the interface, respectively. The component

of the displacement rate jump and the stress vector rate can be expressed as follows:

Ṫn = Ṫ · n = Ktan
n ξ̇n

Ṫ t = Ṫ − Ṫnn = Ktan
t

[

ξ̇
]

t

(1.36)

with

ξ̇n =
[

ξ̇
]

· n
[

ξ̇
]

t
=
[

ξ̇
]

− ξ̇n · n
(1.37)
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The average strain rate field of the solid is defined as a generalized strain rate filed ε̇gen

[Dormieux et al.,10] which is the sum of the smooth strain rate field ε̇ in the solid grains and

the contribution of the displacement rate jumps.

ε̇gen (z) = ε̇ (z) +
∑

i

[

ξ̇
]

i

s
⊗ni (z) δ∂Gs

i
(1.38)

δ∂Gs
i
being the Dirac distribution. The macroscopic strain rate then can be rewritten as:

Ė =
1

Ω

(

∑

i

∫

Gi

ε̇dV +
∑

i

∫

∂Gs
i

[

ξ̇
]

i

s
⊗nidS +

∫

Gp

ε̇dV

)

(1.39)

1.4.1 Self-consistent scheme for generalized Eshelby problem

The Generalized Eshelby problem for the isotropic grains with interfaces is presented in

Fig.1.7. An auxiliary macroscopic strain rate Ė0 is applied on the RVE boundary surface ∂Ω

at infinity.

Figure 1.7: Generalized Eshelby problem for an isotropic grain surrounded by interface and

for spherical pore

For the problem of a pore as an inclusion embedded in the infinite medium with stiffness

Lhom, the average strain rate can be readily written as:

ε̇
p
=
(

I− S
hom
sph

)−1
: Ė0 (1.40)

For the problem of a spherical inclusion of radius r0 having an isotropic tangent stiffness

Ls and surrounded by an interface embedded in the infinite medium with stiffness Lhom, the

following Eshelby problem needs to be solved:


































r < r0, σ̇ = Ls : ε̇

r = r0, σ̇ · er = Ktan ·
[

ξ̇
]

r > r0, σ̇ = Lhom : ε̇

z → ∞, ξ̇ = Ė0 · z

(1.41)
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Based on definitions (1.32) and (1.33), the average stress rate σ̇
S∪I

attached to the entire

grain and the interface reads:

σ̇
S∪I

=
1

Ω

∫

r=r0

σ̇eshdV =
3

4πr20

∫

r=r0

er ⊗ σ̇esh · erdS (1.42)

where superscript of S ∪ I (resp. s) represents the solid sphere with interface (resp. spherical

solid). The average strain rate ε̇
s
and the average strain rate ε̇

S∪I
can be written as follows:

ε̇
s
=

1

Ω

∫

r=r−0

ξ̇
esh (

r−0
) s
⊗ erdS (1.43)

ε̇
S∪I

=
1

Ω

∫

r=r+0

ξ̇
esh (

r+0
) s
⊗ erdS (1.44)

where σ̇esh, ξ̇
esh

are the solutions of (1.41) which have been obtained in [Hashin,91],

[Herve and Zaoui,93], [Sanahuja,08] for the case of isotropic grain. r = r+0 (resp. r = r−0 )

represents the external lip face (resp. internal lip face) of the interface r = r0.

Then, according to (1.23), the micro-macroscopic strain rate relation reads:

ε̇
s
= As : Ė0

ε̇
S∪I

= AS∪I : Ė0

σ̇
S∪I

= BS∪I : Ė0

(1.45)

where AS∪I is the strain localization tensor, while BS∪I represents the stress localization

tensors. Both have to be determined. ε̇
S∪I

(resp. σ̇
S∪I

) is the average strain rate (resp.

stress rate) of the whole solid composite sphere. The solid space (resp. pore space) in the

RVE Ω is denoted by Ωs (resp. Ωp). ϕ is the pore volume fraction. According to (1.16), the

relation between σ̇ and Ė0 reads:

σ̇ = (1− ϕ) σ̇
S∪I

= (1− ϕ)BS∪I : Ė0 (1.46)

We have now to link the auxiliary strain rate Ė0 to the macroscopic strain rate Ė by adopting

(1.40) and applying the strain rate average rule, the macroscopic strain then reads:

Ė = ϕε̇
p
+ (1− ϕ) ε̇

S∪I
=

(

ϕ
(

I− S
hom
sph

)−1
+ (1− ϕ)AS∪I

)

: Ė0 (1.47)

Combining (1.46) with (1.47) readily yields the macroscopic stress rate-strain rate relation:

σ̇ = (1− ϕ)BS∪I :

(

ϕ
(

I− S
hom
sph

)−1
+ (1− ϕ)AS∪I

)−1

: Ė (1.48)
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which shows that the generalised self-consistent estimate of the effective tangent stiffness

operator can be written as:

L
hom = (1− ϕ)BS∪I :

(

ϕ
(

I− S
hom
sph

)−1
+ (1− ϕ)AS∪I

)−1

(1.49)

where AS∪I and BS∪I will be determined in the following for the case of isotropic sphere and

the case of laminated sphere respectively.

1.4.2 Solution for isotropic grains with imperfect interfaces

In the case of isotropic grains with imperfect interfaces, the problem (1.41) in 3D context

will be solved successively by considering a spherical strain rate-controlled loading Ė0 = Ė01

and a deviatoric strain rate-controlled loading Ė0 = Ė0(e1 ⊗ e1 − e2 ⊗ e2).

1.4.2.1 Isotropic loading

For the isotropic loading Ė0 = Ė01, owing to the spherical symmetry and the boundary

condition at infinity, the displacement rate field is looked for in the form

ξ̇
esh

i
(z) =

(

air +
bi
r2

)

er (1.50)

where i = s (resp. i = hom) represents the medium inside the inclusion (resp. the medium

outside the inclusion). The micro-macro strain rate relation (1.45) can be then written as,

ε̇
s
sph = αs

sphĖ0 = αs
sphĖ01

ε̇
S∪I
sph = αS∪I

sph Ė0 = αS∪I
sph Ė01

σ̇
S∪I
sph = βS∪Isph Ė0 = βS∪Isph Ė01

(1.51)

By taking into account boundary conditions and continuity conditions on the interface r = r0,

one can find the required coefficients of ai and bi to express the solutions of ξ̇
esh

, σ̇esh

according to (1.50), where i = s (resp. i = hom) which represents the medium inside the

inclusion (resp. outside the inclusion). The components αs
sph, α

S∪I
sph , βS∪Isph of the spherical

parts of the tensors As, AS∪I and BS∪I can then be deduced according to (1.51). After some

analytical calculations, one obtains,

αs
sph =

(3khom+4µhom)Ktan
n r0

(3ks+4µhom)Ktan
n r0+12ksµhom

αS∪I
sph =

(3khom+4µhom)(Ktan
n r0+3ks)

(3ks+4µhom)Ktan
n r0+12ksµhom

βS∪Isph =
3(3khom+4µhom)Ktan

n r0ks

4µhomKtan
n r0+3ksKtan

n r0+12ksµhom

(1.52)
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for which, the grain being isotropic, the tangent stiffness tensors read:

Lhom = 3khomJ+ 2µhomK

Ls = 3ksJ+ 2µsK
(1.53)

1.4.2.2 Deviatoric loading

Let us consider the deviatoric loading Ė0 = Ė0(e1⊗e1−e2⊗e2) expressed in the orthonormal

system (e1, e2, e3). Based on [Love,44], the displacement rate field is sought in the form

(spherical coordinate system (r, θ, φ) is considered):

ξ̇
esh

i
(z) = ξ̇eshr (r) sin2 θ cos 2φer + ξ̇eshθ (r) sin θ cos θ cos 2φeθ + ξ̇eshφ (r) sin θ sin 2φeφ (1.54)

With the components of ξ̇eshr (r), ξ̇eshθ (r), ξ̇eshφ (r) written in the following form:

ξ̇eshr (r) = air − 6υi
1−2υi

bir
3 + 3 ci

r4
+ 5−4υi

1−2υi
di
r2

ξ̇eshθ (r) = air − 7−4υi
1−2υi

bir
3 − 2 ci

r4
+ 2 di

r2

ξ̇eshφ (r) = −ξ̇eshθ (r)

(1.55)

where Ėi, υi denotes the tangent modulus and the Poisson’s ratio; ai, bi, ci, di are the coef-

ficients, with i = s (resp. i = hom) which represents the medium inside the inclusion (resp.

outside the inclusion). As in (1.50), by taking into account the boundary conditions and

continuity conditions at the interface r = r0, (1.45) can be written as:

ε̇
s
dev = αs

devĖ0 = αs
devĖ0(e1 ⊗ e1 − e2 ⊗ e2)

ε̇
S∪I
dev = αS∪I

dev Ė0 = αS∪I
dev Ė0(e1 ⊗ e1 − e2 ⊗ e2)

σ̇
S∪I
dev = βS∪Idev Ė0 = βS∪Idev Ė0(e1 ⊗ e1 − e2 ⊗ e2)

(1.56)

with the deviatoric components αs
dev, α

S∪I
dev , β

S∪I
dev of the tensors AS∪I , BS∪I which read,

αs
dev =

(

as − 21
5(1−2νs)bsr

2
0

)

1
Ė0

αS∪I
dev =

(

ahom +
4(4−νhom)
5(1−2νhom)

dhom
r30

)

1
Ė0

βS∪Idev =
(

as
(1+2νs) −

21bsr20
5(1+2νs)(1−2νs)

)

Ės

Ė0

(1.57)

However, the corresponding expressions of ai, bi, ci, di are too heavy to be written here.

1.4.3 Solution for laminated grains with imperfect interfaces

The problem of spherical laminated grains (composed of parallel sheets) surrounded by in-

terfaces will be solved in this section. The behavior of the interface is still the same as that



1.4 Plastic behavior of the polycrystal with imperfect interfaces 31

described in (1.34) and (1.35) in order to implement homogenization methods. The mechan-

ical property in each layer of the grain is considered to be isotropic and can be characterized

by Ls = 3ksJ + 2µsK. The equivalent homogenized medium which plays the role of the

reference medium showed in the Fig.1.8 has a transversely isotropic property Lhom.

Figure 1.8: Eshelby Problem for laminated grain surrounded by interface

It turns out that the corresponding generalized Eshelby problem appears to be compli-

cated to be solved analytically in the 3D context. Here a numerical way is proposed to solve

this problem. To this end, an isotropization technique applied to Lhom is proposed as follows,

khomapprox = 1
3

(

Lhom
rrrr + Lhom

rrθθ + Lhom
rrφφ

)

µhomapprox = Lhom
θφθφ

Lhom
approx = 3khomapproxJ+ 2µhomapproxK

(1.58)

That is to say, the transversely isotropic tangent stiffness is approximated by an isotropic one

at each iteration of the self-consistent procedure. The solution of the problem for laminated

grain with imperfect interface in 3D context will be sought, as the procedure in section 1.4.2,

by considering successively the different strain rate-controlled loading directions. Owing to

that the shear stiffness disappears only in laminated directions for (er, eθ) and the structure

presents an axis of revolution e3, 5 representative loading directions can be selected as follows:

Ė0 = Ė01,

Ė0 = Ė0 (−er ⊗ er + eθ ⊗ eθ), Ė0 = Ė0

(

eθ ⊗ eφ + eφ ⊗ eθ
)

Ė0 = Ė0 (er ⊗ eθ + eθ ⊗ er) , Ė0 = Ė0

(

er ⊗ eφ + eφ ⊗ er
)

(1.59)

It is important to note that the resolution for this problem is realized in the local coordinate

system (er, eθ, eφ).

For the spherical strain rate-controlled loading Ė0 = Ė01 and the deviatoric strain rate-

controlled loading of Ė0 = Ė0(−er ⊗ er + eθ ⊗ eθ), Ė0 = Ė0(eθ ⊗ eφ + eφ ⊗ eθ), Ė0 = Ė0(er ⊗
eφ + eφ ⊗ er), the laminated sphere can be considered as an isotropic medium since the only
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sliding happens in the direction of (er, eθ). By using the isotropization technique (1.58), the

anisotropic tangent stiffness has been replaced by an isotropic one. Therefore, the results

(1.52)(1.57) can be still considered. The components of the tensors As, AS∪I and BS∪I read

then:

αs
rrθθ = αs

θφφθ = αs
rφφr =

(

as − 21
5(1−2νs)bsr

2
0

)

1
Ė0

αS∪I
rrθθ = αS∪I

θφφθ = αS∪I
rφφr =

(

ahom +
4(4−νhomapprox)
5(1−2νhomapprox)

dhom
r30

)

1
Ė0

βS∪Irrθθ = βS∪Iθφφθ = βS∪Irφφr =
(

as
(1+2νs) −

21bsr20
5(1+2νs)(1−2νs)

)

Ės

Ė0

(1.60)

In the loading direction Ė0 = Ė0(eθ ⊗ er + er ⊗ eθ) where the sliding occurs, the inhomo-

geneous solid deforms as a pore. Therefore, the stress rate filed in this direction will be zero.

The components α and β read then:

αS∪I
rθθr =

(

1− 6(khomapprox+2µhom
approx)

5(3khomapprox+4µhom
approx)

)−1
1
Ė0

βS∪Irθθr = 0

(1.61)

1.4.4 Determination of the localization tensor

Until now, all the components of the tensors AS∪I ,BS∪I have been determined by applying

the different loading directions. Owing to symmetry properties, the micro-macro strain rate

relation can be summarized as follow, with i = S ∪ I or s,

ε̇ =















































αi
sphĖ0 if Ė0 = Ė01

αi
rrθθĖ0 if Ė0 = Ė0(−er ⊗ er + eθ ⊗ eθ)

αi
θφφθĖ0 if Ė0 = Ė0(eθ ⊗ eφ + eφ ⊗ eθ) = Ė0(eθ ⊗ eθ − eφ ⊗ eφ)

αi
rφφrĖ0 if Ė0 = Ė0(er ⊗ eφ + eφ ⊗ er)

αi
rθθrĖ0 if Ė0 = Ė0(er ⊗ eθ + eθ ⊗ er)

(1.62)

The tangent localization tensor of the laminated grain with interface, in form of Voigt matrix

Ai
layer(er, eθ, eφ), can be written in the coordinate system of (er, eθ, eφ) as follow:
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Ai
(er,eθ,eφ)

=
1

3
·





























αi
sph + 2αi

rrθθ αi
sph − αi

rrθθ αi
sph − αi

rrθθ

αi
sph − 2αi

rrθθ + αi
θφφθ αi

sph + αi
rrθθ + αi

θφφθ αi
sph + αi

rrθθ − 2αi
θφφθ

αi
sph − αi

θφφθ αi
sph − αi

θφφθ αi
sph + 2αi

θφφθ

3αi
θφφθ

3αi
rφφr

3αi
rθθr





























(1.63)

which gives rise to micro-macro strain rate relation (1.45) in Voigt notation:





























ε̇0rr

ε̇0θθ

ε̇0φφ

ε̇0θφ

ε̇0rφ

ε̇0rθ





























(er,eθ,eφ)

= Ai
layer

(

er, eθ, eφ
)





























Ė0rr

Ė0θθ

Ė0φφ

Ė0θφ

Ė0rφ

Ė0rθ





























(er,eθ,eφ)

(1.64)

The tensor BS∪I can be readily constructed by replacing αi in AS∪I by βi.

As mentioned earlier in section 1.2, each plastified crystal in the clay matrix has a different

property depending on its particular orientation (θ, φ, ψ). Therefore, the rotation matrix (1.4)

and the relation (1.6) are considered in order to modify the tangent localization tensor (1.63)

into the material co-rotational coordinate system (e1, e2, e3). The tangent localization tensor

in this global system (e1, e2, e3) is written as,

Ai
layer (θ, φ, ψ)(e1,e2,e3)

= T−1 (θ, φ, ψ)Ai
layer(er,eθ,eφ)

T (θ, φ, ψ) (1.65)

Therefore, according to (1.65) the average effective tangent stiffness operator (1.49) in the

case of an isotropic distribution of laminated grains with imperfect interfaces can be rewritten

as:
〈

L
hom
〉

= (1− ϕ)
〈

B
S∪I〉 :

(

ϕ
(

I− S
hom
sph

)−1
+ (1− ϕ)

〈

A
S∪I〉

)−1

(1.66)

where by still using the notation
〈

AS∪I〉,
〈

BS∪I〉 can be expressed as:

〈

AS∪I〉 =
∫ 2π
φ=0

∫ π
θ=0 T

−1 (θ, φ, ψ)Ai
layer(er,eθ,eφ)

T (θ, φ, ψ) sin θ
4π dθdφ

〈

BS∪I〉 =
∫ 2π
φ=0

∫ π
θ=0 T

−1 (θ, φ, ψ) Bi
layer(er,eθ,eφ)

T (θ, φ, ψ) sin θ
4π dθdφ

(1.67)
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Finally, the tangent localization tensors in form of Voigt matrix, of the isotropic grain

with imperfect interface which do not depend on its orientation, can be obtained directly by

simplifying the matrix (1.63):

Ai
iso(e1,e2,e3)

=
1

3





























αi
sph + 2αi

dev αi
sph − αi

dev αi
sph − αi

dev

αi
sph − αi

dev αi
sph + 2αi

dev αi
sph − αi

dev

αi
sph − αi

dev αi
sph − αi

dev αi
sph + 2αi

dev

3αi
dev

3αi
dev

3αi
dev





























(1.68)

1.5 Validation and numerical simulations

The second model described in section 1.4 which can consider the effect of imperfect interface

will be assessed by comparing its predictions to that of the first model corresponding to perfect

interface (see section 1.5.1). In section 1.5.2, the second model is implemented with the

consideration of the two local plastic mechanisms simultaneously to predict the elastoplastic

stress-strain responds of porous clay matrix. The predicted behaviors in this section are not

compared to the laboratory results which are still not available from traditional tests. The

main objective of these predictions is to understand the macroscopic elastoplastic behavior

stemming from a point of view of the microscopic scale.

1.5.1 Comparison of the two proposed models

In order to demonstrate the validity of the second model, comparisons of numerical predictions

between the two methods are performed in this section. To this end, we keep the same

parameters for both two models. Here, additional parameter values used in the second model

are: r0 = 1×10−6 andKtan
n , Ktan

t equal to infinity for the case of perfect interface predictions.

The predictions of the stress-strain behavior by the two models are provided in Fig.1.9 for

two porosities: ϕ = 0.2, 0.3.

It is readily seen that the predictions of the two different models are similar. However, it

must be emphasized that the first model has required an isotropization procedure. The differ-

ence brought by such isotropization technique is clearly shown in Fig.1.10 for two porosities:
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Figure 1.9: Axial and lateral strains versus deviatoric stress curves in uniaxial compression

tests - Comparison between predictions of the model without interface (solid lines) and that

with interface
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ϕ = 0.2, 0.3.
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Figure 1.10: Axial and lateral strains versus deviatoric stress curves in numerical uniaxial

compression tests - comparison between predictions of first model with/without isotropization

technique

1.5.2 Predictions by the second model

The proposed model in section 1.4 is now applied to simulate uniaxial compression tests. We

still consider the same parameter values as before: Es = 3000MPa, υs = 0.3, τcr = 1.5MPa,

Ktan
n → ∞.
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1.5.2.1 Influence of interface imperfection

The predictions are obtained by applying different values of Ktan
t . In this case, Ktan

t reflects

the degree of imperfection of interfaces. The effect is shown in Fig.1.11. It is seen that the

more adherent the interface between grains is, the more ductile the macroscopic behavior

becomes.

-16

-14

-12

-10

-8

-6

-4

-2

0

-3.5-3-2.5-2-1.5-1-0.500.511.5

=0.3

radial strain axial strain

differential stress
(MPa) Kt =infinity

tan

Kt =5.d09
tan

Kt =5.d08
tan

Kt =5.d07
tan

Kt =0
tan

Figure 1.11: Axial and lateral strains versus deviatoric stress curves in uniaxial compression

tests for different values of Ktan
t with ϕ = 0.3 (tangential tangent stiffness at the interface)

1.5.2.2 Simulation by considering two plastic mechanisms

Based on the above prediction, we found that the interface strongly affects the macroscopic

behavior of the polycrystal. Now we aim at discussing the failure mechanism of the clay

matrix by considering simultaneously the two plastic mechanisms yet introduced. Let us

recall that the first mechanism is controlled by the Schmid failure criterion for grains which

has been discussed in section 1.3. The second is a Tresca’s failure criterion σT < σcr for the

tangential tangent stiffness of interfaces. The interface is considered to be failed once the

value of critical stress σcr is reached in the tangential direction. The parameters Ktan
t = 0 is

taken for the interface failure. i.e. The tangential stiffness of interfaces has a perfect plastic

behavior described in Fig.1.12.

We must therefore seek for the maximal tangential stress value of {σT }, when all the orien-

tations (θs, φs) are considered, at each loading step. The normal and tangential components
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Figure 1.12: Perfect plasticity model of interface

of the stress σN are defined as follows,







σN = ur · σN · ur
σT = σN · ur − σN · ur

(1.69)

whereN is the normal direction to the layers of the considered grain, and ur = sin θs cosφsu1+

sin θs sinφsu2 + cos θsu3 is a local arbitrary orientation vector on the external surface of

grain and depending on the angles (θs, φs) defined in the local Cartesian coordinates system,

Ou1u2u3 of each grain.

According to (1.45),(1.64),(1.65), the average stress σN of each family of oriented plasti-

fied grains at the (n+ 1)th loading step can be written as:

σ
N
n+1 (θ, φ) = σN

n (θ, φ)+ △ σ
N
n+1 (θ, φ) = σN

n + B
S∪I
layern+1

(θ, φ) : Ė0 (1.70)

And for isotropic grains, N is indifferent. According to (1.68), σ
N
n+1 reads:

σ
N
n+1 = σN

n + △ σ
N
n+1 = σN

n + B
S∪I
iso n+1 : Ė0 (1.71)

From (1.69) and (1.70) that the maximal tangential stress value of {σT } is in function of

(θ, φ). This means that the property of interface varies with the orientation of the laminated

grain which it surrounds. Therefore, the value sup {σT } has been monitored and recorded in

order to link the two mechanisms of grain and interface together with respect to the grain’s

orientation θ. Owing to the symmetry around the axis e3, the sup {σT } − θ relation curves

at each incremental loading are provided in Fig.1.13.

Accordingly, the sup {σT } are located at θ = 90o and 0o; and the inf {σT } at θ = 45o. It

follows that the orientation distribution of crystals with intact or failed interface is provided in

Fig.1.14(a), where the Cone of intact interface (white) will become smaller with the increasing
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Figure 1.13: sup {σT } − θ relation curves

of the load, until all the interfaces are plastified. By comparing Fig.1.14(a) to Fig.1.5, the

scenario of the evolution of the two mechanisms function of θ is illustrated in Fig.1.14(b).

The elastic limits of grain and interface divide the range θ ∈ [0, 90o] into 5 different zones as

follows:

zones 1 and 5 : elastic isotropic grains and failed interfaces

zones 2 and 4 : laminated grains and failed interfaces

zones 3 : laminated grains and intact interfaces

Based on the above discussions, the numerical simulations taking account simultaneously

the two mechanisms has been performed by choosing the critical stress value of grains τcr =

1.5MPa and the value of interfaces σcr = 1.5MPa. It is assumed that Ktan
n → ∞, Ktan

t → ∞
when the interface is intact, and Ktan

n → ∞, Ktan
t = 0 when the interface is failed. The

comparison between predictions of the two different models is shown in Fig.1.15 for two

porosities ϕ = 0.2 and ϕ = 0.3.

As expected, the curves predicted by the two models present great differences: i) the two

predictions are identical in the elastic regime of the stress-strain curves where the interfaces

are perfect; ii) a severe softening phenomenon occurs by considering the crushed interfaces;

iii) in the second model, when the stress achieves a limit strength at the end of the stress-

strain curves, where the tangent stiffness operator L attains to zero, the material failed.

In summary, the stress-strain curve can be divided into three phases: an elastic regime, a

plastic regime caused by plasticization of grain, and a softening regime due to the multiple

deformation mechanisms of grains and in particular of interfaces. However, we found that the
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(a) Orientation distribution of intact and ruptured interfaces

(b) Scenario of evolution of two mechanisms in function of θ

Figure 1.14: Orientation distribution of interfaces and scenario of evolution

model considering two plastic mechanisms produces irreversible contractancy in the softening

domain due to a rearrangement of the material microstructure after shearing degradation of

interfaces.

1.6 Conclusion

The transversely isotropic elastoplastic behavior of a porous polycrystal with damaging in-

terfaces, such as clay matrix of an argillite, is investigated by means of a nonlinear homog-

enization approach. The formulation of the model is basically based on the microstructures

and mechanisms identified in literatures. It was retained that the clay matrix can be con-

sidered as an assemblage of solid composite spheres and pores. The composite spheres are

described as spherical sheet-like grains surrounded by interfaces (with displacement jumps)

having an isotropic distribution of orientations. Intragranular slips between sheets and in-

tergranular slips on interfaces are considered as the two local plastic mechanisms at the

microscopic scale. Therefore we considered that the spherical sheet-like grain behaves as an
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Figure 1.15: Axial and lateral strains versus deviatoric stress curves in numerical uniaxial

compression tests - comparison between predictions of first model (solid lines) and of second

model

elastic isotropic medium when it is inactivated while it exhibits an anisotropic behavior when

activated, the activation criterion is described by means of a Schmid law. A Tresca criterion

is used for the interface strength.

Based on a rotated configuration of coordinate systems, in the framework of incremental

approach, a first anisotropic formulation of self-consistent model which does not consider

the interface effects is developed. To this end, the generalized Eshelby problem is revisited

in order to incorporate the role of interfaces. Especially, an original numerical solution of

laminated grains surrounded by interfaces is developed further. Appling this solution, a

second self-consistent model which considers simultaneous evolution of the two local plastic
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mechanisms is also developed.

Finally, comparisons of numerical predictions of these two models are performed and

have demonstrated the validity of the second proposed self-consistent model which takes

account of the influence of interfaces. Numerical simulations of uniaxial compression tests

allow showing that the macroscopic failure can not be explained only by single intragranular

sheet-to-sheet slip mechanism. In contrast, the macroscopic elastoplastic behavior and failure

have been successfully predicted by considering two local plastic mechanisms that take place

simultaneously at microscopic scale. The corresponding scenario is described.

Appendix A

Three different conventions have been used to define the three Euler angles according

to the resume summerized in [Zamiri et al.,07]. Thus, the crystal orientation Voigt matrix

Q(θ, φ, ψ) which is used to define the orientation of the crystal coordinates system with

respect to the material co-rotational coordinates system can be written in three ways. Based

on the Bunge system (see [Bunge,82]), the matrix can be defined by the three Euler angles

ϕ1, φ, ϕ2 as:

Q (ϕ1, φ, ϕ2) =










cosϕ1 cosϕ2 − sinϕ1sinϕ2 cosφ sinϕ1 cosϕ2 + cosϕ1 sinϕ2 cosφ sinϕ2 sinφ

− cosϕ1 sinϕ2 − sinϕ1 cosϕ2 cosφ − sinϕ1 sinϕ2 + cosϕ1 cosϕ2 cosφ cosϕ2 sinφ

sinϕ1 sinφ − cosϕ1 sinφ cosφ











(1.72)

Based on Kocks system [Kocks et al.,00], this matrix reads as dunction of Euler angles φ,Ψ,Θ

as:

Q (φ,Ψ,Θ) =










− sinΨsinφ− cosΨcosφ cosΘ cosΨ sinφ− sinΨ cosφ cosΘ cosφ sinΘ

sinΨcosφ− cosΨ sinφ cosΘ − cosΨ cosφ− sinΨ sinφ cosΘ sinφ sinΘ

cosΨ sinΘ − sinΨ sinΘ cosΘ











(1.73)

The Roe system, the matrix leads to:

Q (Ψ, φ, θ) =










− sinΨsinφ+ cosΨcosφ cos θ cosΨ sinφ+ sinΨ cosφ cos θ − cosφ sin θ

− sinΨcosφ− cosΨ sinφ cos θ cosΨ cosφ− sinΨ sinφ cos θ sinφ sin θ

cosΨ sin θ sinΨ sin θ cos θ











(1.74)
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Rappels du contenu

Divers matériaux rencontrés dans le domaine du génie civil sont constitués de grains en inter-

action avec un autre le long de leurs interfaces. L’objectif du présent chapitre est de formuler

dans un cadre micromécanique un modèle linéaire poro-élastique pour milieux granulaires

saturés, et ayant des interfaces imparfaites. L’espace poreux est rempli par un fluide à une

pression uniforme p. La théorie classique de poro-élasticité linéaire [Biot,41], [Coussy,95] in-

troduit une équation d’état impliquant deux paramètres poroélastiques: le tenseur du second

ordre de Biot B et le module de Biot N .

Le présent chapitre fournit un cadre d’interprétation microscopique des constantes

poroélastiques. Ensuite, en restant dans ce cadre ’micro-macro’, l’estimation auto-cohérente

de B et N sont dérivées de la solution à un problème d’Eshelby généralisé incorporant deux

caractéristiques spécifiques: couches minces molles entourant les grains rigides et pression in-

terstitielle dans l’espace des pores. En définitive, on montre que les constantes poroélastiques

pour les matériaux granulaires avec effets d’interface s’écrivent:

b = 1− 3keff

2Knd
;

1

N
=

3

2

b− f

Knd
(2.1)

où Kn est le coefficient de raideur normale d’interface, d le rayon des grains sphériques.

De plus, il a été établi que le comportement homogénéisé peut être obtenu en remplaçant

la morphologie hétérogène ’grain + interface’ par une inclusion homogène équivalente. Ce

résultat est prometteur en vue d’une dérivation des comportements non-linéaires ou des

résistances mécaniques des matériaux granulaires avec des effets d’interface. Le module vo-

lumique ’équi-valent’ kseq étant alors défini comme:

kseq =
2

3
Knd (2.2)

et le module de cisaillement ’équivalent’ µseq:

µseq
Knd

=











2(1− 3f)

8− 15f
(1 + ρ η(f)) 0 < f < 1/3 (a)

3− f

3(3f − 1)
ρ 1/3 < f < 1/2 (b)

(2.3)

où η(f) =
3

2

(2− 3f)2(45f2 − 87f + 32)

(4− 3f)(8− 15f)(1− 3f)2
, et ρ =

Kt

Kn
→ 0

Ce chapitre a fait l’objet d’une publication parue dont les références sont aux suivants
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2.1 introduction

Various materials encountered in civil engineering are made up of grains interacting with

one another along their interfaces. The contact between two grains is not perfect in the

sense that a significant part of the overall strain of a representative elementary volume

(r.e.v.) corresponds to the relative displacements between grains in contact (intergranular

part), while the other contribution to the effective strain is related to the intragranular part.

Hence, the effective mechanical properties are strongly affected by those of these interfaces.

The contact on the interfaces between grains can be described by a 2D geometrical

model. In this case, the constitutive equation relates the stress vector acting on the surface

and the displacement jump accross the surface. Alternatively, the contact zone can be

represented by a thin interphase layer with an appropriate 3D description of the mechanical

properties. The quantitative link between 2D and 3D model parameters was discussed by

[Benveniste and Miloh,01] and [Hashin,02]. Qualitatively, the relative displacement between

two grains is the 2D counterpart of large strains concentrated in a thin 3D interphase.

In view of the micromechanical description of a granular material, the self-consistent

scheme ([Kroener,78],[Zaoui,02]) generally used for polycrystals is an appealing candidate.

Still it must be extended in order to capture the mechanical impact of the interfaces. As

opposed to the classical self-consistent scheme in which perfect contact between elementary

crystals is assumed, the extended scheme is based on the solution to a generalized Eshelby

problem: A composite particle made up of the grain surrounded by an interface is embedded

in an infinite space having the mechanical properties of the sought homogenized material.

[Hashin,02] described this approach and implemented it in view of application to coated

fibers. Adopting a spherical model for the grains, a number of papers have been devoted

to the micromechanical modelling of granular materials including the determination of the

effective linear and non linear elastic properties [Maalej et al.,07] and the effective strength

[Dormieux et al.,07], [Maalej et al.,09], [Dormieux et al.,10].

The purpose of the present paper is to derive a linear poroelastic model for fluid-saturated

granular media with imperfect interfaces. The pore space which is a complementary phase

with respect to the solid is filled by a fluid at a uniform pressure p. As compared to standard
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linear elasticity, the classical theory of linear poroelasticity (see e.g. [Coussy,95]) introduces

an additional state equation. The first one states that the strain tensor E is controlled

by a so-called effective stress, which is a linear combination of the stress tensor Σ and of

the fluid pressure p. The second one gives the normalized pore volume change v as a linear

function of strain and pressure. Hence, in addition to the effective stiffness tensor Ceff , linear

poroelasticity introduces two new material parameters, namely the so-called Biot (second

order) tensor B and the Biot modulus N :

Σ+ pB = Ceff : E

v =
p

N
+B : E

(2.4)

The micromechanical approach to poroelasticity provides an alternative theoretical frame-

work for the derivation of the state equations (2.4). Besides, it relates the poroelastic con-

stants to the microscopic behavior of the solid skeleton (see e.g. [Tompson and Willis,91],

[Dormieux et al.,02], [Dormieux et al.,06]). Furthermore, the classical Eshelby-based schemes

can be extended in order to derive quantitative estimates of B and N . In particular, when

the solid phase is a homogeneous solid with stiffness tensor Cs, the poroelastic constants are

directly related to Cs and Ceff :

B = 1− Ceff : Cs−1 : 1
1

N
= 1 : Cs−1 : (B− f1)

(2.5)

where f is the porosity, that is, the volume fraction of the pore space. In the isotropic case,

B is a spherical tensor (B = b1). Introducing the bulk moduli keff and ks of the effective

material and of the solid, (2.5) reduce to

b = 1− keff

ks
;

1

N
=
b− f

ks
(2.6)

(2.5) means that it suffices to determine the effective stiffness tensor Ceff . Since the later

characterizes the elastic properties of the dry material, this can be achieved with standard

homogenization techniques (no fluid-solid coupling).

In contrast, the present paper deals with a strongly heterogeneous solid material due to

imperfect interfaces between the grains. First, the microscopic interpretation of the poroelas-

tic constants is recalled. In this framework, self-consistent estimates of B and N are derived

from the solution to a generalized Eshelby problem incorporating two specific features: thin

soft layers surrounding stiff grains and pore pressure in the pore space.
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2.2 Micromechanical definition of the poroelastic constants

The granular material at stake comprises a solid phase and a pore space. The solid phase

itself is made up of discrete stiff grains (stiffness tensor Cg) in mechanical interaction with one

another. Following [Hashin,02], it is possible to resort to the 2D (interface) or 3D (interphase)

model of the contact zone between grains. In the 2D model, the stress vectorT acting on grain

Gi at the contact surface Γij between grains Gi and Gj is linearly related to the displacement

jump JξK accross the contact surface :

T = K · JξK ; JξK = ξj − ξi (2.7)

where the stiffness tensor K of the interface reads:

K = Knn⊗ n+Kt(1− n⊗ n) (2.8)

where Kn and Kt denote the normal and tangential stiffness coefficients of the interface. In

turn, in the 3D model, the interphase is a thin layer with thickness h, made up of an isotropic

(soft) solid with bulk and shear moduli kint and µint. The 3D model is asymptotically

equivalent to the 2D model when h → 0 provided that kint and µint are proportional to h

and related to the surface constants by [Hashin,02]:

kint = h(Kn − 4

3
Kt) ; µint = hKt (2.9)

With the usual fourth-order projectors J and K, the stiffness tensor in the interphase reads

Cint = 3kintJ+2µintK. The stiffness contrast between the interphase and the grain formally

reads Cint : C
−1
g ≪ I, where I is the fourth-order symmetric identity tensor. More precisely,

d denoting the characteristic grain size, and introducing δ = h/d, it is assumed that Cint :

C−1
g = O(δ)I.

Let Γ = ∪i,jΓij (resp. G = ∪iGi) denote the soft (resp. stiff) part of the solid phase in the

r.e.v. Ω and let P denote the fluid-saturated pore space: Ω = Γ∪G ∪P. The loading applied

to Ω is defined by the pore pressure p and by uniform strain boundary conditions on the

displacement field on the boundary ∂Ω:

(∀z ∈ ∂Ω) ξ(z) = E · z (2.10)

Interestingly, the microscopic stress field σ is related to the microscopic strain field ε by:

σ(z) = C(z) : ε(z) + σp(z) (2.11)
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with

z ∈ G : C(z) = Cg ; σp(z) = 0

z ∈ Γ : C(z) = Cint ; σp(z) = 0

z ∈ P : C(z) = 0 ; σp(z) = −p1

(2.12)

In the dry case p = 0, the only parameter is the macroscopic strain E and the microscopic

strain field linearly depends on E which is expressed through the fourth-order strain concen-

tration tensor A:

ε(z) = A(z) : E (2.13)

When the only parameter is the pore pressure p (case E = 0), the microscopic strain field

now linearly depends on p which is expressed through the second-order strain concentration

tensor a:

ε(z) = pa(z) (2.14)

In the general case (p,E 6= 0), the macroscopic counterpart of (2.11) reads:

Σ = C
eff : E+Σp (2.15)

with

C
eff = C : A ; Σp = σp : A (2.16)

where a (resp. aD) denote the volume average on Ω (resp. on the domain D ⊂ Ω). Com-

paring (2.15)-(2.16) with the first equation of (2.4) yields the following micromechanical

interpretation of Biot tensor B:

B = f1 : A
P

(2.17)

In turn, considering the second equation of (2.4) and (2.14) yields the following microme-

chanical interpretation of Biot modulus N :

1

N
= f1 : aP (2.18)

Note that (2.17) and (2.18) are valid irrespective of the selected homogenization scheme.

However, in order to derive quantitative estimates of B and N , a homogenization scheme is

due.
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2.3 self-consistent estimates of the poroelastic constants

2.3.1 description of the generalized self-consistent scheme with composite

sherical inclusion

The classical self-consistent scheme for porous media consists in representing each phase

by a spherical inclusion embedded in an infinite space with remote boundary conditions

on the displacemnt at infinity. The stiffness of the later is the unknown effective stiffness

(tensor Ceff ). The “real” average stress and strain states in each phase is estimated from

the uniform strain and stress states in the corresponding inclusion.

Figure 2.1: generalized self-consistent scheme (GSCS): (a) composite inclusion with 2D-

interface; (b) composite inclusion with 3D-interphase

In order to capture the mechanical role of the intergranular contact zone in a generalized

self-consistent scheme, the idea is to represent the heterogeneous solid phase S = G ∪ Γ by

a composite sphere. As in the classical scheme, the pore space is represented by a (possibly)

pressurized spherical cavity (see figure 2.1). As far as the solid phase is concerned, there

are two equivalent models. If the interphase model is adopted, the composite sphere is a

homogeneous sphere (radius d) with stiffness Cg surrounded by a layer with stiffness Cint

and thickness h/2 (half of the total thickness of the “real” interphase in the r.e.v.). In turn,

if the interface model is adopted, the composite sphere is made up of the same homogeneous

sphere (radius d, stiffness Cg) surrounded by an interface with normal and tangential stiffness

coefficients K ′
n = 2Kn and K ′

t = 2Kt. The origin of the factor 2 between the stiffness of the

interface in the composite sphere and that of the “real” intergranular interface in the r.e.v.

(see (2.7)) is discussed in [Maalej et al.,09]. Clearly, it is the 2D counterpart of the thickness

h/2 selected in the 3D interphase model.
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In order to implement the GSC scheme sketched at figure 2.1, the solutions to the corre-

sponding Eshelby-type problems must be derived. With uniform strain boundary conditions

of the form ξ = Eo · z at infinity, the solution to the pressurized cavity problem classically

reads (see e.g. [Dormieux et al.,06]):

εcav = (I− P : Ceff )−1 : (Eo + pP : 1) (2.19)

P here denotes the Hill tensor of the sphere for the material with stiffness Ceff . In turn,

focusing on the 2D interface model, the equations of the corresponding generalized Eshelby

problem read:

r < d : σ = Cg : ε

r = d : σ · n = K′ · [ξ]
r > d : σ = Ceff : ε

r → ∞ : ξ = Eo · z

(2.20)

where [ξ] = ξ(d+)−ξ(d−) denotes the displacement discontinuity across the sphere boundary

r = d in the auxiliary Eshelby problem. Unlike the cavity, the strain field is not homogeneous

in the composite sphere. The average strain and the average stress in the composite sphere

take the form of integrals over the external face (r = d+) of the composite sphere. Both are

linearl functions of Eo:

εCS =
3

4πd3

∫

r=d
ξ(d+)

s
⊗ er dS = L : Eo (2.21)

σCS =
3

4πd2

∫

r=d
er⊗σ(d) · er dS = D : Eo (2.22)

where L and D are fourth-order tensors which depend on Cg, K
′ and Ceff .

In the line of reasoning of the self-consistent scheme, εcav and εCS are respectively adopted

as estimates of the average strain in the pore space and in the heterogeneous solid:

εP = εcav ; εS = εCS (2.23)

Accordingly, the strain average rule ε = E clarifies the relationship between the auxiliary

strain tensor Eo and the actual loading parameters E and p:

Eo =
(

f(I− P : Ceff )−1 + (1− f)L
)−1

:
(

E− pf(I− P : Ceff )−1 : P : 1
)

(2.24)

Furthermore, σCS is adopted as an estimate of the average stress in the heterogeneous solid:

σP = −p1 ; σS = σCS (2.25)
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According to (2.17), the Biot tensor B is derived from εP in the dry case p = 0. Similarly,

according to (2.18), the Biot modulus N is derived from εP in the case E = 0. Introducing

(2.24) into (2.19) and recalling (2.23) successively yields:

B = f1 : (I− P : Ceff )−1 :
(

f(I− P : Ceff )−1 + (1− f)L
)−1

(2.26)

and
1

N
= f(1−B) :

(

(I− P : Ceff )−1 − I

)

: Ceff−1
: 1 (2.27)

Practical use of these estimates requires Ceff and L to be determined.

2.3.2 Practical implementation of the self-consistent scheme

Using (2.25) with (2.22) in the stress average rule yields:

Σ = −fp1+ (1− f)D :
(

f(I− P : Ceff )−1 + (1− f)L
)−1

: (E

−pf(I− P : Ceff )−1 : P : 1
)

(2.28)

The comparison with the first equation of (2.4) first provides an implicit equation which

characterizes the self-consistent estimate of Ceff :

C
eff = (1− f)D :

(

f(I− P : Ceff )−1 + (1− f)L
)−1

(2.29)

where L and D have been introduced in (2.21) and (2.22). In view of the practical imple-

mentation of (2.29), we now assume that the solid grain stiffness Cg is an isotropic tensor.

This implied that Ceff as well as L and D are isotropic tensors as well. In this framework,

analytical expressions of these tensors can be readily derived from [Herve and Zaoui,93] and

(2.29) proves to be strictly equivalent to the condition

(

f(I− P : Ceff )−1 + (1− f)L
)

= I (2.30)

In other words, the self-consistent estimate of Ceff can be determined from the solution

to either (2.29) or (2.30). This generalizes to the case of a composite solid inclusion a

well-known property of the classical self-consistent scheme (see appendix, equation (2.46)).

The second corollary of (2.28) is an alternative expression of the Biot tensor, denoted by

B′:

B′ = f(1+ C
eff : (I− P : Ceff )−1 : P : 1) (2.31)



2.3 self-consistent estimates of the poroelastic constants 57

which can be put in the form:

B′ = fCeff : (I− P : Ceff )−1 : Ceff−1
: 1 (2.32)

Furthermore, using the isotropy assumption, (2.32) simplifies into:

B′ = f(I− P : Ceff )−1 : 1 (2.33)

In the general case, the above expression is a priori formally different from (2.26) pre-

viously derived from the average theorem (2.16). This is not surprising since, even in

the classical self-consistent scheme, specific conditions are required for the consistency of

the classical self-consistent scheme with the average theorem (2.16) to be satisfied (see

[Pichler and Dormieux,08]). However, introducing (2.30) into (2.26) proves that B = B′

when the solid grain is isotropic.

2.3.3 analytical estimates

Analytical solutions can be derived in the limit case of a rigid solid (Cg → ∞). In this case,

it is convenient to introduce the ratio ρ = Kt/Kn and to normalize the effective bulk and

shear moduli by Knd. Let M = µeff/Knd and K = keff/Knd. Considering successively the

spherical and the deviatoric part of (2.29) yields:

K =
4(1− f)M

3(2M + f)
with K =

keff

Knd
and M =

µeff

Knd
(2.34)

and

16M3 + 4(3f + 2 + 2ρ(3f − 1))M2 + (3(3f − 1) + 2ρ(12f − 5))M + 3ρ(2f − 1) = 0 (2.35)

The (spherical) Biot tensor takes the form b1. The expression of the Biot coefficient is derived

from (2.33) and (2.34) with (2.48):

b = 1− 3K

2
= 1− 3keff

2Knd
(2.36)

Similarly, (2.27) yields:

1

N
=

3

2

b− f

Knd
(2.37)
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2.4 The equivalent homogeneous solid

In this section, we further adopt the assumption of rigid grains. It is instructive to compare

(2.36) and (2.37) to (2.6). The formal analogy suggests to introduce an “equivalent” bulk

modulus kseq for the heterogeneous solid phase S defined as:

kseq =
2

3
Knd (2.38)

If one goes further on this line of reasoning, the question arises whether it is possible to

replace the heterogeneous solid phase S by an “equivalent” homogeneous and isotropic one

in the sense that the homogenized stiffness Ceff characterized by (2.34) and (2.35) and the

poroelastic constants b and N are preserved. If this fictitious homogeneous solid phase exists,

we have already seen that its bulk modulus is necessarily equal to kseq given by (2.38). We

now seek an appropriate shear modulus µseq for which the equivalence as defined above can

be achieved. We shall of course consider this question in the framework of the self-consistent

scheme. In other words, we replace the composite sphere in figure 2.1 by a homogeneous

sphere with stiffness Cs
eq = 3kseqJ + 2µseqK. The sought value of µseq, if it exists, is the one

for which identical estimates of Ceff , b and N are derived. Because of the definition (2.38)

of kseq, note that it is sufficient to focus on the equivalence in terms of homogenized stiffness.

The equivalence as regards b and N is a corollary of (2.36) and (2.37).

Since this supposedly equivalent material is homogeneous, the self-consistent scheme now

reduces to the classical one, described at section 2.5.1. More specifically, we now deal with a

2-phase composite, made up of a pore space with vanishing stiffness and a solid phase with

stiffness Cs
eq. Both the porous and the solid phases are geometrically represented by spherical

inclusions. As a consequence, these two phases are associated with the same Hill tensor P

defined by (2.48). Combining (2.46) and (2.47) yields the following relation:

C
s
eq = C

eff :

(

I− f
(

I− P : Ceff
)−1

)−1

(2.39)

Taking advantage of (2.48), (2.39) reduces to:















kseq =
4µeffkeff

4µeff (1− f)− 3fkeff

µseq =
(9keff + 8µeff )µeff

4(2− 5f)µeff + 3(3− 5f)keff

(2.40)

Using (2.34) in the above expression of kseq, the definition (2.38) is retrieved. Furthermore,
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the following determination of the equivalent shear modulus is obtained:

µseq = Kn d
M (4M + 3− f)

3(1− 2f) + 2(2− 5f)M
(2.41)

where M(f, ρ) is the real (physical) solution of (2.35). The latter may be derived from

Cardan’s method (see 2.5.2). This eventually confirms the existence of an equivalent

material in terms of stiffness and poroelastic constants and provides its definition through

(2.38) and(2.41)) . This original result opens the door to a new systematic approach for the

poromechanics behavior of granular materials with interface effects.

µs
eq

Knd

f

Eq. (39.a)

Eq. (39.b)

Figure 2.2: equivalent shear modulus vs. pore volume fraction (ρ = 10−2)

Application In practice, numerous studies evoke the weakness of the tangential stiffness as

compared to the normal stiffness. This amounts to assuming that ρ = Kt/Kn ≪ 1. Within

the framework of the equivalent solid phase previously derived, while (2.38) is still valid, it

requires the Taylor expansion of (2.41) at ρ = 0:

µseq
Knd

=







2(1−3f)
8−15f (1 + ρ η(f)) 0 < f < 1/3 (a)

3−f
3(3f−1)ρ 1/3 < f < 1/2 (b)

(2.42)

where η(f) =
3

2

(2− 3f)2(45f2 − 87f + 32)

(4− 3f)(8− 15f)(1− 3f)2
.

Then, application of the classical self-consistent scheme for a 2-phase composite, made up of

a pore space with vanishing stiffness and a solid phase with stiffness Cs
eq = 3kseqJ + 2µseqK

where (2.38) and (2.42) are used, eventually yields the homogenizd stiffness coefficients :

f <
1

3







keff = Kn d
[

(23(1− 3f) + 8f(3f−2)2

(3f−4)(3f−1) ρ
]

(a)

µeff = Kn d
[

1
4(1− 3f) + 3(1−f)(3f−2)2

2(3f−4)(3f−1) ρ
]

(b)
(2.43)
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and,

f >
1

3







keff = Kn d
4(1−f)(1−2f)

3f(3f−1) ρ (a)

µeff = Kn d
1−2f
(3f−1) ρ (b)

(2.44)

(2.43) and (2.44) retrieve the homogenized stiffness coefficients derived previously by

[Dormieux et al.,07].

µeff

Knd

f

Eq. (40.b)

Eq. (41.b)

keff

Knd

f

Eq. (40.a)

Eq. (41.a)

Figure 2.3: self-consistent scheme estimates vs. pore volume fraction (ρ = 10−2): (a) homog-

enized shear modulus; (b) homogenized bulk modulus

2.5 Appendix

2.5.1 Classical self-consistent scheme

Consider an heteregenous material made up of n linear elastic phases, with stiffness tensor

Cr (r = 1, . . . , n). The self-consistent scheme provides an estimate of the effective stiffness

Ceff as the solution of the following implicit equation:

C
eff = Cr : (I+ Pr : δCr)−1 : (I+ Pr : δCr)−1

−1
(2.45)

with δCr = Cr−Ceff . Pr denotes the Hill tensor of the material with stiffness Ceff , associated

with the ellipsoidal shape selected for the inclusion representing phase r. When the same

shape is adopted for all phases, all the Pr (r = 1, . . . , n) are equal and (2.45) proves to be

equivalent to :

(I+ P : δCr)−1 = I (2.46)

and yields:

C
eff = Cr : (I+ P : δCr)−1 (2.47)

It is recalled that

P =
1

3keff + 4µeff
J+

3(keff + 2µeff )

5µeff (3keff + 4µeff )
K (2.48)



2.5 Appendix 61

2.5.2 Cardan’s solution of a cubic polynomial equation

Eq. (2.35) is a cubic equation of the form :

M3 + a2(f, ρ)M
2 + a1(f, ρ)M + a0(f, ρ) = 0 (2.49)

Introducing the following notations :

p =
a22
3

− a1 ≥ 0 ∀ρ ≥ 0, ∀f ; q =
a2
3

(

a1 −
2 a22
9

)

− a0

the discriminant of (2.49), defined as ∆ = q2 − 4p3/27, always meets the condition:

∆ ≤ 0 ∀ρ ≥ 0, ∀f ∈ [0, 1/2]

so that the sole real and positive root of (2.49) reads (Cardan’s method, 1545):

M(f, ρ) = 2

√

p

3
cos

(

1

3
arccos

(

q

2

√

27

p3

))

− a2
3

(2.50)
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Rappels du contenu

Comme mentionné au chapitre 1, l’étude des matériaux granulaires a une importance con-

sidérable dans les problèmes de géotechniques et en génie civil. Le comportement mécanique

macroscopique de ces matériaux étant directement lié aux propriétés d’interfaces locales de

contact entre particules, la modélisation micromécanique de leur comportement à partir

de l’échelle du niveau des grains est une question importante et de grand intérêt. Nous

nous interessons en particulier au critère de résistance de ce type de mateŕiau granulaire.

Bien qu’examiné récemment dans [Maalej et al.,09] et [Dormieux et al.,10], le sujet n’a été

abordé que dans le cadre d’une hypothèse d’interface de type Mohr-Coulomb non-cohésve

(Tt + αTn ≤ 0). Or cette hypothèse n’est pas toujours conformée à la réalité de nombreux

matériaux de la géotechnique. L’objectif principal de ce chapitre est d’étudier les effets

d’interface de type Mohr-Coulomb cohésive (Tt + αTn ≤ αh) sur le critère de résistance des

milieux granulaires.

L’idée est de suivre l’approche développée dans [Barthelemy and Dormieux,04]

[Barthelemy and Dormieux,03]. La théorie de l’analyse limite requiert la considération du

vecteur de contrainte microscopique au niveau des interfaces. Un vecteur est décrit par

T = ∂πI/∂v, où πI désigne la fonction d’appui du domaine convexe GI des états de vecteur

contrainte admissibles au niveau des interfaces. Afin de surmonter la difficulté induite par

la singularité de πI , ce vecteur est redéfini en introduisant une séquence de potentiels ψa(v)

(cf.[Barthelemy and Dormieux,03]). On démontre que la solution de la séquence de problèmes

visco-plastiques trouvée à l’aide de techniques d’homogénéisation nonlinéaire conduit asymp-

totiquement à l’ensemble des états de contrainte limite macroscopiques. Dans le cas d’un

comportement d’interface de Mohr-Coulomb cohésive, la résolution du problème implique

techniquement un vecteur précontraint Tp au niveau des interfaces ce qui modifie l’analyse

habituelle des matériaux granulaires poreux avec des effets d’interface dans le cas sec.

Se référant au modèle poro-élastique pour les milieux granulaires saturés avec des inter-

faces imparfaites exposé au Chapitre 2 (voir aussi [He et al.,2]) et le schéma auto-cohérent

généralisé [Dormieux et al.,07], le critère de résistance des milieux granulaires avec effets

d’interface de type Mohr-Coulomb cohésif peut être determiné et dépend du coefficient de

frottement microscopique des grains α. On montre que dans le cas d’une porosité φ0 < 1/3, la

résistance macroscopique est définie par Σm ≤ λh et Σd → ∞. Dans le cas de 1/3 < φ0 < 1/2,

une transition des enveloppes elliptiques aux enveloppes hyperboliques dans le plan Σm-Σd
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est noté. Cette transition dépend d’un coefficient de frottantement critique αcrit..

Ce chapitre a fait l’objet d’une publication soumise à une revue internationale, et dont le

titre est ’Mohr-Coulomb interface effects on strength criteria of materials with granular-based

structure’
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3.1 Introduction

Mechanical behavior of materials with granular-based microstructure is closely related to lo-

cal properties and interparticle contact interfaces. To derive new closed-form results for the

strength of these materials by micromechanical analysis constitutes an important and open is-

sue when considering interface effects. Recent micromechanical approaches [Maalej et al.,09]

and [Dormieux et al.,10] have thus been developped and proved to be efficient to predict

homogenized strength properties of granular media by means of non linear homogenization

techniques [Suquet,97],[Dormieux et al.,02], which consider a polycrystalline microstructure

morphology of granular assemblies made up of rigid grains surrounded by an imperfect inter-

face. The effective behavior is then derived by means of a generalized self-consistent scheme

[Dormieux et al.,07] taking advantage of the generalized Eshelby solution [Hashin,91].

Meanwhile, an original method1has been proposed in [Barthelemy and Dormieux,04]

which is also efficiently employed in order to estimate homogenized strength properties, even

for the situation of non-associated plasticity [Maghous et al.,09]. Macroscopic criteria of two

kinds of materials have been derived along this line: -1) porous media having a Drucker-Prager

type solid phase; -2) heterogeneous materials made up of a Drucker-Prager type matrix rein-

forced by rigid inclusions (mortar, concrete, shale...). However, the prediction of the strength

of materials with granular-based microstructure, which rises a prestressed poroelastic prob-

lem waiting to be solved, still constitutes a widely open question in the case of the interface

described by a cohesive Mohr-Coulomb type criterion.

Taking advantage of a new poroelastic model for fluid-saturated granular media with

imperfect interfaces recently derived in [He et al.,2] (from which the prestressed poroelastic

problem can be solved), the aim of this paper is to investigate cohesive Mohr-Coulomb inter-

face effects on the strength criterion of materials with granular-based microstructure. The

methodology proposed follows that introduced in [Barthelemy and Dormieux,04] for Drucker-

Prager matrice extended here to the more difficult case of materials with Mohr-Coulomb

interfaces. The strength criterion of materials with granular-based microstructure includ-

ing Mohr-Coulomb interface effects is determined as a function of the material pore volume

fraction and the local strength properties of the Mohr-Coulomb interfaces.

1This method is based on the mathematical equivalence between the Limit Analysis problem and a fic-

titious non-linear viscous problem which can be solved by using the non-linear homogenization techniques

[Suquet,97],[Dormieux et al.,02]
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Pressurized Pore

solid grain (    )grain-grain contact (       )

Ez z
( 1)p

Figure 3.1: r.e.v Ω of a fluid-saturated granular medium

Notations: The unit tensor of fourth and second order are denoted by I and 1 respectively.

We also introduce the fourth order tensor J = 1
31⊗ 1 and K = I− J.

3.2 Poroelastic behavior of materials with interface effects

3.2.1 general results

Prior to dealing with homogenization of the strength, it will prove useful to summarize

some results concerning the poroelastic behavior with interface effects. Let us consider a

representative element volume (r.e.v) Ω made up of an assembly of grains Gi and of the pore

space P in between. The latter is filled by a fluid at pressure p. The part of the boundary ∂Gi

in contact with other solid grains is denoted by ∂Gs
i while Iij denotes the interface between

grains Gi and Gj . We also introduce Γ = ∪ijIij and we note for further use that

|Γ| = 1

2

∑

i

|∂Gs
i | (3.1)

where |Γ| denotes the area of the surface Γ. The volume fractions of the solid grains and of

the pore space are related by

fi =
|Gi|
|Ω| ; fP =

|P|
|Ω| ;

∑

i

fi = 1− fP (3.2)

fP is the so-called porosity. In this section, a linear elastic behavior of the interface Iij is

assumed:

σ · ni→j = K ·
(

ξj − ξi
)

JσK · n = 0

K = Knn⊗ n+Kt(1− n⊗ n)

(3.3)



3.2 Poroelastic behavior of materials with interface effects 71

where n is the unit normal to the interface Iij . The stress vector is continuous whereas there

is a displacement jump JξK = ξj − ξi across the interface Iij . The normal component of

the displacement jump is the scalar ξn = JξK · n. The tangential component is the vector

ξt = (1− n⊗ n) · JξK.
The stiffness of the interface is characterized by the tensor K which involves a normal

and a tangential stiffness coefficient. Let Cs denote the stiffness tensor of the solid material

the grain is made up of. In the framework of uniform strain boundary conditions, the local

problem of elasticity at the microscopic scale is defined by the following equations:

div σ = 0 (Ω)

T = σ · n = K · JξK (Iij ⊂ Γ)

σ = Cs : ε (Gi ⊂ Ω)

σ = −p1 (P)

ξ = E · z (∂Ω)

(3.4)

where E is the macroscopic strain tensor. In particular, the normal component σnn = n ·σ ·n
on the grain boundary ∂Gi is given by:

σnn =







−p (∂Gi ∩ P)

Knξn (Iij , j 6= i)
(3.5)

The purpose of homogenization is to derive the macroscopic state equations. The macroscopic

stress Σ is defined as the average σ of the stress field σ:

Σ = σ =
1

|Ω|

∫

Ω
σ dV =

∑

i

fiσ
Gi − pfP1 (3.6)

with

σGi =
1

|Gi|

∫

Gi

σ dV =
1

|Gi|

∫

∂Gi

z⊗ σ · n dS (3.7)

In (3.7), z denotes the location on the boundary of the grain. In the case of elasticity, the

macroscopic stress is sought as a function of E. In the poroelastic case, the pore pressure

appears as an additional state variable (see [Dormieux et al.,06b],[He et al.,2]):

Σ = C
hom : E− pB (3.8)

Chom is the homogenized stiffness and B is referred to as the Biot tensor in poroelasticity

[Coussy,03]. Since a new state variable is introduced, poroelasticity requires a second state
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equation. It involves the normalized pore volume change φ− φo which is related to the state

variables E and p:

φ− φo =
p

N
+B : E with φ = |P|/|Ωo| (3.9)

N is referred to as Biot modulus. The subscript o corresponds to the value in the initial con-

figuration. In the framework of infinitesimal transformation, φo = |Po|/|Ωo| also represents

the pore volume fraction, that is, the porosity fP .

In the isotropic case, Chom is characterized by the effective bulk and shear module:

C
hom = 3khomJ+ 2µhomK (3.10)

and the Biot tensor is defined by the scale Biot coefficient b: B = b1. Let r0 denote the

characteristic grain size. It is convenient to normalize khom and µhom by Knr0

khom = Knr0K(φo, ρ) ; µhom = Knr0M(φo, ρ) (3.11)

where ρ = Kt/Kn. In the limit case of rigid grains (Cs → ∞), the self-consistent

scheme provides the following series expansions of K and M in the neighborhood of ρ = 0

[Maalej et al.,09]. The mathematical expressions depend on the value of the porosity.

When φo < 1/3:

K(φo, ρ) = K0(φo) +K1(φo)ρ

K0(φo) =
2

3
(1− 3φo) ; K1(φo) =

8φo (3φo − 2)2

(3φo − 4) (3φo − 1)

(3.12)

and

M(φo, ρ) = M0(φo) +M1(φo)ρ

M0(φo) =
1

4
(1− 3φo) ; M1(φo) =

3 (1− φo) (3φo − 2)2

2 (3φo − 4) (3φo − 1)

(3.13)

When 1/3 < φo < 1/2:

K(φo, ρ) = K(φo)ρ with K(φo) =
4(1− φo)(1− 2φo)

3φo(3φo − 1)

M(φo, ρ) = M(φo)ρ with M(φo) =
1− 2φo
3φo − 1

(3.14)

Furthermore, the poroelastic coefficients can be estimated from a homogenization scheme

[He et al.,2]:

b = 1− 3khom

2Knr0
= 1− 3

2
K ;

1

N
=

3(b− φo)

2Knr0
(3.15)

For forthcoming use in non linear homogenization, we now derive an average for each com-

ponent of the displacement jump JξK.
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3.2.2 The quadratic average of tangential displacement

The macroscopic potential energy density Ψ(E, p) is classically defined as the difference be-

tween the total elastic energy and the work of the given forces, namely the pore pressure in

the present case. Note that the elastic energy comprises the contribution of the solid grains

and of the interfaces.

Ψ(E, p) =
1

|Ω|

(∫

Ω

1

2
ε : C(z) : ε dV +

∫

Γ

1

2
JξK ·K · JξK dS − p(φ− φo)

)

(3.16)

It can be shown [Dormieux et al.,06b] that the expression of the potential energy as a function

of the macroscopic state variables E and p is:

Ψ =
1

2
E : Chom : E− pB : E− p2

2N
(3.17)

Let us now introduce the quadratic average < ξt > of the tangential displacement jump at

the grain-to-grain interface, defined as

< ξt >
2 =

1

|Γ|

∫

Γ
ξt · ξtdS (3.18)

Extending the result established in [Maalej et al.,09] to the case of a pressurized pore space,

it is readily seen that < ξt > can be determined from the derivative of Ψ(E, p) with respect

to Kt:
|Γ|
|Ω|< ξt >

2 = 2
∂Ψ

∂Kt
(3.19)

This equation constitutes the interface form of a general result early derived by [Kreher,90].

Then (3.17) yields

∂Ψ

∂Kt
=

1

2

∂khom

∂Kt
Ev

2 +
∂µhom

∂Kt
E2

d −
∂b

∂Kt
pEv −

p2

2

∂(1/N)

∂Kt
(3.20)

where Ev = trE and E2
d = Ed : Ed with Ed = K : E are invariants of the macroscopic strain

E and of its deviatoric part Ed.

Finally, recalling (3.15), the average of tangential displacement is written as

< ξt >
2 =

|Ω|
|Γ|

[

2
∂µhom

∂Kt
E2

d +
∂khom

∂Kt

(

Ev +
3p

2r0Kn

)2
]

(3.21)

Recalling (3.11), (3.21) also reads:

< ξt >
2

r20
=

2

3λ

[

2
∂M

∂ρ
E2

d +
∂K

∂ρ

(

Ev +
3p

2r0Kn

)2
]

(3.22)

where the dimensionless parameter λ is defined as:

λ =
2r0 |Γ|
3 |Ω| (3.23)
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3.2.3 The average of normal displacement

As regards the normal component ξn of the displacement jump, we seek an estimate of the

direct average on Γ:

< ξn >=
1

|Γ|
∑

{i,j}

∫

Iij

ξn dS (3.24)

It is prefered to a quadratic average which would not preserve the sign of ξn. It is assumed

that the average of ξn on ∂Gs
i for a given grain noi is independent on the considered grain.

Accordingly, we have:

< ξn >=
1

|∂Gs
i |
∑

j 6=i

∫

Iij

ξn dS (3.25)

In turn, introducing (3.5) into (3.25) relates < ξn > to the average of the normal stress acting

on ∂Gs
i :

Kn < ξn >=
1

|∂Gs
i |

∫

∂Gs
i

σnn dS (3.26)

Furthermore, it is assumed that the average of the stress field on a grain Gi is also independent

of the choice of the grain. The stress average rule in the form (3.6) now reads.

Σ = (1− φo)σ
G − pφo1 (3.27)

where the subscript i is now omitted. The spherical part of (3.27) reads:

Σm = (1− φo)σm
G − pφo (3.28)

with σm = trσ/3 and Σm = trΣ/3. Finally, the assumption that all grains have identical

geometrical characteristics also implies that

|Γ| = 1

2
N|∂Gs| ; |Ω| = |G| N

1− φo
(3.29)

where N denotes the number of grains in Ω.

The geometry of the grain is now idealized by a spherical shape (radius r0). Accordingly, z

is replaced by r0n in (3.7). Using (3.5) and (3.26), it is readily seen from (3.7) that

σm
G =

r0
3|G|

∫

∂G
σnn dS =

r0|∂Gs|
3|G|

(

Kn < ξn > −(
|∂G|
|∂Gs| − 1)p

)

(3.30)

Making further use of the spherical grain model, the following estimates are derived:

|∂Gs|
|∂G| =

r0
3

|∂Gs|
|G| ;

|∂Gs|
|G| =

2

1− φo

|Γ|
|Ω| (3.31)
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The ratio |Γ|/|Ω| represents the specific grain-to-grain surface. (3.28) can now be rearranged

in the form:

Σm + p = λ(Kn < ξn > +p) (3.32)

with λ introduced in (3.23). Eventually, recalling (3.10), (3.15) and combining (3.8) with

(3.32) yields the sought estimate of < ξn >:

< ξn >

r0
=
K

λ

(

Ev +
3p

2r0Kn

)

− p

Knr0
(3.33)

3.3 Determination of the homogenized strength

3.3.1 general results

We now consider the determination of the effective strength of a granular medium. This

means that we seek the domain Ghom of admissible macroscopic stress states Σ.

At the local scale, this requires the strength properties of the grains and of the interfaces to

be characterized. The domain GG of admissible stress states in the grains is defined by a

criterion fG(σ) ≤ 0:

σ ∈ GG ⇔ fG(σ) ≤ 0 (3.34)

The domain GI of admissible stress vectors acting on the interfaces is defined by a criterion

f I(T) ≤ 0:

T ∈ GI ⇔ f I(T) ≤ 0 (3.35)

In turn, the domains GG and GI can be described in an equivalent manner by their support

functions (see e.g. [Salencon,90], [Dormieux et al.,06b]). As for the grains, the support

function of GG reads:

πG(d) = sup{σ : d, fG(σ) ≤ 0} (3.36)

where d and πG(d) physically represent a virtual strain rate and the associated dissipation.

Similarly, for any vector JvK, the support function associated to GI is:

πI(JvK) = sup{T · JvK, f I(T) ≤ 0} (3.37)

where JvK and π(JvK) physically represent a virtual velocity jump across the interface and

the associated dissipation. Following [Leblond et al.,94], any admissible macroscopic stress
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state Σ located on the boundary of Ghom can be determined from the solution to a boundary

value problem formally equivalent to (3.4) defined on the r.e.v Ω by:

div σ = 0 (Ω)

T =
∂πI

∂JvK
(Iij ⊂ Γ)

σ =
∂πG

∂d
(Gi ⊂ Ω)

σ = 0 (P)

v = D · z (∂Ω)

(3.38)

where σ and v respectively denote the microscopic stress field and the microscopic velocity

field. Σ is related to σ by the stress average rule:

Σ = σ ∈ ∂Ghom (3.39)

In other words, the determination of the boundary of Ghom amounts to solving a non linear

homogenization problem in which fictitious state equations of the grains and of the interfaces

are defined from the derivatives of their support functions.

3.3.2 Mohr-Coulomb interface and rigid grains

In this study, the strength of the grains is assumed to be infinite. Therefore, the support

function of (3.36) is infinite if d 6= 0 while πG(0) = 0. In order to avoid the mathematical

singularity, the criterion of the grains is written in the form:

fG(σ) = σ : σ −R2 ≤ 0 (3.40)

with R→ ∞. It is readily seen that πG(d) = R
√
d : d. This yields:

σ =
∂πG

∂d
= C

G(d) : d with C
G(d) =

R√
d : d

(J+K) (3.41)

In other words, the state equation of the grains to be introduced in problem (3.38) is formally

defined by the isotropic secant stiffness tensor CG(d). The latter is characterized by the

following bulk and shear moduli:

kG(d) =
R

3
√
d : d

; µG(d) =
R

2
√
d : d

(3.42)

As R→ ∞, the apparent stiffness of the grains tends towards infinity.

The strength properties of an interface characterized by a Mohr-Coulomb failure criterion

are defined by a condition on the stress vector T acting on this interface:
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f I(T) = |Tt|+ α(Tn − h) ≤ 0 with







Tn = T · n
Tt = T− Tnn

(3.43)

where α ≥ 0 denotes the coefficient of internal friction and αh is the cohesion. For the

Mohr-Coulomb interface, πI(JvK)) is given by [Salencon,90],

πI(JvK) = +∞ if JvnK < α|JvtK|
πI(JvK) = hJvnK if JvnK ≥ α|JvtK|

(3.44)

It appears that πI(JvK) is a strongly singular function and is not differen-

tiable. This prevents from a direct implementation of (3.38). In order to

overcome this difficulty, it is proposed to extend the technique introduced in

[Barthelemy and Dormieux,03],[Barthelemy and Dormieux,04] to the presence of interfaces.

For the sake of clarity, |JvtK| and JvnK will now be simply denoted by vt and vn respectively.

A sequence ψa of convex differentiable functions (indexed by the scalar a > 0) is introduced

as follows:

ψa(vn, vt) = fa(Y ) + hvn (3.45)

Y = vn − αvt (3.46)

where fa(Y ) is a sequence of convex functions of class C2 to ensure the convexity of ψa. The

convex function fa(Y ) meets the following requirements (see Fig.3.2):

is decreasing on ]−a, 0] (f ′a(Y ) ≤ 0);

fa(Y ) = 0 when Y ≥ 0;

lim
Y→−a+

fa(Y ) = +∞

Then it can be seen from (3.45) that the sequence of functions ψa tends towards the Mohr-

Coulomb support function πI(v) of (3.44) when the scalar a tends towards 0. Replacing πI

by ψa in the fictitious state equation of the interfaces introduced in (3.38), one obtains:

T =
∂ψa

∂JvK
=
∂ψa

∂vn
n+

∂ψa

∂vt
t (3.47)

with (3.46), (3.47) then yields

T = F (Y ) (n− αt) + hn with F (Y ) =
∂fa (Y )

∂Y
(3.48)
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Figure 3.2: Shape of function fa

If T 6= hn, (3.48) shows that F (Y ) 6= 0, which means Y ∈]− a, 0[. Therefore, the normality

rule vn = αvt is asymptotically fulfilled when a→ 0.

The stress vector T in (3.48) can be rearranged and expressed in an affine form with respect

to JvK:

T = K(vn, vt) · JvK +Tp(vn, vt) (3.49)

where K is a secant stiffness tensor defined according to (3.3) by the following coefficients

Kn and Kt :

Kn =
F
Y

; Kt = −αF
vt

(3.50)

It is recalled that F ≤ 0. Tp is a prestress vector term defined as:

Tp(vn, vt) =

(

h− α
F
Y
vt

)

n (3.51)

We note for forthcoming use that

T p

Kn
=

(

hY

F − αvt

)

(3.52)

The reason for spliting T this way lies in the fact that Kn and Kt are positive numbers,

which ensures that K is a definite positive stiffness tensor. This property is related to the

already mentioned condition

F ≤ 0 (3.53)
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As already stated, the local flow rule Y = vn − αvt = 0 is asymptotically satisfied as a → 0.

Owing to (3.50), we note that:

lim
a→0

Kt

Kn
= lim

a→0

−αY
vt

= 0 (3.54)

This validates the use of the series expansions of khom and µhom (see (3.14)). Similarly, (3.52)

asymptotically takes the simplified form:

T p

Knr0
= −αvt

r0
(3.55)

Eventually, considering a given macroscopic strain rate D, a macroscopic stress state Σ

located on the boundary ∂Ghom is related by the average rule Σ = σ to the microscopic

stress field σ(z) solution to the following non linear problem:

div σ = 0 (Ω)

T = K(vn, vt) · JvK +Tp(vn, vt) (Iij ⊂ Γ)

σ = C
G(d) : d (Gi ⊂ Ω)

σ = 0 (P)

v = D · z (∂Ω)

(3.56)

with CG(d) → ∞.

3.3.3 Decomposition of problem (3.58)

The idea of secant methods for the resolution of non linear homogenization problems consists

in replacing the secant quantities K(vn, vt), T
p(vn, vt) by constants which are defined from

some appropriate average estimates (upperscript av) of vn and vt over Γ:

K ≈ K(vavn , v
av
t ) ; Tp ≈ T p(vavn , v

av
t )1 (3.57)

As regards the grains, the asymptotic case of rigid behavior is considered.

In the framework of this approximation, we come up with a formally linear elastic boundary

value problem which is derived from (3.56):

div σ = 0 (Ω)

T = K · JvK + T p1 (Iij ⊂ Γ)

σ = C
G : d (Gi ⊂ Ω)

σ = 0 (P)

v = D · z (∂Ω)

(3.58)
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We note that the above problem involves two loading parameters which are D and T p respec-

tively. We now split (3.58) into two auxiliary problems (denoted by I and II) as suggested by

Fig.3.3:

Figure 3.3: Decomposition of the prestressed problem

In problem I, the velocity vanishes on the boundary ∂Ω. There is a prestress T p1 in Γ

and a pressure −T p in the pore space P:

div σ = 0 (Ω)

T = K · JvK + T p1 (Iij ⊂ Γ)

σ = C
G : d (Gi ⊂ Ω)

σ = T p1 (P)

v = 0 (∂Ω)

(3.59)

It is readily seen that the stress field solution to (3.59) is uniform and equal to σI = T p1,

while the corresponding velocity field is vI = 0:

ΣI = σI = σI = T p1

vI = 0
(3.60)

In problem II, the velocity field is kinematically admissible with D. There is a pressure

T p in the pore space P (in order to balance the opposite value in problem I). There is

no prestress in the interfaces:

div σ = 0 (Ω)

T = K · JvK (Iij ⊂ Γ)

σ = C
G : d (Gi ⊂ Ω)

σ = −T p1 (P)

v = D · z (∂Ω)

(3.61)



3.3 Determination of the homogenized strength 81

(3.61) is formally identical to (3.4): it suffices to replace ξ and E by v and D respectively,

and p by T p. In other words, problem II is of the poroelastic type. Accordingly, (3.8) reads:

ΣII = C
hom : D− bT p1 (3.62)

which, together with (3.60) yields:

Σ = ΣII + T p1 = C
hom : D+ (1− b)T p1 (3.63)

Moreover, the solution vII of problem II in fact coincides with the solution v of (3.58), since

vI = 0:

v = vII (3.64)

This makes it possible to use the averages determined at sections 3.2.2 (see (3.21)) and 3.2.3

(see (3.33)). Accordingly, the following definition of the averages vavn and vavt is adopted:

vavn =< vIIn > ; vavt =< vIIt > (3.65)

(3.32) now reads:

Σm = λ(Knv
av
n + T p) (3.66)

where it has been used that Σm = ΣII
m + T p (see (3.63)). Similarly, (3.33) yields:

vavn
r0

=
K

λ

(

Dv +
3T p

2r0Kn

)

− T p

Knr0
(3.67)

In turn, (3.22) takes the form:

vavt
2

r20
=

2

3λ

[

2
∂M

∂ρ
D2

d +
∂K

∂ρ

(

Dv +
3T p

2r0Kn

)2
]

(3.68)

Finally, from the deviatoric part of (3.63), we note for forthcoming use that:

Σd = 2µhomDd (3.69)

with Σ2
d = Σd : Σd.

3.3.4 System of equations at limit state

In order to incorporate the local flow rule (Y = 0), we have seen that the asymptotic case

a → 0 must be considered. In addition, in the line of reasoning of secant methods, the local

flow rule is to be written on the average estimates of vn and vt:

lim
a→0

Y = 0 ⇒ vavn = αvavt (3.70)
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Similarly, (3.55) now reads:

T p

Knr0
= −αv

av
t

r0
(3.71)

(3.14) into (3.67) together with (3.66) yields

Σm = λ (Knv
av
n + T p) = Kr0Kn

(

Dv +
3T p

2Knr0

)

(3.72)

In turn, (3.50) and (3.51) yield

(Knv
av
n + T p) = F + h (3.73)

Therefore, (3.72) now reads

Σm = λ (F + h) (3.74)

While (3.50), (3.72) and (3.74)

vavt
r0

= G
(

Dv +
3T p

2Knr0

)

(3.75)

with

G =
−αF

λ (F + h)

K

ρ
(3.76)

Let us now make use of (3.71) which incorporates the local flow rule (in the averaged form

vavn ≈ αvavt ). Combined with (3.75), one obtains:

vavt
r0

=
2G

2 + 3αGDv (3.77)

Moreover, (3.68) together with (3.75) takes the following form:

3

2
λ

(

vavt
r0

)2

= 2
∂M

∂ρ
Dd

2 +
∂K

∂ρ

(

vavt
Gr0

)2

(3.78)

which may be simplified into:

(

vavt
r0

)2

=
4M,ρ G2

3λG2 − 2K,ρ
D2

d (3.79)

Finally, a combination of (3.75) and (3.78) gives

4M,ρ G2

3λG2 − 2K,ρ
D2

d =
4G2

(2 + 3αG)2
Dv

2 (3.80)
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3.3.5 Macroscopic strength criterion

3.3.5.1 The case 1/3 < φo < 1/2

We first consider the case 1/3 < φo < 1/2 which is a general case for the granular material.

Recalling (3.14), the parameters K,ρ and M,ρ in (3.80) read:







K,ρ=
∂K
∂ρ = K

M,ρ=
∂M
∂ρ = M

(3.81)

Meanwhile with (3.14), (3.76) can be also simplified as,

G(F) = − αKF
λ(F + h)

(3.82)

Thus, (3.80),(3.81) and (3.82) proves that F is the solution of the following equation :

aF2 + bF + c = 0 (3.83)

with


















a = 2 (1− δ)∆

b = 4h∆

c = 2h2
(

KDv
2 + 2MDd

2
)

(3.84)

∆ = KDv
2 + 2 (1− δ)MDd

2 (3.85)

where we introduced the dimensionless parameter:

δ =
3α2K
2λ

(3.86)

It can be easily verified that the existence of solutions to (3.83) requires that ∆ ≥ 0. If this

condition is satisfied, (3.83) has a priori the following solutions:

F =
h

δ − 1

(

1 + ǫ

√

δK
∆

|Dv|
)

with ǫ = ±1 (3.87)

However, the appropriate solution must be negative (see (3.53)). Besides, due to the very

definition of vt (vt = |vt|), the solution F must also be compatible with the condition vavt ≥
0. It appears that the macroscopic strength criterion is controlled by the dimensionless

parameter δ.

We first assume that δ < 1 which ensures that ∆ > 0 and KD2
v/∆ < 1. Combining

(3.77) and (3.87), and recalling that F ≤ 0, the condition vavt ≥ 0 amounts to ǫDv < 0,
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that is, ǫ = −Dv/|Dv|. Accordingly, the appropriate solution to (3.83) reads

F =
h

δ − 1

(

1−
√

δK
∆
Dv

)

(3.88)

In turn, using the definition (3.85) of ∆ and the condition δ < 1, it is readily seen that

the requirement F ≤ 0 is indeed fulfilled. The mean stress Σm and the deviatoric stress

Σd are now determined from (3.74) and (3.69) respectively:

Σm = λ (F + h) (3.89)

Σd = 2µhomDd = −2αMF Dd

vavt /r0
(3.90)

where µhom is derived from (3.11) together with (3.50). Introducing (3.88) with (3.77)

into (3.89) and (3.90) yields:

Σm =
δhλ

δ − 1

(

1−
√

K
δ∆

Dv

)

Σd = 2λh

√

δ

K∆
MDd

(3.91)

(3.91) are the parametric equations of the boundary ∂Ghom of the domain of admissible

macroscopic stress states. Eliminating the ratio Dd/Dv provides the cartesian equation

of ∂Ghom which proves to be an ellipse in the plane (Σm,Σd):
(

Σm − C

A

)2

+

(

Σd

B

)2

= 1 (3.92)

with

A = hλ

√
δ

1− δ
; B = hλ

√

2δM
(1− δ)K ; C = hλ

δ

δ − 1
(3.93)

The negative scalar C represents the location of the center of the domain on the axis

Σd = 0.

We now assume that δ > 1 which ensures that KD2
v/∆ > 1. The two solutions given in

(3.87) (that exist provided that ∆ > 0) have now opposite signs. Again, we recall that

the appropriate one is negative. In turn, the condition vavt ≥ 0 together with (3.77)

shows that Dv must be positive. It then appears that the negative solution in (3.87)

is again given by (3.88), so that (3.91) represents the parametric equations of ∂Ghom.

Eventually, eliminating the ratio Dd/Dv provides the equation of a hyperbola:
(

Σm − C

A′

)2

−
(

Σd

B′

)2

= 1 (3.94)
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with

A′ = hλ

√
δ

δ − 1
; B′ = hλ

√

2δM
(δ − 1)K (3.95)

The positive scalar C now represents the isotropic tensile strength.

Moreover, when δ > 1 we may encounter the situation where ∆ = 0. Since Dv must be

positive, (3.85) yields

Dv

Dd
=

√

2(δ − 1)M
K (3.96)

Introducing (3.96) in (3.91), an asymptotic criterion appearing as a Drucker-Prager

type criterion is eventually obtained:

Σd =
B′

A′ (C − Σm) (3.97)

with A′,B′,C defined in (3.95),(3.93).

Let us now consider the case δ = 1. From(3.86), this condition yields a critical value of

the interface friction coefficient αcrit defined as:

αcrit =

√

2λ

3K (3.98)

Consequently, the macroscopic strength criterion depends upon the position of the

interface friction coefficient α with respect to this critical value. At a given porosity,

low frictional property between grains (α < αcrit) yields an elliptic failure envelope

defined by (3.92), while high frictional property (α > αcrit) yields a hyperbolic failure

envelope defined by (3.94).

3.3.5.2 The case φo < 1/3

We then consider the case φo < 1/3. Following (3.12) and (3.13), the parameters K,ρ and

M,ρ in (3.80) now read:






K,ρ=
∂K
∂ρ = K1

M,ρ=
∂M
∂ρ = M1

(3.99)

Meanwhile with (3.14), (3.76) can be also simplified as,

G(F) = − αF
λ(F + h)

(
K0

ρ
+K1) (3.100)

Since we have simultaneously F → 0 and ρ→ 0 in the expression (3.100), let us assume that

F = Aρχ ; with χ =
K1

K0
(3.101)
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where A ≤ 0 is the solution of the following equation:

aA2 + bA+ c = 0 (3.102)

with


















a = δ1
(

2δ1M1D
2
d −K1D

2
v

)

b = −4hδ1M1D
2
d

c = h2
(

K1Dv
2 + 2M1Dd

2
)

and δ1 =
3α2K1

2λ
(3.103)

It can be verified that the existance of solutions to (3.102) requires that,

∆ = 2(1− δ1)M1D
2
d +K1D

2
v ≥ 0 (3.104)

If this condition is satisfied, (3.102) has a priori the following solutions:

A = h



1 +
1− δ1
δ1

(

1 + ǫ

√

K1

δ1∆
|Dv|

)−1


 with ǫ = ±1 (3.105)

We first assume that δ1 < 1 which ensures that ∆ > 0 enforcing the condition,
√

δ1K1

∆
|Dv| < 1 (3.106)

The two solutions given in (3.105) have opposite signs. Recalling(3.53), the appropriate

solution A = F/(ρχ) must also be negative. Thus the only appropriate solution with

ǫ = −1 reads,

A = h



1 +
1− δ1
δ1

(

1−
√

K1

δ1∆
|Dv|

)−1


 (3.107)

Then, the condition vavt ≥ 0 refering to (3.77) together with (3.106) yiled that Dv must

be positive. Therefore, it then appears that the negative solution in (3.102) is given by,

A = h



1 +
1− δ1
δ1

(

1−
√

K1

δ1∆
Dv

)−1


 (3.108)

Recalling (3.50) we have:

F = Aρχ = A−αY
vavt

K1

K0
(3.109)

According to (3.74) and (3.69), the mean stress Σm and the deviatoric stress Σd are

then determinated respectively,

Σm = λ(Aρχ+ h) (3.110)

Σd = 2µhomDd = 2r0(M0Kn +M1Kt)Dd (3.111)
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where µhom is derived from (3.11). In the limit cases a → 0 (the local flow rule is

asymptotically satisfied) and ρ → 0, substituting Kn and Kt in (3.111) by (3.50) thus

we have:

Σd = −2αM0Aχ
Dd

vavt /r0
(3.112)

Introducing (3.76), (3.77) into (3.110) (3.112), we have

Σm = λ(Aρχ+ h) (3.113)

Σd = 2λh
M0

K0

(

1− A
h
δ1

)

Dd

Dv
(3.114)

EliminatingDv/Dd in (3.114) by using (3.104) and (3.108), then combining with (3.114)

yields the strength criterion,

∀Σm ≤ λh , Σd = β (λh− Σm) (3.115)

where the coefficient β is defined as:

β =

√
2δ1√M1K1

M0

ρ
(3.116)

Consequently, in the case of ρ→ 0, the coefficient β defined in (3.116) tends to infinity

(β → ∞), ∀φo < 1/3. Therefore, the macroscopic strength is defined by,

Σm ≤ λh (3.117)

We then assume that δ1 > 1. The two solutions are given by (3.105) provided that

∆ ≥ 0. According to (3.104), this condition reads:

√

δ1K1

∆
|Dv| > 1 (3.118)

Combining (3.77) and (3.105), and recalling that A ≤ 0, the condition vavt ≥ 0 amounts

to ǫDv < 0, that is, ǫ = −Dv/|Dv|. Accordingly, the negative appropriate solution to

(3.102) is again given by (3.108). Finally, the macroscopic strength criterion (3.117) is

obtained.
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3.4 Application

The present section is devoted to the application of theoretical macroscopic strength criteria

of granular materials derived in the previous section. To begin with, let us point out that the

granular material grain-to-grain contact fraction λ, defined in (3.23), is related to a contact

surface fraction ω. Recalling (3.31), we have:

λ = (1− φ0)
r0
3

∑N
i=1 |∂Gi|
∑N

i=1 |Gi|
·
∑N

i=1 |∂Gs
i |

∑N
i=1 |∂Gi|

= (1− φ0)ω (3.119)

where
∑N

i=1 |∂Gi|
∑N

i=1 |Gi|
=

3

r0
(3.120)

∑N
i=1 |∂Gs

i |
∑N

i=1 |∂Gi|
= ω (3.121)

For the granular material, the contact surface fraction ω reads,

ω =
ZAc

4πr20
(3.122)

Parameter Ac is estimated as the contact area between two spherical grains, with

characteristic radius r0, within a granular assembly of porosity φ0 according to

([Helle et al.,85],[Fleck,95]):

Ac =
π

3

φmax − φ0
φmax

r20 (3.123)

Assuming a cubic lattice of a monodisperse granular assembly, we have φmax ≈ 1/2 and the

number of contacts is Z ≈ 12(1− φ0) (see [Artz,82]). In this case, the grain-to-grain fraction

λ, defined in (3.119) reduces to as ([Maalej et al.,09],[Maalej,07]):

λ = (1− φ0)
2(1− 2φ0) (3.124)

Following the results derived in the previous section, the definition of the macroscopic strength

criterion depends upon the initial pore volume fraction:

When φ0 < 1/3, according to (3.117) the macroscopic strength is defined by Σm ≤ λh.

When 1/3 < φ0 < 1/2, the macroscopic strength criterion of granular materials depends

upon the position of the interface friction coefficient α with respect to the critical value

αcrit defined in (3.98). Using Eqs (3.14) and (3.124), the critical value αcrit, defined in

(3.98), can be determined as:

αcrit =

√

φ0(3φ0 − 1)(1− φ0)

2
(3.125)
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This critical value has also been derived by using another methodology in

[Dormieux et al.,10]. While in [Dormieux et al.,10] the failure takes place in cohe-

sionless interfaces (Tt + αTn ≤ 0), the macroscopic strength of the granular material

vanishes for α < αcrit and 1/3 < φ0 < 1/2. By contrast, the cohesive and frictional

interfaces (Tt + αTn ≤ αh) considered in this paper allow to managing the definition

of the homogenized strength properties of low frictional (α < αcrit) and highly porous

(1/3 < φ0 < 1/2) granular materials.

Weakly frictional interfaces For weakly frictional contacts (α < αcrit), the strength

criterion (3.92) is performed with the following analytical expressions of coefficients A,B,C:

A = −αh(1− φ0)
2(1− 2φ0)

√

2φ0(3φ0 − 1)(1− φ0)

2α2 − φ0(3φ0 − 1)(1− φ0)
(3.126)

B = αh(1− φ0)(1− 2φ0)

√

3φ0(−1 + φ0)

2α2 − φ0(3φ0 − 1)(1− φ0)
(3.127)

C =
2α2h(1− φ0)

2(1− 2φ0)

2α2 − φ0(3φ0 − 1)(1− φ0)
(3.128)

For granular materials defined by φ0 = 0.45 (αcrit ≈ 0.2081) the corresponding elliptic

envelopes are plotted in the mean-deviatoric stress plan for different values of α (α < αcrit)

(see Fig.3.4). These results clearly exhibit the increase of the macroscopic strength domain

with increasing value of α (α < αcrit). Besides the macroscopic isotropic tensile strength also

increases with α according to (3.126) and (3.128).

Figure 3.4: Elliptic macroscopic strength criterion (with porosity φ0 = 0.45 and h = 40), α

is the coefficient of internal friction at interfaces



90 Mohr-Coulomb interface effects on strength criteria of granular materials

Strongly frictional interfaces For strongly frictional contacts (α > αcrit), the strength

criterion (3.94) is now applied with the following analytical expressions of coefficients A
′

and

B
′

:

A
′

=
αh(1− φ0)

2(1− 2φ0)
√

2φ0(3φ0 − 1)(1− φ0)

2α2 − φ0(3φ0 − 1)(1− φ0)
(3.129)

B
′

= αh(1− φ0)(1− 2φ0)

√

3φ(1− φ0)

2α2 − φ0(3φ0 − 1)(1− φ0)
(3.130)

Still considering φ0 = 0.45, the corresponding hyperbolic envolopes are plotted in Fig.3.5

for different values of α (α > αcrit). Still, the greater the coefficient of internal friction α

the greater the macroscopic strength. Moreover, the hyperbolic definition of the strength

criterion ensures the increase of the macroscopic strength properties for increasing confining

pressure. In Fig.3.6, the transition from weak to strong frictional interfaces definition is

sketched for granular materials with initial porosity φ0 = 0.45.

Figure 3.5: Hyperbolic macroscopic strength criterion (with porosity φ0 = 0.45 and h = 40),

α is the coefficient of internal friction at interfaces

Influence of the initial porosity φ0 In an alternative way, by fixing the critical fric-

tional coefficient, for instance αcrit = 0.2, a corresponding critical value of the pore volume

fraction φcrit0 can be calculated from (3.125) which reads here φcrit0 ≈ 0.4415. In the case

of ’lower porosity’ (φ0 < φcrit0 equivalent to α < αcrit), the material obeys the criterion of

elliptic shape (3.92); in the case of ’higher porosity’ (φ0 > φcrit0 equivalent to α > αcrit), the
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Figure 3.6: Transition of the strength criteria according to different α (with porosity φ0 = 0.45

and h = 40), α is the coefficient of internal friction at interfaces

material obeys the criterion of hyperbolic shape (3.94). A transition of the strength criteria

(with h = 40) for different values of φ0 is obtained and shown in Fig.3.7.
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Figure 3.7: Transition of the macroscopic strength criteria according to different porosity φ0

(with αcrit = 0.2 and h = 40), αcrit. is the critical frictional coefficient
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3.5 Conclusion

Strength criteria of materials with cohesive Mohr-Coulomb type interfaces have been inves-

tigated in this paper.

In the framework of the Limit Analysis theory, it has been demonstrated that the solu-

tion of a sequence of visco-plastic problems leads asymptotically to the set of macroscopic

limit stress states [Barthelemy and Dormieux,04]. Introduction of a cohesive Mohr-Coulomb

strength criterion at interfaces modifies the usual analysis of materials with interface ef-

fects. Based on the solution established for the prestressed poroelastic problem [He et al.,2],

a modified secant homogenization method has been performed. Following [He et al.,2], the

micromechanical approach proposed here predicts a macroscopic response for materials with

granular-based microstructure having a pore volume fraction φ0 < 1/2. For materials defined

by φ0 < 1/3, the macroscopic strength is defined by (3.117) suggesting that the macroscopic

strength domain is infinite when Σm ≤ λh. For materials satisfying 1/3 < φ0 < 1/2, a

transition of the macroscopic strength envelopes in the mean stress-deviatoric stress plan has

been derived depending upon the internal friction coefficient α of interfaces. The latter relies

on the definition of a critical value denoted by αcrit appearing as a function of φ0. When

α < αcrit, the macroscopic strength criterion is of elliptic shape (3.92). When α > αcrit, the

macroscopic strength criterion is of hyperbolic shape (3.94). Moreover, when α > αcrit, the

macroscopic strength criterion tends toward a Drucker-Prager criterion for infinite values of

the macroscopic confining pressure.
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Rappels du contenu

Pour la transition ’micro-macro’ complète en vue de l’application à l’argilite du Callovo-

Oxfordien, un modèle de type Gurson étendu est proposé. Dans le modèle, l’argilite du

Callovo-Oxfordien a été considérée comme un matériau composite constitué d’inclusions

rigides noyées dans une matrice d’argile poreuse. La matrice d’argile elle même est décrite

comme un matériau poreux constitué d’une phase solide de type Drucker-Prager et de pores

sphériques. La taille des pores est supposée très faible par rapport à celle d’inclusions rigides.

L’homogénéisation a pu ainsi être réalisée en deux étapes différentes. Pour la première étape

’micro-méso’ concernant la transition ’micro-méso’ on adopte des résultats de la litterature

proposés par [Maghous et al.,09]. La deuxième étape portant sur la transition ’méso-macro’

(voir Fig.4.1(a)) est la partie principale de ce chapitre. Dans le cadre de la théorie de l’analyse

limite, compte tenu de la matrice plastique compressible, ce chapitre met l’accent sur une ap-

proche cinématique réalisée sur le modèle de sphère avec noyau rigide à l’échelle mésoscopique

(intermédiaire). Ceci fournit une borne supérieure du critère de résistance macrscopique pour

composite.

Le critère dérivé a été comparé avec celui établi à l’aide d’une approche variationnelle

[Shen,11]. Un très bon accord est obtenu pour des états de contrainte isotrope. En re-

vanche, un écart important entre les enveloppes de rupture est observé sur la résistance

en cisaillement pour les grandes valeurs de la fraction volumique d’inclusions rigides. La

précision de l’estimation de la résistance sous chargements isotropes a été confirmée par une

comparaison avec les résultats d’une approche statique. Il est intéressant de noter que les

estimations de la résistance isotrope en traction ou en compression, peu dependentes de la

fraction d’inclusion, également de la méthode d’homogénéisation. La conséquence pratique

est que les propriétés de résistance isotropes de la matrice d’argile et de l’argilite sont très

proches, quelle que soit la teneur en quartz / calcite. Par ailleurs, la restriction du modèle au

cas de Von Mises solide a été détaillée. La précision de l’estimation analytique est obtenue

dans ce cas est évaluée grâce à une comparaison avec les prédictions correspondantes du

modèle de [Shen,11], [Garajeu and Suquet,97]. Enfin, il est constaté que le critère proposé

fournit bonne estimation de résistance sous un chargement déviatorique, en comparant avec

les données expérimentales.

Ce chapitre a fait l’objet d’une publication soumise à une revue internationale, et dont le

titre est ’Strength properties of a Drucker-Prager porous medium reinforced by rigid particles’
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4.1 Introduction

For ductile porous media, Gurson [Gurson,77] has derived a celebrated strength crite-

rion based on a kinematic approach of limit analysis performed on a ‘hollow sphere

model’ in which the solid is rigid-plastic and obeys a von Mises criterion. This cri-

terion is exact for spherical stress states, but proves less accurate for low stress tri-

axialities. In turn, the variational method of nonlinear homogenization [PonteCastaneda,91]

provides an alternative approach to the effective strength criterion of ductile porous

media which improves the prediction of the strength under shear loading, but is less

efficient for spherical stress states. Using these two types of micromechanical ap-

proaches, a number of contributions have followed these pioneering criteria, by con-

sidering more refined trial velocity field [Monchiet et al.,11], or by incorporating void

shape effects [Gologanu et al.,93] [Gologanu et al.,94] [Gologanu et al.,97] [Garajeu et al.,00]

[Monchiet et al.,07], or considering plastic anisotropy in the solid matrix [Liao et al.,97]

[Benzerga and Besson 01] (see also [Monchiet et al.,08] or [Keralavarma and Benzergar,10]

for the void shape effect on the plastic deformation of anisotropic porous solids).

In addition to these works, mention can be made of very recent studies devoted

to porous materials with matrix exhibiting asymmetry between tension and compres-

sion [Cazacu and Stewart,09]. It must be noted that all these theories deal with incom-

pressible plastic matrix. Interestingly, porous media with compressible plastic matrix

like cohesive geomaterials or porous polymers were considered by several authors among

which [Jeong and Pan,95], [Lee and Oung,00], [Jeong,02], [Barthélémy and Dormieux,03],

[Trillat et al.,06], [Guo et al.,08], [Vincent et al.,09], [Thore et al.,09], [Thore et al.,11],

[Shen et al.,12b].

We propose a ’rigid core sphere model’ in view of application to the mechanical behavior

of the Callovo-Oxfordien (COx) argillite in the context of a research program initiated by

the French ’National Radioactive Waste Management Agency’(ANDRA). Being hard clayey

rocks, COx Argillite [Andra,05] is a kind of multi-scale porous material including plate- or

sheet like structured clay aggregates, mineral phases such as quartz, calcite etc. and pores.

The results of correlation between the volume fraction of clay phases and of the porosity

reveal that the pores are mainly part of the clay [Robinet,12]. More precisely, two different

scales can be identified (see figure 4.1). At the so-called mesoscopic scale, the COx argillite

can be regarded as a clay matrix in which quartz or silica inclusions are embedded. The
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Quartz

Porous Matrix
Calcite

(a) argillite at meso-scale

Pore Solid phase of clay matrix

(b) porous matrix at micro-scale

Figure 4.1: Microstructure of the argillite of Callovo-Oxfordien

typical size of these mineral inclusions is some tens of µm. At this scale, the clay appears

as a homogeneous material. Moreover, as compared to clay, the solid inclusions can be

considered to be rigid. Based on a Hill type incremental homogenization approach, a two

scale model of the COx argillite has been proposed by [Abou-Chakra et al.,08]. Despite its

interest, this two scale model does not explicitly account for the microporosity of the clay

matrix (which behavior has been modeled by a Drucker-Prager plasticity law). Indeed, at a

refined scale, referred here to as microscopic scale, the clay phase is a porous material with

microvoids embedded in a dilatant solid phase. The typical pore size is some tens of nm1.

This confirms that the scale separation condition is satisfied. Accordingly, the micro-to-macro

homogenization can be performed in two steps. The first step is the micro-to-meso transition

in which the clay phase, described as a porous material, has to be homogenized. The second

step deals with the meso-to-macro transition. A first approach of this two steps modeling of

the COx argillite including both effects of micropores as well as that of the inclusions has

been proposed by [Shen et al.,12] who follow the previous Hill incremental approach. In their

model, the clay matrix is explicitly described as a Drucker-Prager solid phase containing

spherical pores. Although this model delivers interesting results, the macroscopic plastic

behavior is not described in closed-form constitutive relations but by means of a numerically-

based implementation in the second step procedure.

In the present study, we mainly aim to derive new closed-form results for the strength of

the argillite, under the assumption that the solid phase of the clay is a Drucker-Prager per-

1Further investigations on voids size effects can be made by following the recent contribution by

[Dormieux et al.,10]
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fectly plastic material. As far as the first step is concerned, the result of the homogenization

is an analytical elliptic criterion ([Maghous et al.,09]) involving the first and second invariants

of the mesoscopic stress tensor. We therefore focus on the second step. This question has

been recently addressed in the framework of a two step variational nonlinear homogenization

approach (the so called modified secant method) by [Shen,11]. The present paper explores

an alternative approach which can be viewed as an extension of the original Gurson model.

Instead of a spherical cavity surrounded by a matrix, the proposed ’rigid core sphere model’

consists of a rigid spherical core surrounded by the homogeneous porous material whose prop-

erty is determined from the first step (see figure 4.2). Hence, the shell is a compressible phase

(see also [Shen,11]). The failure criterion of this ’rigid core sphere model’ is derived in the

framework of the kinematic approach of limit analysis (LA). It is worth noting that from the

LA point of view the failure mechanism can include a strain concentration at the core-matrix

interface which can be described mathematically by a velocity discontinuity.

The outline of the paper is as follows: first, the elliptic criterion for the frictional porous

medium developed in [Maghous et al.,09] is recalled and the corresponding support function

is derived (section 4.2). Thereafter, the overall dissipation is determined as the sum of the

contributions of the matrix and of the core-matrix interface (section 4.3). The macroscopic

criterion is derived in a parametric form (section 4.4). Numerical simulations of the macro-

scopic criterion of the COx argillite are presented. A comparison with the results of the

alternative modified secant method [Shen,11] is provided (section 4.5) and some analytical

results are also established (section 4.6, section4.7). Finally, we provide in an appendix the

predictions of the ’rigid core sphere model’ in the case of a von Mises solid phase. The re-

sults are then assessed by comparison with that of [Shen,11] and [Garajeu and Suquet,97]

(Appendix 4.9).

Notations: 1 and I are the second and fourth order identity tensors. J = 1
31 ⊗ 1,

K = I − J are respectively the spherical and deviatoric projectors of isotropic fourth order

symmetric tensor.
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Figure 4.2: ’Rigid core sphere model’

4.2 The micro-to-meso transition: elliptic criterion and sup-

port function of porous matrix

The first homogenization step approach starts at the microscopic scale. At this scale, the

porous clay matrix is described as a heterogeneous material being made up of a Drucker-

Prager perfectly plastic solid in which pores are embedded. Let σ̃d = σ̃ − σ̃m1 denote the

deviatoric part of the stress tensor σ̃ at the microscopic scale. The scalar deviatoric stress

σ̃d and mean stress σ̃m are defined as σ̃d =
√
σ̃ : K : σ̃ and σ̃m = (1 : J : σ̃)/3 and the

Drucker-Prager criterion reads:

σ̃d + T (σ̃m − h) ≤ 0 (4.1)

The parameters T and h respectively characterize the friction coefficient and the tensile

strength of the solid phase of the clay matrix.

The result of the first homogenization step is the derivation of the strength properties of the

porous clay matrix at the mesoscopic scale where it is described as a homogeneous material.

These properties were estimated successfully in [Maghous et al.,09] by means of the modified

secant method. Now σd = σ − σm1 denotes the deviatoric part of the stress tensor σ at

the mesoscopic scale and we introduce σd =
√
σ : K : σ and σm = (1 : J : σ)/3. In the

situation of associated plasticity, the domain of admissible stress states is an ellipse in the

(σm, σd)-plane:

Fmeso(σ, f, T ) =
1 + 2f/3

T 2
σ2d +

(

3f

2T 2
− 1

)

σ2m + 2(1− f)hσm − (1− f)2h2 ≤ 0 (4.2)

Note that 0 < T ≤
√

3f/2 (see [Maghous et al.,09]). At the mesoscopic scale, the clay matrix

is described by the elliptic criterion (4.2). It will be useful to consider a general expression
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reading:

F(σ, f, T ) = aσ2m + bσ2d + cσm − d2 ≤ 0 (4.3)

(4.2) is retrieved with the following parameters:

a =
3f − 2T 2

2T 2
, b =

1 + 2f/3

T 2
, c = 2(1− f)h, d = (1− f)h (4.4)

In turn (4.3) can be put in the form G(σ − σc1) ≤ 0 where

G(σ, f, T ) = (
σm
L

)
2
+

1

2
σd

2 − k2 (4.5)

with

σc = − c

2a
; L2 =

2b

a
; k2 =

d2 + σ2ca

2b
(4.6)

In the framework of limit analysis theory (see e.g. [Salencon,90]), a dual characterization of

the strength criterion F(σ) ≤ 0 is the support function π
F
(d) = sup(σ : d,F(σ) ≤ 0} of

the convex set of admissible stress states. First, the support function π
G
(d) of the domain

G(σ, f, T ) ≤ 0 (see (4.5)) reads (see e.g. [Dormieux et al.,06b]):

π
G
(d) = 2k

√

L2

4
d2v +

1

2
d2d (4.7)

with

dv = tr d ; dd =
√

dd : dd ; dd = d− dv1 (4.8)

Since F(σ) ≤ 0 ⇔ G(σ − σc1) ≤ 0, it is readily seen that π
F
(d) and π

G
(d) are related

according to

π
F
(d) = π

G
(d) + σcdv (4.9)

Combining (4.4), (4.6), (4.7) and (4.9), the support function π(d) associated with (4.2) of

the porous matrix finally takes the form

π
F
(d) = (1− f)h

√

3f

3f − 2T 2

T 2

1 + 2f/3

√

1 + 2f/3

3f/2− T 2
d2v + d2d − (1− f)h

2T 2

3f − 2T 2
dv (4.10)

For the further derivations in this paper, (4.10) can be simplified as follows,

π
F
(d) = σ0dEQ

− λdv with d
EQ

=

√

2

3
d : H : d (4.11)

with
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σ0 = (1− f)h

√

3

2

√

3f

3f − 2T 2

T 2

1 + 2f/3
; λ = (1− f)h

2T 2

3f − 2T 2
(4.12)

where H = 1
αJ+K is a fourth order tensor, with

α =
3f/2− T 2

3 + 2f
(4.13)

4.3 Overall dissipation at the mesoscopic scale

We now focus on the transition from the mesoscopic scale to the macroscopic scale which

constitutes the second homogenization step and is the main subject of the present paper.

We seek the macroscopic criterion by means of a Gurson-type approach. As already stated,

the microstructure at the mesoscopic scale is described by a composite sphere Ω with a rigid

core surrounded by the homogenized clay resulting from the micro-to-meso transition (see

figure 4.2). The external (resp. internal) radius is denoted by re (resp. ri). The shell Ωm

(ri ≤ r ≤ re) around the core represents the clay. The volume fraction ρ = (ri/re)
3 of

the core in the composite sphere is equal to the volume fraction of the rigid inclusions in a

representative volume element of argillite.

4.3.1 Velocity field at the mesoscopic scale

As done in the classical approach, we then apply uniform strain rate boundary conditions on

the external surface r = re corresponding to the macroscopic strain rate tensor D:

(∀er) v(reer) = D · reer (4.14)

In order to take into account the compressibility of the clay, the velocity field used in the

classical Gurson approach [Gurson,77] must be modified. We therefore combine a radial

expansion with a Gurson velocity field:

r ≥ ri : v(x) = Ax+ vG(x) (4.15)

Ax denotes the compressible component of the velocity field while the incompressible Gurson

component vG (incompressible matrix) involves a scalar constant B and a purely deviatoric

tensor D′ (trD′ = 0):

r ≥ ri : v
G (x) = B

r3e
r2
er +D′ · x with x = rer (4.16)
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(4.14) implies that D′ must be the deviatoric part Dd of D as well as the condition A+B =

Dm. Accordingly, we have a family of kinematically admissible (k.a.) velocity fields with D,

depending on one parameter A:

r ≥ ri : vA = Ax+ (Dm −A)
r3e
r2
er +Dd · x (4.17)

The strain rate in the clay (ri ≤ r ≤ re) can be determined from (4.17):

dA = A1+Dd + (Dm −A)
r3e
r3

(1− 3er ⊗ er) (4.18)

From (4.18), with D2
d = Dd : Dd, the expression of d

EQ
in (4.11) can be written as

d
EQ

2 =
2A2

α
+ 4(Dm −A)2

r6e
r6

+
2D2

d

3
+

4(Dm −A)

3

r3e
r3

Dd : (1− 3er ⊗ er) (4.19)

The velocity is vO = 0 in the rigid core. Note that the condition vA = 0 on the core

boundary r = ri cannot be fulfilled by the velocity field defined in (4.17). This implies that

the dissipation associated with a discontinuity of velocity must be considered at the boundary

I (r = ri) (see section 4.3.4).

4.3.2 Macroscopic support function

Defining the macroscopic strength domain Ghom as the set of admissible macroscopic stress

states Σ, the macroscopic support function reads Πhom(D) = sup(Σ : D,Σ ∈ Ghom). Consid-

ering the set K of k.a. velocity fields with D, Πhom(D) is characterized as [Leblond et al.,94]:

Πhom(D) =
1

|Ω| infv∈K

(∫

Ωm

π
F
(dA) dV +

∫

I
π(JvAK) dS

)

(4.20)

where |Ω| = 4πr3e/3. In the surface integral, JvK denotes the velocity discontinuity at the

core boundary I and π(JvK) represents the associated surface density of dissipation. In the

line of reasoning of Gurson approach, Πhom(D) is approximated by the minimal dissipation

obtained among the velocity fields vA defined in (4.17):

Πhom(D) =
1

|Ω| inf
A∈R

(∫

Ωm

π
F
(dA) dV +

∫

I
π(JvAK) dS

)

(4.21)

For further use, let us introduce the following notation:

1

|Ω|

∫

Ωm

π
F
(dA) dV = Π̃m(D, A) ;

1

|Ω|

∫

I
π(JvAK) dS = Π̃I(D, A) (4.22)

and

Π̃(D, A) = Π̃m(D, A) + Π̃I(D, A) (4.23)
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Accordingly:

Πhom(D) = inf
A∈R

Π̃(D, A) (4.24)

Once Πhom(D) is determined, the macroscopic admissible stress states on the boundary

∂Ghom are derived according to:

Σ =
∂Πhom

∂D
(D) (4.25)

The stress state of (4.25) lies on the boundary of Ghom at the location where the normal is

parallel to D.

The overall dissipation of (4.23) proves to read in the following form:

Π̃(D, A) = σ0

[

Narcsinh

(

uN

M

)

−
√
M2 + u2N2

u

] 1
ρ

1

+ σ0

√

2

3
Y − 3λDm (4.26)

with the notations introduced in (4.30), (4.39) and (4.40).

For the sake of completeness, sections 4.3.3 and 4.3.4 respectively determine the contri-

bution (4.29) of the shell Ωm (volume integral in (4.21)) and the contribution (4.37) of the

interface I (surface integral in (4.21)) which has led to (4.26).

Section 4.4 will consider the minimization w.r.t. parameter A.

4.3.3 Contribution of the shell to dissipation

For a given value of parameter A, the contribution of the matrix to the macroscopic dissipation

reads

Π̃m(D, A) =
1

|Ω|

∫

Ωm

(

σ0dEQ
− λdv

)

dV (4.27)

In order to obtain an analytical expression of Π̃m(D, A), the approximation introduced in

[Gurson,77] (see also [Dormieux et al.,10]) is applied. Let S(r) denote the sphere of radius

r. As a consequence of the Cauchy-Schwarz inequality, it is readily seen that
∫

S(r)
d
EQ
dS ≤

√
4πr2

√

∫

S(r)
d2
EQ
dS (4.28)

We observe that the average 〈1− 3er ⊗ er〉S(r) of 1− 3er ⊗ er over the orientations of er on

the sphere S(r) is equal to 0. Then, using (4.19) and (4.28) in (4.27), Π̃m(D, A) reads

Π̃m(D, A) =
4πσ0
Ω

∫ re

ri

r2

√

2A2

α
+ 4(Dm −A)2

r6e
r6

+
2D2

d

3
dr − λ

Ω

∫

Ωm

dvdV

= σ0

[

Narcsinh

(

uN

M

)

−
√
M2 + u2N2

u

] 1
ρ

1

− 3(1− ρ)λA (4.29)
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with

M2 =
2A2

α
+

2D2
d

3
, N2 = 4(Dm −A)2 (4.30)

4.3.4 Inclusion-matrix interface

Unlike the classical Gurson’s ’hollow sphere model’, the model proposed in this paper sub-

stitutes a rigid core for the void in the center of the thick-walled sphere. Therefore, owing

to null velocity (vO = 0) in the rigid core, a velocity discontinuity tales place at the core

boundary: JvAK = vA(raer)− vO = vA(raer).

4.3.4.1 Surface density of dissipation

The velocity field vA being discontinuous across the surface I (rigid core boundary), its

gradient and the associated strain rate are to be defined in the sense of the distribution

theory:

d = {d}+ 1

2
(n⊗ JvAK + JvAK ⊗ n) δI (4.31)

where {d} is the standard expression of the strain rate corresponding to its smooth part,

δI is the Dirac distribution which support is the surface of discontinuity I and n = er is

the unit normal to this surface. The surface density of dissipation π(JvAK) contributed by

the velocity jump JvAK is therefore related to the support function π
F
according to (see e.g.

[Salencon,90]):

π(JvAK) = π
F
(dI) (4.32)

where dI is defined as

dI =
1

2
(n⊗ JvAK + JvAK ⊗ n) (4.33)

Recalling (4.17) and (4.33), the strain rate dI associated with the velocity jump can be

obtained and written as

dI = ri

(

(
1

ρ
Dm + (1− 1

ρ
)A)er ⊗ er +

1

2
((Dd · er)⊗ er + er ⊗ (Dd · er))

)

(4.34)

Eventually, the surface density of dissipation is derived from the combination of (4.32)

and (4.11)

π(JvAK) = σ0d
I
EQ

− λdIv with dI
EQ

=

√

2

3
dI : H : dI ; dIv = tr dI (4.35)
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4.3.4.2 Contribution of the interface to dissipation

Recalling (4.27), the macroscopic dissipation related to the part of inclusion-matrix interface

depending also on the scalar A can be written as

Π̃I(D, A) =
1

Ω

∫

r=ri

(

σ0d
I
EQ

− λdIv

)

dS (4.36)

Again, the integration of dIeq is approximated by the upper bound (4.28) which yields

Π̃I(D, A) = σ0

√

2

3
Y − λX (4.37)

with

Y =

√

4πr2i

Ω

√

∫

r=ri

dI : H : dIdS (4.38)

Using (4.34), Y takes the form

Y =

√

P 2 +Q2

15α
(4.39)

with

Q2 =

(

51

2
α+ 6

)

ρ2D2
d, P 2 = 45(1 + 2α) [Dm −A(1− ρ)]2 (4.40)

In turn, observing that the average 〈er ·Dd · er〉r=ri
of er ·Dd · er over the orientations of er

on the sphere I is equal to 0, it is readily seen that

X =
1

Ω

∫

S(ra)
dIvdS = 3 (Dm −A(1− ρ)) (4.41)

4.4 Macroscopic criterion

The macroscopic support function can be determinated by minimizing the sum Π̃(D, A) =

Π̃m(D, A) + Π̃I(D, A) with respect to the parameter A. Accordingly, the boundary of Ghom

is determined according to (4.25)[Monchiet et al.,07]:

Σ =
∂Π̃(D, A)

∂D
, with

∂Π̃(D, A)

∂A
= 0 (4.42)

It is readily seen from (4.26) that Π̃(D, A) can be put in the form:

Π̃(D, A) = P(M,N,P,Q)− 3λDm (4.43)

where P(M,N,P,Q) depends on D and A through the parameters M , N , P and Q. (4.42)

therefore reads

Σ =
∂P
∂M

∂M

∂D
+
∂P
∂N

∂N

∂D
+
∂P
∂P

∂P

∂D
+
∂P
∂Q

∂Q

∂D
− λ1 (4.44)
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with the condition of minimization with respect to A to be met simultaneously,

∂P
∂M

∂M

∂A
+
∂P
∂N

∂N

∂A
+
∂P
∂P

∂P

∂A
+
∂P
∂Q

∂Q

∂A
= 0 (4.45)

(4.44) can be decomposed as Σ = Σm1+Σd, which gives

Σm = 1
3

(

ΣN
∂N
∂Dm

+ΣP
∂P
∂Dm

)

− λ

Σd = ΣM
∂M
∂Dd

+ΣQ
∂Q
∂Dd

(4.46)

knowing that N and P are only in function of Dm and A, whileM and Q are only in function

of Dd and A. Recalling (4.30) and (4.40), ΣM , ΣN , ΣP , ΣQ are derived as follows,

ΣM =
∂P
∂M

= σ0

(
√

1 +
N2

M2
−
√

ρ2 +
N2

M2

)

(4.47)

ΣN =
∂P
∂N

= σ0

[

arcsinh

(

N

ρM

)

− arcsinh

(

N

M

)]

(4.48)

ΣP =
∂P
∂P

=

√

2

45α

σ0P
√

P 2 +Q2
(4.49)

ΣQ =
∂P
∂Q

=

√

2

45α

σ0Q
√

P 2 +Q2
(4.50)

The partial derivatives of N , P to Dm and of M , Q to Dd read

∂N

∂Dm
= 2,

∂P

∂Dm
= 3

√
5
√
1 + 2α (4.51)

∂M

∂Dd
=

2Dd

3M
,

∂Q

∂Dd
=

(

51α

2
+ 6

)

ρ2
Dd

Q
(4.52)

The partial derivatives of M , N , P , Q to A read

∂M

∂A
=

2A

αM
,

∂N

∂A
= −2,

∂P

∂A
= −3(1− ρ)

√
5
√
1 + 2α,

∂Q

∂A
= 0 (4.53)

With the above equations, it was not possible to find an analytical expression of the

macroscopic criterion. Hence, a numerical resolution is provided in the following. It can be

seen that the parametric equations (4.45) and (4.46) depend on the two non dimensional

kinematic variables Dd

Dm
and A

Dm
. Note that Dd

Dm
represents the direction of plastic flow which

is also the normal to the yield surface. The failure envelope of the criterion is estimated

by selecting a series of discrete values
(

Dd

Dm

)

i
from 0 to ∞. The value 0 corresponds to

isotropic loading while the value ∞ is associated with pure shear. For each value of
(

Dd

Dm

)

i
,
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the condition (4.45) provides an implicit equation to be solved by the optimal ratio
(

A
Dm

)

i
.

The mascroscopic stresses Σm and Σd are then computed from (4.46).

4.5 Comparison with the result obtained by a variational ap-

proach

Numerical simulations of the macroscopic criterion derived in the framework of the kinematic

approach of limit analysis are now compared with the result obtained by the variational

approach [Shen,11]. For the derivation of their criterion, these authors consider a variational

approach in the two homogenization steps. Their criterion reads:

F hom(Σ, f, T ) = ΘΣ2
d+

(

3f

2T 2
− 1

)

Σ2
m+2(1−f)hΣm− 3 + 2f + 3fρ

3 + 2f
(1− f)2h2 = 0 (4.54)

with

Θ =

1+2f/3
T 2 + 2

3ρ
(

3f
2T 2 − 1

)

4T 2−12f−9
6T 2−13f−6

ρ+ 1
(4.55)

Applying the parameters f = 0.25 and T = 0.525, the comparison between the results

predicted by the two different methods is shown in Fig.4.3

As it can be seen in Fig.4.3, the analytical estimate (4.54) obtained by the variational ap-

proach and the present numerical simulations based on the ’rigid core sphere model’ show

a very good agreement for purely isotropic stress states, both in traction and compression.

It is noteworthy that the strength under purely isotropic stress seems surprisingly almost

unaffected by the volume fraction ρ of the rigid core.

Although the shapes of the yield surfaces predicted by the two methods are similar, the

strength predicted by limit analysis always overestimates that predicted by the variational

method. In particular, as far as the strength under pure shear loading is concerned, the

difference becomes very important when the volume fractions of the rigid core ρ is larger. In

order to gain a deeper understanding of the effect of the parameter ρ, the isotropic strength

will now be compared with the exact solution predicted by the so-called static approach (sec-

tions 4.6.2, 4.6.1, 4.6.4). Thereafter, we shall focus on the strength under pure shear loading

(section 4.7.1).
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Figure 4.3: Comparison between the results predicted by limit analysis and the variational

approach for different volume fractions of the rigid inclusion

-’line’: limit analysis with ρ = 0.1, -’cross’: variational approach with ρ = 0.1,

-’point’: limit analysis with ρ = 0.3, -’box’: variational approach with ρ = 0.3,

-’diamond’: limit analysis with ρ = 0.6, -’circle’: variational approach with ρ = 0.6

4.6 Strength under isotropic loading

4.6.1 Comparison between our results and the variational estimates of

strength under isotropic loading

For the criterion developed by the kinematic approach of limit analysis in this paper, the

strength under isotropic compression and traction is obtained numerically as indicated in

section 4.4 with the plastic flow direction Dd

Dm
= 0. In turn, for the criterion obtained by the

variational method in [Shen,11] (see equations (4.54) with (4.55) in the present paper), the

strength under isotropic compression is estimated by

Σvar−
m =

(

−2T
√
3 + 2f −

√

6f [(3f − 2T 2)ρ+ 3 + 2f ]
)

(1− f)Th
√
3 + 2f(3f − 2T 2)

(4.56)

while the strength under isotropic traction is estimated by

Σvar+
m =

(

−2T
√
3 + 2f +

√

6f [(3f − 2T 2)ρ+ 3 + 2f ]
)

(1− f)Th
√
3 + 2f(3f − 2T 2)

(4.57)

Figures 4.4 and 4.5 present the strength in isotropic compression for ρ = 0.1 and ρ = 0.9

respectively. The strength in isotropic traction is plotted at figures 4.6 and 4.7. In order to
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provide an insight into the effect of the parameter ρ, we compare the strength of the composite

sphere as estimated by the two homogenization methods to that of the pure matrix (ρ = 0)

(given by (4.69) in compression and (4.70) in traction, as will be shown in section 4.6.2).

From these figures, it can be concluded that

the results obtained by the kinematic method of limit analysis (Gurson approach) are

in perfect agreement with those obtained by the variational method.

At low volume fraction of the rigid core (ρ = 0.1), the three curves of figure 4.4 and

figure4.6 are almost not differentiated from one another.

At large volume fraction of the rigid core (ρ = 0.9), figures 4.5 and 4.7 reveal a small

difference between the results of the reinforced material and the reference curve ρ = 0.

Figure 4.4: Strength in isotropic compression for ρ = 0.1 with reference curve ρ = 0

-’line’:limit analysis, -’diamond’:variational method, -’cross’:reference curve

More precisely, selecting f = 0.25 and T = 0.525, figures 4.11 and 4.12 respectively

present the variation of Σ−
m and Σ+

m as functions of ρ (discrete points) together with analytical

approximations introduced at section 4.6.4. This confirms the fact that the presence of a rigid

core only slightly affects the isotropic strength.

4.6.2 Static approach of the limit analysis problem

The theory of limit analysis teaches that a kinematic approach like the Gurson one provides

an upper bound of the true strength. In order to check the accuracy of a kinematic estimate,

it is therefore highly desirable to derive a static approach which in turn will deliver a lower

bound of the true strength.
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Figure 4.5: Strength in isotropic compression for ρ = 0.9 with reference curve ρ = 0

-’line’:limit analysis, -’diamond’:variational method, -’cross’:reference curve

Figure 4.6: Strength in isotropic traction for ρ = 0.1 with reference curve ρ = 0

-’line’:limit analysis, -’diamond’:variational method, -’cross’:reference curve

Figure 4.7: Strength in isotropic traction for ρ = 0.9 with reference curve ρ = 0

-’line’:limit analysis, -’diamond’:variational method, -’cross’:reference curve
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We therefore seek the stress field solution to an isotropic loading (traction or compression)

in the framework of the ’rigid core sphere model’. The macroscopic stress state is of the

form Σm1. Accordingly the external boundary (r = re) is subjected to a radial surface force

σ · n = Σmn. We implement the so-called static approach of limit analysis. It consists in

deriving a mesoscopic stress field σ which must be statically admissible with these boundary

conditions and meet the criterion Fmeso(σ) = 0 (see (4.2)). Owing to the spherical symmetry,

this statically admissible stress field can be sought in the form (spherical coordinates):

σ = σrr(r)er ⊗ er + σθθ(r)
(

eθ ⊗ eθ + eφ ⊗ eφ
)

(4.58)

The boundary condition on the surface r = re reads

σrr(re) = Σm (4.59)

The momentum balance equation divσ = 0 reduces to

dσrr
dr

= 2
σθθ − σrr

r
(4.60)

With the notation X = σθθ − σrr(note that X2 = 3
2σ

2
d), it is found that σm = σrr − 2

3X, so

that the criterion (4.2) yields

2

3

(

1 + 2
3f
)

X2

T 2
+

3f − 2T 2

2T 2

(

σrr +
2

3
X

)2

+ 2(1− f)h

(

σrr +
2

3
X

)

− (1− f)2h2 = 0 (4.61)

The values of X solutions of (4.61) read:

X =
3

2

(3f − 2T 2)σrr − 2hT 2(f − 1)±
√
∆

2T 2 − 5f − 3
, with (4.62)

∆ = (2f + 3)(2T 2 − 3f)σ2rr + 4hT 2(2f + 3)(f − 1)σrr + 2h2T 2(5f + 3)(f − 1)2 (4.63)

Recalling (4.60), an ordinary differential equation with respect to σrr is obtained in the form:

X(σrr) =
r

2

dσrr
dr

(4.64)

Introducing (4.62) into (4.64) and integrating over the interval [ri, re], one obtains

1

3
ln(ρ) =

∫ Σm

c

1

3

2T 2 − 5f − 3

(2T 2 − 3f)σrr + 2hT 2(f − 1) + ǫ
√
∆
dσrr (4.65)

where the notation c = σrr(ra) and the boundary condition (4.59) at r = re have been used.

Note that no boundary condition is available at r = ri. The physical meaning of (4.65) is

the following: Whenever there exists a constant c such that (4.65) is fulfilled (with ǫ = +1
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or −1), then Σm is an admissible loading for the value of ρ at stake. We seek the highest

possible value Σ+
m > 0 of Σm (isotropic strength in traction) and the lowest one, denoted by

Σ−
m < 0 (isotropic strength on compression).

For the simplification of the following discussion, the denominator in the integral of (4.65) is

denoted by Dǫ:

Dǫ = (2T 2 − 3f)σrr + 2hT 2(f − 1) + ǫ
√
∆ (4.66)

In order for this integral to be defined, two mathematical conditions are to be met, namely

∆ ≥ 0 and Dǫ 6= 0. This remark leads to introduce the solutions to the equations of ∆ = 0

and of Dǫ = 0.

First, let Σ±
1m denote the solutions to ∆ = 0, which read:

Σ+
1m =

[

2T (3 + 2f)−
√

6f (3 + 2f) (5f − 2T 2 + 3)
]

(1− f)hT

(3 + 2f)(2T 2 − 3f)

Σ−
1m =

[

2T (3 + 2f) +
√

6f (3 + 2f) (5f − 2T 2 + 3)
]

(1− f)hT

(3 + 2f)(2T 2 − 3f)

(4.67)

Recalling that 2T 2 − 3f < 0, we note that the condition ∆ ≥ 0 implies that c and Σm ∈
[

Σ−
1m,Σ

+
1m

]

. An immediate consequence is that the bounds Σ±
m are subjected to

Σ−
1m ≤ Σ−

m(ρ) ≤ Σ+
m(ρ) ≤ Σ+

1m (4.68)

In turn, let Σ+
2m (resp. Σ−

2m) denote the solution to D+ = 0 (resp. D− = 0):

Σ−
2m =

(

2T +
√
6
√
f
)

(f − 1)Th

3f − 2T 2
(4.69)

Σ+
2m =

(

2T −
√
6
√
f
)

(f − 1)Th

3f − 2T 2
(4.70)

The condition Dǫ 6= 0 on the interval of integration [c,Σm] requires one of the 3 following

conditions to be satisfied:

case 1 : c, Σm ≤ Σ−
2m

case 2 : Σ−
2m ≤ c, Σm ≤ Σ+

2m;

case 3 : c, Σm ≥ Σ+
2m

(4.71)

Considering (4.61) or (4.62) with X = 0, it appears that Σ−
2m and Σ+

2m can be interpreted as

the isotropic strength, respectively in compression and traction, of the matrix surrounding

the core. Observing that the strength of the composite sphere is necessarily higher than that
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of the matrix, an immediate consequence of the physical meaning of Σ±
2m is that the bounds

Σ±
m satisfy:

Σ−
m(ρ) ≤ Σ−

2m ; Σ+
2m ≤ Σ+

m(ρ) (4.72)

The combination of (4.68) and (4.72) reveals that:

Σ−
m(ρ) ∈

[

Σ−
1m,Σ

−
2m

]

; Σ+
m(ρ) ∈

[

Σ+
2m,Σ

+
1m

]

(4.73)

Accordingly, only cases 1 and 3 in (4.71) have to be considered. The intervals of (4.73) are

depicted at figure 4.8.

Let us now come back to (4.65) (remember that 2T 2 − 5f − 3 ≤ 0). We start with ǫ = +1

and the case 3 of (4.71). For the integral to be defined and negative, we must have:

Σ+
2m ≤ Σm ≤ c ≤ Σ+

1m (D+ < 0)

For a given value of ρ, the greatest value of Σm, that is Σ+
m(ρ), is the solution to (4.65) with

c = Σ+
1m:

1

3
ln(ρ) =

∫ Σ+
m

Σ+
1m

1

3

2T 2 − 5f − 3

(2T 2 − 3f)σrr + 2hT 2(f − 1) +
√
∆
dσrr (4.74)

Similarly, consider ǫ = −1 in (4.65) with case 1 in (4.71). For the integral to be defined and

negative, it is necessary that

Σ−
1m ≤ c ≤ Σm ≤ Σ−

2m (D− > 0)

Again, for a given value of ρ, the lowest value of Σm, that is Σ−
m(ρ), is the solution of (4.65)

with c = Σ−
1m:

1

3
ln(ρ) =

∫ Σ−
m

Σ−
1m

1

3

2T 2 − 5f − 3

(2T 2 − 3f)σrr + 2hT 2(f − 1)−
√
∆
dσrr (4.75)

(4.74) and (4.75) allow to determine the sought values Σ±
m(ρ). In practice, it is easier to use

these equations for the numerical determination of the inverse functions ρ(Σ±
m).

Interval A

Interval B

Interval C

*
2m

*
2m

*
1m

mc

*
1m

m c

Figure 4.8: Intervals of integration
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4.6.3 Comparisation between static and kinematic solutions

Figures 4.9 and 4.10 present the comparison between the static solution (solid curve) and

the kinematic solution (points) as functions of the rigid core volume fraction ρ (f = 0.25,

T = 0.525). Since the two plotted solutions can hardly be differentiated, it can be concluded

that they can be regarded as the exact strength of the composite material, within the rigid

core model. This comes in addition to the previous observation that the Gurson model and

the variational method yield seemingly identical results in isotropic loadings (section 4.6.1).

Figure 4.9: Static and kinematic bounds in isotropic compression

Figure 4.10: Static and kinematic bounds in isotropic traction

4.6.4 Analytical expressions of the strength under isotropic loading

Due to the complexity of the integrals in (4.74) and (4.75), these equations can hardly be

solved analytically. However, we observe that Σ±
m remain in the neighborhood of Σ±

2m. We

therefore propose to approximate the functions D+ and D− by series expansions in the neig-
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borhood of Σ+
2m and Σ−

2m respectively. These series expansions read:

In the case of series expansion to first order ,

D−(σrr) = (2T 2 − 5f − 3)(σrr − Σ−
2m) +O

[

(σrr − Σ−
2m)2

]

(4.76)

D+(σrr) = (2T 2 − 5f − 3)(σrr − Σ+
2m) +O

[

(σrr − Σ+
2m)2

]

(4.77)

We then substitute Dǫ in (4.65) by the above expressions (4.76) and (4.77) for the compressive

and tensile strength respectively. Under compression, the analytical solution of (4.74) reads,

Σ−
m = ρΣ−

1m + (1− ρ)Σ−
2m (4.78)

Under traction, the analytical solution reads,

Σ+
m = ρΣ+

1m + (1− ρ)Σ+
2m (4.79)

The comparisons between the results predicted by the analytical expression and by the nu-

merical integration are plotted in figures 4.11 and 4.12.

Figure 4.11: Strength in isotropic compression Σ−
m/σ0 as a function of ρ (f = 0.25, T = 0.525).

Numerical integration and first and second order approximations.

In the case of of series expansion to the second order ,

D−(σrr) = (2T 2 − 5f − 3)(σrr − Σ−
2m) +B−(σrr − Σ−

2m)2 +O
[

(σrr − Σ−
2m)3

]

(4.80)

D+(σrr) = (2T 2 − 5f − 3)(σrr − Σ+
2m) +B+(σrr − Σ+

2m)2 +O
[

(σrr − Σ+
2m)3

]

(4.81)



122 Strength properties of a porous medium reinforced by rigid particles

Figure 4.12: Strength in isotropic traction Σ+
m/σ0 as a function of ρ (f = 0.25, T = 0.525).

Numerical integration and first and second order approximations.

We then substitute Dǫ in (4.65) by the above expressions (4.80) and (4.81). The analytical

solutions at order 2 read:

Σ±
m = η + ρ

c− η

κ(c− η)(1− ρ) + 1
(4.82)

with the following parameters:

isotropic compression:


















η = Σ−
2m

κ = 1
2
√
6

3+2f
(f−1)

√
fhT

c = Σ−
1m

(4.83)

isotropic traction:


















η = Σ+
2m

κ = 1
2
√
6

3+2f
(1−f)

√
fhT

c = Σ+
1m

(4.84)

The results predicted by this new analytical expression are also plotted in figure 4.11 and

4.12.

4.7 An approximate analytical macroscopic criterion

We seek an approximation of the criterion by an ellipse in the (Σm,Σd) plane. The ellipse

intersects the Σm-axis at the points (Σ−
m, 0) and (Σ+

m, 0). The center of the ellipse is located
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at the middle of these points. We still have to determine the ordinate of the center of the

ellipse which corresponds to the strength under pure shear (Dm = 0).

4.7.1 Strength under pure shear loading (Dm = 0)

With the condition Dm = 0, it is readily seen that the value of the parameter A which

minimizes Π̃(D, A) is A = 0 (see (4.45)). Accordingly, specifying equations (4.47)-(4.53)

with (4.30) and (4.40) for Dm = 0 and A = 0, closed-form expressions of the mean stress and

the maximum shear stress can be obtained from (4.46):

Σm,c = −λ (4.85)

Σd,c = σ0

[

√

2

3
(1− ρ) +

√

17α+ 4

15α
ρ

]

(4.86)

where λ, σ0 and α have been defined in (4.12) and (4.13). The subscript c recalls that this

point is the center of the ellipse.

(4.86) then reads:

Σd,c =

√

2

3
σ0

[

1−
(

1− 1√
10

√

67f − 34T 2 + 24

3f − 2T 2

)

ρ

]

(4.87)

Then, according to the criterion (4.54) together with (4.55) predicted by the variational

method in [Shen,11], the maximum shear stress and the corresponding mean stress read

Σvar
m,c = −λ (4.88)

Σvar
d,c =

√

2

3
σ0

√

1 +
−4T 2 + 12f + 9

−6T 2 + 13f + 6
ρ (4.89)

Comparing (4.87) and (4.89), it can be seen that the maximum shear stress predicted from

(4.87) by the rigid core model is more significantly affected by the fraction volume ρ of the

rigid inclusion than the one obtained from the variational method.

4.7.2 Elliptic approximate macroscopic criterion

Now let us try to approximate the criterion given in parametric form (obtained by means

of kinematic approach) found in section 4.4 by an analytical elliptic criterion. Analytical

expressions of the strength have been established at particular stress states, namely under

isotropic loading (section 4.6.2) and under pure shear loading (with Σm = −λ, section 4.7.1).

Recalling (4.82) (4.83) and (4.84) for the expressions of Σ+
m, Σ−

m in the case of a second order
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expansion, together with (4.87) for the expression of Σd,c, the macroscopic criterion can be

approached by the following analytical elliptic function:

(

Σm − λ

ΣL/2

)2

+

(

Σd

Σd,c

)2

= 1 (4.90)

with ΣL = Σ+
m − Σ−

m and λ = (Σ+
m + Σ−

m)/2. Recall that Σ+
m, Σ−

m, Σd,c are quantified in

(4.82),(4.87) by (4.67),(4.69),(4.70); and λ, σ0, α are given in (4.12),(4.13).

Note that when the particles volume fraction ρ = 0, (4.90) allows to retrieve the strength

criterion (4.2) of the porous matrix with Drucker-Prager solid phase, here in the form:

(

Σm − λ

Σρ=0
L /2

)2

+

(

Σd

Σρ=0
d,c

)2

= 1 (4.91)

with

Σρ=0
L =

2
√
6
√
f(1− f)Th

3f − 2T 2
; Σρ=0

d,c =

√

2

3
σ0 (4.92)

and λ = (1− f)h 2T 2

3f−2T 2 introduced in (4.12).

We present at figures Fig.4.13 and Fig.4.14 the comparison between the predictions of the

analytical macroscopic criterion, (4.90), and that numerically obtained from the parametric

equations, (4.46), together with the condition of minimization (4.45). The following values

of parameters have been considered: ρ = 0.3 and ρ = 0.6 respectively (f = 0.25, h = 30,

T = 0.525). This comparison shows an excellent accuracy of (4.90).

Figure 4.13: Comparison between the results of parametric equations and analytical criterion,

with the parameters as ρ = 0.3, f = 0.25, T = 0.525, h = 30
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Figure 4.14: Comparison between the results of parametric equations and analytical criterion,

with the parameters as ρ = 0.6, f = 0.25, T = 0.525, h = 30

4.8 Conclusion

On the basis of a limit analysis approach, we have proposed an extension of available models

(devoted to the macroscopic strength of porous media). This extension concern porous ma-

terials with a Drucker-Prager solid phase, reinforced by rigid particles. The proposed model

concerns in particular the Callovo Oxfordian clay as a composite material made up of rigid

inclusions embedded in a porous clay matrix. The pores are assumed to be very small as

compared to the rigid inclusions. This scale separation justifies to implement a two steps

homogenization procedure, in which the first (dealing with the porous clay matrix, transition

from micro to mesoscale) takes advantage of results by Maghous et al. (2009). The present

paper has focused on the second step of the homogenization (transition meso-macro) by de-

veloping a limit analysis based kinematic approach of a spherical ’rigid core’. This delivers

an upper bound of the macroscopic strength criterion of the microporous composite which

has been determined by parametric equations and then in the form of an approximate closed-

form criterion whose accuracy has been demonstrated. The latter has been compared to the

estimate of the strength recently derived by [Shen,11] (see equations (4.54) with (4.55) in the

present paper) on the basis of a variational non linear homogenization approach. A very good

agreement between the two models is obtained for isotropic stress states. In contrast, a sig-

nificant discrepancy between the failure envelopes is observed on the shear strength for large

values of the rigid inclusions concentration. Moreover, the good accuracy of the estimate of

the strength under isotropic loadings has been shown by a comparison with the results of

a static (stress-based) approach of the limit analysis problem. An interesting observation is
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that the estimates of the isotropic strength in traction or in compression do not depend on

the homogenization method (limit analysis, variational method). Furthermore, the isotropic

strength proves to be only slightly affected by the rigid core volume fraction. The practical

implication is that the isotropic strength properties of the clay matrix and of the Callovo Ox-

fordian argillite are very close, irrespective of the quartz/calcite content. Finally, we examine

in Appendix the particular case of a von Mises solid phase of the porous matrix for which our

results are compared to the estimates established by [Shen,11] and [Garajeu and Suquet,97].
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4.9 Appendix A: Reinforced porous materials with Von-Mises

solid phase

We aim here at analyzing on the basis of the proposed model, the strength properties of the

reinforced porous material in which the solid phase obeys now to a von Mises criterion:

fs(σ̃) = σ̃eq − σvm0 with σ̃eq =

√

3

2
σ̃d : σ̃d (4.93)

σvm0 is the yield stress of the solid phase. In fact, the von Mises criterion (4.93) is a limit

case of the Drucker-Prager criterion (4.1) for:

h =

√

2

3

σvm0
T

, and T → 0 (4.94)

4.9.1 Comparison with the result of [Shen11thesis] in the limit case of von

Mises solid phase

As mentioned before, by considering a modified secant moduli approach (equivalent to a

variational approach) in the two homogenization steps, [Shen,11] derived the strength crite-

rion of reinforced porous materials having a Drucker-Prager solid phase in the form given by

(4.54). The restriction of this result for the material having a von Mises solid phase is readily

retrieved here by taking into account (4.94) into (4.54):

3

2

1 + 2
3f + fρ

12f+9
13f+6ρ+ 1

(

Σd

σvm0

)2

+
9

4
f

(

Σm

σvm0

)2

− 3 + 2f + 3ρf

3 + 2f
(1− f)2 = 0 (4.95)
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In the first homogenization step of [Shen,11], the behavior of the microporous medium

has been described by the elliptic criterion (4.2) proposed in [Maghous et al.,09]. For the

microporous medium having a von Mises solid phase, this criterion reduces to the criterion

already proposed by [PonteCastaneda,91]:

(
3

2
+ f)

(

σd
σvm0

)2

+
9

4
f

(

σm
σvm0

)2

− (1− f)2 ≤ 0 (4.96)

which can be recast in the form (4.3) with the appropriate parameters. The resulting support

function π′
F
(d) derived from (4.9) reads:

π′
F
(d) = 2k′

√

L′2

4
d2v +

1

2
d2d = σ′0

√

1

3α′ d
2
v + d2d (4.97)

with

σ′c = 0 ; L′2 =
4(3 + 2f)

9f
; k′2 =

(1− f)2σvm0
2

3 + 2f
(4.98)

and

σ′0 = (1− f)σvm0

√

3

3 + 2f
; α′ =

3f

2(3 + 2f)
(4.99)

Hence, by considering the new parameters σ′0, α
′ introduced in (4.99), numerical results of

the macroscopic parametric criterion can be obtained following the procedure described in

section 4.4.

Let us now approximate the macroscopic criterion by an analytical elliptic function as

done in section 4.7.2. Applying the series expansion up to the second-order approximation

(see section 4.6.4) in the von Mises limit case, leads to:

(

Σm

Σ′
L/2

)2

+

(

Σ2
d

Σ′
d,c

)2

= 1 (4.100)

By considering (4.94), the limits of (4.82) and (4.84) yield the expression of Σ′
L as:

Σ′
L = 2η′ + 2ρ

c− η′

κ′(c− η′)(1− ρ) + 1
(4.101)

where the parameters η′,κ′ and c′ are given by:

η′ =
2σvm0 (1− f)

3
√
f

; κ′ =
3 + 2f

4σvm0 (1− f)
√
f
; c′ =

2σvm0
3

(1− f)
√
5f + 3

√

f(3 + 2f)
(4.102)

Introducing respectively σ′0, α
′ (defined in (4.99)) at the places of σ0, α in (4.86), Σ′

d,c which

enters in (4.100) reads:

Σ′
d,c = (1− f)σvm0

√

1

3 + 2f

(

√
2(1− ρ) + ρ

√

67f + 24

15f

)

(4.103)
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Remark: Before comparing the results of the two approaches, it is convenient to

emphasize that When f = 0, the predicted strengths under shear loading and hydrostatic

pressure by (4.100) tend to ∞. The main reason of such result lies in the conditions under

which is performed the present limit analysis. Indeed, the consideration of the Gurson type

extended velocity field to a compressible matrix was justified by the fact that no special

precautions had to be taken at the inclusion-matrix interface on the velocity discontinuity,

due to the elliptic character of the yield function of the porous matrix. In this case, the

contribution of the interface to the dissipation is necessarily bounded. Conversely, when f

tends to 0 the criterion of the matrix reduces to a von Mises one for which the condition

of a purely tangential discontinuity must be fulfilled; this is not ensured by the Gurson type

velocity field considered in the present study.

The comparison between the criterion expressed by the parametric equations and the analyt-

ical criterion (4.100) is provided in Fig.4.15. As before for the general case of Drucker-Prager

solid phase, a good agreement is again noted in the present case.

Figure 4.15: Comparison between the results of parametric equations and analytical criterion,

with the parameters as ρ = 0.1, f = 0.1, σvm0 = 1

The comparison between our results (4.100) and that predicted by the variational approach

(see equation (4.95))2 is shown in Fig.4.16. The difference between the two predictions is

noticeable for low stress triaxiality where the modified secant moduli approach leads to a less

strengthened composite.

2Note that the two approaches differ only in the second step of homogenization.
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Figure 4.16: Comparison between our results (4.100) and that predicted by the variational

approach, with the parameters as f = 0.1, ρ = 0.1, σvm0 = 1

-’line’: criterion (4.100) considering the porous matrix described by the criterion in

[PonteCastaneda,91],

-’box’: criterion (4.95) obtained in the von Mises case via (4.54) proposed by [Shen,11]

4.9.2 Comparison with the results of [GarajeuSuquet97]

The strength criterion of reinforced porous materials having a von Mises solid phase, has

also been investigated in [Garajeu and Suquet,97]. These authors used a Gurson model

[Gurson,77] in the first homogenization step, then a variational approach in the second ho-

mogenization step3. Their criterion established in [Garajeu and Suquet,97] reads:

S2
eq + f cosh(Sm)

(

1 +
√

1 + (1 + f2)ρ− S2
eqρ+ f2ρ

)

− 1− f2 + ρf2 = 0

Seq =

√
3Σd√
2σvm0

1√
1 + ρ

(4.104)

Sm =
3|Σm|
2σvm0

−
√

2 + (1 + f2)ρ− S2
eqρ− 2

√

1 + (1 + f2)ρ− S2
eqρ+ f2ρ

In order to keep the comparison meaningful, we adopt for the microporous medium (in the

first homogenization step) the modified elliptic criterion proposed by [Michel and Suquet,92]

and which is known to be in agreement with the Gurson criterion. This criterion reads:

(
3

2
+ f)

(

σd
σvm0

)2

+
9

4

(

1− f

ln(f)

)2( σm
σvm0

)2

− (1− f)2 = 0 (4.105)

3Clearly enough, this differs from our approach in which the variational approach is first considered, followed

by a limit analysis based one.
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which can be recast in the form (4.3) with the appropriate parameters. The resulting support

function π′
F
(d) derived from (4.9) reads:

π∗
F
(d) = 2k∗

√

L∗2

4
d2v +

1

2
d2d = σ∗0

√

1

3α∗d
2
v + d2d (4.106)

with

σ∗c = 0 ; L∗2 =
4(3 + 2f)ln(f)2

9(1− f)2
; k∗2 =

(1− f)2σvm0
2

3 + 2f
(4.107)

and

σ∗0 = (1− f)σvm0

√

3

3 + 2f
; α∗ =

3(1− f)2

2(3 + 2f)ln(f)2
(4.108)

As previously done in section 4.9.1, by adopting the new parameters α∗, σ∗0 of (4.108), numer-

ical results of the macroscopic parametric criterion can be obtained by applying the procedure

described in section 4.4.

Let us now approximate the macroscopic criterion by an analytical elliptic function as done

in section 4.7.2. By performing the series expansion up to the second-order approximation

(see section 4.6.4), the macroscopic elliptic criterion for the von Mises limit case reads:

(

Σm

Σ∗
L/2

)2

+

(

Σ2
d

Σ∗
d,c

)2

= 1 (4.109)

with Σ∗
L, Σ

∗
d,c given by:

Σ∗
L =

4σvm0
3

η∗c∗ + κ∗

χ∗c∗ + ω∗ (4.110)
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η∗ = −18ρ (1− f)2 + 3 (ρ− 1) (2f + 3) ln(f)2

κ∗ = 2(ρ− 1) ln(f)
[

(2f + 3)ln(f)2 − 6(1− f)2
]

σvm0

χ∗ = 3 (ρ− 1) (2f + 3) ln(f)

ω∗ = 2
[

(ρ− 1) (2f + 3) ln(f)2 + 6 (1− f)2
]

σvm0

c∗ =
2

3

√

(2f + 3)ln(f)2 + 3(1− f)2

3 + 2f
σvm0

(4.111)

By adopting respectively σ∗0, α
∗ at the places of σ0, α in (4.86), Σ∗

d,c which enters in (4.109)

reads:

Σ∗
d,c = σvm0

√

1

3 + 2f

[

√

51(1− f)2 + 8(3 + 2f) ln(f)2√
15

ρ+
√
2(1− f)(1− ρ)

]

(4.112)

The comparison between the criterion expressed by the parametric equations and the ana-

lytical criterion is provided in Fig.4.17. As expected, a good agreement is again noted in the

present case.
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Figure 4.17: Comparison between the results of parametric equations and analytical criterion,

with the parameters as ρ = 0.1, f = 0.1, σvm0 = 1

Figure 4.18: Comparison between the results predicted by the limit analysis and variational

approach in the second step, with the parameters as ρ = 0.1, f = 0.1, σvm0 = 1

-’line’: criterion (4.109) considering the porous matrix described by the criterion in

[Michel and Suquet,92],

-’box’: criterion (4.104) proposed by [Garajeu and Suquet,97]
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In the case of the microporous matrix described by (4.105), the comparison between our

results (see (4.109)) and that of the variational approach (4.104) is shown in Fig.4.18.

4.10 Appendix B: Comparison with the experimental data

To assess the accuracy of the proposed criterion, the numerical results are compared with the

experimental data in this section. Experimental tests have been conducted on samples cored

from the borehole EST 104 of the site, where the underground research laboratory for nuclear

waste disposal is operated by ANDRA, at different depths (451.4− 466.8m, 468.9− 469.1m

and 482.1− 482.4m). The strength data used in this study is extracted from the above test

results (see also [Abou-Chakra et al.,08]) in the way that the strength is registered at the

point of the stress-strain curve where the rupture occurs. The strength values of the COx

argillite with respect to the volume fraction of the rigid inclusion ρ are resumed in Table 4.1.

Table 4.1: The strength values of the COx argillite with respect to the volume fraction of the

rigid inclusion

ρ (%) Σm(MPa) Σd(MPa) ρ (%) Σm(MPa) Σd(MPa)

40 8.6 22.1 49 11.6 28.7

40 19.3 35.3 51 18.0 32.0

40 24.0 34.45 53 25.0 36.9

45 25.3 37.7 56 19.6 36.1

The numerical simulations are now performed for uniaxial and triaxial compression tests

at different confining pressures (0, 5 and 10MPa), and compared with the experimental data in

Fig.4.19. We have to determinate 3 parameters of the proposed criterion. The parameters of

f = 0.25 and h = 30 are retained as same as those in [Shen,11] to facilitate the confrontation

of the two different methods. Recalling Fig.4.3, one can see that the difference between of

the two failure envelopes becomes obvious with an increasing ρ. The volume fraction of the

rigid inclusion ρ plays a very important role in predicting strength of COx argillite. This

property revealed by the new proposed criterion are validated by the comparison illustrated

in Fig.4.19, where the prediction of the criterion obtained by variational method obviously

underestimates and experimental results.
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Figure 4.19: Comparisons of the numerical results obtained by limit analysis method T =

0.49(line) and by variational method T = 0.49(cross), with the experimental data (box) at

different volume fraction ρ, for uniaxial tests

4.11 Appendix C: Integration

The following principe is applied in the derivation of the inequality of (4.28).

∫ b

a
fgdx ≤

(∫ b

a
f2dx
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1
2
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1
2

(4.113)

let us assign G = d2eq,

Y =

∫ 2π

0

∫ π

0

√
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(∫ 2π
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dθ (4.114)

Applying the principle (4.113), we have
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Then (4.114) becomes
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√
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[Thore et al.,11] Ph. Thoré, F. Pastor, J. Pastor, 2011. Hollow sphere models, conic pro-

gramming and third stress invariant. European J. Mech. A/solids. 30, 63-71.

[Trillat et al.,06] M. Trillat, J. Pastor, P. Thoré., 2006. Limit analysis and conic program-
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604.

[Vincent et al.,09] P.-G. Vincent, Y. Monerie, P. Suquet, 2009. Porous materials with two

populations of voids under internal pressure : I. instantaneous constitutive relations.

International Journal of Solids and Structures, 46, 480–506.



Conclusion

139





Conclusion 141

Conclusion

L’objectif de ce travail est de mettre en place des outils de modélisation micromécanique

permettant d’étudier le comportement de l’argilite du Callovo-Oxfordien. Le matériau était

abordé à trois échelles d’espace distinctes. L’échelle microscopique révèle l’hétérogénéité de

la phase argileuse de l’argilite. A L’échelle microscopique, il est décrit comme un polycristal

poreux. Le cristal élémentaire est l’agrégat d’argile structuré (grain feuilleté). Le volume

complémentaire des cristaux de la phase argileuse est l’espace poreux observé sous forme de

micropores. Ces micropores constituent le volume principal de pores de l’argilite et affectent

de façon sensible le comportement de l’argilite. A l’échelle mésoscopique, le matériau se

présente comme un composite composé une matrice argileuse homogène et des inclusions

(quartz, calcite etc.). L’homogénéisation de ce composite débouche sur la caractérisation de

l’argilite à l’échelle macroscopique.

Au point de départ de la thèse, nous avons proposé une description des propriétés

élastiques isotropes transverses de la phase argileuse sur laquelle s’est appuyé le model

morphologique sythetisé comme un polycristal poreux (cristaux + pores). En revisitant

le problème d’Eshelby généralisé, l’interaction mécanique entre des cristaux a été prise en

compte en supposant un motif de grain feuilleté entouré par une interface. La mise en place

d’un schéma auto-cohérant généralisé dans le cadre d’une approche incrémentale a permis

d’obtenir des prédictions numériques du comportement de la phase argileuse.

Pour comprendre les effets d’interface sur les propriétés mécaniques effectives des

géomatériaux, des interfaces de type Mohr-Coulomb cohésif ont été considérés. Sur cette

base, on a proposé tout d’abord un modèle poro-élastique pour les matériaux granulaires

saturés avec effets d’interface imparfaite. Ensuite, sur la base de ce modèle poroélastique

et s’appuyant sur le cadre de l’homogénéisation nonlinéaire, nous avons pu quantifier le rôle

joué par les interfaces imparfiates de type Mohr-Coulomb cohésif entre des grains rigides sur

le critère de résistance macroscopique d’un milieu granulaire.

Enfin, nous avons proposé un modèle complet pour la prédiction de la résistance de

l’argilite du Callovo-Oxfordien sous l’hypothèse que la matrice argileuse est un matériau

poreux avec la phase solide décrite par un critère Drucker-Prager parfaitement plastique.

Il importante de noter que le mécanisme de rupture explorée inclut la possibilité d’une

concentration de déformation à l’interface de noyau rigide -matrice qui peut être décrite

mathématiquement à l’aide d’une discontinuité de vitesse. Ce modèle a été analysé en détail
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et ses prédictions apparaissent tout à fait probantes.

Perspectives

Les perspectives de ce travail sont diverses.

Pour suite du developpement du modèle de matériau polycristallin en vue du parcours

complet d’échelles requis pour l’argilite du Callovo-Oxfordien. Il conviendra de realiser

la mise en oeuvre de ce modèle et de le confronter à son homologue qui sera issu des

résultats du chapitre 4.

Investigation des comportements couplés hydromécaniques prenant en compte la mi-

crostructure multiéchelle de l’argilite.

A moyen terme, il sera opportun d’étudier la réponse différée de l’argilite en adjoignant

au modèle les mécanismes de viscosité dans la matrice argileuse.



Résumé 
Ce travail porte sur la mise en place des outils de modélisation micromécanique permettant 
d’étudier le comportement de l’argilite du Callovo-Oxfordien. Ce géomatériau poreux est 
modélisé comme un milieu hétérogène à trois échelles d’espace distinctes. L’échelle 
microscopique révèle l’hétérogénéité de la phase argileuse sur laquelle s’est appuyé le modèle 
morphologique synthétisé comme un polycristal poreux. Des prédictions numériques du 
comportement élasto-plastique et isotrope transverse de la phase d’argile tenant compte 
d’interactions mécaniques entre des cristaux sont effectuées à l’aide d’une approche 
incrémentale de Hill. Ensuite, un modèle poroélastique pour matériaux granulaires saturés 
avec effets d’interface imparfaite est proposé. Sur la base de ce modèle poroélastique et 
s’appuyant sur le cadre de l’homogénéisation non linéaire, on met en évidence l’impact des 
interfaces imparfaites de type Mohr-Coulomb cohésif sur le critère de résistance de 
géomatériaux granulaires. Enfin, nous avons propose un modèle complet pour la prédiction de 
la résistance de l’argilite du Callovo-Oxfordien sous l’hypothèse que la matrice argileuse est 
un matériau poreux avec la phase solide décrite par un critère Drucker-Prager parfaitement 
plastique. Il est important de noter que le mécanisme de rupture exploré inclut la possibilité 
d’une concentration de déformation à l’interface de noyau (rigide)-matrice. Ce modèle est 
analysé en détail et ses prédictions apparaissent tout à fait probantes. 

Mot-clés: micromécanique, homogénéisation, non linéaire, multi-échelles, calcul à la rupture, 
résistance, poroélasticité, Mohr-Coulomb, Drucker-Prager, interface, polycristal, milieu 
poreux,  

 

Abstract 

This work focuses on the development of micromechanical modeling tools to study the 
behavior of the Callovo-Oxfordian argillite. This geomaterial is modeled as a porous 
heterogeneous medium at three distinct spatial scales. The microscopic scale reveals the 
heterogeneity of the clay phase on which the morphological model synthesized as a porous 
polycrystal was based. Numerical predictions of the elastoplastic and transversely isotropic 
clay phase considering mechanical interactions between the crystals are performed by using 
an incremental approach. Then, a poroelastic model for saturated granular materials with 
imperfect interface effects is proposed. On the basis of this poroelastic model and the 
nonlinear homogenization, we showcase the impact of the cohesive Mohr-Coulomb imperfect 
interfaces on the strength criterion of granular geomaterials. Finally, we propose a complete 
model for the prediction of the strength of Callovo-Oxfordian argillite under the assumption 
that the clay matrix is a porous material with the solid phase described by a perfectly plastic 
Drucker-Prager criterion. It is important to note that the explored failure mechanism includes 
the possibility of a strain concentration at the (rigid) inclusion-matrix interface. This model is 
analyzed in detail and its predictions appear quite convincing.  

Keywords: micromechanics, homogenization, nonlinear, multi-scale, limit analysis, strength, 
poroelasticity, Mohr-Coulomb, Drucker-Prager, interface, polycrystal, porous medium 
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